blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
577b92f826be294b581186b534f19ed48495f4d5
77eea52569b3c2c7e35b3a53735953157fc5683d
/venv/Lib/site-packages/rom/__init__.py
2bbc5a3cdf950d099fbdbefc9fcf94de37386a8e
[]
no_license
Bezingatron/MathsQuiz.py
d385f8d161782f7ad5b4edfeb63c3fb29962a308
1f0ba5a49990bcd43928ef5667f8a221c1101ed0
refs/heads/master
2023-04-07T04:51:07.848099
2021-04-14T19:42:15
2021-04-14T19:42:15
340,170,914
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
from .rom import rom, rom_generate, rom_parse
b8a905fd52811d0ab8aac11a7a14d94de838ca78
5a64aff40b596f2ee5c650811d3009bb7456a16c
/Coursera/Fundamentals_of_Digital_Image_and_Video_Processing/HW2/HW2.py
b752483920a4117935289b49044cc059abe748c2
[]
no_license
petershen0307/Course
5c1c901bc9f038306500f824a1daa54c7677624a
7c6b23556db47eb61c6b926913795e15d706397c
refs/heads/master
2021-07-20T06:32:27.969483
2017-10-29T15:14:28
2017-10-29T15:14:28
58,867,032
1
0
null
null
null
null
UTF-8
Python
false
false
1,748
py
from scipy import misc from scipy import ndimage import numpy as np import matplotlib.pyplot as plt def filtering_image(image_path, filter): origin_image = misc.imread(image_path, mode='L') # plt.imshow(origin_image, cmap='Greys_r') # plt.show() print(origin_image) origin_image_double = origin_image.astype(np.float64) print(type(origin_image_double[0][0])) print(filter) filter_image = ndimage.convolve(origin_image_double, filter, mode='nearest') misc.imsave('low_pass_filter_{0}{1}.gif'.format(len(filter), len(filter[0])), filter_image, format='gif') # plt.imshow(filter_image, cmap='Greys_r') # plt.show() print(filter_image) print('origin_image_double n1: {0}'.format(len(origin_image_double))) print('origin_image_double n2: {0}'.format(len(origin_image_double[0]))) print('filter_image n1: {0}'.format(len(filter_image))) print('filter_image n2: {0}'.format(len(filter_image[0]))) return origin_image_double, filter_image def calc_psnr(image_path, filter): origin_image_double, filter_image = filtering_image(image_path, filter) MAXI = 255 MSE = 0 for n1 in range(0, MAXI): for n2 in range(0, MAXI): MSE += ((origin_image_double[n1][n2] - filter_image[n1][n2]) ** 2) MSE /= (256 ** 2) print('MSE: {0}'.format(MSE)) PSNR = 10 * np.log10(MAXI ** 2 / MSE) print('PSNR: {0}'.format(PSNR)) return PSNR if '__main__' == __name__: image_path = 'digital-images-week2_quizzes-lena.gif' # question 7 low_pass_filter_33 = np.array([[1 / 9]*3]*3) calc_psnr(image_path, low_pass_filter_33) # question 8 low_pass_filter_55 = np.array([[1 / 25]*5]*5) calc_psnr(image_path, low_pass_filter_55)
fabdcb016bb2945ce5a4420e58c20a8cc2070765
46afba4407a98ac564ed7a2e08aebfcec4fa1ba3
/Project Euler/problem_20.py
83947b08ce6336236edc3cd968c9bdea337af690
[]
no_license
areebbeigh/CompetitiveProgramming
b28ffe99ac15cadfa3b54f9974beb77c280b2309
04044674ad0663181326649d0c14da94108e90da
refs/heads/master
2021-07-15T07:48:42.338241
2021-07-13T10:36:11
2021-07-13T10:36:11
199,145,494
2
0
null
null
null
null
UTF-8
Python
false
false
166
py
#!/usr/bin/python3.6 def factorial(n): if n == 0: return 1 return n * factorial(n - 1) print( sum(map(lambda x: int(x), str(factorial(100)))) )
4edc9bed916af82b7eaccb493c7655623dae527d
b77f0f5854169adc500be3cc8466d380eef090aa
/tests/tests_integration/test_api/test_synthetic_time_series.py
7be5ee77e5efde763eb9dc6ac7d5413728f88631
[ "Apache-2.0" ]
permissive
lightspin/cognite-sdk-python
6c59ae04426df92f3b350d8fc48481a9f0cb5153
a1e32e6ce1ffd8cb66070843dfcb7773d2127689
refs/heads/master
2020-09-28T23:41:07.514077
2019-12-05T13:13:49
2019-12-05T13:13:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,173
py
import re from datetime import datetime from unittest import mock import pytest from cognite.client.experimental import CogniteClient COGNITE_CLIENT = CogniteClient() @pytest.fixture(scope="session") def test_time_series(): time_series = {} for ts in COGNITE_CLIENT.time_series.list(limit=150): if ts.name in ["test__constant_{}_with_noise".format(i) for i in range(0, 10)]: value = int(re.match(r"test__constant_(\d+)_with_noise", ts.name).group(1)) time_series[value] = ts yield time_series @pytest.fixture def post_spy(): with mock.patch.object( COGNITE_CLIENT.datapoints.synthetic, "_post", wraps=COGNITE_CLIENT.datapoints.synthetic._post ) as _: yield class TestSyntheticDatapointsAPI: def test_retrieve(self, test_time_series, post_spy): query = "ts{id:%d} + ts{id:%d}" % (test_time_series[0].id, test_time_series[1].id) dps = COGNITE_CLIENT.datapoints.synthetic.retrieve( expression=query, start=datetime(2017, 1, 1), end="now", limit=23456 ) assert 23456 == len(dps) assert 3 == COGNITE_CLIENT.datapoints.synthetic._post.call_count
c89ee707547460eac103b503d8800a3db56e5639
14c93e9552407b6137fba7d15d9ca99495356b3b
/insert.py
f27c46162fecc8f9a803026a0f3416b60ffc4b79
[]
no_license
le-phuc-loc/MakeLifeEasier
741537c4a81b43b889458a6e51fde8160fda64d5
61d952ebc602e7e0935baa459afe32e175d38623
refs/heads/master
2022-02-24T12:04:53.368373
2019-10-26T16:15:55
2019-10-26T16:15:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
471
py
import cv2 f = open("caption1.txt", "a") c = 0 i = 837 while i <= 1000: if c % 5 == 0: i += 1 img = './downloads/nienluan2019/hinh'+str(i)+'.jpg' frame = cv2.imread(img) frame = cv2.resize(frame,(600,400)) cv2.imshow("cap", frame) cv2.waitKey(300) c = 0 temp = "hinh" + str(i) + ".jpg#" + str(c) + " " cap = input(temp) temp += cap + " .\n" f.write(temp) c += 1 cv2.destroyAllWindows()
7574388080ad99f15f8fdaba68b1877027859752
9d69a980eda6a62938f42035e9fce5a9db7426bc
/Training/example10.py
5d304fd0d558552d07c8e9ec0145eeae3503e201
[]
no_license
NamNamju/DataAnalysis
f5c8c6cd2aebcd710f747cffcf3e309b8f0999ea
8fbb67e14fca2bcbeac51a0cc01a2a5857e8e34b
refs/heads/master
2023-03-04T16:42:42.095428
2021-02-11T14:49:50
2021-02-11T14:49:50
326,737,772
0
0
null
null
null
null
UTF-8
Python
false
false
557
py
import cv2 import numpy as np # trackbar 값을 빠르게 변경해볼 수 있다. def change_color(x): r = cv2.getTrackbarPos("R", "Image") g = cv2.getTrackbarPos("G", "Image") b = cv2.getTrackbarPos("B", "Image") image[:] = [b, g, r] cv2.imshow("Image", image) image = np.zeros((600, 400, 3), np.uint8) cv2.namedWindow("Image") cv2.createTrackbar("R","Image", 0, 255, change_color) cv2.createTrackbar("G","Image", 0, 255, change_color) cv2.createTrackbar("B","Image", 0, 255, change_color) cv2.imshow("Image", image) cv2.waitKey(0)
ef0b6bd74a936ce1e7647ea3fb059c84a30c785f
16937358e2f9cb173253969719398ddad66b0a94
/noesis/links.py
c5076633909e4192cf24a5ad3c5baa70fda713c5
[ "MIT" ]
permissive
fvictor/noesis-python
99d50b9875a7f283e2bbb13bc5ec5f0fc60c19ad
84a38398d23baf98f2712ddfe23a88d2d012d5a4
refs/heads/master
2021-04-09T15:08:41.944507
2018-09-19T10:33:16
2018-09-19T10:33:16
125,663,095
2
0
null
null
null
null
UTF-8
Python
false
false
3,902
py
import javabridge as jb from .utils import get_class_wrapper, java_matrix_to_numpy class LinkTask(): """Base abstract class for link-related scores.""" __PACKAGES__ = ['noesis.analysis.structure.links.prediction.local', 'noesis.analysis.structure.links.prediction.global'] __SCORE_TAIL__ = 'Score' class LinkScorer(LinkTask): """This class implements the interface for link scorers. These algorithms compute a score for each link according to certain specific rules. Parameters ---------- scorer : string Technique used to compute link scores. Currently supported techniques are: - Local: 'CommonNeighbors', 'AdamicAdar', 'ResourceAllocation', 'PreferentialAttachment', 'HubDepressed', 'HubPromoted', 'Jaccard', 'LocalLeichtHolmeNewman', 'Salton', and 'Sorensen'. - Global: 'Katz', 'RandomWalk', 'RandomWalkWithRestart', 'FlowPropagation', 'PseudoinverseLaplacian', 'AverageCommuteTime', 'RandomForestKernel', and 'GlobalLeichtHolmeNewman'. args: parameters Parameters for the link scorer. These parameters are specific for each link scorer and more details are provided in NOESIS documentation. """ def __init__(self, scorer, *args): self.scorer = scorer self.args = args def compute(self, network): """Compute scores for each link in a given network. Parameters ---------- network : Network Network for which the link scores will be computed. Returns ------- scores : list of tuples A list of tuples with the format (source_node, target_node, link_score). """ class_wrapper = get_class_wrapper(self.scorer, LinkScorer.__PACKAGES__, LinkScorer.__SCORE_TAIL__) link_predictor = class_wrapper(network.__o__, *self.args) scorer_wrapper = get_class_wrapper('LinkScorer', ['noesis.analysis.structure.links.scoring']) link_scorer = scorer_wrapper(network.__o__, link_predictor) scores = link_scorer.call() link_index = link_scorer.getLinkIndex() result = [(link_index.source(i), link_index.destination(i), scores.get(i)) for i in range(link_index.links())] return result class LinkPredictor(LinkTask): """This class implements the interface for link predictors. These algorithms compute a score for each pair of nodes according to certain specific rules. Parameters ---------- scorer : string Technique used to compute node pair scores. Currently supported techniques are: - Local: 'CommonNeighbors', 'AdamicAdar', 'ResourceAllocation', 'PreferentialAttachment', 'HubDepressed', 'HubPromoted', 'Jaccard', 'LocalLeichtHolmeNewman', 'Salton', and 'Sorensen'. - Global: 'Katz', 'RandomWalk', 'RandomWalkWithRestart', 'FlowPropagation', 'PseudoinverseLaplacian', 'AverageCommuteTime', 'RandomForestKernel', and 'GlobalLeichtHolmeNewman'. args: parameters Parameters for the link predictor. These parameters are specific for each link predictor and more details are provided in NOESIS documentation. """ def __init__(self, predictor, *args): self.predictor = predictor self.args = args def compute(self, network): """Compute scores for each pair of nodes in a given network. Parameters ---------- network : Network Network for which the node pair scores will be computed. Returns ------- scores : ndarray, shape (num_nodes,num_nodes) Matrix of node pair scores. """ class_wrapper = get_class_wrapper(self.predictor, LinkPredictor.__PACKAGES__, LinkScorer.__SCORE_TAIL__) link_predictor = class_wrapper(network.__o__, *self.args) matrix = link_predictor.call() return java_matrix_to_numpy(matrix)
8a79193a9965797088a1f5b46eadaffaa84fe9ae
10512ea1aa0f4870dbcf22151743655f80e4119c
/wangyiyun_pl/wangyiyun_pl/settings.py
1351d41e5341ddb2890cea03bc7171b7738cf668
[]
no_license
809069790/-one-
18f34367c4af0a9a6cd45ee5bc150f15a993cfbc
c7edb25a75094c4faec845fc820623e465c7cbdb
refs/heads/master
2020-03-28T03:07:08.689242
2018-09-06T05:36:35
2018-09-06T05:36:35
147,621,723
2
1
null
null
null
null
UTF-8
Python
false
false
3,331
py
# -*- coding: utf-8 -*- # Scrapy settings for wangyiyun_pl project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'wangyiyun_pl' SPIDER_MODULES = ['wangyiyun_pl.spiders'] NEWSPIDER_MODULE = 'wangyiyun_pl.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'wangyiyun_pl (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs # DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'wangyiyun_pl.middlewares.WangyiyunPlSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { 'wangyiyun_pl.middlewares.RandomHttpProxyMiddleware': 543, # 'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware':543, } # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html '''写入''' ITEM_PIPELINES = { 'wangyiyun_pl.pipelines.WangyiyunPlPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' # 数据库配置 MYSQL_HOST = '192.168.100.115' MYSQL_DBNAME = 'wangyiyun' MYSQL_USER = 'root' MYSQL_PASSWD = '****'
ba292c32cf83dce0c1b1f6d90d73548a523ad68b
98e4dc41e3d994dfb55a2553c79d1b61590ecca6
/LeetCode/Medium/Subarray Sum Equals K/sol.py
aa9bc85d1765a4c74100a8bfe8caf9119a4376d8
[]
no_license
krohak/Project_Euler
b753c4f3bbf26a5eff3203e27482599d1e089fc6
1d8a2326543d69457f1971af9435b3e93ab32f52
refs/heads/master
2022-09-02T10:48:59.472111
2022-08-18T11:11:16
2022-08-18T11:11:16
111,204,162
4
1
null
null
null
null
UTF-8
Python
false
false
517
py
class Solution: def subarraySum(self, nums, target_sum): cumulative_sum = {0:1} counter = 0 summ = 0 for num in nums: summ+=num if (summ-target_sum) in cumulative_sum: counter+=cumulative_sum[(summ-target_sum)] cumulative_sum[summ] = cumulative_sum.get(summ, 0)+1 return counter nums = [1,1,1,1,2,2,1,1] sol = Solution().subarraySum(nums, 2) print(sol)
04b637496bfe20e97493ed1a0315f36073109343
14c992d7c53d989fdaebb79848d548985ffa805b
/sifapi/planning/migrations/0005_auto_20210907_1304.py
5660f0c77400e53b58cc9a954804b8a44fd850fb
[]
no_license
pierrotlemekcho/exaged
b0e699b1bcd04040e94c6c61ac57e6e2c11c5f93
a64102312b310f80fae9f071b5eda71642b3d402
refs/heads/master
2023-03-08T04:23:47.109553
2022-03-28T09:48:54
2022-03-28T09:48:54
81,460,567
0
1
null
2023-03-04T06:37:24
2017-02-09T14:49:36
Python
UTF-8
Python
false
false
975
py
# Generated by Django 3.2.7 on 2021-09-07 13:04 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('planning', '0004_auto_20210907_1249'), ] operations = [ migrations.AlterField( model_name='lignedecommande', name='exact_item', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='planning.article', to_field='exact_id'), ), migrations.AlterField( model_name='lignedecommande', name='exact_order', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='planning.commande', to_field='exact_order_id'), ), migrations.AlterField( model_name='lignedecommande', name='schedule_priority', field=models.IntegerField(default=1), ), ]
988bc023beff7901de42c542e51eefdcebde947b
50068689d8e7a9d12715585b935874e0d06cabca
/apns/new_apns.py
afb8c084fc99a715d3760535dce30ca7fe477112
[]
no_license
Bazinko/Course3-6
ff87f326dcfcfcac3941ab5b290020ff4fdc2f99
e73dbb9aedd2bb3e179c65d2cb91b543cb81974a
refs/heads/master
2021-01-17T20:55:56.265743
2015-11-28T22:38:43
2015-11-28T22:38:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
885
py
import time import json from apns import APNs, Frame, Payload import sys cert_file = 'cert.pem' json_file = 'payload.json' tokens = [ '74EFFB57F7D081B88AF222861ACC9BEA45F8B257EB1762D82265F494C6E1178D', ] if __name__ == '__main__': try: custom_payload = json.loads(open(json_file, 'r').read()) except Exception: sys.exit('Incorrect JSON') apns = APNs(use_sandbox=True, cert_file=cert_file, enhanced=True) payload = Payload(custom=custom_payload) # Send multiple notifications in a single transmission frame = Frame() for i, token in enumerate(tokens, start=1): frame.add_item(token, payload, i, time.time() + 3600, 10) apns.gateway_server.send_notification_multiple(frame) def response_listener(error_response): print(error_response) apns.gateway_server.register_response_listener(response_listener)
1b0aae41bad07fa5a652c7824bf87c8f2c6abe40
c76b5c3e52a0ce66039aba9c741a86f7aa830b3a
/env/Lib/site-packages/pylint_django/tests/input/external_psycopg2_noerror_postgres_fields.py
e5cb0ddedb85334cb148e993e30c40603b45b7e8
[ "MIT" ]
permissive
GroovyCat/PRView-project
9aed4b0d864f812cc0e52ae346ad1e65d93665d7
28d2e80dcc03f82316c68d8162f2ec96703cb503
refs/heads/master
2021-06-22T14:59:48.337129
2021-01-20T10:04:05
2021-01-20T10:04:05
184,058,883
1
0
MIT
2019-05-27T00:21:24
2019-04-29T11:32:11
null
UTF-8
Python
false
false
1,626
py
""" Checks that Pylint does not complain Postgres model fields. """ # pylint: disable=C0111,W5101 from __future__ import print_function from django.contrib.postgres import fields from django.db import models class PostgresFieldsModel(models.Model): arrayfield = fields.ArrayField(models.CharField()) hstorefield = fields.HStoreField() jsonfield = fields.JSONField() rangefield = fields.RangeField() integerrangefield = fields.IntegerRangeField() bigintegerrangefield = fields.BigIntegerRangeField() floatrangefield = fields.FloatRangeField() datetimerangefield = fields.DateTimeRangeField() daterangefield = fields.DateRangeField() def arrayfield_tests(self): sorted_array = self.arrayfield.sort() print(sorted_array) def dictfield_tests(self): print(self.hstorefield.keys()) print(self.hstorefield.values()) print(self.hstorefield.update({'foo': 'bar'})) print(self.jsonfield.keys()) print(self.jsonfield.values()) print(self.jsonfield.update({'foo': 'bar'})) def rangefield_tests(self): print(self.rangefield.lower) print(self.rangefield.upper) print(self.integerrangefield.lower) print(self.integerrangefield.upper) print(self.bigintegerrangefield.lower) print(self.bigintegerrangefield.upper) print(self.floatrangefield.lower) print(self.floatrangefield.upper) print(self.datetimerangefield.lower) print(self.datetimerangefield.upper) print(self.daterangefield.lower) print(self.daterangefield.upper)
8f4e84e7264fc334cc8f44ecd296730e66f376d9
bc4116c418a5136851b9956382d0195c0eec943f
/if, for, while, 실습1, 1차원배열/2439.py
fa8dad49d9df722e1ee090cc8db10b1b681e9fff
[]
no_license
bww7448/baekjoon_solution
64d29eae8d1c0cc46c948b318c25f70ef4fad804
a02d17681b268f5825f3f1c8bfa1f329f74e26bd
refs/heads/master
2022-11-24T09:29:20.338162
2020-08-03T12:53:38
2020-08-03T12:53:38
283,445,402
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
N = int(input()) for i in range(1,N+1): s = "*"*i print(s.rjust(N))
b4d04353919a7f6071d65606fccf5a77fe9f4b53
5bc59a84adc4854cdaa3af02be84fb4a70a85bb2
/04-DRF-LEVEL-TWO/ebooksapi/ebooks/apps.py
ff3c9cb021a64b9a95e270a20b7cc6aafb2232cb
[]
no_license
furkalokbu/REST_API
be2a0a4c05dfca15b24420d1fa1d22524a851a0b
55552d59a020ae969d4ef8dfda52207cf5c40c4c
refs/heads/main
2023-05-05T21:36:16.856267
2021-05-25T19:37:18
2021-05-25T19:37:18
332,436,631
0
0
null
null
null
null
UTF-8
Python
false
false
87
py
from django.apps import AppConfig class EbooksConfig(AppConfig): name = "ebooks"
d10426187a881b3186c505ac00bd2cca83c83986
cf6ea609922165d6a4b5af24a6b15e1537d9d901
/pylgrim/osmdump.py
3486bde6d8a50caacd8df4aac4ab256e8756c5b9
[]
no_license
josch/neo1973-germany
bbc9f0909a58e93b82fd515e9f9a066db7812091
90eaa81f2d3cdcf7af8f32298d77acfdf050be9a
refs/heads/master
2021-01-23T11:50:35.611116
2009-02-18T14:45:55
2009-02-18T14:45:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,605
py
#!/usr/bin/python #coding=utf8 import os import sys import math import time z = 10 def download(x,y,z): import urllib try: webFile = urllib.urlopen("http://a.tile.openstreetmap.org/%d/%d/%d.png"%(z,x,y)) if not os.path.exists("%d"%z): os.mkdir("%d"%z) if not os.path.exists("%d/%d"%(z,x)): os.mkdir("%d/%d"%(z,x)) localFile = open("%d/%d/%d.png"%(z,x,y), 'w') localFile.write(webFile.read()) webFile.close() localFile.close() except Exception, e: print e def lon2km(lat): return math.cos(lat*math.pi/180)*2*math.pi*6378.137/360 def getxy(lat,lon,z): x = (lon+180)/360 * 2**z y = (1-math.log(math.tan(lat*math.pi/180) + 1/math.cos(lat*math.pi/180))/math.pi)/2 * 2**z return int(x),int(y) lat = 49.009051 lon = 8.402481 r = 10 lat1 = lat-r/111.32 lon1 = lon-r/lon2km(49.009051) lat2 = lat+r/111.32 lon2 = lon+r/lon2km(49.009051) tiles = 0 #do not download zoom 18 for z in range(5,18): x1,y1 = getxy(lat1, lon1, z) x2,y2 = getxy(lat2, lon2, z) tiles += (x2+1-x1)*(y1+1-y2) print "do you really want to download %d tiles? [Y/n]"%tiles, data = sys.stdin.read(1) if data in ("y", "Y"): i = 1; for z in range(5,18): x1,y1 = getxy(lat1, lon1, z) x2,y2 = getxy(lat2, lon2, z) for x in xrange(x1,x2+1): for y in xrange(y2,y1+1): if not os.path.exists("%d/%d/%d.png"%(z,x,y)): download(x,y,z) print "\r%i"%i, sys.stdout.flush() i+=1
[ "josch@46df4e5c-bc4e-4628-a0fc-830ba316316d" ]
josch@46df4e5c-bc4e-4628-a0fc-830ba316316d
efb6c6d184449d74a7b1f9ca6c7912378d14655e
4dccc7d5d379c152e3644002b57acb02c40a637f
/heap/connect_n_ropes.py
ee71e867692614c4da028cc1b932edfb9b5fd198
[]
no_license
Niranjan-10/DSA-Practice
e22d37bfb25d24b9e4f9d288f73dbb59f5726ba6
9b9af427db2816a49df91dc55d94d3839a4a1fcb
refs/heads/main
2023-08-21T19:34:49.852987
2021-10-05T13:36:18
2021-10-05T13:36:18
410,946,417
0
0
null
null
null
null
UTF-8
Python
false
false
457
py
import heapq def connectNropes(minheap): ans = 0 while(len(minheap)>1): first = heapq.heappop(minheap) second = heapq.heappop(minheap) sum = first+second ans+=sum heapq.heappush(minheap,sum) return ans if __name__ == "__main__": arr = [ 4, 3, 2, 6] minheap =[] for i in arr: heapq.heappush(minheap,i) print(minheap) print(connectNropes(minheap))
7af9afcf305e3ff34fd960826dff35f494aca296
beb93da9233c8c000a5c2e34a0aeb5cc24de6632
/hackathon/hackathon/challenges/migrations/0005_auto_20201011_0500.py
9c535982695038c43512ae64d75fcfb75ddc3ed8
[]
no_license
Treelovah/Django
58707b3c4aa0c92c46c49f711fbfa8af70c84652
1fad7f677f2efa3dba854f22b3bbbe914171ab5a
refs/heads/main
2023-02-07T03:08:59.006324
2020-12-21T01:37:49
2020-12-21T01:37:49
322,059,417
0
0
null
null
null
null
UTF-8
Python
false
false
464
py
# Generated by Django 3.1.1 on 2020-10-11 05:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('challenges', '0004_auto_20201011_0449'), ] operations = [ migrations.AlterField( model_name='team', name='team_name', field=models.CharField(choices=[('kss', 'KryptSec'), ('hsh', 'hashdump'), ('mom', 'HackerMoms')], max_length=3), ), ]
732ed6a1db0038aacd058257115f7fce3e73f3e9
53e17ccb4270e31058cc50dd3c5874f6fa619ee1
/traditional_boxCounting.py
e135fc8196b67f0cb9bb65ca364cd923dbd77bfe
[ "MIT" ]
permissive
muchway2019/PPIN
a1a52fdc673d427e848aa3b240d43dec8fcbe743
5149b094ef1dc2e4628d4e1bb4594e5b7c40d440
refs/heads/master
2020-11-30T02:43:07.499843
2019-01-31T14:13:53
2019-01-31T14:13:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,039
py
#this preliminary code only calculates the number of boxes of length 2 required to cover the whole network #once you run the code, you can see how the nodes are removed, how the edges are reconnected, and how the number of boxes are increasing import matplotlib.pyplot as plt import networkx as nx from math import log from pylab import * def build_lattice_graph(n): """ Build lattice graph with n*n nodes """ if n < 2: raise ValueError G = nx.Graph() G.add_nodes_from([i for i in range(n * n)]) for i in range(n): for j in range(n - 1): idx = i * n + j G.add_edge(idx, idx + 1) for i in range(n - 1): for j in range(n): idx = i * n + j G.add_edge(idx, idx + n) return G def InitialPoint(graph): allneighbors = [] minList = [] d = {} for i in list(graph.nodes): d.update({i:len(list(graph.adj[i]))}) startingNode = min(d, key=d.get) return startingNode #instead of adj check, do nx.shortest_path_length def adj_check(graph,startingpoint): a = [startingpoint] + list(graph.adj[startingpoint]) adjTOadj = [] for i in a: adjTOadj.append(list(graph.adj[i])) return list(set(adjTOadj[0]).intersection(*adjTOadj[:1])) def remove_duplicates(values): output = [] seen = set() for value in values: # If value has not been encountered yet, # ... add it to both list and set. if value not in seen: output.append(value) seen.add(value) return output #checkList=[] #for i in range(1,n+1): # checkList.append([[u]+path for neighbor in G.neighbors(u) for path in findPaths(G,neighbor,n-1) if u not in path]) #checkList = [item for sublist in checkList for item in sublist] def findPaths(G,u,n): if n==0: return [[u]] paths = [[u]+path for neighbor in G.neighbors(u) for path in findPaths(G,neighbor,n-1) if u not in path] return paths def shortestPath(G,u,n,paths): check = 0 s_path = [] for i in paths: temp = list(nx.all_shortest_paths(G,source=i[0],target=i[-1])) #print (i) #print (temp) #print("-----------") if i in temp: check += 1 s_path.append(i) #print(i) if check==0: return ("CHANGE BOX SIZE") else: s_path = [item for sublist in s_path for item in sublist] s_path = remove_duplicates(s_path) return s_path def isCompact(graph,diameter,box_length): #temp_diameter = diameter.copy() for i in diameter[:-1]: for j in diameter[i:]: if nx.shortest_path_length(graph,i,j) >= box_length+1: #print("BOX IS NOT COMPACT") #print(j) #print(i) #print(nx.shortest_path_length(graph,i,j)) diameter.remove(j) #print(diameter) return diameter BOX_SIZE = 12 BOX_SIZE -= 1 #H=build_lattice_graph(4) #H = nx.path_graph(20) #nodes, edges = 14, 21 #H = nx.gnm_random_graph(nodes, edges) #H=ErdosRenyiGraph.copy() #nx.draw(H, with_labels=True) #plt.show() box_count = 0 xAxis=[] yAxis=[] while(BOX_SIZE > 0): H=build_lattice_graph(80) #H = nx.path_graph(6) #nx.draw(H, with_labels=True) #plt.show() box_count = 0 while(len(H.nodes)>1): Start = InitialPoint(H) all_paths = findPaths(H,Start,BOX_SIZE) unique_path = shortestPath(H,Start,BOX_SIZE,all_paths) if unique_path == "CHANGE BOX SIZE": box_count += 1 #print(box_count) break compact_box = isCompact(H,unique_path,BOX_SIZE) box_count += 1 #remove all the nodes inside the box for s in compact_box: H.remove_node(s) #print("START POINT:") #print(Start) #print("BOX COUNT:") #print (box_count) #print("DELETED NODES:") #print(compact_box) #print ("LINKING NODES") #print (relevant_nodes) #print("NUMBER OF REMAINING NODES:") #print (len(H.nodes)) #nx.draw(H, with_labels=True) #plt.show() #print(box_count) #print(BOX_SIZE) print(BOX_SIZE+1) print(box_count) xAxis.append(BOX_SIZE+1) BOX_SIZE -= 1 yAxis.append(box_count) x=np.log(xAxis) y=np.log(yAxis) m,b = np.polyfit(x, y, 1) plot(x, y, 'yo', x, m*x+b, '--k') show() print(m)
35637523406a5f1bc4a8626784efa3ef9b2464ec
1259d1f9e81a68606fa25315ad3915a9ddd7f599
/env/bin/pyrsa-decrypt
a809fe68bf0155c0400fa8cb67a6a36fc33560d0
[]
no_license
Adridut/flaskr
1c33dc2d35f2d5b559cf6f3f40775d465d401fe7
94e7c6b5fd634f0ee0ef48a8e07b9c6f6b1d405a
refs/heads/master
2021-01-21T06:48:59.125054
2017-02-27T08:26:45
2017-02-27T08:26:45
83,286,488
0
0
null
null
null
null
UTF-8
Python
false
false
238
#!/home/adrien/Dev/flaskr/env/bin/python # -*- coding: utf-8 -*- import re import sys from rsa.cli import decrypt if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(decrypt())
37b2e53d04f0dc324981033f3407a9c4aaec00c2
2780b2e24fd6c128c865e83477dad8ec6d1b6f38
/Live_face_detection.py
212d84eefbbf3d056970c3fe15f21d2869c09845
[]
no_license
Prasoon950/OPEN_CV
70c28ce4c6600f31d8cb031d24bda89abfc74f30
d121f5159b82d93ecc99192610143016ca231ec8
refs/heads/master
2021-03-16T15:25:27.805550
2020-03-12T20:05:49
2020-03-12T20:05:49
246,920,170
0
0
null
null
null
null
UTF-8
Python
false
false
1,137
py
# -*- coding: utf-8 -*- """ Created on Fri Mar 13 01:09:55 2020 @author: DELL """ import numpy as np import cv2 face_classifier = cv2.CascadeClassifier("F:\zipped\Computer-Vision-Tutorial-master\Haarcascades\haarcascade_frontalface_default.xml") eye_classifier = cv2.CascadeClassifier("F:\zipped\Computer-Vision-Tutorial-master\Haarcascadeshaarcascade_eye.xml") def detect(gray, frame): face = face_classifier.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in face: cv2.rectangle(frame, (x,y),(x+w,y+h),(127,0,255),2,2) roi_gray = gray[y:y+h, x:x+w] roi_color = image[y:y+h, x:x+w] eye = eye_classifier.detectMultiScale(roi_gray, 1.1, 3) for (ex,ey,ew,eh) in eye: cv2.rectangle(roi_color, (ex,ey), (ex+ew,ey+eh),(255,255,0),2) return frame video_capture = cv2.VideoCapture(0) while True: _,frame = video_capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) canvas = detect(gray, frame) cv2.imshow("canvas", canvas) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()
7b041ec9174315d209a07d3788e55af41992fa48
6656d7e426c85ff977a2619f6a52981456ada9fe
/2_Arrays/4.py
2d98a1503d3a9f682454b109abf31f63ca746397
[ "MIT" ]
permissive
abphilip-codes/Hackerrank_Interview
4f37e12f1ab47042db88947bb3a31aed6486b54d
b40981ef55d04fb14d81a6e1c9ade1878f59394d
refs/heads/master
2023-08-02T22:00:37.298224
2021-10-02T11:59:08
2021-10-02T11:59:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
613
py
# https://www.hackerrank.com/challenges/minimum-swaps-2/problem #!/bin/python3 import math import os import random import re import sys # Complete the minimumSwaps function below. def minimumSwaps(a): k,z=0,dict(zip(a,range(1,len(a)+1))) for i in range(1,len(a)+1): if z[i]!=i: z[a[i-1]]=z[i] a[z[i]-1]=a[i-1] k+=1 return k if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') n = int(input()) arr = list(map(int, input().rstrip().split())) res = minimumSwaps(arr) fptr.write(str(res) + '\n') fptr.close()
9407153003d4258fda6044c326d36c44a4358c76
6ff62bd52c889483dd2445d6c7c7239d8ac8f870
/NBIOT_position_system/real_time_monitoring/migrations/0011_auto_20180717_1423.py
dfb6f39ed9bd9dada0ed242b07e0c7998b6964a0
[]
no_license
zhangc-rw/position_service
830c1e5fbf4d9bc4a307aa663d4193dc0214f5b7
104b81dc40ff777a94ee18ff63422c89c5a20cf3
refs/heads/master
2020-03-12T13:37:52.967126
2018-12-06T08:18:30
2018-12-06T08:18:30
130,646,760
0
1
null
2018-04-24T01:35:52
2018-04-23T05:55:45
Python
UTF-8
Python
false
false
1,792
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-07-17 06:23 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('device_management', '0009_auto_20180717_1423'), ('real_time_monitoring', '0010_auto_20180425_1050'), ] operations = [ migrations.CreateModel( name='Past_Target', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('update_time', models.DateTimeField(auto_now=True, null=True)), ('message_time', models.DateTimeField()), ('working_status', models.CharField(max_length=20)), ('base_num', models.CharField(max_length=80)), ('cell_num', models.CharField(max_length=80)), ('location_time', models.DateTimeField()), ('coordinates', models.CharField(max_length=60)), ('velocity', models.FloatField(default=0)), ('moving_direction', models.FloatField(default=0)), ('height', models.FloatField(default=0)), ('device', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='device_management.Device')), ], ), migrations.AlterField( model_name='target', name='coordinates', field=models.CharField(max_length=60), ), migrations.AlterField( model_name='target', name='device', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='device_management.Device'), ), ]
4eff3ee86176474b0f5ada0af11864b69625c3c0
ec551303265c269bf1855fe1a30fdffe9bc894b6
/topic10_queue/T933_RecentCounter/interview.py
8bd0e8689824bc5d8875b7a6fa5e0244cd77e011
[]
no_license
GongFuXiong/leetcode
27dbda7a5ced630ae2ae65e19d418ebbc65ae167
f831fd9603592ae5bee3679924f962a3ebce381c
refs/heads/master
2023-06-25T01:05:45.683510
2021-07-26T10:05:25
2021-07-26T10:05:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,331
py
''' 933. 最近的请求次数 写一个 RecentCounter 类来计算最近的请求。 它只有一个方法:ping(int t),其中 t 代表以毫秒为单位的某个时间。 返回从 3000 毫秒前到现在的 ping 数。 任何处于 [t - 3000, t] 时间范围之内的 ping 都将会被计算在内,包括当前(指 t 时刻)的 ping。 保证每次对 ping 的调用都使用比之前更大的 t 值。 示例: 输入:inputs = ["RecentCounter","ping","ping","ping","ping"], inputs = [[],[1],[100],[3001],[3002]] 输出:[null,1,2,3,3]   提示: 每个测试用例最多调用 10000 次 ping。 每个测试用例会使用严格递增的 t 值来调用 ping。 每次调用 ping 都有 1 <= t <= 10^9。 ''' import collections class RecentCounter: def __init__(self): self.deque = collections.deque() def ping(self, t): self.deque.append(t) while self.deque[0] < t-3000: self.deque.popleft() return len(self.deque) if __name__ == "__main__": solution = RecentCounter() while 1: str1 = input() if str1 != "": num1 = int(str1) res = solution.ping(num1) print(res) else: break
4be4c858a411ba9e30fcb9d748020692c677826b
60e4b90a82cb5e64ba61a68fd5cac13b0b4e3297
/{{cookiecutter.github_repository_name}}/{{cookiecutter.app_name}}/users/serializers.py
582f5353baf7f90f3e9ac396aa6667c1a1816bbf
[ "MIT" ]
permissive
mashrikt/cookiecutter-django-dokku
768a29974b99a67a8c2e2b73d7bf86c155899cae
e78a27d78c2b1fea47c1dc40449ad542ca0b7ee6
refs/heads/master
2020-03-22T08:28:50.214705
2019-07-25T19:04:15
2019-07-25T19:04:15
139,769,068
19
6
MIT
2020-02-12T01:05:45
2018-07-04T21:58:26
Python
UTF-8
Python
false
false
2,906
py
from allauth.account.adapter import get_adapter from django.contrib.auth import get_user_model from django.shortcuts import get_object_or_404 from django.utils.translation import ugettext_lazy as _ from rest_framework import serializers from rest_framework.serializers import ModelSerializer, Serializer, ValidationError User = get_user_model() class RegisterSerializer(serializers.Serializer): email = serializers.EmailField(required=True) password1 = serializers.CharField(write_only=True) password2 = serializers.CharField(write_only=True) def validate_email(self, email): return get_adapter().validate_unique_email(email) def validate_password1(self, password): return get_adapter().clean_password(password) def validate(self, data): if data['password1'] != data['password2']: raise serializers.ValidationError(_("The two password fields didn't match.")) return data def get_cleaned_data(self): return { 'email': self.validated_data.get('email', '') } def save(self, request): password = self.validated_data.pop('password1', None) cleaned_data = self.get_cleaned_data() user = User.objects.create(**cleaned_data) user.set_password(password) user.save() return user class LoginSerializer(Serializer): email = serializers.EmailField(required=False) password = serializers.CharField(write_only=True, style={'input_type': 'password'}) def _validate_email(self, email, password): # Should return 404 if no user found with this email # This is intentional as per requirements and specification user = get_object_or_404(User, email__iexact=email) if user and user.check_password(password): return user def validate(self, attrs): email = attrs.get('email') password = attrs.get('password') if email and password: user = self._validate_email(email, password) else: msg = _('Must include "email" and "password".') raise ValidationError(msg) if not user: msg = _('Unable to log in with provided credentials.') raise ValidationError(msg) if not user.is_active: msg = _('User account is disabled.') raise ValidationError(msg) # Everything passed. That means password is accepted. So return the user attrs['user'] = user return attrs class UserDetailsSerializer(ModelSerializer): class Meta: model = User fields = ('id', 'first_name', 'last_name', 'email', 'is_superuser') read_only_fields = ('is_superuser',) class UserPublicSerializer(ModelSerializer): full_name = serializers.CharField(source='get_full_name') class Meta: model = User fields = ('id', 'full_name', 'email')
0a58a94a0291c9eee74ec90033a491790733ec6e
55e28e35db5bf6a844df3fb47080500b115a893e
/day10/select/select_server.py
009bb5773e7561fb2d56689d463ea451aefcc9ee
[]
no_license
pylarva/Python
5743ffa4a69db42b642d51b62f9e9b69ddbc1a72
71b484950e6dbdcf708726a68a3386d0d6ddc07f
refs/heads/master
2020-04-19T09:11:11.195393
2017-11-16T07:32:59
2017-11-16T07:32:59
67,507,687
1
0
null
null
null
null
UTF-8
Python
false
false
3,258
py
# !/usr/bin/env python # -*- coding:utf-8 -*- # Author:pylarva # bolg:www.lichengbing.com __author__ = 'Alex Li' import select import socket import sys import queue server = socket.socket() server.setblocking(0) server_addr = ('localhost', 10000) print('starting up on %s port %s' % server_addr) server.bind(server_addr) server.listen(5) inputs = [server, ] #自己也要监测呀,因为server本身也是个fd outputs = [] message_queues = {} while True: print("waiting for next event...") readable, writeable, exeptional = select.select(inputs,outputs,inputs) #如果没有任何fd就绪,那程序就会一直阻塞在这里 for s in readable: #每个s就是一个socket if s is server: #别忘记,上面我们server自己也当做一个fd放在了inputs列表里,传给了select,如果这个s是server,代表server这个fd就绪了, #就是有活动了, 什么情况下它才有活动? 当然 是有新连接进来的时候 呀 #新连接进来了,接受这个连接 conn, client_addr = s.accept() print("new connection from",client_addr) conn.setblocking(0) inputs.append(conn) #为了不阻塞整个程序,我们不会立刻在这里开始接收客户端发来的数据, 把它放到inputs里, 下一次loop时,这个新连接 #就会被交给select去监听,如果这个连接的客户端发来了数据 ,那这个连接的fd在server端就会变成就续的,select就会把这个连接返回,返回到 #readable 列表里,然后你就可以loop readable列表,取出这个连接,开始接收数据了, 下面就是这么干 的 message_queues[conn] = queue.Queue() #接收到客户端的数据后,不立刻返回 ,暂存在队列里,以后发送 else: #s不是server的话,那就只能是一个 与客户端建立的连接的fd了 #客户端的数据过来了,在这接收 data = s.recv(1024) if data: print("收到来自[%s]的数据:" % s.getpeername()[0], data) message_queues[s].put(data) #收到的数据先放到queue里,一会返回给客户端 if s not in outputs: outputs.append(s) #为了不影响处理与其它客户端的连接 , 这里不立刻返回数据给客户端 else:#如果收不到data代表什么呢? 代表客户端断开了呀 print("客户端断开了",s) if s in outputs: outputs.remove(s) #清理已断开的连接 inputs.remove(s) #清理已断开的连接 del message_queues[s] ##清理已断开的连接 for s in writeable: try : next_msg = message_queues[s].get_nowait() except queue.Empty: print("client [%s]" %s.getpeername()[0], "queue is empty..") outputs.remove(s) else: print("sending msg to [%s]"%s.getpeername()[0], next_msg) s.send(next_msg.upper()) for s in exeptional: print("handling exception for ", s.getpeername()) inputs.remove(s) if s in outputs: outputs.remove(s) s.close() del message_queues[s]
315e0a44b6c237ed7a6e9ed6807d3222de0857a3
7837cd1bee1a9abd623600cf30c2f462da48d558
/aaa.py
1123a79ae464804cd597a4e45e9d9c4e5f526712
[]
no_license
hal1932/astor_test
8285b3b8c1fa187b7cd3c8d147c8a75d8e4ba207
e14c7de55bb6e947e41387d33fff5286bbea4570
refs/heads/master
2021-08-30T09:37:33.083995
2017-12-17T08:36:12
2017-12-17T08:36:12
114,521,531
0
0
null
null
null
null
UTF-8
Python
false
false
734
py
# encoding: utf-8 import functools def deco1(func): @functools.wraps(func) def wrapper(*args, **kwargs): print 'deco1 start' func(*args, **kwargs) print 'deco1 end' return wrapper def deco2(*arg, **kwarg): def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): print 'deco2 start' func(*args, **kwargs) print 'deco2 end' return wrapper return decorator def func1(arg1): print arg1 x = 1 print x @deco1 def func2(arg): print arg @deco2('hoge', 1, a=2.0) def func3(arg): print arg def main(): func1('aaa') func2('bbb') func3('ccc') if __name__ == '__main__': main()
1f8b127b062ecf02e219e709909e74fc07adc91a
58e408afaeb04b92c89980266c2ca906386e75e8
/n_primo/solutions/correct.py
3a508988ca33c7ea0dd3307506c1ad673e41d1ba
[]
no_license
Angelox547/TuringArena-PCTO
b45fee33c886bb6a5216bd78d6777617852c1222
5db78428caf475eea66f60c3edeaa8e1dfd71e67
refs/heads/master
2020-05-31T06:41:37.235099
2019-09-14T13:13:50
2019-09-14T13:13:50
190,147,597
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
def primo(a): i = 2 while i < a/2+1: if a % i == 0: return 0 i += 1 return 1
760c46b1f182472c11a3cb0026781c521fddb142
a943cb6da95ec1e06cb480887ba1062a5783527f
/2012-aqs/figures/plot-smh-norris.py
262432f7ea056293f457ca60b89fe0a54119ed39
[]
no_license
andycasey/papers
1b2c882c20b0c65b5899d70dc95825ec53cc9fe2
3d585ad4b6b1c3b40227185fd7b22ea9bdeb8e02
refs/heads/master
2021-01-19T17:24:48.788580
2013-08-13T08:51:02
2013-08-13T08:51:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,155
py
import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec wavelength, smh_ew, norris_ew = np.loadtxt('SMH-Norris-comparison.data', usecols=(0, 1, 2, ), unpack=True) fig = plt.figure(figsize=(6,7)) fig.subplots_adjust(hspace=0.0, wspace=0.0) gs = gridspec.GridSpec(2, 1, height_ratios=[1, 2]) ax1 = fig.add_subplot(gs[0]) #ax1 = plt.subplot2grid((3, 1), (0, 0)) ax1.scatter(smh_ew, smh_ew - norris_ew, facecolor='none', edgecolor='k', marker='+') ax1.plot([0, 200], [0, 0], 'k-', zorder=-1) A = np.vstack([smh_ew, np.ones(len(norris_ew))]).T m, c = np.linalg.lstsq(A, smh_ew - norris_ew)[0] x = np.array([np.min(smh_ew), np.max(smh_ew)]) ax1.plot(x, m * x + c, 'k:') ylim = np.max(np.abs(np.array(ax1.get_ylim()))) ax1.set_ylim(-15, 15) ax1.xaxis.set_visible(False) ax1.set_ylabel('$\Delta{}W_\lambda$ [m$\AA{}$]') ax2 = fig.add_subplot(gs[1], sharex=ax1) #ax2 = plt.subplot2grid((3, 1), (1, 0), rowspan=2) ax2.scatter(smh_ew, norris_ew, facecolor='none', edgecolor='k', marker='+') A = np.vstack([norris_ew, np.ones(len(norris_ew))]).T m, c = np.linalg.lstsq(A, smh_ew)[0] x = np.array([0, 200]) ax2.plot(x, x, 'k-', zorder=-1) x = np.array([np.min(smh_ew), np.max(smh_ew)]) ax2.plot(x, m * x + c, 'k:') # Plot an error cone error = 10 # percent bounds = np.array([0, 160]) #ax2.plot(bounds, bounds * (1 + error/100.), '-', c='#aaaaaa', zorder=-5) #ax2.plot(bounds, bounds * (1 - error/100.), '-', c='#aaaaaa', zorder=-5) ax1.set_xlim(bounds) ax2.set_xlim(bounds) ax2.set_ylim(bounds) ax2.set_xlabel('$W_\lambda$ (This work, automatic) [m$\AA{}$]') ax2.set_ylabel('$W_\lambda$ (Norris et al. 1996) [m$\AA{}$]') ax2.get_yticklabels()[-1].set_visible(False) ax1.get_yticklabels()[0].set_visible(False) ax1.get_yticklabels()[-1].set_visible(False) ax1.text(5, 10, '$\langle{}\Delta{}W_\lambda\\rangle{}\,=\,-0.64\,\pm\,2.78\,$m${\AA}$', color='k', verticalalignment='center') ax2.text(5, 150, "$a_0\,=\,%1.2f$\n$a_1\,=\,%1.2f$\n$N\,=\,%i$" % (c, m, len(smh_ew)), verticalalignment='top') #ax1.set_title('%i lines in HD 140283' % (len(smh_ew), )) plt.savefig('smh-norris.pdf') plt.savefig('smh-norris.eps')
6298875d8e11878aa23517f122c8a75e9d106d46
38fff7bdefd8d62a740d51329b50d0e1e49258bb
/projects/smart_open/fuzz_zip.py
3a7f08c09ad89f312bad1a8251882d276259b866
[ "Apache-2.0" ]
permissive
google/oss-fuzz
026384c2ada61ef68b147548e830f60730c5e738
f0275421f84b8f80ee767fb9230134ac97cb687b
refs/heads/master
2023-08-31T23:30:28.157702
2023-08-31T21:49:30
2023-08-31T21:49:30
63,809,205
9,438
2,315
Apache-2.0
2023-09-14T20:32:19
2016-07-20T19:39:50
Shell
UTF-8
Python
false
false
1,605
py
#!/usr/bin/python3 # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import atheris import sys import os with atheris.instrument_imports(): from smart_open import open import zipfile import tempfile def TestInput(data): if len(data) < 10: return fdp = atheris.FuzzedDataProvider(data) tmp = tempfile.NamedTemporaryFile(prefix=fdp.ConsumeString(10), suffix=fdp.ConsumeString(4), delete=False) filestr = fdp.ConsumeString(100) with open(tmp.name, 'wb') as f: with zipfile.ZipFile(f, 'w') as zip: zip.writestr(fdp.ConsumeString(10), filestr) zip.writestr(fdp.ConsumeString(10), filestr) with open(tmp.name, 'rb') as f: with zipfile.ZipFile(f) as zip: for info in zip.infolist(): file_bytes = zip.read(info.filename) assert filestr == file_bytes.decode('utf-8') os.unlink(tmp.name) def main(): atheris.Setup(sys.argv, TestInput, enable_python_coverage=True) atheris.instrument_all() atheris.Fuzz() if __name__ == "__main__": main()
09b9cc6b9508e65c23efd41125168aad565a87ae
67084751337f327092049a61b6d8c630cd3767de
/wrap_markdown_content/WrapMarkdown.py
92e05964ce3197a455f52ff7c71894ba486065dd
[ "MIT" ]
permissive
habereet/awesomeScripts
0f0a33d9a35de8b4449c1263db4407beaf0178fa
2d77f3619314aa7840fed57e0cf451fe5c1a70a9
refs/heads/master
2023-01-05T01:29:30.063154
2020-10-31T00:36:16
2020-10-31T00:36:16
303,189,908
0
0
MIT
2020-10-11T18:48:07
2020-10-11T18:48:06
null
UTF-8
Python
false
false
1,286
py
import sys class Buffer: def __init__(self, filename: str): self.input_file = open(filename, 'r') self.all_lines = self.input_file.readlines() def trim(self, ncolumns: int): for line in self.all_lines: if line == '\n' or line == '\t': print(line, end='') elif len(line) < ncolumns: print(line) elif len(line) > ncolumns: nCharsInline = 0 for word in line.split(' '): if (nCharsInline + len(word) > ncolumns): if len(word) > ncolumns: print(word, end='') print('\n', end='') nCharsInline = 0 pass print(word, end=' ') nCharsInline += len(word) + 1 pass def Main(args: list): if len(args) < 3: print('Missing parameters.') print(f'Use: python {args[0]} <maxcolumns> <path/to/file>') exit(0) try: ncol = int(args[1]) except TypeError: print(f'Not possible to convert "{args[1]}" to integer') exit(1) buff = Buffer(args[2]) buff.trim(ncol) if __name__ == '__main__': Main(sys.argv)
bfcc4f82ae5fd44b4414bb887094046c13bb3e10
c0fad90611a6e943277c3d79eeb48ccd5f0d0a88
/29divide.py
6cee6413834a3e4bbc05b6458fb1114fdad5b765
[]
no_license
lmb633/leetcode
e2da31984af07b9e16787f4d57f82dab2dcb551a
d91568d245dd8fb66f46ff73737cbad974f490a6
refs/heads/master
2021-07-19T16:07:40.864854
2021-02-24T10:57:40
2021-02-24T10:57:40
243,146,182
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
class Solution(object): def divide(self, dividend, divisor): if dividend == 0: return 0 if dividend == -2 ** 31 and divisor == -1: return 2 ** 31 - 1 flag = 1 if dividend ^ divisor < 0: flag = -1 dividend = abs(dividend) divisor = abs(divisor) result = 0 for i in range(31, -1, -1): if (dividend >> i) >= divisor: result += (1 << i) dividend -= divisor << i return result if flag > 0 else -result
06cf24deb1ada46c90e371a9923156badefe36f7
1011b26dbae56326653a57acb243a8c678a5cbb4
/CNN-UNet/Data_functions/plot_functions.py
8a399671d50084fc0e47b1a7164cd6f0b52a559f
[]
no_license
yxu233/Myelin_cleaned_locally
2986ab702036d30f815c0fda51cecef6e1ded9ef
735f2680b3ca0b6f60fe3c7c21a443d8016183fa
refs/heads/master
2022-11-23T17:11:50.619420
2020-07-29T05:01:55
2020-07-29T05:01:55
283,311,686
0
0
null
null
null
null
UTF-8
Python
false
false
17,082
py
# -*- coding: utf-8 -*- """ Created on Sun Dec 31 16:16:39 2017 @author: Tiger """ import tensorflow as tf import math import pylab as mpl import numpy as np import time import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from PIL import Image import random from skimage import measure """ ADDS TEXT TO IMAGE and saves the image """ def add_text_to_image(all_fibers, overlay_im, filename='default.png', filename_overlay ='default.png', resolution=800): #fiber_img = Image.fromarray((all_fibers *255).astype(np.uint16)) # ORIGINAL, for 8GB CPU fiber_img = (all_fibers*255).astype(np.uint16) plt.figure(80, figsize=(12,10)); plt.clf(); plt.imshow(fiber_img) plt.axis('off') plt.figure(81, figsize=(12,10)); plt.clf(); plt.imshow(overlay_im) plt.axis('off') # PRINT TEXT ONTO IMAGE binary_all_fibers = all_fibers > 0 labelled = measure.label(binary_all_fibers) cc_overlap = measure.regionprops(labelled, intensity_image=all_fibers) # Make a list of random colors corresponding to all the cells list_fibers = [] for Q in range(int(np.max(all_fibers) + 1)): color = [random.randint(0,255)/256, random.randint(0,255)/256, random.randint(0,255)/256] list_fibers.append(color) for Q in range(len(cc_overlap)): overlap_coords = cc_overlap[Q]['coords'] new_num = cc_overlap[Q]['MinIntensity'] #if cell_num != new_num: #color = [random.randint(0,255)/256, random.randint(0,255)/256, random.randint(0,255)/256] #cell_num = new_num color = list_fibers[int(new_num)] plt.figure(80) plt.text(overlap_coords[0][1], overlap_coords[0][0], str(int(new_num)), fontsize= 2, color=color) plt.figure(81) plt.text(overlap_coords[0][1], overlap_coords[0][0], str(int(new_num)), fontsize= 2, color=color) #plt.savefig(filename, dpi = resolution) plt.savefig(filename_overlay, dpi = resolution) """ Scales the normalized images to be within [0, 1], thus allowing it to be displayed """ def show_norm(im): m,M = im.min(),im.max() plt.imshow((im - m) / (M - m)) plt.show() """ Originally from Intro_to_deep_learning workshop """ def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None): # Output summary W = layer wp = W.eval(feed_dict=feed_dict); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel() fields = np.reshape(temp,[1]+fieldShape) else: # Convolutional layer already has shape wp = np.rollaxis(wp,3,0) features, channels, iy,ix = np.shape(wp) # where "features" is the number of "filters" if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) # all to remove "channels" axis perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) # adds more zero filters... tiled = [] for i in range(0,perColumn*perRow,perColumn): tiled.append(np.hstack(fields2[i:i+perColumn])) # stacks horizontally together ALL the filters tiled = np.vstack(tiled) # then stacks itself on itself if figOffset is not None: mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar(); """ Plot layers """ def plotLayers(feed_dict, L1, L2, L3, L4, L5, L6, L8, L9, L10): plt.figure('Down_Layers'); plt.clf() plt.subplot(221); plotOutput(L1,feed_dict=feed_dict,cmap='inferno',figOffset=None); plt.subplot(222); plotOutput(L2,feed_dict=feed_dict,cmap='inferno',figOffset=None); plt.subplot(233); plotOutput(L3,feed_dict=feed_dict,cmap='inferno',figOffset=None); plt.subplot(234); plotOutput(L5,feed_dict=feed_dict,cmap='inferno',figOffset=None); plt.subplot(223); plotOutput(L4,feed_dict=feed_dict,cmap='inferno',figOffset=None); plt.pause(0.05) plt.figure('Up_Layers'); plt.clf() plt.subplot(221); plotOutput(L6,feed_dict=feed_dict,cmap='inferno',figOffset=None); plt.subplot(222); plotOutput(L8,feed_dict=feed_dict,cmap='inferno',figOffset=None); plt.subplot(223); plotOutput(L9,feed_dict=feed_dict,cmap='inferno',figOffset=None); plt.subplot(224); plotOutput(L10,feed_dict=feed_dict,cmap='inferno',figOffset=None); plt.pause(0.05); """ Plots global and detailed cost functions """ def plot_cost_fun(plot_cost, plot_cost_val, plot_cost_val_NO=None): """ Graph global loss """ plt.figure(18); plt.clf(); plt.plot(plot_cost, label='Training'); plt.title('Global Loss') plt.ylabel('Loss'); plt.xlabel('Epochs'); plt.pause(0.05) # cross-validation plt.figure(18); plt.plot(plot_cost_val, label='Cross_validation'); plt.pause(0.05) plt.legend(loc='upper left'); """ Graph detailed plot """ last_loss = len(plot_cost) start = 0 if last_loss < 50: start = 0 elif last_loss < 200: start = last_loss - 50 elif last_loss < 500: start = last_loss - 200 elif last_loss < 1500: start = last_loss - 500 else: start = last_loss - 1500 plt.close(19); x_idx = list(range(start, last_loss)) plt.figure(19); plt.plot(x_idx,plot_cost[start:last_loss], label='Training'); plt.title("Detailed Loss"); plt.figure(19); plt.plot(x_idx,plot_cost_val[start:last_loss],label='Cross_validation'); plt.legend(loc='upper left'); plt.ylabel('Loss'); plt.xlabel('Epochs'); plt.pause(0.05) if plot_cost_val_NO is not None: plt.figure(18); plt.plot(plot_cost_val_NO, label='Cross_validation_NO'); plt.pause(0.05) plt.figure(19); plt.plot(x_idx, plot_cost_val_NO[start:last_loss], label='Cross_validation_NO'); plt.pause(0.05) """ Plots global and detailed cost functions """ def plot_jaccard_fun(plot_jaccard, plot_jaccard_val=False): """ Graph global jaccard """ plt.figure(21); plt.clf(); plt.plot(plot_jaccard, label='Jaccard'); plt.title('Jaccard') if plot_jaccard_val: plt.plot(plot_jaccard_val, label='Cross Validation Jaccard'); plt.ylabel('Jaccard'); plt.xlabel('Epochs'); plt.legend(loc='upper left'); plt.pause(0.05) def plot_overlay(plot_cost, plot_cost_val, plot_jaccard, plot_cost_val_NO=None): """ Graph global loss """ plt.figure(18); #plt.clf(); plt.plot(plot_cost, label='Training_NO_W'); plt.title('Global Loss') plt.ylabel('Loss'); plt.xlabel('Epochs'); plt.pause(0.05) # cross-validation plt.figure(18); plt.plot(plot_cost_val, label='Cross_validation_NO_W'); plt.pause(0.05) plt.legend(loc='upper left'); """ Graph detailed plot """ last_loss = len(plot_cost) start = 0 if last_loss < 50: start = 0 elif last_loss < 200: start = last_loss - 50 elif last_loss < 500: start = last_loss - 200 elif last_loss < 1500: start = last_loss - 500 else: start = last_loss - 1500 #plt.close(19); x_idx = list(range(start, last_loss)) plt.figure(19); plt.plot(x_idx,plot_cost[start:last_loss], label='Training_NO_W'); plt.title("Detailed Loss"); plt.figure(19); plt.plot(x_idx,plot_cost_val[start:last_loss],label='Cross_validation_NO_W'); plt.legend(loc='upper left'); plt.ylabel('Loss'); plt.xlabel('Epochs'); plt.pause(0.05) if plot_cost_val_NO is not None: plt.figure(18); plt.plot(plot_cost_val_NO, label='Cross_validation_NO'); plt.pause(0.05) plt.figure(19); plt.plot(x_idx, plot_cost_val_NO[start:last_loss], label='Cross_validation_NO'); plt.pause(0.05) plt.figure(21); #plt.clf(); plt.plot(plot_jaccard, label='Jaccard_NO_W'); plt.title('Jaccard') plt.ylabel('Jaccard'); plt.xlabel('Epochs'); plt.legend(loc='upper left'); plt.pause(0.05) """ Plots the moving average that is much smoother than the overall curve""" def calc_moving_avg(plot_data, num_pts = 20, dist_points=100): new_plot = [] for T in range(0, len(plot_data)): avg_points = [] for i in range(-dist_points, dist_points): if T + i < 0: continue; elif T + i >= len(plot_data): break; else: avg_points.append(plot_data[T+i]) mean_val = sum(avg_points)/len(avg_points) new_plot.append(mean_val) return new_plot def change_scale_plot(): multiply = 1000 font_size = 11 legend_size = 11 plt.rcParams.update({'font.size': 9}) """Getting back the objects""" plot_cost = load_pkl(s_path, 'loss_global.pkl') plot_cost_val = load_pkl(s_path, 'loss_global_val.pkl') plot_jaccard = load_pkl(s_path, 'jaccard.pkl') x_idx = list(range(0, len(plot_cost) * multiply, multiply)); plt.figure(19); plt.plot(x_idx,plot_cost, label='Training_weighted'); #plt.title("Detailed Loss"); plt.figure(19); plt.plot(x_idx,plot_cost_val,label='Validation_weighted'); plt.legend(loc='upper right'); plt.ylabel('Loss', fontsize = font_size); plt.xlabel('Epochs', fontsize = font_size); plt.pause(0.05) x_idx = list(range(0, len(plot_jaccard) * multiply, multiply)); plt.figure(20); plt.plot(x_idx,plot_jaccard, label='Validation_weighted'); #plt.title("Detailed Loss"); plt.ylabel('Jaccard', fontsize = font_size); plt.xlabel('Epochs', fontsize = font_size); plt.pause(0.05) plt.legend(loc='upper left'); """Getting back the objects""" plot_cost_noW = load_pkl(s_path, 'loss_global_no_W.pkl') plot_cost_val_noW = load_pkl(s_path, 'loss_global_val_no_W.pkl') plot_jaccard_noW = load_pkl(s_path, 'jaccard_no_W.pkl') x_idx = list(range(0, len(plot_cost_noW) * multiply, multiply)); plt.figure(19); plt.plot(x_idx,plot_cost_noW, label='Training_no_weight'); #plt.title("Loss"); plt.figure(19); plt.plot(x_idx,plot_cost_val_noW,label='Validation_no_weight'); plt.legend(loc='upper right', prop={'size': legend_size}); x_idx = list(range(0, len(plot_jaccard_noW) * multiply, multiply)); plt.figure(20); plt.plot(x_idx,plot_jaccard_noW, label='Validation_no_weight'); #plt.title("Jaccard"); plt.legend(loc='upper left', prop={'size': legend_size}); """ Calculate early stopping beyond 180,000 """ plot_short = plot_cost_val[30000:-1] hist_loss = plot_short patience_cnt = 0 for epoch in range(len(plot_short)): # ... # early stopping patience = 100 min_delta = 0.02 if epoch > 0 and hist_loss[epoch-1] - hist_loss[epoch] > min_delta: patience_cnt = 0 else: patience_cnt += 1 if patience_cnt > patience: print("early stopping...") print(epoch * 5 + 30000 * 5) break """ 204680 """ """ MOVING AVERAGE """ num_pts = 10 dist_points = 20 mov_cost = calc_moving_avg(plot_cost, num_pts=num_pts, dist_points=dist_points) mov_cost_val = calc_moving_avg(plot_cost_val, num_pts=num_pts, dist_points=dist_points) mov_jaccard = calc_moving_avg(plot_jaccard, num_pts=num_pts, dist_points=dist_points) font_size = 11 plt.rcParams.update({'font.size': 10}) x_idx = list(range(0, len(mov_cost) * multiply, multiply)); plt.figure(21); plt.plot(x_idx,mov_cost, label='Training_weighted'); plt.title("Detailed Loss"); plt.figure(21); plt.plot(x_idx,mov_cost_val,label='Validation_weighted'); plt.legend(loc='upper left'); plt.ylabel('Loss', fontsize = font_size); plt.xlabel('Epochs', fontsize = font_size); plt.pause(0.05) x_idx = list(range(0, len(mov_jaccard) * multiply, multiply)); plt.figure(22); plt.plot(x_idx,mov_jaccard, label='Validation_weighted'); plt.title("Detailed Jaccard"); plt.ylabel('Jaccard', fontsize = font_size); plt.xlabel('Epochs', fontsize = font_size); plt.pause(0.05) plt.legend(loc='upper left'); """Getting back the objects""" num_pts = 10 dist_points = 400 mov_cost_noW = calc_moving_avg(plot_cost_noW, num_pts=num_pts, dist_points=dist_points) mov_cost_val_noW = calc_moving_avg(plot_cost_val_noW, num_pts=num_pts, dist_points=dist_points) mov_jaccard_noW = calc_moving_avg(plot_jaccard_noW, num_pts=num_pts, dist_points=dist_points) x_idx = list(range(0, len(mov_cost_noW) * multiply, multiply)); plt.figure(21); plt.plot(x_idx,mov_cost_noW, label='Training_no_weight'); plt.title("Loss"); plt.figure(21); plt.plot(x_idx,mov_cost_val_noW,label='Validation_no_weight'); plt.legend(loc='upper left'); x_idx = list(range(0, len(mov_jaccard_noW) * multiply, multiply)); plt.figure(22); plt.plot(x_idx,mov_jaccard_noW, label='Validation_no_weight'); plt.title("Jaccard"); plt.legend(loc='upper left'); """ Plot the average for the NEWEST MyQz11 + ClassW + No_W""" def change_scale_plot2(): #s_path = 'C:/Users/Tiger/Anaconda3/AI stuff/MyelinUNet_new/Checkpoints/ALL_FOR_PLOT/' s_path = 'D:/Tiger/AI stuff/MyelinUNet/Checkpoints/ALL_FOR_PLOT/' num_pts = 10 multiply = 10 font_size = 11 legend_size = 11 plt.rcParams.update({'font.size': 9}) """Getting back the objects""" #plot_cost = load_pkl(s_path, 'loss_global.pkl') plot_cost_val_noW = load_pkl(s_path, 'loss_global_sW_1_rotated.pkl') plot_jaccard_noW = load_pkl(s_path, 'jaccard_sW_1_rotated.pkl') """Getting back the objects""" #plot_cost_noW = load_pkl(s_path, 'loss_global_no_W.pkl') plot_cost_val = load_pkl(s_path, 'loss_global_MyQ_2_not_rotated.pkl') plot_jaccard = load_pkl(s_path, 'jaccard_MyQ_2_not_rotated.pkl') """Getting back the objects""" ##plot_cost_noW = load_pkl(s_path, 'loss_global_no_W.pkl') #plot_cost_val_sW = load_pkl(s_path, 'loss_global_MyQz11_sW_batch2.pkl') #plot_jaccard_sW = load_pkl(s_path, 'jaccard_MyQz11_sW_batch2.pkl') font_size = 11 plt.rcParams.update({'font.size': 10}) """ no-weight """ dist_points_loss = 3 dist_points_jacc = 25 multiply = 1000 #mov_cost_noW = calc_moving_avg(plot_cost_noW, num_pts=num_pts, dist_points=dist_points) mov_cost_val_noW = calc_moving_avg(plot_cost_val_noW, num_pts=num_pts, dist_points=dist_points_loss) mov_jaccard_noW = calc_moving_avg(plot_jaccard_noW, num_pts=num_pts, dist_points=dist_points_jacc) plot_single_cost(mov_cost_val_noW, multiply, 'Validation rotated', 'Loss') plot_single_jacc(mov_jaccard_noW, multiply, 'Validation rotated', 'Jaccard') """ class weight """ multiply = 1000 #mov_cost = calc_moving_avg(plot_cost, num_pts=num_pts, dist_points=dist_points) mov_cost_val = calc_moving_avg(plot_cost_val, num_pts=num_pts, dist_points=dist_points_loss) mov_jaccard = calc_moving_avg(plot_jaccard, num_pts=num_pts, dist_points=dist_points_jacc) plot_single_cost(mov_cost_val[0:400], multiply, 'Validation no rotate', 'Loss') plot_single_jacc(mov_jaccard[0:400], multiply, 'Validation no rotate', 'Jaccard') """ spatial W """ multiply = 1000 #mov_cost_noW = calc_moving_avg(plot_cost_noW, num_pts=num_pts, dist_points=dist_points) mov_cost_val_noW = calc_moving_avg(plot_cost_val_sW, num_pts=num_pts, dist_points=dist_points_loss) mov_jaccard_noW = calc_moving_avg(plot_jaccard_sW, num_pts=num_pts, dist_points=dist_points_jacc) plot_single_cost(mov_cost_val_noW, multiply, 'Validation spatial weight', 'Loss') plot_single_jacc(mov_jaccard_noW, multiply, 'Validation spatial weight', 'Jaccard') def plot_single_cost(data, multiply, label, title): x_idx = list(range(0, len(data) * multiply, multiply)); plt.figure(21); plt.plot(x_idx,data, label=label); plt.title(title); plt.legend(loc='upper left'); def plot_single_jacc(data, multiply, label, title): x_idx = list(range(0, len(data) * multiply, multiply)); plt.figure(22); plt.plot(x_idx,data, label=label); plt.title(title); plt.legend(loc='upper right');
5eff543f2b5ee3686888c2c694d39b8bade76fd1
9a817d9063fd0e4c92b8b4e59122b1f3eb1ce31a
/manage.py
0e57fb9345c3da83e72083974d69dcc80850c984
[]
no_license
froglio/pazdpaula_website
fcaac08197b21443e1b6509c948ed8485e0be739
4ffcefc86f216210c9182ace5550a9dabeada550
refs/heads/master
2023-04-06T01:07:42.270286
2021-05-03T17:29:21
2021-05-03T17:29:21
330,445,061
0
0
null
null
null
null
UTF-8
Python
false
false
665
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'pazdpaula.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
5a1b0561f000bb1f98b804d4b36c611a61e18f75
03c6b643fcd652d58c9e6a02358de36081892779
/main.py
5f19c6e238741ddfc00dcf46901ee02ecee5390a
[ "MIT" ]
permissive
moeKiwiSAMA/tensor-snake
bae49b8a203da288a24aeafa5de2cd5bdd609a53
c91f5b63d1d3bb9929dfdf34f09ccf99ee947486
refs/heads/master
2020-07-08T13:01:14.703573
2019-08-21T23:49:53
2019-08-21T23:49:53
203,680,726
0
0
null
null
null
null
UTF-8
Python
false
false
2,413
py
import numpy as np import time import random class snake: def __init__(self, height, width): self.height = height self.width = width self.error = 0 self.center = (int(height / 2), int(width / 2)) self.location = [] self.foodlocation = (0, 0) self.dirct = "l" self.matrix = np.zeros([height,width], int) self.start() pass def spawn(self, place): try: self.matrix.itemset(place, 1) self.location.insert(0, place) print(self.location) except: self.error = 1 pass def suicide(self): lo = len(self.location) - 1 print("remove", self.location[lo]) self.matrix.itemset(self.location[lo], 0) self.location.pop() def start(self): self.spawn((int(self.height / 2), int(self.width / 2) - 1)) self.spawn((int(self.height / 2), int(self.width / 2))) self.spawn((int(self.height / 2), int(self.width / 2) + 1)) self.genFood() def genFood(self): while True: self.foodlocation = (random.randint(0, self.height), random.randint(0, self.width)) if self.foodlocation not in self.location: break self.matrix.itemset(self.foodlocation, 2) def checkspawn(self, x, y): if x > self.height - 1 or y > self.width - 1: self.error = 1 else: self.spawn((x, y)) if self.foodlocation != (x, y): self.suicide() else: self.genFood() def run(self): if self.dirct == "h": self.checkspawn(self.location[0][0], self.location[0][1] - 1) elif self.dirct == "j": self.checkspawn(self.location[0][0] + 1, self.location[0][1]) elif self.dirct == "k": self.checkspawn(self.location[0][0] - 1, self.location[0][1]) else: # self.dirct == "l" self.checkspawn(self.location[0][0], self.location[0][1] + 1) if len(self.location)!=len(set(self.location)): self.error = 1 def refresh(self, dirct): self.dirct = dirct self.run() print(self.matrix) if __name__ == '__main__': s = snake(20, 20) while True: if s.error == 1: print("error") break s.refresh("j") time.sleep(0.1)
0c9265f590f32c9ddf9f7a2e559b410b0c5e1a19
013df0289a4effea55545c1a41ddb235a68bd6ce
/max_heap.py
3c1aaad3bf0e7c7d6d157bac0470f19ceebd55bd
[]
no_license
WaspVae/Study
9dc41d0c73b9b5fc033a7a03a88b933881973e34
2004185e67e984f4106215e97fc5a9ce49d14cab
refs/heads/master
2021-02-09T18:05:06.867297
2020-08-25T15:10:55
2020-08-25T15:10:55
244,310,935
0
0
null
null
null
null
UTF-8
Python
false
false
941
py
class MaxHeap: def __init__(self): self.count = 0 self.data = [] def insert(self, item): self.data.append(item) self.count += 1 self.shift_up(self.count) def extract_max(self): self.data[0], self.data[-1] = self.data[-1], self.data[0] self.count -= 1 self.shift_down(1) self.data.pop(-1) def shift_up(self, k): while k > 1 and self.data[k - 1] > self.data[k // 2 - 1]: self.data[k - 1], self.data[k // 2 - 1] = self.data[k // 2 - 1], self.data[k - 1] k //= 2 def shift_down(self, k): while 2 * k <= self.count: j = 2 * k if j + 1 <= self.count and self.data[j - 1] < self.data[j]: j += 1 if self.data[j - 1] < self.data[k - 1]: break self.data[k - 1], self.data[j - 1] = self.data[j - 1], self.data[k - 1] k = j
ffcff4429028b57bfc8fc992bd72a29135b5bbfc
417da4d4929162c9738f2eb44bce7a93e6123fab
/scripts/script.py
d9abfb3dae544e25e51cad7ad3ba07eedd81b341
[]
no_license
apatronl/ProgrammingLanguages
c27ffc09d81036a227c005cf73acd83d598bf45a
42204997532d28b186c005940d872327363b177d
refs/heads/master
2021-05-14T10:14:33.189912
2018-01-05T16:45:13
2018-01-05T16:45:13
116,349,196
1
0
null
null
null
null
UTF-8
Python
false
false
2,225
py
import csv import wikipedia import urllib.request from bs4 import BeautifulSoup as BS import re pageTitle = "List of programming languages" nodes = list(wikipedia.page(pageTitle).links) removeList = ["List of", "Lists of", "Timeline", "Comparison of", "History of", "Esoteric programming language"] nodes = [i for i in nodes if not any(r in i for r in removeList)] base = "https://en.wikipedia.org/wiki/" def getSoup(n): try: with urllib.request.urlopen(base + n) as response: soup = BS(response.read(), "html.parser") table = soup.find_all("table", class_="infobox vevent")[0] return table except Exception as e: pass def getYear(t): try: t = t.get_text() year = t[t.find("appear") : t.find("appear") + 30] print(re.findall('(\d{4})',year)) # year = re.match(r'.*([1-3][0-9]{3})',year).group(1) year = re.findall('(\d{4})',year)[0] return int(year) except Exception as e: return "Could not determine year" def getLinks(t): try: table_rows = t.find_all("tr") for i in range(len(table_rows)): try: if table_rows[i].get_text() == "\nInfluenced\n": out = [] for j in table_rows[i + 1].find_all("a"): try: out.append(j["title"]) except: continue return out except: continue return except: return edgeList = [["Source","Target"]] meta = [["Id", "Year", "Label"]] for n in nodes: try: temp = getSoup(n) except: continue try: influenced = getLinks(temp) for link in influenced: if link in nodes: edgeList.append([n, link]) # print([n + "," + link]) except: continue year = getYear(temp) meta.append([n, year, n]) with open("edge_list.csv", "w") as f: wr = csv.writer(f) for e in edgeList: wr.writerow(e) with open("metadata.csv", "w") as f2: wr = csv.writer(f2) for m in meta: wr.writerow(m)
6d71558f72f56b692f826f2c54b03347759f5030
66b220a4c8c0bfde435f29e3a18cf79f6e7a4c67
/src/exemplos/01_Dados/02_Operadores/01-subtracao.py
77f2c292956d5c74e2524a563e94f8fc4d5a83cb
[]
no_license
gnramos/CIC-APC
089b6d0110394b4db97c23e032394eaefce0aeef
b94fe2dc4840064f1613d24e5d1447d49b9bb8bd
refs/heads/master
2023-04-15T18:11:27.919896
2023-04-05T21:31:03
2023-04-05T21:31:03
31,514,265
42
30
null
2018-11-20T18:09:10
2015-03-01T22:57:39
C
UTF-8
Python
false
false
964
py
# -*- coding: utf-8 -*- # @package: 01-subtracao.py # @author: Guilherme N. Ramos ([email protected]) # @disciplina: Algoritmos e Programação de Computadores # # Exemplos de utilização do operador de subtração. Em Python, só é possível # subtrair valores numéricos. print('Subtração (numéricos):') # Escreva o resultado da operação 2 - 1. A subtração de valores inteiros também # é um valor inteiro. print(' 2 - 1 =', 2 - 1) # Escreva o resultado da operação 1 - 2. print(' 1 - 2 =', 1 - 2) # Escreva o resultado da operação 2 - 1.0. A subtração de valores reais de # inteiros é um valor real. print(' 2 - 1.0 =', 2 - 1.0) # Escreva o resultado da operação 2.0 - 1. A subtração de valores inteiros de # reais é um valor real. print(' 2.0 - 1 =', 2.0 - 1) # Escreva o resultado da operação 2.0 - 1.0. A subtração de valores reais # também é um valor real. print(' 2.0 - 1.0 =', 2.0 - 1.0)
66b1007d1dabe0428cbe0ba4c2f82d9ad8aa4dec
cb20ef5b4048457a2e6dca4a4cb45c53c9843744
/tests/RESTful/testcases/system/test01_usermanager.py
c8459e97ec6e5c06d18b505403753911f74efb0c
[]
no_license
rudecs/openvcloud
5001b77e8d943427c1bed563f3dcc6b9467936e2
12ccce2a54034f5bf5842e000c2cc3d7e22836d8
refs/heads/master
2020-03-24T00:00:10.422677
2018-11-22T13:41:17
2018-11-22T13:41:17
142,267,808
2
1
null
2018-07-25T08:02:37
2018-07-25T08:02:36
null
UTF-8
Python
false
false
4,341
py
import time, random, unittest from testcases import * from nose_parameterized import parameterized class UsersTests(TestcasesBase): def setUp(self): super().setUp() self.data, self.response = self.api.system.usermanager.create(provider=None) self.assertEqual(self.response.status_code, 200, self.response.content) self.username = self.data['username'] self.CLEANUP['users'].append(self.username) @parameterized.expand([('exists', 200, 'true'), ('non-exist', 404, 'false')]) def test01_userget_userexists(self, case, response_code, userexists): """ OVC-001 #. Create user (U1), should succeed. #. Get user (U1), should succeed. #. Check if user (U1) exists, should return true. #. Get not existing user, should fail. #. Check if non-existing user exists, should return false. """ if case == 'exists': username = self.username else: username = self.utils.random_string() response = self.api.system.usermanager.userget(name=username) self.assertEqual(response.status_code, response_code, response.content) response = self.api.system.usermanager.userexists(name=username) self.assertEqual(response.status_code, 200, response.content) self.assertEqual(response.text, userexists) @parameterized.expand([('exists', 200), ('non-exist', 404)]) def test02_edit_user(self, case, response_code): """ OVC-002 #. Create user (U1), should succeed. #. Edit user (U1), should succeed. #. Edit non-existing user, should fail. """ if case == 'exists': username = self.username else: username = self.utils.random_string() data, response = self.api.system.usermanager.editUser(username=username) self.assertEqual(response.status_code, response_code, response.content) @parameterized.expand([('exists', 200), ('non-exist', 404)]) def test03_delete_user(self, case, response_code): """ OVC-003 #. Create user (U1), should succeed. #. Delete user (U1), should succeed. #. Delete none existing user, should fail. """ if case == 'exists': username = self.username else: username = self.utils.random_string() response = self.api.system.usermanager.delete(username=username) self.assertEqual(response.status_code, response_code, response.content) response = self.api.system.usermanager.userexists(name=username) self.assertEqual(response.status_code, 200, response.content) self.assertEqual(response.text, 'false') class GroupsTests(TestcasesBase): def setUp(self): super().setUp() self.data, self.response = self.api.system.usermanager.createGroup() self.assertEqual(self.response.status_code, 200, self.response.content) self.name = self.data['name'] def tearDown(self): self.api.system.usermanager.deleteGroup(id=self.name) super().tearDown() @parameterized.expand([('exists', 200), ('non-exist', 404)]) def test01_edit_group(self, case, response_code): """ OVC-001 #. Create group (G1), should succeed. #. Edit group (G1), should succeed. #. Edit non-existing group, should fail. """ if case == 'exists': name = self.name else: name = self.utils.random_string() data, response = self.api.system.usermanager.editGroup(name=name) self.assertEqual(response.status_code, response_code, response.content) @parameterized.expand([('exists', 200), ('non-exist', 404)]) @unittest.skip('https://github.com/0-complexity/openvcloud/issues/1367') def test02_delete_group(self, case, response_code): """ OVC-002 #. Create group (G1), should succeed. #. Delete group (G1), should succeed. #. Delete non-existing group, should fail. """ if case == 'exists': name = self.name else: name = self.utils.random_string() response = self.api.system.usermanager.deleteGroup(id=name) self.assertEqual(response.status_code, response_code, response.content)
2810d657e2aa3272c2d799f7b7ea8f265d83dd92
321afe9ca4a30ff655483901bdb6368cce1bd58b
/catalog/migrations/0019_biditems_time.py
f8acacc12ce34e72ef8a1a024598b0d27ff127b5
[]
no_license
moses-mugoya/Auction-System
75456a475a0a76a9c7143f2f039e059f841d204f
42de3e68fd7a99bdb0598f820b5f8ae6359e972d
refs/heads/main
2023-02-04T22:58:22.793934
2020-12-24T18:05:51
2020-12-24T18:05:51
324,211,000
1
0
null
null
null
null
UTF-8
Python
false
false
387
py
# Generated by Django 2.1.4 on 2019-04-07 17:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('catalog', '0018_auto_20190407_1343'), ] operations = [ migrations.AddField( model_name='biditems', name='time', field=models.BooleanField(default=False), ), ]
f14a001ed3820955e8948479524e1a9256877fb9
5e1e258e79eb8f69fa05a3b611c1d1902a69dee0
/03/part1.py
e419027b6a366f27007dd98a4939c7df0693a22a
[]
no_license
gabrielvicenteYT/aoc-2018-python
7983a66e05ec99152361e13fb41e90a077f7145c
d278278f68b0e10e0633ab3cf297c3497b5ede8f
refs/heads/master
2021-10-11T04:22:57.187395
2019-01-22T00:20:53
2019-01-22T00:20:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
import re from collections import Counter from itertools import product usages = Counter() with open('in.txt') as f: for line in f: id_, x, y, width, height = map(int, re.findall('\d+', line)) usages.update(product(range(x, x + width), range(y, y + height))) print(sum(value > 1 for value in usages.values()))
49b574c1e04a988e0805d696687ea04a0fce251c
0ae112aff68de5f94c09d004c21834349b9afa8d
/common/match_thread.py
e5bda9c33bbd785a741e82fe5720333cb042af19
[]
no_license
Maoyun/Azure_Line
2f319f16663a2061997ff558bc8e955154294bfb
7dd94e1391f82603bfc76b118b598bf05f8106c9
refs/heads/master
2020-03-14T05:18:06.021340
2018-04-29T05:08:09
2018-04-29T05:08:09
131,461,693
0
0
null
null
null
null
UTF-8
Python
false
false
8,567
py
# !/usr/bin/env python # -*-coding:utf-8 -*- # author:Dra Date:2018/2/22 import os import sys import random import cv2 import time import numpy as np import threading class MyThread(threading.Thread): def __init__(self, func, args=()): super(MyThread, self).__init__() self.func = func self.args = args self.result = None def run(self): self.result = self.func(*self.args) def get_result(self): try: return self.result # 如果子线程不使用join方法,此处可能会报没有self.result的错误 except KeyboardInterrupt: return None def match(img, model, value): # 模板和查找目标 try: if model in ["diren1.png", 'diren2.png', 'diren3.png']: value = 0.63 elif model == 'boss.png': value = 0.58 print('value:', value) # 确定模型类型与ID # 也可以使用in来做判断 targets = ['chuji.png', 'guibi.png', 'qianwang.png', 'ditu8-4.png', 'boss.png', 'chuji2.png', 'queren.png', 'diren2.png', 'diren3.png', 'diren1.png'] modelid = targets.index(model) # 加载原始图像(RGB) img_rgb = cv2.imread(img) # 创建原始图像的灰度版本,所有操作在灰度版本中处理,然后再RGB图像中使用相同坐标还原 img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) # 加载将要搜索的图像模板 tmp = cv2.imread(model, 0) # 记录图像模板的尺寸 # w,h = tmp.shape[::-1] # 查找图像 res = cv2.matchTemplate(img_gray, tmp, cv2.TM_CCOEFF_NORMED) # 设定阈值 thread = value # res大于thread loc = np.where(res >= thread) px = loc[1] py = loc[0] # for pt in zip(*loc[::-1]): # cv2.rectangle(img_rgb,pt,(pt[0]+w,pt[1]+h),(7,249,151),2) # cv2.namedWindow('show',0) # cv2.resizeWindow('show',960,540) # cv2.moveWindow('show',960,540) # cv2.imshow("show",img_rgb) # cv2.waitKey(0) # cv2.destroyAllWindows() if len(px) != 0: print(px[0], py[0], model) return px[0], py[0], modelid else: # print([0, 0, 0]) return [0, 0] except KeyboardInterrupt: print('no match') def pull_screenshot(): # 获取截图 os.system('adb shell screencap -p /sdcard/autoAzure_line.png') # png效果最好 os.system('adb pull /sdcard/autoAzure_line.png .') def touch(touch_x1, touch_y1): # adb点击目标,添加了随机数避免被ban cmd = 'adb shell input tap {x1} {y1}'.format( x1=touch_x1 + random.randint(10, 100), y1=touch_y1 + random.randint(20, 50), # x2=touch_x1 + random.randint(0,10), # y2=touch_y1 + random.randint(0,10), # duration=random.randint(10,300), ) os.system(cmd) return touch_x1, touch_y1 def touch_boss(touch_x1, touch_y1): cmd = 'adb shell input tap {x1} {y1}'.format( x1=touch_x1 + random.randint(30, 80), y1=touch_y1 + random.randint(30, 80), # x2=touch_x1 + random.randint(0,10), # y2=touch_y1 + random.randint(0,10), # duration=random.randint(10,300), ) os.system(cmd) return touch_x1, touch_y1 def touch_diren(touch_x1, touch_y1): cmd = 'adb shell input tap {x1} {y1}'.format( x1=touch_x1 + random.randint(-10, 50), y1=touch_y1 + random.randint(-10, 50), # x2=touch_x1 + random.randint(0,10), # y2=touch_y1 + random.randint(0,10), # duration=random.randint(10,300), ) os.system(cmd) return touch_x1, touch_y1 def swipe_screen(x1, y1, x2, y2): cmd = 'adb shell input swipe {x1} {y1} {x2} {y2}'.format( x1=x1 + random.randint(-10, 20), y1=y1 + random.randint(-10, 20), x2=x2 + random.randint(0, 20), y2=y2 + random.randint(0, 20), # duration=random.randint(10,300), ) os.system(cmd) return x1, y1 def main(): count = 0 while True: # b = [] modelid = 0 flag = 0 result_a = [0, 0] begin_time1 = time.time() pull_screenshot() print("截图时间", time.time()-begin_time1) image = "autoAzure_line.png" targets = ['chuji.png', 'guibi.png', 'qianwang.png', 'ditu8-4.png', 'boss.png', 'chuji2.png', 'queren.png', 'diren2.png', 'diren3.png', 'diren1.png'] # enemy = ['diren2.png', 'diren3.png', 'diren1.png'] value = 0.75 begin_time = time.time() ts = [] for target in targets: # print(target) th = MyThread(match, args=(image, target, value)) th.start() ts.append(th) # print(ts) print('多线程使用时间1:', time.time() - begin_time) for th in ts: # 获取线程处理结果 th.join() a = th.get_result() # print(a, target) if a[0] != 0 and flag ==0: if a[2] in range(7): result_a[0:2] = a[0:2] modelid = a[2] print(result_a, modelid) flag = 1 else: if result_a[1] >= a[1]: # 预留的处理找到敌人后先打哪个的位置 目前是先打最下面的 result_a[0:2] = result_a[0:2] # 取前两位作为坐标 modelid = a[2] # result_a = a # print('####################') else: result_a[0:2] = a[0:2] modelid = a[2] # print("@@@@@@@@@@@@@@@@@@@@") print('多线程使用时间2:', time.time() - begin_time) match_time = time.time() - begin_time print("匹配时间", match_time) # if result_a[0] == 0: # for i in range(len(enemy)): # result_a = (match(image, enemy[i], 0.6)) # b.append(result_a) # c = sum(b[0]), sum(b[1]), sum(b[2]) # if sum(c) != 0: # result_a = b[c.index(min(filter(None, c)))] # print(filter(None, c)) # else: # print(2) # result_a = [250, 250] if result_a[0] == 0: result_a = [380, 0] x = result_a[0] y = result_a[1] # touch(xbn ,y) # print('识别模型:', target) print('识别结果:', result_a) # print(b) if modelid == 4: print(touch_boss(x, y), 'boss'+targets[modelid]) count += 1 # time.sleep(2) elif modelid in [7, 8, 9]: print(touch_diren(x, y), 'diren'+targets[modelid]) elif modelid == 2: print(touch(x, y)) # flag = 1 elif modelid == 2: # 进入8-4地图向下滑动 # print(touch(x, y)) time.sleep(1) print(swipe_screen(100, 250, 100, 100)) # flag = 0 else: print(touch(x, y), '其他'+targets[modelid]) wait = random.random() + 0 # 停0~9秒 指数越高平均间隔越短 print("等待时间", wait) time.sleep(wait) print('boss:', count) print('运行时间:', time.time()-begin_time1) if __name__ == '__main__': try: main() except KeyboardInterrupt: os.system('adb kill -server') print('bye') exit(0) # TODO: 过程中要添加随机点击-OK # TODO:寻找LV小怪的时候随机指数要反向写-CANCEL # TODO:改善找到boss后要经过多次点击进入boss,战斗过程中程序失败-to do # TODO: 改为三通道匹配-CANCEL # TODO: 决策时间太慢了,boss与小怪的匹配程度太低 了-OK # TODO: 增加滑动屏幕更改地图位置功能-OK # TODO: 增加统计战利品功能 # TODO: 改善现有的boss数量统计功能 # TODO: 根据实际情况滑动地图,因为地图并不是在右下角总有敌人 # 0329 # TODO: 根据新出活动更改寻找敌人的方式——同时找三种敌人,并且先打左上角的-OK # TODO: 打不到就选下一个 # 0427 # TODO: 要求所有搜索做到并发多线程 # 0429 # 解决了关于碰到多个模型同时出现,但是要求优先度的问题 # TODO: 需要解决match到相同模型时需要选择适合目标的情况,还需要屏幕向下滑动一下(8-4)
9016ca060e58ff5454c362fcf89a1cb3825240a8
1d3af66da1c599590c431317b02d315af9f68679
/publishing_system/views.py
356db6d70bca2c827351a3a10ca8e95f3b63f75b
[]
no_license
huidou74/CMDB-01
9ca03755da9a652cfdfcbaaf8acbc720f6c8cfdd
e8f78b7eeac854df11d2528a7efa2cd15137fbe3
refs/heads/master
2020-04-29T15:38:42.082743
2019-03-18T08:42:28
2019-03-18T08:42:28
176,235,247
1
0
null
null
null
null
UTF-8
Python
false
false
10,135
py
# Create your views here. from django.shortcuts import render, HttpResponse, redirect from hc import models from hc_auth import auth_data import os,sys from publishing_system.task import add, mian_salt from celery.result import AsyncResult from lyh_project.celery import app from publishing_system.main_salt import MainSalt,UtcTime, sub_run from publishing_system.salt_run import Salt_Run def publish(request): if request.method == 'GET': user = request.session['login'] obj_user = models.Login.objects.filter(username=user).first() tem = 'user_auth_info' if request.session['auto_user']: menu_dict = request.session.get('menu_dict') auth_user = request.session['auto_user'] obj_auto = models.UserInfo.objects.filter(name=auth_user) if obj_auto: auth_data.menu_auth(obj_auto, request) userinfo = request.session.get('auto_user') pos = request.session.get('auto_user_pos') img = request.session.get('auto_user_img') username = request.session.get('auto_user') obj_auth_user = models.UserInfo.objects.filter(name=username).first() # 渲染所有数据 envs = models.Use_Env.objects.all() return render(request, './bootstarp/publishing/right_away.html', locals()) else: user = request.session['login'] obj_user = models.Login.objects.filter(username=user).first() tem = 'user_auth_info' if request.session['auto_user']: menu_dict = request.session.get('menu_dict') auth_user = request.session['auto_user'] obj_auto = models.UserInfo.objects.filter(name=auth_user) if obj_auto: auth_data.menu_auth(obj_auto, request) userinfo = request.session.get('auto_user') pos = request.session.get('auto_user_pos') img = request.session.get('auto_user_img') username = request.session.get('auto_user') obj_auth_user = models.UserInfo.objects.filter(name=username).first() # 上面是权限页面需要的数据 # 下面才是我的逻辑 envs = models.Use_Env.objects.all() env = request.POST.get('env') app = request.POST.get('app') obj_list = models.App.objects.filter(name=app, environment__name=env).first() # 跨表查询 hosts_list = [] if obj_list: for i in obj_list.hosts.all(): id = i.hostname #id #hc - 01 # print ('id -> ',id) hosts_list.append({'id':str(i.hostname),'path':str(obj_list.path),'app_name': str(obj_list),'package':str(obj_list.package.pack_path)}) aaa = Salt_Run(hosts_list) jgs=aaa.run_list() return render(request, './bootstarp/publishing/right_away.html', locals()) def celery_status(request): time_list = ['year', 'month', 'day', 'hour', 'minute'] time_dict = {} envss = models.Use_Env.objects.all() if request.method == 'GET': # 页面权限需要的数据 user = request.session['login'] obj_user = models.Login.objects.filter(username=user).first() tem = 'user_auth_info' if request.session['auto_user']: menu_dict = request.session.get('menu_dict') auth_user = request.session['auto_user'] obj_auto = models.UserInfo.objects.filter(name=auth_user) if obj_auto: auth_data.menu_auth(obj_auto, request) userinfo = request.session.get('auto_user') pos = request.session.get('auto_user_pos') img = request.session.get('auto_user_img') username = request.session.get('auto_user') obj_auth_user = models.UserInfo.objects.filter(name=username).first() # 当前应用 的逻辑 x = request.GET.get('x') y = request.GET.get('y') envs = request.GET.get('envs') apps = request.GET.get('apps') obj_list = models.App.objects.filter(name=apps, environment__name=envs).first() # 跨表查询 hosts_list = [] if obj_list: for i in obj_list.hosts.all(): id = i.hostname # id #hc - 01 hosts_list.append({'id': str(i.hostname), 'path': str(obj_list.path), 'app_name': str(obj_list), 'package': str(obj_list.package.pack_path)}) try : if x and y or envs and apps: try : after = request.GET.get('after') if after: utc = UtcTime(after=int(after)) ctime_x = utc.after_time() if ctime_x: # 最核心的代码 if x and y: ret = add.apply_async(args=[int(x), int(y)], eta=ctime_x) num = ret.id elif envs and apps: ret = mian_salt.apply_async(args=[hosts_list], eta=ctime_x) num = ret.id except ValueError: after_error = '请正确输入数值' year = request.GET.get('year') mouth = request.GET.get('month') day = request.GET.get('day') hour = request.GET.get('hour') minute = request.GET.get('minute') if year and mouth and day and hour and minute: try: for i in time_list: a = request.GET.get(i) time_dict.update({i: int(a)}) utc = UtcTime(**time_dict) ctime_x = utc.ctime() if ctime_x: if x and y: ret = add.apply_async(args=[int(x), int(y)], eta=ctime_x) num = ret.id elif envs and apps: ret = mian_salt.apply_async(args=[hosts_list], eta=ctime_x) num = ret.id except ValueError: error = '请正确输入日期数值' else: error = '请将表格数据输入完整' except ValueError: error = '请正确输入日期数值' cancel = request.GET.get('cancel') if cancel: async = AsyncResult(id=cancel, app=app) async.revoke(terminate=True) cancel_tag='取消成功' # 定时任务的取消 是 还没执行之前就取消,执行了放在消息队列里面了就不行被取消 async.forget() stop = request.GET.get('stop') if stop: async = AsyncResult(id=stop, app=app) async.revoke() stop_tag='中止成功' # 定时任务的中止, 是 在执行的过程中,中止任务,必须是在执行的时候 async.forget() return render(request, './bootstarp/publishing/timing.html', locals()) elif request.method == 'POST': user = request.session['login'] obj_user = models.Login.objects.filter(username=user).first() tem = 'user_auth_info' if request.session['auto_user']: menu_dict = request.session.get('menu_dict') auth_user = request.session['auto_user'] obj_auto = models.UserInfo.objects.filter(name=auth_user) if obj_auto: auth_data.menu_auth(obj_auto, request) userinfo = request.session.get('auto_user') pos = request.session.get('auto_user_pos') img = request.session.get('auto_user_img') username = request.session.get('auto_user') obj_auth_user = models.UserInfo.objects.filter(name=username).first() ret = request.POST.get('id', '').strip(' ') data = "" forget = request.POST.get('forget') if ret: async = AsyncResult(id=ret, app=app) if async.successful(): data = "执行成功,数据如下" jg = async.get() if not forget: jg='清除完成' async.forget() elif async.failed(): data = '执行失败' elif async.status == 'PENDING': data = "等待被执行" elif async.status == 'RETPY': data = '任务异常正常重试' elif async.status == 'STARTED': data = "任务正在执行" else: data = "未知" else: data = '请正确填写对应 ID ' return render(request,'./bootstarp/publishing/timing.html', locals())
c6d625d9f68df0ae43347adb40152469782dbb6c
8caa427e6c2a932d65de15651d41adcfe8c99398
/1-MIT_Python/ProblemSet6/ps6_encryption.py
0e276200dbc78ad3fe9d0eda36260e4e2cceeeae
[]
no_license
HillBamboo/MOOCs
d300f341dfe2edffbc27172332bc44896cc1c699
abe3ca04f6dbfd42e4f78f5a6e0e92f996a1895a
refs/heads/master
2021-01-10T17:49:02.870852
2017-02-18T12:29:20
2017-02-18T12:29:20
46,789,365
2
0
null
null
null
null
UTF-8
Python
false
false
5,376
py
# 6.00x Problem Set 6 # # Part 1 - HAIL CAESAR! import string import random WORDLIST_FILENAME = "words.txt" # ----------------------------------- # Helper code # (you don't need to understand this helper code) def loadWords(): """ Returns a list of valid words. Words are strings of lowercase letters. Depending on the size of the word list, this function may take a while to finish. """ print "Loading word list from file..." inFile = open(WORDLIST_FILENAME, 'r') wordList = inFile.read().split() print " ", len(wordList), "words loaded." return wordList def isWord(wordList, word): """ Determines if word is a valid word. wordList: list of words in the dictionary. word: a possible word. returns True if word is in wordList. Example: >>> WORDLIST_FILENAME = "words.txt" >>> isWord(WORDLIST_FILENAME, 'bat') True >>> isWord(WORDLIST_FILENAME, 'asdf') False """ word = word.lower() word = word.strip(" !@#$%^&*()-_+={}[]|\\:;'<>?,./\"") return word in wordList def randomWord(wordList): """ Returns a random word. wordList: list of words returns: a word from wordList at random """ return random.choice(wordList) def randomString(wordList, n): """ Returns a string containing n random words from wordList wordList: list of words returns: a string of random words separated by spaces. """ return " ".join([randomWord(wordList) for _ in range(n)]) def randomScrambled(wordList, n): """ Generates a test string by generating an n-word random string and encrypting it with a sequence of random shifts. wordList: list of words n: number of random words to generate and scamble returns: a scrambled string of n random words NOTE: This function will ONLY work once you have completed your implementation of applyShifts! """ s = randomString(wordList, n) + " " shifts = [(i, random.randint(0, 25)) for i in range(len(s)) if s[i-1] == ' '] return applyShifts(s, shifts)[:-1] def getStoryString(): """ Returns a story in encrypted text. """ return open("story.txt", "r").read() # (end of helper code) # ----------------------------------- # # Problem 1: Encryption # def buildCoder(shift): """ Returns a dict that can apply a Caesar cipher to a letter. The cipher is defined by the shift value. Ignores non-letter characters like punctuation, numbers and spaces. shift: 0 <= int < 26 returns: dict """ ls = list(string.ascii_lowercase) us = list(string.ascii_uppercase) return dict(zip(us[:] + ls[:], us[shift:] + us[:shift] + ls[shift:] + ls[:shift])) def applyCoder(text, coder): """ Applies the coder to the text. Returns the encoded text. text: string coder: dict with mappings of characters to shifted characters returns: text after mapping coder chars to original text """ ans = str() for i in text[:]: if i in string.letters: ans += coder[i] else: ans += i return ans # return sum([coder[i] for i in text if i in string.letters else i]) def applyShift(text, shift): """ Given a text, returns a new text Caesar shifted by the given shift offset. Lower case letters should remain lower case, upper case letters should remain upper case, and all other punctuation should stay as it is. text: string to apply the shift to shift: amount to shift the text (0 <= int < 26) returns: text after being shifted by specified amount. """ coder = buildCoder(shift) ans = str() for i in text[:]: if i in string.letters: ans += coder[i] else: ans += i return ans # # Problem 2: Decryption # def findBestShift(wordList, text): """ Finds a shift key that can decrypt the encoded text. text: string returns: 0 <= int < 26 Example: >>> WORDLIST_FILENAME = "words.txt" >>> s = applyShift('Hello, world!', 8) >>> s 'Pmttw, ewztl!' >>> findBestShift(WORDLIST_FILENAME, s) 18 >>> applyShift(s, 18) 'Hello, world!' """ max_num, best_shift, cnt = 0, 0, 0 for shift in range(26): tmp = applyShift(text, shift) tmp = tmp.split(' ') cnt = sum([1 for word in tmp if isWord(wordList, word)]) if cnt > max_num: max_num = cnt best_shift = shift return best_shift def decryptStory(): """ Using the methods you created in this problem set, decrypt the story given by the function getStoryString(). Use the functions getStoryString and loadWords to get the raw data you need. returns: string - story in plain text """ story = getStoryString() wordList = loadWords() best_shift = findBestShift(wordList, story) return applyShift(story, best_shift) # # Build data structures used for entire session and run encryption # if __name__ == '__main__': # To test findBestShift: wordList = loadWords() s = applyShift('Hello, world!', 8) bestShift = findBestShift(wordList, s) assert applyShift(s, bestShift) == 'Hello, world!' # To test decryptStory, comment the above four lines and uncomment this line: decryptStory()
9a36b98bb923fd7dead1786e076de9a8d5e3a170
bf1461cbd737917d359998c1235c21386529b1b3
/bin/motor_intermediate.py
7649bea3ffbaeb41e705a413caecf33d525a6faf
[]
no_license
glynfinck/trashbot_2dnav
d29bf0e35c3463b401d7ee54c94a1541be676497
90ac956e9a2889680238a30324d054c0c030a5da
refs/heads/master
2020-12-11T21:28:11.184688
2020-03-09T00:04:14
2020-03-09T00:04:14
233,964,050
0
0
null
null
null
null
UTF-8
Python
false
false
4,313
py
#! /usr/bin/env python import rospy import yaml import os from std_msgs.msg import String from geometry_msgs.msg import Twist BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_LOCAL_PLANNER_PATH = BASE_DIR+"/param"+"/base_local_planner_params.yaml" DESIRED_BASE_LOCAL_PLANNER_PATH = BASE_DIR+"/param"+"/desired_base_local_planner_params.yaml" with open(BASE_LOCAL_PLANNER_PATH, 'r') as stream: try: base_local_planner_yaml = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) with open(DESIRED_BASE_LOCAL_PLANNER_PATH, 'r') as stream: try: desired_base_local_planner_yaml = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) print(type(desired_base_local_planner_yaml)) INPUT_PLANNER = base_local_planner_yaml.get("TrajectoryPlannerROS") DESIRED_PLANNER = desired_base_local_planner_yaml.get("TrajectoryPlannerROS") LINEAR_VEL_SCALE=1.0 ANGULAR_VEL_SCALE=1.0 cmd_vel_pub = rospy.Publisher('/cmd_vel', String, queue_size=10) rospy.init_node('motor_intermediate', anonymous=True) def convert_range(x,InputLow,InputHigh,OutputLow,OutputHigh): return ((x - InputLow) / (InputHigh - InputLow)) * (OutputHigh - OutputLow) + OutputLow def callback(data): new_vel = Twist() new_vel.linear.x = convert_range( data.linear.x, INPUT_PLANNER.get("min_vel_x"), INPUT_PLANNER.get("max_vel_x"), DESIRED_PLANNER.get("min_vel_x"), DESIRED_PLANNER.get("max_vel_x") ) new_vel.linear.y = convert_range( data.linear.y, INPUT_PLANNER.get("min_vel_x"), INPUT_PLANNER.get("max_vel_x"), DESIRED_PLANNER.get("min_vel_x"), DESIRED_PLANNER.get("max_vel_x") ) new_vel.linear.z = convert_range( data.linear.z, INPUT_PLANNER.get("min_vel_x"), INPUT_PLANNER.get("max_vel_x"), DESIRED_PLANNER.get("min_vel_x"), DESIRED_PLANNER.get("max_vel_x") ) if float(new_vel.linear.x) == 0.0 and float(new_vel.linear.y) and float(new_vel.linear.z): new_vel.angular.x = convert_range( data.angular.x, INPUT_PLANNER.get("min_vel_theta"), INPUT_PLANNER.get("max_vel_theta"), DESIRED_PLANNER.get("min_vel_theta"), DESIRED_PLANNER.get("max_vel_theta") ) new_vel.angular.y = convert_range( data.angular.y, INPUT_PLANNER.get("min_vel_theta"), INPUT_PLANNER.get("max_vel_theta"), DESIRED_PLANNER.get("min_vel_theta"), DESIRED_PLANNER.get("max_vel_theta") ) new_vel.angular.z = convert_range( data.angular.z, INPUT_PLANNER.get("min_vel_theta"), INPUT_PLANNER.get("max_vel_theta"), DESIRED_PLANNER.get("min_vel_theta"), DESIRED_PLANNER.get("max_vel_theta") ) else: new_vel.angular.x = convert_range( data.angular.x, (-1)*INPUT_PLANNER.get("min_in_place_vel_theta"), INPUT_PLANNER.get("min_in_place_vel_theta"), (-1)*DESIRED_PLANNER.get("min_in_place_vel_theta"), DESIRED_PLANNER.get("min_in_place_vel_theta") ) new_vel.angular.y = convert_range( data.angular.y, INPUT_PLANNER.get("min_in_place_vel_theta"), INPUT_PLANNER.get("min_in_place_vel_theta"), DESIRED_PLANNER.get("min_in_place_vel_theta"), DESIRED_PLANNER.get("min_in_place_vel_theta") ) new_vel.angular.z = convert_range( data.angular.z, INPUT_PLANNER.get("min_in_place_vel_theta"), INPUT_PLANNER.get("min_in_place_vel_theta"), DESIRED_PLANNER.get("min_in_place_vel_theta"), DESIRED_PLANNER.get("min_in_place_vel_theta") ) cmd_vel_pub.publish(new_vel) def listener(): # In ROS, nodes are uniquely named. If two nodes with the same # name are launched, the previous one is kicked off. The # anonymous=True flag means that rospy will choose a unique # name for our 'listener' node so that multiple listeners can # run simultaneously. rospy.Subscriber("/inter_cmd_vel", Twist, callback) rospy.spin() if __name__ == '__main__': listener()
7bc58f3621d6e04206543d4b556929e56b1c3b0f
5d11146d1d81fc7c75f64f902d84673401f7a4b9
/oopython/example_code/vt23/kmom03/get_post_ok/src/guess_game.py
92315a082205be08b15bd1c81c5ada27db284b32
[ "MIT" ]
permissive
dbwebb-se/python-slides
ca82688e1ea0d527fc650eb2872f3c71425690f1
4c5f0bb9b5873fcc2fd89740b36ede78b2f9d6c2
refs/heads/master
2023-08-31T07:53:11.958487
2023-08-22T12:21:16
2023-08-22T12:21:16
144,724,378
0
0
MIT
2023-03-08T20:50:56
2018-08-14T13:30:50
HTML
UTF-8
Python
false
false
1,766
py
#!/usr/bin/env python3 """ Main class for the guessing game """ import random from src.guess import Guess class GuessGame: """ Holds info for playing a guessing game """ def __init__(self, correct_value=None, guesses=None): if correct_value is not None: self._correct_value = correct_value else: self._correct_value = random.randint(1, 15) self.guesses = [] if guesses: for value, attempt, is_correct in guesses: self.guesses.append(Guess(value, attempt, is_correct)) # self.guesses = [Guess(v, a, c) for v, a, c in guesses] if guesses is not None else [] # denna raden gör samma sak som de fyra raderna ovanför self.guess_attempts = len(self.guesses) def make_guess(self, guess_value): """ Makes a new guess and adds to list """ self.guess_attempts += 1 if guess_value == self._correct_value: self.guesses.append(Guess(guess_value, self.guess_attempts, True)) return True self.guesses.append(Guess(guess_value, self.guess_attempts)) return False def get_correct_value(self): """ Return private attribute """ return self._correct_value def get_if_guessed_correct(self): """ return if last guess was correct or not """ return self.guesses[-1].correct if self.guesses else False def to_list(self): """ Turn old guesses to a list """ # new_list = [] # for g in self.guesses: # new_list.append((g.value, g.attempt, g.correct)) # return new_list return [(g.value, g.attempt, g.correct) for g in self.guesses] # denna raden gör samma sak som de fyra raderna ovanför.
97af32bd4a5c4035d0706ba4db1578224129c7e6
f48c6625dbd6d64a203a7f4e2c1cceec1afe01e8
/bit_manipulation.py
493d33ceb087f382aee7e4eccf094369baf9ec0c
[]
no_license
SergiosKar/Algorithms_DataStructures
3087dfd34ab303732e0bedd6e0182dde4915ae87
0c5a7fe702f3cb54d4774e4fb0b4694bef2a7f07
refs/heads/master
2020-05-07T20:42:49.822989
2019-06-24T17:59:22
2019-06-24T17:59:22
180,874,174
0
0
null
null
null
null
UTF-8
Python
false
false
97
py
num=72 print(bin(num)) for pos in range(8): print(bin(1<<pos)) print(' ')
ea25370b4ca6e70943758b90f71ffcc5e2e588ed
ea1cd395be1c201e7f8cd49ff6d556fa4c853b74
/PythonDataStructures/Sports.py
0e1a0f12b75ce9f04a96ef2e68336295e6b4d085
[]
no_license
itsmrajesh/python-programming-questions
1c7571abc419da2617d46d5c1c824095ca7ec592
5820c28131aeb3caa17efe2a83de07576755c300
refs/heads/master
2020-06-11T12:29:40.433704
2019-09-05T12:37:03
2019-09-05T12:37:03
193,964,339
0
0
null
null
null
null
UTF-8
Python
false
false
896
py
Cricket=[ "PKM", "ALN", "GLN", "NVR", "PVR", "KM", "VP", "CS", "MCS"] Football=[ "PKM", "ALN","RMZ","CS", "MCS"] Badminton=[ "PKM", "ALN", "NV", "KM","RMV"] all_Players_list=list() all_Players_list.extend(Cricket) all_Players_list.extend(Football) all_Players_list.extend(Badminton) def displayNames(data): for name in data: print(name ,end=" ") print() print("All Players List") displayNames(all_Players_list) unique_Players_Set=set() unique_Players_Set={name for name in all_Players_list} #for name in all_Players_list: # unique_Players_Set.add(name) print("Unique Players") displayNames(unique_Players_Set) all_games_players_list=list() for name in unique_Players_Set: if name in (Cricket and Football and Badminton): all_games_players_list.append(name) print("Player who play all 3 games") displayNames(all_games_players_list)
0b6b1aff0397d9ac19c5d18aa1bfecfa51153e80
c714f2e2524b1797636699602d746fb7de064083
/SLAM2D.py
1bc95a6c180f6238748ede52f059898a6461f4ac
[]
no_license
arnolde/SLAM
7c8b6ae80977fd1eabf2250d5ac7e3a393ded977
028d1795a3bf1acb8ebad4c91440c5646ff96b3f
refs/heads/master
2020-09-08T15:50:25.373110
2019-11-12T10:21:19
2019-11-12T10:21:19
221,176,240
0
0
null
2019-11-12T09:13:59
2019-11-12T09:13:58
null
UTF-8
Python
false
false
24,003
py
import numpy as np from numpy.linalg import inv, multi_dot from numpy import dot from matplotlib import pyplot as plt from matplotlib.patches import Circle import math import seaborn from scipy import sparse from scipy.sparse import linalg def dots(*arg): return multi_dot(arg) class BasicMovement: def __init__(self, maxSpeed, maxRotation, covariance, measureFunction): self.maxSpeed = maxSpeed self.maxRotation = maxRotation self.measureFunction = measureFunction self.covariance = np.atleast_2d(covariance) # Input the real state def move(self, state, covariance=None, command=None): command = self.__choose_command(state) if command is None else command noise = self.__get_noise(covariance) idealMove = self.exact_move(state, command) realMove = self.__noisy_move(state, idealMove, noise) newState = state + realMove return clipState(newState), command def __choose_command(self, state): speed = self.maxSpeed * np.random.rand() if (np.linalg.norm(state[:2]) > 100): _, rotation = self.measureFunction(state[:3], [[0], [0]]) rotation = np.clip(rotation, -self.maxRotation, self.maxRotation) else: rotation = (np.random.rand() * 2 - 1) * self.maxRotation return [speed, rotation] def exact_move(self, state, command): speed, rotation = command angle = state[2] deltaX = speed * math.cos(angle) deltaY = speed * math.sin(angle) move = np.zeros_like(state) move[:3, 0] = [deltaX, deltaY, rotation] return move def __noisy_move(self, state, idealMove, noise): noisyMove = idealMove[:3] + noise noisySpeed, _ = self.measureFunction(noisyMove[:3], np.zeros_like(noise)[:2]) noisyRotation = noisyMove[2] maxs = [self.maxSpeed, self.maxRotation] mins = [0, -self.maxRotation] correctedCommand = np.clip([noisySpeed, noisyRotation], mins, maxs) return self.exact_move(state, correctedCommand) def __noisy_move2(self, state, idealMove, noise): noisyMove = np.zeros_like(state) noisyMove[:3] = idealMove[:3] + noise return noisyMove def __get_noise(self, covariance): covariance = self.covariance if covariance is None else covariance noise = np.random.multivariate_normal(np.zeros(covariance.shape[0]), covariance, 1).T return noise class BasicMeasurement: def __init__(self, covariance, robotFeaturesDim, envFeaturesDim, measureFunction, gradMeasureFunction, detectionSize=0, detectionCone=0): self.covariance = np.atleast_2d(covariance) self.robotFeaturesDim = robotFeaturesDim self.envFeaturesDim = envFeaturesDim self.measureFunction = measureFunction self.gradMeasureFunction = gradMeasureFunction self.detectionSize = detectionSize self.detectionCone = detectionCone # Input the real state def measure(self, state): dim = state.shape[0] dimR = self.robotFeaturesDim dimE = self.envFeaturesDim rState = state[:dimR] envState = state[dimR:] nbLandmark = (dim - dimR) / dimE mes = np.zeros(nbLandmark * dimE).reshape(nbLandmark, dimE) landmarkIds = np.zeros(nbLandmark) j = 0 for i, landmark in enumerate(envState.reshape((nbLandmark, dimE, 1))): diffNorm, diffAngle = self.measureFunction(rState, landmark) angleOk = (abs(clipAngle(diffAngle, True)) < self.detectionCone / 2.) or (self.detectionCone is 0) distanceOk = (diffNorm < self.detectionSize) or (self.detectionSize is 0) if distanceOk and angleOk: mes[j] = [diffNorm, diffAngle] landmarkIds[j] = i j += 1 mes = mes[:j] landmarkIds = landmarkIds[:j] mes = np.array(mes) + self.__get_noise(mes) return mes, landmarkIds def __get_noise(self, mes): noise = np.random.multivariate_normal(np.zeros(self.covariance.shape[0]), self.covariance, mes.shape[0]) return noise class SEIFModel: def __init__(self, dimension, robotFeaturesDim, envFeaturesDim, motionModel, mesModel, covMes, muInitial, maxLinks): self.robotFeaturesDim = robotFeaturesDim self.envFeaturesDim = envFeaturesDim self.dimension = dimension self.H = np.eye(dimension) self.b = dot(muInitial.T, self.H) self.mu = muInitial.copy() self.Sx = np.zeros(dimension * robotFeaturesDim).reshape((dimension, robotFeaturesDim)) self.Sx[:robotFeaturesDim] = np.eye(robotFeaturesDim) self.invZ = inv(covMes) self.motionModel = motionModel self.mesModel = mesModel self.maxLinks = maxLinks def update(self, measures, landmarkIds, command, U): self.__motion_update_sparse(command, U) self.__mean_update() for ldmIndex, ldmMes in zip(landmarkIds, measures): self.__measurement_update(ldmMes, int(ldmIndex)) self.__mean_update() self.__sparsification() return self.H, self.b, self.mu def __motion_update(self, command, U): r = self.robotFeaturesDim previousMeanState = self.estimate() meanStateChange = self.motionModel.exact_move(previousMeanState, command) newMeanState = clipState(previousMeanState + meanStateChange) # TO IMPROVE angle = previousMeanState[2, 0] # TO IMPROVE gradMeanMotion = np.zeros_like(self.H) # TO IMPROVE gradMeanMotion[2, 0:2] = command[0] * np.array([-math.sin(angle), math.cos(angle)]) # TO IMPROVE delta = dots(self.Sx.T, gradMeanMotion, self.Sx) G = dots(self.Sx, (inv(np.eye(r) + delta) - np.eye(r)), self.Sx.T) phi = np.eye(self.dimension) + G Hp = dots(phi.T, self.H, phi) deltaH = dots(Hp, self.Sx, inv(inv(U) + dots(self.Sx.T, Hp, self.Sx)), self.Sx.T, Hp) H = Hp - deltaH self.H = H self.b = dot(newMeanState.T, self.H) self.mu = newMeanState def __motion_update_sparse(self, command, U): r = self.robotFeaturesDim previousMeanState = self.estimate() meanStateChange = self.motionModel.exact_move(previousMeanState, command) newMeanState = clipState(previousMeanState + meanStateChange) # TO IMPROVE angle = previousMeanState[2, 0] # TO IMPROVE gradMeanMotion = np.zeros_like(self.H) # TO IMPROVE gradMeanMotion[2, 0:2] = command[0] * np.array([-math.sin(angle), math.cos(angle)]) # TO IMPROVE Sx = sparse.bsr_matrix(self.Sx) sH = sparse.bsr_matrix(self.H) invU = sparse.coo_matrix(inv(U)) sparseGradMeanMotion = sparse.bsr_matrix(gradMeanMotion) delta = Sx.T.dot(sparseGradMeanMotion).dot(Sx) G = Sx.dot(linalg.inv(sparse.eye(r) + delta) - sparse.eye(r)).dot(Sx.T) phi = sparse.eye(self.dimension) + G Hp = phi.T.dot(sH).dot(phi) deltaH = Hp.dot(Sx).dot(linalg.inv(invU + Sx.T.dot(Hp).dot(Sx))).dot(Sx.T).dot(Hp) # H = inv(Hp + dots(self.Sx, U, self.Sx.T)) H = Hp - deltaH # self.b = self.b - dot(previousMeanState.T, self.H - H) + dot(meanStateChange.T, H) self.H = H.todense() self.b = H.dot(newMeanState).T self.mu = newMeanState def __mean_update(self): ''' Coordinate ascent ''' mu = self.mu iterations = 30 y0, yp = self.__partition_links() y = np.concatenate([np.arange(self.robotFeaturesDim), y0, yp]) # vMu = dot(self.b, inv(self.H)).T # muSave = [] # muSave2 = [] for t in xrange(iterations): for i in y: y2 = np.setdiff1d(y, i) mu[i] = (self.b[0, i] - dot(self.H[i, y2], mu[y2])) / self.H[i, i] # muSave.extend([np.linalg.norm(mu - vMu)]) self.mu = mu # plt.plot(muSave) def __measurement_update(self, ldmMes, ldmIndex): mu = self.mu meanMes, gradMeanMes = self.__get_mean_measurement_params(mu, ldmIndex) z = np.array(ldmMes).reshape(len(ldmMes), 1) zM = np.array(meanMes).reshape(len(ldmMes), 1) C = gradMeanMes mesError = (z - zM) mesError[1, 0] = clipAngle(mesError[1, 0], force=True) correction = mesError + dot(C.T, mu) correction[1, 0] = clipAngle(correction[1, 0]) self.H += dot(dot(C, self.invZ), C.T) self.b += dot(dot(correction.T, self.invZ), C.T) def __partition_links(self): r = self.robotFeaturesDim e = self.envFeaturesDim d = self.dimension l = (d - r) / e arrRF = np.arange(r) norms = np.array([np.linalg.norm(self.H[arrRF][:, np.arange(i * e + r, (i + 1) * e + r)]) for i in xrange(l)]) ids = np.argsort(norms) yp = ids[-self.maxLinks:] y0 = np.setdiff1d(np.where(norms > 0), yp) yp = np.concatenate([np.arange(y * e, (y + 1) * e) for y in yp]) + r if len(y0) > 0: y0 = np.concatenate([np.arange(y * e, (y + 1) * e) for y in y0]) + r return y0, yp def __build_projection_matrix(self, indices): d1 = self.H.shape[0] d2 = len(indices) S = np.zeros((d1, d2)) S[indices] = np.eye(d2) return S def __sparsification(self): x = np.arange(self.robotFeaturesDim) y0, yp = self.__partition_links() Sx = sparse.coo_matrix(self.__build_projection_matrix(x)) Sy0 = sparse.coo_matrix(self.__build_projection_matrix(y0)) Sxy0 = sparse.coo_matrix(self.__build_projection_matrix(np.concatenate((x, y0)))) Sxyp = sparse.coo_matrix(self.__build_projection_matrix(np.concatenate((x, yp)))) Sxy0yp = sparse.coo_matrix(self.__build_projection_matrix(np.concatenate((x, y0, yp)))) H = sparse.bsr_matrix(self.H) Hp = Sxy0yp.dot(Sxy0yp.T).dot(H).dot(Sxy0yp).dot(Sxy0yp.T) Ht = H - (0 if not y0.size else Hp.dot(Sy0).dot(linalg.inv(Sy0.T.dot(Hp).dot(Sy0))).dot(Sy0.T).dot(Hp)) \ + Hp.dot(Sxy0).dot(linalg.inv(Sxy0.T.dot(Hp).dot(Sxy0))).dot(Sxy0.T).dot(Hp) \ - H.dot(Sx).dot(linalg.inv(Sx.T.dot(H).dot(Sx))).dot(Sx.T).dot(H) eps = 1e-5 Htt = Ht.todense() Htt[np.abs(Htt) < eps] = 0 bt = self.b + (Ht - H).dot(self.mu) self.H = Htt self.b = bt def __get_mean_measurement_params(self, mu, ldmIndex): realIndex = self.robotFeaturesDim + ldmIndex * self.envFeaturesDim ldmMeanState = mu[realIndex: realIndex + self.envFeaturesDim] rMeanState = mu[:self.robotFeaturesDim] meanMes = self.mesModel.measureFunction(rMeanState, ldmMeanState) gradMeanMes = self.mesModel.gradMeasureFunction(rMeanState, ldmMeanState, realIndex) return meanMes, gradMeanMes def estimate(self): return self.mu class EIFModel: def __init__(self, dimension, robotFeaturesDim, envFeaturesDim, motionModel, mesModel, covMes, muInitial): self.robotFeaturesDim = robotFeaturesDim self.envFeaturesDim = envFeaturesDim self.dimension = dimension self.HH = np.eye(dimension) self.H = np.eye(dimension) self.b = dot(muInitial.T, self.H) self.bb = dot(muInitial.T, self.H) self.S = np.zeros(dimension * robotFeaturesDim).reshape((dimension, robotFeaturesDim)) self.S[:robotFeaturesDim] = np.eye(robotFeaturesDim) self.invZ = inv(covMes) self.motionModel = motionModel self.mesModel = mesModel def update(self, measures, landmarkIds, command, U): self.__motion_update(command, U) for ldmIndex, ldmMes in zip(landmarkIds, measures): self.__measurement_update(ldmMes, int(ldmIndex)) return self.H, self.b def __motion_update(self, command, U): previousMeanState = self.estimate() meanStateChange = self.motionModel.exact_move(previousMeanState, command) newMeanState = clipState(previousMeanState + meanStateChange) # TO IMPROVE angle = previousMeanState[2, 0] # TO IMPROVE gradMeanMotion = np.zeros_like(self.H) # TO IMPROVE gradMeanMotion[2, 0:2] = command[0] * np.array([-math.sin(angle), math.cos(angle)]) # TO IMPROVE IA = np.eye(self.H.shape[0]) + gradMeanMotion # TO IMPROVE sigma = dot(dot(IA, inv(self.H)), IA.T) + dot(dot(self.S, U), self.S.T) self.H = inv(sigma) self.b = dot((newMeanState).T, self.H) self.HH = self.H.copy() self.bb = self.b.copy() def __measurement_update(self, ldmMes, ldmIndex): mu = self.estimate() meanMes, gradMeanMes = self.__get_mean_measurement_params(mu, ldmIndex) z = np.array(ldmMes).reshape(len(ldmMes), 1) zM = np.array(meanMes).reshape(len(ldmMes), 1) C = gradMeanMes mesError = (z - zM) mesError[1, 0] = clipAngle(mesError[1, 0], force=True) mesError += dot(C.T, mu) mesError[1, 0] = clipAngle(mesError[1, 0]) self.H += dot(dot(C, self.invZ), C.T) self.b += dot(dot(mesError.T, self.invZ), C.T) def __get_mean_measurement_params(self, mu, ldmIndex): realIndex = self.robotFeaturesDim + ldmIndex * self.envFeaturesDim ldmMeanState = mu[realIndex: realIndex + self.envFeaturesDim] rMeanState = mu[:self.robotFeaturesDim] meanMes = self.mesModel.measureFunction(rMeanState, ldmMeanState) gradMeanMes = self.mesModel.gradMeasureFunction(rMeanState, ldmMeanState, realIndex) return meanMes, gradMeanMes def estimate(self, H=None, b=None): H = self.H if H is None else H b = self.b if b is None else b return clipState(dot(b, inv(H)).T) class EKFModel: def __init__(self, dimension, robotFeaturesDim, envFeaturesDim, motionModel, mesModel, covMes, muInitial): self.robotFeaturesDim = robotFeaturesDim self.envFeaturesDim = envFeaturesDim self.dimension = dimension self.Sigma = np.eye(dimension) self.mu = muInitial.copy() self.S = np.zeros(dimension * robotFeaturesDim).reshape((dimension, robotFeaturesDim)) self.S[:robotFeaturesDim] = np.eye(robotFeaturesDim) self.Z = covMes self.motionModel = motionModel self.mesModel = mesModel def update(self, measures, landmarkIds, command, U): self.__motion_update(command, U) for ldmIndex, ldmMes in zip(landmarkIds, measures): self.__measurement_update(ldmMes, int(ldmIndex)) return self.Sigma, self.mu def __motion_update(self, command, U): previousMeanState = self.mu meanStateChange = self.motionModel.exact_move(previousMeanState, command) newMeanState = clipState(previousMeanState + meanStateChange) # TO IMPROVE angle = previousMeanState[2, 0] # TO IMPROVE gradMeanMotion = np.zeros_like(self.Sigma) # TO IMPROVE gradMeanMotion[2, 0:2] = command[0] * np.array([-math.sin(angle), math.cos(angle)]) # TO IMPROVE IA = np.eye(self.Sigma.shape[0]) + gradMeanMotion # TO IMPROVE self.mu = newMeanState self.Sigma = dot(dot(IA, self.Sigma), IA.T) + dot(dot(self.S, U), self.S.T) def __measurement_update(self, ldmMes, ldmIndex): mu = self.mu Sigma = self.Sigma meanMes, gradMeanMes = self.__get_mean_measurement_params(mu, ldmIndex) z = np.array(ldmMes).reshape(len(ldmMes), 1) zM = np.array(meanMes).reshape(len(ldmMes), 1) C = gradMeanMes toInvert = inv(dot(dot(C.T, Sigma), C) + self.Z) K = dot(dot(Sigma, C), toInvert) mesError = (z - zM) mesError[1, 0] = clipAngle(mesError[1, 0], force=True) mesError = dot(K, mesError) mesError[1, 0] = clipAngle(mesError[1, 0]) self.mu += mesError self.Sigma = dot(np.eye(self.dimension) - dot(K, C.T), Sigma) def __get_mean_measurement_params(self, mu, ldmIndex): realIndex = self.robotFeaturesDim + ldmIndex * self.envFeaturesDim ldmMeanState = mu[realIndex: realIndex + self.envFeaturesDim] rMeanState = mu[:self.robotFeaturesDim] meanMes = self.mesModel.measureFunction(rMeanState, ldmMeanState) gradMeanMes = self.mesModel.gradMeasureFunction(rMeanState, ldmMeanState, realIndex) return meanMes, gradMeanMes def estimate(self): return self.mu def measureFunction(rState, landmark): rDim = 3 diff = landmark - rState[:rDim-1] diffNorm = np.linalg.norm(diff) angle = rState[rDim-1, 0] diffAngle = math.atan2(diff[1], diff[0]) - angle diffAngle = clipAngle(diffAngle) return diffNorm, diffAngle def gradMeasureFunction(rState, landmark, ldmIndex): rDim = 3 eDim = 2 diff = (rState[:rDim-1] - landmark).flatten() diffNorm = np.linalg.norm(diff) grad = np.zeros(dimension * 2).reshape(dimension, 2) grad[:rDim-1, 0] = diff / diffNorm grad[ldmIndex:ldmIndex + eDim, 0] = -grad[:rDim-1, 0] grad[:rDim-1, 1] = np.array([-diff[1], diff[0]]) / (diffNorm**2) grad[ldmIndex:ldmIndex + eDim, 1] = -grad[:rDim-1, 1] grad[rDim-1, 1] = -1 return grad def clipAngle(angle, force=False): if clip or force: angle = (angle + math.pi) % (2 * math.pi) - math.pi return angle def clipState(state): if clip: state[2, 0] = clipAngle(state[2, 0]) return state clip = False if __name__ == '__main__': dimension = None def simu(): global dimension T = 100 # Number of timesteps nbLandmark = 900 maxSpeed = 5 maxRotation = 45 * math.pi / 180 # 45 # en radians sizeMap = 50 # Robot Detection Parameters detectionSize = 2 # 40 detectionCone = 180 * math.pi / 180 # en radians # Dimension Constants robotFeaturesDim = 3 envFeaturesDim = 2 commandsDim = 2 mesDim = 2 dimension = robotFeaturesDim + nbLandmark * envFeaturesDim # Covariances for motions and measurements covarianceMotion = np.eye(robotFeaturesDim) covarianceMotion[0, 0] = 1 ** 2 # motion noise variance X covarianceMotion[1, 1] = 1 ** 2 # motion noise variance Y covarianceMotion[2, 2] = (5 * math.pi / 180) ** 2 # motion noise variance Angle covarianceMeasurements = np.eye(mesDim) covarianceMeasurements[0, 0] = 1 ** 2 # measurement noise variance distance covarianceMeasurements[1, 1] = (5 * math.pi / 180) ** 2 # motion noise variance Angle ## ---------------------------------------------------------------------- ## Simulation initialization ## ------------------- ## State Definition # Real robot state state = np.zeros((dimension, 1)) x = np.linspace(-sizeMap, sizeMap, np.sqrt(nbLandmark)) y = np.linspace(-sizeMap, sizeMap, np.sqrt(nbLandmark)) xv, yv = np.meshgrid(x, y) state[robotFeaturesDim:, 0] = np.vstack([xv.ravel(), yv.ravel()]).ravel(order="F") # state[robotFeaturesDim:] = np.random.rand(nbLandmark * envFeaturesDim).reshape(nbLandmark * envFeaturesDim, 1) * 300 - 150 # Basic and EIF estimator for robot state mu = state.copy() mu[robotFeaturesDim:] += np.random.normal(0, covarianceMeasurements[0, 0], nbLandmark * envFeaturesDim).reshape(nbLandmark * envFeaturesDim, 1) muEKF = mu.copy() muEIF = mu.copy() muSEIF = mu.copy() ## -------------------- ## Models Definition motionModel = BasicMovement(maxSpeed, maxRotation, covarianceMotion, measureFunction) measurementModel = BasicMeasurement(covarianceMeasurements, robotFeaturesDim, envFeaturesDim, measureFunction, gradMeasureFunction, detectionSize, detectionCone) ekf = EKFModel(dimension, robotFeaturesDim, envFeaturesDim, motionModel, measurementModel, covarianceMeasurements, mu) eif = EIFModel(dimension, robotFeaturesDim, envFeaturesDim, motionModel, measurementModel, covarianceMeasurements, mu) seif = SEIFModel(dimension, robotFeaturesDim, envFeaturesDim, motionModel, measurementModel, covarianceMeasurements, mu, 4) mus_simple = np.zeros((T, dimension)) mus_ekf = np.zeros((T, dimension)) mus_eif = np.zeros((T, dimension)) mus_seif = np.zeros((T, dimension)) states = np.zeros((T, dimension)) mus_simple[0] = np.squeeze(mu) mus_ekf[0] = np.squeeze(muEKF) mus_eif[0] = np.squeeze(muEIF) mus_seif[0] = np.squeeze(muEIF) states[0] = np.squeeze(state) # LOG Initial state # print("BEFORE") # print("EIF estimate :") # print(muEIF) # print("EKF estimate :") # print(muEKF) # print("Real state :") # print(state) # print('\n') for t in range(1, T): print("\nIteration %d" % t) state, motionCommand = motionModel.move(state) measures, landmarkIds = measurementModel.measure(state) mu += motionModel.exact_move(mu, motionCommand) # H, _ = ekf.update(measures, landmarkIds, motionCommand, covarianceMotion) # print (H != 0).sum(), ' / ', H.size # H, _, _ = eif.update(measures, landmarkIds, motionCommand, covarianceMotion) # print (H != 0).sum(), ' / ', H.size H, _, _ = seif.update(measures, landmarkIds, motionCommand, covarianceMotion) print (H != 0).sum(), ' / ', H.size # muEKF = ekf.estimate() # muEIF = eif.estimate() muSEIF = seif.estimate() # print "np.linalg.norm(muEIF-muSEIF)" # print np.linalg.norm(muEIF-muSEIF) # print np.linalg.norm(eif.b - seif.b) # print np.linalg.norm(eif.H - seif.H) # print muEIF[:3] # print muSEIF[:3] mus_simple[t] = np.squeeze(mu) # mus_ekf[t] = np.squeeze(muEKF) # mus_eif[t] = np.squeeze(muEIF) mus_seif[t] = np.squeeze(muSEIF) states[t] = np.squeeze(state) # # LOG Final state # print('\n') # print('AFTER') # print("EIF estimate :") # print(muEIF) # # print("EKF estimate :") # # print(muEKF) # print("Real state :") # print(state) # print("Final Error EIF:") # print(state - muEIF) # # print("Final Error EKF:") # # print(state - muEKF) # print("Final Max Error EIF: %f" % max(state-muEIF)) # print("Final Norm Error EIF: %f" % np.linalg.norm(state-muEIF)) # # print("Final Max Error EKF: %f" % max(state-muEKF)) # # print("Final Norm Error EKF: %f" % np.linalg.norm(state-muEKF)) # print("Final Max Error SEIF: %f" % max(state-muSEIF)) # print("Final Norm Error SEIF: %f" % np.linalg.norm(state-muSEIF)) landmarks = state[robotFeaturesDim:].reshape(nbLandmark, 2) plt.figure() ax = plt.gca() for x, y in landmarks: ax.add_artist(Circle(xy=(x, y), radius=detectionSize, alpha=0.3)) plt.scatter(landmarks[:, 0], landmarks[:, 1]) plt.plot(states[:, 0], states[:, 1]) plt.plot(mus_simple[:, 0], mus_simple[:, 1]) # plt.plot(mus_ekf[:, 0], mus_ekf[:, 1]) # plt.plot(mus_eif[:, 0], mus_eif[:, 1]) plt.plot(mus_seif[:, 0], mus_seif[:, 1]) plt.legend(['Real position', 'Simple estimate', 'EKF estimate', 'EIF estimate', 'SEIF estimate']) plt.title("{0} landmarks".format(nbLandmark)) plt.show() import cProfile cProfile.run('simu()')
4a53042804f4489e20c7b38c8fe885c299d6caf6
28887a9bfd18f64a045c419037e9aba2cfd1bf50
/typed/for/iw.py
84da2feb585f08a82b8831cd68d318c5ef8d0e3d
[]
no_license
Coobeliues/pp2_py
18ba46bc82edc3f0c189f5e51ec6950af5269751
89cffd04499691e72e9dbbf9626a84ad27fddf79
refs/heads/main
2023-06-28T01:13:12.602998
2021-07-29T05:43:17
2021-07-29T05:43:17
380,136,849
0
0
null
null
null
null
UTF-8
Python
false
false
107
py
k=545 maxi=-1112 temple=0 while k!=0: x=int(input()) if maxi<x: maxi=x k=x print(maxi)
efbe5cae3f768724158b26af2d52232b3009deaf
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02889/s800108978.py
f16d83d80d9585a9e51d77414e46a2135a05fdac
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,377
py
import sys import math import heapq sys.setrecursionlimit(10**7) INTMAX = 9323372036854775807 INTMIN = -9223372036854775808 DVSR = 1000000007 def POW(x, y): return pow(x, y, DVSR) def INV(x, m=DVSR): return pow(x, m - 2, m) def DIV(x, y, m=DVSR): return (x * INV(y, m)) % m def LI(): return [int(x) for x in sys.stdin.readline().split()] def LF(): return [float(x) for x in sys.stdin.readline().split()] def LS(): return sys.stdin.readline().split() def II(): return int(sys.stdin.readline()) def FLIST(n): res = [1] for i in range(1, n+1): res.append(res[i-1]*i%DVSR) return res N,M,L=LI() LG=10**15 DIST=[[LG for _ in range(N+1)] for _ in range(N+1)] for i in range(M): a,b,c = LI() if c <= L: DIST[a][b] = c DIST[b][a] = c for k in range(1, N+1): for i in range(1, N+1): for j in range(1, N+1): if DIST[i][j] > DIST[i][k] + DIST[k][j]: DIST[i][j] = DIST[i][k] + DIST[k][j] for i in range(1, N+1): for j in range(1, N+1): DIST[i][j] = 1 if DIST[i][j] <= L else LG for k in range(1, N+1): for i in range(1, N+1): for j in range(1, N+1): if DIST[i][j] > DIST[i][k] + DIST[k][j]: DIST[i][j] = DIST[i][k] + DIST[k][j] for i in range(II()): st, en = LI() if DIST[st][en] >= LG: print(-1) else: print(DIST[st][en] - 1)
2479809badda69fa0efea62428b734087221bdbb
e648becc46b5a87c5ad2760b69933eb8b34b1f2a
/stock_tracking_project/registration/migrations/0005_userstock_c_type.py
91be33a94f72cc989c92ad03255dbace55d273e1
[]
no_license
webclinic017/stock_analyzer-1
0da7f5f06415fa93c3f5ebbdf82ce1aaad700fd1
1664da1671cec78aed68f393cdbb4911e9c87503
refs/heads/main
2023-08-29T23:16:23.869305
2021-11-11T18:51:40
2021-11-11T18:51:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
# Generated by Django 3.1.3 on 2021-01-03 08:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('registration', '0004_auto_20210103_0956'), ] operations = [ migrations.AddField( model_name='userstock', name='c_type', field=models.CharField(default='W', max_length=2), preserve_default=False, ), ]
655276d1723590878fde8fff3765da9fc89a2a83
7bcaf7eab49a37c4e38c0854849ef34f2ab9ebbb
/Author-Paper/PythonBenchmark/TNNPA-C.py
e20fba438300e667f38f9393e877af059414b41f
[ "BSD-2-Clause" ]
permissive
pratapbhanu/misc
08a0e42d214754bb1ce0d41dfdba0b12f278c008
41c5dca20dbcfcb2390259f6268a2aab62059aaa
refs/heads/master
2020-04-15T00:47:07.287933
2013-06-11T12:13:46
2013-06-11T12:13:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,144
py
''' Created on Nov 7, 2012 @author: bhanu ''' import sys from array import array import numpy as np import os import math class Layer(object): ''' Represents one single layer in a Mlp ''' def __init__(self, nNeurons, nInpsPerNeuron, transferF, ilayer): ''' Each layer has: nNeurons: Number of neurons nInpsPerNeuron: Number of inputs per Neuron, not needed for input layer so use '-1' for input layer transferF: Transfer Function, which could be 'tanh', 'logistic' or 'identity' ilayer: Index of the layer ''' self.nNeurons = nNeurons self.transferF = transferF self.ilayer = ilayer self.nInpsPerNeuron = nInpsPerNeuron if(ilayer != 0): #if this is not an input layer self.W = (4)*np.random.random_sample(size=(nInpsPerNeuron+1,nNeurons)) - 2 #W[0,i] beingh the BIAS weights self.W[0,:] = -0.5 #Bias Weight self.net = np.zeros(nNeurons) #place holder vector for Net i.e. weighted sum for each neuron of this layer self.out = np.zeros(nNeurons) #place holder vector for Output of each neuron of this layer self.delta = np.zeros(nNeurons) #place holder vector for delta of this layer class Mlp(object): ''' Represents a Multi Layer Perceptron Network ''' def __init__(self, layers): ''' Constructor Parameters: Layers: List of 'Layer' objects ''' self.layers = layers self.learningRate = learningRate def trainMlp(self, dataFile, learningRate=0.1, epochs=1000): ''' Trains this Mlp with the training data ''' trainSet = getTrainingData(dataFile) return trainBPE(self,trainSet, learningRate, epochs) def test(self): ''' Test the trained Mlp network ''' while(True): print"\n\nTesting trained perzeptron network, press Ctrl+c to quit" Xraw = raw_input("Enter inputs separated by space to test this trained Mlp: ") Xlist = Xraw.strip().strip('\n').split(' ') X = [float(x) for x in Xlist] #Propagate the inputs forward to compute the outputs outp = list(X) #output of input layer i.e. output of previous layer to be used as input for next layer for layer in mlp.layers[1:] : #for all layers starting from the second layer for i in range(layer.nNeurons): layer.net[i] = weightedSum(outp, layer.W[1:,i]) + layer.W[0,i] layer.out[i] = g(layer.net[i], layer.transferF) #pass this weighted sum through the transfer function of this layer outp = layer.out print "output = ", mlp.layers[-1].out def showMlp(self): ''' Print all the layers of this perzeptron ''' for layer in self.layers: print 'Layer ', layer.ilayer print 'Number of Neurons: ', layer.nNeurons print 'Transfer Function: ', layer.transferF if(layer.ilayer != 0): print 'Weights(',layer.W.shape,'): ', layer.W print '\n' def getTrainingData(dataFile): #----------prepare training data from the dataFile--------- head, tail = os.path.split(dataFile) if(head == ''): cwd = os.path.curdir trainingFile = os.path.join(cwd,tail) f = open(trainingFile) trainSet = [] #training samples lines = f.readlines() if(len(lines) > 1000): terminate("File Contains more than 1000 samples") for line in lines: if(line[0] == '#'): continue X = [] Y = [] #list of inputs and oupts x_y = line.split(' ') #Split the string in X(inputs) and Y(outputs), separated by tab x = x_y[0].strip() y = x_y[1].strip() xstr = x.split() #split inputs with space ystr = y.split() #split outputs with space for inp in xstr: X.append(float(inp)) for outp in ystr: Y.append(float(outp)) trainSet.append((X,Y)) #print trainSet return trainSet def terminate(msg): print """ Please run the program with valid arguments. USAGE: $ python TNN_PA_A N M dataFile where, N : Dimension of Input Layer (x), less than 101 M : Dimension of Output Layer (y), less than 30 InputFile : Name of the file containing training data, if not in current working directory of program then provide fully qualified path, Maximum 200 samples Example: $ python TNNPA_B 4 2 training.dat """ sys.exit(msg) def trainBPE(mlp, trainSet, learningRate, maxEpoch): ''' Training of Multi-layer perceptron using Backpropagation of Error Parameters:- mlp: Object of Mlp class trainSet: List of training tuples, use method 'getTrainingData()' to get a valid training set from a training data file ''' iteration = 1 f = open('learning.curve', 'w') f.write('#Epoch-Number #Mean Maximum Single Error \n') while(True): meanMaxError = maxerror = 0 for x, y in trainSet : #Propagate the inputs forward to compute the outputs outp = list(x) #output of input layer i.e. output of previous layer to be used as input for next layer for layer in mlp.layers[1:] : #for all layers starting from the second layer for i in range(layer.nNeurons): layer.net[i] = weightedSum(outp, layer.W[1:,i]) + layer.W[0,i] layer.out[i] = g(layer.net[i], layer.transferF) #pass this weighted sum through the transfer function of this layer outp = layer.out #Propagate deltas backward from output layer to input layer layer = mlp.layers[-1] for m in range(layer.nNeurons): #for neurons in output layer layer.delta[m] = derivativeOfG(layer.net[m], layer.transferF) * (y[m] - layer.out[m]) deltaP = layer.delta # delta of a layer to be used by a layer above it, starting from output layer for l in range(len(mlp.layers)-2,0,-1) : # for all hidden layers until input layer thislayer = mlp.layers[l] layerbelow = mlp.layers[l+1] for h in range(layer.nNeurons): thislayer.delta[h] = derivativeOfG(thislayer.net[h], thislayer.transferF) * weightedSum(deltaP, layerbelow.W[h+1,:]) deltaP = thislayer.delta # for the next layer #Update every weight in network using deltas out_i = list(x) for layer in mlp.layers[1:] : #update current weights for i, inp in enumerate(out_i): for j in range(layer.nNeurons): layer.W[i+1,j] += learningRate * (inp * layer.delta[j]) out_i = layer.out error = [math.fabs(value) for value in y - mlp.layers[-1].out ] maxerror += max(error) meanMaxError = maxerror/len(trainSet) f.write(str(iteration)+' '+str(meanMaxError)+'\n') if(iteration > maxEpoch): break iteration += 1 f.close() return mlp, iteration def g(inp, transferF): if transferF == 'tanh': value = math.tanh(inp) elif transferF == 'identity': value = inp elif transferF == 'logistic': value = 1 / (1 + math.exp(-inp)) else : raise ValueError('Invalid transfer function type: ', transferF) return value def isStoppingCriterion(): return False def derivativeOfG(inp, transferF): if transferF == 'tanh': temp = math.tanh(inp) value = 1 - temp*temp # 1 - tanh^2 elif transferF == 'identity': value = 0 # derivative of Identity function is zero elif transferF == 'logistic': temp = 1 / (1 + math.exp(-inp)) value = temp*(1-temp) # derivative of logistic function is f*(1-f) else : raise ValueError('Invalid transfer function type: ', transferF) return value def weightedSum(inputVector, weights): # print inputVector # print weights sum = (np.sum(inputVector*weights)) # print sum return sum if __name__ == '__main__': N = 4 #N : number of inputs/neurons for input layer H1 = 10 #H : number of neurons in hidden layer-1 #H2 = 5 M = 2 #number of outputs/neurons of the output layer dataFile = 'training.dat' learningRate = 0.1 epochs = 5000 #define layers of MLP keeping in mind that output of one layer is the number of inputs for the next layer layer0 = Layer(nNeurons=N, nInpsPerNeuron=-1, transferF='identity', ilayer=0) #input layer layer1 = Layer(nNeurons=H1, nInpsPerNeuron=N, transferF='tanh', ilayer=1) #hidden layer 1 layer2 = Layer(nNeurons=M, nInpsPerNeuron=H1, transferF='tanh', ilayer=2) #output layer #layer3 = Layer(nNeurons=M, nInpsPerNeuron=H2, transferF='logistic', ilayer=3) #output layer layers = [layer0, layer1, layer2 ] mlp = Mlp(layers) mlp.showMlp() print "\n\nTraining Mlp for", epochs," Epochs.... please wait... " trainedMlp, iterations = mlp.trainMlp(dataFile, learningRate, epochs) print "\n\nFinished training of Mlp " trainedMlp.showMlp() mlp.test()
7dbabdfd9aeebe7cb5bacb8c2927bb7147f582f9
96b9c52f3ac5dea667803a0b9ecdb838f2b579ab
/models/feedback.py
e4dd1979fe2eeccdb49085144f9d41260fdb16d8
[ "MIT" ]
permissive
livoras/feifanote-server
b581afb3b90dc7c8296f2573077079fa269ae80d
319907f8e107757470160cb3dc0adba14357bed1
refs/heads/master
2020-12-24T13:52:15.497940
2014-06-26T05:14:11
2014-06-26T05:14:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
# -*- coding: utf-8 -*- import json import sqlalchemy as sc from sqlalchemy.orm import relationship, backref from common.db import Base class Feedback(Base): __tablename__ = "feedbacks" id = sc.Column(sc.Integer, primary_key=True) content = sc.Column(sc.String) user_id = sc.Column(sc.Integer, sc.ForeignKey("users.id")) user = relationship("User", backref="feedbacks") def __init__(self, **data): self.__dict__.update(data) def dict(self): attrs = ("id", "content") return {attr: getattr(self, attr) for attr in attrs} def __repr__(self): json.dumps(self.dict())
9e42099374ca1dba84d9401cee09e7264ea2caa5
ace419028e75740f75b6802809282056c9cd7e2b
/training_script.py
498e39512400f16b3d6a529ca9dc9a2cf96b69ec
[]
no_license
gtambi143/machine_learning_pipeline
44a2e8f037b7bd899828f2b404aee697dc450aae
f01e43c580eb695a7f3caf609ef9c1987a8b664e
refs/heads/master
2022-08-31T19:34:16.411484
2020-05-24T20:54:44
2020-05-24T20:54:44
266,617,711
0
0
null
null
null
null
UTF-8
Python
false
false
6,228
py
#importing the required libraries import torch import torchvision from PIL import Image import os from torch.utils.data import Dataset, DataLoader, RandomSampler import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import time import os import copy import torchvision.transforms as transforms import datetime import shutil #replace the below paths with respect to the location of this training script CURRENT_MODEL_PATH = "model/current_model/alexnet_model_current_prod.pth" OLD_MODEL_DIR = "model/old_models/" TRAINING_SAMPLE_DIR = "model/training_samples/" TRAINED_SAMPLE_DIR = "model/trained_samples/" IMAGENET_LABELS_FILE = "model/imagenet-classes.txt" MIN_IMAGES = 4 # setting this low value for testing purpose only #run this script only where there are more than min_images in training samples. # we are setting this condition because training model on less number of samples will not be usefull if len(os.listdir(TRAINING_SAMPLE_DIR)) > MIN_IMAGES: #Inheriting Dataset class of Pytorch so that we can create a dataset from our training samples class ImageNet_Dataset(Dataset): #the constructor of the class will take 3 parameters # img_dir - directory where the training images are placed # label_file - directory where the lable file is placed which contains all the labels # transform - transformation which will be applied on the images def __init__(self, img_dir, label_file, transform = None): self.img_dir = img_dir self.label_file = label_file self.transform = transform def __len__(self): return len(os.listdir(self.img_dir)) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.to_list() img_name = os.listdir(self.img_dir)[idx] img_path = os.path.join(self.img_dir, img_name) img = Image.open(img_path) img = self.transform(img) img_label = img_name.split("_label$$")[1].split(".")[0] #preparing the label list from the file label_list = [f.split("\n")[0] for f in open(self.label_file)] #storing label index label_index = label_list.index(img_label) #returning the image and its label's index return img, label_index #define transformations to apply on the training samples transform = transforms.Compose([ #[1] transforms.Resize(256), #[2] transforms.CenterCrop(224), #[3] transforms.ToTensor(), #[4] transforms.Normalize( #[5] mean=[0.485, 0.456, 0.406], #[6] std=[0.229, 0.224, 0.225] #[7] )]) #preparing the dataset of the images present in the training samples folder img_dataset = ImageNet_Dataset(img_dir = TRAINING_SAMPLE_DIR, label_file = IMAGENET_LABELS_FILE, transform = transform) #dataloader from dataset dataloaders = DataLoader(img_dataset, batch_size = 16, shuffle = True) #function to train the model def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() # best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history with torch.set_grad_enabled(True): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) scheduler.step() epoch_loss = running_loss / len(img_dataset) epoch_acc = running_corrects.double() / len(img_dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format("train", epoch_loss, epoch_acc)) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) return model # getting the available device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #declaring the model variable model_ft = torchvision.models.alexnet() #loading the model from current model model_ft.load_state_dict(torch.load(CURRENT_MODEL_PATH)) #transfer model to the available device model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) #newly trained model model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=10) #move the training samples to trained samples folder for f in os.listdir(TRAINING_SAMPLE_DIR): shutil.move(TRAINING_SAMPLE_DIR+f, TRAINED_SAMPLE_DIR) #old_model_name now = datetime.datetime.now() old_model_name = 'alexnet_model_'+ str(now.strftime("%Y-%m-%d_%H_%M_%S"))+".pth" #move the current production model to the old folder shutil.move(CURRENT_MODEL_PATH, OLD_MODEL_DIR + old_model_name) #save the new model in current_model folder which is our production model torch.save(model_ft.state_dict(), CURRENT_MODEL_PATH)
743ecc68d8c7d1e1666f1c43d4b752fb6c808bf0
e615ec0eaec8466f6dbd8bc1cbc62839d760467e
/DASH-Plotly/Plotly/1-02-ScatterPlots/scatter1.py
9c598f72b200791eef6894630887ffc1ba38f1ba
[]
no_license
SayantanMitra87/Web_Application-Plotly-Dash-Flask
cd5743defed1707a475e2273e68894876673c46e
9bd462c380eef2919d86b0f2daa870e3a8a24097
refs/heads/master
2020-04-15T01:58:24.751145
2019-01-15T07:43:25
2019-01-15T07:43:25
164,298,513
1
3
null
null
null
null
UTF-8
Python
false
false
484
py
####### # This plots 100 random data points (set the seed to 42 to # obtain the same points we do!) between 1 and 100 in both # vertical and horizontal directions. ###### import plotly.offline as pyo import plotly.graph_objs as go import numpy as np np.random.seed(42) random_x = np.random.randint(1,101,100) random_y = np.random.randint(1,101,100) data = [go.Scatter( x = random_x, y = random_y, mode = 'markers', )] pyo.plot(data, filename='scatter1_secondrun.html')
2ae5013c86e17afbbe7484348e9fda0a3165d0ef
6cfbe44acfa9d3fa87d9ad8332d9022fc8db58b6
/urls_shorten/asgi.py
11018bcdd8ec1c9bc262c095535604c568649561
[]
no_license
isha27255/Url-Shortner-
23379935d8a20842f91d1d13a86bd8e9cbd53bb9
36243e8e9c09dd1abd4c158ef6e18152da4be527
refs/heads/master
2022-12-28T22:47:43.723908
2020-10-07T06:08:00
2020-10-07T06:08:00
296,254,275
1
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" ASGI config for urls_shorten project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'urls_shorten.settings') application = get_asgi_application()
57cea6e03a2b880024e86045f1beb2b8b79424c2
a39c100e99a72099e07d86dd9565fe71c47d4b1d
/lib/shared_parameters.py
c2547dbbfdef97bedecd568069f7fa1d475a07d0
[ "MIT" ]
permissive
Thomas84/SSG.extension
51b0c2ff989f1aec82c7fdd40fb4f13e767e4822
ea0e0472e1c3940a63cab8c013228cba6425595a
refs/heads/master
2023-07-26T04:56:52.002009
2021-09-08T16:27:56
2021-09-08T16:27:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,200
py
from pyrevit import revit, DB from Autodesk.Revit.Exceptions import ArgumentException, InvalidOperationException STANDARD_PARAMETERS = { "STD_Widths": DB.BuiltInParameterGroup.PG_CONSTRAINTS, "MIN_Width": DB.BuiltInParameterGroup.PG_CONSTRAINTS, "MAX_Width": DB.BuiltInParameterGroup.PG_CONSTRAINTS, "STD_Depths": DB.BuiltInParameterGroup.PG_CONSTRAINTS, "MIN_Depth": DB.BuiltInParameterGroup.PG_CONSTRAINTS, "MAX_Depth": DB.BuiltInParameterGroup.PG_CONSTRAINTS, "STD_Heights": DB.BuiltInParameterGroup.PG_CONSTRAINTS, "MIN_Height": DB.BuiltInParameterGroup.PG_CONSTRAINTS, "MAX_Height": DB.BuiltInParameterGroup.PG_CONSTRAINTS, "INFO_Lead Time": DB.BuiltInParameterGroup.PG_CONSTRUCTION, "URL_Warranty": DB.BuiltInParameterGroup.PG_CONSTRUCTION, "SSG_Short Description": DB.BuiltInParameterGroup.PG_TEXT, "SSG_Long Description": DB.BuiltInParameterGroup.PG_TEXT, "URL_Finish Options": DB.BuiltInParameterGroup.PG_MATERIALS, "ACTUAL_Weight": DB.BuiltInParameterGroup.PG_STRUCTURAL, "ACTUAL_Width": DB.BuiltInParameterGroup.PG_GEOMETRY, "ACTUAL_Depth": DB.BuiltInParameterGroup.PG_GEOMETRY, "ACTUAL_Height": DB.BuiltInParameterGroup.PG_GEOMETRY, "URL_Sustainability": DB.BuiltInParameterGroup.PG_GREEN_BUILDING, "TOTAL_List Price": DB.BuiltInParameterGroup.PG_DATA, "zC": DB.BuiltInParameterGroup.INVALID, "zM": DB.BuiltInParameterGroup.INVALID, "zO": DB.BuiltInParameterGroup.INVALID, "zP": DB.BuiltInParameterGroup.INVALID, "SSGFID": DB.BuiltInParameterGroup.PG_IDENTITY_DATA, "SSGTID": DB.BuiltInParameterGroup.PG_IDENTITY_DATA, "SSG_Author": DB.BuiltInParameterGroup.PG_IDENTITY_DATA, "SSG_Product Code": DB.BuiltInParameterGroup.PG_IDENTITY_DATA, "SSG_Toll Free Number": DB.BuiltInParameterGroup.PG_IDENTITY_DATA, "URL_Contact Southwest Solutions Group": DB.BuiltInParameterGroup.PG_IDENTITY_DATA, "URL_Installation Manual": DB.BuiltInParameterGroup.PG_IDENTITY_DATA, "URL_Product Page": DB.BuiltInParameterGroup.PG_IDENTITY_DATA, "URL_Specification Manual": DB.BuiltInParameterGroup.PG_IDENTITY_DATA, } def get_shared_param_by_name(name): app = revit.doc.Application shared_parameters_file = app.OpenSharedParameterFile() shared_groups = shared_parameters_file.Groups params = [] for group in shared_groups: for p in group.Definitions: if p.Name == name: params.append(p) if len(params) > 0: return params[0] def get_all_shared_names(): app = revit.doc.Application shared_parameters_file = app.OpenSharedParameterFile() shared_groups = shared_parameters_file.Groups params = [] for group in shared_groups: for p in group.Definitions: params.append(p.Name) return params # Must be in the context of a Revit Transaction def replace_with_shared(fam_param, shared_param): replaced_param = None if fam_param.Definition.Name == shared_param.Name: revit.doc.FamilyManager.RenameParameter( fam_param, fam_param.Definition.Name + "_Temp" ) try: replaced_param = revit.doc.FamilyManager.ReplaceParameter( fam_param, shared_param, fam_param.Definition.ParameterGroup, fam_param.IsInstance, ) except InvalidOperationException as ie: print("InvalidOperationExcpetion: {}".format(ie)) except ArgumentException as ae: print("ArgumentExcpetion: {}".format(ae)) return replaced_param def add_standards(): params = [] for fam_param in revit.doc.FamilyManager.Parameters: fam_name = fam_param.Definition.Name if fam_name in STANDARD_PARAMETERS.keys(): STANDARD_PARAMETERS.pop(fam_name, None) replaced_param = replace_with_shared( fam_param, get_shared_param_by_name(fam_name) ) params.append(replaced_param) for k, v in STANDARD_PARAMETERS.items(): shared_param = get_shared_param_by_name(k) new_param = revit.doc.FamilyManager.AddParameter(shared_param, v, False) params.append(new_param) return params
232fda255df912f5695d81f10fe1a9d460d331e7
6f7abcf8f1649db723a6b51f9332d7373a5ce4c7
/BoardGameCommunity/Shop_ActivityDetail.py
8e72afeda42da763dd88379bb0a0774e6d4efed7
[]
no_license
NaemaPDz/BoardGameCommunity
7a6a0b087ba3cc61718bc4bcca7d6577095a281f
3abaae6d934c267e4134725dfe07cb2f7a1cf405
refs/heads/main
2023-03-31T15:14:41.316934
2021-04-13T06:12:29
2021-04-13T06:12:29
357,442,527
0
0
null
null
null
null
UTF-8
Python
false
false
12,499
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'UI/Shop_ActivityDetail.ui' # # Created by: PyQt5 UI code generator 5.15.2 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QMessageBox import ApplicationManagement as am import Shop_ActivityList, Shop_ActivityMember class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(470, 710) Dialog.setFixedSize(470, 710) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("img/Icon.png"), QtGui.QIcon.Selected, QtGui.QIcon.On) Dialog.setWindowIcon(icon) font = QtGui.QFont() font.setFamily("ZCOOL QingKe HuangYou") font.setPointSize(12) Dialog.setFont(font) Dialog.setStyleSheet("background-color: rgb(235, 235, 255);") self.lbl_title = QtWidgets.QLabel(Dialog) self.lbl_title.setGeometry(QtCore.QRect(20, 20, 431, 61)) font = QtGui.QFont() font.setFamily("ZCOOL QingKe HuangYou") font.setPointSize(20) font.setBold(False) font.setItalic(False) font.setWeight(50) self.lbl_title.setFont(font) self.lbl_title.setStyleSheet("background-color: rgba(255, 255, 255, 0);\n" "color: rgb(36, 36, 111);\n" "font: 16pt \"Bai Jamjuree\";") self.lbl_title.setTextFormat(QtCore.Qt.AutoText) self.lbl_title.setAlignment(QtCore.Qt.AlignCenter) self.lbl_title.setObjectName("lbl_title") self.btn_cancelActivity = QtWidgets.QPushButton(Dialog) self.btn_cancelActivity.setGeometry(QtCore.QRect(40, 600, 391, 41)) self.btn_cancelActivity.setStyleSheet("background-color: rgb(200, 9, 19);\n" "color: rgb(255, 255, 255);\n" "font: 12pt \"ZCOOL QingKe HuangYou\";\n" "border-radius: 10px;\n" "border: 2px solid rgb(200, 9, 19);") self.btn_cancelActivity.setObjectName("btn_cancelActivity") self.btn_back = QtWidgets.QPushButton(Dialog) self.btn_back.setGeometry(QtCore.QRect(360, 660, 91, 31)) self.btn_back.setStyleSheet("background-color: rgba(0, 0, 0, 0);\n" "color: rgb(200, 9, 19);\n" "font: 12pt \"ZCOOL QingKe HuangYou\";\n" "border-radius: 10px;\n" "border: 2px solid rgb(200, 9, 19);") self.btn_back.setObjectName("btn_back") self.label_10 = QtWidgets.QLabel(Dialog) self.label_10.setGeometry(QtCore.QRect(40, 300, 211, 31)) font = QtGui.QFont() font.setFamily("ZCOOL QingKe HuangYou") font.setPointSize(12) font.setBold(False) font.setItalic(False) font.setWeight(50) self.label_10.setFont(font) self.label_10.setStyleSheet("background-color: rgba(255, 255, 255, 0);\n" "font: 12pt \"ZCOOL QingKe HuangYou\";\n" "color: rgb(36, 36, 111);") self.label_10.setObjectName("label_10") self.label_11 = QtWidgets.QLabel(Dialog) self.label_11.setGeometry(QtCore.QRect(40, 90, 211, 31)) font = QtGui.QFont() font.setFamily("ZCOOL QingKe HuangYou") font.setPointSize(12) font.setBold(False) font.setItalic(False) font.setWeight(50) self.label_11.setFont(font) self.label_11.setStyleSheet("background-color: rgba(255, 255, 255, 0);\n" "font: 12pt \"ZCOOL QingKe HuangYou\";\n" "color: rgb(36, 36, 111);") self.label_11.setObjectName("label_11") self.label_12 = QtWidgets.QLabel(Dialog) self.label_12.setGeometry(QtCore.QRect(40, 160, 211, 31)) font = QtGui.QFont() font.setFamily("ZCOOL QingKe HuangYou") font.setPointSize(12) font.setBold(False) font.setItalic(False) font.setWeight(50) self.label_12.setFont(font) self.label_12.setStyleSheet("background-color: rgba(255, 255, 255, 0);\n" "font: 12pt \"ZCOOL QingKe HuangYou\";\n" "color: rgb(36, 36, 111);") self.label_12.setObjectName("label_12") self.label_14 = QtWidgets.QLabel(Dialog) self.label_14.setGeometry(QtCore.QRect(40, 230, 211, 31)) font = QtGui.QFont() font.setFamily("ZCOOL QingKe HuangYou") font.setPointSize(12) font.setBold(False) font.setItalic(False) font.setWeight(50) self.label_14.setFont(font) self.label_14.setStyleSheet("background-color: rgba(255, 255, 255, 0);\n" "font: 12pt \"ZCOOL QingKe HuangYou\";\n" "color: rgb(36, 36, 111);") self.label_14.setObjectName("label_14") self.lbl_date = QtWidgets.QLabel(Dialog) self.lbl_date.setGeometry(QtCore.QRect(40, 120, 391, 41)) font = QtGui.QFont() font.setFamily("Bai Jamjuree") font.setPointSize(12) font.setBold(False) font.setItalic(False) font.setWeight(50) self.lbl_date.setFont(font) self.lbl_date.setStyleSheet("background-color: rgba(255, 255, 255, 0);\n" "font: 12pt \"Bai Jamjuree\";") self.lbl_date.setObjectName("lbl_date") self.lbl_time = QtWidgets.QLabel(Dialog) self.lbl_time.setGeometry(QtCore.QRect(40, 190, 381, 41)) font = QtGui.QFont() font.setFamily("Bai Jamjuree") font.setPointSize(12) font.setBold(False) font.setItalic(False) font.setWeight(50) self.lbl_time.setFont(font) self.lbl_time.setStyleSheet("background-color: rgba(255, 255, 255, 0);\n" "font: 12pt \"Bai Jamjuree\";") self.lbl_time.setObjectName("lbl_time") self.lbl_member = QtWidgets.QLabel(Dialog) self.lbl_member.setGeometry(QtCore.QRect(40, 260, 381, 41)) font = QtGui.QFont() font.setFamily("Bai Jamjuree") font.setPointSize(12) font.setBold(False) font.setItalic(False) font.setWeight(50) self.lbl_member.setFont(font) self.lbl_member.setStyleSheet("background-color: rgba(255, 255, 255, 0);\n" "font: 12pt \"Bai Jamjuree\";") self.lbl_member.setObjectName("lbl_member") self.tbro_description = QtWidgets.QTextBrowser(Dialog) self.tbro_description.setGeometry(QtCore.QRect(40, 330, 381, 101)) self.tbro_description.setStyleSheet("font: 12pt \"Bai Jamjuree\";\n" "background-color: rgba(255, 255, 255, 0);\n" "border: 0px;") self.tbro_description.setObjectName("tbro_description") self.btn_viewMember = QtWidgets.QPushButton(Dialog) self.btn_viewMember.setGeometry(QtCore.QRect(320, 260, 111, 41)) self.btn_viewMember.setStyleSheet("background-color: rgba(255, 255, 255, 0);\n" "font: 12pt \"ZCOOL QingKe HuangYou\";\n" "color: rgb(85, 85, 255);\n" "border-radius: 10px;\n" "border: 2px solid rgb(85, 85, 255);") self.btn_viewMember.setObjectName("btn_viewMember") self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) self.this_dialog = Dialog self.ShowActivityDetail() self.btn_cancelActivity.clicked.connect(self.CancelActivity) self.btn_viewMember.clicked.connect(self.ViewActivityMember) self.btn_back.clicked.connect(self.BackToShopActivity) def __init__(self, passData): self.userData = passData['userData'] activityList = am.FetchActivityList({'_id': passData['activityID']}) self.activityData: None for i in activityList: self.activityData = i break def ShowActivityDetail(self): self.lbl_title.setText(self.activityData['activityName']) self.lbl_date.setText(self.activityData['date']) self.lbl_time.setText("{} - {}".format(self.activityData['startTime'], self.activityData['endTime'])) self.lbl_member.setText("{} / {}".format(self.activityData['currentPlayer'], self.activityData['maxPlayer'])) self.tbro_description.setText(self.activityData['description']) def ViewActivityMember(self): activityData = {'activityName': self.activityData['activityName'], 'maxPlayer': self.activityData['maxPlayer'], 'joinedPlayerID': self.activityData['joinedPlayerID']} am.OpenNewWindowDialog(Shop_ActivityMember, passData=activityData) def CancelActivity(self): reply = am.ShowConfirmBox("Cancel Activity", "Cancel Activity [{}].\nAre you sure ?".format(self.activityData['activityName'])) if reply: try: am.DeleteActivity(self.activityData['_id']) am.ShowMessageBox("Cancel Activity", "Cancel Activity [{}]\nSuccessful !!".format(self.activityData['activityName']), QMessageBox.Information) self.BackToShopActivity() except: am.ShowMessageBox("Cancel Activity", "Cancel Activity [{}]\nFailed !!\nPlease try again !!".format( self.activityData['activityName']), QMessageBox.Critical) def BackToShopActivity(self): am.ChangeWindowDialog(self.this_dialog, Shop_ActivityList, passData=self.userData) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Board Game Community")) self.lbl_title.setText(_translate("Dialog", "**ACTIVITY NAME**")) self.btn_cancelActivity.setText(_translate("Dialog", "Cancel Activity")) self.btn_back.setText(_translate("Dialog", "Back")) self.label_10.setText(_translate("Dialog", "Description")) self.label_11.setText(_translate("Dialog", "Date and Time")) self.label_12.setText(_translate("Dialog", "Time")) self.label_14.setText(_translate("Dialog", "Member")) self.lbl_date.setText(_translate("Dialog", "**DD-MMM-YY**")) self.lbl_time.setText(_translate("Dialog", "**START TIME - END TIME**")) self.lbl_member.setText(_translate("Dialog", "**00 / 00**")) self.tbro_description.setHtml(_translate("Dialog", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'Bai Jamjuree\'; font-size:12pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\">**DESCRIPTION</p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\">DESCRIPTION**</p></body></html>")) self.btn_viewMember.setText(_translate("Dialog", "View Member")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Dialog = QtWidgets.QDialog() ui = Ui_Dialog() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
403050852dd2e8392f1e8610f4911bf3608ab119
9ee751382146d280c0105981e2e54fa900cb04de
/djblets/util/tests/test_compressed_tags.py
1d1d87775890230056755ea9767bb66c60caefae
[]
no_license
lmyfzx/djblets
25c3d3fb2478047eede05238b60b6d16598f9131
33b4475cfabe24644335093a028d7d2aabc4ab84
refs/heads/master
2023-02-03T18:20:46.873799
2020-12-22T10:58:35
2020-12-22T10:58:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,966
py
"""Unit tests for djblets.util.templatetags.djblets_forms.""" from __future__ import unicode_literals import os from django.conf import settings from django.template import Context, Template from pipeline.conf import settings as pipeline_settings from djblets.testing.testcases import TestCase class CompressedTagsTests(TestCase): """Unit tests for the {% compressed_* %} template tags.""" def test_compressed_css_tag(self): """Testing {% compressed_css %}""" self._touch_files(['test.css', 'test.d41d8cd98f00.css']) pipeline_settings.STYLESHEETS = { 'test': { 'source_filenames': [], 'output_filename': 'test.css', } } t = Template('{% load compressed %}' '{% compressed_css "test" %}') self.assertHTMLEqual( t.render(Context({'test': 'test'})), '<link href="/test.d41d8cd98f00.css" rel="stylesheet"' ' type="text/css" />') def test_compressed_js_tag(self): """Testing {% compressed_js %}""" self._touch_files(['test.js', 'test.d41d8cd98f00.js']) pipeline_settings.JAVASCRIPT = { 'test': { 'source_filenames': [], 'output_filename': 'test.js', } } t = Template('{% load compressed %}' '{% compressed_js "test" %}') self.assertHTMLEqual( t.render(Context({'test': 'test'})), '<script type="text/javascript" src="/test.d41d8cd98f00.js"' ' charset="utf-8"></script>') def _touch_files(self, filenames): """Create one or more empty static media files. Args: filenames (list of unicode): The list of static media files to create. """ for filename in filenames: with open(os.path.join(settings.STATIC_ROOT, filename), 'w'): pass
edf6ec9094282214c247789c19af30388e1fb891
cf5b2850dc9794eb0fc11826da4fd3ea6c22e9b1
/xlsxwriter/test/styles/test_styles06.py
ecba383c9b2848fa80c25090f9d3c53d0e528278
[ "BSD-2-Clause" ]
permissive
glasah/XlsxWriter
bcf74b43b9c114e45e1a3dd679b5ab49ee20a0ec
1e8aaeb03000dc2f294ccb89b33806ac40dabc13
refs/heads/main
2023-09-05T03:03:53.857387
2021-11-01T07:35:46
2021-11-01T07:35:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,183
py
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2021, John McNamara, [email protected] # import unittest from io import StringIO from ..helperfunctions import _xml_to_list from ...styles import Styles from ...workbook import Workbook class TestAssembleStyles(unittest.TestCase): """ Test assembling a complete Styles file. """ def test_assemble_xml_file(self): """Test for border colour styles.""" self.maxDiff = None fh = StringIO() style = Styles() style._set_filehandle(fh) workbook = Workbook() workbook.add_format({ 'left': 1, 'right': 1, 'top': 1, 'bottom': 1, 'diag_border': 1, 'diag_type': 3, 'left_color': 'red', 'right_color': 'red', 'top_color': 'red', 'bottom_color': 'red', 'diag_color': 'red'}) workbook._set_default_xf_indices() workbook._prepare_format_properties() style._set_style_properties([ workbook.xf_formats, workbook.palette, workbook.font_count, workbook.num_format_count, workbook.border_count, workbook.fill_count, workbook.custom_colors, workbook.dxf_formats, workbook.has_comments, ]) style._assemble_xml_file() workbook.fileclosed = 1 exp = _xml_to_list(""" <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <styleSheet xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main"> <fonts count="1"> <font> <sz val="11"/> <color theme="1"/> <name val="Calibri"/> <family val="2"/> <scheme val="minor"/> </font> </fonts> <fills count="2"> <fill> <patternFill patternType="none"/> </fill> <fill> <patternFill patternType="gray125"/> </fill> </fills> <borders count="2"> <border> <left/> <right/> <top/> <bottom/> <diagonal/> </border> <border diagonalUp="1" diagonalDown="1"> <left style="thin"> <color rgb="FFFF0000"/> </left> <right style="thin"> <color rgb="FFFF0000"/> </right> <top style="thin"> <color rgb="FFFF0000"/> </top> <bottom style="thin"> <color rgb="FFFF0000"/> </bottom> <diagonal style="thin"> <color rgb="FFFF0000"/> </diagonal> </border> </borders> <cellStyleXfs count="1"> <xf numFmtId="0" fontId="0" fillId="0" borderId="0"/> </cellStyleXfs> <cellXfs count="2"> <xf numFmtId="0" fontId="0" fillId="0" borderId="0" xfId="0"/> <xf numFmtId="0" fontId="0" fillId="0" borderId="1" xfId="0" applyBorder="1"/> </cellXfs> <cellStyles count="1"> <cellStyle name="Normal" xfId="0" builtinId="0"/> </cellStyles> <dxfs count="0"/> <tableStyles count="0" defaultTableStyle="TableStyleMedium9" defaultPivotStyle="PivotStyleLight16"/> </styleSheet> """) got = _xml_to_list(fh.getvalue()) self.assertEqual(got, exp)
19c0f24be411fc989b3a537f051e4021fe85c060
7f32883804578d960fa2dc2b3fded332f839afe4
/except remove numbers/word-level/NB+SVM+LSTM+CNN.py
15b67e06d1ee8580e744b4b71e04c6e2ca38557c
[]
no_license
liang23333/chinese-sentiment-analysis-preprocess-paper
7fa3dc947f26205c7004433e3f041353e2dc350f
37a5be75a8121967510fead3c7e077f61ba281fd
refs/heads/master
2021-01-20T07:38:04.062624
2017-05-10T14:54:34
2017-05-10T14:54:34
90,021,740
0
0
null
null
null
null
UTF-8
Python
false
false
11,560
py
# coding: utf-8 # In[1]: # In[1]: neg=[] for i in range(1000): fname="C:\\LAWHCA\\chinese-sentiment--analysis-preprocess\\neg\\neg."+str(i)+".txt" print(fname) with open(fname, "r",errors="ignore") as f: neg.append(f.read()) # In[2]: pos=[] for i in range(1000): fname="C:\\LAWHCA\\chinese-sentiment--analysis-preprocess\\pos\\pos."+str(i)+".txt" print(fname) with open(fname, "r",errors="ignore") as f: pos.append(f.read()) # In[14]: import random data_all=pos+neg data_dict={} for i in range(1000): data_dict[data_all[i]]=1 for i in range(1000): data_dict[data_all[i+1000]]=0 print(len(data_dict)) print(data_all[0]) random.shuffle(data_all) print(data_all[0]) label=[] for i in range(2000): label.append(data_dict[data_all[i]]) # put data in label and data_all list # In[2]: from Remove_link import remove_link from Remove_number import remove_number from Remove_punctuation import remove_punctuation from Remove_stopwords import remove_stopwords from Replace_netword import replace_netword from Replace_repeatwords import replace_repeatwords from Replace_ywz import replace_ywz from Translate_eng import translate_eng import time for i in range(2000): data_all[i]=translate_eng(data_all[i]) data_all[i]=replace_ywz(data_all[i]) data_all[i]=replace_repeatwords(data_all[i]) data_all[i]=replace_netword(data_all[i]) data_all[i]=remove_stopwords(data_all[i]) data_all[i]=remove_punctuation(data_all[i]) #data_all[i]=remove_number(data_all[i]) data_all[i]=remove_link(data_all[i]) print(i) # In[3]: import jieba all_data=[] for i in range(2000): seg_list=jieba.cut(data_all[i]) seg_list=" ".join(seg_list) all_data.append(seg_list) print(all_data[0]) print(all_data[1999]) print(type(all_data[0])) print(data_all[0]) print(data_all[1999]) print(type(data_all[0])) # In[4]: from sklearn.feature_extraction.text import TfidfVectorizer as TFIDF tfidf = TFIDF(min_df=5, # 最小支持度为2 max_features=None, strip_accents='unicode', analyzer='word', token_pattern=r'\w{1,}', ngram_range=(1,1), # 1元文法模型 use_idf=1, smooth_idf=1, sublinear_tf=1) # In[5]: tfidf.fit(all_data) all_data = tfidf.transform(all_data) print(type(all_data)) # In[6]: print(all_data.shape) data=all_data # In[7]: print(tfidf.vocabulary_) # In[8]: from sklearn.naive_bayes import MultinomialNB as MNB model_NB = MNB() model_NB.fit(all_data[:1500], label[:1500]) MNB(alpha=1.0, class_prior=None, fit_prior=True) from sklearn.cross_validation import cross_val_score import numpy as np print("多项式贝叶斯分类器10折交叉验证得分: ", np.mean(cross_val_score(model_NB, all_data[:1500], label[:1500], cv=10, scoring='roc_auc'))) sum=0 test_predicted =model_NB.predict(all_data[1500:]) for i in range(500): if(test_predicted[i]==label[1500+i]): sum=sum+1 print(sum/500) # In[9]: for i in range(20,21): import numpy as np from sklearn.decomposition import PCA pca=PCA(n_components=i) newData=pca.fit_transform(all_data.toarray()) from sklearn import svm CLF=svm.SVC() CLF.fit(newData[:1500],label[:1500]) from sklearn.cross_validation import cross_val_score print("SVM分类器10折交叉验证得分: ", np.mean(cross_val_score(CLF, newData[:1500], label[:1500], cv=10, scoring='roc_auc'))) sum=0 test_predicted =CLF.predict(newData[1500:]) for i in range(500): if(test_predicted[i]==label[1500+i]): sum=sum+1 print(sum/500) # In[10]: print(all_data.shape) data=all_data t=all_data print(type(t.toarray())) print(type(t)) # In[11]: from sklearn.decomposition import PCA print(all_data.shape) pca=PCA(n_components=20) data=pca.fit_transform(all_data.toarray()) print(data.shape) max_sequence_length=data.shape[1] import os import re import io import requests import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from zipfile import ZipFile from tensorflow.python.framework import ops ops.reset_default_graph() sess = tf.Session() # Set RNN parameters epochs = 500 batch_size = 100 rnn_size = 10 embedding_size = 1 min_word_frequency = 10 learning_rate = 0.0005 dropout_keep_prob = tf.placeholder(tf.float32) data=data.reshape((2000,max_sequence_length,1)) label=np.array(label) x_train, x_test = data[:1500], data[1500:] y_train, y_test = label[:1500], label[1500:] x_data = tf.placeholder(tf.float32, [None, max_sequence_length,embedding_size]) y_output = tf.placeholder(tf.int32, [None]) if tf.__version__[0]>='1': cell=tf.contrib.rnn.BasicRNNCell(num_units = rnn_size) else: cell = tf.nn.rnn_cell.BasicRNNCell(num_units = rnn_size) output, state = tf.nn.dynamic_rnn(cell, x_data, dtype=tf.float32) output = tf.nn.dropout(output, dropout_keep_prob) # Get output of RNN sequence output = tf.transpose(output, [1, 0, 2]) last = tf.gather(output, int(output.get_shape()[0]) - 1) weight = tf.Variable(tf.truncated_normal([rnn_size, 2], stddev=0.1)) bias = tf.Variable(tf.constant(0.1, shape=[2])) logits_out = tf.nn.softmax(tf.matmul(last, weight) + bias) # Loss function losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_out, labels=y_output) # logits=float32, labels=int32 loss = tf.reduce_mean(losses) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), tf.cast(y_output, tf.int64)), tf.float32)) optimizer = tf.train.RMSPropOptimizer(learning_rate) train_step = optimizer.minimize(loss) init = tf.global_variables_initializer() sess.run(init) train_loss = [] test_loss = [] train_accuracy = [] test_accuracy = [] # Start training for epoch in range(epochs): # Shuffle training data shuffled_ix = np.random.permutation(np.arange(len(x_train))) # print(shuffled_ix) # print(shuffled_ix.shape[0]) x_train = x_train[shuffled_ix] y_train = y_train[shuffled_ix] num_batches = int(len(x_train)/batch_size) # TO DO CALCULATE GENERATIONS ExACTLY for i in range(num_batches): # Select train data min_ix = i * batch_size max_ix = np.min([len(x_train), ((i+1) * batch_size)]) x_train_batch = x_train[min_ix:max_ix] y_train_batch = y_train[min_ix:max_ix] #print(x_train_batch) # print(x_train_batch.shape[0]) # print(x_train_batch.shape[1]) # print(x_train_batch.shape[2]) # print(x_train_batch[0][0]) # Run train step train_dict = {x_data: x_train_batch, y_output: y_train_batch, dropout_keep_prob:0.5} sess.run(train_step, feed_dict=train_dict) # Run loss and accuracy for training temp_train_loss, temp_train_acc = sess.run([loss, accuracy], feed_dict=train_dict) train_loss.append(temp_train_loss) train_accuracy.append(temp_train_acc) # Run Eval Step test_dict = {x_data: x_test, y_output: y_test, dropout_keep_prob:1.0} temp_test_loss, temp_test_acc = sess.run([loss, accuracy], feed_dict=test_dict) test_loss.append(temp_test_loss) test_accuracy.append(temp_test_acc) print('Epoch: {}, Test Loss: {:.2}, Test Acc: {:.2}'.format(epoch+1, temp_test_loss, temp_test_acc)) # epoch_seq = np.arange(1, epochs+1) # plt.plot(epoch_seq, train_loss, 'k--', label='Train Set') # plt.plot(epoch_seq, test_loss, 'r-', label='Test Set') # plt.title('Softmax Loss') # plt.xlabel('Epochs') # plt.ylabel('Softmax Loss') # plt.legend(loc='upper left') # plt.show() # # Plot accuracy over time # plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set') # plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set') # plt.title('Test Accuracy') # plt.xlabel('Epochs') # plt.ylabel('Accuracy') # plt.legend(loc='upper left') # plt.show() # In[12]: import jieba all_data=[] for i in range(2000): seg_list=jieba.cut(data_all[i]) seg_list=" ".join(seg_list) all_data.append(seg_list) print(all_data[0]) print(all_data[1999]) print(type(all_data[0])) print(data_all[0]) print(data_all[1999]) print(type(data_all[0])) # In[13]: for i in range(2000): all_data[i]=all_data[i].split() print(all_data[100]) # In[14]: import gensim model = gensim.models.Word2Vec.load("C:\\LAWHCA\\word2vec\\word2vec_wx") print(model.most_similar(u'宾馆')) # In[15]: MAX=0 res=0 for i in range(2000): if MAX< len(all_data[i]): res=i MAX=len(all_data[i]) print(MAX) def sentence_to_array(sentence,MAX): ret=[] import numpy as np zero=np.zeros((256)) for i in sentence: try: ret.append(model.wv[i]) except Exception as err: ret.append(zero) for i in range(MAX-len(sentence)): ret.append(zero) return ret res=[] for i in range(2000): res.append(sentence_to_array(all_data[i],MAX)) print(i) print(res[0]) # In[16]: res=np.array(res) import numpy as np np.random.seed(1337) # for reproducibility from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, Flatten from keras.optimizers import Adam import pickle X_train,X_test=res[:1500],res[1500:] y_train,y_test=label[:1500],label[1500:] # In[3]: print() print(X_train.shape) y_train = np_utils.to_categorical(y_train, 2) y_test = np_utils.to_categorical(y_test, 2) # In[4]: print(X_train.shape) print(X_test.shape) X_train = X_train.reshape(1500, 1,MAX, 256) X_test = X_test.reshape(500, 1,MAX, 256) # In[5]: print(X_train.shape) print(y_train.shape) # In[17]: # Another way to build your CNN model = Sequential() # Conv layer 1 output shape (32, 28, 28) model.add(Convolution2D( nb_filter=32, nb_row=5, nb_col=5, border_mode='same', # Padding method dim_ordering='tf', # if use tensorflow, to set the input dimension order to theano ("th") style, but you can change it. input_shape=(1, # channels MAX, 256,) # height & width )) model.add(Activation('relu')) # Pooling layer 1 (max pooling) output shape (32, 14, 14) model.add(MaxPooling2D( pool_size=(2, 2), strides=(2, 2), border_mode='same', # Padding method )) # Conv layer 2 output shape (64, 14, 14) model.add(Convolution2D(64, 5, 5, border_mode='same')) model.add(Activation('relu')) # Pooling layer 2 (max pooling) output shape (64, 7, 7) model.add(MaxPooling2D(pool_size=(2, 2), border_mode='same')) model.add(Convolution2D(128,5,5, border_mode='same')) model.add(Activation('relu')) # Pooling layer 2 (max pooling) output shape (64, 7, 7) model.add(MaxPooling2D(pool_size=(2, 2), border_mode='same')) # Fully connected layer 1 input shape (64 * 7 * 7) = (3136), output shape (1024) model.add(Flatten()) model.add(Dense(1024)) model.add(Activation('relu')) # Fully connected layer 2 to shape (10) for 10 classes model.add(Dense(2)) model.add(Activation('softmax')) # Another way to define your optimizer adam = Adam(lr=1e-4) # We add metrics to get more results you want to see model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy']) print('Training ------------') # Another way to train the model model.fit(X_train, y_train, batch_size=50,nb_epoch=11) print('\nTesting ------------') # Evaluate the model with the metrics we defined earlier loss, accuracy = model.evaluate(X_test, y_test) print('\ntest loss: ', loss) print('\ntest accuracy: ', accuracy) # In[ ]:
a2ae05fd5bbe201b0dba0773a9f38d0f0e6d8898
80664c3c78e6381495db99074d38a4bc3971e2b7
/MovieEngine/webapp/urls.py
4f59afca6c66e5d82401a5f7ce24d693386b67d9
[]
no_license
nebulazee/MovieEngine
eb3c12f12b836fd8742822414e9b1343ca908512
6098bbabc44c392bb9327348bbcfe960a44ef368
refs/heads/master
2020-03-22T00:39:24.824954
2018-06-30T15:05:41
2018-06-30T15:17:37
139,257,132
0
0
null
null
null
null
UTF-8
Python
false
false
306
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.mainPage, name='mainPage'), #url(r'^mainPage/$', views.mainPage, name='mainPage'), url(r'^goToRecom/controller$',views.movieRecom,name='movieRecom'), url(r'^goToRecom/$',views.index,name='index'), ]
f427a26d36f2fffc1aa1e50c709b2983234801cf
20336a03aa918460aeb6ca7809dfc57673b27291
/backend/migrations/0014_lesson_cours.py
dd16057b29946586f4cdd0defb6340c80657a129
[]
no_license
shevchukmaxim/diplom
95076b9a89ed37c56f6c5348b51971c68d36f705
3043eb39b5479e248e939ecbc4084f2bde960101
refs/heads/master
2022-12-09T07:16:56.276213
2019-07-20T10:30:42
2019-07-20T10:30:42
192,128,893
0
0
null
2022-12-03T13:50:28
2019-06-15T22:26:57
CSS
UTF-8
Python
false
false
559
py
# Generated by Django 2.2.1 on 2019-06-02 03:02 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('backend', '0013_cours_coursemployee_courslesson'), ] operations = [ migrations.AddField( model_name='lesson', name='cours', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='courslsn', related_query_name='courslsn', to='backend.Cours'), ), ]
14c639cb0326a7c2cf37b94840c0031c0ed31417
023d8b4d847969e7ec67025ed469bbeaeed82899
/hello.py
4541e874c4452b89efbd8554f69ab30ac4836556
[]
no_license
beardTao/microblog
479a0491a780ad0b2e7dc815754ec8c37ac76c54
3af95bd44e6924515225c9e79788d9dd3ac579e5
refs/heads/master
2022-11-07T18:08:05.906171
2019-04-30T03:48:17
2019-04-30T03:48:17
183,625,180
1
1
null
2022-11-02T06:36:15
2019-04-26T12:32:03
Python
UTF-8
Python
false
false
3,190
py
from flask import Flask, render_template, url_for, request, session, redirect, flash from flask_bootstrap import Bootstrap from flask_moment import Moment from datetime import datetime from flask_wtf import FlaskForm from wtforms import StringField, SubmitField from wtforms.validators import DataRequired import os from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_mail import Mail, Message from threading import Thread basedir = os.path.abspath(os.path.dirname(__file__)) print(basedir) app = Flask(__name__) app.config['SECRET_KEY'] = 'hard to guess string' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + os.path.join(basedir,'data2.splite') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False #配置邮箱信息 app.config['MAIL_SERVER'] = 'smtp.163.com' app.config['MAIL_PORT'] = 25 app.config['MAIL_USERNAME'] = os.environ.get('mail_username') app.config['MAIL_PASSWORD'] = os.environ.get('mail_password') print(app.config['MAIL_USERNAME'],app.config['MAIL_PASSWORD']) app.config['FLASKY_MAIL_SUBJECT_PREFIX'] = '[TAO]' app.config['FLASKY_MAIL_SENDER'] = '[email protected]' bootstrap = Bootstrap(app) moment = Moment(app) db = SQLAlchemy(app) migrate =Migrate(app, db) mail = Mail(app) def send_async_mail(app, msg): with app.app_context(): mail.send(msg) def send_mail(to, subject, template, **kwargs): msg = Message(app.config['FLASKY_MAIL_SUBJECT_PREFIX'] + subject, sender=app.config['FLASKY_MAIL_SENDER'], recipients=[to]) msg_body = render_template(template + '.txt',**kwargs) msg.html = render_template(template + '.html',**kwargs) thr = Thread(target=send_async_mail, args=[app, msg]) thr.start() return thr class NameForm(FlaskForm): name = StringField('name:', validators=[DataRequired()]) submit = SubmitField('Submit') class Role(db.Model): __tablename__ = 'roles'#表名 id = db.Column(db.Integer, primary_key=True)#表属性 name = db.Column(db.String(64), unique=True) users = db.relationship('User', backref='role') def __repr__(self): return '<Role %r>' % self.name class User(db.Model): __tablename__ = 'users'#表名 id = db.Column(db.Integer, primary_key=True)#表属性 username = db.Column(db.String(64), unique=True, index=True) role_id = db.Column(db.Integer, db.ForeignKey('roles.id')) def __repr__(self): return '<User %r>' % self.username @app.route('/',methods=['GET','POST']) def index(): form = NameForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.name.data).first() print(user) if user is None: user = User(username=form.name.data) db.session.add(user) db.session.commit() session['known'] = False send_mail('[email protected]', "new_user", 'mail/new_user', user=user) else: session['known'] = True # old_name = session.get('name') # if old_name != form.name.data: # flash('looks like you have changed your name') session['name'] = form.name.data form.name.data = '' return redirect(url_for('index')) return render_template('index.html',form=form, name=session.get('name'),known=session.get('known',False)) @app.route('/user/<name>') def user(name): return render_template('user.html',name=name)
[ "170601" ]
170601
15ac7a012158192d1c75ea2adf14451862b089f5
c475cd8531a94ffae69cc92371d41531dbbddb6c
/Projects/bullet3-2.89/examples/pybullet/gym/pybullet_utils/util.py
5a014c8ed07a8b530a0fc58ca5cf708b435bd654
[ "Apache-2.0", "LicenseRef-scancode-free-unknown", "Zlib" ]
permissive
WolfireGames/overgrowth
72d3dd29cbd7254337265c29f8de3e5c32400114
594a2a4f9da0855304ee8cd5335d042f8e954ce1
refs/heads/main
2023-08-15T19:36:56.156578
2023-05-17T08:17:53
2023-05-17T08:20:36
467,448,492
2,264
245
Apache-2.0
2023-05-09T07:29:58
2022-03-08T09:38:54
C++
UTF-8
Python
false
false
218
py
import random import numpy as np def set_global_seeds(seed): try: import tensorflow as tf except ImportError: pass else: tf.set_random_seed(seed) np.random.seed(seed) random.seed(seed) return
4c27acbc8fa98aefd7f98f136bbc7b410c6f568a
86406e6d1373a48291a6957fdfce07ad98a00db3
/main.py
798e33d263563ced19e6c0f6a09ded184e69b4f9
[]
no_license
ewertonpaulo/knn-machine-learning
4bbafa164c96cd2d22cfb6dc0b181a9f6f129f60
0060f111c6107ad6093d1ef67ce722b130cc9d2b
refs/heads/master
2020-04-30T05:05:14.660594
2019-03-21T22:07:04
2019-03-21T22:07:04
176,621,930
1
0
null
null
null
null
UTF-8
Python
false
false
651
py
from csv_handler import train_test_split import csv_handler as cv import knn treinamento = 'aprendizagemdemaquina/treinamento.csv' teste = 'aprendizagemdemaquina/teste.csv' r = 'aprendizagemdemaquina/rotulos-teste.txt' train = cv.train_test_split(treinamento) train = knn.data_to_list(train) validate = cv.validacao(teste) predic = [] rotulos = [] for i in cv.rotulos_testes(r): rotulos.append(float(i[0])) k = 2 for x in range(len(validate)): vizinhos = knn.get_vizinhos(train, validate[x], k) resultado = knn.resposta(vizinhos) predic.append(resultado) print(resultado) print('Precisao: %f' %knn.precisao(rotulos, predic))
503417c9e5d75f60410ccc6b53f26b6e6bac8d5b
78fe8c800da8eaa3b5644347b9a06145a4f43a6e
/xomain/game/migrations/0005_auto_20181124_2250.py
78d2df740d8612669e3a264c225ebecb6de4d05d
[]
no_license
AakashKhatu/xodjango
e37393ba7c09a31c06a162bb79f94a9bd53bbbb1
240b4a470581bea95286335b3c0049c998c2e924
refs/heads/master
2020-04-08T01:27:52.216974
2019-01-03T02:32:49
2019-01-03T02:32:49
158,896,174
0
0
null
null
null
null
UTF-8
Python
false
false
956
py
# Generated by Django 2.0.9 on 2018-11-24 17:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('game', '0004_auto_20181124_2150'), ] operations = [ migrations.AddField( model_name='game_data', name='player1', field=models.CharField(default='player1_id', max_length=20), ), migrations.AddField( model_name='game_data', name='player2', field=models.CharField(default='player2_id', max_length=20), ), migrations.AlterField( model_name='game_data', name='player1_name', field=models.CharField(default='player1_name', max_length=20), ), migrations.AlterField( model_name='game_data', name='player2_name', field=models.CharField(default='player2_name', max_length=20), ), ]
816a9237dc7938a0b5c52aa4309713b2228816f7
adf3076bd40e37f4a422e79f6efb938f13def6c6
/objectModel/Python/cdm/storage/local.py
e8a47c16802f5603d8c1d96895365a7d49ac8a07
[ "MIT", "CC-BY-4.0" ]
permissive
assetdatasystems/CDM
445d1b22f0071620f1eb2fd8d1b5f7d6152ec388
576ccfd07fc718b3d0911112e5041729a3ba8088
refs/heads/master
2020-09-29T00:54:18.350717
2019-12-06T22:49:02
2019-12-06T22:49:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,521
py
# ---------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. # All rights reserved. # ---------------------------------------------------------------------- from datetime import datetime import json import os from typing import Any, List, Optional from .base import StorageAdapterBase class LocalAdapter(StorageAdapterBase): """Local file system storage adapter""" def __init__(self, root: str = '') -> None: self._root = os.path.abspath(root) # type: str def can_read(self) -> bool: return True def can_write(self) -> bool: return True async def read_async(self, corpus_path: str) -> str: adapter_path = self.create_adapter_path(corpus_path) with open(adapter_path, 'r', encoding='utf-8') as file: return file.read() async def write_async(self, corpus_path: str, data: str) -> None: adapter_path = self.create_adapter_path(corpus_path) parent_dir = os.path.abspath(os.path.join(adapter_path, os.pardir)) os.makedirs(parent_dir, exist_ok=True) with open(adapter_path, 'w', encoding='utf-8') as file: file.write(data) def create_adapter_path(self, corpus_path: str) -> str: corpus_path = corpus_path[(corpus_path.find(':') + 1):].lstrip('\\/') return os.path.normpath(os.path.join(self._root, corpus_path)) def create_corpus_path(self, adapter_path: str) -> Optional[str]: if not adapter_path.startswith("http"): normalized_adapter_path = os.path.abspath(adapter_path).replace('\\', '/') normalized_root = self._root.replace('\\', '/') if normalized_adapter_path.startswith(normalized_root): return normalized_adapter_path[len(normalized_root):] # Signal that we did not recognize path as one for this adapter. return None def clear_cache(self) -> None: pass async def compute_last_modified_time_async(self, adapter_path: str) -> Optional[datetime]: if os.path.exists(adapter_path): return datetime.fromtimestamp(os.path.getmtime(adapter_path)) return None async def fetch_all_files_async(self, folder_corpus_path: str) -> List[str]: adapter_folder = self.create_adapter_path(folder_corpus_path) adapter_files = [os.path.join(dp, fn) for dp, dn, fns in os.walk(adapter_folder) for fn in fns] return [self.create_corpus_path(file) for file in adapter_files]
b0dcca8c35d97cf96c6a426d4cd4e0c4f1757ab5
b7125b27e564d2cc80a2ce8d0a6f934aa22c8445
/.history/sudoku_20201031012809.py
1e1bd31e61f1cca07054e01ff4e65dab7e7033db
[]
no_license
JensVL96/Puzzle-solver-for-fun
4c15dcd570c3705b7ac555efb56b52913e81083c
6d8a4378a480372213a596a336a4deca727a00fc
refs/heads/master
2021-07-15T05:19:42.185495
2020-11-08T13:59:49
2020-11-08T13:59:49
224,855,888
1
0
null
null
null
null
UTF-8
Python
false
false
4,215
py
# -*- coding: utf-8 -*- from __future__ import print_function from config import * from create_board import * from solve_bloard import * from display_board import * from string import * import pygame as pg import numpy as np # For error highlighting row_index = (0, 0) col_index = (0, 0) blk_index = (0, 0) input_lock = 0 def reset_errors(): global input_lock input_lock = 1 global row_index row_index = (0, 0) global col_index col_index = (0, 0) global blk_index blk_index = (0, 0) def get_cord(pos): global box_index_x box_index_x = (pos[0] - TOP_LX)//BLOCK_SIZE global box_index_y box_index_y = (pos[1] - TOP_LY)//BLOCK_SIZE def valid(grid, x, y, val, increase): global input_lock for index in range(9): # Check if value in column if grid[x][index] == val: print("in the same column") global col_index col_index = (x, index) input_lock = 1 # Check if value in row if grid[index][y] == val: print("in the same row") global row_index row_index = (index, y) input_lock = 1 # Finds the block index_x = x // 3 # integer division index_y = y // 3 # Check if value in block for i in range(index_x * 3, index_x * 3 + 3): for j in range (index_y * 3, index_y * 3 + 3): if grid[i][j] == val: print("in the same block") global blk_index blk_index = (i, j) input_lock = 1 if input_lock == 1: return False return True class Main(): def __init__(self): self.board = [] self.run() def run(self): pg.init() self.screen = pg.display.set_mode(SCREEN_RES) pg.display.set_caption('Sudoku solver') display = Display_board(self.screen) flag1 = 0 val = 0 global input_lock board = create_board().board while 1: for event in pg.event.get(): if event.type == pg.QUIT or (event.type == pg.KEYDOWN and event.key == pg.K_ESCAPE): exit() if event.type == pg.MOUSEBUTTONDOWN: flag1 = 1 pos = pg.mouse.get_pos() get_cord(pos) display.glow(pos) if event.type == pg.KEYDOWN and input_lock != 1: if event.key == pg.K_1: val = 1 if event.key == pg.K_2: val = 2 if event.key == pg.K_3: val = 3 if event.key == pg.K_4: val = 4 if event.key == pg.K_5: val = 5 if event.key == pg.K_6: val = 6 if event.key == pg.K_7: val = 7 if event.key == pg.K_8: val = 8 if event.key == pg.K_9: val = 9 elif event.type == pg.KEYDOWN and input_lock == 1: if event.key == pg.K_BACKSPACE: val = 0 input_lock = 0 reset_errors() if val != 0: display.draw_val(val, box_index_x, box_index_y) if valid(board, int(box_index_x), int(box_index_y), val, display): board[int(box_index_x)][int(box_index_y)] = val else: board[int(box_index_x)][int(box_index_y)] = 0 val = 0 pg.draw.rect(self.screen, BLACK, (0, 0, self.screen.get_width(), self.screen.get_height())) self.screen.fill(BEIGE) display.draw(board) if input_lock == 1: display.update(board, row_index, col_index, blk_index) # display.draw_box() pg.display.update() self.solution = solve_board(board) self.solution.assign_flags(board) if __name__ == '__main__': Main()
ade7cc11e7c987ff67017d26122fc95f878d4de8
af45aec06c134a4e7bed79b7e542ea711da14ea2
/home/views.py
6dd6c6ce446e3a525b2af49626ade62613a01418
[]
no_license
Psolmin/Likelion
e23289f9ea37bfb1944039b0b50b6369646aac0f
d622f7f06136db12e1e8c3d48866ec1b67a47fc0
refs/heads/master
2022-01-22T10:10:24.794874
2019-05-26T08:45:20
2019-05-26T08:45:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
from django.shortcuts import render # Create your views here. def intro(request): return render(request,'intro.html')
ae107976d966143e9c4a31f1309885c06bf9f1ae
64723d47ce3651e4bbb85344a284371e61d31ffa
/timeModules/creatingInstances.py
82f2ccea8bcf96657693b7cf18b9ac227a0adcf5
[ "MIT" ]
permissive
BrandonP321/Python-masterclass
659674cede81a3d0b4681481cbba8f3dfdd3d996
fac81fe4f8acfa37076820405d96132f9f23b311
refs/heads/master
2022-12-12T13:59:37.828859
2020-09-05T02:29:40
2020-09-05T02:29:40
266,238,938
0
0
null
null
null
null
UTF-8
Python
false
false
2,271
py
import datetime """These are the 3 most useful classes of the datetime module""" date = datetime.date(year=2020, month=7, day=21) print(f"datetime.date: {date}") # 2020-07-21 time = datetime.time(hour=11, minute=33, second=54, microsecond=348983) print(f"datetime.time: {time}") # 11:33:54.348983 date_time = datetime.datetime(year=2020, month=7, day=21, hour=11, minute=33, second=54, microsecond=348983) print(f"datetime.datetime: {date_time}\n") # 2020-07-21 11:33:54.398204 year, month, day, hour, minute, second, microsecond = (2020, 7, 20, 11, 33, 54, 398204) print(datetime.datetime(year, month, day, hour, minute, second, microsecond)) print() """3 other ways to create instances""" # creates instance of the current local date today = datetime.date.today() print(f"datetime.date.today(): {today}") # 2020-08-28 # creates instance of the current date and time timeNow = datetime.datetime.now() print(f"datetime.datetime.now(): {timeNow}\ttype: ", end='') # YYYY-MM-DD HH:MM:SS.SSSSSS print(type(timeNow)) # combines instances of datetime.date & datetime.time into a sings datetime.datetime instance current_time = datetime.time(timeNow.hour, timeNow.minute, timeNow.second, timeNow.microsecond) combined = datetime.datetime.combine(today, current_time) print(f"datetime.datetime.combine(<date>, <time>): {combined}\n") """Using a string to create an instance of datetime""" # converts the string into a datetime.date type dateIso = datetime.date.fromisoformat("2000-07-21") print(f"datetime.date.fromisoformat(): {dateIso}\t", end='') print(f"type: {type(dateIso)}") # similar to previous timeIso = datetime.time.fromisoformat("05:42:32.483720") print(f"datetime.time.fromisoformat: {timeIso}", end='\t') print(f"type: {type(timeIso)}") # similar to previous dateTimeIso = datetime.datetime.fromisoformat("2000-07-21 05:42:32.483720") print(f"datetime.datetime.fromisoformat: {dateTimeIso}", end='\t') print(f"type: {type(dateTimeIso)}") print() """Handling dates & time not in the iso 8601 format""" date_string = "01-31-2020 14:45:37" formatted_string = "%m-%d-%Y %H:%M:%S" date_string_final = datetime.datetime.strptime(date_string, formatted_string) print(f"datetime.datetime.strptime(date_string, formatted_string): {date_string_final}")
18cd164633ce6eeb98459085cbefb6aff3a57b65
b7ffaf77eb0d404dcb6d1bc35de5d1a089678a32
/methods.py
6a76acb04a99404c6c5b3425cc9610afde789bb3
[]
no_license
KaustubhDamania/Loan-er
6f318452baa94cf170188fc2af35030ef8136a25
2b5e6932747de33f38e6de50c607c8b223262b12
refs/heads/master
2022-12-21T22:27:15.294804
2020-06-01T22:01:24
2020-06-01T22:01:24
193,385,674
3
1
null
2022-09-23T22:26:37
2019-06-23T19:07:32
Python
UTF-8
Python
false
false
7,850
py
import dialogflow from emoji import emojize,demojize from langdetect import detect_langs import re from pprint import pprint from random import randint import smtplib from googletrans import Translator def pan_check(pan): from run import user_data if len(pan)!=10: return False if not pan[:3].isalpha(): return False if pan[3] not in 'PFCHAT': return False if pan[4] != user_data['name'].split()[-1][0]: return False if not pan[5:9].isdigit(): return False if not pan[9].isalpha(): return False return True def get_fulfillment_texts(message, project_id, session_id): session_client = dialogflow.SessionsClient() print('inside function, session_id',session_id) session = session_client.session_path(project_id, session_id) #"unique" if message: text_input = dialogflow.types.TextInput(text=message, language_code='en') query_input = dialogflow.types.QueryInput(text=text_input) response = session_client.detect_intent(session=session, query_input=query_input) # print('RESPONSE') # pprint(response) if response: fulfillment_msg = response.query_result.fulfillment_text fulfillment_arr = response.query_result.fulfillment_messages new_arr = [] for item in fulfillment_arr: # print('fulfillment_messages',item) new_arr.append({ 'text': { 'text': [item.text.text[0]] } }) print('fulfillment_arr',new_arr) # if str(fulfillment_arr[0].text.text[0]) != '': # fulfillment_text = fulfillment_arr[0].text.text[0] # else: # fulfillment_text = fulfillment_msg return fulfillment_msg, new_arr, response def convert_to_hi(fulfillment_msg): translator = Translator() fulfillment_msg = demojize(fulfillment_msg) fulfillment_msg = translator.translate(fulfillment_msg, src='en', dest='hi').text pattern = re.compile(r':(.*?):') emoji_indices = [m.span() for m in re.finditer(pattern,fulfillment_msg)] # for i,j in emoji_indices: while len(emoji_indices)>0: i,j = emoji_indices[0] # print('emoji',fulfillment_msg[i:j],i,j) translated_text = translator.translate(fulfillment_msg[i:j], src='hi', dest='en').text translated_text = translated_text[0]+translated_text[1:-1].strip().lower()+translated_text[-1] # print('translated_text',translated_text) translated_emoji = emojize(translated_text) fulfillment_msg = fulfillment_msg[:i]+translated_emoji+fulfillment_msg[j:] emoji_indices = [m.span() for m in re.finditer(pattern,fulfillment_msg)] # print('emoji_indices',emoji_indices) return fulfillment_msg # def get_language(message): # from run import isHindi # # global isHindi # # if isHindi: # # return 'hi' # language_code = 'en' # try: # languages = detect_langs(message) # languages = [item.lang for item in languages] # for lang in languages: # if lang in ['ne','mr','hi']: # language_code = 'hi' # isHindi = True # break # except Exception as e: # pass # return language_code, isHindi def calc_emi(amount, duration): interest = duration - 2 from math import ceil return ceil(amount*(1+interest/100)/duration) def upload_pic(pic_name): from firebase import firebase firebase = firebase.FirebaseApplication('https://cabot-xuhseu.firebaseio.com') client = storage.Client() bucket = client.get_bucket('cabot-xuhseu.appspot.com') # posting to firebase storage imageBlob = bucket.blob("/") imagePath = os.path.join(os.getcwd(),"{}".format(pic_name)) imageBlob = bucket.blob(pic_name) imageBlob.upload_from_filename(imagePath) # return str(imageBlob.generate_signed_url(expiration=timedelta(hours=1), # method='GET')) def replace_text(pattern, replacement, fulfillment_msg): # pattern = re.compile(r'XXXX') pattern = re.compile(pattern) indices = [m.span() for m in re.finditer(pattern,fulfillment_msg[0]['text']['text'][0])] indices = indices[0] first_part = fulfillment_msg[0]['text']['text'][0][:indices[0]] latter_part = fulfillment_msg[0]['text']['text'][0][indices[1]:] fulfillment_msg[0]['text']['text'][0] = first_part+str(replacement)+latter_part def get_user_data(response,intent_name,fulfillment_msg): from run import filename, db, user_data if intent_name=='loan': # pprint(dir(response)) pass elif intent_name=='get name': print('name is',response.query_result.output_contexts[-1].parameters['name']) user_data['name']=response.query_result.output_contexts[-1].parameters['name'] elif intent_name=='amount-1': print('amount is',int(response.query_result.output_contexts[-1].parameters['amount'])) user_data['loan_amt']=int(response.query_result.output_contexts[-1].parameters['amount']) elif intent_name=='loan period': print('duration is',int(response.query_result.output_contexts[-1].parameters['duration']['amount'])) user_data['loan_duration']=int(response.query_result.output_contexts[-1].parameters['duration']['amount']) elif intent_name=='email': print('email is',(response.query_result.output_contexts[-1].parameters['email'])) user_data['email']=response.query_result.output_contexts[-1].parameters['email'] elif intent_name=='pan': user_text = response.query_result.query_text pan = response.query_result.output_contexts[-1].parameters['pan'] if pan=='': for word in user_text.split(): if pan_check(word): pan = word break print('pan is',pan) user_data['pan'] = pan elif intent_name=='PAN pic upload': # upload_pic(filename) user_data['pan_photo'] = filename # count += 1 # os.remove(filename) elif intent_name=='Aadhar number': print('aadhar is',str(int(response.query_result.output_contexts[-1].parameters['aadhar']))) user_data['aadhar_no'] = str(int(response.query_result.output_contexts[-1].parameters['aadhar'])) elif intent_name=='Aadhar pic front': # upload_pic(filename) user_data['aadhar_pic1'] = filename # count += 1 # os.remove(filename) elif intent_name=='Aadhar pic back': # upload_pic(filename) user_data['aadhar_pic2'] = filename credit_ref = db.collection(u'credit_score_data') credit_score = randint(0,900) try: query_result1 = credit_ref.where('pan',u'==',user_data['pan']).get() for i in query_result1: credit_score = i.to_dict()['credit_score'] except Exception as e: print(e) if credit_score < 500: loaner = 0 else: loaner = ((credit_score-500)/400)*int(user_data['loan_amt']) replace_text(r'XXXX',loaner,fulfillment_msg) replace_text(r'YY',user_data['loan_duration'],fulfillment_msg) replace_text(r'ZZZZ',calc_emi(user_data['loan_amt'],user_data['loan_duration']),fulfillment_msg) elif intent_name=='Loan approved - yes': pass elif intent_name=='Loan approved - no': pass elif intent_name=='Bank details': user_text = response.query_result.query_text user_text = user_text.split('\n') user_data['bank_acc']=user_text[0] user_data['ifsc']=user_text[1] pprint(user_data) return user_data
fba992eef1e678333e3f6677e5a63d44ddcf3b6f
8f49ce0587c060819837ce9eaa1ccfd5b7d51be5
/scripts/ReseqTrackDB/create_collection_to_transpose.py
850a5b21b3da9c93f187db1851fc960b4c17403b
[ "Apache-2.0" ]
permissive
igsr/igsr_analysis
8a3f4150b976d5d73ed173f2b37179b6049028e3
ffea4885227c2299f886a4f41e70b6e1f6bb43da
refs/heads/master
2022-12-08T21:24:22.513499
2021-12-09T21:11:12
2021-12-09T21:11:12
99,792,445
3
5
Apache-2.0
2022-12-08T02:26:22
2017-08-09T09:48:48
Jupyter Notebook
UTF-8
Python
false
false
2,763
py
''' Utility to create a new entry in the Reseqtrackdb's Collection table that will be associated to a certain type of files ''' from ReseqTrackDB import * import argparse import logging import os #RESEQTRACK DB conn params parser = argparse.ArgumentParser(description='Script to calculate different QC metrics on BAMs') parser.add_argument('--hostname', type=str, required=True, help='Hostname for ReseqTrack DB' ) parser.add_argument('--username', type=str, required=True, help='User for ReseqTrack DB' ) parser.add_argument('--port', type=int, required=True, help='Port number in the ReseqTrack DB' ) parser.add_argument('--pwd', type=str, help='PWD for the ReseqTrack DB' ) parser.add_argument('--db', type=str, required=True, help='DB name in the ReseqTrack DB' ) parser.add_argument('--ftype_1', type=str, required=True, help='File type1 that will be used to generate the new collection' ) parser.add_argument('--ftype_2', type=str, required=True, help='File type2 that will be used to generate the new collection' ) parser.add_argument('--ftype_3', type=str, required=False, help='File type3 that will be used to generate the new collection' ) parser.add_argument('--collection_type', type=str, required=True, help='Type for the new collection' ) parser.add_argument('--collection_name', type=str, required=True, help='Name for the new collection' ) args = parser.parse_args() def get_files_by_type(reseqdb,type): ''' Parameters ---------- reseqdb : ReseqTrackDB object, Required type : str, Required File type to retrieve Returns ------- A list with dbIDs of the files ''' l=reseqdb.fetch_files_by_type(type) return [x.dbID for x in l] if __name__ == '__main__': log_filename="create_collection_to_transpose.log" logger = logging.getLogger("col_2_transpose") logger.setLevel(logging.INFO) # create the logging file handler fh = logging.FileHandler(log_filename) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) # add handler to logger object logger.addHandler(fh) logger.info("Program started") hostname=args.hostname username=args.username db=args.db port=args.port pwd=args.pwd reseqdb = ReseqTrackDB(host=hostname,user=username,port=port,pwd=pwd,db=db) l1=get_files_by_type(reseqdb,args.ftype_1) l2=get_files_by_type(reseqdb,args.ftype_2) l3=[] if args.ftype_3: l3=get_files_by_type(reseqdb,args.ftype_3) others_ids=list(set(l1+l2+l3)) new_c=Collection(name=args.collection_name,type=args.collection_type,others_dbIDs=others_ids,table_name='file') new_c.store(reseqdb) logger.info("Done")
45b730970e78694e953764270577663bc0f55163
0d58801c59c80eef7468690239d70327708cdbae
/Mapping/Map.py
7cc0ec6c0e7353c4de7dd8bcb6b8518447308422
[]
no_license
mothwal/Python_Dictionary
4f6fd821365a8521222fd1d73b2de2ec61ab0a6e
b310b0f0c53828d0d89d2aed1790f005d60fcb00
refs/heads/main
2023-04-29T04:00:14.015992
2021-05-06T12:39:07
2021-05-06T12:39:07
364,276,320
0
0
null
null
null
null
UTF-8
Python
false
false
954
py
import folium import pandas as pd data = pd.read_csv("Volcanoes.txt") lat = list(data["LAT"]) lon = list(data["LON"]) elev = list(data["ELEV"]) def color_producer(elevation): if elevation < 1000: return 'green' elif 1000 <= elevation < 3000: return 'Orange' else: return 'red' map = folium.Map(location= [38.58, -99.09], zoom_start=6, tiles = "Stamen Terrain") fg = folium.FeatureGroup(name="My Map") for lt, ln, el in zip(lat, lon, elev): fg.add_child(folium.CircleMarker(location=[lt, ln], popup= str(el)+"m", fill_color = color_producer(el),color ='grey', fill_opacity = 0.7)) fg.add_child(folium.GeoJson( data = open(('world.json'), 'r', encoding='utf-8-sig'), style_function=lambda x: {'fillColor':'green' if x['properties']['POP2005'] < 10000000 else 'orange' if 10000000<= x['properties']['POP2005'] < 20000000 else 'red'})) map.add_child(fg) map.save("Map2.html")
cba8befb497e82e42cf5aee10456f152d1264580
23199315118c958279de4b9f7cb1e4443b518c46
/Jiji/asgi.py
ba0f84253310e5d290f16ff3550d480b40277e38
[]
no_license
Robinzulu/Jiji-Api
06e05198172ca779c06a498b7f41183a23784772
47a981af8ef19c8507321723ee45f419451dbb1c
refs/heads/master
2023-04-30T22:38:02.766330
2020-10-27T15:30:17
2020-10-27T15:30:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
""" ASGI config for Jiji project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Jiji.settings') application = get_asgi_application()
120f170cf018653194adb4e24abad7bac1b97950
5cbbeb11fb1400019690d10db24b4579f97e8896
/mlkernels/kernels/derivative.py
a0d74a40a20655d7822642c6d104d4e38e97fc0c
[ "MIT" ]
permissive
darsh8200/mlkernels
b735c213f5cf590cabebcee166e3b4aea95c4e1e
cad223c422a32bc10375358fda076645efca62f1
refs/heads/main
2023-06-16T19:48:37.056247
2021-07-09T06:18:39
2021-07-09T06:18:39
384,340,711
0
0
MIT
2021-07-09T06:16:48
2021-07-09T06:16:47
null
UTF-8
Python
false
false
6,853
py
import lab as B import numpy as np from algebra import DerivativeFunction from algebra.util import identical from matrix import Dense from plum import convert from . import _dispatch from .. import Kernel from ..util import num_elements, uprank, expand __all__ = ["perturb", "DerivativeKernel"] def dkx(k_elwise, i): """Construct the derivative of a kernel with respect to its first argument. Args: k_elwise (function): Function that performs element-wise computation of the kernel. i (int): Dimension with respect to which to compute the derivative. Returns: function: Derivative of the kernel with respect to its first argument. """ @uprank def _dkx(x, y): import tensorflow as tf with tf.GradientTape() as t: # Get the numbers of inputs. nx = num_elements(x) ny = num_elements(y) # Copy the input `ny` times to efficiently compute many derivatives. xis = tf.identity_n([x[:, i : i + 1]] * ny) t.watch(xis) # Tile inputs for batched computation. x = B.tile(x, ny, 1) y = B.reshape(B.tile(y, 1, nx), ny * nx, -1) # Insert tracked dimension, which is different for every tile. xi = B.concat(*xis, axis=0) x = B.concat(x[:, :i], xi, x[:, i + 1 :], axis=1) # Perform the derivative computation. out = B.dense(k_elwise(x, y)) grads = t.gradient(out, xis, unconnected_gradients="zero") return B.concat(*grads, axis=1) return _dkx def dkx_elwise(k_elwise, i): """Construct the element-wise derivative of a kernel with respect to its first argument. Args: k_elwise (function): Function that performs element-wise computation of the kernel. i (int): Dimension with respect to which to compute the derivative. Returns: function: Element-wise derivative of the kernel with respect to its first argument. """ @uprank def _dkx_elwise(x, y): import tensorflow as tf with tf.GradientTape() as t: xi = x[:, i : i + 1] t.watch(xi) x = B.concat(x[:, :i], xi, x[:, i + 1 :], axis=1) out = B.dense(k_elwise(x, y)) return t.gradient(out, xi, unconnected_gradients="zero") return _dkx_elwise def dky(k_elwise, i): """Construct the derivative of a kernel with respect to its second argument. Args: k_elwise (function): Function that performs element-wise computation of the kernel. i (int): Dimension with respect to which to compute the derivative. Returns: function: Derivative of the kernel with respect to its second argument. """ @uprank def _dky(x, y): import tensorflow as tf with tf.GradientTape() as t: # Get the numbers of inputs. nx = num_elements(x) ny = num_elements(y) # Copy the input `nx` times to efficiently compute many derivatives. yis = tf.identity_n([y[:, i : i + 1]] * nx) t.watch(yis) # Tile inputs for batched computation. x = B.reshape(B.tile(x, 1, ny), nx * ny, -1) y = B.tile(y, nx, 1) # Insert tracked dimension, which is different for every tile. yi = B.concat(*yis, axis=0) y = B.concat(y[:, :i], yi, y[:, i + 1 :], axis=1) # Perform the derivative computation. out = B.dense(k_elwise(x, y)) grads = t.gradient(out, yis, unconnected_gradients="zero") return B.transpose(B.concat(*grads, axis=1)) return _dky def dky_elwise(k_elwise, i): """Construct the element-wise derivative of a kernel with respect to its second argument. Args: k_elwise (function): Function that performs element-wise computation of the kernel. i (int): Dimension with respect to which to compute the derivative. Returns: function: Element-wise derivative of the kernel with respect to its second argument. """ @uprank def _dky_elwise(x, y): import tensorflow as tf with tf.GradientTape() as t: yi = y[:, i : i + 1] t.watch(yi) y = B.concat(y[:, :i], yi, y[:, i + 1 :], axis=1) out = B.dense(k_elwise(x, y)) return t.gradient(out, yi, unconnected_gradients="zero") return _dky_elwise def perturb(x): """Slightly perturb a tensor. Args: x (tensor): Tensor to perturb. Returns: tensor: `x`, but perturbed. """ dtype = convert(B.dtype(x), B.NPDType) if dtype == np.float64: return 1e-20 + x * (1 + 1e-14) elif dtype == np.float32: return 1e-20 + x * (1 + 1e-7) else: raise ValueError(f"Cannot perturb a tensor of data type {B.dtype(x)}.") class DerivativeKernel(Kernel, DerivativeFunction): """Derivative of kernel.""" @property def _stationary(self): # NOTE: In the one-dimensional case, if derivatives with respect to both # arguments are taken, then the result is in fact stationary. return False @_dispatch def __eq__(self, other: "DerivativeKernel"): identical_derivs = identical(expand(self.derivs), expand(other.derivs)) return self[0] == other[0] and identical_derivs @_dispatch def pairwise(k: DerivativeKernel, x: B.Numeric, y: B.Numeric): i, j = expand(k.derivs) k = k[0] # Prevent that `x` equals `y` to stabilise nested gradients. y = perturb(y) if i is not None and j is not None: # Derivative with respect to both `x` and `y`. return Dense(dky(dkx_elwise(elwise(k), i), j)(x, y)) elif i is not None and j is None: # Derivative with respect to `x`. return Dense(dkx(elwise(k), i)(x, y)) elif i is None and j is not None: # Derivative with respect to `y`. return Dense(dky(elwise(k), j)(x, y)) else: raise RuntimeError("No derivative specified.") @_dispatch def elwise(k: DerivativeKernel, x: B.Numeric, y: B.Numeric): i, j = expand(k.derivs) k = k[0] # Prevent that `x` equals `y` to stabilise nested gradients. y = perturb(y) if i is not None and j is not None: # Derivative with respect to both `x` and `y`. return dky_elwise(dkx_elwise(elwise(k), i), j)(x, y) elif i is not None and j is None: # Derivative with respect to `x`. return dkx_elwise(elwise(k), i)(x, y) elif i is None and j is not None: # Derivative with respect to `y`. return dky_elwise(elwise(k), j)(x, y) else: raise RuntimeError("No derivative specified.")
076b6e61d9658865cb0085c03eaec021e9efa0cb
87ed123c2ae25e60199b8c70f2160face10304e6
/RegularExpression/subn.py
fb7b8c1f5a70391589a457af520ec212f834e1d8
[]
no_license
asatav/Python-All-Example
53ace669a90aa6ca39683eecadaf298d183b0bff
005be5cd7df87a05d9fbd1e2e56ab319161b4533
refs/heads/master
2022-12-16T03:36:39.745041
2020-08-02T15:58:05
2020-08-02T15:58:05
229,724,176
0
1
null
2022-08-10T19:32:44
2019-12-23T09:54:01
Python
UTF-8
Python
false
false
123
py
import re l=re.subn("[a-z]","#","a7b9c5kz") print(l) print("The result String:",l[0]) print("The no of replacement:",l[1])
544fbfcefebaf2212fecdc24fdd4bd2a6e8b82b9
6889b20eace976fc2402ddab15cfa275dd576a0e
/project-dog-classification/create_lst.py
bba6ce9e15a9e207fcb0f990867ffcfaee52cd1d
[ "MIT" ]
permissive
NoxMoon/deep-learning-v2-pytorch
419bf83450b5cc5675d6b051b0b2f28b2fed0ca3
21e802e2829655e1c30f5283cf4093e584a44cbf
refs/heads/master
2022-09-29T21:35:36.742341
2020-06-07T13:37:38
2020-06-07T13:37:38
264,543,235
2
0
null
2020-05-16T22:59:27
2020-05-16T22:59:26
null
UTF-8
Python
false
false
271
py
import glob import os import sys folder = sys.argv[1] files = glob.glob(f"{folder}/*/*") files.sort() f = open(f"{folder}/image.lst", "w") for i, path in enumerate(files): file = path[len(folder)+1:] cls = int(file[:3])-1 f.write(f"{i}\t{cls}\t{file}\n")
5a88186576cde5a7a08dd9095037fba001566c39
8e1b0feacab1d890745de37eb3db627e48f048d9
/Stack_Plot.py
15ca1d69c30936a9b3b331c18353de8f9e5a8282
[]
no_license
binary13/Python_Web
11831aebfddc96a4840797826e2413e097f9776e
6f44d2102b9728cf0db0c0bb57bc267ac225ef03
refs/heads/master
2021-01-10T14:10:00.100334
2016-03-02T16:16:34
2016-03-02T16:16:34
48,897,818
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
import matplotlib.pyplot as plt year = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ## Expenses, in thousands taxes = [17, 19, 44, 43, 9, 8, 12, 51, 23, 40] overhead = [18, 7, 12, 48, 23, 34, 64, 31, 12, 8] entertainment = [20, 14, 32, 17, 31, 21, 22, 35, 24, 6] plt.plot([], [], color='m', label='Taxes') plt.plot([], [], color='y', label='Overhead') plt.plot([], [], color='c', label='Entertainment') plt.title('Company Expenses') plt.xlabel('Years since 2004') plt.ylabel('Thousands of dollars') plt.legend() plt.stackplot(year, taxes, overhead, entertainment, colors=['m','y','c']) plt.show()
5ae1f6af1af35b0b0ee824897d46848a1289d1da
fbf8acc1cb6e4e20609266865f98dc66d6ea056e
/Zesterp_Debranding_v11/__manifest__.py
737909cab18f400f5e1c15e04a0d61a609744bc4
[]
no_license
eLBati/OdooV11-Modules01
b200477216adfd446b1e8c69d05e923ffe19d70f
921baeb850dcd4d37fedf132e1c86dd3602ec5ef
refs/heads/master
2020-04-20T07:20:04.275007
2017-12-22T14:16:41
2017-12-22T14:16:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
716
py
# -*- coding: utf-8 -*- { 'name': "Zest Erp debranding ", 'version': '10.1.0', 'author': 'Teckzilla Software Solutions and Services', "support": "[email protected]", 'category': 'Debranding', 'depends': [ 'web', 'mail', 'web_settings_dashboard', 'website', 'project', #'pos_odoo_debranding', #'website_odoo_debranding', 'web_planner' # 'access_apps', # 'access_settings_menu', ], 'data': [ 'views/webclient_templates.xml', 'views/change_menu_color.xml' ], 'qweb':[ ], 'auto_install': False, # 'uninstall_hook': 'uninstall_hook', 'installable': True }
3c2491a6d5abcc6470ee886fba3fc562b546b53a
c27995173a5cb066385e278ff4514c9c2e1a3e1c
/BinaryTree/solE226InvertBT.py
17d510c48c59d929ab85e80c56a6c17b81331d41
[]
no_license
jerry3links/leetcode
0f4a184e4487ce7d6a7b655fd1934e818fe74dbf
2b4be9d2ad2476f285dfbc7f702571015fce4d2e
refs/heads/master
2020-04-09T21:17:57.147916
2019-03-20T09:30:47
2019-03-20T09:30:47
160,597,696
0
0
null
null
null
null
UTF-8
Python
false
false
1,190
py
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None """ from BinaryTree.solE226InvertBT import Solution root = Solution().constructCase() print("Original tree:") Solution.printTree(root) new_root = Solution().invertTree(root) print("Inverted tree:") Solution.printTree(new_root) """ class Solution(object): def invertTree(self, root): """ :type root: TreeNode :rtype: TreeNode """ if root: tmp = root.left root.left = self.invertTree(root.right) root.right = self.invertTree(tmp) return root def constructCase(self): from customDataType import TreeNode root = TreeNode(4) root.left = TreeNode(2) root.right = TreeNode(7) root.left.left = TreeNode(1) root.left.right = TreeNode(3) root.right.left = TreeNode(6) root.right.right = TreeNode(9) return root @staticmethod def printTree(root): from customDataType import TreeNode TreeNode.printTree(root)
f3d432c2fb8c4d0597be62456b9989cd7f3d6d59
adde392c3ec37f13ff5ae35cb13556c2683bd95d
/Code/sauce.py
c2900dbd1d1164f83f9d776e04b6c397311ef7de
[]
no_license
clyman88/Robot-Arm
e442ec8ce8d2a40695f767a92fd0a1252f5a6d7a
6b7520bfcbf5c987d893e06f07983fb6e38c7893
refs/heads/master
2020-12-20T08:41:03.623237
2020-03-24T16:04:54
2020-03-24T16:04:54
236,018,512
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
from time import sleep class Sauce(object): def __init__(self, servo, photo_interrupter): self.servo = servo self.photo_interrupter = photo_interrupter servo.angle = 180 def squirt(self): for i in range(90): self.servo.angle = 180 - i sleep(.0075) self.servo.angle = 180
04d910cb2753bf3da1c1f5571d04b66d68695b58
af8c9dd86af67fcb70d4819040b7119fbc57860e
/Solver.py
704b28a93478fb13ff891e30b9816a091dbcb299
[]
no_license
didimelor/NewtonsMethodCalculator
aedcf3a93f12b12f14610753f09b7a76ac10992b
b14c28836bb717e14b0f143d395d18288affa260
refs/heads/main
2023-08-06T17:03:55.554988
2021-09-29T20:20:39
2021-09-29T20:20:39
411,816,953
0
0
null
null
null
null
UTF-8
Python
false
false
3,086
py
import sympy as sym from sympy import * import time import numpy as np from sympy.parsing.mathematica import mathematica import random x = sym.Symbol('x') usrInput = "x**3" expr = x**2 exprD = 2*x def parse(usrInput): global expr usrInput = usrInput.replace("\\", "/") if(usrInput.find("Log" or "log") != -1): mathematica(usrInput) expr = parse_expr(usrInput) expr = simplify(expr) def f(var): return expr.subs(x, var) def df(x,f): h = .00001 upper = f(x+h) lower = f(x) return (upper - lower) / h def Validation(x,f): epsilon = .00001 norm_fx = abs(f(x)) if norm_fx < epsilon: return ["Correcto",1,norm_fx] else: return ["Incorrecto",0,norm_fx] #Clase que guarda atrubutos de cada funcion insertada para verificar y validar el funcionamiento de la pagina class function: def __init__(self, id, sol, it, t, acc, solved, message): self.id = id self.sol = sol self.it = it self.t = t self.acc = acc self.solved = solved #bool if solved self.message = message def Solver11(x0,f): it = 0 maxIt = 10000 start = time.time() x_n = x0 x_n_1 = x_n + .01 step = x_n_1-x_n while (abs(step) > 0.00001 and it < maxIt): it += 1 denominator = df(x_n,f) if denominator != 0: function_result = f(x_n) x_n_1 = x_n - function_result / denominator else: x_n = 0.0 return function(usrInput, x_n, it, (round(time.time() - start,12)), 0.0, 0, "No solution found") step = x_n_1-x_n x_n = x_n_1 if(it > maxIt): x_n = 0.0 return function(usrInput, x_n, 0, (round(time.time() - start,12)), 0.0, 0, "No solution found") arr = Validation((round(x_n,12)), f) return function(usrInput, (round(x_n,12)), it, (round(time.time() - start,12)), (round(arr[2], 12)), 1, "Solved!") #Pruebas unitarias def testSolver(): functions = ["(x*x - 16)", "cos(x)- x**3", "x + 20", "sin(x) \ 20", "1.0 \ x", "x - cos(x)", "0.3**x-x**2+4", "tan(x)", "x-cos(x)", "exp(0.3*x)-x**2+4", "x-(sqrt(x))", "3*(x)*(x)+4*(x)-10"] for function in functions: parse(function) num = random.uniform(0.9, 10.0) num = round(num,3) funcObj = Solver11(num,f) print("Eq: ", function, " " ,funcObj.message, ": " ,funcObj.sol, "x0: ", num) #Correr pruebas unitarias #testSolver() ''' parse("x-(sqrt(x))") funcObj = Solver11(0.25,f) print("Prueba 1: ", funcObj.message, ": " ,funcObj.sol, ". Acc: ", funcObj.acc) #Pruebas del profesor: parse("(2.718**(x**2))-1") funcObj = Solver11(20,f) print("Prueba 1: ", funcObj.message, ": " ,funcObj.sol, ". Acc: ", funcObj.acc) parse("(2.718**(-0.005*x))*(1+0.005*x) - 0.5") funcObj = Solver11(10,f) print("Prueba 2: ", funcObj.message, ": " ,funcObj.sol, ". Acc: ", funcObj.acc) '''
984ff3b520f465da1040870eef5caf08dcc3f920
8825b16d48255397df2ee636215d7967c615b7ac
/plural.py
73c70d88f0896bc2c16b7786580285c406805491
[]
no_license
Gdango/Old_Code
c7786fcb2fbc00fbbb16eeaab1f618ac6f01bfdc
f1b4c60c3a8e9b953af7dc470b02efe0a4183b37
refs/heads/master
2020-04-01T16:47:07.890099
2018-10-17T05:09:30
2018-10-17T05:09:30
153,398,063
0
0
null
null
null
null
UTF-8
Python
false
false
2,348
py
# Van Huynh # ask the user for a noun and prints out its plural form def plural(): word = input('Please enter a word: ') new_word = 'Not' # defining the condition when word end with f if word[-1] == 'f': word_temp = word[0:len(word)-1] new_word = word_temp+'ves' # word_temp = temperary variable for word print('The plural form of', word, 'is', new_word+'.') return new_word elif word[-2]+word[-1] == 'fe': word_temp = word[0:len(word)-2] # word_temp = temperary variable for word new_word = word_temp+'ves' print('The plural form of', word, 'is', new_word+'.') return new_word # putting es and ies conditions in the same for loop es_list = ['ch', 'sh', 's', 'x', 'z'] vowels = ['a', 'e', 'i', 'o', 'u', 'y'] for y in range(0,len(vowels)-1): # define conditions for es if y < 2: # for first 2 items on the es_list so then I can use word[-2] # ch & sh have different lengths from s, x, z if word[-2]+word[-1] == es_list[y]: new_word = word+'es' print('The plural form of', word, 'is', new_word+'.') return new_word if y >= 2: if word[-1] == es_list[y]: new_word = word+'es' print('The plural form of', word ,'is', new_word+'.') return new_word # define conditions for s if y < len(es_list): if word[-2] == vowels[y]: #if the 2nd to last letter = vowels if word[-1] == 'y': new_word = word+'s' print('The plural form of', word,'is', new_word+'.') return new_word #define conditions for 'ies' if word[-2] != 'o' or word[-2] != 'e' or word[-2] != 'i' or word[-2] != 'a' or word[-2] != 'u': if word[-1] == 'y': new_word = word.replace(word[-1], 'ies') print('The plural form of', word, 'is', new_word+'.') return new_word # if new_word didn't go through other ifs, it'll still equal to the pre-define... # ...word ('Not') if new_word == 'Not': new_word = word+'s' print('The plural form of', word, 'is', new_word+'.') return new_word plural()
f1102670ae8cbd4f43677906b15c08c7982d6f38
a7a7fe1f899a3c4f03201d11142b9cf5daeb9240
/experimentMusic/models.py
b8fbc9fa58c826f8711327f1699d35a6fb1eb378
[ "MIT" ]
permissive
hoomanhpa/Hooman-Experiment
fd9e78294177bdb4a4f644c3d6cdfc4f48cc1b59
f8bd543ca3406c64878ee9d47264f46a57d121c0
refs/heads/master
2022-11-30T11:20:49.144335
2020-08-17T20:35:38
2020-08-17T20:35:38
288,278,165
0
0
null
null
null
null
UTF-8
Python
false
false
4,913
py
from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range, ) import json import random author = 'Your name here' doc = """ Your app description """ class Constants(BaseConstants): name_in_url = 'experimentMusic' players_per_group = None num_rounds = 1 with open('C:\\Files\\Test\\oTreeonlineshop-master\\shop\\oTree\\experimentMusic\\products.json', 'r', encoding='utf-8') as jsonfile: data=jsonfile.read() shoppinglist = json.loads(data) with open('C:\\Files\\Test\\oTreeonlineshop-master\\shop\\oTree\\experimentMusic\\music.json', 'r', encoding='utf-8') as jsonfile: data=jsonfile.read() musiclist = json.loads(data) class Subsession(BaseSubsession): pass class Group(BaseGroup): pass class Player(BasePlayer): arousal = models.StringField(choices=[["1", ""], ["2", ""], ["3", ""], ["4", ""], ["5", ""]], widget=widgets.RadioSelectHorizontal, label="labb") pleasure = models.StringField(choices=[["1", ""], ["2", ""], ["3", ""], ["4", ""], ["5", ""]], widget=widgets.RadioSelectHorizontal, label="labb") dominance = models.StringField(choices=[["1", ""], ["2", ""], ["3", ""], ["4", ""], ["5", ""]], widget=widgets.RadioSelectHorizontal, label="labb") paymentplayer = models.StringField(blank=True) sumofprices = models.StringField(blank=True) musicPlayed = models.StringField(blank=True) volume_button_clicked = models.StringField(blank=True) time_choice0 = models.StringField(blank=True) time_choice1 = models.StringField(blank=True) time_choice2 = models.StringField(blank=True) time_choice3 = models.StringField(blank=True) time_choice4 = models.StringField(blank=True) time_choice5 = models.StringField(blank=True) time_choice6 = models.StringField(blank=True) time_choice7 = models.StringField(blank=True) choice00 = models.StringField(blank=True) choice01 = models.StringField(blank=True) choice02 = models.StringField(blank=True) choice03 = models.StringField(blank=True) choice04 = models.StringField(blank=True) choice05 = models.StringField(blank=True) choice06 = models.StringField(blank=True) choice07 = models.StringField(blank=True) choice10 = models.StringField(blank=True) choice11 = models.StringField(blank=True) choice12 = models.StringField(blank=True) choice13 = models.StringField(blank=True) choice14 = models.StringField(blank=True) choice15 = models.StringField(blank=True) choice16 = models.StringField(blank=True) choice17 = models.StringField(blank=True) choice20 = models.StringField(blank=True) choice21 = models.StringField(blank=True) choice22 = models.StringField(blank=True) choice23 = models.StringField(blank=True) choice24 = models.StringField(blank=True) choice25 = models.StringField(blank=True) choice26 = models.StringField(blank=True) choice27 = models.StringField(blank=True) choice30 = models.StringField(blank=True) choice31 = models.StringField(blank=True) choice32 = models.StringField(blank=True) choice33 = models.StringField(blank=True) choice34 = models.StringField(blank=True) choice35 = models.StringField(blank=True) choice36 = models.StringField(blank=True) choice37 = models.StringField(blank=True) choice40 = models.StringField(blank=True) choice41 = models.StringField(blank=True) choice42 = models.StringField(blank=True) choice43 = models.StringField(blank=True) choice44 = models.StringField(blank=True) choice45 = models.StringField(blank=True) choice46 = models.StringField(blank=True) choice47 = models.StringField(blank=True) choice50 = models.StringField(blank=True) choice51 = models.StringField(blank=True) choice52 = models.StringField(blank=True) choice53 = models.StringField(blank=True) choice54 = models.StringField(blank=True) choice55 = models.StringField(blank=True) choice56 = models.StringField(blank=True) choice57 = models.StringField(blank=True) choice60 = models.StringField(blank=True) choice61 = models.StringField(blank=True) choice62 = models.StringField(blank=True) choice63 = models.StringField(blank=True) choice64 = models.StringField(blank=True) choice65 = models.StringField(blank=True) choice66 = models.StringField(blank=True) choice67 = models.StringField(blank=True) choice70 = models.StringField(blank=True) choice71 = models.StringField(blank=True) choice72 = models.StringField(blank=True) choice73 = models.StringField(blank=True) choice74 = models.StringField(blank=True) choice75 = models.StringField(blank=True) choice76 = models.StringField(blank=True) choice77 = models.StringField(blank=True)
7ad450f435acb88841c8494906fa82cf5b80c111
d919d97fe71b4a35d26d97283f951e97fba57cc1
/scripts/studies/cross_section_area.py
9433ffb607a15c9d3bf91a5e67efcdb9a245d26d
[ "MIT" ]
permissive
gregstarr/ttools
9d8130aff475238cdaac09c58a15a1c1936690a2
fc8dcbf094370e9885311126724697830167d931
refs/heads/main
2023-09-01T06:21:53.363830
2021-10-19T00:35:16
2021-10-19T00:35:16
304,731,336
0
0
null
null
null
null
UTF-8
Python
false
false
3,916
py
import numpy as np import bottleneck as bn import pandas import os import matplotlib.pyplot as plt from matplotlib import colors from ttools import config, io, plotting MLT_DITHER = .01 MLAT_DITHER = .01 KP_DITHER = .5 LOG_KP_DITHER = .1 E_FIELD_DITHER = .01 MLT_BINS = 40 MLAT_BINS = 40 CSA_BINS = 40 MLT_BOUNDS = [-12, 12] MLAT_BOUNDS = [40, 80] CSA_BOUNDS = [-4, 0] def plot_param_mlt(trough, param, param_bins=50, param_bounds=None, name='param', norm=None, save_dir=None, time_mask=None, file_extra=None, title_extra=None): if time_mask is None: time_mask = np.ones(trough.shape[0], dtype=bool) mask = np.any(trough[time_mask], axis=1) x = np.broadcast_to(config.mlt_vals[None, :], mask.shape) x = x + np.random.randn(*x.shape) * MLT_DITHER y_sl = (time_mask, ) + (None, ) * (2 - param.ndim) y = np.broadcast_to(param[y_sl], mask.shape) if param_bounds is None: param_bounds = np.quantile(param[np.isfinite(param)], [.01, .99]) mask &= np.isfinite(y) fig, ax = plt.subplots(figsize=(12, 6), tight_layout=True) (counts, *_, pcm) = ax.hist2d(x[mask], y[mask], bins=[MLT_BINS, param_bins], range=[MLT_BOUNDS, param_bounds], cmap='jet', norm=norm) plt.colorbar(pcm) title = f"N = {counts.sum()}{' ' + title_extra if title_extra is not None else ''}" ax.set_title(title) ax.set_xlabel('MLT') ax.set_ylabel(name) if save_dir is not None: fn = f"{name}_mlt_dist{'_' + file_extra if file_extra is not None else ''}{'_norm' if norm is not None else ''}.png" fig.savefig(os.path.join(save_dir, fn)) def plot_param_mlt_set(param, set_param, save_dir, name='param', set_name='set_param', bins=50, param_bounds=None, quantiles=(0, .2, .4, .6, .8, 1)): edges = np.quantile(set_param[np.isfinite(set_param)], quantiles) bounds = [(edges[i], edges[i + 1]) for i in range(len(edges) - 1)] for i, bound in enumerate(bounds): time_mask = (set_param >= bound[0]) & (set_param <= bound[1]) title_extra = f"|| {set_name} = ({bound[0]:.2f}, {bound[1]:.2f})" plot_param_mlt(trough, param, bins, param_bounds, name, time_mask=time_mask, title_extra=title_extra, file_extra=f"{set_name}_{i}", save_dir=save_dir) def plot_lparam_tparam(l_param, t_param, lparam_bins=50, tparam_bins=50, tname='tparam', lname='lparam', mlt_center=0, mlt_width=1.5, save_dir=None): mlt_mask = abs(config.mlt_vals - mlt_center) <= mlt_width x = np.broadcast_to(t_param[:, None], l_param.shape) tparam_bounds = np.nanquantile(t_param, [.01, .99]) lparam_bounds = np.nanquantile(l_param[l_param != 0], [.01, .99]) mask = np.isfinite(t_param)[:, None] & (l_param != 0) & mlt_mask[None, :] fig, ax = plt.subplots(1, 2, figsize=(14, 6), tight_layout=True) counts, *_, pcm = ax[0].hist2d(x[mask], l_param[mask], bins=[tparam_bins, lparam_bins], range=[tparam_bounds, lparam_bounds], cmap='jet') plt.colorbar(pcm) pcm = ax[1].pcolormesh(counts.T / np.sum(counts.T, axis=0, keepdims=True), cmap='jet') plt.colorbar(pcm) ax[0].set_title(f"N = {counts.sum()} || MLT = {mlt_center}") ax[0].set_xlabel(tname) ax[0].set_ylabel(lname) if save_dir is not None: fn = f"{tname}_{lname}_dist{mlt_center % 24:d}.png" fig.savefig(os.path.join(save_dir, fn)) if __name__ == "__main__": # Load trough dataset trough_data = np.load("E:\\dataset.npz") trough = trough_data['trough'] x = trough_data['x'] csa = np.nansum(x * trough, axis=1) # Load Omni omni = io.get_omni_data() # Assemble kp = io.get_kp(trough_data['time']) log_kp = np.log10(kp + 1) e_field = omni['e_field'][trough_data['time']].values plot_lparam_tparam(csa, e_field, 40, 40, 'e_field', 'csa', -6) # plot_param_mlt_set(csa, e_field, "E:\\study plots\\mlt_csa", 'csa', 'csa', CSA_BINS, CSA_BOUNDS) plt.show()
b7723239c4a46c561258470ad64b96116357489b
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-gsn-edf/gsn-edf_ut=2.5_rd=1_rw=0.06_rn=4_u=0.075-0.35_p=harmonic-2/sched=RUN_trial=61/sched.py
d192899a28b503972848e0f3b23908f61c81e5b3
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
-X FMLP -Q 0 -L 3 124 400 -X FMLP -Q 0 -L 3 86 400 -X FMLP -Q 0 -L 3 52 200 -X FMLP -Q 1 -L 2 51 175 -X FMLP -Q 1 -L 2 47 150 -X FMLP -Q 1 -L 2 46 150 -X FMLP -Q 2 -L 1 27 200 -X FMLP -Q 2 -L 1 26 100 -X FMLP -Q 2 -L 1 18 125 -X FMLP -Q 3 -L 1 16 150 -X FMLP -Q 3 -L 1 14 100 -X FMLP -Q 3 -L 1 3 175
96254c047f5ab42412198c47ef93c0af1d2d97ba
e537b9b866c6533ef4c488b0104070a3f865d40e
/joerd/store/s3.py
d0d448ec3dabf9fd4d2a674e36689e3fb00c1ac6
[ "MIT" ]
permissive
mohammadrezabk/joerd
0c3a65ddb746578f9c06574601dc91ea6af2de2e
0b86765156d0612d837548c2cf70376c43b3405c
refs/heads/master
2023-02-14T16:08:59.103192
2017-11-21T17:22:22
2017-11-21T17:22:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,965
py
import boto3 from boto3.s3.transfer import TransferConfig from botocore.exceptions import ClientError from os import walk import os.path from contextlib2 import contextmanager from joerd.tmpdir import tmpdir import traceback import sys import time import logging # extension to mime type mappings to help with serving the S3 bucket as # a web site. if we add the content-type header on upload, then S3 will # repeat it back when the tiles are accessed. _MIME_TYPES = { '.png': 'image/png', '.tif': 'image/tif', '.xml': 'application/xml', '.gz': 'application/x-gzip', } # Stores files in S3 class S3Store(object): def __init__(self, cfg): self.bucket_name = cfg.get('bucket_name') self.upload_config = cfg.get('upload_config') assert self.bucket_name is not None, \ "Bucket name not configured for S3 store, but it must be." # cache the boto resource and s3 bucket - we don't know what this # contains, so it seems safe to assume we can't pass it across a # multiprocessing boundary. self.s3 = None self.bucket = None # This object is likely to get pickled to send it to other processes # for multiprocessing. However, the s3/boto objects are probably not # safe to be pickled, so we'll just set them to None and regenerate # them on the other side. def __getstate__(self): odict = self.__dict__.copy() del odict['s3'] del odict['bucket'] return odict def __setstate__(self, d): self.__dict__.update(d) self.s3 = None self.bucket = None def _get_bucket(self): if self.s3 is None or self.bucket is None: self.s3 = boto3.resource('s3') self.bucket = self.s3.Bucket(self.bucket_name) return self.bucket def upload_all(self, d): # strip trailing slashes so that we're sure that the path we create by # removing this as a prefix does not start with a /. if not d.endswith('/'): d = d + "/" transfer_config = TransferConfig(**self.upload_config) for dirpath, dirs, files in walk(d): if dirpath.startswith(d): suffix = dirpath[len(d):] self._upload_files(dirpath, suffix, files, transfer_config) def _upload_files(self, dirpath, suffix, files, transfer_config): for f in files: src_name = os.path.join(dirpath, f) s3_key = os.path.join(suffix, f) ext = os.path.splitext(f)[1] mime = _MIME_TYPES.get(ext) extra_args = {} if mime: extra_args['ContentType'] = mime # retry up to 6 times, waiting 32 (=2^5) seconds before the final # attempt. tries = 6 self.retry_upload_file(src_name, s3_key, transfer_config, extra_args, tries) def retry_upload_file(self, src_name, s3_key, transfer_config, extra_args, tries, backoff=1): logger = logging.getLogger('s3') bucket = self._get_bucket() try_num = 0 while True: try: bucket.upload_file(src_name, s3_key, Config=transfer_config, ExtraArgs=extra_args) break except StandardError as e: try_num += 1 logger.warning("Try %d of %d: Failed to upload %s due to: %s" \ % (try_num, tries, s3_key, "".join(traceback.format_exception( *sys.exc_info())))) if try_num > tries: raise time.sleep(backoff) backoff *= 2 @contextmanager def upload_dir(self): with tmpdir() as t: yield t self.upload_all(t) def exists(self, filename): bucket = self._get_bucket() exists = False try: obj = bucket.Object(filename) obj.load() except ClientError as e: code = e.response['Error']['Code'] # 403 is returned instead of 404 when the bucket doesn't allow # LIST operations, so treat that as missing as well. if code == "404" or code == "403": exists = False else: raise e else: exists = True return exists def get(self, source, dest): try: bucket = self._get_bucket() obj = bucket.Object(source) obj.download_file(dest) except: raise RuntimeError("Failed to download %r, due to: %s" % (source, "".join(traceback.format_exception( *sys.exc_info())))) def create(cfg): return S3Store(cfg)
e97b43e6535a9db4e2321537db91770231b38db0
8acd480d0c5205e9f9d10fbe9dd18c32c700d567
/summapy/summapy/summaPaths.py
f7367dd52201b179d53441bb5fad5ea07db5db3b
[]
no_license
klapo/ModTsfc
743480783877ef76cc52eaba1b1c3e7f6ef2397d
92f43e2c6dbc506a451a05b6efdf68445115b381
refs/heads/master
2020-12-03T02:13:06.865944
2017-06-30T19:13:06
2017-06-30T19:13:06
95,917,039
0
0
null
null
null
null
UTF-8
Python
false
false
2,100
py
import os def buildFileName(fName, expID, fType='.txt'): if not expID == '': expID = '_' + expID fullFilename = fName + expID + fType return fullFilename def checkFile(dirModel, siteID, expName, fName, expID='', fType='.txt', mode='w'): # Checks that path exists # Creates path to desired file, fName # Opens file # Returns object of the open file, fin # # INPUT: # dirModel: string to model directory # siteID: string of the site name # expName: string of the experiment name # fName: string of the file name. Needs to end in an underscore # expID: string of the experiment ID # # Files relevant to the entire experiment/run should not provide expID. # Files for a specific run/experiment should provide expID # Do not include underscores in strings, they are automatically included # File path and name fPath = checkPath(dirModel, siteID, expName, expID) fullFilename = buildFileName(fName, expID, fType) newFile = fPath + '/' + fullFilename # Open/create and return object fin = open(newFile, mode) return(fin) def checkPath(dirModel, siteID, expName, expID=''): # Checks that path exists # Creates desired path exists # # INPUT: # dirModel: string to model directory # siteID: string of the site name # expName: string of the experiment name # fName: string of the file name. Needs to end in an underscore # expID: string of the experiment ID # # Files relevant to the entire experiment/run should not provide expID. # Files for a specific run/experiment should provide expID. # Do not include underscores in strings, they are automatically included if not expID == '': expID = '_' + expID # File path if dirModel[-1] == '/': fPath = dirModel + expName + '/' + siteID else: fPath = dirModel + '/' + expName + '/' + siteID # Open file for reading if not os.path.exists(fPath): os.makedirs(fPath) os.chmod(fPath, mode=0o777) return(fPath)
c767f67a27d2bf85ee3d55adcf7982bd2c6c5109
5dcefbd0ed48007b57d47ec2e74b16f344769271
/models/cat_potreros.py
ac1fcecef658a5a2e434d0cccbb1a0621cd5c95a
[]
no_license
roxolea5/gana2
127bd0a51682a3fabe097e9b278582d515b9095e
7452cdfb8c18db0a28234b039b0375a1d1ee7eb0
refs/heads/master
2022-12-29T10:22:01.491372
2020-10-15T01:35:17
2020-10-15T01:35:17
293,363,453
0
0
null
2020-10-15T01:35:18
2020-09-06T21:20:33
Python
UTF-8
Python
false
false
363
py
from sqlalchemy_serializer import SerializerMixin from extensions.db import DB db = DB.db DB_ENGINE = 'dev' class Potrero(db.Model, SerializerMixin): __bind_key__ = DB_ENGINE __tablename__ = 'cat_potreros' __table_args__ = { 'autoload': True, 'autoload_with': DB.engines[DB_ENGINE].engine } def __init__(self): pass
cbd0426653d0bdcaf34cbdaf86cd071eb58163b8
a6ab2735ff2f89adc64a4afcbfe013c1039198a1
/scrapers/liverpool.py
417b56688c24c6978ebc90919fea9056e20e3935
[]
no_license
rehmanali1337/innvictus_scraper
72e5049dd2c3d391f47d37e145edb2bf7c6a371d
bcb4e986c1922b20d61baca88e6ff03909bca518
refs/heads/master
2023-05-06T21:43:27.163117
2021-05-26T05:04:29
2021-05-26T05:04:29
341,820,871
2
1
null
null
null
null
UTF-8
Python
false
false
3,929
py
from selenium import webdriver import asyncio import json from models.cache import ListCache from models.products import LiverPoolProduct from configs import global_vars import logging class LiverPoolNewProdsScraper: def __init__(self, queue): self.config = json.load(open(global_vars.MAIN_CONFIG_FILE_LOCATION)) self.queue = queue print = logging.getLogger(' LiverpoolMonitor ').info self.options = webdriver.ChromeOptions() self.options.add_argument('--no-sandbox') # self.options.add_argument('--headless') self.options.add_argument('--disable-dev-shm-usage') self.options.add_argument('start-maximized') self.options.add_argument('disable-infobars') self.webdriver_path = self.config.get("WEBDRIVER_PATH") self.loop = asyncio.new_event_loop() self.driver = None self.URLs = [ 'https://www.liverpool.com.mx/tienda/zapatos/catst1105210', 'https://www.liverpool.com.mx/tienda/zapatos/catst1010801', 'https://www.liverpool.com.mx/tienda/zapatos/catst1011086' ] self.itter_time = 10 def start(self): self.cache = ListCache('LiverPoolCache') self.loop.run_until_complete(self.main()) async def main(self): self.driver = webdriver.Chrome( executable_path=self.webdriver_path, options=self.options) self.driver.implicitly_wait(10) # await self.create_cache() while True: try: all_links = await self.get_all_prod_links() print(f'[+] Got {len(all_links)} prod links!') for link in all_links: if not self.cache.has_item(link): prod = await self.get_prod_details(link) self.queue.put(prod) self.cache.add_item(link) await asyncio.sleep(self.itter_time) except Exception as e: print(e) async def create_cache(self): print('[+] Creating cache ..') links = await self.get_all_prod_links() self.cache.replace_cache(links) print('[+] Created cache for prods') async def get_all_prod_links(self): links = [] for url in self.URLs: self.driver.get(url) prods_list = self.driver.find_elements_by_xpath( '//li[@class="m-product__card card-masonry"]') for prod in prods_list: link = prod.find_element_by_tag_name('a').get_attribute('href') links.append(link) return links async def get_prod_details(self, link): self.driver.get(link) prod = LiverPoolProduct() prod.name = self.driver.find_element_by_xpath( '//h1[@class="a-product__information--title"]').text prod.link = link out_of_stock_sizes = self.driver.find_elements_by_xpath( '//button[@class="a-btn a-btn--actionpdp -disabled"]') for size in out_of_stock_sizes: prod.out_of_stock_sizes.append(size.text) in_stock_sizes = self.driver.find_elements_by_xpath( '//button[@class="a-btn a-btn--actionpdp"]') for size in in_stock_sizes: prod.in_stock_sizes.append(size.text) prod.img_link = self.driver.find_element_by_xpath( '//img[@id="image-real"]').get_attribute('src') prod.color = self.driver.find_element_by_xpath( '//p[@class="a-product__paragraphColor m-0 mt-2 mb-1"]').text.split(':')[-1].strip() prod.price = self.driver.find_element_by_xpath( '//p[@class="a-product__paragraphDiscountPrice m-0 d-inline "]').text.split('\n')[0].replace(',', '').replace('$', '') return prod # def quit_browser(self): # if self.driver is not None: # self.driver.quit() # self.driver = None
372ea6ce32ae8cbc41d924505045866e1e02297f
75b3ea89493d4bdea58d0aeeb33bb69c9114764a
/LinkedLists/MoveLastNodeToFront.py
71451cb0bb3fd0e77123103eedd3c859d96a8d77
[]
no_license
BabuChandermaniRawat/DSA
f15fc57cbb260c9aca430fac319ab73e12b4a17f
98ec99835f9b004405cf3f853b555bd633e71071
refs/heads/main
2023-05-31T06:24:04.393337
2021-06-08T20:44:09
2021-06-08T20:44:09
370,409,282
1
0
null
2021-05-25T04:18:45
2021-05-24T16:00:25
null
UTF-8
Python
false
false
1,250
py
class Solution: def moveLastItemToFront(self, head: ListNode) -> ListNode: """ Approach 1: swapping the elements """ def valuesSwappingApproach(head): if not head and not head.next: return head first = head result = head while head.next is None: head = head.next #swap values and return the result pointer first.val, head.val = head.val, first.val return result """ Approach 2: split the linkedList into 3 parts and return the new orientation """ def splittingListApproach(head): if not head and not head.next: return head first = head second = head.next first.next = None third = second if third.next.next: #logic for more than 2 elements in list while third.next.next: third = third.next secondEnd = third third = third.next secondEnd.next = first third.next = second return third else: second.next = first return second
76ddc9c06c47c12598e6d3cefacae20640a6f2cb
174edd84c3372e2f062dfb58848153391b44a9ea
/spec/logic.py
75efefcd89862e45766efb341b03ef1d9a0d0645
[]
no_license
psavine42/viper-server
7803e3282c98dcc978f4f195aef87acc4861b8bd
dab58a979ab238d65735953c71cae6c288400144
refs/heads/master
2020-03-26T15:28:22.823335
2018-11-28T03:42:34
2018-11-28T03:42:34
145,045,447
0
0
null
null
null
null
UTF-8
Python
false
false
11,533
py
from unittest import TestCase import numpy as np from operator import eq from pprint import pprint from shapely.geometry import LineString, Point from spec.seg_data import * from src.rules.opers import * from src import visualize, SystemFactory, RenderNodeSystem from src.rules import RuleEngine, KB, heursitics from src.rules.property import Property from src import process, viper from src import propogate as gp from src.geom import rebuild_mls, to_mls import src.structs as gr import src.render.render_propogators as rpg def read_props(node, k): # print(node , ':', node.tmps) return node.get(k, None) _root = (2, 1, 0) def node_line(line, prev=None): for i in range(len(line)): n = Node(line[i]) if prev is None: prev = n else: n.connect_to(prev) prev = n return prev def node_tree(pts, prev=None): for i in range(len(pts)): pt = pts[i] if isinstance(pt[0], int): n = Node(pt) if prev is None: prev = n else: n.connect_to(prev) prev = n elif isinstance(pt[0], tuple): pt, rest = pts[i] n = Node(pt) if prev is None: prev = n else: n.connect_to(prev) node_tree(rest, n) prev = n return prev class TestProp(TestCase): def get_sys(self): system = SystemFactory.from_segs(SEGMENTS, root=_root, lr='a') system = system.bake() return viper.nx_to_nodes(system) def test_dist_prop(self): root = self.get_sys() propagator = gp.DistanceFromSource() propagator(root) for n in root.__iter__(): pred = n.predecessors() if len(pred) == 1: assert pred[0].get(propagator.var) + 1 == n.get(propagator.var) def test_order_prop(self): root = self.get_sys() propagator = gp.BuildOrder() propagator(root) order = set() cnt = 0 for n in root.__iter__(): print(n) cnt += 1 order.add(n.get(propagator.var)) assert len(order) == cnt def test_dist_to_end(self): root = self.get_sys() propagator = gp.DistanceFromEnd() propagator(root) for n in root.__iter__(): if len(n.successors()) == 0: assert n.get(propagator.var) == 0 def test_loop_neg(self): root = self.get_sys() propagator = gp.LoopDetector() propagator(root, data=[]) for n in root.__iter__(): assert n.get(propagator.var) is not True def test_loop_pos(self): connect_loop = [(8., 8., 0), (4., 4., 0)] SEGMENTS.append(connect_loop) system = SystemFactory.from_segs(SEGMENTS, root=_root, lr='a') system = system.bake() root = viper.nx_to_nodes(system) propagator = gp.LoopDetector() propagator(root, data=[]) for n in root.__iter__(): if n.geom in connect_loop: assert n.get(propagator.var) is True def test_edge_det(self): root = self.get_sys() propagator = gp.DirectionWriter() propagator(root) for n in root.__iter__(): for e in n.successors(edges=True): print(e) def test_overlap_resolver(self): pass def test_remover_sm(self): system = SystemFactory.from_segs( SEGMENTS, sys=viper.System, root=_root, lr='a') system.bake() system.gplot(fwd=True, bkwd=False) def test_remover_cl(self): system = SystemFactory.from_segs( SEGMENTS_COL, sys=viper.System, root=_root, lr='a') system.aplot() def test_remover_lg(self): segs = load_segs() system = SystemFactory.from_serialized_geom( segs, sys=viper.System, root=(-246, 45, 0)) system.bake() system.gplot(fwd=True, bkwd=False) def test_reverse(self): n1 = Node(1) n2 = Node(2) edge = n1.connect_to(n2) edge.reverse() assert edge.target == n1 assert edge.source == n2 def test_merge_self(self): n1 = [(1, 1), (1, 4.8), (1.2, 5), (1, 5.2), (1, 10)] prev = node_line(n1) gp.Cluster()(prev) for n in prev.__iter__(fwd=True, bkwd=True): print(n, *n.neighbors()) def test_geom_sims(self): l2 = LineString([(1, 2), (1, 4), (4, 6), (4, 8)]) l1 = LineString([(1, 3), (1, 4), (4, 6), (1, 4)]) print(l1) ds = l1.union(l1) print(ds) def test_adder(self): n1 = [(1, 2), (1, 4), (4, 6), (4, 8)] prev = node_line(n1) ndd = Node((1, 3)) pa = gp.PointAdder(ndd) pa(prev) for n in prev.__iter__(fwd=True, bkwd=True): print(n) G = viper.nodes_to_nx(prev) visualize.gplot(G) def test_point(self): point = Point(1, 8) l3 = [(1, 3), (1, 10), (10, 6)] r3 = to_mls(l3) print(r3) res = rebuild_mls(r3, point) print(res) tgt = to_mls([(1, 3), (1, 8), (1, 10), (10, 6)]) assert res == tgt def test_254(self): segs = load_segs() segs, syms = SystemFactory.to_segments(segs) fsg = [] fsm = [] print(syms[0]) mx = -260 mn = -270 for seg in segs: sg = list(seg.coords) if mn < sg[0][0] < mx or mn < sg[1][0] < mx: fsg.append(seg) for seg in syms: sg = list(seg.coords) if mn < sg[0][0] < mx: fsm.append(seg) print(fsm[0]) system = viper.SystemV3(segments=fsg, symbols=fsm, root=(-246, 45, 0)) system.aplot() class TestRenderProp(TestCase): def test_riser_fn(self): root = self.test_translate() rcp = viper.System.recipe() rcp(root) rules = heursitics.EngineHeurFP() Eng = RuleEngine(term_rule=rules.root) Kb = KB(rules.root) root = Eng.alg2(root, Kb) renderer = RenderNodeSystem() root = renderer.render(root) print('nodes ', len(root)) visualize.print_iter(root) meta = Eng.annotate_type(root, rules.final_labels) visualize.plot3d(root, meta) def test_translate(self): root = vertical_branch() end1 = gr.node_at(root, (8, 6, 0)) root2 = vertical_branch() rpg.Translate()(root2, data=np.array([8, 8, 0])) end1.connect_to(root2) return root # visualize.plot3d(root2, {}) class TestLogic(TestCase): def tearDown(self): self.term = None def test_prop1(self): cond = IF('nsucs', eq, 0) isEnd = Property('IsEnd', cond) node1 = Node(1) assert cond(node1) is True res1 = isEnd(node1) assert res1 is True assert node1.get('IsEnd') is True node2 = Node(2) node1.connect_to(node2) assert cond(node1) is False def test_and(self): is_symbol = HAS('symbol') is_end = IF('nsucs', eq, 0) is_circle = IF('symbol', eq, GeomType.CIRCLE) is_drop_head = AND(is_end, is_circle) # setup Nodes n0 = Node(0) n1 = Node(1, symbol=GeomType.CIRCLE) n2 = Node(2, symbol=GeomType.CIRCLE) # graph n0.connect_to(n1) n1.connect_to(n2) assert is_drop_head(n1) is False assert is_drop_head(n2) is True assert is_symbol(n0) is False assert is_symbol(n1) is True def test_itm(self): n0 = Node(0, symbol=GeomType.CIRCLE) n1 = Node(1) n2 = Node(2, symbol=GeomType.CIRCLE) n0.connect_to(n1) n1.connect_to(n2) read_props(n2, 'IsDrop') # assert self.term(n0) is True read_props(n2, 'IsDrop') print('\n') print(n0, n0.tmps) print(n1, n1.tmps) print(n2, n2.tmps) assert read_props(n2, 'IsDrop') is True assert read_props(n0, 'IsRiser') is True assert not read_props(n2, 'IsRiser') def test_eng(self): print('\n') rl = RuleEngine(term_rule=self.term) pprint(rl._freq) def test_eng2(self): from src.rules.heursitics import EngineHeurFP rules = EngineHeurFP() Eng = RuleEngine(term_rule=rules.root) system = SystemFactory.from_segs(SEGMENTS, root=_root, lr='a') system = system.bake() root = viper.nx_to_nodes(system) root = Eng.yield_queue(root) nxg = Eng.plot(root, rules.final_labels) def test_compile_eng3(self): rules = heursitics.EngineHeurFP() Eng = RuleEngine(term_rule=rules.root) Kb = KB(rules.root) print(Kb.get_vars()) print(Kb.agenda) def test_eng3(self): rules = heursitics.EngineHeurFP() Eng = RuleEngine(term_rule=rules.root, mx=400, debug=True, nlog=1) _root = (2, 1, 0) system = SystemFactory.from_segs(SEGMENTS, root=_root, lr='a') system = system.bake() root = viper.nx_to_nodes(system) Kb = KB(rules.root) print(Kb) root = Eng.alg2(root, Kb, ) nxg = Eng.plot(root, rules.final_labels) def test_eng4(self): system = SystemFactory.from_serialized_geom(load_segs(), sys=viper.System, root=(-246, 45, 0)) system = system.bake() root = viper.nx_to_nodes(system) print(root) rules = heursitics.EngineHeurFP() Eng = RuleEngine(term_rule=rules.root, mx=2500, debug=False, nlog=20) Kb = KB(rules.root) root = Eng.alg2(root, Kb) nxg = Eng.plot(root, rules.final_labels) def test_eng5(self): data = load_segs(fl='1535158393.0-revit-signal') system = SystemFactory.from_serialized_geom( data, sys=viper.System, root=(-246, 45, 0)) system = system.bake() root = system.root print(root) rules = heursitics.EngineHeurFP() Eng = RuleEngine(term_rule=rules.root, mx=2500, debug=False, nlog=20) Kb = KB(rules.root) root = Eng.alg2(root, Kb) print('nodes ', len(root)) renderer = RenderNodeSystem() meta = Eng.annotate_type(root, rules.final_labels) root = renderer.render(root) print('nodes ', len(root)) visualize.plot3d(root, meta) def test_eng_full(self): """ Test the engine as executed by server """ import time start = time.time() data = load_segs(fl='1535158393.0-revit-signal') points = [[-246.0000000012448, 45.31190012691635, 0.0]] proc = process.SystemProcessorV3() ds = proc.process(data, points, system_type='FP') [print(k, len(v)) for k, v in ds.items()] visualize.dump_data(ds) for g in ds['geom']: x1, y1, z1, x2, y2, z2 = g res = [x1 == x2, y1 == y2, z1 == z2] assert not all(res) end = time.time() print('time {} secs'.format(end - start)) def test_loadsyms(self): segs = load_segs() ds = [x for x in segs if x['children'] != []] system = SystemFactory.from_serialized_geom(ds, root=(-246, 45, 0))
249da4760ecd8254331c7befd8d0738778611bc5
fc558ed0bccbbd0edf52e662b310168a1b97ab56
/tests/pcie/test_pcie.py
5d1ce746a21aa2e7bcc4a0d8b0844f115ebdeb15
[ "MIT" ]
permissive
bigdot123456/cocotbext-pcie
914f4ac458901d93edb4447e65c24a1b30f39ea1
19e891adf9c45226cbbe2184199be7d904d0901e
refs/heads/master
2023-06-07T07:38:47.289302
2021-06-17T08:59:28
2021-06-17T08:59:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,020
py
#!/usr/bin/env python """ Copyright (c) 2020 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import os import cocotb_test.simulator import cocotb from cocotb.regression import TestFactory from cocotbext.pcie.core import RootComplex, MemoryEndpoint, Device, Switch from cocotbext.pcie.core.caps import MsiCapability from cocotbext.pcie.core.utils import PcieId class TestEndpoint(MemoryEndpoint): __test__ = False def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.vendor_id = 0x1234 self.device_id = 0x5678 self.msi_cap = MsiCapability() self.msi_cap.msi_multiple_message_capable = 5 self.msi_cap.msi_64bit_address_capable = 1 self.msi_cap.msi_per_vector_mask_capable = 1 self.register_capability(self.msi_cap) self.add_mem_region(1024*1024) self.add_prefetchable_mem_region(1024*1024) self.add_io_region(1024) class TB: def __init__(self, dut): self.dut = dut self.log = logging.getLogger("cocotb.tb") self.log.setLevel(logging.DEBUG) self.rc = RootComplex() self.ep = [] ep = TestEndpoint() self.dev = Device(ep) self.dev.upstream_port.max_link_speed = 3 self.dev.upstream_port.max_link_width = 16 self.ep.append(ep) self.rc.make_port().connect(self.dev) self.sw = Switch() self.rc.make_port().connect(self.sw) ep = TestEndpoint() self.dev2 = Device(ep) self.dev2.upstream_port.max_link_speed = 3 self.dev2.upstream_port.max_link_width = 16 self.ep.append(ep) self.sw.make_port().connect(self.dev2) ep = TestEndpoint() self.dev3 = Device(ep) self.dev3.upstream_port.max_link_speed = 3 self.dev3.upstream_port.max_link_width = 16 self.ep.append(ep) self.sw.make_port().connect(self.dev3) ep = TestEndpoint() self.dev4 = Device(ep) self.dev4.upstream_port.max_link_speed = 3 self.dev4.upstream_port.max_link_width = 16 self.ep.append(ep) self.rc.make_port().connect(self.dev4) async def run_test_rc_mem(dut): tb = TB(dut) tb.rc.log.setLevel(logging.DEBUG) mem_base, mem_data = tb.rc.alloc_region(1024*1024) io_base, io_data = tb.rc.alloc_io_region(1024) for length in list(range(1, 32))+[1024]: for offset in list(range(8))+list(range(4096-8, 4096)): tb.log.info("Memory operation length: %d offset: %d", length, offset) addr = mem_base+offset test_data = bytearray([x % 256 for x in range(length)]) await tb.rc.mem_write(addr, test_data) assert mem_data[offset:offset+length] == test_data assert await tb.rc.mem_read(addr, length) == test_data for length in list(range(1, 32)): for offset in list(range(8)): tb.log.info("IO operation length: %d offset: %d", length, offset) addr = io_base+offset test_data = bytearray([x % 256 for x in range(length)]) await tb.rc.io_write(addr, test_data) assert io_data[offset:offset+length] == test_data assert await tb.rc.io_read(addr, length) == test_data async def run_test_config(dut): tb = TB(dut) tb.rc.log.setLevel(logging.DEBUG) tb.log.info("Read complete config space") orig = await tb.rc.config_read(PcieId(0, 1, 0), 0x000, 256, 1000, 'ns') tb.log.info("Read and write interrupt line register") await tb.rc.config_write(PcieId(0, 1, 0), 0x03c, b'\x12', 1000, 'ns') val = await tb.rc.config_read(PcieId(0, 1, 0), 0x03c, 1, 1000, 'ns') assert val == b'\x12' tb.log.info("Write complete config space") await tb.rc.config_write(PcieId(0, 1, 0), 0x000, orig, 1000, 'ns') async def run_test_enumerate(dut): tb = TB(dut) all_ep = tb.rc.endpoints+[tb.sw.upstream_bridge]+tb.sw.endpoints+tb.ep tb.rc.log.setLevel(logging.DEBUG) for ep in all_ep: ep.log.setLevel(logging.DEBUG) await tb.rc.enumerate(enable_bus_mastering=True, configure_msi=True) # check that enumerated tree matches devices def check_dev(dev): tb.log.info("Check device at %s", dev.pcie_id) # ensure ID was assigned to device assert dev.pcie_id != PcieId(0, 0, 0) # get tree item ti = tb.rc.tree.find_child_dev(dev.pcie_id) assert ti is not None # check informational registers tb.log.info("Header type: 0x%02x", ti.header_type) tb.log.info("Vendor ID: 0x%04x", ti.vendor_id) tb.log.info("Device ID: 0x%04x", ti.device_id) tb.log.info("Revision ID: 0x%02x", ti.revision_id) tb.log.info("Class code: 0x%06x", ti.class_code) assert ti.header_type == dev.header_layout | (bool(dev.multifunction_device) << 7) assert ti.class_code == dev.class_code assert ti.revision_id == dev.revision_id assert ti.vendor_id == dev.vendor_id assert ti.device_id == dev.device_id if ti.header_type & 0x7f == 0x01: # bridge bar_cnt = 2 # check bridge registers tb.log.info("Primary bus %d", ti.pri_bus_num) tb.log.info("Secondary bus %d", ti.sec_bus_num) tb.log.info("Subordinate bus %d", ti.sub_bus_num) tb.log.info("IO base 0x%08x", ti.io_base) tb.log.info("IO limit 0x%08x", ti.io_limit) tb.log.info("Mem base 0x%08x", ti.mem_base) tb.log.info("Mem limit 0x%08x", ti.mem_limit) tb.log.info("Prefetchable mem base 0x%016x", ti.prefetchable_mem_base) tb.log.info("Prefetchable mem limit 0x%016x", ti.prefetchable_mem_limit) assert ti.sec_bus_num == dev.sec_bus_num assert ti.sub_bus_num == dev.sub_bus_num assert ti.io_base == dev.io_base assert ti.io_limit == dev.io_limit assert ti.mem_base == dev.mem_base assert ti.mem_limit == dev.mem_limit assert ti.prefetchable_mem_base == dev.prefetchable_mem_base assert ti.prefetchable_mem_limit == dev.prefetchable_mem_limit else: bar_cnt = 6 tb.log.info("Subsystem vendor ID: 0x%04x", ti.subsystem_vendor_id) tb.log.info("Subsystem ID: 0x%04x", ti.subsystem_id) assert ti.subsystem_vendor_id == dev.subsystem_vendor_id assert ti.subsystem_id == dev.subsystem_id # check BARs bar = 0 while bar < bar_cnt: if d.bar_mask[bar] == 0: # unused bar assert ti.bar[bar] is None assert ti.bar_raw[bar] == 0 assert ti.bar_addr[bar] is None assert ti.bar_size[bar] is None bar += 1 elif d.bar[bar] & 1: # IO BAR tb.log.info("BAR%d: IO BAR addr 0x%08x, size %d", bar, ti.bar_addr[bar], ti.bar_size[bar]) assert ti.bar[bar] == d.bar[bar] assert ti.bar_raw[bar] == d.bar[bar] assert ti.bar_addr[bar] == d.bar[bar] & ~0x3 assert ti.bar_size[bar] == (~d.bar_mask[bar] & 0xfffffffc)+0x4 bar += 1 elif d.bar[bar] & 4: # 64 bit BAR tb.log.info("BAR%d: Mem BAR (32 bit) addr 0x%08x, size %d", bar, ti.bar_addr[bar], ti.bar_size[bar]) assert ti.bar[bar] == d.bar[bar] | d.bar[bar+1] << 32 assert ti.bar_raw[bar] == d.bar[bar] assert ti.bar_raw[bar+1] == d.bar[bar+1] assert ti.bar_addr[bar] == (d.bar[bar] | d.bar[bar+1] << 32) & ~0xf assert ti.bar_size[bar] == (~(d.bar_mask[bar] | d.bar_mask[bar+1] << 32) & 0xfffffffffffffff0)+0x10 bar += 2 else: # 32 bit BAR tb.log.info("BAR%d: Mem BAR (64 bit) addr 0x%08x, size %d", bar, ti.bar_addr[bar], ti.bar_size[bar]) assert ti.bar[bar] == d.bar[bar] assert ti.bar_raw[bar] == d.bar[bar] assert ti.bar_addr[bar] == d.bar[bar] & ~0xf assert ti.bar_size[bar] == (~d.bar_mask[bar] & 0xfffffff0)+0x10 bar += 1 if d.expansion_rom_addr_mask == 0: assert ti.expansion_rom_raw == 0 assert ti.expansion_rom_addr is None assert ti.expansion_rom_size is None else: assert ti.expansion_rom_raw & 0xfffff800 == dev.expansion_rom_addr assert ti.expansion_rom_addr == dev.expansion_rom_addr assert ti.expansion_rom_size == (~d.expansion_rom_addr_mask & 0xfffff800)+0x800 # TODO capabilities for d in all_ep: check_dev(d) # check settings in enumerated tree def check_tree(ti): tb.log.info("Check bridge at %s", ti.pcie_id) tb.log.info("Header type: 0x%02x", ti.header_type) tb.log.info("Vendor ID: 0x%04x", ti.vendor_id) tb.log.info("Device ID: 0x%04x", ti.device_id) tb.log.info("Revision ID: 0x%02x", ti.revision_id) tb.log.info("Class code: 0x%06x", ti.class_code) tb.log.info("Primary bus: %d", ti.pri_bus_num) tb.log.info("Secondary bus: %d", ti.sec_bus_num) tb.log.info("Subordinate bus: %d", ti.sub_bus_num) tb.log.info("IO base: 0x%08x", ti.io_base) tb.log.info("IO limit: 0x%08x", ti.io_limit) tb.log.info("Mem base: 0x%08x", ti.mem_base) tb.log.info("Mem limit: 0x%08x", ti.mem_limit) tb.log.info("Prefetchable mem base: 0x%016x", ti.prefetchable_mem_base) tb.log.info("Prefetchable mem limit: 0x%016x", ti.prefetchable_mem_limit) bus_regions = [] io_regions = [] mem_regions = [] prefetchable_mem_regions = [] for ci in ti: tb.log.info("Check device at %s", ci.pcie_id) tb.log.info("Header type: 0x%02x", ci.header_type) tb.log.info("Vendor ID: 0x%04x", ci.vendor_id) tb.log.info("Device ID: 0x%04x", ci.device_id) tb.log.info("Revision ID: 0x%02x", ci.revision_id) tb.log.info("Class code: 0x%06x", ci.class_code) if ci.header_type & 0x7f == 0x00: # type 0 header tb.log.info("Subsystem vendor ID: 0x%04x", ci.subsystem_vendor_id) tb.log.info("Subsystem ID: 0x%04x", ci.subsystem_id) # check that BARs are within our apertures for bar in range(6): if ci.bar[bar] is None: continue if ci.bar[bar] & 1: # IO BAR tb.log.info("BAR%d: IO BAR addr 0x%08x, size %d", bar, ci.bar_addr[bar], ci.bar_size[bar]) assert (ti.io_base <= ci.bar_addr[bar] and ci.bar_addr[bar]+ci.bar_size[bar]-1 <= ti.io_limit) io_regions.append((ci.bar_addr[bar], ci.bar_addr[bar]+ci.bar_size[bar]-1)) elif ci.bar[bar] > 0xffffffff: # prefetchable BAR tb.log.info("BAR%d: Mem BAR (prefetchable) addr 0x%08x, size %d", bar, ci.bar_addr[bar], ci.bar_size[bar]) assert (ti.prefetchable_mem_base <= ci.bar_addr[bar] and ci.bar_addr[bar]+ci.bar_size[bar]-1 <= ti.prefetchable_mem_limit) prefetchable_mem_regions.append((ci.bar_addr[bar], ci.bar_addr[bar]+ci.bar_size[bar]-1)) else: # non-prefetchable BAR tb.log.info("BAR%d: Mem BAR (non-prefetchable) addr 0x%08x, size %d", bar, ci.bar_addr[bar], ci.bar_size[bar]) assert (ti.mem_base <= ci.bar_addr[bar] and ci.bar_addr[bar]+ci.bar_size[bar]-1 <= ti.mem_limit) mem_regions.append((ci.bar_addr[bar], ci.bar_addr[bar]+ci.bar_size[bar]-1)) if ci.expansion_rom_addr: # expansion ROM BAR tb.log.info("Expansion ROM BAR: Mem BAR (non-prefetchable) addr 0x%08x, size %d", ci.expansion_rom_addr, ci.expansion_rom_size) assert (ti.mem_base <= ci.expansion_rom_addr and ci.expansion_rom_addr+ci.expansion_rom_size-1 <= ti.mem_limit) mem_regions.append((ci.expansion_rom_addr, ci.expansion_rom_addr+ci.expansion_rom_size-1)) if ci.header_type & 0x7f == 0x01: # type 1 header tb.log.info("Primary bus: %d", ci.pri_bus_num) tb.log.info("Secondary bus: %d", ci.sec_bus_num) tb.log.info("Subordinate bus: %d", ci.sub_bus_num) tb.log.info("IO base: 0x%08x", ci.io_base) tb.log.info("IO limit: 0x%08x", ci.io_limit) tb.log.info("Mem base: 0x%08x", ci.mem_base) tb.log.info("Mem limit: 0x%08x", ci.mem_limit) tb.log.info("Prefetchable mem base: 0x%016x", ci.prefetchable_mem_base) tb.log.info("Prefetchable mem limit: 0x%016x", ci.prefetchable_mem_limit) # check that child switch apertures are within our apertures assert ti.sec_bus_num <= ci.pri_bus_num <= ti.sub_bus_num assert ti.sec_bus_num <= ci.sec_bus_num and ci.sub_bus_num <= ti.sub_bus_num bus_regions.append((ci.sec_bus_num, ci.sub_bus_num)) if ci.io_base: assert ti.io_base <= ci.io_base and ci.io_limit <= ti.io_limit io_regions.append((ci.io_base, ci.io_limit)) if ci.mem_base: assert ti.mem_base <= ci.mem_base and ci.mem_limit <= ti.mem_limit mem_regions.append((ci.mem_base, ci.mem_limit)) if ci.prefetchable_mem_base: assert (ti.prefetchable_mem_base <= ci.prefetchable_mem_base and ci.prefetchable_mem_limit <= ti.prefetchable_mem_limit) prefetchable_mem_regions.append((ci.prefetchable_mem_base, ci.prefetchable_mem_limit)) # check for assignment overlaps for lst in [bus_regions, io_regions, mem_regions, prefetchable_mem_regions]: lst.sort() for m in range(1, len(lst)): assert lst[m-1][1] <= lst[m][0], "assigned regions overlap" # recurse into child nodes for ci in ti: if ci.header_type & 0x7f == 0x01: tb.log.info("Check bridge at %s (child of bridge at %s)", ci.pcie_id, ti.pcie_id) check_tree(ci) check_tree(tb.rc.tree) async def run_test_ep_mem(dut, ep_index=0): tb = TB(dut) await tb.rc.enumerate(enable_bus_mastering=True, configure_msi=True) tb.rc.log.setLevel(logging.DEBUG) ep = tb.ep[ep_index] ep.log.setLevel(logging.DEBUG) ti = tb.rc.tree.find_child_dev(ep.pcie_id) for length in list(range(1, 32))+[1024]: for offset in list(range(8))+list(range(4096-8, 4096)): tb.log.info("Memory operation (32-bit BAR) length: %d offset: %d", length, offset) addr = ti.bar_addr[0]+offset test_data = bytearray([x % 256 for x in range(length)]) await tb.rc.mem_write(addr, test_data, 1000, 'ns') # wait for write to complete await tb.rc.mem_read(addr, 1, 1000, 'ns') assert await ep.read_region(0, offset, length) == test_data assert await tb.rc.mem_read(addr, length, 1000, 'ns') == test_data for length in list(range(1, 32))+[1024]: for offset in list(range(8))+list(range(4096-8, 4096)): tb.log.info("Memory operation (64-bit BAR) length: %d offset: %d", length, offset) addr = ti.bar_addr[1]+offset test_data = bytearray([x % 256 for x in range(length)]) await tb.rc.mem_write(addr, test_data, 1000, 'ns') # wait for write to complete await tb.rc.mem_read(addr, 1, 1000, 'ns') assert await ep.read_region(1, offset, length) == test_data assert await tb.rc.mem_read(addr, length, 1000, 'ns') == test_data for length in list(range(1, 8)): for offset in list(range(8)): tb.log.info("IO operation length: %d offset: %d", length, offset) addr = ti.bar_addr[3]+offset test_data = bytearray([x % 256 for x in range(length)]) await tb.rc.io_write(addr, test_data, 1000, 'ns') assert await ep.read_region(3, offset, length) == test_data assert await tb.rc.io_read(addr, length, 1000, 'ns') == test_data async def run_test_p2p_dma(dut, ep1_index=0, ep2_index=1): tb = TB(dut) await tb.rc.enumerate(enable_bus_mastering=True, configure_msi=True) tb.rc.log.setLevel(logging.DEBUG) ep1 = tb.ep[ep1_index] ep1.log.setLevel(logging.DEBUG) ep2 = tb.ep[ep2_index] ep2.log.setLevel(logging.DEBUG) ti2 = tb.rc.tree.find_child_dev(ep2.pcie_id) for length in list(range(1, 32))+[1024]: for offset in list(range(8))+list(range(4096-8, 4096)): tb.log.info("Memory operation (32-bit BAR) length: %d offset: %d", length, offset) addr = ti2.bar_addr[0]+offset test_data = bytearray([x % 256 for x in range(length)]) await ep1.mem_write(addr, test_data, 1000, 'ns') # wait for write to complete await ep1.mem_read(addr, 1, 1000, 'ns') assert await ep2.read_region(0, offset, length) == test_data assert await ep1.mem_read(addr, length, 1000, 'ns') == test_data for length in list(range(1, 32))+[1024]: for offset in list(range(8))+list(range(4096-8, 4096)): tb.log.info("Memory operation (64-bit BAR) length: %d offset: %d", length, offset) addr = ti2.bar_addr[1]+offset test_data = bytearray([x % 256 for x in range(length)]) await ep1.mem_write(addr, test_data, 1000, 'ns') # wait for write to complete await ep1.mem_read(addr, 1, 1000, 'ns') assert await ep2.read_region(1, offset, length) == test_data assert await ep1.mem_read(addr, length, 1000, 'ns') == test_data for length in list(range(1, 8)): for offset in list(range(8)): tb.log.info("IO operation length: %d offset: %d", length, offset) addr = ti2.bar_addr[3]+offset test_data = bytearray([x % 256 for x in range(length)]) await ep1.io_write(addr, test_data, 1000, 'ns') assert await ep2.read_region(3, offset, length) == test_data assert await ep1.io_read(addr, length, 1000, 'ns') == test_data async def run_test_dma(dut, ep_index=0): tb = TB(dut) mem_base, mem_data = tb.rc.alloc_region(1024*1024) io_base, io_data = tb.rc.alloc_io_region(1024) await tb.rc.enumerate(enable_bus_mastering=True, configure_msi=True) tb.rc.log.setLevel(logging.DEBUG) ep = tb.ep[ep_index] ep.log.setLevel(logging.DEBUG) for length in list(range(1, 32))+[1024]: for offset in list(range(8))+list(range(4096-8, 4096)): tb.log.info("Memory operation (DMA) length: %d offset: %d", length, offset) addr = mem_base+offset test_data = bytearray([x % 256 for x in range(length)]) await ep.mem_write(addr, test_data, 1000, 'ns') # wait for write to complete await ep.mem_read(addr, 1, 1000, 'ns') assert mem_data[offset:offset+length] == test_data assert await ep.mem_read(addr, length, 1000, 'ns') == test_data for length in list(range(1, 8)): for offset in list(range(8)): tb.log.info("IO operation (DMA) length: %d offset: %d", length, offset) addr = io_base+offset test_data = bytearray([x % 256 for x in range(length)]) await ep.io_write(addr, test_data, 1000, 'ns') assert io_data[offset:offset+length] == test_data assert await ep.io_read(addr, length, 1000, 'ns') == test_data async def run_test_msi(dut, ep_index=0): tb = TB(dut) await tb.rc.enumerate(enable_bus_mastering=True, configure_msi=True) tb.rc.log.setLevel(logging.DEBUG) ep = tb.ep[ep_index] ep.log.setLevel(logging.DEBUG) for k in range(32): tb.log.info("Send MSI %d", k) await ep.msi_cap.issue_msi_interrupt(k) event = tb.rc.msi_get_event(ep.pcie_id, k) event.clear() await event.wait() if cocotb.SIM_NAME: for test in [ run_test_rc_mem, run_test_config, run_test_enumerate, ]: factory = TestFactory(test) factory.generate_tests() factory = TestFactory(run_test_ep_mem) factory.add_option("ep_index", range(4)) factory.generate_tests() factory = TestFactory(run_test_p2p_dma) factory.add_option("ep1_index", [0, 1]) factory.add_option("ep2_index", [2, 3]) factory.generate_tests() factory = TestFactory(run_test_dma) factory.add_option("ep_index", range(4)) factory.generate_tests() factory = TestFactory(run_test_msi) factory.add_option("ep_index", range(4)) factory.generate_tests() # cocotb-test tests_dir = os.path.dirname(__file__) def test_pcie(request): dut = "test_pcie" module = os.path.splitext(os.path.basename(__file__))[0] toplevel = dut verilog_sources = [ os.path.join(os.path.dirname(__file__), f"{dut}.v"), ] sim_build = os.path.join(tests_dir, "sim_build", request.node.name.replace('[', '-').replace(']', '')) cocotb_test.simulator.run( python_search=[tests_dir], verilog_sources=verilog_sources, toplevel=toplevel, module=module, sim_build=sim_build, )
2848a24526ee941ad0e15cb48b0e707173850625
25c03427485d43c41ff124e7ac2b856cd586596f
/account/models.py
df3e145488206ca42d63d4e679852d7e68cc3c8d
[]
no_license
jfeldman777/s-cool-project
d1012cef7ca9835e6cdaf85495eca7aee191161f
adb38eb3932841e692e70f01e9688bad4bece3f8
refs/heads/master
2020-05-26T08:16:28.890998
2017-06-05T17:49:09
2017-06-05T17:49:09
82,473,288
0
0
null
null
null
null
UTF-8
Python
false
false
464
py
from django.db import models # Create your models here. from django.contrib.auth.models import User #from .fields import AutoOneToOneField #class Work(models.Model): # work = models.CharField(max_length = 100, verbose_name = 'Работа') #class Profile(models.Model): # user = AutoOneToOneField(User, related_name='profile', verbose_name=('User'), primary_key=True) # work = models.ForeignKey(Work, verbose_name = 'Вид деятельности')
fdef72e6ed2b89d6e3312ca8d0abab76e55416d7
4f4d47d60e17f0e3b7120ebb26f3d83e0a1f8e66
/tf_agents/bandits/environments/random_bandit_environment.py
735af739c1d680f16bcb6a4df8ef9ba29e2bd8e5
[ "Apache-2.0" ]
permissive
tfboyd/agents
644ff1ee3961ac629671110c45f6c90234bd0ad1
858ee36aaaea6fbcf0e5ab1c12929c77bd17abae
refs/heads/master
2020-11-28T15:46:31.635917
2020-06-26T06:05:57
2020-06-26T06:05:57
229,859,259
2
0
Apache-2.0
2020-06-26T15:34:23
2019-12-24T02:56:28
Python
UTF-8
Python
false
false
5,146
py
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bandit environment that returns random observations and rewards.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.bandits.environments import bandit_tf_environment as bte from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step __all__ = ['RandomBanditEnvironment'] def _raise_batch_shape_error(distribution_name, batch_shape): raise ValueError('`{distribution_name}` must have batch shape with length 1; ' 'got {batch_shape}. Consider using ' '`tensorflow_probability.distributions.Independent` ' 'to manipulate batch and event shapes.'.format( distribution_name=distribution_name, batch_shape=batch_shape)) class RandomBanditEnvironment(bte.BanditTFEnvironment): """Bandit environment that returns random observations and rewards.""" def __init__(self, observation_distribution, reward_distribution, action_spec=None): """Initializes an environment that returns random observations and rewards. Note that `observation_distribution` and `reward_distribution` are expected to have batch rank 1. That is, `observation_distribution.batch_shape` should have length exactly 1. `tensorflow_probability.distributions.Independent` is useful for manipulating batch and event shapes. For example, ```python observation_distribution = tfd.Independent(tfd.Normal(tf.zeros([12, 3, 4]), tf.ones([12, 3, 4]))) env = RandomBanditEnvironment(observation_distribution, ...) env.observation_spec # tensor_spec.TensorSpec(shape=[3, 4], ...) env.batch_size # 12 ``` Args: observation_distribution: a `tensorflow_probability.Distribution`. Batches of observations will be drawn from this distribution. The `batch_shape` of this distribution must have length 1 and be the same as the `batch_shape` of `reward_distribution`. reward_distribution: a `tensorflow_probability.Distribution`. Batches of rewards will be drawn from this distribution. The `batch_shape` of this distribution must have length 1 and be the same as the `batch_shape` of `observation_distribution`. action_spec: a `TensorSpec` describing the expected action. Note that actions are ignored and do not affect rewards. """ observation_batch_shape = observation_distribution.batch_shape reward_batch_shape = reward_distribution.batch_shape reward_event_shape = reward_distribution.event_shape if observation_batch_shape.rank != 1: _raise_batch_shape_error( 'observation_distribution', observation_batch_shape) if reward_batch_shape.rank != 1: _raise_batch_shape_error( 'reward_distribution', observation_batch_shape) if reward_event_shape.rank != 0: raise ValueError('`reward_distribution` must have event_shape (); ' 'got {}'.format(reward_event_shape)) if reward_distribution.dtype != tf.float32: raise ValueError('`reward_distribution` must have dtype float32; ' 'got {}'.format(reward_distribution.float32)) if observation_batch_shape[0] != reward_batch_shape[0]: raise ValueError( '`reward_distribution` and `observation_distribution` must have the ' 'same batch shape; got {} and {}'.format( reward_batch_shape, observation_batch_shape)) batch_size = tf.compat.dimension_value(observation_batch_shape[0]) self._observation_distribution = observation_distribution self._reward_distribution = reward_distribution observation_spec = tensor_spec.TensorSpec( shape=self._observation_distribution.event_shape, dtype=self._observation_distribution.dtype, name='observation_spec') time_step_spec = time_step.time_step_spec(observation_spec) super(RandomBanditEnvironment, self).__init__(time_step_spec=time_step_spec, action_spec=action_spec, batch_size=batch_size) def _apply_action(self, action): del action # unused return self._reward_distribution.sample() def _observe(self): return self._observation_distribution.sample()
9caca0f8ce96b7d3bbf4fae71bf63c14a480dee5
e6c63e69a490f2292d2184e0edc1c6e44542a9fe
/accounts/migrations/0001_initial.py
10c2390a8fdc4fae515783c2474aa32be7d051e3
[]
no_license
Code-Institute-Submissions/the-issue-tracker
ed13afbaecfe69e89fd5dfdb0ba47e307b6a00a8
d66c5295af62beb2d1fe0a73b54cb9c8f6893cb1
refs/heads/master
2020-08-01T06:27:11.317277
2019-09-25T16:55:31
2019-09-25T16:55:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,000
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-06-29 16:39 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('gender', models.CharField(blank=True, choices=[('M', 'Male'), ('F', 'Female')], max_length=1, null=True)), ('avatar', models.ImageField(default='../media/profile_images/male_def.png', upload_to='profile_images')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
30b997e0eababa53ec5866219513d392e2a3837f
a8f724826bc48b01d565ba3420c42e002d4393e1
/competitive-programming/week-1/Day-1/product_of_other_numbers.py
d0a60febf4983a7d5d4bba96aa7bf66ea1c1f889
[]
no_license
sheelajyothsna/competetive-programming
de605e87e2d436bfd392a9fd82616351868892bc
55517702b5949291046b6aff6a8d15069bd3cf39
refs/heads/master
2020-03-21T15:10:33.555353
2018-07-19T06:53:54
2018-07-19T06:53:54
138,697,990
0
0
null
null
null
null
UTF-8
Python
false
false
2,066
py
import unittest def get_products_of_all_ints_except_at_index(l): # Make a list with the products if len(l) < 2: raise ValueError("cannot be defined") productlist = [1] * len(l) left = 1 for i in range(len(productlist)): productlist[i] = productlist[i] * left left = left * l[i] right = 1 for i in range(len(productlist) - 1, -1, -1): productlist[i] = productlist[i] * right right = right * l[i] return productlist # Tests class Test(unittest.TestCase): def test_small_list(self): actual = get_products_of_all_ints_except_at_index([1, 2, 3]) expected = [6, 3, 2] self.assertEqual(actual, expected) def test_longer_list(self): actual = get_products_of_all_ints_except_at_index([8, 2, 4, 3, 1, 5]) expected = [120, 480, 240, 320, 960, 192] self.assertEqual(actual, expected) def test_list_has_one_zero(self): actual = get_products_of_all_ints_except_at_index([6, 2, 0, 3]) expected = [0, 0, 36, 0] self.assertEqual(actual, expected) def test_list_has_two_zeros(self): actual = get_products_of_all_ints_except_at_index([4, 0, 9, 1, 0]) expected = [0, 0, 0, 0, 0] self.assertEqual(actual, expected) def test_one_negative_number(self): actual = get_products_of_all_ints_except_at_index([-3, 8, 4]) expected = [32, -12, -24] self.assertEqual(actual, expected) def test_all_negative_numbers(self): actual = get_products_of_all_ints_except_at_index([-7, -1, -4, -2]) expected = [-8, -56, -14, -28] self.assertEqual(actual, expected) def test_error_with_empty_list(self): with self.assertRaises(Exception): get_products_of_all_ints_except_at_index([]) def test_error_with_one_number(self): with self.assertRaises(Exception): get_products_of_all_ints_except_at_index([1]) unittest.main(verbosity=2)
6f7cf0647233c24297e242eb8919f003421920e2
259b7b74ac3945293aca2f4e9e5b0c55b40bb6eb
/services/web/test.py
af03022dea37facf3a089cd2f2ccd88b7f6ebe83
[]
no_license
MILKTON/eight-queens-challenge
7322fd1fe20e3db479cda0b0dded37f94394f13d
eebc7655e473cb7aea38e80262d2c75c0042559a
refs/heads/main
2023-01-12T18:09:00.699474
2020-11-06T02:24:45
2020-11-06T02:24:45
306,782,925
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
from project.reinas import coloca_reinas soluciones = [0,1,0,0,2,10,4,40,92,352,724,2680] def test_soluciones(): for i in range(len(soluciones)): aux = len(coloca_reinas(i)) assert aux == soluciones[i] def test_reina5(): aux = len(coloca_reinas(5)) assert aux == soluciones[5] ''' Prueba que falla def test_reina3(): soluciones = [0,1,0,0,2,10,4,40,92,352,724,2680] aux = len(coloca_reinas(3)) assert aux == soluciones[5] '''
6b30625c9f376bf2b48d72f16116be482becfa26
79206da036de3f36339c8c6a8e9f9f29c38d4d52
/scraping/scraping.py
0369768db4ce7ab593a4af897fc9c26ea717ef87
[]
no_license
BanSolo/SSD_price_predictor
a144af1edfc86a14e0c2eb242c31c90770268660
36a292ff9eae0a37b506a8f0b5707e760045a565
refs/heads/main
2023-08-11T07:17:13.485426
2021-09-20T17:29:17
2021-09-20T17:29:17
361,111,597
0
0
null
null
null
null
UTF-8
Python
false
false
1,848
py
# -*- coding: utf-8 -*- import pandas as pd import requests from bs4 import BeautifulSoup base_url = 'https://ipon.hu/shop/termek/' product_links = [] product_prices = [] # az összes oldalon végig iterálva elmentjük a linkeket és az árakat for page in range(1, 22): r = requests.get(f'https://ipon.hu/shop/group/4055/product/data?page={page}') data = r.json() items = data['items'] # a termék linkeket és a termék árakat hozzáadjuk a tömbökhöz for i in range(len(items)): product_links.append(base_url + data['items'][i]['slug'] + '/' + str(data['items'][i]['id'])) product_prices.append(data['items'][i]['grossPrice']) # a linkeken található információkat eltároljuk ssd_array = [] for idx, link in enumerate(product_links): # print(idx, ' ', link) r = requests.get(link) soup = BeautifulSoup(r.content, 'lxml') # termék neve name = ' '.join(soup.find('h2', class_='product__title').text.split()) # termék specifikációit tartalmazó táblázat try: table = soup.find('table', attrs={'class':'product-table'}) table_body = table.find('tbody') rows = table_body.find_all('tr') values_array = [] cols_array = [] for row in rows: cols = row.find_all('td') cols_array.append(' '.join(cols[0].text.split())) values_array.append(' '.join(cols[1].text.split())) except: continue # dictionary az adatok párosításához ssd = {} ssd['Megnevezés'] = name for i in range(len(cols_array)): ssd[cols_array[i]] = values_array[i] ssd['Ár (FT)'] = product_prices[idx] ssd_array.append(ssd) # kimentjük az adatokat df = pd.DataFrame(ssd_array) #df.to_csv('../data/ssd.csv', index=False, encoding='utf-8')