blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
8c1a596f8ba65d65f9c4899ecd364bcdf3594c90
cbdd3a43a5c2939b4f823ea76eb9d1a2268048d8
/script6.py
130ec2091a1e2796c41e7170041dc3973786dbc7
[]
no_license
wtyhome/Python-Learning_Examples
a27718cb6defd2ddd454eab64701e5a2435cc217
f9b1578c314d4e3777751e07d696a97b26c6d903
refs/heads/master
2021-09-01T02:05:03.995507
2017-12-24T09:58:06
2017-12-24T09:58:06
111,981,861
0
0
null
null
null
null
UTF-8
Python
false
false
143
py
def f(n): if (n <= 2): return 1 else: return f(n-1)+f(n-2) while (1): inp=input("Please input a integer: ") print(f(int(inp)))
c28c2671476fb15d870a763e1519e8780cb8bfe6
1948ee12b320691f0f72890db5b1c06421a26dd9
/rpcClient.py
ad0ae678845aff6199adbd024ef248d381309d39
[]
no_license
iaalm/ERNN
bb210c4c5ce74164160cabe573857750d6d05510
e413e6db839f1d0ec2f6ee56581356339d6c629f
refs/heads/master
2021-07-16T19:36:34.070610
2018-05-23T02:30:47
2018-05-23T02:30:47
86,991,255
1
0
null
null
null
null
UTF-8
Python
false
false
2,268
py
#! /usr/bin/python3 import os import json import argparse import xmlrpc.client parser = argparse.ArgumentParser() parser.add_argument("--url", default='http://10.60.150.247:8080', help="model dirs") parser.add_argument('--gpuid', default=0, help="gpuid") args = parser.parse_args() def rpcWorker(url, gpuid): s = xmlrpc.client.ServerProxy(url) if os.path.exists('work_%d' % gpuid): os.system('rm -rf work_%d' % gpuid) os.system('cp -lr neuraltalk2-ERNN work_%d' % gpuid) os.chdir('work_%d' % gpuid) os.system('rm coco_caption/lock') os.system('rm coco_caption/*.json') flag = True while(flag): try: ret = s.born() except: continue try: val_max = {'CIDEr': -0.01} nid = ret['id'] lua_code = ret['lua'] args = ret['args'] print('nid', nid) with open('cell.lua', 'w') as fd: fd.write(lua_code) os.system('rm model_.json') cmd = 'CUDA_VISIBLE_DEVICES=%d th train.lua ' % gpuid cmd = cmd + ' '.join(['-%s %s' % (k, args[k]) for k in args]) os.system(cmd) with open('model_.json') as fd: data = json.load(fd) val_max = {} val_data = data["val_lang_stats_history"] val_data = sorted(val_data.items(), key=lambda t: int(t[0])) max_result = -0.01 for k, v in val_data: if v['CIDEr'] > max_result: max_result = v['CIDEr'] for metric in v: val_max[metric] = v[metric] val_max['pos_max'] = k except FileNotFoundError: print('FileNotFoundError') val_max = {'CIDEr': -0.01} except KeyError: print('KeyError') val_max = {'CIDEr': -0.01} except KeyboardInterrupt: if flag: print('return next loop') flag = False else: print('return now') break finally: s.fight(nid, val_max) if __name__ == '__main__': rpcWorker(args.url, int(args.gpuid))
e861e6f38778b3cb1012c01744ac21982d20005e
600df3590cce1fe49b9a96e9ca5b5242884a2a70
/third_party/catapult/third_party/gsutil/gslib/tests/test_resumable_streaming.py
51df48bbcc78d88ac397d4f63362591402c5b98d
[ "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0", "BSD-3-Clause" ]
permissive
metux/chromium-suckless
efd087ba4f4070a6caac5bfbfb0f7a4e2f3c438a
72a05af97787001756bae2511b7985e61498c965
refs/heads/orig
2022-12-04T23:53:58.681218
2017-04-30T10:59:06
2017-04-30T23:35:58
89,884,931
5
3
BSD-3-Clause
2022-11-23T20:52:53
2017-05-01T00:09:08
null
UTF-8
Python
false
false
12,093
py
# -*- coding: utf-8 -*- # Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for resumable streaming upload functions and classes.""" from __future__ import absolute_import from hashlib import md5 import os import pkgutil from gslib.exception import CommandException from gslib.hashing_helper import CalculateHashesFromContents from gslib.hashing_helper import CalculateMd5FromContents from gslib.resumable_streaming_upload import ResumableStreamingJsonUploadWrapper import gslib.tests.testcase as testcase from gslib.util import GetJsonResumableChunkSize from gslib.util import TRANSFER_BUFFER_SIZE _TEST_FILE = 'test.txt' class TestResumableStreamingJsonUploadWrapper(testcase.GsUtilUnitTestCase): """Unit tests for the TestResumableStreamingJsonUploadWrapper class.""" _temp_test_file = None _temp_test_file_contents = None _temp_test_file_len = None def _GetTestFile(self): if not self._temp_test_file: self._temp_test_file_contents = pkgutil.get_data( 'gslib', 'tests/test_data/%s' % _TEST_FILE) self._temp_test_file = self.CreateTempFile( file_name=_TEST_FILE, contents=self._temp_test_file_contents) self._temp_test_file_len = len(self._temp_test_file_contents) return self._temp_test_file def testReadInChunks(self): tmp_file = self._GetTestFile() with open(tmp_file, 'rb') as stream: wrapper = ResumableStreamingJsonUploadWrapper( stream, TRANSFER_BUFFER_SIZE, test_small_buffer=True) hash_dict = {'md5': md5()} # CalculateHashesFromContents reads in chunks, but does not seek. CalculateHashesFromContents(wrapper, hash_dict) with open(tmp_file, 'rb') as stream: actual = CalculateMd5FromContents(stream) self.assertEqual(actual, hash_dict['md5'].hexdigest()) def testReadInChunksWithSeekToBeginning(self): """Reads one buffer, then seeks to 0 and reads chunks until the end.""" tmp_file = self._GetTestFile() for initial_read in (TRANSFER_BUFFER_SIZE - 1, TRANSFER_BUFFER_SIZE, TRANSFER_BUFFER_SIZE + 1, TRANSFER_BUFFER_SIZE * 2 - 1, TRANSFER_BUFFER_SIZE * 2, TRANSFER_BUFFER_SIZE * 2 + 1, TRANSFER_BUFFER_SIZE * 3 - 1, TRANSFER_BUFFER_SIZE * 3, TRANSFER_BUFFER_SIZE * 3 + 1): for buffer_size in (TRANSFER_BUFFER_SIZE - 1, TRANSFER_BUFFER_SIZE, TRANSFER_BUFFER_SIZE + 1, self._temp_test_file_len - 1, self._temp_test_file_len, self._temp_test_file_len + 1): # Can't seek to 0 if the buffer is too small, so we expect an # exception. expect_exception = buffer_size < self._temp_test_file_len with open(tmp_file, 'rb') as stream: wrapper = ResumableStreamingJsonUploadWrapper( stream, buffer_size, test_small_buffer=True) wrapper.read(initial_read) # CalculateMd5FromContents seeks to 0, reads in chunks, then seeks # to 0 again. try: hex_digest = CalculateMd5FromContents(wrapper) if expect_exception: self.fail('Did not get expected CommandException for ' 'initial read size %s, buffer size %s' % (initial_read, buffer_size)) except CommandException, e: if not expect_exception: self.fail('Got unexpected CommandException "%s" for ' 'initial read size %s, buffer size %s' % (str(e), initial_read, buffer_size)) if not expect_exception: with open(tmp_file, 'rb') as stream: actual = CalculateMd5FromContents(stream) self.assertEqual( actual, hex_digest, 'Digests not equal for initial read size %s, buffer size %s' % (initial_read, buffer_size)) def _testSeekBack(self, initial_reads, buffer_size, seek_back_amount): """Tests reading then seeking backwards. This function simulates an upload that is resumed after a connection break. It reads one transfer buffer at a time until it reaches initial_position, then seeks backwards (as if the server did not receive some of the bytes) and reads to the end of the file, ensuring the data read after the seek matches the original file. Args: initial_reads: List of integers containing read sizes to perform before seek. buffer_size: Maximum buffer size for the wrapper. seek_back_amount: Number of bytes to seek backward. Raises: AssertionError on wrong data returned by the wrapper. """ tmp_file = self._GetTestFile() initial_position = 0 for read_size in initial_reads: initial_position += read_size self.assertGreaterEqual( buffer_size, seek_back_amount, 'seek_back_amount must be less than initial position %s ' '(but was actually: %s)' % (buffer_size, seek_back_amount)) self.assertLess( initial_position, self._temp_test_file_len, 'initial_position must be less than test file size %s ' '(but was actually: %s)' % (self._temp_test_file_len, initial_position)) with open(tmp_file, 'rb') as stream: wrapper = ResumableStreamingJsonUploadWrapper( stream, buffer_size, test_small_buffer=True) position = 0 for read_size in initial_reads: data = wrapper.read(read_size) self.assertEqual( self._temp_test_file_contents[position:position + read_size], data, 'Data from position %s to %s did not match file contents.' % (position, position + read_size)) position += len(data) wrapper.seek(initial_position - seek_back_amount) self.assertEqual(wrapper.tell(), initial_position - seek_back_amount) data = wrapper.read() self.assertEqual( self._temp_test_file_len - (initial_position - seek_back_amount), len(data), 'Unexpected data length with initial pos %s seek_back_amount %s. ' 'Expected: %s, actual: %s.' % (initial_position, seek_back_amount, self._temp_test_file_len - (initial_position - seek_back_amount), len(data))) self.assertEqual( self._temp_test_file_contents[-len(data):], data, 'Data from position %s to EOF did not match file contents.' % position) def testReadSeekAndReadToEOF(self): """Tests performing reads on the wrapper, seeking, then reading to EOF.""" for initial_reads in ([1], [TRANSFER_BUFFER_SIZE - 1], [TRANSFER_BUFFER_SIZE], [TRANSFER_BUFFER_SIZE + 1], [1, TRANSFER_BUFFER_SIZE - 1], [1, TRANSFER_BUFFER_SIZE], [1, TRANSFER_BUFFER_SIZE + 1], [TRANSFER_BUFFER_SIZE - 1, 1], [TRANSFER_BUFFER_SIZE, 1], [TRANSFER_BUFFER_SIZE + 1, 1], [TRANSFER_BUFFER_SIZE - 1, TRANSFER_BUFFER_SIZE - 1], [TRANSFER_BUFFER_SIZE - 1, TRANSFER_BUFFER_SIZE], [TRANSFER_BUFFER_SIZE - 1, TRANSFER_BUFFER_SIZE + 1], [TRANSFER_BUFFER_SIZE, TRANSFER_BUFFER_SIZE - 1], [TRANSFER_BUFFER_SIZE, TRANSFER_BUFFER_SIZE], [TRANSFER_BUFFER_SIZE, TRANSFER_BUFFER_SIZE + 1], [TRANSFER_BUFFER_SIZE + 1, TRANSFER_BUFFER_SIZE - 1], [TRANSFER_BUFFER_SIZE + 1, TRANSFER_BUFFER_SIZE], [TRANSFER_BUFFER_SIZE + 1, TRANSFER_BUFFER_SIZE + 1], [TRANSFER_BUFFER_SIZE, TRANSFER_BUFFER_SIZE, TRANSFER_BUFFER_SIZE]): initial_position = 0 for read_size in initial_reads: initial_position += read_size for buffer_size in (initial_position, initial_position + 1, initial_position * 2 - 1, initial_position * 2): for seek_back_amount in ( min(TRANSFER_BUFFER_SIZE - 1, initial_position), min(TRANSFER_BUFFER_SIZE, initial_position), min(TRANSFER_BUFFER_SIZE + 1, initial_position), min(TRANSFER_BUFFER_SIZE * 2 - 1, initial_position), min(TRANSFER_BUFFER_SIZE * 2, initial_position), min(TRANSFER_BUFFER_SIZE * 2 + 1, initial_position)): self._testSeekBack(initial_reads, buffer_size, seek_back_amount) def testBufferSizeLessThanChunkSize(self): ResumableStreamingJsonUploadWrapper(None, GetJsonResumableChunkSize()) try: ResumableStreamingJsonUploadWrapper(None, GetJsonResumableChunkSize() - 1) self.fail('Did not get expected CommandException') except CommandException, e: self.assertIn('Buffer size must be >= JSON resumable upload', str(e)) def testSeekPartialBuffer(self): """Tests seeking back partially within the buffer.""" tmp_file = self._GetTestFile() read_size = TRANSFER_BUFFER_SIZE with open(tmp_file, 'rb') as stream: wrapper = ResumableStreamingJsonUploadWrapper( stream, TRANSFER_BUFFER_SIZE * 3, test_small_buffer=True) position = 0 for _ in xrange(3): data = wrapper.read(read_size) self.assertEqual( self._temp_test_file_contents[position:position + read_size], data, 'Data from position %s to %s did not match file contents.' % (position, position + read_size)) position += len(data) data = wrapper.read(read_size / 2) # Buffer contents should now be have contents from: # read_size/2 through 7*read_size/2. position = read_size / 2 wrapper.seek(position) data = wrapper.read() self.assertEqual( self._temp_test_file_contents[-len(data):], data, 'Data from position %s to EOF did not match file contents.' % position) def testSeekEnd(self): tmp_file = self._GetTestFile() for buffer_size in (TRANSFER_BUFFER_SIZE - 1, TRANSFER_BUFFER_SIZE, TRANSFER_BUFFER_SIZE + 1): for seek_back in (TRANSFER_BUFFER_SIZE - 1, TRANSFER_BUFFER_SIZE, TRANSFER_BUFFER_SIZE + 1): expect_exception = seek_back > buffer_size with open(tmp_file, 'rb') as stream: wrapper = ResumableStreamingJsonUploadWrapper( stream, buffer_size, test_small_buffer=True) # Read to the end. while wrapper.read(TRANSFER_BUFFER_SIZE): pass try: wrapper.seek(seek_back, whence=os.SEEK_END) if expect_exception: self.fail('Did not get expected CommandException for ' 'seek_back size %s, buffer size %s' % (seek_back, buffer_size)) except CommandException, e: if not expect_exception: self.fail('Got unexpected CommandException "%s" for ' 'seek_back size %s, buffer size %s' % (str(e), seek_back, buffer_size))
ff57c1b5699b0b44e79c3333e9abf9901b9959d6
713477bb8aa751bf686580b23433be854fb62fbb
/tornado_chat/urls.py
10779b8ceaa925b96c8352b13fc39d01320c87da
[]
no_license
SamuelMartens/tornado_chat
25a2fbe4fc84ba414de6adf8c432134201008ae6
d0c778a040ceb87e067a19fed8115c14fadf4b48
refs/heads/master
2021-01-01T20:35:53.785288
2016-12-23T01:49:13
2016-12-23T01:49:13
38,119,708
1
2
null
null
null
null
UTF-8
Python
false
false
491
py
from django.conf.urls import patterns, include, url from django.contrib import admin from django.conf.urls.static import static from django.contrib.staticfiles.urls import staticfiles_urlpatterns urlpatterns = patterns('', url(r'^messages/', include('privatemessages.urls')), url(r'^admin/', include(admin.site.urls)), ) urlpatterns += patterns('tornado_chat.views', url(r'^$','log_in_chat' ), url(r'^registration/$', 'reg'), ) urlpatterns+=staticfiles_urlpatterns()
7424ae8760e5af74ad03fa3cfef712ef7a6b3fd9
32ba9f1c35ae916d33b121daeeea8e1910a447d7
/tools/autoRivet.py
38e77ea55cc2928a7a2be0a6c84e7583fedcd208
[ "MIT" ]
permissive
rituparna/glTools
8b02fa2751e1b997f7a202c7df8a3dd3d3032722
c512a96c20ba7a4ee93a123690b626bb408a8fcd
refs/heads/master
2020-03-19T19:23:47.684580
2018-06-10T23:53:58
2018-06-10T23:53:58
136,853,456
0
0
null
2018-06-10T23:46:54
2018-06-10T23:46:53
null
UTF-8
Python
false
false
9,798
py
import maya.cmds as mc import maya.OpenMaya as OpenMaya import glTools.utils.base import glTools.utils.component import glTools.utils.mesh import glTools.utils.stringUtils import glTools.utils.surface def autoRivet(createRivetTransform=True,suffix='rvt'): ''' ''' # Get User Selection sel = mc.ls(sl=1) # Check Selection if not len(sel) == 2: raise Exception('Select object to rivet and then the target mesh!') # Determine rivet object and mesh rvtObj = sel[0] mesh = sel[1] prefix = glTools.utils.stringUtils.stripSuffix(rvtObj) # Get rivet object position pos = glTools.utils.base.getPosition(rvtObj) pt = OpenMaya.MPoint(pos[0],pos[1],pos[2],1.0) # Get closest face on mesh faceId = glTools.utils.mesh.closestFace(mesh,pos) # ========================= # - Determine Rivet Edges - # ========================= edgeId1 = -1 edgeId2 = -1 # Create MItMeshEdge edgeIter = glTools.utils.mesh.getMeshEdgeIter(mesh) # Create edgeId MScriptUtil edgeIdUtil = OpenMaya.MScriptUtil() edgeIdUtil.createFromInt(0) edgeIdPtr = edgeIdUtil.asIntPtr() # Get face edges faceEdges = glTools.utils.mesh.getFaceEdgeIndices(mesh,faceId) # Get closest edge maxDist = 9999.0 for edgeId in faceEdges: edgeIter.setIndex(edgeId,edgeIdPtr) edgePt = edgeIter.center(OpenMaya.MSpace.kWorld) edgeDist = (edgePt - pt).length() if edgeDist < maxDist: edgeId1 = edgeId maxDist = edgeDist # Set current edge edgeIter.setIndex(edgeId1,edgeIdPtr) # Get opposing edge faceEdges.remove(edgeId1) for edgeId in faceEdges: edgeId2 = edgeId # Check edge connectivity if not edgeIter.connectedToEdge(edgeId): break # ======================== # - Create Utility Nodes - # ======================== # Rivet Edge 1 edgeCrv1 = prefix+'_edge'+str(edgeId1)+'_rivet_curveFromMeshEdge' if not mc.objExists(edgeCrv1): edgeCrv1 = mc.createNode('curveFromMeshEdge',n=edgeCrv1) mc.setAttr(edgeCrv1+'.edgeIndex[0]',edgeId1) mc.connectAttr(mesh+'.worldMesh[0]',edgeCrv1+'.inputMesh',f=True) # Rivet Edge 2 edgeCrv2 = prefix+'_edge'+str(edgeId2)+'_rivet_curveFromMeshEdge' if not mc.objExists(edgeCrv2): edgeCrv2 = mc.createNode('curveFromMeshEdge',n=edgeCrv2) mc.setAttr(edgeCrv2+'.edgeIndex[0]',edgeId2) mc.connectAttr(mesh+'.worldMesh[0]',edgeCrv2+'.inputMesh',f=True) # Rivet Loft rivetLoft = prefix+'_face'+str(faceId)+'_rivet_loft' if not mc.objExists(rivetLoft): rivetLoft = mc.createNode('loft',n=rivetLoft) mc.connectAttr(edgeCrv1+'.outputCurve',rivetLoft+'.inputCurve[0]',f=True) mc.connectAttr(edgeCrv2+'.outputCurve',rivetLoft+'.inputCurve[1]',f=True) # Rivet Point on Surface Info rivetPosi = prefix+'_face'+str(faceId)+'_rivet_pointOnSurfaceInfo' rivetPosi = mc.createNode('pointOnSurfaceInfo',n=rivetPosi) mc.connectAttr(rivetLoft+'.outputSurface',rivetPosi+'.inputSurface') # =========================== # - Get Rivet UV Parameter - # =========================== # Build Temp Surface tmpSrfShape = mc.createNode('nurbsSurface') tmpSrf = mc.listRelatives(tmpSrfShape,p=True,pa=True)[0] mc.connectAttr(rivetLoft+'.outputSurface',tmpSrfShape+'.create',f=True) # Get closest point on surface uv = glTools.utils.surface.closestPoint(tmpSrf,pos) # Set rivet parameter mc.setAttr(rivetPosi+'.parameterU',uv[0]) mc.setAttr(rivetPosi+'.parameterV',uv[1]) # Delete Temp Surface mc.delete(tmpSrf) # ========================== # - Attach Rivet Transform - # ========================== # Determine rivet transform rvtTransform = rvtObj if createRivetTransform: rvtTransform = mc.group(em=True,n=prefix+'_rvt') # Connect rivet transform mc.connectAttr(rivetPosi+'.position',rvtTransform+'.t',f=True) # Parent to rivet transform if createRivetTransform: mc.parent(rvtObj,rvtTransform) # ================= # - Return Result - # ================= return rvtTransform def meshFaceConstraint(face='',transform='',orient=True,prefix=''): ''' ''' # ========== # - Checks - # ========== if not prefix: prefix = 'meshFaceConstraint' if not face: faceList = mc.filterExpand(sm=34) if not faceList: raise Exception('No mesh face specified for constraint!') face = faceList[0] if not transform: transformList = mc.ls(sl=True,type='transform') if not transformList: transformList = mc.spaceLocator(n=prefix+'_locator') transform = transformList[0] # ====================== # - Get Face UV Center - # ====================== # Get Face Details mesh = mc.ls(face,o=True)[0] faceId = glTools.utils.component.index(face) # Get Mesh Face Function Set uArray = OpenMaya.MFloatArray() vArray = OpenMaya.MFloatArray() faceIdUtil = OpenMaya.MScriptUtil() faceIdUtil.createFromInt(0) faceIdPtr = faceIdUtil.asIntPtr() faceIt = glTools.utils.mesh.getMeshFaceIter(mesh) faceIt.setIndex(faceId,faceIdPtr) # Get UV Center uvSet = mc.polyUVSet(mesh,q=True,cuv=True) faceIt.getUVs(uArray,vArray) uArray = list(uArray) vArray = list(vArray) uvCount = len(uArray) u = 0.0 v = 0.0 for i in range(uvCount): u += (uArray[i] / uvCount) v += (vArray[i] / uvCount) # ===================== # - Create Constraint - # ===================== r = mc.getAttr(transform+'.r')[0] meshCon = mc.pointOnPolyConstraint(mesh,transform,n=prefix+'_pointOnPolyConstraint')[0] wtAlias = mc.pointOnPolyConstraint(meshCon,q=True,wal=True)[0] mc.setAttr(meshCon+'.'+wtAlias.replace('W0','U0'),u) mc.setAttr(meshCon+'.'+wtAlias.replace('W0','V0'),v) # Orient if not orient: rxConn = mc.listConnections(transform+'.rx',s=True,d=False,p=True)[0] mc.disconnectAttr(rxConn,transform+'.rx') ryConn = mc.listConnections(transform+'.ry',s=True,d=False,p=True)[0] mc.disconnectAttr(ryConn,transform+'.ry') rzConn = mc.listConnections(transform+'.rz',s=True,d=False,p=True)[0] mc.disconnectAttr(rzConn,transform+'.rz') mc.setAttr(transform+'.r',*r) # ================= # - Return Result - # ================= return meshCon def meshVertexConstraint(vertex='',transform='',orient=True,prefix=''): ''' ''' # ========== # - Checks - # ========== if not prefix: prefix = 'meshVertexConstraint' if not vertex: vtxList = mc.filterExpand(sm=31) if not vtxList: raise Exception('No mesh vertex specified for constraint!') vertex = vtxList[0] if not transform: transformList = mc.ls(sl=True,type='transform') if not transformList: transformList = mc.spaceLocator(n=prefix+'_locator') transform = transformList[0] # ================= # - Get Vertex UV - # ================= # Get Vertex Details mesh = mc.ls(vertex,o=True)[0] vtxId = glTools.utils.component.index(vertex) # Get Mesh Vertex Function Set uArray = OpenMaya.MFloatArray() vArray = OpenMaya.MFloatArray() faceArray = OpenMaya.MIntArray() vtxIdUtil = OpenMaya.MScriptUtil() vtxIdUtil.createFromInt(0) vtxIdPtr = vtxIdUtil.asIntPtr() vtxIt = glTools.utils.mesh.getMeshVertexIter(mesh) vtxIt.setIndex(vtxId,vtxIdPtr) # Get UV Center uvSet = mc.polyUVSet(mesh,q=True,cuv=True) vtxIt.getUVs(uArray,vArray,faceArray) uArray = list(uArray) vArray = list(vArray) u = uArray[0] v = vArray[0] # ===================== # - Create Constraint - # ===================== r = mc.getAttr(transform+'.r')[0] meshCon = mc.pointOnPolyConstraint(mesh,transform,n=prefix+'_pointOnPolyConstraint')[0] wtAlias = mc.pointOnPolyConstraint(meshCon,q=True,wal=True)[0] mc.setAttr(meshCon+'.'+wtAlias.replace('W0','U0'),u) mc.setAttr(meshCon+'.'+wtAlias.replace('W0','V0'),v) # Orient if not orient: rxConn = mc.listConnections(transform+'.rx',s=True,d=False,p=True)[0] mc.disconnectAttr(rxConn,transform+'.rx') ryConn = mc.listConnections(transform+'.ry',s=True,d=False,p=True)[0] mc.disconnectAttr(ryConn,transform+'.ry') rzConn = mc.listConnections(transform+'.rz',s=True,d=False,p=True)[0] mc.disconnectAttr(rzConn,transform+'.rz') mc.setAttr(transform+'.r',*r) # ================= # - Return Result - # ================= return meshCon def meshFaceConstraintList(faceList=[],transformList=[],orient=True,prefix=''): ''' ''' # ========== # - Checks - # ========== # Face List if not faceList: faceList = mc.filterExpand(sm=34) if not faceList: raise Exception('No mesh face list specified for constraint!') # Transform List if not transformList: transformList = ['' for vtx in vtxList] # Vertex / Face list length if not len(faceList) == len(transformList): raise Exception('Face and Transform list length mis-match!') # ====================== # - Create Constraints - # ====================== constraintList = [] for i in range(len(faceList)): mc.select(cl=True) itPrefix = prefix+'_'+str(i) constraintList.append(meshFaceConstraint(faceList[i],transformList[i],orient=orient,prefix=itPrefix)) # ================= # - Return Result - # ================= return constraintList def meshVertexConstraintList(vtxList=[],transformList=[],orient=True,prefix=''): ''' ''' # ========== # - Checks - # ========== # Vertex List if not vtxList: vtxList = mc.filterExpand(sm=31) if not vtxList: raise Exception('No mesh vertex list specified for constraint!') # Transform List if not transformList: transformList = ['' for vtx in vtxList] # Vertex / Transform list length if not len(vtxList) == len(transformList): raise Exception('Vertex and Transform list length mis-match!') # ====================== # - Create Constraints - # ====================== constraintList = [] for i in range(len(vtxList)): mc.select(cl=True) itPrefix = prefix+'_'+str(i) constraintList.append(meshVertexConstraint(vtxList[i],transformList[i],orient=orient,prefix=itPrefix)) # ================= # - Return Result - # ================= return constraintList
d9f4e1dbccdff6ef654c8b6565d4707c7371f01e
b86eadecf9291fd0daf98f5742103e35e3689302
/examples/noisychannel/rerank.py
13036926e0d99518dabd36fa91e8b8f7de4b1140
[ "MIT" ]
permissive
fe1ixxu/fairseq-for-en-ar
1aaf47137b21caf17dac347c894c8a4f698a4d0b
9477ffa2ac3a4fda99c596a4741f394e77aff9ab
refs/heads/master
2023-07-05T03:33:08.358307
2020-12-09T17:04:41
2020-12-09T17:04:41
313,188,203
0
1
MIT
2021-01-06T21:08:16
2020-11-16T04:09:47
Python
UTF-8
Python
false
false
14,069
py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from multiprocessing import Pool import numpy as np from fairseq import options from fairseq.data import dictionary from fairseq.scoring import bleu from . import ( rerank_generate, rerank_options, rerank_score_bw, rerank_score_lm, rerank_utils, ) def score_target_hypo( args, a, b, c, lenpen, target_outfile, hypo_outfile, write_hypos, normalize ): print("lenpen", lenpen, "weight1", a, "weight2", b, "weight3", c) gen_output_lst, bitext1_lst, bitext2_lst, lm_res_lst = load_score_files(args) dict = dictionary.Dictionary() scorer = scorer = bleu.Scorer( bleu.BleuConfig( pad=dict.pad(), eos=dict.eos(), unk=dict.unk(), ) ) ordered_hypos = {} ordered_targets = {} for shard_id in range(len(bitext1_lst)): bitext1 = bitext1_lst[shard_id] bitext2 = bitext2_lst[shard_id] gen_output = gen_output_lst[shard_id] lm_res = lm_res_lst[shard_id] total = len(bitext1.rescore_source.keys()) source_lst = [] hypo_lst = [] score_lst = [] reference_lst = [] j = 1 best_score = -math.inf for i in range(total): # length is measured in terms of words, not bpe tokens, since models may not share the same bpe target_len = len(bitext1.rescore_hypo[i].split()) if lm_res is not None: lm_score = lm_res.score[i] else: lm_score = 0 if bitext2 is not None: bitext2_score = bitext2.rescore_score[i] bitext2_backwards = bitext2.backwards else: bitext2_score = None bitext2_backwards = None score = rerank_utils.get_score( a, b, c, target_len, bitext1.rescore_score[i], bitext2_score, lm_score=lm_score, lenpen=lenpen, src_len=bitext1.source_lengths[i], tgt_len=bitext1.target_lengths[i], bitext1_backwards=bitext1.backwards, bitext2_backwards=bitext2_backwards, normalize=normalize, ) if score > best_score: best_score = score best_hypo = bitext1.rescore_hypo[i] if j == gen_output.num_hypos[i] or j == args.num_rescore: j = 1 hypo_lst.append(best_hypo) score_lst.append(best_score) source_lst.append(bitext1.rescore_source[i]) reference_lst.append(bitext1.rescore_target[i]) best_score = -math.inf best_hypo = "" else: j += 1 gen_keys = list(sorted(gen_output.no_bpe_target.keys())) for key in range(len(gen_keys)): if args.prefix_len is None: assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], ( "pred and rescore hypo mismatch: i: " + str(key) + ", " + str(hypo_lst[key]) + str(gen_keys[key]) + str(gen_output.no_bpe_hypo[key]) ) sys_tok = dict.encode_line(hypo_lst[key]) ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]]) scorer.add(ref_tok, sys_tok) else: full_hypo = rerank_utils.get_full_from_prefix( hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]] ) sys_tok = dict.encode_line(full_hypo) ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]]) scorer.add(ref_tok, sys_tok) # if only one set of hyper parameters is provided, write the predictions to a file if write_hypos: # recover the orinal ids from n best list generation for key in range(len(gen_output.no_bpe_target)): if args.prefix_len is None: assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], ( "pred and rescore hypo mismatch:" + "i:" + str(key) + str(hypo_lst[key]) + str(gen_output.no_bpe_hypo[key]) ) ordered_hypos[gen_keys[key]] = hypo_lst[key] ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[ gen_keys[key] ] else: full_hypo = rerank_utils.get_full_from_prefix( hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]] ) ordered_hypos[gen_keys[key]] = full_hypo ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[ gen_keys[key] ] # write the hypos in the original order from nbest list generation if args.num_shards == (len(bitext1_lst)): with open(target_outfile, "w") as t: with open(hypo_outfile, "w") as h: for key in range(len(ordered_hypos)): t.write(ordered_targets[key]) h.write(ordered_hypos[key]) res = scorer.result_string(4) if write_hypos: print(res) score = rerank_utils.parse_bleu_scoring(res) return score def match_target_hypo(args, target_outfile, hypo_outfile): """combine scores from the LM and bitext models, and write the top scoring hypothesis to a file""" if len(args.weight1) == 1: res = score_target_hypo( args, args.weight1[0], args.weight2[0], args.weight3[0], args.lenpen[0], target_outfile, hypo_outfile, True, args.normalize, ) rerank_scores = [res] else: print("launching pool") with Pool(32) as p: rerank_scores = p.starmap( score_target_hypo, [ ( args, args.weight1[i], args.weight2[i], args.weight3[i], args.lenpen[i], target_outfile, hypo_outfile, False, args.normalize, ) for i in range(len(args.weight1)) ], ) if len(rerank_scores) > 1: best_index = np.argmax(rerank_scores) best_score = rerank_scores[best_index] print("best score", best_score) print("best lenpen", args.lenpen[best_index]) print("best weight1", args.weight1[best_index]) print("best weight2", args.weight2[best_index]) print("best weight3", args.weight3[best_index]) return ( args.lenpen[best_index], args.weight1[best_index], args.weight2[best_index], args.weight3[best_index], best_score, ) else: return ( args.lenpen[0], args.weight1[0], args.weight2[0], args.weight3[0], rerank_scores[0], ) def load_score_files(args): if args.all_shards: shard_ids = list(range(args.num_shards)) else: shard_ids = [args.shard_id] gen_output_lst = [] bitext1_lst = [] bitext2_lst = [] lm_res1_lst = [] for shard_id in shard_ids: using_nbest = args.nbest_list is not None ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) rerank1_is_gen = ( args.gen_model == args.score_model1 and args.source_prefix_frac is None ) rerank2_is_gen = ( args.gen_model == args.score_model2 and args.source_prefix_frac is None ) score1_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model1_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards1, ) if args.score_model2 is not None: score2_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model2_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards2, ) if args.language_model is not None: lm_score_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.lm_name, lm_file=True ) # get gen output predictions_bpe_file = pre_gen + "/generate_output_bpe.txt" if using_nbest: print("Using predefined n-best list from interactive.py") predictions_bpe_file = args.nbest_list gen_output = rerank_utils.BitextOutputFromGen( predictions_bpe_file, bpe_symbol=args.remove_bpe, nbest=using_nbest, prefix_len=args.prefix_len, target_prefix_frac=args.target_prefix_frac, ) if rerank1_is_gen: bitext1 = gen_output else: bitext1 = rerank_utils.BitextOutput( score1_file, args.backwards1, args.right_to_left1, args.remove_bpe, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) if args.score_model2 is not None or args.nbest_list is not None: if rerank2_is_gen: bitext2 = gen_output else: bitext2 = rerank_utils.BitextOutput( score2_file, args.backwards2, args.right_to_left2, args.remove_bpe, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) assert ( bitext2.source_lengths == bitext1.source_lengths ), "source lengths for rescoring models do not match" assert ( bitext2.target_lengths == bitext1.target_lengths ), "target lengths for rescoring models do not match" else: if args.diff_bpe: assert args.score_model2 is None bitext2 = gen_output else: bitext2 = None if args.language_model is not None: lm_res1 = rerank_utils.LMOutput( lm_score_file, args.lm_dict, args.prefix_len, args.remove_bpe, args.target_prefix_frac, ) else: lm_res1 = None gen_output_lst.append(gen_output) bitext1_lst.append(bitext1) bitext2_lst.append(bitext2) lm_res1_lst.append(lm_res1) return gen_output_lst, bitext1_lst, bitext2_lst, lm_res1_lst def rerank(args): if type(args.lenpen) is not list: args.lenpen = [args.lenpen] if type(args.weight1) is not list: args.weight1 = [args.weight1] if type(args.weight2) is not list: args.weight2 = [args.weight2] if type(args.weight3) is not list: args.weight3 = [args.weight3] if args.all_shards: shard_ids = list(range(args.num_shards)) else: shard_ids = [args.shard_id] for shard_id in shard_ids: ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) rerank_generate.gen_and_reprocess_nbest(args) rerank_score_bw.score_bw(args) rerank_score_lm.score_lm(args) if args.write_hypos is None: write_targets = pre_gen + "/matched_targets" write_hypos = pre_gen + "/matched_hypos" else: write_targets = args.write_hypos + "_targets" + args.gen_subset write_hypos = args.write_hypos + "_hypos" + args.gen_subset if args.all_shards: write_targets += "_all_shards" write_hypos += "_all_shards" ( best_lenpen, best_weight1, best_weight2, best_weight3, best_score, ) = match_target_hypo(args, write_targets, write_hypos) return best_lenpen, best_weight1, best_weight2, best_weight3, best_score def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) rerank(args) if __name__ == "__main__": cli_main()
54addb95c6462365f87d2f1983a65aaf4653ee16
c9d99f8a8e2f41bba4605c6564329eaa35d93857
/day1/lingxing.py
264fb96a8b237e131033f33e2c319af4d61d427e
[]
no_license
rhflocef521/myproject
c86be05b5029ffe9e8a11ae660a3205253a51449
996ddee17b86f8378a4ebeb4ca14c13f66e3900f
refs/heads/master
2020-04-29T06:52:50.709035
2019-03-16T06:11:51
2019-03-16T06:11:51
175,928,043
0
0
null
null
null
null
UTF-8
Python
false
false
495
py
if __name__ == '__main__': h=int(input("请输入行数:")) n9=range(1,2*h) for i in n9[0:h]: for j in n9[0:h-i]: print(" ",end="") for j in n9[0:2*i-1]: print("*",end="") print() for i in n9[0:h-1]: for j in n9[0:i]: print(" ",end="") for j in n9[2*(h-i)-1:0:-1]: print("*",end="") print() for i in range(h+1): print(" "*(h-i),end="") print(" *"*i,sep=" ")
1e35a3a9015a41b2e9efe5869fe8c89e96675507
c5b9f0fabffb6b2d13c6e350c8187a922709ac60
/devel/.private/pal_interaction_msgs/lib/python2.7/dist-packages/pal_interaction_msgs/msg/_AudioPlayActionFeedback.py
a169c9fb26b06ceeec9384b82fc172628fb734df
[]
no_license
MohamedEhabHafez/Sorting_Aruco_Markers
cae079fdce4a14561f5e092051771d299b06e789
0f820921c9f42b39867565441ed6ea108663ef6c
refs/heads/master
2020-12-09T02:43:00.731223
2020-01-15T17:31:29
2020-01-15T17:31:29
233,154,293
0
0
null
2020-10-13T18:46:44
2020-01-11T00:41:38
Makefile
UTF-8
Python
false
false
12,092
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from pal_interaction_msgs/AudioPlayActionFeedback.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import pal_interaction_msgs.msg import genpy import actionlib_msgs.msg import std_msgs.msg class AudioPlayActionFeedback(genpy.Message): _md5sum = "aae20e09065c3809e8a8e87c4c8953fd" _type = "pal_interaction_msgs/AudioPlayActionFeedback" _has_header = True #flag to mark the presence of a Header object _full_text = """# ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== Header header actionlib_msgs/GoalStatus status AudioPlayFeedback feedback ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id ================================================================================ MSG: actionlib_msgs/GoalStatus GoalID goal_id uint8 status uint8 PENDING = 0 # The goal has yet to be processed by the action server uint8 ACTIVE = 1 # The goal is currently being processed by the action server uint8 PREEMPTED = 2 # The goal received a cancel request after it started executing # and has since completed its execution (Terminal State) uint8 SUCCEEDED = 3 # The goal was achieved successfully by the action server (Terminal State) uint8 ABORTED = 4 # The goal was aborted during execution by the action server due # to some failure (Terminal State) uint8 REJECTED = 5 # The goal was rejected by the action server without being processed, # because the goal was unattainable or invalid (Terminal State) uint8 PREEMPTING = 6 # The goal received a cancel request after it started executing # and has not yet completed execution uint8 RECALLING = 7 # The goal received a cancel request before it started executing, # but the action server has not yet confirmed that the goal is canceled uint8 RECALLED = 8 # The goal received a cancel request before it started executing # and was successfully cancelled (Terminal State) uint8 LOST = 9 # An action client can determine that a goal is LOST. This should not be # sent over the wire by an action server #Allow for the user to associate a string with GoalStatus for debugging string text ================================================================================ MSG: actionlib_msgs/GoalID # The stamp should store the time at which this goal was requested. # It is used by an action server when it tries to preempt all # goals that were requested before a certain time time stamp # The id provides a way to associate feedback and # result message with specific goal requests. The id # specified must be unique. string id ================================================================================ MSG: pal_interaction_msgs/AudioPlayFeedback # ====== DO NOT MODIFY! AUTOGENERATED FROM AN ACTION DEFINITION ====== """ __slots__ = ['header','status','feedback'] _slot_types = ['std_msgs/Header','actionlib_msgs/GoalStatus','pal_interaction_msgs/AudioPlayFeedback'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: header,status,feedback :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(AudioPlayActionFeedback, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.header is None: self.header = std_msgs.msg.Header() if self.status is None: self.status = actionlib_msgs.msg.GoalStatus() if self.feedback is None: self.feedback = pal_interaction_msgs.msg.AudioPlayFeedback() else: self.header = std_msgs.msg.Header() self.status = actionlib_msgs.msg.GoalStatus() self.feedback = pal_interaction_msgs.msg.AudioPlayFeedback() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.status.goal_id.stamp.secs, _x.status.goal_id.stamp.nsecs)) _x = self.status.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_get_struct_B().pack(self.status.status)) _x = self.status.text length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.header is None: self.header = std_msgs.msg.Header() if self.status is None: self.status = actionlib_msgs.msg.GoalStatus() if self.feedback is None: self.feedback = pal_interaction_msgs.msg.AudioPlayFeedback() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.status.goal_id.stamp.secs, _x.status.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status.goal_id.id = str[start:end].decode('utf-8') else: self.status.goal_id.id = str[start:end] start = end end += 1 (self.status.status,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status.text = str[start:end].decode('utf-8') else: self.status.text = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2I().pack(_x.status.goal_id.stamp.secs, _x.status.goal_id.stamp.nsecs)) _x = self.status.goal_id.id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_get_struct_B().pack(self.status.status)) _x = self.status.text length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.header is None: self.header = std_msgs.msg.Header() if self.status is None: self.status = actionlib_msgs.msg.GoalStatus() if self.feedback is None: self.feedback = pal_interaction_msgs.msg.AudioPlayFeedback() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.status.goal_id.stamp.secs, _x.status.goal_id.stamp.nsecs,) = _get_struct_2I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status.goal_id.id = str[start:end].decode('utf-8') else: self.status.goal_id.id = str[start:end] start = end end += 1 (self.status.status,) = _get_struct_B().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status.text = str[start:end].decode('utf-8') else: self.status.text = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_B = None def _get_struct_B(): global _struct_B if _struct_B is None: _struct_B = struct.Struct("<B") return _struct_B _struct_2I = None def _get_struct_2I(): global _struct_2I if _struct_2I is None: _struct_2I = struct.Struct("<2I") return _struct_2I
19c8b2f32b652f4db16b8edc0ecdc3cdbd64a368
404943d3a02d4e6331a739b0cbdc58fd2f72f080
/hgntransformers/modeling_tf_auto.py
6712e5dcda8bb454cff73e5da37a0c797a46d683
[]
no_license
enterpriseih/sentgraph
d62319d4cfc1d787b947c118586f99f49cf8d271
32ba2c94d8a2736881327037ce33801ed157bf47
refs/heads/main
2023-08-19T02:58:12.095142
2021-05-28T17:34:05
2021-05-28T17:34:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
58,498
py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Model class. """ import logging from .configuration_auto import ( BertConfig, CTRLConfig, DistilBertConfig, GPT2Config, OpenAIGPTConfig, RobertaConfig, TransfoXLConfig, XLMConfig, XLNetConfig, ) from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, TFAlbertForMaskedLM, TFAlbertForSequenceClassification, TFAlbertModel, ) from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP, TFBertForMaskedLM, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertModel, ) from .modeling_tf_ctrl import TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, TFCTRLLMHeadModel, TFCTRLModel from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) from .modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, TFGPT2LMHeadModel, TFGPT2Model from .modeling_tf_openai import TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, TFOpenAIGPTLMHeadModel, TFOpenAIGPTModel from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaModel, ) from .modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_MAP, TFT5Model, TFT5WithLMHeadModel from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMModel, TFXLMWithLMHeadModel, ) from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetModel, ) logger = logging.getLogger(__name__) TF_ALL_PRETRAINED_MODEL_ARCHIVE_MAP = dict( (key, value) for pretrained_map in [ TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP, TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP, TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP, TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP, TF_T5_PRETRAINED_MODEL_ARCHIVE_MAP, ] for key, value, in pretrained_map.items() ) class TFAutoModel(object): r""" :class:`~hgntransformers.TFAutoModel` is a generic model class that will be instantiated as one of the base model classes of the library when created with the `TFAutoModel.from_pretrained(pretrained_model_name_or_path)` class method. The `from_pretrained()` method takes care of returning the correct model class instance using pattern matching on the `pretrained_model_name_or_path` string. The base model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `t5`: TFT5Model (T5 model) - contains `distilbert`: TFDistilBertModel (DistilBERT model) - contains `roberta`: TFRobertaModel (RoBERTa model) - contains `bert`: TFBertModel (Bert model) - contains `openai-gpt`: TFOpenAIGPTModel (OpenAI GPT model) - contains `gpt2`: TFGPT2Model (OpenAI GPT-2 model) - contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model) - contains `xlnet`: TFXLNetModel (XLNet model) - contains `xlm`: TFXLMModel (XLM model) - contains `ctrl`: TFCTRLModel (CTRL model) This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "TFAutoModel is designed to be instantiated " "using the `TFAutoModel.from_pretrained(pretrained_model_name_or_path)` or " "`TFAutoModel.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: TFDistilBertModel (DistilBERT model) - isInstance of `roberta` configuration class: TFRobertaModel (RoBERTa model) - isInstance of `bert` configuration class: TFBertModel (Bert model) - isInstance of `openai-gpt` configuration class: TFOpenAIGPTModel (OpenAI GPT model) - isInstance of `gpt2` configuration class: TFGPT2Model (OpenAI GPT-2 model) - isInstance of `ctrl` configuration class: TFCTRLModel (Salesforce CTRL model) - isInstance of `transfo-xl` configuration class: TFTransfoXLModel (Transformer-XL model) - isInstance of `xlnet` configuration class: TFXLNetModel (XLNet model) - isInstance of `xlm` configuration class: TFXLMModel (XLM model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = TFAutoModel.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ if isinstance(config, DistilBertConfig): return TFDistilBertModel(config) elif isinstance(config, RobertaConfig): return TFRobertaModel(config) elif isinstance(config, BertConfig): return TFBertModel(config) elif isinstance(config, OpenAIGPTConfig): return TFOpenAIGPTModel(config) elif isinstance(config, GPT2Config): return TFGPT2Model(config) elif isinstance(config, TransfoXLConfig): return TFTransfoXLModel(config) elif isinstance(config, XLNetConfig): return TFXLNetModel(config) elif isinstance(config, XLMConfig): return TFXLMModel(config) elif isinstance(config, CTRLConfig): return TFCTRLModel(config) raise ValueError("Unrecognized configuration class {}".format(config)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the base model classes of the library from a pre-trained model configuration. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `t5`: TFT5Model (T5 model) - contains `distilbert`: TFDistilBertModel (DistilBERT model) - contains `roberta`: TFRobertaModel (RoBERTa model) - contains `bert`: TFTFBertModel (Bert model) - contains `openai-gpt`: TFOpenAIGPTModel (OpenAI GPT model) - contains `gpt2`: TFGPT2Model (OpenAI GPT-2 model) - contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model) - contains `xlnet`: TFXLNetModel (XLNet model) - contains `ctrl`: TFCTRLModel (CTRL model) Params: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. from_pt: (`Optional`) Boolean Set to True if the Checkpoint is a PyTorch checkpoint. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and :func:`~hgntransformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~hgntransformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: model = TFAutoModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = TFAutoModel.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` model = TFAutoModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = TFAutoModel.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config) """ if "t5" in pretrained_model_name_or_path: return TFT5Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "distilbert" in pretrained_model_name_or_path: return TFDistilBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "albert" in pretrained_model_name_or_path: return TFAlbertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "roberta" in pretrained_model_name_or_path: return TFRobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "bert" in pretrained_model_name_or_path: return TFBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "openai-gpt" in pretrained_model_name_or_path: return TFOpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "gpt2" in pretrained_model_name_or_path: return TFGPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "transfo-xl" in pretrained_model_name_or_path: return TFTransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "xlnet" in pretrained_model_name_or_path: return TFXLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "xlm" in pretrained_model_name_or_path: return TFXLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "ctrl" in pretrained_model_name_or_path: return TFCTRLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) raise ValueError( "Unrecognized model identifier in {}. Should contains one of " "'distilbert', 'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', " "'xlm', 'roberta', 'ctrl'".format(pretrained_model_name_or_path) ) class TFAutoModelWithLMHead(object): r""" :class:`~hgntransformers.TFAutoModelWithLMHead` is a generic model class that will be instantiated as one of the language modeling model classes of the library when created with the `TFAutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` class method. The `from_pretrained()` method takes care of returning the correct model class instance using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `t5`: TFT5WithLMHeadModel (T5 model) - contains `distilbert`: TFDistilBertForMaskedLM (DistilBERT model) - contains `roberta`: TFRobertaForMaskedLM (RoBERTa model) - contains `bert`: TFBertForMaskedLM (Bert model) - contains `openai-gpt`: TFOpenAIGPTLMHeadModel (OpenAI GPT model) - contains `gpt2`: TFGPT2LMHeadModel (OpenAI GPT-2 model) - contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model) - contains `xlnet`: TFXLNetLMHeadModel (XLNet model) - contains `xlm`: TFXLMWithLMHeadModel (XLM model) - contains `ctrl`: TFCTRLLMHeadModel (CTRL model) This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "TFAutoModelWithLMHead is designed to be instantiated " "using the `TFAutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` or " "`TFAutoModelWithLMHead.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model) - isInstance of `roberta` configuration class: RobertaModel (RoBERTa model) - isInstance of `bert` configuration class: BertModel (Bert model) - isInstance of `openai-gpt` configuration class: OpenAIGPTModel (OpenAI GPT model) - isInstance of `gpt2` configuration class: GPT2Model (OpenAI GPT-2 model) - isInstance of `ctrl` configuration class: CTRLModel (Salesforce CTRL model) - isInstance of `transfo-xl` configuration class: TransfoXLModel (Transformer-XL model) - isInstance of `xlnet` configuration class: XLNetModel (XLNet model) - isInstance of `xlm` configuration class: XLMModel (XLM model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = AutoModelWithLMHead.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ if isinstance(config, DistilBertConfig): return TFDistilBertForMaskedLM(config) elif isinstance(config, RobertaConfig): return TFRobertaForMaskedLM(config) elif isinstance(config, BertConfig): return TFBertForMaskedLM(config) elif isinstance(config, OpenAIGPTConfig): return TFOpenAIGPTLMHeadModel(config) elif isinstance(config, GPT2Config): return TFGPT2LMHeadModel(config) elif isinstance(config, TransfoXLConfig): return TFTransfoXLLMHeadModel(config) elif isinstance(config, XLNetConfig): return TFXLNetLMHeadModel(config) elif isinstance(config, XLMConfig): return TFXLMWithLMHeadModel(config) elif isinstance(config, CTRLConfig): return TFCTRLLMHeadModel(config) raise ValueError("Unrecognized configuration class {}".format(config)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the language modeling model classes of the library from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `t5`: TFT5WithLMHeadModel (T5 model) - contains `distilbert`: TFDistilBertForMaskedLM (DistilBERT model) - contains `roberta`: TFRobertaForMaskedLM (RoBERTa model) - contains `bert`: TFBertForMaskedLM (Bert model) - contains `openai-gpt`: TFOpenAIGPTLMHeadModel (OpenAI GPT model) - contains `gpt2`: TFGPT2LMHeadModel (OpenAI GPT-2 model) - contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model) - contains `xlnet`: TFXLNetLMHeadModel (XLNet model) - contains `xlm`: TFXLMWithLMHeadModel (XLM model) - contains `ctrl`: TFCTRLLMHeadModel (CTRL model) Params: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. from_pt: (`Optional`) Boolean Set to True if the Checkpoint is a PyTorch checkpoint. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and :func:`~hgntransformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~hgntransformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: model = TFAutoModelWithLMHead.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = TFAutoModelWithLMHead.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` model = TFAutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = TFAutoModelWithLMHead.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config) """ if "t5" in pretrained_model_name_or_path: return TFT5WithLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "distilbert" in pretrained_model_name_or_path: return TFDistilBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "albert" in pretrained_model_name_or_path: return TFAlbertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "roberta" in pretrained_model_name_or_path: return TFRobertaForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "bert" in pretrained_model_name_or_path: return TFBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "openai-gpt" in pretrained_model_name_or_path: return TFOpenAIGPTLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "gpt2" in pretrained_model_name_or_path: return TFGPT2LMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "transfo-xl" in pretrained_model_name_or_path: return TFTransfoXLLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "xlnet" in pretrained_model_name_or_path: return TFXLNetLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "xlm" in pretrained_model_name_or_path: return TFXLMWithLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "ctrl" in pretrained_model_name_or_path: return TFCTRLLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) raise ValueError( "Unrecognized model identifier in {}. Should contains one of " "'distilbert', 'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', " "'xlm', 'roberta', 'ctrl'".format(pretrained_model_name_or_path) ) class TFAutoModelForSequenceClassification(object): r""" :class:`~hgntransformers.TFAutoModelForSequenceClassification` is a generic model class that will be instantiated as one of the sequence classification model classes of the library when created with the `TFAutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` class method. The `from_pretrained()` method takes care of returning the correct model class instance using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model) - contains `roberta`: TFRobertaForSequenceClassification (RoBERTa model) - contains `bert`: TFBertForSequenceClassification (Bert model) - contains `xlnet`: TFXLNetForSequenceClassification (XLNet model) - contains `xlm`: TFXLMForSequenceClassification (XLM model) This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "TFAutoModelForSequenceClassification is designed to be instantiated " "using the `TFAutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` or " "`TFAutoModelForSequenceClassification.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model) - isInstance of `roberta` configuration class: RobertaModel (RoBERTa model) - isInstance of `bert` configuration class: BertModel (Bert model) - isInstance of `xlnet` configuration class: XLNetModel (XLNet model) - isInstance of `xlm` configuration class: XLMModel (XLM model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = AutoModelForSequenceClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ if isinstance(config, DistilBertConfig): return TFDistilBertForSequenceClassification(config) elif isinstance(config, RobertaConfig): return TFRobertaForSequenceClassification(config) elif isinstance(config, BertConfig): return TFBertForSequenceClassification(config) elif isinstance(config, XLNetConfig): return TFXLNetForSequenceClassification(config) elif isinstance(config, XLMConfig): return TFXLMForSequenceClassification(config) raise ValueError("Unrecognized configuration class {}".format(config)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the sequence classification model classes of the library from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model) - contains `roberta`: TFRobertaForSequenceClassification (RoBERTa model) - contains `bert`: TFBertForSequenceClassification (Bert model) - contains `xlnet`: TFXLNetForSequenceClassification (XLNet model) - contains `xlm`: TFXLMForSequenceClassification (XLM model) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with `model.train()` Params: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. from_pt: (`Optional`) Boolean Set to True if the Checkpoint is a PyTorch checkpoint. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and :func:`~hgntransformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~hgntransformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = TFAutoModelForSequenceClassification.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = TFAutoModelForSequenceClassification.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config) """ if "distilbert" in pretrained_model_name_or_path: return TFDistilBertForSequenceClassification.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) elif "albert" in pretrained_model_name_or_path: return TFAlbertForSequenceClassification.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) elif "roberta" in pretrained_model_name_or_path: return TFRobertaForSequenceClassification.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) elif "bert" in pretrained_model_name_or_path: return TFBertForSequenceClassification.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) elif "xlnet" in pretrained_model_name_or_path: return TFXLNetForSequenceClassification.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) elif "xlm" in pretrained_model_name_or_path: return TFXLMForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) raise ValueError( "Unrecognized model identifier in {}. Should contains one of " "'distilbert', 'bert', 'xlnet', 'xlm', 'roberta'".format(pretrained_model_name_or_path) ) class TFAutoModelForQuestionAnswering(object): r""" :class:`~hgntransformers.TFAutoModelForQuestionAnswering` is a generic model class that will be instantiated as one of the question answering model classes of the library when created with the `TFAutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)` class method. The `from_pretrained()` method takes care of returning the correct model class instance using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model) - contains `bert`: TFBertForQuestionAnswering (Bert model) - contains `xlnet`: TFXLNetForQuestionAnswering (XLNet model) - contains `xlm`: TFXLMForQuestionAnswering (XLM model) This class cannot be instantiated using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "TFAutoModelForQuestionAnswering is designed to be instantiated " "using the `TFAutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)` or " "`TFAutoModelForQuestionAnswering.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: The model class to instantiate is selected based on the configuration class: - isInstance of `distilbert` configuration class: DistilBertModel (DistilBERT model) - isInstance of `bert` configuration class: BertModel (Bert model) - isInstance of `xlnet` configuration class: XLNetModel (XLNet model) - isInstance of `xlm` configuration class: XLMModel (XLM model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = AutoModelForSequenceClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ if isinstance(config, DistilBertConfig): return TFDistilBertForQuestionAnswering(config) elif isinstance(config, BertConfig): return TFBertForQuestionAnswering(config) elif isinstance(config, XLNetConfig): raise NotImplementedError("TFXLNetForQuestionAnswering isn't implemented") elif isinstance(config, XLMConfig): raise NotImplementedError("TFXLMForQuestionAnswering isn't implemented") raise ValueError("Unrecognized configuration class {}".format(config)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the question answering model classes of the library from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model) - contains `bert`: TFBertForQuestionAnswering (Bert model) - contains `xlnet`: TFXLNetForQuestionAnswering (XLNet model) - contains `xlm`: TFXLMForQuestionAnswering (XLM model) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with `model.train()` Params: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. from_pt: (`Optional`) Boolean Set to True if the Checkpoint is a PyTorch checkpoint. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and :func:`~hgntransformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~hgntransformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: model = TFAutoModelForQuestionAnswering.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = TFAutoModelForQuestionAnswering.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` model = TFAutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = TFAutoModelForQuestionAnswering.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config) """ if "distilbert" in pretrained_model_name_or_path: return TFDistilBertForQuestionAnswering.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) elif "bert" in pretrained_model_name_or_path: return TFBertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "xlnet" in pretrained_model_name_or_path: return TFXLNetForQuestionAnsweringSimple.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) elif "xlm" in pretrained_model_name_or_path: return TFXLMForQuestionAnsweringSimple.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) raise ValueError( "Unrecognized model identifier in {}. Should contains one of " "'distilbert', 'bert', 'xlnet', 'xlm'".format(pretrained_model_name_or_path) ) class TFAutoModelForTokenClassification: def __init__(self): raise EnvironmentError( "TFAutoModelForTokenClassification is designed to be instantiated " "using the `TFAutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)` or " "`AutoModelForTokenClassification.from_config(config)` methods." ) @classmethod def from_config(cls, config): r""" Instantiates one of the base model classes of the library from a configuration. config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: The model class to instantiate is selected based on the configuration class: - isInstance of `bert` configuration class: BertModel (Bert model) - isInstance of `xlnet` configuration class: XLNetModel (XLNet model) - isInstance of `distilbert` configuration class: DistilBertModel (DistilBert model) - isInstance of `roberta` configuration class: RobteraModel (Roberta model) Examples:: config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. model = TFAutoModelForTokenClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')` """ if isinstance(config, BertConfig): return TFBertForTokenClassification(config) elif isinstance(config, XLNetConfig): return TFXLNetForTokenClassification(config) elif isinstance(config, DistilBertConfig): return TFDistilBertForTokenClassification(config) elif isinstance(config, RobertaConfig): return TFRobertaForTokenClassification(config) raise ValueError("Unrecognized configuration class {}".format(config)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiates one of the question answering model classes of the library from a pre-trained model configuration. The `from_pretrained()` method takes care of returning the correct model class instance using pattern matching on the `pretrained_model_name_or_path` string. The model class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `bert`: BertForTokenClassification (Bert model) - contains `xlnet`: XLNetForTokenClassification (XLNet model) - contains `distilbert`: DistilBertForTokenClassification (DistilBert model) - contains `roberta`: RobertaForTokenClassification (Roberta model) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) To train the model, you should first set it back in training mode with `model.train()` Params: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a path to a `directory` containing model weights saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) instance of a class derived from :class:`~hgntransformers.PretrainedConfig`: Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict: (`optional`) dict: an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~hgntransformers.PreTrainedModel.save_pretrained` and :func:`~hgntransformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~hgntransformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: model = TFAutoModelForTokenClassification.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = TFAutoModelForTokenClassification.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` model = TFAutoModelForTokenClassification.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') model = TFAutoModelForTokenClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ if "bert" in pretrained_model_name_or_path: return TFBertForTokenClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "xlnet" in pretrained_model_name_or_path: return TFXLNetForTokenClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) elif "distilbert" in pretrained_model_name_or_path: return TFDistilBertForTokenClassification.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) elif "roberta" in pretrained_model_name_or_path: return TFRobertaForTokenClassification.from_pretrained( pretrained_model_name_or_path, *model_args, **kwargs ) raise ValueError( "Unrecognized model identifier in {}. Should contains one of " "'bert', 'xlnet', 'distilbert', 'roberta'".format(pretrained_model_name_or_path) )
2519156c6da4180c2448a0637cbcdaea6a256529
fd2931f5e1721f469d5113f7b70ec721f3288503
/my_house_settings.py
6ac57f9b524ecbffef04039eafd214a1ad8aa474
[ "MIT" ]
permissive
RasPiPkr/myHome
fbfb79b291e2e41ca0500d43117ae4942ca5cb6b
213a09946a20c27743fa4c8fc90acb128911ab0c
refs/heads/main
2023-02-05T21:54:21.907145
2020-12-21T19:36:56
2020-12-21T19:36:56
313,453,355
2
0
null
null
null
null
UTF-8
Python
false
false
2,672
py
# Settings for my Heating & Security Control # GPIO pins used on Raspberry Pi relayPins = [18, 23, 24, 22, 6, 13, 19, 26] pirPins = [21, 20, 16, 12] # CCTV variables user = '' # In the string put your user name for your cctv system passwd = '' # In the string put your password for you cctv system camIP = '' # In the string put your local IP address for your cctv system httpPort = '' # In the string enter your http port setup that is set in your cctv system # Your system might not need these: cam1 = '101' # Dependng on your cctv system for how many cameras or how the web request is required to view said camera cam2 = '201' # Replace these values, I have left them in as these worked with my cctv system cam3 = '301' # For my system the first digit refers to the camera and the 01 being the main stream 02 being substream, main stream is for best quality # Google voice announcements dialog = [] # Put links to a host for a recorded mp3, I used dropbox for mine # Testing google home mini voice_google = '' # In the string enter your local IP address for your google for sound from # Default heating timer settings, these are defaults for when the GUI starts morningTimer = '07:00:00' # Set them in here or when the GUI is running you can change them then morningTimerTemp = '20.0' bedtimeTimer = '23:00:00' bedtimeTimerTemp = '19.0' defaultTemp = '20.0' # External lights on time sunset = '16:00:00' sunrise = '07:00:00' dark = True # ZONES # ZONE DEFAULT OPTIONS: 0 = off, 1 = auto, 2 = on (This sets the GUI for how it works) z1BtnsList = ['imgs/z1_off_btn.png', 'imgs/z1_auto_btn.png', 'imgs/z1_on_btn.png'] z1Default = 1 z1Timer = 120 # Seconds z1Trig = 'imgs/z1_trig_btn.png' z2BtnsList = ['imgs/z2_off_btn.png', 'imgs/z2_auto_btn.png', 'imgs/z2_on_btn.png'] z2Default = 1 z2Timer = 120 # Seconds z2Trig = 'imgs/z2_trig_btn.png' z3BtnsList = ['imgs/z3_off_btn.png', 'imgs/z3_auto_btn.png', 'imgs/z3_on_btn.png'] z3Default = 1 z3Timer = 120 # Seconds z3Trig = 'imgs/z3_trig_btn.png' z4BtnsList = ['imgs/z4_off_btn.png', 'imgs/z4_auto_btn.png', 'imgs/z4_on_btn.png'] z4Default = 1 z4Timer = 120 # Seconds z4Trig = 'imgs/z4_trig_btn.png' # OPTIONS # DEFAULT OPTIONS: 0 = off, 1 = on # Ext voice buttons list extVoiceBtnsList = ['imgs/ext_voice_off_btn.png', 'imgs/ext_voice_on_btn.png'] extVoiceDefault = 0 # Doors voice buttons list doorsBtnsList = ['imgs/doors_voice_off_btn.png', 'imgs/doors_voice_on_btn.png'] doorsDefault = 0 # CCTV buttons list cctvBtnsList = ['imgs/cctv_off_btn.png', 'imgs/cctv_on_btn.png'] cctvDefault = 0 # Decking buttons list deckingBtnsList = ['imgs/decking_off_btn.png', 'imgs/decking_on_btn.png'] deckingDefault = 0
a519ec832241bd1385af8e97a2212ce45f79158a
255b559089b5ee50b396505ae3caf443a6e1a82d
/rest_api.py
dad455f932fbcfd1de4bfa7e68f4ff62c2ae7b1b
[]
no_license
rdorame/ParcialLabWeb2
18176bc6f9c36bb344851585e362b3ab62c4b16c
5f4f47f76523fee75962d8260a63bcd5337402c0
refs/heads/master
2021-01-23T01:02:18.575549
2017-04-01T12:48:24
2017-04-01T12:48:24
85,868,661
0
0
null
null
null
null
UTF-8
Python
false
false
29,892
py
import endpoints from google.appengine.ext import ndb from google.appengine.api import app_identity from protorpc import remote import jwt import time from CustomExceptions import NotFoundException from messages import EmailPasswordMessage, TokenMessage, CodeMessage, Token, TokenKey, MessageNone from messages import EmpresaInput, EmpresaUpdate, EmpresaList from messages import TeamInput, TeamUpdate, TeamList from messages import FacturaInput, FacturaUpdate, FacturaList from messages import TicketInput, TicketUpdate, TicketList from messages import UserInput, UserUpdate, UserList from endpoints_proto_datastore.ndb import EndpointsModel import models from models import validarEmail from models import Empresa, Usuarios, Team, Factura, Ticket ############### # Usuarios ############### @endpoints.api(name='usuarios_api', version='v1', description='usuarios endpoints') class UsuariosApi(remote.Service): ###############get the info of one######## @endpoints.method(TokenKey, UserList, path='users/get', http_method='POST', name='users.get') def users_get(cls, request): try: token = jwt.decode(request.tokenint, 'secret') #checa token userentity = ndb.Key(urlsafe=request.entityKey) user = Usuarios.get_by_id(userentity.id()) #obtiene usuario #user = Usuarios.get_by_id(token['user_id']) #obtiene usuario dado el token lista = [] #crea lista lstMessage = UserList(code=1) # crea objeto mensaje lista.append(UserUpdate(token='', entityKey= user.entityKey, codigo_empresa = user.codigo_empresa, #empresa_key = user.empresa_key.urlsafe(), email = user.email)) lstMessage.data = lista#ASIGNA a la salida la lista message = lstMessage except jwt.DecodeError: message = UserList(code=-1, data=[]) #token invalido except jwt.ExpiredSignatureError: message = UserList(code=-2, data=[]) #token expiro return message ########################## list################### # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(Token, UserList, path='users/list', http_method='POST', name='users.list') def lista_usuarios(cls, request): try: token = jwt.decode(request.tokenint, 'secret') #checa token user = Usuarios.get_by_id(token['user_id']) #obtiene usuario dado el token lista = [] #crea lista lstMessage = UserList(code=1) # crea objeto mensaje lstBd = Usuarios.query().fetch() # recupera de base de datos for i in lstBd: # recorre lista.append(UserUpdate(token='', entityKey=i.entityKey, #empresa_key=user.empresa_key.urlsafe(), email=i.email, codigo_empresa = i.codigo_empresa )) # agrega a la lista lstMessage.data = lista # la manda al messa message = lstMessage #regresa except jwt.DecodeError: message = UserList(code=-1, data=[]) #token invalido except jwt.ExpiredSignatureError: message = UserList(code=-2, data=[]) #token expiro return message # delete # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TokenKey, CodeMessage, path='users/delete', http_method='POST', name='users.delete') #siempre lleva cls y request def user_remove(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN usersentity = ndb.Key(urlsafe=request.entityKey)#Obtiene el elemento dado el EntitKey usersentity.delete()#BORRA message = CodeMessage(code=1, message='Succesfully deleted') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # insert # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(UserInput, CodeMessage, path='users/insert', http_method='POST', name='users.insert') def user_add(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id']) if validarEmail(request.email) == False: #checa si el email esta registrado #empresakey = ndb.Key(urlsafe=request.empresa_key) #convierte el string dado a entityKey if user.usuario_m(request, user.empresa_key)==0:#llama a la funcion declarada en models.py en la seccion de USUARIOS codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=codigo, message='Succesfully added') else: message = CodeMessage(code=-4, message='El email ya ha sido registrado') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message ##login## @endpoints.method(EmailPasswordMessage, TokenMessage, path='users/login', http_method='POST', name='users.login') def users_login(cls, request): try: user = Usuarios.query(Usuarios.email == request.email).fetch() #obtiene el usuario dado el email if not user or len(user) == 0: #si no encuentra user saca raise NotFoundException() user = user[0] keye = user.empresa_key.urlsafe() # regresa como mensaje el empresa key if not user.verify_password(request.password): # checa la contrasena raise NotFoundException() token = jwt.encode({'user_id': user.key.id(), 'exp': time.time() + 43200}, 'secret') #crea el token message = TokenMessage(token=token, message=keye, code=1) # regresa token except NotFoundException: message = TokenMessage(token=None, message='Wrong username or password', code=-1) return message ##update## # update # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(UserUpdate, CodeMessage, path='user/update', http_method='POST', name='user.update') #siempre lleva cls y request def user_update(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id'])#obtiene el usuario para poder acceder a los metodos declarados en models.py en la seccion de USUARIOS empresakey = ndb.Key(urlsafe=user.empresa_key.urlsafe())#convierte el string dado a entityKey if user.usuario_m(request, empresakey)==0:#llama a la funcion declarada en models.py en la seccion de USUARIOS codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=1, message='Sus cambios han sido guardados exitosamente') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message ''' ''' ########################### #### Empresa ########################### ## Google Cloud Endpoint @endpoints.api(name='empresas_api', version='v1', description='empresas REST API') class EmpresasApi(remote.Service): # get one @endpoints.method(TokenKey, EmpresaList, path='empresa/get', http_method='POST', name='empresa.get') #siempre lleva cls y request def empresa_get(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN #Obtiene el elemento dado el entityKey empresaentity = ndb.Key(urlsafe=request.entityKey) #CREA LA SALIDA de tipo JosueInput y le asigna los valores, es a como se declaro en el messages.py #empresaentity.get().empresa_key.urlsafe() para poder optener el EntityKey ##### ejemplo real ####### message = EmpresaList(code=1, data=[EmpresaUpdate(token='Succesfully get', nombre_empresa=empresaentity.get().nombre_empresa, empresa_key=empresaentity.get().empresa_key.urlsafe(), entityKey=empresaentity.get().entityKey)]) message = EmpresaList(code=1, data = [EmpresaUpdate(token='Succesfully get', entityKey = empresaentity.get().entityKey, codigo_empresa=empresaentity.get().codigo_empresa, nombre_empresa = empresaentity.get().nombre_empresa, lat_empresa = empresaentity.get().lat_empresa, long_empresa = empresaentity.get().long_empresa, logo_empresa = empresaentity.get().logo_empresa )]) except jwt.DecodeError: message = EmpresaList(code=-1, data=[]) except jwt.ExpiredSignatureError: message = EmpresaList(code=-2, data=[]) return message @endpoints.method(TokenKey, CodeMessage, path='empresa/delete', http_method='POST', name='empresa.delete') #siempre lleva cls y request def empresa_remove(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN empresaentity = ndb.Key(urlsafe=request.entityKey)#Obtiene el elemento dado el EntitKey empresaentity.delete()#BORRA message = CodeMessage(code=1, message='Succesfully deleted') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # insert @endpoints.method(EmpresaInput, CodeMessage, path='empresa/insert', http_method='POST', name='empresa.insert') #siempre lleva cls y request def empresa_add(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id'])#obtiene el usuario models.py myempresa = Empresa() if myempresa.empresa_m(request)==0: codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=codigo, message='Succesfully added') #else: # message = CodeMessage(code=-4, message='Succesfully added') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # update # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(EmpresaUpdate, CodeMessage, path='empresa/update', http_method='POST', name='empresa.update') #siempre lleva cls y request def empresa_update(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id'])#obtiene el usuario para poder acceder a los metodos declarados en models.py en la seccion de USUARIOS #empresakey = ndb.Key(urlsafe=request.empresa_key)#convierte el string dado a entityKey myempresa = Empresa() if myempresa.empresa_m(request)==0:#llama a la funcion declarada en models.py en la seccion de USUARIOS codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=1, message='Sus cambios han sido guardados exitosamente') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # list # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(Token, EmpresaList, path='empresa/list', http_method='POST', name='empresa.list') #siempre lleva cls y request def empresa_list(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id']) #obtiene usuario dado el token #if user.importante==1 or user.importante==2: lista = [] #crea lista para guardar contenido de la BD lstMessage = EmpresaList(code=1) #CREA el mensaje de salida lstBdEmpresa = Empresa.query().fetch() #obtiene de la base de datos for i in lstBdEmpresa: #recorre la base de datos #inserta a la lista creada con los elementos que se necesiten de la base de datos #i.empresa_key.urlsafe() obtiene el entityKey #lista.append(ClientesUpdate(token='', nombre=i.nombre, status=i.status, empresa_key=i.empresa_key.urlsafe(), entityKey=i.entityKey)) lista.append(EmpresaUpdate(token='', entityKey = i.entityKey, codigo_empresa=i.codigo_empresa, nombre_empresa = i.nombre_empresa, lat_empresa = i.lat_empresa, long_empresa = i.long_empresa, logo_empresa = i.logo_empresa )) lstMessage.data = lista #ASIGNA a la salida la lista message = lstMessage #else: # message = EmpresaList(code=-3, data=[]) except jwt.DecodeError: message = EmpresaList(code=-1, data=[]) except jwt.ExpiredSignatureError: message = EmpresaList(code=-2, data=[]) return message ########################### #### Team ########################### @endpoints.api(name='team_api', version='v1', description='team REST API') class TeamApi(remote.Service): # get one # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TokenKey, TeamList, path='team/get', http_method='POST', name='team.get') #siempre lleva cls y request def team_get(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN #Obtiene el elemento dado el entityKey teamentity = ndb.Key(urlsafe=request.entityKey) #CREA LA SALIDA de tipo JosueInput y le asigna los valores, es a como se declaro en el messages.py #josuentity.get().empresa_key.urlsafe() para poder optener el EntityKey message = TeamList(code=1, data=[TeamUpdate(token='Succesfully get', entityKey=teamentity.get().entityKey, #empresa_key=teamentity.get().empresa_key.urlsafe(), nombre=teamentity.get().nombre, puesto=teamentity.get().puesto, urlImage=teamentity.get().urlImage)]) except jwt.DecodeError: message = TeamList(code=-1, data=[]) except jwt.ExpiredSignatureError: message = TeamList(code=-2, data=[]) return message # delete # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TokenKey, CodeMessage, path='team/delete', http_method='POST', name='team.delete') #siempre lleva cls y request def team_remove(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN teamentity = ndb.Key(urlsafe=request.entityKey)#Obtiene el elemento dado el EntitKey teamentity.delete()#BORRA message = CodeMessage(code=0, message='Se ha eliminado el r.h.') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # list # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(Token, TeamList, path='team/list', http_method='POST', name='team.list') #siempre lleva cls y request def team_list(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id']) #obtiene usuario dado el token lista = [] #crea lista para guardar contenido de la BD lstMessage = TeamList(code=1) #CREA el mensaje de salida lstBd = Team.query().fetch() #obtiene de la base de datos for i in lstBd: #recorre la base de datos #inserta a la lista creada con los elementos que se necesiten de la base de datos #i.empresa_key.urlsafe() obtiene el entityKey lista.append(TeamUpdate(token='', entityKey=i.entityKey, #empresa_key=i.empresa_key.urlsafe(), nombre=i.nombre, puesto=i.puesto, urlImage=i.urlImage )) lstMessage.data = lista #ASIGNA a la salida la lista message = lstMessage except jwt.DecodeError: message = TeamList(code=-1, data=[]) except jwt.ExpiredSignatureError: message = TeamList(code=-2, data=[]) return message # insert # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TeamInput, CodeMessage, path='team/insert', http_method='POST', name='team.insert') #siempre lleva cls y request def team_add(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id']) #obtiene el usuario para poder acceder a los metodos declarados en models.py en la seccion de myteam = Team() if myteam.team_m(request, user.empresa_key)==0:#llama a la funcion declarada en models.py en la seccion de USUARIOS codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=codigo, message='Su r.h. se ha sido registrado exitosamente') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # update # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TeamUpdate, CodeMessage, path='team/update', http_method='POST', name='team.update') #siempre lleva cls y request def team_update(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id'])#obtiene el usuario para poder acceder a los metodos declarados en models.py en la seccion de USUARIOS empresakey = ndb.Key(urlsafe=user.empresa_key.urlsafe())#convierte el string dado a entityKey myteam = Team() if myteam.team_m(request, empresakey)==0:#llama a la funcion declarada en models.py en la seccion de USUARIOS codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=1, message='Sus cambios han sido guardados exitosamente') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message ########################### #### Factura ########################### @endpoints.api(name='factura_api', version='v1', description='factura REST API') class FacturaApi(remote.Service): # get one # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TokenKey, FacturaList, path='factura/get', http_method='POST', name='factura.get') #siempre lleva cls y request def factura_get(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN #Obtiene el elemento dado el entityKey facturaentity = ndb.Key(urlsafe=request.entityKey) #CREA LA SALIDA de tipo JosueInput y le asigna los valores, es a como se declaro en el messages.py #josuentity.get().empresa_key.urlsafe() para poder optener el EntityKey message = FacturaList(code=1, data=[FacturaUpdate(token='Succesfully get', entityKey=facturaentity.get().entityKey, #empresa_key=teamentity.get().empresa_key.urlsafe(), tipoDePersona=facturaentity.get().tipoDePersona, nombre=facturaentity.get().nombre, idTicket = facturaentity.get().idTicket, rfc = facturaentity.get().rfc, pais = facturaentity.get().pais, estado = facturaentity.get().estado, municipio = facturaentity.get().municipio, colonia = facturaentity.get().colonia, cp = facturaentity.get().cp, calle = facturaentity.get().calle, numExt = facturaentity.get().numExt, numInt = facturaentity.get().numInt, email = facturaentity.get().email, numFolio = facturaentity.get().numFolio, fecha = facturaentity.get().fecha )]) except jwt.DecodeError: message = FacturaList(code=-1, data=[]) except jwt.ExpiredSignatureError: message = FacturaList(code=-2, data=[]) return message # delete # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TokenKey, CodeMessage, path='factura/delete', http_method='POST', name='factura.delete') #siempre lleva cls y request def factura_remove(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN facturaentity = ndb.Key(urlsafe=request.entityKey)#Obtiene el elemento dado el EntitKey facturaentity.delete()#BORRA message = CodeMessage(code=0, message='Se ha eliminado el r.h.') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # list # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(Token, FacturaList, path='factura/list', http_method='POST', name='factura.list') #siempre lleva cls y request def factura_list(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id']) #obtiene usuario dado el token lista = [] #crea lista para guardar contenido de la BD lstMessage = FacturaList(code=1) #CREA el mensaje de salida lstBd = Factura.query().fetch() #obtiene de la base de datos for i in lstBd: #recorre la base de datos #inserta a la lista creada con los elementos que se necesiten de la base de datos #i.empresa_key.urlsafe() obtiene el entityKey lista.append(FacturaUpdate(token='', entityKey=i.entityKey, #empresa_key=i.empresa_key.urlsafe(), tipoDePersona=i.tipoDePersona, nombre=i.nombre, idTicket = i.idTicket, rfc = i.rfc, pais = i.pais, estado = i.estado, municipio = i.municipio, colonia = i.colonia, cp = i.cp, calle = i.calle, numExt = i.numExt, numInt = i.numInt, email = i.email, numFolio = i.numFolio, fecha = i.fecha )) lstMessage.data = lista #ASIGNA a la salida la lista message = lstMessage except jwt.DecodeError: message = FacturaList(code=-1, data=[]) except jwt.ExpiredSignatureError: message = FacturaList(code=-2, data=[]) return message # insert # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(FacturaInput, CodeMessage, path='factura/insert', http_method='POST', name='factura.insert') #siempre lleva cls y request def factura_add(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id']) #obtiene el usuario para poder acceder a los metodos declarados en models.py en la seccion de myfactura = Factura() if myfactura.factura_m(request, user.empresa_key)==0:#llama a la funcion declarada en models.py en la seccion de USUARIOS codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=codigo, message='Factura registrada con exito') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # update # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(FacturaUpdate, CodeMessage, path='factura/update', http_method='POST', name='factura.update') #siempre lleva cls y request def factura_update(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id'])#obtiene el usuario para poder acceder a los metodos declarados en models.py en la seccion de USUARIOS empresakey = ndb.Key(urlsafe=user.empresa_key.urlsafe())#convierte el string dado a entityKey myfactura = Factura() if myfactura.factura_m(request, empresakey)==0:#llama a la funcion declarada en models.py en la seccion de USUARIOS codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=1, message='Sus cambios han sido guardados exitosamente') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message ########################### #### Tickets ########################### @endpoints.api(name='ticket_api', version='v1', description='ticket REST API') class TicketApi(remote.Service): # get one # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TokenKey, TicketList, path='ticket/get', http_method='POST', name='ticket.get') #siempre lleva cls y request def ticket_get(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN #Obtiene el elemento dado el entityKey ticketentity = ndb.Key(urlsafe=request.entityKey) #CREA LA SALIDA de tipo JosueInput y le asigna los valores, es a como se declaro en el messages.py #josuentity.get().empresa_key.urlsafe() para poder optener el EntityKey message = TicketList(code=1, data=[TicketUpdate(token='Succesfully get', entityKey=ticketentity.get().entityKey, #empresa_key=teamentity.get().empresa_key.urlsafe(), folio=ticketentity.get().folio, fecha=ticketentity.get().fecha, total=ticketentity.get().total, items=ticketentity.get().items, qty=ticketentity.get().qty, facturado=ticketentity.get().facturado )]) except jwt.DecodeError: message = TicketList(code=-1, data=[]) except jwt.ExpiredSignatureError: message = TicketList(code=-2, data=[]) return message # delete # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TokenKey, CodeMessage, path='ticket/delete', http_method='POST', name='ticket.delete') #siempre lleva cls y request def ticket_remove(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN ticketentity = ndb.Key(urlsafe=request.entityKey)#Obtiene el elemento dado el EntitKey ticketentity.delete()#BORRA message = CodeMessage(code=0, message='Se ha eliminado el r.h.') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # list # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(Token, TicketList, path='ticket/list', http_method='POST', name='ticket.list') #siempre lleva cls y request def ticket_list(cls, request): try: token = jwt.decode(request.tokenint, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id']) #obtiene usuario dado el token lista = [] #crea lista para guardar contenido de la BD lstMessage = TicketList(code=1) #CREA el mensaje de salida lstBd = Ticket.query().fetch() #obtiene de la base de datos for i in lstBd: #recorre la base de datos #inserta a la lista creada con los elementos que se necesiten de la base de datos #i.empresa_key.urlsafe() obtiene el entityKey lista.append(TicketUpdate(token='', entityKey=i.entityKey, #empresa_key=i.empresa_key.urlsafe(), folio=i.folio, fecha=i.fecha, total=i.total, items=i.items, qty=i.qty, facturado=i.facturado )) lstMessage.data = lista #ASIGNA a la salida la lista message = lstMessage except jwt.DecodeError: message = TicketList(code=-1, data=[]) except jwt.ExpiredSignatureError: message = TicketList(code=-2, data=[]) return message # insert # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TicketInput, CodeMessage, path='ticket/insert', http_method='POST', name='ticket.insert') #siempre lleva cls y request def ticket_add(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id']) #obtiene el usuario para poder acceder a los metodos declarados en models.py en la seccion de myticket = Ticket() if myticket.ticket_m(request, user.empresa_key)==0:#llama a la funcion declarada en models.py en la seccion de USUARIOS codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=codigo, message='Ticket registrado') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message # update # ENTRADA SALIDA RUTA siempre es POST NOMBRE @endpoints.method(TicketUpdate, CodeMessage, path='ticket/update', http_method='POST', name='ticket.update') #siempre lleva cls y request def ticket_update(cls, request): try: token = jwt.decode(request.token, 'secret')#CHECA EL TOKEN user = Usuarios.get_by_id(token['user_id'])#obtiene el usuario para poder acceder a los metodos declarados en models.py en la seccion de USUARIOS empresakey = ndb.Key(urlsafe=user.empresa_key.urlsafe())#convierte el string dado a entityKey myticket = Ticket() if myticket.ticket_m(request, empresakey)==0:#llama a la funcion declarada en models.py en la seccion de USUARIOS codigo=1 else: codigo=-3 #la funcion josue_m puede actualizar e insertar #depende de la ENTRADA de este endpoint method message = CodeMessage(code=1, message='Sus cambios han sido guardados exitosamente') except jwt.DecodeError: message = CodeMessage(code=-2, message='Invalid token') except jwt.ExpiredSignatureError: message = CodeMessage(code=-1, message='Token expired') return message application = endpoints.api_server([UsuariosApi, EmpresasApi, TeamApi, FacturaApi, TicketApi], restricted=False)
cce41f4aca21801834da31dc392b6b100c9a480b
3fc5b3783f0cfe5f4a13959ccef2b5ad916ecaae
/CRN_Pascal_Pretrain/utils/params.py
f8e914e232a9481f89b62f22f3836b8d2c51ca09
[]
no_license
feinanshan/Motion-Guided-CRN
4ba0f4cc06ced6b6968f24aa5e71912560612fef
69c705ee3e1008ca373854172234ac765af7cfe9
refs/heads/master
2021-04-12T11:08:16.236573
2020-03-24T02:58:38
2020-03-24T02:58:38
126,672,764
32
2
null
null
null
null
UTF-8
Python
false
false
1,576
py
import ConfigParser import numpy as np from ast import literal_eval class Params(object): def __init__(self,config_file='./config.ini',for_test=False): parser = ConfigParser.ConfigParser() parser.read(config_file) self.gpu_nums = 1 # model self.network = parser.get("model", "network") self.backbone = parser.get("model", "backbone") self.prefix = parser.get("model","network") self.pretrained = parser.getboolean("model","pretrained") self.frame_num = parser.getint("model","frame_num") self.img_size = parser.getint("model","img_size") # epoch self.begin_epoch = parser.getint("epoch", "begin_epoch") self.end_epoch = parser.getint("epoch", "end_epoch") self.frequence = parser.getint("epoch", "frequence") # iterator itr_set = "iterator_test" if for_test else 'iterator_train' self.batch_size = parser.getint(itr_set, "batch_size") self.num_thread = parser.getint(itr_set, "num_thread") self.gt_path = parser.get(itr_set, "gt_path") self.img_path = parser.get(itr_set, "img_path") self.list_path = parser.get(itr_set, "list_path") self.data_aug = parser.getboolean(itr_set, "data_aug") self.use_global_stats = parser.getboolean(itr_set, "use_global_stats") self.updateIter = parser.getint(itr_set, "updateIter") # optimizer self.optimizer = parser.get("optimizer", "name") self.learning_rate = parser.getfloat("optimizer", "learning_rate") self.wd = parser.getfloat("optimizer", "wd") self.momentum = parser.getfloat("optimizer", "momentum") # misc self.description = parser.get("misc", "description")
a665f4e9d1535345865d92f2914bbc0053c2cfc2
fda6735097ae1d0ef548b5789eb22398ce550d5e
/Learn_TensorFlow_2.py
f595a1b68655adc5a4da3c720109fe8d26270516
[]
no_license
ll2088/zyy_ML-DL
fa618d7eba4ca4753f450b0d70bc2178b9c6e5fc
5f96bb89433d62657806b7c8182cb1f80b02f772
refs/heads/master
2020-04-26T18:20:38.385870
2017-07-14T10:03:13
2017-07-14T10:03:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,002
py
# author zyyFTD # Github: https://github.com/YuyangZhangFTD/zyy_ML-DL """ this code is for python3 """ import tensorflow as tf # import tensorflow c = tf.constant(1.5) # creat a constant x = tf.Variable(1.0, name="x") # creat a variable add_op = tf.add(x, c) # creat add operation assign_op = tf.assign(x, add_op)# creat assign operation init = tf.global_variables_initializer() # init variables * sess = tf.Session() # get session object sess.run(init) # run session print(sess.run(x)) # should print 1.0 print(sess.run(add_op)) # should print 2.5(x+c=2.5) print(sess.run(x)) # should print 1.0(x has not been assigned) print(sess.run(assign_op)) # should print 2.5 print(sess.run(x)) # should print 2.5(x has been assigned) print(sess.run(x)) # should print out 2.5 sess.close() # close session
50ed3cd85600e58486c075ad4959cb463d45996b
57bb0379d20ffdc5fd9f4ca5b71246c1d7efdf5e
/models.py
2140a5545279cd51f447c5684b94e0a4c9e60ba2
[ "Apache-2.0" ]
permissive
albertounivr/deep-spatial-join
f042ec1b9abe625cc8abf8d52fa37877f328f442
fd773054324e8a70a640811371d8f8268b720258
refs/heads/main
2023-02-22T13:20:41.165410
2021-01-23T20:39:47
2021-01-23T20:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,661
py
from keras.models import Sequential, load_model from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.layers.core import Activation from keras.layers.core import Dropout from keras.layers.core import Dense from keras.layers import concatenate from keras.layers import Flatten from keras.layers import Input from keras.models import Model from keras.optimizers import Adam import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score import datasets def create_mlp(dim, regress=False): # define our MLP network model = Sequential() model.add(Dense(4, input_dim=dim, activation="relu")) model.add(Dense(2, activation="relu")) # check to see if the regression node should be added if regress: model.add(Dense(1, activation="linear")) # return our model return model def create_cnn(width, height, depth, filters=(4, 8, 16), regress=False): # initialize the input shape and channel dimension, assuming # TensorFlow/channels-last ordering input_shape = (height, width, depth) chan_dim = -1 # define the model input inputs = Input(shape=input_shape) # loop over the number of filters for (i, f) in enumerate(filters): # if this is the first CONV layer then set the input # appropriately if i == 0: x = inputs # CONV => RELU => BN => POOL x = Conv2D(f, (3, 3), padding="same")(x) x = Activation("relu")(x) x = BatchNormalization(axis=chan_dim)(x) x = MaxPooling2D(pool_size=(2, 2))(x) # flatten the volume, then FC => RELU => BN => DROPOUT x = Flatten()(x) x = Dense(8)(x) x = Activation("relu")(x) x = BatchNormalization(axis=chan_dim)(x) x = Dropout(0.5)(x) # apply another FC layer, this one to match the number of nodes # coming out of the MLP x = Dense(4)(x) x = Activation("relu")(x) # check to see if the regression node should be added if regress: x = Dense(1, activation="linear")(x) # construct the CNN model = Model(inputs, x) # return the CNN return model def run(tabular_path, histogram_path, join_result_path, model_path, model_weights_path, is_train=True): print ('Training the join cardinality estimator') print ('Tabular data: {}'.format(tabular_path)) print ('Histogram path: {}'.format(histogram_path)) print ('Join result data: {}'.format(join_result_path)) target = 'join_selectivity' num_rows, num_columns = 16, 16 tabular_features_df = datasets.load_datasets_feature(tabular_path) join_data, ds1_histograms, ds2_histograms, ds_all_histogram, ds_bops_histogram = datasets.load_join_data( tabular_features_df, join_result_path, histogram_path, num_rows, num_columns) num_features = len(join_data.columns) - 10 if is_train: train_attributes, test_attributes, ds1_histograms_train, ds1_histograms_test, ds2_histograms_train, ds2_histograms_test, ds_all_histogram_train, ds_all_histogram_test, ds_bops_histogram_train, ds_bops_histogram_test = train_test_split( join_data, ds1_histograms, ds2_histograms, ds_all_histogram, ds_bops_histogram, test_size=0.20, random_state=42) X_train = pd.DataFrame.to_numpy(train_attributes[[i for i in range(num_features)]]) X_test = pd.DataFrame.to_numpy(test_attributes[[i for i in range(num_features)]]) y_train = train_attributes[target] y_test = test_attributes[target] else: X_test = pd.DataFrame.to_numpy(join_data[[i for i in range(num_features)]]) y_test = join_data[target] ds_bops_histogram_test = ds_bops_histogram mlp = create_mlp(X_test.shape[1], regress=False) cnn1 = create_cnn(num_rows, num_columns, 1, regress=False) # cnn2 = models.create_cnn(num_rows, num_columns, 1, regress=False) # cnn3 = models.create_cnn(num_rows, num_columns, 1, regress=False) # combined_input = concatenate([mlp.output, cnn1.output, cnn2.output, cnn3.output]) combined_input = concatenate([mlp.output, cnn1.output]) x = Dense(4, activation="relu")(combined_input) x = Dense(1, activation="linear")(x) # model = Model(inputs=[mlp.input, cnn1.input, cnn2.input, cnn3.input], outputs=x) model = Model(inputs=[mlp.input, cnn1.input], outputs=x) EPOCHS = 40 LR = 1e-2 opt = Adam(lr=LR, decay=LR / EPOCHS) model.compile(loss="mean_absolute_percentage_error", optimizer=opt) if is_train: print ('Training the model') model.fit( [X_train, ds_bops_histogram_train], y_train, validation_data=([X_test, ds_bops_histogram_test], y_test), epochs=EPOCHS, batch_size=256) model.save(model_path) model.save_weights(model_weights_path) else: print ('Loading the saved model and model weights') model = load_model(model_path) model.load_weights(model_weights_path) print ('Testing') y_pred = model.predict([X_test, ds_bops_histogram_test]) print ('r2 score: {}'.format(r2_score(y_test, y_pred))) diff = y_pred.flatten() - y_test percent_diff = (diff / y_test) abs_percent_diff = np.abs(percent_diff) # Compute the mean and standard deviation of the absolute percentage difference mean = np.mean(abs_percent_diff) std = np.std(abs_percent_diff) # NOTICE: mean is the MAPE value, which is the target we want to minimize print ('mean = {}, std = {}'.format(mean, std))
6d90a0ac27da6ecb3acd52f2b6882b65fcd0ebfe
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_whiles.py
bad0312c2f1f431ec0236df694d9d915d4795784
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
#calss header class _WHILES(): def __init__(self,): self.name = "WHILES" self.definitions = while self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['while']
412c804b61fcad10d8f77cc05838e2bcba100656
3808e4f5c40e71d1e2e559014eaab50a8f4113cd
/api/models.py
bfda4c13d07a292f3ed5d5be09eebe50ebfcb565
[]
no_license
Sam17SJ/apiDjango
8488c77aad9211278d1af3c345b8087b373ba386
5c921d0c2b3df6a81b4f08f6a0872475fc4c1e6f
refs/heads/master
2021-04-29T18:02:05.344677
2018-02-15T21:33:23
2018-02-15T21:33:23
121,684,984
0
0
null
null
null
null
UTF-8
Python
false
false
2,905
py
from django.db import models from django.contrib.auth.models import User # para la aplicacion de cuentas from django.conf import settings from django.db.models.signals import post_save from django.dispatch import receiver from rest_framework.authtoken.models import Token from django.contrib.postgres.fields import ArrayField # termina para aplicacion de cuentas @receiver(post_save, sender=settings.AUTH_USER_MODEL) def create_auth_token(sender, instance=None, created=False, **kwargs): if created: Token.objects.create(user=instance) # Create your models here. class Estrella(models.Model): """docstring for Estrella""" rankin= models.IntegerField() def __str__(self): return str(self.rankin) # class Imagen(models.Model): # """docstring for Imagenes""" # alto= models.IntegerField() # ancho= models.IntegerField() # def __init__(self, arg): # super (Imagenes, self).__init__() # self.arg = arg class UsuarioGratuito(models.Model): """docstring for UsuarioGratuito""" nombre= models.CharField(max_length=25) numTelefonico = models.IntegerField() idUser = models.ForeignKey(User) def __str__(self): return str(self.nombre) class Broker(models.Model): """docstring for Broker""" nombre= models.CharField(max_length=25) estrella = models.ForeignKey(Estrella) descripcion = models.CharField(max_length=250) numTelefonico = models.IntegerField() def __str__(self): return str(self.nombre) # class Corporacion(models.Model): # nombre= models.CharField(max_length=25) # estrella = models.ForeignKey(Estrella) # descripcion = models.CharField(max_length=250) # numTelefonico = models.IntegerField() # """docstring for Corporacion""" # def __init__(self, arg): # super(Corporacion, self).__init__() # self.arg = arg # def user_directory_path(instance, filename): # # file will be uploaded to MEDIA_ROOT/user_<id>/<filename> # return 'uploads/user_{0}/{1}'.format(instance.id, filename) class Propiedad(models.Model): titulo = models.CharField(max_length=35) # descripcio= models.CharField(max_length=250, blank=True) # ubicacion = models.ForeignKey(Ubicacion) precio = models.FloatField() # propietario = models.ForeignKey(UsuarioGratuito, blank=True) imagen = ArrayField(models.CharField(max_length=250, blank=True),size=10) def __str__(self): return str(self.titulo) class Image(models.Model): img = models.ImageField(upload_to='uploads/{0}'.format("%d-%m-%y/%H_%M_%S"), default='uploads/f1.png') def __str__(self): return str(self.img) class Contrato(models.Model): estado = models.IntegerField() fechaInicio= models.DateField() acuerdo = models.IntegerField() broker = models.OneToOneField(Broker) propiedad = models.OneToOneField(Propiedad) """docstring for Contrato""" def __str__(self): return str(self.acuerdo)
758eb2b29442850b638c5036cabcffb5d46abe6c
0a78bfd9f0c6390cf86c39a03010000afc9864eb
/feapp/data/__all_models.py
24ed4ed84216e6ece3aa4ab2b75bc263e891dbe3
[]
no_license
BlueRaccoonTech/glaceon-live
b1601a647adf96e7bdd2b0f66ced70a5b3ac96ea
78d7ccebdfbbaefc10a7f8cfdbcd2bbed0266ec8
refs/heads/master
2023-06-30T22:12:45.625830
2021-08-07T18:33:34
2021-08-07T18:33:34
262,346,822
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
# Add all your SQLAlchemy models here. # This allows us to import just this file when # we need to preload the models and ensure they # are all loaded. # noinspection PyUnresolvedReferences import feapp.data.users # noinspection PyUnresolvedReferences import feapp.data.userData # noinspection PyUnresolvedReferences import feapp.data.userKeys
b8101c53003873718f0b8e17c85360c68a645746
f817ce9e7a52caf0363e8dfb8c47d2700fa627e2
/PythonApplication1/module3.py
b3a965bc2fa848d6561f47361bec26e78a3d6b90
[]
no_license
myweblab/python-playground
86ce204b03b512fdc8ba37acc648d79c2e0341c0
7281eaa230e823154c9b7967b6f075c8c9ecef62
refs/heads/master
2021-07-10T23:06:30.860366
2020-07-25T16:27:53
2020-07-25T16:27:53
179,026,780
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
from threading import Thread import time def timer(name,delay,repeat): print("timer : " + name + " Started") while repeat > 0: time.sleep(delay) print(name+ " : " + str(time.ctime())) repeat=-1 print("Timer {0} Completed".format(name)) t1 = Thread(target=timer, args=("Timer1",10,100)) t2 = Thread(target=timer, args=("Timer2",20,150)) t3 = Thread(target=timer, args=("Timer3",10,200)) t4= Thread(target=timer, args=("Timer4",20,250)) t1.start() t2.start() t3.start() t4.start()
38e1ac549e2c738598e7f8b8a5db19f186b0d74b
fb124e51024917d6479fa626d9607ff10f7a3aba
/storm-control/storm_control/hal4000/qtWidgets/qtRecordButton.py
8a9355923cc8f4b86fc922976debc0cd0dfdcb7d
[ "MIT" ]
permissive
BehnamAbaie/storm-control
054bd7bbd903ed9635e4d1121c30544f58473c4f
0c686321142eccad62ce3365eae22c3b69229b0d
refs/heads/main
2023-06-18T08:04:01.108874
2021-07-14T00:51:15
2021-07-14T00:51:15
342,049,487
0
0
null
null
null
null
UTF-8
Python
false
false
1,391
py
#!/usr/bin/env python """ QPushButton specialized to be a record button. Hazen 4/17 """ from PyQt5 import QtWidgets import storm_control.hal4000.film.filmRequest as filmRequest import storm_control.hal4000.halLib.halMessage as halMessage class QtRecordButton(QtWidgets.QPushButton): def __init__(self, parent = None, **kwds): kwds["parent"] = parent super().__init__(**kwds) self.filming = False def getHalMessage(self): if self.filming: return halMessage.HalMessage(source = self, m_type = "stop film request") else: return halMessage.HalMessage(source = self, m_type = "start film request", data = {"request" : filmRequest.FilmRequest()}) def startFilm(self, film_settings): self.setText("Stop") self.setEnabled(not film_settings.isTCPRequest()) if film_settings.isSaved(): self.setStyleSheet("QPushButton { color: red }") else: self.setStyleSheet("QPushButton { color: orange }") self.filming = True def stopFilm(self): self.setEnabled(True) self.setText("Record") self.setStyleSheet("QPushButton { color: black }") self.filming = False
8c95e3772bbb9784cb8138d5752fbd7bbd395038
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_017/ch16_2020_10_05_20_15_18_245128.py
d2bd590ba92f6842d0715be3eeff220f31237ae8
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
x= float((input("Qual o valor da conta? ")) valor =(1-0.01)*x print("Valor da conta com 10%: R$ {0: .2f}".format(valor))
7b92ab44783deefca94f9bbd15a2e1ab10d82f64
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/network/v20201101/private_dns_zone_group.py
78e2a5b2cd6fea5f4afb1338719284a7a073f414
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,488
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._inputs import * __all__ = ['PrivateDnsZoneGroupArgs', 'PrivateDnsZoneGroup'] @pulumi.input_type class PrivateDnsZoneGroupArgs: def __init__(__self__, *, private_endpoint_name: pulumi.Input[str], resource_group_name: pulumi.Input[str], id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, private_dns_zone_configs: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateDnsZoneConfigArgs']]]] = None, private_dns_zone_group_name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a PrivateDnsZoneGroup resource. :param pulumi.Input[str] private_endpoint_name: The name of the private endpoint. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param pulumi.Input[Sequence[pulumi.Input['PrivateDnsZoneConfigArgs']]] private_dns_zone_configs: A collection of private dns zone configurations of the private dns zone group. :param pulumi.Input[str] private_dns_zone_group_name: The name of the private dns zone group. """ pulumi.set(__self__, "private_endpoint_name", private_endpoint_name) pulumi.set(__self__, "resource_group_name", resource_group_name) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if private_dns_zone_configs is not None: pulumi.set(__self__, "private_dns_zone_configs", private_dns_zone_configs) if private_dns_zone_group_name is not None: pulumi.set(__self__, "private_dns_zone_group_name", private_dns_zone_group_name) @property @pulumi.getter(name="privateEndpointName") def private_endpoint_name(self) -> pulumi.Input[str]: """ The name of the private endpoint. """ return pulumi.get(self, "private_endpoint_name") @private_endpoint_name.setter def private_endpoint_name(self, value: pulumi.Input[str]): pulumi.set(self, "private_endpoint_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ Resource ID. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="privateDnsZoneConfigs") def private_dns_zone_configs(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['PrivateDnsZoneConfigArgs']]]]: """ A collection of private dns zone configurations of the private dns zone group. """ return pulumi.get(self, "private_dns_zone_configs") @private_dns_zone_configs.setter def private_dns_zone_configs(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateDnsZoneConfigArgs']]]]): pulumi.set(self, "private_dns_zone_configs", value) @property @pulumi.getter(name="privateDnsZoneGroupName") def private_dns_zone_group_name(self) -> Optional[pulumi.Input[str]]: """ The name of the private dns zone group. """ return pulumi.get(self, "private_dns_zone_group_name") @private_dns_zone_group_name.setter def private_dns_zone_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "private_dns_zone_group_name", value) class PrivateDnsZoneGroup(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, private_dns_zone_configs: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateDnsZoneConfigArgs']]]]] = None, private_dns_zone_group_name: Optional[pulumi.Input[str]] = None, private_endpoint_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Private dns zone group resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] name: Name of the resource that is unique within a resource group. This name can be used to access the resource. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateDnsZoneConfigArgs']]]] private_dns_zone_configs: A collection of private dns zone configurations of the private dns zone group. :param pulumi.Input[str] private_dns_zone_group_name: The name of the private dns zone group. :param pulumi.Input[str] private_endpoint_name: The name of the private endpoint. :param pulumi.Input[str] resource_group_name: The name of the resource group. """ ... @overload def __init__(__self__, resource_name: str, args: PrivateDnsZoneGroupArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Private dns zone group resource. :param str resource_name: The name of the resource. :param PrivateDnsZoneGroupArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(PrivateDnsZoneGroupArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, private_dns_zone_configs: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateDnsZoneConfigArgs']]]]] = None, private_dns_zone_group_name: Optional[pulumi.Input[str]] = None, private_endpoint_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = PrivateDnsZoneGroupArgs.__new__(PrivateDnsZoneGroupArgs) __props__.__dict__["id"] = id __props__.__dict__["name"] = name __props__.__dict__["private_dns_zone_configs"] = private_dns_zone_configs __props__.__dict__["private_dns_zone_group_name"] = private_dns_zone_group_name if private_endpoint_name is None and not opts.urn: raise TypeError("Missing required property 'private_endpoint_name'") __props__.__dict__["private_endpoint_name"] = private_endpoint_name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["etag"] = None __props__.__dict__["provisioning_state"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-native:network:PrivateDnsZoneGroup"), pulumi.Alias(type_="azure-native:network/v20200301:PrivateDnsZoneGroup"), pulumi.Alias(type_="azure-native:network/v20200401:PrivateDnsZoneGroup"), pulumi.Alias(type_="azure-native:network/v20200501:PrivateDnsZoneGroup"), pulumi.Alias(type_="azure-native:network/v20200601:PrivateDnsZoneGroup"), pulumi.Alias(type_="azure-native:network/v20200701:PrivateDnsZoneGroup"), pulumi.Alias(type_="azure-native:network/v20200801:PrivateDnsZoneGroup"), pulumi.Alias(type_="azure-native:network/v20210201:PrivateDnsZoneGroup"), pulumi.Alias(type_="azure-native:network/v20210301:PrivateDnsZoneGroup"), pulumi.Alias(type_="azure-native:network/v20210501:PrivateDnsZoneGroup")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(PrivateDnsZoneGroup, __self__).__init__( 'azure-native:network/v20201101:PrivateDnsZoneGroup', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'PrivateDnsZoneGroup': """ Get an existing PrivateDnsZoneGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = PrivateDnsZoneGroupArgs.__new__(PrivateDnsZoneGroupArgs) __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["private_dns_zone_configs"] = None __props__.__dict__["provisioning_state"] = None return PrivateDnsZoneGroup(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def name(self) -> pulumi.Output[Optional[str]]: """ Name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateDnsZoneConfigs") def private_dns_zone_configs(self) -> pulumi.Output[Optional[Sequence['outputs.PrivateDnsZoneConfigResponse']]]: """ A collection of private dns zone configurations of the private dns zone group. """ return pulumi.get(self, "private_dns_zone_configs") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the private dns zone group resource. """ return pulumi.get(self, "provisioning_state")
35b4d4fbde92b3460aca90708c121ce65a8d17d9
30d46864106e1d1b4e88c3552a29da8f2b8d48d3
/otv/Transfert_Donnees/Params/Mensuel.py
6ff49df5107b7132126d23b07b6aeff30d5f4054
[]
no_license
nantodevison/otv
c69491f1ea68e537e9eabe1da6cec9dc8b5e35b6
e591644d6c83945a8550bdc52292c67be9495e92
refs/heads/master
2023-05-12T01:54:54.528087
2023-04-26T12:24:55
2023-04-26T12:24:55
168,543,113
0
0
null
null
null
null
UTF-8
Python
false
false
993
py
# -*- coding: utf-8 -*- ''' Created on 18 nov. 2021 @author: martin.schoreisz ''' dico_mois={'janv':[1,'Janv','Janvier', 'janu'], 'fevr':[2,'Fév','Février','févr','Fevrier', 'febr'], 'mars':[3,'Mars','Mars', 'marc'], 'avri':[4,'Avril','Avril', 'apri' ], 'mai':[5,'Mai','Mai', 'may'], 'juin':[6,'Juin','Juin', 'june'], 'juil':[7,'Juill','Juillet', 'juil', 'july'], 'aout':[8,'Août','Aout', 'augu'], 'sept':[9,'Sept','Septembre', 'sept'], 'octo':[10,'Oct','Octobre', 'octo'], 'nove':[11,'Nov','Novembre', 'nove'], 'dece':[12,'Déc','Décembre','Decembre', 'dece']} def renommerMois(df): """ dans une df mensuelle, renommer les mois pour coller aux cles du dico_mois in : df :dataframe contenant des references aux mois selon les valeurs attendus dans dico_mois out : nouvelle df avec les noms renommes """ return df.rename(columns={c : k for k, v in dico_mois.items() for c in df.columns if c in v})
f8dd78549cbe1632023d0aaa45a680d04ff64af2
34a4231a53f25cf4ac760569a2e3287d822dc312
/example/example_24.py
aa70721470842fe967b2e1aa262c677cb204c861
[]
no_license
galaxy-tek/python_study
22f74110e557a86da1e5e2cfc3914710c5b56eed
75cb14d588cab7a50744dbc19a7d93ae4b628ffe
refs/heads/master
2022-04-17T20:45:19.437550
2020-04-07T14:32:16
2020-04-07T14:32:16
104,577,457
0
0
null
null
null
null
UTF-8
Python
false
false
7
py
## ##
5a62c1a7a86c023c06ef0508c2747dd67883cf13
167cc4c25f570d285b54302d65252cb278b234c8
/project_0/KNN_code1.py
fd63bd12a43583d91e133f3668fd4cf8f73a5788
[]
no_license
divanshu79/k-nearest-neighbor
011106b0d91d14ff6b64ad1faa07603fa5e9719f
9289f109aaec95ada6a426c0652f99000b031368
refs/heads/master
2021-05-12T18:43:45.066714
2018-01-11T08:45:08
2018-01-11T08:45:08
117,072,858
0
0
null
null
null
null
UTF-8
Python
false
false
947
py
import numpy as np from sklearn import preprocessing, cross_validation, neighbors import pandas as pd import pickle # accuracy = [] df = pd.read_csv('breast-cancer-dataseta.txt') df.replace('?', -99999, inplace=True) df.drop(['id'],1,inplace=True) x = np.array(df.drop(['class'],1)) y = np.array(df['class']) x_train,x_test,y_train,y_test = cross_validation.train_test_split(x,y,test_size=.2) clf = neighbors.KNeighborsClassifier(n_jobs=-1) clf.fit(x_train,y_train) with open('KNN_code1.pickle', 'wb') as f: pickle.dump(clf, f) pickle_in = open('KNN_code1.pickle', 'rb') clf = pickle.load(pickle_in) accuracy = clf.score(x_test,y_test) print(accuracy) example_measure = np.array([[4,2,1,1,1,2,3,2,1],[8,9,10,7,1,4,3,2,2]]) example_measure = example_measure.reshape(len(example_measure),-1) pridiction = clf.predict(example_measure) # accuracy.append(accuracy) # print(sum(accuracy)/len(accuracy))
91b0f84bf061aa67f635b39ccd699dddb0873f50
f20e87f2256203075a74fab01abfbb54e259d4b9
/93-Arithmetic expressions.py
f08c8e9b8b15d318e542c98473837f2e8ed60f8e
[]
no_license
ekolik/-Python-Project_Euler
8873b5268af067dee697d83ad0db3669b318a83a
97df0443b3eeee5bcb385e495f2dc8fc1bf62691
refs/heads/master
2020-04-10T03:56:09.038426
2016-07-15T22:56:11
2016-07-15T22:56:11
30,852,067
0
0
null
null
null
null
UTF-8
Python
false
false
1,557
py
from operator import add, sub, mul, truediv from itertools import permutations, product, combinations mx = 0 for digitset in combinations(range(1, 10), 4): res = set() for item in permutations(digitset): for oper in list(product([add, sub, mul, truediv], repeat=3)): cand = oper[1](oper[0](item[0], item[1]), oper[2](item[2], item[3])) # (..)(..) if cand % 1 == 0 and cand > 0: res.add(int(cand)) cand = oper[2](oper[1](oper[0](item[0], item[1]), item[2]), item[3]) # ((..).). if cand % 1 == 0 and cand > 0: res.add(int(cand)) cand = oper[2](oper[0](item[0], oper[1](item[1], item[2])), item[3]) # (.(..)). if cand % 1 == 0 and cand > 0: res.add(int(cand)) if not(oper[0] == truediv and oper[2](oper[1](item[1], item[2]), item[3]) == 0): cand = oper[0](item[0], oper[2](oper[1](item[1], item[2]), item[3])) # .((..).) if cand % 1 == 0 and cand > 0: res.add(int(cand)) if not(oper[0] == truediv and oper[1](item[1], oper[2](item[2], item[3])) == 0): cand = oper[0](item[0], oper[1](item[1], oper[2](item[2], item[3]))) # .(.(..)) if cand % 1 == 0 and cand > 0: res.add(int(cand)) for i in range(1, max(res)): if i not in res: cur_mx = i-1 break if cur_mx > mx: mx = cur_mx ans = item print(''.join(str(i) for i in sorted(ans)))
b528ff65f964dac95f78ba32df4088d8dc634103
0c358afdb06667607fb93a5b1c022328d6704b69
/Lab2/main.py
12daf2296b633bba67fa45950ac914387754fa5f
[]
no_license
i1red/db-5th-sem
b5ca0095d037da15c1919ec2abb534268ad06760
817a4b1323b56b7a6a69bc1380d4d6e5257f8f9f
refs/heads/master
2023-01-29T00:53:24.642769
2020-12-15T10:22:53
2020-12-15T10:22:53
300,396,714
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
from fastapi import FastAPI import models import schemas from router_utils import create_router, create_one_to_one_router, create_one_to_many_router, create_many_to_many_router app = FastAPI(title='Combat Sports API') app.include_router( create_router( 'promotions', models.Promotion, schemas.PromotionIn, schemas.PromotionOut ) ) app.include_router( create_one_to_one_router( 'promotions', 'promotion_president', 'promotion_presidents', models.PromotionPresident, 'promotion_id', schemas.PromotionPresidentIn, schemas.PromotionPresidentOut ) ) app.include_router( create_router( 'fighters', models.Fighter, schemas.FighterIn, schemas.FighterOut ) ) app.include_router( create_one_to_many_router( 'promotions', 'weight_classes', models.WeightClass, 'promotion_id', schemas.WeightClassIn, schemas.WeightClassOut ) ) app.include_router( create_many_to_many_router( 'weight_classes', 'fighters', models.WeightClass, models.Fighter, models.FighterWeightClass, 'weight_class_id', 'fighter_id', schemas.WeightClassOut, schemas.FighterOut, schemas.FighterWeightClassIn, schemas.FighterWeightClassOut ) )
559a5b83c5f1a5efa4675793fbc5f8a9f6a17a33
5b51418652ffad300585463941b4ea15775daf69
/SimpleWay/Levels_Setup.py
59657ceb8eac0edd0752daea06701ba911412fe0
[]
no_license
bguernouti/LevelSystem
b7194a93674cb2858ad413d69afd97c8ac177d19
2db75c6b985f197f0525b5f222f14beacd3fdf13
refs/heads/master
2020-12-23T09:17:31.798737
2020-02-02T11:54:09
2020-02-02T11:54:09
237,108,837
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
class Level_List: _Levels = { 1: 1000, 2: 1500, 3: 2000, 4: 2500, 5: 3000, 6: 3500, 7: 4000, 8: 4500, 9: 5000, 10: 6000, }
def1d4490f9cf636707e654d2f964e7e91d57510
78a6163d421d95b5c07bf6d3ee979122cc97e809
/config-tool-ice/ytproperty.py
b514cfb71a24614b28490474faed067f1a7ffcdf
[]
no_license
yuanyaru/configTool
dc65f4abb527188f8231b09dedda300fd17c16ed
ba6293de1d2a02e9a25dc8d308061566c85066ae
refs/heads/master
2020-07-02T16:57:03.529746
2019-08-19T08:09:36
2019-08-19T08:09:36
201,596,495
0
0
null
null
null
null
UTF-8
Python
false
false
2,310
py
#!/usr/bin/python # -*- coding:utf-8 -*- from flask import Blueprint, request from iceCon import ice_con import json import Ice Ice.loadSlice("./ice-sqlite.ice") import YTArea yt_blu = Blueprint('yt', __name__) # 查找(遥调属性) @yt_blu.route('/yt_data', methods=['POST']) def get_yt_property_send(): stationId = request.form.get("stationId") station = json.loads(stationId) DataCommand = ice_con() status, result = DataCommand.RPCGetYTProperty(station) ytproperty = [] for i in range(len(result)): ytproperty.append({"id": result[i].ID, "name": result[i].name, "describe": result[i].describe, "unit": result[i].unit, "kval": result[i].kval, "bval": result[i].bval, "address": result[i].address, "uplimt": result[i].uplimt, "downlimt": result[i].downlimt}) return json.dumps(ytproperty) # 添加、修改(遥调属性) @yt_blu.route('/set_yt', methods=['POST']) def set_yt_property(): DataCommand = ice_con() stationId = request.form.get("stationId") station = json.loads(stationId) newyt = request.form.get("data") YtProperty = json.loads(newyt) ytp = [] for i in range(len(YtProperty)): ytp.append(json.loads(YtProperty[i])) ytproperty = [] for j in range(len(ytp[1])): ytpstruct = YTArea.DxPropertyYT(int(ytp[0][j]), ytp[1][j].encode("utf-8"), ytp[2][j].encode("utf-8"), ytp[3][j].encode("utf-8"), float(ytp[4][j]), float(ytp[5][j]), ytp[6][j].encode("utf-8"), float(ytp[7][j]), float(ytp[8][j])) ytproperty.append(ytpstruct) DataCommand.RPCSetYTProperty(station, ytproperty) return '保存成功!' # 删除(遥调属性) @yt_blu.route('/delete_yt', methods=['POST']) def delete_yt_data(): DataCommand = ice_con() stationId = request.form.get("stationId") station = json.loads(stationId) ytIDs = request.form.get("ids") yt_IDs = json.loads(ytIDs) pIDs = [] for i in range(len(yt_IDs)): pIDs.append(long(yt_IDs[i])) DataCommand.RPCDelYTProperty(station, pIDs) return '删除成功!'
403ad416790d1ee65ab89443ebe669baefcb06c0
73c1734a5bab096ef348601beececea5adc8c5f5
/test1.py
a67bfbedade63a30c6010f0f071d765d81ba94b0
[]
no_license
WellingtonAmorim/testsondagem
ce362fb35caef452840be83dd0c21cceb8f382e4
0a348dbc47831f11cdad1b113f02a2b31572b224
refs/heads/main
2023-07-16T09:50:45.637522
2021-09-02T19:01:48
2021-09-02T19:01:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,111
py
import requests from concurrent.futures import ThreadPoolExecutor, as_completed import time url_list = [ "https://via.placeholder.com/400", "https://via.placeholder.com/410", "https://via.placeholder.com/420", "https://via.placeholder.com/430", "https://via.placeholder.com/440", "https://via.placeholder.com/450", "https://via.placeholder.com/460", "https://via.placeholder.com/470", "https://via.placeholder.com/480", "https://via.placeholder.com/490", "https://via.placeholder.com/500", "https://via.placeholder.com/510", "https://via.placeholder.com/520", "https://via.placeholder.com/530", ] def download_file(url): html = requests.get(url, stream=True, verify=False) print("loop") time.sleep(2) return html.status_code for url in url_list: print(download_file(url)) processes = [] with ThreadPoolExecutor(max_workers=10) as executor: for url in url_list: processes.append(executor.submit(download_file, url)) for task in as_completed(processes): print(task.result())
4631da8d5d4d98a49d4adf28bf4567c9c0bd866f
1ddc74d79b2b62cbf910d2206963b778a15797c7
/binary_search.py
0edef03874c0fe91e3e3e3b794b46a94b0cfc8f1
[]
no_license
ckz8780/python_algorithms
dbe064754a3610a641aea45e4006b36bb86e6c35
4551a179a32c41af28120efb3569799d349a7130
refs/heads/main
2023-02-07T07:54:45.751612
2020-12-31T23:44:17
2020-12-31T23:44:17
325,882,473
1
0
null
null
null
null
UTF-8
Python
false
false
1,098
py
data = [2, 3, 5, 7, 9, 12, 15, 17, 18, 20, 23, 25, 28, 30, 33, 34, 35, 37] target = 25 # Linear Search def linear_search(data, target): for i in range(len(data)): if data[i] == target: return True return False print(linear_search(data, target)) # Iterative Binary Search # To use binary search, list MUST be SORTED! def binary_search_iterative(data, target): low = 0 high = len(data) - 1 while low <= high: mid = (low + high) // 2 if target == data[mid]: return True elif target < data[mid]: high = mid - 1 else: low = mid + 1 return False print(binary_search_iterative(data, target)) # Recursive Binary Search def binary_search_recursive(data, target, low, high): if low > high: return False else: mid = (low + high) // 2 if target == data[mid]: return True elif target < data[mid]: return binary_search_recursive(data, target, low, mid - 1) else: return binary_search_recursive(data, target, mid + 1, high) return False print(binary_search_recursive(data, target, 0, len(data) - 1))
06b826743e84279007efad50a2f248c317022896
3ac278b2d0e469e6e8d61da963782bccfd3a51b6
/build/mav_state_machine_msgs/catkin_generated/generate_cached_setup.py
09307dfe4ae74f29af5a2c2dd7fea57c4ae24c8b
[]
no_license
erl-ethz/haptic_ws
a08971c8f99a1aa5f574d9d898c189a9726a9ab6
8f02d35a52c08f5729ae7a489dee9e3f2bd6f110
refs/heads/master
2023-02-19T02:50:12.377601
2021-01-12T15:51:12
2021-01-12T15:51:12
325,560,695
0
0
null
null
null
null
UTF-8
Python
false
false
1,350
py
# -*- coding: utf-8 -*- from __future__ import print_function import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/melodic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/melodic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in '/home/emanuele/catkin_ws/devel;/opt/ros/melodic'.split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/emanuele/catkin_ws/devel/.private/mav_state_machine_msgs/env.sh') output_filename = '/home/emanuele/catkin_ws/build/mav_state_machine_msgs/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: # print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
45865e541a768afcf6947a0829b5e3b49e84c55a
bb3b31c8fd3c3e74376f05094f9436f18e4d31d0
/src/main/c++/examples/pybullet/examples/humanoidMotionCapture.py
c823dc1de774670077c9a0e52b27d8904237b6ac
[ "MIT", "Zlib" ]
permissive
yildiz-online/component-native-bullet
af1e08f27744287ebe5494fc58b873832a6fcc9c
1ed2bf7a01b888622b7bea323e239e3dcd8ba634
refs/heads/develop
2021-01-21T03:34:34.490565
2020-05-02T14:43:03
2020-05-02T14:43:03
101,897,097
0
0
MIT
2020-05-02T14:43:04
2017-08-30T15:17:50
C++
UTF-8
Python
false
false
8,638
py
import pybullet as p import json p.connect(p.GUI) #p.configureDebugVisualizer(p.COV_ENABLE_Y_AXIS_UP , 1) import pybullet_data useMotionCapture=True useMotionCaptureReset=not useMotionCapture p.setAdditionalSearchPath(pybullet_data.getDataPath()) p.setPhysicsEngineParameter(numSolverIterations=200) #path = pybullet_data.getDataPath()+"/motions/humanoid3d_backflip.txt" path = pybullet_data.getDataPath()+"/motions/humanoid3d_cartwheel.txt" p.loadURDF("plane.urdf",[0,0,-0.03]) print("path = ", path) with open(path, 'r') as f: motion_dict = json.load(f) #print("motion_dict = ", motion_dict) print("len motion=", len(motion_dict)) print(motion_dict['Loop']) numFrames = len(motion_dict['Frames']) print("#frames = ", numFrames) frameId= p.addUserDebugParameter("frame",0,numFrames-1,0) jointTypes = ["JOINT_REVOLUTE","JOINT_PRISMATIC", "JOINT_SPHERICAL","JOINT_PLANAR","JOINT_FIXED"] humanoid = p.loadURDF("humanoid/humanoid.urdf", globalScaling=0.25) for j in range (p.getNumJoints(humanoid)): ji = p.getJointInfo(humanoid,j) targetPosition=[0] if (ji[2] == p.JOINT_SPHERICAL): targetPosition=[0,0,0,1] #p.setJointMotorControlMultiDof(humanoid,j,p.POSITION_CONTROL,targetPosition, force=0) #print(ji) print("joint[",j,"].type=",jointTypes[ji[2]]) print("joint[",j,"].name=",ji[1]) jointIds=[] paramIds=[] for j in range (p.getNumJoints(humanoid)): p.changeDynamics(humanoid,j,linearDamping=0, angularDamping=0) p.changeVisualShape(humanoid,j,rgbaColor=[1,1,1,1]) info = p.getJointInfo(humanoid,j) #print(info) if (not useMotionCapture): jointName = info[1] jointType = info[2] if (jointType==p.JOINT_PRISMATIC or jointType==p.JOINT_REVOLUTE): jointIds.append(j) paramIds.append(p.addUserDebugParameter(jointName.decode("utf-8"),-4,4,0)) print("jointName=",jointName, "at ", j) p.changeVisualShape(humanoid,2,rgbaColor=[1,0,0,1]) chest=1 neck=2 rightShoulder=3 rightElbow=4 leftShoulder=6 leftElbow = 7 rightHip = 9 rightKnee=10 rightAnkle=11 leftHip = 12 leftKnee=13 leftAnkle=14 import time once=True p.getCameraImage(320,200) maxForce=1000 while (p.isConnected()): frameReal = p.readUserDebugParameter(frameId) frame = int(frameReal) frameNext = frame+1 if (frameNext >= numFrames): frameNext = frame frameFraction = frameReal - frame #print("frameFraction=",frameFraction) #print("frame=",frame) #print("frameNext=", frameNext) #getQuaternionSlerp frameData = motion_dict['Frames'][frame] frameDataNext = motion_dict['Frames'][frameNext] #print("duration=",frameData[0]) #print(pos=[frameData]) basePos1Start = [frameData[1],frameData[2],frameData[3]] basePos1End = [frameDataNext[1],frameDataNext[2],frameDataNext[3]] basePos1 = [basePos1Start[0]+frameFraction*(basePos1End[0]-basePos1Start[0]), basePos1Start[1]+frameFraction*(basePos1End[1]-basePos1Start[1]), basePos1Start[2]+frameFraction*(basePos1End[2]-basePos1Start[2])] baseOrn1Start = [frameData[5],frameData[6], frameData[7],frameData[4]] baseOrn1Next = [frameDataNext[5],frameDataNext[6], frameDataNext[7],frameDataNext[4]] baseOrn1 = p.getQuaternionSlerp(baseOrn1Start,baseOrn1Next,frameFraction) #pre-rotate to make z-up y2zPos=[0,0,0.0] y2zOrn = p.getQuaternionFromEuler([1.57,0,0]) basePos,baseOrn = p.multiplyTransforms(y2zPos, y2zOrn,basePos1,baseOrn1) p.resetBasePositionAndOrientation(humanoid, basePos,baseOrn) # once=False chestRotStart = [frameData[9],frameData[10],frameData[11],frameData[8]] chestRotEnd = [frameDataNext[9],frameDataNext[10],frameDataNext[11],frameDataNext[8]] chestRot = p.getQuaternionSlerp(chestRotStart,chestRotEnd,frameFraction) neckRotStart = [frameData[13],frameData[14],frameData[15],frameData[12]] neckRotEnd= [frameDataNext[13],frameDataNext[14],frameDataNext[15],frameDataNext[12]] neckRot = p.getQuaternionSlerp(neckRotStart,neckRotEnd,frameFraction) rightHipRotStart = [frameData[17],frameData[18],frameData[19],frameData[16]] rightHipRotEnd = [frameDataNext[17],frameDataNext[18],frameDataNext[19],frameDataNext[16]] rightHipRot = p.getQuaternionSlerp(rightHipRotStart,rightHipRotEnd,frameFraction) rightKneeRotStart = [frameData[20]] rightKneeRotEnd = [frameDataNext[20]] rightKneeRot = [rightKneeRotStart[0]+frameFraction*(rightKneeRotEnd[0]-rightKneeRotStart[0])] rightAnkleRotStart = [frameData[22],frameData[23],frameData[24],frameData[21]] rightAnkleRotEnd = [frameDataNext[22],frameDataNext[23],frameDataNext[24],frameDataNext[21]] rightAnkleRot = p.getQuaternionSlerp(rightAnkleRotStart,rightAnkleRotEnd,frameFraction) rightShoulderRotStart = [frameData[26],frameData[27],frameData[28],frameData[25]] rightShoulderRotEnd = [frameDataNext[26],frameDataNext[27],frameDataNext[28],frameDataNext[25]] rightShoulderRot = p.getQuaternionSlerp(rightShoulderRotStart,rightShoulderRotEnd,frameFraction) rightElbowRotStart = [frameData[29]] rightElbowRotEnd = [frameDataNext[29]] rightElbowRot = [rightElbowRotStart[0]+frameFraction*(rightElbowRotEnd[0]-rightElbowRotStart[0])] leftHipRotStart = [frameData[31],frameData[32],frameData[33],frameData[30]] leftHipRotEnd = [frameDataNext[31],frameDataNext[32],frameDataNext[33],frameDataNext[30]] leftHipRot = p.getQuaternionSlerp(leftHipRotStart,leftHipRotEnd,frameFraction) leftKneeRotStart = [frameData[34]] leftKneeRotEnd = [frameDataNext[34]] leftKneeRot = [leftKneeRotStart[0] +frameFraction*(leftKneeRotEnd[0]-leftKneeRotStart[0]) ] leftAnkleRotStart = [frameData[36],frameData[37],frameData[38],frameData[35]] leftAnkleRotEnd = [frameDataNext[36],frameDataNext[37],frameDataNext[38],frameDataNext[35]] leftAnkleRot = p.getQuaternionSlerp(leftAnkleRotStart,leftAnkleRotEnd,frameFraction) leftShoulderRotStart = [frameData[40],frameData[41],frameData[42],frameData[39]] leftShoulderRotEnd = [frameDataNext[40],frameDataNext[41],frameDataNext[42],frameDataNext[39]] leftShoulderRot = p.getQuaternionSlerp(leftShoulderRotStart,leftShoulderRotEnd,frameFraction) leftElbowRotStart = [frameData[43]] leftElbowRotEnd = [frameDataNext[43]] leftElbowRot = [leftElbowRotStart[0]+frameFraction*(leftElbowRotEnd[0]-leftElbowRotStart[0])] #print("chestRot=",chestRot) p.setGravity(0,0,0) kp=1 if (useMotionCapture): p.setJointMotorControlMultiDof(humanoid,chest,p.POSITION_CONTROL, targetPosition=chestRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,neck,p.POSITION_CONTROL,targetPosition=neckRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,rightHip,p.POSITION_CONTROL,targetPosition=rightHipRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,rightKnee,p.POSITION_CONTROL,targetPosition=rightKneeRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,rightAnkle,p.POSITION_CONTROL,targetPosition=rightAnkleRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,rightShoulder,p.POSITION_CONTROL,targetPosition=rightShoulderRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,rightElbow, p.POSITION_CONTROL,targetPosition=rightElbowRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,leftHip, p.POSITION_CONTROL,targetPosition=leftHipRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,leftKnee, p.POSITION_CONTROL,targetPosition=leftKneeRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,leftAnkle, p.POSITION_CONTROL,targetPosition=leftAnkleRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,leftShoulder, p.POSITION_CONTROL,targetPosition=leftShoulderRot,positionGain=kp, force=maxForce) p.setJointMotorControlMultiDof(humanoid,leftElbow, p.POSITION_CONTROL,targetPosition=leftElbowRot,positionGain=kp, force=maxForce) if (useMotionCaptureReset): p.resetJointStateMultiDof(humanoid,chest,chestRot) p.resetJointStateMultiDof(humanoid,neck,neckRot) p.resetJointStateMultiDof(humanoid,rightHip,rightHipRot) p.resetJointStateMultiDof(humanoid,rightKnee,rightKneeRot) p.resetJointStateMultiDof(humanoid,rightAnkle,rightAnkleRot) p.resetJointStateMultiDof(humanoid,rightShoulder,rightShoulderRot) p.resetJointStateMultiDof(humanoid,rightElbow, rightElbowRot) p.resetJointStateMultiDof(humanoid,leftHip, leftHipRot) p.resetJointStateMultiDof(humanoid,leftKnee, leftKneeRot) p.resetJointStateMultiDof(humanoid,leftAnkle, leftAnkleRot) p.resetJointStateMultiDof(humanoid,leftShoulder, leftShoulderRot) p.resetJointStateMultiDof(humanoid,leftElbow, leftElbowRot) p.stepSimulation() #time.sleep(1./240.)
50faeae0894485df5c3a03fa5afe161265b94cc9
33fea8d6ca343044796366d9e489b2eed9b1b70d
/Homework/a3/utils/parser_utils.py
22f7f7035f3260553b2f48d2d221e751dfafc3af
[ "MIT" ]
permissive
LFhase/Learning_CS224N
25b347c2c93f7d02e802ee8fde093b57245b3e1a
21af6dd4f7b9dcb3f34aac9c2cebf4a02a17176f
refs/heads/master
2021-01-16T02:18:54.949755
2020-09-23T02:55:46
2020-09-23T02:55:46
242,939,774
6
1
null
null
null
null
UTF-8
Python
false
false
15,808
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ CS224N 2018-19: Homework 3 parser_utils.py: Utilities for training the dependency parser. Sahil Chopra <[email protected]> """ import time import os import logging from collections import Counter from .general_utils import get_minibatches from parser_transitions import minibatch_parse from tqdm import tqdm import torch import numpy as np P_PREFIX = '<p>:' L_PREFIX = '<l>:' UNK = '<UNK>' NULL = '<NULL>' ROOT = '<ROOT>' class Config(object): language = 'english' with_punct = True unlabeled = True lowercase = True use_pos = True use_dep = True use_dep = use_dep and (not unlabeled) data_path = './data' train_file = 'train.conll' dev_file = 'dev.conll' test_file = 'test.conll' embedding_file = './data/en-cw.txt' class Parser(object): """Contains everything needed for transition-based dependency parsing except for the model""" def __init__(self, dataset): root_labels = list([l for ex in dataset for (h, l) in zip(ex['head'], ex['label']) if h == 0]) counter = Counter(root_labels) if len(counter) > 1: logging.info('Warning: more than one root label') logging.info(counter) self.root_label = counter.most_common()[0][0] deprel = [self.root_label] + list(set([w for ex in dataset for w in ex['label'] if w != self.root_label])) tok2id = {L_PREFIX + l: i for (i, l) in enumerate(deprel)} tok2id[L_PREFIX + NULL] = self.L_NULL = len(tok2id) config = Config() self.unlabeled = config.unlabeled self.with_punct = config.with_punct self.use_pos = config.use_pos self.use_dep = config.use_dep self.language = config.language if self.unlabeled: trans = ['L', 'R', 'S'] self.n_deprel = 1 else: trans = ['L-' + l for l in deprel] + ['R-' + l for l in deprel] + ['S'] self.n_deprel = len(deprel) self.n_trans = len(trans) self.tran2id = {t: i for (i, t) in enumerate(trans)} self.id2tran = {i: t for (i, t) in enumerate(trans)} # logging.info('Build dictionary for part-of-speech tags.') tok2id.update(build_dict([P_PREFIX + w for ex in dataset for w in ex['pos']], offset=len(tok2id))) tok2id[P_PREFIX + UNK] = self.P_UNK = len(tok2id) tok2id[P_PREFIX + NULL] = self.P_NULL = len(tok2id) tok2id[P_PREFIX + ROOT] = self.P_ROOT = len(tok2id) # logging.info('Build dictionary for words.') tok2id.update(build_dict([w for ex in dataset for w in ex['word']], offset=len(tok2id))) tok2id[UNK] = self.UNK = len(tok2id) tok2id[NULL] = self.NULL = len(tok2id) tok2id[ROOT] = self.ROOT = len(tok2id) self.tok2id = tok2id self.id2tok = {v: k for (k, v) in tok2id.items()} self.n_features = 18 + (18 if config.use_pos else 0) + (12 if config.use_dep else 0) self.n_tokens = len(tok2id) def vectorize(self, examples): vec_examples = [] for ex in examples: word = [self.ROOT] + [self.tok2id[w] if w in self.tok2id else self.UNK for w in ex['word']] pos = [self.P_ROOT ] + [self.tok2id[P_PREFIX + w] if P_PREFIX + w in self.tok2id else self.P_UNK for w in ex['pos']] head = [-1] + ex['head'] label = [-1] + [self.tok2id[L_PREFIX + w] if L_PREFIX + w in self.tok2id else -1 for w in ex['label']] vec_examples.append({'word': word, 'pos': pos, 'head': head, 'label': label}) return vec_examples def extract_features(self, stack, buf, arcs, ex): if stack[0] == "ROOT": stack[0] = 0 def get_lc(k): return sorted([arc[1] for arc in arcs if arc[0] == k and arc[1] < k]) def get_rc(k): return sorted([arc[1] for arc in arcs if arc[0] == k and arc[1] > k], reverse=True) p_features = [] l_features = [] features = [self.NULL] * (3 - len(stack)) + [ex['word'][x] for x in stack[-3:]] features += [ex['word'][x] for x in buf[:3]] + [self.NULL] * (3 - len(buf)) if self.use_pos: p_features = [self.P_NULL] * (3 - len(stack)) + [ex['pos'][x] for x in stack[-3:]] p_features += [ex['pos'][x] for x in buf[:3]] + [self.P_NULL] * (3 - len(buf)) for i in range(2): if i < len(stack): k = stack[-i - 1] lc = get_lc(k) rc = get_rc(k) llc = get_lc(lc[0]) if len(lc) > 0 else [] rrc = get_rc(rc[0]) if len(rc) > 0 else [] features.append(ex['word'][lc[0]] if len(lc) > 0 else self.NULL) features.append(ex['word'][rc[0]] if len(rc) > 0 else self.NULL) features.append(ex['word'][lc[1]] if len(lc) > 1 else self.NULL) features.append(ex['word'][rc[1]] if len(rc) > 1 else self.NULL) features.append(ex['word'][llc[0]] if len(llc) > 0 else self.NULL) features.append(ex['word'][rrc[0]] if len(rrc) > 0 else self.NULL) if self.use_pos: p_features.append(ex['pos'][lc[0]] if len(lc) > 0 else self.P_NULL) p_features.append(ex['pos'][rc[0]] if len(rc) > 0 else self.P_NULL) p_features.append(ex['pos'][lc[1]] if len(lc) > 1 else self.P_NULL) p_features.append(ex['pos'][rc[1]] if len(rc) > 1 else self.P_NULL) p_features.append(ex['pos'][llc[0]] if len(llc) > 0 else self.P_NULL) p_features.append(ex['pos'][rrc[0]] if len(rrc) > 0 else self.P_NULL) if self.use_dep: l_features.append(ex['label'][lc[0]] if len(lc) > 0 else self.L_NULL) l_features.append(ex['label'][rc[0]] if len(rc) > 0 else self.L_NULL) l_features.append(ex['label'][lc[1]] if len(lc) > 1 else self.L_NULL) l_features.append(ex['label'][rc[1]] if len(rc) > 1 else self.L_NULL) l_features.append(ex['label'][llc[0]] if len(llc) > 0 else self.L_NULL) l_features.append(ex['label'][rrc[0]] if len(rrc) > 0 else self.L_NULL) else: features += [self.NULL] * 6 if self.use_pos: p_features += [self.P_NULL] * 6 if self.use_dep: l_features += [self.L_NULL] * 6 features += p_features + l_features assert len(features) == self.n_features return features def get_oracle(self, stack, buf, ex): if len(stack) < 2: return self.n_trans - 1 i0 = stack[-1] i1 = stack[-2] h0 = ex['head'][i0] h1 = ex['head'][i1] l0 = ex['label'][i0] l1 = ex['label'][i1] if self.unlabeled: if (i1 > 0) and (h1 == i0): return 0 elif (i1 >= 0) and (h0 == i1) and \ (not any([x for x in buf if ex['head'][x] == i0])): return 1 else: return None if len(buf) == 0 else 2 else: if (i1 > 0) and (h1 == i0): return l1 if (l1 >= 0) and (l1 < self.n_deprel) else None elif (i1 >= 0) and (h0 == i1) and \ (not any([x for x in buf if ex['head'][x] == i0])): return l0 + self.n_deprel if (l0 >= 0) and (l0 < self.n_deprel) else None else: return None if len(buf) == 0 else self.n_trans - 1 def create_instances(self, examples): all_instances = [] succ = 0 for id, ex in enumerate(examples): n_words = len(ex['word']) - 1 # arcs = {(h, t, label)} stack = [0] buf = [i + 1 for i in range(n_words)] arcs = [] instances = [] for i in range(n_words * 2): gold_t = self.get_oracle(stack, buf, ex) if gold_t is None: break legal_labels = self.legal_labels(stack, buf) assert legal_labels[gold_t] == 1 instances.append((self.extract_features(stack, buf, arcs, ex), legal_labels, gold_t)) if gold_t == self.n_trans - 1: stack.append(buf[0]) buf = buf[1:] elif gold_t < self.n_deprel: arcs.append((stack[-1], stack[-2], gold_t)) stack = stack[:-2] + [stack[-1]] else: arcs.append((stack[-2], stack[-1], gold_t - self.n_deprel)) stack = stack[:-1] else: succ += 1 all_instances += instances return all_instances def legal_labels(self, stack, buf): labels = ([1] if len(stack) > 2 else [0]) * self.n_deprel labels += ([1] if len(stack) >= 2 else [0]) * self.n_deprel labels += [1] if len(buf) > 0 else [0] return labels def parse(self, dataset, eval_batch_size=5000): sentences = [] sentence_id_to_idx = {} for i, example in enumerate(dataset): n_words = len(example['word']) - 1 sentence = [j + 1 for j in range(n_words)] sentences.append(sentence) sentence_id_to_idx[id(sentence)] = i model = ModelWrapper(self, dataset, sentence_id_to_idx) dependencies = minibatch_parse(sentences, model, eval_batch_size) UAS = all_tokens = 0.0 with tqdm(total=len(dataset)) as prog: for i, ex in enumerate(dataset): head = [-1] * len(ex['word']) for h, t, in dependencies[i]: head[t] = h for pred_h, gold_h, gold_l, pos in \ zip(head[1:], ex['head'][1:], ex['label'][1:], ex['pos'][1:]): assert self.id2tok[pos].startswith(P_PREFIX) pos_str = self.id2tok[pos][len(P_PREFIX):] if (self.with_punct) or (not punct(self.language, pos_str)): UAS += 1 if pred_h == gold_h else 0 all_tokens += 1 prog.update(i + 1) UAS /= all_tokens return UAS, dependencies class ModelWrapper(object): def __init__(self, parser, dataset, sentence_id_to_idx): self.parser = parser self.dataset = dataset self.sentence_id_to_idx = sentence_id_to_idx def predict(self, partial_parses): mb_x = [ self.parser.extract_features(p.stack, p.buffer, p.dependencies, self.dataset[self.sentence_id_to_idx[id(p.sentence)]]) for p in partial_parses ] mb_x = np.array(mb_x).astype('int32') mb_x = torch.from_numpy(mb_x).long() mb_l = [self.parser.legal_labels(p.stack, p.buffer) for p in partial_parses] pred = self.parser.model(mb_x) pred = pred.detach().numpy() pred = np.argmax(pred + 10000 * np.array(mb_l).astype('float32'), 1) pred = ["S" if p == 2 else ("LA" if p == 0 else "RA") for p in pred] return pred def read_conll(in_file, lowercase=False, max_example=None): examples = [] with open(in_file) as f: word, pos, head, label = [], [], [], [] for line in f.readlines(): sp = line.strip().split('\t') if len(sp) == 10: if '-' not in sp[0]: word.append(sp[1].lower() if lowercase else sp[1]) pos.append(sp[4]) head.append(int(sp[6])) label.append(sp[7]) elif len(word) > 0: examples.append({'word': word, 'pos': pos, 'head': head, 'label': label}) word, pos, head, label = [], [], [], [] if (max_example is not None) and (len(examples) == max_example): break if len(word) > 0: examples.append({'word': word, 'pos': pos, 'head': head, 'label': label}) return examples def build_dict(keys, n_max=None, offset=0): count = Counter() for key in keys: count[key] += 1 ls = count.most_common() if n_max is None \ else count.most_common(n_max) return {w[0]: index + offset for (index, w) in enumerate(ls)} def punct(language, pos): if language == 'english': return pos in ["''", ",", ".", ":", "``", "-LRB-", "-RRB-"] elif language == 'chinese': return pos == 'PU' elif language == 'french': return pos == 'PUNC' elif language == 'german': return pos in ["$.", "$,", "$["] elif language == 'spanish': # http://nlp.stanford.edu/software/spanish-faq.shtml return pos in [ "f0", "faa", "fat", "fc", "fd", "fe", "fg", "fh", "fia", "fit", "fp", "fpa", "fpt", "fs", "ft", "fx", "fz" ] elif language == 'universal': return pos == 'PUNCT' else: raise ValueError('language: %s is not supported.' % language) def minibatches(data, batch_size): x = np.array([d[0] for d in data]) y = np.array([d[2] for d in data]) one_hot = np.zeros((y.size, 3)) one_hot[np.arange(y.size), y] = 1 return get_minibatches([x, one_hot], batch_size) def load_and_preprocess_data(reduced=True): config = Config() print("Loading data...",) start = time.time() train_set = read_conll(os.path.join(config.data_path, config.train_file), lowercase=config.lowercase) dev_set = read_conll(os.path.join(config.data_path, config.dev_file), lowercase=config.lowercase) test_set = read_conll(os.path.join(config.data_path, config.test_file), lowercase=config.lowercase) if reduced: train_set = train_set[:1000] dev_set = dev_set[:500] test_set = test_set[:500] print("took {:.2f} seconds".format(time.time() - start)) print("Building parser...",) start = time.time() parser = Parser(train_set) print("took {:.2f} seconds".format(time.time() - start)) print("Loading pretrained embeddings...",) start = time.time() word_vectors = {} for line in open(config.embedding_file).readlines(): sp = line.strip().split() word_vectors[sp[0]] = [float(x) for x in sp[1:]] embeddings_matrix = np.asarray(np.random.normal(0, 0.9, (parser.n_tokens, 50)), dtype='float32') for token in parser.tok2id: i = parser.tok2id[token] if token in word_vectors: embeddings_matrix[i] = word_vectors[token] elif token.lower() in word_vectors: embeddings_matrix[i] = word_vectors[token.lower()] print("took {:.2f} seconds".format(time.time() - start)) print("Vectorizing data...",) start = time.time() train_set = parser.vectorize(train_set) dev_set = parser.vectorize(dev_set) test_set = parser.vectorize(test_set) print("took {:.2f} seconds".format(time.time() - start)) print("Preprocessing training data...",) start = time.time() train_examples = parser.create_instances(train_set) print("took {:.2f} seconds".format(time.time() - start)) return parser, embeddings_matrix, train_examples, dev_set, test_set, class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count if __name__ == '__main__': pass
bf06e74cf8597dd2a18aa2da1089aceb7d28c43d
4a91c38d50d9c8ba5ff2c1adcc3a611611788733
/data_analysis_forThesis.py
f1cdbcfc58e344275bc9ee8c97ce9d72c51949ae
[]
no_license
heewonpark/DataAnalysis
944d33b61532ae37d19ec31bed9140397014cd51
9b0dfb1d58b135f03bc8f2e6d8d5bd6952479e98
refs/heads/master
2021-01-21T12:06:56.475481
2016-03-19T06:31:33
2016-03-19T06:31:33
28,217,704
1
0
null
null
null
null
UTF-8
Python
false
false
11,193
py
#! /usr/bin/python # coding: UTF-8 ############################################## # This file is written by Park # Edited in 2015.03.23 ############################################### import stfio import numpy as np import matplotlib.pyplot as plt import math import os.path #import seaborn as sns from SpikeDetector import spikedetector #readfilelist = open("ListOfData.txt",'r') readfilelist = open("listoffiles2.txt",'r') filenames = readfilelist.readlines() print filenames readfilelist.close() RANGE = 170 w_step_time = [] w_step_freq = [0 for _ in range(RANGE)] DATABIN = 0.1 AVER_STIM = 6.0 #splist:spikelist2 ,dt = rec.dt, databin = timestep? timeWidth = limit def analysis_by_bin(wname,splist2,Bin, steps, delay, dt, timeWidth,sstart,send) : step_freq = [0 for _ in range(steps+1)] step_num = [0 for _ in range(steps+1)] step_time = [0 for _ in range(steps+1)] l_step_freq = [0 for _ in range(RANGE)] for j in range(steps+1): step_time[j] = j*Bin*dt if (j+1)*Bin >= timeWidth: for i in range(j*Bin, timeWidth): if splist2[i] == 1: step_num[j] +=1 else: for i in range(j*Bin, (j+1)*Bin): if splist2[i] == 1: step_num[j] +=1 for j in range(steps+1): step_freq[j] = step_num[j]/DATABIN #fig2 =plt.figure() fig2 =plt.figure(figsize=(12,8),dpi=400) plt.bar(step_time, step_freq,width = 0.1,color='0.2') plt.plot([sstart,send],[175,175],linewidth=8,color='k') plt.xlabel('Time[s]',fontsize=20) plt.xlim(0,15) plt.ylim(0,180) plt.ylabel('Frequency[Hz]',fontsize=20) plt.title('PSTH',fontsize=20) plt.savefig("./graph/"+wname+"bin.png") plt.close() bin_file = open("./analyzed_data/"+wname+"bin.dat",'w') bin_file.writelines(repr(steps)+' '+repr(delay)+'\n') for j in range(steps+1): # print 'j '+repr(j) w_step_freq[j+10+delay] +=step_freq[j] l_step_freq[j+10+delay] = step_freq[j] for k in range(RANGE): bin_file.writelines(repr(w_step_time[k]) + '\t' + repr(l_step_freq[k])+'\n') bin_file.close() wholedata = open('./analyzed_data/ifreq_whole.dat','w') def data_analysis(string) : #刺激スタート時間の補正が必要(とりあえず 全部0にした) filename, starttime = string.split(' ') rec = stfio.read(filename) #rec = stfio.read("300ng.atf") print 'filename '+filename+' start time '+ starttime filename = os.path.basename(filename) writename = filename.rstrip('.atf') print writename, filename f = open("./analyzed_data/"+writename + '.dat','w') histogram = open("./analyzed_data/"+writename + 'histogram.dat','w') # To make histogram, it will record top point of spike freqdata = open("./analyzed_data/"+writename + 'ifreq.dat','w') clamp = rec[0][0] voltage = rec[0][2] limit = rec[0][0].asarray().shape[0] flg=0 for i in range(limit): if i==0: pass elif(voltage[i-1]-0.2)*(voltage[i]-0.2)<0: if flg==0: stim_start = i*rec.dt flg +=1 elif flg==1: stim_end = i*rec.dt flg = 0 flg=0 time = np.arange(0.0, limit, 1.0) * rec.dt threshold_c = 0.75 #for cclamp threshold_v = 0.2 #for voltage IN2 spike_cnt = 0 #spike number counter bs_cnt = 0 #before stimulus spike number counter as_cnt = 0 #after stimulus spike number counter s_start = 0 # start of stimulation by Voltage s_end = 0 # end of stimulation by Voltage s_flg = 0 in_spike = False spikelist = [] #time of the spike will be recorded. spikelist.x[i]*dt = Spike time spikelist2 = [] #length of this list is same as clamp and voltage, if spike: spikelist2[i]=1; if not spike:spikelist2[i]=0 rs_start = 0 # real start of stimulation calcuate by spike frequency rs_start_flg = 0 if_2 = [] #instantaneus frequency, 2 spike if_2t = [] #instantaneus frequency time if_3 = [] #instantaneus frequency, 3 spike if_3t = [] #instantaneus frequency time if_4 = [] #instantaneus frequency, 4 spike if_4t = [] #instantaneus frequency time sec1spike = 0 sec2spike = 0 print rec.dt print "time " print rec.dt * limit f.writelines('#Whole time :'+repr(rec.dt * limit)+'\n') for i in range(limit): if i ==0: pass elif (voltage[i-1]-threshold_v)*(voltage[i]-threshold_v)<0: if s_flg == 0: # print(i) s_start = i s_flg +=1 elif s_flg > 0: s_end = i print 's_start : ' + repr(s_start) + ' s_end : ' +repr(s_end) + ' i : ' + repr(i) print (limit) i = 0 spikelist2 =[0 for _ in range(limit)] for i in range(limit): if i == 0: pass elif (clamp[i-1] - threshold_c) * (clamp[i] - threshold_c) < 0: spike_cnt +=1 if in_spike == True: in_spike = False elif in_spike == False: in_spike = True if (in_spike == True) & (i != limit-1): if(clamp[i-1]<clamp[i]) & (clamp[i]>clamp[i+1]): spikelist.append(i) spikelist2[i] = 1 # print(i) # print (i) ##Print spike timing spfile = open("./analyzed_data/"+writename + 'spiketiming.dat','w') for i in range(len(spikelist)): spfile.writelines(repr(spikelist[i]*rec.dt)+'\n') spfile.close() ##Print spike timing end i=0 for i in range(limit): if (i <limit-1) &(i>0) : if(clamp[i-1]-clamp[i]) * (clamp[i]-clamp[i+1]) < 0: histogram.writelines(repr(clamp[i])+'\n') histogram.close() print s_start print spike_cnt f.writelines('#Number of Spike :'+repr(spike_cnt/2)+'\n') for j in range(len(spikelist)): if spikelist[j]>s_start: if j< len(spikelist)-3 : if (spikelist[j+3]-spikelist[j])<10000: if rs_start_flg ==0 : rs_start = spikelist[j] rs_start_flg +=1 print 'rs_start : ' + repr(rs_start) +' '+ repr(rs_start*rec.dt)+'s' f.writelines('#Start time of stimulation : ' + repr(rs_start)+'\n') i=0 for i in range(len(spikelist)): if i<len(spikelist)-1: if spikelist[i]-rs_start==0: bs_cnt = i f.writelines('#bs_cnt :' + repr(bs_cnt)+'\n') for j in range(len(spikelist)): if (spikelist[j]-rs_start>=0)&(spikelist[j]-rs_start<(1/rec.dt)): sec1spike += 1 for j in range(len(spikelist)): if (spikelist[j]-rs_start>=0)&(spikelist[j]-rs_start<(2/rec.dt)): sec2spike += 1 f.writelines('#1sec spike : ' + repr(sec1spike)+'\n') f.writelines('#2sec spike : ' + repr(sec2spike)+'\n') i=0 freqdata.writelines(repr(len(spikelist)-1-bs_cnt)+'\n') for i in range(len(spikelist)): if i< len(spikelist)-1: a = 1 / ((spikelist[i+1]-spikelist[i])*rec.dt) at = (spikelist[i+1]+spikelist[i])*0.5*rec.dt #print repr(a) """ if a>200: a=200 """ f.writelines(repr(i)+'\t'+repr(spikelist[i])+'\t'+repr(spikelist[i+1])+'\t') f.writelines(repr(at)+ '\t'+repr(a)+'\n') if bs_cnt<=i: freqdata.writelines(repr(at)+ '\t'+repr(a)+'\n') if_2.append(a) if_2t.append(at) i=0 for i in range(len(spikelist)): if i< len(spikelist)-2: b = 2/ ((spikelist[i+2] - spikelist[i])*rec.dt) bt = (spikelist[i+2]+spikelist[i+1]+spikelist[i])/3*rec.dt """ if b>200: b=200 """ f.writelines(repr(bt)+'\t'+repr(b)+'\n') if_3.append(b) if_3t.append(bt) f.writelines('\n\n') i=0 for i in range(len(spikelist)): if i< len(spikelist)-3: c = 3/ ((spikelist[i+3] - spikelist[i])*rec.dt) ct = (spikelist[i+3]+spikelist[i+2]+spikelist[i+1]+spikelist[i])/4*rec.dt """ if c>200: c=200 """ f.writelines(repr(ct)+'\t'+repr(c)+'\n') if_4.append(c) if_4t.append(ct) for i in range(len(spikelist)): if i< len(spikelist)-5: d = 5/ ((spikelist[i+5] - spikelist[i])*rec.dt) dt = (spikelist[i+5]+spikelist[i+4]+spikelist[i+3]+spikelist[i+2]+spikelist[i+1]+spikelist[i])/6*rec.dt if bs_cnt<=i: wholedata.writelines(repr(dt)+ '\t'+repr(d)+'\n') Bin = int(DATABIN/rec.dt) steps = int(limit/Bin) delay = int(starttime.strip('\n')) print 'delay ' +repr(delay)+'steps '+repr(steps) analysis_by_bin(writename, spikelist2,Bin,steps,delay,rec.dt, limit,stim_start,stim_end) f.close() flg = plt.figure() plt.subplot(311) plt.plot(if_2t,if_2) plt.ylim(0,300) plt.subplot(312) plt.plot(if_3t,if_3) plt.ylim(0,300) plt.subplot(313) plt.plot(if_4t,if_4) plt.ylim(0,300) plt.savefig("./graph/"+writename+"instantaneusFrequency.png") plt.close() #flg2__ = plt.figure() fig2__ =plt.figure(figsize=(12,8),dpi=400) plt.plot([stim_start,stim_end],[295,295],linewidth=8,color='k') plt.plot(if_2t,if_2,color='0.2') plt.ylim(0,300) plt.xlim(0,15) plt.xlabel('Time[s]',fontsize=20) plt.ylabel('Frequency[Hz]',fontsize=20) plt.title('Instantaneus Frequency',fontsize=20) plt.savefig("./graph/"+writename+"if.png") plt.close() #plt.show() #end of data_analysis w_step_time =[0 for _ in range(RANGE)] for i in range(RANGE): w_step_time[i] = (i-10)*0.1 i=0 for i in range(len(filenames)): data_analysis(filenames[i]) for j in range(RANGE): w_step_freq[j] = w_step_freq[j]/6.0 aver_f = open('./analyzed_data/average.dat','w') for i in range(RANGE): aver_f.writelines(repr(w_step_time[i])+'\t'+repr(w_step_freq[i])+'\n') fig3 = plt.figure(figsize=(10,8),dpi=400) fig3.patch.set_alpha(0.0) plt.rcParams['font.size']=20 plt.bar(np.array(w_step_time)-6.0, w_step_freq,width = 0.1,color="#3b3b3b") plt.ylim(0,120) plt.xlim(-6,8) plt.xlabel('Time[s]',fontsize=30) plt.ylabel('Frequency[Hz]',fontsize=30) plt.savefig("./graph/average.png") #plt.close() #### Graph for Presentation #plt.rcParams['font.family'] = 'Times New Roman' plt.rcParams['font.size'] = 20 plt.rcParams['axes.linewidth'] = 2.0 #plt.rcParams['xtics.major.size'] = 10 #plt.rcParams['xtics.major.width'] = 1.5 fig = plt.figure(figsize=(5,4),dpi=250) fig.subplots_adjust(bottom=0.2,left =0.20) ax = fig.add_subplot(111) fig.patch.set_alpha(0.0) plt.bar(np.array(w_step_time)-6.0, w_step_freq,width = 0.1,color="#3b3b3b") plt.ylim(0,120) plt.xlim(-6,8) plt.xlabel('Time[s]') plt.ylabel('Frequency[Hz]') plt.savefig("./graph/average_fp.png") plt.close()
9eb2a02715208ed6e0124decfad21ddb2fc33527
401aa55f4db07846bc567af007df3a9e9c197353
/main.py
3beca79208cea2db4f1d542b4c715b7322c9e94e
[]
no_license
hachibeeDI/learn-deeplearning
9adf4872a16cacd098ad80ed157740ed4c4a54a7
683ad03c05efed5e06aa968056cfb703264ecbc7
refs/heads/master
2021-04-09T10:20:27.167866
2018-03-31T12:58:10
2018-03-31T12:58:10
125,313,776
0
0
null
null
null
null
UTF-8
Python
false
false
1,731
py
import numpy as np from matplotlib import pylab as plt from src import exp class Chap_3_3: def confirm_sigmoid(): x = np.array([-1.0, 1.0, 2.0]) y = exp.sigmoid(x) plt.plot(x,y) plt.ylim(-0.1, 1.1) plt.show() def confirm_exp_3_9(): """ p60-p61 A weighted addition for the first neuron of first layer. W = weight? B = bias Z = zone? b + w1x1 + w2x2 => a1 """ X = np.array([1.0, 0.5]) W1 = np.array([[1.0, 0.3, 0.5], [0.2, 0.4, 0.6]]) B1 = np.array([0.1, 0.2, 0.3]) A1 = np.dot(X, W1) + B1 return A1 def confirm_activate_function_applied(): """ p62 h(a1) => z1 """ A1 = self.confirm_exp_3_9() Z1 = exp.sigmoid(A1) print(A1) print(Z1) def init_network(): return { 'W1': np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]]), 'b1': np.array([0.1, 0.2, 0.3]), 'W2': np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]]), 'b2': np.array([0.1, 0.2]), 'W3': np.array([[0.1, 0.3], [0.2, 0.4]]), 'b3': np.array([0.1, 0.2]), } def forward(network, x): W1, W2, W3 = network['W1'], network['W2'], network['W3'] b1, b2, b3 = network['b1'], network['b2'], network['b3'] a1 = np.dot(x, W1) + b1 z1 = exp.sigmoid(a1) a2 = np.dot(z1, W2) + b2 z2 = exp.sigmoid(a2) a3 = np.dot(z2, W3) + b3 y = exp.identity(a3) return y if __name__ == '__main__': network = init_network() x = np.array([1.0, 0.5]) y = forward(network, x) print(y) assert y[0] == 0.3168270764110298, y[0] assert y[1] == 0.6962790898619668, y[1]
9cde44866d0e5b7b3b6c3c540e755ecc32f55691
002c182e171ffa52d28bef8ebc9622cd252201c0
/counter.py
820815cf39ba3eb61da5522409189b7ad2b55991
[]
no_license
pinkcoderunicorn/Mean-Median-and-Mode
865b012f3adfcea765e530d4cc618f04c71b13b0
8e9541c5be80a5f3e09c56eeef4bc85ae584adda
refs/heads/main
2023-07-09T14:42:02.017397
2021-08-22T05:20:01
2021-08-22T05:20:01
398,720,559
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
from collections import Counter new_data = "whitehatjr" data = Counter(new_data) print(data) new_list = data.items() print(new_list) value = data.values() print(value)
6cdb12e87e1c58c080e8da087c4144b04d09ebfb
d469ad948b8d0f199fc1bbdb625678d68c87b919
/exp/nb_copernicusActivations.py
999afdc8d7be242ad6bf479f1030fcb00bd6d643
[ "Apache-2.0" ]
permissive
dmbernaal/copernicus
4723b07b074e58dea294b5192d43ba111ac4f2f0
4e4b9692418bf6575f69a5b6de7228765266d14e
refs/heads/master
2020-12-12T00:29:33.356928
2020-01-15T04:19:56
2020-01-15T04:19:56
233,995,659
0
0
null
2020-01-15T04:19:57
2020-01-15T04:06:59
Jupyter Notebook
UTF-8
Python
false
false
1,970
py
################################################# ### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ### ################################################# # file to edit: dev_nb/copernicusActivations_001.ipynb import torch import math import torch.nn.functional as F import torch.nn as nn # mish activation class Mish(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x * ( torch.tanh(F.softplus(x))) class Selu(nn.Module): def __init__(self): super().__init__() self.alpha = torch.tensor(1.6732632423543772848170429916717) self.scale = torch.tensor(1.0507009873554804934193349852946) def forward(self, x): return self.scale * torch.where(x>=0.0, x, self.alpha * torch.exp(x) - self.alpha) def get_activation_(act): if act is None or act == 'relu': act_fn = nn.ReLU(inplace=True) # relu as default elif act == 'mish': act_fn = Mish() elif act == 'selu': act_fn = Selu() elif act == 'elu': act_fn = nn.ELU() elif act == 'hardshrink': act_fn = nn.Hardshrink() elif act == 'hardtanh': act_fn = nn.Hardtanh() elif act == 'leakyrelu': act_fn = nn.LeakyReLU() elif act == 'logsigmoid': act_fn = nn.LogSigmoid() elif act == 'prelu': act_fn = nn.PReLU() elif act == 'relu6': act_fn = nn.ReLU6() elif act == 'rrelu': act_fn = nn.RReLU() elif act == 'celu': act_fn = nn.CELU() elif act == 'sigmoid': act_fn = nn.Sigmoid() elif act == 'softplus': act_fn = nn.Softplus() elif act == 'softshrink': act_fn = nn.Softshrink() elif act == 'softsign': act_fn = nn.Softsign() elif act == 'tanhshrink': act_fn = nn.Tanhshrink() else: raise ValueError('Act is not properly defined: check activations list') return act_fn activations = ['mish', 'selu', 'elu', 'relu', 'hardshrink', 'hardtanh', 'leakyrelu', 'logsigmoid', 'prelu', 'rrelu', 'relu6', 'celu', 'sigmoid', 'softplus', 'softshrink', 'softsign', 'tanhshrink']
d7e63dc0aa5732d688a925eb77b33fd1951f4883
51981912bbe59bc2179aceae00d0a5d99ef2f9e7
/node_modules/mongoose/node_modules/mongodb/node_modules/kerberos/build/config.gypi
7f6004f3e577c1b395938a61022aecdd8cb62b4b
[ "MIT", "Apache-2.0" ]
permissive
bmdFalmouth/GTVServer
65b61da4e547f08fb435ada0a1f4a6fd0f50a32d
9bf96039b8c8a4ef202861d0dac127895c498553
refs/heads/master
2022-06-28T08:54:57.867608
2013-08-03T21:18:09
2013-08-03T21:18:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,986
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 0, "gcc_version": 42, "host_arch": "x64", "node_install_npm": "true", "node_prefix": "", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "true", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "python": "/usr/bin/python", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "false", "nodedir": "/Users/brian/.node-gyp/0.10.7", "copy_dev_lib": "true", "standalone_static_library": 1, "save_dev": "", "browser": "", "viewer": "man", "rollback": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "shell": "/bin/bash", "parseable": "", "userignorefile": "/Users/brian/.npmignore", "cache_max": "null", "init_author_email": "", "sign_git_tag": "", "ignore": "", "long": "", "registry": "https://registry.npmjs.org/", "fetch_retries": "2", "npat": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "cache_lock_retries": "10", "fetch_retry_mintimeout": "10000", "proprietary_attribs": "true", "coverage": "", "json": "", "pre": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/brian/.npm-init.js", "userconfig": "/Users/brian/.npmrc", "npaturl": "http://npat.npmjs.org/", "node_version": "v0.10.7", "user": "", "editor": "vi", "save": "", "tag": "latest", "global": "", "optional": "true", "username": "", "bin_links": "true", "force": "", "searchopts": "", "depth": "null", "rebuild_bundle": "true", "searchsort": "name", "unicode": "true", "yes": "", "fetch_retry_maxtimeout": "60000", "strict_ssl": "true", "dev": "", "fetch_retry_factor": "10", "group": "20", "cache_lock_stale": "60000", "version": "", "cache_min": "10", "cache": "/Users/brian/.npm", "searchexclude": "", "color": "true", "save_optional": "", "user_agent": "node/v0.10.7 darwin x64", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "init_version": "0.0.0", "umask": "18", "git": "git", "init_author_name": "", "onload_script": "", "tmp": "/var/folders/q5/fcs3189n4vxb3l495j86w6300000gp/T/", "unsafe_perm": "true", "link": "", "prefix": "/usr/local" } }
7eb8c4d235c5035ab3546fcd9eb03f4ca97c8e1a
b59b658f5e73883dd7bb096bb27ecb90df9ff499
/breakthrough/migrations/0005_databank_q_class.py
4250aefdf991454a9ff178de99d2ed5215fa593f
[]
no_license
Liewithen/Ape-Evolution
f7864b9295c2ab34425eb07b1a02ae25b8f95c9a
f2518999a157266d3dfb28baae25ea5167dfb6c1
refs/heads/master
2021-01-10T22:18:15.796754
2016-10-16T02:12:34
2016-10-16T02:12:34
70,323,923
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-09-27 09:50 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('breakthrough', '0004_auto_20160927_0840'), ] operations = [ migrations.AddField( model_name='databank', name='q_class', field=models.IntegerField(default=0), preserve_default=False, ), ]
2f460c436140054e616edf206a5e6d9025614efd
cc394dac9219889d6dd59583d1a70e4ca58a47a4
/P7_E_2.py
bfdbb0774480ea47e7a1afd18bd727e9e1f46f94
[ "Giftware" ]
permissive
animformed/problem-sets-mit-ocw-6
de8462fb32d34f9d57dcef6e00ed53be1749e265
a51ff7e59a4e6ffa924db59a482a43e413644ce0
refs/heads/master
2021-01-22T07:32:57.873780
2014-10-22T01:02:33
2014-10-22T01:02:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
class MyError(Exception): pass def oops(): raise MyError('spam') #raise IndexError def run(): try: oops() except MyError as X: print 'oops caught!', X.__class__, X.args[0] except IndexError: import sys print 'IndexError caught', sys.exc_info()[:2] else: print 'no exception' if __name__ == '__main__': run()
98d3a767fabe37017451aec5edb5bf275ae80812
d1e8ac79c69b2c909ec739d841ae3fbb44539ad2
/assignment5_2.py
ab5d38db4202c91fb49637b2620f55a359508e3d
[]
no_license
Kyaw-Wonna-MM/assignment
6791f9a34ade12c70a3fbf03a8e9777a9d7b6115
8c7422b682021fb925c88a82b7cfbce388bd8ade
refs/heads/main
2023-02-03T13:19:13.321508
2020-12-16T18:39:11
2020-12-16T18:39:11
322,058,631
0
0
null
null
null
null
UTF-8
Python
false
false
290
py
num = 0 tot = 0.0 while True: sval = input("enter a number: ") if sval == "done": break try: fval = float(sval) except: print("Invaild input") continue num = num + 1 #counter tot = tot + fval #sum all input print(tot,num,tot/num)
b9187104c05e26111ccbd49ca1e9b63f852fcce0
05b7a0b91f5edcf33e945d4cdc78c7dfe9d669da
/pybotfinal.py
eb14e74f941462ce0da48a51691ba86c622bcef9
[]
no_license
sindhurao385/IRC-bot-
b1f2d8ed513694f4a5b053218a60eda59433b6cb
b21f8ba60294b89789ee130033d0165d840b68b1
refs/heads/main
2023-07-18T22:05:06.268907
2021-08-31T15:35:02
2021-08-31T15:35:02
401,755,295
0
0
null
null
null
null
UTF-8
Python
false
false
4,627
py
#!/usr/bin/python3 import socket import random import sys sys.path.insert(0,"\HOME\Desktop") import dictionary from dictionary import motivational,literature,philosophical,jokes socket.getaddrinfo("182.73.209.206",6665) ircsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server = "chat.freenode.net" # Server channel = "##testabotforme" # Channel botnick = "pybot" # bots nick exitcode = "bye " + botnick ircsock.connect((server, 6667)) # Here we connect to the server using the port 6667 ircsock.send(bytes("USER "+ botnick +" "+ botnick +" "+ botnick + " " + botnick + "\n", "UTF-8")) #We are basically filling out a form with this line and saying to set all the fields to the bot nickname. ircsock.send(bytes("NICK "+ botnick +"\n", "UTF-8")) # assign the nick to the bot def joinchan(chan): # join channel(s). ircsock.send(bytes("JOIN "+ chan +"\n", "UTF-8")) ircmsg = "" while ircmsg.find("End of /NAMES list.") == -1: ircmsg = ircsock.recv(2048).decode("UTF-8") ircmsg = ircmsg.strip('\n\r') print(ircmsg) def ping(): # respond to server Pings. ircsock.send(bytes("PONG :pingis\n", "UTF-8")) def sendmsg(msg, target=channel): # sends messages to the target. ircsock.send(bytes("PRIVMSG "+ target +" :"+ msg +"\n", "UTF-8")) def main(): joinchan(channel) while 1: ircmsg = ircsock.recv(2048).decode("UTF-8") ircmsg = ircmsg.strip('\n\r') print(ircmsg) if ircmsg.find("PRIVMSG") != -1: name = ircmsg.split('!',1)[0][1:] message = ircmsg.split('PRIVMSG',1)[1].split(':',1)[1] if ircmsg.find("PRIVMSG") != -1: name = ircmsg.split('!',1)[0][1:] message = ircmsg.split('PRIVMSG',1)[1].split(':',1)[1] if "hey" in message.rstrip(): sendmsg("Hello! my name is pybot") if "what can you do" in message.rstrip(): sendmsg( "I'm an IRC bot that can bombard your life with quotes! .If you are not interested in quotes I have some funny jokes as well.") if "jokes" in message.rstrip(): sendmsg(random.choice(jokes)) if "quotes" in message.rstrip(): sendmsg("Right now I've got three types of quotes,1.Motivational 2.Philosophical 3.Literary. What kind of quote would you like to see?") if "motivational" in message.rstrip(): sendmsg("With whose quote can i inspire you ? Bill Gates ,Confusius,Paulo Coelho,Nelson Mandela or Abdul Kalam?") if "literary" in message.rstrip(): sendmsg("Would you like to see quotes by Margaret Atwood ,Ezra Pound ,Nelson Mandela,John Updike or Italo Calvino?") if "philosophical"in message.rstrip(): sendmsg("Would you like to see quotes by Nietzche, Freud, Karl Marx, Kant or Kierkegaard?") if "Bill Gates" in message.rstrip(): sendmsg(random.choice(motivational["Bill Gates"])) if "Confusius" in message.rstrip(): sendmsg(random.choice(motivational["Confusius"])) if "Paulo Coelho" in message.rstrip(): sendmsg(random.choice(motivational["Paulo Coelho"])) if "Nelson Mandela" in message.rstrip(): sendmsg(random.choice(motivational["Nelson Mandela"])) if "Abdul Kalam" in message.rstrip(): sendmsg(random.choice(motivational["Abdul Kalam"])) if "Margaret Atwood" in message.rstrip(): sendmsg(random.choice(literature["Margaret Atwood"])) if "Erza Pound" in message.rstrip(): sendmsg(random.choice(literature["Ezra Pound"])) if "John Updike" in message.rstrip(): sendmsg(random.choice(literature["John Updike"])) if "Italo Calvino" in message.rstrip(): sendmsg(random.choice(literature["Italo Calvino"])) if "Forster" in message.rstrip(): sendmsg(random.choice(literature["Forster"])) if "Nietzche" in message.rstrip(): sendmsg(random.choice(philosophical["Nietzche"])) if "Freud" in message.rstrip(): sendmsg(random.choice(philosophical["Freud"])) if "Karl Marx" in message.rstrip(): sendmsg(random.choice(philosophical["Marx"])) if "Kant" in message.rstrip(): sendmsg(random.choice(philosophical["Kant"])) if "Kierkegaard" in message.rstrip(): sendmsg(random.choice(philosophical["Kierkegaard"])) if "thanks" in message.rstrip(): sendmsg("you're welcome. I'm glad I could help you :) ") if message.rstrip() == exitcode: sendmsg("oh...okay. :'( bye ") ircsock.send(bytes("QUIT \n", "UTF-8")) return else: if ircmsg.find("PING :") != -1: ping() main()
47a4d611b83645f007dccbfdc22cb318abe48b66
78d7436e51d2b00e56b6d7234d5e7861b5431256
/3. Testing/CLAHE/clahe_test.py
80fe7258767363c79db2673c974ea270dd87d767
[]
no_license
sakthi-s/face-replacement-in-videos
7005943168a46febcc7a6ecfcf2e719517f9c2af
29a21b38197843bff338ec5d0b47b74cfcbd2cc3
refs/heads/master
2021-09-09T12:02:28.378885
2018-03-15T20:49:00
2018-03-15T20:49:00
78,509,906
5
0
null
null
null
null
UTF-8
Python
false
false
298
py
import numpy as np import cv2 img = cv2.imread('clahe.png',0) # create a CLAHE object (Arguments are optional). clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) cl1 = clahe.apply(img) cv2.imwrite('clahe_2.jpg',cl1) cv2.imshow('img',cl1) cv2.waitKey(0) cv2.destroyAllWindows
60aef547dda585aef44dcb5bcecd830a2b57519a
33fad70445b90dabc830f5c6a985a5c1522b7fe2
/shop/migrations/0011_auto_20191107_1833.py
77c65431b76bdb39406b877da81e299474bd2a8f
[]
no_license
Wald-K/sandbox
1b6521ee37179346ca13a348bfd4a1ba90da19e4
586a2570cd66b5008b308f3f2877970dfb7729a9
refs/heads/master
2022-12-11T18:18:17.997607
2022-12-07T18:15:43
2022-12-07T18:15:43
220,682,137
0
0
null
2022-11-22T04:38:37
2019-11-09T18:00:35
Python
UTF-8
Python
false
false
516
py
# Generated by Django 2.2.6 on 2019-11-07 18:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shop', '0010_auto_20191105_2209'), ] operations = [ migrations.RemoveField( model_name='category', name='products', ), migrations.AddField( model_name='product', name='categories', field=models.ManyToManyField(blank=True, to='shop.Category'), ), ]
15e410315b08eaceeeb76925ab14d2131bde401e
ac3339c95afe9066d66ff009fb1b7c3fde927ee6
/Python/06_Django/02_Django/01_Dojo_Signal/dojo_signal/wsgi.py
d8263ab40949c7611d6eebfc0cb2c8f0b0f6bd6d
[]
no_license
aakasht05/DojoAssignments
5d5013700528084fd17f93ebaea55d20aeea2d9d
227f6deb62e75e07243ec9058d8557973b03840e
refs/heads/master
2021-05-03T15:46:39.527638
2018-04-13T05:59:38
2018-04-13T05:59:38
120,479,335
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
""" WSGI config for dojo_signal project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dojo_signal.settings") application = get_wsgi_application()
4094d98bff825c29fbd92b7598849c23d0da9c4e
6c14b4d76dc8efa925ef55273b1f7c4b8ba7d2d1
/couchbase_smoke_test.py
d6e8851ab7335eaaa588e6cac6599439e3a5dc47
[]
no_license
sjdillon/couchbase_smoke_test1
23cb6c4dad7d3a9b81098ba54890e2c8ef5ae0d5
73fc2db0d8b2c415d8237d14bc146809796a28bd
refs/heads/master
2021-01-17T07:29:18.060220
2017-03-02T20:57:06
2017-03-02T20:57:06
83,723,785
0
0
null
null
null
null
UTF-8
Python
false
false
1,564
py
#!python #==========================================================================# # sjdillon # 1. quick smoke test to confirm nodes, buckets, credentials are correct # sets, gets, deletes keys against nodes in cluster, output exec time # stores cluster nodes in pickled json file #==========================================================================# from couchbase import Couchbase import pickledb import timeit def get_config(key, dbfile): pdb=pickledb.load(dbfile, False) config=pdb.dgetall(key) return config def key_test(bucket,pw,env): server=env start = timeit.default_timer() print 'bucket: %s' % (bucket) print 'pw: %s' % pw print 'nodes: %s' % server cb=Couchbase.connect(host=server,bucket=bucket,password=pw, timeout=10) key='miskatonic' val={"first_name":"Keziah", "last_name":"Mason", "town":"Arkham"} print '1. setting key...' cb.set(key,val) print '\t2. getting key...' result=cb.get(key) print '\t' + str(result.value) print '\t3. deleting key...' #cb.delete(key) stop = timeit.default_timer() print '\texecution time:%fs' % (stop-start) print '\n' def smoke(bucket,pw,env): print 'environment: %s' % env servers=get_config(env,'couchbase.db') key_test(bucket,pw,servers) def smoke_each_node(bucket,pw,env): servers=get_config(env,'couchbase.db') print servers for server in servers: key_test(bucket,pw,server) # run test env='my_cluster' smoke_each_node('CoinOpCache','Aki9kak9ujj',env) smoke_each_node('YarsReveng','Loev213ddaa',env) smoke_each_node('BatConfiguration','woolw98rcccaw1',env)
f4de029c363753117ec6770d310257147ba9c193
75f0e04c6330950a9bd225fd8b62fdc9fb0021b8
/11.containerWithMostWater.py
da22be17ee8650062f7a31f774ab9d4f19f52b10
[]
no_license
Minzhe/LeetCode
f07bc1edce77cee778d7dc3c4a379921747637a5
e5cb0212cb83daac829456c14aec557e26eea68c
refs/heads/master
2020-05-04T11:25:07.084483
2020-03-09T02:10:17
2020-03-09T02:10:17
179,107,420
0
0
null
null
null
null
UTF-8
Python
false
false
338
py
class Solution: def maxArea(self, height) -> int: i, j = 0, len(height)-1 area = (j-i)*min(height[i], height[j]) while i < j: area = max(area, (j-i)*min(height[i], height[j])) if height[i] < height[j]: i += 1 else: j -= 1 return area
9f831a525ca6b399a262076018968a9ab96e7468
93d2dc4c33e3fdb06a42166c0a85108ad8285971
/JOB_SEARCH.py
6e3272ada19b83b2d9aec20a5a9a6bf451b63c04
[]
no_license
Vikendra447/New-Repo
492693e36fbc93b4e4a7499412514624b9e470b7
b29c97fd7bdfafc33def0f3828203663c6b23c45
refs/heads/master
2020-07-29T15:47:40.053946
2020-04-04T10:29:36
2020-04-04T10:29:36
209,867,493
0
0
null
null
null
null
UTF-8
Python
false
false
7,926
py
from tkinter import * root=Tk() root.title('PYTHON PROJECT') var2 = StringVar() var2.set(" ") var1 = StringVar() var1.set(" ") Label(root,text=' J O B S E A R C H', font=('Helvetica',25),fg='black',relief=SUNKEN,bg='green').grid() Label(root,text='Student_Name', font=('Helvetica',15),fg='red').grid(row=1,column=0,sticky=W) Label(root,text='Vikendra Singh',width=12, font=('Helvetica',15),fg='blue').grid(row=1,column=0,sticky=E) Label(root,text='EnrolL_nO.', width=12,font=('Helvetica',15),fg='red').grid(row=2,column=0,sticky=W) Label(root,text='151447 ',width=12, font=('Helvetica',15),fg='blue').grid(row=2,column=0,sticky=E) Label(root,text='Batch ', width=12,font=('Helvetica',15),fg='red').grid(row=3,column=0,sticky=W) Label(root,text='B-7 ', width=12,font=('Helvetica',15),fg='blue').grid(row=3,column=0,sticky=E) Label(root,text='Branch ', width=12,font=('Helvetica',15),fg='red').grid(row=4,column=0,sticky=W) Label(root,text='SCE ',width=12, font=('Helvetica',15),fg='blue',).grid(row=4,column=0,sticky=E) Label(root,text='Submitted to ', width=12,font=('Helvetica',15),fg='red').grid(row=5,column=0,sticky=W) Label(root,text='DR.Mahesh kumar',width=15, font=('Helvetica',15),fg='blue',).grid(row=5,column=0,sticky=E) Button(root,text='find job find resume Employers / Post Job Post your resume Sign/login',bg='black',fg='red',width=150).grid(row=10,column=0) def start(): Label(root,text='indeed:',font=('Helvetica',50),fg='blue').grid(row=19,column=0,sticky=W) Label(root,text='what',font=('Helvetica',30),fg='red').grid(row=20,column=0,sticky=W) Label(root,text='where',font=('Helvetica',30),fg='red').grid(row=20,column=0) op=OptionMenu(root,var2,'Delhi','Banglore','Chennai','Bhopal','Mumbai','Wizag','Ahamdabad','Indore','Madhyapredesh','Punjab','Surat','Uttarpradesh','Chhatisgarh','Gujrat') op.grid(row=21,column=0) op=OptionMenu(root, var1,"Copmuter Science","Civil","Electronic","Electrical",'Machenical','Teacher','Banking','Medical','Army','Online marketing','Civil survice') op.grid(row=21,column=0,sticky=W) def find(): import tkinter root=Tk() if var1.get()=='Copmuter Science': Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Copmuter Science]\n\nCustomer Service Executive (CSE):\nOperations and Customer Quality Engineer II - (E2) :\nSr. Software Development Engineer in Test (SDET): \nTelephonic Clinical Counselor:\nPrincipal Business Analyst, India IT\:nSDSO Knowledge Training & Compliance Expert:\nManual Testing(Gherkin Language):\nSMTS Software Engineer:\nSoftware Engineer 2:\nTechnical Helpdesk Management:\nEngineering Manager - DWH/Big Data:\nClient Service Executive').grid() elif var1.get()=="Civil": Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Civil]\n\nAutocadd Draftsperson:\nPROJECT MANAGER - CIVIL:\nSite Engineer (Civil):\nSite Engineers:\nCivil Engineer - QS:\nAutoCAD Draftsman:\nMarketing Executives, Civil Engineer, Store Incharge & Recep:\nTrainee Testing Engineer:\nUrgently Looking for a project coordinator ( civil ):\nSite Supervisor (Civil) - Building Construction having 5 Yrs:\nCivil Engineer walk in Interview 15 nov 2016 to 26 nov 2016:').grid() elif var1.get()=="Electronic": Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Electronic]\n\nField Application Engineer - 5093:\nSenior Application Engineer - 4885:\nSenior Statistical Programmer :\nElectronics Engineering walk 15 nov 2016 to 26 nov 2016:\nJunior-Engg CAM-Diploma ,Electrical / Electronics / Mecatron:\nSOLDERING & PANEL ASSEMBLER:\nElectronic Engineering Jr:\nHardware Designer / Technician:\nR&D Engineer - Electronics: \nEngineer (Electrical/Electronics):\nSystem Engineer Power Breaker:\nPurchase Exeutive (Electrical and Electronics)').grid() elif var1.get()== "Electrical": Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Electrical]\n\nElectrical Maintenance Engineer:\nElectrical Engineering walk in 15nov 2016 to 26 nov 2016:\nElectrical Engineer:\nEngineer (Electrical):\nElectrical Engineer (Maintenance):\nElectrical Design Engineer:\nElectrical Technician:\nJunior-Engg CAM-Diploma ,Electrical / Electronics / Mecatron:\nSenior Test Engineer :\nRisk Engineer ').grid() elif var1.get()== "Machenical": Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Machenical]\n\nGeneral Manager / Dy. General Manager - Operation:\nMechanical Engineer Fresher,Electrical:\nMechanical Engineer:\nMechanical and Automobile Engineering:\nTrainee Engineer:\nMechanical plant inchage:\nmechanical engineer freshers:\nTrainee Engineer(ITI/ Dip Mechanical) Pithampur:\nMechanical / Thermo Mechanical Engineer').grid() elif var1.get()== "Teacher": Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Teacher]\n\nPGT,TGT,PRT All subject teachers for Next Academic Session:\nWanted primary teachers for cbse school:\nPrimary & Pre Primary Teachers:\nJOB FOR NGO:\nSubject Expert Teacher (Curriculum Based-State/CBSE/ICSE):\nCenter Head - EuroKids Preschool / Creche:\nUrgent Requirement of Computer Teacher:\nPrincipal required for an upcoming CBSE School at Seoni:\nPre-primary Teacher').grid() elif var1.get()== "Banking": Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Banking]\n\nFemale Candidate Back Office Work and Telecalling :\nassistant manager, operations - banking, credit and investme.:\nbanking operations:\nFRESHERS IN BANKING OPERATION:\nInterviews for Banking Sector:\nJobs In Banking Sector:\nRelationship Manager- Commercial Business Banking:\nVacancy in Bank\nback office executive for Banking Sector:\nassistant manager, corporate banking services').grid() elif var1.get()== "Medical": Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Medical]\n\nClinical Data Associate :\nMedical Officer and Hindi Officer / AR:\nCOMPANY SUPERVISOR:\nTransaction Processor II, Service Delivery\nMedical Transcriptionist for CT-MRI:\nMedical Officer MBBS:\nMedical Officer (Female doctor):\nJunior Scientific Officer (Explosives):\nVacancy for Medical Representative (MR / AM / ZM / RM):\nCRM/Customer Relationship Officer/Relationship Manager').grid() elif var1.get()== "Army": Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Army]\n\nOperations Analyst:\nBTL & Trade Marketing Executive :\nSecurity Officer:\nCounselor/TGT:\nRegional Head West:\nMale Warden:\nHead - DRA ( Regulatory Affairs ):\nLabour Officer:\nWARDENS\nBusiness Development Executive:\n[Government] Security Watchman cum Fireman (Second Attempt)').grid() elif var1.get()== "Online marketing": Label(root,bg='black',fg='white',text='[YOU HAVE AVAILABLE JOB FOR Online marketing]\n\nMarketing and Business Development Executive:\nSr. Analyst - Email Operations:\nSales & Marketing Manager :\nDigital Marketing Executive:\nDigital Marketing Manager:\nUrgent Requirement for Digital Marketing Manager:\nOnline Marketing Manager for E Commerce:\nUrgently required Marketing/Branding Manager for FMCG sector:\nFront End Developer - SDE II ').grid() mainloop() Label(root,text='job title, keywords or company name',fg='blue').grid(row=22,column=0,sticky=W) Button(root,text='find jobs',width=15,height=1,command=find).grid(row=21,column=0,sticky=E) Label(root,text='city or postcode',fg='blue').grid(row=22,column=0) Label(root,text='Advanced job search',fg='blue').grid(row=22,column=0,sticky=E) Button(root,text='LET BEGIN YOUR PROJECT WORK',command=start,height=2,bg='green').grid(row=6,column=0) root.mainloop()
abb2b363698247fe9e19e20fb4089a7c72b88b3d
0a6d0ea3a60ece86ec477e490605b063b2e8c060
/dlYouTubeFromLocalHtml.py
25c916d53da6626d1b89c0beac233c646349dff5
[]
no_license
alclass/bin
bdbe063d629c05e17f64dc27f71211e5881e1f3b
b4c5642c8d5843846d529630f8d93a7103676539
refs/heads/master
2023-07-24T11:36:50.009838
2023-07-09T20:26:42
2023-07-09T20:26:42
17,493,545
0
0
null
null
null
null
UTF-8
Python
false
false
1,301
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ''' import os, re, sys urlBase = 'www.youtube.com/watch?v=%s' commBase = 'youtube-dl "%s"' def getLocalHtmlFileFromSysArg(): htmlFilename = sys.argv[1] if os.path.isfile(htmlFilename): return htmlFilename print 'file', htmlFilename, 'is not here on local folder.' sys.exit(1) filesOnCurrentDir = os.listdir('.') def isItOnCurrentDir(uTubeIds): for eachFile in filesOnCurrentDir: if eachFile.find(uTubeIds) > -1: return True return False def youtubeDownload(): htmlFilename = getLocalHtmlFileFromSysArg() reStr = '/watch[?]v[=](\w+)&' reComp = re.compile(reStr) iterObj = reComp.findall(open(htmlFilename).read()) total = len(iterObj); seq = 0; uTubeIdsList = [] for uTubeIds in iterObj: if uTubeIds in uTubeIdsList: total -= 1; print 'Video repeat, moving on to next one', seq+1, 'of', total continue if isItOnCurrentDir(uTubeIds): total -= 1; print 'There is a video with the same id %s, moving on to next one' %uTubeIds, seq+1, 'of', total continue uTubeIdsList.append(uTubeIds) seq += 1 print seq, 'of', total, uTubeIds url = urlBase %uTubeIds comm = commBase %url os.system(comm) if __name__ == '__main__': # copyToUsb() youtubeDownload()
b62f2225a75e511adb64b907b5738e5bc64be07d
dcebb803285499f880e82c2aede20d1c109bb781
/openai/baselines/baselines/deepq/experiments/test_cloud.py
4ebfbd38ef4fc06e26dab0f9a300b80e92abe15a
[ "MIT", "BSD-3-Clause" ]
permissive
johndpope/ETHZDeepReinforcementLearning
1216f5e259f606e3c9228e7850e718cdccd6a280
e1ae22159753724290f20068214bb3d94fcb7be4
refs/heads/master
2020-03-22T02:27:54.928283
2017-11-22T23:22:53
2017-11-22T23:22:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,784
py
import gym from baselines import deepq from baselines.common.atari_wrappers_deprecated import wrap_dqn, ScaledFloatFrame from cloud_environment import CloudEnvironment import numpy as np import collections import os import csv import pandas as pd #Logging def logger_callback(locals,globals): done = locals['done'] num_episodes = locals['num_episodes'] log_action_l = locals['log_action_l'] # actions chosen in current episode step log_action_l.append(locals['action']) if done: action_counter = collections.Counter(log_action_l).items() reward_sum = np.sum(locals['episode_rewards']) reward_mean = np.mean(locals['episode_rewards']) c_reward_sum = np.sum(locals['cumulative_episode_rewards']) c_reward_mean = np.mean(locals['cumulative_episode_rewards']) path = locals['test_file_path'] print("Writing episode {} log to ".format(num_episodes), path) with open(path, 'a') as f: env = locals['env'] actions_np = np.zeros(env.action_space.n) for k, v in action_counter: actions_np[k] = v action_count_header = ['action_count{}'.format(i) for i in range(env.action_space.n)] #action_q_header = ['mean_action_q{}'.format(i) for i in range(len(episode_q_t.tolist()))] headers = ['episode','reward_sum','reward_mean','c_reward_sum','c_reward_mean'] #headers = headers + action_q_header+action_count_header headers = headers + action_count_header action_counts = list(actions_np) #actions_qs = [q for q in episode_q_t.tolist()] #output_list = [num_episodes]+[steps]+[rew100]+[rew50]+[rew10]+[episode_q_t_selected]+[episode_q_t_targets]+[episode_td_errors]+[episode_errors]+ actions_qs+action_counts output_list = [num_episodes] + [reward_sum] + [reward_mean] + [c_reward_sum] + [c_reward_mean] + action_counts print(headers) print(output_list) w = csv.writer(f) if os.stat(path).st_size == 0: w.writerow(headers) w.writerow(output_list) return False def result_callback(ci_list,episode_list,locals,globals): nps = len(episode_list[0])-len(ci_list[0]) cis_l = [[np.nan]*nps + cil for cil in ci_list] e_df = pd.concat(episode_list,axis=0).reset_index(drop=True) ci_df = pd.DataFrame(np.concatenate(cis_l),columns=['ci']).reset_index(drop=True) output_df = pd.concat([e_df,ci_df],axis=1) output_df.dropna(inplace=True) output_df = output_df.reset_index(drop=True) output_df.to_csv('eval_predictions.csv') def main(): load_cpk="/home/nox/Masterarbeit/thesis_data/baseline_rl/simple_rl/7_unbalanced_test/experiments_unbalanced/cloud_model.pkl" channels=3 seq_length=2 img_size=84 env = CloudEnvironment(img_size=img_size,radius=[12,13],sequence_stride=1,channels=channels,sequence_length=seq_length,ramp_step=0.1,action_type=1,action_nr=3,stochastic_irradiance=True,save_images=True) #Note: cloud speed can be changes but may also require different ramps.. default, speed of cloud per frame at least 1 pixel in y direction model = deepq.models.cnn_to_mlp( convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], hiddens=[256], dueling=True, channels=channels, seq_length=seq_length, img_size=img_size ) deepq.test(load_cpk=load_cpk, result_callback=result_callback, env=env, q_func=model, log_callback=logger_callback, episode_n=1 ) if __name__ == '__main__': main()
170937f98cbb80d0f021d4d3abe42bffac2d8cd2
25c82a44aa025944f441cce1d7001dbec326561b
/DataProcessingPipeline/prefit_raw_data_baselines.py
0feab2ae1684ee6464fb9e538fab0209afcce280
[]
no_license
thogge/RAMPS
4eabfe022c873ebfad828f9336dc41d464eb7ebf
8718191fd1f1f8770804847b19fa017b347da213
refs/heads/master
2021-12-28T03:41:15.744828
2021-11-11T21:51:42
2021-11-11T21:51:42
71,209,158
0
0
null
null
null
null
UTF-8
Python
false
false
6,467
py
""" prefit_raw_data_baselines.py Remove zeroth order baseline from raw data. This avoids poorly combined spectra in overlap region of combined data cubes if the baselines are unstable in the individual observations. Can optionally run this process in parallel. Example: python prefit_raw_data_baselines.py -i L30_Tile01-04_23694_MHz_line.fits -o L30_Tile01-04_23694_MHz_line_prefit.fits -n 16 -i : Input -- Input file (from the Green Bank pipeline) -o : Output -- Output file -n : Numcores -- Number of cores available for parallized computing -h : Help -- Display this help """ import sys,os,getopt try: import astropy.io.fits as pyfits except: import pyfits import scipy.ndimage as im import numpy as np import numpy.ma as ma import scipy.signal as si import matplotlib.pyplot as plt import multiprocessing as mp import my_pad import pdb def main(): #Defaults numcores = 1 try: opts,args = getopt.getopt(sys.argv[1:],"i:o:n:h") except getopt.GetoptError: print("Invalid arguments") print(__doc__) sys.exit(2) for o,a in opts: if o == "-i": input_file = a elif o == "-o": output_file = a elif o == "-n": numcores = int(a) elif o == "-h": print(__doc__) sys.exit(1) else: assert False, "unhandled option" print(__doc__) sys.exit(2) #Read in data into array, remove single-dimensional entries d,h = pyfits.getdata(input_file,header=True) d = np.squeeze(d) """ Check that numcores does not exceed the number of cores available """ avail_cores = mp.cpu_count() if numcores > avail_cores: print("numcores variable exceeds the available number of cores.") print("Setting numcores equal to "+str(avail_cores)) numcores = avail_cores if numcores > 1: #Split the data s = np.array_split(d, numcores, 2) procs = [] #Fit baselines and write to temporary files for num in range(len(s)): procs.append(mp.Process(target=do_chunk, args=(num,s[num]))) for proc in procs: proc.start() for proc in procs: proc.join() else: do_chunk(0,d) #Recombine baselined temporary files dout = recombine(numcores) hout = strip_header(h[:],4) pyfits.writeto(output_file,dout,hout,overwrite=True) #Remove temporary files for n in np.arange(numcores): os.system("rm prefit_temp"+str(n)+".fits") def do_chunk(num,data): """ Use apply_along_axis to apply baseline fitting to each spectrum in this chunk of the cube. """ print("Fitting chunk"+str(num)+"...") ya = np.apply_along_axis(baseline_and_deglitch,0,data) pyfits.writeto("prefit_temp"+str(num)+".fits",ya,overwrite=True) def recombine(numparts,output_file="test_final.fits"): """ Recombine all the individual fits files into one final image """ indata = [] for n in range(numparts): d = pyfits.getdata("prefit_temp"+str(n)+".fits") indata.append(d) final = np.dstack(indata) return(final) def rolling_window(a,window): """ Magic code to quickly create a second dimension with the elements in a rolling window. This allows us to apply numpy operations over this extra dimension MUCH faster than using the naive approach. """ shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides+(a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) def fit_baseline(masked,xx,ndeg=0): """ Fit the masked array with a polynomial of the given order. """ ya = ma.polyfit(xx,masked,ndeg) basepoly = np.poly1d(ya) return(basepoly) def baseline_and_deglitch(orig_spec,window_halfwidth=20): """ Function that fits a zeroth order polynomial baseline function to a spectrum and subtracts it. Parameters ---------- orig_spec : ndarray The original spectrum with full resolution. window_halfwidth : int Half of the window width used to mask the spectrum for fitting. Returns ------- sub : ndarray Baseline-subtracted spectrum. """ #Mask and smooth spectrum masked= mask_for_baseline(orig_spec,window_halfwidth=window_halfwidth) #Get best-fit zeroth order polynomial baseline xx = np.arange(masked.size) poly = fit_baseline(masked,xx) baseline = poly(xx) #Subtract baseline and smooth spectrum sub = orig_spec - baseline return(sub) def mask_for_baseline(spec,sigma_cut=1.5,window_halfwidth=15): """ Mask the spectral channels that contain signal. Search for signal by comparing the local standard deviation within a window width of 2*window_halfwidth to the median local standard deviation in all windows throughout the spectrum. """ ya = rolling_window(spec,window_halfwidth*2) #Calculate local standard dev for each channel and pad the output stds = my_pad.pad(np.nanstd(ya,-1),(window_halfwidth-1,window_halfwidth), mode='edge') #Figure out which bits of the spectrum have signal/glitches med_std = np.nanmedian(stds) std_std = np.nanstd(stds) sigma_x_bar = med_std/np.sqrt(window_halfwidth) sigma_s = (1./np.sqrt(2.))*sigma_x_bar #Mask out signal for baseline masked = ma.masked_where(np.logical_or(stds > med_std+sigma_cut*sigma_s, np.isnan(spec)),spec) #Mask 10 channels around each masked channel to capture faint line wings if ma.is_masked(masked): where_masked = np.where(masked.mask)[0] mask_extension = 10 for channel in where_masked: masked[slice(channel-10,channel+10,1)] = ma.masked return(masked) def strip_header(h,n): """ Remove the nth dimension from a FITS header """ try: h['NAXIS'] = n-1 h['WCSAXES'] = n-1 except: h['NAXIS'] = n-1 keys = ['NAXIS','CTYPE','CRVAL','CDELT','CRPIX','CUNIT'] for k in keys: try: del h[k+str(n)] except: pass return(h) if __name__ == '__main__': main()
e5831f21a2a52efc8089670d9e6429ba6eeb6897
bc5355f9385b891304e619a7e04d64c4a25e732c
/python/rlimit/Subprocess.py
4459ef398eeb6ea89429cf5e66ff17af174ed3ed
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
perror/librlimit
758c0a5db0d820b1099931679133dc73fa862f81
3bc3088d5f1044f0dfd18e6d25d235e511f719da
refs/heads/master
2021-01-02T23:06:38.758866
2012-07-02T14:28:35
2012-07-02T14:28:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,332
py
''' Subprocess is a Python class to control and profile processes in a convenient and flexible manner. It is primarily designed for black-box testing over untrusted code in an educational context. It is also fully based on the C library librlimit. ''' try: from ctypes import * except ImportError as err: raise ImportError (str(err) + ''' A needed module for Subprocess was not found. You should install it and try again. ''') try: rlimit = cdll.LoadLibrary("librlimit.so") except OSError as err: raise OSError (str(err) + ''' librlimit.so cannot be found on your system. You should install it and/or set up properly your system. ''') class SUBPROCESS(Structure): _fields_ = [("argc", c_int), ("argv", POINTER(c_char_p)), ("envp", POINTER(c_char_p)), ("pid", c_int), ("status", c_int), ("retval", c_int), ("stdin", c_void_p), ("stdout", c_void_p), ("stderr", c_void_p), ("stdin_buffer", c_char_p), ("stdout_buffer", c_char_p), ("stderr_buffer", c_char_p), ("real_time_usec", c_int), ("user_time_usec", c_int), ("sys_time_usec", c_int), ("memory_kbytes", c_int), ("limits", c_void_p), ("expect_stdout", c_int), ("expect_stderr", c_int), ("monitor", c_void_p), ("write_mutex", c_int)] class Subprocess(object): '''Subprocess class is intended to provide a basic control over untrusted subprocesses. This class provide a simple interface to run subprocesses in a non-blocking manner and, yet, getting their results. It also allows to have a control over the execution time, the maximum amount of memory it can use, and also provide basic profiling information (time, memory) about the subprocess. ''' def __init__(self, cmd, env=None): '''Default constructor for a subprocess. This constructor requires at least the command ('cmd') to be executed and might requires to set the proper environment variables ('env') in order to run it properly. ''' self.cmd = cmd self.env = env # Translating cmd/env into C arguments through ctypes argv_type = c_char_p * len(cmd) argv = argv_type(*cmd) argc = c_int(len(cmd)) if (env == None): envp = None else: envp_type = c_char_p * len(env) envp = envp_type(*env) # Getting the subprocess pointer rlimit.rlimit_subprocess_create.restype = POINTER(SUBPROCESS) self.subprocess = \ rlimit.rlimit_subprocess_create (argc, argv, envp) def run(self, timeout=None, memory=None): '''Non-blocking execution. The subprocess will be run in a separate thread. This function do not return anything but might throw an exception if a problem occurs at start time. The user might set a limit over the maximum time and memory for the subprocess to run. ''' if not (timeout == None): rlimit.rlimit_set_time_limit(self.subprocess, timeout) if not (memory == None): rlimit.rlimit_set_memory_limit(self.subprocess, memory) rlimit.rlimit_subprocess_run(self.subprocess) def kill(self): '''Kill the process.''' if (rlimit.rlimit_subprocess_kill(self.subprocess) == -1): raise Exception("subprocess kill failed") def suspend(self): '''Suspend the process.''' if (rlimit.rlimit_subprocess_suspend(self.subprocess) == -1): raise Exception("subprocess suspend failed") def resume(self): '''Resume the process.''' if (rlimit.rlimit_subprocess_resume(self.subprocess) == -1): raise Exception("subprocess resume failed") def wait(self): '''Wait for the end of the execution. This command wait for the subprocess to end and returns with the subprocess return code. ''' return rlimit.rlimit_subprocess_wait(self.subprocess) def write(self, msg): '''Write to the stdin of the subprocess. Write 'msg' to the stdin of the subprocess. Note that you need to be sure that the subprocess wait for input. ''' rlimit_write_stdin(self.subprocess, c_char_p(msg)) def expect(self, pattern, stdout=True, stderr=False, timeout=None): '''Search the given pattern at the end of the given output (default: stdout) and wait until the timeout elapsed if the pattern is not found yet. This command is intended to ease the interactive communication with the subprocess. It returns 'True' is the pattern has been found and 'False' otherwise. Example: process.run() process.expect('password:') processs.write('mypassword') if (process.expect('Welcome !\n%prompt> ')): print('Success !') elif (process.expect('Wrong password, try again!\npassword:')) process.expect('myotherpassword') else print('Cannot log-in !') ''' if (timeout == None): timeout = 120 if (stdout and stderr): return rlimit_expect(self.subprocess, pattern, timeout) elif (stdout and not stderr): return rlimit_expect_stdout(self.subprocess, pattern, timeout) elif (not stdout and stderr): return rlimit_expect_stderr(self.subprocess, pattern, timeout) def status(self): if (self.subprocess.contents.status == 0): return "Ready" elif (self.subprocess.contents.status == 1): return "Running" elif (self.subprocess.contents.status == 2): return "Sleeping" elif (self.subprocess.contents.status == 3): return "Stopped" elif (self.subprocess.contents.status == 4): return "Zombie" elif (self.subprocess.contents.status == 5): return "Terminated" elif (self.subprocess.contents.status == 6): return "Killed" elif (self.subprocess.contents.status == 7): return "Timeout" elif (self.subprocess.contents.status == 8): return "Memoryout" elif (self.subprocess.contents.status == 9): return "FsizeExceed" elif (self.subprocess.contents.status == 10): return "FDExceed" elif (self.subprocess.contents.status == 11): return "ProcExceed" elif (self.subprocess.contents.status == 12): return "DeniedSyscall" def stdout(self): return self.subprocess.contents.stdout_buffer def stderr(self): return self.subprocess.contents.stderr_buffer def returnvalue(self): return self.subprocess.contents.retval def time_profile(self): return \ (self.subprocess.contents.real_time_usec, self.subprocess.contents.user_time_usec, self.subprocess.contents.sys_time_usec) def memory_profile(self): return self.subprocess.contents.memory_kbytes
ce87752de022016b146ac72edb19df40cb67fffe
9d2b3f427d9ae37f195120246c243ac5eff2e2f9
/test/box_memcached/binary-get.test
c63eaaa72e009dfb8609daed2deb0fd465f6976d
[ "BSD-2-Clause" ]
permissive
zcoder/tarantool
12e64c670ce34524cd5b56a9cc9ee0703bc7c94e
74253ce7369e5571646ce47b47f72412c5de6cad
refs/heads/master
2020-12-24T21:37:00.570745
2011-12-25T19:22:04
2011-12-25T19:22:04
3,051,029
0
1
null
null
null
null
UTF-8
Python
false
false
441
test
# encoding: tarantool blobs_list = [ "mooo\0", "mumble\0\0\0\0\r\rblarg", "\0", "\r" ] for i in range(len(blobs_list)): key = "foo_%d" % i blob = blobs_list[i] blob_len = len(blob) print "len is %d" % blob_len exec memcached "set %s 0 0 %d\r\n%s\r\n" % (key, blob_len, blob) exec memcached "get %s\r\n" % key # resore default suite config server.stop() server.deploy(self.suite_ini["config"]) # vim: syntax=python
1cdf3137fe48ac43bc88dc2e6ac2e9c61263ca45
7c7236aa95ebebe241f04b98d55f3033b19dadc2
/locomotivelist/locomotivelist/settings.py
e41c705b2a66d10fc03ced8af8349dda3a0be106
[]
no_license
taisuo/cms
57d792bb47d85bf6a4a39558a1bc34457a355c26
dd8baa834d6426a2ce7406ea0b74eab252ef7789
refs/heads/master
2020-08-03T13:49:44.754754
2019-10-08T04:00:21
2019-10-08T04:00:21
211,765,786
0
0
null
null
null
null
UTF-8
Python
false
false
3,160
py
""" Django settings for locomotivelist project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ntj5%=$^r$3g@_(o)^-qv%s-6gpo^2(4iz4pzw+=g%zbd-vt*u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["*"] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', # 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'locomotivelist.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'locomotivelist.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
fbe4dadc65e9001e0e915766959cfef2e6a1bd71
d824c0fdc3249c191aa4fba9ef4d750e3a2262a3
/plot_normal.py
7b6b1992e472d330520533e2af2b0720e078b5c3
[]
no_license
PanYicheng/nest_bpstdp
877d0b98f2353ddbf2453bdfcb3a403efa07fda2
c74d0312ef2bc106eba41d4e7f2f84a334fc9db6
refs/heads/master
2020-03-30T19:58:20.080885
2018-10-04T12:27:18
2018-10-04T12:38:47
151,567,825
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
import math import pylab as pl import numpy as np def gd(x,m,s): left=1/(math.sqrt(2*math.pi)*s) right=math.exp(-math.pow(x-m,2)/(2*math.pow(s,2))) return left*right def showfigure(): x=np.arange(-200,200,1) y=[] for i in x: y.append(gd(i,100.0,50.0)) pl.plot(x,y) pl.xlim(-200,200) # pl.ylim(-0.2,0.5) # ax = pl.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data',0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data',0)) #add param label_f1 = "$\mu=10.0,\ \sigma=10.0$" pl.text(2.5,0.3,label_f1,fontsize=15,verticalalignment="top", horizontalalignment="left") label_f2 = r"$f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma^2})$" pl.text(1.5,0.4,label_f2,fontsize=15,verticalalignment="top" ,horizontalalignment="left") pl.show() showfigure()
f9431e18242fc2153449ebaaa99257659244f53a
5d14ae10f438f0bb463473d98a7d8af4990c7e5f
/TU05 If Statements.py
e57ea692c7016e2819eb8aac302cfd43adb06ae7
[]
no_license
TigerAng0/Python-Challanges
9a0e48dfb00d7046b24e4c84aac885015e9fe571
d2a6748cdcde430b928f577b0d89388884122a41
refs/heads/master
2021-01-12T16:08:54.381000
2016-11-09T13:48:57
2016-11-09T13:48:57
71,951,344
0
0
null
null
null
null
UTF-8
Python
false
false
195
py
awnser=input("Is it raining today (y/n)-->").upper() if awnser in ["Y","YES"]: print("Play some computer games.") else: print("Play some football or computer games if you're lazy.")
a30678f2abf733db6f5910c618047274cdc34669
e75c7be93388cd7b03310c046d70d680d20fcbf8
/tweets/management/commands/benchmark.py
75a8d5f667192b5f739a086c612a3e93af4a5499
[]
no_license
mikeln/twissandra
3086239c16999f77cab90e0c88718ba8e41860a5
68b7f0e429531fc480d045264a0be2ea501ae456
refs/heads/master
2020-04-05T06:18:43.150942
2016-12-05T22:35:59
2016-12-05T22:35:59
30,832,868
0
0
null
2015-02-15T16:18:31
2015-02-15T16:18:30
Python
UTF-8
Python
false
false
1,641
py
import datetime import random import string import time import uuid import cass from django.core.management.base import BaseCommand # # based on fake_data.py # class Command(BaseCommand): def handle(self, *args, **options): # Oldest account is 10 years origin = int( time.time() + datetime.timedelta(days=365.25 * 10).total_seconds() * 1e6) now = int(time.time() * 1e6) if len(args) < 2: print " " print "Usage benchmard <num_users> <max_tweets>" print " Inserts new <num_users> users * new <max_tweets> tweets" print " " sys.exit(1) num_users = int(args[0]) max_tweets = int(args[1]) the_ucount = 0 the_tweet_total = 0 print "users:",num_users," tw:",max_tweets for i in range(num_users): username = self.get_random_string() cass.save_user(username, self.get_random_string()) creation_date = random.randint(origin, now) the_tcount = 0 loop_tweets = max_tweets for _ in range(loop_tweets): cass.save_tweet(uuid.uuid1(), username, self.get_tweet(), timestamp=random.randint(creation_date, now)) the_tcount += 1 the_tweet_total += the_tcount the_ucount += 1 print "created user", the_ucount, " tweets:",the_tcount, " total:",the_tweet_total def get_tweet(self): return ''.join(random.sample((string.letters)*5, 80)) def get_random_string(self): return ''.join(random.sample(string.letters, 10))
25da2e7dec7936944258fe5be4d9694ca7b50b71
ddddd14f7f21c4b1e3a922d9489e918542323284
/gallery/file_modules/gif.py
4ceed7f3cb0772e67d3a7e74def407b5eef454c1
[ "MIT" ]
permissive
sgreene570/gallery
72e0bc4fcd165243f4774e49e07050f6eb804a32
19e521d7100efc6f7e6565444219ef2a9e2aa842
refs/heads/develop
2021-01-01T16:07:35.824634
2017-07-11T04:42:50
2017-07-11T18:25:05
89,010,522
0
0
null
2017-04-21T18:01:56
2017-04-21T18:01:56
null
UTF-8
Python
false
false
343
py
import os import piexif from wand.image import Image from wand.color import Color from gallery.file_modules import FileModule from gallery.util import hash_file class GIFFile(FileModule): def __init__(self, file_path): FileModule.__init__(self, file_path) self.mime_type = "image/gif" self.generate_thumbnail()
8d3e3eae1a75074cc9ea1fc0e5c67acf8a69c01a
0a047a804d3808d32e812ed5127e6c1b3fdf1c06
/Pytorch/MNIST_DCGAN.py
07504a665f7cec03fab7cab5ca9791ce3f6cfd54
[]
no_license
leejeyeol/LJY_Machine_Learning
17fccb609b772e37924d1102e25c2246f34086f6
456fe6e5cf5b054cf2bb7cd9d6cca7f031dcd033
refs/heads/master
2021-06-08T20:33:43.686471
2020-05-05T14:12:07
2020-05-05T14:12:07
89,432,146
4
1
null
2018-06-26T01:34:17
2017-04-26T03:09:52
Python
UTF-8
Python
false
false
5,646
py
import torch.nn as nn import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np import torchvision.utils as vutils import torch.optim as optim device = torch.device("cuda:0") criterion = nn.BCELoss() epochs = 5 batch_size = 100 nz = 100 ngf = 64 ndf = 64 def show_generated_data(real_data, fake_data): plt.figure(figsize=(15, 5)) plt.subplot(1, 2, 1) plt.axis("off") plt.title("Real Images") plt.imshow(np.transpose(vutils.make_grid(real_data[:64], padding=5, normalize=True).cpu(), (1, 2, 0))) # Plot the fake images from the last epoch plt.subplot(1, 2, 2) plt.axis("off") plt.title("Fake Images") plt.imshow(np.transpose(vutils.make_grid(fake_data.detach()[:64], padding=5, normalize=True).cpu(), (1, 2, 0))) plt.show() # MNIST call and load dataloader = torch.utils.data.DataLoader( dset.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])), batch_size=batch_size, shuffle=True) def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) class Net_generator(nn.Module): def __init__(self, nz, ngf): super(Net_generator, self).__init__() self.nz = nz self.ngf = ngf self.generator = nn.Sequential( nn.ConvTranspose2d(in_channels=self.nz, out_channels=self.ngf*4, kernel_size=5,stride=1,padding=1), nn.BatchNorm2d(self.ngf*4), nn.ReLU(True), nn.ConvTranspose2d(self.ngf * 4, self.ngf * 2, 5, 1, 1), nn.BatchNorm2d(self.ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(self.ngf * 2, self.ngf, 5, 2, 0), nn.BatchNorm2d(self.ngf), nn.ReLU(True), nn.ConvTranspose2d(self.ngf, 1, 4, 2, 0), nn.Tanh() ) def forward(self, input): output = self.generator(input) return output net_generator = Net_generator(nz, ngf).to(device) net_generator.apply(weights_init) class Net_Discriminator(nn.Module): def __init__(self, ndf): super(Net_Discriminator, self).__init__() self.ndf = ndf self.discriminator = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=self.ndf, kernel_size=5, stride=2, padding=1), nn.LeakyReLU(0.2), nn.Conv2d(self.ndf, self.ndf*2, 4, 2, 1), nn.BatchNorm2d(self.ndf*2), nn.LeakyReLU(0.2), nn.Conv2d(self.ndf*2, self.ndf*4, 4, 2, 1), nn.BatchNorm2d(self.ndf * 4), nn.LeakyReLU(0.2), nn.Conv2d(self.ndf*4,1,3,1,0), nn.Sigmoid() ) def forward(self, input): output = self.discriminator(input) return output net_discriminator = Net_Discriminator(ndf).to(device) net_discriminator.apply(weights_init) #====================================================================================================================== # Training #====================================================================================================================== test_noise = torch.FloatTensor(batch_size, nz, 1, 1).normal_(0, 1).to(device) label = torch.FloatTensor(batch_size).to(device) real_label = 1 fake_label = 0 # setup optimizer optimizerD = optim.Adam(net_discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999)) optimizerG = optim.Adam(net_generator.parameters(), lr=0.001, betas=(0.5, 0.999)) G_losses = [] D_losses = [] for epoch in range(epochs): for i, (real_data, _) in enumerate(dataloader, 0): ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### # train with real real_data = real_data.to(device) label.data.fill_(real_label) real_output = net_discriminator(real_data) errD_real = criterion(real_output, label) net_discriminator.zero_grad() errD_real.backward() # train with fake noise = torch.FloatTensor(batch_size, nz, 1, 1).normal_(0, 1).to(device) fake_data = net_generator(noise) label.data.fill_(fake_label) fake_output = net_discriminator(fake_data.detach()) errD_fake = criterion(fake_output, label) errD_fake.backward() optimizerD.step() ############################ # (2) Update G network: maximize log(D(G(z))) ########################### net_generator.zero_grad() label.data.fill_(real_label) # fake labels are real for generator cost fake_output = net_discriminator(fake_data) errG = criterion(fake_output, label) errG.backward() optimizerG.step() G_losses.append(errG.item()) D_losses.append(errD_real+errD_fake.item()) if i %100 == 0 : print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f ' % (epoch, epochs, i, len(dataloader), (errD_real + errD_fake).item(), errG.item())) show_generated_data(real_data,fake_data) plt.figure(figsize=(10,5)) plt.title("Generator and Discriminator Loss During Training") plt.plot(G_losses,label="G") plt.plot(D_losses,label="D") plt.xlabel("iterations") plt.ylabel("Loss") plt.legend() plt.show()
965326fd49974bd5a96390ae1e08da6e071e0ecd
838fd8d80508d61a77b04ec98b69fe39ae5bbec1
/usermanagement/forms.py
5afa8233d7353ecbe7aa6f4590733d32c12bc09c
[]
no_license
billgsm/agenda
8dfee6a86557bfc3cdef33155cf72d4075b0aef4
6f6d565562ec7690ee20e9ff62e4185b23416f78
refs/heads/master
2021-05-26T14:36:16.308763
2013-12-12T15:57:57
2013-12-12T15:57:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
from django.contrib.auth.models import User from django.contrib.auth.forms import UserCreationForm #from django.contrib.auth.hashers import MAXIMUM_PASSWORD_LENGTH from django import forms from django.utils.translation import ugettext, ugettext_lazy as _ class UserCreateForm(UserCreationForm): #email = forms.EmailField(required=True) #password1 = forms.CharField(label=_("Password"), # widget=forms.PasswordInput, max_length=MAXIMUM_PASSWORD_LENGTH) #password2 = forms.CharField(label=_("Password confirmation"), # widget=forms.PasswordInput, # max_length=MAXIMUM_PASSWORD_LENGTH, # help_text=_("Enter the same password as above, for verification.")) class Meta: model = User fields = ('username', 'email',) #def save(self, commit=True): # user = super(UserCreateForm, self).save(commit=True) # user.email = self.cleaned_data['email'] # if commit: # user.save() # return user
304a1cd3b71b376d3f7964d58d6d894df67b469c
bd802f8f34489a092550d749ea4444c6052d9875
/python/other/Recommender_spark_1.py
fb3b66aefa4be06ee3929a9ab86dc2377af3aa6d
[]
no_license
amirnasri/Spark_movie_recommender
610e4291aefad9081d48b6ec37b3e5d42ac50981
bcb48c8d0f4783c7b85bbec199feff0763c2c764
refs/heads/master
2021-06-24T16:25:16.471139
2018-08-09T05:00:16
2018-08-09T05:00:16
101,361,446
0
1
null
2020-07-23T14:57:02
2017-08-25T03:18:34
Jupyter Notebook
UTF-8
Python
false
false
4,648
py
import pandas as pd import numpy as np from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession import os from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating from scipy.sparse import csr_matrix from sklearn.preprocessing import normalize import pickle import sys ratings = pd.read_csv('data/ml-100k/u.data', delimiter="\t", engine="python", header=None) ratings.columns = ["UserID::MovieID::Rating::Timestamp".split("::")] # Load movie table movies = pd.read_csv('data/ml-100k/u.item', delimiter='|', engine='python', header=None) # Movie table columns as provided in the ReadMe file columns = ' MovieID | movie title | release date | video release date |' \ 'IMDb URL | unknown | Action | Adventure | Animation |'\ 'Children | Comedy | Crime | Documentary | Drama | Fantasy |'\ 'Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi |'\ 'Thriller | War | Western'.split('|') movies.columns = ["-".join(i.strip().split()) for i in columns] movies.head() print "The following movie id's are missing from movie table" print sorted(set(range(1, movies.MovieID.max())) - set(movies.MovieID)) print "\nnumber of unique movies: %s\n" % len(set(movies.MovieID)) # movie id have some missing values in addition to the missing values above # , i.e., there are movies that are not rated by any user. mi = ratings['MovieID'].unique() mi.sort() print "The following movie id's exist in movie table are not rate by any user" print sorted(set(movies.MovieID) - set(mi)) print len(mi) # movie-ID: id's provided in the movie table # movie-index: index ranges from 0 to #(unique movies) - 1 movie_index_to_ID = dict(zip(range(len(mi)), mi)) movie_ID_to_index = {k: v for v, k in movie_index_to_ID.iteritems()} # Setting up spark session and spark context spark = SparkSession \ .builder \ .appName("Python Spark SQL basic example") \ .config("spark.some.config.option", "some-value") \ .getOrCreate() sc = spark.sparkContext sc.setLogLevel("WARN") # TODO: Should use broadcast for movie_ID_to_index? def parse_data(line): fields = line.split("\t") user_id = int(fields[0]) movie_id = int(fields[1]) rating = float(fields[2]) ts = fields[3] return movie_ID_to_index_bc.value[movie_id], user_id - 1, rating, ts movie_ID_to_index_bc = sc.broadcast(movie_ID_to_index) # u_data_file = os.path.join("ml-1m", "ratings.dat") u_data_file = os.path.join("data/ml-100k", "u.data") ratings_rdd = sc.textFile(u_data_file).map(parse_data) # .cache().filter(lambda x: x is not None) print movie_ID_to_index.items()[:10] ratings_columns = "UserID::MovieID::Rating::Timestamp".split("::") ratings_sp = spark.createDataFrame(ratings_rdd, schema=ratings_columns) model = ALS.train(ratings_sp.select(['UserID', 'MovieID', 'Rating']), rank = 10, iterations = 10) def row_style_to_coordinate(m): """ Change from row-style to coordinate style matrix: m = [ (0, (v00, v01, v02)) (2, (v20, v21, v22)) (5, (v50, v51, v52)) ] => [ (0, [(0, v00), (1, v01), (2, v02)]) (2, [(0, v20), (1, v21), (2, v22)]) (5, [(0, v50), (1, v51), (2, v52)]) ] => [ (0, 0, v00), (0, 1, v01), (0, 2, v02), (2, 0, v20), (2, 1, v21), (2, 2, v22), ] """ x = m.map(lambda r: (r[0], zip(range(len(r[1])), r[1]))) return x.flatMap(lambda r: [(r[0], i[0], i[1]) for i in r[1]]) def coordinate_to_sparse(m): row, col, data = np.array(m).T return csr_matrix((data, (row, col))) pf_rdd = model.productFeatures() uf_rdd = model.userFeatures() user_features = row_style_to_coordinate(pf_rdd) product_features = row_style_to_coordinate(uf_rdd) #print coordinate_to_sparse(user_features.collect()).todense().shape #print coordinate_to_sparse(product_features.collect()).todense().shape pf_sparse = coordinate_to_sparse(product_features.collect()) pf = np.array(pf_sparse.todense()) print pf pf_norm = normalize(pf, axis=1) pp_sim = np.dot(pf_norm, pf_norm.T) recom_movie_index = np.argsort(pp_sim[0, :])[::-1][:10] recom_movie_df = pd.merge(pd.DataFrame({'MovieID':[movie_index_to_ID[i] for i in recom_movie_index]}), movies, how='inner', on='MovieID', suffixes=('_x', '_y')) print recom_movie_df def save_obj(obj, name ): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) result_folder = './result' if len(sys.argv) > 1: result_folder = sys.argv[1] if not os.path.exists(result_folder): os.mkdir(result_folder) curr_dir = os.getcwd() os.chdir(result_folder) movies.to_csv('movies_df.csv') save_obj(movie_index_to_ID, 'movie_index_to_ID') np.save('pp_sim', pp_sim) os.chdir(curr_dir)
7398929e6c6e4e9ba906b903cebc809dfcf312e9
3a6aa0296a0258000f91f9c096fe21612eb17cc6
/src/initialization/httpexception_processor.py
d627f3d81dbe960f16d45c7c45a72f9faaa3ace4
[]
no_license
chiwah-keen/flask-demo-pro
a20c8c271e39dd44136b0f10e861b2a34dccfbf4
f9cfc56f352c1e0c89c7fa75e6394880d476958f
refs/heads/master
2021-01-05T11:11:11.201817
2020-02-17T02:36:44
2020-02-17T02:36:44
241,004,424
0
0
null
null
null
null
UTF-8
Python
false
false
956
py
#! /usr/bin/env python # -*- coding:utf-8 -*- """ Created on 2020年02月07日 @author: jianzhihua """ from flask_app import main_app from initialization.logger_processsor import logger import utils.custom_response as ucr @main_app.errorhandler(404) def S404Handle(error): """ @attention: 404服务器警告异常 """ # msg,data = error.show() return ucr.op_fail(msg='Resource Not Found Error!', data={}, status=404) @main_app.errorhandler(405) def S405Handle(error): """ @attention: 405服务器警告异常 """ # msg,data = error.show() return ucr.op_fail(msg='The method is not allowed for the requested URL!', data={}, status=405) @main_app.errorhandler(500) def S500Handle(error): """ @attention: 500服务器警告异常 """ # msg,data = error.show() # return ucr.op_fail(msg='System Error!', data={}, status=500) return ucr.op_fail(msg='System Error!', data={}, status=500)
7734a21170fb4559398072c9c7cc5a5b15ae2302
e5ff7b465ad359685dc0ff4d4cf8026922810f4b
/poscar_to_cif.py
efcf1d53aa2e0d91dca6ae4a95b152c5b7bd3f85
[ "MIT" ]
permissive
runxin123/mg_intermetallic_ml
dee5082485873a4ea016255e8eee4eee38bff417
9ce496144123442a06c154496fe8695629d5effe
refs/heads/main
2023-04-28T13:32:23.383737
2021-05-24T03:47:47
2021-05-24T03:47:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
from pymatgen.io.cif import CifWriter from pymatgen.core.structure import Structure import os structs = [i for i in os.listdir() if i[:6] == 'POSCAR'] for s in structs: CifWriter(Structure.from_file(s)).write_file(f'{s}.cif') os.remove(s)
31a865b320a6c846e8c56d539938bb9983d0761e
32deed55475741abffcecb982f98474a6541aa29
/RI/lib/custom_analyzer.py
c85362ff6f19bf3ea0d2c1d63985677a8c360ddd
[]
no_license
vlad-doru/master
e18275cd5cc3e54f40bb330340c6c790ce3ebd00
09574cfe25ec5245205aaeeedca0c1d9eab8e13c
refs/heads/master
2021-01-17T09:39:49.539382
2016-05-07T12:28:28
2016-05-07T12:28:28
25,204,913
0
0
null
null
null
null
UTF-8
Python
false
false
1,387
py
import lucene import textract from lucene.collections import * from org.tartarus.snowball.ext import RomanianStemmer from org.apache.pylucene.analysis import PythonAnalyzer from org.apache.lucene.analysis.core import LowerCaseTokenizer, StopFilter, StopAnalyzer from org.apache.lucene.analysis.standard import StandardTokenizer from org.apache.lucene.analysis.standard import StandardFilter from org.apache.lucene.analysis.snowball import SnowballFilter from org.apache.lucene.analysis.miscellaneous import ASCIIFoldingFilter from java.util import HashSet, ArrayList, Arrays from org.apache.lucene.analysis.util import CharArraySet from org.apache.lucene.analysis import Analyzer class CustomRomanianAnalyzer(PythonAnalyzer): def __init__(self, stopwords_file=""): super(CustomRomanianAnalyzer, self).__init__() stopwords = [] if len(stopwords_file) > 0: stopwords = textract.process(stopwords_file).split() self.__stopwords = StopFilter.makeStopSet(Arrays.asList(stopwords)) def createComponents(self, field, reader): tokenizer = LowerCaseTokenizer(reader) filter = StandardFilter(tokenizer) filter = StopFilter(filter, self.__stopwords) filter = ASCIIFoldingFilter(filter) filter = SnowballFilter(filter, RomanianStemmer()) return Analyzer.TokenStreamComponents(tokenizer, filter)
250c04aa763f71681cae0386ca25309d7883ce8c
1946d8d6e26b3d6b2573718d77875a554619c05a
/config/settings/environments/production.py
6de418bddc21e06fbdeebf1e2485769b09b6d4b5
[]
no_license
hound672/django-blank
f850079a15d21c415fc5120a51daebb0d4d6c297
8784db1f4ef1d85f78734b32e465805cf04f50f8
refs/heads/master
2022-06-15T21:39:23.516875
2019-06-22T15:33:18
2019-06-22T15:33:18
193,249,674
0
0
null
2022-05-25T02:50:45
2019-06-22T15:32:25
Python
UTF-8
Python
false
false
245
py
# -*- coding: utf-8 -*- """ settings/prod ~~~~~~~~~~~~~~~ Настройки для продакшн сервера """ # noinspection PyUnresolvedReferences from config.settings.components.common import * ALLOWED_HOSTS = ['']
e0e8d831007d77131f6d88f8e73286c498bce730
186b7e8d1a07d2b5eb4c93f11279c59422485327
/src/common/urls.py
6c90d9eecacf74f2257984652d4f935ff44f3f4f
[]
no_license
nevtum/hivemind
c47080adcbcb7a7df8a9965aea084294fcfecfe9
04c0aa06a8a00b98ccb631a6eeaaa1371b0af8dc
refs/heads/master
2020-04-11T10:25:49.874601
2018-12-14T00:45:03
2018-12-14T00:45:03
161,714,394
0
0
null
null
null
null
UTF-8
Python
false
false
459
py
from django.conf.urls import include, url from django.contrib.auth.decorators import login_required as auth from .views import CreateProjectView, EditProjectView, ProjectListView urlpatterns = [ url(r'^projects/$', auth(ProjectListView.as_view()), name='projects'), url(r'^projects/new/$', auth(CreateProjectView.as_view()), name='create-project'), url(r'^projects/(?P<slug>[-\w\d]+)/$', auth(EditProjectView.as_view()), name='edit-project'), ]
c49a46ac2549ed50a593ddc7f2d560176aae8fc4
f24e91b1a9565b0d71a7e2dfffb49efbd759f5f1
/yare-rl/train.py
282f25fb4189e37e291e78a84a5457ecc20be63f
[ "MIT" ]
permissive
dpmaloney/yare-rl
aeb99a85635210b83b36ef8a99dcbe2c2f32ddf5
be16b3868957f7998baa4f0f568e6478787985e0
refs/heads/main
2023-07-11T08:39:23.629595
2021-08-20T04:14:46
2021-08-20T04:14:46
398,152,132
0
0
MIT
2021-08-20T04:14:32
2021-08-20T04:14:31
null
UTF-8
Python
false
false
1,136
py
import argparse import gym from pettingzoo.butterfly import knights_archers_zombies_v7 from env import YareEnv from policies import RandomPolicy def random_baseline(env: gym.Env) -> None: policy = RandomPolicy(env.action_spaces) while True: observations = env.reset() max_steps: int = 1000 for _ in range(max_steps): actions = { agent: policy.get_action( observations[agent], agent) for agent in env.agents} observations, rewards, dones, infos = env.step(actions) env.render() if all(dones): break if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--env', default="yare", choices=[ "yare", "butterfly"], help='Environment to train in.') args = parser.parse_args() if args.env == "yare": env = YareEnv() elif args.env == "butterfly": env = knights_archers_zombies_v7.parallel_env() else: raise NotImplementedError random_baseline(env)
a7fbdb3937b39dc612763e233578b4e0abfbbeb1
8c1392b2ec81abcfbb18b922c7010089b973f160
/5.9.py
2f882431b9fb4341e3dd16ae02bea2d43b967148
[]
no_license
bmk316/daniel_liang_python_solutions
f714b9d32a57fc9157b1954d2c608952a169c399
02b4879caa137d3dcb33be517e4ad513398df49e
refs/heads/main
2023-03-07T13:47:20.205978
2021-02-17T23:20:37
2021-02-17T23:20:37
339,880,244
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
#Financial application : compute future tuition tuition = 10000 rate = 0.05 four_years = 0.0 for i in range(14): tuition += tuition * 0.05 if i == 9: print(f"Tuition in 10 years is: {tuition :,.2f}") if i == 10 or i == 11 or i == 12 or i == 13: four_years += tuition print(f"Total cost of 4 years of tuition, starting 10 years from now is: {four_years :,.2f}")
f129481598f87ce5d355abcd28ab70d637b00f93
0d935bbb55e54e95c15bc76dc1c2333296537c3b
/platocdp/devoops/setuphandlers.py
fd18e5a3b072b9f0f241e556277351a6959ceaeb
[]
no_license
koslab/platocdp.devoops
1c312ceeb9f684f0a22cc1568afcaf15f2a144e7
4bcdf1b5dbce4cda2d2ed4963b7100daa4f89321
refs/heads/master
2016-08-04T23:52:13.234017
2015-07-02T17:04:54
2015-07-02T17:04:54
34,948,874
0
0
null
null
null
null
UTF-8
Python
false
false
364
py
from collective.grok import gs from platocdp.devoops import MessageFactory as _ @gs.importstep( name=u'platocdp.devoops', title=_('platocdp.devoops import handler'), description=_('')) def setupVarious(context): if context.readDataFile('platocdp.devoops.marker.txt') is None: return portal = context.getSite() # do anything here
521d709c5b4a1384fc725ce63d6172eec2fead78
55647a80c8b412af9df0ba3f50595cc2f29c25e6
/res/scripts/common/Lib/distutils/tests/test_build_ext.py
1d8d27db4f7a5dadb809a807760ccda505ba62bf
[]
no_license
cnsuhao/WOT-0.9.17-CT
0035eb6070fb4fab8d8ee9f8bbc676c10d511cfb
d1f932d8cabaf8aa21708622e87f83c8d24d6451
refs/heads/master
2021-06-08T18:11:07.039293
2016-11-19T19:12:37
2016-11-19T19:12:37
null
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
16,296
py
# 2016.11.19 19:58:33 Střední Evropa (běžný čas) # Embedded file name: scripts/common/Lib/distutils/tests/test_build_ext.py import sys import os from StringIO import StringIO import textwrap from distutils.core import Extension, Distribution from distutils.command.build_ext import build_ext from distutils import sysconfig from distutils.tests import support from distutils.errors import DistutilsSetupError, CompileError, DistutilsPlatformError import unittest from test import test_support ALREADY_TESTED = False class BuildExtTestCase(support.TempdirManager, support.LoggingSilencer, unittest.TestCase): def setUp(self): super(BuildExtTestCase, self).setUp() self.tmp_dir = self.mkdtemp() self.xx_created = False sys.path.append(self.tmp_dir) self.addCleanup(sys.path.remove, self.tmp_dir) if sys.version > '2.6': import site self.old_user_base = site.USER_BASE site.USER_BASE = self.mkdtemp() from distutils.command import build_ext build_ext.USER_BASE = site.USER_BASE def tearDown(self): if self.xx_created: test_support.unload('xx') super(BuildExtTestCase, self).tearDown() def test_build_ext(self): global ALREADY_TESTED support.copy_xxmodule_c(self.tmp_dir) self.xx_created = True xx_c = os.path.join(self.tmp_dir, 'xxmodule.c') xx_ext = Extension('xx', [xx_c]) dist = Distribution({'name': 'xx', 'ext_modules': [xx_ext]}) dist.package_dir = self.tmp_dir cmd = build_ext(dist) support.fixup_build_ext(cmd) cmd.build_lib = self.tmp_dir cmd.build_temp = self.tmp_dir old_stdout = sys.stdout if not test_support.verbose: sys.stdout = StringIO() try: cmd.ensure_finalized() cmd.run() finally: sys.stdout = old_stdout if ALREADY_TESTED: self.skipTest('Already tested in %s' % ALREADY_TESTED) else: ALREADY_TESTED = type(self).__name__ import xx for attr in ('error', 'foo', 'new', 'roj'): self.assertTrue(hasattr(xx, attr)) self.assertEqual(xx.foo(2, 5), 7) self.assertEqual(xx.foo(13, 15), 28) self.assertEqual(xx.new().demo(), None) if test_support.HAVE_DOCSTRINGS: doc = 'This is a template module just for instruction.' self.assertEqual(xx.__doc__, doc) self.assertIsInstance(xx.Null(), xx.Null) self.assertIsInstance(xx.Str(), xx.Str) return def test_solaris_enable_shared(self): dist = Distribution({'name': 'xx'}) cmd = build_ext(dist) old = sys.platform sys.platform = 'sunos' from distutils.sysconfig import _config_vars old_var = _config_vars.get('Py_ENABLE_SHARED') _config_vars['Py_ENABLE_SHARED'] = 1 try: cmd.ensure_finalized() finally: sys.platform = old if old_var is None: del _config_vars['Py_ENABLE_SHARED'] else: _config_vars['Py_ENABLE_SHARED'] = old_var self.assertGreater(len(cmd.library_dirs), 0) return @unittest.skipIf(sys.version < '2.6', 'site.USER_SITE was introduced in 2.6') def test_user_site(self): import site dist = Distribution({'name': 'xx'}) cmd = build_ext(dist) options = [ name for name, short, label in cmd.user_options ] self.assertIn('user', options) cmd.user = 1 lib = os.path.join(site.USER_BASE, 'lib') incl = os.path.join(site.USER_BASE, 'include') os.mkdir(lib) os.mkdir(incl) cmd.ensure_finalized() self.assertIn(lib, cmd.library_dirs) self.assertIn(lib, cmd.rpath) self.assertIn(incl, cmd.include_dirs) def test_finalize_options(self): modules = [Extension('foo', ['xxx'])] dist = Distribution({'name': 'xx', 'ext_modules': modules}) cmd = build_ext(dist) cmd.finalize_options() py_include = sysconfig.get_python_inc() self.assertIn(py_include, cmd.include_dirs) plat_py_include = sysconfig.get_python_inc(plat_specific=1) self.assertIn(plat_py_include, cmd.include_dirs) cmd = build_ext(dist) cmd.libraries = 'my_lib, other_lib lastlib' cmd.finalize_options() self.assertEqual(cmd.libraries, ['my_lib', 'other_lib', 'lastlib']) cmd = build_ext(dist) cmd.library_dirs = 'my_lib_dir%sother_lib_dir' % os.pathsep cmd.finalize_options() self.assertIn('my_lib_dir', cmd.library_dirs) self.assertIn('other_lib_dir', cmd.library_dirs) cmd = build_ext(dist) cmd.rpath = 'one%stwo' % os.pathsep cmd.finalize_options() self.assertEqual(cmd.rpath, ['one', 'two']) cmd = build_ext(dist) cmd.define = 'one,two' cmd.finalize_options() self.assertEqual(cmd.define, [('one', '1'), ('two', '1')]) cmd = build_ext(dist) cmd.undef = 'one,two' cmd.finalize_options() self.assertEqual(cmd.undef, ['one', 'two']) cmd = build_ext(dist) cmd.swig_opts = None cmd.finalize_options() self.assertEqual(cmd.swig_opts, []) cmd = build_ext(dist) cmd.swig_opts = '1 2' cmd.finalize_options() self.assertEqual(cmd.swig_opts, ['1', '2']) return def test_check_extensions_list(self): dist = Distribution() cmd = build_ext(dist) cmd.finalize_options() self.assertRaises(DistutilsSetupError, cmd.check_extensions_list, 'foo') exts = [('bar', 'foo', 'bar'), 'foo'] self.assertRaises(DistutilsSetupError, cmd.check_extensions_list, exts) exts = [('foo-bar', '')] self.assertRaises(DistutilsSetupError, cmd.check_extensions_list, exts) exts = [('foo.bar', '')] self.assertRaises(DistutilsSetupError, cmd.check_extensions_list, exts) exts = [('foo.bar', {'sources': [''], 'libraries': 'foo', 'some': 'bar'})] cmd.check_extensions_list(exts) ext = exts[0] self.assertIsInstance(ext, Extension) self.assertEqual(ext.libraries, 'foo') self.assertFalse(hasattr(ext, 'some')) exts = [('foo.bar', {'sources': [''], 'libraries': 'foo', 'some': 'bar', 'macros': [('1', '2', '3'), 'foo']})] self.assertRaises(DistutilsSetupError, cmd.check_extensions_list, exts) exts[0][1]['macros'] = [('1', '2'), ('3',)] cmd.check_extensions_list(exts) self.assertEqual(exts[0].undef_macros, ['3']) self.assertEqual(exts[0].define_macros, [('1', '2')]) def test_get_source_files(self): modules = [Extension('foo', ['xxx'])] dist = Distribution({'name': 'xx', 'ext_modules': modules}) cmd = build_ext(dist) cmd.ensure_finalized() self.assertEqual(cmd.get_source_files(), ['xxx']) def test_compiler_option(self): dist = Distribution() cmd = build_ext(dist) cmd.compiler = 'unix' cmd.ensure_finalized() cmd.run() self.assertEqual(cmd.compiler, 'unix') def test_get_outputs(self): tmp_dir = self.mkdtemp() c_file = os.path.join(tmp_dir, 'foo.c') self.write_file(c_file, 'void initfoo(void) {};\n') ext = Extension('foo', [c_file]) dist = Distribution({'name': 'xx', 'ext_modules': [ext]}) cmd = build_ext(dist) support.fixup_build_ext(cmd) cmd.ensure_finalized() self.assertEqual(len(cmd.get_outputs()), 1) cmd.build_lib = os.path.join(self.tmp_dir, 'build') cmd.build_temp = os.path.join(self.tmp_dir, 'tempt') other_tmp_dir = os.path.realpath(self.mkdtemp()) old_wd = os.getcwd() os.chdir(other_tmp_dir) try: cmd.inplace = 1 cmd.run() so_file = cmd.get_outputs()[0] finally: os.chdir(old_wd) self.assertTrue(os.path.exists(so_file)) self.assertEqual(os.path.splitext(so_file)[-1], sysconfig.get_config_var('SO')) so_dir = os.path.dirname(so_file) self.assertEqual(so_dir, other_tmp_dir) cmd.compiler = None cmd.inplace = 0 cmd.run() so_file = cmd.get_outputs()[0] self.assertTrue(os.path.exists(so_file)) self.assertEqual(os.path.splitext(so_file)[-1], sysconfig.get_config_var('SO')) so_dir = os.path.dirname(so_file) self.assertEqual(so_dir, cmd.build_lib) build_py = cmd.get_finalized_command('build_py') build_py.package_dir = {'': 'bar'} path = cmd.get_ext_fullpath('foo') path = os.path.split(path)[0] self.assertEqual(path, cmd.build_lib) cmd.inplace = 1 other_tmp_dir = os.path.realpath(self.mkdtemp()) old_wd = os.getcwd() os.chdir(other_tmp_dir) try: path = cmd.get_ext_fullpath('foo') finally: os.chdir(old_wd) path = os.path.split(path)[0] lastdir = os.path.split(path)[-1] self.assertEqual(lastdir, 'bar') return def test_ext_fullpath(self): ext = sysconfig.get_config_vars()['SO'] dist = Distribution() cmd = build_ext(dist) cmd.inplace = 1 cmd.distribution.package_dir = {'': 'src'} cmd.distribution.packages = ['lxml', 'lxml.html'] curdir = os.getcwd() wanted = os.path.join(curdir, 'src', 'lxml', 'etree' + ext) path = cmd.get_ext_fullpath('lxml.etree') self.assertEqual(wanted, path) cmd.inplace = 0 cmd.build_lib = os.path.join(curdir, 'tmpdir') wanted = os.path.join(curdir, 'tmpdir', 'lxml', 'etree' + ext) path = cmd.get_ext_fullpath('lxml.etree') self.assertEqual(wanted, path) build_py = cmd.get_finalized_command('build_py') build_py.package_dir = {} cmd.distribution.packages = ['twisted', 'twisted.runner.portmap'] path = cmd.get_ext_fullpath('twisted.runner.portmap') wanted = os.path.join(curdir, 'tmpdir', 'twisted', 'runner', 'portmap' + ext) self.assertEqual(wanted, path) cmd.inplace = 1 path = cmd.get_ext_fullpath('twisted.runner.portmap') wanted = os.path.join(curdir, 'twisted', 'runner', 'portmap' + ext) self.assertEqual(wanted, path) def test_build_ext_inplace(self): etree_c = os.path.join(self.tmp_dir, 'lxml.etree.c') etree_ext = Extension('lxml.etree', [etree_c]) dist = Distribution({'name': 'lxml', 'ext_modules': [etree_ext]}) cmd = build_ext(dist) cmd.ensure_finalized() cmd.inplace = 1 cmd.distribution.package_dir = {'': 'src'} cmd.distribution.packages = ['lxml', 'lxml.html'] curdir = os.getcwd() ext = sysconfig.get_config_var('SO') wanted = os.path.join(curdir, 'src', 'lxml', 'etree' + ext) path = cmd.get_ext_fullpath('lxml.etree') self.assertEqual(wanted, path) def test_setuptools_compat(self): import distutils.core, distutils.extension, distutils.command.build_ext saved_ext = distutils.extension.Extension try: test_support.import_module('setuptools_build_ext', deprecated=True) from setuptools_build_ext import build_ext as setuptools_build_ext from setuptools_extension import Extension etree_c = os.path.join(self.tmp_dir, 'lxml.etree.c') etree_ext = Extension('lxml.etree', [etree_c]) dist = Distribution({'name': 'lxml', 'ext_modules': [etree_ext]}) cmd = setuptools_build_ext(dist) cmd.ensure_finalized() cmd.inplace = 1 cmd.distribution.package_dir = {'': 'src'} cmd.distribution.packages = ['lxml', 'lxml.html'] curdir = os.getcwd() ext = sysconfig.get_config_var('SO') wanted = os.path.join(curdir, 'src', 'lxml', 'etree' + ext) path = cmd.get_ext_fullpath('lxml.etree') self.assertEqual(wanted, path) finally: distutils.extension.Extension = saved_ext distutils.core.Extension = saved_ext distutils.command.build_ext.Extension = saved_ext def test_build_ext_path_with_os_sep(self): dist = Distribution({'name': 'UpdateManager'}) cmd = build_ext(dist) cmd.ensure_finalized() ext = sysconfig.get_config_var('SO') ext_name = os.path.join('UpdateManager', 'fdsend') ext_path = cmd.get_ext_fullpath(ext_name) wanted = os.path.join(cmd.build_lib, 'UpdateManager', 'fdsend' + ext) self.assertEqual(ext_path, wanted) @unittest.skipUnless(sys.platform == 'win32', 'these tests require Windows') def test_build_ext_path_cross_platform(self): dist = Distribution({'name': 'UpdateManager'}) cmd = build_ext(dist) cmd.ensure_finalized() ext = sysconfig.get_config_var('SO') ext_name = 'UpdateManager/fdsend' ext_path = cmd.get_ext_fullpath(ext_name) wanted = os.path.join(cmd.build_lib, 'UpdateManager', 'fdsend' + ext) self.assertEqual(ext_path, wanted) @unittest.skipUnless(sys.platform == 'darwin', 'test only relevant for MacOSX') def test_deployment_target_default(self): self._try_compile_deployment_target('==', None) return @unittest.skipUnless(sys.platform == 'darwin', 'test only relevant for MacOSX') def test_deployment_target_too_low(self): self.assertRaises(DistutilsPlatformError, self._try_compile_deployment_target, '>', '10.1') @unittest.skipUnless(sys.platform == 'darwin', 'test only relevant for MacOSX') def test_deployment_target_higher_ok(self): deptarget = sysconfig.get_config_var('MACOSX_DEPLOYMENT_TARGET') if deptarget: deptarget = [ int(x) for x in deptarget.split('.') ] deptarget[-1] += 1 deptarget = '.'.join((str(i) for i in deptarget)) self._try_compile_deployment_target('<', deptarget) def _try_compile_deployment_target(self, operator, target): orig_environ = os.environ os.environ = orig_environ.copy() self.addCleanup(setattr, os, 'environ', orig_environ) if target is None: if os.environ.get('MACOSX_DEPLOYMENT_TARGET'): del os.environ['MACOSX_DEPLOYMENT_TARGET'] else: os.environ['MACOSX_DEPLOYMENT_TARGET'] = target deptarget_c = os.path.join(self.tmp_dir, 'deptargetmodule.c') with open(deptarget_c, 'w') as fp: fp.write(textwrap.dedent(' #include <AvailabilityMacros.h>\n\n int dummy;\n\n #if TARGET %s MAC_OS_X_VERSION_MIN_REQUIRED\n #else\n #error "Unexpected target"\n #endif\n\n ' % operator)) target = sysconfig.get_config_var('MACOSX_DEPLOYMENT_TARGET') target = tuple(map(int, target.split('.'))) target = '%02d%01d0' % target deptarget_ext = Extension('deptarget', [deptarget_c], extra_compile_args=['-DTARGET=%s' % (target,)]) dist = Distribution({'name': 'deptarget', 'ext_modules': [deptarget_ext]}) dist.package_dir = self.tmp_dir cmd = build_ext(dist) cmd.build_lib = self.tmp_dir cmd.build_temp = self.tmp_dir try: cmd.ensure_finalized() cmd.run() except CompileError: self.fail('Wrong deployment target during compilation') return def test_suite(): return unittest.makeSuite(BuildExtTestCase) if __name__ == '__main__': test_support.run_unittest(test_suite()) # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\common\Lib\distutils\tests\test_build_ext.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.11.19 19:58:34 Střední Evropa (běžný čas)
72c8d67aaedfd2efae3a52f2fef35b40c901f3fc
6cbb6f523070dfe1acd40ac5c1c576e157ac715b
/tests/app/cli/test_main.py
a0d3b9bd342f81dcd6d4e10cfd4b11720b16a34a
[ "MIT" ]
permissive
ymoch/preacher
1607350c6b2ba50bb0e0d9ec3322e69f9ce2cb5b
ceeb048c6ed120102d9cdd6829ee2b05ad977c83
refs/heads/master
2023-02-22T21:00:06.791304
2022-06-14T17:21:34
2022-06-14T17:21:34
174,710,438
3
2
MIT
2023-02-16T05:56:52
2019-03-09T15:21:20
Python
UTF-8
Python
false
false
5,976
py
import os from tempfile import TemporaryDirectory from click.testing import CliRunner from pytest import fixture, mark from preacher.app.cli.executor import PROCESS_POOL_FACTORY, THREAD_POOL_FACTORY from preacher.app.cli.main import main from preacher.core.status import Status PKG = "preacher.app.cli.main" @fixture def base_dir(): with TemporaryDirectory() as path: with open(os.path.join(path, "foo.yml"), "w") as f: f.write("foo") with open(os.path.join(path, "bar.yml"), "w") as f: f.write("bar") with open(os.path.join(path, "plugin.py"), "w") as f: f.write("bar") os.makedirs(os.path.join(path, "dir")) yield path @mark.parametrize( "args", [ ["-h"], ["--help"], ["--version"], ], ) def test_show_and_exit(args): result = CliRunner().invoke(main, args) assert result.exit_code == 0 @mark.parametrize( "args", ( ["-a", ""], ["--argument", "foo"], ["--argument", "foo=["], ["--argument", "foo=!include file.yml"], ["-l", "foo"], ["--level", "bar"], ["-r", "foo"], ["--retry", "-1"], ["-d", "foo"], ["--delay", "-0.1"], ["-t", "foo"], ["--timeout", "0.0"], ["-c", "foo"], ["--concurrency", "0"], ["-C", "foo"], ["--concurrent-executor", "foo"], ["-p", "invalid"], ["--plugin", "invalid"], ["dir"], ), ) def test_given_invalid_options(args, base_dir): runner = CliRunner() result = runner.invoke(main, args) assert result.exit_code == 2 @mark.parametrize( "env", ( {}, { "PREACHER_CLI_BASE_URL": "", "PREACHER_CLI_ARGUMENT": "", "PREACHER_CLI_LEVEL": "", "PREACHER_CLI_RETRY": "", "PREACHER_CLI_DELAY": "", "PREACHER_CLI_TIMEOUT": "", "PREACHER_CLI_CONCURRENCY": "", "PREACHER_CLI_CONCURRENT_EXECUTOR": "", "PREACHER_CLI_PLUGIN": "", }, ), ) def test_default(mocker, env): app = mocker.patch(f"{PKG}.app", return_value=0) result = CliRunner().invoke(main, env=env) assert result.exit_code == 0 app.assert_called_once_with( paths=(), base_url="", arguments={}, level=Status.SUCCESS, report_dir=None, retry=0, delay=0.1, timeout=None, concurrency=1, executor_factory=PROCESS_POOL_FACTORY, plugins=(), verbosity=0, ) def test_arguments(mocker, base_dir): app = mocker.patch(f"{PKG}.app", return_value=0) args = ( "--base-url", "https://your-domain.com/api", "-a", "foo=", "--argument", "bar=1", "--argument", "baz=1.2", "--argument", "spam=[ham,eggs]", "--level", "unstable", "--report", os.path.join(base_dir, "report"), "--retry", "5", "--delay", "2.5", "--timeout", "3.5", "--concurrency", "4", "--executor", "thread", "-p", os.path.join(base_dir, "plugin.py"), "--plugin", os.path.join(base_dir, "dir"), "--verbose", os.path.join(base_dir, "foo.yml"), os.path.join(base_dir, "bar.yml"), ) env = { "PREACHER_CLI_BASE_URL": "https://my-domain.com/api", "PREACHER_CLI_ARGUMENT": "foo", "PREACHER_CLI_LEVEL": "foo", "PREACHER_CLI_RETRY": "foo", "PREACHER_CLI_DELAY": "foo", "PREACHER_CLI_TIMEOUT": "foo", "PREACHER_CLI_CONCURRENCY": "foo", "PREACHER_CLI_CONCURRENT_EXECUTOR": "foo", "PREACHER_CLI_PLUGIN": "foo", } result = CliRunner().invoke(main, args=args, env=env) assert result.exit_code == 0 app.assert_called_once_with( paths=(os.path.join(base_dir, "foo.yml"), os.path.join(base_dir, "bar.yml")), base_url="https://your-domain.com/api", arguments={"foo": None, "bar": 1, "baz": 1.2, "spam": ["ham", "eggs"]}, level=Status.UNSTABLE, report_dir=os.path.join(base_dir, "report"), retry=5, delay=2.5, timeout=3.5, concurrency=4, executor_factory=THREAD_POOL_FACTORY, plugins=(os.path.join(base_dir, "plugin.py"), os.path.join(base_dir, "dir")), verbosity=1, ) def test_environ(mocker, base_dir): app = mocker.patch(f"{PKG}.app", return_value=0) env = { "PREACHER_CLI_BASE_URL": "https://my-domain.com/api", "PREACHER_CLI_ARGUMENT": 'foo=1 bar=" baz " spam="ham\'""eggs"', "PREACHER_CLI_LEVEL": "failure", "PREACHER_CLI_REPORT": "reports/", "PREACHER_CLI_RETRY": "10", "PREACHER_CLI_DELAY": "1.2", "PREACHER_CLI_TIMEOUT": "3.4", "PREACHER_CLI_CONCURRENCY": "5", "PREACHER_CLI_CONCURRENT_EXECUTOR": "thread", "PREACHER_CLI_PLUGIN": ":".join( ( os.path.join(base_dir, "plugin.py"), os.path.join(base_dir, "dir"), ) ), } result = CliRunner().invoke(main, env=env) assert result.exit_code == 0 app.assert_called_once_with( paths=(), base_url="https://my-domain.com/api", arguments={"foo": 1, "bar": "baz", "spam": "ham'eggs"}, level=Status.FAILURE, report_dir="reports/", retry=10, delay=1.2, timeout=3.4, concurrency=5, executor_factory=THREAD_POOL_FACTORY, plugins=(os.path.join(base_dir, "plugin.py"), os.path.join(base_dir, "dir")), verbosity=0, ) @mark.parametrize("exit_code", list(range(-1, 5))) def test_exit_code(mocker, exit_code): mocker.patch(f"{PKG}.app", return_value=exit_code) result = CliRunner().invoke(main) assert result.exit_code == exit_code
8a5ec785654093e76f90567eca5c8d6e49cdd8ae
c36f4bd95c7a0706129ac1ed6e1e29f3f13c12b9
/m8/p2/assignment2.py
e5dc42dedc79539058c35a7c30e4dcabc145dd5f
[]
no_license
prathyushab14/cssp1__assignments
7fdfe121a48a483942d8b13f0996aeeae18ed9c7
c0f64d61092fc42dc598fbe966923e4e88af0f93
refs/heads/master
2020-03-25T01:57:02.643731
2018-08-26T14:32:14
2018-08-26T14:32:14
143,266,313
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
'''Sum of digits using recursion.''' def sumofdigits(n_1): ''' n is positive Integer returns: a positive integer, the sum of digits of n. ''' if n_1 == 0: return 0 return n_1%10+sumofdigits(n_1//10) def main(): '''Main Function.''' a_1 = input() print(sumofdigits(int(a_1))) if __name__ == "__main__": main()
d131d6d74796cfc319b71c0faeada452be95ec4b
293045cb32c999d66ee54ce43c42b64036f611b8
/sqlPiuTabelle2.py
aeff2e67c58ce88ee7fd128a7b111a622e18548b
[]
no_license
Paopand1/sql
976d91872e0ab7af9412c19ebe31a74200bdddba
1cad0fa703165922724e5871dab37fc1b476275b
refs/heads/master
2021-01-17T17:49:08.422810
2016-06-12T13:43:42
2016-06-12T13:43:42
60,872,425
0
0
null
null
null
null
UTF-8
Python
false
false
921
py
import sqlite3 with sqlite3.connect("new.db") as connection: c = connection.cursor() c.execute("""CREATE TABLE regions (city TEXT, region TEXT) """) # (again, copy and paste the values if you'd like) cities = [ ('New York City', 'Northeast'), ('San Francisco', 'West'), ('Chicago', 'Midwest'), ('Houston', 'South'), ('Phoenix', 'West'), ('Boston', 'Northeast'), ('Los Angeles', 'West'), ('Houston', 'South'), ('Philadelphia', 'Northeast'), ('San Antonio', 'South'), ('San Diego', 'West'), ('Dallas', 'South'), ('San Jose', 'West'), ('Jacksonville', 'South'), ('Indianapolis', 'Midwest'), ('Austin', 'South'), ('Detroit', 'Midwest') ] c.executemany("INSERT INTO regions VALUES(?, ? )", cities) c.execute("SELECT * \ FROM regions \ ORDER BY region ASC") rows = c.fetchall() for r in rows: print r[0], r[1]
b81780f815a096f18a8bb8bc8a7f9835d836f10d
03790bec5f643c9880e5a0f10583f3d29af9548a
/common/asserts.py
bcf1b47fca91bd3b7a867f30c574a3eb2b1d37b6
[]
no_license
cidisk/backup
6c6dfe3c6ef2a7c50909e2017777141e2c007b4d
1e8ae84c5f3122cf3db3d091e84ca2faa7f59a4b
HEAD
2016-09-09T20:04:12.925024
2015-01-08T13:01:48
2015-01-08T13:01:48
18,168,846
0
0
null
null
null
null
GB18030
Python
false
false
7,777
py
# -*- coding: GB18030 -*- ''' Created on Feb 20, 2014 @author: wangdongsheng<[email protected]> ''' import os, sys from common import checker from common.loger import loger import string class AssertException(Exception): pass def assert_equal(lhs, rhs, errmsg=None): ''' @summary: 断言lhs和rhs相等 @param errmsg: 断言失败时显示的信息 ''' if errmsg is None: errmsg = "%s doesn't equal to: %s" % (lhs, rhs) if lhs != rhs: raise AssertException, errmsg def assert_not_equal(lhs, rhs, errmsg=None): ''' @summary: 断言lhs和rhs不想等 @param errmsg: 断言失败时显示的信息 ''' if errmsg is None: errmsg = "%s equals to: %s" % (lhs, rhs) if lhs == rhs: raise AssertException, errmsg def assert_gt(lhs, rhs, errmsg=None): ''' @summary: 断言lhs大于rhs @param errmsg: 断言失败时显示的信息 ''' if errmsg is None: errmsg = "%s is less than or equal to %s" % (lhs, rhs) if lhs <= rhs: raise AssertException, errmsg def assert_bound(value, lb, hb, errmsg=None): ''' @summary: 断言value介于lb和hb之间 @param errmsg: 断言失败时显示的信息 @param lb: 下限 @param hb: 上限 ''' if errmsg is None: errmsg = "%s is not in [%s, %s]" % (value, lb, hb) if value < lb or value > hb: raise AssertException, errmsg def assert_in_list(ele, lis, errmsg=None): ''' @summary: 断言element是list中的一个元素 ''' if errmsg is None: errmsg = "%s is not in %s" % (ele, lis) if ele not in lis: raise AssertException, errmsg def assert_process_started(processpath, *ports): ''' @summary: 断言进程启动 @param processpath: 进程的绝对路径 @param ports: 进程端口号列表 ''' if not checker.check_process_started(processpath, *ports): ports_str = ",".join([str(p) for p in ports]) raise AssertException, "Process is not started: %s [%s]" % (processpath, ports_str) def assert_process_not_started(processpath, *ports): ''' @summary: 断言进程未启动 @param processpath: 进程的绝对路径 @param ports: 进程端口号列表 ''' if checker.check_process_started(processpath, *ports): ports_str = ",".join([str(p) for p in ports]) raise AssertException, "Process is started: %s [%s]" % (processpath, ports_str) def assert_path_not_contain(dirpath, filename, r=False): ''' @summary: 断言路径中不含有文件 @param filename: 可以含有扩展符号*, ? @param r: 是否递归查找。默认False ''' if checker.check_path_contain(dirpath, filename, r): raise AssertException, "File '%s' in path: %s" % (filename, dirpath) def assert_log_not_contain(log_reader, regex, ignore_list=[]): ''' @summary: 断言日志中不含有正则字符串 @param log_reader: LogReader对象 @param regex: 正则字符串 @param ignore_list: 忽略符合ignore regex的行 ''' if checker.check_log_contain(log_reader, regex, ignore_list): raise AssertException, "Regex '%s' in log '%s' from pos %d" % (regex, log_reader.logpath, log_reader.pos) ''' 以下是scalar equal实现 ''' def comma(_str): if _str <> "": _str += ',' return _str def key_name(name): if str(name) <> "": return '"'+str(name)+'"'+":" return "" def which2json(_str, name, item): ret = 0 if type(item) == int or type(item) == float or type(item) == bool: _str=numeral2json(_str, name, item) elif type(item) == str: _str=str2json(_str, name, item) elif type(item) == list: _str=list2json(_str, name, item) elif type(item) == dict: _str=dict2json(_str, [], item) elif hasattr(item,'tojson'): if hasattr(item,'needname') and item.needname() and name <> "": _str+='"'+name+'"'+":" _str+=item.tojson() else: ret = -1 parall_log.autoParLog.warning('unknown type'+str(type(item))) return _str,ret def numeral2json(_str, name, value): if value <> "": #_str=comma(_str) value=str(value) if value == "False": value='false' if value == 'True': value='true' if name == '': _str += value else: _str += key_name(name)+value return _str def str2json(_str, name, value): if value <> "": #_str=comma(_str) _str += key_name(name)+'"'+str(value)+'"' return _str def list2json(_str, name, _list, isopt=False): llen=len(_list) if llen == 0 and isopt == True: return _str #_str=comma(_str) ret = 0 tmp_str="" for inx in range(0, llen): item=_list[inx] if inx > 0: tmp_str=comma(tmp_str) tmp_str,ret = which2json(tmp_str, '', item) if ret == 0: _str += key_name(name)+"["+tmp_str+"]" return _str def dict2json(_str, name, dict): if len(dict) == 0: return _str itemname=[] if len(name) <> 0: itemname=name else: itemname=dict.keys() tmp_str="" ret = 0 for inx in range(0, len(itemname)): name=itemname[inx] if dict.has_key(name): if dict[name] == '': continue tmp_str=comma(tmp_str) tmp_str, ret=which2json(tmp_str, name, dict[name]) if ret == 0: _str += '{'+tmp_str+'}' return _str def scalar_equal(src_scalar, dst_scalar, key_path_stack=[]): """ @note:compare src_scalar to dst_scalar variable means, it will compare each item in src_scalar to dst_scalar recursively @param src_scalar: expect scalar @param dst_scalar: real scalar @key_path_stack: for recrode key_path """ if type(src_scalar) != type(dst_scalar) and \ ( type(src_scalar) not in (int, bool) and type(dst_scalar) not in (int,bool) ) : key_path = string.join(key_path_stack, r'.') if len(key_path_stack) > 0 else "" loger.error("src key %s type:[%s] is not equal dst type:[%s]" %(key_path, type(src_scalar), type(dst_scalar))) return False elif type(src_scalar) == dict: for each_key in src_scalar.keys(): key_path_stack.append(str(each_key)) key_path = string.join(key_path_stack, r'.') if not dst_scalar.has_key(each_key): loger.error( "src key:%s does not exists in dst" % key_path) return False ret = scalar_equal(src_scalar[each_key], dst_scalar[each_key], key_path_stack) key_path_stack.pop() if not ret: return False elif type(src_scalar) == list: key_path = string.join(key_path_stack, r'.') if len(key_path_stack) > 0 else "" if len(src_scalar) != len(dst_scalar): loger.error("src key:%s scalar list length %d is not equal dst %d" %(key_path, len(src_scalar), len(dst_scalar))) for i in range(0, len(src_scalar)): ret = scalar_equal(src_scalar[i], dst_scalar[i], key_path_stack) if not ret: loger.error("src key:%s[%d]->%s not equal dst value%s" %(key_path, i, src_scalar[i], dst_scalar[i])) return False elif type(src_scalar) in (int, float, long, bool, str, unicode): key_path = string.join(key_path_stack, r'.') if len(key_path_stack) > 0 else "" if src_scalar != dst_scalar: loger.error("src key %s->%s is not equal dst value %s" %(key_path, src_scalar, dst_scalar)) return False return True
d5689aaad3864c1d6af8cbaefddf6f80de9d4add
a88658ea37744a3f3c7f34f9df4689523e81f9e3
/scripts/unittest/script/03-grayscale_to_rgb.py
693f9b22edd90ab3e8c671a86a178c7f4bb421e5
[ "MIT" ]
permissive
luuvt/openmv
ad7d559cf0a0ba3d1e3d1163ae0105c3d8efe29b
1608a2a2f46220c0219abca1982dab80154fc21a
refs/heads/master
2020-03-28T16:07:13.552279
2018-09-10T23:08:10
2018-09-10T23:08:10
148,661,405
1
0
MIT
2018-09-13T15:48:26
2018-09-13T15:48:25
null
UTF-8
Python
false
false
155
py
def unittest(data_path, temp_path): import image rgb = image.grayscale_to_rgb(182) return (rgb[0] == 182 and rgb[1] == 182 and rgb[2] == 182)
772ce7249aec7511d2d8a3e2e0ac39863bdcb480
b96ed10d6247e22d4fa1d28bc3314bc319d3109c
/LessonSample/DjangoSample/ch06/exam_01.py
e1b350a860c6888c9645a01777fefae1a2354c9b
[]
no_license
13555785106/PythonPPT-01
ac1b22b9b1851f2b3ea6e4ab0a100e5f6896ee8c
40e5883f248cb342f3a7fc7ad12ba02ebde4c619
refs/heads/master
2020-04-26T16:49:59.675964
2019-03-04T07:16:21
2019-03-04T07:16:21
157,095,747
4
0
null
null
null
null
UTF-8
Python
false
false
764
py
# -*- coding: utf-8 -*- import os import django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "DjangoSample.settings") django.setup() from django.contrib.auth import authenticate from django.contrib.auth.models import * # user = User.objects.create_user(username='u001',password='abc') # User.objects.filter(username='u001').delete() user = authenticate(username='xiaozh', password='xjfdlj2010') for up in user.user_permissions.all(): print up if user: print user print user.has_perm('ch03.blog') print user.has_module_perms('app100') print '-----------------------' user = User.objects.get(username='xiaojf') if user.check_password('django1234'): print user print user.has_perm('ch03.blog') print user.has_module_perms('app100')
44ea730cf6616f7dc520d0befa3eb35596d36ff7
9dc6f8d91dc56523b9688990d4ae413b0bcbd4e1
/examples/fci/35-transition_density_matrix.py
1dec4c94ae95abb94a55cc40801196ec362f3b78
[ "Apache-2.0" ]
permissive
sunqm/pyscf
566bc2447d8072cff442d143891c12e6414de01c
dd179a802f0a35e72d8522503172f16977c8d974
refs/heads/master
2023-08-15T18:09:58.195953
2023-03-27T21:02:03
2023-03-27T21:02:03
159,149,096
80
26
Apache-2.0
2022-02-05T00:19:24
2018-11-26T10:10:23
Python
UTF-8
Python
false
false
2,826
py
#!/usr/bin/env python # # Author: Qiming Sun <[email protected]> # ''' Transition density matrix between singlet and triplet states ''' import numpy as np from pyscf import gto from pyscf import fci from pyscf.fci import cistring # <T|i_alpha^+ j_beta|S> def make_rdm1_t2s(bra, ket, norb, nelec_ket): neleca, nelecb = nelec = nelec_ket ades_index = cistring.gen_des_str_index(range(norb), neleca+1) bdes_index = cistring.gen_des_str_index(range(norb), nelecb) na_bra = cistring.num_strings(norb, neleca+1) nb_bra = cistring.num_strings(norb, nelecb-1) na_ket = cistring.num_strings(norb, neleca) nb_ket = cistring.num_strings(norb, nelecb) assert bra.shape == (na_bra, nb_bra) assert ket.shape == (na_ket, nb_ket) t1bra = np.zeros((na_ket,nb_bra,norb)) t1ket = np.zeros((na_ket,nb_bra,norb)) for str0, tab in enumerate(bdes_index): for _, i, str1, sign in tab: t1ket[:,str1,i] += sign * ket[:,str0] for str0, tab in enumerate(ades_index): for _, i, str1, sign in tab: t1bra[str1,:,i] += sign * bra[str0,:] dm1 = np.einsum('abp,abq->pq', t1bra, t1ket) return dm1 # <S|i_beta^+ j_alpha|T> def make_rdm1_s2t(bra, ket, norb, nelec_ket): '''Inefficient version. A check for make_rdm1_t2s''' neleca, nelecb = nelec = nelec_ket ades_index = cistring.gen_des_str_index(range(norb), neleca) bcre_index = cistring.gen_cre_str_index(range(norb), nelecb) na_bra = cistring.num_strings(norb, neleca-1) nb_bra = cistring.num_strings(norb, nelecb+1) na_ket = cistring.num_strings(norb, neleca) nb_ket = cistring.num_strings(norb, nelecb) assert bra.shape == (na_bra, nb_bra) assert ket.shape == (na_ket, nb_ket) t1ket = np.zeros((na_bra,nb_ket,norb)) for str0, tab in enumerate(ades_index): for _, i, str1, sign in tab: t1ket[str1,:,i] += sign * ket[str0] t1bra = np.zeros((na_bra,nb_bra,norb,norb)) for str0, tab in enumerate(bcre_index): for a, _, str1, sign in tab: t1bra[:,str1,a] += sign * t1ket[:,str0] dm1 = np.einsum('ab,abpq->pq', bra, t1bra) return dm1 if __name__ == '__main__': mol = gto.M( atom = ''' Be 0 0 0 H 0 -.9 .3 H 0 .9 .3 ''', basis = 'sto-3g' ) mf = mol.RHF().run() neleca, nelecb = mol.nelec norb = mf.mo_coeff.shape[1] np.set_printoptions(4, linewidth=150) cisolver = fci.FCI(mf) e_s, wfn_s = cisolver.kernel() cisolver.spin = 2 e_t, wfn_t = cisolver.kernel() print(f'Singlet state energy = {e_s}, Triplet state energy = {e_t}') dm_st = make_rdm1_s2t(wfn_s, wfn_t, norb, (neleca+1, nelecb-1)) dm_ts = make_rdm1_t2s(wfn_t, wfn_s, norb, (neleca, nelecb)) print(abs(dm_st - dm_ts.T).max())
0b2f7992f8b45d0cbfb11ef4e07be25834ca842a
5c931367136a99ae809bdc8beefc8ff82c1053a3
/OOP_python/train.py
2fdb7d0bde05376e740ca4c262d00215915fcd4a
[]
no_license
TanyaDinesh00/FaceRecognitionAttendance
7bd8696d310ff3d7c9fc3c48efecb88238728e8e
a030cc15cc88431c4eb62486d723c7df136e3c18
refs/heads/master
2021-04-20T15:58:36.702259
2020-03-24T13:21:51
2020-03-24T13:21:51
249,697,145
3
1
null
null
null
null
UTF-8
Python
false
false
3,924
py
import csv import tkinter as tk from tkinter import * from tkinter import messagebox import cv2 window = tk.Tk() window.title("OOP Project") window.geometry('800x500') C = Canvas(window, bg="blue", height=250, width=300) filename = PhotoImage(file=".\\Jagged2.png") background_label = Label(window, image=filename) background_label.place(x=0, y=0, relwidth=1, relheight=1) C.pack() # window.attributes('-fullscreen', True) window.grid_rowconfigure(0, weight=1) window.grid_columnconfigure(0, weight=1) message = tk.Label(window, text="Register Students:", bg="#d45a00", fg="black", width=14, height=1, font=('Monospaced', 19, '')) message.place(x=310, y=60) lbl = tk.Label(window, text="Enter ID", width=8, height=1, fg="black", bg="#d45a00", font=('Monospaced', 15, ' ')) lbl.place(x=180, y=150) txt = tk.Entry(window, width=20, bg="#d45a00", fg="black", font=('Monospaced', 15, ' ')) txt.place(x=400, y=150) lbl2 = tk.Label(window, text="Enter Name", width=10, height=1, fg="black", bg="#d45a00", font=('Monospaced', 15, ' ')) lbl2.place(x=180, y=250) txt2 = tk.Entry(window, width=20, bg="#d45a00", fg="black", font=('Monospaced', 15, ' ')) txt2.place(x=400, y=250) lbl3 = tk.Label(window, text="Notification : ", width=10, fg="black", bg="#d45a00", height=1, font=('Monospaced', 15, ' ')) lbl3.place(x=180, y=350) message = tk.Label(window, text="", bg="#d45a00", fg="black", width=23, height=2, activebackground="blue", font=('Monospaced', 15, ' ')) message.place(x=400, y=340) def is_number(s): try: float(s) return True except ValueError: pass try: import unicodedata unicodedata.numeric(s) return True except (TypeError, ValueError): pass return False def TakeImages(): Id = (txt.get()) name = (txt2.get()) if is_number(Id) and name.isalpha(): cam = cv2.VideoCapture(0) harcascadePath = "haarcascade_frontalface_default.xml" detector = cv2.CascadeClassifier(harcascadePath) sampleNum = 0 while (True): ret, img = cam.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = detector.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) sampleNum = sampleNum + 1 cv2.imwrite("TrainingImage\ " + name + "." + Id + '.' + str(sampleNum) + ".jpg", gray[y:y + h, x:x + w]) cv2.imshow('frame', img) if cv2.waitKey(100) & 0xFF == ord('q'): break elif sampleNum > 100: break cam.release() cv2.destroyAllWindows() res = "Images Saved for ID : " + Id + " Name : " + name row = [Id, name] with open('StudentDetails\StudentDetails.csv', 'a+') as csvFile: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() message.configure(text=res) else: if (is_number(Id)): res = "Enter Alphabetical Name" message.configure(text=res) if (name.isalpha()): res = "Enter Numeric Id" message.configure(text=res) def quit(): dialog_title = 'QUIT' dialog_text = 'Are you sure?' answer = messagebox.askyesno(dialog_title, dialog_text) if answer == TRUE: window.destroy() takeImg = tk.Button(window, text="Take Images", command=TakeImages, fg="black", bg="#b0e0e6", width=10, height=1, activebackground="blue", font=('Monospaced', 13, ' ')) takeImg.place(x=200, y=420) quitWindow = tk.Button(window, text="Quit", command=quit, fg="black", bg="#b0e0e6", width=10, height=1, activebackground="blue", font=('Monospaced', 13, ' ')) quitWindow.place(x=450, y=420) window.mainloop()
1317e97cefcf2b877ccf8c52c3a3d26dfea585f6
d016a5c398ebc57813f0108ada85c294ff0433b4
/cart/migrations/0006_auto_20201218_1344.py
239a5a39b2960b9c890135dc997a9645e64ae426
[]
no_license
DelroyBrown28/GalleryWithCustomAdmin
c8dd4f0ca6c30665654ef056f906cc847f048938
09b40cbdc86bd71ec5377856bce9d06a763583b3
refs/heads/main
2023-04-13T05:44:59.860350
2021-04-29T13:40:36
2021-04-29T13:40:36
362,829,797
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
# Generated by Django 3.1.4 on 2020-12-18 13:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cart', '0005_auto_20201216_1624'), ] operations = [ migrations.AlterField( model_name='product', name='image', field=models.ImageField(upload_to='.'), ), ]
f78a99da60f05521a62d7ab4bd26c2d4aad51c6d
a275600c0c95662ba191ed9290c8bb73e755b8d5
/ReviewBotSpreadsheet.py
c6920341d8bb8dc1222b1b1431e40189dcadfffd
[]
no_license
ALProjects/UofTReviewBot
449474d395a30cc45f1ae975ef66e332759794a5
5d24155e784b3974b178ee2469f6f8e03211afbc
refs/heads/master
2021-01-11T19:53:40.633744
2017-10-18T17:48:15
2017-10-18T17:48:15
79,419,789
0
0
null
null
null
null
UTF-8
Python
false
false
1,556
py
import gspread from oauth2client.service_account import ServiceAccountCredentials # use creds to create a client to interact with the Google Drive API scope = ['https://spreadsheets.google.com/feeds'] creds = ServiceAccountCredentials.from_json_keyfile_name('client_secret.json', scope) client = gspread.authorize(creds) # Find a workbook by name and open the first sheet # Make sure you use the right name here. sheet = client.open("UofTFoodBotData").sheet1 # Extract and print all of the values list_of_hashes = sheet.get_all_records() def find_restaurant(requestedname): i = 0 list_of_reviews = [] review_string = "" end_result = "" while i < len(list_of_hashes): curr_restaurant = list_of_hashes[i] restaurant_name = curr_restaurant['Name'] if requestedname.lower() == restaurant_name.lower(): print("restaurant found") review_string = "Name: " + list_of_hashes[i]['Name'] + "\n \n Price: " + list_of_hashes[i]['Price'] + "\n \n Rating: " + list_of_hashes[i]['Rating'] + "\n \n Comment: " + list_of_hashes[i]['Comments'] + "\n \n Username: " + list_of_hashes[i]['Reddit Username'] list_of_reviews.append(review_string) i += 1 for review in list_of_reviews: end_result += review + "\n \n" + "-----" + "\n \n" return end_result def list_restaurants(): my_list = [] i = 0 while i < len(list_of_hashes): curr_restaurant = list_of_hashes[i] my_list.append(curr_restaurant['Name']) i += 1 return my_list
c13c436e4d7f18b5c491d3dd6c011384b7749b93
85c82274a3888fa61795bb0600ab96eaf7665b6a
/meet9_22_April_2021/D_BSTPostOrder.py
4bc9fc77678fc38762f711d242a06f7f8c3333f1
[]
no_license
refeed/StrukturDataA
8e5a214569f41b19c05842d003ede5941800482a
4d3b77bbd28158f1f1e64a49b8e90da731859407
refs/heads/master
2023-06-03T08:22:12.442536
2021-07-01T03:24:29
2021-07-01T03:24:29
360,478,966
0
0
null
null
null
null
UTF-8
Python
false
false
2,340
py
''' Soal 1 Batas Run-time: 1 detik / test-case Batas Memori: 32 MB DESKRIPSI SOAL Diberikan n buah bilangan bulat, a1, a2, ..., an. Kemudian dibentuk binary search tree dari barisan tersebut. Tugas Anda ialah mengoutputkan secara postorder. PETUNJUK MASUKAN Input terdiri atas 2 baris. Baris pertama berisi sebuah bilangan bulat positif n yang menyatakan banyak bilangan. Baris kedua berisi n buah bilangan bulat, yang menyatakan a1, a2, ..., an PETUNJUK KELUARAN Outputkan secara preorder. CONTOH MASUKAN 9 3 0 8 2 4 9 1 5 6 CONTOH KELUARAN 1 3 0 2 1 8 4 5 6 9 KETERANGAN Pada contoh testcase, binary search tree yang terbentuk adalah sebagai berikut. ''' class Node: def __init__(self, number=None): self.number = number self.left = None # type: BST self.right = None # type: BST class BST: def __init__(self): self.root = None # type: Node def insert(self, number): if self.root is None: self.root = Node(number) self.root.left = BST() self.root.right = BST() elif number > self.root.number: self.root.right.insert(number) else: self.root.left.insert(number) def get_height(self): if self.root is None: return 0 return ( 1 + max(self.root.right.get_height(), self.root.left.get_height())) def get_leaf_num(self): if self.root is None: return 0 elif self.root.left.root is None and self.root.right.root is None: return (1 + self.root.left.get_leaf_num() + self.root.right.get_leaf_num()) return (self.root.left.get_leaf_num() + self.root.right.get_leaf_num()) def postorder_print(self): if self.root is None: return self.root.left.postorder_print() self.root.right.postorder_print() print(self.root.number) def preorder_print(self): if self.root is None: return print(self.root.number) self.root.left.preorder_print() self.root.right.preorder_print() if __name__ == '__main__': input() # Ignore the first input input_to_tree_list = list(map(int, input().split())) bst = BST() for num in input_to_tree_list: bst.insert(num) bst.postorder_print()
ef82d4c4ffde8688092fa0cea993d71cf5e89ca5
6f90ed39c673c0553b4173ca1c8dd17fa5994ccf
/ELECTRONIC_STATION/FindSequence.py
d95575bb0045350c087da09e67389e2fec323894
[ "MIT" ]
permissive
jemg2030/Retos-Python-CheckIO
390f9a846c79f0ab7d94641d16ab8bfa23fb33fb
ce52aa1fd718d5cabdd4592469148b9b52483ced
refs/heads/master
2023-08-31T17:45:23.216699
2023-08-29T23:33:40
2023-08-29T23:33:40
144,081,187
0
0
MIT
2023-03-05T05:38:43
2018-08-09T00:21:39
Python
UTF-8
Python
false
false
9,541
py
''' “There’s nothing here...” sighed Nikola. “You’re kidding right? All treasure is buried treasure! It wouldn’t be treasure otherwise!” Said Sofia. “Here, take these.” She produced three shovels from a backpack that seemed to appear out of thin air. “Where did you get-” “Don’t ask questions. Just dig!” She hopped on the shovel and began digging furiously. CLUNK “Hey we hit something.” Stephen exclaimed in surprise. “It’s the treasure!” Sofia was jumping up and down in excitement. The trio dug around the treasure chest and pulled it out of the hole and wiped the dirt off. Sofia tried grabbing the lid but it was locked. Nikola studied the locking mechanism. “I’ve seen this type of lock before. It’s pretty simple. We just need to check whether there is a sequence of 4 or more matching numbers and output a bool.” “Easy enough. Let’s open this sucker up!” Sofia was shaking in excitement. You are given a matrix of NxN (4≤N≤10). You should check if there is a sequence of 4 or more matching digits. The sequence may be positioned horizontally, vertically or diagonally (NW-SE or NE-SW diagonals). find-sequence Input: A matrix as list of lists with integers. Output: Whether or not a sequence exists as a boolean. Examples: assert checkio([[1, 2, 1, 1], [1, 1, 4, 1], [1, 3, 1, 6], [1, 7, 2, 5]]) == True assert checkio([[7, 1, 4, 1], [1, 2, 5, 2], [3, 4, 1, 3], [1, 1, 8, 1]]) == False assert ( checkio( [ [2, 1, 1, 6, 1], [1, 3, 2, 1, 1], [4, 1, 1, 3, 1], [5, 5, 5, 5, 5], [1, 1, 3, 1, 1], ] ) == True ) assert ( checkio( [ [7, 1, 1, 8, 1, 1], [1, 1, 7, 3, 1, 5], [2, 3, 1, 2, 5, 1], [1, 1, 1, 5, 1, 4], [4, 6, 5, 1, 3, 1], [1, 1, 9, 1, 2, 1], ] ) == True ) How it is used: This concept is useful for games where you need to detect various lines of the same elements (match 3 games for example). This algorithm can be used for basic pattern recognition. Preconditions: 0 ≤ len(matrix) ≤ 10; all(all(0 < x < 10 for x in row) for row in matrix). ---------- ---------- "Aquí no hay nada..." suspiró Nikola. "Estás de broma, ¿verdad? ¡Todo tesoro es un tesoro enterrado! Si no, no sería un tesoro". Dijo Sofía. "Toma, coge esto". Sacó tres palas de una mochila que pareció aparecer de la nada. "¿De dónde sacaste..." "No hagas preguntas. Sólo cava". Ella saltó en la pala y comenzó a cavar furiosamente. CLUNK "Hey le dimos a algo". Stephen exclamó sorprendido. "¡Es el tesoro!" Sofía saltaba de emoción. El trío escarbó alrededor del cofre del tesoro y lo sacó del agujero y le limpió la suciedad. Sofía intentó agarrar la tapa, pero estaba cerrada. Nikola estudió el mecanismo de cierre. "He visto este tipo de cerradura antes. Es bastante sencillo. Sólo tenemos que registrar si hay una secuencia de 4 o más números iguales y sacar un bool". "Bastante fácil. Abramos a este mamón". Sofía temblaba de emoción. Te dan una matriz de NxN (4≤N≤10). Debes registrar si hay una secuencia de 4 o más dígitos iguales. La secuencia puede colocarse horizontal, vertical o diagonalmente (diagonales NO-SE o NE-SO). buscar-secuencia Entrada: Una matriz como lista de listas con enteros. Salida: Si existe o no una secuencia como booleano. Ejemplos: assert checkio([[1, 2, 1, 1], [1, 1, 4, 1], [1, 3, 1, 6], [1, 7, 2, 5]]) == True assert checkio([[7, 1, 4, 1], [1, 2, 5, 2], [3, 4, 1, 3], [1, 1, 8, 1]]) == False assert ( checkio( [ [2, 1, 1, 6, 1], [1, 3, 2, 1, 1], [4, 1, 1, 3, 1], [5, 5, 5, 5, 5], [1, 1, 3, 1, 1], ] ) == Verdadero ) assert ( checkio( [ [7, 1, 1, 8, 1, 1], [1, 1, 7, 3, 1, 5], [2, 3, 1, 2, 5, 1], [1, 1, 1, 5, 1, 4], [4, 6, 5, 1, 3, 1], [1, 1, 9, 1, 2, 1], ] ) == Verdadero ) Cómo se utiliza: Este concepto es útil para juegos en los que es necesario detectar varias líneas de los mismos elementos (juegos de tres en raya, por ejemplo). Este algoritmo puede utilizarse para el reconocimiento básico de patrones. Precondiciones: 0 ≤ len(matriz) ≤ 10; all(all(0 < x < 10 para x en fila) para fila en matriz). ''' def checkio(matrix: list[list[int]]) -> bool: # replace this for solution n = len(matrix) for i in range(n): for j in range(n): # check horizontal sequence if j + 3 < n and matrix[i][j] == matrix[i][j + 1] == matrix[i][j + 2] == matrix[i][j + 3]: return True # check vertical sequence if i + 3 < n and matrix[i][j] == matrix[i + 1][j] == matrix[i + 2][j] == matrix[i + 3][j]: return True # check diagonal (NW-SE) sequence if i + 3 < n and j + 3 < n and matrix[i][j] == matrix[i + 1][j + 1] == matrix[i + 2][j + 2] == \ matrix[i + 3][j + 3]: return True # check diagonal (NE-SW) sequence if i + 3 < n and j - 3 >= 0 and matrix[i][j] == matrix[i + 1][j - 1] == matrix[i + 2][j - 2] == \ matrix[i + 3][j - 3]: return True return False print("Example:") print(checkio([[1, 2, 1, 1], [1, 1, 4, 1], [1, 3, 1, 6], [1, 7, 2, 5]])) # These "asserts" are used for self-checking assert checkio([[1, 2, 1, 1], [1, 1, 4, 1], [1, 3, 1, 6], [1, 7, 2, 5]]) == True assert checkio([[7, 1, 4, 1], [1, 2, 5, 2], [3, 4, 1, 3], [1, 1, 8, 1]]) == False assert ( checkio( [ [2, 1, 1, 6, 1], [1, 3, 2, 1, 1], [4, 1, 1, 3, 1], [5, 5, 5, 5, 5], [1, 1, 3, 1, 1], ] ) == True ) assert ( checkio( [ [7, 1, 1, 8, 1, 1], [1, 1, 7, 3, 1, 5], [2, 3, 1, 2, 5, 1], [1, 1, 1, 5, 1, 4], [4, 6, 5, 1, 3, 1], [1, 1, 9, 1, 2, 1], ] ) == True ) assert ( checkio( [ [2, 6, 2, 2, 7, 6, 5], [3, 4, 8, 7, 7, 3, 6], [6, 7, 3, 1, 2, 4, 1], [2, 5, 7, 6, 3, 2, 2], [3, 4, 3, 2, 7, 5, 6], [8, 4, 6, 5, 2, 9, 7], [5, 8, 3, 1, 3, 7, 8], ] ) == False ) assert ( checkio( [ [1, 7, 6, 1, 8, 5, 1], [7, 9, 1, 7, 2, 8, 6], [5, 1, 4, 5, 8, 8, 3], [8, 6, 3, 9, 7, 6, 9], [9, 8, 9, 8, 6, 8, 2], [1, 7, 2, 4, 9, 3, 8], [9, 9, 8, 6, 9, 2, 6], ] ) == False ) assert ( checkio( [ [6, 9, 1, 1, 6, 2], [5, 9, 7, 8, 2, 5], [2, 1, 1, 7, 9, 8], [1, 8, 1, 4, 7, 4], [7, 8, 5, 4, 5, 1], [6, 4, 8, 8, 1, 8], ] ) == False ) assert ( checkio( [ [2, 7, 6, 2, 1, 5, 2, 8, 4, 4], [8, 7, 5, 8, 9, 2, 8, 9, 5, 5], [5, 7, 7, 7, 4, 1, 1, 2, 6, 8], [4, 6, 6, 3, 2, 7, 6, 6, 5, 1], [2, 6, 6, 9, 8, 5, 5, 6, 7, 7], [9, 4, 1, 9, 1, 3, 7, 2, 3, 1], [5, 1, 4, 3, 6, 5, 9, 3, 4, 1], [6, 5, 5, 1, 7, 7, 8, 2, 1, 1], [9, 5, 7, 8, 2, 9, 2, 6, 9, 3], [8, 2, 5, 7, 3, 7, 3, 8, 6, 2], ] ) == False ) assert ( checkio( [ [1, 9, 7, 8, 9, 3, 6, 5, 6, 2], [4, 9, 4, 8, 3, 4, 8, 8, 5, 9], [2, 8, 5, 5, 7, 8, 6, 1, 3, 6], [6, 4, 7, 6, 9, 1, 4, 5, 7, 8], [4, 7, 7, 9, 8, 8, 8, 8, 4, 4], [3, 7, 3, 2, 1, 9, 1, 8, 9, 1], [4, 7, 2, 4, 8, 1, 2, 3, 6, 2], [4, 4, 1, 3, 3, 3, 9, 2, 6, 7], [8, 6, 1, 9, 3, 5, 8, 1, 7, 5], [7, 3, 6, 5, 3, 6, 6, 4, 8, 2], ] ) == True ) assert checkio([[1, 6, 1, 7], [4, 7, 3, 6], [3, 5, 7, 9], [8, 6, 6, 9]]) == False assert ( checkio( [ [1, 2, 4, 6, 3], [2, 5, 2, 6, 3], [8, 7, 5, 9, 5], [2, 1, 1, 4, 3], [4, 2, 7, 5, 1], ] ) == False ) assert ( checkio( [ [2, 3, 6, 5, 6, 2, 8, 3, 7, 4], [6, 9, 5, 9, 7, 6, 8, 5, 1, 6], [6, 8, 2, 6, 1, 9, 3, 6, 6, 4], [5, 8, 3, 2, 3, 8, 7, 4, 6, 4], [2, 3, 1, 4, 5, 1, 2, 5, 6, 9], [5, 4, 8, 7, 5, 5, 8, 4, 9, 5], [9, 7, 9, 9, 5, 9, 9, 8, 1, 2], [5, 1, 7, 4, 8, 3, 4, 1, 8, 8], [5, 3, 3, 2, 6, 1, 4, 3, 8, 8], [4, 8, 1, 4, 5, 8, 8, 7, 4, 7], ] ) == True ) assert ( checkio( [ [7, 7, 4, 4, 8], [7, 4, 5, 5, 6], [6, 6, 5, 2, 8], [6, 2, 3, 8, 4], [6, 1, 3, 1, 2], ] ) == False ) assert ( checkio( [ [7, 9, 1, 7, 6, 7, 5, 9, 6], [5, 5, 9, 3, 1, 6, 7, 4, 7], [1, 7, 5, 2, 3, 1, 6, 4, 7], [2, 2, 2, 8, 7, 2, 6, 6, 9], [5, 6, 4, 2, 6, 7, 3, 4, 7], [5, 5, 6, 4, 9, 4, 3, 1, 7], [7, 3, 2, 3, 2, 4, 4, 7, 3], [3, 6, 9, 7, 2, 5, 6, 2, 5], [4, 1, 3, 9, 4, 2, 4, 8, 4], ] ) == True ) print("The mission is done! Click 'Check Solution' to earn rewards!")
324ad24308b072d1d069e4afa0d0f06ec7efcb81
6f0517136962ad238963a597bc123994b4ac7201
/backend/settings.py
8a08765d2465bdb9080af2971b5d001cb939f3dd
[]
no_license
Astig-1982/proshop-2-backend
8862869cfc4c93a645bcf04c8e5ac30c49db9682
caa0e25e90072d358e44e6a92bd87b9709a9c69c
refs/heads/master
2023-07-11T17:17:06.794880
2021-08-16T19:00:13
2021-08-16T19:00:13
394,761,502
0
0
null
null
null
null
UTF-8
Python
false
false
4,647
py
""" Django settings for backend project. Generated by 'django-admin startproject' using Django 3.2.6. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-royc29fs572uhks+3!rh_^8no@+7c3@g)qacpt2v-o9no*f_o&' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'corsheaders', 'base', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', # this middleware is from cors header, to enable the API 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'backend.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'backend.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # these are our databases that we use for the project 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/images/' # this also set up in urls.py. These are the images' urls and allow render the images # the below is added by me (Astig) in order to point to the root directory, and connected to static folder # STATICFILES_DIRS = (os.path.join(BASE_DIR, 'static'),) ----- this is the same thing as the below, and I have used it in my Solid-Properties project STATICFILES_DIR = [ BASE_DIR / 'static' ] # MEDIA_ROOT = os.path.join(BASE_DIR, 'media') ---- this has been used in Solid-Properties MEDIA_ROOT = 'static/images' # this tells Django to look into the 'static' folder, and then go and look into the 'images' folder. Now, when we upload images from the Django Admin, the images will go directly into 'static/images' folder CORS_ALLOW_ALL_ORIGINS = True # this enable all HTTP to make request to the API # Below is the code if we want only certain HTTP to be able to make request to the API: # this is taken from 'cors headers' documentation #CORS_ALLOWED_ORIGINS = [ # "https://example.com", # "https://sub.example.com", # "http://localhost:8080", # "http://127.0.0.1:9000" #] basically only the above HTTPs would be able to make requests to the API # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
597a43642a545ace37f7aad5480f7d6e091eb42e
027f32756152679568fd564bb10499a75c5b7b79
/tarea2/resta.py
965c9f43910a7108099379c8293bf5dac121404a
[]
no_license
jorszs/C-S
1172c66f23b76178244291cf20e075207fdfc111
a203db1a86bb0f311811d8a4ddc321411b889685
refs/heads/master
2021-01-01T08:55:10.334855
2020-04-28T05:56:07
2020-04-28T05:56:07
239,205,591
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
import zmq context = zmq.Context() socket = context.socket(zmq.REP) socket.bind("tcp://*:8002") #message = socket.recv() message = socket.recv() message_str = message.decode('utf-8') l = message_str.split(",") #print (type(l)) respuesta = int(l[1]) - int(l[2]) print (respuesta) respuesta = str(respuesta) socket.send_string(respuesta)
d3463fba4186d6fce95381fe6cfbbe8a5d410588
c2f508483835e652148899044a360f96fcd98633
/AirBnb_Price/__init__.py
0b101f128a3f05b67deffb05d585427b912bd837
[]
no_license
elfranco91/AirBnb_Price
57c0b782b34697b4d2510a3cab5dd5f06b5fb418
72849360dc3a12a34b9a81bf3ebaf034b97f6b1e
refs/heads/master
2022-09-02T07:55:07.202331
2020-05-23T12:39:31
2020-05-23T12:39:31
266,333,743
0
0
null
null
null
null
UTF-8
Python
false
false
26
py
__author__ = 'Al_Cummins'
c2126d552a9bc32f04d2c9ab7ca9429208c3ecf5
edfc90cafb2f815c3d37a572b2e38dcb936fa35b
/windowKeyPress/xdisplay.py
b9323a894a106d7246548ac9c8c5d690102db618
[]
no_license
kshen91/pyScripts
5f28c3bee5651b584c827dfdc266b5a2ab745282
e9fd3f4fb589b8fd378f6cf6bdbd1f968a459805
refs/heads/master
2020-04-22T13:36:54.672744
2020-01-11T06:08:47
2020-01-11T06:08:47
170,415,246
0
0
null
null
null
null
UTF-8
Python
false
false
5,816
py
# -*- coding: utf-8 -*- # Author: [email protected] from copy import copy from Xlib import X, display from Xlib import __version__ as XlibVer from Xlib.ext.record import AllClients from Xlib.protocol.rq import EventField from .xwindow import XWindow from .logconfig import ConfigureLog log = ConfigureLog(__name__) if XlibVer < (0, 25): log.warning("Xlib version is older than 0.25, suggest to update Xlib to make sure proper behaivor") class XDisplay(object): def __init__(self, disp=None): self._display = display.Display(disp) self._display2 = display.Display(disp) self._root = self._display.screen().root self._nrOfWindow = 0 self._winNameDict = {} # key:(winClass, winName),value:[XWindow] self._winIdDict = {} # key:winId, value:[XWindow] self._winList = [] self._UpdateViewableWindowHierarchy(self._root) def _UpdateViewableWindowHierarchy(self, window, bOnlyExecuteActive=True, bPrintWindows=False, winHierarchyList=[]): # reset counter and dict if check from root if window == self._root: self._nrOfWindow = 0 self._winNameDict = {} self._winIdDict = {} self._winList = [] else: winHierarchyList = copy(winHierarchyList) winHierarchyList.append(window) winName = window.get_wm_name() winClass = None if window.get_wm_class() is None else window.get_wm_class()[0] if winClass is not None and winName is not None: self._nrOfWindow += 1 rootWinOfApp = winHierarchyList[0] winObj = XWindow(self._display, rootWinOfApp, window) # update idDict self._winIdDict[rootWinOfApp.id] = winObj # update nameDict nameKey = (winClass, winName) # it's possble to have same values for this key if nameKey in self._winNameDict.keys(): self._winNameDict[nameKey].append(winObj) else: self._winNameDict[nameKey] = [winObj] # update winList self._winList.append([rootWinOfApp.id, nameKey]) if bPrintWindows: print("%d - winId:[%d], winClass:[%s], winName:[%s], xy=%r, size=%r" % (self._nrOfWindow, rootWinOfApp.id, winClass, winName, winObj.GetXY(), winObj.GetSize())) return # else try to find name and class in the children children = window.query_tree().children for w in children: if (not bOnlyExecuteActive) or (w.get_attributes().map_state == X.IsViewable): geo = w.get_geometry() if geo.x >= 0 and geo.y >= 0: self._UpdateViewableWindowHierarchy(w, bOnlyExecuteActive, bPrintWindows, winHierarchyList) def ListActiveWindows(self): print("Listing all active windows, do not minimize a window if you would like it to be listed here:") self._UpdateViewableWindowHierarchy(self._root, True, True) def GetWindowList(self): return self._winList def ListAllWindows(self): print("Listing all windows include both actived and inactived ones:") self._UpdateViewableWindowHierarchy(self._root, False, True) def GetWindowByClassAndName(self, winClass, winName): inquiryKey = (winClass, winName) if inquiryKey in self._winNameDict.keys(): if len(self._winNameDict[inquiryKey]) > 1: log.warning("More than one window has winClass:<%s> and winName:<%s>, please try to make it unique by minimizing or closing same windows, and try again. \ Or try to use GetWindowById() function", winClass, winName) return None return self._winNameDict[inquiryKey][0] log.warning("window with winClass:<%s> and winName:<%s> can not be found", winClass, winName) return None def GetWindowById(self, winId): if winId in self._winIdDict.keys(): return self._winIdDict[winId] log.warning("window with winId:<%s> can not be found", winId) return None def _WaitClick(self, offset): (offsetX, offsetY) = offset ctx = self._display.record_create_context( 0, [AllClients], [{ 'core_requests': (0, 0), 'core_replies': (0, 0), 'ext_requests': (0, 0, 0, 0), 'ext_replies': (0, 0, 0, 0), 'delivered_events': (0, 0), 'device_events': (X.KeyPress, X.MotionNotify), 'errors': (0, 0), 'client_started': False, 'client_died': False, }] ) holder = {'X': None, 'Y': None} def OnEvent(r, holder): data = r.data while len(data): event, data = EventField(None).parse_binary_value(data, self._display.display, None, None) if event.type == X.ButtonPress: holder['X'] = event.root_x - offsetX holder['Y'] = event.root_y - offsetY self._display2.record_disable_context(ctx) self._display2.flush() try: self._display.record_enable_context(ctx, lambda r: OnEvent(r, holder)) finally: self._display.record_free_context(ctx) return holder['X'], holder['Y'] def GetClickedXY(self, baseWin=None): print('Waiting for click') offset = (0, 0) if baseWin is None else baseWin.GetXY() x, y = self._WaitClick(offset) if baseWin is None: print('Clicked at (%d,%d)' % (x, y)) else: print('Clicked at (%d,%d) in window:%s' % (x, y, baseWin.GetName())) return (x, y)
38797c10553c5cd6815abf1b84e21bbdf83c0be8
b2b9cd537c4c6a216d9b1ee32008cc8e98552405
/Comprehensive_practice/金融/Tushare.py
5c0b234909a129dce381f835e310a44257a731cd
[]
no_license
liyanfeng0127/python2_bdrw
ce982813645294b884d73cd2bbc4de5a33fa2cd5
52eba0d67d30ed5ce23e01dde69db35a8ed65787
refs/heads/master
2021-05-08T06:50:53.916210
2017-10-12T10:41:05
2017-10-12T10:41:05
106,676,637
1
0
null
null
null
null
UTF-8
Python
false
false
482
py
import tushare as ts from sqlalchemy import create_engine engine = create_engine("mysql://root:1234@localhost/scraping?charset=utf8") print ts.get_stock_basics() df1 = ts.get_stock_basics() df1.to_sql('news_data',engine,if_exists='append') print df1 print ts.get_tick_data('600019',date = '2016-12-16') df2 = ts.get_tick_data('600019',date = '2016-12-16') print df2 print ts.get_latest_news() df3 = ts.get_latest_news() df3.to_sql('news_data',engine,if_exists='append') print df3
178549f90a46caef4444354bee8c1e88ed2a48cb
1c8fbee29a3e7596a0c7bd0b73396801c8f22965
/day11.py
edffadb38cdd0c1ee39b64eda5f9f9c095ebe4cd
[]
no_license
yschua/aoc2019
9c9b8e913a0195b819d6ba284d81b69605c8eb72
dd2d13b7443e49a1d820e3585d6a452bd3b5bf5f
refs/heads/master
2020-09-26T19:19:07.392045
2019-12-24T14:45:20
2019-12-24T14:45:20
226,322,623
0
0
null
null
null
null
UTF-8
Python
false
false
3,349
py
import sys class IntcodeComputer: def __init__(self, program): self.m = dict(zip(range(len(program)), program)) self.i = 0 self.end = False self.output = [] self.relBase = 0 # self.run(inp) def idx(self, n): mode = self.paramModes[-n] if n <= len(self.paramModes) else 0 if mode == 0: return self.m[self.i + n] # position elif mode == 1: return self.i + n # immediate elif mode == 2: return self.m[self.i + n] + self.relBase # relative def set(self, n, val): self.m[self.idx(n)] = val def get(self, n): idx = self.idx(n) return self.m[idx] if idx in self.m else 0 def setParamModes(self): self.paramModes = [int(x) for x in str(self.m[self.i] // 100)] def run(self, inp): self.output = [] while True: op = self.m[self.i] % 100 self.setParamModes() if op == 99: # terminate self.end = True break elif op == 1: # add self.set(3, self.get(1) + self.get(2)) self.i += 4 elif op == 2: # multiply self.set(3, self.get(1) * self.get(2)) self.i += 4 elif op == 3: # input if inp is None: break self.set(1, inp) inp = None self.i += 2 elif op == 4: # output self.output.append(self.get(1)) self.i += 2 elif op == 5: # jump if true self.i = self.get(2) if self.get(1) != 0 else self.i + 3 elif op == 6: # jump if false self.i = self.get(2) if self.get(1) == 0 else self.i + 3 elif op == 7: # less than self.set(3, int(self.get(1) < self.get(2))) self.i += 4 elif op == 8: # equals self.set(3, int(self.get(1) == self.get(2))) self.i += 4 elif op == 9: # relative base offset self.relBase += self.get(1) self.i += 2 program = [int(x) for x in sys.stdin.readline().split(',')] # 0 if black, 1 if white # output 0 to black, 1 to white # output 0 to left, 1 to right, move forward grid = {} pos = (0, 0) dir = 'up' robot = IntcodeComputer(program) color = 1 def move(pos, dir, turnRight): if dir == 'up': return (pos[0] + (1 if turnRight else -1), pos[1]), 'right' if turnRight else 'left' elif dir == 'down': return (pos[0] + (-1 if turnRight else 1), pos[1]), 'left' if turnRight else 'right' elif dir == 'right': return (pos[0], pos[1] + (-1 if turnRight else 1)), 'down' if turnRight else 'up' else: return (pos[0], pos[1] + (1 if turnRight else -1)), 'up' if turnRight else 'down' def getColor(pos): return 0 if pos not in grid else grid[pos] while not robot.end: robot.run(color) if len(robot.output) > 0: paint, turnRight = robot.output grid[pos] = paint pos, dir = move(pos, dir, turnRight) color = getColor(pos) print(len(grid)) xmin = min(grid.keys(), key=lambda x: x[0])[0] xmax = max(grid.keys(), key=lambda x: x[0])[0] ymin = min(grid.keys(), key=lambda x: x[1])[1] ymax = max(grid.keys(), key=lambda x: x[1])[1] for y in range(ymax, ymin - 1, -1): for x in range(xmin, xmax + 1): print('#' if getColor((x,y)) else ' ', end='') print()
2640a496fbbbfc84cdd75e34d8405c76172e6374
12beef17dc4820db0cb15858db316654ff3d847e
/src/models/clientes/views.py
b92451274f073278291d1d89ef9ccedb0a6aa871
[]
no_license
arlincdt/proyectofinal-eyap
356ee5969d908d38e5575ee950daa9b25ded9048
df6115c5ec0f0501313e6366b7f331b66e58329b
refs/heads/master
2020-03-12T17:54:18.240682
2018-04-23T23:03:40
2018-04-23T23:03:40
130,747,938
0
0
null
null
null
null
UTF-8
Python
false
false
1,750
py
from flask import Blueprint, request, session, url_for, render_template from werkzeug.utils import redirect from src.models.clientes.cliente import Cliente from src.models.promotores.promotor import Promotor from src.models.fechas.fecha import Fecha from src.models.inversiones.inversion import Inversion from src.models.fondo import Fondo cliente_blueprint = Blueprint('clientes', __name__) @cliente_blueprint.route('/muesta_clientes') def getClientes(): fecha = Fecha.getFecha() promotor = Promotor.getByNombre(session['nombre']) ganancias = Fondo.getFondo().ganancias if promotor.isAdmin: clientes = Cliente.getAllClientes() else: clientes = Cliente.getClientesByPromotor(promotor.nombre) valoresActuales = [] if clientes: for cliente in clientes: suma = 0 invs = Inversion.getByCId(cliente.cId) if invs: for inv in invs: monto = inv.getMontoActual() suma = suma + monto valoresActuales.append(suma) return render_template('clientes.jinja2', fecha=fecha, promotor=promotor, clientes=clientes, valoresActuales = valoresActuales, ganancias = ganancias) @cliente_blueprint.route('/nuevoCliente', methods=['GET', 'POST']) def nuevoCliente(): if request.method == 'POST': promotor = Promotor.getByNombre(session['nombre']) nombre = request.form['nombre'] saldoInicial = request.form['saldoInicial'] cliente = Cliente(1, nombre, saldoInicial, 0, promotor.nombre) cliente.saveToDb() return redirect(url_for('clientes.getClientes')) fecha = Fecha.getFecha() return render_template("nuevo_cliente.jinja2", fecha=fecha)
4d45d2e69c0f3a32153cb25061b933bb185d2166
53c48bda124090ad855e62d5ad58e70ac08aba97
/manage.py
faf7daab8b7c89c6ca9eee045f96269809429d14
[ "BSD-2-Clause-Views" ]
permissive
ivanalejandro0/django-products-crud
290369b3e7b89e71457447cc4d55904639dad3b8
cce0bc5a5048bacf2ea5d5d83fdf01e5a1eba3ab
refs/heads/master
2021-01-19T11:22:14.298832
2013-04-01T22:59:58
2013-04-01T22:59:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "django_products_crud.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
146d54b62a28cf1b24b9aa9c7bab66ab4e33d32a
3e4fec214d82b5547df9ff94e163beb9369547f4
/src/analog_in.py
a694d25c0f58a5fe6cbfed47d7abc6ea4be19130
[]
no_license
physikier/magnetometer
582caf47d3869340cd18a0aaa2d171e37591c79a
e9e6bd314d48b4b40ac5a2145b821305dec2d05e
refs/heads/master
2021-01-21T14:44:11.460815
2016-04-30T21:15:02
2016-04-30T21:15:02
59,505,445
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
import hardware.nidaq import numpy as np import matplotlib.pylab as plt freq=100e3 N=10000 ai_measurement = hardware.nidaq.AITask('/Dev2/ai0', N, freq, read_timeout=1.0, range=(-10, 10)) ai_measurement.Start() x=np.linspace(0.,1./freq*N,N) y1,y2,y3 = ai_measurement.Read() import matplotlib.pyplot as pyplot plt.plot(x,y1) #plt.plot(x,y2) plt.show() ai_measurement.Stop()
e460a548878e52c16c7ce3e5951320f921419a3f
ad6133a14250c895b8222c894e1048681150e15a
/venv/bin/sqlformat
69b388d630a24f98018be87c05b3dafbb441863b
[]
no_license
hangockhue/healthybackend
aba1aace4b9ebb2bb126bb89ab85c83fe0d363d0
dd7ad4114f3f6c3f82c1ae249c5a798646a8bb3e
refs/heads/main
2023-07-04T04:54:41.250502
2021-08-15T04:03:00
2021-08-15T04:03:00
396,208,581
0
0
null
null
null
null
UTF-8
Python
false
false
264
#!/Users/hangockhue/Desktop/Project/healthybackend/venv/bin/python # -*- coding: utf-8 -*- import re import sys from sqlparse.__main__ import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
2b366ea58327bfd99677e527493481876123fc92
7b61f50bde439f21057a9ef81f6d79b5142d12b7
/rename.py
e8a3e05781ce91a74745b04557b9989a22ca7c52
[]
no_license
BlakeERichey/CNN
2cc95828d8936c49af57c738b2f4ad707d6ffa76
1bd53bcecfa5726a32851534e64176de99fed514
refs/heads/master
2020-09-10T20:03:40.097169
2019-12-29T02:30:26
2019-12-29T02:30:26
221,821,996
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
#renames all files in a directory sequentially import os from os import listdir from os.path import isfile, join root = './healthy_corn' images = listdir(root) for i, image in enumerate(images): os.corn_env(f'{root}/{image}', f'{root}/hc_{i}.jpg')
8d9c008de26fd93ab4672533b1239457eaa8dbb5
ae29d4dab4f10c7ccd5b106544e00fb1a11de82b
/Python/320/assignment 08/users.py
d00132a89f099d90f4a60a987f57872fd8943679
[]
no_license
djgordon-maker/Portfolio
9ab2d4c8b8eaf72f27c8aae20e3a900209f4360d
9d336a29a2349b1c2f89fec93bafd4e27b20a8d9
refs/heads/main
2023-04-22T05:59:35.022742
2021-05-16T23:08:49
2021-05-16T23:08:49
367,220,031
0
0
null
null
null
null
UTF-8
Python
false
false
2,874
py
''' Methods to access user information for the social network project ''' import logging from functools import partial from peewee import IntegrityError from socialnetwork_model import user_table as table from socialnetwork_model import status_table logger = logging.getLogger('main.users') keys = ('user_id', 'user_email', 'user_name', 'user_last_name') user_zip = partial(zip, keys) def make_user(user_id, email, user_name, user_last_name): ''' Creates a dictionary with a users information Varifies that information meets requirements ''' if len(user_id) > 30: logger.debug('user_id [%s] cannot be longer than 30 characters', user_id) return None if len(user_name) > 30: logger.debug('user_name [%s] cannot be longer than 30 characters', user_name) return None if len(user_last_name) > 100: logger.debug('user_last_name [%s] cannot be longer that 100 characters', user_last_name) return None return dict(user_zip((user_id, email, user_name, user_last_name))) def add_user(user_id, email, user_name, user_last_name): ''' Adds a new user to the dataset ''' new_user = make_user(user_id, email, user_name, user_last_name) if not new_user: logger.error('User %s did not meet requirements', user_id) return False try: table.insert(**new_user) except IntegrityError: logger.error('User %s already exists', user_id) return False logger.info('User %s sucessfuly added', user_id) return True def modify_user(user_id, email, user_name, user_last_name): ''' Modifes an existing user ''' exists = table.find_one(user_id=user_id) if not exists: logger.error('User %s does not exist', user_id) return False edit_user = make_user(user_id, email, user_name, user_last_name) if not edit_user: logger.error('User %s did not meet requirements', user_id) return False table.update(columns=['user_id'], **edit_user) logger.info('User %s sucessfuly modified', user_id) return True def delete_user(user_id): ''' Deletes an existing user ''' exists = table.find_one(user_id=user_id) if not exists: logger.error('User %s does not exist', user_id) return False table.delete(user_id=user_id) # Delete any statuses belonging to the deleted user status_table.delete(user_id=user_id) logger.info('User %s sucessfuly deleted', user_id) return True def search_user(user_id): ''' Searches for user data Returns an empty dictionary if user is not found ''' user = table.find_one(user_id=user_id) if not user: logger.info('User %s not found', user_id) return dict(zip(keys, (None, None, None, None))) logger.info('User %s sucessfuly found', user_id) return user
2420bf8c3d936774c07e187dce907a62f2186a17
d1aa6e7d5631d7806531660febbd1f856eaeece7
/python/paddle/distributed/fleet/utils/fs.py
7ea639d70e641e550910ec3f8740a11a51a623bd
[ "Apache-2.0" ]
permissive
gongweibao/Paddle
510cd4bc0ef89bc6ccee7b6b8eca52c00e014b77
60f9c60cd8196c66c391d79c35d341e9072f8838
refs/heads/develop
2023-03-13T17:43:35.675875
2022-09-20T08:46:15
2022-09-20T08:46:15
82,279,237
3
2
Apache-2.0
2021-05-26T06:17:43
2017-02-17T09:16:16
Python
UTF-8
Python
false
false
46,491
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import subprocess import multiprocessing from datetime import datetime import re import copy import errno import time import logging import six import abc import paddle.fluid as fluid from paddle.fluid import core import functools import shutil __all__ = [] class ExecuteError(Exception): pass class FSFileExistsError(Exception): pass class FSFileNotExistsError(Exception): pass class FSTimeOut(Exception): pass class FSShellCmdAborted(ExecuteError): pass class FS(object): @abc.abstractmethod def ls_dir(self, fs_path): raise NotImplementedError @abc.abstractmethod def is_file(self, fs_path): raise NotImplementedError @abc.abstractmethod def is_dir(self, fs_path): raise NotImplementedError @abc.abstractmethod def is_exist(self, fs_path): raise NotImplementedError @abc.abstractmethod def upload(self, local_path, fs_path): raise NotImplementedError @abc.abstractmethod def download(self, fs_path, local_path): raise NotImplementedError @abc.abstractmethod def mkdirs(self, fs_path): raise NotImplementedError @abc.abstractmethod def delete(self, fs_path): raise NotImplementedError @abc.abstractmethod def need_upload_download(self): raise NotImplementedError @abc.abstractmethod def rename(self, fs_src_path, fs_dst_path): raise NotImplementedError @abc.abstractmethod def mv(self, fs_src_path, fs_dst_path, overwrite=False, test_exists=False): raise NotImplementedError @abc.abstractmethod def upload_dir(self, local_dir, dest_dir): raise NotImplementedError @abc.abstractmethod def list_dirs(self, fs_path): raise NotImplementedError @abc.abstractmethod def touch(self, fs_path, exist_ok=True): raise NotImplementedError @abc.abstractmethod def cat(self, fs_path=None): raise NotImplementedError class LocalFS(FS): """ A tool of local file system. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() subdirs, files = client.ls_dir("./") """ def ls_dir(self, fs_path): """ List directorys and files under `fs_path` . Args: fs_path(str): The local file path. Returns: Tuple: Return a 2-tuple, the first is a list of all its subdirectories, and the second is a list of all its subfiles, e.g. ([subdirname1, subdirname1, ...], [filename1, filename2, ...]). Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() subdirs, files = client.ls_dir("./") """ if not self.is_exist(fs_path): return [], [] dirs = [] files = [] for f in os.listdir(fs_path): if os.path.isdir(fs_path + "/" + f): dirs.append(f) else: files.append(f) return dirs, files def mkdirs(self, fs_path): """ Create a local directory. Args: fs_path(str): The local directory path. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() client.mkdirs("test_mkdirs") client.delete("test_mkdirs") """ assert not os.path.isfile(fs_path), "{} is already a file".format( fs_path) os.system("mkdir -p {}".format(fs_path)) def rename(self, fs_src_path, fs_dst_path): """ Rename the file. Args: fs_src_path(str): The actual name of the file or directory fs_dst_path(str): The new name of the file or directory. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() client.touch("test_rename_src") print(client.is_exists("test_rename_src")) # True client.rename("test_rename_src", "test_rename_dst") print(client.is_exists("test_rename_src")) # False print(client.is_exists("test_rename_dst")) # True client.delete("test_rename_dst") """ os.rename(fs_src_path, fs_dst_path) def _rmr(self, fs_path): shutil.rmtree(fs_path) def _rm(self, fs_path): os.remove(fs_path) def delete(self, fs_path): """ Delete the local file path, whether it's a file or directory. Args: fs_path(str): The local file path. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() client.mkdirs("test_localFS_mkdirs") client.delete("test_localFS_mkdirs") """ if not self.is_exist(fs_path): return if os.path.isfile(fs_path): return self._rm(fs_path) return self._rmr(fs_path) def need_upload_download(self): return False def is_file(self, fs_path): """ Whether the local file path is a file. Args: fs_path(str): The local file path. Returns: Bool: Return true if the path exists and it's a file, otherwise return false. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() client.touch("test_is_file") print(client.is_file("test_is_file")) # True client.delete("test_is_file") """ return os.path.isfile(fs_path) def is_dir(self, fs_path): """ Whether the local file path is a directory. Args: fs_path(str): The local file path. Returns: Bool: Return true if the path exists and it's a directory, otherwise return false. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() client.mkdirs("test_is_dir") print(client.is_dir("test_is_file")) # True client.delete("test_is_dir") """ return os.path.isdir(fs_path) def is_exist(self, fs_path): """ Whether the local file path exists. Args: fs_path(str): The local file path. Returns: Bool: Wheter it's a file or directory, return true if the path exists, otherwise return false. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() ret = local_fs.is_exist("test_is_exist") """ return os.path.exists(fs_path) def touch(self, fs_path, exist_ok=True): """ Create a local file. Args: fs_path(str): The local file path. exist_ok(bool): When `fs_path` exists, if `exist_ok` is set false, program will throw an Exception. Default is true. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() client.touch("test_touch") client.delete("test_touch") """ if self.is_exist(fs_path): if exist_ok: return raise FSFileExistsError os.system("touch {}".format(fs_path)) def mv(self, src_path, dst_path, overwrite=False, test_exists=False): """ Move a local file or directory from `src_path` to `dst_path` . Args: src_path(str): Name of the file or directory, that's needed to be moved. dst_path(str): Name of the file or directory to which to move to. overwrite(bool): Whether to re-write `dst_path` if that exists. Default is False. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() client.touch("test_mv_src") client.mv("test_mv_src", "test_mv_dst") client.delete("test_mv_dst") """ if not self.is_exist(src_path): raise FSFileNotExistsError if overwrite and self.is_exist(dst_path): self.delete(dst_path) if self.is_exist(dst_path): raise FSFileExistsError return self.rename(src_path, dst_path) def list_dirs(self, fs_path): """ Only list directorys under `fs_path` . Args: fs_path(str): The local file path. Returns: List: A list of all its subdirectories, e.g. [subdirname1, subdirname1, ...]. Examples: .. code-block:: python from paddle.distributed.fleet.utils import LocalFS client = LocalFS() subdirs = client.list_dirs("./") """ if not self.is_exist(fs_path): return [] dirs = [ f for f in os.listdir(fs_path) if os.path.isdir(fs_path + "/" + f) ] return dirs def _handle_errors(max_time_out=None): def decorator(f): @functools.wraps(f) def handler(*args, **kwargs): o = args[0] time_out = max_time_out if time_out is None: time_out = float(o._time_out) / 1000.0 else: time_out /= 1000.0 inter = float(o._sleep_inter) / 1000.0 start = time.time() last_print_time = start while True: try: return f(*args, **kwargs) # important: only ExecuteError need to retry except ExecuteError as e: if time.time() - start >= time_out: raise FSTimeOut("args:{} timeout:{}".format( args, time.time() - start)) time.sleep(inter) if time.time() - last_print_time > 30: print("hadoop operator timeout:args:{} timeout:{}".format( args, time.time() - start)) last_print_time = time.time() return handler return decorator class HDFSClient(FS): """ A tool of HDFS. Args: hadoop_home(str): Hadoop home. configs(dict): Hadoop config. It is a dictionary and needs to contain the keys: "fs.default.name" and "hadoop.job.ugi". Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) client.ls_dir("hdfs:/test_hdfs_client") """ def __init__( self, hadoop_home, configs, time_out=5 * 60 * 1000, # ms sleep_inter=1000): # ms self.pre_commands = [] hadoop_bin = '%s/bin/hadoop' % hadoop_home self.pre_commands.append(hadoop_bin) dfs = 'fs' self.pre_commands.append(dfs) if configs: for k, v in six.iteritems(configs): config_command = '-D%s=%s' % (k, v) self.pre_commands.append(config_command) self._time_out = time_out self._sleep_inter = sleep_inter self._base_cmd = " ".join(self.pre_commands) self._bd_err_re = re.compile( r'\s?responseErrorMsg\s?\:.*, errorCode\:\s?[0-9]+, path\:') def _run_cmd(self, cmd, redirect_stderr=False, retry_times=5): exe_cmd = "{} -{}".format(self._base_cmd, cmd) ret = 0 output = None retry_sleep_second = 3 for x in range(retry_times + 1): ret, output = core.shell_execute_cmd(exe_cmd, 0, 0, redirect_stderr) ret = int(ret) if ret == 0: break time.sleep(retry_sleep_second) if ret == 134: raise FSShellCmdAborted(cmd) return ret, output.splitlines() @_handle_errors() def list_dirs(self, fs_path): """ Only list directorys under `fs_path` . Args: fs_path(str): The HDFS file path. Returns: List: A list of all its subdirectories, e.g. [subdirname1, subdirname1, ...]. Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) subdirs = client.list_dirs("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return [] dirs, files = self._ls_dir(fs_path) return dirs @_handle_errors() def ls_dir(self, fs_path): """ List directorys and files under `fs_path` . Args: fs_path(str): The HDFS file path. Returns: Tuple: Return a 2-tuple, the first element is the list of all its subdirectories, and the second one is the list of all its subfiles, e.g. ([subdirname1, subdirname1, ...], [filename1, filename2, ...]). Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) subdirs, files = client.ls_dir("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return [], [] return self._ls_dir(fs_path) def _ls_dir(self, fs_path): cmd = "ls {}".format(fs_path) ret, lines = self._run_cmd(cmd) if ret != 0: raise ExecuteError(cmd) dirs = [] files = [] for line in lines: arr = line.split() if len(arr) != 8: continue p = os.path.basename(arr[7]) if arr[0][0] == 'd': dirs.append(p) else: files.append(p) return dirs, files def _test_match(self, lines): for l in lines: m = self._bd_err_re.match(l) if m != None: return m return None @_handle_errors() def is_dir(self, fs_path): """ Whether the remote HDFS path is a directory. Args: fs_path(str): The HDFS file path. Returns: Bool: Return true if the path exists and it's a directory, otherwise return false. Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) ret = client.is_file("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return False return self._is_dir(fs_path) def _is_dir(self, fs_path): cmd = "test -d {}".format(fs_path, redirect_stderr=True) ret, lines = self._run_cmd(cmd, retry_times=1) if ret: # other error if self._test_match(lines): print('raise exception: ') print('\n'.join(lines)) raise ExecuteError(cmd) return False return True def is_file(self, fs_path): """ Whether the remote HDFS path is a file. Args: fs_path(str): The HDFS file path. Returns: Bool: Return true if the path exists and it's a file, otherwise return false. Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) ret = client.is_file("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return False return not self._is_dir(fs_path) @_handle_errors() def is_exist(self, fs_path): """ Whether the remote HDFS path exists. Args: fs_path(str): The hdfs file path. Returns: Bool: Whether it's is file or directory, return true if the path exists, otherwise return false. Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) ret = client.is_exist("hdfs:/test_hdfs_client") """ cmd = "test -e {} ".format(fs_path) ret, out = self._run_cmd(cmd, redirect_stderr=True, retry_times=1) if ret != 0: return False return True def upload_dir(self, local_dir, dest_dir, overwrite=False): """ upload dir to hdfs Args: local_dir(str): local dir dest_dir(str): hdfs dest dir overwrite(bool): is overwrite Returns: return code """ local_dir = local_dir.rstrip("/") dest_dir = dest_dir.rstrip("/") local_basename = os.path.basename(local_dir) if self.is_exist(dest_dir + "/" + local_basename) and overwrite: self.delete(dest_dir + "/" + local_basename) if not self.is_exist(dest_dir): self.mkdirs(dest_dir) self._try_upload(local_dir, dest_dir) # can't retry def upload(self, local_path, fs_path, multi_processes=5, overwrite=False): """ Upload the local path to remote HDFS. Args: local_path(str): The local path. fs_path(str): The HDFS path. multi_processes(int|1): the upload data process at the same time, default=5 overwrite(bool|False): will overwrite file on HDFS or not Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) client.upload("test_hdfs_client", "hdfs:/test_hdfs_client") """ def __subprocess_upload(hdfs_path_single, datas): for data in datas: self._try_upload(data, hdfs_path_single) def get_local_files(path): """ get local files Args: path(str): local path Returns: list of local files """ rlist = [] if not os.path.exists(path): return rlist if os.path.isdir(path): for file in os.listdir(path): t = os.path.join(path, file) rlist.append(t) else: rlist.append(path) return rlist local = LocalFS() if not local.is_exist(local_path): raise FSFileNotExistsError("{} not exists".format(local_path)) all_files = get_local_files(local_path) if not all_files: print("there are nothing need to upload, function exit") return if self.is_exist(fs_path) and overwrite: self.delete(fs_path) self.mkdirs(fs_path) procs = [] for i in range(multi_processes): process_datas = self._split_files(all_files, i, multi_processes) p = multiprocessing.Process(target=__subprocess_upload, args=(fs_path, process_datas)) procs.append(p) p.start() # complete the processes for proc in procs: proc.join() @_handle_errors() def _try_upload(self, local_path, fs_path): cmd = "put {} {}".format(local_path, fs_path) ret = 0 try: ret, _ = self._run_cmd(cmd) if ret != 0: raise ExecuteError(cmd) except Exception as e: self.delete(fs_path) raise e # can't retry def download(self, fs_path, local_path, multi_processes=5, overwrite=False): """ Download remote HDFS path to the local. Args: fs_path(str): The HDFS path. local_path(str): The local path. multi_processes(int|1): the download data process at the same time, default=1 overwrite(bool): is overwrite Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) client.download("hdfs:/test_hdfs_client", "./") """ def __subprocess_download(local_path, datas): """ download file from HDFS Args: local_path(str): the local file path datas(str): the hdfs file path list """ for data in datas: self._try_download(data, local_path) if not self.is_exist(fs_path): raise FSFileNotExistsError("{} not exits".format(fs_path)) # download file if self.is_file(fs_path): return self._try_download(fs_path, local_path) # download dir dirs, all_filenames = self.ls_dir(fs_path) all_files = [fs_path + "/" + i for i in all_filenames] all_files.extend([fs_path + "/" + i for i in dirs]) procs = [] for i in range(multi_processes): process_datas = self._split_files(all_files, i, multi_processes) p = multiprocessing.Process(target=__subprocess_download, args=(local_path, process_datas)) procs.append(p) p.start() # complete the processes for proc in procs: proc.join() @_handle_errors() def _try_download(self, fs_path, local_path): cmd = "get {} {}".format(fs_path, local_path) ret = 0 try: ret, _ = self._run_cmd(cmd) if ret != 0: raise ExecuteError(cmd) except Exception as e: local_fs = LocalFS() local_fs.delete(local_path) raise e @_handle_errors() def mkdirs(self, fs_path): """ Create a remote HDFS directory. Args: fs_path(str): The HDFS directory path. Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) client.mkdirs("hdfs:/test_hdfs_client") """ if self.is_exist(fs_path): return out_hdfs = False cmd = "mkdir {} ".format(fs_path) ret, out = self._run_cmd(cmd, redirect_stderr=True) if ret != 0: for l in out: if "No such file or directory" in l: out_hdfs = True break if not out_hdfs: raise ExecuteError(cmd) if out_hdfs and not self.is_exist(fs_path): cmd = "mkdir -p {}".format(fs_path) ret, _ = self._run_cmd(cmd) if ret != 0: raise ExecuteError(cmd) def mv(self, fs_src_path, fs_dst_path, overwrite=False, test_exists=True): """ Move a remote HDFS file or directory from `fs_src_path` to `fs_dst_path` . Args: fs_src_path(str): Name of the file or directory, that's needed to be moved. fs_dst_path(str): Name of the file or directory to which to move to. overwrite(bool): Whether to re-write `fs_dst_path` if that exists. Default is False. test_exists(bool): Check the existence of `fs_src_path` and `fs_dst_path` . When `test_exists` is set true, if `fs_src_path` doesn't exist or `fs_dst_path` exists, program will throw an Excetption. Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) client.mv("hdfs:/test_hdfs_client", "hdfs:/test_hdfs_client2") """ if overwrite and self.is_exist(fs_dst_path): self.delete(fs_dst_path) if test_exists: if not self.is_exist(fs_src_path): raise FSFileNotExistsError( "{} is not exists".format(fs_src_path)) if self.is_exist(fs_dst_path): raise FSFileExistsError("{} exists already".format(fs_dst_path)) return self._try_mv(fs_src_path, fs_dst_path) @_handle_errors() def _try_mv(self, fs_src_path, fs_dst_path): cmd = "mv {} {}".format(fs_src_path, fs_dst_path) ret = 0 try: ret, _ = self._run_cmd(cmd, retry_times=1) if ret != 0: raise ExecuteError(cmd) except Exception as e: if not self.is_exist(fs_src_path) and \ self.is_exist(fs_dst_path): return raise e def _rmr(self, fs_path): cmd = "rmr {}".format(fs_path) ret, _ = self._run_cmd(cmd) if ret != 0: raise ExecuteError(cmd) def _rm(self, fs_path): cmd = "rm {}".format(fs_path) ret, _ = self._run_cmd(cmd) if ret != 0: raise ExecuteError(cmd) @_handle_errors() def delete(self, fs_path): """ Delete a remote HDFS path, whether it's a file or directory. Args: fs_path(str): The HDFS file path. Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) client.delete("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return is_dir = self._is_dir(fs_path) if is_dir: return self._rmr(fs_path) return self._rm(fs_path) def touch(self, fs_path, exist_ok=True): """ Create a remote HDFS file. Args: fs_path(str): The HDFS file path. exist_ok(bool): When `fs_path` exists, if `exist_ok` is set false, program will throw an Exception. Default is true. Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) client.touch("hdfs:/test_hdfs_client") """ if self.is_exist(fs_path): if exist_ok: return raise FSFileExistsError return self._touchz(fs_path) @_handle_errors() def _touchz(self, fs_path): cmd = "touchz {}".format(fs_path) ret, _ = self._run_cmd(cmd) if ret != 0: raise ExecuteError(cmd) def need_upload_download(self): return True def cat(self, fs_path=None): """ Cat a remote HDFS file. Args: fs_path(str): The HDFS file path. Returns: file content Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient hadoop_home = "/home/client/hadoop-client/hadoop/" configs = { "fs.default.name": "hdfs://xxx.hadoop.com:54310", "hadoop.job.ugi": "hello,hello123" } client = HDFSClient(hadoop_home, configs) client.cat("hdfs:/test_hdfs_client") """ if self.is_file(fs_path): output = self._try_cat(fs_path) return "\n".join(output) else: return "" @_handle_errors() def _try_cat(self, fs_path): cmd = "cat {}".format(fs_path) ret, output = self._run_cmd(cmd, retry_times=1) if ret != 0: raise ExecuteError(cmd) return output def _split_files(self, files, trainer_id, trainers): """ split file list Args: files(list): file list trainer_id(int): trainer mpi rank id trainers(int): all trainers num Returns: fileist(list): file list of current trainer """ remainder = len(files) % trainers blocksize = len(files) // trainers blocks = [blocksize] * trainers for i in range(remainder): blocks[i] += 1 trainer_files = [[]] * trainers begin = 0 for i in range(trainers): trainer_files[i] = files[begin:begin + blocks[i]] begin += blocks[i] return trainer_files[trainer_id] def list_files_info(self, path_list): """ list_files return file path and size Args: path_list(list): file list Returns: fileist(list): file list with file path and size """ if len(path_list) <= 0: return [] file_list = [] #concat filelist can speed up 'hadoop ls' str_concat = "" for path in path_list: str_concat += path + " " cmd = "ls " + str_concat + " | awk '{if ($8 != \"\") {print $5\" \"$8 }}'" ret, lines = self._run_cmd(cmd) if (len(lines) == 0): logger.warning("list_files empty, path[%s]" % path_list) return [] for line in lines: arr = line.split(' ') if len(arr) < 2: continue file_path = arr[1] file_size = int(arr[0]) file_list.append({'path': file_path, 'size': file_size}) return file_list class AFSClient(FS): """ A tool of AFS. Use AfsWrapper. Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") client.ls_dir("hdfs:/test_hdfs_client") """ def __init__( self, time_out=5 * 60 * 1000, # ms sleep_inter=1000): # ms self._fs = core.AfsWrapper() self._time_out = time_out def init(self, fs_name, fs_user, fs_passwd, fs_conf): self._fs.init(fs_name, fs_user, fs_passwd, fs_conf) def list_dirs(self, fs_path): """ Only list directorys under `fs_path` . Args: fs_path(str): The HDFS file path. Returns: List: A list of all its subdirectories, e.g. [subdirname1, subdirname1, ...]. Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") subdirs = client.list_dirs("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return [] # TODO:fengdanlei dirs, files = self._ls_dir(fs_path) return dirs def ls_dir(self, fs_path): """ List directorys and files under `fs_path` . Args: fs_path(str): The HDFS file path. Returns: Tuple: Return a 2-tuple, the first element is the list of all its subdirectories, and the second one is the list of all its subfiles, e.g. ([subdirname1, subdirname1, ...], [filename1, filename2, ...]). Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") subdirs, files = client.ls_dir("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return [], [] return self._ls_dir(fs_path) def _ls_dir(self, fs_path): files = self._fs.list(fs_path) dirs = [fs_path] return dirs, files def is_dir(self, fs_path): """ Whether the remote HDFS path is a directory. Args: fs_path(str): The HDFS file path. Returns: Bool: Return true if the path exists and it's a directory, otherwise return false. Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") ret = client.is_file("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return False return self._is_dir(fs_path) def _is_dir(self, fs_path): list_path = self._fs.list(fs_path) if (len(list_path)) > 0: return True else: return False def is_file(self, fs_path): """ Whether the remote HDFS path is a file. Args: fs_path(str): The HDFS file path. Returns: Bool: Return true if the path exists and it's a file, otherwise return false. Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") ret = client.is_file("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return False return not self._is_dir(fs_path) def is_exist(self, fs_path): """ Whether the remote HDFS path exists. Args: fs_path(str): The hdfs file path. Returns: Bool: Whether it's is file or directory, return true if the path exists, otherwise return false. Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") ret = client.is_exist("hdfs:/test_hdfs_client") """ return self._fs.exist(fs_path) def upload_dir(self, local_dir, dest_dir, overwrite=False): """ upload dir to hdfs Args: local_dir(str): local dir dest_dir(str): hdfs dest dir overwrite(bool): is overwrite Returns: return code """ local_dir = local_dir.rstrip("/") dest_dir = dest_dir.rstrip("/") local_basename = os.path.basename(local_dir) if self.is_exist(dest_dir + "/" + local_basename) and overwrite: self.delete(dest_dir + "/" + local_basename) if not self.is_exist(dest_dir): self.mkdirs(dest_dir) self._fs.upload(local_dir, dest_dir) # can't retry def upload(self, local_path, fs_path, multi_processes=1, overwrite=False): """ Upload the local path to remote HDFS. Args: local_path(str): The local path. fs_path(str): The HDFS path. multi_processes(int|1): the upload data process at the same time, default=5 overwrite(bool|False): will overwrite file on HDFS or not Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") client.upload("test_hdfs_client", "hdfs:/test_hdfs_client") """ local = LocalFS() if not local.is_exist(local_path): raise FSFileNotExistsError("{} not exists".format(local_path)) self._fs.upload(local_path, fs_path) def download(self, fs_path, local_path, multi_processes=1, overwrite=False): """ Download remote HDFS path to the local. Args: fs_path(str): The HDFS path. local_path(str): The local path. multi_processes(int|1): the download data process at the same time, default=1 overwrite(bool): is overwrite Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") client.download("hdfs:/test_hdfs_client", "./") """ def __subprocess_download(local_path, datas): """ download file from HDFS Args: local_path(str): the local file path datas(str): the hdfs file path list """ for data in datas: self._fs.download(local_path, data) if not self.is_exist(fs_path): raise FSFileNotExistsError("{} not exits".format(fs_path)) # download file if self.is_file(fs_path): return self._fs.download(local_path, fs_path) # download dir _, all_filenames = self.ls_dir(fs_path) all_files = [fs_path + i for i in all_filenames] procs = [] for i in range(multi_processes): process_datas = self._split_files(all_files, i, multi_processes) p = multiprocessing.Process(target=__subprocess_download, args=(local_path, process_datas)) procs.append(p) p.start() # complete the processes for proc in procs: proc.join() def mkdirs(self, fs_path): """ Create a remote HDFS directory. Args: fs_path(str): The HDFS directory path. Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") client.mkdirs("hdfs:/test_hdfs_client") """ if self.is_exist(fs_path): return self._fs.mkdir(fs_path) def mv(self, fs_src_path, fs_dst_path, overwrite=False, test_exists=True): """ Move a remote HDFS file or directory from `fs_src_path` to `fs_dst_path` . Args: fs_src_path(str): Name of the file or directory, that's needed to be moved. fs_dst_path(str): Name of the file or directory to which to move to. overwrite(bool): Whether to re-write `fs_dst_path` if that exists. Default is False. test_exists(bool): Check the existence of `fs_src_path` and `fs_dst_path` . When `test_exists` is set true, if `fs_src_path` doesn't exist or `fs_dst_path` exists, program will throw an Excetption. Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") client.mv("hdfs:/test_hdfs_client", "hdfs:/test_hdfs_client2") """ if overwrite and self.is_exist(fs_dst_path): self.delete(fs_dst_path) if test_exists: if not self.is_exist(fs_src_path): raise FSFileNotExistsError( "{} is not exists".format(fs_src_path)) if self.is_exist(fs_dst_path): raise FSFileExistsError("{} exists already".format(fs_dst_path)) self._fs.mv(fs_src_path, fs_dst_path) def delete(self, fs_path): """ Delete a remote HDFS path, whether it's a file or directory. Args: fs_path(str): The HDFS file path. Examples: .. code-block:: text from paddle.distributed.fleet.utils import HDFSClient from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") client.delete("hdfs:/test_hdfs_client") """ if not self.is_exist(fs_path): return self._fs.remove(fs_path) def touch(self, fs_path, exist_ok=True): """ Create a remote HDFS file. Args: fs_path(str): The HDFS file path. exist_ok(bool): When `fs_path` exists, if `exist_ok` is set false, program will throw an Exception. Default is true. Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") client.touch("hdfs:/test_hdfs_client") """ if self.is_exist(fs_path): if exist_ok: return raise FSFileExistsError return self._fs.touchz(fs_path) def need_upload_download(self): return True def cat(self, fs_path=None): """ Cat a remote HDFS file. Args: fs_path(str): The HDFS file path. Returns: file content Examples: .. code-block:: text from paddle.distributed.fleet.utils import AFSClient client = AFSClient() client.init("hdfs://xxx.hadoop.com:54310", "hello", "hello123", "./fs_conf") client.cat("hdfs:/test_hdfs_client") """ if self.is_file(fs_path): return self._fs.cat(fs_path) else: return "" def _split_files(self, files, trainer_id, trainers): """ split file list Args: files(list): file list trainer_id(int): trainer mpi rank id trainers(int): all trainers num Returns: fileist(list): file list of current trainer """ remainder = len(files) % trainers blocksize = len(files) // trainers blocks = [blocksize] * trainers for i in range(remainder): blocks[i] += 1 trainer_files = [[]] * trainers begin = 0 for i in range(trainers): trainer_files[i] = files[begin:begin + blocks[i]] begin += blocks[i] return trainer_files[trainer_id]
e15d35e8e6957d5fc37271c0440d3b5e2eeb58c7
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/pj5yRacNC8huzhy85_6.py
1c295171c1a8bc2b686e83e74d269d75cd0a86f4
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
76
py
def shhh(txt): return "\""+txt.capitalize()+"\""+', whispered Edabit.'
7c26ba48a445a3be021bb7879617d75244d366bf
d8c5f1d5f5b7d222834d233db26d8b03e37bdfa3
/clients/kratos/python/test/test_submit_self_service_registration_flow_with_password_method_body.py
f66db886c346ff8c345df7d0e38ed686861526e2
[ "Apache-2.0" ]
permissive
kolotaev/sdk
31a9585720c3649b8830cf054fc7e404abe8e588
0dda1becd70be8d7b9d678321ebe780c1ba00485
refs/heads/master
2023-07-09T21:36:44.459798
2021-08-17T09:05:22
2021-08-17T09:05:22
397,220,777
0
0
null
null
null
null
UTF-8
Python
false
false
1,441
py
""" Ory Kratos API Documentation for all public and administrative Ory Kratos APIs. Public and administrative APIs are exposed on different ports. Public APIs can face the public internet without any protection while administrative APIs should never be exposed without prior authorization. To protect the administative API port you should use something like Nginx, Ory Oathkeeper, or any other technology capable of authorizing incoming requests. # noqa: E501 The version of the OpenAPI document: v0.7.0-alpha.1 Contact: [email protected] Generated by: https://openapi-generator.tech """ import sys import unittest import ory_kratos_client from ory_kratos_client.model.submit_self_service_registration_flow_with_password_method_body import SubmitSelfServiceRegistrationFlowWithPasswordMethodBody class TestSubmitSelfServiceRegistrationFlowWithPasswordMethodBody(unittest.TestCase): """SubmitSelfServiceRegistrationFlowWithPasswordMethodBody unit test stubs""" def setUp(self): pass def tearDown(self): pass def testSubmitSelfServiceRegistrationFlowWithPasswordMethodBody(self): """Test SubmitSelfServiceRegistrationFlowWithPasswordMethodBody""" # FIXME: construct object with mandatory attributes with example values # model = SubmitSelfServiceRegistrationFlowWithPasswordMethodBody() # noqa: E501 pass if __name__ == '__main__': unittest.main()
c05000978353355f219b6a9327f6d1fc60eb72d1
dc4c96b7b986f7d1f451b6af8381fe94d787cc48
/Nishida/WBAI_open_code/lstm/lstm.py
a9353c2af4301f1335174b43b0cf17171cecfcf9
[ "Apache-2.0" ]
permissive
wbap/Hackathon2015
3aacf2addab6dd0c08a6f7c7d6776468d886a0cc
62eb973623ac316199ebf83de30151944f38a750
refs/heads/master
2016-09-06T04:37:48.108544
2016-01-22T11:59:51
2016-01-22T11:59:51
42,838,895
6
9
null
2016-01-22T11:59:53
2015-09-21T02:15:48
Python
UTF-8
Python
false
false
1,640
py
#coding:utf-8 import numpy as np from chainer import Variable, FunctionSet import chainer.functions as F class LSTM(FunctionSet): def __init__(self,f_n_units, n_units): super(LSTM, self).__init__( l1_x = F.Linear(f_n_units, 4*n_units), l1_h = F.Linear(n_units, 4*n_units), l6 = F.Linear(n_units, f_n_units) ) # パラメータの値を-0.08~0.08の範囲で初期化 for param in self.parameters: param[:] = np.random.uniform(-0.08, 0.08, param.shape) def forward_one_step(self, x_data, y_data, state, train=True,dropout_ratio=0.0): x ,t = Variable(x_data,volatile=not train),Variable(y_data,volatile=not train) h1_in = self.l1_x(F.dropout(x, ratio=dropout_ratio, train=train)) + self.l1_h(state['h1']) c1, h1 = F.lstm(state['c1'], h1_in) y = self.l6(F.dropout(h1, ratio=dropout_ratio, train=train)) state = {'c1': c1, 'h1': h1} return state, F.mean_squared_error(y, t) def predict(self, x_data, y_data, state): x ,t = Variable(x_data,volatile=False),Variable(y_data,volatile=False) h1_in = self.l1_x(x) + self.l1_h(state['h1']) c1, h1 = F.lstm(state['c1'], h1_in) y = self.l6(h1) state = {'c1': c1, 'h1': h1} return state,F.mean_squared_error(y,t) def make_initial_state(n_units,train = True): return {name: Variable(np.zeros((1,n_units), dtype=np.float32), volatile=not train) for name in ('c1', 'h1')} #for name in ('c1', 'h1', 'c2', 'h2', 'c3', 'h3','c4','h4','c5','h5')}
aeb95cdd28029f048b32223a7ae7d673d281359d
9e56256fddab7825573af0635f26b45855e2a2ee
/prostate_split_A1.py
3e0e26353689db9596c5ed2608c9c92c24a2f2ef
[]
no_license
liq07lzucn/Scripts-RayStation-4.7.2
257a8163ee96aac4260a5d2de049ba02331d1a1a
eabc6a737dc62212d07fcf8517c341ff0c9dbdf5
refs/heads/master
2021-08-31T09:13:25.640927
2017-12-20T21:51:10
2017-12-20T21:51:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,858
py
# -*- coding: utf-8 -*- """ .. note:: LA VERSION LA PLUS À JOUR DE CE DOCUMENT SE TROUVE DANS DRUPAL: `Planification des prostates vmat`_ .. _`Planification des prostates vmat`: http://drupal.radonc.hmr/content/planification-des-prostates-vmat-0 Ce script à comme but de convertir un plan A1 de prostate VMAT standard en plan "split", c'est à dire avec deux niveaux de dose dans le PTV A1. Le script prend pour acquis que le premier plan était fait avec le script plan_prostate_A1 et que le contour WALL RECTUM existe toujours. Normalement, le script devrait préserver les objectifs DVHs rectum tel quel, pour permettre de rapidement redémarrer le plan en version split sans perdre les pourcentages ni les poids utilisés dans les optimisations à date. .. warning:: IL EST FORTEMENT RECOMMANDÉ DE SAUVEGARDER VOTRE PLAN ET DE ROULER CE SCRIPT DANS UNE NOUVELLE COPIE. .. rubric:: Étapes du script Avant de rouler le script, il faut vérifier que les ROIs PTV A1, RECTUM, WALL RECT et RECTUM ds PTV A1 existent. 1. Remet le nombre de fractions du plan A1 à 40 2. Crée les contours PTV A1-RECTUM et WALL RECT ds PTV A1 3. Remplace l'objectif de min dose sur le PTV A1 avec un min dose sur le PTV A1-RECTUM (76 Gy à 99.5%, poids 100) 4. Ajoute un objectif min dose 73.2 Gy à RECTUM ds PTV A1 (poids 10) 5. Ajoute un objectif max dose 75 Gy à WALL RECT ds PTV A1 (poids 10) 6. Ajoute un clinical goal pour la couverture du PTV A1-RECTUM (76 Gy à 99.5%) 7. Ajoute un clinical goal pour la couverture du RECTUM ds PTV A1 (73.2 Gy à 99.5%) .. note:: BUG CONNU: le script ne peut pas effacer le clinical goal pour la couverture du PTV A1 qui reste du plan A1 initial, il faut l'enlever à la main. """ import setpath import hmrlib.lib as lib import prostate with lib.RSScriptWrapper(__file__): prostate.prostate_split_A1()
53fb143eff98e78c0a1780dd917372fec933c0db
76f55428277f1a951f648b202d5c6757bf9c446a
/youtube/get_video_thumb.py
129240511f24bbbf347a717ed73d4899f4c87727
[]
no_license
zdenekhynek/browser_snapshots
5003378e01d73dbb877771097ad5ddb0a9aec997
b63937032a0620f47b1f49fdd8e87ffd3a45a2d2
refs/heads/master
2023-01-30T14:10:48.321789
2018-12-02T22:39:32
2018-12-02T23:19:21
113,761,833
0
0
null
2023-01-12T23:55:40
2017-12-10T15:39:13
Python
UTF-8
Python
false
false
173
py
from youtube.get_id_from_url import get_id_from_url def get_video_thumb(url): video_id = get_id_from_url(url) return 'https://img.youtube.com/vi/%s/0.jpg' % (video_id)