blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
20fd33920d2f04fa9ff9291c2a1a4cec9afa66e0
b7add0d1b1effc50b27d3316fa5889a5227e5b19
/Robots/roboquasar0.1/tests/video_test.py
d5c6f649c8e6c0ec3106fabdaff3cdec653dfe20
[]
no_license
Woz4tetra/Atlas
efb83a7c7b2698bf8b36b023f7aa573cc38284f6
c7380868a9efef9d1594ed7aa87187f03a7e4612
refs/heads/master
2020-04-04T06:25:50.657631
2017-04-05T01:53:15
2017-04-05T01:53:15
50,269,756
3
1
null
null
null
null
UTF-8
Python
false
false
4,056
py
from atlasbuggy.interface import RobotSimulator from atlasbuggy.interface import RobotRunner from atlasbuggy.robot import Robot from atlasbuggy.vision.camera import Camera import time import cv2 from multiprocessing import Process, Queue, Lock, Event class Pipeline(Process): def __init__(self): self.frames_queue = Queue() self.results_queue = Queue() self.pipeline_lock = Lock() self.exit_event = Event() self.exit_lock = Lock() self.capture = cv2.VideoCapture(1) super(Pipeline, self).__init__(target=self.update) def update(self): while True: success, frame = self.capture.read() with self.exit_lock: if self.exit_event.is_set(): break with self.pipeline_lock: self.results_queue.put(self.pipeline(frame)) print("1", self.results_queue.empty()) def pipeline(self, frame): return cv2.medianBlur(frame, 111) def put(self, frame): with self.pipeline_lock: self.frames_queue.put(frame) def close(self): with self.exit_lock: self.exit_event.set() class CaptureTester(Robot): def __init__(self, enable_recording): super(CaptureTester, self).__init__() self.logitech = Camera("logitech") self.ps3eye = Camera("ps3eye", enabled=False) self.start_time = time.time() super(CaptureTester, self).__init__() def start(self): logitech_name = "%s%s.avi" % (self.get_path_info("file name no extension"), self.logitech.name) ps3eye_name = "%s%s.avi" % (self.get_path_info("file name no extension"), self.ps3eye.name) directory = self.get_path_info("input dir") if self.is_live: status = self.logitech.launch_camera( logitech_name, directory, self.logger.is_open(), capture_number=1 ) if status is not None: return status status = self.ps3eye.launch_camera( ps3eye_name, directory, self.logger.is_open(), capture_number=2 ) if status is not None: return status else: self.logitech.launch_video(logitech_name, directory) self.ps3eye.launch_video(ps3eye_name, directory) self.start_time = time.time() def loop(self): if self.logitech.get_frame(self.dt()) is None: return "exit" if self.ps3eye.get_frame(self.dt()) is None: return "exit" self.logitech.show_frame() self.ps3eye.show_frame() key = self.logitech.key_pressed() if key == 'q' or key == -2: return "done" def close(self, reason): self.logitech.close() self.ps3eye.close() class PipelineTest: def __init__(self, use_pipeline): self.use_pipeline = use_pipeline self.pipeline = Pipeline() self.mac_cam = Camera("mac") if self.use_pipeline: self.pipeline.start() else: self.mac_cam.launch_camera(None, None, False, 0) def show(self): if self.use_pipeline: # self.pipeline.put(self.mac_cam.get_frame()) with self.pipeline.pipeline_lock: if not self.pipeline.results_queue.empty(): print("2", self.pipeline.results_queue.empty()) cv2.imshow("pipeline", self.pipeline.results_queue.get()) # self.mac_cam.show_frame(frame) else: frame = self.mac_cam.get_frame() self.mac_cam.show_frame(cv2.medianBlur(frame, 111)) def run(live): video_tester = CaptureTester(False) if live: runner = RobotRunner(video_tester, log_data=False) runner.run() else: simulator = RobotSimulator("18;54", "2017_Mar_12", video_tester) simulator.run() def pipeline(): test = PipelineTest(True) while True: test.show() run(True) # pipeline()
097bda6380cf4c3c5d7e9e5bef07aeab97a3127f
a90215c7f54fa7ea5792c673aac5eebc0bccdc10
/CS3243_P2_Sudoku_XX_ac3.py
4239cbf11710ffa65360daf94882e63dbde1ce2d
[]
no_license
FEIHONGYI857/CS3243_project2_group8
c137af5c198704eba0e4b0234fcc8b233f3d667f
28f0a64111a80be6fcd617e7587e7b9f669e0977
refs/heads/master
2021-05-17T21:21:38.463227
2020-03-30T10:46:38
2020-03-30T10:46:38
250,958,329
0
0
null
2020-03-29T05:08:50
2020-03-29T05:08:49
null
UTF-8
Python
false
false
7,139
py
import sys import copy # Running script: given code can be run with the command: # python file.py, ./path/to/init_state.txt ./output/output.txt class Sudoku(object): def __init__(self, puzzle): # you may add more attributes if you need self.puzzle = puzzle # self.puzzle is a list of lists self.ans = copy.deepcopy(puzzle) # self.ans is a list of lists self.domains = list() self.unassignedVars = set() self.prunes = list() #used to recall self.prune = list() self.constraints = list()#store (a1,a2) for ac-3 self.build_constraints() self.neighbors = dict() self.build_neighbors()#store (a1,a2) for ac-3 and forward checking def build_constraints(self): for a in range(9): for b in range(9):#get one node for c in range(9): for r in range(9):#get another node if a == c or b == r: if not(a == c and b == r): if [a,b,c,r] not in self.constraints: self.constraints.append([a,b,c,r]) layers = [[0,1,2], [3,4,5], [6,7,8]] for layer in layers: if a in layer: neighbourr = layer if b in layer: neighbourc = layer for d in neighbourr: for e in neighbourc: if [a,b,d,e] not in self.constraints: if a != d and b != e: self.constraints.append([a,b,d,e]) #print(self.constraints) def build_neighbors(self): for a in range(9): for b in range(9): self.neighbors[a*9 + b] = list() for c in self.constraints: if a == c[0] and b == c[1]: self.neighbors[a*9 + b].append([c[2],c[3]]) #print(self.neighbors[42]) def ac3(self): queue = list(self.constraints) while queue: xa,xb,xc,xd = queue.pop(0) if self.revise(xa,xb,xc,xd): if len(self.domains[xa*9+xb]) == 0: if xa * 9 + xb == 42: print(self.domains[42]) return False for xk in self.neighbors[xa*9+xb]: if xk == xa*9+xb: queue.append([xa,xb,xk[0],xk[1]]) return True def revise(self,xa,xb,xc,xd): revised = False for x in self.domains[xa * 9 + xb]: if not any([self.constraint(x, y) for y in self.domains[xc * 9 + xd]]): self.domains[xa * 9 + xb].remove(x) revised = True return revised def constraint(self, xi, xj): return xi != xj def solve(self): self.initDomains() #print(self.domains) self.ac3() # print(self.domains) self.backtrack() #print(puzzle) return self.ans def backtrack(self): if len(self.unassignedVars) == 0: return True #variable selection currVar = self.mostConstrVar(self.unassignedVars) #value selection domain = self.varDomain(self.domains,currVar) #print(len(domain)) for index in range(len(domain)): self.assignVal(currVar,domain[index]) if self.validCheck(currVar,domain[index]) == False: self.unassignVal(currVar,domain[index]) continue if self.backtrack() == False: self.unassignVal(currVar,domain[index]) continue else: return True #add back to unassigned self.unassignedVars.add(currVar) return False def mostConstrVar(self,unassignedVars): MCV = unassignedVars.pop() return MCV def varDomain(self,domainList,currVar): varIndex = currVar[0]*9 + currVar[1] currDomain = self.domains[varIndex] return currDomain def assignVal(self,currVar,value): self.puzzle[currVar[0]][currVar[1]] = value return 1 def unassignVal(self,currVar,value): self.puzzle[currVar[0]][currVar[1]] = 0 return 1 def initDomains(self): domainSet = [1,2,3,4,5,6,7,8,9] for row in range(9): for col in range(9): if self.puzzle[row][col] == 0: self.domains.append(copy.copy(domainSet)) self.unassignedVars.add((row,col)) else: list_addvalue = [] self.domains.append([puzzle[row][col]]) return 1 def validCheck(self,currVar,value): row = currVar[0] col = currVar[1] for c in range(9): if c != col: if self.puzzle[row][c] == value: return False for r in range(9): if r != row: if self.puzzle[r][col] == value: return False layers = [[0,1,2],[3,4,5],[6,7,8]] for layer in layers: if row in layer: neighbourRow = layer if col in layer: neighbourCol = layer #print(neighbourCol) # print(neighbourRow) for sqRow in neighbourRow: for sqCol in neighbourCol: if sqRow != row or sqCol != col: if self.puzzle[sqRow][sqCol] == value: return False return True # you may add more classes/functions if you think is useful # However, ensure all the classes/functions are in this file ONLY # Note that our evaluation scripts only call the solve method. # Any other methods that you write should be used within the solve() method. if __name__ == "__main__": # STRICTLY do NOT modify the code in the main function here if len(sys.argv) != 3: print ("\nUsage: python CS3243_P2_Sudoku_XX.py input.txt output.txt\n") raise ValueError("Wrong number of arguments!") try: f = open(sys.argv[1], 'r') except IOError: print ("\nUsage: python CS3243_P2_Sudoku_XX.py input.txt output.txt\n") raise IOError("Input file not found!") puzzle = [[0 for i in range(9)] for j in range(9)] lines = f.readlines() i, j = 0, 0 for line in lines: for number in line: if '0' <= number <= '9': puzzle[i][j] = int(number) j += 1 if j == 9: i += 1 j = 0 sudoku = Sudoku(puzzle) ans = sudoku.solve() with open(sys.argv[2], 'a') as f: for i in range(9): for j in range(9): f.write(str(ans[i][j]) + " ") f.write("\n")
bd90bac4da03e24fabe6cb8322a8367a1012cd2b
243d3241959f1aa07f53b4d2972ba7b72df5f8c9
/webapp/static/fusioncharts/samples/xy_chart.py
d4c4d70d74768fcf77b10f29ce0201cc60c10b89
[]
no_license
akr888/Creating-and-Querying-a-NHTS-Database
51015bbe384c634a44f6c270714be59da3711190
87e0022f4ec93d8b0a3749286235b431de17a471
refs/heads/master
2020-03-19T08:46:48.278423
2018-06-06T18:26:21
2018-06-06T18:26:21
136,234,221
1
1
null
null
null
null
UTF-8
Python
false
false
8,477
py
from django.shortcuts import render from django.http import HttpResponse # Include the `fusioncharts.py` file that contains functions to embed the charts. from ..fusioncharts import FusionCharts # Loading Data from a Static JSON String # Example to create a Scatter chart with the chart data passed as JSON string format. # The `chart` method is defined to load chart data from a JSON string. def chart(request): # Create an object for the Scatter chart using the FusionCharts class constructor scatterChart = FusionCharts("scatter", "ex1" , "600", "350", "chart-1", "json", # The chart data is passed as a string to the `dataSource` parameter. """{ "chart": { "theme": "fint", "caption": "Sales of Beer & Ice-cream vs Temperature", "subCaption": "Los Angeles Topanga", "xAxisName": "Average Day Temperature", "xAxisMinValue": "23", "xAxisMaxValue": "95", "yNumberPrefix": "$", "xNumberSuffix": "&deg; F", "theme": "fint", "xAxisNamePadding": "-5", "legendpadding": "0", "plotToolText": "<div><b>$seriesname</b><br/>Temperature : <b>$xValue&deg; F</b><br/>Sales : <b>$$yValue</b></div>" }, "categories": [{ "category": [{ "x": "23", "label": "23 F", "showverticalline": "0" }, { "x": "32", "label": "32 F", "showverticalline": "1" }, { "x": "50", "label": "50 F", "showverticalline": "1" }, { "x": "68", "label": "68 F", "showverticalline": "1" }, { "x": "80", "label": "80 F", "showverticalline": "1" }, { "x": "95", "label": "95 F", "showverticalline": "1" }] }], "dataset": [{ "seriesname": "Ice Cream", "showregressionline": "1", "data": [{ "x": "23", "y": "1560" }, { "x": "24", "y": "1500" }, { "x": "24", "y": "1680" }, { "x": "25", "y": "1780" }, { "x": "25", "y": "1620" }, { "x": "26", "y": "1810" }, { "x": "27", "y": "2310" }, { "x": "29", "y": "2620" }, { "x": "31", "y": "2500" }, { "x": "32", "y": "2410" }, { "x": "35", "y": "2880" }, { "x": "36", "y": "3910" }, { "x": "34", "y": "3960" }, { "x": "38", "y": "4080" }, { "x": "40", "y": "4190" }, { "x": "41", "y": "4170" }, { "x": "42", "y": "4280" }, { "x": "54", "y": "5180" }, { "x": "53", "y": "5770" }, { "x": "55", "y": "5900" }, { "x": "56", "y": "5940" }, { "x": "58", "y": "6090" }, { "x": "61", "y": "6086" }, { "x": "67", "y": "6100" }, { "x": "68", "y": "6200" }, { "x": "70", "y": "6360" }, { "x": "75", "y": "6450" }, { "x": "79", "y": "6650" }, { "x": "80", "y": "6710" }, { "x": "79", "y": "6975" }, { "x": "82", "y": "7000" }, { "x": "85", "y": "7150" }, { "x": "86", "y": "7160" }, { "x": "86", "y": "7200" }, { "x": "88", "y": "7230" }, { "x": "87", "y": "7210" }, { "x": "86", "y": "7480" }, { "x": "89", "y": "7540" }, { "x": "89", "y": "7400" }, { "x": "90", "y": "7500" }, { "x": "92", "y": "7640" }] }, { "seriesname": "Beer", "showregressionline": "1", "data": [{ "x": "23", "y": "3160" }, { "x": "24", "y": "3000" }, { "x": "24", "y": "3080" }, { "x": "25", "y": "3680" }, { "x": "25", "y": "3320" }, { "x": "26", "y": "3810" }, { "x": "27", "y": "5310" }, { "x": "29", "y": "3620" }, { "x": "31", "y": "4100" }, { "x": "32", "y": "3910" }, { "x": "35", "y": "4280" }, { "x": "36", "y": "4210" }, { "x": "34", "y": "4160" }, { "x": "38", "y": "4480" }, { "x": "40", "y": "4890" }, { "x": "41", "y": "4770" }, { "x": "42", "y": "4880" }, { "x": "54", "y": "4980" }, { "x": "53", "y": "4770" }, { "x": "55", "y": "4900" }, { "x": "56", "y": "4940" }, { "x": "58", "y": "4990" }, { "x": "61", "y": "5086" }, { "x": "67", "y": "5100" }, { "x": "68", "y": "4700" }, { "x": "70", "y": "5360" }, { "x": "75", "y": "5150" }, { "x": "79", "y": "5450" }, { "x": "80", "y": "5010" }, { "x": "79", "y": "4975" }, { "x": "82", "y": "5400" }, { "x": "85", "y": "5150" }, { "x": "86", "y": "5460" }, { "x": "86", "y": "5000" }, { "x": "88", "y": "5200" }, { "x": "87", "y": "5410" }, { "x": "86", "y": "5480" }, { "x": "89", "y": "5440" }, { "x": "89", "y": "5300" }, { "x": "90", "y": "5500" }, { "x": "92", "y": "5240" }] }], "vtrendlines": [{ "line": [{ "startvalue": "23", "endvalue": "32", "istrendzone": "1", "displayvalue": " ", "color": "#adebff", "alpha": "25" }, { "startvalue": "23", "endvalue": "32", "istrendzone": "1", "alpha": "0", "displayvalue": "Very cold" }, { "startvalue": "32", "endvalue": "50", "istrendzone": "1", "displayvalue": " ", "color": "#adebff", "alpha": "15" }, { "startvalue": "32", "endvalue": "50", "istrendzone": "1", "alpha": "0", "displayvalue": "Cold" }, { "startvalue": "50", "endvalue": "68", "istrendzone": "1", "alpha": "0", "displayvalue": "Moderate" }, { "startvalue": "68", "endvalue": "80", "istrendzone": "1", "alpha": "0", "displayvalue": "Hot" }, { "startvalue": "68", "endvalue": "80", "istrendzone": "1", "displayvalue": " ", "color": "#f2a485", "alpha": "15" }, { "startvalue": "80", "endvalue": "95", "istrendzone": "1", "alpha": "0", "displayvalue": "Very hot" }, { "startvalue": "80", "endvalue": "95", "istrendzone": "1", "displayvalue": " ", "color": "#f2a485", "alpha": "25" }] }] }""") # Alternatively, you can assign this string to a string variable in a separate JSON file and # pass the URL of that file to the `dataSource` parameter. return render(request, 'index.html', {'output' : scatterChart.render()})
125eb52072b17b6481375543446e5ef10ba04e01
7b5e64b2960260b5dd240cf1e2bea2c07697eaed
/interview_prep/strings/common_child.py
ed85815729ce2d7cb37a492efef2b176041664ce
[]
no_license
sotsoguk/hackerrank
04f2d25ce94c878af7ed60f24817081e20ee551d
bbc87d8bd78df2e9b17c1a983f0424cbc6f8ca80
refs/heads/master
2021-09-08T05:51:23.667282
2021-08-30T23:38:10
2021-08-30T23:38:10
181,692,027
0
0
null
null
null
null
UTF-8
Python
false
false
12,021
py
from collections import defaultdict from typing import DefaultDict def cc(s1,s2): table = defaultdict(int) for r,c1 in enumerate(s1): for c,c2 in enumerate(s2): if c1 == c2: table[(r,c)] = 1+ table[(r-1,c-1)] else: table[(r,c)] = max(table[(r-1,c)],table[(r,c-1)]) # print(table) return table[(len(s1)-1,len(s2)-1)] def cc3(s1,s2): prev = [0] * (len(s2) +1) curr = [0] * (len(s2) +1) for r in s1: for j,c in enumerate(s2,1): curr[j] = prev[j-1] +1 if r==c else max(prev[j],curr[j-1]) prev, curr = curr,prev return prev[-1] def cc2(s1,s2): l1, l2 = len(s1),len(s2) t = [0]* (l1*l2) #t = list(range(12)) def printt(): for i in range(l1): for j in range(l2): print(getc(i,j),sep=",",end="") print("") print("") def getc(x,y): if x<0 or x>=l1 or y<0 or y>= l2: return 0 return t[l1*y + x] def setc(x,y,v): if x<0 or x>=l1 or y<0 or y>= l2: return else: t[l1*y+x] = v # printt() # print(t) # print("Starting") for x,c1 in enumerate(s1): for y,c2 in enumerate(s2): if c1 == c2: setc(x,y,1+getc(x-1,y-1)) else: setc(x,y,max(getc(x-1,y),getc(x,y-1))) # printt() return t[-1] def commonChild(s1, s2): m = [[0]*(len(s2)+1) for _ in range(len(s1)+1)] for i,c in enumerate(s1,1): for j,d in enumerate(s2,1): if c == d: m[i][j] = m[i-1][j-1]+1 else: m[i][j] = max(m[i][j-1],m[i-1][j]) return m[-1][-1] #print(commonChild(input(), input())) def main(): # print(cc2("ABCD","ABDC")) s1 = "VGXGPUAMKXKSZHKBPPHYKINKEZPLVFJAQMOPODOTKRJZRIMLVUMUARENEXCFYCEBEURGVJYOSPDHVUYFVTVNRDYLUACVRAYGGWNPNZIJDIFYERVJAOALCGXOVLDQFZAORAHDIGYOJKNVIAZTPCMXLVOVAFHJPHVSHYFIQQTQBXJJMQNGQJHWKCEXECMDKMZAKBZRKJWQDYUXDVOOSSJOATRYXMBWXBWEXNAGMAYGZYFNZPQFTOBTAOTUAYXMWVZLLKUJIDHUKZWZCLTGQNGGUFTUAHALWVJWQNCKSIZGZAJKHYJUJLKSESZAFZJMDTSBYLDHYLCGKYNGVMHNEQYJDUGOFKLITXAOYKFOQKZSZNJYARKUPRERIVHUBPEHXMOYDAKKLBDNFHFXAMOTUBELZVBOZJARAEFMLOTFTNQRJOLVUAMAHNDEKFDSQCFVMQBOCBOMJXRQSFSKEVFXPHCQOQKBBOMCYURWLRNHRHCTNTZLYLVWULBDKCDPPGYKICHJTPUKFNLXFCEVKJEZQSMEYCANJLBESSRFAZDPRCOMDPJIMSFBUSLKSYVEERGCGMONCTCSVYPOLPLCGSQYFKILRIXODIWQCYREIWKRPIUIASFKJEXPFTZNQIBLSRJUYFSKNDAPWJEFUCDQCIUEHVFNDGHRXXNMVZLJXIOYUNDVPNDABSBNWOEYOMRJDCQCRXVYAHERMUDCCMUEAHEBYVSAKXWSEQZDUYFEZUJAFFDRSQFSEQSDFCGDENMRFWFNDIJTEPXHNVEDFBAGZRXKPRTGBOUKFXIWHFZFKSNAWGCUBSPXSIUYTQRWMVXFSVZLOTLFWIMLIYGNFDDESWMXUVHNQVJZGKPDZFJMCJCMSAASKEXTLSJRGGTYCGCQFPOQOMROUHJKNTQRYHJIFCXBYWHFUTFZMJCDLIVNUXMRDFGHKQLQZAEEAZKOOMVPYSJWNCYQYABUTSITEZURQHBUWABEXRCUIWAFNFVCASMRMBQNUPRUSKHSMEICAQQESYYVOPEPMVDOSIBRVQOGHDEIKBPQBFGRUFXDSQCHJKUXPXNGEBXRMQDGQJSOSENCRBWKNLLVUCVUBYOZFMTTXTLSRRNRQAVSHASZRENHLBZPNPJGQFTVWGUKJWSEKFCGLLBZLNVMOSMVQUBTWSGLTVMMZMSLQDXQIIFZKAQHSXZGUSEUEXLYCGUBHDNWHRSSYIYBITCOOWLHMMRDPGTRDWALVFFKNWIBHWHACQFJCMWUPOXONAVVXWSVPRPYMSKZNABSQUWSSUCXRMYWERFPZIQDZIYCNYNTHGMDAVYBZBQGCRGVWALCPTUTZXSQLKCHITHCDEZSAEFLDDFLGTIXBNAGKQRZESCKRIHWQPLFPSPKQVIFBMNQWIDBKZQIYGWFUNEFIWPXUEUMDWUGBFGNOJJRJPAFGKIRRUEOEZABCQLZMCDWMKLVYZVUUGHETWKXZUZFVOIRAREYBLWPRDNETKYIGXYQPZXECKYGYXTHSZXGYIDGLDNLZEQNDBVACJQYHFKQVLIUSQMXYEQYQORZMMJWSUICNYXQNKTYLAQNVBJLLTEXGRHIFDNEUGYSZNCRWGIDCFJGDZKOQFQBWEUCHTDVPIUNKPEHCSHTMRENTGSNDNBTBBBMOGUOPYPWKAPKRWISAMNXAGZFQSFSXTYXEPBPUMTLUJGXUENMZGGJMGIUTQOELTNLYBOQJEGCVUUIILMSBNALVBSFUTYARENKEWZLPWGQZFNNKEXXDSUFCJVRBKESROBOSUZUMUCCGMRSMXZTPSIQCHFCLVZKMVFMUSCNBRLCZVFZWMMKTUSAJDHOCMPRJLNDYDXROJJAHOCITARXLQXQJXQHPFZEWPYYKZEQJPEHSGIQVYEZBQWNPYUCIOBBLOXJXUOZSUVQWPHLHGLUFBHJGBPKXJXIYEUWMDUSFMLXKVQSMWYTKJOAKBNPGPHEFWPQNRBXWDAIPPUEOLNGEDDTRXPAXXZIWPHXKEINQSDIVGPLBCSZJHSXEICKSXBSEJHGMKIHTJCQQWXFTJSWWPTMGZPTQNOIXWPARKLAYJDSBIJTRGTXGZFCPUCHDSMKVQRHGDIIDNNUNWSXSCQQNNQMPCPKAGZSXMCBORWJYQNNOUSXHSDMKLMNDNTFUKMSKHNFJNFRVHQOMOFZKQIPTSIHALUJJXKBURWSBDLLAPWRQCARXMLZQWFCALVWXJFLFJTSTVRCTLBKBSJPNXYHSCXDXEPBWQECEWRZCITMDFBWZHIOWCPGGBUNWIOPNJDJCWRMIXZQULDIALDWRDJMBHVKGQYSPROVNZFRBAJESSMYBYCKDQMSXSRYDSKOIKTYFXJOMBTWYSKCTDJFQUVEKMCKRWIVZAYCTXCFXPTGRUPRMPNZSWUOEGWGDBBYPIRUISJQIBACPBOMBSJOQOZZSDGDRGYQYRFRKSSNTFGUDFQRQZXECGUCLNXEATMLQXSJKYJXIFIRSWZUDOLGMNLJJZJUJUAYJIICCERVHAVVGTCWHLSRWAQOTOGOKHTWGJMFQSLVHZPGNSFQHGBOEHMZPONRTKQJUANPNUFNLUEZLJSQVTOFMENWFZLGRRPZETXOGOBQRHUHLYGENSBKPWQBWWCZNXEIYOZTKMGCVJUSURKTIEHAHZRNTRRASIKBABWCSRHACZNXYUDGFPQDPGUIJAWGHWVVFOGDVTUHMORJCEOFCTZQYGFIETZKBEGKBSJZMFZRMFPMGVOAFXFYINMAYUXCJREDRYDNVLXWVHUEAIQGLUUFBBDTPVTCFHPRLYRBVVLNTRQZMQAWBSSRANJHAXTJVSXSDUOZSXLOEBLCIFBYFEUONSYRICVCCFPKZTIOALHQHQEKYDZQXMNZCAPLZLYXVFBPDZMLSFMMLGTNFRAROEBTFDUZXGPSAQWCNJIYTSRZYFWKRDLABYWHCMFGZVCYBFLKACYHHCKASMBLHBDJEOJNFWYLCQVNBMZXUGFSIYJGUICGFFIWRSZZDBZJYHVGPNFSAPUFJQFESPXBFLJGTDGSMFEECQFWFVKWEIACDITMSNFALDCQLRYCLLMCCMODLNLBKWVGMDZWAPSBZYRWXASQVCTBMTBPIDEDMVRPXQNDCAHLTGZSHJARUUEMQUXRRVTHOHCDKUURWURKWEXHYPSBUPXUISDESHLTSVFHVJVHNXGGARVCDAIIAQADYJJERNIDPERSJDQUCSAUPRZTYFOIIKLHTJSZNDDFTCGELCHWBIZHESDUXMACMZILDECEGSHHNTFZNBBBGXAVMPNFLHPXYLXKYZTWBQWPUYMQLNXMETGHTNREFEYPIVPYNDOBBRESGVLMKKXWHLOMIGIRIZLNGKYKRYMHEYWUJWMJHNZXMGMKQGSAJKYKVQJYAPLNWKCUBVBXDXYHECCRZFNEHQEIZVICXXXESNSSFEUZHSJDHXNDDSIUVXANFKPEQODIRLSYWLYMIWSHVENLIUOMFLSYIQACJUAJHXMEKLFADFVXVMPKNEDSHBYVENBOQUEAAIQWEXNQGQVJWZFOFOKVKGDGZHWRTKTDBERAPDNUMYTFOBBQCOZOJIVHKNGVYYSTJGSDFNOSJLRXPZFENFYHWAJCJUPUWYUVKORVMIUPLWVOOOJCKJMAQYSPYACDNGDNMUYRSOISLCMORSFGZZKSPOSLTNXPVOHDSPMZKEWHWNJMMMGIQUYWBYJIOWEWRVFLTAJJRDUGEJYJRKWAZOGERWKHVGTQUXUXHRUBFRQYFARBIAEPORGWQUIJHBUWQVEJGCOJNCYUOPFGFPTTEUSXAJVQYNZZISGNXJHJETOMWBTTPGBSZZUWRFNORZXTOMUWNQPKUTTCBYBDHLUVCEXTUOXMZGIBULSZOBTMXUTCCLNYXCDFHZNMWHESGEZPVXPYCZLCGYAQNKGIJUKIIIUCJFUEQBMXQNWDCYBERSZMOFRWOCLBYNJWJCRQAYJPCIJNDYZMCTZBAOQEUGWRMHPKZVYYGKOVPCKBZETSHNEBUHTMQQPMBWSEOCXEOBHDJMKFMZVMKEZWOMLYZPAGRXGXYBZTSXAEUNETDTIKJBBXUQJCDWYHWREGFYJHCTUARLQOFGWHPYUTWRBYEBFSSWBRCZWXKLTZJGMFUXARYDAGGOJPHEUSIUBPMQJMHOCQMVJOSPDFLIVMSRCQTWGXDAZUNYTIFHXQUASVCGDLOZUQZWHFSSRCXARCJFLFTMWNGZONWFSVTUKXVBSOUBBBPBFWJFNGELEKPMOADIZDSORTKABMSWCMYWNBAJXNKVMNDBVTCPNJXWMODDNTSQTHUSVZMKUEDBDKBIQDWPWPSSRJJFLSWUFMHCLMNSTZUBTCVQVQSDSSGSCJYQZWCAMNVRILESSQPZGQXDLSNCLUJDSAQBXXYLTZLQWLUORTKQADJCQUQDQCSVIXGWGLWRRMKHDSBEBBJVCGZLWTBVASPHVMNFVFJYKQMIMWXEMMAHHMZOADAPWORUVLPQOLWBMKESKAFYZBVZVMMPRWAXISDUKVMBVCVZWXYNRTKSBDZKVAGIHFGIQMSDEJXIRROWIRGQVZELYSOHWVJFALSGXGZOKBFURVECUXSIPQVRWQJOSFYBNCIHPZJCBXEFZVRIISGFIPSIAPDPBSSGLQJUHVQRXEFPTIMXEDAHMJQTVIQRXNFPOYSAKXHXRJETYDSXIXVXYUJBVQAVXZUPQPZDQLNDDXFANWNKTLPJCCPWUYGXYYXUAFYPZOAKDXPKAHVPJJFDOGNZBYIXYBMKDAQLIXEUTOJGTDJLTWPXPVUMBUDCKMDXRHQWKRRLLTGXDYOAOKDPARWBANIDRFSSIUIGZDUWZEJBBNUOIWQLSGTESHSCNVLMJYIWHAGTIMRQTFFKFGBODLWXIRGRMRDHLIHYAMXMOLBYFWCDPUTEDZCWSKRPKYKQYPKSLSQNFNDIGWHJPDQMACLGNEBLKQCEPSNLJBYOYXCHDIYYGWCHTCOXYZZBLNCVOSGCFFRHAS" ss1 = "VGXGPUAMKXKSZHKBPPHYKINKEZ" ss2 = "EVYRFZJIZJBKRFPPCJBHDPBYIC" s2 = "EVYRFZJIZJBKRFPPCJBHDPBYICJMVXNSXRLFUPSNIYCHUTSVGWTRJVNEPWFSSFOVSAXKHENZIDOHUQRMXXUMFDDYGFEYPTZCOURHVEDKDOACAMYUOYEINZLVOCYDNXYKXPFKXWMDOCFZGCBWJJZRJZVSLTCPVUHZNZLVNZBDQYJXQWGBTLLQADGXJFZRTMMVBDKCZRKYLNZEJAIPLDLCTXVKLOFQNQFFKYDZGTFBFERGKEQMCVYLZQIIUOCWGDVICASICRUGGKBSRGYLDPIWKURUYIHBERGCGGXWUJDPROKXYKQQBUITESPOHBQNKQKUGWHLHKGABAPHQTFDBFHGVBLUYXWZOPSQEUKCLFKFWKXQWZAKBWBHILYFKYOIITLSHCNCYQDMJNFJEKJJDZQSWMJVNDTMYANVUCNZBDUAMHAPYNGGABONFABHVNQMKSNYHYYDLHKFHHDKHVSUSNWPPWDWVAYFKSMBSXUJUVLAIGWMQSNZYTVWBPLYYDSPRLUCGXOAAJLLVQIIHBCKZLPASFSNSUSYFHBMCBFOSTWISFNREQQYTKDCAHMKZTUAXOJIFTFVWWVMODLJMNBJEOIFEYNMAXZKTXXPEDAGSNZUVFRKIGJDCKUZOSKNADBFLGISKPPHYGXZMCMFAZJXAZHBQBQRREZXLNIOKHFKKPDRHTCRUEQXLXXDCVJLXISJXAWESPGXOXJYGEOQZEMXIKVPQRFQBXYARJWOJEKEXBQAEDYUIPLLDVKYKWPWMZHEIQGDNKSFYMIUINMORLIZMXMLHXSJOTKROYPHYKJHRBEXHAFVCJETIIMMPQKSPSPLOAYAPWBXUJWJBBIHVGVKDCFPABBAYMCZPIMZTOQBIDTJSDNKGUDECSFSRREZFBTUXIXJKIPXTNCFQUQDTANIWLEVDYODLIIWUVBOGQZWWPURCQVRYSJZDBSUCBXNLKFGCVWAGOIQIGSNVKWEMYBVXUAERMVJJLDZSPJKPVEOFJVPVGVOKSJYIFNLGBRUBYVNDYNHVLUDRYLJRGBKYSZBXNVDBYAHLZTQXUIBBOTBFKHSGYKPGCRWLMXZMHIOVKLIJTBUTFDIOJSCLMCJTTAFLMSYDWUNHEIKKSKJHXADKTUYNCEYAJDKVEIMKSQWLOGDYYDDKSRARLPGFZZNZUAJFRFEUNQJUAWJHFMARNJUIYEUZTDVRZHCEZVSFKHCDGTTNPFNKHSYPMXBOBNQYLLOAKFKNOYPEORITDIQRKMJIFOUEIBYCUXNQNUNBTNLNKCIOHEFUQCYFOBIIYBUWPRQRFOKONIRFILFQGJHFPLYASYJMZQPDWTSBKGQCYUVTBUNQNHNAEFGPJNVAGTPXFQRGMXTSVAJTRPBDBNZQACKJDTAMMEUASETGWFZWBYSFOMABHMXHLNQTBALMJFHXROGODUKWEYZMJFHKIIATYPLTUNTSXAJRCDZFJWFXRQWHPOSVXEDXOMRDMBQHAVOCMVTKGGPULOVCCKLEYCFGTYPCNCNHTWUWRMZJPBSCIMPXCZRPBIXQVAMEGSEYPGECDDFOFLQTASXNGKYWTAIRATEGYVZXTTVBFDDKWXOBEZXFNWPZXKJCDPNLVWOZNDNFEGUHYCDOOMTXBPIQLQWOTOIBBQZWXVGKMQWOWATZOZGBTRDKNDCPIVAILDYXKKNZYIYYTBFLWPAITVIRSPTZDHLFSIABOMDXQHTFNVLEUOUKTABUAWPRTURPUMHGKBUACFFFOXRIUGZAQSENYFNMGQJMSJVOBAEUQKGWPYVWPAFBNXIODTCEMCDQAXVLNYCQYVAXXYBHVDKHIUHPVUMQBFRYWTQKUVJJEAEXYCJZHRFCLDUGQRVIYLXUBXWGTCPTVELFADQXBCVTSEZNBBUAEUDGEJCVYTASTWCZYJQHGLYHZTGDDICBNLVYTJHMHENXSDHVLYFLHZQSOIDECOJQGXSQKHVFKPLDTOQYRGADZGIOOLYNWZXJRUIIYBWCNWAUPWGMUEQDFYVSVLBHQQXKCEEBMWQJYPIYGYZCDBZPKYRHROJQMQSBJILAMAKICREORUIJZRHWWFKBVZUAJRSCCDHBKUNZVWRHSIPHMBDAMNNQKHTFKYQRDRCEXZFTUAXFRPHOIPMZXCZJCUOQCZGPRMZIOTDISOSKROXJKLEAHTIRTMVEUCAYQVJBJCRNDJVXVVOUMPCGCZWUMAAPDEPSHNAIMATOLVNLMEPBJZWXMACWILFYKKKUYSUCCMFTJUOCCUPAGBYAKRUGNNSGRVBXDWGTQZZWHBKYJDKFNIEPBOLVIWSBEVYPMEKZMEVXOHKSLYLOSUSKCVEHBYRRUYKOHNENCVYODSTLPWDWOOONHNIYEGMYEKMTOPUWYKWCTHHDWZQXOCNQGZMTCTBPUILLKMAWSSJTRGXLSPQQYCZVKHHFCUGLIDEMBZUNQFSPCPHJQTUAYWQBJJSQYDFOJZOFIRJWOIOBXHFDIMSVISXEYYRKSQALVHUQLQOJZVDMADAIUKMJQGFAFJQOYWDFXPMBUOXOEISIHWBLFTQBSBCMQSKWMHNWOJRJOOAHBBKCVKSOGUCZQZVRPBMDKQYICBHJAZSCXKVRMBXHUGUZXFEJGUIANOFATRARRNZPYVBLJZTDZLRFIZBLVXKJRFACEVLDDQMRGZYUHJFBVPVLZJFNBKPKUFNAOEJEQNSNKITMIGJVIBPVIJTBEVSSVLCQZMSHQNDHZHXGGCTDZPOGABKKJTNIXVVGXHKRYILLFJMJHNKKDIQWGPPVJVCBWEQOVKIDJEBMKOLZGSLHMRHIQGLVWHICMTOXPITUPETITSOBUIWYRKMZMWFMSGFOORVZEBZPVBSCVETJKNHNQTJHNINAVAWQHPKHBCSAGDNLYAADUSPPTMGECGCBYDSMNGFPLHLMEQPDUYJVIRVRZFBRFMQKEWXOTZGTHMVBXBNUYACTBIRPPWWYMERCDUZTLKJJMXGBHFINZEEZPOFNCRTDYCEPYBZWNHKZXKNJNOTDVKFKXWKWOBTKAWEBEZAJMLPFUXOAQMEEAPDEWVJDVHMJIFZVPJKAZWPCVLRUWWXATRFIEKSQFVFIGJWYTMBMLLCQPQJNELFQLBCGLODVHXBWJNTQPKEMPRBWNAVCPJWKCIEKOOVBCMSLERUKVJCQAIXQBCHUXCDIQCSOTCHLQBYAXHWAJAFWZAQMHRTXMFDIWFFYQTVVSWXGIDAOHUHDQSYMOZESUHIEHBBCHTPTSBKBWVRSVNDQYSXMWNDBAECMHPOPMSAUCXOHITLWDNCPBVMKCUDAJESJBGMVXVTPBOOPAEGUGLKUJIIZPQPQVYPIBOOOBDOJUFCVEWMZMADYLIHDJJYALDZXDYNFCKNHQBIJHMAJWMYIYKCNGPRIVZMOUZRXRFVMZSDHAQJEOGJYEJIWHZSEHQVUBFNEFKFLTAFNFCDXNMJIXQNOPGMYVZUVWUFVKFXMYCBBQIUBWEVLYJHDSMZEDRJWVLPVCXJLPNACMEHOWHRJIEEXEAVAHUQYRYHEGRGDBHSGQAHFIIHVPSVXGQJRGOBNTLFILNFPMIDKEHUQBJHCKHBCWEWFAIILHINFVDOJBDLPGNPRTORKRMMCZNCYWFYDRTUYOTFRMZVPHRKKTERJKIJUWCVJANXEQWCUIXLWFUEGNPHHKELAKDLTQEEBMUUQHEJPOBTDLYRFBZGUOKCWARIBQJCUUBQLYRUMVCRGTEIYUDJIDIPZNNGMPNFIONDGFQGPEQPGEKNHEJMNTASLYRZUYKRIIERZLIDIHPEBYIBUDVYNXGVVKLOQPDVRNYLINDKNAEHTDIOLSUFZGOXGOFOFURIVLOCFBPGCYOCVBGFMKALQZNBKWNZPKIQWRLIMNKBBXJPQHCTUXAHUQTFBRBKDAFALDVVZRRPLOEVUCBUDBUUUFWFGBUWGKAKDRYCBVLOSSJZHSCYIXWOYBDUWSBFKSHSKVZLBNDNHNCZSKZNQIUUUYNVRDUPFJORXZDEVVRNGHYBKQEANYEYJDCQXPHEKNPAKRGZTODMNJKQZAICVLWCIWYDFSRDDBGVFKCOCZAZKDUBFTKLNYPTMRKJIOKPECEIBEABQGCKLJYMBIACXYPKNGHOKWBIPGLAXBVXKWCJCDGHCKWAZBRDFRNTZBZVCTXKTQNXTNGQWVAPWVLZXPXCSIOJWHWTZYXLZUSVTRYNJXQZBBVZXFBHJCDAWJAUJUUGLNTLCNIGZINJUAZHHOZCTXPCRNSMQBEEZWHIBSEAFALDETCFKCVLMQCCLZIVVZUMHGAEPAIFGSCINZQJEDNTSYGVTWSQWREKGFEUSLRZYXXTXABLAWYWMPYFXBIGRRITWTELCILVQRNWLJMNBSCILFZOUJGRGQWZDGXZWSVKVWQTMUKXZDCYDENZNEIMHXWYATJEMDEQTXYPMVFEKHSPZFXHYKPGWLSJCDOBYFGEUGOVJNXOTXKDHJTIFFTJWHHDXCNWOLPHGOHJORXKQUCTLSDMGSVRDUPWVZRUSEDIOMVFSYERIWIXVPSMHIISMNSWPVAQEIXIRJNABCAPOHKXTFXZANQJUSTEAOCTNXACBOTRLXHGLSXMHMATZXFLTFJDAIYSQSZEJUPSBRGFEGHBWIJAVFINBBCFQRPUTGARLCNJYHZIADZPSUBZPEYPEFLUGWPGIFNXTGBJCGRLVVBMDKLGNYPLZBXZQSSQYLZZTKJLNMXMSLBOCOXQPGDARJAFTDZCVJSPXXIZQIEHGYOBWULEYAZGISEMUWVNCIPBDJCLIWBCPKZKPUQFTITGLWJTLHALWOUYGHRGJWRCNNRSAELAKVVUXUGYMUKRJBYFKYENHZBDTQEBVLTGLCJSEJWJUZCYNCMRIUQNNCNIAGCTKLFEZDFWKHLPIWZCZGHYCJLJQWVKMDNBJNKIZWBWHQWPPJNREFYQMCDUGXMDDRUAYHZUNFGCKDDZSJAKIEYZCZRHEFNJXLISNBITZYWZEDQNQCPAXPTG" print(cc3(s1,s2)) return 0 if __name__ == "__main__": main()
ce0f094449f7839a9961db18847e127b63203a3b
3edaad67f993f7e798cf47ffca774cb0d31d4afd
/store_server/wsgi.py
37f3a4193096476d8a38c7c363ed64a3db5bb997
[]
no_license
AnyiYim/book_store
2150bb5f9edad05102a6ea8f3efccf3bbcd5e1d2
43f3da8770dcbe65b0d6c249d328daeb6f6b5239
refs/heads/master
2020-04-10T22:20:15.689190
2018-12-12T08:25:08
2018-12-12T08:25:08
161,321,275
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for store_server project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'store_server.settings') application = get_wsgi_application()
97710b3e759ea8389e52f4ccf09e2ee30031d846
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part001836.py
441c60f8074c8598531da9bea71fd2f496347da7
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
1,292
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher81047(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({}), [ (VariableWithCount('i2.4.1.0', 1, 1, None), Mul), (VariableWithCount('i2.4.1.0_1', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher81047._instance is None: CommutativeMatcher81047._instance = CommutativeMatcher81047() return CommutativeMatcher81047._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 81046 return yield from collections import deque
7b1dc366aad385a87238c269d4d4385def923a70
688b20033dba33755e0fb5e5e2b3fdd448885126
/scene/scene.py
ec8608ef154bf9a5f505f567bb938f4088b6d1ed
[]
no_license
KaappoRaivio/mycurse
9db0d149ec7a875d191effcedcd11ecc9211ec0d
109b77640a64ff6782839565673c6a1847490351
refs/heads/master
2020-06-08T12:44:41.195259
2019-10-24T06:06:33
2019-10-24T06:06:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,255
py
from __future__ import annotations import enum import inspect import itertools import os from typing import List, Callable, Text from _curses import curseswrapper def converterFactory(pallette: str, lower_bound: int, upper_bound:int): step = (upper_bound - lower_bound) / len(pallette) def wrapper(value: int): for index, char in enumerate(pallette): if step * (index - 1) < value <= step * index: return char else: return pallette[-1] return wrapper class Scene: def __init__(self, dim_x: int=-1, dim_y: int=-1): self.layers = [] self.wrapper = curseswrapper.CursesWrapper(transparent_character=" ", width=dim_x, height=dim_y) def addLayer(self, layer: Layer) -> None: self.layers.append(layer) def commit(self): for layer in self.layers: self.wrapper.updateByList(layer.render(), offset_x=layer.pos_x, offset_y=layer.pos_y, transparent_char=layer.background_char) self.wrapper.flush() def __enter__(self): self.wrapper.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): self.wrapper.__exit__(exc_type, exc_val, exc_tb) @property def dimX(self) -> int: return self.wrapper.width @property def dimY(self) -> int: return self.wrapper.height class Sprite: def __init__(self, data, converter: Callable=lambda x: str(x)): self._data = data self.dim_y = len(self._data) self.dim_x = len(self._data[0]) for y in range(self.dim_y): for x in range(self.dim_x): self._data[y][x] = converter(self._data[y][x]) @classmethod def fromFile(cls, path) -> Sprite: path = os.path.join(os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))), path) with open(path, "r") as file: data = list(map(lambda x: list(str.strip(x)), file.readlines())) # print(data) return cls(data) def render(self) -> List[List]: return self._data def __str__(self): return "\n".join(map("".join, self.render())) class LayerMode(enum.Enum): CORNER = 0 CENTER_HORISONTAL = 1 CENTER_VERTICAL = 2 CENTERED = 4 class Layer: def __init__(self, sprite: Sprite, background_char: str="@", mode: LayerMode=LayerMode.CORNER, pos_x: int=0, pos_y: int=0): self.mode: LayerMode = mode self.sprite = sprite self.background_char = background_char self.pos_y = pos_y self.pos_x = pos_x def isTransparent(self, char) -> bool: return char == self.background_char def render(self) -> List[List]: return self.sprite.render() def __str__(self): return "\n".join(map("".join, self.render())) if __name__ == '__main__': scene = Scene(dim_x=80, dim_y=10) dino = Sprite.fromFile("assets/dino.txt") # print(dino) layer = Layer(dino, background_char="§") layer2 = Layer(dino, background_char="§", pos_x=2) # layer.typeset(30, 30) # print(layer) scene.addLayer(layer) scene.addLayer(layer2) # print(scene.layers) with scene: scene.commit()
ec230dede7ff241b77416a35d0d60224bf633c9b
66198805c5e46d7f10f28a25a566a3e9764ff4a2
/homeassistant/util/percentage.py
10a72a85dff438a95a73a304fd10807f8787b011
[ "Apache-2.0" ]
permissive
pgenera/home-assistant
4540bd7e180bc48c4ad1ecd1ce74c9e8aa2cb1b7
372ed2db910cd6c73c6681fcc34a69645819cf0c
refs/heads/dev
2022-05-20T12:27:13.176262
2021-02-25T12:40:01
2021-02-25T12:40:01
76,890,157
0
0
Apache-2.0
2022-04-12T10:57:32
2016-12-19T19:17:22
Python
UTF-8
Python
false
false
2,836
py
"""Percentage util functions.""" from typing import List, Tuple def ordered_list_item_to_percentage(ordered_list: List[str], item: str) -> int: """Determine the percentage of an item in an ordered list. When using this utility for fan speeds, do not include "off" Given the list: ["low", "medium", "high", "very_high"], this function will return the following when when the item is passed in: low: 25 medium: 50 high: 75 very_high: 100 """ if item not in ordered_list: raise ValueError list_len = len(ordered_list) list_position = ordered_list.index(item) + 1 return (list_position * 100) // list_len def percentage_to_ordered_list_item(ordered_list: List[str], percentage: int) -> str: """Find the item that most closely matches the percentage in an ordered list. When using this utility for fan speeds, do not include "off" Given the list: ["low", "medium", "high", "very_high"], this function will return the following when when the item is passed in: 1-25: low 26-50: medium 51-75: high 76-100: very_high """ list_len = len(ordered_list) if not list_len: raise ValueError for offset, speed in enumerate(ordered_list): list_position = offset + 1 upper_bound = (list_position * 100) // list_len if percentage <= upper_bound: return speed return ordered_list[-1] def ranged_value_to_percentage( low_high_range: Tuple[float, float], value: float ) -> int: """Given a range of low and high values convert a single value to a percentage. When using this utility for fan speeds, do not include 0 if it is off Given a low value of 1 and a high value of 255 this function will return: (1,255), 255: 100 (1,255), 127: 50 (1,255), 10: 4 """ return int((value * 100) // states_in_range(low_high_range)) def percentage_to_ranged_value( low_high_range: Tuple[float, float], percentage: int ) -> float: """Given a range of low and high values convert a percentage to a single value. When using this utility for fan speeds, do not include 0 if it is off Given a low value of 1 and a high value of 255 this function will return: (1,255), 100: 255 (1,255), 50: 127.5 (1,255), 4: 10.2 """ return states_in_range(low_high_range) * percentage / 100 def states_in_range(low_high_range: Tuple[float, float]) -> float: """Given a range of low and high values return how many states exist.""" return low_high_range[1] - low_high_range[0] + 1 def int_states_in_range(low_high_range: Tuple[float, float]) -> int: """Given a range of low and high values return how many integer states exist.""" return int(states_in_range(low_high_range))
d14f03817c49777e94f1617af2ba6743424c2478
ae326c4e6a2b2d5b67fa8d175249ef90f6a3021a
/leo/plugins/importers/otl.py
9921bc4aeaab3c51e8ae28a0d40df3d03fbfb639
[ "MIT" ]
permissive
frakel/leo-editor
f95e6c77d60485d80fddfbeaf35db961cf691177
b574118ee3b7ffe8344fa0d00dac603096117ac7
refs/heads/master
2020-03-28T10:40:24.621077
2018-10-23T14:39:31
2018-10-23T14:39:31
148,132,817
0
0
MIT
2018-09-10T09:40:18
2018-09-10T09:40:18
null
UTF-8
Python
false
false
3,081
py
#@+leo-ver=5-thin #@+node:ekr.20140723122936.18150: * @file importers/otl.py '''The @auto importer for vim-outline files.''' import re import leo.core.leoGlobals as g import leo.plugins.importers.linescanner as linescanner Importer = linescanner.Importer #@+others #@+node:ekr.20161124034614.2: ** class Otl_Importer class Otl_Importer(Importer): '''The importer for the otl lanuage.''' def __init__(self, importCommands, **kwargs): '''Otl_Importer.__init__''' # Init the base class. Importer.__init__(self, importCommands, language = 'plain', state_class = None, strict = False, ) #@+others #@+node:ekr.20161124035243.1: *3* otl_i.gen_lines & helper # Must match body pattern first. otl_body_pattern = re.compile(r'^: (.*)$') otl_pattern = re.compile(r'^[ ]*(\t*)(.*)$') def gen_lines(self, s, parent): '''Node generator for otl (vim-outline) mode.''' self.inject_lines_ivar(parent) self.parents = [parent] for line in g.splitLines(s): m = self.otl_body_pattern.match(line) if m: p = self.parents[-1] self.add_line(p, m.group(1)) else: m = self.otl_pattern.match(line) if m: # Cut back the stack, then allocate a new node. level = 1 + len(m.group(1)) self.parents = self.parents[:level] self.find_parent( level = level, h = m.group(2).strip()) else: self.error('Bad otl line: %r' % line) #@+node:ekr.20161124035243.2: *4* otl_i.find_parent def find_parent(self, level, h): ''' Return the parent at the indicated level, allocating place-holder nodes as necessary. ''' assert level >= 0 while level >= len(self.parents): child = self.create_child_node( parent = self.parents[-1], body = None, headline = h, ) self.parents.append(child) return self.parents[level] #@+node:ekr.20161125221742.1: *3* otl_i.delete_all_empty_nodes def delete_all_empty_nodes(self, parent): '''Override the base class so we *dont* delete empty nodes!''' #@+node:ekr.20161126074028.1: *3* otl_i.post_pass def post_pass(self, parent): ''' Optional Stage 2 of the importer pipeline, consisting of zero or more substages. Each substage alters nodes in various ways. Subclasses may freely override this method, **provided** that all substages use the API for setting body text. Changing p.b directly will cause asserts to fail later in i.finish(). ''' # Do nothing! #@-others #@-others importer_dict = { '@auto': ['@auto-otl', '@auto-vim-outline',], 'class': Otl_Importer, 'extensions': ['.otl',], } #@@language python #@@tabwidth -4 #@-leo
877e6765c899ba23a828554f16417234025d6583
79e40a5f39ccc173a9c1341a3b54ede6bf2c0325
/django_project/users/migrations/0001_initial.py
9f3ff1b8dde9f18cf5ffd2d74593bd9528b2ea90
[]
no_license
Seifeldin7/Django-Blog
5677a10a82068ac06715d38464ddc228feae0d50
3d1fa5cb6a089cda18465915d8f8e5643674b7c1
refs/heads/master
2020-04-10T10:57:25.234154
2018-12-09T22:39:31
2018-12-09T22:39:31
160,980,611
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
# Generated by Django 2.1 on 2018-12-03 19:00 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(default='default.jpg', upload_to='profile_pics')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
29a390a573c00034b79060277efec0083dac3d4b
4a6c81f79121a46071ac2861f7d34a09fe25d5c3
/baekjoon/1018_bruteForce.py
8ec2533ada9afe7a00a68e671a29f415712f99f2
[]
no_license
ghleokim/codeTestProblems
3faa6913b7ea1822f6fd08edba559e562499d188
8d329c401979cfd8d9be0480ccc5b0a22aaf7fcf
refs/heads/master
2020-06-17T17:27:32.441855
2019-09-07T16:22:17
2019-09-07T16:22:17
195,992,392
0
0
null
null
null
null
UTF-8
Python
false
false
1,035
py
# https://www.acmicpc.net/problem/1018 """ 8*8 타일이 정해진 이후 B first or W first? B first일 때 타일 W first일 때 타일 둘 중 최소값 저장 """ # a = 'abc' # b = 'abb' # c = sum(map(lambda x: int(*map(lambda y, z: 1 if y == z else 0, *x)), zip(a,b))) refs = ('BWBWBWBW', 'WBWBWBWB') def compare(tar, row): compA = sum(map(lambda x: int(*map(lambda y, z: 1 if y == z else 0, *x)), zip(tar, refs[0]))) compB = sum(map(lambda x: int(*map(lambda y, z: 1 if y == z else 0, *x)), zip(tar, refs[1]))) if row % 2: return (compA, compB) else: return (compB, compA) N, M = map(int, input().split()) board = [] for _ in range(N): board.append(input()) result = 64 for rowOffset in range(N-7): for colOffset in range(M-7): r = 0 res = [] for i in range(8): a = board[i+rowOffset][colOffset:colOffset+8] res.append(compare(a, i)) r = min(map(sum, zip(*res))) if r < result: result = r print(result)
fe99c02caa8d8a8af0c8ca665b52512ea6c9506f
d68fb4c7bd82f4adcde5ffedca95fc38d2be6221
/timetable/migrations/0002_department_dept_id.py
195c6aafa14f6ad96cd2cd92565a24bb465054b3
[]
no_license
proflamyt/timetable-generator-
24e6c8b99892385ad606161204ba3e61d5bea7a9
13f5c4a3aeb0b9f2409bd89d0107e6a05737c437
refs/heads/main
2023-08-15T00:18:21.052553
2021-09-16T08:01:52
2021-09-16T08:01:52
407,078,298
1
0
null
null
null
null
UTF-8
Python
false
false
389
py
# Generated by Django 3.2 on 2021-09-11 11:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('timetable', '0001_initial'), ] operations = [ migrations.AddField( model_name='department', name='dept_id', field=models.IntegerField(blank=True, null=True), ), ]
7a3a01ea717ebdfb94b9a709d0e8e04b402209bd
65329299fca8dcf2e204132624d9b0f8f8f39af7
/napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/is_reachability/neighbors/neighbors_/default_metric/__init__.py
318c92982bc5ea8bbcc2a34b3d19ea00bf9daa1a
[ "Apache-2.0" ]
permissive
darylturner/napalm-yang
bf30420e22d8926efdc0705165ed0441545cdacf
b14946b884ad2019b896ee151285900c89653f44
refs/heads/master
2021-05-14T12:17:37.424659
2017-11-17T07:32:49
2017-11-17T07:32:49
116,404,171
0
0
null
2018-01-05T16:21:37
2018-01-05T16:21:36
null
UTF-8
Python
false
false
9,620
py
from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import state class default_metric(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/is-reachability/neighbors/neighbors/default-metric. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: This container defines ISIS Default Metric. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__state',) _yang_name = 'default-metric' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'isis', u'levels', u'level', u'link-state-database', u'lsp', u'tlvs', u'tlv', u'is-reachability', u'neighbors', u'neighbors', u'default-metric'] def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/is_reachability/neighbors/neighbors/default_metric/state (container) YANG Description: State parameters for default-metric. """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/is_reachability/neighbors/neighbors/default_metric/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State parameters for default-metric. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) state = __builtin__.property(_get_state) _pyangbind_elements = {'state': state, } import state class default_metric(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/is-reachability/neighbors/neighbors/default-metric. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: This container defines ISIS Default Metric. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_extmethods', '__state',) _yang_name = 'default-metric' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'network-instances', u'network-instance', u'protocols', u'protocol', u'isis', u'levels', u'level', u'link-state-database', u'lsp', u'tlvs', u'tlv', u'is-reachability', u'neighbors', u'neighbors', u'default-metric'] def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/is_reachability/neighbors/neighbors/default_metric/state (container) YANG Description: State parameters for default-metric. """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/is_reachability/neighbors/neighbors/default_metric/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State parameters for default-metric. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False) state = __builtin__.property(_get_state) _pyangbind_elements = {'state': state, }
ce4d80e03914f4245644cca58c8382e45737940a
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2506/60668/280309.py
8f06c33b8bb93614f251459d21e5f94a059a400f
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
396
py
def find_12_longest(list = []): re = [] for i in range(len(list)): j = i co = list[i] con = 1 while(j <= len(list)): if(list[j]>co): co = list[j] con+=1 j += 1 re.append(con) print(max(re)) if __name__=='__main__': list = [int(i) for i in input().split(',')] find_12_longest(list)
79e26aa8935cce4fae4215c88fbb720f1016ecc0
8b46c8c7c8d30bf3c3e6bc1e075c1a5cc31bbeeb
/posts/migrations/0007_follow.py
68ed9582949d5fd67d9e7d1e8d6201560bdad621
[ "MIT" ]
permissive
Lokteved/hw05_final
e5f07f6636d99b98986b972ae45d7decbef5e135
faf2f21ad2f9a263d3e024038a20e2dfa08ba9e2
refs/heads/master
2022-11-15T17:34:05.588565
2020-07-03T12:23:52
2020-07-03T12:23:52
275,792,668
0
0
null
null
null
null
UTF-8
Python
false
false
865
py
# Generated by Django 2.2.9 on 2020-06-30 11:11 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('posts', '0006_comment'), ] operations = [ migrations.CreateModel( name='Follow', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='following', to=settings.AUTH_USER_MODEL)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='follower', to=settings.AUTH_USER_MODEL)), ], ), ]
baee9cb9186853fe6ff19a43e4d8a480946760b3
d6ec20fe9f0ae0a12ce55e97b9965e14fc390416
/School/urls.py
9aec2b13b3a0b359d2800c26f88eb86eecaca447
[]
no_license
declo32/School
b44fc4430845d016d373b89c8178a169a19f8694
6531e2bb4f14e2e9e12d2aa8d4e1fb787d0ce104
refs/heads/master
2020-06-19T07:10:09.497085
2017-01-26T18:03:34
2017-01-26T18:03:34
74,913,907
0
1
null
null
null
null
UTF-8
Python
false
false
509
py
from django.conf.urls import url, include from django.contrib import admin from django.conf import settings from django.conf.urls.static import static import belle.urls urlpatterns = [ url(r"^belle/", include(belle.urls)), url(r'^admin/', admin.site.urls), ] # shouldn't be in the same place as the rest upon deploy if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
83d2857eeb81a257f21753dcc2fa3bda43210f56
f583ca041b31a6fbe8160df4701282cf43e835c5
/0099-init.py
2f84766d81a3e8a14fd353f8ef7799dc8dd5ce40
[]
no_license
texcoffier/StoX
6a5fc47f73ec3a88b9e09b94efa1dbdac9b0d7cd
0bfc40dfb333452ee50c75c9ba4953d244bd0fac
refs/heads/master
2020-03-19T06:14:31.219490
2018-06-26T06:06:23
2018-06-26T06:09:35
136,003,052
0
0
null
null
null
null
UTF-8
Python
false
false
70
py
"""Core: initialize by calling «init» hook""" blocks.call('init')
4230ee9753690ab37214d05eb6fdf49fe8d617e8
424014210e0e029fd6525105508e9a802ac83573
/misc/py/common.py
6e614d29d72ca46c4ddfa7eb0ba5b9765f3fdee0
[ "Apache-2.0" ]
permissive
sampotter/olim
c6892d4212f823024ee1098121c1391dbf28534a
e86e19ebc498a802adfe034f4c84b9919bace857
refs/heads/master
2021-03-30T18:17:54.876894
2020-10-05T20:45:56
2020-10-05T20:45:56
93,203,491
1
1
null
null
null
null
UTF-8
Python
false
false
2,589
py
BUILD_TYPE='Release' import os import sys build_path = os.path.abspath('../../build/%s' % BUILD_TYPE) print(build_path) if build_path not in sys.path: sys.path.insert(0, build_path) import pyolim as olim import numpy as np import time marchers = [olim.BasicMarcher, olim.Olim4Mid0, olim.Olim4Mid1, olim.Olim4Rect, olim.Olim8Mid0, olim.Olim8Mid1, olim.Olim8Rect] olim4_marchers = [olim.Olim4Mid0, olim.Olim4Mid1, olim.Olim4Rect] olim8_marchers = [olim.Olim8Mid0, olim.Olim8Mid1, olim.Olim8Rect] mid0_marchers = [olim.Olim4Mid0, olim.Olim8Mid0] mid1_marchers = [olim.Olim4Mid1, olim.Olim8Mid1] rect_marchers = [olim.Olim4Rect, olim.Olim8Rect] _marcher_names = { olim.BasicMarcher: 'basic', olim.Olim4Mid0: 'olim4 mp0', olim.Olim4Mid1: 'olim4 mp1', olim.Olim4Rect: 'olim4 rhr', olim.Olim8Mid0: 'olim8 mp0', olim.Olim8Mid1: 'olim8 mp1', olim.Olim8Rect: 'olim8 rhr'} def get_marcher_name(marcher): return _marcher_names[marcher] _marcher_plot_names = { olim.BasicMarcher: '\\texttt{basic}', olim.Olim4Mid0: '\\texttt{olim4\_mp0}', olim.Olim4Mid1: '\\texttt{olim4\_mp1}', olim.Olim4Rect: '\\texttt{olim4\_rhr}', olim.Olim8Mid0: '\\texttt{olim8\_mp0}', olim.Olim8Mid1: '\\texttt{olim8\_mp1}', olim.Olim8Rect: '\\texttt{olim8\_rhr}'} def get_marcher_plot_name(marcher): return _marcher_plot_names[marcher] _marchers_by_name = {v: k for k, v in _marcher_names.items()} def get_marcher_by_name(name): return _marchers_by_name[name] def relerr(x, y, ord_): norm = lambda x: np.linalg.norm(x.flat, ord_) distxy = norm(x - y) return max(distxy/norm(x), distxy/norm(y)) def get_exact_soln(f, M): l = np.linspace(-1, 1, M) return f(*np.meshgrid(l, l)) def compute_soln(marcher, s, M): l = np.linspace(-1, 1, M) m = marcher(s(*np.meshgrid(l, l)), 2/(M - 1)) m.addBoundaryNode(int(M/2), int(M/2)) m.run() U = np.array([[m.getValue(i, j) for j in range(M)] for i in range(M)]) return U def tic(): tic.t0 = time.time() tic.t0 = None def toc(): if tic.t0: return time.time() - tic.t0 else: raise RuntimeError("tic() hasn't been called") def time_marcher(Marcher, s, n, ntrials=10): print(' - n = %d' % n) h = 2/(n - 1) l = np.linspace(-1, 1, n) i = int(n/2) x, y = np.meshgrid(l, l) s_cache = s(x, y) def do_trial(trial): tic() m = Marcher(s_cache, h) m.addBoundaryNode(i, i) m.run() return toc() times = min(do_trial(t) for t in range(ntrials)) return times
11b8d41fec616cc67b91713940f64d5a879b29f7
847273de4b1d814fab8b19dc651c651c2d342ede
/.history/Sudoku_II_006_20180621095510.py
05cab38ebdd0db44f1cf1174db8ec3a7208062db
[]
no_license
Los4U/sudoku_in_python
0ba55850afcffeac4170321651620f3c89448b45
7d470604962a43da3fc3e5edce6f718076197d32
refs/heads/master
2020-03-22T08:10:13.939424
2018-07-04T17:21:13
2018-07-04T17:21:13
139,749,483
0
1
null
null
null
null
UTF-8
Python
false
false
4,836
py
from random import randint sudoku1 = [ [5, 9, 8, 6, 1, 2, 3, 4, 7], [2, 1, 7, 9, 3, 4, 8, 6, 5], [6, 4, 3, 5, 8, 7, 1, 2, 9], [1, 6, 5, 4, 9, 8, 2, 7, 3], [3, 2, 9, 7, 6, 5, 4, 1, 8], [7, 8, 4, 3, 2, 1, 5, 9, 6], [8, 3, 1, 2, 7, 6, 9, 5, 4], [4, 7, 2, 8, 5, 9, 6, 3, 1], [9, 5, 6, 1, 4, 3, 7, 8, " "] ] sudoku2 = [ [9, 8, 7, 4, 3, 2, 5, 6, 1], [2, 4, 3, 5, 1, 6, 8, 7, 9], [5, 6, 1, 7, 9, 8, 4, 3, 2], [3, 9, 5, 6, 4, 7, 2, 1, 8], [8, 2, 4, 3, 5, 1, 6, 9, 7], [1, 7, 6, 2, 8, 9, 3, 4, 5], [7, 1, 2, 8, 6, 3, 9, 5, 4], [4, 3, 8, 9, 7, 5, 1, 2, 6], [' ', 5, ' ', ' ', 2, ' ', 7, ' ', ' '] ] sudoku3 = [ [9, 8, 7, 4, 3, 2, 5, 6, 1], [2, 4, 3, 5, 1, 6, 8, 7, 9], [5, 6, 1, 7, 9, 8, 4, 3, 2], [3, 9, 5, 6, 4, 7, 2, 1, 8], [8, 2, 4, 3, 5, 1, 6, 9, 7], [1, 7, 6, 2, 8, 9, 3, 4, 5], [7, 1, 2, 8, 6, 3, 9, 5, 4], [4, 3, 8, 9, 7, 5, 1, 2, 6], [' ', 5, ' ', ' ', 2, ' ', 7, ' ', ' '] ] def printSudoku(): i = 0 while i < 10: if i == 0: print(" 1 2 3 4 5 6 7 8 9") print(" -------------------------") elif i == 3 or i == 6 or i == 9: print(" -------------------------") line = "|" if i < 9: print('{2} {1} {0[0]} {0[1]} {0[2]} {1} {0[3]} {0[4]} {0[5]} {1} {0[6]} {0[7]} {0[8]} {1}'.format(sudoku[i], line, i+1)) i = i + 1 print(" ") print(" %@@@@@@@ @@@ @@@ (@@@@@@@@@ ,@@@@2@@@@@ @@@, /@@@/ @@@, @@@ ") print(" @@@* @@@ @@@ (@@( /@@@# .@@@% (@@@ @@@, @@@% @@@, @@@. ") print(" @@@& @@@ @@@ (@@( @@@* @@@% #@@% @@@,.@@@. @@@, @@@. ") print(" ,@@@@@@* @@@ @@@ (@@( (@@% .@@@* ,@@@ @@@%@@% @@@, @@@. ") print(" /@@@@@# @@@ @@@ (@@( (@@% .@@@* ,@@@ @@@,@@@( @@@, @@@. ") print(" *@@@. @@@ .@@& (@@( @@@. @@@% &@@( @@@, &@@@. @@@* .@@@. ") print(" &, &@@@ #@@@. ,@@@, (@@( ,&@@@* ,@@@& .@@@@ @@@, (@@@/ #@@@* @@@# ") print(",@@@@@@@@( (@@@@@@@@% (@@@@@@@@@( #@@@@@@@@@, @@@, ,@@@% ,@@@@@@@@@. \n ") print("To start game input:") print(" r - to load random puzzle:") print(" 1 - to load chart nr 1:") print(" 2 - to load chart nr 2:") print(" 3 - to load chart nr 3:") choice = input("Input here: ") s = 0 if choice == "R" or choice == "r": listaSudoku = [sudoku1, sudoku2, sudoku3] sudoku_number = randint(0, 2) print("dupa", sudoku_number) sudoku = listaSudoku[sudoku_number][:] elif int(choice) == 1: s = 1 sudoku = list(sudoku1) elif int(choice) == 2: s = 2 sudoku = list(sudoku2) elif int(choice) == 3: s = 3 sudoku = list(sudoku3) while True: # prints Sudoku until is solved print("Your sudoku to solve:") printSudoku() print("Input 3 numbers in format a b c, np. 4 5 8") print(" a - row number") print(" b - column number ") print(" c - value") # vprint(" r - reset chart to start\n ") x = input("Input a b c: ") print("") numbers = " 0123456789" # conditions of entering the numbers ! if (len(x) != 5) or (str(x[0]) not in numbers) or (str(x[2]) not in numbers) or ( str(x[4]) not in numbers) or (str(x[1]) != " ") or (str(x[3]) != " "): if x == "r": # reset if s == 1: print("RESET TO = ", s) sudoku = sudoku1[:] elif s == 2: sudoku = sudoku2[:] print("RESET TO = ", s) elif s == 3: sudoku = sudoku3[:] print("RESET TO = ", s) # printSudoku() print(" Function reset() will be ready in Next Week") else: print("Error - wrong number format \n ") continue else: sudoku[int(x[0])-1][int(x[2])-1] = int(x[4]) column1 = 0 column2 = 0 try: # check if sudoku is solved i = 0 list = [] while i < 9: # check is column = 0 for item in sudoku: column = column + item[i] list.append(column) i += 1 is45 = 0 for listElement in list: if listElement == 45: is45 = is45 + 1 # i = 0 for item in sudoku: if sum(item) == 45 and is45 == 9: i = i + 1 if i == 9: printSudoku() print("@@@@@@@@@@ YOU WIN @@@@@@@@@@") break except TypeError: print()
3545ea068936863c0e7c64f5432d8f79f5bb77f3
f8d14d10d8d9a9a43ec454db3f3d95ace3ee520c
/sensors/Adafruit/Adafruit_GPIO_Platform.py
49c7ac2189b24ecbc6e1c1fdf389db2194942efd
[]
no_license
erhnam/Raspirover
288f306a5b6cb48b6a677c9f26ff78c9a917ff56
cb46e7b2fa703362f83f1caea94d7f689509b84d
refs/heads/master
2021-06-25T19:54:03.676658
2021-02-14T13:00:37
2021-02-14T13:00:37
73,689,132
0
0
null
null
null
null
UTF-8
Python
false
false
4,190
py
# Copyright (c) 2014 Adafruit Industries # Author: Tony DiCola # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import platform import re # Platform identification constants. UNKNOWN = 0 RASPBERRY_PI = 1 NANOPI = 2 MINNOWBOARD = 3 def platform_detect(): """Detect if running on the Raspberry Pi or Beaglebone Black and return the platform type. Will return RASPBERRY_PI, NANOPI, or UNKNOWN.""" # Handle Raspberry Pi pi = pi_version() if pi is not None: return RASPBERRY_PI # Handle Beaglebone Black # TODO: Check the Beaglebone Black /proc/cpuinfo value instead of reading # the platform. plat = platform.platform() if plat.lower().find('armv7l-with-debian') > -1: return NANOPI elif plat.lower().find('armv7l-with-ubuntu') > -1: return NANOPI elif plat.lower().find('armv7l-with-glibc2.4') > -1: return NANOPI # Handle Minnowboard # Assumption is that mraa is installed try: import mraa if mraa.getPlatformName()=='MinnowBoard MAX': return MINNOWBOARD except ImportError: pass # Couldn't figure out the platform, just return unknown. return UNKNOWN def pi_revision(): """Detect the revision number of a Raspberry Pi, useful for changing functionality like default I2C bus based on revision.""" # Revision list available at: http://elinux.org/RPi_HardwareHistory#Board_Revision_History with open('/proc/cpuinfo', 'r') as infile: for line in infile: # Match a line of the form "Revision : 0002" while ignoring extra # info in front of the revsion (like 1000 when the Pi was over-volted). match = re.match('Revision\s+:\s+.*(\w{4})$', line, flags=re.IGNORECASE) if match and match.group(1) in ['0000', '0002', '0003']: # Return revision 1 if revision ends with 0000, 0002 or 0003. return 1 elif match: # Assume revision 2 if revision ends with any other 4 chars. return 2 # Couldn't find the revision, throw an exception. raise RuntimeError('Could not determine Raspberry Pi revision.') def pi_version(): """Detect the version of the Raspberry Pi. Returns either 1, 2 or None depending on if it's a Raspberry Pi 1 (model A, B, A+, B+), Raspberry Pi 2 (model B+), or not a Raspberry Pi. """ # Check /proc/cpuinfo for the Hardware field value. # 2708 is pi 1 # 2709 is pi 2 # Anything else is not a pi. with open('/proc/cpuinfo', 'r') as infile: cpuinfo = infile.read() # Match a line like 'Hardware : BCM2709' match = re.search('^Hardware\s+:\s+(\w+)$', cpuinfo, flags=re.MULTILINE | re.IGNORECASE) if not match: # Couldn't find the hardware, assume it isn't a pi. return None if match.group(1) == 'BCM2708': # Pi 1 return 1 elif match.group(1) == 'BCM2709': # Pi 2 return 2 elif match.group(1) == 'BCM2835': return 2 else: # Something else, not a pi. return None # eof #
8cd5555a8cd5e94ba5e900118102a1b6074b01c3
167face5e34f69ba36b8a8d93306387dcaa50d24
/23funcoes_cast.py
e9044e64e2e7b6fe1532c4d2a85bc7a0008330af
[]
no_license
william-cirico/python-study
4fbe20936c46af6115f0d88ad861c71e6273db71
5923268fea4c78707fe82f1f609535a69859d0df
refs/heads/main
2023-04-19T03:49:23.237829
2021-05-03T01:24:56
2021-05-03T01:24:56
309,492,617
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
import re def is_float(val): if isinstance(val, float): return True if re.search(r'^\-{,1}[0-9]+\.{1}[0-9]+$', val): return True return False def is_int(val): if isinstance(val, int): return True if re.search(r'^\-{,1}[0-9]+$', val): return True return False def is_number(val): return is_int(val) or is_float(val)
59274581f706141dcf76b6c0ad16c88a286f6c4a
64832dd1e64cfc6de83c5abf099461eda50f648c
/school/models.py
9c0012ca777243bedcb7b07afbec1e52a7e3a42a
[]
no_license
showzvan/mysite
d7e79e16eb8c2d3598d00d1a96fa0b1940765913
32826c83915a2f95440c04ed20a7800d2c343ac1
refs/heads/master
2020-04-27T17:05:19.143296
2019-03-08T09:09:45
2019-03-08T09:09:45
174,504,656
0
0
null
null
null
null
UTF-8
Python
false
false
3,989
py
from django.db import models from user.models import Areas, Provinces, Citys # 院校类型表 class SchoolType(models.Model): type_name = models.CharField("类型名称", max_length=255) notes = models.TextField("分类说明", null=True) is_status = models.BooleanField("状态", default=True) # true 可用 false 不可用 class Meta: verbose_name = "院校类型表" verbose_name_plural = "院校类型" db_table = "zhouju_school_type" # 院校特征表 class SchoolFeatures(models.Model): feature_name = models.CharField("院校特征名称", max_length=255) notes = models.TextField("院校特征说明", null=True) is_status = models.BooleanField("状态", default=True) # true 可用 false 不可用 class Meta: verbose_name = "院校特征表" verbose_name_plural = "院校特征" db_table = "zhouju_school_features" # 院校表 class Schools(models.Model): name = models.CharField("院校名称", max_length=255) banner = models.FileField("院校banner图", upload_to='media', null=True) # 图片地址 description = models.TextField("院校描述") motto = models.TextField("校训", null=True) emblem = models.FileField("校徽", upload_to='media', null=True) # 校徽图片地址 enrol_notes = models.TextField("报名须知", null=True) diploma_images = models.FileField("毕业证图片地址", upload_to='media', null=True) degree_images = models.FileField("学位证图片地址", upload_to='media', null=True) is_985 = models.BooleanField("是否是985", default=False) # True 是985 False 不是985 is_211 = models.BooleanField("是否是211", default=False) # True 是211,False 不是211 is_double = models.BooleanField("是否是双一流", default=False) # True 是双一流, False 不是 brief = models.TextField("招生简章", null=True) exam = models.TextField("考试与毕业", null=True) count = models.BigIntegerField("累计报读人数", null=True) is_status = models.BooleanField("状态", default=True) # true 可用 false 不可用 sch_pro = models.ForeignKey("user.Provinces", verbose_name="院校所在省份", on_delete=models.DO_NOTHING, related_name='sch_pro', null=True) sch_city = models.ForeignKey("user.Citys", verbose_name="院校所在城市", on_delete=models.DO_NOTHING, related_name='sch_city', null=True) school_type = models.ManyToManyField("SchoolType", verbose_name="学校类型") scholl_feature = models.ManyToManyField("SchoolFeatures", verbose_name="学校特性") class Meta: verbose_name = "院校表" verbose_name_plural = "院校列表" db_table = "zhouju_schools" # 院校招生简章表 class SchoolIntro(models.Model): school_id = models.ForeignKey("Schools", verbose_name="院校id", on_delete=models.DO_NOTHING) tesezhuanye = models.TextField("特色专业") yuanxiaojieshao = models.TextField("院校介绍") zhaoshengduixiang = models.TextField("招生对象") zhaoshengzhuanye = models.TextField("招生专业") baomingbanfa = models.TextField("报名办法") ruxuefangshi = models.TextField("入学方式") ruxueceshi = models.TextField("入学测试") ruxuezigeshencha = models.TextField("入学资格审查") luqujiaofei = models.TextField("录取缴费") jiaoxuejixuexi = models.TextField("教学及学习") zhongdianzhuanyekechengshezhi = models.TextField("重点专业课程设置") tongkao = models.TextField("统考") biyezhengshu = models.TextField("毕业证书学位证书") biyeimage = models.FileField("毕业证图片地址", upload_to='media') xueweiimage = models.FileField("学位证图片地址", upload_to='media') class Meta: verbose_name = "院校招生简章" verbose_name_plural = verbose_name db_table = "zhouju_school_intro"
093becada6d26d3731529fc50481a3f9baed37ab
afd5dd9948d4a12f0413b46892648601a3df78bf
/venv/bin/easy_install
c732d8baa0c1cfbf1adcc4723d0e79c228cc3a77
[ "MIT" ]
permissive
radekwarowny/goldlist_db
d0d74e60a66fee27cb890d581bb49035e16b92d6
5b5581a1bf9a46747300e26f04660ddb1b98b00b
refs/heads/master
2023-01-20T17:45:56.673296
2020-11-30T13:19:32
2020-11-30T13:19:32
317,227,688
0
0
null
null
null
null
UTF-8
Python
false
false
263
#!/home/radek/PycharmProjects/gl_db/venv/bin/python # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
b4d8fc8ab2d6d7827b14fa303d91b84881b51a4f
a56d492e99fc0e77da8d4be795e4b31c0e481a5d
/oldz/themain.py
28c6e16ba28ebe0d6f5d40183e5abcac3417f58d
[]
no_license
samuel637/Misadventure
f74a00ae54465fd7c77884d8af718066add59562
649dbb4bbd4aaa729c4f4fa141b64e1d086adf8a
refs/heads/master
2020-07-20T21:34:11.713916
2019-09-06T04:58:55
2019-09-06T04:58:55
206,712,678
1
0
null
null
null
null
UTF-8
Python
false
false
1,940
py
from time import sleep import sys from os import system import textstorage as ts #initial clear screen to pretty up terminal system('cls') #loop so user can access multiple pieces of data in one session. type exit to exit (so exit can't be a key in the dictionary) while True: i = input("Enter Key\n") if i == "exit": system('cls') break #call a function from another file! ts.textFunc(i) ''' filename = "texts/test.txt" def slowPrint(filename): text = open(filename, "r") # print(text.read()) while True: c = text.read(1) if not c: print("End of file") break print(c, end="") sys.stdout.flush() sleep(.05) slowPrint(filename) from os import system from time import sleep import random class snoflake: def __init__(self, x, y): self.x = x self.y = y def loadIt(): system('cls') loading = ["|", "\\", "--", "/"] i = 0 while i < 30: system('cls') print("Loading " + loading[i % 4]) sleep(.15) i += 1 system('cls') print("Loading Complete\n") def youdunfuckedupnow(): # get size of terminal screen make it resizeable termheight = 30 termwidth = 30 numflakes = 30 # make the 2d array of sno flakes i = 0 snowArray = [] while i < termheight: j = 0 temparr = [] while j < termwidth: temparr.append(" ") j += 1 snowArray.append(temparr) i += 1 # add some muffugga snoflasks i = 0 flakeArray = [] while i < numflakes: flakeArray.append(snoflake(random.randint( 0, termheight), random.randint(0, termwidth))) i += 1 # while loop to draw frames to screen # while True: for arr in snowArray: for cha in arr: print(cha, end="") print("") youdunfuckedupnow() '''
8ec7a7b1c085ad2e6b7846578fd1ce5fc96e5685
ea2535aff6cc6322dfc65002d39520defdc30d18
/status/rc.spec
b41142d07fa9b0c25c0bbfe9c562f86df94651e6
[ "Apache-2.0" ]
permissive
tgraf/apisim
7dbb441fc75db412c4c20cfe7b9863e376378ef9
71751e71d34111a210a81e7f69d4971d2ebf8c75
refs/heads/master
2021-04-29T04:47:23.624255
2017-01-14T19:53:16
2017-01-14T19:53:16
78,020,383
0
0
null
null
null
null
UTF-8
Python
false
false
896
spec
{ "kind":"ReplicationController", "apiVersion":"v1", "metadata":{ "name":"status", "labels":{ "k8s-app.apisim":"status" } }, "spec":{ "replicas":1, "selector":{ "k8s-app.apisim":"status" }, "template":{ "metadata":{ "labels":{ "k8s-app.apisim":"status" } }, "spec":{ "nodeSelector":{ "kubernetes.io/hostname": "worker2" }, "containers":[{ "name":"status", "image":"tgraf/apisim:latest", "command": ["/go/bin/app", "status-server"], "ports":[ {"containerPort": 8888, "name": "apisim-status"} ] }] } } } }
377652f054eed8f11a04e077f338ae614799d64b
afde732d20cfc0500f0681a47a5984088f6e6ec9
/www/cgi-bin/mysite_latest/testing 18-6/scan_cluster.py
cbb24749c99f43864e98cfb4caeb804c38dca3a1
[]
no_license
lordzuko/IVORY-B.R.I.G.H.T
e4de2631ddca5c2daeafa7054a30b9f137518d72
cc2e4aeb1d4b172af95b0368a995269573936bcb
refs/heads/master
2020-04-05T22:57:48.864476
2016-10-01T17:01:21
2016-10-01T17:01:21
41,604,963
1
1
null
null
null
null
UTF-8
Python
false
false
262
py
#!/usr/bin/python2 import os import sys import commands as cmd def main(): #os.popen("mkdir -p /root/Desktop/testing/hadoop_setup") os.popen("nmap -sP -n 192.168.0.0/24 | grep 192. | awk -F' ' '{print $5}' > nodes") if __name__ == '__main__': main()
b2e7e2c98c8e10eb0cbb013f3212657a91015ba7
d80aad3af9349861c164f5102f4a4fd62bbb7b35
/train/util.py
3fef6ba032afe47d031105074acaabf5dfff8a72
[ "Apache-2.0" ]
permissive
yucongo/AI-writer_Data2Doc
303edf3568afe0c707794a3b640eb80eec9df027
5d6044640a0e0ea68cc729212de7572ea24ef9ba
refs/heads/master
2020-03-15T19:41:36.125974
2018-05-06T07:11:36
2018-05-06T07:11:36
132,315,065
0
0
Apache-2.0
2018-05-06T07:07:21
2018-05-06T07:07:21
null
UTF-8
Python
false
false
1,973
py
"""Some useful utilizations. Borrowed from Pytorch Tutorial.""" import time import math import heapq import torch def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def gettime(start): now = time.time() return asMinutes(now - start) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (asMinutes(s), asMinutes(rs)) def load_model(model, model_src, mode='eval'): state_dict = torch.load(model_src, map_location=lambda storage, loc: storage) model.load_state_dict(state_dict) if mode == 'eval': model.eval() else: model.train() return model def show_attention(inputs, outputs, attentions): """The function to show attention scores. Args: inputs: A list of tuples, indicating the input triplets. outputs: A list of strings, indicating the output texts. attentions: A matrix of attention scores. """ score = attentions.numpy() for i, text in enumerate(outputs): max_score = ['N\A', 0] for j, triplet in enumerate(inputs): if score[i, j] > max_score[1]: max_score = [triplet, score[i, j]] print('{} <-> {} = {}'.format(text, max_score[0], max_score[1])) if text == '.': print('') def show_triplets(triplets): """The function to show input triplets. Args: triplets: A list of tuples, indicating the input triplets. """ for triplet in triplets: print(triplet, end=',') if triplet[2] == '<EOB>': print('\n==============') return class PriorityQueue: def __init__(self): self._queue = [] self._index = 0 def push(self, item, priority): heapq.heappush(self._queue, (-priority, self._index, item)) self._index += 1 def pop(self): return heapq.heappop(self._queue)[-1]
f78d1b8c57a2e9547fea4a3d195c89890d1bb9fa
f5d39762fabef6c50d98584d051070e04ef7cb46
/Hyperskill/Python/Easy/Hangman/Problems/Chaos/main.py
f5c197983524f0829d74d4b8979421f3ce4ab903
[]
no_license
DanielJBurbridge/Jetbrains-Academy
e2c29cb9e3cca5361d24851493b5989a9207d8dd
da67caee1223b62acc87522f183e382fec043909
refs/heads/main
2023-03-23T05:56:50.226606
2021-03-12T10:45:17
2021-03-12T10:45:17
280,210,460
1
0
null
null
null
null
UTF-8
Python
false
false
48
py
print(45/9 + 16 * (5 + 8)) print("mathematics")
6f15f68ff9faa5be730cce549e7624788d52927f
e8f99a162207cba82d4e0f969d7bcdb2b9d8b522
/nowcoder/2019test/internal_network_ip.py
65c87cc3a5715793a6b8bbb7fb1227344454ba7f
[]
no_license
TesterCC/Python3Scripts
edb5446278ebf13edb64336001081941ca27d67d
58be67e1ffc74ef50289a885aa4ad05f58e2c383
refs/heads/master
2023-08-30T21:16:38.328045
2023-08-17T11:23:08
2023-08-17T11:23:08
93,401,996
6
3
null
null
null
null
UTF-8
Python
false
false
1,692
py
#!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'MFC' __time__ = '2019-09-30 01:57' """ 2019 bilibili https://www.nowcoder.com/practice/80ce674313ff43af9d7ac7a41ae21527?tpId=98&tqId=33025&tPage=11&rp=11&ru=/ta/2019test&qru=/ta/2019test/question-ranking 时间限制:1秒 空间限制:32768K 题目描述 从业 666 年的 BILIBILI 网络安全工程师 KindMo 最近很困惑,公司有一个业务总是受到 SSRF 攻击。请帮他写一个程序,判断输入的字符串是否属于内网IP,用于防御该漏洞。 我们知道常见的内网IP有,127.0.0.1,192.168.0.1 等。 输入描述: 每次输入仅包含一个IP字符串,即一个测试样例 输出描述: 对于每个测试实例输出整数1或0, 1代表True,即输入属于内网IP, 0代表False,即输入不属于内网IP或不是IP字符串。 示例1 输入 42.96.146.169 输出 0 """ # 判断段首,不然累遍历肯定超内存限制啊 # 运行时间:30ms, 占用内存:3560k def check_internal_ip(check_ip): check_ip_list = check_ip.split(".") if len(check_ip_list) == 4: a, b, c, d = check_ip_list a = int(a) b = int(b) c = int(c) d = int(d) if a > 255 or b > 255 or c > 255 or d > 255: return 0 elif a == 10 and b >= 0 and c >= 0 and d >= 0: return 1 elif a == 172 and (16 <= b <= 31) and c >= 0 and d >= 0: return 1 elif a == 192 and b == 168 and c >= 0 and d >= 0: return 1 else: return 0 else: return 0 if __name__ == '__main__': check_ip = input() print(check_internal_ip(check_ip))
54107b6985d401fa0d316f5ea9cbd1ea3c652877
df1254b56f35b24644e00493c50d4b6eb3c15b7b
/colour/examples/models/examples_rgb.py
9cb77791edfb081c02f842df37b99e12120c0531
[ "BSD-3-Clause" ]
permissive
colour-science/colour
908400b227cf81668675e41099256ce50b23ae4b
1fdf3b3042922e8d4f86b989b00a06e7e5d81102
refs/heads/develop
2023-09-01T23:17:07.186869
2023-08-26T09:40:45
2023-08-26T09:40:45
17,114,363
1,756
301
BSD-3-Clause
2023-09-14T10:24:37
2014-02-23T18:55:40
Python
UTF-8
Python
false
false
2,371
py
"""Showcases *RGB* *colourspaces* computations.""" import numpy as np from pprint import pprint import colour from colour.utilities import message_box message_box('"RGB" Colourspaces Computations') message_box('"RGB" colourspaces dataset.') pprint(sorted(colour.RGB_COLOURSPACES.keys())) print("\n") message_box('"ACES2065-1" colourspaces data.') colourspace = colour.RGB_COLOURSPACES["ACES2065-1"] print(f'Name:\n"{colourspace.name}"') print(f"\nPrimaries:\n{colourspace.primaries}") print( f'\nNormalised primary matrix to "CIE XYZ" tristimulus values:\n' f"{colourspace.matrix_RGB_to_XYZ}" ) print( f'\nNormalised primary matrix to "ACES2065-1":\n' f"{colourspace.matrix_XYZ_to_RGB}" ) print( f"\nOpto-electronic transfer function from linear to colourspace:\n" f"{colourspace.cctf_encoding}" ) print( f"\nElectro-optical transfer function from colourspace to linear:\n" f"{colourspace.cctf_decoding}" ) print("\n") message_box( 'Computing the "ACES2065-1" colourspace to "ITU-R BT.709" colourspace ' "matrix." ) cat = colour.adaptation.matrix_chromatic_adaptation_VonKries( colour.xy_to_XYZ(colourspace.whitepoint), colour.xy_to_XYZ(colour.RGB_COLOURSPACES["ITU-R BT.709"].whitepoint), ) print( np.dot( colour.RGB_COLOURSPACES["ITU-R BT.709"].matrix_XYZ_to_RGB, np.dot(cat, colourspace.matrix_RGB_to_XYZ), ) ) print("\n") RGB = np.array([0.45620519, 0.03081071, 0.04091952]) message_box( f'Converting from the "ITU-R BT.709" colourspace to the "ACEScg" ' f'colourspace given "RGB" values:\n\n\t{RGB}' ) print( colour.RGB_to_RGB( RGB, colour.RGB_COLOURSPACES["ITU-R BT.709"], colour.RGB_COLOURSPACES["ACEScg"], ) ) print("\n") message_box( '"Recommendation ITU-T H.273" ' "Code points for Video Signal Type Identification" ) message_box( f"Colour Primaries: {list(colour.COLOUR_PRIMARIES_ITUTH273.keys())}" ) colour.models.describe_video_signal_colour_primaries(1) print("\n") message_box( f"Transfer Characteristics: " f"{list(colour.TRANSFER_CHARACTERISTICS_ITUTH273.keys())}" ) colour.models.describe_video_signal_transfer_characteristics(1) print("\n") message_box( f"Matrix Coefficients: " f"{list(colour.MATRIX_COEFFICIENTS_ITUTH273.keys())}" ) colour.models.describe_video_signal_matrix_coefficients(1)
a3f5eabaab314062ef6ff511debc3e23ba3d7cc4
e40b164391060a7c66fa480996f751c4797d6f29
/QuoteEngine/PDFIngestor.py
bb4cb9e0681c9c203996a5fe5e9d94e49035c363
[]
no_license
Mehaktoor/Motivational-Meme-Generator
f4fdd745fb37935c07975cf02645108e463ff38d
ec8f191f1c049f41801989e142b6625e64e004f8
refs/heads/main
2023-03-17T12:51:27.922306
2021-03-07T00:14:06
2021-03-07T00:14:06
338,726,769
0
1
null
2021-03-02T21:56:35
2021-02-14T04:13:34
Python
UTF-8
Python
false
false
1,026
py
from typing import List from time import time import os import subprocess from .QuoteModel import QuoteModel from .IngestorInterface import IngestorInterface # ingest PDF file format. Create list of QuoteModel objects. class PDFIngestor(IngestorInterface): allowed_extensions = ['pdf'] @classmethod def parse(cls, path: str) -> List[QuoteModel]: if not cls.can_ingest(path): raise Exception('cannot ingest exception') # CLI tool - pdftotext used to convert pdf format to txt format. tmp = f'./tmp/{int(time())}.txt' call = subprocess.call(['pdftotext', path, tmp]) with open(tmp, 'r') as f: quotes = [] for line in f.readlines(): line = line.strip('\n\r').strip() if len(line) == 0: continue parse = line.split('-') new_quote = QuoteModel(parse[0], parse[1]) quotes.append(new_quote) os.remove(tmp) return quotes
654fa1db75fd03efbbb973cc2d28997f58c507b5
bf0901b2cf3bbaf7c6e44030e0139376e0f90b4b
/cee6110hydroinfo/hw/hw1/hw1.py
28c6b3515b34ffe8ff21644a8f44c3ddec5bfcad
[]
no_license
karunmj/usu-coursework
a978fb859932e0894f8ada9e769fde51bf6f021a
40dfb9447b34d5476e390a7e53e748706a37af3e
refs/heads/master
2020-09-24T21:25:43.059344
2016-11-22T08:22:44
2016-11-22T08:22:44
67,301,294
0
0
null
null
null
null
UTF-8
Python
false
false
606
py
##Plotting pH and dissolved oxygen levels import pandas as pd import matplotlib.pyplot as plt import numpy as np #csv file contains logan river data for 2015 from water lab site loganriverdata = pd.read_csv('iUTAH_GAMUT_LR_WaterLab_AA_RawData_2015.csv', skiprows=68) #plotting ph plt.plot(loganriverdata['pH']) plt.ylabel('ph') plt.xlabel('Time units [every 15 min]') plt.title('pH levels, 2015') plt.show() #plotting dissolved oxygen plt.plot(loganriverdata['ODO']) plt.ylabel('Dissolved oxgen [mg/L]') plt.xlabel('Time units [every 15 min]') plt.title('Dissolved oxygen levels, 2015') plt.show()
26e1176c7c2ac4ffa6357771cf0eaf657df56097
aa8ad65d801cf9c292e318e41f106c1974fe96b9
/inflight-entertainment.py
25f0f5786faab7df4fb96eaf6fafbbf29aaf0ed4
[]
no_license
gautamgitspace/interview-cake
fbc3f95d2af82a46d735f07e7d5746ec3d7412ce
0f3c533df091571661b7b95db514870b3b790aef
refs/heads/master
2021-01-20T07:53:47.161093
2017-06-09T23:53:38
2017-06-09T23:53:38
90,061,214
5
1
null
null
null
null
UTF-8
Python
false
false
846
py
#nested loop approach: outer - first_movie_length, inner - check for condition #flight_length-first_movie_length = second_movie_length for every item in outer loop. #this gives O(n^2) """ for item in m: fml = item for item2 in m: if (fl-fml==item2): return True """ #A better approach is to use set() which will give us constant-time lookups: #this gives: O(n) time, and O(n) space def can_two_movies_fill_flight(movie_lengths, flight_length): movie_lengths_seen = set() for i in movie_lengths: second_movie_length = flight_length-i if second_movie_length in movie_lengths_seen: return True movie_lengths_seen.add(i) movie_lengths = [2.5, 2.45, 2.35, 2.4, 2.67, 3.1, 2.33] flight_length = 5 result = can_two_movies_fill_flight(movie_lengths,flight_length) print result
1c9920c6563c7225e4224537335ab439b2822a2b
4b31372a907f446a36e2461d3160e809603cf7ef
/Python 3/1002.py
cbecad92dd877a8a0d1fefa56a97547e223b0a1a
[]
no_license
lcar99/URI
60c65438f557fcc2b846444d8daf79ddd782d3eb
bded0ac6564036976a9acab451981752a4dac36d
refs/heads/main
2023-02-24T03:27:23.963643
2021-02-03T07:06:01
2021-02-03T07:06:01
335,168,807
0
0
null
null
null
null
UTF-8
Python
false
false
65
py
r = float(input()) pi = 3.14159 a = pi*r*r print ("A="+'%.4f'%a)
667ad84dd8023e2e0b9f6efb93424a1527f4165d
9ae6ce54bf9a2a86201961fdbd5e7b0ec913ff56
/google/ads/googleads/v11/enums/types/feed_origin.py
7b7ab37117859b624d16463ece35dabae7420511
[ "Apache-2.0" ]
permissive
GerhardusM/google-ads-python
73b275a06e5401e6b951a6cd99af98c247e34aa3
676ac5fcb5bec0d9b5897f4c950049dac5647555
refs/heads/master
2022-07-06T19:05:50.932553
2022-06-17T20:41:17
2022-06-17T20:41:17
207,535,443
0
0
Apache-2.0
2019-09-10T10:58:55
2019-09-10T10:58:55
null
UTF-8
Python
false
false
1,121
py
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.ads.googleads.v11.enums", marshal="google.ads.googleads.v11", manifest={"FeedOriginEnum",}, ) class FeedOriginEnum(proto.Message): r"""Container for enum describing possible values for a feed origin. """ class FeedOrigin(proto.Enum): r"""Possible values for a feed origin.""" UNSPECIFIED = 0 UNKNOWN = 1 USER = 2 GOOGLE = 3 __all__ = tuple(sorted(__protobuf__.manifest))
e7b1c65afc5f4fe30f3a62488bda704c7df580ec
b49a54a159caf47fba66316256169fb8062eff11
/currency/admin.py
b33c7a9b10e67dec23bbfdb5cca6282a2491b599
[]
no_license
Minyeob/Currency-Calculator
d4b3f54ad268fbdf4fa5a73a0a7c2200593c89e2
4ae9abf265d968550ffe6817f1e3d928db93b0cd
refs/heads/master
2021-01-12T17:07:33.763190
2016-10-04T16:00:51
2016-10-04T16:00:51
69,980,399
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
from django.contrib import admin from currency.models import CurrencyEUR, CurrencyCNY, CurrencyGBP, CurrencyJPY, CurrencyKRW, Choice admin.site.register(CurrencyKRW) admin.site.register(CurrencyEUR) admin.site.register(CurrencyCNY) admin.site.register(CurrencyGBP) admin.site.register(CurrencyJPY) admin.site.register(Choice)
8300bac3852392251d6b3d01ec530edeffea27fc
80d1e7d12e21383c795eab1b7a59fabece827f45
/10 Days of Statistics/Quartiles.py
a3c4cce799b52ae54de591077d2fbad6d610b014
[]
no_license
nikhiljsk/HackerRank
df7716d3bae91defee97df1efd34273c5fa48cc3
33a0925c8a03f3119348f3abf440b2b3b9082474
refs/heads/master
2022-11-08T11:16:27.535386
2020-06-19T17:59:46
2020-06-19T17:59:46
272,817,936
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
def cal_median(numbers): # print(numbers) n = len(numbers) if n%2 == 0: return (numbers[n//2 - 1] + numbers[n//2])//2 return numbers[n//2] n = int(input()) numbers = list(sorted(map(int, input().rstrip().split()))) # print(numbers) middle = n//2 if n%2 != 0: print(cal_median(numbers[:middle])) print(cal_median(numbers)) print(cal_median(numbers[middle+1:])) else: print(cal_median(numbers[:middle])) print(cal_median(numbers)) print(cal_median(numbers[middle:]))
564f13656023dfb3964fd387bb6d1581976fb9df
893ccb3eafc2bf91667c755bda0534850c85986a
/proxy_api/server_run.py
145136c05ca91f6d7a18865ddea1ae21d6750cba
[]
no_license
BoyYongXin/proxy_pool
978443e5d5aebddbecf1b85997691848003324d2
1fc05097bfdfd1906fa81a5fa48a42f85144e642
refs/heads/master
2020-08-13T15:01:31.227107
2019-10-14T08:28:02
2019-10-14T08:28:02
214,988,763
0
0
null
null
null
null
UTF-8
Python
false
false
2,008
py
# -*- coding: utf-8 -*- ''' Created on 2019-10-10 01:55 --------- @summary: 启动代理接口程序 --------- @author: Yongxin_Yang ''' import tornado.web import tornado.httpserver import tornado.ioloop from tornado import gen import os import json from utils import tools import random from db.redisdb import RedisDB redis = RedisDB() config = os.path.join(os.path.dirname(__file__) + '/../config.conf') redis_key = tools.get_conf_value(config, 'redis', 'redis_key2') class IndexHandler(tornado.web.RequestHandler): async def get(self): num = int(self.get_argument('num'))#获取url参数 total_count = redis.sget_count(table=redis_key) ip_pools = redis.sget(table=redis_key, count=total_count) ip_Random = [] # 定义随机数列表 random.shuffle(ip_pools) # 打乱列表顺序 ip_Random = ip_pools[0:num] # 截取打乱后的前num个值,赋值给新列表iRandom if ip_Random: result = {'result':'获取ip成功','get_count':len(ip_Random),'proxy':ip_Random} else: result = {'result': '未知原因,请联系开发人员','get_count':len(ip_Random), 'proxy': []} self.write(result) class Application(tornado.web.Application): #创建 Application 对象, 定义 setting 和 URL 映射规则 def __init__(self): handlers = [ (r"/GetProxy", IndexHandler), ] settings = dict( debug=True, ) tornado.web.Application.__init__(self, handlers, **settings) # 将参数设置传递到父类 Application中 if __name__ == "__main__": http_server = tornado.httpserver.HTTPServer(Application()) # 传递 Application 对象,封装成 HTTPServer 对象 http_server.listen(8888,address="192.168.80.60") # 启动 HTTPServer 监听,实际上 HTTPServer 继承自 TCPServer,是在TCPServer 中启动 listen Socket 端口 tornado.ioloop.IOLoop.instance().start()#获取全局IOLoop单例,启动IOLoop大循环
03e9120f357635fb7ffca4d6a3fe9f71d28a8685
3dbf79d16490d03001abcfc29b7c674fdcb8af38
/src/Torcs_5/Torcs_5/splash/component/source_linear_x.py
f39cbbeebe8c5506bdb6e1111e9b493adba46e2d
[]
no_license
cheonghwa-lee/dev_ws
113c58d87f6408c6a18778c8d74d12a3a656f805
e185ab1961dcb97f0ef3de50f192a206cf7226b3
refs/heads/main
2023-06-25T03:29:54.334763
2021-07-22T00:33:45
2021-07-22T00:33:45
315,225,399
0
0
null
null
null
null
UTF-8
Python
false
false
881
py
''' Generated automatically by Splash Code Generator for source_linear_x ''' from std_msgs.msg import Float32 from geometry_msgs.msg import TwistStamped from scl.components import * from scl.impl.singleton import Singleton from ..factory.factory_0 import Factory0 class SourceLinearX(Component, metaclass=Singleton): def __init__(self): super().__init__(name="source_linear_x", factory=Factory0(), mode="Mode A") def setup(self): self.create_subscription(TwistStamped, "/torcs_speed", self.torcs_speed_callback, 1) self.attach_stream_output_port(msg_type=Float32, channel="source_x") def run(self): pass def torcs_speed_callback(self, msg): linear_x = msg.twist.linear.x # print(linear_x) new_msg = Float32() new_msg.data = linear_x self.write("source_x", new_msg)
9ba27ec47692291528c3632b1221583c88a010aa
1d640906754a591ecca623a7531196976985d9f2
/tictac/transform.py
1a586093c625cd906dae645efe1ee55c580a0272
[]
no_license
nestedsoftware/tictac
971f971c2eb4c77aed0c3231a9000cf720baae23
220bbdc6103ff012ec60b5b424e1566205349588
refs/heads/master
2021-09-26T04:35:01.768442
2020-01-15T04:32:17
2020-01-15T04:32:17
192,117,298
24
26
null
2021-09-22T19:11:29
2019-06-15T19:37:37
Python
UTF-8
Python
false
false
1,175
py
import numpy as np class Transform: def __init__(self, *operations): self.operations = operations def transform(self, target): for op in self.operations: target = op.transform(target) return target def reverse(self, target): for op in reverse(self.operations): target = op.reverse(target) return target class Identity: @staticmethod def transform(matrix2d): return matrix2d @staticmethod def reverse(matrix2d): return matrix2d class Rotate90: def __init__(self, number_of_rotations): self.number_of_rotations = number_of_rotations self.op = np.rot90 def transform(self, matrix2d): return self.op(matrix2d, self.number_of_rotations) def reverse(self, transformed_matrix2d): return self.op(transformed_matrix2d, -self.number_of_rotations) class Flip: def __init__(self, op): self.op = op def transform(self, matrix2d): return self.op(matrix2d) def reverse(self, transformed_matrix2d): return self.transform(transformed_matrix2d) def reverse(items): return items[::-1]
f9cd8f7fa1c0852d57d2bb121a13e89181237fff
08b22b6619ad84613484018fd8445212d18445ba
/setup.py
32103883e3399c3b89d4282870acc8b14687cbc2
[ "MIT" ]
permissive
sravel/pibooth-pimoroni11x7
6cc21c20526c205ca203b85e15460363fc44dbb8
53ce5bd79e91c68a5947ece242b1ddbe79191219
refs/heads/master
2023-06-27T12:58:17.489182
2021-07-22T08:57:13
2021-07-22T08:57:13
268,804,770
0
0
null
null
null
null
UTF-8
Python
false
false
1,970
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys from io import open import os.path as osp from setuptools import setup HERE = osp.abspath(osp.dirname(__file__)) sys.path.insert(0, HERE) import pibooth_pimoroni11x7 as plugin def main(): setup( name=plugin.__name__, version=plugin.__version__, description=plugin.__doc__, long_description=open(osp.join(HERE, 'README.rst'), encoding='utf-8').read(), long_description_content_type='text/x-rst', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Other Environment', 'Intended Audience :: Developers', 'Intended Audience :: End Users/Desktop', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.6', 'Natural Language :: English', 'Topic :: Multimedia :: Graphics :: Capture :: Digital Camera', ], author="Sébastien Ravel", url="https://github.com/pibooth/pibooth-pimoroni11x7", download_url="https://github.com/pibooth/pibooth-pimoroni11x7/archive/{}.tar.gz".format(plugin.__version__), license='MIT license', platforms=['unix', 'linux'], keywords=[ 'Raspberry Pi', 'camera', 'photobooth', 'qr code' ], py_modules=['pibooth_pimoroni11x7'], install_requires=[ 'pibooth>=2.0.0', 'matrix11x7>=0.0.1' ], options={ 'bdist_wheel': {'universal': True} }, zip_safe=False, # Don't install the lib as an .egg zipfile entry_points={'pibooth': ["pibooth_pimoroni11x7 = pibooth_pimoroni11x7"]}, ) if __name__ == '__main__': main()
03af47df44cbfb9bfd1864ba2a4f4483c9fbca4f
7d748aa915be71588ce96605dc7050a86b10f5ae
/src/oryxbot_arm_controller/script/oryxbot_pick_arpy.py
dbf9dcd2fff3f946acb0e682aa2f5189e2412771
[]
no_license
DylanLN/oryxbot-sim
8da3924663eb8e59e6f51325df62af0eefc1bdb6
49a1411b17d7be5d327eef7ce4395c963887a94a
refs/heads/master
2022-04-23T13:24:41.791537
2020-04-26T09:36:08
2020-04-26T09:36:08
258,961,974
0
0
null
null
null
null
UTF-8
Python
false
false
5,192
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- '''robot_pick ROS Node''' # license removed for brevity import sys import os import math import threading import rospy import time from oryxbot_msgs.srv import * from oryxbot_msgs.msg import * import tf class ORYXBOT_PICK(object): CAMREA_X_MAX=20.0 CAMREA_Y_MAX=205.0 CAMREA_Z_MAX=170.0 position=[0.0,0.0,0.0,0.0] pick_server='' place_server='' client_pick='' client_place='' client_goto='' listener='' def thread_job(self): rospy.spin() def callback(self,msg): self.position[0] = msg.x/1000.0 self.position[1] = msg.y/1000.0 self.position[2] = msg.z/1000.0 self.position[3] = msg.r br = tf.TransformBroadcaster() br.sendTransform((self.position[0], self.position[1], self.position[2]), tf.transformations.quaternion_from_euler(0, 0, math.atan2(self.position[1],self.position[0])), rospy.Time.now(), "end", "robot") def pick_callback(self,req): xx=self.position[0] yy=self.position[1] zz=self.position[2] a=req.number marker="/ar_marker_"+str(req.number) print marker if req.mode==0: goresp = self.client_goto(self.CAMREA_X_MAX,self.CAMREA_Y_MAX,self.CAMREA_Z_MAX,0.0) if goresp.ret==False: return pick_markerResponse([self.CAMREA_X_MAX,self.CAMREA_Y_MAX,self.CAMREA_Z_MAX],False," goto error !") time.sleep(1) elif req.mode==1: pass else: return pick_markerResponse([0,0,0],False," Pattern error !") try: (trans,rot) = self.listener.lookupTransform('/robot', marker, rospy.Time(0)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): return pick_markerResponse([0,0,0],False," tf erro !") x_=trans[0]*1000.0 y_=trans[1]*1000.0 z_=trans[2]*1000.0 print trans print x_,y_,z_ goresp = self.client_goto(x_,y_,z_+50,0.0) if goresp.ret==False: return pick_markerResponse([x_,y_,z_+50],False," goto error !") piresp = self.client_pick(x_,y_,z_,0.0) if piresp.ret==False: return pick_markerResponse([x_,y_,z_],False," Manipulator unattainable !") goresp = self.client_goto(x_,y_,z_+50,0.0) if goresp.ret==False: return pick_markerResponse([x_,y_,z_+50],False," goto error !") time.sleep(1) if abs(req.position[0])<0.01 and abs(req.position[1])<0.01 and abs(req.position[2])<0.01 : if req.mode == 0: goresp = self.client_goto(self.CAMREA_X_MAX,self.CAMREA_Y_MAX,self.CAMREA_Z_MAX,0.0) if goresp.ret==False: return pick_markerResponse([self.CAMREA_X_MAX,self.CAMREA_Y_MAX,self.CAMREA_Z_MAX],False," goto error !") elif req.mode == 1: goresp = self.client_goto(xx,yy,zz,0.0) if goresp.ret==False: return pick_markerResponse([xx,yy,zz],False," goto error !") else: goresp = self.client_goto(req.position[0],req.position[1],req.position[2]+50,0.0) if goresp.ret==False: return pick_markerResponse([req.position[0],req.position[1],req.position[2]+50],False," goto error !") plresp = self.client_place(req.position[0],req.position[1],req.position[2],0.0) if plresp.ret==False: return pick_markerResponse([req.position[0],req.position[1],req.position[2]],False," place error !") return pick_markerResponse([0,0,0],True," ok !") def place_callback(self,req): print req goresp = self.client_goto(req.x,req.y,req.z+40,0.0) if goresp.ret==False: return pick_placeResponse(False) plresp = self.client_place(req.x,req.y,req.z,0.0) if plresp.ret==False: return pick_placeResponse(False) return pick_placeResponse(True) def __init__(self): '''robot_pick''' rospy.init_node('robot_pick', anonymous=True) self.listener = tf.TransformListener() self.pick_server = rospy.Service('pick_ar', pick_marker, self.pick_callback) self.place_server = rospy.Service('place_ar', pick_place, self.place_callback) rospy.Subscriber('/oryxbot_arm_controller/position_info', dobot_control, self.callback) rospy.wait_for_service('pick') rospy.wait_for_service('place') rospy.wait_for_service('goto_position') self.client_pick=rospy.ServiceProxy("pick",pick_place) self.client_place=rospy.ServiceProxy("place",pick_place) self.client_goto=rospy.ServiceProxy("goto_position",pick_place) add_thread = threading.Thread(target = self.thread_job) add_thread.start() rospy.spin() if __name__ == '__main__': try: ORYXBOT_PICK() except rospy.ROSInterruptException: rospy.loginfo("Navigation test finished.")
a5e68b11c8a13478b4dfbb1872a987caed729e92
5e26a16d75c408399c4e434ca187a96e4e79b6cc
/6Benches/performetrics/comma seperated binary.py
ffaf925e8711251f3182c8c6c3f58776ab87b71b
[]
no_license
Gaayathre7/mylib
6005df5f241627865ca21cd3c79ebae9cdbb00aa
c0a9e5d262bedf8fa742fd766e6475a500a33436
refs/heads/master
2022-04-08T22:08:58.606045
2020-03-10T06:40:35
2020-03-10T06:40:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
# -*- coding: utf-8 -*- """ Created on Tue Mar 3 16:18:24 2020 @author: rajas """ #write an prgm which accepts a sequence of comma seperated 4 digit binary numbers as its input and then check whether they r divisible by 5 or not items=[] num=[x for x in input().split(',')] for p in num: x=int(p,2) if x%5==0: items.append(p) print(",".join(items))
b671d1899ce6df4b4f5966b87c864960f9a7c4bb
8bc537deb77d32ff42b226200af494b1351de01e
/dexenv/bin/pyrsa-decrypt
1844b4d391de0bf2a36811bc1d3ddb4c289231c7
[]
no_license
bopopescu/ELearning
00478324f898dc8767d23b61d10b282945bb9058
2484b8921ee22871a8dc478696e1e3e0c27690b9
refs/heads/master
2022-11-26T08:38:33.739521
2020-05-08T22:27:03
2020-05-08T22:27:03
280,945,464
0
0
null
2020-07-19T20:31:36
2020-07-19T20:31:35
null
UTF-8
Python
false
false
228
#!/home/dex/Dex/dexenv/bin/python3 # -*- coding: utf-8 -*- import re import sys from rsa.cli import decrypt if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(decrypt())
32326006e5bb1689d8ba85188848f20fbc1eef7b
fb7e2563f78008bb2fd1e082c46309bf86d2644f
/tests/python/unittest/test_operator.py
5ef79cfb63145d2a53943df5c5fe3a513f495983
[ "Apache-2.0" ]
permissive
achao2013/mxnet-quantify
ddbf03d8f5a4dc4694b4d729e364c6465f4fb887
ae77c896da6db35530390e3cf8e524d553bba112
refs/heads/master
2021-01-18T22:41:24.798766
2017-04-05T02:05:51
2017-04-05T02:05:51
87,065,611
4
0
null
null
null
null
UTF-8
Python
false
false
44,528
py
# pylint: skip-file import numpy as np import mxnet as mx import random from numpy.testing import assert_allclose from check_utils import (check_numeric_gradient, check_symbolic_backward, check_symbolic_forward, reldiff, _np_reduce) def same(a, b): return np.sum(a != b) == 0 def np_softmax(x): x = x - np.max(x, axis=1).reshape(x.shape[0], 1) x = np.exp(x) x /= np.sum(x, axis=1).reshape(x.shape[0], 1) return x def check_elementwise_sum_with_shape(shape, n): # forward inputs = [mx.symbol.Variable('arg%d' % i) for i in range(n)] out = mx.symbol.ElementWiseSum(*inputs, name='esum') arr = [mx.nd.empty(shape) for i in range(n)] arr_grad = [mx.nd.empty(shape) for i in range(n)] for i in range(n): arr[i][:] = np.random.uniform(-10, 10, shape) exec1 = out.bind(mx.Context('cpu'), args=arr, args_grad=arr_grad) out1 = exec1.outputs[0].asnumpy() exec1.forward() out1 = exec1.outputs[0].asnumpy() out = sum(a.asnumpy() for a in arr) assert reldiff(out, out1) < 1e-6 out_grad = mx.nd.empty(shape) out_grad[:] = np.random.uniform(-10, 10, shape) # backward exec1.backward([out_grad]) for a in arr_grad: assert same(a.asnumpy(), out_grad.asnumpy()) def test_elementwise_sum(): np.random.seed(0) nrepeat = 2 maxdim = 4 for repeat in range(nrepeat): for dim in range(1, maxdim): shape = tuple(np.random.randint(1, int(1000**(1.0/dim)), size=dim)) check_elementwise_sum_with_shape(shape, np.random.randint(1, 8)) def check_slice_channel(dim, num): ins = [] if dim == 2: shape = (2, 2) else: shape = (2, 2, 2 ,3) ins = [np.ones(shape) * i for i in range(num)] e = np.hstack(ins) e_nd = mx.nd.empty(e.shape) e_nd[:] = e data = mx.sym.Variable('data') op = mx.sym.SliceChannel(data=data, num_outputs=num) arg_shape, output_shape, aux_shape = op.infer_shape(data=e_nd.shape) grad_nd = [mx.nd.empty(shape) for shape in arg_shape] exe = op.bind(mx.cpu(), args=[e_nd], args_grad=grad_nd) assert len(exe.outputs) == num o_nd = [exe.outputs[i] for i in range(num)] # test forward exe.forward() for i in range(num): assert reldiff(o_nd[i].asnumpy(), ins[i]) < 1e-5 # test backward for i in range(num): o_nd[i] += i exe.backward(o_nd) assert reldiff(grad_nd[0].asnumpy(), np.hstack([ins[i] + i for i in range(num)])) < 1e-5 # test slice channel with squeeze_axis op = mx.sym.SliceChannel(data=data, num_outputs=shape[1], squeeze_axis=1) arg_shape, output_shape, aux_shape = op.infer_shape(data=shape) assert len(output_shape) == shape[1] for o_shape in output_shape: assert len(o_shape) == len(shape) - 1 assert o_shape == tuple([shape[0]] + list(shape[2:])) def check_concat_with_shape(shapes, dimension, skip_second): # if skip_second is True, second argument will not have gradient. # it is to test #1130 n = len(shapes) # forward target_dim = 0 for shape in shapes: target_dim += shape[dimension] inputs = [mx.symbol.Variable('arg%d' % i) for i in range(n)] out = mx.symbol.Concat(*inputs, name='conc',dim=dimension) arr = [mx.nd.empty(shape) for shape in shapes] for i in range(n): arr[i][:] = shapes[i][dimension] arr_np = [np.copy(narray.asnumpy()) for narray in arr] arr_grad = [mx.nd.empty(shape) for shape in shapes] dict_grad = {} arg_names = out.list_arguments() for name, g in zip(arg_names, arr_grad): if not skip_second or name != 'arg1': dict_grad[name] = g args = out.list_arguments() arg_shapes, out_shapes, aux_shapes = out.infer_shape(**dict(zip(args, shapes))) out_grad = mx.nd.empty(out_shapes[0]) exec1 = out.bind(mx.Context('cpu'), args=arr, args_grad=dict_grad) exec1.forward() out1 = exec1.outputs[0] ret = np.concatenate([narray.asnumpy() for narray in arr], axis=dimension) assert same(out1.asnumpy(), ret) # backward out1.copyto(out_grad) out_grad[:] += 1 exec1.backward([out_grad]) for i, name in enumerate(arg_names): if not skip_second or name != 'arg1': grad = dict_grad[name] np_grad = arr_np[i] assert same(grad.asnumpy(), np_grad + 1) def test_concat(): for dimension in range(4): n = 2 merge = [2, 3, 4, 5, 6] a = 2 b = 3 c = 4 # test 2D if dimension<2: for dim in range(2, 6): shapes = [] for i in range(dim): if dimension == 0: shapes.append((merge[i], a)) elif dimension == 1: shapes.append((a, merge[i])) check_concat_with_shape(shapes,dimension,True) check_concat_with_shape(shapes,dimension,False) #test 3D if dimension<3: for dim in range(2, 6): shapes = [] for i in range(dim): if dimension == 0: shapes.append((merge[i], a,b)) elif dimension ==1: shapes.append((a,merge[i],b)) elif dimension ==2: shapes.append((a,b,merge[i])) check_concat_with_shape(shapes,dimension,True) check_concat_with_shape(shapes,dimension,False) # test 4D for dim in range(2, 6): shapes = [] for i in range(dim): if dimension == 0: shapes.append((merge[i],a,b,c)) elif dimension == 1: shapes.append((a,merge[i],b,c)) elif dimension ==2: shapes.append((a,b,merge[i],c)) elif dimension ==3: shapes.append((a,b,c,merge[i])) check_concat_with_shape(shapes,dimension,True) check_concat_with_shape(shapes,dimension,False) def test_slice_channel(): check_slice_channel(2, 4) check_slice_channel(4, 4) check_slice_channel(2, 16) def check_regression(symbol, forward, backward): data = mx.symbol.Variable('data') label = mx.symbol.Variable('label') out = symbol(data, label) shape = (3, 1) arr_data = mx.random.uniform(-1, 1, shape) arr_label = mx.random.uniform(0, 1, shape[0]) arr_grad = mx.nd.empty(shape) exec1 = out.bind(mx.cpu(), args=[arr_data, arr_label], args_grad={"data" : arr_grad}) exec1.forward() out1 = exec1.outputs[0].asnumpy() npout = forward(arr_data.asnumpy()) assert reldiff(npout, out1) < 1e-6 exec1.backward() npout = backward(npout, arr_label.asnumpy().reshape(npout.shape)) assert reldiff(npout, arr_grad.asnumpy()) < 1e-6 def test_regression(): check_regression(mx.symbol.LogisticRegressionOutput, lambda x: 1.0 / (1.0 + np.exp(-x)), lambda x, y : x - y) check_regression(mx.symbol.LinearRegressionOutput, lambda x: x, lambda x, y : x - y) def check_softmax_with_ignore_label(xpu): X = mx.symbol.Variable('X') L = mx.symbol.Variable('L') Y = mx.symbol.SoftmaxOutput(data=X, label=L, ignore_label=0, use_ignore=True) shape = (20, 10) x = mx.nd.empty(shape, ctx = xpu) l = mx.nd.empty((shape[0],), ctx = xpu) x_np = np.random.rand(*shape) l_np = np.random.randint(0, shape[1]-1, (shape[0],)) x[:] = x_np l[:] = l_np grad = mx.nd.empty(shape, ctx = xpu) exec1 = Y.bind(xpu, args = [x, l], args_grad = {'X': grad}) exec1.forward() exec1.backward() grad0 = grad.asnumpy() for i in range(int(shape[0]/2)): l_np[i] = 0 l[:] = l_np exec1.forward() exec1.backward() grad1 = grad.asnumpy() assert(abs(np.sum(grad1[:int(shape[0]/2)])) < 1e-5) assert(reldiff(grad0[int(shape[0]/2):], grad1[int(shape[0]/2):]) < 1e-5) def check_softmax_with_shape(shape, xpu): # bind with label X = mx.symbol.Variable('X') L = mx.symbol.Variable('L') Y = mx.symbol.SoftmaxOutput(data=X, label=L) x = mx.random.uniform(-1, 1, shape, ctx = xpu) l = mx.random.uniform(-1, 1, shape, ctx = xpu) l[:] = np_softmax(l.asnumpy()) grad = mx.nd.empty(shape, ctx = xpu) exec1 = Y.bind(xpu, args = [x, l], args_grad = {'X': grad}) exec1.forward() out = exec1.outputs[0].asnumpy() assert_allclose(out, np_softmax(x.asnumpy())) exec1.backward() assert_allclose(grad.asnumpy(), np_softmax(x.asnumpy()) - l.asnumpy()) def test_softmax(): check_softmax_with_shape((3, 4), mx.cpu()) def check_multi_softmax_with_shape(shape, xpu): X = mx.symbol.Variable('X') L = mx.symbol.Variable('L') Y = mx.symbol.SoftmaxOutput(data=X, label=L, multi_output=True) x = mx.random.uniform(-1, 1, shape, ctx = xpu) l = mx.nd.empty((shape[0], shape[2]), ctx = xpu) l[:] = np.random.randint(0, shape[1]-1, (shape[0], shape[2])) grad = mx.nd.empty(shape, ctx = xpu) exec1 = Y.bind(xpu, args = [x, l], args_grad = {'X': grad}) exec1.forward() print(exec1.outputs[0].asnumpy()) exec1.backward() print(grad.asnumpy()) def test_python_op(): X = mx.symbol.Variable('X') op = mx.operator.NumpyOp() s = op.get_symbol(X, name='numpy_op') x = mx.ndarray.ones((10))*10 dx = mx.ndarray.zeros((10)) dy = mx.ndarray.ones((10)) exec1 = s.bind(mx.cpu(), args=[x], args_grad = {'X': dx}) exec1.forward() assert reldiff(x.asnumpy(), exec1.outputs[0].asnumpy()) < 1e-5 exec1.backward(dy) assert reldiff(dy.asnumpy(), dx.asnumpy()) < 1e-5 def test_swapaxes(): data = mx.symbol.Variable('data') shape = (2, 3, 4) data_tmp = np.ones(shape) data_tmp[0] = 1 data_tmp[1] = 2 arr_data = mx.nd.array(data_tmp) swap0 = mx.symbol.SwapAxis(data=data, dim1=0, dim2=2) swap = mx.symbol.SwapAxis(data=swap0, dim1=1, dim2=2) exe_c = swap.bind(mx.cpu(), args=[arr_data]) exe_c.forward() out = exe_c.outputs[0].asnumpy() swap0_ = np.swapaxes(data_tmp, 0, 2) swap_ = np.swapaxes(swap0_, 1, 2) assert reldiff(out, swap_) < 1e-6 def test_scalarop(): data = mx.symbol.Variable('data') shape = (3, 4) data_tmp = np.ones(shape)*5 arr_data = mx.nd.array(data_tmp) arr_grad = mx.nd.empty(shape) arr_grad[:]=3 test = 2 / (4-((1+data+1)*2/5)-0.2) npout_1 = (4-((1+data_tmp+1)*2/5)-0.2) npout = 2/npout_1 check_symbolic_forward(test, [data_tmp], [npout]) npout_grad = 2.*2/5 npout_grad = 2*npout_grad /(npout_1 *npout_1 ) check_symbolic_backward(test, [data_tmp], [np.ones(shape)*2], [npout_grad]) def test_scalar_pow(): data = mx.symbol.Variable('data') shape = (1, 1) data_tmp = np.ones(shape) test = data ** 2 check_numeric_gradient(test, [data_tmp]) check_symbolic_forward(test, [data_tmp], [data_tmp ** 2]) check_symbolic_backward(test, [data_tmp], [np.ones(shape)], [2 * data_tmp]) def test_symbol_pow(): shape = (1, 1) data = mx.symbol.Variable('data') data_tmp = np.ones(shape)*2 exp = mx.symbol.Variable('exp') exp_tmp = np.ones(shape)*3 test = data**exp check_numeric_gradient(test, [data_tmp, exp_tmp]) check_symbolic_forward(test, [data_tmp, exp_tmp], [data_tmp**exp_tmp]) data_dir = data_tmp**(exp_tmp - 1) * exp_tmp exp_dir = data_tmp**(exp_tmp) * np.log(data_tmp) check_symbolic_backward(test, [data_tmp, exp_tmp], [np.ones(shape)], [data_dir, exp_dir]) def test_pow_fn(): shape = (3, 4) exp = mx.symbol.Variable("exp") y = mx.sym.pow(2, exp) x = np.ones(shape)*3 check_numeric_gradient(y, [x]) check_symbolic_forward(y, [x], [2**x]) check_symbolic_backward(y, [x], [np.ones(shape)], [np.log(2) * 2**x]) def test_embedding(): in_dim = 10 out_dim = 4 batch = 24 data = mx.sym.Variable("data") embed = mx.sym.Embedding(data=data, input_dim=in_dim, output_dim=out_dim, name="embed") exe_test = embed.simple_bind(mx.cpu(), grad_req={'data': 'null', 'embed_weight': 'write'}, data=(batch,)) arg_map = dict(zip(embed.list_arguments(), exe_test.arg_arrays)) grad_map = dict(zip(embed.list_arguments(), exe_test.grad_arrays)) np_data = np.random.randint(low=0, high=in_dim, size=batch) np_weight = np.random.uniform(-0.01, 0.01, arg_map["embed_weight"].shape) np_onehot = np.zeros((batch, in_dim)) np_onehot[np.arange(batch), np_data] = 1.0 # forward arg_map["data"][:] = np_data arg_map["embed_weight"][:] = np_weight exe_test.forward() assert reldiff(exe_test.outputs[0].asnumpy(), np.dot(np_onehot, np_weight)) < 1e-6 # backward np_grad = np.random.uniform(-1, 1, exe_test.outputs[0].shape) grad = mx.nd.zeros(np_grad.shape) grad[:] = np_grad exe_test.backward([grad]) assert reldiff(grad_map["embed_weight"].asnumpy(), np.dot(np_onehot.T, np_grad)) < 1e-6 # check ops handle duplicate input correctly. def test_binary_op_duplicate_input(): data = mx.symbol.Variable('data') shape = (3, 4) data_tmp = np.ones(shape) data_tmp[:] = 5 arr_data = mx.nd.array(data_tmp) arr_grad = mx.nd.empty(shape) arr_grad[:] = 3 out_grad = mx.nd.empty(shape) out_grad[:] = 1 square = data * data exe_square = square.bind(mx.cpu(), args=[arr_data], args_grad=[arr_grad]) exe_square.forward() assert reldiff(exe_square.outputs[0].asnumpy(), data_tmp * data_tmp) < 1e-6 exe_square.backward(out_grad) assert reldiff(arr_grad.asnumpy(), 2.0 * data_tmp) < 1e-6 def test_sign(): data = mx.symbol.Variable('data') shape = (3, 4) data_tmp = np.ones(shape) data_tmp[:]=5 arr_data = mx.nd.array(data_tmp) arr_grad = mx.nd.empty(shape) arr_grad[:]=3 test = mx.sym.sign(data) exe_test = test.bind(mx.cpu(), args=[arr_data], args_grad=[arr_grad]) exe_test.forward() out = exe_test.outputs[0].asnumpy() npout = np.sign(data_tmp) assert reldiff(out, npout) < 1e-6 out_grad = mx.nd.empty(shape) out_grad[:] = 2; npout_grad = out_grad.asnumpy() npout_grad = 0; exe_test.backward(out_grad) assert reldiff(arr_grad.asnumpy(), npout_grad) < 1e-6 def test_round_ceil_floor(): data = mx.symbol.Variable('data') shape = (3, 4) data_tmp = np.ones(shape) data_tmp[:]=5.543 arr_data = mx.nd.array(data_tmp) arr_grad = mx.nd.empty(shape) arr_grad[:]= 2 test = mx.sym.round(data) + mx.sym.ceil(data) + mx.sym.floor(data) exe_test = test.bind(mx.cpu(), args=[arr_data]) exe_test.forward() out = exe_test.outputs[0].asnumpy() npout = np.round(data_tmp) + np.ceil(data_tmp) + np.floor(data_tmp) assert reldiff(out, npout) < 1e-6 def test_rsqrt_cos_sin(): data = mx.symbol.Variable('data') shape = (3, 4) data_tmp = np.ones(shape) data_tmp[:]=5 arr_data = mx.nd.array(data_tmp) arr_grad = mx.nd.empty(shape) arr_grad[:]=3 test = mx.sym.rsqrt(data) + mx.sym.cos(data) + mx.sym.sin(data) exe_test = test.bind(mx.cpu(), args=[arr_data], args_grad=[arr_grad]) exe_test.forward() out = exe_test.outputs[0].asnumpy() npout = 1/ np.sqrt(data_tmp) + np.cos(data_tmp) + np.sin(data_tmp) assert reldiff(out, npout) < 1e-6 out_grad = mx.nd.empty(shape) out_grad[:] = 2; npout_grad = out_grad.asnumpy() npout_grad = npout_grad * -(1.0 / (2.0 * data_tmp * np.sqrt(data_tmp))) + npout_grad * -1 * np.sin(data_tmp) + npout_grad * np.cos(data_tmp) exe_test.backward(out_grad) assert reldiff(arr_grad.asnumpy(), npout_grad) < 1e-6 def test_maximum_minimum(): data1 = mx.symbol.Variable('data') data2 = mx.symbol.Variable('data') shape = (3, 4) data_tmp1 = np.random.rand(3,4) data_tmp2 = np.random.rand(3,4) data_tmp1[:] = 2 data_tmp2[:] = 3 arr_data1 = mx.nd.array(data_tmp1) arr_data2 = mx.nd.array(data_tmp2) arr_grad1 = mx.nd.empty(shape) arr_grad2 = mx.nd.empty(shape) test = mx.sym.maximum(data1,data2) + mx.sym.minimum(data1,data2); exe_test = test.bind(mx.cpu(), args=[arr_data1,arr_data2], args_grad=[arr_grad1,arr_grad2]) exe_test.forward() out = exe_test.outputs[0].asnumpy() npout = np.maximum(data_tmp1,data_tmp2) + np.minimum(data_tmp1,data_tmp2) assert reldiff(out, npout) < 1e-6 out_grad = mx.nd.empty(shape) out_grad[:] = 2 exe_test.backward(out_grad) npout_grad = np.ones(shape) npout_grad[:] = 2 mask1 = (data_tmp1 > data_tmp2).astype('float') mask2 = (data_tmp1 < data_tmp2).astype('float') npout_grad1 = npout_grad * mask1 + npout_grad * mask2 npout_grad2 = (npout_grad - npout_grad * mask1) + (npout_grad - npout_grad * mask2) assert reldiff(arr_grad1.asnumpy(), npout_grad1) < 1e-6 assert reldiff(arr_grad2.asnumpy(), npout_grad2) < 1e-6 def test_maximum_minimum_scalar(): data1 = mx.symbol.Variable('data') shape = (3, 4) data_tmp1 = np.random.rand(3,4) data_tmp1[:] = 2 arr_data1 = mx.nd.array(data_tmp1) arr_grad1 = mx.nd.empty(shape) test = mx.sym.maximum(data1,3) + mx.sym.maximum(9,data1) + mx.sym.minimum(5,data1) + mx.sym.minimum(data1,4) exe_test = test.bind(mx.cpu(), args=[arr_data1], args_grad=[arr_grad1]) exe_test.forward() out = exe_test.outputs[0].asnumpy() npout = np.maximum(data_tmp1,3) + np.maximum(9,data_tmp1) + np.minimum(5,data_tmp1) + np.minimum(data_tmp1,4) assert reldiff(out, npout) < 1e-6 out_grad = mx.nd.empty(shape) out_grad[:] = 2 exe_test.backward(out_grad) npout_grad = np.ones(shape) npout_grad[:] = 2 mask1 = (data_tmp1 > 3).astype('float') mask2 = (9 > data_tmp1).astype('float') mask3 = (5 < data_tmp1).astype('float') mask4 = (data_tmp1 < 4).astype('float') npout_grad1 = npout_grad * mask1 + (npout_grad - npout_grad * mask2) + (npout_grad - npout_grad * mask3) + npout_grad * mask4 assert reldiff(arr_grad1.asnumpy(), npout_grad1) < 1e-6 def test_abs(): data = mx.symbol.Variable('data') shape = (3, 4) data_tmp = np.ones(shape) data_tmp[:]=5 arr_data = mx.nd.array(data_tmp) arr_grad = mx.nd.empty(shape) arr_grad[:]=3 test = mx.sym.abs(data) exe_test = test.bind(mx.cpu(), args=[arr_data], args_grad=[arr_grad]) exe_test.forward() out = exe_test.outputs[0].asnumpy() npout = abs(data_tmp) assert reldiff(out, npout) < 1e-6 out_grad = mx.nd.empty(shape) out_grad[:] = 2; npout_grad = out_grad.asnumpy() npout_grad = npout_grad * np.sign(data_tmp) exe_test.backward(out_grad) assert reldiff(arr_grad.asnumpy(), npout_grad) < 1e-6 def check_deconvolution_forward_backward(input_shape, num_filter, kernel, stride, pad): """configure A: input --> conv --> deconv --> output. the convolution and deconvoluiton has similar parameter which ensure the input shape is the same as output, and the same weights between conv and deconv; If the input value of forward() and backwrad() is the same, then the output value of them should also the same; """ assert input_shape[1] == num_filter data = mx.sym.Variable(name="data") conv = mx.sym.Convolution( data=data, kernel=kernel, stride=stride, pad=pad, num_filter=num_filter, no_bias = "true", name = "conv") deconv = mx.sym.Deconvolution( data=conv, kernel=kernel, stride=stride, pad=pad, num_filter=num_filter, no_bias = "true", name = "deconv") arg_names = deconv.list_arguments() arg_shapes, out_shapes, _ = deconv.infer_shape(data=input_shape) input_data = mx.random.uniform(-5, 5, input_shape) out_grad = input_data args = {} args["data"] = input_data args['conv_weight'] = args['deconv_weight'] = mx.random.normal(0, 1, (num_filter, input_shape[1]) + kernel) args_grad = [mx.nd.empty(s) for s in arg_shapes] exe = deconv.bind(mx.cpu(), args=args, args_grad=args_grad) exe.forward() out = exe.outputs[0].asnumpy() exe.backward(out_grad) assert reldiff(out, args_grad[0].asnumpy()) < 1e-6 def check_deconvolution_gradient(input_shape, num_filter, pad): """configure A: input --> conv --> output. configure B: input --> deconv --> output the convolution and deconvoluiton has similar parameter which ensure the input shape is the same as output; During backward(), if the input of A equals output of B, and the output of A equals input of B, then the grad of weight should be the same; """ stride = (1, 1) kernel = (2*pad[0]+1, 2*pad[1]+1) data_conv = mx.sym.Variable(name="data_conv") conv = mx.sym.Convolution( data=data_conv, kernel=kernel, stride=stride, pad=pad, num_filter=num_filter, no_bias = "true", name = "conv") data_deconv = mx.sym.Variable(name="data_deconv") deconv = mx.sym.Deconvolution( data=data_deconv, kernel=kernel, stride=stride, pad=pad, num_filter=num_filter, no_bias = "true", name = "deconv") conv_data = mx.random.uniform(-5, 5, input_shape) conv_args = {} conv_args["data_conv"] = conv_data conv_args['conv_weight'] = \ mx.random.normal(0, 1,(num_filter, input_shape[1]) + kernel) conv_args_grad = [mx.nd.zeros(conv_data.shape), mx.nd.zeros((num_filter, input_shape[1]) + kernel)] exe_conv = conv.bind(mx.cpu(), args=conv_args, args_grad=conv_args_grad) conv_out_grad = mx.random.normal(0, 2, exe_conv.outputs[0].shape) exe_conv.backward(conv_out_grad) deconv_data = conv_out_grad deconv_args = {} deconv_args['data_deconv'] = deconv_data deconv_args['deconv_weight'] = conv_args['conv_weight'] deconv_args_grad = [mx.nd.zeros(deconv_data.shape), mx.nd.zeros((num_filter, input_shape[1]) + kernel)] exe_deconv = deconv.bind(mx.cpu(), args=deconv_args, args_grad=deconv_args_grad) deconv_out_grad = conv_data[:] exe_deconv.backward(deconv_out_grad) assert reldiff(conv_args_grad[1].asnumpy(), deconv_args_grad[1].asnumpy()) < 1e-6 def check_deconvolution_target_shape(input_shape, kernel, stride, pad, adj, target_shape=None): data = mx.sym.Variable(name="data") deconv = mx.sym.Deconvolution( data=data, kernel=kernel, stride=stride, pad=pad, adj=adj, num_filter=5, target_shape = target_shape if target_shape is not None else (0, 0)) arg_names = deconv.list_arguments() arg_shapes, out_shapes, _ = deconv.infer_shape(data=input_shape) assert out_shapes[0] == (input_shape[0], 5, 8, 8) def test_deconvolution(): check_deconvolution_target_shape( input_shape = (2,3,4,4), kernel = (3,3), stride = (2,2), target_shape = (8,8), pad = (99,99), # will be ignored adj = (101,101), # will be ignored ) check_deconvolution_target_shape( input_shape = (2,3,4,4), kernel = (3,3), stride = (2,2), pad = (1,1), adj = (1,1), ) check_deconvolution_forward_backward( input_shape = (1,1,5,5), num_filter = 1, kernel = (3,3), stride = (1,1), pad = (1,1) ) check_deconvolution_forward_backward( input_shape = (32,3,28,28), num_filter = 3, kernel = (3,3), stride = (1,1), pad = (1,1) ) check_deconvolution_forward_backward( input_shape = (10, 3, 403, 403), num_filter = 3, kernel = (7,7), stride = (5,5), pad = (2,2) ) check_deconvolution_gradient( input_shape = (1,3,5,5), num_filter = 3, pad = (1,1) ) check_deconvolution_gradient( input_shape = (5,3,100,100), num_filter = 3, pad = (3,3) ) def check_nearest_upsampling_with_shape(shapes, scale, root_scale): arr = {'arg_%d'%i: mx.random.uniform(-10.0, 10.0, shape) for i, shape in zip(range(len(shapes)), shapes)} arr_grad = {'arg_%d'%i: mx.nd.zeros(shape) for i, shape in zip(range(len(shapes)), shapes)} up = mx.sym.UpSampling(*[mx.sym.Variable('arg_%d'%i) for i in range(len(shapes))], sample_type='nearest', scale=root_scale) exe = up.bind(mx.cpu(), args=arr, args_grad=arr_grad) exe.forward(is_train=True) exe.backward(exe.outputs) for k in range(len(shapes)): name = 'arg_%d'%k assert_allclose(arr[name].asnumpy()*root_scale**2*scale**(2*k), arr_grad[name].asnumpy(), rtol=1e-4) def test_nearest_upsampling(): for root_scale in [1,2,3]: for scale in [1,2,3]: for num_shape in [1,2,3]: for base in [1,2,3]: shapes = [(1,3,base*root_scale*scale**(num_shape-1-i),base*root_scale*scale**(num_shape-1-i)) for i in range(num_shape)] check_nearest_upsampling_with_shape(shapes, scale, root_scale) def test_batchnorm_training(): for shape in [(2, 3), (2, 3, 2, 2)]: data_tmp = np.random.normal(size=shape) s = shape[1], gamma = np.ones(s) beta = np.ones(s) gamma[1] = 3 beta[0] = 3 rolling_mean = np.random.uniform(size=s) rolling_std = np.random.uniform(size=s) data = mx.symbol.Variable('data') test = mx.symbol.BatchNorm(data, fix_gamma=False) check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-3, check_eps=5e-2) # Gamma needs to be fixed at one when fix_gamma is true, gamma = np.ones(s) test = mx.symbol.BatchNorm(data, fix_gamma=True) check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-3, check_eps=5e-2) def test_convolution_grouping(): num_filter = 4 num_group = 2 kernel = (3, 3) shape = (1, 4, 9, 9) x = mx.sym.Variable('x') w = mx.sym.Variable('w') b = mx.sym.Variable('b') y1 = mx.sym.Convolution(data=x, weight=w, bias=b, num_filter=num_filter, num_group=num_group, kernel=kernel) xslice = mx.sym.SliceChannel(data=x, num_outputs=num_group, axis=1) wslice = mx.sym.SliceChannel(data=w, num_outputs=num_group, axis=0) bslice = mx.sym.SliceChannel(data=b, num_outputs=num_group, axis=0) y2 = mx.sym.Concat(*[mx.sym.Convolution(data=xslice[i], weight=wslice[i], bias=bslice[i], num_filter=num_filter//num_group, kernel=kernel) for i in range(num_group)]) exe1 = y1.simple_bind(mx.cpu(), x=shape) exe2 = y2.simple_bind(mx.cpu(), x=shape, w=(num_filter, shape[1]//num_group, kernel[0], kernel[1]), b=(num_filter,)) for arr1, arr2 in zip(exe1.arg_arrays, exe2.arg_arrays): arr1[:] = np.random.normal(size=arr1.shape) arr2[:] = arr1 exe1.forward(is_train=True) exe1.backward(exe1.outputs[0]) exe2.forward(is_train=True) exe2.backward(exe2.outputs[0]) for arr1, arr2 in zip(exe1.outputs + exe1.grad_arrays, exe2.outputs + exe2.grad_arrays): np.testing.assert_allclose(arr1.asnumpy(), arr2.asnumpy(), rtol=1e-3) def _gen_broadcast_data(): # Generate random data that has ndim between 1-7 and all the shape dims between 1-10 ndim = np.random.randint(1, 8) shape = np.random.randint(1, 11, size=(ndim,)) l_same_dim = np.random.randint(0, 5) r_same_dim = np.random.randint(0, 5) l_axis_flags = np.random.randint(0, 2, size=ndim) r_axis_flags = np.random.randint(0, 2, size=ndim) if l_same_dim == 4: l_axis_flags = np.ones(ndim) if r_same_dim == 4: r_axis_flags = np.ones(ndim) l_shape = shape.copy() r_shape = shape.copy() l_shape[np.where(l_axis_flags == 0)] = 1 r_shape[np.where(r_axis_flags == 0)] = 1 return [np.random.random(l_shape), np.random.random(r_shape)] def _check_broadcast_op_forward(symbol, baseline): sample_num = 200 for i in range(sample_num): d = _gen_broadcast_data() x = baseline(d[0], d[1]) y = symbol.bind(mx.cpu(), args={'a': mx.nd.array(d[0]), 'b' : mx.nd.array(d[1])}) y.forward() err = np.sum(np.abs(x - y.outputs[0].asnumpy())) / np.sum(np.abs(x)) assert err < 1e-4, 'error %f, shapes are %s, %s' % ( err, d[0].shape, d[1].shape) def _check_broadcast_op_backward(symbol, baseline): sample_num = 200 for i in range(sample_num): d = _gen_broadcast_data() out = np.random.random((d[0] + d[1]).shape) def reduce_op(shape, x): if shape == x.shape: return x keepdims_shape = list(x.shape) for i in range(len(shape)): if x.shape[i] != shape[i]: keepdims_shape[i] = 1 x = np.sum(x, axis=i).reshape(keepdims_shape) return x baseline_grad1, baseline_grad2 = baseline(out, d[0], d[1]) x_1 = reduce_op(d[0].shape, baseline_grad1) x_2 = reduce_op(d[1].shape, baseline_grad2) y_1 = mx.nd.empty(d[0].shape) y_2 = mx.nd.empty(d[1].shape) y = symbol.bind(mx.cpu(), args={'a': mx.nd.array(d[0]), 'b' : mx.nd.array(d[1])}, args_grad=[y_1, y_2]) y.forward() y.backward([mx.nd.array(out)]) err = lambda x, y: np.sum(np.abs(x-y)) / np.sum(np.abs(x)) err_1 = err(x_1, y_1.asnumpy()) err_2 = err(x_2, y_2.asnumpy()) assert err_1 < 1e-5 and err_2 < 1e-5, 'lhs error %f, rhs error %f, shapes are %s %s' % ( err_1, err_2, d[0].shape, d[1].shape) def test_broadcast_binary_op(): a = mx.sym.Variable('a') b = mx.sym.Variable('b') def test_bplus(a, b): c = mx.sym.broadcast_plus(a, b) _check_broadcast_op_forward(c, lambda a, b: a + b) _check_broadcast_op_backward(c, lambda g_out, a, b: (g_out, g_out)) def test_bminus(a, b): c = mx.sym.broadcast_minus(a, b) _check_broadcast_op_forward(c, lambda a, b: a - b) _check_broadcast_op_backward(c, lambda g_out, a, b: (g_out, - g_out)) def test_bmul(a, b): c = mx.sym.broadcast_mul(a, b) _check_broadcast_op_forward(c, lambda a, b: a * b) _check_broadcast_op_backward(c, lambda g_out, a, b: (g_out * b, g_out * a)) def test_bdiv(a, b): c = mx.sym.broadcast_div(a, b) _check_broadcast_op_forward(c, lambda a, b: a / b) _check_broadcast_op_backward(c, lambda g_out, a, b: (g_out / b, - g_out * a / (b * b))) def test_bpow(a, b): c = mx.sym.broadcast_power(a, b) _check_broadcast_op_forward(c, lambda a, b: a ** b) _check_broadcast_op_backward(c, lambda g_out, a, b: (g_out * a **(b - 1) * b, g_out * a ** b * np.log(a))) test_bplus(a, b) test_bminus(a, b) test_bmul(a, b) test_bdiv(a, b) test_bpow(a, b) def test_run_convolution_dilated_impulse_response(dil=(1,1), kernel_shape=(3,3), verbose=False): # Input for spike response spike_imgs = np.zeros(shape=(1,1,33,33), dtype=np.float32) spike_imgs[0,0,16,16] = 1.0 spike_img = mx.nd.array(spike_imgs) spike_img2 = mx.nd.array(spike_imgs) kernel_weights = mx.nd.ones(shape=tuple([1,1]+list(kernel_shape)), dtype=np.float32) kernel_weights2 = mx.nd.ones(shape=tuple([1,1]+list(kernel_shape)), dtype=np.float32) kernel = mx.symbol.Variable('kernel') in_img = mx.symbol.Variable('input') net = mx.symbol.Convolution(in_img, num_filter=1,kernel=kernel_shape, dilate=dil, no_bias="true", name='test_convolution') net.list_arguments() be = net.bind(mx.cpu(), args={ 'input' : spike_img, 'test_convolution_weight' : kernel_weights}, args_grad={'input' : spike_img2, 'test_convolution_weight' : kernel_weights2 } ) be.forward(True) out_o = be.outputs[0].asnumpy() ndo = be.outputs[0] out_grads = np.zeros(shape=be.outputs[0].shape, dtype=np.float32) out_grads[0,0, 16,16] = 1.0 out_grad = mx.nd.array(out_grads) be.backward([out_grad]) vgrad = be.grad_arrays[0].asnumpy() out = out_o.reshape((out_o.shape[2],out_o.shape[3])) nzx,nzy = np.nonzero(out) assert(np.sum(out)==np.prod(kernel_shape)) assert(np.sum(vgrad)==np.prod(kernel_shape)) # Now check whether the input gradient was computed correctly input_grad = mx.nd.array(vgrad) be = net.bind(mx.cpu(), args={ 'input' : input_grad, 'test_convolution_weight' : kernel_weights}) be.forward(True) out_o = be.outputs[0].asnumpy() assert(out_o[0,0,16,16]==np.prod(kernel_shape)) rnd_kernel_s = np.random.uniform(low=0.0, high=1.0, size=tuple([1,1]+list(kernel_shape))).astype(np.float32) impulse_error = mx.nd.array(out_o/np.sum(out_o)) # This should be 1.0 at [0,0,16,16] rnd_kernel = mx.nd.array(rnd_kernel_s) rnd_kernel2 = mx.nd.array(rnd_kernel_s) white_in = mx.nd.ones(shape=(1,1,33,33)) white_in2 = mx.nd.ones(shape=(1,1,33,33)) be = net.bind(mx.cpu(), args={ 'input' : white_in, 'test_convolution_weight' : rnd_kernel}, args_grad={'input' : white_in2, 'test_convolution_weight' : rnd_kernel2 } ) be.forward(True) be.backward([impulse_error]) out_orig = be.outputs[0].asnumpy() kernel_gradient = be.grad_arrays[1].asnumpy() dkernel = mx.nd.array(rnd_kernel_s + kernel_gradient) be = net.bind(mx.cpu(), args={ 'input' : white_in, 'test_convolution_weight' : dkernel}) be.forward(True) out = be.outputs[0].asnumpy() # Now do a simple check of the kernel gradient assert(out[0,0,16,16] - np.sum(kernel_gradient) - out_orig[0,0,16,16] < 0.001) def test_convolution_dilated_impulse_response(): for dil in [ (1,1), (2,2), (3,3) ]: for ks in [ (3,3), (4,4), (2,3), (3,2), (1,1) ]: test_run_convolution_dilated_impulse_response(dil=dil, kernel_shape=ks) def test_reshape(): def test_reshape_new(src_shape, shape_args, dst_shape): net = mx.sym.Variable("data") net = mx.sym.Reshape(net, shape=shape_args) js = net.tojson() net = mx.sym.load_json(js) _, output_shape, __ = net.infer_shape(data=src_shape) assert output_shape[0] == dst_shape, \ 'Src Shape = %s, Shape Arguments = %s, Dst Shape = %s, Output Shape = %s' \ %(str(src_shape), str(shape_args), str(dst_shape), str(output_shape[0])) dat_npy = np.random.rand(*src_shape) grad_npy = np.random.rand(*dst_shape) exe = net.simple_bind(mx.cpu(), data=src_shape) exe.arg_dict['data'][:] = dat_npy exe.forward(is_train=True) assert np.square(exe.outputs[0].asnumpy() - dat_npy.reshape(dst_shape)).mean() < 1E-7, \ 'Src Shape = %s, Shape Arguments = %s, Dst Shape = %s' %(str(src_shape), str(shape_args), str(dst_shape)) exe.backward(out_grads=mx.nd.array(grad_npy)) assert np.square(exe.grad_dict['data'].asnumpy() - grad_npy.reshape(src_shape)).mean() < 1E-7, \ 'Src Shape = %s, Shape Arguments = %s, Dst Shape = %s' %(str(src_shape), str(shape_args), str(dst_shape)) # Test new api (Using shape) test_cases = [[(2, 3, 5, 5), (0, -1), (2, 75)], [(2, 3, 5, 5), (0, 0, -1), (2, 3, 25)], [(5, 3, 4, 5), (0, -1, 0), (5, 15, 4)], [(2, 3, 5, 4), (-1, 0, 0), (8, 3, 5), [(2, 3, 4, 5), (3, -1, 0), (3, 10, 4)], [(2, 3, 5, 5), (5, 3, 0, -1), (5, 3, 5, 2)], [(2, 3, 5, 5), (0, 0, 0, 0), (2, 3, 5, 5)], [(2, 4, 5, 3), (-1, 2, 2, 1), (30, 2, 2, 1)]]] for test_case in test_cases: test_reshape_new(test_case[0], test_case[1], test_case[2]) # Test old api net = mx.sym.Variable("data") net = mx.sym.Reshape(net, target_shape=(2, 0)) js = net.tojson() net = mx.sym.load_json(js) _, output_shape, __ = net.infer_shape(data=(2, 3, 5, 5)) assert(output_shape[0] == (2, 75)) def test_reduce(): sample_num = 200 def test_reduce_inner(numpy_reduce_func, numpy_reduce_grad_func, mx_reduce_sym): for i in range(sample_num): # Generate random data that has ndim between 1-7 and all the shape dims between 1-10 ndim = np.random.randint(1, 8) shape = np.random.randint(1, 11, size=(ndim,)) axis_num = np.random.randint(0, ndim, size=1) axis_flags = np.random.randint(0, 2, size=ndim) axes = [] for (axis, flag) in enumerate(axis_flags): if flag: axes.append(axis) if 0 == len(axes): axes = None elif 1 == len(axes): axes = axes[0] else: axes = tuple(axes) keepdims = np.random.randint(0, 2) a = mx.symbol.Variable('a') if axes is None: b = mx_reduce_sym(a, keepdims=keepdims) else: b = mx_reduce_sym(a, axis=axes, keepdims=keepdims) dat_npy = np.random.rand(*shape) sum_groundtruth = np.array(numpy_reduce_func(dat_npy, axis=axes, keepdims=keepdims)) if sum_groundtruth.shape == (): sum_groundtruth = np.array([sum_groundtruth]) grad_nd = mx.nd.empty(shape) outgrad_npy = np.array(np.random.rand(*sum_groundtruth.shape)) grad_groundtruth = numpy_reduce_grad_func(outgrad=outgrad_npy, data=dat_npy, axis=axes, keepdims=keepdims) net = b.bind(mx.cpu(), args={'a': mx.nd.array(dat_npy)}, args_grad={'a': grad_nd}) net.forward(is_train=True) err_forward = reldiff(net.outputs[0].asnumpy(), sum_groundtruth) assert err_forward < 1E-4 net.backward(out_grads=mx.nd.array(outgrad_npy)) err_backward = reldiff(grad_nd.asnumpy(), grad_groundtruth) assert err_backward < 1E-4 test_reduce_inner(lambda data, axis, keepdims:_np_reduce(data, axis, keepdims, np.sum), lambda outgrad, data, axis, keepdims: outgrad.reshape(_np_reduce(data, axis, 1, np.sum).shape), mx.symbol.sum) def test_broadcast(): sample_num = 200 for i in range(sample_num): # Generate random data that has ndim between 1-7 and all the shape dims between 1-10 ndim = np.random.randint(1, 8) target_shape = np.random.randint(1, 11, size=(ndim,)) axis = tuple(set(np.random.randint(0, ndim, np.random.randint(1, ndim + 1)))) shape = target_shape.copy() size = tuple([shape[ele] for ele in axis]) for ele in axis: shape[ele] = 1 a = mx.symbol.Variable('a') sym_bcast_axis = mx.symbol.broadcast_axis(a, axis=axis, size=size) sym_bcast_to = mx.symbol.broadcast_to(a, shape=tuple(target_shape)) def test_broadcasting_ele(sym_bcast): dat_npy = np.random.rand(*shape) groundtruth = dat_npy grad_nd = mx.nd.empty(shape) outgrad_npy = np.random.rand(*target_shape) grad_groundtruth = _np_reduce(outgrad_npy, axis=axis, keepdims=True, numpy_reduce_func=np.sum) net = sym_bcast.bind(mx.cpu(), args={'a': mx.nd.array(dat_npy)}, args_grad={'a': grad_nd}) net.forward(is_train=True) assert (net.outputs[0].shape == target_shape).all() err_forward = reldiff(net.outputs[0].asnumpy(), groundtruth) assert err_forward < 1E-4 net.backward(out_grads=mx.nd.array(outgrad_npy)) err_backward = reldiff(grad_nd.asnumpy(), grad_groundtruth) assert err_backward < 1E-4 test_broadcasting_ele(sym_bcast_axis) test_broadcasting_ele(sym_bcast_to) def test_transpose(): for ndim in range(1, 6): for t in range(5): dims = list(np.random.randint(1, 10, size=ndim)) axes = list(range(ndim)) random.shuffle(axes) axes = tuple(axes) x = mx.nd.array(np.random.normal(size=dims)) y = mx.nd.transpose(x, axes=axes) assert_allclose(np.transpose(x.asnumpy(), axes=axes), y.asnumpy()) y = mx.nd.transpose(x) assert_allclose(np.transpose(x.asnumpy()), y.asnumpy()) def test_expand_dims(): for ndim in range(1, 6): for t in range(5): dims = list(np.random.randint(1, 10, size=ndim)) axis = np.random.randint(1, ndim+1) x = mx.nd.array(np.random.normal(size=dims)) y = mx.nd.expand_dims(x, axis=axis) assert_allclose(np.expand_dims(x.asnumpy(), axis=axis), y.asnumpy()) def test_crop(): for ndim in range(1, 6): for t in range(5): dims = [] begin = [] end = [] idx = [] for i in range(ndim): d = random.randint(1, 10) b = random.randint(0, d-1) e = random.randint(b+1, d) dims.append(d) begin.append(b) end.append(e) idx.append(slice(b, e)) x = mx.nd.array(np.random.normal(size=dims)) y = mx.nd.crop(x, begin=tuple(begin), end=tuple(end)) assert_allclose(x.asnumpy()[idx], y.asnumpy()) def test_slice_axis(): for ndim in range(1, 6): shape = np.random.randint(1, 11, size=(ndim,)) for t in range(ndim): d = shape[t] b = random.randint(0, d-1) e = random.randint(b+1, d) idx = [] for i in range(ndim): idx.append(slice(0, shape[i])) idx[t] = slice(b, e) X = mx.symbol.Variable('X') x = mx.nd.array(np.random.normal(size=shape)) Y = mx.symbol.slice_axis(data=X, axis=t, begin=b, end=e) xgrad = mx.nd.empty(x.shape) exec1 = Y.bind(mx.cpu(), args = [x], args_grad = {'X': xgrad}) exec1.forward() y = exec1.outputs[0] assert_allclose(x.asnumpy()[idx], y.asnumpy()) exec1.backward([y]) xx = x.asnumpy() xx[:] = 0.0 xx[idx] = x.asnumpy()[idx] assert_allclose(xx, xgrad.asnumpy()) def test_flip(): for ndim in range(1, 6): for t in range(5): dims = [random.randint(1,10) for i in range(ndim)] axis = random.randint(0, ndim-1) idx = [slice(None, None, -1) if i == axis else slice(None, None) for i in range(ndim)] x = mx.nd.array(np.random.normal(size=dims)) y = mx.nd.flip(x, axis=axis) assert_allclose(x.asnumpy()[idx], y.asnumpy()) if __name__ == '__main__': test_expand_dims() test_slice_axis() test_softmax() test_broadcast_binary_op() test_flip() test_crop() test_transpose() test_convolution_grouping() test_nearest_upsampling() test_binary_op_duplicate_input() test_elementwise_sum() test_concat() test_slice_channel() test_regression() test_python_op() test_swapaxes() test_scalarop() test_scalar_pow() test_symbol_pow() test_pow_fn() test_embedding() test_rsqrt_cos_sin() test_maximum_minimum() test_maximum_minimum_scalar() test_abs() test_round_ceil_floor() test_deconvolution() test_batchnorm_training() check_softmax_with_ignore_label(mx.cpu()) test_convolution_dilated_impulse_response() test_reshape() test_reduce() test_broadcast()
b695c25a6c407051dcf0672150ad0a2044ae0099
5fae2c70329586526b83f1343397b23b065448b2
/indoor_load.py
635ee49de29f65bc34030b66f33d5cf32a674582
[]
no_license
salbali/simulation-of-vav-system-
735b9e569efae7979250bdfb226b0f42e62f12ca
e5192553d25bd52af0a8457eb9b060e75cc4aec5
refs/heads/master
2021-09-22T09:33:54.448674
2018-03-08T13:59:42
2018-03-08T13:59:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,894
py
# !/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import difference_methods import readcsv import air import solar_radiation import load_window import matplotlib.pyplot as plt ## 热负荷计算programme # 1. 数据输入和计算准备 # 1.1 air.py的import和系数 # 表面热传达率 alpha_o = 23 alpha_i = 9.3 # 室内侧热传达对流辐射比 kc = 0.45 kr = 0.55 # 时间间隔 dt = 60 # 1.2 建筑尺寸和外壁材料输入 w_alpha = 45 # 朝向 rho_g = 0.2 # 地面反射率 a_s = 0.7 # 外表面日射吸收率 epsilon = 0.9 # 长波辐射率 # 窗 A1 = 28 # 开口面积 K1 = 6.4 # 热贯流率 AG = 24 # 玻璃面积 tau_TN = 0.79 # 综合透过率 B_N = 0.04 # 吸收日射取得率 # 外壁 A2 = 22.4 A2_material = ["concrete", "rock_wool", "air", "arumi"] A2_d = [0.150, 0.050, 0, 0.2] A2_m = [7, 2, 1, 1] # 内壁 A3 = 100.8 A3_material = ["concrete"] A3_d = [0.120] A3_m = [6] # 床 A4 = 98 A4_material = ["carpet", "concrete", "air", "stonebodo"] A4_d = [0.015, 0.150, 0, 0.012] A4_m = [1, 7, 1, 1] # 天井 A5 = 98 A5_material = ["stonebodo", "air", "concrete", "carpet"] A5_d = [0.012, 0, 0.150, 0.015] A5_m = [1, 1, 7, 1] # 室容积 VOL = 353 CPF = 3500 # 1.3 外表面的方向余弦(参考表6.5) # 1.4 后退差分的ul, ur, ux计算 调用difference_method A2_ul, A2_ur, A2_ux = difference_methods.diff_ux(A2_material, A2_d, A2_m, dt, alpha_i, alpha_o) A3_ul, A3_ur, A3_ux = difference_methods.diff_ux(A3_material, A3_d, A3_m, dt, alpha_i, alpha_i) A4_ul, A4_ur, A4_ux = difference_methods.diff_ux(A4_material, A4_d, A4_m, dt, alpha_i, alpha_i) A5_ul, A5_ur, A5_ux = difference_methods.diff_ux(A5_material, A5_d, A5_m, dt, alpha_i, alpha_i) # 1.5 FIn FOn # 窗 定常 FI = [1 - K1/alpha_i] FO = [K1/alpha_i] # 外壁 # 内壁 # 床 # 天井 (特殊处理:天井看成是床的另一面?) FI.extend([eval("A"+str(i+2)+"_ux[0][0] * A"+str(i+2)+"_ul[0]") for i in range(4)]) FO.extend([eval("A"+str(i+2)+"_ux[0][-1] * A"+str(i+2)+"_ur[-1]") for i in range(4)]) # 1.6 全室内表面积的计算 室内表面辐射吸收率的设定 A_list = [eval("A" + str(i+1)) for i in range(5)] Arm = sum(A_list) # S_Gn = S_Hn = S_Ln = S_An = S_n S_list = [0.7 * A_list[i] / Arm for i in range(5)] S_list[3] = 0.3 + 0.7 * A4 / Arm # 1.7 求ANF SDT AR RMDT RMDTX ANF = np.sum(np.multiply(A_list, FI)) SDT = Arm - kr * ANF AR = Arm * alpha_i * kc * (1 - kc * ANF / SDT) RMDT = (1005 * 1.2 * VOL + CPF) / dt RMDTX = 1.2 * VOL / dt # 2. 运转条件 气象条件的输入 # 2.1 输入 气象读入 # 换气回数 n_air = 0.2 # 室内发热 # 人体 N_H = 16 # 在室人数 H_T = 119 # 全放热量 H_S24 = 62 # 24度的显热量 H_d = 4 # 勾配 # 照明 W_LI = 2900 # 机器 W_AS = 500 W_AL = 0 # 空调设定 T_R_set = 26 phi_R_set = 60 # 气象数据 weather_data = readcsv.weather() RN = weather_data["RN"] outdoor_temp = weather_data["outdoor_temp"] # 2.2 绝对湿度 x_R_set = air.pw2x(air.t_phi2pw(T_R_set+273.15, phi_R_set)) # 2.3 间隙风 [kg/s] Go = 1.2 * n_air * VOL / 3600 # 2.4 室内发热 # 人体 H_s = H_S24 - H_d * (T_R_set - 24) H_l = H_T - H_s Q_HS = N_H * H_s Q_HL = N_H * H_l # 室内发热对流成分 HG_c = 0.5 * Q_HS + 0.6 * W_LI + 0.6 * W_AS # 室内发热辐射成分 HG_r = 0.5 * Q_HS + 0.4 * W_LI + 0.4 * W_AS # 潜热 HLG = Q_HL + W_AL # 3. 初期値设定 # 差分法的初期値 T_R = T_R_set # 4. 边界条件设定 (全年!) # 4.3 日射量的计算 # 窗 [I_d, I_s, I_r, cos_theta, Fs] = solar_radiation.solar_radiation(w_alpha) [Q_GT, Q_GA, Q_GO] = load_window.load_window(26, w_alpha, AG, k=0.85, tau=tau_TN, Bn=B_N, K=K1) # Q_GO是没有用的,所以26度也无所谓 I_w = I_d + I_s + I_r # 4.4 Ten的计算 T_e_1 = Q_GA / A1 / K1 - (epsilon * Fs * RN) / alpha_o + outdoor_temp T_e_2 = (a_s * I_w - epsilon * Fs * RN) / alpha_o + outdoor_temp T_e_3 = 0.7 * T_R + 0.3 * outdoor_temp
f1eb1e35f47c959e4faab077721558c55ff4e254
0be76c7ff5fcaf526fa2d12b0c647ae7dac4ee01
/MODUL_6/No8.py
958a10d772865fa9dd529f0b1ee1f5e89cffe9e3
[]
no_license
L200180148/algostruk_f
3d9723987942d5b64144501883bed5ec69c51151
85173cac3a3c4b274ef9d64edb57ff493e5e2d3c
refs/heads/master
2021-02-13T05:51:17.191202
2020-04-26T06:12:18
2020-04-26T06:12:18
244,667,933
0
0
null
null
null
null
UTF-8
Python
false
false
1,596
py
#Nomor 8 class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def appendList(self, data): node = Node(data) if self.head == None: self.head = node else: curr = self.head while curr.next != None: curr = curr.next curr.next = node def appendSorted(self, data): node = Node(data) curr = self.head prev = None while curr is not None and curr.data < data: prev = curr curr = curr.next if prev == None: self.head = node else: prev.next = node node.next = curr def printList(self): curr = self.head while curr != None: print ("%d"%curr.data), curr = curr.next def mergeSorted(self, list1, list2): if list1 is None: return list2 if list2 is None: return list1 if list1.data < list2.data: temp = list1 temp.next = self.mergeSorted(list1.next, list2) else: temp = list2 temp.next = self.mergeSorted(list1, list2.next) return temp list1 = LinkedList() list1.appendSorted(13) list1.appendSorted(12) list1.appendSorted(3) list1.appendSorted(16) list1.appendSorted(7) print("List 1 :"), list1.printList() list2 = LinkedList() list2.appendSorted(9) list2.appendSorted(10) list2.appendSorted(1) print("List 2 :"), list2.printList() list3 = LinkedList() list3.head = list3.mergeSorted(list1.head, list2.head) print("Merged List :"), list3.printList()
d22003a046bb6dd576dff86e3577f296aea4223d
d9e68125b8f02a618f6cf83c18face5bead8e43d
/recommendation/autoencoder/user_per_cost.py
ccbe795bbf7bbbdd2a6b7c1eedf9051b8b970e9c
[]
no_license
CHENLONGREN/Autoencoder-research
ec201d5375f76c2a76cf864395b6adccaa440606
f2e5264f87a793ee40457324dca6a93a355d253c
refs/heads/master
2023-03-07T00:12:04.277901
2021-02-23T08:16:23
2021-02-23T08:16:23
204,639,844
0
0
null
null
null
null
UTF-8
Python
false
false
321
py
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv("C:/Users/chenl/PycharmProjects/research/traning/per_auto.csv") plt.plot(data['epoch'], data['cost']) plt.xticks(rotation=2) plt.xlabel('epoch') plt.ylabel('avg_cost') plt.title('traning cost') plt.savefig('./user_per_cost.png') plt.show
8797c07640c0f21cdbed37a5c6c1746df8d0c1cd
f22642f05adc6a35d226b32623990f71d41db8e4
/ele/wsgi.py
32bf8f35a7e79c119cfea7baabf180a4f1d45bbe
[]
no_license
wormchaos/ele
6ee1faf3dafe8478e97fb0b8e36867f01380776f
db99a3f6fa331d226616f7dbe499bb7b545bcda1
refs/heads/master
2021-01-22T04:57:21.713747
2016-09-18T11:30:32
2016-09-18T11:30:32
68,516,993
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
""" WSGI config for ele project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ele.settings") application = get_wsgi_application()
838ad524a7ec16b8d6a02bc3bd7163119b6ec67d
d52413173437ba73ecdf822ca895e659f00a8ce7
/kiwibackend/application/submodule/fanyoy/reset_template.py
0c8e2e20620eb8a9ce28057d1fa7136f012b03b0
[]
no_license
whiteprism/mywork
2329b3459c967c079d6185c5acabd6df80cab8ea
a8e568e89744ca7acbc59e4744aff2a0756d7252
refs/heads/master
2021-01-21T11:15:49.090408
2017-03-31T03:28:13
2017-03-31T03:28:13
83,540,646
0
0
null
null
null
null
UTF-8
Python
false
false
379
py
# /usr/bin/env python # -*- coding: utf-8 -* from django.core.cache import get_cache def decorate_active_player(view_func): @wraps(view_func) def decorate(request, *args, **kwds): player = request.player if player and player.is_end_tutorial(): _add_active_player(player) return view_func(request, *args, **kwds) return decorate
c2cb537f158dd780c9a2af8848369339e53f997f
c8a0a370e3bdba7a159911ef9bee0c2bf9401dc7
/Problem Solving with Algorithms and Data Structures using python/05 Sorting and Searching/Sort/01 bubble sort/bubble_sort.py
80ee3147218deed1736d2b5f7fb8255f54b89013
[]
no_license
ht-dep/Algorithms-by-Python
c47d08c27b3e8cb8b9f3f5ebd9c50f6b099281b5
5c5ed701944f6b5ebed1f933d65cc8c31ec42245
refs/heads/master
2020-03-06T23:43:10.988589
2018-01-21T14:54:20
2018-01-21T14:54:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
# coding:utf-8 # bubble sort:循环比较两个相邻位置之间的大小关系 def bubbleSort(num_list): L = len(num_list) while L > 1: for i in range(L-1): if num_list[i]>num_list[i+1]: temp = num_list[i] num_list[i] = num_list[i+1] num_list[i+1] = temp L -= 1 return num_list if __name__ == "__main__": num_list = [54, 26, 93, 17, 77, 31, 44, 55, 20] print bubbleSort(num_list)
bea9db81ee8001e8b8990c331daaa096dabb2f2a
37b5947f77a2e84f17831642f8f610fd92738774
/docs/ch7/anonymous/238.py
cfea98b0656605a0d8fa39635b90b21f8523eff0
[]
no_license
reversalSpring/algoStudy
a75cad011fff19739ef28dc7bcb6d66e8fc66c5b
64408f04ca00ff377f972b3aaa4e067efeaac3df
refs/heads/master
2023-06-26T06:13:30.499499
2021-07-24T09:15:42
2021-07-24T09:15:42
389,052,360
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
from typing import List # https://leetcode.com/problems/product-of-array-except-self/ """ Given an array nums of n integers where n > 1, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i]. Constraint: It's guaranteed that the product of the elements of any prefix or suffix of the array (including the whole array) fits in a 32 bit integer. """ class Solution: def productExceptSelf(self, nums: List[int]) -> List[int]: left = [] p = 1 for i in range(0, len(nums)): left.append(p) p = p * nums[i] p = 1 for i in range(len(nums) - 1, -1, -1): left[i] = left[i] * p p = p * nums[i] return left s = Solution() case = [1,2,3,4] print(s.productExceptSelf(case))
f839f33d95a315e4f7e94c2daf3afdac8b04f301
4f3b92efcd5202d1242b7a833816674f30bb3af2
/tools.py
b3a75b08393c8f5bbcb899ac5f4b4f4eb25e92c5
[]
no_license
niyasl2/auto_gui
9ea9d9fa1f7c78c03fea83463d04231c15956bfa
59dee5492b819b32713e60aa04073e60fc56b097
refs/heads/master
2016-09-06T17:32:56.540743
2012-10-26T14:38:40
2012-10-26T14:38:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,251
py
#------------------------------------------------------------------------------- # Name: module1 # Purpose: # # Author: Administrator # # Created: 29/06/2012 # Copyright: (c) Administrator 2012 # Licence: <your licence> #------------------------------------------------------------------------------- #!/usr/bin/env python import os,sys,shutil,subprocess,time,ssh,re from global_var import * from FindRegression import * import chart import common class Tools: def checkBuild (self,file): print "Checking build..." FILE_STATUS = open(file,'r') # search_for_build_ok = "Wrapped Integrity check successful" search_for_build_ok = "build archive with header using" for line in reversed(FILE_STATUS.readlines()): if re.search(search_for_build_ok, line): return BUILD_OK return BUILD_FAILED def find_index(self,lst,item): if not isinstance(item,basestring): item = item[0] for i in range(0,len(lst)): if(lst[i]==item): if lst == BRANCH_ALLOWED and common.CARDHU: return ((len(BRANCH_ALLOWED)*(len(PLATFORM_ALLOWED)-1))+i) return i return 0 def distclean(self,branch,variant="tango-internal"): i = self.find_index(BRANCH_ALLOWED,branch) cmd = "cd %s ;qjob -noxterm make distclean VARIANT=%s "%(build_dir[i],variant) result = self.ssh_client(cmd) def build(self,branch,cl,reg=False,variant="tango-internal"): print "Building ",branch,cl,variant i = self.find_index(BRANCH_ALLOWED,branch) if os.path.exists(BINARY_LIB+str(cl)+branch+".zlib.wrapped"): return BUILD_OK if os.path.exists(MODEM_BINARY_LOC[i]+"modem-rsa-key0.zlib.wrapped"): os.remove(MODEM_BINARY_LOC[i]+"modem-rsa-key0.zlib.wrapped") #cmd = "cd %s ;p4 sync %s...@%s; make -l ncpus=2 -j6 bin VARIANT=%s "%(build_dir[i],P4BRANCH[i],cl,variant) cmd = "cd %s ;p4 sync %s...@%s; qjob -noxterm make -l ncpus=2 -j6 bin VARIANT=%s "%(build_dir[i],P4BRANCH[i],cl,variant) cmd = "cd %s ;p4 sync %s...@%s; qjob -noxterm make -l ncpus=2 -j6 bin VARIANT=%s "%(build_dir[i],P4BRANCH[i],cl,variant) result = self.ssh_client(cmd) ## if self.checkBuild(BUILD_STATUS_LOC[i]+"%s_build_status.txt"%variant) == BUILD_OK : ## print "Finished" ## return BUILD_OK if os.path.exists(MODEM_BINARY_LOC[i]+"modem-rsa-key0.zlib.wrapped"): print " Build Successful" shutil.copy2(MODEM_BINARY_LOC[i]+"modem-rsa-key0.zlib.wrapped",(BINARY_LIB+str(cl)+branch+".zlib.wrapped")) return BUILD_OK else: if reg: self.distclean(branch) result = self.ssh_client(cmd) # build again if os.path.exists(MODEM_BINARY_LOC[i]+"modem-rsa-key0.zlib.wrapped"): print " Build Successful After cleaning build dir" shutil.copy2(MODEM_BINARY_LOC[i]+"modem-rsa-key0.zlib.wrapped",(BINARY_LIB+str(cl)+branch+".zlib.wrapped")) return BUILD_OK msg = r"BUILD FAILURE FOR CL %s BRANCH %s VARIANT %s\n"%(cl,branch,variant) self.sendMail(msg) file_name = "BUILD_FAILURE_BRANCH_%s_CL_%s.txt"%(branch,str(cl)) try: FILE = open('regression\\'+file_name,'a') for line in result : msg += r'%s'%line FILE.write(line) #print msg FILE.close() #p = subprocess.Popen("echo %s > build_failure_mail"%msg, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) self.sendMail(msg) except: pass return BUILD_FAILED def ssh_client(self,cmd): server = ssh.Connection(host='frsys1', username='gcflab', password='LG!)67wn') result = server.execute(cmd) return result def get_CL_list(self,br,p4br,startCl,endCl): cl_list = [] cmd = "cd %s;p4 changes %s...@%s,@%s" % (br,p4br, startCl, endCl) #print "[get_CL_list]",cmd result = self.ssh_client(cmd) #print result for line in result: #print line try: cl = re.search(re.compile(r'Change (\S+) on'),line).group(1) #if self.failed_build(cl) == False : cl_list.append(cl) except: pass #print cl_list return cl_list def build_regression(self,branch,ko_cl): print "[BUILD_REGRESSION]BUILD FAILURE BRANCH %s CL %s"%(branch,str(ko_cl)) #self.sendMail(r"[BUILD_REGRESSION]BUILD FAILURE BRANCH %s CL %s"%(branch,ko_cl)) i = self.find_index(BRANCH_ALLOWED,branch) ok_cl = chart.Chart().last_build_success(branch,ko_cl) print "OK_CL",ok_cl while True : cl_list = self.get_CL_list(build_dir[i],P4BRANCH[i],ok_cl,ko_cl) print cl_list if(len(cl_list)) == 2 : print "Final OK ",cl_list[1] print "Final KO",cl_list[0] try: self.sendMail(r"BUILD FAILURE BRANCH %s KO_CL %s OK_CL%s"%(branch,cl_list[0],cl_list[1])) file_name = "BUILD_FAILURE_BRANCH_%s_KO_CL_%s_OK_CL%s.txt"%(branch,cl_list[0],cl_list[1]) FILE = open('regression\\'+file_name,'a') FILE.write(file_name) FILE.close() except: pass return cl_list[0],cl_list[1] if(len(cl_list)) == 0 : print "End" return nxt_cl = cl_list[len(cl_list)/2] print nxt_cl build_status = self.build(branch,nxt_cl) if build_status == BUILD_OK : ok_cl = nxt_cl else: ko_cl = nxt_cl def _build(self,branch,cl=0,variant="tango-internal"): #print "Building Branch : ",branch i = self.find_index(BRANCH_ALLOWED,branch) if cl == 0: cl = self.latest_cl(branch) #print "CL",cl if cl != 0 : status = self.build(branch,cl,variant) if status == BUILD_OK : return BUILD_OK,int(cl) else: self.build_regression(branch,cl) print "Build Regression End" return BUILD_FAILED,0 return BUILD_FAILED,0 def sendMail(self,msg): cmd = "echo \"%s\" > txt_msg ; cat txt_msg | ssh frlts mail -s \"Test_Issues\" %s " %(msg,SUPERVISOR) self.ssh_client(cmd) # def sendMail(self,msg): # print "Msg to Send",msg # cmd = "echo \"%s\" > txt_msg ; cat txt_msg | ssh frlts mail -s \"Test_Issues\" %s " %(msg,SUPERVISOR) # self.ssh_client(cmd) # cmd = "echo \"%s\" > txt_msg ; cat txt_msg | mail -s \"Test_Issues2\" [email protected] " %(msg) # self.ssh_client(cmd) # cmd = "echo \"%s\" > txt_msg ; mail -s \"Test_Issues3\" [email protected] < txt_msg" %(msg) # self.ssh_client(cmd) # self.sendMailGCF(msg) def latest_cl(self,branch): i = self.find_index(BRANCH_ALLOWED,branch) #print i #print "cd %s ; p4 changes -m1 %s..."%(build_dir[i],P4BRANCH[i]) result = self.ssh_client("cd %s ; p4 changes -m1 %s..."%(build_dir[i],P4BRANCH[i])) print result for line in result: print line try: cl = re.search(re.compile(r'Change (\S+) on'),line).group(1) except: cl = 0 return cl def string_array(self,element): #element = str(element) if isinstance(element, basestring) :#or isinstance(element,int): scarray = [] scarray.append(element) element = scarray elif isinstance(element,int): scarray=[] scarray.append(element) element = scarray return element def generateBuildReady (self,branch,cl): cmd = "echo \"CL%s\" > %s" % (str(cl),branch) p=subprocess.Popen(cmd,stderr=subprocess.PIPE,shell=True) #NSAIT #print "Generate Build Ready with type=%s, owner=%s, branch=%s, variant=%s, CL%s, %s, %s" % (type, owner, branch, variant, cl, test, band) def find_average(self,list,threshold): tList = [] for i in range(0,len(list)): if(list[i] > threshold): tList.append(list[i]) return int(sum(tList)/len(tList)) def main(): Tools()._build('main') #Tools().sendMail("Hello 2") pass if __name__ == '__main__': #main() #print Tools().get_CL_list(build_dir[0],P4BRANCH[0],472914,472920)#_build('cr3') for platform in PLATFORM_ALLOWED: if platform == 'cardhu': common.CARDHU = True for branch in BRANCH_ALLOWED: i = Tools().find_index(BRANCH_ALLOWED,branch) print EXCEL_FLIST[i],i
c6d78cf5cce4c612fcd874fb058bfddc9d24d3d7
0be66219fa89953dfbd3fdce0d4f5cc1127722d2
/trans_pb/pb.py
b34e951dcdc5fa0e14df148cb508268b40d54f80
[]
no_license
qaz734913414/transfer-.meta-to-.pb
ce60f082073d16bb9191e8e4c7313a225f36fd16
5648e5dd3193d7526b49dc6f96c35359477841e4
refs/heads/master
2020-08-05T04:29:51.602122
2018-07-12T05:45:35
2018-07-12T05:45:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,865
py
#coding:utf-8 import tensorflow as tf from mtcnn_model import P_Net,R_Net, O_Net #1.input placeholder #2.定义网络结构,输入是placeholder; # 定义网络结构时把“if training”部分去掉了,只留下inference部分 #3.restore 旧的ckpt文件(名称类似于xxx.ckpt.data-xxx)的参数值(如,weight); # 如果直接freeze旧的ckpt文件和meta文件为pb文件,会发现print出的节点名字会对不上,直接拿来用也会报错,是不是可以认为训练图和inference的图中节点对不上 #4.save->新的meta文件和ckpt文件 #5.freeze.py freeze graph 生成pb文件 #6.测试是不是可以用。 with tf.Graph().as_default(): with tf.Session() as sess: #inputs_placeholder = tf.placeholder(tf.float32, shape=[None,None,None,3], name='input') #1 ;pnet是全卷积网络,输入大小任意 #inputs_placeholder = tf.placeholder(tf.float32, shape=[None,24,24,3], name='input') #1 ;rnet有全连接层,所以输入是固定大小,onet同理 inputs_placeholder = tf.placeholder(tf.float32, shape=[None,48,48,3], name='input') #1 #cls_pro,bbox_pred,landmark_pred = P_Net(inputs_placeholder) #2 #cls_pro,bbox_pred,landmark_pred = R_Net(inputs_placeholder) #2 cls_pro,bbox_pred,landmark_pred = O_Net(inputs_placeholder) #2 saver = tf.train.Saver() #2 #saver.restore(sess, './old_ckpt/PNet_landmark/PNets/PNet-30') #3 #saver.restore(sess, './old_ckpt/RNet_landmark/RNets/RNet-22') #3 saver.restore(sess, './old_ckpt/ONet_landmark/ONets/ONet-22') #3 for op in tf.get_default_graph().get_operations(): #打印网络中的节点 for t in op.values(): print(t.name) #saver.save(sess,'./new_ckpt_pb/pnet/pnet.ckpt') #4 #saver.save(sess,'./new_ckpt_pb/rnet/rnet.ckpt') #4 saver.save(sess,'./new_ckpt_pb/onet/onet.ckpt') #4
e8bc12338eb61113054e424095b8b5968be09657
30a6024818586766020ce957be386f9240986acb
/mysite/mysite/settings.py
a71bf8e575a7eca99b71d9df16e5d14870a560cb
[]
no_license
Sobakenshi/my-first-blog
474b881623ff66ca98c05f207deb586b391e94f8
a6540c959c068c57ea8649d31cdc4ddac688617d
refs/heads/master
2020-06-02T02:09:22.856261
2019-06-09T20:56:55
2019-06-09T20:56:55
191,002,278
1
0
null
null
null
null
UTF-8
Python
false
false
3,221
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '_x3h)-(t%p$&!d=i#8vl_+2059jl04us4-n6s&0&79v*ozvfm-' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True # ALLOWED_HOSTS = [] ALLOWED_HOSTS = ['127.0.0.1', 'Sobakenshi.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'blog', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'ru-ru' TIME_ZONE = 'Europe/Moscow' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
ffabe999a7beb5c6360d7919db313c9839e0d31f
c279b5c30e2b782efc1b58cd1f8e0b8b325ede6d
/quizy/admin.py
d124df10841f90438ce350f0c12f57896b9036af
[]
no_license
kapisolec/examsite
00f1fdc986903b8b2f670f34a245b490bca6554d
48bb854c759465fbca02baa1ef40723146a5fb3e
refs/heads/master
2022-12-24T03:13:23.421588
2020-10-05T14:09:40
2020-10-05T14:09:40
267,034,896
0
0
null
null
null
null
UTF-8
Python
false
false
1,160
py
from .models import * # Register your models here. from django.contrib import admin from django.utils.translation import gettext_lazy as _ # class OdpowiedziAdminListFilter(admin.SimpleListFilter): # title = _('pytanie') # parameter_name = 'pytanie' # def lookups(self, request, model_admin): # pytania = Odpowiedzi.pytanie.get_queryset() # return [(pytania.pk, pytania.tresc) for pytania in pytania] # def queryset(self, request, queryset): # value = self.value() # if value is not None: # return queryset.filter(pytania_id = self.value()) # return queryset class OdpowiedziAdminModel(admin.ModelAdmin): pytanie = list(Odpowiedzi.pytanie.get_queryset()) list_filter = ('pytanie',) class WynikiAdminModel(admin.ModelAdmin): list_display = ('uzytkownik', 'wynik') list_filter = ('uzytkownik','wynik') admin.site.site_header = 'Panel administracyjny projektu Django' admin.site.register(WynikiModel, WynikiAdminModel) admin.site.register(Pytania) admin.site.register(Odpowiedzi,OdpowiedziAdminModel) admin.site.register(WyborOdpowiedzi) admin.site.register(Uzytkownicy)
9cd23e4e159c5e653cde08597a57d5b95149950f
cb1e63db3a045680997315076c950d8f8bdb9ada
/docs/conf.py
6303a36e20ead580b4eb3593976902c779864cfc
[]
no_license
cloverfeed/ranko
c222979ffad45af71edf88f3f92ee0190f44eaf7
92075b5337097e9e6baf43442ef7f4f5b7177b69
refs/heads/master
2016-09-05T12:27:17.685142
2016-01-16T17:08:19
2016-01-16T17:08:19
19,494,776
1
0
null
2016-01-20T20:21:18
2014-05-06T13:15:31
Python
UTF-8
Python
false
false
8,266
py
# -*- coding: utf-8 -*- # # ranko documentation build configuration file, created by # sphinx-quickstart on Wed Oct 22 09:29:08 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinxcontrib.autohttp.flask', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'ranko' copyright = u'2014, Etienne Millon' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0' # The full version, including alpha/beta/rc tags. release = '0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'rankodoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'ranko.tex', u'ranko Documentation', u'Etienne Millon', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'ranko', u'ranko Documentation', [u'Etienne Millon'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'ranko', u'ranko Documentation', u'Etienne Millon', 'ranko', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
a1fc2862dd9837a78a4d8d46bbf085b30291de55
b835a371d6e96e3bf01e157825367fa8cb977101
/website/userprofile/apps.py
70d5a409abeb2888060e2f4758c296436885962c
[ "MIT" ]
permissive
SebastiaanZ/minigigscyclingteam
c832858c5164c66782a082301bf46df15ded7fc4
6c8c4f7ae41a5b01a551c592dc81fd37fd4f686e
refs/heads/master
2022-11-29T18:22:58.005902
2020-01-28T22:15:42
2020-01-28T22:15:42
196,997,653
0
0
MIT
2022-11-22T05:16:55
2019-07-15T12:49:03
HTML
UTF-8
Python
false
false
616
py
import logging from django.apps import AppConfig from django.contrib.auth import get_user_model from django.db.models.signals import post_save log = logging.getLogger(__name__) class UserprofileConfig(AppConfig): """App configuration for the extended user profile.""" name = 'website.userprofile' def ready(self): """Add signal handlers for User post_save.""" from website.userprofile.signals import create_user_profile, save_user_profile post_save.connect(create_user_profile, sender=get_user_model()) post_save.connect(save_user_profile, sender=get_user_model())
86f0947a9ea548fee059c7e04aef7f9aa0889a43
b46f5825b809c0166622149fc5561c23750b379c
/AppImageBuilder/app_dir/runtimes/classic/helpers/factory.py
9d6ba258dac58c56ed53f44df74516b7789429da
[ "MIT" ]
permissive
gouchi/appimage-builder
22b85cb682f1b126515a6debd34874bd152a4211
40e9851c573179e066af116fb906e9cad8099b59
refs/heads/master
2022-09-28T09:46:11.783837
2020-06-07T19:44:48
2020-06-07T19:44:48
267,360,199
0
0
MIT
2020-05-27T15:42:25
2020-05-27T15:42:24
null
UTF-8
Python
false
false
1,768
py
# Copyright 2020 Alexis Lopez Zubieta # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. from .dynamic_loader import DynamicLoader from .base_helper import BaseHelper from .fontconfig import FontConfig from .gstreamer import GStreamer from .java import Java from .libgl import LibGL from .openssl import OpenSSL from .qt import Qt from .gdk_pixbuf import GdkPixbuf from .glib_schemas import GLibSchemas class HelperFactoryError(RuntimeError): pass class HelperFactory: def __init__(self, app_dir, app_dir_files): self.app_dir = app_dir self.app_dir_files = app_dir_files self.helpers = { 'loader': DynamicLoader, 'fontconfig': FontConfig, 'openssl': OpenSSL, 'qt': Qt, 'libgl': LibGL, 'gstreamer': GStreamer, 'gdk_pixbuf': GdkPixbuf, 'glib_schemas': GLibSchemas, 'java': Java } def get(self, id) -> BaseHelper: if id in self.helpers: obj = self.helpers[id](self.app_dir, self.app_dir_files) return obj else: raise HelperFactoryError('%s: unknown helper id' % id) def list(self): return self.helpers.keys()
bcca1deb423debb367d356f3667ac15b70b767b0
fc5f1e70b48651e3bcd983a8ea2f2e8c64cd25eb
/method_plain_cvxopt.py
95a3d82d84f07479421451e1605f9328e022fb3e
[]
no_license
vishalbelsare/multitask
62d69df764436347a42bdeb6c1681a9b9bb2c819
b8ce676ecb778b17dc39d06878523299fd693bc3
refs/heads/master
2020-04-07T10:30:27.518466
2014-02-01T12:59:33
2014-02-01T12:59:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,567
py
#!/usr/bin/env python2.5 # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # Written (W) 2009 Christian Widmer # Copyright (C) 2009 Max-Planck-Society """ Created on 02.06.2009 @author: Christian Widmer @summary: Implementation of the plain svm method using openopt as solver backend """ import unittest import numpy import helper from shogun.Shogun import LibSVM, SVMLight, StringCharFeatures, Labels from shogun.Shogun import DNA, WeightedDegreeStringKernel from base_method import MultiMethod from expenv_runner import fetch_gammas from openopt import QP debug = False class Method(MultiMethod): def _train(self, train_data, param): """ training procedure using training examples and labels @param train_data: Data relevant to SVM training @type train_data: dict<str, list<instances> > @param param: Parameters for the training procedure @type param: ParameterSvm """ # fix parameters M = len(train_data) predictors = {} # extract training data for (task_id, instance_set) in train_data.items(): print "train task id:", task_id assert(instance_set[0].dataset.organism==task_id) examples = [inst.example for inst in instance_set] labels = [inst.label for inst in instance_set] # shogun data feat = StringCharFeatures(DNA) feat.set_string_features(examples) lab = Labels(numpy.double(labels)) # create kernel k = WeightedDegreeStringKernel(feat, feat, param.wdk_degree, 0) y = numpy.array(labels) km = k.get_kernel_matrix() km = numpy.transpose(y.flatten() * (km*y.flatten()).transpose()) N = len(labels) f = -numpy.ones(N) # set up QP p = QP(km, f, Aeq=y, beq=0, lb=numpy.zeros(N), ub=param.cost*numpy.ones(N)) # run solver r = p.solve('cvxopt_qp', iprint = 0) alphas = r.xf objective = r.ff print "objective:", objective predictors[task_id] = (alphas, param.wdk_degree, examples, labels) return predictors def _predict(self, predictor, examples, task_id): """ make prediction on examples using trained predictor @param predictor: trained predictor @type predictor: array @param examples: list of examples @type examples: list @param task_id: task identifier @type task_id: str """ (alphas, wdk_degree, train_examples, train_labels) = predictor print "length alphas:", len(alphas), ", length train_examples:", len(train_examples), ", length train_labels:", len(train_labels) # shogun data feat_train = StringCharFeatures(DNA) feat_train.set_string_features(list(train_examples)) feat_test = StringCharFeatures(DNA) feat_test.set_string_features(list(examples)) k = WeightedDegreeStringKernel(feat_train, feat_test, wdk_degree, 0) km = k.get_kernel_matrix() alphas = numpy.array(alphas) print "warning: labels missing" #TODO FIX out = numpy.dot(alphas, km) #################### return out
3c4f9c3b72ec831f2ab07a24009b2d30da34cdb4
60f1ecf60ffd240ab30a7282d00063fdf9610c03
/scripts/lightsensors.py
77df8c6cd7fb3cc74a923cbc6717184ca77d4ad8
[ "BSD-3-Clause" ]
permissive
nzhoo/pimouse_ros
e5d4b9220b0069349c2103e077fe65c20da083b3
47f3c3aed88bca45722849b9cf7383cfd1e25f0d
refs/heads/master
2021-05-14T00:02:07.282355
2018-01-25T15:18:21
2018-01-25T15:18:21
116,532,134
0
0
null
null
null
null
UTF-8
Python
false
false
1,260
py
#!/usr/bin/env python #encoding: utf8 import sys, rospy from pimouse_ros.msg import LightSensorValues def get_freq(): f = rospy.get_param('lightsensors_freq',10) try: if f <= 0.0: raise Exception() except: rospy.logerr("value error: lightsensors_freq") sys.exit(1) return f if __name__ == '__main__': devfile = '/dev/rtlightsensor0' rospy.init_node('lightsensors') pub = rospy.Publisher('lightsensors', LightSensorValues, queue_size=1) freq = get_freq() rate = rospy.Rate(freq) while not rospy.is_shutdown(): try: with open(devfile,'r') as f: data = f.readline().split() data = [ int(e) for e in data ] d = LightSensorValues() d.right_forward = data[0] d.right_side = data[1] d.left_side = data[2] d.left_forward = data[3] d.sum_all = sum(data) d.sum_forward = data[0] + data[3] pub.publish(d) except IOError: rospy.logerr("cannot write to " + devfile) f = get_freq() if f != freq: freq = f rate = rospy.Rate(freq) rate.sleep()
8ad9d860ae0c5298d003124bad94cdfcca6b2a0f
8fb49480682a5085e7bc3b31a37e209598a1aa72
/TimeEval/NetworkPolicy_0/t1.py
74b1c6d001dc65d190ca98d1e42fd2156766e809
[]
no_license
vasu018/IoTSecurity
3063edad1d67f9bd1b93d0a2c322d52b2bb78c18
62de6b64dd27109192258f0bfa78db22d2398c28
refs/heads/master
2021-09-17T23:48:28.684601
2018-04-03T17:01:13
2018-04-03T17:01:13
113,246,729
0
0
null
null
null
null
UTF-8
Python
false
false
3,536
py
from c4 import * import sys from timeit import default_timer as timer def get_nnodes(n,parent,poltype,translations): pass def get_network(node): if node in nn: net = nn[node] else: i = re.search('(.*){(.*)}',node) net = "->".join([i.group(2),i.group(1)]) if i.group(2) else i.group(1) if net in ipmap: if node in poltypes and (poltypes[node] in ipmap[net]): return ipmap[net][poltypes[node]] elif node in poltypes: return ipmap[net]['networks'] else: return "" else: print("No mapping found for "+net) return "" if __name__ == "__main__": starttime = timer() Graphs = create_graphs() print(timer()-starttime) sys.exit(0) translations = json.load(open("translate.json", "r")) comp = nx.MultiDiGraph() for g in Graphs: user1_graph = Graphs[g]['main'] mappings= {} #parents = c4.nx.get_node_attributes(user1_graph,"parent") poltypes = nx.get_node_attributes(user1_graph,"polabstract") netnodes = [] for n in user1_graph: if poltypes[n]=='networks': netnodes.append(n) continue elif poltypes[n]=='Hosts': continue mappings[n] = translations[n] if n in translations else 'default' nx.set_node_attributes(user1_graph,"network",mappings) nn = nx.get_node_attributes(user1_graph,"network") for nodes in nn: for networknodes in netnodes: i = re.search('(.*){(.*)}',networknodes) loc1 = "->".join([i.group(2),i.group(1)]) if i.group(2) else i.group(1) if nn[nodes].startswith(loc1): for dest in user1_graph[networknodes]: for e in user1_graph[networknodes][dest]: add_edge([nodes], [dest], user1_graph[networknodes][dest][e], user1_graph,True) comp = nx.compose(comp, user1_graph) # print("\nFollowing is the composed graph:") # for n in comp.adjacency_iter(): # if n[1]: # print(n) composenetnodes = [] poltypes = nx.get_node_attributes(comp,"polabstract") for n in comp: if n in poltypes and poltypes[n]=='networks': composenetnodes.append(n) nn = nx.get_node_attributes(comp,"network") # print("\nPrinting network of other abstraction:") # print(nn) for nodes in nn: for networknodes in composenetnodes: i = re.search('(.*){(.*)}',networknodes) loc1 = "->".join([i.group(2),i.group(1)]) if i.group(2) else i.group(1) if nn[nodes].startswith(loc1): for dest in comp[networknodes]: for e in comp[networknodes][dest]: add_edge([nodes], [dest], comp[networknodes][dest][e], comp,True) finalgraph = nx.MultiDiGraph() ipmap = json.load(open("ipmapping.json", "r")) for n in comp: for dest in comp[n]: s = get_network(n) t = get_network(dest) for e in comp[n][dest]: add_edge([s],[t],comp[n][dest][e],finalgraph) # print("\nFinal Graph after mapping:") # for n in finalgraph.adjacency_iter(): # if n[1]: # print(n) #print(timer()-starttime)
6d0a7d8c0ab32af15ba6dc222b31a043a5970055
ce6ace34704e74c2a53e9b38b2630876d9cd52e2
/mdias_addons/metro_park_maintenance/models/export_produce_plan_wizard.py
73bbf97f7f5bd04a847592c2975e317e4c8985b6
[]
no_license
rezaghanimi/main_mdias
e3cfd8033204d8e7e484041f506892621a3e3479
13b428a5c4ade6278e3e5e996ef10d9fb0fea4b9
refs/heads/master
2022-09-17T20:15:42.305452
2020-05-29T05:38:35
2020-05-29T05:38:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,164
py
# -*- coding: utf-8 -*- from odoo import models, fields, api import pendulum class ExportProducePlanWizard(models.TransientModel): ''' 导出生产计划 ''' _name = 'metro_park_maintenance.export_produce_plan_wizard' end_month = fields.Many2one(string='结束月份', comodel_name='metro_park_maintenance.month', required=True) start_year = fields.Many2one(string='开始年份', comodel_name='metro_park_maintenance.year', required=True) start_month = fields.Many2one(string='开始月份', comodel_name='metro_park_maintenance.month', required=True) end_year = fields.Many2one(string='结束年份', comodel_name='metro_park_maintenance.year', required=True) @api.multi def on_ok(self): ''' 确定按扭点击, 导出对应年月的计划 :return: ''' return { 'name': '月计划下载', 'type': 'ir.actions.act_url', 'url': '/export_produce_plan/{month_plan_id}'.format(month_plan_id=self.id) }
ded5d4b6cbbedfbc0b3d0a7450050a050dd73c7a
079d34639c394e511f772af7cd7f01a7ccdc5111
/flask-structure/web/resource/sample.py
3c9d2ff89a9e24739310ec839981fb6e0cd58bb2
[]
no_license
hinczhang/demo-repository
ffd03013137ba68fbb8f96f04931b89f5c572a4b
f980a00cf8a5bb9e14f7a75be149678657bf5710
refs/heads/main
2023-01-03T02:54:14.038388
2020-11-03T12:28:35
2020-11-03T12:28:35
308,655,500
1
0
null
null
null
null
UTF-8
Python
false
false
506
py
from flask_restful import Resource from flask import Response,request import json #return useful information class Sample(Resource): def get(self):#block get method pass def post(self):#open post method print(json.loads(request.data)['mode'])#the data delivered from frontend to backend are stored in the request.data, which should be jsonfied. data = json.dumps({'sample':'success!'}) res = Response(response=data, status=200, mimetype="application/json")#send message to frontend return res
119f5a12bb5beddeb2cede2d0f3562ae1b6a9630
6d8bb00e42aa128cd47dab310c75be2e5b9d1c97
/crawl2/douban/douban/middlewares.py
1d79896b30e8c5fe16195f046f178dd5c215c758
[]
no_license
LayneIns/CrawlerProject
dcff0dbc7cdfd0a5496f7d03a5d03b31777cbfb6
48cdae511dfb671f3e6d52040f4d98069f2bac33
refs/heads/master
2021-04-15T14:43:58.669794
2018-03-25T16:33:12
2018-03-25T16:33:12
126,717,553
1
1
null
null
null
null
UTF-8
Python
false
false
4,459
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals import random,base64 from fetch_free_proxyes import fetch_all class DoubanSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class DoubanDownloaderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class RandomUserAgent(object): """Randomly rotate user agents based on a list of predefined ones""" def __init__(self, agents): self.agents = agents @classmethod def from_crawler(cls, crawler): return cls(crawler.settings.getlist('USER_AGENTS')) def process_request(self, request, spider): request.headers.setdefault('User-Agent', random.choice(self.agents)) class ProxyMiddleware(object): def __init__(self): self.count = 0 self.PROXIES = [] def process_request(self, request, spider): if self.count % 200 == 0: print 'fetcing proxys ..........' self.PROXIES = fetch_all() proxy = random.choice(self.PROXIES) request.meta['proxy'] = "http://%s" % proxy self.count += 1
f51656b89eb01e0650b076ccb826d8a2aecd11c4
0605abd822f659156b290c75d93006ec6a91e13f
/accounts/models.py
abf8f62baf08471b6310dd7a09ee366bac7cc748
[]
no_license
nickcarva/django-agenda
0bf06b7e0aae22f79914d961bbd50c1c2c6b5f3b
5ddaf7255122ccfdcc58b6e408c352eadbc8b9d6
refs/heads/master
2022-12-08T04:31:04.280272
2020-08-25T15:07:09
2020-08-25T15:07:09
289,528,569
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
from contatos.models import Contato from django import forms class FormContato(forms.ModelForm): class Meta: model = Contato exclude = ()
edec94f06021805f99c337437bd84728ff5f22fe
8853462a79608b7e5b7af94dbfa6c0a63c1f6b6a
/CustomEnvs/Gym envs/2. Crawler/Quadruped_54/Quadruped_54/envs/Quadruped_54.py
3e119be601c9806a60345098a9fbe20c4f692a7b
[]
no_license
Ashish017/CASNET
eaae2552f8d56413f756c7d3839cd6f548a6e1ef
73ec542c4c3fa1f97686796f0c385c71cad3e8d5
refs/heads/master
2023-02-06T06:53:27.362356
2020-12-27T04:43:34
2020-12-27T04:43:34
270,657,078
0
0
null
null
null
null
UTF-8
Python
false
false
5,433
py
import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env import time class model_data: def __init__(self): self.num_legs = 4 self.leg_lengths = [[0.2828, 0.1697, 0.5656],[0.2828, 0.2828, 0.5656],[0.2828, 0.2828, 0.5656],[0.2828,0.2828, 0.6221]] self.leg_starts = [[0.2, 0.2],[0.2, -0.2],[-0.23, -0.23],[-0.2, 0.2]] self.joint_ranges = [[[-0.5234, 0.5234],[-0.5234, 0.5234],[0.1745, 1.57]],[[-0.5234, 0.5234],[-0.5234, 0.5234],[0.3490, 1.1344]],[[-0.5234, 0.5234],[-0.5234, 0.5234],[0.1745, 1.57]],[[-0.5234, 0.5234],[-0.5234, 0.5234],[0.1745, 1.57]]] self.joint_axes = [[[0, 0, 1],[-1, 1, 0],[-1, 1, 0]],[[0, 0, 1],[1, 1, 0],[1, 1, 0]],[[0, 0, -1],[1, -1, 0],[1, -1, 0]],[[0, 0, -1],[-1, -1, 0],[-1, -1, 0]]] self.joint_names = ['hip', 'ankle'] modelData = model_data() def mod(vector): value = ((vector[0]**2 + vector[1]**2)**0.5) return value class Quadruped_v54(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self, add_dummy=False, max_segments=3, max_legs=6): self.add_dummy = add_dummy self.max_legs = max_legs self.max_segments = max_segments if add_dummy: self.dummy_segment = [[0.0,0.0,0.0],[0.0,0.0],[0.0],[0.0]] self.dummy_leg = [[0.0,0.0]] for _ in range(max_segments): self.dummy_leg.extend(self.dummy_segment) mujoco_env.MujocoEnv.__init__(self, 'Quadruped_54.xml', 5) utils.EzPickle.__init__(self) def step(self, a, goal=[0, 1]): goal = np.array(goal) #Pervious xy pos and simulation step x_before = self.get_body_com("torso")[0] y_before = self.get_body_com("torso")[1] self.do_simulation(a, self.frame_skip) #Calculating reward x_after = self.get_body_com("torso")[0] y_after = self.get_body_com("torso")[1] x_movement = x_after - x_before y_movement = y_after - y_before distance_covered = ((x_movement**2) + (y_movement**2))**0.5 speed = distance_covered / self.dt direction = [x_movement/distance_covered, y_movement/distance_covered] dot_product = sum(goal * np.array(direction)) cos_theeta = dot_product / (mod(goal) * mod(direction)) #Whether done state = self.state_vector() not_done = np.isfinite(state).all() and state[2] >= 0.2 done = not not_done ob = self._get_obs() movement_reward = speed * cos_theeta weighted_movement_reward = 2*movement_reward ctrl_cost = (.5 * np.square(a).sum())/(modelData.num_legs+2.0) survive_reward = 1.0 if done: survive_reward = 0 total_reward = weighted_movement_reward - ctrl_cost + survive_reward return ob, total_reward, done, dict( forward_reward=weighted_movement_reward, ctrl_reward = -ctrl_cost, survive_reward = survive_reward ) def _get_obs(self): #Extracting joint_pos joint_pos = [] for leg_number in range(modelData.num_legs): leg_joint_pos = [] added_extra = False for joint in range(len(modelData.joint_names)): joint_qpos_addr = self.model.get_joint_qpos_addr(modelData.joint_names[joint]+ "_" + str(leg_number+1)) joint_qpos = self.data.qpos[joint_qpos_addr] leg_joint_pos.append(float(joint_qpos)) if leg_number == 0 and not added_extra: joint_qpos_addr = self.model.get_joint_qpos_addr('extra_joint_1') joint_qpos = self.data.qpos[joint_qpos_addr] leg_joint_pos.append(float(joint_qpos)) added_extra = True if leg_number == 1 and not added_extra: joint_qpos_addr = self.model.get_joint_qpos_addr('extra_joint_2') joint_qpos = self.data.qpos[joint_qpos_addr] leg_joint_pos.append(float(joint_qpos)) added_extra = True if leg_number == 2 and not added_extra: joint_qpos_addr = self.model.get_joint_qpos_addr('extra_joint_3') joint_qpos = self.data.qpos[joint_qpos_addr] leg_joint_pos.append(float(joint_qpos)) added_extra = True if leg_number == 3 and not added_extra: joint_qpos_addr = self.model.get_joint_qpos_addr('extra_joint_4') joint_qpos = self.data.qpos[joint_qpos_addr] leg_joint_pos.append(float(joint_qpos)) added_extra = True joint_pos.append(leg_joint_pos) self.joint_pos = joint_pos #Preparing observations obs = [] for leg_num in range(modelData.num_legs): obs.append(modelData.leg_starts[leg_num]) #leg_start obs.append(modelData.joint_axes[leg_num][0]) #j1_range obs.append(modelData.joint_ranges[leg_num][0]) #j1_range obs.append([self.joint_pos[leg_num][0]]) #j1_pos obs.append([modelData.leg_lengths[leg_num][0]]) #length_1 obs.append(modelData.joint_axes[leg_num][1]) #j1_range obs.append(modelData.joint_ranges[leg_num][1]) #j2_range obs.append([self.joint_pos[leg_num][1]]) #j2_pos obs.append([modelData.leg_lengths[leg_num][1]]) #length_2 obs.append(modelData.joint_axes[leg_num][2]) #j1_range obs.append(modelData.joint_ranges[leg_num][2]) #j2_range obs.append([self.joint_pos[leg_num][2]]) #j2_pos obs.append([modelData.leg_lengths[leg_num][2]]) if self.add_dummy: for _ in range(self.max_segments - len(modelData.leg_lengths[leg_num])): obs.extend(self.dummy_segment) if self.add_dummy: for _ in range(self.max_legs - modelData.num_legs): obs.extend(self.dummy_leg) obs = [j for i in obs for j in i] obs = np.array(obs) return obs def reset_model(self): qpos = self.init_qpos qvel = self.init_qvel self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): self.viewer.cam.distance = self.model.stat.extent * 0.5
e8aa0117f38aa251e8d8d3669a7a3773d6d5901d
fc978655927aa593f13690b9622217fd3b6b2930
/other/plot_missing_rate.py
d65568a6c28e40e7d799bb49f23a71cc5718c041
[]
no_license
QixinWangCpsLab/Hypoxemia-MLPred
c159dcf1da9fb4a460dafcc1f3afb7bc78c67e29
f18a60dac0a42f504026b9791f1a1e01f5ed6735
refs/heads/master
2023-05-03T11:07:18.343397
2021-05-27T19:26:45
2021-05-27T19:26:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,973
py
from utils.utility_analysis import * from utils.utility_preprocess import PatientFilter, LabelAssignment, DataImputation import numpy as np import matplotlib.pyplot as plt df_dynamic = pd.read_csv('../data/data_frame/dynamic_dataframe.csv') filling_ratio = feature_value_filling_ratio(df_dynamic) feat_name = ['invDiastolic', 'invMeanBP', 'invSystolic', 'HR', 'Diastolic', 'MeanBP', 'Systolic', 'SpO2', 'RespRate', 'PEEP', 'PIP', 'FiO2', 'TidalVolume', 'Pulse', 'ETCO2', 'O2Flow', 'AirFlow', 'N2OFlow', 'Temp', 'coreTemp'] # interpolate if gap is less than 10 timestep mask = df_dynamic[feat_name].copy() df_dynamic_imp = df_dynamic.copy() for column in feat_name: df = pd.DataFrame(df_dynamic_imp[column]) df['new'] = ((df.notnull() != df.shift().notnull()).cumsum()) df['ones'] = 1 mask[column] = (df.groupby('new')['ones'].transform('count') < 20) | df_dynamic_imp[column].notnull() df_dynamic_imp[feat_name] = df_dynamic_imp[feat_name].interpolate().bfill()[mask] df_dynamic_imp[['FiO2', 'N2OFlow']] = df_dynamic_imp[['pid', 'FiO2', 'N2OFlow']].groupby(['pid']).ffill() filling_ratio_imp = feature_value_filling_ratio(df_dynamic_imp) fig = plt.figure(figsize=(9, 4)) ax = fig.add_subplot() # set width of bar barWidth = 0.3 # set height of bar bars1 = list(filling_ratio.values())[3:23] bars2 = list(filling_ratio_imp.values())[3:23] # Set position of bar on X axis r1 = np.arange(len(bars1)) r2 = [x + barWidth for x in r1] # Make the plot plt.bar(r1, bars1, width=barWidth, edgecolor='white', label='Before') plt.bar(r2, bars2, width=barWidth, edgecolor='white', label='After') # Add xticks on the middle of the group bars plt.xticks([r + barWidth for r in range(len(bars1))], list(filling_ratio.keys())[3:]) fig.autofmt_xdate(rotation=45) plt.xlabel('Input Variable', fontweight='bold') plt.ylabel('1 - Missing Rate', fontweight='bold') # Create legend & Show graphic plt.legend() plt.show()
c2fdcfabae899f009f29bec8b1ab76bc09a461dc
5e6549f2dbce8abaf6c107b320e6eb56080f88fe
/website/articles/permissions.py
de270272bd1d508cbba52c45b476ddf395132bd5
[]
no_license
nicholasjuncos/genesis_challenge
fdde1d19ed37c4da3a53b56cda115f492bc19b73
1410a947e91e5996792d5fcfe2641ae8dfde656b
refs/heads/main
2023-03-06T10:58:10.447452
2021-02-20T18:57:25
2021-02-20T18:57:25
340,441,697
0
0
null
null
null
null
UTF-8
Python
false
false
938
py
from rest_framework import permissions class IsAuthorOrReadOnly(permissions.BasePermission): """ Object-level permission to only allow authors of an object to edit it. Assumes the model instance has an `author` attribute. """ def has_permission(self, request, view): return bool( request.method in permissions.SAFE_METHODS or request.user and request.user.is_authenticated ) def has_object_permission(self, request, view, obj): # Read permissions are allowed to any request, # so we'll always allow GET, HEAD or OPTIONS requests. if request.method in permissions.SAFE_METHODS: return True if not request.user.is_authenticated: return False # Instance must have an attribute named `author`. if request.user.is_superuser: return True return obj.author == request.user
346f11569af34e57c2985048448a6df2c9cf2053
556db265723b0cc30ad2917442ed6dad92fd9044
/tensorflow/python/kernel_tests/matrix_exponential_op_test.py
19091a7b070247232290715794580bd2fc461ee0
[ "MIT", "Apache-2.0", "BSD-2-Clause" ]
permissive
graphcore/tensorflow
c1669b489be0e045b3ec856b311b3139858de196
085b20a4b6287eff8c0b792425d52422ab8cbab3
refs/heads/r2.6/sdk-release-3.2
2023-07-06T06:23:53.857743
2023-03-14T13:04:04
2023-03-14T13:48:43
162,717,602
84
17
Apache-2.0
2023-03-25T01:13:37
2018-12-21T13:30:38
C++
UTF-8
Python
false
false
9,441
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.linalg.linalg_impl.matrix_exponential.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.ops.linalg import linalg_impl from tensorflow.python.platform import benchmark from tensorflow.python.platform import test def np_expm(x): # pylint: disable=invalid-name """Slow but accurate Taylor series matrix exponential.""" y = np.zeros(x.shape, dtype=x.dtype) xn = np.eye(x.shape[0], dtype=x.dtype) for n in range(40): if n > 0: xn /= float(n) y += xn xn = np.dot(xn, x) return y class ExponentialOpTest(test.TestCase): def _verifyExponential(self, x, np_type): inp = x.astype(np_type) with test_util.use_gpu(): tf_ans = linalg_impl.matrix_exponential(inp) if x.size == 0: np_ans = np.empty(x.shape, dtype=np_type) else: if x.ndim > 2: np_ans = np.zeros(inp.shape, dtype=np_type) for i in itertools.product(*[range(x) for x in inp.shape[:-2]]): np_ans[i] = np_expm(inp[i]) else: np_ans = np_expm(inp) out = self.evaluate(tf_ans) self.assertAllClose(np_ans, out, rtol=1e-3, atol=1e-3) def _verifyExponentialReal(self, x): for np_type in [np.float32, np.float64]: self._verifyExponential(x, np_type) def _verifyExponentialComplex(self, x): for np_type in [np.complex64, np.complex128]: self._verifyExponential(x, np_type) def _makeBatch(self, matrix1, matrix2): matrix_batch = np.concatenate( [np.expand_dims(matrix1, 0), np.expand_dims(matrix2, 0)]) matrix_batch = np.tile(matrix_batch, [2, 3, 1, 1]) return matrix_batch def testNonsymmetricReal(self): # 2x2 matrices matrix1 = np.array([[1., 2.], [3., 4.]]) matrix2 = np.array([[1., 3.], [3., 5.]]) self._verifyExponentialReal(matrix1) self._verifyExponentialReal(matrix2) # A multidimensional batch of 2x2 matrices self._verifyExponentialReal(self._makeBatch(matrix1, matrix2)) @test_util.run_deprecated_v1 def testNonsymmetricComplex(self): matrix1 = np.array([[1., 2.], [3., 4.]]) matrix2 = np.array([[1., 3.], [3., 5.]]) matrix1 = matrix1.astype(np.complex64) matrix1 += 1j * matrix1 matrix2 = matrix2.astype(np.complex64) matrix2 += 1j * matrix2 self._verifyExponentialComplex(matrix1) self._verifyExponentialComplex(matrix2) # Complex batch self._verifyExponentialComplex(self._makeBatch(matrix1, matrix2)) def testSymmetricPositiveDefiniteReal(self): # 2x2 matrices matrix1 = np.array([[2., 1.], [1., 2.]]) matrix2 = np.array([[3., -1.], [-1., 3.]]) self._verifyExponentialReal(matrix1) self._verifyExponentialReal(matrix2) # A multidimensional batch of 2x2 matrices self._verifyExponentialReal(self._makeBatch(matrix1, matrix2)) def testSymmetricPositiveDefiniteComplex(self): matrix1 = np.array([[2., 1.], [1., 2.]]) matrix2 = np.array([[3., -1.], [-1., 3.]]) matrix1 = matrix1.astype(np.complex64) matrix1 += 1j * matrix1 matrix2 = matrix2.astype(np.complex64) matrix2 += 1j * matrix2 self._verifyExponentialComplex(matrix1) self._verifyExponentialComplex(matrix2) # Complex batch self._verifyExponentialComplex(self._makeBatch(matrix1, matrix2)) @test_util.run_deprecated_v1 def testNonSquareMatrix(self): # When the exponential of a non-square matrix is attempted we should return # an error with self.assertRaises(ValueError): linalg_impl.matrix_exponential(np.array([[1., 2., 3.], [3., 4., 5.]])) @test_util.run_deprecated_v1 def testWrongDimensions(self): # The input to the exponential should be at least a 2-dimensional tensor. tensor3 = constant_op.constant([1., 2.]) with self.assertRaises(ValueError): linalg_impl.matrix_exponential(tensor3) def testInfinite(self): # Check that the op does not loop forever on infinite inputs. (b/158433036) in_tensor = [[np.inf, 1.], [1., 1.]] result = self.evaluate(linalg_impl.matrix_exponential(in_tensor)) self.assertTrue(np.all(np.isnan(result))) def testEmpty(self): self._verifyExponentialReal(np.empty([0, 2, 2])) self._verifyExponentialReal(np.empty([2, 0, 0])) @test_util.run_deprecated_v1 def testDynamic(self): with self.session() as sess: inp = array_ops.placeholder(ops.dtypes.float32) expm = linalg_impl.matrix_exponential(inp) matrix = np.array([[1., 2.], [3., 4.]]) sess.run(expm, feed_dict={inp: matrix}) @test_util.run_deprecated_v1 def testConcurrentExecutesWithoutError(self): with self.session(): matrix1 = random_ops.random_normal([5, 5], seed=42) matrix2 = random_ops.random_normal([5, 5], seed=42) expm1 = linalg_impl.matrix_exponential(matrix1) expm2 = linalg_impl.matrix_exponential(matrix2) expm = self.evaluate([expm1, expm2]) self.assertAllEqual(expm[0], expm[1]) class MatrixExponentialBenchmark(test.Benchmark): shapes = [ (4, 4), (10, 10), (16, 16), (101, 101), (256, 256), (1000, 1000), (1024, 1024), (2048, 2048), (513, 4, 4), (513, 16, 16), (513, 256, 256), ] def _GenerateMatrix(self, shape): batch_shape = shape[:-2] shape = shape[-2:] assert shape[0] == shape[1] n = shape[0] matrix = np.ones(shape).astype(np.float32) / (2.0 * n) + np.diag( np.ones(n).astype(np.float32)) return variables.Variable(np.tile(matrix, batch_shape + (1, 1))) def benchmarkMatrixExponentialOp(self): for shape in self.shapes: with ops.Graph().as_default(), \ session.Session(config=benchmark.benchmark_config()) as sess, \ ops.device("/cpu:0"): matrix = self._GenerateMatrix(shape) expm = linalg_impl.matrix_exponential(matrix) self.evaluate(variables.global_variables_initializer()) self.run_op_benchmark( sess, control_flow_ops.group(expm), min_iters=25, name="matrix_exponential_cpu_{shape}".format(shape=shape)) if test.is_gpu_available(True): with ops.Graph().as_default(), \ session.Session(config=benchmark.benchmark_config()) as sess, \ ops.device("/gpu:0"): matrix = self._GenerateMatrix(shape) expm = linalg_impl.matrix_exponential(matrix) self.evaluate(variables.global_variables_initializer()) self.run_op_benchmark( sess, control_flow_ops.group(expm), min_iters=25, name="matrix_exponential_gpu_{shape}".format(shape=shape)) def _TestRandomSmall(dtype, batch_dims, size): def Test(self): np.random.seed(42) shape = batch_dims + (size, size) matrix = np.random.uniform(low=-1.0, high=1.0, size=shape).astype(dtype) self._verifyExponentialReal(matrix) return Test def _TestL1Norms(dtype, shape, scale): def Test(self): np.random.seed(42) matrix = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape)).reshape(shape).astype(dtype) print(dtype, shape, scale, matrix) l1_norm = np.max(np.sum(np.abs(matrix), axis=matrix.ndim - 2)) matrix /= l1_norm self._verifyExponentialReal(scale * matrix) return Test if __name__ == "__main__": for dtype_ in [np.float32, np.float64, np.complex64, np.complex128]: for batch_ in [(), (2,), (2, 2)]: for size_ in [4, 7]: name = "%s_%d_%d" % (dtype_.__name__, len(batch_), size_) setattr(ExponentialOpTest, "testL1Norms_" + name, _TestRandomSmall(dtype_, batch_, size_)) for shape_ in [(3, 3), (2, 3, 3)]: for dtype_ in [np.float32, np.complex64]: for scale_ in [0.1, 1.5, 5.0, 20.0]: name = "%s_%d_%d" % (dtype_.__name__, len(shape_), int(scale_ * 10)) setattr(ExponentialOpTest, "testL1Norms_" + name, _TestL1Norms(dtype_, shape_, scale_)) for dtype_ in [np.float64, np.complex128]: for scale_ in [0.01, 0.2, 0.5, 1.5, 6.0, 25.0]: name = "%s_%d_%d" % (dtype_.__name__, len(shape_), int(scale_ * 100)) setattr(ExponentialOpTest, "testL1Norms_" + name, _TestL1Norms(dtype_, shape_, scale_)) test.main()
308b0d02dca29100fbdf8b0d39b67404e91d0d0d
4da25f06c5b24c7820fbfb84b21c57ffc3fcf884
/button_serial_port.py
9cdb186c8bb49016859e23c89ac107784832a722
[]
no_license
aplinxy9plin/coffee-bot
4ca9026dea5e14639e06947b40722d81efbe2922
13aad2e754867e6ea43682da14af7b237ee18753
refs/heads/master
2020-04-02T01:41:03.594832
2019-01-18T02:53:24
2019-01-18T02:53:24
153,869,451
0
0
null
null
null
null
UTF-8
Python
false
false
392
py
import RPi.GPIO as GPIO import requests url = "http://localhost:1337/" payload = "YES" # led = 4 key = 3 GPIO.cleanup() # GPIO.setmode(GPIO.BCM) # GPIO.setup(LED, GPIO.OUT) # GPIO.output(LED, GPIO.LOW) GPIO.setup(KEY, GPIO.IN) print("IT WORDS!") while True: if GPIO.input(KEY) == False: response = requests.request("GET", url, data=payload) # ts_alvlvl # print(response.text)
9bba0eea777a34656bae8ba6fecf68e5ac398b7d
65a1c4b7a9b1fcc8717b7d6c8ff7208f629d4c18
/examples/general_image-fetch_py/general_image-fetch.py
248bddf8afbc58b295cc1577cec1b467beae1846
[ "MIT" ]
permissive
ScranchNew/AI_Soccer
7da2e16027f7a59590bbc9be0943711332029d7a
1bf5e29a369a2dcd577aaf8830510150a1f0302d
refs/heads/master
2020-09-29T15:23:34.037599
2019-12-17T12:27:36
2019-12-17T12:27:36
227,062,336
0
0
null
null
null
null
UTF-8
Python
false
false
9,841
py
#!/usr/bin/python3 # Author(s): Luiz Felipe Vecchietti, Chansol Hong, Inbae Jeong # Maintainer: Chansol Hong ([email protected]) from __future__ import print_function from twisted.internet import reactor from twisted.internet.defer import inlineCallbacks from autobahn.wamp.serializer import MsgPackSerializer from autobahn.wamp.types import ComponentConfig from autobahn.twisted.wamp import ApplicationSession, ApplicationRunner import argparse import random import sys import base64 import numpy as np import cv2 #reset_reason NONE = 0 GAME_START = 1 SCORE_MYTEAM = 2 SCORE_OPPONENT = 3 GAME_END = 4 DEADLOCK = 5 GOALKICK = 6 CORNERKICK = 7 PENALTYKICK = 8 HALFTIME = 9 EPISODE_END = 10 #game_state STATE_DEFAULT = 0 STATE_KICKOFF = 1 STATE_GOALKICK = 2 STATE_CORNERKICK = 3 STATE_PENALTYKICK = 4 #coordinates MY_TEAM = 0 OP_TEAM = 1 BALL = 2 X = 0 Y = 1 TH = 2 ACTIVE = 3 TOUCH = 4 class Received_Image(object): def __init__(self, resolution, colorChannels): self.resolution = resolution self.colorChannels = colorChannels # need to initialize the matrix at timestep 0 self.ImageBuffer = np.zeros((resolution[1], resolution[0], colorChannels)) # rows, columns, colorchannels def update_image(self, received_parts): self.received_parts = received_parts for i in range(0,len(received_parts)): dec_msg = base64.b64decode(self.received_parts[i].b64, '-_') # decode the base64 message np_msg = np.fromstring(dec_msg, dtype=np.uint8) # convert byte array to numpy array reshaped_msg = np_msg.reshape((self.received_parts[i].height, self.received_parts[i].width, 3)) for j in range(0, self.received_parts[i].height): # y axis for k in range(0, self.received_parts[i].width): # x axis self.ImageBuffer[j+self.received_parts[i].y, k+self.received_parts[i].x, 0] = reshaped_msg[j, k, 0] # blue channel self.ImageBuffer[j+self.received_parts[i].y, k+self.received_parts[i].x, 1] = reshaped_msg[j, k, 1] # green channel self.ImageBuffer[j+self.received_parts[i].y, k+self.received_parts[i].x, 2] = reshaped_msg[j, k, 2] # red channel class SubImage(object): def __init__(self, x, y, width, height, b64): self.x = x self.y = y self.width = width self.height = height self.b64 = b64 class Frame(object): def __init__(self): self.time = None self.score = None self.reset_reason = None self.subimages = None self.coordinates = None self.half_passed = None class Component(ApplicationSession): """ AI Base + Random Walk """ def __init__(self, config): ApplicationSession.__init__(self, config) def printConsole(self, message): print(message) sys.__stdout__.flush() def onConnect(self): self.join(self.config.realm) @inlineCallbacks def onJoin(self, details): ############################################################################## def init_variables(self, info): # Here you have the information of the game (virtual init() in random_walk.cpp) # List: game_time, number_of_robots # field, goal, penalty_area, goal_area, resolution Dimension: [x, y] # ball_radius, ball_mass, # robot_size, robot_height, axle_length, robot_body_mass, ID: [0, 1, 2, 3, 4] # wheel_radius, wheel_mass, ID: [0, 1, 2, 3, 4] # max_linear_velocity, max_torque, codewords, ID: [0, 1, 2, 3, 4] # self.game_time = info['game_time'] self.number_of_robots = info['number_of_robots'] # self.field = info['field'] # self.goal = info['goal'] # self.penalty_area = info['penalty_area'] # self.goal_area = info['goal_area'] self.resolution = info['resolution'] # self.ball_radius = info['ball_radius'] # self.ball_mass = info['ball_mass'] # self.robot_size = info['robot_size'] # self.robot_height = info['robot_height'] # self.axle_length = info['axle_length'] # self.robot_body_mass = info['robot_body_mass'] # self.wheel_radius = info['wheel_radius'] # self.wheel_mass = info['wheel_mass'] self.max_linear_velocity = info['max_linear_velocity'] # self.max_torque = info['max_torque'] # self.codewords = info['codewords'] self.colorChannels = 3 self.end_of_frame = False self.received_frame = Frame() self.image = Received_Image(self.resolution, self.colorChannels) return ############################################################################## try: info = yield self.call(u'aiwc.get_info', args.key) except Exception as e: self.printConsole("Error: {}".format(e)) else: try: self.sub = yield self.subscribe(self.on_event, args.key) except Exception as e2: self.printConsole("Error: {}".format(e2)) init_variables(self, info) try: yield self.call(u'aiwc.ready', args.key) except Exception as e: self.printConsole("Error: {}".format(e)) else: self.printConsole("I am ready for the game!") @inlineCallbacks def on_event(self, f): @inlineCallbacks def set_wheel(self, robot_wheels): yield self.call(u'aiwc.set_speed', args.key, robot_wheels) return # initiate empty frame if (self.end_of_frame): self.received_frame = Frame() self.end_of_frame = False received_subimages = [] if 'time' in f: self.received_frame.time = f['time'] if 'score' in f: self.received_frame.score = f['score'] if 'reset_reason' in f: self.received_frame.reset_reason = f['reset_reason'] if 'half_passed' in f: self.received_frame.half_passed = f['half_passed'] if 'subimages' in f: self.received_frame.subimages = f['subimages'] # Comment the next lines if you don't need to use the image information for s in self.received_frame.subimages: received_subimages.append(SubImage(s['x'], s['y'], s['w'], s['h'], s['base64'].encode('utf8'))) # This function updates the image data stored in 'self.image.ImageBuffer' # Do not directly modify 'self.image.ImageBuffer' image updates are done in a way that # only the parts of the old frame that have been changed are overwritten by the new data self.image.update_image(received_subimages) if 'coordinates' in f: self.received_frame.coordinates = f['coordinates'] if 'EOF' in f: self.end_of_frame = f['EOF'] #self.printConsole(self.received_frame.time) #self.printConsole(self.received_frame.score) #self.printConsole(self.received_frame.reset_reason) #self.printConsole(self.end_of_frame) if (self.end_of_frame): # To get the image at the end of each frame use the variable: # self.image.ImageBuffer ############################################################################## #(virtual update()) # OpenCV uses [0, 1] range for describing an RGB image stored in a numpy array # that ImageBuffer's [0, 255] range should be transformed to [0, 1] cv2.imshow('image', self.image.ImageBuffer / 255.0) cv2.waitKey(1) ############################################################################## if(self.received_frame.reset_reason == GAME_END): ############################################################################## #(virtual finish()) #save your data with open(args.datapath + '/result.txt', 'w') as output: #output.write('yourvariables') output.close() #unsubscribe; reset or leave yield self.sub.unsubscribe() try: yield self.leave() except Exception as e: self.printConsole("Error: {}".format(e)) ############################################################################## self.end_of_frame = False def onDisconnect(self): if reactor.running: reactor.stop() if __name__ == '__main__': try: unicode except NameError: # Define 'unicode' for Python 3 def unicode(s, *_): return s def to_unicode(s): return unicode(s, "utf-8") parser = argparse.ArgumentParser() parser.add_argument("server_ip", type=to_unicode) parser.add_argument("port", type=to_unicode) parser.add_argument("realm", type=to_unicode) parser.add_argument("key", type=to_unicode) parser.add_argument("datapath", type=to_unicode) args = parser.parse_args() ai_sv = "rs://" + args.server_ip + ":" + args.port ai_realm = args.realm # create a Wamp session object session = Component(ComponentConfig(ai_realm, {})) # initialize the msgpack serializer serializer = MsgPackSerializer() # use Wamp-over-rawsocket runner = ApplicationRunner(ai_sv, ai_realm, serializers=[serializer]) runner.run(session, auto_reconnect=False)
e21455b3d626aa0bc0e3bf9b392747e1f9b49898
c942e898ab37539cd580abe165b534ce5e1091e1
/exercise files/Ch2/classes_start.py
4e8f8254a592d547d9b6fa3e685b255270d0e4f5
[]
no_license
Carmiej/Learning-Python
4c7c16b6d8c4bfe7f0a6a55fdc65b3bdd5a52fcf
382edfbbe860125be6254dcf3e2b306d70cc3b16
refs/heads/main
2023-01-08T10:27:26.678034
2020-10-30T03:23:27
2020-10-30T03:23:27
308,513,260
0
0
null
null
null
null
UTF-8
Python
false
false
607
py
# # Example file for working with classes # class myClass(): def method1(self): print("myClass method1") def method2(self, someString): print("myClass ,method2 " + someString) class anotherClass(myClass): def method1(self): myClass.method1(self) print("anotherClass method1") def method2(self, someString): print("anotherClass ,method2 " + someString) def main(): c = myClass() c.method1() c.method2("This is a String") c2= anotherClass() c2.method1() c2.method2("This is a String") if __name__ == "__main__": main()
f3cdae6081e906458eedf1db091b5d53cb5464ab
3b9194499503f9e06dbebe113c53afad0b572ab2
/Visualization/VisualizeBrainSpanExpression_plotly.py
23b6877c726642d0d3c2209dba5b38d0c81b22ca
[]
no_license
JulseJiang/DrugKBPrototype
0bffa42b2913996d22e40942d24c4da0feb76f33
34567630fe8febb1ea6827541fd3d92f42935ecc
refs/heads/main
2023-03-19T17:57:14.822743
2021-03-18T11:54:22
2021-03-18T11:54:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,299
py
# -*- encoding: utf-8 -*- # ------------------------------------------------------------------------------- # @file: VisualizeBrainSpanExpression # @Author: GuoSijia # @Purpose: # @Created: 2018-09-25 # @update: 2018-09-25 11:34 # @Software: PyCharm # ------------------------------------------------------------------------------- from pyecharts import Bar, Line, Scatter, Overlap, Page import pandas as pd import math import pymongo import pyecharts import plotly.plotly import plotly.graph_objs as go class DataStorage: def __init__(self, name): self.name = name self.path = self.__login() def __login(self): client = pymongo.MongoClient("127.0.0.1", 27017) db = client['Denovo'] # db.authenticate("tanxian123", "123456") collection = client['Denovo'][self.name] return collection def FindByID(self, ID): x = self.path.find_one({'ENTREZ_ID': ID}) return x class Brain_Dic: def __init__(self): pass def brain_dic(self): brain_list = {'10': ['13', 'amygdala', '20-39Y'], '22': ['12', 'cerebellum', '12-19Y'], '100': ['8', 'cortex', '0-5M'], '179': ['2', 'striatum', '8-9PCW'], '96': ['8', 'cortex', '0-5M'], '158': ['14', 'cortex', '40Y'], '117': ['10', 'cortex', '1-5Y'], '137': ['12', 'cortex', '12-19Y'], '113': ['10', 'cortex', '1-5Y'], '53': ['4', 'cortex', '13-15PCW'], '140': ['12', 'cortex', '12-19Y'], '38': ['3', 'cortex', '10-12PCW'], '70': ['6', 'cortex', '19-23PCW'], '183': ['6', 'striatum', '19-23PCW'], '55': ['4', 'cortex', '13-15PCW'], '24': ['14', 'cerebellum', '40Y'], '157': ['14', 'cortex', '40Y'], '73': ['6', 'cortex', '19-23PCW'], '185': ['8', 'striatum', '0-5M'], '126': ['11', 'cortex', '6-11Y'], '145': ['13', 'cortex', '20-39Y'], '175': ['13', 'hippocampus', '20-39Y'], '74': ['6', 'cortex', '19-23PCW'], '45': ['3', 'cortex', '10-12PCW'], '88': ['7', 'cortex', '24-37PCW'], '7': ['10', 'amygdala', '1-5Y'], '65': ['5', 'cortex', '16-18PCW'], '78': ['6', 'cortex', '19-23PCW'], '156': ['14', 'cortex', '40Y'], '119': ['10', 'cortex', '1-5Y'], '104': ['9', 'cortex', '6-11M'], '76': ['6', 'cortex', '19-23PCW'], '69': ['6', 'cortex', '19-23PCW'], '184': ['7', 'striatum', '24-37PCW'], '60': ['5', 'cortex', '16-18PCW'], '17': ['7', 'cerebellum', '24-37PCW'], '182': ['5', 'striatum', '16-18PCW'], '39': ['3', 'cortex', '10-12PCW'], '85': ['7', 'cortex', '24-37PCW'], '169': ['6', 'hippocampus', '19-23PCW'], '49': ['4', 'cortex', '13-15PCW'], '177': ['2', 'striatum', '8-9PCW'], '148': ['13', 'cortex', '20-39Y'], '18': ['8', 'cerebellum', '0-5M'], '187': ['11', 'striatum', '6-11Y'], '149': ['13', 'cortex', '20-39Y'], '142': ['12', 'cortex', '12-19Y'], '13': ['3', 'cerebellum', '10-12PCW'], '97': ['8', 'cortex', '0-5M'], '20': ['10', 'cerebellum', '1-5Y'], '42': ['3', 'cortex', '10-12PCW'], '153': ['13', 'cortex', '20-39Y'], '12': ['2', 'cerebellum', '8-9PCW'], '71': ['6', 'cortex', '19-23PCW'], '56': ['4', 'cortex', '13-15PCW'], '132': ['11', 'cortex', '6-11Y'], '58': ['5', 'cortex', '16-18PCW'], '164': ['14', 'cortex', '40Y'], '84': ['7', 'cortex', '24-37PCW'], '26': ['2', 'cortex', '8-9PCW'], '90': ['7', 'cortex', '24-37PCW'], '89': ['7', 'cortex', '24-37PCW'], '116': ['10', 'cortex', '1-5Y'], '87': ['7', 'cortex', '24-37PCW'], '201': ['12', 'thalamus', '12-19Y'], '44': ['3', 'cortex', '10-12PCW'], '166': ['3', 'hippocampus', '10-12PCW'], '8': ['11', 'amygdala', '6-11Y'], '43': ['3', 'cortex', '10-12PCW'], '32': ['2', 'cortex', '8-9PCW'], '172': ['10', 'hippocampus', '1-5Y'], '25': ['2', 'cortex', '8-9PCW'], '155': ['14', 'cortex', '40Y'], '167': ['4', 'hippocampus', '13-15PCW'], '129': ['11', 'cortex', '6-11Y'], '122': ['11', 'cortex', '6-11Y'], '178': ['2', 'striatum', '8-9PCW'], '46': ['4', 'cortex', '13-15PCW'], '165': ['2', 'hippocampus', '8-9PCW'], '64': ['5', 'cortex', '16-18PCW'], '1': ['3', 'amygdala', '10-12PCW'], '174': ['12', 'hippocampus', '12-19Y'], '202': ['13', 'thalamus', '20-39Y'], '168': ['5', 'hippocampus', '16-18PCW'], '108': ['9', 'cortex', '6-11M'], '109': ['9', 'cortex', '6-11M'], '139': ['12', 'cortex', '12-19Y'], '79': ['6', 'cortex', '19-23PCW'], '198': ['9', 'thalamus', '6-11M'], '147': ['13', 'cortex', '20-39Y'], '86': ['7', 'cortex', '24-37PCW'], '128': ['11', 'cortex', '6-11Y'], '134': ['12', 'cortex', '12-19Y'], '59': ['5', 'cortex', '16-18PCW'], '72': ['6', 'cortex', '19-23PCW'], '23': ['13', 'cerebellum', '20-39Y'], '127': ['11', 'cortex', '6-11Y'], '195': ['6', 'thalamus', '19-23PCW'], '162': ['14', 'cortex', '40Y'], '94': ['8', 'cortex', '0-5M'], '66': ['5', 'cortex', '16-18PCW'], '57': ['5', 'cortex', '16-18PCW'], '37': ['3', 'cortex', '10-12PCW'], '131': ['11', 'cortex', '6-11Y'], '81': ['7', 'cortex', '24-37PCW'], '152': ['13', 'cortex', '20-39Y'], '159': ['14', 'cortex', '40Y'], '11': ['14', 'amygdala', '40Y'], '16': ['6', 'cerebellum', '19-23PCW'], '154': ['13', 'cortex', '20-39Y'], '144': ['13', 'cortex', '20-39Y'], '14': ['4', 'cerebellum', '13-15PCW'], '40': ['3', 'cortex', '10-12PCW'], '31': ['2', 'cortex', '8-9PCW'], '82': ['7', 'cortex', '24-37PCW'], '54': ['4', 'cortex', '13-15PCW'], '123': ['11', 'cortex', '6-11Y'], '136': ['12', 'cortex', '12-19Y'], '121': ['10', 'cortex', '1-5Y'], '61': ['5', 'cortex', '16-18PCW'], '110': ['9', 'cortex', '6-11M'], '67': ['5', 'cortex', '16-18PCW'], '146': ['13', 'cortex', '20-39Y'], '91': ['7', 'cortex', '24-37PCW'], '34': ['2', 'cortex', '8-9PCW'], '193': ['4', 'thalamus', '13-15PCW'], '80': ['6', 'cortex', '19-23PCW'], '192': ['3', 'thalamus', '10-12PCW'], '194': ['5', 'thalamus', '16-18PCW'], '99': ['8', 'cortex', '0-5M'], '190': ['14', 'striatum', '40Y'], '93': ['8', 'cortex', '0-5M'], '133': ['12', 'cortex', '12-19Y'], '19': ['9', 'cerebellum', '6-11M'], '150': ['13', 'cortex', '20-39Y'], '186': ['10', 'striatum', '1-5Y'], '77': ['6', 'cortex', '19-23PCW'], '63': ['5', 'cortex', '16-18PCW'], '107': ['9', 'cortex', '6-11M'], '114': ['10', 'cortex', '1-5Y'], '200': ['11', 'thalamus', '6-11Y'], '143': ['12', 'cortex', '12-19Y'], '124': ['11', 'cortex', '6-11Y'], '120': ['10', 'cortex', '1-5Y'], '112': ['10', 'cortex', '1-5Y'], '203': ['14', 'thalamus', '40Y'], '191': ['2', 'thalamus', '8-9PCW'], '130': ['11', 'cortex', '6-11Y'], '28': ['2', 'cortex', '8-9PCW'], '196': ['7', 'thalamus', '24-37PCW'], '15': ['5', 'cerebellum', '16-18PCW'], '105': ['9', 'cortex', '6-11M'], '163': ['14', 'cortex', '40Y'], '138': ['12', 'cortex', '12-19Y'], '125': ['11', 'cortex', '6-11Y'], '118': ['10', 'cortex', '1-5Y'], '5': ['7', 'amygdala', '24-37PCW'], '173': ['11', 'hippocampus', '6-11Y'], '141': ['12', 'cortex', '12-19Y'], '160': ['14', 'cortex', '40Y'], '180': ['3', 'striatum', '10-12PCW'], '36': ['3', 'cortex', '10-12PCW'], '30': ['2', 'cortex', '8-9PCW'], '3': ['5', 'amygdala', '16-18PCW'], '151': ['13', 'cortex', '20-39Y'], '135': ['12', 'cortex', '12-19Y'], '4': ['6', 'amygdala', '19-23PCW'], '68': ['5', 'cortex', '16-18PCW'], '98': ['8', 'cortex', '0-5M'], '50': ['4', 'cortex', '13-15PCW'], '115': ['10', 'cortex', '1-5Y'], '106': ['9', 'cortex', '6-11M'], '75': ['6', 'cortex', '19-23PCW'], '176': ['14', 'hippocampus', '40Y'], '161': ['14', 'cortex', '40Y'], '171': ['8', 'hippocampus', '0-5M'], '41': ['3', 'cortex', '10-12PCW'], '2': ['4', 'amygdala', '13-15PCW'], '83': ['7', 'cortex', '24-37PCW'], '52': ['4', 'cortex', '13-15PCW'], '27': ['2', 'cortex', '8-9PCW'], '189': ['13', 'striatum', '20-39Y'], '33': ['2', 'cortex', '8-9PCW'], '181': ['4', 'striatum', '13-15PCW'], '199': ['10', 'thalamus', '1-5Y'], '48': ['4', 'cortex', '13-15PCW'], '21': ['11', 'cerebellum', '6-11Y'], '47': ['4', 'cortex', '13-15PCW'], '95': ['8', 'cortex', '0-5M'], '6': ['8', 'amygdala', '0-5M'], '111': ['10', 'cortex', '1-5Y'], '92': ['8', 'cortex', '0-5M'], '51': ['4', 'cortex', '13-15PCW'], '9': ['12', 'amygdala', '12-19Y'], '29': ['2', 'cortex', '8-9PCW'], '0': ['2', 'amygdala', '8-9PCW'], '103': ['9', 'cortex', '6-11M'], '188': ['12', 'striatum', '12-19Y'], '197': ['8', 'thalamus', '0-5M'], '170': ['7', 'hippocampus', '24-37PCW'], '62': ['5', 'cortex', '16-18PCW'], '102': ['8', 'cortex', '0-5M'], '101': ['8', 'cortex', '0-5M'], '35': ['3', 'cortex', '10-12PCW']} return brain_list class dict_brainSpan(): def dict_gene2(self, id, data, brainDic): brainSpan_key = brainDic.brain_dic() data_brainSpan = data['BrainspanX'][0] data_brainSpan.pop('ENTREZ_ID') data_brainSpan_key = [int(i) for i in list(data_brainSpan.keys())] # t data_brainSpan_value = [float(i) for i in list(data_brainSpan.values())] # c """ type为系列 """ others_type = ['amygdala', 'cerebellum', 'hippocampus', 'thalamus'] """ 获取数据 """ max_value = 0 data = pd.DataFrame({str(id): data_brainSpan_value}, index=data_brainSpan_key).sort_index()[str(id)] # print(data) max_value = math.log2(max(data) + 1.0) new_df = pd.DataFrame(brainSpan_key, index=['#Period index', 'brain region', 'period info']).T new_df[['#Period index']] = new_df[['#Period index']].apply(pd.to_numeric) new_df = new_df.sort_values(by=['brain region', '#Period index']) list_others_data = [['' for j in range(13)] for i in range(4)] for i in range(len(new_df['brain region'])): if new_df.iloc[i, 1] in others_type: loc_type = others_type.index(new_df.iloc[i, 1]) p = new_df.iloc[i, 0] list_others_data[loc_type][p - 2] = math.log2(data[i] + 1.0) list_special_cortex = [[] for j in range(13)] list_special_striatum = [[] for j in range(13)] for i in range(len(new_df['brain region'])): if new_df.iloc[i, 1] in "cortex": p = new_df.iloc[i, 0] list_special_cortex[p - 2].append(math.log2(data[i] + 1.0)) if new_df.iloc[i, 1] in "striatum": p = new_df.iloc[i, 0] list_special_striatum[p - 2].append(math.log2(data[i] + 1.0)) # print('*******************') # print(others_type) # print(list_others_data) # print(list_special_striatum) # print(list_special_cortex) # print(max_value) # print('*******************') return others_type, list_others_data, list_special_striatum, list_special_cortex, max_value class data_plot(object): ''' 根据处理后的数据后画图 ''' def __init__(self): pass def LineAndBox_plot(self, geneName, others_type, list_others_data, list_special_striatum, list_special_cortex, max): traces = [] grid = Page() colors = ['rgb(127,127,127)', 'rgb(188,189,34)', '#BC3C29FF', '#20854EFF', 'rgb(0,0,0)', 'rgb(188,188,34)', 'rgb(144,238,144)'] if others_type != 0: """ 第一张图 """ overlap = Overlap() line_special = Line() # title="\tSpatio-temporal Human Developmental Brain Expression (BrainSpan)", # title_pos="left") i = 0 es = Scatter(geneName) # print(es) # print('es') attr = ['Early fetal\n8-9PCW', 'Early fetal\n10-12PCW', 'Early mid-fetal\n13PCW-15PCW', 'Early mid-fetal\n16PCW-18PCW', 'Late mid-fetal\n19PCW-23PCW', 'Late fetal\n24PCW-37PCW', 'Neonatal and early infancy\n0M(birth)-5M', 'Late infancy\n6M-11M', 'Early childhood\n1Y-5Y', 'Middle and late childhood\n6Y-11Y', 'Adolescence\n12Y-19Y', 'Young adulthood\n20Y-39Y', 'Middle adulthood\n40Y'] """ 画多数值类型的拟合曲线 """ """ 1.求和 ;2.取平均值;3.画smooth """ """ 1-1 striatum """ list_tmp_striatum_ave = [0 for i in range(13)] list_tmp_striatum_num = [0 for i in range(13)] for i in range(13): if list_special_striatum[i] != []: for item in list_special_striatum[i]: list_tmp_striatum_ave[i] += item list_tmp_striatum_num[i] += 1 if list_special_striatum[i] == []: list_tmp_striatum_ave[i] = '' for i in range(13): if list_tmp_striatum_ave[i] != '': list_tmp_striatum_ave[i] = list_tmp_striatum_ave[i] / list_tmp_striatum_num[i] # print(list_tmp_striatum_ave) line_special.add("striatum", attr, list_tmp_striatum_ave, yaxis_max=math.ceil(max), is_smooth=True, xaxis_interval=0, xaxis_type="category", xaxis_rotate=-30, xaxis_label_textsize=9, legend_selectedmode=False , legend_pos="top", legend_orient="vertical") traces.append(go.Scatter( x=attr, y=list_tmp_striatum_ave, name='striatum', line=dict( shape='spline', color='rgb(155, 48, 255)' ), mode="lines", )) """ 1-2 cortex """ list_tmp_cortex_ave = [0 for i in range(13)] list_tmp_cortex_num = [0 for i in range(13)] for i in range(13): if list_special_cortex[i] != []: for item in list_special_cortex[i]: list_tmp_cortex_ave[i] += item list_tmp_cortex_num[i] += 1 if list_special_cortex[i] == []: list_tmp_cortex_ave[i] = '' for i in range(13): if list_tmp_cortex_ave[i] != '': list_tmp_cortex_ave[i] = list_tmp_cortex_ave[i] / list_tmp_cortex_num[i] # print(list_tmp_cortex_ave) traces.append(go.Scatter( x=attr, y=list_tmp_cortex_ave, name='cortex', line=dict( shape='spline', color='rgb(122,197,205)', ), mode="lines", )) line_special.add("cortex", attr, list_tmp_cortex_ave, yaxis_max=math.ceil(max), is_smooth=True, xaxis_interval=0, xaxis_type="category", xaxis_rotate=-30, xaxis_label_textsize=9, legend_selectedmode=False, yaxis_name='LOG2(RPKM+1)', yaxis_name_pos='middle' , legend_pos="10%", legend_orient="horizontal") overlap.add(line_special) """ 先补齐list """ max_length_striatum = 0 for item in list_special_striatum: if len(item) >= max_length_striatum: max_length_striatum = len(item) for i in range(13): if len(list_special_striatum[i]) < max_length_striatum: for j in range(max_length_striatum - len(list_special_striatum[i])): list_special_striatum[i].append('') max_length_cortex = 0 for item in list_special_cortex: if len(item) >= max_length_cortex: max_length_cortex = len(item) for i in range(13): if len(list_special_cortex[i]) < max_length_cortex: for j in range(max_length_cortex - len(list_special_cortex[i])): list_special_cortex[i].append('') """ 画散点 """ """ striatum """ for i in range(max_length_striatum): list_tmp_striatum = [] for j in range(13): list_tmp_striatum.append(list_special_striatum[j][i]) # print(list_linshi_striatum) traces.append(go.Scatter( x=attr, y=list_tmp_striatum, mode='markers', marker=dict( # size=2, color='rgb(155, 48, 255)', ), showlegend=False, hoverinfo='all', name='striatum' )) es.add("striatum", attr, list_tmp_striatum, xaxis_type="category", xaxis_rotate=-30, xaxis_interval=0, legend_selectedmode=False, yaxis_max=math.ceil(max), symbol_size=3, is_legend_show=False, xaxis_label_textsize=9 , legend_pos="right", legend_orient="vertical") """ cortex """ for i in range(max_length_cortex): list_linshi_cortex = [] for j in range(13): list_linshi_cortex.append(list_special_cortex[j][i]) # print(list_linshi_cortex) traces.append(go.Scatter( x=attr, y=list_linshi_cortex, mode='markers', marker=dict( # size=2, color='rgb(122,197,205)', ), showlegend=False, # hoverinfo='name+x+y', name='cortex' )) es.add("cortex", attr, list_linshi_cortex, xaxis_type="category", xaxis_rotate=-30, xaxis_interval=0, legend_selectedmode=False, yaxis_max=max, symbol_size=3, is_legend_show=False, xaxis_label_textsize=9, legend_pos="right", legend_orient="vertical") # traces.append(go.Scatter( # x=attr, # y=list_linshi_cortex, # mode='markers', # marker=dict( # # size=2, # color='rgb(155, 48, 255)', # ), # showlegend=False, # )) overlap.add(es) """ 单数值的线 """ k = 0 for index, item in enumerate(others_type): # print(item) line = Line() # print(list_others_data[k]) traces.append(go.Scatter( x=attr, y=list_others_data[k], name=item, line=dict( shape='spline', color=colors[index] ), mode="lines", )) line.add(str(item), attr, list_others_data[k], is_smooth=True, is_symbol_show=False, xaxis_interval=0, legend_selectedmode=False, xaxis_type="category", yaxis_max=max, xaxis_rotate=-30, xaxis_label_textsize=9 , legend_pos="right", legend_orient="vertical") overlap.add(line) k += 1 grid.add(overlap) grid.render() # print(traces) layout = go.Layout( paper_bgcolor='rgb(249, 249, 249)', plot_bgcolor='rgb(249, 249, 249)', height=400, width=1000, # title='<b>Gene Express from MouseBrain<b>', hovermode='closest', yaxis=dict( autorange=True, showgrid=True, zeroline=True, # dtick=10, title='log<sub>2</sub>( RPKM + 1 )', titlefont=dict( family='Arial', ), ), xaxis=dict( showgrid=True, zeroline=True, showline=True, showticklabels=True, tickangle=25, # x轴刻度之间距离 tickfont=dict( # size=10, family='Arial', ), # tickwidth=0.5 ), margin=dict( l=50, r=10, b=100, t=30, ), showlegend=True ) # for item in traces: # print(item) fig = go.Figure(data=traces, layout=layout) plotly.offline.plot(fig, show_link=False) try: return plotly.offline.plot(fig, show_link=False, output_type="div", include_plotlyjs=False) # return grid.render_embed() except: return '<div><p>There is no corresponding data published yet,we will update it when such data available.</p></div>' class Main: def __init__(self): pass def run(self, id): f = DataStorage("JR") data = f.FindByID(str(id)) geneName = data['Symbol'] brainSpan = dict_brainSpan() draw = data_plot() brainDic = Brain_Dic() # print(data.get("BrainspanX")) if data.get("BrainspanX") == None: return '<div><p>There is no corresponding data published yet, we will update it when such data available. </p></div>' else: # print(11) others_type, list_others_data, list_special_striatum, list_special_cortex, max_value = brainSpan.dict_gene2( id=id, data=data, brainDic=brainDic) """ 画图 ;为0表示该没有找到这个基因的数据,不画图 """ return draw.LineAndBox_plot(geneName, others_type, list_others_data, list_special_striatum, list_special_cortex, max_value) def main(ID): mainer = Main() # 996 ID = str(ID) # print(mainer.run(ID)) return mainer.run(ID) if __name__ == '__main__': main("9757")
1305e53dfc974a72d2087f4b8cb7312977d8f002
365bbcc1dbcc14d4f737ec6218dcf46114c8dc9d
/rango/env/bin/pip3.6
24c3cff5b6d0f3f82c7368dd5bd82ee8aac1aa93
[]
no_license
kimm9/PythonDevelopment
f52c88bd00be07c9774a2fe2f717a67f81b952dd
03c77b10f684caca6c650eeb6c810f1fd89e0c6e
refs/heads/master
2022-12-09T08:23:50.206527
2018-03-26T17:13:11
2018-03-26T17:13:11
116,835,012
0
0
null
2022-11-22T02:15:17
2018-01-09T15:37:23
Python
UTF-8
Python
false
false
254
6
#!/Users/Matthew/Documents/PythonDevelopment/rango/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
1e7cc99a08d573612aee1a48bd305b9b768359a5
cc264f36850fb9bda302d437f67491f7cdef69b1
/code/nnet_layers.py
1cd805084384a5de9b39e7822e335b3717ace550
[]
no_license
xiayandi/Bilingual-Sentence-Classification
7c0982fbd6de80f42fce3b6c6f05213cbfdd0293
56c21208553e80b71ea94b4d4bc4b49072e41b5b
refs/heads/master
2020-04-14T13:09:45.115020
2016-04-19T16:45:32
2016-04-19T16:45:32
41,878,066
1
2
null
null
null
null
UTF-8
Python
false
false
17,904
py
__author__ = 'xiy1pal' import numpy as np import theano import theano.tensor as T from theano.tensor.signal import downsample import theano.tensor.shared_randomstreams from theano.tensor.nnet import conv # different non-linearities def ReLU(x): y = T.maximum(0.0, x) return (y) def Sigmoid(x): y = T.nnet.sigmoid(x) return (y) def Tanh(x): y = T.tanh(x) return (y) def Iden(x): y = x return (y) class HiddenLayer(object): """ Class for HiddenLayer """ def __init__(self, rng, input, n_in, n_out, activation, W=None, b=None, use_bias=False): self.input = input self.activation = activation if W is None: if activation == ReLU: W_values = np.asarray(0.01 * rng.standard_normal(size=(n_in, n_out)), dtype=theano.config.floatX) else: W_values = np.asarray(rng.uniform(low=-np.sqrt(6. / (n_in + n_out)), high=np.sqrt(6. / (n_in + n_out)), size=(n_in, n_out)), dtype=theano.config.floatX) W = theano.shared(value=W_values, name='W') if b is None: b_values = np.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b') self.W = W self.b = b if use_bias: lin_output = T.dot(input, self.W) + self.b else: lin_output = T.dot(input, self.W) self.output = (lin_output if activation is None else activation(lin_output)) # parameters of the model if use_bias: self.params = [self.W, self.b] else: self.params = [self.W] class LogisticRegression(object): def __init__(self, input, n_in, n_out, W=None, b=None): # initialize with 0 the weights W as a matrix of shape (n_in, n_out) if W is None: self.W = theano.shared( value=np.zeros((n_in, n_out), dtype=theano.config.floatX), name='W') else: self.W = W # initialize the baises b as a vector of n_out 0s if b is None: self.b = theano.shared( value=np.zeros((n_out,), dtype=theano.config.floatX), name='b') else: self.b = b # compute vector of class-membership probabilities in symbolic form self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b) # compute prediction as class whose probability is maximal in # symbolic form self.y_pred = T.argmax(self.p_y_given_x, axis=1) # parameters of the model self.params = [self.W, self.b] def negative_log_likelihood(self, y): return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) def errors(self, y): # check if y has same dimension of y_pred if y.ndim != self.y_pred.ndim: raise TypeError('y should have the same shape as self.y_pred', ('y', y.type, 'y_pred', self.y_pred.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() class MLP(object): def __init__(self, rng, input, n_in, n_hidden, n_out): # Since we are dealing with a one hidden layer MLP, this will translate # into a HiddenLayer with a tanh activation function connected to the # LogisticRegression layer; the activation function can be replaced by # sigmoid or any other nonlinear function self.hiddenLayer = HiddenLayer(rng=rng, input=input, n_in=n_in, n_out=n_hidden, activation=T.tanh) # The logistic regression layer gets as input the hidden units # of the hidden layer self.logRegressionLayer = LogisticRegression( input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out) # L1 norm ; one regularization option is to enforce L1 norm to # be small # negative log likelihood of the MLP is given by the negative # log likelihood of the output of the model, computed in the # logistic regression layer self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood # same holds for the function computing the number of errors self.errors = self.logRegressionLayer.errors # the prediction from logistic regression self.y_preds = self.logRegressionLayer.y_pred self.p_y_given_x = self.logRegressionLayer.p_y_given_x # the parameters of the model are the parameters of the two layer it is # made out of self.params = self.hiddenLayer.params + self.logRegressionLayer.params class _LeNetConvPoolLayer(object): """Pool Layer of a convolutional network """ def __init__(self, rng, input, filter_shape, poolsize, non_linear="tanh", params=None, image_shape=None): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height,filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows,#cols) """ self.input = input self.filter_shape = filter_shape self.image_shape = image_shape self.poolsize = poolsize self.non_linear = non_linear if params is None: # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = np.prod(filter_shape[1:]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) / np.prod(poolsize)) # initialize weights with random weights if self.non_linear == "none" or self.non_linear == "relu": self.W = theano.shared(np.asarray(rng.uniform(low=-0.01, high=0.01, size=filter_shape), dtype=theano.config.floatX), borrow=True, name="W_conv") else: W_bound = np.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared(np.asarray(rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX), borrow=True, name="W_conv") b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True, name="b_conv") else: filter_index = 0 bias_index = 1 self.W = params[filter_index] self.b = params[bias_index] # convolve input feature maps with filters conv_out = conv.conv2d(input=input, filters=self.W, filter_shape=self.filter_shape, image_shape=self.image_shape) if self.non_linear == "tanh": conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) self.conv_out = conv_out_tanh self.output = T.max(conv_out_tanh, axis=2) self.argmax = T.argmax(conv_out_tanh, axis=2) elif self.non_linear == "relu": conv_out_relu = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) self.conv_out = conv_out_relu self.output = T.max(conv_out_relu, axis=2) self.argmax = T.argmax(conv_out_relu, axis=2) else: print 'what on earth do you want!!!' import sys sys.exit() self.params = [self.W, self.b] def conv_layer_output(self, input, image_shape): conv_out = conv.conv2d(input=input, filters=self.W, filter_shape=self.filter_shape, image_shape=image_shape) if self.non_linear == "tanh": conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True) elif self.non_linear == "relu": conv_out_relu = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) conv_out = conv_out_relu output = T.max(conv_out_relu, axis=2) argmax = T.argmax(conv_out_relu, axis=2) conv_out = conv_out_relu return output class LeNetConvPoolLayer(object): """Pool Layer of a convolutional network """ def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2), non_linear="tanh"): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height,filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows,#cols) """ self.input = input self.filter_shape = filter_shape self.image_shape = image_shape self.poolsize = poolsize self.non_linear = non_linear # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = np.prod(filter_shape[1:]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) / np.prod(poolsize)) # initialize weights with random weights if self.non_linear == "none" or self.non_linear == "relu": self.W = theano.shared(np.asarray(rng.uniform(low=-0.01, high=0.01, size=filter_shape), dtype=theano.config.floatX), borrow=True, name="W_conv") else: W_bound = np.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared(np.asarray(rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX), borrow=True, name="W_conv") b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True, name="b_conv") # convolve input feature maps with filters conv_out = conv.conv2d(input=input, filters=self.W, filter_shape=self.filter_shape, image_shape=self.image_shape) if self.non_linear == "tanh": conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) self.output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True) elif self.non_linear == "relu": conv_out_relu = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) self.output = downsample.max_pool_2d(input=conv_out_relu, ds=self.poolsize, ignore_border=True) self.conv_out = conv_out_relu else: pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True) self.output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x') self.params = [self.W, self.b] def conv_layer_output(self, input, image_shape): conv_out = conv.conv2d(input=input, filters=self.W, filter_shape=self.filter_shape, image_shape=image_shape) if self.non_linear == "tanh": conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True) elif self.non_linear == "relu": conv_out_relu = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) output = downsample.max_pool_2d(input=conv_out_relu, ds=self.poolsize, ignore_border=True) conv_out = conv_out_relu else: print 'non-linear function wrong! LeNet' import sys sys.exit() return output def _dropout_from_layer(rng, layer, p): """p is the probablity of dropping a unit """ srng = theano.tensor.shared_randomstreams.RandomStreams(rng.randint(999999)) # p=1-p because 1's indicate keep and p is prob of dropping mask = srng.binomial(n=1, p=1 - p, size=layer.shape) # The cast is important because # int * float32 = float64 which pulls things off the gpu output = layer * T.cast(mask, theano.config.floatX) return output class DropoutHiddenLayer(HiddenLayer): def __init__(self, rng, input, n_in, n_out, activation, dropout_rate, use_bias, W=None, b=None): super(DropoutHiddenLayer, self).__init__( rng=rng, input=input, n_in=n_in, n_out=n_out, W=W, b=b, activation=activation, use_bias=use_bias) self.output = _dropout_from_layer(rng, self.output, p=dropout_rate) class MLPDropout(object): """A multilayer perceptron with dropout""" def __init__(self, rng, input, layer_sizes, dropout_rate, activation=Tanh, use_bias=True): # rectified_linear_activation = lambda x: T.maximum(0.0, x) # Set up all the hidden layers self.weight_matrix_sizes = zip(layer_sizes, layer_sizes[1:]) self.layers = [] self.dropout_layers = [] self.activation = activation next_layer_input = input # first_layer = True # dropout the input next_dropout_layer_input = _dropout_from_layer(rng, input, p=dropout_rate) layer_counter = 0 for n_in, n_out in self.weight_matrix_sizes[:-1]: next_dropout_layer = DropoutHiddenLayer(rng=rng, input=next_dropout_layer_input, activation=activation, n_in=n_in, n_out=n_out, use_bias=use_bias, dropout_rate=dropout_rate) self.dropout_layers.append(next_dropout_layer) next_dropout_layer_input = next_dropout_layer.output # Reuse the parameters from the dropout layer here, in a different # path through the graph. next_layer = HiddenLayer(rng=rng, input=next_layer_input, activation=activation, # scale the weight matrix W with (1-p) W=next_dropout_layer.W * (1 - dropout_rate), b=next_dropout_layer.b, n_in=n_in, n_out=n_out, use_bias=use_bias) self.layers.append(next_layer) next_layer_input = next_layer.output # first_layer = False layer_counter += 1 # Set up the output layer n_in, n_out = self.weight_matrix_sizes[-1] dropout_output_layer = LogisticRegression( input=next_dropout_layer_input, n_in=n_in, n_out=n_out) self.dropout_layers.append(dropout_output_layer) # Again, reuse paramters in the dropout output. output_layer = LogisticRegression( input=next_layer_input, # scale the weight matrix W with (1-p) W=dropout_output_layer.W * (1 - dropout_rate), b=dropout_output_layer.b, n_in=n_in, n_out=n_out) self.layers.append(output_layer) # Use the negative log likelihood of the logistic regression layer as # the objective. self.dropout_negative_log_likelihood = self.dropout_layers[-1].negative_log_likelihood self.dropout_errors = self.dropout_layers[-1].errors self.negative_log_likelihood = self.layers[-1].negative_log_likelihood self.errors = self.layers[-1].errors self.y_preds = self.layers[-1].y_pred self.p_y_given_x = self.layers[-1].p_y_given_x # Grab all the parameters together. self.params = [param for layer in self.dropout_layers for param in layer.params] def predict(self, input): next_layer_input = input for i, layer in enumerate(self.layers[:-1]): next_layer_input = self.activation(T.dot(next_layer_input, layer.W) + layer.b) p_y_given_x = T.nnet.softmax(T.dot(next_layer_input, self.layers[-1].W) + self.layers[-1].b) y_pred = T.argmax(p_y_given_x, axis=1) return y_pred
b6e3f87d7064f4e4cfaea9c68abcc286b4a1f124
7cf945655903bb922c669cabe9e9b28bf718540d
/TinyFlow/Loss.py
963dd834773ca2b98984e09f89b52b3ce815c0a0
[ "MIT" ]
permissive
JyotinderSingh/TinyFlow-Deep-Learning-Framework
fe224c5694bad6135068c7a7fc8faa87fd9fdb78
1a57f273d05cf1ac940da61fa4713c5265b4c46d
refs/heads/master
2023-06-13T08:19:51.937261
2021-07-12T05:46:55
2021-07-12T05:46:55
258,977,602
0
0
MIT
2020-10-27T12:02:18
2020-04-26T08:21:51
Python
UTF-8
Python
false
false
6,640
py
import numpy as np # Common loss class for regularization class Loss: # Regularization loss calculation def regularization_loss(self, layer): # 0 by default regularization_loss = 0 # L1 regularization - weights # Only calculate when factor greater than 0 if layer.weight_regularizer_l1 > 0: regularization_loss += layer.weight_regularizer_l1 * \ np.sum(np.abs(layer.weights)) # L2 regularization - weights # Only calculate when factor greater than 0 if layer.weight_regularizer_l2 > 0: regularization_loss += layer.weight_regularizer_l2 * \ np.sum(layer.weights * layer.weights) # L1 regularization - biases # Only calculate when factor greater than 0 if layer.bias_regularizer_l1 > 0: regularization_loss += layer.bias_regularizer_l1 * \ np.sum(np.abs(layer.biases)) # L2 regularization - biases # Only calculate when factor greater than 0 if layer.bias_regularizer_l2 > 0: regularization_loss += layer.bias_regularizer_l2 * \ np.sum(layer.biases * layer.biases) return regularization_loss # Regularization loss calculation def network_regularization_loss(self): '''network_regularization_loss (self)\n Internal method for network wrapper for auto calculation of regularization loss of all the trainable layers ''' # 0 by default regularization_loss = 0 # Calculate regularization loss - iterate over all trainable layers for layer in self.trainable_layers: # L1 regularization - weights # Only calculate when factor greater than 0 if layer.weight_regularizer_l1 > 0: regularization_loss += layer.weight_regularizer_l1 * \ np.sum(np.abs(layer.weights)) # L2 regularization - weights # Only calculate when factor greater than 0 if layer.weight_regularizer_l2 > 0: regularization_loss += layer.weight_regularizer_l2 * \ np.sum(layer.weights * layer.weights) # L1 regularization - biases # Only calculate when factor greater than 0 if layer.bias_regularizer_l1 > 0: regularization_loss += layer.bias_regularizer_l1 * \ np.sum(np.abs(layer.biases)) # L2 regularization - biases # Only calculate when factor greater than 0 if layer.bias_regularizer_l2 > 0: regularization_loss += layer.bias_regularizer_l2 * \ np.sum(layer.biases * layer.biases) return regularization_loss # Set/remember trainable layers def remember_trainable_layers(self, trainable_layers): '''remember_trainable_layers (self, trainable_layers)\n internal method for Network wrapper to keep track of trainable layers ''' self.trainable_layers = trainable_layers # Calculates the data and regularization losses # given model output and ground truth values def calculate(self, output, y, *, include_regularization=False): '''calculate(self, output, ground_truth)\n internal method for Network wrapper\n Calculates the data and regularization losses given model output and ground truth values ''' # Calculate sample losses sample_losses = self.forward(output, y) # Calculate the mean loss data_loss = np.mean(sample_losses) # If just data loss is needed, return it if not include_regularization: return data_loss # Return the data and regularization losses return data_loss, self.network_regularization_loss() # Cross-entropy loss class Loss_CategoricalCrossEntropy(Loss): # Forward Pass def forward(self, y_pred, y_true): '''Loss_CategoricalCrossEntropy.forward (predicted_values, ground_truth)\n Returns the negative_log_likelihood for the correct class score.\n The loss returned is the mean loss over the batch. ''' # Number of samples in a batch samples = y_pred.shape[0] # Probabilities for target values - # only if categorical labels if len(y_true.shape) == 1: y_pred = y_pred[range(samples), y_true] # Losses negative_log_likelihoods = -np.log(y_pred) # Mask values - only for one-hot encoded labels if len(y_true.shape) == 2: negative_log_likelihoods *= y_true # Overall loss data_loss = np.sum(negative_log_likelihoods) / samples return data_loss # Backward pass def backward(self, dvalues, y_true): '''Loss_CategoricalCrossEntropy.backward (upstream_gradient, labels)\n Calculates the backward pass for the current loss function\n ---IMPLEMENTATION TO BE UPDATED SOON---''' samples = dvalues.shape[0] # Make a backup so we can safely modify self.dvalues = dvalues.copy() self.dvalues[range(samples), y_true] -= 1 self.dvalues = self.dvalues / samples # Binary Cross-entropy loss class Loss_BinaryCrossEntropy(Loss): # Forward Pass def forward(self, y_pred, y_true): # Clip data to prevent division by 0 (log(1) gives you 0) # Clip both sides to prevent any shifting the mean towards any value y_pred_clipped = np.clip(y_pred, 1e-7, 1 - 1e-7) # Calculate sample-wise loss sample_losses = -(y_true * np.log(y_pred_clipped) + (1 - y_true) * np.log(1 - y_pred_clipped)) # Return losses return sample_losses # Backward pass def backward(self, dvalues, y_true): # Clip data to prevent division by 0 (log(1) gives you 0) # Clip both sides to prevent any shifting the mean towards any value clipped_dvalues = np.clip(dvalues, 1e-7, 1 - 1e-7) # Gradient on clipped values self.dvalues = -(y_true / clipped_dvalues - (1 - y_true) / (1 - clipped_dvalues)) class Loss_MeanSquaredError(Loss): # Forward pass def forward(self, y_pred, y_true): # Calculate loss data_loss = 2 * np.mean((y_true - y_pred)**2, axis=-1) # return losses return data_loss # Backward pass def backward(self, dvalues, y_true): # Gradient on values self.dvalues = -(y_true - dvalues)
a00b7db0fb468d6c6bdac17cf46dda3eefb44c31
10a380e4c43ce690a989f30b37638658fa028575
/news/urls.py
60357954c04df8720027a8dd72cac4263a581c06
[]
no_license
killerbees1982/pierwsza
6c9948b473183a8ae172665533fcea7a947a6807
f1ca0a525c0a4ecbe535825d54a9d133ba5a7c8d
refs/heads/master
2021-01-01T19:43:34.015530
2017-07-28T14:13:36
2017-07-28T14:13:36
98,656,348
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
from django.conf.urls import url from . import views from django.contrib.auth.views import logout from django.conf import settings urlpatterns = [ url(r'^$', views.post_list, name='post_list'), url(r'^post/(?P<pk>[0-9]+)/$', views.post_detail, name='post_detail'), url(r'^post/new/$', views.post_new, name='post_new'), url(r'^logout/$', logout, {'next_page': settings.LOGOUT_REDIRECT_URL}, name='logout') ]
ef50171deae3603d843305ba9702ab004c926836
625d241ef84ec8b182a9f67fd5dc0a9296a3270c
/2_Python/Final_Project/bikeshare_2/Finished Functions/time_stats.py
c3c119fb6ac0669a1ea9d95edfba2c5572cb0f3f
[]
no_license
jhl0204/Udacity-Programming-for-Data-Science-Nanodegree
fd75bd10560031fe1c242bac622297c0379061e6
51aeef515d78da5e117e0e85b01d044bad372a4c
refs/heads/master
2020-08-07T12:56:52.393218
2019-10-07T18:50:30
2019-10-07T18:50:30
213,459,789
1
3
null
null
null
null
UTF-8
Python
false
false
1,230
py
def time_stats(df): """Displays statistics on the most frequent times of travel.""" print('\nCalculating The Most Frequent Times of Travel...\n') start_time = time.time() # Use df.mode() to compute most often data --> outputs it as a tabular data with row 0 # and then access it with indexing (ie [0]) # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mode.html # look_up dictionary look_up = {'1': 'January', '2': 'February', '3': 'March', '4': 'April', '5': 'May', '6': 'June', '7': 'July', '8': 'August', '9': 'September', '10': 'October', '11': 'November', '12': 'December'} # display the most common month popular_month = df['month'].mode()[0] month_in_string = look_up[str(popular_month)] print("The most common month is: ", month_in_string) # display the most common day of week popular_day = df['day_of_week'].mode()[0] print("The most common day of the week is: {}".format(popular_day)) # display the most common start hour popular_hour = df['Hour'].mode()[0] print('The most common start hour:', popular_hour) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40)
a1b98c507f1b74e406d7754fa7373a7ca7f4e62c
b5c230cc699dec2494f82555db3c607d27f5c37d
/app/nyt_api.py
5ce2a4cecd5a247f66aac8b7e327317a6d28c170
[]
no_license
ande3674/avidreader
53f1a9cb07f0d0ea68844073791bbb7b7dc363bc
224ce08b1cd2562e4e89240f6873c94ec8a8501e
refs/heads/master
2020-04-08T18:02:57.351501
2018-12-20T18:14:49
2018-12-20T18:14:49
159,591,784
0
0
null
null
null
null
UTF-8
Python
false
false
1,548
py
from config import Config import requests import app.api as google_api def get_nyt_bestsellers(): # FICTION !!! data = requests.get(Config.NYT_URL).json() results = data['results'] books = [] for i in range(8): book_info = {} current_book = results[i] book_info['title'] = current_book['book_details'][0]['title'] book_info['author'] = current_book['book_details'][0]['author'] book_info['description'] = current_book['book_details'][0]['description'] book_info['amazon_link'] = current_book['amazon_product_url'] book_info['cover_image'] = get_google_cover_image(title=current_book['book_details'][0]['title']) books.append(book_info) return books def get_nyt_bestsellers_nonfiction(): data = requests.get(Config.NYT_URL_NONFICTION).json() results = data['results'] books = [] for i in range(8): book_info = {} current_book = results[i] book_info['title'] = current_book['book_details'][0]['title'] book_info['author'] = current_book['book_details'][0]['author'] book_info['description'] = current_book['book_details'][0]['description'] book_info['amazon_link'] = current_book['amazon_product_url'] book_info['cover_image'] = get_google_cover_image(title=current_book['book_details'][0]['title']) books.append(book_info) return books def get_google_cover_image(title): return google_api.get_one_book_image_link(title) # b = get_nyt_bestsellers_nonfiction() # print(b)
611309507d45b4622968a0088a144df244863380
f77b0f2cc709b9670e6b4dc7145a6ea5368585d2
/project/handlers/ajax/__init__.py
1e7699ae21b1884559d32695109ecdcf81442bf6
[]
no_license
sgammon/StonerHub
45ccac6bd349200bbc75c494002c3ffeb082dcb8
a81f7fdd2c7118c6cea3c25ef9f53f272d27b0cc
refs/heads/master
2021-01-20T10:54:47.546251
2011-11-07T12:02:20
2011-11-07T12:02:20
2,664,437
0
0
null
null
null
null
UTF-8
Python
false
false
2,336
py
import config import logging from google.appengine.api import quota from project.handlers import WebHandler try: import json except ImportError: try: import simplejson as json except ImportError: try: from django.utils import simplejson as json except ImportError: logging.critical('No valid JSON adapter found.') class SPIAjaxHandler(WebHandler): ''' Renders a given template variable set as a JSON response. ''' response_params = {} def _build_meta_obj(self): ## Retrieve config main_config = config.config.get('wirestone.spi') dev_config = config.config.get('wirestone.spi.dev') ## Build meta object meta_obj = { 'platform':{ 'version':{ 'version_major':main_config['version_major'], 'version_minor':main_config['version_minor'], 'version_micro':main_config['version_micro'], 'version_phase':main_config['version_phase'], } } } if dev_config['dev_mode'] == True: ## Add usage information for request to dev response meta_obj['request'] = { 'cpu_usage': quota.get_request_cpu_usage(), 'cpu_api': quota.get_request_api_cpu_usage() } ## Add dev config to dev response meta_obj['platform']['dev'] = { 'debug':dev_config['debug'], 'dev_mode':dev_config['dev_mode'] } return meta_obj def fail(self, operation, reason): ## Create the beginnings of the response object response_object = { 'operation':operation, 'result':'failure', 'response': {'failure_reason':reason}, 'meta': self._build_meta_obj() } ## Generate JSON response, set appropriate headers self.response.write(json.dumps(response_object)) self.response.headers['Content-Type'] = 'text/json' def render(self, operation, **kwargs): ## Create the beginnings of the response object response_object = { 'operation':operation, 'result':'success', 'response': {}, 'meta': self._build_meta_obj() } if isinstance(kwargs, dict) and len(kwargs) > 0: for key, value in kwargs.items(): self.response_params[key] = value ## Generate Response dict response_object['response'] = self.response_params ## Return generated JSON string self.response.write(json.dumps(response_object)) self.response.headers['Content-Type'] = 'text/json'
2e9c0c678b0f5efa189a956eda7cb328d897e492
dc66def991cf9abda24f057ad8b67432d6d3d9b6
/nsd_prepare_rois_rdms.py
2dadab04bac86b15fde993ddaf19ef5a079ba3dc
[]
no_license
Charestlab/nsddatapaper_rsa
4b3860717e85e2b171e52f10e60672ed85f01e4d
59d5838d0eb661509f651351d2a23b2eed7bf59b
refs/heads/main
2023-03-20T06:47:34.223395
2021-03-11T09:44:25
2021-03-11T09:44:25
343,485,836
4
2
null
null
null
null
UTF-8
Python
false
false
4,342
py
import sys import os import time import numpy as np import nibabel as nib from scipy.spatial.distance import pdist from nsd_access import NSDAccess from utils.nsd_get_data import get_conditions, get_betas from utils.utils import average_over_conditions """ module to gather the region of interest rdms """ sub = int(sys.argv[1]) n_jobs = 38 n_sessions = 40 n_subjects = 8 # set up directories base_dir = os.path.join('/rds', 'projects', 'c') nsd_dir = os.path.join(base_dir, 'charesti-start', 'data', 'NSD') proj_dir = os.path.join(base_dir, 'charesti-start', 'projects', 'NSD') nsd_dir = os.path.join(base_dir, 'charesti-start', 'data', 'NSD') sem_dir = os.path.join(proj_dir, 'derivatives', 'ecoset') betas_dir = os.path.join(proj_dir, 'rsa') models_dir = os.path.join(proj_dir, 'rsa', 'serialised_models') # initiate nsd access nsda = NSDAccess(nsd_dir) # path where we save the rdms outpath = os.path.join(betas_dir, 'roi_analyses') if not os.path.exists(outpath): os.makedirs(outpath) # we use the fsaverage space. targetspace = 'fsaverage' lh_file = os.path.join(proj_dir, 'lh.highlevelvisual.mgz') rh_file = os.path.join(proj_dir, 'rh.highlevelvisual.mgz') # load the lh mask maskdata_lh = nib.load(lh_file).get_fdata().squeeze() maskdata_rh = nib.load(rh_file).get_fdata().squeeze() maskdata = np.hstack((maskdata_lh, maskdata_rh)) ROIS = {1: 'pVTC', 2: 'aVTC', 3: 'v1', 4: 'v2', 5: 'v3'} roi_names = ['pVTC', 'aVTC', 'v1', 'v2', 'v3'] # sessions n_sessions = 40 # subjects subs = ['subj0{}'.format(x+1) for x in range(n_subjects)] # extract conditions conditions = get_conditions(nsd_dir, sub, n_sessions) # we also need to reshape conditions to be ntrials x 1 conditions = np.asarray(conditions).ravel() # then we find the valid trials for which we do have 3 repetitions. conditions_bool = [ True if np.sum(conditions == x) == 3 else False for x in conditions] conditions_sampled = conditions[conditions_bool] # find the subject's unique condition list (sample pool) sample = np.unique(conditions[conditions_bool]) betas_file = os.path.join( outpath, f'{sub}_betas_list_{targetspace}.npy' ) betas_mean_file = os.path.join( outpath, f'{sub}_betas_list_{targetspace}_averaged.npy' ) if not os.path.exists(betas_mean_file): # get betas betas_mean = get_betas( nsd_dir, sub, n_sessions, targetspace=targetspace, ) print(f'concatenating betas for {sub}') betas_mean = np.concatenate(betas_mean, axis=1).astype(np.float32) print(f'averaging betas for {sub}') betas_mean = average_over_conditions( betas_mean, conditions, conditions_sampled, ).astype(np.float32) # print print(f'saving condition averaged betas for {sub}') np.save(betas_mean_file, betas_mean) else: print(f'loading betas for {sub}') betas_mean = np.load(betas_mean_file, allow_pickle=True) # print print(f'saving condition list for {sub}') np.save( os.path.join( outpath, f'{sub}_condition_list.npy' ), conditions_sampled ) # save the subject's full ROI RDMs for roi in range(1, 6): mask_name = ROIS[roi] rdm_file = os.path.join( outpath, f'{sub}_{mask_name}_fullrdm_correlation.npy' ) if not os.path.exists(rdm_file): # logical array of mask vertices vs_mask = maskdata == roi print(f'working on ROI: {mask_name}') masked_betas = betas_mean[vs_mask, :] good_vox = [ True if np.sum( np.isnan(x) ) == 0 else False for x in masked_betas] if np.sum(good_vox) != len(good_vox): print(f'found some NaN for ROI: {mask_name} - {sub}') masked_betas = masked_betas[good_vox, :] # prepare for correlation distance X = masked_betas.T print(f'computing RDM for roi: {mask_name}') start_time = time.time() rdm = pdist(X, metric='correlation') if np.any(np.isnan(rdm)): raise ValueError elapsed_time = time.time() - start_time print( 'elapsedtime: ', f'{time.strftime("%H:%M:%S", time.gmtime(elapsed_time))}' ) print(f'saving full rdm for {mask_name} : {sub}') np.save( rdm_file, rdm )
29a4c87a5d495cf30a51cc3fd20fcaba4adc14ae
feef80ed0a0182e6ff74b60dc3a743d9c19c439e
/tensorflow_datasets/scripts/create_checksum_file.py
dcef257a4a7e7d8dd179d27ce11f5e5572fcba41
[ "Apache-2.0" ]
permissive
brettkoonce/datasets
7bd6f73ee77b5185db398290172250d499f76bf2
55bb2a80ab674c2f6254ac74d90bd6e5f478e895
refs/heads/master
2020-04-10T07:55:01.226854
2018-12-08T00:09:42
2018-12-08T00:10:04
160,892,533
0
0
null
null
null
null
UTF-8
Python
false
false
5,300
py
# coding=utf-8 # Copyright 2018 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Script to create the checksums file of a dataset. This script is meant to be used by the creator of a DatasetBuilder. Once the DatasetBuilder has been written and run at least once, and files have been downloaded, run this script to create the file associating URLs and checksums. Example of usage: $ scripts/create_checksum_file --dest_dir=url_checksums --dataset=mnist See documentation at: https://github.com/tensorflow/datasets/blob/master/docs/add_dataset.md#enabling-downloads-validation """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import json import os import re from absl import app from absl import flags import tensorflow as tf from tensorflow_datasets.core.download import checksums_file from tensorflow_datasets.core.download import util flags.DEFINE_string('dataset', None, 'Name of dataset.') flags.DEFINE_string('dest_dir', 'url_checksums', 'Path to directory in which to write the checksums file .') flags.DEFINE_string('downloads_path', '~/tensorflow-datasets/downloads', 'Path to downloads directory.') flags.DEFINE_string('extracts_path', '~/tensorflow-datasets/extracted', 'Path to extractions directory.') FLAGS = flags.FLAGS def _rename(old_path, new_path): print('mv %s %s' % (old_path, new_path)) tf.gfile.Rename(old_path, new_path, overwrite=True) def _write_checksums(dataset_name, out_path, downloads_path): """Write url->checksum csv file, return mapping.""" url_to_checksum = {} info_fnames = [fname for fname in tf.gfile.ListDirectory(downloads_path) if fname.endswith('.INFO')] for info_fname in info_fnames: with tf.gfile.Open(os.path.join(downloads_path, info_fname)) as info_f: info = json.load(info_f) if dataset_name not in info['dataset_names']: continue fname = info_fname[:-len('.INFO')] path = os.path.join(downloads_path, fname) if not tf.gfile.Exists(path): continue sha256 = util.read_checksum_digest(path, hashlib.sha256) for url in info['urls']: if url in info and url_to_checksum[url] != sha256: msg = ('URL %s is associated with two sha256 checksums: %s (old) and ' '%s (actual). Please check the INFO files %s.' % ( url, url_to_checksum[url], sha256, info_fnames)) raise AssertionError(msg) url_to_checksum[url] = sha256 if not url_to_checksum: print('No files downloaded by %s could be found in %s.' % ( dataset_name, downloads_path)) return print('Writing url->checksum associations to %s...' % out_path) checksums_file.dump(out_path, url_to_checksum) return url_to_checksum def _move_already_downloaded_extracted_files(url_to_checksum, downloads_path, extracts_path): """Move already downloaded files to new filenames using checksums.""" url_to_methods = {} # url_checksum -> methods, filled by following block: for fname in tf.gfile.ListDirectory(extracts_path): res = re.match(r'(\d+)\.url\.([a-f0-9]{64})', fname) if res: extraction_method = res.group(1) url_checksum = res.group(2) url_to_methods.setdefault(url_checksum, []).append(extraction_method) for url, checksum in url_to_checksum.items(): url_checksum = hashlib.sha256(url.encode('utf8')).hexdigest() # Downloaded file + INFO file old_path = os.path.join(downloads_path, 'url.' + url_checksum) if tf.gfile.Exists(old_path): new_path = os.path.join(downloads_path, checksum) _rename(old_path, new_path) _rename(old_path + '.INFO', new_path + '.INFO') # Extracted files: for method in url_to_methods.get(url_checksum, []): old_path = os.path.join(extracts_path, '%s.url.%s' % (method, url_checksum)) new_path = os.path.join(extracts_path, '%s.%s' % (method, checksum)) _rename(old_path, new_path) def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') dataset = FLAGS.dataset checksums_path = os.path.join(os.path.expanduser(FLAGS.dest_dir), '%s.csv' % dataset) downloads_path = os.path.expanduser(FLAGS.downloads_path) extracts_path = os.path.expanduser(FLAGS.extracts_path) url_to_checksum = _write_checksums(dataset, checksums_path, downloads_path) if url_to_checksum: _move_already_downloaded_extracted_files( url_to_checksum, downloads_path, extracts_path) if __name__ == '__main__': flags.mark_flag_as_required('dataset') app.run(main)
9ae1e0fe144eb142631419a238ee090ea1448322
defec7e7c44c4bde470cd9de102a83f176311e90
/ProjectEuler040.py
5a090b9875e878e4e581c2358d550ecc69bb2993
[]
no_license
edimaudo/Project-Euler
5ebd27ed91f5fcf4697a00d0deaa239f2b8309b9
06f74b46fc421510d9ea9ef86784679b914eb779
refs/heads/master
2020-04-10T14:57:41.692212
2016-11-06T20:55:04
2016-11-06T20:55:04
41,200,209
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
# Project Euler 40 beginvalue = "" for value in range(1,1000001): beginvalue += str(value) tenlist = [1,10,100,1000,10000,100000,1000000] templist = [] for value in range(len(beginvalue)): if int(value) in tenlist: templist.append(beginvalue[int(value - 1)]) #print (templist) multval = 1 for value in templist: multval *= int(value) print (multval)
d8d99df99bca6478674badf0816e5d6693c73d13
94838674ffd175df6194437c1ccc3f90ab409d6c
/pillowV3/log/2018-12-30 14:56:17.161287
fa70ed1172c1f299ee4907ddba242cb4c2972552
[]
no_license
WojciechKoz/MyFirstNeuralNetwork
4fdb3140d8f02257599d005638598f78055c1ac8
3cd032aba80ecd71edb0286724ae9ba565b75a81
refs/heads/master
2020-04-02T03:02:48.680433
2020-02-29T17:57:43
2020-02-29T17:57:43
153,943,121
0
0
null
null
null
null
UTF-8
Python
false
false
400,307
161287
#!/usr/bin/env python3 # -*- coding: utf8 -*- from __future__ import print_function # new print() on python2 from datetime import datetime import sys import numpy as np from mnist import MNIST # Display full arrays np.set_printoptions(threshold=np.inf) mndata = MNIST('./data') images_full, labels_full = mndata.load_training() images = [] labels = [] # dynamic arguments batch_size = int(sys.argv[1]) size_1 = int(sys.argv[2]) size_2 = int(sys.argv[3]) batch_training_size = int(sys.argv[4]) data_part = 5 # only one fifth of the whole dataset to speed up training for i in range(len(labels_full) // batch_size // data_part): images.append(images_full[i*batch_size : (i+1)*batch_size]) labels.append(labels_full[i*batch_size : (i+1)*batch_size]) def sigmoid_prime(x): return np.exp(-x) / ((np.exp(-x) + 1) ** 2) def sigmoid(x): return 1 / (1 + np.exp(-x)) # nowe, przyda się? def relu(x): return np.maximum(x, x * 0.01) def relu_prime(x): if x >= 0: return 1 # ej nie jest tak xd # a jak xd? type(x) == no.ndarray # no x to macierz xd # np.exp jest przeładowane ale jakakoleiwk funkcja to chyba nie # to co foreach ? :( # właśnie nie wiem, a co z gpu? # to miało być szybsze a nie xd # mamy duzo mozliwosci zmian ale nie na raz trzeba ustalic jakos # hm TODO gpu TODO wincyj procent TODO gui gotowe # xd # tamto myliło hah # to co najpierw? :p # ssh daje wglad do basha tylko tak ? # nie, to jest taki fajny programik, byobu # i ten pasek na dole też jest z byobu # on udostepnia tylko basha ? # tak, ale basha multiplayer xd # szkoda że 2 kursorow nie ma # hm return 0.01 # chyba tak xd nikt nie widzial xd # ale x to macierz :p # ale to jest przeciazone i jak jest funkcja od macierzy to bierze po kolei kazdy element # w sumie # zobacze na drugiej karcie xd #X = np.array([[0, 0], # [0, 1], # [1, 0], # [1, 1]]) #X = np.array(images) y = [] for batch in labels: y.append([]) for label in batch: y[-1].append([1.0 if i == label else 0.0 for i in range(10)]) y = np.array(y) #y = np.array([[0], # [1], # [1], # [0]]) np.random.seed(1) LEN = len(labels) SIZES = [ 784, size_1, size_2, 10 ] syn0 = 2 * np.random.random((SIZES[0], SIZES[1])) - 1 syn1 = 2 * np.random.random((SIZES[1], SIZES[2])) - 1 syn2 = 2 * np.random.random((SIZES[2], SIZES[3])) - 1 # biases for respective layers b0 = 2 * np.random.random((1, SIZES[1])) - 1 b1 = 2 * np.random.random((1, SIZES[2])) - 1 b2 = 2 * np.random.random((1, SIZES[3])) - 1 for i, batch in list(enumerate(images)): X = np.array(batch) print("x:") print(np.shape(X)) print("======================= BATCH {} =======================".format(i)) error = 1 j = 0 while j < batch_training_size: l0 = X l1 = sigmoid(np.dot(l0, syn0) + b0) l2 = sigmoid(np.dot(l1, syn1) + b1) l3 = sigmoid(np.dot(l2, syn2) + b2) l3_error = (y[i] - l3)#** 2 error = np.mean(np.abs(l3_error)) j += 1 if j % 20 == 0: print(("[%d] error: " % j) + str(error)) l3_delta = l3_error * sigmoid_prime(l3) l2_error = l3_delta.dot(syn2.T) l2_delta = l2_error * sigmoid_prime(l2) l1_error = l2_delta.dot(syn1.T) l1_delta = l1_error * sigmoid_prime(l1) syn2 += l2.T.dot(l3_delta) syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta) b0 += l1_delta.mean(axis=0) b1 += l2_delta.mean(axis=0) b2 += l3_delta.mean(axis=0) def predict(data): l0 = [data] l1 = sigmoid(np.dot(l0, syn0) + b0) l2 = sigmoid(np.dot(l1, syn1) + b1) l3 = sigmoid(np.dot(l2, syn2) + b2) return np.argmax(l3) print("Output after training: ") print(l3) for i, el in enumerate(l3): print(labels[0][i], "=", np.argmax(el), " predictions: ", el) testing_images, testing_labels = mndata.load_testing() correct = 0.0 for i, (image, label) in enumerate(zip(testing_images, testing_labels)): prediction = predict(image) if label == prediction: correct += 1.0 correct_rate = correct / (i + 1.0) print("{} = {} (correct {}%)".format(label, prediction, 100 * correct_rate)) with open('log/' + str(datetime.now()), 'a') as f: with open(__file__, 'r') as myself: print(myself.read(), file=f) print("", file=f) print("#### answers:", file=f) print("argv =", sys.argv, file=f) print("correct_rate =", correct_rate, file=f) print("SIZES =", SIZES, file=f) print("syn0 =", syn0, file=f) print("syn1 =", syn1, file=f) print("syn2 =", syn2, file=f) print("b0 =", b0, file=f) print("b1 =", b1, file=f) print("b2 =", b2, file=f) #### answers: argv = ['./main.py', '63', '29', '31', '6'] correct_rate = 0.1009 SIZES = [784, 29, 31, 10] syn0 = [[-1.65955991e-01 4.40648987e-01 -9.99771250e-01 -3.95334855e-01 -7.06488218e-01 -8.15322810e-01 -6.27479577e-01 -3.08878546e-01 -2.06465052e-01 7.76334680e-02 -1.61610971e-01 3.70439001e-01 -5.91095501e-01 7.56234873e-01 -9.45224814e-01 3.40935020e-01 -1.65390395e-01 1.17379657e-01 -7.19226123e-01 -6.03797022e-01 6.01489137e-01 9.36523151e-01 -3.73151644e-01 3.84645231e-01 7.52778305e-01 7.89213327e-01 -8.29911577e-01 -9.21890434e-01 -6.60339161e-01] [ 7.56285007e-01 -8.03306332e-01 -1.57784750e-01 9.15779060e-01 6.63305699e-02 3.83754228e-01 -3.68968738e-01 3.73001855e-01 6.69251344e-01 -9.63423445e-01 5.00288630e-01 9.77722178e-01 4.96331309e-01 -4.39112016e-01 5.78558657e-01 -7.93547987e-01 -1.04212948e-01 8.17191006e-01 -4.12771703e-01 -4.24449323e-01 -7.39942856e-01 -9.61266084e-01 3.57671066e-01 -5.76743768e-01 -4.68906681e-01 -1.68536814e-02 -8.93274910e-01 1.48235211e-01 -7.06542850e-01] [ 1.78611074e-01 3.99516720e-01 -7.95331142e-01 -1.71888024e-01 3.88800315e-01 -1.71641461e-01 -9.00093082e-01 7.17928118e-02 3.27589290e-01 2.97782241e-02 8.89189512e-01 1.73110081e-01 8.06803831e-01 -7.25050592e-01 -7.21447305e-01 6.14782577e-01 -2.04646326e-01 -6.69291606e-01 8.55017161e-01 -3.04468281e-01 5.01624206e-01 4.51995971e-01 7.66612182e-01 2.47344414e-01 5.01884868e-01 -3.02203316e-01 -4.60144216e-01 7.91772436e-01 -1.43817620e-01] [ 9.29680094e-01 3.26882996e-01 2.43391440e-01 -7.70508054e-01 8.98978517e-01 -1.00175733e-01 1.56779229e-01 -1.83726394e-01 -5.25946040e-01 8.06759041e-01 1.47358973e-01 -9.94259346e-01 2.34289827e-01 -3.46710196e-01 5.41162045e-02 7.71884199e-01 -2.85460480e-01 8.17070302e-01 2.46720232e-01 -9.68357514e-01 8.58874467e-01 3.81793835e-01 9.94645701e-01 -6.55318983e-01 -7.25728501e-01 8.65190926e-01 3.93636323e-01 -8.67999655e-01 5.10926105e-01] [ 5.07752377e-01 8.46049071e-01 4.23049517e-01 -7.51458076e-01 -9.60239732e-01 -9.47578026e-01 -9.43387024e-01 -5.07577865e-01 7.20055897e-01 7.76621287e-02 1.05643957e-01 6.84061785e-01 -7.51653370e-01 -4.41632642e-01 1.71518543e-01 9.39191497e-01 1.22060439e-01 -9.62705421e-01 6.01265345e-01 -5.34051452e-01 6.14210391e-01 -2.24278712e-01 7.27083709e-01 4.94243285e-01 1.12480468e-01 -7.27089549e-01 -8.80164621e-01 -7.57313089e-01 -9.10896243e-01] [-7.85011742e-01 -5.48581323e-01 4.25977961e-01 1.19433964e-01 -9.74888040e-01 -8.56051441e-01 9.34552660e-01 1.36200924e-01 -5.93413531e-01 -4.95348511e-01 4.87651708e-01 -6.09141038e-01 1.62717855e-01 9.40039978e-01 6.93657603e-01 -5.20304482e-01 -1.24605715e-02 2.39911437e-01 6.57961799e-01 -6.86417211e-01 -9.62847596e-01 -8.59955713e-01 -2.73097781e-02 2.12658923e-01 1.37702874e-01 -3.65275181e-01 9.77232309e-01 1.59490438e-01 -2.39717655e-01] [ 1.01896438e-01 4.90668862e-01 3.38465787e-01 -4.70160885e-01 -8.67330331e-01 -2.59831604e-01 2.59435014e-01 -5.79651980e-01 5.05511107e-01 -8.66927037e-01 -4.79369803e-01 6.09509127e-01 -6.13131435e-01 2.78921762e-01 4.93406182e-02 8.49615941e-01 -4.73406459e-01 -8.68077819e-01 4.70131927e-01 5.44356059e-01 8.15631705e-01 8.63944138e-01 -9.72096854e-01 -5.31275828e-01 2.33556714e-01 8.98032641e-01 9.00352238e-01 1.13306376e-01 8.31212700e-01] [ 2.83132418e-01 -2.19984572e-01 -2.80186658e-02 2.08620966e-01 9.90958430e-02 8.52362853e-01 8.37466871e-01 -2.10248774e-01 9.26525057e-01 -6.52088667e-01 -7.47340961e-01 -7.29841684e-01 1.13243314e-02 -9.56950389e-01 8.95940422e-01 6.54230942e-01 -9.69962039e-01 -6.47607489e-01 -3.35872851e-01 -7.38006310e-01 6.18981384e-01 -3.10526695e-01 8.80214965e-01 1.64028360e-01 7.57663969e-01 6.89468891e-01 8.10784637e-01 -8.02394684e-02 9.26936320e-02] [ 5.97207182e-01 -4.28562297e-01 -1.94929548e-02 1.98220615e-01 -9.68933449e-01 1.86962816e-01 -1.32647302e-01 6.14721058e-01 -3.69510394e-01 7.85777417e-01 1.55714431e-01 -6.31979597e-01 5.75858468e-01 2.24062354e-01 -8.92181456e-01 -1.59612640e-01 3.58137673e-01 8.37203556e-01 -9.99195950e-01 9.53518298e-01 -2.46839371e-01 9.47567077e-01 2.09432202e-01 6.57691616e-01 1.49423009e-01 2.56152397e-01 -4.28847437e-01 1.73666681e-01 5.00043527e-01] [ 7.16627673e-01 5.10164377e-01 3.96114497e-01 7.28958860e-01 -3.54638006e-01 3.41577582e-01 -9.82521272e-02 -2.35794496e-01 -1.78377300e-01 -1.97040833e-01 -3.65232108e-01 2.43838736e-01 -1.39505458e-01 9.47604156e-01 3.55601783e-01 -6.02860223e-01 -1.46597981e-01 -3.13307520e-01 5.95277608e-01 7.59996577e-01 8.07683912e-01 3.25439625e-01 -4.59583476e-01 -4.95266597e-01 7.09795885e-01 5.54292926e-02 6.04322168e-01 1.44977034e-01 4.66285051e-01] [ 3.80232549e-02 5.41767821e-01 1.37715981e-01 -6.85802428e-02 -3.14622184e-01 -8.63581303e-01 -2.44151641e-01 -8.40747845e-01 9.65634227e-01 -6.36774297e-01 6.23717395e-01 7.49923290e-01 3.76826505e-01 1.38988825e-01 -6.78057126e-01 -6.62399545e-02 -3.09655898e-01 -5.49920084e-01 1.85023738e-01 -3.75460325e-01 8.32611107e-01 8.19271050e-01 -4.85763412e-01 -7.78217399e-01 -6.14074536e-01 -8.31658642e-04 4.57171336e-01 -5.83611123e-01 -5.03932883e-01] [ 7.03343750e-01 -1.68302563e-01 2.33370134e-01 -5.32667722e-01 -7.96065481e-01 3.17140339e-02 -4.57180259e-02 -6.94656712e-01 2.43612463e-01 8.80202376e-02 3.08274694e-01 -7.10908920e-01 5.03055634e-01 -5.55901720e-01 3.87036487e-02 5.70592056e-01 -9.55339144e-01 -3.51275081e-01 7.45844753e-01 6.89419215e-01 7.68811852e-02 7.33216548e-01 8.99611983e-01 6.52813995e-01 7.08230888e-01 -8.02513196e-01 3.02608665e-01 4.07033976e-01 2.20481625e-01] [ 5.99230523e-01 -9.30857560e-01 5.40477469e-01 4.63457201e-01 -4.80603213e-01 -4.85861402e-01 2.64606635e-01 -3.09405077e-01 5.93177356e-01 -1.07707536e-01 5.65498830e-01 9.80943567e-01 -3.99503321e-01 -7.13988343e-01 8.02616873e-01 8.31187578e-02 9.49480742e-01 2.73208800e-01 9.87826049e-01 9.21416083e-02 5.28518678e-02 -7.29144194e-01 -2.88589658e-01 -9.47562865e-01 -6.79209641e-01 4.91274385e-01 -9.39200620e-01 -2.66913806e-01 7.24692506e-01] [ 3.85355435e-01 3.81884284e-01 -6.22726398e-01 -1.16191439e-01 1.63154815e-01 9.79503415e-01 -5.92187550e-01 -5.04534196e-01 -4.75653832e-01 5.00344827e-01 -8.60493451e-02 -8.86141123e-01 1.70324812e-02 -5.76079671e-01 5.97208490e-01 -4.05337237e-01 -9.44787976e-01 1.86864899e-01 6.87680858e-01 -2.37967752e-01 4.99716621e-01 2.22829566e-02 8.19036099e-02 9.18868642e-01 6.07921783e-01 -9.35353867e-01 4.18774502e-01 -6.99970369e-02 8.95097883e-01] [-5.57134531e-01 -4.65855961e-01 -8.37052070e-01 -1.42762343e-01 -7.81962472e-01 2.67573521e-01 6.05926475e-01 3.93600992e-01 5.32422762e-01 -3.15091760e-01 6.91702966e-01 -1.42462450e-01 6.48019741e-01 2.52992317e-01 -7.13153903e-01 -8.43226200e-01 -9.63334714e-01 -8.66550005e-01 -8.28323726e-02 -7.73316154e-01 -9.44433302e-01 5.09722963e-01 -2.10299039e-01 4.93876991e-01 -9.51903465e-02 -9.98265060e-02 -4.38549866e-02 -5.19921469e-02 6.06326684e-01] [-1.95214960e-01 8.09372321e-01 -9.25877904e-01 5.47748685e-01 -7.48717238e-01 2.37027134e-01 -9.79271477e-01 7.72545652e-02 -9.93964087e-01 9.02387571e-01 8.10804067e-01 5.91933884e-01 8.30548640e-01 -7.08883538e-01 -6.84539860e-01 -6.24736654e-01 2.44991805e-01 8.11618992e-01 9.79910357e-01 4.22244918e-01 4.63600818e-01 8.18586409e-01 -1.98252535e-01 -5.00298640e-01 -6.53139658e-01 -7.61085899e-01 6.25221176e-01 -7.06415253e-01 -4.71405035e-01] [ 6.38178357e-01 -3.78825496e-01 9.64834899e-01 -4.66722596e-01 6.73066899e-02 -3.71065978e-01 8.21545662e-01 -2.66886712e-01 -1.32815345e-01 2.45853846e-02 8.77772955e-01 -9.38101987e-01 4.33757327e-01 7.82037909e-01 -9.45425553e-01 4.41024945e-02 -3.48020376e-01 7.18978642e-01 1.17033102e-01 3.80455736e-01 -9.42930001e-02 2.56618075e-01 -4.19806297e-01 -9.81302844e-01 1.53511870e-01 -3.77111572e-01 3.45351970e-02 8.32811706e-01 -1.47050423e-01] [-5.05207927e-01 -2.57412477e-01 8.63722233e-01 8.73736763e-01 6.88659897e-01 8.40413029e-01 -5.44199420e-01 -8.25035581e-01 -5.45380527e-01 -3.71246768e-01 -6.50468247e-01 2.14188324e-01 -1.72827170e-01 6.32703024e-01 -6.29739203e-01 4.03753060e-01 -5.19288750e-01 1.48438178e-01 -3.02024806e-01 -8.86071201e-01 -5.42372658e-01 3.28205111e-01 -5.49981328e-03 3.80319681e-02 -6.50559700e-01 1.41431703e-01 9.93506850e-01 6.33670218e-01 1.88745248e-01] [ 9.51978137e-01 8.03125169e-01 1.91215867e-01 -9.35147349e-01 -8.12845808e-01 -8.69256570e-01 -9.65337026e-02 -2.49130334e-01 9.50700069e-01 -6.64033414e-01 9.45575184e-01 5.34949738e-01 6.48475679e-01 2.65231634e-01 3.37465540e-01 -4.62353330e-02 -9.73727286e-01 -2.93987829e-01 -1.58563970e-02 4.60182422e-01 -6.27433145e-02 -8.51901678e-02 -7.24674518e-01 -9.78222532e-01 5.16556521e-01 -3.60094324e-01 9.68766900e-01 -5.59531548e-01 -3.22583949e-01] [ 4.77922713e-02 5.09782914e-01 -7.22844322e-02 -7.50354914e-01 -3.74997243e-01 9.03833940e-03 3.47698016e-01 5.40299913e-01 -7.39328438e-01 -9.54169737e-01 3.81646444e-02 6.19977421e-01 -9.74792466e-01 3.44939689e-01 3.73616453e-01 -1.01506493e-01 8.29577373e-01 2.88722170e-01 -9.89520325e-01 -3.11431090e-02 7.18635612e-01 6.60799140e-01 2.98308394e-01 3.47396848e-01 1.56999160e-01 -4.51760450e-01 1.21059981e-01 3.43459570e-01 -2.95140740e-01] [ 7.11656735e-01 -6.09925028e-01 4.94641621e-01 -4.20794508e-01 5.47598574e-01 -1.44525341e-01 6.15396818e-01 -2.92930275e-01 -5.72613525e-01 5.34569017e-01 -3.82716105e-01 4.66490135e-01 4.88946306e-01 -5.57206598e-01 -5.71775726e-01 -6.02104153e-01 -7.14963324e-01 -2.45834802e-01 -9.46744231e-01 -7.78159262e-01 3.49128048e-01 5.99553074e-01 -8.38940946e-01 -5.36595379e-01 -5.84748676e-01 8.34667126e-01 4.22629036e-01 1.07769222e-01 -3.90964024e-01] [ 6.69708095e-01 -1.29388085e-01 8.46912430e-01 4.12103609e-01 -4.39373841e-02 -7.47579793e-01 9.52087101e-01 -6.80332699e-01 -5.94795750e-01 -1.37636490e-01 -1.91596188e-01 -7.06497038e-01 4.58637839e-01 -6.22509866e-01 2.87791289e-01 5.08611901e-01 -5.78535216e-01 2.01908496e-01 4.97856750e-01 2.76437421e-01 1.94254606e-01 -4.09035429e-01 4.63212942e-01 8.90616880e-01 -1.48877219e-01 5.64363634e-01 -8.87717921e-01 6.70543205e-01 -6.15499966e-01] [-2.09806262e-01 -3.99837908e-01 -8.39792712e-01 8.09262006e-01 -2.59691645e-01 6.13948770e-02 -1.17674682e-02 -7.35677716e-01 -5.87091882e-01 -8.47622382e-01 1.58433999e-02 -4.76900896e-01 -2.85876782e-01 -7.83869343e-01 5.75103679e-01 -7.86832246e-01 9.71417647e-01 -6.45677671e-01 1.44810225e-01 -9.10309331e-01 5.74232579e-01 -6.20788104e-01 5.58079568e-02 4.80155086e-01 -7.00137030e-01 1.02174348e-01 -5.66765583e-01 5.18392099e-01 4.45830387e-01] [-6.46901931e-01 7.23933115e-01 -9.60449801e-01 7.20473995e-01 1.17807622e-01 -1.93559056e-01 5.17493862e-01 4.33858003e-01 9.74652350e-01 -4.43829903e-01 -9.92412655e-01 8.67805217e-01 7.15794209e-01 4.57701755e-01 3.33775658e-02 4.13912490e-01 5.61059114e-01 -2.50248113e-01 5.40645051e-01 5.01248638e-01 2.26422423e-01 -1.96268152e-01 3.94616039e-01 -9.93774284e-01 5.49793293e-01 7.92833205e-01 -5.21368585e-01 -7.58465631e-01 -5.59432024e-01] [-3.95806537e-01 7.66057017e-01 8.63328605e-02 -4.26576701e-01 -7.23290620e-01 -4.19711074e-01 2.27742179e-01 -3.51722940e-01 -8.52796366e-02 -1.11765786e-01 6.56270721e-01 -1.47303692e-01 -3.08602358e-01 3.49943210e-01 -5.57035889e-01 -6.55083521e-02 -3.70468625e-01 2.53711204e-01 7.54720949e-01 -1.04622000e-01 5.68914838e-01 -8.60685989e-02 3.12458663e-01 -7.36318050e-01 -1.34036986e-01 8.18623977e-01 2.10958002e-01 5.33549174e-01 9.40121619e-03] [-3.88875034e-03 6.85799680e-01 -8.64386131e-01 1.46544543e-01 8.85525151e-01 3.57200963e-02 -6.11068381e-01 6.95878785e-01 -4.96721715e-01 4.01452073e-01 8.05218808e-02 8.97672577e-01 2.48673405e-01 6.75955924e-01 -9.84134248e-01 9.78680112e-01 -8.44570859e-01 -3.55740973e-01 8.92304791e-01 -9.82121795e-01 6.45460011e-01 7.22423277e-01 -1.20338372e-01 -4.88509612e-01 6.05379039e-01 -4.42759911e-02 -7.31322783e-01 8.55697986e-01 7.91939934e-01] [-1.69097000e-02 7.13404993e-01 -1.62843948e-01 3.66929800e-01 -2.04018721e-01 1.14840349e-02 -6.20896594e-01 9.29977848e-01 -4.11568624e-01 -7.93080888e-01 -7.11369200e-01 -9.71815412e-01 4.31891399e-01 1.28996640e-01 5.89156702e-01 1.41598466e-02 5.83642079e-01 3.91528429e-01 5.55696954e-01 -1.87034262e-01 2.95541266e-01 -6.40411405e-01 -3.56360073e-01 -6.54790760e-01 -1.82725550e-01 -5.17162504e-01 -1.86156012e-01 9.50444685e-01 -3.59361348e-01] [ 9.64981890e-01 2.72612252e-01 -2.49817963e-01 7.14968998e-01 2.39173479e-01 -4.95933840e-01 5.85711356e-01 -1.34122983e-01 -2.84977665e-01 -3.39446127e-01 3.94737751e-01 -4.62699752e-01 6.16556027e-01 -4.09422411e-01 8.82427672e-02 -2.41570164e-02 7.10712825e-01 7.76772869e-01 -6.31231115e-01 1.70696918e-01 7.96410092e-01 -1.07765562e-01 8.43736611e-01 -4.42018219e-01 2.17662348e-01 3.64907420e-01 -5.43588533e-01 -9.72464975e-01 -1.66552075e-01] [ 8.76963784e-01 -3.13943780e-01 5.59488591e-01 -6.50527374e-01 -3.16094327e-01 -7.10804558e-01 4.33541628e-01 3.98615247e-01 3.76994636e-01 -4.93207931e-01 3.84720243e-01 -5.45404918e-01 -1.50701768e-01 -2.56155757e-01 -2.89384177e-01 -8.84690386e-01 2.63293254e-01 4.14633205e-01 2.27177389e-01 2.96625512e-01 -6.60118572e-01 -7.01106402e-01 2.83500871e-02 7.50665453e-01 -6.32093117e-01 -7.43217626e-02 -1.42135332e-01 -5.42162816e-03 -6.76978459e-01] [-3.15118718e-01 -4.76239192e-01 6.89053886e-01 6.00664492e-01 -1.46721683e-01 2.14030922e-01 -7.09068779e-01 1.92265884e-02 -4.06105828e-01 7.19301907e-01 3.43196762e-01 2.66948025e-01 -7.50497400e-01 -5.88242410e-02 9.73145559e-01 8.96598348e-01 2.90171281e-01 -6.96550258e-01 2.78253697e-01 1.31324225e-01 -6.26683247e-02 -1.43925061e-01 1.98539511e-01 6.99939777e-01 5.02242081e-01 1.58721081e-01 8.49408363e-01 -8.70520033e-01 9.82693017e-01] [-8.94010915e-01 -6.01008908e-01 -1.54494677e-01 -7.84982248e-01 2.47340822e-01 -9.04014872e-01 -4.30752238e-01 -8.77926638e-01 4.07038662e-01 3.36912335e-01 -2.42838813e-01 -6.23611480e-01 4.94009658e-01 -3.19241418e-01 5.90602335e-01 -2.41981216e-02 5.13388887e-02 -9.43018301e-01 2.88464040e-01 -2.98686995e-01 -5.41589945e-01 -1.32233248e-01 -2.35065085e-01 -6.04219198e-02 9.58966708e-01 -2.71243859e-01 5.48820267e-01 1.05535193e-01 7.78262178e-01] [-2.90094298e-01 -5.08962640e-01 8.22038479e-01 -9.12931472e-01 9.01506856e-01 1.12813831e-01 -2.47273567e-01 9.90104645e-01 -8.83274708e-01 3.34127195e-02 -9.37805849e-01 1.42351478e-01 -6.39062982e-01 2.61918401e-01 9.61847352e-01 7.49805102e-01 -9.63275012e-02 4.16921740e-01 5.54937500e-01 -1.03138316e-02 5.70669804e-02 -6.98431203e-01 -2.61200149e-01 -7.15557494e-01 4.53787507e-01 -4.59740112e-02 -1.02242327e-01 7.71995942e-01 5.52375446e-02] [-1.81818336e-01 -4.62215956e-01 -8.55975930e-01 -1.63727733e-01 -9.48493035e-01 -4.17692119e-01 7.01901970e-03 9.31866130e-01 -7.81234172e-01 3.46082108e-01 -1.35257802e-04 5.54196459e-01 -7.12786004e-01 -8.33594727e-01 -2.01562789e-01 5.93924504e-01 -6.16648522e-01 5.35554384e-01 -4.19404006e-01 -5.66217025e-01 -9.66568822e-01 -2.02681880e-01 -2.37837017e-01 3.18689872e-01 -8.58163199e-01 -6.94792026e-01 -9.66848234e-01 -7.72407287e-01 3.03578552e-01] [-1.94686296e-01 -3.57947372e-01 1.15823988e-01 9.86920926e-01 6.68973028e-01 3.99246365e-01 8.36517178e-01 -9.20542587e-01 -8.59333117e-01 -5.19874200e-02 -3.01665174e-01 8.74504124e-01 -2.08700777e-02 7.92982202e-02 7.90520731e-01 -1.06729908e-01 7.54068779e-01 -4.92836501e-01 -4.52380592e-01 -3.43277220e-01 9.51285410e-02 -5.59742652e-01 3.42858342e-01 -7.14413434e-01 -8.11799451e-01 7.40383492e-01 -5.26262593e-01 -2.27991978e-01 1.43084185e-01] [ 5.16039399e-02 -8.47952241e-01 7.48251871e-01 9.02271237e-01 6.25014608e-01 -4.32396330e-01 5.56935922e-02 -3.21166552e-01 1.09334622e-01 9.48806938e-01 -3.76594165e-01 3.37593212e-01 -3.48065585e-01 5.48954532e-01 -3.48380067e-01 7.79654683e-01 5.03415442e-01 5.25264191e-01 -6.10419429e-02 -5.78470995e-01 -9.17049841e-01 -3.56342400e-01 -9.25774671e-01 3.87710823e-01 3.40700064e-01 -1.39056435e-01 5.35577955e-01 7.20169895e-02 -9.20280147e-01] [-8.15312089e+02 -7.78701948e+02 -6.92739348e+02 -7.29473804e+02 -6.92488669e+02 -7.85619180e+02 -7.07637880e+02 -6.84707974e+02 -7.66032531e+02 -6.86982640e+02 -6.83368434e+02 -6.99956820e+02 -8.04660805e+02 -7.55490657e+02 -6.97374220e+02 -6.81666246e+02 -6.86209834e+02 -7.21588202e+02 -7.74056665e+02 -6.90281272e+02 -7.85129284e+02 -7.05463765e+02 -7.94560418e+02 -7.75307344e+02 -6.74524549e+02 -1.03294656e+03 -7.72171891e+02 -7.96335392e+02 -7.40916729e+02] [-3.23110975e+03 -3.05079084e+03 -2.66364536e+03 -2.80483172e+03 -2.66901701e+03 -3.10396972e+03 -2.71462585e+03 -2.65454303e+03 -3.03729528e+03 -2.65533873e+03 -2.62223026e+03 -2.71369297e+03 -3.20251296e+03 -2.99485032e+03 -2.68034993e+03 -2.64589957e+03 -2.65844081e+03 -2.76425937e+03 -3.06302155e+03 -2.67498894e+03 -3.07416370e+03 -2.71623051e+03 -3.12327063e+03 -3.07538479e+03 -2.60680012e+03 -3.89530137e+03 -3.02401915e+03 -3.10342464e+03 -2.96184195e+03] [-5.62399983e+03 -5.23704796e+03 -4.57298627e+03 -4.77837739e+03 -4.59161053e+03 -5.36293060e+03 -4.64849714e+03 -4.58606305e+03 -5.24970649e+03 -4.57944120e+03 -4.52950022e+03 -4.69417870e+03 -5.58592305e+03 -5.19914942e+03 -4.60150165e+03 -4.57500118e+03 -4.56958092e+03 -4.71026551e+03 -5.26474718e+03 -4.62576066e+03 -5.30300400e+03 -4.65502379e+03 -5.34835760e+03 -5.31639736e+03 -4.48405582e+03 -6.81543106e+03 -5.18498300e+03 -5.33428996e+03 -5.13864702e+03] [-7.09628384e+03 -6.56130074e+03 -5.72842905e+03 -5.99154346e+03 -5.75592176e+03 -6.74262956e+03 -5.82638191e+03 -5.76769255e+03 -6.59452438e+03 -5.75342615e+03 -5.67307057e+03 -5.91011140e+03 -7.05207214e+03 -6.52975780e+03 -5.76486537e+03 -5.77030147e+03 -5.74513146e+03 -5.89780247e+03 -6.60240148e+03 -5.81884508e+03 -6.65273831e+03 -5.84019017e+03 -6.70718700e+03 -6.68246361e+03 -5.61810459e+03 -8.66476697e+03 -6.48620354e+03 -6.68334407e+03 -6.46846124e+03] [-9.89577213e+03 -9.14380854e+03 -8.24566257e+03 -8.70963113e+03 -8.27751768e+03 -9.35034565e+03 -8.41596991e+03 -8.30472195e+03 -9.10783267e+03 -8.27688985e+03 -8.14662412e+03 -8.53290550e+03 -9.81166350e+03 -9.01434784e+03 -8.30124954e+03 -8.29959650e+03 -8.27594837e+03 -8.54449691e+03 -9.13188498e+03 -8.38752099e+03 -9.27843858e+03 -8.43315563e+03 -9.32609708e+03 -9.24725918e+03 -8.06189814e+03 -1.30793543e+04 -9.02696412e+03 -9.35000899e+03 -8.87228639e+03] [-5.89945095e+03 -5.36926109e+03 -5.20888789e+03 -5.59757503e+03 -5.23337151e+03 -5.46576252e+03 -5.35572359e+03 -5.27727766e+03 -5.26554649e+03 -5.24803933e+03 -5.14391076e+03 -5.47033268e+03 -5.82377089e+03 -5.21968489e+03 -5.25325908e+03 -5.27853622e+03 -5.25248610e+03 -5.45840606e+03 -5.27315972e+03 -5.35362602e+03 -5.47966767e+03 -5.36475118e+03 -5.44520056e+03 -5.36571076e+03 -5.06651764e+03 -9.23325426e+03 -5.27445277e+03 -5.54555845e+03 -5.06532598e+03] [-1.67571452e+04 -1.58356112e+04 -1.33190027e+04 -1.37051033e+04 -1.33186212e+04 -1.62135200e+04 -1.34580526e+04 -1.32482289e+04 -1.59348641e+04 -1.32790404e+04 -1.32296563e+04 -1.34592291e+04 -1.66784713e+04 -1.57709791e+04 -1.33944664e+04 -1.32079111e+04 -1.31981278e+04 -1.35944963e+04 -1.59934024e+04 -1.33202843e+04 -1.59633836e+04 -1.34905305e+04 -1.61747710e+04 -1.61149451e+04 -1.30652369e+04 -1.81975302e+04 -1.57303356e+04 -1.60496876e+04 -1.56901277e+04] [-2.64811118e+04 -2.51162043e+04 -2.02516842e+04 -2.05221300e+04 -2.03233913e+04 -2.58186247e+04 -2.03664543e+04 -2.00948836e+04 -2.55317940e+04 -2.01913890e+04 -2.02502615e+04 -2.03395992e+04 -2.63841771e+04 -2.52544690e+04 -2.03863783e+04 -2.00067127e+04 -2.00152675e+04 -2.05328367e+04 -2.55928274e+04 -2.01865035e+04 -2.52756364e+04 -2.04167064e+04 -2.57132024e+04 -2.57143350e+04 -2.00021488e+04 -2.51001124e+04 -2.49633725e+04 -2.53393621e+04 -2.53127152e+04] [-1.98056605e+04 -1.81313121e+04 -1.52098363e+04 -1.58493474e+04 -1.53735734e+04 -1.88150264e+04 -1.53977220e+04 -1.54142771e+04 -1.85548254e+04 -1.53085251e+04 -1.51228777e+04 -1.57651241e+04 -1.96927020e+04 -1.82904634e+04 -1.52458387e+04 -1.53881974e+04 -1.53674486e+04 -1.56263698e+04 -1.85751302e+04 -1.55648422e+04 -1.83477541e+04 -1.54645610e+04 -1.86666696e+04 -1.87405419e+04 -1.50800242e+04 -2.11815813e+04 -1.79169645e+04 -1.83352896e+04 -1.83398880e+04] [-2.84233796e+04 -2.55840032e+04 -2.18905420e+04 -2.27465349e+04 -2.21672154e+04 -2.66391930e+04 -2.21299086e+04 -2.23762032e+04 -2.62413493e+04 -2.21654323e+04 -2.18107815e+04 -2.29483774e+04 -2.83492734e+04 -2.60808395e+04 -2.18891688e+04 -2.22941820e+04 -2.21612444e+04 -2.23228310e+04 -2.61397259e+04 -2.25888685e+04 -2.60425598e+04 -2.22215896e+04 -2.62046563e+04 -2.66110644e+04 -2.16750767e+04 -3.23838532e+04 -2.52658010e+04 -2.59039960e+04 -2.59694515e+04] [-1.71049064e+04 -1.56835063e+04 -1.35353137e+04 -1.42695490e+04 -1.36075787e+04 -1.61562610e+04 -1.36940753e+04 -1.37402438e+04 -1.58974391e+04 -1.36166565e+04 -1.33196705e+04 -1.40272878e+04 -1.70368919e+04 -1.57132859e+04 -1.35331668e+04 -1.36838116e+04 -1.36914232e+04 -1.39249378e+04 -1.59524807e+04 -1.38244566e+04 -1.58532198e+04 -1.38026907e+04 -1.60803856e+04 -1.61263331e+04 -1.33426791e+04 -1.98446273e+04 -1.54954798e+04 -1.58551980e+04 -1.56394573e+04] [-8.05814412e+03 -7.54416037e+03 -6.92260024e+03 -7.49388556e+03 -6.89633144e+03 -7.64245833e+03 -7.07788122e+03 -6.95264311e+03 -7.43618731e+03 -6.89890434e+03 -6.74564530e+03 -7.11752819e+03 -7.96418482e+03 -7.27339866e+03 -6.94965161e+03 -6.94064415e+03 -6.98588320e+03 -7.27693324e+03 -7.53714288e+03 -7.01355493e+03 -7.58658712e+03 -7.12816119e+03 -7.73008848e+03 -7.55811002e+03 -6.75096354e+03 -1.09222517e+04 -7.44814002e+03 -7.69442231e+03 -7.17935255e+03] [-1.23871196e+04 -1.18202465e+04 -9.83299408e+03 -1.01908649e+04 -9.79700868e+03 -1.20814819e+04 -9.95889706e+03 -9.73213169e+03 -1.18828849e+04 -9.74719644e+03 -9.69483307e+03 -9.86388070e+03 -1.23155131e+04 -1.16868855e+04 -9.87291917e+03 -9.71484391e+03 -9.74546644e+03 -1.00882126e+04 -1.19779638e+04 -9.77860119e+03 -1.18736827e+04 -9.96719000e+03 -1.21419146e+04 -1.20254169e+04 -9.63127535e+03 -1.30243152e+04 -1.17656145e+04 -1.19709087e+04 -1.16729579e+04] [-8.67718447e+03 -8.21164293e+03 -6.93251770e+03 -7.26285232e+03 -6.91562374e+03 -8.40349872e+03 -7.03810116e+03 -6.89927510e+03 -8.24970142e+03 -6.88476722e+03 -6.81123061e+03 -7.01422410e+03 -8.62008309e+03 -8.10119544e+03 -6.94988092e+03 -6.89622888e+03 -6.92051418e+03 -7.15032467e+03 -8.32588470e+03 -6.93961934e+03 -8.25227809e+03 -7.04955210e+03 -8.45123281e+03 -8.35811985e+03 -6.78718431e+03 -9.53152437e+03 -8.16058790e+03 -8.32087579e+03 -8.09135194e+03] [-2.53923875e+03 -2.31721998e+03 -2.08695073e+03 -2.28807592e+03 -2.09684304e+03 -2.37867846e+03 -2.14168653e+03 -2.12799848e+03 -2.31923164e+03 -2.09480626e+03 -2.02042990e+03 -2.18946652e+03 -2.51079824e+03 -2.26244354e+03 -2.08638834e+03 -2.13640209e+03 -2.14857344e+03 -2.20431101e+03 -2.34958116e+03 -2.14747435e+03 -2.33381449e+03 -2.15564275e+03 -2.40171725e+03 -2.35893425e+03 -2.04510032e+03 -3.32619385e+03 -2.27863125e+03 -2.35368530e+03 -2.25608939e+03] [-1.86085103e+03 -1.66549747e+03 -1.51667224e+03 -1.67762463e+03 -1.53005224e+03 -1.72064351e+03 -1.55745623e+03 -1.56536240e+03 -1.67382992e+03 -1.53231362e+03 -1.45965682e+03 -1.61526585e+03 -1.84099647e+03 -1.63538290e+03 -1.51011519e+03 -1.57543102e+03 -1.57838253e+03 -1.60611013e+03 -1.69191097e+03 -1.57748062e+03 -1.68208084e+03 -1.57290395e+03 -1.73373978e+03 -1.71450636e+03 -1.48491102e+03 -2.50734685e+03 -1.62984017e+03 -1.68886628e+03 -1.63313506e+03] [-9.27239891e+02 -7.98334886e+02 -7.88760124e+02 -9.01789793e+02 -7.95434463e+02 -8.29341881e+02 -8.18466273e+02 -8.28703739e+02 -7.94679657e+02 -8.01781842e+02 -7.47334930e+02 -8.64723672e+02 -9.14784189e+02 -7.71677898e+02 -7.78251919e+02 -8.37962117e+02 -8.36182066e+02 -8.47926125e+02 -8.04520645e+02 -8.36529083e+02 -8.07544067e+02 -8.29053478e+02 -8.37321634e+02 -8.31465032e+02 -7.64486844e+02 -1.47669889e+03 -7.74976025e+02 -8.13132536e+02 -7.69802439e+02] [-4.86678020e-01 -2.17139274e-01 -5.19655586e-01 3.72886830e-01 9.79766907e-01 -6.45140926e-01 6.42893480e-01 -5.38022881e-01 -8.84048373e-01 -7.22366964e-01 8.70306231e-01 7.77084207e-01 -4.21479009e-01 8.95528132e-01 6.99861070e-01 -1.30690412e-01 -6.39008903e-02 2.59706043e-01 -6.83936330e-01 -9.70435827e-01 -4.68975965e-01 -9.69112736e-01 3.48997688e-01 1.02937672e-01 -3.56703709e-01 5.60404674e-01 -7.08429138e-01 -5.10238722e-01 -4.15372476e-01] [-6.08136107e-01 -8.24122632e-01 7.39952361e-01 -8.23622709e-01 3.67420672e-01 -7.59198246e-01 -9.78601994e-01 1.14536460e-01 8.14218110e-01 7.20913335e-01 -3.23097232e-01 -9.45682341e-01 6.01718710e-01 6.11969865e-01 7.36976233e-01 3.39293200e-01 6.15557725e-01 7.94996565e-01 -9.23400990e-02 1.15650607e-01 1.22622577e-02 3.83967809e-01 3.65813735e-01 4.06272717e-02 6.56936296e-01 1.15587736e-02 6.49717125e-01 -4.36309824e-01 -6.43010334e-01] [ 9.39741141e-01 4.83879051e-01 -4.80416613e-01 1.62470685e-01 9.10524507e-01 -8.38492184e-01 -8.32931586e-01 2.38269663e-01 -5.51013042e-01 5.30367913e-01 1.36305086e-01 3.32376180e-01 -7.84372198e-01 -8.31433897e-01 2.50242137e-01 -1.80537478e-01 -8.25494952e-01 -2.57872110e-01 3.44288819e-01 -6.20825200e-01 7.91458217e-01 8.99692778e-01 9.23145085e-01 4.60165115e-01 -1.87423145e-01 4.87498393e-01 -4.24026241e-01 -3.71165555e-01 2.11792722e-01] [ 1.89694267e-01 7.57321953e-01 -4.90798489e-01 5.32376730e-01 8.82026534e-01 -9.97934135e-01 -4.78217640e-02 3.14080658e-01 6.86646428e-01 -6.32521176e-01 7.12318476e-01 -2.71269040e-01 7.84547859e-01 -9.44576520e-01 -8.29219722e-01 9.62820932e-01 2.19003852e-01 -1.64735306e-01 -6.61571631e-01 2.99802306e-01 -9.26049863e-01 -3.76772173e-01 -3.53041606e-01 2.14883787e-01 3.01662513e-01 6.92109198e-01 8.55161885e-01 3.20915455e-01 1.56347837e-01] [-2.02568913e-01 9.33224985e-01 -6.91841656e-01 7.90173617e-01 -3.77973864e-01 9.69781793e-02 3.64132517e-01 -5.27060697e-01 -6.64526630e-01 1.69640269e-02 5.83727751e-01 3.84828924e-01 -7.62053326e-01 8.01484430e-01 -4.05248659e-02 8.93353358e-01 1.06867412e-01 -8.30396357e-01 -5.95073929e-01 7.08475946e-01 4.11854734e-01 7.89879040e-01 -3.41707996e-01 5.60027933e-02 3.00796265e-01 1.88581707e-01 -5.37074129e-01 -1.46357301e-01 -5.03777072e-01] [ 6.91229924e-01 9.73354890e-01 -8.66858394e-01 4.27856065e-01 -3.39768896e-01 2.50870757e-01 -4.83740701e-01 3.02015219e-01 -2.57705631e-01 -4.10358241e-01 8.23526347e-01 8.84997748e-01 2.27100053e-01 -5.71064438e-01 8.78837742e-01 5.00907093e-01 5.02179615e-01 -5.76557330e-01 6.60313052e-01 -5.19809692e-01 2.63241491e-01 4.21479140e-01 4.84766859e-01 -2.19470591e-01 5.19650793e-01 8.05871804e-01 1.74840038e-01 -8.19180569e-01 -7.42048032e-01] [-7.89474947e-01 -6.54545073e-01 -7.47138219e-01 5.56601780e-01 -9.21176976e-01 -5.16883165e-01 7.58132803e-01 9.47037722e-01 2.10844015e-01 9.52476529e-01 -9.13096917e-01 8.97145537e-01 -3.77407835e-01 5.97945681e-01 6.21258207e-01 7.19997183e-01 -8.28983782e-02 8.61288784e-01 -4.84214031e-01 8.68890985e-01 2.38239267e-01 9.70889830e-01 -9.34712268e-01 4.50333318e-01 1.31108471e-01 -1.51519052e-02 -4.81563749e-01 -3.46338630e-01 -5.01075587e-01] [-5.61464179e-01 5.99321675e-01 4.79001180e-03 -8.33620223e-01 5.53968384e-01 6.72981522e-02 4.78775575e-01 3.07873863e-02 -2.00108152e-01 9.72493565e-01 -9.43514760e-01 8.65527816e-01 8.61709936e-01 -2.18162577e-01 -5.71070258e-01 2.38426596e-01 -6.44055329e-01 6.06416389e-01 -4.92132288e-01 -4.18387690e-01 8.31831580e-01 8.05833667e-01 7.07617835e-02 7.25677961e-01 -2.94934862e-01 9.95768556e-01 -1.32620521e-01 -4.10375976e-01 -9.16851532e-01] [-6.14554074e+02 -5.80161853e+02 -5.08348499e+02 -5.31383107e+02 -5.06422925e+02 -5.90403984e+02 -5.15316630e+02 -5.06832104e+02 -5.78037490e+02 -5.06220872e+02 -5.01355523e+02 -5.16267378e+02 -6.13259807e+02 -5.72842560e+02 -5.11899527e+02 -5.03851353e+02 -5.06159180e+02 -5.22724183e+02 -5.81714490e+02 -5.11044519e+02 -5.86789068e+02 -5.16159247e+02 -5.90742581e+02 -5.85998300e+02 -4.96943259e+02 -7.59767353e+02 -5.76752579e+02 -5.91610592e+02 -5.64208688e+02] [-2.21727328e+02 -2.09902002e+02 -1.77053851e+02 -1.82738075e+02 -1.77516225e+02 -2.13954487e+02 -1.78211289e+02 -1.75850943e+02 -2.11465361e+02 -1.76536735e+02 -1.74664075e+02 -1.77933098e+02 -2.20556167e+02 -2.08957304e+02 -1.77739197e+02 -1.74925867e+02 -1.74902870e+02 -1.80654830e+02 -2.11758969e+02 -1.77110388e+02 -2.10955348e+02 -1.78842239e+02 -2.14811812e+02 -2.12980490e+02 -1.72723928e+02 -2.43404943e+02 -2.09472214e+02 -2.12840540e+02 -2.06917766e+02] [-1.47721894e+03 -1.40023171e+03 -1.17285533e+03 -1.21679970e+03 -1.17377944e+03 -1.43020411e+03 -1.18595864e+03 -1.16719563e+03 -1.40851294e+03 -1.16958563e+03 -1.15989033e+03 -1.18609134e+03 -1.47012473e+03 -1.38965656e+03 -1.17955018e+03 -1.16482645e+03 -1.16698072e+03 -1.20255249e+03 -1.41617510e+03 -1.17249031e+03 -1.40846431e+03 -1.19063558e+03 -1.43377339e+03 -1.42276751e+03 -1.15087610e+03 -1.59181009e+03 -1.38955051e+03 -1.41691851e+03 -1.38499314e+03] [-2.39745605e+03 -1.69852976e+03 -1.84472731e+03 -2.17267711e+03 -1.94263194e+03 -1.87607509e+03 -1.87840361e+03 -2.13733150e+03 -1.83327516e+03 -1.98804168e+03 -1.77329117e+03 -2.26855512e+03 -2.39909566e+03 -1.84074463e+03 -1.76571284e+03 -2.11772483e+03 -2.09430372e+03 -1.95594421e+03 -1.80108628e+03 -2.16724713e+03 -1.77636427e+03 -1.94723006e+03 -1.77145012e+03 -1.94298647e+03 -1.85740445e+03 -4.08801609e+03 -1.59950587e+03 -1.68725491e+03 -1.82358920e+03] [-1.18690348e+04 -1.05406911e+04 -1.02835473e+04 -1.10453319e+04 -1.03927963e+04 -1.08442282e+04 -1.05706237e+04 -1.05329490e+04 -1.04492091e+04 -1.04343561e+04 -1.02232395e+04 -1.09689773e+04 -1.17282118e+04 -1.03931383e+04 -1.03572415e+04 -1.05438668e+04 -1.04493392e+04 -1.07506077e+04 -1.04169620e+04 -1.07178186e+04 -1.08163661e+04 -1.05913788e+04 -1.06903649e+04 -1.06442038e+04 -1.00499748e+04 -1.86638066e+04 -1.03333228e+04 -1.08859108e+04 -1.00991141e+04] [-2.81869736e+04 -2.54317462e+04 -2.43641937e+04 -2.61446489e+04 -2.45518479e+04 -2.60659797e+04 -2.50482930e+04 -2.47860260e+04 -2.51563912e+04 -2.45987268e+04 -2.41347465e+04 -2.57262985e+04 -2.78409407e+04 -2.49231675e+04 -2.45535552e+04 -2.48238069e+04 -2.46699215e+04 -2.55002796e+04 -2.51699282e+04 -2.51761026e+04 -2.59876433e+04 -2.50751292e+04 -2.58756961e+04 -2.55996322e+04 -2.37805825e+04 -4.28167430e+04 -2.49890301e+04 -2.62282767e+04 -2.43044350e+04] [-4.75178189e+04 -4.31587911e+04 -4.06764228e+04 -4.34555498e+04 -4.09319428e+04 -4.41845769e+04 -4.17169871e+04 -4.12742813e+04 -4.27854308e+04 -4.10010791e+04 -4.02689879e+04 -4.27042660e+04 -4.70056768e+04 -4.23959528e+04 -4.09841533e+04 -4.12813062e+04 -4.10805101e+04 -4.24282466e+04 -4.28336436e+04 -4.18567180e+04 -4.40233878e+04 -4.17799822e+04 -4.39089889e+04 -4.34900237e+04 -3.97353665e+04 -6.96301625e+04 -4.24715082e+04 -4.44044466e+04 -4.14182486e+04] [-6.84114139e+04 -6.18683055e+04 -5.95294690e+04 -6.36421045e+04 -5.98309128e+04 -6.34726865e+04 -6.10947354e+04 -6.03717931e+04 -6.14030097e+04 -5.99633477e+04 -5.89203714e+04 -6.24540415e+04 -6.76635981e+04 -6.07608266e+04 -5.99999932e+04 -6.03785068e+04 -6.00670709e+04 -6.21025661e+04 -6.14662535e+04 -6.12462172e+04 -6.31779270e+04 -6.11479132e+04 -6.30257642e+04 -6.24468246e+04 -5.81067978e+04 -1.08756497e+05 -6.08995951e+04 -6.37929020e+04 -5.93052771e+04] [-1.00852781e+05 -8.96616497e+04 -8.96398119e+04 -9.60942332e+04 -9.00985632e+04 -9.31411965e+04 -9.21427557e+04 -9.10384816e+04 -8.99752641e+04 -9.02672372e+04 -8.85471098e+04 -9.42073752e+04 -9.97011151e+04 -8.84804544e+04 -9.02521484e+04 -9.12957385e+04 -9.07227730e+04 -9.36511762e+04 -9.01237498e+04 -9.23948242e+04 -9.16578372e+04 -9.21486586e+04 -9.22935267e+04 -9.16751225e+04 -8.74898690e+04 -1.89453713e+05 -8.82264339e+04 -9.25943514e+04 -8.69165746e+04] [-1.63930304e+05 -1.48791745e+05 -1.40605312e+05 -1.49550767e+05 -1.41003000e+05 -1.53849271e+05 -1.43882832e+05 -1.41971224e+05 -1.49468995e+05 -1.41047444e+05 -1.38706216e+05 -1.46065423e+05 -1.62367938e+05 -1.46954338e+05 -1.41377110e+05 -1.42238455e+05 -1.41713587e+05 -1.46210796e+05 -1.50076770e+05 -1.43625414e+05 -1.51171890e+05 -1.44070582e+05 -1.53135445e+05 -1.52019611e+05 -1.37390169e+05 -2.65340392e+05 -1.46873420e+05 -1.52548063e+05 -1.45302416e+05] [-2.62361688e+05 -2.42131631e+05 -2.18897506e+05 -2.30669046e+05 -2.19247994e+05 -2.49119777e+05 -2.23029694e+05 -2.19869003e+05 -2.43182097e+05 -2.19026227e+05 -2.16279729e+05 -2.25171055e+05 -2.60228049e+05 -2.39453895e+05 -2.20099675e+05 -2.19807368e+05 -2.19469909e+05 -2.26501010e+05 -2.44335651e+05 -2.21968171e+05 -2.45083222e+05 -2.23524346e+05 -2.48499941e+05 -2.46701662e+05 -2.14288729e+05 -3.68083204e+05 -2.39537186e+05 -2.47072337e+05 -2.37379005e+05] [-3.59686075e+05 -3.34804547e+05 -3.01179890e+05 -3.17599288e+05 -3.01379754e+05 -3.42747063e+05 -3.06588024e+05 -3.02385359e+05 -3.35025324e+05 -3.01120397e+05 -2.96907256e+05 -3.09140227e+05 -3.56914357e+05 -3.30101834e+05 -3.02583422e+05 -3.02204486e+05 -3.02141383e+05 -3.11583702e+05 -3.36932621e+05 -3.04942925e+05 -3.38327124e+05 -3.07473228e+05 -3.42882200e+05 -3.39766507e+05 -2.95000083e+05 -4.58965693e+05 -3.31364811e+05 -3.41022128e+05 -3.27140604e+05] [-4.71335805e+05 -4.39305113e+05 -3.98333369e+05 -4.18794074e+05 -3.98321732e+05 -4.50784602e+05 -4.05047518e+05 -3.99218148e+05 -4.41374306e+05 -3.97687612e+05 -3.92115197e+05 -4.07180060e+05 -4.68046217e+05 -4.34177392e+05 -3.99890758e+05 -3.99137723e+05 -3.99306150e+05 -4.11269852e+05 -4.44162656e+05 -4.02098516e+05 -4.43398884e+05 -4.06041177e+05 -4.51318123e+05 -4.47555436e+05 -3.90430533e+05 -6.18458251e+05 -4.35276790e+05 -4.46793941e+05 -4.31722985e+05] [-5.94398134e+05 -5.61676834e+05 -4.88798604e+05 -5.08185060e+05 -4.88451773e+05 -5.74227666e+05 -4.94903283e+05 -4.87942207e+05 -5.64640073e+05 -4.87215323e+05 -4.82181540e+05 -4.95439325e+05 -5.91344414e+05 -5.56993783e+05 -4.90556530e+05 -4.87216609e+05 -4.87742616e+05 -5.01212157e+05 -5.67919305e+05 -4.90422449e+05 -5.65660837e+05 -4.96246849e+05 -5.75286849e+05 -5.71462314e+05 -4.80002951e+05 -6.47658603e+05 -5.57634336e+05 -5.69005046e+05 -5.54981306e+05] [-5.05680223e+05 -4.76816208e+05 -4.13861689e+05 -4.29765847e+05 -4.13332689e+05 -4.88812783e+05 -4.18700162e+05 -4.12470217e+05 -4.80895249e+05 -4.12131280e+05 -4.08141827e+05 -4.18402089e+05 -5.03166762e+05 -4.73713121e+05 -4.15371253e+05 -4.11607049e+05 -4.12331549e+05 -4.24128765e+05 -4.83927397e+05 -4.14332101e+05 -4.79883228e+05 -4.19987217e+05 -4.89510534e+05 -4.86659151e+05 -4.06302867e+05 -5.91423749e+05 -4.73562467e+05 -4.82797699e+05 -4.72779995e+05] [-3.30367040e+05 -3.10267695e+05 -2.68933584e+05 -2.79604804e+05 -2.68401451e+05 -3.19041461e+05 -2.72271825e+05 -2.67594624e+05 -3.13568084e+05 -2.67496639e+05 -2.65193029e+05 -2.71584496e+05 -3.28552856e+05 -3.08269406e+05 -2.69996663e+05 -2.66907043e+05 -2.67496665e+05 -2.75986885e+05 -3.15741124e+05 -2.68891578e+05 -3.12238741e+05 -2.73026145e+05 -3.19347393e+05 -3.17528564e+05 -2.63639191e+05 -4.23538637e+05 -3.08232585e+05 -3.14459941e+05 -3.07850665e+05] [-1.39999866e+05 -1.31028218e+05 -1.15110227e+05 -1.21574164e+05 -1.14861396e+05 -1.34380849e+05 -1.17066093e+05 -1.15074419e+05 -1.31592308e+05 -1.14585042e+05 -1.12905397e+05 -1.17227864e+05 -1.38963482e+05 -1.29029052e+05 -1.15440715e+05 -1.15000343e+05 -1.15323800e+05 -1.19200322e+05 -1.32794467e+05 -1.15794994e+05 -1.31855911e+05 -1.17475114e+05 -1.34986602e+05 -1.33569444e+05 -1.12617579e+05 -1.79869713e+05 -1.29920403e+05 -1.33042358e+05 -1.28632126e+05] [-6.97282124e+04 -6.56063948e+04 -5.59367273e+04 -5.88747859e+04 -5.58625384e+04 -6.71512119e+04 -5.68029084e+04 -5.59207823e+04 -6.58941232e+04 -5.57017355e+04 -5.48781567e+04 -5.69020171e+04 -6.92750267e+04 -6.47333855e+04 -5.60765428e+04 -5.58768081e+04 -5.60388092e+04 -5.77867396e+04 -6.64498137e+04 -5.62234131e+04 -6.59899108e+04 -5.70179936e+04 -6.74744102e+04 -6.68256026e+04 -5.48014097e+04 -7.87535985e+04 -6.50665209e+04 -6.64773184e+04 -6.45879955e+04] [-1.75513408e+04 -1.62684949e+04 -1.45282633e+04 -1.57182096e+04 -1.45192363e+04 -1.66536334e+04 -1.48685512e+04 -1.46684459e+04 -1.62247096e+04 -1.45018599e+04 -1.41143197e+04 -1.50272384e+04 -1.73703859e+04 -1.58403161e+04 -1.45252447e+04 -1.47061033e+04 -1.47544282e+04 -1.52472921e+04 -1.64186646e+04 -1.47778939e+04 -1.63672445e+04 -1.49500373e+04 -1.68128519e+04 -1.65485699e+04 -1.41777316e+04 -2.23582640e+04 -1.60668324e+04 -1.65391195e+04 -1.57870485e+04] [-2.59920587e+03 -2.12245116e+03 -2.33641049e+03 -2.67217720e+03 -2.39632874e+03 -2.22105919e+03 -2.44722034e+03 -2.48971427e+03 -2.09969639e+03 -2.41479795e+03 -2.27595769e+03 -2.64592150e+03 -2.54808724e+03 -2.06721150e+03 -2.33917322e+03 -2.51754279e+03 -2.48779394e+03 -2.52791898e+03 -2.09244185e+03 -2.54691090e+03 -2.20657809e+03 -2.46422609e+03 -2.19119033e+03 -2.17066259e+03 -2.28157319e+03 -5.10006100e+03 -2.03520796e+03 -2.21663192e+03 -2.00085198e+03] [-7.87028696e+02 -6.50484458e+02 -6.60180634e+02 -7.11683570e+02 -6.84005791e+02 -6.85566510e+02 -6.84508052e+02 -6.99050900e+02 -6.58672636e+02 -6.87885466e+02 -6.67114211e+02 -7.40671388e+02 -7.78094714e+02 -6.64854304e+02 -6.68990133e+02 -7.01572503e+02 -6.88219912e+02 -6.89956336e+02 -6.45327736e+02 -7.16038073e+02 -6.83245346e+02 -6.82828527e+02 -6.57095547e+02 -6.67201504e+02 -6.53261220e+02 -1.36093066e+03 -6.27499458e+02 -6.78824636e+02 -6.39029857e+02] [ 3.96563599e-01 -7.06782596e-01 2.24922257e-01 -4.41359329e-01 8.31757446e-01 -6.03535420e-01 -4.28567009e-01 -9.04690590e-01 -1.04841712e-01 1.15175630e-01 1.47122165e-01 8.10754760e-01 -3.05172134e-01 -1.04943241e-01 7.02475325e-01 1.53658606e-01 3.07985870e-01 -4.43281339e-01 -2.50573967e-02 2.41904775e-01 -7.33211940e-01 -9.34182567e-01 -7.73177998e-01 -4.50778473e-02 -9.51946531e-01 2.52417858e-01 -8.04834764e-01 -4.98076925e-01 -1.47014108e-01] [-7.68346507e-01 -4.58896012e-01 -9.57840654e-01 9.70091107e-01 2.23147216e-01 -2.43292322e-01 -9.46943298e-01 -2.20322503e-01 -9.48827472e-02 8.62006388e-01 -4.42991656e-01 2.29563782e-01 3.30336709e-01 -6.28078060e-01 1.15266980e-02 5.73001526e-01 -8.06841931e-01 2.12070596e-01 -9.47880135e-01 -9.85906552e-01 -8.80942786e-01 -3.71990817e-02 8.51408217e-01 -1.88885232e-01 -8.49934721e-01 7.22704949e-01 3.85951709e-02 -3.62128262e-01 9.26064678e-01] [ 8.76523537e-01 -4.79962056e-01 -5.97216293e-01 1.77817407e-01 6.85036420e-01 -3.26557821e-01 1.72858843e-01 -6.75510001e-01 -6.10812530e-01 5.22670432e-01 -6.99803077e-01 -4.68185918e-01 3.78989726e-01 -9.69821385e-01 -9.35611192e-01 -4.24948120e-01 -3.26753639e-01 -2.75567789e-01 6.14381151e-01 -9.28038065e-01 -2.83209511e-01 2.76556267e-01 -7.13991781e-01 7.15477229e-01 2.91128817e-01 -7.69413149e-01 -5.83805180e-01 4.90996661e-01 -1.93186743e-01] [-3.10598781e-02 7.74910156e-01 -7.25112901e-01 9.28745595e-01 -9.14740636e-01 -8.01119485e-01 -5.53523138e-01 6.13170165e-01 -8.82543853e-02 3.06502285e-01 -6.51357725e-01 -6.66556134e-01 4.16966811e-02 4.80587271e-01 -7.50510696e-02 7.39228170e-01 3.20823869e-01 -5.01819823e-01 -5.30195558e-01 -2.51906566e-01 5.13232113e-01 8.75875329e-01 7.23811999e-01 -4.76778415e-01 -1.75442144e-01 2.23088199e-01 9.36689116e-02 -2.21450109e-01 -7.97158446e-01] [ 4.24489609e-01 -8.23729672e-01 7.32154859e-01 7.26896881e-01 4.16901583e-01 -2.71508524e-02 3.98293131e-01 -2.10025880e-01 5.94991969e-01 5.72834165e-01 -6.88942832e-01 -3.64364899e-01 -3.12033646e-01 -2.71659403e-01 1.33291113e-01 -9.16625115e-01 3.19939438e-01 -5.96736482e-01 -1.67074888e-01 -9.82146870e-02 -3.02546461e-01 -2.33439380e-01 -6.39387878e-01 -8.63739885e-01 1.02513298e-01 1.91733891e-01 -7.09000422e-01 -5.38116583e-01 -4.27245737e-01] [ 6.61502734e-01 -6.93158118e-01 1.04277615e-01 1.36279435e-01 -3.13159814e-01 -2.98765621e-01 9.18224035e-01 1.06687899e-01 3.05462402e-01 -1.85197671e-02 2.93299963e-01 2.10501571e-01 -7.09653414e-01 -3.30638934e-01 -7.91320131e-02 -7.44356677e-01 -2.73853353e-01 -5.43716731e-01 6.95005205e-01 -3.17051840e-01 -5.46421359e-01 -1.83637194e-01 3.66128095e-01 -8.68756002e-01 -6.38541573e-01 3.88613878e-01 5.04513210e-01 2.35508559e-01 7.58397121e-01] [-6.62399620e-01 4.07095464e-01 8.34520318e-01 -6.98520682e-01 -5.12472045e-01 9.33691442e-02 -3.11761326e-01 3.81278162e-01 -8.84864763e-01 -6.78471715e-01 4.32476613e-01 9.41237397e-01 8.59100753e-01 8.02133987e-01 -7.44513372e-01 -7.08142164e-01 -8.55470486e-01 8.50804663e-02 7.64972346e-01 6.35838001e-02 5.63430571e-01 -6.23092426e-01 7.26222520e-01 -6.25150459e-01 -8.90471748e-01 -1.57017979e-01 1.10208860e-01 9.41484019e-01 -8.16492333e-01] [-1.85338059e+03 -1.46419188e+03 -1.32692585e+03 -1.49178786e+03 -1.37142626e+03 -1.58317321e+03 -1.32528972e+03 -1.47885871e+03 -1.57635093e+03 -1.39605838e+03 -1.27512263e+03 -1.53096288e+03 -1.86364093e+03 -1.56734776e+03 -1.27518023e+03 -1.46163575e+03 -1.45743334e+03 -1.37092596e+03 -1.56793265e+03 -1.48573501e+03 -1.49551982e+03 -1.37326766e+03 -1.52903309e+03 -1.64007386e+03 -1.34068690e+03 -2.26498131e+03 -1.41618652e+03 -1.43853735e+03 -1.58521682e+03] [-9.01936973e+03 -7.51950247e+03 -7.22759390e+03 -7.78157885e+03 -7.39124622e+03 -7.91232734e+03 -7.30554430e+03 -7.69213235e+03 -7.75766747e+03 -7.48404824e+03 -7.18957480e+03 -7.99520630e+03 -9.01344022e+03 -7.80318047e+03 -7.16227529e+03 -7.61003546e+03 -7.53604253e+03 -7.42795194e+03 -7.66257711e+03 -7.79894231e+03 -7.76204788e+03 -7.42013406e+03 -7.62204757e+03 -7.94506020e+03 -7.18985675e+03 -1.31085159e+04 -7.32888895e+03 -7.62639406e+03 -7.63786457e+03] [-2.00152320e+04 -1.76774476e+04 -1.67030669e+04 -1.72814749e+04 -1.68841946e+04 -1.82547282e+04 -1.68714351e+04 -1.71283571e+04 -1.78377215e+04 -1.70369146e+04 -1.69271671e+04 -1.76992916e+04 -1.99649830e+04 -1.80412329e+04 -1.68198251e+04 -1.69346762e+04 -1.67327094e+04 -1.69503125e+04 -1.76031512e+04 -1.74204722e+04 -1.82403089e+04 -1.69542776e+04 -1.76207353e+04 -1.80247624e+04 -1.65018052e+04 -2.88565751e+04 -1.74174765e+04 -1.81489166e+04 -1.74249298e+04] [-2.54586714e+04 -2.18804521e+04 -2.31106040e+04 -2.40182883e+04 -2.34425880e+04 -2.25082743e+04 -2.36279147e+04 -2.37743076e+04 -2.16565354e+04 -2.36890292e+04 -2.37437424e+04 -2.49200809e+04 -2.52549329e+04 -2.21689524e+04 -2.34453733e+04 -2.34693745e+04 -2.30246151e+04 -2.36229284e+04 -2.11150916e+04 -2.44280154e+04 -2.30184106e+04 -2.35234170e+04 -2.13956791e+04 -2.19319953e+04 -2.26985271e+04 -4.63610309e+04 -2.14801840e+04 -2.30320384e+04 -2.07128400e+04] [-6.01581181e+04 -5.35505209e+04 -5.44310056e+04 -5.63370215e+04 -5.49261602e+04 -5.46695151e+04 -5.57006643e+04 -5.51654244e+04 -5.26166620e+04 -5.53317546e+04 -5.56745623e+04 -5.75475906e+04 -5.95804080e+04 -5.34531832e+04 -5.54449631e+04 -5.47055654e+04 -5.38167937e+04 -5.57708283e+04 -5.16906015e+04 -5.65318058e+04 -5.58211553e+04 -5.54028311e+04 -5.27075710e+04 -5.30311733e+04 -5.32772545e+04 -1.03695068e+05 -5.27362473e+04 -5.62005437e+04 -5.03950353e+04] [-1.13640599e+05 -1.00015629e+05 -1.01566986e+05 -1.05649995e+05 -1.02787780e+05 -1.02613907e+05 -1.03999271e+05 -1.03610789e+05 -9.87407015e+04 -1.03618990e+05 -1.03718109e+05 -1.08285547e+05 -1.12600326e+05 -1.00273484e+05 -1.03338089e+05 -1.02977690e+05 -1.01179651e+05 -1.04220245e+05 -9.69482529e+04 -1.06150187e+05 -1.04357708e+05 -1.03605965e+05 -9.87706092e+04 -9.96096592e+04 -9.95537504e+04 -1.95492144e+05 -9.82444216e+04 -1.04797925e+05 -9.48800452e+04] [-2.10325766e+05 -1.85987538e+05 -1.87390051e+05 -1.95059073e+05 -1.89408333e+05 -1.90552482e+05 -1.91610751e+05 -1.90916796e+05 -1.83725427e+05 -1.90921629e+05 -1.90961843e+05 -1.99124445e+05 -2.08518508e+05 -1.86323990e+05 -1.90547161e+05 -1.89614625e+05 -1.86663197e+05 -1.92238665e+05 -1.80773625e+05 -1.95364193e+05 -1.93578680e+05 -1.91105432e+05 -1.83892669e+05 -1.85180599e+05 -1.83764287e+05 -3.56665804e+05 -1.82825711e+05 -1.94401472e+05 -1.76651707e+05] [-3.36569399e+05 -2.96161918e+05 -2.99257042e+05 -3.11762946e+05 -3.02526383e+05 -3.05401467e+05 -3.05851304e+05 -3.04971377e+05 -2.95041618e+05 -3.04579018e+05 -3.03952035e+05 -3.17543940e+05 -3.33842335e+05 -2.97929337e+05 -3.03699512e+05 -3.03143829e+05 -2.98750694e+05 -3.07001877e+05 -2.90789561e+05 -3.11644272e+05 -3.07694182e+05 -3.05087060e+05 -2.95138234e+05 -2.97783066e+05 -2.93672670e+05 -5.98511662e+05 -2.91266145e+05 -3.08786975e+05 -2.84471488e+05] [-5.45090550e+05 -4.85537377e+05 -4.71014120e+05 -4.89561849e+05 -4.75393951e+05 -5.00789716e+05 -4.79787836e+05 -4.78622094e+05 -4.86539275e+05 -4.77760793e+05 -4.76114957e+05 -4.95748670e+05 -5.41494217e+05 -4.89051499e+05 -4.76549791e+05 -4.75570013e+05 -4.70210093e+05 -4.82165893e+05 -4.81517219e+05 -4.87437712e+05 -5.01032735e+05 -4.79286106e+05 -4.87063136e+05 -4.91359179e+05 -4.62806260e+05 -8.86407016e+05 -4.78662844e+05 -5.02295175e+05 -4.71932276e+05] [-8.29864821e+05 -7.45610128e+05 -7.02594568e+05 -7.30643646e+05 -7.08466350e+05 -7.68477056e+05 -7.13972225e+05 -7.13038690e+05 -7.49271787e+05 -7.11193328e+05 -7.07076220e+05 -7.35848124e+05 -8.25027034e+05 -7.50592187e+05 -7.09204893e+05 -7.08473058e+05 -7.02399138e+05 -7.19085883e+05 -7.43962631e+05 -7.24199685e+05 -7.65371012e+05 -7.14678398e+05 -7.51267210e+05 -7.57035530e+05 -6.91066343e+05 -1.25310739e+06 -7.35717226e+05 -7.66779248e+05 -7.29738139e+05] [-1.14856836e+06 -1.04875785e+06 -9.66413612e+05 -1.00298019e+06 -9.72091617e+05 -1.07709696e+06 -9.80652814e+05 -9.75058594e+05 -1.05295013e+06 -9.73898192e+05 -9.68837278e+05 -1.00183483e+06 -1.14200307e+06 -1.05112803e+06 -9.74781235e+05 -9.69322435e+05 -9.63903430e+05 -9.88955521e+05 -1.04932032e+06 -9.87870452e+05 -1.07080404e+06 -9.81885875e+05 -1.06012430e+06 -1.06309074e+06 -9.50399636e+05 -1.60926815e+06 -1.03696364e+06 -1.07426949e+06 -1.02769295e+06] [-1.50406768e+06 -1.38312182e+06 -1.26644676e+06 -1.31435839e+06 -1.27267564e+06 -1.41933214e+06 -1.28380602e+06 -1.27615551e+06 -1.39041711e+06 -1.27395774e+06 -1.26491563e+06 -1.30733905e+06 -1.49617026e+06 -1.38471293e+06 -1.27543337e+06 -1.26974804e+06 -1.26468441e+06 -1.29570767e+06 -1.38825691e+06 -1.29025520e+06 -1.40772755e+06 -1.28614956e+06 -1.40228097e+06 -1.40437512e+06 -1.24627256e+06 -1.96905913e+06 -1.36867187e+06 -1.41216440e+06 -1.36029390e+06] [-1.64696224e+06 -1.52008722e+06 -1.38840506e+06 -1.44062202e+06 -1.39334770e+06 -1.56047551e+06 -1.40688781e+06 -1.39553076e+06 -1.52987452e+06 -1.39387244e+06 -1.38358760e+06 -1.42692947e+06 -1.63845822e+06 -1.52018745e+06 -1.39788435e+06 -1.38878922e+06 -1.38493984e+06 -1.42075511e+06 -1.52965907e+06 -1.40929222e+06 -1.54424514e+06 -1.40964723e+06 -1.54512170e+06 -1.54539405e+06 -1.36561951e+06 -2.18305742e+06 -1.50536979e+06 -1.55029884e+06 -1.49714850e+06] [-1.66559096e+06 -1.54931097e+06 -1.37867453e+06 -1.42756689e+06 -1.38213960e+06 -1.58885006e+06 -1.39524090e+06 -1.38181851e+06 -1.56055964e+06 -1.38110870e+06 -1.37131489e+06 -1.40924992e+06 -1.65767924e+06 -1.54823099e+06 -1.38721210e+06 -1.37530567e+06 -1.37336097e+06 -1.40950359e+06 -1.56268645e+06 -1.39320112e+06 -1.56962274e+06 -1.39853896e+06 -1.57785522e+06 -1.57627311e+06 -1.35606578e+06 -2.07431359e+06 -1.53585254e+06 -1.57595024e+06 -1.53037559e+06] [-1.29454424e+06 -1.20915664e+06 -1.06259282e+06 -1.10149343e+06 -1.06500246e+06 -1.23898982e+06 -1.07611492e+06 -1.06356097e+06 -1.21746547e+06 -1.06289909e+06 -1.05474298e+06 -1.08392413e+06 -1.28795261e+06 -1.20591866e+06 -1.06870151e+06 -1.05906648e+06 -1.05865855e+06 -1.08772148e+06 -1.22050372e+06 -1.07163229e+06 -1.22334335e+06 -1.07805281e+06 -1.23376765e+06 -1.23037239e+06 -1.04464968e+06 -1.55633597e+06 -1.19910105e+06 -1.22907899e+06 -1.19418098e+06] [-8.50070683e+05 -7.94749176e+05 -6.88562412e+05 -7.12937024e+05 -6.90393892e+05 -8.15609519e+05 -6.97951230e+05 -6.87479190e+05 -8.01668806e+05 -6.87630479e+05 -6.83192226e+05 -7.00615306e+05 -8.45424479e+05 -7.92950315e+05 -6.92633189e+05 -6.84431780e+05 -6.84856525e+05 -7.05170868e+05 -8.04213721e+05 -6.92484679e+05 -8.03594424e+05 -6.98108578e+05 -8.13206796e+05 -8.10437981e+05 -6.76356994e+05 -1.04113766e+06 -7.88674029e+05 -8.07903891e+05 -7.86333140e+05] [-4.02466955e+05 -3.79700245e+05 -3.26691426e+05 -3.38321814e+05 -3.27506407e+05 -3.87990092e+05 -3.32313280e+05 -3.24543318e+05 -3.80787106e+05 -3.25210505e+05 -3.24380398e+05 -3.31262044e+05 -3.99571195e+05 -3.76551530e+05 -3.29079152e+05 -3.23116441e+05 -3.23804402e+05 -3.35517921e+05 -3.82506708e+05 -3.27350839e+05 -3.83890998e+05 -3.31012810e+05 -3.88277934e+05 -3.84806025e+05 -3.20199410e+05 -4.75153746e+05 -3.77322061e+05 -3.87037805e+05 -3.72284449e+05] [-1.84208670e+05 -1.77119302e+05 -1.49369358e+05 -1.53300191e+05 -1.49755513e+05 -1.80102641e+05 -1.52406295e+05 -1.46545220e+05 -1.76774970e+05 -1.47690952e+05 -1.48715127e+05 -1.49518187e+05 -1.82526005e+05 -1.74765294e+05 -1.50828544e+05 -1.45840629e+05 -1.46630445e+05 -1.53404677e+05 -1.77959671e+05 -1.47894670e+05 -1.78759071e+05 -1.50705039e+05 -1.81276611e+05 -1.78282263e+05 -1.46055144e+05 -2.04162019e+05 -1.76624489e+05 -1.80879830e+05 -1.72537689e+05] [-3.20872590e+04 -3.21468976e+04 -2.77904729e+04 -2.93352753e+04 -2.82187603e+04 -3.21853116e+04 -2.94776540e+04 -2.64475778e+04 -3.10786350e+04 -2.68902724e+04 -2.74364928e+04 -2.76494839e+04 -3.11797029e+04 -3.03596753e+04 -2.82886111e+04 -2.65783516e+04 -2.72183043e+04 -2.97167645e+04 -3.18731026e+04 -2.69819263e+04 -3.23810740e+04 -2.81098726e+04 -3.36178488e+04 -3.12608476e+04 -2.67437963e+04 -4.03895756e+04 -3.22508740e+04 -3.34685702e+04 -2.95522518e+04] [-7.16847615e+03 -7.73849816e+03 -5.75010188e+03 -5.81073027e+03 -5.99609625e+03 -7.75119673e+03 -6.35665080e+03 -5.07408497e+03 -7.48570476e+03 -5.33181678e+03 -5.75967753e+03 -5.43455300e+03 -6.85908935e+03 -7.27520982e+03 -5.92638584e+03 -5.18315529e+03 -5.45095967e+03 -6.23816123e+03 -7.78843162e+03 -5.23885271e+03 -7.76182412e+03 -5.64948596e+03 -8.35370623e+03 -7.43432237e+03 -5.46832018e+03 -6.20424731e+03 -7.90727805e+03 -8.12280230e+03 -7.13252756e+03] [ 6.19068308e+02 5.14415973e+01 3.77795267e+02 4.50396664e+02 2.86502198e+02 1.60617550e+02 1.25526246e+02 7.24727099e+02 2.48411419e+02 5.92473962e+02 3.44214450e+02 6.08492156e+02 7.53110078e+02 3.01359239e+02 3.17005304e+02 6.56926220e+02 5.26113515e+02 2.12677686e+02 9.36416261e+01 6.64687491e+02 9.31260102e+01 4.71899517e+02 -1.47622744e+02 3.04362974e+02 4.84368467e+02 1.37933973e+03 -7.22006426e+01 -7.75646750e+01 3.58720506e+02] [-4.23315013e+01 -3.17865297e+01 -7.66015018e+01 -1.01392387e+02 -7.79478579e+01 -2.53230208e+01 -8.37659506e+01 -8.12934917e+01 -1.78808231e+01 -7.88219396e+01 -6.94712268e+01 -8.97685919e+01 -3.84881005e+01 -1.74803854e+01 -7.79744222e+01 -8.27543346e+01 -8.37498715e+01 -9.15848938e+01 -2.19769753e+01 -8.45655716e+01 -3.38618183e+01 -8.59647372e+01 -2.99699559e+01 -2.13837564e+01 -7.14188628e+01 -2.39703079e+02 -2.68824910e+01 -3.76182672e+01 -9.10026962e+00] [-3.89477057e-01 -8.57287050e-01 9.17148422e-01 4.54330870e-01 -7.97078284e-01 5.72538645e-01 -2.95689280e-01 8.22870281e-01 -9.00513051e-03 7.45385446e-01 -5.58940411e-01 -2.65615348e-01 -2.66326116e-01 -8.05734637e-01 -3.37971132e-01 3.19419608e-01 -6.69130173e-02 7.58463139e-01 -4.60659467e-01 -2.90361303e-01 -3.59291420e-01 1.03475941e-01 -6.23561169e-01 -6.53511457e-01 8.78963848e-01 -2.46704573e-01 1.74196270e-01 -8.89695830e-01 -7.18284006e-01] [-8.07282896e-01 6.24231136e-01 -7.93706435e-01 3.26320914e-02 -6.88844204e-01 -4.42366489e-01 7.65204005e-01 2.63187530e-01 9.27325420e-01 1.99428731e-01 -9.80960568e-01 -1.68717989e-01 -9.55116491e-01 -3.72031344e-01 -3.67501386e-02 1.50918682e-01 -5.22699594e-01 1.16573157e-01 -2.10159732e-01 1.31643750e-02 -6.08065971e-01 -6.86496780e-01 5.09034015e-01 -3.40053542e-01 2.88391385e-01 1.30911193e-01 7.99061832e-01 7.61367236e-01 -1.13777199e-01] [-5.90529827e-01 2.64384751e-01 2.73671951e-01 3.84835007e-01 8.14946405e-01 5.65161956e-01 2.50581872e-01 2.01931191e-01 -5.74481928e-01 3.02730724e-01 6.29000342e-01 8.44644962e-01 8.33300224e-01 1.22197612e-01 -4.80332049e-01 -3.32405086e-01 9.95524731e-01 5.11955764e-02 6.31813346e-01 1.94032376e-01 1.38607747e-02 -3.02920769e-01 7.55410565e-02 -9.86530586e-01 7.53371613e-01 1.22972963e-01 -9.51437149e-01 6.36349491e-01 -7.29291218e-01] [-9.38722604e-01 -7.53291917e-02 9.21313391e-01 -8.12771503e-01 -8.68802968e-01 7.59871152e-01 6.42744083e-01 6.39938844e-01 -6.43639044e-02 -1.45015811e-01 -1.97863389e-01 1.64430084e-01 4.57941339e-01 5.68584005e-01 3.09598375e-01 1.24932329e-01 -1.75214784e-01 -3.60169876e-01 -4.27504414e-01 -4.07646563e-01 3.65505732e-01 5.24882364e-01 1.95239574e-01 -5.54272215e-01 -6.11209959e-01 5.31372238e-01 9.57387638e-01 -9.68180077e-01 -5.02203716e-01] [ 5.84625744e-01 4.38330596e-01 -5.08040085e-01 1.09784762e-01 1.71171588e-01 4.42768553e-01 -7.26525776e-02 -1.90303057e-01 -3.83981058e-01 -5.23382183e-01 -8.14993284e-01 2.91766775e-01 3.39140897e-01 3.74686948e-01 -9.93708559e-01 -1.23493935e-01 -7.54893270e-01 5.32186714e-02 9.59479242e-01 -1.44597807e-03 -2.50700041e-01 6.27679985e-01 9.36402876e-01 -4.25753245e-01 6.06000079e-01 9.92282875e-01 -7.76351520e-01 6.20947092e-02 6.27053159e-01] [-1.16942101e+03 -1.37185610e+03 -1.44535938e+03 -1.37163889e+03 -1.35358027e+03 -1.21134344e+03 -1.39956263e+03 -1.29667128e+03 -1.18643408e+03 -1.39190394e+03 -1.50377802e+03 -1.26816626e+03 -1.17653017e+03 -1.26611464e+03 -1.51392588e+03 -1.21148517e+03 -1.24034827e+03 -1.40397141e+03 -1.19868355e+03 -1.31091751e+03 -1.38033108e+03 -1.42279059e+03 -1.19169366e+03 -1.11359012e+03 -1.39350384e+03 -2.26949566e+03 -1.40580697e+03 -1.43556658e+03 -1.06761379e+03] [-7.05109412e+03 -7.86348265e+03 -8.36701842e+03 -8.07706523e+03 -7.89834216e+03 -7.05345786e+03 -8.10532927e+03 -7.69037361e+03 -6.95545934e+03 -8.12534440e+03 -8.65885189e+03 -7.55573250e+03 -7.10693891e+03 -7.38654883e+03 -8.67818537e+03 -7.16419272e+03 -7.34310859e+03 -8.16352661e+03 -7.00335605e+03 -7.77876551e+03 -7.94497867e+03 -8.25406046e+03 -6.89927339e+03 -6.61232533e+03 -8.11602305e+03 -1.34448402e+04 -8.02357922e+03 -8.19392368e+03 -6.28640684e+03] [-3.51732701e+04 -3.56713014e+04 -3.56188563e+04 -3.48347622e+04 -3.46670009e+04 -3.41727970e+04 -3.54072314e+04 -3.38858939e+04 -3.34205411e+04 -3.51398704e+04 -3.68370685e+04 -3.41492265e+04 -3.51487586e+04 -3.46400510e+04 -3.67414864e+04 -3.25474499e+04 -3.26741883e+04 -3.52893458e+04 -3.31963361e+04 -3.44572270e+04 -3.65383154e+04 -3.54252404e+04 -3.33023227e+04 -3.27364582e+04 -3.46694504e+04 -5.87062211e+04 -3.59440723e+04 -3.73008594e+04 -3.12943910e+04] [-5.66927694e+04 -5.69734455e+04 -5.81672867e+04 -5.67253637e+04 -5.67962017e+04 -5.46370253e+04 -5.80647230e+04 -5.54406251e+04 -5.32673046e+04 -5.75117845e+04 -6.04994065e+04 -5.61801948e+04 -5.65739389e+04 -5.54446138e+04 -6.01179586e+04 -5.32512061e+04 -5.32724439e+04 -5.76355276e+04 -5.26371580e+04 -5.65977097e+04 -5.87701368e+04 -5.77984814e+04 -5.29299052e+04 -5.21673681e+04 -5.65960740e+04 -9.99099830e+04 -5.74057737e+04 -6.00345013e+04 -4.96181951e+04] [-1.65354206e+05 -1.62630289e+05 -1.59670690e+05 -1.57299418e+05 -1.56940728e+05 -1.58464260e+05 -1.59351146e+05 -1.54141978e+05 -1.55100857e+05 -1.58699390e+05 -1.64771824e+05 -1.56312230e+05 -1.65157409e+05 -1.60078088e+05 -1.64191682e+05 -1.48990019e+05 -1.48990957e+05 -1.58764280e+05 -1.53590659e+05 -1.56826323e+05 -1.67124880e+05 -1.59272852e+05 -1.53999859e+05 -1.52688930e+05 -1.56051031e+05 -2.65385533e+05 -1.63067299e+05 -1.69606620e+05 -1.46721114e+05] [-3.30852928e+05 -3.23469306e+05 -3.13954064e+05 -3.10500768e+05 -3.09335550e+05 -3.16803407e+05 -3.13632496e+05 -3.04088560e+05 -3.10089302e+05 -3.12414584e+05 -3.23420704e+05 -3.08765583e+05 -3.30304459e+05 -3.19118941e+05 -3.22391129e+05 -2.94789892e+05 -2.94762097e+05 -3.12872645e+05 -3.07525714e+05 -3.09276638e+05 -3.31971719e+05 -3.13599370e+05 -3.08323980e+05 -3.05589915e+05 -3.07135280e+05 -5.16904844e+05 -3.23938913e+05 -3.36427147e+05 -2.94607173e+05] [-6.03051816e+05 -5.77104178e+05 -5.63690069e+05 -5.62542977e+05 -5.58212239e+05 -5.70595670e+05 -5.64457694e+05 -5.51838035e+05 -5.57891486e+05 -5.63765200e+05 -5.79377593e+05 -5.62769439e+05 -6.01906804e+05 -5.73077930e+05 -5.77267614e+05 -5.36916835e+05 -5.35720940e+05 -5.63800216e+05 -5.52709638e+05 -5.61550156e+05 -5.93472290e+05 -5.64831559e+05 -5.53845292e+05 -5.51644137e+05 -5.52418210e+05 -9.64701473e+05 -5.76109411e+05 -5.99499777e+05 -5.32081930e+05] [-9.95229378e+05 -9.44992253e+05 -9.21778259e+05 -9.25286637e+05 -9.14612211e+05 -9.36906878e+05 -9.22719557e+05 -9.07027343e+05 -9.17136057e+05 -9.23740368e+05 -9.44776809e+05 -9.25662529e+05 -9.93725525e+05 -9.41139313e+05 -9.41910903e+05 -8.82683311e+05 -8.81684458e+05 -9.23628217e+05 -9.09478991e+05 -9.22428447e+05 -9.71113610e+05 -9.24941891e+05 -9.09728307e+05 -9.07773137e+05 -9.04883079e+05 -1.58016800e+06 -9.42053332e+05 -9.78959874e+05 -8.76444668e+05] [-1.59029683e+06 -1.49425446e+06 -1.42874046e+06 -1.44208516e+06 -1.42294648e+06 -1.49335825e+06 -1.42984138e+06 -1.41607545e+06 -1.46635051e+06 -1.43527715e+06 -1.45736099e+06 -1.44499595e+06 -1.58884055e+06 -1.49778754e+06 -1.45445171e+06 -1.38111953e+06 -1.38039994e+06 -1.43403289e+06 -1.45565676e+06 -1.43744177e+06 -1.53233048e+06 -1.43574455e+06 -1.45298859e+06 -1.45604336e+06 -1.40674438e+06 -2.39726021e+06 -1.48668541e+06 -1.53930989e+06 -1.41113833e+06] [-2.55184695e+06 -2.37175448e+06 -2.20512332e+06 -2.23912261e+06 -2.20557954e+06 -2.39453593e+06 -2.20470439e+06 -2.20498355e+06 -2.36175214e+06 -2.22112155e+06 -2.23471435e+06 -2.24688241e+06 -2.55140708e+06 -2.39553375e+06 -2.23335542e+06 -2.15752685e+06 -2.15775824e+06 -2.21735250e+06 -2.34770117e+06 -2.23203509e+06 -2.42367800e+06 -2.21984727e+06 -2.33692192e+06 -2.35461581e+06 -2.18072364e+06 -3.53184096e+06 -2.35431957e+06 -2.42430291e+06 -2.29447531e+06] [-3.59229714e+06 -3.30789017e+06 -3.01471383e+06 -3.08071477e+06 -3.02700600e+06 -3.36490934e+06 -3.01396247e+06 -3.03639019e+06 -3.32802589e+06 -3.04411923e+06 -3.03975869e+06 -3.09350534e+06 -3.59200080e+06 -3.35768803e+06 -3.04295622e+06 -2.97882933e+06 -2.98115896e+06 -3.04019474e+06 -3.31181989e+06 -3.06830700e+06 -3.37273148e+06 -3.04147613e+06 -3.29159947e+06 -3.32593040e+06 -2.99177637e+06 -4.71230014e+06 -3.27626198e+06 -3.36369753e+06 -3.25279722e+06] [-4.70453081e+06 -4.31646621e+06 -3.85819457e+06 -3.95577630e+06 -3.88373590e+06 -4.41409024e+06 -3.85817930e+06 -3.90060474e+06 -4.37402695e+06 -3.89909147e+06 -3.87532897e+06 -3.97165477e+06 -4.70395400e+06 -4.39404444e+06 -3.88476143e+06 -3.83630531e+06 -3.84123435e+06 -3.89799772e+06 -4.35780350e+06 -3.93582767e+06 -4.39159148e+06 -3.89673344e+06 -4.32927446e+06 -4.37902924e+06 -3.83703005e+06 -5.81978793e+06 -4.27098264e+06 -4.37253997e+06 -4.29531216e+06] [-5.56927903e+06 -5.09676747e+06 -4.51891860e+06 -4.63947070e+06 -4.55477045e+06 -5.22892193e+06 -4.52016897e+06 -4.57738090e+06 -5.18644947e+06 -4.56848534e+06 -4.52795916e+06 -4.65898030e+06 -5.56972416e+06 -5.19909839e+06 -4.54333979e+06 -4.50755981e+06 -4.51399666e+06 -4.56786800e+06 -5.16931269e+06 -4.61395196e+06 -5.18098085e+06 -4.56554078e+06 -5.13405805e+06 -5.19962296e+06 -4.49745877e+06 -6.76951157e+06 -5.04129115e+06 -5.15364923e+06 -5.10516012e+06] [-5.73343601e+06 -5.23180499e+06 -4.60867342e+06 -4.74008053e+06 -4.65282469e+06 -5.38156531e+06 -4.61321137e+06 -4.67770686e+06 -5.34172681e+06 -4.66199708e+06 -4.60955946e+06 -4.76231873e+06 -5.73350089e+06 -5.34508933e+06 -4.62899427e+06 -4.61126822e+06 -4.61873700e+06 -4.66379307e+06 -5.32527519e+06 -4.71276594e+06 -5.31601063e+06 -4.65861399e+06 -5.28870394e+06 -5.35998344e+06 -4.59104168e+06 -6.86692130e+06 -5.17190873e+06 -5.28401795e+06 -5.26642574e+06] [-5.05801883e+06 -4.60244549e+06 -4.00203340e+06 -4.12592673e+06 -4.04927448e+06 -4.74802452e+06 -4.00769093e+06 -4.07097042e+06 -4.71925316e+06 -4.05042553e+06 -3.99653319e+06 -4.14554711e+06 -5.05617494e+06 -4.71203378e+06 -4.01491262e+06 -4.01628069e+06 -4.02693543e+06 -4.05752124e+06 -4.70830610e+06 -4.10032818e+06 -4.67146799e+06 -4.04777215e+06 -4.67498680e+06 -4.73670035e+06 -3.99451518e+06 -5.86717628e+06 -4.54683938e+06 -4.63950340e+06 -4.66169241e+06] [-3.86081102e+06 -3.51969550e+06 -3.02079361e+06 -3.11307573e+06 -3.06152845e+06 -3.63220331e+06 -3.02564678e+06 -3.07182213e+06 -3.61645316e+06 -3.05574543e+06 -3.01521307e+06 -3.12694433e+06 -3.85799282e+06 -3.60626474e+06 -3.02980959e+06 -3.02891327e+06 -3.04233852e+06 -3.06515034e+06 -3.61033121e+06 -3.09314877e+06 -3.56909907e+06 -3.05365320e+06 -3.58354175e+06 -3.62760770e+06 -3.02017073e+06 -4.26623490e+06 -3.47756443e+06 -3.54432365e+06 -3.57496731e+06] [-2.51303648e+06 -2.29821254e+06 -1.94092019e+06 -1.99640232e+06 -1.97177787e+06 -2.37045481e+06 -1.94500477e+06 -1.97191308e+06 -2.36496241e+06 -1.96207584e+06 -1.93840471e+06 -2.00731554e+06 -2.51009444e+06 -2.35731409e+06 -1.94675826e+06 -1.94165538e+06 -1.95456405e+06 -1.97009829e+06 -2.36169263e+06 -1.98564545e+06 -2.32881125e+06 -1.95936562e+06 -2.34359076e+06 -2.37032234e+06 -1.94415920e+06 -2.61387260e+06 -2.27111287e+06 -2.31250627e+06 -2.33863756e+06] [-1.34948155e+06 -1.23819639e+06 -1.03011688e+06 -1.05427348e+06 -1.05073386e+06 -1.27784668e+06 -1.03423624e+06 -1.04424259e+06 -1.27838474e+06 -1.03965720e+06 -1.02961283e+06 -1.06343103e+06 -1.34731273e+06 -1.27401572e+06 -1.03279212e+06 -1.02664751e+06 -1.03647353e+06 -1.04478574e+06 -1.27687169e+06 -1.05149713e+06 -1.25451326e+06 -1.03636240e+06 -1.26690417e+06 -1.28072924e+06 -1.03380618e+06 -1.32369054e+06 -1.22517691e+06 -1.24551006e+06 -1.26512193e+06] [-4.69805223e+05 -4.35866723e+05 -3.45622448e+05 -3.49995318e+05 -3.57766246e+05 -4.49054125e+05 -3.50682463e+05 -3.46821956e+05 -4.51296151e+05 -3.46818071e+05 -3.47482481e+05 -3.55803566e+05 -4.67357806e+05 -4.49957383e+05 -3.47376809e+05 -3.39458158e+05 -3.46504516e+05 -3.51926844e+05 -4.51870330e+05 -3.50530238e+05 -4.42223645e+05 -3.44563065e+05 -4.49357848e+05 -4.49968092e+05 -3.48417593e+05 -4.16768902e+05 -4.32911201e+05 -4.39821525e+05 -4.45643727e+05] [-5.90702596e+04 -6.78137343e+04 -4.67201661e+04 -3.96194826e+04 -5.18701722e+04 -6.64186668e+04 -5.12673631e+04 -3.87321354e+04 -6.89820037e+04 -4.22677078e+04 -4.98924022e+04 -4.10593914e+04 -5.68661850e+04 -6.95338179e+04 -4.85220112e+04 -3.56342517e+04 -4.11325335e+04 -4.76500030e+04 -7.07596331e+04 -4.04027593e+04 -6.87800271e+04 -4.15826818e+04 -7.22117654e+04 -6.59417462e+04 -4.75674597e+04 8.74943888e+03 -7.09349907e+04 -7.09195977e+04 -6.56886467e+04] [ 5.79375868e+04 3.96577683e+04 3.96239039e+04 4.88134604e+04 3.77089987e+04 4.42506383e+04 3.63431691e+04 4.84959363e+04 4.23988169e+04 4.46173664e+04 3.68200408e+04 4.86589975e+04 5.94478192e+04 4.14895490e+04 3.81348717e+04 4.93330284e+04 4.59194364e+04 4.07393667e+04 4.08169856e+04 4.79113332e+04 4.03573195e+04 4.47174992e+04 3.84642311e+04 4.50526850e+04 3.97342311e+04 1.17836875e+05 3.56035293e+04 3.75211754e+04 4.38826981e+04] [ 5.86548190e+04 4.74205507e+04 4.60810036e+04 5.13170041e+04 4.53331247e+04 5.04385309e+04 4.44690843e+04 5.09181449e+04 4.96302678e+04 4.87270901e+04 4.44139175e+04 5.11697233e+04 5.94415387e+04 4.89378528e+04 4.52585547e+04 5.09819832e+04 4.94386429e+04 4.68956498e+04 4.87794584e+04 5.06872142e+04 4.80212348e+04 4.87850834e+04 4.73798684e+04 5.11956122e+04 4.62053749e+04 8.21299224e+04 4.51796436e+04 4.64566834e+04 5.01006195e+04] [ 1.59183197e+04 1.33500884e+04 1.25300988e+04 1.36511769e+04 1.23593037e+04 1.39950134e+04 1.21413653e+04 1.35734126e+04 1.38947486e+04 1.31026006e+04 1.21402260e+04 1.35875115e+04 1.61199730e+04 1.37483064e+04 1.23740455e+04 1.34545337e+04 1.31705506e+04 1.26756292e+04 1.36707794e+04 1.35012595e+04 1.35263589e+04 1.31075458e+04 1.33208955e+04 1.42518354e+04 1.25681716e+04 2.09392724e+04 1.28466291e+04 1.31791426e+04 1.39041985e+04] [ 7.19881965e+01 5.78424982e+01 6.39181658e+01 6.88571840e+01 6.07845743e+01 6.11970388e+01 6.05292763e+01 6.86329677e+01 6.04765050e+01 6.55003038e+01 6.11660409e+01 6.86211801e+01 7.33392330e+01 6.05064835e+01 6.24519261e+01 6.75711674e+01 6.60324498e+01 6.24634273e+01 5.78504051e+01 6.75409711e+01 5.96925856e+01 6.64960032e+01 5.54250887e+01 6.18507928e+01 6.35120794e+01 1.20365053e+02 5.59100384e+01 5.89981900e+01 5.96108033e+01] [-9.24789119e-01 3.86188689e-01 3.37101448e-01 7.36024197e-01 -6.07255920e-01 4.25585259e-01 -7.92197783e-01 -8.86747286e-01 3.61592069e-01 -9.54730572e-01 -9.11401822e-01 -9.26093954e-01 -6.91789825e-02 5.15738888e-01 9.84398447e-01 -5.46784607e-01 5.84760451e-01 5.90491728e-01 7.44485419e-01 -3.71488019e-01 -7.34149890e-01 5.93403160e-01 1.34926675e-01 -1.70692146e-01 -8.82716646e-01 -9.86886249e-01 -3.67953073e-01 -4.57082429e-01 -4.85527454e-02] [ 8.47223729e-01 -1.66631028e-01 -4.24232258e-01 6.90493066e-01 -3.86100265e-01 8.31168045e-01 7.26823687e-01 2.77638376e-01 4.95350387e-01 -6.85354409e-01 2.05748540e-01 -3.45925432e-01 -2.26438929e-02 -5.49229084e-01 8.03915355e-01 -1.76932446e-01 -4.65318936e-02 4.42805506e-01 -7.55606374e-01 6.13009710e-03 6.26295327e-01 3.54683720e-01 -3.56698548e-01 4.21330793e-01 8.68879197e-01 7.89552477e-01 4.84469576e-01 -4.67797662e-01 -2.55025186e-01] [ 1.16835842e-01 -2.37902206e-01 -8.85062759e-02 5.87051888e-01 -7.92119736e-01 9.45993156e-01 4.09238132e-01 7.29455737e-01 5.63360108e-01 -1.35632573e-01 8.85022287e-01 -4.93827566e-01 -9.07503154e-01 -8.06243539e-01 -5.98526756e-01 7.81610727e-02 -5.52794895e-01 6.70641640e-01 -9.81322626e-01 4.91801858e-01 9.38015644e-01 -4.65633578e-01 2.47631013e-01 4.29559270e-01 -3.46085164e-01 -1.33746856e-01 4.68817692e-01 -7.37699626e-01 -7.12628054e-01] [-4.61299742e+02 -5.42757265e+02 -4.85280596e+02 -4.77607260e+02 -4.66446965e+02 -4.89811810e+02 -4.62552281e+02 -4.32511716e+02 -5.00503141e+02 -4.64722328e+02 -5.09497634e+02 -4.18815982e+02 -4.49721947e+02 -4.97497423e+02 -5.13174215e+02 -4.01000937e+02 -4.33216312e+02 -4.98647676e+02 -5.21003780e+02 -4.43359817e+02 -5.24338231e+02 -4.85043262e+02 -5.02905700e+02 -4.46446350e+02 -4.97631440e+02 -4.39172302e+02 -5.43332771e+02 -5.44542794e+02 -4.63698565e+02] [-1.32150294e+04 -1.41267155e+04 -1.44534362e+04 -1.40559170e+04 -1.39069474e+04 -1.32101388e+04 -1.41556002e+04 -1.35856908e+04 -1.30631975e+04 -1.41598618e+04 -1.48422102e+04 -1.34498157e+04 -1.32714828e+04 -1.35775152e+04 -1.48919815e+04 -1.29814328e+04 -1.31720137e+04 -1.42133610e+04 -1.31083836e+04 -1.37173813e+04 -1.42619310e+04 -1.43259165e+04 -1.30068601e+04 -1.26052690e+04 -1.41443289e+04 -1.82117514e+04 -1.42977895e+04 -1.45749734e+04 -1.22506928e+04] [-5.15411151e+04 -5.54994152e+04 -5.61725967e+04 -5.42149358e+04 -5.40868715e+04 -5.19719745e+04 -5.52910229e+04 -5.25903097e+04 -5.13059165e+04 -5.48750342e+04 -5.78514252e+04 -5.21408422e+04 -5.16950613e+04 -5.32811417e+04 -5.79063046e+04 -5.03956584e+04 -5.09687477e+04 -5.51477183e+04 -5.13709973e+04 -5.31959273e+04 -5.61876070e+04 -5.55061803e+04 -5.12756302e+04 -4.96976766e+04 -5.48385993e+04 -6.50644024e+04 -5.63015737e+04 -5.75263434e+04 -4.81384779e+04] [-1.10601169e+05 -1.19488086e+05 -1.23667921e+05 -1.18767801e+05 -1.18756454e+05 -1.11020644e+05 -1.22071204e+05 -1.15091167e+05 -1.09055907e+05 -1.20611089e+05 -1.28345399e+05 -1.14492864e+05 -1.10782852e+05 -1.13997117e+05 -1.28038822e+05 -1.09684533e+05 -1.10781214e+05 -1.21307109e+05 -1.08771708e+05 -1.16902533e+05 -1.21748592e+05 -1.22004900e+05 -1.08905627e+05 -1.05462388e+05 -1.20214354e+05 -1.67046186e+05 -1.21519541e+05 -1.25229295e+05 -1.00875534e+05] [-2.45933808e+05 -2.57916259e+05 -2.58812088e+05 -2.49923656e+05 -2.50641963e+05 -2.44075249e+05 -2.56286228e+05 -2.43641921e+05 -2.40107722e+05 -2.53743715e+05 -2.67915326e+05 -2.43554648e+05 -2.46225393e+05 -2.49437027e+05 -2.67088227e+05 -2.33472813e+05 -2.35205564e+05 -2.54587450e+05 -2.39067867e+05 -2.47411481e+05 -2.63182790e+05 -2.55828871e+05 -2.39201177e+05 -2.33716994e+05 -2.52400729e+05 -3.52507135e+05 -2.61253016e+05 -2.69185686e+05 -2.24796129e+05] [-5.29240526e+05 -5.43915792e+05 -5.29856017e+05 -5.13966760e+05 -5.15593080e+05 -5.21346557e+05 -5.25020920e+05 -5.02336848e+05 -5.13164201e+05 -5.21342422e+05 -5.47118092e+05 -5.03422314e+05 -5.29907777e+05 -5.30756187e+05 -5.45674549e+05 -4.82955242e+05 -4.85955394e+05 -5.22196098e+05 -5.10924297e+05 -5.09555637e+05 -5.54817176e+05 -5.24843464e+05 -5.10507501e+05 -5.01433453e+05 -5.17546033e+05 -7.54872749e+05 -5.49245845e+05 -5.65181881e+05 -4.84551239e+05] [-9.72611936e+05 -9.79077424e+05 -9.42809856e+05 -9.21564097e+05 -9.22576396e+05 -9.48529762e+05 -9.36238277e+05 -9.02400990e+05 -9.33241457e+05 -9.31935458e+05 -9.70661740e+05 -9.08052474e+05 -9.73655433e+05 -9.62523479e+05 -9.68556878e+05 -8.71011801e+05 -8.74921906e+05 -9.32223740e+05 -9.28693226e+05 -9.15055004e+05 -9.99679834e+05 -9.36546912e+05 -9.27737151e+05 -9.15383254e+05 -9.22353857e+05 -1.39549535e+06 -9.85456583e+05 -1.01464922e+06 -8.86505397e+05] [-1.72049579e+06 -1.69881483e+06 -1.61894778e+06 -1.59150102e+06 -1.59220024e+06 -1.66359091e+06 -1.60918106e+06 -1.56324907e+06 -1.63991394e+06 -1.60626187e+06 -1.66053451e+06 -1.57603115e+06 -1.72311345e+06 -1.68515707e+06 -1.65787148e+06 -1.51197732e+06 -1.51804263e+06 -1.60363674e+06 -1.63090781e+06 -1.58328474e+06 -1.73519881e+06 -1.61088512e+06 -1.62607662e+06 -1.61514539e+06 -1.58772420e+06 -2.49883013e+06 -1.70553291e+06 -1.75460399e+06 -1.56695388e+06] [-2.72111865e+06 -2.64739231e+06 -2.49281829e+06 -2.46510011e+06 -2.46305438e+06 -2.61289344e+06 -2.47946576e+06 -2.42667452e+06 -2.58061396e+06 -2.48225498e+06 -2.54661554e+06 -2.45049697e+06 -2.72660778e+06 -2.64433935e+06 -2.54572702e+06 -2.35110435e+06 -2.36057515e+06 -2.47400432e+06 -2.56562266e+06 -2.45461387e+06 -2.70437963e+06 -2.48485413e+06 -2.55389273e+06 -2.54926313e+06 -2.45086538e+06 -3.89037801e+06 -2.65123456e+06 -2.72505925e+06 -2.47811843e+06] [-4.46824711e+06 -4.28239929e+06 -3.91815719e+06 -3.89786898e+06 -3.89537196e+06 -4.27177123e+06 -3.89733893e+06 -3.85398869e+06 -4.23320402e+06 -3.91884638e+06 -3.97783373e+06 -3.89355105e+06 -4.48032622e+06 -4.31626919e+06 -3.98437070e+06 -3.74827458e+06 -3.76197259e+06 -3.89591785e+06 -4.20865792e+06 -3.88734776e+06 -4.36679923e+06 -3.91450833e+06 -4.18391417e+06 -4.20000537e+06 -3.86765316e+06 -5.89548459e+06 -4.27384423e+06 -4.37852665e+06 -4.10429067e+06] [-6.36313334e+06 -6.02376757e+06 -5.42852162e+06 -5.43648001e+06 -5.42129247e+06 -6.05558773e+06 -5.40001181e+06 -5.38572514e+06 -6.01416820e+06 -5.44893898e+06 -5.48492338e+06 -5.44464815e+06 -6.38178119e+06 -6.10675169e+06 -5.50196776e+06 -5.25193165e+06 -5.27132886e+06 -5.41168988e+06 -5.98116484e+06 -5.42330658e+06 -6.13443951e+06 -5.43641660e+06 -5.93673643e+06 -5.98319493e+06 -5.37663934e+06 -8.02451370e+06 -5.99509411e+06 -6.12971981e+06 -5.86576359e+06] [-8.74465507e+06 -8.20334920e+06 -7.24638791e+06 -7.29642893e+06 -7.26646240e+06 -8.30288025e+06 -7.20928920e+06 -7.23966990e+06 -8.26231614e+06 -7.29399045e+06 -7.29256063e+06 -7.32205934e+06 -8.76959575e+06 -8.35447626e+06 -7.32400794e+06 -7.07948322e+06 -7.10634669e+06 -7.24264216e+06 -8.22180056e+06 -7.28015593e+06 -8.34063230e+06 -7.27211952e+06 -8.15307302e+06 -8.23665459e+06 -7.20037794e+06 -1.04096610e+07 -8.14529604e+06 -8.31100488e+06 -8.10336533e+06] [-1.08005537e+07 -1.00561687e+07 -8.75646295e+06 -8.85580569e+06 -8.81038072e+06 -1.02296844e+07 -8.71479628e+06 -8.79892390e+06 -1.01938544e+07 -8.83526150e+06 -8.78520988e+06 -8.90469066e+06 -1.08310362e+07 -1.02780416e+07 -8.83174457e+06 -8.62204876e+06 -8.65425643e+06 -8.76981887e+06 -1.01457300e+07 -8.83977073e+06 -1.02156348e+07 -8.80228351e+06 -1.00547902e+07 -1.01784391e+07 -8.72243236e+06 -1.23070006e+07 -9.96606289e+06 -1.01573314e+07 -1.00362527e+07] [-1.19446870e+07 -1.10593410e+07 -9.55129971e+06 -9.68911984e+06 -9.63290543e+06 -1.12902716e+07 -9.50933464e+06 -9.63521756e+06 -1.12613060e+07 -9.65324242e+06 -9.56432431e+06 -9.75703497e+06 -1.19781162e+07 -1.13320093e+07 -9.62049871e+06 -9.45187758e+06 -9.48792332e+06 -9.57948943e+06 -1.12085937e+07 -9.67547345e+06 -1.12312428e+07 -9.61138410e+06 -1.10996891e+07 -1.12549622e+07 -9.53041843e+06 -1.33660060e+07 -1.09468230e+07 -1.11512745e+07 -1.11110768e+07] [-1.19419778e+07 -1.10186172e+07 -9.47152547e+06 -9.61751148e+06 -9.56780079e+06 -1.12711989e+07 -9.43257545e+06 -9.57451468e+06 -1.12514560e+07 -9.58104548e+06 -9.47614266e+06 -9.69930417e+06 -1.19765254e+07 -1.13154943e+07 -9.53270218e+06 -9.39372565e+06 -9.43163124e+06 -9.50263820e+06 -1.11966802e+07 -9.61220016e+06 -1.11914601e+07 -9.53224571e+06 -1.10829604e+07 -1.12514416e+07 -9.46059930e+06 -1.32918911e+07 -1.09012612e+07 -1.11018775e+07 -1.11127630e+07] [-1.04659759e+07 -9.62917097e+06 -8.22246900e+06 -8.35203085e+06 -8.32472337e+06 -9.86413566e+06 -8.19049245e+06 -8.32773618e+06 -9.85991700e+06 -8.32564545e+06 -8.22456105e+06 -8.44056040e+06 -1.04958425e+07 -9.91359782e+06 -8.27180796e+06 -8.16665259e+06 -8.20593082e+06 -8.25267860e+06 -9.80918532e+06 -8.36011874e+06 -9.78237912e+06 -8.27381367e+06 -9.70383615e+06 -9.85931884e+06 -8.22727609e+06 -1.14902808e+07 -9.52164963e+06 -9.69501479e+06 -9.74667428e+06] [-8.03378770e+06 -7.39424693e+06 -6.28752894e+06 -6.37827123e+06 -6.37758803e+06 -7.57518613e+06 -6.26471111e+06 -6.36954692e+06 -7.58474656e+06 -6.36618373e+06 -6.29159833e+06 -6.45608505e+06 -8.05579185e+06 -7.62560318e+06 -6.32347063e+06 -6.23980771e+06 -6.27853606e+06 -6.30983192e+06 -7.54525947e+06 -6.39483309e+06 -7.51199971e+06 -6.31979480e+06 -7.45945630e+06 -7.58048601e+06 -6.30208300e+06 -8.49848216e+06 -7.31324916e+06 -7.44165562e+06 -7.50017201e+06] [-5.53169480e+06 -5.12431948e+06 -4.32850286e+06 -4.36441961e+06 -4.39479992e+06 -5.23867895e+06 -4.31458852e+06 -4.36765037e+06 -5.25486874e+06 -4.37385717e+06 -4.33854688e+06 -4.42346042e+06 -5.54654361e+06 -5.28830794e+06 -4.35661294e+06 -4.26972155e+06 -4.30455035e+06 -4.33533524e+06 -5.22690237e+06 -4.38475861e+06 -5.20642749e+06 -4.33757725e+06 -5.16799715e+06 -5.24668082e+06 -4.34127525e+06 -5.60227878e+06 -5.07642047e+06 -5.16094119e+06 -5.19300753e+06] [-3.19185520e+06 -2.98096060e+06 -2.49541488e+06 -2.49116178e+06 -2.53949493e+06 -3.04095670e+06 -2.49224041e+06 -2.50168377e+06 -3.05724492e+06 -2.51325224e+06 -2.50838944e+06 -2.53316627e+06 -3.19959840e+06 -3.08145750e+06 -2.51471860e+06 -2.43847255e+06 -2.46529484e+06 -2.49168132e+06 -3.03999182e+06 -2.51205261e+06 -3.03130232e+06 -2.48774249e+06 -3.00724750e+06 -3.04910601e+06 -2.50335995e+06 -3.10250213e+06 -2.96120534e+06 -3.00807170e+06 -3.01772046e+06] [-1.44824836e+06 -1.38519606e+06 -1.13550779e+06 -1.10543508e+06 -1.16144201e+06 -1.40315229e+06 -1.14022169e+06 -1.11834971e+06 -1.41754474e+06 -1.13352992e+06 -1.14870520e+06 -1.13188482e+06 -1.45109030e+06 -1.43546167e+06 -1.14852619e+06 -1.08279393e+06 -1.10254448e+06 -1.12516423e+06 -1.40902460e+06 -1.12347062e+06 -1.41123014e+06 -1.11746107e+06 -1.39723468e+06 -1.40931057e+06 -1.13864956e+06 -1.28601002e+06 -1.38528816e+06 -1.40473073e+06 -1.39454749e+06] [-2.43859983e+05 -2.72533941e+05 -2.06998153e+05 -1.68491476e+05 -2.19197406e+05 -2.64435019e+05 -2.15946576e+05 -1.77768749e+05 -2.75730387e+05 -1.93534447e+05 -2.19522456e+05 -1.80015122e+05 -2.42298937e+05 -2.86325761e+05 -2.15668021e+05 -1.61558573e+05 -1.76311523e+05 -1.96888724e+05 -2.74412500e+05 -1.80268777e+05 -2.81015225e+05 -1.86120321e+05 -2.75455807e+05 -2.66557414e+05 -2.07690184e+05 -1.45746062e+05 -2.84071671e+05 -2.86154944e+05 -2.62921940e+05] [ 1.54540237e+05 9.49153854e+04 1.09342973e+05 1.45559240e+05 1.04856215e+05 1.10769516e+05 1.01080103e+05 1.40706820e+05 1.03663317e+05 1.25961988e+05 9.84988795e+04 1.43114811e+05 1.57814033e+05 9.80905804e+04 1.03279606e+05 1.46631574e+05 1.36005652e+05 1.17547288e+05 1.00728970e+05 1.39487819e+05 9.54067024e+04 1.27805804e+05 9.48077233e+04 1.12245746e+05 1.10524622e+05 2.98849510e+05 8.09926990e+04 8.65154082e+04 1.09944845e+05] [ 1.86386496e+05 1.42530546e+05 1.50003792e+05 1.72510892e+05 1.47633686e+05 1.52836970e+05 1.44167092e+05 1.70459305e+05 1.49824355e+05 1.61165423e+05 1.43050428e+05 1.72011899e+05 1.89310692e+05 1.47704900e+05 1.46670605e+05 1.70733514e+05 1.64945688e+05 1.54128867e+05 1.46438560e+05 1.69675143e+05 1.44999335e+05 1.61178923e+05 1.41234234e+05 1.55637043e+05 1.50994440e+05 2.97262980e+05 1.33302936e+05 1.38771926e+05 1.51267405e+05] [ 1.06219004e+04 -6.88567115e+02 1.26826709e+04 2.01655234e+04 1.18165513e+04 9.52300628e+02 1.10705942e+04 1.93257881e+04 2.97242283e+02 1.61296315e+04 1.04956025e+04 1.97012907e+04 1.13808520e+04 -1.84028697e+02 1.14571857e+04 1.94131148e+04 1.78269711e+04 1.42624721e+04 -6.96439996e+02 1.91930651e+04 -1.90195693e+02 1.61269467e+04 -2.15734362e+03 1.86498941e+03 1.33220344e+04 5.56684060e+04 -3.34167120e+03 -1.87104711e+03 4.77807403e+02] [-1.77783343e+03 -2.36171605e+03 -1.12874653e+03 -5.97874931e+02 -1.32488023e+03 -2.17208729e+03 -1.23348346e+03 -7.39121292e+02 -2.28489985e+03 -1.02077248e+03 -1.24683809e+03 -7.62090116e+02 -1.76791525e+03 -2.47807965e+03 -1.33672012e+03 -6.46580680e+02 -7.92580763e+02 -1.00401652e+03 -2.26124833e+03 -7.07743457e+02 -2.44545215e+03 -9.27249052e+02 -2.36021991e+03 -2.06693032e+03 -1.14218989e+03 2.28640556e+02 -2.42827389e+03 -2.49353410e+03 -2.21365596e+03] [ 2.63716488e+02 2.32079440e+02 2.07173217e+02 2.18577301e+02 2.04803032e+02 2.40581128e+02 2.03322343e+02 2.17285443e+02 2.39209733e+02 2.12593927e+02 2.02645791e+02 2.16776146e+02 2.65651592e+02 2.37404351e+02 2.07004220e+02 2.14404703e+02 2.10423489e+02 2.07529630e+02 2.35958919e+02 2.15838627e+02 2.36265264e+02 2.13217670e+02 2.32873151e+02 2.44712736e+02 2.07681519e+02 3.13351507e+02 2.27779650e+02 2.31718263e+02 2.38222558e+02] [-5.97933703e-01 1.12438344e-01 -7.17117525e-01 -6.27980021e-01 5.29567920e-01 -8.58227469e-01 -2.61372709e-01 7.55756038e-01 -7.91325200e-01 -2.81693569e-01 -7.72079265e-01 7.53081515e-01 -7.47525774e-01 -4.90888984e-01 -1.56187295e-01 3.30512036e-01 -3.10589381e-01 -5.72996669e-01 -2.53229788e-01 1.42049252e-01 9.81502699e-01 -3.45669648e-01 -2.75593327e-01 4.12470507e-01 -4.02128617e-01 -3.00598558e-01 9.89415471e-01 2.08534758e-01 6.57621590e-01] [-9.36668619e-01 -7.09019561e-01 4.55456588e-01 7.94878912e-02 9.90529013e-01 -8.74068110e-03 -2.31792263e-01 -6.11251998e-01 1.80332889e-01 5.33250373e-01 8.48878374e-01 -7.24748347e-01 -9.83820153e-01 -4.40790216e-02 -6.34104827e-01 2.20677223e-01 2.40538609e-01 -1.80739630e-01 3.54410528e-01 -6.00658862e-01 6.17163961e-01 -8.99320632e-01 -6.56276283e-01 9.61204638e-01 8.00754359e-01 8.79458042e-01 8.16888587e-01 -1.17165600e-01 8.77608207e-01] [-1.98665148e+03 -2.22716054e+03 -2.33790486e+03 -2.29201484e+03 -2.21163371e+03 -2.00527961e+03 -2.27965237e+03 -2.14493739e+03 -1.96684361e+03 -2.26841371e+03 -2.40878733e+03 -2.11448520e+03 -1.98799725e+03 -2.05830335e+03 -2.43632213e+03 -2.02204834e+03 -2.07475351e+03 -2.31770425e+03 -1.99447652e+03 -2.17354045e+03 -2.23848514e+03 -2.32622239e+03 -1.98467887e+03 -1.85665060e+03 -2.27110794e+03 -3.71565737e+03 -2.25962845e+03 -2.31814259e+03 -1.78002110e+03] [-4.87373455e+04 -5.13955192e+04 -5.46072350e+04 -5.33835749e+04 -5.31637753e+04 -4.90683679e+04 -5.39528430e+04 -5.23098805e+04 -4.87239142e+04 -5.37334495e+04 -5.55351396e+04 -5.18785835e+04 -4.89024070e+04 -5.00132760e+04 -5.56579608e+04 -5.09080275e+04 -5.12728725e+04 -5.38668545e+04 -4.87993637e+04 -5.26774607e+04 -5.17867248e+04 -5.41553314e+04 -4.86828783e+04 -4.76952669e+04 -5.37689277e+04 -4.06754066e+04 -5.19286729e+04 -5.26431086e+04 -4.67293760e+04] [-1.04982108e+05 -1.15713217e+05 -1.27870252e+05 -1.23311021e+05 -1.23097049e+05 -1.07922964e+05 -1.26237096e+05 -1.20166128e+05 -1.06969683e+05 -1.24617139e+05 -1.31096240e+05 -1.18595957e+05 -1.05400733e+05 -1.10738308e+05 -1.31086625e+05 -1.16127977e+05 -1.17250024e+05 -1.25340219e+05 -1.07293970e+05 -1.21371881e+05 -1.16771787e+05 -1.26019720e+05 -1.07158613e+05 -1.03708586e+05 -1.25250964e+05 -9.55886410e+04 -1.18024934e+05 -1.19815925e+05 -1.00753283e+05] [-1.61556879e+05 -1.79764372e+05 -2.05097280e+05 -1.96534874e+05 -1.95066730e+05 -1.64930126e+05 -2.02067859e+05 -1.90121610e+05 -1.62191046e+05 -1.98935052e+05 -2.12588304e+05 -1.87730096e+05 -1.62369513e+05 -1.69959327e+05 -2.11856908e+05 -1.81612172e+05 -1.83299648e+05 -2.00054445e+05 -1.62286914e+05 -1.93134842e+05 -1.82930309e+05 -2.01656860e+05 -1.61678905e+05 -1.55834316e+05 -1.99320249e+05 -2.54011721e+05 -1.84432061e+05 -1.89211436e+05 -1.48539461e+05] [-3.63082966e+05 -3.91553674e+05 -4.11445441e+05 -3.94628304e+05 -3.92989238e+05 -3.65900830e+05 -4.05466545e+05 -3.82553233e+05 -3.59464900e+05 -4.00484326e+05 -4.26568354e+05 -3.79203975e+05 -3.64769456e+05 -3.74851236e+05 -4.25663674e+05 -3.65929597e+05 -3.68635868e+05 -4.01663838e+05 -3.59122225e+05 -3.88375440e+05 -3.98958230e+05 -4.05469481e+05 -3.57812568e+05 -3.47037758e+05 -3.99581660e+05 -5.94199743e+05 -3.99412876e+05 -4.10400594e+05 -3.33015226e+05] [-7.41772069e+05 -7.81702203e+05 -7.93466944e+05 -7.63235199e+05 -7.63063634e+05 -7.39808052e+05 -7.83385573e+05 -7.42810180e+05 -7.27496513e+05 -7.75633256e+05 -8.21273254e+05 -7.39289681e+05 -7.44987366e+05 -7.56441471e+05 -8.20204522e+05 -7.12017488e+05 -7.16690722e+05 -7.76059032e+05 -7.25622899e+05 -7.53476656e+05 -7.97604128e+05 -7.83195356e+05 -7.22956200e+05 -7.05223741e+05 -7.71877766e+05 -1.20707345e+06 -7.94299300e+05 -8.16759477e+05 -6.79540800e+05] [-1.44299561e+06 -1.46601681e+06 -1.44485320e+06 -1.40409761e+06 -1.40512357e+06 -1.41514807e+06 -1.43001711e+06 -1.37584778e+06 -1.39584846e+06 -1.42363000e+06 -1.48567146e+06 -1.37622081e+06 -1.44940545e+06 -1.44245396e+06 -1.48535224e+06 -1.32534346e+06 -1.33217063e+06 -1.41901553e+06 -1.38974297e+06 -1.39241926e+06 -1.49677081e+06 -1.43114696e+06 -1.38268134e+06 -1.36506920e+06 -1.41208458e+06 -2.23169101e+06 -1.48076655e+06 -1.52080703e+06 -1.32200566e+06] [-2.58405521e+06 -2.55496040e+06 -2.42459936e+06 -2.37154786e+06 -2.38106937e+06 -2.50861507e+06 -2.40470287e+06 -2.33920188e+06 -2.48220384e+06 -2.40284870e+06 -2.47802497e+06 -2.34779469e+06 -2.59562945e+06 -2.54950000e+06 -2.47945292e+06 -2.26212446e+06 -2.27188370e+06 -2.38804726e+06 -2.46823782e+06 -2.36148715e+06 -2.60785316e+06 -2.40655294e+06 -2.45406807e+06 -2.44747561e+06 -2.37854669e+06 -3.75184046e+06 -2.56921737e+06 -2.63261653e+06 -2.37983717e+06] [-4.38566551e+06 -4.25130773e+06 -3.90705276e+06 -3.84730409e+06 -3.86743309e+06 -4.22734838e+06 -3.87875314e+06 -3.81494888e+06 -4.19418629e+06 -3.89312262e+06 -3.96867615e+06 -3.83707186e+06 -4.40640116e+06 -4.28672915e+06 -3.97674831e+06 -3.70398535e+06 -3.71686100e+06 -3.85839587e+06 -4.16781208e+06 -3.84132379e+06 -4.33546002e+06 -3.88780088e+06 -4.14126682e+06 -4.15982557e+06 -3.84743947e+06 -5.89028046e+06 -4.25794563e+06 -4.35235714e+06 -4.06275431e+06] [-6.63629739e+06 -6.35101455e+06 -5.67049191e+06 -5.61408875e+06 -5.64750758e+06 -6.36793258e+06 -5.63180001e+06 -5.58736906e+06 -6.32981326e+06 -5.67503400e+06 -5.73039995e+06 -5.62779937e+06 -6.66816207e+06 -6.44659310e+06 -5.75187959e+06 -5.44163204e+06 -5.45755586e+06 -5.61334211e+06 -6.28778069e+06 -5.61319057e+06 -6.46842997e+06 -5.65602196e+06 -6.24740167e+06 -6.30333810e+06 -5.60041295e+06 -8.29558338e+06 -6.33855776e+06 -6.46710661e+06 -6.17807954e+06] [-9.02118607e+06 -8.56762074e+06 -7.50164891e+06 -7.45612137e+06 -7.50214661e+06 -8.64310711e+06 -7.45089848e+06 -7.43592608e+06 -8.60112074e+06 -7.52827504e+06 -7.55246752e+06 -7.49427224e+06 -9.06238279e+06 -8.73017172e+06 -7.58937747e+06 -7.26264586e+06 -7.28149702e+06 -7.44273956e+06 -8.54662189e+06 -7.45744597e+06 -8.71030567e+06 -7.49692793e+06 -8.49147364e+06 -8.58746000e+06 -7.42570025e+06 -1.06554850e+07 -8.53028080e+06 -8.68594526e+06 -8.44345605e+06] [-1.15367919e+07 -1.08962156e+07 -9.39308379e+06 -9.36892695e+06 -9.42469854e+06 -1.10487833e+07 -9.33004333e+06 -9.35432961e+06 -1.10036507e+07 -9.44517329e+06 -9.42933614e+06 -9.43156009e+06 -1.15833459e+07 -1.11296376e+07 -9.48172586e+06 -9.16317325e+06 -9.18426870e+06 -9.34255070e+06 -1.09407399e+07 -9.37050730e+06 -1.10558713e+07 -9.40403699e+06 -1.08704371e+07 -1.10059893e+07 -9.31797512e+06 -1.28788040e+07 -1.08277245e+07 -1.10044961e+07 -1.08547979e+07] [-1.35836822e+07 -1.27848454e+07 -1.08716748e+07 -1.08699852e+07 -1.09350641e+07 -1.30131212e+07 -1.07971916e+07 -1.08600208e+07 -1.29668260e+07 -1.09466732e+07 -1.08933167e+07 -1.09525162e+07 -1.36312863e+07 -1.30776651e+07 -1.09577801e+07 -1.06625710e+07 -1.06860095e+07 -1.08353860e+07 -1.29015215e+07 -1.08707120e+07 -1.29496438e+07 -1.08992564e+07 -1.28163326e+07 -1.29811799e+07 -1.08040721e+07 -1.44640556e+07 -1.26862977e+07 -1.28731211e+07 -1.28385093e+07] [-1.43626694e+07 -1.34847009e+07 -1.13918260e+07 -1.14039513e+07 -1.14733991e+07 -1.37502499e+07 -1.13108580e+07 -1.14001593e+07 -1.37058414e+07 -1.14807956e+07 -1.14074486e+07 -1.15007547e+07 -1.44102525e+07 -1.38085465e+07 -1.14731466e+07 -1.11995571e+07 -1.12247768e+07 -1.13635275e+07 -1.36390619e+07 -1.14088042e+07 -1.36502624e+07 -1.14275569e+07 -1.35426325e+07 -1.37263848e+07 -1.13322348e+07 -1.50251072e+07 -1.33709081e+07 -1.35592009e+07 -1.35908079e+07] [-1.36863767e+07 -1.28157009e+07 -1.08142261e+07 -1.08333586e+07 -1.09032678e+07 -1.30801227e+07 -1.07351598e+07 -1.08424723e+07 -1.30470352e+07 -1.09089471e+07 -1.08298828e+07 -1.09419182e+07 -1.37331325e+07 -1.31464947e+07 -1.08859367e+07 -1.06479404e+07 -1.06739148e+07 -1.07879359e+07 -1.29796377e+07 -1.08522903e+07 -1.29765357e+07 -1.08487378e+07 -1.28779365e+07 -1.30665090e+07 -1.07700092e+07 -1.41558006e+07 -1.27023679e+07 -1.28801649e+07 -1.29435941e+07] [-1.20362324e+07 -1.12447737e+07 -9.49087867e+06 -9.50547728e+06 -9.58258171e+06 -1.14806152e+07 -9.42107586e+06 -9.53154920e+06 -1.14691255e+07 -9.58174187e+06 -9.50794708e+06 -9.62090741e+06 -1.20808671e+07 -1.15627345e+07 -9.55157334e+06 -9.34925805e+06 -9.37896113e+06 -9.46271408e+06 -1.14031050e+07 -9.54230529e+06 -1.13950657e+07 -9.51525221e+06 -1.13007556e+07 -1.14812458e+07 -9.46790772e+06 -1.23538190e+07 -1.11436215e+07 -1.13011537e+07 -1.13769988e+07] [-9.76648377e+06 -9.09492301e+06 -7.70831067e+06 -7.71668855e+06 -7.79671464e+06 -9.29488060e+06 -7.65530982e+06 -7.75440308e+06 -9.30470238e+06 -7.78556165e+06 -7.72520950e+06 -7.82951076e+06 -9.80607880e+06 -9.38340655e+06 -7.75297453e+06 -7.59388035e+06 -7.62761305e+06 -7.67977699e+06 -9.24620462e+06 -7.76617186e+06 -9.22667143e+06 -7.71805148e+06 -9.14766993e+06 -9.31135342e+06 -7.70455736e+06 -9.97765453e+06 -9.01610453e+06 -9.14270529e+06 -9.22628079e+06] [-7.27419398e+06 -6.77355686e+06 -5.74017095e+06 -5.73006742e+06 -5.81475325e+06 -6.91883663e+06 -5.70668143e+06 -5.77156842e+06 -6.93982810e+06 -5.79386776e+06 -5.75790460e+06 -5.82898415e+06 -7.30710134e+06 -7.00621646e+06 -5.77259818e+06 -5.63853511e+06 -5.67274263e+06 -5.70827900e+06 -6.89200253e+06 -5.78219471e+06 -6.88225456e+06 -5.73291242e+06 -6.81038749e+06 -6.94315207e+06 -5.74237711e+06 -7.30927274e+06 -6.72333673e+06 -6.81763975e+06 -6.87262385e+06] [-4.86642296e+06 -4.54905615e+06 -3.87494482e+06 -3.84498830e+06 -3.93117250e+06 -4.63558792e+06 -3.86012332e+06 -3.88361177e+06 -4.65800044e+06 -3.90394168e+06 -3.89270786e+06 -3.92357604e+06 -4.89071274e+06 -4.71672005e+06 -3.89877526e+06 -3.78363841e+06 -3.81370939e+06 -3.84189046e+06 -4.62209874e+06 -3.89178019e+06 -4.63154471e+06 -3.85463769e+06 -4.56929272e+06 -4.65856748e+06 -3.87533862e+06 -4.82691169e+06 -4.52549355e+06 -4.58993542e+06 -4.60330787e+06] [-2.62300664e+06 -2.49006474e+06 -2.09785606e+06 -2.04602422e+06 -2.13637765e+06 -2.52521338e+06 -2.09943578e+06 -2.07914919e+06 -2.54677832e+06 -2.10136740e+06 -2.11569767e+06 -2.10059116e+06 -2.63657406e+06 -2.58950909e+06 -2.11569895e+06 -2.01602573e+06 -2.04119441e+06 -2.06728330e+06 -2.52493165e+06 -2.08395907e+06 -2.54162492e+06 -2.06746393e+06 -2.50096701e+06 -2.54292392e+06 -2.09677372e+06 -2.47331874e+06 -2.48951155e+06 -2.52355221e+06 -2.50959126e+06] [-9.03998687e+05 -9.00266785e+05 -7.26878975e+05 -6.67691862e+05 -7.51643660e+05 -9.03190903e+05 -7.37646907e+05 -6.91392566e+05 -9.21808930e+05 -7.14099144e+05 -7.42888546e+05 -6.98872737e+05 -9.07814012e+05 -9.46494581e+05 -7.40167756e+05 -6.59883526e+05 -6.80836661e+05 -7.04129222e+05 -9.13513433e+05 -6.93166209e+05 -9.23880820e+05 -6.94856417e+05 -9.08867446e+05 -9.12132696e+05 -7.26813827e+05 -7.66717675e+05 -9.13246336e+05 -9.22687415e+05 -9.02052147e+05] [ 1.35717937e+04 -5.68969163e+04 -7.55918841e+03 4.94700612e+04 -2.08011760e+04 -4.08323487e+04 -2.09704546e+04 3.63890780e+04 -5.33525155e+04 1.38346081e+04 -2.25507998e+04 3.68927151e+04 1.62673850e+04 -6.60400756e+04 -1.76960934e+04 4.69267073e+04 3.05326721e+04 7.67864226e+03 -5.51753557e+04 3.56009875e+04 -6.13822204e+04 2.14741649e+04 -6.21177952e+04 -4.01563131e+04 -6.71459483e+03 2.31875200e+05 -7.58971412e+04 -7.03293167e+04 -4.51839484e+04] [ 1.93925076e+05 1.29434058e+05 1.46534359e+05 1.85669011e+05 1.38991010e+05 1.41798209e+05 1.35907563e+05 1.79759387e+05 1.36010009e+05 1.63540041e+05 1.35653633e+05 1.80786088e+05 1.98077286e+05 1.31171206e+05 1.39979990e+05 1.79823086e+05 1.69949429e+05 1.54336707e+05 1.31159625e+05 1.79025677e+05 1.31509046e+05 1.65663741e+05 1.23315431e+05 1.46903461e+05 1.47432340e+05 3.87477716e+05 1.14982018e+05 1.23029540e+05 1.37042537e+05] [ 7.27446496e+04 4.85719842e+04 6.51557929e+04 7.95919760e+04 6.16236461e+04 5.25045239e+04 6.09134589e+04 7.74959872e+04 5.08194527e+04 7.13020423e+04 6.11465091e+04 7.73778733e+04 7.44884027e+04 4.91270085e+04 6.26360045e+04 7.64524354e+04 7.29071672e+04 6.76376279e+04 4.85373163e+04 7.72973576e+04 4.97038231e+04 7.20307116e+04 4.51832434e+04 5.52105096e+04 6.54364077e+04 1.65132710e+05 4.34994381e+04 4.68259003e+04 5.01255889e+04] [ 8.89372829e+03 5.20693436e+03 8.67331934e+03 1.09385761e+04 7.97065679e+03 5.89667494e+03 7.96441878e+03 1.06182302e+04 5.64638530e+03 9.55388227e+03 8.06540092e+03 1.05034204e+04 9.16249001e+03 5.22456158e+03 8.15573512e+03 1.05012988e+04 9.89905157e+03 9.02674913e+03 5.31925253e+03 1.06181665e+04 5.29909499e+03 9.71570269e+03 4.71856378e+03 6.41801007e+03 8.72687493e+03 2.20501180e+04 4.50965185e+03 4.87929874e+03 5.58960315e+03] [-9.75800986e+03 -9.50172096e+03 -7.19914708e+03 -6.97417559e+03 -7.33314684e+03 -9.63048495e+03 -7.22433094e+03 -7.02912304e+03 -9.65835836e+03 -7.19336196e+03 -7.21155282e+03 -7.07968451e+03 -9.79026793e+03 -9.75349102e+03 -7.35240682e+03 -6.92025009e+03 -6.98480422e+03 -7.12699486e+03 -9.61288104e+03 -6.99526624e+03 -9.63665225e+03 -7.14532520e+03 -9.63153692e+03 -9.58977872e+03 -7.16207119e+03 -8.30075161e+03 -9.45619926e+03 -9.60610558e+03 -9.58711480e+03] [ 1.58717840e+03 1.59678221e+03 1.36102627e+03 1.30823536e+03 1.36686923e+03 1.56913114e+03 1.35162239e+03 1.30038144e+03 1.56348677e+03 1.34929988e+03 1.38857776e+03 1.30782615e+03 1.58308561e+03 1.59810293e+03 1.39200079e+03 1.24757413e+03 1.26818225e+03 1.35167609e+03 1.55293007e+03 1.30584961e+03 1.61599250e+03 1.34597672e+03 1.56041511e+03 1.54987141e+03 1.34359456e+03 1.71410235e+03 1.59616436e+03 1.62695272e+03 1.51849541e+03] [ 8.15242378e+03 8.06305447e+03 6.78150084e+03 6.53563123e+03 6.89069008e+03 7.98129960e+03 6.76188032e+03 6.54930114e+03 7.96770074e+03 6.76197336e+03 6.90078762e+03 6.62409223e+03 8.11567591e+03 8.13300625e+03 6.91623611e+03 6.29154086e+03 6.39246958e+03 6.77290462e+03 7.89408655e+03 6.56702227e+03 8.16607673e+03 6.71695215e+03 7.94532184e+03 7.94381232e+03 6.71988852e+03 8.45632476e+03 8.02171379e+03 8.19940746e+03 7.78288141e+03] [ 2.84381878e+04 2.82875240e+04 2.36257752e+04 2.28099286e+04 2.38538344e+04 2.79686818e+04 2.34658821e+04 2.27634087e+04 2.79588770e+04 2.34963212e+04 2.39957130e+04 2.29104877e+04 2.83605164e+04 2.84773746e+04 2.40888090e+04 2.18797502e+04 2.22582379e+04 2.35392442e+04 2.77823996e+04 2.28009489e+04 2.85700343e+04 2.34070486e+04 2.78563068e+04 2.77956637e+04 2.34162652e+04 2.87992865e+04 2.81899895e+04 2.86914464e+04 2.73174292e+04] [ 1.12354600e+04 8.66912690e+03 -1.11227389e+04 -1.13736371e+04 -8.45529614e+03 9.27664440e+03 -1.05853657e+04 -1.01642946e+04 9.56500509e+03 -1.00637833e+04 -1.11322912e+04 -8.90305678e+03 1.07218601e+04 1.00059770e+04 -1.11028448e+04 -1.08975439e+04 -1.03153526e+04 -1.01352883e+04 8.84931315e+03 -1.04327965e+04 9.07247200e+03 -1.09501441e+04 9.71844827e+03 1.03595078e+04 -1.05520500e+04 -1.25413707e+04 7.53252386e+03 8.28467110e+03 1.01394465e+04] [ 4.71131503e+04 3.58996245e+04 -1.12707821e+04 -1.02165958e+04 -3.74806793e+03 4.06379291e+04 -1.00799153e+04 -6.93465617e+03 4.15489040e+04 -7.79213671e+03 -1.25921731e+04 -3.62324539e+03 4.59138590e+04 4.14017042e+04 -1.21485391e+04 -7.89653490e+03 -6.69118343e+03 -8.28410468e+03 3.99494547e+04 -7.97032531e+03 3.64815745e+04 -1.01861028e+04 4.14248578e+04 4.43070658e+04 -9.32890822e+03 -1.83092667e+04 3.22138372e+04 3.35842832e+04 4.45842457e+04] [ 7.66505077e+04 5.32484613e+04 -2.66714192e+04 -2.12380998e+04 -1.12295491e+04 6.50587777e+04 -2.41429253e+04 -1.51732323e+04 6.73841392e+04 -1.92270457e+04 -3.15679165e+04 -9.07201728e+03 7.41459968e+04 6.45616674e+04 -3.03669804e+04 -1.42435979e+04 -1.22127477e+04 -1.93922070e+04 6.54759907e+04 -1.76790389e+04 5.24573258e+04 -2.35323023e+04 6.80299063e+04 7.34503894e+04 -2.14871355e+04 -1.01873000e+05 4.55276155e+04 4.58824316e+04 7.66171652e+04] [ 2.08524439e+05 1.64258391e+05 3.07378964e+04 4.07933840e+04 5.78469685e+04 1.87159681e+05 3.46675809e+04 5.10329333e+04 1.92567707e+05 4.30612740e+04 2.14768378e+04 6.09657767e+04 2.04138889e+05 1.85900816e+05 2.30534026e+04 5.14831843e+04 5.61845682e+04 4.37409985e+04 1.89792548e+05 4.66910210e+04 1.62205157e+05 3.56926905e+04 1.92700688e+05 2.04027762e+05 4.05699751e+04 -1.25637211e+05 1.51249525e+05 1.50550849e+05 2.08779757e+05] [ 6.74093208e+04 2.24596944e+04 -1.35133187e+05 -1.20965411e+05 -9.77494704e+04 5.06584455e+04 -1.29208516e+05 -1.07746767e+05 5.98374472e+04 -1.19779481e+05 -1.49141765e+05 -9.64100949e+04 5.93613654e+04 4.61329338e+04 -1.47516977e+05 -1.03627863e+05 -9.62415599e+04 -1.14423495e+05 5.81004621e+04 -1.14339250e+05 1.43009456e+04 -1.28202500e+05 6.37484646e+04 7.50869235e+04 -1.18969378e+05 -4.42116869e+05 5.23720408e+03 -2.53857301e+02 8.59325415e+04] [-5.15534360e+05 -5.34312623e+05 -6.72586341e+05 -6.46323541e+05 -6.28642192e+05 -5.08702130e+05 -6.63363368e+05 -6.36078857e+05 -4.95840772e+05 -6.56258135e+05 -6.92661228e+05 -6.26206536e+05 -5.30081183e+05 -5.23964368e+05 -6.92178748e+05 -6.19454500e+05 -6.09925913e+05 -6.38391222e+05 -4.91274461e+05 -6.44332733e+05 -5.56825433e+05 -6.60819486e+05 -4.80549410e+05 -4.79863653e+05 -6.46736392e+05 -1.26428486e+06 -5.54480500e+05 -5.71287333e+05 -4.55135704e+05] [-1.64626811e+06 -1.58909051e+06 -1.58502911e+06 -1.55176847e+06 -1.54189581e+06 -1.58688302e+06 -1.57039749e+06 -1.54941623e+06 -1.56978534e+06 -1.57390904e+06 -1.60538393e+06 -1.54582064e+06 -1.67071937e+06 -1.61368704e+06 -1.60782529e+06 -1.51548754e+06 -1.50303962e+06 -1.53581962e+06 -1.55565762e+06 -1.55709567e+06 -1.63207036e+06 -1.57020571e+06 -1.53635508e+06 -1.56326186e+06 -1.54761968e+06 -2.56001577e+06 -1.60669409e+06 -1.63785390e+06 -1.51775624e+06] [-3.34054395e+06 -3.17116996e+06 -2.88165988e+06 -2.83766375e+06 -2.84977425e+06 -3.21071695e+06 -2.85961473e+06 -2.85109646e+06 -3.18662741e+06 -2.88254712e+06 -2.89763201e+06 -2.85853452e+06 -3.37640405e+06 -3.24913922e+06 -2.90787786e+06 -2.79831385e+06 -2.78071123e+06 -2.81658501e+06 -3.15830885e+06 -2.85373945e+06 -3.23919227e+06 -2.86627403e+06 -3.13313501e+06 -3.19795028e+06 -2.82988492e+06 -4.24909160e+06 -3.17878533e+06 -3.22885260e+06 -3.13073831e+06] [-5.37183212e+06 -5.06981538e+06 -4.39136295e+06 -4.33425691e+06 -4.37924333e+06 -5.16644430e+06 -4.35942406e+06 -4.36842341e+06 -5.13259052e+06 -4.40910244e+06 -4.39701125e+06 -4.38863750e+06 -5.41841532e+06 -5.21063304e+06 -4.41982842e+06 -4.29976753e+06 -4.27494275e+06 -4.31287721e+06 -5.08858030e+06 -4.36066328e+06 -5.15921560e+06 -4.37921673e+06 -5.06144248e+06 -5.16942385e+06 -4.32382854e+06 -6.16638492e+06 -5.05900161e+06 -5.12760992e+06 -5.08446154e+06] [-7.39662333e+06 -6.95929076e+06 -5.89521081e+06 -5.83641494e+06 -5.90405670e+06 -7.12549222e+06 -5.85034875e+06 -5.88615607e+06 -7.08073041e+06 -5.92963766e+06 -5.88513626e+06 -5.91685425e+06 -7.44943259e+06 -7.15825801e+06 -5.91697165e+06 -5.81145939e+06 -5.77901714e+06 -5.81325456e+06 -7.02841356e+06 -5.86702479e+06 -7.05607023e+06 -5.89149901e+06 -6.99843575e+06 -7.14783924e+06 -5.81654012e+06 -7.83550152e+06 -6.92720634e+06 -7.00162057e+06 -7.05543041e+06] [-9.02638933e+06 -8.47322946e+06 -7.09195324e+06 -7.05007772e+06 -7.12484787e+06 -8.71136777e+06 -7.03819377e+06 -7.10223825e+06 -8.65787135e+06 -7.14140134e+06 -7.06454290e+06 -7.14293436e+06 -9.07663103e+06 -8.71316940e+06 -7.10399603e+06 -7.03755332e+06 -7.00072469e+06 -7.02510866e+06 -8.60879145e+06 -7.07537038e+06 -8.56190069e+06 -7.10365179e+06 -8.57593404e+06 -8.74495674e+06 -7.01466721e+06 -8.89080737e+06 -8.41758831e+06 -8.48798277e+06 -8.66635371e+06] [-9.86403553e+06 -9.22166369e+06 -7.62280267e+06 -7.61462521e+06 -7.67753710e+06 -9.52151208e+06 -7.56068389e+06 -7.66218127e+06 -9.46693944e+06 -7.68724969e+06 -7.58366001e+06 -7.71042259e+06 -9.90728929e+06 -9.48794130e+06 -7.62262749e+06 -7.61441255e+06 -7.57821412e+06 -7.58065891e+06 -9.42956445e+06 -7.63332796e+06 -9.29273646e+06 -7.65288024e+06 -9.38248392e+06 -9.55803093e+06 -7.56223957e+06 -9.13150519e+06 -9.14490289e+06 -9.20186808e+06 -9.51122363e+06] [-9.59901792e+06 -8.95005463e+06 -7.33841114e+06 -7.34510791e+06 -7.39791366e+06 -9.26360898e+06 -7.26965194e+06 -7.39271748e+06 -9.21422020e+06 -7.40824299e+06 -7.29998606e+06 -7.43870889e+06 -9.63788285e+06 -9.21710293e+06 -7.33105810e+06 -7.35612853e+06 -7.32147498e+06 -7.30683894e+06 -9.18517734e+06 -7.36526178e+06 -9.00582969e+06 -7.37525345e+06 -9.12486239e+06 -9.29723014e+06 -7.29409506e+06 -8.54374954e+06 -8.86775994e+06 -8.90955368e+06 -9.27741945e+06] [-8.62406571e+06 -8.03673960e+06 -6.62008914e+06 -6.61600557e+06 -6.67163397e+06 -8.31820181e+06 -6.54869123e+06 -6.67287024e+06 -8.28308560e+06 -6.68567840e+06 -6.59368639e+06 -6.70870521e+06 -8.66332262e+06 -8.29106060e+06 -6.61303926e+06 -6.63446446e+06 -6.60394331e+06 -6.58095303e+06 -8.25422732e+06 -6.64967830e+06 -8.08781656e+06 -6.64844287e+06 -8.18515362e+06 -8.34900241e+06 -6.58982481e+06 -7.60273463e+06 -7.96443074e+06 -7.99620286e+06 -8.34267841e+06] [-7.37094619e+06 -6.83363168e+06 -5.71260769e+06 -5.70747456e+06 -5.75940139e+06 -7.07381120e+06 -5.64795327e+06 -5.77526512e+06 -7.05833013e+06 -5.77624029e+06 -5.69687987e+06 -5.80665935e+06 -7.41315834e+06 -7.08060368e+06 -5.70309982e+06 -5.72672823e+06 -5.70326569e+06 -5.66493004e+06 -7.02434193e+06 -5.75980855e+06 -6.89236365e+06 -5.72885779e+06 -6.94683705e+06 -7.11105985e+06 -5.69726902e+06 -6.67955077e+06 -6.77527626e+06 -6.80497965e+06 -7.10043406e+06] [-6.32609779e+06 -5.82203309e+06 -4.93510142e+06 -4.92802155e+06 -4.98175478e+06 -6.03173402e+06 -4.88346210e+06 -5.00544325e+06 -6.03743452e+06 -4.99466510e+06 -4.92412263e+06 -5.03473106e+06 -6.37252614e+06 -6.06993705e+06 -4.92395330e+06 -4.94386566e+06 -4.93001322e+06 -4.87855377e+06 -5.99696060e+06 -4.99570445e+06 -5.89459181e+06 -4.93703207e+06 -5.91186805e+06 -6.08250518e+06 -4.93096143e+06 -6.03712289e+06 -5.77865068e+06 -5.81128303e+06 -6.05764341e+06] [-5.54022189e+06 -5.08667045e+06 -4.33940870e+06 -4.32787656e+06 -4.38734852e+06 -5.26128411e+06 -4.30520792e+06 -4.40617078e+06 -5.27694202e+06 -4.39095835e+06 -4.33173741e+06 -4.43785333e+06 -5.58690679e+06 -5.31930729e+06 -4.32883766e+06 -4.33755208e+06 -4.33149621e+06 -4.27910126e+06 -5.23370488e+06 -4.40103172e+06 -5.16957694e+06 -4.32878729e+06 -5.15405646e+06 -5.31875725e+06 -4.33644871e+06 -5.25038521e+06 -5.05672521e+06 -5.09412766e+06 -5.27747857e+06] [-4.51668976e+06 -4.15108467e+06 -3.52890490e+06 -3.50729579e+06 -3.57649834e+06 -4.28125543e+06 -3.51099595e+06 -3.57674487e+06 -4.30068491e+06 -3.56687714e+06 -3.52557645e+06 -3.60846044e+06 -4.55692612e+06 -4.35227570e+06 -3.52218335e+06 -3.50675339e+06 -3.51033459e+06 -3.47265832e+06 -4.26103585e+06 -3.57413706e+06 -4.23178725e+06 -3.50815028e+06 -4.20067844e+06 -4.33591304e+06 -3.52389250e+06 -4.31989038e+06 -4.13394170e+06 -4.17112580e+06 -4.28629992e+06] [-2.83450060e+06 -2.60890904e+06 -2.19364146e+06 -2.16333115e+06 -2.23974381e+06 -2.68761416e+06 -2.19421851e+06 -2.21898094e+06 -2.71094613e+06 -2.21459589e+06 -2.19434563e+06 -2.24514167e+06 -2.86071168e+06 -2.75380629e+06 -2.19086128e+06 -2.16615825e+06 -2.17778595e+06 -2.15219173e+06 -2.68219036e+06 -2.21845232e+06 -2.67023596e+06 -2.16705065e+06 -2.64552615e+06 -2.73101283e+06 -2.19432190e+06 -2.62916532e+06 -2.60376595e+06 -2.63031364e+06 -2.69565725e+06] [-1.46182276e+06 -1.37437810e+06 -1.10228316e+06 -1.05730643e+06 -1.14019424e+06 -1.41139893e+06 -1.11261800e+06 -1.09553391e+06 -1.43296565e+06 -1.10356967e+06 -1.10860119e+06 -1.11151776e+06 -1.47380702e+06 -1.46158954e+06 -1.10545897e+06 -1.06269937e+06 -1.07992475e+06 -1.07411810e+06 -1.41905932e+06 -1.09483675e+06 -1.40959403e+06 -1.07236216e+06 -1.40339651e+06 -1.43636613e+06 -1.10487621e+06 -1.18543472e+06 -1.38048333e+06 -1.39104141e+06 -1.42294017e+06] [-4.44347025e+05 -4.66411178e+05 -3.11814194e+05 -2.56271334e+05 -3.38313527e+05 -4.73602683e+05 -3.26984032e+05 -2.78820784e+05 -4.89041933e+05 -2.97204549e+05 -3.22889989e+05 -2.85299930e+05 -4.45307061e+05 -5.04555238e+05 -3.19005111e+05 -2.66738176e+05 -2.84113709e+05 -2.93607658e+05 -4.88575479e+05 -2.78040860e+05 -4.78361072e+05 -2.81467022e+05 -4.89739243e+05 -4.79895411e+05 -3.13354057e+05 -9.86708916e+04 -4.81460297e+05 -4.77027989e+05 -4.87123202e+05] [ 4.03905185e+04 -1.81615094e+04 4.81879263e+04 9.41087196e+04 3.34851920e+04 -1.44292682e+04 3.44980736e+04 8.43437361e+04 -2.17264987e+04 6.60890096e+04 3.67523798e+04 8.25516538e+04 4.45959849e+04 -2.70069339e+04 4.11907882e+04 8.31077843e+04 7.10824593e+04 5.74854486e+04 -2.76861288e+04 8.40375171e+04 -1.74548479e+04 7.09940248e+04 -3.51863096e+04 -9.40244122e+03 4.81280725e+04 3.33615728e+05 -3.35630012e+04 -2.37462920e+04 -2.44858035e+04] [ 7.28447436e+04 3.92964668e+04 5.94299025e+04 8.09013566e+04 5.31572900e+04 4.24833566e+04 5.24797778e+04 7.76070636e+04 4.00336317e+04 6.85795539e+04 5.35965052e+04 7.69016404e+04 7.56841545e+04 3.83929152e+04 5.59708989e+04 7.49492341e+04 6.96629225e+04 6.27877624e+04 3.61524596e+04 7.71919236e+04 4.11324960e+04 6.98369281e+04 3.14625400e+04 4.68203972e+04 5.95056343e+04 2.34118445e+05 3.15956636e+04 3.71608303e+04 3.78280601e+04] [ 2.10445640e+04 1.40529629e+04 2.02953095e+04 2.45101333e+04 1.90341467e+04 1.51368694e+04 1.89352079e+04 2.38997933e+04 1.46575244e+04 2.20435957e+04 1.91380237e+04 2.37218311e+04 2.15798968e+04 1.40963808e+04 1.94988466e+04 2.35254056e+04 2.24311654e+04 2.09397133e+04 1.39524313e+04 2.38465986e+04 1.43457619e+04 2.23042984e+04 1.28902489e+04 1.60265228e+04 2.03441764e+04 4.82286456e+04 1.26291818e+04 1.35562750e+04 1.43897371e+04] [-7.17969093e+03 -7.01086681e+03 -5.23987517e+03 -5.04218243e+03 -5.35869601e+03 -7.10834767e+03 -5.26643634e+03 -5.09976021e+03 -7.13518054e+03 -5.23440164e+03 -5.25578676e+03 -5.14480698e+03 -7.20318080e+03 -7.21600488e+03 -5.35847964e+03 -5.02390765e+03 -5.07481908e+03 -5.17834998e+03 -7.09961062e+03 -5.07376408e+03 -7.11399185e+03 -5.18682110e+03 -7.11599673e+03 -7.07239639e+03 -5.21663596e+03 -5.90118153e+03 -6.97986625e+03 -7.08889977e+03 -7.09140808e+03] [ 6.44754503e+03 6.49389187e+03 5.53091267e+03 5.31370013e+03 5.55098532e+03 6.37407195e+03 5.49142863e+03 5.28639276e+03 6.35333103e+03 5.48331239e+03 5.64167908e+03 5.31442603e+03 6.43022435e+03 6.49609572e+03 5.65930483e+03 5.07304226e+03 5.15512922e+03 5.49504811e+03 6.31221271e+03 5.30311477e+03 6.56508280e+03 5.47224746e+03 6.33855282e+03 6.29809451e+03 5.46154189e+03 6.96898052e+03 6.48848757e+03 6.61574767e+03 6.17269004e+03] [ 3.61845779e+04 3.60661270e+04 3.07570463e+04 2.97383619e+04 3.09083544e+04 3.55379023e+04 3.05399623e+04 2.95867769e+04 3.54516708e+04 3.05584585e+04 3.13165518e+04 2.97791906e+04 3.60993362e+04 3.61832256e+04 3.14020280e+04 2.84261623e+04 2.88747980e+04 3.06116902e+04 3.52278329e+04 2.96951747e+04 3.64802337e+04 3.04792307e+04 3.53036888e+04 3.51809591e+04 3.04234006e+04 3.91202476e+04 3.59894336e+04 3.66928600e+04 3.44899940e+04] [ 1.10241719e+05 1.09828370e+05 9.33306022e+04 9.02749940e+04 9.37594238e+04 1.08329148e+05 9.26510218e+04 8.98127330e+04 1.08084546e+05 9.27188868e+04 9.49755624e+04 9.03499371e+04 1.10002325e+05 1.10214647e+05 9.52584483e+04 8.63458989e+04 8.76920785e+04 9.28789561e+04 1.07437964e+05 9.01184543e+04 1.11051036e+05 9.25032948e+04 1.07633173e+05 1.07273349e+05 9.23326315e+04 1.17985801e+05 1.09601118e+05 1.11678681e+05 1.05233903e+05] [ 1.89945702e+05 1.85080094e+05 1.39945211e+05 1.35441927e+05 1.43802615e+05 1.83794493e+05 1.39503891e+05 1.36108910e+05 1.83723487e+05 1.40512566e+05 1.42313402e+05 1.38559480e+05 1.89030003e+05 1.87606381e+05 1.42875682e+05 1.29865371e+05 1.32537856e+05 1.40484389e+05 1.81784923e+05 1.36327619e+05 1.87630799e+05 1.39033325e+05 1.82929436e+05 1.83443079e+05 1.39125216e+05 1.77618641e+05 1.83223004e+05 1.87524484e+05 1.79924607e+05] [ 4.44398663e+05 4.27432664e+05 3.13427669e+05 3.05829827e+05 3.24033047e+05 4.27755752e+05 3.12369860e+05 3.07242605e+05 4.27793967e+05 3.15932866e+05 3.17503968e+05 3.13613425e+05 4.42032464e+05 4.35224491e+05 3.18999112e+05 2.93572937e+05 2.99974931e+05 3.16154531e+05 4.23809899e+05 3.07365583e+05 4.32528356e+05 3.12380355e+05 4.25897165e+05 4.28081644e+05 3.12406392e+05 4.08040189e+05 4.21824114e+05 4.31057141e+05 4.20919616e+05] [ 8.35490844e+05 8.06925514e+05 6.10513725e+05 5.98614904e+05 6.28707373e+05 8.07035169e+05 6.07910133e+05 5.99335315e+05 8.07551597e+05 6.14402483e+05 6.16885830e+05 6.09890143e+05 8.31173189e+05 8.19731090e+05 6.19913589e+05 5.75263022e+05 5.87351807e+05 6.16119288e+05 8.01744848e+05 5.99661006e+05 8.14659100e+05 6.08959598e+05 8.04820899e+05 8.07325384e+05 6.09331658e+05 7.13738309e+05 7.96980708e+05 8.12146530e+05 7.95674698e+05] [ 1.36668246e+06 1.32560389e+06 1.02273530e+06 1.00362084e+06 1.05041028e+06 1.32424924e+06 1.01826856e+06 1.00164096e+06 1.32552021e+06 1.02685569e+06 1.03416846e+06 1.01770596e+06 1.35888573e+06 1.34346195e+06 1.03857881e+06 9.62228798e+05 9.83250733e+05 1.03282022e+06 1.31793723e+06 1.00323768e+06 1.33668695e+06 1.01975927e+06 1.32191299e+06 1.32274049e+06 1.02136242e+06 1.16984025e+06 1.31078176e+06 1.33442451e+06 1.30461549e+06] [ 1.63157636e+06 1.59781539e+06 1.23139818e+06 1.20838431e+06 1.26625335e+06 1.58481879e+06 1.22555320e+06 1.19825949e+06 1.58643628e+06 1.23437410e+06 1.24981554e+06 1.21889596e+06 1.61739695e+06 1.60811197e+06 1.25517387e+06 1.14519608e+06 1.17645085e+06 1.25073020e+06 1.57936906e+06 1.20259797e+06 1.60822463e+06 1.22877500e+06 1.58629235e+06 1.57647289e+06 1.23168839e+06 1.41060079e+06 1.57835381e+06 1.60991779e+06 1.55470114e+06] [ 1.37231013e+06 1.39086463e+06 1.05313549e+06 1.02660671e+06 1.08703088e+06 1.35132357e+06 1.04827254e+06 1.00118113e+06 1.35375030e+06 1.04887501e+06 1.08115238e+06 1.02094661e+06 1.34889857e+06 1.37287470e+06 1.08736992e+06 9.43614892e+05 9.84626270e+05 1.08465838e+06 1.35253166e+06 1.01017306e+06 1.39331795e+06 1.05110759e+06 1.36515199e+06 1.32693898e+06 1.05780668e+06 1.16384453e+06 1.37160065e+06 1.40640739e+06 1.31117099e+06] [ 4.60976200e+05 5.40992009e+05 3.59569715e+05 3.47962803e+05 3.89439397e+05 4.72756024e+05 3.58986563e+05 3.01242758e+05 4.77794266e+05 3.49367737e+05 3.97259932e+05 3.19760191e+05 4.25732284e+05 4.84580301e+05 3.99383577e+05 2.49715045e+05 2.99743169e+05 4.11101846e+05 4.88167975e+05 3.18562451e+05 5.29117044e+05 3.62414289e+05 5.01773869e+05 4.28113030e+05 3.76631049e+05 4.02695454e+05 5.23769948e+05 5.55014901e+05 4.28240257e+05] [-1.08794806e+06 -8.94499096e+05 -7.57493106e+05 -7.51374659e+05 -7.42492952e+05 -1.02320232e+06 -7.50422461e+05 -8.27221144e+05 -1.00906035e+06 -7.81301383e+05 -7.05120127e+05 -8.15603042e+05 -1.13566530e+06 -1.01232572e+06 -7.10789492e+05 -8.74803643e+05 -8.10834818e+05 -6.86436270e+05 -9.83519883e+05 -7.96582496e+05 -9.22730952e+05 -7.54352679e+05 -9.70353013e+05 -1.09315314e+06 -7.23569852e+05 -1.01193352e+06 -9.00239332e+05 -8.75397577e+05 -1.07848227e+06] [-2.51217935e+06 -2.22360362e+06 -1.77041203e+06 -1.75014940e+06 -1.77180712e+06 -2.41301355e+06 -1.75669400e+06 -1.84848882e+06 -2.38588212e+06 -1.80466765e+06 -1.70100224e+06 -1.84364029e+06 -2.56699490e+06 -2.39104566e+06 -1.71231460e+06 -1.90042653e+06 -1.82320071e+06 -1.68838743e+06 -2.35194546e+06 -1.80396009e+06 -2.25665986e+06 -1.76908917e+06 -2.34543541e+06 -2.50687619e+06 -1.71968729e+06 -2.13722457e+06 -2.21748802e+06 -2.19008259e+06 -2.48462333e+06] [-3.55325417e+06 -3.17635106e+06 -2.52762652e+06 -2.52728067e+06 -2.54555075e+06 -3.42492725e+06 -2.51211713e+06 -2.62635966e+06 -3.38743038e+06 -2.57220359e+06 -2.44019449e+06 -2.63044872e+06 -3.60649672e+06 -3.37336923e+06 -2.45470898e+06 -2.69348830e+06 -2.60899907e+06 -2.45756698e+06 -3.35786489e+06 -2.57557116e+06 -3.20191673e+06 -2.53796199e+06 -3.35312005e+06 -3.53258380e+06 -2.47402906e+06 -2.74741539e+06 -3.15591475e+06 -3.12042345e+06 -3.51654063e+06] [-3.83991492e+06 -3.38012014e+06 -2.67521732e+06 -2.73722028e+06 -2.71406260e+06 -3.68930800e+06 -2.66232607e+06 -2.81774721e+06 -3.65187555e+06 -2.73420101e+06 -2.56959587e+06 -2.83197173e+06 -3.88226582e+06 -3.59025147e+06 -2.58356726e+06 -2.91636077e+06 -2.83276717e+06 -2.64392848e+06 -3.64212498e+06 -2.76962633e+06 -3.38304397e+06 -2.70953653e+06 -3.62551224e+06 -3.79785633e+06 -2.64528353e+06 -2.50453521e+06 -3.34114427e+06 -3.28763759e+06 -3.81850883e+06] [-3.31360913e+06 -2.80893923e+06 -2.12979403e+06 -2.25970236e+06 -2.18727324e+06 -3.15953565e+06 -2.11750097e+06 -2.31789687e+06 -3.13356849e+06 -2.20224653e+06 -2.01732824e+06 -2.33797016e+06 -3.34125929e+06 -3.01777884e+06 -2.02349126e+06 -2.44699731e+06 -2.37284032e+06 -2.14273173e+06 -3.14933358e+06 -2.27840307e+06 -2.78198559e+06 -2.18784876e+06 -3.10641841e+06 -3.25708513e+06 -2.14041422e+06 -1.46949102e+06 -2.75373574e+06 -2.67691322e+06 -3.33301535e+06] [-2.68382508e+06 -2.22266962e+06 -1.56744869e+06 -1.70218012e+06 -1.61939381e+06 -2.56183912e+06 -1.54567073e+06 -1.75340962e+06 -2.54783769e+06 -1.63623573e+06 -1.46953572e+06 -1.76374814e+06 -2.70472437e+06 -2.41292844e+06 -1.46488596e+06 -1.88918054e+06 -1.82296456e+06 -1.58972344e+06 -2.57619486e+06 -1.72121668e+06 -2.17746294e+06 -1.62805081e+06 -2.51439627e+06 -2.64078380e+06 -1.60148458e+06 -6.35993038e+05 -2.16818674e+06 -2.07659329e+06 -2.75370924e+06] [-2.00692300e+06 -1.65628167e+06 -1.19560657e+06 -1.28063705e+06 -1.21955325e+06 -1.93418886e+06 -1.16329049e+06 -1.33805129e+06 -1.92608363e+06 -1.24592818e+06 -1.12708847e+06 -1.33062501e+06 -2.03017702e+06 -1.81593340e+06 -1.11090928e+06 -1.45439894e+06 -1.39211220e+06 -1.19290996e+06 -1.94966252e+06 -1.31142043e+06 -1.61279915e+06 -1.23731958e+06 -1.88438269e+06 -1.99361496e+06 -1.22587678e+06 -2.74573777e+05 -1.62163279e+06 -1.53065105e+06 -2.10443643e+06] [-1.78008060e+06 -1.50702974e+06 -1.21884951e+06 -1.24456608e+06 -1.22089910e+06 -1.72567086e+06 -1.18292224e+06 -1.31831318e+06 -1.72136253e+06 -1.25304699e+06 -1.17791227e+06 -1.30154264e+06 -1.81112057e+06 -1.65598456e+06 -1.15226708e+06 -1.39984339e+06 -1.34014972e+06 -1.18105810e+06 -1.72743084e+06 -1.29659988e+06 -1.48551618e+06 -1.23466719e+06 -1.66683616e+06 -1.77985120e+06 -1.23343052e+06 -6.10378893e+05 -1.49397702e+06 -1.41916709e+06 -1.85794714e+06] [-2.63298187e+06 -2.33915058e+06 -1.97639171e+06 -1.96456070e+06 -1.97278764e+06 -2.53001185e+06 -1.93787176e+06 -2.05423034e+06 -2.53059283e+06 -2.00703365e+06 -1.94862209e+06 -2.04059894e+06 -2.67796499e+06 -2.51200067e+06 -1.92446230e+06 -2.08684912e+06 -2.03376599e+06 -1.90628538e+06 -2.51375026e+06 -2.03407011e+06 -2.35638994e+06 -1.97239377e+06 -2.45065339e+06 -2.59524547e+06 -1.97214839e+06 -1.91631451e+06 -2.33567670e+06 -2.29130792e+06 -2.62044990e+06] [-3.41782554e+06 -3.03268213e+06 -2.62077513e+06 -2.61636355e+06 -2.63420352e+06 -3.22426780e+06 -2.59062538e+06 -2.71776751e+06 -3.23257495e+06 -2.66577832e+06 -2.58836047e+06 -2.72196124e+06 -3.47437899e+06 -3.24574569e+06 -2.57264444e+06 -2.71461853e+06 -2.66903248e+06 -2.53999082e+06 -3.19542075e+06 -2.69926700e+06 -3.08863292e+06 -2.61097718e+06 -3.12521046e+06 -3.30877444e+06 -2.61081668e+06 -3.08182164e+06 -3.02410078e+06 -3.01196523e+06 -3.28940250e+06] [-3.81552167e+06 -3.38780278e+06 -2.90244479e+06 -2.91213962e+06 -2.94157192e+06 -3.56737400e+06 -2.88485531e+06 -3.00776863e+06 -3.58349650e+06 -2.95608768e+06 -2.87046402e+06 -3.03216695e+06 -3.86924921e+06 -3.61764265e+06 -2.86114134e+06 -2.97637627e+06 -2.94902213e+06 -2.83426805e+06 -3.53907421e+06 -2.99483398e+06 -3.46410585e+06 -2.89123137e+06 -3.47420598e+06 -3.65750577e+06 -2.89684862e+06 -3.63496190e+06 -3.37099457e+06 -3.38413669e+06 -3.61278978e+06] [-2.98129348e+06 -2.61931413e+06 -2.20870985e+06 -2.22884423e+06 -2.26281088e+06 -2.76261398e+06 -2.20550703e+06 -2.30585730e+06 -2.78568461e+06 -2.25844053e+06 -2.18003697e+06 -2.33742170e+06 -3.02098793e+06 -2.81672336e+06 -2.17506649e+06 -2.27283307e+06 -2.26359289e+06 -2.16535374e+06 -2.74947324e+06 -2.29760487e+06 -2.68623625e+06 -2.19879197e+06 -2.69718719e+06 -2.84107475e+06 -2.21520967e+06 -2.77100979e+06 -2.60036691e+06 -2.61715824e+06 -2.80424714e+06] [-1.79384916e+06 -1.57238568e+06 -1.28176818e+06 -1.28545350e+06 -1.33126845e+06 -1.65874256e+06 -1.28722019e+06 -1.33667236e+06 -1.68142664e+06 -1.31173671e+06 -1.26603395e+06 -1.36230582e+06 -1.81627082e+06 -1.70597646e+06 -1.26471254e+06 -1.30881629e+06 -1.31455451e+06 -1.25677113e+06 -1.65931095e+06 -1.33172976e+06 -1.61756815e+06 -1.26862699e+06 -1.62688737e+06 -1.70848159e+06 -1.29151985e+06 -1.68013694e+06 -1.56131334e+06 -1.57356912e+06 -1.68896789e+06] [-9.53805379e+05 -8.79683812e+05 -6.54986647e+05 -6.29295276e+05 -6.89878295e+05 -9.19672991e+05 -6.64663977e+05 -6.58190980e+05 -9.35688841e+05 -6.59374729e+05 -6.53511093e+05 -6.71869908e+05 -9.61603745e+05 -9.49847180e+05 -6.53258470e+05 -6.43658028e+05 -6.55758538e+05 -6.39223452e+05 -9.29050562e+05 -6.55025762e+05 -9.00519159e+05 -6.36297931e+05 -9.17693735e+05 -9.39437981e+05 -6.60561688e+05 -7.09160559e+05 -8.81021153e+05 -8.82614691e+05 -9.40610943e+05] [-2.48583277e+05 -2.63020178e+05 -1.45876258e+05 -1.12092772e+05 -1.65051487e+05 -2.74161611e+05 -1.56696623e+05 -1.24300189e+05 -2.81502545e+05 -1.36691872e+05 -1.52162366e+05 -1.29698331e+05 -2.47411610e+05 -2.86871491e+05 -1.50672398e+05 -1.23611518e+05 -1.33769425e+05 -1.37778455e+05 -2.84548110e+05 -1.23397372e+05 -2.66869260e+05 -1.28556423e+05 -2.86589778e+05 -2.73524745e+05 -1.47582979e+05 -1.83922139e+04 -2.71347330e+05 -2.65713739e+05 -2.86612728e+05] [ 2.17482640e+03 -2.51641696e+04 9.00896426e+03 3.09869943e+04 2.27237026e+03 -2.56171587e+04 2.53017090e+03 2.72621886e+04 -2.79542758e+04 1.78869480e+04 3.28706213e+03 2.63508599e+04 4.67004698e+03 -2.90124816e+04 5.27597825e+03 2.49835397e+04 1.98145909e+04 1.27862498e+04 -3.16401094e+04 2.70511524e+04 -2.39255262e+04 1.93234243e+04 -3.53973054e+04 -2.14893751e+04 9.33233099e+03 1.31423098e+05 -3.23621426e+04 -2.72629382e+04 -3.04834207e+04] [ 1.13667188e+04 6.33493280e+03 1.22656631e+04 1.55176132e+04 1.13246444e+04 6.92946994e+03 1.12997032e+04 1.50049469e+04 6.60525227e+03 1.35838442e+04 1.13877217e+04 1.48846746e+04 1.17533655e+04 6.23958271e+03 1.16784967e+04 1.46830339e+04 1.39092282e+04 1.27976959e+04 6.07133704e+03 1.49796041e+04 6.56926430e+03 1.37774704e+04 5.31498491e+03 7.59892546e+03 1.23242550e+04 3.37031773e+04 5.27672033e+03 6.01727679e+03 6.30528305e+03] [-3.71743197e+03 -3.68516410e+03 -2.56962444e+03 -2.37595135e+03 -2.66629696e+03 -3.74050020e+03 -2.59497926e+03 -2.46276354e+03 -3.77070922e+03 -2.56180645e+03 -2.59165530e+03 -2.48904627e+03 -3.73687097e+03 -3.84379313e+03 -2.64971057e+03 -2.42892514e+03 -2.46016802e+03 -2.50101204e+03 -3.74227457e+03 -2.43903557e+03 -3.75378650e+03 -2.50832264e+03 -3.75610365e+03 -3.71304593e+03 -2.56336898e+03 -2.56802531e+03 -3.67939367e+03 -3.73050792e+03 -3.76996927e+03] [ 1.04566092e+03 1.05432008e+03 8.98455186e+02 8.62442702e+02 9.00812310e+02 1.03353932e+03 8.91562858e+02 8.57458797e+02 1.03028286e+03 8.90304546e+02 9.16140254e+02 8.62231096e+02 1.04304628e+03 1.05425991e+03 9.17652771e+02 8.24057477e+02 8.36765166e+02 8.92899365e+02 1.02383647e+03 8.61198435e+02 1.06616900e+03 8.88564134e+02 1.02874630e+03 1.02228963e+03 8.86554403e+02 1.13008445e+03 1.05403028e+03 1.07316133e+03 1.00219901e+03] [ 4.24026342e+04 4.22572640e+04 3.29191220e+04 3.14947395e+04 3.30852824e+04 4.15532617e+04 3.25936245e+04 3.13028413e+04 4.14140085e+04 3.26227313e+04 3.36639720e+04 3.15575950e+04 4.23180815e+04 4.24198604e+04 3.37811852e+04 2.96964087e+04 3.02880644e+04 3.26574753e+04 4.11020682e+04 3.14301016e+04 4.28464460e+04 3.25253711e+04 4.12133128e+04 4.11084441e+04 3.24115839e+04 5.29740056e+04 4.21589823e+04 4.31006928e+04 4.00946932e+04] [ 1.63151329e+05 1.61436269e+05 1.36861572e+05 1.32732497e+05 1.37811350e+05 1.59728851e+05 1.35974938e+05 1.32247574e+05 1.59424405e+05 1.36221847e+05 1.39109650e+05 1.33216374e+05 1.62794177e+05 1.62428523e+05 1.39520077e+05 1.27258330e+05 1.29163028e+05 1.36350222e+05 1.58363814e+05 1.32692866e+05 1.63331507e+05 1.35764463e+05 1.58625663e+05 1.58462412e+05 1.35542391e+05 1.73564739e+05 1.60922558e+05 1.64045088e+05 1.55448699e+05] [ 3.78737694e+05 3.70491096e+05 3.04382803e+05 2.95092993e+05 3.08515027e+05 3.68371604e+05 3.02634170e+05 2.94721274e+05 3.67768988e+05 3.03905660e+05 3.09450393e+05 2.97982148e+05 3.77574126e+05 3.74645659e+05 3.10556359e+05 2.82752655e+05 2.87471761e+05 3.04023669e+05 3.64788343e+05 2.95584670e+05 3.75277134e+05 3.02179454e+05 3.65471346e+05 3.66013016e+05 3.01789520e+05 4.35753274e+05 3.68349445e+05 3.76218024e+05 3.59026911e+05] [ 9.09827602e+05 8.91191768e+05 7.21970991e+05 7.02754414e+05 7.31519797e+05 8.85053340e+05 7.17277797e+05 6.99960944e+05 8.83203061e+05 7.20918025e+05 7.33445420e+05 7.07865622e+05 9.06751221e+05 8.99102655e+05 7.35780565e+05 6.71855746e+05 6.83517623e+05 7.22413717e+05 8.77415858e+05 7.02128727e+05 9.01250399e+05 7.17622023e+05 8.79064936e+05 8.79066941e+05 7.15974688e+05 9.80113846e+05 8.85620911e+05 9.03274047e+05 8.62957933e+05] [ 1.64420877e+06 1.61160771e+06 1.30851597e+06 1.27788973e+06 1.32547666e+06 1.59925408e+06 1.29986967e+06 1.27005884e+06 1.59667167e+06 1.30665973e+06 1.32843692e+06 1.28423035e+06 1.63850811e+06 1.62426315e+06 1.33336323e+06 1.21979224e+06 1.24199847e+06 1.31105590e+06 1.58791744e+06 1.27449355e+06 1.62876026e+06 1.30169519e+06 1.58982080e+06 1.58708725e+06 1.29921695e+06 1.71187241e+06 1.60113039e+06 1.63232541e+06 1.55981722e+06] [ 2.24332931e+06 2.21836539e+06 1.80843249e+06 1.76382225e+06 1.83147769e+06 2.19000000e+06 1.79745814e+06 1.74737560e+06 2.18754645e+06 1.80251515e+06 1.84042321e+06 1.76686219e+06 2.23247661e+06 2.22606310e+06 1.84737443e+06 1.67513466e+06 1.71015614e+06 1.81546564e+06 2.17756022e+06 1.75594409e+06 2.24056982e+06 1.79808654e+06 2.18178345e+06 2.16674777e+06 1.79740318e+06 2.25797198e+06 2.20486336e+06 2.24993486e+06 2.13079268e+06] [ 2.63754202e+06 2.64150916e+06 2.17862352e+06 2.12117371e+06 2.20353138e+06 2.58671793e+06 2.16573890e+06 2.08914677e+06 2.58318034e+06 2.16624453e+06 2.22640882e+06 2.11257249e+06 2.61881514e+06 2.63085005e+06 2.23639680e+06 1.99693929e+06 2.04561405e+06 2.19402773e+06 2.57439205e+06 2.10412006e+06 2.66591583e+06 2.16646116e+06 2.58245118e+06 2.54281906e+06 2.16704259e+06 2.71742510e+06 2.62566189e+06 2.68631945e+06 2.50243325e+06] [ 2.60441709e+06 2.64569411e+06 2.23105900e+06 2.17669503e+06 2.25156607e+06 2.56468258e+06 2.21873797e+06 2.11948112e+06 2.56000605e+06 2.21092365e+06 2.29543159e+06 2.14521154e+06 2.57512815e+06 2.60489601e+06 2.30606400e+06 2.01746103e+06 2.07842968e+06 2.26225207e+06 2.55865623e+06 2.14494306e+06 2.66662768e+06 2.22178689e+06 2.56654357e+06 2.49279323e+06 2.22434886e+06 2.88313653e+06 2.62934505e+06 2.70167786e+06 2.45644007e+06] [ 1.49076068e+06 1.59839999e+06 1.41487661e+06 1.39068541e+06 1.42760854e+06 1.47447859e+06 1.40827184e+06 1.30297190e+06 1.47390201e+06 1.39130239e+06 1.49242562e+06 1.32967130e+06 1.44956167e+06 1.50928178e+06 1.50000926e+06 1.20572445e+06 1.27789763e+06 1.47088822e+06 1.48594160e+06 1.34217211e+06 1.60835302e+06 1.41445509e+06 1.49051568e+06 1.37125347e+06 1.42567365e+06 1.97203000e+06 1.58330924e+06 1.65827098e+06 1.35281672e+06] [-2.73074455e+04 1.64239910e+05 2.99510161e+05 3.03328153e+05 2.99383245e+05 -9.94855497e+03 2.99904984e+05 1.89586477e+05 -9.24349791e+02 2.69898757e+05 3.90232228e+05 2.12135115e+05 -7.82788444e+04 2.40502365e+04 3.91702719e+05 9.86081472e+04 1.81356599e+05 3.75122313e+05 2.38385291e+04 2.42606007e+05 1.62847008e+05 3.04048483e+05 2.19222856e+04 -1.39506333e+05 3.30577404e+05 6.86777632e+05 1.56337815e+05 2.29114183e+05 -1.40172047e+05] [-1.07689558e+06 -7.99490280e+05 -4.83130620e+05 -4.90251219e+05 -4.99650515e+05 -1.02327311e+06 -4.85655252e+05 -6.07420255e+05 -1.00504903e+06 -5.20833262e+05 -3.77011025e+05 -5.96455554e+05 -1.12972755e+06 -9.74481558e+05 -3.80380894e+05 -7.04849467e+05 -6.16880683e+05 -4.11643394e+05 -9.80107680e+05 -5.49236035e+05 -8.04685815e+05 -4.83545556e+05 -9.85959899e+05 -1.16684470e+06 -4.44120022e+05 -1.27327544e+05 -7.98283711e+05 -7.25147162e+05 -1.16180706e+06] [-1.39856150e+06 -1.04192314e+06 -7.20068701e+05 -7.90010645e+05 -7.52262646e+05 -1.30617932e+06 -7.32043581e+05 -8.80673020e+05 -1.28701037e+06 -7.68751284e+05 -6.00194448e+05 -8.84551545e+05 -1.44317331e+06 -1.22513373e+06 -6.06517408e+05 -9.94812798e+05 -9.11782478e+05 -6.83449131e+05 -1.27730874e+06 -8.29876853e+05 -1.03977266e+06 -7.40096799e+05 -1.27473763e+06 -1.44639402e+06 -6.96892390e+05 -2.71294358e+05 -1.02753752e+06 -9.52630521e+05 -1.45462961e+06] [-1.21572293e+06 -7.67850159e+05 -5.01812441e+05 -6.69784866e+05 -5.57594263e+05 -1.08222380e+06 -5.20998690e+05 -7.21283563e+05 -1.07552993e+06 -5.68631062e+05 -3.72214365e+05 -7.40997704e+05 -1.24442046e+06 -9.56715225e+05 -3.75951763e+05 -8.62330308e+05 -7.94321522e+05 -5.22735503e+05 -1.09479197e+06 -6.86298297e+05 -7.44282992e+05 -5.52731115e+05 -1.06197536e+06 -1.20523215e+06 -5.24327958e+05 1.62884618e+05 -7.32513780e+05 -6.46173206e+05 -1.26293349e+06] [-4.17446659e+05 1.50307136e+04 2.46369311e+05 2.68954419e+04 1.83546846e+05 -3.11902573e+05 2.33473107e+05 6.55039342e+03 -3.24528203e+05 1.76742785e+05 3.66981387e+05 -8.57285323e+03 -4.28366054e+05 -1.49380615e+05 3.71133454e+05 -1.57456945e+05 -1.07821330e+05 1.82672087e+05 -3.74315598e+05 2.80565306e+04 7.40024816e+04 1.75845313e+05 -3.07594565e+05 -4.03534568e+05 1.75365242e+05 1.35106586e+06 6.17009549e+04 1.70458931e+05 -5.30753518e+05] [ 3.40193981e+05 6.48224978e+05 8.17146878e+05 6.27875688e+05 7.77676009e+05 3.70459926e+05 8.20551205e+05 6.20317282e+05 3.47128346e+05 7.67346340e+05 9.05964729e+05 6.26687949e+05 3.38533984e+05 5.31909285e+05 9.21331042e+05 4.60618481e+05 4.98112339e+05 7.53991116e+05 2.84320391e+05 6.32725163e+05 7.29103668e+05 7.53199739e+05 3.64812306e+05 3.15673700e+05 7.29843446e+05 2.24475016e+06 6.84749515e+05 8.04929274e+05 1.52215707e+05] [ 7.66754521e+05 9.02238500e+05 8.82911308e+05 7.88752231e+05 8.89189114e+05 7.11131889e+05 8.99912292e+05 7.67979507e+05 6.93415211e+05 8.65392658e+05 9.32838178e+05 8.01028908e+05 7.59439897e+05 8.34872449e+05 9.57393110e+05 6.32738980e+05 6.75110629e+05 8.66107781e+05 6.43378035e+05 7.78715213e+05 9.76267418e+05 8.49156087e+05 7.10358770e+05 6.82532662e+05 8.21839340e+05 2.44578116e+06 9.08378256e+05 1.02142958e+06 5.36198725e+05] [ 3.74224965e+05 4.06337314e+05 3.31049561e+05 3.43776414e+05 3.76929330e+05 2.80383172e+05 3.59625891e+05 2.92227324e+05 2.76007257e+05 3.39245958e+05 3.51419925e+05 3.43519010e+05 3.51123628e+05 3.52197486e+05 3.80659397e+05 1.96797435e+05 2.52184064e+05 3.77478251e+05 2.55778021e+05 3.07948159e+05 4.50332218e+05 3.32516075e+05 3.00159334e+05 2.53416103e+05 3.16736194e+05 1.50176678e+06 3.83565107e+05 4.74517678e+05 1.62721997e+05] [-8.19372611e+05 -7.20990705e+05 -6.71348606e+05 -6.12405268e+05 -6.20721639e+05 -8.43919173e+05 -6.37006647e+05 -7.00327367e+05 -8.39805364e+05 -6.69554841e+05 -6.53413099e+05 -6.54284719e+05 -8.63565012e+05 -8.18756984e+05 -6.28027941e+05 -7.55048038e+05 -6.87252484e+05 -5.79677517e+05 -8.24875231e+05 -6.76659755e+05 -7.21638068e+05 -6.52988285e+05 -7.87262446e+05 -8.97389457e+05 -6.50864230e+05 -2.13757046e+05 -7.47438915e+05 -6.88732448e+05 -9.23646364e+05] [-2.33432483e+06 -2.01068822e+06 -1.80898398e+06 -1.79472212e+06 -1.79582895e+06 -2.18684435e+06 -1.77982046e+06 -1.90742838e+06 -2.18810069e+06 -1.84871511e+06 -1.76874186e+06 -1.89390731e+06 -2.39594126e+06 -2.19681101e+06 -1.75379095e+06 -1.92760811e+06 -1.85890727e+06 -1.71380895e+06 -2.14407034e+06 -1.88165853e+06 -2.06012277e+06 -1.79991935e+06 -2.08942285e+06 -2.28141753e+06 -1.78739162e+06 -2.15335461e+06 -2.01202406e+06 -1.99173792e+06 -2.25650314e+06] [-3.32755667e+06 -2.83415275e+06 -2.47971517e+06 -2.52945331e+06 -2.51102123e+06 -3.03986869e+06 -2.45818551e+06 -2.63803988e+06 -3.05253020e+06 -2.55436825e+06 -2.42388241e+06 -2.65887468e+06 -3.39107377e+06 -3.07677805e+06 -2.41822919e+06 -2.62607038e+06 -2.57561985e+06 -2.41052417e+06 -2.99815726e+06 -2.61776150e+06 -2.91172257e+06 -2.48617629e+06 -2.93001063e+06 -3.15457086e+06 -2.47496476e+06 -3.42803390e+06 -2.80692994e+06 -2.81742858e+06 -3.10258668e+06] [-3.26185120e+06 -2.74019830e+06 -2.34101546e+06 -2.43134593e+06 -2.40207159e+06 -2.93742797e+06 -2.32856124e+06 -2.51889439e+06 -2.95851152e+06 -2.42821793e+06 -2.28171699e+06 -2.55921629e+06 -3.31362486e+06 -2.98058996e+06 -2.28183575e+06 -2.49350988e+06 -2.46596901e+06 -2.30622895e+06 -2.91070352e+06 -2.50470087e+06 -2.81614218e+06 -2.35877346e+06 -2.84126198e+06 -3.04713875e+06 -2.35482371e+06 -3.33357826e+06 -2.69630830e+06 -2.71799016e+06 -2.99729971e+06] [-2.25689022e+06 -1.86745407e+06 -1.57038592e+06 -1.64816693e+06 -1.62946546e+06 -2.00646892e+06 -1.56552526e+06 -1.70423957e+06 -2.02728804e+06 -1.63762676e+06 -1.52733830e+06 -1.74204029e+06 -2.28945141e+06 -2.04413106e+06 -1.52883646e+06 -1.67742517e+06 -1.67022519e+06 -1.55797436e+06 -1.99599801e+06 -1.69618534e+06 -1.92211407e+06 -1.58497437e+06 -1.94282915e+06 -2.08398217e+06 -1.58874553e+06 -2.44156714e+06 -1.83060507e+06 -1.84922477e+06 -2.04982609e+06] [-1.37165691e+06 -1.17732221e+06 -9.42031570e+05 -9.71831706e+05 -9.81479658e+05 -1.24929095e+06 -9.42027281e+05 -1.00112444e+06 -1.26303045e+06 -9.74044418e+05 -9.22256176e+05 -1.02342596e+06 -1.38668261e+06 -1.27384027e+06 -9.25224611e+05 -9.83832854e+05 -9.87106863e+05 -9.36235640e+05 -1.24908791e+06 -9.96507090e+05 -1.20592649e+06 -9.45183082e+05 -1.22248068e+06 -1.28600480e+06 -9.53218010e+05 -1.33497499e+06 -1.15841201e+06 -1.16822736e+06 -1.27419849e+06] [-4.09284038e+05 -3.74578228e+05 -2.66917556e+05 -2.58313198e+05 -2.83513815e+05 -3.93840492e+05 -2.71037101e+05 -2.69040477e+05 -3.99600918e+05 -2.70075567e+05 -2.65615855e+05 -2.76108165e+05 -4.11899847e+05 -4.04668998e+05 -2.66980482e+05 -2.64479767e+05 -2.69767711e+05 -2.62577755e+05 -3.97727119e+05 -2.67468543e+05 -3.82491909e+05 -2.60793202e+05 -3.93233263e+05 -3.99814583e+05 -2.69871926e+05 -3.50871661e+05 -3.73245950e+05 -3.74259397e+05 -4.03311918e+05] [-6.18641984e+03 -1.92883244e+04 5.21785619e+03 1.71060190e+04 1.39306122e+03 -1.89487492e+04 2.13973824e+03 1.46471048e+04 -2.04862980e+04 9.28340340e+03 2.30928012e+03 1.40953949e+04 -5.31926555e+03 -2.21044997e+04 2.53134915e+03 1.43847802e+04 1.15487355e+04 7.65244185e+03 -2.17385091e+04 1.48016378e+04 -1.94722447e+04 1.05056128e+04 -2.35870412e+04 -1.67830845e+04 5.36659066e+03 3.31817859e+04 -2.24940515e+04 -2.08816953e+04 -2.11046776e+04] [ 6.29281455e+03 4.01916698e+03 6.39444135e+03 7.84076024e+03 5.91380509e+03 4.33417546e+03 5.94426884e+03 7.58845846e+03 4.18855394e+03 6.94247880e+03 5.99612363e+03 7.49730738e+03 6.47055431e+03 3.96255638e+03 6.11530878e+03 7.43370120e+03 7.07720898e+03 6.61888652e+03 3.95359568e+03 7.58008170e+03 4.11764094e+03 7.06278916e+03 3.59935246e+03 4.67036973e+03 6.40137860e+03 1.58408942e+04 3.57002814e+03 3.88648373e+03 4.03627047e+03] [ 1.14326488e+03 9.14832573e+02 1.08933367e+03 1.21427353e+03 1.03824270e+03 9.25735279e+02 1.03357776e+03 1.19841601e+03 9.24024233e+02 1.14901132e+03 1.05308058e+03 1.18154374e+03 1.16811149e+03 9.18139124e+02 1.07974775e+03 1.15701885e+03 1.12767254e+03 1.09975846e+03 8.86533571e+02 1.19369073e+03 9.38240106e+02 1.15511096e+03 8.45986796e+02 9.60556410e+02 1.09285710e+03 2.22700944e+03 8.64298845e+02 9.17174861e+02 8.87772257e+02] [ 3.05297906e+01 3.17431640e+01 2.76512910e+01 2.55198329e+01 2.62186873e+01 3.00005919e+01 2.74870097e+01 2.65716831e+01 2.97100240e+01 2.62826105e+01 2.69135805e+01 2.52593452e+01 3.02828130e+01 3.11642295e+01 2.73961209e+01 2.46127841e+01 2.52351104e+01 2.75245767e+01 3.08675736e+01 2.54859946e+01 3.07211461e+01 2.57670110e+01 2.95715442e+01 2.93114871e+01 2.55973092e+01 3.47147300e+01 3.12964687e+01 3.22713837e+01 2.97351254e+01] [ 5.27449931e+04 5.22251305e+04 4.39427244e+04 4.25814790e+04 4.41083429e+04 5.16961085e+04 4.36281027e+04 4.23917369e+04 5.15432999e+04 4.36732776e+04 4.46586953e+04 4.26561366e+04 5.26813304e+04 5.25198874e+04 4.47818887e+04 4.08006089e+04 4.13643085e+04 4.36811961e+04 5.12225665e+04 4.25272614e+04 5.28476164e+04 4.35644585e+04 5.12895197e+04 5.12780522e+04 4.34230777e+04 5.72511812e+04 5.21280273e+04 5.30931341e+04 5.02385709e+04] [ 1.81064706e+05 1.78810535e+05 1.50713762e+05 1.46266678e+05 1.51750002e+05 1.77340218e+05 1.49756751e+05 1.45786307e+05 1.76984873e+05 1.50014794e+05 1.53094919e+05 1.46825151e+05 1.80700382e+05 1.80063318e+05 1.53527914e+05 1.40507478e+05 1.42498226e+05 1.50141499e+05 1.75862613e+05 1.46245872e+05 1.80844491e+05 1.49545437e+05 1.76110322e+05 1.76051883e+05 1.49271262e+05 1.89577334e+05 1.78243076e+05 1.81560343e+05 1.72840010e+05] [ 4.71388182e+05 4.62124388e+05 3.86155285e+05 3.75391323e+05 3.90050008e+05 4.58946618e+05 3.83758403e+05 3.74150627e+05 4.57967727e+05 3.85245055e+05 3.92423128e+05 3.77779018e+05 4.70210733e+05 4.66386626e+05 3.93757320e+05 3.59721291e+05 3.65277419e+05 3.85447409e+05 4.54688709e+05 3.75431236e+05 4.67922537e+05 3.83564231e+05 4.55167543e+05 4.55381113e+05 3.82733670e+05 5.32727473e+05 4.59868416e+05 4.69342228e+05 4.46832976e+05] [ 1.07460973e+06 1.05463958e+06 8.73135679e+05 8.51977812e+05 8.81292275e+05 1.04637152e+06 8.67303870e+05 8.46868818e+05 1.04366026e+06 8.71003944e+05 8.86987437e+05 8.55234933e+05 1.07165205e+06 1.06204509e+06 8.89650671e+05 8.14769544e+05 8.27702388e+05 8.72874244e+05 1.03769842e+06 8.50163904e+05 1.06658208e+06 8.68204355e+05 1.03858709e+06 1.03739999e+06 8.65622315e+05 1.15483833e+06 1.04924967e+06 1.06977307e+06 1.01867767e+06] [ 1.71706106e+06 1.69089718e+06 1.40343320e+06 1.37327913e+06 1.41682575e+06 1.67230669e+06 1.39499976e+06 1.35971465e+06 1.66890322e+06 1.39928657e+06 1.42724868e+06 1.37413034e+06 1.71088247e+06 1.69810854e+06 1.43263295e+06 1.30709882e+06 1.33087845e+06 1.40654198e+06 1.66150448e+06 1.36698867e+06 1.70977485e+06 1.39642584e+06 1.66237642e+06 1.65286562e+06 1.39359232e+06 1.81375258e+06 1.68178050e+06 1.71659559e+06 1.62488336e+06] [ 2.06023225e+06 2.06144790e+06 1.71375573e+06 1.66944033e+06 1.72846704e+06 2.02027029e+06 1.70435233e+06 1.64444394e+06 2.01659122e+06 1.70319654e+06 1.75156187e+06 1.66176022e+06 2.04838840e+06 2.05473492e+06 1.75959225e+06 1.57539025e+06 1.61048828e+06 1.72137884e+06 2.01003630e+06 1.65693285e+06 2.08338741e+06 1.70357450e+06 2.01399808e+06 1.98312096e+06 1.70308623e+06 2.13929622e+06 2.05169911e+06 2.09940695e+06 1.95228946e+06] [ 2.18043022e+06 2.22080819e+06 1.87055645e+06 1.82016213e+06 1.88287934e+06 2.15114245e+06 1.86133736e+06 1.77500752e+06 2.14631199e+06 1.85307372e+06 1.92492262e+06 1.79493803e+06 2.16037130e+06 2.18859106e+06 1.93744373e+06 1.69422602e+06 1.74085829e+06 1.88879573e+06 2.14403762e+06 1.79590481e+06 2.24339671e+06 1.86127385e+06 2.15031347e+06 2.08521005e+06 1.86248115e+06 2.40478737e+06 2.20973083e+06 2.27257106e+06 2.05859345e+06] [ 1.82158930e+06 1.88832844e+06 1.65826697e+06 1.63199175e+06 1.66544358e+06 1.79530803e+06 1.65168995e+06 1.55713034e+06 1.79100743e+06 1.63899821e+06 1.72578704e+06 1.58064695e+06 1.79154390e+06 1.82377608e+06 1.74098596e+06 1.47605820e+06 1.53260937e+06 1.69839327e+06 1.79900038e+06 1.59061118e+06 1.90670563e+06 1.65906331e+06 1.79944583e+06 1.69615602e+06 1.66258860e+06 2.35067924e+06 1.87375024e+06 1.94802258e+06 1.68356890e+06] [ 5.68813344e+05 7.01637086e+05 7.25018970e+05 7.34593543e+05 7.20471743e+05 5.67378469e+05 7.24033418e+05 6.32191415e+05 5.67984443e+05 7.04575628e+05 8.03963866e+05 6.54114736e+05 5.29079556e+05 5.87660917e+05 8.15807986e+05 5.63173402e+05 6.25712172e+05 7.87970548e+05 5.88871036e+05 6.79264033e+05 7.09017481e+05 7.37104753e+05 5.83735174e+05 4.37694733e+05 7.49179322e+05 1.17954445e+06 6.88458253e+05 7.63673800e+05 4.47600855e+05] [-1.10888180e+06 -9.05287945e+05 -5.52046385e+05 -5.12740030e+05 -5.70344262e+05 -1.08202486e+06 -5.51889778e+05 -6.28490748e+05 -1.07568786e+06 -5.70835816e+05 -4.65542819e+05 -6.12578588e+05 -1.15511748e+06 -1.06474200e+06 -4.63717082e+05 -6.85070874e+05 -6.21678217e+05 -4.74570273e+05 -1.04669742e+06 -5.72742942e+05 -9.12295916e+05 -5.31609518e+05 -1.05820438e+06 -1.22751498e+06 -5.10048343e+05 -2.54715806e+05 -9.14649365e+05 -8.48447459e+05 -1.19937872e+06] [-2.25939482e+06 -1.97030931e+06 -1.47959371e+06 -1.47330175e+06 -1.51387685e+06 -2.17955323e+06 -1.48911971e+06 -1.56584673e+06 -2.17059231e+06 -1.50348429e+06 -1.38611052e+06 -1.56814980e+06 -2.30335926e+06 -2.15264194e+06 -1.39543432e+06 -1.61690573e+06 -1.56345650e+06 -1.42064148e+06 -2.14839273e+06 -1.51689348e+06 -1.98922025e+06 -1.46732335e+06 -2.15509447e+06 -2.31712720e+06 -1.43924045e+06 -1.42516427e+06 -1.97032743e+06 -1.92021505e+06 -2.28219474e+06] [-2.43141462e+06 -2.07348613e+06 -1.65956205e+06 -1.73428903e+06 -1.70611935e+06 -2.29261637e+06 -1.67856554e+06 -1.77922727e+06 -2.29076804e+06 -1.69567285e+06 -1.56500859e+06 -1.80049047e+06 -2.46534607e+06 -2.24937997e+06 -1.58195380e+06 -1.83106145e+06 -1.79716141e+06 -1.64490089e+06 -2.28798249e+06 -1.74875638e+06 -2.09295405e+06 -1.67057307e+06 -2.27270264e+06 -2.40018601e+06 -1.64710125e+06 -1.75596846e+06 -2.05869834e+06 -2.02296164e+06 -2.38257775e+06] [-2.24713475e+06 -1.85836982e+06 -1.45283076e+06 -1.59805000e+06 -1.50730643e+06 -2.09718907e+06 -1.46726635e+06 -1.59614484e+06 -2.11001625e+06 -1.49506333e+06 -1.36690012e+06 -1.62182745e+06 -2.26364128e+06 -2.01679484e+06 -1.38213668e+06 -1.66163997e+06 -1.64992157e+06 -1.48828373e+06 -2.13870016e+06 -1.58406046e+06 -1.85255459e+06 -1.48943018e+06 -2.08761830e+06 -2.16483751e+06 -1.48552937e+06 -1.41552366e+06 -1.82731728e+06 -1.78394767e+06 -2.20449964e+06] [-1.78691194e+06 -1.47148711e+06 -1.02189799e+06 -1.18002412e+06 -1.07051413e+06 -1.69589382e+06 -1.01566005e+06 -1.14508821e+06 -1.72821906e+06 -1.05420604e+06 -9.64494858e+05 -1.15462579e+06 -1.78243828e+06 -1.58547918e+06 -9.70139249e+05 -1.21614738e+06 -1.22887052e+06 -1.09118109e+06 -1.78631677e+06 -1.14757556e+06 -1.42561071e+06 -1.07083406e+06 -1.70072573e+06 -1.71605323e+06 -1.09905845e+06 -4.55269624e+05 -1.43214237e+06 -1.37079419e+06 -1.82728279e+06] [-1.09334471e+06 -9.42776411e+05 -6.09279724e+05 -7.09591569e+05 -6.23459635e+05 -1.10158752e+06 -5.83063761e+05 -6.68227004e+05 -1.13973881e+06 -6.15150714e+05 -5.87919091e+05 -6.48183475e+05 -1.08125600e+06 -9.96246773e+05 -5.85699101e+05 -7.32387763e+05 -7.51301921e+05 -6.66068354e+05 -1.20418282e+06 -6.75956287e+05 -8.76138615e+05 -6.46583087e+05 -1.11509719e+06 -1.08268675e+06 -6.91756084e+05 3.09995842e+05 -9.18065693e+05 -8.49267337e+05 -1.22310474e+06] [-5.73817232e+05 -6.14243234e+05 -4.63689082e+05 -4.43947592e+05 -4.19182633e+05 -6.88781915e+05 -4.25272658e+05 -4.33166925e+05 -7.08157597e+05 -4.33789942e+05 -4.74122273e+05 -3.79634166e+05 -5.74906874e+05 -6.17309669e+05 -4.65697028e+05 -4.84168937e+05 -4.77959822e+05 -4.53458919e+05 -7.49002044e+05 -4.32999974e+05 -5.59902459e+05 -4.66268623e+05 -6.91599267e+05 -6.56561433e+05 -4.97586506e+05 5.54786141e+05 -6.26994543e+05 -5.65014838e+05 -7.63430582e+05] [-2.01390170e+05 -3.55026505e+05 -3.43515303e+05 -2.17632094e+05 -2.53854848e+05 -3.78521968e+05 -3.00560574e+05 -2.60988382e+05 -3.76813409e+05 -2.92986695e+05 -3.62947595e+05 -1.82340846e+05 -2.25159660e+05 -3.44727786e+05 -3.50253494e+05 -3.05810648e+05 -2.60661700e+05 -2.58294706e+05 -3.81100393e+05 -2.43881098e+05 -3.25539661e+05 -3.13278225e+05 -3.63370169e+05 -3.69935608e+05 -3.21033720e+05 5.91922170e+05 -3.99821891e+05 -3.44682627e+05 -4.21768404e+05] [-7.23110484e+05 -7.73022469e+05 -7.46003938e+05 -6.01826812e+05 -6.60492403e+05 -8.26944525e+05 -7.07194397e+05 -6.98041955e+05 -8.13962540e+05 -7.16444757e+05 -7.45839399e+05 -6.27610012e+05 -7.70623844e+05 -8.20544862e+05 -7.35696318e+05 -7.36527430e+05 -6.59992775e+05 -6.20565165e+05 -7.81053523e+05 -6.66536292e+05 -7.82164586e+05 -7.08721875e+05 -7.76108893e+05 -8.67383147e+05 -6.93531608e+05 -3.19875988e+05 -8.16378212e+05 -7.79400610e+05 -8.65705219e+05] [-1.93353176e+06 -1.67859295e+06 -1.53384949e+06 -1.48534587e+06 -1.50286982e+06 -1.82337785e+06 -1.50300629e+06 -1.60951168e+06 -1.81638987e+06 -1.56760455e+06 -1.49444634e+06 -1.58288999e+06 -1.99748612e+06 -1.83693922e+06 -1.48979449e+06 -1.63121024e+06 -1.54766839e+06 -1.42379815e+06 -1.75719108e+06 -1.57562046e+06 -1.73094529e+06 -1.52263355e+06 -1.72749865e+06 -1.92050221e+06 -1.49493935e+06 -1.96753139e+06 -1.68271766e+06 -1.67476707e+06 -1.87878608e+06] [-2.96898213e+06 -2.42487869e+06 -2.15745422e+06 -2.24554214e+06 -2.19100049e+06 -2.64300824e+06 -2.13555340e+06 -2.35781524e+06 -2.65178041e+06 -2.25149154e+06 -2.08456507e+06 -2.38221598e+06 -3.03427807e+06 -2.66880311e+06 -2.08307217e+06 -2.35589843e+06 -2.29267877e+06 -2.09926066e+06 -2.58947825e+06 -2.33378581e+06 -2.50245361e+06 -2.18168817e+06 -2.52405523e+06 -2.77421304e+06 -2.15572303e+06 -3.25550211e+06 -2.38342181e+06 -2.39868633e+06 -2.71319382e+06] [-3.12797022e+06 -2.49949829e+06 -2.19912062e+06 -2.36085582e+06 -2.26797914e+06 -2.72428644e+06 -2.18321515e+06 -2.44360190e+06 -2.74088087e+06 -2.31560595e+06 -2.11745692e+06 -2.49578663e+06 -3.18154493e+06 -2.75291633e+06 -2.11676931e+06 -2.42496955e+06 -2.38792607e+06 -2.18614450e+06 -2.68956953e+06 -2.42928370e+06 -2.57541113e+06 -2.24287035e+06 -2.61130533e+06 -2.85364053e+06 -2.22173961e+06 -3.38418076e+06 -2.43518533e+06 -2.45891885e+06 -2.79255869e+06] [-2.49077899e+06 -1.96594355e+06 -1.70974241e+06 -1.86211850e+06 -1.77739941e+06 -2.14372462e+06 -1.69835744e+06 -1.91236474e+06 -2.15919136e+06 -1.80768394e+06 -1.64514956e+06 -1.96432131e+06 -2.52670381e+06 -2.16619305e+06 -1.64406422e+06 -1.88753880e+06 -1.87188581e+06 -1.71804245e+06 -2.12493333e+06 -1.90531034e+06 -2.02346206e+06 -1.75066857e+06 -2.05651304e+06 -2.24126956e+06 -1.73598066e+06 -2.91194790e+06 -1.90735282e+06 -1.92899927e+06 -2.19308652e+06] [-1.53472118e+06 -1.23828902e+06 -1.05398050e+06 -1.14032477e+06 -1.09677805e+06 -1.33829362e+06 -1.04771399e+06 -1.16455396e+06 -1.34804874e+06 -1.10864833e+06 -1.01841754e+06 -1.19616276e+06 -1.55306408e+06 -1.35173798e+06 -1.01915184e+06 -1.14746856e+06 -1.14388239e+06 -1.06244238e+06 -1.33146565e+06 -1.16105524e+06 -1.26951856e+06 -1.07695614e+06 -1.29182415e+06 -1.38988170e+06 -1.07053968e+06 -1.74634460e+06 -1.20377436e+06 -1.21620045e+06 -1.36565804e+06] [-5.20526679e+05 -4.42542370e+05 -3.60789398e+05 -3.77205337e+05 -3.75303799e+05 -4.70128286e+05 -3.60081981e+05 -3.85320620e+05 -4.73982239e+05 -3.74214057e+05 -3.52562500e+05 -3.94558359e+05 -5.25490931e+05 -4.76948479e+05 -3.54210858e+05 -3.78714628e+05 -3.79847888e+05 -3.61474302e+05 -4.69175251e+05 -3.83985797e+05 -4.52585992e+05 -3.64467873e+05 -4.59010653e+05 -4.82905595e+05 -3.65091180e+05 -5.65030326e+05 -4.33674206e+05 -4.38343275e+05 -4.77620702e+05] [-7.54027721e+04 -7.65453067e+04 -5.23488797e+04 -4.74558526e+04 -5.43751494e+04 -7.70274052e+04 -5.30008540e+04 -4.91500917e+04 -7.79998422e+04 -5.16560418e+04 -5.31051868e+04 -4.95066879e+04 -7.57074683e+04 -7.95729404e+04 -5.42264334e+04 -4.80597568e+04 -4.91865389e+04 -5.07919770e+04 -7.75467263e+04 -4.87068174e+04 -7.78708092e+04 -5.05951923e+04 -7.79008684e+04 -7.65024668e+04 -5.22844661e+04 -4.69577282e+04 -7.68206841e+04 -7.76964560e+04 -7.75923082e+04] [-6.24527245e+03 -6.54556435e+03 -4.32456226e+03 -3.72304548e+03 -4.56039021e+03 -6.53137694e+03 -4.44099753e+03 -3.91650452e+03 -6.59972587e+03 -4.23200194e+03 -4.46977895e+03 -3.98896931e+03 -6.25009263e+03 -6.81428547e+03 -4.55828264e+03 -3.83525698e+03 -3.94497168e+03 -4.15657818e+03 -6.55045637e+03 -3.89251827e+03 -6.69710782e+03 -4.11074955e+03 -6.64416797e+03 -6.40312027e+03 -4.29848519e+03 -3.66976084e+03 -6.60107811e+03 -6.71234230e+03 -6.55195621e+03] [ 4.53668897e+02 3.90659594e+02 3.95115877e+02 4.22746645e+02 3.82539970e+02 3.98485429e+02 3.80493352e+02 4.19783887e+02 3.97568766e+02 4.10286547e+02 3.85976530e+02 4.15207177e+02 4.59794528e+02 3.94242638e+02 3.93745697e+02 4.09068538e+02 4.01399225e+02 3.95630408e+02 3.87216659e+02 4.17829017e+02 3.98345968e+02 4.10449221e+02 3.77007885e+02 4.07157648e+02 3.94009096e+02 6.88244337e+02 3.78601932e+02 3.91626355e+02 3.87123757e+02] [ 3.97154600e+03 3.95026268e+03 3.43542678e+03 3.32997204e+03 3.45737133e+03 3.87500767e+03 3.41014203e+03 3.31325619e+03 3.86501741e+03 3.42076812e+03 3.49745885e+03 3.33973212e+03 3.96125467e+03 3.96053912e+03 3.50959670e+03 3.17370397e+03 3.22533204e+03 3.42479467e+03 3.83419917e+03 3.32491883e+03 3.99976932e+03 3.40824343e+03 3.84660919e+03 3.83428247e+03 3.39697201e+03 4.52610824e+03 3.93385836e+03 4.02269281e+03 3.74931186e+03] [ 2.59835990e+04 2.56778501e+04 2.17537088e+04 2.11324979e+04 2.18670273e+04 2.54436983e+04 2.16068480e+04 2.10370485e+04 2.53720097e+04 2.16475547e+04 2.20971219e+04 2.11806347e+04 2.59381080e+04 2.58291986e+04 2.21610718e+04 2.02791672e+04 2.05570279e+04 2.16635318e+04 2.52203064e+04 2.11041994e+04 2.59690995e+04 2.15936569e+04 2.52526585e+04 2.52344145e+04 2.15264934e+04 2.76378398e+04 2.56060021e+04 2.60802293e+04 2.47627532e+04] [ 1.71674867e+05 1.69069277e+05 1.42342276e+05 1.38397472e+05 1.43370658e+05 1.67925204e+05 1.41437408e+05 1.37940977e+05 1.67550284e+05 1.41798553e+05 1.44493638e+05 1.38975072e+05 1.71349848e+05 1.70384013e+05 1.44924703e+05 1.33095258e+05 1.34903245e+05 1.41864749e+05 1.66515911e+05 1.38361657e+05 1.70976449e+05 1.41346781e+05 1.66700141e+05 1.66714401e+05 1.41019123e+05 1.79371284e+05 1.68455102e+05 1.71555425e+05 1.63785418e+05] [ 4.70140438e+05 4.61321446e+05 3.85940176e+05 3.76161739e+05 3.89266394e+05 4.58120336e+05 3.83448839e+05 3.74611557e+05 4.57036822e+05 3.85054961e+05 3.91747843e+05 3.77972882e+05 4.69198789e+05 4.65142791e+05 3.93160202e+05 3.61040851e+05 3.66186418e+05 3.85161757e+05 4.54119423e+05 3.75878497e+05 4.66830474e+05 3.83641001e+05 4.54504502e+05 4.54459544e+05 3.82562018e+05 5.06806480e+05 4.59101017e+05 4.68114135e+05 4.46441533e+05] [ 8.90922930e+05 8.70642808e+05 7.27846802e+05 7.13623820e+05 7.34674922e+05 8.65204365e+05 7.23372401e+05 7.08251890e+05 8.62986267e+05 7.26817880e+05 7.38694222e+05 7.15718786e+05 8.88600947e+05 8.77345096e+05 7.41264749e+05 6.82722276e+05 6.93266673e+05 7.28606978e+05 8.58635966e+05 7.11477266e+05 8.80725760e+05 7.24717996e+05 8.58444653e+05 8.56978791e+05 7.22420701e+05 9.71699113e+05 8.65720909e+05 8.82916324e+05 8.42448384e+05] [ 1.15192040e+06 1.14401686e+06 9.48108041e+05 9.29911562e+05 9.56959875e+05 1.12334473e+06 9.43856381e+05 9.14742105e+05 1.12109900e+06 9.44266918e+05 9.67694368e+05 9.25896674e+05 1.14591882e+06 1.14135229e+06 9.72892825e+05 8.78240518e+05 8.97063592e+05 9.53746828e+05 1.11800909e+06 9.22214182e+05 1.15735783e+06 9.44385684e+05 1.11887272e+06 1.10203981e+06 9.43171418e+05 1.20405222e+06 1.13746457e+06 1.16481899e+06 1.08583017e+06] [ 1.10675833e+06 1.15026393e+06 9.56241264e+05 9.24805082e+05 9.61548928e+05 1.10158053e+06 9.53452961e+05 8.96624758e+05 1.09930306e+06 9.43989418e+05 9.89908045e+05 9.07149789e+05 1.09478786e+06 1.12365578e+06 9.99341542e+05 8.54069212e+05 8.81007797e+05 9.66546502e+05 1.09962184e+06 9.09641257e+05 1.16327008e+06 9.50379395e+05 1.10480012e+06 1.05627017e+06 9.52793324e+05 1.18344364e+06 1.14559256e+06 1.18293221e+06 1.04715539e+06] [ 9.72504776e+05 1.04680462e+06 8.88634530e+05 8.65437441e+05 8.90623679e+05 9.74379941e+05 8.88328885e+05 8.14031765e+05 9.71545927e+05 8.73729273e+05 9.36080229e+05 8.27697861e+05 9.52901380e+05 9.92725595e+05 9.53478342e+05 7.69764716e+05 8.04910070e+05 9.13642902e+05 9.78155946e+05 8.36540266e+05 1.06028154e+06 8.89680112e+05 9.81765587e+05 8.94565060e+05 8.93012687e+05 1.34132653e+06 1.03820245e+06 1.09155307e+06 8.99561069e+05] [ 4.83094244e+05 5.76970696e+05 5.51109919e+05 5.61188252e+05 5.48252723e+05 4.85205961e+05 5.53878360e+05 4.82236376e+05 4.82524382e+05 5.39669709e+05 6.09318117e+05 4.99952847e+05 4.54687149e+05 4.91223452e+05 6.30511756e+05 4.46129448e+05 4.86470854e+05 5.99559629e+05 4.99265667e+05 5.17106529e+05 5.85865406e+05 5.66992295e+05 4.95693116e+05 3.70463964e+05 5.71507613e+05 1.05264963e+06 5.61799998e+05 6.26187438e+05 3.97310495e+05] [-9.18734035e+05 -7.91973632e+05 -5.63386409e+05 -5.05319923e+05 -5.73918987e+05 -9.09244487e+05 -5.57669014e+05 -5.99499154e+05 -9.05028748e+05 -5.65455650e+05 -5.02146866e+05 -5.83394396e+05 -9.53281123e+05 -9.13235316e+05 -4.86569352e+05 -6.16828818e+05 -5.77738962e+05 -4.93360302e+05 -8.79645300e+05 -5.54730618e+05 -7.94548093e+05 -5.31139718e+05 -8.93142245e+05 -1.04051773e+06 -5.18762015e+05 -3.31216258e+05 -8.11255201e+05 -7.50805078e+05 -9.88759916e+05] [-3.02306913e+06 -2.84289581e+06 -2.23948070e+06 -2.15086249e+06 -2.26059405e+06 -2.98050622e+06 -2.23553954e+06 -2.23462930e+06 -2.97348725e+06 -2.23094153e+06 -2.18329054e+06 -2.22830049e+06 -3.06095235e+06 -2.99606656e+06 -2.18600284e+06 -2.22181224e+06 -2.19750206e+06 -2.16079761e+06 -2.94546967e+06 -2.19008083e+06 -2.86856748e+06 -2.19655117e+06 -2.96068237e+06 -3.10234591e+06 -2.17809753e+06 -2.34699634e+06 -2.86054041e+06 -2.82659526e+06 -3.02850785e+06] [-4.50313346e+06 -4.25055703e+06 -3.49796632e+06 -3.44406636e+06 -3.53096564e+06 -4.39006402e+06 -3.50161304e+06 -3.48724257e+06 -4.38674566e+06 -3.49353682e+06 -3.44801963e+06 -3.50130629e+06 -4.53971016e+06 -4.41597925e+06 -3.47362196e+06 -3.45042422e+06 -3.44918691e+06 -3.43953423e+06 -4.36654240e+06 -3.45748865e+06 -4.30042854e+06 -3.46423683e+06 -4.36726545e+06 -4.47421621e+06 -3.44450260e+06 -3.99860687e+06 -4.25638420e+06 -4.26022446e+06 -4.39737673e+06] [-5.26869050e+06 -4.96440012e+06 -4.15876905e+06 -4.15905920e+06 -4.19085491e+06 -5.10064513e+06 -4.15767255e+06 -4.15205759e+06 -5.10235298e+06 -4.16133747e+06 -4.12080209e+06 -4.17706108e+06 -5.29920246e+06 -5.11962664e+06 -4.16218497e+06 -4.10218965e+06 -4.12191753e+06 -4.13138227e+06 -5.09881685e+06 -4.14028045e+06 -5.01991833e+06 -4.14616676e+06 -5.07158458e+06 -5.13322523e+06 -4.12699276e+06 -5.07764910e+06 -4.95424591e+06 -4.98425903e+06 -5.07792459e+06] [-5.17306687e+06 -4.88747542e+06 -4.04341865e+06 -4.08015342e+06 -4.07281036e+06 -5.02602349e+06 -4.02302069e+06 -4.03318330e+06 -5.04366112e+06 -4.04520026e+06 -4.02680692e+06 -4.04937639e+06 -5.18528383e+06 -5.01106856e+06 -4.06550479e+06 -3.98975519e+06 -4.03189533e+06 -4.05553715e+06 -5.06911145e+06 -4.03688427e+06 -4.91017342e+06 -4.05189402e+06 -5.00296883e+06 -5.00871146e+06 -4.05574256e+06 -4.70616594e+06 -4.86197630e+06 -4.88251304e+06 -5.02118574e+06] [-4.71591859e+06 -4.54706478e+06 -3.63180506e+06 -3.65409986e+06 -3.64874806e+06 -4.66144440e+06 -3.58484362e+06 -3.58000899e+06 -4.69732640e+06 -3.61536445e+06 -3.64973347e+06 -3.57042033e+06 -4.70433592e+06 -4.61395887e+06 -3.67733540e+06 -3.54096832e+06 -3.60547453e+06 -3.67219533e+06 -4.74983337e+06 -3.59485563e+06 -4.52232212e+06 -3.64818649e+06 -4.65809300e+06 -4.59756027e+06 -3.68421014e+06 -3.67970148e+06 -4.51592574e+06 -4.51540823e+06 -4.68264731e+06] [-4.10757138e+06 -4.09909298e+06 -3.28548302e+06 -3.23406257e+06 -3.26844345e+06 -4.15831270e+06 -3.22318514e+06 -3.16921996e+06 -4.19060647e+06 -3.24328264e+06 -3.33341475e+06 -3.13105341e+06 -4.09151715e+06 -4.11260134e+06 -3.35351525e+06 -3.12981391e+06 -3.18747287e+06 -3.30299678e+06 -4.23987717e+06 -3.18283089e+06 -4.05941040e+06 -3.28696059e+06 -4.15972008e+06 -4.07021706e+06 -3.32847894e+06 -2.91442033e+06 -4.08496389e+06 -4.07855523e+06 -4.16953000e+06] [-2.99484575e+06 -3.18709644e+06 -2.64622869e+06 -2.47077809e+06 -2.56912315e+06 -3.16664146e+06 -2.58340477e+06 -2.45684351e+06 -3.17159936e+06 -2.57154018e+06 -2.70934601e+06 -2.38435361e+06 -2.99771310e+06 -3.15133015e+06 -2.72428340e+06 -2.42594137e+06 -2.43812250e+06 -2.58550810e+06 -3.18754189e+06 -2.45313986e+06 -3.16249502e+06 -2.61134800e+06 -3.16150855e+06 -3.08958076e+06 -2.62669510e+06 -2.02599360e+06 -3.21505471e+06 -3.20960171e+06 -3.14202203e+06] [-1.53478607e+06 -1.83673072e+06 -1.58635398e+06 -1.32225410e+06 -1.46645412e+06 -1.78437002e+06 -1.53213988e+06 -1.37965127e+06 -1.76713377e+06 -1.49875345e+06 -1.63690657e+06 -1.28000447e+06 -1.56407254e+06 -1.79045731e+06 -1.64749249e+06 -1.37666802e+06 -1.33103977e+06 -1.44965740e+06 -1.74366449e+06 -1.35109050e+06 -1.83143816e+06 -1.52312511e+06 -1.76690146e+06 -1.75525479e+06 -1.51132412e+06 -9.69023825e+05 -1.89873701e+06 -1.88492556e+06 -1.75823043e+06] [-7.01553989e+05 -8.53262813e+05 -8.01908253e+05 -5.90215855e+05 -6.98105982e+05 -8.63343128e+05 -7.65602429e+05 -6.96506157e+05 -8.38757280e+05 -7.53733734e+05 -8.09992169e+05 -6.12950798e+05 -7.50558082e+05 -8.68262744e+05 -8.15775208e+05 -7.25796111e+05 -6.39815802e+05 -6.52642857e+05 -7.88746558e+05 -6.55598364e+05 -8.71617371e+05 -7.51001567e+05 -8.18906187e+05 -8.99310965e+05 -7.19326084e+05 -5.79623067e+05 -9.06550698e+05 -8.90081825e+05 -8.70567403e+05] [-1.43216076e+06 -1.23915328e+06 -1.16698340e+06 -1.10730205e+06 -1.12803296e+06 -1.35933164e+06 -1.14389647e+06 -1.22413739e+06 -1.34236115e+06 -1.19210100e+06 -1.12756700e+06 -1.19426062e+06 -1.48930801e+06 -1.36202455e+06 -1.12830751e+06 -1.25281975e+06 -1.16378933e+06 -1.06234410e+06 -1.28084190e+06 -1.18833495e+06 -1.28599161e+06 -1.15676840e+06 -1.27672584e+06 -1.45351375e+06 -1.11646264e+06 -1.59606829e+06 -1.24608584e+06 -1.24412114e+06 -1.40018136e+06] [-2.63023818e+06 -2.07618583e+06 -1.88448588e+06 -2.00626513e+06 -1.91938043e+06 -2.29635143e+06 -1.86770639e+06 -2.10125420e+06 -2.29488977e+06 -1.98316194e+06 -1.80404622e+06 -2.13268234e+06 -2.68696883e+06 -2.29892258e+06 -1.80073263e+06 -2.10905302e+06 -2.04311084e+06 -1.84876160e+06 -2.23787927e+06 -2.07972630e+06 -2.14397827e+06 -1.92210806e+06 -2.18213332e+06 -2.42873327e+06 -1.88188637e+06 -2.97923057e+06 -2.02796306e+06 -2.04256900e+06 -2.36079167e+06] [-3.01443888e+06 -2.32803975e+06 -2.07739394e+06 -2.29108652e+06 -2.15135543e+06 -2.57135148e+06 -2.06324433e+06 -2.35497795e+06 -2.57930761e+06 -2.20518214e+06 -1.98473022e+06 -2.41865660e+06 -3.06168471e+06 -2.57599861e+06 -1.97866073e+06 -2.34223395e+06 -2.30426897e+06 -2.08991865e+06 -2.53489006e+06 -2.34487393e+06 -2.39648002e+06 -2.13822613e+06 -2.45464550e+06 -2.70677639e+06 -2.10318631e+06 -3.45449583e+06 -2.25345407e+06 -2.27447906e+06 -2.63701882e+06] [-2.70720698e+06 -2.10610958e+06 -1.86766238e+06 -2.07027975e+06 -1.94102827e+06 -2.30613117e+06 -1.85478272e+06 -2.10805432e+06 -2.31604328e+06 -1.97996560e+06 -1.79109110e+06 -2.17111776e+06 -2.74144455e+06 -2.31276092e+06 -1.78507985e+06 -2.08433544e+06 -2.06723714e+06 -1.89477637e+06 -2.28537600e+06 -2.10440975e+06 -2.16170018e+06 -1.92413172e+06 -2.20911593e+06 -2.41388522e+06 -1.89775867e+06 -3.15726963e+06 -2.03640496e+06 -2.05690136e+06 -2.35513003e+06] [-1.68881715e+06 -1.33152795e+06 -1.16874535e+06 -1.28994350e+06 -1.21468709e+06 -1.44839735e+06 -1.16055764e+06 -1.30748296e+06 -1.45490298e+06 -1.23468702e+06 -1.12478757e+06 -1.34663753e+06 -1.70742433e+06 -1.45364183e+06 -1.12221988e+06 -1.28871455e+06 -1.28346380e+06 -1.18818165e+06 -1.43866510e+06 -1.30618641e+06 -1.36389117e+06 -1.20237031e+06 -1.39214041e+06 -1.50883709e+06 -1.18752991e+06 -2.02139501e+06 -1.28908966e+06 -1.30257629e+06 -1.47411080e+06] [-6.29542325e+05 -5.19001471e+05 -4.46017759e+05 -4.78771816e+05 -4.61532243e+05 -5.55493521e+05 -4.43582091e+05 -4.84995417e+05 -5.57999305e+05 -4.65926351e+05 -4.33261648e+05 -4.97300934e+05 -6.35578170e+05 -5.59149891e+05 -4.34676898e+05 -4.77417020e+05 -4.76714347e+05 -4.50756232e+05 -5.52067612e+05 -4.84179600e+05 -5.30779870e+05 -4.55391343e+05 -5.38093886e+05 -5.72661074e+05 -4.51319011e+05 -7.56026449e+05 -5.05456911e+05 -5.12084378e+05 -5.62278159e+05] [-9.82630251e+04 -9.31482257e+04 -7.19570422e+04 -7.04244026e+04 -7.35380576e+04 -9.49308380e+04 -7.18984557e+04 -7.16957701e+04 -9.54746355e+04 -7.27268176e+04 -7.17735319e+04 -7.23094843e+04 -9.89067032e+04 -9.66876351e+04 -7.31971265e+04 -7.04105478e+04 -7.07677711e+04 -7.10790054e+04 -9.44887959e+04 -7.12643879e+04 -9.48986387e+04 -7.17174037e+04 -9.41680677e+04 -9.50997904e+04 -7.19396938e+04 -8.93807514e+04 -9.22488872e+04 -9.39780942e+04 -9.49562412e+04] [-2.11057483e+04 -2.00971788e+04 -1.46336627e+04 -1.41012580e+04 -1.50942766e+04 -2.06227369e+04 -1.46728022e+04 -1.45016904e+04 -2.08065302e+04 -1.47392459e+04 -1.46162758e+04 -1.46442324e+04 -2.12469509e+04 -2.10505930e+04 -1.48573557e+04 -1.42766859e+04 -1.44017322e+04 -1.43738721e+04 -2.06417241e+04 -1.43914947e+04 -2.04470635e+04 -1.44612730e+04 -2.05469795e+04 -2.07133554e+04 -1.46707547e+04 -1.60892536e+04 -1.99750639e+04 -2.02063445e+04 -2.08291149e+04] [-6.45063313e+02 -6.07063159e+02 -4.85043989e+02 -4.76600131e+02 -4.92487231e+02 -6.14239905e+02 -4.81374334e+02 -4.87588967e+02 -6.18644221e+02 -4.94083930e+02 -4.83493385e+02 -4.89299826e+02 -6.51278735e+02 -6.31407297e+02 -4.95770567e+02 -4.77335899e+02 -4.76931857e+02 -4.77018935e+02 -6.09840009e+02 -4.84122816e+02 -6.21575258e+02 -4.86636019e+02 -6.05820132e+02 -6.15855856e+02 -4.86985486e+02 -6.57923983e+02 -5.98410316e+02 -6.13717945e+02 -6.13490054e+02] [-2.53560134e-01 -7.93737315e-02 -5.31568933e-01 -4.00821656e-01 -7.69431300e-01 5.44878758e-01 5.87765878e-01 -9.12128294e-01 -6.78077448e-01 6.05715476e-01 8.20953494e-01 -2.61618411e-01 3.50620964e-01 -6.20012589e-01 7.42464640e-01 6.49412645e-01 -4.99974217e-01 1.85698911e-01 4.71525938e-01 7.67687446e-01 -6.45440560e-02 -7.30758406e-01 -7.81209758e-01 5.93546706e-02 -9.01422855e-01 2.41791825e-01 -9.33343590e-01 -9.57632593e-01 -8.49581435e-01] [ 1.86440210e+04 1.82210843e+04 1.52605665e+04 1.49291449e+04 1.53690988e+04 1.81919188e+04 1.51615935e+04 1.48626250e+04 1.81216953e+04 1.52330124e+04 1.54559965e+04 1.49883909e+04 1.86201171e+04 1.83956050e+04 1.55133226e+04 1.44144808e+04 1.45731877e+04 1.52247253e+04 1.80328492e+04 1.49041990e+04 1.84145940e+04 1.51931205e+04 1.80364916e+04 1.80351832e+04 1.51208019e+04 1.93343719e+04 1.81347425e+04 1.84469239e+04 1.77772339e+04] [ 1.05579302e+05 1.04091134e+05 8.79305075e+04 8.55539291e+04 8.84571420e+04 1.03283195e+05 8.73189525e+04 8.51754213e+04 1.03004545e+05 8.75857706e+04 8.92647786e+04 8.57840309e+04 1.05401366e+05 1.04796489e+05 8.95636955e+04 8.22020563e+04 8.33056584e+04 8.76188743e+04 1.02409344e+05 8.54389630e+04 1.05247971e+05 8.73503703e+04 1.02493204e+05 1.02399647e+05 8.70817470e+04 1.11512780e+05 1.03718720e+05 1.05624109e+05 1.00643012e+05] [ 2.54627265e+05 2.48522416e+05 2.07558057e+05 2.03371059e+05 2.09712665e+05 2.46178703e+05 2.06172227e+05 2.02056051e+05 2.45718854e+05 2.07596818e+05 2.10707543e+05 2.04328970e+05 2.54105112e+05 2.50593623e+05 2.11731073e+05 1.94059699e+05 1.97245121e+05 2.07627446e+05 2.44059114e+05 2.02927077e+05 2.51886681e+05 2.06674893e+05 2.43997613e+05 2.43828684e+05 2.06031418e+05 2.92219994e+05 2.46869903e+05 2.52407212e+05 2.39244945e+05] [ 5.48225166e+05 5.32189258e+05 4.41318944e+05 4.37035681e+05 4.46696984e+05 5.27773009e+05 4.39199264e+05 4.31929266e+05 5.26583453e+05 4.42172722e+05 4.47874693e+05 4.38048417e+05 5.46566185e+05 5.35004319e+05 4.50236278e+05 4.16373529e+05 4.23481619e+05 4.43859416e+05 5.24376481e+05 4.34734093e+05 5.39186654e+05 4.40923614e+05 5.23220898e+05 5.20914902e+05 4.39385943e+05 6.18674090e+05 5.27834161e+05 5.39946355e+05 5.12990591e+05] [ 6.11294749e+05 6.39188739e+05 5.14331256e+05 4.97882241e+05 5.17831957e+05 6.09857982e+05 5.13768506e+05 4.82931369e+05 6.08236432e+05 5.08139207e+05 5.31591313e+05 4.88910195e+05 6.05090529e+05 6.20967079e+05 5.37949479e+05 4.62375533e+05 4.76089113e+05 5.19866523e+05 6.08706394e+05 4.89412923e+05 6.46331362e+05 5.11743057e+05 6.12503373e+05 5.84671971e+05 5.12394092e+05 5.66276988e+05 6.36234775e+05 6.56457431e+05 5.81727788e+05] [ 3.48075671e+05 4.39473131e+05 3.43870541e+05 3.15345494e+05 3.40778536e+05 3.82576275e+05 3.46511703e+05 2.85530435e+05 3.80742233e+05 3.28463584e+05 3.75003725e+05 2.88498626e+05 3.35652174e+05 3.92284522e+05 3.88884513e+05 2.67996159e+05 2.86970958e+05 3.54942284e+05 3.86653264e+05 2.97592636e+05 4.44103546e+05 3.41242750e+05 3.95373429e+05 3.26611530e+05 3.45531987e+05 3.91021811e+05 4.38838092e+05 4.68402178e+05 3.40527286e+05] [ 1.14788082e+05 2.26068378e+05 1.59332132e+05 1.47057078e+05 1.55660250e+05 1.54830747e+05 1.65362430e+05 9.61960026e+04 1.52503488e+05 1.46890459e+05 2.00669604e+05 1.03031254e+05 9.56414899e+04 1.56622860e+05 2.26351505e+05 8.69926828e+04 1.10085518e+05 1.87348581e+05 1.65217771e+05 1.16422168e+05 2.30282856e+05 1.68844442e+05 1.71303504e+05 6.12436099e+04 1.73092937e+05 3.87986320e+05 2.17141039e+05 2.62538197e+05 1.00943052e+05] [-7.10972506e+05 -6.11216258e+05 -4.95142567e+05 -4.49851858e+05 -4.97069029e+05 -6.89866147e+05 -4.83805402e+05 -5.21203342e+05 -6.87490769e+05 -4.91403175e+05 -4.53140809e+05 -5.07695837e+05 -7.36190387e+05 -7.00965921e+05 -4.23097126e+05 -5.11785529e+05 -4.88582235e+05 -4.39132706e+05 -6.66520860e+05 -4.90129464e+05 -6.11209223e+05 -4.63032029e+05 -6.72362771e+05 -8.08803544e+05 -4.55716713e+05 -3.11596020e+05 -6.33008510e+05 -5.79556388e+05 -7.40001525e+05] [-2.40535098e+06 -2.33509540e+06 -1.90623960e+06 -1.78856495e+06 -1.90499149e+06 -2.40710115e+06 -1.89324821e+06 -1.85636951e+06 -2.39710404e+06 -1.87455170e+06 -1.87690815e+06 -1.84073432e+06 -2.43295924e+06 -2.43480007e+06 -1.85756391e+06 -1.81380242e+06 -1.80394329e+06 -1.82607854e+06 -2.37315077e+06 -1.82083822e+06 -2.34895188e+06 -1.84861459e+06 -2.39347712e+06 -2.51905342e+06 -1.83560734e+06 -1.93259428e+06 -2.37037515e+06 -2.33075773e+06 -2.42086148e+06] [-4.50844222e+06 -4.41854832e+06 -3.67428180e+06 -3.53062186e+06 -3.67687313e+06 -4.48210788e+06 -3.66428755e+06 -3.56707190e+06 -4.46907696e+06 -3.62753190e+06 -3.65930983e+06 -3.56267311e+06 -4.53748418e+06 -4.52939295e+06 -3.66678804e+06 -3.48906426e+06 -3.50271636e+06 -3.59083076e+06 -4.44897409e+06 -3.53856196e+06 -4.45852088e+06 -3.60773081e+06 -4.46901833e+06 -4.55483096e+06 -3.58928289e+06 -4.08165450e+06 -4.45345601e+06 -4.45141332e+06 -4.44281771e+06] [-6.29934190e+06 -6.16389596e+06 -5.20050965e+06 -5.06982293e+06 -5.20437007e+06 -6.21069980e+06 -5.18866630e+06 -5.06210597e+06 -6.20000652e+06 -5.15425314e+06 -5.20303931e+06 -5.07195037e+06 -6.33025229e+06 -6.27979327e+06 -5.24358183e+06 -4.95125627e+06 -4.98962086e+06 -5.12681168e+06 -6.18585864e+06 -5.04800053e+06 -6.23293917e+06 -5.14203044e+06 -6.18826074e+06 -6.22157141e+06 -5.11945823e+06 -6.19663652e+06 -6.18600978e+06 -6.23362812e+06 -6.11503971e+06] [-7.41108525e+06 -7.26018491e+06 -6.13049347e+06 -6.00971095e+06 -6.12826353e+06 -7.28806787e+06 -6.10083290e+06 -5.96816630e+06 -7.28252016e+06 -6.08898919e+06 -6.15619556e+06 -5.97938358e+06 -7.44007441e+06 -7.36733314e+06 -6.21883014e+06 -5.83455976e+06 -5.89133161e+06 -6.06874049e+06 -7.27559984e+06 -5.96580298e+06 -7.33805979e+06 -6.08670852e+06 -7.25226065e+06 -7.23679389e+06 -6.06553313e+06 -7.57365966e+06 -7.26482534e+06 -7.34550933e+06 -7.16015963e+06] [-7.59744023e+06 -7.50335861e+06 -6.22350019e+06 -6.10248355e+06 -6.22087210e+06 -7.52905255e+06 -6.16653711e+06 -6.03559779e+06 -7.54585595e+06 -6.17534757e+06 -6.27695558e+06 -6.02754557e+06 -7.60614302e+06 -7.57748252e+06 -6.33824517e+06 -5.90399203e+06 -5.98494132e+06 -6.19344376e+06 -7.56344259e+06 -6.04325914e+06 -7.54230336e+06 -6.19410547e+06 -7.50411809e+06 -7.43139670e+06 -6.20515214e+06 -7.14294105e+06 -7.49170980e+06 -7.56038466e+06 -7.43272280e+06] [-7.27061572e+06 -7.26543656e+06 -5.88889576e+06 -5.75458116e+06 -5.88376731e+06 -7.29258372e+06 -5.81093943e+06 -5.67309679e+06 -7.32564408e+06 -5.82750770e+06 -5.96598569e+06 -5.64165860e+06 -7.25529118e+06 -7.29623958e+06 -6.01719513e+06 -5.55768605e+06 -5.65263656e+06 -5.88869574e+06 -7.36573678e+06 -5.68649935e+06 -7.25683492e+06 -5.86958266e+06 -7.28840910e+06 -7.16674457e+06 -5.90901278e+06 -6.03829964e+06 -7.24473353e+06 -7.28938458e+06 -7.23852406e+06] [-6.90110767e+06 -7.01933905e+06 -5.71935375e+06 -5.50714178e+06 -5.68295315e+06 -7.01575889e+06 -5.63570990e+06 -5.45130558e+06 -7.03458525e+06 -5.63639556e+06 -5.81079305e+06 -5.39547279e+06 -6.88813771e+06 -7.01503786e+06 -5.85912696e+06 -5.34738329e+06 -5.41822482e+06 -5.68524563e+06 -7.06065798e+06 -5.45542520e+06 -7.00616495e+06 -5.68402851e+06 -7.01116919e+06 -6.88850024e+06 -5.71245974e+06 -5.49400435e+06 -7.01628324e+06 -7.05832166e+06 -6.95349990e+06] [-4.78916271e+06 -5.10724748e+06 -4.21482535e+06 -3.89357282e+06 -4.11663127e+06 -5.04068062e+06 -4.14513991e+06 -3.90003348e+06 -5.02855628e+06 -4.10136860e+06 -4.30295574e+06 -3.80873135e+06 -4.79842977e+06 -5.05607600e+06 -4.34313256e+06 -3.83322693e+06 -3.84218578e+06 -4.10029268e+06 -5.02021339e+06 -3.88110403e+06 -5.10531779e+06 -4.14412195e+06 -5.03773202e+06 -4.94801108e+06 -4.14091786e+06 -3.77874205e+06 -5.15308898e+06 -5.18141119e+06 -4.96190059e+06] [-1.87968508e+06 -2.30891347e+06 -1.94614293e+06 -1.58985601e+06 -1.80649135e+06 -2.21808087e+06 -1.90210388e+06 -1.65619554e+06 -2.18061588e+06 -1.82473847e+06 -2.00697071e+06 -1.54474380e+06 -1.90997887e+06 -2.22959704e+06 -2.03012362e+06 -1.64861793e+06 -1.59294709e+06 -1.77683596e+06 -2.14538157e+06 -1.61721939e+06 -2.31255554e+06 -1.85680327e+06 -2.21464372e+06 -2.18396789e+06 -1.82564215e+06 -1.32397078e+06 -2.39344109e+06 -2.39259990e+06 -2.15423883e+06] [-4.18091302e+05 -6.51990600e+05 -6.23397544e+05 -3.87563026e+05 -5.11188646e+05 -6.39128177e+05 -6.04539205e+05 -4.76968668e+05 -5.97767356e+05 -5.52124376e+05 -6.35533149e+05 -3.94679036e+05 -4.57432472e+05 -6.27311717e+05 -6.42762918e+05 -5.13829947e+05 -4.26667067e+05 -4.78011461e+05 -5.52960905e+05 -4.37250248e+05 -6.65786800e+05 -5.63239440e+05 -6.16154292e+05 -6.67381885e+05 -5.17929844e+05 -3.51416228e+05 -7.20129618e+05 -7.05679738e+05 -6.19423066e+05] [-8.17165275e+05 -6.79593432e+05 -7.07878545e+05 -6.69594260e+05 -6.65859335e+05 -7.81021460e+05 -7.01489927e+05 -7.49046024e+05 -7.51210425e+05 -7.17295780e+05 -6.69669405e+05 -7.26858064e+05 -8.58002548e+05 -7.55753050e+05 -6.66005024e+05 -7.87828809e+05 -7.07060641e+05 -6.31080324e+05 -7.07542054e+05 -7.21602773e+05 -7.11093756e+05 -7.00722217e+05 -7.23159406e+05 -8.61725303e+05 -6.50835174e+05 -1.09508509e+06 -6.94524777e+05 -6.87281239e+05 -8.00422130e+05] [-2.26911182e+06 -1.72448785e+06 -1.62253363e+06 -1.78233111e+06 -1.65916314e+06 -1.93731611e+06 -1.61774760e+06 -1.83841719e+06 -1.92523268e+06 -1.71414078e+06 -1.54158797e+06 -1.88221219e+06 -2.31086506e+06 -1.91413544e+06 -1.53294554e+06 -1.84860314e+06 -1.79385089e+06 -1.61916413e+06 -1.88503972e+06 -1.82696686e+06 -1.78028036e+06 -1.66848768e+06 -1.83817238e+06 -2.05856028e+06 -1.61860228e+06 -2.85027099e+06 -1.67743437e+06 -1.69003555e+06 -1.98020244e+06] [-3.11627531e+06 -2.41585539e+06 -2.18846710e+06 -2.43182217e+06 -2.26495519e+06 -2.65489396e+06 -2.17886008e+06 -2.46886133e+06 -2.65563872e+06 -2.31524810e+06 -2.09502145e+06 -2.54293411e+06 -3.15503916e+06 -2.64615089e+06 -2.08690183e+06 -2.45064241e+06 -2.42156501e+06 -2.22263322e+06 -2.62044369e+06 -2.46573321e+06 -2.48009839e+06 -2.25687347e+06 -2.54246482e+06 -2.78329650e+06 -2.21298452e+06 -3.68234079e+06 -2.33829650e+06 -2.36273311e+06 -2.70181271e+06] [-2.81948507e+06 -2.18913769e+06 -1.96430587e+06 -2.19279858e+06 -2.04048043e+06 -2.39508766e+06 -1.95356895e+06 -2.21672210e+06 -2.40129691e+06 -2.08000244e+06 -1.88343152e+06 -2.28713875e+06 -2.85045057e+06 -2.39310397e+06 -1.87569495e+06 -2.19072186e+06 -2.17694230e+06 -2.00466507e+06 -2.37497554e+06 -2.21683782e+06 -2.24366019e+06 -2.02749709e+06 -2.29749455e+06 -2.50401499e+06 -1.99492701e+06 -3.34455319e+06 -2.11566991e+06 -2.13758940e+06 -2.43647015e+06] [-1.82159246e+06 -1.43026194e+06 -1.26888844e+06 -1.40803219e+06 -1.31788469e+06 -1.55686459e+06 -1.26085297e+06 -1.42154784e+06 -1.56145632e+06 -1.34054989e+06 -1.22057633e+06 -1.46584898e+06 -1.84007893e+06 -1.55800951e+06 -1.21688555e+06 -1.40135207e+06 -1.39585248e+06 -1.29460495e+06 -1.54536457e+06 -1.42165663e+06 -1.46426608e+06 -1.30776490e+06 -1.49601774e+06 -1.62169847e+06 -1.28841774e+06 -2.22532050e+06 -1.38353819e+06 -1.39883633e+06 -1.58059255e+06] [-6.87573141e+05 -5.54852659e+05 -4.91823826e+05 -5.36350251e+05 -5.08455454e+05 -5.98253222e+05 -4.89393143e+05 -5.40325234e+05 -5.99566221e+05 -5.15326292e+05 -4.76008592e+05 -5.55421678e+05 -6.93802342e+05 -5.98713567e+05 -4.76454445e+05 -5.32396650e+05 -5.30911853e+05 -5.00129831e+05 -5.93597864e+05 -5.40373904e+05 -5.67608154e+05 -5.04566579e+05 -5.77430676e+05 -6.18777899e+05 -4.97547309e+05 -8.81739695e+05 -5.38939559e+05 -5.46281309e+05 -6.04120838e+05] [-9.64336503e+04 -8.86831093e+04 -7.31039439e+04 -7.36633641e+04 -7.43371701e+04 -9.08834559e+04 -7.31137616e+04 -7.42381107e+04 -9.08736540e+04 -7.43462179e+04 -7.26481138e+04 -7.52628925e+04 -9.69907473e+04 -9.17823918e+04 -7.38107083e+04 -7.29908263e+04 -7.29430518e+04 -7.29291841e+04 -8.97981527e+04 -7.41163272e+04 -9.06110373e+04 -7.35705503e+04 -8.94633936e+04 -9.13016152e+04 -7.28817699e+04 -1.03444969e+05 -8.74823238e+04 -8.96357824e+04 -9.00129082e+04] [-3.14917827e+04 -2.93615673e+04 -2.33039182e+04 -2.29837663e+04 -2.37438713e+04 -3.00583555e+04 -2.32440333e+04 -2.34570021e+04 -3.01645562e+04 -2.36633498e+04 -2.32832442e+04 -2.36907666e+04 -3.17233500e+04 -3.05468264e+04 -2.36458930e+04 -2.30599380e+04 -2.30400637e+04 -2.30167920e+04 -2.97620394e+04 -2.33664518e+04 -2.99990334e+04 -2.33113259e+04 -2.95963032e+04 -3.01478587e+04 -2.32910907e+04 -3.08490205e+04 -2.90235071e+04 -2.96573411e+04 -2.99962205e+04] [-2.21002825e+03 -2.08050885e+03 -1.66506871e+03 -1.63649101e+03 -1.69032297e+03 -2.10669738e+03 -1.65145791e+03 -1.67348453e+03 -2.12271194e+03 -1.69518058e+03 -1.65495689e+03 -1.67869435e+03 -2.23176926e+03 -2.16185119e+03 -1.69931860e+03 -1.63715390e+03 -1.63699811e+03 -1.63706592e+03 -2.08886628e+03 -1.65723256e+03 -2.12763309e+03 -1.66861586e+03 -2.07619706e+03 -2.11201804e+03 -1.66639906e+03 -2.25500619e+03 -2.05202795e+03 -2.10376495e+03 -2.10466473e+03] [ 4.57397128e-02 -3.62640809e-01 8.51238611e-02 -6.41314817e-01 -2.83175780e-01 -9.95014277e-01 -9.58270065e-01 -9.24296681e-02 -8.88203819e-01 -1.29996123e-01 -4.25213933e-01 -6.04936382e-01 -1.59398454e-01 -5.85782526e-01 1.45692741e-01 -7.19117623e-01 -9.66734975e-01 6.07797244e-01 -2.13217037e-01 -5.02625209e-01 6.15456013e-01 4.21439138e-01 2.42305983e-01 -3.10710088e-01 3.05469665e-01 3.05339000e-02 7.39212087e-01 -2.93303183e-01 -6.02553213e-01] [ 9.02771477e+03 8.35805522e+03 6.82783502e+03 6.93522853e+03 6.94241392e+03 8.58653590e+03 6.78427459e+03 6.90456135e+03 8.52225623e+03 6.93653367e+03 6.81628029e+03 7.01974963e+03 9.03461725e+03 8.57230915e+03 6.86676050e+03 6.83795933e+03 6.84721876e+03 6.88298400e+03 8.50613917e+03 6.90993164e+03 8.43324361e+03 6.90327797e+03 8.45934945e+03 8.52545386e+03 6.81221365e+03 8.93939697e+03 8.23316875e+03 8.34279982e+03 8.51859036e+03] [ 4.08521103e+04 4.01916839e+04 3.41212091e+04 3.32846832e+04 3.43630642e+04 3.98585596e+04 3.38781002e+04 3.31154418e+04 3.97226235e+04 3.40536544e+04 3.46289639e+04 3.33910230e+04 4.07778555e+04 4.04602889e+04 3.47812468e+04 3.19881333e+04 3.24068073e+04 3.40439018e+04 3.94928609e+04 3.32153762e+04 4.06441574e+04 3.39523081e+04 3.95306953e+04 3.94408839e+04 3.38078107e+04 4.39207618e+04 3.99900712e+04 4.07680490e+04 3.88214426e+04] [ 1.20270756e+05 1.16545530e+05 9.35075274e+04 9.28966081e+04 9.47935963e+04 1.14909371e+05 9.28829495e+04 9.18952017e+04 1.14901137e+05 9.39230570e+04 9.47398151e+04 9.32320991e+04 1.20073605e+05 1.16897329e+05 9.53602659e+04 8.81011318e+04 8.98142060e+04 9.39755340e+04 1.14298641e+05 9.24059319e+04 1.18239767e+05 9.34747811e+04 1.13762368e+05 1.13763023e+05 9.32068125e+04 1.36788954e+05 1.15435403e+05 1.18157000e+05 1.11777350e+05] [ 3.39779620e+05 3.29758125e+05 2.63096006e+05 2.62549429e+05 2.67364476e+05 3.25382993e+05 2.62287919e+05 2.57926774e+05 3.24838891e+05 2.64436190e+05 2.67390922e+05 2.62649507e+05 3.38452152e+05 3.29742768e+05 2.70157849e+05 2.48620904e+05 2.53624462e+05 2.66135272e+05 3.23873406e+05 2.60156633e+05 3.34658442e+05 2.63928264e+05 3.22773874e+05 3.18727074e+05 2.63006020e+05 3.96344735e+05 3.25951883e+05 3.35024754e+05 3.15572000e+05] [ 2.36124815e+05 3.05107483e+05 2.18419220e+05 1.92637338e+05 2.15889867e+05 2.68699150e+05 2.20414980e+05 1.77963501e+05 2.66503174e+05 2.06487600e+05 2.36363284e+05 1.77665253e+05 2.29097502e+05 2.73378083e+05 2.45295349e+05 1.70480827e+05 1.80078685e+05 2.21525670e+05 2.70013005e+05 1.82942563e+05 3.06388067e+05 2.14499576e+05 2.78869584e+05 2.36610665e+05 2.16527526e+05 1.31583689e+05 3.06604114e+05 3.21626840e+05 2.46395160e+05] [-9.23437792e+04 4.24640892e+04 -3.27445960e+04 -6.95062693e+04 -4.14770097e+04 -1.57548437e+04 -2.68755919e+04 -9.95927388e+04 -1.99409399e+04 -5.26088157e+04 -2.17627554e+03 -1.03470641e+05 -1.06001616e+05 -1.89240577e+04 1.81518430e+04 -9.44750319e+04 -8.27814020e+04 -2.25476640e+04 -8.91480083e+03 -9.02317059e+04 3.85988117e+04 -3.34169122e+04 5.94015171e+03 -8.52560329e+04 -2.95501711e+04 -1.16601766e+05 4.41491770e+04 6.75822058e+04 -4.68745734e+04] [-5.92145539e+05 -4.54435268e+05 -4.58022155e+05 -4.60282269e+05 -4.62422081e+05 -5.16173762e+05 -4.46548081e+05 -5.07720347e+05 -5.18525088e+05 -4.66117325e+05 -4.25486962e+05 -5.06343003e+05 -6.11093344e+05 -5.31191134e+05 -3.91610679e+05 -4.81209815e+05 -4.69856576e+05 -4.26263424e+05 -4.99486129e+05 -4.91904179e+05 -4.61386934e+05 -4.39873207e+05 -4.89902769e+05 -6.19936812e+05 -4.34969557e+05 -5.22390156e+05 -4.65675596e+05 -4.31227123e+05 -5.43610566e+05] [-1.57404638e+06 -1.49107459e+06 -1.30239750e+06 -1.23089874e+06 -1.29595962e+06 -1.53939114e+06 -1.28646005e+06 -1.28461191e+06 -1.53222903e+06 -1.28091724e+06 -1.28025257e+06 -1.27469753e+06 -1.59468607e+06 -1.56596467e+06 -1.24283689e+06 -1.23092967e+06 -1.22543723e+06 -1.24272994e+06 -1.50871909e+06 -1.26208061e+06 -1.50188123e+06 -1.25626059e+06 -1.51697524e+06 -1.65323807e+06 -1.24561427e+06 -1.46721927e+06 -1.52194687e+06 -1.48534516e+06 -1.54085137e+06] [-3.12806900e+06 -3.13373774e+06 -2.68320800e+06 -2.52571245e+06 -2.66205459e+06 -3.15018183e+06 -2.66774252e+06 -2.56012043e+06 -3.13068775e+06 -2.62060264e+06 -2.68441980e+06 -2.54422621e+06 -3.14663196e+06 -3.19078190e+06 -2.66065411e+06 -2.47363238e+06 -2.48549611e+06 -2.60032306e+06 -3.11072747e+06 -2.53712850e+06 -3.15467916e+06 -2.60799765e+06 -3.14018508e+06 -3.23437048e+06 -2.59004821e+06 -2.99793165e+06 -3.18569309e+06 -3.16590119e+06 -3.09712931e+06] [-5.18098556e+06 -5.22448690e+06 -4.45536100e+06 -4.24882842e+06 -4.42570729e+06 -5.20702522e+06 -4.43865954e+06 -4.24560950e+06 -5.18036909e+06 -4.36822241e+06 -4.48285122e+06 -4.23395532e+06 -5.19967904e+06 -5.26952084e+06 -4.49046027e+06 -4.12241471e+06 -4.15823117e+06 -4.36296213e+06 -5.16610281e+06 -4.23032788e+06 -5.26926071e+06 -4.36810951e+06 -5.19949276e+06 -5.22989755e+06 -4.34234923e+06 -5.15009709e+06 -5.28027788e+06 -5.30266767e+06 -5.08707714e+06] [-7.34151987e+06 -7.39614819e+06 -6.28960340e+06 -6.04432035e+06 -6.25479398e+06 -7.34185996e+06 -6.26134131e+06 -6.01228099e+06 -7.31470693e+06 -6.19519728e+06 -6.34733757e+06 -6.00501504e+06 -7.36438634e+06 -7.43994687e+06 -6.39222068e+06 -5.84918679e+06 -5.90649525e+06 -6.18728682e+06 -7.29855862e+06 -6.00539964e+06 -7.47149820e+06 -6.20064036e+06 -7.32311066e+06 -7.29250635e+06 -6.17073428e+06 -7.34973447e+06 -7.44195140e+06 -7.51864621e+06 -7.16116673e+06] [-8.76156962e+06 -8.83292509e+06 -7.41245718e+06 -7.12846197e+06 -7.37624392e+06 -8.75903930e+06 -7.35893055e+06 -7.08827352e+06 -8.74213927e+06 -7.31983923e+06 -7.49901087e+06 -7.07282574e+06 -8.78543741e+06 -8.87969032e+06 -7.57077806e+06 -6.90000105e+06 -6.97299028e+06 -7.30422021e+06 -8.72390935e+06 -7.08406350e+06 -8.91724402e+06 -7.32853998e+06 -8.72793095e+06 -8.65080701e+06 -7.30823407e+06 -8.71625226e+06 -8.86049297e+06 -8.96996751e+06 -8.56201060e+06] [-9.24098141e+06 -9.36172281e+06 -7.68209302e+06 -7.38661784e+06 -7.66213798e+06 -9.30876439e+06 -7.60424437e+06 -7.33347851e+06 -9.32246858e+06 -7.58456642e+06 -7.79101846e+06 -7.29740249e+06 -9.24083193e+06 -9.39149069e+06 -7.86652328e+06 -7.15446778e+06 -7.25309066e+06 -7.61028204e+06 -9.32686851e+06 -7.33414780e+06 -9.40247871e+06 -7.61229230e+06 -9.29877524e+06 -9.16581987e+06 -7.63369192e+06 -8.16713429e+06 -9.36677020e+06 -9.46162789e+06 -9.16891078e+06] [-9.27294105e+06 -9.42750905e+06 -7.63270533e+06 -7.32843547e+06 -7.61661676e+06 -9.40356781e+06 -7.54426030e+06 -7.26888574e+06 -9.42677039e+06 -7.52678957e+06 -7.75152687e+06 -7.21723817e+06 -9.25426773e+06 -9.43832423e+06 -7.82326459e+06 -7.11098907e+06 -7.21409889e+06 -7.58550048e+06 -9.44571151e+06 -7.27091704e+06 -9.43332314e+06 -7.57276413e+06 -9.40897185e+06 -9.24955898e+06 -7.61037510e+06 -7.61245655e+06 -9.42246544e+06 -9.50054593e+06 -9.30290452e+06] [-8.32139978e+06 -8.57144394e+06 -6.98619371e+06 -6.63271998e+06 -6.93329813e+06 -8.53232919e+06 -6.90359883e+06 -6.59925926e+06 -8.53508992e+06 -6.86340788e+06 -7.10105530e+06 -6.52568255e+06 -8.31057897e+06 -8.55028002e+06 -7.17027285e+06 -6.47234528e+06 -6.53761303e+06 -6.90492937e+06 -8.53958430e+06 -6.58939853e+06 -8.57528948e+06 -6.91528778e+06 -8.53653082e+06 -8.39364809e+06 -6.92993347e+06 -6.73172413e+06 -8.58827059e+06 -8.65756372e+06 -8.42734074e+06] [-4.69201357e+06 -5.16462197e+06 -4.28795598e+06 -3.87150867e+06 -4.15835021e+06 -5.05169932e+06 -4.23152044e+06 -3.88861021e+06 -5.01728190e+06 -4.13489250e+06 -4.38607870e+06 -3.78008041e+06 -4.70445839e+06 -5.07043986e+06 -4.43396641e+06 -3.82583490e+06 -3.81824982e+06 -4.13387587e+06 -4.99802347e+06 -3.85974254e+06 -5.16982325e+06 -4.18714678e+06 -5.06461234e+06 -4.95603780e+06 -4.16428150e+06 -3.68321986e+06 -5.24269601e+06 -5.27664943e+06 -4.93478315e+06] [-1.06115347e+06 -1.61740560e+06 -1.41391383e+06 -1.02628302e+06 -1.24574041e+06 -1.48767089e+06 -1.38864609e+06 -1.07264526e+06 -1.42721452e+06 -1.25748869e+06 -1.48171104e+06 -9.54978374e+05 -1.08457931e+06 -1.48001544e+06 -1.49703312e+06 -1.07937258e+06 -1.01597044e+06 -1.23733385e+06 -1.40122889e+06 -1.03638275e+06 -1.61283540e+06 -1.30791981e+06 -1.50689529e+06 -1.44471645e+06 -1.25976436e+06 -6.50512723e+05 -1.73250314e+06 -1.72218133e+06 -1.38829311e+06] [ 2.31789236e+05 -1.02385830e+05 -2.45946228e+05 -1.79692931e+04 -1.15029420e+05 -4.94929188e+04 -2.43552306e+05 -5.99398238e+04 8.70730331e+03 -1.43568003e+05 -2.68298471e+05 1.91307534e+04 2.08707694e+05 -1.36287589e+04 -2.63070726e+05 -9.99537088e+04 -2.44389632e+04 -1.20437710e+05 3.01646898e+04 -3.31998315e+04 -9.96468821e+04 -1.78427114e+05 -5.41152840e+04 -5.70201486e+04 -1.24040088e+05 2.08118475e+05 -1.93173198e+05 -1.68054795e+05 9.78065149e+03] [-5.04997849e+05 -4.25283500e+05 -5.47725317e+05 -5.35932553e+05 -4.96447480e+05 -4.92427184e+05 -5.54309699e+05 -5.58908408e+05 -4.52792685e+05 -5.33153608e+05 -5.20344440e+05 -5.46400524e+05 -5.28342403e+05 -4.48598291e+05 -5.07433364e+05 -5.86230530e+05 -5.28862380e+05 -5.01136484e+05 -4.34021328e+05 -5.47946787e+05 -4.44339868e+05 -5.38693400e+05 -4.57836785e+05 -5.49336878e+05 -4.84143961e+05 -1.01572860e+06 -4.53951623e+05 -4.44122360e+05 -4.68673974e+05] [-2.44749071e+06 -1.93644926e+06 -1.84629259e+06 -2.01988269e+06 -1.87663993e+06 -2.12288010e+06 -1.84829285e+06 -2.03245754e+06 -2.10472498e+06 -1.91908584e+06 -1.77489046e+06 -2.08348303e+06 -2.47727024e+06 -2.09081723e+06 -1.76311782e+06 -2.02417874e+06 -1.99070278e+06 -1.86331444e+06 -2.08107463e+06 -2.03293898e+06 -1.98719279e+06 -1.88949085e+06 -2.03837741e+06 -2.22564503e+06 -1.83548571e+06 -3.24525045e+06 -1.89809945e+06 -1.91486756e+06 -2.12708399e+06] [-3.27929637e+06 -2.59824231e+06 -2.37619937e+06 -2.63077645e+06 -2.44821156e+06 -2.82080552e+06 -2.37090240e+06 -2.64081703e+06 -2.81683299e+06 -2.49205673e+06 -2.28599989e+06 -2.71906875e+06 -3.31104983e+06 -2.80464156e+06 -2.27688422e+06 -2.61266506e+06 -2.59511230e+06 -2.42342105e+06 -2.79144028e+06 -2.64420063e+06 -2.65903749e+06 -2.44419853e+06 -2.71775046e+06 -2.94039980e+06 -2.39537866e+06 -3.89103951e+06 -2.52529540e+06 -2.55217269e+06 -2.84442828e+06] [-2.90371829e+06 -2.29083361e+06 -2.06552931e+06 -2.29372842e+06 -2.13793037e+06 -2.48685257e+06 -2.05714193e+06 -2.30545001e+06 -2.48970480e+06 -2.17415486e+06 -1.98730249e+06 -2.37667607e+06 -2.93111086e+06 -2.48107540e+06 -1.97993283e+06 -2.27460887e+06 -2.26527922e+06 -2.11060877e+06 -2.46691724e+06 -2.30821555e+06 -2.34404412e+06 -2.12748814e+06 -2.39455586e+06 -2.59103145e+06 -2.09137340e+06 -3.46306318e+06 -2.22043951e+06 -2.24501632e+06 -2.51486031e+06] [-1.87977601e+06 -1.48719269e+06 -1.32687447e+06 -1.47011758e+06 -1.37482268e+06 -1.61307790e+06 -1.32062388e+06 -1.47853101e+06 -1.61533659e+06 -1.39699513e+06 -1.27863503e+06 -1.52452923e+06 -1.89683504e+06 -1.61065509e+06 -1.27431354e+06 -1.45746825e+06 -1.45250302e+06 -1.35569233e+06 -1.60037851e+06 -1.48022139e+06 -1.52142557e+06 -1.36646899e+06 -1.55315680e+06 -1.67754634e+06 -1.34428954e+06 -2.28044089e+06 -1.44103303e+06 -1.45790343e+06 -1.63118073e+06] [-6.83192073e+05 -5.44923237e+05 -4.93505203e+05 -5.42562450e+05 -5.10020488e+05 -5.89861212e+05 -4.92107662e+05 -5.44406696e+05 -5.90169018e+05 -5.17353161e+05 -4.76998451e+05 -5.60819509e+05 -6.88918087e+05 -5.88145167e+05 -4.76733987e+05 -5.36519747e+05 -5.34858123e+05 -5.03816144e+05 -5.84535532e+05 -5.45348387e+05 -5.58023136e+05 -5.07238244e+05 -5.68542224e+05 -6.11210690e+05 -4.98773336e+05 -9.19920792e+05 -5.28892783e+05 -5.36819513e+05 -5.93734755e+05] [-7.46147886e+04 -6.82066316e+04 -5.87489292e+04 -6.01761040e+04 -5.94228815e+04 -6.99361450e+04 -5.91055780e+04 -5.97163451e+04 -6.93404693e+04 -5.95731004e+04 -5.83146706e+04 -6.08192221e+04 -7.47615658e+04 -6.96861830e+04 -5.91338648e+04 -5.88982462e+04 -5.87061278e+04 -5.92674651e+04 -6.86497787e+04 -5.98819463e+04 -6.96851807e+04 -5.94323668e+04 -6.88748735e+04 -7.01528559e+04 -5.81519576e+04 -8.84356523e+04 -6.72941332e+04 -6.92761594e+04 -6.82608070e+04] [-7.78957377e+03 -7.21815176e+03 -6.06435656e+03 -6.01550548e+03 -6.15833551e+03 -7.36986333e+03 -6.06691068e+03 -6.11098372e+03 -7.32699364e+03 -6.17480324e+03 -6.09258093e+03 -6.20603179e+03 -7.82538792e+03 -7.44313343e+03 -6.16826043e+03 -6.02170094e+03 -5.97138045e+03 -6.02578405e+03 -7.19944970e+03 -6.11215753e+03 -7.40331131e+03 -6.09856651e+03 -7.21028250e+03 -7.35155289e+03 -6.01887996e+03 -8.87468925e+03 -7.11489870e+03 -7.34309287e+03 -7.25136131e+03] [ 7.84851789e-01 5.82628115e-01 7.27717087e-01 3.13035379e-01 -3.92082588e-01 -1.09231520e-01 2.77753739e-01 3.98381299e-01 -1.93767982e-01 -6.82864095e-01 -5.09374481e-01 3.27656865e-01 6.47615119e-01 1.78300523e-01 -1.64309671e-02 -4.52732848e-01 -8.76709034e-01 -4.29224495e-01 -4.71649712e-01 9.41860254e-01 -8.93420346e-01 -5.29897903e-01 2.86444242e-01 -6.88319986e-01 9.96778424e-01 -3.52120011e-01 -8.68059145e-01 -9.14935983e-01 9.20223612e-01] [ 2.95443627e-01 1.46516909e-01 3.62341493e-01 7.92410660e-01 4.78720492e-01 1.88973436e-01 6.07319998e-01 -7.51213622e-01 4.33040023e-01 3.04655198e-01 6.50730904e-01 -3.36403267e-01 9.55154572e-01 -4.15596501e-01 -6.87226939e-01 7.32705443e-01 -2.98701030e-01 -9.99213099e-01 6.79541929e-01 8.06329544e-01 6.49995277e-01 -6.72126652e-01 5.95172665e-01 5.29248101e-01 -3.63230091e-01 -9.13331525e-02 9.01254025e-01 -6.48645639e-01 4.54946395e-01] [ 1.97159546e+03 1.66272230e+03 1.29882121e+03 1.41579264e+03 1.34439556e+03 1.79709103e+03 1.29130463e+03 1.40958808e+03 1.77204763e+03 1.36503385e+03 1.25893546e+03 1.45308127e+03 1.97983942e+03 1.75504684e+03 1.27704039e+03 1.44716003e+03 1.42555974e+03 1.33608503e+03 1.77760137e+03 1.40548814e+03 1.67367771e+03 1.35332498e+03 1.75144683e+03 1.79045056e+03 1.31151742e+03 1.81736444e+03 1.60664575e+03 1.61773942e+03 1.82781739e+03] [ 6.60290144e+03 5.93105786e+03 4.80901010e+03 4.99085577e+03 4.91977042e+03 6.18199662e+03 4.78041030e+03 4.97376501e+03 6.12681358e+03 4.93953833e+03 4.76270546e+03 5.07870589e+03 6.61375188e+03 6.13626940e+03 4.80937482e+03 4.97204225e+03 4.95565828e+03 4.87830896e+03 6.12005149e+03 4.97183476e+03 5.98285769e+03 4.90844046e+03 6.06723320e+03 6.14377124e+03 4.81795710e+03 6.49291003e+03 5.80468941e+03 5.87691677e+03 6.17951746e+03] [ 4.97472023e+04 4.65918800e+04 3.36726164e+04 3.56140960e+04 3.47239961e+04 4.51155284e+04 3.33957114e+04 3.48000641e+04 4.50623319e+04 3.47974328e+04 3.37166630e+04 3.59353000e+04 4.97328717e+04 4.57152130e+04 3.42435255e+04 3.34712097e+04 3.41699169e+04 3.46040654e+04 4.49249945e+04 3.50855596e+04 4.74469737e+04 3.44893015e+04 4.41950352e+04 4.44080612e+04 3.40413832e+04 5.60265446e+04 4.53725118e+04 4.67762482e+04 4.39928327e+04] [ 1.99735707e+05 2.00906856e+05 1.43729256e+05 1.42113327e+05 1.46126631e+05 1.96023186e+05 1.43624954e+05 1.37711301e+05 1.95013185e+05 1.43829048e+05 1.46990494e+05 1.40346257e+05 1.98366538e+05 1.97006635e+05 1.50535553e+05 1.34223319e+05 1.37213084e+05 1.46290900e+05 1.95517210e+05 1.38986046e+05 2.03089766e+05 1.44852971e+05 1.95871999e+05 1.87953268e+05 1.43798212e+05 2.18881359e+05 1.98203687e+05 2.04292205e+05 1.89829742e+05] [-6.09291811e+04 6.10961119e+04 -1.75577963e+04 -6.28438112e+04 -2.74844790e+04 1.77388384e+04 -1.40104728e+04 -7.80429434e+04 1.31261858e+04 -3.88462234e+04 3.42450001e+03 -8.63812036e+04 -6.97716866e+04 1.55407502e+04 1.65682705e+04 -7.26220941e+04 -6.66576295e+04 -1.85069098e+04 2.04053153e+04 -7.56006501e+04 5.47159448e+04 -2.45995598e+04 3.79808997e+04 -2.55158205e+04 -2.22589610e+04 -2.57885019e+05 6.80639381e+04 7.79357855e+04 -8.55973475e+02] [-4.02756216e+05 -2.12130675e+05 -3.03988110e+05 -3.60294344e+05 -3.17989376e+05 -2.73316311e+05 -2.97208237e+05 -3.88657304e+05 -2.80108400e+05 -3.31112788e+05 -2.73225804e+05 -4.01425847e+05 -4.17714070e+05 -2.84759087e+05 -2.45806259e+05 -3.64115437e+05 -3.57832644e+05 -2.97847493e+05 -2.64021050e+05 -3.84406548e+05 -2.26616352e+05 -3.05876245e+05 -2.39423627e+05 -3.55853795e+05 -3.02056785e+05 -6.74046299e+05 -2.07087984e+05 -1.91905453e+05 -2.93030019e+05] [-9.74436553e+05 -7.75371889e+05 -8.21316671e+05 -8.47703116e+05 -8.29895710e+05 -8.35680371e+05 -8.10185221e+05 -8.88577154e+05 -8.38584161e+05 -8.37211342e+05 -7.90472414e+05 -8.98875993e+05 -9.93543006e+05 -8.59183301e+05 -7.49940306e+05 -8.38021180e+05 -8.32757912e+05 -7.96626577e+05 -8.12880512e+05 -8.80572632e+05 -7.96677381e+05 -8.05888711e+05 -7.94785336e+05 -9.50049008e+05 -7.97825076e+05 -1.27498117e+06 -7.82315368e+05 -7.62980362e+05 -8.41377087e+05] [-2.01723666e+06 -1.90928852e+06 -1.77463615e+06 -1.71303230e+06 -1.76259657e+06 -1.94179104e+06 -1.76052395e+06 -1.74927693e+06 -1.93074744e+06 -1.74955019e+06 -1.76364270e+06 -1.74799630e+06 -2.03426776e+06 -1.97269815e+06 -1.72099581e+06 -1.66742025e+06 -1.67025666e+06 -1.72188747e+06 -1.90250089e+06 -1.73806062e+06 -1.93426317e+06 -1.72766272e+06 -1.90865427e+06 -2.05338021e+06 -1.71063297e+06 -2.37219254e+06 -1.94152874e+06 -1.92646797e+06 -1.90314085e+06] [-3.61469670e+06 -3.64847029e+06 -3.22574280e+06 -3.05347572e+06 -3.18850097e+06 -3.63024543e+06 -3.21170909e+06 -3.06260238e+06 -3.60043246e+06 -3.14738684e+06 -3.25071069e+06 -3.05033471e+06 -3.62509139e+06 -3.66997937e+06 -3.22473672e+06 -2.94691567e+06 -2.96703955e+06 -3.14728670e+06 -3.57686832e+06 -3.05289208e+06 -3.68164215e+06 -3.14610148e+06 -3.61363884e+06 -3.69366752e+06 -3.11740442e+06 -4.02247851e+06 -3.70643928e+06 -3.71526162e+06 -3.52008328e+06] [-5.30555516e+06 -5.46730674e+06 -4.73892628e+06 -4.46918477e+06 -4.68399593e+06 -5.39182627e+06 -4.72223476e+06 -4.45355900e+06 -5.34950953e+06 -4.62290310e+06 -4.80314147e+06 -4.43438408e+06 -5.31243320e+06 -5.45414876e+06 -4.80548083e+06 -4.30734787e+06 -4.34484393e+06 -4.63814900e+06 -5.32760373e+06 -4.44739041e+06 -5.51694036e+06 -4.63687242e+06 -5.38588237e+06 -5.38631209e+06 -4.60150701e+06 -5.56326932e+06 -5.53832014e+06 -5.58523490e+06 -5.21474348e+06] [-7.23669620e+06 -7.46078600e+06 -6.38236477e+06 -6.02715117e+06 -6.31894181e+06 -7.34390691e+06 -6.34964405e+06 -6.00954766e+06 -7.30247688e+06 -6.25289067e+06 -6.48225039e+06 -5.98224824e+06 -7.24948578e+06 -7.44700863e+06 -6.51923277e+06 -5.82895166e+06 -5.87879485e+06 -6.25295738e+06 -7.26956246e+06 -6.00353463e+06 -7.53693242e+06 -6.26792560e+06 -7.32866838e+06 -7.27437833e+06 -6.23425479e+06 -7.33309009e+06 -7.52756316e+06 -7.62178998e+06 -7.12193865e+06] [-8.70367990e+06 -8.97195479e+06 -7.47681169e+06 -7.05293347e+06 -7.42420404e+06 -8.84728708e+06 -7.42066643e+06 -7.04758467e+06 -8.82730063e+06 -7.34381818e+06 -7.60453758e+06 -7.00459925e+06 -8.71478797e+06 -8.97216977e+06 -7.66736993e+06 -6.84790847e+06 -6.91496620e+06 -7.33660792e+06 -8.79003762e+06 -7.03782082e+06 -9.04912010e+06 -7.35846344e+06 -8.83333273e+06 -8.73504731e+06 -7.35067393e+06 -8.17770102e+06 -9.02143061e+06 -9.13823410e+06 -8.63920814e+06] [-9.49505361e+06 -9.74411146e+06 -7.91216876e+06 -7.49879799e+06 -7.89406985e+06 -9.67409663e+06 -7.84002819e+06 -7.48469340e+06 -9.68935729e+06 -7.78513797e+06 -8.04823986e+06 -7.43024395e+06 -9.48302496e+06 -9.75471106e+06 -8.12140018e+06 -7.30064500e+06 -7.39295294e+06 -7.81772520e+06 -9.67283409e+06 -7.47795398e+06 -9.78304754e+06 -7.81426154e+06 -9.68266187e+06 -9.54215057e+06 -7.84904106e+06 -7.87388365e+06 -9.76134046e+06 -9.86734982e+06 -9.53823627e+06] [-9.34499312e+06 -9.60505599e+06 -7.72863298e+06 -7.32834687e+06 -7.71113958e+06 -9.56477875e+06 -7.65729883e+06 -7.30429633e+06 -9.58310302e+06 -7.59763240e+06 -7.86017436e+06 -7.24073241e+06 -9.32153562e+06 -9.60000077e+06 -7.93633423e+06 -7.14843040e+06 -7.23723683e+06 -7.65590743e+06 -9.57831170e+06 -7.29751802e+06 -9.62071072e+06 -7.64320475e+06 -9.58748914e+06 -9.42974588e+06 -7.68114933e+06 -7.35330297e+06 -9.61522110e+06 -9.70974707e+06 -9.45720519e+06] [-6.97061528e+06 -7.35141392e+06 -5.95908358e+06 -5.55178272e+06 -5.89086418e+06 -7.28647218e+06 -5.90591357e+06 -5.54091430e+06 -7.28209396e+06 -5.80975155e+06 -6.07307963e+06 -5.45411138e+06 -6.95703100e+06 -7.29257532e+06 -6.13844438e+06 -5.44221034e+06 -5.48575781e+06 -5.85848484e+06 -7.27509015e+06 -5.52523727e+06 -7.35556549e+06 -5.86683946e+06 -7.31789042e+06 -7.17150865e+06 -5.87963885e+06 -5.24702893e+06 -7.39599979e+06 -7.46076153e+06 -7.18134427e+06] [-2.61514830e+06 -3.23096569e+06 -2.73418153e+06 -2.29852979e+06 -2.57478819e+06 -3.07997493e+06 -2.70652588e+06 -2.31806905e+06 -3.02843596e+06 -2.55352393e+06 -2.82751714e+06 -2.19831842e+06 -2.62475542e+06 -3.07717476e+06 -2.86012718e+06 -2.29480834e+06 -2.26336133e+06 -2.56755625e+06 -3.01205758e+06 -2.28825424e+06 -3.22539340e+06 -2.61733295e+06 -3.11923671e+06 -2.99888927e+06 -2.58406824e+06 -1.69935926e+06 -3.34453907e+06 -3.35587355e+06 -2.95561337e+06] [ 2.57218259e+05 -4.08203013e+05 -4.91239503e+05 -1.05443354e+05 -2.97973132e+05 -2.39318440e+05 -4.81987906e+05 -1.25424942e+05 -1.66015612e+05 -3.07269660e+05 -5.65366678e+05 -3.51377847e+03 2.42975142e+05 -2.14009528e+05 -5.62363296e+05 -1.45784758e+05 -8.22272710e+04 -3.19957583e+05 -1.56445027e+05 -9.79398181e+04 -3.88140107e+05 -3.74273289e+05 -2.81206140e+05 -1.89717190e+05 -3.21848840e+05 5.20835567e+05 -5.51555054e+05 -5.21165111e+05 -1.16887486e+05] [ 8.64561736e+05 4.60643185e+05 1.23941558e+05 3.32995428e+05 2.71152792e+05 5.60653414e+05 1.20061261e+05 3.34876536e+05 6.22135778e+05 2.48072038e+05 8.75393939e+04 4.10751386e+05 8.52311802e+05 5.97193408e+05 1.07486992e+05 3.11070774e+05 3.65206536e+05 2.32908922e+05 6.23245074e+05 3.45941058e+05 4.73081241e+05 1.98351084e+05 5.40013013e+05 5.73282518e+05 2.49157539e+05 5.22825546e+05 3.51541182e+05 3.84159914e+05 6.57538497e+05] [-8.45727747e+05 -7.82349344e+05 -9.43883644e+05 -9.49681192e+05 -8.85157797e+05 -8.15394034e+05 -9.51347956e+05 -9.30819665e+05 -7.77049701e+05 -9.13811465e+05 -9.29761574e+05 -9.25805869e+05 -8.62012354e+05 -7.81742511e+05 -9.10701319e+05 -9.24566974e+05 -8.94676838e+05 -9.11668006e+05 -7.72864530e+05 -9.34642577e+05 -8.03477267e+05 -9.29166117e+05 -7.87540695e+05 -8.54213267e+05 -8.78103235e+05 -1.61276379e+06 -8.20267108e+05 -8.17183762e+05 -7.48832356e+05] [-2.91226320e+06 -2.44677983e+06 -2.33166140e+06 -2.50228839e+06 -2.35240208e+06 -2.59501758e+06 -2.33410157e+06 -2.48139107e+06 -2.57501322e+06 -2.38560873e+06 -2.27283129e+06 -2.53455506e+06 -2.93576166e+06 -2.57059505e+06 -2.25996890e+06 -2.44649908e+06 -2.43415079e+06 -2.35577296e+06 -2.56258376e+06 -2.49127442e+06 -2.49789089e+06 -2.36698302e+06 -2.52078142e+06 -2.67983586e+06 -2.31276726e+06 -3.69231497e+06 -2.41825240e+06 -2.44171776e+06 -2.56094613e+06] [-3.36530562e+06 -2.73591913e+06 -2.52621920e+06 -2.76882530e+06 -2.58745439e+06 -2.93115557e+06 -2.52285725e+06 -2.75860079e+06 -2.92506020e+06 -2.62488201e+06 -2.44572034e+06 -2.83422198e+06 -3.39235911e+06 -2.91650013e+06 -2.43622926e+06 -2.71756939e+06 -2.71117972e+06 -2.57503004e+06 -2.90679022e+06 -2.76714932e+06 -2.79487843e+06 -2.58651474e+06 -2.83796300e+06 -3.03798774e+06 -2.53760962e+06 -4.06266749e+06 -2.67330583e+06 -2.70289426e+06 -2.93008585e+06] [-2.68744690e+06 -2.12837376e+06 -1.94747618e+06 -2.16417845e+06 -2.01059089e+06 -2.30314905e+06 -1.94260266e+06 -2.16424951e+06 -2.30345818e+06 -2.04295753e+06 -1.87559925e+06 -2.23135832e+06 -2.71054616e+06 -2.29452744e+06 -1.86780045e+06 -2.13209777e+06 -2.12681302e+06 -1.99338924e+06 -2.28558472e+06 -2.16955352e+06 -2.17719112e+06 -2.00419066e+06 -2.22113049e+06 -2.39813174e+06 -1.96775195e+06 -3.26929476e+06 -2.06665510e+06 -2.09055160e+06 -2.31804766e+06] [-1.73447813e+06 -1.37523280e+06 -1.24664641e+06 -1.38235346e+06 -1.28899448e+06 -1.49015980e+06 -1.24313083e+06 -1.38554954e+06 -1.49086272e+06 -1.30900335e+06 -1.20172613e+06 -1.42855136e+06 -1.74909814e+06 -1.48452265e+06 -1.19696428e+06 -1.36643888e+06 -1.36223374e+06 -1.27550411e+06 -1.47853305e+06 -1.38851330e+06 -1.40648918e+06 -1.28315463e+06 -1.43676130e+06 -1.54997141e+06 -1.26107450e+06 -2.09036646e+06 -1.33443637e+06 -1.35014418e+06 -1.50283509e+06] [-6.35611331e+05 -5.04407584e+05 -4.65699443e+05 -5.13928879e+05 -4.81079795e+05 -5.47664479e+05 -4.65448881e+05 -5.14689409e+05 -5.47342185e+05 -4.87926180e+05 -4.49931838e+05 -5.30705906e+05 -6.40601589e+05 -5.44297461e+05 -4.48992035e+05 -5.08423523e+05 -5.06424110e+05 -4.76415608e+05 -5.42538244e+05 -5.16173682e+05 -5.16606385e+05 -4.78924700e+05 -5.27929458e+05 -5.68012792e+05 -4.70494311e+05 -8.46385746e+05 -4.89711713e+05 -4.96964583e+05 -5.50876623e+05] [-2.86629024e+04 -2.40533757e+04 -2.35737471e+04 -2.61601714e+04 -2.38267693e+04 -2.56836426e+04 -2.43185313e+04 -2.51240767e+04 -2.49411328e+04 -2.41201217e+04 -2.27119528e+04 -2.60187208e+04 -2.85670251e+04 -2.43126198e+04 -2.31922525e+04 -2.55115362e+04 -2.50689579e+04 -2.46466926e+04 -2.48508176e+04 -2.53614483e+04 -2.46936356e+04 -2.44613538e+04 -2.53369133e+04 -2.60516808e+04 -2.31198664e+04 -3.97676391e+04 -2.35094579e+04 -2.45308954e+04 -2.45908214e+04] [ 1.15325276e+03 1.29231411e+03 4.51152656e+02 3.82541847e+02 4.23769134e+02 1.26244019e+03 4.08128024e+02 4.03034750e+02 1.32576928e+03 4.07232501e+02 4.35766802e+02 3.39734866e+02 1.18183108e+03 1.31279220e+03 4.37991441e+02 3.78139818e+02 4.14980784e+02 3.91054308e+02 1.35323391e+03 3.77274794e+02 1.25801546e+03 4.10391225e+02 1.30786010e+03 1.30622534e+03 4.72395081e+02 -2.50018051e+03 1.32177171e+03 1.24311228e+03 1.34741270e+03] [-9.45065270e-01 1.78178549e-01 4.56928239e-01 6.28836561e-01 7.67351757e-01 7.32984041e-01 8.96126245e-01 -7.49520425e-01 4.35105197e-01 6.11230227e-01 -2.51631479e-02 -4.89948350e-01 -2.95287840e-01 -2.38922256e-01 -8.37945689e-01 1.01160420e-01 7.35868446e-01 1.98699551e-01 -5.91340447e-01 -8.83687722e-01 2.95934844e-01 1.99070352e-01 -8.15474948e-01 7.74373389e-01 8.52292439e-02 -5.70459955e-01 -2.78403721e-01 -9.68606996e-01 -3.32080619e-01] [ 2.37253054e-01 -7.03324101e-01 3.01830924e-01 -9.62332951e-01 -6.83471006e-01 -5.36361573e-01 9.21148629e-01 -8.42067206e-01 -7.08865085e-01 5.25973987e-01 -9.01214694e-01 -9.24300558e-01 5.78496165e-01 8.63723389e-02 -6.53592031e-01 -5.13361896e-01 -3.10487469e-01 5.19042575e-01 -6.92071493e-01 6.55324666e-01 -2.28414353e-01 4.97319935e-01 2.58389215e-01 -5.67125524e-01 9.74531789e-01 -5.61137772e-01 8.09757164e-01 2.59596018e-01 5.02898800e-01] [ 9.79286757e+01 8.26881717e+01 6.35311395e+01 7.03405158e+01 6.60466360e+01 8.93891653e+01 6.49125014e+01 6.97121015e+01 8.72827734e+01 6.76293322e+01 6.27467559e+01 7.23948598e+01 9.77886878e+01 8.70460279e+01 6.42613422e+01 7.19391671e+01 7.04808195e+01 6.56578394e+01 8.75726040e+01 6.90081227e+01 8.32343621e+01 6.68998331e+01 8.69652374e+01 8.88967994e+01 6.50325402e+01 9.03251593e+01 7.92600875e+01 7.93167734e+01 9.13267219e+01] [ 2.75401847e+03 2.10341508e+03 1.27238090e+03 1.48340889e+03 1.42658448e+03 2.46394506e+03 1.30173714e+03 1.54878490e+03 2.44671452e+03 1.41024761e+03 1.16701007e+03 1.63748732e+03 2.76194467e+03 2.35085004e+03 1.18963631e+03 1.67431730e+03 1.61407517e+03 1.35357288e+03 2.44041047e+03 1.52700160e+03 2.11425560e+03 1.36711945e+03 2.41111463e+03 2.54139303e+03 1.33150383e+03 1.31009645e+03 1.99173347e+03 1.98427442e+03 2.63589168e+03] [ 7.13945210e+04 6.38860314e+04 4.59165648e+04 4.80425934e+04 4.71449388e+04 6.64432551e+04 4.54752159e+04 4.76269533e+04 6.61758262e+04 4.72800024e+04 4.53798648e+04 4.86850725e+04 7.15378750e+04 6.61187103e+04 4.60694837e+04 4.71280563e+04 4.73036845e+04 4.67698657e+04 6.61108595e+04 4.75944129e+04 6.45132982e+04 4.70074176e+04 6.53268314e+04 6.61902578e+04 4.62097218e+04 7.79439519e+04 6.24012652e+04 6.33784299e+04 6.63371615e+04] [ 4.29135103e+04 6.65709105e+04 1.79015221e+04 7.83196538e+03 1.68552758e+04 5.96451733e+04 1.84615676e+04 3.78878181e+03 5.83818994e+04 1.33602259e+04 2.19173902e+04 2.33219098e+03 4.08072878e+04 5.77473166e+04 2.62150944e+04 5.20277418e+03 6.94443547e+03 1.84088913e+04 6.04683945e+04 3.79859616e+03 6.49491632e+04 1.69479836e+04 6.43731187e+04 4.94744065e+04 1.68084390e+04 1.95760418e+04 6.70183145e+04 6.95781494e+04 5.60566024e+04] [-5.21196891e+05 -3.31490538e+05 -3.84044419e+05 -4.50182139e+05 -4.02274507e+05 -3.89187363e+05 -3.79596302e+05 -4.65986124e+05 -3.94257458e+05 -4.16291116e+05 -3.60862909e+05 -4.84546165e+05 -5.32334264e+05 -3.95888466e+05 -3.44397040e+05 -4.49507972e+05 -4.45142493e+05 -3.89151843e+05 -3.82676144e+05 -4.67086610e+05 -3.48280280e+05 -3.95574235e+05 -3.55618068e+05 -4.40540386e+05 -3.91083637e+05 -8.27749505e+05 -3.17567809e+05 -3.15966372e+05 -4.02443665e+05] [-9.56753039e+05 -6.67880340e+05 -7.48500072e+05 -8.39344625e+05 -7.73706753e+05 -7.50351095e+05 -7.43093886e+05 -8.66533307e+05 -7.57417094e+05 -7.91734543e+05 -7.14951616e+05 -8.95006592e+05 -9.74067332e+05 -7.65609154e+05 -6.83027782e+05 -8.28230729e+05 -8.23024546e+05 -7.51029507e+05 -7.34714609e+05 -8.69184037e+05 -6.98581604e+05 -7.58390338e+05 -6.97858435e+05 -8.43300511e+05 -7.50899504e+05 -1.44754620e+06 -6.52685089e+05 -6.52224982e+05 -7.60016725e+05] [-1.68849386e+06 -1.35747704e+06 -1.41005223e+06 -1.48812222e+06 -1.43299240e+06 -1.44768005e+06 -1.40390124e+06 -1.52125286e+06 -1.44813215e+06 -1.44800900e+06 -1.37702806e+06 -1.55461213e+06 -1.70831779e+06 -1.46963536e+06 -1.33390665e+06 -1.45607387e+06 -1.45099283e+06 -1.40256201e+06 -1.41421753e+06 -1.52466463e+06 -1.40136844e+06 -1.40940145e+06 -1.38223634e+06 -1.56813283e+06 -1.39268357e+06 -2.38090986e+06 -1.34864352e+06 -1.35532093e+06 -1.43394350e+06] [-2.76379662e+06 -2.52729963e+06 -2.41122046e+06 -2.39871836e+06 -2.41164790e+06 -2.59146883e+06 -2.40588009e+06 -2.42325149e+06 -2.57304244e+06 -2.40640659e+06 -2.40078108e+06 -2.44594910e+06 -2.77834383e+06 -2.61084435e+06 -2.35918682e+06 -2.33175140e+06 -2.33089918e+06 -2.37961701e+06 -2.53527217e+06 -2.42512743e+06 -2.57611388e+06 -2.38178052e+06 -2.53424809e+06 -2.70216443e+06 -2.35051608e+06 -3.66707675e+06 -2.54244647e+06 -2.56129880e+06 -2.52592402e+06] [-4.00757749e+06 -3.96398642e+06 -3.60360768e+06 -3.46253301e+06 -3.57255417e+06 -3.96091952e+06 -3.59979510e+06 -3.46644313e+06 -3.92116660e+06 -3.54125860e+06 -3.63373728e+06 -3.47180814e+06 -4.01308605e+06 -3.98674613e+06 -3.60926602e+06 -3.34872658e+06 -3.35815735e+06 -3.54260477e+06 -3.88377933e+06 -3.46823718e+06 -4.01770336e+06 -3.53988541e+06 -3.92560667e+06 -4.02059735e+06 -3.49567159e+06 -4.79274308e+06 -4.00735116e+06 -4.05164571e+06 -3.82413899e+06] [-5.30958264e+06 -5.45820592e+06 -4.80012076e+06 -4.52300881e+06 -4.74408805e+06 -5.38350943e+06 -4.79131970e+06 -4.52035374e+06 -5.33249577e+06 -4.69176058e+06 -4.87531430e+06 -4.50602109e+06 -5.31143803e+06 -5.43435036e+06 -4.87744782e+06 -4.37760691e+06 -4.39694412e+06 -4.70277893e+06 -5.28993179e+06 -4.51986429e+06 -5.52335632e+06 -4.70535053e+06 -5.36451961e+06 -5.37896350e+06 -4.65878630e+06 -5.79367145e+06 -5.52113078e+06 -5.59873515e+06 -5.18922208e+06] [-6.56783862e+06 -6.82608736e+06 -5.81464411e+06 -5.42585397e+06 -5.75355013e+06 -6.70989443e+06 -5.79066574e+06 -5.44079589e+06 -6.66904709e+06 -5.68717408e+06 -5.92589505e+06 -5.40755573e+06 -6.57323481e+06 -6.80053894e+06 -5.95764303e+06 -5.27232768e+06 -5.30228985e+06 -5.68270634e+06 -6.61301882e+06 -5.43421111e+06 -6.90669690e+06 -5.69960297e+06 -6.69378134e+06 -6.65637025e+06 -5.66878630e+06 -6.74258490e+06 -6.88941201e+06 -7.00031409e+06 -6.49761597e+06] [-7.66766376e+06 -7.93852304e+06 -6.56967811e+06 -6.14092013e+06 -6.53383019e+06 -7.84064979e+06 -6.53021342e+06 -6.16827452e+06 -7.83145293e+06 -6.44550295e+06 -6.69696713e+06 -6.12188963e+06 -7.66590689e+06 -7.93519730e+06 -6.75291478e+06 -5.99484548e+06 -6.04425573e+06 -6.44534857e+06 -7.77574986e+06 -6.15844591e+06 -8.01108722e+06 -6.45821853e+06 -7.83507135e+06 -7.76025534e+06 -6.46362973e+06 -7.03457770e+06 -7.97864182e+06 -8.10283657e+06 -7.66986483e+06] [-8.14398302e+06 -8.36735538e+06 -6.76774766e+06 -6.37533404e+06 -6.76877427e+06 -8.33190446e+06 -6.72518703e+06 -6.38926133e+06 -8.35380574e+06 -6.65336475e+06 -6.89296168e+06 -6.34024398e+06 -8.12090485e+06 -8.37838739e+06 -6.95817411e+06 -6.23983663e+06 -6.31018011e+06 -6.69393810e+06 -8.31966555e+06 -6.38445998e+06 -8.40790183e+06 -6.67921571e+06 -8.35015050e+06 -8.24080327e+06 -6.72081764e+06 -6.64674140e+06 -8.37822952e+06 -8.49184881e+06 -8.22896392e+06] [-6.70646837e+06 -6.96737539e+06 -5.54719095e+06 -5.19647785e+06 -5.54247988e+06 -6.95293738e+06 -5.51803546e+06 -5.19926481e+06 -6.97817873e+06 -5.42960005e+06 -5.65492397e+06 -5.14066911e+06 -6.67525682e+06 -6.95048482e+06 -5.71591994e+06 -5.10226042e+06 -5.16154387e+06 -5.49597367e+06 -6.96329253e+06 -5.19438522e+06 -6.97778737e+06 -5.47165106e+06 -6.99567908e+06 -6.86797328e+06 -5.51819147e+06 -4.86411012e+06 -6.98175866e+06 -7.06436279e+06 -6.89181807e+06] [-3.02705945e+06 -3.48058065e+06 -2.77243967e+06 -2.41725122e+06 -2.69927816e+06 -3.41786843e+06 -2.76307669e+06 -2.43707166e+06 -3.41328800e+06 -2.63036881e+06 -2.85623773e+06 -2.34653436e+06 -3.01013223e+06 -3.38556022e+06 -2.89376598e+06 -2.42198184e+06 -2.42420308e+06 -2.68179203e+06 -3.40508930e+06 -2.41961722e+06 -3.46426841e+06 -2.68486806e+06 -3.47706385e+06 -3.35480801e+06 -2.70438500e+06 -1.38281744e+06 -3.54576419e+06 -3.56819569e+06 -3.37170056e+06] [ 2.95185312e+05 -3.89823047e+05 -3.96737259e+05 5.84674610e+03 -2.31646364e+05 -2.30426655e+05 -3.96275367e+05 -3.16717817e+04 -1.76340251e+05 -2.17408532e+05 -4.73878088e+05 9.02054595e+04 2.89286938e+05 -2.06349638e+05 -4.78710353e+05 -6.29029679e+04 -6.68290745e+03 -2.35947772e+05 -1.64256407e+05 -2.24570646e+03 -3.64286848e+05 -2.79105206e+05 -2.90876980e+05 -1.81301648e+05 -2.52604914e+05 1.17295473e+06 -5.22222625e+05 -4.95066865e+05 -1.44311829e+05] [ 1.39992125e+06 7.34622990e+05 3.98467493e+05 7.47299203e+05 5.88128770e+05 9.10938091e+05 3.99344352e+05 7.32403351e+05 9.79043690e+05 5.76912747e+05 3.27079455e+05 8.47800591e+05 1.38913259e+06 9.35333039e+05 3.46718754e+05 7.04241623e+05 7.64500687e+05 5.56843007e+05 9.81241716e+05 7.52555179e+05 7.61555458e+05 5.13213550e+05 8.64008657e+05 9.53340687e+05 5.54891408e+05 1.48971410e+06 5.86427322e+05 6.31656283e+05 1.02384444e+06] [ 2.99035347e+05 -3.39156256e+04 -3.73991208e+05 -2.03608234e+05 -2.35573968e+05 6.98500187e+04 -3.73841597e+05 -1.79534248e+05 1.23737796e+05 -2.58563887e+05 -4.15946377e+05 -1.18807109e+05 2.86740124e+05 8.68883079e+04 -3.91401540e+05 -1.71461928e+05 -1.39053185e+05 -2.78598839e+05 1.19305454e+05 -1.80379886e+05 -3.30189574e+04 -3.03571985e+05 6.07386344e+04 9.04146612e+04 -2.59280009e+05 -3.40706498e+05 -1.37102513e+05 -1.15851700e+05 1.88996681e+05] [-2.11767257e+06 -1.97763025e+06 -2.03964894e+06 -2.07387080e+06 -1.98958990e+06 -2.00497701e+06 -2.03977680e+06 -2.03104774e+06 -1.96989920e+06 -2.01723249e+06 -2.03167353e+06 -2.04224721e+06 -2.13581796e+06 -1.99367438e+06 -2.01493304e+06 -1.98612738e+06 -1.97838400e+06 -2.01693704e+06 -1.96901492e+06 -2.04505456e+06 -2.01538000e+06 -2.02840643e+06 -1.96204001e+06 -2.03098233e+06 -1.97704820e+06 -3.01220263e+06 -2.00692124e+06 -2.02309846e+06 -1.90641969e+06] [-3.57412633e+06 -3.09731151e+06 -2.93043484e+06 -3.10508386e+06 -2.94917279e+06 -3.23186686e+06 -2.92934689e+06 -3.06516668e+06 -3.20987268e+06 -2.98045870e+06 -2.87963778e+06 -3.12440375e+06 -3.59684075e+06 -3.21737373e+06 -2.86876351e+06 -3.00870518e+06 -3.00918631e+06 -2.95775431e+06 -3.20158422e+06 -3.08138771e+06 -3.15552564e+06 -2.96432356e+06 -3.15313824e+06 -3.30169686e+06 -2.90744131e+06 -4.50021115e+06 -3.06891448e+06 -3.10334901e+06 -3.17093582e+06] [-3.55900056e+06 -2.96854366e+06 -2.74841407e+06 -2.97710519e+06 -2.80106410e+06 -3.14380706e+06 -2.74623908e+06 -2.95157777e+06 -3.13271164e+06 -2.83457639e+06 -2.67896658e+06 -3.02651856e+06 -3.58239589e+06 -3.12996343e+06 -2.67095633e+06 -2.90267944e+06 -2.90264036e+06 -2.79701200e+06 -3.11925779e+06 -2.96469410e+06 -3.02811129e+06 -2.80362218e+06 -3.05529786e+06 -3.23247254e+06 -2.75205048e+06 -4.33141436e+06 -2.91255516e+06 -2.94835733e+06 -3.11997602e+06] [-2.67554512e+06 -2.17052886e+06 -1.99568803e+06 -2.19134270e+06 -2.04884246e+06 -2.32641198e+06 -1.99350725e+06 -2.18206343e+06 -2.32174463e+06 -2.07717737e+06 -1.93464149e+06 -2.24529043e+06 -2.69479873e+06 -2.31473929e+06 -1.92760887e+06 -2.14928338e+06 -2.14585578e+06 -2.03895164e+06 -2.30733583e+06 -2.19040070e+06 -2.21767655e+06 -2.04613186e+06 -2.25145106e+06 -2.40565934e+06 -2.00832434e+06 -3.26633549e+06 -2.11720667e+06 -2.14430733e+06 -2.32515268e+06] [-1.64356822e+06 -1.32266746e+06 -1.21491485e+06 -1.33583108e+06 -1.25173568e+06 -1.42587753e+06 -1.21454573e+06 -1.33488422e+06 -1.42351341e+06 -1.26847552e+06 -1.17710939e+06 -1.37536641e+06 -1.65522069e+06 -1.41732489e+06 -1.17265755e+06 -1.31810202e+06 -1.31386307e+06 -1.24229514e+06 -1.41291898e+06 -1.33976020e+06 -1.35250359e+06 -1.24728813e+06 -1.37801847e+06 -1.47569138e+06 -1.22521535e+06 -2.00396279e+06 -1.28739414e+06 -1.30494784e+06 -1.43034994e+06] [-6.11210369e+05 -4.94662848e+05 -4.61258873e+05 -5.03329459e+05 -4.74672059e+05 -5.33409550e+05 -4.62255203e+05 -5.02812531e+05 -5.31638628e+05 -4.80232672e+05 -4.48384964e+05 -5.17959809e+05 -6.14973284e+05 -5.28845562e+05 -4.47628432e+05 -4.97531478e+05 -4.95249484e+05 -4.71371593e+05 -5.27230306e+05 -5.04962704e+05 -5.06442481e+05 -4.72989101e+05 -5.15718657e+05 -5.49864364e+05 -4.64252600e+05 -8.12628185e+05 -4.81859725e+05 -4.90232905e+05 -5.33337760e+05] [-4.08313272e+04 -3.42196605e+04 -4.07405970e+04 -4.32038798e+04 -4.12897583e+04 -3.67802114e+04 -4.18861032e+04 -4.23366646e+04 -3.56880880e+04 -4.14838912e+04 -4.02984565e+04 -4.37578873e+04 -4.05970345e+04 -3.51423893e+04 -4.06421119e+04 -4.27972314e+04 -4.20368970e+04 -4.19348388e+04 -3.52520147e+04 -4.29493024e+04 -3.54937430e+04 -4.16429282e+04 -3.57941220e+04 -3.67638924e+04 -4.01609944e+04 -8.49824841e+04 -3.35852106e+04 -3.54300868e+04 -3.50313463e+04] [ 4.18358574e+03 5.84625390e+03 -9.12010975e+02 -8.78413132e+02 -9.83003950e+02 4.93294566e+03 -1.13054890e+03 -9.54813616e+02 5.17238568e+03 -1.02557514e+03 -1.15467755e+03 -1.23076838e+03 4.25888969e+03 5.28726750e+03 -1.06413736e+03 -1.03263911e+03 -7.94567216e+02 -9.70726053e+02 5.38155387e+03 -1.16925631e+03 5.48465740e+03 -9.43168355e+02 5.50757014e+03 5.17743751e+03 -8.05667166e+02 -3.96221049e+04 5.85616315e+03 5.39552000e+03 5.36951650e+03] [ 1.05789430e+02 8.92817449e+01 6.84521921e+01 7.50342192e+01 7.25915971e+01 9.51543791e+01 6.86813344e+01 7.45177571e+01 9.48622427e+01 7.36185798e+01 6.69510151e+01 7.66760933e+01 1.05483288e+02 9.42309768e+01 6.88016272e+01 7.79007297e+01 7.58277463e+01 7.08638461e+01 9.41785253e+01 7.50126280e+01 8.85749867e+01 7.27491318e+01 9.27070010e+01 9.51488894e+01 7.08108776e+01 9.74580454e+01 8.60696548e+01 8.72012548e+01 9.80888158e+01] [ 4.32382872e-01 -8.01571639e-02 -9.76343687e-01 8.62059055e-01 -8.30471472e-01 8.69115339e-01 6.91212085e-01 9.23270848e-01 -4.53914253e-01 -2.94174311e-02 -9.46594447e-01 -4.36560938e-01 -9.74919175e-01 6.34210272e-01 3.70662977e-01 6.90799131e-01 -9.25115718e-01 -5.76778734e-01 -9.61194167e-01 -6.53328141e-01 1.80021621e-01 -9.85311346e-01 3.47853401e-01 6.61980498e-01 -3.29082364e-01 1.40937571e-01 4.02335776e-01 7.87274311e-01 -7.95143537e-01] [-1.45464808e+03 -1.50973994e+03 -1.37987425e+03 -1.34643140e+03 -1.33154222e+03 -1.44917383e+03 -1.35100106e+03 -1.30286903e+03 -1.43871599e+03 -1.35311176e+03 -1.41154137e+03 -1.28985308e+03 -1.46355809e+03 -1.47387317e+03 -1.41702005e+03 -1.24922336e+03 -1.26840634e+03 -1.35777671e+03 -1.44586715e+03 -1.31301473e+03 -1.52046986e+03 -1.36857431e+03 -1.42869870e+03 -1.40150724e+03 -1.35256201e+03 -1.91628363e+03 -1.52408344e+03 -1.54374602e+03 -1.37102150e+03] [-7.82624099e+03 -8.76512503e+03 -8.86448479e+03 -8.51778931e+03 -8.35506824e+03 -7.97284278e+03 -8.60052696e+03 -8.09363555e+03 -7.86216918e+03 -8.57472860e+03 -9.17128599e+03 -7.92889750e+03 -7.87821322e+03 -8.24819293e+03 -9.21859584e+03 -7.61628961e+03 -7.78656929e+03 -8.64859982e+03 -7.94334415e+03 -8.18386821e+03 -8.82478649e+03 -8.74738060e+03 -7.84359543e+03 -7.46337730e+03 -8.60464754e+03 -1.34509403e+04 -8.94482270e+03 -9.10107799e+03 -7.20407272e+03] [ 3.72273007e+04 3.03757533e+04 1.97464953e+04 2.19675577e+04 2.16537633e+04 3.38357668e+04 1.98390900e+04 2.26184248e+04 3.41339323e+04 2.12597834e+04 1.83645247e+04 2.33961747e+04 3.72569884e+04 3.30759535e+04 1.89184315e+04 2.32900850e+04 2.31580699e+04 2.07794104e+04 3.39887043e+04 2.21948696e+04 3.03852431e+04 2.07528792e+04 3.35996997e+04 3.51407816e+04 2.06213752e+04 1.82604349e+04 2.89501505e+04 2.89691593e+04 3.58996931e+04] [-1.75873307e+05 -1.22877747e+05 -1.45827353e+05 -1.64492877e+05 -1.50470517e+05 -1.36219178e+05 -1.45073223e+05 -1.67809166e+05 -1.35950902e+05 -1.55333637e+05 -1.42300513e+05 -1.74826604e+05 -1.78659692e+05 -1.39219833e+05 -1.36922655e+05 -1.62406968e+05 -1.60817026e+05 -1.47451493e+05 -1.32274598e+05 -1.69862370e+05 -1.29596548e+05 -1.49326606e+05 -1.24842765e+05 -1.46298669e+05 -1.47174748e+05 -2.70340984e+05 -1.18931766e+05 -1.21353690e+05 -1.35322747e+05] [-1.12349330e+06 -8.52863269e+05 -8.38574820e+05 -9.26591235e+05 -8.68082231e+05 -9.33899492e+05 -8.35196473e+05 -9.43145036e+05 -9.35755770e+05 -8.84237731e+05 -8.15304370e+05 -9.76054267e+05 -1.13620927e+06 -9.41208222e+05 -7.96450165e+05 -9.19637943e+05 -9.14127661e+05 -8.49605312e+05 -9.19411374e+05 -9.49152321e+05 -8.82779055e+05 -8.56899891e+05 -8.84293035e+05 -9.87501134e+05 -8.47474676e+05 -1.51985157e+06 -8.29323324e+05 -8.40330782e+05 -9.39885335e+05] [-1.99127639e+06 -1.55705835e+06 -1.52390032e+06 -1.65491490e+06 -1.56986690e+06 -1.68479261e+06 -1.52134895e+06 -1.68259008e+06 -1.68582119e+06 -1.59184123e+06 -1.48918168e+06 -1.73643936e+06 -2.01079999e+06 -1.69777015e+06 -1.45598871e+06 -1.63550539e+06 -1.62721876e+06 -1.53876636e+06 -1.65498698e+06 -1.69344386e+06 -1.61042156e+06 -1.54789577e+06 -1.60453719e+06 -1.77909045e+06 -1.53063513e+06 -2.70699023e+06 -1.52316816e+06 -1.54641119e+06 -1.68306739e+06] [-2.83239953e+06 -2.31423866e+06 -2.27347516e+06 -2.41453159e+06 -2.32277511e+06 -2.45948291e+06 -2.27422154e+06 -2.44291408e+06 -2.45339951e+06 -2.34552071e+06 -2.23620713e+06 -2.50937912e+06 -2.85427474e+06 -2.47563437e+06 -2.19653031e+06 -2.37105551e+06 -2.36167109e+06 -2.28760740e+06 -2.40985888e+06 -2.45797145e+06 -2.38747871e+06 -2.29563766e+06 -2.36110433e+06 -2.57762013e+06 -2.26551219e+06 -3.89704446e+06 -2.27906827e+06 -2.32004663e+06 -2.43038753e+06] [-3.87474366e+06 -3.42218377e+06 -3.24109802e+06 -3.31576533e+06 -3.27121826e+06 -3.54856543e+06 -3.24542475e+06 -3.33270443e+06 -3.52424467e+06 -3.28119679e+06 -3.22003266e+06 -3.39239964e+06 -3.89183883e+06 -3.55692615e+06 -3.18909294e+06 -3.24122703e+06 -3.23189036e+06 -3.23988809e+06 -3.47434860e+06 -3.34711869e+06 -3.50434614e+06 -3.24561979e+06 -3.45508759e+06 -3.65562849e+06 -3.19619462e+06 -5.15648959e+06 -3.40187600e+06 -3.46414391e+06 -3.46938426e+06] [-4.89572054e+06 -4.64492495e+06 -4.19787900e+06 -4.14148568e+06 -4.19831859e+06 -4.70913009e+06 -4.20510696e+06 -4.14687830e+06 -4.66520928e+06 -4.18417236e+06 -4.21229099e+06 -4.18514384e+06 -4.90406032e+06 -4.71816846e+06 -4.20395214e+06 -4.04098354e+06 -4.03469758e+06 -4.16704638e+06 -4.61184835e+06 -4.15678469e+06 -4.72965592e+06 -4.17198271e+06 -4.64092054e+06 -4.76982642e+06 -4.10896841e+06 -5.95474332e+06 -4.64858353e+06 -4.73672157e+06 -4.57217756e+06] [-5.61637896e+06 -5.57990949e+06 -4.87337091e+06 -4.67324171e+06 -4.85242857e+06 -5.57261941e+06 -4.87674238e+06 -4.68837871e+06 -5.52636569e+06 -4.81631353e+06 -4.92694563e+06 -4.69925178e+06 -5.62176010e+06 -5.60795859e+06 -4.94682510e+06 -4.56769555e+06 -4.56673654e+06 -4.80328069e+06 -5.46313412e+06 -4.69028618e+06 -5.67047238e+06 -4.81567949e+06 -5.52825658e+06 -5.58233382e+06 -4.75927758e+06 -6.29335172e+06 -5.60183544e+06 -5.71656252e+06 -5.40200749e+06] [-6.31982244e+06 -6.38828146e+06 -5.39007141e+06 -5.09857797e+06 -5.37506403e+06 -6.35512749e+06 -5.38303230e+06 -5.13452447e+06 -6.32802019e+06 -5.31866261e+06 -5.47136079e+06 -5.12585855e+06 -6.32277006e+06 -6.41533697e+06 -5.51522156e+06 -5.00354669e+06 -5.01413610e+06 -5.30036893e+06 -6.25653987e+06 -5.13003946e+06 -6.48067333e+06 -5.31750716e+06 -6.32484324e+06 -6.32966346e+06 -5.28819621e+06 -6.41933770e+06 -6.40674063e+06 -6.54031716e+06 -6.19618772e+06] [-6.65090849e+06 -6.73604843e+06 -5.49907367e+06 -5.19865660e+06 -5.50914269e+06 -6.72834837e+06 -5.48539851e+06 -5.23647479e+06 -6.73194456e+06 -5.42891983e+06 -5.59029373e+06 -5.21712909e+06 -6.63996274e+06 -6.77014808e+06 -5.64501197e+06 -5.11772299e+06 -5.14679460e+06 -5.43328789e+06 -6.67205806e+06 -5.23346487e+06 -6.80647520e+06 -5.43445451e+06 -6.71922644e+06 -6.68517630e+06 -5.44372760e+06 -5.84621271e+06 -6.73605712e+06 -6.86509901e+06 -6.62283731e+06] [-5.72448974e+06 -5.81481038e+06 -4.64275864e+06 -4.39498525e+06 -4.67372177e+06 -5.84733013e+06 -4.63700074e+06 -4.41383919e+06 -5.87564615e+06 -4.57552302e+06 -4.72546713e+06 -4.38895453e+06 -5.69306740e+06 -5.83601479e+06 -4.77773910e+06 -4.33705040e+06 -4.37884451e+06 -4.62569075e+06 -5.84377443e+06 -4.41720147e+06 -5.84507674e+06 -4.59769588e+06 -5.87086449e+06 -5.79967060e+06 -4.63923794e+06 -4.32821928e+06 -5.80224424e+06 -5.90221653e+06 -5.80745114e+06] [-2.98170114e+06 -3.18698481e+06 -2.43844665e+06 -2.21576571e+06 -2.44526437e+06 -3.22365275e+06 -2.44969978e+06 -2.23779432e+06 -3.25148333e+06 -2.35764434e+06 -2.50079990e+06 -2.19042775e+06 -2.94726554e+06 -3.16331018e+06 -2.53572229e+06 -2.23797344e+06 -2.25443031e+06 -2.42486864e+06 -3.24257042e+06 -2.23625501e+06 -3.17585286e+06 -2.39512025e+06 -3.27877989e+06 -3.18917533e+06 -2.44483570e+06 -1.24326266e+06 -3.19888784e+06 -3.23947777e+06 -3.24150051e+06] [ 3.53566666e+05 -9.44645505e+04 6.86756118e+04 3.56972844e+05 1.39023624e+05 -6.65312194e+04 4.87204920e+04 2.97881388e+05 -5.82517338e+04 1.86925272e+05 1.78813482e+04 3.85783518e+05 3.67100951e+05 8.28260228e+02 1.22091679e+04 2.28556283e+05 2.71571024e+05 1.52999812e+05 -5.01721397e+04 3.19275190e+05 -5.93358068e+04 1.43821302e+05 -1.33569573e+05 -5.24280803e+04 1.21032128e+05 1.96029036e+06 -1.69710081e+05 -1.43042983e+05 -9.28826966e+04] [ 1.87809087e+06 1.27158349e+06 1.02757980e+06 1.37851039e+06 1.16839286e+06 1.38488768e+06 1.01469975e+06 1.30737896e+06 1.43166214e+06 1.17696950e+06 9.69163200e+05 1.41660430e+06 1.86970457e+06 1.41765536e+06 9.86139087e+05 1.23887442e+06 1.31357660e+06 1.17865482e+06 1.44776527e+06 1.33749153e+06 1.30135502e+06 1.13465954e+06 1.33103887e+06 1.39857071e+06 1.14789743e+06 2.66374492e+06 1.14586446e+06 1.19720184e+06 1.41538168e+06] [ 9.18694474e+05 4.34555039e+05 1.36601759e+05 4.19659469e+05 2.84890949e+05 5.62303276e+05 1.37643100e+05 3.91576980e+05 6.16342610e+05 2.72892644e+05 7.59591145e+04 4.77729561e+05 9.03106162e+05 5.66192324e+05 1.00843463e+05 3.78215337e+05 4.30448964e+05 2.76377002e+05 6.26942344e+05 4.05688344e+05 4.41447748e+05 2.34517491e+05 5.41642610e+05 5.86326985e+05 2.64893889e+05 7.66393707e+05 3.13480820e+05 3.45825342e+05 6.55513113e+05] [-1.82051230e+06 -1.92832455e+06 -1.99866564e+06 -1.88894778e+06 -1.89763830e+06 -1.87506462e+06 -1.98926238e+06 -1.85884223e+06 -1.82620298e+06 -1.92208096e+06 -2.03483727e+06 -1.83300836e+06 -1.83985441e+06 -1.88184742e+06 -2.01735790e+06 -1.80917929e+06 -1.79310127e+06 -1.92051651e+06 -1.82131949e+06 -1.86786357e+06 -1.96088327e+06 -1.94693140e+06 -1.84505966e+06 -1.85810076e+06 -1.89740985e+06 -2.67186950e+06 -1.99804558e+06 -2.01195493e+06 -1.73933599e+06] [-3.88722357e+06 -3.58430745e+06 -3.43489253e+06 -3.51335677e+06 -3.40652298e+06 -3.64797835e+06 -3.42709033e+06 -3.45777347e+06 -3.60879372e+06 -3.43794283e+06 -3.42396015e+06 -3.49528144e+06 -3.90997246e+06 -3.64726276e+06 -3.41425268e+06 -3.38347115e+06 -3.38581946e+06 -3.42544469e+06 -3.60368556e+06 -3.47855699e+06 -3.64608557e+06 -3.43898904e+06 -3.57403037e+06 -3.66799762e+06 -3.37506760e+06 -5.01739645e+06 -3.58982756e+06 -3.63372865e+06 -3.52631610e+06] [-4.49213058e+06 -3.95673170e+06 -3.67651349e+06 -3.85792827e+06 -3.70236678e+06 -4.10104357e+06 -3.67236358e+06 -3.80826838e+06 -4.07205744e+06 -3.73369921e+06 -3.63295123e+06 -3.88084481e+06 -4.51507692e+06 -4.09226322e+06 -3.62715379e+06 -3.73527143e+06 -3.74086579e+06 -3.70801382e+06 -4.06135228e+06 -3.82972922e+06 -4.02898252e+06 -3.71517206e+06 -4.00679451e+06 -4.15477255e+06 -3.64934582e+06 -5.73181685e+06 -3.91901535e+06 -3.97361981e+06 -4.01595105e+06] [-3.83742378e+06 -3.26840318e+06 -3.01230407e+06 -3.22008559e+06 -3.06058217e+06 -3.43297250e+06 -3.00970978e+06 -3.18800390e+06 -3.41450132e+06 -3.09174804e+06 -2.95725649e+06 -3.26500809e+06 -3.85844534e+06 -3.42120935e+06 -2.95223265e+06 -3.13348414e+06 -3.13496560e+06 -3.05747092e+06 -3.40100277e+06 -3.20502913e+06 -3.33313400e+06 -3.06401657e+06 -3.34090927e+06 -3.49853041e+06 -3.00854667e+06 -4.87928589e+06 -3.21443933e+06 -3.26203700e+06 -3.38810545e+06] [-2.65106332e+06 -2.19691635e+06 -2.00405294e+06 -2.17204057e+06 -2.05086016e+06 -2.33719368e+06 -2.00443865e+06 -2.15928341e+06 -2.32596544e+06 -2.07477262e+06 -1.95729379e+06 -2.22052887e+06 -2.66635770e+06 -2.32342970e+06 -1.95206091e+06 -2.12904394e+06 -2.12454535e+06 -2.04306428e+06 -2.31247873e+06 -2.17027614e+06 -2.24438887e+06 -2.04900910e+06 -2.26610871e+06 -2.39524153e+06 -2.00988525e+06 -3.31556760e+06 -2.14906114e+06 -2.18277915e+06 -2.32183230e+06] [-1.46539409e+06 -1.18980202e+06 -1.08857503e+06 -1.18826810e+06 -1.11972857e+06 -1.27946561e+06 -1.09084405e+06 -1.18558586e+06 -1.27270961e+06 -1.13355871e+06 -1.06100581e+06 -1.22334916e+06 -1.47390554e+06 -1.26864461e+06 -1.05769940e+06 -1.17274033e+06 -1.16688768e+06 -1.11262459e+06 -1.26275162e+06 -1.19202951e+06 -1.21871151e+06 -1.11665336e+06 -1.23598864e+06 -1.31429366e+06 -1.09425571e+06 -1.91807849e+06 -1.15948373e+06 -1.18066272e+06 -1.27515341e+06] [-6.02072229e+05 -5.02265162e+05 -4.58301748e+05 -4.89397471e+05 -4.69750265e+05 -5.36117943e+05 -4.60754002e+05 -4.88461485e+05 -5.31662500e+05 -4.73283201e+05 -4.51449784e+05 -5.03377674e+05 -6.04072845e+05 -5.30362001e+05 -4.50458284e+05 -4.83438773e+05 -4.80435956e+05 -4.66832219e+05 -5.26763207e+05 -4.91862654e+05 -5.14909268e+05 -4.67735231e+05 -5.19259660e+05 -5.45913073e+05 -4.58336288e+05 -8.47804951e+05 -4.91513249e+05 -5.03230637e+05 -5.30063786e+05] [-8.77425649e+04 -7.50761122e+04 -7.47936386e+04 -7.74448442e+04 -7.62498351e+04 -7.93754060e+04 -7.62842012e+04 -7.69834549e+04 -7.72626119e+04 -7.64806914e+04 -7.56888313e+04 -8.00084929e+04 -8.72834519e+04 -7.75436917e+04 -7.54456286e+04 -7.67369815e+04 -7.54841343e+04 -7.62893589e+04 -7.59680913e+04 -7.83328047e+04 -7.79566587e+04 -7.60795098e+04 -7.64339779e+04 -7.84609602e+04 -7.37892425e+04 -1.65313494e+05 -7.36897910e+04 -7.76124175e+04 -7.56874137e+04] [ 2.71689248e+03 4.23862660e+03 -8.86173193e+02 -8.77466726e+02 -1.07996120e+03 3.67164055e+03 -1.25000847e+03 -1.09651321e+03 4.01432630e+03 -1.11813000e+03 -1.33779259e+03 -1.58620391e+03 2.84560816e+03 3.88198781e+03 -1.08582648e+03 -1.16181275e+03 -8.18202498e+02 -9.90213314e+02 4.37708273e+03 -1.43675909e+03 3.67424518e+03 -9.35082634e+02 4.28632975e+03 3.96503460e+03 -7.70328057e+02 -2.59320581e+04 4.30198832e+03 3.59670028e+03 4.31303327e+03] [ 1.92942813e+02 1.63049819e+02 1.25933325e+02 1.38701600e+02 1.31473893e+02 1.75803255e+02 1.27123186e+02 1.36954022e+02 1.72868141e+02 1.33027478e+02 1.23252529e+02 1.41888325e+02 1.92476056e+02 1.70142207e+02 1.24446035e+02 1.40899309e+02 1.39461504e+02 1.30647769e+02 1.74137222e+02 1.38515475e+02 1.63002076e+02 1.32974743e+02 1.71942428e+02 1.75281349e+02 1.29018859e+02 1.78003124e+02 1.56146198e+02 1.59077576e+02 1.78094099e+02] [ 3.54218339e-01 -6.10636837e-01 -4.89331883e-01 -3.96824691e-01 -2.11134489e-01 -5.00764299e-01 -7.85383540e-01 5.42596553e-01 3.09808396e-01 1.53089541e-01 6.27923987e-01 -9.45253055e-01 9.10169721e-01 1.98799517e-01 5.89728778e-01 7.80313385e-01 -4.17773557e-01 9.45623676e-01 9.30370962e-01 -7.55636705e-01 9.14768621e-01 8.85087158e-01 -4.43017005e-01 9.19105644e-01 4.24049730e-01 -9.44796868e-03 1.41347798e-01 7.08545967e-01 -2.23770558e-02] [-1.71974481e+03 -1.73275886e+03 -1.34761689e+03 -1.34392805e+03 -1.33400481e+03 -1.73416999e+03 -1.32030661e+03 -1.29031061e+03 -1.74874286e+03 -1.32257763e+03 -1.37476597e+03 -1.27916563e+03 -1.70878004e+03 -1.71510395e+03 -1.37730120e+03 -1.25642396e+03 -1.29528713e+03 -1.36924076e+03 -1.77712232e+03 -1.30548760e+03 -1.71407607e+03 -1.34844221e+03 -1.73984539e+03 -1.68831017e+03 -1.36918531e+03 -1.22114303e+03 -1.72881572e+03 -1.72946593e+03 -1.71700364e+03] [-1.82815411e+04 -1.98455853e+04 -1.90213345e+04 -1.83129685e+04 -1.81208744e+04 -1.85241423e+04 -1.85188781e+04 -1.75695130e+04 -1.83109382e+04 -1.84857696e+04 -1.95860380e+04 -1.72736249e+04 -1.83819058e+04 -1.89916510e+04 -1.96763467e+04 -1.66744546e+04 -1.69884519e+04 -1.86127254e+04 -1.84483183e+04 -1.77195733e+04 -1.99575638e+04 -1.87960003e+04 -1.82618455e+04 -1.76157246e+04 -1.85288837e+04 -2.72766439e+04 -2.01560979e+04 -2.04449277e+04 -1.71383786e+04] [-4.76678503e+04 -5.22581502e+04 -5.60347696e+04 -5.30233514e+04 -5.32292245e+04 -4.78984829e+04 -5.53514546e+04 -5.11944076e+04 -4.64368547e+04 -5.43668280e+04 -5.91598063e+04 -5.11559599e+04 -4.77321492e+04 -4.93168875e+04 -5.86143739e+04 -4.85151355e+04 -4.87711636e+04 -5.45788005e+04 -4.61714670e+04 -5.24633465e+04 -5.37997039e+04 -5.50343399e+04 -4.62226818e+04 -4.42464685e+04 -5.39781884e+04 -9.66760653e+04 -5.35646095e+04 -5.57824261e+04 -4.18756882e+04] [-5.14868839e+05 -4.26105059e+05 -4.06470629e+05 -4.32192879e+05 -4.13707600e+05 -4.48543069e+05 -4.04869159e+05 -4.34147792e+05 -4.44876146e+05 -4.20862038e+05 -4.05361081e+05 -4.47578255e+05 -5.18602490e+05 -4.51900421e+05 -3.99001580e+05 -4.23702938e+05 -4.21428088e+05 -4.09363854e+05 -4.39032989e+05 -4.39056697e+05 -4.39796599e+05 -4.12703734e+05 -4.27692098e+05 -4.55794744e+05 -4.06430953e+05 -7.25937387e+05 -4.18351160e+05 -4.28255692e+05 -4.39366070e+05] [-1.81658188e+06 -1.47160752e+06 -1.36277244e+06 -1.46489222e+06 -1.40252022e+06 -1.57545794e+06 -1.36044464e+06 -1.48060846e+06 -1.57084632e+06 -1.41945078e+06 -1.34381332e+06 -1.52854645e+06 -1.83006681e+06 -1.58221319e+06 -1.32343378e+06 -1.45066900e+06 -1.44372757e+06 -1.37835137e+06 -1.55058044e+06 -1.49223447e+06 -1.51522813e+06 -1.38678040e+06 -1.50907703e+06 -1.62313507e+06 -1.37079335e+06 -2.35412666e+06 -1.43924799e+06 -1.46499353e+06 -1.56926560e+06] [-3.17268178e+06 -2.59733885e+06 -2.38383031e+06 -2.54848714e+06 -2.45466919e+06 -2.77584196e+06 -2.38524845e+06 -2.57701688e+06 -2.76789476e+06 -2.47614856e+06 -2.34993462e+06 -2.65837831e+06 -3.19360343e+06 -2.78396335e+06 -2.31800513e+06 -2.52809661e+06 -2.51603777e+06 -2.41084844e+06 -2.73199639e+06 -2.59534192e+06 -2.67193598e+06 -2.42187669e+06 -2.66980806e+06 -2.86170147e+06 -2.39467754e+06 -3.96090145e+06 -2.54362887e+06 -2.58943867e+06 -2.76617327e+06] [-4.42663417e+06 -3.71158935e+06 -3.43495481e+06 -3.63228627e+06 -3.51818821e+06 -3.92729966e+06 -3.44059194e+06 -3.65943706e+06 -3.91221334e+06 -3.54376141e+06 -3.39138449e+06 -3.76099845e+06 -4.45196919e+06 -3.93553299e+06 -3.36095747e+06 -3.58918550e+06 -3.57435397e+06 -3.46851996e+06 -3.86248879e+06 -3.68219998e+06 -3.81235132e+06 -3.48120571e+06 -3.79647110e+06 -4.03488397e+06 -3.43657016e+06 -5.53755476e+06 -3.64560246e+06 -3.71773932e+06 -3.89332005e+06] [-5.64467921e+06 -4.93816824e+06 -4.48057943e+06 -4.64469449e+06 -4.55408862e+06 -5.15069225e+06 -4.49036187e+06 -4.65836991e+06 -5.12161254e+06 -4.57431885e+06 -4.44130141e+06 -4.75941116e+06 -5.66877913e+06 -5.15091497e+06 -4.43142857e+06 -4.57318882e+06 -4.55680840e+06 -4.50831706e+06 -5.06341990e+06 -4.67959670e+06 -5.05422632e+06 -4.52310001e+06 -5.01945346e+06 -5.24777205e+06 -4.45579556e+06 -6.96414398e+06 -4.87284247e+06 -4.97581416e+06 -5.07440186e+06] [-6.52133836e+06 -5.98023448e+06 -5.27459770e+06 -5.33113810e+06 -5.32539970e+06 -6.13832206e+06 -5.28708985e+06 -5.33628997e+06 -6.09722609e+06 -5.32862562e+06 -5.25936623e+06 -5.41715692e+06 -6.54008549e+06 -6.14230387e+06 -5.28289883e+06 -5.23939488e+06 -5.22474118e+06 -5.27893170e+06 -6.03090332e+06 -5.35012315e+06 -6.10288131e+06 -5.29720962e+06 -6.02966349e+06 -6.19516317e+06 -5.21656756e+06 -7.75936493e+06 -5.92757324e+06 -6.06341491e+06 -6.01509178e+06] [-7.13930984e+06 -6.78261396e+06 -5.79975022e+06 -5.73832730e+06 -5.83759501e+06 -6.88731390e+06 -5.80855563e+06 -5.75215542e+06 -6.85131994e+06 -5.81920031e+06 -5.81294040e+06 -5.80567893e+06 -7.15312716e+06 -6.90674054e+06 -5.86762769e+06 -5.64917459e+06 -5.64050812e+06 -5.77795744e+06 -6.77777539e+06 -5.75673755e+06 -6.90416243e+06 -5.80050576e+06 -6.80697032e+06 -6.90283999e+06 -5.73029805e+06 -7.83658337e+06 -6.73874768e+06 -6.89680129e+06 -6.75073994e+06] [-6.97838620e+06 -6.73188507e+06 -5.60843505e+06 -5.49226407e+06 -5.65319453e+06 -6.81912841e+06 -5.61287344e+06 -5.51589371e+06 -6.80454753e+06 -5.61410750e+06 -5.64145275e+06 -5.54991477e+06 -6.98151458e+06 -6.83764846e+06 -5.70778737e+06 -5.42237454e+06 -5.42512078e+06 -5.58790670e+06 -6.73529684e+06 -5.51811512e+06 -6.83597999e+06 -5.60233342e+06 -6.76470814e+06 -6.80871629e+06 -5.56416680e+06 -6.96092083e+06 -6.68562015e+06 -6.84206877e+06 -6.71414312e+06] [-5.79421854e+06 -5.60800895e+06 -4.54436747e+06 -4.44123022e+06 -4.60170866e+06 -5.71253934e+06 -4.55146882e+06 -4.46050424e+06 -5.72135389e+06 -4.54531102e+06 -4.58268872e+06 -4.48162304e+06 -5.77909548e+06 -5.69364829e+06 -4.64083292e+06 -4.40349143e+06 -4.41596498e+06 -4.55422877e+06 -5.67418800e+06 -4.46737022e+06 -5.67352100e+06 -4.54605169e+06 -5.68823543e+06 -5.69163270e+06 -4.54479266e+06 -5.17260024e+06 -5.55786861e+06 -5.68390783e+06 -5.66867701e+06] [-3.18641314e+06 -3.11101130e+06 -2.41993997e+06 -2.34930947e+06 -2.47443458e+06 -3.23339969e+06 -2.44109482e+06 -2.36152767e+06 -3.25920599e+06 -2.40701002e+06 -2.44912491e+06 -2.36163383e+06 -3.15150961e+06 -3.15157296e+06 -2.48475939e+06 -2.37626140e+06 -2.38471254e+06 -2.46212718e+06 -3.24599196e+06 -2.37115048e+06 -3.11789382e+06 -2.42810998e+06 -3.25433534e+06 -3.21755043e+06 -2.46089257e+06 -1.98705101e+06 -3.07451292e+06 -3.13680831e+06 -3.26991537e+06] [-5.61307961e+04 -1.76014582e+05 4.87266320e+04 1.52455719e+05 3.63047329e+04 -2.79352733e+05 1.58074446e+04 1.10437840e+05 -2.99007566e+05 9.00813967e+04 3.52385682e+04 1.48716260e+05 -2.67843877e+04 -1.65567511e+05 2.41540292e+04 1.65152016e+04 4.58151011e+04 3.85495215e+04 -3.00597462e+05 1.15888104e+05 -1.40077005e+05 5.91834662e+04 -3.32395445e+05 -2.86494849e+05 1.89681498e+04 1.59191846e+06 -1.82932531e+05 -1.70924629e+05 -3.76071983e+05] [ 1.78741274e+06 1.45326822e+06 1.35836221e+06 1.56920127e+06 1.41522272e+06 1.42039552e+06 1.32801557e+06 1.48688025e+06 1.43596571e+06 1.44119582e+06 1.33905603e+06 1.55984777e+06 1.79299050e+06 1.50980254e+06 1.35159748e+06 1.36791316e+06 1.44075139e+06 1.43289907e+06 1.44371961e+06 1.51164437e+06 1.49376402e+06 1.41287050e+06 1.36890964e+06 1.40173114e+06 1.39841296e+06 3.18755320e+06 1.38644986e+06 1.44199199e+06 1.34544004e+06] [ 1.29311717e+06 9.18021860e+05 7.47156923e+05 1.00280360e+06 8.43924020e+05 9.51353396e+05 7.30407966e+05 9.25584126e+05 9.94170364e+05 8.47504206e+05 7.11772852e+05 9.98322604e+05 1.28007012e+06 9.86995938e+05 7.34015654e+05 8.54769760e+05 9.29983933e+05 8.69334090e+05 1.01327311e+06 9.50319370e+05 9.31183922e+05 8.26737339e+05 9.27201721e+05 9.42646445e+05 8.42099395e+05 1.87944923e+06 8.24153935e+05 8.68447193e+05 9.56830092e+05] [-1.38361132e+06 -1.54556652e+06 -1.51512804e+06 -1.33523015e+06 -1.42561004e+06 -1.51088494e+06 -1.51256812e+06 -1.35810324e+06 -1.45906027e+06 -1.43761808e+06 -1.55551325e+06 -1.32376420e+06 -1.40483227e+06 -1.51581716e+06 -1.53904009e+06 -1.34057607e+06 -1.30015219e+06 -1.41119703e+06 -1.43795422e+06 -1.35276274e+06 -1.57647942e+06 -1.45089290e+06 -1.48591749e+06 -1.50301499e+06 -1.40826847e+06 -1.80787714e+06 -1.61777856e+06 -1.62480472e+06 -1.41372098e+06] [-4.43605366e+06 -4.23291200e+06 -3.93447612e+06 -3.91524091e+06 -3.88582230e+06 -4.26676587e+06 -3.91943370e+06 -3.87765042e+06 -4.21369608e+06 -3.91335949e+06 -3.95253484e+06 -3.90125130e+06 -4.46218573e+06 -4.28142134e+06 -3.94843237e+06 -3.79377703e+06 -3.78711773e+06 -3.88682395e+06 -4.19658008e+06 -3.89331042e+06 -4.30475328e+06 -3.91591763e+06 -4.18714262e+06 -4.25907753e+06 -3.84543027e+06 -5.65011547e+06 -4.25368966e+06 -4.31204748e+06 -4.11601691e+06] [-5.92580342e+06 -5.43733164e+06 -4.99771070e+06 -5.11282067e+06 -4.99712538e+06 -5.55211030e+06 -4.98346511e+06 -5.04964974e+06 -5.50280976e+06 -5.03013061e+06 -4.98510544e+06 -5.11821960e+06 -5.95174360e+06 -5.55582781e+06 -4.98658483e+06 -4.94711095e+06 -4.95452828e+06 -5.00248439e+06 -5.48753213e+06 -5.07574892e+06 -5.52809238e+06 -5.01995729e+06 -5.44137380e+06 -5.56483410e+06 -4.93611836e+06 -7.46970122e+06 -5.41283306e+06 -5.49462511e+06 -5.40352917e+06] [-5.47368370e+06 -4.88012484e+06 -4.45204153e+06 -4.63054438e+06 -4.48784396e+06 -5.04012428e+06 -4.44595217e+06 -4.57868897e+06 -5.00185951e+06 -4.51805882e+06 -4.41811113e+06 -4.66509912e+06 -5.49629109e+06 -5.03400216e+06 -4.41860485e+06 -4.49426953e+06 -4.49995877e+06 -4.48580487e+06 -4.98500291e+06 -4.60407981e+06 -4.96788157e+06 -4.49589453e+06 -4.92863548e+06 -5.07617707e+06 -4.41985968e+06 -6.96368917e+06 -4.83081330e+06 -4.90905490e+06 -4.93402723e+06] [-4.14393237e+06 -3.61208118e+06 -3.28983066e+06 -3.46483272e+06 -3.33522211e+06 -3.76239970e+06 -3.28781388e+06 -3.43256007e+06 -3.73593780e+06 -3.36198869e+06 -3.25401747e+06 -3.51128842e+06 -4.16180959e+06 -3.75453677e+06 -3.25137125e+06 -3.37470637e+06 -3.37528064e+06 -3.32857737e+06 -3.71972135e+06 -3.45333110e+06 -3.68316264e+06 -3.33615260e+06 -3.66755507e+06 -3.80193821e+06 -3.27849417e+06 -5.24124857e+06 -3.56021765e+06 -3.62197312e+06 -3.69796798e+06] [-2.72300364e+06 -2.32843185e+06 -2.10806459e+06 -2.23813915e+06 -2.14813283e+06 -2.44763287e+06 -2.10942746e+06 -2.22608656e+06 -2.43046362e+06 -2.16733664e+06 -2.08011140e+06 -2.28444988e+06 -2.73499193e+06 -2.43769323e+06 -2.07632777e+06 -2.19483553e+06 -2.18928931e+06 -2.13852367e+06 -2.41523777e+06 -2.23991984e+06 -2.37870558e+06 -2.14494141e+06 -2.37862947e+06 -2.48194352e+06 -2.10648458e+06 -3.41013497e+06 -2.28656113e+06 -2.32978254e+06 -2.41608152e+06] [-1.42978679e+06 -1.20907864e+06 -1.08956907e+06 -1.15667808e+06 -1.11420821e+06 -1.28237823e+06 -1.09349594e+06 -1.15509019e+06 -1.27136016e+06 -1.12303110e+06 -1.07673877e+06 -1.18876137e+06 -1.43497946e+06 -1.27183727e+06 -1.07333776e+06 -1.14343592e+06 -1.13637579e+06 -1.10653973e+06 -1.26080312e+06 -1.16336995e+06 -1.23805073e+06 -1.10998142e+06 -1.24305039e+06 -1.30060258e+06 -1.08911696e+06 -1.86987024e+06 -1.18544235e+06 -1.21143391e+06 -1.26753086e+06] [-6.73304297e+05 -5.80628442e+05 -5.15546202e+05 -5.36972432e+05 -5.26105795e+05 -6.14488157e+05 -5.18900579e+05 -5.38286405e+05 -6.07661127e+05 -5.28357984e+05 -5.14093232e+05 -5.53443800e+05 -6.74430004e+05 -6.07339260e+05 -5.11996086e+05 -5.34520648e+05 -5.29404402e+05 -5.21613218e+05 -6.01493798e+05 -5.42857102e+05 -5.95018110e+05 -5.23144977e+05 -5.96307648e+05 -6.19447625e+05 -5.13490906e+05 -8.92905006e+05 -5.71033966e+05 -5.85694575e+05 -6.05250989e+05] [-1.91517391e+05 -1.72332569e+05 -1.49188240e+05 -1.51021295e+05 -1.51262925e+05 -1.79722501e+05 -1.50931658e+05 -1.51571621e+05 -1.76390178e+05 -1.51360848e+05 -1.51595336e+05 -1.55932132e+05 -1.91014345e+05 -1.76889438e+05 -1.50350421e+05 -1.51143031e+05 -1.48834787e+05 -1.50298646e+05 -1.74264286e+05 -1.53637142e+05 -1.76879483e+05 -1.50551053e+05 -1.74753355e+05 -1.78410584e+05 -1.47403423e+05 -2.29119239e+05 -1.70438498e+05 -1.76105650e+05 -1.74655712e+05] [-5.19524052e+02 1.30873107e+03 -2.10471129e+03 -2.48452708e+03 -2.40892899e+03 9.55626256e+02 -2.58959671e+03 -2.71635729e+03 1.45622809e+03 -2.55314709e+03 -2.66450581e+03 -3.46419080e+03 -3.51671192e+02 1.14725299e+03 -2.29056185e+03 -2.83041071e+03 -2.35392990e+03 -2.36595565e+03 1.92272021e+03 -3.18039993e+03 5.63038042e+02 -2.31409179e+03 1.66439963e+03 1.31808115e+03 -1.99102265e+03 -1.41807244e+04 1.51482808e+03 5.55859553e+02 1.81805501e+03] [-5.10298349e+02 -4.35699083e+02 -4.37433191e+02 -4.36714625e+02 -4.51922991e+02 -4.54309180e+02 -4.51790534e+02 -4.49342923e+02 -4.38679973e+02 -4.51321133e+02 -4.63268310e+02 -4.74477953e+02 -5.03087892e+02 -4.51856705e+02 -4.49781493e+02 -4.44764996e+02 -4.31719686e+02 -4.43420014e+02 -4.21430781e+02 -4.64078998e+02 -4.64923869e+02 -4.42326130e+02 -4.28046046e+02 -4.40650490e+02 -4.34335078e+02 -8.62939915e+02 -4.26678064e+02 -4.64296343e+02 -4.23947695e+02] [-4.55781121e+02 -5.24121598e+02 -3.89093140e+02 -3.26544750e+02 -3.77962465e+02 -5.10287573e+02 -3.77517531e+02 -3.38961489e+02 -4.93735042e+02 -3.75560212e+02 -3.99661886e+02 -3.28609155e+02 -4.54797489e+02 -5.07196231e+02 -3.99108687e+02 -3.35936800e+02 -3.26170222e+02 -3.69756930e+02 -4.86804445e+02 -3.28091401e+02 -5.15629007e+02 -3.77841167e+02 -5.09151395e+02 -5.03950168e+02 -3.64697621e+02 -2.67058830e+02 -5.29629933e+02 -5.25577636e+02 -4.98732057e+02] [-3.09943117e+02 -3.22702468e+02 -2.70480664e+02 -2.65722818e+02 -2.63872361e+02 -3.14510061e+02 -2.65976274e+02 -2.53917528e+02 -3.14952726e+02 -2.63576895e+02 -2.78207661e+02 -2.50692909e+02 -3.08984436e+02 -3.15918511e+02 -2.77938477e+02 -2.46335215e+02 -2.52430221e+02 -2.71057004e+02 -3.19198286e+02 -2.56958385e+02 -3.21560748e+02 -2.68444176e+02 -3.15469513e+02 -3.04322100e+02 -2.69925741e+02 -3.00615574e+02 -3.25563778e+02 -3.26763822e+02 -3.04231823e+02] [-2.20523427e+04 -2.45023418e+04 -2.37432478e+04 -2.26900992e+04 -2.23898964e+04 -2.26468426e+04 -2.30514405e+04 -2.16774141e+04 -2.23204460e+04 -2.29386730e+04 -2.45024952e+04 -2.12020987e+04 -2.22164269e+04 -2.32386775e+04 -2.46165596e+04 -2.05503087e+04 -2.09171140e+04 -2.31002814e+04 -2.25354169e+04 -2.18596373e+04 -2.46144914e+04 -2.34017187e+04 -2.23135534e+04 -2.13863611e+04 -2.30057383e+04 -3.42022435e+04 -2.50070158e+04 -2.53169775e+04 -2.07649245e+04] [-1.52405165e+05 -1.56060193e+05 -1.55017451e+05 -1.50512213e+05 -1.50205992e+05 -1.49051955e+05 -1.53309229e+05 -1.46628856e+05 -1.45795457e+05 -1.52751587e+05 -1.60935631e+05 -1.47348572e+05 -1.52634351e+05 -1.51729538e+05 -1.60294959e+05 -1.40881931e+05 -1.41370555e+05 -1.52676281e+05 -1.45079415e+05 -1.49183305e+05 -1.59679594e+05 -1.53840841e+05 -1.44697017e+05 -1.41537427e+05 -1.51003528e+05 -2.52892607e+05 -1.57585979e+05 -1.62870522e+05 -1.36716901e+05] [-8.28802608e+05 -7.23608545e+05 -6.82667630e+05 -7.08677748e+05 -6.88428234e+05 -7.45610923e+05 -6.79794885e+05 -7.07158732e+05 -7.37390621e+05 -6.98374006e+05 -6.87381637e+05 -7.25086206e+05 -8.32984089e+05 -7.51200185e+05 -6.80433059e+05 -6.90195756e+05 -6.87694559e+05 -6.84899735e+05 -7.29607598e+05 -7.15597570e+05 -7.44048334e+05 -6.89732628e+05 -7.16576727e+05 -7.45062062e+05 -6.78957929e+05 -1.15856765e+06 -7.14511006e+05 -7.33132543e+05 -7.22655730e+05] [-2.36797741e+06 -1.99496034e+06 -1.81407062e+06 -1.91459864e+06 -1.85739461e+06 -2.10318313e+06 -1.81195050e+06 -1.92644055e+06 -2.09147943e+06 -1.87388205e+06 -1.80435349e+06 -1.98405998e+06 -2.38132305e+06 -2.11312799e+06 -1.78447583e+06 -1.89005079e+06 -1.88346289e+06 -1.82992751e+06 -2.06951825e+06 -1.94318886e+06 -2.04894870e+06 -1.83922496e+06 -2.02631283e+06 -2.13545643e+06 -1.81812931e+06 -3.00098830e+06 -1.95907339e+06 -1.99797865e+06 -2.07995505e+06] [-4.15338100e+06 -3.51079629e+06 -3.14132714e+06 -3.30920016e+06 -3.22662367e+06 -3.71055336e+06 -3.14380759e+06 -3.33568227e+06 -3.69498315e+06 -3.24331793e+06 -3.11626897e+06 -3.43454581e+06 -4.17514924e+06 -3.72377239e+06 -3.08726508e+06 -3.28020928e+06 -3.26999446e+06 -3.17056965e+06 -3.65766387e+06 -3.35969588e+06 -3.60095200e+06 -3.18267943e+06 -3.58913982e+06 -3.77683931e+06 -3.15082626e+06 -4.99362745e+06 -3.44782091e+06 -3.51083138e+06 -3.68658199e+06] [-5.86929657e+06 -5.02994550e+06 -4.49668176e+06 -4.71414778e+06 -4.60605527e+06 -5.28900391e+06 -4.50181727e+06 -4.74191704e+06 -5.26828505e+06 -4.62797198e+06 -4.45466819e+06 -4.86780799e+06 -5.89882990e+06 -5.30342027e+06 -4.43446823e+06 -4.66650011e+06 -4.65309386e+06 -4.53647400e+06 -5.21565195e+06 -4.76877271e+06 -5.15202468e+06 -4.55416120e+06 -5.13580767e+06 -5.37765317e+06 -4.50315264e+06 -6.97485778e+06 -4.94331122e+06 -5.03834738e+06 -5.24905705e+06] [-7.23086499e+06 -6.34186837e+06 -5.60137095e+06 -5.81333417e+06 -5.71079317e+06 -6.61447476e+06 -5.60926538e+06 -5.82930762e+06 -6.58526838e+06 -5.73388386e+06 -5.55259350e+06 -5.95965731e+06 -7.26290611e+06 -6.62302770e+06 -5.56232041e+06 -5.73991130e+06 -5.72440110e+06 -5.64246886e+06 -6.52068407e+06 -5.85262206e+06 -6.48475484e+06 -5.66674956e+06 -6.45389508e+06 -6.69744989e+06 -5.59147517e+06 -8.63492203e+06 -6.24276024e+06 -6.37593092e+06 -6.54164777e+06] [-8.24629172e+06 -7.45676064e+06 -6.44999606e+06 -6.59468672e+06 -6.54854014e+06 -7.69902317e+06 -6.46189429e+06 -6.59784752e+06 -7.66395831e+06 -6.55828840e+06 -6.41229677e+06 -6.71495208e+06 -8.27344834e+06 -7.70412176e+06 -6.46087826e+06 -6.50109176e+06 -6.48839849e+06 -6.48299814e+06 -7.59214837e+06 -6.61465353e+06 -7.60781564e+06 -6.50920377e+06 -7.55785823e+06 -7.74989564e+06 -6.42061317e+06 -9.55362222e+06 -7.35706328e+06 -7.52651349e+06 -7.59215359e+06] [-8.47243546e+06 -7.83344593e+06 -6.63500809e+06 -6.71129752e+06 -6.72704390e+06 -8.03903796e+06 -6.64972248e+06 -6.70787758e+06 -8.00973127e+06 -6.71693616e+06 -6.61491027e+06 -6.80438311e+06 -8.48798783e+06 -8.03540464e+06 -6.68989490e+06 -6.62084332e+06 -6.61459933e+06 -6.66705140e+06 -7.94091151e+06 -6.72019197e+06 -7.97252087e+06 -6.68671831e+06 -7.93219708e+06 -8.05389414e+06 -6.60752450e+06 -9.08873538e+06 -7.73598096e+06 -7.91892243e+06 -7.93161449e+06] [-7.23451526e+06 -6.73446811e+06 -5.57959309e+06 -5.62737195e+06 -5.66877376e+06 -6.92420903e+06 -5.59688215e+06 -5.61979090e+06 -6.91107081e+06 -5.64079558e+06 -5.57359902e+06 -5.69409116e+06 -7.23236466e+06 -6.89262382e+06 -5.64625169e+06 -5.56354718e+06 -5.56467296e+06 -5.62663631e+06 -6.85999117e+06 -5.63320228e+06 -6.83685283e+06 -5.62815526e+06 -6.85499678e+06 -6.91852893e+06 -5.57885597e+06 -7.24546885e+06 -6.64379725e+06 -6.80253109e+06 -6.85673681e+06] [-4.76847946e+06 -4.40107938e+06 -3.53837806e+06 -3.59253698e+06 -3.62125159e+06 -4.59482480e+06 -3.56394673e+06 -3.58289792e+06 -4.59743743e+06 -3.58105789e+06 -3.53587791e+06 -3.63394562e+06 -4.74670403e+06 -4.51103917e+06 -3.58400032e+06 -3.58583629e+06 -3.58507145e+06 -3.60867111e+06 -4.57569112e+06 -3.59965518e+06 -4.44868003e+06 -3.58700262e+06 -4.56585560e+06 -4.58667576e+06 -3.57314437e+06 -4.30326908e+06 -4.32595447e+06 -4.42735345e+06 -4.59653466e+06] [-1.42596576e+06 -1.24472410e+06 -8.56737038e+05 -9.06314702e+05 -9.16835840e+05 -1.43595997e+06 -8.94395247e+05 -9.10447647e+05 -1.45148135e+06 -8.72970836e+05 -8.44415190e+05 -9.24657764e+05 -1.39245223e+06 -1.29763635e+06 -8.61454176e+05 -9.95510200e+05 -9.76824336e+05 -9.30820040e+05 -1.45941349e+06 -9.21628745e+05 -1.22880597e+06 -8.96556391e+05 -1.45463918e+06 -1.44549367e+06 -9.16031183e+05 -2.45332689e+05 -1.20195553e+06 -1.22059687e+06 -1.52545149e+06] [ 8.60109363e+05 8.41690386e+05 9.00606808e+05 9.25602163e+05 8.87460073e+05 6.85170253e+05 8.61344555e+05 8.83574899e+05 6.80220141e+05 9.19355077e+05 9.18564335e+05 9.09276307e+05 8.82150980e+05 8.28883728e+05 9.23148423e+05 7.49723733e+05 8.01788874e+05 8.79629801e+05 6.68533648e+05 8.91177493e+05 8.86688262e+05 8.92085561e+05 6.45078821e+05 6.53208868e+05 8.71128371e+05 2.32320637e+06 8.37570801e+05 8.80091288e+05 5.61308278e+05] [ 7.86068765e+05 6.74019780e+05 6.80708521e+05 7.94567746e+05 7.13128720e+05 5.67294476e+05 6.51324484e+05 7.23718387e+05 5.90565632e+05 7.25185950e+05 6.90148438e+05 7.65353423e+05 7.83265636e+05 6.67401936e+05 7.04121586e+05 6.06853361e+05 6.82233072e+05 7.32267040e+05 5.95906221e+05 7.45087484e+05 6.99457609e+05 7.08343198e+05 5.47102297e+05 5.28192198e+05 7.14366471e+05 1.92792007e+06 6.32104029e+05 6.83000898e+05 4.89147210e+05] [-1.24698470e+06 -1.29978207e+06 -1.14874969e+06 -1.01090903e+06 -1.09761013e+06 -1.35430973e+06 -1.16123392e+06 -1.05960922e+06 -1.30799693e+06 -1.09931436e+06 -1.16047915e+06 -1.03724806e+06 -1.26546700e+06 -1.31978353e+06 -1.14891252e+06 -1.09159500e+06 -1.03320113e+06 -1.06707220e+06 -1.28611464e+06 -1.04612516e+06 -1.32266343e+06 -1.10496012e+06 -1.33357158e+06 -1.37479591e+06 -1.06651124e+06 -1.15225155e+06 -1.34932840e+06 -1.34417770e+06 -1.32454988e+06] [-4.46038851e+06 -4.26136047e+06 -3.85931067e+06 -3.80111109e+06 -3.82167965e+06 -4.32566203e+06 -3.85277357e+06 -3.79549915e+06 -4.26658203e+06 -3.83862101e+06 -3.87571091e+06 -3.81809600e+06 -4.48678597e+06 -4.32888433e+06 -3.87401872e+06 -3.73483042e+06 -3.70979827e+06 -3.79919718e+06 -4.23814535e+06 -3.80212270e+06 -4.33522728e+06 -3.83515135e+06 -4.24775306e+06 -4.32887365e+06 -3.76298540e+06 -5.45955419e+06 -4.28162449e+06 -4.33935094e+06 -4.19730144e+06] [-6.84169965e+06 -6.38152428e+06 -5.76399210e+06 -5.81532849e+06 -5.75670984e+06 -6.49054389e+06 -5.74804544e+06 -5.76531519e+06 -6.42851117e+06 -5.78384184e+06 -5.76985288e+06 -5.83205218e+06 -6.87096576e+06 -6.50478563e+06 -5.77796511e+06 -5.65280250e+06 -5.65311981e+06 -5.74371348e+06 -6.40159122e+06 -5.78882226e+06 -6.48824637e+06 -5.77201791e+06 -6.37101803e+06 -6.48623763e+06 -5.67896336e+06 -8.43229513e+06 -6.36353117e+06 -6.46447679e+06 -6.31597935e+06] [-7.10209884e+06 -6.51732874e+06 -5.89423899e+06 -6.01933244e+06 -5.91167425e+06 -6.65841537e+06 -5.87804692e+06 -5.95700656e+06 -6.60258292e+06 -5.94314108e+06 -5.88546216e+06 -6.04409798e+06 -7.12880161e+06 -6.66724099e+06 -5.89353444e+06 -5.83896171e+06 -5.84758491e+06 -5.90505927e+06 -6.57823298e+06 -5.98644419e+06 -6.62718334e+06 -5.92507554e+06 -6.52707668e+06 -6.66369915e+06 -5.83107027e+06 -8.84553539e+06 -6.47544249e+06 -6.58332460e+06 -6.49330072e+06] [-5.62355420e+06 -5.06590517e+06 -4.58512832e+06 -4.73102132e+06 -4.62092262e+06 -5.21091877e+06 -4.57852894e+06 -4.68552474e+06 -5.16803520e+06 -4.64736596e+06 -4.56896538e+06 -4.77259691e+06 -5.64348579e+06 -5.21233496e+06 -4.57076142e+06 -4.59783544e+06 -4.60213465e+06 -4.61188529e+06 -5.14592733e+06 -4.71289315e+06 -5.15900540e+06 -4.62401582e+06 -5.09650663e+06 -5.22660676e+06 -4.54895276e+06 -7.10669067e+06 -5.01692467e+06 -5.10752403e+06 -5.09276440e+06] [-4.06487871e+06 -3.61385449e+06 -3.27468170e+06 -3.40148608e+06 -3.31262200e+06 -3.73580431e+06 -3.27375280e+06 -3.37575865e+06 -3.70522599e+06 -3.33373957e+06 -3.26063225e+06 -3.44861291e+06 -4.07901640e+06 -3.73485920e+06 -3.25819877e+06 -3.31813655e+06 -3.31653845e+06 -3.30158962e+06 -3.68520166e+06 -3.39854504e+06 -3.68667145e+06 -3.31027562e+06 -3.64545191e+06 -3.75206136e+06 -3.25689684e+06 -5.04393397e+06 -3.56973716e+06 -3.64000429e+06 -3.65868580e+06] [-2.48997627e+06 -2.19084149e+06 -1.98531230e+06 -2.06540023e+06 -2.01480500e+06 -2.27742925e+06 -1.98824264e+06 -2.05726141e+06 -2.25704361e+06 -2.02746816e+06 -1.97869338e+06 -2.10706059e+06 -2.49774081e+06 -2.27340624e+06 -1.97447715e+06 -2.02685454e+06 -2.02055333e+06 -2.00359354e+06 -2.24033743e+06 -2.07299583e+06 -2.23985281e+06 -2.00947185e+06 -2.21670899e+06 -2.28890864e+06 -1.97673984e+06 -3.11976429e+06 -2.16009820e+06 -2.20807955e+06 -2.23338711e+06] [-1.27710651e+06 -1.11558096e+06 -1.00937431e+06 -1.04691378e+06 -1.02852010e+06 -1.16817703e+06 -1.01522387e+06 -1.04790565e+06 -1.15498985e+06 -1.03279964e+06 -1.00956542e+06 -1.07715069e+06 -1.27919564e+06 -1.16105733e+06 -1.00545205e+06 -1.03760627e+06 -1.02978208e+06 -1.01992159e+06 -1.14337078e+06 -1.05778256e+06 -1.14385124e+06 -1.02224191e+06 -1.13468634e+06 -1.17268030e+06 -1.00508190e+06 -1.63006815e+06 -1.09849578e+06 -1.12765888e+06 -1.14599077e+06] [-5.47687133e+05 -4.76996196e+05 -4.34929416e+05 -4.47945838e+05 -4.43656793e+05 -5.01904663e+05 -4.39153477e+05 -4.50612550e+05 -4.94305663e+05 -4.45255811e+05 -4.38046808e+05 -4.64566238e+05 -5.47629251e+05 -4.96498192e+05 -4.34913227e+05 -4.48259833e+05 -4.42304774e+05 -4.39298930e+05 -4.87593402e+05 -4.56103293e+05 -4.90922193e+05 -4.40442691e+05 -4.85630790e+05 -5.01920977e+05 -4.32378867e+05 -7.23214137e+05 -4.69507341e+05 -4.84905267e+05 -4.90728421e+05] [-7.93097418e+04 -6.56265794e+04 -6.67938511e+04 -6.92720976e+04 -6.87693496e+04 -6.93770918e+04 -6.86210370e+04 -7.00679561e+04 -6.67956192e+04 -6.93548803e+04 -6.90021995e+04 -7.40643214e+04 -7.87596793e+04 -6.82469368e+04 -6.76610319e+04 -6.99338986e+04 -6.79100308e+04 -6.81419852e+04 -6.46497764e+04 -7.20965610e+04 -6.95252092e+04 -6.81339806e+04 -6.52986132e+04 -6.78674328e+04 -6.60043739e+04 -1.35406376e+05 -6.39935121e+04 -6.88822861e+04 -6.51116978e+04] [-3.08596723e+03 -2.16074840e+03 -2.88731070e+03 -3.05061869e+03 -3.05565691e+03 -2.40855175e+03 -3.08014629e+03 -3.14023516e+03 -2.21066678e+03 -3.08445616e+03 -3.13868230e+03 -3.47007718e+03 -3.00240530e+03 -2.29181303e+03 -2.98375487e+03 -3.17481504e+03 -2.99394699e+03 -3.02665681e+03 -2.02381566e+03 -3.34446483e+03 -2.47383215e+03 -2.98712864e+03 -2.10047094e+03 -2.24640095e+03 -2.86674896e+03 -7.86069765e+03 -2.04367894e+03 -2.46136852e+03 -2.07081118e+03] [ 3.52237411e+02 4.64875059e+02 6.25758923e+02 5.06183496e+02 5.49890188e+02 3.76380719e+02 6.27773241e+02 5.35932499e+02 3.29057576e+02 5.89244144e+02 6.31139652e+02 5.19251728e+02 3.97124032e+02 4.51867877e+02 6.41918663e+02 4.97732532e+02 4.59629073e+02 5.15061796e+02 2.89919394e+02 5.18151563e+02 5.26882128e+02 5.75936373e+02 3.37933165e+02 3.80549589e+02 5.16055439e+02 1.62913090e+03 5.22116325e+02 5.48360415e+02 2.62281862e+02] [-2.92236613e-01 -5.51020664e-01 5.95921760e-01 -8.21316853e-01 -9.32036088e-02 3.17073124e-01 7.84149517e-01 3.61068740e-02 1.79717016e-01 7.33017935e-01 1.51625428e-01 -6.72875001e-01 3.15978153e-01 5.27197581e-01 3.33050551e-01 2.44235744e-01 -6.95547366e-01 -1.95516803e-02 -5.19384798e-02 -4.80843824e-01 1.34575236e-01 -7.07153070e-01 7.75251008e-02 1.56447027e-01 6.73797941e-01 6.30877159e-01 -8.65706240e-01 3.68139307e-01 -2.86563875e-01] [-7.87393624e-01 -7.48258291e-01 -9.50258848e-01 -9.10755479e-01 9.14610542e-01 2.77029417e-01 2.31245033e-02 9.69384889e-01 3.23894790e-01 -1.04709127e-01 8.36603226e-01 2.73637766e-01 4.89191274e-01 -1.50371334e-01 2.33659684e-01 4.25809055e-01 2.13021788e-01 -1.06668333e-01 -9.54707896e-01 -1.06217406e-01 1.66357653e-01 -3.16642822e-01 -8.37225432e-02 -2.36247162e-01 9.57558431e-01 -6.38753826e-01 3.04403477e-02 1.73147797e-01 9.79607434e-01] [-2.38647311e+04 -2.72847665e+04 -2.67396123e+04 -2.53480663e+04 -2.51371552e+04 -2.48731363e+04 -2.60131486e+04 -2.40241676e+04 -2.44860862e+04 -2.56516729e+04 -2.78010436e+04 -2.35116492e+04 -2.40145694e+04 -2.56611047e+04 -2.78862261e+04 -2.26808798e+04 -2.32259466e+04 -2.59757999e+04 -2.48476042e+04 -2.43293286e+04 -2.74267746e+04 -2.62203447e+04 -2.45868476e+04 -2.31252883e+04 -2.58678206e+04 -3.88483692e+04 -2.80088564e+04 -2.83627093e+04 -2.25065898e+04] [-2.43826573e+05 -2.46089232e+05 -2.40861671e+05 -2.35102725e+05 -2.34619887e+05 -2.36983595e+05 -2.38450693e+05 -2.29636281e+05 -2.32262103e+05 -2.38206754e+05 -2.49289049e+05 -2.31198304e+05 -2.44141583e+05 -2.40827628e+05 -2.48490693e+05 -2.21175496e+05 -2.21884646e+05 -2.37857343e+05 -2.31013188e+05 -2.33376051e+05 -2.51695442e+05 -2.39521550e+05 -2.30283981e+05 -2.26266216e+05 -2.35282421e+05 -3.89275825e+05 -2.47717037e+05 -2.55878713e+05 -2.19231120e+05] [-1.09510764e+06 -9.96226890e+05 -9.32634343e+05 -9.50326141e+05 -9.32908115e+05 -1.00952862e+06 -9.27216666e+05 -9.43441766e+05 -9.97462564e+05 -9.44739933e+05 -9.45134063e+05 -9.61890246e+05 -1.09935814e+06 -1.01866312e+06 -9.38880567e+05 -9.18469541e+05 -9.17568528e+05 -9.31801223e+05 -9.89055907e+05 -9.54581910e+05 -1.02102100e+06 -9.37933356e+05 -9.75888887e+05 -9.98291846e+05 -9.23677134e+05 -1.53274095e+06 -9.88621070e+05 -1.01458781e+06 -9.70899896e+05] [-2.84065271e+06 -2.49594147e+06 -2.25591820e+06 -2.33328400e+06 -2.28978988e+06 -2.58753053e+06 -2.25018112e+06 -2.33560510e+06 -2.56939800e+06 -2.30543891e+06 -2.26124566e+06 -2.39237841e+06 -2.85349220e+06 -2.60334260e+06 -2.24367438e+06 -2.28838540e+06 -2.28582248e+06 -2.26462282e+06 -2.54909904e+06 -2.35622388e+06 -2.55490777e+06 -2.27516492e+06 -2.50724799e+06 -2.59683395e+06 -2.25049664e+06 -3.55314449e+06 -2.46512985e+06 -2.51360253e+06 -2.53974750e+06] [-4.88632919e+06 -4.26608768e+06 -3.77008001e+06 -3.90733194e+06 -3.85117993e+06 -4.45308875e+06 -3.76922214e+06 -3.92632979e+06 -4.43159805e+06 -3.86188201e+06 -3.76336979e+06 -4.02734718e+06 -4.90837257e+06 -4.47731273e+06 -3.73804758e+06 -3.85863416e+06 -3.85487819e+06 -3.78960234e+06 -4.39670119e+06 -3.95468271e+06 -4.36442325e+06 -3.80293099e+06 -4.32759516e+06 -4.49015892e+06 -3.77077130e+06 -5.73465058e+06 -4.20764224e+06 -4.28195005e+06 -4.40510086e+06] [-6.87106518e+06 -6.00905453e+06 -5.27484538e+06 -5.46841531e+06 -5.39289978e+06 -6.26942382e+06 -5.27530754e+06 -5.49712601e+06 -6.24647841e+06 -5.40748448e+06 -5.24885620e+06 -5.63216837e+06 -6.90418714e+06 -6.30443344e+06 -5.23528254e+06 -5.40699312e+06 -5.40117974e+06 -5.30460758e+06 -6.19279517e+06 -5.52731548e+06 -6.14636624e+06 -5.32673469e+06 -6.10483792e+06 -6.32965548e+06 -5.27886842e+06 -7.97867515e+06 -5.91877030e+06 -6.02961289e+06 -6.21354960e+06] [-8.47844608e+06 -7.50940692e+06 -6.52414336e+06 -6.73120967e+06 -6.65601452e+06 -7.80432619e+06 -6.52747941e+06 -6.75362933e+06 -7.77706247e+06 -6.67109970e+06 -6.48618749e+06 -6.90120632e+06 -8.51555920e+06 -7.83525880e+06 -6.50293814e+06 -6.64969673e+06 -6.64229465e+06 -6.56128451e+06 -7.70927577e+06 -6.78092890e+06 -7.67228638e+06 -6.59011938e+06 -7.62567628e+06 -7.86486425e+06 -6.52117968e+06 -9.86067994e+06 -7.39705263e+06 -7.54885452e+06 -7.72665051e+06] [-9.42389094e+06 -8.45681017e+06 -7.26292183e+06 -7.45853208e+06 -7.40030311e+06 -8.76239944e+06 -7.27410886e+06 -7.46590719e+06 -8.73328033e+06 -7.40575013e+06 -7.22092103e+06 -7.61253476e+06 -9.45451502e+06 -8.77361739e+06 -7.27148702e+06 -7.36399405e+06 -7.35790407e+06 -7.31329041e+06 -8.66064694e+06 -7.48984070e+06 -8.62661123e+06 -7.33882664e+06 -8.59539344e+06 -8.80787905e+06 -7.25672124e+06 -1.08128300e+07 -8.33052884e+06 -8.51478243e+06 -8.67012798e+06] [-9.22725444e+06 -8.39665716e+06 -7.12373183e+06 -7.29199912e+06 -7.25249769e+06 -8.68047225e+06 -7.14433503e+06 -7.27313219e+06 -8.65432926e+06 -7.23919403e+06 -7.08908363e+06 -7.40181047e+06 -9.23920668e+06 -8.65496418e+06 -7.15844404e+06 -7.19540369e+06 -7.19598599e+06 -7.19448324e+06 -8.59725077e+06 -7.29724006e+06 -8.54072456e+06 -7.20151955e+06 -8.55679693e+06 -8.69740956e+06 -7.12477720e+06 -9.88701896e+06 -8.27353799e+06 -8.45794574e+06 -8.59355607e+06] [-7.35549630e+06 -6.68755164e+06 -5.58676719e+06 -5.74756281e+06 -5.70094192e+06 -6.95561804e+06 -5.61753633e+06 -5.71122681e+06 -6.93607661e+06 -5.67421567e+06 -5.55741780e+06 -5.81578309e+06 -7.34620397e+06 -6.87650645e+06 -5.61668921e+06 -5.68331206e+06 -5.68396585e+06 -5.68057546e+06 -6.90654965e+06 -5.73755029e+06 -6.78245122e+06 -5.66455043e+06 -6.87749306e+06 -6.95837044e+06 -5.60761356e+06 -7.36342309e+06 -6.58000685e+06 -6.72449340e+06 -6.90870500e+06] [-4.05600548e+06 -3.57314028e+06 -2.91821085e+06 -3.08161367e+06 -3.00742782e+06 -3.83110194e+06 -2.95994005e+06 -3.04626497e+06 -3.82182440e+06 -2.97814092e+06 -2.88260265e+06 -3.11619691e+06 -4.03135600e+06 -3.69498261e+06 -2.91312481e+06 -3.09311033e+06 -3.08051439e+06 -3.02385242e+06 -3.82375729e+06 -3.07001690e+06 -3.60452777e+06 -2.99130462e+06 -3.80146197e+06 -3.84355953e+06 -2.96258448e+06 -3.60506585e+06 -3.49507381e+06 -3.56441254e+06 -3.85785232e+06] [-1.31001305e+06 -1.02918182e+06 -7.25336199e+05 -8.45860424e+05 -7.79608630e+05 -1.26916350e+06 -7.68569958e+05 -8.33203639e+05 -1.26685373e+06 -7.51353921e+05 -6.82785733e+05 -8.59330439e+05 -1.28294865e+06 -1.09976722e+06 -6.88019331e+05 -9.41481551e+05 -9.09268991e+05 -8.09510557e+05 -1.28877581e+06 -8.43873702e+05 -1.00726124e+06 -7.78462380e+05 -1.27783131e+06 -1.30211712e+06 -7.72664151e+05 -2.56639116e+05 -9.89091270e+05 -9.82652820e+05 -1.36353196e+06] [-2.59334434e+05 -1.12645593e+05 1.13023859e+04 -3.73987963e+04 -2.79275778e+03 -3.18833574e+05 -2.47021803e+04 -5.72742506e+04 -3.05897939e+05 1.15813971e+04 5.65283296e+04 -5.29445167e+04 -2.48675884e+05 -1.65192617e+05 6.32645464e+04 -1.82803483e+05 -1.26884901e+05 -1.78818963e+04 -3.23619244e+05 -5.07533116e+04 -8.02955714e+04 -1.29668544e+04 -3.32403036e+05 -3.69377787e+05 -1.82292306e+03 8.90026309e+05 -1.08437491e+05 -6.45546232e+04 -4.22525663e+05] [-1.65918826e+06 -1.51520696e+06 -1.25630214e+06 -1.24551322e+06 -1.24448184e+06 -1.67953260e+06 -1.27700301e+06 -1.27289231e+06 -1.64551657e+06 -1.24378185e+06 -1.22350220e+06 -1.26948539e+06 -1.66943136e+06 -1.58097382e+06 -1.21944135e+06 -1.34607110e+06 -1.28854562e+06 -1.23475669e+06 -1.64424594e+06 -1.26100028e+06 -1.51800928e+06 -1.25609920e+06 -1.66268177e+06 -1.72656256e+06 -1.21796794e+06 -1.01362928e+06 -1.52797880e+06 -1.50642794e+06 -1.71402831e+06] [-4.25122275e+06 -3.99249913e+06 -3.55050686e+06 -3.53569879e+06 -3.53206313e+06 -4.11231992e+06 -3.55334715e+06 -3.53450326e+06 -4.05999491e+06 -3.54429266e+06 -3.53912686e+06 -3.55968700e+06 -4.27552881e+06 -4.08292175e+06 -3.54396740e+06 -3.51023443e+06 -3.47711219e+06 -3.51093058e+06 -4.03897335e+06 -3.53483880e+06 -4.05265254e+06 -3.54262475e+06 -4.04657892e+06 -4.13694303e+06 -3.47300118e+06 -4.75754948e+06 -3.99999556e+06 -4.04100222e+06 -4.03243453e+06] [-6.86619914e+06 -6.43971789e+06 -5.78279883e+06 -5.80241101e+06 -5.77378270e+06 -6.55323049e+06 -5.76975890e+06 -5.76674041e+06 -6.49056107e+06 -5.79470381e+06 -5.78589430e+06 -5.82530402e+06 -6.89715580e+06 -6.56528088e+06 -5.79889221e+06 -5.66378456e+06 -5.65684609e+06 -5.75021383e+06 -6.45917620e+06 -5.78294170e+06 -6.54480649e+06 -5.78285772e+06 -6.44151611e+06 -6.55613010e+06 -5.69036642e+06 -8.24680483e+06 -6.42727556e+06 -6.52414205e+06 -6.38901135e+06] [-7.87647917e+06 -7.33056776e+06 -6.58661152e+06 -6.65258682e+06 -6.59781446e+06 -7.45823160e+06 -6.56846882e+06 -6.60144663e+06 -7.39748251e+06 -6.62153005e+06 -6.59280172e+06 -6.68357613e+06 -7.90693977e+06 -7.48410043e+06 -6.60789219e+06 -6.46964725e+06 -6.47724954e+06 -6.57364407e+06 -7.36371576e+06 -6.62807839e+06 -7.45371950e+06 -6.60125760e+06 -7.32422352e+06 -7.45177243e+06 -6.50568792e+06 -9.58370305e+06 -7.29720944e+06 -7.41942555e+06 -7.27283145e+06] [-7.12907219e+06 -6.58701922e+06 -5.90012398e+06 -5.98634790e+06 -5.92230987e+06 -6.71483501e+06 -5.88326287e+06 -5.93915984e+06 -6.66098427e+06 -5.94571392e+06 -5.90717491e+06 -6.02409114e+06 -7.15369837e+06 -6.73560843e+06 -5.91574698e+06 -5.81889959e+06 -5.82748910e+06 -5.90146539e+06 -6.63018236e+06 -5.96804260e+06 -6.69971523e+06 -5.92305719e+06 -6.58464201e+06 -6.70752748e+06 -5.83810731e+06 -8.71914753e+06 -6.54543350e+06 -6.66049691e+06 -6.55102641e+06] [-5.21390934e+06 -4.75980059e+06 -4.29009879e+06 -4.38036964e+06 -4.31754707e+06 -4.87004439e+06 -4.28213512e+06 -4.34828789e+06 -4.82865588e+06 -4.33816543e+06 -4.29595873e+06 -4.42384583e+06 -5.23080674e+06 -4.88310674e+06 -4.29601156e+06 -4.26259860e+06 -4.26531120e+06 -4.30116768e+06 -4.80264150e+06 -4.37546671e+06 -4.84996245e+06 -4.31539684e+06 -4.76364451e+06 -4.86588520e+06 -4.25202587e+06 -6.50910767e+06 -4.72067492e+06 -4.81267422e+06 -4.75021836e+06] [-3.40442800e+06 -3.06844562e+06 -2.79363398e+06 -2.86712235e+06 -2.82117603e+06 -3.15290486e+06 -2.79342589e+06 -2.85200814e+06 -3.12421462e+06 -2.83605121e+06 -2.79912284e+06 -2.91145622e+06 -3.41454756e+06 -3.16027194e+06 -2.79515927e+06 -2.79992201e+06 -2.79692576e+06 -2.80672340e+06 -3.10242996e+06 -2.87414301e+06 -3.13481320e+06 -2.81541581e+06 -3.07513161e+06 -3.15076505e+06 -2.77400970e+06 -4.29503503e+06 -3.03657184e+06 -3.10455011e+06 -3.07576635e+06] [-1.89481934e+06 -1.69465255e+06 -1.54837037e+06 -1.58737022e+06 -1.56871709e+06 -1.74952544e+06 -1.55271280e+06 -1.58526160e+06 -1.73042540e+06 -1.57569214e+06 -1.55623351e+06 -1.62374546e+06 -1.89874419e+06 -1.75037058e+06 -1.55088977e+06 -1.56104534e+06 -1.55418543e+06 -1.55688401e+06 -1.71424338e+06 -1.60038773e+06 -1.73640705e+06 -1.56145367e+06 -1.70174060e+06 -1.74609195e+06 -1.53815380e+06 -2.42643618e+06 -1.67478022e+06 -1.71872190e+06 -1.70600532e+06] [-9.25926830e+05 -8.20469397e+05 -7.43288794e+05 -7.58901164e+05 -7.56767085e+05 -8.54832144e+05 -7.49138845e+05 -7.62697908e+05 -8.43094857e+05 -7.58185593e+05 -7.50568844e+05 -7.84808200e+05 -9.26210962e+05 -8.50768066e+05 -7.45904096e+05 -7.55330783e+05 -7.47919761e+05 -7.48277178e+05 -8.32420182e+05 -7.71724100e+05 -8.43720700e+05 -7.49957273e+05 -8.29127536e+05 -8.52081174e+05 -7.38351388e+05 -1.21083207e+06 -8.09682527e+05 -8.35071449e+05 -8.33924778e+05] [-3.21357143e+05 -2.77860868e+05 -2.57972030e+05 -2.64043826e+05 -2.63876817e+05 -2.91996505e+05 -2.61727601e+05 -2.66861254e+05 -2.85702374e+05 -2.64912437e+05 -2.63044880e+05 -2.77300166e+05 -3.20586377e+05 -2.88951047e+05 -2.59712827e+05 -2.65393631e+05 -2.60480275e+05 -2.60681438e+05 -2.80070135e+05 -2.71677390e+05 -2.88461415e+05 -2.61235650e+05 -2.80141502e+05 -2.89520846e+05 -2.55813703e+05 -4.58819115e+05 -2.73120631e+05 -2.85504553e+05 -2.81993988e+05] [-4.85304872e+04 -3.93588614e+04 -4.16730790e+04 -4.31415693e+04 -4.30827932e+04 -4.17650473e+04 -4.29632369e+04 -4.39180433e+04 -3.99929654e+04 -4.34962056e+04 -4.33966862e+04 -4.67229081e+04 -4.81365679e+04 -4.11608169e+04 -4.23517384e+04 -4.38360483e+04 -4.23690941e+04 -4.25206358e+04 -3.83871934e+04 -4.53884995e+04 -4.21452658e+04 -4.25296968e+04 -3.88479200e+04 -4.06102680e+04 -4.11929273e+04 -8.91868103e+04 -3.82573274e+04 -4.17089922e+04 -3.88117566e+04] [-4.88180468e+03 -4.17344101e+03 -4.12124727e+03 -4.16326477e+03 -4.23440415e+03 -4.36838185e+03 -4.22977390e+03 -4.24579131e+03 -4.21852191e+03 -4.25127494e+03 -4.28600980e+03 -4.47078589e+03 -4.85281806e+03 -4.33034476e+03 -4.20600067e+03 -4.22935579e+03 -4.10483881e+03 -4.16231881e+03 -4.07524678e+03 -4.36402280e+03 -4.41918818e+03 -4.16965272e+03 -4.12635310e+03 -4.25865953e+03 -4.06427664e+03 -8.04384352e+03 -4.09464975e+03 -4.39515867e+03 -4.10857044e+03] [ 3.26188011e+02 3.76945716e+02 4.82872491e+02 4.11560896e+02 4.40764828e+02 3.26728611e+02 4.87417210e+02 4.31070625e+02 2.92260317e+02 4.65483903e+02 4.91555524e+02 4.30636328e+02 3.52547522e+02 3.72090673e+02 4.94882254e+02 4.08675646e+02 3.80356842e+02 4.16515215e+02 2.62216593e+02 4.25817853e+02 4.21713202e+02 4.53646112e+02 2.95098784e+02 3.25381453e+02 4.13755097e+02 1.22130405e+03 4.07782340e+02 4.32904426e+02 2.48502070e+02] [-1.10123521e-01 -2.11512724e-01 -1.29995921e-01 9.13561770e-01 3.40891789e-01 2.08383911e-01 9.01930658e-01 3.17966712e-01 -6.53267439e-01 -8.22962838e-01 6.82829978e-01 9.16674887e-01 -1.52671839e-02 -6.96035911e-01 4.62953254e-01 4.38928107e-01 9.24124742e-01 3.81915983e-01 -4.04893168e-01 -8.30867165e-01 -5.26285453e-01 -2.65775146e-01 2.99550039e-01 -2.81805312e-01 6.04163700e-01 2.10830450e-01 6.36297826e-01 -5.33728794e-01 -3.79848592e-01] [-2.72094386e+02 -3.10014422e+02 -3.55557910e+02 -3.40198257e+02 -3.37413289e+02 -2.69383493e+02 -3.46973017e+02 -3.23916134e+02 -2.62785047e+02 -3.47877711e+02 -3.73300741e+02 -3.22021887e+02 -2.72963484e+02 -2.85845910e+02 -3.74740048e+02 -3.02953410e+02 -3.08444212e+02 -3.48219928e+02 -2.62374711e+02 -3.31582411e+02 -3.16867999e+02 -3.52378176e+02 -2.60127392e+02 -2.44146400e+02 -3.44961833e+02 -6.38268347e+02 -3.16476581e+02 -3.30832687e+02 -2.31165804e+02] [-4.75244053e+04 -5.06616205e+04 -4.87037967e+04 -4.69290165e+04 -4.67453554e+04 -4.76876824e+04 -4.77389110e+04 -4.52782255e+04 -4.70118083e+04 -4.75180685e+04 -5.02899313e+04 -4.48787149e+04 -4.77102587e+04 -4.88151494e+04 -5.04004049e+04 -4.31682085e+04 -4.37960093e+04 -4.77430709e+04 -4.71884878e+04 -4.57921157e+04 -5.12543427e+04 -4.81406811e+04 -4.68697598e+04 -4.53397910e+04 -4.74392575e+04 -7.25136204e+04 -5.13770762e+04 -5.24266983e+04 -4.40688056e+04] [-3.54890778e+05 -3.55340981e+05 -3.30706237e+05 -3.22985468e+05 -3.23403102e+05 -3.46829819e+05 -3.27277524e+05 -3.16660189e+05 -3.41467921e+05 -3.27131577e+05 -3.40242785e+05 -3.18031500e+05 -3.55503124e+05 -3.50713429e+05 -3.39628836e+05 -3.06390671e+05 -3.07469336e+05 -3.26658216e+05 -3.40293764e+05 -3.20588024e+05 -3.61685065e+05 -3.28908879e+05 -3.38916554e+05 -3.34895569e+05 -3.23848694e+05 -5.01027137e+05 -3.57172149e+05 -3.66304631e+05 -3.26709212e+05] [-1.30246639e+06 -1.22478230e+06 -1.11595970e+06 -1.11983935e+06 -1.10957781e+06 -1.23085154e+06 -1.10758278e+06 -1.10892754e+06 -1.21711285e+06 -1.12081592e+06 -1.13374848e+06 -1.12330447e+06 -1.30664157e+06 -1.24032281e+06 -1.12925606e+06 -1.07981442e+06 -1.08068921e+06 -1.11056811e+06 -1.21018430e+06 -1.12016608e+06 -1.24906719e+06 -1.11777322e+06 -1.19814257e+06 -1.21217703e+06 -1.10225950e+06 -1.70932426e+06 -1.22052608e+06 -1.24802962e+06 -1.18422240e+06] [-3.02761216e+06 -2.75166910e+06 -2.47214020e+06 -2.51764006e+06 -2.48934376e+06 -2.81426266e+06 -2.46082885e+06 -2.51058560e+06 -2.79297603e+06 -2.50551285e+06 -2.49024942e+06 -2.55698339e+06 -3.03981013e+06 -2.83492202e+06 -2.47810076e+06 -2.45573847e+06 -2.45687814e+06 -2.47086661e+06 -2.77536513e+06 -2.53158987e+06 -2.80905537e+06 -2.48376900e+06 -2.73897742e+06 -2.80294790e+06 -2.45728371e+06 -3.70128361e+06 -2.72938861e+06 -2.78221213e+06 -2.74733935e+06] [-5.23599091e+06 -4.69626774e+06 -4.14642792e+06 -4.24192032e+06 -4.20798879e+06 -4.84269375e+06 -4.13651285e+06 -4.25060426e+06 -4.81835984e+06 -4.22043632e+06 -4.15791349e+06 -4.34019656e+06 -5.25916113e+06 -4.88183311e+06 -4.14060906e+06 -4.16833141e+06 -4.17096289e+06 -4.15072586e+06 -4.78524961e+06 -4.28001199e+06 -4.79660310e+06 -4.16900068e+06 -4.71986942e+06 -4.84989227e+06 -4.13611196e+06 -6.07688928e+06 -4.64733012e+06 -4.73042141e+06 -4.76775555e+06] [-7.49845790e+06 -6.70793773e+06 -5.85758116e+06 -6.00088914e+06 -5.96331664e+06 -6.93215977e+06 -5.84798643e+06 -6.02494447e+06 -6.90971765e+06 -5.97338487e+06 -5.85436043e+06 -6.15147063e+06 -7.53380466e+06 -6.99078741e+06 -5.84680859e+06 -5.91634070e+06 -5.92091719e+06 -5.86834465e+06 -6.85819175e+06 -6.05694201e+06 -6.84984509e+06 -5.89497859e+06 -6.76855031e+06 -6.95943768e+06 -5.85394685e+06 -8.43658952e+06 -6.62660754e+06 -6.74553940e+06 -6.85388947e+06] [-9.28738716e+06 -8.32560065e+06 -7.20470392e+06 -7.38296638e+06 -7.34059602e+06 -8.60891127e+06 -7.19794795e+06 -7.40783373e+06 -8.58724766e+06 -7.34751150e+06 -7.18796711e+06 -7.55779303e+06 -9.32748545e+06 -8.66741459e+06 -7.20090620e+06 -7.28404337e+06 -7.29019287e+06 -7.22880035e+06 -8.52266508e+06 -7.44047385e+06 -8.49606466e+06 -7.25898062e+06 -8.42283041e+06 -8.64459899e+06 -7.20586366e+06 -1.04045496e+07 -8.21607552e+06 -8.37116644e+06 -8.52344383e+06] [-1.02094144e+07 -9.16447532e+06 -7.86773261e+06 -8.07563904e+06 -8.02448580e+06 -9.49741631e+06 -7.87041531e+06 -8.08818958e+06 -9.47834526e+06 -8.02132722e+06 -7.83670733e+06 -8.24787727e+06 -1.02427124e+07 -9.52583018e+06 -7.87183237e+06 -7.97327280e+06 -7.98101859e+06 -7.91850354e+06 -9.41324645e+06 -8.12057500e+06 -9.33917919e+06 -7.94026547e+06 -9.31527820e+06 -9.53499913e+06 -7.87967282e+06 -1.13110829e+07 -9.03378710e+06 -9.20973607e+06 -9.41928216e+06] [-9.45112820e+06 -8.48171877e+06 -7.23091995e+06 -7.45913793e+06 -7.38339347e+06 -8.82361792e+06 -7.24862719e+06 -7.44155472e+06 -8.80606210e+06 -7.36837779e+06 -7.18908978e+06 -7.58959337e+06 -9.46601160e+06 -8.79565147e+06 -7.23596714e+06 -7.36737199e+06 -7.37530104e+06 -7.31589419e+06 -8.76171376e+06 -7.47466701e+06 -8.62473986e+06 -7.31642132e+06 -8.68184200e+06 -8.85164662e+06 -7.25623460e+06 -1.01491594e+07 -8.35100185e+06 -8.51362700e+06 -8.76709285e+06] [-7.50037429e+06 -6.68759885e+06 -5.65743257e+06 -5.89183699e+06 -5.78450886e+06 -7.02247774e+06 -5.68875336e+06 -5.84878713e+06 -7.00276599e+06 -5.76259151e+06 -5.60840735e+06 -5.97054064e+06 -7.49630050e+06 -6.92556168e+06 -5.64552842e+06 -5.83339990e+06 -5.83382406e+06 -5.76522512e+06 -6.98927759e+06 -5.88122048e+06 -6.77863793e+06 -5.74516370e+06 -6.92786480e+06 -7.04743116e+06 -5.69038827e+06 -7.64220313e+06 -6.57825780e+06 -6.69378264e+06 -7.00125015e+06] [-4.68286562e+06 -4.07444254e+06 -3.41995466e+06 -3.63980669e+06 -3.50673459e+06 -4.38379298e+06 -3.45768338e+06 -3.59376314e+06 -4.36565347e+06 -3.48957734e+06 -3.35926300e+06 -3.67448035e+06 -4.67025728e+06 -4.23745660e+06 -3.37813452e+06 -3.64251220e+06 -3.62602227e+06 -3.52486075e+06 -4.37871708e+06 -3.61710010e+06 -4.10830907e+06 -3.49876515e+06 -4.33599333e+06 -4.42122182e+06 -3.45498276e+06 -4.34039196e+06 -3.99923220e+06 -4.04656302e+06 -4.41420339e+06] [-3.20051977e+06 -2.76257269e+06 -2.24128529e+06 -2.40557594e+06 -2.29031053e+06 -3.04656796e+06 -2.27256731e+06 -2.37282808e+06 -3.02841781e+06 -2.27601210e+06 -2.17660376e+06 -2.41430850e+06 -3.19080011e+06 -2.88420557e+06 -2.18387791e+06 -2.45408397e+06 -2.42434958e+06 -2.31671908e+06 -3.05457753e+06 -2.38168095e+06 -2.76011091e+06 -2.29908128e+06 -3.02683537e+06 -3.09652984e+06 -2.26268590e+06 -2.39481599e+06 -2.71984081e+06 -2.71502458e+06 -3.11012509e+06] [-3.31293412e+06 -2.94902147e+06 -2.45729113e+06 -2.56653550e+06 -2.47477469e+06 -3.19226133e+06 -2.47418432e+06 -2.54693277e+06 -3.16471441e+06 -2.47452113e+06 -2.39509498e+06 -2.57010173e+06 -3.31886817e+06 -3.05928909e+06 -2.40247347e+06 -2.61149707e+06 -2.57436172e+06 -2.48916793e+06 -3.18315551e+06 -2.54440749e+06 -2.95199214e+06 -2.49419839e+06 -3.16362489e+06 -3.24619004e+06 -2.44598594e+06 -2.59021198e+06 -2.92752205e+06 -2.91402496e+06 -3.23369980e+06] [-4.96896118e+06 -4.57819016e+06 -3.95620867e+06 -4.02564039e+06 -3.95866496e+06 -4.77477625e+06 -3.95536289e+06 -4.00318824e+06 -4.73467376e+06 -3.97010874e+06 -3.91061158e+06 -4.03388403e+06 -4.99114657e+06 -4.70288358e+06 -3.92520278e+06 -4.00155704e+06 -3.97502171e+06 -3.95317805e+06 -4.73416360e+06 -4.00131033e+06 -4.61965891e+06 -3.97668648e+06 -4.71335145e+06 -4.81633400e+06 -3.90837821e+06 -4.88370830e+06 -4.56189336e+06 -4.58423235e+06 -4.74232623e+06] [-6.63617752e+06 -6.20447048e+06 -5.47613608e+06 -5.51542928e+06 -5.47180203e+06 -6.34597993e+06 -5.46032700e+06 -5.48079405e+06 -6.29541939e+06 -5.48996966e+06 -5.45818158e+06 -5.52847515e+06 -6.66821781e+06 -6.33940416e+06 -5.47711438e+06 -5.40076870e+06 -5.39419639e+06 -5.45086041e+06 -6.27591621e+06 -5.48819691e+06 -6.28949974e+06 -5.48292957e+06 -6.24978991e+06 -6.36414322e+06 -5.39930910e+06 -7.50270490e+06 -6.18817479e+06 -6.25955097e+06 -6.22597225e+06] [-7.82518128e+06 -7.34687315e+06 -6.53350934e+06 -6.55888627e+06 -6.53646494e+06 -7.45929932e+06 -6.50901472e+06 -6.51996046e+06 -7.40669553e+06 -6.55455605e+06 -6.53904522e+06 -6.58481393e+06 -7.86049286e+06 -7.49742107e+06 -6.55859976e+06 -6.38775748e+06 -6.39751481e+06 -6.50083823e+06 -7.37359582e+06 -6.53727384e+06 -7.46249527e+06 -6.53438672e+06 -7.33777283e+06 -7.45787830e+06 -6.44895075e+06 -9.15115517e+06 -7.32374133e+06 -7.43220777e+06 -7.28855207e+06] [-7.47099497e+06 -7.01057981e+06 -6.24140221e+06 -6.26174869e+06 -6.25301188e+06 -7.10569962e+06 -6.21790715e+06 -6.22675483e+06 -7.05623279e+06 -6.26802932e+06 -6.26218570e+06 -6.29737549e+06 -7.50054369e+06 -7.15417077e+06 -6.27719988e+06 -6.08963012e+06 -6.10363900e+06 -6.21475676e+06 -7.01958654e+06 -6.24998514e+06 -7.12805214e+06 -6.24326137e+06 -6.98221225e+06 -7.08978190e+06 -6.16704554e+06 -8.94785958e+06 -6.98195715e+06 -7.10012180e+06 -6.93172296e+06] [-6.06282570e+06 -5.66800056e+06 -5.02957077e+06 -5.05204750e+06 -5.04487039e+06 -5.74885624e+06 -5.01105733e+06 -5.02764104e+06 -5.70492784e+06 -5.05941981e+06 -5.05610205e+06 -5.09360259e+06 -6.08425729e+06 -5.78780495e+06 -5.06117257e+06 -4.91563111e+06 -4.92395398e+06 -5.01246428e+06 -5.67131394e+06 -5.05199228e+06 -5.76856282e+06 -5.03529718e+06 -5.63820042e+06 -5.72878586e+06 -4.97291762e+06 -7.31433997e+06 -5.63905919e+06 -5.74320477e+06 -5.60279866e+06] [-4.17528175e+06 -3.86067662e+06 -3.47246223e+06 -3.50580606e+06 -3.49026700e+06 -3.92855480e+06 -3.46446555e+06 -3.49261623e+06 -3.89464957e+06 -3.50429445e+06 -3.49477679e+06 -3.54911768e+06 -4.18862975e+06 -3.95187408e+06 -3.49207206e+06 -3.41934297e+06 -3.41917459e+06 -3.46766557e+06 -3.86693920e+06 -3.51583193e+06 -3.93805398e+06 -3.48285556e+06 -3.84122581e+06 -3.91261858e+06 -3.43822300e+06 -5.11897328e+06 -3.83461769e+06 -3.91557071e+06 -3.82495604e+06] [-2.32273404e+06 -2.12157837e+06 -1.96131140e+06 -1.98633010e+06 -1.97671471e+06 -2.16399620e+06 -1.96193108e+06 -1.98283028e+06 -2.14097457e+06 -1.98622791e+06 -1.98036984e+06 -2.02381490e+06 -2.32863841e+06 -2.17752786e+06 -1.97410672e+06 -1.94275137e+06 -1.93808019e+06 -1.96200145e+06 -2.12011918e+06 -2.00157600e+06 -2.17371337e+06 -1.96976587e+06 -2.10616995e+06 -2.15046674e+06 -1.94351308e+06 -3.01932422e+06 -2.10375072e+06 -2.15961173e+06 -2.09855010e+06] [-1.18527271e+06 -1.07275710e+06 -9.90622071e+05 -9.99982804e+05 -1.00292369e+06 -1.10227159e+06 -9.95610194e+05 -1.00299576e+06 -1.08726695e+06 -1.00537858e+06 -1.00493961e+06 -1.02875556e+06 -1.18632302e+06 -1.10495600e+06 -9.99292581e+05 -9.87004758e+05 -9.80355711e+05 -9.92233451e+05 -1.07348613e+06 -1.01501994e+06 -1.10342759e+06 -9.95213688e+05 -1.06952412e+06 -1.09274052e+06 -9.81381494e+05 -1.60944889e+06 -1.06242564e+06 -1.09631883e+06 -1.06752959e+06] [-5.21795669e+05 -4.61138863e+05 -4.26448331e+05 -4.31152831e+05 -4.35424073e+05 -4.79718147e+05 -4.31586283e+05 -4.35801180e+05 -4.71315547e+05 -4.35641116e+05 -4.34743848e+05 -4.50877291e+05 -5.21281258e+05 -4.78839633e+05 -4.30696737e+05 -4.31198565e+05 -4.25492492e+05 -4.28510288e+05 -4.62794920e+05 -4.42620866e+05 -4.77768056e+05 -4.29417746e+05 -4.62550719e+05 -4.75095471e+05 -4.22783370e+05 -7.46209757e+05 -4.55001755e+05 -4.73695407e+05 -4.63924420e+05] [-1.43087680e+05 -1.20727056e+05 -1.21307573e+05 -1.23397370e+05 -1.24786323e+05 -1.27162597e+05 -1.24108039e+05 -1.25616077e+05 -1.23089884e+05 -1.25321422e+05 -1.25652148e+05 -1.32108565e+05 -1.42223886e+05 -1.25941766e+05 -1.23213182e+05 -1.24846786e+05 -1.21591413e+05 -1.22816302e+05 -1.19163131e+05 -1.28960903e+05 -1.27469412e+05 -1.22905083e+05 -1.20030816e+05 -1.24556506e+05 -1.19959748e+05 -2.50191674e+05 -1.18207934e+05 -1.26455449e+05 -1.20183773e+05] [-3.45416534e+04 -2.91333037e+04 -2.90433973e+04 -2.96143149e+04 -2.98603037e+04 -3.06713404e+04 -2.98101598e+04 -3.01195325e+04 -2.96222784e+04 -3.00106726e+04 -3.02192884e+04 -3.17671415e+04 -3.42827939e+04 -3.02567764e+04 -2.95428586e+04 -2.99982187e+04 -2.91384410e+04 -2.94778824e+04 -2.86417889e+04 -3.10417785e+04 -3.08418148e+04 -2.94564151e+04 -2.89051714e+04 -2.99492237e+04 -2.87293988e+04 -5.68854080e+04 -2.85328451e+04 -3.06475638e+04 -2.88436074e+04] [-8.07614271e+03 -6.90220505e+03 -6.29054405e+03 -6.50251974e+03 -6.46034787e+03 -7.26032180e+03 -6.35971330e+03 -6.58638442e+03 -7.13980614e+03 -6.49369319e+03 -6.37107299e+03 -6.83976222e+03 -8.07665903e+03 -7.23061030e+03 -6.29397928e+03 -6.52039168e+03 -6.42277688e+03 -6.35781640e+03 -7.00312257e+03 -6.68355246e+03 -7.15299376e+03 -6.38006413e+03 -6.96942615e+03 -7.26073188e+03 -6.26301195e+03 -1.07453790e+04 -6.76826202e+03 -7.04079836e+03 -7.07043665e+03] [ 6.14985624e+02 5.48943396e+02 5.09664809e+02 5.31496117e+02 4.97022020e+02 5.61729844e+02 4.96151247e+02 5.30179523e+02 5.59795695e+02 5.23291419e+02 5.03102308e+02 5.26281417e+02 6.24549119e+02 5.58363899e+02 5.09401839e+02 5.20731818e+02 5.11772615e+02 5.08518524e+02 5.49587096e+02 5.29277801e+02 5.57628574e+02 5.24056147e+02 5.39187418e+02 5.69988589e+02 5.06050385e+02 8.06252389e+02 5.38380233e+02 5.51208914e+02 5.51641968e+02] [-9.64765277e-01 -5.25118972e-01 -2.71140902e-01 -8.99791062e-01 2.45117754e-01 6.63951008e-01 8.06556669e-01 3.17052507e-01 9.20441967e-01 9.55038911e-01 9.35531730e-01 -9.95475312e-01 -3.22844630e-01 -4.63970475e-01 -8.88601128e-01 -7.20395866e-01 6.92263132e-01 4.58942121e-01 1.03495201e-01 7.43827601e-01 -2.74768791e-01 -4.08304770e-01 6.17906413e-01 4.28339617e-01 -2.58405982e-01 8.74521188e-01 2.70572331e-01 -7.20912050e-01 -3.90490551e-01] [-1.54010271e+03 -1.42723443e+03 -1.57036483e+03 -1.56931785e+03 -1.56157520e+03 -1.39429455e+03 -1.57568314e+03 -1.55624362e+03 -1.34481396e+03 -1.59151279e+03 -1.63658289e+03 -1.60612280e+03 -1.53457891e+03 -1.41712039e+03 -1.61979380e+03 -1.50902167e+03 -1.48955717e+03 -1.57132378e+03 -1.30975396e+03 -1.59503417e+03 -1.49676400e+03 -1.58219626e+03 -1.31689133e+03 -1.32472552e+03 -1.53678278e+03 -3.10221220e+03 -1.41229819e+03 -1.51164491e+03 -1.25865115e+03] [-6.21891297e+04 -6.26222912e+04 -5.66050727e+04 -5.52540582e+04 -5.52334607e+04 -6.12346804e+04 -5.58291580e+04 -5.41207207e+04 -6.05305340e+04 -5.58476577e+04 -5.79490083e+04 -5.40404154e+04 -6.23604270e+04 -6.18504789e+04 -5.79716234e+04 -5.23506853e+04 -5.26700148e+04 -5.58255914e+04 -6.04851171e+04 -5.45963877e+04 -6.34199560e+04 -5.62583673e+04 -6.01265872e+04 -5.94980606e+04 -5.54808608e+04 -8.04451079e+04 -6.29808848e+04 -6.41745117e+04 -5.82077523e+04] [-2.87807949e+05 -2.86940908e+05 -2.65893209e+05 -2.59962387e+05 -2.60154054e+05 -2.81326351e+05 -2.63056601e+05 -2.54957028e+05 -2.77288897e+05 -2.63017356e+05 -2.73146276e+05 -2.55853513e+05 -2.88310326e+05 -2.83905574e+05 -2.72727566e+05 -2.46944157e+05 -2.47844366e+05 -2.62745679e+05 -2.76486760e+05 -2.57955699e+05 -2.91754658e+05 -2.64518281e+05 -2.75025486e+05 -2.72267902e+05 -2.60625588e+05 -4.09679304e+05 -2.88329873e+05 -2.95278593e+05 -2.65947131e+05] [-1.09661971e+06 -1.04523687e+06 -9.49543695e+05 -9.45816144e+05 -9.40416478e+05 -1.04850301e+06 -9.41018860e+05 -9.34648094e+05 -1.03747020e+06 -9.49153431e+05 -9.65646401e+05 -9.42937948e+05 -1.09994514e+06 -1.05524800e+06 -9.63235948e+05 -9.09878667e+05 -9.11810681e+05 -9.42948267e+05 -1.03335931e+06 -9.43322091e+05 -1.06392475e+06 -9.49106415e+05 -1.02325788e+06 -1.03027995e+06 -9.36756193e+05 -1.46927992e+06 -1.04470909e+06 -1.06606358e+06 -1.00866077e+06] [-2.64884084e+06 -2.46065618e+06 -2.20993119e+06 -2.22836437e+06 -2.21180194e+06 -2.49474808e+06 -2.19526790e+06 -2.21569820e+06 -2.47601888e+06 -2.22716636e+06 -2.23225870e+06 -2.24617167e+06 -2.65932356e+06 -2.51541775e+06 -2.22623773e+06 -2.16339975e+06 -2.16726008e+06 -2.20187561e+06 -2.46304097e+06 -2.23309958e+06 -2.50763706e+06 -2.21490830e+06 -2.43435428e+06 -2.47326189e+06 -2.19169221e+06 -3.24979027e+06 -2.44805011e+06 -2.49450698e+06 -2.42655800e+06] [-4.79012415e+06 -4.39919975e+06 -3.90525818e+06 -3.95374485e+06 -3.93563474e+06 -4.48423075e+06 -3.88518071e+06 -3.94891048e+06 -4.46242831e+06 -3.95271626e+06 -3.92967660e+06 -4.01231043e+06 -4.81218772e+06 -4.53236626e+06 -3.92352541e+06 -3.86071219e+06 -3.86985123e+06 -3.89499653e+06 -4.43509327e+06 -3.97451522e+06 -4.48684312e+06 -3.91676842e+06 -4.37954291e+06 -4.46555189e+06 -3.88651922e+06 -5.59473769e+06 -4.36585857e+06 -4.44549587e+06 -4.39284549e+06] [-7.35664709e+06 -6.70482807e+06 -5.88147548e+06 -5.97244838e+06 -5.95270613e+06 -6.86708701e+06 -5.85550696e+06 -5.98105931e+06 -6.84716000e+06 -5.96908513e+06 -5.89815632e+06 -6.08152643e+06 -7.39282814e+06 -6.94127500e+06 -5.89821046e+06 -5.85636981e+06 -5.87127059e+06 -5.87281147e+06 -6.80243126e+06 -6.01175316e+06 -6.83716368e+06 -5.90482792e+06 -6.71398274e+06 -6.86221850e+06 -5.86824084e+06 -8.37679476e+06 -6.64101699e+06 -6.75732112e+06 -6.76480734e+06] [-9.41842811e+06 -8.55782913e+06 -7.39755043e+06 -7.53111815e+06 -7.50841694e+06 -8.79495433e+06 -7.36964436e+06 -7.54755784e+06 -8.78188897e+06 -7.51770108e+06 -7.40106894e+06 -7.67558387e+06 -9.46176563e+06 -8.87635412e+06 -7.41152934e+06 -7.40364301e+06 -7.42499442e+06 -7.40083397e+06 -8.72751968e+06 -7.58035368e+06 -8.71795944e+06 -7.43554584e+06 -8.61423049e+06 -8.80541033e+06 -7.39755539e+06 -1.03201230e+07 -8.46443006e+06 -8.60642033e+06 -8.70042982e+06] [-1.04690844e+07 -9.47366407e+06 -8.11600451e+06 -8.29487574e+06 -8.25466655e+06 -9.78192210e+06 -8.09200072e+06 -8.30791716e+06 -9.77673269e+06 -8.25537445e+06 -8.10129346e+06 -8.44926786e+06 -1.05108555e+07 -9.83911948e+06 -8.12258249e+06 -8.17291346e+06 -8.19698960e+06 -8.14272735e+06 -9.72534249e+06 -8.34087337e+06 -9.63714256e+06 -8.17174218e+06 -9.59634118e+06 -9.80512459e+06 -8.13495887e+06 -1.11665832e+07 -9.35828604e+06 -9.50666842e+06 -9.71325026e+06] [-1.01781707e+07 -9.16925737e+06 -7.80090012e+06 -8.01445220e+06 -7.94413664e+06 -9.51872811e+06 -7.78589184e+06 -8.01045092e+06 -9.51782973e+06 -7.93760912e+06 -7.76612973e+06 -8.14639221e+06 -1.02106012e+07 -9.52829919e+06 -7.79564278e+06 -7.90832991e+06 -7.93073123e+06 -7.85434857e+06 -9.48206797e+06 -8.04111376e+06 -9.31040195e+06 -7.87087912e+06 -9.35471221e+06 -9.55028017e+06 -7.83406553e+06 -1.06730916e+07 -9.04834436e+06 -9.18092160e+06 -9.48149418e+06] [-8.29549614e+06 -7.40586206e+06 -6.27771603e+06 -6.50766564e+06 -6.39488691e+06 -7.75869633e+06 -6.27586733e+06 -6.48620719e+06 -7.75499407e+06 -6.39028270e+06 -6.22263731e+06 -6.59700827e+06 -8.31812823e+06 -7.70787400e+06 -6.24773210e+06 -6.44236735e+06 -6.45085056e+06 -6.34513649e+06 -7.74373169e+06 -6.51081514e+06 -7.50355062e+06 -6.35159629e+06 -7.63355004e+06 -7.80096866e+06 -6.31286271e+06 -8.39194817e+06 -7.30445227e+06 -7.39126182e+06 -7.75831624e+06] [-6.76956613e+06 -6.04579513e+06 -5.08447550e+06 -5.28575399e+06 -5.16286320e+06 -6.37511261e+06 -5.08517036e+06 -5.25701379e+06 -6.36498254e+06 -5.16140405e+06 -5.01809419e+06 -5.33328421e+06 -6.78836708e+06 -6.28651688e+06 -5.03777730e+06 -5.25383384e+06 -5.24837373e+06 -5.14143892e+06 -6.37164425e+06 -5.27049028e+06 -6.10403297e+06 -5.14770591e+06 -6.28612215e+06 -6.42747525e+06 -5.10450881e+06 -6.45901398e+06 -5.97302707e+06 -6.01443180e+06 -6.39714470e+06] [-6.01333815e+06 -5.42301681e+06 -4.53262039e+06 -4.68732667e+06 -4.57802484e+06 -5.71660572e+06 -4.52501169e+06 -4.65961318e+06 -5.70336652e+06 -4.58154095e+06 -4.46442442e+06 -4.70646946e+06 -6.03518314e+06 -5.62507887e+06 -4.48419569e+06 -4.66557712e+06 -4.65471191e+06 -4.56632950e+06 -5.71652524e+06 -4.66140956e+06 -5.45981543e+06 -4.58060169e+06 -5.64688602e+06 -5.77238624e+06 -4.53436996e+06 -5.53036482e+06 -5.37263778e+06 -5.38752159e+06 -5.74253232e+06] [-6.38590242e+06 -5.86329503e+06 -4.95569206e+06 -5.06253540e+06 -4.97805462e+06 -6.10727915e+06 -4.93365643e+06 -5.03723261e+06 -6.08852598e+06 -4.99008884e+06 -4.89675100e+06 -5.07138337e+06 -6.41723998e+06 -6.04686989e+06 -4.92130293e+06 -5.01506478e+06 -5.00724474e+06 -4.95930566e+06 -6.09447257e+06 -5.03261666e+06 -5.90736107e+06 -4.98773685e+06 -6.02992087e+06 -6.15586910e+06 -4.93306923e+06 -6.04113600e+06 -5.82545857e+06 -5.84513208e+06 -6.10187540e+06] [-6.73857457e+06 -6.26522742e+06 -5.41100157e+06 -5.47461305e+06 -5.41832791e+06 -6.44609030e+06 -5.37803665e+06 -5.44964961e+06 -6.42392652e+06 -5.43648978e+06 -5.37231006e+06 -5.48226825e+06 -6.77744241e+06 -6.43656878e+06 -5.39820573e+06 -5.38278016e+06 -5.38543616e+06 -5.38881753e+06 -6.41739805e+06 -5.44678874e+06 -6.32938788e+06 -5.42589596e+06 -6.35618792e+06 -6.47912706e+06 -5.36800582e+06 -6.95811703e+06 -6.23750774e+06 -6.27778623e+06 -6.39155527e+06] [-6.99367010e+06 -6.59131248e+06 -5.74583096e+06 -5.75135095e+06 -5.74384123e+06 -6.70103339e+06 -5.70762298e+06 -5.73030601e+06 -6.67326918e+06 -5.76001546e+06 -5.73938796e+06 -5.76632297e+06 -7.03508001e+06 -6.74397553e+06 -5.76282848e+06 -5.61805046e+06 -5.63171355e+06 -5.69943348e+06 -6.65162156e+06 -5.73313418e+06 -6.67899476e+06 -5.74009098e+06 -6.60112475e+06 -6.71033104e+06 -5.68242491e+06 -7.73974308e+06 -6.57414263e+06 -6.64280042e+06 -6.59115287e+06] [-6.71488249e+06 -6.37874104e+06 -5.61688856e+06 -5.57747858e+06 -5.61526625e+06 -6.44279505e+06 -5.58056145e+06 -5.56490808e+06 -6.41313216e+06 -5.62454608e+06 -5.63816285e+06 -5.60412922e+06 -6.75149000e+06 -6.51389388e+06 -5.65698763e+06 -5.43156984e+06 -5.45092203e+06 -5.56075032e+06 -6.38001943e+06 -5.57348261e+06 -6.47771752e+06 -5.59811759e+06 -6.34010073e+06 -6.43187885e+06 -5.54755684e+06 -7.83473769e+06 -6.36694429e+06 -6.45514707e+06 -6.30470979e+06] [-5.69829406e+06 -5.43232105e+06 -4.78796212e+06 -4.73733762e+06 -4.78846039e+06 -5.47171916e+06 -4.75833493e+06 -4.73168012e+06 -5.44315031e+06 -4.79435396e+06 -4.82232308e+06 -4.76946814e+06 -5.72564746e+06 -5.53973100e+06 -4.83325423e+06 -4.61107660e+06 -4.62712151e+06 -4.73873002e+06 -5.40860009e+06 -4.74403499e+06 -5.52264317e+06 -4.76900147e+06 -5.37922058e+06 -5.45095954e+06 -4.72767673e+06 -6.71328759e+06 -5.42145401e+06 -5.50885292e+06 -5.34068811e+06] [-4.23694870e+06 -4.03419303e+06 -3.56201601e+06 -3.52549002e+06 -3.56423358e+06 -4.06185664e+06 -3.54282840e+06 -3.52331231e+06 -4.03502805e+06 -3.57014697e+06 -3.59668681e+06 -3.55781357e+06 -4.25413633e+06 -4.10925885e+06 -3.59840350e+06 -3.43513186e+06 -3.44247935e+06 -3.52882616e+06 -4.00587177e+06 -3.53791573e+06 -4.10581825e+06 -3.55012252e+06 -3.98702221e+06 -4.04002871e+06 -3.51709468e+06 -4.94681203e+06 -4.02396274e+06 -4.09680792e+06 -3.95650628e+06] [-2.50061280e+06 -2.35961414e+06 -2.13484073e+06 -2.11819803e+06 -2.13973408e+06 -2.37980144e+06 -2.12835409e+06 -2.11962943e+06 -2.35783214e+06 -2.14531042e+06 -2.16272441e+06 -2.14900010e+06 -2.50859626e+06 -2.40579847e+06 -2.15800293e+06 -2.06885731e+06 -2.06778902e+06 -2.11858646e+06 -2.33570104e+06 -2.13408895e+06 -2.40970761e+06 -2.13035495e+06 -2.32655747e+06 -2.36174202e+06 -2.10754884e+06 -3.07051353e+06 -2.35108010e+06 -2.40421678e+06 -2.30794062e+06] [-1.31810811e+06 -1.23277749e+06 -1.15009322e+06 -1.13919419e+06 -1.15637221e+06 -1.24710868e+06 -1.15168388e+06 -1.14346086e+06 -1.23193114e+06 -1.15831751e+06 -1.17126175e+06 -1.16510250e+06 -1.32048833e+06 -1.25968785e+06 -1.16611242e+06 -1.11836949e+06 -1.11408919e+06 -1.14284507e+06 -1.21609272e+06 -1.15510818e+06 -1.26578423e+06 -1.14799469e+06 -1.21379321e+06 -1.23255355e+06 -1.13527335e+06 -1.77467223e+06 -1.22721713e+06 -1.26381303e+06 -1.20284010e+06] [-6.12487426e+05 -5.58839403e+05 -5.24437679e+05 -5.19601608e+05 -5.31591389e+05 -5.71876449e+05 -5.28869899e+05 -5.25008300e+05 -5.62494617e+05 -5.31250509e+05 -5.37370349e+05 -5.39969941e+05 -6.12389418e+05 -5.75827689e+05 -5.33134475e+05 -5.15283031e+05 -5.10460514e+05 -5.22599972e+05 -5.52153032e+05 -5.32589197e+05 -5.78583139e+05 -5.24292216e+05 -5.52619703e+05 -5.63700505e+05 -5.17692164e+05 -9.26847880e+05 -5.54579150e+05 -5.76905962e+05 -5.49126305e+05] [-2.54788326e+05 -2.26217232e+05 -2.13704654e+05 -2.12361779e+05 -2.18673931e+05 -2.34361846e+05 -2.17126386e+05 -2.16304774e+05 -2.29337862e+05 -2.18264573e+05 -2.20305932e+05 -2.24719009e+05 -2.54142670e+05 -2.34913247e+05 -2.17754916e+05 -2.13589813e+05 -2.09996376e+05 -2.13914838e+05 -2.23625400e+05 -2.20370987e+05 -2.36201669e+05 -2.14435074e+05 -2.24734204e+05 -2.30401216e+05 -2.11181454e+05 -4.05730843e+05 -2.23316842e+05 -2.35013198e+05 -2.24369801e+05] [-8.79032233e+04 -7.51853774e+04 -7.69540145e+04 -7.66688734e+04 -7.89999451e+04 -7.93567806e+04 -7.86677916e+04 -7.83943638e+04 -7.69444334e+04 -7.89488951e+04 -7.99875346e+04 -8.20901926e+04 -8.73568730e+04 -7.86680417e+04 -7.85220171e+04 -7.77812578e+04 -7.58425001e+04 -7.74027545e+04 -7.44398389e+04 -8.03491961e+04 -7.93248601e+04 -7.74608063e+04 -7.50155359e+04 -7.76547974e+04 -7.59312275e+04 -1.76394641e+05 -7.39475774e+04 -7.90162236e+04 -7.50839943e+04] [-2.43183297e+04 -2.08747225e+04 -1.96736616e+04 -2.00114988e+04 -2.01992685e+04 -2.19597270e+04 -2.00899719e+04 -2.03311220e+04 -2.14267595e+04 -2.02328495e+04 -2.03650358e+04 -2.12781190e+04 -2.41681754e+04 -2.16841643e+04 -1.99443645e+04 -2.01986227e+04 -1.97496178e+04 -1.99414110e+04 -2.08654534e+04 -2.08754460e+04 -2.18648885e+04 -1.99043589e+04 -2.09172349e+04 -2.16294539e+04 -1.95626783e+04 -3.52442243e+04 -2.05050748e+04 -2.17133879e+04 -2.09927387e+04] [-1.40945891e+04 -1.21268792e+04 -9.91833323e+03 -1.04660894e+04 -1.01820144e+04 -1.28588485e+04 -9.85268406e+03 -1.05370136e+04 -1.28576494e+04 -1.02246600e+04 -9.79361733e+03 -1.07594689e+04 -1.41493711e+04 -1.27791492e+04 -9.71964790e+03 -1.04094639e+04 -1.04033632e+04 -1.00530575e+04 -1.28050715e+04 -1.05527845e+04 -1.22630376e+04 -1.00953956e+04 -1.25506605e+04 -1.31348215e+04 -1.00039843e+04 -1.33670835e+04 -1.18816025e+04 -1.19700856e+04 -1.29720764e+04] [-4.73971518e-01 -1.31089990e-01 -3.79126849e-01 -1.10566711e-01 -6.73359373e-01 6.42128624e-01 -3.82667147e-01 8.12140850e-01 9.77946913e-01 2.62557444e-01 2.76935757e-02 3.37642598e-02 -8.85408545e-01 -4.96654191e-01 -4.32272935e-01 -5.89493729e-01 -4.77078821e-01 6.27687652e-01 -6.01500255e-01 7.15969251e-01 7.74310809e-01 9.70091863e-01 -8.41093732e-01 7.79649857e-01 1.19764707e-01 2.51578892e-01 -4.28506151e-01 8.37861237e-01 6.38984426e-01] [-7.11837737e-01 8.55424264e-01 5.94098011e-01 7.19763233e-01 1.72710675e-01 1.86525664e-01 -6.42285070e-01 8.19024403e-01 9.21723418e-01 -7.96522308e-01 8.46183916e-01 9.78239753e-01 3.48726687e-01 9.19172185e-01 5.72044084e-01 2.99634848e-01 9.55920767e-01 -4.05961669e-01 -1.98740566e-01 4.97538676e-01 1.55139807e-01 3.13444360e-01 -7.09816398e-01 4.15699425e-01 6.60636514e-01 7.00159433e-01 -6.79355640e-01 6.24084401e-01 3.42158228e-01] [-3.62425516e-01 1.75280895e-02 -6.63098137e-02 -2.50440434e-01 2.20307372e-01 4.79145071e-01 7.15755624e-01 -2.20502220e-01 7.71621026e-01 9.11211559e-01 -3.95708283e-01 -7.81001041e-02 -1.92032238e-01 -4.91751603e-01 -4.28973131e-01 4.02798808e-01 -3.09872646e-02 -2.02931212e-01 -9.76634526e-01 5.65850047e-01 -1.24412836e-01 -9.62081713e-01 -5.99100659e-01 -7.70000247e-01 1.49418951e-01 -8.03880185e-01 -3.90795746e-01 3.52617066e-01 -7.65354865e-01] [-2.76949836e+04 -2.84801151e+04 -2.69085707e+04 -2.62333634e+04 -2.60603896e+04 -2.73136503e+04 -2.64325954e+04 -2.54944095e+04 -2.69599369e+04 -2.64696342e+04 -2.76410549e+04 -2.53882860e+04 -2.77816704e+04 -2.77892213e+04 -2.76757944e+04 -2.44572571e+04 -2.47050171e+04 -2.65050655e+04 -2.69788164e+04 -2.57521749e+04 -2.88374129e+04 -2.67253970e+04 -2.67832257e+04 -2.62800961e+04 -2.63135185e+04 -3.99277736e+04 -2.87076413e+04 -2.93130414e+04 -2.55827814e+04] [-1.66765381e+05 -1.65045004e+05 -1.54780603e+05 -1.51492743e+05 -1.51385234e+05 -1.62810558e+05 -1.52967759e+05 -1.48570781e+05 -1.60669240e+05 -1.53075550e+05 -1.58637189e+05 -1.48865145e+05 -1.67153698e+05 -1.63987845e+05 -1.58521142e+05 -1.43932827e+05 -1.44524009e+05 -1.52903086e+05 -1.60299127e+05 -1.50165798e+05 -1.67665228e+05 -1.53985215e+05 -1.58993884e+05 -1.57910124e+05 -1.51810491e+05 -2.59913588e+05 -1.65862872e+05 -1.69595788e+05 -1.54301010e+05] [-6.54738537e+05 -6.28215663e+05 -5.66853606e+05 -5.61941626e+05 -5.60372142e+05 -6.31189465e+05 -5.61287335e+05 -5.55021296e+05 -6.25172764e+05 -5.64906912e+05 -5.76286134e+05 -5.58281114e+05 -6.56701257e+05 -6.34152916e+05 -5.75443078e+05 -5.40753143e+05 -5.42278204e+05 -5.62119223e+05 -6.23505599e+05 -5.59582434e+05 -6.38453833e+05 -5.65792610e+05 -6.17317860e+05 -6.20259788e+05 -5.59041438e+05 -8.80920061e+05 -6.29158853e+05 -6.40542847e+05 -6.08623025e+05] [-1.70647992e+06 -1.60987120e+06 -1.43211780e+06 -1.43364818e+06 -1.42763315e+06 -1.62504340e+06 -1.41997544e+06 -1.42369899e+06 -1.61446611e+06 -1.43750540e+06 -1.44734625e+06 -1.43712542e+06 -1.71372530e+06 -1.63891433e+06 -1.44666662e+06 -1.38925669e+06 -1.39313269e+06 -1.42308262e+06 -1.60764121e+06 -1.43308417e+06 -1.63743889e+06 -1.43277381e+06 -1.59001420e+06 -1.60826496e+06 -1.41881124e+06 -2.06065046e+06 -1.60487749e+06 -1.63283793e+06 -1.58086021e+06] [-3.55186043e+06 -3.31862030e+06 -2.92762560e+06 -2.94345399e+06 -2.93458835e+06 -3.35841140e+06 -2.90403548e+06 -2.93344741e+06 -3.34526586e+06 -2.95139422e+06 -2.94837350e+06 -2.96595435e+06 -3.56985417e+06 -3.39841681e+06 -2.95185770e+06 -2.86212268e+06 -2.87276312e+06 -2.91172864e+06 -3.32745405e+06 -2.94854250e+06 -3.37769257e+06 -2.93225842e+06 -3.28726170e+06 -3.33617703e+06 -2.90987066e+06 -4.10792169e+06 -3.29911884e+06 -3.35629421e+06 -3.28508465e+06] [-5.91596391e+06 -5.48392974e+06 -4.79727138e+06 -4.83854481e+06 -4.82790820e+06 -5.57424297e+06 -4.76185644e+06 -4.83276159e+06 -5.56157646e+06 -4.84808436e+06 -4.81922238e+06 -4.89141592e+06 -5.94656683e+06 -5.64061076e+06 -4.82785760e+06 -4.72168349e+06 -4.74067921e+06 -4.77757003e+06 -5.53117935e+06 -4.85388539e+06 -5.58025856e+06 -4.80897359e+06 -5.45995401e+06 -5.55299021e+06 -4.78030784e+06 -6.67114347e+06 -5.44254064e+06 -5.53220473e+06 -5.47932148e+06] [-7.82115761e+06 -7.19918874e+06 -6.21411960e+06 -6.29228574e+06 -6.27638580e+06 -7.35582825e+06 -6.16938600e+06 -6.29417807e+06 -7.35333490e+06 -6.29389119e+06 -6.22656654e+06 -6.37374666e+06 -7.86145029e+06 -7.43533116e+06 -6.24182324e+06 -6.16151235e+06 -6.18933963e+06 -6.19978882e+06 -7.31705998e+06 -6.31743999e+06 -7.31865863e+06 -6.23698214e+06 -7.21226713e+06 -7.34512580e+06 -6.21259946e+06 -8.52789035e+06 -7.13296821e+06 -7.23948468e+06 -7.27176468e+06] [-9.10912271e+06 -8.33740682e+06 -7.12803358e+06 -7.24436695e+06 -7.21800933e+06 -8.56243126e+06 -7.07684595e+06 -7.25466962e+06 -8.57364579e+06 -7.23132784e+06 -7.12378572e+06 -7.34554586e+06 -9.15617712e+06 -8.64067505e+06 -7.14497892e+06 -7.11972776e+06 -7.15295851e+06 -7.12268611e+06 -8.53820270e+06 -7.27608448e+06 -8.46441994e+06 -7.16276634e+06 -8.40470322e+06 -8.56831736e+06 -7.14733427e+06 -9.48303478e+06 -8.25072260e+06 -8.35723877e+06 -8.51063395e+06] [-9.33808538e+06 -8.49706711e+06 -7.19675798e+06 -7.33504647e+06 -7.29695514e+06 -8.77949024e+06 -7.14388527e+06 -7.35511252e+06 -8.80277834e+06 -7.30912292e+06 -7.17040573e+06 -7.44051215e+06 -9.39048177e+06 -8.83845474e+06 -7.19899466e+06 -7.24060929e+06 -7.26966710e+06 -7.19435007e+06 -8.77227953e+06 -7.36846250e+06 -8.61620464e+06 -7.23925062e+06 -8.62232743e+06 -8.80577873e+06 -7.23108926e+06 -9.42859964e+06 -8.40247594e+06 -8.49295151e+06 -8.77122355e+06] [-8.33055266e+06 -7.57267635e+06 -6.37071061e+06 -6.49154858e+06 -6.45150730e+06 -7.85492622e+06 -6.31864040e+06 -6.51937691e+06 -7.88080896e+06 -6.46659758e+06 -6.32991544e+06 -6.58091199e+06 -8.38586933e+06 -7.89398893e+06 -6.35850387e+06 -6.43595549e+06 -6.45347194e+06 -6.35565373e+06 -7.85893770e+06 -6.52118998e+06 -7.66888062e+06 -6.40637251e+06 -7.71728793e+06 -7.89602466e+06 -6.40109987e+06 -8.14100195e+06 -7.49420462e+06 -7.55159621e+06 -7.87829586e+06] [-7.56966787e+06 -6.92951598e+06 -5.77976588e+06 -5.86111452e+06 -5.83333126e+06 -7.18424885e+06 -5.72368175e+06 -5.89151867e+06 -7.20701909e+06 -5.85153508e+06 -5.73454507e+06 -5.92756999e+06 -7.62694400e+06 -7.21590542e+06 -5.76465477e+06 -5.82114477e+06 -5.83133069e+06 -5.74601152e+06 -7.18986869e+06 -5.88219016e+06 -7.00664965e+06 -5.80320320e+06 -7.06596698e+06 -7.23184647e+06 -5.79412523e+06 -7.19674282e+06 -6.86983846e+06 -6.90438804e+06 -7.21434629e+06] [-7.15249657e+06 -6.61598305e+06 -5.49931127e+06 -5.54299339e+06 -5.53230265e+06 -6.83543815e+06 -5.43816651e+06 -5.57087286e+06 -6.85573563e+06 -5.54954813e+06 -5.45695497e+06 -5.58850351e+06 -7.20921170e+06 -6.86791632e+06 -5.48758098e+06 -5.49987791e+06 -5.51075219e+06 -5.45194781e+06 -6.84260429e+06 -5.55479836e+06 -6.67934819e+06 -5.51061804e+06 -6.73231465e+06 -6.88221357e+06 -5.49992760e+06 -6.68900215e+06 -6.57152167e+06 -6.59229061e+06 -6.86085039e+06] [-6.57946467e+06 -6.14111004e+06 -5.15790831e+06 -5.17003670e+06 -5.17571213e+06 -6.31415970e+06 -5.09657012e+06 -5.19276680e+06 -6.33121201e+06 -5.19165584e+06 -5.12589076e+06 -5.20082485e+06 -6.63330154e+06 -6.35607071e+06 -5.15555029e+06 -5.11515052e+06 -5.12970056e+06 -5.10192788e+06 -6.31901920e+06 -5.17598241e+06 -6.19861700e+06 -5.15804981e+06 -6.22088012e+06 -6.34998688e+06 -5.14763726e+06 -6.28940509e+06 -6.10991249e+06 -6.12824003e+06 -6.32212886e+06] [-5.70237510e+06 -5.39482040e+06 -4.59234411e+06 -4.56293601e+06 -4.59331182e+06 -5.49786895e+06 -4.53670935e+06 -4.58067151e+06 -5.50853940e+06 -4.60596316e+06 -4.58077916e+06 -4.58260949e+06 -5.75083926e+06 -5.56015891e+06 -4.60529898e+06 -4.49297769e+06 -4.51104754e+06 -4.52614849e+06 -5.49412338e+06 -4.56763385e+06 -5.45204815e+06 -4.57680515e+06 -5.41964781e+06 -5.51556379e+06 -4.56737111e+06 -5.69907504e+06 -5.38156019e+06 -5.40503823e+06 -5.47420594e+06] [-4.99571191e+06 -4.81879344e+06 -4.13878294e+06 -4.05242211e+06 -4.12765412e+06 -4.85336181e+06 -4.09104497e+06 -4.06990617e+06 -4.85437066e+06 -4.13183754e+06 -4.15509858e+06 -4.06943050e+06 -5.03605808e+06 -4.93509685e+06 -4.17482969e+06 -3.96738526e+06 -3.98834133e+06 -4.06166208e+06 -4.83203846e+06 -4.06148858e+06 -4.88045827e+06 -4.10547439e+06 -4.78537445e+06 -4.84944630e+06 -4.09542041e+06 -5.34187027e+06 -4.82104223e+06 -4.85970882e+06 -4.79005052e+06] [-4.29104196e+06 -4.19426380e+06 -3.64450570e+06 -3.53105915e+06 -3.63013391e+06 -4.19095915e+06 -3.60648355e+06 -3.54969540e+06 -4.18382771e+06 -3.62863311e+06 -3.67808305e+06 -3.55094055e+06 -4.32156011e+06 -4.27505239e+06 -3.69208294e+06 -3.44573566e+06 -3.46429264e+06 -3.56945063e+06 -4.15477191e+06 -3.54591974e+06 -4.25647287e+06 -3.60500346e+06 -4.13106047e+06 -4.17598230e+06 -3.59309096e+06 -4.82569871e+06 -4.20270070e+06 -4.25280747e+06 -4.10647142e+06] [-3.26338622e+06 -3.21119981e+06 -2.80168933e+06 -2.70180886e+06 -2.78871380e+06 -3.19695648e+06 -2.77570811e+06 -2.71588503e+06 -3.18607404e+06 -2.78529006e+06 -2.83829011e+06 -2.71943657e+06 -3.28268760e+06 -3.26134898e+06 -2.84454042e+06 -2.63218796e+06 -2.64512210e+06 -2.74419104e+06 -3.16024296e+06 -2.71699596e+06 -3.26228394e+06 -2.76837940e+06 -3.15013623e+06 -3.17915061e+06 -2.75701030e+06 -3.71312922e+06 -3.22017716e+06 -3.26676012e+06 -3.11791714e+06] [-2.06092119e+06 -2.03761340e+06 -1.80281591e+06 -1.73252807e+06 -1.79223424e+06 -2.02255508e+06 -1.78783337e+06 -1.74220034e+06 -2.01035356e+06 -1.79062246e+06 -1.83312997e+06 -1.74639106e+06 -2.07067169e+06 -2.06130048e+06 -1.83261735e+06 -1.68809368e+06 -1.69318184e+06 -1.76611798e+06 -1.99123170e+06 -1.74574151e+06 -2.07202725e+06 -1.78058302e+06 -1.98999742e+06 -2.00760221e+06 -1.77018635e+06 -2.37867678e+06 -2.04470221e+06 -2.07907242e+06 -1.96309496e+06] [-1.14610550e+06 -1.13597627e+06 -1.02196352e+06 -9.76640245e+05 -1.01629106e+06 -1.12587864e+06 -1.01626791e+06 -9.84204128e+05 -1.11447704e+06 -1.01503593e+06 -1.04523639e+06 -9.89793064e+05 -1.14965151e+06 -1.14599967e+06 -1.04199271e+06 -9.54759361e+05 -9.54252236e+05 -1.00128860e+06 -1.10083499e+06 -9.88805357e+05 -1.15861968e+06 -1.00886793e+06 -1.10450014e+06 -1.11291194e+06 -1.00086528e+06 -1.38441840e+06 -1.14030081e+06 -1.16513451e+06 -1.08560061e+06] [-6.16849286e+05 -6.02450358e+05 -5.56950685e+05 -5.31106312e+05 -5.57104145e+05 -6.01973880e+05 -5.57425460e+05 -5.38358420e+05 -5.93484420e+05 -5.55227102e+05 -5.72771474e+05 -5.45267254e+05 -6.17444413e+05 -6.10730282e+05 -5.69441724e+05 -5.24860397e+05 -5.21680555e+05 -5.46882562e+05 -5.83419734e+05 -5.42823701e+05 -6.18301160e+05 -5.50307835e+05 -5.87434419e+05 -5.93021955e+05 -5.45391734e+05 -8.20786283e+05 -6.03745726e+05 -6.21956151e+05 -5.78090762e+05] [-3.22144875e+05 -3.07899421e+05 -2.82811930e+05 -2.71335008e+05 -2.85633570e+05 -3.09888600e+05 -2.85229666e+05 -2.76558530e+05 -3.04898715e+05 -2.83989819e+05 -2.91950077e+05 -2.82844786e+05 -3.21871249e+05 -3.14028618e+05 -2.89673269e+05 -2.70837654e+05 -2.68039962e+05 -2.79067258e+05 -2.98346040e+05 -2.80020484e+05 -3.18339411e+05 -2.80253824e+05 -3.01311105e+05 -3.04798651e+05 -2.77755708e+05 -4.18235126e+05 -3.07259874e+05 -3.19440773e+05 -2.97183529e+05] [-1.32850614e+05 -1.24307112e+05 -1.14578055e+05 -1.10638024e+05 -1.16374956e+05 -1.25965371e+05 -1.16193893e+05 -1.13181828e+05 -1.23231620e+05 -1.15794955e+05 -1.18913799e+05 -1.16777524e+05 -1.32397288e+05 -1.26990640e+05 -1.17424008e+05 -1.11248159e+05 -1.09398049e+05 -1.13674021e+05 -1.19984138e+05 -1.15111161e+05 -1.29294060e+05 -1.14009705e+05 -1.21682305e+05 -1.23684986e+05 -1.12483493e+05 -1.76586450e+05 -1.23547567e+05 -1.29622154e+05 -1.20095520e+05] [-4.92699547e+04 -4.42691053e+04 -4.21329211e+04 -4.14519252e+04 -4.30301789e+04 -4.54233236e+04 -4.29137801e+04 -4.24027100e+04 -4.41619385e+04 -4.30300838e+04 -4.38803648e+04 -4.41716132e+04 -4.90059225e+04 -4.54710888e+04 -4.31821277e+04 -4.18473518e+04 -4.08964409e+04 -4.21648703e+04 -4.27775064e+04 -4.33375176e+04 -4.64093243e+04 -4.22866693e+04 -4.33788752e+04 -4.44355739e+04 -4.14483773e+04 -7.51237192e+04 -4.36719188e+04 -4.64029130e+04 -4.29728015e+04] [-1.09159370e+04 -9.12251227e+03 -9.22841719e+03 -9.41383588e+03 -9.51420291e+03 -9.60736991e+03 -9.47469288e+03 -9.60858583e+03 -9.30146077e+03 -9.55966623e+03 -9.63746928e+03 -1.01455671e+04 -1.08267671e+04 -9.50549340e+03 -9.39663499e+03 -9.52914242e+03 -9.26585454e+03 -9.37716119e+03 -8.96058680e+03 -9.91943604e+03 -9.69255710e+03 -9.36105654e+03 -9.02226660e+03 -9.40181839e+03 -9.16363602e+03 -1.83047411e+04 -8.91669010e+03 -9.62510191e+03 -9.02590556e+03] [-4.68010726e+03 -3.93986806e+03 -3.34223378e+03 -3.54016860e+03 -3.43181848e+03 -4.20198986e+03 -3.33483375e+03 -3.57890594e+03 -4.18369487e+03 -3.46133667e+03 -3.29633594e+03 -3.67632071e+03 -4.70705830e+03 -4.18440790e+03 -3.26981302e+03 -3.54229446e+03 -3.51600110e+03 -3.37603058e+03 -4.14397372e+03 -3.59413126e+03 -4.02235706e+03 -3.40242388e+03 -4.06434080e+03 -4.29347249e+03 -3.35699264e+03 -5.04657622e+03 -3.85865175e+03 -3.91478905e+03 -4.20915414e+03] [ 5.40035598e-01 1.08610652e-01 -6.10664569e-01 9.63406814e-01 -3.05179715e-01 4.04764157e-01 7.80049236e-01 -8.29386598e-01 -3.66259593e-01 7.31513338e-01 8.10864857e-01 4.14751336e-01 -1.04066886e-02 3.33538761e-01 9.95423370e-01 -2.69006713e-01 -6.78088759e-01 6.38602258e-01 8.15165776e-01 -9.58770597e-01 -2.21739942e-01 9.41365285e-02 7.85422001e-01 -4.26249557e-01 4.49690125e-01 4.28203735e-01 6.17410871e-01 7.52764811e-01 3.49696138e-01] [ 9.62297719e-01 9.31741310e-02 1.09416378e-01 9.19228533e-01 9.66336944e-01 -5.34666504e-01 5.52473746e-01 7.76164276e-01 7.55535991e-01 1.60866605e-01 3.90394500e-01 7.44045878e-01 -5.23022064e-01 7.23847517e-01 -3.28694188e-01 7.79428740e-01 -3.69727998e-01 3.46914655e-01 8.38322519e-02 -8.45715910e-01 -7.87380494e-01 -3.56921023e-01 -7.07659176e-01 9.64754586e-01 -7.14635495e-01 4.15347145e-01 -2.15670825e-01 -5.31347162e-01 7.93337916e-01] [-4.48920032e-01 -4.87172977e-01 -7.74735251e-01 3.51325391e-01 3.24015458e-01 5.11345877e-01 -8.56081946e-01 -4.73373263e-01 4.90141674e-01 9.98496536e-01 7.62893501e-01 -4.12452107e-01 -8.27090839e-01 -7.23386504e-01 9.83426252e-01 6.34973480e-01 -3.57259565e-01 -3.09894463e-01 -2.75570388e-02 -9.73924841e-01 3.19517966e-01 2.25801295e-01 -9.70266440e-01 -2.55400044e-03 -5.45925086e-01 -3.35473404e-01 9.99668445e-01 8.39141639e-01 -9.29066032e-01] [-4.44954365e+03 -4.71388941e+03 -4.49111060e+03 -4.35996241e+03 -4.30899419e+03 -4.44578776e+03 -4.38211393e+03 -4.20178361e+03 -4.39795746e+03 -4.39136082e+03 -4.61059880e+03 -4.14975355e+03 -4.47138067e+03 -4.54974975e+03 -4.63146734e+03 -4.00237274e+03 -4.06831837e+03 -4.41185355e+03 -4.42185630e+03 -4.23480322e+03 -4.74961987e+03 -4.45328097e+03 -4.37785829e+03 -4.25185402e+03 -4.38741449e+03 -6.51513964e+03 -4.76962648e+03 -4.84523392e+03 -4.14265356e+03] [-4.34094371e+04 -4.52360117e+04 -4.42923877e+04 -4.27307862e+04 -4.26529493e+04 -4.33989406e+04 -4.34166874e+04 -4.13525042e+04 -4.28784142e+04 -4.32635846e+04 -4.55653736e+04 -4.09639194e+04 -4.35808427e+04 -4.41312377e+04 -4.57023876e+04 -3.95571377e+04 -4.01054117e+04 -4.34602871e+04 -4.30417999e+04 -4.17590523e+04 -4.57141900e+04 -4.37974879e+04 -4.25396272e+04 -4.14943770e+04 -4.32465230e+04 -7.91680563e+04 -4.58318364e+04 -4.66697497e+04 -4.04588482e+04] [-2.38725575e+05 -2.35960365e+05 -2.17032202e+05 -2.12448179e+05 -2.12525940e+05 -2.34980927e+05 -2.14189786e+05 -2.08555366e+05 -2.32929263e+05 -2.14225631e+05 -2.21123752e+05 -2.08109504e+05 -2.39547683e+05 -2.36206558e+05 -2.21280635e+05 -2.02790768e+05 -2.04088751e+05 -2.14143712e+05 -2.33255700e+05 -2.10079994e+05 -2.38835173e+05 -2.15606831e+05 -2.30673489e+05 -2.29361861e+05 -2.13448258e+05 -3.39720671e+05 -2.37742269e+05 -2.40998184e+05 -2.25695257e+05] [-7.35496828e+05 -7.07680838e+05 -6.30652190e+05 -6.24232579e+05 -6.25366801e+05 -7.11743015e+05 -6.24031203e+05 -6.18989043e+05 -7.08015346e+05 -6.29167987e+05 -6.37917033e+05 -6.20986439e+05 -7.38787045e+05 -7.17494408e+05 -6.39413143e+05 -6.04101606e+05 -6.06644859e+05 -6.24255850e+05 -7.06222058e+05 -6.21923379e+05 -7.17926448e+05 -6.29030915e+05 -6.98776305e+05 -7.02377834e+05 -6.23901258e+05 -8.93476631e+05 -7.08048930e+05 -7.18475946e+05 -6.92798487e+05] [-1.70782374e+06 -1.63129701e+06 -1.42875592e+06 -1.42087781e+06 -1.42474209e+06 -1.64253740e+06 -1.41475087e+06 -1.41398003e+06 -1.63814215e+06 -1.43150825e+06 -1.44048533e+06 -1.42123543e+06 -1.71667453e+06 -1.66133453e+06 -1.44576019e+06 -1.38051114e+06 -1.38728441e+06 -1.41585419e+06 -1.63237633e+06 -1.41911586e+06 -1.65548523e+06 -1.42674583e+06 -1.61446884e+06 -1.62708035e+06 -1.41838627e+06 -1.88622441e+06 -1.62716851e+06 -1.65083347e+06 -1.60814903e+06] [-3.03542869e+06 -2.86896744e+06 -2.47633620e+06 -2.47541835e+06 -2.47924239e+06 -2.90179104e+06 -2.45089129e+06 -2.46990220e+06 -2.90048359e+06 -2.49004780e+06 -2.48785844e+06 -2.48439770e+06 -3.05323171e+06 -2.93710474e+06 -2.49934073e+06 -2.41379885e+06 -2.42648830e+06 -2.45659938e+06 -2.88968702e+06 -2.47574773e+06 -2.90980012e+06 -2.47668725e+06 -2.85261796e+06 -2.88519563e+06 -2.46637360e+06 -3.23871081e+06 -2.85439105e+06 -2.89203400e+06 -2.85846802e+06] [-4.47568816e+06 -4.17519798e+06 -3.54071493e+06 -3.56473076e+06 -3.55937451e+06 -4.25406063e+06 -3.50141520e+06 -3.56404146e+06 -4.26227982e+06 -3.57392906e+06 -3.54302520e+06 -3.58683015e+06 -4.50410263e+06 -4.30068536e+06 -3.56185343e+06 -3.49107406e+06 -3.51041905e+06 -3.51942171e+06 -4.24913235e+06 -3.56841514e+06 -4.22925455e+06 -3.54930988e+06 -4.18234825e+06 -4.24479226e+06 -3.54168521e+06 -4.63731346e+06 -4.14317543e+06 -4.18809889e+06 -4.22197574e+06] [-5.67177098e+06 -5.26426147e+06 -4.43665687e+06 -4.47784469e+06 -4.46821408e+06 -5.39184675e+06 -4.38467486e+06 -4.48530080e+06 -5.41238889e+06 -4.48448353e+06 -4.42744934e+06 -4.50959713e+06 -5.71037959e+06 -5.44444854e+06 -4.45394973e+06 -4.40564510e+06 -4.42955730e+06 -4.41164401e+06 -5.39978084e+06 -4.48565245e+06 -5.32460769e+06 -4.45097623e+06 -5.30536371e+06 -5.39178992e+06 -4.45087218e+06 -5.62778646e+06 -5.21927956e+06 -5.26228171e+06 -5.38328744e+06] [-5.97416202e+06 -5.52084840e+06 -4.62338669e+06 -4.66461229e+06 -4.65723009e+06 -5.68680284e+06 -4.56289624e+06 -4.69053898e+06 -5.71862173e+06 -4.67780028e+06 -4.59814837e+06 -4.70507745e+06 -6.02440775e+06 -5.73960910e+06 -4.63071717e+06 -4.62147508e+06 -4.64017512e+06 -4.58422068e+06 -5.70600730e+06 -4.68087141e+06 -5.57890392e+06 -4.63734014e+06 -5.59338793e+06 -5.70317893e+06 -4.64536667e+06 -5.64885497e+06 -5.47358255e+06 -5.50090907e+06 -5.71372021e+06] [-5.90130998e+06 -5.47317170e+06 -4.54144598e+06 -4.55284521e+06 -4.56926172e+06 -5.63819711e+06 -4.47383961e+06 -4.60076407e+06 -5.67625456e+06 -4.59247149e+06 -4.50876604e+06 -4.60152240e+06 -5.96193614e+06 -5.70548249e+06 -4.54576133e+06 -4.53330278e+06 -4.54651944e+06 -4.47828812e+06 -5.65783488e+06 -4.57941666e+06 -5.53052749e+06 -4.54546851e+06 -5.54482674e+06 -5.66905355e+06 -4.55825193e+06 -5.37689780e+06 -5.43206235e+06 -5.44788894e+06 -5.68323110e+06] [-5.62120438e+06 -5.27347883e+06 -4.30500032e+06 -4.26755339e+06 -4.31932247e+06 -5.40990753e+06 -4.23280237e+06 -4.32842976e+06 -5.44768898e+06 -4.34104866e+06 -4.27663906e+06 -4.31417904e+06 -5.68651244e+06 -5.49258428e+06 -4.31678479e+06 -4.25707131e+06 -4.26766973e+06 -4.21831681e+06 -5.42456315e+06 -4.29833354e+06 -5.32820609e+06 -4.29411209e+06 -5.32475124e+06 -5.44260215e+06 -4.30778763e+06 -5.11345076e+06 -5.24437195e+06 -5.25435995e+06 -5.45290560e+06] [-5.11469960e+06 -4.86191298e+06 -3.94968067e+06 -3.87830177e+06 -3.95358023e+06 -4.96590738e+06 -3.87934885e+06 -3.93770527e+06 -5.00159515e+06 -3.96869249e+06 -3.93003412e+06 -3.91309153e+06 -5.17499870e+06 -5.04810683e+06 -3.96944031e+06 -3.86843035e+06 -3.88063095e+06 -3.85722919e+06 -4.98088457e+06 -3.90555835e+06 -4.90687388e+06 -3.92868896e+06 -4.89543530e+06 -4.99086718e+06 -3.94494144e+06 -4.55004406e+06 -4.84422920e+06 -4.84832704e+06 -5.00342715e+06] [-3.98733050e+06 -3.84505160e+06 -3.14763947e+06 -3.05968140e+06 -3.14196155e+06 -3.91147233e+06 -3.08810090e+06 -3.11104074e+06 -3.94376415e+06 -3.15006471e+06 -3.13737962e+06 -3.07974837e+06 -4.03642668e+06 -3.98255512e+06 -3.16981062e+06 -3.05452908e+06 -3.06698496e+06 -3.06166028e+06 -3.92914799e+06 -3.08203187e+06 -3.87522323e+06 -3.12021680e+06 -3.86169714e+06 -3.92695964e+06 -3.14071553e+06 -3.38538719e+06 -3.84065426e+06 -3.83609129e+06 -3.94429296e+06] [-2.73982312e+06 -2.71164474e+06 -2.21991589e+06 -2.11516145e+06 -2.20380236e+06 -2.72943354e+06 -2.17404446e+06 -2.15701905e+06 -2.75363730e+06 -2.20610772e+06 -2.22266783e+06 -2.12324834e+06 -2.77683436e+06 -2.79574822e+06 -2.24665729e+06 -2.10890597e+06 -2.12027976e+06 -2.14081595e+06 -2.74166512e+06 -2.13319988e+06 -2.73239352e+06 -2.18605406e+06 -2.70166499e+06 -2.73394505e+06 -2.20552242e+06 -2.32574468e+06 -2.72081616e+06 -2.71519690e+06 -2.74473791e+06] [-2.16489218e+06 -2.22347926e+06 -1.84106855e+06 -1.70895416e+06 -1.81763451e+06 -2.19829224e+06 -1.80574543e+06 -1.74583343e+06 -2.20960647e+06 -1.81351012e+06 -1.86031223e+06 -1.71447005e+06 -2.19157934e+06 -2.26482235e+06 -1.87678965e+06 -1.69266458e+06 -1.70234307e+06 -1.76397536e+06 -2.19258020e+06 -1.72708150e+06 -2.24472162e+06 -1.79911341e+06 -2.18040245e+06 -2.19406842e+06 -1.81101967e+06 -1.90881148e+06 -2.24253944e+06 -2.24762955e+06 -2.18290172e+06] [-1.54479725e+06 -1.64229188e+06 -1.40832431e+06 -1.27531495e+06 -1.38195835e+06 -1.59600179e+06 -1.38235933e+06 -1.30436734e+06 -1.59774894e+06 -1.37581130e+06 -1.43618355e+06 -1.27805546e+06 -1.56208650e+06 -1.65461710e+06 -1.44525080e+06 -1.25216037e+06 -1.25987589e+06 -1.34131951e+06 -1.57908808e+06 -1.29134177e+06 -1.66163995e+06 -1.36639598e+06 -1.58327503e+06 -1.58684486e+06 -1.37182621e+06 -1.57880410e+06 -1.66535826e+06 -1.67678768e+06 -1.56150613e+06] [-1.06938108e+06 -1.16805630e+06 -1.00507226e+06 -8.93611594e+05 -9.80879972e+05 -1.12390675e+06 -9.86732658e+05 -9.13317238e+05 -1.12057467e+06 -9.74196573e+05 -1.03240130e+06 -8.92512615e+05 -1.07859300e+06 -1.16411070e+06 -1.03529206e+06 -8.72107538e+05 -8.77164150e+05 -9.54801874e+05 -1.10589239e+06 -9.05215460e+05 -1.18079467e+06 -9.70526414e+05 -1.11648999e+06 -1.11461625e+06 -9.71952012e+05 -1.14191950e+06 -1.18912346e+06 -1.19929682e+06 -1.08873903e+06] [-7.01668838e+05 -7.89291472e+05 -6.73187655e+05 -5.87750932e+05 -6.53745907e+05 -7.53130267e+05 -6.61204547e+05 -6.01192346e+05 -7.47918838e+05 -6.47583359e+05 -6.95848468e+05 -5.85455122e+05 -7.05658804e+05 -7.77303590e+05 -6.95293928e+05 -5.73643407e+05 -5.75728850e+05 -6.38058007e+05 -7.37653039e+05 -5.96214036e+05 -7.95998637e+05 -6.47394649e+05 -7.50256076e+05 -7.45408202e+05 -6.47039408e+05 -6.72720786e+05 -8.06169090e+05 -8.12991697e+05 -7.25518474e+05] [-3.49348245e+05 -4.07799475e+05 -3.48380699e+05 -2.93612599e+05 -3.37120236e+05 -3.86560926e+05 -3.43020051e+05 -3.03157305e+05 -3.81503069e+05 -3.32106130e+05 -3.63740505e+05 -2.94289001e+05 -3.50274086e+05 -3.98166384e+05 -3.61816447e+05 -2.89476055e+05 -2.88857749e+05 -3.27708190e+05 -3.74851537e+05 -3.00568393e+05 -4.11167798e+05 -3.32370474e+05 -3.85537379e+05 -3.81251106e+05 -3.31602477e+05 -3.25213088e+05 -4.18638876e+05 -4.22798917e+05 -3.69898451e+05] [-2.35016470e+05 -2.59797311e+05 -2.27648289e+05 -1.97818693e+05 -2.23364794e+05 -2.51219863e+05 -2.25759648e+05 -2.04468339e+05 -2.47171385e+05 -2.20379285e+05 -2.36935203e+05 -2.01664415e+05 -2.35127563e+05 -2.56817858e+05 -2.35620621e+05 -1.97574123e+05 -1.95917449e+05 -2.16975297e+05 -2.42103216e+05 -2.03666384e+05 -2.63451486e+05 -2.19579891e+05 -2.48694627e+05 -2.47710082e+05 -2.18241751e+05 -2.45408613e+05 -2.64478838e+05 -2.69247669e+05 -2.41103186e+05] [-1.07283540e+05 -1.16242495e+05 -1.03831629e+05 -9.14497397e+04 -1.02887201e+05 -1.12303577e+05 -1.03894955e+05 -9.48666540e+04 -1.09895243e+05 -1.01507513e+05 -1.08659038e+05 -9.49707427e+04 -1.07000948e+05 -1.14906328e+05 -1.07547541e+05 -9.20655932e+04 -9.07385970e+04 -9.97657203e+04 -1.06936575e+05 -9.52095457e+04 -1.18959959e+05 -1.00628659e+05 -1.10597356e+05 -1.10323995e+05 -9.97729677e+04 -1.00469979e+05 -1.17816514e+05 -1.21358980e+05 -1.06878300e+05] [-6.09535602e+04 -6.26854895e+04 -5.89180453e+04 -5.48409907e+04 -5.87585164e+04 -6.16273732e+04 -5.91875303e+04 -5.62601138e+04 -6.05910587e+04 -5.83356808e+04 -6.08181672e+04 -5.66697574e+04 -6.08294809e+04 -6.24788896e+04 -6.01735589e+04 -5.52428285e+04 -5.44754726e+04 -5.75656715e+04 -5.92256619e+04 -5.66761430e+04 -6.41631874e+04 -5.78635808e+04 -6.06602497e+04 -6.10899110e+04 -5.74487878e+04 -4.31615308e+04 -6.31090520e+04 -6.49359927e+04 -5.93415007e+04] [-8.77793741e+03 -8.84532791e+03 -7.96754857e+03 -7.22845765e+03 -7.94537899e+03 -8.73046147e+03 -7.99144643e+03 -7.51191188e+03 -8.50836910e+03 -7.90556137e+03 -8.34040482e+03 -7.61652477e+03 -8.75699208e+03 -8.87034083e+03 -8.21162502e+03 -7.27612124e+03 -7.12444802e+03 -7.71937231e+03 -8.22176176e+03 -7.57596145e+03 -9.13861239e+03 -7.80181610e+03 -8.45603809e+03 -8.63557416e+03 -7.66645905e+03 -1.16908088e+04 -8.89035824e+03 -9.26531783e+03 -8.25484349e+03] [-1.22727729e+03 -1.07064566e+03 -1.00550670e+03 -1.00132619e+03 -1.02992322e+03 -1.11650216e+03 -1.02654188e+03 -1.02829906e+03 -1.09235051e+03 -1.03231374e+03 -1.03931848e+03 -1.07318163e+03 -1.22493195e+03 -1.11607664e+03 -1.02564390e+03 -1.01883600e+03 -9.93265621e+02 -1.00636033e+03 -1.05600210e+03 -1.05285219e+03 -1.12982449e+03 -1.01098588e+03 -1.06294698e+03 -1.10095598e+03 -9.95097572e+02 -1.82933712e+03 -1.05480593e+03 -1.12382829e+03 -1.06484040e+03] [-1.13284761e+03 -1.02850149e+03 -8.76702936e+02 -8.69885788e+02 -8.92463129e+02 -1.07226681e+03 -8.90152641e+02 -8.83038460e+02 -1.05318105e+03 -8.88853668e+02 -8.99699954e+02 -9.10222031e+02 -1.12870406e+03 -1.05886072e+03 -8.88637176e+02 -8.81348401e+02 -8.65066973e+02 -8.78917585e+02 -1.03356567e+03 -8.97948132e+02 -1.06132176e+03 -8.79474327e+02 -1.04067749e+03 -1.06184702e+03 -8.65559634e+02 -1.32694918e+03 -1.02089988e+03 -1.05740951e+03 -1.04109920e+03] [ 3.41157067e-01 2.82795709e-01 -5.82757160e-01 -9.65301003e-01 8.03954288e-01 -1.83050939e-01 -7.90372250e-01 5.26898576e-01 -7.30135826e-01 -9.02799046e-01 3.50958963e-01 -5.35807787e-01 -1.06157599e-01 2.38175735e-02 -3.96073658e-01 7.88369856e-01 -4.66610677e-01 -6.84981443e-01 -3.61701130e-01 -4.69688208e-01 7.31280038e-01 8.97283568e-01 -6.92226733e-02 4.23742010e-02 -6.72536815e-01 -2.41601751e-01 -2.04848286e-01 3.53015149e-01 2.59779511e-01] [ 1.47625925e-02 -2.60492293e-02 5.13554182e-01 -8.55884659e-01 6.41199803e-01 9.94489037e-01 9.87806780e-01 -8.55245925e-01 -8.94588089e-01 4.57783556e-01 5.22124505e-01 2.90076659e-01 -7.80363658e-01 -1.74662338e-01 -4.29187818e-01 9.49950886e-01 -4.05942667e-02 6.98019059e-01 2.46567874e-01 7.84848903e-01 -8.05491147e-01 -2.75483954e-02 -6.20394968e-01 -2.10427798e-01 -8.61247032e-01 -4.13708154e-01 -2.00107475e-01 8.51437231e-01 -1.83172144e-01] [-9.90115337e-01 -7.71114909e-01 4.41398923e-02 6.61886581e-01 -1.27469725e-01 9.36632098e-01 -8.56342123e-01 -6.53473539e-01 -6.72383157e-01 6.17758180e-01 3.78989039e-01 9.90649613e-01 5.99030867e-01 -9.40079438e-02 -9.21884190e-01 -9.96818139e-01 3.16124037e-01 3.86946973e-01 6.60824774e-01 2.38634926e-01 -1.26336853e-01 -5.46526396e-01 9.93827546e-01 -3.10177916e-01 3.51950972e-02 3.52609361e-01 8.56874671e-01 8.52456675e-01 -1.89356107e-04] [-6.75819357e-01 2.62115910e-01 6.43949816e-01 5.84169151e-01 -3.92215842e-01 -2.34773380e-01 8.77940782e-01 -4.29650340e-01 6.50999763e-01 -8.12758405e-01 -4.16925691e-01 -8.65518004e-01 -2.02747923e-01 7.76062001e-02 -7.79770514e-01 -1.95021349e-01 5.72030335e-01 5.36925547e-01 -3.05713306e-01 -7.81378672e-01 -8.56445607e-01 -9.59119548e-02 3.24588157e-01 -9.85924362e-01 4.45438813e-01 7.38314964e-01 -4.56842506e-01 3.47537328e-01 9.68455923e-01] [-1.61591675e+04 -1.73347235e+04 -1.63067942e+04 -1.56192630e+04 -1.56510760e+04 -1.63739775e+04 -1.59493973e+04 -1.50778398e+04 -1.61935956e+04 -1.58641299e+04 -1.67920905e+04 -1.48842060e+04 -1.62242481e+04 -1.67479868e+04 -1.68614501e+04 -1.43708518e+04 -1.46153622e+04 -1.59591447e+04 -1.62758312e+04 -1.52113548e+04 -1.74748663e+04 -1.60841106e+04 -1.61542269e+04 -1.56313632e+04 -1.58952140e+04 -2.39206144e+04 -1.75935954e+04 -1.78628621e+04 -1.52603053e+04] [-4.66580533e+04 -4.98456259e+04 -5.37335881e+04 -5.21838103e+04 -5.13755778e+04 -4.74567416e+04 -5.26851327e+04 -5.04091213e+04 -4.68497892e+04 -5.23662612e+04 -5.49829249e+04 -4.96661676e+04 -4.69577966e+04 -4.81514945e+04 -5.51077585e+04 -4.88315402e+04 -4.93182183e+04 -5.26139503e+04 -4.73120808e+04 -5.08447960e+04 -5.01123753e+04 -5.31373498e+04 -4.66483160e+04 -4.51263958e+04 -5.25236619e+04 -6.65413405e+04 -5.08594768e+04 -5.12665936e+04 -4.43294186e+04] [-1.09440452e+05 -1.13024880e+05 -1.15674804e+05 -1.12090516e+05 -1.11390579e+05 -1.10359224e+05 -1.13401465e+05 -1.09642104e+05 -1.09386802e+05 -1.13419571e+05 -1.17603713e+05 -1.07979206e+05 -1.10473040e+05 -1.11646722e+05 -1.18394604e+05 -1.06955095e+05 -1.07490690e+05 -1.12848429e+05 -1.09952065e+05 -1.09995045e+05 -1.13790716e+05 -1.14573929e+05 -1.08241391e+05 -1.06311421e+05 -1.13364607e+05 -1.61544037e+05 -1.14659833e+05 -1.15463207e+05 -1.05348354e+05] [-2.06409856e+05 -2.13393183e+05 -2.00901187e+05 -1.93199588e+05 -1.93807264e+05 -2.08435839e+05 -1.96713260e+05 -1.91051897e+05 -2.07595969e+05 -1.97534270e+05 -2.03557856e+05 -1.87579939e+05 -2.09285476e+05 -2.12560124e+05 -2.05961907e+05 -1.86876821e+05 -1.87206221e+05 -1.94272229e+05 -2.07844502e+05 -1.90856567e+05 -2.15498432e+05 -1.98687112e+05 -2.04992829e+05 -2.02190951e+05 -1.97168530e+05 -2.42022645e+05 -2.15907799e+05 -2.17435941e+05 -2.01618295e+05] [-4.24804945e+05 -4.27210658e+05 -3.64210179e+05 -3.53065006e+05 -3.54139360e+05 -4.28973309e+05 -3.56891995e+05 -3.54074710e+05 -4.28791097e+05 -3.60354636e+05 -3.63900289e+05 -3.47008752e+05 -4.31593236e+05 -4.33041823e+05 -3.68816672e+05 -3.53287718e+05 -3.50788353e+05 -3.51384154e+05 -4.29645618e+05 -3.51496469e+05 -4.29479210e+05 -3.61305050e+05 -4.24059896e+05 -4.23559640e+05 -3.59469009e+05 -3.24940198e+05 -4.30234043e+05 -4.28620712e+05 -4.27780642e+05] [-5.57673882e+05 -5.48136691e+05 -4.33890211e+05 -4.19959675e+05 -4.22803372e+05 -5.65475796e+05 -4.23245550e+05 -4.29079511e+05 -5.68461155e+05 -4.31875563e+05 -4.26535102e+05 -4.16703861e+05 -5.70270859e+05 -5.69304279e+05 -4.35894561e+05 -4.36874846e+05 -4.29804420e+05 -4.12952904e+05 -5.69879786e+05 -4.21389560e+05 -5.49207424e+05 -4.30904497e+05 -5.59555890e+05 -5.64070525e+05 -4.30761073e+05 -3.21988230e+05 -5.50797874e+05 -5.42253675e+05 -5.79799822e+05] [-5.55075480e+05 -5.36678018e+05 -4.06551308e+05 -3.89185461e+05 -3.94231161e+05 -5.75198013e+05 -3.92293369e+05 -4.10578925e+05 -5.83464433e+05 -4.06267820e+05 -3.88984330e+05 -3.89365332e+05 -5.73817994e+05 -5.74515004e+05 -4.02085053e+05 -4.33704699e+05 -4.19849624e+05 -3.76577458e+05 -5.86570082e+05 -3.95562786e+05 -5.32017586e+05 -4.03447511e+05 -5.70232734e+05 -5.82025319e+05 -4.07648122e+05 -1.22479225e+05 -5.39895748e+05 -5.17669677e+05 -6.15929168e+05] [-1.85316491e+05 -1.91512959e+05 -9.03442214e+04 -5.35155869e+04 -7.05934724e+04 -2.42523704e+05 -7.23561513e+04 -9.23377346e+04 -2.53853298e+05 -8.64488571e+04 -6.40800708e+04 -5.67015307e+04 -2.10382953e+05 -2.34756159e+05 -7.98183905e+04 -1.34419908e+05 -1.09987911e+05 -4.45694730e+04 -2.57021384e+05 -6.71028578e+04 -1.77691297e+05 -8.27539963e+04 -2.38486088e+05 -2.58323275e+05 -9.03563763e+04 4.10769936e+05 -2.00571779e+05 -1.60339137e+05 -3.10072964e+05] [ 3.26750342e+04 -2.81741820e+04 9.03630272e+04 1.64299814e+05 1.19765818e+05 -5.94102837e+04 1.12858254e+05 1.12633277e+05 -7.17984564e+04 1.03835268e+05 1.13870377e+05 1.59891385e+05 2.63060678e+03 -6.52520252e+04 9.57691910e+04 7.31224419e+04 1.00342407e+05 1.55797942e+05 -7.04101906e+04 1.44821463e+05 -1.36081590e+04 1.09407053e+05 -5.92301720e+04 -7.71889231e+04 9.94641042e+04 6.26124259e+05 -4.61426090e+04 -8.35528138e+02 -1.28249332e+05] [-5.97551205e+04 -1.48295752e+05 2.81313399e+04 1.28671896e+05 6.00431418e+04 -1.65933901e+05 5.37731933e+04 6.90270567e+04 -1.77738449e+05 4.61218012e+04 4.70602048e+04 1.20279955e+05 -9.22141366e+04 -1.85715812e+05 2.60444404e+04 3.75975147e+04 6.45267774e+04 1.05065930e+05 -1.71031162e+05 1.05097704e+05 -1.37073604e+05 5.42239911e+04 -1.67459974e+05 -1.82873372e+05 4.45062305e+04 5.38627923e+05 -1.69238830e+05 -1.27288656e+05 -2.29200812e+05] [-8.55978097e+04 -1.77284949e+05 -1.25155314e+04 8.88737528e+04 1.82711853e+04 -1.92040419e+05 1.31842428e+04 2.94095803e+04 -2.03967546e+05 4.63989667e+03 5.43160463e+03 8.02724743e+04 -1.17013338e+05 -2.12774963e+05 -1.66636000e+04 -6.19288397e+02 2.55820685e+04 6.29025106e+04 -1.96208160e+05 6.54289732e+04 -1.66174482e+05 1.27929946e+04 -1.93768069e+05 -2.07601293e+05 3.18209069e+03 5.66214127e+05 -1.96837413e+05 -1.57255778e+05 -2.53968040e+05] [ 9.58008537e+04 -1.80010976e+04 1.06093836e+05 2.04145926e+05 1.36777519e+05 -2.21062910e+04 1.27606133e+05 1.51149965e+05 -3.33899589e+04 1.27159296e+05 1.20037849e+05 2.00409386e+05 7.00046107e+04 -3.78378508e+04 1.02850167e+05 1.21475692e+05 1.44775295e+05 1.73826949e+05 -2.81411237e+04 1.83274234e+05 -3.40062744e+03 1.31717301e+05 -3.01197076e+04 -3.66995681e+04 1.20476484e+05 8.66181589e+05 -3.96012802e+04 4.02937928e+01 -7.94189022e+04] [ 3.32260792e+05 1.97649626e+05 2.59190963e+05 3.54095050e+05 2.90236786e+05 2.11419177e+05 2.75865905e+05 3.10990351e+05 2.04624467e+05 2.84100839e+05 2.65070753e+05 3.54784319e+05 3.13659211e+05 1.97766335e+05 2.54676316e+05 2.88843591e+05 3.07860377e+05 3.17632807e+05 2.09494419e+05 3.36938418e+05 2.12323474e+05 2.85342414e+05 2.00537123e+05 2.00565903e+05 2.76369883e+05 9.38694174e+05 1.73956759e+05 2.07716557e+05 1.71453508e+05] [ 2.45553656e+05 9.60427398e+04 1.25648103e+05 2.27729936e+05 1.56592000e+05 1.26755613e+05 1.39933255e+05 1.93625636e+05 1.26350197e+05 1.55653531e+05 1.20161350e+05 2.31365078e+05 2.33910914e+05 1.11161451e+05 1.15276437e+05 1.86086743e+05 1.99429089e+05 1.77830585e+05 1.33137334e+05 2.13834162e+05 1.07912425e+05 1.54496928e+05 1.16066743e+05 1.21839329e+05 1.49734115e+05 6.29256998e+05 7.07668754e+04 9.41019660e+04 1.10739057e+05] [ 1.43658693e+05 8.26168507e+02 2.61020207e+04 1.24283345e+05 5.35172239e+04 3.61636282e+04 3.84184584e+04 9.85727139e+04 4.11526402e+04 5.65403877e+04 1.40802806e+04 1.28766774e+05 1.37872532e+05 2.30739765e+04 1.38381956e+04 9.98007045e+04 1.08975420e+05 6.91999327e+04 4.79434226e+04 1.13738912e+05 1.12630926e+04 5.37387564e+04 2.69289054e+04 3.54230471e+04 5.28812077e+04 3.63900502e+05 -2.25920083e+04 -6.37594533e+03 3.53319330e+04] [-4.93668051e+04 -1.67431650e+05 -1.21550358e+05 -3.74277383e+04 -9.92846914e+04 -1.36353258e+05 -1.10835216e+05 -5.49293071e+04 -1.29587970e+05 -9.42948159e+04 -1.35471953e+05 -3.20235296e+04 -5.15534849e+04 -1.45646328e+05 -1.33730065e+05 -4.86694098e+04 -4.33064073e+04 -8.84201800e+04 -1.24142724e+05 -4.43132184e+04 -1.59030386e+05 -9.80859465e+04 -1.43308281e+05 -1.34589455e+05 -9.69673527e+04 1.11354385e+05 -1.86562083e+05 -1.76110131e+05 -1.29569964e+05] [-1.24866919e+05 -2.09534039e+05 -1.50610424e+05 -8.73599325e+04 -1.35001551e+05 -1.87357595e+05 -1.42722626e+05 -9.96339783e+04 -1.81687649e+05 -1.29959663e+05 -1.62181286e+05 -8.36880325e+04 -1.25601397e+05 -1.93218985e+05 -1.60211369e+05 -9.31840311e+04 -8.98824558e+04 -1.26980063e+05 -1.77431733e+05 -9.23944385e+04 -2.03840423e+05 -1.33091355e+05 -1.92077606e+05 -1.86085645e+05 -1.31749796e+05 3.78477739e+03 -2.23223299e+05 -2.16895938e+05 -1.80374951e+05] [-6.82169894e+04 -1.26587635e+05 -8.83296999e+04 -4.44155494e+04 -7.80186079e+04 -1.10810792e+05 -8.31110111e+04 -5.27135706e+04 -1.06315908e+05 -7.42405536e+04 -9.69826764e+04 -4.23807018e+04 -6.81902442e+04 -1.14750506e+05 -9.52733364e+04 -4.78219162e+04 -4.56194474e+04 -7.26096087e+04 -1.03108849e+05 -4.79981569e+04 -1.22804597e+05 -7.63327752e+04 -1.13790518e+05 -1.09400405e+05 -7.50251613e+04 -1.95875224e+04 -1.35801394e+05 -1.32119551e+05 -1.04894480e+05] [ 1.78068703e+03 -3.33862196e+04 -1.98797788e+04 4.29907745e+03 -1.42609210e+04 -2.31035816e+04 -1.71893535e+04 -2.87751520e+02 -2.02830002e+04 -1.22240622e+04 -2.47307476e+04 5.30175857e+03 2.11284540e+03 -2.53916926e+04 -2.35487344e+04 1.96990857e+03 3.34007737e+03 -1.15937670e+04 -1.85145958e+04 2.32469773e+03 -3.08163749e+04 -1.33775675e+04 -2.52181982e+04 -2.20705122e+04 -1.25150313e+04 4.34325417e+04 -3.84717775e+04 -3.61878643e+04 -1.98202289e+04] [-1.47039037e+04 -2.98672364e+04 -2.17143660e+04 -1.06677882e+04 -1.93618201e+04 -2.51078248e+04 -2.05305290e+04 -1.27761320e+04 -2.35908036e+04 -1.83871237e+04 -2.42266317e+04 -1.05872282e+04 -1.44602698e+04 -2.62915977e+04 -2.35490002e+04 -1.13571763e+04 -1.07249407e+04 -1.80527185e+04 -2.25584421e+04 -1.17507521e+04 -2.90393338e+04 -1.87983408e+04 -2.57622472e+04 -2.45288837e+04 -1.82009668e+04 5.36204873e+03 -3.20133960e+04 -3.14851539e+04 -2.30110529e+04] [-2.67559062e+04 -3.12086813e+04 -2.62556787e+04 -2.23567978e+04 -2.54721356e+04 -2.99551275e+04 -2.57871674e+04 -2.32136222e+04 -2.92647338e+04 -2.51481779e+04 -2.71401554e+04 -2.25425792e+04 -2.66908280e+04 -3.02153687e+04 -2.67975865e+04 -2.26844858e+04 -2.23025724e+04 -2.49300476e+04 -2.87969462e+04 -2.29003834e+04 -3.10443089e+04 -2.52547917e+04 -2.99714445e+04 -2.99203437e+04 -2.48952638e+04 -6.69363276e+03 -3.18769210e+04 -3.18040176e+04 -2.91522429e+04] [-4.75890380e+03 -4.98366041e+03 -4.19019369e+03 -3.69040392e+03 -4.12149721e+03 -4.94784069e+03 -4.16389855e+03 -3.84564203e+03 -4.78792804e+03 -4.09445947e+03 -4.37759847e+03 -3.84811110e+03 -4.73912577e+03 -4.93696076e+03 -4.28261874e+03 -3.76200415e+03 -3.65486668e+03 -4.02717265e+03 -4.66383825e+03 -3.84868332e+03 -5.05760703e+03 -4.07681937e+03 -4.82433999e+03 -4.91743858e+03 -3.97530506e+03 -4.94749458e+03 -5.04331145e+03 -5.14469370e+03 -4.73165007e+03] [ 2.37756769e+02 1.61804817e+02 8.83825456e+01 1.37495013e+02 1.02249310e+02 1.97452602e+02 8.00492002e+01 1.33262676e+02 1.92033200e+02 1.13190058e+02 6.25101203e+01 1.38434469e+02 2.40973571e+02 1.82591781e+02 7.70164415e+01 1.53669568e+02 1.48206465e+02 1.04295789e+02 2.00639804e+02 1.23148548e+02 1.49469507e+02 1.12610442e+02 1.91662552e+02 1.95399685e+02 9.84801594e+01 8.97226266e+01 1.39357602e+02 1.28491664e+02 2.24470868e+02] [-5.64388818e-01 -4.84617352e-01 -5.50143450e-01 2.08960679e-01 -5.31263167e-01 9.19012703e-01 5.80464640e-01 -5.47150689e-01 -6.28147314e-01 7.78761104e-01 7.88702935e-01 -4.96627421e-01 6.71167071e-01 9.87275195e-01 -8.08556705e-01 -9.70674903e-01 1.72762428e-01 -1.46390232e-01 8.01207425e-01 2.59233252e-01 -4.11510353e-01 -4.23847480e-01 -2.64645335e-01 -2.54621811e-01 -5.68357176e-01 -2.48111079e-01 -1.45585735e-01 9.49020088e-01 -1.91176927e-01] [-1.48924029e-01 3.90161046e-02 8.97273537e-01 1.34154642e-01 -9.78700557e-02 6.29204973e-01 -8.67391511e-01 3.75016041e-01 -7.21524152e-01 -6.03075621e-01 -3.00714870e-01 9.52517147e-01 -4.58088847e-01 8.97282658e-01 -2.14437405e-01 -6.65157124e-01 6.21672476e-01 -8.53980003e-01 6.52531574e-01 -9.96781417e-01 -9.70376976e-01 -4.48887461e-01 -2.06403333e-01 8.89573084e-01 9.64322156e-01 -4.77695719e-01 1.82411485e-01 6.68541859e-01 -2.55113245e-01] [ 5.82631127e-01 -1.22837663e-01 3.16550695e-04 1.72268293e-01 7.53439325e-01 4.91761471e-01 -6.43823924e-01 -6.34113159e-01 -4.49168028e-01 -3.76380473e-01 -5.18650044e-01 7.93760240e-02 3.88108770e-01 7.57507385e-02 -4.30950361e-01 7.47149453e-01 -9.58239055e-01 -3.19636453e-01 5.34224917e-01 -2.35492418e-01 -6.08373569e-01 5.48752953e-01 -2.49909936e-01 -7.92043536e-01 -9.79747575e-01 -4.91235507e-01 6.56187714e-01 2.99566540e-01 6.71023050e-01] [ 2.81886990e-01 2.63600859e-01 -7.73443131e-01 1.12671028e-01 4.19918354e-01 -7.02836457e-01 -4.08307043e-01 3.43188602e-01 1.87384812e-02 -9.18330174e-01 -2.92376902e-01 4.15901568e-01 -7.89168397e-01 2.20102703e-01 7.21183574e-01 -2.93747376e-01 3.95293225e-01 -7.52667457e-01 -6.73595870e-01 2.02817016e-01 6.76121438e-02 -7.08563723e-01 -1.05789277e-01 -1.64157898e-01 -7.23091585e-01 2.93931198e-01 4.38175407e-01 5.13747296e-01 -8.20768047e-01] [ 2.71601025e-02 6.10828861e-01 4.45489440e-01 2.23393445e-01 -5.72835616e-01 3.36180683e-03 4.99241767e-01 -5.39047025e-01 -1.93802449e-01 3.73576966e-01 -1.34955967e-01 3.92087779e-01 7.04632567e-01 -9.22435180e-01 7.53036258e-01 2.73595205e-01 3.92783444e-01 -2.96978148e-01 1.72437616e-01 -5.58731358e-01 5.34459067e-01 3.10927712e-01 -9.93815160e-02 -3.23138625e-01 5.68171044e-01 3.42011805e-01 6.00692585e-01 -5.74549171e-01 7.03331052e-02] [ 7.78285737e+02 7.57060993e+02 6.48290610e+02 6.21935729e+02 6.77703454e+02 7.46293627e+02 6.51377970e+02 6.31851871e+02 7.47482176e+02 6.55126325e+02 6.59250877e+02 6.47379952e+02 7.68680095e+02 7.71505701e+02 6.62539010e+02 5.99969550e+02 6.14000606e+02 6.54080412e+02 7.34255434e+02 6.33596335e+02 7.71155933e+02 6.41748575e+02 7.45159222e+02 7.48651902e+02 6.47166163e+02 8.36002133e+02 7.45835521e+02 7.72202802e+02 7.30833428e+02] [ 1.00591784e+04 9.30672097e+03 7.73305261e+03 7.66593502e+03 8.20324918e+03 9.40842175e+03 7.83295918e+03 7.79882984e+03 9.48851550e+03 7.90204253e+03 7.81738499e+03 8.06458621e+03 9.96296691e+03 9.66038667e+03 7.84126088e+03 7.46404492e+03 7.64461481e+03 7.90207540e+03 9.32215581e+03 7.83594660e+03 9.51390563e+03 7.72232282e+03 9.38916331e+03 9.52724331e+03 7.82339094e+03 1.01345213e+04 9.10436224e+03 9.43476985e+03 9.33204633e+03] [ 6.68166892e+04 6.24466151e+04 5.32275053e+04 5.33513767e+04 5.49884256e+04 6.28639672e+04 5.35243428e+04 5.32740003e+04 6.33145481e+04 5.38037668e+04 5.38182832e+04 5.45186085e+04 6.64861726e+04 6.41220017e+04 5.39762475e+04 5.11457831e+04 5.22823223e+04 5.39921780e+04 6.27154249e+04 5.37469481e+04 6.37239128e+04 5.31583163e+04 6.24688307e+04 6.29963203e+04 5.36315627e+04 7.25797195e+04 6.16351627e+04 6.34603821e+04 6.17010499e+04] [ 2.04370814e+05 1.95679194e+05 1.70249807e+05 1.68820298e+05 1.73973161e+05 1.94079524e+05 1.70247160e+05 1.67933288e+05 1.94742333e+05 1.71181201e+05 1.72829396e+05 1.71002455e+05 2.03441888e+05 1.98486595e+05 1.73344664e+05 1.60439918e+05 1.63909967e+05 1.71763948e+05 1.92872989e+05 1.69289765e+05 1.99319924e+05 1.69705324e+05 1.92564510e+05 1.93355794e+05 1.70335066e+05 2.34368737e+05 1.93716140e+05 1.99412537e+05 1.88579623e+05] [ 5.55550594e+05 5.40672974e+05 4.66576422e+05 4.60191135e+05 4.73720482e+05 5.31080776e+05 4.65079908e+05 4.56616985e+05 5.32021915e+05 4.67648077e+05 4.74586661e+05 4.63499715e+05 5.53555714e+05 5.43678133e+05 4.76303914e+05 4.35290685e+05 4.44709878e+05 4.68930433e+05 5.27356547e+05 4.60007067e+05 5.50100742e+05 4.64593359e+05 5.26476967e+05 5.27002943e+05 4.65171052e+05 6.09367856e+05 5.36309708e+05 5.51504657e+05 5.13671740e+05] [ 1.12080609e+06 1.08727548e+06 9.41812303e+05 9.30840137e+05 9.54339296e+05 1.06857029e+06 9.38000997e+05 9.21232989e+05 1.07034240e+06 9.43624075e+05 9.58464836e+05 9.34961335e+05 1.11718803e+06 1.09403934e+06 9.62216996e+05 8.76791928e+05 8.96423543e+05 9.46586489e+05 1.06152286e+06 9.28788970e+05 1.10688828e+06 9.38186907e+05 1.05796775e+06 1.05852783e+06 9.38791058e+05 1.32315000e+06 1.07883023e+06 1.11017597e+06 1.03071626e+06] [ 1.84138830e+06 1.77537574e+06 1.52088050e+06 1.50950419e+06 1.54057053e+06 1.75093242e+06 1.51490090e+06 1.49157290e+06 1.75437209e+06 1.52458993e+06 1.54637883e+06 1.51432244e+06 1.83643910e+06 1.79062342e+06 1.55301332e+06 1.42090003e+06 1.45259265e+06 1.52966775e+06 1.74149179e+06 1.50469767e+06 1.80797013e+06 1.51642520e+06 1.73329932e+06 1.73426704e+06 1.51730270e+06 2.24796210e+06 1.76139214e+06 1.81203737e+06 1.69012140e+06] [ 2.56572601e+06 2.45471447e+06 2.11409700e+06 2.10982470e+06 2.14210244e+06 2.43295554e+06 2.10739772e+06 2.08265261e+06 2.43878352e+06 2.12124916e+06 2.14632092e+06 2.11534061e+06 2.55944247e+06 2.48324368e+06 2.15530486e+06 1.98952197e+06 2.03253988e+06 2.12925688e+06 2.42336715e+06 2.10205548e+06 2.49969178e+06 2.11055860e+06 2.40818061e+06 2.41080715e+06 2.11236769e+06 3.14427110e+06 2.43466308e+06 2.50300281e+06 2.35288217e+06] [ 2.75114238e+06 2.61676031e+06 2.28886626e+06 2.29771042e+06 2.32158352e+06 2.59833972e+06 2.28446232e+06 2.26542202e+06 2.60695188e+06 2.29937605e+06 2.32105505e+06 2.30312414e+06 2.74416573e+06 2.65001201e+06 2.33042461e+06 2.16814390e+06 2.21539596e+06 2.30990758e+06 2.59242638e+06 2.28842905e+06 2.66581146e+06 2.28771415e+06 2.57185935e+06 2.57508624e+06 2.29181946e+06 3.36587552e+06 2.59407469e+06 2.66730767e+06 2.51523977e+06] [ 2.57223991e+06 2.43173038e+06 2.13833170e+06 2.15856962e+06 2.17250380e+06 2.41431763e+06 2.13613999e+06 2.12478116e+06 2.42440165e+06 2.15166500e+06 2.16768583e+06 2.16403348e+06 2.56519363e+06 2.46404456e+06 2.17663477e+06 2.03136780e+06 2.07827878e+06 2.16294600e+06 2.41118624e+06 2.14878377e+06 2.48041018e+06 2.13979010e+06 2.38851279e+06 2.39227135e+06 2.14497425e+06 3.20625142e+06 2.40806904e+06 2.47997020e+06 2.33474115e+06] [ 2.56324224e+06 2.42146737e+06 2.11352191e+06 2.13401309e+06 2.14819484e+06 2.40646651e+06 2.11131177e+06 2.10102273e+06 2.41596191e+06 2.12737833e+06 2.14197869e+06 2.14031603e+06 2.55640330e+06 2.45475548e+06 2.15124707e+06 2.00968228e+06 2.05557414e+06 2.13802612e+06 2.40303130e+06 2.12436243e+06 2.46951434e+06 2.11553239e+06 2.38076409e+06 2.38462875e+06 2.12004959e+06 3.16652930e+06 2.39721449e+06 2.46822284e+06 2.32883894e+06] [ 2.38317090e+06 2.25047118e+06 1.96100216e+06 1.97894094e+06 1.99201679e+06 2.24201941e+06 1.95840204e+06 1.94946315e+06 2.24934227e+06 1.97362600e+06 1.98612724e+06 1.98489357e+06 2.37749075e+06 2.28409954e+06 1.99480477e+06 1.86863641e+06 1.90893367e+06 1.98237307e+06 2.23812038e+06 1.97000209e+06 2.29344933e+06 1.96312416e+06 2.21803358e+06 2.22165755e+06 1.96596687e+06 2.89018535e+06 2.22837621e+06 2.29158196e+06 2.17276759e+06] [ 1.80749199e+06 1.69304733e+06 1.48789085e+06 1.51061120e+06 1.51378987e+06 1.69011371e+06 1.48685108e+06 1.48696595e+06 1.69687872e+06 1.50098685e+06 1.50497752e+06 1.51606346e+06 1.80355358e+06 1.72238582e+06 1.51253489e+06 1.42640609e+06 1.45734714e+06 1.50706624e+06 1.68855729e+06 1.50348952e+06 1.72707506e+06 1.49208961e+06 1.67086172e+06 1.67466334e+06 1.49471206e+06 2.22147378e+06 1.67407186e+06 1.72342412e+06 1.63880107e+06] [ 1.17504843e+06 1.06982305e+06 9.52419773e+05 9.88842702e+05 9.74558421e+05 1.07490336e+06 9.54839347e+05 9.69034346e+05 1.08328074e+06 9.67473449e+05 9.60055466e+05 9.93262346e+05 1.17288897e+06 1.09611071e+06 9.66063287e+05 9.29796010e+05 9.52398364e+05 9.72188673e+05 1.07907875e+06 9.83015246e+05 1.09577333e+06 9.60169499e+05 1.06071801e+06 1.06556331e+06 9.64372436e+05 1.50026176e+06 1.05344164e+06 1.08897866e+06 1.04319439e+06] [ 6.49254318e+05 5.62052860e+05 5.11612728e+05 5.54092787e+05 5.28644226e+05 5.70534442e+05 5.16590915e+05 5.38172853e+05 5.80186639e+05 5.25709674e+05 5.12504096e+05 5.56489415e+05 6.48585912e+05 5.82879571e+05 5.16568883e+05 5.16214934e+05 5.31827710e+05 5.29747178e+05 5.79466780e+05 5.49568425e+05 5.80472451e+05 5.20411360e+05 5.61901336e+05 5.66744472e+05 5.26285918e+05 8.45830101e+05 5.49741335e+05 5.72686958e+05 5.54669720e+05] [ 1.66147339e+05 1.03203283e+05 1.27627203e+05 1.68754348e+05 1.39993837e+05 1.10279986e+05 1.33925541e+05 1.56993451e+05 1.19408950e+05 1.39922616e+05 1.24648524e+05 1.69989255e+05 1.65919009e+05 1.17145473e+05 1.26997152e+05 1.47560601e+05 1.57465418e+05 1.43356633e+05 1.20433940e+05 1.65559143e+05 1.14699607e+05 1.36084857e+05 1.06394057e+05 1.09743096e+05 1.42328578e+05 3.17434733e+05 9.47114243e+04 1.07777651e+05 1.04943783e+05] [-4.15818573e+03 -4.71561977e+04 -6.77488232e+03 2.46598004e+04 1.87740703e+03 -4.15617632e+04 -1.64857703e+03 1.66916584e+04 -3.50513506e+04 2.58573622e+03 -1.00688868e+04 2.56134534e+04 -4.33138455e+03 -3.78784195e+04 -8.62424464e+03 1.28596864e+04 1.89244163e+04 4.96707044e+03 -3.37947412e+04 2.24418907e+04 -4.02601841e+04 -9.04302625e+01 -4.36235421e+04 -4.15499233e+04 4.46078720e+03 1.15932518e+05 -5.30284800e+04 -4.54868702e+04 -4.29743155e+04] [ 8.75107969e+02 -2.80599304e+04 -5.77664743e+03 1.50326489e+04 -2.44886456e+02 -2.31510867e+04 -2.31125849e+03 9.89367416e+03 -1.87975924e+04 2.20484052e+02 -8.17629912e+03 1.55561419e+04 9.26071891e+02 -2.14209689e+04 -7.22495579e+03 8.08999710e+03 1.18386644e+04 1.75161649e+03 -1.76984889e+04 1.35848765e+04 -2.36772156e+04 -1.38615103e+03 -2.44508774e+04 -2.29805106e+04 1.69628193e+03 6.50821695e+04 -3.17578407e+04 -2.72688539e+04 -2.33726285e+04] [ 8.79550844e+03 -7.94131031e+03 2.87415561e+03 1.43325340e+04 5.90688088e+03 -4.73075014e+03 4.88308928e+03 1.15473322e+04 -2.03635238e+03 6.06369145e+03 1.49391254e+03 1.45874674e+04 8.94890233e+03 -3.75968561e+03 2.11615932e+03 1.05058687e+04 1.26337147e+04 6.85897013e+03 -1.43890402e+03 1.36475941e+04 -5.27270035e+03 5.15985905e+03 -5.45501653e+03 -4.46942862e+03 7.13324180e+03 5.10005332e+04 -9.86211494e+03 -7.30499193e+03 -4.71124762e+03] [-1.56211822e+04 -2.26970678e+04 -1.45988227e+04 -9.13062752e+03 -1.32761903e+04 -2.12559057e+04 -1.36182081e+04 -1.02735564e+04 -2.00631482e+04 -1.30586115e+04 -1.54328563e+04 -8.98306669e+03 -1.55557244e+04 -2.10219387e+04 -1.51943203e+04 -1.02345020e+04 -9.49009890e+03 -1.27385201e+04 -1.97315535e+04 -9.40238476e+03 -2.17270943e+04 -1.34548988e+04 -2.14489053e+04 -2.10420731e+04 -1.25768009e+04 3.06695371e+03 -2.35455481e+04 -2.27010318e+04 -2.08189336e+04] [-1.16058728e+04 -1.41089805e+04 -9.86000006e+03 -7.66512974e+03 -9.41194217e+03 -1.36440737e+04 -9.47397436e+03 -8.12471882e+03 -1.31919258e+04 -9.26181238e+03 -1.02119714e+04 -7.66274401e+03 -1.15752625e+04 -1.35796560e+04 -1.01275630e+04 -8.00884214e+03 -7.76141208e+03 -9.13582629e+03 -1.30354647e+04 -7.79296798e+03 -1.37877984e+04 -9.39416134e+03 -1.36892166e+04 -1.35855072e+04 -9.06241271e+03 -3.67540685e+03 -1.44103187e+04 -1.41513966e+04 -1.34320824e+04] [-3.10784314e+03 -3.55163902e+03 -2.58583214e+03 -2.15877925e+03 -2.50808061e+03 -3.46985943e+03 -2.50886351e+03 -2.24457724e+03 -3.37884512e+03 -2.47405711e+03 -2.65775263e+03 -2.16442414e+03 -3.10168691e+03 -3.46411316e+03 -2.64754266e+03 -2.20727522e+03 -2.16610041e+03 -2.44701722e+03 -3.34554125e+03 -2.18116957e+03 -3.49988166e+03 -2.49765773e+03 -3.46939860e+03 -3.45013344e+03 -2.42942803e+03 -1.60337564e+03 -3.60238767e+03 -3.56636415e+03 -3.41471747e+03] [-1.00313860e-01 -8.95244114e-01 2.24898094e-01 5.02106711e-01 -6.23552231e-01 9.65659851e-01 9.16289627e-01 7.19826111e-02 -4.17443472e-02 1.87304487e-02 -4.56427722e-01 4.86287354e-01 6.13525830e-01 9.96462516e-01 -1.69610357e-01 -5.89548408e-01 -2.00963145e-02 -3.02053412e-01 -7.02264434e-01 7.09644159e-01 -5.44297069e-01 -7.44718596e-01 4.15979712e-01 1.54259958e-01 -8.58074274e-01 8.32512074e-01 4.79867279e-01 -9.59868381e-01 -1.99563052e-01] [-2.11984920e-01 -6.06487435e-01 9.74599436e-01 1.38806702e-01 -1.68111285e-01 -2.07438966e-01 7.60529747e-01 -9.34067637e-01 2.05957868e-02 8.94164332e-01 8.38839244e-01 -8.74029662e-01 7.48765344e-01 7.00280700e-02 8.41395984e-01 9.32666068e-01 -5.09108848e-01 -6.88019253e-01 5.52346820e-01 2.35841891e-01 7.21378052e-01 4.48064443e-01 4.78043507e-01 -1.48612517e-01 1.07898318e-01 9.95961198e-01 6.39822375e-01 -9.07324745e-01 3.20305911e-01] [ 2.81948232e-01 -1.71908008e-01 -7.54253933e-02 2.29253267e-01 6.07004433e-01 -7.26812550e-01 6.12721505e-01 -9.75057224e-01 -6.15268996e-01 -5.01067991e-01 -3.81349802e-02 5.08932515e-01 2.26476030e-01 -9.27647425e-01 2.72591315e-01 5.87716780e-01 -3.36892679e-01 -8.48909051e-01 -2.17970865e-02 -5.95587150e-01 -9.53862133e-01 7.52401377e-01 9.42484305e-02 -9.93196039e-01 -1.53495208e-01 -2.59556420e-01 -3.41947492e-01 -5.91974412e-01 -8.73509978e-01] [ 5.38098884e-01 -9.95604809e-01 7.13836006e-01 -6.49056763e-01 -8.91494889e-01 8.70631097e-01 4.72005228e-01 3.80148347e-01 -9.49209974e-01 1.87365676e-01 6.99516425e-01 -9.89826120e-01 4.07262093e-01 5.93064776e-01 1.66984571e-02 9.05515145e-01 9.46206373e-01 -3.05528119e-01 -8.42043482e-02 -9.50232585e-01 9.84520621e-01 1.07220815e-01 3.84392743e-01 -9.91023982e-01 -1.19512723e-01 -9.11672198e-02 7.06503693e-01 9.41902001e-01 7.39421578e-01] [ 7.36011379e-01 3.61691301e-01 -8.28787144e-01 -5.49302577e-01 -8.73040536e-01 9.54082336e-02 4.73673240e-01 -9.92798125e-01 2.59245707e-01 3.29861125e-01 -2.63275827e-01 -6.55709619e-01 5.99851663e-01 -2.23168187e-01 -6.82034396e-01 -5.44589125e-02 -1.11787925e-01 4.36931015e-01 -6.05857391e-01 -4.12517908e-01 -9.45914967e-01 -5.67189526e-01 -6.10274975e-01 7.83161150e-01 -2.46210382e-01 8.80278548e-01 3.18839928e-01 1.37394371e-01 9.80948587e-01] [ 7.29149767e-01 -5.47992638e-01 3.70818375e-01 1.17978036e-02 -6.26817855e-01 -7.47497533e-01 7.43715629e-01 9.98928249e-01 -8.67436998e-01 -5.41713538e-01 5.21558224e-01 -1.11790289e-01 8.34221230e-02 1.41399536e-01 5.26632862e-01 6.86825384e-01 -9.55403667e-01 -5.17708993e-01 4.97550364e-03 -2.26173848e-01 -7.65012780e-01 -3.39440177e-01 3.67107903e-01 5.56927465e-01 1.89250671e-01 -2.53458333e-01 4.49248848e-01 9.40700023e-01 5.65600495e-01] [-3.75793247e+02 -4.30957694e+02 -3.14879663e+02 -2.62926573e+02 -3.04931126e+02 -4.21869817e+02 -3.06534211e+02 -2.72412872e+02 -4.07594586e+02 -3.01392769e+02 -3.24058972e+02 -2.63052832e+02 -3.75670912e+02 -4.18793681e+02 -3.22628748e+02 -2.68989002e+02 -2.63606992e+02 -2.97911183e+02 -4.04121707e+02 -2.65042564e+02 -4.24486544e+02 -3.05958788e+02 -4.21762450e+02 -4.18534453e+02 -2.94550842e+02 -1.98736675e+02 -4.36845195e+02 -4.33581197e+02 -4.13241377e+02] [ 7.93480063e+01 -4.47228673e+02 5.72359591e+01 4.42322430e+02 1.67012304e+02 -3.91108880e+02 1.25534777e+02 3.34683814e+02 -2.84584544e+02 1.62866637e+02 2.67254366e+01 4.41969440e+02 7.62202216e+01 -3.24212514e+02 4.70152410e+01 2.63518339e+02 3.60087662e+02 2.02078639e+02 -2.67382688e+02 4.18011379e+02 -3.49154480e+02 1.28072021e+02 -4.09638803e+02 -3.95999558e+02 2.15145159e+02 1.84312450e+03 -5.10781060e+02 -4.09089686e+02 -4.13753731e+02] [ 2.47242413e+04 2.46157225e+04 2.29672629e+04 2.24894209e+04 2.33124720e+04 2.35074515e+04 2.28889278e+04 2.21967317e+04 2.35853229e+04 2.29905890e+04 2.35302439e+04 2.25820799e+04 2.45898916e+04 2.45179097e+04 2.36644512e+04 2.08519600e+04 2.14804331e+04 2.30952556e+04 2.32995191e+04 2.24418140e+04 2.51807262e+04 2.27950116e+04 2.33164004e+04 2.30547212e+04 2.29007188e+04 3.44428216e+04 2.44334481e+04 2.53751203e+04 2.22977085e+04] [ 1.08574696e+05 1.10989520e+05 9.59982707e+04 9.31304938e+04 9.70545220e+04 1.04139305e+05 9.52986132e+04 9.18654995e+04 1.04137605e+05 9.57995050e+04 9.86735057e+04 9.32761282e+04 1.08012746e+05 1.08309944e+05 9.91525688e+04 8.58040563e+04 8.84463501e+04 9.62099178e+04 1.02929295e+05 9.27177799e+04 1.13203921e+05 9.51668403e+04 1.03159659e+05 1.02111088e+05 9.51838202e+04 1.34129381e+05 1.10257065e+05 1.14222531e+05 9.85254551e+04] [ 3.37952392e+05 3.38981200e+05 2.93552670e+05 2.85868286e+05 2.95934561e+05 3.26949429e+05 2.91467894e+05 2.82898891e+05 3.26625729e+05 2.92726892e+05 3.00064173e+05 2.86162690e+05 3.36733473e+05 3.36046469e+05 3.01159564e+05 2.68136675e+05 2.74372219e+05 2.93550046e+05 3.23840922e+05 2.84784094e+05 3.44358122e+05 2.91421853e+05 3.23963406e+05 3.22278870e+05 2.91017077e+05 3.45626174e+05 3.37172119e+05 3.46648725e+05 3.13416975e+05] [ 7.48298233e+05 7.40665367e+05 6.30621810e+05 6.14094543e+05 6.35419791e+05 7.25507976e+05 6.26349947e+05 6.08474483e+05 7.24933104e+05 6.28299926e+05 6.43382372e+05 6.14791268e+05 7.46275227e+05 7.42611327e+05 6.45740359e+05 5.79325204e+05 5.91537328e+05 6.29878124e+05 7.19626931e+05 6.12185381e+05 7.51835222e+05 6.25854604e+05 7.19414382e+05 7.16765907e+05 6.25231568e+05 8.28484859e+05 7.37425637e+05 7.56056133e+05 6.99279602e+05] [ 1.16720814e+06 1.14989478e+06 9.74651764e+05 9.50637855e+05 9.81899952e+05 1.13210436e+06 9.68589584e+05 9.42524342e+05 1.13174834e+06 9.70919752e+05 9.92666645e+05 9.51684992e+05 1.16463864e+06 1.15618530e+06 9.96418918e+05 9.00426252e+05 9.18077123e+05 9.73270786e+05 1.12421390e+06 9.48135520e+05 1.16684572e+06 9.67410537e+05 1.12319360e+06 1.12013634e+06 9.67009885e+05 1.35389049e+06 1.14540801e+06 1.17249041e+06 1.09483701e+06] [ 1.58598543e+06 1.56090637e+06 1.34054898e+06 1.30988175e+06 1.35034243e+06 1.53816462e+06 1.33260970e+06 1.29909083e+06 1.53761498e+06 1.33611281e+06 1.36407246e+06 1.31141946e+06 1.58254102e+06 1.56972797e+06 1.36903052e+06 1.24372206e+06 1.26684997e+06 1.33911355e+06 1.52758976e+06 1.30662253e+06 1.58335787e+06 1.33136424e+06 1.52601787e+06 1.52242970e+06 1.33064607e+06 1.79944845e+06 1.55469902e+06 1.59065254e+06 1.48906261e+06] [ 1.66488482e+06 1.63389960e+06 1.41142349e+06 1.38313563e+06 1.42253028e+06 1.61114949e+06 1.40393013e+06 1.37076833e+06 1.61142618e+06 1.40753739e+06 1.43562320e+06 1.38455404e+06 1.66110719e+06 1.64404647e+06 1.44067784e+06 1.31279296e+06 1.33766030e+06 1.41140596e+06 1.60133979e+06 1.37946093e+06 1.65793689e+06 1.40245563e+06 1.59851276e+06 1.59490874e+06 1.40245558e+06 1.89971711e+06 1.62703448e+06 1.66514631e+06 1.55994564e+06] [ 1.57483454e+06 1.54046177e+06 1.31472741e+06 1.29022963e+06 1.32599469e+06 1.52067117e+06 1.30790542e+06 1.27788949e+06 1.52161373e+06 1.31149457e+06 1.33739801e+06 1.29162543e+06 1.57132687e+06 1.55159071e+06 1.34222004e+06 1.22237795e+06 1.24656191e+06 1.31543605e+06 1.51228111e+06 1.28655003e+06 1.56394117e+06 1.30662342e+06 1.50845005e+06 1.50576157e+06 1.30704718e+06 1.82660613e+06 1.53342705e+06 1.57010311e+06 1.47222459e+06] [ 1.55034952e+06 1.51600398e+06 1.28934084e+06 1.26519859e+06 1.30044291e+06 1.49714385e+06 1.28251861e+06 1.25323532e+06 1.49814918e+06 1.28621219e+06 1.31148698e+06 1.26666813e+06 1.54702127e+06 1.52737761e+06 1.31637064e+06 1.19870014e+06 1.22242699e+06 1.28987378e+06 1.48893359e+06 1.26161827e+06 1.53912307e+06 1.28142108e+06 1.48497703e+06 1.48264286e+06 1.28182295e+06 1.77966324e+06 1.50894590e+06 1.54497148e+06 1.44977288e+06] [ 1.39442955e+06 1.36281181e+06 1.17130520e+06 1.15099973e+06 1.18173567e+06 1.34430855e+06 1.16562172e+06 1.13950891e+06 1.34575998e+06 1.16894866e+06 1.19148395e+06 1.15220879e+06 1.39136798e+06 1.37286565e+06 1.19613813e+06 1.08936845e+06 1.11151198e+06 1.17250170e+06 1.33728042e+06 1.14760627e+06 1.38440523e+06 1.16434124e+06 1.33335245e+06 1.33074909e+06 1.16522545e+06 1.60735598e+06 1.35628916e+06 1.38982173e+06 1.30054996e+06] [ 9.93883055e+05 9.71999843e+05 8.45340160e+05 8.31145911e+05 8.53041824e+05 9.57004881e+05 8.41366786e+05 8.22604404e+05 9.58217937e+05 8.43960479e+05 8.59995755e+05 8.32016867e+05 9.91566922e+05 9.78630031e+05 8.63533190e+05 7.85917505e+05 8.02197151e+05 8.46532695e+05 9.51859364e+05 8.28664190e+05 9.87858650e+05 8.40395493e+05 9.49164718e+05 9.46809624e+05 8.41219442e+05 1.15958040e+06 9.67188920e+05 9.91916604e+05 9.24795940e+05] [ 6.69133411e+05 6.50281787e+05 5.72601164e+05 5.66507826e+05 5.78658516e+05 6.39610974e+05 5.70633438e+05 5.59461181e+05 6.41537236e+05 5.72512791e+05 5.82474045e+05 5.66838539e+05 6.67540160e+05 6.55438775e+05 5.85083235e+05 5.33570334e+05 5.45709022e+05 5.74766218e+05 6.37353887e+05 5.64519983e+05 6.62145720e+05 5.69761476e+05 6.34258003e+05 6.32391735e+05 5.71287775e+05 8.22127805e+05 6.46638667e+05 6.64623128e+05 6.17006329e+05] [ 3.82029021e+05 3.61067179e+05 3.16556134e+05 3.19764073e+05 3.21594232e+05 3.57376323e+05 3.16493172e+05 3.14129429e+05 3.60074886e+05 3.18231670e+05 3.21316901e+05 3.19955132e+05 3.81315158e+05 3.66661632e+05 3.23090565e+05 2.98838486e+05 3.06939050e+05 3.19969746e+05 3.58158378e+05 3.18184131e+05 3.69318218e+05 3.16242886e+05 3.53848814e+05 3.53617188e+05 3.18244792e+05 5.01701684e+05 3.57959475e+05 3.69469866e+05 3.44690675e+05] [ 1.89623997e+05 1.71994122e+05 1.62412148e+05 1.69678834e+05 1.66518933e+05 1.70320093e+05 1.63408807e+05 1.65252651e+05 1.73057029e+05 1.64902350e+05 1.64372541e+05 1.69837784e+05 1.89195756e+05 1.76220152e+05 1.65592397e+05 1.56478976e+05 1.61914862e+05 1.66279697e+05 1.72243454e+05 1.68465943e+05 1.77584652e+05 1.63341087e+05 1.68285658e+05 1.68248361e+05 1.65396611e+05 2.76439251e+05 1.69449609e+05 1.76892536e+05 1.63302921e+05] [ 9.36538075e+04 8.35003406e+04 8.39175501e+04 8.89157812e+04 8.65151455e+04 8.18686407e+04 8.47679290e+04 8.61003025e+04 8.37863543e+04 8.55411198e+04 8.50640456e+04 8.89579452e+04 9.33204763e+04 8.57256460e+04 8.57677154e+04 8.07881741e+04 8.42507487e+04 8.65400834e+04 8.33139150e+04 8.81783171e+04 8.69034664e+04 8.45334549e+04 8.08820248e+04 8.06400528e+04 8.60597293e+04 1.50655369e+05 8.19888683e+04 8.65427711e+04 7.76554501e+04] [ 4.93000468e+04 4.19664657e+04 4.08872739e+04 4.47196494e+04 4.24169532e+04 4.23359272e+04 4.16080581e+04 4.30937464e+04 4.36830053e+04 4.18920513e+04 4.11321235e+04 4.46878492e+04 4.92161615e+04 4.38538089e+04 4.14812915e+04 4.07483929e+04 4.25678803e+04 4.25424560e+04 4.36712644e+04 4.43140918e+04 4.38246897e+04 4.14062719e+04 4.18578559e+04 4.20489087e+04 4.24875078e+04 7.43238023e+04 4.11403806e+04 4.33483177e+04 4.07443633e+04] [ 3.12661065e+04 2.72709677e+04 2.56003073e+04 2.75228072e+04 2.63948617e+04 2.75485906e+04 2.59607655e+04 2.66486576e+04 2.82386700e+04 2.60918204e+04 2.57690404e+04 2.74961230e+04 3.12348071e+04 2.83418054e+04 2.59665817e+04 2.53536498e+04 2.63288845e+04 2.64313276e+04 2.82345926e+04 2.73017318e+04 2.82960875e+04 2.58448790e+04 2.72552074e+04 2.73550576e+04 2.64019469e+04 4.38570020e+04 2.68450875e+04 2.80504717e+04 2.66374995e+04] [ 6.55933408e+03 5.23747805e+03 5.57338413e+03 6.35993174e+03 5.85081795e+03 5.29331085e+03 5.73494022e+03 6.03493380e+03 5.54831657e+03 5.76084433e+03 5.61282155e+03 6.33774862e+03 6.53367376e+03 5.55568553e+03 5.65544790e+03 5.64365931e+03 5.98030974e+03 5.90866374e+03 5.57068112e+03 6.28108928e+03 5.56806472e+03 5.67636722e+03 5.22359113e+03 5.22790508e+03 5.89772646e+03 1.15318260e+04 5.10253017e+03 5.48345618e+03 5.01456179e+03] [ 1.41026763e+03 1.18962262e+03 1.36433462e+03 1.51074638e+03 1.42944320e+03 1.14428401e+03 1.39996484e+03 1.42570071e+03 1.19417981e+03 1.39487460e+03 1.39676310e+03 1.50022610e+03 1.39285543e+03 1.22450363e+03 1.39845798e+03 1.30754939e+03 1.39923527e+03 1.44538776e+03 1.19785743e+03 1.48816973e+03 1.26267286e+03 1.37703612e+03 1.13647861e+03 1.11083461e+03 1.42657022e+03 2.82160871e+03 1.16401489e+03 1.26091384e+03 1.04363817e+03] [-8.46029125e-01 -1.81431156e-01 -9.12411286e-01 -1.85158308e-02 7.46421919e-01 5.57476833e-01 2.32768861e-01 -7.25904662e-01 -2.99262858e-01 -4.09417126e-02 -2.74491528e-01 -1.74864758e-01 1.67107879e-01 8.96957883e-01 8.46176965e-02 1.77271733e-01 -4.16782889e-01 -6.28183129e-01 -1.39067235e-01 -9.84032930e-01 -1.19218136e-01 -8.69973343e-02 -5.55268092e-01 -9.35293832e-01 6.43719916e-01 4.70132041e-01 6.09663344e-02 -1.68347337e-01 -3.99192571e-01] [ 8.31514456e-01 6.61137468e-01 3.86389553e-01 9.01845714e-01 -8.26087057e-01 -3.99232483e-01 6.76086944e-01 -3.08908662e-01 -8.88282404e-01 -7.47245129e-01 4.54948531e-01 8.77430508e-01 -4.20852040e-01 2.01393016e-01 7.34470570e-01 5.38612736e-01 8.47772035e-01 3.39545507e-01 6.91521899e-01 -3.36181489e-01 -8.19835667e-01 9.74714262e-01 1.28988529e-01 -3.70619694e-01 2.00769860e-01 -4.50956170e-01 1.02990204e-01 -7.95043534e-01 4.29220507e-02] [ 9.00322097e-01 7.35457807e-01 -1.48268117e-01 -8.13088743e-01 -4.26176403e-01 7.96453613e-01 -2.08390729e-01 -3.97129650e-01 4.08401517e-01 -7.04091444e-01 -4.15757983e-01 -5.33749343e-01 6.57167423e-01 4.65636043e-01 9.74759617e-01 9.24631940e-01 9.94059653e-01 4.65921041e-01 -9.37742808e-01 7.66171335e-01 -7.96244313e-01 -4.75640060e-02 -9.20169873e-02 1.73046635e-01 6.62616250e-01 6.24472476e-01 8.84117352e-01 5.02671792e-01 5.38595793e-01] [-8.68204581e-01 8.88228650e-01 5.15641508e-01 -4.14312303e-01 -1.79307606e-01 -2.83314615e-02 -6.09396867e-01 -5.10129550e-01 2.86472383e-01 -6.36706900e-01 -1.57064486e-01 5.79656072e-02 -8.74879113e-01 6.52030201e-01 -1.16711527e-01 -5.09713829e-01 2.09585376e-01 -4.45794910e-01 7.75224277e-01 6.65314650e-01 7.89933121e-01 -1.44488702e-01 3.90911920e-01 -9.01844894e-01 3.94779610e-01 1.96295811e-01 1.14427277e-01 -4.31237859e-01 -6.36349654e-01] [ 5.73553206e-01 -9.71218528e-01 7.82652704e-01 1.76598186e-02 -3.34025760e-01 9.48107836e-01 7.80457035e-01 -7.56566270e-01 -2.92073925e-01 6.98662431e-01 -4.19226861e-01 2.59385103e-01 -8.50477136e-01 3.85283095e-01 8.44360346e-01 -6.56932183e-01 -5.36851202e-01 2.09329215e-01 -8.89033789e-01 7.02963657e-01 -8.95645705e-01 -2.54059655e-01 4.80060283e-01 4.72065414e-01 -7.78355265e-01 5.93548699e-01 7.11268194e-01 -4.59847557e-01 3.91736812e-01] [ 4.02184820e-01 8.61200620e-01 -3.49669596e-02 -9.65044099e-01 6.31199504e-01 4.06146808e-01 9.40347802e-01 6.69269428e-01 -7.84440606e-01 -2.51625006e-01 2.07189393e-01 8.93147981e-01 3.65203873e-02 -5.64853269e-01 -7.05409150e-01 -1.20917201e-01 8.56179466e-01 -2.47608699e-01 6.87298771e-01 8.78440787e-01 -2.15888587e-01 1.91096345e-01 1.47433321e-01 1.10958227e-01 -3.36380937e-01 -5.12923101e-01 8.97605478e-01 2.04129539e-01 9.86394529e-01] [ 9.60761476e-01 -9.97614948e-01 7.77322808e-01 8.53136134e-01 8.90326595e-01 -7.73115745e-01 -6.17166528e-01 9.53772241e-01 8.37141711e-02 1.22956129e-01 -1.95390842e-01 -5.38813342e-01 1.57124272e-01 -8.39769669e-01 2.88572204e-01 8.36774805e-01 -5.73585126e-01 -1.97645030e-01 -4.69866074e-01 -5.10719444e-01 3.71182851e-01 7.70327729e-01 1.01623558e-01 -1.37200221e-02 -9.70094137e-01 -1.15902628e-01 9.52998308e-01 -9.45211296e-01 -7.85404158e-01] [ 2.83978931e-01 9.15908930e-01 -4.62566328e-01 9.44642737e-01 1.33318350e-01 4.81385544e-01 8.54546141e-01 5.42904243e-01 4.68319206e-01 5.59875630e-01 4.32337673e-01 1.60617113e-01 8.01302988e-01 7.83756291e-01 -9.04943110e-01 -5.15977119e-01 8.78382362e-01 8.66250417e-01 -6.40684344e-01 2.93739583e-01 5.92402398e-01 -4.55790620e-01 9.30929969e-01 -9.17542800e-02 -8.12775552e-01 -9.03942971e-01 -5.80735103e-01 -4.58707179e-01 2.04858601e-02] [ 8.97499073e-01 2.29242742e-01 4.80950892e-01 1.29423736e-01 -4.75121725e-01 7.31722809e-01 3.20222671e-01 -3.41995967e-01 -8.06089804e-01 -6.64569514e-01 5.07902901e-01 1.18731527e-01 -7.49745112e-01 2.19594599e-01 1.11018154e-01 3.91777574e-01 3.47616387e-01 -9.39699683e-01 8.72227528e-02 -3.18313838e-02 2.21916924e-01 3.63794066e-01 2.39476644e-01 -5.94457204e-01 6.27184738e-01 8.57702862e-01 8.69565646e-01 -8.95609512e-01 6.01074082e-01] [-1.43389158e+04 -1.12565306e+04 -9.10730435e+03 -8.86495452e+03 -9.09923443e+03 -1.43114549e+04 -9.08438633e+03 -9.00305741e+03 -1.43124578e+04 -8.98401566e+03 -8.99848075e+03 -8.91176677e+03 -1.44179370e+04 -1.39808491e+04 -9.02498257e+03 -9.20664952e+03 -9.07075118e+03 -8.94433423e+03 -1.43591539e+04 -8.95102404e+03 -1.12762501e+04 -9.02715810e+03 -1.42861236e+04 -1.45048689e+04 -9.03863967e+03 -2.35853368e+04 -1.13267518e+04 -1.11948811e+04 -1.46149948e+04] [-3.48925809e+04 -3.03888396e+04 -2.21149162e+04 -2.15261661e+04 -2.20975808e+04 -3.48529494e+04 -2.20588575e+04 -2.18580018e+04 -3.48519973e+04 -2.18240808e+04 -2.18683665e+04 -2.16413714e+04 -3.50871475e+04 -3.40902859e+04 -2.19309831e+04 -2.23308817e+04 -2.20120910e+04 -2.17251593e+04 -3.49589300e+04 -2.17288580e+04 -3.04360343e+04 -2.19251099e+04 -3.48074208e+04 -3.53082228e+04 -2.19469533e+04 -5.56940652e+04 -3.05477383e+04 -3.02339387e+04 -3.55634911e+04] [-2.27148930e+04 -2.02774474e+04 -1.00024866e+04 -9.81547987e+03 -9.89110273e+03 -2.30724249e+04 -1.00576423e+04 -1.03067162e+04 -2.31055037e+04 -9.74890144e+03 -9.41143050e+03 -9.94188278e+03 -2.29991356e+04 -2.18230433e+04 -9.43378337e+03 -1.15170199e+04 -1.08833142e+04 -9.59638128e+03 -2.33570567e+04 -1.00914451e+04 -2.01127067e+04 -9.91466987e+03 -2.31651571e+04 -2.38060065e+04 -9.96997297e+03 -4.64190038e+04 -2.05208215e+04 -1.97472183e+04 -2.44940651e+04] [ 2.62651807e+04 2.72700382e+04 2.73725736e+04 2.64464338e+04 2.75902676e+04 2.53475648e+04 2.71037320e+04 2.60034621e+04 2.52406663e+04 2.73129625e+04 2.82690622e+04 2.64048009e+04 2.60181370e+04 2.66881615e+04 2.83565282e+04 2.41061392e+04 2.49318730e+04 2.74563919e+04 2.48685988e+04 2.62330660e+04 2.77933130e+04 2.71482126e+04 2.50345821e+04 2.45809886e+04 2.70446096e+04 1.44260261e+04 2.70399386e+04 2.82102515e+04 2.34613415e+04] [ 6.66343717e+04 6.60919209e+04 5.56004831e+04 5.38715889e+04 5.58422088e+04 6.54867834e+04 5.52071802e+04 5.36324446e+04 6.53402163e+04 5.52445989e+04 5.64929589e+04 5.39305955e+04 6.65191923e+04 6.64483437e+04 5.66605081e+04 5.17062617e+04 5.24317518e+04 5.53203383e+04 6.49746756e+04 5.37964523e+04 6.67989664e+04 5.51351170e+04 6.50525150e+04 6.49534766e+04 5.50201216e+04 6.93856714e+04 6.59562884e+04 6.71176613e+04 6.37878393e+04] [ 1.19914852e+05 1.18918626e+05 1.00840157e+05 9.77693524e+04 1.01316482e+05 1.17610234e+05 1.00123613e+05 9.73076990e+04 1.17337036e+05 1.00258921e+05 1.02510213e+05 9.79111373e+04 1.19692500e+05 1.19503842e+05 1.02805521e+05 9.36819687e+04 9.50450805e+04 1.00376027e+05 1.16628652e+05 9.76342989e+04 1.20256919e+05 1.00019702e+05 1.16780292e+05 1.16593228e+05 9.97901012e+04 1.27664647e+05 1.18632138e+05 1.20846158e+05 1.14382338e+05] [ 1.91233709e+05 1.89744751e+05 1.61577987e+05 1.56660203e+05 1.62337775e+05 1.87440608e+05 1.60425249e+05 1.55883241e+05 1.86970133e+05 1.60669974e+05 1.64318347e+05 1.56892027e+05 1.90857113e+05 1.90575665e+05 1.64779941e+05 1.49974535e+05 1.52186309e+05 1.60857770e+05 1.85805644e+05 1.56431910e+05 1.91925659e+05 1.60270381e+05 1.86085077e+05 1.85740291e+05 1.59866691e+05 2.05984649e+05 1.89269709e+05 1.92907880e+05 1.82114795e+05] [ 2.47837295e+05 2.45770949e+05 2.09285953e+05 2.03037030e+05 2.10314813e+05 2.42817571e+05 2.07844777e+05 2.01968182e+05 2.42280769e+05 2.08106740e+05 2.12837674e+05 2.03307608e+05 2.47340391e+05 2.46897521e+05 2.13438959e+05 1.94283449e+05 1.97214942e+05 2.08411662e+05 2.40800880e+05 2.02726100e+05 2.48635091e+05 2.07586184e+05 2.41093214e+05 2.40611163e+05 2.07150346e+05 2.67043025e+05 2.45164192e+05 2.49901064e+05 2.35916168e+05] [ 2.41511523e+05 2.39107473e+05 2.02879538e+05 1.96949442e+05 2.03926670e+05 2.36577017e+05 2.01506013e+05 1.95962728e+05 2.36117795e+05 2.01765437e+05 2.06234078e+05 1.97255480e+05 2.41061155e+05 2.40414800e+05 2.06816793e+05 1.88633591e+05 1.91446718e+05 2.02040449e+05 2.34714970e+05 1.96688649e+05 2.41876814e+05 2.01253605e+05 2.34903183e+05 2.34544855e+05 2.00892031e+05 2.57715791e+05 2.38509748e+05 2.43017242e+05 2.30098342e+05] [ 2.51524342e+05 2.47673569e+05 2.09892281e+05 2.04605680e+05 2.11127700e+05 2.45620996e+05 2.08594260e+05 2.03431425e+05 2.45328222e+05 2.08942606e+05 2.13136209e+05 2.04902373e+05 2.51113371e+05 2.49430193e+05 2.13811007e+05 1.95985906e+05 1.98938790e+05 2.09262310e+05 2.43965658e+05 2.04274852e+05 2.50647507e+05 2.08400732e+05 2.43844030e+05 2.43638758e+05 2.08132553e+05 2.68073628e+05 2.46931752e+05 2.51626644e+05 2.39140540e+05] [ 2.02871655e+05 2.00739006e+05 1.70963411e+05 1.66174171e+05 1.71881566e+05 1.98466994e+05 1.69819438e+05 1.65217185e+05 1.98119521e+05 1.70075071e+05 1.73781573e+05 1.66365313e+05 2.02464622e+05 2.01776528e+05 1.74307052e+05 1.58934135e+05 1.61388569e+05 1.70373079e+05 1.96937414e+05 1.65882967e+05 2.03112322e+05 1.69641387e+05 1.97058908e+05 1.96706300e+05 1.69354780e+05 2.18652814e+05 2.00187389e+05 2.04078696e+05 1.92893148e+05] [ 1.38225568e+05 1.37325042e+05 1.17663174e+05 1.14104162e+05 1.18248514e+05 1.35359747e+05 1.16832329e+05 1.13435869e+05 1.35067039e+05 1.16996146e+05 1.19727114e+05 1.14216946e+05 1.37911928e+05 1.37816835e+05 1.20076270e+05 1.08947724e+05 1.10682272e+05 1.17211440e+05 1.34200944e+05 1.13903565e+05 1.38968637e+05 1.16685745e+05 1.34395396e+05 1.34028856e+05 1.16467036e+05 1.51310453e+05 1.36978754e+05 1.39731414e+05 1.31304149e+05] [ 8.79580170e+04 8.71995858e+04 7.45768429e+04 7.24116452e+04 7.49505770e+04 8.60705831e+04 7.40651244e+04 7.19860633e+04 8.58984328e+04 7.41683690e+04 7.58618845e+04 7.24874902e+04 8.77740430e+04 8.75794340e+04 7.60689438e+04 6.91811948e+04 7.02661867e+04 7.42979903e+04 8.53667538e+04 7.22886294e+04 8.82478778e+04 7.39747351e+04 8.54446400e+04 8.52588257e+04 7.38438216e+04 9.58484094e+04 8.69806115e+04 8.87026875e+04 8.35485662e+04] [ 6.59992944e+04 6.49977187e+04 5.54380605e+04 5.41025506e+04 5.57751602e+04 6.43538374e+04 5.51083421e+04 5.37307387e+04 6.43002480e+04 5.51863318e+04 5.63383967e+04 5.41491251e+04 6.58691231e+04 6.54099772e+04 5.64975682e+04 5.16866311e+04 5.25239473e+04 5.53200898e+04 6.39475911e+04 5.39905322e+04 6.58036746e+04 5.50458773e+04 6.38948226e+04 6.37997289e+04 5.49989121e+04 7.14795147e+04 6.48015767e+04 6.60886387e+04 6.25630674e+04] [ 3.03022858e+04 2.94723108e+04 2.50184997e+04 2.46383895e+04 2.52044635e+04 2.93523044e+04 2.49009381e+04 2.44377313e+04 2.93822801e+04 2.49536999e+04 2.53619819e+04 2.46547616e+04 3.02655089e+04 2.97831890e+04 2.54464209e+04 2.35545715e+04 2.39409379e+04 2.50156917e+04 2.92495507e+04 2.45774195e+04 2.98648503e+04 2.48856345e+04 2.91308320e+04 2.91509099e+04 2.48990148e+04 3.25355835e+04 2.93601359e+04 2.99372883e+04 2.86164353e+04] [ 1.67698335e+04 1.58834651e+04 1.35137402e+04 1.35734794e+04 1.36749830e+04 1.59688199e+04 1.34944577e+04 1.34238774e+04 1.60493112e+04 1.35480097e+04 1.36434475e+04 1.35920973e+04 1.67618770e+04 1.61800193e+04 1.36981498e+04 1.29561321e+04 1.31929116e+04 1.35897481e+04 1.59964154e+04 1.35351126e+04 1.61418283e+04 1.34939405e+04 1.58307423e+04 1.59057349e+04 1.35458835e+04 1.82497810e+04 1.57844042e+04 1.61201597e+04 1.56217139e+04] [ 1.09197961e+04 1.03774839e+04 8.95484624e+03 8.97391680e+03 9.07574258e+03 1.03772847e+04 8.94589223e+03 8.87368263e+03 1.04336272e+04 8.97711268e+03 9.06066937e+03 8.99842301e+03 1.09073669e+04 1.05580506e+04 9.09345112e+03 8.53219063e+03 8.70560881e+03 9.00912146e+03 1.03884397e+04 8.95377634e+03 1.05612102e+04 8.93279819e+03 1.02901515e+04 1.03217605e+04 8.97528415e+03 1.23368756e+04 1.03098529e+04 1.05567084e+04 1.01175616e+04] [ 4.43941597e+03 4.11009820e+03 3.74746134e+03 3.85045696e+03 3.82450822e+03 4.08961321e+03 3.76327033e+03 3.77024744e+03 4.13769614e+03 3.78122861e+03 3.79381755e+03 3.85387951e+03 4.42919689e+03 4.19837548e+03 3.81354519e+03 3.59348068e+03 3.70019904e+03 3.81140238e+03 4.12124668e+03 3.83041386e+03 4.21818638e+03 3.75358100e+03 4.05203402e+03 4.05245991e+03 3.79191999e+03 5.78675762e+03 4.06750102e+03 4.20956005e+03 3.95033522e+03] [-8.30972319e-01 -7.87044894e-02 7.22947118e-01 3.93052396e-01 2.53322954e-01 -4.32139868e-02 6.00183874e-01 -4.47169572e-01 -4.66381219e-01 -7.65198905e-01 5.73532858e-02 -4.93157946e-01 3.69435928e-01 -3.38862729e-01 2.81754666e-01 3.33679961e-01 4.71151005e-03 3.97439595e-01 -4.91803123e-01 -4.43406608e-01 9.78833739e-01 -5.61179729e-01 -6.22287577e-01 7.44312171e-01 -8.30689753e-01 3.09555111e-01 8.82445682e-01 -9.43183085e-01 5.25779675e-01] [-4.80987154e-01 4.40033902e-01 8.90727249e-01 -6.98787097e-01 3.20406749e-01 6.12184327e-01 3.32209559e-01 -1.38814733e-01 3.02266862e-01 9.20700782e-01 4.81497039e-01 -8.77847001e-01 -6.36741691e-01 7.98069572e-01 9.66764432e-01 1.12769730e-01 4.32089045e-01 -6.93080645e-01 -9.61093941e-01 -4.51657056e-01 3.38378794e-01 5.54662778e-01 -9.71864481e-01 4.46022690e-02 2.72905416e-01 5.68200015e-01 3.26467725e-01 9.66445781e-01 9.76528060e-01] [-6.29248092e-01 8.00649708e-01 -8.66743586e-01 -4.85292370e-01 -5.34072439e-01 1.08333274e-01 -2.65912200e-01 -5.84868274e-01 -2.84695666e-01 5.44627329e-01 -2.55060373e-01 2.80209802e-01 1.22872743e-01 1.07975317e-01 -1.15312256e-01 -6.79516138e-01 -6.95811744e-02 4.04907931e-01 1.95370157e-01 -4.19822905e-01 9.28174286e-01 -1.13463409e-01 9.66636751e-01 -1.36535612e-01 -1.56164701e-01 -3.84214457e-01 -7.56933800e-01 5.49748382e-01 1.45563290e-01] [ 9.84666619e-01 2.52676466e-01 8.24207342e-01 1.08559541e-01 9.42305357e-01 -2.69238802e-01 1.85732580e-01 -4.92651297e-03 -1.91986484e-02 -4.52356927e-01 7.47505887e-01 -7.63292310e-01 -9.49528254e-01 7.24383701e-01 -2.45503102e-01 3.91198307e-01 -5.16990901e-01 2.95086556e-01 3.70971354e-01 -4.88200538e-01 8.59766491e-03 6.08187013e-01 -3.22504734e-01 2.98531557e-02 -8.33423977e-01 6.41743094e-02 -3.16082804e-01 4.61393286e-01 -2.95016149e-01] [ 4.02700467e-02 9.08509421e-02 9.31955434e-01 -2.28091109e-01 5.19315138e-01 -7.39065094e-01 5.40984684e-01 -3.70085232e-01 -3.81911094e-01 -6.44720935e-01 -7.49839304e-01 -3.40453022e-02 6.47450405e-01 9.63665346e-02 3.76839612e-01 4.71373407e-01 4.00897774e-01 3.04789069e-01 -6.58733486e-01 -1.63101770e-01 1.76110743e-01 -1.35601243e-01 4.82310530e-01 -4.99789898e-01 -2.73737337e-01 -6.25753059e-01 -7.13381022e-02 1.91952388e-01 1.82717773e-01]] syn1 = [[ 18.73503482 15.85075936 20.61887421 11.13450082 29.97367751 36.75215388 -12.89585608 42.86427513 37.5058207 25.97001755 33.56638344 17.66030409 38.00717753 49.27278697 43.08620443 26.05002403 8.80869337 50.55802007 4.39760222 49.10830132 13.32529329 48.89959103 25.43845561 14.30174902 27.723144 21.07239406 35.0528384 34.81227149 32.06799882 3.75227129 49.68915886] [ 14.52539133 14.06843518 16.2665172 12.67505898 31.50550263 37.17320297 -13.92878765 41.7014839 34.37998119 23.76093954 29.89504704 19.50466051 37.52894427 48.085604 42.50049795 24.49043361 7.06342089 49.14404394 6.59787594 43.92591053 12.29919037 49.59363892 25.5493771 16.31557401 28.50074545 19.03556872 33.04250623 33.23092929 32.79914774 6.46984877 48.33464692] [ 8.81191208 7.51832 8.97793887 9.19602769 24.11174091 28.6175053 -14.70268616 31.46996077 26.40244527 15.35374224 22.09252469 13.38019494 28.73205973 38.15503702 31.96298761 18.30508886 1.68697286 38.29124379 3.85200019 34.15159165 5.21653946 38.18197352 19.65435887 11.43829171 21.40276065 12.52359722 26.33359051 27.38004539 24.6640341 4.1831105 39.10280052] [ 8.84978098 7.57874097 11.7363233 8.12940313 21.40225492 26.40993866 -14.52630186 31.14697037 26.76156865 14.96550843 22.27298824 11.93317871 28.82910454 37.02838873 31.37284025 19.22108139 2.40695806 38.32960874 1.92431483 35.23444024 4.77668501 37.55297679 17.65990654 9.45397269 20.98826076 12.45678147 26.09861063 26.62206124 23.81035364 1.46923482 36.19245521] [ 9.23326594 7.61949053 9.60289755 8.51720376 23.8580462 28.1803554 -13.49073428 32.04972947 24.86880575 16.37897095 21.17766737 12.30575428 29.42629332 38.03770348 32.07348878 18.37785593 1.98037698 40.08823263 4.19505108 34.02293505 5.1709124 38.10690116 20.19279278 10.98339586 21.45935556 13.2015906 27.7810651 27.90278116 23.11433941 3.00720434 37.32411586] [ 16.8780591 16.52345353 18.50639682 12.83855243 31.91288934 36.63848309 -13.53925095 42.50812288 37.15078055 23.70216907 32.52689159 18.81846912 38.3670586 48.88475286 42.76801038 26.24621657 8.23877214 50.16366487 6.07224262 45.72265175 13.38023375 48.69956251 26.03422568 16.80969844 29.55564735 20.7112945 35.28312342 34.08298418 32.19008498 6.35807942 49.20422779] [ 8.98309816 7.2782102 9.10470023 9.32551578 24.35409771 27.23825361 -13.38411857 31.42753951 26.15797048 16.36742696 22.35389076 13.37677292 27.99135407 38.12947082 32.21126137 17.79753366 2.22225856 38.32985658 3.42898152 32.80563996 4.68839505 38.16910186 20.74100226 11.74649368 21.70885981 12.08438623 27.76549896 26.71804402 23.40303221 4.01885142 37.57814403] [ 9.94365924 8.18131571 11.84818318 9.02712449 21.63184236 26.27394058 -14.60397221 30.87587802 26.0295341 15.21249706 22.55356292 10.86584079 27.37895282 37.21797293 32.45054194 18.1142514 2.83996178 38.33397938 2.57554582 35.74820342 5.33298435 37.37910685 18.67486927 10.63771343 19.92885884 12.82160178 26.05540301 25.79985176 23.65406993 0.92208449 37.88314752] [ 18.19519058 16.52535072 18.5987451 13.11236241 31.54214613 36.625123 -13.78460923 42.52617608 36.31427607 24.76959732 32.68373237 18.95688391 37.76417222 47.39384095 42.96860162 26.40609129 8.35268298 50.69339787 5.73049414 46.11940463 13.92883717 48.95439468 25.13350392 16.51831485 28.31910966 20.20053314 34.82030807 34.20859153 32.59236866 6.35183564 48.70796334] [ 8.43309428 8.69860719 10.17297788 8.88618957 23.23178137 27.16742922 -14.35354399 30.72624475 25.86350133 16.30513731 20.56283708 11.99873653 28.80660847 36.72805125 33.1464224 18.00984642 1.44739179 39.0626614 3.78023652 34.96530767 5.81690945 38.35666469 19.17423667 10.26875224 21.31416967 13.0962496 26.45734315 27.35878919 23.81681025 2.44977106 38.45420774] [ 7.75413435 7.82183613 7.63119029 9.46708416 23.53535512 29.27232008 -13.75049305 32.33940705 25.3619114 14.87805772 21.26866878 13.6083494 28.84646657 38.91851539 32.3068654 18.95180608 0.53398152 39.3167486 4.03168482 33.09955113 3.88152297 39.08130986 20.49930817 12.54859888 23.2071197 12.44612427 26.99307743 26.55615261 23.57441683 5.36650613 39.86683991] [ 11.17965768 8.45755523 11.98937728 7.98928748 22.74565369 27.20969224 -13.42064165 31.39389848 25.00565487 15.19339422 21.23587711 11.10050158 27.76121514 36.57586962 31.33866261 17.6983959 3.05154903 38.4188594 1.50777324 34.43509281 4.72162411 38.13873275 18.58857176 9.36271165 20.38233885 13.44199085 27.51248653 26.4124176 22.79576027 1.11307309 37.94711896] [ 18.23026618 16.24083549 20.48790522 13.17747746 29.81386575 37.74244584 -12.71780362 41.61800538 38.36383751 24.35316612 32.48845723 18.21518402 37.69820322 49.47826576 43.42385381 26.06892499 10.42249062 50.80729413 3.88675473 48.5855533 13.87471122 49.96287658 25.03930711 14.2798505 27.40392947 21.99065665 35.91341484 34.33466244 32.83236832 3.19439635 49.66099693] [ 16.20362736 16.42777517 18.99464696 12.10337595 31.11913453 38.06809229 -12.29572479 41.90791873 35.53168636 24.9301803 30.94915758 19.55267345 37.95871661 48.16936845 41.9841439 25.38841252 7.66439019 50.02462325 5.74202509 45.80627121 12.29883636 49.38660945 26.50027049 16.12300415 27.73444174 20.1189583 34.87963755 35.14559254 32.91886143 6.4157806 47.91075898] [ 8.07033787 8.308264 8.92256883 9.4811859 24.89274352 27.86041599 -14.27438345 30.85886401 25.29633464 16.34713256 21.20657214 13.71050592 29.16075869 39.18328855 31.7022426 18.50009121 1.83382919 40.17041917 4.95362812 33.46292154 4.77429258 39.94751862 19.615767 12.20905014 22.33735949 11.42082944 26.13951477 26.23817318 24.63599269 4.54558726 39.10903687] [ 10.1972112 8.79380051 13.44153848 9.07798927 21.67518588 26.42656484 -13.71230533 29.64513643 26.45332071 14.9046391 22.73709846 10.61881486 28.89220494 35.50214556 32.05396774 17.23547749 3.48744695 37.45149551 2.25692853 35.64801963 6.07217022 35.88418063 19.2388571 8.26095901 20.49546245 12.92866863 26.14724727 25.04924496 22.59162486 1.94343185 37.65071609] [ 10.58424217 8.30748062 12.82006163 8.49110208 21.90069892 25.86623945 -13.93903077 31.15532255 24.70502365 15.52600924 22.03978627 11.6946355 28.12296004 36.08005337 31.87163922 17.54284037 3.08309836 37.62137727 1.68083195 35.54658093 5.21555772 37.81612808 18.70544181 9.50505718 20.71873379 13.17630908 25.97574962 25.87312215 22.55642731 1.57962406 36.39467417] [ 8.15349297 7.03278742 9.03241044 8.647333 24.23631461 27.3245826 -13.45668229 31.64364223 25.99662516 15.57712847 22.08731908 12.47571911 28.43115972 37.69725585 31.95060184 19.12391594 1.29808835 38.65677543 3.50363985 33.53624423 5.81613232 38.87488342 18.60305647 11.7769051 21.41441995 12.12822895 26.57965346 26.58445659 23.17223912 2.93004859 38.04187369] [ 18.10205899 15.18605044 18.5837539 12.42195409 30.79498114 37.36991703 -13.56613182 42.28784887 37.83371511 24.00299411 31.39636583 19.65610892 38.71268949 49.04623755 42.46175457 26.41137153 8.72432069 49.87476081 6.87871612 45.95353367 13.43635622 49.95308435 24.71448038 15.84388497 28.98833982 20.50236254 34.34207013 34.81867571 32.22685577 6.92895553 47.41626179] [ 9.85328488 7.34459398 11.48039258 8.58382122 21.21049591 26.33702275 -13.62284666 30.7438271 26.36045255 16.24093422 21.92738551 11.02604314 27.50200114 35.7938193 32.49622607 19.3208953 3.32957368 38.12761422 2.39215098 35.26682666 5.8957564 37.17750533 19.00035299 8.73942182 20.33986512 12.23352857 27.14749573 26.04373651 23.41530093 1.41564145 37.77543939] [ 14.59006014 15.52689576 15.39218038 12.57421906 32.43824093 36.78442493 -14.36695774 41.22798396 34.51838589 23.91167146 29.64903768 19.09906091 37.49878894 48.25222896 41.90578764 25.47132675 7.3747636 50.69857025 5.95207644 43.80985117 12.43757275 49.07985678 25.36175235 16.51926153 28.09709248 19.791992 33.71460066 34.87204277 31.76625976 8.6543683 47.83292871] [ 8.52427797 8.40618826 10.80822759 9.43453894 24.1502227 26.84615701 -14.58277447 31.05800718 26.25462057 15.44232547 21.44492092 12.39174282 29.51519051 37.81824436 32.67287131 18.04628004 1.39458109 38.39019427 3.11881866 35.38644052 4.4498609 37.87270139 19.60665859 10.79827234 22.32004287 11.93921794 26.31819157 26.98925222 24.34126552 2.23833346 37.8698313 ] [ 16.79180034 16.00443137 19.3644982 12.09885081 31.73383688 36.60368509 -12.61149161 43.73640581 36.44302615 23.92390855 31.23987648 19.52183384 37.54220995 48.43751668 43.60875078 25.61834443 8.47944419 49.94446036 5.61831363 45.50533521 12.83194692 48.98468963 25.52521498 17.11512313 28.68390991 20.12682478 34.64602395 33.27095866 33.01243479 6.04322628 47.73476719] [ 17.54959925 16.92581762 18.33138158 12.61522836 30.13817623 37.99336226 -13.55864808 43.82606622 37.95332122 24.28402303 32.43086093 19.3539854 38.40277964 49.29306209 42.83299071 25.03391309 9.20793465 50.05781593 5.37509073 47.16822029 13.07751611 48.23767559 27.19836532 16.92545139 27.96637886 21.57527676 35.37563082 33.54840495 32.50778006 5.10961667 47.90520356] [ 9.5367126 8.37631282 10.37658325 9.59781465 24.15644758 27.33573976 -14.09898037 30.82043976 25.50707575 15.99239861 21.14343207 12.00276755 28.09376665 36.76701767 31.69982191 19.69215416 2.38475078 38.23445974 3.90788799 34.4295959 4.21618085 38.93531758 18.40594523 10.56330006 22.27492877 12.02858859 27.06061734 27.56492256 23.96312596 3.21865786 37.28433619] [ 3.74107077 6.89138772 8.09566317 5.68528239 23.43377255 26.23702207 -15.981974 25.50234645 28.54712503 19.03347005 24.17344704 12.44405422 26.65572556 41.53989554 30.8709292 16.02435945 2.29291343 47.4120376 -5.00195852 35.93602783 -0.09167764 43.85886009 20.56619427 7.05504227 20.16821651 12.78348549 28.32331559 30.27428241 23.69732359 3.75642041 44.92886334] [ 14.13459579 14.74141552 16.21896554 12.69560974 31.17984529 36.72018154 -14.6939912 42.64244342 34.31900185 22.83102015 29.89210244 20.54142034 36.08116429 47.07615299 42.54420914 25.7847958 6.9215069 49.18255003 5.8264312 42.82845816 12.26634247 50.21580847 26.70393602 17.94685848 27.85138705 19.10212994 34.36630109 33.32021787 32.59366329 7.54465511 48.421825 ] [ 13.88408878 14.04637772 15.69282856 12.74576899 31.67931036 37.86816514 -13.13669957 42.20957087 35.86767688 23.4939262 29.38909303 20.00982637 36.29521793 47.64371602 42.36411045 25.03874648 6.94794184 50.15333211 6.3321648 43.84716174 11.13502553 48.48217866 25.59491358 16.60268467 28.177071 18.6418123 33.57632651 33.47268908 32.69362267 8.66085708 48.70250306] [ 18.54627671 17.24866166 21.08121073 12.39758966 31.23885525 35.86407685 -13.31921131 42.6999969 36.24200871 25.32364425 31.27626344 18.04171683 38.57512382 48.2316011 43.87230622 25.44711765 9.36693842 48.91599133 5.78272153 47.35417202 14.49959563 48.81091561 25.32346776 16.06004007 28.4551382 20.90947052 34.04314745 34.35372387 32.94950826 5.13054574 48.4726775 ]] syn2 = [[-1.21615747e-02 -8.22606302e-01 4.81575487e-01 2.08541246e+00 5.94558061e-01 -2.26073131e-01 1.63366738e+00 -1.29557686e+00 7.50336416e-01 1.64439667e+00] [ 9.82212299e-02 3.90663990e-01 6.40839722e-01 1.56608017e+00 3.16670813e-01 3.35471199e-01 1.15941621e+00 -7.48353667e-01 3.76749548e-01 -6.98511072e-03] [ 1.37667818e+00 -8.87354260e-03 4.51503437e-01 6.68414078e-01 1.64727467e+00 -1.89142493e-01 3.74450170e-01 -7.03262847e-01 3.65573705e-01 5.17615698e-01] [ 1.63427758e+00 -6.15852917e-02 1.18870108e+00 1.04338438e+00 -4.11310561e-03 5.29616424e-01 1.83659872e+00 9.04188682e-02 -3.17666857e-01 6.86029667e-01] [ 8.81150067e-01 -5.65332897e-01 -8.49376677e-01 -6.81808559e-01 -1.13434126e-01 -4.67079454e-01 -1.56764716e+00 4.99521792e-01 -1.00290831e+00 -1.29196016e+00] [-3.75032442e-01 -1.25366078e+00 -6.25776256e-01 -8.09302276e-01 -1.25148643e+00 -9.46728418e-01 -4.79398409e-01 -5.81639959e-01 -7.95118823e-01 -1.36781685e+00] [-5.39563973e-01 -9.11912074e-01 -6.02615390e-01 1.07924394e+00 3.50944157e-01 -1.33257457e+00 5.61922685e-01 -6.90635958e-02 -8.12804483e-01 1.67808127e-01] [ 3.05301402e-01 -1.98668704e+00 -4.42427289e-02 7.48658178e-01 -9.82518656e-01 -1.60387903e+00 -8.45982936e-01 -1.04342627e+00 5.03930969e-01 -1.08878049e+00] [-1.86395862e+00 -9.70956329e-01 -1.94150896e+00 -1.25866812e+00 -6.66714143e-01 -7.98881446e-02 -2.16277967e+00 -1.36534920e+00 -1.09493281e+00 -6.15956023e-01] [-3.88268913e-01 -3.13419811e-01 -1.34502210e+00 -5.53763363e-01 -4.58755936e-01 4.00176888e-01 -5.59756595e-01 3.08755539e-01 -1.54618335e+00 -1.09813020e-01] [-1.51370177e+00 -8.13979831e-01 -8.97091947e-01 -6.87209356e-01 -6.36522872e-03 -7.95666098e-01 -1.40986246e+00 -4.56502826e-01 -1.00169342e+00 -1.84413720e-01] [ 2.06098073e+00 3.39508579e-01 6.63491200e-01 -5.91789678e-01 7.42022654e-02 -4.14142877e-01 -1.40510309e-01 7.08270018e-02 5.97839887e-01 2.90466272e-01] [-6.24965551e-01 -2.05702871e+00 -1.21368146e+00 -3.85347316e-01 -5.27857729e-01 -9.70696463e-01 -1.36770227e+00 -1.60833699e+00 -3.88544619e-01 -1.07780429e+00] [-3.16281795e+00 -1.92694158e+00 -3.06819908e+00 -2.48995692e+00 -1.15812257e+00 -1.86000230e+00 -2.27101129e+00 -1.62357805e+00 -2.76216044e+00 -1.83852170e+00] [-3.06063127e-01 -1.33886533e+00 -1.24188797e+00 -1.12178474e+00 -1.14927378e+00 -1.84653931e+00 -1.47448278e+00 -1.08056010e+00 -8.10165311e-01 -1.09390374e+00] [ 3.34685172e-01 -1.13338122e+00 -3.42258586e-01 -7.89307443e-01 -4.87594231e-01 -2.09284575e-01 7.26195838e-02 -3.61786705e-01 8.81389191e-03 2.33446585e-01] [ 9.02367607e-01 1.13013612e+00 3.89799389e-01 1.74891323e+00 9.86751634e-01 5.63801095e-01 4.86269628e-01 3.59436320e-01 9.66765026e-01 8.62585787e-01] [-3.22078563e+00 -1.64543013e+00 -3.73051291e+00 -3.59057647e+00 -1.44849445e+00 -1.76205519e+00 -3.14225454e+00 1.80015544e-01 -4.71447271e+00 -1.73763521e+00] [ 3.77502113e+00 3.10336350e-01 2.43044770e+00 2.28710920e+00 3.22367347e-01 -6.36979638e-01 2.32457004e+00 7.24251690e-01 1.56503395e+00 -1.28999491e-01] [-2.69829739e+00 -2.26355396e+00 -2.36060868e+00 -1.55086091e+00 -7.97433298e-01 -6.20383904e-01 -1.31191440e+00 -7.18555486e-01 -2.65333107e+00 -1.52192435e+00] [ 1.32527242e+00 -4.03230723e-01 1.48976933e+00 2.31361326e+00 1.44548420e+00 -3.60356736e-02 1.72912310e+00 -1.03162608e+00 2.02608494e+00 4.68511654e-01] [-3.64460955e+00 -2.59150028e+00 -2.65163803e+00 -3.16283519e+00 -1.77421497e+00 -1.79105503e+00 -2.59508117e+00 -1.06793130e+00 -3.21763922e+00 -1.75792248e+00] [ 1.02634169e-02 5.90035276e-01 -7.01100744e-01 -4.67774499e-01 -9.01417490e-01 -6.51471870e-01 5.16638771e-01 -3.19089481e-01 -9.72157376e-01 -1.30872984e+00] [ 2.15259790e+00 -9.90044883e-02 6.83544639e-01 1.32179884e+00 -3.29061724e-01 -1.66989898e-01 1.28053582e+00 -1.78196430e-01 1.23867933e+00 -9.05890867e-02] [ 3.66131784e-01 -1.17562822e+00 -8.45561115e-01 -7.41590453e-01 -2.02586992e-01 -9.87510287e-01 -2.90217703e-01 -1.19044003e+00 4.55002572e-01 -8.26618605e-01] [-8.44618345e-01 2.08514560e-01 -7.13333019e-01 7.74542406e-01 1.30615334e+00 1.37714972e-01 -7.44488972e-02 -7.38810523e-01 -1.10239813e+00 1.78754734e-01] [-2.00797974e+00 -1.17747007e+00 -2.39648181e+00 -1.14550203e+00 -6.60142099e-01 -1.08003696e+00 -1.54788061e+00 -2.32198439e-01 -1.13474103e+00 -1.03789694e+00] [-2.31754840e+00 -6.29309808e-01 -1.38091819e+00 -1.59747411e+00 -7.40797209e-01 -1.55907673e+00 -6.00797128e-01 4.64242565e-01 -2.45737640e+00 -1.08361734e+00] [ 3.11413563e-01 -5.86641863e-02 -2.33646369e-01 -1.26215084e+00 -1.35510334e+00 -7.71372939e-01 2.20790272e-01 3.89035211e-01 -1.32030726e+00 -1.19291708e+00] [ 2.78364581e+00 9.26111756e-01 5.97826425e-01 7.20192267e-01 8.24875494e-02 -3.80401375e-02 1.40460148e+00 5.95433520e-01 9.93629422e-01 9.07416624e-01] [-3.55679345e+00 -1.49444592e+00 -4.47267642e+00 -3.47158927e+00 -1.38226352e+00 -1.39176644e+00 -2.63986199e+00 -9.84547241e-01 -3.60608081e+00 -2.76191827e+00]] b0 = [[-497.13018726 -475.08406169 -398.33489545 -391.86456476 -398.93841539 -493.16394632 -397.56384255 -392.96056162 -492.73678021 -396.7117114 -399.23329292 -392.33211655 -497.42891115 -487.65968364 -400.11204592 -392.42028073 -392.25680081 -395.60292008 -491.76147421 -392.92678199 -478.70456176 -397.7328966 -489.23864344 -494.78252842 -397.12629624 -410.53212425 -476.36218812 -475.68423425 -494.70983754]] b1 = [[-1.67606851 -1.87433989 -1.90089816 -2.02329403 -2.04258 -1.82966949 -2.39900086 -1.61199395 -1.69980091 -1.89331994 -1.76666996 -2.00751273 -1.76066111 -1.91580092 -1.84196573 -1.95621233 -1.97576117 -2.04048998 -2.01193608 -1.6464314 -1.70270331 -2.07021668 -2.14092695 -1.9117394 -1.91981967 -1.88777581 -1.97180949 -2.07953058 -2.03398327 -2.15038394 -2.14016235]] b2 = [[-0.76245482 0.50716459 -0.93196644 -0.98492957 -0.66231289 0.30589298 -0.64990493 -0.47703169 0.12829097 0.33976175]]
af57c105f9af7b30476ecc5a144a100b6270c134
08ca3425d5f08326398b2ece9c081091a279521f
/beast/web/flaskwebapp/capture.py
ef797c976e14b870282897dc0001cd12d8f58f4d
[]
no_license
PraveerT/RPI_MDX
b7d77e1b899d3d6306b1733a70260e4bd112c61c
c284b4389e929355d60ae0b8e7a7d2e4881cc8b9
refs/heads/master
2021-09-22T09:00:41.359135
2018-09-06T19:08:31
2018-09-06T19:08:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
938
py
# import the necessary packages from picamera.array import PiRGBArray from picamera import PiCamera import time import cv2 # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = (640, 480) camera.framerate = 32 rawCapture = PiRGBArray(camera, size=(640, 480)) # allow the camera to warmup time.sleep(0.1) # capture frames from the camera for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image, then initialize the timestamp # and occupied/unoccupied text image = frame.array # show the frame cv2.imwrite('name.jpg',image) cv2.imwrite('name2.jpg',image) cv2.imwrite('name3.jpg',image) key = cv2.waitKey(1) & 0xFF # clear the stream in preparation for the next frame rawCapture.truncate(0) # if the `q` key was pressed, break from the loop if key == ord("q"): break
f19fc5c3330d8fcb12ebc6be3886966f8a5d6b8c
4d76bdfbe24b76b3acffc163ceaeec5fb7196d46
/xNes.py
90822e1d01aeea7aad84d678f053b4f028e82eef
[]
no_license
oden41/Reinforcement_OpenAIGym
2521c4ea6e11a1b2ac8c5ae37f721d3b277df95f
812b2a79dd228ed7163288106200bfe42db22a47
refs/heads/master
2021-01-16T20:41:58.990839
2016-08-08T14:31:13
2016-08-08T14:31:13
64,726,040
0
0
null
null
null
null
UTF-8
Python
false
false
2,800
py
#! /usr/bin/python # -*- coding: utf-8 -*- import gym import numpy from scipy.linalg import expm # import csv def doOneIteration(episode, env): Lambda = 8 M = 5 T = 200 sigma = 0.5 B = numpy.identity(4) I = numpy.identity(4) eta_sigma = eta_B = (3 * (3 + numpy.log(4))) / (5 * 4 * numpy.sqrt(4)) weight = [] for i in range(Lambda): denom = 0.0 for j in range(Lambda): denom += max(0, numpy.log(Lambda/2 + 1) - numpy.log(j + 1)) weight.append(max(0, numpy.log(Lambda/2 + 1) - numpy.log(i + 1))/denom - 1.0/Lambda) weight = numpy.asarray(weight) theta = 2 * numpy.random.rand(4) - 1 # theta = 2 * numpy.random.rand(4) - 10 theta_best = numpy.zeros(4) r_best = 0 g = 0 # f = open('data{0}.csv'.format(episode), 'ab') # csvWriter = csv.writer(f) while g < 2000 and r_best < 200 * M: # dataList = [g] list = [] for j in range(Lambda): z_j = numpy.random.randn(4) theta_j = theta + sigma * B.dot(z_j) list.append([z_j, theta_j, 0]) for j in range(Lambda): for m in range(M): observation = env.reset() for t in range(T): # env.render() action = 0 if list[j][1].T.dot(observation) < 0: action = 0 else: action = 1 observation, reward, done, info = env.step(action) list[j][2] += 1 if done: break list.sort(key=lambda x: (x[2]), reverse=True) # for j in range(Lambda): # dataList.append(list[j][2]) # csvWriter.writerow(dataList) r_best = list[0][2] theta_best = list[0][1] sum1 = numpy.zeros(4) for j in range(Lambda): sum1 += weight[j] * list[j][0] G_m = sigma * B.dot(sum1) sum2 = numpy.zeros((4, 4)) for j in range(Lambda): sum2 += weight[j] * (list[j][0].dot(list[j][0].T) - I) G_M = sum2 G_sigma = numpy.trace(G_M)/4 G_B = G_M - G_sigma * I theta += G_m sigma *= numpy.exp(eta_sigma * G_sigma / 2) B = B.dot(expm(eta_B * G_B / 2)) g += 1 print("g:{0}, r_best:{1}, theta:{2}".format(g, r_best, theta_best)) # f.close() if g >= 2000: return False else: return True if __name__ == "__main__": success = 0 fail = 0 for i in range(100): env = gym.make('CartPole-v0') result = doOneIteration(i, env) if result: success += 1 else: fail += 1 print("success:{0},fail={1}".format(success, fail))
553f25fa2fcddfe3e7ab25743929f0fafa63ec55
120a32a1e7ac25a37bd74995e8f466c05b24ddb4
/yWait/models.py
72a29ab72151cbcaea1081e4870b360dec8506b1
[]
no_license
nkmerrill/yWait
26b16f1d9affa61daf6a1293a9080c857fb0f6d1
b0b6b2f60cd359e32e14d0ef4a11a0f68773b62e
refs/heads/main
2023-08-22T04:10:53.307410
2021-10-07T01:40:15
2021-10-07T01:40:15
392,822,449
0
0
null
null
null
null
UTF-8
Python
false
false
5,239
py
TEST = False #WARNING: Seeing to False will use LIVE DATA that can incur a cost! Please only set to False when live data tests are needed! For testing data, edit the values in sampleresponse.json instead! TESTRESPONSE = "yWait/sampleresponse.json" from django.db import models from django.contrib.auth.models import User from datetime import datetime from django.db.models.signals import pre_delete, pre_save from django.dispatch import receiver import json, os, requests #Data object class pureData(): def __init__(self): self.data = { 'epoch':0, 'hour': [[],[],[],[],[],[],[]], 'closed':[True,False,False,False,False,False,True], 'address':['','','','','','',''], 'name':['','','','','','',''] } #Actual data from API regarding location traffic. class trafficData(models.Model): jsonData = models.TextField(default = '') def jsonToData(self): output = json.loads(self.jsonData) return output def __str__(self): return str(self.pk) + ' trafficData' #A location object class Location(models.Model): #Name of venue passed to API (also user friendly name) venueName = models.CharField(max_length=256, unique=True) #Address of venue passed to API venueAddress = models.TextField() author = models.ForeignKey(User, on_delete=models.CASCADE) #Traffic data for this venue data = models.ForeignKey(trafficData, on_delete = models.SET_NULL, null=True, blank=True) def updateData(self): outData = pureData() if TEST == False: #call API and gather data apiKey = os.environ['APIKEY'] url = "https://besttime.app/api/v1/forecasts" params = { 'api_key_private' : apiKey, 'venue_name': self.venueName, 'venue_address' : self.venueAddress } responseData = requests.request("POST",url, params=params).text unParsed = json.loads(responseData) #To ensure API usage is consistent with expectations, address will be pulled from API self.venueAddress = unParsed["venue_info"]["venue_address"] else: #TEST RESPONSE# responseData = "" with open(TESTRESPONSE, "r") as f: responseData = f.read() #parse API data for needed information unParsed = json.loads(responseData) outData.data['epoch'] = int(unParsed["epoch_analysis"]) for i in range(7): #API response is broken down as a list of days. outData.data['address'][i] = self.venueAddress outData.data['name'][i] = self.venueName if unParsed['analysis'][i]['day_info']['venue_open'] == 'Closed': outData.data['closed'][i] = True else: outData.data['hour'][i] = unParsed['analysis'][i]['quiet_hours'] outData.data['closed'][i] = False #Delete old data, if it exists if self.data is not None: trafficData.objects.get(pk=self.data.pk).delete() #create trafficData using parsed information and assign it to the object. trafData = trafficData(jsonData = json.dumps(outData.data)) trafData.save() self.data = trafData def __str__(self): return self.venueName #Set of locations to be compared. class ComparisonSet(models.Model): name = models.CharField(max_length=200, unique=True) author = models.ForeignKey(User, on_delete=models.CASCADE) #Traffic data for this comaprison set data = models.ForeignKey(trafficData, on_delete= models.SET_NULL, null=True, blank=True) #Comparisons for the Location objects locations = models.ManyToManyField(Location, related_name='compLocations') def updateData(self): outData = pureData() for i in range(7): smallestCount = 0 smallestLocData = None for locale in self.locations.all(): locData = locale.data.jsonToData() if len(locData['hour'][i]) >= smallestCount and not locData['closed'][i] : smallestCount = len(locData['hour'][i]) smallestLocData = locData if smallestLocData is None: outData.data['hour'][i] = [] outData.data['closed'][i] = True outData.data['address'][i] = '-' outData.data['name'][i] = '-' else: outData.data['hour'][i] = smallestLocData['hour'][i] outData.data['closed'][i] = smallestLocData['closed'][i] outData.data['address'][i] = smallestLocData['address'][i] outData.data['name'][i] = smallestLocData['name'][i] outData.data['epoch'] = datetime.now().timestamp() #Data old data, if it exists if self.data is not None: trafficData.objects.get(pk=self.data.pk).delete() #Create trafficData using information found trafData = trafficData(jsonData = json.dumps(outData.data)) trafData.save() self.data = trafData self.save() def __str__(self): return self.name @receiver(pre_delete,sender=Location, dispatch_uid="delete data Location") @receiver(pre_delete,sender=ComparisonSet, dispatch_uid="delete data ComparisonSet") def deleteDataSignal(sender,instance,using,**kwargs): data = trafficData.objects.get(pk=instance.data.pk) data.delete() @receiver(pre_save, sender=Location, dispatch_uid="save data Location") def updateDataSignal(sender, instance, using, **kwargs): instance.updateData()
7ffc7004a4767c645f7ddca86bae2f5ff4bbc9df
d668a6d561f181913c50c0c94bf725198e1680a1
/RL_basics/value_iteration.py
5f933ff76808dc02da8b7a7daf29fbafd6f1e354
[]
no_license
achyut-srivastava/Reinforcement-Learning
23944ee580f305ddad509f31bcfb7639bf0d7fd8
ab2f9a2111ab585a330e5d15cf54ab86a579a41b
refs/heads/master
2022-06-03T19:06:51.517985
2020-05-05T01:33:08
2020-05-05T01:33:08
261,335,144
0
0
null
null
null
null
UTF-8
Python
false
false
1,452
py
import numpy as np from grid_world import standard_grid, negative_grid from iterative_policy_evaluation import print_values, print_policy SMALL_ENOUGH = 10e-4 GAMMA = 0.9 ALL_POSSIBLE_ACTIONS = ('U', 'D', 'L', 'R') if __name__ == "__main__": grid = negative_grid(-.1) print("rewards: ") print_values(grid.rewards, grid) states = grid.all_state() print("\ninitial initalization: ") policy = {} for s in grid.actions.keys(): policy[s] = np.random.choice(ALL_POSSIBLE_ACTIONS) print_policy(policy, grid) # Value Initialization V = {} for s in states: V[s] = 0 while True: delta = 0 for s in states: old_Vs = V[s] if s in policy: old_a = policy[s] new_V = float('-inf') new_a = None for a in ALL_POSSIBLE_ACTIONS: grid.set_state(s) r = grid.move(a) v = r + GAMMA * (V[grid.current_state()]) if v > new_V: new_V = v new_a = a V[s] = new_V policy[s] = new_a delta = max(delta, np.abs(old_Vs-V[s])) if delta < SMALL_ENOUGH: break print("\n\n") print_values(V, grid) print("\n\n") print_policy(policy, grid) pass
3a35a4f0d70df9f2a9d6cc4836f51145303da749
65aab5e31fe8d415b55d2a50ca4e9d5c5525a7c6
/exercise-tdd/main.py
83f155998450f122a8fabe1416f130506f8ceb6e
[ "MIT" ]
permissive
csoehnel/DSR-Testing
a4578d4ac92b339cd19c28ec71642d49e45478fd
3a28fb893ad6a46934c46123efaf77e3a40f2977
refs/heads/master
2020-04-26T04:34:28.688589
2017-01-31T17:08:22
2017-01-31T17:08:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
import unittest # Returns the nth Fibonacci number def fib(n): return
13eb91841cc9ea67908bd23dae98c76394f14d93
90a63ba41e6f462ea0c869bc415ae3d8d4f8342a
/classroom/models.py
9085146a1e5bc0d9b78522d8a72e484a6a5168ad
[]
no_license
buypolarbear/childcare-app-1
d8ee0f5ce5cfa94f89b2e8a04eb78b6bc4a892dc
8acecb2611de5b9b8957a239efa5eb5c787f6a06
refs/heads/master
2020-05-06T15:39:15.864117
2013-11-11T14:35:37
2013-11-11T14:35:37
180,201,165
0
0
null
2019-04-08T17:39:12
2019-04-08T17:38:55
Python
UTF-8
Python
false
false
2,010
py
from django.contrib.auth.models import User from django.db import models from child.imagegenerators import GalleryThumbnail from child.models import Child from childcare.models import Childcare class Classroom(models.Model): name = models.CharField(max_length=100) description = models.CharField(max_length=255) childcare = models.ForeignKey(Childcare) teachers = models.ManyToManyField(User) created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) disabled = models.BooleanField(default=False) def __unicode__(self): return self.name def get_absolute_url(self): return 'childcare/%s/classroom/%s' % (self.childcare.pk, self.pk) class Attendance(models.Model): author = models.ForeignKey(User) date = models.DateField(blank=True) created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) classroom = models.ForeignKey(Classroom) attendance = models.ManyToManyField(Child) class Meta: unique_together = ['classroom', 'date'] class Diary(models.Model): author = models.ForeignKey(User) date = models.DateField(blank=True) created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) classroom = models.ForeignKey(Classroom) content = models.TextField() class Meta: unique_together = ['classroom', 'date'] class DiaryImage(models.Model): image = models.ImageField(upload_to='images/childcare/') thumbnail = GalleryThumbnail(source='image') diary = models.ForeignKey(Diary) class Plan(models.Model): author = models.ForeignKey(User) classrooms = models.ManyToManyField(Classroom) start_date = models.DateField() end_date = models.DateField() content = models.TextField() file = models.FileField(upload_to='files/plan/') created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True)
5ba22dd5545bb52f3c63a5bf0e88a0481fe9e92b
b522a33dd1d0b42a1817ccc0d81ba75e765d51ff
/sales/sales/doctype/floor_rise_master/test_floor_rise_master.py
3333ec4585d9676334f4172a51bc831474f6d942
[ "MIT" ]
permissive
dngupta78/sales
ae2d2d38b5722e526ac116acd6d226d473083198
aee6be4ac46f6b63e85f819f68f14c242f1c9480
refs/heads/master
2016-09-05T15:55:07.999526
2015-10-23T13:22:28
2015-10-23T13:22:28
42,845,935
1
0
null
null
null
null
UTF-8
Python
false
false
270
py
# -*- coding: utf-8 -*- # Copyright (c) 2015, d and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest # test_records = frappe.get_test_records('Floor Rise Master') class TestFloorRiseMaster(unittest.TestCase): pass
c48be57faa453f5f6f03d5164d04197f4fda3136
1612752a34dbd848de952430736fcabdaf28af46
/Assignment_6/approximateUser.py
da3c088aaf01753f57160d8cd21763d48d2b5d62
[]
no_license
pshk04/anwala.github.io
5a4de651a8d0f47c93bdcd31315c1cb7406310a3
4f33cab7cbd5712ef8eb549f59fc63dcbabecf45
refs/heads/master
2022-10-20T12:32:48.621496
2018-05-01T16:20:29
2018-05-01T16:20:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,177
py
from operator import itemgetter matchingUsers = [] myAge = 27 myOccupation = 'student' myGender = 'M' userMoviesDict = {} userMovieRatingDict = {} finalTopThree = {} finalBottomThree = {} userMovieRatingsList = [] movieRatingsList = [] matches = '' bottomCount = 0 topCount = 0 listSize = 0 with open('users.txt', 'r') as f1: for line in f1: userId,age,gender,occupation,zipcode = line.split('|') # if((int(age) < int(myAge) and int(age) > int((myAge - 3))) and (gender == myGender) and (occupation == myOccupation)): if((int(age) == myAge) and (gender == myGender) and (occupation == myOccupation)): matchingUsers.append(userId) print matchingUsers with open('data.txt', 'r') as f2: for line in f2: userId,movieId,rating,mseconds = line.split(' ') if(userId in matchingUsers): if(userId in userMoviesDict): userMoviesDict[userId] = userMoviesDict[userId] + ":" + movieId + "|" + rating else : userMoviesDict[userId] = movieId + "|" + rating print('--------') for key, value in userMoviesDict.items(): # print(key,userMoviesDict[key]) userMovieRatingsList = userMoviesDict[key].split(":") for movieRating in userMovieRatingsList: movie,rating = movieRating.split("|") userMovieRatingDict[movie] = rating # print(movie,rating) sortedRatings = sorted(userMovieRatingDict.items(), key=lambda value: value[1]) # print("Length :",len(sortedRatings)) bottomCount = 0 topCount = 0 listSize = 0 bottomMovieData = "" topMovieData = "" for data in sortedRatings: listSize = listSize + 1 if(bottomCount < 3): if(bottomMovieData == ""): bottomMovieData = str(data) else : bottomMovieData = bottomMovieData + ":" + str(data) bottomCount = bottomCount + 1 if(listSize > len(sortedRatings) - 3): if(topMovieData == ""): topMovieData = str(data) else : topMovieData = topMovieData + ":" + str(data) finalBottomThree[key] = bottomMovieData finalTopThree[key] = topMovieData print('--------------') print(finalTopThree) print(finalBottomThree) print('\n') print "User" + " " + "Movie Title" + " " + "Rating" print "----" + " " + "-----------" + " " + "------" for key, value in finalTopThree.items(): movieTuple = finalTopThree[key].split(":") for movie in movieTuple: movieId,rating = str(movie).split(",") movieId = movieId.replace("(","").replace("'","") with open('item.txt', 'r') as file: for line in file: mid,movieTitle = line.split("|")[0:2] if(mid == movieId): print key," "+ movieTitle+" "+rating.replace(")","").replace("'","") print('\n') print "User" + " " + "Movie Title" + " " + "Rating" print "----" + " " + "-----------" + " " + "------" for key, value in finalBottomThree.items(): movieTuple = finalBottomThree[key].split(":") for movie in movieTuple: movieId,rating = str(movie).split(",") movieId = movieId.replace("(","").replace("'","") with open('item.txt', 'r') as file: for line in file: mid,movieTitle = line.split("|")[0:2] if(mid == movieId): print key," "+ movieTitle+" "+rating.replace(")","").replace("'","")
c8ec4b2595b08a6a47592bb7d473604b5a04ce0b
bc88f23d872d52c77d7837393a2409c6c993a12f
/python/arrays_and_strings/1.1/is_unique.py
12c1eb526cabb975240ae19f4a778628093da5e4
[]
no_license
Shikkic/cracking-the-code
4076c7eb55c81211996002eb6bd4e6a52507d114
afa1b59999af2ffc84ab352d4a2c1ce4f4df8e75
refs/heads/master
2021-01-10T23:31:37.457545
2016-10-01T03:35:01
2016-10-01T03:35:01
69,712,097
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
def is_unique(s): if len(s) < 1: return False characterDict = {} for char in s: if characterDict.has_key(char): return False else: characterDict[char] = 1 return True
4883a6e3a0a778d3603243e35ac8d859bea0f498
e268c3b21914dba8e2a9194975ade2a64ed7b704
/DrOptimize/optimize/test.py
14df39dc63bac2592693662d7b0bf9677940dee5
[]
no_license
dwinkelman/dwinkcode
108bb84e7cd7dba66dc3daef622d660544603a26
6ddd783ace5c5c89cfe5df3d41de8d9cef69d07b
refs/heads/master
2021-01-01T20:07:37.690930
2017-07-30T20:52:54
2017-07-30T20:52:54
98,769,342
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
import _dijkstra as dk cons = [ (0, 1, 7.0), (0, 2, 2.0), (0, 3, 3.0), (1, 2, 3.0), (1, 4, 4.0), (2, 4, 4.0), (2, 8, 1.0), (3, 12, 2.0), (4, 6, 5.0), (5, 7, 2.0), (5, 11, 5.0), (6, 8, 3.0), (7, 8, 2.0), (9, 10, 6.0), (9, 11, 4.0), (9, 12, 4.0), (10, 11, 4.0), (10, 12, 4.0) ] path, cost = dk.Dijkstra(cons, 0, 5, True) print cost print path
901c175641a9bff6b41da9341a5e03bb5421d8ac
476cc933d384a3586dd80b186b37161d62494235
/pyramid_fullauth/events.py
47cbe3689533dde1bd80c261c1ea3612c98f57fd
[ "MIT" ]
permissive
pronebel/pyramid_fullauth
4a28022acc77bf06f9cc3b7458de63c71645298d
7280660bda44879d8fe2ca340868d73e5ea2d6ce
refs/heads/master
2021-05-13T22:39:15.048808
2018-01-05T12:11:21
2018-01-05T12:11:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,132
py
# Copyright (c) 2013 - 2016 by pyramid_fullauth authors and contributors <see AUTHORS file> # # This module is part of pyramid_fullauth and is released under # the MIT License (MIT): http://opensource.org/licenses/MIT """pyramid_fullauth emits these events during whole cycle.""" class _BaseRegisterEvent(object): """ Base fullauth event. most of the fullauth's event will provide both request and user object with some additional data (these will be described then). """ def __init__(self, request, user): """ Initialize event. :param pyramid.request.Request request: request object :param pyramid_fullauth.models.User user: user object """ self.request = request self.user = user class BeforeRegister(_BaseRegisterEvent): """ Execute custom code at the start of registration process. .. note:: User object is not yet in session. """ def __init__(self, request, user, errors): """ Initialize event. :param pyramid.request.Request request: request object :param pyramid_fullauth.models.User user: user object :param dict errors: a dictionary with wrong/not submitted fields with format - fields for which error occured: error message """ _BaseRegisterEvent.__init__(self, request, user) self.errors = errors class AfterRegister(_BaseRegisterEvent): """ Add custom post-processing code in registration process. Can be used to add e.g. e-mail sending with registration links. .. note:: User object is already in a session. .. note:: Action emitting this event, should catch all HTTPRedirection that might be risen in event listener. .. warning:: If HTTPRedirection is risen from event listener, then response_values will not be used! """ def __init__(self, request, user, response_values): """ Initialize event. :param pyramid.request.Request request: request object :param pyramid_fullauth.models.User user: user object :param dict response_values: a dictionary with response values """ _BaseRegisterEvent.__init__(self, request, user) self.response_values = response_values class AfterActivate(_BaseRegisterEvent): """ Add custom post-processing logic after user gets activated. .. note:: Action emitting this event, should catch all HTTPRedirection that might be risen in event listener. """ pass class AfterResetRequest(_BaseRegisterEvent): """ Add custom post-processing after user sends request to reset password. .. note:: Action emitting this event, should catch all HTTPRedirection that might be risen in event listener. """ pass class BeforeReset(_BaseRegisterEvent): """Add custom pre-processing before the actual reset-password process.""" pass class AfterReset(_BaseRegisterEvent): """ Add custom post-processing after the actual reset-password process. .. note:: Action emitting this event, should catch all HTTPRedirection that might be risen in event listener. """ pass class AlreadyLoggedIn(object): """ Allow execute custom logic, when logged in user tries to log in again. .. note:: Action emitting this event, should catch all HTTPRedirection that might be risen in event listener. """ def __init__(self, request): """ Initialize event. :param pyramid.request.Request request: request object """ self.request = request class BeforeLogIn(_BaseRegisterEvent): """ Add custom logic before user gets logged in. .. note:: Action emitting this event, should catch all AttributeError that might be risen in event listener. User param set to None when user is not found or request method is GET. """ pass class AfterLogIn(_BaseRegisterEvent): """Add custom logic after user logs in.""" pass # Social events # TODO: extract to sub module class _BaseSocialRegister(_BaseRegisterEvent): """Base for all social requests.""" def __init__(self, request, user, profile): """ Initialize base events. :param pyramid.request.Request request: request object :param pyramid_fullauth.models.User user: user object :param dict profile: a dictionary with profile data """ _BaseRegisterEvent.__init__(self, request, user) self.profile = profile class BeforeSocialRegister(_BaseSocialRegister): """Adds custom logic before the social login process start.""" pass class AfterSocialRegister(_BaseSocialRegister): """ Add custom logic after user registers through social network. .. note:: Action emitting this event, should catch all HTTPRedirection that might be risen in event listener. """ def __init__(self, request, user, profile, response_values): """ Initialize event. :param pyramid.request.Request request: request object :param pyramid_fullauth.models.User user: user object :param dict profile: a dictionary with profile data :param dict response_values: a dictionary with response values """ _BaseSocialRegister.__init__(self, request, user, profile) self.response_values = response_values class AfterSocialLogIn(_BaseSocialRegister): """ Custom logic after user logs in through social network. .. note:: Action emitting this event, should catch all HTTPRedirection that might be risen in event listener. """ pass class SocialAccountAlreadyConnected(_BaseSocialRegister): """ Event raised when social account is already connected to some other user. Allow to add custom logic, when someone tries to connect social account to second user in application. .. note:: Action emitting this event, should catch all HTTPRedirection that might be risen in event listener. """ def __init__(self, request, user, profile, response_values): """ Initialize event. :param pyramid.request.Request request: request object :param pyramid_fullauth.models.User user: user object :param dict profile: a dictionary with profile data :param dict response_values: a dictionary with response values """ _BaseSocialRegister.__init__(self, request, user, profile) self.response_values = response_values # Email change events. class BeforeEmailChange(_BaseRegisterEvent): """Allow to add custom validation (like checking password) before email change process.""" pass class AfterEmailChange(_BaseRegisterEvent): """Allow to add some custom post-processing, like e-mail sending, after email change process.""" pass class AfterEmailChangeActivation(_BaseRegisterEvent): """Allow to add custom logic, after changed email had been activated.""" pass
f37a3867f87a9c74a9e8745f4624efc6a482d43f
a7f777a2dcb6a77f738d7e79fdd6629b01564182
/funciones.py
44387bdd64b05782a994cc4f046c37ecaedc0d11
[]
no_license
vantoara/Proyecto-Algoritmos-2021-1
1d905201a8f4a7509dc59e26784c02d96132da92
532e61cc0a9435066ac56bc0d37b384f32f8718b
refs/heads/main
2023-03-30T12:26:02.439070
2021-04-06T03:29:40
2021-04-06T03:29:40
354,208,054
0
0
null
null
null
null
UTF-8
Python
false
false
29,987
py
from Player import Player from Guessing import Guessing from Word_Search import Word_Search from Crypto import Crypto from Hangman import Hangman from Math import Math from Python import Python from Boolean import Boolean from Number import Number from Shuffle import Shuffle from Quiz import Quiz from Memory import Memory from Logic import Logic from Color import Color from Room import Room import requests import random import enquiries import json import requests api = requests.get("https://api-escapamet.vercel.app") # Función utilizada para el quiz número 1 def validate_password(): print("\nSu contraseña debe tener más de 8 caracteres, tener al menos un número, una letra mayúscula, una letra minúscula y un caracter especial") while True: password = input("\nIngrese su nueva contraseña: ") if len(password) < 8: print("\nLa contraseña elegida no es válida.") else: #Los any iteran a través de los varios for loops y si UN solo caracter cumple la condición (regresa True) entonces, la condición regresará True, por ende, utilicé varios any (varios for loop idénticos) para ver que las condiciones de la contraseña se cumplan. if any(character.isspace() for character in password): print("\nLa contraseña elegida no es válida. Ingresaste un espacio.") else: if (not any(character.isdigit() for character in password)) or (not any(character.isalpha() for character in password)): print("\nLa contraseña elegida no es válida. Carece de números o letras.") else: if any(character.islower() for character in password) and any(character.isupper() for character in password): if any(not character.isalnum() for character in password): print("\nContraseña ingresada correctamente") break else: print("\nLa contraseña elegida no es válida. Debe añadir un caracter especial.") else: print("\nLa contraseña elegida no es válida. Necesita tanto letras mayúsculas como minúsculas.") return password def registry(database): # Aquí se registrarán los usuarios por primera vez. user = input("\nIngrese su nombre de usuario: ") if user in database: print("\nIngreso inválido, usuario ya registrado.") return database # Aquí no hay ningún loop ya que si es un usuario que está registrado, puede ser que a la persona simplemente se le haya olvidado, por ende, esto lo enviaría de una vez al menú principal. while len(user) < 3 or len(user) > 8: print("\nNombre de usuario es muy largo o muy corto. Debe de ser entre 3 y 8 caracteres.") user = input("\nIngrese su nombre de usuario: ") password = validate_password() # Ya validado en la función anterior age = input("\nIngrese su edad: ") while not age.isdigit() or int(age) < 16: print("\nEdad es inválida. Recuerde que debe ser mayor de 16 años para poder jugar.") age = input("\nIngrese su edad: ") # Al registrar el usuario, como no está comenzando una partida, no me interesa en lo absoluto lo demás. player = Player(user.strip(), password, int(age)) # Se me guarda como un diccionario siendo el user la llave, así cuando se inicie una nueva partida y pida el user, puedo jalar información fácilmente database[user] = player return database def start_new_game(database): # Vuelvo a pedir user así corroboro si está creado user = (input("\nIngrese su nombre de usuario para poder jugar: ")).strip() while len(user) < 3 or len(user) > 8: print("\nNombre de usuario es muy largo o muy corto. Debe de ser entre 3 y 8 caracteres.") user = (input("\nIngrese su nombre de usuario para poder jugar: ")).strip() if user in database: # Si el usuario existe es porque hay un objeto asignado a ese usuario, lo jalo y lo guardo en la variable player para mayor simplicidad player = database[user] while True: password = input("\nIngrese su contraseña: ") if password == player.get_password(): #La librería enquiries permite un menú de selección de opciones el cual no necesita validar y es bastante práctico, solo requiere pasar la lista con las opciones deseadas como parámetro. difficulty_options = ["Fácil", "Medio", "Difícil"] difficulty_choice = enquiries.choose("\nEscoja una dificultad: ", difficulty_options) if difficulty_choice == "Fácil": print("\nBienvenido, nuevo ingreso.") player.set_difficulty(5.0, 5) # Se implementan las distintas especificaciones dependiendo de cada . Las vidas se pasan como float por razones obvias. elif difficulty_choice == "Medio": print("\nVeterano de barra.") player.set_difficulty(3.0, 3) else: print("\n¿Haces doble titulación, no?") player.set_difficulty(1.0, 2) avatars = ["Scharifker", "Eugenio Mendoza", "Pelusa", "Gandhi", "Metropavo", "Exodia", "Lorenzo Mendoza", "Becado"] choose_avatar = enquiries.choose("\nEscoje uno de los siguientes avatares: ", avatars) player.set_avatar(choose_avatar) print("\nHoy 5 de marzo de 2021, la Universidad sigue en cuarentena (esto no es novedad), lo que sí es novedad es que se robaron un Disco Duro de la Universidad del cuarto de redes que tiene toda la información de SAP de estudiantes, pagos y asignaturas. Necesitamos que nos ayudes a recuperar el disco, para eso tienes minutos, antes de que el servidor se caiga y no se pueda hacer más nada. ¿Aceptas el reto?\n") # Si te llegas a morir entonces el while loop se rompe (consecuentemente ocurre lo mismo en las funciones nested) y se para el while player.check_lives(): won = movement(player, api) # Esta función se encuentra al final, ya que a continuación se desarrollan son los distintos juegos. if won: break # Este if agarra el caso en el que perdiste tus vidas y hace un break que te arrojará al inicio del menú if not player.check_lives(): print("\nMuy mala jugada, te has quedado sin vidas!") break else: print(f"\nFelicitaciones, este trimeste ha sido muy difícil para todos, y a pesar de las desdichas y las angustias has podido entregar el Disco Duro a su lugar correspondiente. La universidad se encuentra agradecida contigo, {player.avatar}.") break else: print("\nContraseña incorrecta!") else: # Igualmente, para qué hacer un while loop si no se encuentra registrado. Es innecesario. print("\nEste usuario no se encuentra registrado.") # Para toda función de juego le paso room, obj (objeto) y el objeto player; room y obj para la clase (que se detalla en Game.py) y player para poder modificar los atributos como es debido # Adivinanzas def guessing_game(room, obj, player): game = Guessing(room, obj) # Este if lo que valida es si el jugador ya completó el minijuego, es decir, si tienes la recompensa en tu inventario es porque jugaste este juego y lo completaste. if game.get_award() in player.get_inventory(): print("\nYa completaste este juego. Anda, que el tiempo se agota.") else: # Valida si tengo los requisitos para jugar, se detalla más en Game.py if "contraseña" in player.get_inventory(): print("Ingrese la contraseña...") print("\n"*5) print("Contraseña correcta!") # simulación de que se hizo un input de contraseña, aesthetic. game.show_game() game.show_question() while player.check_lives(): options = ["Responder", "Pedir pista"] choice = enquiries.choose("\nEscoja que hacer: ", options) if choice == "Responder": # No valido la respuesta a mayor profundidad ya que como el juego es una adivinanza, no lo amerita. player_guess = input("\nIngrese su respuesta: ") answer = game.guess(player_guess) # Retorna True o False y se valida si se resuelve o no la adivinanza if answer == True: print(f"\nHas ganado el siguiente objeto: {game.get_award()}") player.add_item(game.get_award()) break else: player.update_lives(-0.5) player.check_lives() else: # Reviso si el jugador tiene pistas disponibles y si el juego tiene más pistas que dar. Si no se cumple, hay un mensaje de advertencia if player.check_player_clues() and game.check_clue(): game.get_clue() player.update_clues() # Sopa de Letras def word_search_game(room, obj, player): game = Word_Search(room, obj) if "sopa_check" in player.get_inventory(): # El premio de la sopa de letras no es un objeto sino una vida extra, "sopa_check" es un string que se appendea a la lista de inventario y se tiene como un aval de que se completó el juego print("\n¿Memoria de corto plazo?. Ya completaste este juego.") else: if game.check_requirements(player.get_inventory()): game.show_game() # Método para mostrar la sopa. Se imprime una sola vez por tamaño y comodidad game.show_soup() while player.check_lives(): options = ["Responder", "Pedir pista"] choice = enquiries.choose("\nEscoja que hacer: ", options) if choice == "Responder": player_guess = ((input("Ingrese su respuesta: ")).lower()).strip() while not player_guess.isalpha(): print("\nEntrada inválida, ingrese una palabra") player_guess = ((input("Ingrese su respuesta: ")).lower()).strip() # Podría colocar una validación para que el jugador evite ingresar números y demás, pero creo que es justo y necesario penalizarlos por su mala conducta y querer romper el programa. # answer guarda si se completa el juego correctamente o no answer = game.guess_word(player_guess, player) if answer == True: print("\nHas ganado una vida extra!") player.update_lives(1.0) # El premio de la sopa de letras es una vida extra, así que se agrega al contador de vidas del jugador player.add_item("sopa_check") # Append del aval break else: if player.check_player_clues() and game.check_clue(): game.get_word_clue() player.update_clues() # Criptograma def cryptic_game(room, obj, player): game = Crypto(room, obj) if "Mensaje" in player.get_inventory(): # Aquí busco "Mensaje" justamente ya que así es como está guardado de requisito para la API y otra habitación, así que para evitar mayores complicaciones, se verifica el dato directamente en lugar de hacer un get.award() print("\nPor aquí no es, ya resolviste este juego.") else: if game.check_requirements(player.get_inventory()): game.show_game() game.show_alphabet() game.show_encode() while player.check_lives(): player_decode = (input("\nDescrife el código e ingrese su respuesta: ")).lower() # Podría colocar una validación para que el jugador evite ingresar números y demás, pero creo que es justo y necesario penalizarlos por su mala conducta y querer romper el programa. answer = game.answer_decode(player_decode) if answer == True: change_award = game.get_award() change_award = change_award.replace(": Si estas gradudado puedes pisar el Samán","") print(f"\nHas ganado el siguiente objeto: {change_award}") player.add_item(change_award) break else: player.update_lives(-1) # Criptograma no tiene pistas así que no nos interesa en lo absoluto. # Ahorcado def hangman_game(room, obj, player): game = Hangman(room, obj) if game.get_award() in player.get_inventory(): print("\nQue por aquí ya pasaste, vete a otra parte!") else: if game.check_requirements(player.get_inventory()): game.show_game() game.show_prompt() while player.check_lives(): options = ["Responder", "Pedir pista"] choice = enquiries.choose("\nEscoja que hacer: ", options) if choice == "Responder": player_letter = (input("\nIngrese una letra: ")).lower() while not player_letter.isalpha(): # Valido el input, ya que aquí si se trabaja NETAMENTE con letras print("\nEntrada inválida. Por favor, ingrese una letra.") player_letter = (input("\nIngrese una letra: ")).lower() answer = game.guess_hangman(player_letter, player) if answer == True: print(f"\nHas ganado el siguiente objeto: {game.get_award()}") player.add_item(game.get_award()) break elif answer == False: # Debido a como la clase y su método correspondiente están programadas, hay que ser específicos aquí break # Como la vida se va restando dentro de la clase, no hace falta colocar nada aquí además del break else: if player.check_player_clues() and game.check_clue(): game.get_hangman_clue() player.update_clues() # Preguntas matemáticas def math_game(room, obj, player): game = Math(room, obj) if "mate_check" in player.get_inventory(): print("\nAfortunadamente sabes derivar, ya que completaste este juego.") else: if game.check_requirements(player.get_inventory()): game.show_game() game.show_math() while player.check_lives(): options = ["Responder", "Pedir pista"] choice = enquiries.choose("\nEscoja que hacer: ", options) if choice == "Responder": player_math_input = validate_player_math_input() # Esta función valida el input del usuario, ya que debe ser una fracción answer = game.answer_math(player_math_input) if answer == True: print("\nHas ganado una vida extra!") player.update_lives(1.0) player.add_item("mate_check") # Se appendea el aval de que se completó el juego break else: player.update_lives(-0.25) break else: if player.check_player_clues() and game.check_clue(): game.get_math_clue() player.update_clues() def validate_player_math_input(): # Valida el input del usuario para el juego de matemáticas player_math_input = (input("\nIngrese su respuesta en fracciones: ")).strip() while True: try: float(player_math_input) break except ValueError: # Si el except lo capta entonces es porque puede tener "/" es decir, ser una fracción try: number, denom = player_math_input.split("/") float(number) float(denom) # Se evalúan ambos por separado break except: print("\nIngreso inválido, por favor, ingrese un número.") player_math_input = input("\nIngrese su respuesta en fracciones: ") return player_math_input # Preguntas python def python_game(room, obj, player): game = Python(room, obj) if game.get_award() in player.get_inventory(): print("\nDemostraste que sabes lo básico de programación al completar este juego, no hay más nada que hacer aquí.") else: if game.check_requirements(player.get_inventory()): game.show_game() game.show_phrase() while player.check_lives(): options = ["Responder", "Pedir pista"] choice = enquiries.choose("\nEscoja que hacer: ", options) if choice == "Responder": player_python_answer = input("\nIngrese su código en una línea: ") while "frase" not in player_python_answer: print("\nPor favor, ingrese un código decente.") # Esto evalúa que AL MENOS ingresen la variable que guarda el string player_python_answer = input("\nIngrese su código en una línea: ") answer = game.answer_python(player_python_answer) if answer == True: print(f"\nHas ganado el siguiente objeto: {game.get_award()}") player.add_item(game.get_award()) break else: player.update_lives(-0.5) break else: if player.check_player_clues() and game.check_clue(): game.get_py_clue() player.update_clues() # Preguntas booleanas def boolean_game(room, obj, player): game = Boolean(room, obj) if game.get_award() in player.get_inventory(): print("\nAquí no tienes nada que hacer, ya destruiste la puerta con el martillo.") else: if game.check_requirements(player.get_inventory()): game.show_game() game.show_boolean_question() # Únicas posibles respuestas options = ["True", "False"] choice = enquiries.choose("\nEscoja que hacer: ", options) answer = game.answer_boolean(choice) if answer == True: print(f"\nHas ganado el siguiente objeto: {game.get_award()}") player.add_item(game.get_award()) else: player.update_lives(-0.5) # Entre número def number_game(room, obj, player): game = Number(room, obj) if "Titulo Universitario" in player.get_inventory(): print("\nTienes tan buena suerte como aquel que pasa las tres físicas en el primer intento. Ya terminaste este juego.") else: if game.check_requirements(player.get_inventory()): game.show_game() game.show_number_question() while player.check_lives(): player_number = input("\nAdivine un número entero en el rango dado: ") while not player_number.isdigit(): # Validación que sea un entero print("\nPor favor, ingrese un número.") player_number = input("\nAdivine un número entero en el rango dado: ") answer = game.answer_number(player_number) if answer == True: change_award = game.get_award() change_award = change_award.replace("título Universitario","Titulo Universitario") # Temas de la API... print(f"\nHas ganado el siguiente objeto: {change_award}") player.add_item(change_award) break elif answer == False: player.update_lives(-0.25) # No hay break, el juego no se detiene sino hasta que gane o muere. if player.check_player_clues(): # Este prompt siempre aparecerá después de cada ingreso fallido, por si el usuario quiere una pista options_clue = ["Si", "No"] choice_clue = enquiries.choose("\n¿Desea obtener una pista?", options_clue) if choice_clue == "Si": game.get_number_clue(player_number) player.update_clues() # Palabras Mezcladas def shuffle_game(room, obj, player): game = Shuffle(room, obj) if game.get_award() in player.get_inventory(): print("\nYa completaste este juego. Pudiste descifrar las palabras mezcladas, ahora asegúrate que no hayas mezclado tu elección de carrera.") else: if game.check_requirements(player.get_inventory()): game.show_game() game.show_information() game.show_shuffle() while player.check_lives(): player_shuffle_guess = (input("\nIngrese una palabra a ordenar: ")).strip() while not player_shuffle_guess.isalpha(): print("\nIngreso inválido, por favor ingrese una palabra.") player_shuffle_guess = (input("\nIngrese una palabra a ordenar: ")).strip() answer = game.guess_shuffle(player_shuffle_guess) if answer == True: print(f"\nHas ganado el siguiente objeto: {game.get_award()}") player.add_item(game.get_award()) break elif answer == False: player.update_lives(-0.5) # Quizizz def quiz_game(room, obj, player): game = Quiz(room, obj) if game.get_award() in player.get_inventory(): print("\nTe esforzaste mucho respondiendo el Quizizz, ya completaste esta actividad. Lástima que solo vale 1%") else: if game.check_requirements(player.get_inventory()): game.show_game() game.show_specs() while player.check_lives(): menu_options = ["Responder", "Pista"] choice = enquiries.choose("\nEscoja una respuesta", menu_options) if choice == "Responder": options = game.get_options() player_choice = enquiries.choose("\nEscoja una respuesta", options) answer = game.answer_quiz(player_choice) if answer == True: print(f"\nHas ganado el siguiente objeto: {game.get_award()}") player.add_item(game.get_award()) break else: player.update_lives(-0.5) break else: if player.check_player_clues() and game.check_clue(): game.get_quiz_clue() player.update_clues() # Memoria de emojis def memory_game(room, obj, player): game = Memory(room, obj) if game.get_award() in player.get_inventory(): print("\nNi instalandóte una memoria de 16gb de RAM te acuerdas que ya pasaste por aquí. Este juego ya lo completaste.") else: if game.check_requirements(player.get_inventory()): game.show_grid() game.show_game() # Para este juego en específico, se realizaron todas las funciones como métodos dentro de la clase answer = game.guess_card(player) if answer == True: print(f"\nHas ganado el siguiente objeto: {game.get_award()}") player.add_item(game.get_award()) def logic_game(room, obj, player): game = Logic(room, obj) if game.get_award() in player.get_inventory(): print("\nNo estés buscando problemas, ya pisaste el Samán y sobreviviste, ahora continúa.") else: # REVISAR POR SEPARADO REQUIREMENTS. FOR LOOP. if "Mensaje" in player.get_inventory() and "Titulo Universitario" in player.get_inventory(): game.show_game() game.show_logic_question() player_logic = input("\nIngresa un número entero como respuesta: ") while not player_logic.isdigit(): print("\nEntrada inválida.") player_logic = input("\nIngresa un número entero como respuesta: ") answer = game.answer_logic(int(player_logic)) if answer == True: print(f"\nHas ganado el siguiente objeto: {game.get_award()}") player.add_item(game.get_award()) else: player.update_lives(-1) else: game.show_msg() player.update_lives(-1) # Con esto logramos penalizar al jugador por pisar el samán # Sudoku def final_game(room, obj, player): game = Color(room, obj) if "carnet" not in player.get_inventory() and "Disco Duro" not in player.get_inventory(): game.show_msg() else: game.show_game() game.color_question() while player.check_lives(): answer = game.choose_color() if answer == True: print("\nGanaste el juego! Pudiste recuperar el Disco") won = True return won elif answer == False: player.update_lives(-1) def movement(player, api): # Comienzas en la biblioteca room = 1 position = Room(room) print(f"\nBienvenido {player.get_avatar()}, gracias por tu disposición a ayudarnos a resolver este inconveniente, te encuentras actualmente ubicado en la biblioteca, revisa el menú de opciones para ver qué acciones puedes realizar. Recuerda que el tiempo corre más rápido que un trimestre en este reto.") position.show_room() while player.check_lives(): can_break_door = api.json()[3]["objects"][0]["game"]["award"] in player.get_inventory() options = ["Ir a otra habitación", "Interactuar"] choice = enquiries.choose("\n¿Qué quieres hacer?: ", options) if choice == options[0]: # Teniendo el cuenta el mapa del doc, tomé en cuenta las habitaciones que se encuentran a la derecha e izquierda de cada uno y así el jugador sigue el flujo correcto directions = ["Izquierda", "Derecha"] choice_direction = enquiries.choose("\nEscoje a que dirección quieres moverte", directions) if room == 0: if choice_direction == directions[0]: room = 4 else: room = 3 elif room == 1: if choice_direction == directions[0]: room = 3 else: room = 2 elif room == 2: if choice_direction == directions[0]: room = 1 else: print("\nNo te puedes mover a esa dirección, ya no hay más habitaciones a tu derecha!") elif room == 3: if choice_direction == directions[0]: if can_break_door: room = 0 else: print("\nNo puedes pasar por ahí, está cerrado! Intenta abrir la puerta.") else: room = 1 else: if choice_direction == directions[0]: print("\nNo te puedes mover a esa dirección, ya no hay más habitaciones a tu izquierda!") else: room = 0 position = Room(room) print("\n"*40) position.show_room() else: objects = position.get_list_objects() choice_object = enquiries.choose("\nEscoge con cuál objeto desea interactuar: ", objects) object_index = objects.index(choice_object) position.show_object(object_index) if room == 0: if object_index == 0: word_search_game(room, object_index, player) elif object_index == 1: python_game(room, object_index, player) else: guessing_game(room, object_index, player) elif room == 1: if object_index == 0: hangman_game(room, object_index, player) elif object_index == 1: math_game(room, object_index, player) else: cryptic_game(room, object_index, player) elif room == 2: if object_index == 0: logic_game(room, object_index, player) elif object_index == 1: quiz_game(room, object_index, player) else: memory_game(room, object_index, player) elif room == 3: if object_index == 0: boolean_game(room, object_index, player) elif room == 4: if object_index == 0: won = final_game(room, object_index, player) if won: break elif object_index == 1: shuffle_game(room, object_index, player) else: number_game(room, object_index, player) return won
4943a44793928a8c14faa931914ef6e92390821e
d147d5c4d15ff602243716fd1833827cad97d1cb
/IFin/IFApp/migrations/0011_auto_20190103_1408.py
83851741af5c9e3f981200ddc6d132a2b449862b
[]
no_license
makachat/IFIN
76d75e32f820e6031933454990373e13eecb1c5c
df30c75d80028b24ee87390d50e37902f2d0dfee
refs/heads/master
2021-06-18T01:06:47.030866
2019-07-03T14:31:49
2019-07-03T14:31:49
164,739,060
0
0
null
2021-06-10T21:06:28
2019-01-08T21:49:07
Python
UTF-8
Python
false
false
958
py
# Generated by Django 2.1.4 on 2019-01-03 19:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('IFApp', '0010_auto_20190103_1406'), ] operations = [ migrations.AlterField( model_name='site', name='address', field=models.CharField(blank=True, max_length=255, null=True), ), migrations.AlterField( model_name='site', name='category', field=models.CharField(blank=True, choices=[('Plant', 'Plant'), ('DataCenter', 'Data Center'), ('Yard', 'Yard'), ('DistributionCenter', 'Distribution Center'), ('HeadOffice', 'Head Office')], max_length=50, null=True), ), migrations.AlterField( model_name='site', name='country', field=models.CharField(blank=True, choices=[('CA', 'CANADA'), ('US', 'USA')], max_length=10, null=True), ), ]
ea1686d108c62cec07db162f4db36b7d4cf71ee8
d7bc9f6a968de928f2bfc82aee93762c3b893c23
/applications/home/models.py
c2744a0ea2279bc94db44b0242c9e70b61c96539
[]
no_license
Diego-David/Prueba2
04e47d4a1fbfd5c8f89a0f7b46deb4f728ca4916
261ca23d34ea1d59a6d79e3ce2ef5d524a0ad052
refs/heads/master
2023-07-06T19:00:24.604487
2021-07-22T04:00:07
2021-07-22T04:00:07
376,198,913
0
0
null
null
null
null
UTF-8
Python
false
false
290
py
from django.db import models # Create your models here. class Prueba(models.Model): titulo = models.CharField(max_length=100) subtitulo = models.CharField(max_length=50) cantidad = models.IntegerField() def __str__(self): return self.titulo + ' - '+self.subtitulo
d200ffe9828f5211da2758b5183039836393cb8c
133b46dbe2ec0acbe9e9d1c84c1598e22cc205e9
/Contours/contours.py.py
6426e01d0fe6836335343458446ecaa72d324b82
[]
no_license
kanishk307/crack-detection-beproject
dbaf601c791356ffcc7a1b84094918518de8522d
a07a9e4ba017c4223dde4f681ae9229837bda60e
refs/heads/master
2021-07-14T10:14:23.562819
2020-06-19T18:25:41
2020-06-19T18:25:41
172,304,081
15
6
null
null
null
null
UTF-8
Python
false
false
1,551
py
import cv2 import numpy as np areasum=0 src = cv2.imread("a3.jpg", 1) #image path dalo height, width, channels = src.shape # print(channels) gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # grayscale, jarurat naiye but incase image hoga toh rehnediya. vaise abhi binary hi hai so no issues blur = cv2.blur(gray, (3, 3)) # iska bhi vaise jarurat naiye par better result deray thoda. not noteworthy ret, thresh = cv2.threshold(blur, 50, 255, cv2.THRESH_BINARY) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # hull array hull = [] # no of points for each contor for i in range(len(contours)): # convex hull obj for each contour hull.append(cv2.convexHull(contours[i], False)) # empty kala dabba drawing = np.zeros((thresh.shape[0], thresh.shape[1], 3), np.uint8) cv2.imshow('draw',drawing) # draw contours and hull points for i in range(len(contours)): color_contours = (0, 255, 0) # green contour color = (255, 0, 0) # blue contour # ek ek karke draw green contour # cv2.drawContours(drawing, contours, i, color_contours, 1, 8, hierarchy) # draw blue convex cv2.drawContours(drawing, hull, i, color, 1, 8) # print(cv2.contourArea(hull)) #IDHAR KAAM KARNA HAI cnt = hull[i] M=cv2.moments(cnt) # print(M) area = cv2.contourArea(cnt) areasum=areasum+area # print(areasum) print(areasum) frameSize = width * height intensity = areasum/frameSize print("Intensity") print(intensity * 100) cv2.imshow('draw',drawing) cv2.waitKey(0)