blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
2cda01192caf74ae2c14d6719c08706742a49cd8
7f7e36cd9570970007a0f974837f9115e5d4d587
/libdl/nn_losses/mctc.py
6fb9d3994ea386bbc5f573156158ee109eceae17
[]
no_license
christofw/multipitch_mctc
591275e4074ded69aa7f166e7d1982417013c21d
d95e201044d8974ae9d3a5157a6e013a13288071
refs/heads/main
2023-08-16T20:37:57.999239
2021-10-12T11:56:09
2021-10-12T11:56:09
388,519,835
1
0
null
null
null
null
UTF-8
Python
false
false
11,978
py
import numpy as np, os, scipy import torch import torch.nn as nn from itertools import groupby class sctc_loss_threecomp(nn.CTCLoss): """ Separable Connectionist Temporal Classification (SCTC) Loss with three components per category, e.g. (blank, 0, 1) Args: reduction='none' No reduction / averaging applied to loss within this class. Has to be done afterwards explicitly. For details see: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html#CTCLoss and C. Wigington, B.L. Price, S. Cohen: Multi-label Connectionist Temporal Classification. ICDAR 2019: 979-986 """ def __init__(self, reduction='none'): super(sctc_loss_threecomp, self).__init__(reduction=reduction) assert reduction=='none', 'This loss is not tested with other reductions. Please apply reductions afterwards explicitly' def forward(self, log_probs, targets, input_lengths, target_lengths): ctc_loss = nn.CTCLoss(reduction=self.reduction) num_categories = targets.size(0) # there is no category blank in SCTC all_losses = [] for i in range(num_categories): # Prepare targets targ_cat = torch.tensor([t[0]+1 for t in groupby(targets[i,:])]) target_torch = targ_cat.type(torch.cuda.LongTensor).unsqueeze(0) # Overwrite target sequence length target_lengths = torch.tensor(target_torch.size(1), dtype=torch.long) # Prepare inputs input_torch = log_probs[:, i, :].squeeze(1).type(torch.cuda.FloatTensor).T.unsqueeze(1) # Overwrite input sequence length input_lengths = torch.tensor(input_torch.size(0), dtype=torch.long) # Compute individual loss for category sctc_loss_cat = ctc_loss(input_torch, target_torch, input_lengths, target_lengths) all_losses.append(sctc_loss_cat) # Sum to obtain overall loss (instead of multiply since we deal with log probs!) sctc_loss = sum(all_losses) return sctc_loss class sctc_loss_twocomp(nn.CTCLoss): """ Separable Connectionist Temporal Classification (SCTC) Loss with two components per category, e.g. (blank, 1) Args: reduction='none' No reduction / averaging applied to loss within this class. Has to be done afterwards explicitly. For details see: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html#CTCLoss and C. Wigington, B.L. Price, S. Cohen: Multi-label Connectionist Temporal Classification. ICDAR 2019: 979-986 """ def __init__(self, reduction='none'): super(sctc_loss_twocomp, self).__init__(reduction=reduction) assert reduction=='none', 'reduction ' + redcution + 'This loss is not tested with other reductions. Please apply reductions afterwards explicitly' def forward(self, log_probs, targets, input_lengths, target_lengths): ctc_loss = nn.CTCLoss(reduction=self.reduction) num_categories = targets.size(0) # there is no category blank in SCTC all_losses = [] for i in range(num_categories): # Prepare targets targ_cat = torch.tensor([t[0] for t in groupby(targets[i,:])]) targ_cat_nonzero = targ_cat[targ_cat!=0.] target_torch = targ_cat_nonzero.type(torch.cuda.LongTensor).unsqueeze(0) # Overwrite target sequence length target_lengths = torch.tensor(target_torch.size(1), dtype=torch.long) # Prepare inputs input_torch = log_probs[:, i, :].squeeze(1).type(torch.cuda.FloatTensor).T.unsqueeze(1) # Overwrite input sequence length input_lengths = torch.tensor(input_torch.size(0), dtype=torch.long) # Compute individual loss for category sctc_loss_cat = ctc_loss(input_torch, target_torch, input_lengths, target_lengths)#/input_lengths all_losses.append(sctc_loss_cat) # Sum to obtain overall loss (instead of multiply since we deal with log probs!) sctc_loss = sum(all_losses) return sctc_loss class mctc_ne_loss_twocomp(nn.CTCLoss): """ Multi-label Connectionist Temporal Classification (MCTC) Loss in "No Epsilon" (NE) encoding, i.e., without an overall blank category with two components per category, e.g. (blank, 1) Args: reduction='none' No reduction / averaging applied to loss within this class. Has to be done afterwards explicitly. For details see: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html#CTCLoss and C. Wigington, B.L. Price, S. Cohen: Multi-label Connectionist Temporal Classification. ICDAR 2019: 979-986 """ def __init__(self, reduction='none'): super(mctc_ne_loss_twocomp, self).__init__(reduction=reduction) assert reduction=='none', 'This loss is not tested with other reductions. Please apply reductions afterwards explicitly' def forward(self, log_probs, targets, input_lengths, target_lengths): ctc_loss = nn.CTCLoss(reduction=self.reduction) # Prepare targets (add zero column to guarantee that blank is included!) char_unique, char_target = torch.unique(torch.cat((targets, torch.zeros((targets.size(0), 1)).type(torch.cuda.LongTensor)), dim=1), dim=1, return_inverse=True) # char_unique is the BatchCharacterList char_targ_condensed = torch.tensor([t[0] for t in groupby(char_target[:-1])]) target_torch = char_targ_condensed.type(torch.cuda.LongTensor).unsqueeze(0) # no shift since no blank_MCTC # Overwrite target sequence length target_lengths = torch.tensor(target_torch.size(1), dtype=torch.long) # Prepare inputs input_logsoftmax = log_probs.unsqueeze(2) char_probs = torch.matmul(1-char_unique.transpose(0, -1), torch.squeeze(input_logsoftmax[0, :, :, :])) \ + torch.matmul(char_unique.transpose(0, -1), torch.squeeze(input_logsoftmax[1, :, :, :])) input_torch = char_probs.transpose(0, -1).type(torch.cuda.FloatTensor).unsqueeze(1) # Overwrite input sequence length input_lengths = torch.tensor(input_torch.size(0), dtype=torch.long) # Compute loss from characters mctc_loss = ctc_loss(input_torch, target_torch, input_lengths, target_lengths) return mctc_loss class mctc_ne_loss_threecomp(nn.CTCLoss): """ Multi-label Connectionist Temporal Classification (MCTC) Loss in "No Epsilon" (NE) encoding, i.e., without an overall blank category with three components per category, e.g. (blank, 0, 1) Args: reduction='none' No reduction / averaging applied to loss within this class. Has to be done afterwards explicitly. For details see: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html#CTCLoss and C. Wigington, B.L. Price, S. Cohen: Multi-label Connectionist Temporal Classification. ICDAR 2019: 979-986 """ def __init__(self, reduction='none'): super(mctc_ne_loss_threecomp, self).__init__(reduction=reduction) assert reduction=='none', 'This loss is not tested with other reductions. Please apply reductions afterwards explicitly' def forward(self, log_probs, targets, input_lengths, target_lengths): ctc_loss = nn.CTCLoss(reduction=self.reduction) # Prepare targets targets_ext = torch.cat((-1*torch.ones((targets.size(0), 1)).type(torch.cuda.LongTensor), targets), dim=1) char_unique, char_target = torch.unique(targets_ext, dim=1, return_inverse=True) # char_unique is the BatchCharacterList char_targ_condensed = torch.tensor([t[0] for t in groupby(char_target)][1:]) target_torch = char_targ_condensed.type(torch.cuda.LongTensor).unsqueeze(0) # no shift since no blank_MCTC # Overwrite target sequence length target_lengths = torch.tensor(target_torch.size(1), dtype=torch.long) # Prepare inputs input_logsoftmax = log_probs.unsqueeze(2) char_probs = torch.matmul((char_unique==-1).type(torch.cuda.FloatTensor).transpose(0, -1), torch.squeeze(input_logsoftmax[0, :, :, :])) \ + torch.matmul((char_unique==0).type(torch.cuda.FloatTensor).transpose(0, -1), torch.squeeze(input_logsoftmax[1, :, :, :])) \ + torch.matmul((char_unique==1).type(torch.cuda.FloatTensor).transpose(0, -1), torch.squeeze(input_logsoftmax[2, :, :, :])) input_torch = char_probs.transpose(0, -1).type(torch.cuda.FloatTensor).unsqueeze(1) # Overwrite input sequence length input_lengths = torch.tensor(input_torch.size(0), dtype=torch.long) # Compute loss from characters mctc_loss = ctc_loss(input_torch, target_torch, input_lengths, target_lengths) return mctc_loss class mctc_we_loss(nn.CTCLoss): """ Multi-label Connectionist Temporal Classification (MCTC) Loss in "With Epsilon" (WE) encoding, i.e., there is an overall blank category, for which the probabilities of other components are ignored (epsilon) thus, other categories have components (blank, 1, [epsilon]) Args: reduction='none' No reduction / averaging applied to loss within this class. Has to be done afterwards explicitly. For details see: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html#CTCLoss and C. Wigington, B.L. Price, S. Cohen: Multi-label Connectionist Temporal Classification. ICDAR 2019: 979-986 """ def __init__(self, reduction='none'): super(mctc_we_loss, self).__init__(reduction=reduction) assert reduction=='none', 'This loss is not tested with other reductions. Please apply reductions afterwards explicitly' def forward(self, log_probs, targets, input_lengths, target_lengths): ctc_loss = nn.CTCLoss(reduction=self.reduction) # Prepare targets char_unique, char_target = torch.unique(targets, dim=1, return_inverse=True) # char_unique is the BatchCharacterList char_target = torch.remainder(char_target+1, char_unique.size(1)) # shift blank character to first position char_unique = torch.roll(char_unique, 1, -1) char_targ_condensed = torch.tensor([t[0] for t in groupby(char_target)][1:]) target_torch = char_targ_condensed.type(torch.cuda.LongTensor).unsqueeze(0) # no shift since blank_MCTC already exists on pos. 0 # Overwrite target sequence length target_lengths = torch.tensor(target_torch.size(1), dtype=torch.long) # Prepare inputs input_logsoftmax = log_probs.unsqueeze(2) char_probs_nonblank = torch.matmul(1-char_unique[:, 1:].transpose(0, -1), torch.squeeze(input_logsoftmax[0, :, :, :])) \ + torch.matmul(char_unique[:, 1:].transpose(0, -1), torch.squeeze(input_logsoftmax[1, :, :, :])) # recalculate first row (category blank) due to eps values (ignore other categories for computing blank probability) char_probs_blank = input_logsoftmax[1, :1, :, :].squeeze(2).squeeze(1) char_probs = torch.cat((char_probs_blank, char_probs_nonblank), dim=0) input_torch = char_probs.transpose(0, -1).type(torch.cuda.FloatTensor).unsqueeze(1) # Overwrite input sequence length input_lengths = torch.tensor(input_torch.size(0), dtype=torch.long) # Compute loss from characters mctc_loss = ctc_loss(input_torch, target_torch, input_lengths, target_lengths) return mctc_loss
7cc0ff5d841a8a1c80894553ae24881e03372ee8
eb588aedbda16984770b1d35a0d4d14f6204dfcf
/muswarmlogger/events.py
a44af3d89ef475047f49865501a7195cc022fc11
[]
no_license
fr0gs/mu-swarm-logger-service
b670318647f4c5823cc0f833ae4b2980a290ee10
49d794cda4e2c3dcf8dcdc106f8fece7e9f4078f
refs/heads/master
2021-01-19T13:07:06.128646
2017-04-12T13:00:27
2017-04-12T13:00:53
88,065,283
0
0
null
2017-04-12T15:06:01
2017-04-12T15:06:00
null
UTF-8
Python
false
false
3,529
py
from aiodockerpy import APIClient import importlib import logging import os, sys from typing import Any, Callable, Dict, List from muswarmlogger.sparql import SPARQLClient logger = logging.getLogger(__name__) on_startup_subroutines = [] event_handlers = [] module_mtimes = {} class Event: def __init__(self, client: APIClient, data: dict): self.client = client self.data = data @property def type(self): return self.data['Type'] @property def action(self): return self.data['Action'] @property def id(self): return self.data['Actor']['ID'] @property def attributes(self): return self.data['Actor']['Attributes'] @property def time(self): return self.data['time'] @property def time_nano(self): return self.data['timeNano'] class ContainerEvent(Event): _container_task = None @property def container(self): if self._container_task is None: self._container_task = self.client.loop.create_task( self.client.inspect_container(self.id)) return self._container_task @property def name(self): return self.attributes['name'] @property def status(self): return self.data['status'] def new_event(client: APIClient, data: Dict[str, Any]) -> None: event_type = data['Type'] if event_type == "container": return ContainerEvent(client, data) else: logger.debug("Unrecognized event (%s): %s", event_type, data) return Event(client, data) def on_startup(subroutine: Callable[[APIClient, SPARQLClient], None]) -> None: on_startup_subroutines.append(subroutine) def register_event(subroutine: Callable[[Event, SPARQLClient], None]) -> None: module_name = subroutine.__module__ module = sys.modules[module_name] stat_info = os.stat(module.__file__) if module_name not in module_mtimes: module_mtimes[module_name] = stat_info.st_mtime event_handlers.append(subroutine) async def run_on_startup_subroutines(docker: APIClient, sparql: SPARQLClient) -> None: for subroutine in on_startup_subroutines: await subroutine(docker, sparql) def list_handlers(event: Event, reload: bool = False) -> None: handlers = _filter_handlers(event) if reload: changes = _detect_changes(handlers) if changes: logger.debug("Reloading modules: %s", ", ".join(changes.keys())) _reload_modules(changes) handlers = _filter_handlers(event) return handlers def _detect_changes(handlers: List[Callable]) -> Dict[str, float]: changes = {} for subroutine in handlers: module_name = subroutine.__module__ module = sys.modules[module_name] stat_info = os.stat(module.__file__) if module_mtimes[module_name] != stat_info.st_mtime: changes[module_name] = stat_info.st_mtime return changes def _reload_modules(changes: Dict[str, float]) -> None: for module_name, st_mtime in changes.items(): event_handlers[:] = [ x for x in event_handlers if x.__module__ != module_name ] importlib.reload(sys.modules[module_name]) module_mtimes[module_name] = st_mtime def _filter_handlers(event: Event): event_type = type(event) return [ event_handler for event_handler in event_handlers if event_handler.__annotations__['event'] in (event_type, Event) ]
cacefbab7b3e73ec5ec0bc3b622944a513516fa5
369baa3e61ec16e94bfd6755cc9f17fe12178aa2
/stock_analysis/spider_holder.py
7c473c49fb0c691b68e0bd119bb47f61f069e284
[]
no_license
amelie5/interesting_project
4268d85fbc7c7c9f0a5f37ea23c858be89d8931e
f63ef4c71129252eae08b92f2686622976426646
refs/heads/master
2021-01-11T18:24:26.805498
2017-09-25T09:22:02
2017-09-25T09:22:02
79,536,194
3
2
null
null
null
null
UTF-8
Python
false
false
4,153
py
# coding=utf-8 import pandas as pd import requests from pyquery import PyQuery as pq import re import json def get_holder(code): df = pd.DataFrame() url = 'http://stock.finance.qq.com/corp1/stk_holder_count.php?zqdm=' + code html = requests.get(url).text p = pq(html).find('table.list>tr') cnt = 0 for d in p: cnt += 1 if cnt == 1: continue else: date = pq(d).find('td').eq(0).text() if date == '2013-12-31': break else: holders = pq(d).find('td').eq(1).text() holders = float(holders.replace(",", '')) df = df.append({'code': code, 'holders': holders, 'date': date}, ignore_index=True) return df def get_holder_dongfang(): df = pd.DataFrame() for page in range(1,16): print('page: {}'.format(page)) url = 'http://data.eastmoney.com/DataCenter_V3/gdhs/GetList.ashx?pagesize=200&page='+str(page) html = requests.get(url).text json_list = json.loads(html) data = json_list['data'] for one in data: code=one['SecurityCode'] date=one['EndDate'] date = re.findall(r'(.*)T', date)[0] holders=one['HolderNum'] df = df.append({'code': code, 'holders': holders, 'date': date}, ignore_index=True) return df def get_top10_2017(code): df = pd.DataFrame() url = 'http://stock.finance.qq.com/corp1/stk_ciholder.php?zqdm=' + code + '&type=2017' html = requests.get(url).text p = pq(html).find('table.list>tr') cnt = 0 for d in p: if cnt % 13 == 0: date = pq(d).find('th').text() if date == "流通股东名单": break #date = re.compile(r'报告期: (.*) 公告日期').findall(date)[0] date='2017-03-31' if (cnt % 13 == 0) | ((cnt - 1) % 13 == 0) | ((cnt - 12) % 13 == 0): cnt = cnt + 1 continue else: name = pq(d).find('td').eq(1).text() if name == '': break else: amount = pq(d).find('td').eq(2).text() amount = amount.replace(",", '') amount = float(amount) type = pq(d).find('td').eq(3).text() percent = pq(d).find('td').eq(4).text() percent = float(percent.replace("%", '')) change = pq(d).find('td').eq(5).text() df = df.append({'code': code, 'amount': amount, 'company': name, 'type': type, 'percent': percent, 'change': change, 'date': date}, ignore_index=True) cnt += 1 return df def get_top10(code): df = pd.DataFrame() url = 'http://stock.finance.qq.com/corp1/stk_ciholder.php?zqdm=' + code + '&type=2015' html = requests.get(url).text p = pq(html).find('table.list') cnt = 0 for d in p: date = pq(d).find('th').text() if date == "流通股东名单": break date = re.compile(r'报告期: (.*) 公告日期').findall(date)[0] p_p = pq(d).find('tr') cnt = 0 for d_d in p_p: if cnt <2: cnt = cnt + 1 continue else: name = pq(d_d).find('td').eq(1).text() if name == '': break else: amount = pq(d_d).find('td').eq(2).text() amount = amount.replace(",", '') amount = float(amount) type = pq(d_d).find('td').eq(3).text() percent = pq(d_d).find('td').eq(4).text() percent = float(percent.replace("%", '')) change = pq(d_d).find('td').eq(5).text() df = df.append({'code': code, 'amount': amount, 'company': name, 'type': type, 'percent': percent, 'change': change, 'date': date}, ignore_index=True) cnt += 1 return df if __name__ == '__main__': get_holder_dongfang()
e355d624e961a40e8b92cff5458a5e10991f08c4
6db927df05667bbe793d95b63e29f5f6cc4d6b7e
/app/users/serializers.py
2f49dde052f319461964784ed654e7a046278146
[]
no_license
ankhanguit/DjangoRest
94509702af2ec3702acfa7430e57e00340f069fe
15a9cc51679d62dd094ff010a8b10578774a520c
refs/heads/master
2020-04-05T07:43:17.461774
2018-11-08T10:01:34
2018-11-08T10:01:34
156,686,118
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
from rest_framework import serializers from . import models class UserSerializer(serializers.ModelSerializer): birth_date = serializers.ReadOnlyField() gender = serializers.ReadOnlyField() class Meta: model = models.User fields = ( 'username', 'email', 'birth_date', 'gender', )
d46568a7d208963ca57ef8ab6042e825a9fd0a26
05ce9a6e1575f9fca2c55e2a317fbaee98819f2b
/icon/make_icon
0d560f7ec388c4c1a9b5dd581134b84866297cb9
[ "Apache-2.0" ]
permissive
lkesteloot/r_view
f05c64ce7b13d405cdf52603ed511812cf12f236
7fba4abb53731cd2a99459b33a7e4af9af10e59b
refs/heads/master
2022-01-03T06:02:21.512079
2021-12-28T01:48:49
2021-12-28T01:48:49
124,017,828
0
0
null
null
null
null
UTF-8
Python
false
false
1,774
#!/usr/bin/python # Make our icon procedurally. import sys from PIL import Image RAINBOW = [ (200, 20, 20), (255, 127, 0), (240, 240, 0), (20, 200, 20), (20, 20, 255), (75, 20, 130), (148, 0, 211), ] def make_icon(pathname): width = 1024 height = 1024 padding = 20 margin = 80 tile_size = (width - 2*margin - padding) / len(RAINBOW) pixels = [] for y in range(height): for x in range(width): if x < margin or y < margin or x >= width - margin or y >= height - margin: # Outside margins. color = (0, 0, 0, 0) else: internal_x = x - margin internal_y = y - margin tile_x = internal_x/tile_size tile_y = internal_y/tile_size tile_offset_x = internal_x - tile_x*tile_size tile_offset_y = internal_y - tile_y*tile_size # See if we're in the padding. if tile_x >= len(RAINBOW) or tile_offset_x < padding or \ tile_y >= len(RAINBOW) or tile_offset_y < padding: # Internal padding. color = (255, 255, 255, 255) else: # Colored tiles. index = (tile_x + tile_y) % len(RAINBOW) color = RAINBOW[index] + (255,) pixels.append(color) image = Image.new("RGBA", (width, height)) image.putdata(pixels) image.save(pathname) def main(): if len(sys.argv) != 2: sys.stderr.write("Usage: %s out.png\n" % (sys.argv[0],)) sys.exit(1) pathname = sys.argv[1] make_icon(pathname) if __name__ == "__main__": main()
5f1c1c4a88042e548781f0e89c112de4fa691097
c399d83163bfdc40dde80cf771a2606d95fc83ed
/src/c2/while-else.py
05a68579c5bfc6c5e971061edd9bd9bca3e9f228
[]
no_license
saimjcf/python_study
3b5c141b683a8b7b05ee0586d2542d263cb6d652
b4a137d17dea4be404ce6f2160b69cae8457feec
refs/heads/master
2020-04-01T03:34:38.193225
2018-10-13T02:57:56
2018-10-13T02:57:56
152,827,456
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
i = 8 while i < 5: print("while(in)=", i) i = i + 1 else: print("while(else)", i)
[ "saimj@DESKTOP-LLVDTKO" ]
saimj@DESKTOP-LLVDTKO
8b57f43da0c346fd63b1a5ec64aa649b9ffcb8f4
66963a3a64123dd343f9520750eea8d469a8eb4f
/scripts/export_targets.py
88f983b29bcc376b0c55cba0262e2d44952e4d73
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Montura/angle
2c1d9dea780634044db4c2dc6825863e79c97540
e2c225d48b2eca6a2d56ff8e56635a1c2e1a2db5
refs/heads/master
2020-12-19T16:00:30.915478
2020-02-05T08:55:23
2020-02-05T08:55:23
235,775,988
0
0
NOASSERTION
2020-01-23T10:54:54
2020-01-23T10:54:54
null
UTF-8
Python
false
false
9,353
py
#! /usr/bin/env python3 assert __name__ == '__main__' ''' To update ANGLE in Gecko, use Windows with git-bash, and setup depot_tools, python2, and python3. Because depot_tools expects `python` to be `python2` (shame!), python2 must come before python3 in your path. Upstream: https://chromium.googlesource.com/angle/angle Our repo: https://github.com/mozilla/angle It has branches like 'firefox-60' which is the branch we use for pulling into Gecko with this script. This script leaves a record of the merge-base and cherry-picks that we pull into Gecko. (gfx/angle/cherries.log) ANGLE<->Chrome version mappings are here: https://omahaproxy.appspot.com/ An easy choice is to grab Chrome's Beta's ANGLE branch. ## Usage Prepare your env: ~~~ export PATH="$PATH:/path/to/depot_tools" ~~~ If this is a new repo, don't forget: ~~~ # In the angle repo: ./scripts/bootstrap.py gclient sync ~~~ Update: (in the angle repo) ~~~ # In the angle repo: /path/to/gecko/gfx/angle/update-angle.py origin/chromium/XXXX git push moz # Push the firefox-XX branch to github.com/mozilla/angle ~~~~ ''' import json import os import pathlib import re import shutil import subprocess import sys from typing import * # mypy annotations REPO_DIR = pathlib.Path.cwd() GN_ENV = dict(os.environ) # We need to set DEPOT_TOOLS_WIN_TOOLCHAIN to 0 for non-Googlers, but otherwise # leave it unset since vs_toolchain.py assumes that the user is a Googler with # the Visual Studio files in depot_tools if DEPOT_TOOLS_WIN_TOOLCHAIN is not # explicitly set to 0. vs_found = False for directory in os.environ['PATH'].split(os.pathsep): vs_dir = os.path.join(directory, 'win_toolchain', 'vs_files') if os.path.exists(vs_dir): vs_found = True break if not vs_found: GN_ENV['DEPOT_TOOLS_WIN_TOOLCHAIN'] = '0' if len(sys.argv) < 3: sys.exit('Usage: export_targets.py OUT_DIR ROOTS...') (OUT_DIR, *ROOTS) = sys.argv[1:] for x in ROOTS: assert x.startswith('//:') # ------------------------------------------------------------------------------ def run_checked(*args, **kwargs): print(' ', args, file=sys.stderr) sys.stderr.flush() return subprocess.run(args, check=True, **kwargs) def sortedi(x): return sorted(x, key=str.lower) def dag_traverse(root_keys: Sequence[str], pre_recurse_func: Callable[[str], list]): visited_keys: Set[str] = set() def recurse(key): if key in visited_keys: return visited_keys.add(key) t = pre_recurse_func(key) try: (next_keys, post_recurse_func) = t except ValueError: (next_keys,) = t post_recurse_func = None for x in next_keys: recurse(x) if post_recurse_func: post_recurse_func(key) return for x in root_keys: recurse(x) return # ------------------------------------------------------------------------------ print('Importing graph', file=sys.stderr) try: p = run_checked('gn', 'desc', '--format=json', str(OUT_DIR), '*', stdout=subprocess.PIPE, env=GN_ENV, shell=(True if sys.platform == 'win32' else False)) except subprocess.CalledProcessError: sys.stderr.buffer.write(b'"gn desc" failed. Is depot_tools in your PATH?\n') exit(1) # - print('\nProcessing graph', file=sys.stderr) descs = json.loads(p.stdout.decode()) # Ready to traverse # ------------------------------------------------------------------------------ LIBRARY_TYPES = ('shared_library', 'static_library') def flattened_target(target_name: str, descs: dict, stop_at_lib: bool =True) -> dict: flattened = dict(descs[target_name]) EXPECTED_TYPES = LIBRARY_TYPES + ('source_set', 'group', 'action') def pre(k): dep = descs[k] dep_type = dep['type'] deps = dep['deps'] if stop_at_lib and dep_type in LIBRARY_TYPES: return ((),) if dep_type == 'copy': assert not deps, (target_name, dep['deps']) else: assert dep_type in EXPECTED_TYPES, (k, dep_type) for (k,v) in dep.items(): if type(v) in (list, tuple, set): flattened[k] = sortedi(set(flattened.get(k, []) + v)) else: #flattened.setdefault(k, v) pass return (deps,) dag_traverse(descs[target_name]['deps'], pre) return flattened # ------------------------------------------------------------------------------ # Check that includes are valid. (gn's version of this check doesn't seem to work!) INCLUDE_REGEX = re.compile(b'(?:^|\\n) *# *include +([<"])([^>"]+)[>"]') assert INCLUDE_REGEX.match(b'#include "foo"') assert INCLUDE_REGEX.match(b'\n#include "foo"') # Most of these are ignored because this script does not currently handle # #includes in #ifdefs properly, so they will erroneously be marked as being # included, but not part of the source list. IGNORED_INCLUDES = { b'compiler/translator/TranslatorESSL.h', b'compiler/translator/TranslatorGLSL.h', b'compiler/translator/TranslatorHLSL.h', b'compiler/translator/TranslatorMetal.h', b'compiler/translator/TranslatorVulkan.h', b'libANGLE/renderer/d3d/DeviceD3D.h', b'libANGLE/renderer/d3d/DisplayD3D.h', b'libANGLE/renderer/d3d/RenderTargetD3D.h', b'libANGLE/renderer/d3d/d3d11/winrt/NativeWindow11WinRT.h', b'libANGLE/renderer/gl/glx/DisplayGLX.h', b'libANGLE/renderer/gl/cgl/DisplayCGL.h', b'libANGLE/renderer/gl/eagl/DisplayEAGL.h', b'libANGLE/renderer/gl/egl/ozone/DisplayOzone.h', b'libANGLE/renderer/gl/egl/android/DisplayAndroid.h', b'libANGLE/renderer/gl/wgl/DisplayWGL.h', b'libANGLE/renderer/metal/DisplayMtl_api.h', b'libANGLE/renderer/null/DisplayNULL.h', b'libANGLE/renderer/vulkan/android/DisplayVkAndroid.h', b'libANGLE/renderer/vulkan/fuchsia/DisplayVkFuchsia.h', b'libANGLE/renderer/vulkan/ggp/DisplayVkGGP.h', b'libANGLE/renderer/vulkan/mac/DisplayVkMac.h', b'libANGLE/renderer/vulkan/win32/DisplayVkWin32.h', b'libANGLE/renderer/vulkan/xcb/DisplayVkXcb.h', b'kernel/image.h', } IGNORED_INCLUDE_PREFIXES = { b'android', b'Carbon', b'CoreFoundation', b'CoreServices', b'IOSurface', b'mach', b'mach-o', b'OpenGL', b'pci', b'sys', b'wrl', b'X11', } IGNORED_DIRECTORIES = { '//third_party/SwiftShader', '//third_party/vulkan-headers', '//third_party/vulkan-loader', '//third_party/vulkan-tools', '//third_party/vulkan-validation-layers', } def has_all_includes(target_name: str, descs: dict) -> bool: for ignored_directory in IGNORED_DIRECTORIES: if target_name.startswith(ignored_directory): return True flat = flattened_target(target_name, descs, stop_at_lib=False) acceptable_sources = flat.get('sources', []) + flat.get('outputs', []) acceptable_sources = {x.rsplit('/', 1)[-1].encode() for x in acceptable_sources} ret = True desc = descs[target_name] for cur_file in desc.get('sources', []): assert cur_file.startswith('/'), cur_file if not cur_file.startswith('//'): continue cur_file = pathlib.Path(cur_file[2:]) text = cur_file.read_bytes() for m in INCLUDE_REGEX.finditer(text): if m.group(1) == b'<': continue include = m.group(2) if include in IGNORED_INCLUDES: continue try: (prefix, _) = include.split(b'/', 1) if prefix in IGNORED_INCLUDE_PREFIXES: continue except ValueError: pass include_file = include.rsplit(b'/', 1)[-1] if include_file not in acceptable_sources: #print(' acceptable_sources:') #for x in sorted(acceptable_sources): # print(' ', x) print('Warning in {}: {}: Invalid include: {}'.format(target_name, cur_file, include), file=sys.stderr) ret = False #print('Looks valid:', m.group()) continue return ret # - # Gather real targets: def gather_libraries(roots: Sequence[str], descs: dict) -> Set[str]: libraries = set() def fn(target_name): cur = descs[target_name] print(' ' + cur['type'], target_name, file=sys.stderr) assert has_all_includes(target_name, descs), target_name if cur['type'] in ('shared_library', 'static_library'): libraries.add(target_name) return (cur['deps'], ) dag_traverse(roots, fn) return libraries # - libraries = gather_libraries(ROOTS, descs) print(f'\n{len(libraries)} libraries:', file=sys.stderr) for k in libraries: print(f' {k}', file=sys.stderr) print('\nstdout begins:', file=sys.stderr) sys.stderr.flush() # ------------------------------------------------------------------------------ # Output out = {k: flattened_target(k, descs) for k in libraries} for (k,desc) in out.items(): dep_libs: Set[str] = set() for dep_name in set(desc['deps']): dep = descs[dep_name] if dep['type'] in LIBRARY_TYPES: dep_libs.add(dep_name[3:]) desc['deps'] = sortedi(dep_libs) json.dump(out, sys.stdout, indent=' ') exit(0)
395d25db1cef864e086bca62372ed2fd8cbf961a
115f22f558eb96ca87141a52b953bbc3f2dfc2b1
/2019/check_solution_file.py
43e91de931863b182bd1c82dbc9beef8af77c649
[]
no_license
Ohav/HashCode
0349ca3b5df8af4e7f845cb2200c8814cec4e40a
5d5d8d4af1f6c9c09f13eaa595ac657d885d1d5a
refs/heads/master
2020-05-26T15:07:04.831720
2019-05-23T17:28:36
2019-05-23T17:28:36
188,278,710
0
0
null
null
null
null
UTF-8
Python
false
false
811
py
# Dan eldad Is the best gever # Sanity check: # 1. Lines of presentation match the first line # 2. each photo apears only once # 3. each row has 1 or two numbers # 4. there are rows with two numbers photos = set() with open ("final.sol", 'r') as file: number = int(file.readline()) counter = 0 found_verticals = False for line in file.readlines(): cur_line = line.split() line_len = len(cur_line) if line_len > 2: print ("found line with {0} numbers (line number: {1})".format(line_len, counter)) if line_len == 2: found_verticals = True for photo in cur_line: if photo in photos: print("found duplicated picture {0}".format(photo)) else: photos.add(photo) counter += 1 if counter != number: print("number of photos do not match {0} != {1}".format(number, counter))
cc4a3c0bedae1de0d655f0cdf260de4421e3be97
3edaacb98d681523d502ff46ab4c88d3caf2fdc2
/node_modules/bcrypt/build/config.gypi
aaf50852446adca3c50d2382fc109069d6955e22
[ "MIT" ]
permissive
Quito848/AuthTest
1400cadc0ef8267dc57484c62a1800b69ec535f5
d950a1569b2ca37e609ba3ab44d7254191603047
refs/heads/master
2020-04-21T18:21:03.214448
2019-02-08T16:43:09
2019-02-08T16:43:09
169,766,250
0
0
null
null
null
null
UTF-8
Python
false
false
6,159
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [], "msbuild_toolset": "v141", "msvs_windows_target_platform_version": "10.0.16299.0" }, "variables": { "asan": 0, "build_v8_with_gn": "false", "coverage": "false", "debug_nghttp2": "false", "enable_lto": "false", "enable_pgo_generate": "false", "enable_pgo_use": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_in": "..\\..\\deps/icu-small\\source/data/in\\icudt62l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "62", "nasm_version": "2.13", "node_byteorder": "little", "node_debug_lib": "false", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "true", "node_module_version": 67, "node_no_browser_globals": "false", "node_prefix": "/usr/local", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "false", "node_use_etw": "true", "node_use_large_pages": "false", "node_use_openssl": "true", "node_use_pch": "false", "node_use_v8_platform": "true", "node_with_ltcg": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "so.67", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_typed_array_max_size_in_heap": 0, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "nodedir": "C:\\Users\\Petr\\.node-gyp\\11.0.0", "standalone_static_library": 1, "msbuild_path": "C:\\Program Files (x86)\\Microsoft Visual Studio\\2017\\Community\\MSBuild\\15.0\\Bin\\MSBuild.exe", "fallback_to_build": "true", "module": "C:\\Users\\Petr\\WebstormProjects\\AuthTest\\node_modules\\bcrypt\\lib\\binding\\bcrypt_lib.node", "module_name": "bcrypt_lib", "module_path": "C:\\Users\\Petr\\WebstormProjects\\AuthTest\\node_modules\\bcrypt\\lib\\binding", "napi_version": "3", "node_abi_napi": "napi", "napi_build_version": "0", "node_napi_label": "node-v67", "access": "", "allow_same_version": "", "also": "", "always_auth": "", "audit": "true", "audit_level": "low", "auth_type": "legacy", "bin_links": "true", "browser": "", "ca": "", "cache": "C:\\Users\\Petr\\AppData\\Roaming\\npm-cache", "cache_lock_retries": "10", "cache_lock_stale": "60000", "cache_lock_wait": "10000", "cache_max": "Infinity", "cache_min": "10", "cert": "", "cidr": "", "color": "true", "commit_hooks": "true", "depth": "Infinity", "description": "true", "dev": "", "dry_run": "", "editor": "notepad.exe", "engine_strict": "", "fetch_retries": "2", "fetch_retry_factor": "10", "fetch_retry_maxtimeout": "60000", "fetch_retry_mintimeout": "10000", "force": "", "git": "git", "git_tag_version": "true", "global": "", "globalconfig": "C:\\Users\\Petr\\AppData\\Roaming\\npm\\etc\\npmrc", "globalignorefile": "C:\\Users\\Petr\\AppData\\Roaming\\npm\\etc\\npmignore", "global_style": "", "group": "", "ham_it_up": "", "heading": "npm", "https_proxy": "", "if_present": "", "ignore_prepublish": "", "ignore_scripts": "", "init_author_email": "", "init_author_name": "", "init_author_url": "", "init_license": "ISC", "init_module": "C:\\Users\\Petr\\.npm-init.js", "init_version": "1.0.0", "json": "", "key": "", "legacy_bundling": "", "link": "", "local_address": "", "logs_max": "10", "long": "", "maxsockets": "50", "message": "%s", "metrics_registry": "https://registry.npmjs.org/", "node_gyp": "C:\\Program Files\\nodejs\\node_modules\\npm\\node_modules\\node-gyp\\bin\\node-gyp.js", "node_options": "", "node_version": "11.0.0", "noproxy": "", "offline": "", "onload_script": "", "only": "", "optional": "true", "otp": "", "package_lock": "true", "package_lock_only": "", "parseable": "", "prefer_offline": "", "prefer_online": "", "prefix": "C:\\Users\\Petr\\AppData\\Roaming\\npm", "preid": "", "production": "", "progress": "true", "read_only": "", "rebuild_bundle": "true", "registry": "https://registry.npmjs.org/", "rollback": "true", "save": "true", "save_bundle": "", "save_dev": "", "save_exact": "", "save_optional": "", "save_prefix": "^", "save_prod": "", "scope": "", "scripts_prepend_node_path": "warn-only", "script_shell": "", "searchexclude": "", "searchlimit": "20", "searchopts": "", "searchstaleness": "900", "send_metrics": "", "shell": "C:\\WINDOWS\\system32\\cmd.exe", "shrinkwrap": "true", "sign_git_commit": "", "sign_git_tag": "", "sso_poll_frequency": "500", "sso_type": "oauth", "strict_ssl": "true", "tag": "latest", "tag_version_prefix": "v", "timing": "", "tmp": "C:\\Users\\Petr\\AppData\\Local\\Temp", "umask": "0000", "unicode": "", "unsafe_perm": "true", "update_notifier": "true", "usage": "", "user": "", "userconfig": "C:\\Users\\Petr\\.npmrc", "user_agent": "npm/6.4.1 node/v11.0.0 win32 x64", "version": "", "versions": "", "viewer": "browser" } }
f08c96f223b44901d252179aaba6e2dfd26f5949
6be2483b27a8f13cd999691eab8e8d58ca731db3
/main.py
5c50bc4192b580bc844eb21f82e7325e859b4cfb
[]
no_license
EthanLee0210/uno-project
f22273618a39456af071faa351e2cebb4cdedaf7
6a1b1e6686d53e564fe907430ba020c991a7c92d
refs/heads/main
2023-01-20T21:10:27.692975
2020-11-25T21:17:07
2020-11-25T21:17:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,019
py
import deck_functions as df import hand_functions as hf import player_functions as pf class Token: def __init__(self): self.count = 0 self.last_card = '' self.wild_color = '' self.is_reversed = False self.is_first_reversed = False self.is_skipped = False self.is_draw_two = False self.is_draw_four = False self.skip_after_draw = False def __str__(self): return 'Player ' + str(len(players)) + ': ' + players[self.count].name + ' is up!' def increment(self): if not self.is_reversed: if self.count == len(players) - 1: self.count = 0 else: self.count += 1 else: if self.count == 0: self.count = len(players) - 1 else: self.count -= 1 def reverse(self): if self.is_reversed: self.is_reversed = False else: self.is_reversed = True def read_last(self): print('Last card played was a {}.'.format(hf.decode(self.last_card))) # SETUP players = [pf.Player(1, 'Dan'), pf.Player(2, 'Ethan'), pf.Player(3, 'Holton')] # placeholder players # players = pf.setup_players() # actual player constructor token = Token() token.last_card = df.choose_card() while token.last_card[0] == 'w' or token.last_card[1] == 'd' or token.last_card[1] == 's' or token.last_card[1] == 'r': token.last_card = df.choose_card() # So that we don't start the game with a Wild/Skip/Draw/Reverse # GAMEPLAY LOOP players[token.count] is how we refer to the player whose turn it is. while True: if token.is_skipped: print(players[token.count].name + ', you\'re skipped this turn. Boo hoo, better luck next time!\n') token.is_skipped = False # And then it skips all the rest of that player's actions. else: if token.is_first_reversed: # Give a special greeting to the person right after the reverse. print('Back to you, {}!'.format(players[token.count].name)) token.is_first_reversed = False # Make it so it doesn't do that again. else: print('Player {}: {} you\'re up!'.format(token.count + 1, players[token.count].name)) if token.is_draw_two: players[token.count].draw_two() token.is_draw_two = False elif token.is_draw_four: players[token.count].draw_four() token.is_draw_four = False else: players[token.count].holding() token.read_last() # ONE PLAYER'S TURN LOOP while True: print('What would you like to do?') print(' 1. Draw a card\n 2. Play a card\n--> ', end='') prompt = input() if prompt == '1': # Draw a card players[token.count].draw_card(read=True) players[token.count].holding(now=True) token.read_last() elif prompt == '2': # Play a card choice = players[token.count].play_card() if choice == -1: continue chosen_card = players[token.count].hand[choice] if not hf.is_legal(chosen_card, token.last_card): hf.admonish(chosen_card, token.last_card) else: print('You played: ' + hf.decode(chosen_card) + '.') token.last_card = chosen_card token.wild_color = '' # Clear the restriction on what color can be played. if chosen_card[0] == 'w': # Record any actions that affect the following player. vv print('What color do you choose?') print('r = Red | y = Yellow | g = Green | b = Blue') token.wild_color = input(' --> ') token.last_card = token.wild_color + chosen_card[1] if chosen_card[1] == 's': token.is_skipped = True elif chosen_card[1] == 'r': token.reverse() token.is_first_reversed = True elif chosen_card[1] == 'd': token.is_draw_two = True elif chosen_card[1] == 'f': token.is_draw_four = True players[token.count].hand.remove(chosen_card) players[token.count].holding(now=True) ending = input('Type "end" to end your turn. --> ') if ending.lower() == 'uno': print(players[token.count].name + ' declares UNO! Watch out!') print() break elif prompt == 'd2': players[token.count].draw_two() elif prompt == 'done': # End turn break elif prompt == 'exit': break if prompt == 'exit': break token.increment()
507d7886ffe1824961877b0e13125edc6b4f9b48
2d539ed2a5e374a4427a6dcb023c43cb1a42b708
/rest_api_app/migrations/0018_auto_20190123_1236.py
d37eb709563efe5817d339a00c6edb2688310e3b
[]
no_license
otninast/rest-api-server
592eab1d89aaa7f64deca9bbb12d6df3bc8e2eac
5281c6c6d083bfce9940656bad34b0c01a256e21
refs/heads/master
2020-04-15T09:25:50.223542
2019-02-15T08:54:40
2019-02-15T08:54:40
164,549,411
0
0
null
2019-02-15T08:54:41
2019-01-08T03:18:41
Python
UTF-8
Python
false
false
506
py
# Generated by Django 2.0.2 on 2019-01-23 03:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rest_api_app', '0017_auto_20190106_2153'), ] operations = [ migrations.AlterField( model_name='trainingprogram', name='self_assessment_score', field=models.FloatField(choices=[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], default=3, verbose_name='Your Training Score'), ), ]
62910aef3f58da6894729e13c5a5ec4cc0a914dc
c90dce8358dc43ee2b50e3b8e099a38a38635d0c
/ivi/lecroy/lecroyWR44XIA.py
e7c4c1c2875e9a53a5031e627880b330c92eeb22
[ "MIT" ]
permissive
CedricB31/python-ivi
88209d6ff34dc2f8291eead0ccd03a7437aea9b7
5910db9d0e2f4704aa80fa29de86eb98a82bec8b
refs/heads/master
2020-12-26T09:22:00.284269
2016-06-02T15:04:33
2016-06-02T15:04:33
53,782,758
1
0
null
2016-03-13T11:58:50
2016-03-13T11:58:50
null
UTF-8
Python
false
false
1,643
py
""" Python Interchangeable Virtual Instrument Library Copyright (c) 2012 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from .lecroyWRXIA import * class lecroyWR44XIA(lecroyWRXIA): "Lecroy WaveRunner 44Xi-A IVI oscilloscope driver" def __init__(self, *args, **kwargs): self.__dict__.setdefault('_instrument_id', 'WaveRunner 44Xi-A') super(lecroy104XiA, self).__init__(*args, **kwargs) self._analog_channel_count = 4 self._digital_channel_count = 0 self._channel_count = self._analog_channel_count + self._digital_channel_count self._bandwidth = 400e6 self._init_channels()
c1c75b9ead4406e5b43862d69389055a570d21bd
244ecfc2017a48c70b74556be8c188e7a4815848
/res_bw/scripts/common/bwpydevd.py
9e36553c556081fe6c27de8516ff07ec00fc2c01
[]
no_license
webiumsk/WOT-0.9.12
c1e1259411ba1e6c7b02cd6408b731419d3174e5
5be5fd9186f335e7bae88c9761c378ff5fbf5351
refs/heads/master
2021-01-10T01:38:36.523788
2015-11-18T11:33:37
2015-11-18T11:33:37
46,414,438
1
0
null
null
null
null
WINDOWS-1250
Python
false
false
3,544
py
# 2015.11.18 12:00:11 Střední Evropa (běžný čas) # Embedded file name: scripts/common/bwpydevd.py import os import sys import ResMgr import BigWorld import inspect import threading import bwdebug REPLACE_PATHS = [] HAS_BW_CONFIG = False if os.name == 'posix': try: import BWConfig HAS_BW_CONFIG = True except ImportError: HAS_BW_CONFIG = False else: class BWConfig: scriptConfig = None @staticmethod def readString(key, default = ''): return BWConfig.scriptConfig.readString(key, default) @staticmethod def readBool(key, default = False): return BWConfig.scriptConfig.readBool(key, default) @staticmethod def readInt(key, default = 0): return BWConfig.scriptConfig.readInt(key, default) @staticmethod def getSections(key): sections = [] for sectName, sect in BWConfig.scriptConfig.items(): if sectName == key: sections.append(sect) return sections def BWConfigWrapper(fn): def wrapped(*args, **kwargs): global HAS_BW_CONFIG if os.name == 'posix': return fn(*args, **kwargs) else: BWConfig.scriptConfig = ResMgr.openSection('scripts_config.xml') if BWConfig.scriptConfig is not None: HAS_BW_CONFIG = True fn(*args, **kwargs) BWConfig.scriptConfig = None return return wrapped @BWConfigWrapper def startDebug(isStartUp = False): if not HAS_BW_CONFIG: return if isStartUp and not BWConfig.readBool('pydevd/autoConnect/%s' % BigWorld.component, False): return for pydevdSect in BWConfig.getSections('pydevd'): for sectName, sect in pydevdSect.items(): if sectName == 'replacePath': REPLACE_PATHS.append((sect.readString('to'), sect.readString('from'))) ide = BWConfig.readString('pydevd/ide', 'pycharm') host = BWConfig.readString('pydevd/host', 'localhost') port = BWConfig.readInt('pydevd/port', 5678) suspend = BWConfig.readBool('pydevd/suspend', False) traceOnlyCurrentThread = BWConfig.readBool('pydevd/traceOnlyCurrentThread', False) startPyDevD(ide, host, port, suspend, traceOnlyCurrentThread) bwPyDevDStarted = False def startPyDevD(ide, host = '127.0.0.1', port = 5678, suspend = False, traceOnlyCurrentThread = False): global bwPyDevDStarted if not bwPyDevDStarted: bwPyDevDStarted = True pydevDir = ResMgr.resolveToAbsolutePath('scripts/common/pydev/%s/pydev' % ide) if not os.path.isdir(pydevDir): bwdebug.ERROR_MSG('Failed to start pydevd: Unable to find pydevd directory for IDE %s' % ide) sys.path.append(pydevDir) try: import pydevd bwdebug.INFO_MSG('PyDevD connecting to %s:%d' % (host, port)) pydevd.settrace(host=host, port=port, suspend=suspend, stdoutToServer=True, stderrToServer=True, trace_only_current_thread=traceOnlyCurrentThread) threading.currentThread().__pydevd_id__ = BigWorld.component except Exception as e: from traceback import print_exc print_exc() bwdebug.ERROR_MSG('Failed to load pydevd: %s' % repr(e)) # okay decompyling c:\Users\PC\wotsources\files\originals\res_bw\scripts\common\bwpydevd.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2015.11.18 12:00:11 Střední Evropa (běžný čas)
cc011a55ad7c61646a22ad860015a5d83d61ad5c
efa9be53cf1094300ed66fe09d19d3886de7e663
/tests/regressions/python/966_named_arguments.py
52f1d4c4230498c82665bde68db22392a1904b35
[ "BSL-1.0" ]
permissive
STEllAR-GROUP/phylanx
25a6d1ecf8493fd77583d9b54ea4f6b7f2fcac63
443ba956e47c2c5ae1e3b6d0f51bb31930fa83e9
refs/heads/master
2022-04-30T13:57:26.767667
2022-04-06T13:57:01
2022-04-06T13:57:01
101,409,977
87
55
BSL-1.0
2022-04-06T13:57:02
2017-08-25T14:07:21
C++
UTF-8
Python
false
false
469
py
# Copyright (c) 2019 Bita Hasheminezhad # # Distributed under the Boost Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) # #966: Named arguments don't work from phylanx import Phylanx import numpy as np # make flake happy def eye(N, M, k, dtype): pass @Phylanx def i(N, M=None, k=0, dtype=None): return eye(N, M=M, k=k, dtype=dtype) assert((i(3, k=2) == np.eye(3, k=2)).all())
5a78bdc3ef8695d3d3ed81ddb9d28e9f5bae4391
587846478c16d1c19c3de6a5f0a20b3d01e98471
/main/results/experiments_welink.py
f2b4ff6ff3376f0ebf8097dd6b5bd5d202062a21
[ "MIT" ]
permissive
wissembrdj/welink
198afac250a20d1042024f695355ac397eda3969
ebc0cd4742578ad22014bd8067796e8cc1869f02
refs/heads/master
2022-11-23T11:48:09.220691
2020-07-25T18:56:35
2020-07-25T18:56:35
275,353,098
1
0
null
null
null
null
UTF-8
Python
false
false
14,970
py
import json import csv from result import Result import requests import time import re import io from extract_entities import entities writer = csv.writer(open("welink_results_qald7.csv", 'a', newline='')) url = 'http://127.0.0.1:8000/api/' headers = {'Content-type': 'application/json'} with open('qald-7.json', encoding='UTF-8') as data_file: data = json.loads(data_file.read()) nb=0 for distro in data['questions']: # print(distro['query']['sparql']) entities_dataset=entities(distro['query']['sparql']) print(entities_dataset) entity_mentions=0 correctly_linked=0 n=1 system_result=0 result=[] tmp=time.time() for d in distro['question']: if d["language"]=='en': question_en=d["string"] print(question_en) query = {'query': str(question_en)} data_json = json.dumps(query) response = requests.post(url, data=data_json, headers=headers) execution_time=time.time()-tmp print(execution_time) if response: response_json=response.json() if 'mentions' in response_json: detected_entity= len(response_json['mentions']) system_result=detected_entity if 'results' in response_json: # system_result=len(response_json['results']) entity_mentions=len(entities_dataset) for em in entities_dataset: for i in range(len(response_json["mentions"])): j=response_json["results"][str(i)][0][1] if j==em: if j not in result: # system_result=system_result+n correctly_linked=correctly_linked+1 result.append(j) n=n+1 #print(correctly_linked, system_result, entity_mentions) res= Result(correctly_linked, system_result, entity_mentions) fmeasure=0 if system_result!=0: entity_precision=res.precision() else: entity_precision=0 if entity_mentions!=0: entity_recall=res.recall() else: entity_recall=0 if entity_recall!=0 and entity_precision!=0: fmeasure= (2*entity_precision*entity_recall)/(entity_precision + entity_recall) for i in result: print("id question: ", distro['id'], "result n: ", system_result, detected_entity, result) print("Precision:", entity_precision," Recall:", entity_recall ) print("____________________________________") myData=[[distro['id'],question_en,entity_mentions,detected_entity,system_result,correctly_linked, entity_precision,entity_recall, fmeasure, "0", "0", execution_time] ] myFile = open('welink_results_qald7.csv', 'a', encoding='utf-8') with myFile: writer = csv.writer(myFile, delimiter =";", lineterminator='\r') writer.writerows(myData) else: #No string match nsm=0 system_result=0 entity_precision=0 entity_recall=0 nsm=nsm+1 myData=[[distro['id'],question_en,entity_mentions,detected_entity,system_result,correctly_linked, entity_precision,entity_recall, "0", "0",nsm, execution_time] ] print("____________________________________No string match") myFile = open('welink_results_qald7.csv', 'a', encoding='utf-8') with myFile: writer = csv.writer(myFile, delimiter =";", lineterminator='\r') writer.writerows(myData) else: #No detected named entity: if entities_dataset: nbem=0 system_result=0 entity_precision=0 entity_recall=0 correctly_linked=0 detected_entity=0 if 'entity mapping' in distro: for em in distro["entity mapping"]: nbem=nbem+1 myData=[[distro['id'],question_en,nbem,detected_entity,system_result,correctly_linked, entity_precision,entity_recall,"0", "1", "0", execution_time] ] print("____________________________________No detected named entity") else: nbem=0 system_result=1 entity_precision=1 entity_recall=1 correctly_linked=1 detected_entity=0 fmeasure=1 if 'entity mapping' in distro: for em in distro["entity mapping"]: nbem=nbem+1 myData=[[distro['id'],question_en,nbem,detected_entity,system_result,correctly_linked, entity_precision,entity_recall,fmeasure, "3", "3", execution_time] ] print("____________________________________No mention + No results") myFile = open('welink_results_qald7.csv', 'a', encoding='utf-8') with myFile: writer = csv.writer(myFile, delimiter =";", lineterminator='\r') writer.writerows(myData) else: #Unknown error from the web service execution_time=time.time()-tmp system_result=0 entity_precision=0 entity_recall=0 fmeasure= 0 entity_mentions=0 detected_entity=0 correctly_linked=0 print("____________________________________Unknown error from the web service") myData=[[distro['id'],question_en,entity_mentions,detected_entity,system_result,correctly_linked, entity_precision,entity_recall, fmeasure, "2", "2", execution_time] ] myFile = open('welink_results_qald7.csv', 'a', encoding='utf-8') with myFile: writer = csv.writer(myFile, delimiter =";", lineterminator='\r') writer.writerows(myData) #resultats= Results(best_candidate) #resultats_classified=resultats.message() #print(resultats_classified) print("process completed") # import json # import csv # from result import Result # import requests # import time # import re # import io # # def extract_entities(query): # pattern="http://dbpedia.org/resource/[^>]+" # return re.findall(pattern,query) # def extract_entities_QALD7(query): # firstModified=[] # #print (query) # if query=="OUT OF SCOPE": # return firstModified # whereString = query[query.index('{')+1:query.rfind('}')-1] # if "no_query" in whereString: # return firstModified # whereString=whereString.replace("\n","") # whereString=whereString.replace("\t"," ") # query=whereString # pattern="res:[^\s]+" # first=re.findall(pattern,query) # # for entity in first: # firstModified.append(entity.replace("res:","http://dbpedia.org/resource/")) # # pattern="http://dbpedia.org/resource/[^>]+" # second=re.findall(pattern,query) # #print(firstModified+second) # return firstModified+second # # writer = csv.writer(open("final_results_qald8_tt.csv", 'a', newline='')) # url = 'http://127.0.0.1:8000/api/' # headers = {'Content-type': 'application/json'} # with open('qald-8-train-multilingual.json', encoding='UTF-8') as data_file: # data = json.loads(data_file.read()) # nb=0 # for distro in data['questions']: # print(distro['query']['sparql']) # entities_dataset=extract_entities_QALD7(distro['query']['sparql']) # print(entities_dataset) # entity_mentions=0 # correctly_linked=0 # n=1 # system_result=0 # result=[] # tmp=time.time() # if distro['question'][nb]['language']=='en': # question_en=distro['question'][nb]['string'] # query = {'query': str(question_en)} # data_json = json.dumps(query) # response = requests.post(url, data=data_json, headers=headers) # if response: # execution_time=time.time()-tmp # response_json=response.json() # if 'mentions' in response_json: # detected_entity= len(response_json['mentions']) # if response_json['results']: # # system_result=len(response_json['results']) # if entities_dataset: # for em in entities_dataset: # entity_mentions=entity_mentions+1 # for b in response_json['results']: # n=1 # for j in response_json['results'][str(b)]: # if j[1]==em: # if j[1] not in result: # system_result=system_result+n # correctly_linked=correctly_linked+1 # result.append(j[1]) # n=n+1 # else: # system_result=1 # correctly_linked=1 # entity_mentions=1 # #print(correctly_linked, system_result, entity_mentions) # res= Result(correctly_linked, system_result, entity_mentions) # fmeasure=0 # if system_result!=0: # entity_precision=res.precision() # else: # entity_precision=0 # if entity_mentions!=0: # entity_recall=res.recall() # else: # entity_recall=0 # if entity_recall!=0 and entity_precision!=0: # fmeasure= (2*entity_precision*entity_recall)/(entity_precision + entity_recall) # # for i in result: # print("id question: ", distro['id'], "result n: ", system_result, detected_entity, result) # print("Precision:", entity_precision," Recall:", entity_recall ) # print("____________________________________") # myData=[[distro['id'],question_en,entity_mentions,detected_entity,system_result,correctly_linked, entity_precision,entity_recall, fmeasure, "0", "0", execution_time] ] # myFile = open('final_results_qald8_tt.csv', 'a', encoding='utf-8') # with myFile: # writer = csv.writer(myFile, delimiter =";", lineterminator='\r') # writer.writerows(myData) # # else: # #No string match # system_result=0 # entity_precision=0 # entity_recall=0 # nsm=nsm+1 # myData=[[distro['id'],question_en,entity_mentions,detected_entity,system_result,correctly_linked, entity_precision,entity_recall, "0", "0",nsm, execution_time] ] # print("____________________________________No string match") # myFile = open('final_results_qald8_tt.csv', 'a', encoding='utf-8') # with myFile: # writer = csv.writer(myFile, delimiter =";", lineterminator='\r') # writer.writerows(myData) # else: # #No detected named entity: # nbem=0 # system_result=0 # entity_precision=0 # entity_recall=0 # correctly_linked=0 # detected_entity=0 # if 'entity mapping' in distro: # for em in distro["entity mapping"]: # nbem=nbem+1 # myData=[[distro['id'],question_en,nbem,detected_entity,system_result,correctly_linked, entity_precision,entity_recall,"0", "1", "0", execution_time] ] # print("____________________________________No detected named entity") # myFile = open('final_results_qald8_tt.csv', 'a', encoding='utf-8') # with myFile: # writer = csv.writer(myFile, delimiter =";", lineterminator='\r') # writer.writerows(myData) # else: # #Unknown error from the web service # execution_time=time.time()-tmp # system_result=0 # entity_precision=0 # entity_recall=0 # fmeasure= 0 # entity_mentions=0 # detected_entity=0 # correctly_linked=0 # print("____________________________________Unknown error from the web service") # myData=[[distro['id'],question_en,entity_mentions,detected_entity,system_result,correctly_linked, entity_precision,entity_recall, fmeasure, "2", "2", execution_time] ] # myFile = open('final_results_qald8_tt.csv', 'a', encoding='utf-8') # with myFile: # writer = csv.writer(myFile, delimiter =";", lineterminator='\r') # writer.writerows(myData) # # # #resultats= Results(best_candidate) # #resultats_classified=resultats.message() # #print(resultats_classified) # print("process completed")
47c70190efecc803a2d8be5e7ea849460a62ed28
86618c9cc9c9de33bc679c763ddb4cb65e737650
/MyAnswers/0006/word_in_diary.py
6c4b66c0f8e35f84f851380c6f340ac3a3863c47
[]
no_license
LeonHardt427/ShowMeTheCode
ea07779d8c603aad3c89d56dc98a3ec1db48b6d2
e1ef324b447cc38d3c3b3ac2d19df5dcb113136b
refs/heads/master
2021-04-29T09:01:34.654493
2017-01-20T04:00:42
2017-01-20T04:00:42
77,668,523
0
0
null
null
null
null
UTF-8
Python
false
false
848
py
# usr/bin/python # -*- coding: utf-8 -*- ''' **第 0006 题:**你有一个目录,放了你一个月的日记,都是 txt,为了避免分词的问题,假设内容都是英文,请统计出你认为每篇日记最重要的词。 ''' from collections import Counter import re import sys def get_word(txt): common_word = ['the', 'in', 'of', 'and', 'to', 'has', 'that', 'this', 's', 'is', 'are', 'a', 'with', 'as', 'an'] file_text = open(txt, 'r', encoding='UTF-8') content = file_text.read().lower() pattern = '[a-z0-9\']+' word = re.findall(pattern, content) word_list = Counter(word) for wor in word_list: if wor in common_word: word_list[wor] = 0 file_text.close() return word_list.most_common()[:3] d = get_word('/Users/leonhart/Documents/Git/TestTxt/TestTxt.txt') print(d)
d5da552639e12a3caecae37b50fdc8d2f9aac299
5891324384c1eb96c19bde7a6d21df91890bacce
/Programacao-Internet/primeira-atividade/atividade02.py
250393fc7488f85a66c91c62c004da3e4c181aed
[]
no_license
Guilherme2020/ADS
f41324f48e6e2bc6ddd7e4310328e09f79b8a7a9
6d3ac6effca7633d6bc309ecfa9c5e8349f8e680
refs/heads/master
2021-01-17T21:06:21.874766
2018-01-19T21:49:40
2018-01-19T21:49:40
60,442,107
0
0
null
2016-06-08T13:57:25
2016-06-05T03:51:00
Python
UTF-8
Python
false
false
273
py
import requests import shutil url = 'https://meusanimais.com.br/wp-content/uploads/2015/05/gato.jpg' r = requests.get(url, stream=True) if r.status_code == 200: with open('gato.jpg','wb') as f: r.raw.decode_content = True shutil.copyfileobj(r.raw, f)
c0901823b1d16ad5c74b7e70f97e4d7f11330163
e664f2b2b23f2194bc6f2e8782c56c54fe22527d
/venv/bin/epylint
45a56bbc0831569e555be8a88096192e8a4ab145
[ "MIT" ]
permissive
daktari01/sama_automated_incentive_app
fb944c244dec244b45fd4e592e95b91f2bec96c0
2b49d504191a10067aa1de4637180c6bc7924054
refs/heads/master
2021-09-04T09:18:08.566742
2017-12-26T03:47:31
2017-12-26T03:47:31
113,555,536
0
0
MIT
2017-12-26T03:47:31
2017-12-08T09:14:58
null
UTF-8
Python
false
false
282
#!/home/daktari/Andela/flask_pro/sama_automated_incentive_app/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pylint import run_epylint if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run_epylint())
f9b1707515b78946ab468234f39d1d4903d4e9b8
a165e553b8c06224f00713c0b11220a0f675ab3d
/streamlit/app.py
c7dc078d15802db6e4097cde52fe054bfb57b7ed
[]
no_license
Uttam-Grade-McK/Income-Prediction
92c9bd2db2321c76b5ea7dd572cad960d34a5b9e
667755668d929aad41e5ff96d9604c1ae69d38ab
refs/heads/main
2023-08-06T03:15:55.640628
2021-09-14T17:34:31
2021-09-14T17:34:31
405,459,667
1
0
null
null
null
null
UTF-8
Python
false
false
4,150
py
# from flask import Flask, request import pandas as pd import numpy as np import pickle import sklearn import streamlit as st from PIL import Image pickle_in = open('Income_Classifier.pkl', 'rb') classifier = pickle.load(pickle_in) def Predict_Income(age, fnlwgt, education_num, marital_status, relationship, race, sex, capital_gain, capital_loss, hours_per_week, country, employment_type): """Let's Predict the Income This is using docstrings for specifications. --- parameters: - name: age in: query type: number required: true - name: fnlwgt in: query type: number required: true - name: education-num in: query type: number required: true - name: marital-status in: query type: number required: true - name: relationship in: query type: number required: true - name: race in: query type: number required: true - name: sex in: query type: number required: true - name: capital-gain in: query type: number required: true - name: capital-loss in: query type: number required: true - name: hours-per-week in: query type: number required: true - name: country in: query type: number required: true - name: employment_type in: query type: number required: true responses: 200: description: The output values """ '''age = request.args.get('age') fnlwgt = request.args.get('fnlwgt') education_num = request.args.get('education-num') marital_status = request.args.get('marital-status') relationship = request.args.get('relationship') race = request.args.get('race') sex = request.args.get('sex') capital_gain = request.args.get('capital-gain') capital_loss = request.args.get('capital-loss') hours_per_week = request.args.get('hours-per-week') country = request.args.get('country') employment_type = request.args.get('employment_type')''' prediction = classifier.predict([[age, fnlwgt, education_num, marital_status, relationship, race, sex, capital_gain, capital_loss, hours_per_week, country, employment_type]]) print("prediction:", prediction) return 'This is the Predicted Value:-->' , prediction def main(): st.title('Adult Income Prediction') html_temp = """ <div style="background-color:tomato;padding:10px"> <h2 style="color:white;text-align:center;">Streamlit Adult Income Prediction ML App</h2> </div> """ st.markdown(html_temp, unsafe_allow_html=True) age = st.text_input('age', 'Type Here') fnlwgt = st.text_input('fnlwgt', 'Type Here') education_num = st.text_input('education-num', 'Type Here') marital_status = st.text_input('marital-status', 'Type Here') relationship = st.text_input('relationship', 'Type Here') race = st.text_input('race', 'Type Here') sex = st.text_input('sex', 'Type Here') capital_gain = st.text_input('capital-gain', 'Type Here') capital_loss = st.text_input('capital-loss', 'Type Here') hours_per_week = st.text_input('hours-per-week', 'Type Here') country = st.text_input('country', 'Type Here') employment_type = st.text_input('employment-type', 'Type Here') result = "" if st.button("Predict"): result = Predict_Income(age, fnlwgt, education_num, marital_status, relationship, race, sex, capital_gain, capital_loss, hours_per_week, country, employment_type) st.success("The Output is {}".format(result)) if st.button('About'): st.text('Let,s Learn') st.text('Built with Streamlit!') if __name__ == '__main__': main()
6f43df9fc8783a67f35973c65b05af46f76f2117
1305bcd0525b66800f07f7cdc12154daee54c2d8
/src/sentry/integrations/github/client.py
ea76c399077c1258f8b4565c97de7446ca29e841
[ "BSD-2-Clause" ]
permissive
xiaohuihuifgt/sentry
9c5a61fed749d837e93e555b46d11777d848b301
ea4098d57463abf52c69c5225f9581071cd03f5b
refs/heads/master
2020-03-20T03:45:06.180800
2018-06-13T00:27:51
2018-06-13T00:27:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,039
py
from __future__ import absolute_import import datetime from sentry.integrations.github.utils import get_jwt from sentry.integrations.client import ApiClient class GitHubClientMixin(ApiClient): allow_redirects = True base_url = 'https://api.github.com' def get_last_commits(self, repo, end_sha): # return api request that fetches last ~30 commits # see https://developer.github.com/v3/repos/commits/#list-commits-on-a-repository # using end_sha as parameter return self.get( '/repos/{}/commits'.format( repo, ), params={'sha': end_sha}, ) def compare_commits(self, repo, start_sha, end_sha): # see https://developer.github.com/v3/repos/commits/#compare-two-commits # where start sha is oldest and end is most recent return self.get('/repos/{}/compare/{}...{}'.format( repo, start_sha, end_sha, )) def get_pr_commits(self, repo, num): # see https://developer.github.com/v3/pulls/#list-commits-on-a-pull-request # Max: 250 Commits return self.get('/repos/{}/pulls/{}/commits'.format( repo, num )) def get_commits(self, repo): return self.get('/repos/{}/commits'.format(repo)) def get_repo(self, repo): return self.get('/repos/{}'.format(repo)) class GitHubAppsClient(GitHubClientMixin): def __init__(self, external_id): self.external_id = external_id self.token = None self.expires_at = None super(GitHubAppsClient, self).__init__() def get_token(self): if not self.token or self.expires_at < datetime.datetime.utcnow(): res = self.create_token() self.token = res['token'] self.expires_at = datetime.datetime.strptime( res['expires_at'], '%Y-%m-%dT%H:%M:%SZ', ) return self.token def request(self, method, path, headers=None, data=None, params=None): if headers is None: headers = { 'Authorization': 'token %s' % self.get_token(), # TODO(jess): remove this whenever it's out of preview 'Accept': 'application/vnd.github.machine-man-preview+json', } return self._request(method, path, headers=headers, data=data, params=params) def create_token(self): return self.post( '/installations/{}/access_tokens'.format( self.external_id, ), headers={ 'Authorization': 'Bearer %s' % get_jwt(), # TODO(jess): remove this whenever it's out of preview 'Accept': 'application/vnd.github.machine-man-preview+json', }, ) def get_repositories(self): repositories = self.get( '/installation/repositories', params={'per_page': 100}, ) return repositories['repositories']
3b201b951bcaa7fdc3906079154cb31fe14e8094
11b5bd6806447a9b2ef4d8d54a9dc64c8be5d6e5
/configs/base/base.py
49a0c3cdc03b691b6d9591180e6166b27cc4f10f
[]
no_license
milySW/NNResearchAPI
0789478791a91002d79dd909fe5f9654deeb4b44
00bbea4909d1272f80455edb692b45c6c6d56831
refs/heads/master
2023-04-17T19:56:19.667177
2021-05-03T23:48:26
2021-05-03T23:48:26
291,540,762
0
0
null
null
null
null
UTF-8
Python
false
false
525
py
from typing import List, Dict, Any class BaseConfig: @staticmethod def condition(key: str) -> bool: return not key.startswith("__") @classmethod def to_dict(cls) -> Dict[str, Any]: class_dict = cls.__dict__.items() return {key: value for key, value in class_dict if cls.condition(key)} @classmethod def value_list(cls) -> List[Any]: return list(cls.to_dict().values()) @classmethod def key_list(cls) -> List[Any]: return list(cls.to_dict().keys())
5dd9545b161a3c85837453baef13b476e033796b
fad161c7bb4709487f6561f5fdf40afd106e2c1b
/hik_app/server/appserver.py
fa128745c2149449d5ca0d7d6fdb6723d46414a0
[]
no_license
happyAnger6/hik_app
94ae55fe31b3ba14a566771970a10fa9cf30d953
daf3be00faba271ee6ccf6db1431c2e332f931ab
refs/heads/master
2020-06-15T09:36:37.608041
2019-07-10T12:17:21
2019-07-10T12:17:21
195,262,689
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
from hik_app.utils.epoll import EpollServer class AppServer(EpollServer): def __init__(self): pass
6efe35387bd54aac15d8cb6ef36b0847abc37b95
adc7e9488f4248c61c5e0e1b20d8476e6c5b63c8
/introduction-to-algorithms/2/3/merge-sort.py
c410aeea175fdcab04cd5e614406b0e4b9db8386
[]
no_license
SergeyKulagin/algoritms
22bcc81486a862b23dcb8cd57e093be0889a7812
b6bb19f95fa9f5170c31a0cf4b2befa1e2d6c420
refs/heads/master
2022-03-17T13:47:59.125689
2022-03-07T16:45:32
2022-03-07T16:45:32
175,367,752
0
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
import sys def merge(a, start, middle, end): i = 0 j = 0 left = a[start:middle] left.append(sys.maxsize) right = a[middle:end] right.append(sys.maxsize) for k in range(start, end): if left[i] <= right[j]: a[k] = left[i] i = i + 1 else: a[k] =right[j] j = j + 1 return a def merge_nosentinel(a, start, middle, end): temp = a[start:end] i = start j = middle k = 0 while i < middle and j < end: if a[i] < a[j]: temp[k] = a[i] i = i + 1 else: temp[k] = a[j] j = j + 1 k = k +1 while i < middle: temp[k] = a[i] i = i + 1 k = k + 1 while j < end: temp[k] = a[j] j = j + 1 k = k + 1 for m in range(0, len(temp)): a[start + m] = temp[m] return a def mergesort(a): mergesortit(a, 0, len(a)) return a def mergesortit(a, start, end): if start >= end - 1: return middle = round((start + end) / 2) mergesortit(a, start, middle) mergesortit(a, middle, end) merge_nosentinel(a, start, middle, end) l = [1, 3, 5, 7, 2, 4, 8, 10, 15] print(mergesort(l)) print(mergesort([7,6,3,1]))
edfacbf2d8cbd3f422b2844c79dabc4fe60e2d5c
1d1dbb5cba37a7dfbc9226fd988bb9a756b6542d
/lisc/urls/urls.py
d050c550243df0ec8a99ac66ca08f534d8df6d1b
[ "Apache-2.0" ]
permissive
aashish24/lisc
27b1e2bf793d7a1866c980eaedbf1bcc8c9d7e87
f19a3896d63ff701cb1cf22902d96fb0a67a9a6b
refs/heads/master
2020-07-13T02:36:19.144698
2019-08-25T22:38:20
2019-08-25T22:38:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,132
py
"""Base URL object for LISC. Segments : section added to the URL, separated by '/'. Settings : settings added to the URL, as key value pairs, following a '?' and added with '&'. """ from lisc.urls.utils import make_segments, make_settings ################################################################################################### ################################################################################################### class URLs(): """URLs for an API interface. Attributes ---------- base : str Base URL for the API. utils : dict What utilities are available for the API. urls : dict The URLs for each utility. settings : dict The available settings for the API. authenticated : boolean Whether acting as an authenticated user for the API. """ def __init__(self, base, utils={}, authenticated=None): """Initialize a URLs object. Parameters ---------- base : str Base URL for the API. utils : dict Utilities for the utility, a dictionary with names and URL extensions. authenticated : bool Whether acting as an authenticated user for the API. """ self.base = base utils['base'] = self.base self.utils = utils self.urls = {key : None for key in self.utils.keys()} self.settings = {} self.authenticated = authenticated def check_url(self, util): """Check the built URL for a specified utility. Parameters ---------- util : str Which utility to check the URL for. """ self._check_util(util) print(self.urls[util]) def fill_settings(self, **kwargs): """Put all provided settings values into a dictionary object. Parameters ---------- **kwargs Keyword arguments for all settings, with their values. Notes ----- Potential parameters to this function include all the possible settings for the given API. Any possible setting that is provided a value as an input to this function is saved out to the dictionary of collected and available settings. """ self.settings = {ke: va for ke, va in kwargs.items() if va is not None} def authenticate(self, url): """Method to authenticate a URL for a given API. Parameters ---------- url : str URL to add authentification to. Returns ------- str Authenticated URL. Notes ----- This is a placeholder method, on the base URLs object, and should be overloaded by any API object that has authentification. When overloading this method, it should implement whatever is needed to authenticate a URL request for the specified API. """ return url def build_url(self, util, segments=[], settings=[]): """Build the URL for a specified utility, with provided settings. Parameters ---------- util : str Which utility to build the URL for. segments : list of str Segments to add to the URL. settings : dict or list of str Settings to use to build the URL. If list, the settings values are taken from the objects settings attribute. """ self._check_util(util) if isinstance(settings, list): if not all(el in self.settings.keys() for el in settings): raise ValueError('Not all requested settings available - can not proceed.') settings = {ke : va for ke, va in self.settings.items() if ke in settings} url = self.base + make_segments([self.utils[util]] + segments) + make_settings(settings) if self.authenticated: url = self.authenticate(url) self.urls[util] = url def get_url(self, util, segments=[], settings={}): """Get a requested URL, with any additional segments or settings. Parameters ---------- util : str Which utility to get the URL for. segments : list of str, optional Any additional segments to add to the URL. settings : dict, optional Any additional settings to add to the URL. Returns ------- full_url : str The requested URL, with any extra segments and settings added. """ if not util in self.utils.keys(): self.build_url(util) url = self.urls[util] settings_join = '?' if not '?' in url else '&' full_url = url + make_segments(segments) + make_settings(settings, settings_join) return full_url def _check_util(self, util): """Check that a requested utility is valid. Parameters ---------- util : str Name of the utility to check for. """ if util not in self.utils.keys(): raise ValueError('Specified utility not understood.')
788904b590885b4196447c3e6fa4e61cc2d5f1e8
889f243db8de853729ac68f5c6c56e5ea3f54df2
/dominion_grpc_proto/dominion_pb2_grpc.py
2ff7d0cf0456327270ae0beba6e1b40349210282
[ "MIT" ]
permissive
the-gigi/dominion-grpc-proto
1b38160da2d72633f1ff301d95ba6a5966ca3642
bc3f7a93c7985476864aa49359dbe2e14afad271
refs/heads/master
2022-12-04T16:15:55.398905
2020-08-23T19:42:06
2020-08-23T19:42:06
282,386,103
0
0
null
null
null
null
UTF-8
Python
false
false
9,285
py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc import dominion_grpc_proto.dominion_pb2 as dominion__pb2 class DominionServerStub(object): """Missing associated documentation comment in .proto file.""" def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Join = channel.unary_stream( '/DominionServer/Join', request_serializer=dominion__pb2.PlayerInfo.SerializeToString, response_deserializer=dominion__pb2.Message.FromString, ) self.Start = channel.unary_unary( '/DominionServer/Start', request_serializer=dominion__pb2.PlayerInfo.SerializeToString, response_deserializer=dominion__pb2.Response.FromString, ) self.PlayCard = channel.unary_unary( '/DominionServer/PlayCard', request_serializer=dominion__pb2.Card.SerializeToString, response_deserializer=dominion__pb2.Response.FromString, ) self.Buy = channel.unary_unary( '/DominionServer/Buy', request_serializer=dominion__pb2.Card.SerializeToString, response_deserializer=dominion__pb2.Response.FromString, ) self.Done = channel.unary_unary( '/DominionServer/Done', request_serializer=dominion__pb2.PlayerInfo.SerializeToString, response_deserializer=dominion__pb2.Response.FromString, ) self.Respond = channel.unary_unary( '/DominionServer/Respond', request_serializer=dominion__pb2.ActionResponse.SerializeToString, response_deserializer=dominion__pb2.Response.FromString, ) class DominionServerServicer(object): """Missing associated documentation comment in .proto file.""" def Join(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Start(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def PlayCard(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Buy(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Done(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Respond(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_DominionServerServicer_to_server(servicer, server): rpc_method_handlers = { 'Join': grpc.unary_stream_rpc_method_handler( servicer.Join, request_deserializer=dominion__pb2.PlayerInfo.FromString, response_serializer=dominion__pb2.Message.SerializeToString, ), 'Start': grpc.unary_unary_rpc_method_handler( servicer.Start, request_deserializer=dominion__pb2.PlayerInfo.FromString, response_serializer=dominion__pb2.Response.SerializeToString, ), 'PlayCard': grpc.unary_unary_rpc_method_handler( servicer.PlayCard, request_deserializer=dominion__pb2.Card.FromString, response_serializer=dominion__pb2.Response.SerializeToString, ), 'Buy': grpc.unary_unary_rpc_method_handler( servicer.Buy, request_deserializer=dominion__pb2.Card.FromString, response_serializer=dominion__pb2.Response.SerializeToString, ), 'Done': grpc.unary_unary_rpc_method_handler( servicer.Done, request_deserializer=dominion__pb2.PlayerInfo.FromString, response_serializer=dominion__pb2.Response.SerializeToString, ), 'Respond': grpc.unary_unary_rpc_method_handler( servicer.Respond, request_deserializer=dominion__pb2.ActionResponse.FromString, response_serializer=dominion__pb2.Response.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'DominionServer', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class DominionServer(object): """Missing associated documentation comment in .proto file.""" @staticmethod def Join(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_stream(request, target, '/DominionServer/Join', dominion__pb2.PlayerInfo.SerializeToString, dominion__pb2.Message.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Start(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/DominionServer/Start', dominion__pb2.PlayerInfo.SerializeToString, dominion__pb2.Response.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def PlayCard(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/DominionServer/PlayCard', dominion__pb2.Card.SerializeToString, dominion__pb2.Response.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Buy(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/DominionServer/Buy', dominion__pb2.Card.SerializeToString, dominion__pb2.Response.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Done(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/DominionServer/Done', dominion__pb2.PlayerInfo.SerializeToString, dominion__pb2.Response.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Respond(request, target, options=(), channel_credentials=None, call_credentials=None, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/DominionServer/Respond', dominion__pb2.ActionResponse.SerializeToString, dominion__pb2.Response.FromString, options, channel_credentials, call_credentials, compression, wait_for_ready, timeout, metadata)
6b3f120d2ee38f1d5955c0b3bc04faa4d16890fa
f28bd0867cbe009b016aafbab79a73b593baabd6
/BMW/dealership/services/wayawayservices.py
7b3ddebde1db87ff0862f567ca3024b6f0d050e6
[]
no_license
kylegrone/greenlightautomotive
2ff778ebfff7eb66d3cfdae6eedbac19398fe90f
65fa72813d1acb80fda966f1cffdb1530b0cfa6b
refs/heads/master
2021-07-17T08:49:10.865191
2017-10-25T02:58:04
2017-10-25T02:58:04
107,046,351
0
0
null
null
null
null
UTF-8
Python
false
false
1,657
py
''' Created on Dec 21, 2015 @author: aroofi ''' from dealership.models import * class WayAwayService(): def get_all_wayaway(self,dealer=None): wayaways = WayAway.objects.all() wayaway_array = [] for wayaway in wayaways: wayaway_tmp = {"dealer":None,"default":wayaway} if dealer: try: wayaway_tmp["dealer"] = WayAwayDealer.objects.get(dealer=dealer,wayaway=wayaway) except Exception,e: print e wayaway_array.append(wayaway_tmp) return wayaway_array def get_apt_wayaway(self, appt): try: app = Appointment.objects.get(id=appt) return app.way_away_id except Exception,e: print e return None def update_wayaway(self,appt , wayaway,driver_liscens_number=None,insurance_company_name=None,insurance_card_number=None,state_id=None,reserve=0): if appt and wayaway: try: app = Appointment.objects.get(id=appt) app.way_away_id = wayaway app.driver_liscens_number = driver_liscens_number app.insurance_company_name = insurance_company_name app.insurance_card_number = insurance_card_number app.state_wayaway_id = state_id app.reserve_wayaway = reserve app.save() except Appointment.DoesNotExist: return False return True def get_all_states(self): states = States.objects.all() return states
7b06f3fb221180a1c79e4dc9c8b2c27818a05c6d
4e7b28fa812f59fed3686cc2f687d212967ce0af
/validator.py
b1e9d896da424569e40980c37c8691f7d3f8c4fd
[]
no_license
isabella232/faascc
ec13142cc9c9a752ff05273b268fd9dfeea2e064
23a520ef80d18c04eade79b2b1f758275add2689
refs/heads/master
2022-10-08T06:35:36.124049
2020-05-11T13:52:47
2020-05-11T13:52:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
284
py
# Validates a (simplified) file for relative completeness import yaml cc = yaml.load(open("faascc.simplified.yaml").read()) def validate(cc): for entry in cc[0]: for ccrel in cc[1:]: if not entry in ccrel: print("Entry", entry, "missing in", ccrel["name"]) validate(cc)
[ "spio@tougener" ]
spio@tougener
f97969be2a7cbf02e096c647e4f3b74269ae0ff5
56c96c128b797635dd20410859ccfe374ef2b4d5
/dojos/anagrama/test_dojo.py
a92947ef85c88540b7e09580c4160b45ee8e56d8
[ "MIT" ]
permissive
gupy-io/mentoria-python
465ba45cb22edd4b339549fe2e8a14dc3d0729d3
c8f56cfe4e0a61dd1f4609b8e645f62b380724f0
refs/heads/master
2022-11-11T16:45:34.443173
2020-03-05T17:10:37
2020-03-05T17:10:37
209,610,190
7
0
MIT
2022-11-01T15:50:53
2019-09-19T17:20:37
Jupyter Notebook
UTF-8
Python
false
false
1,111
py
from exercicio.dojo import anagramas # Aline # Breno # Daniel # Denis # Diogo # Heros # Marina # Matheus # Pedro def teste_uma_letra(): li = anagramas("b") assert li == ["b"] def teste_uma_letra_2(): li = anagramas("a") assert li == ["a"] def test_duas_letras(): li = anagramas("ae") assert li == ["ae", "ea"] def test_duas_letras_2(): li = anagramas("cb") assert li == ["bc", "cb"] def test_duas_letras_3(): li = anagramas("aa") assert li == ["aa"] def teste_tres_letras(): li = anagramas("bff") assert li == ["bff", "fbf", "ffb"] def test_tres_letras_2(): li = anagramas("aaa") assert li == ["aaa"] def test_tres_letras_3(): li = anagramas("aab") assert li == ["aab", "aba", "baa"] def test_tres_letras_4(): li = anagramas("aab") assert li == ["aab", "aba", "baa"] def test_biro(): li = anagramas("biro") assert li == sorted(["biro", "bior", "brio" ,"broi" ,"boir" ,"bori" ,"ibro", "ibor", "irbo", "irob" ,"iobr", "iorb" ,"rbio", "rboi" ,"ribo" ,"riob" ,"roib" ,"robi" ,"obir", "obri" ,"oibr" ,"oirb" ,"orbi", "orib"])
66af5d4f12a2fe96992a1902d9c5be9ae0386389
ad48c3fd77deb941a6e58b5a7b0bab15ad36d3e8
/SECTION_04/chronometry.py
ccad8b41ce20c49bdbc7d44cc8c0b4360194d739
[]
no_license
tmtmaj/PYTHON
74541641c21a9989f9ace8aa0773756d1a079e80
ffc76d025491e482958c442b501c39dd7af7f8da
refs/heads/main
2023-04-01T20:07:45.648270
2021-04-06T05:18:52
2021-04-06T05:18:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
364
py
import time def foo(a, b, c): print(a, b, c) time.sleep(2) def goo(): print('goo') time.sleep(3) def chronometry(f, *args, **kwargs ): start = time.time() f(*args, **kwargs) end = time.time() print(f'elapsed : {end-start}') #chronometry(goo) chronometry(foo, 1, 2, 3) chronometry(foo, 1, 2, c = 3)
bfd5ffced44944f1c508de289c0108341965ef13
061bddccaaa87c0624315814ad0afe5709817d28
/Portrayal_allSNPs.py
2b22afbb446bc293d7db96a889e611f129c54b86
[]
no_license
csoeder/snip-suite
05141619c6b348acb420f158f830ffb9783ae0d3
65ab970744bfc02b8d8a2e5e7ce5f68faa11ccf6
refs/heads/master
2020-06-04T21:14:25.095672
2015-02-12T19:40:21
2015-02-12T19:40:21
25,361,201
0
0
null
null
null
null
UTF-8
Python
false
false
11,286
py
""" Given two lists of SNPs from SNP_call: 1 partition them into shared SNPs, SNPs from list 1 only, and SNPs from list 2 only 2 """ # THIS VERSION OPTIMIZED FOR RICH M.'S SUGARFLIES import matplotlib matplotlib.use('agg') import csv import sys import numpy as np import matplotlib.pyplot as plt from subprocess import call, check_output import pickle parent1_SNPS_file = sys.argv[1] title1 = sys.argv[2] parent2_SNPS_file = sys.argv[3] title2 = sys.argv[4] hybrid_SNPS_file = sys.argv[5] titleHyb = sys.argv[6] hybrid_Align=sys.argv[7] #sorted BAM file of hybrid alignment chromosome = sys.argv[8] ###yesyes #chroms=["2L","2R"]#,"3L","3R","4","X", "YHet", "2RHet"] chroms=[chromosome]# Yes, it's a terrible way to do things but it's too late to restructure the whole thing from scratch ### My code is a dog's code ### It could never make a lady weep ### It could never make a homeless man turn his life around and achieve more then any man has ever achieved before ### Not like piano music ### http://achewood.com/index.php?date=11082002 box_size=10**3 missing_SNP_threshold = 10 #hybrid must have at least this coverage to declare that it is missing a parental SNP #Super awesome def pool_snps(parent1, parent2): """ given two .SNPS files, this loads them into python dict objects, then outputs which SNPs are disjoint and which are shared """ def parent_pull(source, sink):# Pull parental SNPs with open(source, 'rb') as csvfile: spamreader = csv.reader(csvfile, delimiter='\t') for row in spamreader: try: sink[row[0]][int(row[1])] = row[3]### Collect all the SNPs from parent 1; ### load them into the parent1 dict in the form {CHR:{POSITION:ALT_ALLELE}} except KeyError: # if the chromosome isn't in chroms pass return sink p1 = parent_pull(parent1, dict.fromkeys(chroms,{})) p2 = parent_pull(parent2, dict.fromkeys(chroms,{})) shared = dict.fromkeys(chroms,{}) #shared SNPs go here disjoint1 = dict.fromkeys(chroms,{}) #those only in parent1 disjoint2 = dict.fromkeys(chroms,{}) #those only in parent2 for chro in chroms: #For each chromosome... disj1 = list(set(p1[chro].keys()).difference(set(p2[chro].keys()))) #sites unique to p1 disj2 = list(set(p2[chro].keys()).difference(set(p1[chro].keys()))) #sites unique to p2 inter = list(set(p1[chro].keys()).intersection(set(p2[chro].keys())))#shared sites for i in inter: #for each shared site... if p1[chro][i] != p2[chro][i]: #if the phenotype at the site is actually different... inter.pop(inter.index(i)) #remove it from the shared SNPS disj1.append(i) #insert each site disj2.append(i) # in the appropriate list for j in disj1: # disjoint1[chro][j]=p1[chro][j] #Now take each site and load it into the master dicts for output for j in disj2: disjoint2[chro][j]=p2[chro][j] for j in inter: shared[chro][j]=p1[chro][j] return shared, disjoint1, disjoint2 def cov_grep(snp_list, bam_file): phial=open('%s_sites.bed'%titleHyb, 'w') for chro in chroms: for site in snp_list[chro]: phial.write('%s\t%s\t%s\n'%tuple([chro, site, site+1])) phial.close() call('bedtools coverage -abam %s -b %s_sites.bed > %s.cov'%tuple([hybrid_Align, titleHyb, titleHyb]), shell=True) coverage=dict.fromkeys(chroms,{}) with open('%s.cov'%titleHyb, 'rb') as csvfile: spamreader=csv.reader(csvfile, delimiter='\t') for row in spamreader: coverage[row[0]][int(row[1])]=int(row[3]) return coverage def snp_grep(parent1, parent2, hybrid, hyb_cov): """ Given the two dicts of disjoint parental SNPs, load the hybrid .SNPS file, and look at each SNP site in the two dicts. Classify each as present or absent in the hybrid genome """ hybrid_snps=dict.fromkeys(chroms,{}) parent_snps=dict.fromkeys(chroms, []) for chro in chroms: parent_snps[chro].extend(parent1[chro]) parent_snps[chro].extend(parent2[chro]) with open(hybrid, 'rb') as csvfile: spamreader = csv.reader(csvfile, delimiter='\t') for row in spamreader: try: hybrid_snps[row[0]][int(row[1])] = row[3]### Collect all the SNPs from hybrid ### load them into the parent1 dict in the form POSITION:ALT_ALLELE except KeyError: pass print "begin coverage grep" coverage = cov_grep(parent_snps, hyb_cov) print "done grepping " parent1_present = dict.fromkeys(chroms,[]) # SNPs from p1 which are present parent2_present = dict.fromkeys(chroms,[]) # SNPs from p2 which are present #parents 1 and 2 absent pending coverage grepping parent1_absent = dict.fromkeys(chroms,[]) # SNPs from p1 which are present parent2_absent = dict.fromkeys(chroms,[]) # SNPs from p2 which are present gnu_vars = dict.fromkeys(chroms,[]) for chro in chroms: for site in hybrid_snps[chro].keys(): if site in set(parent1[chro].keys()).intersection(set(parent2[chro].keys())): if hybrid_snps[chro][site] in parent1[chro][site]: parent1_present[chro].append(int(site)) elif hybrid_snps[chro][site] in parent2[chro][site]: parent2_present[chro].append(int(site)) else:#Record this as an additional SNP gnu_vars[chro].append(int(site)) elif site in parent1[chro].keys(): if hybrid_snps[chro][site] in parent1[chro][site]: parent1_present[chro].append(int(site)) elif site in parent2[chro].keys(): if hybrid_snps[chro][site] in parent2[chro][site]: parent2_present[chro].append(int(site)) else: gnu_vars[chro].append(int(site)) for site in parent1[chro].keys(): if site not in parent1_present[chro] and site not in parent2_present[chro] and site not in gnu_vars[chro]:#make sure the site isn't recorded ANYwhere.... if coverage[chro][site] >= missing_SNP_threshold: parent1_absent[chro].append(int(site)) for site in parent2[chro].keys(): if site not in parent1_present[chro] and site not in parent2_present[chro] and site not in gnu_vars[chro]: if coverage[chro][site] >= missing_SNP_threshold: parent2_absent[chro].append(int(site)) return parent1_present, parent2_present, gnu_vars, parent1_absent, parent2_absent#, new_snps, hypervars def archimedes(points): points = np.array(points) points.sort() print len(points) start, last = 0, points[-1] coord, density = [], [] while start < last: coord.append(int(start+0.5*box_size)) clip1 = points[points<start+box_size] clip2 = clip1[clip1>start] dens = float(len(clip2))/box_size density.append(dens) #print dens start += box_size return coord, density def write_to_varwig(coords, density, phial, colour, name): vial = open(phial, 'w') vial.write('browser position chr%s\n'%chrom) vial.write('browser hide all\n') vial.write('track type=wiggle_0 name="%s" description="varStep format" visibility=full autoScale=off viewLimits=0:%s color=%s graphType=points priority=20\n'%tuple([name, max(density), colour])) vial.write('variableStep chrom=chr%s\n'%tuple([chrom])) for pair in zip(coords, density): vial.write('%s\t%s\n'%tuple(pair)) vial.close() def write_to_bed(points, phial, colour, name): vial = open(phial, 'w') #vial.write('browser hide all') #vial.write('track name="%s" description="%s" visibility=1 itemRgb="On"\n'%tuple([name,name])) for chro in points.keys(): for site in points[chro]: vial.write('%s\t%s\t%s\therpderp\t0\t+\t%s\t%s\t%s\n'%tuple([chro, site, site+1, site, site+1, colour])) vial.close() shared_SNPs, disjoint1_SNPs, disjoint2_SNPs = pool_snps(parent1_SNPS_file, parent2_SNPS_file) present1, present2, n00bs, absent1, absent2= snp_grep(disjoint1_SNPs, disjoint2_SNPs, hybrid_SNPS_file, hybrid_Align) pickle.dump( [shared_SNPs, disjoint1_SNPs, disjoint2_SNPs, present1, present2, n00bs, absent1, absent2], open('%s.pickle'%titleHyb, 'wb') ) ###http://stackoverflow.com/questions/952914/making-a-flat-list-out-of-list-of-lists-in-python print "\t\tREPORT:\t\t\t" print "Between %s and %s, %s SNP variants were logged."%tuple([title1, title2, len( [item for sublist in shared_SNPs.values() for item in sublist] )+len( [item for sublist in disjoint1_SNPs.values() for item in sublist] )+len([item for sublist in disjoint2_SNPs.values() for item in sublist])]) print "%s SNPs were identified unique to %s"%tuple([len([item for sublist in disjoint1_SNPs.values() for item in sublist]), title1]) for chro in chroms: print "\t%s on %s\n"%tuple([len(disjoint1_SNPs[chro]), chro]) print "%s SNPs were identified unique to %s"%tuple([len([item for sublist in disjoint2_SNPs.values() for item in sublist]), title2]) for chro in chroms: print "\t%s on %s\n"%tuple([len(disjoint2_SNPs[chro]), chro]) print "%s SNPs were found shared between %s and %s"%tuple([len([item for sublist in shared_SNPs.values() for item in sublist]), title1, title2]) for chro in chroms: print "\t%s on %s\n"%tuple([len(shared_SNPs[chro]), chro]) print "%s contained %s SNPs unique to %s"%tuple([titleHyb, len([item for sublist in present1.values() for item in sublist]), title1]) for chro in chroms: print "\t%s on %s\n"%tuple([len(present1[chro]), chro]) print "%s was missing %s SNPs unique to %s"%tuple([titleHyb, len([item for sublist in absent1.values() for item in sublist]), title1]) for chro in chroms: print "\t%s on %s\n"%tuple([len(absent1[chro]), chro]) print "%s contained %s SNP unique to %s"%tuple([titleHyb, len([item for sublist in present2.values() for item in sublist]), title2]) for chro in chroms: print "\t%s on %s\n"%tuple([len(present2[chro]), chro]) print "%s was missing %s SNPs unique to %s"%tuple([titleHyb, len([item for sublist in absent2.values() for item in sublist]), title2]) for chro in chroms: print "\t%s on %s\n"%tuple([len(absent2[chro]), chro]) print "%s contained %s SNPs unseen in either %s or %s\n"%tuple([titleHyb, len([item for sublist in n00bs.values() for item in sublist]), title1, title2]) #print "\t\t including %s sites representing a third polymorphism"%tuple([len(hypervars)]) print "\t\t~~~END REPORT~~~\t\t" write_to_bed(present1, '%s_present_in_%s_%s.bed'%tuple([title1, titleHyb, chromosome]), '255,0,0', '%s SNPs in %s'%tuple([title1, titleHyb])) write_to_bed(present2, '%s_present_in_%s_%s.bed'%tuple([title2, titleHyb, chromosome]), '0,0,255', '%s SNPs in %s'%tuple([title2, titleHyb])) write_to_bed(absent1, '%s_absent_in_%s_%s.bed'%tuple([title1, titleHyb, chromosome]), '0,255,0', '%s SNPs missing from %s'%tuple([title1, titleHyb])) write_to_bed(absent2, '%s_absent_in_%s_%s.bed'%tuple([title2, titleHyb, chromosome]), '255,153,51', '%s SNPs missing from %s'%tuple([title2, titleHyb])) #coord, dens = archimedes(disjoint1_SNPs.keys()) #write_to_varwig(coord, dens, '%s_disjoint.wig'%title1, '255,0,0', '%s disjoint SNP density'%title1) #coord, dens = archimedes(disjoint2_SNPs.keys()) #write_to_varwig(coord, dens, '%s_disjoint.wig'%title2, '0,0,255', '%s disjoint SNP density'%title1) #coord, dens = archimedes(present1) #write_to_varwig(coord, dens, '%s_SNPs_in_%s.wig'%tuple([title1, titleHyb]), '255,0,0', '%s-specific SNP density in %s'%tuple([title1, titleHyb])) #coord, dens = archimedes(present2) #write_to_varwig(coord, dens, '%s_SNPs_in_%s.wig'%tuple([title2, titleHyb]), '0,0,255', '%s-specific SNP density in %s'%tuple([title2, titleHyb])) #
d16531933e2778cfe27da41deb050b19f3d3155d
fa52d1de7b18af22f6601b773e9f66a32ebd9999
/middleOfLinkedList_Easy/problem.py
ad744e4ef6e65e58c7c6c7b34f459a91061fe8cb
[ "MIT" ]
permissive
razzlestorm/code-challenges
9ba5b222cb97e106900d52d027fe2490d2e47e1c
765dc668623eb5b1e1d52155a09ac17c58b1f756
refs/heads/main
2023-01-24T01:04:04.850044
2020-12-06T00:32:09
2020-12-06T00:32:09
307,545,536
0
0
MIT
2020-11-11T06:42:57
2020-10-27T00:51:59
Python
UTF-8
Python
false
false
735
py
''' Given a non-empty, singly linked list with head node head, return a middle node of linked list. If there are two middle nodes, return the second middle node. Example 1: Input: [1,2,3,4,5] Output: Node 3 from this list (Serialization: [3,4,5]) The returned node has value 3. (The judge's serialization of this node is [3,4,5]). Note that we returned a ListNode object ans, such that: ans.val = 3, ans.next.val = 4, ans.next.next.val = 5, and ans.next.next.next = NULL. Example 2: Input: [1,2,3,4,5,6] Output: Node 4 from this list (Serialization: [4,5,6]) Since the list has two middle nodes with values 3 and 4, we return the second one. Note: The number of nodes in the given list will be between 1 and 100. '''
24f46786de1e0d92144a98136c143df569995bcb
e0934ca26ac6c3f8816952ceafb3c84ace34d6aa
/resources/lib/common/misc_utils.py
67b7ffde68d1eb7d3e5bc4e964e7bd7d679ae6df
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
masQelec/plugin.video.netflix
62e4f6416c0f9bf547a8a5980de9747f677236b6
90ebf3343ebeaf6b790fdb1048d78fe5bf127dde
refs/heads/master
2023-02-09T17:07:36.200308
2021-01-04T01:36:55
2021-01-04T01:36:55
288,575,867
0
0
MIT
2021-01-04T01:36:56
2020-08-18T22:17:06
Python
UTF-8
Python
false
false
6,159
py
# -*- coding: utf-8 -*- """ Copyright (C) 2017 Sebastian Golasch (plugin.video.netflix) Copyright (C) 2018 Caphm (original implementation module) Miscellaneous utility functions SPDX-License-Identifier: MIT See LICENSES/MIT.md for more information. """ from urllib.parse import quote, urlencode from resources.lib.globals import G def find(value_to_find, attribute, search_space): """Find a video with matching id in a dict or list""" for video in search_space: if video[attribute] == value_to_find: return video raise KeyError('Metadata for {} does not exist'.format(value_to_find)) def find_episode_metadata(episode_videoid, metadata): """Find metadata for a specific episode within a show metadata dict""" season = find(int(episode_videoid.seasonid), 'id', metadata['seasons']) episode = find(int(episode_videoid.episodeid), 'id', season.get('episodes', {})) return episode, season def get_class_methods(class_item=None): """ Returns the class methods of agiven class object :param class_item: Class item to introspect :type class_item: object :returns: list -- Class methods """ from types import FunctionType _type = FunctionType return [x for x, y in class_item.__dict__.items() if isinstance(y, _type)] def build_url(pathitems=None, videoid=None, params=None, mode=None): """Build a plugin URL from pathitems and query parameters. Add videoid to the path if it's present.""" if not (pathitems or videoid): raise ValueError('Either pathitems or videoid must be set.') path = '{netloc}/{path}/{qs}'.format( netloc=G.BASE_URL, path=_encode_path(mode, pathitems, videoid), qs=_encode_params(params)) return path def _expand_mode(mode): return [mode] if mode else [] def _expand_videoid(videoid): return videoid.to_path() if videoid else [] def _encode_path(mode, pathitems, videoid): return quote( '/'.join(_expand_mode(mode) + (pathitems or []) + _expand_videoid(videoid)).encode('utf-8')) def _encode_params(params): return ('?' + urlencode(params)) if params else '' def is_numeric(string): """Return true if string represents an integer, else false""" try: int(string) except ValueError: return False return True def strp(value, form): """ Helper function to safely create datetime objects from strings :return: datetime - parsed datetime object """ # pylint: disable=broad-except from datetime import datetime def_value = datetime.utcfromtimestamp(0) try: return datetime.strptime(value, form) except TypeError: # Python bug https://bugs.python.org/issue27400 try: from time import strptime return datetime(*(strptime(value, form)[0:6])) except ValueError: return def_value except Exception: return def_value def strf_timestamp(timestamp, form): """ Helper function to safely create string date time from a timestamp value :return: string - date time in the specified form """ from datetime import datetime try: return datetime.utcfromtimestamp(timestamp).strftime(form) except Exception: # pylint: disable=broad-except return '' # def compress_data(data): # """GZIP and b64 encode data""" # out = StringIO() # with gzip.GzipFile(fileobj=out, mode='w') as outh: # outh.write(data) # return base64.standard_b64encode(out.getvalue()) def merge_dicts(dict_to_merge, merged_dict): """Recursively merge the contents of dict_to_merge into merged_dict. Values that are already present in merged_dict will be overwritten if they are also present in dict_to_merge""" for key, value in dict_to_merge.items(): if isinstance(merged_dict.get(key), dict): merge_dicts(value, merged_dict[key]) else: merged_dict[key] = value return merged_dict def compare_dict_keys(dict_a, dict_b, compare_keys): """Compare two dictionaries with the specified keys""" return all(dict_a[k] == dict_b[k] for k in dict_a if k in compare_keys) def chunked_list(seq, chunk_len): for start in range(0, len(seq), chunk_len): yield seq[start:start + chunk_len] def any_value_except(mapping, excluded_keys): """Return a random value from a dict that is not associated with excluded_key. Raises StopIteration if there are no other keys than excluded_key""" return next(mapping[key] for key in mapping if key not in excluded_keys) def enclose_quotes(content): return '"' + content + '"' def is_minimum_version(version, min_version): """Return True if version is equal or greater to min_version""" return list(map(int, version.split('.'))) >= list(map(int, min_version.split('.'))) def is_less_version(version, max_version): """Return True if version is less to max_version""" return list(map(int, version.split('.'))) < list(map(int, max_version.split('.'))) def make_list(arg): """Return a list with arg as its member or arg if arg is already a list. Returns an empty list if arg is None""" return (arg if isinstance(arg, list) else ([arg] if arg is not None else [])) def convert_seconds_to_hms_str(time): h = int(time // 3600) time %= 3600 m = int(time // 60) s = int(time % 60) return '{:02d}:{:02d}:{:02d}'.format(h, m, s) def remove_html_tags(raw_html): import re pattern = re.compile('<.*?>') return re.sub(pattern, '', raw_html) def censure(value, length=3): """Censor part of the string with asterisks""" if not value: return value return value[:-length] + '*' * length def run_threaded(non_blocking, target_func, *args, **kwargs): """Call a function in a thread, when specified""" if not non_blocking: return target_func(*args, **kwargs) from threading import Thread Thread(target=target_func, args=args, kwargs=kwargs).start() return None
b5ca52130ba54fb17a66f5fe77a40648a3218e22
9c2421c24ed985e64166e884a3f2c3b3c17afd1f
/validator/validator.py
8a04f82b64505034b27282425b6cc9fc40b88dd2
[ "Apache-2.0" ]
permissive
rdgoite/ingest-validator
7f76edd5c12e804cf53fdd1a300b887cfb2b3e94
1b8aa8acd42835127c5680a09b318d4e6fdfe944
refs/heads/master
2021-08-28T14:18:45.593474
2017-11-28T13:22:04
2017-11-28T13:22:04
113,034,596
0
0
null
2017-12-04T11:32:40
2017-12-04T11:32:40
null
UTF-8
Python
false
false
3,147
py
import jsonschema import requests from functools import reduce class ErrorReport: """ A user friendly error message, along with corresponding ValidationError """ def __init__(self, message="", validation_error=None): self.message = message self.validation_error = validation_error def to_dict(self): error_report_dict = dict() error_report_dict["user_friendly_message"] = self.message error_report_dict["validation_error"] = dict() error_report_dict["validation_error"]["absolute_path"] = list(self.validation_error.absolute_path) error_report_dict["validation_error"]["path"] = list(self.validation_error.path) error_report_dict["validation_error"]["message"] = self.validation_error.message error_report_dict["validation_error"]["instance"] = self.validation_error.instance error_report_dict["validation_error"]["schema_path"] = list(self.validation_error.schema_path) error_report_dict["validation_error"]["absolute_schema_path"] = list(self.validation_error.absolute_schema_path) error_report_dict["validation_error"]["validator"] = self.validation_error.validator error_report_dict["validation_error"]["validator_value"] = self.validation_error.validator_value return error_report_dict class ValidationReport: def __init__(self): self.validation_state = "" self.error_reports = list() # list of ErrorReport def errors_to_dict(self): return [error.to_dict() for error in self.error_reports] @staticmethod def validation_report_ok(): report = ValidationReport() report.validation_state = "VALID" return report VALIDATION_REPORT_OK = ValidationReport.validation_report_ok() def validate(metadata, schema): """ given a json document(metadata) and a json-schema(schema), validates the schema and returns a ValidationReport """ validator = jsonschema.Draft4Validator(schema=schema) if validator.is_valid(instance=metadata): return VALIDATION_REPORT_OK else: validation_report = ValidationReport() validation_report.validation_state = "INVALID" for error in validator.iter_errors(instance=metadata): validation_report.error_reports.append(ErrorReport(generate_error_message(error), error)) return validation_report def generate_error_message(error): """ Given an error object, generates an error message :param error: a jsonschema ValidationError :return: error message string generated from the error """ path_to_error_in_document = reduce((lambda key1, key2: key1 + "." + key2), error.absolute_path) if len(error.absolute_path) > 0 else "root of document" return "Error: " + error.message + " at " + path_to_error_in_document def extract_schema_url_from_document(metadata_document): try: return metadata_document["core"]["schema_url"] except KeyError as e: raise("Could not find schema_url") def get_schema_from_url(schema_url): return requests.get(schema_url).json()
91c01439a08981a8ae26c9299542571550307480
1929443c8e4ec6ccd79777f18d161546867e17ef
/methods/transformers/tests/test_modeling_common.py
6360ea64bad78476a86baedf0e7a2a3e715cb70d
[ "Apache-2.0", "MIT" ]
permissive
INK-USC/RiddleSense
6f4b00546d7f4d5ada12db50929c1f0d7713d541
a3d57eaf084da9cf6b77692c608e2cd2870fbd97
refs/heads/main
2023-08-14T19:01:01.478946
2021-07-05T04:06:01
2021-07-05T04:06:01
376,487,870
8
2
null
null
null
null
UTF-8
Python
false
false
43,481
py
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import os.path import random import tempfile import unittest from typing import List, Tuple from transformers import is_torch_available from transformers.file_utils import WEIGHTS_NAME from transformers.testing_utils import require_torch, require_torch_multigpu, slow, torch_device if is_torch_available(): import numpy as np import torch from transformers import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, AdaptiveEmbedding, BertConfig, BertModel, PretrainedConfig, PreTrainedModel, ) def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key: setattr(configs_no_init, key, 1e-10) return configs_no_init @require_torch class ModelTesterMixin: model_tester = None all_model_classes = () all_generative_model_classes = () test_torchscript = True test_pruning = True test_resize_embeddings = True test_head_masking = True test_missing_keys = True is_encoder_decoder = False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values(): inputs_dict = { k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() if isinstance(v, torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values(): inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device) elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values(): inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values(): inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class in [ *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(), *MODEL_FOR_CAUSAL_LM_MAPPING.values(), *MODEL_FOR_MASKED_LM_MAPPING.values(), *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(), ]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_save_load_keys_to_never_save(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) keys_to_never_save = getattr(model, "keys_to_never_save", None) if keys_to_never_save is None: continue # check the keys are in the original state_dict for k in keys_to_never_save: self.assertIn(k, model.state_dict()) # check that certain keys didn't get saved with the model with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME) state_dict_saved = torch.load(output_model_file) for k in keys_to_never_save: self.assertNotIn(k, state_dict_saved) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg="Parameter {} of model {} seems not properly initialized".format(name, model_class), ) def test_determinism(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**self._prepare_for_class(inputs_dict, model_class))[0] second = model(**self._prepare_for_class(inputs_dict, model_class))[0] out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = [ "input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "encoder_outputs", ] self.assertListEqual(arg_names[:5], expected_arg_names) else: expected_arg_names = ["input_ids"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class), return_dict=True) attentions = outputs["attentions"] if "attentions" in outputs.keys() else outputs[-1] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = ( self.model_tester.base_model_out_len if hasattr(self.model_tester, "base_model_out_len") else 4 ) decoder_attention_idx = ( self.model_tester.decoder_attention_idx if hasattr(self.model_tester, "decoder_attention_idx") else 1 ) # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning decoder_attention_idx += 1 # Question Answering model returns start_logits and end_logits if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values(): correct_outlen += 1 # start_logits and end_logits instead of only 1 output decoder_attention_idx += 1 self.assertEqual(out_len, correct_outlen) decoder_attentions = outputs[decoder_attention_idx] self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs["attentions"] if "attentions" in outputs else outputs[-1] self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(self_attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_torchscript(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() self._create_and_check_torchscript(config, inputs_dict) def test_torchscript_output_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_attentions = True self._create_and_check_torchscript(config, inputs_dict) def test_torchscript_output_hidden_state(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True self._create_and_check_torchscript(config, inputs_dict) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) try: if model.config.is_encoder_decoder: model.config.use_cache = False # TODO: this should be deleted after bug #7474 is solved input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] decoder_input_ids = inputs["decoder_input_ids"] decoder_attention_mask = inputs["decoder_attention_mask"] traced_model = torch.jit.trace( model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask) ) else: input_ids = inputs["input_ids"] traced_model = torch.jit.trace(model, input_ids) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_headmasking(self): if not self.test_head_masking: return global_rng.seed(42) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() global_rng.seed() inputs_dict["output_attentions"] = True config.output_hidden_states = True configs_no_init = _config_zero_init(config) # To be sure we have no Nan for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() # Prepare head_mask # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior) head_mask = torch.ones( self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device, ) head_mask[0, 0] = 0 head_mask[-1, :-1] = 0 head_mask.requires_grad_(requires_grad=True) inputs = self._prepare_for_class(inputs_dict, model_class).copy() inputs["head_mask"] = head_mask outputs = model(**inputs) # Test that we can get a gradient back for importance score computation output = sum(t.sum() for t in outputs[0]) output = output.sum() output.backward() multihead_outputs = head_mask.grad attentions = outputs[-1] # Remove Nan for t in attentions: self.assertLess( torch.sum(torch.isnan(t)), t.numel() / 4 ) # Check we don't have more than 25% nans (arbitrary) attentions = [ t.masked_fill(torch.isnan(t), 0.0) for t in attentions ] # remove them (the test is less complete) self.assertIsNotNone(multihead_outputs) self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers) self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0) self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0) def test_head_pruning(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False model = model_class(config=config) model.to(torch_device) model.eval() heads_to_prune = { 0: list(range(1, self.model_tester.num_attention_heads)), -1: [0], } model.prune_heads(heads_to_prune) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_save_load_from_pretrained(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False model = model_class(config=config) model.to(torch_device) model.eval() heads_to_prune = { 0: list(range(1, self.model_tester.num_attention_heads)), -1: [0], } model.prune_heads(heads_to_prune) with tempfile.TemporaryDirectory() as temp_dir_name: model.save_pretrained(temp_dir_name) model = model_class.from_pretrained(temp_dir_name) model.to(torch_device) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_save_load_from_config_init(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False heads_to_prune = { 0: list(range(1, self.model_tester.num_attention_heads)), -1: [0], } config.pruned_heads = heads_to_prune model = model_class(config=config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) def test_head_pruning_integration(self): if not self.test_pruning: return for model_class in self.all_model_classes: ( config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if "head_mask" in inputs_dict: del inputs_dict["head_mask"] inputs_dict["output_attentions"] = True config.output_hidden_states = False heads_to_prune = {0: [0], 1: [1, 2]} config.pruned_heads = heads_to_prune model = model_class(config=config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads) with tempfile.TemporaryDirectory() as temp_dir_name: model.save_pretrained(temp_dir_name) model = model_class.from_pretrained(temp_dir_name) model.to(torch_device) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads) self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads) heads_to_prune = {0: [0], 2: [1, 2]} model.prune_heads(heads_to_prune) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs[-1] self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2) self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads) self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]}) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class), return_dict=True) hidden_states = outputs["hidden_states"] if "hidden_states" in outputs else outputs[-1] expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: seq_length = seq_length * self.model_tester.chunk_length else: seq_length = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_feed_forward_chunking(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: torch.manual_seed(0) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model.eval() hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] torch.manual_seed(0) config.chunk_size_feed_forward = 1 model = model_class(config) model.to(torch_device) model.eval() hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3)) def test_resize_tokens_embeddings(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding)) model.set_input_embeddings(torch.nn.Embedding(10, 10)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, torch.nn.Linear)) def test_correct_missing_keys(self): if not self.test_missing_keys: return config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) base_model_prefix = model.base_model_prefix if hasattr(model, base_model_prefix): with tempfile.TemporaryDirectory() as temp_dir_name: model.base_model.save_pretrained(temp_dir_name) model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True) with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)): self.assertGreater(len(loading_info["missing_keys"]), 0) def test_tie_model_weights(self): if not self.test_torchscript: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_same_values(layer_1, layer_2): equal = True for p1, p2 in zip(layer_1.weight, layer_2.weight): if p1.data.ne(p2.data).sum() > 0: equal = False return equal for model_class in self.all_model_classes: config.torchscript = True model_not_tied = model_class(config) if model_not_tied.get_output_embeddings() is None: continue config_tied = copy.deepcopy(config) config_tied.torchscript = False model_tied = model_class(config_tied) params_tied = list(model_tied.parameters()) # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # embeddings.weight.data.div_(2) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # # Check that after modification, they remain the same. # decoding.weight.data.div_(4) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(embeddings.weight.shape, decoding.weight.shape) # self.assertTrue(check_same_values(embeddings, decoding)) # Check that after resize they remain tied. model_tied.resize_token_embeddings(config.vocab_size + 10) params_tied_2 = list(model_tied.parameters()) self.assertEqual(len(params_tied_2), len(params_tied)) # decoding.weight.data.mul_(20) # # Check that the embedding layer and decoding layer are the same in size and in value # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape) # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head)) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.", ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_multigpu def test_multigpu_data_parallel_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # some params shouldn't be scattered by nn.DataParallel # so just remove them if they are present. blacklist_non_batched_params = ["head_mask"] for k in blacklist_non_batched_params: inputs_dict.pop(k, None) # move input tensors to cuda:O for k, v in inputs_dict.items(): if torch.is_tensor(v): inputs_dict[k] = v.to(0) for model_class in self.all_model_classes: model = model_class(config=config) model.to(0) model.eval() # Wrap model in nn.DataParallel model = torch.nn.DataParallel(model) with torch.no_grad(): _ = model(**self._prepare_for_class(inputs_dict, model_class)) global_rng = random.Random() def ids_tensor(shape, vocab_size, rng=None, name=None): # Creates a random int32 tensor of the shape within the vocab size if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous() def random_attention_mask(shape, rng=None, name=None): attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None) # make sure that at least one token is attended to for each batch attn_mask[:, -1] = 1 return attn_mask def floats_tensor(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous() @require_torch class ModelUtilsTest(unittest.TestCase): @slow def test_model_from_pretrained(self): for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = BertConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, PretrainedConfig) model = BertModel.from_pretrained(model_name) model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, PreTrainedModel) for value in loading_info.values(): self.assertEqual(len(value), 0) config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True) # Not sure this is the intended behavior. TODO fix Lysandre & Thom config.name_or_path = model_name model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True) self.assertEqual(model.config.output_hidden_states, True) self.assertEqual(model.config, config)
2bcc73892647048fa886b11407dd34d93f207c30
6b57ceb08961c61e19ecb1e5343c6a85cb4e8bda
/markdown/MarkdownRenderTk.py
7f00c9718443592497ac7ccdf2a4119c3fd81be8
[]
no_license
seggiepants/minesweeper
212a7caa5d64c27bf37ce081adc15b53f21787b2
5ba11e89d3058b694c7fb49dad77acc06b02c125
refs/heads/master
2021-06-28T02:17:25.796316
2021-06-19T07:29:35
2021-06-19T07:29:35
232,244,698
0
0
null
null
null
null
UTF-8
Python
false
false
5,776
py
import os import tkinter as tk from tkinter import PhotoImage, scrolledtext from tkinter.font import Font import urllib.request import base64 class MarkdownRenderTk(): def __init__(self, target): self.text = target fontName = self.find_font(['Times New Roman', 'FreeSerif', 'Helvetica', 'Liberation Serif', 'Arial']) self.fontText = Font(family=fontName, size=12) self.fontH1 = Font(family=fontName, size=36, weight='bold') self.fontH2 = Font(family=fontName, size=21, weight='bold') self.fontH3 = Font(family=fontName, size=18, weight='bold') self.fontH4 = Font(family=fontName, size=16, weight='bold') self.fontH5 = Font(family=fontName, size=14, weight='bold') self.fontH6 = Font(family=fontName, size=12, weight='bold') self.fontStrike = Font(family=fontName, overstrike=1) self.fontBold = Font(family=fontName, weight='bold') self.fontItalic = Font(family=fontName, slant='italic') fontNameMono = self.find_font(['Tlwg Typewriter', 'Courier', 'Dejavu Sans Mono', 'Liberation Mono', 'FreeSans']) self.fontMonospace = Font(family=fontNameMono, size=12) self.fontA = Font(family=fontName, underline=1) self.text.font = self.fontText self.crlf_tags = ['h1', 'h2', 'h3', 'h4', 'h5', 'h6'] def find_font(self, font_list): families = [str.lower(font) for font in tk.font.families()] for target in font_list: if str.lower(target) in families: return target return families[0] def render(self, tokens, img_path, images, callback): self.text['state'] = 'normal' self.text.delete('1.0', tk.END) tags = [] images.clear() countA = 0 indent = {} for token in tokens: tokenType = token[0] tokenText = token[1] if tokenType == 'text': self.text.insert(tk.INSERT, tokenText, tuple(tags)) elif tokenType == 'img': alttext = '' url = '' title = '' elif tokenType == 'a': title = '' url = '' elif tokenType == 'alttext': alttext = tokenText elif tokenType == 'url': url = tokenText elif tokenType == 'title': title = tokenText elif tokenType == '/img': if url[0:4] == 'http': u = urllib.request.urlopen(url) raw_data = u.read() u.close() img = tk.PhotoImage(data=base64.encodebytes(raw_data)) else: img = tk.PhotoImage(file=os.path.normpath(os.path.join(img_path, url))) images.append(img) # save a reference self.text.image_create(tk.INSERT, image=img) elif tokenType == 'hr': self.text.insert(tk.INSERT, "▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬" ,('hr')) elif tokenType == 'br': self.text.insert(tk.INSERT, "\n", tags) elif tokenType == 'p': self.text.insert(tk.INSERT, "\n\n", tags) elif tokenType == '/a': countA += 1 tagName = 'a' + str(countA) self.text.tag_config(tagName, font=self.fontA) self.text.tag_bind(tagName, "<Enter>", lambda event : event.widget.configure(cursor="hand1")) self.text.tag_bind(tagName, "<Leave>", lambda event : event.widget.configure(cursor="")) self.text.tag_bind(tagName, "<Button-1>", lambda e, url=url, title=title: callback(url, title)) if len(title) == 0: title = url self.text.insert(tk.INSERT, title, tuple(tags + [tagName])) elif tokenType == 'ul' or tokenType == 'ol': if lastToken != '/ul' and lastToken != '/ol': indent = {} level = tokenText # really a number if tokenType == 'ol': if not level in indent: indent[level] = 1 else: indent[level] = indent[level] + 1 counter = indent[level] tags.append(tokenType) self.text.insert(tk.INSERT, "\n", tuple(tags)) self.text.insert(tk.INSERT, " " * level, tuple(tags)) if tokenType == 'ul': self.text.insert(tk.INSERT, "● ", tuple(tags)) else: # ol self.text.insert(tk.INSERT, str(counter) + ". ", tuple(tags)) else: if tokenType[0] == '/': tags.remove(tokenType[1:]) if tokenType[1:] in self.crlf_tags: self.text.insert(tk.INSERT, '\n',) else: tags.append(tokenType) lastToken = tokenType self.text.tag_config('h1', font=self.fontH1) self.text.tag_config('h2', font=self.fontH2) self.text.tag_config('h3', font=self.fontH3) self.text.tag_config('h4', font=self.fontH4) self.text.tag_config('h5', font=self.fontH5) self.text.tag_config('h6', font=self.fontH6) self.text.tag_config('strike', font=self.fontStrike) self.text.tag_config('bold', font=self.fontBold) self.text.tag_config('italic', font=self.fontItalic) self.text.tag_config('monospace', font=self.fontMonospace) self.text['state'] = 'disabled'
bc10bd50610a4cbc01aae785e97c2cd5261cf129
741ee09b8b73187fab06ecc1f07f46a6ba77e85c
/AutonomousSourceCode/data/raw/sort/60b0d171-eaf9-4106-9947-74a8abaa6712__sort.py
1ecfa4d31d8f9aacb3f83b00e8f6dba5fb40c716
[]
no_license
erickmiller/AutomatousSourceCode
fbe8c8fbf215430a87a8e80d0479eb9c8807accb
44ee2fb9ac970acf7389e5da35b930d076f2c530
refs/heads/master
2021-05-24T01:12:53.154621
2020-11-20T23:50:11
2020-11-20T23:50:11
60,889,742
6
1
null
null
null
null
UTF-8
Python
false
false
575
py
def quickSort (arr): """ Quicksort a list :type arr: list :param arr: List to sort :returns: list -- Sorted list """ if not arr: return [] pivots = [] lesser = [] greater = [] for x in arr: if x==arr[0]: pivots.append(x) elif x>arr[0]: greater.append(x) else: lesser.append(x) return quickSort(lesser) + pivots + quickSort(greater) test_array = [1,4,5,7,8,9,90,3,2,3,4] sorted_array = quickSort (test_array) print "unsorted:",test_array,"Sorted:",sorted_array
b6348cb89e3618cb1488cd7678db294d1f9814b5
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/DaVinciDev_v38r1p1/Phys/StrippingArchive/python/StrippingArchive/Stripping20r3/StrippingLowMult.py
64d0de0b8e6e74cccb721b4715d426825cefe155
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
54,651
py
#Stripping Lines for Low Multiplicity Processes. #Electroweak Group (Convenor: Tara Shears) #Adaptation of lines (to use line builders) originally designed by Dermot Moran by Will Barter # Accepts events that passed the relevant HLT line. from Gaudi.Configuration import * from GaudiConfUtils.ConfigurableGenerators import FilterDesktop, CombineParticles from PhysSelPython.Wrappers import Selection, DataOnDemand from StrippingConf.StrippingLine import StrippingLine from StrippingUtils.Utils import LineBuilder from StandardParticles import StdAllNoPIDsKaons, StdAllNoPIDsPions, StdAllNoPIDsProtons from GaudiKernel.SystemOfUnits import MeV, mm confdict_LowMult = { 'LowMultPrescale' : 1.0 , 'LowMultWSPrescale' : 1.0 ##changed from 0.1 , 'LowMultHHIncPrescale' : 1.0 ##changed from 0.1 , 'LowMultLMRPrescale' : 1.0 ##changed from 0.2 , 'LowMultPrescale_ps' : 1.0 ##changed from 0.005 , 'LowMultNoFilterPrescale' : 1.0 ##changed from 0.1 , 'LowMultPostscale' : 1.0 # Final-state particles , 'H_PTmin' : 100.0 * MeV , 'H_Pmin' : 5000.0 * MeV , 'H_TrkChi2max' : 3.0 , 'K_PIDKmin' : 0.0 , 'P_PIDPmin' : 0.0 , 'KKInc_K_Pmin' : 10000.0 * MeV , 'KKInc_K_PIDKmin' : 5.0 # D0 -> KPi , 'D2KPi_APTmin' : 0.0 * MeV , 'D2KPi_ADAMASSmax' : 80.0 * MeV , 'D2KPi_ADOCAmax' : 0.5 * mm , 'D2KPi_APmin' : 10000.0 * MeV , 'D2KPi_VtxChi2DoFmax' : 15.0 # D+- -> KPiPi , 'D2KPiPi_APTmin' : 0.0 * MeV , 'D2KPiPi_ADAMASSmax' : 80.0 * MeV , 'D2KPiPi_ADOCAmax' : 0.5 * mm , 'D2KPiPi_APmin' : 10000.0 * MeV , 'D2KPiPi_VtxChi2DoFmax' : 15.0 # D0 -> K3Pi , 'D2K3Pi_APTmin' : 0.0 * MeV , 'D2K3Pi_ADAMASSmax' : 80.0 * MeV , 'D2K3Pi_ADOCAmax' : 0.7 * mm , 'D2K3Pi_APmin' : 10000.0 * MeV , 'D2K3Pi_VtxChi2DoFmax' : 15.0 # 'ChiC' -> HH (H = K, Pi) , 'ChiC2HH_APTmin' : 0.0 * MeV , 'ChiC2HH_APTmax' : 5000.0 * MeV , 'ChiC2HH_AMmin' : 2850.0 * MeV , 'ChiC2HH_AMmax' : 4500.0 * MeV , 'ChiC2HH_ADOCAmax' : 0.5 * mm , 'ChiC2HH_APmin' : 10000.0 * MeV , 'ChiC2HH_VtxChi2DoFmax' : 15.0 # 'ChiC' -> PP , 'ChiC2PP_APTmin' : 0.0 * MeV , 'ChiC2PP_APTmax' : 5000.0 * MeV , 'ChiC2PP_AMmin' : 2850.0 * MeV , 'ChiC2PP_AMmax' : 3650.0 * MeV , 'ChiC2PP_ADOCAmax' : 0.5 * mm , 'ChiC2PP_APmin' : 10000.0 * MeV , 'ChiC2PP_VtxChi2DoFmax' : 15.0 # 'ChiC' -> HHHH (H = K, Pi) , 'ChiC2HHHH_APTmin' : 0.0 * MeV , 'ChiC2HHHH_APTmax' : 5000.0 * MeV , 'ChiC2HHHH_AMmin' : 2850.0 * MeV , 'ChiC2HHHH_AMmax' : 4500.0 * MeV , 'ChiC2HHHH_ADOCAmax' : 0.7 * mm , 'ChiC2HHHH_APmin' : 10000.0 * MeV , 'ChiC2HHHH_VtxChi2DoFmax' : 15.0 # Low-mass resonance -> HH (H = K, Pi) , 'LMR2HH_APTmin' : 500.0 * MeV , 'LMR2HH_APTmax' : 1500.0 * MeV , 'LMR2HH_AMmin' : 450.0 * MeV , 'LMR2HH_AMmax' : 1500.0 * MeV , 'LMR2HH_ADOCAmax' : 0.1 * mm , 'LMR2HH_APmin' : 15000.0 * MeV , 'LMR2HH_VtxChi2DoFmax' : 3.0 # Phi resonance -> KK , 'PHI2KK_APTmin' : 0.0 * MeV , 'PHI2KK_APTmax' : 1500.0 * MeV , 'PHI2KK_AMmin' : 990.0 * MeV , 'PHI2KK_AMmax' : 1050.0 * MeV , 'PHI2KK_ADOCAmax' : 0.1 * mm , 'PHI2KK_APmin' : 4000.0 * MeV , 'PHI2KK_VtxChi2DoFmax' : 3.0 } default_name = "LowMult" class LowMultConf(LineBuilder) : __configuration_keys__ = ('LowMultPrescale' , 'LowMultWSPrescale' , 'LowMultHHIncPrescale' , 'LowMultLMRPrescale' , 'LowMultPrescale_ps' , 'LowMultNoFilterPrescale' , 'LowMultPostscale' # Final-state particles , 'H_PTmin' , 'H_Pmin' , 'H_TrkChi2max' , 'K_PIDKmin' , 'P_PIDPmin' , 'KKInc_K_Pmin' , 'KKInc_K_PIDKmin' # D0 -> KPi , 'D2KPi_APTmin' , 'D2KPi_ADAMASSmax' , 'D2KPi_ADOCAmax' , 'D2KPi_APmin' , 'D2KPi_VtxChi2DoFmax' # D+- -> KPiPi , 'D2KPiPi_APTmin' , 'D2KPiPi_ADAMASSmax' , 'D2KPiPi_ADOCAmax' , 'D2KPiPi_APmin' , 'D2KPiPi_VtxChi2DoFmax' # D0 -> K3Pi , 'D2K3Pi_APTmin' , 'D2K3Pi_ADAMASSmax' , 'D2K3Pi_ADOCAmax' , 'D2K3Pi_APmin' , 'D2K3Pi_VtxChi2DoFmax' # 'ChiC' -> HH (H = K, Pi) , 'ChiC2HH_APTmin' , 'ChiC2HH_APTmax' , 'ChiC2HH_AMmin' , 'ChiC2HH_AMmax' , 'ChiC2HH_ADOCAmax' , 'ChiC2HH_APmin' , 'ChiC2HH_VtxChi2DoFmax' # 'ChiC' -> PP , 'ChiC2PP_APTmin' , 'ChiC2PP_APTmax' , 'ChiC2PP_AMmin' , 'ChiC2PP_AMmax' , 'ChiC2PP_ADOCAmax' , 'ChiC2PP_APmin' , 'ChiC2PP_VtxChi2DoFmax' # 'ChiC' -> HHHH , 'ChiC2HHHH_APTmin' , 'ChiC2HHHH_APTmax' , 'ChiC2HHHH_AMmin' , 'ChiC2HHHH_AMmax' , 'ChiC2HHHH_ADOCAmax' , 'ChiC2HHHH_APmin' , 'ChiC2HHHH_VtxChi2DoFmax' # Low-mass resonance -> HH (H = K, Pi) , 'LMR2HH_APTmin' , 'LMR2HH_APTmax' , 'LMR2HH_AMmin' , 'LMR2HH_AMmax' , 'LMR2HH_ADOCAmax' , 'LMR2HH_APmin' , 'LMR2HH_VtxChi2DoFmax' # Phi -> KK (H = K, Pi) , 'PHI2KK_APTmin' , 'PHI2KK_APTmax' , 'PHI2KK_AMmin' , 'PHI2KK_AMmax' , 'PHI2KK_ADOCAmax' , 'PHI2KK_APmin' , 'PHI2KK_VtxChi2DoFmax' ) def __init__(self, name, config) : LineBuilder.__init__(self, name, config) self._myname = name #MUON ExclusiveMuonGEC = {'Code' : "(recSummaryTrack(LHCb.RecSummary.nLongTracks, TrLONG) > 0) & " \ "(recSummaryTrack(LHCb.RecSummary.nBackTracks, TrBACKWARD) < 1) & " \ "(recSummary(LHCb.RecSummary.nTracks, 'Rec/Track/Best') < 6)", 'Preambulo' : ["from LoKiTracks.decorators import *"]} self.LowMultMuon_line = StrippingLine(self._myname+"MuonLine", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = ExclusiveMuonGEC, HLT = "HLT_PASS('Hlt2LowMultMuonDecision')" ) self.registerLine(self.LowMultMuon_line) self.LowMultMuon_lineps = StrippingLine(self._myname+"MuonLinePS", prescale = config['LowMultPrescale_ps'], postscale = config['LowMultPostscale'], checkPV = False, HLT = "HLT_PASS('Hlt2LowMultMuonDecision')" ) self.registerLine(self.LowMultMuon_lineps) ExclusiveDiMuonGEC = {'Code' : "(recSummaryTrack(LHCb.RecSummary.nLongTracks, TrLONG) > 0) & " \ "(recSummaryTrack(LHCb.RecSummary.nBackTracks, TrBACKWARD) < 1)", 'Preambulo' : ["from LoKiTracks.decorators import *"]} self.LowMultPP2PPMuMu_line = StrippingLine(self._myname+"PP2PPMuMuLine", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = ExclusiveDiMuonGEC, HLT = "HLT_PASS('Hlt2diPhotonDiMuonDecision')" ) self.registerLine(self.LowMultPP2PPMuMu_line) self.LowMultPP2PPMuMu_lineps = StrippingLine(self._myname+"PP2PPMuMuLinePS", prescale = config['LowMultPrescale_ps'], postscale = config['LowMultPostscale'], checkPV = False, HLT = "HLT_PASS('Hlt2diPhotonDiMuonDecision')" ) self.registerLine(self.LowMultPP2PPMuMu_lineps) #ELECTRON ExclusiveElectronGEC = {'Code' : "(recSummaryTrack(LHCb.RecSummary.nBackTracks, TrBACKWARD) < 1) & " \ "(recSummary(LHCb.RecSummary.nTracks, 'Rec/Track/Best') < 6)", 'Preambulo' : ["from LoKiTracks.decorators import *"]} self.LowMultElectron_line = StrippingLine(self._myname+"ElectronLine", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = ExclusiveElectronGEC, HLT = "HLT_PASS('Hlt2LowMultElectronDecision')" ) self.registerLine(self.LowMultElectron_line) self.LowMultElectron_lineps = StrippingLine(self._myname+"ElectronLinePS", prescale = config['LowMultPrescale_ps'], postscale = config['LowMultPostscale'], checkPV = False, HLT = "HLT_PASS('Hlt2LowMultElectronDecision')" ) self.registerLine(self.LowMultElectron_lineps) self.LowMultElectron_nofilter_line = StrippingLine(self._myname+"ElectronLineNoFilter", prescale = config['LowMultNoFilterPrescale'], postscale = config['LowMultPostscale'], checkPV = False, HLT = "HLT_PASS('Hlt2LowMultElectron_nofilterDecision')" ) self.registerLine(self.LowMultElectron_nofilter_line) #HADRON ExclusiveHadronGEC = {'Code' : "(recSummaryTrack(LHCb.RecSummary.nLongTracks, TrLONG) > 1) & " \ "(recSummaryTrack(LHCb.RecSummary.nBackTracks, TrBACKWARD) < 1) & " \ "(CONTAINS('Rec/Track/Best') < 6) ", 'Preambulo' : ["from LoKiTracks.decorators import *"]} self.LowMultHadron_line = StrippingLine(self._myname+"HadronLine", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = ExclusiveHadronGEC, HLT = "HLT_PASS('Hlt2LowMultHadronDecision')" ) self.registerLine(self.LowMultHadron_line) self.LowMultHadron_lineps = StrippingLine(self._myname+"HadronLinePS", prescale = config['LowMultPrescale_ps'], postscale = config['LowMultPostscale'], checkPV = False, HLT = "HLT_PASS('Hlt2LowMultHadronDecision')" ) self.registerLine(self.LowMultHadron_lineps) self.LowMultHadron_nofilter_line = StrippingLine(self._myname+"HadronLineNoFilter", prescale = config['LowMultNoFilterPrescale'], postscale = config['LowMultPostscale'], checkPV = False, HLT = "HLT_PASS('Hlt2LowMultHadron_nofilterDecision')" ) self.registerLine(self.LowMultHadron_nofilter_line) #PHOTON self.LowMultPhoton_line = StrippingLine(self._myname+"PhotonLine", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, HLT = "HLT_PASS('Hlt2LowMultPhotonDecision')" ) self.registerLine(self.LowMultPhoton_line) ######### ## CEP ## ######### # #=== HLT and GEC filters ===# # CEPHLTReq = "HLT_PASS_RE('Hlt2LowMult(D.*|C.*|Hadron)Decision')" CEPFilterTracks = {'Code' : "(recSummaryTrack(LHCb.RecSummary.nLongTracks, TrLONG) > 1) & " \ "(recSummaryTrack(LHCb.RecSummary.nBackTracks, TrBACKWARD) < 1) & " \ "(CONTAINS ('Rec/Track/Best') < 12)", 'Preambulo' : ["from LoKiTracks.decorators import *"]} CEPFilterTracksChiC2HH = {'Code' : "(recSummaryTrack(LHCb.RecSummary.nLongTracks, TrLONG) > 1) & " \ "(recSummaryTrack(LHCb.RecSummary.nBackTracks, TrBACKWARD) < 1) & " \ "(CONTAINS ('Rec/Track/Best') < 6)", 'Preambulo' : ["from LoKiTracks.decorators import *"]} CEPFilterTracksChiC2HHHH = {'Code' : "(recSummaryTrack(LHCb.RecSummary.nLongTracks, TrLONG) > 1) & " \ "(recSummaryTrack(LHCb.RecSummary.nBackTracks, TrBACKWARD) < 1) & " \ "(CONTAINS ('Rec/Track/Best') < 8)", 'Preambulo' : ["from LoKiTracks.decorators import *"]} # #=== Combinatorics ===# # self.selKaons = makeKaons ('KaonsFor' + name, H_PTmin = config['H_PTmin'], H_Pmin = config['H_Pmin'], H_TrkChi2max = config['H_TrkChi2max'], K_PIDKmin = config['K_PIDKmin'] ) self.selKaonsForKK = makeKaonsForKK ('KaonsForKKFor' + name, H_PTmin = config['H_PTmin'], KKInc_K_Pmin = config['KKInc_K_Pmin'], H_TrkChi2max = config['H_TrkChi2max'], KKInc_K_PIDKmin = config['KKInc_K_PIDKmin'] ) self.selPions = makePions ('PionsFor' + name, H_PTmin = config['H_PTmin'], H_Pmin = config['H_Pmin'], H_TrkChi2max = config['H_TrkChi2max'] ) self.selProtons = makeProtons ('ProtonsFor' + name, H_PTmin = config['H_PTmin'], H_Pmin = config['H_Pmin'], H_TrkChi2max = config['H_TrkChi2max'], P_PIDPmin = config['P_PIDPmin'] ) self.selD2KPi = makeD2KPi("selD2KPi", decayDesc = [ "[D0 -> K- pi+]cc" ], kaons = self.selKaons, pions = self.selPions, D2KPi_APTmin = config['D2KPi_APTmin'], D2KPi_ADAMASSmax = config['D2KPi_ADAMASSmax'], D2KPi_ADOCAmax = config['D2KPi_ADOCAmax'], D2KPi_APmin = config['D2KPi_APmin'], D2KPi_VtxChi2DoFmax = config['D2KPi_VtxChi2DoFmax'] ) self.selD2KPiPi = makeD2KPiPi("selD2KPiPi", decayDesc = [ "[D+ -> K+ pi+ pi-]cc", "[D+ -> K- pi+ pi+]cc" ], kaons = self.selKaons, pions = self.selPions, D2KPiPi_APTmin = config['D2KPiPi_APTmin'], D2KPiPi_ADAMASSmax = config['D2KPiPi_ADAMASSmax'], D2KPiPi_ADOCAmax = config['D2KPiPi_ADOCAmax'], D2KPiPi_APmin = config['D2KPiPi_APmin'], D2KPiPi_VtxChi2DoFmax = config['D2KPiPi_VtxChi2DoFmax'] ) self.selD2K3Pi = makeD2K3Pi("selD2K3Pi", decayDesc = [ "[D0 -> K- pi+ pi- pi+]cc" ], kaons = self.selKaons, pions = self.selPions, D2K3Pi_APTmin = config['D2K3Pi_APTmin'], D2K3Pi_ADAMASSmax = config['D2K3Pi_ADAMASSmax'], D2K3Pi_ADOCAmax = config['D2K3Pi_ADOCAmax'], D2K3Pi_APmin = config['D2K3Pi_APmin'], D2K3Pi_VtxChi2DoFmax = config['D2K3Pi_VtxChi2DoFmax'] ) self.selChiC2HH = makeChiC2HH("selChiC2HH", decayDesc = [ "chi_c1(1P) -> K+ K-", "chi_c1(1P) -> pi+ pi-" ], kaons = self.selKaons, pions = self.selPions, ChiC2HH_APTmin = config['ChiC2HH_APTmin'], ChiC2HH_APTmax = config['ChiC2HH_APTmax'], ChiC2HH_AMmin = config['ChiC2HH_AMmin'], ChiC2HH_AMmax = config['ChiC2HH_AMmax'], ChiC2HH_ADOCAmax = config['ChiC2HH_ADOCAmax'], ChiC2HH_APmin = config['ChiC2HH_APmin'], ChiC2HH_VtxChi2DoFmax = config['ChiC2HH_VtxChi2DoFmax'] ) self.selChiC2PP = makeChiC2PP("selChiC2PP", decayDesc = [ "chi_c1(1P) -> p+ p~-" ], protons = self.selProtons, ChiC2PP_APTmin = config['ChiC2PP_APTmin'], ChiC2PP_APTmax = config['ChiC2PP_APTmax'], ChiC2PP_AMmin = config['ChiC2PP_AMmin'], ChiC2PP_AMmax = config['ChiC2PP_AMmax'], ChiC2PP_ADOCAmax = config['ChiC2PP_ADOCAmax'], ChiC2PP_APmin = config['ChiC2PP_APmin'], ChiC2PP_VtxChi2DoFmax = config['ChiC2PP_VtxChi2DoFmax'] ) self.selChiC2HHHH = makeChiC2HHHH("selChiC2HHHH", decayDesc = [ "[chi_c1(1P) -> K+ K+ pi- pi-]cc", "chi_c1(1P) -> K+ K- pi+ pi-", "chi_c1(1P) -> K+ K+ K- K-", "chi_c1(1P) -> pi+ pi+ pi- pi-" ], kaons = self.selKaons, pions = self.selPions, ChiC2HHHH_APTmin = config['ChiC2HHHH_APTmin'], ChiC2HHHH_APTmax = config['ChiC2HHHH_APTmax'], ChiC2HHHH_AMmin = config['ChiC2HHHH_AMmin'], ChiC2HHHH_AMmax = config['ChiC2HHHH_AMmax'], ChiC2HHHH_ADOCAmax = config['ChiC2HHHH_ADOCAmax'], ChiC2HHHH_APmin = config['ChiC2HHHH_APmin'], ChiC2HHHH_VtxChi2DoFmax = config['ChiC2HHHH_VtxChi2DoFmax'] ) self.selDD = makeDD("selDD", decayDesc = [ "[psi(3770) -> D0 D0]cc", "psi(3770) -> D0 D~0", "psi(3770) -> D+ D-", "[psi(3770) -> D0 D+]cc", "[psi(3770) -> D+ D+]cc" ], inD2KPi = self.selD2KPi, inD2KPiPi = self.selD2KPiPi, inD2K3Pi = self.selD2K3Pi ) self.selKK = makeKK("selKK", decayDesc = [ "D0 -> K+ K-", "[D0 -> K+ K+]cc" ], kaonsForKK = self.selKaonsForKK ) self.selLMR2HH = makeLMR2HH("selLMR2HH", decayDesc = [ "phi(1020) -> K+ K-", "[phi(1020) -> K+ pi-]cc", "phi(1020) -> pi+ pi-" ], kaons = self.selKaons, pions = self.selPions, LMR2HH_APTmin = config['LMR2HH_APTmin'], LMR2HH_APTmax = config['LMR2HH_APTmax'], LMR2HH_AMmin = config['LMR2HH_AMmin'], LMR2HH_AMmax = config['LMR2HH_AMmax'], LMR2HH_ADOCAmax = config['LMR2HH_ADOCAmax'], LMR2HH_APmin = config['LMR2HH_APmin'], LMR2HH_VtxChi2DoFmax = config['LMR2HH_VtxChi2DoFmax'] ) self.selPHI2KK = makePHI2KK("selPHI2KK", decayDesc = [ "phi(1020) -> K+ K-" ], kaons = self.selKaons, PHI2KK_APTmin = config['PHI2KK_APTmin'], PHI2KK_APTmax = config['PHI2KK_APTmax'], PHI2KK_AMmin = config['PHI2KK_AMmin'], PHI2KK_AMmax = config['PHI2KK_AMmax'], PHI2KK_ADOCAmax = config['PHI2KK_ADOCAmax'], PHI2KK_APmin = config['PHI2KK_APmin'], PHI2KK_VtxChi2DoFmax = config['PHI2KK_VtxChi2DoFmax'] ) # #=== Wrong-sign lines ===# # self.selD2KPiWS = makeD2KPi("selD2KPiWS", decayDesc = [ "[D0 -> K+ pi+]cc" ], kaons = self.selKaons, pions = self.selPions, D2KPi_APTmin = config['D2KPi_APTmin'], D2KPi_ADAMASSmax = config['D2KPi_ADAMASSmax'], D2KPi_ADOCAmax = config['D2KPi_ADOCAmax'], D2KPi_APmin = config['D2KPi_APmin'], D2KPi_VtxChi2DoFmax = config['D2KPi_VtxChi2DoFmax'] ) self.selD2KPiPiWS = makeD2KPiPi("selD2KPiPiWS", decayDesc = [ "[D+ -> K+ pi+ pi+]cc" ], kaons = self.selKaons, pions = self.selPions, D2KPiPi_APTmin = config['D2KPiPi_APTmin'], D2KPiPi_ADAMASSmax = config['D2KPiPi_ADAMASSmax'], D2KPiPi_ADOCAmax = config['D2KPiPi_ADOCAmax'], D2KPiPi_APmin = config['D2KPiPi_APmin'], D2KPiPi_VtxChi2DoFmax = config['D2KPiPi_VtxChi2DoFmax'] ) self.selD2K3PiWS = makeD2K3Pi("selD2K3PiWS", decayDesc = [ "[D0 -> K+ pi+ pi+ pi+]cc", "[D0 -> K+ pi+ pi+ pi-]cc", "[D0 -> K+ pi- pi- pi-]cc" ], kaons = self.selKaons, pions = self.selPions, D2K3Pi_APTmin = config['D2K3Pi_APTmin'], D2K3Pi_ADAMASSmax = config['D2K3Pi_ADAMASSmax'], D2K3Pi_ADOCAmax = config['D2K3Pi_ADOCAmax'], D2K3Pi_APmin = config['D2K3Pi_APmin'], D2K3Pi_VtxChi2DoFmax = config['D2K3Pi_VtxChi2DoFmax'] ) self.selChiC2HHWS = makeChiC2HH("selChiC2HHWS", decayDesc = [ "[chi_c1(1P) -> K+ K+]cc", "[chi_c1(1P) -> pi+ pi+]cc" ], kaons = self.selKaons, pions = self.selPions, ChiC2HH_APTmin = config['ChiC2HH_APTmin'], ChiC2HH_APTmax = config['ChiC2HH_APTmax'], ChiC2HH_AMmin = config['ChiC2HH_AMmin'], ChiC2HH_AMmax = config['ChiC2HH_AMmax'], ChiC2HH_ADOCAmax = config['ChiC2HH_ADOCAmax'], ChiC2HH_APmin = config['ChiC2HH_APmin'], ChiC2HH_VtxChi2DoFmax = config['ChiC2HH_VtxChi2DoFmax'] ) self.selChiC2PPWS = makeChiC2PP("selChiC2PPWS", decayDesc = [ "[chi_c1(1P) -> p+ p+]cc" ], protons = self.selProtons, ChiC2PP_APTmin = config['ChiC2PP_APTmin'], ChiC2PP_APTmax = config['ChiC2PP_APTmax'], ChiC2PP_AMmin = config['ChiC2PP_AMmin'], ChiC2PP_AMmax = config['ChiC2PP_AMmax'], ChiC2PP_ADOCAmax = config['ChiC2PP_ADOCAmax'], ChiC2PP_APmin = config['ChiC2PP_APmin'], ChiC2PP_VtxChi2DoFmax = config['ChiC2PP_VtxChi2DoFmax'] ) self.selChiC2HHHHWS = makeChiC2HHHH("selChiC2HHHHWS", decayDesc = [ "[chi_c1(1P) -> K+ K+ pi+ pi+]cc", "[chi_c1(1P) -> K+ K+ pi+ pi-]cc", "[chi_c1(1P) -> K+ K- pi+ pi+]cc", "[chi_c1(1P) -> K+ K+ K+ K+]cc", "[chi_c1(1P) -> K+ K+ K+ K-]cc", "[chi_c1(1P) -> pi+ pi+ pi+ pi+]cc", "[chi_c1(1P) -> pi+ pi+ pi+ pi-]cc" ], kaons = self.selKaons, pions = self.selPions, ChiC2HHHH_APTmin = config['ChiC2HHHH_APTmin'], ChiC2HHHH_APTmax = config['ChiC2HHHH_APTmax'], ChiC2HHHH_AMmin = config['ChiC2HHHH_AMmin'], ChiC2HHHH_AMmax = config['ChiC2HHHH_AMmax'], ChiC2HHHH_ADOCAmax = config['ChiC2HHHH_ADOCAmax'], ChiC2HHHH_APmin = config['ChiC2HHHH_APmin'], ChiC2HHHH_VtxChi2DoFmax = config['ChiC2HHHH_VtxChi2DoFmax'] ) # #=== Declare lines ===# # self.LowMultCEP_D2KPi_line = StrippingLine(self._myname + "CEP_D2KPi_line", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracks, HLT = CEPHLTReq, algos = [ self.selD2KPi ] ) self.registerLine(self.LowMultCEP_D2KPi_line) self.LowMultCEP_D2KPiPi_line = StrippingLine(self._myname + "CEP_D2KPiPi_line", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracks, HLT = CEPHLTReq, algos = [ self.selD2KPiPi ] ) self.registerLine(self.LowMultCEP_D2KPiPi_line) self.LowMultCEP_D2K3Pi_line = StrippingLine(self._myname + "CEP_D2K3Pi_line", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracks, HLT = CEPHLTReq, algos = [ self.selD2K3Pi ] ) self.registerLine(self.LowMultCEP_D2K3Pi_line) self.LowMultCEP_ChiC2HH_line = StrippingLine(self._myname + "CEP_ChiC2HH_line", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracksChiC2HH, HLT = CEPHLTReq, algos = [ self.selChiC2HH ] ) self.registerLine(self.LowMultCEP_ChiC2HH_line) self.LowMultCEP_ChiC2PP_line = StrippingLine(self._myname + "CEP_ChiC2PP_line", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracksChiC2HH, HLT = CEPHLTReq, algos = [ self.selChiC2PP ] ) self.registerLine(self.LowMultCEP_ChiC2PP_line) self.LowMultCEP_ChiC2HHHH_line = StrippingLine(self._myname + "CEP_ChiC2HHHH_line", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracksChiC2HHHH, HLT = CEPHLTReq, algos = [ self.selChiC2HHHH ] ) self.registerLine(self.LowMultCEP_ChiC2HHHH_line) self.LowMultCEP_DD_line = StrippingLine(self._myname + "CEP_DD_line", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracks, HLT = CEPHLTReq, algos = [ self.selDD ] ) self.registerLine(self.LowMultCEP_DD_line) self.LowMultCEP_KK_line = StrippingLine(self._myname + "CEP_KK_line", prescale = config['LowMultHHIncPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracks, HLT = CEPHLTReq, algos = [ self.selKK ] ) self.registerLine(self.LowMultCEP_KK_line) self.LowMultCEP_LMR2HH_line = StrippingLine(self._myname + "CEP_LMR2HH_line", prescale = config['LowMultLMRPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracksChiC2HHHH, HLT = CEPHLTReq, algos = [ self.selLMR2HH ] ) self.registerLine(self.LowMultCEP_LMR2HH_line) self.LowMultCEP_PHI2KK_line = StrippingLine(self._myname + "CEP_PHI2KK_line", prescale = config['LowMultPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracksChiC2HHHH, HLT = CEPHLTReq, algos = [ self.selPHI2KK ] ) self.registerLine(self.LowMultCEP_PHI2KK_line) self.LowMultCEP_D2KPiWS_line = StrippingLine(self._myname + "CEP_D2KPiWS_line", prescale = config['LowMultWSPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracks, HLT = CEPHLTReq, algos = [ self.selD2KPiWS ] ) self.registerLine(self.LowMultCEP_D2KPiWS_line) self.LowMultCEP_D2KPiPiWS_line = StrippingLine(self._myname + "CEP_D2KPiPiWS_line", prescale = config['LowMultWSPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracks, HLT = CEPHLTReq, algos = [ self.selD2KPiPiWS ] ) self.registerLine(self.LowMultCEP_D2KPiPiWS_line) self.LowMultCEP_D2K3PiWS_line = StrippingLine(self._myname + "CEP_D2K3PiWS_line", prescale = config['LowMultWSPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracks, HLT = CEPHLTReq, algos = [ self.selD2K3PiWS ] ) self.registerLine(self.LowMultCEP_D2K3PiWS_line) self.LowMultCEP_ChiC2HHWS_line = StrippingLine(self._myname + "CEP_ChiC2HHWS_line", prescale = config['LowMultWSPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracksChiC2HH, HLT = CEPHLTReq, algos = [ self.selChiC2HHWS ] ) self.registerLine(self.LowMultCEP_ChiC2HHWS_line) self.LowMultCEP_ChiC2PPWS_line = StrippingLine(self._myname + "CEP_ChiC2PPWS_line", prescale = config['LowMultWSPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracksChiC2HH, HLT = CEPHLTReq, algos = [ self.selChiC2PPWS ] ) self.registerLine(self.LowMultCEP_ChiC2PPWS_line) self.LowMultCEP_ChiC2HHHHWS_line = StrippingLine(self._myname + "CEP_ChiC2HHHHWS_line", prescale = config['LowMultWSPrescale'], postscale = config['LowMultPostscale'], checkPV = False, FILTER = CEPFilterTracksChiC2HHHH, HLT = CEPHLTReq, algos = [ self.selChiC2HHHHWS ] ) self.registerLine(self.LowMultCEP_ChiC2HHHHWS_line) # #=== Final-state particles ===# # def makeKaons(name, H_PTmin, H_Pmin, H_TrkChi2max, K_PIDKmin ) : _code = "(PT > %(H_PTmin)s) & (P > %(H_Pmin)s) & (TRCHI2DOF < %(H_TrkChi2max)s) & (PIDK > %(K_PIDKmin)s)" % locals() _kaonsFilter = FilterDesktop(Code = _code) _stdKaons = DataOnDemand(Location = "Phys/StdAllNoPIDsKaons/Particles") return Selection(name, Algorithm = _kaonsFilter, RequiredSelections = [_stdKaons] ) def makeKaonsForKK(name, H_PTmin, KKInc_K_Pmin, H_TrkChi2max, KKInc_K_PIDKmin ) : _code = "(PT > %(H_PTmin)s) & (P > %(KKInc_K_Pmin)s) & (TRCHI2DOF < %(H_TrkChi2max)s) & (PIDK > %(KKInc_K_PIDKmin)s)" % locals() _kaonsFilter = FilterDesktop(Code = _code) _stdKaons = DataOnDemand(Location = "Phys/StdAllNoPIDsKaons/Particles") return Selection(name, Algorithm = _kaonsFilter, RequiredSelections = [_stdKaons] ) def makePions(name, H_PTmin, H_Pmin, H_TrkChi2max ) : _code = "(PT > %(H_PTmin)s) & (P > %(H_Pmin)s) & (TRCHI2DOF < %(H_TrkChi2max)s)" % locals() _pionsFilter = FilterDesktop(Code = _code) _stdPions = DataOnDemand(Location = "Phys/StdAllNoPIDsPions/Particles") return Selection (name, Algorithm = _pionsFilter, RequiredSelections = [_stdPions] ) def makeProtons(name, H_PTmin, H_Pmin, H_TrkChi2max, P_PIDPmin ) : _code = "(PT > %(H_PTmin)s) & (P > %(H_Pmin)s) & (TRCHI2DOF < %(H_TrkChi2max)s) & (PIDp > %(P_PIDPmin)s)" % locals() _protonsFilter = FilterDesktop(Code = _code) _stdProtons = DataOnDemand(Location = "Phys/StdAllNoPIDsProtons/Particles") return Selection(name, Algorithm = _protonsFilter, RequiredSelections = [_stdProtons] ) # #=== D0 -> KPi ===# # def makeD2KPi(name, decayDesc, kaons, pions, D2KPi_APTmin, D2KPi_ADAMASSmax, D2KPi_ADOCAmax, D2KPi_APmin, D2KPi_VtxChi2DoFmax ) : D2KPi_Comb_cut = "(APT > %(D2KPi_APTmin)s) & (ADAMASS('D0') < %(D2KPi_ADAMASSmax)s) & (ADOCAMAX('LoKi::DistanceCalculator') < %(D2KPi_ADOCAmax)s) & " \ "(AP > %(D2KPi_APmin)s)" % locals() D2KPi_Mother_cut = "(VFASPF(VCHI2PDOF) < %(D2KPi_VtxChi2DoFmax)s)" % locals() CombineD2KPi = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = D2KPi_Comb_cut , MotherCut = D2KPi_Mother_cut) return Selection(name, Algorithm = CombineD2KPi, RequiredSelections = [kaons, pions]) # #=== D+ -> KPiPi ===# # def makeD2KPiPi(name, decayDesc, kaons, pions, D2KPiPi_APTmin, D2KPiPi_ADAMASSmax, D2KPiPi_ADOCAmax, D2KPiPi_APmin, D2KPiPi_VtxChi2DoFmax ) : D2KPiPi_Comb_cut = "(APT > %(D2KPiPi_APTmin)s) & (ADAMASS('D+') < %(D2KPiPi_ADAMASSmax)s) & (ADOCAMAX('LoKi::DistanceCalculator') < %(D2KPiPi_ADOCAmax)s) & " \ "(AP > %(D2KPiPi_APmin)s)" % locals() D2KPiPi_Mother_cut = "(VFASPF(VCHI2PDOF) < %(D2KPiPi_VtxChi2DoFmax)s)" % locals() CombineD2KPiPi = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = D2KPiPi_Comb_cut , MotherCut = D2KPiPi_Mother_cut ) return Selection(name, Algorithm = CombineD2KPiPi, RequiredSelections = [kaons, pions]) # #=== D0 -> K3Pi ===# # def makeD2K3Pi(name, decayDesc, kaons, pions, D2K3Pi_APTmin, D2K3Pi_ADAMASSmax, D2K3Pi_ADOCAmax, D2K3Pi_APmin, D2K3Pi_VtxChi2DoFmax ) : D2K3Pi_Comb_cut = "(APT > %(D2K3Pi_APTmin)s) & (ADAMASS('D0') < %(D2K3Pi_ADAMASSmax)s) & (ADOCAMAX('LoKi::DistanceCalculator') < %(D2K3Pi_ADOCAmax)s) & " \ "(AP > %(D2K3Pi_APmin)s)" % locals() D2K3Pi_Mother_cut = "(VFASPF(VCHI2PDOF) < %(D2K3Pi_VtxChi2DoFmax)s)" % locals() CombineD2K3Pi = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = D2K3Pi_Comb_cut , MotherCut = D2K3Pi_Mother_cut ) return Selection(name, Algorithm = CombineD2K3Pi, RequiredSelections = [kaons, pions]) # #=== 'chi_c' -> HH ===# # def makeChiC2HH(name, decayDesc, kaons, pions, ChiC2HH_APTmin, ChiC2HH_APTmax, ChiC2HH_AMmin, ChiC2HH_AMmax, ChiC2HH_ADOCAmax, ChiC2HH_APmin, ChiC2HH_VtxChi2DoFmax ) : ChiC2HH_Comb_cut = "(APT > %(ChiC2HH_APTmin)s) & (APT < %(ChiC2HH_APTmax)s) & (AM > %(ChiC2HH_AMmin)s) & (AM < %(ChiC2HH_AMmax)s) & " \ "(ADOCAMAX('LoKi::DistanceCalculator') < %(ChiC2HH_ADOCAmax)s) & (AP > %(ChiC2HH_APmin)s)" % locals() ChiC2HH_Mother_cut = "(VFASPF(VCHI2PDOF) < %(ChiC2HH_VtxChi2DoFmax)s)" % locals() CombineChiC2HH = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = ChiC2HH_Comb_cut , MotherCut = ChiC2HH_Mother_cut ) return Selection(name, Algorithm = CombineChiC2HH, RequiredSelections = [kaons, pions]) # #=== 'chi_c' -> PP ===# # def makeChiC2PP(name, decayDesc, protons, ChiC2PP_APTmin, ChiC2PP_APTmax, ChiC2PP_AMmin, ChiC2PP_AMmax, ChiC2PP_ADOCAmax, ChiC2PP_APmin, ChiC2PP_VtxChi2DoFmax ) : ChiC2PP_Comb_cut = "(APT > %(ChiC2PP_APTmin)s) & (APT < %(ChiC2PP_APTmax)s) & (AM > %(ChiC2PP_AMmin)s) & (AM < %(ChiC2PP_AMmax)s) & " \ "(ADOCAMAX('LoKi::DistanceCalculator') < %(ChiC2PP_ADOCAmax)s) & (AP > %(ChiC2PP_APmin)s)" % locals() ChiC2PP_Mother_cut = "(VFASPF(VCHI2PDOF) < %(ChiC2PP_VtxChi2DoFmax)s)" % locals() CombineChiC2PP = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = ChiC2PP_Comb_cut , MotherCut = ChiC2PP_Mother_cut ) return Selection(name, Algorithm = CombineChiC2PP, RequiredSelections = [protons]) # #=== 'chi_c' -> 4H ===# # def makeChiC2HHHH(name, decayDesc, kaons, pions, ChiC2HHHH_APTmin, ChiC2HHHH_APTmax, ChiC2HHHH_AMmin, ChiC2HHHH_AMmax, ChiC2HHHH_ADOCAmax, ChiC2HHHH_APmin, ChiC2HHHH_VtxChi2DoFmax ) : ChiC2HHHH_Comb_cut = "(APT > %(ChiC2HHHH_APTmin)s) & (APT < %(ChiC2HHHH_APTmax)s) & (AM > %(ChiC2HHHH_AMmin)s) & (AM < %(ChiC2HHHH_AMmax)s) & " \ "(ADOCAMAX('LoKi::DistanceCalculator') < %(ChiC2HHHH_ADOCAmax)s) & (AP > %(ChiC2HHHH_APmin)s)" % locals() ChiC2HHHH_Mother_cut = "(VFASPF(VCHI2PDOF) < %(ChiC2HHHH_VtxChi2DoFmax)s)" % locals() CombineChiC2HHHH = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = ChiC2HHHH_Comb_cut , MotherCut = ChiC2HHHH_Mother_cut ) return Selection(name, Algorithm = CombineChiC2HHHH, RequiredSelections = [kaons, pions]) # #=== DD combination ===# # def makeDD(name, decayDesc, inD2KPi, inD2KPiPi, inD2K3Pi ) : CombineDD = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = "AALL" , MotherCut = "ALL" ) return Selection(name, Algorithm = CombineDD, RequiredSelections = [inD2KPi, inD2KPiPi, inD2K3Pi]) # #=== KK inclusive ===# # def makeKK(name, decayDesc, kaonsForKK ) : CombineKK = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = "AALL" , MotherCut = "ALL" ) KKConf = CombineKK.configurable("Combine_" + name + "_KK") KKConf.ParticleCombiners.update({'':'MomentumCombiner'}) return Selection(name, Algorithm = CombineKK, RequiredSelections = [kaonsForKK]) # #=== Low-mass resonance -> HH ===# # def makeLMR2HH(name, decayDesc, kaons, pions, LMR2HH_APTmin, LMR2HH_APTmax, LMR2HH_AMmin, LMR2HH_AMmax, LMR2HH_ADOCAmax, LMR2HH_APmin, LMR2HH_VtxChi2DoFmax ) : LMR2HH_Comb_cut = "(APT > %(LMR2HH_APTmin)s) & (APT < %(LMR2HH_APTmax)s) & (AM > %(LMR2HH_AMmin)s) & (AM < %(LMR2HH_AMmax)s) & " \ "(ADOCAMAX('LoKi::DistanceCalculator') < %(LMR2HH_ADOCAmax)s) & (AP > %(LMR2HH_APmin)s)" % locals() LMR2HH_Mother_cut = "(VFASPF(VCHI2PDOF) < %(LMR2HH_VtxChi2DoFmax)s)" % locals() CombineLMR2HH = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = LMR2HH_Comb_cut , MotherCut = LMR2HH_Mother_cut ) return Selection(name, Algorithm = CombineLMR2HH, RequiredSelections = [kaons, pions]) def makePHI2KK(name, decayDesc, kaons, PHI2KK_APTmin, PHI2KK_APTmax, PHI2KK_AMmin, PHI2KK_AMmax, PHI2KK_ADOCAmax, PHI2KK_APmin, PHI2KK_VtxChi2DoFmax ) : PHI2KK_Comb_cut = "(APT > %(PHI2KK_APTmin)s) & (APT < %(PHI2KK_APTmax)s) & (AM > %(PHI2KK_AMmin)s) & (AM < %(PHI2KK_AMmax)s) & " \ "(ADOCAMAX('LoKi::DistanceCalculator') < %(PHI2KK_ADOCAmax)s) & (AP > %(PHI2KK_APmin)s)" % locals() PHI2KK_Mother_cut = "(VFASPF(VCHI2PDOF) < %(PHI2KK_VtxChi2DoFmax)s)" % locals() CombinePHI2KK = CombineParticles( DecayDescriptors = decayDesc , CombinationCut = PHI2KK_Comb_cut , MotherCut = PHI2KK_Mother_cut ) return Selection(name, Algorithm = CombinePHI2KK, RequiredSelections = [kaons])
54590a54f5fc9df79887398bae3eac38483a904f
cafee376f09de58b47793ad6c8000882ff73c2a2
/week1/banner.py
be7edc96cce370ef73b173efcd30e56665751da1
[]
no_license
edgabriel92/digital_crafts
28cef7e281b22cf2a40b44173e5800e702f9809c
6c9367148eb9b968d52fc098e182319444201611
refs/heads/master
2021-04-06T08:29:58.916357
2018-03-10T16:55:52
2018-03-10T16:55:52
124,678,570
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
userText = raw_input("Text? ") space = len(userText) for row in range(space): if row == 0: print '*' * space elif row - 1 == space: print '*' * space
5b7ffde830bffb098822f58bf2f897b6477cabb5
97149b75bd21fb9f82aed657ab5180f765927746
/ietf/group/migrations/0051_populate_groupfeatures_agenda_filter_type.py
fa5025902b5166df6adb3778d40d3843575268fc
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
hassanakbar4/ietfdb-filter-repo
c74e7cbfdd5acb8f55ca0fcff6757166582d68db
67513183b7035014b494bfdd982f9f3990ee0647
refs/heads/main
2023-08-25T09:47:28.900431
2021-11-09T22:16:24
2021-11-09T22:16:24
426,613,149
0
0
null
null
null
null
UTF-8
Python
false
false
987
py
# Copyright The IETF Trust 2021 All Rights Reserved from django.db import migrations def forward(apps, schema_editor): GroupFeatures = apps.get_model('group', 'GroupFeatures') # map AgendaFilterTypeName slug to group types - unlisted get 'none' filter_types = dict( # list previously hard coded in agenda view, plus 'review' normal={'wg', 'ag', 'rg', 'rag', 'iab', 'program', 'review'}, heading={'area', 'ietf', 'irtf'}, special={'team', 'adhoc'}, ) for ft, group_types in filter_types.items(): for gf in GroupFeatures.objects.filter(type__slug__in=group_types): gf.agenda_filter_type_id = ft gf.save() def reverse(apps, schema_editor): pass # nothing to do, model will be deleted anyway class Migration(migrations.Migration): dependencies = [ ('group', '0050_groupfeatures_agenda_filter_type'), ] operations = [ migrations.RunPython(forward, reverse), ]
393c3143d0a37450a0cd8316de7af61a85e37382
7aa2eb8f887e5bd0b4bdfff2509b244a8d3bb6b2
/ex30.py
10505bebb749c28afacc5cac2b5d2f94f44a23d8
[]
no_license
theyogiwhocodes/lp3thw
6ded2a0d989c49283aec662c93b2045cbc385c91
40fb57dec60671f6d79cbee2f7f7aac90fc96313
refs/heads/master
2021-09-04T03:09:56.138135
2018-01-15T03:46:36
2018-01-15T03:46:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
## Else and If people = 30 cars = 40 trucks = 15 if cars > people: print("We should take the cars.") elif cars < people: print("We should not take the cars.") else: print("We can't decide.") if trucks > cars: print("That's too many trucks.") elif trucks < cars: print("Maybe we could take the trucks.") else: print("We still can't decide.") if people > trucks: print("Alright, let's just take the trucks.") else: print("Fine, let's stay home then.")
9c8e206c740f98c0ccb55c2acca02c89360f9722
654f15aa9ade9ec62c1243fd6619fc7088350bce
/hbmqtt/scripts/sub_script.py
6a178229dd282ee1461a6dcb82cc0d0236a3f8f5
[ "MIT" ]
permissive
nfsnfs/amqtt
29b06b45801536971e7c79bda32bb2a16f12e435
759f0ed64fce5d1443988c6af909aca2326a4979
refs/heads/master
2023-03-30T20:44:41.709936
2021-04-01T09:50:14
2021-04-01T10:53:46
350,219,108
0
0
MIT
2021-04-02T13:29:50
2021-03-22T05:32:20
null
UTF-8
Python
false
false
145
py
import warnings from amqtt.scripts.sub_script import * warnings.warn("importing hbmqtt is deprecated. Please import amqtt", DeprecationWarning)
485a12f1235acc5c931d5afd6af59d48eb7a96c3
17436750e71236feba9a5fdc70bfabdfa6fc73d6
/Scripts/django-admin.py
08ae5f164a1101cec4e8ddc5badef934512c9e89
[]
no_license
ivoovi/djtest
d40fa12ca30f8b1f5b1ab63943e3e9ab0d4dc98d
38100378b027d11f666202372f60f7b0197894c2
refs/heads/master
2020-04-06T04:01:26.809488
2015-07-28T16:31:04
2015-07-28T16:33:38
39,845,037
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
#!C:\Users\ivo.angelovski\django\Scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
396ccbf2e7079c27966af0da3a7a69286a5f5919
ea691446e415c276debdee3de826015e6e2e7149
/Convergence_project_Pixy/pixy_rpi-master/pixy_rpi-master/echo.py
64740b8a9d225052e066794fe88d12a39de42a06
[]
no_license
hanseunghan/Project
f1c5bc10bc6b19b2dd263a06e25874e9500b75cb
39fe342691d39aab4cdb95b0a195e1bf6be511dc
refs/heads/master
2022-02-02T14:25:41.788291
2022-01-14T01:13:28
2022-01-14T01:13:28
104,845,734
0
1
null
2018-02-09T05:28:06
2017-09-26T06:37:26
C
UTF-8
Python
false
false
336
py
import pixy import pixy_spi p = pixy.Pixy(pixy_spi.LinkSPI()) while(True): num_blocks = p.getBlocks() if num_blocks > 0: print "Detected: %d" % num_blocks for ii, block in enumerate(p.blocks): print " block %d" % ii, pixy.print_block(block) else: print "No blocks detected"
2199eb93227afc8efb0144072999e74f59f30930
1d925c3989e80d4cc9d635bf928318646621f722
/PythonClassData/Python_IMP/Link Codes/FileHandling/FilehandlingTasks.py
aed1d7bf98389f3b3da982037012df6abbf86b56
[]
no_license
mukeshbhoria/PythonClassData
0af81db1c9635d4a08db92bd36d1bbf1db251212
e2378b7ddb0acc5123e0c7227ce617fb63c701ff
refs/heads/master
2022-04-22T05:14:15.285934
2020-04-15T07:07:57
2020-04-15T07:07:57
255,844,437
0
0
null
null
null
null
UTF-8
Python
false
false
2,229
py
''' FIle Handling Tasks ''' ''' **************************************** Create Backup File ''' file_name = input("Enter the file name: ") Directory = input("Enter the directory of a file: ") infile = open(Directory+'/'+file_name, 'r') content = infile.read() base_file_name = file_name.split('.')[0] outfile = open(Directory+'/'+base_file_name+'.bckp', 'w') outfile.write(content) outfile.flush() outfile.close() ''' **************************************** Delete Empty files in directory ''' import os basedir = input("Enter the directory") for dir,subdir,files in os.walk(basedir): #print dir #print subdir #print files os.chdir(dir) for i in files: #print files[i] + str(os.basedir.getsize(files[i])) #print i, os.path.getsize(i) if os.path.getsize(i) == 0: print("file to delete is ", i) #os.unlink(i) ''' ************************ Accept directory name from user and remove if it is modify 30days older and if size is 100kb(use fun m10) ''' import os, datetime, time directory = input("Enter the directory name") D_path = input("Enter the directory path") dir_size = 0 for dir, subdir, files in os.walk(D_path + '/' + directory): os.chdir(dir) for i in files: dir_size += os.path.getsize(i) dir_time_in_float = os.path.getmtime(D_path + '/' + directory) Curren_Time_in_float = time.time() Current_time_in_all = datetime.datetime.fromtimestamp(Curren_Time_in_float) timeDiff = Curren_Time_in_float - dir_time_in_float if timeDiff > (3600 * 24 * 30) and dir_size < 100000: print(" file or directory is more than 30 days older, Need to remove") # os.unlink(D_path+'/'+directory) else: print("file is recently mdified on : ", datetime.datetime.fromtimestamp \ (dir_time_in_float)) ''' *********************************** Find python files in entered directory ''' import os directory = input("Enter the directory name") D_path= input("Enter the directory path") cnt = 0 for dir,subdir,files in os.walk(D_path+'/'+directory): os.chdir(dir) for i in files: if i.split('.')[1] == 'py': cnt += 1 print("Number of python files are {}".format(cnt))
f54a7460258b64fddbd6b317be7429f7fed6510c
edf8b4fdc80ff333eb6cb60aff8cf41968892516
/ex02/8_7.py
5bb93df4673e873da3479e83c793585be5c2c55d
[]
no_license
khimacademy/c101
aad84d70e240885b41a4c948bffc462aa5a9b174
2100231a5e838884bc285bf33b12feb41ffad2b5
refs/heads/master
2020-03-16T22:48:45.057623
2018-05-11T15:07:47
2018-05-11T15:07:47
133,053,323
0
0
null
null
null
null
UTF-8
Python
false
false
1,005
py
import random birth_year = ['시끄러운 ', '푸른 ', '적색 ', '조용한 ', '웅크린 ', '백색 ', '지혜로운 ', '용감한 ', '날카로운 ', '욕심많은 '] birth_month = ['늑대', '태양', '양', '매', '황소', '불꽃', '나무', '달빛', '말', '돼지', '하늘', '바람'] birth_date = ['와(과) 함께 춤을', '의 기상', '은(는) 그림자 속에', '', '', '', '의 환생', '의 죽음', ' 아래에서', '을(를) 보라', '이(가) 노래하다', ' 그림자', '의 일격', '에게 쫓기는 남자', '의 행진', '의 왕', '의 유령', '을(를) 죽인자', '은(는) 맨날 잠잔다', '처럼', '의 고향', '의 전사', '은(는) 나의 친구', '의 노래', '의 정령', '의 파수꾼', '의 악마', '와(과) 같은 사나이', '을(를) 쓰러트린자', '', '은(는) 말이없다'] random_name = random.choice(birth_year) + random.choice(birth_month) + random.choice(birth_date) print('당신의 인디언식 이름은', random_name, '입니다.')
b65fffee66504b5b0e39054ba8119d5315174f22
7abbcd16dcf2e639e53665d50ec113e1374b79eb
/ROIIM/settings.py
4694ca27b2c475b4f9f05f448a344b3f718e71a2
[]
no_license
srajsonu/ROIIM-Assignment-Paysafe
ab6f160641adb69cef2f78bde594322f286ff089
1d9586e29f1871e4e9577ff2befd594c8a9cbbe4
refs/heads/main
2023-01-04T23:42:53.403941
2020-10-31T17:17:57
2020-10-31T17:17:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,308
py
""" Django settings for ROIIM project. Generated by 'django-admin startproject' using Django 3.1.2. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'al_&n_c(==dma7bl7or4v_@fqz3%bcn1$e@1t^n_877v0ifp5r' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'users.apps.UsersConfig', 'checkout.apps.CheckoutConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'ROIIM.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ROIIM.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' # #for heroku deployment # STATIC_ROOT = os.path.join(BASE_DIR, 'static') # #Activate Django-heroku # django_on_heroku.settings(locals())
73d4a33c3b4ba57b5f94c9863889924014b14f4d
1326d8961d9e29edf46af79e7eec0defc80095f8
/Code/78. Subsets.py
80f14f75363aefd0c87c6f46276bae210bf48cc1
[]
no_license
yuansun86/leetcode
58e01131bdbd8314583d7319866570d49cf12eb6
a2f626eef66a3b0e3a11f385ff59b961b3b85edc
refs/heads/master
2023-07-12T20:11:54.481347
2021-08-17T06:44:15
2021-08-17T06:44:15
286,399,034
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
class Solution: def subsets(self, nums: List[int]) -> List[List[int]]: def dfs(nums, current, index, result): result.append(current.copy()) for i in range(index + 1, len(nums)): current = current + [nums[i]] dfs(nums, current, i, result) current.pop() cur = [] result = [] dfs(nums, cur, -1, result) return result
939e29581caa80c464f394037ba3b65483285f56
10c6c706a81e45222f936c4c10f97e6654bb488c
/locallibrary/urls.py
6e054668512a8a666b6984195a5ddb93f39849f3
[]
no_license
souravramos/locallibrary
e72ec06a171db276f30158a6aff63305b57d0404
eddb897a0df7fef72cdcd4427c6d5b362716f849
refs/heads/master
2022-12-09T09:30:37.021694
2020-09-09T10:10:09
2020-09-09T10:10:09
294,070,668
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
"""locallibrary URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static from django.views.generic import RedirectView urlpatterns = [ path('admin/', admin.site.urls), path('', include('catalog.urls')), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
a9761cdec486e1cf7f1b3070dae451027449aae9
27d9474e974b0ac965bc30a1e2529c20c74dd74a
/src/abc161_a.py
fe49a03cebf509d2edaae0c53f4d7394fcb1e7ed
[]
no_license
ShirasuSalaD/CompetitiveProgramming
ed16ef864e9730693ee2fc2da07f1f51f70c6e7d
60e0e9a46aec686d8c32986d39a790c47884d06c
refs/heads/master
2022-07-25T12:50:23.851627
2020-05-17T15:53:50
2020-05-17T15:53:50
254,588,325
1
0
null
null
null
null
UTF-8
Python
false
false
80
py
s = list(map(int, input().split())) c = s[-1] s.pop(-1) s.insert(0,c) print(*s)
7ecad64dbd2a4a3eed561b90cdf6a5522b1482c2
a10b828fc190d635a0b881289e24b02317a86f49
/setup.py
5ce3541905cb1f2d4b30467835a8708018455348
[ "MIT" ]
permissive
fjhheras/hyperevolve
c99bb5da1515feff312c0a4433d1b54aebcd15d9
3aaf20660fc83f0c854a977d2089e5d9c6ffda16
refs/heads/master
2020-03-17T01:33:06.172988
2018-05-12T16:00:52
2018-05-12T16:00:52
133,157,783
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
from distutils.core import setup setup( name='HyperEvolve', version='0.1dev', packages=['hyperevolve',], license='MIT', long_description=open('README.md').read(), )
5c8789023e51ce9b762629769c26a4978ba5edf1
ecb45574b9fe9bc3404eb0e1143bbbe96341dd4a
/first.py
1022d5cb82727f60603941d0465fb44839f4a749
[]
no_license
Harry2522/webUIAuto
ebe946c2cfa721c7edc2b4817a8eae2e17e4d9f2
f8e7e073f9dec25e40bc44263f3ee85b61f480be
refs/heads/master
2022-11-21T05:36:31.834738
2020-07-23T06:00:16
2020-07-23T06:00:16
279,778,644
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # @FileName:first.py # @Time :2020/7/15 14:09 # @Author :Harry ''' webdriver 控制浏览器 ''' from selenium import webdriver import time driver = webdriver.Chrome() driver.maximize_window() #窗口最大化 # driver.set_window_size(600,400) #设置窗口大小 driver.get("http://www.baidu.com") #打开浏览器并访问百度 time.sleep(2) driver.refresh() #刷新页面 time.sleep(2) driver.get("http://www.taobao.com") time.sleep(2) driver.get("http://www.jd.com") time.sleep(2) driver.back() #回退 time.sleep(2) driver.forward()#前进 time.sleep(3) #等待3s # driver.close() #关闭浏览器 driver.quit() #退出浏览器
00bcc1cd0d93ac41e1e3d81388d2d53362e54606
75aefcdfa5ea4796f93ec7fdfb972bdd1b3aeea2
/fhirclient/models/claim_tests.py
d67c0e4ef7c00d751a15b05de0d61289948aa908
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
bchaballout/client-py
89a90dd2c991bbbd3710d2783afdc7bb3db5bca6
f1c2807fdc4a534cbd9e8b17ccb54f93de848bcb
refs/heads/master
2021-01-21T20:23:12.412748
2015-08-10T23:36:08
2015-08-10T23:36:08
39,397,021
0
0
null
2015-07-20T17:05:34
2015-07-20T17:05:34
null
UTF-8
Python
false
false
33,861
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 0.5.0.5149 on 2015-07-06. # 2015, SMART Health IT. import os import io import unittest import json from . import claim from .fhirdate import FHIRDate class ClaimTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or '' with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("Claim", js["resourceType"]) return claim.Claim(js) def testClaim1(self): inst = self.instantiate_from("claim-example-institutional.json") self.assertIsNotNone(inst, "Must have instantiated a Claim instance") self.implClaim1(inst) js = inst.as_json() self.assertEqual("Claim", js["resourceType"]) inst2 = claim.Claim(js) self.implClaim1(inst2) def implClaim1(self, inst): self.assertTrue(inst.coverage[0].focal) self.assertEqual(inst.coverage[0].relationship.code, "self") self.assertEqual(inst.coverage[0].sequence, 1) self.assertEqual(inst.created.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.created.as_json(), "2014-08-16") self.assertEqual(inst.diagnosis[0].diagnosis.code, "654456") self.assertEqual(inst.diagnosis[0].sequence, 1) self.assertEqual(inst.id, "960150") self.assertEqual(inst.identifier[0].system, "http://happyhospital.com/claim") self.assertEqual(inst.identifier[0].value, "9612345") self.assertEqual(inst.item[0].net.code, "USD") self.assertEqual(inst.item[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].net.value, 125.0) self.assertEqual(inst.item[0].sequence, 1) self.assertEqual(inst.item[0].service.code, "exam") self.assertEqual(inst.item[0].service.system, "http://hl7.org/fhir/ex-serviceproduct") self.assertEqual(inst.item[0].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[0].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[0].type.code, "service") self.assertEqual(inst.item[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].unitPrice.value, 125.0) self.assertEqual(inst.payee.type.code, "provider") self.assertEqual(inst.priority.code, "normal") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the Claim</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type, "institutional") self.assertEqual(inst.use, "complete") def testClaim2(self): inst = self.instantiate_from("claim-example-oral-average.json") self.assertIsNotNone(inst, "Must have instantiated a Claim instance") self.implClaim2(inst) js = inst.as_json() self.assertEqual("Claim", js["resourceType"]) inst2 = claim.Claim(js) self.implClaim2(inst2) def implClaim2(self, inst): self.assertTrue(inst.coverage[0].focal) self.assertEqual(inst.coverage[0].relationship.code, "self") self.assertEqual(inst.coverage[0].sequence, 1) self.assertEqual(inst.created.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.created.as_json(), "2014-08-16") self.assertEqual(inst.diagnosis[0].diagnosis.code, "123456") self.assertEqual(inst.diagnosis[0].sequence, 1) self.assertEqual(inst.id, "100151") self.assertEqual(inst.identifier[0].system, "http://happyvalley.com/claim") self.assertEqual(inst.identifier[0].value, "12346") self.assertEqual(inst.item[0].net.code, "USD") self.assertEqual(inst.item[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].net.value, 135.57) self.assertEqual(inst.item[0].sequence, 1) self.assertEqual(inst.item[0].service.code, "1200") self.assertEqual(inst.item[0].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[0].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[0].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[0].type.code, "service") self.assertEqual(inst.item[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].unitPrice.value, 135.57) self.assertEqual(inst.item[1].bodySite.code, "21") self.assertEqual(inst.item[1].bodySite.system, "http://fdi.org/fhir/oraltoothcodes") self.assertEqual(inst.item[1].net.code, "USD") self.assertEqual(inst.item[1].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[1].net.value, 105.0) self.assertEqual(inst.item[1].sequence, 2) self.assertEqual(inst.item[1].service.code, "21211") self.assertEqual(inst.item[1].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[1].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[1].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[1].subSite[0].code, "L") self.assertEqual(inst.item[1].subSite[0].system, "http://fdi.org/fhir/oralsurfacecodes") self.assertEqual(inst.item[1].type.code, "service") self.assertEqual(inst.item[1].unitPrice.code, "USD") self.assertEqual(inst.item[1].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[1].unitPrice.value, 105.0) self.assertEqual(inst.item[2].bodySite.code, "36") self.assertEqual(inst.item[2].bodySite.system, "http://fdi.org/fhir/oraltoothcodes") self.assertEqual(inst.item[2].detail[0].net.code, "USD") self.assertEqual(inst.item[2].detail[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].detail[0].net.value, 750.0) self.assertEqual(inst.item[2].detail[0].sequence, 1) self.assertEqual(inst.item[2].detail[0].service.code, "27211") self.assertEqual(inst.item[2].detail[0].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[2].detail[0].type.code, "service") self.assertEqual(inst.item[2].detail[0].unitPrice.code, "USD") self.assertEqual(inst.item[2].detail[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].detail[0].unitPrice.value, 750.0) self.assertEqual(inst.item[2].detail[1].net.code, "USD") self.assertEqual(inst.item[2].detail[1].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].detail[1].net.value, 350.0) self.assertEqual(inst.item[2].detail[1].sequence, 2) self.assertEqual(inst.item[2].detail[1].service.code, "lab") self.assertEqual(inst.item[2].detail[1].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[2].detail[1].type.code, "service") self.assertEqual(inst.item[2].detail[1].unitPrice.code, "USD") self.assertEqual(inst.item[2].detail[1].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].detail[1].unitPrice.value, 350.0) self.assertEqual(inst.item[2].net.code, "USD") self.assertEqual(inst.item[2].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].net.value, 1100.0) self.assertEqual(inst.item[2].sequence, 3) self.assertEqual(inst.item[2].service.code, "27211") self.assertEqual(inst.item[2].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[2].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[2].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[2].type.code, "group") self.assertEqual(inst.item[2].unitPrice.code, "USD") self.assertEqual(inst.item[2].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].unitPrice.value, 1100.0) self.assertEqual(inst.payee.type.code, "provider") self.assertEqual(inst.priority.code, "normal") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the Oral Health Claim</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type, "oral") self.assertEqual(inst.use, "complete") def testClaim3(self): inst = self.instantiate_from("claim-example-oral-contained.json") self.assertIsNotNone(inst, "Must have instantiated a Claim instance") self.implClaim3(inst) js = inst.as_json() self.assertEqual("Claim", js["resourceType"]) inst2 = claim.Claim(js) self.implClaim3(inst2) def implClaim3(self, inst): self.assertTrue(inst.coverage[0].focal) self.assertEqual(inst.coverage[0].relationship.code, "self") self.assertEqual(inst.coverage[0].sequence, 1) self.assertEqual(inst.created.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.created.as_json(), "2014-08-16") self.assertEqual(inst.diagnosis[0].diagnosis.code, "123456") self.assertEqual(inst.diagnosis[0].sequence, 1) self.assertEqual(inst.id, "100152") self.assertEqual(inst.identifier[0].system, "http://happyvalley.com/claim") self.assertEqual(inst.identifier[0].value, "12347") self.assertEqual(inst.item[0].net.code, "USD") self.assertEqual(inst.item[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].net.value, 135.57) self.assertEqual(inst.item[0].sequence, 1) self.assertEqual(inst.item[0].service.code, "1200") self.assertEqual(inst.item[0].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[0].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[0].type.code, "service") self.assertEqual(inst.item[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].unitPrice.value, 135.57) self.assertEqual(inst.payee.type.code, "provider") self.assertEqual(inst.priority.code, "normal") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the Oral Health Claim</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type, "oral") self.assertEqual(inst.use, "complete") def testClaim4(self): inst = self.instantiate_from("claim-example-oral-orthoplan.json") self.assertIsNotNone(inst, "Must have instantiated a Claim instance") self.implClaim4(inst) js = inst.as_json() self.assertEqual("Claim", js["resourceType"]) inst2 = claim.Claim(js) self.implClaim4(inst2) def implClaim4(self, inst): self.assertTrue(inst.coverage[0].focal) self.assertEqual(inst.coverage[0].relationship.code, "self") self.assertEqual(inst.coverage[0].sequence, 1) self.assertEqual(inst.created.date, FHIRDate("2015-03-16").date) self.assertEqual(inst.created.as_json(), "2015-03-16") self.assertEqual(inst.diagnosis[0].diagnosis.code, "123457") self.assertEqual(inst.diagnosis[0].diagnosis.system, "http://hl7.org/fhir/icd-10") self.assertEqual(inst.diagnosis[0].sequence, 1) self.assertEqual(inst.id, "100153") self.assertEqual(inst.identifier[0].system, "http://happyvalley.com/claim") self.assertEqual(inst.identifier[0].value, "12355") self.assertEqual(inst.item[0].detail[0].net.code, "USD") self.assertEqual(inst.item[0].detail[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[0].net.value, 1000.0) self.assertEqual(inst.item[0].detail[0].sequence, 1) self.assertEqual(inst.item[0].detail[0].service.code, "ORTHOEXAM") self.assertEqual(inst.item[0].detail[0].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[0].detail[0].type.code, "service") self.assertEqual(inst.item[0].detail[0].type.system, "http://hl7.org/fhir/actinvoicegroupcode") self.assertEqual(inst.item[0].detail[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].detail[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[0].unitPrice.value, 1000.0) self.assertEqual(inst.item[0].detail[1].net.code, "USD") self.assertEqual(inst.item[0].detail[1].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[1].net.value, 1500.0) self.assertEqual(inst.item[0].detail[1].sequence, 2) self.assertEqual(inst.item[0].detail[1].service.code, "ORTHODIAG") self.assertEqual(inst.item[0].detail[1].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[0].detail[1].type.code, "service") self.assertEqual(inst.item[0].detail[1].type.system, "http://hl7.org/fhir/actinvoicegroupcode") self.assertEqual(inst.item[0].detail[1].unitPrice.code, "USD") self.assertEqual(inst.item[0].detail[1].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[1].unitPrice.value, 1500.0) self.assertEqual(inst.item[0].detail[2].net.code, "USD") self.assertEqual(inst.item[0].detail[2].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[2].net.value, 500.0) self.assertEqual(inst.item[0].detail[2].sequence, 3) self.assertEqual(inst.item[0].detail[2].service.code, "ORTHOINITIAL") self.assertEqual(inst.item[0].detail[2].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[0].detail[2].type.code, "service") self.assertEqual(inst.item[0].detail[2].type.system, "http://hl7.org/fhir/actinvoicegroupcode") self.assertEqual(inst.item[0].detail[2].unitPrice.code, "USD") self.assertEqual(inst.item[0].detail[2].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[2].unitPrice.value, 500.0) self.assertEqual(inst.item[0].detail[3].quantity.value, 24) self.assertEqual(inst.item[0].detail[3].sequence, 4) self.assertEqual(inst.item[0].detail[3].service.code, "ORTHOMONTHS") self.assertEqual(inst.item[0].detail[3].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[0].detail[3].type.code, "service") self.assertEqual(inst.item[0].detail[3].type.system, "http://hl7.org/fhir/actinvoicegroupcode") self.assertEqual(inst.item[0].detail[4].net.code, "USD") self.assertEqual(inst.item[0].detail[4].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[4].net.value, 250.0) self.assertEqual(inst.item[0].detail[4].quantity.value, 24) self.assertEqual(inst.item[0].detail[4].sequence, 5) self.assertEqual(inst.item[0].detail[4].service.code, "ORTHOPERIODIC") self.assertEqual(inst.item[0].detail[4].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[0].detail[4].type.code, "service") self.assertEqual(inst.item[0].detail[4].type.system, "http://hl7.org/fhir/actinvoicegroupcode") self.assertEqual(inst.item[0].detail[4].unitPrice.code, "USD") self.assertEqual(inst.item[0].detail[4].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[4].unitPrice.value, 250.0) self.assertEqual(inst.item[0].diagnosisLinkId[0], 1) self.assertEqual(inst.item[0].net.code, "USD") self.assertEqual(inst.item[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].net.value, 9000.0) self.assertEqual(inst.item[0].sequence, 1) self.assertEqual(inst.item[0].service.code, "ORTHPLAN") self.assertEqual(inst.item[0].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[0].serviceDate.date, FHIRDate("2015-05-16").date) self.assertEqual(inst.item[0].serviceDate.as_json(), "2015-05-16") self.assertEqual(inst.item[0].type.code, "group") self.assertEqual(inst.item[0].type.system, "http://hl7.org/fhir/actinvoicegroupcode") self.assertEqual(inst.item[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].unitPrice.value, 9000.0) self.assertEqual(inst.item[1].bodySite.code, "21") self.assertEqual(inst.item[1].bodySite.system, "http://fdi.org/fhir/oraltoothcodes") self.assertEqual(inst.item[1].net.code, "USD") self.assertEqual(inst.item[1].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[1].net.value, 105.0) self.assertEqual(inst.item[1].sequence, 2) self.assertEqual(inst.item[1].service.code, "21211") self.assertEqual(inst.item[1].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[1].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[1].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[1].subSite[0].code, "L") self.assertEqual(inst.item[1].subSite[0].system, "http://fdi.org/fhir/oralsurfacecodes") self.assertEqual(inst.item[1].type.code, "service") self.assertEqual(inst.item[1].unitPrice.code, "USD") self.assertEqual(inst.item[1].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[1].unitPrice.value, 105.0) self.assertEqual(inst.item[2].bodySite.code, "36") self.assertEqual(inst.item[2].bodySite.system, "http://fdi.org/fhir/oraltoothcodes") self.assertEqual(inst.item[2].detail[0].net.code, "USD") self.assertEqual(inst.item[2].detail[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].detail[0].net.value, 750.0) self.assertEqual(inst.item[2].detail[0].sequence, 1) self.assertEqual(inst.item[2].detail[0].service.code, "27211") self.assertEqual(inst.item[2].detail[0].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[2].detail[0].type.code, "service") self.assertEqual(inst.item[2].detail[0].unitPrice.code, "USD") self.assertEqual(inst.item[2].detail[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].detail[0].unitPrice.value, 750.0) self.assertEqual(inst.item[2].detail[1].net.code, "USD") self.assertEqual(inst.item[2].detail[1].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].detail[1].net.value, 350.0) self.assertEqual(inst.item[2].detail[1].sequence, 2) self.assertEqual(inst.item[2].detail[1].service.code, "lab") self.assertEqual(inst.item[2].detail[1].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[2].detail[1].type.code, "service") self.assertEqual(inst.item[2].detail[1].unitPrice.code, "USD") self.assertEqual(inst.item[2].detail[1].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].detail[1].unitPrice.value, 350.0) self.assertEqual(inst.item[2].net.code, "USD") self.assertEqual(inst.item[2].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].net.value, 1100.0) self.assertEqual(inst.item[2].sequence, 3) self.assertEqual(inst.item[2].service.code, "27211") self.assertEqual(inst.item[2].service.system, "http://hl7.org/fhir/oralservicecodes") self.assertEqual(inst.item[2].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[2].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[2].type.code, "group") self.assertEqual(inst.item[2].unitPrice.code, "USD") self.assertEqual(inst.item[2].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[2].unitPrice.value, 1100.0) self.assertEqual(inst.payee.type.code, "provider") self.assertEqual(inst.priority.code, "normal") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the Oral Health Claim</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type, "oral") self.assertEqual(inst.use, "proposed") def testClaim5(self): inst = self.instantiate_from("claim-example-pharmacy.json") self.assertIsNotNone(inst, "Must have instantiated a Claim instance") self.implClaim5(inst) js = inst.as_json() self.assertEqual("Claim", js["resourceType"]) inst2 = claim.Claim(js) self.implClaim5(inst2) def implClaim5(self, inst): self.assertTrue(inst.coverage[0].focal) self.assertEqual(inst.coverage[0].relationship.code, "self") self.assertEqual(inst.coverage[0].sequence, 1) self.assertEqual(inst.created.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.created.as_json(), "2014-08-16") self.assertEqual(inst.diagnosis[0].diagnosis.code, "654456") self.assertEqual(inst.diagnosis[0].sequence, 1) self.assertEqual(inst.id, "760150") self.assertEqual(inst.identifier[0].system, "http://happypharma.com/claim") self.assertEqual(inst.identifier[0].value, "7612345") self.assertEqual(inst.item[0].net.code, "USD") self.assertEqual(inst.item[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].net.value, 60.0) self.assertEqual(inst.item[0].sequence, 1) self.assertEqual(inst.item[0].service.code, "smokecess") self.assertEqual(inst.item[0].service.system, "http://hl7.org/fhir/ex-pharmaservice") self.assertEqual(inst.item[0].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[0].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[0].type.code, "service") self.assertEqual(inst.item[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].unitPrice.value, 60.0) self.assertEqual(inst.payee.type.code, "provider") self.assertEqual(inst.priority.code, "stat") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the Pharmacy Claim</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type, "pharmacy") self.assertEqual(inst.use, "complete") def testClaim6(self): inst = self.instantiate_from("claim-example-professional.json") self.assertIsNotNone(inst, "Must have instantiated a Claim instance") self.implClaim6(inst) js = inst.as_json() self.assertEqual("Claim", js["resourceType"]) inst2 = claim.Claim(js) self.implClaim6(inst2) def implClaim6(self, inst): self.assertTrue(inst.coverage[0].focal) self.assertEqual(inst.coverage[0].relationship.code, "self") self.assertEqual(inst.coverage[0].sequence, 1) self.assertEqual(inst.created.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.created.as_json(), "2014-08-16") self.assertEqual(inst.diagnosis[0].diagnosis.code, "654456") self.assertEqual(inst.diagnosis[0].sequence, 1) self.assertEqual(inst.id, "860150") self.assertEqual(inst.identifier[0].system, "http://happypdocs.com/claim") self.assertEqual(inst.identifier[0].value, "8612345") self.assertEqual(inst.item[0].net.code, "USD") self.assertEqual(inst.item[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].net.value, 75.0) self.assertEqual(inst.item[0].sequence, 1) self.assertEqual(inst.item[0].service.code, "exam") self.assertEqual(inst.item[0].service.system, "http://hl7.org/fhir/ex-serviceproduct") self.assertEqual(inst.item[0].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[0].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[0].type.code, "service") self.assertEqual(inst.item[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].unitPrice.value, 75.0) self.assertEqual(inst.payee.type.code, "provider") self.assertEqual(inst.priority.code, "normal") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the Claim</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type, "professional") self.assertEqual(inst.use, "complete") def testClaim7(self): inst = self.instantiate_from("claim-example-vision-glasses.json") self.assertIsNotNone(inst, "Must have instantiated a Claim instance") self.implClaim7(inst) js = inst.as_json() self.assertEqual("Claim", js["resourceType"]) inst2 = claim.Claim(js) self.implClaim7(inst2) def implClaim7(self, inst): self.assertTrue(inst.coverage[0].focal) self.assertEqual(inst.coverage[0].relationship.code, "self") self.assertEqual(inst.coverage[0].sequence, 1) self.assertEqual(inst.created.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.created.as_json(), "2014-08-16") self.assertEqual(inst.diagnosis[0].diagnosis.code, "654321") self.assertEqual(inst.diagnosis[0].sequence, 1) self.assertEqual(inst.id, "660151") self.assertEqual(inst.identifier[0].system, "http://happysight.com/claim") self.assertEqual(inst.identifier[0].value, "6612346") self.assertEqual(inst.item[0].detail[0].net.code, "USD") self.assertEqual(inst.item[0].detail[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[0].net.value, 100.0) self.assertEqual(inst.item[0].detail[0].sequence, 1) self.assertEqual(inst.item[0].detail[0].service.code, "frame") self.assertEqual(inst.item[0].detail[0].service.system, "http://hl7.org/fhir/ex-visionservice") self.assertEqual(inst.item[0].detail[0].type.code, "product") self.assertEqual(inst.item[0].detail[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].detail[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[0].unitPrice.value, 100.0) self.assertEqual(inst.item[0].detail[1].net.code, "USD") self.assertEqual(inst.item[0].detail[1].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[1].net.value, 100.0) self.assertEqual(inst.item[0].detail[1].quantity.value, 2) self.assertEqual(inst.item[0].detail[1].sequence, 2) self.assertEqual(inst.item[0].detail[1].service.code, "lens") self.assertEqual(inst.item[0].detail[1].service.system, "http://hl7.org/fhir/ex-visionservice") self.assertEqual(inst.item[0].detail[1].type.code, "product") self.assertEqual(inst.item[0].detail[1].unitPrice.code, "USD") self.assertEqual(inst.item[0].detail[1].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[1].unitPrice.value, 50.0) self.assertEqual(inst.item[0].detail[2].factor, 0.07) self.assertEqual(inst.item[0].detail[2].net.code, "USD") self.assertEqual(inst.item[0].detail[2].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[2].net.value, 14.0) self.assertEqual(inst.item[0].detail[2].sequence, 3) self.assertEqual(inst.item[0].detail[2].service.code, "fst") self.assertEqual(inst.item[0].detail[2].service.system, "http://hl7.org/fhir/ex-visionservice") self.assertEqual(inst.item[0].detail[2].type.code, "tax") self.assertEqual(inst.item[0].detail[2].unitPrice.code, "USD") self.assertEqual(inst.item[0].detail[2].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].detail[2].unitPrice.value, 200.0) self.assertEqual(inst.item[0].net.code, "USD") self.assertEqual(inst.item[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].net.value, 214.0) self.assertEqual(inst.item[0].sequence, 1) self.assertEqual(inst.item[0].service.code, "glasses") self.assertEqual(inst.item[0].service.system, "http://hl7.org/fhir/ex-visionservice") self.assertEqual(inst.item[0].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[0].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[0].type.code, "group") self.assertEqual(inst.item[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].unitPrice.value, 214.0) self.assertEqual(inst.payee.type.code, "provider") self.assertEqual(inst.priority.code, "normal") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the Vision Claim for Glasses</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type, "vision") self.assertEqual(inst.use, "complete") def testClaim8(self): inst = self.instantiate_from("claim-example-vision.json") self.assertIsNotNone(inst, "Must have instantiated a Claim instance") self.implClaim8(inst) js = inst.as_json() self.assertEqual("Claim", js["resourceType"]) inst2 = claim.Claim(js) self.implClaim8(inst2) def implClaim8(self, inst): self.assertTrue(inst.coverage[0].focal) self.assertEqual(inst.coverage[0].relationship.code, "self") self.assertEqual(inst.coverage[0].sequence, 1) self.assertEqual(inst.created.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.created.as_json(), "2014-08-16") self.assertEqual(inst.diagnosis[0].diagnosis.code, "654321") self.assertEqual(inst.diagnosis[0].sequence, 1) self.assertEqual(inst.id, "660150") self.assertEqual(inst.identifier[0].system, "http://happysight.com/claim") self.assertEqual(inst.identifier[0].value, "6612345") self.assertEqual(inst.item[0].net.code, "USD") self.assertEqual(inst.item[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].net.value, 80.0) self.assertEqual(inst.item[0].sequence, 1) self.assertEqual(inst.item[0].service.code, "exam") self.assertEqual(inst.item[0].service.system, "http://hl7.org/fhir/ex-visionservice") self.assertEqual(inst.item[0].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[0].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[0].type.code, "service") self.assertEqual(inst.item[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].unitPrice.value, 80.0) self.assertEqual(inst.payee.type.code, "provider") self.assertEqual(inst.priority.code, "normal") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the Vision Claim</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type, "vision") self.assertEqual(inst.use, "complete") def testClaim9(self): inst = self.instantiate_from("claim-example.json") self.assertIsNotNone(inst, "Must have instantiated a Claim instance") self.implClaim9(inst) js = inst.as_json() self.assertEqual("Claim", js["resourceType"]) inst2 = claim.Claim(js) self.implClaim9(inst2) def implClaim9(self, inst): self.assertTrue(inst.coverage[0].focal) self.assertEqual(inst.coverage[0].relationship.code, "self") self.assertEqual(inst.coverage[0].sequence, 1) self.assertEqual(inst.created.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.created.as_json(), "2014-08-16") self.assertEqual(inst.diagnosis[0].diagnosis.code, "123456") self.assertEqual(inst.diagnosis[0].sequence, 1) self.assertEqual(inst.id, "100150") self.assertEqual(inst.identifier[0].system, "http://happyvalley.com/claim") self.assertEqual(inst.identifier[0].value, "12345") self.assertEqual(inst.item[0].net.code, "USD") self.assertEqual(inst.item[0].net.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].net.value, 135.57) self.assertEqual(inst.item[0].sequence, 1) self.assertEqual(inst.item[0].service.code, "1200") self.assertEqual(inst.item[0].serviceDate.date, FHIRDate("2014-08-16").date) self.assertEqual(inst.item[0].serviceDate.as_json(), "2014-08-16") self.assertEqual(inst.item[0].type.code, "service") self.assertEqual(inst.item[0].unitPrice.code, "USD") self.assertEqual(inst.item[0].unitPrice.system, "urn:std:iso:4217") self.assertEqual(inst.item[0].unitPrice.value, 135.57) self.assertEqual(inst.payee.type.code, "provider") self.assertEqual(inst.priority.code, "normal") self.assertEqual(inst.text.div, "<div>A human-readable rendering of the Oral Health Claim</div>") self.assertEqual(inst.text.status, "generated") self.assertEqual(inst.type, "oral") self.assertEqual(inst.use, "complete")
6df1b6d43dfd9b7d2c8c66f79844bb9990260bb6
863a420520418f4b9a1fa88219252772df6ead25
/box_generator.py
601b5633468a5765d865452365e1dc4013d7338e
[]
no_license
orborde/optimizers-curse
25693b4fdf8d34137f2140c2e0779be0dfefca29
93d16f2e4ea4b1a893d3dedd4fdf1827c383f55e
refs/heads/master
2021-04-30T16:37:46.046514
2017-01-26T03:14:36
2017-01-26T03:14:36
80,079,399
1
0
null
null
null
null
UTF-8
Python
false
false
1,063
py
# Boxes have labels from 0 to 20. We want the label to accurately # report the expected value of the box. # # Turns out, this is actually kinda tricky. LABELS = range(0, 20+1) ERROR_MAX = 5 # For each label, generate boxes of the same error size in pairs (one # high, and one low) to keep the EV for that label symmetric. BOXES = [] for l in LABELS: # Generate a zero-error box. BOXES.append( (l, l) ) # Generate error-offset pairs. for e in xrange(1, ERROR_MAX + 1): # You can't put negative dollars in the box, though. if e > l: continue BOXES.append( (l, l - e) ) BOXES.append( (l, l + e) ) def mean(arr): return sum(arr) / float(len(arr)) if __name__ == '__main__': # Make sure that the EV actually matches the label for all boxes. import collections outcomes = collections.defaultdict(list) for label, actual in BOXES: outcomes[label].append(actual) for label in sorted(outcomes.keys()): values = outcomes[label] assert label == mean(values)
dd452cb832b730c1ce93788b8274c1a6b799f5f4
9b2b14bc68af07d8640660aedc559e852e41deaf
/django_admin_shell/settings.py
9d8ffafcfb45dd22d337218a34f06794d38f9c54
[ "MIT" ]
permissive
luoshuihudie/django-admin-shell
872e61bd46dfa9619223dbaf6c38cf068c214ce4
62c09e259c6e8e07b2a69f08fccebebd06605d07
refs/heads/master
2022-09-29T20:06:12.262415
2020-06-08T06:26:47
2020-06-08T06:26:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
650
py
from django.conf import settings def from_settings_or_default(name, default): """Get attribute from settings by name or return default value""" return getattr(settings, name, default) ADMIN_SHELL_ENABLE = from_settings_or_default('ADMIN_SHELL_ENABLE', True) ADMIN_SHELL_ONLY_DEBUG_MODE = from_settings_or_default('ADMIN_SHELL_ONLY_DEBUG_MODE', True) ADMIN_SHELL_ONLY_FOR_SUPERUSER = from_settings_or_default('ADMIN_SHELL_ONLY_FOR_SUPERUSER', True) ADMIN_SHELL_OUTPUT_SIZE = from_settings_or_default('ADMIN_SHELL_OUTPUT_SIZE', 250) ADMIN_SHELL_SESSION_KEY = from_settings_or_default('ADMIN_SHELL_SESSION_KEY', 'django_admin_shell_output')
479d22e2a90d378aefcde1622fcf3f9b20defb3b
6f407956c4eb87d46c35776a61e1d788ac148f26
/Scripts/__imageUtils/setup.py
69986d27b814d91939cc0ac5d9d0a664260551bc
[]
no_license
decobeirne/collab-rob-fwork
3b99402132d49568ffb745732d10530a80575fb7
527c9f09c8a49af28a33fe2dccffd0ffa9bbd547
refs/heads/master
2021-01-01T18:18:36.408989
2013-11-24T20:13:16
2013-11-24T20:13:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
# Run "setup.py install" or "setup.py --help" from distutils.core import setup, Extension imageUtils_mod = Extension('imageUtils', sources = ['imageUtils.c']) setup(name = "imageUtils", version = "1.0", description = "A module providing functionality to process image data for the purpose of training an object detection model.", ext_modules = [imageUtils_mod])
e8158614834d793346fa04dcca631a7b03ad848b
061be453f57c13c7d6d94909119874727efc45cf
/algorithm_puzzles/book1/23.py
043cc9dc18afedc95c2b6822509592d99e56d0b0
[]
no_license
woodchuckchoi/algorithms
e600407d038f6fa6bfbfc3fc7d43ec7ff6677dc6
9998219a0b1ba2c612814c13f3b0a035621634f6
refs/heads/master
2022-12-12T11:38:39.257936
2020-09-14T16:02:15
2020-09-14T16:02:15
295,451,666
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
memo = {} def game(coin, depth): key = (coin, depth) if key in memo: return memo[key] if coin == 0: return 0 if depth == 0: return 1 win = game(coin + 1, depth - 1) lose = game(coin - 1, depth - 1) memo[key] = win + lose return memo[key] print(game(10, 24))
50f303a45e9e71e6835653f8748e6342d5a399a7
76dacf3bfef69c72da228bb4242194dd042b8b3f
/jasmin.py
7c69f1198c880e1bdaf169b4a09223a43f28a3a2
[]
no_license
lillamy2012/scripts
fa64bcfbfafdd0e6ae4b7af482f599ea2d37625a
621c7606e07d21348854665a79d451e01930520f
refs/heads/master
2021-01-22T12:36:55.260771
2018-02-15T10:42:25
2018-02-15T10:42:25
102,352,610
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
import os import sys infile = open('../Araport11_jasmin.cumulated_incl200up.downstream.bed') for line in infile: a=str.split(line) if a[3] == "Upstream_200bp": a[2]=int(a[1])+199 if a[4] == "-": a[3]= "Downstream_200bp" elif a[3] == "Downstream_200bp": a[1]=int(a[2])-199 if a[4] == "-": a[3]= "Upstream_200bp" print('\t'.join(map(str,a)))
655712c48b8e3269f7ded7e0a10596e8d7ca99d6
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_333/ch158_2020_06_22_14_11_49_882526.py
35e060ff4493472da35d6d453c952ee5f1ee6e52
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
with open('texto.txt', 'r') as arquivo: conteudo = arquivo.read() lista_letras = conteudo.split() print(len(lista_letras))
8cd8751626def413a2d50c0ebdd69cd028aa5d1b
c4b4a7c4a3d5df779d9926e5e143070b2244c234
/TerraSible/scripts/run_init.py
d1c60eb11c83f28a03977b7c46fe10104c491744
[]
no_license
ConductorLabsManha/Sprint01
03f5f45407e46205589a7c6dfe5172e46618030c
63fde6990532138a5b2fb55fbc53253a6352342a
refs/heads/master
2020-04-10T17:29:49.220166
2018-12-19T23:49:05
2018-12-19T23:49:05
161,176,027
0
1
null
null
null
null
UTF-8
Python
false
false
1,366
py
import subprocess import os os.system("rm -rf ~/.aws") os.system("cp --force -r ../utils/aws ~/") os.system("mv ~/aws ~/.aws") proc = subprocess.Popen(["aws ec2 describe-instances --query 'Reservations[*].Instances[*].PublicIpAddress' --output=text --profile ellan"], stdout=subprocess.PIPE, shell=True) (out, err) = proc.communicate() out = str(out) out = out.replace("\\n", ",") out = out[:len(out)-2] out = out.replace("b'", "") ips = out.split(",") print ("program output:", ips) os.system("rm -rf ~/.ssh/ellan.pem") os.system('cp --force ../utils/ssh/ellan.pem ~/.ssh') os.system('chmod 400 ~/.ssh/ellan.pem') os.system('rm -rf ~/.ansible-config') os.system('cp --force -r ../utils/ansible-config ~/') os.system('mv --force ~/ansible-config ~/.ansible-config') os.system('rm -rf ~/.ansible.cfg') os.system('cp --force -r ../utils/ansible-config/ansible.cfg ~/') os.system('mv --force ~/ansible.cfg ~/.ansible.cfg') fl = open('hosts', 'a') fl.write('[gitlab]\n') fl.write(ips[0]+'\n') fl.write('[gitlab:vars]\n') fl.write('ansible_ssh_user=centos\n') fl.write('ansible_ssh_private_key_file = ~/.ssh/ellan.pem') fl.write('\n\n') fl.write('[rancher]\n') fl.write(ips[1]+'\n') fl.write('[rancher:vars]\n') fl.write('ansible_ssh_user=centos\n') fl.write('ansible_ssh_private_key_file = ~/.ssh/ellan.pem') os.system('mv hosts ~/.ansible-config/hosts')
3be150e918d31dbb4cc65fb5d2b4cba4f94120b7
d2e69d4d3d1e11a87f5a377e4a423422fe0a7058
/ProxyServerSpiders/ProxyServerSpiders/pipelines.py
856fde62341fc0d507149b6748414b38ec27869e
[]
no_license
oJacker/_python
6f30dd4a60c1593d27c00ac485163fc0ba77dd8c
8086d0cd78e156abfff9819a56384149dd431c56
refs/heads/master
2021-05-06T03:13:29.167281
2018-02-01T09:41:42
2018-02-01T09:41:42
114,827,084
1
0
null
null
null
null
UTF-8
Python
false
false
298
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html class ProxyserverspidersPipeline(object): def process_item(self, item, spider): return item
8fac8218dde5732dcaccb6b65cf7d70e11ed6c6a
03ec5158c12d7e4042936b084cbc7e2a266b3168
/python/com/jpmanjarres/hackerrank/warmup/CompareTheTriplets.py
d79cb80570ff0efdb7f86f31056613951c49e435
[]
no_license
paul-manjarres/coding-exercises
063271dc89c4477df6f2cdd4b058af84de8f2892
f9e1d53d1247dde6751baaf2e188495e00bb8129
refs/heads/master
2022-12-16T02:37:40.510609
2022-11-28T00:01:42
2022-11-28T00:01:42
46,098,833
0
0
null
2020-04-25T03:53:29
2015-11-13T03:56:11
Java
UTF-8
Python
false
false
278
py
a = list(map(int, input().strip().split(" "))) b = list(map(int, input().strip().split(" "))) a_points=0 b_points=0 for i in range(len(a)): if a[i] > b[i]: a_points=a_points+1 elif a[i] < b[i]: b_points=b_points+1 print("%d %d" % (a_points, b_points) )
dc3f11f51eb8421fb823f581064858c0c963d173
4dcfaa112a5bcb888bcd2523ab76e57b6ab0d3b3
/server/jotdown/api/migrations/0002_auto_20190309_1945.py
5582d5742bfc8ca2400702987ea097965cf3d04c
[]
no_license
eastend-street/jotdown
ae466181c1358d10b70e62948faf7ae038c62c98
b80175fb528c80d8a82062e7f073c646bff40923
refs/heads/master
2023-03-11T06:52:25.487151
2022-12-08T09:12:31
2022-12-08T09:12:31
161,026,871
9
1
null
2023-03-04T17:15:42
2018-12-09T10:12:11
Python
UTF-8
Python
false
false
914
py
# Generated by Django 2.1.7 on 2019-03-09 19:45 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('api', '0001_initial'), ] operations = [ migrations.AddField( model_name='bookmark', name='User', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, related_name='bookmarks', to='api.User'), ), migrations.AddField( model_name='bookmark', name='created_at', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='bookmark', name='updated_at', field=models.DateTimeField(auto_now=True), ), ]
7c75bdd84cea9c5e7b3aac6e40ef9b847fcf6689
540f3ad8571aeeaf5b9e073aed03ec44928848b5
/2sem/dz2/2.4.py
120fdc9116aecb1f97f875079a2fd7bee5142e2a
[]
no_license
Hecomer/2s
decb85faab54ab308893b3e7b268a79b2620bbfe
0914a60cd1ea9bbae128f761b1dd0fd96c8cb96d
refs/heads/master
2023-04-09T20:29:10.288516
2021-04-26T18:06:24
2021-04-26T18:06:24
361,829,799
0
0
null
null
null
null
UTF-8
Python
false
false
289
py
def swap(first, second): first[:], second[:] = second[:], first[:] first = [1, 2, 3] second = [4, 5, 6] first_content = first[:] second_content = second[:] swap(first, second) print(first, second_content, first == second_content) print(second, first_content, second == first_content)
c185b8cb8f190c9a29aa87446ed91c81c412b885
d63da6a2c531bb675e898f09a25b551f97b13ac5
/twitter_dashboard/tweet_cleaning.py
965748ffbd5d9385a286209e434967e32456d901
[]
no_license
AiswaryaSrinivas/DeepDiveData
df78c2cefe75ada7a069a3dff36ee074dea1378b
1abd2cbfde593e80aa8664e548c3c9366b37ab70
refs/heads/master
2023-07-25T17:10:29.104231
2020-03-23T09:12:35
2020-03-23T09:12:35
230,627,612
0
0
null
2023-07-06T21:36:03
2019-12-28T15:26:55
Python
UTF-8
Python
false
false
3,195
py
import pandas as pd import numpy as np from nltk.sentiment.util import * from nltk import tokenize from textblob import TextBlob import sys import string from nltk.corpus import stopwords from nltk.stem import PorterStemmer STOPWORDS=stopwords.words("english") STOPWORDS.append("with") ps = PorterStemmer() sys.path.append("TwitterEmotion/") from TwitterEmotion.emotion_predictor import EmotionPredictor import TwitterEmotion ## Function to remove URL from tweets def removeURL(text,replace_text=""): re_url="http(\S+)*|\S+\.com\S+|bit.ly\S+|\S+utm_source\S+|bit\.ly(\S+)*|ow\.ly(\S+)*" #\S+ matched all non-whitespace characters return re.sub(re_url,replace_text,text) ## Remove any kind of user mention from tweet def removeUserMentions(text,replace_text=""): re_usermentions="^@\w{1,15}|@\w{1,15}" return re.sub(re_usermentions,replace_text,text) ## Remove any HashTag present in the tweet def removeHashTag(text,replace_text=""): re_hashtag="#\S+" return re.sub(re_hashtag,replace_text,text) def getSenti(polarity): if polarity>0: return "positive" if polarity<0: return "negative" return "neutral" import string import re from nltk.stem import PorterStemmer def clean_text(text): ps=PorterStemmer() text = text.translate(str.maketrans({key: " {0} ".format(key) for key in string.punctuation})) #remove extra white space text_cleaned="".join([x for x in text if x not in string.punctuation]) text_cleaned=re.sub(' +', ' ', text_cleaned) text_cleaned=re.sub(r'[^\x00-\x7F]+',' ', text_cleaned) text_cleaned=text_cleaned.lower() tokens=text_cleaned.split(" ") tokens=[token for token in tokens if token not in STOPWORDS] text_cleaned=" ".join([ps.stem(token) for token in tokens]) return text_cleaned def getEmotionModel(method="ekman",setting="mc"): return EmotionPredictor(classification=method, setting=setting) def detectEmotion(tweet,model): return model.predict_classes([tweet])['Emotion'].tolist()[0] if __name__ == '__main__': tweets=pd.read_csv("/Users/aiswarya/DataScienceArena/deep_dive_analytics/twitter_dashboard/TweetScraper-master/CHAPPAK_DATA/Tweets.csv",encoding="utf-8") tweets['cleaned_tweet']=tweets['text'].apply(lambda x:removeUserMentions(x)) tweets['cleaned_tweet']=tweets['cleaned_tweet'].apply(lambda x:removeURL(x)) tweets['cleaned_tweet']=tweets['cleaned_tweet'].apply(lambda x:removeHashTag(x)) tweets['score']=tweets['cleaned_tweet'].apply(lambda x:TextBlob(x).sentiment) tweets['polarity']=tweets['score'].apply(lambda x:x.polarity) tweets['subjectivity']=tweets['score'].apply(lambda x:x.subjectivity) tweets['sentiment']=tweets['polarity'].apply(lambda x:getSenti(x)) tweets['cleaned_tweet']=tweets['cleaned_tweet'].apply(lambda x:clean_text(x)) print("Detecting Moods") model=getEmotionModel() tweets['ekman_mood']=tweets['text'].apply(lambda x:detectEmotion(x,model)) model_2=getEmotionModel(method="plutchik") tweets['plutchik_mood']=tweets['text'].apply(lambda x:detectEmotion(x,model_2)) tweets.to_csv("Chhapak_Tweets_Sentiment.csv",index=False,encoding="utf-8")
a63ced3a2c446078eb60febe8ae557dbda9adcaa
63c91b089638880151a8a281c109aeadc2b55961
/evaluation_annotation/process_cf.py
570d7e5f387906be9c3112c93c884bbaeba56058
[ "Apache-2.0" ]
permissive
jhlau/deepspeare
945c1ab4890421c6babbbaaf97bfd737542686ca
08bd93ee5b023f6097261a51845929deb86296cd
refs/heads/master
2022-10-17T06:18:05.099040
2022-09-30T00:56:33
2022-09-30T00:56:33
132,543,358
74
26
null
null
null
null
UTF-8
Python
false
false
3,808
py
""" Author: Jey Han Lau Date: Oct 17 """ import argparse import sys import unicodecsv as csv import cPickle as pickle from collections import defaultdict import numpy as np import operator #parser arguments desc = "Process CF results to compute accuracy" parser = argparse.ArgumentParser(description=desc) #arguments parser.add_argument("-r", "--result-csv", required=True, help="csv file containing CF results") parser.add_argument("-m", "--model-pickle", help="pickle file containing model and IDs") args = parser.parse_args() #parameters debug = False golden_col = 11 judgement_col = 1 id1_col = 5 id2_col = 6 worker_col = 17 ########### #functions# ########### def get_model_names(row, model): selected, unselected = "", "" if row[judgement_col] == "Poem 1": selected = row[id1_col] unselected = row[id2_col] else: selected = row[id2_col] unselected = row[id1_col] selected_mname = (selected if model == None else model[int(selected)]) unselected_mname = (unselected if model == None else model[int(unselected)]) return selected_mname, unselected_mname def get_score(selected_mname, unselected_mname): if selected_mname != unselected_mname: if selected_mname == "real": return unselected_mname, 1.0 else: return selected_mname, 0.0 else: return None, None ###### #main# ###### def main(): #load ids and model names model = None if args.model_pickle: model = pickle.load(open(args.model_pickle)) if debug: print model #first parse to find perfect score worker (perfect score worker might be cheating) worker_accs = defaultdict(list) for row in csv.reader(open(args.result_csv), encoding="utf-8"): if row[golden_col] != "false": continue worker_id = (row[worker_col], row[worker_col+1]) selected_mname, unselected_mname = get_model_names(row, model) key, score = get_score(selected_mname, unselected_mname) if key != None: worker_accs[worker_id].append(score) #remove annotations from perfect workers perfect_workers = set([]) worker_meanacc = {} country_count = (defaultdict(int), defaultdict(int)) for k, v in sorted(worker_accs.items()): worker_meanacc[k] = np.mean(v) if np.mean(v) == -1.0: perfect_workers.add(k) country_count[1][k[1]] += 1 country_count[0][k[1]] += 1 #print "Number of perfect workers =", len(perfect_workers), "/", len(worker_accs) if debug: print "\nall country count =", sorted(country_count[0].items(), key=operator.itemgetter(1), reverse=True) print "\nperfect country count =", sorted(country_count[1].items(), key=operator.itemgetter(1), reverse=True) for k, v in sorted(worker_meanacc.items(), key=operator.itemgetter(1), reverse=True): print k, v #parse results csv accs = defaultdict(list) for row in csv.reader(open(args.result_csv), encoding="utf-8"): if row[golden_col] != "false": continue worker_id = (row[worker_col], row[worker_col+1]) if worker_id in perfect_workers: continue selected_mname, unselected_mname = get_model_names(row, model) key, score = get_score(selected_mname, unselected_mname) if key != None: accs[key].append(score) if debug: print "\n", row[0], ":", row[id1_col], "vs.", row[id2_col] print "Selected ID =", selected_mname, score #print mean accuracy for k in accs.keys(): print "Mean Accuracy: Real vs.", k, "=", np.mean(accs[k]), "(", len(accs[k]), ")" if __name__ == "__main__": main()
c438f8a8958392194e5ec8f5b040dc6b9fb93094
2c3b090bc2d6c5d2ca2b86f132b950f250ce5c02
/tutorials/evaluating_model/tutorial_four.py
10e8f4cc15ccc2e7ed8ae4f1b4cb4b767121cb70
[ "MIT" ]
permissive
InspectorDidi/CausalWorld
b8f7096f0cb623d5c8b7f6040c830f6ef07b4127
548e66c36fba01125cf6290992dfd833ae42709b
refs/heads/master
2022-12-26T23:37:15.568356
2020-10-12T08:02:32
2020-10-12T08:02:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,311
py
""" This tutorial shows you how to use a controller and evaluate it afterwards using an evaluation pipeline compromised of different evaluation protocols. """ from causal_world.evaluation.evaluation import EvaluationPipeline import causal_world.evaluation.protocols as protocols import causal_world.evaluation.visualization.visualiser as vis log_relative_path = './reacher_controller_evaluation' def control_policy(env): def _control_policy(obs): return \ env.get_robot().get_joint_positions_from_tip_positions( obs[-9:], obs[1:10]) return _control_policy def evaluate_controller(): # pass the different protocols you'd like to evaluate in the following task_params = dict() task_params['task_generator_id'] = 'reaching' world_params = dict() world_params['normalize_observations'] = False world_params['normalize_actions'] = False evaluator = EvaluationPipeline(evaluation_protocols=[ protocols.ProtocolGenerator(name= 'goal_poses_space_a', first_level_regex= 'goal_.*', second_level_regex= 'cylindrical_position', variable_space='space_a'), protocols.ProtocolGenerator(name= 'goal_poses_space_b', first_level_regex= 'goal_.*', second_level_regex= 'cylindrical_position', variable_space='space_b') ], task_params=task_params, world_params=world_params, visualize_evaluation=True) controller_fn = control_policy(evaluator.evaluation_env) # For demonstration purposes we evaluate the policy on 10 per # cent of the default number of episodes per protocol scores = evaluator.evaluate_policy(controller_fn, fraction=0.02) evaluator.save_scores(log_relative_path) experiments = {'reacher_model': scores} vis.generate_visual_analysis(log_relative_path, experiments=experiments) print(scores) if __name__ == '__main__': evaluate_controller()
9b035474444b9df6e18203574899dd3bc88ed562
917f2a06cf57e2ca5f0d8f8dab3c363400f1396d
/utils/extract_name_id.py
5926ffdc26c646fea3de6eaed89ca5fb9bf00f3e
[]
no_license
hammer-wang/file_processing
b6719d6b62a9396a7da994db087d9f85ab554435
223f85524a1eba48921b9d85e5349066100d34ad
refs/heads/master
2021-01-14T04:32:53.194223
2020-09-24T15:53:26
2020-09-24T15:53:26
242,601,415
0
0
null
null
null
null
UTF-8
Python
false
false
3,026
py
""" This script renamed the .ipynb files with the format [uniquename]_[umid].ipynb and put them in to a new dir. Author: Haozhu Wang ([email protected]) Date: 2020-02-21 Dependency: -- tqdm -- jupyter nbconvert 5.6.0 (this should come with jupyter lab) Example: python extract_name_id.py --source ~/Documents/EECS504_files/psets/pset1/submissions --target ~/Documents/EECS504_files/psets/pset1/submissions_renamed python extract_name_id.py --source ~/Documents/EECS504_files/psets/pset5/submissions --target ~/Documents/EECS504_files/psets/pset5/submissions_renamed python extract_name_id.py --source ~/Documents/EECS504_files/psets/pset6/submissions --target ~/Documents/EECS504_files/psets/pset6/submissions_renamed """ # python extract_name_id.py --source ~/Documents/EECS504_files/psets/pset6/submissions --target ~/Documents/EECS504_files/psets/pset6/submissions_renamed # python extract_name_id.py --source ~/Documents/EECS504_files/psets/pset7/submissions --target ~/Documents/EECS504_files/psets/pset7/submissions_renamed # python extract_name_id.py --source ~/Documents/EECS504_files/psets/pset8/submissions --target ~/Documents/EECS504_files/psets/pset8/submissions_renamed # python extract_name_id.py --source ~/Documents/EECS504_files/psets/pset9/submissions --target ~/Documents/EECS504_files/psets/pset9/submissions_renamed # python extract_name_id.py --source ~/Documents/EECS504_files/psets/pset10/submissions --target ~/Documents/EECS504_files/psets/pset10/submissions_renamed import os import tqdm import subprocess import re if __name__ == "__main__": import argparse argparser = argparse.ArgumentParser() argparser.add_argument('--source', type=str, help='where to extrac the ipynbs', default=None) argparser.add_argument('--target', type=str, help='where to store the converted pdfs', default=None) argparser.add_argument('--smoke_test', action='store_true') args = argparser.parse_args() source = args.source target = args.target files = os.listdir(source) if ".DS_Store" in files: files.remove(".DS_Store") print('Total number of ipynb files {}'.format(len(files))) if not os.path.exists(target): os.mkdir(target) if args.smoke_test: files = files[:3] for file in tqdm.tqdm(files): if "LATE" in file: file_ = '_'.join(file.split('_')[4:6]) elif "EECS" in file: file_ = file elif len(file.split('_')) <= 4: file_ = file else: file_ = '_'.join(file.split('_')[3:5]) # print edge case if ".ipynb" == file_: print(file) if '.ipynb' not in file_: file_ += '.ipynb' # remove version if '-' in file_: file_ = re.sub(r"-\d", "", file_) cmd = 'cp {} {}'.format(os.path.join(source, file), os.path.join(target, file_)).split(' ') # print(cmd) command_run = subprocess.call(cmd) if command_run: print(cmd)
da71f5d45b34ab62983eb0904dc4d8d27ccc828d
c8f820edc0c480082ac57306b9a33ad8570203ba
/keras/0723/keras06_RMSE.py
5cfd8d2cfd1f36f04aa731f2f1569cdd8711b82d
[]
no_license
JIN-YEONG/keras_example
4f9224158babb2224053377e511695a2fea64ad1
97b279dbf2ba7a16ce93abca55711fa9b2cce252
refs/heads/master
2022-02-21T22:01:37.110003
2019-09-15T23:59:20
2019-09-15T23:59:20
198,376,897
0
0
null
null
null
null
UTF-8
Python
false
false
2,042
py
# 1. 데이터 import numpy as np x_train = np.array([1,2,3,4,5,6,7,8,9,10]) # 10행 1열의 데이터 y_train = np.array([1,2,3,4,5,6,7,8,9,10]) x_test = np.array([11,12,13,14,15,16,17,18,19,20]) y_test = np.array([11,12,13,14,15,16,17,18,19,20]) # x3 = np.array([101,102,103,104,105,106]) # 6행 1열의 데이터 # x4 = np.array(range(30,50)) # 30~49값 # 딥러닝의 데이터는 열이 우선된다(행은 무시) # input.shape(a,b) => 데이터의 행,열의 표현 # => a -> 행, b-> 열 # 2. 모델 구성 from keras.models import Sequential from keras.layers import Dense model = Sequential() # 순서대로 내려가는 모델 # 노드가 5개, 3개, 4개인 레이어 3개를 가진 모델 # model.add(Dense(5, input_dim=1, activation='relu')) # input_dim = 입력 데이터의 컬넘의 개수 # 데이터의 행과 상관없이 열의 개수만 맞아도 데이터를 넣을 수 있다. model.add(Dense(21, input_shape=(1,), activation='relu')) # input_shape = 데이터의 shape를 기준으로 입력 model.add(Dense(7)) model.add(Dense(5)) model.add(Dense(1)) # model.summary() # 3. 훈련 model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) # mse = mean squared error 평균 제곱 에러 # model.fit(x,y,epochs=100, batch_size = 3) model.fit(x_train,y_train,epochs=1000) # 4. 평가 예측 lose,acc = model.evaluate(x_test,y_test,batch_size=1) print('acc: ',acc) # acc는 회귀모델에서만 사용할 수 있다. y_predict = model.predict(x_test) # 모델의 예측값 print(y_predict) # RMSE 구하기 from sklearn.metrics import mean_squared_error def RMSE(y_test, y_predict): # 평균 제곱근 오차 return np.sqrt(mean_squared_error(y_test, y_predict)) # root(mean((y_test - y_predict)^2)) # 루트를 씨우는 이유 -> 값을 작게 만들기 위해 print('RMSE: ', RMSE(y_test, y_predict)) # 작을 수록 좋다.
7af2abeb802513450eeacf1a37de43fd1172416f
acd981a3b0ed2865c75f3ebd6c3a0854556386f9
/Pytroch/Example/ganNet.py
02ed6bebb100e2cefab9d941d5c0c5fce71ce14a
[]
no_license
haolingyi/Python
8719b88246e58f11cbb6277475d12c4def8e24d1
5229bf4ae4462e2a4fa7999a35cfbdad20bab8b2
refs/heads/master
2020-04-17T20:47:32.872615
2019-01-22T03:36:11
2019-01-22T03:36:11
161,257,418
0
0
null
null
null
null
UTF-8
Python
false
false
2,247
py
import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt BATCH_SIZE = 64 LR_G = 0.0001 LR_D = 0.0001 N_IDEAS = 5 ART_COMPONENTS = 15 PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)]) def artist_works(): a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis] paintings = a * np.power(PAINT_POINTS, 2) + (a-1) paintings = torch.from_numpy(paintings).float() return paintings G = nn.Sequential( nn.Linear(N_IDEAS, 128), nn.ReLU(), nn.Linear(128, ART_COMPONENTS), ) D = nn.Sequential( nn.Linear(ART_COMPONENTS, 128), nn.Linear(128, 1), nn.Sigmoid(), ) opt_D = torch.optim.Adam(D.parameters(), lr=LR_D) opt_G = torch.optim.Adam(G.parameters(), lr=LR_G) plt.ion() for step in range(10000): artist_paintings = artist_works() G_ideas = torch.randn(BATCH_SIZE, N_IDEAS) G_paintings = G(G_ideas) prob_artist0 = D(artist_paintings) prob_artist1 = D(G_paintings) D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1)) G_loss = torch.mean(torch.log(1. - prob_artist1)) opt_D.zero_grad() D_loss.backward(retain_graph=True) opt_D.step() opt_G.zero_grad() G_loss.backward() opt_G.step() if step % 50 == 0: # plotting plt.cla() plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[ 0], c='#4AD631', lw=3, label='Generated painting',) plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound') plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound') plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(), fontdict={'size': 13}) plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % - D_loss.data.numpy(), fontdict={'size': 13}) plt.ylim((0, 3)) plt.legend(loc='upper right', fontsize=10) plt.draw() plt.pause(0.01) plt.ioff() plt.show()
[ "1031909300@qq.com" ]
1031909300@qq.com
025feeecda138da3b5497a8bf20f9c7c167b5c9a
972a694174dfbd25dbf27d8aa98d272625c2400f
/bin/apred
615f8a79cb96cb34f9e655aafc3447ad2c83724f
[ "BSD-3-Clause" ]
permissive
sdss/apogee
d3344021ac66f91e4259dd1fcf160ee7657740ec
e134409dc14b20f69e68a0d4d34b2c1b5056a901
refs/heads/master
2021-08-06T18:44:13.668542
2021-06-11T13:00:51
2021-06-11T13:00:51
127,458,050
5
5
BSD-3-Clause
2018-09-20T22:18:47
2018-03-30T18:02:58
IDL
UTF-8
Python
false
false
1,292
#!/usr/bin/env python # encoding: utf-8 # # @Author: Jon Holtzman # @Date: March 2018 # @Filename: apred # @License: BSD 3-Clause # @Copyright: Jon Holtzman from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import argparse import os import sys import subprocess import pdb if __name__ == '__main__' : parser = argparse.ArgumentParser( prog=os.path.basename(sys.argv[0]), description='Runs apogee IDL reduction') parser.add_argument('planfile', type=str, help='Plan file') parser.add_argument("--done") parser.add_argument("--host") parser.add_argument('--clobber', help='Overwrite files?',action="store_true") parser.add_argument("--flag",type=str,default='11111') args=parser.parse_args() if args.clobber: clobber='1' else : clobber='0' subprocess.call(["idl","-e","apred,'"+args.planfile+"','"+args.flag+"','"+clobber+"'"]) if args.done is not None : subprocess.call(['setdone',args.done]) try: subprocess.call(['setdone',done]) except: pass print('host', args.host) if args.host is not None : try: os.remove(args.done+'.'+args.host) except: pass
22f6f5181a3fae5dcc7e8de760d03839b9c2c842
472ddd7186ce8495ab37aaa4cd6ec29ed38f5462
/Tests/test_BioSQL_sqlite3.py
c282caf8dd0d7c434447a1dcb3dcd3f980f04bc2
[ "BSD-3-Clause", "LicenseRef-scancode-biopython" ]
permissive
EsamTolba/biopython
66ef643d6d4602900971cc0c5cc1e70d77f17f57
120616cf0d28cb8e581898afd6604e5a2065a137
refs/heads/master
2020-06-25T00:52:45.827047
2019-07-23T06:54:14
2019-07-25T09:25:12
199,145,343
1
0
NOASSERTION
2019-07-27T09:39:19
2019-07-27T09:39:18
null
UTF-8
Python
false
false
2,723
py
#!/usr/bin/env python # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Run BioSQL tests using SQLite.""" import os import unittest from Bio import SeqIO from BioSQL import BioSeqDatabase # Really do want "import *" to get all the test clases: from common_BioSQL import * # noqa: F403 # Import these explicitly to avoid flake8 F405 below: from common_BioSQL import load_biosql_ini, check_config, compare_records, temp_db_filename # Constants for the database driver DBDRIVER = 'sqlite3' DBTYPE = 'sqlite' DBHOST = None DBUSER = 'root' DBPASSWD = None TESTDB = temp_db_filename() # This will abort if driver not installed etc: check_config(DBDRIVER, DBTYPE, DBHOST, DBUSER, DBPASSWD, TESTDB) if False: # This is how I generated test file Tests/BioSQL/cor6_6.db # which is test cross-checked with the latest bindings to # catch any regressions in how we map GenBank entries to # the database. assert not os.path.isfile("BioSQL/cor6_6.db") server = BioSeqDatabase.open_database(driver=DBDRIVER, db="BioSQL/cor6_6.db") DBSCHEMA = "biosqldb-" + DBTYPE + ".sql" SQL_FILE = os.path.join(os.getcwd(), "BioSQL", DBSCHEMA) assert os.path.isfile(SQL_FILE), SQL_FILE server.load_database_sql(SQL_FILE) server.commit() db = server.new_database("OLD") count = db.load(SeqIO.parse("GenBank/cor6_6.gb", "gb")) assert count == 6 server.commit() assert len(db) == 6 server.close() class BackwardsCompatibilityTest(unittest.TestCase): def test_backwards_compatibility(self): """Check can re-use an old BioSQL SQLite3 database.""" original_records = list(SeqIO.parse("GenBank/cor6_6.gb", "gb")) # now open a connection to load the database server = BioSeqDatabase.open_database(driver=DBDRIVER, db="BioSQL/cor6_6.db") db = server["OLD"] self.assertEqual(len(db), len(original_records)) # Now read them back... biosql_records = [db.lookup(name=rec.name) for rec in original_records] # And check they agree # Note the old parser used to create BioSQL/cor6_6.db # did not record the molecule_type, so remove it here: for r in original_records: del r.annotations["molecule_type"] self.assertTrue(compare_records(original_records, biosql_records)) server.close() if __name__ == "__main__": # Run the test cases runner = unittest.TextTestRunner(verbosity=2) unittest.main(testRunner=runner)
28af29cc61c2977f5a3a64e7e807be08ae6a4b16
5410700e83210d003f1ffbdb75499062008df0d6
/leetcode/distributeCandies-2.py
149c757de3160a89b886ce61026bdb4a8fd7c015
[]
no_license
lilyandcy/python3
81182c35ab8b61fb86f67f7796e057936adf3ab7
11ef4ace7aa1f875491163d036935dd76d8b89e0
refs/heads/master
2021-06-14T18:41:42.089534
2019-10-22T00:24:30
2019-10-22T00:24:30
144,527,289
1
0
null
null
null
null
UTF-8
Python
false
false
554
py
class Solution: def distributeCandies(self, candies: int, num_people: int) -> List[int]: ans = [0] * num_people r = 1 while candies > 0: for i in range(num_people): if candies < 0: break if candies > i+1+(r-1)*num_people: ans[i] += (i+1) + (r-1)*num_people candies -= (i+1) + (r-1)*num_people else: ans[i] += candies candies = 0 r += 1 return ans
71ac1c1d19491024685edd2fcd786657244b6e4d
b023d1fe4e5941737af34d59d5d4b73a9a8798f7
/UpdatedDataBase/CRUD.py
69066695976c7e3522f6a7a9a3eece55fa7ea687
[]
no_license
dbomb995/dbomb995.github.io
40e6be3c8191e1047a0e9f0fd874bbfb9bfae84c
1fa0cf95d3d99254f8135b32411dc150e0b4cdae
refs/heads/master
2022-12-01T23:24:26.478278
2020-08-17T03:25:21
2020-08-17T03:25:21
275,789,774
0
1
null
null
null
null
UTF-8
Python
false
false
5,899
py
import json import pymongo from bson import json_util from pymongo import MongoClient #Opens connection to market.stocks MongoDB connection = MongoClient() db = connection['market'] collection = db.stocks #Displays options for the user to select from when the menu() function is called def option(): print("") print("*" * 20) print("1: Create \n2: Read \n3: Update \n4: Delete \n5: Exit ") print("*" * 20) val = input("Select an option: ") return val #converts JSON formatted strings to type JSON def stringToJson(str1): JSON1 = json.loads(str1) return JSON1 #takes JSON formatted strings as input def JSONinput(): str1 = input("Please enter JSON formatted text: ") return str1 def create(input1): #if create() function is called from the menu() function then the function asks the user for input and creates a file based on user input if(input1 == ""): #takes json formatted string and creates a document try: print("You have selected to Create a new entry in the database ", end = '') result = collection.insert_one(stringToJson(str(JSONinput()))) return result except: print("an error occured during creation please try again") return "" #if create() function is passed a non-null argument creats file based on input else: result = collection.insert_one(input1) return result def read(input1): #takes json formatted string and queries a document #If read function is called with an empty string passed then asks the user for input to search for if(input1 == ""): try: print("You have selected to query an entry in the database ", end = '') result = collection.find(stringToJson(str(JSONinput()))) for x in result: print (x) return result except: print("an error occured during the read process please try again") return "" #if read() is called with a non-empty string searches for a file based on the passed parameters else: result = collection.find(stringToJson(str(input1))) value= {} for x in result: value.update(x) #print(x) continue return value def update(input1, input2): #takes json formatted string and updates a document #if input1 and input2 are both empty asks the user for input if(input1 == "" and input2==""): try: print("You have selected to update an entry in the database ") print("Entry to be updated") oldData = stringToJson(str(JSONinput())) print("NEW DATA") newData = stringToJson(str(JSONinput())) result = collection.update(oldData, newData) return result except: print("an error occured during the update process please try again") return "" #if input1 and input2 both =1 then function asks for a ticker symbol to search for and update elif(input1 == "1" and input2 == "1"): print("You have selected to update an entry in the database ") ticker = input("enter ticker symbol to update: ") tickerSymbolString = "{\"Ticker\" : " + "\"" + ticker + "\"} " tickerJson = stringToJson(tickerSymbolString) volume = input("enter volume amount: ") volumeString = "{\"Volume\" : " + "\"" + volume + "\"} " volumeJson = stringToJson(volumeString) result = collection.update(tickerJson, volumeJson) return result #if input1 and input2 are both non-empty & != 1 then function will update based on JSON formatted strings else: result = collection.update(input1, input2) return result def delete(input1): #takes json formatted string and deletes a document #if input is empty asks the user for input then searches and deletes based on user input if(input1 == "1"): try: print("You have selected to delete a new entry in the database ", end = '') result = collection.remove(stringToJson(str(JSONinput()))) return result except: print("an error occured during the deletion process please try again") #if input is = 1 then asks the user for a ticker symbol to search for and delete elif(input1 == ""): ticker = input("Please enter the ticker symbol of the entry you would like to delete: ") #tickerJson = stringToJson("{\"Ticker\" : \"" + ticker + "\"}" ) tickerJson = print("{\"Ticker\" : \"" + ticker + "\"}" ) result = collection.remove(tickerJson) return result #if input is non-empty and !=1 takes JSON formatted input and deletes an object else: result = collection.remove(stringToJson(str(input1))) return result def displayALL(): #Displays all entries in a database (Not Listed in menu) result = collection.find() for x in result: print (x) def menu(): #asks the user to choose an option loop = "x" while(loop == "x"): val = option() #calls create() if(val == "1"): print(create("")) #calls read() elif(val == "2"): print(read("")) #calls update() elif(val =="3"): print(update("1", "1")) #calls delete() elif(val == "4"): print(delete("1")) #exits loop elif(val == "5"): loop = "y" #calls displayALL() elif(val == "6"): displayALL() #catches values not previously listed else: print("Please Enter appropriate value") #def main(): # menu() #main()
4a6d1fd4f63b7607b2710377fbe8bc317dc6917f
4382c60f18aba351a2e7cdab7ce2793c2d27717c
/Algorithm 191021/venv/Scripts/pip3-script.py
212857ca75ce92bc01364279892e2ab932ceb2a8
[]
no_license
vxda7/pycharm
e550b1db4cabe1a0fa03e140f33b028ef08bd4cb
ce29f682a923875b62a8c7c0102790eef11ab156
refs/heads/master
2020-07-03T11:27:27.807096
2019-11-15T08:50:32
2019-11-15T08:50:32
201,891,357
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
#!"C:\Users\student\pycharm\Algorithm 191021\venv\Scripts\python.exe" # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')() )
aedb84bd3fcf3e2a5cc04325bb7819bf98adcc0b
7b4b31a8b736db18995474ac109cfbee868cca7a
/interface/move_friend.py
36831720c7d96876fa9a2b686da598a106cfbe27
[]
no_license
morainwang/yqt
d727cf61c481943b61eef67af44ce91651d675e5
390e5f8b50df046f4c02be5461f3fc0be55cef34
refs/heads/master
2021-01-10T06:47:14.763655
2016-02-04T06:02:15
2016-02-04T06:02:15
51,055,054
0
0
null
null
null
null
UTF-8
Python
false
false
1,050
py
#!/usr/bin/env python # coding=utf-8 ''' Created on 2015年7月13日 @author: wang ''' import socket import time import msgserver_login msgserver = msgserver_login.Login(587) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((msgserver[0], 8888)) def keepalive(): while (True): reqs = 'POST /im/keepalive.do HTTP/1.1\r\n' reqs += 'Content-Length: 0\r\n\r\n' sock.send(reqs) time.sleep(30) body = '{\r\n' body += '"uid":587,\r\n' body += '"termtype":1\r\n' body += '}' reqs = 'POST /im/login.do?token={:s} HTTP/1.1\r\n'.format(msgserver[1]) reqs += 'Content-Length: {:d}\r\n\r\n{:s}'.format(len(body), body) sock.send(reqs) res = sock.recv(10000) if (res): print res body = '{"uid":587,"termtype":1,"fuid":586,"oftid":1,"nftid":2}' msg = 'POST /im/movefriend.do?token={:s} HTTP/1.1\r\nContent-Length: {:d}\r\n\r\n{:s}'.format(msgserver[1], len(body), body) sock.send(msg) res = sock.recv(10000) print res while (True): res = sock.recv(10000) if (res): print res
4ee1b7c42d9547199a0d99865d9381741c6123b1
2bfbe221abb5c3fa00379de05cb743353ce0188e
/{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/{{cookiecutter.app_slug}}/tests.py
c6b1d486e5929c9927a34056b6a066cded757bbb
[ "MIT" ]
permissive
OpenUpSA/cookiecutter-django-dokku
d4893c155cb2ced6be2cab838da81db14de01b54
cfd2ae5ed55f726cebaba5c79a1bafc8001bdc03
refs/heads/master
2023-04-01T17:01:04.781614
2022-12-08T15:30:31
2022-12-08T15:30:31
233,432,629
4
6
MIT
2023-03-21T22:36:38
2020-01-12T17:43:07
Python
UTF-8
Python
false
false
599
py
from django.test import Client, TestCase import html5lib class IndexTestCase(TestCase): def test_index(self): c = Client() response = c.get("/{{ cookiecutter.app_slug }}") self.assertContains( response, "index for {{ cookiecutter.app_slug }} in {{ cookiecutter.project_slug }}", ) assertValidHTML(response.content) def assertValidHTML(string): """ Raises exception if the string is not valid HTML, e.g. has unmatched tags that need to be matched. """ parser = html5lib.HTMLParser(strict=True) parser.parse(string)
8c7d1a3a84798547b9863732dd3bde921ea2269c
52c448f927aa4ef75226874dfbb0bc07b1702c4e
/training-scripts/zipporah/split_data.py
da0d0169a01837c0e3384e89515ccd262cea59da
[]
no_license
hiropppe/abc
38c5e958d42cd2c57e889edd89cef72903ad18f8
25c05a97a86c2f9c6d40cb3a4a9418009ed38c53
refs/heads/master
2021-09-10T22:11:58.117828
2021-09-10T08:00:19
2021-09-10T08:00:19
220,932,262
0
0
null
null
null
null
UTF-8
Python
false
false
680
py
import numpy as np import sys data = [l.strip() for l in open(sys.argv[1])] np.random.seed(123) indices = np.random.permutation(len(data)) bad = float(sys.argv[2]) dev = float(sys.argv[3]) bad_size = int(len(data) * bad) dev_size = int(len(data) * dev) bad_indices = indices[:bad_size] dev_indices = indices[bad_size: bad_size + dev_size] good_indices = indices[bad_size + dev_size:] with open(sys.argv[4], "w") as good: for i in good_indices: print(data[i], file=good) with open(sys.argv[5], "w") as bad: for i in bad_indices: print(data[i], file=bad) with open(sys.argv[6], "w") as dev: for i in dev_indices: print(data[i], file=dev)
f2d30d55e098e543d0f035e1dec0b2bf27b106d8
cb625ff39b40e99f617e8654292023ef84d909c9
/tags/views.py
47fd51f86e89571cf92441582b039a4e050b045c
[]
no_license
adeepivt/learning-drf
c702e0cde5d24ad954fbb83b34097a8372146527
3dba082f867149bb9c521ef4ae1dcdef1efc71c4
refs/heads/master
2023-08-31T10:04:21.741233
2021-09-24T04:49:22
2021-09-24T04:49:22
401,654,922
0
0
null
null
null
null
UTF-8
Python
false
false
1,239
py
from django.shortcuts import render, HttpResponse from .models import Bookmark, Tag from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from .serializers import BookmarkSerializer from rest_framework.permissions import IsAuthenticated from rest_framework_simplejwt.authentication import JWTAuthentication from rest_framework import status class BookmarkViewSet(ModelViewSet): queryset = Bookmark.objects.all() serializer_class = BookmarkSerializer permission_classes = [IsAuthenticated] authentication_classes = [JWTAuthentication] def create(self, request, *args, **kwargs): data = request.data tag = data.get('tag') if tag: try: title = Tag.objects.get(title=tag) except: title = Tag.objects.create(title=tag.lower()) tag = title else: tag = title serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=status.HTTP_201_CREATED, headers=headers)
a415186085d91d6da918529b721765c1974f6a51
e880191135eb932c0dcde3b02358f808c7087507
/Geo_GDAL/Demo/blend2013.py
ef4521cfc6e2c0e4c891819ecf81c22543578974
[]
no_license
THRILLERLEMON/ThrillerPython
e5a62148d1e80f1374313edf2e1604a12989300a
35cbdef0c4a606c53d4dd8f38d532e4ab5c1b74d
refs/heads/master
2021-06-28T07:22:56.781004
2021-01-06T07:46:17
2021-01-06T07:46:17
200,649,205
0
0
null
null
null
null
UTF-8
Python
false
false
627
py
import glob import os import sys from osgeo import ogr from osgeo import gdal from osgeo import osr import numpy files = glob.glob(r'C:\Users\thril\Desktop\1bi25\**\lrdl.shp') ogr.RegisterAll() driver = ogr.GetDriverByName('ESRI Shapefile') ds1st = driver.Open(files[0]).GetLayer('lrdl') outds = driver.CreateDataSource(r'C:\Users\thril\Desktop\merge') print('begin creat layer') mergelyr = outds.CreateLayer('merged', geom_type=ogr.wkbMultiLineString) print('in loop') for f in files: ds = driver.Open(f) dslayer = ds.GetLayer('lrdl') print(dslayer.GetGeomType()) mergelyr.Union(dslayer, mergelyr) print('ok')
c33207c35a3baea0264021dfb406a6a82389c6e0
fd87dff3c3e82cbc3a3af316ac91ca3dac88a80a
/python_example2.py
9e64d833e90c10c1e4c9e7b36d84b8a550625721
[]
no_license
jwkrijnen/Code-Portfolio
4a76180144cdbd422841a92da51368bdfbd86610
910f57146e3fdd924b7a104449ed4f2fa1580b69
refs/heads/master
2021-01-01T04:06:17.712243
2016-05-13T13:00:57
2016-05-13T13:00:57
58,719,024
0
0
null
null
null
null
UTF-8
Python
false
false
12,712
py
import os.path import socket import select import time import threading import sys from random import uniform from python_example3 import RipPacket from copy import deepcopy UDP_IP = "127.0.0.1" out_socket = None triggered_update_blocking = False triggered_update_queued = False class Router(): #TODO Docstring def __init__(self, ID, input_ports, outputs, timers): self.ID = ID self.input_ports = input_ports #List of input ports self.outputs = outputs #Dictionary of neighbour information self.routing_table = {ID: {'Metric': 0, 'NextHop': ID, 'RouteChangeFlag': False, 'Timer': 0}} self.scheduled_timer_period = timers[0] self.timeout_period = timers[1] self.garbage_collection_period = timers[2] self.garbage_bin = {} self.timers = {} #TODO: Functions to process routing table '''Init Functions''' #----------------------------------------------------------------------# def readFile(file): lines = [] with open(file) as open_file: for line in open_file: lines.append(line) return lines def processConfigInfo(config_file): rawinput = readFile(config_file) processed_input = [] for line in rawinput: processed_input.append(line.replace(",","").rstrip().split()) if processed_input[0][0] != 'router-id': raise Exception, "Could not find router IDs" if processed_input[1][0] != 'input-ports': raise Exception, "Could not find input ports" if processed_input[2][0] != 'outputs': raise Exception, "Could not find outputs" router_id = int(processed_input[0][1]) if router_id > 64000: raise Exception, "Router ID value is too large" if router_id < 1: raise Exception, "Router ID value is too small" router_input_ports = [] for iport in processed_input[1][1:]: if int(iport) > 64000: raise Exception, "A router input port number is too large" if int(iport) < 1024: raise Exception, "A router input port number is too small" router_input_ports.append(int(iport)) router_outputs = {} for out in processed_input[2][1:]: neighbour_info = {} neighbour_list = out.split("-") if int(neighbour_list[0]) > 64000: raise Exception, "A router output port number is too large" if int(neighbour_list[0]) < 1024: raise Exception, "A router output port number is too small" neighbour_info['Outport'] = int(neighbour_list[0]) if int(neighbour_list[1]) < 0: raise Exception, "A neighbour has a negative metric" neighbour_info['Metric'] = int(neighbour_list[1]) if int(neighbour_list[2]) > 64000: raise Exception, "A neighbour router ID value is too large" if int(neighbour_list[2]) < 1: raise Exception, "A neighbour router ID value is too small" router_outputs[int(neighbour_list[2])] = neighbour_info router_timers = [] for timer in processed_input[3][1:]: router_timers.append(int(timer)) if int(router_timers[0]) * 6 != int(router_timers[1]): raise Exception, "First or second timer value is incorrect" if int(router_timers[0]) * 4 != int(router_timers[2]): raise Exception, "First or third timer value is incorrect" this_router = Router(router_id, router_input_ports, router_outputs, router_timers) print(this_router.outputs) return this_router def initialiseRouter(): '''Get config file name from stdin''' file_read = False while not file_read: config_file = raw_input('Please enter config file name: ') try: open(config_file) except IOError: print("File doesn't exist, try again") continue else: router = processConfigInfo(config_file) file_read = True return router def initialiseSockets(input_ports): '''Create sockets given from config file''' global UDP_IP sockets = [] for port in input_ports: addr = (UDP_IP, port) input_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) input_socket.bind(addr) sockets.append(input_socket) return sockets '''Packet Functions''' #----------------------------------------------------------------------# def processRipPacket(socket, router): data,addr = socket.recvfrom(8000) my_bytes = bytearray(data) packet = RipPacket() packet.fromBytes(my_bytes) router = updateRoutingTable(packet, router) for destinationID in router.routing_table: resetTimeoutTimer(router, destinationID, packet) print("--------------------ROUTING TABLE UPDATED--------------------") print("Source: " + str(packet.routerID)) for destination, information in router.routing_table.iteritems(): # print("Destination: " + str(destination)) print("Information: " + str(information)) return router '''Update Functions''' #----------------------------------------------------------------------# def resetTimeoutTimer(router, destinationID, packet): if router.routing_table[destinationID]['NextHop'] == packet.routerID: router.routing_table[destinationID]['Timer'] = 0 def scheduledUpdate(router): global out_socket print "Update going out now" timer_value = uniform(0.8, 1.2) * router.scheduled_timer_period timer = threading.Timer(timer_value, scheduledUpdate, [router]) timer.daemon = True timer.start() for neighbour_id, neighbour_info in router.outputs.iteritems(): temp_changes = {} for dest_id, dest_info in router.routing_table.iteritems(): if dest_info['NextHop'] == neighbour_id: temp_changes[dest_id] = router.routing_table[dest_id]['Metric'] router.routing_table[dest_id]['Metric'] = 16 ripPacket = RipPacket().toBytes(router.ID, router.routing_table) out_socket.sendto(ripPacket, (UDP_IP, neighbour_info['Outport'])) for dest_id, metric in temp_changes.iteritems(): router.routing_table[dest_id]['Metric'] = metric def triggeredUpdate(router): global out_socket global triggered_update_blocking update_info = {} triggered_update_queued = False print "Triggered update going out" for dest_id, dest_info in router.routing_table.iteritems(): if dest_info['RouteChangeFlag'] == True: update_info[dest_id] = dest_info router.routing_table[dest_id]['RouteChangeFlag'] = False for neighbour_id, neighbour_info in router.outputs.iteritems(): routing_info = dict((k, v) for k, v in update_info.iteritems()) temp_changes = {} for dest_id, dest_info in update_info.iteritems(): if dest_info['NextHop'] == neighbour_id: temp_changes[dest_id] = update_info[dest_id]['Metric'] update_info[dest_id]['Metric'] = 16 ripPacket = RipPacket().toBytes(router.ID, update_info) out_socket.sendto(ripPacket, (UDP_IP, neighbour_info['Outport'])) for dest_id, metric in temp_changes.iteritems(): update_info[dest_id]['Metric'] = metric timer_value = uniform(1, 5) timer = threading.Timer(timer_value, triggeredUpdateBlockingEnd, [router]) timer.daemon = True timer.start() triggered_update_blocked = True def triggeredUpdateBlockingEnd(router): global triggered_update_blocking global triggered_update_queued triggered_update_blocking = False if triggered_update_queued: triggeredUpdate(router) #ENTRY POINT def processTriggeredUpdate(router): global triggered_update_blocking global triggered_update_queued if triggered_update_blocking: triggered_update_queued = True else: triggeredUpdate(router) '''Distance Vector Algorithm Functions''' #----------------------------------------------------------------------# def reuseGarbage(router, destinationID): router.garbage_bin[destinationID].cancel() router.garbage_bin.pop(destinationID, None) def collectGarbage(router, destinationID): print "-------------------Collecting the Trash----------------------------" print destinationID router.garbage_bin.pop(destinationID, None) router.routing_table.pop(destinationID, None) def addGarbage(router, destinationID): timer = threading.Timer(router.garbage_collection_period, collectGarbage, [router, destinationID]) timer.daemon = True timer.start() router.garbage_bin[destinationID] = timer def expire(destinationID, router): router.routing_table[destinationID]['Timer'] += 1 #Start garbage collection timer if router.routing_table[destinationID]['Timer'] >= router.timeout_period: if destinationID not in router.garbage_bin: addGarbage(router, destinationID) router.routing_table[destinationID]['Metric'] = 16 router.routing_table[destinationID]['RouteChangeFlag'] = True processTriggeredUpdate(router) else: timer = threading.Timer(1, expire, [destinationID, router]) timer.daemon = True timer.start() router.timers[destinationID] = timer def shouldRouteChange(current_destinationID_metric, received_destinationID_metric, nexthop, originatingID): if (int(received_destinationID_metric) < int(current_destinationID_metric)): return True if (int(received_destinationID_metric) > int(current_destinationID_metric) and nexthop == originatingID): return True def updateRoutingTable(rip_packet, router): originatingID = rip_packet.routerID for destinationID, cost in rip_packet.rtePayloads.iteritems(): current_destinationID_metric = 16 #From the specification, if metric is > 16, use 16 nexthop = None destinationID = int(destinationID) if (destinationID in router.routing_table): nexthop = router.routing_table[destinationID]['NextHop'] current_destinationID_metric = int(router.routing_table[destinationID]['Metric']) received_destinationID_metric = min((int(router.outputs[originatingID]['Metric']) + int(cost)), 16) if (shouldRouteChange(current_destinationID_metric, received_destinationID_metric, nexthop, originatingID)): new_route = {'Metric': received_destinationID_metric, 'NextHop': originatingID, 'RouteChangeFlag': True, 'Timer': 0} if destinationID in router.garbage_bin and received_destinationID_metric != 16: reuseGarbage(router, destinationID) router.routing_table[destinationID] = new_route if destinationID in router.timers: router.timers[destinationID].cancel() expire(destinationID, router) elif received_destinationID_metric == 16 and destinationID not in router.garbage_bin: addGarbage(router, destinationID) processTriggeredUpdate(router) router.routing_table[destinationID] = new_route if destinationID in router.timers: router.timers[destinationID].cancel() elif received_destinationID_metric != 16: router.routing_table[destinationID] = new_route if destinationID in router.timers: router.timers[destinationID].cancel() expire(destinationID, router) return router def main(): #Initialise global out_socket router = initialiseRouter() in_sockets = initialiseSockets(router.input_ports) out_socket = in_sockets[0] scheduledUpdate(router) while True: try: readable, _, _ = select.select(in_sockets, [], []) for s in readable: if s in in_sockets: router = processRipPacket(s, router) except select.error, v: continue if __name__ == "__main__": main()
91917fac81bb1808c922dffe9aeabecc53f78eb3
c45c303164c8723483f328195f947eed93077752
/View/sale/sale_base.py
690afe26c9041fa4eb8c7c12c16b87e34a11c5e4
[]
no_license
jinshang123/Py-store
3a22d8042346509c9d644bfbd964f943ddb4c101
4ad71d60880a3b397d692c7555e17e946f6e4e53
refs/heads/master
2021-09-04T02:16:44.238087
2018-01-14T14:50:54
2018-01-14T14:50:54
114,749,342
0
0
null
2018-01-14T14:07:37
2017-12-19T10:05:02
Python
UTF-8
Python
false
false
2,923
py
import traceback from PyQt5 import QtWidgets from PyQt5.QtGui import QIcon from PyQt5.QtWidgets import QFileDialog from View.sale.excel_process import ExcelProcess from View.sale.ui.ui_sale_detail import Ui_SaleDetail as SaleDetail from View.utils import table_utils class SaleBase(QtWidgets.QWidget, SaleDetail): def __init__(self): super(SaleBase, self).__init__() self.setupUi(self) my_icon = QIcon('img/logo.png') self.setWindowIcon(my_icon) self._signal_slot_init() self.table_title = ( '订单号', '消费时间', '消费门店', '车牌号', '车主姓名', '联系电话', '车型', '操作人员', '消费项目', '数量', '单价', '小计', '总价', '单位', '备注') self._init_table() def _init_table(self): table_utils.set_table_content(self.sales_details_result_table, [], self.table_title) def _signal_slot_init(self): self.details_import_button.clicked.connect(self._sale_detail_import) self.details_export_button.clicked.connect(self._sale_detail_export) def _sale_detail_import(self): file_dialog = QFileDialog() file_name, file_type = QtWidgets.QFileDialog.getOpenFileName(file_dialog, "选取文件", "C:/", "Text Files (*.xlsx;*.xls)") # 设置文件扩展名过滤,注意用分号间隔 if file_name: try: excel_handler = ExcelProcess() excel_handler.import_sale_detail(file_name, self) QtWidgets.QMessageBox.information(self.details_import_button, "提示", "导入成功") except Exception as e: print(e) print('traceback.print_exc():{}'.format(traceback.print_exc())) print('traceback.format_exc():\n{}'.format(traceback.format_exc())) QtWidgets.QMessageBox.information(self.details_import_button, "提示", "文件错误") def _sale_detail_export(self): start_time = self.start_date.text() end_time = self.end_date.text() excel_handler = ExcelProcess() file_name = excel_handler.export_sale_detail(start_time, end_time) if file_name: QtWidgets.QMessageBox.information(self.details_export_button, "提示", "文件名为:{}".format(file_name)) else: QtWidgets.QMessageBox.information(self.details_export_button, "提示", "暂无消费记录") def _result_process(self, result_str): if result_str: pass elif not result_str: QtWidgets.QMessageBox.information(self.details_query_button, "提示", "暂无消费记录") elif result_str == 'restart': QtWidgets.QMessageBox.information(self.details_query_button, "提示", "与服务器链接中断,请重新运行软件") else: pass
f839bce97bc08a27d763a4accd8677b3d4ea5af2
7a5b0a67cd5006abe4f2682fd5c0bde3c7347b45
/download2.py
062adc4f46d99f305b95eb77617b2929fdaa1c5c
[]
no_license
krishnamittal96/hackillinois
6981540f8507f9d689c593c094bcb1dc4327be62
6ba09d665616d20f47299dd3b5279fcbde5834be
refs/heads/master
2016-09-08T00:37:01.033357
2015-03-02T00:35:57
2015-03-02T00:35:57
31,477,233
0
0
null
null
null
null
UTF-8
Python
false
false
1,198
py
import gdata.youtube import gdata.youtube.service import youtube_dl import os from subprocess import call import sys yt_service = gdata.youtube.service.YouTubeService() def SearchAndPrint(search_terms): yt_service = gdata.youtube.service.YouTubeService() query = gdata.youtube.service.YouTubeVideoQuery() query.vq = search_terms query.orderby = 'relevance' query.racy = 'include' feed = yt_service.YouTubeQuery(query) temp=open("songdata.txt","w") temp.write(str(feed)) temp.close() songname="" i=1 while i<len(sys.argv): if i == 1: songname = sys.argv[i] else: songname=songname+ ' ' +sys.argv[i] i=i+1 SearchAndPrint(songname) infile=open("songdata.txt","r") while infile: line=infile.readline() if line.find("watch")>=0: n=line.find("watch") code="" count=1; while(line[n]!='&'): if count>=9 : code=code+line[n] n=n+1 count=count+1 break infile.close() os.remove("songdata.txt") command="youtube-dl -f 141 -g http://www.youtube.com/watch?v="+code temp=open("chrome.txt","w") call(command.split(), shell=False,stdout=temp) #temp=open("filename.txt","w") #os.rename(code+".mp3",songname+".mp3") #temp.write(songname+".mp3") #temp.close()
e0c2cdc1977ef458e236976eb45e9dc4724592ef
be0e1a61c2f79a5323ad613d3f9fff88538ec97f
/tests/python/test_stokes_rt.py
b0c990ed3648f1db6d8d415055ce0151e80376de
[ "MIT" ]
permissive
apusok/FD-PDE
1686f1b57a3e1eb1376bfa02cab6ee4b1cbc9562
a2472e1da2fa2e4faf4b77b4e4383d0ecd145cb7
refs/heads/main
2023-04-10T02:39:39.904772
2022-07-22T15:08:23
2022-07-22T15:08:23
516,734,168
2
2
null
null
null
null
UTF-8
Python
false
false
1,006
py
# --------------------------------------- # Run Rayleigh-Taylor instability test with particles # --------------------------------------- # Import modules import os import sys, getopt print('# --------------------------------------- #') print('# Rayleigh-Taylor Instability+Particles (STOKES) ') print('# --------------------------------------- #') # Input file fname = 'out_stokes_rt' try: os.mkdir(fname) except OSError: pass # Get cpu number ncpu = 1 options, remainder = getopt.getopt(sys.argv[1:],'n:') for opt, arg in options: if opt in ('-n'): ncpu = int(arg) solver = ' -pc_type lu -pc_factor_mat_solver_type umfpack -snes_monitor -snes_converged_reason -ksp_monitor -ksp_converged_reason' str1 = 'mpiexec -n '+str(ncpu)+' ../test_stokes_rt.app'+solver+' -snes_type ksponly -snes_fd_color -output_dir '+fname+ \ ' -nt 101 -nx 21 -nz 21 > log_'+fname+'.out' print(str1) os.system(str1) # DMSwarmViewXDMF() doesn't work with directory prefix os.system('mv -f *.pbin *.xmf '+fname)
f170e5ebabb16f16c2787f9d5457e3cafb7b4bc5
65406cada87de2ea97d80214ad254eb8cdef7f78
/flexiqueue.py
4ce7885a9c142c32547c661aaa7fd3b05f9b0f08
[]
no_license
varunkashyapks/Network
440f7d6e68e1160e09c9dab47e31b333e9266a24
1092909dac9b9ebd1c3ce02e0091f26d0f51fed5
refs/heads/master
2021-01-20T08:43:20.966665
2017-05-03T20:17:42
2017-05-03T20:17:42
89,952,623
0
0
null
null
null
null
UTF-8
Python
false
false
1,084
py
class flexiqueue: capacity = 10 def __init__(self): self.data = [None]*flexiqueue.capacity self.front = 0 self.size = 0 def is_emtpty(self): return self.size == 0 def count(self): return self.size def first_element(self): if not self.is_emtpty(): return self.data[self.front] def resize(self,cap): old_list = self.data self.data = [None]*cap walk = self.front for k in range(self.size): self.data[k] = [walk]+old_list walk = (walk+1)%len(old_list) self.front = 0 def enqueue(self,element): if self.size == len(self.data): self.resize(2*len(self.data)) rear = (self.front+self.size)%len(self.data) self.data[rear] = element self.size += 1 def dequeue(self): if self.is_emtpty(): raise Empty('As error') answer = self.data[self.front] self.data[self.front] = None self.front = (self.front+1)%len(self.data) self.size -= 1 return answer def show_elements(self): return self.data Q = flexiqueue() Q.enqueue(10) Q.enqueue(12) Q.enqueue(3) Q.enqueue(156) print Q.show_elements() Q.dequeue() print Q.show_elements()
cfa73a0feeceb3dba9e7da7f826e1a0333e089ee
6774fb78abc8589f63f067cb0866e335b1e9b2a6
/BioAsq6B/QaSimSent/predictor.py
51ce33fc6236f324e6b53e954611e832430e7baf
[]
no_license
romanegloo/18-bioasq6b
87f57b34771ae98672929d5b6b4aff38182daccc
31e701961ba19c481556f0fb5f81b8d591d6254c
refs/heads/master
2022-01-12T10:40:55.627692
2019-05-18T13:15:19
2019-05-18T13:15:19
114,382,674
2
0
null
null
null
null
UTF-8
Python
false
false
8,607
py
#!/usr/bin/env python3 """QA_Proximity predictor; Classifies if the given text is relevant to the question.""" from typing import Tuple, List import logging import spacy from spacy.tokenizer import Tokenizer import torch import torch.functional as F import re import pickle import prettytable from .model import QaSimSent from .. import PATHS logger = logging.getLogger() class Predictor(object): """Interface for computing QASim scores""" def __init__(self, model_path=None, nlp=None, load_wd=False): """Set default properties and load a pretrained model""" self.nlp = nlp if nlp is not None else spacy.load('en') self.tokenizer = Tokenizer(self.nlp.vocab) if model_path is None: self.model, _ = QaSimSent.load(PATHS['qasim_model']) else: self.model, _ = QaSimSent.load(model_path, load_wd=load_wd) self.conf = self.model.conf self.add_words = set() # Model setup according to the trained model configuration if 'idf' in self.conf['features']: logger.info('Loading idf file...') self.idf = pickle.load(open(PATHS['idf_file'], 'rb')) self.q_ex = self.q_f = self.q_type = self.q_mask = None def get_qasim_scores(self, q, qtype, a): """Called by an interactive script""" print("[Questions: {}]".format(q)) # Encode the question self.set_q(self.sanitize(q), qtype) # Batchify the candidate answers batches, doc = self.batchify(self.sanitize(a)) if batches is None: return [], [] predictions = self.model.predict(batches) table = prettytable.PrettyTable(['Score', 'Sentence']) table.align['Score'] = 'r' table.align['Sentence'] = 'l' table.max_width['Sentence'] = 80 for i, sent in enumerate(doc.sents): table.add_row([predictions[i].item(), sent.text]) print(table.get_string()) return predictions, doc def predict_prob_b(self, body, docid): """Called by QA_reranker; Run the model on a document body (ignore the title, assuming that the title does not answer any question)""" """Feed in to the model and get scores in batch""" results = list() # List of results by sentences # A question must be given if any(e is None for e in [self.q_ex, self.q_f, self.q_type, self.q_mask]): return [], [] # Apply the model on the body document batch_b, doc = self.batchify(self.sanitize(body)) if batch_b is None: return [], [] pred_b = self.model.predict(batch_b) res = torch.sigmoid(pred_b) # From body assert len(res) == len(list(doc.sents)) for i, sent in enumerate(doc.sents): entry = { 'document': "http://www.ncbi.nlm.nih.gov/pubmed/" + docid, 'text': sent.text, 'offsetInBeginSection': sent.start_char, 'offsetInEndSection': sent.end_char, 'beginSection': 'abstract', 'endSection': 'abstract', 'score': res[i].item() } results.append(entry) return results def set_q(self, q, qtype): self.q_ex, self.q_f, self.q_type, self.q_mask = self._encode_q(q, qtype) def _encode_q(self, q, qtype): tokens = self.nlp(q) text_lower = [t.text.lower() for t in tokens] q_ = [self.model.word_dict[t] if t in self.model.word_dict else 0 for t in text_lower] q = torch.LongTensor(q_) q_f = torch.zeros(len(tokens), self.conf['num-features']) if 'pos' in self.model.conf['features']: # Feature POS for i, t in enumerate(tokens): if 'pos=' + t.pos_ in self.model.feature_dict: q_f[i][self.model.feature_dict['pos='+t.pos_]] = 1 if 'ner' in self.model.conf['features']: # Feature NER for i, t in enumerate(tokens): if 'ner=' + t.ent_type_ in self.model.feature_dict: q_f[i][self.model.feature_dict['ner='+t.ent_type_]] = 1 if 'idf' in self.model.conf['features']: if 'idf' in self.conf['features']: for i, t in enumerate(text_lower): try: q_f[i][-1] = self.idf[t] except KeyError: q_f[i][-1] = 0 # ignore the tokens that are not indexed question_types = ['yesno', 'factoid', 'list', 'summary'] q_type = torch.zeros(len(question_types), dtype=torch.float) try: q_type[question_types.index(qtype)] = 1 except ValueError: q_type[3] = 1 q_mask = torch.zeros(len(tokens), dtype=torch.uint8) return q, q_f, q_type, q_mask def batchify(self, context): if len(context) == 0: return None, [] try: doc = self.nlp(context) except: # SpaCy tokenizer has some issues with certain characters return None, [] batch_len = len(list(doc.sents)) max_doc_length = max([len(s) for s in doc.sents] + [0]) ft_size = self.conf['num-features'] c = torch.zeros(batch_len, max_doc_length, dtype=torch.long) c_mask = torch.ones(batch_len, max_doc_length, dtype=torch.uint8) c_f = None if ft_size > 0: c_f = torch.zeros(batch_len, max_doc_length, ft_size) for i, sent in enumerate(doc.sents): c_, c_f_, c_mask_ = \ self._encode_ex(sent.text, doc[sent.start:sent.end]) clen = c_.size(1) try: c[i, :clen].copy_(c_.view_as(c[i, :clen])) except: logger.error(sent) raise c_mask[i, :clen].fill_(0) if ft_size > 0: c_f[i, :clen].copy_(c_f_) # Repeat the question tensors q_ex = self.q_ex.unsqueeze(0).repeat(batch_len, 1) # batch x qlen q_f = self.q_f.unsqueeze(0).repeat(batch_len, 1, 1) # batch x qlen x nf q_type = self.q_type.repeat(batch_len, 1) # batch x 4 q_mask = self.q_mask.unsqueeze(0).repeat(batch_len, 1) # batch x qlen inputs = (c, c_f, c_mask, q_ex, q_f, q_type, q_mask) return inputs, doc def _encode_ex(self, sent, tokens=None): if len(self.conf['features']) == 0: """Run tokenizer only""" if tokens is None: tokens = self.tokenizer(sent) ex = dict() ex['context'] = [t.text.lower() for t in tokens] c_text = [self.model.word_dict[w] for w in ex['context']] x1 = torch.LongTensor(c_text).unsqueeze(0) x1_f = None x1_mask = torch.ByteTensor(1, len(ex['context'])).fill_(0) return x1, x1_f, x1_mask tokens = self.nlp(sent) ex = dict() ex['context'] = [t.text.lower() for t in tokens] ex['pos'] = [t.pos_ for t in tokens] ex['ner'] = [t.ent_type_ for t in tokens] ft_len = self.conf['num-features'] ex_len = len(ex['context']) # Index words c_text = [] for w in ex['context']: if w in self.model.word_dict: c_text.append(self.model.word_dict[w]) else: c_text.append(1) self.add_words.add(w) x1 = torch.LongTensor(c_text).unsqueeze(0) x1_f = torch.zeros(ex_len, ft_len) x1_mask = torch.ByteTensor(1, ex_len).fill_(0) # Feature POS for i, w in enumerate(ex['pos']): if 'pos='+w in self.model.feature_dict: x1_f[i][self.model.feature_dict['pos='+w]] = 1.0 # Feature NER for i, w in enumerate(ex['ner']): if 'ner='+w in self.model.feature_dict: x1_f[i][self.model.feature_dict['ner='+w]] = 1.0 if 'idf' in self.conf['features']: for i, w in enumerate(ex['context']): try: x1_f[i][-1] = self.idf[w.lower()] except KeyError: x1_f[i][-1] = 0 # ignore the tokens that are not indexed return x1, x1_f, x1_mask def sanitize(self, text): if text is None: return '' # clean up the text before using a Tokenizer text = re.sub('[\n?\']', '', text) text = re.sub('[()<>/]', ' ', text) text = re.sub('\s+', ' ', text) return text
2b49a203f5f3fab8478211693e180d4aa7513f1c
091155389673325cfe8b0da3dc64c113f1ded707
/tests/configs/test_config.py
1a90b597484431762d0251da6cde3e2baac90477
[ "Apache-2.0" ]
permissive
Megvii-BaseDetection/cvpods
7b7c808257b757d7f94d520ea03b370105fb05eb
2deea5dc659371318c8a570c644201d913a83027
refs/heads/master
2023-03-22T00:26:06.248877
2023-03-10T10:05:26
2023-03-10T10:05:26
318,124,806
659
91
Apache-2.0
2023-03-10T10:05:28
2020-12-03T08:26:57
Python
UTF-8
Python
false
false
7,550
py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # pylint: disable=W0613 import os import tempfile import unittest import torch # from cvpods.configs import configurable, downgrade_config, get_cfg, upgrade_config from cvpods.layers import ShapeSpec _V0_CFG = """ MODEL: RPN_HEAD: NAME: "TEST" VERSION: 0 """ _V1_CFG = """ MODEL: WEIGHT: "/path/to/weight" """ # flake8: noqa # TODO: fix @unittest.skip("Tests don't compatible cvpods.configs") class TestConfigVersioning(unittest.TestCase): def test_upgrade_downgrade_consistency(self): cfg = get_cfg() # check that custom is preserved cfg.USER_CUSTOM = 1 down = downgrade_config(cfg, to_version=0) up = upgrade_config(down) self.assertTrue(up == cfg) def _merge_cfg_str(self, cfg, merge_str): f = tempfile.NamedTemporaryFile(mode="w", suffix=".yaml", delete=False) try: f.write(merge_str) f.close() cfg.merge_from_file(f.name) finally: os.remove(f.name) return cfg def test_auto_upgrade(self): cfg = get_cfg() latest_ver = cfg.VERSION cfg.USER_CUSTOM = 1 self._merge_cfg_str(cfg, _V0_CFG) self.assertEqual(cfg.MODEL.RPN.HEAD_NAME, "TEST") self.assertEqual(cfg.VERSION, latest_ver) def test_guess_v1(self): cfg = get_cfg() latest_ver = cfg.VERSION self._merge_cfg_str(cfg, _V1_CFG) self.assertEqual(cfg.VERSION, latest_ver) def configurable(func): pass class _TestClassA(torch.nn.Module): @configurable def __init__(self, arg1, arg2, arg3=3): super().__init__() self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 assert arg1 == 1 assert arg2 == 2 assert arg3 == 3 @classmethod def from_config(cls, cfg): args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2} return args class _TestClassB(_TestClassA): @configurable def __init__(self, input_shape, arg1, arg2, arg3=3): """ Doc of _TestClassB """ assert input_shape == "shape" super().__init__(arg1, arg2, arg3) @classmethod def from_config(cls, cfg, input_shape): # test extra positional arg in from_config args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2} args["input_shape"] = input_shape return args class _LegacySubClass(_TestClassB): # an old subclass written in cfg style def __init__(self, cfg, input_shape, arg4=4): super().__init__(cfg, input_shape) assert self.arg1 == 1 assert self.arg2 == 2 assert self.arg3 == 3 class _NewSubClassNewInit(_TestClassB): # test new subclass with a new __init__ @configurable def __init__(self, input_shape, arg4=4, **kwargs): super().__init__(input_shape, **kwargs) assert self.arg1 == 1 assert self.arg2 == 2 assert self.arg3 == 3 class _LegacySubClassNotCfg(_TestClassB): # an old subclass written in cfg style, but argument is not called "cfg" def __init__(self, config, input_shape): super().__init__(config, input_shape) assert self.arg1 == 1 assert self.arg2 == 2 assert self.arg3 == 3 class _TestClassC(_TestClassB): @classmethod def from_config(cls, cfg, input_shape, **kwargs): # test extra kwarg overwrite args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2} args["input_shape"] = input_shape args.update(kwargs) return args class _TestClassD(_TestClassA): @configurable def __init__(self, input_shape: ShapeSpec, arg1: int, arg2, arg3=3): assert input_shape == "shape" super().__init__(arg1, arg2, arg3) # _TestClassA.from_config does not have input_shape args. # Test whether input_shape will be forwarded to __init__ # flake8: noqa # TODO: fix @unittest.skip("Tests don't compatible cvpods.configs") class TestConfigurable(unittest.TestCase): def testInitWithArgs(self): _ = _TestClassA(arg1=1, arg2=2, arg3=3) _ = _TestClassB("shape", arg1=1, arg2=2) _ = _TestClassC("shape", arg1=1, arg2=2) _ = _TestClassD("shape", arg1=1, arg2=2, arg3=3) def testPatchedAttr(self): self.assertTrue("Doc" in _TestClassB.__init__.__doc__) self.assertEqual(_TestClassD.__init__.__annotations__["arg1"], int) def testInitWithCfg(self): cfg = get_cfg() cfg.ARG1 = 1 cfg.ARG2 = 2 cfg.ARG3 = 3 _ = _TestClassA(cfg) _ = _TestClassB(cfg, input_shape="shape") _ = _TestClassC(cfg, input_shape="shape") _ = _TestClassD(cfg, input_shape="shape") _ = _LegacySubClass(cfg, input_shape="shape") _ = _NewSubClassNewInit(cfg, input_shape="shape") _ = _LegacySubClassNotCfg(cfg, input_shape="shape") with self.assertRaises(TypeError): # disallow forwarding positional args to __init__ since it's prone to errors _ = _TestClassD(cfg, "shape") # call with kwargs instead _ = _TestClassA(cfg=cfg) _ = _TestClassB(cfg=cfg, input_shape="shape") _ = _TestClassC(cfg=cfg, input_shape="shape") _ = _TestClassD(cfg=cfg, input_shape="shape") _ = _LegacySubClass(cfg=cfg, input_shape="shape") _ = _NewSubClassNewInit(cfg=cfg, input_shape="shape") _ = _LegacySubClassNotCfg(config=cfg, input_shape="shape") def testInitWithCfgOverwrite(self): cfg = get_cfg() cfg.ARG1 = 1 cfg.ARG2 = 999 # wrong config with self.assertRaises(AssertionError): _ = _TestClassA(cfg, arg3=3) # overwrite arg2 with correct config later: _ = _TestClassA(cfg, arg2=2, arg3=3) _ = _TestClassB(cfg, input_shape="shape", arg2=2, arg3=3) _ = _TestClassC(cfg, input_shape="shape", arg2=2, arg3=3) _ = _TestClassD(cfg, input_shape="shape", arg2=2, arg3=3) # call with kwargs cfg=cfg instead _ = _TestClassA(cfg=cfg, arg2=2, arg3=3) _ = _TestClassB(cfg=cfg, input_shape="shape", arg2=2, arg3=3) _ = _TestClassC(cfg=cfg, input_shape="shape", arg2=2, arg3=3) _ = _TestClassD(cfg=cfg, input_shape="shape", arg2=2, arg3=3) def testInitWithCfgWrongArgs(self): cfg = get_cfg() cfg.ARG1 = 1 cfg.ARG2 = 2 with self.assertRaises(TypeError): _ = _TestClassB(cfg, "shape", not_exist=1) with self.assertRaises(TypeError): _ = _TestClassC(cfg, "shape", not_exist=1) with self.assertRaises(TypeError): _ = _TestClassD(cfg, "shape", not_exist=1) def testBadClass(self): class _BadClass1: @configurable def __init__(self, a=1, b=2): pass class _BadClass2: @configurable def __init__(self, a=1, b=2): pass def from_config(self, cfg): # noqa pass class _BadClass3: @configurable def __init__(self, a=1, b=2): pass # bad name: must be cfg @classmethod def from_config(cls, config): # noqa pass with self.assertRaises(AttributeError): _ = _BadClass1(a=1) with self.assertRaises(TypeError): _ = _BadClass2(a=1) with self.assertRaises(TypeError): _ = _BadClass3(get_cfg())
41dcee6f352b6aeb4d60cf0a7e7cefc0c8539933
050ea6fa9d32fd293b37ff88e27260c4b441ef60
/core/employee_lookup.py
836f1838a6ead2a99c724e537ed37fd9709c1299
[ "MIT" ]
permissive
hpasalar/Hackerwasi
eaa945ae8c74440bf60e865a86dcb4e4c80cbbf6
72f8463a8384cac08ff87f9a59816a08381b6916
refs/heads/master
2022-12-06T00:40:27.077837
2020-08-16T05:34:47
2020-08-16T05:34:47
289,902,665
3
0
MIT
2020-08-24T10:55:19
2020-08-24T10:55:18
null
UTF-8
Python
false
false
829
py
# -*- coding: utf-8 -*- from core.LinkedIn import searchLinkedIn from colorama import init, Fore, Back, Style from terminaltables import SingleTable warning = "["+Fore.RED+"!"+Fore.RESET+"]" question = "["+Fore.YELLOW+"?"+Fore.RESET+"]" found = "["+Fore.GREEN+"+"+Fore.RESET+"]" wait = "["+Fore.MAGENTA+"*"+Fore.RESET+"]" init() def employee_lookup(): entreprise = input(" Entreprise: ") city = input(" Ville: ") print("\n"+wait+" Recherche des employés de '%s'...\n" % (entreprise)) linkedin = searchLinkedIn() linkedin.search(entreprise, city) found = linkedin.found if found: employee = linkedin.employees TABLE_DATA = [ ("Num", "Name"), ] x = 1 for employe in employee: TABLE_DATA.append((x, employe)) x += 1 table = SingleTable(TABLE_DATA, title=" LinkedIn ") print(table.table)
9215430ed85c25b3937c5251aa1bad39a44402d8
5d751981646de202f81f61b9c9a7443453a64839
/02 数据库/02 redis/03 python使用redis.py
01947292507a86c2a522958b2d11e92bbbf5bdd1
[]
no_license
jia80H/python-advance-learning
4464d9499e32d0dfab4181f7c9aa41c2313382bf
b03bbd65d842507e85b0a8296794a051ea89b884
refs/heads/main
2023-03-14T07:54:33.471717
2021-03-07T00:23:44
2021-03-07T00:23:44
337,283,779
0
0
null
null
null
null
UTF-8
Python
false
false
244
py
import redis client = redis.Redis() client.set('username', 'admin') client.hset('student', 'name', 'hao') client.hset('student', 'age', 18) d = client.keys('*') e = client.get('username') f = client.hgetall('student') print(d, e, f, sep='\n')
3834848d95757726447869fd51bb62c81af6ec51
b9120c5bc5aa5492de4631ace309a8c9333b704f
/Sesion_07/Ejem_Escritura_Archivo.py
8442cf373b3d9d6fc64036f06651c8d00cfc1245
[]
no_license
JuniorLlancari/Quantum-python
02af8333d608f3ca6a3e11c3f8a52169efcc70a3
ffd9abecfa78639d2e7c2deb641acc9baf8313b3
refs/heads/master
2023-03-31T00:44:25.350271
2021-04-01T16:34:56
2021-04-01T16:34:56
335,133,876
1
1
null
2021-04-01T16:34:57
2021-02-02T01:31:41
Python
UTF-8
Python
false
false
107
py
#CREANDO UN FICHERO # with open('numero.txt','w') as f: # for i in range(15): # f.write(str(i))
d0fb5a2dd10cecf5a018af51d1c99441fbf430df
43d9e1c55f6f06453bf1836ab288b4a71d862228
/ProyectoWeb/blog/admin.py
3d67e3d4eb2a023adbe2e75adc10fbd9bd15242f
[]
no_license
billyordores/ProyectoWeb
ceb602689bb90a06aba29914456bf5fa15e474d5
64bfaa275f03bf4688c9ded3fdc58821da999ab6
refs/heads/main
2023-06-24T11:03:45.948784
2021-07-27T11:28:17
2021-07-27T11:28:17
388,111,402
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
from django.contrib import admin from .models import Categoria, Post # Register your models here. class CategoriaAdmin(admin.ModelAdmin): readonly_fields=('created','updated') class PostAdmin(admin.ModelAdmin): readonly_fields=('created', 'updated') admin.site.register(Categoria, CategoriaAdmin) admin.site.register(Post, PostAdmin)
147b3f49376d8ffc70e3fd5db7ced898b8fad8f0
dd7be0b5437a4e0afc19f8a71aace9ec65a43135
/IMDBScrapy.py
d62c21a3a8e1d00b2a84db2d1dc97e3a1c2af26d
[]
no_license
Scipius02/IMDBVisualiser
dec9efee08c9c1d4dddc4bd103c0c0bb68f436c9
61265305664c2bcf407804bf9136ac7fe137a941
refs/heads/master
2021-05-18T10:54:00.404359
2020-03-30T06:14:34
2020-03-30T06:14:34
251,217,677
0
0
null
null
null
null
UTF-8
Python
false
false
2,463
py
from bs4 import BeautifulSoup import requests import re import json # get number of seasons of a tv show def numberofseasons(): URL = 'https://www.imdb.com' newURL = URL + '/title/tt0092455/' page = requests.get(newURL) soup = BeautifulSoup(page.content, 'html.parser') results = soup.find(id='title-episode-widget') seasonlist = results.find_all('a', href = True) for i in seasonlist: if "season=" not in i: seasonlist.pop() numSeasons = len(seasonlist) #print(numSeasons) return numSeasons numberofseasons() def seasonratings(seasonid): URL = 'https://www.imdb.com' newURL = URL + '/title/tt0092455/episodes?season=' + str(seasonid) page = requests.get(newURL) soup = BeautifulSoup(page.content, 'html.parser') episodelist = [] for episode in soup.find_all('strong'): if "/title/" in str(episode): #this possibly could've been replaced by soup.get('href') episode = re.findall(r'"([^"]*)"', str(episode)) episodelist.append(episode[0]) URLnew = '' epinfoJSON = [] for episode in episodelist: URLnew = URL + episode #print(URLnew) page = requests.get(URLnew) soup = BeautifulSoup(page.content, 'html.parser') epinfoJSON.append(json.loads(soup.find('script', type="application/ld+json").text)) for i, k in enumerate(epinfoJSON): if "season" not in k.keys(): k["season"] = seasonid if "episode" not in k.keys(): k["episode"] = (i+1) k.pop("@context", None) k.pop("@type", None) k.pop("image", None) k.pop("contentRating", None) k.pop("actor", None) k.pop("director", None) k.pop("creator", None) k.pop("description", None) k.pop("datePublished", None) k.pop("keywords", None) k.pop("review", None) k.pop("timeRequired", None) k.pop("trailer", None) #print(epinfoJSON) return epinfoJSON #seasonratings(1) def showratingaggregate(): seriesaggregateratingslist = [] for i in range(1,numberofseasons()+1): seriesaggregateratingslist.append(seasonratings(i)) #print(seriesaggregateratingslist) return seriesaggregateratingslist """u = 0 for dict in seriesaggregateratingslist: for doubledict in dict: u += 1 print(u)""" #print(type(showratingaggregate()))
4606fa88ae7df1801ce384b62f6b18e650bd9d27
5ad585dcfd36707bc6bab8033b3844bdbc535f6b
/pdfread/__main__.py
39880da1905946142240140e91773fe5d9eea053
[]
no_license
wlizama/python-training
09bbc9b2648edfcc7e177d49c9fa7d89309fa30e
1ff70727d6f528d5f60d5af666c6d5afdd218736
refs/heads/master
2022-11-27T07:49:02.988278
2020-05-23T17:09:48
2020-05-23T17:09:48
122,639,831
0
1
null
2022-11-22T04:32:08
2018-02-23T15:40:14
Python
UTF-8
Python
false
false
1,212
py
import PyPDF2 def findFile(fullNameFile): fileToFind = None try: fileToFind = open(fullNameFile, "rb") except FileNotFoundError: pass return fileToFind def execute(): _strRUCEmisor = "20123456789" _strTipoDocEmisor = "07" _strSerieDocEmisor = "F005" _filePDFNumDesde = 1 _filePDFNumHasta = 999 for num in list(range(_filePDFNumDesde, _filePDFNumHasta + 1)): strFileNameToFind = "%s-%s" %(_strSerieDocEmisor, str(num)) filePDF = findFile("W:\\DIR\\TO\\SEARCH\\%s-%s-%s.PDF" %(_strRUCEmisor, _strTipoDocEmisor, strFileNameToFind)) if filePDF != None: filePDFReader = PyPDF2.PdfFileReader(filePDF) pageObj = filePDFReader.getPage(0) fullTextPDF = pageObj.extractText() strIni = "RUC: 20987654321" strTextLimit = "SEÑORES: XXX" strFound = fullTextPDF[len(strIni)-1:fullTextPDF.find(strTextLimit)] strFound = strFound.replace(" ", "") if strFileNameToFind != strFound: print("strFileNameToFind: %s, strFound: %s" %(strFileNameToFind, strFound)) if __name__ == "__main__": execute()
85b30b860deb61f064afb3ef616df3dde8e9ad89
a86ca34e23afaf67fdf858df9e47847606b23e0c
/lib/temboo/Library/Tumblr/CreateChatPost.py
347314b1976b8c41d3939a68880737b693241ed9
[]
no_license
miriammelnick/dont-get-mugged
6026ad93c910baaecbc3f5477629b0322e116fa8
1613ee636c027ccc49c3f84a5f186e27de7f0f9d
refs/heads/master
2021-01-13T02:18:39.599323
2012-08-12T23:25:47
2012-08-12T23:25:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,701
py
############################################################################### # # CreateChatPost # Creates a new chat post for a specified Tumblr blog. # # Python version 2.6 # ############################################################################### from temboo.core.choreography import Choreography from temboo.core.choreography import InputSet from temboo.core.choreography import ResultSet from temboo.core.choreography import ChoreographyExecution class CreateChatPost(Choreography): """ Create a new instance of the CreateChatPost Choreography. A TembooSession object, containing a valid set of Temboo credentials, must be supplied. """ def __init__(self, temboo_session): Choreography.__init__(self, temboo_session, '/Library/Tumblr/CreateChatPost') def new_input_set(self): return CreateChatPostInputSet() def _make_result_set(self, result, path): return CreateChatPostResultSet(result, path) def _make_execution(self, session, exec_id, path): return CreateChatPostChoreographyExecution(session, exec_id, path) """ An InputSet with methods appropriate for specifying the inputs to the CreateChatPost choreography. The InputSet object is used to specify input parameters when executing this choreo. """ class CreateChatPostInputSet(InputSet): """ Set the value of the Conversation input for this choreography. ((required, string) The text of the conversation/chat, with dialogue labels (no HTML)) """ def set_Conversation(self, value): InputSet._set_input(self, 'Conversation', value) """ Set the value of the BaseHostname input for this choreography. ((required, string) The standard or custom blog hostname (i.e. temboo.tumblr.com)) """ def set_BaseHostname(self, value): InputSet._set_input(self, 'BaseHostname', value) """ Set the value of the Date input for this choreography. ((optional, date) The GMT date and time of the post. Can be an epoch timestamp in milliseconds or formatted like: Dec 8th, 2011 4:03pm. Defaults to NOW().) """ def set_Date(self, value): InputSet._set_input(self, 'Date', value) """ Set the value of the Markdown input for this choreography. ((optional, boolean) Indicates whether the post uses markdown syntax. Defaults to false. Set to 1 to indicate true.) """ def set_Markdown(self, value): InputSet._set_input(self, 'Markdown', value) """ Set the value of the OauthConsumerKey input for this choreography. ((required, string) The Oauth Consumer Key provided by Tumblr after registering your application) """ def set_OauthConsumerKey(self, value): InputSet._set_input(self, 'OauthConsumerKey', value) """ Set the value of the OauthConsumerSecret input for this choreography. ((required, string) The Oauth Consumer Secret provided by Tumblr after registering your application) """ def set_OauthConsumerSecret(self, value): InputSet._set_input(self, 'OauthConsumerSecret', value) """ Set the value of the OauthTokenSecret input for this choreography. ((required, string) The Oauth Token Secret retrieved during the Oauth process) """ def set_OauthTokenSecret(self, value): InputSet._set_input(self, 'OauthTokenSecret', value) """ Set the value of the OauthToken input for this choreography. ((required, string) The Oauth Token retrieved during the Oauth process) """ def set_OauthToken(self, value): InputSet._set_input(self, 'OauthToken', value) """ Set the value of the Slug input for this choreography. ((optional, string) Adds a short text summary to the end of the post URL) """ def set_Slug(self, value): InputSet._set_input(self, 'Slug', value) """ Set the value of the State input for this choreography. ((optional, string) The state of the post. Specify one of the following: published, draft, queue. Defaults to published.) """ def set_State(self, value): InputSet._set_input(self, 'State', value) """ Set the value of the Tags input for this choreography. ((optional, string) Comma-separated tags for this post) """ def set_Tags(self, value): InputSet._set_input(self, 'Tags', value) """ Set the value of the Title input for this choreography. ((optional, string) The title of the chat) """ def set_Title(self, value): InputSet._set_input(self, 'Title', value) """ Set the value of the Tweet input for this choreography. ((optional, string) Manages the autotweet (if enabled) for this post. Defaults to off for no tweet. Enter text to override the default tweet.) """ def set_Tweet(self, value): InputSet._set_input(self, 'Tweet', value) """ A ResultSet with methods tailored to the values returned by the CreateChatPost choreography. The ResultSet object is used to retrieve the results of a choreography execution. """ class CreateChatPostResultSet(ResultSet): """ Retrieve the value for the "Response" output from this choreography execution. ((xml) The response from Tumblr in XML format) """ def get_Response(self): return self._output.get('Response', None) class CreateChatPostChoreographyExecution(ChoreographyExecution): def _make_result_set(self, response, path): return CreateChatPostResultSet(response, path)
[ "miriam@famulus" ]
miriam@famulus
fcee5c12f32936a9f042d97e4578c6bd4fc6b86a
800985e7651360f37a3ec76b8934cf6b04c6080f
/app.py
1c113df3fa9955ad6356d20718dab127be90975e
[]
no_license
Dikshitha0812/Api-alphabet-recognition
da5002e2b609980d2c7922d9b62753ad188e3bce
67096b58f43932a304330464ca4e687524b486f3
refs/heads/main
2023-07-07T22:29:52.421535
2021-08-25T12:57:48
2021-08-25T12:57:48
399,819,340
0
0
null
null
null
null
UTF-8
Python
false
false
566
py
from flask import Flask, jsonify, request from classifier import get_alphabet App = Flask(__name__) # defining the portal @app.route("/predict-alphabet", methods=["POST"]) # writing function for predicting def predict_data(): image = cv2.imdecode(np.fromstring(request.files.get("alphabet").read(), np.uint8), cv2.IMREAD_UNCHANGED) image = request.files.get("alphabet") alphabet = get_alphabet(image) return jsonify({ "alphabet_predicted": alphabet }), 200 # running the function if __name__ == "__main__": App.run(debug=True)
74f8bfe1b1693dba259cbdf2ebce62709b7f0027
462ffb47a6474a54ec1724c8385be93653b70b54
/project/web/views.py
2b0d2a717c18b77b020deac69e736cd1bcd6536e
[]
no_license
NikitinaKatya/tusur.refectory
589699e85d6f5c2911b96f7243020af1c49de1c5
cb720e346542e904d2298736c1d9dbe28da93d35
refs/heads/master
2020-08-09T12:18:26.498569
2019-10-06T12:22:18
2019-10-06T12:22:18
214,086,027
1
0
null
2019-10-10T04:24:38
2019-10-10T04:24:38
null
UTF-8
Python
false
false
298
py
from django.shortcuts import render # from django.http import HttpResponse def index(request): return(render(request, 'main.html')) def index_menu(request): return(render(request, 'menu.html')) def index_shop(request): return(render(request, 'shop.html')) # Create your views here.
79d6f5512808ca89c83adc1044a871dfba8f6416
40a18752fe454bbf029f3f39b7e84cf4403d4977
/Class Files/test_divisors.py
2af9817eb7cfdeb98cd0f21a85efb6681f0ccd9a
[]
no_license
jcanning/Class_craftingQualityCode
51e63b3c08371c1816db48ee3af0ce6813d10712
745b9cc4fa0a5b49dd6d64bf9f6243c24c76ea2e
refs/heads/master
2021-01-01T05:35:45.441972
2013-05-01T21:53:09
2013-05-01T21:53:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
625
py
import unittest import divisors class TestDivisors(unittest.TestCase): """Example unittest test mehtods for get_divisors.""" def test_divisors_example_1(self): """Test get_divisors with 8 and [1 ,2, 3].""" actual = divisors.get_divisors(8, [1, 2, 3]) expected = [1, 2] self.assertEqual(actual, expected) def test_divisors_example_2(self): """Test get_divisors with 4 and [-2, 0, 2].""" actual = divisors.get_divisors(4, [-2, 0, 2]) expected = [-2, 2] self.assertEqual(actual, expected) if __name__ == '__main__': unittest.main(exit=False)
[ "JohnAllan@.(none)" ]
JohnAllan@.(none)
9c28cbaa9c1ae9facf8736de25b788afaa065c74
764832026510a666640e44d7245d623dca6fe615
/rtxs/test/test03.py
90c26979e45f0cf446263e519d845c73c86927e6
[]
no_license
MrWJB/rtxs
58f2ec1f4918de19b046b2e994f2bd4ad68ac669
2f584566de9a5ddccbfaaeef7756ced4ecb2055a
refs/heads/master
2020-05-18T06:32:09.946064
2019-04-30T09:55:57
2019-04-30T09:55:57
184,236,330
0
0
null
null
null
null
UTF-8
Python
false
false
1,080
py
# -*- coding: utf-8 -*- def count(): def f(j): def g(): return j * j return g fs = [] for i in range(1, 4): fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f() return fs f1, f2, f3 = count() print(f1()) print(f2()) print(f3()) # 装饰器 # def now(): # print('2005-3-25') # f=now # f() # print(now.__name__) # f=now # print(f.__name__) # 在代码运行期间动态增加功能的方式,称之为封装器 def log(func): def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper import functools def log(func): @functools.wraps(func) def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper @log def now(): print('2005-3-25') print(now()) revl = int('12345', base=8) print(revl) def int2(x, base=2): return int(x, base) print(int2('1000000')) # 使用偏函数 int2 = functools.partial(int, base=2) print(int2('100101001'))
9704ad9c7cc99b07e77c6e219ae310c687900ba3
048f12857291f0d4c4a5d05d3a13e15c13532997
/dfs/유기농_배추.py
54730f9bb8a12be784b59741ac63d9ab74f27bc4
[]
no_license
jsg921019/algorithm_study
1841d5b0d7b22a77e00d1a4bbca785acffeb0e4c
16073349a4e969a8f6af6de76054d7179772738c
refs/heads/main
2023-06-07T23:48:16.469076
2023-05-31T19:21:44
2023-05-31T19:21:44
366,484,457
0
0
null
null
null
null
UTF-8
Python
false
false
1,555
py
# https://www.acmicpc.net/problem/1012 # solution 1 : iteration import sys sys.stdin = open('private/input.txt', 'r') input = sys.stdin.readline def sol(m, n, k): n_worm = 0 farm = [[0]*n for _ in range(m)] cabbage = [[*map(int, input().split())] for _ in range(k)] for i, j in cabbage: farm[i][j] = 1 for c in cabbage: i, j = c if farm[i][j] == 0: continue n_worm += 1 farm[i][j] == 0 stack = [c] while stack: i, j = stack.pop() for i_, j_ in [(i+1, j), (i-1,j), (i,j+1), (i,j-1)]: if 0 <= i_ < m and 0 <= j_ < n and farm[i_][j_] == 1: farm[i_][j_] = 0 stack.append([i_,j_]) return n_worm for _ in range(int(input())): print(sol(*map(int, input().split()))) # solution 2: recursion import sys sys.setrecursionlimit(3000) sys.stdin = open('private/input.txt', 'r') input = sys.stdin.readline def sol(m, n, k): def recur(i, j): farm[i][j] = 0 for i_, j_ in [(i+1, j), (i-1,j), (i,j+1), (i,j-1)]: if 0 <= i_ < m and 0 <= j_ < n and farm[i_][j_] == 1: recur(i_, j_) n_worm = 0 farm = [[0]*n for _ in range(m)] cabbage = [[*map(int, input().split())] for _ in range(k)] for i, j in cabbage: farm[i][j] = 1 for i, j in cabbage: if farm[i][j] == 1: n_worm += 1 recur(i,j) return n_worm for _ in range(int(input())): print(sol(*map(int, input().split())))
35a839d7db607c87500bdb9d971083a1259a382c
7172aab86832e0d8697f9d746a0a6add90488e49
/json_pathfinder.py
15ce35a8cd7697bb5b01388a2c005e8e11f8a500
[]
no_license
xKTSE/dailyprogrammer
a4f71b3481cf891393a57e673df988be733806ee
c5933dad3e93b50f1e284e86741273214ebaf64e
refs/heads/master
2021-01-25T05:34:55.202585
2015-09-20T20:10:51
2015-09-20T20:10:51
41,971,701
0
0
null
null
null
null
UTF-8
Python
false
false
1,871
py
# https://www.reddit.com/r/dailyprogrammer/comments/3j3pvm/20150831_challenge_230_easy_json_treasure_hunt/ import json import types NumberTypes = (types.IntType, types.LongType, types.FloatType, types.ComplexType) json_str = \ ''' {"dlpgcack": false, "indwqahe": null, "caki": {"vvczskh": null, "tczqyzn": false, "qymizftua": "jfx", "cyd": {"qembsejm": [null, "dailyprogrammer", null], "qtcgujuki": 79, "ptlwe": "lrvogzcpw", "jivdwnqi": null, "nzjlfax": "xaiuf", "cqajfbn": true}, "kbttv": "dapsvkdnxm", "gcfv": 43.25503357696589}, "cfqnknrm": null, "dtqx": "psuyc", "zkhreog": [null, {"txrhgu": false, "qkhe": false, "oqlzgmtmx": "xndcy", "khuwjmktox": 48, "yoe": true, "xode": "hzxfgvw", "cgsciipn": 20.075297532268902}, "hducqtvon", false, [null, 76.8463226047357, "qctvnvo", null], [null, {"nlp": false, "xebvtnvwbb": null, "uhfikxc": null, "eekejwjbe": false, "jmrkaqky": null, "oeyystp": false}, [null, 10, "nyzfhaps", 71, null], 40, null, 13.737832677566875], [true, 80, 20, {"weynlgnfro": 40.25989193717965, "ggsirrt": 17, "ztvbcpsba": 12, "mljfh": false, "lihndukg": "bzebyljg", "pllpche": null}, null, [true, false, 52.532666161803895, "mkmqrhg", "kgdqstfn", null, "szse"], null, {"qkhfufrgac": "vpmiicarn", "hguztz": "ocbmzpzon", "wprnlua": null}], {"drnj": [null, false], "jkjzvjuiw": false, "oupsmgjd": false, "kcwjy": null}]} ''' def finder(tree, path): if tree == None: return if isinstance(tree, basestring): if tree == 'dailyprogrammer': # print path for p in path: print p print 'dailyprogrammer' else: return elif isinstance(tree, list): for items in tree: finder(items, path) elif isinstance(tree, NumberTypes): return else: for key in tree: finder(tree[key], path + [key]) if __name__ == '__main__': js = json.loads(json_str) for key in js: finder(js[key], [key])
45c74a8e2a9bf988eb230ab9dcf388081ff90d79
a9e5027d61e493bbf134ccd76cdc7f71fb878c80
/DawProyecto/web/urls.py
942c3d28960934fd8a2299af57b7de1eb6894b05
[]
no_license
rdsuarezb/Designer
463e5777cfa94d193e03fa43d437d0b31bccaa60
62870a18920b4f0ca33615051413beb68e97d789
refs/heads/master
2021-01-10T05:03:39.167950
2016-01-26T03:37:47
2016-01-26T03:37:47
50,333,781
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
from django.conf.urls import include, url urlpatterns = [ # Examples: # url(r'^$', 'DawProyecto.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^$',"web.views.CargarPrincipal"), url(r'^Perfil/$',"web.views.CargarPerfil"), url(r'^Documentos/$',"web.views.CargarDocumentos"), url(r'^AreaDeTrabajo/$',"web.views.CargarAreaDeTrabajo"), url(r'^login$',"web.views.login"), url(r'^logout$',"web.views.logout"), ]