blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
9013aa7988405a9b4e9b670a3c8d11f8d6c89835
64b3b667e05455f2c0a69c93dfdf2dbc0d7a75fe
/xbot_tools/scripts/odom2yaw.py
c3dfc52aa4f27e588363064643604bc9bf84f25e
[]
no_license
krovanh/xbot
82b6af056d5bf2afb220cfdaba596fab23621f01
06e8b90099e81098945976b7c4e8f1c08b311692
refs/heads/master
2022-11-21T18:22:10.599664
2020-07-07T03:25:49
2020-07-07T03:25:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,380
py
#!/usr/bin/env python # coding=utf-8 ###################################################################################### #> File Name: auto_rotate.py #> Author:Rocwang #> Mail: [email protected]; #> Github:https://github.com/yowlings #> Created Time: 2018年06月14日 星期四 16时14分27秒 ###################################################################################### import rospy import tf from std_msgs.msg import Float64 from nav_msgs.msg import Odometry alfa=0.1 beta=0.31415926/5 class Odom2Yaw(object): """docstring for Odom2Yaw""" def __init__(self): self.help=""" """ # if rospy.has_param("~cascPath"): # self.cascPath = rospy.get_param("~cascPath") # else: # rospy.set_param("~cascPath","../scripts/haarcascade_frontalface_default.xml") self.yaw_pub=rospy.Publisher('/yaw', Float64, queue_size = 1) rospy.Subscriber("/odom",Odometry,self.odom_callback) rospy.spin() def odom_callback(self,odom): yaw = Float64() orie = odom.pose.pose.orientation o=[orie.x,orie.y,orie.z,orie.w] rpy= tf.transformations.euler_from_quaternion(o) yaw.data = rpy[2]*180/3.1415926 self.yaw_pub.publish(yaw) if __name__=='__main__': rospy.init_node('odom2yaw') try: rospy.loginfo( "initialization system") Odom2Yaw() print "process done and quit" except rospy.ROSInterruptException: rospy.loginfo("node terminated.")
c05d069f25f766339c40f654028345f19be7bb15
28cac5b23602862ec56d973e702c517c12326fd6
/money/admin.py
e293ff23f8579e1735cf15bcb8bf6dc2b99b0e9f
[]
no_license
mamedxanli/magazin
0283b7e9066e0175ae006a6c3f70109794e74136
7cfa890b2931bd7bab297d3d7f59c368b8165c44
refs/heads/master
2021-06-20T06:34:07.182935
2019-06-30T22:13:21
2019-06-30T22:13:21
156,974,176
0
0
null
2021-06-10T20:57:47
2018-11-10T11:22:04
JavaScript
UTF-8
Python
false
false
93
py
from django.contrib import admin from money.models import Money admin.site.register(Money)
581ea5796b807d563d1d60430cc52a42e26951b8
528cd83a81535a1cf55994a16710ade88d3a5449
/tests/test_home.py
c0c1c582f090546bbc26d1d27997e5c9ea978b74
[]
no_license
Scot3004/django-quilla-web
f8a3ed9bcec3d1ce4c7f1208266c40047e6a2f16
9aca2e8c2f4be7f973a81ff1c943e9f45e2300e2
refs/heads/master
2023-08-19T19:40:12.048894
2023-08-15T14:56:03
2023-08-15T14:56:03
58,422,810
1
0
null
2023-09-13T21:58:43
2016-05-10T02:17:29
HTML
UTF-8
Python
false
false
400
py
""" Test de homepage usando selenium sin ayudas, (sin patrones, tipo POM o algo por el estilo) """ from selenium.webdriver.common.by import By def test_title(base_url, driver): """Test de la página de inicio""" driver.get(base_url) assert driver.title == "Python Barranquilla" assert driver.find_element(by=By.TAG_NAME, value='h1').text == "Python Barranquilla." driver.quit()
ef5eee58ada2c24a5e1aa1cb4a8f6116aee40cb3
441ee65564e7135c8136d382dacd6e548cd9fcb8
/sahara/plugins/mapr/base/base_cluster_validator.py
9c7473bd03b0861002c173279914df6b4cea3dae
[ "Apache-2.0" ]
permissive
stackhpc/sahara
bccae95d0b8963dab1d6c1add2f6fe31fa80e8c1
83c7506076ee6913a381d1fda26361d9eb466e68
refs/heads/master
2021-01-25T09:32:55.555734
2017-06-08T22:21:46
2017-06-08T22:21:46
93,850,995
0
0
Apache-2.0
2022-01-20T19:09:48
2017-06-09T11:09:22
Python
UTF-8
Python
false
false
1,507
py
# Copyright (c) 2015, MapR Technologies # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sahara.plugins.mapr.abstract.cluster_validator as v import sahara.plugins.mapr.util.validation_utils as vu import sahara.plugins.mapr.versions.version_handler_factory as vhf class BaseValidator(v.AbstractValidator): def validate(self, cluster_context): for service in cluster_context.required_services: vu.assert_present(service, cluster_context) for service in cluster_context.cluster_services: for rule in service.validation_rules: rule(cluster_context) def validate_scaling(self, cluster_context, existing, additional): cluster = cluster_context.cluster version = cluster.hadoop_version handler = vhf.VersionHandlerFactory.get().get_handler(version) cluster = vu.create_fake_cluster(cluster, existing, additional) cluster_context = handler.get_context(cluster) self.validate(cluster_context)
618f7bf3ad5363970ac8447c9c1afcb17a35d486
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_200/1595.py
d01faf25443576147a95bda0f8e955249ad02345
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,952
py
import sys def tidy_count(N): number_of_digits = len(str(N)) if number_of_digits == 1: return N else: total_count = 0 count_table = [[0 for j in range(1,10)] for i in range(0,number_of_digits)] count_table[0] = [1,1,1,1,1,1,1,1,1] total_count += sum(count_table[0]) for i in range(1, number_of_digits): for j in range(0, 9): count_table[i][j] = sum(count_table[i-1][j:]) if i == number_of_digits-1: number_as_string = str(N) len_ind = i prev_number = 0 N_tidy_bool = True for d in number_as_string: val = sum(count_table[len_ind][prev_number:int(d)-1]) total_count += val if prev_number > int(d): N_tidy_bool = False prev_number = int(d) - 1 len_ind -= 1 if N_tidy_bool: total_count += 1 else: total_count += sum(count_table[i]) return total_count def tidy_lowest(N): reversed = str(N)[::-1] num_arr = [] for r in reversed: num_arr.append(int(r)) prev_num = 9 for ind, n in enumerate(num_arr): if prev_num < n: for j in range(0,ind): num_arr[j] = 9 num_arr[ind] -= 1 prev_num = num_arr[ind] string_return = '' for n in num_arr: string_return += str(n) return int(string_return[::-1]) f = open(sys.argv[1], 'r') input_file = f.read().splitlines() f.close() output_file = open('output_large_tidy_numbers.out', 'w') t = int(input_file[0]) for i in xrange(1, t + 1): n = input_file[i] output = tidy_lowest(int(n)) out_string = "Case #" + str(i) + ": " + str(output) print out_string output_file.write(out_string) output_file.write('\n') # print tidy_lowest(65)
411720f3def8edac72d63cae616f745db2c0b311
35d62f3ccf1c422b13b313c4e519a5ce335e934d
/PythonIII/Python_III/DemoProgs/sortkey.py
86ca77ffe375df949cf29a77580f2e63cfdb4273
[]
no_license
malaybiswal/python
357a074889299effe6a5fa2f1cd9c50ca35652d0
684d24d719b785725e736671faf2681232ecc394
refs/heads/master
2020-05-17T22:25:43.043929
2019-05-08T23:41:19
2019-05-08T23:41:19
183,999,871
0
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
""" This program deals with various ways to sort one- and two-dimensional lists. With key= you should think of the function as receiving one element of the list at a time. In the case of the two-dimensional list, each element is, itself, a list. The data being transformed must follow all of the pertinent rules. For example, if you add a string to lst1, using key=abs will fail on a TypeError. """ lst1 = [12, -1, 18, -6, -14, 8] lst2 = ['Smith', 'sally', 'sadie', 'Sam'] lst3 = [['sally', -12, 'm'], ['Sam', -10, 'F'], ['sadie', 10, 'f']] z = sorted(lst1, key=abs) # sorts by the absolute value of each element print(z) z = sorted(lst2, key=str.lower) # sorts by the lower-case version of print(z) # each element z = sorted(lst3, key=lambda y: abs(y[1])) # sorts by the absolute value print(z) # of the second element in each substring # This lambda creates a tuple (a list would work too) containing the # absolute value of the second element and then the lower-case version # of the first element in each substring. z = sorted(lst3, key=lambda y: (abs(y[1]), y[0].lower())) print(z)
700b5124c8595e09088fab3c3c7132575291b8d6
f2b138710d3d32a7f02326f65714164855810f37
/blog/.~c9_invoke_AndTR.py
9ed3f32605a353273e71845ebbabde25291cc9e3
[]
no_license
watanta/portfolio
720f82663b5ee24b81bdc64174df3f70f51dd9c0
29e160ff39b7a98a4b0950b825dfb111d200faab
refs/heads/master
2020-03-22T13:00:21.552145
2018-07-07T11:27:01
2018-07-07T11:27:01
140,076,312
0
0
null
null
null
null
UTF-8
Python
false
false
90
py
from django.urls import path, include from . import views urlpatterns = [ path ]
6a07549cbf1c12c6a1f056529de46e95dbe28f89
49b073c87b2bc405ed0e1ec50751ab9cd247d9ea
/venv/bin/pip3
06fef993c588d5e64a2039f7dc896df9d43f2d36
[]
no_license
KarlPineau/P13-donneesculturelles-algo-movie
6f4235190a391d5a9cc8202188b885d63026e048
c6e880b09a21dac0adc36bc2eb41e6cb47be47f9
refs/heads/master
2020-04-06T18:25:32.808638
2018-11-15T11:04:40
2018-11-15T11:04:40
157,697,651
0
0
null
null
null
null
UTF-8
Python
false
false
416
#!/Users/karlpineau/PycharmProjects/P13-dataculture/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')() )
589916a3fe64cb4fb3046df64f26dc4024335ea7
42100ccfb1ebca6c0cf3eef17acd1f6b0a38e15c
/sqlcode.py
141ae209b2e7dd48140a6ad973950b8fba1bf794
[]
no_license
Sanyam2112/WhatsAppChatBot
a7631e271e49357dcbad1e48e71e5485aed4be0b
eb0f5bca3b808ed28b7e91eb26025772dfed27f2
refs/heads/master
2020-06-10T12:38:35.581691
2020-03-25T09:12:52
2020-03-25T09:12:52
193,646,345
0
0
null
2019-06-25T06:17:01
2019-06-25T06:17:00
null
UTF-8
Python
false
false
2,450
py
import time from selenium import webdriver from selenium.webdriver.common.keys import Keys driver = webdriver.Chrome('C:\ChromeDriver\chromedriver.exe') driver.get('https://web.whatsapp.com/') input("Press enter") def replymsg(v): v.lower() if "schemes" in v: reply = "These are the following schemes available" elif "card" in v: reply = "Do you want to make a card" elif "hello" in v: reply = "Hey, how can i help you" elif "yes" in v: reply = "Okay here's the link to make your new Kissan card" elif "crop" in v: reply = "Here's information about crops" elif "quit" in v: reply = "Thank you for using the chatbot" else: reply = "I'm sorry, I do not understand" msg_box = driver.find_element_by_class_name('_3u328') msg_box.send_keys(reply) msg_box.send_keys(Keys.ENTER) def InputOutput (unread, recipient): names = [recipient] for name in names: #find = name person = driver.find_element_by_xpath('//span[@title = "{}"]'.format(name)) person.click() for i in range(1, 4): driver.execute_script("window.scrollTo(0,document.body.scrollHeight);") msg_got = driver.find_elements_by_css_selector("span.selectable-text.invisible-space.copyable-text") msg = [message.text for message in msg_got] for i in range(-unread, 0): print(msg[i]) replymsg(msg[i]) def loop(): count = 0 for i in range(1, 16): try: c = "//*[@id=\"pane-side\"]/div[1]/div/div/div[" + str(i) + "]/div/div/div[2]/div[2]/div[2]/span[1]/div" d = driver.find_element_by_xpath(c) x = d.text try: a = "//*[@id=\"pane-side\"]/div[1]/div/div/div[" + str(i) + "]/div/div/div[2]/div[1]/div[1]/span/span" b = driver.find_element_by_xpath(a) y = b.text print(y) print(x) InputOutput(int(x), y) time.sleep(2) except Exception as e1: print('error') continue except Exception as e: print('error') count = count + 1 continue return count for a in range(100): if loop() == 15: driver.refresh() time.sleep(15) print("chat bot ended")
3271073143057a6f5c10c32a9663947c7ade845c
18f7aa2a416da68c1e38587b60cfff32fbb06a63
/Random/merge_sort.py
6908d247d5757beee50c89fe12a05e4d22d34f1d
[]
no_license
kumaravinashm/Python-Question
d0bc837b373cb979da676f8d98faee3fb531c6d1
4d46a968a5aec38f494d2cc65a285c161c150c0c
refs/heads/master
2020-06-17T19:33:52.186800
2019-10-04T02:50:31
2019-10-04T02:50:31
196,027,092
0
0
null
null
null
null
UTF-8
Python
false
false
673
py
def mergeSort(arr): if len(arr) > 1: mid = len(arr) // 2 L = arr[:mid] R = arr[mid:] mergeSort(L) mergeSort(R) i = j = k = 0 while i < len(L) and j < len(R): if L[i] < R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < len(L): arr[k] = L[i] i += 1 k += 1 while j < len(R): arr[k] = R[j] j += 1 k += 1 arr = [34, 456, 45, 3, 2, 34, 243, 6, 457, 56, 5, 434135345, 7, 5, 34, 467] mergeSort(arr) print(arr)
31f90e38fc0633e8bdf039de832130e8d11a1685
3588ff6731cddef10eedb06d3a1500e43ec981e8
/排序算法/insert_sort.py
c6d24dddecc08456813383691ed2c518daf18cce
[]
no_license
anitazhaochen/nowcoder
4e301354ccd4d54f622b0dd78c96c32c5b28e02a
5df9a4208d6de969350ff7405a291c7b2c64e082
refs/heads/master
2020-04-02T20:40:30.584985
2019-11-26T08:09:36
2019-11-26T08:09:36
154,775,322
1
0
null
null
null
null
UTF-8
Python
false
false
450
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from myutils import getRandom from myutils import compare @compare def insertSort(arr): if arr is None or len(arr) == 0: return length = len(arr) for i in range(1, length): for j in range(i,0,-1): if arr[j] < arr[j-1]: arr[j], arr[j-1] = arr[j-1], arr[j] if __name__ == "__main__": arr = getRandom(-999,999, 10) print(insertSort(arr))
312dade636eb5f118e4e499650b9e03c76e77e24
2d860475a273e4fc5906cd74a4a9a98d0e684483
/oarias2710-iic2233-2020-2-master/Actividades/AS01/jugadores.py
8fb395bd62358086f657c6b51312515d09482397
[]
no_license
oarias2710/IIC2233_2020_2sem
af41501a778242661805452e77c7f4624b45c76c
a770d7b803ea23f9ebe198deabe2f4f8c3b717da
refs/heads/main
2023-02-09T05:31:29.274385
2020-12-30T16:13:18
2020-12-30T16:13:18
325,592,898
0
0
null
null
null
null
UTF-8
Python
false
false
3,860
py
from estudiantes import Programago import random import parametros as p from abc import ABC, abstractmethod class Jugador(Programago, ABC): def __init__(self, nombre, saludo, numero_polera): super().__init__(nombre, saludo) self.nerviosismo = None self.velocidad = None self.equilibrio = None self.numero_polera = numero_polera # self.saludo = saludo # self.nombre = nombre @abstractmethod def asignar_cualidades(self): pass @abstractmethod def competir(self): pass def celebrar(self): print(f"{self.nombre}: ¡Lo logré!") class Buscador(Jugador): def __init__(self, nombre, saludo, numero_polera): super().__init__(nombre, saludo, numero_polera) self.asignar_cualidades() def asignar_cualidades(self): self.nerviosismo = random.uniform(p.NERVIOSISMO_BUSCADOR_MIN, p.NERVIOSISMO_BUSCADOR_MAX) self.velocidad = random.uniform(p.VELOCIDAD_BUSCADOR_MIN, p.VELOCIDAD_BUSCADOR_MAX) self.equilibrio = random.uniform(p.EQUILIBRIO_BUSCADOR_MIN, p.EQUILIBRIO_BUSCADOR_MAX) def competir(self): v1 = self.velocidad * p.PONDERADOR_VELOCIDAD_BUSCADOR v2 = self.equilibrio * p.PONDERADOR_EQUILIBRIO_BUSCADOR v3 = self.nerviosismo * p.PONDERADOR_NERVIOSISMO_BUSCADOR return float(v1 + v2 - v3) class Golpeador(Jugador): def __init__(self, nombre, saludo, numero_polera): super().__init__(nombre, saludo, numero_polera) self.asignar_cualidades() def asignar_cualidades(self): self.nerviosismo = random.uniform(p.NERVIOSISMO_GOLPEADOR_MIN, p.NERVIOSISMO_GOLPEADOR_MAX) self.velocidad = random.uniform(p.VELOCIDAD_GOLPEADOR_MIN, p.VELOCIDAD_GOLPEADOR_MAX) self.equilibrio = random.uniform(p.EQUILIBRIO_GOLPEADOR_MIN, p.EQUILIBRIO_GOLPEADOR_MAX) def competir(self): v1 = self.velocidad * p.PONDERADOR_VELOCIDAD_GOLPEADOR v2 = self.equilibrio * p.PONDERADOR_EQUILIBRIO_GOLPEADOR v3 = self.nerviosismo * p.PONDERADOR_NERVIOSISMO_GOLPEADOR return float(v1 + v2 - v3) class Cazador(Jugador): def __init__(self, nombre, saludo, numero_polera): super().__init__(nombre, saludo, numero_polera) self.asignar_cualidades() def asignar_cualidades(self): self.nerviosismo = random.uniform(p.NERVIOSISMO_CAZADOR_MIN, p.NERVIOSISMO_CAZADOR_MAX) self.velocidad = random.uniform(p.VELOCIDAD_CAZADOR_MIN, p.VELOCIDAD_CAZADOR_MAX) self.equilibrio = random.uniform(p.EQUILIBRIO_CAZADOR_MIN, p.EQUILIBRIO_CAZADOR_MAX) def competir(self): v1 = self.velocidad * p.PONDERADOR_VELOCIDAD_CAZADOR v2 = self.equilibrio * p.PONDERADOR_EQUILIBRIO_CAZADOR v3 = self.nerviosismo * p.PONDERADOR_NERVIOSISMO_CAZADOR return float(v1 + v2 - v3) if __name__ == '__main__': # Instancias de prueba buscador = Buscador('Pruebinelda', 'probando la clase Buscador', '42') golpeador = Golpeador('Pruebardo', 'probando la clase Golpeador', 'Pi') cazador = Cazador('Pruebina', 'probando la clase Cazador', 'e') # Pruebas de atributos print('Soy ' + buscador.nombre + ' y estoy ' + buscador.saludo + ', mi numero de polera es ' + buscador.numero_polera) print('Soy ' + golpeador.nombre + ' y estoy ' + golpeador.saludo + ', mi numero de polera es ' + golpeador.numero_polera) print('Soy ' + cazador.nombre + ' y estoy ' + cazador.saludo + ', mi numero de polera es ' + cazador.numero_polera) # Pruebas de clases/subclase if isinstance(buscador, Jugador): print('Buscador hereda correctamente de Jugador!') if isinstance(golpeador, Jugador): print('Golpeador hereda correctamente de Jugador!') if isinstance(cazador, Jugador): print('Cazador hereda correctamente de Jugador!')
d02475a37e1fd28c5fcbc270cde64d594cefbc67
0a6b70c7139de6793b866c2e852528f751dfa6b5
/link_pred.py
7d5fb66cc1d4c84b82844c88a44489eb2401742a
[]
no_license
fatemehsrz/JAME
3a398d19fc6dc4d7aa57bd5adc74d14caa8c0240
2150764074f2039257b593ff9549335a4c68af9d
refs/heads/master
2021-07-16T13:35:49.689021
2021-03-15T12:18:20
2021-03-15T12:18:20
243,335,860
3
3
null
null
null
null
UTF-8
Python
false
false
7,355
py
import networkx as nx from sklearn import pipeline from sklearn.preprocessing import StandardScaler import numpy as np from sklearn.linear_model import LogisticRegression from sklearn import metrics from sklearn.metrics import average_precision_score class Graph(): def __init__(self, nx_G=None, is_directed=False, prop_pos=0.5, prop_neg=0.5, workers=1, random_seed=None): self.G = nx_G self.is_directed = is_directed self.prop_pos = prop_pos self.prop_neg = prop_neg self.wvecs = None self.workers = workers self._rnd = np.random.RandomState(seed=random_seed) def read_graph(self, input): G = nx.read_edgelist(input, nodetype=int, create_using=nx.DiGraph()) for edge in G.edges(): G.adj[edge[0]][edge[1]]['weight'] = 1 print("Read graph, nodes: %d, edges: %d" % (G.number_of_nodes(), G.number_of_edges())) G1= G.to_undirected() self.G = G1 def generate_pos_neg_links(self): # Select n edges at random (positive samples) n_edges = self.G.number_of_edges() n_nodes = self.G.number_of_nodes() npos = int(self.prop_pos * n_edges) nneg = int(self.prop_neg * n_edges) n_neighbors = [len(list(self.G.neighbors(v))) for v in self.G.nodes()] ## n_non_edges = n_nodes - 1 - np.array(n_neighbors) non_edges = [e for e in nx.non_edges(self.G)] print("Finding %d of %d non-edges" % (nneg, len(non_edges))) # Select m pairs of non-edges (negative samples) rnd_inx = self._rnd.choice(len(non_edges), nneg, replace=False) neg_edge_list = [non_edges[ii] for ii in rnd_inx] if len(neg_edge_list) < nneg: raise RuntimeWarning( "Only %d negative edges found" % (len(neg_edge_list)) ) print("Finding %d positive edges of %d total edges" % (npos, n_edges)) # Find positive edges, and remove them. edges = self.G.edges() edges=list(edges) pos_edge_list = [] n_count = 0 n_ignored_count = 0 rnd_inx = self._rnd.permutation(n_edges) for eii in rnd_inx.tolist(): edge = edges[eii] # Remove edge from graph data = self.G[edge[0]][edge[1]] self.G.remove_edge(*edge) reachable_from_v1 = nx.connected._plain_bfs(self.G, edge[0]) if edge[1] not in reachable_from_v1: self.G.add_edge(*edge, **data) n_ignored_count += 1 else: pos_edge_list.append(edge) print("Found: %d edges " % (n_count), end="\r") n_count += 1 if n_count >= npos: break edges_num= len(pos_edge_list) self._pos_edge_list = pos_edge_list self._neg_edge_list = neg_edge_list print('pos_edge_list',len(self._pos_edge_list)) print('neg_edge_list',len(self._neg_edge_list )) def get_selected_edges(self): edges = self._pos_edge_list + self._neg_edge_list labels = np.zeros(len(edges)) labels[:len(self._pos_edge_list)] = 1 return edges, labels def edges_to_features(self, edge_list, edge_function, emb_size, model): n_tot = len(edge_list) feature_vec = np.empty((n_tot, emb_size), dtype='f') for ii in range(n_tot): v1, v2 = edge_list[ii] # Edge-node features emb1 = np.asarray(model[v1]) emb2 = np.asarray(model[v2]) # Calculate edge feature feature_vec[ii] = edge_function(emb1, emb2) return feature_vec class Link_Prediction(object): def __init__(self, embeddings, edge_file): self.embeddings = embeddings self.edge_file = edge_file def create_train_test_graphs(self, input= 'Facebook.edges',regen='regen',workers=8 ): default_params = { 'edge_function': "hadamard", "prop_pos": 0.5, # Proportion of edges to remove nad use as positive samples "prop_neg": 0.5, # Number of non-edges to use as negative samples } # Remove half the edges, and the same number of "negative" edges prop_pos = default_params['prop_pos'] prop_neg = default_params['prop_neg'] print("Regenerating link prediction graphs") # Train graph embeddings on graph with random links Gtrain = Graph(is_directed=False, prop_pos=prop_pos, prop_neg=prop_neg, workers=workers) Gtrain.read_graph(input) Gtrain.generate_pos_neg_links() # Generate a different random graph for testing Gtest = Graph(is_directed=False, prop_pos=prop_pos, prop_neg=prop_neg, workers = workers) Gtest.read_graph(input) Gtest.generate_pos_neg_links() return Gtrain, Gtest def test_edge_functions(self ,num_experiments=2, emb_size=128, model=None,edges_train=None , edges_test=None, Gtrain=None, Gtest=None, labels_train=None, labels_test=None): edge_functions = { "hadamard": lambda a, b: a * b, "average": lambda a, b: 0.5 * (a + b), "l1": lambda a, b: np.abs(a - b), "l2": lambda a, b: np.abs(a - b) ** 2, } aucs = {func: [] for func in edge_functions} aps = {func: [] for func in edge_functions} for iter in range(num_experiments): print("Iteration %d of %d" % (iter, num_experiments)) for edge_fn_name, edge_fn in edge_functions.items(): #print(edge_fn_name, edge_fn) # Calculate edge embeddings using binary function edge_features_train = Gtrain.edges_to_features(edges_train, edge_fn, emb_size, model) edge_features_test = Gtest.edges_to_features(edges_test, edge_fn, emb_size, model) # Linear classifier scaler = StandardScaler() lin_clf = LogisticRegression(C=1.0) clf = pipeline.make_pipeline(scaler, lin_clf) # Train classifier clf.fit(edge_features_train, labels_train) AUC= metrics.scorer.roc_auc_scorer(clf, edge_features_test, labels_test) aucs[edge_fn_name].append(AUC) #AP = average_precision_score(labels_test, clf.predict(edge_features_test)) #aps[edge_fn_name].append(AP) return aucs def predict(self): Gtrain, Gtest = self.create_train_test_graphs(self.edge_file, regen='regen', workers=2) # Train and test graphs, with different edges edges_train, labels_train = Gtrain.get_selected_edges() edges_test, labels_test = Gtest.get_selected_edges() auc= self.test_edge_functions(2, 128, self.embeddings, edges_train , edges_test, Gtrain, Gtest, labels_train ,labels_test) return auc
e5802422f5e1586de5fc03a8643b8f91e03eab64
95023f309f0061a9139c82b62ecc91e90bf70e76
/Library/migrations/0011_auto_20190126_0041.py
03db185e270c29ec93252ace2b4c5295fd5cbbcb
[]
no_license
rachanaahire/Django-CollegeDepartmentWebsite
63f3b8e55aca9c7cb4aa4d09a60562a0c338bc49
df19a8f2eb4a408c62b9adb7ac70a2737bfa8e27
refs/heads/master
2021-12-14T19:43:37.411630
2021-12-05T18:28:46
2021-12-05T18:28:46
224,184,333
1
0
null
null
null
null
UTF-8
Python
false
false
469
py
# Generated by Django 2.1.4 on 2019-01-25 19:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Library', '0010_auto_20190126_0036'), ] operations = [ migrations.AlterField( model_name='book', name='course', field=models.CharField(blank=True, choices=[('BSC', 'BSC'), ('MSC', 'MSC')], max_length=100, verbose_name='Select Course'), ), ]
76f7520ec348276ea03ea5fc6b1410b0cb6b3960
067bd682010d7fe495ac35c601a31d37a985aa89
/adoc/test4.py
5755c92f071ee8ef06579a9a51bf7dfdd49306cc
[]
no_license
framr/pytudes
17c80dc26ea5fa5ab8e08c0ae47c1cc82e452f85
f7893c50a5301b410cade1a5f0ace34f658743fa
refs/heads/master
2023-02-09T10:40:50.224531
2020-12-25T16:25:36
2020-12-25T16:25:36
225,833,038
0
0
null
null
null
null
UTF-8
Python
false
false
884
py
#!/usr/bin/env python3 from itertools import groupby def valid_number2(num): nums = [int(dd) for dd in str(num)] collapsed = [] for dd, it in groupby(nums): collapsed.append((dd, len(list(it)))) prev = -1 have_same = False for digit, cnt in collapsed: if digit < prev: return False if cnt == 2: have_same = True prev = digit if not have_same: return False return True def check(min_val, max_val): cnt = 0 for num in range(min_val, max_val + 1): if valid_number2(num): cnt += 1 return cnt if __name__ == "__main__": #tests = [(111111, True), (223450, False), (123789, False)] tests = [(112233, True), (123444, False), (111122, True)] for num, res in tests: print(num, res, valid_number2(num)) print(check(356261, 846303))
f12813c2503db148a1eaacc7bde00ded0464d25b
51aa2894c317f60726fe9a778999eb7851b6be3e
/140_gui/pyqt_pyside/examples/PyQt_PySide_book/005_Lists and tables/001_Drop-down list/358_addItem.py
49266f8f8700998f77644b2f498178ac850918ca
[]
no_license
pranaymate/Python_Topics
dd7b288ab0f5bbee71d57080179d6481aae17304
33d29e0a5bf4cde104f9c7f0693cf9897f3f2101
refs/heads/master
2022-04-25T19:04:31.337737
2020-04-26T00:36:03
2020-04-26T00:36:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
773
py
# -*- coding: utf-8 -*- from PyQt4 import QtGui import sys def on_clicked(): print("Текст:", comboBox.currentText()) print("Данные:", comboBox.itemData(comboBox.currentIndex())) app = QtGui.QApplication(sys.argv) window = QtGui.QWidget() window.setWindowTitle("Класс QComboBox") window.resize(300, 90) comboBox = QtGui.QComboBox() for i in range(1, 11): comboBox.addItem("Пункт {0}".format(i), i) ico = window.style().standardIcon(QtGui.QStyle.SP_MessageBoxCritical) comboBox.addItem(ico, "Пункт 11", 11) button = QtGui.QPushButton("Получить значение") button.clicked.connect(on_clicked) box = QtGui.QVBoxLayout() box.addWidget(comboBox) box.addWidget(button) window.setLayout(box) window.show() sys.exit(app.exec_())
6fe45e6ab46a1d837bc8f439c510e91a4fa929c5
6d9fbe6e6a2abfd8455e92f6dba67a5f02d87f41
/lib/phonenumbers/data/region_CL.py
3d4d764e24767605296bdc23b9705e51691eac0a
[]
no_license
JamesBrace/InfluenceUWebLaunch
549d0b48ff3259b139cb891a19cb8b5382ffe2c8
332d25940e4b1b45a7a2a8200f77c8413543b199
refs/heads/master
2021-09-04T04:08:47.594900
2018-01-15T16:49:29
2018-01-15T16:49:29
80,778,825
1
1
null
null
null
null
UTF-8
Python
false
false
4,409
py
"""Auto-generated file, do not edit by hand. CL metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_CL = PhoneMetadata(id='CL', country_code=56, international_prefix='(?:0|1(?:1[0-69]|2[0-57]|5[13-58]|69|7[0167]|8[018]))0', general_desc=PhoneNumberDesc(national_number_pattern='(?:[2-9]|600|123)\\d{7,8}', possible_number_pattern='\\d{7,11}', possible_length=(9, 10, 11), possible_length_local_only=(7, 8)), fixed_line=PhoneNumberDesc(national_number_pattern='2(?:1962\\d{4}|2\\d{7}|32[0-2467]\\d{5})|(?:3[2-5]|[47][1-35]|5[1-3578]|6[13-57])\\d{7}', possible_number_pattern='\\d{7,9}', example_number='221234567', possible_length=(9,), possible_length_local_only=(7, 8)), mobile=PhoneNumberDesc(national_number_pattern='9[3-9]\\d{7}', possible_number_pattern='\\d{8,9}', example_number='961234567', possible_length=(9,), possible_length_local_only=(8,)), toll_free=PhoneNumberDesc(national_number_pattern='800\\d{6}|1230\\d{7}', possible_number_pattern='\\d{9,11}', example_number='800123456', possible_length=(9, 11)), premium_rate=PhoneNumberDesc(), shared_cost=PhoneNumberDesc(national_number_pattern='600\\d{7,8}', possible_number_pattern='\\d{10,11}', example_number='6001234567', possible_length=(10, 11)), personal_number=PhoneNumberDesc(), voip=PhoneNumberDesc(national_number_pattern='44\\d{7}', possible_number_pattern='\\d{9}', example_number='441234567', possible_length=(9,)), pager=PhoneNumberDesc(), uan=PhoneNumberDesc(), voicemail=PhoneNumberDesc(), no_international_dialling=PhoneNumberDesc(national_number_pattern='600\\d{7,8}', possible_number_pattern='\\d{10,11}', example_number='6001234567', possible_length=(10, 11)), national_prefix='0', national_prefix_for_parsing='0|(1(?:1[0-69]|2[0-57]|5[13-58]|69|7[0167]|8[018]))', number_format=[NumberFormat(pattern='(\\d)(\\d{4})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['2[23]'], national_prefix_formatting_rule='(\\1)', domestic_carrier_code_formatting_rule='$CC (\\1)'), NumberFormat(pattern='(\\d{2})(\\d{3})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['[357]|4[1-35]|6[13-57]'], national_prefix_formatting_rule='(\\1)', domestic_carrier_code_formatting_rule='$CC (\\1)'), NumberFormat(pattern='(9)(\\d{4})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['9'], national_prefix_formatting_rule='0\\1'), NumberFormat(pattern='(44)(\\d{3})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['44'], national_prefix_formatting_rule='0\\1'), NumberFormat(pattern='([68]00)(\\d{3})(\\d{3,4})', format='\\1 \\2 \\3', leading_digits_pattern=['60|8'], national_prefix_formatting_rule='\\1'), NumberFormat(pattern='(600)(\\d{3})(\\d{2})(\\d{3})', format='\\1 \\2 \\3 \\4', leading_digits_pattern=['60'], national_prefix_formatting_rule='\\1'), NumberFormat(pattern='(1230)(\\d{3})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['1'], national_prefix_formatting_rule='\\1'), NumberFormat(pattern='(\\d{5})(\\d{4})', format='\\1 \\2', leading_digits_pattern=['219'], national_prefix_formatting_rule='(\\1)', domestic_carrier_code_formatting_rule='$CC (\\1)'), NumberFormat(pattern='(\\d{4,5})', format='\\1', leading_digits_pattern=['[1-9]'], national_prefix_formatting_rule='\\1')], intl_number_format=[NumberFormat(pattern='(\\d)(\\d{4})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['2[23]']), NumberFormat(pattern='(\\d{2})(\\d{3})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['[357]|4[1-35]|6[13-57]']), NumberFormat(pattern='(9)(\\d{4})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['9']), NumberFormat(pattern='(44)(\\d{3})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['44']), NumberFormat(pattern='([68]00)(\\d{3})(\\d{3,4})', format='\\1 \\2 \\3', leading_digits_pattern=['60|8']), NumberFormat(pattern='(600)(\\d{3})(\\d{2})(\\d{3})', format='\\1 \\2 \\3 \\4', leading_digits_pattern=['60']), NumberFormat(pattern='(1230)(\\d{3})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['1']), NumberFormat(pattern='(\\d{5})(\\d{4})', format='\\1 \\2', leading_digits_pattern=['219']), NumberFormat(pattern='(\\d{4,5})', format='NA', leading_digits_pattern=['[1-9]'])], mobile_number_portable_region=True)
da3b88b2885c7cc9168a4839ac71c0bb2c7686fb
60120043bf7964a1b185a13c3211c51f425caad6
/AcademicProjects/COLONELS3 copy/cnn.py
583ea46bbcb6b265430a9e69dbe540b0e5dc82fa
[]
no_license
prg007/AcademicProjectsSoFar
15a360dea7559c133bb12acb282d660dc0d833b3
c27c8ced06483dbfb2c2c3a9872de025a75b2e20
refs/heads/master
2022-11-15T16:27:38.838207
2020-06-26T09:04:59
2020-06-26T09:04:59
109,450,342
1
0
null
null
null
null
UTF-8
Python
false
false
11,701
py
import torch import torch.optim as optim import json from datamanager import retrieve_image, DataPartition, DataManager from training import Dense, ReLU, nlog_softmax_loss, minibatch_training import math import numpy as np # IMPORTANT: DO NOT IMPORT OR USE ANYTHING FROM torch.nn # BESIDES THESE THINGS from torch.nn import Parameter, Conv2d, MaxPool2d, Module, init, Sequential def create_kernel_row_matrix(kernels): """ Creates a kernel-row matrix (as described in the notes on "Computing Convolutions"). See the unit tests for example input and output. """ a,b,c,d = kernels.shape return kernels.reshape(a,b*c*d) raise NotImplementedError("Question 8.") def create_window_column_matrix(images, window_width, stride): """ Creates a window-column matrix (as described in the notes on "Computing Convolutions"). See the unit tests for example input and output. """ #Approach 2 num_images, num_channels, height, width = images.shape windows = [] ctr = 0 outer = torch.tensor([]) for i in range(0, height-window_width+1, stride): for j in range(0, width-window_width+1, stride): xs = images[:,:,i:i+window_width,j:j+window_width] xs = xs.reshape(num_images,window_width*window_width*num_channels) if ctr == 0: outer = xs ctr += 1 else: outer = torch.cat([outer,xs]) outer = outer.reshape(num_images*(ctr+1),window_width*window_width*num_channels) ctr += 1 timothy = torch.tensor([]) for i in range(num_images): xsg = outer[i::num_images,::] if i == 0: timothy = xsg else: timothy = torch.cat([timothy,xsg]) return timothy.t() raise NotImplementedError("Question 9.") def pad(images, padding): """ Adds padding to a tensor of images. The tensor is assumed to have shape (B, C, W, W), where B is the batch size, C is the number of input channels, and W is the width of each (square) image. Padding is the number of zeroes we want to add as a border to each image in the tensor. """ num_images, num_channels, height, width = images.shape a = torch.zeros(num_images,num_channels,height,padding) ##These 3 lines create the horizontal padding ee = torch.cat([images,a],dim=3) ff = torch.cat([a,ee],dim = 3) b = torch.zeros(num_images,num_channels,padding,width+2*padding) ##These 3 lines create the vertical padding hh = torch.cat([b,ff],dim=2) ii = torch.cat([hh,b],dim=2) return ii def convolve(kernels, images, stride, padding): """ Convolves a kernel tensor with an image tensor, as described in the notes on "Computing Convolutions." See the unit tests for example input and output. """ kp = create_kernel_row_matrix(kernels) num_kernels,y = kp.shape num_images1, num_channels1, height1, width1 = kernels.shape num_images, num_channels, height, width = images.shape padup = pad(images,padding) img = create_window_column_matrix(padup, width1,stride) mp = torch.mm(kp,img) mp1,mp2 = mp.shape rp = width starting_index = 0 ending_index = 2**width1 rm = num_kernels outer = torch.tensor([]) ctr1 = 0 width = ((mp1*mp2)//num_images)//num_kernels width2 = int(math.sqrt(width)) while ending_index<mp2+1: lm1 = mp[:,starting_index:ending_index] lm3 = lm1.reshape((2**width1)*num_kernels) if starting_index == 0: outer = lm3 else: outer = torch.cat([outer,lm3]) starting_index = starting_index+ 2**width1 ending_index = ending_index + 2**width1 xs = outer.reshape(num_images,num_kernels,width2,width2) return xs #raise NotImplementedError("Question 11.") class ConvLayer(Module): """A convolutional layer for images.""" def __init__(self, input_channels, num_kernels, kernel_size, stride, padding): super(ConvLayer, self).__init__() self.stride = stride self.weight = Parameter(torch.empty(num_kernels, input_channels, kernel_size, kernel_size)) self.offset = Parameter(torch.empty(num_kernels, 1, 1)) self.padding = padding # randomly initializes the parameters init.kaiming_uniform_(self.weight, a=math.sqrt(5)) init.kaiming_uniform_(self.offset, a=math.sqrt(5)) def forward(self, x): """This will only work after you've implemented convolve (above).""" return self.offset + convolve(self.weight, x, self.stride, self.padding) class Flatten(Module): """ Flattens a tensor into a matrix. The first dimension of the input tensor and the output tensor should agree. For instance, a 3x4x5x2 tensor would be flattened into a 3x40 matrix. See the unit tests for example input and output. """ def __init__(self): super(Flatten,self).__init__() def forward(self,images): num_images, num_channels, height, width = images.shape flatten = images.reshape(num_images,num_channels*height*width) return flatten #raise NotImplementedError("Question 12.") def create_cnn(num_kernels, kernel_size, output_classes, dense_hidden_size, image_width, is_grayscale=True, use_torch_conv_layer = True, use_maxpool=True): """ Builds a CNN with two convolutional layers and two feedforward layers. Maxpool is added by default, but can be disabled. """ if use_torch_conv_layer: Conv = Conv2d else: Conv = ConvLayer padding = kernel_size//2 output_width = image_width if use_maxpool: output_width = output_width // 16 model = Sequential() if is_grayscale: num_input_channels = 1 else: num_input_channels = 3 model.add_module("conv1", Conv(num_input_channels, num_kernels, kernel_size=kernel_size, stride=1, padding=padding)) model.add_module("relu1", ReLU()) if use_maxpool: model.add_module("pool1", MaxPool2d(kernel_size=4, stride=4, padding=0)) model.add_module("conv2", Conv(num_kernels, num_kernels, kernel_size=kernel_size, stride=1, padding=padding)) model.add_module("relu2", ReLU()) if use_maxpool: model.add_module("pool2", MaxPool2d(kernel_size=4, stride=4, padding=0)) model.add_module("flatten", Flatten()) model.add_module("dense1", Dense(num_kernels * output_width**2, dense_hidden_size, init_bound = 0.1632993161855452)) model.add_module("relu3", ReLU()) model.add_module("dense2", Dense(dense_hidden_size, output_classes, init_bound = 0.2992528008322899)) return model class Classifier: """ Allows the trained CNN to be saved to disk and loaded back in. You can call a Classifier instance as a function on an image filename to obtain a probability distribution over whether it is a zebra. """ def __init__(self, net, num_kernels, kernel_size, dense_hidden_size, categories, image_width): self.net = net self.num_kernels = num_kernels self.kernel_size = kernel_size self.dense_hidden_size = dense_hidden_size self.image_width = image_width self.categories = categories def __call__(self, img_filename): self.net.eval() image = retrieve_image(img_filename, self.image_width) inputs = image.float().unsqueeze(dim=0) outputs = torch.softmax(self.net(inputs), dim=1) result = dict() for i, category in enumerate(self.categories): result[category] = outputs[0][i].item() return result def save(self, filename): model_file = filename + '.model' with torch.no_grad(): torch.save(self.net.state_dict(), model_file) config = {'dense_hidden_size': self.dense_hidden_size, 'num_kernels': self.num_kernels, 'kernel_size': self.kernel_size, 'image_width': self.image_width, 'categories': self.categories, 'model_file': model_file} with open(filename + '.json', 'w') as outfile: json.dump(config, outfile) @staticmethod def load(config_file): with open(config_file) as f: data = json.load(f) net = create_cnn(data['num_kernels'], data['kernel_size'], len(data['categories']), data['dense_hidden_size'], data['image_width']) net.load_state_dict(torch.load(data['model_file'])) return Classifier(net, data['num_kernels'], data['kernel_size'], data['dense_hidden_size'], data['categories'], data['image_width']) def run(data_config, n_epochs, num_kernels, kernel_size, dense_hidden_size, use_maxpool, use_torch_conv_layer): """ Runs a training regime for a CNN. """ train_set = DataPartition(data_config, './data', 'train') test_set = DataPartition(data_config, './data', 'test') manager = DataManager(train_set, test_set) loss = nlog_softmax_loss learning_rate = .001 image_width = 64 net = create_cnn(num_kernels = num_kernels, kernel_size= kernel_size, output_classes=2, image_width=image_width, dense_hidden_size=dense_hidden_size, use_maxpool = use_maxpool, use_torch_conv_layer = use_torch_conv_layer) optimizer = optim.Adam(net.parameters(), lr=learning_rate) best_net, monitor = minibatch_training(net, manager, batch_size=32, n_epochs=n_epochs, optimizer=optimizer, loss=loss) classifier = Classifier(best_net, num_kernels, kernel_size, dense_hidden_size, manager.categories, image_width) return classifier, monitor def experiment1(): return run('stripes.data.json', n_epochs = 20, num_kernels = 20, kernel_size = 3, dense_hidden_size = 64, use_maxpool = True, use_torch_conv_layer = False) def experiment2(): return run('stripes.data.json', n_epochs = 20, num_kernels = 20, kernel_size = 3, dense_hidden_size = 64, use_maxpool = True, use_torch_conv_layer = True) def experiment3(): return run('stripes.data.json', n_epochs = 20, num_kernels = 20, kernel_size= 3, dense_hidden_size=64, use_maxpool=False, use_torch_conv_layer = True) def experiment4(): return run('zebra.data.json', n_epochs = 8, num_kernels = 20, kernel_size= 7, dense_hidden_size=64, use_maxpool=True, use_torch_conv_layer = True)
7f068be0f3ed88f297013a5af90764c373606ab8
60715c9ea4c66d861708531def532814eab781fd
/python-programming-workshop/test/data_structures/list/listcomprehensionall.py
db343a2519e8ef02335e917ba4bce51bc4d34be9
[]
no_license
bala4rtraining/python_programming
6ce64d035ef04486f5dc9572cb0975dd322fcb3e
99a5e6cf38448f5a01b310d5f7fa95493139b631
refs/heads/master
2023-09-03T00:10:26.272124
2021-11-01T08:20:52
2021-11-01T08:20:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
one = [x.strip() for x in ('foo\n', 'bar\n', 'baz\n')] print(one) two = [int(x) for x in ('1', '2', '3')] print(two) #using a dictionary with list comprehension d = {'foo': '10', 'bar': '20', 'baz': '30'} three = [d[x] for x in ['foo', 'baz']] print(three) d = {'foo': '10', 'bar': '20', 'baz': '30'} four = [int(d[x].rstrip('0')) for x in ['foo', 'baz']]
7edca7e1cdbd28ec2360213c9f9a879bf37cf904
17c03102b5ea124e072c168d3f6e91b032f3de77
/buildsettings.py
34fcb57881f739574d5077d0df8717ee2cf0a97b
[ "MIT" ]
permissive
randomizax/export-portals-list
44d8221e208f9aecb21c232b1712e669186a00eb
7ee9d8bcd822b79fd71020382889676519b74c08
refs/heads/master
2021-01-15T16:17:31.572095
2019-03-14T16:00:24
2019-03-14T16:00:24
27,567,170
0
0
null
null
null
null
UTF-8
Python
false
false
2,333
py
# settings file for builds. # if you want to have custom builds, copy this file to "localbuildsettings.py" and make changes there. # possible fields: # resourceBaseUrl - optional - the URL base for external resources (all resources embedded in standard IITC) # distUrlBase - optional - the base URL to use for update checks # buildMobile - optional - if set, mobile builds are built with 'ant'. requires the Android SDK and appropriate mobile/local.properties file configured # preBuild - optional - an array of strings to run as commands, via os.system, before building the scripts # postBuild - optional - an array of string to run as commands, via os.system, after all builds are complete buildSettings = { # local: use this build if you're not modifying external resources # no external resources allowed - they're not needed any more 'randomizax': { 'resourceUrlBase': None, 'distUrlBase': 'https://randomizax.github.io/export-portals-list', }, # local8000: if you need to modify external resources, this build will load them from # the web server at http://0.0.0.0:8000/dist # (This shouldn't be required any more - all resources are embedded. but, it remains just in case some new feature # needs external resources) 'local8000': { 'resourceUrlBase': 'http://0.0.0.0:8000/dist', 'distUrlBase': None, }, # mobile: default entry that also builds the mobile .apk # you will need to have the android-sdk installed, and the file mobile/local.properties created as required 'mobile': { 'resourceUrlBase': None, 'distUrlBase': None, 'buildMobile': 'debug', }, # if you want to publish your own fork of the project, and host it on your own web site # create a localbuildsettings.py file containing something similar to this # note: Firefox+Greasemonkey require the distUrlBase to be "https" - they won't check for updates on regular "http" URLs #'example': { # 'resourceBaseUrl': 'http://www.example.com/iitc/dist', # 'distUrlBase': 'https://secure.example.com/iitc/dist', #}, } # defaultBuild - the name of the default build to use if none is specified on the build.py command line # (in here as an example - it only works in localbuildsettings.py) #defaultBuild = 'local'
2fbdc36b2bbf594eb7cc85af996201d84ff990f7
211b5f06332a00edc39abdcf91640729d827bb11
/pyramidpooling.py
d10967427db3123efca2efa60079665452c33ec5
[ "MIT" ]
permissive
revidee/pytorch-pyramid-pooling
00d107bfc2b6ac2b428ad21a2ba194bcd876d091
d814eacc81bbc5d1826104b2046b9344b2a9c45c
refs/heads/master
2020-05-26T11:13:35.514608
2019-06-21T11:22:09
2019-06-21T11:22:09
188,212,383
48
9
null
null
null
null
UTF-8
Python
false
false
9,848
py
import math import torch import torch.nn as nn import torch.nn.functional as F class PyramidPooling(nn.Module): def __init__(self, levels, mode="max"): """ General Pyramid Pooling class which uses Spatial Pyramid Pooling by default and holds the static methods for both spatial and temporal pooling. :param levels defines the different divisions to be made in the width and (spatial) height dimension :param mode defines the underlying pooling mode to be used, can either be "max" or "avg" :returns a tensor vector with shape [batch x 1 x n], where n: sum(filter_amount*level*level) for each level in levels (spatial) or n: sum(filter_amount*level) for each level in levels (temporal) which is the concentration of multi-level pooling """ super(PyramidPooling, self).__init__() self.levels = levels self.mode = mode def forward(self, x): return self.spatial_pyramid_pool(x, self.levels, self.mode) def get_output_size(self, filters): out = 0 for level in self.levels: out += filters * level * level return out @staticmethod def spatial_pyramid_pool(previous_conv, levels, mode): """ Static Spatial Pyramid Pooling method, which divides the input Tensor vertically and horizontally (last 2 dimensions) according to each level in the given levels and pools its value according to the given mode. :param previous_conv input tensor of the previous convolutional layer :param levels defines the different divisions to be made in the width and height dimension :param mode defines the underlying pooling mode to be used, can either be "max" or "avg" :returns a tensor vector with shape [batch x 1 x n], where n: sum(filter_amount*level*level) for each level in levels which is the concentration of multi-level pooling """ num_sample = previous_conv.size(0) previous_conv_size = [int(previous_conv.size(2)), int(previous_conv.size(3))] for i in range(len(levels)): h_kernel = int(math.ceil(previous_conv_size[0] / levels[i])) w_kernel = int(math.ceil(previous_conv_size[1] / levels[i])) w_pad1 = int(math.floor((w_kernel * levels[i] - previous_conv_size[1]) / 2)) w_pad2 = int(math.ceil((w_kernel * levels[i] - previous_conv_size[1]) / 2)) h_pad1 = int(math.floor((h_kernel * levels[i] - previous_conv_size[0]) / 2)) h_pad2 = int(math.ceil((h_kernel * levels[i] - previous_conv_size[0]) / 2)) assert w_pad1 + w_pad2 == (w_kernel * levels[i] - previous_conv_size[1]) and \ h_pad1 + h_pad2 == (h_kernel * levels[i] - previous_conv_size[0]) padded_input = F.pad(input=previous_conv, pad=[w_pad1, w_pad2, h_pad1, h_pad2], mode='constant', value=0) if mode == "max": pool = nn.MaxPool2d((h_kernel, w_kernel), stride=(h_kernel, w_kernel), padding=(0, 0)) elif mode == "avg": pool = nn.AvgPool2d((h_kernel, w_kernel), stride=(h_kernel, w_kernel), padding=(0, 0)) else: raise RuntimeError("Unknown pooling type: %s, please use \"max\" or \"avg\".") x = pool(padded_input) if i == 0: spp = x.view(num_sample, -1) else: spp = torch.cat((spp, x.view(num_sample, -1)), 1) return spp @staticmethod def temporal_pyramid_pool(previous_conv, out_pool_size, mode): """ Static Temporal Pyramid Pooling method, which divides the input Tensor horizontally (last dimensions) according to each level in the given levels and pools its value according to the given mode. In other words: It divides the Input Tensor in "level" horizontal stripes with width of roughly (previous_conv.size(3) / level) and the original height and pools the values inside this stripe :param previous_conv input tensor of the previous convolutional layer :param levels defines the different divisions to be made in the width dimension :param mode defines the underlying pooling mode to be used, can either be "max" or "avg" :returns a tensor vector with shape [batch x 1 x n], where n: sum(filter_amount*level) for each level in levels which is the concentration of multi-level pooling """ num_sample = previous_conv.size(0) previous_conv_size = [int(previous_conv.size(2)), int(previous_conv.size(3))] for i in range(len(out_pool_size)): # print(previous_conv_size) # h_kernel = previous_conv_size[0] w_kernel = int(math.ceil(previous_conv_size[1] / out_pool_size[i])) w_pad1 = int(math.floor((w_kernel * out_pool_size[i] - previous_conv_size[1]) / 2)) w_pad2 = int(math.ceil((w_kernel * out_pool_size[i] - previous_conv_size[1]) / 2)) assert w_pad1 + w_pad2 == (w_kernel * out_pool_size[i] - previous_conv_size[1]) padded_input = F.pad(input=previous_conv, pad=[w_pad1, w_pad2], mode='constant', value=0) if mode == "max": pool = nn.MaxPool2d((h_kernel, w_kernel), stride=(h_kernel, w_kernel), padding=(0, 0)) elif mode == "avg": pool = nn.AvgPool2d((h_kernel, w_kernel), stride=(h_kernel, w_kernel), padding=(0, 0)) else: raise RuntimeError("Unknown pooling type: %s, please use \"max\" or \"avg\".") x = pool(padded_input) if i == 0: tpp = x.view(num_sample, -1) else: tpp = torch.cat((tpp, x.view(num_sample, -1)), 1) return tpp class SpatialPyramidPooling(PyramidPooling): def __init__(self, levels, mode="max"): """ Spatial Pyramid Pooling Module, which divides the input Tensor horizontally and horizontally (last 2 dimensions) according to each level in the given levels and pools its value according to the given mode. Can be used as every other pytorch Module and has no learnable parameters since it's a static pooling. In other words: It divides the Input Tensor in level*level rectangles width of roughly (previous_conv.size(3) / level) and height of roughly (previous_conv.size(2) / level) and pools its value. (pads input to fit) :param levels defines the different divisions to be made in the width dimension :param mode defines the underlying pooling mode to be used, can either be "max" or "avg" :returns (forward) a tensor vector with shape [batch x 1 x n], where n: sum(filter_amount*level*level) for each level in levels which is the concentration of multi-level pooling """ super(SpatialPyramidPooling, self).__init__(levels, mode=mode) def forward(self, x): return self.spatial_pyramid_pool(x, self.levels, self.mode) def get_output_size(self, filters): """ Calculates the output shape given a filter_amount: sum(filter_amount*level*level) for each level in levels Can be used to x.view(-1, spp.get_output_size(filter_amount)) for the fully-connected layers :param filters: the amount of filter of output fed into the spatial pyramid pooling :return: sum(filter_amount*level*level) """ out = 0 for level in self.levels: out += filters * level * level return out class TemporalPyramidPooling(PyramidPooling): def __init__(self, levels, mode="max"): """ Temporal Pyramid Pooling Module, which divides the input Tensor horizontally (last dimensions) according to each level in the given levels and pools its value according to the given mode. Can be used as every other pytorch Module and has no learnable parameters since it's a static pooling. In other words: It divides the Input Tensor in "level" horizontal stripes with width of roughly (previous_conv.size(3) / level) and the original height and pools the values inside this stripe :param levels defines the different divisions to be made in the width dimension :param mode defines the underlying pooling mode to be used, can either be "max" or "avg" :returns (forward) a tensor vector with shape [batch x 1 x n], where n: sum(filter_amount*level) for each level in levels which is the concentration of multi-level pooling """ super(TemporalPyramidPooling, self).__init__(levels, mode=mode) def forward(self, x): return self.temporal_pyramid_pool(x, self.levels, self.mode) def get_output_size(self, filters): """ Calculates the output shape given a filter_amount: sum(filter_amount*level) for each level in levels Can be used to x.view(-1, tpp.get_output_size(filter_amount)) for the fully-connected layers :param filters: the amount of filter of output fed into the temporal pyramid pooling :return: sum(filter_amount*level) """ out = 0 for level in self.levels: out += filters * level return out
[ "b4b39543vb8" ]
b4b39543vb8
608e11389f0ecee548b0c0ee175cb0ef1bc7a32a
d7d2f984f20ea483156b9fc686dc923c792e3e7c
/scripts/test_search_input.py
38470e8b19034f7f9b82e14600af1abf8b965801
[]
no_license
liyonqiang/test_zj
0a04bcc276c6dcc224968791991b93fd164160b4
4ba16afcaabfcd593adb5ebb667d56c1c263ef79
refs/heads/main
2023-04-06T08:33:33.814618
2021-04-24T12:20:35
2021-04-24T12:20:35
361,153,782
0
0
null
null
null
null
UTF-8
Python
false
false
809
py
# allure 报告导包 import allure import pytest class TestSearchInput: def setup(self): pass def teardown(self): pass # 1. 添加测试步骤: @allure.step(title="测试步骤001") @allure.step(title="测试步骤001") def test_login_001(self): # 2. 添加步骤描述 allure.attach("步骤001描述", "此步骤会打印 001") print("001") assert 1 # Severity:严重级别(BLOCKER, CRITICAL, NORMAL, MINOR, TRIVIAL) # 3. 添加严重级别 @pytest.allure.severity(Severity) # @pytest.allure.severity(pytest.allure.severity_level.CRITICAL) @allure.step(title="测试步骤002") def test_login_002(self): allure.attach("步骤002描述", "此步骤会打印 002") print("002") assert 0
9123c18ddd9a16fdafcb165d54957ca128f40662
a7d020c8df05d4980876a7b230d7702fe1a9b196
/tests/functional/test_jobseeker.py
2b4d1c56b22d5be61526345ccabe9b10052d05f2
[]
no_license
temon/rpush
7720387e265d9e5cdb70f59d67bcbf6dc4dcd7ca
dbf0f98b3e473aefebf6313c38313fcf95a81cde
refs/heads/master
2021-01-18T05:07:58.450940
2017-10-31T14:26:55
2017-10-31T14:26:55
8,747,627
0
1
null
2017-10-31T14:26:56
2013-03-13T08:03:37
Python
UTF-8
Python
false
false
19
py
## @TODO: code here
73c9a3a1a9272aad188de26218cf91eb7d8d6fb3
063ae19b4f36ec2895dc481d33f6e43c3852e173
/bin/flask
78925439609ff7f9a55901c90c6280de0cae2900
[]
no_license
arifams/lokaferi
ddb64c7146bbdb68b32f3295f87abb9773388764
4eec2da4c82e9cfb3428d3fd1e16eea4989899a1
refs/heads/master
2020-03-27T23:40:27.515476
2018-09-04T13:13:13
2018-09-04T13:13:13
147,337,537
0
0
null
null
null
null
UTF-8
Python
false
false
255
#!/Users/bang/Documents/belajar/python/lokaferi/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
47d12e8660fbea5dee75365da4029327fe5a06a3
21e26337bc1b482d74c74316528e08dc058856d3
/src/day-06/solution-1.py
be48a1e60d97d179af44db065eaceceb412ba635
[]
no_license
FudgeMunkey/adventofcode-2020
393117157aed9050c0fb2b1e61121b825cf97306
6e7eb57b2d560e4378c206f49efca513f1712d3a
refs/heads/main
2023-02-02T16:27:30.264297
2020-12-22T08:00:53
2020-12-22T08:00:53
317,835,459
0
0
null
null
null
null
UTF-8
Python
false
false
652
py
def read_input(): # Read input f = open("puzzle_input.txt", "r") raw_data = f.readlines() clean_data = [] # Clean Data for rd in raw_data: clean_data.append(rd.strip()) return clean_data if __name__ == "__main__": data = read_input() question_sum = 0 alphabet = [0] * 26 for d in data: if d == '': question_sum += sum(alphabet) alphabet = [0] * 26 for c in d: alphabet_index = ord(c) - 97 if alphabet[alphabet_index] == 0: alphabet[alphabet_index] += 1 question_sum += sum(alphabet) print(question_sum)
75c901600cb02b2cab164badb64387af31b908e5
54060fe766a7ce368fb65b40c718320529aedc37
/db_tools/data/product_data.py
4f66daff268f835a54fa6babf37df33c1d1bc095
[]
no_license
zzsen/DjangoTest
b13d839e44d536fddff660947dfa2f933da66048
4ce65227ed11aa44416e96960eaa71c976303959
refs/heads/master
2022-12-12T15:47:08.873561
2021-05-27T07:47:59
2021-05-27T07:47:59
206,477,417
0
0
null
2022-12-08T06:20:06
2019-09-05T04:54:04
JavaScript
UTF-8
Python
false
false
36,825
py
#!/usr/bin/env python # encoding: utf-8 row_data = [ { 'images': [ 'books/images/1_P_1449024889889.jpg', 'books/images/1_P_1449024889264.jpg', 'books/images/1_P_1449024889726.jpg', 'books/images/1_P_1449024889018.jpg', 'books/images/1_P_1449024889287.jpg' ], 'categorys': [ '首页', '生鲜食品', '根茎类' ], 'market_price': '¥232元', 'name': '新鲜水果甜蜜香脆单果约800克', 'desc': '食用百香果可以增加胃部饱腹感,减少余热量的摄入,还可以吸附胆固醇和胆汁之类有机分子,抑制人体对脂肪的吸收。因此,长期食用有利于改善人体营养吸收结构,降低体内脂肪,塑造健康优美体态。', 'sale_price': '¥156元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/2_P_1448945810202.jpg', 'books/images/2_P_1448945810814.jpg' ], 'categorys': [ '首页', '生鲜食品', '海鲜水产' ], 'market_price': '¥106元', 'name': '田然牛肉大黄瓜条生鲜牛肉冷冻真空黄牛', 'desc': '前腿+后腿+羊排共8斤,原生态大山放牧羊羔,曾经的皇室贡品,央视推荐,2005年北京招待全球财金首脑。五层专用包装箱+真空包装+冰袋+保鲜箱+顺丰冷链发货,路途保质期8天', 'sale_price': '¥88元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/7_P_1448945104883.jpg', 'books/images/7_P_1448945104734.jpg' ], 'categorys': [ '首页', '生鲜食品', '叶菜类' ], 'market_price': '¥286元', 'name': '酣畅家庭菲力牛排10片澳洲生鲜牛肉团购套餐', 'desc': None, 'sale_price': '¥238元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/47_P_1448946213263.jpg', 'books/images/47_P_1448946213157.jpg' ], 'categorys': [ '首页', '生鲜食品', '根茎类' ], 'market_price': '¥156元', 'name': '日本蒜蓉粉丝扇贝270克6只装', 'desc': None, 'sale_price': '¥108元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/10_P_1448944572085.jpg', 'books/images/10_P_1448944572532.jpg', 'books/images/10_P_1448944572872.jpg' ], 'categorys': [ '首页', '生鲜食品', '海鲜水产' ], 'market_price': '¥106元', 'name': '内蒙新鲜牛肉1斤清真生鲜牛肉火锅食材', 'desc': None, 'sale_price': '¥88元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/4_P_1448945381985.jpg', 'books/images/4_P_1448945381013.jpg' ], 'categorys': [ '首页', '生鲜食品', '茄果类' ], 'market_price': '¥90元', 'name': '乌拉圭进口牛肉卷特级肥牛卷', 'desc': None, 'sale_price': '¥75元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/8_P_1448945032810.jpg', 'books/images/8_P_1448945032646.jpg' ], 'categorys': [ '首页', '生鲜食品', '进口生鲜' ], 'market_price': '¥150元', 'name': '五星眼肉牛排套餐8片装原味原切生鲜牛肉', 'desc': None, 'sale_price': '¥125元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/11_P_1448944388277.jpg', 'books/images/11_P_1448944388034.jpg', 'books/images/11_P_1448944388201.jpg' ], 'categorys': [ '首页', '生鲜食品', '海鲜水产' ], 'market_price': '¥31元', 'name': '澳洲进口120天谷饲牛仔骨4份原味生鲜', 'desc': None, 'sale_price': '¥26元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/6_P_1448945167279.jpg', 'books/images/6_P_1448945167015.jpg' ], 'categorys': [ '首页', '生鲜食品', '菌菇类' ], 'market_price': '¥239元', 'name': '潮香村澳洲进口牛排家庭团购套餐20片', 'desc': None, 'sale_price': '¥199元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/9_P_1448944791617.jpg', 'books/images/9_P_1448944791129.jpg', 'books/images/9_P_1448944791077.jpg', 'books/images/9_P_1448944791229.jpg' ], 'categorys': [ '首页', '生鲜食品', '根茎类' ], 'market_price': '¥202元', 'name': '爱食派内蒙古呼伦贝尔冷冻生鲜牛腱子肉1000g', 'desc': None, 'sale_price': '¥168元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/3_P_1448945490837.jpg', 'books/images/3_P_1448945490084.jpg' ], 'categorys': [ '首页', '生鲜食品', '精品肉类' ], 'market_price': '¥306元', 'name': '澳洲进口牛尾巴300g新鲜肥牛肉', 'desc': '新鲜羊羔肉整只共15斤,原生态大山放牧羊羔,曾经的皇室贡品,央视推荐,2005年北京招待全球财金首脑。五层专用包装箱+真空包装+冰袋+保鲜箱+顺丰冷链发货,路途保质期8天', 'sale_price': '¥255元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/48_P_1448943988970.jpg', 'books/images/48_P_1448943988898.jpg', 'books/images/48_P_1448943988439.jpg' ], 'categorys': [ '首页', '生鲜食品', '海鲜水产' ], 'market_price': '¥126元', 'name': '新疆巴尔鲁克生鲜牛排眼肉牛扒1200g', 'desc': None, 'sale_price': '¥88元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/5_P_1448945270390.jpg', 'books/images/5_P_1448945270067.jpg', 'books/images/5_P_1448945270432.jpg' ], 'categorys': [ '首页', '生鲜食品', '蛋制品' ], 'market_price': '¥144元', 'name': '澳洲进口安格斯牛切片上脑牛排1000g', 'desc': '澳大利亚是国际公认的没有疯牛病和口蹄疫的国家。为了保持澳大利亚产品的高标准,澳大利亚牛肉业和各级政府共同努力简历了严格的标准和体系,以保证生产的整体化和产品的可追溯性', 'sale_price': '¥120元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'images/201705/books_img/53_P_1495068879687.jpg' ], 'categorys': [ '首页', '生鲜食品', '茄果类' ], 'market_price': '¥120元', 'name': '帐篷出租', 'desc': None, 'sale_price': '¥100元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/16_P_1448947194687.jpg' ], 'categorys': [ '首页', '酒水饮料', '红酒' ], 'market_price': '¥23元', 'name': '52度茅台集团国隆双喜酒500mlx6', 'desc': '贵州茅台酒厂(集团)保健酒业有限公司生产,是以“龙”字打头的酒水。中国龙文化上下8000年,源远而流长,龙的形象是一种符号、一种意绪、一种血肉相联的情感。', 'sale_price': '¥19元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/14_P_1448947354031.jpg', 'books/images/14_P_1448947354433.jpg' ], 'categorys': [ '首页', '酒水饮料', '饮料/水' ], 'market_price': '¥43元', 'name': '52度水井坊臻酿八號500ml', 'desc': None, 'sale_price': '¥36元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/12_P_1448947547989.jpg' ], 'categorys': [ '首页', '酒水饮料', '其他酒品' ], 'market_price': '¥190元', 'name': '53度茅台仁酒500ml', 'desc': None, 'sale_price': '¥158元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/46_P_1448946598711.jpg', 'books/images/46_P_1448946598301.jpg' ], 'categorys': [ '首页', '酒水饮料', '葡萄酒' ], 'market_price': '¥38元', 'name': '双响炮洋酒JimBeamwhiskey美国白占边', 'desc': None, 'sale_price': '¥28元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/21_P_1448946793276.jpg', 'books/images/21_P_1448946793153.jpg' ], 'categorys': [ '首页', '酒水饮料', '饮料/水' ], 'market_price': '¥55元', 'name': '西夫拉姆进口洋酒小酒版', 'desc': None, 'sale_price': '¥46元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/15_P_1448947257324.jpg', 'books/images/15_P_1448947257580.jpg' ], 'categorys': [ '首页', '酒水饮料', '洋酒' ], 'market_price': '¥22元', 'name': '茅台53度飞天茅台500ml', 'desc': None, 'sale_price': '¥18元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/13_P_1448947460386.jpg', 'books/images/13_P_1448947460276.jpg', 'books/images/13_P_1448947460353.jpg' ], 'categorys': [ '首页', '酒水饮料', '葡萄酒' ], 'market_price': '¥42元', 'name': '52度兰陵·紫气东来1600mL山东名酒', 'desc': None, 'sale_price': '¥35元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/50_P_1448946543091.jpg', 'books/images/50_P_1448946542182.jpg' ], 'categorys': [ '首页', '酒水饮料', '饮料/水' ], 'market_price': '¥24元', 'name': 'JohnnieWalker尊尼获加黑牌威士忌', 'desc': None, 'sale_price': '¥20元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/51_P_1448946466595.jpg', 'books/images/51_P_1448946466208.jpg' ], 'categorys': [ '首页', '酒水饮料', '洋酒' ], 'market_price': '¥31元', 'name': '人头马CLUB特优香槟干邑350ml', 'desc': None, 'sale_price': '¥26元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/17_P_1448947102246.jpg' ], 'categorys': [ '首页', '酒水饮料', '啤酒' ], 'market_price': '¥54元', 'name': '张裕干红葡萄酒750ml*6支', 'desc': None, 'sale_price': '¥45元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/20_P_1448946850602.jpg' ], 'categorys': [ '首页', '酒水饮料', '葡萄酒' ], 'market_price': '¥46元', 'name': '原瓶原装进口洋酒烈酒法国云鹿XO白兰地', 'desc': None, 'sale_price': '¥38元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/19_P_1448946951581.jpg', 'books/images/19_P_1448946951726.jpg' ], 'categorys': [ '首页', '酒水饮料', '白酒' ], 'market_price': '¥82元', 'name': '法国原装进口圣贝克干红葡萄酒750ml', 'desc': None, 'sale_price': '¥68元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/18_P_1448947011435.jpg' ], 'categorys': [ '首页', '酒水饮料', '白酒' ], 'market_price': '¥67元', 'name': '法国百利威干红葡萄酒AOP级6支装', 'desc': None, 'sale_price': '¥56元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/22_P_1448946729629.jpg' ], 'categorys': [ '首页', '酒水饮料', '洋酒' ], 'market_price': '¥71元', 'name': '芝华士12年苏格兰威士忌700ml', 'desc': None, 'sale_price': '¥59元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/45_P_1448946661303.jpg' ], 'categorys': [ '首页', '酒水饮料', '饮料/水' ], 'market_price': '¥31元', 'name': '深蓝伏特加巴维兰利口酒送预调酒', 'desc': None, 'sale_price': '¥18元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/32_P_1448948525620.jpg' ], 'categorys': [ '首页', '蔬菜水果', '精选蔬菜' ], 'market_price': '¥43元', 'name': '赣南脐橙特级果10斤装', 'desc': None, 'sale_price': '¥36元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/30_P_1448948663450.jpg', 'books/images/30_P_1448948662571.jpg', 'books/images/30_P_1448948663221.jpg' ], 'categorys': [ '首页', '蔬菜水果', '进口水果' ], 'market_price': '¥11元', 'name': '泰国菠萝蜜16-18斤1个装', 'desc': '【懒人吃法】菠萝蜜果肉,冰袋保鲜,收货就吃,冰爽Q脆甜,2斤装,全国顺丰空运包邮,发出后48小时内可达,一线城市基本隔天可达', 'sale_price': '¥9元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/31_P_1448948598947.jpg', 'books/images/31_P_1448948598475.jpg' ], 'categorys': [ '首页', '蔬菜水果', '国产水果' ], 'market_price': '¥22元', 'name': '四川双流草莓新鲜水果礼盒2盒', 'desc': None, 'sale_price': '¥18元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/35_P_1448948333610.jpg', 'books/images/35_P_1448948333313.jpg' ], 'categorys': [ '首页', '蔬菜水果', '有机蔬菜' ], 'market_price': '¥67元', 'name': '新鲜头茬非洲冰草冰菜', 'desc': None, 'sale_price': '¥56元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/36_P_1448948234405.jpg', 'books/images/36_P_1448948234250.jpg' ], 'categorys': [ '首页', '蔬菜水果', '有机蔬菜' ], 'market_price': '¥6元', 'name': '仿真蔬菜水果果蔬菜模型', 'desc': None, 'sale_price': '¥5元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/33_P_1448948479966.jpg', 'books/images/33_P_1448948479886.jpg' ], 'categorys': [ '首页', '蔬菜水果', '精选蔬菜' ], 'market_price': '¥28元', 'name': '现摘芭乐番石榴台湾珍珠芭乐', 'desc': '''海南产精品释迦果, 释迦是水果中的贵族, 产量少, 味道很甜, 奶香十足, 非常可口, 果裹果园顺丰空运, 保证新鲜.果子个大, 一斤1-2个左右, 大个头的果子更尽兴! ''', 'sale_price': '¥23元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/34_P_1448948399009.jpg' ], 'categorys': [ '首页', '蔬菜水果', '国产水果' ], 'market_price': '¥46元', 'name': '潍坊萝卜5斤/箱礼盒', 'desc': '脐橙规格是65-90MM左右(标准果果径平均70MM左右,精品果果径平均80MM左右),一斤大概有2-4个左右,脐橙产自江西省赣州市信丰县安西镇,全过程都是采用农家有机肥种植,生态天然', 'sale_price': '¥38元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/43_P_1448948762645.jpg' ], 'categorys': [ '首页', '休闲食品' ], 'market_price': '¥154元', 'name': '休闲零食膨化食品焦糖/奶油/椒麻味', 'desc': None, 'sale_price': '¥99元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/38_P_1448949220255.jpg' ], 'categorys': [ '首页', '奶类食品', '奶粉' ], 'market_price': '¥84元', 'name': '蒙牛未来星儿童成长牛奶骨力型190ml*15盒', 'desc': None, 'sale_price': '¥70元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/44_P_1448948850187.jpg' ], 'categorys': [ '首页', '奶类食品', '进口奶品' ], 'market_price': '¥70元', 'name': '蒙牛特仑苏有机奶250ml×12盒', 'desc': None, 'sale_price': '¥32元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'images/201511/books_img/49_P_1448162819889.jpg' ], 'categorys': [ '首页', '奶类食品' ], 'market_price': '¥1元', 'name': '1元支付测试商品', 'desc': None, 'sale_price': '¥1元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/40_P_1448949038702.jpg' ], 'categorys': [ '首页', '奶类食品', '进口奶品' ], 'market_price': '¥70元', 'name': '德运全脂新鲜纯牛奶1L*10盒装整箱', 'desc': None, 'sale_price': '¥58元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/39_P_1448949115481.jpg' ], 'categorys': [ '首页', '奶类食品', '有机奶' ], 'market_price': '¥38元', 'name': '木糖醇红枣早餐奶即食豆奶粉538g', 'desc': None, 'sale_price': '¥32元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/41_P_1448948980358.jpg' ], 'categorys': [ '首页', '奶类食品', '原料奶' ], 'market_price': '¥26元', 'name': '高钙液体奶200ml*24盒', 'desc': None, 'sale_price': '¥22元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/37_P_1448949284365.jpg' ], 'categorys': [ '首页', '奶类食品', '国产奶品' ], 'market_price': '¥720元', 'name': '新西兰进口全脂奶粉900g', 'desc': None, 'sale_price': '¥600元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'images': [ 'books/images/42_P_1448948895193.jpg' ], 'categorys': [ '首页', '奶类食品', '进口奶品' ], 'market_price': '¥43元', 'name': '伊利官方直营全脂营养舒化奶250ml*12盒*2提', 'desc': None, 'sale_price': '¥36元', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'sale_price': '¥156元', 'images': [ 'books/images/27_P_1448947771805.jpg' ], 'market_price': '¥187元', 'categorys': [ '首页', '粮油副食', '厨房调料' ], 'desc': None, 'name': '维纳斯橄榄菜籽油5L/桶', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'sale_price': '¥15元', 'images': [ 'books/images/23_P_1448948070348.jpg' ], 'market_price': '¥18元', 'categorys': [ '首页', '粮油副食', '食用油' ], 'desc': None, 'name': '糙米450gx3包粮油米面', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'sale_price': '¥45元', 'images': [ 'books/images/26_P_1448947825754.jpg' ], 'market_price': '¥54元', 'categorys': [ '首页', '粮油副食', '调味品' ], 'desc': None, 'name': '精炼一级大豆油5L色拉油粮油食用油', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'sale_price': '¥26元', 'images': [ 'books/images/28_P_1448947699948.jpg', 'books/images/28_P_1448947699777.jpg' ], 'market_price': '¥31元', 'categorys': [ '首页', '粮油副食', '南北干货' ], 'desc': None, 'name': '橄榄玉米油5L*2桶', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'sale_price': '¥9元', 'images': [ 'books/images/24_P_1448948023823.jpg', 'books/images/24_P_1448948023977.jpg' ], 'market_price': '¥11元', 'categorys': [ '首页', '粮油副食', '方便速食' ], 'desc': None, 'name': '山西黑米农家黑米4斤', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'sale_price': '¥12元', 'images': [ 'books/images/25_P_1448947875346.jpg' ], 'market_price': '¥14元', 'categorys': [ '首页', '粮油副食', '米面杂粮' ], 'desc': None, 'name': '稻园牌稻米油粮油米糠油绿色植物油', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' }, { 'sale_price': '¥12元', 'images': [ 'books/images/29_P_1448947631994.jpg' ], 'market_price': '¥14元', 'categorys': [ '首页', '粮油副食', '食用油' ], 'desc': None, 'name': '融氏纯玉米胚芽油5l桶', 'books_desc':'<p><img src="/media/books/images/2_20170719161405_249.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161414_628.jpg" title="" alt="2.jpg"/></p><p><img src="/media/books/images/2_20170719161435_381.jpg" title="" alt="2.jpg"/></p>' } ] pass
5d949b19ac66b7471688398e07a855dfa02336dd
f1b420b0e3f44c9df9ba4e537a780de215572552
/regex.py
d32d14ebb9457073a953cdef979d4d53c5154c44
[]
no_license
sociopath00/PythonBasics
9049720e8d0a3e6ea86290d26aa97a7dcd3bdd61
0720444042e9d67127939742021497a6f4aec97e
refs/heads/master
2021-07-13T00:09:33.217740
2020-11-21T18:01:43
2020-11-21T18:01:43
219,669,457
0
0
null
null
null
null
UTF-8
Python
false
false
1,785
py
""" @author: Akshay Nevrekar @created_on: 6th November,2019 @last_updated_on: 6th November,2019 """ # import module import re """ Identifiers \d -> any number \D -> anything but number \s -> space \S -> anything bus space \w -> any character \W -> anything but character . -> any character except new line \b -> the whitespace around words \. -> . Modifiers {1,3} 1-3 + match 1 or more ? match 0 or 1 * match 0 or more $ match end of a string ^ match the beginning of a string | either or or [] range """ statement = "PYTHON is a programming language but cat and rat are playing hide and seek. Is python popular?" statement1 = "The earth is flat" statement2 = "is it free?" # find python in above statement word = re.search(r"python", statement, re.IGNORECASE) print(word) print(word.group()) # # find all occurance words = re.findall(r"python", statement, re.IGNORECASE) print(words) # find statements starts with `The` pattern = "^The" words = re.search(pattern, statement1, re.IGNORECASE) print(words) words = re.search(pattern, statement2) print(words) # check if str ends with `?` pattern = ".*\?$" words = re.search(pattern, statement1) print(words) words = re.search(pattern, statement) print(words) print(words.group()) # words = re.search(pattern, statement2) # print(words) ## More statement = "Raj is 17 years old and born in 2002 whereas Sameer is born in 1999 and 20. Jas is 7 years old where" # find numbers numbers = re.findall("\d", statement) print(numbers) numbers = re.findall("\d+", statement) print(numbers) years = re.findall("\d{2,4}", statement) print(years) names = re.findall("[A-Z][a-z]+", statement) print(names) print(re.findall(r"\bwhere\b", statement))
985ba7540d4a52c6e2fc483f7bf744a12568939d
e9c3e8f6ae05b0144237d01671f9a02404c43154
/hw_timer_demo.py
4a5fedda73c77fd651b7c016d6e9bbaa1870fc76
[]
no_license
vtt-info/micropython-stm32-examples
b836fe8a54119fcfdd95046d4edae043a156b695
b6bbcb98a23b615914a015c7cbdedd550f5807ed
refs/heads/master
2022-07-27T17:38:31.202661
2020-05-13T10:57:20
2020-05-13T10:57:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
450
py
# File: hw_timer_demo.py # Date: 2020-05-12 # Micropython-STM31F411CE Black Pill import utime as time from machine import Pin import pyb led = pyb.LED(1) # on-board LED (blue) # create Timer (select TIM1..TIM11) tim = pyb.Timer( 1, freq=10 ) # 10 Hz (fast LED blink) tim.callback( lambda t: led.toggle() ) try: while True: pass except KeyboardInterrupt: pass finally: tim.callback(None) tim.deinit() print('Done')
6b61385d0fdf99629f23627dd07d90d5bf712491
14e3728f61b89ee20155d497bad8b15753ce5d77
/gui.py
ff9b1f683d9abe9467556c62721303fe55bba249
[]
no_license
jonathanvanschenck/Platformer2
d6f121be71a10eae96cbedfd0c683c0c8ce89add
9cf80d6bf272f4fb3fb3ea708f36ce934262cb62
refs/heads/master
2020-04-18T00:42:35.839136
2019-01-26T05:24:38
2019-01-26T05:24:38
167,087,796
0
0
null
null
null
null
UTF-8
Python
false
false
4,253
py
""" Main gui for game. """ import pygame as pg from pygame.locals import * import varbs import classes import engine import initialize def main(): # Initalize the Screen pg.init() screen = pg.display.set_mode((varbs.screenW,varbs.screenH)) pg.display.set_caption("The Judges") # Initalized a background background = pg.Surface(screen.get_size()) background = background.convert() background.fill((250,250,250)) # Populate background # Initialize player global player global sword sword = initialize.initSword() player = initialize.initPlayer(sword) # Initialize mobs global mobs mobs = initialize.initMobs() # Initialize platforms global platforms platforms = initialize.initPlatforms() # Initialize Lava and Goal global lava lava = initialize.initLava() global goal goal = initialize.initGoal() # Initialize sprite groups playerSprite = pg.sprite.Group(player) itemSprites = pg.sprite.Group(sword) platformSprites = pg.sprite.Group(platforms) scrollingSprites = classes.RenderUpdatesSneaky([lava]+[player,sword]+mobs+platforms+[goal]) physicsSprites = pg.sprite.Group([player]+mobs) mobSprites = pg.sprite.Group(mobs) # Blit everything to the screen screen.blit(background, (0,0)) pg.display.update() # Initalize killcounter global killcounter killcounter = 0 # Initialize the clock clock = pg.time.Clock() while 1: clock.tick(varbs.framerate) for event in pg.event.get(): if event.type == QUIT: return if event.type == KEYDOWN: if event.key == K_a: player.setAccel(left=-1.0) if event.key == K_d: player.setAccel(right=1.0) if event.key == K_w: player.jumpAttempt() player.jumpActive = False if event.key == K_SPACE: player.setAttack(True) if event.type == KEYUP: if event.key == K_a: player.setAccel(left=0.0) if event.key == K_d: player.setAccel(right=0.0) if event.key == K_w: player.jumpActive = True #if event.key == K_SPACE: # player.setAttack(False) # Erase Player and platform location scrollingSprites.clear(screen,background) # Step physics engine.stepPhysics(physicsSprites) engine.stepMobAI(playerSprite,mobSprites) engine.stepPlayer(playerSprite) for sprite in physicsSprites.sprites(): sprite.moveFromV() engine.collisionPlatform(sprite,platformSprites) # Kill mobs in the lava pg.sprite.spritecollide(lava, mobSprites,1) # Kill mobs hit by sword if sword.visible: killcounter += len(pg.sprite.spritecollide(sword, mobSprites, 1)) # Check for collisions with mobs dead, kc = engine.collisionMob(player,mobSprites) killcounter += kc # Scroll Screen charx = player.rect.centerx if charx < 0.39*varbs.screenW or charx > 0.41*varbs.screenW: dx = 0.4*varbs.screenW - charx for sprite in scrollingSprites.sprites(): sprite.rect.move_ip(dx,0) if len(mobSprites.sprites()) < 2: newMob = classes.Mob(x = 1.3*varbs.screenW) mobSprites.add(newMob) physicsSprites.add(newMob) scrollingSprites.add(newMob) # Update all sprites scrollingSprites.update() # Draw all sprites (via groups) dirty_rect = scrollingSprites.draw(screen) # Update display with new screen pg.display.update(dirty_rect) # Check for victory if pg.sprite.collide_rect(player,goal): print("YOU WIN!") return # Check for death if pg.sprite.collide_rect(player,lava) or dead: print("YOU DIED!") return print("Purifications: ",killcounter) if __name__ == "__main__": main()
c62750ec08e06522ae9aff12220e62eac5024980
c5a7bf957611a5f825577cddd21ed1a6474e27b0
/learning_logs/migrations/0002_entry.py
894d779c211fc9ed330458ed4a9e5080c0769d57
[]
no_license
o-shmidke/LearningLog
05cd1929bb84e1a379750526eddde1e9ac00c29f
848d84203a35029bae146e0aff5519600f6b41bd
refs/heads/main
2023-01-31T10:26:14.057815
2020-12-09T12:02:41
2020-12-09T12:02:41
319,942,348
0
0
null
null
null
null
UTF-8
Python
false
false
804
py
# Generated by Django 3.1.4 on 2020-12-08 05:43 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('learning_logs', '0001_initial'), ] operations = [ migrations.CreateModel( name='Entry', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField()), ('date_added', models.DateTimeField(auto_now_add=True)), ('topic', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='learning_logs.topic')), ], options={ 'verbose_name_plural': 'Entries', }, ), ]
b7ab17516bfe48f16e4d23abe58a871006b093b2
ff768c02e02064459249df9190555d2e32a9ef37
/admin/products/migrations/0001_initial.py
384949c9126372488b0c37671a9f3ce366c66c6b
[]
no_license
Raja-mishra1/microservices_with_python
de0b25fee984084a5b03de47684c98a8bbf442ea
5b6295a591568fa22f379c87ef579e449c697a90
refs/heads/main
2023-02-04T13:27:33.707466
2020-12-30T18:27:14
2020-12-30T18:27:14
324,816,832
3
0
null
null
null
null
UTF-8
Python
false
false
835
py
# Generated by Django 3.1.3 on 2020-12-21 18:43 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('image', models.CharField(max_length=200)), ('likes', models.PositiveIntegerField(default=0)), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], ), ]
0ef962f1ba33aef4daecd4b987ab4fb573293a3a
a9f38bb28ff9bd04b151d86c653cde9f46768c7c
/medium/linkedListCycle.py
d8b96b07fc2ad820cad79b087c355a056bd0bd37
[]
no_license
Xynoclafe/leetcode
02388516b10b8ee6bec6ee1b91ab5681c3254d33
4a80f02683e7fc14cb49c07170651ea3eeb280ac
refs/heads/master
2020-12-01T21:05:44.656581
2020-02-02T09:05:32
2020-02-02T09:05:32
230,770,600
0
0
null
null
null
null
UTF-8
Python
false
false
518
py
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None from collections import defaultdict class Solution: def detectCycle(self, head: ListNode) -> ListNode: seen = defaultdict(lambda: False) node = head while node != None: if seen[node]: return node else: seen[node] = True node = node.next return None
3677d8a92b150fe0027aa08c9cab0b9074543e10
c5b9e959c02397b6adb5de773eebd4cc877530da
/models.py
96d4b736ec6db17bf855a1195c69d3dc19f95024
[]
no_license
andriyor/soc-counter
0335970210b0bc9549be3ec417baeca79569cc4f
8ac74f367a7f7fa8ec5f76762be4955cac3cf641
refs/heads/master
2021-08-07T20:35:54.044002
2017-04-25T11:13:41
2017-04-25T11:13:41
83,723,726
0
0
null
2022-04-11T17:36:34
2017-03-02T20:52:53
JavaScript
UTF-8
Python
false
false
1,272
py
from flask_login import UserMixin from flask_mongoengine import MongoEngine from app import app, login_manager, flask_bcrypt db = MongoEngine(app) handle = 'rozetked' class Links(db.EmbeddedDocument): youtube = db.StringField(max_length=200) twitter = db.StringField(max_length=200) instagram = db.StringField(max_length=200) facebook = db.StringField(max_length=200) class User(UserMixin, db.Document): email = db.StringField(max_length=50, unique=True) username = db.StringField(max_length=50, unique=True) password_hash = db.StringField(max_length=200) links = db.EmbeddedDocumentField(Links) @property def password(self): raise AttributeError('password is not a readable attribute') @password.setter def password(self, password): self.password_hash = flask_bcrypt.generate_password_hash(password).decode("utf-8") def verify_password(self, password): return flask_bcrypt.check_password_hash(self.password_hash, password) @staticmethod def get_by_email(email): try: return User.objects.get(email=email) except User.DoesNotExist: return None @login_manager.user_loader def load_user(user_id): return User.objects.with_id(user_id)
5991c89b63335624c6ba7129d7deebee22fd5e98
66e0ab971c9509e8ce79df6e0c5a52905c830be8
/prob067/prob067.py
438f596fb54fe2df9d2e878319140420543f256d
[]
no_license
davidized/euler
0e171d6ede19d3286f282df26632b90babca7fc9
7c3a14febf1dedb5051dc5fd92469660f0f888f3
refs/heads/master
2021-06-11T15:53:05.367189
2021-05-29T14:45:25
2021-05-29T14:45:25
8,613,285
7
1
null
null
null
null
UTF-8
Python
false
false
754
py
# Retrieve the triangle file and create lists input = open('triangle.txt') filelines = input.readlines() triangle = [] for line in filelines: line = line.rstrip() triangle.append(line.rsplit()) rows = len(triangle)-1 #We need the number of rows so we can start one row up on_row = rows - 1 working_row = triangle[rows] #Row below the one we're working on (sums) while on_row >= 0: #Step through rows item_pos = 0 new_row = [] for item in triangle[on_row]: adj1 = int(working_row[item_pos]) + int(item) adj2 = int(working_row[item_pos+1]) + int(item) new_row.append(max(adj1, adj2)) item_pos += 1 #print(on_row, ':\t', new_row) working_row = new_row on_row -= 1 print(working_row)
5999842176ecc8a4ae17f350b9572baf683a41cf
e17752012d3b9d65a2b444e9f73195fa89c71a00
/repData.py
cda43a5dd0b0f03367f010144431dd3cebb1d6d8
[]
no_license
jadenbh13/brain-text
ea5746d932671824c4e9e1771b57ef2f29f2d96a
f55ee6e750550a8cf15a70f458ee2156d2c2633a
refs/heads/main
2023-03-30T05:39:14.390966
2021-04-07T16:06:37
2021-04-07T16:06:37
355,544,268
0
0
null
null
null
null
UTF-8
Python
false
false
4,396
py
import datetime import random import serial import time import matplotlib.animation as animation import matplotlib.pyplot as plt from twilio.rest import Client from pynput.keyboard import Key, Controller keyboard = Controller() # Your Account SID from twilio.com/console account_sid = "ACCNT_SID" # Your Auth Token from twilio.com/console auth_token = "ACCNT_TOKEN" # /dev/tty.SLAB_USBtoUART # /dev/tty.usbmodem1411 client = Client(account_sid, auth_token) toStr = 'RECIPIENT_PHONE_NUMBER' COM = '/dev/tty.SLAB_USBtoUART'# /dev/tty.SLAB_USBtoUART BAUD = 9600 ser = serial.Serial(COM, BAUD, timeout = .1) print('Waiting for device'); time.sleep(3) print(ser.name) char = 0 charList = [0] def read_data(): global char global charList m = 0 n = 0 #Get serial output from nodemcu val = str(ser.readline().decode().strip('\r\n')) print(val) e = val.split(',') #If brain data is sent if len(e) > 4: #Get high and low alpha waves l = int(e[6]) + int(e[7]) #Average them for single alpha wave value num = l / 2 nuu = int(e[7]) print(num) #If alpha waves are greater than 9000(user is focusing) if num > 9000: #Append current char to charList charList.append(char) print("Added") #If not else: #Add 1 to char char += 1 #If char is greater than 9 if char > 9: #Reset to 0(start from top) char = 0 """if len(charList) % 3 == 0: charList.append(0)""" print(" ") print(char) print(charList) print(" ") m = num n = nuu #Return alpha wave values return m, n def animate(frame, xs, ys): # Read data dat = read_data() #Correspond x axis with seconds elapsed xs.append(datetime.datetime.now().strftime('%S')) #Correspond y axis with alpha wave values ys.append(dat[0]) #Set limits for graph size_limit = 30 xs = xs[-size_limit:] ys = ys[-size_limit:] #Clear axes and plot x and y ax.clear() ax.plot(xs, ys) #Set values for plot plt.grid() plt.xticks(rotation=45, ha='right') plt.subplots_adjust(bottom=0.30) plt.title('Brain wave data') plt.ylabel('Alpha wave amplitude') plt.xlabel('Time') if __name__ == '__main__': e = 0 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) x_data = [] y_data = [] #Show plot ani = animation.FuncAnimation(fig, animate, fargs=(x_data, y_data), interval=200) plt.show() #Once exited print(" ") h = 0 lst = [] mnLst = [] sts = "" #Loop through charList while h < len(charList): print(" ") print(h) print(charList[h]) #Append current index to lst lst.append(charList[h]) print(lst) #For every 2 values: if h % 2 == 0: if len(lst) == 3: vb = [lst[1], lst[2]] mnLst.append(vb) #Append lst to mnLst mnLst.append(lst) #Reset lst(keep to 2 values) lst = [] print(" ") h += 1 print(charList) #Loop through mnLst for b in mnLst: #If length of current index is greater than 1(there exists a 2 number ASCII code at current index) if len(b) > 1: #Create empty string st = "" #Loop through each number for j in b: #Add string of j to string(creates a string of numbers) st += str(j) #Convert st to integer chars = int(st) print(chars) #Convert from ASCII code to actual letter print(chr(chars)) #Add letter to string of all letters sts += chr(chars) print(mnLst) print(sts) print(toStr) #Call to twilio messages(create sms message) #Use string of ASCII letters to fill body #Use previously defined recipient string to fill to value message = client.messages \ .create( body=sts, from_='TWILIO_PHONE_NUMBER', to=toStr ) #Print message SID to confirm sending print(message.sid) print(" ")
d755d565180edb43da8505893ff541726e9d7e91
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_syrians.py
2ea97ed156d2f2172951b08f48c5d732cd91cdcb
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
222
py
#calss header class _SYRIANS(): def __init__(self,): self.name = "SYRIANS" self.definitions = syrian self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['syrian']
faebb5179ffd852e252b6d8110e6dd1532dbae1a
8a51f71741f5ec37ea5d0b1f51050f68e432241c
/src/utils.py
b74fdb434d6211ab295368c88388e467b7404418
[]
no_license
jakm/VideoConvertor
d93c306a6f51c1a5e7b170189ab5188e0158bcaa
5b3e7d6de2b204b0d6a9abdb14e484227a0ba993
refs/heads/master
2021-01-19T08:11:31.888852
2014-01-02T08:35:54
2014-01-02T08:35:54
3,355,311
0
0
null
null
null
null
UTF-8
Python
false
false
4,887
py
# -*- coding: utf8 -*- """ Provides miscellaneous useful functions and classes. """ import functools from twisted.internet import protocol def encode(string): """ Encode string with preferred encoding. @param string str, String to encode @return str """ import locale encoding = locale.getpreferredencoding() return string.encode(encoding) def decode(string): """ Decode string with preferred encoding. @param string str, String to decode @return str """ import locale encoding = locale.getpreferredencoding() return string.decode(encoding) def singleton(cls): """ Decorator. Create singleton from decorated class. @param cls type, Singleton class @return object, Instance of class """ instances = {} def getinstance(): if cls not in instances: instances[cls] = cls() return instances[cls] return getinstance def get_version(): """ Return application's version. Use module _pkgdata generated by setup.py. If _pkgdata doesn't exist return None. @return str """ try: from _pkgdata import version return version except ImportError: return None def get_install_dir(): """ Return path where application is installed. Use module _pkgdata generated by setup.py. If _pkgdata doesn't exist get directory from first command argument (path to executable). @return str """ try: from _pkgdata import install_path return install_path except ImportError: import os.path import sys return os.path.dirname(sys.argv[0]) def get_app_dir(): """ Return application's directory in user's home directory. Create new if doesn't exist. @return str """ import os import os.path user_home = os.path.expanduser('~') app_dir = os.path.join(user_home, '.videoconvertor') if not os.path.exists(app_dir): os.mkdir(app_dir) return app_dir def setup_logging(): """ Set up logging module according to options in application's configuration file. """ import logging import os.path from twisted.python import log from config import Configuration config = Configuration() levels_map = {'CRITICAL': logging.CRITICAL, 'ERROR': logging.ERROR, 'WARNING': logging.WARNING, 'INFO': logging.INFO, 'DEBUG': logging.DEBUG} level_str = config.get('logging', 'level') filename = config.get('logging', 'filename') try: level = levels_map[level_str] except KeyError: default = logging.INFO print ('Unknown logging level %s, using default %s' % (level_str, logging.getLevelName(default))) level = default if filename is None or filename == '': filename = 'stdout' if filename == 'stdout': filepath = None else: filepath = os.path.join(get_app_dir(), filename) # http://twistedmatrix.com/documents/current/core/howto/logging.html#auto3 observer = log.PythonLoggingObserver() observer.start() print ("Openning log '%s' with level %s" % (filepath if filepath else filename, logging.getLevelName(level))) logging.basicConfig(level=level, filename=filepath) def async_function(fnc): """ Decorator. Decorated function will by executed in standalone thread and will return t.i.d.Deferred. @param fnc callable, Function or method to decorate @return function """ from twisted.internet import threads @functools.wraps(fnc) def wrapper(*args, **kwargs): return threads.deferToThread(fnc, *args, **kwargs) return wrapper # see http://code.activestate.com/recipes/576563-cached-property/ def cached_property(f): """returns a cached property that is calculated by function f""" def get(self): try: return self._property_cache[f] except AttributeError: self._property_cache = {} x = self._property_cache[f] = f(self) return x except KeyError: x = self._property_cache[f] = f(self) return x return property(get) class WatchingProcessProtocol(protocol.ProcessProtocol): """ ProcessProtocol that is watching termination of process and callbacks owns deferred. """ def __init__(self, deferred): """ Save deferred. @param deferred t.i.d.Deferred """ self.deferred = deferred def processExited(self, status): """ Raise errback of protocol's deferred after process termination. Pass t.i.e.ProcessDone or t.i.e.ProcessTerminated as parameter. It contains return value or signal number (that killed the process) """ self.deferred.errback(status)
5322af7f07ad32bc337c8b32e40381f72879c7a9
2e9d6aa04ab53ad4d9ff5c83d253d4b58e151420
/daily_image_scraper.py
b3eaf169dffe5c7204d724242847c4123159cf6d
[ "MIT" ]
permissive
meisty/Daily-Image-Scraper
c94958c03bf9e74cc34fd634ffe69c588bf26817
1fa8b26e14db33e903e46d839d6138d8795347bb
refs/heads/master
2020-04-03T10:06:44.245666
2019-12-02T22:36:24
2019-12-02T22:36:24
95,489,471
0
0
null
null
null
null
UTF-8
Python
false
false
1,054
py
import requests, bs4, os def getDailyImage(imageUrl): url=imageUrl res = requests.get(imageUrl) res.raise_for_status soup = bs4.BeautifulSoup(res.text, 'html.parser') imageElem = soup.select('html body center p a img') if imageElem == []: print("Could not find the image") return False else: imgUrl = imageElem[0].get('src') imgUrl = url+imgUrl #download the image print("Downloading the image %s..." % (imgUrl)) res = requests.get(imgUrl) res.raise_for_status print(res) with open('background.jpg', 'wb') as fo: for chunk in res.iter_content(4096): fo.write(chunk) os.system("/usr/bin/gsettings set org.gnome.desktop.background picture-uri file:/home/shaun/python/webscraping/daily_image_scraper/background.jpg") result = getDailyImage('https://apod.nasa.gov/apod/') if result == False: print("Image failed to download") else: print("Your image has been downloaded and has been set as your desktop background")
0c5bcc232151d3d0cfc29a8d4879ddf6f1b4e2b6
e9ea875168e2025f10b9b103b6b1a39a038c2e60
/python solvers/2048/GreedySearchNoRandom.py
dcb1c399e0d617c223c479d9a3167e86b48b926d
[]
no_license
greengatz/senior_project
0dda6ef93c878aec9731ce6e25a1c37fa5f18535
6ab42e48583ddd4d7a13959b33f7044f63beda69
refs/heads/master
2021-01-15T15:36:27.085469
2016-08-30T03:24:34
2016-08-30T03:24:34
51,871,702
0
0
null
null
null
null
UTF-8
Python
false
false
3,581
py
from GameState import GameState from random import randint from ValueCalculator import value from Directions import * class GreedySearchNoRandom(object): def __init__(self, inDepth): self.game = GameState() self.numMoves = 0 self.depth = inDepth pass 'keeps searching for moves until the game is complete' def playGame(self): self.game.printState(self.game.gameArray) count = 0 while (self.game.isGoing()): testBoard = self.game.copyArr() bestMove = self.search(testBoard, self.depth) print(bestMove[0]) # when at the end, all decisions might lead to an inevitable failure if (not self.game.isValid(bestMove)): pass #self.game.printState(self.game.gameArray) self.game.takeMove(bestMove[0]) self.game.printState(self.game.gameArray) pass 'returns best move and the value of that move' 'best move is only useful for the top-level call' def search(self, board, depth): if (depth == 0): return (Move.up, 0) bestMove = Move.up bestValue = -1 move = Move.up moveValue = self.searchDirection(board, depth, move) if (moveValue > bestValue): bestMove = move bestValue = moveValue move = Move.left moveValue = self.searchDirection(board, depth, move) if (moveValue > bestValue): bestMove = move bestValue = moveValue move = Move.right moveValue = self.searchDirection(board, depth, move) if (moveValue > bestValue): bestMove = move bestValue = moveValue move = Move.down moveValue = self.searchDirection(board, depth, move) if (moveValue > bestValue): bestMove = move bestValue = moveValue return (bestMove, bestValue) 'returns the number of matches that a given move would make' 'this only determines value of one move and no further searching' def valueOfMove(self, board, move): return value(self.game.preRotate(move, board), self.game, move) 'returns the expected value of a given move searching with the given depth' 'this ignores the new tiles appearing, which saves tons on complexity' def searchDirection(self, board, depth, move): testGame = GameState() testGame.setBoard(board) testGame.setBoard(testGame.copyArr()) # if the move isn't valid, don't consider it if (not testGame.isValid(move)): return -1 # determine the value for making the move at this level ourValue = self.valueOfMove(testGame.gameArray, move) # using that as the starting board, check the child's options afterMove = testGame.executeMove(move) searchValue = self.search(afterMove, depth - 1)[1] return ourValue + searchValue 'generic methods of every solver' def getScore(self): return self.game.getScore() def getMaxTile(self): return self.game.getMaxTile() def getMoves(self): return self.numMoves def printGame(self): self.game.printState() pass
ca4b35dcc9254c770b8fbcf280e5d949ec61f07e
f6cc05e5b93321e54845665464b4411612105487
/venv/lib/python3.9/site-packages/hungarian_algorithm/tests/test_graph.py
3eeefbe0208064fd61df3574656289951ccfee5f
[]
no_license
gostephen/Data-Structures-and-Algorithms
f46fc68e9f69e0e36fdd30ec314f5da0415686bc
48e72e2fd595ea0a02bcb0efbdefae89b030aa6f
refs/heads/master
2023-07-09T02:44:31.685903
2021-08-22T07:55:36
2021-08-22T07:55:36
392,228,795
1
0
null
null
null
null
UTF-8
Python
false
false
6,432
py
''' File name: test_graph.py Description: Tests for Graph methods. Author: Ben Chaplin GitHub: https://github.com/benchaplin/hungarian-algorithm Package: hungarian_algorithm Python Version: 3.7.5 License: MIT License Copyright (c) 2020 Ben Chaplin ''' from ..algorithm import * import unittest ex_G = { 'a': {'b': 2, 'c': 7, 'e': 1}, 'b': {'a': 2, 'd': 5}, 'c': {'a': 7}, 'd': {'b': 5}, 'e': {'a': 1} } ex_H = { 'x1': {'y1': 1, 'y2': 6}, 'x2': {'y2': 8, 'y3': 6}, 'x3': {'y1': 4, 'y3': 1} } ex_X = { 'x': {'y', 'z'}, 'y': {'x', 'z'}, 'z': {'x', 'y'} } ex_Y = { 'x1': {'y1': 1, 'y2': 6}, 'x2': {'y2': 8, 'y3': 6}, 'x3': {'y1': 4, 'y3': 6}, 'y1': {'y2': 2} } class TestGraphMethods(unittest.TestCase): def test_is_bipartite_empty(self): self.assertTrue(Graph({}).is_bipartite(None)) def test_is_bipartite_single(self): self.assertTrue(Graph({'a': {'b'}}).is_bipartite('a')) def test_is_bipartite_pass1(self): self.assertTrue(Graph(ex_G).is_bipartite('a')) def test_is_bipartite_pass2(self): self.assertTrue(Graph(ex_H).is_bipartite('x1')) def test_is_bipartite_fail1(self): self.assertFalse(Graph(ex_X).is_bipartite('x')) def test_is_bipartite_fail2(self): self.assertFalse(Graph(ex_Y).is_bipartite('x1')) def test_make_complete_bipartite_single(self): G = Graph({'a': {'b', 'd'}, 'c': {'d'}}) G.make_complete_bipartite('a') self.assertTrue('b' in G.vertices['c'].neighbors) def test_make_complete_bipartite1(self): G = Graph(ex_G) G.make_complete_bipartite('a') self.assertTrue({'b', 'c', 'e'} == G.vertices['a'].neighbors and {'b', 'c', 'e'} == G.vertices['d'].neighbors and G.vertices['d'].get_edge('c').weight == 0 and G.vertices['d'].get_edge('e').weight == 0) def test_make_complete_bipartite1(self): G = Graph(ex_H) G.make_complete_bipartite('x1') self.assertTrue({'y1', 'y2', 'y3'} == G.vertices['x1'].neighbors and {'y1', 'y2', 'y3'} == G.vertices['x2'].neighbors and {'y1', 'y2', 'y3'} == G.vertices['x3'].neighbors and G.vertices['x1'].get_edge('y3').weight == 0 and G.vertices['x2'].get_edge('y1').weight == 0 and G.vertices['x3'].get_edge('y2').weight == 0) def test_feasibly_label_single(self): G = Graph({'a': {'b'}}) G.feasibly_label('a') self.assertEqual(G.vertices['a'].label, 1) def test_feasibly_label1(self): G = Graph(ex_G) G.feasibly_label('a') self.assertEqual(G.vertices['a'].label, 7) def test_feasibly_label2(self): G = Graph(ex_G) G.feasibly_label('d') self.assertEqual(G.vertices['d'].label, 5) def test_feasibly_label3(self): G = Graph(ex_H) G.feasibly_label('x1') self.assertEqual(G.vertices['x1'].label, 6) def test_feasibly_label4(self): G = Graph(ex_H) G.feasibly_label('x2') self.assertEqual(G.vertices['x2'].label, 8) def test_feasibly_label5(self): G = Graph(ex_H) G.feasibly_label('x3') self.assertEqual(G.vertices['x3'].label, 4) def test_generate_feasible_labeling_pass1(self): G = Graph(ex_G) self.assertTrue(G.generate_feasible_labeling('a')) def test_generate_feasible_labeling_pass2(self): G = Graph(ex_H) self.assertTrue(G.generate_feasible_labeling('x1')) def test_generate_feasible_labeling_fail1(self): G = Graph(ex_X) self.assertFalse(G.generate_feasible_labeling('x')) def test_generate_feasible_labeling_fail2(self): G = Graph(ex_Y) self.assertFalse(G.generate_feasible_labeling('x1')) def test_generate_feasible_labeling_single1(self): G = Graph({'a': {'b': 1}}) G.generate_feasible_labeling('a') self.assertEqual((G.vertices['a'].label, G.vertices['b'].label), (1, 0)) def test_generate_feasible_labeling_single2(self): G = Graph({'a': {'b': 1}}) G.generate_feasible_labeling('b') self.assertEqual((G.vertices['a'].label, G.vertices['b'].label), (0, 1)) def test_generate_feasible_labeling1(self): G = Graph(ex_G) G.generate_feasible_labeling('a') self.assertEqual((G.vertices['a'].label, G.vertices['d'].label, G.vertices['b'].label, G.vertices['c'].label, G.vertices['e'].label), (7, 5, 0, 0, 0)) def test_generate_feasible_labeling2(self): G = Graph(ex_H) G.generate_feasible_labeling('x1') self.assertEqual((G.vertices['x1'].label, G.vertices['x2'].label, G.vertices['x3'].label, G.vertices['y1'].label, G.vertices['y2'].label, G.vertices['y3'].label), (6, 8, 4, 0, 0, 0)) def test_edge_in_equality_subgraph_single(self): G = Graph({'a': {'b': 1}}) G.generate_feasible_labeling('a') e = G.vertices['a'].get_edge('b') self.assertTrue(G.edge_in_equality_subgraph(e)) def test_edge_in_equality_subgraph_pass1(self): G = Graph(ex_G) G.generate_feasible_labeling('a') e = G.vertices['a'].get_edge('c') self.assertTrue(G.edge_in_equality_subgraph(e)) def test_edge_in_equality_subgraph_pass2(self): G = Graph(ex_H) G.generate_feasible_labeling('x1') e = G.vertices['x1'].get_edge('y2') self.assertTrue(G.edge_in_equality_subgraph(e)) def test_edge_in_equality_subgraph_fail1(self): G = Graph(ex_G) G.generate_feasible_labeling('a') e = G.vertices['a'].get_edge('e') self.assertFalse(G.edge_in_equality_subgraph(e)) def test_edge_in_equality_subgraph_fail2(self): G = Graph(ex_H) G.generate_feasible_labeling('x1') e = G.vertices['x1'].get_edge('y1') self.assertFalse(G.edge_in_equality_subgraph(e)) def test_equality_subgraph_single(self): G = Graph({'a': {'b': 1}}) G.generate_feasible_labeling('a') eq_G = G.equality_subgraph() self.assertTrue(eq_G.vertices['a'].get_edge('b')) def test_equality_subgraph1(self): G = Graph(ex_G) G.generate_feasible_labeling('a') eq_G = G.equality_subgraph() self.assertTrue(eq_G.vertices['a'].get_edge('c') and eq_G.vertices['b'].get_edge('d') and not eq_G.vertices['a'].get_edge('b') and not eq_G.vertices['a'].get_edge('e')) def test_equality_subgraph2(self): G = Graph(ex_H) G.generate_feasible_labeling('x1') eq_G = G.equality_subgraph() self.assertTrue(eq_G.vertices['x1'].get_edge('y2') and eq_G.vertices['x2'].get_edge('y2') and eq_G.vertices['x3'].get_edge('y1') and not eq_G.vertices['x1'].get_edge('y1') and not eq_G.vertices['x2'].get_edge('y3') and not eq_G.vertices['x3'].get_edge('y3')) if __name__ == '__main__': unittest.main()
a50897633e5c496269182fceeef7b6dbda62131f
88772525590667104bd070f46281694051b9bca3
/Manager/Policies/old/wealthredistrev.py
df73e967e5d5b6e0a15ae425bcb7f24b813b8271
[]
no_license
iFlex/SociableJavascript
425c39d256c557207f3f620769570e6e28a3288c
ce2c600b1074d432eeb596c2f7a7a3b2cc56cdef
refs/heads/master
2021-01-10T10:12:42.452546
2016-03-28T16:36:56
2016-03-28T16:36:56
43,653,825
0
0
null
null
null
null
UTF-8
Python
false
false
3,993
py
#Wealth Redistribution - ThDrop #Author@ Milorad Liviu Felix import math #inspect and fix with extra care MAX_THPT = 200.0 context = {} def init(context): context["poor_treshold"] = 0 if "csvlog" in context: context["csvlog"].commitSchema(["totalAvailableMemory","redistributable","RichD","PoorD"]) def throughputRescale(t): t = max(0.00001,t) return -math.log10(t/MAX_THPT); def getGini(isolates): sumOfDifferences = 0 sumOfThroughputs = 0 for x in isolates: for y in isolates: sumOfDifferences += math.fabs(throughputRescale(x["throughput"])-throughputRescale(y["throughput"])) sumOfThroughputs += throughputRescale(x["throughput"]) giniIndex = sumOfDifferences / (2*sumOfThroughputs) return giniIndex; def calcPoorTreshold(isolates): sm = 0.0 for i in isolates: sm += throughputRescale(i["throughput"]) #sm += i["throughput"] sm = float(sm)/len(isolates); return math.pow(10,-sm) #return sm def calcThroughputDrops(isolates): for i in isolates: if "old_tp" in i: i["tdrop"] = max(0.0,throughputRescale(i["throughput"]) - i["old_tp"]) else: i["tdrop"] = 0.0 i["old_tp"] = throughputRescale(i["throughput"]) def calcRedistribution(isolates,poor_treshold): RichContrib = 0.0 PoorContrib = 0.0 Redistributable = 0.0 totalUsed = 0.0 for i in isolates: totalUsed += i["hardHeapLimit"] if i["throughput"] <= poor_treshold: PoorContrib += i["tdrop"] else: RichContrib += i["hardHeapLimit"] Redistributable += i["hardHeapLimit"] return (RichContrib,PoorContrib,Redistributable,totalUsed) def redistribute(isolates,rc,pc,ac,redistribute,allocatable,poor_treshold): richd = [] poord = [] allocatable += redistribute; if rc == 0 and pc == 0: return; #poor and rich exist if rc != 0 and pc != 0: for i in isolates: if i["throughput"] <= poor_treshold: coef = i["tdrop"]/pc; poord.append(coef); i["hardHeapLimit"] += coef*allocatable else: richd.append((i["hardHeapLimit"]/rc)) i["hardHeapLimit"] -= (i["hardHeapLimit"]/rc)*redistribute #everyone is rich if pc == 0: allocatable -= redistribute for i in isolates: richd.append((i["hardHeapLimit"]/rc)) i["hardHeapLimit"] += (i["hardHeapLimit"]/rc)*allocatable #everyone is poor if rc == 0: allocatable -= redistribute for i in isolates: poord.append((i["hardHeapLimit"]/ac)) i["hardHeapLimit"] += (i["hardHeapLimit"]/ac)*allocatable return (richd,poord) def markIsolates(isolates,totalAvailableMemory): memlim = totalAvailableMemory / len(isolates) hasNewIsolates = False; for isolate in isolates: if "pMark" not in isolate: isolate["pMark"] = True; isolate["average"] = 0; isolate["avindex"] = 0; hasNewIsolates = True if hasNewIsolates: for isolate in isolates: isolate["hardHeapLimit"] = memlim; return hasNewIsolates def calculate(totalAvailableMemory,isolates,ctx): global context context = ctx if markIsolates(isolates,totalAvailableMemory): return isolates; old = [] new = [] for i in isolates: old.append(i["hardHeapLimit"]) poor_treshold = 0.99 #calcPoorTreshold(isolates); calcThroughputDrops(isolates); gini = getGini(isolates) rc,pc,redist,totalUsed = calcRedistribution(isolates,poor_treshold) allocatable = totalAvailableMemory - totalUsed; allocatable = max(0,allocatable) redist /= 3 redist = min(redist,totalAvailableMemory*gini); redist -= allocatable; redist = max(0,redist) richd,poord = redistribute(isolates,rc,pc,totalUsed,redist,allocatable,poor_treshold) for i in isolates: new.append(i["hardHeapLimit"]) if "csvlog" in ctx: richds = "("+str(len(richd))+")" poords = "("+str(len(poord))+")" for i in richd: richds += str(i)+"|" for i in poord: poords += str(i)+"|" ctx["csvlog"].commitLine(["gini:"+str(gini)+" alc:"+str(allocatable)+" rdst:"+str(redist)]); return isolates def name(): return "Wealth Redistribution v1.2" def stats(): return "No stats available"
d11bc35e80312bd9d5b08d3091ee5098da77f10d
91b8a4c7278e25012733de1af7c3f14d5d3c6688
/reservation/migrations/0001_initial.py
bac817b9235c8d01cbaea9910699cb3cf26dcb01
[]
no_license
FernandoSka/dogger
ab35d5730f579b5798a6f1db9e9c134a4eedb440
b2a8a550936f4d9947518f71acf643d651c99f2d
refs/heads/master
2020-04-18T16:19:03.458129
2019-01-28T18:15:26
2019-01-28T18:15:26
167,631,179
0
0
null
null
null
null
UTF-8
Python
false
false
1,708
py
# Generated by Django 2.1.5 on 2019-01-24 07:21 import customer.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('customer', '0001_initial'), ] operations = [ migrations.CreateModel( name='DogItems', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('dog', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='customer.Dog')), ], ), migrations.CreateModel( name='Reservation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateTimeField()), ('duration', models.DurationField()), ('status', models.CharField(choices=[('pending', 'pending'), ('acepted', 'acepted'), ('concluded', 'concluded'), ('refused', 'refused'), ('canceled', 'canceled')], default='pending', max_length=9)), ('reward', models.FloatField(validators=[customer.validators.min_validator])), ('dogs', models.ManyToManyField(through='reservation.DogItems', to='customer.Dog')), ('walker', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='customer.Walker')), ], ), migrations.AddField( model_name='dogitems', name='reservation', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='reservation.Reservation'), ), ]
7b51afeec4b4b08650f1da993bea865407253bed
03a210fac12f08bf66eedaa6c39431df0e980fb2
/0x05-python-exceptions/0-safe_print_list.py
af6a0965648801e2476feab18a3fb58038d557ea
[]
no_license
jhosep7/holbertonschool-higher_level_programming
9107daee8c6642dcbfc7d7a3957c5fdd97b3f8e2
c16437413b6b6995d6631851a9e1c0aeb24e18e4
refs/heads/master
2020-09-29T04:00:11.969366
2020-05-15T13:37:11
2020-05-15T13:37:11
226,944,654
1
0
null
null
null
null
UTF-8
Python
false
false
312
py
#!/usr/bin/python3 def safe_print_list(my_list=[], x=0): counter = 0 try: for i in range(x): print("{}".format(my_list[i]), end="") counter += 1 except IndexError: pass print() return counter
9c4c6f65428497d682a9810ee5fcf8eca28e6d13
8159412a6301c7ae76242180618ec0623f6a8e99
/Aula2/flask_templates.py
b297686f0316c12d1b3d1cc41004d6250766fa34
[]
no_license
yama1102/python521
bba4faf3c81d74c1b380207f787ba4e3a83883e2
1d84b4c44797541fc0c53fd15ee8166b25f0a88c
refs/heads/master
2020-12-21T22:39:58.826052
2020-01-31T19:32:46
2020-01-31T19:32:46
236,586,441
0
0
null
null
null
null
UTF-8
Python
false
false
366
py
#!/usr/bin/env python3 import flask app = flask.Flask(__name__) @app.route('/') def index(): dados = { 'title': 'Titulo jinja', 'word': 'Eu sei programar', 'botao': True } # return flask.render_template('index.html', title = 'Titulo Jinja', index=dados) return flask.render_template('principal.html') app.run(debug=True)
bf834121013df4c7d43567494dd7c59522486142
ac8dc0d68941644c5abb75620ea6fe093e0c9c5e
/advanced/threadingtest.py
98a57d1bbce0e93935fc009b45f24dca4cf412cd
[]
no_license
Languomao/PythonProject
23a04710141afadda60966d76af201574519d5a1
c6d7103c444ea990585520a16965fad3f6b41ffa
refs/heads/master
2022-12-19T02:08:21.209941
2020-09-22T10:55:10
2020-09-22T10:55:10
290,992,679
0
0
null
null
null
null
UTF-8
Python
false
false
828
py
import threading import time exitFlag = 0 class MyThread(threading.Thread): def __init__(self, threadName, threadID, counter): threading.Thread.__init__(self) self.threadName = threadName self.threadID = threadID self.counter = counter def run(self): print("开始线程:" + self.threadName) print_time(self.threadName, self.counter, 5) print("退出线程:" + self.threadName) def print_time(threadName, counter, delay): while counter: if exitFlag: threadName.exit() time.sleep(delay) print("%s: %s" % (threadName, time.ctime(time.time()))) counter -= 1 mythread1 = MyThread("Thread-1", 1, 5) mythread2 = MyThread("Thread-2", 2, 4) mythread1.start() mythread2.start() mythread1.join() mythread2.join()
a08f6064088a1e6734363005161d93dfea63de55
9c92b6ce98167e33cbe5535b1502c7e6c444cd7d
/constructors.py
94ff1ee0b3b72f27debd68fd0f43572a894a87e4
[]
no_license
seblee97/f1_fantasy
d7bf454c2c48986db0c02cd320ea7d2f209ec8ed
231bd967f5ebffee7553ab71e85414e3781803fe
refs/heads/master
2023-04-17T12:02:38.359698
2021-04-18T20:06:52
2021-04-18T20:06:52
352,050,450
0
0
null
null
null
null
UTF-8
Python
false
false
1,374
py
import constants from f1_objects import Constructor mercedes = Constructor( name=constants.MERCEDES, price=37.8, drivers=[constants.HAMILTON, constants.BOTTAS] ) red_bull = Constructor( name=constants.RED_BULL, price=26.0, drivers=[constants.VERSTAPPEN, constants.PEREZ] ) mclaren = Constructor( name=constants.MCLAREN, price=18.8, drivers=[constants.NORRIS, constants.RICCIARDO] ) ferrari = Constructor( name=constants.FERRARI, price=18.5, drivers=[constants.LECLERC, constants.SAINZ] ) alpha_tauri = Constructor( name=constants.ALPHA_TAURI, price=13.1, drivers=[constants.TSUNODA, constants.GASLY] ) aston_martin = Constructor( name=constants.ASTON_MARTIN, price=17.0, drivers=[constants.STROLL, constants.VETTEL], ) alpine = Constructor( name=constants.ALPINE, price=15.1, drivers=[constants.ALONSO, constants.OCON] ) alfa_romeo = Constructor( name=constants.ALFA_ROMEO, price=8.9, drivers=[constants.RAIKKONEN, constants.GIOVINAZZI], ) haas = Constructor( name=constants.HAAS, price=6.1, drivers=[constants.SCHUMACHER, constants.MAZEPIN] ) williams = Constructor( name=constants.WILLIAMS, price=6.3, drivers=[constants.RUSSELL, constants.LATIFI] ) all_constructors = [ mercedes, red_bull, mclaren, ferrari, alpha_tauri, aston_martin, alpine, alfa_romeo, haas, williams, ]
13a4cfdc9105077329bdddd1b212b3f638efe040
3db5e39d9bbe1c86229a26e7d19e3ceb37f902e3
/algorithm/10week/workshop1_최적경로.py
527bc797632c491ccd80c8f088ab9cf46ba3bc3d
[]
no_license
sweetrain096/rain-s_python
5ca2fe5e7f97a681b6e75e64264687a723be1976
eb285eb50eeebfaa2b4a4d7816314e2073faab00
refs/heads/master
2021-07-19T16:06:01.389283
2020-05-29T14:56:16
2020-05-29T14:56:16
162,240,216
0
0
null
null
null
null
UTF-8
Python
false
false
1,204
py
import sys sys.stdin = open("workshop1_input.txt") def perm(n, k, sum_data): global result if result < sum_data: return if n == k: last_check = sum_data + abs(data[k - 1][0] - er) + abs(data[k - 1][1] - ec) result = min(last_check, result) # print(data) else: for i in range(k, n): data[i], data[k] = data[k], data[i] if not k: tmp_sum = abs(sr - data[k][0]) + abs(sc - data[k][1]) perm(n, k + 1, sum_data + tmp_sum) else: tmp_sum = abs(data[k - 1][0] - data[k][0]) + abs(data[k - 1][1] - data[k][1]) perm(n, k + 1, sum_data + tmp_sum) data[i], data[k] = data[k], data[i] t = int(input()) for tc in range(t): n = int(input()) tmp = list(map(int, input().split())) sr, sc, er, ec = tmp[0], tmp[1], tmp[2], tmp[3] data = [] a = [] for i in range(4, 4 + (n * 2)): a.append(tmp[i]) if len(a) == 2: data.append(a) a = [] # print(sr, sc, er, ec) # print(data) result = 99999999999999999999999999999 perm(n, 0, 0) print("#{} {}".format(tc + 1, result))
50cb9be03e7a90465adb9cc4c291309a1c456643
2c13f599cc54be77ed202edc82422127ac52e9a5
/led/views.py
e86d399db2d2663a65dec37287effe51560b959d
[]
no_license
Alexander3/raspberry-leds
f83129f8c6350616ecc3e28d107fe974d68d1e58
3970798bcd9a3d79fce289ae6878a73ff968aa9e
refs/heads/master
2023-01-10T15:33:11.763194
2020-12-26T21:22:45
2020-12-26T21:22:45
170,722,411
0
0
null
2023-01-01T08:28:45
2019-02-14T16:30:02
TypeScript
UTF-8
Python
false
false
1,556
py
import json from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt from pi_led.celery import app from .domain.leds import led_strip from .tasks import wake_me_up, display_wave from django_celery_beat.models import PeriodicTask, CrontabSchedule @csrf_exempt def set_color(request): data = json.loads(request.body.decode()) hexcolor = data['color'].lstrip('#') rgb = tuple(int(hexcolor[i:i + 2], 16) for i in (0, 2, 4)) # set_led_colors(*rgb) led_strip.lerp(rgb, 1) return HttpResponse() @csrf_exempt def set_alarm(request): data = json.loads(request.body.decode()) schedule = CrontabSchedule.objects.get(id=1) schedule.hour = data['hour'] schedule.minute = data['minute'] schedule.save() PeriodicTask.objects.update_or_create( crontab=schedule, name='Wake me', defaults=dict( task='led.tasks.wake_me_up', kwargs=json.dumps({'speed': 15 * 60}), ) ) return HttpResponse() @csrf_exempt def wake_me_slowly(request): wake_me_up.delay(60 * 10) return HttpResponse() @csrf_exempt def wave(request): display_wave.delay() return HttpResponse() @csrf_exempt def stop_celery(request): app.control.purge() i = app.control.inspect() for tasks in i.active().values(): for task in tasks: app.control.revoke(task['id'], terminate=True) app.control.purge() return HttpResponse() @csrf_exempt def me(request): return HttpResponse('This is RaspberyPi')
7b2521891b78babd941f5180ba79de7d9488c4e8
ee55a6ce2197d690d5b642bf54918b1de6ad0633
/cash/apps/cards/migrations/0001_initial.py
4c6de5bfe7acf83cbfcb85202267d07f48845ff1
[]
no_license
ATNC/cash
d4152dd122310ca3cbca112ef2c12cddfaa1f2c9
56298fab5bd9b9115fa559b357fb4d7ecf496d35
refs/heads/master
2021-01-11T11:17:28.499012
2016-02-11T22:53:21
2016-02-11T22:53:21
51,240,806
0
0
null
null
null
null
UTF-8
Python
false
false
1,844
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-02-07 09:45 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Cards', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cards_num', models.CharField(max_length=16, verbose_name='Card id')), ('cards_pin', models.PositiveIntegerField(max_length=4, verbose_name='Card pin')), ('cards_success', models.PositiveIntegerField(default=4, max_length=1, verbose_name='Card success')), ('cards_balance', models.IntegerField(default=0, verbose_name='Card balance')), ], options={ 'ordering': ['cards_success'], }, ), migrations.CreateModel( name='Transactions', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('transactions_code', models.CharField(choices=[('CB', 'Check balance'), ('GM', 'Get money'), ('SS', 'Success operation')], max_length=2)), ('transaction_timestamp', models.TimeField(auto_now_add=True)), ('transaction_sum', models.CharField(default='0', max_length=255, verbose_name='Transaction sum')), ('transactions_link', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='card', to='cards.Cards', verbose_name='Card')), ], options={ 'ordering': ['transaction_timestamp'], }, ), ]
32b642d2a024996ca327534823b55c601921ace7
279069128ad65c94c0cbd6fe5f79184602724ba3
/App_assist.py
027f160c27ec44a8d04351dcf8e766c1e85fbe8f
[]
no_license
Maxhendo/refactored-eureka
28e2a22d8f98a41b0368599ad8571abbabe62c1f
7ecd650eaf4b1c6872f341ea35fd17a00ae1db5c
refs/heads/main
2023-03-15T08:49:00.281230
2021-02-23T04:37:04
2021-02-23T04:37:04
341,406,953
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
import os import requests from flask import redirect, render_template, request, session from functools import wraps def login_required(f): """ Decorate routes to require login. http://flask.pocoo.org/docs/1.0/patterns/viewdecorators/ """ @wraps(f) def decorated_function(*args, **kwargs): if session.get("user_ID") is None: return redirect("/login") return f(*args, **kwargs) return decorated_function
f18ce412fbc8b06df919a3ca53bba5efec7859e7
2ab0791967ae3bbf52053ef82d9ca4ab14f55aac
/algorithm/python/NumberofSubarraysofSizeKandAverageGreaterthanorEqualtoThreshold/test_solution.py
280afc783a7ccc7b1bdb8aa073f2c31688c67a7d
[]
no_license
verybada/leetcode
8f01dde93f1cd3b0b9698029424cae262d776a48
1f0fc27b635bd6c3d6b0f8baad628d1a254bc143
refs/heads/master
2022-10-13T13:47:21.506053
2022-09-15T15:08:22
2022-09-15T15:08:40
41,243,779
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
import pytest from .solution import Solution @pytest.mark.parametrize( "arr, k, threshold, expected", [ [[2, 2, 2, 2, 5, 5, 5, 8], 3, 4, 3], [[11, 13, 17, 23, 29, 31, 7, 5, 2, 3], 3, 5, 6], ], ) def test_num_of_subarrays(arr, k, threshold, expected): assert Solution().numOfSubarrays(arr, k, threshold) == expected
03192564be49ec52d56ec49d63bc7b541888ec09
bf5804ecc4f1730b9248974dd04a3abd4e705316
/bitutil.py
feab605bdeea8f3221d4d6748ecbe48bd113ae44
[]
no_license
Haretidm/Matrix
cec50cf87a7062ba6e623175fd2f7b2f03d42de1
f0c1f4fdd9a36fddb2dc37041711aad4792a72a1
refs/heads/master
2021-01-23T07:16:33.572780
2013-08-27T10:20:29
2013-08-27T10:20:29
12,402,919
0
1
null
null
null
null
UTF-8
Python
false
false
1,976
py
""" Implements several convenience operations for use with the ECC lab. Author: Landon Judkins (ljudkins) Date: Spring 2009 Updated by Nick Gaya, Spring 2013 Requires: fields matutil """ from GF2 import zero, one import mat import random def str2bits(inp): """ Convert a string into a list of bits, with each character's bits in order of increasing significance. """ bs = [1<<i for i in range(8)] return [one if ord(s)&b else zero for s in inp for b in bs] def bits2str(inp): """ Convert a list of bits into a string. If the number of bits is not a multiple of 8, the last group of bits will be padded with zeros. """ bs = [1<<i for i in range(8)] return ''.join(chr(sum(bv if bit else 0 for bv,bit in zip(bs, inp[i:i+8]))) for i in range(0, len(inp), 8)) def bits2mat(bits,nrows=4,trans=False): """ Convert a list of bits into a matrix with nrows rows. The matrix is populated by bits column by column Keyword arguments: nrows -- number of rows in the matrix (default 4) trans -- whether to reverse rows and columns of the matrix (default False) """ ncols = len(bits)//nrows f = {(i,j):one for j in range(ncols) for i in range(nrows) if bits[nrows*j+i]} A = mat.Mat((set(range(nrows)), set(range(ncols))), f) if trans: A = mat.transpose(A) return A def mat2bits(A, trans=False): """ Convert a matrix into a list of bits. The bits are taken from the matrix column by column with keys in sorted order Keyword arguments: trans -- whether to reverse rows and columns of the matrix (default False) """ if trans: return [A[i,j] for i in sorted(A.D[0]) for j in sorted(A.D[1])] else: return [A[i,j] for j in sorted(A.D[1]) for i in sorted(A.D[0])] def noise(A,freq): """ return a random noise matrix with the same domain as A. The probability for 1 in any entry of the matrix is freq. """ f = {(i,j):one for i in A.D[0] for j in A.D[1] if random.random() < freq} return mat.Mat(A.D, f)
fa997f82b13e2be1aa2a078894efc7faea5c6144
ca6fcc6697d08cc30ed9ce4577db42b0991b16cd
/1Scripts/TouchObjs.py
84a917622557dabed5354df390b0cd1017fc12a2
[]
no_license
brnold/LDBInteractiveModelProject
139e3fb35cb99733b277223169f2979e383d0ec1
cd7abb30c1ff480b4c5327810e5535b87643d07c
refs/heads/master
2021-01-17T11:17:09.245811
2016-06-07T13:53:52
2016-06-07T13:53:52
52,618,012
0
0
null
null
null
null
UTF-8
Python
false
false
3,354
py
#************************************************************************************************************ # ECE 491 Senior Design # Winter 2016 # Team 6 # # Python Script : TouchObjs.py # Supporting Scripts : ObjTouchCtrl.py, # # Purpose: # Touch objects script. This python script module contains 32 objects of type TouchCtrl.TouchObj() # There are 4 touch objects (an address space of for 4 MPR121 IC chips) in # sub-network (an I2C channel) by 8 sub-networks (the number in I2C channels allowable by the # TCA9548A 1-to-8 I2C Multiplexer. # # Functions: # ConFigController(): - configure every MPR121 IC chip in the system. # # GetStatus(): - Update the touch status of every touch object. # # # Primary coder Benjamin # Secondary coder Bret # Code contributor Katrina # Code contributor Ryan #************************************************************************************************************ # Revision # 0 Supporting script creation for touch sensing management. Bret 2016-03-20 # # x Edits. TBD 2016-0x-xx # #************************************************************************************************************ import TouchCtrl Status = 0 TOs = [ TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), # net 0 TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), # net 1 TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), # net 2 TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), # net 3 TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), # net 4 TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), # net 5 TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), # net 6 TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj(), TouchCtrl.TouchObj() # net 7 ] StatusOfTOs = [ Status, Status, Status, Status, # net 0 Status, Status, Status, Status, # net 1 Status, Status, Status, Status, # net 2 Status, Status, Status, Status, # net 3 Status, Status, Status, Status, # net 4 Status, Status, Status, Status, # net 5 Status, Status, Status, Status, # net 6 Status, Status, Status, Status # net 7 ] FiltValsOfTOs =[[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]] BaseLineValsOfTOs =[[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]] def ConFigController(): # Configure every touch sensing IC idx = 0 for idx in range (0,32): # idx will range from 0 to 31 TOs[idx].ConFigController() def GetStatus(): # Update touch status from all ICs. idx = 0 for idx in range (0,32): # idx will range from 0 to 31 StatusOfTOs[idx] = TOs[idx].displayStatus() FiltValsOfTOs[idx] = TOs[idx].filtVal BaseLineValsOfTOs[idx] = TOs[idx].baseLines # print FiltValsOfTOs[idx] # print StatusOfTOs # Feedback during development. return StatusOfTOs # End of TouchObjs.py
dc746b9692d6ba2d3d49f9f8721cc97b63ddb939
be8112d14884ce4e50aeb0cdc15cac4e459a04a1
/backend/face-crop.py
ce9a1e7bbd57fae5b0896e7280786fe00fe0b186
[]
no_license
apalmk/SLAC
b0a348bd7b26e2388dcdc8b89cc5abe389a778c2
66a3e9091368f0b5e49a6f4fb5f0f083394d4e39
refs/heads/master
2020-12-09T03:05:39.657209
2020-01-29T22:46:12
2020-01-29T22:46:12
233,172,649
0
0
null
null
null
null
UTF-8
Python
false
false
640
py
import os import cv2 image_path = "images" def save_faces(cascade, imgname): img = cv2.imread(os.path.join(image_path, imgname)) for i, face in enumerate(cascade.detectMultiScale(img)): x, y, w, h = face sub_face = img[y:y + h, x:x + w] cv2.imwrite(os.path.join("faces", "{}_{}.jpg".format(imgname, i)), sub_face) if __name__ == '__main__': face_cascade = "haarcascade_frontalface_default.xml" cascade = cv2.CascadeClassifier(face_cascade) # Iterate through files for f in [f for f in os.listdir(image_path) if os.path.isfile(os.path.join(image_path, f))]: save_faces(cascade, f)
1097053a79b90164857c8dc4bcb6fad625bceb8e
1c321da055cecc5dad2fc00fa327178671bf19a2
/50/动动手0.py
866974e850374f95fc27e98d81ed08400e4a81d8
[]
no_license
Qiren-Wise/Python-FishC-learning
da498a10d9c501d738cf74d90fce9c0d5f41de80
be5b6ac2cc4395dd361d51446cd266a9a49b047a
refs/heads/master
2023-05-18T11:45:18.232922
2021-06-04T14:58:28
2021-06-04T14:58:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
309
py
# 0. 要求实现一个功能与 reversed() 相同(内置函数 reversed(seq) 是返回一个迭代器,是序列 seq 的逆序显示)的生成器。 def myRev(string): index = len(string) for i in range(index-1,-1,-1): yield string[i] for j in myRev("fishc"): print(j,end='')
0c1aa9e8deee657c8629444b2a96f99eef1029ab
2bb9776f275c3c9bfb4aade6dc5dea4b8747b4eb
/search/search.py
f4ed00315a03a93d3ceaa66a46967d09c4e33a2e
[]
no_license
silverjosh90/pacmanAI
831272d61d333fe14340a7729b4d157ab5ee5712
ae9649dd5e6c732b1ede1ae52ce7e778832928ad
refs/heads/master
2021-01-20T07:56:45.469992
2017-05-02T19:29:46
2017-05-02T19:29:46
90,070,238
0
0
null
null
null
null
UTF-8
Python
false
false
4,218
py
# search.py # --------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # ([email protected]) and Dan Klein ([email protected]). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel ([email protected]). """ In search.py, you will implement generic search algorithms which are called by Pacman agents (in searchAgents.py). """ import util class SearchProblem: """ This class outlines the structure of a search problem, but doesn't implement any of the methods (in object-oriented terminology: an abstract class). You do not need to change anything in this class, ever. """ def getStartState(self): """ Returns the start state for the search problem. """ util.raiseNotDefined() def isGoalState(self, state): """ state: Search state Returns True if and only if the state is a valid goal state. """ util.raiseNotDefined() def getSuccessors(self, state): """ state: Search state For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor. """ util.raiseNotDefined() def getCostOfActions(self, actions): """ actions: A list of actions to take This method returns the total cost of a particular sequence of actions. The sequence must be composed of legal moves. """ util.raiseNotDefined() def tinyMazeSearch(problem): """ Returns a sequence of moves that solves tinyMaze. For any other maze, the sequence of moves will be incorrect, so only use this for tinyMaze. """ from game import Directions s = Directions.SOUTH w = Directions.WEST return [s, s, w, s, w, w, s, w] def depthFirstSearch(problem): """ Search the deepest nodes in the search tree first. Your search algorithm needs to return a list of actions that reaches the goal. Make sure to implement a graph search algorithm. To get started, you might want to try some of these simple commands to understand the search problem that is being passed in: print "Start:", problem.getStartState() print "Is the start a goal?", problem.isGoalState(problem.getStartState()) print "Start's successors:", problem.getSuccessors(problem.getStartState()) """ "*** YOUR CODE HERE ***" fringe = util.Stack() fringe.push( (problem.getStartState(), [], []) ) # Node is a current state. while not fringe.isEmpty(): print("this is my fringe", fringe) node, actions, visited = fringe.pop() print("I am the node", node) print("I am the actions", actions) print("I am the visited", visited) print("I am the successors", problem.getSuccessors(node)) def breadthFirstSearch(problem): """Search the shallowest nodes in the search tree first.""" "*** YOUR CODE HERE ***" util.raiseNotDefined() def uniformCostSearch(problem): """Search the node of least total cost first.""" "*** YOUR CODE HERE ***" util.raiseNotDefined() def nullHeuristic(state, problem=None): """ A heuristic function estimates the cost from the current state to the nearest goal in the provided SearchProblem. This heuristic is trivial. """ return 0 def aStarSearch(problem, heuristic=nullHeuristic): """Search the node that has the lowest combined cost and heuristic first.""" "*** YOUR CODE HERE ***" util.raiseNotDefined() # Abbreviations bfs = breadthFirstSearch dfs = depthFirstSearch astar = aStarSearch ucs = uniformCostSearch
de1929d44d98ae36272a6cc91df53af4a41c83a7
579d09f04d7f1adade8213bf72439f9c9474f91a
/DoG Weighting/gridConstructionSphere2.py
115a4ca3ec3e3dcdae6a8169a220c1cba69b7699
[]
no_license
rmachavariani/ae2223
b96857aa1deb22d2520d49ef2f6e88ee99c528bb
ec7110588630341620a1f4998088f1957d926676
refs/heads/master
2023-05-13T06:33:05.415909
2021-06-10T20:55:10
2021-06-10T20:55:10
346,340,702
1
0
null
null
null
null
UTF-8
Python
false
false
6,864
py
import numpy as np from class_def2 import * from class_def3 import * from math import floor, sqrt import time def loadData(): ''' Loads data from carMirrorData.dat :return: nrVectors x 6 np array ''' # load the data t1 = time.time() data = np.loadtxt("carMirrorData.dat", max_rows=500) t2 = time.time() print("Loading done in ", "{:.2f}".format(t2 - t1), " s") return data def determineMaxMin(data): '''Determines the mininum and maximum value for every dimension :return: xMin, xMax, yMin, yMax, zMin, zMax ''' t1 = time.time() # determine min and max xMin = np.amin(data[:, 0]) xMax = np.amax(data[:, 0]) yMin = np.amin(data[:, 1]) yMax = np.amax(data[:, 1]) zMin = np.amin(data[:, 2]) zMax = np.amax(data[:, 2]) # report to user t2 = time.time() print("Max and min found in ", "{:.2f}".format(t2 - t1), " s") return xMin, xMax, yMin, yMax, zMin, zMax def createVectorObjects(data): ''' Creates objects from the particle/vector data :param data: raw data in numpy array :return: 1D numpy array with vectors as vector objects ''' t1 = time.time() # create empty numpy array dataPoints = np.empty(np.size(data, axis=0), dtype=object) # loop over data and create vector object for each particle row for i in range(np.size(data, axis=0)): dataPoints[i] = vector(data[i, :]) # report to user t2 = time.time() print("Objects created in ", "{:.2f}".format(t2 - t1), " s") return dataPoints def createGridPitchAndRadius(pitch, radius, xMin, xMax, yMin, yMax, zMin, zMax): t1 = time.time() # calculate amount of bins in every direction nrBinsX = floor((xMax - xMin) / pitch) + 2 nrBinsY = floor((yMax - yMin) / pitch) + 2 nrBinsZ = floor((zMax - zMin) / pitch) + 2 # create empty 3D array grid = np.empty((nrBinsX, nrBinsY, nrBinsZ), dtype=object) # set radius of bins and gridBin.radius = radius gridBin.nrBinsX = nrBinsX gridBin.nrBinsY = nrBinsY gridBin.nrBinsZ = nrBinsZ # define x, y and z coordinates of center bin x = np.array([(xMin + i * pitch) for i in range(nrBinsX)]) y = np.array([(yMin + i * pitch) for i in range(nrBinsY)]) z = np.array([(zMin + i * pitch) for i in range(nrBinsZ)]) # fill matrix with bin objects by looping over matrix for i in range(nrBinsX): for j in range(nrBinsY): for k in range(nrBinsZ): grid[i, j, k] = gridBin(x[i], y[j], z[k]) # report to user t2 = time.time() print('Grid created in ', "{:.2f}".format(t2 - t1), " s") return grid, nrBinsX, nrBinsY, nrBinsZ def createGrid(nrBinsX, nrBinsY, nrBinsZ, radius, xMin, xMax, yMin, yMax, zMin, zMax): '''Creates the grid by generating a 3D numpy array filled with objects of class gridbin :return: nrX x nrY x nrZ numpy array ''' t1 = time.time() # create empty 3D array grid = np.empty((nrBinsX, nrBinsY, nrBinsZ), dtype=object) # calculate width of bins in all directions widthX = (xMax - xMin) / nrBinsX widthY = (yMax - yMin) / nrBinsY widthZ = (zMax - zMin) / nrBinsZ # set widths of bin to class static members gridBin.widthX = widthX gridBin.widthY = widthX gridBin.widthZ = widthZ # define x, y and z coordinates of center bin x = np.linspace(xMin, xMax - widthX, nrBinsX) + widthX / 2 y = np.linspace(yMin, yMax - widthY, nrBinsY) + widthY / 2 z = np.linspace(zMin, zMax - widthZ, nrBinsZ) + widthZ / 2 # fill matrix with bin objects by looping over matrix for i in range(nrBinsX): for j in range(nrBinsY): for k in range(nrBinsZ): grid[i, j, k] = gridBin(x[i], y[j], z[k]) # report to user t2 = time.time() print('Grid created in ', "{:.2f}".format(t2 - t1), " s") return grid def assignVectorsToGrid(vectors, grid): t1 = time.time() # get bin radius and amount of bins in each direction radius = gridBin.radius nrBinsX = gridBin.nrBinsX nrBinsY = gridBin.nrBinsY nrBinsZ = gridBin.nrBinsZ # loop through all bins for i in range(nrBinsX): for j in range(nrBinsY): for k in range(nrBinsZ): # get bin object aBin = grid[i][j][k] # get coordinates x = aBin.x y = aBin.y z = aBin.z # loop over all vectors for vector in vectors: # get coordinates xx = vector.x yy = vector.y zz = vector.z if sqrt((xx-x)**2 + (yy-y)**2 + (zz-z)**2) <= radius: aBin.addVector(vector) # report to user t2 = time.time() print("Assigning of vectors to bins completed in ", "{:.2f}".format(t2 - t1), " s") return grid #-------------------------------MAIN--------------------------------# def getSphericalGridWithVectors(pitch,radius): t1 = time.time() # load the data data = loadData() # determine max and min of data in every dimension minMax = determineMaxMin(data) # set parameters for bins xMin = minMax[0] xMax = minMax[1] yMin = minMax[2] yMax = minMax[3] zMin = minMax[4] zMax = minMax[5] # transform raw data into vector objects dataPoints = createVectorObjects(data) # create bins in grid grid, nrBinsX, nrBinsY, nrBinsZ = createGridPitchAndRadius(pitch,radius,xMin,xMax,yMin,yMax,zMin,zMax) # assign vector objects to correct bins # grid is the 3D array filled with gridBin objects containing # the correct vector objects grid = assignVectorsToGrid(dataPoints,grid) # report to user t2 = time.time() print("Total time: ","{:.2f}".format(t2-t1)," s") return grid, nrBinsX, nrBinsY, nrBinsZ grid, nrBinsX, nrBinsY, nrBinsZ = getSphericalGridWithVectors(50,50) biggrid, bignrBinsX, bignrBinsY, bignrBinsZ = getSphericalGridWithVectors(50,75) for i in range(nrBinsX): for j in range(nrBinsY): for k in range(nrBinsZ): # normal averaging method grid[i][j][k].calculateNormalAverage() # Gaussian averaging method grid[i][j][k].calculateStandardDeviation() datavarU, datavarV, datavarW = grid[i][j][k].calculateVariance() biggrid[i][j][k].calculateNormalAverage() # Gaussian averaging method biggrid[i][j][k].calculateStandardDeviation() bigdatavarU, bigdatavarV, bigdatavarW = biggrid[i][j][k].calculateVariance() grid[i][j][k].calculateNewGaussianAverage(datavarU, datavarV, datavarW, bigdatavarU, bigdatavarV, bigdatavarW) print(grid[1][1][1].newGaussianAverage)
56a0ac27d45c3d9350de507c52e868018bb99da5
a0517ded9387212c385d5c6a2d5a921213b00c36
/miller_ecog_tools/SubjectLevel/Analyses/subject_bri_novelty.py
b564cf595eab20fe9e57deb1cfcdfd0f3f930c8a
[]
no_license
jayfmil/miller_ecog_tools
10e7b96090aec4f6ee906df89061494ed2b80358
a2b7cd2b9c8ff311fd2d60916acd1959e3b07306
refs/heads/master
2021-06-27T23:23:07.170567
2019-05-10T15:46:25
2019-05-10T15:46:25
60,645,025
4
2
null
null
null
null
UTF-8
Python
false
false
40,496
py
""" """ import os import pycircstat import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd import xarray import h5py from tqdm import tqdm from joblib import Parallel, delayed from scipy import signal from scipy.stats import zscore, ttest_ind, sem from scipy.signal import hilbert from ptsa.data.timeseries import TimeSeries from ptsa.data.filters import MorletWaveletFilter from mpl_toolkits.axes_grid1 import make_axes_locatable from miller_ecog_tools.SubjectLevel.subject_analysis import SubjectAnalysisBase from miller_ecog_tools.SubjectLevel.subject_BRI_data import SubjectBRIData from miller_ecog_tools.Utils import neurtex_bri_helpers as bri # figure out the number of cores available for a parallel pool. Will use half import multiprocessing NUM_CORES = multiprocessing.cpu_count() class SubjectNoveltyAnalysis(SubjectAnalysisBase, SubjectBRIData): """ """ def __init__(self, task=None, subject=None, montage=0): super(SubjectNoveltyAnalysis, self).__init__(task=task, subject=subject, montage=montage) # this needs to be an event-locked analyses self.do_event_locked = True # frequencies at which to compute power using wavelets self.power_freqs = np.logspace(np.log10(1), np.log10(100), 50) # also compute power/phase at frequencies in specific bands using hilbert transform, if desired self.hilbert_bands = np.array([[1, 4], [4, 9]]) # how much time (in s) to remove from each end of the data after wavelet convolution self.buffer = 1.5 # settings for guassian kernel used to smooth spike trains # enter .kern_width in milliseconds self.kern_width = 150 self.kern_sd = 10 # window to use when computing spike phase self.phase_bin_start = 0.0 self.phase_bin_stop = 1.0 # do we want to only include neurons and trials where the neuron actual modulates its firing rate in response # to the item coming on the screen self.z_responsive_thresh = 3 # set to True to only include hits and correct rejections # self.only_correct_items = False self.max_lag = 8 # string to use when saving results files self.res_str = 'novelty.hdf5' def _generate_res_save_path(self): self.res_save_dir = os.path.join(os.path.split(self.save_dir)[0], self.__class__.__name__+'_res') def load_res_data(self): """ Load results if they exist and modify self.res to hold them. """ if self.res_save_file is None: self._make_res_dir() if os.path.exists(self.res_save_file): print('%s: loading results.' % self.subject) self.res = h5py.File(self.res_save_file, 'r') else: print('%s: No results to load.' % self.subject) def save_res_data(self): """ """ pass def unload_res_data(self): """ Load results if they exist and modify self.res to hold them. """ self.res.close() def analysis(self): """ For each session, channel """ if self.subject_data is None: print('%s: compute or load data first with .load_data()!' % self.subject) return # create the file res_file = h5py.File(self.res_save_file, 'w') # arguments to pass into the event filtering function event_filters = {'all_events': {'only_correct': False}, # 'all_events_correct': {'only_correct': True}, 'resp_events': {'filter_events': 'one', 'do_inverse': False, 'only_correct': False}, # 'resp_events_only_correct': {'filter_events': 'one', 'do_inverse': False, 'only_correct': True}, 'resp_items': {'filter_events': 'both', 'do_inverse': False, 'only_correct': False}, # 'resp_items_only_correct': {'filter_events': 'both', 'do_inverse': False, 'only_correct': True}, 'resp_events_inv': {'filter_events': 'one', 'do_inverse': True, 'only_correct': False}, 'resp_items_inv': {'filter_events': 'both', 'do_inverse': True, 'only_correct': False}} # open a parallel pool using joblib # with Parallel(n_jobs=int(NUM_CORES/2) if NUM_CORES != 1 else 1, verbose=5) as parallel: parallel = None # loop over sessions for session_name, session_grp in self.subject_data.items(): print('{} processing.'.format(session_grp.name)) # and channels for channel_num, channel_grp in tqdm(session_grp.items()): res_channel_grp = res_file.create_group(channel_grp.name) # self.res[channel_grp.name] = {} # self.res[channel_grp.name]['firing_rates'] = {} # load behavioral events events = pd.read_hdf(self.subject_data.filename, channel_grp.name + '/event') events['item_name'] = events.name.apply(lambda x: x.split('_')[1]) # load eeg for this channel eeg_channel = self._create_eeg_timeseries(channel_grp, events) # length of buffer in samples. Used below for extracting smoothed spikes samples = int(np.ceil(float(eeg_channel['samplerate']) * self.buffer)) # next we want to compute the power at all the frequencies in self.power_freqs and at # all the timepoints in eeg. This function save the results to file and returns phase data # for later use. # Compute for wavelet frequencies phase_data = run_novelty_effect(eeg_channel, self.power_freqs, self.buffer, res_channel_grp, parallel, '_wavelet', save_to_file=False) # and for hilbert bands phase_data_hilbert = run_novelty_effect(eeg_channel, self.hilbert_bands, self.buffer, res_channel_grp, parallel, '_hilbert', save_to_file=False) # also store region and hemisphere for easy reference res_channel_grp.attrs['region'] = eeg_channel.event.data['region'][0] res_channel_grp.attrs['hemi'] = eeg_channel.event.data['hemi'][0] # and clusters for cluster_num, cluster_grp in channel_grp['spike_times'].items(): clust_str = cluster_grp.name.split('/')[-1] res_cluster_grp = res_channel_grp.create_group(clust_str) # find number of spikes at each timepoint and the time in samples when each occurred spike_counts, spike_rel_times = self._create_spiking_counts(cluster_grp, events, eeg_channel.shape[1]) # smooth the spike train. Also remove the buffer kern_width_samples = int(eeg_channel.samplerate.data / (1000 / self.kern_width)) kern = signal.gaussian(kern_width_samples, self.kern_sd) kern /= kern.sum() smoothed_spike_counts = np.stack([signal.convolve(x, kern, mode='same')[samples:-samples] for x in spike_counts * eeg_channel.samplerate.data], 0) smoothed_spike_counts = self._create_spike_timeseries(smoothed_spike_counts, eeg_channel.time.data[ samples:-samples], channel_grp.attrs['samplerate'], events) # get the phases at which the spikes occurred and bin into novel and repeated items # 1. for each freq in power_freqs spike_phases = _compute_spike_phase_by_freq(np.array(spike_rel_times), self.phase_bin_start, self.phase_bin_stop, phase_data, events) # 2: for each hilbert band spike_phases_hilbert = _compute_spike_phase_by_freq(np.array(spike_rel_times), self.phase_bin_start, self.phase_bin_stop, phase_data_hilbert, events) # and finally loop over event conditions for this_event_cond, event_filter_kwargs in event_filters.items(): # figure out which events to use if 'all_events' in this_event_cond: events_to_keep = np.array([True] * events.shape[0]) else: events_to_keep = self._filter_to_event_condition(eeg_channel, spike_counts, events, **event_filter_kwargs) if event_filter_kwargs['only_correct']: events_to_keep = self._filter_to_correct_items(events, events_to_keep) if self.max_lag is not None: events_to_keep = events_to_keep & (events.lag.values <= self.max_lag) # do the same computations on the wavelet derived spikes and hilbert for phase_data_list in zip([spike_phases, spike_phases_hilbert], ['_wavelet', '_hilbert'], [self.power_freqs, self.hilbert_bands]): event_filter_grp = res_cluster_grp.create_group(this_event_cond+phase_data_list[1]) event_filter_grp.create_dataset('events_to_keep', data=events_to_keep) do_compute_mem_effects = run_phase_stats(phase_data_list[0], events, events_to_keep, event_filter_grp) # also compute the power effects for these filtered event conditions if do_compute_mem_effects: _ = run_novelty_effect(eeg_channel[events_to_keep], phase_data_list[2], self.buffer, event_filter_grp, parallel, '', save_to_file=True) # finally, compute stats based on normalizing from the pre-stimulus interval spike_res_zs = compute_novelty_stats_without_contrast(smoothed_spike_counts[events_to_keep]) event_filter_grp.create_dataset('zdata_novel_mean', data=spike_res_zs[0]) event_filter_grp.create_dataset('zdata_repeated_mean', data=spike_res_zs[1]) event_filter_grp.create_dataset('zdata_novel_sem', data=spike_res_zs[2]) event_filter_grp.create_dataset('zdata_repeated_sem', data=spike_res_zs[3]) event_filter_grp.create_dataset('zdata_ts', data=spike_res_zs[4]) event_filter_grp.create_dataset('zdata_ps', data=spike_res_zs[5]) res_file.close() self.res = h5py.File(self.res_save_file, 'r') def _filter_to_correct_items(self, events, to_keep_bool): # get boolean of correct responses novel_items = events['isFirst'].values pressed_old_key = events['oldKey'].values hits = pressed_old_key & ~novel_items correct_rejections = ~pressed_old_key & novel_items correct = hits | correct_rejections return to_keep_bool & correct def _filter_to_event_condition(self, eeg_channel, spike_counts, events, filter_events='', do_inverse=False, only_correct=False): # normalize the presentation interval based on the mean and standard deviation of a pre-stim interval baseline_bool = (eeg_channel.time.data > -1) & (eeg_channel.time.data < -.2) baseline_spiking = np.sum(spike_counts[:, baseline_bool], axis=1) / .8 baseline_mean = np.mean(baseline_spiking) baseline_std = np.std(baseline_spiking) # get the firing rate of the presentation interval now and zscore it presentation_bool = (eeg_channel.time.data > 0) & (eeg_channel.time.data <= 1) presentation_spiking = np.sum(spike_counts[:, presentation_bool], axis=1) / 1. z_firing = (presentation_spiking - baseline_mean) * baseline_std # Here, keep all events where the firing is above our threshold if filter_events == 'one': responsive_items = np.unique(events['item_name'][z_firing > self.z_responsive_thresh]) # make sure no "filler" items are present responsive_items = np.array([s for s in responsive_items if 'filler' not in s]) # Here, only keep events if both presentations of the item are above threshold else: responsive_items_all = events['item_name'][z_firing > self.z_responsive_thresh] responsive_items = [] for this_item in responsive_items_all: if np.sum(responsive_items_all == this_item) == 2: responsive_items.append(this_item) responsive_items = np.unique(responsive_items) # make a boolean of the items to keep to_keep_bool = np.in1d(events['item_name'], responsive_items) if do_inverse: to_keep_bool = ~to_keep_bool return to_keep_bool def _compute_item_pair_diff(self, smoothed_spike_counts): data = smoothed_spike_counts[~((smoothed_spike_counts.event.data['isFirst']) & (smoothed_spike_counts.event.data['lag'] == 0))] item_names = data.event.data['item_name'] novel_rep_diffs = [] mean_item_frs = [] novel_mean = [] rep_mean = [] for this_item in np.unique(item_names): data_item = data[item_names == this_item] if data_item.shape[0] == 2: novel_data_item = data_item[data_item.event.data['isFirst']].values rep_data_item = data_item[~data_item.event.data['isFirst']].values diff_due_to_cond = novel_data_item - rep_data_item novel_rep_diffs.append(diff_due_to_cond) novel_mean.append(novel_data_item) rep_mean.append(rep_data_item) mean_item_frs.append(np.mean(data_item.data)) novel_mean = np.squeeze(np.stack(novel_mean)) novel_sem = sem(novel_mean, axis=0) novel_trial_means = np.mean(novel_mean, axis=1) novel_mean = np.mean(novel_mean, axis=0) rep_mean = np.squeeze(np.stack(rep_mean)) rep_sem = sem(rep_mean, axis=0) rep_trial_means = np.mean(rep_mean, axis=1) rep_mean = np.mean(rep_mean, axis=0) return np.squeeze(np.stack(novel_rep_diffs)), np.stack(mean_item_frs), novel_mean, rep_mean, novel_sem, \ rep_sem, novel_trial_means, rep_trial_means def _create_spiking_counts(self, cluster_grp, events, n): spike_counts = [] spike_ts = [] # loop over each event for index, e in events.iterrows(): # load the spike times for this cluster spike_times = np.array(cluster_grp[str(index)]) # interpolate the timestamps for this event start = e.stTime + self.start_ms * 1000 stop = e.stTime + self.stop_ms * 1000 timestamps = np.linspace(start, stop, n, endpoint=True) # find the closest timestamp to each spike (technically, the closest timestamp following a spike, but I # think this level of accuracy is fine). This is the searchsorted command. Then count the number of spikes # that occurred at each timepoint with histogram spike_bins = np.searchsorted(timestamps, spike_times) bin_counts, _ = np.histogram(spike_bins, np.arange(len(timestamps) + 1)) spike_counts.append(bin_counts) spike_ts.append(spike_bins) return np.stack(spike_counts, 0), spike_ts def _create_eeg_timeseries(self, grp, events): data = np.array(grp['ev_eeg']) time = grp.attrs['time'] channel = grp.attrs['channel'] sr = grp.attrs['samplerate'] # create an TimeSeries object (in order to make use of their wavelet calculation) dims = ('event', 'time', 'channel') coords = {'event': events[events.columns[events.columns != 'index']].to_records(), 'time': time, 'channel': [channel]} return TimeSeries.create(data, samplerate=sr, dims=dims, coords=coords) def _create_spike_timeseries(self, spike_data, time, sr, events): # create an TimeSeries object dims = ('event', 'time') coords = {'event': events[events.columns[events.columns != 'index']].to_records(), 'time': time} return TimeSeries.create(spike_data, samplerate=sr, dims=dims, coords=coords) def aggregate_ensemble_phases_by_condition(self): # labels of each band bands = np.array(['{}-{}'.format(*x) for x in self.hilbert_bands]) # will hold long dataframes, one for novel and one for repeated spiking phases novel_dfs = [] rep_dfs = [] # loop over each channel for k, v in self.res.items(): # hemi and region is the same for all clusters on this channel hemi = v['hemi'] region = v['region'] # loop over each cluster in channel for k_clust, v_clust in v['firing_rates'].items(): novel_phases = v_clust['novel_phases_hilbert'] rep_phases = v_clust['rep_phases_hilbert'] # make a dataframe for novel and for repeated spiking phases for i, data in enumerate([novel_phases, rep_phases]): df = pd.DataFrame(data=data.T) df['hemi'] = hemi df['region'] = region df['bands'] = bands df['label'] = k + '-' + k_clust df = df.melt(id_vars=['label', 'hemi', 'region', 'bands'], var_name='spike', value_name='phase') # and store it if i == 0: novel_dfs.append(df) else: rep_dfs.append(df) # combine into one larger dataframe for each conditon novel_dfs = pd.concat(novel_dfs).reset_index(drop=True) rep_dfs = pd.concat(rep_dfs).reset_index(drop=True) return novel_dfs, rep_dfs def plot_channel_res(self, channel_str, savedir=None, do_t_not_z=False): """ Plot time x freq heatmap, firing rates, and phase results for a given channel. """ # results for this channel only channel_res = self.res[channel_str] # pull out the specific results if do_t_not_z: lfp_data = channel_res['delta_t'] spike_data_key = 'delta_spike_t' cbar_label = 't-stat' else: lfp_data = channel_res['delta_z'] spike_data_key = 'delta_spike_z' cbar_label = 'z-score' time = lfp_data.columns.values clim = np.max(np.abs(lfp_data.values)) hemi = channel_res['hemi'] region = channel_res['region'] # how many units were recorded on this channel cluster_keys = channel_res['firing_rates'] num_clusters = len(cluster_keys) with plt.style.context('seaborn-white'): with mpl.rc_context({'ytick.labelsize': 22, 'xtick.labelsize': 22}): # make the initial figure # top left, heatmap ax1 = plt.subplot2grid((6, 6), (0, 0), colspan=3, rowspan=3) # below heatmap, up to 3 cluster firing rates ax2 = plt.subplot2grid((6, 6), (3, 0), colspan=3) ax2.axis('off') ax3 = plt.subplot2grid((6, 6), (4, 0), colspan=3) ax3.axis('off') ax4 = plt.subplot2grid((6, 6), (5, 0), colspan=3) ax4.axis('off') # to the right of heatmap, up to 3 phase by freq ax5 = plt.subplot2grid((6, 6), (0, 3), rowspan=3) ax5.axis('off') ax6 = plt.subplot2grid((6, 6), (0, 4), rowspan=3) ax6.axis('off') ax7 = plt.subplot2grid((6, 6), (0, 5), rowspan=3) ax7.axis('off') fig = plt.gcf() fig.set_size_inches(30, 20) # make heatmap im = ax1.imshow(lfp_data.values, aspect='auto', interpolation='bicubic', cmap='RdBu_r', vmax=clim, vmin=-clim) ax1.invert_yaxis() # set the x values to be specific timepoints x_vals = np.array([-500, -250, 0, 250, 500, 750, 1000]) / 1000 new_xticks = np.round(np.interp(x_vals, time, np.arange(len(time)))) ax1.set_xticks(new_xticks) ax1.set_xticklabels([x for x in x_vals], fontsize=22) ax1.set_xlabel('Time (s)', fontsize=24) # now the y new_y = np.interp(np.log10(np.power(2, range(7))), np.log10(self.power_freqs), np.arange(len(self.power_freqs))) ax1.set_yticks(new_y) ax1.set_yticklabels(np.power(2, range(7)), fontsize=20) ax1.set_ylabel('Frequency (Hz)', fontsize=24) # add colorbar divider = make_axes_locatable(ax1) cax = divider.append_axes('right', size='5%', pad=0.1) fig.colorbar(im, cax=cax, orientation='vertical') # add a title title_str = '{} - {} {}'.format(channel_str, hemi, region) ax1.set_title(title_str, fontsize=20) # firing rate plots for i, this_cluster in enumerate(zip([ax2, ax3, ax4], list(cluster_keys))): this_cluster_ax = this_cluster[0] this_cluster_ax.axis('on') divider = make_axes_locatable(this_cluster_ax) dummy_ax = divider.append_axes('right', size='5%', pad=0.1) dummy_ax.axis('off') this_cluster_data = channel_res['firing_rates'][this_cluster[1]][spike_data_key] zdata_novel = channel_res['firing_rates'][this_cluster[1]]['zdata_novel_mean'] zdata_novel_sem = channel_res['firing_rates'][this_cluster[1]]['zdata_novel_sem'] zdata_repeated = channel_res['firing_rates'][this_cluster[1]]['zdata_repeated_mean'] zdata_repeated_sem = channel_res['firing_rates'][this_cluster[1]]['zdata_repeated_sem'] zdata_ps = channel_res['firing_rates'][this_cluster[1]]['zdata_ps'] novel_c = [0.6922722029988465, 0.0922722029988466, 0.1677047289504037] rep_c = [0.023913879277201077, 0.19653979238754324, 0.3919261822376009] this_cluster_ax.plot(this_cluster_data.columns.values, zdata_novel, lw=3, label='Novel', c=novel_c) this_cluster_ax.fill_between(this_cluster_data.columns.values, zdata_novel - zdata_novel_sem, zdata_novel + zdata_novel_sem, alpha=.6, color=novel_c) this_cluster_ax.plot(this_cluster_data.columns.values, zdata_repeated, lw=3, label='Repeated', c=rep_c) this_cluster_ax.fill_between(this_cluster_data.columns.values, zdata_repeated - zdata_repeated_sem, zdata_repeated + zdata_repeated_sem, alpha=.6, color=rep_c) this_cluster_ax.legend(loc='best') x = np.array([-500, -250, 0, 250, 500, 750, 1000]) / 1000 this_cluster_ax.set_xticks(x) this_cluster_ax.set_xticklabels(['{0:.2}'.format(xstr) for xstr in x]) this_cluster_ax.set_ylabel('Z(Firing Rate)', fontsize=22) this_cluster_ax.plot([-.5, 1], [0, 0], '--k', zorder=-2, lw=1.5, c=[.7, .7, .7]) this_cluster_ax.set_xlim(-.5, 1) this_cluster_ax.set_title(this_cluster[1], fontsize=16) if (i + 1) == num_clusters: this_cluster_ax.set_xlabel('Time (s)', fontsize=22) # phase_plots for i, this_cluster in enumerate(zip([ax5, ax6, ax7], list(cluster_keys))): this_cluster_ax_left = this_cluster[0] this_cluster_ax_left.axis('on') z_novel = channel_res['firing_rates'][this_cluster[1]]['z_novel'] z_rep = channel_res['firing_rates'][this_cluster[1]]['z_rep'] z_delta = z_novel - z_rep this_cluster_ax_left.plot(z_delta, np.log10(self.power_freqs), '-k', lw=3) yticks = np.power(2, range(1, 7)) this_cluster_ax_left.set_yticks(np.log10(yticks)) this_cluster_ax_left.set_yticklabels(yticks) this_cluster_ax_left.set_ylim(np.log10(1), np.log10(100)) this_cluster_ax_left.set_xlabel(r'$\Delta$(Z)', fontsize=22) this_cluster_ax_left.plot([0, 0], this_cluster_ax_left.get_ylim(), '--k', zorder=-2, lw=1.5, c=[.7, .7, .7]) xlim = np.max(np.abs(this_cluster_ax_left.get_xlim())) this_cluster_ax_left.set_xlim(-xlim, xlim) this_cluster_ax_left.set_xticks([-xlim, xlim]) divider = make_axes_locatable(this_cluster_ax_left) this_cluster_ax_right = divider.append_axes('right', size='95%', pad=0.05) data = -np.log10(channel_res['firing_rates'][this_cluster[1]]['med_pvals']) this_cluster_ax_right.plot(data, np.log10(self.power_freqs), '-k', lw=3) yticks = np.power(2, range(1, 7)) this_cluster_ax_right.set_yticks(np.log10(yticks)) this_cluster_ax_right.set_yticklabels([]) this_cluster_ax_right.set_ylim(np.log10(1), np.log10(100)) this_cluster_ax_right.xaxis.set_label_position("top") this_cluster_ax_right.xaxis.tick_top() this_cluster_ax_right.set_xlabel('-log(p)', fontsize=22) this_cluster_ax_right.plot([-np.log10(0.05), -np.log10(0.05)], this_cluster_ax_right.get_ylim(), '--', zorder=-2, lw=1.5, c=[.4, .0, .0]) this_cluster_ax_right.set_title(this_cluster[1], color='k', rotation=-90, x=1.2, y=0.55, fontsize=20) plt.subplots_adjust(wspace=0.8, hspace=1.) # plt.tight_layout() if savedir is not None: fname = '{}_{}_time_x_freq_grid.pdf'.format(self.subject, channel_str.replace('/', '-')) fname = os.path.join(savedir, fname) fig.savefig(fname, bbox_inches='tight') return fname def compute_hilbert_at_single_band(eeg, freq_band, buffer_len): # band pass eeg # makes sure to pass in a list not an array because wtf PTSA band_eeg = bri.band_pass_eeg(eeg, freq_band.tolist() if isinstance(freq_band, np.ndarray) else freq_band).squeeze() # run hilbert to get the complexed valued result complex_hilbert_res = hilbert(band_eeg.data, N=band_eeg.shape[-1], axis=-1) # get phase at each timepoint phase_data = band_eeg.copy() phase_data.data = np.angle(complex_hilbert_res) # phase_data = phase_data.remove_buffer(buffer_len) phase_data.coords['frequency'] = np.mean(freq_band) # and power power_data = band_eeg.copy() power_data.data = np.log10(np.abs(complex_hilbert_res) ** 2) # power_data = power_data.remove_buffer(buffer_len) power_data.coords['frequency'] = np.mean(freq_band) return power_data, phase_data def compute_wavelet_at_single_freq(eeg, freq, buffer_len): # compute phase data = MorletWaveletFilter(eeg, np.array([freq]), output=['power', 'phase'], width=5, cpus=12, verbose=False).filter() # remove the buffer from each end # data = data.remove_buffer(buffer_len) return data.squeeze() def _compute_spike_phase_by_freq(spike_rel_times, phase_bin_start, phase_bin_stop, phase_data, events): # only will count samples the occurred within window defined by phase_bin_start and _stop valid_samps = np.where((phase_data.time > phase_bin_start) & (phase_data.time < phase_bin_stop))[0] # throw out novel items that were never repeated good_events = events[~((events['isFirst']) & (events['lag'] == 0))].index.values # will grow as we iterate over spikes in each condition. phases = [] for (index, e), spikes, phase_data_event in zip(events.iterrows(), spike_rel_times, phase_data): phases_event = [] if index in good_events: if len(spikes) > 0: valid_spikes = spikes[np.in1d(spikes, valid_samps)] if len(valid_spikes) > 0: phases_event = phase_data_event[valid_spikes].data phases.append(phases_event) # will be number of spikes x frequencies # if len(novel_phases) > 0: # novel_phases = np.vstack(novel_phases) # else: # novel_phases = np.array(novel_phases) # if len(rep_phases) > 0: # rep_phases = np.vstack(rep_phases) # else: # rep_phases = np.array(rep_phases) return np.array(phases) def run_phase_stats(spike_phases, events, events_to_keep, event_filter_grp): novel_phases = np.array([]) rep_phases = np.array([]) # get the novel and repeated spike phases for this event condition. Some events have no # spikes, so filter those out spike_phase_cond = spike_phases[events_to_keep] if np.any(events[events_to_keep].isFirst): novel_phases = spike_phase_cond[events[events_to_keep].isFirst] novel_phases = novel_phases[np.array([len(x) > 0 for x in novel_phases])] if novel_phases.shape[0] == 0: novel_phases = [] else: novel_phases = np.vstack(novel_phases) if np.any(~events[events_to_keep].isFirst): rep_phases = spike_phase_cond[~events[events_to_keep].isFirst] rep_phases = rep_phases[np.array([len(x) > 0 for x in rep_phases])] if rep_phases.shape[0] == 0: rep_phases = [] else: rep_phases = np.vstack(rep_phases) if (len(novel_phases) > 0) & (len(rep_phases) > 0): p_novel, z_novel, p_rep, z_rep, ww_pvals, ww_fstat, med_pvals, med_stat, p_kuiper, \ stat_kuiper = _compute_novel_rep_spike_stats(novel_phases, rep_phases) else: p_novel = z_novel = p_rep = z_rep = ww_pvals = ww_fstat = med_pvals \ = med_stat = p_kuiper = stat_kuiper = np.array([np.nan]) event_filter_grp.create_dataset('p_novel', data=p_novel) event_filter_grp.create_dataset('z_novel', data=z_novel) event_filter_grp.create_dataset('p_rep', data=p_rep) event_filter_grp.create_dataset('z_rep', data=z_rep) event_filter_grp.create_dataset('ww_pvals', data=ww_pvals) event_filter_grp.create_dataset('ww_fstat', data=ww_fstat) event_filter_grp.create_dataset('med_stat', data=med_stat) event_filter_grp.create_dataset('p_kuiper', data=p_kuiper) event_filter_grp.create_dataset('stat_kuiper', data=stat_kuiper) event_filter_grp.create_dataset('rep_phases', data=rep_phases) event_filter_grp.create_dataset('novel_phases', data=novel_phases) return (len(novel_phases) > 0) & (len(rep_phases) > 0) def _compute_novel_rep_spike_stats(novel_phases, rep_phases): # compute rayleigh test for each condition p_novel, z_novel = pycircstat.rayleigh(novel_phases, axis=0) p_rep, z_rep = pycircstat.rayleigh(rep_phases, axis=0) # test whether the means are different ww_pvals, ww_tables = pycircstat.watson_williams(novel_phases, rep_phases, axis=0) ww_fstat = np.array([x.loc['Columns'].F for x in ww_tables]) # test whether the medians are different med_pvals, med_stat = pycircstat.cmtest(novel_phases, rep_phases, axis=0) # finall run kuiper test for difference in mean and/or dispersion p_kuiper, stat_kuiper = pycircstat.kuiper(novel_phases, rep_phases, axis=0) return p_novel, z_novel, p_rep, z_rep, ww_pvals, ww_fstat, med_pvals, med_stat, p_kuiper, stat_kuiper def run_novelty_effect(eeg_channel, power_freqs, buffer, grp, parallel=None, key_suffix='', save_to_file=False): f = compute_lfp_novelty_effect if parallel is None: memory_effect_channel = [] for freq in power_freqs: memory_effect_channel.append(f(eeg_channel, freq, buffer)) else: memory_effect_channel = parallel((delayed(f)(eeg_channel, freq, buffer) for freq in power_freqs)) # phase_data = xarray.concat([x[4] for x in memory_effect_channel], dim='frequency').transpose('event', 'time', 'frequency') phase_data = xarray.concat([x[2] for x in memory_effect_channel], dim='frequency').transpose('event', 'time', 'frequency') if save_to_file: fname = grp.file.filename pd.concat([x[0] for x in memory_effect_channel]).to_hdf(fname, grp.name + '/delta_z'+key_suffix) pd.concat([x[1] for x in memory_effect_channel]).to_hdf(fname, grp.name + '/delta_t'+key_suffix) # pd.concat([x[2] for x in memory_effect_channel]).to_hdf(fname, grp.name + '/delta_z_lag'+key_suffix) # pd.concat([x[3] for x in memory_effect_channel]).to_hdf(fname, grp.name + '/delta_t_lag'+key_suffix) return phase_data def compute_novelty_stats(data_timeseries, buffer_len): def compute_z_diff_lag(df): novel = df[df.isFirst] repeated = df[~df.isFirst] cols = df.columns[~np.in1d(df.columns, ['lag', 'isFirst'])] return novel[cols].mean() - repeated[cols].mean() def compute_t_stat_lag(df): novel = df[df.isFirst] repeated = df[~df.isFirst] cols = df.columns[~np.in1d(df.columns, ['lag', 'isFirst'])] ts, ps = ttest_ind(novel[cols], repeated[cols], axis=0) return pd.Series(ts.data, index=cols) # remove the filler novel items (they were never repeated) data = data_timeseries[~((data_timeseries.event.data['isFirst']) & (data_timeseries.event.data['lag'] == 0))] # remove buffer data = data.remove_buffer(buffer_len) # log it data.data = np.log10(data.data) # then zscore across events zdata = zscore(data, axis=0) # split events into conditions of novel and repeated items novel_items = data.event.data['isFirst'] # compute mean difference in zpower at each timepoint zpower_diff = zdata[novel_items].mean(axis=0) - zdata[~novel_items].mean(axis=0) df_zpower_diff = pd.DataFrame(pd.Series(zpower_diff, index=data.time)).T # also compute t-stat at each timepoint ts, ps = ttest_ind(zdata[novel_items], zdata[~novel_items], axis=0) df_tstat_diff = pd.DataFrame(pd.Series(ts, index=data.time)).T # create dataframe of results for easier manipulation for computing difference by lag df = pd.DataFrame(data=zdata, columns=data.time) df['lag'] = data.event.data['lag'] df['isFirst'] = novel_items # df_lag_zpower_diff = df.groupby(['lag']).apply(compute_z_diff_lag) # df_lag_tstat_diff = df.groupby(['lag']).apply(compute_t_stat_lag) return df_zpower_diff, df_tstat_diff#, df_lag_zpower_diff, df_lag_tstat_diff def compute_lfp_novelty_effect(eeg, freq, buffer_len): # compute the power first if isinstance(freq, float): power_data, phase_data = compute_wavelet_at_single_freq(eeg, freq, buffer_len) else: power_data, phase_data = compute_hilbert_at_single_band(eeg, freq, buffer_len) freq = np.mean(freq) # compute the novelty statistics # df_zpower_diff, df_tstat_diff, df_lag_zpower_diff, df_lag_tstat_diff = compute_novelty_stats(power_data) df_zpower_diff, df_tstat_diff = compute_novelty_stats(power_data, buffer_len) # add the current frequency to the dataframe index df_zpower_diff.set_index(pd.Series(freq), inplace=True) df_zpower_diff.index.rename('frequency', inplace=True) df_tstat_diff.set_index(pd.Series(freq), inplace=True) df_tstat_diff.index.rename('frequency', inplace=True) # n_rows = df_lag_tstat_diff.shape[0] # index = pd.MultiIndex.from_arrays([df_lag_zpower_diff.index, np.array([freq] * n_rows)], names=['lag', 'frequency']) # df_lag_zpower_diff.index = index # index = pd.MultiIndex.from_arrays([df_lag_tstat_diff.index, np.array([freq] * n_rows)], names=['lag', 'frequency']) # df_lag_tstat_diff.index = index # return df_zpower_diff, df_tstat_diff, df_lag_zpower_diff, df_lag_tstat_diff, phase_data return df_zpower_diff, df_tstat_diff, phase_data def compute_novelty_stats_without_contrast(data_timeseries, baseline_bool=None): # remove the filler novel items (they were never repeated) data = data_timeseries[~((data_timeseries.event.data['isFirst']) & (data_timeseries.event.data['lag'] == 0))] # determine the mean and std of the baseline period for normalization # if baseline bool is not given, use all timepoints before 0 if baseline_bool is None: baseline_bool = data.time.values < 0 baseline_data = data[:, baseline_bool].mean(dim='time') m = np.mean(baseline_data) s = np.std(baseline_data) # compute the zscored data zdata = (data - m) / s # pull out the data for each condition novel_items = data.event.data['isFirst'] zdata_novel = zdata[novel_items] zdata_repeated = zdata[~novel_items] # run stats at each timepoint ts, ps = ttest_ind(zdata_novel, zdata_repeated, axis=0) # return the statistics and the mean of each condition zdata_novel_mean = np.mean(zdata_novel, axis=0) zdata_novel_sem = sem(zdata_novel, axis=0) zdata_repeated_mean = np.mean(zdata_repeated, axis=0) zdata_repeated_sem = sem(zdata_repeated, axis=0) return zdata_novel_mean, zdata_repeated_mean, zdata_novel_sem, zdata_repeated_sem, ts, ps
17739918d8f1c5cc8f413494bccfd308568c32fe
79df1aa5db9fc14f8c9a84a99605c554995dae90
/ML_builders/keywords_extraction_update_db.py
eec8ebfa73f7ad16d5c3827f5c7bf0fb9ce162eb
[]
no_license
COVID-19-Text-Mining/DBProcessingScripts
920dc225ff19352e4c9626fb6125398b102e49ef
6a81ce4bf89ab6a0e6e5501b514d564a560f3ba1
refs/heads/master
2022-10-10T14:36:41.470078
2021-04-01T20:44:52
2021-04-01T20:44:52
249,071,379
0
4
null
2022-09-30T20:12:37
2020-03-21T22:23:59
Python
UTF-8
Python
false
false
1,900
py
import json from pprint import pprint from IndependentScripts.common_utils import get_mongo_db from keywords_extraction import KeywordsExtractorBase from keywords_extraction import KeywordsExtractorNN def extract_keywords_in_entries(mongo_db): processed_ids = set() extractor = KeywordsExtractorNN( only_extractive=True, use_longest_phrase=True, ) col_name = 'entries' col = mongo_db[col_name] query = col.find( { "doi": {"$exists": True}, "abstract": {"$exists": True}, }, { '_id': True, 'doi': True, 'abstract': True, }, no_cursor_timeout=True ) total_num = query.count() print('query.count()', total_num) for i, doc in enumerate(query): if i%1000 == 0: print('extract_keywords_in_entries: {} out {}'.format(i, total_num)) if str(doc['_id']) in processed_ids: continue if doc['abstract']: abstract = KeywordsExtractorBase().clean_html_tag(doc['abstract']) try: keywords = extractor.process(abstract) except: print('Error') print('doi:', doc.get('doi')) print(abstract) # update in db col.find_one_and_update( {"_id": doc['_id']}, { "$set": { 'keywords_ML': keywords, }, } ) processed_ids.add(str(doc['_id'])) if len(processed_ids) % 1000 == 0: with open('../scratch/processed_ids.json', 'w') as fw: json.dump(list(processed_ids), fw, indent=2) if __name__ == '__main__': db = get_mongo_db('../config.json') print(db.collection_names()) extract_keywords_in_entries(db)
17e7cf7e865a2081c5c483f80afa767141dfae12
e85e697cadabafca4c5853a30ba7851ce8925d75
/RandomForest/eval.py
161df5d1923b0aa13cb201b521d6637a4e370697
[ "MIT" ]
permissive
euirim/fundraising-propensity
811c919a381ca23610ec1c66a41e22034569742e
33b01b04e4ef8cae10a3224b98792049e6a5fcd7
refs/heads/master
2022-11-25T12:26:49.366530
2019-12-14T03:16:22
2019-12-14T03:16:22
216,437,345
0
0
MIT
2022-11-22T04:51:31
2019-10-20T22:45:28
Jupyter Notebook
UTF-8
Python
false
false
213
py
import pickle pickle_off = open('data/y_pred.pkl', "rb") y_pred = pickle.load(pickle_off) pickle_off = open('data/y_test.pkl', "rb") y_test = pickle.load(pickle_off) for i in y_test: print(i) print("Done")
d04fc23f52eaaeb5f6834499c8a6eee5855907f6
3e39c0ae9ea2a438a6353e10aaf24afd794278b5
/team4.py
46ef7f0b24fac36608738705223d1fd74ad6ad66
[]
no_license
prathyakshun/Extreme_TIc_Tac_Toe_Bot
724f2d4c641bd24155362a92a43ddf462f05bd5f
f07bc479ee44c3b99db3ad701fc7d103279a9b58
refs/heads/master
2020-03-18T15:53:17.418913
2018-05-26T06:23:38
2018-05-26T06:23:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,597
py
import random from time import time import copy INF = 1e10 class Team4: def __init__(self): self.time_limit = 15 self.max_depth = 100 self.time_out = 0 self.depth = 6 self.cell_weight = [6, 4, 4, 6, 4, 3, 3, 4, 4, 3, 3, 4, 6, 4, 4, 6] self.mapping = {'x':1, 'o':-1, 'd':0, '-':0} def move(self, board, old_move, flag): self.time_start = time() self.time_out = 0 ret = random.choice(board.find_valid_move_cells(old_move)) for i in xrange(3,self.max_depth+1): self.depth = i ret = self.alpha_beta(board, -INF, INF, 0, old_move, flag) if self.time_out == 1: break print board.print_board() print ret return ret[1][0], ret[1][1] def alpha_beta(self, board, alpha, beta, depth, old_move, flag): available_cells = board.find_valid_move_cells(old_move) random.shuffle(available_cells) # print available_cells if (flag == 'x'): tmp = copy.deepcopy(board.block_status) ans = -INF, available_cells[0] for cell in available_cells: if (time() - self.time_start >= self.time_limit): self.time_out = 1 break # print cell board.update(old_move, cell, flag) # print "--------------------------------------------------BEFORE-----------------------------------------" # print board.print_board() if board.find_terminal_state()[0] == 'o': board.board_status[cell[0]][cell[1]] = '-' board.block_status = copy.deepcopy(tmp) continue; elif board.find_terminal_state()[0] == 'x': board.board_status[cell[0]][cell[1]] = '-' board.block_status = copy.deepcopy(tmp) ans = INF, cell return ans elif (depth >= self.depth and len(board.find_valid_move_cells(old_move)) > 0): ret = self.heuristic(board, old_move) elif (depth < self.depth): ret = self.alpha_beta(board, alpha, beta, depth+1, cell, 'o') board.board_status[cell[0]][cell[1]] = '-' board.block_status = copy.deepcopy(tmp) # print "--------------------------------------------------AFTER-----------------------------------------" # print board.print_board() if (ret > ans[0]): ans = ret, cell if (ans[0] >= beta): break alpha = max(alpha, ans[0]) return ans elif (flag == 'o'): tmp = copy.deepcopy(board.block_status) ans = INF, available_cells[0] for cell in available_cells: if (time() - self.time_start >= self.time_limit): self.time_out = 1 break # print cell board.update(old_move, cell, flag) # print "--------------------------------------------------BEFORE-----------------------------------------" # print board.print_board() if board.find_terminal_state()[0] == 'x': board.board_status[cell[0]][cell[1]] = '-' board.block_status = copy.deepcopy(tmp) continue; elif board.find_terminal_state()[0] == 'o': board.board_status[cell[0]][cell[1]] = '-' board.block_status = copy.deepcopy(tmp) ans = INF, cell return ans elif (depth >= self.depth and len(board.find_valid_move_cells(old_move)) > 0): ret = self.heuristic(board, old_move) elif (depth < self.depth): ret = self.alpha_beta(board, alpha, beta, depth+1, cell, 'x') board.board_status[cell[0]][cell[1]] = '-' board.block_status = copy.deepcopy(tmp) # print "--------------------------------------------------AFTER-----------------------------------------" # print board.print_board() if (ret < ans[0]): ans = ret, cell if (ans[0] <= alpha): break beta = min(beta, ans[0]) return ans def heuristic(self, board, old_move): goodness = 0 goodness += self.calc_single_blocks(board, old_move) goodness += self.calc_as_whole(board, old_move) return goodness def calc_single_blocks(self, board, old_move): block_goodness = 0 for i in xrange(4): for j in xrange(4): block_goodness += self.calc_per_block(board, old_move, i, j) def calc_per_block(self, board, old_move, block_x, block_y): # For checking how good a row/col is row_weight = [10 10 10 10] col_weight = [10 10 10 10] for i in xrange(4): for j in yrange(4): mapping_val = self.mapping[board.board_status[4*block_x+i][4*block_y+j]] # row_weight += mapping_val * self.cell_weight probably will only help in case of overall block if (mapping_val != 0): if (row_weight != 0): row_weight += mapping_val * 10 if (col_weight != 0): col_weight += mapping_val * 10 if (mapping_val == -1): row_weight[i] = 0 col_weight[j] = 0 row_weight *= 3 col_weight *= 3 # For checking how good diamond state is diamond1 = 0, diamond2 = 0, diamond3 = 0, diamond4 = 0 if board.board_status[4*block_x+1][4*block_y] == 1 and board.board_status[4*block_x][4*block_y+1] == 1: if (board.board_status[4*block_x+1][4*block_y+2] == 1 and board.board_status[4*block_x+2][4*block_y+1] == 1): diamond1 = def calc_as_whole(self, board): # For checking how good a row/col is row_weight = [10 10 10 10] col_weight = [10 10 10 10] for i in xrange(4): for j in yrange(4): mapping_val = self.mapping[board.block_status[i][sj]] if (mapping_val != 0): if (row_weight != 0): row_weight += mapping_val * self.cell_weight # probably will only help in case of overall block row_weight += mapping_val * 10 if (col_weight != 0): col_weight += mapping_val * self.cell_weight col_weight += mapping_val * 10 if (mapping_val == -1): row_weight[i] = 0 col_weight[j] = 0 row_weight *= 3 col_weight *= 3 # For checking how good diamond state is
47c291c064e807e68a7f1ef58a24677a9fdc71c4
a9a86dd97ac152825657571f1e94ffe01811fffe
/assets/migrations/0001_initial.py
9e6e6ed56620e4f03efb4811e32e3f724c4a12ee
[]
no_license
Dawson0x00/AssetManage
359ee269f2b9d88639c486093e81a19cd4696532
777ee250addc6465f655a6a4b9041701f6235268
refs/heads/master
2022-04-03T06:06:49.067648
2020-02-14T14:11:50
2020-02-14T14:11:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,943
py
# Generated by Django 2.2 on 2020-01-13 13:20 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='CSP', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('csp_type', models.CharField(choices=[('AliCloud', '阿里云'), ('AWS', '亚马逊云'), ('Azure', '微软云')], default='aliCloud', max_length=20, verbose_name='云服务供应商')), ], options={ 'verbose_name': '云服务供应商', 'verbose_name_plural': '云服务供应商', }, ), migrations.CreateModel( name='OSType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('OSType', models.CharField(choices=[('Windows', 'Windows'), ('Linux', 'Linux')], default='Linux', max_length=20, verbose_name='操作系统类型')), ('OSVersion', models.CharField(blank=True, max_length=64, null=True, unique=True, verbose_name='操作系统版本')), ], options={ 'verbose_name': '操作系统类型', 'verbose_name_plural': '操作系统类型', }, ), migrations.CreateModel( name='Owner', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('OwnerName', models.CharField(max_length=30, verbose_name='Owner_Name')), ('OwnerNum', models.CharField(max_length=7, verbose_name='Owner_Num')), ], options={ 'verbose_name': '负责人', 'verbose_name_plural': '负责人', }, ), migrations.CreateModel( name='Port', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('PortNum', models.IntegerField(verbose_name='端口号')), ], options={ 'verbose_name': '端口列表', 'verbose_name_plural': '端口列表', }, ), migrations.CreateModel( name='Server', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ServerName', models.CharField(blank=True, max_length=64, null=True, verbose_name='服务器名称')), ('PublicIP', models.GenericIPAddressField(blank=True, null=True, protocol='IPv4', verbose_name='公网IPV4地址')), ('PrivateIP', models.GenericIPAddressField(blank=True, null=True, protocol='IPv4', verbose_name='私网IPV4地址')), ('CSPID', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='assets.CSP', verbose_name='云服务供应商')), ('OSTID', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='assets.OSType', verbose_name='操作系统类型')), ('OwnerID', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='assets.Owner', verbose_name='负责人')), ], options={ 'verbose_name': '服务器列表', 'verbose_name_plural': '服务器列表', }, ), migrations.CreateModel( name='Service', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ServiceName', models.CharField(max_length=64, verbose_name='服务名称')), ], options={ 'verbose_name': '服务列表', 'verbose_name_plural': '服务列表', }, ), migrations.CreateModel( name='ServerPort', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('PID', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='assets.Port', verbose_name='端口')), ('SCID', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='assets.Service', verbose_name='Service')), ('SID', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='assets.Server', verbose_name='Server')), ], options={ 'verbose_name': '服务器端口', 'verbose_name_plural': '服务器端口', }, ), ]
c6fa9206cc5ff0c2d394edb90d2809935d172d50
cefdf82a0f9b802e006c19c85f1157bc1012dec3
/src/model_dispatcher.py
a18824f7ab365e8483623be88f0f7194139ba354
[]
no_license
hazim111/Categorical-Feature-Encoding-Challenge
465829b256c648f8f33f1b13f36af880b5eabb47
26482165ee576516c8b924714b2259d37e1115cb
refs/heads/main
2023-01-23T10:31:43.872954
2020-11-10T10:07:57
2020-11-10T10:07:57
311,287,802
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
from sklearn import ensemble MODELS = { "randomforest": ensemble.RandomForestClassifier(n_estimators=100, n_jobs=-1, verbose=2), "extratrees": ensemble.ExtraTreesClassifier(n_estimators=200, n_jobs=-1, verbose=2) }
62018629232c1e237cabe676ac0d9f85c5b74caf
83d4de4a66526891728f77cfcb31f3bbb1b70757
/Training/5.python/DAY3/tik_tok/tik_menu.py
cff9a8494c8eb4b6119489a926af044ab740b4d4
[]
no_license
sd-karthik/karthik-repo
dd2a0689bf75d90121e0d27c56a1a11b6325f470
5c37b943f8d1bc44a18a1d78cdbeaf22df0fae38
refs/heads/master
2021-01-09T06:22:50.568636
2017-03-19T06:54:51
2017-03-19T06:54:51
80,975,430
0
0
null
null
null
null
UTF-8
Python
false
false
716
py
# FILE Name : tik_menu.py # Function : tik-tok game implementation import os lst1 = [['*','*','*'],['*','*','*'],['*', '*','*']] #choice = input("Choose the player\n 1. Player_1 (0)\n2. Player_2 (1)\n") #if choice == 1: def matrix(): # os.system("clear") for i in lst1: print "\t", i[0]," ",i[1]," ",i[2],"\n" def compare(pos): f_row = pos/3 print f_row for i in lst1[f_row]: f_pos = pos%3 if i[f_pos] == '*': i[pos] = 0 else: print "Already entered" def valid(pos): if pos < 0 and pos > 9: print pos print "Enter valid input" pos = input("PLAYER1 : Enter the position:\n") valid(pos) matrix() pos = input("PLAYER1 : Enter the position:\n") valid(pos) #compare(pos) matrix()
9393de465090e8eca76d6d35fe72c3f91592711c
e61d07975a64d95eb41e9aef88eff631be2d1e9b
/projects/flask_blueprint/jobcn/company/__init__.py
b00674aa8cf350cd8eca19a50acb27818185d0a7
[]
no_license
yuhaoboris/LearnPythonTheHardWay
4375c916fc1d10b9d73c2f3e7aa608c5912f05fa
771d7f5c533109d14049f88bc6ecc03e5e1eeeca
refs/heads/master
2021-05-31T09:02:45.983210
2016-04-22T09:33:32
2016-04-22T09:33:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
from flask import Blueprint company = Blueprint( 'company', __name__, template_folder='company_templates' ) from . import views
652f47df5507cc851df7d349a9387a2aaa905013
36bc466d22e9eaf2056b3dd0d44fc307046d792e
/HW5/config.py
b7ba2469fee655804e3005064a90bfec2e5d38b7
[]
no_license
jtanwk/capp30254
05ff8a168187fb968e02d8222801400f7a756a21
3e9cea4d167a4a49a5dbc3934a6fd4fddd2107f3
refs/heads/master
2022-07-10T19:42:09.399914
2019-06-02T07:59:55
2019-06-02T07:59:55
179,363,081
0
0
null
2022-06-21T22:02:34
2019-04-03T20:13:22
Jupyter Notebook
UTF-8
Python
false
false
3,869
py
# CAPP 30254 Machine Learning for Public Policy # Homework 5 - Improving the Pipeline # Pipeline Configuration file ###################### # 1. READ/WRITE DATA # ###################### # Filepath where input data is stored DATA_PATH = 'data/projects_2012_2013.csv' # Filepath where trained classifiers are stored CLASSIFIER_PATH = 'output/trained_classifiers.pkl' # Filepath where cleaned test/train data are stored TEST_TRAIN_PATH = 'output/test_train_clean.pkl' # Identifying column of interest LABEL = 'not_funded_60_days' DATE_COL = 'date_posted' ######################## # 3. TEST/TRAIN SPLITS # ######################## # Dates for temporal test/train splits TEMPORAL_SPLITS = [ { 'train_start': '1/1/2012', 'train_end': '6/30/2012', 'test_start': '7/1/2012', 'test_end': '12/31/2012' }, { 'train_start': '1/1/2012', 'train_end': '12/31/2012', 'test_start': '1/1/2013', 'test_end': '6/30/2013' }, { 'train_start': '1/1/2012', 'train_end': '6/30/2013', 'test_start': '7/1/2013', 'test_end': '12/31/2013' }, ] ####################### # 5. BUILD CLASSIFIER # ####################### # Large grid - most exhaustive option GRID_MAIN = { 'classifiers': ['LogisticRegression', 'KNeighborsClassifier', 'DecisionTreeClassifier', 'LinearSVC', 'RandomForestClassifier', 'AdaBoostClassifier', 'BaggingClassifier'], 'thresholds': [0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 1], 'LogisticRegression': [ {'penalty': x, 'C': y, 'solver': 'liblinear', 'random_state': 0} \ for x in ('l1', 'l2') \ for y in (0.01, 0.1, 1, 10, 100) \ ], 'KNeighborsClassifier': [ {'n_neighbors': x, 'weights': y, 'algorithm': z, 'n_jobs': -1} \ for x in (5, 10, 50) \ for y in ('uniform', 'distance') \ for z in ('auto', 'ball_tree', 'kd_tree') ], 'DecisionTreeClassifier': [ {'max_depth': x, 'max_features': y, 'min_samples_leaf': z, 'random_state': 0} \ for x in (5, 10, 50) \ for y in ('sqrt', 'log2', None) \ for z in (5, 10) ], 'LinearSVC': [ {'penalty': 'l2', 'C': x, 'random_state': 0} \ for x in (0.01, 0.1, 1, 10, 100) ], 'RandomForestClassifier': [ {'n_estimators': x, 'max_depth': y, 'max_features': z, 'random_state': 0, 'n_jobs': -1} \ for x in (10, 100, 1000) \ for y in (5, 10, 50) \ for z in ('sqrt', 'log2') ], 'AdaBoostClassifier': [ {'n_estimators': x, 'algorithm': y, 'random_state': 0} \ for x in (10, 100, 1000) \ for y in ('SAMME', 'SAMME.R') ], 'BaggingClassifier': [ {'n_estimators': x, 'random_state': 0, 'n_jobs': -1} \ for x in (10, 100, 1000) ] } # Test grid to make sure everything works - 1 model per classifier GRID_TEST = { 'classifiers': ['LogisticRegression', 'DecisionTreeClassifier'], 'thresholds': [0.5], 'LogisticRegression': [ {'penalty': 'l2', 'C': 1, 'solver': 'liblinear', 'random_state': 0} ], 'KNeighborsClassifier': [ {'n_neighbors': 1, 'weights': 'uniform', 'algorithm': 'auto', 'n_jobs': -1} ], 'DecisionTreeClassifier': [ {'max_depth': 1, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'random_state': 0} ], 'LinearSVC': [ {'penalty': 'l2', 'C': 1, 'random_state': 0} ], 'RandomForestClassifier': [ {'n_estimators': 10, 'max_depth': 1, 'max_features': 10, 'random_state': 0, 'n_jobs': -1} ], 'AdaBoostClassifier': [ {'n_estimators': 10, 'algorithm': 'SAMME.R', 'random_state': 0} ], 'BaggingClassifier': [ {'n_estimators': 10, 'random_state': 0, 'n_jobs': -1} ] }
2bd7aacef0b5f06ea9fbbaf4f6b6fc36ab09b27c
49bfa101bbb5ed35f9c8282ddb352ebbbfcc47cc
/DeepLearning_NeuralNetwork/ConvNets/Block.py
523f0cfe1ee42dd2b193f3660d5ca31808720a4c
[]
no_license
sudhirkk/ML_Projects
de422ff39b7c69e54fd0a7c78f41a9628826d602
8acfd430cf219818fe33c08456411d9d6954c95b
refs/heads/master
2023-04-22T14:05:43.548925
2021-05-04T18:27:03
2021-05-04T18:27:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,015
py
class Block(nn.Module): def __init__(self, in_channel, out_channel, kernel_size=3, stride=1): super(Block, self).__init__() self.in_channel = in_channel self.out_channel = out_channel self.kernel_size = kernel_size self.stride = stride # This block contains a convolutional layer # then a batch normalization layer self.conv = nn.Conv2d(in_channel, out_channel, kernel_size, stride) self.bn = nn.BatchNorm2d(out_channel) return def forward(self, x): # passes the input image through a convolutional layer # followed by a batch normalization layer and relu transition out = F.relu(self.bn(self.conv(x))) return out # Create a block that is made up of 10 filters size 3x3 and stride 1 # The block takes in a image of 1 channel Block1 = Block(1, 10, 3, 1) out = Block1(X) # After passing our image through block 1 # we get the following tensor print(out.shape)
7186bad46805eb47e6211c9419da1e7e919c2d4c
887f2e664c6d92f17e784f57022333a2fb859d06
/analysis/movement/simulations/topo.py
1061723ff603246df35486ce122f83a75a02f3f3
[]
no_license
ctorney/dolphinUnion
1968e258c6045060b2c921bd723d0ef0daea0147
9d7212d172a8a48a36fc4870fcdb04d66130bb76
refs/heads/master
2021-01-19T04:40:57.286526
2017-08-17T20:44:58
2017-08-17T20:44:58
46,424,670
1
0
null
null
null
null
UTF-8
Python
false
false
4,239
py
import numpy as np from math import pi, sin, cos, atan2 from math import * import math import matplotlib.pyplot as plt import pandas as pd outTracks = pd.DataFrame(columns= ['frame','x','y','heading','c_id']) trackName = 'topo.csv' # number of individuals N=100 # set to random initial conditions on (0,1)x(0,1) xpos = np.random.uniform(0.5,1,N) ypos = np.random.uniform(0.5,1,N) xpos = np.random.uniform(50,51,N) ypos = np.random.uniform(50,51,N) # set to random inital headings heading = np.random.uniform(0,2*pi,N) randvar = 0.1 # set speed individuals move speed = 1 # run for this many time steps TIMESTEPS = 2000 mvp = 3 # mean reversion parameter mean_heading = 0; sig = 0.5 # noise dt = 1e-2 # time step #t = np.arange(0,dt*2,dt) # % Time vector #x0 = 0; #% Set initial condition ##rng(1); #% Set random seed #W = np.zeros((len(t))); #% Allocate integrated W vector #np.random.seed(0) #for i in range(len(t)-1): # W[i+1] = sqrt(exp(2*th*dt)-1)*np.random.normal() # #ex = np.exp(-th*t); #x = x0*ex+mu*(1-ex)+sig*ex*W/sqrt(2*th); # #np.random.seed(0) exp_mr = math.exp(-mvp*dt) add_noise = sig*math.sqrt((math.exp(2*mvp*dt)-1)/(2*mvp)) repRad = 0.1 attTop = 2 align=0.25 socWeight = 2.5 def getHeading(i): c_angle = heading[i] #xpos[i]*2*pi + ypos[i]*2*pi socx = 0 socy = 0 asocx = 0 asocy = 0 xdiffs = xpos - xpos[i] ydiffs = ypos - ypos[i] dists = np.sqrt(xdiffs**2+ydiffs**2) sortedJ = np.argsort(dists) count= 0 for j in sortedJ: if i==j: continue distij = dists[j] if distij < repRad: thisAngle = atan2(-ydiffs[j],-xdiffs[j]) socx = socx + cos(thisAngle) socy = socy + sin(thisAngle) else: if count < attTop: anglej = atan2(ydiffs[j],xdiffs[j]) anglej = atan2(sin(anglej - c_angle),cos(anglej - c_angle)) if anglej <0.7854 and anglej> -0.7854: count=count+1 headj = heading[j]-c_angle relx = cos(anglej)+align*cos(headj) rely = sin(anglej)+align*sin(headj) angle2 = atan2(rely,relx) asocx = asocx + cos(angle2+c_angle) asocy = asocy + sin(angle2+c_angle) angle = 0 if socx!=0 or socy!=0: soc_angle = atan2(socy,socx) angle = atan2(sin(soc_angle),cos(soc_angle)) else: if asocx!=0 or asocy!=0: soc_angle = atan2(asocy,asocx) angle = atan2(sin(soc_angle),cos(soc_angle)) return math.atan2(math.sin(angle),math.cos(angle)) # simulate individual movement for t in range(TIMESTEPS): print(t) for i in range(N): mean_heading = getHeading(i) new_angle = math.atan2(math.sin(heading[i]-mean_heading),math.cos(heading[i]-mean_heading)) new_angle = mean_heading + exp_mr*(new_angle+add_noise*np.random.normal()) heading[i] =math.atan2(math.sin(new_angle),math.cos(new_angle)) #heading = heading + np.random.normal(0,randvar,N) # individuals move in direction defined by heading with fixed speed xpos = xpos + dt*speed*np.cos(heading) ypos = ypos + dt*speed*np.sin(heading) # boundary conditions are periodic # xpos[xpos<0]=xpos[xpos<0]+1 # xpos[xpos>1]=xpos[xpos>1]-1 # ypos[ypos<0]=ypos[ypos<0]+1 # ypos[ypos>1]=ypos[ypos>1]-1 xpos[xpos<0]=xpos[xpos<0]+100 xpos[xpos>100]=xpos[xpos>100]-100 ypos[ypos<0]=ypos[ypos<0]+100 ypos[ypos>100]=ypos[ypos>100]-100 # plot the positions of all individuals # plt.clf() # plt.plot(xpos, ypos,'k.') # plt.xlim([50,60]) # plt.ylim([45,55]) # plt.axes().set_aspect('equal') # plt.draw() # plt.pause(0.01) if t>1000: newcpos = pd.DataFrame(np.column_stack((np.full(N,t,dtype='int64'),xpos,ypos,heading,np.arange(0,N))), columns= ['frame','x','y','heading','c_id']) outTracks = outTracks.append(newcpos,ignore_index=True ) outTracks.to_csv(trackName, index=False)
eb54622d41e0bc71b02a07090a87baf2db7404d7
73989f945d779ecb83c8aaf7b854e1f6239fdd39
/fuzzy/adaptation-iris/main.py
1b08e9690d9752b15a2d0d28f932832ac349b812
[]
no_license
wayter95/neural-network-exercises
c364b71b9131dde650b2a8753fd79006ce622337
99b97d2d2aeb1ef45505e3b054b43a33a00d5933
refs/heads/main
2023-05-07T22:12:08.048943
2021-06-08T17:49:01
2021-06-08T17:49:01
375,084,588
0
0
null
null
null
null
UTF-8
Python
false
false
2,055
py
import numpy as np import skfuzzy as fuzz from skfuzzy import control as ctrl cs = ctrl.Antecedent(np.arange(4,8), 'CS') ls = ctrl.Antecedent(np.arange(2,5), 'LS') cp = ctrl.Antecedent(np.arange(1,7), 'CP') lp = ctrl.Antecedent(np.arange(0,3), 'LP') classe = ctrl.Consequent(np.arange(0, 1), 'classe') cs['baixa'] = fuzz.trimf(cs.universe, [0, 0.25, 0.5]) cs['media'] = fuzz.trimf(cs.universe, [0.3,0.5,0.7]) cs['alta'] = fuzz.trimf(cs.universe, [0.6,0.8,1]) ls['baixa'] = fuzz.trimf(ls.universe, [0, 0.25, 0.5]) ls['media'] = fuzz.trimf(ls.universe, [0.3,0.5,0.7]) ls['alta'] = fuzz.trimf(ls.universe, [0.6,0.8,1]) cp['baixa'] = fuzz.trimf(cp.universe, [0, 0.25, 0.5]) cp['media'] = fuzz.trimf(cp.universe, [0.3,0.5,0.7]) cp['alta'] = fuzz.trimf(cp.universe, [0.6,0.8,1]) lp['baixa'] = fuzz.trimf(lp.universe, [0, 0.25, 0.5]) lp['media'] = fuzz.trimf(lp.universe, [0.3,0.5,0.7]) lp['alta'] = fuzz.trimf(lp.universe, [0.6,0.8,1]) classe['íris-versicolor'] = fuzz.trapmf(classe.universe, [0, 0.25, 0.5]) classe['íris-setosa'] = fuzz.trapmf(classe.universe, [0.3,0.5,0.7]) classe['íris-virginica'] = fuzz.trapmf(classe.universe, [0.6,0.8,1]) cs.view() ls.view() cp.view() lp.view() classe.view() # regras regra1 = ctrl.Rule(cs['medio'], ls['grande'],cp['medio'], lp['medio'], classe['íris-versicolor']) regra2 = ctrl.Rule(cs['pequeno'], ls['medio'],cp['pequeno'], lp['pequeno'], classe['íris-setosa']) regra3 = ctrl.Rule(cs['grande'], ls['medio'],cp['grande'], lp['medio'], classe['íris-virginica']) iris_ctrl = ctrl.ControlSystem([regra1, regra2, regra3]) engine1 = ctrl.ControlSystemSimulation(imovel_ctrl) engine2 = ctrl.ControlSystemSimulation(imovel_ctrl) # modelo 1 engine1.input['CS'] = 5.8 engine1.input['LS'] = 4.1 engine1.input['CP'] = 3.5 engine1.input['LP'] = 1.1 # modelo 2 engine2.input['CS'] = 7.8 engine2.input['LS'] = 4 engine2.input['CP'] = 6.7 engine2.input['LP'] = 2 engine1.compute() engine2.compute() print(engine1.output['classe']) print(engine2.output['classe']) classe.view(sim=engine1) classe.view(sim=engine2)
242116a8e3514f4012a07dd058710361e5fd3378
c1f56a01707563cbbd9784d803c015611e93aee8
/kolibri/core/content/test/test_tasks.py
718db2db875864bdb7fe37452fac56d21285e876
[ "MIT" ]
permissive
swiftugandan/kolibri
4b9a42232c27d83e1979ffc5a0172b1ccfb934db
c87008905afa785dce06e63e5189358abd5113cc
refs/heads/develop
2022-08-03T22:50:23.008609
2022-07-22T09:04:54
2022-07-22T09:04:54
183,503,563
0
0
MIT
2019-04-25T20:14:53
2019-04-25T20:14:52
null
UTF-8
Python
false
false
8,988
py
import uuid import mock from django.test import TestCase from rest_framework import serializers from kolibri.core.auth.models import Facility from kolibri.core.auth.models import FacilityUser from kolibri.core.content.models import ChannelMetadata from kolibri.core.content.models import ContentNode from kolibri.core.content.tasks import ChannelResourcesValidator from kolibri.core.content.tasks import ChannelValidator from kolibri.core.content.tasks import LocalChannelImportValidator from kolibri.core.content.tasks import RemoteChannelImportValidator from kolibri.core.discovery.models import NetworkLocation from kolibri.utils import conf class ValidateContentTaskTestCase(TestCase): @classmethod def setUpTestData(cls): cls.channel_id = uuid.uuid4().hex root = ContentNode.objects.create( id=uuid.uuid4().hex, title="kolibri_le_root", channel_id=cls.channel_id, content_id=uuid.uuid4().hex, ) ChannelMetadata.objects.create(id=cls.channel_id, name="kolibri_le", root=root) def test_missing_channel_id(self): with self.assertRaises(serializers.ValidationError): ChannelValidator( data={ "type": "kolibri.core.content.tasks.remotecontentimport", "channel_name": "test", } ).is_valid(raise_exception=True) def test_invalid_channel_id(self): with self.assertRaises(serializers.ValidationError): ChannelValidator( data={ "type": "kolibri.core.content.tasks.remotechannelimport", "channel_id": "test", "channel_name": "test", } ).is_valid(raise_exception=True) def test_missing_channel_name(self): with self.assertRaises(serializers.ValidationError): ChannelValidator( data={ "type": "kolibri.core.content.tasks.remotechannelimport", "channel_id": self.channel_id, } ).is_valid(raise_exception=True) def test_wrong_node_ids_type(self): with self.assertRaises(serializers.ValidationError): ChannelResourcesValidator( data={ "type": "kolibri.core.content.tasks.remotechannelimport", "channel_id": self.channel_id, "channel_name": "test", "node_ids": ["test"], } ).is_valid(raise_exception=True) def test_wrong_exclude_node_ids_type(self): with self.assertRaises(serializers.ValidationError): ChannelResourcesValidator( data={ "type": "kolibri.core.content.tasks.remotechannelimport", "channel_id": self.channel_id, "channel_name": "test", "exclude_node_ids": ["test"], } ).is_valid(raise_exception=True) def test_returns_right_data(self): include_id = uuid.uuid4().hex exclude_id = uuid.uuid4().hex validator = ChannelResourcesValidator( data={ "type": "kolibri.core.content.tasks.remotechannelimport", "channel_id": self.channel_id, "channel_name": "test", "node_ids": [include_id], "exclude_node_ids": [exclude_id], } ) validator.is_valid(raise_exception=True) # The `task_data` is already correct so no changes should've been made. self.assertEqual( validator.validated_data, { "args": [self.channel_id], "kwargs": { "exclude_node_ids": [exclude_id], "node_ids": [include_id], }, "extra_metadata": { "channel_id": self.channel_id, "channel_name": "test", }, }, ) class ValidateRemoteImportTaskTestCase(TestCase): @classmethod def setUpTestData(cls): cls.facility = Facility.objects.create(name="pytest_facility") cls.facility_user = FacilityUser.objects.create( username="pytest_user", facility=cls.facility ) cls.network_location = NetworkLocation.objects.create( base_url="http://test.org" ) def test_wrong_peer_id(self): with self.assertRaises(serializers.ValidationError): RemoteChannelImportValidator( data={ "type": "kolibri.core.content.tasks.remotechannelimport", "channel_id": uuid.uuid4().hex, "channel_name": "test", "peer": "test", } ).is_valid(raise_exception=True) @mock.patch("kolibri.core.content.tasks.NetworkClient") def test_no_peer_id(self, network_client_mock): channel_id = uuid.uuid4().hex validator = RemoteChannelImportValidator( data={ "type": "kolibri.core.content.tasks.remotechannelimport", "channel_id": channel_id, "channel_name": "test", } ) network_client_mock.return_value.base_url = conf.OPTIONS["Urls"][ "CENTRAL_CONTENT_BASE_URL" ] validator.is_valid(raise_exception=True) self.assertEqual( validator.validated_data, { "args": [channel_id], "extra_metadata": { "channel_id": channel_id, "channel_name": "test", "peer_id": None, }, "kwargs": { "baseurl": conf.OPTIONS["Urls"]["CENTRAL_CONTENT_BASE_URL"], "peer_id": None, }, }, ) @mock.patch("kolibri.core.content.tasks.NetworkClient") def test_correct_peer_id(self, network_client_mock): channel_id = uuid.uuid4().hex validator = RemoteChannelImportValidator( data={ "type": "kolibri.core.content.tasks.remotechannelimport", "channel_id": channel_id, "channel_name": "test", "peer": self.network_location.id, } ) network_client_mock.return_value.base_url = self.network_location.base_url validator.is_valid(raise_exception=True) self.assertEqual( validator.validated_data, { "args": [channel_id], "extra_metadata": { "channel_id": channel_id, "channel_name": "test", "peer_id": self.network_location.id, }, "kwargs": { "baseurl": self.network_location.base_url, "peer_id": self.network_location.id, }, }, ) class ValidateLocalImportTaskTestCase(TestCase): def test_wrong_drive_id(self): with self.assertRaises(serializers.ValidationError): LocalChannelImportValidator( data={ "type": "kolibri.core.content.tasks.localchannelimport", "channel_id": uuid.uuid4().hex, "channel_name": "test", "drive_id": "test", } ).is_valid(raise_exception=True) def test_no_drive_id(self): with self.assertRaises(serializers.ValidationError): LocalChannelImportValidator( data={ "type": "kolibri.core.content.tasks.localchannelimport", "channel_id": uuid.uuid4().hex, "channel_name": "test", } ).is_valid(raise_exception=True) @mock.patch("kolibri.core.content.tasks.get_mounted_drive_by_id") def test_correct_peer_id(self, mock_get_mounted_drive_by_id): channel_id = uuid.uuid4().hex drive_id = "test_id" validator = LocalChannelImportValidator( data={ "type": "kolibri.core.content.tasks.localchannelimport", "channel_id": channel_id, "channel_name": "test", "drive_id": drive_id, } ) class drive(object): datafolder = "kolibri" mock_get_mounted_drive_by_id.return_value = drive validator.is_valid(raise_exception=True) self.assertEqual( validator.validated_data, { "args": [channel_id, drive_id], "extra_metadata": { "channel_id": channel_id, "channel_name": "test", "drive_id": drive_id, }, "kwargs": {}, }, )
907377f7ea2c199b9511095ba160addc731a03bc
3e900cb2d3cbb949b3050646ca6531f2bff86a84
/core/Lib/codecs.py
cf82ccb4e0305b45d7291928fdd97fafe066088a
[ "Apache-2.0" ]
permissive
tuankien2601/python222
e8043367d73d785c4281895f26487cb45b0ab812
205414c33fba8166167fd8a6a03eda1a68f16316
refs/heads/master
2021-06-21T04:47:38.784778
2017-08-14T10:02:33
2017-08-14T10:02:33
100,253,763
1
0
null
null
null
null
UTF-8
Python
false
false
8,262
py
# Portions Copyright (c) 2005 Nokia Corporation """ codecs -- Python Codec Registry, API and helpers. Written by Marc-Andre Lemburg ([email protected]). (c) Copyright CNRI, All Rights Reserved. NO WARRANTY. """#" import struct, __builtin__ ### Registry and builtin stateless codec functions try: from _codecs import * except ImportError, why: raise SystemError,\ 'Failed to load the builtin codecs: %s' % why __all__ = ["register", "lookup", "open", "EncodedFile", "BOM", "BOM_BE", "BOM_LE", "BOM32_BE", "BOM32_LE", "BOM64_BE", "BOM64_LE"] ### Constants # # Byte Order Mark (BOM) and its possible values (BOM_BE, BOM_LE) # BOM = struct.pack('=H', 0xFEFF) # BOM_BE = BOM32_BE = '\376\377' # corresponds to Unicode U+FEFF in UTF-16 on big endian # platforms == ZERO WIDTH NO-BREAK SPACE BOM_LE = BOM32_LE = '\377\376' # corresponds to Unicode U+FFFE in UTF-16 on little endian # platforms == defined as being an illegal Unicode character # # 64-bit Byte Order Marks # BOM64_BE = '\000\000\376\377' # corresponds to Unicode U+0000FEFF in UCS-4 BOM64_LE = '\377\376\000\000' # corresponds to Unicode U+0000FFFE in UCS-4 ### Codec base classes (defining the API) class Codec: def encode(self, input, errors='strict'): raise NotImplementedError def decode(self, input, errors='strict'): raise NotImplementedError # # The StreamWriter and StreamReader class provide generic working # interfaces which can be used to implement new encoding submodules # very easily. See encodings/utf_8.py for an example on how this is # done. # class StreamWriter(Codec): def __init__(self, stream, errors='strict'): self.stream = stream self.errors = errors def write(self, object): data, consumed = self.encode(object, self.errors) self.stream.write(data) def writelines(self, list): self.write(''.join(list)) def reset(self): pass def __getattr__(self, name, getattr=getattr): return getattr(self.stream, name) ### class StreamReader(Codec): def __init__(self, stream, errors='strict'): self.stream = stream self.errors = errors def read(self, size=-1): # Unsliced reading: if size < 0: return self.decode(self.stream.read(), self.errors)[0] # Sliced reading: read = self.stream.read decode = self.decode data = read(size) i = 0 while 1: try: object, decodedbytes = decode(data, self.errors) except ValueError, why: # This method is slow but should work under pretty much # all conditions; at most 10 tries are made i = i + 1 newdata = read(1) if not newdata or i > 10: raise data = data + newdata else: return object def readline(self, size=None): if size is None: line = self.stream.readline() else: line = self.stream.readline(size) return self.decode(line, self.errors)[0] def readlines(self, sizehint=None): if sizehint is None: data = self.stream.read() else: data = self.stream.read(sizehint) return self.decode(data, self.errors)[0].splitlines(1) def reset(self): pass def __getattr__(self, name, getattr=getattr): return getattr(self.stream, name) ### class StreamReaderWriter: # Optional attributes set by the file wrappers below encoding = 'unknown' def __init__(self, stream, Reader, Writer, errors='strict'): self.stream = stream self.reader = Reader(stream, errors) self.writer = Writer(stream, errors) self.errors = errors def read(self, size=-1): return self.reader.read(size) def readline(self, size=None): return self.reader.readline(size) def readlines(self, sizehint=None): return self.reader.readlines(sizehint) def write(self, data): return self.writer.write(data) def writelines(self, list): return self.writer.writelines(list) def reset(self): self.reader.reset() self.writer.reset() def __getattr__(self, name, getattr=getattr): return getattr(self.stream, name) ### class StreamRecoder: # Optional attributes set by the file wrappers below data_encoding = 'unknown' file_encoding = 'unknown' def __init__(self, stream, encode, decode, Reader, Writer, errors='strict'): self.stream = stream self.encode = encode self.decode = decode self.reader = Reader(stream, errors) self.writer = Writer(stream, errors) self.errors = errors def read(self, size=-1): data = self.reader.read(size) data, bytesencoded = self.encode(data, self.errors) return data def readline(self, size=None): if size is None: data = self.reader.readline() else: data = self.reader.readline(size) data, bytesencoded = self.encode(data, self.errors) return data def readlines(self, sizehint=None): if sizehint is None: data = self.reader.read() else: data = self.reader.read(sizehint) data, bytesencoded = self.encode(data, self.errors) return data.splitlines(1) def write(self, data): data, bytesdecoded = self.decode(data, self.errors) return self.writer.write(data) def writelines(self, list): data = ''.join(list) data, bytesdecoded = self.decode(data, self.errors) return self.writer.write(data) def reset(self): self.reader.reset() self.writer.reset() def __getattr__(self, name, getattr=getattr): return getattr(self.stream, name) ### Shortcuts def open(filename, mode='rb', encoding=None, errors='strict', buffering=1): if encoding is not None and \ 'b' not in mode: # Force opening of the file in binary mode mode = mode + 'b' file = __builtin__.open(filename, mode, buffering) if encoding is None: return file (e, d, sr, sw) = lookup(encoding) srw = StreamReaderWriter(file, sr, sw, errors) # Add attributes to simplify introspection srw.encoding = encoding return srw def EncodedFile(file, data_encoding, file_encoding=None, errors='strict'): if file_encoding is None: file_encoding = data_encoding encode, decode = lookup(data_encoding)[:2] Reader, Writer = lookup(file_encoding)[2:] sr = StreamRecoder(file, encode, decode, Reader, Writer, errors) # Add attributes to simplify introspection sr.data_encoding = data_encoding sr.file_encoding = file_encoding return sr ### Helpers for codec lookup def getencoder(encoding): return lookup(encoding)[0] def getdecoder(encoding): return lookup(encoding)[1] def getreader(encoding): return lookup(encoding)[2] def getwriter(encoding): return lookup(encoding)[3] ### Helpers for charmap-based codecs def make_identity_dict(rng): res = {} for i in rng: res[i]=i return res def make_encoding_map(decoding_map): m = {} for k,v in decoding_map.items(): if not m.has_key(v): m[v] = k else: m[v] = None return m # Tell modulefinder that using codecs probably needs the encodings # package _false = 0 if _false: import encodings ### Tests if __name__ == '__main__': import sys # Make stdout translate Latin-1 output into UTF-8 output sys.stdout = EncodedFile(sys.stdout, 'latin-1', 'utf-8') # Have stdin translate Latin-1 input into UTF-8 input sys.stdin = EncodedFile(sys.stdin, 'utf-8', 'latin-1')
e53a5359a67d02e0656b36d63bcba3b3e44b2b56
cd23b0457bc02a60b89f1f52783e56cc36d85b5e
/thread/thread_condition.py
6d246780edd0b81a190b55004966c83037b22cc5
[]
no_license
cluo/learingPython
65c7068613e1a2ae0178e23770503043d9278c45
54609288e489047d4dd1dead5ac142f490905f0e
refs/heads/master
2020-04-01T13:04:15.981758
2015-02-23T13:21:31
2015-02-23T13:21:31
28,440,969
4
0
null
null
null
null
UTF-8
Python
false
false
1,225
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Created by iFantastic on 15-2-14 __author__ = 'cluo' import logging import threading import time #consumer()要设置Condition 才能继续 #producer() 负责设置条件 并通知其他进程可以继续‰ logging.basicConfig( level = logging.DEBUG, format = '%(asctime)s (%(threadName)-2s) %(message)s' ) def consumer(cond): """wait fro condition and use the resource""" logging.debug('Starting consumer thread') t = threading.currentThread() with cond: #condition 使用一个Lock cond.wait() logging.debug('Resource is alailable to consumer') def producer(cond): """set up the resource to be used by the consumer""" logging.debug('Starting producer thread') with cond: logging.debug('Making resource available') cond.notifyAll() condition = threading.Condition() c1 = threading.Thread(name = 'c1', target = consumer, args = (condition,)) c2 = threading.Thread(name = 'c2', target = consumer, args = (condition,)) p = threading.Thread(name = 'p', target = producer, args = (condition,)) if __name__ == '__main__': c1.start() time.sleep(2) c2.start() time.sleep(2) p.start()
94e5e6c39be326578004189d03989bf0d64c771f
b038d58ff77367c52f1f9288a9c1ed3bc70846a7
/bot.py
d549c737bc95b269bacd8b8055c07f1b6f795a2c
[]
no_license
TheTrueProblematic/TradingBot
f5a26a5fe6ae59658fc100305ee68290a454ffa2
9d9f157259e3c0a942a38e172a752ef3db1a0e4d
refs/heads/main
2023-03-03T21:23:36.271194
2021-02-14T11:58:52
2021-02-14T11:58:52
337,211,885
0
1
null
2021-02-12T17:33:42
2021-02-08T21:16:18
Python
UTF-8
Python
false
false
4,431
py
import shrimpy import time from os import name from subprocess import call import sys class bot: def error_handler(self, err): print(err) class printBot(bot): def __init__(self): self.stream = False self.clearLog() def clear(self): _ = call('clear' if name == 'posix' else 'cls') self.logWrite('output.txt', '\n\n\n') self.logWrite('log.txt', '\n\n\n') def error_handler(self, err): self.print("Error", err) def titleCenter(self, text): l = len(text) sp = 36 - (l / 2) ret = text for i in range(int(sp)): ret = "-" + ret + "-" ret = "<" + ret + ">" return ret def center(self, text): l = len(text) sp = 37 - (l / 2) ret = text for i in range(int(sp)): ret = " " + ret return ret def wrap(self, text): l = len(text) ret = "" if l <= 37: return self.center(text) else: while l > 0: l = l - 37 tmp = text[:37] text = text[37:] ret = ret + self.center(tmp) + "\n" return ret def clearLog(self): file = open("output.txt", "r+") file.truncate(0) file.close() def logWrite(self, filename, content): # import sys # print('This message will be displayed on the screen.') original_stdout = sys.stdout # Save a reference to the original standard output with open(str(filename), 'w') as f: sys.stdout = f # Change the standard output to the file we created. print(str(content)) #This message will be written to a file sys.stdout = original_stdout # Reset the standard output to its original value def fullPrint(self, content): self.logWrite('output.txt', content) self.logWrite('log.txt', content) print(str(content)) def print(self, title, content): if self.stream: self.fullPrint(str(title)+": "+str(content)) else: self.clear() time.sleep(1) full = self.titleCenter(str(title)) + "\n\n" + self.wrap(str(content)) self.fullPrint(full) def startPrintStream(self): self.clear() time.sleep(1) self.stream = True def endPrintStream(self): self.clear() time.sleep(1) self.stream = False class pumpBot(printBot): def __init__(self, exchange_public_key,exchange_secret_key, shrimpy_public_key, shrimpy_secret_key, user_id, account_id): super().__init__() self.ex_pub = exchange_public_key self.ex_sec = exchange_secret_key self.smp_pub = shrimpy_public_key self.smp_sec = shrimpy_secret_key self.user_id = user_id self.account_id = account_id self.client = shrimpy.ShrimpyApiClient(shrimpy_public_key, shrimpy_secret_key) self.balance = self.client.get_balance(user_id, account_id) self.coin = '' def getBalance(self): return self.balance def setBalance(self): self.balance = self.client.get_balance(self.user_id, self.account_id) def getRawToken(self): return self.client.get_token() def setCoin(self, coin): self.coin = coin.upper() def getCoin(self): return self.coin.upper() def coinPrompt(self): self.print('Enter Coin', ' ') coin = input("Coin: ") self.setCoin(coin) return coin.upper() def condense(self, coinName): self.setBalance() holdings = self.balance['balances'] consolidation_symbol = str(coinName) for asset in holdings: asset_symbol = asset['symbol'] asset_amount = asset['nativeValue'] if asset_symbol != consolidation_symbol: create_trade_response = self.client.create_trade( self.user_id, self.account_id, asset_symbol, consolidation_symbol, asset_amount ) def limitSell(self, coinFrom, coinTo, limit): return coinFrom def fileCoin(self): f = open("coin.txt", "r") content = f.read() l = len(content) if l>0: return content else: return None
806443a52fc5cc7e2da8af70220f0e6289e87733
baa1811841825b321f281112afcac1d9204509b9
/donphan/abc.py
746487fea16e00ecd69d09519e8c85d7a6bd689d
[ "MIT" ]
permissive
Gobot1234/Donphan
d3fcb523d33a1496a09a39d2998b11cf5cf69cfb
1f430e98148420060f6915713e8cd25cf7be14b2
refs/heads/master
2023-05-06T09:38:03.219882
2020-09-28T16:29:21
2020-09-28T16:29:21
299,368,495
0
0
null
2020-09-28T16:30:53
2020-09-28T16:30:52
null
UTF-8
Python
false
false
22,471
py
from .connection import Connection, MaybeAcquire, Record from .column import Column from .sqltype import SQLType import abc import inspect from typing import Any, Iterable, List, Optional, Tuple, Union _DEFAULT_SCHEMA = 'public' _DEFAULT_OPERATORS = { 'eq': '=', 'ne': '!=', 'lt': '<', 'gt': '>', 'le': '<=', 'ge': '>=' } class Creatable(metaclass=abc.ABCMeta): @classmethod def _query_create_schema(cls, if_not_exists: bool = True) -> str: """Generates a CREATE SCHEMA stub.""" builder = ['CREATE SCHEMA'] if if_not_exists: builder.append('IF NOT EXISTS') builder.append(cls.schema) # type: ignore return ' '.join(builder) @classmethod @abc.abstractmethod def _query_create(cls, drop_if_exists: bool = True, if_not_exists: bool = True) -> str: """Generates a CREATE stub.""" raise NotImplementedError @classmethod def _base_query_drop(cls, type: str, if_exists: bool = True, cascade: bool = False) -> str: """Generates a DROP stub.""" builder = ['DROP'] builder.append(type) if if_exists: builder.append('IF EXISTS') builder.append(cls._name) # type: ignore if cascade: builder.append('CASCADE') return ' '.join(builder) @classmethod @abc.abstractmethod def _query_drop(cls, if_exists: bool = True, cascade: bool = False) -> str: """Generates a DROP stub.""" raise NotImplementedError @classmethod async def create(cls, *, connection=None, drop_if_exists=True, if_not_exists=True): """Creates this object in the database. Args: connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool. if_not_exists (bool, optional): TODO """ async with MaybeAcquire(connection) as connection: if if_not_exists: await connection.execute(cls._query_create_schema()) await connection.execute(cls._query_create(drop_if_exists, if_not_exists)) @classmethod async def drop(cls, *, connection=None, if_exists: bool = False, cascade: bool = False): """Drops this object from the database. Args: connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool. if_exists (bool, optional): TODO cascade (bool, optional): TODO """ async with MaybeAcquire(connection) as connection: await connection.execute(cls._query_drop(if_exists, cascade)) class ObjectMeta(abc.ABCMeta): def __new__(cls, name, bases, attrs, **kwargs): attrs.update({ 'schema': kwargs.get('schema', _DEFAULT_SCHEMA), '_columns': {} }) obj = super().__new__(cls, name, bases, attrs) for _name, _type in attrs.get('__annotations__', {}).items(): # If the input type is an array is_array = False while isinstance(_type, list): is_array = True _type = _type[0] if inspect.ismethod(_type) and _type.__self__ is SQLType: _type = _type() elif not isinstance(_type, SQLType): _type = SQLType._from_python_type(_type) column = attrs.get(_name, Column())._update(obj, _name, _type, is_array) obj._columns[_name] = column return obj def __getattr__(cls, key): if key == '__name__': return f'{cls.__name__.lower()}' if key == '_name': return f'{cls.schema}.{cls.__name__.lower()}' if key in cls._columns: return cls._columns[key] raise AttributeError(f'\'{cls.__name__}\' has no attribute \'{key}\'') class Fetchable(Creatable, metaclass=ObjectMeta): @classmethod def _validate_kwargs(cls, primary_keys_only=False, **kwargs) -> List[Tuple[str, Any]]: """Validates passed kwargs against table""" verified = list() for kwarg, value in kwargs.items(): # Strip Extra operators if kwarg.startswith('or_'): kwarg = kwarg[3:] if kwarg[-4:-2] == '__': kwarg = kwarg[:-4] # Check column is in Object if kwarg not in cls._columns: raise AttributeError( f'Could not find column with name {kwarg} in table {cls._name}') column = cls._columns[kwarg] # Skip non primary when relevant if primary_keys_only and not column.primary_key: continue # Check passing null into a non nullable column if not column.nullable and value is None: raise TypeError( f'Cannot pass None into non-nullable column {column.name}') def check_type(element): return isinstance(element, (column.type.python, type(None))) # If column is an array if column.is_array: def check_array(element): # If not at the deepest level check elements in array if isinstance(element, (List, Tuple)): for item in element: check_array(item) # Otherwise check the type of the element else: if not check_type(element): raise TypeError( f'Column {column.name}; expected {column.type.__name__ }[], received {type(element).__name__}[]') # Check array depth is expected. check_array(value) # Otherwise check type of element elif not check_type(value): raise TypeError( f'Column {column.name}; expected {column.type.__name__}, received {type(value).__name__}') verified.append((column.name, value)) return verified @classmethod def _query_fetch(cls, order_by: Optional[str], limit: Optional[int], **kwargs) -> Tuple[str, Iterable]: """Generates a SELECT FROM stub""" verified = cls._validate_kwargs(**kwargs) # AND / OR statement check statements = ['AND ' for _ in verified] # =, <, >, != check operators = ['=' for _ in verified] # Determine operators for i, (_key, (key, _)) in enumerate(zip(kwargs, verified)): # First statement has no boolean operator if i == 0: statements[i] = '' elif _key[:3] == 'or_': statements[i] = 'OR ' if _key[-4:-2] == '__': try: operators[i] = _DEFAULT_OPERATORS[_key[-2:]] except KeyError: raise AttributeError(f'Unknown operator type {_key[-2:]}') builder = [f'SELECT * FROM {cls._name}'] # Set the WHERE clause if verified: builder.append('WHERE') checks = [] for i, (key, _) in enumerate(verified): checks.append(f'{statements[i]}{key} {operators[i]} ${i+1}') builder.append(' '.join(checks)) if order_by is not None: builder.append(f'ORDER BY {order_by}') if limit is not None: builder.append(f'LIMIT {limit}') return (" ".join(builder), (value for (_, value) in verified)) @classmethod def _query_fetch_where(cls, query: str, order_by: Optional[str], limit: Optional[int]) -> str: """Generates a SELECT FROM stub""" builder = [f'SELECT * FROM {cls._name} WHERE'] builder.append(query) if order_by is not None: builder.append(f'ORDER BY {order_by}') if limit is not None: builder.append(f'LIMIT {limit}') return " ".join(builder) @classmethod async def fetch(cls, *, connection: Optional[Connection] = None, order_by: Optional[str] = None, limit: Optional[int] = None, **kwargs) -> List[Record]: """Fetches a list of records from the database. Args: connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool. order_by (str, optional): Sets the `ORDER BY` constraint. limit (int, optional): Sets the maximum number of records to fetch. **kwargs (any): Database :class:`Column` values to search for Returns: list(Record): A list of database records. """ query, values = cls._query_fetch(order_by, limit, **kwargs) async with MaybeAcquire(connection) as connection: return await connection.fetch(query, *values) @classmethod async def fetchall(cls, *, connection: Optional[Connection] = None, order_by: Optional[str] = None, limit: Optional[int] = None) -> List[Record]: """Fetches a list of all records from the database. Args: connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool order_by (str, optional): Sets the `ORDER BY` constraint limit (int, optional): Sets the maximum number of records to fetch Returns: list(Record): A list of database records. """ query, values = cls._query_fetch(order_by, limit) async with MaybeAcquire(connection) as connection: return await connection.fetch(query, *values) @classmethod async def fetchrow(cls, *, connection: Optional[Connection] = None, order_by: Optional[str] = None, **kwargs) -> Optional[Record]: """Fetches a record from the database. Args: connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool. order_by (str, optional): Sets the `ORDER BY` constraint. **kwargs (any): Database :class:`Column` values to search for Returns: Record: A record from the database. """ query, values = cls._query_fetch(order_by, 1, **kwargs) async with MaybeAcquire(connection) as connection: return await connection.fetchrow(query, *values) @classmethod async def fetch_where(cls, where: str, *values, connection: Optional[Connection] = None, order_by: Optional[str] = None, limit: Optional[int] = None) -> List[Record]: """Fetches a list of records from the database. Args: where (str): An SQL Query to pass values (tuple, optional): A tuple containing accompanying values. connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool. order_by (str, optional): Sets the `ORDER BY` constraint. limit (int, optional): Sets the maximum number of records to fetch. Returns: list(Record): A list of database records. """ query = cls._query_fetch_where(where, order_by, limit) async with MaybeAcquire(connection) as connection: return await connection.fetch(query, *values) @classmethod async def fetchrow_where(cls, where: str, *values, connection: Optional[Connection] = None, order_by: Optional[str] = None) -> List[Record]: """Fetches a record from the database. Args: where (str): An SQL Query to pass values (tuple, optional): A tuple containing accompanying values. connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool. order_by (str, optional): Sets the `ORDER BY` constraint. Returns: Record: A record from the database. """ query = cls._query_fetch_where(where, order_by, 1) async with MaybeAcquire(connection) as connection: return await connection.fetchrow(query, *values) class Insertable(Fetchable, metaclass=ObjectMeta): @classmethod def _query_insert(cls, returning: Optional[Union[str, Iterable[Column]]], **kwargs) -> Tuple[str, Iterable]: """Generates the INSERT INTO stub.""" verified = cls._validate_kwargs(**kwargs) builder = [f'INSERT INTO {cls._name}'] builder.append(f'({", ".join(key for (key, _) in verified)})') builder.append('VALUES') values = [] for i, _ in enumerate(verified, 1): values.append(f'${i}') builder.append(f'({", ".join(values)})') if returning: builder.append('RETURNING') if returning == '*': builder.append('*') else: # Convert to tuple if object is not iter if not isinstance(returning, Iterable): returning = (returning,) returning_builder = [] for value in returning: if not isinstance(value, Column): raise TypeError( f'Expected a volume for the returning value received {type(value).__name__}') returning_builder.append(value.name) builder.append(', '.join(returning_builder)) return (" ".join(builder), (value for (_, value) in verified)) @classmethod def _query_insert_many(cls, columns) -> str: """Generates the INSERT INTO stub.""" builder = [f'INSERT INTO {cls._name}'] builder.append(f'({", ".join(column.name for column in columns)})') builder.append('VALUES') builder.append( f'({", ".join(f"${n+1}" for n in range(len(columns)))})') return " ".join(builder) @classmethod def _query_update_record(cls, record, **kwargs) -> Tuple[str, List[Any]]: '''Generates the UPDATE stub''' verified = cls._validate_kwargs(**kwargs) builder = [f'UPDATE {cls._name} SET'] # Set the values sets = [] for i, (key, _) in enumerate(verified, 1): sets.append(f'{key} = ${i}') builder.append(', '.join(sets)) # Set the QUERY record_keys = cls._validate_kwargs(primary_keys_only=True, **record) builder.append('WHERE') checks = [] for i, (key, _) in enumerate(record_keys, i + 1): checks.append(f'{key} = ${i}') builder.append(' AND '.join(checks)) return (" ".join(builder), list((value for (_, value) in verified)) + list((value for (_, value) in record_keys))) @classmethod def _query_update_where(cls, query, values, **kwargs) -> Tuple[str, List[Any]]: '''Generates the UPDATE stub''' verified = cls._validate_kwargs(**kwargs) builder = [f'UPDATE {cls._name} SET'] # Set the values sets = [] for i, (key, _) in enumerate(verified, len(values) + 1): sets.append(f'{key} = ${i}') builder.append(', '.join(sets)) # Set the QUERY builder.append('WHERE') builder.append(query) return (" ".join(builder), values + tuple(value for (_, value) in verified)) @classmethod def _query_delete(cls, **kwargs) -> Tuple[str, List[Any]]: '''Generates the DELETE stub''' verified = cls._validate_kwargs(**kwargs) # AND / OR statement check statements = ['AND ' for _ in verified] # =, <, >, != check operators = ['=' for _ in verified] # Determine operators for i, (_key, (key, _)) in enumerate(zip(kwargs, verified)): # First statement has no boolean operator if i == 0: statements[i] = '' elif _key[:3] == 'or_': statements[i] = 'OR ' if _key[-4:-2] == '__': try: operators[i] = _DEFAULT_OPERATORS[_key[-2:]] except KeyError: raise AttributeError(f'Unknown operator type {_key[-2:]}') builder = [f'DELETE FROM {cls._name}'] # Set the WHERE clause if verified: builder.append('WHERE') checks = [] for i, (key, _) in enumerate(verified): checks.append(f'{statements[i]}{key} {operators[i]} ${i+1}') builder.append(' '.join(checks)) return (" ".join(builder), list(value for (_, value) in verified)) @classmethod def _query_delete_record(cls, record) -> Tuple[str, List[Any]]: '''Generates the DELETE stub''' builder = [f'DELETE FROM {cls._name}'] # Set the QUERY record_keys = cls._validate_kwargs(primary_keys_only=True, **record) builder.append('WHERE') checks = [] for i, (key, _) in enumerate(record_keys, 1): checks.append(f'{key} = ${i}') builder.append(' AND '.join(checks)) return (" ".join(builder), list(value for (_, value) in record_keys)) @classmethod def _query_delete_where(cls, query) -> str: '''Generates the UPDATE stub''' builder = [f'DELETE FROM {cls._name}'] # Set the QUERY builder.append('WHERE') builder.append(query) return " ".join(builder) @classmethod async def insert(cls, *, connection: Connection = None, returning: Iterable[Column] = None, **kwargs) -> Optional[Record]: """Inserts a new record into the database. Args: connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool. returning (list(Column), optional): A list of columns from this record to return **kwargs (any): The records column values. Returns: (Record, optional): The record inserted into the database """ query, values = cls._query_insert(returning, **kwargs) async with MaybeAcquire(connection) as connection: if returning: return await connection.fetchrow(query, *values) await connection.execute(query, *values) return None @classmethod async def insert_many(cls, columns: Iterable[Column], *values: Iterable[Iterable[Any]], connection: Connection = None): """Inserts multiple records into the database. Args: columns (list(Column)): The list of columns to insert based on. values (list(list)): The list of values to insert into the database. connection (asyncpg.Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool. """ query = cls._query_insert_many(columns) async with MaybeAcquire(connection) as connection: await connection.executemany(query, values) @classmethod async def update_record(cls, record: Record, *, connection: Connection = None, **kwargs): """Updates a record in the database. Args: record (Record): The database record to update connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool **kwargs: Values to update """ query, values = cls._query_update_record(record, **kwargs) async with MaybeAcquire(connection) as connection: await connection.execute(query, *values) @classmethod async def update_where(cls, where: str, *values: Any, connection: Connection = None, **kwargs): """Updates any record in the database which satisfies the query. Args: where (str): An SQL Query to pass values (tuple, optional): A tuple containing accompanying values. connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool **kwargs: Values to update """ query, values = cls._query_update_where(where, values, **kwargs) # type: ignore async with MaybeAcquire(connection) as connection: await connection.execute(query, *values) @classmethod async def delete(cls, *, connection: Connection = None, **kwargs): """Deletes any records in the database which satisfy the supplied kwargs. Args: connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool. **kwargs (any): Database :class:`Column` values to filter by when deleting. """ query, values = cls._query_delete(**kwargs) async with MaybeAcquire(connection) as connection: await connection.execute(query, *values) @classmethod async def delete_record(cls, record: Record, *, connection: Connection = None): """Deletes a record in the database. Args: record (Record): The database record to delete connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool """ query, values = cls._query_delete_record(record) async with MaybeAcquire(connection) as connection: await connection.execute(query, *values) @classmethod async def delete_where(cls, where: str, *values: Optional[Tuple[Any]], connection: Connection = None): """Deletes any record in the database which satisfies the query. Args: where (str): An SQL Query to pass values (tuple, optional): A tuple containing accompanying values. connection (Connection, optional): A database connection to use. If none is supplied a connection will be acquired from the pool """ query = cls._query_delete_where(where) async with MaybeAcquire(connection) as connection: await connection.execute(query, *values)
31b76da73e6a927630716e4ec2e7a7705a409be4
6eda9bbe242a461eaaf8da5b320eddab46bfcf82
/tools/jiandan_img_crawler.py
3df53e5bdd29a71376f03019a49cd35a74153012
[]
no_license
BriceChou/TensorflowEx
f7dd4b3e6df39546ba6f02eaf55670cd777063d4
87b658c62691e13aaeea3e790ac3193eabdcf489
refs/heads/master
2020-03-24T10:05:54.157866
2018-11-28T10:56:44
2018-11-28T10:56:44
142,647,141
0
0
null
null
null
null
UTF-8
Python
false
false
1,861
py
# -*- coding: utf-8 -*- # author @redpig315 import requests from bs4 import BeautifulSoup import re import base64 from urllib.parse import urlparse import os #url="http://jandan.net/ooxx/page-36#comments" url="http://jandan.net/ooxx" def _base64_decode(data): return base64.b64decode(data) def saveimage(url): image=requests.get(url) path=urlparse(url).path filenames=re.split('/',path) if os.path.exists("D:/src/xxoo") == False: os.mkdir("D:/src/xxoo") f = open("D:/src/xxoo/"+filenames[2], 'wb') f.write(image.content) f.flush() f.close() def get_urls(url): headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0', 'Host': 'jandan.net' } html = requests.get(url, headers=headers).text #print(html) soup=BeautifulSoup(html,'html.parser') xxoos=soup.find_all('span',{'class':'img-hash'}) #page=soup.find_all('span',{'class':'current-comment-page'}) #curpage=page[1].text #curnum=curpage[1:3] #print("curpage is -------"+curnum) for xxoo in xxoos: #print(xxoo.string) print("img url:http:"+str(_base64_decode(xxoo.string),'utf-8')) imgurl="http:"+str(_base64_decode(xxoo.string),'utf-8'); saveimage(imgurl) def get_page(url): headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0', 'Host': 'jandan.net' } html = requests.get(url, headers=headers).text soup=BeautifulSoup(html,'html.parser') pages=soup.find_all('span',{'class':'current-comment-page'}) # for page in(pages): # print(page.text) page=pages[1].text return page[1:3] num=int(get_page(url)) #print(num) num1=num-1 num2=num-2 #get page one get_urls(url) #get page two urlone=url+"/page-"+str(num1)+"#comments" get_urls(urlone) #get page three urltwo=url+"/page-"+str(num2)+"#comments" get_urls(urltwo)
1d35d836dd2e23513bc5bc3372b3f49c9a8a94d4
d97d55e2e6437bf24e53d22e08c0178779e71b05
/venv/bin/pip
cc7671217b4d72ab1e52b442af7d7db54170dc88
[]
no_license
yhaim21/SampleApp
3042d58c6ce29e9d7f49a2ba98ce9c369bffac45
7573e3bf4daa287a8a34ac03c2f295a69197831f
refs/heads/master
2023-04-05T04:17:25.134586
2021-04-12T15:01:21
2021-04-12T15:01:21
348,729,245
0
0
null
2021-04-11T17:30:37
2021-03-17T13:57:07
Python
UTF-8
Python
false
false
256
#!/Users/yoavhaim/PycharmProjects/Try/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
b587aded56efa552452087bc2ee9ebcc21b71490
38c3dd02aa8176724e2854f2dc382a1226c2336b
/Python/module/module1.py
cc0c46344ab92f31274aabf64e303b8e704f2e9a
[]
no_license
rjh211/EncoreStudy
6d46cae9130cbc8e194095ed845b3cb8cd30e118
ae2abf69df7fac5b259f032e79b26018a32cd5a7
refs/heads/master
2022-12-17T13:37:03.498567
2020-09-24T02:25:08
2020-09-24T02:25:08
287,887,493
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
num = 10 msg = 'hello' def cnt(x): for i in range(1,x+1): print(i, end=',') print() def makeList(): print("숫자 5개 입력") return [int(input()) for i in range(0,5)] def sumList(lst): return sum(lst)
2dc37446c02b5ae3c76b9184b021ed6aa58ad607
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/303/usersdata/284/89249/submittedfiles/minha_bib.py
a4e49fe59fc73927471089959c4911c71b460a5f
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
165
py
a# -*- coding: utf-8 -*- #COMECE AQUI ABAIXO def divisor(x): for n in range(1,x,1): if (i%n==0): n=z
5d9adf11ba61d1788e85e2a90d9ac9bd66148012
9db04711e1f79f0957c454d65b70f7564d662c92
/abstrys/sphinx_ext/markdown_builder.py
6be56cbda72b1caed06def8150bc84b2b3c28765
[ "BSD-3-Clause" ]
permissive
acsr/rst2db
2d738bd8a9c4cc1ce88bfbf2c9a5bb9bf108156f
7bd341aa5f6867d87cab805c42bb5835913c1ee5
refs/heads/master
2020-04-06T13:30:40.280624
2016-11-16T05:41:15
2016-11-16T05:41:15
157,502,835
0
0
null
2018-11-14T06:37:39
2018-11-14T06:37:39
null
UTF-8
Python
false
false
806
py
# -*- coding: utf-8 -*- # # abstrys.sphinx_ext.markdown_builder # ----------------------------------- # # A Markdown builder for Sphinx, using rst2db's markdown writer. # # by Eron Hennessey from abstrys.docutils_ext.markdown_writer import MarkdownWriter, MarkdownTranslator from docutils.core import publish_from_doctree from sphinx.builders.text import TextBuilder import os, sys class MarkdownBuilder(TextBuilder): """Build Markdown documents from a Sphinx doctree""" name = 'markdown' format = 'markdown' def __init__(self, app): TextBuilder.__init__(self, app) self.out_suffix = '.md' def prepare_writing(self, docnames): self.writer = MarkdownWriter() def setup(app): global sphinx_app sphinx_app = app app.add_builder(MarkdownBuilder)
24602774257285f8b07411e318e6d8d028b70164
fbe3a52d2dd02bec18f7f52b31e357aed192a308
/fibonacci/fibonacci.py
995a3f094f3311892ac15ecc3dd68895914058df
[]
no_license
lherrada/python
8fc5bd5ceb6038479fa6347dd6c0bd6e17f92e98
d8260f35ba91b89590ef8e489188fb80ca1aed4e
refs/heads/master
2022-10-29T06:23:17.297554
2022-09-24T15:45:59
2022-09-24T15:45:59
23,411,904
0
0
null
null
null
null
UTF-8
Python
false
false
1,080
py
#!/usr/bin/python """ Fibonacci numbers: F(n)=F(n-1) + F(n-2) with F(0)=0 and F(1)=1 This script measures execution time for different implementation of Fibonacci series """ #Iterative solution def fib0(n): if n == 0: return 0 elif n == 1: return 1 else: F=[] F[0:2]=0,1 for i in range(2,n+1): f=F[i-1]+F[i-2] F.append(f) return f def fib1(n): a,b=0,1 for i in range(n): a,b=b,a+b return a #Recursive Solution def fib2(n): if n == 0 : return 0 elif n == 1: return 1 else: return fib2(n-1)+ fib2(n-2) fibohash={} fibohash={0:0,1:1} def fib3(n): if not n in fibohash: fibohash[n]=fib3(n-1) + fib3(n-2) return fibohash[n] if __name__ == '__main__': import timeit for i in range(1,50): s="fib0("+str(i)+")" time1=timeit.timeit(s,setup="from __main__ import fib0") s="fib1("+str(i)+")" time2=timeit.timeit(s,setup="from __main__ import fib1") s="fib3("+str(i)+")" time3=timeit.timeit(s,setup="from __main__ import fib3") print "n=%d,\tfib0: %7.6f\tfib1: %7.6f\tfib3: %7.6f\n" % (i,time1,time2,time3),
fdc73516cb8953e628c2d2d68b8d1de962530865
e49c427bf83085bfdef6382addae1f9f6b976bda
/semisupervised/codes/run_dataformat7.py
5e206df407ec67da430aedaee31f35b897e37d4b
[]
no_license
SihongHo/GMNN
955c6815ecaa7a9ecf80c70780da1bf9551fb9bd
30549161625a36b3e4c27bbf2f3c9d1aa4765b95
refs/heads/main
2023-04-16T23:54:42.606867
2021-04-29T06:43:55
2021-04-29T06:43:55
357,055,327
1
1
null
null
null
null
UTF-8
Python
false
false
1,165
py
''' Author: your name Date: 2021-04-09 21:57:45 LastEditTime: 2021-04-28 21:52:55 LastEditors: Please set LastEditors Description: In User Settings Edit ''' import sys import os import copy import json import datetime opt = dict() opt['dataset'] = '../data/data_format7' opt['hidden_dim'] = 16 opt['input_dropout'] = 0.5 opt['dropout'] = 0 opt['optimizer'] = 'rmsprop' opt['lr'] = 0.05 opt['decay'] = 5e-4 opt['self_link_weight'] = 1.0 opt['pre_epoch'] = 100 opt['epoch'] = 100 opt['iter'] = 1 opt['use_gold'] = 1 opt['draw'] = 'smp' opt['tau'] = 0.1 def generate_command(opt): cmd = 'python3 train.py' for opt, val in opt.items(): cmd += ' --' + opt + ' ' + str(val) return cmd def run(opt): opt_ = copy.deepcopy(opt) os.system(generate_command(opt_)) from datetime import datetime start = datetime.now() start_time = start.strftime("%H:%M:%S") print("Start Time =", start_time) for k in range(100): seed = k + 100 # e3_2 + 100 opt['seed'] = seed run(opt) end = datetime.now() end_time = end.strftime("%H:%M:%S") print("End Time =", end_time) # t = end - start # print("Comsuming Time =", t.strftime("%H:%M:%S"))
7cf01f49dfc23d45d2d65cce50510aa6db352d77
925e088a2f1f2d9b8fcab65bd2c96cf4c4911c13
/examples/rag/callbacks.py
099cf2bbdfac82b0138cda3d6c4465c307ca5f5f
[ "Apache-2.0" ]
permissive
bdalal/transformers
7e2b2920e8848a8606389fbe7346f2f470351734
36a19915ea4fc3dc337a310e4a1af43eb3c81c9a
refs/heads/master
2023-01-19T18:02:18.837672
2020-11-17T15:35:38
2020-11-17T15:35:38
313,672,203
1
0
Apache-2.0
2020-11-17T16:06:51
2020-11-17T16:06:50
null
UTF-8
Python
false
false
4,424
py
import logging import os from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils import save_json def count_trainable_parameters(model): model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) return params logger = logging.getLogger(__name__) def get_checkpoint_callback(output_dir, metric): """Saves the best model by validation EM score.""" if metric == "rouge2": exp = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": exp = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": exp = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this function." ) checkpoint_callback = ModelCheckpoint( filepath=os.path.join(output_dir, exp), monitor=f"val_{metric}", mode="max", save_top_k=3, period=0, # maybe save a checkpoint every time val is run, not just end of epoch. ) return checkpoint_callback def get_early_stopping_callback(metric, patience): return EarlyStopping( monitor=f"val_{metric}", # does this need avg? mode="min" if "loss" in metric else "max", patience=patience, verbose=True, ) class Seq2SeqLoggingCallback(pl.Callback): def on_batch_end(self, trainer, pl_module): lrs = {f"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(lrs) @rank_zero_only def _write_logs( self, trainer: pl.Trainer, pl_module: pl.LightningModule, type_path: str, save_generations=True ) -> None: logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****") metrics = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]}) # Log results od = Path(pl_module.hparams.output_dir) if type_path == "test": results_file = od / "test_results.txt" generations_file = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. results_file = od / f"{type_path}_results/{trainer.global_step:05d}.txt" generations_file = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=True) generations_file.parent.mkdir(exist_ok=True) with open(results_file, "a+") as writer: for key in sorted(metrics): if key in ["log", "progress_bar", "preds"]: continue val = metrics[key] if isinstance(val, torch.Tensor): val = val.item() msg = f"{key}: {val:.6f}\n" writer.write(msg) if not save_generations: return if "preds" in metrics: content = "\n".join(metrics["preds"]) generations_file.open("w+").write(content) @rank_zero_only def on_train_start(self, trainer, pl_module): try: npars = pl_module.model.model.num_parameters() except AttributeError: npars = pl_module.model.num_parameters() n_trainable_pars = count_trainable_parameters(pl_module) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6}) @rank_zero_only def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): save_json(pl_module.metrics, pl_module.metrics_save_path) return self._write_logs(trainer, pl_module, "test") @rank_zero_only def on_validation_end(self, trainer: pl.Trainer, pl_module): save_json(pl_module.metrics, pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
c4c74f7c37ec7989964b84e8325dbb87bc0d6150
df1c58facb4f0bbd0080c9cdbcbd93b580f6de60
/litcity/wsgi.py
fed5ffe1b44e5478663f997b23e16bedf36feecb
[]
no_license
mailbackwards/litcity
21f3f0e3817f09fca3c4900c240f38416f5a6002
777244b5f31e1ec8f7c842a7fb3a52f39f2bee6d
refs/heads/master
2021-01-10T07:48:13.167925
2016-01-11T13:40:58
2016-01-11T13:40:58
49,340,892
2
0
null
null
null
null
UTF-8
Python
false
false
482
py
""" WSGI config for litcity project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application from whitenoise.django import DjangoWhiteNoise os.environ.setdefault("DJANGO_SETTINGS_MODULE", "litcity.settings") application = get_wsgi_application() application = DjangoWhiteNoise(application)
6773fb851e960887e1c84755dab1372849fe0a51
e8f2e7c175082934d00bb4896bd47c63108a094d
/build/lib/bin/modules/usbinfo.py
db7288116d87c5d88072013546aa87c035b41aae
[]
no_license
volneyrock/SlkFormat
d0440b49a169b7c82fd888eba8f216ae75a2c645
d3474ece9341ff6b0b99247b18b5d3bc50bf0707
refs/heads/master
2016-08-04T12:23:45.428711
2015-09-16T16:30:41
2015-09-16T16:30:41
24,955,939
0
0
null
null
null
null
UTF-8
Python
false
false
1,495
py
#!/usr/bin/env python # # Copyright (C) 2014 Joel W. Dafoe # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os from string import ascii_uppercase, ascii_lowercase class USBdrv: def __init__(self): self.mounted_drvs = self.find_drives() def find_drives(self): mounts = [] for mount in self.get_drives(): if os.path.exists(mount): mounts.append(mount) return mounts @staticmethod def get_drives(): if os.name == "nt": for letter in list(ascii_uppercase): if letter != 'C': yield letter+':' if os.name == "posix": for device in list(ascii_lowercase): if device != 'a': yield '/dev/sd'+device+'1' if __name__ == '__main__': print(USBdrv().mounted_drvs)
e2ca2a97f00dc821223253c3166a745d83176193
9ca48d32e4020f2bcdb94f06d19c0b7e7e72b327
/main.py
baaa2ff72711a27458828962ade4bddfb24a87fa
[ "MIT" ]
permissive
mdhiebert/curri
9811c251d2f002e13853533e1e206c0c27f36d44
24583c53ff71285b5bfb39332d286b9e58073a91
refs/heads/master
2022-04-10T18:16:31.788495
2020-03-23T16:19:40
2020-03-23T16:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
286
py
from curri.curri import Curri import json import subprocess if __name__ == "__main__": with open('real.json') as f: j = json.load(f) c = Curri(j) with open('output.tex', 'w') as f: f.write(c.latex()) subprocess.call('pdflatex output.tex', shell=True)
b1eee9cdf730bcb24e8f4f06700f11e81bfa261c
c48c4de9d221de538ac2a0e88430e4ad1c8a060c
/Python/Server_Client/grap_with_tcp.py
320a131e6b6ae7a188b076649369b992c66d300a
[]
no_license
AlexBracamonte/Cris_Review
f95cc90f9fee819f1b4ea3c559723574e3820e91
d7cdd3859a1e61ee212ccf975b2ec36678ff6adf
refs/heads/main
2023-08-14T06:07:29.649469
2021-09-07T17:01:43
2021-09-07T17:01:43
404,043,692
0
0
null
null
null
null
UTF-8
Python
false
false
2,096
py
import sys import time from PyQt5 import QtWidgets, uic import threading from Server_grap import Servidor from entrada import Ui_MainWindow class ChatWindow(QtWidgets.QMainWindow, Ui_MainWindow): def __init__(self, *args, obj=None, **kwargs): super(ChatWindow, self).__init__(*args, **kwargs) self.ui = Ui_MainWindow() self.ui.setupUi(self) self.ui.button_send.clicked.connect(self.on_clicked_login) self.tcp = Servidor(host='127.0.0.1', port=40001) self.__init_deamons() def __init_deamons(self): procesar = threading.Thread(target=self.tcp.run) procesar.daemon = True procesar.start() mostrar = threading.Thread(target=self.tcp2window) mostrar.daemon = True mostrar.start() def tcp2window(self): while True: try: msg = self.tcp.recv_msg() mensaje = msg.decode('utf-8') self.receiver_msg(mensaje) except: pass def write_text(self, msg: str): self.ui.text_revc.insertPlainText(msg) def on_clicked_login(self): text = self.ui.text_send.toPlainText() self.tcp.msg_to_all(text) localtime = time.asctime(time.localtime(time.time())) self.write_text(msg=f"{localtime} >> {text}\n") print(f"{localtime} >> {text}") self.ui.text_send.clear() def receiver_msg(self, msg: str): localtime = time.asctime(time.localtime(time.time())) self.write_text(msg=f"\t{localtime} << {msg}\n") def keyPressEvent(self, event): from PyQt5.QtCore import Qt if event.key() == Qt.Key_Escape: self.close() if __name__ == "__main__": try: app = QtWidgets.QApplication(sys.argv) window = ChatWindow() window.show() app.exec() sys.exit(0) except NameError: print("Name Error:", sys.exc_info()[1]) except SystemExit: window.tcp.exit() print("Closing Window...") except Exception: print(sys.exc_info()[1])
5cc63a29d17c2837080ef1c890b9707b076f2fb3
424213d62d7e88a907bfc30b52cef61f6d4b95b7
/092 - Square digit chains/092.py
cb8be68584cd6592fdfcb4b798ef1779f1cb6661
[]
no_license
David-Jackson/project-euler-solutions
ae1b3e88987c4e428be046cb6d9562995e0e0298
5ba9d9914f6d170110c4f9b533357c167b9f986d
refs/heads/master
2021-01-19T10:43:04.444228
2017-03-15T18:29:51
2017-03-15T18:29:51
82,206,092
0
0
null
null
null
null
UTF-8
Python
false
false
413
py
def sq_digit_sum(n): sum = 0 while n > 0: r = (n % 10) sum += (r * r) n /= 10 return sum def sq_digit_chain(n): while n != 1 and n != 89: n = sq_digit_sum(n) # yield n return n count = 0 i = 1 while i < 10000000: if sq_digit_chain(i) == 89: count += 1 i += 1 print "{0} - {1}\r".format(i, count), print print "Answer:", count
ef402514ffa3750c3a5f4891c30b7bae071489cb
794fb34490ad5d7e1fa596f05eeffca397b1e70a
/0x16-api_advanced/2-recurse.py
e8602ca3d3ca3416bd45a699cf7c79a3e93d4c70
[]
no_license
Fermec28/holberton-system_engineering-devops
f31b5bfc9477c530e7f5dea9e8ac054ab90965b2
84038ff0a859d8a0bd899f69da96e1e0f81f8a0d
refs/heads/master
2020-04-19T12:18:15.661872
2019-10-11T01:33:56
2019-10-11T01:33:56
168,188,483
0
2
null
null
null
null
UTF-8
Python
false
false
903
py
#!/usr/bin/python3 import requests """count number of subscribers""" def recurse(subreddit, hot_list=[], after=None): """Get number of subscribers""" url = "https://www.reddit.com/r/{}/hot.json".format(subreddit) headers = {'User-Agent': 'Fermec28'} payload = {"after": after} try: result = requests.get(url, headers=headers, params=payload, allow_redirects=False).json() except: return(None) if ("data" in result and "children" in result.get("data")): for post in result.get("data").get("children"): hot_list.append(post.get("data").get("title")) if "after" in result.get("data") and result.get("data").get("after"): return recurse(subreddit, hot_list, result.get("data").get("after")) else: return hot_list else: return(None)
59adda2a15017da21a6c2c57b5d17b7f569cd18b
b8a2ca045e25e6047e08ac599d6eb5bfda97cfe3
/victimas/apps/beneficiario/migrations/0012_auto_20161120_1808.py
208e47b2ebedd46c9a95fd0effa57e93c18b5c31
[]
no_license
jhon-palma/vicitimas
4c0d35766b1dd1a5700c46d1a54f2c6787638af9
fce8d176c72108f86860217c9dead7274fccb113
refs/heads/master
2020-05-31T15:50:36.542537
2017-06-30T03:40:23
2017-06-30T03:40:23
94,037,527
0
0
null
null
null
null
UTF-8
Python
false
false
715
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2016-11-20 18:08 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('beneficiario', '0011_auto_20161120_1554'), ] operations = [ migrations.RenameField( model_name='niveleducativo', old_name='hecho', new_name='nivel', ), migrations.AlterField( model_name='beneficiario_grupohogar', name='grupoHogar', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='beneficiario.GrupoHogar'), ), ]
[ "palma@Master" ]
palma@Master
282409aca8ba67536ce6dde50f596e1447c28e90
2cf9f165cb4d6e8e9009d74b43020fe2d5c1964f
/chat/urls.py
1d7d025d1f3df8c9aba0845cbb91749fc398eb6d
[]
no_license
jimy1824/chat
29f5039c6284083b8328502932795bee586dec14
627ad4678c6215d37322737b38b3e5eb6d69696f
refs/heads/master
2023-04-27T15:10:51.316824
2019-11-08T05:00:12
2019-11-08T05:00:12
220,081,959
1
0
null
2023-04-21T20:40:47
2019-11-06T20:17:20
HTML
UTF-8
Python
false
false
224
py
from django.urls import path from chat import views urlpatterns = [ path('chat/', views.ChatHome.as_view(), name='chat_home'), path('chat_box/<int:selected_user_id>', views.ChatInbox.as_view(), name='chat_inbox'), ]
70d7fb1e3790e61c41f4c36047fb59ae40639efe
b70126739f50af4d598f4ca59806cdf34e7d06dd
/product/migrations/0055_product_offer_of_min.py
aaa570239554f5e0e34a127291ab8b2c37edf8cd
[]
no_license
sharingsimplethoughts/onlineshopping
aa1b52828819d9ab21b0405463efa9995210ec0d
c48a32dd762dd2eef81935e1645b4304d9587cc7
refs/heads/master
2022-11-10T09:16:21.341703
2020-07-01T07:29:10
2020-07-01T07:29:10
276,291,630
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
# Generated by Django 2.1.5 on 2019-05-01 13:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('product', '0054_product_min_price'), ] operations = [ migrations.AddField( model_name='product', name='offer_of_min', field=models.CharField(blank=True, max_length=5, null=True), ), ]
7eea7466a192f13e09aa8a8e771d0ab3d1619d30
3202f0a51374541fe570835d6ac5c7222a31f97c
/www/content/views.py
ed93d32561b22755dbcb6de04f25500aeda305b4
[]
no_license
zsoobhan/fva
435fa988210cc6e547b83485b75dddfb562584ef
e9a65d50e0608ebadff9451787f2028b01e52013
refs/heads/master
2021-01-10T01:51:53.487459
2019-05-18T23:07:48
2019-05-18T23:07:48
46,052,752
0
0
null
2018-08-02T15:44:21
2015-11-12T12:54:27
Python
UTF-8
Python
false
false
1,125
py
from django.views import generic from django.contrib import messages from django.utils.translation import ugettext as _ from django.core.urlresolvers import reverse_lazy from . import forms class ContactFormView(generic.FormView): form_class = forms.ContactForm template_name = 'content/contact.html' success_url = reverse_lazy('home') success_message = _("Your message has been sent and I will be in " "touch shortly.") def form_valid(self, form): form.save() messages.success(self.request, self.success_message) return super(ContactFormView, self).form_valid(form) def get_form_kwargs(self): # Adds answer from session to the form kwargs for human verification kwargs = super(ContactFormView, self).get_form_kwargs() kwargs['answer'] = self.request.session['q_and_a']['answer'] kwargs['request_meta'] = self.request.META return kwargs class HomeView(generic.TemplateView): template_name = 'content/home.html' class BiographyView(generic.TemplateView): template_name = 'content/biography.html'
c602149831a9530d2932450549686b4d7807094e
858e97af89958e27e4f3686b023e8b9cd53dc14d
/utils/cv_utils.py
0b7b867be91a64bb4f430b6c212f31d249fd09fd
[ "MIT" ]
permissive
XLEric/ganimation
f507c92e3b2bc067238b4016d62da3da5090a2d9
024fdc0adbeae582a139635a5141b2737969bc48
refs/heads/master
2022-12-25T04:56:15.143476
2020-09-28T17:55:26
2020-09-28T17:55:26
299,255,812
0
0
null
null
null
null
UTF-8
Python
false
false
1,326
py
import cv2 from matplotlib import pyplot as plt import numpy as np def read_cv2_img(path): ''' Read color images :param path: Path to image :return: Only returns color images ''' img = cv2.imread(path, -1) # print(path) # print('img shape : ',img.shape) if img is not None: if len(img.shape) != 3: return None img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def show_cv2_img(img, title='img'): ''' Display cv2 image :param img: cv::mat :param title: title :return: None ''' plt.imshow(img) plt.title(title) plt.axis('off') plt.show() def show_images_row(imgs, titles, rows=1): ''' Display grid of cv2 images image :param img: list [cv::mat] :param title: titles :return: None ''' assert ((titles is None) or (len(imgs) == len(titles))) num_images = len(imgs) if titles is None: titles = ['Image (%d)' % i for i in range(1, num_images + 1)] fig = plt.figure() for n, (image, title) in enumerate(zip(imgs, titles)): ax = fig.add_subplot(rows, np.ceil(num_images / float(rows)), n + 1) if image.ndim == 2: plt.gray() plt.imshow(image) ax.set_title(title) plt.axis('off') plt.show()
5bf9c75838aa2939c12ca5bb9d42717ba989e2f3
691e48e96cb4d676701f9f62bfb5af936d6d9cd6
/Archive_2020/M7/turtleData.py
03c5468877b5c04e6917f2763132d72735fdf8cc
[]
no_license
mapossum/spa
50d263ff1986dd73692e3d0866c2299ace180e59
90da0167aa6cbea067c88d30aea26440b366e6b3
refs/heads/master
2022-05-19T08:20:53.293065
2022-04-13T20:35:11
2022-04-13T20:35:11
29,207,514
0
4
null
null
null
null
UTF-8
Python
false
false
576
py
import numpy as np import urllib.request as rq import json turtleID = 1 url = 'http://geo.conserveturtles.org/Tracking/GetTurtleLocationsByIdAsJson?id={}'.format(turtleID) f = rq.urlopen(url) turtledata = json.load(f) #First Turtle Location print(turtledata[0]) import arcpy arcpy.env.overwriteOutput = True out_path = r"G:\courses\spa\Archive_2020\M7" out_name = "TutleTracks.shp" fc = r"{}/{}".format(out_path,out_name) spatial_reference = arcpy.SpatialReference(4326) arcpy.CreateFeatureclass_management(out_path, out_name, "Polyline", "", "", "", spatial_reference)
343750c5461b0e9012d0135e09db96bc94d10167
8d489c686385bfcf507ac139f57d60a180e26ba3
/eland/tests/series/test_sample_pytest.py
8de43e382d26d3668a7faf679fe10a9eb4202d24
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
hyperparam-shafin/eland
d070b426e1e83667cf18aec8bfd2b2996511b7e9
abc5ca927b10744de07f48865fb842f78b167aea
refs/heads/master
2022-12-30T17:00:56.523262
2020-10-15T15:52:48
2020-10-15T15:52:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,554
py
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # File called _pytest for PyCharm compatibility import eland as ed from eland.tests import ES_TEST_CLIENT from eland.tests import FLIGHTS_INDEX_NAME from eland.tests.common import TestData from eland.tests.common import assert_pandas_eland_series_equal class TestSeriesSample(TestData): SEED = 42 def build_from_index(self, ed_series): ed2pd_series = ed_series.to_pandas() return self.pd_flights()["Carrier"].iloc[ed2pd_series.index] def test_sample(self): ed_s = ed.Series(ES_TEST_CLIENT, FLIGHTS_INDEX_NAME, "Carrier") pd_s = self.build_from_index(ed_s.sample(n=10, random_state=self.SEED)) ed_s_sample = ed_s.sample(n=10, random_state=self.SEED) assert_pandas_eland_series_equal(pd_s, ed_s_sample)
cd3d91e4e7ec6e2ecde520d78cc895f4c5b05916
f8f12e4005b33ae72440d580b5ac6047b7336222
/accounts/views.py
f24219bb1356380a63a6a7ee72ecdfa26ff874cc
[]
no_license
memadd/BT-Real-Estate
64f3cb61cac34240d59db409fac2afa624a473b0
56ba30159b1a7243fe66bd7b06b1c6d4c8cff3f7
refs/heads/master
2023-01-01T23:36:20.909328
2020-10-26T19:10:35
2020-10-26T19:10:35
291,974,531
0
0
null
null
null
null
UTF-8
Python
false
false
2,782
py
from django.shortcuts import render, redirect from django.contrib import messages, auth from django.contrib.auth.models import User from contacts.models import Contact def register(request): if request.method == 'POST': # Get form values first_name = request.POST['first_name'] last_name = request.POST['last_name'] username = request.POST['username'] email = request.POST['email'] password = request.POST['password'] password2 = request.POST['password2'] # Check if passwords match if password == password2: # Check username if User.objects.filter(username=username).exists(): messages.error(request, 'That username is taken') return redirect('register') else: # Check email if User.objects.filter(email=email).exists(): messages.error(request, 'That email is being used') return redirect('register') else: # Looks good user = User.objects.create_user(username=username, password=password, email=email, first_name=first_name, last_name=last_name) # Login after register # auth.login(request, user) # messages.success(request, 'You are now logged in') # return redirect('index') user.save() messages.success(request, 'You are now register and can log in') return redirect('login') else: messages.error(request, 'Passwords do not match') return redirect('register') else: return render(request, 'accounts/register.html') def login(request): if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = auth.authenticate(username=username, password= password) if user is not None: auth.login(request, user) messages.success(request, 'You are now logged in') return redirect('dashboard') else: messages.error(request, 'Invalid credentials') return redirect('login') else: return render(request, 'accounts/login.html') def logout(request): if request.method == 'POST': auth.logout(request) messages.success(request, 'You are now logged out') return redirect('index') def dashboard(request): user_contacts = Contact.objects.order_by('-contact_date').filter(user_id=request.user.id) context = { 'contacts':user_contacts, } return render(request, 'accounts/dashboard.html', context)
0908d0a0d998c84abfd9765e3f32b145b93c4dcc
dd826364c4140a4357a74d5e6692959cd6a7c1da
/radial_entropy.py
c4cae7495c1b019769205497aad80cc6123cac8d
[]
no_license
bizhouxuan/streetmaps
175c234913aab496c904c985e35deea8fe6c6b1e
d517365ec70db4e68c41fba301dd2f4eb3a13b90
refs/heads/master
2021-07-09T21:01:41.774505
2020-12-27T16:47:15
2020-12-27T16:47:15
225,814,900
0
0
null
null
null
null
UTF-8
Python
false
false
1,483
py
import sys import math import numpy as np from scipy.stats import entropy import argparse def print_help(): print('Usage: radial_entropy.py FILE') print('Calculate the spatial freguency entropy of a city\'s street network.') print('The FILE argument is the path to the file containing the two-col k distribution date.') print('e.g., 0.12527823 0.012408118') print('where, the first column is the wave vector k in 1/m and the second is the PSD (power spectral density).') def calculate_entropy(k, psd): bin_size = k[1]-k[0] print('Bin size (1/m): ',bin_size) #For radial distribution, may NOT need to subtract the background from the PSDF curve before calculating entropy. orientation_entropy = entropy(psd)+math.log(bin_size) print(orientation_entropy) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("delimiter", help="delimiter separating data in a row") parser.add_argument("skiprows", type=int, help="number of rows to skip") parser.add_argument("filename", help="name of the data file") args = parser.parse_args() if len(sys.argv) == 1: print_help() sys.exit(-1) delimiter = args.delimiter skiprows = args.skiprows filename = args.filename try: k, psd= np.loadtxt(filename, usecols = (0,1), unpack=True, delimiter=delimiter, skiprows=skiprows) calculate_entropy(k, psd) except Exception as e: print(f'Error: {e}.')
cbdf9d00e07cf760b6b58be619945082252fe343
e1ee301e51b62c675f125a970390b1b4196bd59c
/hao_prj_hhl/hao_prj_hhl/settings.py
90588db1999841dc269ec92c66582ae856a98607
[ "MIT" ]
permissive
haohl-keepworking/hao_keep
ee96279dc4ff86b9f5ff7fe0d89bc9fc660ba3d3
cb0186a3378b437a1f9a4cfd066a10870180996b
refs/heads/master
2020-08-08T19:14:33.351872
2019-10-09T12:42:55
2019-10-09T12:42:55
213,897,321
0
0
MIT
2019-10-09T12:42:56
2019-10-09T11:14:32
Python
UTF-8
Python
false
false
3,125
py
""" Django settings for hao_prj_hhl project. Generated by 'django-admin startproject' using Django 1.11.18. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'd2yvzdddii=sythzfysi$(i=41rucqnw1i__95a!4=z#syv1q3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["*"] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', "app" ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'hao_prj_hhl.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'hao_prj_hhl.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
e2c67a4f04dc3ad8ffe2164bf040211a72fc7928
2a9934228f9ee46fea03d415262ef305de937dd9
/Lesson2/Lesson3/cont5.py
5c97f810a812911752726bd502ff0bb1252457f5
[]
no_license
BayanbaevIlyas/Lesson1
d938e1e87f2802a8d3b4a3343bbe88e1c36b943a
24f979da615ce9ebd17daf485cd6c15531bd42cb
refs/heads/master
2021-01-25T14:10:42.067571
2018-04-14T05:24:59
2018-04-14T05:24:59
123,663,168
0
0
null
null
null
null
UTF-8
Python
false
false
85
py
def mySum(a): return a + 4 a =int(input('ведите age')) print(mySum(a))
d952b3d9f13cc2ab9d89bfec0fe06b5678e48bb1
fab3a3f86e5f15f0390d2e6faa5772e387676082
/pythonwebapp/flaskblog/routes.py
48deb921d50e77acf12b3152bfea64134947ba18
[]
no_license
HeinnerAmaro/bookstore
e7d7b949768db5696318faed015d5770766b1f71
0e8e850bdd09d5636b619ce0c556f17944ed086a
refs/heads/main
2023-01-31T07:13:21.107664
2020-12-15T21:29:48
2020-12-15T21:29:48
321,792,563
0
0
null
null
null
null
UTF-8
Python
false
false
3,305
py
from flask import render_template, url_for, flash, redirect from flaskblog import app, db, bcrypt from flaskblog.forms import RegistrationForm, LoginForm,PostForm,InsertForm from flaskblog.models import User, Post,Book from flask_login import login_user,current_user,logout_user,login_required from sqlalchemy.sql import func @app.route("/") @app.route("/home") def home(): posts = Post.query.all() return render_template('home.html', posts=posts) @app.route("/about") def about(): return render_template('about.html', books=books) # wtforms explains this @app.route("/register", methods=['GET', 'POST']) def register(): if current_user.is_authenticated: return redirect(url_for('home')) form = RegistrationForm() if form.validate_on_submit(): hashed_password = bcrypt.generate_password_hash(form.password.data).decode('utf-8') user = User(username = form.username.data,email=form.email.data,password=hashed_password) db.session.add(user) db.session.commit() flash(f'Account created ', 'success') return redirect(url_for('login')) return render_template('register.html', title='Register', form=form) @app.route("/login", methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('home')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user and bcrypt.check_password_hash(user.password,form.password.data): login_user(user,remember=form.remember.data) return redirect(url_for('home')) else: flash('Login Unsuccessful. Please check your email and password', 'danger') return render_template('login.html', title='Login', form=form) @app.route("/logout") def logout(): logout_user() return redirect(url_for('home')) @app.route("/post/new/",methods=['GET', 'POST']) @login_required def new_post(): form = PostForm() if form.validate_on_submit(): post = Post(title = form.title.data,content = form.content.data,author = current_user,rating = form.rating.data,book_id =form.book_id.data) db.session.add(post) db.session.commit() flash('Your post has been created!','success') return redirect(url_for('home')) return render_template('create_post.html', title='New Post',form = form) @app.route("/insert_book",methods=['GET', 'POST']) @login_required def new_book(): form = InsertForm() if form.validate_on_submit(): book = Book(title = form.title.data,isbn = form.isbn.data,author = form.author.data,publicationyear = form.publicationyear.data,description = form.description.data, price = form.price.data,copies_sold = form.copies_sold.data,publisher = form.publisher.data, genre = form.genre.data) db.session.add(book) db.session.commit() flash('Your Book has been created!','success') return redirect(url_for('home')) return render_template('insert_book.html', title='New Book',form = form) @app.route("/books") @login_required def index(): #posts = Post.query.order_by(Post.rating.desc()) posts = Post.query.func.avg(Post.rating).all() return render_template('books.html', posts = posts)