blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
44df4dcf17e329ecfa0dc1322e01f7781d412da7
c3ad52c73b7d918932a1cf31b2ade9f48d0dc4a2
/lino_book/projects/team/wsgi.py
c3796cbfbaca65ca5b039f940d0062ac89d7c749
[ "BSD-2-Clause" ]
permissive
khchine5/book
db48d800aac323fbb50ebc26167f0be02e3477b5
b6272d33d49d12335d25cf0a2660f7996680b1d1
refs/heads/master
2020-12-28T19:34:13.592286
2018-08-22T07:23:34
2018-08-22T07:23:34
58,850,532
1
0
BSD-2-Clause
2018-08-19T12:27:51
2016-05-15T08:03:56
Python
UTF-8
Python
false
false
416
py
""" WSGI config for superlists project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "lino_book.projects.team.settings.demo") application = get_wsgi_application()
297dbfe8602834f4797d5e5d7a7dd90597615a5a
9b64f0f04707a3a18968fd8f8a3ace718cd597bc
/huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/set_binlog_clear_policy_response.py
935af92de8fbb7f55e5faea1f885bcdd215c91cb
[ "Apache-2.0" ]
permissive
jaminGH/huaweicloud-sdk-python-v3
eeecb3fb0f3396a475995df36d17095038615fba
83ee0e4543c6b74eb0898079c3d8dd1c52c3e16b
refs/heads/master
2023-06-18T11:49:13.958677
2021-07-16T07:57:47
2021-07-16T07:57:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,831
py
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class SetBinlogClearPolicyResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'resp': 'str' } attribute_map = { 'resp': 'resp' } def __init__(self, resp=None): """SetBinlogClearPolicyResponse - a model defined in huaweicloud sdk""" super(SetBinlogClearPolicyResponse, self).__init__() self._resp = None self.discriminator = None if resp is not None: self.resp = resp @property def resp(self): """Gets the resp of this SetBinlogClearPolicyResponse. 操作结果。 :return: The resp of this SetBinlogClearPolicyResponse. :rtype: str """ return self._resp @resp.setter def resp(self, resp): """Sets the resp of this SetBinlogClearPolicyResponse. 操作结果。 :param resp: The resp of this SetBinlogClearPolicyResponse. :type: str """ self._resp = resp def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): import simplejson as json return json.dumps(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SetBinlogClearPolicyResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
043efa442dd452c0eff7f619de7ea394af93981a
7cf8cc1f944946f0378da2e6af4ba1c89466dfb4
/dbconnector.py
16f6a0d672ffa809e3434f3739f363da0023aca5
[]
no_license
ashilz/pythonnew
8abd164f757efaefa2216d663db2082c241cf4f5
5b57e0f1211a67671999bd3a1cae064318ab1e2f
refs/heads/master
2022-12-10T21:22:02.597080
2020-09-16T06:01:53
2020-09-16T06:01:53
292,829,812
0
0
null
null
null
null
UTF-8
Python
false
false
288
py
import mysql.connector db=mysql.connector.connect( host="localhost", user="root", password="Ashil333!", auth_plugin="mysql_native_password" ) cursor=db.cursor() sql="SELECT VERSION()" cursor.execute(sql) data=cursor.fetchone() print("Database version: ",data) db.close()
fdd4510c68c081929de07559683941fe8168de87
c87b3d41f4a7afb75733c53c810588d1cc87d828
/review_sentiment/wsgi.py
ca2f7a9b334696da0fe5899fac13a17c861a6925
[]
no_license
susvicky/seminar
c5601423f60c36ad2b44ab05f312fc52a745f598
580ce4bfc34a63458f6ad6f8abb5935f1418591b
refs/heads/master
2023-02-24T06:59:05.472513
2021-02-01T16:41:28
2021-02-01T16:41:28
334,999,174
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
""" WSGI config for review_sentiment project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'review_sentiment.settings') application = get_wsgi_application()
4f768229d4c87d06441f81a93ae972add2e23983
6d713f120794849f32bf66544d133ef50889c40a
/setup.py
bd62fe2b613dfcb1120179c0f69450609f01bd2c
[]
no_license
stothe2/maru
5889092c91210b297b61283c10b5ecfadbd16bb4
749e017fbf3fd757b89ab31f0bf81f0ea36cfac6
refs/heads/master
2020-04-26T21:06:11.007032
2015-03-29T00:52:16
2015-03-29T00:52:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,307
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ distribute- and pip-enabled setup.py """ import logging import os import re from setuptools.command.install import install as Install # ----- overrides ----- # set these to anything but None to override the automatic defaults packages = None package_name = None package_data = None scripts = None # --------------------- # ----- control flags ----- # fallback to setuptools if distribute isn't found setup_tools_fallback = True # don't include subdir named 'tests' in package_data skip_tests = False # print some extra debugging info debug = True # ------------------------- if debug: logging.basicConfig(level=logging.DEBUG) # distribute import and testing try: import distribute_setup distribute_setup.use_setuptools() logging.debug("distribute_setup.py imported and used") except ImportError: # fallback to setuptools? # distribute_setup.py was not in this directory if not (setup_tools_fallback): import setuptools if not (hasattr(setuptools,'_distribute') and \ setuptools._distribute): raise ImportError("distribute was not found and fallback to setuptools was not allowed") else: logging.debug("distribute_setup.py not found, defaulted to system distribute") else: logging.debug("distribute_setup.py not found, defaulting to system setuptools") import setuptools def find_scripts(): return [s for s in setuptools.findall('scripts/') if os.path.splitext(s)[1] != '.pyc'] def package_to_path(package): """ Convert a package (as found by setuptools.find_packages) e.g. "foo.bar" to usable path e.g. "foo/bar" No idea if this works on windows """ return package.replace('.','/') def find_subdirectories(package): """ Get the subdirectories within a package This will include resources (non-submodules) and submodules """ try: subdirectories = os.walk(package_to_path(package)).next()[1] except StopIteration: subdirectories = [] return subdirectories def subdir_findall(dir, subdir): """ Find all files in a subdirectory and return paths relative to dir This is similar to (and uses) setuptools.findall However, the paths returned are in the form needed for package_data """ strip_n = len(dir.split('/')) path = '/'.join((dir, subdir)) return ['/'.join(s.split('/')[strip_n:]) for s in setuptools.findall(path)] def find_package_data(packages): """ For a list of packages, find the package_data This function scans the subdirectories of a package and considers all non-submodule subdirectories as resources, including them in the package_data Returns a dictionary suitable for setup(package_data=<result>) """ package_data = {} for package in packages: package_data[package] = [] for subdir in find_subdirectories(package): if '.'.join((package, subdir)) in packages: # skip submodules logging.debug("skipping submodule %s/%s" % (package, subdir)) continue if skip_tests and (subdir == 'tests'): # skip tests logging.debug("skipping tests %s/%s" % (package, subdir)) continue package_data[package] += subdir_findall(package_to_path(package), subdir) return package_data # makes the _data.so before install class MyInstall(Install): def run(self): cmd = 'cd %s/src && make all' % os.path.dirname(os.path.realpath(__file__)) assert os.system(cmd) == 0, 'Failed to make concat_core.so' Install.run(self) # ----------- Override defaults here ---------------- if packages is None: packages = setuptools.find_packages() if len(packages) == 0: raise Exception("No valid packages found") if package_name is None: package_name = packages[0] if package_data is None: package_data = find_package_data(packages) # kludge way of adding concat_core.so package_data['maru.io'] += ['concat_core.*'] if scripts is None: scripts = find_scripts() setuptools.setup( name = package_name, version = '0.0.1', packages = packages, scripts = scripts, url = 'https://github.com/hahong/maru.git', author = 'Ha Hong', author_email = '[email protected]', description = 'Multi-electrode Array Recording Utilities', long_description = open('README.md').read(), classifiers = [ 'Development Status :: 3 - Alpha', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Environment :: Console', 'License :: OSI Approved :: BSD License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX', 'Operating System :: Unix', 'Programming Language :: Python', 'Programming Language :: C', 'Programming Language :: C++', 'Topic :: Scientific/Engineering', 'Topic :: Software Development', ], platforms = ['Linux', 'OS-X'], license = 'BSD', keywords = 'Multi-electrode Array MWorks BlackRock Plexon', package_data = package_data, include_package_data = True, install_requires = None, cmdclass={'install': MyInstall}, )
f2d192a279a465cd0da09663607672fb9a7a6d8b
a045055cb41f7d53e1b103c3655a17dc4cd18d40
/python-master/kubernetes/test/test_v1_daemon_endpoint.py
6b209e0c35ca46df33c6e5352667445de9ff6abb
[]
no_license
18271693176/copy
22f863b180e65c049e902de0327f1af491736e5a
ff2511441a2df03817627ba8abc6b0e213878023
refs/heads/master
2020-04-01T20:20:28.048995
2018-11-05T02:21:53
2018-11-05T02:21:53
153,599,530
0
0
null
null
null
null
UTF-8
Python
false
false
962
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.10.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1_daemon_endpoint import V1DaemonEndpoint class TestV1DaemonEndpoint(unittest.TestCase): """ V1DaemonEndpoint unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1DaemonEndpoint(self): """ Test V1DaemonEndpoint """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1_daemon_endpoint.V1DaemonEndpoint() pass if __name__ == '__main__': unittest.main()
77eb55506ed931c36654ce2d0a5a6c2482183496
be44c827a826d9d73f1901b7e32ed25ffd63c325
/challenge 1.py
c092f93e80537e51ae74673083b0d9b20a6e4d35
[]
no_license
rajesh005/python
51bf58279731d42032bbeb984be3cf03c77c9b1e
7d13e5e72d7e20e889c5d4b345e48929c47a2991
refs/heads/master
2021-03-22T04:20:08.358091
2017-09-22T19:35:40
2017-09-22T19:35:40
104,265,824
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
name = input("What is your name?") age = int(input("what is your age {0}?".format(name))) if age > 18 and age < 31: print("huray, you can enjoy the holiday") else: print("I am sorry, you are not allowed for this holiday")
91ed3d06bf69cff60c4eb62e7eb7ebdb9657bb70
6a7953d4bcd4f63786c774dec742092d0ecac971
/voicemap/metrics.py
d80738c480ac850e4250caea7f6e1d1bb0a7d44e
[]
no_license
Vanova/voicemap
f636f139fd8aac3fb74df60e0862f49256ad5b9f
8d9a4d777a0611eba393d8733fa80dbab1f2c6d4
refs/heads/master
2020-05-25T06:37:25.530694
2019-09-13T07:30:01
2019-09-13T07:30:01
187,670,745
0
0
null
2019-05-20T15:48:09
2019-05-20T15:48:09
null
UTF-8
Python
false
false
2,500
py
import numpy as np import sklearn.metrics as skm def eer(y_true, y_pred): """ EER for binary classifier y_true: ndarray, [smps; 1] y_score: ndarray, [smps; 1], real valued scores of classifier # Output EER value """ fpr, tpr, thresholds = skm.roc_curve(y_true, y_pred, drop_intermediate=True) eps = 1E-6 points = [(0, 0)] + list(zip(fpr, tpr)) for i, point in enumerate(points): if point[0] + eps >= 1 - point[1]: break p1 = points[i - 1] p2 = points[i] # Interpolate between p1 and p2 if abs(p2[0] - p1[0]) < eps: res = p1[0] else: m = (p2[1] - p1[1]) / (p2[0] - p1[0]) x = p1[1] - m * p1[0] res = (1 - x) / (1 + m) return 100. * res def class_wise_eer(y_true, y_pred): """ Calculate eer per each class, multi-class classifier Y_true: ndarray, [smps; n_class] Y_pred: ndarray, [smps; n_class] # Output list of eer values per class, n_class """ cw_eer = [] smp, n_clc = y_true.shape for cl in range(n_clc): er = eer(y_true=y_true[:, cl], y_pred=y_pred[:, cl]) cw_eer.append(er) return cw_eer def micro_f1(y_true, y_pred, accuracy=True): """ Calculate micro-F1 measure for multi-class classifier y_true: ndarray, [smps; n_class] y_pred: ndarray, [smps; n_class], thresholded (with step function) binary integers # Output Accuracy or Error of micro-F1 """ assert (len(y_true) == len(y_pred)) neg_r = np.logical_not(y_true) neg_p = np.logical_not(y_pred) tp = np.sum(np.logical_and(y_true, y_pred) == True) fp = np.sum(np.logical_and(neg_r, y_pred) == True) fn = np.sum(np.logical_and(y_true, neg_p) == True) f1 = 2.0 * tp / (2.0 * tp + fp + fn) * 100. return f1 if accuracy else 100. - f1 def pooled_accuracy(y_true, y_pred): """ Accuracy for multi-class classifier, all scores are pooled in single list y_true: list, class ids y_pred: list, class ids # Output Accuracy """ N = float(len(y_true)) return sum(int(x == y) for (x, y) in zip(y_true, y_pred)) / N * 100. def step(a, threshold=0.5): """ Heaviside step function: a < threshold = 0, else 1. a: ndarray, [smps; n_class] # Output binary ndarray [smps; n_class] """ res = np.zeros_like(a) res[a < threshold] = 0 res[a >= threshold] = 1 return res
fa09bfa08d15dd8cb19373e64b6add0653565c83
6a893c0e3cd9e73be6aa4401d14017ebcb802953
/venv/bin/pip3
49f23255fd988bb13d3aff95dda0c76b661eeda1
[]
no_license
Gobinde43/Ex1
2929034c38442481af8197581591e4f694db6e1f
fc164761aef6d3457fa80b2382f45831f14a2a07
refs/heads/master
2020-03-28T11:10:59.311248
2018-09-10T16:29:49
2018-09-10T16:29:49
148,185,890
0
0
null
null
null
null
UTF-8
Python
false
false
399
#!/Users/belen/PycharmProjects/Ex1/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')() )
625783ed57b057e3e185b620b215e217d6f0ca6c
eabf86b6e381ab13d08c60003437946857fefcad
/PyShop/products/migrations/0002_offer.py
9355bbe40081d5110238eb0b8ace19147fa6ce5f
[ "MIT" ]
permissive
ejrach/exercises-mosh
4a1d471e513a1c0f7ff78b25c0bff5b0ba699f23
baaa02dff58652a9910d654be9bdd3e76dece9b7
refs/heads/master
2023-03-20T12:10:13.836764
2019-10-01T14:39:35
2019-10-01T14:39:35
198,443,046
0
0
MIT
2023-03-03T07:12:07
2019-07-23T14:04:41
JavaScript
UTF-8
Python
false
false
618
py
# Generated by Django 2.1 on 2019-07-29 15:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0001_initial'), ] operations = [ migrations.CreateModel( name='Offer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=10)), ('description', models.CharField(max_length=255)), ('discount', models.FloatField()), ], ), ]
cc6c5f74b00f256727c6ae1e80e9db76bbab3144
0d905aab1b7c1eb2a8b0c04b94d3047adced56ab
/products/migrations/0001_initial.py
3a1373268cc5132bad7d00b1b9dcd6c7ebd8eabe
[]
no_license
samishken/python-django-onlinestore
3ff83f418029181c54916b6834e4ba515dfd2d13
61f1a2c461a08e5262c98ad4a794eaf2676704f5
refs/heads/master
2020-05-04T02:58:32.465186
2019-10-22T23:33:55
2019-10-22T23:33:55
178,938,086
0
0
null
null
null
null
UTF-8
Python
false
false
649
py
# Generated by Django 2.1 on 2019-04-01 18:16 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('price', models.FloatField()), ('stock', models.IntegerField()), ('image_url', models.CharField(max_length=2083)), ], ), ]
2c5579eaa66d8bcd568be4c8d7fb7c389c6c475e
2f71bf4a00e33404d4ff2c4121412b2ca08f518c
/video_classes.py
453e8761cfa97872909d243e7654b30e7945fcbb
[]
no_license
briskkk/video_info_obtain
6c9e7103a621f9c8143ecf1cf853a4f1b999e988
1b85e8c199f425bac12c4a6c2edb5ab30125a5fb
refs/heads/master
2020-04-09T10:57:12.547352
2018-11-29T14:13:28
2018-11-29T14:13:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
827
py
# -*- coding:UTF-8 -*- class Video(): def __init__(self,video_aid=None,video_title=None): if video_aid: self.aid = video_aid if video_title: if isinstance(video_title,unicode): video_title = video_title.encode('utf8') self.title = video_title aid = None title = None view = None shoucang = None danmu = None date = None cover = None reply = None description = None share = None like = None dislike = None tag = None author_mid = None author_name = None page = None credit = None coin = None spid = None cid = None Iscopy = None subtitle = None duration = None episode = None arcurl = None#网页地址 tid = None typename = None pubtime = None
79936fa84285e98af4596782a8a456f500bb3e74
95dba78b83dfb1e9bdfcba4964ea48fe725bff33
/cadenas/cadenas.py
54e4383c8e79c092b8afd6138d52439065796961
[]
no_license
engelcituk/python-bases
36d5fa5cdb73cf87f1ace429beb130519004d841
2303fc3482f91889f7d0a95f607a5cace18e3f75
refs/heads/main
2022-12-20T16:41:21.548026
2020-10-04T22:41:39
2020-10-04T22:41:39
300,962,375
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
texto = "Este es una cadena" # los strings al igual que las tuplas, son inmutables resultado = len(texto); #para saber la longitud de la cadena print(resultado) primeraLetra = texto[0] #similar a hacerlo con las lista o tuplas ultimaLetra = texto[-1] #trae el ultimo elemento del string penultimaLetra = texto[-2] #trae el penultimo elemento del string #si colocamos un indice que no existe se obtendrá un error print(primeraLetra) print(ultimaLetra) print(penultimaLetra) #podemos generar substrings subStringConSaltos = texto[1:7:2] #obtener los elementos a partir del indice:hasta:saltos print(subStringConSaltos)
1c8d914ba6adc344ea26ae605e8c92c396c17221
dcc38f2d59a609523c2624f4c361e522d6b3360f
/UpWork_Projects/residential-reits/clipperrealty/gBucket.py
9c855cb1f7bcb8870bd0ce95a7fac9a6d476022d
[ "MIT" ]
permissive
SurendraTamang/Web-Scrapping-1
096572319b0a5d6411c6a0b8812baaad8c9a772e
e82dab1685d6d5429950d08f71f58ee6f97653cd
refs/heads/master
2023-04-04T05:30:38.270111
2021-04-13T18:15:40
2021-04-13T18:15:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,547
py
import os import pandas as pd from google.cloud import storage import gzip import csv from datetime import datetime import smtplib from email.message import EmailMessage def send_email(body): EMAIL_USER = os.environ.get('EMAIL_USER') EMAIL_PASS = os.environ.get('EMAIL_PASS') msg = EmailMessage() msg['Subject'] = 'GOOGLE BUCKET SCRIPT ERROR ALERT: clipper realty' msg['From'] = EMAIL_USER msg['To'] = '[email protected], [email protected]' msg.set_content(body) with smtplib.SMTP_SSL('smtp.gmail.com', 465) as smtp: smtp.login(EMAIL_USER, EMAIL_PASS) smtp.send_message(msg) def get_both_rows(today, yesterday, which=None): """Find rows which are different between two DataFrames.""" comparison_df = today.merge(yesterday, indicator=True, how='outer') if which is None: diff_df = comparison_df[comparison_df['_merge'] == 'both'] else: diff_df = comparison_df[comparison_df['_merge'] == which] return diff_df def get_left_rows(today, yesterday, which=None): """Find rows which are different between two DataFrames.""" comparison_df = today.merge(yesterday, indicator=True, how='outer') if which is None: diff_df = comparison_df[comparison_df['_merge'] == 'left_only'] else: diff_df = comparison_df[comparison_df['_merge'] == which] return diff_df def generate_file_name(): now = datetime.now() dt_string = now.strftime("%d-%m-%Y_%H-%M") return f"data_{dt_string}.csv.gz" def upload_to_bucket(fname): storage_client = storage.Client.from_service_account_json("../rr_gcp_credentials.json") bucket = storage_client.get_bucket("clipper_realty") blob = bucket.blob(fname) blob.upload_from_filename(fname) def main(): # Reading yesterday's & today's file to compare the data try: td = pd.read_csv('./today.csv') yd = pd.read_csv('./yesterday.csv') except: send_email(f'''Hi,\ngBucket.py encountered an error at {datetime.now().strftime("%d/%m/%Y %H:%M:%S")}.\nThe error is: "The clipper realty CSV file is empty. Script terminated without pushing data into Google Bucket".\nPlease see more information here: /home/p.byom26/residentialReits/rrScrapers/clipperrealty/gBucket.py\nContact [email protected] for help.\n\nSent From\nGCP Ubuntu VM''') os._exit(1) # Generating the gzip csv file name fname = generate_file_name() # Formatiing the dataframe & writing into a gunzipped csv file df1 = get_both_rows(td, yd) df2 = get_left_rows(td, yd) df2.loc[df2['_merge'] == 'left_only', 'Timestamp'] = datetime.now().strftime("%d/%m/%Y %H:%M:%S") final_df = df1.append(df2, ignore_index=True) final_df.drop('_merge', inplace=True, axis=1) final_df.to_csv(fname, index=False, compression='gzip') # Uploading the file to Google Cloud Bucket try: upload_to_bucket(fname) except: send_email(f'''Hi,\ngBucket.py encountered an error at {datetime.now().strftime("%d/%m/%Y %H:%M:%S")}.\nThe error is: "upload_to_bucket function failed. Please check the cedentials file / bucket name".\nPlease see more information here: /home/p.byom26/residentialReits/rrScrapers/clipperrealty/gBucket.py\nContact [email protected] for help.\n\nSent From\nGCP Ubuntu VM''') os._exit(1) # Deleting the unwanted files & generating yesterday.csv os.remove('./today.csv') os.remove('./yesterday.csv') os.remove(fname) final_df.to_csv('./yesterday.csv', index=False) main()
fbf588d645769abcd13434ffe49d6404d58725c6
ac4b9385b7ad2063ea51237fbd8d1b74baffd016
/.history/utils/ocr/handle_image_20210209135127.py
1135c639d20f290cadf012273d5562fc4ccd1ea3
[]
no_license
preethanpa/ssoemprep
76297ef21b1d4893f1ac2f307f60ec72fc3e7c6f
ce37127845253c768d01aeae85e5d0d1ade64516
refs/heads/main
2023-03-09T00:15:55.130818
2021-02-20T06:54:58
2021-02-20T06:54:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,735
py
import os import cv2 import re import numpy as np from PIL import Image import pytesseract from pytesseract import Output from fpdf import FPDF ''' IMAGE HANDLING METHODS ''' # get grayscale image def get_grayscale(image): return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # blur removal def remove_blur(image): return cv2.medianBlur(image,5) # noise removal def remove_noise(image): return cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 15) #thresholding def thresholding(image): return cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] #dilation def dilate(image): kernel = np.ones((5,5),np.uint8) return cv2.dilate(image, kernel, iterations = 1) #erosion def erode(image): kernel = np.ones((5,5),np.uint8) return cv2.erode(image, kernel, iterations = 1) def extract_pdf_from_image(fileName='', pdf_path='', action='', psm=3): ''' Extract text from image and save as PDF. fileName='' pdf_path='', action='', psm=3 ''' #custom_config = r'-c tessedit_char_whitelist=123456789MALEPQRETHANabcdefghijklmnopqrstuvwxyz --psm 6' #custom_config = r'-l eng --psm 11' custom_config = r'-l eng --psm ' + str(psm) pdfdir = pdf_path if not os.path.exists(pdfdir): os.makedirs(pdfdir) pdfFileName = os.path.basename(fileName).split('.')[0] + '.pdf' pdfFilePath = pdfdir + '/' + pdfFileName print(f'PDF File Path {pdfFilePath}') #d = pytesseract.image_to_data(img, output_type=Output.DICT) img = cv2.imread(fileName) if (action == 1): img1 = remove_noise(img) if (action == 2): img1 = get_grayscale(img) #img1 = erode(img) if (action == 3): img1 = remove_blur(img) #text = pytesseract.image_to_string(img1, config=custom_config,lang='eng') text = pytesseract.image_to_pdf_or_hocr(img1, extension='pdf') with open(pdfFilePath, mode = 'w+b') as f: f.write(text) return pdfFilePath def convert_text_to_pdf(text='', pdf_path='', filename=''): ''' Convert text file to PDF ''' tempdir = "/tmp" pdfdir = pdf_path textFileName = tempdir + '/' + filename + ".txt" pdfFileName = pdfdir + '/' + filename + ".pdf" if not os.path.exists(tempdir): os.makedirs(tempdir) if not os.path.exists(pdfdir): os.makedirs(pdfdir) # save FPDF() class into a # variable pdf pdf = FPDF() # Add a page pdf.add_page() # set style and size of font # that you want in the pdf pdf.set_font("Arial", size = 15) with open(textFileName, mode = 'w+b') as f: f.write(text) line = 1 f = open(textFileName, "r") for x in f: x1 = re.sub(u"(\u2014|\u2018|\u2019|\u201c|\u201d)", "", x) pdf.cell(100, 10, txt=x1, ln=line, align='L') line=line+1 #save the pdf with name .pdf pdf.output(pdfFileName,'F')
3c79eb5b77740128d1f1643ffc6b9fb5be3338ca
27eb66e8d768f16a176766001ccaac79ded8a901
/src/tools/tree_to_gas.py
136e6e2306be4d0115985d6b77a9c793d4523b46
[]
no_license
LukeEcomod/TreeBoxModel
d683df5caf7ac7f4186fd5a588bc7bbb6ecf2975
8cdbe86de9b08bc71841f831dfd8cd14eec8ed55
refs/heads/main
2023-08-17T23:31:10.692566
2023-05-23T07:07:07
2023-05-23T07:07:07
244,628,430
0
0
null
2023-08-14T22:25:59
2020-03-03T12:19:08
Python
UTF-8
Python
false
false
3,763
py
from typing import Dict, Tuple import numpy as np def convert_tree_to_gas_properties(model, gas_dims: Tuple, c_gas_soil=0.0) -> Dict: '''Convert tree properties in model.py to gas properties to be used in gas.py''' r, r_mask = convert_tree_radii_to_gas(model, gas_dims) h, h_mask = convert_tree_height_to_gas(model, gas_dims) v = convert_tree_flux_to_velocity(model) n = gas_dims[0]*gas_dims[1] params = {} params['radius'] = np.repeat(r, repeats=n).reshape(gas_dims) params['height'] = np.repeat(h, repeats=n).reshape(gas_dims) params['velocity'] = np.zeros(gas_dims, dtype=np.float64) params['root_uptake'] = convert_root_fluxes_to_source_term(model, c_gas_soil) # set the velocity to correct values for row, _ in enumerate(params['velocity']): params['velocity'][row, :] = np.array([0.0 if i == 0 else v[0][h_mask[row], 0] if i == 1 else v[1][h_mask[row], 0] for i in r_mask]) return params def convert_tree_flux_to_velocity(model): '''Convert axial upward flux to sap flow velocity to be used in gas.py''' RHO_WATER = 1000 _, flux, _ = model.axial_fluxes() flux = -1.0*flux/RHO_WATER # flux in m3/s velocity_xylem = flux[:, 0].reshape(model.tree.num_elements, 1) / model.tree.element_area([], 0) velocity_phloem = flux[:, 1].reshape(model.tree.num_elements, 1) / model.tree.element_area([], 1) return (velocity_xylem, velocity_phloem) def convert_root_fluxes_to_source_term(model, c_gas_soil: float): ''' Convert root fluxes to be used as a source term in sources_and_sinks_func in gas.py''' RHO_WATER = 1000 return model.root_fluxes()/RHO_WATER*c_gas_soil def convert_tree_radii_to_gas(model, gas_dims: Tuple) -> Tuple: """Converts the tree heartwood, xylem and phloem radii to equally spaced gas element radii Args: tree (Tree): Instance of the tree class gas_dims (Tuple): Number of axial and radial elements in the gas in this order. Returns: Tuple where the first element is the radii for every element and the second list contains mask whether the element is heartwood (0), sapwood (1) or phloem(2) """ r = (model.tree.element_radius[0, :]) percentage_r = np.cumsum(r/np.sum(r)) r = np.sum(r)/gas_dims[1] mask = [0 if i/gas_dims[1] < percentage_r[0] else 1 if (i/gas_dims[1] < percentage_r[1] and i/gas_dims[1] >= percentage_r[0]) else 2 for i in range(gas_dims[1])] return (r, mask) def convert_tree_height_to_gas(model, gas_dims: Tuple) -> Tuple: """ Converts tree element heights to equally spaced heights such that .. math:: n*h_{new} = \\sum_{i=1}^m h_i where * :math:`n`: gas_dims[0] (number of axial elements in gas). * :math:`m`: number of axial elements in the tree. * :math:`h_{new}`: new element height. * :math:`h_i`: element heights in the tree. Args: tree (Tree): Instance of the tree class gas_dims (Tuple): Number of axial and radial elements in the gas in this order. """ h = np.sum(model.tree.element_height) h_percentage = np.cumsum(model.tree.element_height/h) mask = np.zeros((gas_dims[0], 1), dtype='int') gas_h_percentage = np.array([i/gas_dims[0] for i in range(gas_dims[0])]) gas_h_percentage[-1] = 1.0 for (ind, _) in enumerate(h_percentage): if ind == 0: mask[np.where(gas_h_percentage <= h_percentage[0])] = ind else: mask[np.where((gas_h_percentage <= h_percentage[ind]) & (gas_h_percentage > h_percentage[ind-1]))] = ind h = h/gas_dims[0] return (h, mask)
bc6fcd4d1fdd870fd6a3d1cfae12828f6c8c1f05
c9e1c95d79a61c2dc909e79a4e45bd779cf119ec
/hw02/main.py
b4304bd0d64d16e26a93dd191241136825af379b
[]
no_license
wq-LearnHub/IS
1a136210b5d57a78aca7dea69ac7aba1b588c368
894ff7622dd425e8e1816c0e273a19e488340272
refs/heads/master
2022-01-27T22:14:38.326789
2018-12-01T11:23:57
2018-12-01T11:23:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
907
py
import turtle def move(x, y): turtle.up() turtle.goto(x, y) turtle.down() def ls(x,y,z): move(x, y) turtle.setheading(z) turtle.begin_fill() for i in range(5): turtle.forward(46.264) turtle.right(144) turtle.end_fill() turtle.setup(width=0.9,height=0.9) turtle.color('red','red') turtle.speed(5) move(-330,220) turtle.begin_fill() turtle.forward(660) turtle.right(90) turtle.forward(440) turtle.right(90) turtle.forward(660) turtle.right(90) turtle.forward(440) turtle.right(90) turtle.end_fill() turtle.color('yellow','yellow') move(-220,176) turtle.right(72) turtle.begin_fill() for i in range(5): turtle.forward(138.793) turtle.right(144) turtle.end_fill() turtle.setheading(0) ls(-128.865,164.681,53) ls(-87.779,128.888,30) ls(-87.154,72.044,5) ls(-127.185,35.74,336) turtle.hideturtle() turtle.done()
4b8e155e4c2aaf46296152fc46d589b1cf6822ba
40f4417f983fdd9176d003577dfd06934801e26d
/bananas/management/commands/syncpermissions.py
fd5b1d4b8c8ea2bacf52e37ed3ccce7e0167b3da
[ "MIT" ]
permissive
lydell/django-bananas
8709adafabbbc8511a4738cb82a55e14617b35e3
42a72a7c5af15bb3ae4fe014bcbc443644044c07
refs/heads/master
2023-06-04T18:33:56.747112
2017-09-28T14:26:52
2017-09-28T14:26:52
105,158,794
0
0
null
2017-09-28T14:29:47
2017-09-28T14:29:47
null
UTF-8
Python
false
false
1,482
py
from django.contrib.auth.models import Permission from django.core.management.base import BaseCommand, CommandError class Command(BaseCommand): help = "Create admin permissions" def handle(self, *args, **options): if args: raise CommandError("Command doesn't accept any arguments") return self.handle_noargs(**options) def handle_noargs(self, *args, **options): from bananas import admin from django.contrib import admin as django_admin from django.contrib.contenttypes.models import ContentType django_admin.autodiscover() for model, _ in admin.site._registry.items(): if issubclass(getattr(model, 'View', object), admin.AdminView): meta = model._meta ct, created = ContentType.objects.get_or_create( app_label=meta.app_label, model=meta.object_name.lower(), ) if created: print('Found new admin view: {} [{}]'.format( ct.name, ct.app_label )) import pdb; pdb.set_trace() for codename, name in model._meta.permissions: p, created = Permission.objects.get_or_create( codename=codename, name=name, content_type=ct ) if created: print('Created permission: {}'.format(name))
1e2ac21c895dbf7785efeca235de30dbd913ec1e
e45efe468372014c9b9e6c62a6bdd70611dc47a9
/database/mapmaker/migrations/0005_auto_20150626_2120.py
ec6cda4235a77905d959b97f4175a3f8e8678a12
[]
no_license
nepakala/hostgator-django
90e626f8f3a2f339a284c862d5190bc059c5ab72
98d8d8f74e1a2732ab5dc8f75d58eb076757d591
refs/heads/master
2021-01-12T07:48:01.262560
2015-10-21T15:43:26
2015-10-21T15:43:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('mapmaker', '0004_city_company'), ] operations = [ migrations.AlterField( model_name='city', name='company', field=models.TextField(default=b'', null=True), ), ]
1bbe3d98d272b21dcdc471326b887f7e3836e070
ddbaed1e0707b6bb4f388e11d4038c340c2ede16
/EstruturaDeRepeticao/Ex_11.py
31469419965fdcdcc618796024e76eb61073dcca
[]
no_license
JoaoZati/ListaDeExerciciosPythonPro
bb3ca47c8488029f1be5984f3256c15ec1123e9a
0fda738590813a6526c688213898504e3e58a165
refs/heads/main
2023-07-13T13:36:17.334002
2021-08-21T20:26:21
2021-08-21T20:26:21
395,388,834
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
#%% 11-Altere para mostrar soma """ Altere o programa anterior para mostrar no final a soma dos números. """ while True: try: num_1 = int(input('Digite um numero inteiro: ')) num_2 = int(input('Digite um numero inteiro: ')) except ValueError: print('Os Numeros tem que ser inteiros') else: break minimo = min(num_1, num_2) maximo = max(num_1, num_2) soma = 0 for i in range(minimo + 1, maximo): soma += i print(f'Os numeros entre {num_1} e {num_2} é: {soma}')
12e987c5a4b573b3ed6fa91f2c42fc5933d70d60
db6f57d0da04eb0baa840c6b0486545eafa784b8
/py_backwards/transformers/__init__.py
d0cb70eb51b6ac028f624a98b5f89f8bfe90ec7f
[ "MIT" ]
permissive
JacksonKearl/py-backwards
49ddaaf3891be5ff7bd978d3070bd253d6b49aad
6ad0b864eebecbd23c319c2c569159931e45b811
refs/heads/master
2021-01-20T04:36:29.362742
2017-04-28T12:37:02
2017-04-28T12:37:02
89,704,552
0
0
null
2017-04-28T12:35:27
2017-04-28T12:35:27
null
UTF-8
Python
false
false
1,874
py
from traceback import format_exc from typing import List, Type from typed_ast import ast3 as ast from typed_astunparse import unparse, dump from autopep8 import fix_code from ..types import CompilationTarget from .dict_unpacking import DictUnpackingTransformer from .formatted_values import FormattedValuesTransformer from .functions_annotations import FunctionsAnnotationsTransformer from .starred_unpacking import StarredUnpackingTransformer from .variables_annotations import VariablesAnnotationsTransformer from .yield_from import YieldFromTransformer from .return_from_generator import ReturnFromGeneratorTransformer from .python2_future import Python2FutureTransformer from .super_without_arguments import SuperWithoutArgumentsTransformer from .class_without_bases import ClassWithoutBasesTransformer from .base import BaseTransformer transformers = [DictUnpackingTransformer, StarredUnpackingTransformer, FormattedValuesTransformer, FunctionsAnnotationsTransformer, VariablesAnnotationsTransformer, YieldFromTransformer, ReturnFromGeneratorTransformer, Python2FutureTransformer, SuperWithoutArgumentsTransformer, ClassWithoutBasesTransformer] # type: List[Type[BaseTransformer]] def transform(path: str, code: str, target: CompilationTarget) -> str: """Applies all transformation for passed target.""" from ..exceptions import TransformationError for transformer in transformers: tree = ast.parse(code, path) if transformer.target >= target: transformer().visit(tree) try: code = unparse(tree) except: raise TransformationError(path, transformer, dump(tree), format_exc()) return fix_code(code)
f0ab5a59b3a151e150796fcdf89cf12dc3b7b9fa
145bf6912b4ec6602fe5ca2486db5dc6121cb9e4
/console.py
10001a71c5869a1631302219814394ff82706049
[ "Apache-2.0" ]
permissive
CW2X/idewave-core
03a8da474c9fb60fb0dcf1900f12f9d5b9a4b157
a48ee0ce3ff8f05e6baf9c34c01f21ae51f555fe
refs/heads/master
2020-09-12T01:47:05.996471
2019-09-03T06:15:42
2019-09-03T06:15:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,379
py
import argparse from DB.CreateDB import create_db, create_tables from DB.DropDB import drop_db from DB.Fixtures.Loader.load_world_data import load_world_data from Account.AccountManager import AccountManager from World.Object.Item.ItemManager import ItemManager from World.Object.Unit.Spell.SpellManager import SpellManager from World.Object.Unit.Player.Skill.SkillManager import SkillManager from World.Region.RegionManager import RegionManager from World.Object.Unit.UnitManager import UnitManager from Utils.Debug.Logger import Logger def process(): parser = argparse.ArgumentParser(prog='cmd') commands = parser.add_subparsers(help='Available console commands') # database db_parser = commands.add_parser('db') args = db_parser.parse_known_args() parser_name = args[1][0] subcommand = args[1].pop() if parser_name == 'db': if subcommand == 'create': create_db() Logger.success('All dbs was created') elif subcommand == 'create_tables': create_tables() Logger.success('All required tables was created') elif subcommand == 'drop': drop_db() Logger.warning('All db was dropped') elif subcommand == 'recreate': drop_db() create_db() create_tables() Logger.notify('DB was successfully re-created') elif subcommand == 'load_data': load_world_data() elif subcommand == 'recreate_with_load': drop_db() create_db() create_tables() Logger.notify('DB was successfully re-created') load_world_data() # accounts account_parser = commands.add_parser('account') account_parser.add_argument('-n', '--name') account_parser.add_argument('-p', '--password') args = account_parser.parse_known_args() parser_name = args[1][0] subcommand = args[1].pop() if parser_name == 'account': if subcommand == 'create': with AccountManager() as account_mgr: account_mgr.create(name=args[0].name, password=args[0].password) Logger.success('Account "{}" created successfully!'.format(args[0].name)) # items item_parser = commands.add_parser('item') item_parser.add_argument('-d', '--display_id') item_parser.add_argument('-i', '--item_type') item_parser.add_argument('-e', '--entry') args = item_parser.parse_known_args() parser_name = args[1][0] subcommand = args[1].pop() if parser_name == 'item': if subcommand == 'create': with ItemManager() as item_mgr: item_mgr.create( display_id=args[0].display_id, item_type=args[0].item_type, entry=int(args[0].entry) ).save() Logger.success('Item "{}" created successfully!'.format(args[0].entry)) # spells spell_parser = commands.add_parser('spell') spell_parser.add_argument('-e', '--entry') spell_parser.add_argument('-n', '--name') spell_parser.add_argument('-c', '--cost') spell_parser.add_argument('-s', '--school') spell_parser.add_argument('-r', '--range') args = spell_parser.parse_known_args() parser_name = args[1][0] subcommand = args[1].pop() if parser_name == 'spell': if subcommand == 'create': SpellManager().create( entry=args[0].entry, name=args[0].name, cost=args[0].cost, school=args[0].school, range=args[0].range ).save() Logger.test('Spell "{}" ({}) created successfully!'.format(args[0].name, args[0].entry)) # default spells default_spell_parser = commands.add_parser('default_spell') default_spell_parser.add_argument('-e', '--entry') default_spell_parser.add_argument('-r', '--race') default_spell_parser.add_argument('-c', '--char_class') args = default_spell_parser.parse_known_args() parser_name = args[1][0] subcommand = args[1].pop() if parser_name == 'default_spell': if subcommand == 'create': SpellManager().create_default_spell( entry=args[0].entry, race=args[0].race, char_class=args[0].char_class ).save() Logger.test( 'Default spell "{}" ({}:{}) created successfully!'.format( args[0].entry, args[0].race, args[0].char_class ) ) # skills # skill_parser = commands.add_parser('skill') # skill_parser.add_argument('-e', '--entry') # skill_parser.add_argument('-n', '--name') # # args = skill_parser.parse_known_args() # parser_name = args[1][0] # subcommand = args[1].pop() # # if parser_name == 'skill': # if subcommand == 'create': # SkillManager().create( # entry=args[0].entry, # name=args[0].name # ).save() # # Logger.test('Skill "{}" ({}) created successfully!'.format(args[0].name, args[0].entry)) # skills skill_parser = commands.add_parser('skill') skill_parser.add_argument('-e', '--entry') skill_parser.add_argument('-n', '--name') skill_parser.add_argument('--min') skill_parser.add_argument('--max') args = skill_parser.parse_known_args() parser_name = args[1][0] subcommand = args[1].pop() if parser_name == 'skill': if subcommand == 'create': SkillManager().create( entry=args[0].entry, name=args[0].name, min=args[0].min, max=args[0].max ).save() Logger.success('Skill "{}" ({}) created successfully!'.format(args[0].name, args[0].entry)) # default skills default_skill_parser = commands.add_parser('default_skill') default_skill_parser.add_argument('-e', '--entry') default_skill_parser.add_argument('-r', '--race') default_skill_parser.add_argument('-c', '--char_class') args = default_skill_parser.parse_known_args() parser_name = args[1][0] subcommand = args[1].pop() if parser_name == 'default_skill': if subcommand == 'create': SkillManager().create_default_skill( entry=args[0].entry, race=args[0].race, char_class=args[0].char_class ).save() Logger.success( 'Default skill "{}" ({}:{}) created successfully!'.format( args[0].entry, args[0].race, args[0].char_class ) ) # regions region_parser = commands.add_parser('region') region_parser.add_argument('-i', '--identifier') region_parser.add_argument('--y1') region_parser.add_argument('--y2') region_parser.add_argument('--x1') region_parser.add_argument('--x2') region_parser.add_argument('-c', '--continent_id') # # arguments for default region region_parser.add_argument('-r', '--race') region_parser.add_argument('-m', '--map_id') # # arguments for region unit # # region_parser.add_argument('-u', '--unit_entry') # # arguments for both default region and region unit region_parser.add_argument('-x') region_parser.add_argument('-y') region_parser.add_argument('-z') args = region_parser.parse_known_args() parser_name = args[1][0] subcommand = args[1].pop() if parser_name == 'region': if subcommand == 'create': with RegionManager() as region_mgr: region_mgr.create( identifier=args[0].identifier, y1=args[0].y1, y2=args[0].y2, x1=args[0].x1, x2=args[0].x2, continent_id=args[0].continent_id, ).save() Logger.notify('Region "{}" created successfully!'.format(args[0].identifier)) elif subcommand == 'add_default_location': with RegionManager() as region_mgr: region_mgr.create_default_location( identifier=args[0].identifier, x=args[0].x, y=args[0].y, z=args[0].z, race=args[0].race, map_id=args[0].map_id ) Logger.success('Default location ({}) for race "{}" successfully added'.format( args[0].identifier, args[0].race )) elif subcommand == 'add_unit': with UnitManager() as unit_mgr: unit_mgr.new( entry=args[0].unit_entry, identifier=args[0].identifier, x=args[0].x, y=args[0].y, z=args[0].z ).set_stats().save() Logger.notify( 'Unit "{}" IN ({} - {} - {}) created successfully!'.format( args[0].unit_entry, args[0].x, args[0].y, args[0].z ) ) process()
8cd47b841ad575b55bb9be73bdc8df9e6dbcf60e
d5500d243e0067413390ae7402be55a10f98bbbf
/tests/unit/test_general.py
a6abbdf24807cb6ed52e07acce0c91ca7bb66dca
[ "MIT" ]
permissive
lumi-io/boards
cbc5a844033ad67f39e45c681fddba091a7220d9
d56aafc70e0eede8e3027159bfb755023c4ecbb3
refs/heads/main
2023-04-25T20:33:43.668297
2021-05-28T19:05:22
2021-05-28T19:05:22
306,117,913
5
0
MIT
2021-06-08T15:31:51
2020-10-21T18:47:29
Python
UTF-8
Python
false
false
166
py
def test_homepage_with_fixture(test_client): """Testing to see if server is running.""" response = test_client.get('/') assert response.status_code == 200
5e95d64ec34ad4194d5831f1bcdd85b880724440
9271b14425ceaaf0741b758229cb7a8ab9ad8a85
/reset.py
c5a59c3612d42a69d043d0bdfe13ebd991130c97
[]
no_license
jeg100/Sebastian
78a6273d8fea3372fb0a6ae0489c35674dbd9636
6f9f4ac2eac8bfa153f8846d6829cd341f570334
refs/heads/master
2021-03-16T13:35:51.767993
2021-01-22T18:18:50
2021-01-22T18:18:50
246,912,030
0
0
null
null
null
null
UTF-8
Python
false
false
472
py
### Author: John Grezmak ### ### Reset the Sebastian robot using reset function with mode=2 import time from med_Sebastian_info import * from Sebastian_library_Maestro import Sebastian # Create instance of Sebastian class reset_config = reset5_pos_info # Choice of reset configuration robot = Sebastian(center_pos_info, pins_info, reset_config, robot_dims) error = robot.mu.get_error() if error: print(error) else: print('Robot initialized') robot.reset(mode=2)
025216dbecfd085dfb8c137b57bfa829d502fccc
7fe5fea5abfe7e6a88730ebb5ee8beb4dd3498c2
/GammaStack/sampletask/urls.py
db67ec686f1f7620941b32197613a9db94d74cf2
[]
no_license
RITESH-Kapse/GammaStack-Assignment
5c984db711dc8faae0be217b8efee2e041c5a1c1
ca647c643900b8030cd6b866e6cf1200ccd21ca1
refs/heads/master
2023-05-02T20:51:36.399628
2021-06-01T20:49:12
2021-06-01T20:49:12
372,957,448
0
0
null
null
null
null
UTF-8
Python
false
false
111
py
from django.urls import path from . import views urlpatterns = [ path('', views.hello, name="hello"), ]
1af4d6fffa03acec2ae8ac89440f41245004a03e
46cb7d5fc2585bffce006f6d81cef9edbe961e87
/2020-08-19/treasure_hunting.py
e72d5585373e201c56703f3ef552022178820d49
[ "MIT" ]
permissive
garciaha/DE_daily_challenges
b17dbe1697552330fe237168855530e247d89d29
90805a1d0275647fafecc80ed2cf3548d1b47bff
refs/heads/main
2023-06-16T23:46:37.576470
2021-07-16T00:00:14
2021-07-16T00:00:14
382,933,335
0
0
null
null
null
null
UTF-8
Python
false
false
1,816
py
"""Helping Alex with Treasure Alex and Cindy, two students who recently spent some time on treasure hunting. Apart from scrap metal, they found a number of boxes full of old coins. Boxes are of different value and now are lined up in a row. Cindy proposes an idea to divide the treasure into two parts. She thinks that a fair way is that she and Alex take turns, and each of them chooses one box from either left or right side of the line. Cindy is a very generous person and lets Alex to go first. Alex wants to check whether this idea is actually good for him. He asks you to write a program to calculate the total value that he will get compared to how much Cindy will get if he chooses a box first. You can be sure that they both are very smart, and always select the next box in such way that it leads to the best overall individual solution for them. This means they may not always choose the highest value box of the two currently available in order to ensure they get a higher value box later. Notes The function should return alex_value - cindy_value """ def treasure_hunting(boxes): pass if __name__ == "__main__": assert treasure_hunting([7, 2]) == 5 # Alex will choose the 7, and then Cindy gets the 2. # So the result is 7 - 2 = 5. assert treasure_hunting([2, 7, 3]) == -2 # It doesn't matter whether Alex chooses the 2 or the 3. Cindy will # choose the 7 and Alex will get the remaining box. (2+3) - 7 = -2. assert treasure_hunting([1000, 1000, 1000, 1000, 1000]) == 1000 # Since Alex chooses first, he will get 3 boxes and Cindy will get only 2. # They all have the same value so (1000+1000+1000) - (1000+1000) = 1000. assert treasure_hunting( [823, 912, 345, 100000, 867, 222, 991, 3, 40000]) == -58111 print("All cases passed!")
5e7e06f4d1c2518189980b9f44976d4630237971
262e1c150b075ecf25b80301a768e74b8b986940
/external-scripts/airthings-wave/find_wave.py
9fc10f35b3222c723d62a5d422e1c44f62a9b05e
[]
no_license
yfaway/openhab-rules
30bbd2bfe696fd65f2747b8153bc592903de350c
c64c9e109173277b6b4b2473adaac9d2da623cdb
refs/heads/master
2023-07-29T01:21:29.980812
2023-07-15T19:52:36
2023-07-15T19:52:36
133,594,317
10
1
null
null
null
null
UTF-8
Python
false
false
2,537
py
# MIT License # # Copyright (c) 2018 Airthings AS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # https://airthings.com from bluepy.btle import Scanner, DefaultDelegate import time import struct class DecodeErrorException(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class ScanDelegate(DefaultDelegate): def __init__(self): DefaultDelegate.__init__(self) scanner = Scanner().withDelegate(ScanDelegate()) try: while 1: devices = scanner.scan(2.0) for dev in devices: ManuData = "" ManuDataHex = [] for (adtype, desc, value) in dev.getScanData(): serial_no = "" if (desc == "Manufacturer"): ManuData = value if (ManuData == ""): continue for i, j in zip (ManuData[::2], ManuData[1::2]): ManuDataHex.append(int(i+j, 16)) #Start decoding the raw Manufacturer data if ((ManuDataHex[0] == 0x34) and (ManuDataHex[1] == 0x03)): serial_no = str(256*256*256*ManuDataHex[5] + 256*256*ManuDataHex[4] + 256*ManuDataHex[3] + ManuDataHex[2]) print "%s (%s), RSSI=%d dB, SN=%s" % (dev.addr, dev.addrType, dev.rssi, serial_no) else: continue except DecodeErrorException: pass
789a81cae226d145195fe982245809cdba32eee0
022b8014f17ae9c46da9de67ad0b7d27d9a242ed
/tools/g15.py
ae407bf77fa1a472696b5977469b06292178b1fd
[]
no_license
endlessnessbruh/tf2-config
b6a62b47b43901f1ceb348b794a4737b79c17d4a
d254248f2607a7331f4cd66408a8122e9ca65fad
refs/heads/master
2023-03-15T19:26:26.908298
2013-12-31T04:00:48
2013-12-31T04:00:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,754
py
#!/usr/bin/env python from console.console import Console from mumble.point import Vector3D from overlay.overlay import OSD from PyQt4 import QtCore, QtGui from PyQt4.QtCore import * from PyQt4.QtGui import * from PyQt4.QtOpenGL import * import re import pprint debug = False class GrowingList(list): def __setitem__(self, index, value): if index >= len(self): self.extend([None]*(index + 1 - len(self))) list.__setitem__(self, index, value) def unpack(type, val): if type == "bool": if val == "true": return True else: return False elif type == "short" or type == "integer": return int(val) elif type == "float": return float(val) elif type == "vector": return Vector3D(*tuple([float(x) for x in val.split(" ")])) else: return str(val) def parse(line): obj = re.search(r"(.*) (bool|short|integer|float|vector|string) \((.*)\)", line) if obj: var = obj.group(1) val = unpack(obj.group(2), obj.group(3)) # More pythonic, but m_iPing and m_iHealth are both variables and arrays. Should I parse individual scopes? #index = var.find("[") #if index >= 0: # name = var[:index] # print(name) # if not name in vars: # vars[name] = GrowingList([]) # index = var[index+1:var.find("]")] # vars[name][int(index)] = val #else: vars[var] = val else: pass #print("Ignored %s" % line) class LCD(OSD): def logic(self): c.send("g15_dumpplayer") lines = c.read(1/self.rate_update) for line in lines: parse(line) self.repaint() def render(self, qp): if debug: qp.setPen(QColor.fromRgbF(1, 1, 1, 0.5)) qp.setFont(QFont("monospaced", 8)) initial = [50, 100] current = [50, 100] try: for line in pprint.pformat(vars).split("\n"): qp.drawText(current[0], current[1], line) current[1] += 15 if current[1] >= 1000: current[1] = initial[1] if current[0] == initial[0]: current[0] += 200 current[0] += 200 except AttributeError: pass xs = {1:100, 3:400, 2:960} ys = {1:200, 3:200, 2:200} for i in range(33): i = str(i) try: connected = vars["m_bConnected["+i+"]"] if not connected: continue alive = vars["m_bAlive["+i+"]"] deaths = vars["m_iDeaths["+i+"]"] if alive: health = vars["m_iHealth["+i+"]"] else: health = 0 ping = vars["m_iPing["+i+"]"] score = vars["m_iScore["+i+"]"] team = vars["m_iTeam["+i+"]"] # 0 = no, 1 = spec, 2/3 = red/blu name = vars["m_szName["+i+"]"] # Names. '' = none, 'unconnected' = empty slot string = "%s (%s) %.2f" % (name, health, score / max(deaths, 1)) font = QFont("monospaced", 11) fm = QFontMetrics(font) qp.setFont(font) height = fm.height() + fm.descent() qp.fillRect(xs[team], ys[team] - fm.height(), fm.width(string), height, QColor.fromRgbF(0,0,0,.5)) qp.drawText(xs[team], ys[team], string) if health == 0: qp.setPen(QColor.fromRgbF(1, 0, 0, .75)) elif health <= 150: qp.setPen(QColor.fromRgbF(1, .5, 0, .75)) else: qp.setPen(QColor.fromRgbF(1, 1, 1, .75)) qp.drawText(xs[team], ys[team], string) ys[team] += height except KeyError: pass """ m_Activity Overall activity - idling? m_Local.m_bDrawViewmodel m_Local.m_bDucked m_Local.m_bDucking m_Local.m_bInDuckJump m_Local.flDuckJumpTime m_Local.m_flDucktime m_Local.m_flFallVelocity m_Local.m_flJumpTime m_Shared.m_bFeignDeathReady m_Shared.m_bJumping m_Shared.m_bLastDisguisedAsOwnTeam m_Shared.m_bRageDraining m_Shared.m_flChargeMeter m_Shared.m_flCloakMeter m_Shared.m_flDisguiseCompleteTime m_Shared.m_flDuckTimer m_Shared.m_flEnergyDrinkMeter m_Shared.m_flHypeMeter m_Shared.m_flInvisChangeCompleteTime m_Shared.m_flNextRageEarnTime m_Shared.m_flRageMeter m_Shared.m_iAirDash m_Shared.m_nAirDucked m_Shared.m_nDesiredDisguiseClass m_Shared.m_nDesiredDisguiseTeam m_Shared.m_nDisguiseClass m_Shared.m_nDisguiseTeam m_bAltFiresUnderwater m_bBeingRepurposedForTaunt m_bCritFire m_bCurrentAttackIsCrit m_bDisguiseWeapon m_bFiresUnderwater m_bFiringWholeClip m_bInReload m_bReadyToBackstab m_bReloadsSingly m_fFireDuration m_fOnTarget m_flChargeBeginTime m_flChargedDamage m_flDetonateTime m_flEffectBarRegenTime m_iAmmo[0-31] your reserve ammo, 1 2 3 m_iClip1 Current clip m_iClip2 Current clip (for single clip weapons) m_iComboCount m_iDeaths m_iFOVStart current FOV m_iHealth my health m_iPing my ping m_iPrimaryAmmoCount m_iPrimaryAmmoType m_iReloadMode m_iRoundsWon m_iScore my score? m_iSecondaryAmmoCount m_iSecondaryAmmoType m_iState m_iTeamNum m_iViewModelIndex Current weapon m_iWorldModelIndex Current weapon m_nViewModelIndex Old? Current weapon? pl.deadflag Me dead """ if __name__ == "__main__": c = Console() vars = {} g15 = LCD() g15.rate_update = 1 g15.start()
b20ca43deed3e0f9a76f5b0683505ae22844ec20
a70d43926850eec6790da93fbe2fffdf5a29965f
/tests/autopilot/uitests/main/test_main.py
ce12ff1163e8542d3b98df1ce0404e5a5d6e31d9
[]
no_license
zan-xhipe/spaceship
672098fee505d5802ba3e8d7de9723694fa02d35
984d6e197f48d7fa5c46d7ab8fbeffd6c2c0989e
refs/heads/master
2016-09-06T12:42:59.727384
2013-07-25T18:56:36
2013-07-25T18:56:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
700
py
# -*- Mode: Python; coding: utf-8; indent-tabs-mode: nil; tab-width: 4 -*- """Tests for the Hello World""" from autopilot.matchers import Eventually from textwrap import dedent from testtools.matchers import Is, Not, Equals from testtools import skip import os from uitests import UbuntuTouchAppTestCase class MainTests(UbuntuTouchAppTestCase): """Generic tests for the Hello World""" test_qml_file = "%s/%s.qml" % (os.path.dirname(os.path.realpath(__file__)),"../../../../spaceship") def test_0_can_select_mainView(self): """Must be able to select the mainview.""" mainView = self.get_mainview() self.assertThat(mainView.visible,Eventually(Equals(True)))
04ed9edffce7cc3ed47ba731938608c4a4d98992
e6233098a835fd3041b189888358731203aefd43
/burstACS.py
ac28eb9097f896415328ca572bc42e4033d4cb8d
[ "Unlicense" ]
permissive
akononovicius/python-stats
0edf05a4bf5260d9f3a3cbbb6c27d7ba0e6332bc
4627057719277f75d769aa25c2484ee7241e2568
refs/heads/main
2021-11-12T10:47:42.316008
2021-10-25T17:41:26
2021-10-25T17:41:26
144,122,601
1
0
null
null
null
null
UTF-8
Python
false
false
3,347
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ## ## Burst statistics analysis as described in [Gontis et al., ACS, 2012]. ## import numpy as np # # Prepend and append series with fake data so that first and last bursts # do not become lost # def __PrepSeries(s,thresh,delta=1): series=s.copy() if(series[0]<thresh): series=np.append([thresh-delta,thresh+delta],series) else: series=np.append([thresh+delta,thresh-delta],series) if(series[-1]<thresh): series=np.append(series,[thresh+delta,thresh-delta]) else: series=np.append(series,[thresh-delta,thresh+delta]) return series # # Various stats extraction functions # def __ExtractBurstMax(s,bst,bd,tr): def _peak(s,fr,n,tr): return np.max(s[fr:fr+n]-tr) return np.array([_peak(s,bst[i],bd[i],tr) for i in range(len(bst))]) def __ExtractBurstSize(s,bst,bd,tr,dt): def _size(s,fr,n,tr,h): return np.sum(s[fr:fr+n]-tr)*h return np.array([_size(s,bst[i],bd[i],tr,dt) for i in range(len(bst))]) def __ExtractIBurstMin(s,bst,ibd,tr): def _ipeak(s,to,n,tr): return np.max(tr-s[to-n:to]) return np.array([_ipeak(s,bst[i],ibd[i],tr) for i in np.arange(1,len(bst)-1)]) def __ExtractIBurstSize(s,bst,ibd,tr,dt): def _isize(s,to,n,tr,h): return np.sum(tr-s[to-n:to])*h return np.array([_isize(s,bst[i],ibd[i],tr,dt) for i in np.arange(1,len(bst)-1)]) # # The main public extraction function # def ExtractBurstData(ser,thresh,samplePeriod=1,returnBurst=True, returnInterBurst=False,extractOther=False, prepSeries=False): if((not returnBurst) and (not returnInterBurst)): raise ValueError("The function will not return anything") rez=() series=ser.copy().astype(float) if(prepSeries): series=__PrepSeries(series,thresh=thresh,delta=0.1*thresh) eventTimes=np.where(series>=thresh)[0] interEventPeriods=np.diff(eventTimes) iearr=np.where(interEventPeriods>1)[0] burstStartTimes=eventTimes[iearr[:-1]+1] del eventTimes interBurstDuration=None if(returnInterBurst): interBurstDuration=interEventPeriods[iearr[:-1]]-1 del interEventPeriods burstDuration=None if(returnBurst): burstDuration=np.diff(iearr) del iearr if(returnBurst): rez=rez+(burstDuration*samplePeriod,) if(extractOther): burstMax=__ExtractBurstMax(series,burstStartTimes,burstDuration, thresh) burstSize=__ExtractBurstSize(series,burstStartTimes,burstDuration, thresh,samplePeriod) rez=rez+(burstMax,) rez=rez+(burstSize,) if(returnInterBurst): rez=rez+(interBurstDuration*samplePeriod,) if(extractOther): interBurstMin=__ExtractIBurstMin(series,burstStartTimes, interBurstDuration,thresh) interBurstSize=__ExtractIBurstSize(series,burstStartTimes, interBurstDuration,thresh, samplePeriod) rez=rez+(interBurstMin,) rez=rez+(interBurstSize,) return rez
6d3f78774df64f55e3ec9f83c05c4d9766829aa0
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/network/v20200401/get_policy.py
962e6ebed92836613177fffb74f9a4f6d43965c1
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,728
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetPolicyResult', 'AwaitableGetPolicyResult', 'get_policy', 'get_policy_output', ] @pulumi.output_type class GetPolicyResult: """ Defines web application firewall policy. """ def __init__(__self__, custom_rules=None, etag=None, frontend_endpoint_links=None, id=None, location=None, managed_rules=None, name=None, policy_settings=None, provisioning_state=None, resource_state=None, routing_rule_links=None, tags=None, type=None): if custom_rules and not isinstance(custom_rules, dict): raise TypeError("Expected argument 'custom_rules' to be a dict") pulumi.set(__self__, "custom_rules", custom_rules) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if frontend_endpoint_links and not isinstance(frontend_endpoint_links, list): raise TypeError("Expected argument 'frontend_endpoint_links' to be a list") pulumi.set(__self__, "frontend_endpoint_links", frontend_endpoint_links) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if managed_rules and not isinstance(managed_rules, dict): raise TypeError("Expected argument 'managed_rules' to be a dict") pulumi.set(__self__, "managed_rules", managed_rules) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if policy_settings and not isinstance(policy_settings, dict): raise TypeError("Expected argument 'policy_settings' to be a dict") pulumi.set(__self__, "policy_settings", policy_settings) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if resource_state and not isinstance(resource_state, str): raise TypeError("Expected argument 'resource_state' to be a str") pulumi.set(__self__, "resource_state", resource_state) if routing_rule_links and not isinstance(routing_rule_links, list): raise TypeError("Expected argument 'routing_rule_links' to be a list") pulumi.set(__self__, "routing_rule_links", routing_rule_links) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="customRules") def custom_rules(self) -> Optional['outputs.CustomRuleListResponse']: """ Describes custom rules inside the policy. """ return pulumi.get(self, "custom_rules") @property @pulumi.getter def etag(self) -> Optional[str]: """ Gets a unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="frontendEndpointLinks") def frontend_endpoint_links(self) -> Sequence['outputs.FrontendEndpointLinkResponse']: """ Describes Frontend Endpoints associated with this Web Application Firewall policy. """ return pulumi.get(self, "frontend_endpoint_links") @property @pulumi.getter def id(self) -> str: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="managedRules") def managed_rules(self) -> Optional['outputs.ManagedRuleSetListResponse']: """ Describes managed rules inside the policy. """ return pulumi.get(self, "managed_rules") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="policySettings") def policy_settings(self) -> Optional['outputs.FrontDoorPolicySettingsResponse']: """ Describes settings for the policy. """ return pulumi.get(self, "policy_settings") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ Provisioning state of the policy. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceState") def resource_state(self) -> str: return pulumi.get(self, "resource_state") @property @pulumi.getter(name="routingRuleLinks") def routing_rule_links(self) -> Sequence['outputs.RoutingRuleLinkResponse']: """ Describes Routing Rules associated with this Web Application Firewall policy. """ return pulumi.get(self, "routing_rule_links") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetPolicyResult(GetPolicyResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetPolicyResult( custom_rules=self.custom_rules, etag=self.etag, frontend_endpoint_links=self.frontend_endpoint_links, id=self.id, location=self.location, managed_rules=self.managed_rules, name=self.name, policy_settings=self.policy_settings, provisioning_state=self.provisioning_state, resource_state=self.resource_state, routing_rule_links=self.routing_rule_links, tags=self.tags, type=self.type) def get_policy(policy_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPolicyResult: """ Defines web application firewall policy. :param str policy_name: The name of the Web Application Firewall Policy. :param str resource_group_name: Name of the Resource group within the Azure subscription. """ __args__ = dict() __args__['policyName'] = policy_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:network/v20200401:getPolicy', __args__, opts=opts, typ=GetPolicyResult).value return AwaitableGetPolicyResult( custom_rules=__ret__.custom_rules, etag=__ret__.etag, frontend_endpoint_links=__ret__.frontend_endpoint_links, id=__ret__.id, location=__ret__.location, managed_rules=__ret__.managed_rules, name=__ret__.name, policy_settings=__ret__.policy_settings, provisioning_state=__ret__.provisioning_state, resource_state=__ret__.resource_state, routing_rule_links=__ret__.routing_rule_links, tags=__ret__.tags, type=__ret__.type) @_utilities.lift_output_func(get_policy) def get_policy_output(policy_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetPolicyResult]: """ Defines web application firewall policy. :param str policy_name: The name of the Web Application Firewall Policy. :param str resource_group_name: Name of the Resource group within the Azure subscription. """ ...
e19e952f8114ff1d46b331e100eea2c2f95e901d
71f2b1a20caa53b1ec735341a54310978b17c886
/FastSpeech.py
9c6d2065a82de766385e21add5fffe33aaf7a588
[]
no_license
meelement/fastspeech-2
22bf0d4db2a3334070b2e80808bed112b19db5ed
fc2786d14715f385795b2bb7d44c8707b1c5e0ff
refs/heads/master
2022-03-04T03:37:26.872253
2019-10-29T16:02:36
2019-10-29T16:02:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,728
py
import torch.nn as nn from transformer.Models import Encoder, Decoder from transformer.Layers import Linear, PostNet from Networks import LengthRegulator import hparams as hp class FastSpeech(nn.Module): """ FastSpeech """ def __init__(self): super(FastSpeech, self).__init__() self.encoder = Encoder() self.length_regulator = LengthRegulator() self.decoder = Decoder() self.mel_linear = Linear(hp.decoder_output_size, hp.num_mels) self.postnet = PostNet() def forward(self, src_seq, src_pos, mel_max_length=None, length_target=None, alpha=1.0): encoder_output, encoder_mask = self.encoder(src_seq, src_pos) if self.training: length_regulator_output, decoder_pos, duration_predictor_output = self.length_regulator( encoder_output, encoder_mask, length_target, alpha, mel_max_length) decoder_output = self.decoder(length_regulator_output, decoder_pos) mel_output = self.mel_linear(decoder_output) mel_output_postnet = self.postnet(mel_output) + mel_output """Here, we should conduct mel-spectrogram normalization.""" return mel_output, mel_output_postnet, duration_predictor_output else: length_regulator_output, decoder_pos = self.length_regulator( encoder_output, encoder_mask, alpha=alpha) decoder_output = self.decoder(length_regulator_output, decoder_pos) mel_output = self.mel_linear(decoder_output) mel_output_postnet = self.postnet(mel_output) + mel_output return mel_output, mel_output_postnet
93c18c059b48e6bae10a44e89e491708a20f986f
b96a4062f5ad420dd02efed82b47dd9c249cb46c
/pytorch_lightning/plugins/training_type/parallel.py
f3c825fe9cd7aaf39df26ff0443433ebc4b626d5
[ "Apache-2.0", "LicenseRef-scancode-proprietary-license" ]
permissive
borisdayma/pytorch-lightning
ebc210a1e7901b5f87ab67e4886bfe20b478fe33
4b7c0fae00084b72dffe37fdd0ea7d2e9b60d103
refs/heads/master
2021-11-23T07:34:01.842134
2021-02-19T17:00:27
2021-02-19T17:00:27
238,756,095
1
1
Apache-2.0
2020-02-06T18:27:51
2020-02-06T18:27:50
null
UTF-8
Python
false
false
4,617
py
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os from abc import ABC, abstractmethod from contextlib import contextmanager from typing import List, Optional import torch from torch.nn.parallel import DistributedDataParallel from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.overrides.base import unwrap_lightning_module from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment from pytorch_lightning.plugins.training_type.training_type_plugin import TrainingTypePlugin from pytorch_lightning.utilities.distributed import all_gather_ddp_if_available, ReduceOp class ParallelPlugin(TrainingTypePlugin, ABC): def __init__( self, parallel_devices: Optional[List[torch.device]] = None, cluster_environment: Optional[ClusterEnvironment] = None, ): super().__init__() self.parallel_devices = parallel_devices self.world_size = 1 self.local_rank = 0 self.cluster_environment = cluster_environment @property def cluster_local_rank(self): try: return self.cluster_environment.local_rank() except KeyError: return 0 @property @abstractmethod def root_device(self): raise NotImplementedError @property def on_gpu(self): return self.root_device.type == "cuda" and torch.cuda.is_available() @property def lightning_module(self): return unwrap_lightning_module(self._model) @abstractmethod def setup(self, model): raise NotImplementedError def connect(self, model, *args, **kwargs): self.setup(model) return self.model @property def is_global_zero(self) -> bool: return self.global_rank == 0 @property def distributed_sampler_kwargs(self): distributed_sampler_kwargs = dict(num_replicas=len(self.parallel_devices), rank=self.global_rank) return distributed_sampler_kwargs def reduce_early_stopping_decision(self, should_stop: bool) -> bool: should_stop = torch.tensor(int(should_stop), device=self.lightning_module.device) should_stop = self.reduce(should_stop, reduce_op=ReduceOp.SUM) should_stop = bool(should_stop == self.world_size) return should_stop @property def torch_distributed_backend(self): torch_backend = os.getenv("PL_TORCH_DISTRIBUTED_BACKEND") if torch_backend is None: torch_backend = "nccl" if self.on_gpu else "gloo" return torch_backend @staticmethod def configure_sync_batchnorm(model: LightningModule) -> LightningModule: """ Add global batchnorm for a model spread across multiple GPUs and nodes. Override to synchronize batchnorm between specific process groups instead of the whole world or use a different sync_bn like `apex`'s version. Args: model: pointer to current :class:`LightningModule`. Return: LightningModule with batchnorm layers synchronized between process groups """ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) return model @contextmanager def block_backward_sync(self): """ Blocks ddp sync gradients behaviour on backwards pass. This is useful for skipping sync when accumulating gradients, reducing communication overhead Returns: context manager with sync behaviour off """ if isinstance(self.model, DistributedDataParallel): with self.model.no_sync(): yield None else: yield None def broadcast(self, obj: object, src: int) -> object: buffer = io.BytesIO() torch.save(obj, buffer) data = bytearray(buffer.getbuffer()) data_tensor = torch.tensor(data).to(self.root_device, dtype=torch.float) data = all_gather_ddp_if_available(data_tensor) buffer = io.BytesIO(data.cpu().byte().numpy()) obj = torch.load(buffer) return obj
0e253c2a0f309e9ea44cfbc0c86039ca87bd630e
dec1f4c491c7f325d7e58afde08cef8a47f33261
/security_check/U_57.py
5c61b34a70db3cc917c85741c906ade5cea6a2e9
[]
no_license
wespito/BoB-Linux
adc8767789911fc70eaacde0b8cd244f57697a65
e6a8ec81330de57dc1d5f7b09bd8681cb248a5af
refs/heads/main
2023-07-08T05:11:56.493580
2021-08-15T09:29:31
2021-08-15T09:29:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,826
py
# [U-57] UMASK 설정 값 점검 # 2020/11/27 : 노무승 # 1. 매뉴얼에 나와 있는 UMASK 설정 파일 리스트에 # 추가로 조사해 설정 파일 여러 개 추가함. # 2. 기본적인 UMASK 설정 값은 /etc/login.defs에 저장 됨. # 3. /etc/pam.d/common-session, common-session-noninteractive 파일 내부에 설정을 추가해 시스템 전체 UMASK를 지정 가능함. # 4. /etc/bashrc, /etc/bash.bashrc에 설정을 추가해 UMASK를 지정하는 것도 가능함. import getpass import os.path C_END = "\033[0m" C_RED = "\033[31m" C_GREEN = "\033[32m" C_YELLOW = "\033[33m" C_NUM = "U-57" def U57() : f_output = "" f_output = f_output + "[" + C_NUM + "] UMASK 설정 값 점검" + "\n" flag = False list = "/etc/profile /etc/default /etc/bashrc /etc/bash.bashrc /etc/login.defs /etc/pam.d/common-session /etc/pam.d/common-session-noninteractive .cshrc .kshrc .bashrc .login .profile" list = list.split() path = "/home/" + getpass.getuser() + "/" for i in list: if (i.find("/etc/") == -1) : i = path + i if (os.path.isfile(i)): handle = open(i, mode="r", encoding="utf-8") temp = handle.readline() while temp: if (temp[0] != "#"): temp = temp.upper() if (temp.find("UMASK") != -1): temp = temp.replace(" ", "") temp = temp.replace("\t", "") temp = temp.replace("\n", "") temp = temp.replace("=", "") temp = temp.replace(":", "") temp = temp[temp.find("UMASK")+5:len(temp)] if (temp.isdecimal()): if (int(temp) < 22) : f_output = f_output + C_YELLOW + "\t[경고] " + i + " : 설정된 UMASK 값이 22 미만 입니다.\n" + C_END f_output = f_output + C_YELLOW + "\t\t(설정된 UMASK 값 : " + str(int(temp)) + ")\n" + C_END flag = True temp = handle.readline() handle.close() if (flag) : f_output = f_output + C_RED + "\t[검사 결과] 보안 조치가 필요합니다.\n" + C_END f_output = f_output + "\n" f_output = f_output + "[" + C_NUM + "] 조치 방법\n" f_output = f_output + "\t텍스트 편집기로 해당 파일을 열어 UMASK 값을 22로 설정해주세요.\n" else : f_output = f_output + C_GREEN + "\t[검사 결과] 안전합니다.\n" + C_END f_output = f_output + "\n" print(f_output,end='') handle = open("./" + C_NUM + ".txt", mode='w', encoding='utf-8') handle.write(f_output) handle.close() U57()
e742888cc0187e291a1a46392a8299f283286861
8e2dd8979702ea7b95236385fe1b1e7715c3af56
/handlers/__init__.py
8ca692956d4027e89b1e8ca54a6f9ec9cbf61139
[ "WTFPL" ]
permissive
Watch-Dogs-HIT/Watch_Dogs-Server
061c8724e4ddc80bfdaa676fdfe412fddce86cab
3dfcb412197c56d6fcbf1a7e12f4fcaf16ca1eae
refs/heads/master
2022-01-13T00:49:20.024591
2019-06-22T01:57:27
2019-06-22T01:57:27
172,664,891
4
0
null
null
null
null
UTF-8
Python
false
false
4,483
py
#!/usr/bin/env python # encoding:utf-8 """ Watch_Dogs base handler """ import os import json import traceback import tornado.web from tornado import gen from conf.setting import Setting setting = Setting() def byteify(input_unicode_dict, encoding='utf-8'): """ 将unicode字典转为str字典 reference : https://www.jianshu.com/p/90ecc5987a18 """ if isinstance(input_unicode_dict, dict): return {byteify(key): byteify(value) for key, value in input_unicode_dict.iteritems()} elif isinstance(input_unicode_dict, list): return [byteify(element) for element in input_unicode_dict] elif isinstance(input_unicode_dict, unicode): return input_unicode_dict.encode(encoding) else: return input_unicode_dict class BaseHandler(tornado.web.RequestHandler): """""" def set_default_headers(self): self.set_header("Access-Control-Allow-Origin", "*") self.set_header("Access-Control-Allow-Headers", "x-requested-with") self.set_header("Access-Control-Allow-Methods", "POST, GET, OPTIONS") self.set_header("Access-Control-Allow-Credentials", True) def post(self): pass def get(self): pass @property def db(self): """异步数据库操作对象""" return self.application.db @property def log(self): """日志对象""" return self.application.log @property def data(self): """业务逻辑,数据处理""" return self.application.data @property def setting(self): """静态设置""" return self.application.setting @property def remote_api(self): """远程API""" return self.application.remote_api @property def uid(self): return self.get_cookie('uid') @property def user_status(self): return self.get_cookie('user_status') if self.get_cookie('user_status') else "-1" def get_current_user(self): return self.get_cookie("user") def get_request_json(self): """解析json""" if "Content-Type" in self.request.headers and "application/json" in self.request.headers["Content-Type"]: return byteify(json.loads(self.request.body)) # return str dict return {"error": "no json found"} @gen.coroutine def update_cookie(self): """更新cookie值""" user_status = yield self.data.update_cookie(self.uid) self.set_cookie("user_status", str(user_status)) def write_error(self, status_code, **kwargs): """500""" error_message = ["Oops! Something wrong,"] if self.settings.get("serve_traceback") and "exc_info" in kwargs: error_message = traceback.format_exception(*kwargs["exc_info"]) return self.render( 'error.html', http_code=500, error_message=error_message ) class TestHandler(BaseHandler): """/""" def get(self): return self.render("test.html", date=self.setting.get_local_time(), author="h-j-13", repo_link="https://github.com/Watch-Dogs-HIT/Watch_Dogs-Server") class NotFoundHandler(BaseHandler): """404""" def get(self): return self.render("404.html", status_code=404) class ClientDownloadHandler(tornado.web.RequestHandler): """/client""" def get(self): """远程客户端下载""" self.set_header('Content-Type', 'application/octet-stream') self.set_header('Content-Disposition', 'attachment; filename={fn}'.format(fn=Setting.CLIENT_FILE_TAR)) with open(os.path.join(setting.CONF_PATH, Setting.CLIENT_FILE_TAR), 'rb') as c: while True: data = c.read(4096) if not data: break self.write(data) self.finish() class ClientScriptDownloadHandler(tornado.web.RequestHandler): """/client/script""" def get(self): """远程客户端安装脚本下载""" self.set_header('Content-Type', 'application/octet-stream') self.set_header('Content-Disposition', 'attachment; filename={fn}'.format(fn=Setting.CLIENT_SCRIPT)) with open(os.path.join(setting.CONF_PATH, Setting.CLIENT_SCRIPT), 'rb') as c: while True: data = c.read(4096) if not data: break self.write(data) self.finish()
c855770ff311e1c544bf7b358a41914de8212a82
c24b9c8dfd47527db9f6cd5158a1a0562e03f46c
/GalDynPsr/galpyMWBHpl.py
76608c27f5d2787f8ae752a15e7ed521b18d40b1
[ "BSD-3-Clause" ]
permissive
pathakdhruv/GalDynPsr
a165c082e0cb97ebfdb359b88ec73e749b7264fb
ed9b582454c3a09a1351cdd2cd529a3a50068e1d
refs/heads/master
2021-04-28T14:29:56.029738
2018-10-14T09:55:29
2018-10-14T09:55:29
152,193,421
1
1
null
null
null
null
UTF-8
Python
false
false
1,798
py
import math from galpy.potential import MWPotential2014 from galpy.potential import PowerSphericalPotentialwCutoff from galpy.potential import MiyamotoNagaiPotential from galpy.potential import NFWPotential from galpy.util import bovy_conversion from astropy import units from galpy.potential import KeplerPotential from galpy.potential import vcirc from GalDynPsr import read_parameters as par global MWBH def VpratioMWBH(Rpkpc): #MWPotential2014.append(KeplerPotential(amp=4*10**6./bovy_conversion.mass_in_msol(par.Vs,par.Rskpc))) #a = vcirc(MWPotential2014,Rpkpc/par.Rskpc) ''' bp= PowerSphericalPotentialwCutoff(alpha=1.8,rc=1.9/8.,normalize=0.05) mp= MiyamotoNagaiPotential(a=3./8.,b=0.28/8.,normalize=.6) np= NFWPotential(a=16./8.,normalize=.35) kp = KeplerPotential(amp=4*10**6./bovy_conversion.mass_in_msol(par.Vs,par.Rskpc)) MWBH = [bp,mp,np,kp] a = vcirc(MWBH,Rpkpc/par.Rskpc) ''' MWPotential2014wBH= [MWPotential2014,KeplerPotential(amp=4*10**6./bovy_conversion.mass_in_msol(par.Vs,par.Rskpc))] a = vcirc(MWPotential2014wBH,Rpkpc/par.Rskpc) return a; def MWBHpl(ldeg, sigl, bdeg, sigb, dkpc, sigd): b = bdeg*par.degtorad l = ldeg*par.degtorad c = par.c Rskpc = par.Rskpc kpctom = par.kpctom Vs = par.Vs Rpkpc = par.Rpkpc(ldeg, sigl, bdeg, sigb, dkpc, sigd) Vprat = VpratioMWBH(Rpkpc) Vp = Vprat*Vs zkpc = dkpc*math.sin(b) Vsms = 1000.0*Vs #m/s Rs = Rskpc*kpctom be = (dkpc/Rskpc)*math.cos(b) - math.cos(l) t0 = math.sin(l)*math.sin(l) + be*be t2 = (-1.0)*(math.cos(l) + Vprat*Vprat*(be/t0)) #dimensionless t3 = (Vsms*Vsms)/(Rs) #in SI adr = t2*t3*math.cos(b) #m sec^-2 (divide by c to get in s^-1) Excpl = adr/c #sec^-1 return Excpl;
0edcaf04d837804f4cce7e34b0e01714f1c7e38a
2a9922b22a075ff0a373c6db8d269b625d672829
/fashionist/constants.py
5d6c17d146d212721dc187c4b21a7ac0f4caee7f
[]
no_license
WhhhzFdUNpun/distributed_fashion_mnist
e7328546e342629620defcad13c7e32cc84f3fa1
85f25d8fef81e1f0d02e2af2fd6a7a1ff76ba019
refs/heads/main
2023-09-01T08:31:27.764049
2021-10-21T16:05:43
2021-10-21T16:05:43
419,788,839
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
from pathlib import Path PROJECT_DIR = Path(__file__).parents[1] STORAGE_DIR = PROJECT_DIR / 'storage'
254012a45627f62cf14136792d64f56fd48523d5
c53d57b6ea5b117d8fa260a29942cf9422a46063
/examples/DeepWisdom/speech_autodl_config.py
d833f42a3efde61c0177599bfe9c6640cdc4f2e3
[ "Apache-2.0" ]
permissive
zichuan-scott-xu/automl-workflow
c52ee6c7c01347274a6b1d6801a7889daa35a40d
d108e55da943775953b9f1801311a86ac07e58a0
refs/heads/main
2023-04-01T16:20:10.885273
2021-04-14T05:44:48
2021-04-14T05:44:48
327,514,705
0
0
Apache-2.0
2021-01-07T05:41:38
2021-01-07T05:41:38
null
UTF-8
Python
false
false
3,487
py
import os import json from collections import namedtuple import copy # Config for Covertor IF_RESET_TFGRAPH_SESS_RUN = False TF_DATASET_TO_NUMPY_MODE = "graph" # eager/graph # os.environ["CUDA_VISIBLE_DEVICES"] = "1" # 全局配置数据 autodl_global_config = { "meta_solution": { "cv_solution": "DeepWisdom", # "cv_solution": "kakaobrain", # "nlp_solution": "DeepBlueAI", "nlp_solution": "upwind_flys", "speech_solution": "PASA_NJU", # "speech_solution": "rank_2_fuzhi", }, "data_space": { "domain_dataset": { "text": {"if_sample": True, "sample_ratio": 0.5}, "speech": {"if_sample": True, "sample_ratio": 0.5}, } }, "speech_global_conf": None, } speech_global_conf_data = { "data_space": { "tf_dataset": { "if_shuffle": False, "shuffle_ratio": 0.5, "if_sample": True, # "sample_ratio": 0.2, # "sample_ratio": [0.1, 0.2, 0.3, 0.2, 0.2, 0.2], "sample_ratio": [0.1, 0.2, 0.4, 0.1, 0.2, 0.2], } }, "model_space": { "model_loop_planniing": { "lightwei_train_end_loop": 3, "midwei_train_start_loop": 3, "midwei_predict_block_loop": 11, } }, } autodl_global_config["speech_global_conf"] = speech_global_conf_data # Config for Covertor IF_RESET_TFGRAPH_SESS_RUN = False TF_DATASET_TO_NUMPY_MODE = "graph" # eager/graph # Config for Solution VIDEO_SOLUTION_FLAG = "2d" # 2d/3d class MetaSoluConf(object): def __init__(self): self.cv_solution = None self.nlp_solution = None self.speech_solution = None class DsDomainDatasetConf(object): def __init__(self): self.if_sample = None self.sample_ratio = None class DsDomainDatasetSets(object): def __init__(self): self.text = DsDomainDatasetConf() self.speech = DsDomainDatasetConf() class DsConf(object): def __init__(self): self.domain_dataset = DsDomainDatasetSets() class AutoDlConf(object): def __init__(self): self.meta_solution = MetaSoluConf() self.data_space = DsConf() class ConfigParserA(object): def _json_object_hook(self, d): return namedtuple("X", d.keys())(*d.values()) def json2obj(self, data): return json.loads(data, object_hook=self._json_object_hook) def from_type_autodlconf(self, conf_data) -> AutoDlConf: # obj: typeclass = copy.deepcopy(self.json2obj(json.dumps(conf_data))) return copy.deepcopy(self.json2obj(json.dumps(conf_data))) autodl_g_conf_repr = json.dumps(autodl_global_config, indent=4) config_parser_a = ConfigParserA() AUTODL_G_CONF = config_parser_a.from_type_autodlconf(autodl_global_config) META_SOLUS = AUTODL_G_CONF.meta_solution DM_DS_PARAS = AUTODL_G_CONF.data_space.domain_dataset speech_global_conf = AUTODL_G_CONF.speech_global_conf speech_ds_tds_conf = speech_global_conf.data_space.tf_dataset speech_ms_conf = speech_global_conf.model_space speech_ms_mlp_conf = speech_ms_conf.model_loop_planniing def main(): config_parser_a = ConfigParserA() autodl_g_conf = config_parser_a.from_type_autodlconf(autodl_global_config) print(autodl_g_conf.meta_solution.speech_solution) print(autodl_g_conf.data_space.domain_dataset.text.if_sample) print(autodl_g_conf.data_space.domain_dataset.speech.sample_ratio) if __name__ == "__main__": main()
ed1765e3a5caedf0c2941f564b78d88cedcb7aaa
82e46ddaeca0a9147f0da00f3edc7c25e2b52596
/project08_django_mineralcatalog2/minerals/tests/tests_models.py
51d878ee633b631e181419808af303c94ced4557
[]
no_license
sabinem/treehouse-python-techdegree
8f0fd57681fa0cc620e4c3bfa7553a6647bbef06
8bfbba09132b405f7c68cbfd9a0e7596223c3a53
refs/heads/master
2021-09-15T05:21:25.631722
2018-03-07T08:20:11
2018-03-07T08:20:11
121,496,395
3
1
null
null
null
null
UTF-8
Python
false
false
11,679
py
""" Tests for the minerals app's models --------------------------------------------------------- - The Database is filled with data by the datamigrations, Therefore testdata is already available and must not be created. """ import os import re from django.test import TestCase from django.conf import settings from django.utils.text import slugify from ..models import Mineral from minerals.views import SearchParams class MineralModelTests(TestCase): """Tests the Model Mineral""" def setUp(self): """a mineral is set up""" self.mineral = Mineral.minerals.first() def test_attributes_weigthed(self): """returns attributes in order of how often they occur""" fields = Mineral.attributes_weighted() self.assertListEqual(fields[:-2], [ 'group', 'formula', 'category', 'strunz_classification', 'crystal_system', 'mohs_scale_hardness', 'luster', 'color', 'specific_gravity', 'cleavage', 'diaphaneity', 'crystal_habit', 'streak', 'optical_properties', 'refractive_index', ]) self.assertSetEqual(set(fields[-2:]), { 'unit_cell', 'crystal_symmetry', }) def test_image_path(self): """the minerals image path is returned""" imgfile = \ os.path.join(settings.MINERALS_STATIC_DIR, self.mineral.image_path) self.assertTrue( os.path.isfile(imgfile) ) def test___str__(self): """the mineral is represented by its name""" self.assertEqual( str(self.mineral), self.mineral.name) def test_get_gravity_bounds(self): """ extracts specific gravity bounds correctly from the input data for specific gravity """ self.assertEqual( Mineral.get_gravity_bounds('5.8–6.2 (meas.); 6.37 (calc.)'), (5.8, 6.37) ) self.assertEqual( Mineral.get_gravity_bounds('1 - 2.6'), (1.0, 2.6) ) self.assertEqual( Mineral.get_gravity_bounds('1.993'), (1.993, 1.993) ) self.assertEqual( Mineral.get_gravity_bounds( '3.564 (Fo100); 3.691 (Fo90); 4.845 (Fa100)'), (3.564, 4.845) ) self.assertEqual( Mineral.get_gravity_bounds( '7000352000000000000♠3.52±0.01',), (3.52, 3.52) ) self.assertEqual( Mineral.get_gravity_bounds( 'Whiteite-(CaFeMg) 2.58Whiteite-(MnFeMg)2.67Whiteite-(CaMnMg)2.63'), (2.58, 2.67) ) self.assertEqual( Mineral.get_gravity_bounds('3'), (3, 3) ) self.assertEqual( Mineral.get_gravity_bounds('3.41\xa0g/cm3'), (3.41, 3.41) ) def test_get_gravity_bounds_for_blank_input(self): """ sets the bound to None, if the mineral has no specific gravity attribute """ self.assertTupleEqual( Mineral.get_gravity_bounds(''), (None, None) ) def test_group_slug(self): """for all groups a slug is derived from the group it should be possible to recover the group from that slug""" groups = Mineral.minerals.order_by('group')\ .values_list('group', flat=True).distinct() for group in groups: slug = Mineral.get_group_slug(group) group_from_slug = Mineral.get_group_from_slug(slug) self.assertEquals( group, group_from_slug ) def test_get_search_letter_letter(self): """a normal search letter is returned as is""" self.assertEqual( Mineral.get_search_letter("c"), "c" ) def test_get_search_letter_default(self): """when no search letter is given 'a' is returned""" self.assertEqual( Mineral.get_search_letter(), settings.MINERALS_DEFAULT_LIST_LETTER ) class MineralManagerTests(TestCase): """tests the minerals querysets""" def setUp(self): """one minerals and all minerals are set up""" self.all_minerals = Mineral.minerals.all() self.one_mineral = Mineral.minerals.first() def test_get_minerals_by_group(self): """the minerals for a group are determined correctly""" group = self.one_mineral.group test_qs = Mineral.minerals.get_minerals_by_group(group) self.assertListEqual( list(test_qs), [m for m in self.all_minerals if m.group == group] ) def test_get_minerals_for_letter(self): """the minerals for a letter are determined correctly""" letter = "b" test_qs = Mineral.minerals.get_minerals_for_letter(letter) self.assertListEqual( list(test_qs), [m for m in self.all_minerals if slugify(m.name[0]) == letter] ) def test_get_mineral_from_slug_exists(self): """the mineral can be derived from its slug""" mineral = self.one_mineral test_mineral_get = \ Mineral.minerals.get_mineral_from_slug(mineral.mineral_slug) self.assertEqual( mineral, test_mineral_get ) def test_filter_minerals_by_id_list(self): """minerals can be found form an id_list""" id_list = [m.id for m in self.all_minerals[0:10]] test_qs = Mineral.minerals.filter_minerals_by_id_list(id_list) self.assertSetEqual( set([m.id for m in test_qs]), set(id_list) ) def test_filter_minerals_by_chem_element_one_letter(self): """minerals for a one letter chemical element are determined correctly""" test_qs = Mineral.minerals.filter_minerals_by_chem_element("F") self.assertSetEqual( set([(m.name, m.formula) for m in self.all_minerals if re.search(r'F[^a-z]', m.formula)]), set([(m.name, m.formula) for m in test_qs]) ) def test_filter_minerals_by_chem_element_two_letter(self): """minerals for a two letter chemical element are determined correctly""" test_qs = Mineral.minerals.filter_minerals_by_chem_element("Fe") self.assertSetEqual( set([(m.name, m.formula) for m in self.all_minerals if re.search(r'Fe[^a-z]', m.formula)]), set([(m.name, m.formula) for m in test_qs]) ) def test_get_random_mineral(self): """a random mineral is returned""" test_mineral_get = Mineral.minerals.get_random_mineral() self.assertIn(test_mineral_get.id, [m.id for m in self.all_minerals]) def test_get_ordered_groups(self): """the groups are returned with 'Other' at the last position""" test_list = Mineral.minerals.get_ordered_groups() groups = {m.group for m in self.all_minerals} self.assertEqual(len(test_list), len(groups)) self.assertEqual(test_list[-1], "Other") def test_filter_minerals_by_searchterm(self): """the fulltext search in the mineral attributes returns a record correctly, if the searchterm appears in one of its fields""" mineral = self.one_mineral for field in mineral._meta.fields: if hasattr(mineral, field.name): if field.name not in ['id', 'image_filename']: term = str(getattr(mineral, field.name))[3:12] test_qs = \ Mineral.minerals.filter_minerals_by_searchterm(term) self.assertIn( mineral.id, [m.id for m in test_qs] ) def test_filter_minerals_by_specific_gravity_exact(self): """the mineral is found if search for its excact specific gravity range""" mineral = \ Mineral.minerals.exclude(specific_gravity="").first() gravity_bounds = \ Mineral.get_gravity_bounds(mineral.specific_gravity) test_qs = \ Mineral.minerals.filter_minerals_by_specific_gravity( gravity_bounds) self.assertIn( mineral.id, [m.id for m in test_qs] ) def test_filter_minerals_by_specific_gravity_example(self): """minerals are determined correctly for a specific gravity range""" gravity_bounds = (6, 8) test_qs = Mineral.minerals.filter_minerals_by_specific_gravity( gravity_bounds) expected_mineral_ids = \ [m.id for m in Mineral.minerals.exclude(specific_gravity="") if (float(Mineral.get_gravity_bounds( m.specific_gravity)[0]) <= 8 and float(Mineral.get_gravity_bounds( m.specific_gravity)[1]) >= 6)] self.assertEqual( set(expected_mineral_ids), {m.id for m in test_qs} ) def test_get_minerals_from_search_params_term(self): """minerals are determined correctly from the searchparameters in case of just a search term""" search_params = SearchParams("Ab", None, None) qs_test = Mineral.minerals.get_minerals_from_search_params( search_params ) expected_qs = Mineral.minerals\ .filter_minerals_by_searchterm(search_params.searchterm) self.assertSetEqual( {m.id for m in qs_test}, {m.id for m in expected_qs} ) def test_get_minerals_from_search_params_chem_element(self): """minerals are determined correctly from the searchparameters in case of just a chemical element""" search_params = SearchParams(None, "Na", None) qs_test = Mineral.minerals.get_minerals_from_search_params( search_params ) expected_qs = Mineral.minerals\ .filter_minerals_by_chem_element("Na") self.assertSetEqual( {m.id for m in qs_test}, {m.id for m in expected_qs} ) def test_get_minerals_from_search_params_gravity_bound(self): """minerals are determined correctly from the searchparameters in case of just a specific gravity bound""" search_params = SearchParams(None, None, (7, 9)) qs_test = Mineral.minerals.get_minerals_from_search_params( search_params ) expected_qs = Mineral.minerals\ .filter_minerals_by_specific_gravity((7, 9)) self.assertSetEqual( {m.id for m in qs_test}, {m.id for m in expected_qs} ) def test_get_minerals_from_search_params_combination(self): """minerals are determined correctly from the searchparameters in case of a combined search""" search_params = SearchParams("Ab", "Fe", (2, 7)) qs_test = Mineral.minerals.get_minerals_from_search_params( search_params ) expected_qs1 = Mineral.minerals\ .filter_minerals_by_searchterm("Ab") expected_qs2 = Mineral.minerals\ .filter_minerals_by_specific_gravity((2, 9)) expected_qs3 = Mineral.minerals\ .filter_minerals_by_chem_element("Fe") self.assertSetEqual( {m.id for m in qs_test}, {m.id for m in expected_qs1 if (m in expected_qs2 and m in expected_qs3)} )
c04ca627ca582efb45ec32439fa345f6c40a0feb
27e0651ada3d891fe88467e2158daab11b58947d
/goodtables/processors/schema.py
1944a5a8d645cc3a8ae503e8884b8ab9615f6d90
[ "MIT" ]
permissive
mychapati/goodtables
f94a017b4b9c476621b71839e20a22b05cce7314
3c81af866951ca340ca441e66f25a3597d15c8ee
refs/heads/master
2021-01-17T06:27:06.215070
2015-06-07T13:44:11
2015-06-07T13:44:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,893
py
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import jtskit from . import base RESULTS = { 'schema_001': { 'id': 'schema_001', 'name': 'Incorrect Headers', 'msg': ('There is a mismatch between the headers according to the ' 'schema, and those found in the data. The schema says the ' 'headers should be: {0}.'), 'help': '', 'help_edit': '' }, 'schema_002': { 'id': 'schema_002', 'name': 'Incorrect Dimensions', 'msg': 'The row dimensions do not match the header dimensions.', 'help': '', 'help_edit': '' }, 'schema_003': { 'id': 'schema_003', 'name': 'Incorrect Type', 'msg': 'The value is not a valid {0}.', 'help': '', 'help_edit': '' }, 'schema_004': { 'id': 'schema_004', 'name': 'Required Field', 'msg': 'Column {0} is a required field, but no value can be found in row {1}.', 'help': '', 'help_edit': '' }, 'schema_005': { 'id': 'schema_005', 'name': 'Non-Required Field (Empty/Null)', 'msg': 'Column {0} is a non-required field, and has a null value in row {1}.', 'help': '', 'help_edit': '' }, 'schema_006': { 'id': 'schema_006', 'name': 'Unique Field', 'msg': 'Column {0} is a unique field, yet the value {1} already exists.', 'help': '', 'help_edit': '' } } class SchemaProcessor(base.Processor): """Process data against a JSON Table Schema.""" name = 'schema' RESULT_TYPES = RESULTS def __init__(self, fail_fast=False, report_limit=1000, row_limit=30000, schema=None, ignore_field_order=True, report_stream=None, report=None, result_level='error', infer_schema=False, case_insensitive_headers=False, **kwargs): super(SchemaProcessor, self).__init__( fail_fast=fail_fast, report_limit=report_limit, row_limit=row_limit, report_stream=report_stream, report=report, result_level=result_level) self.infer_schema = infer_schema self.case_insensitive_headers = case_insensitive_headers self.ignore_field_order = ignore_field_order if not schema: self.schema = None else: self.schema = self.schema_model(schema) self._uniques = {} def schema_model(self, schema): try: model = jtskit.models.SchemaModel(schema, self.case_insensitive_headers) except (jtskit.exceptions.InvalidJSONError, jtskit.exceptions.InvalidSchemaError) as e: raise e return model def pre_run(self, data_table): if (self.schema is None) and self.infer_schema: sample_values = data_table.get_sample(300) self.schema = self.schema_model(jtskit.infer(data_table.headers, sample_values)) return True, data_table def run_header(self, headers, header_index=0): valid = True if self.case_insensitive_headers: headers = [name.lower() for name in headers] if self.schema: if self.ignore_field_order: if not (set(headers).issuperset(set(self.schema.required_headers))): valid = False _type = RESULTS['schema_001'] entry = self.make_entry( self.name, self.RESULT_CATEGORY_HEADER, self.RESULT_LEVEL_ERROR, _type['msg'].format(', '.join(self.schema.headers)), _type['id'], _type['name'], headers, header_index, self.RESULT_HEADER_ROW_NAME ) self.report.write(entry) if self.fail_fast: return valid, headers else: header_length = len(headers) if not (headers == self.schema.required_headers[:header_length]): valid = False _type = RESULTS['schema_001'] entry = self.make_entry( self.name, self.RESULT_CATEGORY_HEADER, self.RESULT_LEVEL_ERROR, _type['msg'].format(headers, self.schema.headers), _type['id'], _type['name'], headers, header_index, self.RESULT_HEADER_ROW_NAME, ) self.report.write(entry) if self.fail_fast: return valid, headers return valid, headers def run_row(self, headers, index, row): valid = True row_name = self.get_row_id(headers, row) if self.schema: if not (len(headers) == len(row)): valid = False _type = RESULTS['schema_002'] entry = self.make_entry( self.name, self.RESULT_CATEGORY_ROW, self.RESULT_LEVEL_ERROR, _type['msg'], _type['id'], _type['name'], row, index, row_name, ) self.report.write(entry) if self.fail_fast: return valid, headers, index, row else: for column_name, column_value in zip(headers, row): # handle case where column_name not even in schema if not self.schema.has_field(column_name): pass # we know the field is in the schema else: # check type and format if self.schema.cast(column_name, column_value) is False: valid = False _type = RESULTS['schema_003'] entry = self.make_entry( self.name, self.RESULT_CATEGORY_ROW, self.RESULT_LEVEL_ERROR, _type['msg'].format(self.schema.get_type(column_name).name.title()), _type['id'], _type['name'], row, index, row_name, headers.index(column_name), column_name ) self.report.write(entry) if self.fail_fast: return valid, headers, index, row # CONSTRAINTS constraints = self.schema.get_constraints(column_name) if constraints['required'] is True and \ (column_value in self.schema.NULL_VALUES): valid = False _type = RESULTS['schema_004'] entry = self.make_entry( self.name, self.RESULT_CATEGORY_ROW, self.RESULT_LEVEL_ERROR, _type['msg'].format(column_name, index), _type['id'], _type['name'], row, index, row_name, headers.index(column_name), column_name ) self.report.write(entry) if self.fail_fast: return valid, headers, index, row if constraints['required'] is False and \ (column_value in self.schema.NULL_VALUES) and \ self.result_level == self.RESULT_LEVEL_INFO: # add info result _type = RESULTS['schema_005'] entry = self.make_entry( self.name, self.RESULT_CATEGORY_ROW, self.RESULT_LEVEL_INFO, _type['msg'].format(column_name, index), _type['id'], _type['name'], row, index, row_name, headers.index(column_name), column_name ) self.report.write(entry) if self.fail_fast: return valid, headers, index, row if constraints.get('unique') is True: if not self._uniques.get(column_name): self._uniques[column_name] = set([column_value]) elif column_value in self._uniques[column_name]: _type = RESULTS['schema_006'] entry = self.make_entry( self.name, self.RESULT_CATEGORY_ROW, self.RESULT_LEVEL_ERROR, _type['msg'].format(column_name, column_value), _type['id'], _type['name'], row, index, row_name, headers.index(column_name), column_name ) self.report.write(entry) if self.fail_fast: return valid, headers, index, row else: self._uniques[column_name].add(column_value) # TODO: check constraints.min* and constraints.max* return valid, headers, index, row
cb9f0a252c18c9148ff97d724c5ff0ef3776dd78
1a5392dad90182c521753127d04a4e7c367fca0e
/app.py
fac131be0dd4d7e9b90ff32935cec6a2834994b9
[]
no_license
Cvam06/digiflux-monitor-backend
eb5799c50e3713bfb8392835399f321bc7f9a5e4
5f7a4b0f38f2e7217c8d983285c6acc7b1de9db4
refs/heads/master
2023-02-12T12:34:48.336672
2021-01-08T17:34:23
2021-01-08T17:34:23
327,970,590
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
from digifluxMonitor import app #Run Server if __name__ == '__main__': app.run()
0660ad18789747b956180df9c82ae52168af5906
803988c9f1d649456757395d37ed6a657e4ddaf2
/04-code-golf/tf-04-pn.py
87c6b3e3da3aec7af073ba2fab74f6ce08db6882
[ "MIT" ]
permissive
aglie/exercises-in-programming-style
81a3d6af444830cf6667803f4e15ac551b4690bf
e0cf1639266c48ebc29b164fe156886a4267027a
refs/heads/master
2021-01-15T10:53:32.307052
2013-11-27T05:07:42
2013-11-27T05:07:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
349
py
# My golf score is slightly lower! # Best wishes, Peter Norvig import re, sys, collections stopwords = set(open('../stop_words.txt').read().split(',')) words = re.findall('[a-z]{2,}', open(sys.argv[1]).read().lower()) counts = collections.Counter(w for w in words if w not in stopwords) for (w, c) in counts.most_common(25): print w, '-', c
08527f6b7228c02ce9b5815eefa3d666d57cbfd4
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/320/usersdata/279/87865/submittedfiles/lecker.py
2edf18ff90115c4a8a56d88b79c72f2c4e082079
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
# -*- coding: utf-8 -*- import math a1=float(input()) a2=float(input()) a3=float(input()) a4=float(input()) r=0 for i in range (1,5,1) : if a1>ai : r=r+1 for i in range (1,5,1) : if a2>ai : r=r+1 for i in range (1,5,1) : if a3>ai : r=r+1 for i in range (1,5,1) : if a4>ai : r=r+1 if r==1 : print('S') else : print('N')
3aad4316f5e3d0680f707d2ec4ca589b34723030
f7dde2747e2acc74e38c564931ff88f508a1f8e8
/app/settings.py
1fd219103dbaa08730990af97f159eea7c53c933
[]
no_license
pavancse17/user-activity
8c1013985c9bf14e8bffc71a08bfcf65cae42555
43d65224d062507040475be4687254c86cf4c567
refs/heads/master
2021-05-22T19:31:59.764556
2020-04-04T21:56:17
2020-04-04T21:56:17
253,059,830
0
0
null
null
null
null
UTF-8
Python
false
false
3,217
py
""" Django settings for app project. Generated by 'django-admin startproject' using Django 3.0.5. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 't%o7hy6egs%pk^@32a0e8l-c287_e_$(8l^ba2_dd&z+hxv5sj' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'user_activity' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'user_activity.User' import django_heroku django_heroku.settings(locals())
fbdd233413a6754cd7a5c5829353797caec260d7
143fd49858528d25d4695b4563be5defe701a61f
/0x0F-python-object_relational_mapping/model_city.py
f3aeeaefd948fa3bfb0ef99fc14a0316df809d6e
[]
no_license
jemn21819/holbertonschool-higher_level_programming
a64e0ead14165542d3eb17cf10c8b915e1f8570e
bb8ad3e7c15086fcd3d94f1d103ac38bc851e01f
refs/heads/master
2023-04-17T10:24:35.623482
2021-05-04T21:22:58
2021-05-04T21:22:58
319,295,963
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
#!/usr/bin/python3 """ Module that contains class definition for City """ from model_state import State from sqlalchemy import Column, Integer, String, ForeignKey from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class City(Base): """MySQL table cities""" __tablename__ = 'cities' id = Column( Integer, primary_key=True, autoincrement=True, unique=True, nullable=False) name = Column(String(128), nullable=False) state_id = Column(Integer, ForeignKey(State.id), nullable=False)
7339d5cfe2b6347fb993b26b03f127bb7483a24e
aa5d01cced9078c099ef62f0e1701ca078068ecb
/unitology/tests/test_views.py
a628013ecb687862870ac06c8e6e754ca20c5416
[ "MIT" ]
permissive
erikvw/django-unitology
951323c5adf2021f73908d8e04395e599a58c476
646c1867c8d838254aac714c7abb76787b219510
refs/heads/master
2020-09-05T13:15:52.104990
2019-03-23T16:35:16
2019-03-23T16:35:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,870
py
# -*- coding: utf-8 -*- from django.test import TestCase from django.core.urlresolvers import reverse from unitology.variables import IMPERIAL, METRIC class ReloadViewTest(TestCase): def test_weight_multi_field(self): data = { 'from_units': IMPERIAL, 'to_units': METRIC, 'id': 'id_weight', 'name': 'weight', 'value': '220', 'module_name': 'unitology.formfields', 'klass_name': 'WeightMultiField' } response = self.client.get(reverse('unitology_reload'), data, **{ 'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'}) self.assertEqual(response.status_code, 200) self.assertTrue('99.79' in str(response.content) and 'kgs' in str(response.content)) data = { 'from_units': METRIC, 'to_units': IMPERIAL, 'id': 'id_weight', 'name': 'weight', 'value': '100', 'module_name': 'unitology.formfields', 'klass_name': 'WeightMultiField' } response = self.client.get(reverse('unitology_reload'), data, **{ 'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'}) self.assertEqual(response.status_code, 200) self.assertTrue('220.46' in str(response.content) and 'lbs' in str(response.content)) # pass incorrect value data = { 'from_units': IMPERIAL, 'to_units': METRIC, 'id': 'id_weight', 'name': 'weight', 'value': 'qwetry', 'module_name': 'unitology.formfields', 'klass_name': 'WeightMultiField' } response = self.client.get(reverse('unitology_reload'), data, **{ 'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'}) self.assertEqual(response.status_code, 200) self.assertTrue('' in str(response.content) and 'kgs' in str(response.content)) def test_height_multi_field(self): data = { 'from_units': IMPERIAL, 'to_units': METRIC, 'id': 'id_height', 'name': 'height', 'value[]': ['5', '8'], 'module_name': 'unitology.formfields', 'klass_name': 'HeightMultiField' } response = self.client.get(reverse('unitology_reload'), data, **{ 'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'}) self.assertEqual(response.status_code, 200) self.assertTrue('172.72' in str(response.content) and 'cm' in str(response.content)) data = { 'from_units': METRIC, 'to_units': IMPERIAL, 'id': 'id_height', 'name': 'height', 'value': '175', 'module_name': 'unitology.formfields', 'klass_name': 'HeightMultiField' } response = self.client.get(reverse('unitology_reload'), data, **{ 'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'}) self.assertEqual(response.status_code, 200) self.assertTrue('5' in str(response.content) and 'ft' in str(response.content)) self.assertTrue('8' in str(response.content) and 'in' in str(response.content)) # pass incorrect value data = { 'from_units': METRIC, 'to_units': IMPERIAL, 'id': 'id_height', 'name': 'height', 'value[]': 'qwerty', 'module_name': 'unitology.formfields', 'klass_name': 'HeightMultiField' } response = self.client.get(reverse('unitology_reload'), data, **{ 'HTTP_X_REQUESTED_WITH': 'XMLHttpRequest'}) self.assertEqual(response.status_code, 200) self.assertTrue('0' in str(response.content) and 'ft' in str(response.content)) self.assertTrue('0' in str(response.content) and 'in' in str(response.content))
5a66c03536fed0e76c58d291c12b60c3d4ea7df6
ad2d2381951fc30514f8039528bf41954b62f39e
/python2/day03/Chating/chat_server.py
50595704621d489cd137c9dc898f58b0aec6f057
[]
no_license
seyoung5744/Basic-Python-in-playdata
bbb30213434aead1e13c3d6367916cc222dcddb3
facb4d852ee963f0244a2e69cc02af77730e8104
refs/heads/main
2023-04-30T14:18:09.526009
2021-05-14T02:12:39
2021-05-14T02:12:39
310,472,276
0
0
null
null
null
null
UTF-8
Python
false
false
1,696
py
import socket, threading soc_list=[] #채팅방. 연결된 클라이언트 소켓 def client(soc, addr): soc_list.append(soc) #방금 접속한 클라이언트 소켓을 리스트에 담음 while True: data = soc.recv(1024) msg = data.decode() if msg=='/stop': soc.sendall(data)#본인한테 /stop 전송 soc_list.remove(soc) msg = str(addr)+' 님이 퇴장하셨습니다.' for s in soc_list: s.sendall(msg.encode()) break else: print('Received from', addr, msg) msg = str(addr)+' : '+msg for s in soc_list: s.sendall(msg.encode()) soc.close() print(addr, '퇴장') def main(): HOST = 'localhost' #server ip PORT = 9999 #server port #server socket open. socket.AF_INET:주소체계(IPV4), socket.SOCK_STREAM:tcp server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #포트 여러번 바인드하면 발생하는 에러 방지 server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) #바인드:오픈한 소켓에 IP와 PORT 할당 server_socket.bind((HOST, PORT)) #이제 accept할 수 있음을 알림 server_socket.listen() print('server start') #accept로 client의 접속을 기다리다 요청시 처리. #client와 1:1통신할 작은 소켓과 연결된 상대방의 주소 반환 while True: client_socket, addr = server_socket.accept() print('Connected by', addr) t = threading.Thread(target=client, args=(client_socket,addr)) t.start() server_socket.close() main()
a0e244a92dc257cd1ab3627c339d5d5b068f0ebe
d4977816258bb4e28398009833aba07b8243cfa6
/CSDNspider/searchsql.py
8d3e9fdd8016972914bf6464e36b3ac89d23fc2f
[]
no_license
junbaibai0719/csdnPaChong
eb7b1fe6e6d0539b7b02e4df1f8274c156cbe068
aa7a9a4fff12114ee707f4a3eb882853fe8f773e
refs/heads/master
2020-07-31T19:35:02.408743
2019-09-25T01:43:16
2019-09-25T01:43:16
210,728,710
1
0
null
null
null
null
UTF-8
Python
false
false
3,936
py
import sqlite3 class MySql(): def __init__(self, database): # 连接数据库 self.database = database self.conn = sqlite3.connect(self.database) self.cursor = self.conn.cursor() self.cursor.execute('''create table if not exists urldata (url char primary key not null , state int, title message_text , nickname nchar , shown_year year , showm_month month , shown_day day , shown_time time , lable message_text );''') # cursor.execute('''create table if not exists offsetdata # (shown_offset char primary key not null , # state int # );''') # #创建表保存文章数据,时间数据类型为timestamp,yyyy-mm-dd hh-mm-ss.sss,使用datetime(timestring)得到yyyy-mm-dd hh-mm-ss.sss形状的日期 # cursor.execute('''create table if not exists articedata # (article message_text primary key not null , # shown_time timestamp , # category char # );''') self.conn.commit() def save(self, tablename = 'urldata', list=[]): # sqlcode0 = "insert into {} values (?,?)".format(tablename) sqlcode0 = "replace into {} values (?,?,?,?,?,?,?,?,?)".format(tablename) sqlcode1 = "insert into {} values (?,?,?,?,?,?,?,?,?)".format(tablename) # conn = sqlite3.connect(self.database) # cursor = conn.cursor() # 将url设为主键重复插入时会报错,try用来规避重复插入。 # cursor.executemany(sqlcode0, (list)) # try: # cursor.executemany(sqlcode1,(list)) # except Exception: # print('**********************************************************************************************************') for i in list: try: self.cursor.execute(sqlcode1,(i)) except Exception: if i[1] == 1: self.cursor.execute(sqlcode0,(i)) print(i) self.conn.commit() def read(self, tablename = 'urldata',value = 0): # conn = sqlite3.connect(self.database) # cursor = conn.cursor() data = self.cursor.execute('select * from {} where state = {}'.format(tablename,value)) self.conn.commit() count = data.fetchall() return count # 访问url函数,如果将一个url取出来访问 def access(self, tablename = 'urldata',col = 'url'): # conn = sqlite3.connect(self.database) # cursor = conn.cursor() data = self.cursor.execute('select * from {} where state = {}'.format(tablename, 0)) result = data.fetchmany(20) # list = [] # for i in result: # list.append((1,i[0])) # self.cursor.executemany('update {} set state = ? where {} = ?'.format(tablename, col), (list)) self.conn.commit() return result # 设置状态 def set_state(self, tablename, col, colval, state=1): self.cursor.execute('update {} set state = ? where {} = ?'.format(tablename, col), (state, colval)) self.conn.commit() def search(self,tablename = 'urldata',what = 'url', col = 'lable' ,colval = ''): goturl = self.cursor.execute("select {} from {} where {} like ?".format(what,tablename,col),(colval,)).fetchall() self.conn.commit() return goturl def close(self): self.conn.close() mysql = MySql('test.db') data = mysql.read(value=1) # for i in data: # print(i) print(data.__len__()) print(mysql.read().__len__()) print(mysql.search(colval='%work%')) mysql.close()
465e51513b0e0ec554100f6204b4bffb90706563
49479554c1992a9961102e3be9f1d38f40374a0c
/rolling_subs_calculator.py
04b866b8dcd196c6d5602543888f4458f986c9f0
[]
no_license
DavidJMilligan/rolling-subs-calculator
db8536d50477a83420acb253ec6ed5b732ee28bd
8fbe890197efe512e9083cbe94c1565b9525f3c6
refs/heads/master
2021-01-19T16:24:35.092042
2017-04-23T10:52:53
2017-04-23T10:52:53
88,262,209
0
0
null
null
null
null
UTF-8
Python
false
false
2,401
py
#!/usr/bin/env python3 """The rolling subs calculator calculates the amount of time each player on a team will have on the pitch, times substitutions should be made and which players are subbed on / off at each substitution. """ # Capture match variables. These vary week to week and will be set from the web app in future. MATCH_DURATION = int(input(' Enter match duration in minutes ')) NUMBER_PLAYERS = int(input(' Enter total number of available players ')) NUMBER_GOALKEEPERS = 1 # Set game variables. These do not change from week to week OUTFIELD_PLAYERS = (NUMBER_PLAYERS - NUMBER_GOALKEEPERS) PLAYERS_ON_PITCH = 7 NUMBER_OUTFIELD_PLAYERS = (NUMBER_PLAYERS - NUMBER_GOALKEEPERS) AVAILABLE_OUTFIELD_MINUTES = (MATCH_DURATION * (PLAYERS_ON_PITCH - 1)) MINUTES_PER_OUTFIELD = (AVAILABLE_OUTFIELD_MINUTES / OUTFIELD_PLAYERS) SUB_FREQUENCY = (MATCH_DURATION / OUTFIELD_PLAYERS) NUMBER_SUBS = NUMBER_PLAYERS - PLAYERS_ON_PITCH # Capture outfield players names OUTFIELD_PLAYERS_NAMES = [] i = 0 while len(OUTFIELD_PLAYERS_NAMES) < OUTFIELD_PLAYERS: i += 1 PLAYER = input('Outfield player name %d: '%i) OUTFIELD_PLAYERS_NAMES.append(PLAYER) print(OUTFIELD_PLAYERS_NAMES) print("\n") # Print summary instructions INSTRUCTIONS = "Substitute " + str(NUMBER_SUBS) + " players every " + str(SUB_FREQUENCY) + " mins" print(INSTRUCTIONS) print(" Every outfield player will get " + str(MINUTES_PER_OUTFIELD) + " minutes") # Decide starting team - by first entered at the player input stage. STARTING_TEAM = (OUTFIELD_PLAYERS_NAMES[0:PLAYERS_ON_PITCH - NUMBER_GOALKEEPERS]) STARTING_TEAM.sort() print("\n") print("Starting team " + str(STARTING_TEAM)) # Print substitutions plan details SUB_COUNT = 1 # Sets the number of the first substitution to 1 NEXT_SUB = SUB_FREQUENCY #Sets initial time for NEXT_SUB variable # Loop through sub times and print subs on, subs off and current team after each set of subs while NEXT_SUB < (MATCH_DURATION): print("\n") # Adds line breaks for legibility print("@ " + str(round(NEXT_SUB, 2)) + " minutes") print("Sub off " + str(STARTING_TEAM[0:NUMBER_SUBS])) SUB_COUNT = SUB_COUNT + 1 NEXT_SUB = NEXT_SUB + SUB_FREQUENCY BENCH = (set(OUTFIELD_PLAYERS_NAMES) - set(STARTING_TEAM)) del STARTING_TEAM[0:NUMBER_SUBS] STARTING_TEAM.extend(BENCH) print("Sub on" + str(BENCH)) print("Current team" + str(STARTING_TEAM))
4b181b086fab85df2ebf93e93bfacba96ccf632b
9e7ad8fa87a588719afa9f123a94331b44816e94
/approachs/approach3/quickinfopanel.py
d830232291319f51ab2bbbb3d7444e6947fd71d7
[]
no_license
gvSIGAssociation/gvsig-desktop-scripting-quickinfo
f15582e2fe3e6b4fc0e2afd782e60b38e300d233
b231e83d07096fc75a38f9e925e2985806c84252
refs/heads/master
2023-05-26T05:16:55.611023
2023-05-17T09:56:04
2023-05-17T09:56:04
108,833,461
0
0
null
null
null
null
UTF-8
Python
false
false
1,742
py
# encoding: utf-8 import gvsig from gvsig import getResource from gvsig.libs.formpanel import FormPanel from org.gvsig.tools.swing.api import ToolsSwingLocator class QuickinfoPanel(FormPanel): def __init__(self, layer=None): FormPanel.__init__(self,getResource(__file__,"quickinfopanel.xml")) self.setLayer(layer) def setLayer(self, layer): self.__layer = layer if layer==None: self.cboFields.removeAllItems() else: self.fillCombo( self.cboFields, self.__layer.getFeatureStore().getDefaultFeatureType() ) def getLayer(self): return self.__layer def getFieldName(self): name = self.cboFields.getSelectedItem() if name == None: return None name = name.strip() if name == "": return None return name def fillCombo(self, combo, featureType): combo.removeAllItems() combo.addItem(" ") for attr in featureType: combo.addItem(attr.getName()) x = self.__layer.getProperty("quickinfo.fieldname") if x in ("", None): combo.setSelectedIndex(0) else: combo.setSelectedItem(x) def save(self): self.__layer.setProperty( "quickinfo.fieldname", self.getFieldName() ) def main(*args): viewDoc = gvsig.currentView() layer = viewDoc.getLayer("manzanas_pob") panel = QuickinfoPanel(layer) winmgr = ToolsSwingLocator.getWindowManager(); dialog = winmgr.createDialog( panel.asJComponent(), "Quickinfo test", "Quickinfo information", winmgr.BUTTONS_OK_CANCEL ) dialog.show(winmgr.MODE.DIALOG) if dialog.getAction()==winmgr.BUTTON_OK: print "Ok" print "Show field: ", repr(panel.getFieldName()) panel.save() else: print "Cancel"
[ "jjdelcerro@jjdc-Lenovo-G50-70" ]
jjdelcerro@jjdc-Lenovo-G50-70
7ced69003bd43f17bb30a6e19950b5c6713be817
7d87ed96be5ad70d4d394b40c3baa8a65ff531d5
/main.py
e2fa4d6d684499da81fa88e16fb4123621710f1c
[]
no_license
CyberPopPunk/Technical_Inventory
077c68065029804a2519a60e240b9382810affba
ba8e2309563366b801cf818780105ac61cfe16f3
refs/heads/master
2020-04-28T08:33:34.795304
2019-03-12T04:04:22
2019-03-12T04:04:22
175,132,713
0
0
null
null
null
null
UTF-8
Python
false
false
7,912
py
# Work inverntory log for HAC equipment # 12/4/2018 # Save Items to different SQL tables in a db and take inventory easily # Three main functions: Input Data, View Data, Take Inventory on Equip # import ui import sqlalchemy as sa from time import sleep conn = sa.create_engine('sqlite:///tech_inv.db') inspector = sa.inspect(conn) def create_table(): # if table doesn't exist...generates a new SQL table for the db. Tables have 6 columns with the 6th reserved for a generated ID# # users specify type if the column is a number (num) or description (word) new_table_list = [] print('What is the new Table name?') new_table = input('New Table: ').lower() curr_tables = [x.lower() for x in inspector.get_otable_names()] if new_table in curr_tables: print('Table already exists!') return else: new_table_list.append(new_table) for col in range(1,6): print('What is in column {}?'.format(col)) new_table_list.append(input("Column {}: ".format(col))) print('What type of input is this?(num, word, boolean)') input_type = input("Type: ").lower() if input_type == 'number' or input_type == 'num': new_table_list.append("INT") elif input_type == 'bool' or input_type =='boolean': new_table_list.append('') else: new_table_list.append('VARCHAR(20)') print('Are these values correct? Y/N') print(new_table_list) if input('Confirm: ').lower() == 'y': sql_call = '''CREATE TABLE {} ({} {}, {} {}, {} {}, {} {}, {} {}, id VARCHAR(3) PRIMARY KEY)'''.format(*new_table_list) print(sql_call) conn.execute(sql_call) else: print('Let\'s try again\n') create_table() def show_table_info(tb_name): table_info = conn.execute('SELECT * FROM {}'.format(tb_name)) for num, row in enumerate(table_info): print('Item {}: {}'.format(num+1, row)) print('-'*60) def choose_input(list, title, prompt): # Prints a numbered list and prompts the user for input based on numerical selection # returns choice while True: print(title) for num, index in enumerate(list): print('{}. {}'.format(num + 1, index)) try: choice = int(input(prompt)) if choice > len(list): raise ValueError() break except ValueError or ValueError: print('Invalid Entry\n') return list[choice - 1] # compensate for list index def table_select(title): tables = conn.table_names() selected_table = choose_input(tables, title, '--> ') print("\nYou selected {}".format(selected_table)) return selected_table def input_items(table): # takes a table and lists out the available columns # prompts for values and inserts them into the table in database col_info = inspector.get_columns(table) # returns a list of dicts of attributes for each column cols = [] new_col_vals = [] enter_items = True #iterate over dicts in list for i in range(len(col_info)): #for each dict in list of dicts get 'name' from each and add it to cols list cols.append(col_info[i].get('name')) #clean cols into tuple for SQL INSERT cols = tuple(cols) while enter_items == True: # Prompt for new values for col in cols: if col == 'id': continue new_val = input('What is the {} of new item? >>> '.format(col)) print('\n') new_col_vals.append(new_val) print('Values input: {}'.format(new_col_vals)) values_avail = '?,'*(len(cols)-2) + '?' #max number of columns minus 1 reserved for ID generation print('values avail' + values_avail) try: new_id = generate_ID() except: try: new_id = generate_ID() except: print('You\'re one unlucky bastard. You generated the same ID twice that already exists. \nPlease try inputting item again.... \nReturning to Main Menu...') #add generated ID to input data new_col_vals.append(new_id) #compile SQL insert ins = 'INSERT INTO {} {} VALUES {}'.format(table, cols, tuple(new_col_vals)) print(ins) #conn.execute(ins) #print('insert success!\n') print('FAKE INSERT A SUCCESS! PLEASE ACTIVATE \'INSERT\' SQL query to store data!') while True: more = input(('Enter another item? Y/N ')).lower() try: if len(more) > 1: raise ValueError("Input too long") if more =='y': break elif more == 'n': print('Returning to Main Menu...\n') return else: print('Invalid Input') except ValueError: print('Invalid Input! please try again') def generate_ID(): # generates and returns a 4 digit hexdigit (without 0x header) to be used for an ID # also searches Database to verify hex doesn't already exist yet from random import randint new_id = '{:x}'.format(randint(1, 16**4)) print('New ID: # ' + new_id) print('Checking if ID exists') #searches all tables in db for table in conn.table_names(): print('Looking through table {}...'.format(table)) #selecets the ID columns in databse selected_IDs = conn.execute('SELECT id FROM {}'.format(table)) for row in selected_IDs: print('Checking {}...'.format(row)) if row == new_id: raise Exception('ID already in use! Please try again') print('ID not used in table {}...'.format(table)) print('ID not in use') return new_id def inventory(): import string curr_inv_list = [] #turn this into its own function! counted_id = None print('Please input an ID number, when inventory complete, type \'done\'.') while counted_id != 'done': while True: counted_id = input('ID#: ').lower() if all(char in string.hexdigits for char in counted_id) and len(counted_id) <= 4: curr_inv_list.append(counted_id) elif counted_id == 'done': break else: print('INVALID ID, please re-enter') total_ids = [] total_missing = [] for table in conn.table_names(): #print('Checking Table: {}'.format(table)) table_result = conn.execute('SELECT id FROM {}'.format(table)) table_ids = [table_id[0] for table_id in table_result] #print('Category IDs for {}: {}'.format(table, table_ids)) inv_results = missing_items(curr_inv_list, table_ids) print("______Overview of {} Category______\nMissing Items: {}\nUnknown Items count:{}".format(table, inv_results[0], len(inv_results[1]))) for item in inv_results[2]: curr_inv_list.remove(item) for item in inv_results[0]: total_missing.append(item) print('Total Items Missing: {}\n__MISSING ITEMS__'.format(len(total_missing))) #print the info for the missing items for table in conn.table_names(): table_result = conn.execute('SELECT * FROM {}'.format(table)) for row in table_result: if row['id'] in total_missing: print(row) def missing_items(counted_items_list, expected_items_list): # takes two lists as args, counted and expected # returns lists of missing items and unknown items # missing items are items not in counted list from expected # unknown items are items in counted list not in expected missing_items = [item for item in expected_items_list if item not in counted_items_list] unknown_items = [item for item in counted_items_list if item not in expected_items_list] found_items = [item for item in expected_items_list if item in counted_items_list] return [missing_items, unknown_items, found_items] def main_menu(): while True: print('\nWelcome to Inventory!') print('1. Create Category') print('2. Input Items') print('3. Show Category Contents') print('4. Take Inventory') print('5. Exit') try: choice = int(input("Please select an action: ")) if choice > 5: raise ValueError() break except ValueError: print("Invalid choice\n") if choice == 1: create_table() elif choice == 2: selected_table = table_select('\nWhat category would you like to enter the item in?\n') input_items(selected_table) elif choice == 3: selected_table = table_select('\nWhat category of items would you like to view?\n') show_table_info(selected_table) elif choice == 4: inventory() def exit_app(sender): print('\nGoodbye!') exit() #main_menu() v = ui.load_view('tech_gui').present('sheet')
c5cce2bee68e0f0d25386a2d6d4b08d99adee80a
4ede4657c68979d7447aff783deb6b192e6edd88
/core/utilsForProcessing.py
3431eed17c635ca8ce7742978c391233994eeee6
[]
no_license
zerodeku/tracking3d
7cba6e567fc2776a73f2351b6da6248bca3b598a
8557ea99b24a9dc4063f7e1892b54c16c6fa4564
refs/heads/master
2021-01-20T17:54:36.086409
2016-07-06T22:08:24
2016-07-06T22:08:24
61,503,057
1
0
null
null
null
null
UTF-8
Python
false
false
4,153
py
# -*- coding: utf-8 -*- """ Created on Tue Aug 05 14:27:06 2014 @author: tcolomb """ import os from Tkinter import * import csv from guidata.qt.QtGui import QFileDialog, QMessageBox import numpy as np from os import listdir from os.path import isfile, join from matplotlib import pyplot as plt #%% MessageBox to take password entry class takeInput(object): def __init__(self, requestMessage, boolTextOrNumber, defaultText, hideText): self.root = Tk() self.string = '' self.frame = Frame(self.root) self.frame.pack() self.acceptInput(requestMessage, defaultText, hideText) def acceptInput(self, requestMessage, defaultText, hideText): r = self.frame k = Label(r, text=requestMessage) k.pack(side='left') self.e = Entry(r, text='Name') if hideText: self.e["show"] = "*" self.e.pack(side='left') self.e.insert(0, defaultText) self.e.focus_set() b = Button(r, text='okay', command=self.gettext) b.pack(side='right') def gettext(self): self.string = self.e.get() self.root.destroy() def getString(self): return self.string def waitForInput(self): self.root.mainloop() def getEntry(requestMessage, boolTextOrNumber, defaultText, hideText): msgBox = takeInput(requestMessage, boolTextOrNumber, defaultText, hideText) msgBox.waitForInput() if boolTextOrNumber: #True=text, False=Number return msgBox.getString() else: return int(float(msgBox.getString())) def getPassword(requestMessage, defaultText): msgBox = takeInput(requestMessage, True, defaultText, True) msgBox.waitForInput() return msgBox.getString() ## Directory and file def OpenTxtFile(text, path): filename = QFileDialog.getOpenFileName(None, text, path, filter="txt (*.txt *.)") return filename def CreateDirectory(directoryPath, directoryName): if not os.path.exists(directoryPath+'\\'+directoryName): os.makedirs(directoryPath+'\\'+directoryName) return directoryPath + '\\' + directoryName def DeleteAllFilesInDirectory(directoryPath): filelist = [f for f in os.listdir(directoryPath) if f.endswith(".bin")] for f in filelist: os.remove(directoryPath+'\\'+f) def FileExists(fname, extension): return os.path.isfile(fname) and fname.endswith(extension) def FindFileInDirectory(directory, extension): onlyfiles = [f for f in listdir(directory) if isfile(join(directory, f))] return onlyfiles def ErrorMessage(message): QMessageBox.warning(None, 'Error', message) def Log(message): print message def DisplayImage(img): plt.imshow(img) plt.gray() plt.show() def SaveParamsFile(ColumnTitles, Values, fname): if np.size(ColumnTitles) != np.size(Values): ErrorMessage("Not possible to save because ColumnTiltes and Values are not the same size") else: f = open(fname, 'w') columntext = '' valuetext = '' for k in range(np.size(ColumnTitles)-1): columntext += ColumnTitles[k]+'\t' valuetext += str(Values[k])+'\t' columntext += ColumnTitles[-1]+'\n' valuetext += str(Values[-1])+'\n' f.writelines(columntext) f.writelines(valuetext) f.close() # #def ReadParmsFile(fname): # with open(fname,'r') as f: # reader=csv.reader(f) # Values=[] # for row in islice(reader,1,None): # line=row[0].split() # for v in line: # Values.append((float)(v)) # return Values def SaveParamsFileByLine(Data, fname): fname = QFileDialog.getSaveFileName(None, "Save file", fname) f = open(fname, 'w') for info in Data: f.writelines(info[0]+'\t'+str(info[1])+'\t'+info[2]+'\n') f.close() def ReadParamsFromLine(fname): Data = [] with open(fname, 'r') as f: reader = csv.reader(f, delimiter='\t') for row in reader: #line=row[0].split() Data.append((row[0], row[1], row[2])) return Data
042a7387750534b05b32d92c9d59e401c4ac6ab4
940e44d76c5688f5920e875b260b28247ff0a81c
/config/local_settings.py
13874ce0138119b8d12daedcb48c285bf3ecfd27
[]
no_license
ignsv/centr_osvita
d267fb2fc41f8e8a28e6e880c1a8b38b2dc39544
efaa930d566bed50a6d664b0906ef7fc5e5f1c46
refs/heads/develop
2022-12-11T16:53:09.426981
2020-09-29T09:49:00
2020-09-29T09:49:00
250,006,828
0
0
null
2022-11-22T05:07:57
2020-03-25T14:50:43
Python
UTF-8
Python
false
false
7,065
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import os import environ import raven ROOT_DIR = environ.Path(__file__) - 2 # (/a/myfile.py - 2 = /) APPS_DIR = ROOT_DIR.path('centr_osvita') env = environ.Env( DJANGO_DEBUG=(bool, False), DJANGO_SECRET_KEY=(str, 'CHANGEME!!!x9drrvwt9y^9b)*2^9(&l@kz)jc7!5)i(-z6sp=@b2h+mo!^ae'), DJANGO_ADMINS=(list, []), DJANGO_ALLOWED_HOSTS=(list, []), DJANGO_STATIC_ROOT=(str, str(APPS_DIR('staticfiles'))), DJANGO_MEDIA_ROOT=(str, str(APPS_DIR('media'))), DJANGO_DATABASE_URL=(str, 'postgis:///centr_osvita'), DJANGO_EMAIL_URL=(environ.Env.email_url_config, 'consolemail://'), DJANGO_DEFAULT_FROM_EMAIL=(str, '[email protected]'), DJANGO_EMAIL_BACKEND=(str, 'django.core.mail.backends.smtp.EmailBackend'), DJANGO_SERVER_EMAIL=(str, '[email protected]'), DJANGO_USE_DEBUG_TOOLBAR=(bool, False), DJANGO_TEST_RUN=(bool, False), DJANGO_HEALTH_CHECK_BODY=(str, 'Success'), DJANGO_USE_SILK=(bool, False), ) environ.Env.read_env() DEBUG = env.bool("DJANGO_DEBUG") SECRET_KEY = env('DJANGO_SECRET_KEY') ALLOWED_HOSTS = env.list('DJANGO_ALLOWED_HOSTS') ADMINS = tuple([tuple(admins.split(':')) for admins in env.list('DJANGO_ADMINS')]) MANAGERS = ADMINS TIME_ZONE = 'UTC' LANGUAGE_CODE = 'en-us' SITE_ID = 1 USE_I18N = True USE_L10N = True USE_TZ = True DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'my_database', } } DJANGO_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', 'django.contrib.postgres' ) THIRD_PARTY_APPS = ( 'django_extensions', 'phonenumber_field', 'polymorphic', ) LOCAL_APPS = ( 'centr_osvita.common.apps.CommonConfig', 'centr_osvita.users.apps.UsersConfig', 'centr_osvita.profiles.apps.ProfilesConfig', 'centr_osvita.quiz.apps.QuizConfig', ) INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS AUTH_USER_MODEL = 'users.User' ADMIN_URL = r'^admin/' MIDDLEWARE_CLASSES = [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] EMAIL_URL = env.email_url('DJANGO_EMAIL_URL') EMAIL_BACKEND = EMAIL_URL['EMAIL_BACKEND'] EMAIL_HOST = EMAIL_URL.get('EMAIL_HOST', '') if EMAIL_URL.get('EMAIL_HOST_PASSWORD', '') == 'special': EMAIL_HOST_PASSWORD = env('DJANGO_EMAIL_HOST_PASSWORD_SPECIAL') else: EMAIL_HOST_PASSWORD = EMAIL_URL.get('EMAIL_HOST_PASSWORD', '') EMAIL_HOST_USER = EMAIL_URL.get('EMAIL_HOST_USER', '') EMAIL_PORT = EMAIL_URL.get('EMAIL_PORT', '') EMAIL_USE_SSL = 'EMAIL_USE_SSL' in EMAIL_URL EMAIL_USE_TLS = 'EMAIL_USE_TLS' in EMAIL_URL EMAIL_FILE_PATH = EMAIL_URL.get('EMAIL_FILE_PATH', '') DEFAULT_FROM_EMAIL = env('DJANGO_DEFAULT_FROM_EMAIL') SERVER_EMAIL = env('DJANGO_SERVER_EMAIL') TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ str(APPS_DIR.path('templates')), ], 'OPTIONS': { 'debug': DEBUG, 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ], 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', ], }, }, ] STATIC_URL = '/static/' STATIC_ROOT = env('DJANGO_STATIC_ROOT') MEDIA_URL = '/media/' MEDIA_ROOT = env('DJANGO_MEDIA_ROOT') STATICFILES_DIRS = ( str(APPS_DIR.path('static')), ) STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) ROOT_URLCONF = 'config.urls' WSGI_APPLICATION = 'config.wsgi.application' AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', ) LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' }, 'require_debug_true': { '()': 'django.utils.log.RequireDebugTrue', }, }, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s ' '%(process)d %(thread)d %(message)s' }, }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose', }, }, 'loggers': { 'django': { 'handlers': ['console'], 'propagate': True, 'level': 'WARN', }, 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True }, } } if os.environ.get('SENTRY_DSN'): INSTALLED_APPS += ('raven.contrib.django.raven_compat',) RAVEN_CONFIG = { 'dsn': env('SENTRY_DSN'), 'release': raven.fetch_git_sha(str(ROOT_DIR)), } USE_DEBUG_TOOLBAR = env.bool('DJANGO_USE_DEBUG_TOOLBAR') if USE_DEBUG_TOOLBAR: MIDDLEWARE_CLASSES += [ 'debug_toolbar.middleware.DebugToolbarMiddleware', ] INSTALLED_APPS += ( 'debug_toolbar', ) DEBUG_TOOLBAR_CONFIG = { 'DISABLE_PANELS': [ 'debug_toolbar.panels.redirects.RedirectsPanel', ], 'SHOW_TEMPLATE_CONTEXT': True, 'SHOW_TOOLBAR_CALLBACK': lambda request: True, } DEBUG_TOOLBAR_PATCH_SETTINGS = False # http://django-debug-toolbar.readthedocs.org/en/latest/installation.html INTERNAL_IPS = ('127.0.0.1', '0.0.0.0', '10.0.2.2') if env.bool('DJANGO_TEST_RUN'): pass HEALTH_CHECK_BODY = env('DJANGO_HEALTH_CHECK_BODY') # Silk config USE_SILK = env('DJANGO_USE_SILK') if USE_SILK: INSTALLED_APPS += ( 'silk', ) MIDDLEWARE_CLASSES += [ 'silk.middleware.SilkyMiddleware', ] SILKY_AUTHENTICATION = True # User must login SILKY_AUTHORISATION = True # User must have permissions SILKY_PERMISSIONS = lambda user: user.is_superuser
faedbf448d91f3277c8f273d58c15188f4123932
1194311067114c15c33601f12c5c92819317aefe
/pySpikeSorter.py
54ea678285097703e2119f1652a8c7e5511154fd
[]
no_license
vhazocar/pySpikeSorter
8b08f18635ec9170b177c0c7a61e7e590197f829
6fa4f872e57b84deadd82b33d0c110aa2245901d
refs/heads/master
2020-05-30T08:39:09.684203
2016-01-21T21:03:38
2016-01-21T21:03:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
152,267
py
#!/usr/local/bin/ipython -i #---------------------------------------------------------------------- IMPORTS import os filename = os.environ.get('PYTHONSTARTUP') if filename and os.path.isfile(filename): execfile(filename) import sys import re import tables import numpy as np #import pdb # extra widgets import import matplotlib_widgets import helper_widgets from PyQt4 import QtGui, QtCore from pyqtgraph import opengl as gl from matplotlib import rc from matplotlib.mlab import PCA from matplotlib import pyplot as plt from matplotlib.path import Path from scipy.spatial import cKDTree import datetime import m_BlackrockLib as BL #filename = os.environ.get('PYTHONSTARTUP') #if filename and os.path.isfile(filename): # execfile(filename) #============================================================================== def autocorr(TimeStamp, binSize=20, Win=[0, 10000], mode='time', Range=[-200, 200]): if not np.any(TimeStamp): return Win = np.array(Win) TimeStamp = np.array(TimeStamp) TimeStamp = TimeStamp - TimeStamp[0] TS = TimeStamp[(TimeStamp >= Win[0]) & (TimeStamp < Win[1])] if TS.size > 1000: TimeStamp = TS binSize = int(binSize) nBins = TimeStamp[-1] / binSize train = np.zeros(nBins + 1, dtype=np.int16) for k in np.floor(TimeStamp / binSize).astype('int'): train[k] = train[k] + 1 if mode == 'time': ac = np.correlate(train, train, mode='same') x = np.linspace(-TimeStamp[-1] / 2, TimeStamp[-1] / 2, ac.size) elif mode == 'ephys': tmp = np.array([]) for k in TimeStamp: t = TimeStamp - k t = t[(t > Range[0]) & (t < Range[1])] tmp = np.append(tmp, t) ac, x = np.histogram(tmp, bins=int(np.diff(Range) / binSize)) x = x[1:] ac[np.flatnonzero(x == 0)] = 0 elif mode == 'fft': s = np.fft.fft(train) ac = np.abs(np.fft.ifft(s * np.conjugate(s))) #ac = ac/(train.size/((Win[1]-Win[0])/1000)) ac = np.concatenate([ac[ac.size / 2:], ac[0:ac.size / 2]]) x = np.linspace(-TimeStamp[-1] / 2, TimeStamp[-1] / 2, ac.size) return ac, x #============================================================================== def KlustaKwik_call(data, minClust=2, maxClust=5): ''' data must be an array of observations x dimensions''' # create a text file with the data. The first line must be the # number of dimensions of the data f = open('data.fet.1', 'w') f.write('%d\n' % data.shape[1]) for k in data: for j in k: f.write('%f ' % j) f.write('\n') f.close() # call klustakwick with the data if os.system('KlustaKwik data 1 -MinClusters %d -MaxClusters %d' % (minClust, maxClust)) != 256: return # wait while klustakwick gets the clusters while not os.path.isfile('data.clu.1'): continue # read the results f = open('data.clu.1', 'r') clusterData = f.readlines() f.close() clusterData = [int(re.search('[0-9]{1,2}', k).group()) for k in clusterData] # the first line is the number of clusters nClusters = clusterData[0] clusterData.pop(0) clusterData = np.array(clusterData) # create an array with the indices of each cluster clustIndx = [] for k in range(1, nClusters + 1): clustIndx.append(np.flatnonzero(clusterData == k)) return clustIndx #============================================================================== # Spike Sorter Main GUI Window rc('xtick', labelsize=8) rc('ytick', labelsize=8) # create instance of imported widgets settings = helper_widgets.Settings() autocorropts = helper_widgets.AutocorrOpts() autoclust = helper_widgets.AutoClustWidget() #============================================================================== class SpikeSorter(QtGui.QMainWindow): def __init__(self): QtGui.QMainWindow.__init__(self) self.setWindowTitle("pySpikeSorter") self.setWindowIcon(QtGui.QIcon(QtGui.QPixmap('spike_icon.png'))) self.MainWidget = QtGui.QWidget(self) self.MainLayout = QtGui.QHBoxLayout(self.MainWidget) self.MainLayout.setMargin(0) self.MainLayout.setSpacing(0) self.CurUnit = 0 self.PlotUnitCounter = 0 self.UnitsList = [] self.NUnits = 0 self.H5FileLoaded = False self.ChanPlotted = False self.RemovingTab = 0 self.UnitColors = np.array([[1, 0, 0], [0, 0.7, 0], [0, 0.4, 1], [0.8, 0.6, 0], [0.6, 0, 1], [0, 0.7, 0.7], [0, 0.5, 1]]) self.UnitColors = np.tile(self.UnitColors, (10, 1)) #--------------------------------------------- TOOLBAR ON THE LEFT SIDE split1 = QtGui.QSplitter(QtCore.Qt.Horizontal, self.MainWidget) # SPLITTER self.ToolsTab = QtGui.QTabWidget() ToolsTab1 = QtGui.QWidget() ToolsTab2 = QtGui.QWidget() self.ToolsTab.addTab(ToolsTab1, 'Main Tools') self.ToolsTab.addTab(ToolsTab2, 'Chan Tools') self.ToolsTab.setMaximumWidth(220) split1.addWidget(self.ToolsTab) #---------------------------------------------------------ToolsTab No 1 toolslay = QtGui.QVBoxLayout() #-------------------------------------------------------------- FRAME 1 grp = QtGui.QGroupBox('Overview Tools', ToolsTab1) vlay = QtGui.QVBoxLayout() # number of events to overview spin box hlay = QtGui.QHBoxLayout() self.OverviewNEventsSpin = QtGui.QSpinBox() self.OverviewNEventsSpin.setRange(100, 1000) self.OverviewNEventsSpin.setSingleStep(100) self.OverviewNEventsSpin.setValue(500) hlay.addWidget(QtGui.QLabel('N Events 2 Overview')) hlay.addWidget(self.OverviewNEventsSpin) vlay.addLayout(hlay) # Y axis limits selector hlay = QtGui.QHBoxLayout() self.OverviewYLimsSpin = QtGui.QSpinBox() self.OverviewYLimsSpin.setRange(100, 5000) self.OverviewYLimsSpin.setSingleStep(100) self.OverviewYLimsSpin.setValue(2000) self.OverviewYLimsSpin.editingFinished.connect(self.ChangeOverviewYLim_Proc) hlay.addWidget(QtGui.QLabel('Overview Axes YLim')) hlay.addWidget(self.OverviewYLimsSpin) vlay.addLayout(hlay) #---------------------------------------------------------------------- btn = QtGui.QPushButton('Plot Overview') btn.setStyleSheet('QPushButton{background-color: rgba(0,190,0)}') btn.clicked.connect(self.LoadH5File) vlay.addWidget(btn) btn = QtGui.QPushButton('Save Overview') btn.clicked.connect(self.SaveOverviewFig_proc) vlay.addWidget(btn) grp.setLayout(vlay) toolslay.addWidget(grp) grp = QtGui.QGroupBox('Delete Channel Tools', ToolsTab1) vlay = QtGui.QVBoxLayout() # add mark trash spin and button and link it to a function hlay = QtGui.QHBoxLayout() self.MarkTrashSpin = QtGui.QSpinBox() self.MarkTrashSpin.setMinimum(1) self.MarkTrashSpin.setMaximum(1000000) self.MarkTrashSpin.setValue(1000) hlay.addWidget(QtGui.QLabel('Below')) hlay.addWidget(self.MarkTrashSpin) MarkTrashBtn = QtGui.QPushButton('Mark Trash') MarkTrashBtn.clicked.connect(self.TrashChans_proc) hlay.addWidget(MarkTrashBtn) vlay.addLayout(hlay) # add delete trash chans and link it to a function btn = QtGui.QPushButton('Delete Trash Chans') btn.clicked.connect(self.DeleteTrashChans_proc) vlay.addWidget(btn) grp.setLayout(vlay) toolslay.addWidget(grp) #-------------------------------------------------------------- FRAME 2 grp = QtGui.QGroupBox('Channel Plot Options', ToolsTab1) vlay = QtGui.QVBoxLayout() hlay = QtGui.QHBoxLayout() self.ChanSelector = QtGui.QComboBox() hlay.addWidget(QtGui.QLabel('Chan Selector')) hlay.addWidget(self.ChanSelector) vlay.addLayout(hlay) PlotChanBtn = QtGui.QPushButton('Plot Chan') PlotChanBtn.clicked.connect(self.PlotChanProc) vlay.addWidget(PlotChanBtn) grp.setLayout(vlay) toolslay.addWidget(grp) #------------------------------------------------------------ Group No3 grp = QtGui.QGroupBox('General Tools', ToolsTab1) glay = QtGui.QGridLayout() setSettigsBtn = QtGui.QPushButton('Settings') setSettigsBtn.clicked.connect(self.Settings) glay.addWidget(setSettigsBtn, 0, 0) aboutBtn = QtGui.QPushButton('About') aboutBtn.clicked.connect(self.About) glay.addWidget(aboutBtn, 0, 1) closeH5FileBtn = QtGui.QPushButton('Close H5 File') closeH5FileBtn.clicked.connect(self.CloseFile) glay.addWidget(closeH5FileBtn, 1, 0) exitBtn = QtGui.QPushButton('Exit') exitBtn.clicked.connect(self.closeEvent) glay.addWidget(exitBtn, 1, 1) convertFileBtn = QtGui.QPushButton('Convert File') convertFileBtn.clicked.connect(BL.bin2h5) glay.addWidget(convertFileBtn, 2, 0) grp.setLayout(glay) toolslay.addWidget(grp) # create an "About" Msg Box self.AboutMsg = QtGui.QMessageBox(QtGui.QMessageBox.Information, 'About', u'Spyke Sorter v0.1\nHachi Manzur, 2012') toolslay.addStretch(1) ToolsTab1.setLayout(toolslay) #--------------------------------------------------- self.ToolsTab No 2 toolslay = QtGui.QVBoxLayout() # group No1 grp = QtGui.QGroupBox('Features Plot Opts', ToolsTab2) vlay = QtGui.QVBoxLayout() # add X and Y features selection combobox items = ['PCA1', 'PCA2', 'PCA3', 'Slice1', 'Slice2', 'Time', 'Pk2Pk Amp', 'Peak', 'Valley', 'Energy', 'Peak Pt', 'Valley Pt'] self.XPlot = QtGui.QComboBox(grp) self.YPlot = QtGui.QComboBox(grp) self.ZPlot = QtGui.QComboBox(grp) self.XPlot.addItems(items) self.YPlot.addItems(items) self.ZPlot.addItems(items) self.ZPlot.addItem('Density') self.YPlot.setCurrentIndex(1) self.ZPlot.setCurrentIndex(2) # add the X axis combo box hlay = QtGui.QHBoxLayout() hlay.addWidget(QtGui.QLabel('X Axis Variable')) hlay.addWidget(self.XPlot) vlay.addLayout(hlay) # add the Y axis combo box hlay = QtGui.QHBoxLayout() hlay.addWidget(QtGui.QLabel('Y Axis Variable')) hlay.addWidget(self.YPlot) vlay.addLayout(hlay) # add the Y axis combo box hlay = QtGui.QHBoxLayout() hlay.addWidget(QtGui.QLabel('Z Axis Variable')) hlay.addWidget(self.ZPlot) vlay.addLayout(hlay) # add a source of what to plot selection combo box hlay = QtGui.QHBoxLayout() hlay.addWidget(QtGui.QLabel('What to Plot ?')) self.What2Plot = QtGui.QComboBox() hlay.addWidget(self.What2Plot) vlay.addLayout(hlay) # add two slice selection spin box hlay = QtGui.QHBoxLayout() self.SliceSpBx1 = QtGui.QSpinBox() self.SliceSpBx1.setObjectName('Slice1') self.SliceSpBx1.valueChanged.connect(self.SliceDraw) hlay.addWidget(QtGui.QLabel('Slice 1')) hlay.addWidget(self.SliceSpBx1) self.SliceSpBx2 = QtGui.QSpinBox() self.SliceSpBx2.setObjectName('Slice2') hlay.addWidget(QtGui.QLabel('Slice 2')) self.SliceSpBx2.valueChanged.connect(self.SliceDraw) hlay.addWidget(self.SliceSpBx2) vlay.addLayout(hlay) # add a plot density check and a spin box to set the resolution hlay = QtGui.QHBoxLayout() self.PlotDensityCheck = QtGui.QCheckBox('Plot Density ?') hlay.addWidget(self.PlotDensityCheck) self.PlotDensityBins = QtGui.QSpinBox() self.PlotDensityBins.setMinimum(50) self.PlotDensityBins.setMaximum(300) self.PlotDensityBins.setValue(100) hlay.addWidget(self.PlotDensityBins) vlay.addLayout(hlay) # plot only valid Wfs check widget self.PlotValidsOnlyCheck = QtGui.QCheckBox('Plot Valids Only') self.PlotValidsOnlyCheck.setChecked(True) vlay.addWidget(self.PlotValidsOnlyCheck) # label with number of points hlay = QtGui.QHBoxLayout() self.nPtsLabel = QtGui.QLabel() hlay.addWidget(QtGui.QLabel('NPoints')) hlay.addWidget(self.nPtsLabel) vlay.addLayout(hlay) # number of spikes spin box hlay = QtGui.QHBoxLayout() self.nPtsSpin = QtGui.QSpinBox() self.nPtsSpin.setRange(10000, 200000) self.nPtsSpin.setSingleStep(10000) hlay.addWidget(self.nPtsSpin) # number of spikes slider self.nPtsSlider = QtGui.QSlider(QtCore.Qt.Horizontal) self.nPtsSlider.setRange(10000, 200000) self.nPtsSlider.setTickInterval(5000) self.nPtsSlider.setSingleStep(5000) hlay.addWidget(self.nPtsSlider) # connect spinner with No-of-spikes slider self.nPtsSlider.valueChanged.connect(self.nPtsSpin.setValue) # connect slider with No-of-spikes spinner self.nPtsSpin.valueChanged.connect(self.nPtsSlider.setValue) # set N spikes value self.nPtsSlider.setValue(50000) vlay.addLayout(hlay) hlay = QtGui.QHBoxLayout() # plot features btn and funcion connection self.PlotFeaturesBtn = QtGui.QPushButton('Plot 2D', grp) self.PlotFeaturesBtn.clicked.connect(self.PlotFeatures) hlay.addWidget(self.PlotFeaturesBtn) # plot features btn and funcion connection self.Plot3DBtn = QtGui.QPushButton('Plot 3D', grp) self.Plot3DBtn.clicked.connect(self.Plot3DFeatures) hlay.addWidget(self.Plot3DBtn) vlay.addLayout(hlay) grp.setLayout(vlay) toolslay.addWidget(grp) #----------------------------------------------------------- group No 2 grp = QtGui.QGroupBox('Raw Waveforms Opts') vlay = QtGui.QVBoxLayout() # number of spikes spin box hlay = QtGui.QHBoxLayout() self.NSpikesSpin = QtGui.QSpinBox() self.NSpikesSpin.setMaximum(5000) self.NSpikesSpin.setMinimum(100) self.NSpikesSpin.setSingleStep(100) hlay.addWidget(self.NSpikesSpin) # number of spikes slider self.NSpikesSlider = QtGui.QSlider(QtCore.Qt.Horizontal) self.NSpikesSlider.setMaximum(5000) self.NSpikesSlider.setMinimum(100) self.NSpikesSlider.setSingleStep(100) hlay.addWidget(self.NSpikesSlider) # connect spinner with No-of-spikes slider self.NSpikesSpin.valueChanged.connect(self.NSpikesSlider.setValue) # connect slider with No-of-spikes spinner self.NSpikesSlider.valueChanged.connect(self.NSpikesSpin.setValue) # set N spikes value self.NSpikesSlider.setValue(1000) vlay.addLayout(hlay) # add axes limit spin box hlay = QtGui.QHBoxLayout() self.WaveAxYLim_Spin = QtGui.QSpinBox() self.WaveAxYLim_Spin.setRange(0, 10000) self.WaveAxYLim_Spin.setValue(1000) self.WaveAxYLim_Spin.setSingleStep(100) self.WaveAxYLim_Spin.editingFinished.connect(self.SetWfPlotLim_proc) hlay.addWidget(QtGui.QLabel('Axes Y Lim')) hlay.addWidget(self.WaveAxYLim_Spin) vlay.addLayout(hlay) # create a "plot waveforms" check widget self.PlotWaveformsCheck = QtGui.QCheckBox('Plot Raw Waveforms ?') vlay.addWidget(self.PlotWaveformsCheck) grp.setLayout(vlay) toolslay.addWidget(grp) # Automatic clustering box #w = QtGui.QWidget() autoClustBtn = QtGui.QPushButton('Automatic Clustering') autoClustBtn.clicked.connect(autoclust.show) toolslay.addWidget(autoClustBtn) hlay = QtGui.QHBoxLayout() mergeUnitsBtn = QtGui.QPushButton('Merge Units') self.MergeUnitsWidget = helper_widgets.MergeUnitsWidget() self.MergeUnitsWidget.AcceptBtn.clicked.connect(self.MergeUnits_proc) mergeUnitsBtn.clicked.connect(self.CallMergeUnits_proc) hlay.addWidget(mergeUnitsBtn) moveUnitsBtn = QtGui.QPushButton('Move Units') self.MoveUnitsWidget = helper_widgets.MoveUnitsWidget() self.MoveUnitsWidget.AcceptBtn.clicked.connect(self.MoveUnits_proc) moveUnitsBtn.clicked.connect(self.CallMoveUnits_proc) hlay.addWidget(moveUnitsBtn) toolslay.addLayout(hlay) #----------------------------------------------- CHANNEL METAINFO GROUP # button to reset a channel btn = QtGui.QPushButton('Reset Channel') btn.clicked.connect(self.ResetChan_proc) toolslay.addWidget(btn) # button to reset a channel btn = QtGui.QPushButton('Autocorr Opts') btn.clicked.connect(self.AutocorrOpts) toolslay.addWidget(btn) toolslay.addStretch(1) ToolsTab2.setLayout(toolslay) #------------------------------------------------ TABBED FIGURES WIDGET self.OverviewTab1 = {} self.OverviewTab2 = {} self.MainFigTab = QtGui.QTabWidget() self.MainFigTab.currentChanged.connect(self.MainFigTabProc) self.OverviewTab1['MainWidget'] = QtGui.QWidget(self.MainFigTab) hlay = QtGui.QHBoxLayout(self.OverviewTab1['MainWidget']) self.MainFigTab.addTab(self.OverviewTab1['MainWidget'], 'Channels Overview') # overview figure self.OverviewTab1['Figure'] = matplotlib_widgets.MplWidget() self.OverviewTab1['Figure'].figure.set_facecolor('k') self.OverviewTab1['Toolbar'] = matplotlib_widgets.NavToolbar(self.OverviewTab1['Figure'], self.OverviewTab1['MainWidget']) self.OverviewTab1['Toolbar'].setIconSize(QtCore.QSize(15, 15)) vlay = QtGui.QVBoxLayout() vlay.addWidget(self.OverviewTab1['Figure']) vlay.addWidget(self.OverviewTab1['Toolbar']) vlay.setMargin(0) vlay.setSpacing(1) hlay.addLayout(vlay) hlay.setMargin(0) hlay.setSpacing(1) #------------------------------------------------ OVERVIEW TABLE WIDGET self.OverviewTab2['MainWidget'] = QtGui.QWidget(self.MainFigTab) self.OverviewTab2['OverviewTable'] = QtGui.QTableWidget(0, 6, self.OverviewTab2['MainWidget']) self.OverviewTab2['OverviewTable'].setAlternatingRowColors(True) self.OverviewTab2['OverviewTable'].setFont(QtGui.QFont('sans', 8)) labels = ['Count', 'isTrash', 'MultiUnit?', 'Comments', 'Unsorted', 'Valid'] self.OverviewTab2['OverviewTable'].setHorizontalHeaderLabels(labels) for k in range(self.OverviewTab2['OverviewTable'].columnCount()): self.OverviewTab2['OverviewTable'].setColumnWidth(k, 65) self.OverviewTab2['OverviewTable'].setColumnWidth(3, 150) self.OverviewTab2['OverviewTable'].setColumnWidth(2, 75) # associate the vertical header click to select the channel vHeader = self.OverviewTab2['OverviewTable'].verticalHeader() vHeader.sectionClicked.connect(self.TableRowChanged_proc) vlay = QtGui.QVBoxLayout(self.OverviewTab2['MainWidget']) vlay.addWidget(self.OverviewTab2['OverviewTable']) # add a log entry browser grp = QtGui.QGroupBox('Log Browser') grp.setMaximumHeight(100) hlay = QtGui.QHBoxLayout() self.LogCombo = QtGui.QComboBox() self.LogCombo.setMinimumWidth(200) #self.LogCombo.setMinimumHeight(20) self.LogCombo.currentIndexChanged.connect(self.SetLogText_proc) hlay.addWidget(self.LogCombo) self.LogTextBrowser = QtGui.QTextBrowser() #self.LogTextBrowser.setMaximumHeight(40) hlay.addWidget(self.LogTextBrowser) hlay.setMargin(0) hlay.setSpacing(1) grp.setLayout(hlay) vlay.addWidget(grp) self.MainFigTab.addTab(self.OverviewTab2['MainWidget'], 'Summary Table') #---------------------------------------------------------- CHANNEL TAB self.ChanTab = {} self.ChanTab['MainWidget'] = QtGui.QWidget() self.MainFigTab.addTab(self.ChanTab['MainWidget'], 'Channel Tab') mainHLay = QtGui.QHBoxLayout() #------------------------------------------------- RAW WAVEFORMS WIDGET # create the mpl widget to plot the raw waveforms vlay = QtGui.QVBoxLayout() # buttons and controls on top of raw waveforms plot hlay = QtGui.QHBoxLayout() self.NUnitsSpin = QtGui.QSpinBox() self.NUnitsSpin.setMaximumHeight(20) self.NUnitsSpin.setMinimum(1) self.NUnitsSpin.setMaximum(10000) self.NUnitsSpin.setValue(1) TrimBtn = QtGui.QPushButton('Trim Waveforms') TrimBtn.clicked.connect(self.ActivateTrimWaveforms_proc) TrimBtn.setMaximumHeight(20) CleanBtn = QtGui.QPushButton('Redraw') CleanBtn.setMaximumHeight(20) CleanBtn.clicked.connect(self.CleanWavesFigure_proc) hlay.addStretch(1) lbl = QtGui.QLabel('Waveforms2Plot:') lbl.setMaximumHeight(20) hlay.addWidget(lbl) hlay.addWidget(self.NUnitsSpin) hlay.addWidget(TrimBtn) hlay.addWidget(CleanBtn) hlay.addStretch(1) vlay.addLayout(hlay) #------------------------------------------- waveforms plot and toolbar hlay = QtGui.QHBoxLayout() self.ChanTab['WavesFigure'] = matplotlib_widgets.MplWidget() self.ChanTab['WavesFigure'].figure.set_facecolor('k') self.ChanTab['WaveToolbar'] = matplotlib_widgets.NavToolbar(self.ChanTab['WavesFigure'], self.ChanTab['MainWidget'], coordinates=False) self.ChanTab['WaveToolbar'].setIconSize(QtCore.QSize(15, 15)) self.ChanTab['WaveToolbar'].setOrientation(QtCore.Qt.Vertical) self.ChanTab['WaveToolbar'].setMaximumWidth(30) hlay.addWidget(self.ChanTab['WavesFigure']) hlay.addWidget(self.ChanTab['WaveToolbar']) hlay.setMargin(0) hlay.setSpacing(1) vlay.addLayout(hlay) #------------------------------------------------------ UNIT TABS WIDGET self.ChanTab['UnitTabsWidget'] = QtGui.QTabWidget() self.ChanTab['UnitTabBarWidget'] = self.ChanTab['UnitTabsWidget'].tabBar() self.ChanTab['UnitTabsWidget'].setMaximumHeight(QtGui.QApplication.desktop().availableGeometry().height() / 4) self.ChanTab['UnitFigures'] = {} self.ChanTab['DelUnitBtns'] = {} self.ChanTab['UnitCountLabel'] = {} self.ChanTab['UnitBtns'] = {} self.ChanTab['PlotRawCheck'] = {} self.ChanTab['isMultiunitCheck'] = {} self.ChanTab['UnitTabsWidget'].currentChanged.connect(self.ChangeCurrentUnit_proc) vlay.addWidget(self.ChanTab['UnitTabsWidget']) mainHLay.addLayout(vlay) # configures the waveforms figure wavesfig = self.ChanTab['WavesFigure'].figure ax = wavesfig.add_subplot(111) self.trimWaveformsRect = matplotlib_widgets.MyRectangleSelector(ax, self.TrimWaveforms_proc, drawtype='line', useblit=True) self.trimWaveformsRect.set_active(False) ax.set_axis_bgcolor('k') ax.set_xticklabels([]) ax.set_yticklabels([]) self.SampleWaveform, = ax.plot([], color=[.5, .5, .5], linewidth=2) self.Waveforms, = ax.plot([], animated=True) ax.set_ylim(-1000, 1000) ax.set_xlim(0, 32) # Create Slice plots self.Slice1Ln = ax.axvline(0, color=[.5, .5, .5]) self.Slice2Ln = ax.axvline(0, color=[.5, .5, .5], linestyle='--') ax.grid() wavesfig.canvas.mpl_connect('draw_event', self.draw_callback) #------------------------------------------------- FEATURES PLOT WIDGET mainRightLay = QtGui.QVBoxLayout() tab = QtGui.QTabWidget() widget = QtGui.QWidget() # function buttons on top of the features plot: vlay = QtGui.QVBoxLayout(widget) hlay = QtGui.QHBoxLayout() hlay.addStretch(1) self.AddUnitBtn = QtGui.QPushButton('Add Unit') self.AddUnitBtn.setMaximumHeight(20) self.AddUnitBtn.clicked.connect(self.AddUnit_proc) hlay.addWidget(self.AddUnitBtn) # add a "keep" button self.KeepBtn = QtGui.QPushButton('Keep') self.KeepBtn.setMaximumHeight(20) self.KeepBtn.setToolTip('Create new unit (only when All waveforms or Unsorted are plotted)') self.KeepBtn.clicked.connect(self.Keep_proc) hlay.addWidget(self.KeepBtn) # add an "add region" button self.AddRegionBtn = QtGui.QPushButton('Add Region') self.AddRegionBtn.setMaximumHeight(20) self.AddRegionBtn.setToolTip('Add waveforms to the current unit') self.AddRegionBtn.clicked.connect(self.AddRegion_proc) hlay.addWidget(self.AddRegionBtn) # add a "remove region" button self.RemoveRegionBtn = QtGui.QPushButton('Remove Region') self.RemoveRegionBtn.setMaximumHeight(20) self.RemoveRegionBtn.clicked.connect(self.RemoveRegion_proc) hlay.addWidget(self.RemoveRegionBtn) # "set valid waveforms" button self.ValidWFBtn = QtGui.QPushButton('Set Valid WFs') self.ValidWFBtn.setMaximumHeight(20) self.ValidWFBtn.clicked.connect(self.ValidateWFs_proc) hlay.addWidget(self.ValidWFBtn) # "set valid waveforms" button self.ReplotDensityBtn = QtGui.QPushButton('Replot Density') self.ReplotDensityBtn.setMaximumHeight(20) self.ReplotDensityBtn.clicked.connect(self.ReplotDensity_proc) hlay.addWidget(self.ReplotDensityBtn) hlay.addStretch(1) vlay.addLayout(hlay) # Features figure and toolbar self.ChanTab['FeaturesFig'] = matplotlib_widgets.MplWidget() self.ChanTab['FeaturesFig'].figure.set_facecolor('k') self.ChanTab['FeaturesFigNtb'] = matplotlib_widgets.NavToolbar(self.ChanTab['FeaturesFig'].figure.canvas, self.ChanTab['MainWidget']) self.ChanTab['FeaturesFigNtb'].setIconSize(QtCore.QSize(15, 15)) self.ChanTab['FeaturesFigNtb'].setMaximumHeight(30) vlay.addWidget(self.ChanTab['FeaturesFig']) vlay.addWidget(self.ChanTab['FeaturesFigNtb']) vlay.setMargin(0) vlay.setSpacing(1) tab.addTab(widget, '2D') mainRightLay.addWidget(tab) #-------------------------------------------------------- 3D TAB Widget self.Widget3d = gl.GLViewWidget() tab.addTab(self.Widget3d, '3D') #---------------------------------- Spikes vs time visualization widget # add a figure adn axes self.TimeScroll = {} self.TimeScroll['Figure'] = matplotlib_widgets.MplWidget() self.TimeScroll['Figure'].figure.set_facecolor('k') self.TimeScroll['DrawFigCID'] = self.TimeScroll['Figure'].figure.canvas.mpl_connect('draw_event', self.DrawScrollFig_Func) self.TimeScroll['Figure'].setMaximumHeight(QtGui.QApplication.desktop().availableGeometry().height() / 6) self.TimeScroll['Ax'] = self.TimeScroll['Figure'].figure.add_subplot(111) self.TimeScroll['Ax'].set_axis_bgcolor('k') self.TimeScroll['Ax'].set_ylim(-1500, 1500) self.TimeScroll['Ax'].set_xticklabels([]) self.TimeScroll['Ax'].set_yticklabels([]) self.TimeScroll['Ax'].set_axis_off() self.TimeScroll['Plot'], = self.TimeScroll['Ax'].plot([], color=[.5, .5, .5]) self.TimeScroll['Figure'].figure.tight_layout() self.TimeScroll['Figure'].figure.canvas.draw() # add a vertical zoom slider self.TimeScroll['VZoom'] = QtGui.QSlider(QtCore.Qt.Vertical) self.TimeScroll['VZoom'].setMaximumHeight(QtGui.QApplication.desktop().availableGeometry().height() / 6) self.TimeScroll['VZoom'].setMinimum(100) self.TimeScroll['VZoom'].setMaximum(5000) self.TimeScroll['VZoom'].setValue(1000) self.TimeScroll['VZoom'].valueChanged.connect(self.VZoom_Func) hlay = QtGui.QHBoxLayout() hlay.addWidget(self.TimeScroll['VZoom']) hlay.addWidget(self.TimeScroll['Figure']) mainRightLay.addLayout(hlay) # add an horizontal zoom slider self.TimeScroll['HZoom'] = QtGui.QSlider(QtCore.Qt.Horizontal) self.TimeScroll['HZoom'].setRange(5, 5000) self.TimeScroll['HZoom'].setValue(500) self.TimeScroll['HZoom'].setSingleStep(5) self.TimeScroll['HZoom'].valueChanged.connect(self.HZoom_Func) self.TimeScroll['HZoomSpin'] = QtGui.QSpinBox() self.TimeScroll['HZoomSpin'].setMinimumWidth(80) self.TimeScroll['HZoomSpin'].setMaximumHeight(20) self.TimeScroll['HZoomSpin'].setRange(5, 5000) self.TimeScroll['HZoomSpin'].setValue(500) self.TimeScroll['HZoomSpin'].setSingleStep(10) self.TimeScroll['HZoomSpin'].valueChanged.connect(self.TimeScroll['HZoom'].setValue) self.TimeScroll['HZoom'].valueChanged.connect(self.TimeScroll['HZoomSpin'].setValue) hlay = QtGui.QHBoxLayout() hlay.addWidget(QtGui.QLabel('H Span ')) hlay.addWidget(self.TimeScroll['HZoomSpin']) hlay.addWidget(self.TimeScroll['HZoom']) mainRightLay.addLayout(hlay) # add a time slider self.TimeScroll['HScroll'] = QtGui.QSlider(QtCore.Qt.Horizontal) self.TimeScroll['HScroll'].setRange(0, 3000000) self.TimeScroll['HScroll'].setSingleStep(self.TimeScroll['HZoom'].value() / 10) self.TimeScroll['HScroll'].valueChanged.connect(self.HScroll_Func) self.TimeScroll['HSpin'] = QtGui.QSpinBox() self.TimeScroll['HSpin'].setRange(0, 3000000) self.TimeScroll['HSpin'].setMinimumWidth(80) self.TimeScroll['HSpin'].setMaximumHeight(20) self.TimeScroll['HSpin'].valueChanged.connect(self.TimeScroll['HScroll'].setValue) self.TimeScroll['HScroll'].valueChanged.connect(self.TimeScroll['HSpin'].setValue) hlay = QtGui.QHBoxLayout() hlay.addWidget(QtGui.QLabel('H Scroll')) hlay.addWidget(self.TimeScroll['HSpin']) hlay.addWidget(self.TimeScroll['HScroll']) mainRightLay.addLayout(hlay) mainRightLay.setMargin(0) mainRightLay.setSpacing(1) # add the widget to the main horizontal layout mainHLay.addLayout(mainRightLay) mainHLay.setMargin(1) self.ChanTab['MainWidget'].setLayout(mainHLay) # create a generic Msg box self.MsgBox = QtGui.QMessageBox() # if running in linux set a certain style for the buttons and widgets if sys.platform == 'linux2': QtGui.QApplication.setStyle(QtGui.QStyleFactory.create('Plastique')) # add the main tabbed figures widget to the main splitter split1.addWidget(self.MainFigTab) # add the splitter to the main layout self.MainLayout.addWidget(split1) # set the layout of the main widget #self.MainWidget.setLayout(self.MainLayout) # set the central widget of the application self.setCentralWidget(self.MainWidget) # finally show the object self.show() #__________________________________________________________________________ def SaveOverviewFig_proc(self): if self.H5FileLoaded: fname = str(QtGui.QFileDialog.getSaveFileName(directory=self.h5file.filename[0:-3] + '_sorted.png')) if fname: self.OverviewTab1['Figure'].figure.savefig(fname, dpi=300, facecolor='k') #__________________________________________________________________________ def AdjustPlots_proc(self): self.TimeScroll['Figure'].figure.tight_layout() self.TimeScroll['Figure'].figure.canvas.draw() self.ChanTab['WavesFigure'].figure.tight_layout() self.ChanTab['WavesFigure'].figure.canvas.draw() if len(self.ChanTab['FeaturesFig'].figure.axes) > 0: self.ChanTab['FeaturesFig'].figure.tight_layout() self.ChanTab['FeaturesFig'].figure.canvas.draw() if len(self.OverviewTab1['Figure'].figure.axes) > 0: self.OverviewTab1['Figure'].figure.tight_layout() self.OverviewTab1['Figure'].figure.canvas.draw() for k in self.ChanTab['UnitFigures']: self.ChanTab['UnitFigures'][k].figure.tight_layout() self.ChanTab['UnitFigures'][k].figure.canvas.draw() #__________________________________________________________________________ def SetWfPlotLim_proc(self): sender = self.sender() ax = self.ChanTab['WavesFigure'].figure.axes[0] lim = sender.value() ax.set_ylim(-lim, lim) self.ChanTab['WavesFigure'].figure.canvas.draw() #__________________________________________________________________________ def HScroll_Func(self): ''' This function gets triggered whenever the user moves the bottom scrollbar in the lower right. It helps to explore the raw waveforms''' if not self.ChanPlotted: return self.TimeScroll['Figure'].figure.canvas.restore_region(self.TimeScroll['bg']) self.ChanTab['WavesFigure'].figure.canvas.restore_region(self.ChanTab['WavesFigBG']) v = self.TimeScroll['HScroll'].value() h = self.TimeScroll['HZoom'].value() indx = np.flatnonzero(np.logical_and(self.CurTs >= v, self.CurTs < (v + h))) if any(indx): # ontain the timestamps corresponding to the indexes Ts = self.CurNode.TimeStamp[indx] # substract the first timestamp to have a 0 based indexing Ts = Ts - v # obtain the waveforms to plot Wf = self.CurNode.Waveforms[indx, :] # obtain the length of units to plot n = len(indx) # create an array of Nones to append nones = np.array(n * [None], ndmin=2).transpose() # append nones to the waveforms array and reshape it to a vector Wf = np.append(Wf, nones, axis=1).reshape((n * (self.WfSize + 1),)) # create a vector time, based on the sampling frequency, the # the number of points per spike and the timestamp Ts = np.tile(Ts, (self.WfSize, 1)).T + \ np.tile(np.linspace(0, self.End, self.WfSize), (n, 1)) Ts = np.append(Ts, nones, axis=1).reshape((n * (self.WfSize + 1),)) # set the plot data to the created arrays self.TimeScroll['Plot'].set_data(Ts, Wf) # set axes limits self.TimeScroll['Ax'].set_xlim(0, h) self.TimeScroll['Ax'].draw_artist(self.TimeScroll['Plot']) self.SampleWaveform.set_data(self.WaveformXax * n, Wf) self.ChanTab['WavesFigure'].figure.axes[0].draw_artist(self.SampleWaveform) self.TimeScroll['Figure'].figure.canvas.blit(self.TimeScroll['Figure'].figure.bbox) self.ChanTab['WavesFigure'].figure.canvas.blit(self.ChanTab['WavesFigure'].figure.axes[0].bbox) #__________________________________________________________________________ def VZoom_Func(self): v = self.TimeScroll['VZoom'].value() self.TimeScroll['Ax'].set_ylim(-v, v) self.TimeScroll['Figure'].figure.canvas.restore_region(self.TimeScroll['bg']) self.TimeScroll['Ax'].draw_artist(self.TimeScroll['Plot']) self.TimeScroll['Figure'].figure.canvas.blit(self.TimeScroll['Figure'].figure.bbox) #__________________________________________________________________________ def HZoom_Func(self): v = self.TimeScroll['HZoom'].value() self.TimeScroll['HScroll'].setSingleStep(v / 10) self.HScroll_Func() #__________________________________________________________________________ def DrawScrollFig_Func(self, event): fig = self.TimeScroll['Figure'].figure self.TimeScroll['bg'] = fig.canvas.copy_from_bbox(fig.axes[0].bbox) #__________________________________________________________________________ def LoadH5File(self, h5file=None): ''' Loads an h5 file that contains all the information about the units: waveforms and timestamps ''' # try to load an h5 file if settings.WorkingDir: d = settings.WorkingDir else: d = '' if not h5file: h5file = str(QtGui.QFileDialog.getOpenFileName(parent=self, caption='Select an H5 File', directory=d, filter='*.h5')) # in case there is not file selected if not h5file: return # set file loaded var = True if hasattr(self, 'H5FileLoaded') and self.H5FileLoaded: self.h5file.close() # try to open the file try: self.h5file = tables.open_file(str(h5file), mode='r+') except: self.MsgBox.setIcon(QtGui.QMessageBox.Warning) self.MsgBox.setText('There was a problem opening the H5 file') self.MsgBox.setWindowTitle('Warning') self.MsgBox.show() return # set file loaded var = True self.H5FileLoaded = True self.FilePath = os.path.split(h5file)[0] # REPAIR THE H5FILE STRUCTURE if self.h5file.__contains__('/Chans'): self.h5file.rename_node('/', 'Spikes', name='Chans') chanNodes = self.h5file.list_nodes('/Spikes') for k in chanNodes: where = '/Spikes/%s' % k._v_name for n in k: if re.search('Unit[0-9]{2}(?!_isMultiunit)', n._v_name) and n._c_classId != 'GROUP': unitName = re.search('Unit[0-9]{2}(?!_isMultiunit)', n._v_name).group() self.h5file.create_group(where=where, name=unitName + '_grp') self.h5file.moveNode(where=where, name=unitName, newparent='/Spikes/%s/%s' % (k._v_name, unitName + '_grp'), newname='Indx') self.h5file.renameNode(where=where, name=unitName + '_grp', newname=unitName) elif re.search('Unit[0-9]{2}_isMultiunit', n._v_name): self.h5file.remove_node(where=where, name=re.search('Unit[0-9]{2}_isMultiunit', n._v_name).group()) elif 'tmp' in n._v_name: self.h5file.remove_node(where=where, name=n._v_name, recursive=True) # CREATE 'isMultiunit' and 'isBursting' fields chanNodes = self.h5file.list_nodes('/Spikes') for k in chanNodes: node = '/Spikes/%s' % k._v_name for n in k: if 'Unit' in n._v_name and n._c_classId == 'GROUP': parent = node + '/' + n._v_name if not self.h5file.__contains__(parent + '/' + 'isMultiunit'): self.h5file.create_array(parent, 'isMultiunit', False) if not self.h5file.__contains__(parent + '/' + 'isBursting'): self.h5file.create_array(parent, 'isBursting', False) # RENAME the "Indexes" field to "Indx" chanNodes = self.h5file.list_nodes('/Spikes') for k in chanNodes: for n in k: if 'Unit' in n._v_name: nodeName = '/Spikes/%s/%s' % (k._v_name, n._v_name) for l in n: if l._v_name == 'Indexes': self.h5file.renameNode(nodeName, 'Indx', 'Indexes') # save changes to disk self.h5file.flush() # REPAIR UNIT NAMES ##### chanNodes = self.h5file.list_nodes('/Spikes') for chan in chanNodes: unitNames = [k for k in chan.__members__ if 'Unit' in k] unitNames.sort() for j, k in enumerate(unitNames): if k != 'Unit%02d' % j: self.h5file.renameNode('/Spikes/%s' % chan._v_name, name=k, newname='Unit%02d' % j) # save changes to disk self.h5file.flush() # clean the channel figures if something already plotted if hasattr(self, 'ChanPlotted') and self.ChanPlotted: self.ResetChannelTab_proc() self.PlotOverview() # clear the Log Browser and load Log info self.LogCombo.clear() self.LogTextBrowser.clear() if self.h5file.__contains__('/Log'): nodes = self.h5file.list_nodes('/Log') nodeNames = [k._v_name for k in nodes] self.LogCombo.addItems(nodeNames) # set window title = to filename self.setWindowTitle('Spike Sorter GUI ' + h5file) #__________________________________________________________________________ def PlotOverview(self): ''' plot an overview of 1000 spikes per channel. Also, fills the overview table with the general information about each channel''' # get the list of nodes inside the "Chans" group chanNodes = self.h5file.list_nodes('/Spikes') # get the number of the channels in the file self.ChansList = [int(re.search('(?<=Chan_)[0-9]{3}', k._v_name).group()) for k in chanNodes] # get the waveform size (number of points). X is for fast plotting self.WfSize = self.h5file.root.Header.WaveformSize.read() #x = range(self.WfSize) # add items to the channel selector in the toolbar self.ChanSelector.clear() self.ChanSelector.addItems(['%d' % k for k in self.ChansList]) # clean the overview figure self.OverviewTab1['Figure'].figure.clear() # helper to calculate the geometry of the axes figrows = np.ceil(len(chanNodes) / 10.0) # clear contents of the overview table self.OverviewTab2['OverviewTable'].clearContents() c = range(self.OverviewTab2['OverviewTable'].rowCount()) c.reverse() for k in c: self.OverviewTab2['OverviewTable'].removeRow(k) # iterate over the list of channels to add the information to the table for j, k in enumerate(chanNodes): # update overveiew table self.OverviewTab2['OverviewTable'].insertRow(j) self.OverviewTab2['OverviewTable'].setRowHeight(j, 20) # add an event count self.OverviewTab2['OverviewTable'].setItem(j, 0, QtGui.QTableWidgetItem(str(k.TimeStamp.nrows))) # add an "isTrash" checkbox check = QtGui.QCheckBox() check.setProperty('Data', self.ChansList[j]) check.stateChanged.connect(self.setTrash_proc) self.OverviewTab2['OverviewTable'].setCellWidget(j, 1, check) # add an "isMultinunit" checkbox isMultiunitCheck = QtGui.QCheckBox() isMultiunitCheck.setObjectName(k._v_name) isMultiunitCheck.stateChanged.connect(self.isMultiunit_proc) self.OverviewTab2['OverviewTable'].setCellWidget(j, 2, isMultiunitCheck) # add information about unsorted units if k.__contains__('Unsorted'): self.OverviewTab2['OverviewTable'].setItem(j, 4, QtGui.QTableWidgetItem(str(k.Unsorted.nrows))) # add information about valif waveforms if k.__contains__('ValidWFs'): self.OverviewTab2['OverviewTable'].setItem(j, 5, QtGui.QTableWidgetItem(str(k.ValidWFs.nrows))) # add info about each unit units = [m for m in k.__members__ if re.search('Unit[0-9]{2}', m)] # obtain unit names units.sort() if units: # in case there are units for m, n in enumerate(units): if self.OverviewTab2['OverviewTable'].columnCount() <= (m + 6): self.OverviewTab2['OverviewTable'].insertColumn(self.OverviewTab2['OverviewTable'].columnCount()) nCols = self.OverviewTab2['OverviewTable'].columnCount() self.OverviewTab2['OverviewTable'].setColumnWidth(nCols - 1, 65) self.OverviewTab2['OverviewTable'].setHorizontalHeaderItem(nCols - 1, QtGui.QTableWidgetItem('Unit%02d' % m)) self.OverviewTab2['OverviewTable'].setItem(j, m + 6, QtGui.QTableWidgetItem(str(k.__getattr__(n).Indx.nrows))) # Create the axes to plot the waveforms self.OverviewTab1['Figure'].figure.add_subplot(figrows, 10, j + 1) self.OverviewTab1['Figure'].figure.axes[j].set_yticks([], []) # eliminate the ticks to have more space self.OverviewTab1['Figure'].figure.axes[j].set_xticks([], []) # eliminate the ticks to have more space self.OverviewTab1['Figure'].figure.axes[j].set_axis_off() self.OverviewTab1['Figure'].figure.axes[j].set_title('Ch %d' % (self.ChansList[j]), fontsize=10, fontdict={'color': 'w'}) self.PlotChanOverview_proc(k, axes2Plot=self.OverviewTab1['Figure'].figure.axes[j]) # check the isTrash widgets and make the axes background yellow if k.__contains__('isTrash'): if k.isTrash.read(): check.setCheckState(2) self.OverviewTab1['Figure'].figure.axes[j].set_axis_bgcolor([.5, .5, .5]) if k.__contains__('isMultiunit'): if k.isMultiunit.read(): isMultiunitCheck.setCheckState(2) # set the names of the vertical headers self.OverviewTab2['OverviewTable'].setVerticalHeaderLabels(['Ch ' + str(k) for k in self.ChansList]) # set alternating row colors self.OverviewTab2['OverviewTable'].setAlternatingRowColors(True) # connect the clicks on this canvas with the channel select function self.OverviewTab1['Figure'].figure.canvas.mpl_connect('button_release_event', self.SelChannel) # tight layout and draw self.OverviewTab1['Figure'].figure.tight_layout() self.OverviewTab1['Figure'].figure.canvas.draw() # get the sampling frequency self.Sf = float(self.h5file.root.Header.TimeStamp_Res.read()) self.Step = self.WfSize + 1 # set boolean variable #__________________________________________________________________________ def PlotChanOverview_proc(self, node, axes2Plot): '''Helper function that plots the unsorted as well as the sorted events in a given axes on the overview figure''' # get the number of events to plot nEvents = self.OverviewNEventsSpin.value() Waveforms = node.Waveforms.read() # iterate over the members of a node for k in node: if not re.search('Unsorted|Unit[0-9]{2}', k._v_name): continue # read the indices first: if 'Unit' in k._v_name: if k.Indx.nrows >= nEvents: indx = k.Indx.read(start=0, stop=k.Indx.nrows, step=k.Indx.nrows / nEvents) else: indx = k.Indx.read() elif 'Unsorted' in k._v_name: if k.nrows >= nEvents: indx = k.read(start=0, stop=k.nrows, step=k.nrows / nEvents) else: indx = k.read() # obtain the waveforms Wf = Waveforms[indx, :] if not Wf.any(): continue # faster plotting strategy: # obtain the length of units to plot n = len(indx) # create an array of Nones to append nones = np.array(n * [None], ndmin=2).T # append nones to the waveforms array and reshape it to a vector Wf = np.append(Wf, nones, axis=1).reshape((n * (self.WfSize + 1),)) # create the x axis Ts = range(self.WfSize) Ts.append(None) # choose the color and the zorder according to the type of unit if k._v_name == 'Unsorted': color = 'w' zorder = 1 elif 'Unit' in k._v_name: # get the unit number zorder = int(re.search('[0-9]{2}', k._v_name).group()) color = self.UnitColors[zorder, :] zorder = 100 - zorder # get the list of plots in the particular axes l = [l for l in axes2Plot.lines if str(l.get_label()) == k._v_name] # if a plot with a label equal to the name of the unit exist, the update the data if len(l) > 0: l[0].set_data(Ts * n, Wf) # if not create one else: axes2Plot.plot(Ts * n, Wf, color=color, rasterized=True, alpha=0.5, label=k._v_name, zorder=zorder) # set the limits of the axes axes2Plot.set_ylim(-self.OverviewYLimsSpin.value(), self.OverviewYLimsSpin.value()) # add a small text box with the event count bbox_props = dict(boxstyle='round', fc='0.75', ec='0.25', alpha=0.8) axes2Plot.text(0.5, 0, 'Count: %d' % node.TimeStamp.nrows, transform=axes2Plot.transAxes, color='k', bbox=bbox_props, size=10, ha='center') #__________________________________________________________________________ def ChangeOverviewYLim_Proc(self): if not self.H5FileLoaded: return lim = self.OverviewYLimsSpin.value() for k in self.OverviewTab1['Figure'].figure.axes: k.set_ylim(-lim, lim) self.OverviewTab1['Figure'].figure.canvas.draw() #__________________________________________________________________________ def PlotChanProc(self): # exit if ther is no H5 file loaded if not self.H5FileLoaded: return # clean the channels tab self.ResetChannelTab_proc() # reset Units list self.UnitsList = [] #pdb.set_trace() # load waveforms for a specific channel self.CurChan = int(self.ChanSelector.currentText()) #nspikes = self.NSpikesSlider.value() self.CurNodeName = '/Spikes/Chan_%03d' % self.CurChan self.CurNode = self.h5file.get_node(self.CurNodeName) self.CurWaveforms = self.CurNode.Waveforms.read() self.CurTs = self.CurNode.TimeStamp.read() self.TimeScroll['HScroll'].setMaximum(int(self.CurTs[-1])) self.TimeScroll['HSpin'].setMaximum(int(self.CurTs[-1])) self.unitNodes = [k for k in self.h5file.list_nodes(self.CurNodeName) if re.search('Unit[0-9]{2}', k._v_name)] # get the indices of the unsorted. If there are no, create one if not self.CurNode.__contains__('Unsorted'): self.Unsorted = np.arange(len(self.CurTs)) self.h5file.create_array(self.CurNodeName, 'Unsorted', self.Unsorted) else: self.Unsorted = self.h5file.get_node(self.CurNodeName, 'Unsorted').read() #set the unit names in the combo box self.What2Plot.clear() self.What2Plot.addItems(['All Waveforms', 'Sorted', 'Unsorted']) if self.unitNodes: self.What2Plot.addItems([k._v_name for k in self.unitNodes]) # set the axis limits to apropriately view the unit v = self.WaveAxYLim_Spin.value() self.ChanTab['WavesFigure'].figure.axes[0].set_ylim(-v, v) # get the waveform size for this specific waveform self.WfSize = self.h5file.root.Header.WaveformSize.read() # cheack whether to plot raw waveforms ''' if self.PlotWaveformsCheck.checkState() == 2: if self.CurWaveforms.shape[1] < 10000: self.Waveforms2Plot = self.CurWaveforms else: indx = np.int32(np.linspace(0,self.CurWaveforms.shape[0]-1,10000)) self.Waveforms2Plot = self.CurWaveforms[indx,:] for k in range(self.Waveforms2Plot.shape[0]): self.Waveforms.set_data(range(self.WfSize), self.Waveforms2Plot[k,:]) self.ChanTab['WavesFigure'].figure.axes[0].draw_artist(self.Waveforms) self.ChanTab['WavesFigure'].figure.canvas.blit(self.ChanTab['WavesFigure'].figure.axes[0].bbox)''' # grab background from the Waveforms Figure to make animations self.ChanTab['WavesFigBG'] = self.ChanTab['WavesFigure'].figure.canvas.copy_from_bbox(self.ChanTab['WavesFigure'].figure.axes[0].bbox) self.MainFigTab.setTabText(2, 'Chan %02d' % self.CurChan) # calculate PCA pc = PCA(self.CurWaveforms) # put data in a KDTree to easily calculate distance with the cursor self.XYData = cKDTree(pc.Y[:, 0:2], 1000) self.ChanTab['PCA'] = pc.Y # set the internal variable to true self.ChanPlotted = True # copy the number of events in the channel into a label to see if the user # wants to decimate or plot them all self.nPtsLabel.setText(str(self.CurTs.size)) # read the plotting parameters in the "Chan Tools" tab to plot # the selected feature self.PlotFeatures() if self.ChanTab['UnitTabsWidget'].count() > 0: self.ChanTab['UnitTabsWidget'].setCurrentIndex(0) self.CurUnitName = str(self.ChanTab['UnitTabsWidget'].tabText(0)) self.CurUnit = int(re.search('(?<=Unit)[0-9]{2}', self.CurUnitName).group()) self.WaveformXax = range(self.WfSize) self.WaveformXax.append(None) self.End = 1000 * self.WfSize / self.Sf # save h5file changes to disk self.h5file.flush() #__________________________________________________________________________ def setTrash_proc(self): sender = self.sender() try: chan = sender.property('Data').toPyObject() except: chan = sender.property('Data') nodeName = '/Spikes/Chan_%03d' % chan indx = self.ChansList.index(chan) if self.h5file.get_node(nodeName).__contains__('isTrash'): self.h5file.remove_node(nodeName, 'isTrash') if sender.checkState() in [1, 2]: self.h5file.create_array(nodeName, 'isTrash', True) self.OverviewTab1['Figure'].figure.axes[indx].set_axis_bgcolor('y') elif sender.checkState() == 0: self.h5file.create_array(nodeName, 'isTrash', False) self.OverviewTab1['Figure'].figure.axes[indx].set_axis_bgcolor('w') # save changes to disk self.h5file.flush() #__________________________________________________________________________ def isMultiunit_proc(self): sender = self.sender() nodeName = '/Spikes/%s' % sender.objectName() if self.h5file.get_node(nodeName).__contains__('isMultiunit'): self.h5file.remove_node(nodeName, 'isMultiunit') if sender.checkState() in [1, 2]: self.h5file.create_array(nodeName, 'isMultiunit', True) elif sender.checkState() == 0: self.h5file.create_array(nodeName, 'isMultiunit', False) # save changes to disk self.h5file.flush() #__________________________________________________________________________ def TrashChans_proc(self): '''Utility function to mark the channels with fewer than a defined number of units''' # check whether an h5file has been loaded if not self.H5FileLoaded: return # obtain parameters n = self.MarkTrashSpin.value() chans = self.h5file.list_nodes('/Spikes') # iterate over nodes in h5file; if fewer than n mark as trash for l, k in enumerate(chans): j = int(re.search('(?<=Chan_)[0-9]{3}', k._v_name).group()) if k.TimeStamp.nrows < n: self.OverviewTab1['Figure'].figure.axes[l].set_axis_bgcolor('y') self.OverviewTab2['OverviewTable'].cellWidget(l, 1).setChecked(True) if self.h5file.get_node('/Spikes', 'Chan_%03d' % j).__contains__('isTrash'): self.h5file.remove_node('/Spikes/Chan_%03d' % j, 'isTrash') self.h5file.create_array('/Spikes/Chan_%03d' % j, 'isTrash', True) else: self.OverviewTab1['Figure'].figure.axes[l].set_axis_bgcolor('w') self.OverviewTab2['OverviewTable'].cellWidget(l, 1).setChecked(False) if self.h5file.get_node('/Spikes', 'Chan_%03d' % j).__contains__('isTrash'): self.h5file.remove_node('/Spikes/Chan_%03d' % j, 'isTrash') self.h5file.create_array('/Spikes/Chan_%03d' % j, 'isTrash', False) # save changes to disk self.h5file.flush() #update the overview self.OverviewTab1['Figure'].figure.canvas.draw() #__________________________________________________________________________ def DeleteTrashChans_proc(self): # check whether an h5file has been loaded if not self.H5FileLoaded: return chans = self.h5file.list_nodes('/Spikes') chans.reverse() n = range(len(chans)) n.reverse() delchans = [] for j, k in zip(n, chans): state = self.OverviewTab2['OverviewTable'].cellWidget(j, 1).checkState() if state == 2: delchans.append(k._v_name) self.h5file.remove_node('/Spikes', k._v_name, recursive=True) if len(delchans) > 0: self.AddLog('Deleted channels: ' + str(delchans)) self.PlotOverview() #__________________________________________________________________________ def ResetChan_proc(self): ''' check whether an h5file has been loaded ''' if not self.H5FileLoaded or not self.ChanPlotted: return for k in self.h5file.list_nodes(self.CurNodeName): if k._v_name not in ['Waveforms', 'TimeStamp', 'isTrash']: self.h5file.remove_node(self.CurNodeName, k._v_name, recursive=True) self.PlotChanProc() self.AddLog('%s resetted' % self.CurNodeName) #__________________________________________________________________________ def AddLog(self, message): ''' add log to to keep a history of changes to the file ''' if not self.H5FileLoaded: return if not self.h5file.__contains__('/Log'): self.h5file.create_group('/', 'Log', 'History of changes') name = 'Entry_%s_%s_%s_%s_%s_%s' % datetime.datetime.now().timetuple()[0:6] self.h5file.create_array('/Log', name, message) # save changes to disk self.h5file.flush() #add the item to the log browser self.LogCombo.addItem(name) #__________________________________________________________________________ def SetLogText_proc(self): if self.LogCombo.currentIndex == -1: return node = str(self.LogCombo.currentText()) if node: log = self.h5file.get_node('/Log', node).read() self.LogTextBrowser.setText(log) #__________________________________________________________________________ def CloseFile(self): ''' close the h5 file''' if not self.H5FileLoaded: return self.h5file.flush() self.h5file.close() self.H5FileLoaded = False print 'h5 File closed' #__________________________________________________________________________ def SelChannel(self, event): ''' selects a channel when axes are clicked''' if event.inaxes: chan = int(re.search('(?<=Ch )[0-9]{1,3}', event.inaxes.get_title()).group()) c = [int(self.ChanSelector.itemText(k)) for k in range(self.ChanSelector.count())].index(chan) self.ChanSelector.setCurrentIndex(c) #__________________________________________________________________________ def TableRowChanged_proc(self, sel): self.ChanSelector.setCurrentIndex(sel) #__________________________________________________________________________ def Settings(self): ''' edit paths''' if settings.edit() == 1: self.WorkingDir = settings.WorkingDir #__________________________________________________________________________ def AutocorrOpts(self): if autocorropts.edit() == 1: pass #__________________________________________________________________________ def About(self): ''' opens a small dialog with information about the software''' self.AboutMsg.show() #__________________________________________________________________________ def NearestPoint(self, event): ''' when right button clicked over the features window, calculates the closest point and plots its corresponding waveform''' if event.button == 3 and event.inaxes and self.ChanTab['FeaturesFigNtb'].mode == '': featuresax = self.ChanTab['FeaturesFig'].figure.axes[0] wavesax = self.ChanTab['WavesFigure'].figure.axes[0] if self.PlotUnitCounter >= self.NUnitsSpin.value(): self.ChanTab['WavesFigure'].figure.canvas.restore_region(self.ChanTab['WavesFigBG']) self.PlotUnitCounter = 0 for k in self.ChanTab['FeaturesFigBG']: self.ChanTab['FeaturesFig'].figure.canvas.restore_region(k) _, res = self.XYData.query([event.xdata, event.ydata], 1) self.cursor.set_data(self.XYData.data[res, 0], self.XYData.data[res, 1]) self.SampleWaveform.set_data(range(self.WfSize), self.CurWaveforms[self.dataIndx[res], :]) featuresax.draw_artist(self.cursor) wavesax.draw_artist(self.SampleWaveform) self.ChanTab['FeaturesFig'].figure.canvas.blit(featuresax.bbox) self.ChanTab['WavesFigure'].figure.canvas.blit(wavesax.bbox) self.PlotUnitCounter += 1 #__________________________________________________________________________ def draw_callback(self, event): ''' any draw callback triggers the capture of the figure background for using it in the animations ''' if not self.ChanPlotted: return if event.canvas == self.ChanTab['FeaturesFig'].figure.canvas: bg = [] for k in self.ChanTab['FeaturesFig'].figure.axes: bg.append(self.ChanTab['FeaturesFig'].figure.canvas.copy_from_bbox(k.bbox)) self.ChanTab['FeaturesFigBG'] = bg elif event.canvas == self.ChanTab['WavesFigure'].figure.canvas: self.ChanTab['WavesFigBG'] = self.ChanTab['WavesFigure'].figure.canvas.copy_from_bbox(self.ChanTab['WavesFigure'].figure.axes[0].bbox) #__________________________________________________________________________ def PlotFeatures(self): ''' determines what 2 plot based on the user choices''' # obtain labels and return if are the same xlabel = self.XPlot.currentText() ylabel = self.YPlot.currentText() if xlabel == ylabel: return curchan = int(self.ChanSelector.currentText()) if self.PlotValidsOnlyCheck.checkState() == 2 and \ self.CurNode.__contains__('ValidWFs'): print 'you selected to plot only the valid WFs' What2Plot = str(self.What2Plot.currentText()) # string containing what to plot self.CurNodeName = '/Spikes/Chan_%03d' % curchan #unitNodes = [k for k in self.h5file.list_nodes(self.CurNodeName) if re.search('Unit[0-9]{2}', k._v_name)] if What2Plot in ['All Waveforms', 'Sorted']: self.dataIndx = range(self.CurTs.size) pc = self.ChanTab['PCA'] elif What2Plot == 'Unsorted': self.dataIndx = self.h5file.get_node(self.CurNodeName, 'Unsorted').read() pc = PCA(self.CurWaveforms[self.dataIndx, :]) pc = pc.Y elif re.search('Unit', What2Plot): self.CurUnitName = What2Plot self.dataIndx = self.h5file.get_node(self.CurNodeName, What2Plot).Indx.read() pc = PCA(self.CurWaveforms[self.dataIndx, :]) pc = pc.Y # save what is the feature self.CurFeaturePlot = What2Plot # get the choice for the x axis if xlabel == 'PCA1': x = pc[:, 0] elif xlabel == 'PCA2': x = pc[:, 1] elif xlabel == 'PCA3': x = pc[:, 2] elif xlabel == 'Slice1': x = self.CurWaveforms[self.dataIndx, self.SliceSpBx1.value()] x = x / 100.0 elif xlabel == 'Slice2': x = self.CurWaveforms[self.dataIndx, self.SliceSpBx2.value()] x = x / 100.0 elif xlabel == 'Energy': x = np.sum(np.power(self.CurWaveforms[self.dataIndx, :], 2), axis=1) x = x / 1000000.0 elif xlabel == 'Peak': x = self.CurWaveforms[self.dataIndx, :].max(axis=1) x = x / 100.0 elif xlabel == 'Valley': x = self.CurWaveforms[self.dataIndx, :].min(axis=1) x = x / 100.0 elif xlabel == 'Peak Pt': x = self.CurWaveforms[self.dataIndx, :].argmax(axis=1) elif xlabel == 'Valley Pt': x = self.CurWaveforms[self.dataIndx, :].argmin(axis=1) elif xlabel == 'Pk2Pk Amp': x = self.CurWaveforms[self.dataIndx, :].max(axis=1) - self.CurWaveforms[self.dataIndx, :].min(axis=1) x = x / 100.0 elif xlabel == 'Time': x = self.CurTs[self.dataIndx] x = x / 60000.0 # get the choice for the y axis if ylabel == 'PCA1': y = pc[:, 0] elif ylabel == 'PCA2': y = pc[:, 1] elif ylabel == 'PCA3': y = pc[:, 2] elif ylabel == 'Slice1': y = self.CurWaveforms[self.dataIndx, self.SliceSpBx1.value()] y = y / 100.0 elif ylabel == 'Slice2': y = self.CurWaveforms[self.dataIndx, self.SliceSpBx2.value()] y = y / 100.0 elif ylabel == 'Energy': y = np.sum(np.power(self.CurWaveforms[self.dataIndx, :], 2), axis=1) y = y / 1000000.0 elif ylabel == 'Peak': y = self.CurWaveforms[self.dataIndx, :].max(axis=1) y = y / 100.0 elif ylabel == 'Valley': y = self.CurWaveforms[self.dataIndx, :].min(axis=1) y = y / 100.0 elif ylabel == 'Peak Pt': y = self.CurWaveforms[self.dataIndx, :].argmax(axis=1) elif ylabel == 'Valley Pt': y = self.CurWaveforms[self.dataIndx, :].argmin(axis=1) elif ylabel == 'Pk2Pk Amp': y = self.CurWaveforms[self.dataIndx, :].max(axis=1) - self.CurWaveforms[self.dataIndx, :].min(axis=1) y = y / 100.0 elif ylabel == 'Time': y = self.CurTs[self.dataIndx] y = y / 60000.0 naxes = len(self.ChanTab['FeaturesFig'].figure.axes) #nspikes = self.NSpikesSlider.value() title = '%s: %s vs %s' % (What2Plot, xlabel, ylabel) # obtain the axis limits if we are plotting the same variables same_limits = False if naxes > 0 and \ self.ChanTab['FeaturesFig'].figure.axes[0].get_title() == title: same_limits = True xlim = self.ChanTab['FeaturesFig'].figure.axes[0].get_xlim() ylim = self.ChanTab['FeaturesFig'].figure.axes[0].get_ylim() # plot only on one axes if self.PlotDensityCheck.checkState() == 0: if naxes == 0: ax1 = self.ChanTab['FeaturesFig'].figure.add_subplot(111) ax1.set_axis_bgcolor('k') elif naxes == 1: ax1 = self.ChanTab['FeaturesFig'].figure.axes[0] ax1.cla() ax1.set_axis_bgcolor('k') elif naxes >= 2: self.ChanTab['FeaturesFig'].figure.clear() ax1 = self.ChanTab['FeaturesFig'].figure.add_subplot(111) ax1.set_axis_bgcolor('k') # create 2 subplots to host the density elif self.PlotDensityCheck.checkState() == 2: if naxes == 0: ax1 = self.ChanTab['FeaturesFig'].figure.add_subplot(121) ax2 = self.ChanTab['FeaturesFig'].figure.add_subplot(122, sharex=ax1, sharey=ax1) elif naxes == 1: self.ChanTab['FeaturesFig'].figure.clear() ax1 = self.ChanTab['FeaturesFig'].figure.add_subplot(121) ax2 = self.ChanTab['FeaturesFig'].figure.add_subplot(122, sharex=ax1, sharey=ax1) elif naxes == 2: ax1 = self.ChanTab['FeaturesFig'].figure.axes[0] ax2 = self.ChanTab['FeaturesFig'].figure.axes[1] ax1.cla() ax2.cla() ax2.set_axis_bgcolor('k') # create and plot a 2d histogram # setup the axes ax1.set_title(title, fontdict={'color': 'w'}) ax1.tick_params(color=[.5, .5, .5]) for k in ax1.spines.values(): k.set_edgecolor([.5, .5, .5]) ax1.set_xticklabels([]) ax1.set_yticklabels([]) ax1.set_axis_bgcolor('k') self.cursor, = ax1.plot([], 's', mfc='none', ms=6, mec='r', animated=True, label='sample') # iterate over the members of that channel if What2Plot == 'All Waveforms': nodes = self.h5file.list_nodes(self.CurNodeName) for leaf in nodes: if leaf._v_name == 'Unsorted': # select only some indices to plot if leaf.nrows > self.nPtsSpin.value(): indx = leaf.read(0, leaf.nrows, leaf.nrows / self.nPtsSpin.value()) else: indx = leaf.read() # plot unsorted ax1.plot(x[indx], y[indx], ',', color=[.5, .5, .5], label='data_Unsorted') unit = re.search('(?<=Unit)[0-9]{2}', leaf._v_name) if unit: # select some units to plot if leaf.Indx.nrows > self.nPtsSpin.value(): indx = leaf.Indx.read(0, leaf.Indx.nrows, leaf.Indx.nrows / self.nPtsSpin.value()) else: indx = leaf.Indx.read() ax1.plot(x[indx], y[indx], ',', label='data_' + leaf._v_name, rasterized=True, color=self.UnitColors[int(unit.group()), :], mec=self.UnitColors[int(unit.group()), :]) # add unit to the tab widget self.UnitsTable_AddUnit(leaf._v_name) elif What2Plot == 'Sorted': nodes = self.h5file.list_nodes(self.CurNodeName) for leaf in nodes: unit = re.search('(?<=Unit)[0-9]{2}', leaf._v_name) if unit: # select some units to plot if leaf.Indx.nrows > self.nPtsSpin.value(): indx = leaf.Indx.read(0, leaf.Indx.nrows, leaf.Indx.nrows / self.nPtsSpin.value()) else: indx = leaf.Indx.read() ax1.plot(x[indx, :], y[indx, :], ',', label='data_' + leaf._v_name, rasterized=True, color=self.UnitColors[int(unit.group()), :], mec=self.UnitColors[int(unit.group()), :], zorder=10) # add unit to the tab widget self.UnitsTable_AddUnit(leaf._v_name) # to plot the unsorted channels elif What2Plot == 'Unsorted': lx = len(x) # select some units to plot if lx > self.nPtsSpin.value(): indx = range(0, lx, lx / self.nPtsSpin.value()) else: indx = range(lx) ax1.plot(x[indx], y[indx], ',', color=[.5, .5, .5], label='data_Unsorted', rasterized=True, zorder=10) # plot a specific unit elif re.search('Unit', What2Plot): unit = re.search('(?<=Unit)[0-9]{0,2}', What2Plot).group() lx = len(x) # select some units to plot if lx > self.nPtsSpin.value(): indx = range(0, lx, lx / self.nPtsSpin.value()) else: indx = range(lx) ax1.plot(x[indx], y[indx], ',', label='data_' + What2Plot, rasterized=True, color=self.UnitColors[int(unit), :], mec=self.UnitColors[int(unit), :], zorder=10) # add unit to the tab widget self.UnitsTable_AddUnit(What2Plot) if same_limits: ax1.set_ylim(ylim) ax1.set_xlim(xlim) else: ax1.relim() ax1.autoscale_view(True, True, True) # vertical and horizontal lines @ x and y = 0 ax1.axvline(0, color=[.5, .5, .5], zorder=0) ax1.axhline(0, color=[.5, .5, .5], zorder=0) # 60 minute line if xlabel == 'Time': ax1.axvline(60, color='gray', zorder=0) # create KDTree objet from the selected data for fast search self.XYData = cKDTree(np.array([x, y]).transpose()) # connect figure to the motion notify function if not ax1.callbacks.callbacks or not hasattr(self, 'axZoomCID'): self.axZoomCID = ax1.callbacks.connect('ylim_changed', self.AxesZoom_proc) # connect figure to the motion notify function if not hasattr(self, 'motionCID'): self.motionCID = self.ChanTab['FeaturesFig'].figure.canvas.mpl_connect('motion_notify_event', self.NearestPoint) # connect figure to the draw function if not hasattr(self, 'drawCID'): self.drawCID = self.ChanTab['FeaturesFig'].figure.canvas.mpl_connect('draw_event', self.draw_callback) # plot density if checked if self.PlotDensityCheck.checkState() == 2: self.ReplotDensity_proc() # set tight layout and redraw figure self.ChanTab['FeaturesFig'].figure.tight_layout() self.ChanTab['FeaturesFig'].figure.canvas.draw() #__________________________________________________________________________ def Plot3DFeatures(self): # obtain labels and return if are the same xlabel = self.XPlot.currentText() ylabel = self.YPlot.currentText() zlabel = self.ZPlot.currentText() if xlabel == ylabel or xlabel == zlabel or ylabel == zlabel: return curchan = int(self.ChanSelector.currentText()) if self.PlotValidsOnlyCheck.checkState() and self.CurNode.__contains__('ValidWFs'): print 'you selected to plot only the valid WFs' What2Plot = str(self.What2Plot.currentText()) # string containing what to plot self.CurNodeName = '/Spikes/Chan_%03d' % curchan if What2Plot == 'All Waveforms': self.dataIndx = range(self.CurTs.size) pc = self.ChanTab['PCA'] elif What2Plot == 'Unsorted': self.dataIndx = self.h5file.get_node(self.CurNodeName, 'Unsorted').read() pc = PCA(self.CurWaveforms[self.dataIndx, :]) pc = pc.Y elif re.search('Unit', What2Plot): self.CurUnitName = What2Plot self.dataIndx = self.h5file.get_node(self.CurNodeName, What2Plot).Indx.read() pc = PCA(self.CurWaveforms[self.dataIndx, :]) pc = pc.Y elif What2Plot == 'Sorted': return # save what is the feature self.CurFeaturePlot = What2Plot # get the choice for the x axis if xlabel == 'PCA1': x = pc[:, 0] elif xlabel == 'PCA2': x = pc[:, 1] elif xlabel == 'PCA3': x = pc[:, 2] elif xlabel == 'Slice1': x = self.CurWaveforms[self.dataIndx, self.SliceSpBx1.value()] / 100.0 x = x / 100.0 elif xlabel == 'Slice2': x = self.CurWaveforms[self.dataIndx, self.SliceSpBx2.value()] / 100.0 x = x / 100.0 elif xlabel == 'Energy': x = np.sum(np.power(self.CurWaveforms[self.dataIndx, :], 2), axis=1) x = x / 1000000.0 elif xlabel == 'Peak': x = self.CurWaveforms[self.dataIndx, :].max(axis=1) x = x / 100.0 elif xlabel == 'Valley': x = self.CurWaveforms[self.dataIndx, :].min(axis=1) x = x / 100.0 elif xlabel == 'Pk2Pk Amp': x = self.CurWaveforms[self.dataIndx, :].max(axis=1) - self.CurWaveforms[self.dataIndx, :].min(axis=1) x = x / 100.0 elif xlabel == 'Time': x = self.CurTs[self.dataIndx] x = x / 60000.0 # get the choice for the y axis if ylabel == 'PCA1': y = pc[:, 0] elif ylabel == 'PCA2': y = pc[:, 1] elif ylabel == 'PCA3': y = pc[:, 2] elif ylabel == 'Slice1': y = self.CurWaveforms[self.dataIndx, self.SliceSpBx1.value()] / 100.0 y = y / 100.0 elif ylabel == 'Slice2': y = self.CurWaveforms[self.dataIndx, self.SliceSpBx2.value()] / 100.0 y = y / 100.0 elif ylabel == 'Energy': y = np.sum(np.power(self.CurWaveforms[self.dataIndx, :], 2), axis=1) y = y / 1000000.0 elif ylabel == 'Peak': y = self.CurWaveforms[self.dataIndx, :].max(axis=1) y = y / 100.0 elif ylabel == 'Valley': y = self.CurWaveforms[self.dataIndx, :].min(axis=1) y = y / 100.0 elif ylabel == 'Pk2Pk Amp': y = self.CurWaveforms[self.dataIndx, :].max(axis=1) - self.CurWaveforms[self.dataIndx, :].min(axis=1) y = y / 100.0 elif ylabel == 'Time': y = self.CurTs[self.dataIndx] y = y / 60000.0 # get the choice for the z axis if zlabel == 'PCA1': z = pc[:, 0] elif zlabel == 'PCA2': z = pc[:, 1] elif zlabel == 'PCA3': z = pc[:, 2] elif zlabel == 'Slice1': z = self.CurWaveforms[self.dataIndx, self.SliceSpBx1.value()] / 100.0 z = z / 100.0 elif zlabel == 'Slice2': z = self.CurWaveforms[self.dataIndx, self.SliceSpBx2.value()] / 100.0 z = z / 100.0 elif zlabel == 'Energy': z = np.sum(np.power(self.CurWaveforms[self.dataIndx, :], 2), axis=1) z = z / 1000000.0 elif zlabel == 'Peak': z = self.CurWaveforms[self.dataIndx, :].max(axis=1) z = z / 100.0 elif zlabel == 'Valley': z = self.CurWaveforms[self.dataIndx, :].min(axis=1) z = z / 100.0 elif zlabel == 'Pk2Pk Amp': z = self.CurWaveforms[self.dataIndx, :].max(axis=1) - self.CurWaveforms[self.dataIndx, :].min(axis=1) z = z / 100.0 elif zlabel == 'Time': z = self.CurTs[self.dataIndx] z = z / 60000.0 if What2Plot == 'All Waveforms' and self.CurNode.__contains__('ValidWFs'): valid = self.CurNode.ValidWFs.read() x = x[valid] y = y[valid] z = z[valid] items = self.Widget3d.items for i in items: self.Widget3d.removeItem(i) grid = gl.GLGridItem() self.Widget3d.addItem(grid) if zlabel != 'Density': handle = gl.GLScatterPlotItem(pos=np.array([x, y, z]).T, size=np.ones(x.size), color=(1.0, 0.0, 0.0, 1.0), pxMode=True) self.Widget3d.addItem(handle) else: #pass # obtain axes and first axes limits ax1 = self.ChanTab['FeaturesFig'].figure.axes[0] #xlim = ax1.get_xlim() #ylim = ax1.get_ylim() # search for the unsorted or the units plots to obatin data xpts = [] ypts = [] for k in ax1.get_children(): if re.search('Unsorted|Unit', str(k.get_label())): data = k.get_data() xpts.extend(data[0]) ypts.extend(data[1]) xypoints = np.array([xpts, ypts]).T # check wich points are inside the axes verts = ax1.viewLim.corners() verts[2] = ax1.viewLim.corners()[3] verts[3] = ax1.viewLim.corners()[2] inpoly = Path(verts).contains_points(xypoints) # create a 2d histogram of the data and scale it logaritmically h, _, _ = np.histogram2d(xypoints[inpoly, 0], xypoints[inpoly, 1], bins=self.PlotDensityBins.value(), normed=False) h[h <= 0] = 1 h = np.log10(h) x, y = h.shape x, y = np.arange(x), np.arange(y) handle = gl.GLSurfacePlotItem(x, y, z=10 * h / h.max(), shader='heightColor') handle.translate(-x.size / 2.0, -y.size / 2.0, 0.0) handle.scale(1, 1, 2) self.Widget3d.addItem(handle) #__________________________________________________________________________ def ValidateWFs_proc(self): ''' obtains the coordinates of the current feature axis, and uses it to determine wich points lay inside it. It also saves the data to the h5file''' # exits if there is no h5 file loaded or channel plotted if not self.H5FileLoaded or not self.ChanPlotted: return # get axes handle and limits ax = self.ChanTab['FeaturesFig'].figure.axes[0] xlim = ax.get_xlim() ylim = ax.get_ylim() # obtain coordinates of the current axes and uses that to build a polygon xyverts = [[xlim[0], ylim[0]], [xlim[0], ylim[1]], [xlim[1], ylim[1]], [xlim[1], ylim[0]]] # obtain the indices of the waveforms inside the polygon p = Path(xyverts).contains_points(self.XYData.data) # in case no points were inside the axes if len(p) == 0: self.MsgBox.setIcon(QtGui.QMessageBox.Warning) self.MsgBox.setText('There were no selected points') self.MsgBox.setwindowTitle('Warning') self.MsgBox.show() return self.ValidWFs = np.flatnonzero(p) self.InvalidWFs = np.flatnonzero(~p) # remove the 'ValidWFs' field if it already exists if self.h5file.get_node(self.CurNodeName).__contains__('ValidWFs'): self.h5file.remove_node(self.CurNodeName, 'ValidWFs') # remove the 'InvalidWFs' field if it already exists if self.h5file.get_node(self.CurNodeName).__contains__('InvalidWFs'): self.h5file.remove_node(self.CurNodeName, 'InvalidWFs') # save the ValidWFs indices to the h5file self.h5file.create_array(self.CurNodeName, 'ValidWFs', self.ValidWFs) # save the InvalidWFs indices to the h5file self.h5file.create_array(self.CurNodeName, 'InvalidWFs', self.InvalidWFs) # save changes to disk self.h5file.flush() # update the information on the overview table row = self.ChanSelector.currentIndex() item = QtGui.QTableWidgetItem(str(self.ValidWFs.size)) self.OverviewTab2['OverviewTable'].takeItem(row, 5) self.OverviewTab2['OverviewTable'].setItem(row, 5, item) #__________________________________________________________________________ def ReplotDensity_proc(self): ''' replot density using all the resolution only to the visible points''' # check whether the number of axes in the figure if len(self.ChanTab['FeaturesFig'].figure.axes) != 2: return # obtain axes and first axes limits ax1 = self.ChanTab['FeaturesFig'].figure.axes[0] ax2 = self.ChanTab['FeaturesFig'].figure.axes[1] xlim = ax1.get_xlim() ylim = ax1.get_ylim() # search for the unsorted or the units plots to obatin data xpts = [] ypts = [] for k in ax1.get_children(): if re.search('Unsorted|Unit', str(k.get_label())): data = k.get_data() xpts.extend(data[0]) ypts.extend(data[1]) xypoints = np.array([xpts, ypts]).T # check wich points are inside the axes verts = ax1.viewLim.corners() verts[2] = ax1.viewLim.corners()[3] verts[3] = ax1.viewLim.corners()[2] inpoly = Path(verts).contains_points(xypoints) # create a 2d histogram of the data and scale it logaritmically h, xd, yd = np.histogram2d(xypoints[inpoly, 0], xypoints[inpoly, 1], bins=self.PlotDensityBins.value(), normed=False) h[h <= 0] = 1 h = np.log10(h) # clean axes No2 and plot the 2d histogram ax2.cla() cmap = helper_widgets.colormaps[settings.DensityCM] ax2.pcolormesh(xd, yd, h.transpose(), cmap=cmap) # set axis limits ax2.set_xlim(xlim) ax2.set_ylim(ylim) # remove tick labels ax1.set_xticklabels([]) ax1.set_yticklabels([]) ax2.set_xticklabels([]) ax2.set_yticklabels([]) # create vertical and horizontal lines at 0 ax2.axvline(0, color=[.5, .5, .5]) ax2.axhline(0, color=[.5, .5, .5]) # redraw the figure self.ChanTab['FeaturesFig'].figure.canvas.draw() #__________________________________________________________________________ def AxesZoom_proc(self, ax): xpts = [] ypts = [] for k in ax.get_children(): if re.search('Unsorted|Unit', str(k.get_label())): data = k.get_data() xpts.extend(data[0]) ypts.extend(data[1]) #xypoints = np.array([xpts,ypts]).transpose() # check wich points are inside the axes verts = ax.viewLim.corners() verts[2] = ax.viewLim.corners()[3] verts[3] = ax.viewLim.corners()[2] # inpoly = points_inside_poly(xypoints, verts) # w = self.CurWaveforms[inpoly,:] # self.ChanTab['WavesFigure'].figure.axes[0].set_ylim(w.min(), w.max()) # self.ChanTab['WavesFigure'].figure.canvas.draw() if len(self.ChanTab['FeaturesFig'].figure.axes) == 2: self.ReplotDensity_proc() #__________________________________________________________________________ def AutoClust_proc(self): if not self.H5FileLoaded or not self.ChanPlotted: return if self.XYData.data.shape[1] > 2: data = self.XYData.data[:, 0:2] else: data = self.XYData.data clustIndx = KlustaKwik_call(data, self.MinClust.value(), self.MaxClust.value()) fig = self.ChanTab['FeaturesFig'].figure fig.clear() ax = fig.add_subplot(111) ax.set_axis_bgcolor('k') for k in range(len(clustIndx)): ax.plot(data[clustIndx[k], 0], data[clustIndx[k], 1], '.', label='clust %d' % k) ax.legend(fancybox=True, mode='expand', ncol=len(clustIndx) / 2, loc=9, prop={'size': 10}) ax.grid(color='grey') fig.canvas.draw() self.sender().parentWidget().close() #__________________________________________________________________________ def TrimWaveforms_proc(self, eclick, erelease): # first check whether there's any waveform plotted # if it is visible, and if it is the current unit for k in self.ChanTab['WavesFigure'].figure.axes[0].lines: if 'Unit' in k.get_label() and k.get_visible() and \ k.get_label() == self.CurUnitName: break else: print "No units found in the plot ..." self.trimWaveformsRect.set_active(False) return # get the indices indx = self.h5file.get_node('/Spikes/Chan_%03d/%s' % (self.CurChan, self.CurUnitName), 'Indx').read() data = self.CurWaveforms[indx, :] # get line equation y = mx + n x1 = eclick.xdata x2 = erelease.xdata y1 = eclick.ydata y2 = erelease.ydata # return if is a point and not a line if x1 == x2: self.trimWaveformsRect.set_active(False) return m = (y2 - y1) / (x2 - x1) n = y1 - m * x1 # get the y value of nearest integer x: x = np.array([x1, x2]) x.sort() xData = range(self.WfSize) indx1 = np.flatnonzero(xData > x[0]).min() indx2 = np.flatnonzero(xData < x[1]).max() y = np.array([m * xData[k] + n for k in range(indx1, indx2)]) #print x, y # get the data bounded by the indices data2 = data[:, indx1:indx2] #print data2.shape, y.shape t = data2 - y #print t t = np.array(t) # get the indices that intersect the line intersect = [] for j, k in enumerate(t): if not (np.all(k < 0) or np.all(k > 0)): intersect.append(j) # update the node containing the unit indices self.h5file.remove_node(self.CurNodeName + '/' + self.CurUnitName, 'Indx') self.h5file.create_array(self.CurNodeName + '/' + self.CurUnitName, 'Indx', np.delete(indx, intersect)) # add the remaining points to the unsorted indexes self.Unsorted = self.h5file.get_node(self.CurNodeName, 'Unsorted').read() self.Unsorted = np.append(self.Unsorted, indx[intersect]) self.Unsorted.sort() # update the unsorted in the h5file self.h5file.remove_node(self.CurNodeName, 'Unsorted') self.h5file.create_array(self.CurNodeName, 'Unsorted', self.Unsorted) # save changes to disk self.h5file.flush() # update the information in the overview table row = self.ChanSelector.currentIndex() self.OverviewTab2['OverviewTable'].takeItem(row, self.CurUnit + 6) lbl = QtGui.QTableWidgetItem(str(self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.nrows)) self.OverviewTab2['OverviewTable'].setItem(row, self.CurUnit + 6, lbl) # update the information on the unit label self.ChanTab['UnitCountLabel'][self.CurUnitName].setText(str(self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.nrows)) # replot the features self.PlotFeatures() # replot waveforms self.plot_unit_waveforms() # replot the unit avg waveform, histogram and autocorrelation self.PlotUnitFigure_proc() eclick.inaxes.figure.canvas.draw() self.trimWaveformsRect.set_active(False) #__________________________________________________________________________ def ActivateTrimWaveforms_proc(self): self.trimWaveformsRect.set_active(True) #__________________________________________________________________________ def plot_unit_waveforms(self): # get unit name and number unitName = str(self.ChanTab['UnitTabsWidget'].tabText(self.ChanTab['UnitTabsWidget'].currentIndex())) unitNo = int(re.search('(?<=Unit)[0-9]{2}', unitName).group()) # get axes handle and children labels fig = self.ChanTab['WavesFigure'].figure ax = fig.axes[0] childrenLabels = [str(k.get_label()) for k in ax.get_children()] # get the number of spikes to plot nspikes = self.NSpikesSpin.value() node = self.CurNode.__getattr__(self.CurUnitName) nrows = node.Indx.nrows if nrows > nspikes: unitIndx = node.Indx.read(start=0, stop=nrows, step=nrows / nspikes) else: unitIndx = node.Indx.read() # obtain the length of units to plot n = len(unitIndx) # create an array of Nones to append nones = np.array(n * [None], ndmin=2).T # create the x indexes Ts = np.tile(np.arange(self.WfSize), (n, 1)) Ts = np.append(Ts, nones, axis=1).reshape((n * (self.WfSize + 1),)) # get the waveforms, append nones, and reshape it to a vector Wf = self.CurNode.Waveforms[unitIndx, :] Wf = np.append(Wf, nones, axis=1).reshape((n * (self.WfSize + 1),)) # create the plot if it doesn't exists if unitName not in childrenLabels: ax.plot(Ts, Wf, color=self.UnitColors[unitNo, :], alpha=0.7, label=unitName) # if exists update the data elif unitName in childrenLabels: for k in self.ChanTab['WavesFigure'].figure.axes[0].get_lines(): if k.get_label() == self.CurUnitName: break k.set_data(Ts, Wf) k.set_visible(True) fig.canvas.draw() #__________________________________________________________________________ def AddUnit_proc(self): ''' starts a lasso instance to draw a line around a ROI''' # check whether there is a channel ploted if not self.ChanPlotted: return # check if what is plotted is all waveforms or unsorted title = str(self.ChanTab['FeaturesFig'].figure.axes[0].get_title()) if not re.search('Waveforms|Unsorted', title): return # return if a tool is selected in the toolbar if self.ChanTab['FeaturesFigNtb'].mode != '': return # create a new lasso instance self.LassoCID = self.ChanTab['FeaturesFig'].figure.canvas.mpl_connect('button_press_event', self.LassoAddUnit_proc) #__________________________________________________________________________ def Keep_proc(self): ''' starts a lasso instance to draw a line around a ROI''' # check whether there is a channel ploted if not self.ChanPlotted: return # check if a unit is plotted title = str(self.ChanTab['FeaturesFig'].figure.axes[0].get_title()) if not re.search('Unit', title): return self.What2Plot.count() # return if a tool is selected in the toolbar if self.ChanTab['FeaturesFigNtb'].mode != '': return # create a new lasso instance self.LassoCID = self.ChanTab['FeaturesFig'].figure.canvas.mpl_connect('button_press_event', self.LassoKeep_proc) #__________________________________________________________________________ def AddRegion_proc(self): ''' starts a lasso instance to draw a line around a ROI''' # check whether there is a channel ploted if not self.ChanPlotted: return # check if what is plotted is all waveforms or unsorted title = str(self.ChanTab['FeaturesFig'].figure.axes[0].get_title()) if not re.search('Waveforms|Unsorted', title): return # return if a tool is selected in the toolbar if self.ChanTab['FeaturesFigNtb'].mode != '': return # create a new lasso instance self.LassoCID = self.ChanTab['FeaturesFig'].figure.canvas.mpl_connect('button_press_event', self.LassoAddRegion_proc) #__________________________________________________________________________ def RemoveRegion_proc(self): ''' starts a lasso instance to draw a line around a ROI''' # check whether there is a channel ploted if not self.ChanPlotted: return # check if what is plotted is all waveforms or unsorted title = str(self.ChanTab['FeaturesFig'].figure.axes[0].get_title()) if not re.search('Unit', title): return # return if a tool is selected in the toolbar if self.ChanTab['FeaturesFigNtb'].mode != '': return # create a new lasso instance self.LassoCID = self.ChanTab['FeaturesFig'].figure.canvas.mpl_connect('button_press_event', self.LassoRemoveRegion_proc) #__________________________________________________________________________ def LassoAddUnit_proc(self, event): if self.ChanTab['FeaturesFig'].figure.canvas.widgetlock.locked(): if hasattr(self, 'LassoCID'): self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) del self.LassoCID return if event.inaxes is None or event.button != 1: if hasattr(self, 'LassoCID'): self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) del self.LassoCID return # create a lasso instance self.lasso = matplotlib_widgets.MyLasso(event.inaxes, (event.xdata, event.ydata), self.LassoCallback_AddUnit, color='gray', lw=1) self.ChanTab['FeaturesFig'].figure.canvas.widgetlock(self.lasso) #__________________________________________________________________________ def LassoKeep_proc(self, event): if self.ChanTab['FeaturesFig'].figure.canvas.widgetlock.locked(): if hasattr(self, 'LassoCID'): self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) del self.LassoCID return if event.inaxes is None or event.button != 1: if hasattr(self, 'LassoCID'): self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) del self.LassoCID return self.KeepBtn.setCheckable(True) self.KeepBtn.setChecked(True) self.lasso = matplotlib_widgets.MyLasso(event.inaxes, (event.xdata, event.ydata), self.LassoCallback_Keep, color='gray', lw=1) self.ChanTab['FeaturesFig'].figure.canvas.widgetlock(self.lasso) #__________________________________________________________________________ def LassoAddRegion_proc(self, event): if self.ChanTab['FeaturesFig'].figure.canvas.widgetlock.locked(): if hasattr(self, 'LassoCID'): self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) del self.LassoCID return if event.inaxes is None or event.button != 1: if hasattr(self, 'LassoCID'): self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) del self.LassoCID return self.lasso = matplotlib_widgets.MyLasso(event.inaxes, (event.xdata, event.ydata), self.LassoCallback_AddRegion, color='gray', lw=1) self.ChanTab['FeaturesFig'].figure.canvas.widgetlock(self.lasso) #__________________________________________________________________________ def LassoRemoveRegion_proc(self, event): if self.ChanTab['FeaturesFig'].figure.canvas.widgetlock.locked(): if hasattr(self, 'LassoCID'): self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) del self.LassoCID return if event.inaxes is None or event.button != 1: if hasattr(self, 'LassoCID'): self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) del self.LassoCID return self.lasso = matplotlib_widgets.MyLasso(event.inaxes, (event.xdata, event.ydata), self.LassoCallback_RemoveRegion, color='gray', lw=1) self.ChanTab['FeaturesFig'].figure.canvas.widgetlock(self.lasso) #__________________________________________________________________________ def LassoCallback_AddUnit(self, verts): # disconnect Lasso callback self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) self.ChanTab['FeaturesFig'].figure.canvas.draw_idle() del self.LassoCID # release widget lock self.ChanTab['FeaturesFig'].figure.canvas.widgetlock.release(self.lasso) # delete lasso del self.lasso # copy the vertices of the polygon to the object and downsample them n = len(verts) self.verts = np.array(verts) if n > 25: self.verts = self.verts[range(0, n, n / 25)] #pdb.set_trace() # get the axes handle ax = self.ChanTab['FeaturesFig'].figure.axes[0] if re.search('Waveforms', ax.get_title()): # test which points are inside the lasso xypoints = self.XYData.data[self.Unsorted, :] elif re.search('Unsorted', ax.get_title()): xypoints = self.XYData.data p = Path(self.verts).contains_points(xypoints) # in case there were no points selected if len(p) == 0: self.MsgBox.setIcon(QtGui.QMessageBox.Warning) self.MsgBox.setText('There were no selected points') self.MsgBox.setwindowTitle('Warning') self.MsgBox.show() return # set the unit name self.NUnits = len(self.UnitsList) self.CurUnitName = 'Unit%02d' % self.NUnits # look for the unsorted plot handle in the axes for k in self.ChanTab['FeaturesFig'].figure.axes[0].get_children(): if re.search('Unsorted', str(k.get_label())): break # obtain the unsorted points unsortedData = xypoints[~p, :] lunsort = len(unsortedData) # select some indices to plot if lunsort > self.nPtsSpin.value(): indx = range(0, lunsort, lunsort / self.nPtsSpin.value()) else: indx = range(lunsort) # replot the unsorted without the corresponding points to the new unit k.set_data(unsortedData[:, 0][indx], unsortedData[:, 1][indx]) ax.draw_artist(k) # select some indices to plot unitData = xypoints[p, :] lunit = len(unitData) if lunit > self.nPtsSpin.value(): indx = range(0, lunit, lunit / self.nPtsSpin.value()) else: indx = range(lunit) ax.plot(unitData[:, 0][indx], unitData[:, 1][indx], linestyle='', marker=',', mfc=self.UnitColors[self.NUnits], mec=self.UnitColors[self.NUnits], label='data_' + self.CurUnitName) self.NUnits += 1 # if unit name not in combo box add it if self.CurUnitName not in [str(self.What2Plot.itemText(k)) for k in range(self.What2Plot.count())]: self.What2Plot.addItem(self.CurUnitName) # add the indexes of the current unit to the h5file if self.h5file.get_node(self.CurNodeName).__contains__(self.CurUnitName): self.h5file.remove_node(self.CurNodeName, self.CurUnitName, recursive=True) self.h5file.create_group(self.CurNodeName, self.CurUnitName) self.h5file.create_array(self.CurNodeName + '/' + self.CurUnitName, 'Indx', self.Unsorted[p]) self.h5file.create_array(self.CurNodeName + '/' + self.CurUnitName, 'isMultiunit', False) self.h5file.create_array(self.CurNodeName + '/' + self.CurUnitName, 'isBursting', False) # update the list of unsorted indexes self.Unsorted = self.Unsorted[~p] # update the indexes of the unsorted units if self.h5file.get_node(self.CurNodeName).__contains__('Unsorted'): self.h5file.remove_node(self.CurNodeName, 'Unsorted') self.h5file.create_array(self.CurNodeName, 'Unsorted', self.Unsorted) # save changes to disk self.h5file.flush() # add log self.AddLog('%s %s added' % (self.CurNodeName, self.CurUnitName)) # add unit to the units tab widget self.UnitsTable_AddUnit(self.CurUnitName) self.ChanTab['UnitFigures'][self.CurUnitName].figure.tight_layout() self.ChanTab['UnitFigures'][self.CurUnitName].figure.canvas.draw() # update the overview figure for k in self.OverviewTab1['Figure'].figure.axes: if str(self.CurChan) in k.get_title(): break self.PlotChanOverview_proc(self.CurNode, axes2Plot=k) for l in k.lines: k.draw_artist(l) #__________________________________________________________________________ def LassoCallback_Keep(self, verts): # disconnect Lasso callback from figure self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) self.ChanTab['FeaturesFig'].figure.canvas.draw_idle() del self.LassoCID # release the lock from the lasso self.ChanTab['FeaturesFig'].figure.canvas.widgetlock.release(self.lasso) # erase lasso del self.lasso # copy the vertices of the polygon to the object and downsample them n = len(verts) self.verts = np.array(verts) if n > 25: self.verts = self.verts[range(0, n, n / 25)] # test which points lay inside the polygon p = Path(self.verts).contains_points(self.XYData.data) # change to not checked self.KeepBtn.setChecked(False) self.KeepBtn.setCheckable(False) # check how many points were selected if len(np.flatnonzero(p)) <= self.WfSize: print "Didn't doo anything: Too few points selected" return # create a KDTree object for efficient neighbor search self.XYData = cKDTree(self.XYData.data[p, :]) # get unitname and number from the axes title ax = self.ChanTab['FeaturesFig'].figure.axes[0] self.CurUnitName = re.search('Unit[0-9]{2}', ax.get_title()).group() self.CurUnit = int(re.search('(?<=Unit)[0-9]{2}', ax.get_title()).group()) # update plot: for k in ax.get_children(): if re.search(str(k.get_label), self.CurUnitName): k.set_data(self.XYData.data[:, 0], self.XYData.data[:, 1]) ax.draw_artist(k) break # return if no points selected if len(p) < 1: return nodeName = self.CurNodeName + '/' + self.CurUnitName # obtain the unit data unitPts = self.h5file.get_node(nodeName, 'Indx').read() # update the node containing the unit indices self.h5file.remove_node(nodeName, 'Indx') self.h5file.create_array(nodeName, 'Indx', unitPts[p]) # add the remaining points to the unsorted indexes self.Unsorted = self.h5file.get_node(self.CurNodeName, 'Unsorted').read() self.Unsorted = np.append(self.Unsorted, unitPts[~p]) self.Unsorted.sort() # update the unsorted in the h5file self.h5file.remove_node(self.CurNodeName, 'Unsorted') self.h5file.create_array(self.CurNodeName, 'Unsorted', self.Unsorted) # save changes to disk self.h5file.flush() # replot the unit avg waveform, histogram and autocorrelation self.PlotUnitFigure_proc() # replot the waveforms self.plot_unit_waveforms() # replot the features self.PlotFeatures() # update the information in the overview table row = self.ChanSelector.currentIndex() self.OverviewTab2['OverviewTable'].takeItem(row, self.CurUnit + 6) lbl = QtGui.QTableWidgetItem(str(self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.nrows)) self.OverviewTab2['OverviewTable'].setItem(row, self.CurUnit + 6, lbl) # update the information on the unit label self.ChanTab['UnitCountLabel'][self.CurUnitName].setText(str(self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.nrows)) #__________________________________________________________________________ def LassoCallback_AddRegion(self, verts): # disconnect the lasso from the canvas and redraw the figure self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) self.ChanTab['FeaturesFig'].figure.canvas.draw_idle() del self.LassoCID # release widget lock self.ChanTab['FeaturesFig'].figure.canvas.widgetlock.release(self.lasso) # delete lasso handle del self.lasso # get the vertices of the polygon to the object and downsample them if too many n = len(verts) self.verts = np.array(verts) if n > 25: self.verts = self.verts[range(0, n, n / 25)] # check whether there is any unit if not hasattr(self, 'CurUnitName') or not self.CurNode.__contains__(self.CurUnitName): return # get the axes handle ax = self.ChanTab['FeaturesFig'].figure.axes[0] # get the unsorted self.Unsorted = self.h5file.get_node(self.CurNodeName, 'Unsorted').read() # check what is plotted on the axes if re.search('Waveforms', str(ax.get_title())): # test which points are inside the lasso p = Path(self.verts).contains_points(self.XYData.data[self.Unsorted, :]) self.XYData = cKDTree(self.XYData.data[self.Unsorted, :][p]) elif re.search('Unsorted', str(ax.get_title())): # test which points are inside the lasso p = Path(self.verts).contains_points(self.XYData.data) self.XYData = cKDTree(self.XYData.data[p, :]) # update plot: for k in ax.get_children(): if re.search(str(k.get_label), self.CurUnitName): k.set_data(self.XYData.data[:, 0], self.XYData.data[:, 1]) ax.draw_artist(k) break # if more than 0 selected points if len(p) > self.WfSize: indx = self.Unsorted[p] else: print "Didn't add any unit: Too few points selected" return # update the unsorted self.Unsorted = self.Unsorted[~p] self.h5file.remove_node(self.CurNodeName, 'Unsorted') self.h5file.create_array(self.CurNodeName, 'Unsorted', self.Unsorted) # update the plots for k in ax.get_children(): if re.search('Unsorted', str(k.get_label())): pass elif re.search(self.CurUnitName, str(k.get_label())): pass # update the unit information in the file unit = self.h5file.get_node(self.CurNodeName + '/' + self.CurUnitName, 'Indx').read() self.h5file.remove_node(self.CurNodeName + '/' + self.CurUnitName, 'Indx') # append the new indexes to the waveform and sort unit = np.append(unit, indx) unit.sort() # create a new array in the h5file to hold the updated unit information self.h5file.create_array(self.CurNodeName + '/' + self.CurUnitName, 'Indx', unit) # save changes to disk self.h5file.flush() # update the information in the overview table row = self.ChanSelector.currentIndex() self.OverviewTab2['OverviewTable'].takeItem(row, self.CurUnit + 6) lbl = QtGui.QTableWidgetItem(str(self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.nrows)) self.OverviewTab2['OverviewTable'].setItem(row, self.CurUnit + 6, lbl) # update the information on the unit label self.ChanTab['UnitCountLabel'][self.CurUnitName].setText(str(self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.nrows)) # replot the unit avg waveform, histogram and autocorrelation self.PlotUnitFigure_proc() # replot the features self.PlotFeatures() #__________________________________________________________________________ def LassoCallback_RemoveRegion(self, verts): # disconnect Lasso callback from figure self.ChanTab['FeaturesFig'].figure.canvas.mpl_disconnect(self.LassoCID) self.ChanTab['FeaturesFig'].figure.canvas.draw_idle() del self.LassoCID # release the lock from the lasso self.ChanTab['FeaturesFig'].figure.canvas.widgetlock.release(self.lasso) # copy the vertices of the polygon to the object and downsample them n = len(verts) self.verts = np.array(verts) if n > 25: self.verts = self.verts[range(0, n, n / 25)] # test which points lay inside the polygon p = Path(self.verts).contains_points(self.XYData.data) # return if no points selected if len(p) < 1: return # get unitname and number from the axes title ax = self.ChanTab['FeaturesFig'].figure.axes[0] self.CurUnitName = re.search('Unit[0-9]{2}', ax.get_title()).group() self.CurUnit = int(re.search('(?<=Unit)[0-9]{2}', ax.get_title()).group()) # obtain the unit data unitPts = self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.read() # update the node containing the unit indexes self.h5file.remove_node(self.CurNodeName + '/' + self.CurUnitName, 'Indx') self.h5file.create_array(self.CurNodeName + '/' + self.CurUnitName, 'Indx', unitPts[~p]) # add the remaining points to the unsorted indexes self.Unsorted = self.h5file.get_node(self.CurNodeName, 'Unsorted').read() self.Unsorted = np.append(self.Unsorted, unitPts[p]) self.Unsorted.sort() # update the unsorted in the h5file self.h5file.remove_node(self.CurNodeName, 'Unsorted') self.h5file.create_array(self.CurNodeName, 'Unsorted', self.Unsorted) # save changes to disk self.h5file.flush() # update the information in the overview table row = self.ChanSelector.currentIndex() self.OverviewTab2['OverviewTable'].takeItem(row, self.CurUnit + 6) lbl = QtGui.QTableWidgetItem(str(self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.nrows)) self.OverviewTab2['OverviewTable'].setItem(row, self.CurUnit + 6, lbl) # update the information on the unit label self.ChanTab['UnitCountLabel'][self.CurUnitName].setText(str(self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.nrows)) # replot the features self.PlotFeatures() # replot the waveforms self.plot_unit_waveforms() # replot the unit avg waveform, histogram and autocorrelation self.PlotUnitFigure_proc() #PlotChanOverview_proc(self.CurNode, axes2Plot) # erase lasso del self.lasso #__________________________________________________________________________ def UnitsTable_AddUnit(self, unitName): ''' creates a new tab per each new unit''' # check whether that tab already exists for k in range(self.ChanTab['UnitTabsWidget'].count()): if unitName == self.ChanTab['UnitTabsWidget'].tabText(k): return self.CurUnitName = unitName # create a widget and a layout widget = QtGui.QWidget() vlay = QtGui.QVBoxLayout() vlay.setSpacing(2) vlay.setMargin(0) # get a unit number unitNo = int(re.search('(?<=Unit)[0-9]{2}', unitName).group()) # add the unit number to a list self.UnitsList.append(unitNo) # create a btn to change unit color hlay = QtGui.QHBoxLayout() hlay.setMargin(0) hlay.addStretch(1) self.ChanTab['UnitBtns'][unitName] = QtGui.QPushButton('Unit %02d' % unitNo) self.ChanTab['UnitBtns'][unitName].setMaximumHeight(20) self.ChanTab['UnitBtns'][unitName].clicked.connect(self.ChangeUnitColor_proc) self.ChanTab['UnitBtns'][unitName].setStyleSheet('QPushButton {background: rgb%s}' % str(tuple(np.int16(255 * self.UnitColors[unitNo])))) hlay.addWidget(self.ChanTab['UnitBtns'][unitName]) hlay.addStretch(1) # plot-raw check button self.ChanTab['PlotRawCheck'][unitName] = QtGui.QCheckBox() self.ChanTab['PlotRawCheck'][unitName].setObjectName(str(unitNo)) self.ChanTab['PlotRawCheck'][unitName].setChecked(False) self.ChanTab['PlotRawCheck'][unitName].setMaximumHeight(20) self.ChanTab['PlotRawCheck'][unitName].stateChanged.connect(self.SetWaveformVisible_proc) lbl = QtGui.QLabel('Plot Raw ?') lbl.setMaximumHeight(20) hlay.addWidget(lbl) hlay.addWidget(self.ChanTab['PlotRawCheck'][unitName]) hlay.addStretch(1) # is Multiunit check button self.ChanTab['isMultiunitCheck'][unitName] = QtGui.QCheckBox() self.ChanTab['isMultiunitCheck'][unitName].setObjectName(str(unitNo)) self.ChanTab['isMultiunitCheck'][unitName].setChecked(False) self.ChanTab['isMultiunitCheck'][unitName].setMaximumHeight(20) self.ChanTab['isMultiunitCheck'][unitName].stateChanged.connect(self.SetisMultiunit_proc) lbl = QtGui.QLabel('isMultiunit ?') lbl.setMaximumHeight(20) hlay.addWidget(lbl) hlay.addWidget(self.ChanTab['isMultiunitCheck'][unitName]) hlay.addStretch(1) # set the checkstate of the 'isMultiunit' check according to what is saved in the h5file if self.h5file.get_node('/Spikes/Chan_%03d/Unit%02d' % (self.CurChan, unitNo)).__contains__('isMultiunit'): isMultiunit = self.h5file.get_node('/Spikes/Chan_%03d/Unit%02d' % (self.CurChan, unitNo), 'isMultiunit').read() if isMultiunit: self.ChanTab['isMultiunitCheck'][unitName].setChecked(True) else: self.ChanTab['isMultiunitCheck'][unitName].setChecked(False) else: self.h5file.create_array('/Spikes/Chan_%03d/Unit%02d' % (self.CurChan, unitNo), 'isMultiunit', False) # add a label with the waveform count lbl = QtGui.QLabel('Count') lbl.setMaximumHeight(20) hlay.addWidget(lbl) self.ChanTab['UnitCountLabel'][unitName] = QtGui.QLabel('%d' % self.h5file.get_node(self.CurNodeName, unitName).Indx.nrows) self.ChanTab['UnitCountLabel'][unitName].setMaximumHeight(20) hlay.addWidget(self.ChanTab['UnitCountLabel'][unitName]) hlay.addStretch(1) # add delete-unit button self.ChanTab['DelUnitBtns'][unitName] = QtGui.QPushButton('Del Unit') self.ChanTab['DelUnitBtns'][unitName].setObjectName(unitName) self.ChanTab['DelUnitBtns'][unitName].setMaximumHeight(20) self.ChanTab['DelUnitBtns'][unitName].clicked.connect(self.DelUnit_proc) hlay.addWidget(self.ChanTab['DelUnitBtns'][unitName]) hlay.addStretch(1) vlay.addLayout(hlay) # add the figure widget self.ChanTab['UnitFigures'][unitName] = matplotlib_widgets.MplWidget() self.ChanTab['UnitFigures'][unitName].setObjectName(unitName) # set the name of the object self.ChanTab['UnitFigures'][unitName].figure.set_facecolor('k') n = matplotlib_widgets.NavToolbar(self.ChanTab['UnitFigures'][unitName].figure.canvas, widget, coordinates=False) n.setIconSize(QtCore.QSize(12, 12)) n.setOrientation(QtCore.Qt.Vertical) vlay.addWidget(self.ChanTab['UnitFigures'][unitName]) #vlay.addWidget(n) hlay = QtGui.QHBoxLayout() hlay.setSpacing(0) hlay.setMargin(2) hlay.addLayout(vlay) hlay.addWidget(n) widget.setLayout(hlay) # Plot the data self.PlotUnitFigure_proc() #if unitName == 'Unit00': # self.ChanTab['UnitTabsWidget'].removeTab(0) self.ChanTab['UnitTabsWidget'].addTab(widget, unitName) indx = self.ChanTab['UnitTabsWidget'].count() - 1 color = QtGui.QColor(*np.int32(self.UnitColors[indx] * 255)) self.ChanTab['UnitTabsWidget'].tabBar().setTabTextColor(indx, color) # update the information in the overview table row = self.ChanSelector.currentIndex() if self.OverviewTab2['OverviewTable'].columnCount() <= (unitNo + 6): self.OverviewTab2['OverviewTable'].insertColumn(self.OverviewTab2['OverviewTable'].columnCount()) nCols = self.OverviewTab2['OverviewTable'].columnCount() self.OverviewTab2['OverviewTable'].setColumnWidth(nCols - 1, 65) self.OverviewTab2['OverviewTable'].setHorizontalHeaderItem(nCols - 1, QtGui.QTableWidgetItem('Unit%02d' % unitNo)) self.OverviewTab2['OverviewTable'].takeItem(row, unitNo + 6) lbl = QtGui.QTableWidgetItem(str(self.h5file.get_node(self.CurNodeName, unitName).Indx.nrows)) self.OverviewTab2['OverviewTable'].setItem(row, unitNo + 6, lbl) # update the unsorted number in the overview table self.OverviewTab2['OverviewTable'].takeItem(row, 4) lbl = QtGui.QTableWidgetItem(str(len(self.Unsorted))) self.OverviewTab2['OverviewTable'].setItem(row, 4, lbl) #__________________________________________________________________________ def PlotUnitFigure_proc(self): # get a unit name and number unitNo = int(re.search('(?<=Unit)[0-9]{2}', self.CurUnitName).group()) # find the figure that has a particular name fig = self.ChanTab['UnitFigures'][self.CurUnitName].figure # check whether we have to create axes if len(fig.axes) == 0: ax0 = fig.add_subplot(131) ax1 = fig.add_subplot(132) ax2 = fig.add_subplot(133) else: ax0 = fig.axes[0] ax0.cla() ax1 = fig.axes[1] ax1.cla() ax2 = fig.axes[2] ax2.cla() # set the axis background color ax0.set_axis_bgcolor('k') ax1.set_axis_bgcolor('k') ax2.set_axis_bgcolor('k') # PLOT AVERAGE WAVEFORM ##### x = range(self.WfSize) p = self.h5file.get_node(self.CurNodeName, self.CurUnitName).Indx.read() m = self.CurWaveforms[p, :].mean(axis=0) s = self.CurWaveforms[p, :].std(axis=0) mn = self.CurWaveforms[p, :].min(axis=0) mx = self.CurWaveforms[p, :].max(axis=0) # plot average waveform ax0.plot(x, m, color=self.UnitColors[unitNo], lw=2, label=self.CurUnitName) #plot shaded area of 3 standard devoations around it ax0.fill_between(x, m + 3 * s, m - 3 * s, color=self.UnitColors[unitNo], alpha=0.5, label=self.CurUnitName) #plot maximum and minimum boundaries ax0.fill_between(x, mx, mn, color=self.UnitColors[unitNo], alpha=0.35, label=self.CurUnitName) ax0.set_xlim(0, self.WfSize - 1) ax0.set_yticklabels([]) ax0.grid(color=[.5, .5, .5]) ax0.tick_params(color=[.5, .5, .5], labelcolor=[.5, .5, .5]) for k in ax0.spines.values(): k.set_edgecolor([.5, .5, .5]) # PLOT ISI HISTOGRAM ##### dts = np.diff(self.CurTs[p]) dts = dts[dts < 100] ld = len(dts) if ld > 1000: indx = range(0, 1000) else: indx = range(ld) if len(dts[indx]) > 0: ax1.hist(dts[indx], bins=100, range=[0, 100], ec='none', color=self.UnitColors[unitNo], label=self.CurUnitName) ax1.tick_params(color=[.5, .5, .5], labelcolor=[.5, .5, .5]) for k in ax1.spines.values(): k.set_edgecolor([.5, .5, .5]) WfWidth = self.WfSize * 1000 / self.Sf try: collision = 100 * np.flatnonzero(dts < 1.5 * WfWidth).size / np.float(dts.size) # put a "percentage of collision" label ax1.text(0.5, 0.01, u'Collision = %0.2f %%' % collision, transform=ax1.transAxes, color='w', size=10, ha='center') except: pass ax1.set_xlim(0, 100) # PLOT AUTOCORRELATION ##### ts = self.CurTs[p] time = 25000 ts = ts[np.flatnonzero(ts < time)] ts11 = np.tile(ts, (ts.size, 1)) ts22 = np.tile(ts, (ts.size, 1)).transpose() x = ts11 - ts22 ac, lags = np.histogram(x.flatten(), bins=100, range=(-500, 500), normed=True) ac[np.flatnonzero(lags == 0)] = 0.0 ax2.bar(lags[0:-1], ac, width=np.diff(lags)[0], edgecolor='none', color=self.UnitColors[unitNo]) '''if ts.size > 1000: ts = ts[0:1000] ac, x = autocorr(ts, binSize = 20, Win = [0,10000], mode = 'fft', Range = [-150, 150]) ac[ac.argmax()] = 0 ax2.plot(x, ac, color = self.UnitColors[unitNo], lw = 2)''' ax2.set_xlim(-500, 500) #ax2.set_ylim(0, ac.max()) ax2.tick_params(color=[.5, .5, .5], labelcolor=[.5, .5, .5]) for k in ax2.spines.values(): k.set_edgecolor([.5, .5, .5]) ax2.set_yticklabels([]) self.ChanTab['UnitFigures'][self.CurUnitName].figure.tight_layout() self.ChanTab['UnitFigures'][self.CurUnitName].figure.canvas.draw() #__________________________________________________________________________ def SetWaveformVisible_proc(self): ''' makes the raw waveform of each unit visible or invisible''' sender = self.sender() state = sender.checkState() name = int(sender.objectName()) # get unit name and number unitName = str(self.ChanTab['UnitTabsWidget'].tabText(self.ChanTab['UnitTabsWidget'].currentIndex())) unitNo = int(re.search('(?<=Unit)[0-9]{2}', unitName).group()) # get axes handle and children labels ax = self.ChanTab['WavesFigure'].figure.axes[0] childrenLabels = [str(k.get_label()) for k in ax.get_children()] # get the node to read from node = self.h5file.get_node(self.CurNodeName + '/' + unitName, 'Indx') # get the number of spikes to plot nspikes = self.NSpikesSpin.value() if state == 2: # if checked nrows = node.nrows if nrows > nspikes: unitIndx = node.read(start=0, stop=nrows, step=nrows / nspikes) else: unitIndx = node.read() # obtain the length of units to plot n = len(unitIndx) # create an array of Nones to append nones = np.array(n * [None], ndmin=2).T # create the x indexes Ts = np.tile(np.arange(self.WfSize), (n, 1)) Ts = np.append(Ts, nones, axis=1).reshape((n * (self.WfSize + 1),)) # get the waveforms, append nones, and reshape it to a vector Wf = self.CurNode.Waveforms[unitIndx, :] Wf = np.append(Wf, nones, axis=1).reshape((n * (self.WfSize + 1),)) # create the plot if it doesn't exists if unitName not in childrenLabels: ax.plot(Ts, Wf, color=self.UnitColors[unitNo, :], alpha=0.7, label=unitName) # if exists update the data elif unitName in childrenLabels: for k in self.ChanTab['WavesFigure'].figure.axes[0].get_children(): if k.get_label() == 'Unit%02d' % name: break k.set_data(Ts, Wf) k.set_visible(True) elif state == 0: # if unchecked for k in ax.get_children(): if str(k.get_label()) == unitName: k.set_visible(False) # set axes limit lim = self.WaveAxYLim_Spin.value() ax.set_ylim(-lim, lim) # finally redraw the figure self.ChanTab['WavesFigure'].figure.canvas.draw() #__________________________________________________________________________ def SetisMultiunit_proc(self): sender = self.sender() #state = sender.checkState() unitNo = int(sender.objectName()) # current node name nodeName = '/Spikes/Chan_%03d/Unit%02d' % (self.CurChan, unitNo) # eliminate 'isMultiunit' f already exists if self.h5file.get_node(nodeName).__contains__('isMultiunit'): self.h5file.remove_node(nodeName, 'isMultiunit') # create a new "isMultiunt" array to hold the value of the cehckbox self.h5file.create_array(nodeName, 'isMultiunit', bool(sender.checkState())) # save changes to disk self.h5file.flush() #__________________________________________________________________________ def ExchangeUnitName_proc(self, initial, final): tb = self.ChanTab['UnitTabBarWidget'] # get the names of the changed tabs oldNameBgTab = tb.tabText(final) newNameBgTab = tb.tabText(initial) # change the name of the background tab tb.setTabText(final, newNameBgTab) # change the name of the front tab the oldname of the unit tb.setTabText(tb.currentIndex(), oldNameBgTab) # PROPAGATE CHANGES TO THE H5FILE ##### # first change the background moved unit name to "tmpUnitData" self.h5file.renameNode(where='/Spikes/Chan_%03d' % self.CurChan, name=oldNameBgTab, newname='tmpUnitData', overwrite=True) # second change the front moved unit name to the old name of the background unit self.h5file.renameNode(where='/Spikes/Chan_%03d' % self.CurChan, name=newNameBgTab, newname=oldNameBgTab, overwrite=True) # third change the background moved unit name to its new name self.h5file.renameNode(where='/Spikes/Chan_%03d' % self.CurChan, name='tmpUnitData', newname=newNameBgTab, overwrite=True) # CHANGE THE NAME OF THE FIGURES ##### # first change the figure name of the background unit to "tmpFigName" for k in self.ChanTab['UnitFigures']: if k.objectName() == oldNameBgTab: k.setObjectName('tmpFigName') break # second, change the front tab figure name to the old background tab name for k in self.ChanTab['UnitFigures']: if k.objectName() == newNameBgTab: k.setObjectName(oldNameBgTab) break # third, change the figname of the background tab to the new one for k in self.ChanTab['UnitFigures']: if k.objectName() == 'tmpFigName': k.setObjectName(newNameBgTab) break # CHANGE UNIT COLOR ##### self.ChangeUnitColor_proc(unitName=newNameBgTab, color=tuple(np.append(np.int32(self.UnitColors[final] * 255), 255))) self.ChangeUnitColor_proc(unitName=oldNameBgTab, color=tuple(np.append(np.int32(self.UnitColors[initial] * 255), 255))) #__________________________________________________________________________ def RepairUnitNames_proc(self): unitNames = [k for k in self.CurNode.__members__ if 'Unit' in k] for j, k in enumerate(unitNames): if k != 'Unit%02d' % j: self.h5file.renameNode(self.CurChan, k, 'Unit%02d' % j) self.h5file.flush() #__________________________________________________________________________ def CallMergeUnits_proc(self): if not self.H5FileLoaded: return self.MergeUnitsWidget.list1.clear() self.MergeUnitsWidget.list2.clear() unitsList = [k for k in self.CurNode.__members__ if 'Unit' in k] unitsList.sort() self.MergeUnitsWidget.list1.addItems(unitsList) self.MergeUnitsWidget.show() #__________________________________________________________________________ def MergeUnits_proc(self): # get the list of units to merge units2Merge = [str(self.MergeUnitsWidget.list2.item(k).text()) for k in range(self.MergeUnitsWidget.list2.count())] # sort the names units2Merge.sort() # if fewer than 2 return if len(units2Merge) < 2: return # store the unit indexes in a list, sort them, and trnasform it into an array newUnit = [] for k in units2Merge: newUnit.extend(self.CurNode.__getattr__(k).Indx.read()) newUnit.sort() newUnit = np.array(newUnit) # remove all the listed units from the h5file for k in units2Merge: self.h5file.remove_node(self.CurNodeName, k, recursive=True) # create a group with the name of the first unit in the list, and # add all the indices of that self.h5file.create_group(self.CurNodeName, units2Merge[0]) self.h5file.create_array(self.CurNodeName + '/' + units2Merge[0], 'Indx', newUnit) self.h5file.create_array(self.CurNodeName + '/' + units2Merge[0], 'isMultiunit', False) self.h5file.create_array(self.CurNodeName + '/' + units2Merge[0], 'isBursting', False) # save changes to disk self.h5file.flush() # add log self.AddLog('%s %s merged' % (self.CurNodeName, str(units2Merge))) # REMOVE ALL THE GRAPHICAL ELEMENTS ##### # get the axes to remove from ax = self.ChanTab['WavesFigure'].figure.axes[0] for k in units2Merge[1:]: # remove the tabs for tabIndx in range(self.ChanTab['UnitTabsWidget'].count()): if str(self.ChanTab['UnitTabsWidget'].tabText(tabIndx)) == k: self.ChanTab['UnitTabsWidget'].removeTab(tabIndx) # remove unit figure self.ChanTab['UnitFigures'][k].figure.clear() self.ChanTab['UnitFigures'][k].close() self.ChanTab['UnitFigures'].pop(k, 0) # removes the unitname from the what2 plot list for n in range(self.What2Plot.count()): if self.What2Plot.itemText(n) == k: self.What2Plot.removeItem(n) # eliminate the raw waveforms from the plot for line in ax.lines: if k in line.get_label(): line.remove() # remove the unit from the list unitNo = int(re.search('[0-9]{2}', k).group()) self.UnitsList.remove(unitNo) # update the information in the overview table #self.OverviewTab2['OverviewTable'].takeItem(self.ChansList.index(self.CurChan), # unitNo+4) # redraw the waveforms figure self.ChanTab['WavesFigure'].figure.canvas.draw() # replot features self.PlotFeatures() # add the merged unit to the table self.UnitsTable_AddUnit(units2Merge[0]) #__________________________________________________________________________ def CallMoveUnits_proc(self): if not self.H5FileLoaded: return self.MoveUnitsWidget.list.clear() unitsList = [k for k in self.CurNode.__members__ if 'Unit' in k] unitsList.sort() self.MoveUnitsWidget.list.addItems(unitsList) self.MoveUnitsWidget.show() #__________________________________________________________________________ def MoveUnits_proc(self): # first get the needed changes old = [] new = [] for k in range(self.MoveUnitsWidget.list.count()): if 'Unit%02d' % k != str(self.MoveUnitsWidget.list.item(k).text()): old.append(str(self.MoveUnitsWidget.list.item(k).text())) new.append('Unit%02d' % k) # in case no changes are needed if len(old) == 0: return # RENAME ALL THE UNITS AND GRAPHICAL ELEMENTS TO "_tmp" ##### for k in self.CurNode.__members__: if 'Unit' in k: # rename the nodes self.h5file.renameNode(self.CurNodeName, name=k, newname=k + '_tmp') for key in ['UnitFigures', 'UnitCountLabel', 'DelUnitBtns', 'PlotRawCheck', 'UnitBtns', 'isMultiunitCheck']: self.ChanTab[key][k + '_tmp'] = self.ChanTab[key][k] self.ChanTab[key].pop(k, 0) # remove for j, k in zip(old, new): self.ChangeUnitName_proc(j + '_tmp', k) # move everything back for k in self.CurNode.__members__: if '_tmp' in k: if k.replace('_tmp', '') in self.CurNode.__members__: self.h5file.remove_node(self.CurNodeName, name=k) for key in ['UnitFigures', 'UnitCountLabel', 'DelUnitBtns', 'PlotRawCheck', 'UnitBtns', 'isMultiunitCheck']: self.ChanTab[key].deleteLater() self.ChanTab[key].pop(k, 0) else: self.h5file.renameNode(self.CurNodeName, name=k, newname=k.replace('_tmp', '')) for key in ['UnitFigures', 'UnitCountLabel', 'DelUnitBtns', 'PlotRawCheck', 'UnitBtns', 'isMultiunitCheck']: self.ChanTab[key][k.replace('_tmp', '')] = self.ChanTab[key][k] self.ChanTab[key].pop(k, 0) # save changes to disk self.h5file.flush() #__________________________________________________________________________ def ChangeUnitName_proc(self, oldName, newName): # rename node self.h5file.renameNode(self.CurNodeName, name=oldName, newname=newName, overwrite=True) # get the unit numbers from the names oldUnitNo = int(re.search('[0-9]{2}', oldName).group()) newUnitNo = int(re.search('[0-9]{2}', newName).group()) # move the tab and change its name self.ChanTab['UnitTabBarWidget'].setTabText(newUnitNo, newName) self.ChanTab['UnitTabBarWidget'].moveTab(oldUnitNo, newUnitNo) for key in ['UnitFigures', 'UnitCountLabel', 'DelUnitBtns', 'PlotRawCheck', 'UnitBtns', 'isMultiunitCheck']: self.ChanTab[key][newName] = self.ChanTab[key][oldName] self.ChanTab[key][newName].setObjectName(newName) self.ChanTab[key].pop(oldName, 0) # change color of the unit self.ChangeUnitColor_proc(newName, color=255 * self.UnitColors[newUnitNo]) #__________________________________________________________________________ def CleanWavesFigure_proc(self): self.ChanTab['WavesFigure'].figure.canvas.draw() #__________________________________________________________________________ def UnitsTable_AddRow(self): self.CurUnit = self.ChanTab['UnitTabsWidget'].currentIndex() self.CurUnitName = self.ChanTab['UnitTabsWidget'].tabText(self.CurUnit) #__________________________________________________________________________ def DelUnit_proc(self): if not self.H5FileLoaded or not self.ChanPlotted: return # get sender sender = self.sender() # get unit name and number unitName = str(sender.objectName()) unitNo = int(re.search('(?<=Unit)[0-9]{2}', unitName).group()) # remove the unit from the list self.UnitsList.remove(unitNo) # get the indexes of the unit indx = self.h5file.get_node(self.CurNodeName, unitName).Indx.read() # get unsorted, append the indexes from the unit and update that # to the h5file self.Unsorted = self.h5file.get_node(self.CurNodeName, 'Unsorted').read() self.Unsorted = np.append(self.Unsorted, indx) self.Unsorted.sort() self.h5file.remove_node(self.CurNodeName, 'Unsorted') self.h5file.remove_node(self.CurNodeName, unitName, recursive=True) self.h5file.create_array(self.CurNodeName, 'Unsorted', self.Unsorted) # add log self.AddLog('%s %s deleted' % (self.CurNodeName, unitName)) # remove the tab for tabIndx in range(self.ChanTab['UnitTabsWidget'].count()): if str(self.ChanTab['UnitTabsWidget'].tabText(tabIndx)) == unitName: break self.ChanTab['UnitTabsWidget'].removeTab(tabIndx) # close and remove unit figure plt.close(self.ChanTab['UnitFigures'][unitName].figure) self.ChanTab['UnitFigures'].pop(unitName, 0) # removes the unitname from the what2 plot list for n in range(self.What2Plot.count()): if self.What2Plot.itemText(n) == unitName: self.What2Plot.removeItem(n) # update the information in the overview table self.OverviewTab2['OverviewTable'].takeItem(self.ChansList.index(self.CurChan), unitNo + 4) # eliminate the raw waveforms from the plot ax = self.ChanTab['WavesFigure'].figure.axes[0] for line in ax.lines: if unitName in line.get_label(): line.remove() break # redraw the waveforms figure self.ChanTab['WavesFigure'].figure.canvas.draw() # replot features self.PlotFeatures() #__________________________________________________________________________ def ChangeUnitColor_proc(self, unitName=None, color=None): ''' Change unit color utility function inputs: unitName : string containing the unit name color : must be a four element RGB tuple from 0 to 255, for example, the output of getRgB() output from a Qt Color instance. The fourth element is the alpha (usually = to 255)''' if unitName in [None, False]: sender = self.sender() unitName = str(sender.text()).replace(' ', '') unitNo = int(re.search('[0-9]{1,3}', unitName).group()) if not np.any(color): c = QtGui.QColorDialog() color = c.getColor(sender.palette().color(1)) if not color.isValid(): return if isinstance(color, QtGui.QColor): qtColor = color else: qtColor = QtGui.QColor(*color) mplColor = np.array(qtColor.getRgb()[0:3]) / 255.0 if isinstance(self.sender(), QtGui.QPushButton) and \ 'Unit' in self.sender().text(): self.sender().setStyleSheet('QPushButton {background: rgb%s}' % str(qtColor.getRgb()[0:3])) self.UnitColors[unitNo, :] = mplColor # get the figure with a name equal to the current unit ax = self.ChanTab['UnitFigures'][unitName].figure.axes # iterate over axes to change colors for k in ax: for j in k.lines: j.set_color(mplColor) for j in k.collections: j.set_color(mplColor) for j in k.patches: j.set_color(mplColor) # search a figure with a specific name self.ChanTab['UnitFigures'][unitName].figure.canvas.draw() # change the color of the raw waveforms for k in self.ChanTab['WavesFigure'].figure.axes[0].lines: if re.search('Unit%02d' % unitNo, str(k.get_label())): k.set_color(mplColor) self.ChanTab['WavesFigure'].figure.canvas.draw() # change the color in the features plot for k in self.ChanTab['FeaturesFig'].figure.axes[0].lines: if re.search('Unit%02d' % unitNo, str(k.get_label())): k.set_color(mplColor) self.ChanTab['FeaturesFig'].figure.canvas.draw() self.ChanTab['UnitTabsWidget'].tabBar().setTabTextColor(unitNo, qtColor) #__________________________________________________________________________ def ResetChannelTab_proc(self): ''' reset the units tab''' self.NUnits = 0 # clear the unit figures for k in self.ChanTab['UnitFigures']: plt.close(self.ChanTab['UnitFigures'][k].figure) self.ChanTab['UnitFigures'] = {} # clean the button dictionaries for key in ['DelUnitBtns', 'UnitCountLabel', 'UnitBtns', 'PlotRawCheck', 'isMultiunitCheck']: for k in self.ChanTab[key].keys(): self.ChanTab[key][k].deleteLater() self.ChanTab[key] = {} # Reset WavesFigure canvas ax = self.ChanTab['WavesFigure'].figure.axes[0] ax.cla() self.SampleWaveform, = ax.plot([], color=[.5, .5, .5], lw=2, animated=True) ax.set_ylim(-1000, 1000) ax.set_xlim(-2, self.WfSize + 1) ax.tick_params(color=[.5, .5, .5], labelcolor=[.5, .5, .5]) for k in ax.spines.values(): k.set_edgecolor([.5, .5, .5]) self.Slice1Ln = ax.axvline(0, color=[.5, .5, .5]) self.Slice2Ln = ax.axvline(0, color=[.5, .5, .5], linestyle='--') ax.grid(color=[.5, .5, .5]) self.ChanTab['WavesFigure'].figure.tight_layout() self.ChanTab['WavesFigure'].figure.canvas.draw() # clean the 3d widget for k in self.Widget3d.items: self.Widget3d.removeItem(k) #self.Fig3d.clf() # set the current indexes of the X and Y variable-selecting comboboxes self.XPlot.setCurrentIndex(0) self.YPlot.setCurrentIndex(1) self.ZPlot.setCurrentIndex(2) # reset Units list self.UnitsList = [] # reset the units tabbed widget tabs = range(self.ChanTab['UnitTabsWidget'].count()) tabs.reverse() if len(tabs) > 0: for k in tabs: self.ChanTab['UnitTabsWidget'].removeTab(k) # reset the time scroll widget and axes self.TimeScroll['VZoom'].setValue(1000) self.TimeScroll['HZoom'].setValue(500) self.TimeScroll['HScroll'].setValue(0) self.TimeScroll['Figure'].figure.axes[0].cla() self.TimeScroll['Ax'].set_xticklabels([]) self.TimeScroll['Ax'].set_yticklabels([]) self.TimeScroll['Figure'].figure.canvas.draw() # reset label self.nPtsLabel.setText('') # reset the features figure: self.ChanTab['FeaturesFig'].figure.clf() self.ChanTab['FeaturesFig'].figure.canvas.draw() # delete KDTree object if hasattr(self, 'XYData'): del self.XYData if hasattr(self, 'CurWaveforms'): del self.CurWaveforms if hasattr(self, 'CurTs'): del self.CurTs # remove the PCA from the dictionarys self.ChanTab.pop('PCA', 0) # reset the channel tab name self.MainFigTab.setTabText(2, 'Channel Tab') #__________________________________________________________________________ def SliceDraw(self): sender = self.sender() fig = self.ChanTab['WavesFigure'].figure ax = fig.axes[0] if sender.objectName() == 'Slice1': self.Slice1Ln.set_xdata(sender.value()) elif sender.objectName() == 'Slice2': self.Slice2Ln.set_xdata(sender.value()) ax.draw_artist(ax.patch) for k in ax.get_lines(): ax.draw_artist(k) for k in ax.get_xgridlines(): ax.draw_artist(k) for k in ax.get_ygridlines(): ax.draw_artist(k) ax.draw_artist(ax.spines['top']) ax.draw_artist(ax.spines['left']) fig.canvas.update() fig.canvas.flush_events() #self.ChanTab['WavesFigBG'] = fig.canvas.copy_from_bbox(ax.bbox) #__________________________________________________________________________ def ChangeCurrentUnit_proc(self): '''set the current unit''' self.CurUnit = self.ChanTab['UnitTabsWidget'].currentIndex() self.CurUnitName = str(self.ChanTab['UnitTabsWidget'].tabText(self.CurUnit)) for k in range(self.What2Plot.count()): if str(self.What2Plot.itemText(k)) == self.CurUnitName: self.What2Plot.setCurrentIndex(k) break #__________________________________________________________________________ def MainFigTabProc(self): '''Change the toolbar tab acording to the selected view''' curtab = self.MainFigTab.currentIndex() curtabname = str(self.MainFigTab.tabText(curtab)) if curtabname == 'Channels Overview' or curtabname == 'Summary Table': self.ToolsTab.setCurrentIndex(0) elif re.search('Chan [0-9]{1,2}', curtabname): self.ToolsTab.setCurrentIndex(1) #__________________________________________________________________________ def closeEvent(self, *event): ''' reimplementation of the closeEvent that closes the h5file before killing the window''' if self.H5FileLoaded: self.h5file.close() self.deleteLater() #============================================================================== if __name__ == '__main__': if not QtGui.QApplication.instance(): app = QtGui.QApplication(sys.argv) else: app = QtGui.QApplication.instance() spikesorter = SpikeSorter() #sys.exit(app.exec_())
420dbb78c75611b7d1e8bd3addfb16fb0a70735f
c08b5c091f40eed4c6ded8a5ecfad5105f57d6d3
/users/migrations/0001_initial.py
8e01acce9a47f448025659bda39472937f1830c0
[]
no_license
fofochi1/book_project
e0f5e1d1b390261d0853d7fc2fc6a5d4febca27e
3a8cff45743fac1b0b5c90c04783d40b5c9bd8a9
refs/heads/main
2023-04-22T00:57:37.566751
2021-05-12T20:03:50
2021-05-12T20:14:27
366,843,151
0
0
null
null
null
null
UTF-8
Python
false
false
778
py
# Generated by Django 3.2 on 2021-05-03 21:01 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(default='default.jpg', upload_to='profile_pics')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
648959589e6ed0862ce63ccc8803fe68dd14dc8b
6518c74441a68fc99b2b08423b5ea11480806499
/mlflow/entities/model_registry/model_version.py
51f05ad4b0f376817479b3c2724d0c4345121abb
[ "Apache-2.0" ]
permissive
criteo-forks/mlflow
da58e64d09700623810da63999a1aca81b435b90
499284d8dc9e9ec79d8d9dbd03c58d162a2b7eaa
refs/heads/master
2023-04-14T17:59:29.997458
2022-01-11T09:50:26
2022-01-11T09:50:26
191,391,769
5
4
Apache-2.0
2023-04-07T15:16:20
2019-06-11T14:44:00
Python
UTF-8
Python
false
false
5,635
py
from mlflow.entities.model_registry._model_registry_entity import _ModelRegistryEntity from mlflow.entities.model_registry.model_version_tag import ModelVersionTag from mlflow.entities.model_registry.model_version_status import ModelVersionStatus from mlflow.protos.model_registry_pb2 import ( ModelVersion as ProtoModelVersion, ModelVersionTag as ProtoModelVersionTag, ) class ModelVersion(_ModelRegistryEntity): """ MLflow entity for Model Version. """ def __init__( self, name, version, creation_timestamp, last_updated_timestamp=None, description=None, user_id=None, current_stage=None, source=None, run_id=None, status=ModelVersionStatus.to_string(ModelVersionStatus.READY), status_message=None, tags=None, run_link=None, ): super().__init__() self._name = name self._version = version self._creation_time = creation_timestamp self._last_updated_timestamp = last_updated_timestamp self._description = description self._user_id = user_id self._current_stage = current_stage self._source = source self._run_id = run_id self._run_link = run_link self._status = status self._status_message = status_message self._tags = {tag.key: tag.value for tag in (tags or [])} @property def name(self): """String. Unique name within Model Registry.""" return self._name @property def version(self): """version""" return self._version @property def creation_timestamp(self): """Integer. Model version creation timestamp (milliseconds since the Unix epoch).""" return self._creation_time @property def last_updated_timestamp(self): """Integer. Timestamp of last update for this model version (milliseconds since the Unix epoch).""" return self._last_updated_timestamp @property def description(self): """String. Description""" return self._description @property def user_id(self): """String. User ID that created this model version.""" return self._user_id @property def current_stage(self): """String. Current stage of this model version.""" return self._current_stage @property def source(self): """String. Source path for the model.""" return self._source @property def run_id(self): """String. MLflow run ID that generated this model.""" return self._run_id @property def run_link(self): """String. MLflow run link referring to the exact run that generated this model version.""" return self._run_link @property def status(self): """String. Current Model Registry status for this model.""" return self._status @property def status_message(self): """String. Descriptive message for error status conditions.""" return self._status_message @property def tags(self): """Dictionary of tag key (string) -> tag value for the current model version.""" return self._tags @classmethod def _properties(cls): # aggregate with base class properties since cls.__dict__ does not do it automatically return sorted(cls._get_properties_helper()) def _add_tag(self, tag): self._tags[tag.key] = tag.value # proto mappers @classmethod def from_proto(cls, proto): # input: mlflow.protos.model_registry_pb2.ModelVersion # returns: ModelVersion entity model_version = cls( proto.name, proto.version, proto.creation_timestamp, proto.last_updated_timestamp, proto.description, proto.user_id, proto.current_stage, proto.source, proto.run_id, ModelVersionStatus.to_string(proto.status), proto.status_message, run_link=proto.run_link, ) for tag in proto.tags: model_version._add_tag(ModelVersionTag.from_proto(tag)) return model_version def to_proto(self): # input: ModelVersion entity # returns mlflow.protos.model_registry_pb2.ModelVersion model_version = ProtoModelVersion() model_version.name = self.name model_version.version = str(self.version) model_version.creation_timestamp = self.creation_timestamp if self.last_updated_timestamp is not None: model_version.last_updated_timestamp = self.last_updated_timestamp if self.description is not None: model_version.description = self.description if self.user_id is not None: model_version.user_id = self.user_id if self.current_stage is not None: model_version.current_stage = self.current_stage if self.source is not None: model_version.source = str(self.source) if self.run_id is not None: model_version.run_id = str(self.run_id) if self.run_link is not None: model_version.run_link = str(self.run_link) if self.status is not None: model_version.status = ModelVersionStatus.from_string(self.status) if self.status_message: model_version.status_message = self.status_message model_version.tags.extend( [ProtoModelVersionTag(key=key, value=value) for key, value in self._tags.items()] ) return model_version
06df3ab7ee3b32c6ad05329bec7d6a3373fe7fc5
7fa90c8825c16b07309e295b003fe3173eae3d73
/(N^K).py
4ed6c01e914dc71e51476737a07dbbc74e733a00
[]
no_license
chanduvenkyteju/pythonprogramming
e3e86309af0819e70a3f2af1c7b8cf524274d978
7ee742a205d8ae25b1d96f9cf5d1416d5460672a
refs/heads/master
2021-06-17T21:41:44.368019
2021-02-02T08:54:22
2021-02-02T08:54:22
145,967,045
0
3
null
null
null
null
UTF-8
Python
false
false
47
py
N,K=map(int,(raw_input()).split()) print(N**K)
e09d9ca19abc53c9973aa8bba0419f984ea718e2
b2c070e09bff49241fcff98bcde825cfa96e93ca
/Coding Club India/Asked Amazon Interview Questions/DeleteMidLL.py
8a324900c83b3a9a801c9d8e8677d1381ac50b54
[ "MIT" ]
permissive
Beryl2208/CI-2
dcb1b923f9c4f1f8b167c36c8b22a80522322c53
f671292dad2695e37458866442a6b951ba4e1a71
refs/heads/master
2022-12-26T19:11:28.559911
2020-10-06T06:27:51
2020-10-06T06:27:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
''' class Node: def __init__(self, data): self.data = data self.next = None ''' def deleteMid(head): ''' head: head of given linkedList return: head of resultant llist ''' if head == None or head.next == None: return None slow = fast = prev = head while slow and fast and fast.next: prev = slow slow = slow.next fast = fast.next.next prev.next = slow.next return head
46533526bd0e768c9966f1d4fbb49fbbcd2c703f
4fb0e63c0170aa6ddac587e8ad367be96702d682
/bookmarks/account/views.py
89b26c5387719ad63da597b9ea026082142b05df
[]
no_license
devvourer/bookmarks
3984d21e42022284c0348a9350b05a12e0755a61
9b6dd1600a9813fe5c2e613e0e1de82d4861dcb2
refs/heads/master
2023-04-12T22:58:12.803811
2021-04-27T12:40:58
2021-04-27T12:40:58
360,501,787
0
0
null
null
null
null
UTF-8
Python
false
false
5,063
py
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from django.contrib.auth import authenticate, login from django.contrib.auth.decorators import login_required from .forms import LoginForm, UserRegistrationForm, UserEditForm, ProfileEditForm from .models import Profile, Contact from django.contrib import messages from django.shortcuts import get_object_or_404 from django.contrib.auth.models import User from django.views.decorators.http import require_POST from bookmarks.common.decorators import ajax_required from actions.utils import create_action from actions.models import Actions from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage def user_login(request): if request.method == 'POST': form = LoginForm(request.POST) if form.is_valid(): cd = form.cleaned_data user = authenticate(request, username=cd['username'], password=cd['password']) if user is not None: if user.is_active: login(request, user) return HttpResponse('Authenticate successfully') else: return HttpResponse('Disabled account') else: return HttpResponse('Invalid login') else: form = LoginForm() return render(request, 'account/login.html', {'form': form}) def register(request): if request.method == 'POST': user_form = UserRegistrationForm(request.POST) print(request) if user_form.is_valid(): new_user = user_form.save(commit=False) new_user.set_password(user_form.cleaned_data['password']) new_user.save() Profile.objects.create(user=new_user) create_action(new_user, 'has created an account') return render(request, 'account/register_done.html', {'new_user': new_user}) else: user_form = UserRegistrationForm() return render(request, 'account/register.html', {'user_form': user_form}) @login_required def edit(request): if request.method == 'POST': user_form = UserEditForm(instance=request.user, data=request.POST) profile_form = ProfileEditForm(instance=request.user.profile, data=request.POST, files=request.FILES) if user_form.is_valid() and profile_form.is_valid(): user_form.save() profile_form.save() messages.success(request, 'Profile updated successfully') else: messages.error(request, 'Error updating your profile') else: user_form = UserEditForm(instance=request.user) profile_form = ProfileEditForm(instance=request.user.profile) return render(request, 'account/edit.html', {'user_form': user_form, 'profile_form': profile_form}) @login_required def user_list(request): users = User.objects.filter(is_active=True) return render(request, 'account/user/list.html', {'section': 'people', 'users': users}) @login_required def user_detail(request, username): user = get_object_or_404(User, username=username, is_active=True) return render(request, 'account/user/detail.html', {'section': 'people', 'user': user}) @ajax_required @require_POST @login_required def user_follow(request): user_id = request.POST.get('id') action = request.POST.get('action') if user_id and action: try: user = User.objects.get(id=user_id) if action == 'follow': Contact.objects.get_or_create(user_from=request.user, user_to=user) create_action(request.user, 'is following', user) else: Contact.objects.filter(user_from=request.user, user_to=user).delete() return JsonResponse({'status': 'ok'}) except User.DoesNotExist: return JsonResponse({'status': 'ok'}) return JsonResponse({'status': 'ok'}) @login_required def dashboard(request): actions = Actions.objects.exclude(user=request.user) following_ids = request.user.following.values_list('id', flat=True) if following_ids: actions = actions.filter(user_id__in=following_ids) actions = actions.select_related('user', 'user__profile').prefetch_related('target') paginator = Paginator(actions, 5) page = request.GET.get('page') try: actions = paginator.page(page) except PageNotAnInteger: actions = paginator.page(1) except EmptyPage: if request.is_ajax(): return HttpResponse('') actions = paginator.page(paginator.num_pages) if request.is_ajax(): return render(request, 'actions/action/action_list_ajax.html', {'section': 'dashboard', 'actions': actions}) return render(request, 'account/dashboard.html', {'section': 'dashboard', 'actions': actions}) # # @login_required # def action_list(request): # actions = Actions.objects.exclude(user=request.user) # following_ids = request.user.following.values_list('id', flat=True) #
310d15eb8903a5656daba033737ea2e55507c9f0
df20a12d6ab69a4e35b4aa3150650cb499a30125
/python/pcs_api/oauth/session_managers.py
1dfe4a2c8221ef48d9a4294194b06d290af6604c
[ "Apache-2.0" ]
permissive
clinthidinger/pcs_api
a46077a473ae49dbbf8889afe4022f2b2ae059c7
20691e52e144014f99ca75cb7dedc7ba0c18586c
refs/heads/master
2021-05-28T19:15:32.512734
2015-06-14T06:48:44
2015-06-14T06:48:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,075
py
# -*- coding: utf-8 -*- # # Copyright (c) 2014 Netheos (http://www.netheos.net) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import, unicode_literals, print_function import time import urlparse import requests from oauthlib.oauth2 import TokenExpiredError from requests_oauthlib import OAuth2Session import logging import threading from ..credentials.app_info import AppInfo from ..credentials.user_credentials import UserCredentials from ..cexceptions import CStorageError logger = logging.getLogger(__name__) class AbstractSessionManager(object): def __init__(self, user_credentials): self._user_credentials = user_credentials def get_session(self): """Return a requests session-like object suitable to issue authenticated http requests to provider""" raise NotImplementedError class BasicAuthSessionManager(AbstractSessionManager): """Add http basic authentication header: yandex, ... Note: this is actually NOT an oauth manager !""" def __init__(self, user_credentials): super(BasicAuthSessionManager, self).__init__(user_credentials) # Some checks: if user_credentials.user_id is None: raise ValueError("Undefined user_id in user_credentials") creds = self._user_credentials.credentials(); if not 'password' in creds: raise ValueError("User credentials do not contain user password") def get_session(self): session = requests.Session() session.auth = requests.auth.HTTPBasicAuth(self._user_credentials.user_id, self._user_credentials.credentials().get('password')) return session class DigestAuthSessionManager(AbstractSessionManager): """Handle http digest authentication: CloudMe, ...""" def __init__(self, user_credentials): super(DigestAuthSessionManager, self).__init__(user_credentials) # Some checks: if user_credentials.user_id is None: raise ValueError("Undefined user_id in user_credentials") creds = self._user_credentials.credentials(); if not 'password' in creds: raise ValueError("User credentials do not contain user password") # HTTPDigestAuth objects: in order to avoid double requests each time, # such objects must survive between requests. # However they can not be shared between threads, so we keep a cache of them for each thread: self._digests_auth = threading.local() def get_session(self): session = requests.Session() try: digest_auth = self._digests_auth.digest_auth except: digest_auth = requests.auth.HTTPDigestAuth(self._user_credentials.user_id, self._user_credentials.credentials().get('password')) self._digests_auth.digest_auth = digest_auth session.auth = digest_auth return session class OAuth2SessionManager(AbstractSessionManager): """OAuth2 authorization manager (used by many providers) """ def __init__(self, oauth2_provider_params, app_info, user_credentials_repository=None, user_credentials=None): super(OAuth2SessionManager, self).__init__(user_credentials) self._oauth2_provider_params = oauth2_provider_params self._app_info = app_info self._user_credentials_repository = user_credentials_repository self._refresh_lock = threading.RLock() # Some checks if we already have user_credentials: if user_credentials is not None: creds = self._user_credentials.credentials() if not 'access_token' in creds: raise ValueError("User credentials do not contain any access token") def get_authorize_url(self): oauth = OAuth2Session(client_id=self._app_info.app_id, redirect_uri=self._app_info.redirect_url, scope=self._oauth2_provider_params.scope_for_authorization(self._app_info.scope)) url, state = oauth.authorization_url(self._oauth2_provider_params.authorize_url) return url, state def fetch_user_credentials(self, code_or_url, state): """This is for bootstrapping Oauth2 and getting an initial refresh token.""" oauth = OAuth2Session(client_id=self._app_info.app_id, redirect_uri=self._app_info.redirect_url, scope=self._oauth2_provider_params.scope_for_authorization(self._app_info.scope), state=state) if code_or_url.startswith('http://') or code_or_url.startswith('https://'): # It is an URL: url = code_or_url code = None # URL may contain granted scope: query = urlparse.urlparse(url).query params = dict(urlparse.parse_qsl(query)) granted_scope_str = params.get('scope', None) if granted_scope_str is not None: #logger.debug("granted scope str= %s", granted_scope_str) granted_scope = self._oauth2_provider_params.granted_scope(granted_scope_str) logger.debug("granted scope = %s", granted_scope) else: # It is a code: url = None code = code_or_url token = oauth.fetch_token(self._oauth2_provider_params.access_token_url, authorization_response=url, code=code, client_secret=self._app_info.app_secret) if self._user_credentials is None: self._user_credentials = UserCredentials(self._app_info, None, token) else: self._user_credentials.set_new_credentials(token) return self._user_credentials def do_request(self, *args, **kwargs): already_refreshed_token = False while True: # We always take a new session: required to get fresh access_token session = OAuth2Session(client_id=self._app_info.app_id, token=self._user_credentials.credentials()) try: return session.request(*args, **kwargs) except TokenExpiredError as tee: # If we didn't try already, get a new access_token, we'll refresh it. # this may be a no-op if another thread has just done the same thing: if not already_refreshed_token: logger.debug('Expired access_token: will refresh') self.refresh_token() already_refreshed_token = True # And we'll request again else: # We have refreshed already: this is strange raise CStorageError('Expired token after refresh ? Giving up', tee) def refresh_token(self): """Access tokens are refreshed after expiration (before sending request). This method refreshes token from the given session and stores new token in this session manager object. Method is synchronized so that no two threads will attempt to refresh at the same time. If a locked thread sees that token has already been refreshed, no refresh is attempted either. Not all providers support tokens refresh (ex: Dropbox).""" if not self._oauth2_provider_params.refresh_token_url: # Provider does not support token refresh: we are dead raise CStorageError('Invalid or expired token ; provider does not support token refresh') current_creds = self._user_credentials.credentials() with self._refresh_lock: after_lock_creds = self._user_credentials.credentials() if after_lock_creds == current_creds: logger.debug('This thread will actually refresh token: %r', threading.current_thread()) session = OAuth2Session(client_id=self._app_info.app_id, token=self._user_credentials.credentials()) extra = {'client_id': self._app_info.app_id, 'client_secret': self._app_info.app_secret} new_token = session.refresh_token(self._oauth2_provider_params.refresh_token_url, **extra) self._token_saver(new_token) else: logger.debug('Not refreshed token in this thread, already done') def _token_saver(self, new_token): """callback of requests-oauthlib: called when token has been refreshed. In case no refresh_token has been given by provider, the old one has been kept by the framework so this method only needs to update and persist given token. :param new_token: json dictionary containing access_token, etc.""" logger.debug("Will persist refreshed token: %s", new_token) if 'expires_in' in new_token: # If token contains expiration time, # convert relative time to absolute timestamp. # Used by oauthlib when token will be read again in the future new_token['expires_at'] = time.time() + int(new_token['expires_in']) # Update current user credentials: self._user_credentials.set_new_credentials(new_token) # And save this information: self._user_credentials_repository.save(self._user_credentials)
242f93be836d60b8ec00df8a2ef34c03e9bf5c74
9f28ddc579e52a0491e599cfcd29c044ef230a2f
/sudoku/classifier/classifier.py
9bbb53cdca8220b054449f5123634291ccb5c52c
[]
no_license
Blitzliner/sudokuSolver
d596005f13b45af27c8fe66554c73d684920bd99
f2ef0c01d62b3968a6fd8c7ad6e48442c7d70a50
refs/heads/master
2022-04-28T17:19:06.906979
2020-04-28T15:11:31
2020-04-28T15:11:31
259,655,030
0
0
null
null
null
null
UTF-8
Python
false
false
3,955
py
import os from keras.models import model_from_json import cv2 from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import Flatten from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.utils import np_utils from keras import backend as K class DigitClassifier: def __init__(self): self._model = None def load(self, model_dir, model_structure="model.json", model_data="model.h5"): model_structure_path = os.path.join(model_dir, model_structure) model_data_path = os.path.join(model_dir, model_structure) if os.path.isfile(model_structure_path) and os.path.isfile(model_data_path): with open(model_structure_path, 'r') as file: json_content = file.read() self._model = model_from_json(json_content) self._model.load_weights(os.path.join(model_dir, model_data)) else: raise FileNotFoundError(F"Model files not found: {model_structure_path} and {model_data_path}") def train(self, x_train, y_train, x_test, y_test): K.image_data_format() # One Hot encode outputs y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] # Create model model = Sequential() model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28), activation='relu', data_format='channels_first')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(16, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=10, batch_size=200) self._model = model def save(self, model_dir="model", model_structure="model.json", model_data="model.h5"): model_structure_path = os.path.join(model_dir, model_structure) model_data_path = os.path.join(model_dir, model_data) model_json = self._model.to_json() with open(model_structure_path, "w") as json_file: json_file.write(model_json) # serialize model to JSON self._model.save_weights(model_data_path) # serialize weights to HDF5 def get_error(self, x_test, y_test): if self._model is not None: scores = self._model.evaluate(x_test, y_test, verbose=0) return 100 - scores[1] * 100 else: raise Exception("Model does not exist. Please load a model first.") return 0 def predict(self, image): if self._model is not None: resized = cv2.resize(image, (28, 28)) reshaped = resized.reshape(1, 1, 28, 28) prediction = self._model.predict_classes(reshaped, verbose=0) return prediction[0] else: raise Exception("Model does not exist. Please load a model first.") return 0 if __name__ == '__main__': import data model_dir = "models" x_train, y_train, x_test, y_test = data.get_all_data() #x_train, y_train, x_test, y_test = get_all_data() print(F"train/test shape: {x_train.shape}/{x_test.shape}") classifier = DigitClassifier() train = True if train: classifier.train(x_train, y_train, x_test, y_test) classifier.save(model_dir) else: classifier.load(model_dir) for idx in range(10): image = x_test[idx][0] result = classifier.predict(image) print(F"Prediction is: {result}") cv2.imshow("test image", image) cv2.waitKey(0)
9e5c388fb096b78adf854e6c99a848f76cb54e7e
580e92fe97ccf6fac70e483230429d6aaf31edc4
/constellation.py
cc419d942b3ef0f2123de7b1f24fba61606918bd
[]
no_license
mitooos/orion-constellation
c9aa4fd751eb38e9893669075a485ce91bd80c09
b0bed824db676f041435a517210b8ae61f44d475
refs/heads/master
2020-03-21T06:29:15.311245
2018-06-21T21:38:58
2018-06-21T21:38:58
138,223,704
0
0
null
null
null
null
UTF-8
Python
false
false
6,474
py
# coding: utf-8 # ## Project: Visualizing the Orion Constellation # # In this project you are Dr. Jillian Bellovary, a real-life astronomer for the Hayden Planetarium at the American Museum of Natural History. As an astronomer, part of your job is to study the stars. You've recently become interested in the constellation Orion, a collection of stars that appear in our night sky and form the shape of [Orion](https://en.wikipedia.org/wiki/Orion_(constellation)), a warrior God from ancient Greek mythology. # # As a researcher on the Hayden Planetarium team, you are in charge of visualizing the Orion constellation in 3D using the Matplotlib function `.scatter()`. To learn more about the `.scatter()` you can see the Matplotlib documentation [here](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html). # # You will create a rotate-able visualization of the position of the Orion's stars and get a better sense of their actual positions. To achieve this, you will be mapping real data from outer space that maps the position of the stars in the sky # # The goal of the project is to understand spatial perspective. Once you visualize Orion in both 2D and 3D, you will be able to see the difference in the constellation shape humans see from earth versus the actual position of the stars that make up this constellation. # # <img src="https://upload.wikimedia.org/wikipedia/commons/9/91/Orion_constellation_with_star_labels.jpg" alt="Orion" style="width: 400px;"/> # # # ## 1. Set-Up # The following set-up is new and specific to the project. It is very similar to the way you have imported Matplotlib in previous lessons. # # + Add `%matplotlib notebook` in the cell below. This is a new statement that you may not have seen before. It will allow you to be able to rotate your visualization in this jupyter notebook. # # + We will be using a subset of Matplotlib: `matplotlib.pyplot`. Import the subset as you have been importing it in previous lessons: `from matplotlib import pyplot as plt` # # # + In order to see our 3D visualization, we also need to add this new line after we import Matplotlib: # `from mpl_toolkits.mplot3d import Axes3D` # # In[22]: get_ipython().run_line_magic('matplotlib', 'notebook') from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # ## 2. Get familiar with real data # # Astronomers describe a star's position in the sky by using a pair of angles: declination and right ascension. Declination is similar to longitude, but it is projected on the celestian fear. Right ascension is known as the "hour angle" because it accounts for time of day and earth's rotaiton. Both angles are relative to the celestial equator. You can learn more about star position [here](https://en.wikipedia.org/wiki/Star_position). # # The `x`, `y`, and `z` lists below are composed of the x, y, z coordinates for each star in the collection of stars that make up the Orion constellation as documented in a paper by Nottingham Trent Univesity on "The Orion constellation as an installation" found [here](https://arxiv.org/ftp/arxiv/papers/1110/1110.3469.pdf). # # Spend some time looking at `x`, `y`, and `z`, does each fall within a range? # In[23]: # Orion x = [-0.41, 0.57, 0.07, 0.00, -0.29, -0.32,-0.50,-0.23, -0.23] y = [4.12, 7.71, 2.36, 9.10, 13.35, 8.13, 7.19, 13.25,13.43] z = [2.06, 0.84, 1.56, 2.07, 2.36, 1.72, 0.66, 1.25,1.38] # ## 3. Create a 2D Visualization # # Before we visualize the stars in 3D, let's get a sense of what they look like in 2D. # # Create a figure for the 2d plot and save it to a variable name `fig`. (hint: `plt.figure()`) # # Add your subplot `.add_subplot()` as the single subplot, with `1,1,1`.(hint: `add_subplot(1,1,1)`) # # Use the scatter [function](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html) to visualize your `x` and `y` coordinates. (hint: `.scatter(x,y)`) # # Render your visualization. (hint: `plt.show()`) # # Does the 2D visualization look like the Orion constellation we see in the night sky? Do you recognize its shape in 2D? There is a curve to the sky, and this is a flat visualization, but we will visualize it in 3D in the next step to get a better sense of the actual star positions. # In[24]: fig = plt.figure() fig.add_subplot(1,1,1) plt.scatter(x,y, color = 'black') plt.title('2D Representation Of The Orion Constellation') plt.xlabel('x Coordinates') plt.ylabel('y Coordinates') plt.show() # ## 4. Create a 3D Visualization # # Create a figure for the 3D plot and save it to a variable name `fig_3d`. (hint: `plt.figure()`) # # # Since this will be a 3D projection, we want to make to tell Matplotlib this will be a 3D plot. # # To add a 3D projection, you must include a the projection argument. It would look like this: # ```py # projection="3d" # ``` # # Add your subplot with `.add_subplot()` as the single subplot `1,1,1` and specify your `projection` as `3d`: # # `fig_3d.add_subplot(1,1,1,projection="3d")`) # # Since this visualization will be in 3D, we will need our third dimension. In this case, our `z` coordinate. # # Create a new variable `constellation3d` and call the scatter [function](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html) with your `x`, `y` and `z` coordinates. # # Include `z` just as you have been including the other two axes. (hint: `.scatter(x,y,z)`) # # Render your visualization. (hint `plt.show()`.) # # In[25]: fig_3d = plt.figure() fig_3d.add_subplot(1,1,1,projection='3d') constellation3d = plt.scatter(x,y,z) plt.title('Orion Constellation 3D Representation') plt.show() # ## 5. Rotate and explore # # Use your mouse to click and drag the 3D visualization in the previous step. This will rotate the scatter plot. As you rotate, can you see Orion from different angles? # # Note: The on and off button that appears above the 3D scatter plot allows you to toggle rotation of your 3D visualization in your notebook. # # Take your time, rotate around! Remember, this will never look exactly like the Orion we see from Earth. The visualization does not curve as the night sky does. # There is beauty in the new understanding of Earthly perspective! We see the shape of the warrior Orion because of Earth's location in the universe and the location of the stars in that constellation. # # Feel free to map more stars by looking up other celestial x, y, z coordinates [here](http://www.stellar-database.com/). #
417726b5fa7e74d09c1f9cb39aada7b694389d42
0170a7ddf23644ab0eb071356609cd894b5d6c80
/structure.py
226ce3d0b708331160c524dfcb4a1eb8b6e6b29c
[]
no_license
jakobgager/Exp_Struct
07d2a8935cb50aaeb23e7f759539ae2797058a1e
7a8e6ba1d0f57b9f6398a4a2d788f13fdb91a672
refs/heads/master
2021-01-10T21:01:50.306877
2013-05-17T22:31:18
2013-05-17T22:31:18
10,111,090
2
0
null
null
null
null
UTF-8
Python
false
false
5,240
py
#! /usr/bin/env python from math import sqrt, ceil def fbd_template(tempdict): return """ # Crosssection Pnt P1 -{l2} -{w2} -{h2} Pnt P2 -{l2} -{w2} {PC1z} Pnt P3 -{l2} -{PC1y} {h2} Pnt PC1 -{l2} -{PC1y} {PC1z} Pnt P4 -{l2} 0 {h2} Line L1 P1 P2 {L1div} Line L2 P2 P3 PC1 {L2div} Line L3 P3 P4 {L3div} Seta CS1 l L1 L2 L3 # Flaeche 1 Seto Struct1 Swep CS1 CS2 tra {la} 0 0 {ladiv} Setc Struct1 # Flaeche 2 Seto Struct2 Swep CS2 CS3 tra {lcl} 0 0 {lcldiv} Setc Struct2 # Flaeche 3 Seto Struct3 Pnt P5 0 -{w2} {P5z} Pnt PC2 0 -{w2} {PC2z} Seta CS3a l L00B L00A Swep CS3a CS4a tra {wc} 0 0 {wcdiv} Line L4 D006 P5 PC2 {wcdiv} Line L5 P5 D00B {L5div} Surf S1 L4 L5 L00J L009 Setc Struct3 Seta struct_all se Struct1 Struct2 Struct3 # Load block Seto block1 Pnt P8 -{l2} 0 -{h2} Pnt P11 -{l2} 0 {PC1z} Line L6 P1 P8 {L6div} Line L7 P8 P11 {L1div} Line L9 P11 P4 {L2div} Line L11 P2 P11 {L6div} Surf S2 L1 L11 L7 L6 Surf S3 L11 L2 L3 L9 Swep block1 temp tra {la} 0 0 {ladiv} Setc block1 # Load block 2 Seto block2 Pnt P9 -{P9x} 0 {h2} Pnt P10 -{P9x} 0 {P10z} Line L8 P9 P10 2 Swep block2 temp1 tra 0 -{w2} 0 {L6div} Swep block2 temp2 tra {wd} 0 0 {wddiv} Setc block2 # support Seto support Pnt P12 {P12x} -{w2e} {P12z} Pnt P12c -{ls2} -{w2e} -{h2} Pnt P13 {P13x} -{w2e} {P12z} Pnt PC3 -{ls2} -{w2e} {P12z} Pnt P14 {P13x} -{w2e} {P14z} Pnt P15 {P12x} -{w2e} {P14z} Line L12 P12 P12c PC3 {sdiv} Line L13 P12c P13 PC3 {sdiv} Line L14 P13 P14 {sdiv} Line L15 P14 P15 {sdiv} Line L16 P15 P12 {sdiv} Surf S4 L12 L13 L14 L15 L16 Swep support temp tra 0 {w2e} 0 {L6div} Setc support Node 1 -{ls2} -{w2} {P12z} Node 2 -{ls2} -{w2} {P12z} # peen Seto peen Pnt P16 {P16x} -{w2e} {P16z} Pnt P16c -{lf2} -{w2e} {P10z} Pnt P17 {P17x} -{w2e} {P16z} Pnt PC4 -{lf2} -{w2e} {P16z} Pnt P18 {P17x} -{w2e} {P18z} Pnt P19 {P16x} -{w2e} {P18z} Line L17 P16 P16c PC4 {pdiv} Line L18 P16c P17 PC4 {pdiv} Line L19 P17 P18 {pdiv} Line L20 P18 P19 {pdiv} Line L21 P19 P16 {pdiv} Surf S5 L17 L18 L19 L20 L21 Swep peen temp tra 0 {w2e} 0 {L6div} Setc peen Node 3 -{lf2} -{w2} {P16z} Node 4 -{lf2} -{w2} {P16z} # Element types Elty struct_all qu8 Elty block1 he20 Elty block2 he20 Elty support he8 Elty peen he8 Mesh struct_all Mesh block1 Merg n all Mesh block2 Mesh support Mesh peen Seta Sym_X l L00I L00H L5 Seta Sym_Y l L00G L00M Seta Sym_Y s A00F A00G A00K Comp Sym_X d Comp Sym_Y d # Change mesh order to quadratic #Mids all gen plot e all view elem plus e block1 m plus e block2 b plus e struct_all g plus e support k plus e peen k # write mesh send struct_all abq send block1 abq send block2 abq send support abq send peen abq send Sym_X abq names send Sym_Y abq names """.format(**tempdict) def comp_variables(): # compute helpers globs = {} execfile('dimensions.py', globs) # crosssection 1 st = globs['structure'] st['l2'] = st['l']/2. st['w2'] = st['w']/2. st['h2'] = st['h']/2. st['lf2'] = st['lf']/2. st['PC1z'] = st['h2'] - st['r'] st['PC1y'] = st['w2'] - st['r'] # cut out st['wc'] = sqrt(st['rc']**2 - st['lc']**2) st['lcl'] = st['l2'] - st['la'] - st['wc'] st['PC2z'] = -st['h2'] - st['lc'] st['P5z'] = st['PC2z'] + st['rc'] # load block 2 st['P9x'] = st['lf2'] + st['wd']/2. st['P10z'] = st['h2'] + st['td'] # support st['ls2'] = st['ls']/2. st['P12x'] = -st['ls2'] - st['rs'] st['P12z'] = -st['h2'] - st['rs'] st['P13x'] = -st['ls2'] + st['rs'] st['P14z'] = -st['h2'] - 2*st['rs'] st['w2e'] = st['w2']*1.1 # peen st['lf2'] = st['lf']/2. st['P16x'] = -st['lf2'] - st['rf'] st['P16z'] = st['h2'] + st['td'] + st['rf'] st['P17x'] = -st['lf2'] + st['rf'] st['P18z'] = st['P16z'] + st['rf'] # linedivisions st['L1div'] = evenint((st['h']-st['r'])/st['es']) st['L2div'] = evenint(ceil((st['r']*1.5)/st['es'])) st['L3div'] = evenint((st['w2']-st['r'])/st['es']) st['ladiv'] = evenint(st['la']/st['es']) st['lcldiv'] = evenint(st['lcl']/st['es']) st['wcdiv'] = evenint(st['wc']/st['es']) st['L5div'] = evenint((st['h2'] - st['P5z'])/st['es']) st['L6div'] = evenint(st['w2']/st['es']) st['L7div'] = evenint(st['h']/st['es']) st['wddiv'] = evenint(st['wd']/st['es']) st['tddiv'] = evenint(ceil(st['td']/st['es'])) st['sdiv'] = evenint(ceil((st['rs']*1.5)/st['es'])) st['pdiv'] = evenint(ceil((st['rf']*1.5)/st['es'])) return st def evenint(x): x = int(x) if x%2 == 0: return x else: return x+1 def main(): struct = comp_variables() fbd_data = fbd_template(struct) with open('exp_struct.fbd','w') as fil: fil.writelines(fbd_data) if __name__=='__main__': main()
baf1cf3480c7a29e01545d0f677b8586e5dcb3ef
d7a68c636e6128533b17975655bd6b46ed222916
/adapter-transformers-adapters3.1.0/src/transformers/adapters/models/distilbert/adapter_model.py
4f8c9fa7becdd8743a176268a5067ccb1cabde93
[ "Apache-2.0" ]
permissive
cambridgeltl/autopeft
69179f8faf2cc4d2164ff78e544dc3fe2d39c331
d8ad6bea93aa413a54d0e09fe25bdd62b46cfcf5
refs/heads/main
2023-05-23T09:21:59.912941
2023-04-25T14:35:31
2023-04-25T14:35:31
594,316,585
26
4
Apache-2.0
2023-04-25T14:35:32
2023-01-28T06:39:25
Python
UTF-8
Python
false
false
10,915
py
import warnings import torch.nn as nn from ....models.distilbert.modeling_distilbert import ( DISTILBERT_INPUTS_DOCSTRING, DISTILBERT_START_DOCSTRING, DistilBertModel, DistilBertPreTrainedModel, ) from ....utils import add_start_docstrings, add_start_docstrings_to_model_forward from ...heads import ( BertStyleMaskedLMHead, BiaffineParsingHead, CausalLMHead, ClassificationHead, ModelWithFlexibleHeadsAdaptersMixin, MultiLabelClassificationHead, MultipleChoiceHead, QuestionAnsweringHead, TaggingHead, ) from ...model_mixin import EmbeddingAdaptersWrapperMixin @add_start_docstrings( """DistilBert Model transformer with the option to add multiple flexible heads on top.""", DISTILBERT_START_DOCSTRING, ) class DistilBertAdapterModel( EmbeddingAdaptersWrapperMixin, ModelWithFlexibleHeadsAdaptersMixin, DistilBertPreTrainedModel ): def __init__(self, config): super().__init__(config) self.distilbert = DistilBertModel(config) self._init_head_modules() self.init_weights() def get_position_embeddings(self) -> nn.Embedding: """ Returns the position embeddings """ return self.distilbert.get_position_embeddings() def resize_position_embeddings(self, new_num_position_embeddings: int): """ Resizes position embeddings of the model if :obj:`new_num_position_embeddings != config.max_position_embeddings`. Arguments: new_num_position_embeddings (:obj:`int`): The number of new position embedding matrix. If position embeddings are learned, increasing the size will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will add correct vectors at the end following the position encoding algorithm, whereas reducing the size will remove vectors from the end. """ self.distilbert.resize_position_embeddings(new_num_position_embeddings) @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices")) def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, head=None, output_adapter_gating_scores=False, output_adapter_fusion_attentions=False, **kwargs ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) distilbert_output = self.distilbert( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, output_adapter_gating_scores=output_adapter_gating_scores, output_adapter_fusion_attentions=output_adapter_fusion_attentions, ) outputs = self.forward_head( distilbert_output, head_name=head, attention_mask=attention_mask, return_dict=return_dict, **kwargs ) return outputs head_types = { "classification": ClassificationHead, "multilabel_classification": MultiLabelClassificationHead, "tagging": TaggingHead, "multiple_choice": MultipleChoiceHead, "question_answering": QuestionAnsweringHead, "dependency_parsing": BiaffineParsingHead, "masked_lm": BertStyleMaskedLMHead, "causal_lm": CausalLMHead, } def add_classification_head( self, head_name, num_labels=2, layers=2, activation_function="tanh", overwrite_ok=False, multilabel=False, id2label=None, use_pooler=False, ): """ Adds a sequence classification head on top of the model. Args: head_name (str): The name of the head. num_labels (int, optional): Number of classification labels. Defaults to 2. layers (int, optional): Number of layers. Defaults to 2. activation_function (str, optional): Activation function. Defaults to 'tanh'. overwrite_ok (bool, optional): Force overwrite if a head with the same name exists. Defaults to False. multilabel (bool, optional): Enable multilabel classification setup. Defaults to False. """ if multilabel: head = MultiLabelClassificationHead( self, head_name, num_labels, layers, activation_function, id2label, use_pooler ) else: head = ClassificationHead(self, head_name, num_labels, layers, activation_function, id2label, use_pooler) self.add_prediction_head(head, overwrite_ok) def add_multiple_choice_head( self, head_name, num_choices=2, layers=2, activation_function="tanh", overwrite_ok=False, id2label=None, use_pooler=False, ): """ Adds a multiple choice head on top of the model. Args: head_name (str): The name of the head. num_choices (int, optional): Number of choices. Defaults to 2. layers (int, optional): Number of layers. Defaults to 2. activation_function (str, optional): Activation function. Defaults to 'tanh'. overwrite_ok (bool, optional): Force overwrite if a head with the same name exists. Defaults to False. """ head = MultipleChoiceHead(self, head_name, num_choices, layers, activation_function, id2label, use_pooler) self.add_prediction_head(head, overwrite_ok) def add_tagging_head( self, head_name, num_labels=2, layers=1, activation_function="tanh", overwrite_ok=False, id2label=None ): """ Adds a token classification head on top of the model. Args: head_name (str): The name of the head. num_labels (int, optional): Number of classification labels. Defaults to 2. layers (int, optional): Number of layers. Defaults to 1. activation_function (str, optional): Activation function. Defaults to 'tanh'. overwrite_ok (bool, optional): Force overwrite if a head with the same name exists. Defaults to False. """ head = TaggingHead(self, head_name, num_labels, layers, activation_function, id2label) self.add_prediction_head(head, overwrite_ok) def add_qa_head( self, head_name, num_labels=2, layers=1, activation_function="tanh", overwrite_ok=False, id2label=None ): head = QuestionAnsweringHead(self, head_name, num_labels, layers, activation_function, id2label) self.add_prediction_head(head, overwrite_ok) def add_dependency_parsing_head(self, head_name, num_labels=2, overwrite_ok=False, id2label=None): """ Adds a biaffine dependency parsing head on top of the model. The parsing head uses the architecture described in "Is Supervised Syntactic Parsing Beneficial for Language Understanding? An Empirical Investigation" (Glavaš & Vulić, 2021) (https://arxiv.org/pdf/2008.06788.pdf). Args: head_name (str): The name of the head. num_labels (int, optional): Number of labels. Defaults to 2. overwrite_ok (bool, optional): Force overwrite if a head with the same name exists. Defaults to False. id2label (dict, optional): Mapping from label ids to labels. Defaults to None. """ head = BiaffineParsingHead(self, head_name, num_labels, id2label) self.add_prediction_head(head, overwrite_ok) def add_masked_lm_head(self, head_name, activation_function="gelu", overwrite_ok=False): """ Adds a masked language modeling head on top of the model. Args: head_name (str): The name of the head. activation_function (str, optional): Activation function. Defaults to 'gelu'. overwrite_ok (bool, optional): Force overwrite if a head with the same name exists. Defaults to False. """ head = BertStyleMaskedLMHead(self, head_name, activation_function=activation_function) self.add_prediction_head(head, overwrite_ok=overwrite_ok) def add_causal_lm_head(self, head_name, activation_function="gelu", overwrite_ok=False): """ Adds a causal language modeling head on top of the model. Args: head_name (str): The name of the head. activation_function (str, optional): Activation function. Defaults to 'gelu'. overwrite_ok (bool, optional): Force overwrite if a head with the same name exists. Defaults to False. """ head = CausalLMHead( self, head_name, layers=2, activation_function=activation_function, layer_norm=True, bias=True ) self.add_prediction_head(head, overwrite_ok=overwrite_ok) class DistilBertModelWithHeads(DistilBertAdapterModel): def __init__(self, *args, **kwargs): warnings.warn( "This class has been renamed to `{}` in v3. " "Please use the new class instead as this class might be removed in a future version.".format( self.__class__.__bases__[0].__name__ ), FutureWarning, ) super().__init__(*args, **kwargs) @classmethod def from_config(cls, config): warnings.warn( "This class has been renamed to `{}` in v3. " "Please use the new class instead as this class might be removed in a future version.".format( cls.__bases__[0].__name__ ), FutureWarning, ) return super().from_config(config) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): warnings.warn( "This class has been renamed to `{}` in v3. " "Please use the new class instead as this class might be removed in a future version.".format( cls.__bases__[0].__name__ ), FutureWarning, ) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
0e8e1d1fa3c2116e867073461282f3f321b8439b
ac1b2a94702f2a46435d11c529dc70145093320d
/snake python/snake.py
59e5c487cca36390398b0b168d2c1d107441aac3
[]
no_license
Savagekenya/snake-game---python
b788524bb850ab0be086acb52f3193b70dcaf216
b411b38030abe8a757cb276b17b6b6b6380741df
refs/heads/main
2023-08-14T03:43:16.641891
2021-09-27T18:02:55
2021-09-27T18:02:55
410,990,618
0
0
null
null
null
null
UTF-8
Python
false
false
1,700
py
import curses from random import randint # setup window curses.initscr() win = curses.newwin(20,60,0,0) # y,x win.keypad(1) curses.noecho() curses.curs_set win.border(0) win.nodelay(1) # -1 # snake and food snake = [(4, 10), (4,9), (4,8)] food = (10,20) win.addch(food[0], food[1], '#') # game logic score = 0 ESC = 27 key = curses.KEY_RIGHT while key != ESC: win.addstr(0,2,'Score' +str(score)+' ') win.timeout(150 - (len(snake)) // 5 + len(snake)//10 % 120) #increase speed prev_key = key event = win.getch() key = event if event != -1 else prev_key if key not in [curses.KEY_LEFT, curses.KEY_RIGHT, curses.KEY_UP,curses.KEY_DOWN, ESC]: key = prev_key y = snake[0][0] x = snake[0][1] if key == curses.KEY_DOWN: y += 1 if key == curses.KEY_UP: y -=1 if key == curses.KEY_LEFT: x -=1 if key == curses.KEY_RIGHT: x += 1 snake.insert(0 ,(y, x)) #append 0(n) # check if we hit the border if y == 0: break if y == 19: break if x == 0: break if x == 59: break # if snake runs over itself if snake[0] in snake[1:]: break if snake [0] == food: # eat the food score +=1 food = () while food == (): food =(randint(1, 18), randint(1,58)) if food in snake: food = () win.addch(food[0], food[1], '#') else: last = snake.pop() win.addch(last[0], last[1], ' ') win.addch(snake[0][0], snake[0][1], '*') curses.endwin() print(f"Final score = {score}")
34c6b5a3e9929c4caefdb3d38794d5be3e66dadb
7671e76cc3abb76f910eacb9b8782e0cc19b871e
/app/paciente/admin.py
42170f575e46a591ef8f460741450a64dcf45013
[]
no_license
bruno-ralmeida/PI_2020.1
28b2378efa203945987ae95605efa31b75fcb9a3
c97e3579c20d5022ff6bc89b617e19d73a78b5b0
refs/heads/master
2022-09-22T07:13:09.427756
2020-06-01T02:01:00
2020-06-01T02:01:00
246,153,264
1
0
null
null
null
null
UTF-8
Python
false
false
311
py
from django.contrib import admin from paciente.models import * class lista_pacientes(admin.ModelAdmin): list_display = ('id', 'nome', 'sexo', 'data_nascimento', 'cpf', 'rg', 'carteira_convenio', 'peso', 'altura') list_display_links = ('id', 'nome') admin.site.register(Paciente, lista_pacientes)
7906f052dd2f4b5c78b0ad9a075bbf3e537a9015
0657bf55957f17eed000e41d08c04e3a5d29c637
/user/views.py
a788ac703d5deba12e28964256055118bb7d3c95
[]
no_license
ckant96/UserRegistrationApp
feb11439bf87d1b8c6ae6076c95aba07425fb501
2d377b09c46ddd90190341e3f1f8fefcf17930d4
refs/heads/master
2022-12-24T14:45:56.149559
2020-10-03T12:41:17
2020-10-03T12:41:17
300,821,509
0
0
null
null
null
null
UTF-8
Python
false
false
3,969
py
from django.shortcuts import render from django.http import HttpResponse from django.http import HttpResponseRedirect from django.template import loader from django.db import connection from django.contrib import auth from django.contrib.auth import authenticate,login,logout from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required def UserLogin(request): if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') authent = authenticate(username=username,password=password) if authent: with connection.cursor() as cursor: cursor.execute("SELECT name FROM User where user_id=%s and password=%s", [username, password]) row = cursor.fetchall() if row : login(request,authent) return render(request=request, template_name="UserPage.html", context={'Status': 'successful','userId':'Invalid Credentials'}) else: return render(request=request, template_name="Login.html",context={'Status': 'Unsuccessful','userId':'Invalid Credentials'}) else: return render(request, 'Login.html', {'Status': 'Unsuccessful','userId':'Invalid Credentials'}) return render(request=request, template_name="Login.html", context={'Status': 'Unsuccessful','userId':'Invalid Credentials'}) def UserRegister(request): if request.method == 'POST': uname = request.POST.get('username') upass = request.POST.get('password') cname = request.POST.get('confirm_password') if not uname or not upass or not cname : return render(request=request, template_name="Registration.html",context={'Status':'Invalid entries'}) if uname != cname : return render(request=request, template_name="Registration.html",context={'Status':'Password Mismatch.'}) with connection.cursor() as cursor: cursor.execute("SELECT username FROM auth_user where username = %s ",[uname]) already=cursor.fetchall() if already : return render(request=request, template_name="Registration.html",context={'Status':'UserName Exists.'}) else: with connection.cursor() as cursor: cursor.execute("INSERT into User (username,password) VALUES(%s,%s)", [uname, upass]) User.objects.create_user(uname,None,upass) return render(request=request, template_name="Registration.html",context={'Status': 'account Created'}) return render(request=request, template_name="Registration.html" , context={'Status': 'account Creation failed'}) @login_required() def SaveUserNote(request,user): if request.method == 'POST': notes = request.POST.get('user_notes') with connection.cursor() as cursor: cursor.execute("SELECT * from UserNotes where username= %s ", [user]) row = cursor.fetchall() if row : newnote=row[0]+notes # append new note to old note string cursor.execute(" UPDATE UserNotes set notes=%s",[newnote]) else: cursor.execute(" INSERT into UserNotes(userId,notes) VALUES(%s,%s)", [user,notes]) return render(request=request, template_name="UserNotes.html" , context={'Status': 'Success'}) return render(request=request, template_name="UserNotes.html" , context={'Status': 'UnSuccess'}) @login_required() def ShowUserNote(request,user): if request.method == 'GET': with connection.cursor() as cursor: cursor.execute("SELECT * from UserNotes where username= %s ", [user]) row = cursor.fetchall() note_list=[] if row : note_list = row[0].split('+') return render(request=request, template_name="UserNotes.html" , context={'Notes': note_list})
8f36b2278c2882473204ef1853a2761c11c5d2c3
a05fc652bbc854b39767d7fd56116bf775b471c9
/modules/entitysets/_genericblock.py
233662b0c7299cc210cf71befdef18cc6623b435
[ "Zlib" ]
permissive
Occuliner/ThisHackishMess
20235a2fe23f5a54f7eff495242d6c58dd3e2eda
a801d6a5988705b0d77a4c57b0737012f244fa1d
refs/heads/master
2020-11-26T20:55:56.391909
2013-12-27T23:35:59
2013-12-27T23:35:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,188
py
# Copyright (c) 2013 Connor Sherson # # This software is provided 'as-is', without any express or implied # warranty. In no event will the authors be held liable for any damages # arising from the use of this software. # # Permission is granted to anyone to use this software for any purpose, # including commercial applications, and to alter it and redistribute it # freely, subject to the following restrictions: # # 1. The origin of this software must not be misrepresented; you must not # claim that you wrote the original software. If you use this software # in a product, an acknowledgment in the product documentation would be # appreciated but is not required. # # 2. Altered source versions must be plainly marked as such, and must not be # misrepresented as being the original software. # # 3. This notice may not be removed or altered from any source # distribution. from entity import Entity import pygame from imageload import loadImage, loadImageNoAlpha from masterentityset import * import math class GenericBlock( Entity ): scale = 2 width = 32 height = 32 bWidth = width bHeight = height bdx = 0 bdy = 0 wbWidth = 32 wbHeight = 16 wbdx = 0 wbdy = 16 playStateGroup = "genericStuffGroup" setName = "genericstuff" sheetFileName = "block.png" sheet = loadImage( sheetFileName, scale ) specialCollision = None collidable = True solid = True mass = 20 instanceSpecificVars = None def __init__( self, pos = [0,0], vel = [0,0], group=None, **kwargs ): Entity.__init__( self, pos, [0,0], None, group, pygame.Rect( 0, 0, self.width, self.height ), animated=False, **kwargs ) if GenericBlock.instanceSpecificVars is None: attrList = list( self.__dict__.keys() ) if GenericBlock.instanceSpecificVars is None: GenericBlock.instanceSpecificVars = dict( [ ( eachKey, eachVal ) for eachKey, eachVal in self.__dict__.items() if eachKey not in attrList ] ) def update( self, dt ): Entity.update( self, dt ) #MasterEntitySet.entsToLoad.append( GenericBlock ) entities = { "GenericBlock":GenericBlock }
cfbc87a6930bb46dff53098c47e8ea101e0f2f22
9931cff13b996620f7f486fa38e441ca5096aa16
/starter.py
81f2ca11aa8a198e249d5f2e246cf3441d7352d6
[]
no_license
andregossip/D7048E
429e3cdb5d41e9339371a4ea708302b4960cd058
35f98652c5aa7323abdf0cfd5c9a8d574b3f76ae
refs/heads/main
2023-03-12T22:12:59.275467
2021-03-05T13:31:50
2021-03-05T13:31:50
337,079,827
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
import os import subprocess if __name__ == '__main__': subprocess.Popen("python main.py") subprocess.Popen("python menu.py")
bcd3a9bfd5974d395977712da8223f748238c14e
9da620b96436873caa4d0739d0ea1d062d4f1869
/Código/P1.py
ab19a55de6693687b58eb5e5f44562f62922fb2e
[ "MIT" ]
permissive
RodrigoHevia/03Tarea
744dd1ce855354f95a4d6f023575ce35aef75a77
50a20b5864946092573ef91dc0b375cad3aff7f6
refs/heads/master
2021-01-15T12:10:40.788090
2015-10-11T02:45:58
2015-10-11T02:45:58
43,832,852
0
0
null
2015-10-07T17:30:44
2015-10-07T17:30:44
null
UTF-8
Python
false
false
1,886
py
#! /usr/bin/env python ''' El siguiente script resuelve la ecuacion diferencial del oscilador de Van der Pol luego de un cambio de variable, mediante el metodo de Runge Kutta de orden 3. ''' import matplotlib.pyplot as plt import numpy as np fig = plt.figure(1) plt.clf() def rk3_2(f, s0, sf, y0, v0, n) : ''' Esta funcion resuelve la ecuacion diferencial de segundo orden "f" mediante el metodo de Runge-Kutta de orden 3, con condiciones iniciales "y0" y "v0" en el intervalo [s0,sf] con resolucion "n" ''' s = np.linspace(s0, sf, n, endpoint = True) y = np.zeros(n) v = np.zeros(n) h = (sf - s0)/n y[0] = y0 v[0] = v0 for i in range(1, n) : k1 = h*v[i-1] l1 = h*f(s[i-1], y[i-1], v[i-1]) k2 = h*(v[i-1] + 0.5*l1) l2 = h*f(s[i-1] + 0.5*h, y[i-1] + 0.5*k1, v[i-1] + 0.5*l1) k3 = h*(v[i-1] + 0.5*l2) l3 = h*f(s[i-1]+0.5*h, y[i-1]+0.5*k2, v[i-1]+0.5*l2) y[i] = y[i-1] + (k1 + 2*k2 + 2*k3)/5 v[i] = v[i-1] + (l1 + 2*l2)/3 return s, y, v def f(s, y, v) : u2 = 1.699 dv = - y - u2 * ( y**2 - 1) * v return dv s1, y1, v1 = rk3_2(f, 0, 20*np.pi, 0.1, 0, 1000) # dice t no s s2, y2, v1 = rk3_2(f, 0, 20*np.pi, 4.0, 0, 1000) plt.subplot("221") plt.plot(s1, y1, color = 'b') plt.xlabel('s') plt.ylabel('y') plt.title('dy/ds=0.0;y=0.1') plt.axhline(0, color = 'k') plt.legend() plt.subplot("222") plt.plot(s2, y2, color = 'b') plt.xlabel('s') plt.ylabel('y') plt.title('dy/ds=0.0;y=4.0') plt.axhline(0, color = 'k') plt.legend() plt.subplot("223") plt.plot(y1, v1, color = 'r') plt.xlabel('y') plt.ylabel('dy/ds') plt.axhline(0, color = 'k') plt.legend() plt.subplot("224") plt.plot(y2, v1, color = 'r') plt.xlabel('y') plt.ylabel('dy/ds') plt.axhline(0, color = 'k') plt.draw() plt.show() fig.savefig('Oscilador de Van der Pol u*=1.699.jpg')
6737c474b191d70378ee488dbc6534c3ce98e435
cefda53c9bc29fbb3a1994126c859dd26f884ebe
/quantumcomputation.py
849fd1a8d74ebe6f530b88b02f6710e396e6f45a
[]
no_license
trammell/qc-sim
588620462041654e034582889e4e009f93891e61
86d648795ffcc01c971602ed1168c8a869ef122c
refs/heads/master
2020-04-26T02:11:50.176485
2016-10-14T13:08:44
2016-10-14T13:08:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,200
py
from google.appengine.ext import db import math import random class QC: status = 0.0 guid = '' def __init__(self, guid): self.status = 0.0 self.guid = guid def getStatus(self): return str(self.status) ''' ' Creates input state ' ''' def createState(self, schema): x = int(schema.split('}')[0][1:].replace(',', '')[::-1], base = 2) n = len(schema.split('}')[0][1:].replace(',', '')) N = 2 ** n state = [] for i in range(N): state.append(complex(0, 0)) state[x] = complex(1, 0) self.status = 0 return state, n, N ''' ' Applies cirsuit scheme to the input ' ''' def applyScheme(self, state, schema, n): gates = schema.split('}')[1][1:].split(',') for t in range(0, len(gates), n): tact = gates[t : t + n] # find the control bit if exists control = [] for i in range(len(tact)): if tact[i] == '*': control.append(i) # Apply gates in tact qbit = 0 for gate in tact: state = self.applyGate(state, qbit, n, gate, control) qbit += 1 self.status += 100.0 / len(gates) return state ''' ' Applies the gate ' ''' def qubitGate(self, c_i, result, i, n, qbit, A, B, C, D): base = 2 ** qbit if i & base: # qubit is |1> so B,D column is applied result[i] = result[i] + c_i * D i2 = i - base result[i2] = result[i2] + c_i * B else: # qubit is |0> so A,C column is applied result[i] = result[i] + c_i * A i2 = i + base result[i2] = result[i2] + c_i * C return result def applyGate(self, state, qbit, n, gate, control): # skip on identity and control symbol if gate == 'I' or gate == '*': return state # main cycle N = 2 ** n result = [] for i in range(N): result.append(complex(0,0)) for i in range(N): # check if basis vector i is in superposition if state[i] == complex(0, 0): continue # check if gate is controlled and if any of control bits is 0, then do nothing res_control = True for c in control: if not (2 ** c & i): res_control = False if not res_control: result[i] = state[i] continue # at last, do the computation if gate == 'H': sqrt2 = complex(1 / math.sqrt(2), 0) result = self.qubitGate(state[i], result, i, n, qbit, sqrt2, sqrt2, sqrt2, -sqrt2) if gate[0] == 'R': angle = 2 * math.pi / 2 ** int(gate[1]) phase = complex(math.cos(angle), math.sin(angle)) result = self.qubitGate(state[i], result, i, n, qbit, complex(1,0), complex(0,0), complex(0,0), phase) if gate[0] == 'Z': result = self.qubitGate(state[i], result, i, n, qbit, complex(1,0), complex(0,0), complex(0,0), complex(-1,0)) if gate[0] == 'X': result = self.qubitGate(state[i], result, i, n, qbit, complex(0,0), complex(1,0), complex(1,0), complex(0,0)) return result def measure(self, state): for i in range(len(state)): state[i] = state[i].real * state[i].real + state[i].imag * state[i].imag r = random.random() temp = 0 for i in range(len(state)): temp += state[i] if temp >= r: return bin(i) return bin(len(state) - 1) ''' ' Measurement ' ''' def bin(n): return "".join([["0", "1"][(n >> i) & 1] for i in reversed(range(20))])
35cbb93289fa49079d18580c55167b424379240f
163889b6dae2de23d34b11c0f75874365b672ee1
/Gaming Laptop Battery Life.py
58d86fb63c571735b8787194c88a05971e213ad9
[]
no_license
LawrenceAD/HackerRank-Certification
fbb40821bd0c9abbcfab01febf4778329f87566e
2ba84eaa11c9782544a599b510549087b05af166
refs/heads/master
2023-06-19T21:25:17.858046
2021-06-13T07:22:35
2021-06-13T07:22:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
205
py
def getBattery(events): c=50 for i in events: if (i<0): c+=i else: c+=i if c>100: c=100 print(c) return c
7533be52505a6d76dd6507b4fea541ecd3e82986
b803dd98721dcf0af04bf6f322c82a90254d7bf1
/test HW/calcu.py
aed15807bbe856e38ac6b6e86a63af00604a2172
[]
no_license
DanTeegan/python_tdd_pytest
f418ac6d5cf0dd771caaa7df1054c689c1caf0d7
f966269e552dbc7a5ffd4e5950c67de5de749af1
refs/heads/master
2022-11-13T10:37:57.645505
2020-07-07T19:21:10
2020-07-07T19:21:10
277,508,969
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
# Here we are importing math into our file import math # Here we are creating a class called Calcu class Calcu: # Here we make a method to work out the sq root def find_sqrt(self, num2): return math.sqrt(num2) # Here we make a method to round up def find_ceil(self, num2): return math.ceil(num2) # Here we make a method to round down def find_floor(self, num2): return math.floor(num2) # Here we are creating an object from the Calcu class simple_calcu = Calcu() # Here we are just printing using the methods created to see if they work. print(simple_calcu.find_ceil(102.8)) print(simple_calcu.find_floor(1001.4))
a5dad3f329e90d477f7e4c2267e433ba19d67069
1bf7be4ba56a2f08ceb2c3f28612e597e9948ef2
/python/8kyu/Returning Strings.py
565514860e0cd68a904534739b7e1970d82b8386
[]
no_license
SaraKenig/codewars-solutions
c5fd499118ff006d5c420e292f33f3f0a05f8681
5c63a2387e2d86debce5f78e3d7fb387c87f998e
refs/heads/master
2022-12-19T21:33:48.056749
2020-10-01T09:08:43
2020-10-01T09:08:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
306
py
# Make a function that will return a greeting statement that uses an input; your program should return, "Hello, <name> how are you doing today?". # [Make sure you type the exact thing I wrote or the program may not execute properly] def greet(name): return f'Hello, {name} how are you doing today?'
6604e29b58bc7c32c533d2d6036d69e717c399fb
c22e094912582f99a96f2a63cfd1f266111239db
/config.py
bd8b59c17e54b6d7817e939698a2cddfac46d9f4
[]
no_license
syned13/ProjectManagementAPI
42cab4660227f9afb48bcca410ecc858c0f702ad
f30ba766efc2c1a29bf17f03d2f5dc7f3cd97b35
refs/heads/master
2021-05-17T17:20:57.674142
2020-04-05T23:08:47
2020-04-05T23:08:47
250,892,968
1
0
null
2021-05-06T20:01:40
2020-03-28T21:03:02
Python
UTF-8
Python
false
false
168
py
class Config(): pass class DevelopmentConfig(Config): DEBUG = True #dict para las diferentes configuraciones config = { 'development': DevelopmentConfig }
0ffc66b60d96357a82eedef5d3aebf8cd7c2ad4a
0e1b7780cfc63579dd1f0a12cfc0d92317b7227b
/test.py
9a3a6c7a4d9eab9a44dfae1588676f36a698bc9c
[]
no_license
psicktrick/weights_optimizer
3d30e0224d1a9dc79d641a3784397d435de9d81b
821202698a96af25b8bf1ea0c65c06684169016d
refs/heads/master
2023-05-03T21:12:18.507593
2021-05-24T06:08:32
2021-05-24T06:08:32
370,034,424
0
0
null
null
null
null
UTF-8
Python
false
false
12,194
py
import pandas as pd import numpy as np from ga_weights_optimizer import WeightsOptimizer from sklearn.linear_model import LinearRegression, LassoCV, Ridge, LassoLarsCV,ElasticNetCV from sklearn.model_selection import cross_val_score import warnings warnings.filterwarnings('ignore') from sklearn.model_selection import train_test_split from copy import deepcopy class CreateModels: def __init__(self): self.train = pd.read_csv(r"C:\Users\sickt\Downloads\data\train.csv") self.test = pd.read_csv(r"C:\Users\sickt\Downloads\data\test.csv") self.X_train, self.X_test, self.y_train, self.y_test = self.preprocess_data() self.predictions = self.get_predictions() def get_predictions(self): lassocv = LassoCV(eps=1e-7) ridge = Ridge(alpha=1e-6) lassolarscv = LassoLarsCV() elasticnetcv = ElasticNetCV(eps=1e-15) lassocv.fit(self.X_train, self.y_train) ridge.fit(self.X_train, self.y_train) lassolarscv.fit(self.X_train, self.y_train) elasticnetcv.fit(self.X_train, self.y_train) lassocv_pred = lassocv.predict(self.X_test) ridge_pred = ridge.predict(self.X_test) lassolarscv_pred = lassolarscv.predict(self.X_test) elasticnetcv_pred = elasticnetcv.predict(self.X_test) df=pd.DataFrame() df["Lasso"] = lassocv_pred df["Ridge"] = ridge_pred df["LassoLars"] = lassolarscv_pred df["Elasticnetcv"] = elasticnetcv_pred df["Y"] = self.y_test.reset_index(drop=True) return df def preprocess_data(self): train = self.train.drop(labels=["Id"], axis=1) # test = self.test.drop(labels=["Id"], axis=1) train = train.drop(train[(train['GrLivArea'] > 4000) & (train['SalePrice'] < 300000)].index).reset_index(drop=True) train_len = len(train) # dataset = pd.concat(objs=[train, test], axis=0).reset_index(drop=True) dataset = train.fillna(np.nan) dataset["Alley"] = dataset["Alley"].fillna("No") dataset["MiscFeature"] = dataset["MiscFeature"].fillna("No") dataset["Fence"] = dataset["Fence"].fillna("No") dataset["PoolQC"] = dataset["PoolQC"].fillna("No") dataset["FireplaceQu"] = dataset["FireplaceQu"].fillna("No") dataset["Utilities"] = dataset["Utilities"].fillna("AllPub") dataset["BsmtCond"] = dataset["BsmtCond"].fillna("No") dataset["BsmtQual"] = dataset["BsmtQual"].fillna("No") dataset["BsmtFinType2"] = dataset["BsmtFinType2"].fillna("No") dataset["BsmtFinType1"] = dataset["BsmtFinType1"].fillna("No") dataset.loc[dataset["BsmtCond"] == "No", "BsmtUnfSF"] = 0 dataset.loc[dataset["BsmtFinType1"] == "No", "BsmtFinSF1"] = 0 dataset.loc[dataset["BsmtFinType2"] == "No", "BsmtFinSF2"] = 0 dataset.loc[dataset["BsmtQual"] == "No", "TotalBsmtSF"] = 0 dataset.loc[dataset["BsmtCond"] == "No", "BsmtHalfBath"] = 0 dataset.loc[dataset["BsmtCond"] == "No", "BsmtFullBath"] = 0 dataset["BsmtExposure"] = dataset["BsmtExposure"].fillna("No") dataset["SaleType"] = dataset["SaleType"].fillna("WD") dataset["MSZoning"] = dataset["MSZoning"].fillna("RL") dataset["KitchenQual"] = dataset["KitchenQual"].fillna("TA") dataset["GarageType"] = dataset["GarageType"].fillna("No") dataset["GarageFinish"] = dataset["GarageFinish"].fillna("No") dataset["GarageQual"] = dataset["GarageQual"].fillna("No") dataset["GarageCond"] = dataset["GarageCond"].fillna("No") dataset.loc[dataset["GarageType"] == "No", "GarageYrBlt"] = dataset["YearBuilt"][dataset["GarageType"] == "No"] dataset.loc[dataset["GarageType"] == "No", "GarageCars"] = 0 dataset.loc[dataset["GarageType"] == "No", "GarageArea"] = 0 dataset["GarageArea"] = dataset["GarageArea"].fillna(dataset["GarageArea"].median()) dataset["GarageCars"] = dataset["GarageCars"].fillna(dataset["GarageCars"].median()) dataset["GarageYrBlt"] = dataset["GarageYrBlt"].fillna(dataset["GarageYrBlt"].median()) dataset["Functional"] = dataset["Functional"].fillna("Typ") dataset["Exterior2nd"] = dataset["Exterior2nd"].fillna("VinylSd") dataset["Exterior1st"] = dataset["Exterior1st"].fillna("VinylSd") dataset["Electrical"] = dataset["Electrical"].fillna("SBrkr") dataset["MasVnrType"] = dataset["MasVnrType"].fillna("None") dataset.loc[dataset["MasVnrType"] == "None", "MasVnrArea"] = 0 dataset = dataset.replace({'MSSubClass': {20: 'SubClass_20', 30: 'SubClass_30', 40: 'SubClass_40', 45: 'SubClass_45', 50: 'SubClass_50', 60: 'SubClass_60', 70: 'SubClass_70', 75: 'SubClass_75', 80: 'SubClass_80', 85: 'SubClass_85', 90: 'SubClass_90', 120: 'SubClass_120', 150: 'SubClass_150', 160: 'SubClass_160', 180: 'SubClass_180', 190: 'SubClass_190'}}) dataset = dataset.replace({'MoSold': {1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'}}) dataset['YrSold'] = dataset['YrSold'].astype(str) dataset["BsmtCond"] = dataset["BsmtCond"].astype("category", categories=['No', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["BsmtExposure"] = dataset["BsmtExposure"].astype("category", categories=['No', 'Mn', 'Av', 'Gd'], ordered=True).cat.codes dataset["BsmtFinType1"] = dataset["BsmtFinType1"].astype("category", categories=['No', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], ordered=True).cat.codes dataset["BsmtFinType2"] = dataset["BsmtFinType2"].astype("category", categories=['No', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], ordered=True).cat.codes dataset["BsmtQual"] = dataset["BsmtQual"].astype("category", categories=['No', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["ExterCond"] = dataset["ExterCond"].astype("category", categories=['Po', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["ExterQual"] = dataset["ExterQual"].astype("category", categories=['Po', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["Fence"] = dataset["Fence"].astype("category", categories=['No', 'MnWw', 'GdWo', 'MnPrv', 'GdPrv'], ordered=True).cat.codes dataset["FireplaceQu"] = dataset["FireplaceQu"].astype("category", categories=['No', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["Functional"] = dataset["Functional"].astype("category", categories=['Sal', 'Sev', 'Maj2', 'Maj1', 'Mod', 'Min2', 'Min1', 'Typ'], ordered=True).cat.codes dataset["GarageCond"] = dataset["GarageCond"].astype("category", categories=['No', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["GarageFinish"] = dataset["GarageFinish"].astype("category", categories=['No', 'Unf', 'RFn', 'Fin'], ordered=True).cat.codes dataset["GarageQual"] = dataset["GarageQual"].astype("category", categories=['No', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["HeatingQC"] = dataset["HeatingQC"].astype("category", categories=['Po', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["KitchenQual"] = dataset["KitchenQual"].astype("category", categories=['Po', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["PavedDrive"] = dataset["PavedDrive"].astype("category", categories=['N', 'P', 'Y'], ordered=True).cat.codes dataset["PoolQC"] = dataset["PoolQC"].astype("category", categories=['No', 'Fa', 'TA', 'Gd', 'Ex'], ordered=True).cat.codes dataset["Utilities"] = dataset["Utilities"].astype("category", categories=['ELO', 'NoSeWa', 'NoSewr', 'AllPub'], ordered=True).cat.codes dataset = pd.get_dummies(dataset, columns=["Alley", "BldgType", "CentralAir", "Condition1", "Condition2", "Electrical", "Exterior1st", "Exterior2nd", "Foundation", "GarageType", "Heating", "HouseStyle", "LandContour", "LandSlope", "LotConfig", "LotShape", "MSZoning", "MasVnrType", "MiscFeature", "Neighborhood", "RoofMatl", "RoofStyle", "SaleCondition", "SaleType", "Street", "MSSubClass", 'MoSold', 'YrSold'], drop_first=True) dataset = dataset.drop(labels=[ 'Condition2_PosN', 'MSSubClass_SubClass_160'], axis=1) skewed_features = ["BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "GarageArea", "MasVnrArea" , "TotalBsmtSF", "1stFlrSF", "2ndFlrSF", "3SsnPorch", "EnclosedPorch", "GrLivArea", "LotArea", "LowQualFinSF", "OpenPorchSF", "PoolArea", "ScreenPorch", "WoodDeckSF"] for feature in skewed_features: dataset[feature] = np.log1p(dataset[feature]) dataset["SalePrice"] = np.log1p(dataset["SalePrice"]) y = dataset["SalePrice"] X = dataset.drop(labels="SalePrice", axis=1) X = X.drop(labels="LotFrontage", axis=1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state = 42) return X_train, X_test, y_train, y_test def RMSE(self, estimator,X_train, Y_train, cv=5,n_jobs=4): cv_results = cross_val_score(estimator,X_train,Y_train,cv=cv,scoring="neg_mean_squared_error",n_jobs=n_jobs) return (np.sqrt(-cv_results)).mean() def objective_function(self, weights): pred = deepcopy(self.predictions) pred["Lasso"] = weights[0]*pred["Lasso"] pred["Ridge"] = weights[0] * pred["Ridge"] pred["LassoLars"] = weights[0] * pred["LassoLars"] pred["Elasticnetcv"] = weights[0] * pred["Elasticnetcv"] pred["Y_pred"] = pred.iloc[:, 0:4].sum(axis=1) fitness = -(sum((pred["Y_pred"] - pred["Y"])**2))**0.5 return fitness, if __name__ == "__main__": n=4 model = CreateModels() simple_avg = model.objective_function([0.25, 0.25, 0.25, 0.25]) print("Simple Average Result :", [0.25, 0.25, 0.25, 0.25], simple_avg) wo = WeightsOptimizer(n, model) optimized_weights = wo.ga() print("Optimized Average Result") print(optimized_weights)
a193d412aaca282768f56eb475eb1ea80e4e01b8
27e9b46526fcebdcb4de34b8e5bade7708f1ce35
/examples/bigquery_country_codes.py
ad76e3e0c044a4a1ee2fe18a83b304f903e0bd1c
[ "MIT" ]
permissive
openknowledge-archive/datapackage-storage-py
66b75f1eae6292348e479b4d51dd1aea5a09fc8d
379acadf49b8382c9acc6ed54b3f9a2dbf221e05
refs/heads/master
2021-05-31T00:37:12.330573
2016-02-28T17:18:09
2016-02-28T18:52:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
621
py
# -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import sys from pprint import pprint sys.path.insert(0, '.') from examples import storages # Fixtures dataset = 'datapackage' prefix = 'country_codes_%s_%s_' % (sys.version_info.major, sys.version_info.minor) source = 'examples/packages/country-codes/datapackage.json' target = 'tmp/bigquery/packages/country-codes/datapackage.json' # Execution if __name__ == '__main__': storages.bigquery.run(dataset, prefix, source, target, 'package')
60a1f5d492ff853f1d32e4a985007dd7221a56f2
7f95850837db3baf1d85d857b57fb35130fc94a3
/venv/Scripts/easy_install-script.py
5458acc5b655a87ac5b112bed4bc7ad68cfa7550
[]
no_license
SNGxx/tencent-ai-demo
94c0616fdf6b5ec84a8bb4cbd0791de5e94e7ade
dea999e7642d999bff143e87a3c33bbec48c356d
refs/heads/master
2020-03-22T14:23:29.889868
2018-07-08T14:36:14
2018-07-08T14:36:14
140,175,094
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
#!E:\PyCharm-wokspace\test\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
30f6f989789276a07e60d2fe5e33cb7751012f7a
0599162ae41c54db4514a6929cbf8a9a410beb43
/src/ophys_etl/schemas/fields.py
3de11173fad0b623967a857fecdda984835f548c
[ "BSD-2-Clause" ]
permissive
Matyasz/ophys_etl_pipelines
26ca0e42781109a839e25497d3e73c3be30cfc72
e8473fff85cfba816ac17a661783b52f9de8ac8b
refs/heads/main
2023-02-17T20:29:45.102503
2020-11-05T23:54:56
2020-11-05T23:54:56
327,538,144
0
0
null
2021-01-07T07:37:47
2021-01-07T07:37:46
null
UTF-8
Python
false
false
832
py
from marshmallow import fields, ValidationError import h5py class H5InputFile(fields.Str): """ H5InputFile is a subclass of :class:`marshmallow.fields.Str` which is a path to an h5 file location. The file must end with an extension of '.h5' or '.hdf5' and must be able to be opened by `h5py.File`. """ def _validate(self, value): if not (str(value).endswith(".h5") or str(value).endswith(".hdf5")): raise ValidationError("H5 input file must have extension '.h5' " f"or '.hdf5'. Input file = {value}") try: with h5py.File(value, "r"): pass except OSError as e: raise ValidationError(f"Error occurred loading file {value}. " f"Underlying error: \nOSError: - {e}")
498011cf5a5816384528de6b8fdeb73f62a829c6
5c13c04df863cb13f9fa28a815c75865a464978c
/rosout_clean
2c099a79fb386804484d6a0de8c70695b6be50aa
[]
no_license
COD3BOY/probablyscripts
116532efdd8059ecdad1879130519f0d4a3d3cc6
451bc079ea1f55f8594f085285d0457bff2be233
refs/heads/master
2020-03-18T04:19:11.991363
2018-01-25T20:50:30
2018-01-25T20:50:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
301
#!/usr/bin/python import re pattern = '.*\\[ INFO\\] \\[.*?\\]: (.*)' + chr(27) rg = re.compile(pattern, re.IGNORECASE | re.DOTALL) while(True): try: s = raw_input() except EOFError: break m = rg.search(s) if m: print m.groups()[0] else: print s
94344abb60e3bf99a831886f6f3d88662ef74e31
47d4c7ab61991390ca2aea36f61c456aeddaada0
/data.py
69f2ec977b3b2f87aeae7bb686348758ee373ad1
[]
no_license
RuslanPopov98/Flask_Project_2
768ac2a888251b43ba363de4688d0ea5dff5d3e2
201486f0482192b78a878c87b4527724bbf2e4de
refs/heads/master
2023-07-26T15:02:35.859905
2021-09-08T20:54:37
2021-09-08T20:54:37
404,457,040
1
1
null
null
null
null
UTF-8
Python
false
false
26,098
py
goals = {"travel": "Для путешествий", "study": "Для учебы", "work": "Для работы", "relocate": "Для переезда"} days_week = {"mon": "Понедельник", "tue": "Вторник", "wed": "Среда", "thu": "Четверг", "fri": "Пятница", "sat": "Суббота", "sun": "Воскресенье"} purpose_lesson = {"travel": "Для путешествия", "learn": "Для школы", "work": "Для раобты", "move": "Для переезда"} teachers = [ { "id": 0, "name": "Morris Simmmons", "about": "Репетитор американского английского языка. Структурированная система обучения. Всем привет! Я " "предпочитаю называть себя «тренером» английского языка. Мои занятия похожи на тренировки", "rating": 4.2, "picture": "https://i.pravatar.cc/300?img=20", "price": 900, "goals": ["travel", "relocate", "study"], "free": { "mon": {"8:00": False, "10:00": True, "12:00": True, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "tue": {"8:00": True, "10:00": True, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "wed": {"8:00": True, "10:00": True, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "thu": {"8:00": True, "10:00": True, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "fri": {"8:00": True, "10:00": True, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": False}, } }, { "id": 1, "name": "Lee P", "about": "I am a native speaker and conversation tutor, providing private English conversation lessons using " "something called Life Learning.This method allows students to take complete control of how and what " "they learn. It is student-led learning focusing on interests, life goals, enjoyment and effective " "learning for you, as an individual.Stop wasting time with textbooks, tests and unneccesary " "pressure. Find a love for learning and speaking English with creativity and freedom. The lessons " "are completely chosen by you to keep you motivated and driven to achieve your goals.", "rating": 4.8, "picture": "https://i.pravatar.cc/300?img=19", "price": 1200, "goals": ["relocate", "study"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 2, "name": "Felix A", "about": "The English language has become the language of the world, thus, it is considered a world language. " "Today English seems to evolve to a future global tongue, as its spreading on the Internet in recent " "years shows (almost 80% of the worldwide web's pages are now written in English). scientific " "researchers have found out that in fact many small languages have already vanished.But to teach it " "in a satisfactory manner a good teacher of English is required.xA good teacher of English must " "possess some qualities.Business, General and conversational English", "picture": "https://i.pravatar.cc/300?img=27", "rating": 4.7, "price": 1300, "goals": ["work"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "tue": {"8:00": True, "10:00": True, "12:00": True, "14:00": True, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": True, "10:00": True, "12:00": True, "14:00": True, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": True, "10:00": True, "12:00": True, "14:00": True, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": True, "10:00": True, "12:00": True, "14:00": True, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 3, "name": "Milan S", "about": "I have a wide range of interests, believe me, you will never be bored during our lesson. I worked " "with lawyers, doctors, biologists and many others to help them improve their English in their " "respective fields. Since I spent my whole life satisfying my curiosity, I acquired a huge " "vocabulary that I can pass on to you.", "picture": "https://i.pravatar.cc/300?img=28", "rating": 4.9, "price": 1300, "goals": ["travel", "study"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 4, "name": "Gulya S", "about": "Hello! My name is Gulya :) I am a native speaker of the Russian language and I am fluent in " "English. I have been teaching online for 3 years now. I have an individual program, having studied " "your requirements, I am preparing a special program. plan, and therefore deal) Books Cambridge, " "Oxford, etc. I train and develop colloquial speech. We study words, stable combinations and put " "them into practice. We speak and try to speak :) on different topics. We listen to audio lessons, " "watch films with subtitles. We analyze everything on the shelves :) In parallel, of course, " "we study the basics of grammar and the correct delivery of sentences :) All the materials are " "provided by me. I promise you that you will talk from the first first lesson :)", "picture": "https://i.pravatar.cc/300?img=29", "rating": 4.3, "price": 900, "goals": ["travel"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 5, "name": "Yan M", "about": "Hello! My name is Yang and for more than five years I have been teaching English. I spent part of " "this time in China, where I worked with students from 3 to 40 years old. I deal with both adults " "and children. But for all ages, I try to make my classes fun and interactive. Teaching English to " "me is not just a language lesson. I always try to attract a wider cultural and historical context " "that helps my students understand more about the language and its features. A degree in history " "helps me a lot to create such an intellectual environment in the classroom.For each student, " "I develop an individual curriculum that depends on its goals and needs.", "picture": "https://i.pravatar.cc/300?img=30", "rating": 3.9, "price": 800, "goals": ["travel", "study"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 6, "name": "Eran E", "about": "Hello, my name is Eran & I am a friendly native English speaker. I am an experienced English " "teacher with a neutral accent that is easily understood. This is because I have grown up living in " "13 countries across 4 continents. They include England, America, Australia & Japan. Presently, " "I live in Lisbon, Portugal. While I am primarily focused on 1 to 1 tuition, I’ve previously taught " "classes with as many as 50 students at a time. My students have ranged from 12 to 70 years old. " "From Israeli middle schoolers all the way through to Thai Government officials. As a result, " "I’ve learned a wide variety of teaching methods. Currently, I'm taking students with English level: " "B2 onwards, as well as those who are interested in long-term growth and multiple lessons.I " "understand how hard it can be to learn another language. That's why my teaching style is fun, " "constructive & easy-going. Lessons will be tailored to meet your needs & goals. Through my lessons, " "you will gain the confidence to speak English in your daily life.", "picture": "https://i.pravatar.cc/300?img=32", "rating": 4.5, "price": 1200, "goals": ["travel", "relocate", "study"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 7, "name": "Mr. Mark", "about": "My lessons are fun and practical, but most importantly, we are going to be extremely productive. I " "believe that the best way to master English is through EXECUTION. Less theory, more practice. Lots " "of practice. Our goal is to achieve maximum involvement and focus on the subject. Schools trained " "us to be very passive. Sit quietly by yourself, be lectured to, just consume information. THAT is " "not how we are going to learn English.", "picture": "https://i.pravatar.cc/300?img=33", "rating": 4.5, "price": 1100, "goals": ["study"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 8, "name": "Skye L.", "about": "Hello, My name is Skye. I’m from London in the United Kingdom but I am currently living in Japan. I " "have a TEFL certificate which I acquired last year. Since moving to Japan I have been teaching some " "of my Japanese friends English. I think learning should be fun and engaging and even though English " "can be difficult to learn I aim to make it enjoyable.I enjoy watching football and travelling. I do " "a lot of Yoga in my spare time and I can't wait to meet you!", "picture": "https://i.pravatar.cc/300?img=35", "rating": 5, "price": 1700, "goals": ["relocate", "work"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 9, "name": "Syeta Y.", "about": "Hello and welcome to my profile learners of the wonderful world of the English language! I am a " "certified native English teacher with an A in TEFL. Learning something new should be fun and " "exciting and not something you’re dragging your feet into doing which is why I believe a little fun " "and humour plays a huge part in the learning process and also the development of a healthy and " "enjoyable relationship between us.I am also currently trying to learn a new language and so I know " "from my own experience how daunting or sometimes challenging it can be but please remember I’m here " "to work with you and not against you. We can work together on pronunciation, reading, " "conversational English, homework you may have from school or college, slang, in fact on any subject " "area you enjoy or want to develop as when you’re enjoying the learning process you’re learning " "without even realising.", "picture": "https://i.pravatar.cc/300?img=36", "rating": 4.1, "price": 1200, "goals": ["work"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 10, "name": "Salman S", "about": "I motivate and guide students to achieve their goals. It depends on what is the problem they are " "facing. Sometimes they just want to practice speaking to improve their fluency. Sometimes it's more " "complicated which is a language barrier and I need to boost their confidence. Some are coming with " "a specific task to pass an exam like IELTS and TOEFL. Moreover some are seeking to improve their " "business skills and business conversation. Sometimes they need to pass the interview in English. " "According to their requirements I have materials and programs to help them to achieve their desired " "goals. My vast experience of teaching plays a vital role as well.", "picture": "https://i.pravatar.cc/300?img=37", "rating": 4.7, "price": 1100, "goals": ["travel", "study", "work"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, { "id": 11, "name": "Andrew G", "about": "Hi guys, My name is Andrew and I am an English teacher from the USA currently living now in " "Atlanta, Georgia.My teaching experience ranges from 1 on 1 to groups, children to adults, " "in-person or online. IMPORTANT*** Although I have experience teaching Children, right now I'm only " "teaching Adults through Conversational English. This is my specialty and I do this through focusing " "mainly on Accent Reduction, Pronunciation, Speech Therapy, and improving one's Vocabulary.I have " "been traveling and teaching since 2008 and my travels have really helped me be more culturally " "aware, and relevant. I am fun and unique when it comes to teaching English, you won't that find my " "classes anywhere else.", "picture": "https://i.pravatar.cc/300?img=38", "rating": 4.2, "price": 900, "goals": ["travel", "work"], "free": { "mon": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "tue": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "wed": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "thu": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": True, "18:00": True, "20:00": True, "22:00": True}, "fri": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sat": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, "sun": {"8:00": False, "10:00": False, "12:00": False, "14:00": False, "16:00": False, "18:00": False, "20:00": False, "22:00": False}, } }, ]
c7dacfdb2f24e04f9fe94c315e29c112de6d8f4c
c18fc2aa58818788713f6865ff1c3c7b041a738d
/project2-master/Functionals/__init__.py
abd5bfa7d0ef0fba1c2f58bd7f87d704234722e8
[]
no_license
maor90b/Bartov
5b3df4049132ee233da7d58fff4cdc5d110e0ad7
50708bd3d9b85e1aaa5470bd8a80907057d0b9ae
refs/heads/master
2022-11-26T03:14:27.653421
2020-07-29T14:40:43
2020-07-29T14:40:43
282,659,055
0
0
null
null
null
null
UTF-8
Python
false
false
48
py
str=input("enter: ") str=str[-1::-1] print(str)
4495b2520174b3b77e0475b1ece2025a5553d02f
ba8fd32194162e373e6669a51d9d67edce251e10
/Python/instances/gotic_3_3_10_ex1.py
cbf8fd1664f6956a29b7fabc6a916590811db45b
[]
no_license
avidhya06/SiteDepTRPTW
805277445e55a408e96dcdece8292f2552ca428f
0f400d8717fe7da48188cb133e119a69c3ccc1cd
refs/heads/master
2023-03-16T09:58:35.938261
2019-01-05T01:04:56
2019-01-05T01:04:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,413
py
data={ "name" : "gotic_3_3_10_ex1", "nbTIC" : 3, "nbJOB" : 10, "nbCMP" : 3, "speed" : 50, "tics" : [ { "id":"TIC_1", "x":11, "y":21, "t_start":480, "t_end":1080, "cmp_list":[1,2,3,] }, { "id":"TIC_2", "x":26, "y":79, "t_start":480, "t_end":1080, "cmp_list":[1,2,3,] }, { "id":"TIC_3", "x":55, "y":67, "t_start":480, "t_end":1080, "cmp_list":[1,2,3,] }, ], "jobs" : [ { "id":"JOB_1", "x":58, "y":55, "t_min":990, "t_max":1079, "cmp":2, "dur":30, "day":1, "penal":100000}, { "id":"JOB_2", "x":30, "y":19, "t_min":750, "t_max":839, "cmp":1, "dur":60, "day":1, "penal":100000}, { "id":"JOB_3", "x":41, "y":45, "t_min":0, "t_max":1469, "cmp":1, "dur":30, "day":0, "penal":100000}, { "id":"JOB_4", "x":58, "y":24, "t_min":840, "t_max":1019, "cmp":3, "dur":60, "day":1, "penal":100000}, { "id":"JOB_5", "x":16, "y":9, "t_min":570, "t_max":689, "cmp":2, "dur":60, "day":1, "penal":100000}, { "id":"JOB_6", "x":18, "y":32, "t_min":690, "t_max":809, "cmp":1, "dur":30, "day":1, "penal":100000}, { "id":"JOB_7", "x":89, "y":100, "t_min":0, "t_max":1469, "cmp":2, "dur":60, "day":0, "penal":100000}, { "id":"JOB_8", "x":57, "y":75, "t_min":0, "t_max":1469, "cmp":2, "dur":60, "day":0, "penal":100000}, { "id":"JOB_9", "x":89, "y":60, "t_min":600, "t_max":779, "cmp":1, "dur":90, "day":1, "penal":100000}, { "id":"JOB_10", "x":89, "y":3, "t_min":570, "t_max":629, "cmp":1, "dur":30, "day":1, "penal":100000}, ] }
9f667c2714d1c53a42620dcf4ff00a13d613e2ae
887f4beeb3ba480f3bcc7dff1e9eb3d61d445f9b
/console/common/captcha/models.py
1ada08d10622a7562624b6259d9a90bf2fc2be17
[]
no_license
wang-shun/console
ccaa8a1716e2ab6bf5ed6d1c4240cecd4e59f155
50425ff068c4795bf13bd178891da126f8677383
refs/heads/master
2020-04-04T18:15:14.382006
2018-07-09T14:42:42
2018-07-09T14:42:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,120
py
# coding=utf-8 import datetime import hashlib import random import time from django.conf import settings from django.db import models from django.utils.encoding import smart_text from console.common.captcha.conf import settings as captcha_settings # Heavily based on session key generation in Django # Use the system (hardware-based) random number generator if it exists. if hasattr(random, 'SystemRandom'): randrange = random.SystemRandom().randrange else: randrange = random.randrange MAX_RANDOM_KEY = 18446744073709551616 # 2 << 63 def get_safe_now(): try: from django.utils.timezone import utc if settings.USE_TZ: return datetime.datetime.utcnow().replace(tzinfo=utc) except: pass return datetime.datetime.now() class CloudinCaptchaStore(models.Model): class Meta: db_table = "capturestore" challenge = models.CharField(max_length=32) response = models.CharField(max_length=32) hashkey = models.CharField(max_length=40, unique=True) expiration = models.DateTimeField() def save(self, *args, **kwargs): self.response = self.response.lower() if not self.expiration: self.expiration = get_safe_now() + datetime.timedelta(minutes=int(captcha_settings.CAPTCHA_TIMEOUT)) if not self.hashkey: key = ( smart_text(randrange(0, MAX_RANDOM_KEY)) + smart_text(time.time()) + smart_text(self.challenge, errors='ignore') + smart_text(self.response, errors='ignore') ).encode('utf8') self.hashkey = hashlib.sha1(key).hexdigest() super(CloudinCaptchaStore, self).save(*args, **kwargs) def __unicode__(self): return self.challenge @classmethod def remove_expired(cls): cls.objects.filter(expiration__lte=get_safe_now()).delete() @classmethod def generate_key(cls): challenge, response = captcha_settings.get_challenge()() store = cls.objects.create(challenge=challenge, response=response) return store.hashkey
0a2c971002d678357c1f3f68e02ee8d526e1238e
880b789a2ad03d322768d8f471bdacb0ce205de2
/main.py
71247da411af20ffa4ebaaa6ce5b9cbe88925ff2
[]
no_license
chrisschulz131/NBA_Game_Predictions
31ef440f0b3cbb7322f69c1f2886aeda9027b39d
1603370e7c464db57ef16e7dbaf81de81252c0ff
refs/heads/main
2023-03-02T12:37:22.770605
2021-02-16T00:44:37
2021-02-16T00:44:37
321,150,489
0
0
null
null
null
null
UTF-8
Python
false
false
458
py
""" This class will end up being the script to run the whole project. """ import pandas as pd from sklearn import linear_model from sklearn.preprocessing import LabelEncoder, OrdinalEncoder from sklearn.compose import ColumnTransformer from model.model_class import Model if __name__ == '__main__': model = Model('data_scraping/2019-20-stats.csv') # preprocess will encode the teams and WL columns model.preprocess() model.train_model()
15448d4c5289de6aea6418b0528790eadfe49f61
429a8441bb9730dcf0e33fedcb5f3672a731b3e7
/xero_python/accounting/models/history_records.py
60ca925cf57bc4fd2c2babc1cafa6f50af1e85cb
[ "MIT" ]
permissive
gregsteelxinja/xero-python
1a26ec3b05ea156dd6848f2ec313c72e9f39b0e2
d0473ba91099de3464b3dffa377df5a11ad95afc
refs/heads/master
2022-12-16T10:54:11.424971
2020-09-01T01:00:23
2020-09-01T01:00:23
291,526,551
0
0
null
2020-08-30T18:16:48
2020-08-30T18:16:48
null
UTF-8
Python
false
false
1,828
py
# coding: utf-8 """ Accounting API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: 2.2.14 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 from xero_python.models import BaseModel class HistoryRecords(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {"history_records": "list[HistoryRecord]"} attribute_map = {"history_records": "HistoryRecords"} def __init__(self, history_records=None): # noqa: E501 """HistoryRecords - a model defined in OpenAPI""" # noqa: E501 self._history_records = None self.discriminator = None if history_records is not None: self.history_records = history_records @property def history_records(self): """Gets the history_records of this HistoryRecords. # noqa: E501 :return: The history_records of this HistoryRecords. # noqa: E501 :rtype: list[HistoryRecord] """ return self._history_records @history_records.setter def history_records(self, history_records): """Sets the history_records of this HistoryRecords. :param history_records: The history_records of this HistoryRecords. # noqa: E501 :type: list[HistoryRecord] """ self._history_records = history_records
74e32978392857402ada1f0d62b495f4d755c7e6
bf867f8da531e0f17a57f9d526de7164207f4ac1
/Practico-04/Ejercicio-02.py
e250e74e894d7adf92ae0a0a097805cf204187f9
[]
no_license
nawealvarez/frro-soporte-2018-13
4476b57ce241639297709cfc666b0ac7d07d18f2
0f7f6518ddcf560a1070fe49d7a95fa8a2c850c9
refs/heads/master
2021-04-15T06:02:49.424867
2018-10-17T00:53:31
2018-10-17T00:53:31
126,844,485
0
0
null
2018-07-27T18:44:10
2018-03-26T14:50:08
Python
UTF-8
Python
false
false
2,768
py
from tkinter import * class Calculator: def clearall(self): self.e.delete(0, END) def action(self, num): self.e.insert(END, num) def equal(self): try: self.igual = self.e.get() self.equialidad=eval(self.igual) self.e.delete(0, END) self.e.insert(END, self.equialidad) except SyntaxError or NameError: self.e.delete(0, END) self.e.insert(END, 'DATA ERRROR') def __init__(self, ventana): ventana.title("Calculadora") ventana.geometry("300x190") # Entrada de texto self.e = Entry(ventana, width=40) self.e.grid(row=0, column=0, columnspan=4, pady=3) self.e.focus_set() ventana = Tk() objeto = Calculator(ventana) # Botones numeros Button(ventana, text="0", width=8, height=2, command=lambda: objeto.action(0)).grid(column=1, row=4) botUno = Button(ventana, text="1", width=8, height=2, command=lambda: objeto.action(1)) botDos = Button(ventana, text="2", width=8, height=2, command=lambda: objeto.action(2)) botTres = Button(ventana, text="3", width=8, height=2, command=lambda: objeto.action(3)) botCuatro = Button(ventana, text="4", width=8, height=2, command=lambda: objeto.action(4)) botCinco = Button(ventana, text="5", width=8, height=2, command=lambda: objeto.action(5)) botSeis = Button(ventana, text="6", width=8, height=2, command=lambda: objeto.action(6)) botSiete = Button(ventana, text="7", width=8, height=2, command=lambda: objeto.action(7)) botOcho = Button(ventana, text="8", width=8, height=2, command=lambda: objeto.action(8)) botNueve = Button(ventana, text="9", width=8, height=2, command=lambda: objeto.action(9)) # Botones operadores botSuma = Button(ventana, text="+", width=8, height=2, command=lambda: objeto.action('+')) botResta = Button(ventana, text="-", width=8, height=2, command=lambda: objeto.action('-')) botMultiplicacion = Button(ventana, text="x", width=8, height=2, command=lambda: objeto.action('*')) botDivision = Button(ventana, text="/", width=8, height=2, command=lambda: objeto.action('/')) botIgual = Button(ventana, text="=", width=8, height=2, command=objeto.equal) Button(ventana, text="AC", width=8, height=2, command=objeto.clearall).grid(column=0, row=4) # Aparicion de botones botSiete.grid(column=0, row=1) botOcho.grid(column=1, row=1) botNueve.grid(column=2, row=1) botSuma.grid(column=3, row=1) botCuatro.grid(column=0, row=2) botCinco.grid(column=1, row=2) botSeis.grid(column=2, row=2) botResta.grid(column=3, row=2) botUno.grid(column=0, row=3) botDos.grid(column=1, row=3) botTres.grid(column=2, row=3) botMultiplicacion.grid(column=3, row=3) botDivision.grid(column=2, row=4) botIgual.grid(column=3, row=4) ventana.mainloop()
94db800dce4d743a1eb095d92417e8298f1cbb8e
45837f5bf44edf6692efbf256ed79c28a805f7ab
/make_plasmid_derep_db.py
5319e938b6d901af0f9eb23b6617c887c4b977f7
[]
no_license
JoshDaly/TrackMscripts
799dcdecb97a70355cb918ca13c0eb5a6540885d
ec53bd3278d5c1e7fc1e8de8d857a61c2e324a8c
refs/heads/master
2021-01-20T08:48:39.260779
2015-06-04T05:09:03
2015-06-04T05:09:03
31,794,600
0
0
null
null
null
null
UTF-8
Python
false
false
7,732
py
#!/usr/bin/env python ############################################################################### # # __make_plasmid_derep_db__.py - Make plasmid db from dereplicated IMG genomes! # ############################################################################### # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # ############################################################################### __author__ = "Josh Daly" __copyright__ = "Copyright 2014" __credits__ = ["Josh Daly"] __license__ = "GPL3" __version__ = "0.0.1" __maintainer__ = "Josh Daly" __email__ = "" __status__ = "Development" ############################################################################### # system imports import argparse import sys import re import glob from multiprocessing import Pool from subprocess import Popen, PIPE from Bio import SeqIO from Bio.Seq import Seq #import os #import errno import numpy as np np.seterr(all='raise') #import matplotlib as mpl #import matplotlib.pyplot as plt #from mpl_toolkits.mplot3d import axes3d, Axes3D #from pylab import plot,subplot,axis,stem,show,figure # local imports import trackm_file_parser as TFP ############################################################################### ############################################################################### ############################################################################### ############################################################################### class PlasmidDB(object): def __init__(self, path_file, taxon_file): self.derep_genomes = {} # list self.plasmid_genome = {} self.PD = TFP.PathsFileData(path_file) self.TD = TFP.TaxonomyData(taxon_file) def parseMetaData(self, derep_metadata): with open(derep_metadata) as fh: for l in fh: if l[0] != 't': tabs = l.rstrip().split("\t") self.derep_genomes[tabs[0]] = 1 def parseIMGGenomes(self, directory, outfile): IMG_genomes = glob.glob('%s/*/*.fna' % directory) # initialise output file if outfile: out_file = open(outfile,'w') #### check that it is a genome, and that it is contained within the dereplicated list, then check if it has a plasmid. for fasta_file in IMG_genomes: # check if genome lenny = re.search('[0-9]+.fna',fasta_file) if lenny: # check if genome in dereplicated DB img_genome = fasta_file.rstrip().split('/')[-1][:-4] try: carl = self.derep_genomes[img_genome] fasta_sequences = SeqIO.parse(open(fasta_file),"fasta") for fasta in fasta_sequences: if 'plasmid' in fasta.description.lower(): self.plasmid_genome[fasta.description] = fasta.seq gid = self.PD.img_to_gid[img_genome] if not self.checkIfUpdatedTaxonomy(gid): print gid if outfile: out_file.write('>%s\n' % fasta.description) out_file.write('%s\n' % fasta.seq) except KeyError: # replicated genome pass def checkIfUpdatedTaxonomy(self, gid): try: lenny = self.TD.taxon_genus[gid] return True except KeyError: return False def averagePlasmidGenomeLength(self): cumulative_length = [] # calculate the total length of plasmid genomes for plasmid in self.plasmid_genome.keys(): cumulative_length.append(len(self.plasmid_genome[plasmid])) cumulative_length_np = np.array(cumulative_length) print "Average dereplicated plasmid genome length %d" % np.average(cumulative_length_np) print "Standard deviation %d" % np.std(cumulative_length_np) def buildPlasmidDB(self, directory, derep_metadata, outfile): # build dict of derep genomes self.parseMetaData(derep_metadata) # parse through directory, only grabbing plasmid # genomes of dereplicated IMG genomes! self.parseIMGGenomes(directory, outfile) # print to screen self.averagePlasmidGenomeLength() ############################################################################### ############################################################################### ############################################################################### ############################################################################### def runCommand(cmd): """Run a command and take care of stdout expects 'cmd' to be a string like "foo -b ar" returns (stdout, stderr) """ p = Popen(cmd.split(' '), stdout=PIPE) return p.communicate() def doWork( args ): """ Main wrapper""" PDB = PlasmidDB(args.path_file, args.taxon_file) PDB.buildPlasmidDB(args.genome_directory, args.derep_metadata, args.outfile) ############################################################################### ############################################################################### ############################################################################### ############################################################################### if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('genome_directory', help="Directory containing dereplicated IMG genomes.") parser.add_argument('derep_metadata', help="Dereplicated IMG metadata.") parser.add_argument('path_file', help="File containing paths to img files.") parser.add_argument('taxon_file', help="File containing updated taxon information.") parser.add_argument('-o','--outfile', default = False, help="Output file.") #parser.add_argument('input_file2', help="gut_img_ids") #parser.add_argument('input_file3', help="oral_img_ids") #parser.add_argument('input_file4', help="ids_present_gut_and_oral.csv") #parser.add_argument('output_file', help="output file") #parser.add_argument('positional_arg3', nargs='+', help="Multiple values") #parser.add_argument('-X', '--optional_X', action="store_true", default=False, help="flag") # parse the arguments args = parser.parse_args() # do what we came here to do doWork(args) ############################################################################### ############################################################################### ############################################################################### ###############################################################################
e0bcafb17add192f0c17d976c9987de4a879e0b8
c5a60e12ee8ccfe3d54af7002ea2415dfe1d465f
/lib/parser/map/google/France.py
5f1603979ea11edc2b310ef8b75cc51b7d3f97f1
[]
no_license
ptax/WebCrawler_FR
3e2e34ca4cde20dd3590a4e9d554e744a62d663f
3fa69996862b2d921a594a3160f800486d8c2ab8
refs/heads/master
2020-12-03T03:52:09.027456
2017-09-18T07:23:05
2017-09-18T07:23:05
95,782,184
1
1
null
2017-08-14T06:48:22
2017-06-29T13:46:30
Python
UTF-8
Python
false
false
339
py
from lib.parser.map.google.GMap import GMap as GMap class France(GMap): ADMIN_LEVEL_1 = 'country' ADMIN_LEVEL_2 = 'administrative_area_level_1' ADMIN_LEVEL_3 = 'administrative_area_level_2' ADMIN_LEVEL_4 = 'locality' ADMIN_LEVEL_5 = 'sublocality' ADMIN_LEVEL_6 = 'neighborhood' QUANTITY_OF_ADMIN_LEVELS = 6
[ "10122202z3223544z" ]
10122202z3223544z
18e9eb598fb803d50ba5724cb3c8489254ce1bf4
7e3410923fa4dd4ad1427abb23bba56767f7a80e
/cmain.py
46726a461119cefb782a3a9c42563e4fbc56fdef
[]
no_license
sofken/kyogi
730cca61943fa4941eb15c76f3613a185459e481
f0e9de6fdff6fa7f0a8e57e7bee12660964c6e8e
refs/heads/master
2016-09-06T16:49:04.946823
2015-10-11T18:08:36
2015-10-11T18:08:36
42,280,235
0
0
null
null
null
null
UTF-8
Python
false
false
1,466
py
import math from copy import deepcopy import random import numpy as np from numba import double from numba.decorators import jit import pyximport pyximport.install() import cfunc #stone & stage reading #data = two stone #onedata = one stone #twostage = two stage #onestage = one stage data = cfunc.getdata() #stage & stone two data onedata = [] for i in range(len(data)): onedata.append(cfunc.getone(data[i])) #stage & stone one data twostage = data[0] cfunc.addone(twostage) del data[0] onestage = onedata[0] del onedata[0] #codes IF_stage = cfunc.IF_STAGE() IF_stone = cfunc.IF_STONE() act = cfunc.actcode() act.append([[7,7],7,7]) Main_code = [] LEN_N = 5 MAINLEN = 50 for i in range(LEN_N): Main_code.append(cfunc.maincode(MAINLEN)) cpstage = deepcopy(twostage) go= 1 ranktable = [] cou = 1 while(go): cfunc.crossing(Main_code) cfunc.mutation(Main_code) go = cfunc.check_stop(Main_code,ranktable,cpstage,data,onedata,IF_stage,IF_stone,act) cfunc.sortalive(ranktable) if(go == 0): #cfunc.check_stop_2([Main_code[ranktable[0][0]]],ranktable,cpstage,data,onedata,IF_stage,IF_stone,act) break #cfunc.work_2(cpstage,data,onedata,IF_stage,IF_stone,act,Main_code[ranktable[0][0]]) cfunc.roulette(Main_code,ranktable) cou += 1 #go = check_stop(Main_code,ranktable,cpstage,data,IF_stage,IF_stone,act) #viewstage(cpstage) #result = [Main_code[ranktable[0][0]]] #cfunc.check_stop_2(result,ranktable,cpstage,data,onedata,IF_stage,IF_stone,act)
694f2ef27c13159bf25f60313acfe0fe794edba8
7a41f8a2c9859d4aa46f3418f3c5a927d0319033
/test_imdb.py
9d60165c4885746888dd1e21051671bc1eb4d334
[]
no_license
gffbss/dev-project
174905ac42c68efadbe1f3795a0ed7c5bb68452a
2742b3f8ec9748ac008286caa1e7699eefbe5c35
refs/heads/master
2021-01-25T03:48:41.442643
2014-05-05T20:07:50
2014-05-05T20:07:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
__author__ = 'geoffreyboss' # from imdb import IMDb # # ia = IMDb() # matrix = ia.get_movie('0075860') # print matrix # # # # def median(alist): # # srtd = sorted(alist) # returns a sorted copy # mid = len(alist)/2 # remember that integer division truncates # # if len(alist) % 2 == 0: # take the avg of middle two # print (srtd[mid-1] + srtd[mid]) / 2.0 # else: # print srtd[mid] # # median([1,2,3,4,5]) def check_for_mode(num_list): num_counter = 0 for num in num_list: if num == num_list[num]: num_counter += 1 print num_counter, num check_for_mode([1,4,2,4,3,5])
f3d03f4c4adbe888a0b055ed9321fec36439c84f
d07287a13ef315057a9a037739176a24a76b68c7
/Project/numberPrime.py
74d4a1b8c6ec63fab82b504010a0a96e6e7b4ef3
[]
no_license
panyisheng/network-security-technology
e99cc6717dd2e14e3bd0cbcf3ec8d1f745cba87e
7f444d7725029a5be72bcbaec7d9027daba0152b
refs/heads/master
2020-03-21T10:35:56.979005
2018-06-24T07:30:35
2018-06-24T07:30:35
138,460,427
0
0
null
null
null
null
UTF-8
Python
false
false
1,861
py
''' Filename: numberPrime.py Author: Pan Yisheng Description: generate big prime and compute rsa key pair ''' import random from gcd import * from primality_tester import * from random import randrange, getrandbits import time # Function to test primality def NumberIsPrime(n): if (n==2 or n==3): return True if (n<2 or n % 3 == 0): return False return prime_test_miller_rabin(n) #Function to generete number primes #Generete two different prime number def GenereteNumberPrime(n_bits): f = False while not f: # Generate random numbers p = getrandbits(n_bits) q = getrandbits(n_bits) if NumberIsPrime(p) and NumberIsPrime(q) and p!=q: f = True return p, q # Function compute e and d def GetParams(phi_n): d = 0 e = 65537 f_e = False ''' while f_e == False: e = random.randint(1,phi_n-1) if (gcd(e,phi_n) == 1): f_e = True ''' _, d, _ = euclideanExtendedGCD(e,phi_n) if(d<0): d+= phi_n return d, e def GenParms(n_bits,DEBUG): p,q = GenereteNumberPrime(n_bits) n = p * q phi_n= (p-1) *(q-1) d, e = GetParams(phi_n) #while(d<0): # d+=y if DEBUG == True: print("P, Q: ", p, q) print("N: ", n) print("Phi(n): ", phi_n) print("E, D: ", e, d) return n, d, e #Debuger function GenParms def Gen_Parms2(p,q,DEBUG=True): #p,q = GenereteNumberPrime(n_bits) n = p * q #y = carmichael(p, q) # totiente phi_n= (p-1) *(q-1) d, e = GetParams(phi_n) #while(d<0): # d+=y if DEBUG == True: print("P, Q: ", p, q) print("N: ", n) print("Phi(n): ", phi_n) print("E, D: ", e, d) return n, d, e #Debuge function if __name__ == '__main__': # Testes begin = time.time() GenereteNumberPrime(512) print("time1:",time.time()-begin) begin = time.time() y = randint_bits(512) print("time2:",time.time()-begin) #p,q= GenereteNumberPrime(n_bits=3) print("Numeros primos") #print(p,q)
64334977d2d5fcc516210f941974a893c1015f0e
bb74ab80ef44f5bd7dc8ac5c7022e6c611f81f9d
/AmazonNet.py
2de79eb61d17f8c81d8dd51fad5a1a1fc2f25991
[]
no_license
xiaofeijiGH/Amazon
710c97f679611db44dfa172bb131220202f8b369
f538621d58e3b2cfda817bafdaa5455e620ac164
refs/heads/master
2020-09-23T13:50:37.810007
2019-12-09T04:29:33
2019-12-09T04:29:33
225,515,081
0
0
null
2019-12-03T02:42:29
2019-12-03T02:42:28
null
UTF-8
Python
false
false
2,717
py
import sys import torch import torch.nn as nn import torch.nn.functional as F sys.path.append('..') class AmazonNet(nn.Module): def __init__(self, game, args): """ torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros') nn.BatchNorm2d():数据的归一化处理 :param game: :param args: """ # game params self.board_x, self.board_y = game.get_board_size() self.action_size = game.get_action_size() self.args = args super(AmazonNet, self).__init__() self.conv1 = nn.Conv2d(1, args.num_channels, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(args.num_channels, args.num_channels, 3, stride=1, padding=1) self.conv3 = nn.Conv2d(args.num_channels, args.num_channels, 3, stride=1) self.conv4 = nn.Conv2d(args.num_channels, args.num_channels, 3, stride=1) self.bn1 = nn.BatchNorm2d(args.num_channels) self.bn2 = nn.BatchNorm2d(args.num_channels) self.bn3 = nn.BatchNorm2d(args.num_channels) self.bn4 = nn.BatchNorm2d(args.num_channels) self.fc1 = nn.Linear(args.num_channels * (self.board_x - 4) * (self.board_y - 4), 1024) self.fc_bn1 = nn.BatchNorm1d(1024) self.fc2 = nn.Linear(1024, 512) self.fc_bn2 = nn.BatchNorm1d(512) # 评估策略 self.fc3 = nn.Linear(512, self.action_size) # 评估v self.fc4 = nn.Linear(512, 1) def forward(self, s): # s: batch_size x board_x x board_y s = s.view(-1, 1, self.board_x, self.board_y) # batch_size * 1 * board_x * board_y s = F.relu(self.bn1(self.conv1(s))) # batch_size * num_channels * board_x * board_y s = F.relu(self.bn2(self.conv2(s))) # batch_size * num_channels * board_x * board_y s = F.relu(self.bn3(self.conv3(s))) # batch_size * num_channels * (board_x-2) * (board_y-2) s = F.relu(self.bn4(self.conv4(s))) # batch_size * num_channels * (board_x-4) * (board_y-4) s = s.view(-1, self.args.num_channels * (self.board_x - 4) * (self.board_y - 4)) # batch_size * 1024 s = F.dropout(F.relu(self.fc_bn1(self.fc1(s))), p=self.args.dropout, training=self.training) # batch_size * 512 s = F.dropout(F.relu(self.fc_bn2(self.fc2(s))), p=self.args.dropout, training=self.training) # 3 * batch_size * action_size pi = self.fc3(s) # batch_size x 1 v = self.fc4(s) return F.log_softmax(pi, dim=1), torch.tanh(v)
b438ce5030fd72d02e515c5a45c7fa5c0d9aad10
1a48806f2dd5fc156b0485e35156742164e0ef0c
/discwarriors/Wbug.py
da16667ccb2fa011ad9fce7acb966f3caedc3e27
[]
no_license
MasMat2/Games
29f4800e606bba984faa7c760575aebaeaf362cc
48ca7adaa355f2a5d2c40936096dd6cbf02d55ee
refs/heads/master
2020-06-05T20:21:25.582607
2020-04-16T21:01:17
2020-04-16T21:01:17
192,537,013
0
0
null
null
null
null
UTF-8
Python
false
false
1,130
py
#Disc Warriors # # Wbug.py # Class for World based bugs. # # This is, so far, not a useable # class. This is currently just a # test to get the basics of the # class to work. # import Dfile, pygame, functions from pygame.locals import * from functions import load_image class bug(pygame.sprite.Sprite): def __init__(self,path,ID): pygame.sprite.Sprite.__init__(self) self.dfile="dfiles/"+path self.name=Dfile.getName(self.dfile) self.type=Dfile.getType(self.dfile) self.group="Bug" self.x=int(Dfile.getAtr(self.dfile,"W","Startx")) self.y=int(Dfile.getAtr(self.dfile,"W","Starty")) self.id=ID self.off=(-17,-32) self.sprite=load_image("chars/bugs/teron/teron_D.png") self.selected=False self.health=100 def update(self,events,sur,of1): self.draw(sur,of1) return self.y def draw(self,surf,of2): tempx=self.x+self.off[0]-of2[0] tempy=self.y+self.off[1]-of2[1] surf.blit(self.sprite, (tempx,tempy)) if self.selected: ox=self.x-of2[0] oy=self.y+self.off[1]-of2[1] pygame.draw.circle(surf,(0,0,0),(ox,oy),2) del tempx del tempy
68e561ffc920fb139d5b7a78738b824ef4517510
3893d026b8380f4a87cc727020c735d753e9abae
/core/session/local.py
8930f2d13de4caf96078174c6f67beda6715bc0f
[ "Apache-2.0" ]
permissive
reinforcement-learning-fun/TradzQAI
4e46d4a79fe1bd3930f528943ab2aa428cc96d14
746c4900359cfc69db26fcf3d178827f2b0947a2
refs/heads/master
2020-03-30T17:26:00.346150
2018-10-03T05:59:59
2018-10-03T05:59:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,596
py
from core import Local_Worker from core import Local_env from threading import Thread from tools import * import time class Local_session(Thread): def __init__(self, mode="train", gui=0, contract_type="classic", config='config/', db=None, agent="PPO"): self.db = db if not "/" in config[len(config)-1]: raise ValueError("You forget \"/\" at the end, it should be {}/".format(config)) self.env = Local_env(mode=mode, gui=gui, contract_type=contract_type, config=config, agent=agent) self.config = config self.agent = None self.worker = Local_Worker Thread.__init__(self) def stop(self): self.env.close() def getWorker(self): return self.worker def getEnv(self): return self.env def getAgent(self): return self.agent def setAgent(self, agent=None, device=None): if agent: self.env.model_name = agent if self.env.model_name in self.env.agents: import warnings with warnings.catch_warnings(): warnings.filterwarnings("ignore",category=FutureWarning) self.agent = getattr(__import__('agents'), self.env.model_name) self.device = device else: raise ValueError('could not import %s' %self. env.model_name) def loadSession(self): if not self.env.stop: self.initAgent() self.initWorker() else: print (red("Warning : ")+"You cannot load the session without setting,\ any data directory in %s/environnement" % self.config) def initAgent(self): if not self.agent: self.setAgent() for classe in self.agent.__mro__: if ("tensorforce" and self.agent.__name__) in str(classe): self.agent = self.agent(env=self.env, device=self.device)._get() return self.agent = self.agent(env=self.env, device=self.device) def initWorker(self): self.worker = self.worker(env=self.env, agent=self.agent) def run(self): if not self.agent: raise ValueError("add an agent and load the session before running") elif not self.env.stop: self.env.logger.start() if self.env.gui == 0: Thread(target=self.worker.run).start() else: self.worker.start() else: print (red("Warning : ")+"You cannot start the session without setting,\ any data directory in %s/environnement" % self.config)
0ee9d779bf7bc462a321478cadbff65f48d1fc79
cfb9e78029e539caa0230d1903f287ce9bad204a
/manage.py
98492c81a9ab920ef6cfe01a5015ed9249d4665c
[ "MIT" ]
permissive
ulyssesv/bflask
ec787587ff2daf09b2320a3ce27d116697aed61f
0d1b477a9bbf31097ef2f5a81962ecdd625265a5
refs/heads/master
2020-02-29T21:30:21.007569
2016-06-07T07:58:46
2016-06-07T07:58:46
60,293,397
1
0
null
null
null
null
UTF-8
Python
false
false
3,620
py
from bflask import create_app, db from bflask.models import Agency, Route, Stop from bflask.nextbus import NextBus from flask_migrate import MigrateCommand, Migrate from flask_script import Manager, Server from sqlalchemy import func from sqlalchemy.orm import load_only app = create_app() manager = Manager(app) migrate = Migrate(app, db) manager.add_command('db', MigrateCommand) manager.add_command("runserver", Server()) @manager.command def load(): """Load NextBus API entries.""" # TODO: Deal with IntegrityError from the unique constraint or add logic to synchronize the data. print("Loading NextBus entries") nb = NextBus() # Load agencies. print("Loading agencies... ", end="", flush=True) r = nb.agency_list() agencies = [] for agency in r['body']['agency']: # TODO: Refactor the Stop model to remove this lock. The Stop.tag and stop.external_id are # only unique when associated to a route/agency. if agency['@tag'] == 'sf-muni': agencies.append(Agency(tag=agency['@tag'], title=agency['@title'])) db.session.bulk_save_objects(agencies) print("done.") # Load routes. print("Loading routes... ", end="", flush=True) agencies = Agency.query.all() routes = [] for agency in agencies: r = nb.route_list(agency.tag) for route in r['body']['route']: routes.append(Route(agency_id=agency.id, tag=route['@tag'], title=route['@title'])) db.session.bulk_save_objects(routes) print("done.") # Load stops. print("Loading stops... ", end="", flush=True) agencies = db.session.query(Agency, func.count(Route.id)).join(Agency.routes).group_by(Agency.id).all() stops = [] # Caches the routes to avoid querying in the loop to add relationship instances. routes = Route.query.options(load_only('id', 'tag', 'agency_id')).all() route_cache = {'{}:{}'.format(i.agency_id, i.tag): i for i in routes} def _add_stop(): # Helper method to add a stop using outer scope variables. stop_id_arg = {'external_id': stop['@stopId']} if '@stopId' in stop.keys() else {} return Stop( tag=stop['@tag'], title=stop['@title'], latitude=stop['@lat'], longitude=stop['@lon'], **stop_id_arg ) for (agency, route_count) in agencies: if route_count < NextBus.MAX_ROUTES_PER_ROUTE_CONFIG: # The API returns up to 100 routes for an agency if the route_tag parameter is supressed. r = nb.route_config(agency_tag=agency.tag) for route in r['body']['route']: for stop in route['stop']: s = _add_stop() s.routes.append(route_cache['{}:{}'.format(agency.id, route['@tag'])]) stops.append(s) else: # An error is returned if an agency has more than 100 routes. The only option is to query one by one since # we have no pagination or batch request. routes = agency.routes.all() for route in routes: r = nb.route_config(agency_tag=agency.tag, route_tag=route.tag) for stop in r['body']['route'][0]['stop']: s = _add_stop() s.routes.append(route_cache['{}:{}'.format(agency.id, route.tag)]) stops.append(s) db.session.bulk_save_objects(stops) print("done.") print("Committing to database...", end="", flush=True) db.session.commit() print("done.") if __name__ == '__main__': manager.run()
2c30c1cec07249f205a3aeedf8fc289bd1576571
fe2cbdb8859bfc541ef3b2b0b8f08b4400fdb81a
/Customer_segmentation/KMeans.py
26b5790837b4fdb4bb7f3386e9807fc4f8f9a6ef
[]
no_license
SanaAmruth/MyML
64173f81eba6c044c017e79aaa67bebc08f91ee2
93118602cd15e7b459675c3356fbd6a61a424022
refs/heads/master
2023-07-14T06:30:31.610501
2021-08-27T11:34:53
2021-08-27T11:34:53
285,191,251
0
0
null
null
null
null
UTF-8
Python
false
false
2,779
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler, normalize ,MinMaxScaler from sklearn.cluster import KMeans from sklearn.decomposition import PCA # In[2]: creditcard_df= pd.read_csv('/Users/sana/Desktop/Academics/Projects/Customer_Segmentation/Credit_card_data.csv') # In[3]: creditcard_df # In[4]: type(creditcard_df) creditcard_df.info() # In[5]: creditcard_df.describe() # In[6]: print(creditcard_df.isnull().sum()) # In[7]: creditcard_df.loc[(creditcard_df['MINIMUM_PAYMENTS'].isnull() == True), 'MINIMUM_PAYMENTS'] = creditcard_df['MINIMUM_PAYMENTS'].mean() creditcard_df.isnull().sum() # In[8]: creditcard_df.loc[(creditcard_df['CREDIT_LIMIT'].isnull() == True),'CREDIT_LIMIT']=creditcard_df['CREDIT_LIMIT'].mean() # In[9]: creditcard_df.isnull().sum() # In[10]: creditcard_df.isnull().sum().sum() # In[11]: creditcard_df.drop('CUST_ID',axis=1,inplace=True) # In[12]: creditcard_df # In[13]: n = len(creditcard_df.columns) n # In[14]: creditcard_df.columns # In[15]: correlations=creditcard_df.corr() sns.heatmap(correlations,annot=True) # In[16]: scaler=StandardScaler() creditcard_df_scaled=scaler.fit_transform(creditcard_df) # In[17]: type(creditcard_df_scaled) # In[18]: creditcard_df_scaled # In[19]: cost=[] range_values=range(1,20) for i in range_values: kmeans=KMeans(i) kmeans.fit(creditcard_df_scaled) cost.append(kmeans.inertia_) plt.plot(cost) # In[20]: kmeans = KMeans(7) kmeans.fit(creditcard_df_scaled)#find the nearest clusters for given data labels = kmeans.labels_ labels # In[21]: kmeans.cluster_centers_.shape # In[22]: cluster_centers=pd.DataFrame(data=kmeans.cluster_centers_,columns=[creditcard_df.columns]) cluster_centers # In[23]: # scaler=StandardScaler() # cluster_centers=scaler.inverse_transform(cluster_centers) # cluster_centers=pd.DataFrame(data=cluster_centers,columns=[creditcard_df_scaled.columns]) # cluster_centers # In[24]: labels.shape # In[25]: labels.max() # In[26]: labels.min() # In[27]: credit_df_cluster=pd.concat([creditcard_df,pd.DataFrame(({'cluster':labels}))],axis=1) credit_df_cluster # In[28]: pca=PCA(n_components=2) principal_comp=pca.fit_transform(creditcard_df_scaled) # In[29]: pca_df=pd.DataFrame(data=principal_comp,columns=['pca1','pca2']) pca_df # In[30]: pca_df=pd.concat([pca_df,pd.DataFrame({'Cluster':labels})],axis=1) pca_df # In[31]: plt.figure(figsize=(10,10)) ax=sns.scatterplot(x='pca1',y='pca2',hue='Cluster',data=pca_df,palette=['yellow','red','blue','pink','orange','black','purple']) plt.show() # In[ ]:
d716689682146fff0d52e853e9d9fd20cde66ec4
4bf82a8be06a1c39fc8cd5536a72839ea18f6b03
/sensors/APDS-9960/python/gesture-oled.py
9da39f9eefa5f1d9d659fe2440a5cae3545e2d72
[ "MIT" ]
permissive
AnaviTechnology/anavi-examples
5571a29bd61452a1ea855dc0c16a3aa5a317657b
2725b21d2b5f0d0a0a40cec90f7edd7b4f2b9a86
refs/heads/master
2023-08-31T20:18:30.849894
2023-08-24T15:52:52
2023-08-24T15:52:52
63,726,355
34
18
MIT
2023-08-24T09:36:18
2016-07-19T20:36:36
C++
UTF-8
Python
false
false
2,127
py
import os import sys import signal import smbus import socket from time import sleep from apds9960.const import * from apds9960 import APDS9960 from luma.core.interface.serial import i2c from luma.core.render import canvas from luma.oled.device import ssd1306, ssd1325, ssd1331, sh1106 from luma.core.error import DeviceNotFoundError from PIL import ImageFont, ImageDraw def signal_handler(sig, frame): # Clear the OLED display serial = i2c(port=1, address=0x3C) device = ssd1306(serial, rotate=0) print("\nApplication termiated with Ctrl+C.") os._exit(0) def draw_text(display, line1, line2, line3): with canvas(display) as draw: draw.rectangle(device.bounding_box, outline="white", fill="black") font = ImageFont.truetype(drawfont, 10) draw.text((5, 5), line1, fill="white", font=font) font = ImageFont.truetype(drawfont, 16) draw.text((5, 20), line2, fill="white", font=font) draw.text((5, 42), line3, fill="white", font=font) dirs = { APDS9960_DIR_NONE: "none", APDS9960_DIR_LEFT: "left", APDS9960_DIR_RIGHT: "right", APDS9960_DIR_UP: "up", APDS9960_DIR_DOWN: "down", APDS9960_DIR_NEAR: "near", APDS9960_DIR_FAR: "far", } try: signal.signal(signal.SIGINT, signal_handler) drawfont = "pixelmix.ttf" serial = i2c(port=1, address=0x3C) device = ssd1306(serial, rotate=0) port = 1 bus = smbus.SMBus(port) apds = APDS9960(bus) apds.setProximityIntLowThreshold(50) print("APDS9960 Gesture Test") print("============") apds.enableGestureSensor() draw_text(device, "APDS-9960", "Show me a", "gesture!") while True: sleep(0.5) if apds.isGestureAvailable(): motion = apds.readGesture() print("Gesture={}".format(dirs.get(motion, "unknown"))) draw_text(device, "APDS-9960", "Gesture", "{}".format(dirs.get(motion, "unknown"))) except OSError as error: if 121 == error.errno: print('No sensor found') elif None == error.errno: print('Error. Is the ttf font file available?') else: print('Error:', sys.exc_info()[0]) os._exit(1) except: print("Unexpected error:", sys.exc_info()[0]) os._exit(2)
a41f99fb7ffa728e0744d0a8e53589f34b2a1f53
0f68624a2019ff7492dd0dc0b8bc55495a2e950d
/playLA/LinearSystem.py
f64a6ca6612ff20925f82afb659fc0b0d52333f2
[]
no_license
DaoLinZhou/learning-linear-algebra
3fd6fd83428c0a5354f40cb44d3f69d43a118971
413fbdebacf1ffbb625b1cdb9cbb29e10300a416
refs/heads/master
2020-09-23T17:08:13.489545
2020-03-05T03:28:22
2020-03-05T03:28:22
225,546,128
0
0
null
null
null
null
UTF-8
Python
false
false
3,058
py
from playLA._global import is_zero from .Matrix import Matrix from .Vector import Vector class LinearSystem: def __init__(self, A: Matrix, b=None): assert b is None or A.row_num() == len(b), "row number of A must be equal to the length of b" self._m = A.row_num() self._n = A.col_num() if b is None: self.Ab = [A.row_vector(i) for i in range(self._m)] if isinstance(b, Vector): self.Ab = [Vector(A.row_vector(i).underlying_list() + [b[i]]) for i in range(self._m)] if isinstance(b, Matrix): self.Ab = [Vector(A.row_vector(i).underlying_list() + b.row_vector(i).underlying_list()) for i in range(self._m)] self.pivots = [] def gauss_jordan_elimination(self): """如果有解, 返回True; 无解, 返回False""" self._forward() self._backward() for i in range(len(self.pivots), self._m): if not is_zero(self.Ab[i][-1]): return False return True def fancy_print(self): for i in range(self._m): print(" ".join(str(self.Ab[i][j]) for j in range(self._n)), end=" ") print("|", self.Ab[i][-1]) def _max_row(self, index_i, index_j, n): """寻找从index行到第n行, index位置元素绝对值最大的行号""" best, ret = self.Ab[index_i][index_j], index_i for i in range(index_i+1, n): if abs(self.Ab[i][index_j]) > best: best, ret = self.Ab[i][index_j], i return ret def _forward(self): i, k = 0, 0 while i < self._m and k < self._n: # 看Ab[i][k] 位置是否可以是主元 max_row = self._max_row(i, k, self._m) self.Ab[i], self.Ab[max_row] = self.Ab[max_row], self.Ab[i] if is_zero(self.Ab[i][k]): k += 1 else: # 将主元归一 self.Ab[i] = self.Ab[i] / self.Ab[i][k] for j in range(i + 1, self._m): self.Ab[j] = self.Ab[j] - self.Ab[j][k] * self.Ab[i] self.pivots.append(k) i += 1 def _backward(self): """n为最后一个非零行行号, pivots有多少个元素就有多少个非零行""" n = len(self.pivots) for i in range(n - 1, -1, -1): k = self.pivots[i] # Ab[i][k] 为主元 for j in range(i - 1, -1, -1): self.Ab[j] = self.Ab[j] - self.Ab[j][k] * self.Ab[i] def inv(A: Matrix): if A.row_num() != A.col_num(): return None n = A.row_num() ls = LinearSystem(A, Matrix.identity(n)) if not ls.gauss_jordan_elimination(): return None invA = [[row[i] for i in range(n, 2*n)] for row in ls.Ab] return Matrix(invA) def rank(A: Matrix): """求解矩阵A的秩""" ls = LinearSystem(A) ls.gauss_jordan_elimination() zero = Vector.zero(A.col_num()) return sum([row != zero for row in ls.Ab])
561c2730ade460b8bf541c0fffa15de9760225ec
50a99ade25d8f2edd12dbf2d2514edf27bc41f02
/text_seed_DCN.py
aff2c25cc477d7a5b98949c16e47775d54aa21b5
[]
no_license
KEAML-JLU/DeepTextClustering
e8bdd86e4119ecfef44cbcb1e4f1aa320bf2c824
b84d28cbe9db02e51b3f5fa9c6e31e540b3ad219
refs/heads/main
2023-01-21T07:19:49.716295
2020-12-06T01:50:59
2020-12-06T01:50:59
318,919,906
6
1
null
null
null
null
UTF-8
Python
false
false
12,208
py
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from sklearn.cluster import KMeans from torch.autograd import Variable from utils import cluster_acc, load_seeds_dict, align_labels class seed_DCN(object): def __init__(self, n_clusters, net, hidden_dim, lr=0.001, tol=0.001, batch_size=256, max_epochs=100, recons_lam=1, cluster_lam=0.5, use_cuda=torch.cuda.is_available(), verbose=True): self.n_clusters = n_clusters self.hidden_dim = hidden_dim self.lr = lr self.batch_size = batch_size self.tol = tol self.max_epochs = max_epochs self.recons_lam = recons_lam self.cluster_lam = cluster_lam self.use_cuda = use_cuda self.verbose = verbose self.net = net assert isinstance(self.net, nn.Module) self.centers = None @staticmethod def get_mask(seeds_dict, data_size): mask = np.zeros(data_size, dtype=np.float32) for _, ids in seeds_dict.items(): for i in ids: mask[i] = 1 return mask @staticmethod def get_seed_labels(seeds_dict, data_size): labels = np.zeros(data_size, dtype=np.int64) # labels.fill(-1) for l, ids in seeds_dict.items(): for i in ids: labels[i] = l return labels def fit(self, feat, seeds_dict, labels=None): assert len(seeds_dict) <= self.n_clusters feat = feat.astype(np.float32) batch_size = self.batch_size data_size = feat.shape[0] count = {i: 0 for i in range(self.n_clusters)} seed_masks = self.get_mask(seeds_dict, data_size) seed_labels = self.get_seed_labels(seeds_dict, data_size) hidden_feat = self.get_hidden_features(feat, self.net, self.hidden_dim, batch_size=self.batch_size, use_cuda=self.use_cuda) if True: seed_centers = self.get_seed_centers(n_clusters, seeds_dict, hidden_feat) else: seed_centers = None # idx, centers = self.init_cluster(hidden_feat, n_clusters=self.n_clusters) idx, centers = self.init_cluster(hidden_feat, n_clusters=self.n_clusters, init_centers=seed_centers) last_pred = idx[:] if labels is not None: acc = cluster_acc(labels, idx) print('KMeans pretraining acc is {}'.format(acc)) for i in range(data_size): if seed_masks[i] == 1: idx[i] = seed_labels[i] if False: # align tmp_seed_labels = seed_labels[seed_masks.astype(np.bool)] tmp_idx = np.array(idx)[seed_masks.astype(np.bool)] tmp_mapping = align_labels(tmp_seed_labels, tmp_idx) tmp_idx = [tmp_mapping[i] for i in idx] tmp_range = [tmp_mapping[i] for i in range(self.n_clusters)] tmp_centers = centers[np.array(tmp_range)] centers = tmp_centers idx = tmp_idx if labels is not None: idx = np.array(idx) print(idx.size) print(labels.size) acc = cluster_acc(labels, idx) print('KMeans pretraining acc is {}'.format(acc)) ###########################3 # optimizer = optim.Adam(self.net.parameters(), lr=self.lr) # optimizer = optim.ASGD(self.net.parameters(), lr=self.lr) optimizer = optim.SGD(self.net.parameters(), lr=self.lr, momentum=0.9) for epoch in range(self.max_epochs): for index in range(0, data_size, batch_size): feat_batch = Variable(torch.from_numpy(feat[index: index+batch_size])) idx_batch = idx[index: index+batch_size] mask_batch = Variable(torch.from_numpy(seed_masks[index: index+batch_size])) seeds_labels_batch = seed_labels[index: index+batch_size] centers_batch = Variable(torch.from_numpy(centers[idx_batch])) seeds_centers_batch = Variable(torch.from_numpy(centers[seeds_labels_batch])) if self.use_cuda: feat_batch = feat_batch.cuda() centers_batch = centers_batch.cuda() mask_batch = mask_batch.cuda() seeds_centers_batch = seeds_centers_batch.cuda() optimizer.zero_grad() hidden_batch, output_batch = self.net(feat_batch) recons_loss = F.mse_loss(output_batch, feat_batch) cluster_loss = F.mse_loss(hidden_batch, centers_batch) seed_loss = torch.mean(mask_batch * torch.norm(hidden_batch - seeds_centers_batch, p=2, dim=1)) # loss = self.recons_lam * recons_loss + self.cluster_lam * cluster_loss + seed_loss loss = self.recons_lam * recons_loss + self.cluster_lam * cluster_loss loss.backward() optimizer.step() hidden_batch2, _ = self.net(feat_batch) hidden_batch2 = hidden_batch2.cpu().data.numpy() # tmp_idx_batch, centers, count = self.batch_km(hidden_batch2, centers, count) tmp_idx_batch, centers, count = self.batch_km_seed(hidden_batch2, centers, count, mask_batch.cpu().data.numpy(), seeds_labels_batch) idx[index: index+batch_size] = tmp_idx_batch hidden_feat = self.get_hidden_features(feat, self.net, self.hidden_dim, batch_size=self.batch_size, use_cuda=self.use_cuda) idx, centers = self.init_cluster(hidden_feat, n_clusters=self.n_clusters, init_centers=centers) acc = None if labels is not None: acc = cluster_acc(labels, idx) if self.verbose: print('Epoch {} end, current acc is {}'.format(epoch + 1, acc)) if self.whether_convergence(last_pred, idx, self.tol): print('End Iter') break else: last_pred = idx[:] self.centenrs = centers def predict(self, feat): hidden_feat = self.get_hidden_features(feat, self.net, self.hidden_dim, batch_size=self.batch_size, use_cuda=self.use_cuda) distances = np.linalg.norm(hidden_feat[:,np.newaxis] - self.centers[np.newaxis, :], axis=-1) pred = np.argmin(distances, axis=-1) return pred @staticmethod def get_hidden_features(feat, net, hidden_dim, batch_size=256, use_cuda=torch.cuda.is_available()): feat = feat.astype(np.float32) data_size = feat.shape[0] hidden_feat = np.zeros((data_size, hidden_dim)) for index in range(0, data_size, batch_size): data_batch = feat[index: index + batch_size] data_batch = Variable(torch.from_numpy(data_batch)) if use_cuda: data_batch = data_batch.cuda() hidden_batch, _ = net(data_batch) hidden_batch = hidden_batch.data.cpu().numpy() hidden_feat[index: index+batch_size] = hidden_batch return hidden_feat @staticmethod def get_seed_centers(n_clusters, seeds_dict, feat): feature_size = feat.shape[1] centers = np.zeros((n_clusters, feature_size)) for l in seeds_dict.keys(): tmp_seeds = np.array(seeds_dict[l]) tmp_feat = feat[tmp_seeds] tmp_center = tmp_feat.mean(axis=0) centers[l] = tmp_center return centers @staticmethod def init_cluster(feat, n_clusters, init_centers=None): init_centers = 'k-means++' if init_centers is None else init_centers kmeans = KMeans(n_clusters=n_clusters, init=init_centers, n_init=20) idx = kmeans.fit_predict(feat) centers = kmeans.cluster_centers_ centers = centers.astype(np.float32) return idx, centers @staticmethod def batch_km(data, centers, count): # data[:, np.newaxis] is a data_size * 1 * feat_size array # centers[np.newaxis, :] is a 1 * center_size * feat_size array distances = np.linalg.norm(data[:, np.newaxis] - centers[np.newaxis, :], axis=-1) tmp_idx = np.argmin(distances, axis=-1) N = tmp_idx.shape[0] for i in range(N): c = tmp_idx[i] count[c] += 1 eta = 1. / count[c] centers[c] = (1 - eta) * centers[c] + eta * data[c] return tmp_idx, centers, count @staticmethod def batch_km_seed(data, centers, count, mask, seed_labels): # data[:, np.newaxis] is a data_size * 1 * feat_size array # centers[np.newaxis, :] is a 1 * center_size * feat_size array distances = np.linalg.norm(data[:, np.newaxis] - centers[np.newaxis, :], axis=-1) tmp_idx = np.argmin(distances, axis=-1) for i in range(len(mask)): if mask[i] == 1: tmp_idx[i] == seed_labels[i] N = tmp_idx.shape[0] for i in range(N): c = tmp_idx[i] count[c] += 1 eta = 1. / count[c] centers[c] = (1 - eta) * centers[c] + eta * data[c] return tmp_idx, centers, count @staticmethod def whether_convergence(last_pred, current_pred, tol): delta = np.sum(last_pred != current_pred) / float(len(current_pred)) return delta < tol if __name__ == '__main__': from utils import load_feat, initialize_environment from SDAE import extract_sdae_model from config import cfg, get_output_dir import os def get_args(): import argparse parser = argparse.ArgumentParser(description='Deep Text Cluster Model') parser.add_argument('--data_dir', type=str, default='data/dbpedia/', help='directory of dataset') parser.add_argument('--n_clusters', type=int, default=14, help='cluster number') parser.add_argument('--seed', type=int, default=cfg.RNG_SEED, help='random seed') parser.add_argument('--tol', type=float, default=0.001, help='tolerance') parser.add_argument('--lr', type=float, default=0.001, help='learning rate') parser.add_argument('--recons_lam', type=float, default=1, help='reconstruction loss regularization coefficient') parser.add_argument('--cluster_lam', type=float, default=0.5, help='cluster loss regularization coefficient') parser.add_argument('--batch_size', type=int, default=256, help='batch size') parser.add_argument('--max_epochs', type=int, default=100, help='max epochs') parser.add_argument('--verbose', help='whether to print log', action='store_true') args = parser.parse_args() return args args = get_args() # n_clusters = 4 # data_dir = 'data/ag_news/' data_dir = args.data_dir n_clusters = args.n_clusters use_cuda = torch.cuda.is_available() random_seed = args.seed recons_lam = args.recons_lam cluster_lam = args.cluster_lam batch_size = args.batch_size tol = args.tol lr = args.lr initialize_environment(random_seed=random_seed, use_cuda=use_cuda) feat_path = os.path.join(data_dir, cfg.TRAIN_TEXT_FEAT_FILE_NAME) feat, labels, ids = load_feat(feat_path) outputdir = get_output_dir(data_dir) net_filename = os.path.join(outputdir, cfg.PRETRAINED_FAE_FILENAME) checkpoint = torch.load(net_filename) net = extract_sdae_model(input_dim=cfg.INPUT_DIM, hidden_dims=cfg.HIDDEN_DIMS) net.load_state_dict(checkpoint['state_dict']) if use_cuda: net.cuda() seed_path = os.path.join(data_dir, cfg.SEED_FILE_NAME) seeds_dict = load_seeds_dict(seed_path) dcn = seed_DCN(n_clusters, net, cfg.HIDDEN_DIMS[-1], lr=lr, tol=tol, batch_size=batch_size, recons_lam=recons_lam, cluster_lam=cluster_lam, use_cuda=use_cuda, verbose=True) dcn.fit(feat, seeds_dict, labels=labels)