blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
6c92357915dcd8ff23b997d1555ab25e5573ab1f
115417ecd6c0e4c871d548d8df5c38875cc91a08
/blog/blog_api/viewsets.py
072e7ce987bd077d0490a236fdc39d149c360251
[]
no_license
idrissabanli/ecommerce_api_react_group
262f81ea34f0be819a5f32d2fdf88d4949b2368b
6a9c0c4ae394c3417d0a05bac9252cba53d56eb8
refs/heads/master
2022-12-25T13:16:38.326633
2022-01-25T08:55:57
2022-01-25T08:55:57
243,542,086
2
0
null
2022-12-08T03:41:52
2020-02-27T14:55:25
JavaScript
UTF-8
Python
false
false
509
py
from blog.models import Blog, Blogger from rest_framework import permissions from blog.blog_api.serializers import * from rest_framework.viewsets import ModelViewSet, ReadOnlyModelViewSet class BloggerViewSet(ModelViewSet): permission_classes = [permissions.AllowAny,] queryset = Blogger.objects.all() serializer_class = BloggerSerializer class BlogViewSet(ModelViewSet): permission_classes = [permissions.AllowAny,] queryset = Blog.objects.all() serializer_class = BlogSerializer
48b854181197dd32e477a33487d331b43ddbf2a4
e3cfab409afb5ff9a0b3812bf848be6ca9239cee
/pygeodesy/streprs.py
082d4e9a31b23b74f6c42cc529a3e56e69f00a14
[ "MIT" ]
permissive
mrJean1/PyGeodesy
565266a4f7f6cda5abe98e915bbd868f6cbe1760
eba35704b248a7a0388b30f3cea19793921e99b7
refs/heads/master
2023-08-23T13:58:20.069917
2023-08-20T18:50:45
2023-08-20T18:50:45
68,028,481
283
66
null
2022-04-09T00:40:52
2016-09-12T16:49:10
Python
UTF-8
Python
false
false
22,878
py
# -*- coding: utf-8 -*- u'''Floating point and other formatting utilities. ''' from pygeodesy.basics import _0_0, isint, islistuple, isscalar, isstr, _zip # from pygeodesy.constants import _0_0 from pygeodesy.errors import _AttributeError, _IsnotError, itemsorted, _or, \ _TypeError, _ValueError, _xkwds_get, _xkwds_pop from pygeodesy.interns import NN, _0_, _0to9_, MISSING, _BAR_, _COMMASPACE_, \ _DOT_, _dunder_nameof, _E_, _ELLIPSIS_, _EQUAL_, \ _H_, _LR_PAIRS, _N_, _name_, _not_, _not_scalar_, \ _PERCENT_, _SPACE_, _STAR_, _UNDER_ from pygeodesy.interns import _convergence_, _distant_, _e_, _eps_, _exceeds_, \ _EQUALSPACED_, _f_, _F_, _g_, _limit_, _no_, \ _tolerance_ # PYCHOK used! from pygeodesy.lazily import _ALL_LAZY, _ALL_MODS as _MODS from math import fabs, log10 as _log10 __all__ = _ALL_LAZY.streprs __version__ = '23.06.12' _EN_PREC = 6 # max MGRS/OSGR precision, 1 micrometer _EN_WIDE = 5 # number of MGRS/OSGR units, log10(_100km) _OKd_ = '._-' # acceptable name characters _PAREN_g = '(%g)' # PYCHOK used! _threshold_ = 'threshold' # PYCHOK used! class _Fmt(str): # in .streprs '''(INTERNAL) Callable formatting. ''' name = NN def __call__(self, *name_value_, **name_value): '''Format a C{name=value} pair or C{name, value} pair or just a single C{value}. ''' for n, v in name_value.items(): break else: if len(name_value_) > 1: n, v = name_value_[:2] elif name_value_: n, v = NN, name_value_[0] else: n, v = NN, MISSING t = str.__mod__(self, v) return NN(n, t) if n else t # def __mod__(self, arg, **unused): # '''Regular C{%} operator. # ''' # return str.__mod__(self, arg) class Fstr(str): '''(INTERNAL) C{float} format. ''' name = NN def __call__(self, flt, prec=None, ints=False): '''Format the B{C{flt}} like function L{fstr}. ''' # see also function C{fstr} if isscalar case below t = str.__mod__(_pct(self), flt) if prec is None else next( _streprs(prec, (flt,), self, ints, True, None)) return t def __mod__(self, arg, **unused): '''Regular C{%} operator. @arg arg: A C{scalar} value to be formatted (either the C{scalar}, or a 1-tuple C{(scalar,)}, or 2-tuple C{(prec, scalar)}. @raise TypeError: Non-scalar B{C{arg}} value. @raise ValueError: Invalid B{C{arg}}. ''' def _error(arg): n = _DOT_(Fstr.__name__, self.name or self) return _SPACE_(n, _PERCENT_, repr(arg)) prec = 6 # default std %f and %F if islistuple(arg): n = len(arg) if n == 1: arg = arg[0] elif n == 2: prec, arg = arg else: raise _ValueError(_error(arg)) if not isscalar(arg): raise _TypeError(_error(arg)) return self(arg, prec=prec) class _Sub(str): '''(INTERNAL) Class list formatter. ''' # see .ellipsoidalNvector.LatLon.deltaTo def __call__(self, *Classes): t = _or(*(C.__name__ for C in Classes)) return str.__mod__(self, t or MISSING) class Fmt(object): '''Formatting options. ''' ANGLE = _Fmt('<%s>') COLON = _Fmt(':%s') # COLONSPACE = _Fmt(': %s') # == _COLONSPACE_(n, v) # COMMASPACE = _Fmt(', %s') # == _COMMASPACE_(n, v) convergence = _Fmt(_convergence_(_PAREN_g)) CURLY = _Fmt('{%s}') # BRACES distant = _Fmt(_distant_('(%.3g)')) DOT = _Fmt('.%s') # == NN(_DOT_, n) e = Fstr(_e_) E = Fstr(_E_) EQUAL = _Fmt(_EQUAL_(NN, '%s')) EQUALg = _Fmt(_EQUAL_(NN, '%g')) EQUALSPACED = _Fmt(_EQUALSPACED_(NN, '%s')) exceeds_eps = _Fmt(_exceeds_(_eps_, _PAREN_g)) exceeds_limit = _Fmt(_exceeds_(_limit_, _PAREN_g)) f = Fstr(_f_) F = Fstr(_F_) g = Fstr(_g_) G = Fstr('G') h = Fstr('%+.*f') # height, .streprs.hstr limit = _Fmt(' %s limit') # .units LOPEN = _Fmt('(%s]') # left-open range (L, R] PAREN = _Fmt('(%s)') PAREN_g = _Fmt(_PAREN_g) PARENSPACED = _Fmt(' (%s)') QUOTE2 = _Fmt('"%s"') ROPEN = _Fmt('[%s)') # right-open range [L, R) # SPACE = _Fmt(' %s') # == _SPACE_(n, v) SQUARE = _Fmt('[%s]') # BRACKETS sub_class = _Sub('%s (sub-)class') TAG = ANGLE TAGEND = _Fmt('</%s>') tolerance = _Fmt(_tolerance_(_PAREN_g)) zone = _Fmt('%02d') # .epsg, .mgrs, .utmupsBase def __init__(self): for n, a in self.__class__.__dict__.items(): if isinstance(a, (Fstr, _Fmt)): setattr(a, _name_, n) def __call__(self, obj, prec=9): '''Return C{str(B{obj})} or C{repr(B{obj})}. ''' return str(obj) if isint(obj) else next( _streprs(prec, (obj,), Fmt.g, False, False, repr)) def no_convergence(self, _d, *tol, **thresh): t = Fmt.convergence(fabs(_d)) if tol: t = _COMMASPACE_(t, Fmt.tolerance(tol[0])) if thresh and _xkwds_get(thresh, thresh=False): t = t.replace(_tolerance_, _threshold_) return _no_(t) Fmt = Fmt() # PYCHOK singleton Fmt.__name__ = Fmt.__class__.__name__ _DOTSTAR_ = Fmt.DOT(_STAR_) # formats %G and %g drop all trailing zeros and the # decimal point, making the float appear as an int _Gg = (Fmt.G, Fmt.g) _FfEeGg = (Fmt.F, Fmt.f, Fmt.E, Fmt.e) + _Gg # float formats _Fspec_ = NN('[%[<flags>][<width>]', _DOTSTAR_, ']', _BAR_.join(_FfEeGg)) # in testStreprs def anstr(name, OKd=_OKd_, sub=_UNDER_): '''Make a valid name of alphanumeric and OKd characters. @arg name: The original name (C{str}). @kwarg OKd: Other acceptable characters (C{str}). @kwarg sub: Substitute for invalid charactes (C{str}). @return: The modified name (C{str}). @note: Leading and trailing whitespace characters are removed, intermediate whitespace characters are coalesced and substituted. ''' s = n = str(name).strip() for c in n: if not (c.isalnum() or c in OKd or c in sub): s = s.replace(c, _SPACE_) return sub.join(s.strip().split()) def attrs(inst, *names, **Nones_True__pairs_kwds): # prec=6, fmt=Fmt.F, ints=False, Nones=True, sep=_EQUAL_ '''Get instance attributes as I{name=value} strings, with C{float}s formatted by function L{fstr}. @arg inst: The instance (any C{type}). @arg names: The attribute names, all other positional (C{str}). @kwarg Nones_True__pairs_kwds: Keyword argument for function L{pairs}, except C{B{Nones}=True} to in-/exclude missing or C{None}-valued attributes. @return: A C{tuple(B{sep}.join(t) for t in zip(B{names}, reprs(values, ...)))} of C{str}s. ''' def _items(inst, names, Nones): for n in names: v = getattr(inst, n, None) if Nones or v is not None: yield n, v def _Nones_kwds(Nones=True, **kwds): return Nones, kwds Nones, kwds = _Nones_kwds(**Nones_True__pairs_kwds) return pairs(_items(inst, names, Nones), **kwds) def enstr2(easting, northing, prec, *extras, **wide_dot): '''Return an MGRS/OSGR easting, northing string representations. @arg easting: Easting from false easting (C{meter}). @arg northing: Northing from from false northing (C{meter}). @arg prec: Precision, the number of I{decimal} digits (C{int}) or if negative, the number of I{units to drop}, like MGRS U{PRECISION <https://GeographicLib.SourceForge.io/C++/doc/GeoConvert.1.html#PRECISION>}. @arg extras: Optional leading items (C{str}s). @kwarg wide_dot: Optional keword argument C{B{wide}=%d} for the number of I{unit digits} (C{int}) and C{B{dot}=False} (C{bool}) to insert a decimal point. @return: B{C{extras}} + 2-tuple C{(str(B{easting}), str(B{northing}))} or + 2-tuple C{("", "")} for C{B{prec} <= -B{wide}}. @raise ValueError: Invalid B{C{easting}}, B{C{northing}} or B{C{prec}}. @note: The B{C{easting}} and B{C{northing}} values are I{truncated, not rounded}. ''' t = extras try: # like .dms.compassPoint p = min(int(prec), _EN_PREC) w = p + _xkwds_get(wide_dot, wide=_EN_WIDE) if w > 0: f = 10**p # truncate d = (-p) if p > 0 and _xkwds_get(wide_dot, dot=False) else 0 t += (_0wdot(w, int(easting * f), d), _0wdot(w, int(northing * f), d)) else: # prec <= -_EN_WIDE t += (NN, NN) except (TypeError, ValueError) as x: raise _ValueError(easting=easting, northing=northing, prec=prec, cause=x) return t if enstr2.__doc__: # PYCHOK expected enstr2.__doc__ %= (_EN_WIDE,) def _enstr2m3(estr, nstr, wide=_EN_WIDE): # in .mgrs, .osgr '''(INTERNAL) Convert east- and northing C{str}s to meter and resolution. ''' def _s2m2(s, m): # e or n str to float meter if _DOT_ in s: m = 1 # meter else: s += _0_ * wide s = _DOT_(s[:wide], s[wide:wide+_EN_PREC]) return float(s), m e, m = _s2m2(estr, 0) n, m = _s2m2(nstr, m) if not m: p = max(len(estr), len(nstr)) # 2 = Km, 5 = m, 7 = cm m = 10**max(-_EN_PREC, wide - p) # resolution, meter return e, n, m def fstr(floats, prec=6, fmt=Fmt.F, ints=False, sep=_COMMASPACE_, strepr=None): '''Convert one or more floats to string, optionally stripped of trailing zero decimals. @arg floats: Single or a list, sequence, tuple, etc. (C{scalar}s). @kwarg prec: The C{float} precision, number of decimal digits (0..9). Trailing zero decimals are stripped if B{C{prec}} is positive, but kept for negative B{C{prec}} values. In addition, trailing decimal zeros are stripped for U{alternate, form '#'<https://docs.Python.org/3/library/stdtypes.html #printf-style-string-formatting>}. @kwarg fmt: Optional, C{float} format (C{str}). @kwarg ints: Optionally, remove the decimal dot for C{int} values (C{bool}). @kwarg sep: Separator joining the B{C{floats}} (C{str}). @kwarg strepr: Optional callable to format non-C{floats} (typically C{repr}, C{str}) or C{None} to raise a TypeError. @return: The C{sep.join(strs(floats, ...)} joined (C{str}) or single C{strs((floats,), ...)} (C{str}) if B{C{floats}} is C{scalar}. ''' if isscalar(floats): # see Fstr.__call__ above return next(_streprs(prec, (floats,), fmt, ints, True, strepr)) else: return sep.join(_streprs(prec, floats, fmt, ints, True, strepr)) def _fstrENH2(inst, prec, m): # in .css, .lcc, .utmupsBase # (INTERNAL) For C{Css.} and C{Lcc.} C{toRepr} and C{toStr} and C{UtmUpsBase._toStr}. t = inst.easting, inst.northing t = tuple(_streprs(prec, t, Fmt.F, False, True, None)) T = _E_, _N_ if m is not None and fabs(inst.height): # fabs(self.height) > EPS t += hstr(inst.height, prec=-2, m=m), T += _H_, return t, T def _fstrLL0(inst, prec, toRepr): # in .azimuthal, .css # (INTERNAL) For C{_AlbersBase.}, C{_AzimuthalBase.} and C{CassiniSoldner.} t = tuple(_streprs(prec, inst.latlon0, Fmt.F, False, True, None)) if toRepr: n = inst.name if n: t += Fmt.EQUAL(_name_, repr(n)), t = Fmt.PAREN(inst.classname, _COMMASPACE_.join(t)) return t def fstrzs(efstr, ap1z=False): '''Strip trailing zero decimals from a C{float} string. @arg efstr: Float with or without exponent (C{str}). @kwarg ap1z: Append the decimal point and one zero decimal if the B{C{efstr}} is all digits (C{bool}). @return: Float (C{str}). ''' s = efstr.find(_DOT_) if s >= 0: e = efstr.rfind(Fmt.e) if e < 0: e = efstr.rfind(Fmt.E) if e < 0: e = len(efstr) s += 2 # keep 1st _DOT_ + _0_ if s < e and efstr[e-1] == _0_: efstr = NN(efstr[:s], efstr[s:e].rstrip(_0_), efstr[e:]) elif ap1z: # %.G and %.g formats may drop the decimal # point and all trailing zeros, ... if efstr.isdigit(): efstr += _DOT_ + _0_ # ... append or ... else: # ... insert one dot and zero e = efstr.rfind(Fmt.e) if e < 0: e = efstr.rfind(Fmt.E) if e > 0: efstr = NN(efstr[:e], _DOT_, _0_, efstr[e:]) return efstr def hstr(height, prec=2, fmt=Fmt.h, ints=False, m=NN): '''Return a string for the height value. @arg height: Height value (C{float}). @kwarg prec: The C{float} precision, number of decimal digits (0..9). Trailing zero decimals are stripped if B{C{prec}} is positive, but kept for negative B{C{prec}} values. @kwarg fmt: Optional, C{float} format (C{str}). @kwarg ints: Optionally, remove the decimal dot for C{int} values (C{bool}). @kwarg m: Optional unit of the height (C{str}). ''' h = next(_streprs(prec, (height,), fmt, ints, True, None)) return NN(h, str(m)) if m else h def instr(inst, *args, **kwds): '''Return the string representation of an instantiation. @arg inst: The instance (any C{type}). @arg args: Optional positional arguments. @kwarg kwds: Optional keyword arguments. @return: Representation (C{str}). ''' return unstr(_MODS.named.classname(inst), *args, **kwds) def lrstrip(txt, lrpairs=_LR_PAIRS): '''Left- I{and} right-strip parentheses, brackets, etc. from a string. @arg txt: String to be stripped (C{str}). @kwarg lrpairs: Parentheses, etc. to remove (C{dict} of one or several C{(Left, Right)} pairs). @return: Stripped B{C{txt}} (C{str}). ''' _e, _s, _n = str.endswith, str.startswith, len while _n(txt) > 2: for L, R in lrpairs.items(): if _e(txt, R) and _s(txt, L): txt = txt[_n(L):-_n(R)] break # restart else: return txt def pairs(items, prec=6, fmt=Fmt.F, ints=False, sep=_EQUAL_): '''Convert items to I{name=value} strings, with C{float}s handled like L{fstr}. @arg items: Name-value pairs (C{dict} or 2-{tuple}s of any C{type}s). @kwarg prec: The C{float} precision, number of decimal digits (0..9). Trailing zero decimals are stripped if B{C{prec}} is positive, but kept for negative B{C{prec}} values. @kwarg fmt: Optional, C{float} format (C{str}). @kwarg ints: Optionally, remove the decimal dot for C{int} values (C{bool}). @kwarg sep: Separator joining I{names} and I{values} (C{str}). @return: A C{tuple(B{sep}.join(t) for t in B{items}))} of C{str}s. ''' try: if isinstance(items, dict): items = itemsorted(items) elif not islistuple(items): items = tuple(items) # can't unzip empty items tuple, list, etc. n, v = _zip(*items) if items else ((), ()) # strict=True except (TypeError, ValueError): raise _IsnotError(dict.__name__, '2-tuples', items=items) v = _streprs(prec, v, fmt, ints, False, repr) return tuple(sep.join(t) for t in _zip(map(str, n), v)) # strict=True def _pct(fmt): '''(INTERNAL) Prefix C{%} if needed. ''' return fmt if _PERCENT_ in fmt else NN(_PERCENT_, fmt) def reprs(objs, prec=6, fmt=Fmt.F, ints=False): '''Convert objects to C{repr} strings, with C{float}s handled like L{fstr}. @arg objs: List, sequence, tuple, etc. (any C{type}s). @kwarg prec: The C{float} precision, number of decimal digits (0..9). Trailing zero decimals are stripped if B{C{prec}} is positive, but kept for negative B{C{prec}} values. @kwarg fmt: Optional, C{float} format (C{str}). @kwarg ints: Optionally, remove the decimal dot for C{int} values (C{bool}). @return: A C{tuple(map(fstr|repr, objs))} of C{str}s. ''' return tuple(_streprs(prec, objs, fmt, ints, False, repr)) if objs else () def _resolution10(resolution, Error=ValueError): # in .mgrs, .osgr '''(INTERNAL) Validate C{resolution} in C{meter}. ''' try: r = int(_log10(resolution)) if _EN_WIDE < r or r < -_EN_PREC: raise ValueError except (ValueError, TypeError): raise Error(resolution=resolution) return _MODS.units.Meter(resolution=10**r) def _streprs(prec, objs, fmt, ints, force, strepr): '''(INTERNAL) Helper for C{fstr}, C{pairs}, C{reprs} and C{strs} ''' # <https://docs.Python.org/3/library/stdtypes.html#printf-style-string-formatting> if fmt in _FfEeGg: fGg = fmt in _Gg fmt = NN(_PERCENT_, _DOT_, abs(prec), fmt) elif fmt.startswith(_PERCENT_): fGg = False try: # to make sure fmt is valid f = fmt.replace(_DOTSTAR_, Fmt.DOT(abs(prec))) _ = f % (_0_0,) except (TypeError, ValueError): raise _ValueError(fmt=fmt, txt=_not_(repr(_DOTSTAR_))) fmt = f else: raise _ValueError(fmt=fmt, txt=_not_(repr(_Fspec_))) for i, o in enumerate(objs): if force or isinstance(o, float): t = fmt % (float(o),) if ints and t.rstrip(_0to9_ if isint(o, both=True) else _0_).endswith(_DOT_): t = t.split(_DOT_)[0] elif prec > 1: t = fstrzs(t, ap1z=fGg) elif strepr: t = strepr(o) else: t = Fmt.PARENSPACED(Fmt.SQUARE(objs=i), o) raise TypeError(_SPACE_(t, _not_scalar_)) yield t def strs(objs, prec=6, fmt=Fmt.F, ints=False): '''Convert objects to C{str} strings, with C{float}s handled like L{fstr}. @arg objs: List, sequence, tuple, etc. (any C{type}s). @kwarg prec: The C{float} precision, number of decimal digits (0..9). Trailing zero decimals are stripped if B{C{prec}} is positive, but kept for negative B{C{prec}} values. @kwarg fmt: Optional, C{float} format (C{str}). @kwarg ints: Optionally, remove the decimal dot for C{int} values (C{bool}). @return: A C{tuple(map(fstr|str, objs))} of C{str}s. ''' return tuple(_streprs(prec, objs, fmt, ints, False, str)) if objs else () def unstr(where, *args, **kwds): '''Return the string representation of an invokation. @arg where: Class, function, method (C{type}) or name (C{str}). @arg args: Optional positional arguments. @kwarg kwds: Optional keyword arguments, except C{B{_ELLIPSIS}=False}. @return: Representation (C{str}). ''' t = reprs(args, fmt=Fmt.g) if args else () if kwds and _xkwds_pop(kwds, _ELLIPSIS=False): t += _ELLIPSIS_, if kwds: t += pairs(itemsorted(kwds), fmt=Fmt.g) n = where if isstr(where) else _dunder_nameof(where) return Fmt.PAREN(n, _COMMASPACE_.join(t)) def _0wd(*w_i): # in .osgr, .wgrs '''(INTERNAL) Int formatter'. ''' return '%0*d' % w_i def _0wdot(w, f, dot=0): '''(INTERNAL) Int and Float formatter'. ''' s = _0wd(w, int(f)) if dot: s = _DOT_(s[:dot], s[dot:]) return s def _0wpF(*w_p_f): # in .dms, .osgr '''(INTERNAL) Float deg, min, sec formatter'. ''' return '%0*.*f' % w_p_f # XXX was F def _xattrs(insto, other, *attrs): # see .errors._xattr '''(INTERNAL) Copy attribute values from B{C{other}} to B{C{insto}}. @arg insto: Object to copy attribute values to (any C{type}). @arg other: Object to copy attribute values from (any C{type}). @arg attrs: One or more attribute names (C{str}s). @return: Object B{C{insto}}, updated. @raise AttributeError: An B{C{attrs}} doesn't exist or is not settable. ''' def _getattr(o, a): if hasattr(o, a): return getattr(o, a) try: n = o._DOT_(a) except AttributeError: n = Fmt.DOT(a) raise _AttributeError(o, name=n) for a in attrs: s = _getattr(other, a) g = _getattr(insto, a) if (g is None and s is not None) or g != s: setattr(insto, a, s) # not settable? return insto def _xzipairs(names, values, sep=_COMMASPACE_, fmt=NN, pair_fmt=Fmt.COLON): '''(INTERNAL) Zip C{names} and C{values} into a C{str}, joined and bracketed. ''' try: t = sep.join(pair_fmt(*t) for t in _zip(names, values)) # strict=True except Exception as x: raise _ValueError(names=names, values=values, cause=x) return (fmt % (t,)) if fmt else t # **) MIT License # # Copyright (C) 2016-2023 -- mrJean1 at Gmail -- All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE.
601313093805fa5b52a669f4aabdb2abb23443da
c4702d1a06640555829b367852138cc93ba4a161
/dym_report_control_bank_book/report/__init__.py
649ebd86e2fc758b147fe0472d1187289f512c42
[]
no_license
Rizalimami/dym
0ecadf9c049b22ebfebf92e4eab6eaad17dd3e26
af1bcf7b77a3212bc8a8a0e41e6042a134587ed4
refs/heads/master
2020-04-08T10:56:43.605698
2018-11-27T06:44:08
2018-11-27T06:44:08
159,287,876
0
2
null
null
null
null
UTF-8
Python
false
false
75
py
import dym_report_control_bank_book import dym_report_control_bank_book_xls
fbf38f59c9fbe582c839e6e470b99747c98c8744
de739e91015f33e3ba4b72c1585288c27a995698
/src/contacts/views.py
dbddb0926b146c0d87b98c156c839e6ff136a2b5
[]
no_license
bartoszper/Django-FullBackend-Home-s-App
771b2bab280938a1b56865fe5af8e73510504c45
e1059a4dc3b5d62c22de376104656234183c3789
refs/heads/main
2023-02-15T03:42:11.110947
2021-01-07T14:03:33
2021-01-07T14:03:33
324,780,597
0
0
null
null
null
null
UTF-8
Python
false
false
1,622
py
from django.shortcuts import render, redirect from django.contrib import messages from .models import Contact from django.core.mail import send_mail # Create your views here. def contact(request): if request.method =='POST': listing_id = request.POST['listing_id'] listing = request.POST['listing'] name = request.POST['name'] email = request.POST['email'] phone = request.POST['phone'] message = request.POST['message'] user_id = request.POST['user_id'] realtor_email = request.POST['realtor_email'] #Check if user has made inquiry already if request.user.is_authenticated: user_id = request.user.id has_contacted = Contact.objects.all().filter(listing_id=listing_id, user_id=user_id) if has_contacted: messages.error(request,'You have already made an inquiry for this listing') return redirect('/listings/'+listing_id) contact = Contact(listing=listing,listing_id=listing_id,name=name, email=email, phone=phone, message=message, user_id=user_id) contact.save() #Send email send_mail( 'Property Listing Inquiry', 'There has been an Inquiry for '+ listing_id + '. Sign into the admin panel for more info', '[email protected]', [realtor_email, '[email protected]'], fail_silently=False ) messages.success(request,'Your request has been submitted, a realtor will get back to you soon') return redirect('/listings/'+listing_id)
4578ef9e5f77420c4060536efef1bb30511a1791
fcd4d1bd5d600167b1c7c426ede24eb24b93533c
/test/test_core.py
24f851bb81460fb4371fed69f30ae380ce262d51
[ "MIT" ]
permissive
flying-tiger/tec_util
ed3a0c754c82491263a6eebc0c8a1c086977dfb7
293c39d11f5f080d7b6c2e3ba5aeea7419e56023
refs/heads/master
2023-04-14T15:10:34.944183
2023-03-24T05:33:02
2023-03-24T05:33:02
97,327,361
3
3
null
null
null
null
UTF-8
Python
false
false
10,789
py
import math import tecplot as tp import tecplot.constant as tpc import tec_util import tempfile import test import unittest def load_and_replace(dataset_name): return tp.data.load_tecplot(dataset_name, read_data_option=tpc.ReadDataOption.Replace) class TestDifferenceDatasets(unittest.TestCase): ''' Unit tests for the difference_datasets function ''' def test_nskip(self): ''' Check behavior of the nskip option ''' # default nskip: no variables should be diff'd with test.temp_workspace(): tec_util.difference_datasets( test.data_item_path("cube.dat"), test.data_item_path("cube.dat"), "diff.dat", ) ds = load_and_replace("diff.dat") self.assertEqual( [ v.name for v in ds.variables() ], [ "x", "y", "z" ], ) for v in ds.variables(): zone_maxima = [ v.values(i).max() for i in range(v.num_zones) ] self.assertAlmostEqual(max(zone_maxima), 0.5, delta=1e-6) # nskip = 1: two variables should be diff'd with test.temp_workspace(): tec_util.difference_datasets( test.data_item_path("sphere.dat"), test.data_item_path("sphere.dat"), "diff.dat", nskip=1, ) ds = load_and_replace("diff.dat") max_vals = { "x" : 1.00, "delta_y": 0.00, "delta_z": 0.00, } for v in ds.variables(): zone_maxima = [ v.values(i).max() for i in range(v.num_zones) ] self.assertAlmostEqual(max(zone_maxima), max_vals[v.name], delta=1e-6) def test_variable_filter(self): ''' Test that we can select variables for differencing ''' # Compute delta on just z; keep x as grid variable with test.temp_workspace(): tec_util.difference_datasets( test.data_item_path("cube.dat"), test.data_item_path("cube.dat"), "diff.dat", nskip=1, select_vars="z", ) ds = load_and_replace("diff.dat") self.assertEqual(ds.num_variables, 2) self.assertEqual(ds.variable(0).name, "x") self.assertEqual(ds.variable(1).name, "delta_z") def test_zone_filter(self): ''' Test that we can select zones for differencing ''' # Compute delta on just the even zones with test.temp_workspace(): tec_util.difference_datasets( test.data_item_path("cube.dat"), test.data_item_path("cube.dat"), "diff.dat", nskip=1, select_zones="*:[246]", ) ds = load_and_replace("diff.dat") self.assertEqual(ds.num_zones, 3) self.assertTrue(ds.zone(0).name.endswith(":2")) self.assertTrue(ds.zone(1).name.endswith(":4")) self.assertTrue(ds.zone(2).name.endswith(":6")) class TestExtract(unittest.TestCase): ''' Unit tests for extract function ''' def test_extract(self): with test.temp_workspace(): ds = load_and_replace(test.data_item_path("sphere.dat")) self.assertEqual(ds.num_variables,3) self.assertEqual(ds.num_zones,6) tec_util.extract( test.data_item_path("sphere.dat"), "extract.dat", select_vars=['x','y'], select_zones=['*:[246]'], ) ds = load_and_replace("extract.dat") self.assertEqual(ds.num_variables,2) self.assertEqual(ds.num_zones,3) class TestMergeDatasets(unittest.TestCase): ''' Unit tests for merge_datasets fucntion ''' def test_merge(self): with test.temp_workspace(): tec_util.merge_datasets( test.data_item_path("merge1.dat"), test.data_item_path("merge2.dat"), "merge.dat", warn_duplicates=False ) ds = load_and_replace("merge.dat") self.assertEqual(ds.num_variables,5) self.assertEqual(ds.num_zones,2) # When variable in both dataset, values from dataset2 is used. self.assertAlmostEqual(-6.4280895E-05, ds.zone('ZoneA').values('x')[15]) class TestRenameVariables(unittest.TestCase): ''' Unit test for the rename_variables function ''' def test_basic_rename(self): ''' Test that we can rename specific variable in the dataset ''' with test.temp_workspace(): tec_util.rename_variables( test.data_item_path("cube.dat"), "cube.dat", { "x":"xx", "z":"zz" } ) ds = load_and_replace("cube.dat") self.assertEqual(ds.variable(0).name, "xx") self.assertEqual(ds.variable(1).name, "y") self.assertEqual(ds.variable(2).name, "zz") class TestRenameZones(unittest.TestCase): ''' Unit test for the rename_zones function ''' def test_basic_rename(self): ''' Test that we can rename specific zones in the dataset ''' with test.temp_workspace(): tec_util.rename_zones( test.data_item_path("cube.dat"), "cube.dat", { 'cube.x:1' : 'front', 'cube.x:6' : 'bottom', } ) ds = load_and_replace("cube.dat") self.assertEqual(ds.zone(0).name, "front") self.assertEqual(ds.zone(5).name, "bottom") class TestRevolveDataset(unittest.TestCase): ''' Unit test for the revolve_dataset function ''' def test_basic_useage(self): ''' Test that we can revolve a dataset and get the correct file out ''' with test.temp_workspace(): tec_util.revolve_dataset( test.data_item_path("axi_sphere.plt"), "sphere.plt", planes = 13, angle = 90.0, ) ds = load_and_replace("sphere.plt") vars = [v.name for v in ds.variables()] self.assertEqual(vars,['x','y','z','q1','q2','v1','v2']) self.assertEqual(ds.zone(0).dimensions,(11,9,13)) self.assertEqual( ds.zone(0).values('y').minmax(), ds.zone(0).values('z').minmax() ) def test_radial_coord(self): ''' Verify ability to select the radial coordinate ''' with test.temp_workspace(): tec_util.revolve_dataset( test.data_item_path("axi_sphere.plt"), "sphere.plt", radial_coord = 'v2', planes = 13, angle = 90.0, ) ds = load_and_replace("sphere.plt") vars = [v.name for v in ds.variables()] self.assertEqual(vars,['x','y','q1','q2','v1','v2','z']) self.assertEqual( ds.zone(0).values('v2').minmax(), ds.zone(0).values('z').minmax(), ) tec_util.revolve_dataset( test.data_item_path("axi_sphere.plt"), "sphere.plt", radial_coord = {'v2':('ry','rz')}, planes = 13, angle = 90.0, ) ds = load_and_replace("sphere.plt") vars = [v.name for v in ds.variables()] self.assertEqual(vars,['x','y','q1','q2','v1','v2','ry','rz']) self.assertEqual( ds.zone(0).values('v2').minmax(), ds.zone(0).values('ry').minmax(), ) self.assertEqual( ds.zone(0).values('v2').minmax(), ds.zone(0).values('rz').minmax(), ) def test_vector_vars(self): ''' Verify we can specify variable to treat as vector quantities ''' with test.temp_workspace(): tec_util.revolve_dataset( test.data_item_path("axi_sphere.plt"), "sphere.plt", planes = 13, angle = 90.0, vector_vars = ['v1','v2'], ) ds = load_and_replace("sphere.plt") vars = [v.name for v in ds.variables()] self.assertEqual(vars,['x','y','z','q1','q2','v1','v1_cos','v1_sin','v2','v2_cos','v2_sin']) z0 = ds.zone(0) self.assertEqual(z0.values('v1').minmax(), z0.values('v1_cos').minmax()) self.assertEqual(z0.values('v1').minmax(), z0.values('v1_sin').minmax()) tec_util.revolve_dataset( test.data_item_path("axi_sphere.plt"), "sphere.plt", planes = 13, angle = 90.0, vector_vars = { 'v1' : ('v1y','v1z'), 'v2' : ('v2y','v2z'), }, ) ds = load_and_replace("sphere.plt") vars = [v.name for v in ds.variables()] self.assertEqual(vars,['x','y','z','q1','q2','v1','v1y','v1z','v2','v2y','v2z']) z0 = ds.zone(0) self.assertEqual(z0.values('v1').minmax(), z0.values('v1y').minmax()) self.assertEqual(z0.values('v1').minmax(), z0.values('v1z').minmax()) def test_surface_grid(self): ''' Verify we can create a surface by revoling a 1D generatrix ''' with test.temp_workspace(): tec_util.revolve_dataset( test.data_item_path("axi_sphere_surf.plt"), "sphere.plt", planes = 13, angle = 90.0, ) ds = load_and_replace("sphere.plt") vars = [v.name for v in ds.variables()] self.assertEqual(vars,['x','y','z','q1','q2','v1','v2']) self.assertEqual(ds.zone(0).dimensions,(11,13,1)) self.assertEqual( ds.zone(0).values('y').minmax(), ds.zone(0).values('z').minmax() ) class TestInterpolate(unittest.TestCase): ''' Unit test for the interpolate_datasets function ''' def test_basic_function(self): with test.temp_workspace(): tec_util.interpolate_dataset( test.data_item_path("interp_src.dat"), test.data_item_path("interp_tgt.dat"), "interp_out.plt", ) ds = load_and_replace("interp_out.plt") vrange = ds.variable("r").values(0).minmax() self.assertAlmostEqual(max(vrange), 6.39408e-01, delta=1e-6) self.assertAlmostEqual(min(vrange), 5.10930e-01, delta=1e-6)
0b07d60a906b142fe9a3afb10c3e60954ff00437
c16ea32a4cddb6b63ad3bacce3c6db0259d2bacd
/google/cloud/resourcemanager/v3/resourcemanager-v3-py/google/cloud/resourcemanager_v3/services/projects/transports/grpc.py
b8b9c4703520260c1770ea86f373b20bcb2f9fdf
[ "Apache-2.0" ]
permissive
dizcology/googleapis-gen
74a72b655fba2565233e5a289cfaea6dc7b91e1a
478f36572d7bcf1dc66038d0e76b9b3fa2abae63
refs/heads/master
2023-06-04T15:51:18.380826
2021-06-16T20:42:38
2021-06-16T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
29,856
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import grpc_helpers # type: ignore from google.api_core import operations_v1 # type: ignore from google.api_core import gapic_v1 # type: ignore import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.cloud.resourcemanager_v3.types import projects from google.iam.v1 import iam_policy_pb2 # type: ignore from google.iam.v1 import policy_pb2 # type: ignore from google.longrunning import operations_pb2 # type: ignore from .base import ProjectsTransport, DEFAULT_CLIENT_INFO class ProjectsGrpcTransport(ProjectsTransport): """gRPC backend transport for Projects. Manages Google Cloud Projects. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__(self, *, host: str = 'cloudresourcemanager.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel(cls, host: str = 'cloudresourcemanager.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self_signed_jwt_kwargs = cls._get_self_signed_jwt_kwargs(host, scopes) return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, **self_signed_jwt_kwargs, **kwargs ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Sanity check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsClient( self.grpc_channel ) # Return the client from cache. return self._operations_client @property def get_project(self) -> Callable[ [projects.GetProjectRequest], projects.Project]: r"""Return a callable for the get project method over gRPC. Retrieves the project identified by the specified ``name`` (for example, ``projects/415104041262``). The caller must have ``resourcemanager.projects.get`` permission for this project. Returns: Callable[[~.GetProjectRequest], ~.Project]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'get_project' not in self._stubs: self._stubs['get_project'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/GetProject', request_serializer=projects.GetProjectRequest.serialize, response_deserializer=projects.Project.deserialize, ) return self._stubs['get_project'] @property def list_projects(self) -> Callable[ [projects.ListProjectsRequest], projects.ListProjectsResponse]: r"""Return a callable for the list projects method over gRPC. Lists projects that are direct children of the specified folder or organization resource. ``list()`` provides a strongly consistent view of the projects underneath the specified parent resource. ``list()`` returns projects sorted based upon the (ascending) lexical ordering of their ``display_name``. The caller must have ``resourcemanager.projects.list`` permission on the identified parent. Returns: Callable[[~.ListProjectsRequest], ~.ListProjectsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'list_projects' not in self._stubs: self._stubs['list_projects'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/ListProjects', request_serializer=projects.ListProjectsRequest.serialize, response_deserializer=projects.ListProjectsResponse.deserialize, ) return self._stubs['list_projects'] @property def search_projects(self) -> Callable[ [projects.SearchProjectsRequest], projects.SearchProjectsResponse]: r"""Return a callable for the search projects method over gRPC. Search for projects that the caller has both ``resourcemanager.projects.get`` permission on, and also satisfy the specified query. This method returns projects in an unspecified order. This method is eventually consistent with project mutations; this means that a newly created project may not appear in the results or recent updates to an existing project may not be reflected in the results. To retrieve the latest state of a project, use the [GetProject][google.cloud.resourcemanager.v3.Projects.GetProject] method. Returns: Callable[[~.SearchProjectsRequest], ~.SearchProjectsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'search_projects' not in self._stubs: self._stubs['search_projects'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/SearchProjects', request_serializer=projects.SearchProjectsRequest.serialize, response_deserializer=projects.SearchProjectsResponse.deserialize, ) return self._stubs['search_projects'] @property def create_project(self) -> Callable[ [projects.CreateProjectRequest], operations_pb2.Operation]: r"""Return a callable for the create project method over gRPC. Request that a new project be created. The result is an ``Operation`` which can be used to track the creation process. This process usually takes a few seconds, but can sometimes take much longer. The tracking ``Operation`` is automatically deleted after a few hours, so there is no need to call ``DeleteOperation``. Returns: Callable[[~.CreateProjectRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'create_project' not in self._stubs: self._stubs['create_project'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/CreateProject', request_serializer=projects.CreateProjectRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['create_project'] @property def update_project(self) -> Callable[ [projects.UpdateProjectRequest], operations_pb2.Operation]: r"""Return a callable for the update project method over gRPC. Updates the ``display_name`` and labels of the project identified by the specified ``name`` (for example, ``projects/415104041262``). Deleting all labels requires an update mask for labels field. The caller must have ``resourcemanager.projects.update`` permission for this project. Returns: Callable[[~.UpdateProjectRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'update_project' not in self._stubs: self._stubs['update_project'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/UpdateProject', request_serializer=projects.UpdateProjectRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['update_project'] @property def move_project(self) -> Callable[ [projects.MoveProjectRequest], operations_pb2.Operation]: r"""Return a callable for the move project method over gRPC. Move a project to another place in your resource hierarchy, under a new resource parent. Returns an operation which can be used to track the process of the project move workflow. Upon success, the ``Operation.response`` field will be populated with the moved project. The caller must have ``resourcemanager.projects.update`` permission on the project and have ``resourcemanager.projects.move`` permission on the project's current and proposed new parent. Returns: Callable[[~.MoveProjectRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'move_project' not in self._stubs: self._stubs['move_project'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/MoveProject', request_serializer=projects.MoveProjectRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['move_project'] @property def delete_project(self) -> Callable[ [projects.DeleteProjectRequest], operations_pb2.Operation]: r"""Return a callable for the delete project method over gRPC. Marks the project identified by the specified ``name`` (for example, ``projects/415104041262``) for deletion. This method will only affect the project if it has a lifecycle state of [ACTIVE][google.cloud.resourcemanager.v3.Project.State.ACTIVE]. This method changes the Project's lifecycle state from [ACTIVE][google.cloud.resourcemanager.v3.Project.State.ACTIVE] to [DELETE_REQUESTED][google.cloud.resourcemanager.v3.Project.State.DELETE_REQUESTED]. The deletion starts at an unspecified time, at which point the Project is no longer accessible. Until the deletion completes, you can check the lifecycle state checked by retrieving the project with [GetProject] [google.cloud.resourcemanager.v3.Projects.GetProject], and the project remains visible to [ListProjects] [google.cloud.resourcemanager.v3.Projects.ListProjects]. However, you cannot update the project. After the deletion completes, the project is not retrievable by the [GetProject] [google.cloud.resourcemanager.v3.Projects.GetProject], [ListProjects] [google.cloud.resourcemanager.v3.Projects.ListProjects], and [SearchProjects][google.cloud.resourcemanager.v3.Projects.SearchProjects] methods. This method behaves idempotently, such that deleting a ``DELETE_REQUESTED`` project will not cause an error, but also won't do anything. The caller must have ``resourcemanager.projects.delete`` permissions for this project. Returns: Callable[[~.DeleteProjectRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'delete_project' not in self._stubs: self._stubs['delete_project'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/DeleteProject', request_serializer=projects.DeleteProjectRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['delete_project'] @property def undelete_project(self) -> Callable[ [projects.UndeleteProjectRequest], operations_pb2.Operation]: r"""Return a callable for the undelete project method over gRPC. Restores the project identified by the specified ``name`` (for example, ``projects/415104041262``). You can only use this method for a project that has a lifecycle state of [DELETE_REQUESTED] [Projects.State.DELETE_REQUESTED]. After deletion starts, the project cannot be restored. The caller must have ``resourcemanager.projects.undelete`` permission for this project. Returns: Callable[[~.UndeleteProjectRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'undelete_project' not in self._stubs: self._stubs['undelete_project'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/UndeleteProject', request_serializer=projects.UndeleteProjectRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['undelete_project'] @property def get_iam_policy(self) -> Callable[ [iam_policy_pb2.GetIamPolicyRequest], policy_pb2.Policy]: r"""Return a callable for the get iam policy method over gRPC. Returns the IAM access control policy for the specified project. Permission is denied if the policy or the resource do not exist. Returns: Callable[[~.GetIamPolicyRequest], ~.Policy]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'get_iam_policy' not in self._stubs: self._stubs['get_iam_policy'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/GetIamPolicy', request_serializer=iam_policy_pb2.GetIamPolicyRequest.SerializeToString, response_deserializer=policy_pb2.Policy.FromString, ) return self._stubs['get_iam_policy'] @property def set_iam_policy(self) -> Callable[ [iam_policy_pb2.SetIamPolicyRequest], policy_pb2.Policy]: r"""Return a callable for the set iam policy method over gRPC. Sets the IAM access control policy for the specified project. CAUTION: This method will replace the existing policy, and cannot be used to append additional IAM settings. Note: Removing service accounts from policies or changing their roles can render services completely inoperable. It is important to understand how the service account is being used before removing or updating its roles. The following constraints apply when using ``setIamPolicy()``: - Project does not support ``allUsers`` and ``allAuthenticatedUsers`` as ``members`` in a ``Binding`` of a ``Policy``. - The owner role can be granted to a ``user``, ``serviceAccount``, or a group that is part of an organization. For example, [email protected] could be added as an owner to a project in the myownpersonaldomain.com organization, but not the examplepetstore.com organization. - Service accounts can be made owners of a project directly without any restrictions. However, to be added as an owner, a user must be invited using the Cloud Platform console and must accept the invitation. - A user cannot be granted the owner role using ``setIamPolicy()``. The user must be granted the owner role using the Cloud Platform Console and must explicitly accept the invitation. - Invitations to grant the owner role cannot be sent using ``setIamPolicy()``; they must be sent only using the Cloud Platform Console. - Membership changes that leave the project without any owners that have accepted the Terms of Service (ToS) will be rejected. - If the project is not part of an organization, there must be at least one owner who has accepted the Terms of Service (ToS) agreement in the policy. Calling ``setIamPolicy()`` to remove the last ToS-accepted owner from the policy will fail. This restriction also applies to legacy projects that no longer have owners who have accepted the ToS. Edits to IAM policies will be rejected until the lack of a ToS-accepting owner is rectified. - Calling this method requires enabling the App Engine Admin API. Returns: Callable[[~.SetIamPolicyRequest], ~.Policy]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'set_iam_policy' not in self._stubs: self._stubs['set_iam_policy'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/SetIamPolicy', request_serializer=iam_policy_pb2.SetIamPolicyRequest.SerializeToString, response_deserializer=policy_pb2.Policy.FromString, ) return self._stubs['set_iam_policy'] @property def test_iam_permissions(self) -> Callable[ [iam_policy_pb2.TestIamPermissionsRequest], iam_policy_pb2.TestIamPermissionsResponse]: r"""Return a callable for the test iam permissions method over gRPC. Returns permissions that a caller has on the specified project. Returns: Callable[[~.TestIamPermissionsRequest], ~.TestIamPermissionsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'test_iam_permissions' not in self._stubs: self._stubs['test_iam_permissions'] = self.grpc_channel.unary_unary( '/google.cloud.resourcemanager.v3.Projects/TestIamPermissions', request_serializer=iam_policy_pb2.TestIamPermissionsRequest.SerializeToString, response_deserializer=iam_policy_pb2.TestIamPermissionsResponse.FromString, ) return self._stubs['test_iam_permissions'] __all__ = ( 'ProjectsGrpcTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
5940e046c703f060ca753fc376250d9a4521d510
17044b6e4bc0c1e21721f0936784d674426905f6
/venv/bin/trial
c6574dda2adaafd7beac587085bcc2f0f9f4c506
[]
no_license
Moni1995/covid_info_scraper
2ed0f68f7bcd2a7dc81cb6af69cd5b292d443fee
9c4e246283c18846c59c2fcc77e2d681741a89d7
refs/heads/master
2021-04-09T18:20:04.895628
2020-04-07T21:11:55
2020-04-07T21:11:55
248,864,857
0
0
null
null
null
null
UTF-8
Python
false
false
247
#!/Users/moni/Desktop/spider/venv/bin/python # -*- coding: utf-8 -*- import re import sys from twisted.scripts.trial import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
ba4e6bcc6fefc8c0f12f444e54eccfff3a42cd05
6c67574a224ac943fd37f12ff7511c64d788506a
/uiprog/streamlitdemo/tests/test_redshifts.py
29bc7ca95687630f2510aec49926b56ea999cd8a
[ "MIT" ]
permissive
colinleach/tinkerings
b0354d9c13b2ae0d71b2647f9508099cedde8ae0
38f1595dd11f5cb1ebe435f834cfde2d3c5b1899
refs/heads/master
2023-04-12T23:01:07.675844
2023-04-12T13:33:00
2023-04-12T13:33:00
229,802,539
0
0
MIT
2023-01-31T04:21:21
2019-12-23T18:19:27
Jupyter Notebook
UTF-8
Python
false
false
824
py
import numpy as np import astropy.units as u from astropy.units import Unit from pytest import approx from streamlitdemo import redshifts rs = redshifts.Redshifts() def test_init(): # currently 6 cosmologies, astropy may change this in future cosm_count = len(rs.cosmologies) assert cosm_count >= 6 assert rs.df.shape[0] == 200 assert rs.df.shape[1] == cosm_count + 1 assert rs.df_long.shape[0] == 200 * cosm_count assert rs.df_long.shape[1] == 3 def test_calc_angular_diameter(): dist, ages, ageticks = rs.calc_angular_diameter() assert len(dist) == 200 expected_ages = np.array([13., 10., 8., 6., 5., 4., 3., 2., 1.5, 1.2, 1.]) assert len(ages) == len(expected_ages) assert not (ages.value - expected_ages).any() assert len(ageticks) == len(expected_ages)
6e10852633ec27578c9b29311731fbc6a9728556
80f9b05dcbbc6ff543120e0755e38adf4db3cd73
/run_ner.py
eb3601d387e74aea2f27c7a89969648b9de98449
[ "Unlicense" ]
permissive
cacco-kozaka/ren-treb
9f7166a0e7d87d1a1d4d3b4fba44f685cd243900
5af167aca311f98a87065455969e3a3330d67542
refs/heads/main
2023-02-18T22:33:11.914179
2021-01-18T04:37:19
2021-01-18T04:37:19
330,552,255
0
0
null
null
null
null
UTF-8
Python
false
false
27,814
py
from __future__ import absolute_import, division, print_function import argparse import csv import json import logging import os import random import sys import numpy as np import torch import torch.nn.functional as F from pytorch_transformers import (WEIGHTS_NAME, AdamW, BertConfig, BertForTokenClassification, BertTokenizer, WarmupLinearSchedule) from torch import nn from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from seqeval.metrics import classification_report logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) class Ner(BertForTokenClassification): def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None, attention_mask_label=None): sequence_output = self.bert( input_ids, token_type_ids, attention_mask, head_mask=None)[0] batch_size, max_len, feat_dim = sequence_output.shape valid_output = torch.zeros( batch_size, max_len, feat_dim, dtype=torch.float32, device='cuda') for i in range(batch_size): jj = -1 for j in range(max_len): if valid_ids[i][j].item() == 1: jj += 1 valid_output[i][jj] = sequence_output[i][j] sequence_output = self.dropout(valid_output) logits = self.classifier(sequence_output) if labels is not None: loss_fct = nn.CrossEntropyLoss(ignore_index=0) # Only keep active parts of the loss #attention_mask_label = None if attention_mask_label is not None: active_loss = attention_mask_label.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct( logits.view(-1, self.num_labels), labels.view(-1)) return loss else: return logits class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, valid_ids=None, label_mask=None): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.valid_ids = valid_ids self.label_mask = label_mask def readfile(filename): ''' read file ''' f = open(filename) data = [] sentence = [] label = [] for line in f: if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == "\n": if len(sentence) > 0: data.append((sentence, label)) sentence = [] label = [] continue splits = line.split(' ') sentence.append(splits[0]) label.append(splits[-1][:-1]) if len(sentence) > 0: data.append((sentence, label)) sentence = [] label = [] return data class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" return readfile(input_file) class NerProcessor(DataProcessor): """Processor for the CoNLL-2003 data set.""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.txt")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "valid.txt")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.txt")), "test") def get_labels(self): return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "[CLS]", "[SEP]"] def _create_examples(self, lines, set_type): examples = [] for i, (sentence, label) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = ' '.join(sentence) text_b = None label = label examples.append(InputExample( guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Loads a data file into a list of `InputBatch`s.""" label_map = {label: i for i, label in enumerate(label_list, 1)} features = [] for (ex_index, example) in enumerate(examples): textlist = example.text_a.split(' ') labellist = example.label tokens = [] labels = [] valid = [] label_mask = [] for i, word in enumerate(textlist): token = tokenizer.tokenize(word) tokens.extend(token) label_1 = labellist[i] for m in range(len(token)): if m == 0: labels.append(label_1) valid.append(1) label_mask.append(1) else: valid.append(0) if len(tokens) >= max_seq_length - 1: tokens = tokens[0:(max_seq_length - 2)] labels = labels[0:(max_seq_length - 2)] valid = valid[0:(max_seq_length - 2)] label_mask = label_mask[0:(max_seq_length - 2)] ntokens = [] segment_ids = [] label_ids = [] ntokens.append("[CLS]") segment_ids.append(0) valid.insert(0, 1) label_mask.insert(0, 1) label_ids.append(label_map["[CLS]"]) for i, token in enumerate(tokens): ntokens.append(token) segment_ids.append(0) if len(labels) > i: label_ids.append(label_map[labels[i]]) ntokens.append("[SEP]") segment_ids.append(0) valid.append(1) label_mask.append(1) label_ids.append(label_map["[SEP]"]) input_ids = tokenizer.convert_tokens_to_ids(ntokens) input_mask = [1] * len(input_ids) label_mask = [1] * len(label_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) label_ids.append(0) valid.append(1) label_mask.append(0) while len(label_ids) < max_seq_length: label_ids.append(0) label_mask.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length assert len(valid) == max_seq_length assert len(label_mask) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join( [str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) # logger.info("label: %s (id = %d)" % (example.label, label_ids)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_ids, valid_ids=valid, label_mask=label_mask)) return features def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") # Other parameters parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval or not.") parser.add_argument("--eval_on", default="dev", help="Whether to run eval on the dev set or test set.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") args = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach( address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() processors = {"ner": NerProcessor} if args.local_rank == -1 or args.no_cuda: device = torch.device( "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if not args.do_train and not args.do_eval: raise ValueError( "At least one of `do_train` or `do_eval` must be True.") if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: raise ValueError( "Output directory ({}) already exists and is not empty.".format(args.output_dir)) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) task_name = args.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() num_labels = len(label_list) + 1 tokenizer = BertTokenizer.from_pretrained( args.bert_model, do_lower_case=args.do_lower_case) train_examples = None num_train_optimization_steps = 0 if args.do_train: train_examples = processor.get_train_examples(args.data_dir) num_train_optimization_steps = int( len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size() if args.local_rank not in [-1, 0]: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() # Prepare model config = BertConfig.from_pretrained( args.bert_model, num_labels=num_labels, finetuning_task=args.task_name) model = Ner.from_pretrained(args.bert_model, from_tf=False, config=config) if args.local_rank == 0: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() model.to(device) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any( nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in param_optimizer if any( nd in n for nd in no_decay)], 'weight_decay': 0.0} ] warmup_steps = int(args.warmup_proportion * num_train_optimization_steps) optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = WarmupLinearSchedule( optimizer, warmup_steps=warmup_steps, t_total=num_train_optimization_steps) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize( model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if n_gpu > 1: model = torch.nn.DataParallel(model) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) global_step = 0 nb_tr_steps = 0 tr_loss = 0 label_map = {i: label for i, label in enumerate(label_list, 1)} if args.do_train: train_features = convert_examples_to_features( train_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) all_input_ids = torch.tensor( [f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor( [f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor( [f.segment_ids for f in train_features], dtype=torch.long) all_label_ids = torch.tensor( [f.label_id for f in train_features], dtype=torch.long) all_valid_ids = torch.tensor( [f.valid_ids for f in train_features], dtype=torch.long) all_lmask_ids = torch.tensor( [f.label_mask for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_valid_ids, all_lmask_ids) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader( train_data, sampler=train_sampler, batch_size=args.train_batch_size) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids, valid_ids, l_mask = batch loss = model(input_ids, segment_ids, input_mask, label_ids, valid_ids, l_mask) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_( model.parameters(), args.max_grad_norm) tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 # Save a trained model and the associated configuration model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) label_map = {i: label for i, label in enumerate(label_list, 1)} model_config = {"bert_model": args.bert_model, "do_lower": args.do_lower_case, "max_seq_length": args.max_seq_length, "num_labels": len(label_list)+1, "label_map": label_map} json.dump(model_config, open(os.path.join( args.output_dir, "model_config.json"), "w")) # Load a trained model and config that you have fine-tuned else: # Load a trained model and vocabulary that you have fine-tuned model = Ner.from_pretrained(args.output_dir) tokenizer = BertTokenizer.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) model.to(device) if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): if args.eval_on == "dev": eval_examples = processor.get_dev_examples(args.data_dir) elif args.eval_on == "test": eval_examples = processor.get_test_examples(args.data_dir) else: raise ValueError("eval on dev or test set only") eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) all_input_ids = torch.tensor( [f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor( [f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor( [f.segment_ids for f in eval_features], dtype=torch.long) all_label_ids = torch.tensor( [f.label_id for f in eval_features], dtype=torch.long) all_valid_ids = torch.tensor( [f.valid_ids for f in eval_features], dtype=torch.long) all_lmask_ids = torch.tensor( [f.label_mask for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_valid_ids, all_lmask_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader( eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 y_true = [] y_pred = [] label_map = {i: label for i, label in enumerate(label_list, 1)} for input_ids, input_mask, segment_ids, label_ids, valid_ids, l_mask in tqdm(eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) valid_ids = valid_ids.to(device) label_ids = label_ids.to(device) l_mask = l_mask.to(device) with torch.no_grad(): logits = model(input_ids, segment_ids, input_mask, valid_ids=valid_ids, attention_mask_label=l_mask) logits = torch.argmax(F.log_softmax(logits, dim=2), dim=2) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() input_mask = input_mask.to('cpu').numpy() for i, label in enumerate(label_ids): temp_1 = [] temp_2 = [] for j, m in enumerate(label): if j == 0: continue elif label_ids[i][j] == len(label_map): y_true.append(temp_1) y_pred.append(temp_2) break else: temp_1.append(label_map[label_ids[i][j]]) temp_2.append(label_map[logits[i][j]]) report = classification_report(y_true, y_pred, digits=4) logger.info("\n%s", report) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") logger.info("\n%s", report) writer.write(report) if __name__ == "__main__": main()
05a365a39f280182d1f4070a9632757d8047cb8a
93e62e12c9e70f8adcb514692314fc7e3665b85b
/src/example/transmogrifier/importurban.py
1b959fdf9b48f4699634685459c1174a255de912
[]
no_license
jjaumotte/example.transmogrifier
4087a0a9f4c9966874b31017ddc1bd8fbec65ac7
c9ad6259d3cc199025fb907b647e52af58f7c18b
refs/heads/master
2021-01-14T13:58:16.445241
2016-07-18T08:38:24
2016-07-18T08:38:24
63,138,221
0
0
null
2016-07-12T07:53:33
2016-07-12T07:53:32
null
UTF-8
Python
false
false
1,208
py
from collective.transmogrifier.interfaces import ISectionBlueprint from collective.transmogrifier.interfaces import ISection from zope.interface import classProvides from zope.interface import implements from collective.transmogrifier.utils import Expression, Condition class ImportUrbanSection(object): classProvides(ISectionBlueprint) implements(ISection) def __init__(self, transmogrifier, name, options, previous): self.key = Expression(options['key'], transmogrifier, name, options) self.value = Expression(options['value'], transmogrifier, name, options) self.condition = Condition(options.get('condition', 'python:True'), transmogrifier, name, options) self.previous = previous def __iter__(self): for item in self.previous: key = self.key(item) # import ipdb; # ipdb.set_trace() if item['GENRE'] is not None: item['_path'] = item['GENRE'] if self.condition(item, key=key): import ipdb; ipdb.set_trace() item[key] = self.value(item, key=key) yield item
215444e18369626b84e7db4e1d0ed595cabc24ae
ddd69cbb6acab8c321cd667d48899c4a245003d6
/telemetry/telemetry/internal/platform/cast_platform_backend.py
211dbd4b2fc7027f72baf14e6f05564e45ce9b2e
[ "BSD-3-Clause" ]
permissive
hyl946/catapult
71895532b76dc7e6ad017f90cf3573f7aa0e5af2
22aa2610ecac1299d73eb94e1d82bb07edad62f1
refs/heads/main
2022-04-20T13:23:50.444266
2022-04-12T22:39:04
2022-04-13T00:42:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,102
py
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import import logging import platform try: from pexpect import pxssh # pylint: disable=import-error except ImportError as e: if platform.system() == 'Windows': logging.info('pxssh not supported on Windows') pxssh = None from telemetry.core import platform as telemetry_platform from telemetry.internal.platform import cast_device from telemetry.internal.platform import platform_backend class CastPlatformBackend(platform_backend.PlatformBackend): def __init__(self, device): super(CastPlatformBackend, self).__init__(device) self._ip_addr = None self._output_dir = device.output_dir self._runtime_exe = device.runtime_exe if device.ip_addr: self._ip_addr = device.ip_addr @classmethod def SupportsDevice(cls, device): return isinstance(device, cast_device.CastDevice) @classmethod def CreatePlatformForDevice(cls, device, finder_options): assert cls.SupportsDevice(device) return telemetry_platform.Platform(CastPlatformBackend(device)) @property def output_dir(self): return self._output_dir @property def runtime_exe(self): return self._runtime_exe @property def ip_addr(self): return self._ip_addr def GetSSHSession(self): ssh = pxssh.pxssh() ssh.login(self._ip_addr, username='root', password='root') return ssh def IsRemoteDevice(self): return False def GetArchName(self): return 'Arch type of device not yet supported in Cast' def GetOSName(self): return 'castos' def GetDeviceTypeName(self): return 'Cast Device' def GetOSVersionName(self): return '' def GetOSVersionDetailString(self): return 'CastOS' def GetSystemTotalPhysicalMemory(self): raise NotImplementedError() def HasBeenThermallyThrottled(self): return False def IsThermallyThrottled(self): return False def InstallApplication(self, application): raise NotImplementedError() def LaunchApplication(self, application, parameters=None, elevate_privilege=False): raise NotImplementedError() def PathExists(self, path, timeout=None, retries=None): raise NotImplementedError() def CanFlushIndividualFilesFromSystemCache(self): return False def FlushEntireSystemCache(self): return None def FlushSystemCacheForDirectory(self, directory): return None def StartActivity(self, intent, blocking): raise NotImplementedError() def CooperativelyShutdown(self, proc, app_name): return False def SupportFlushEntireSystemCache(self): return False def StartDisplayTracing(self): raise NotImplementedError() def StopDisplayTracing(self): raise NotImplementedError() def TakeScreenshot(self, file_path): return None def GetTypExpectationsTags(self): tags = super(CastPlatformBackend, self).GetTypExpectationsTags() tags.append(self.GetDeviceTypeName()) return tags
6fdb000f918c40b42e6cb2b970ba10d123c1b355
267f9752460bc161af1f81eab822663b943618c0
/Lista2/Tester.py
5d340c9001af1bedb4ee70c7fe5873625094a23a
[]
no_license
damianKokot/TS
e9d610519f78ae7c8ce74209a16ae867924ee81b
0dd5e56df7d98db2c316a96a8de93aac6913cc80
refs/heads/master
2022-07-18T20:31:17.418208
2020-05-18T09:23:00
2020-05-18T10:30:39
256,575,803
0
0
null
null
null
null
UTF-8
Python
false
false
3,894
py
import networkx as nx from networkx.readwrite import json_graph import numpy as np import random from copy import deepcopy import json edgeSpeed = 0 def loadGraphModel(): with open('networkData', 'r') as networkFile: networkData = json.load(networkFile) graph = json_graph.node_link_graph(networkData['graph']) intensityMatrix = networkData['intensityMatrix'] return graph, intensityMatrix def main(): graph, intensityMatrix = loadGraphModel() graph.graph['sumOfIntensities'] = sum(map(sum, intensityMatrix)) attempts = 10000 averageDataSize = 5000 Tmax = 0.001 edgeSpeed = 100000000 propability = .95 stats = testModel(graph, intensityMatrix, edgeSpeed, averageDataSize, Tmax, propability, attempts) print('Reliability: {:.2f}% and average time passed: {:.6f}'.format( stats['reliability'], stats['delay'])) print('where in {:.2f}% cases there was connection timeout'.format( stats['timeouts'])) ''' Model testing functions ''' def averageWaitTime(graph, m): totalTime = 0 sumOfIntensity = graph.graph['sumOfIntensities'] for edge in graph.edges: edgeData = graph.get_edge_data(*edge) totalTime += edgeData['a']/(edgeData['c']/m - edgeData['a']) return totalTime / sumOfIntensity def testModel(graph, intensityMatrix, edgeSpeed, averageDataSize, Tmax, p, attempts): passedAttempts = 0 delaysTotal = 0 timeoutsCount = 0 tooBigDataCount = 0 for _ in range(attempts): updatedGraph = modifyMainGraphModel(graph, p) if not nx.is_connected(updatedGraph): continue nx.set_edge_attributes(updatedGraph, edgeSpeed, 'c') if not updateAOnPaths(updatedGraph, averageDataSize, intensityMatrix): tooBigDataCount += 1 continue waitTime = averageWaitTime(updatedGraph, averageDataSize) if waitTime < Tmax: passedAttempts += 1 delaysTotal += waitTime else: timeoutsCount += 1 return { 'reliability': getReliability(passedAttempts, attempts), 'timeouts': getTimeoutPercentage(timeoutsCount, attempts - passedAttempts), 'delay': getAverageDelay(delaysTotal, passedAttempts) } ''' Statistics functions ''' def getReliability(passedAttempts, attempts): return passedAttempts / attempts * 100 def getTimeoutPercentage(timeoutsCount, totalFailures): if totalFailures == 0: return 0 return timeoutsCount / totalFailures * 100 def getAverageDelay(timeTotal, passedAttempts): if passedAttempts == 0: return 0 return timeTotal / passedAttempts ''' Graph modification functions ''' def getRandom(): return random.randrange(1000) / 1000 def filterRandomEdges(edgesList, p): return list(filter(lambda edge: getRandom() <= p, edgesList)) def modifyMainGraphModel(graph, p): newGraph = nx.Graph() newGraph.add_nodes_from(graph) newGraph.add_edges_from(filterRandomEdges(graph.edges, p)) newGraph.graph = graph.graph return newGraph def updateAOnPaths(graph, averageDataSize, intensityMatrix): ''' Updating edge attributes on path, to update weights on edges in graph ''' nx.set_edge_attributes(graph, 0.0, 'a') for source, row in enumerate(intensityMatrix): for target, weight in enumerate(row): if source == target: continue path = nx.shortest_path(graph, source, target) # Adding weight on path for nodeIndex in range(len(path) - 1): graph[path[nodeIndex]][path[nodeIndex + 1]]['a'] += weight edge = graph[path[nodeIndex]][path[nodeIndex + 1]] if edge['a'] * averageDataSize >= edge['c']: return False return True main()
529d1fdd77f81a07145c991e2bdee4399f9c54e6
67731d1c93094cf42cec62aefd277c8db4367e34
/nlp_submission_fadhelharizdzulfikar_v2.py
148e408bafb19173118e77a0a6bc276ecb9127c7
[]
no_license
Ndhel97/submissions_BPLM
2fad018ebed6f1cb37cf7a2452b8281dee2d1362
2a27b218777f96e551374628c7e2e20a912e17f1
refs/heads/master
2023-02-27T22:50:00.486240
2020-09-29T02:23:45
2020-09-29T02:23:45
337,601,367
0
0
null
null
null
null
UTF-8
Python
false
false
6,940
py
# -*- coding: utf-8 -*- """nlp-submission-fadhelharizdzulfikar_v2.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1wGOFvKiAkdLhV1KG9eMaqBujDrbT4c23 """ from google.colab import drive drive.mount('/content/drive') import pandas as pd df = pd.read_json('/content/drive/My Drive/Dicoding/Belajar Pengembangan Machine Learning/News_Category_Dataset_v2.json', lines=True) df.head() df.shape len(df.category.unique()) """There are 41 categories in this data. And i think it is too many for me as a beginner. So, I only take 5 categories for this submission. (POLITICS, FOOD & DRINK, BUSINESS, HOME & LIVING, TRAVEL)""" df_first = df.loc[(df['category'] == 'POLITICS') | (df['category'] == 'FOOD & DRINK') | (df['category'] == 'BUSINESS') | (df['category'] == 'HOME & LIVING') | (df['category'] == 'TRAVEL')] """Delete some columns""" df_second = df_first.drop(columns=['authors', 'link', 'date']) """Dataframe dimension""" df_second.shape """Now, the data only contains 58984 rows. Import libraries """ from keras.layers import Input, LSTM, Bidirectional, SpatialDropout1D, Dropout, Flatten, Dense, Embedding, BatchNormalization from keras.models import Model from keras.callbacks import EarlyStopping from keras.preprocessing.text import Tokenizer, text_to_word_sequence from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical import nltk, os, re, string from nltk.corpus import stopwords # nltk.download() #wordnet stopwords """Clean the data""" # LOWER CASE ALL CHARACTERS df_second.headline = df_second.headline.apply(lambda x: x.lower()) df_second.short_description = df_second.short_description.apply(lambda x: x.lower()) ## LEMMATIZATION from nltk.stem import WordNetLemmatizer from nltk.corpus import wordnet as wn lemmatizer = WordNetLemmatizer() def lem(text): pos_dict = {'N': wn.NOUN, 'V': wn.VERB, 'J': wn.ADJ, 'R': wn.ADV} return(' '.join([lemmatizer.lemmatize(w,pos_dict.get(t, wn.NOUN)) for w,t in nltk.pos_tag(text.split())])) df_second.headline = df_second.headline.apply(lambda x: lem(x)) df_second.short_description = df_second.short_description.apply(lambda x: lem(x)) # REMOVING PUNCTUATION def cleaner(text): return(text.translate(str.maketrans('','', string.punctuation))) df_second.headline = df_second.headline.apply(lambda x: cleaner(x)) df_second.short_description = df_second.short_description.apply(lambda x: lem(x)) # REMOVING NUMBERS def rem_numbers(text): return re.sub('[0-9]+','',text) df_second['headline'].apply(rem_numbers) df_second['short_description'].apply(rem_numbers) # REMOVING STOPWORDS st_words = stopwords.words() def stopword(text): return(' '.join([w for w in text.split() if w not in st_words ])) df_second.headline = df_second.headline.apply(lambda x: stopword(x)) df_second.short_description = df_second.short_description.apply(lambda x: lem(x)) df_second.head() """Apply one hot encoding to the data.""" category = pd.get_dummies(df_second.category) df_third = pd.concat([df_second, category], axis=1) df_third = df_third.drop(columns='category') df_third """concantenate headlines column with each short_description into headline dataframe. Put the labels in label dataframe.""" headline = df_third['short_description'].values + ' ' + df_third['headline'].values label = df_third[['FOOD & DRINK', 'HOME & LIVING', 'POLITICS', 'BUSINESS', 'TRAVEL']].values headline """Split data into training and validation""" from sklearn.model_selection import train_test_split headline_train, headline_test, label_train, label_test = train_test_split(headline, label, test_size=0.2, shuffle=True) """Process each words into token using tokenize function from Keras.""" max_len = 256 from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences tokenizer = Tokenizer(lower=True, char_level=False) tokenizer.fit_on_texts(headline_train) tokenizer.fit_on_texts(headline_test) sekuens_train = tokenizer.texts_to_sequences(headline_train) sekuens_test = tokenizer.texts_to_sequences(headline_test) padded_train = pad_sequences(sekuens_train, padding='post', maxlen=max_len) padded_test = pad_sequences(sekuens_test, padding='post', maxlen=max_len) word_to_index = tokenizer.word_index """Use GloVe learning algorithm for obtaining vector representations for words devolped by Stanford""" vocab_size = len(word_to_index) oov_tok = "<OOV>" embedding_dim = 200 import numpy as np embeddings_index = {}; # !unzip '/content/drive/My Drive/Dicoding/Belajar Pengembangan Machine Learning/1835_3176_compressed_glove.6B.200d.txt.zip' with open('/content/glove.6B.200d.txt') as f: for line in f: values = line.split(); word = values[0]; coefs = np.asarray(values[1:], dtype='float32'); embeddings_index[word] = coefs; embeddings_matrix = np.zeros((vocab_size+1, embedding_dim)); for word, i in word_to_index.items(): embedding_vector = embeddings_index.get(word); if embedding_vector is not None: embeddings_matrix[i] = embedding_vector; """Design the model.""" import tensorflow as tf model = tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size+1, embedding_dim, weights=[embeddings_matrix], trainable=False, input_length = max_len), tf.keras.layers.Bidirectional(LSTM(256, return_sequences=True)), tf.keras.layers.Dropout(0.5), tf.keras.layers.BatchNormalization(), tf.keras.layers.SpatialDropout1D(0.5), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128,activation = 'relu'), tf.keras.layers.Dense(64,activation = 'relu'), tf.keras.layers.Dense(32,activation = 'relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(5, activation='softmax') ]) # model = modeling() model.compile(optimizer = 'adam', metrics = ['accuracy'], loss= 'categorical_crossentropy') model.summary() """Train the model.""" from keras.callbacks import EarlyStopping es = EarlyStopping(monitor='val_loss', mode='min', patience=5) num_epochs = 20 history = model.fit(padded_train, label_train, epochs=num_epochs, validation_data=(padded_test, label_test), verbose=2, callbacks=[es]) """As you can see, we got validation accuracy about 90%. Next, plot the accuracy and loss.""" print(history.history.keys()) import matplotlib.pyplot as plt # summarize history for accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for accuracy plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
f417d703c2a3646665254a487f6ff83029952ce2
13132aa50944d60c1d72f53cdc19e78172be2487
/src/tests/core/search/search_test.py
b66ad5001d3c85b9313a5e3ad80d131928009f7a
[]
no_license
mikemeko/6.01_Tools
c8cff53d05a52e25d4ccd370f778569246e6f5a1
95461a6f748b51b3d98d16ef9db37e051f3e6dd3
refs/heads/master
2021-03-24T09:46:50.169250
2014-02-10T02:56:58
2014-02-10T02:56:58
7,247,933
0
0
null
null
null
null
UTF-8
Python
false
false
1,125
py
""" Unittests for search.py. """ __author__ = '[email protected] (Michael Mekonnen)' from core.search.search import a_star from core.search.search import Search_Node from unittest import main from unittest import TestCase class Test_Search_Node(Search_Node): """ S / \ / \ A B | / \ | / \ C D E """ def __init__(self, state='S', parent=None, cost=0): Search_Node.__init__(self, state, parent, cost) def get_children(self): return [Test_Search_Node(new_state, self, self.cost + 1) for new_state in {'S': ['A', 'B'], 'A': ['C'], 'B': ['D', 'E']}.get(self.state, [])] class Search_Test(TestCase): """ Tests for core/search/search. """ def test_search(self): assert a_star(Test_Search_Node(), lambda state: state == 'S')[0].state == ( 'S') assert a_star(Test_Search_Node(), lambda state: state == 'E')[0].state == ( 'E') assert a_star(Test_Search_Node(), lambda state: state == 'F')[0] is None assert a_star(Test_Search_Node(), lambda state: state in ['A', 'D'])[0].state == 'A' if __name__ == '__main__': main()
5cc0cfd2cde036f6f550f6a6a8b808d5e20882fc
5fc21a604a8644edc8ad7414b0272fc2a3e67760
/master/inplace-config/templates/master.cfg.j2
4faa40c669d096a1a5b4c6173cf3ff2460965f11
[ "MIT" ]
permissive
jpic/ansible-buildbot
e66e18540942690ddd1054885a5b1752cbb8c449
b691306d3a5ca86a8b4e42643f1b20b11646bb0a
refs/heads/develop
2020-03-28T15:35:48.163276
2015-06-28T06:58:09
2015-06-28T06:58:09
65,032,559
0
0
null
2016-08-05T16:18:02
2016-08-05T16:18:01
null
UTF-8
Python
false
false
725
j2
# -*- python -*- # ex: set syntax=python: # {{ ansible_managed }} import os from buildbot.plugins import * from {{ buildbot_master_inplace_name }}.common import config, loaders from {{ buildbot_master_inplace_name }}.factories import reconfig reload(config) reload(loaders) reload(reconfig) cfg = config.BuildbotConfigurationWrapper() cfg.setTitle("{{ buildbot_master_title }}") cfg.setTitleUrl("{{ buildbot_master_title_url }}") cfg.setConnection("{{ buildbot_master_url }}", {{ buildbot_master_slave_port }}) slaveNames = loaders.SlaveLoader.load(cfg, os.path.join(os.getcwd(), 'slaves/')) loaders.ProjectLoader.load(cfg, os.path.join(os.getcwd(), 'projects/'), slaveNames) c = BuildmasterConfig = cfg.getConfigDict()
fb078c5e35ee4a3abfc8bb8dce0c5cfb6e846091
8e127742a638a3c35d6ad002e34c736d3c84db97
/build/build_game_permutations/string_permutations.py
58d50fa21732a8a2cae9a62981b8c0ab4d356f67
[]
no_license
Adarsh2910/tictactoe
e4331ea0f1a9a71b19d51837211deb3fa807ec0f
597b465541e7658ae510bc04319d3f7ba2286c96
refs/heads/master
2020-03-26T06:10:18.006172
2018-08-13T14:43:48
2018-08-13T14:43:48
144,592,834
0
0
null
null
null
null
UTF-8
Python
false
false
766
py
#SOURCE: ## http://www.geeksforgeeks.org/write-a-c-program-to-print-all-permutations-of-a-given-string/ # Python program to print all permutations with # duplicates allowed def toString(List): return ''.join(List) # Function to print permutations of string # This function takes three parameters: # 1. String # 2. Starting index of the string # 3. Ending index of the string. def permute(a, l, r): if l==r: print toString(a) else: for i in xrange(l,r+1): a[l], a[i] = a[i], a[l] permute(a, l+1, r) a[l], a[i] = a[i], a[l] # backtrack # Driver program to test the above function string = "123456789" n = len(string) a = list(string) permute(a, 0, n-1) # This code is contributed by Bhavya Jain
352f49df71d8216ca3c17a3626f578b5ce858adf
cd1095198b723745882787215ffbe8b2475bf544
/US_Immigration_Trends/Model_Source.py
caf958328e8c8b10becf6eed31878be410864fc7
[]
no_license
krishns18/Data_Projects
e1a5d8b3a30b3e1e7a1e44af49d5f7685d76b8db
a2bdeb7fa107d2d3ccd111fe007f136d408fb8b7
refs/heads/master
2020-12-23T11:28:59.985931
2020-09-17T03:22:47
2020-09-17T03:22:47
237,136,452
1
0
null
null
null
null
UTF-8
Python
false
false
922
py
class ModelSource: def __init__(self,immi_trans,demog_trans,airport_clean): self.immi_trans = immi_trans self.demog_trans = demog_trans self.airport_clean = airport_clean def model_fact(self): # Function to model fact table immi_fact = self.immi_trans.join(self.demog_trans,self.immi_trans.i94addr == self.demog_trans.state_code, how = 'left_semi') immi_fact = immi_fact.join(self.airport_clean,immi_fact.i94port == self.airport_clean.local_code, how = 'left_semi') return immi_fact def star_model(self): # Function to model and generate fact and dimension tables immi_fact = self.model_fact() dim_demog = self.demog_trans dmi_airport = self.airport_clean return immi_fact,self.demog_trans,self.airport_clean
b948d559685a567428fab7d26c078d1cf6e55f8a
1002160fec10d11ded23ffe3b555cb382a3568ca
/PY4E/exercisesANS/ex7_1.py
731df58f14268b339349f92e46cfbf5d1cc4172c
[]
no_license
AREKKUSU-hyper/Python-Libraries
8358a1093f9083286dd02e263f6c9d11d5221bd3
07bada98d250d8370706294d78bce04c6b39b0e4
refs/heads/master
2022-11-17T02:13:59.933905
2020-06-28T09:26:43
2020-06-28T09:26:43
275,550,573
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
f=open("mbox.txt","r") # inp=f.read() # Reads the entire file into the variable inp as a string # print(len(inp)) # how many characters # print(inp[:10]) # 換行符號算一個字元 for line in f: line=line.rstrip() # 去掉文件中的分行符號(空白) if line.startswith("From"): # if not line.startswith("From"): # opposite # continue if not "Q" in line: continue print(line)
26d4b5bda0b588df51d043b24e83719cc9ec940b
9953a5220d9811ede9760f4916c08b3bf8981eda
/src/model.py
0a48153f2b1233f08ef4ff5f15101c1264f3dfd8
[ "MIT" ]
permissive
sonalif/gpt-2
97450338dac1dddfa129c85aac62c9ecf6bf1ab3
e8969b13bcca554795bf06cc1b12bdd9a21bd63b
refs/heads/master
2023-05-30T15:22:01.278426
2020-02-12T21:39:46
2020-02-12T21:39:46
240,081,801
0
0
MIT
2023-05-22T22:17:08
2020-02-12T18:11:37
Python
UTF-8
Python
false
false
6,634
py
import numpy as np import tensorflow as tf from tensorflow.contrib.training import HParams #from hparams import HParams def default_hparams(): return HParams( n_vocab=0, n_ctx=1024, n_embd=768, n_head=12, n_layer=12, ) def shape_list(x): """Deal with dynamic shape in tensorflow cleanly.""" static = x.shape.as_list() dynamic = tf.shape(x) return [dynamic[i] if s is None else s for i, s in enumerate(static)] def softmax(x, axis=-1): x = x - tf.reduce_max(x, axis=axis, keepdims=True) ex = tf.exp(x) return ex / tf.reduce_sum(ex, axis=axis, keepdims=True) def gelu(x): return 0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3)))) def norm(x, scope, *, axis=-1, epsilon=1e-5): """Normalize to mean = 0, std = 1, then do a diagonal affine transform.""" with tf.variable_scope(scope): n_state = x.shape[-1].value g = tf.get_variable('g', [n_state], initializer=tf.constant_initializer(1)) b = tf.get_variable('b', [n_state], initializer=tf.constant_initializer(0)) u = tf.reduce_mean(x, axis=axis, keepdims=True) s = tf.reduce_mean(tf.square(x-u), axis=axis, keepdims=True) x = (x - u) * tf.rsqrt(s + epsilon) x = x*g + b return x def split_states(x, n): """Reshape the last dimension of x into [n, x.shape[-1]/n].""" *start, m = shape_list(x) return tf.reshape(x, start + [n, m//n]) def merge_states(x): """Smash the last two dimensions of x into a single dimension.""" *start, a, b = shape_list(x) return tf.reshape(x, start + [a*b]) def conv1d(x, scope, nf, *, w_init_stdev=0.02): with tf.variable_scope(scope): *start, nx = shape_list(x) w = tf.get_variable('w', [1, nx, nf], initializer=tf.random_normal_initializer(stddev=w_init_stdev)) b = tf.get_variable('b', [nf], initializer=tf.constant_initializer(0)) c = tf.reshape(tf.matmul(tf.reshape(x, [-1, nx]), tf.reshape(w, [-1, nf]))+b, start+[nf]) return c def attention_mask(nd, ns, *, dtype): """1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs. """ i = tf.range(nd)[:,None] j = tf.range(ns) m = i >= j - ns + nd return tf.cast(m, dtype) def attn(x, scope, n_state, *, past, hparams): assert x.shape.ndims == 3 # Should be [batch, sequence, features] assert n_state % hparams.n_head == 0 if past is not None: assert past.shape.ndims == 5 # Should be [batch, 2, heads, sequence, features], where 2 is [k, v] def split_heads(x): # From [batch, sequence, features] to [batch, heads, sequence, features] return tf.transpose(split_states(x, hparams.n_head), [0, 2, 1, 3]) def merge_heads(x): # Reverse of split_heads return merge_states(tf.transpose(x, [0, 2, 1, 3])) def mask_attn_weights(w): # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst. _, _, nd, ns = shape_list(w) b = attention_mask(nd, ns, dtype=w.dtype) b = tf.reshape(b, [1, 1, nd, ns]) w = w*b - tf.cast(1e10, w.dtype)*(1-b) return w def multihead_attn(q, k, v): # q, k, v have shape [batch, heads, sequence, features] w = tf.matmul(q, k, transpose_b=True) w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype)) w = mask_attn_weights(w) w = softmax(w) a = tf.matmul(w, v) return a with tf.variable_scope(scope): c = conv1d(x, 'c_attn', n_state*3) q, k, v = map(split_heads, tf.split(c, 3, axis=2)) present = tf.stack([k, v], axis=1) if past is not None: pk, pv = tf.unstack(past, axis=1) k = tf.concat([pk, k], axis=-2) v = tf.concat([pv, v], axis=-2) a = multihead_attn(q, k, v) a = merge_heads(a) a = conv1d(a, 'c_proj', n_state) return a, present def mlp(x, scope, n_state, *, hparams): with tf.variable_scope(scope): nx = x.shape[-1].value h = gelu(conv1d(x, 'c_fc', n_state)) h2 = conv1d(h, 'c_proj', nx) return h2 def block(x, scope, *, past, hparams): with tf.variable_scope(scope): nx = x.shape[-1].value a, present = attn(norm(x, 'ln_1'), 'attn', nx, past=past, hparams=hparams) x = x + a m = mlp(norm(x, 'ln_2'), 'mlp', nx*4, hparams=hparams) x = x + m return x, present def past_shape(*, hparams, batch_size=None, sequence=None): return [batch_size, hparams.n_layer, 2, hparams.n_head, sequence, hparams.n_embd // hparams.n_head] def expand_tile(value, size): """Add a new axis of given size.""" value = tf.convert_to_tensor(value, name='value') ndims = value.shape.ndims return tf.tile(tf.expand_dims(value, axis=0), [size] + [1]*ndims) def positions_for(tokens, past_length): batch_size = tf.shape(tokens)[0] nsteps = tf.shape(tokens)[1] return expand_tile(past_length + tf.range(nsteps), batch_size) def model(hparams, X, past=None, scope='model', reuse=tf.compat.v1.AUTO_REUSE): with tf.variable_scope(scope, reuse=reuse): results = {} batch, sequence = shape_list(X) wpe = tf.get_variable('wpe', [hparams.n_ctx, hparams.n_embd], initializer=tf.random_normal_initializer(stddev=0.01)) wte = tf.get_variable('wte', [hparams.n_vocab, hparams.n_embd], initializer=tf.random_normal_initializer(stddev=0.02)) past_length = 0 if past is None else tf.shape(past)[-2] h = tf.gather(wte, X) + tf.gather(wpe, positions_for(X, past_length)) # Transformer presents = [] pasts = tf.unstack(past, axis=1) if past is not None else [None] * hparams.n_layer assert len(pasts) == hparams.n_layer for layer, past in enumerate(pasts): h, present = block(h, 'h%d' % layer, past=past, hparams=hparams) if layer == 10: tf.add_to_collection('checkpoints', h) presents.append(present) results['present'] = tf.stack(presents, axis=1) h = norm(h, 'ln_f') # Language model loss. Do tokens <n predict token n? h_flat = tf.reshape(h, [batch*sequence, hparams.n_embd]) logits = tf.matmul(h_flat, wte, transpose_b=True) logits = tf.reshape(logits, [batch, sequence, hparams.n_vocab]) results['logits'] = logits return results
543c3b56bb2486234ee20e5aec6adb3ef20f7edf
939eec126d7bd9a46847c3a98be07b2fba2dc08f
/EigVal.py
d9d76a80a6b8e26e9cecd7d40f2c2426f3613086
[ "MIT" ]
permissive
OceanNuclear/Statistics
0fbfeed6bc25028fdb15f785239f9a8ca36b9354
6ae5d16c78b8c68f7504b2d6cbe7efd4914d8cb5
refs/heads/master
2021-08-03T06:58:16.328017
2021-07-26T15:02:31
2021-07-26T15:02:31
163,417,809
0
0
null
null
null
null
UTF-8
Python
false
false
1,242
py
import numpy as np import matplotlib.pyplot as plt import numpy.random as rn from numpy import array as ary from numpy import sqrt from numpy.linalg import svd, eig, eigvals, inv, pinv def set_offdiag(mat, triu, inplace=True): '''sets the off-diagonal elements of a symmetric matrix when the top triangle's values are given.''' triu = ary(triu).flatten() indices = ary(np.triu_indices_from(mat, k=1)).T if inplace: for ij, ord in zip(indices, triu): i,j = ij mat[i,j] = ord mat[j,i] = ord return mat else: matcopy = mat.copy() for ij, ord in zip(indices, triu): i,j = ij matcopy[i,j] = ord matcopy[j,i] = ord return matcopy if __name__=="__main__": main_diag = [sqrt(1),.01] covar_mat = np.diag(ary(main_diag, dtype=float)) set_offdiag(covar_mat, [0], inplace=True) eigval, eigvec = eig(covar_mat) print("eigval=", eigval) print("eigvec=\n", eigvec) xy = rn.multivariate_normal([0,0], covar_mat, size=1000) x, y = xy.T ax = plt.subplot() ax.scatter(x,y) ax.set_aspect(1) # equal aspect ratio plt.show() plt.clf()
8de0766a8ba323676ac585c2f0a37b9c61c626fb
60de64366da69a2032612ef51bbdd3f7b880a538
/tests/test_wsdl_soap.py
9902c5a4bdb3fab5080d8f3d98a793337b20ec5c
[ "MIT", "BSD-3-Clause" ]
permissive
VertigoRay/python-zeep
52264b459ab19db89c5d0049dd679a2bafa77bca
1970e10d5c68a1944be721c95d917b23316e0891
refs/heads/master
2021-01-17T10:57:52.583089
2016-05-15T05:38:29
2016-05-15T05:38:29
58,754,770
0
0
null
2016-05-13T16:12:05
2016-05-13T16:12:04
null
UTF-8
Python
false
false
5,494
py
from collections import OrderedDict from lxml import etree from tests.utils import assert_nodes_equal, load_xml from zeep import xsd from zeep.wsdl import definitions, soap def test_document_message_serializer(): msg = soap.DocumentMessage( wsdl=None, name=None, operation=None, nsmap=soap.Soap11Binding.nsmap) namespace = 'http://docs.python-zeep.org/tests/document' # Fake resolve() msg.body = xsd.Element( etree.QName(namespace, 'response'), xsd.ComplexType([ xsd.Element(etree.QName(namespace, 'arg1'), xsd.String()), xsd.Element(etree.QName(namespace, 'arg2'), xsd.String()), ]) ) msg.namespace = { 'body': 'http://docs.python-zeep.org/tests/document', 'header': None, 'headerfault': None } body, header, headerfault = msg.serialize(arg1='ah1', arg2='ah2') expected = """ <?xml version="1.0"?> <soap-env:Body xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <ns0:response xmlns:ns0="http://docs.python-zeep.org/tests/document"> <ns0:arg1>ah1</ns0:arg1> <ns0:arg2>ah2</ns0:arg2> </ns0:response> </soap-env:Body> """ assert_nodes_equal(expected, body) def test_document_message_deserializer(): response_body = load_xml(""" <SOAP-ENV:Body xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <mns:response xmlns:mns="http://docs.python-zeep.org/tests/document" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <mns:return type="xsd:string">foobar</mns:return> </mns:response> </SOAP-ENV:Body> """) # noqa msg = soap.DocumentMessage( wsdl=None, name=None, operation=None, nsmap=soap.Soap11Binding.nsmap) # Fake resolve() namespace = 'http://docs.python-zeep.org/tests/document' msg.abstract = definitions.AbstractMessage( etree.QName(namespace, 'Method1Response')) msg.abstract.parts = OrderedDict([ ('body', definitions.MessagePart( element=xsd.Element( etree.QName(namespace, 'response'), xsd.ComplexType([ xsd.Element(etree.QName(namespace, 'return'), xsd.String()), ]) ), type=None)) ]) msg.namespace = { 'body': 'http://docs.python-zeep.org/tests/document', 'header': None, 'headerfault': None } result = msg.deserialize(response_body) assert result == 'foobar' def test_rpc_message_serializer(): msg = soap.RpcMessage( wsdl=None, name=None, operation=None, nsmap=soap.Soap11Binding.nsmap) # Fake resolve() msg.abstract = definitions.AbstractMessage( etree.QName('{http://docs.python-zeep.org/tests/rpc}Method1Response')) msg.abstract.parts = OrderedDict([ ('arg1', definitions.MessagePart( element=None, type=xsd.String())), ('arg2', definitions.MessagePart( element=None, type=xsd.String())), ]) msg.namespace = { 'body': 'http://docs.python-zeep.org/tests/rpc', 'header': None, 'headerfault': None } body, header, headerfault = msg.serialize(arg1='ah1', arg2='ah2') expected = """ <?xml version="1.0"?> <soap-env:Body xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <ns0:Method1Response xmlns:ns0="http://docs.python-zeep.org/tests/rpc"> <arg1>ah1</arg1> <arg2>ah2</arg2> </ns0:Method1Response> </soap-env:Body> """ assert_nodes_equal(expected, body) def test_rpc_message_deserializer(): response_body = load_xml(""" <SOAP-ENV:Body xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <mns:Method1Response xmlns:mns="http://docs.python-zeep.org/tests/rpc" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <bstrReturn xsi:type="xsd:string">foobar</bstrReturn> </mns:Method1Response> </SOAP-ENV:Body> """) # noqa msg = soap.RpcMessage( wsdl=None, name=None, operation=None, nsmap=soap.Soap11Binding.nsmap) # Fake resolve() msg.abstract = definitions.AbstractMessage( etree.QName('{http://docs.python-zeep.org/tests/rpc}Method1Response')) msg.abstract.parts = OrderedDict([ ('bstrReturn', definitions.MessagePart( element=None, type=xsd.String())) ]) msg.namespace = { 'body': 'http://docs.python-zeep.org/tests/rpc', 'header': None, 'headerfault': None } result = msg.deserialize(response_body) assert result == 'foobar'
3b7b299082fdbb74aaa5ba25f15669ec25330839
c1f33bfa0d9fdf04cb31fc5353a9a75766e09724
/batch_predict.py
b9c3796259d2c6bbb18e22a1b733945c296358c8
[ "Apache-2.0" ]
permissive
pantelisantonoudiou/deep-seizure-detect
151fe6a594f7e1eac676ed891163592fd1e4329c
040d746833f5d35172fe944da0798f4909770f9c
refs/heads/main
2023-03-29T08:57:43.482101
2021-03-27T16:18:09
2021-03-27T16:18:09
314,353,139
1
0
null
null
null
null
UTF-8
Python
false
false
5,579
py
# -*- coding: utf-8 -*- """ Created on Thu May 7 10:18:28 2020 @author: Pante """ ### ------------------------ IMPORTS -------------------------------------- ### import os, sys, tables, json # set tf verbosity to 2 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import numpy as np from keras.models import load_model from tqdm import tqdm ### ------------------------------------------------------------------------### class batchPredict: """ Class for batch seizure prediction """ def __init__(self): """ Data retrieval from config.json Returns ------- None. """ # load properties from configuration file jsonpath = 'config.json' openpath = open(jsonpath, 'r').read(); prop_dict = json.loads(openpath) # Get parent and re-oranized data path self.gen_path = prop_dict['main_path'] self.org_rawpath = os.path.join(self.gen_path , prop_dict['org_rawpath']) # Get predictions path self.rawpred_path = os.path.join(self.gen_path , prop_dict['rawpred_path']) # Get model path self.model_path = prop_dict['model_path'] # get selected channel self.ch_list = prop_dict['ch_list'] def file_check(self): """ Check if files check before prediction Returns ------- Bool, True if operation successful """ print ('\n----------------------------------------------------------------------') print ('-> File Check from:', self.gen_path) print ('----------------------------------------------------------------------\n') # get file list filelist = list(filter(lambda k: '.h5' in k, os.listdir(self.org_rawpath))) if len(filelist) == 0: print('-> No Files Present.') return False # loop files (multilple channels per file) for i in tqdm(range(len(filelist)), desc = 'Progress', file=sys.stdout): try: # get organized data filepath = os.path.join(self.org_rawpath, filelist[i]) f = tables.open_file(filepath, mode='r') data_shape = f.root.data.shape f.close() if len(data_shape) != 3: # check if data shape is correct print(f'\nData shape of file {filelist[i]} is not correct {data_shape}. \nPlease re-arrange to (:, 500, channels).') return False except Exception as err: raise FileNotFoundError(f'Unable to read file {filelist[i]}.\n{err}\n') return False print ('\n----------------------------------------------------------------------') print ('------------------------ File Check Completed ------------------------') print ('----------------------------------------------------------------------\n') return True def mainfunc(self): """ Iterate over files and generate predictions Returns ------- None. """ print ('\n----------------------------------------------------------------------') print ('-> Generating predictions from:', self.gen_path) print ('----------------------------------------------------------------------\n') # make path if os.path.exists(self.rawpred_path) is False: os.mkdir( self.rawpred_path) # get file list filelist = list(filter(lambda k: '.h5' in k, os.listdir(self.org_rawpath))) # load model object to memory to get path model = load_model(self.model_path) # iterate over files for i in tqdm(range(len(filelist)), desc = 'Progress', file=sys.stdout): # get organized data filepath = os.path.join(self.org_rawpath, filelist[i]) f = tables.open_file(filepath, mode='r') data = f.root.data[:] f.close() # get predictions (2D-array) ypred = model.predict(data[:, :, self.ch_list]) # save predictions as .csv file_id = filelist[i].replace('.h5', '.csv') np.savetxt(os.path.join(self.rawpred_path,file_id), ypred, delimiter=',',fmt='%f') print ('\n----------------------------------------------------------------------') print ('----------------------- Predictions Completed ------------------------') print ('----------------------------------------------------------------------\n') # Execute if module runs as main program if __name__ == '__main__': # init object obj = batchPredict() # if file check successful get predictions if obj.file_check() == True: # get predictions and store in csv obj.mainfunc()
dbe9ffb9b7edcdaa408e5678e10e269eb60b1c36
9923e30eb99716bfc179ba2bb789dcddc28f45e6
/openapi-generator/python/test/test_tagged_sensor.py
6d315d9a6115515245f7b517c20e6d325020b960
[]
no_license
silverspace/samsara-sdks
cefcd61458ed3c3753ac5e6bf767229dd8df9485
c054b91e488ab4266f3b3874e9b8e1c9e2d4d5fa
refs/heads/master
2020-04-25T13:16:59.137551
2019-03-01T05:49:05
2019-03-01T05:49:05
172,804,041
2
0
null
null
null
null
UTF-8
Python
false
false
6,422
py
# coding: utf-8 """ Samsara API # Introduction Samsara provides API endpoints for interacting with Samsara Cloud, so that you can build powerful applications and custom solutions with sensor data. Samsara has endpoints available to track and analyze sensors, vehicles, and entire fleets. The Samsara Cloud API is a [RESTful API](https://en.wikipedia.org/wiki/Representational_state_transfer) accessed by an [HTTP](https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol) client such as wget or curl, or HTTP libraries of most modern programming languages including python, ruby, java. We use built-in HTTP features, like HTTP authentication and HTTP verbs, which are understood by off-the-shelf HTTP clients. We allow you to interact securely with our API from a client-side web application (though you should never expose your secret API key). [JSON](http://www.json.org/) is returned by all API responses, including errors. If you’re familiar with what you can build with a REST API, the following API reference guide will be your go-to resource. API access to the Samsara cloud is available to all Samsara administrators. To start developing with Samsara APIs you will need to [obtain your API keys](#section/Authentication) to authenticate your API requests. If you have any questions you can reach out to us on [[email protected]](mailto:[email protected]) # Endpoints All our APIs can be accessed through HTTP requests to URLs like: ```curl https://api.samsara.com/<version>/<endpoint> ``` All our APIs are [versioned](#section/Versioning). If we intend to make breaking changes to an API which either changes the response format or request parameter, we will increment the version. # Authentication To authenticate your API request you will need to include your secret token. You can manage your API tokens in the [Dashboard](https://cloud.samsara.com). They are visible under `Settings->Organization->API Tokens`. Your API tokens carry many privileges, so be sure to keep them secure. Do not share your secret API tokens in publicly accessible areas such as GitHub, client-side code, and so on. Authentication to the API is performed via [HTTP Basic Auth](https://en.wikipedia.org/wiki/Basic_access_authentication). Provide your API token as the basic access_token value in the URL. You do not need to provide a password. ```curl https://api.samsara.com/<version>/<endpoint>?access_token={access_token} ``` All API requests must be made over [HTTPS](https://en.wikipedia.org/wiki/HTTPS). Calls made over plain HTTP or without authentication will fail. # Request Methods Our API endpoints use [HTTP request methods](https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods) to specify the desired operation to be performed. The documentation below specified request method supported by each endpoint and the resulting action. ## GET GET requests are typically used for fetching data (like data for a particular driver). ## POST POST requests are typically used for creating or updating a record (like adding new tags to the system). With that being said, a few of our POST requests can be used for fetching data (like current location data of your fleet). ## PUT PUT requests are typically used for updating an existing record (like updating all devices associated with a particular tag). ## PATCH PATCH requests are typically used for modifying an existing record (like modifying a few devices associated with a particular tag). ## DELETE DELETE requests are used for deleting a record (like deleting a tag from the system). # Response Codes All API requests will respond with appropriate [HTTP status code](https://en.wikipedia.org/wiki/List_of_HTTP_status_codes). Your API client should handle each response class differently. ## 2XX These are successful responses and indicate that the API request returned the expected response. ## 4XX These indicate that there was a problem with the request like a missing parameter or invalid values. Check the response for specific [error details](#section/Error-Responses). Requests that respond with a 4XX status code, should be modified before retrying. ## 5XX These indicate server errors when the server is unreachable or is misconfigured. In this case, you should retry the API request after some delay. # Error Responses In case of a 4XX status code, the body of the response will contain information to briefly explain the error reported. To help debugging the error, you can refer to the following table for understanding the error message. | Status Code | Message | Description | |-------------|----------------|-------------------------------------------------------------------| | 401 | Invalid token | The API token is invalid and could not be authenticated. Please refer to the [authentication section](#section/Authentication). | | 404 | Page not found | The API endpoint being accessed is invalid. | | 400 | Bad request | Default response for an invalid request. Please check the request to make sure it follows the format specified in the documentation. | # Versioning All our APIs are versioned. Our current API version is `v1` and we are continuously working on improving it further and provide additional endpoints. If we intend to make breaking changes to an API which either changes the response format or request parameter, we will increment the version. Thus, you can use our current API version worry free. # FAQs Check out our [responses to FAQs here](https://kb.samsara.com/hc/en-us/sections/360000538054-APIs). Don’t see an answer to your question? Reach out to us on [[email protected]](mailto:[email protected]). # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import openapi_client from openapi_client.models.tagged_sensor import TaggedSensor # noqa: E501 from openapi_client.rest import ApiException class TestTaggedSensor(unittest.TestCase): """TaggedSensor unit test stubs""" def setUp(self): pass def tearDown(self): pass def testTaggedSensor(self): """Test TaggedSensor""" # FIXME: construct object with mandatory attributes with example values # model = openapi_client.models.tagged_sensor.TaggedSensor() # noqa: E501 pass if __name__ == '__main__': unittest.main()
0adc5b2c1ea7a864c1215b5fab74dd2b88412ed9
cf6fd897717ba042bd0e0c3bbee62159eeafc819
/gyp_main.py
bd8b4413bc25e1e639ea179659cab2daec8c348d
[ "BSD-3-Clause" ]
permissive
graysonlang/gyp_slim
ab0fc03ab1ac8835915f6f40f3a35c4590cfa22d
2d278cdf0dbd3e4a46a7606fde54414d4177cf9d
refs/heads/master
2020-03-22T01:24:03.485459
2018-07-01T05:32:27
2018-07-01T05:32:27
139,299,293
0
0
null
null
null
null
UTF-8
Python
false
false
479
py
#!/usr/bin/env python # Copyright (c) 2009 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import sys sys.dont_write_bytecode = True # Make sure we're using the version of pylib in this repo, not one installed # elsewhere on the system. sys.path.insert(0, os.path.join(os.path.dirname(sys.argv[0]), 'pylib')) import gyp if __name__ == '__main__': sys.exit(gyp.script_main())
ec8719208c3860fbec7f8a287ab12049779c26ef
79b127f5fa03f57ddd1899bd06262414ffd07c92
/users/migrations/0006_auto_20200511_0053.py
12c577f12ca6ba9910ad2e3468e6ec43ad60b50d
[]
no_license
bruteforcerxx/ponzi
f423d6632bfd6d2f70b9b9972dd1c5d4b373f019
d326eb8324b07f81d54cbad17c3caabd76082656
refs/heads/master
2023-04-15T13:41:25.216493
2020-06-13T09:51:44
2020-06-13T09:51:44
263,668,586
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
# Generated by Django 3.0.6 on 2020-05-10 23:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0005_user_phone'), ] operations = [ migrations.AlterField( model_name='user', name='wallet_address', field=models.CharField(blank=True, max_length=200, null=True, unique=True), ), ]
b1eed5827c2b0b8e0557413e01f4c513746e7cf0
eaf468948a97ce53cd50a79e525df00546b3db1c
/blog/migrations/0001_initial.py
3ff4d30453c20225ea9f1bfa777338747186e541
[]
no_license
hamohambardzumyan99/6frameGIT
8ce16efdfbf2bc450fb9a3461529b29588cca4d3
8c1a87229b7687c27e1e70c7bb922ba53ad0e530
refs/heads/master
2020-12-30T14:45:04.077438
2017-05-25T07:04:41
2017-05-25T07:04:41
91,083,367
0
0
null
null
null
null
UTF-8
Python
false
false
1,208
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Free', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, serialize=False, auto_created=True)), ('title', models.CharField(max_length=100)), ('created_at', models.DateTimeField(verbose_name='date published')), ('image', models.ImageField(upload_to='video/%Y/%m/%d')), ('download_url', models.CharField(max_length=250)), ], ), migrations.CreateModel( name='Paid', fields=[ ('id', models.AutoField(verbose_name='ID', primary_key=True, serialize=False, auto_created=True)), ('title', models.CharField(max_length=100)), ('created_at', models.DateTimeField(verbose_name='date published')), ('image', models.ImageField(upload_to='video/%Y/%m/%d')), ('price', models.CharField(max_length=250)), ], ), ]
88030c1952cb064637b6fb1a271709fe38f46c1c
7af38f9b08cce1172e3416b9ebdd8284023d3c61
/src/viewprobe.py
0e48b051dc07f330ed1669fb4476c8a5c53fb638
[ "MIT" ]
permissive
HubBucket-Team/NetDissect
e03510934e01c962c6c86731b72c423edfcb6e20
23f345f0e4b0f45cd51c455948409d1a75f5b13a
refs/heads/release1
2020-12-30T11:16:03.600807
2017-05-08T11:11:53
2017-05-08T11:11:53
91,546,782
1
1
null
2017-05-17T07:31:21
2017-05-17T07:31:21
null
UTF-8
Python
false
false
18,776
py
''' viewprobe creates visualizations for a certain eval. ''' import glob import os import numpy import re import upsample import time import loadseg from scipy.misc import imread, imresize, imsave from loadseg import normalize_label import expdir class NetworkProbe: def __init__(self, directory, blobs=None): self.ed = expdir.ExperimentDirectory(directory) # Load probe metadata info = self.ed.load_info() self.ih, self.iw = info.input_dim self.layers = info.blobs if blobs is None else blobs self.ds = loadseg.SegmentationData(info.dataset) self.layer = {} for blob in self.layers: self.layer[blob] = LayerProbe(self.ed, blob, self.ds) def score_tally_stats(self, layer, verbose=False): # First, score every unit if verbose: print 'Adding tallys of unit/label alignments.' sys.stdout.flush() ta, tg, ti = self.summarize_tally(layer) labelcat = onehot(primary_categories_per_index(self.ds)) tc = np.count_act_with_labelcat(layer) # If we were doing per-category activations p, then: # c = numpy.dot(p, labelcat.transpose()) epsilon = 1e-20 # avoid division-by-zero # If we were counting activations on non-category examples then: # iou = i / (a[:,numpy.newaxis] + g[numpy.newaxis,:] - i + epsilon) iou = ti / (tc + tg[numpy.newaxis,:] - ti + epsilon) # Let's tally by primary-category. pc = primary_categories_per_index(self.ds) categories = self.ds.category_names() ar = numpy.arange(iou.shape[1]) # actually - let's get the top iou for every category pciou = numpy.array([iou * (pc[ar] == ci)[numpy.newaxis,:] for ci in range(len(categories))]) # label_iou = iou.argmax(axis=1) label_pciou = pciou.argmax(axis=2) # name_iou = [self.ds.name(None, i) for i in label_iou] name_pciou = [ [self.ds.name(None, j) for j in label_pciou[ci]] for ci in range(len(label_pciou))] # score_iou = iou[numpy.arange(iou.shape[0]), label_iou] score_pciou = pciou[ numpy.arange(pciou.shape[0])[:,numpy.newaxis], numpy.arange(pciou.shape[1])[numpy.newaxis,:], label_pciou] bestcat_pciou = score_pciou.argsort(axis=0)[::-1] # Assign category for each label # cat_per_label = primary_categories_per_index(self.ds) # cat_iou = [categories[cat_per_label[i]] for i in label_iou] # Now sort units by score and visulize each one return bestcat_pciou, name_pciou, score_pciou, label_pciou, tc, tg, ti def generate_html_summary(self, layer, imsize=64, imcount=16, imscale=None, tally_stats=None, gridwidth=None, verbose=False): print 'Generating html summary', ( self.ed.filename(['html', '%s.html' % expdir.fn_safe(layer)])) # Grab tally stats bestcat_pciou, name_pciou, score_pciou, _, _, _, _ = (tally_stats) if verbose: print 'Sorting units by score.' sys.stdout.flush() if imscale is None: imscale = imsize categories = self.ds.category_names() ordering = score_pciou.max(axis=0).argsort()[::-1] top = self.max_act_indexes(layer, count=imcount) self.ed.ensure_dir('html', 'image') css = ('https://maxcdn.bootstrapcdn.com/bootstrap/latest' + '/css/bootstrap.min.css') html = ['<!doctype html>', '<html>', '<head>', '<link rel="stylesheet" href="%s">' % css, '</head>', '<body>', '<div class="container-fluid">'] if gridwidth is None: gridname = '' gridwidth = imcount gridheight = 1 else: gridname = '-%d' % gridwidth gridheight = (imcount + gridwidth - 1) // gridwidth for unit in ordering: if verbose: print 'Visualizing %s unit %d' % (layer, unit) sys.stdout.flush() tiled = numpy.full( ((imsize + 1) * gridheight - 1, (imsize + 1) * gridwidth - 1, 3), 255, dtype='uint8') for x, index in enumerate(top[unit]): row = x // gridwidth col = x % gridwidth vis = self.activation_visualization(layer, unit, index) if vis.shape[:2] != (imsize, imsize): vis = imresize(vis, (imsize, imsize)) tiled[row*(imsize+1):row*(imsize+1)+imsize, col*(imsize+1):col*(imsize+1)+imsize,:] = vis imfn = 'image/%s%s-%04d.jpg' % ( expdir.fn_safe(layer), gridname, unit) imsave(self.ed.filename(['html', imfn]), tiled) labels = '; '.join(['%s (%s, %f)' % (name_pciou[c][unit], categories[c], score_pciou[c, unit]) for c in bestcat_pciou[:,unit]]) html.extend([ '<h6>%s unit %d: %s</h6>' % (layer, unit + 1, labels), '<img src="%s" height="%d">' % (imfn, imscale) ]) html.extend([ '</div>', '</body>', '</html>', '']) with open(self.ed.filename([ 'html', '%s.html' % expdir.fn_safe(layer)]), 'w') as f: f.write('\n'.join(html)) def generate_csv_summary( self, layer, csvfile, tally_stats, order=None, verbose=False): if verbose: print 'Generating csv summary', csvfile sys.stdout.flush() bestcat_pciou, name_pciou, score_pciou, label_pciou, tc, tg, ti = ( tally_stats) # For each unit in a layer, outputs the following information: # - label: best interpretation # - object-label: top ranked interpretation for scene/object/color/etc # - object-truth: ground truth pixels # - object-activation: activating pixels # - object-intersect: intersecting pixels # - object-iou: iou score # - etc, for each category. categories = self.ds.category_names() csv_fields = sum([[ '%s-label' % cat, '%s-truth' % cat, '%s-activation' % cat, '%s-intersect' % cat, '%s-iou' % cat] for cat in categories], ['unit', 'category', 'label', 'score']) if order is not None: csv_fields = order if verbose: print 'Sorting units by score.' sys.stdout.flush() ordering = score_pciou.max(axis=0).argsort()[::-1] # top = self.max_act_indexes(layer, count=imcount) import csv with open(csvfile, 'w') as f: writer = csv.DictWriter(open(csvfile, 'w'), csv_fields) writer.writeheader() for unit in ordering: # Top images are top[unit] bestcat = bestcat_pciou[0, unit] data = { 'unit': (unit + 1), 'category': categories[bestcat], 'label': name_pciou[bestcat][unit], 'score': score_pciou[bestcat][unit] } for ci, cat in enumerate(categories): label = label_pciou[ci][unit] data.update({ '%s-label' % cat: name_pciou[ci][unit], '%s-truth' % cat: tg[label], '%s-activation' % cat: tc[unit, label], '%s-intersect' % cat: ti[unit, label], '%s-iou' % cat: score_pciou[ci][unit] }) writer.writerow(data) def generate_quantmat(self, layer, verbose=False): if verbose: print 'Generating quantmat' sys.stdout.flush() from scipy.io import savemat lp = self.layer[layer] filename = self.ed.filename( 'quant-%d.mat' % lp.quantdata.shape[1], blob=layer) savemat(filename, { 'quantile': lp.quantdata }) def generate_imgmax(self, layer, verbose=False): from scipy.io import savemat imgmax = self.ed.open_mmap(blob=layer, part='imgmax', mode='w+', shape = self.layer[layer].blobdata.shape[:2]) imgmax[...] = self.layer[layer].blobdata.max(axis=(2, 3)) self.ed.finish_mmap(imgmax) # Also copy out to mat file filename = self.ed.filename('imgmax.mat', blob=layer) savemat(filename, { 'imgmax': imgmax }) # And cache self.layer[layer].imgmax = imgmax def instance_data(self, i, normalize=True): record, shape = self.ds.resolve_segmentation( self.ds.metadata(i), categories=None) if normalize: default_shape = (1, ) + shape record = dict((cat, normalize_label(dat, default_shape)) for cat, dat in record.items()) return record, shape def top_image_indexes(self, layer, unit, count=10): t = self.layer[layer].count_a[:,unit].argsort()[::-1] return t[:count] # Generates a mask at the "lp.level" quantile. def activation_mask(self, layer, unit, index, shape=None): if shape is None: record, shape = self.instance_data(index) sw, sh = shape # reduction = int(round(self.iw / float(sw))) lp = self.layer[layer] blobdata = lp.blobdata fieldmap = lp.fieldmap quantdata = lp.quantdata threshold = quantdata[unit, int(round(quantdata.shape[1] * lp.level))] up = upsample.upsampleL( fieldmap, blobdata[index:index+1, unit], shape=(self.ih, self.iw), scaleshape=(sh, sw))[0] mask = up > threshold return mask # Makes an iamge using the mask def activation_visualization(self, layer, unit, index, alpha=0.2): image = imread(self.ds.filename(index)) mask = self.activation_mask(layer, unit, index, shape=image.shape[:2]) return (mask[:, :, numpy.newaxis] * (1 - alpha) + alpha) * image def summarize_tally(self, layer): cat_count = len(self.ds.category_names()) tally = self.layer[layer].tally unit_size = self.layer[layer].shape[1] label_size = self.ds.label_size() count = numpy.zeros( (unit_size + 1, label_size + 1 + cat_count), dtype='int64') for i in range(len(tally)): t = tally[i] count[t[:,0]+1, t[:,1]+1+cat_count] += t[:,2] # count_a.shape = (unit size,) count_a = count[1:,cat_count] # this would summarize category intersections if we tallied them # count_c.shape = (unit_size, cat_size) # count_c = count[1:,0:cat_count] # count_g.shape = (label_size,) count_g = count[0,1+cat_count:] # count_i.shape = (unit_size, label_size) count_i = count[1:,1+cat_count:] # return count_a, count_c, count_g, count_i return count_a, count_g, count_i def count_act_with_label(self, layer): # Because our dataaset is sparse, instead of using count_a to count # all activations, we can compute count_act_with_label to count # activations only within those images which contain an instance # of a given label. tally = self.layer[layer].tally unit_size = self.layer[layer].shape[1] label_size = self.ds.label_size() count = numpy.zeros((unit_size, label_size), dtype='int64') for i in range(len(tally)): c1 = numpy.zeros((unit_size + 1, label_size + 1), dtype='int64') t = tally[i] c1[t[:,0]+1, t[:,1]+1] = t[:,2] count += c1[1:,0][:,numpy.newaxis] * (c1[0,1:][numpy.newaxis] > 0) return count def count_act_with_labelcat(self, layer): # Because our dataaset is sparse, instead of using count_a to count # all activations, we can compute count_act_with_labelcat to count # activations only within those images which contain an instance # of a given label category. labelcat = onehot(primary_categories_per_index(self.ds)) # Be sure to zero out the background label - it belongs to no category. labelcat[0,:] = 0 tally = self.layer[layer].tally unit_size = self.layer[layer].shape[1] label_size = self.ds.label_size() count = numpy.zeros((unit_size, labelcat.shape[1]), dtype='int64') for i in range(len(tally)): c1 = numpy.zeros((unit_size + 1, label_size + 1), dtype='int64') t = tally[i] c1[t[:,0]+1, t[:,1]+1] = t[:,2] count += c1[1:,0][:,numpy.newaxis] * ( numpy.dot(c1[0,1:], labelcat) > 0) # retval: (unit_size, label_size) return numpy.dot(count, numpy.transpose(labelcat)) def max_act_indexes(self, layer, count=10): max_per_image = self.layer[layer].imgmax return max_per_image.argsort(axis=0)[:-1-count:-1,:].transpose() def top_act_indexes(self, layer, count=10): tally = self.layer[layer].tally unit_size = self.layer[layer].shape[1] label_size = self.ds.label_size() all_acts = numpy.zeros((len(tally), unit_size), dtype='int64') for i in range(len(tally)): acts = numpy.zeros((unit_size + 1, 2), dtype='int32') t = tally[i] acts[t[:,0] + 1, (t[:,1] != -1).astype('int')] = t[:,2] all_acts[i] = acts[1:,0] return all_acts.argsort(axis=0)[:-1-count:-1,:].transpose() class LayerProbe: def __init__(self, ed, blob, ds): info = ed.load_info(blob=blob) self.shape = info.shape self.fieldmap = info.fieldmap # Load the raw activation data if ed.has_mmap(blob=blob): self.blobdata = ed.open_mmap(blob=blob, shape=self.shape, mode='r') # Load the blob quantile data and grab thresholds if ed.has_mmap(blob=blob, part='quant-*'): self.quantdata = ed.open_mmap(blob=blob, part='quant-*', shape=(self.shape[1], -1), mode='r') # Load tally too; tally_depth is inferred from file size. self.tally = ed.open_mmap(blob=blob, part='tally-*', decimal=True, shape=(ds.size(), -1, 3), dtype='int32', mode='r') # And load imgmax if ed.has_mmap(blob=blob, part='imgmax'): self.imgmax = ed.open_mmap(blob=blob, part='imgmax', shape=(ds.size(), self.shape[1]), mode='r') # Figure out tally level that was used. self.level = ed.glob_number( 'tally-*.mmap', blob=blob, decimal=True) def primary_categories_per_index(ds, categories=None): ''' Returns an array of primary category numbers for each label, where the first category listed in ds.category_names is given category number 0. ''' if categories is None: categories = ds.category_names() catmap = {} for cat in categories: imap = ds.category_index_map(cat) if len(imap) < ds.label_size(None): imap = numpy.concatenate((imap, numpy.zeros( ds.label_size(None) - len(imap), dtype=imap.dtype))) catmap[cat] = imap result = [] for i in range(ds.label_size(None)): maxcov, maxcat = max( (ds.coverage(cat, catmap[cat][i]) if catmap[cat][i] else 0, ic) for ic, cat in enumerate(categories)) result.append(maxcat) return numpy.array(result) def onehot(arr, minlength=None): ''' Expands an array of integers in one-hot encoding by adding a new last dimension, leaving zeros everywhere except for the nth dimension, where the original array contained the integer n. The minlength parameter is used to indcate the minimum size of the new dimension. ''' length = numpy.amax(arr) + 1 if minlength is not None: length = max(minlength, length) result = numpy.zeros(arr.shape + (length,)) result[list(numpy.indices(arr.shape)) + [arr]] = 1 return result if __name__ == '__main__': import argparse import sys import traceback try: parser = argparse.ArgumentParser( description='Generate visualization for probed activation data.') parser.add_argument( '--directory', default='.', help='output directory for the net probe') parser.add_argument( '--format', default='html', help='html or csv or both') parser.add_argument( '--csvorder', help='csv header order') parser.add_argument( '--blobs', nargs='*', help='network blob names to visualize') parser.add_argument( '--gridwidth', type=int, default=None, help='width of visualization grid') parser.add_argument( '--imsize', type=int, default=72, help='thumbnail dimensions') parser.add_argument( '--imscale', type=int, default=None, help='thumbnail dimensions') parser.add_argument( '--imcount', type=int, default=16, help='number of thumbnails to include') args = parser.parse_args() np = NetworkProbe(args.directory, blobs=args.blobs) for blob in args.blobs: formats = args.format.split(',') if 'imgmax' in formats: np.generate_imgmax(blob) if 'html' in formats or 'csv' in formats: tally_stats = np.score_tally_stats(blob, verbose=True) if 'html' in formats: np.generate_html_summary(blob, imsize=args.imsize, imscale=args.imscale, imcount=args.imcount, tally_stats=tally_stats, gridwidth=args.gridwidth, verbose=True) if 'csv' in formats: filename = os.path.join(args.directory, '%s-result.csv' % expdir.fn_safe(blob)) np.generate_csv_summary(blob, filename, tally_stats, order=(args.csvorder.split(',') if args.csvorder else None), verbose=True) if 'quantmat' in formats: np.generate_quantmat(blob, verbose=True) except: traceback.print_exc(file=sys.stdout) sys.exit(1)
11550ccfbab76dc93f527a2a7add9e008dc5a3fe
34ed69140f0e975c6d1bb2e2b10402aaf93aa8bc
/whole_img_dataset_builder.py
41200a768fbdaa9aae928b4e32d5457136c931cf
[]
no_license
evankozliner/transfer-learning-baseline
95cc86295bede84ec0590b5c8137964fd60f155b
90b50a2aa29662a0c6bb0f2e16669e23779d2276
refs/heads/master
2021-01-20T06:59:55.996851
2017-06-07T22:08:23
2017-06-07T22:08:23
89,946,337
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
""" Builds a simple whole image directory for the transfer learning script to sanity-check the problem """ import pandas as pd import shutil DATA_DIR = 'final/' OUTPUT_DIR = 'whole-img-dataset/' if __name__ == "__main__": gt = pd.read_csv('final.csv') for i, row in gt.iterrows(): if row['melanoma']: shutil.copy(DATA_DIR + row['image_id'] + '.jpg', OUTPUT_DIR + 'Malignant/') else shutil.copy(DATA_DIR + row['image_id'] + '.jpg', OUTPUT_DIR + 'Benign/')
ec409cd30676c7bfbf9b75859e532d178fcbe632
8c61c9d614d98e00f8ad243ff8f0fe2e9370dc62
/apps/order/models.py
7bb2591b8fd17959aa6cd92fa651bc6d3ea701c4
[]
no_license
Alovelyfish/ttsx
4e550ee2393c98f3de46934232b00e4aa7e9cdb7
1338aa984f8bd278e356415f89cd26cfac3f26c6
refs/heads/master
2022-11-20T20:45:53.461839
2020-07-24T02:41:39
2020-07-24T02:41:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,076
py
from django.db import models from db.base_model import BaseModel # Create your models here. class OrderInfo(BaseModel): '''订单模型类''' PAY_METHOD_CHOICES = ( (1, '货到付款'), (2, '微信支付'), (3, '支付宝'), (4, '银联支付') ) ORDER_STATUS_CHOICES = ( (1, '待支付'), (2, '待发货'), (3, '待收货'), (4, '待评价'), (5, '已完成') ) order_id = models.CharField(max_length=128, primary_key=True, verbose_name='订单id') user = models.ForeignKey('user.User', verbose_name='用户', on_delete=models.DO_NOTHING) addr = models.ForeignKey('user.Address', verbose_name='地址', on_delete=models.DO_NOTHING) pay_method = models.SmallIntegerField(choices=PAY_METHOD_CHOICES, default=3, verbose_name='支付方式') total_count = models.IntegerField(default=1, verbose_name='商品数量') total_price = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='商品总价') transit_price = models.DecimalField(max_digits=10, decimal_places=2,verbose_name='订单运费') order_status = models.SmallIntegerField(choices=ORDER_STATUS_CHOICES, default=1, verbose_name='订单状态') trade_no = models.CharField(max_length=128, verbose_name='支付编号') class Meta: db_table = 'df_order_info' verbose_name = '订单' verbose_name_plural = verbose_name class OrderGoods(BaseModel): '''订单商品模型类''' order = models.ForeignKey('OrderInfo', verbose_name='订单', on_delete=models.DO_NOTHING) sku = models.ForeignKey('goods.GoodsSKU', verbose_name='商品SKU', on_delete=models.DO_NOTHING) count = models.IntegerField(default=1, verbose_name='商品数目') price = models.DecimalField(max_digits=10, decimal_places=2, verbose_name='商品价格') comment = models.CharField(max_length=256, verbose_name='评论') class Meta: db_table = 'df_order_goods' verbose_name = '订单商品' verbose_name_plural = verbose_name
[ "wuhan" ]
wuhan
0aa969c3e63c975bff86df4d81520f3f00465199
90a7e536e79d37204395d9d36dd7c5aaa786227c
/爬虫项目/LGZP.py
ea7dabcc4a5e0ce402d57de20226c45fc101c326
[]
no_license
jiashanliang/-
1ca9588771deb76defbfc73d0cbb4fc07f8d319f
17b9b7c182d01b94c3baf43e02c9f5a10ba55dc1
refs/heads/master
2020-04-10T17:04:23.320425
2018-12-11T02:50:37
2018-12-11T02:50:37
159,295,523
0
0
null
null
null
null
UTF-8
Python
false
false
3,299
py
import pymysql import requests import json # 接口 : https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false from sqlalchemy.dialects.mssql import pymssql def Initialization(page): post_url = "https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false" headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36', 'Cookie': 'user_trace_token=20181119134553-1c044f99-c44b-4fb1-863e-577c95179dfe; _ga=GA1.2.1518018158.1542606354; LGUID=20181119134554-615f1f4f-ebbe-11e8-a6d6-525400f775ce; JSESSIONID=ABAAABAAAIAACBIDF692B19D2CE9DE2302DFF38BC87F777; LGSID=20181122163512-87146e49-ee31-11e8-8acd-5254005c3644; PRE_UTM=; PRE_HOST=www.google.co.jp; PRE_SITE=https%3A%2F%2Fwww.google.co.jp%2F; PRE_LAND=https%3A%2F%2Fwww.lagou.com%2F; _gid=GA1.2.1375902786.1542875712; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1542606354,1542875712; index_location_city=%E5%85%A8%E5%9B%BD; TG-TRACK-CODE=search_code; X_HTTP_TOKEN=98574f905ef789092abfe5b08a62982b; sajssdk_2015_cross_new_user=1; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%221673a940551be-013d55fa0d77e3-b79183d-1327104-1673a940554134%22%2C%22%24device_id%22%3A%221673a940551be-013d55fa0d77e3-b79183d-1327104-1673a940554134%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_referrer%22%3A%22%22%2C%22%24latest_referrer_host%22%3A%22%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%7D%7D; _gat=1; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1542876806; LGRID=20181122165444-41cc214d-ee34-11e8-b44a-525400f775ce; SEARCH_ID=e3e669861bc2409f9b3bc9f068c806ca', 'Referer': 'https://www.lagou.com/jobs/list_python', } data = { 'first': 'true', 'pn': page, 'kd': 'python', } r =requests.post(post_url,headers = headers,data=data) return r def sava_content(response): # 连接数据库 connect = pymysql.Connect( host='localhost', port=3306, user='root', passwd='123456', db='xzf', charset='utf8' ) cursor = connect.cursor() response = json.loads(response.text) print(type(response)) works = response["content"]["positionResult"]["result"] for i in range(len(works)): work = works[i] company = work["companyFullName"] position = work["positionName"] wages = work["salary"] city = work["city"] financeStage = work["financeStage"] print(company, position, wages, city, financeStage) sql = "INSERT INTO lgdata(company,position,wages,city,financeStage) VALUES('%s','%s','%s','%s','%s')" % \ (company, position, wages, city, financeStage) try: # 执行sql语句 cursor.execute(sql) # 执行sql语句 connect.commit() except: # 发生错误时回滚 connect.rollback() if __name__ == '__main__': for page in range(1,6): response = Initialization(page) sava_content(response) # down_load(content)
b2bfe839dbda6707027eafc403910e3c91d305b5
048d697c2d7bcf0b32d7aaec87acbd930d7af800
/.ipynb_checkpoints/transforming-checkpoint.py
1c17a1ccfb53984affebac52ee20357c774564ea
[]
no_license
Radzsingh/DataflowPipeline
d081ce1ee3749e25929769c815c4774d25130404
07f045f9b973de8685d36714c96cfade3d6d0384
refs/heads/master
2023-03-27T16:08:33.730879
2021-03-27T23:48:18
2021-03-27T23:48:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,123
py
{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "historical-speaking", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Started Running\n" ] }, { "data": { "application/javascript": [ "\n", " if (typeof window.interactive_beam_jquery == 'undefined') {\n", " var jqueryScript = document.createElement('script');\n", " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", " jqueryScript.type = 'text/javascript';\n", " jqueryScript.onload = function() {\n", " var datatableScript = document.createElement('script');\n", " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", " datatableScript.type = 'text/javascript';\n", " datatableScript.onload = function() {\n", " window.interactive_beam_jquery = jQuery.noConflict(true);\n", " window.interactive_beam_jquery(document).ready(function($){\n", " \n", " });\n", " }\n", " document.head.appendChild(datatableScript);\n", " };\n", " document.head.appendChild(jqueryScript);\n", " } else {\n", " window.interactive_beam_jquery(document).ready(function($){\n", " \n", " });\n", " }" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/root/apache-beam-2.28.0/lib/python3.7/site-packages/apache_beam/io/gcp/bigquery.py:1653: BeamDeprecationWarning: options is deprecated since First stable release. References to <pipeline>.options will not be supported\n", " experiments = p.options.view_as(DebugOptions).experiments or []\n", "WARNING:apache_beam.options.pipeline_options:Discarding unparseable args: ['-f', '/root/.local/share/jupyter/runtime/kernel-15af5235-0529-4a4e-a9c2-dbc14ceb11c3.json']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Completed Running\n" ] } ], "source": [ "import apache_beam as beam\n", "from apache_beam.io import ReadFromText\n", "from apache_beam.io import WriteToText\n", "from google.cloud import bigquery\n", "from apache_beam.options.pipeline_options import PipelineOptions\n", "from apache_beam.options.pipeline_options import SetupOptions\n", "import re\n", "\n", "PROJECT = 'tokyo-botany-302620'\n", "schema1 = 'neighbourhood:STRING,total_count:NUMERIC'\n", " \n", "def collectNeighbourhood(data):\n", " yield '{},{}'.format(data['neighbourhood'],data['id'])\n", "\n", "def discard_incomplete(data):\n", " \"\"\"Filters out records that don't have an information.\"\"\"\n", " return len(data[0]) > 0 and len(data[1]) > 0 and len(data[2]) > 0 and len(data[3]) > 0 and len(data[4]) > 0 and len(data[5]) > 0 and len(data[6]) > 0 and len(data[7]) > 0 and len(data[8]) > 0 and len(data[9]) > 0 and len(data[10]) > 0 and len(data[11]) > 0 and len(data[12]) > 0 and len(data[13]) > 0 and len(data[14]) > 0 and len(data[15]) > 0\n", " \n", "def transform(argv=None):\n", " inputfile = 'gs://airbnbnyc2019/AB_NYC_2019 (1).csv'\n", " outputfile = 'gs://airbnbnyc2019/output/output.csv'\n", "\n", " pipeline_options = PipelineOptions()\n", " pipeline_options.view_as(SetupOptions).save_main_session = True\n", " p = beam.Pipeline(options=pipeline_options)\n", " \n", " lines = p | 'ReadMyFile' >> beam.io.ReadFromText(inputfile)\n", " \n", " (lines\n", " | 'Parse CSV1' >> beam.Regex.replace_all(r'\\\"([^\\\"]*)\\\"',lambda x:x.group(1).replace(',',''))\n", " | 'Split11' >> beam.Map(lambda x: x.split(','))\n", " | 'DeleteIncompleteData1' >> beam.Filter(discard_incomplete)\n", " | 'format to dict' >> beam.Map(lambda x: {\"id\": x[0], \"name\": x[1], \"host_id\": x[2], \"host_name\": x[3], \"neighbourhood_group\": x[4], \"neighbourhood\": x[5], \"latitude\": x[6], \"longitude\": x[7], \"room_type\": x[8],\"price\": x[9], \"minimum_nights\": x[10], \"number_of_reviews\":x[11],\"last_review\":x[12],\"reviews_per_month\":x[13],\"calculated_host_listings_count\":x[14], \"availability_365\":x[15]})\n", " | 'Transform' >> beam.FlatMap(collectNeighbourhood)\n", " | 'Split2' >> beam.Map(lambda x: x.split(','))\n", " \n", " | 'CombineNeighbourhood' >> beam.combiners.Count.PerKey()\n", " | 'format to dict2' >> beam.Map(lambda y: {\"neighbourhood\": y[0], \"total_count\": y[1]})\n", " #| 'Print' >> beam.Map(print)\n", " | 'WriteToBigQueryCount' >> beam.io.WriteToBigQuery('{0}:nycairbnb.airbnb_neighbourhood_count'.format(PROJECT), schema=schema1,\n", " write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND,method=\"STREAMING_INSERTS\")\n", " )\n", " p.run()\n", "\n", "if __name__ == '__main__':\n", " print('Started Running')\n", " transform()\n", " print('Completed Running')\n", " " ] }, { "cell_type": "code", "execution_count": 4, "id": "numeric-conspiracy", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Apache Beam 2.28.0 for Python 3", "language": "python", "name": "apache-beam-2.28.0" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 5 }
99ce8996cc92d1351b1811d6b1e7745d244e1d03
c3668ccd84d108c0d22ca13309912c9afa257830
/testing/test.py
f760436ad510b18a5198415d5f3b6a262fc6e00c
[]
no_license
pratyush1687/LibraryManagementSystem
3c0f33a0f9b954dfffcf79603649e4e14e11e0ca
831d085b6f675d22adf0d9cd7001e3a11021f203
refs/heads/master
2021-01-20T01:51:55.990063
2017-10-25T13:16:52
2017-10-25T13:16:52
101,304,120
1
1
null
2017-10-25T13:14:08
2017-08-24T14:29:11
Python
UTF-8
Python
false
false
501
py
# import pickle # arr=[1,2,3,4] # p=[3,4,5,6] # f=open("try.dat", mode="w+") # pickle.dump(arr,f) # pickle.dump(p,f) # f.seek(0,0) # while True: # try: # obj=pickle.load(f) # obj[0]="ab" # pickle.dump(obj, f) # except EOFError: # # f.close() # break # f.seek(0,0) # while True: # try: # obj=pickle.load(f) # # obj[0]="ab" # # pickle.dump(obj, f) # print obj # except EOFError: # f.close() # break
1632e27cb7ff7a99f1399e810c48a01889bdea52
9d5305f5fc99f3e79fc3daf19049825ae7cab20e
/post/templates/migrations/0001_initial.py
5ae80a9bfed1c61183071e350f022d69351314ae
[]
no_license
Salwasalwa/mini_projet_djagno
f2dd385bb3eefde40d983e94b52a5355a7ddcdb4
90075975bf624d1d51c7c406588b4951e04589ca
refs/heads/master
2021-01-20T09:31:43.364445
2017-05-18T13:52:08
2017-05-18T13:52:08
90,259,469
0
1
null
null
null
null
UTF-8
Python
false
false
670
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-05-04 14:04 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('body', models.TextField()), ('creation_date', models.DateTimeField(auto_now_add=True)), ], ), ]
c9d2ebc9232e0ecf7e9f0a67501dfb735983a292
719367fa61685cab1e36aa29a411e7a022171548
/src/try_load.py
c7d464a1aa21a7b49e39c1eb36418059556afb77
[ "BSD-3-Clause" ]
permissive
VinACE/san_mrc
3cdfea101e86fdba30cab7e808a489b89ca46cc6
e99cf73d3bc362d2566a93fe07de102bdd7a23d5
refs/heads/master
2021-10-10T04:10:53.682847
2021-09-30T13:34:22
2021-09-30T13:34:22
183,762,662
1
0
BSD-3-Clause
2019-04-27T11:09:54
2019-04-27T11:09:53
null
UTF-8
Python
false
false
635
py
# import sys # sys.path.append('/home/madhevan/Documents/py_packages') from src.batcher import BatchGen path = '../../dev-v1.1.json' batch_size = 10 gp = False tr = False #f = BatchGen(path,batch_size,gpu = gp,is_train = tr) import json with open(path, 'r', encoding='utf-8') as reader: # filter data = [] cnt = 0 print(type(reader)) c=0 for line in reader: if c < 10: sample = json.loads(line) print(c) c+=1 print(sample) print('\n') else: break print(type(sample)) print(len(sample)) print(sample.keys())
7aa098561b45184b7e74065811dfaa8010e27a1a
14dc72b1762e6aae8550582fbdfd4c1f77581afa
/myfirstdjangoapp/urls.py
7fcdd91f37358b52d4176d7b857875fc22754162
[]
no_license
pysammie/myfirstdjangoapp
f346b940163eb02409cf15383ca1b06f93f1f75f
5c587a1cf301c58d8dd5f7c93458bfa5d7dbe5ca
refs/heads/main
2023-04-10T03:50:02.853184
2021-04-21T22:10:46
2021-04-21T22:10:46
360,318,438
0
0
null
null
null
null
UTF-8
Python
false
false
785
py
"""mynewproject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('index/', views.index, name = "index") ]
5f4b3fc502b3ae070b126bf2b1f104b62fb3c6eb
9e63ab3790065f8f2227c961d4ccc376bd20f02b
/src/data/dataset.py
58edfb21f48741315d87e6dfea8a38a7ffd779d7
[]
no_license
DanKing1903/cwi
758e602e1b44b28eff2156d98fa882faae867540
a0ca817a98da0f968f6f5cfdee4650198a3c837c
refs/heads/master
2020-03-21T09:59:43.899524
2018-11-22T08:05:32
2018-11-22T08:05:32
138,428,540
0
0
null
null
null
null
UTF-8
Python
false
false
6,256
py
"""Dataset Reader This module contains the class(es) and functions to read the datasets. """ import csv import pandas as pd import spacy import pickle from spacy.tokens import Doc class Dataset(object): """ Utility class to easily load the datasets for training, development and testing. """ def __init__(self, language, dataset_name): """Defines the basic properties of the dataset reader. Args: language: The language of the dataset. dataset_name: The name of the dataset (all files should have it). """ self._language = language self._dataset_name = dataset_name self.translate = 'F' # TODO: Maybe the paths should be passed as parameters or read from a configuration file. self._trainset_path = "data/raw/{}/{}_Train.tsv".format(language.lower(), dataset_name) self._devset_path = "data/raw/{}/{}_Dev.tsv".format(language.lower(), dataset_name) self._testset_path = "data/raw/{}/{}_Test.tsv".format(language.lower(), dataset_name) self._trainset = None self._devset = None self._testset = None """spaCy object handling""" if self._language == "english": self.nlp = spacy.load('en_core_web_lg') elif self._language == "spanish": self.nlp = spacy.load("es_core_news_md") elif self._language == "german": self.nlp = spacy.load('de_core_news_sm') elif self._language == "french": self.nlp = spacy.load('fr_core_news_md') self._trainset_spacy_path = "data/interim/{}/{}_Train-spacy-objs.pkl".format( language.lower(), dataset_name) self._devset_spacy_path = "data/interim/{}/{}_Dev-spacy-objs.pkl".format( language.lower(), dataset_name) self._testset_spacy_path = "data/interim/{}/{}_Test-spacy-objs.pkl".format( language.lower(), dataset_name) def train_set(self): """list. Getter method for the training set. """ if self._trainset is None: # loads the data to memory once and when requested. trainset_raw = self.read_dataset(self._trainset_path) trainset_spacy = self.read_spacy_pickle(self._trainset_spacy_path) if trainset_raw is None and trainset_spacy is None: # This is for languages we never see (French) self._trainset = None else: self._trainset = pd.concat([trainset_raw, trainset_spacy], axis=1) self._trainset['language'] = self._language self._trainset['dataset_name'] = self._dataset_name return self._trainset def dev_set(self): """list. Getter method for the development set. """ if self._devset is None: # loads the data to memory once and when requested. devset_raw = self.read_dataset(self._devset_path) devset_spacy = self.read_spacy_pickle(self._devset_spacy_path) if devset_raw is None and devset_spacy is None: # This is for languages we never see (French) self._devset = None else: self._devset = pd.concat([devset_raw, devset_spacy], axis=1) self._devset['language'] = self._language self._devset['dataset_name'] = self._dataset_name return self._devset def test_set(self): """list. Getter method for the test set. """ if self.translate == 'F': if self._testset is None: # loads the data to memory once and when requested. testset_raw = self.read_dataset(self._testset_path) testset_spacy = self.read_spacy_pickle(self._testset_spacy_path) self._testset = pd.concat([testset_raw, testset_spacy], axis=1) self._testset['language'] = self._language self._testset['dataset_name'] = self._dataset_name else: if self._testset is None: testset_raw = pickle.load(open( "data/processed/translated_frenchdf.p", "rb" )) testset_spacy = self.read_spacy_pickle(self._testset_spacy_path) self._testset = pd.concat([testset_raw, testset_spacy], axis=1) self._testset['language'] = self._language self._testset['dataset_name'] = self._dataset_name return self._testset def read_dataset(self, file_path): """Read the dataset file. Args: file_path (str): The path of the dataset file. The file should follow the structure specified in the 2018 CWI Shared Task. Returns: list. A list of dictionaries that contain the information of each sentence in the dataset. """ try: with open(file_path, encoding="utf-8") as file: fieldnames = ['hit_id', 'sentence', 'start_offset', 'end_offset', 'target_word', 'native_annots', 'nonnative_annots', 'native_complex', 'nonnative_complex', 'gold_label', 'gold_prob'] dataset = pd.read_csv(file, names=fieldnames, sep="\t") except FileNotFoundError: print("File {} not found.".format(file_path)) dataset = None return dataset def read_spacy_pickle(self, file_path): """Read the pickled spacy objects Args: file_path (str): Path of the pickled spacy objects file Returns: pandas DataFrame. A single column of the spacy docs. """ vocab = self.nlp.vocab try: file = open(file_path, "rb") # putting the spacy doc in a single-item list to avoid pandas splitting it up spacy_objects = [[Doc(vocab).from_bytes(x)] for x in pickle.load(file)] file.close() spacy_objects_dataset = pd.DataFrame(spacy_objects, columns=["spacy"]) return spacy_objects_dataset except FileNotFoundError: print('spaCy pickle file for {} does not exist. No spaCy objects will be included.'.format( self._dataset_name)) return None
24ca41257924ee85e52bd59f9f29cc900200f81c
065e64fd345678771a7449eb093c85195286c071
/_test/stress_test.py
67d7e6cf87a09719d0084e88eea19757b779aa2e
[]
no_license
bluemellophone/gzc-client
de80e678fcbaaa7ab32c360265b7645b9ba5aa0e
46a2a8a4505f874c098bc73efedb50f4214e1451
refs/heads/master
2016-09-05T22:19:46.975038
2015-02-28T09:04:51
2015-02-28T09:04:51
29,980,718
2
0
null
null
null
null
UTF-8
Python
false
false
1,355
py
#!/usr/bin/env python import json import string import random import requests from os import listdir from os.path import join alphabet = string.ascii_lowercase def get_data(color, number, person): data = { 'car_color': color, 'car_number': number, 'person_letter': person, 'image_first_time_hour': random.randint(0, 23), 'image_first_time_minute': random.randint(0, 59), } return data test_dir = 'stress_test' test_archives = [f for f in listdir(test_dir) if f.endswith('.zip')] cars = [('BLUE', 1, (alphabet[x] for x in range(0, 6))), ('RED', 2, (alphabet[x] for x in range(0, 6))), ('GREEN', 3, (alphabet[x] for x in range(0, 6)))] pairs = [random.choice(cars) for _ in test_archives] colors = [x[0] for x in pairs] numbers = [x[1] for x in pairs] persons = [x[2].next() for x in pairs] DOMAIN = 'http://localhost:5000' IMGURL = DOMAIN + '/images/submit' GPSURL = DOMAIN + '/gps/submit' for test_archive, color, number, person in zip(test_archives, colors, numbers, persons): content = open(join(test_dir, test_archive), 'rb') files = {'image_archive': content} data = get_data(color, number, person) print data r = requests.post(IMGURL, data=data, files=files) print("HTTP STATUS:", r.status_code) response = json.loads(r.text) print("RESPONSE:", response)
987416f131ff62bd851ca65541449b4d3f48b845
e3c507d659e07225afff3dbd629f550463cf8d34
/blog/migrations/0001_initial.py
aad83807df822d2036e4e4b07946d759e711c627
[]
no_license
claudialgds/my-first-blog
a0a68cfe2156ef528ab02ab99df5ea281101ef82
22a815b71f2e5794c8c410c30daec391b0f2d618
refs/heads/master
2020-09-15T00:13:41.463963
2016-08-29T21:33:10
2016-08-29T21:33:10
66,882,528
0
0
null
null
null
null
UTF-8
Python
false
false
1,049
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-08-27 18:58 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('create_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
c22b66d7b9df25fc27b77fb4dcad7e9d471f51a8
191c95c78d348562f21fb114a12055bc2cb28da6
/sumsqrdig.py
b3d3948c8c449c239a18c78b88582f9a13a76378
[]
no_license
AbinayaKP/Set1
0936744e4d67da3751758ae6a5896aa98cfc9cac
887d3b2daeb2aa92772230359c29500a963121db
refs/heads/master
2020-04-20T07:44:44.530532
2019-06-06T11:03:36
2019-06-06T11:03:36
168,718,762
0
1
null
null
null
null
UTF-8
Python
false
false
56
py
x=raw_input() z=sum(int(i)**2 for i in str(x)) print(z)
6b60e2e9fbdaad89e59509bed877e18ac72d33c4
63bdf28fdc1cd225fad5aabb9c2b849a5740bb92
/pl186.py
941d987f4103e370a75d64667813ce4489128f66
[]
no_license
jyothi1998/python1
c7f9cee8ed85767c5f087b19402f1938592720a9
0abf487598e350b19100eacb56d4e7eab99cbad8
refs/heads/master
2020-03-27T02:57:49.722063
2018-12-17T05:18:04
2018-12-17T05:18:04
145,829,247
0
4
null
null
null
null
UTF-8
Python
false
false
83
py
str=raw_input() if(str in 'Vishal','Sundar'): print "yes" else: print "no"
412de84ef91a9b55ca6ed9b2e9535f117a1ec4e8
583e5a6c55d400b44f8ce8f936c8c232d90c6cb4
/setup.py
a9e0909b313e15b0014f04a51b1489e7eef10fd0
[ "MIT" ]
permissive
NickVoron/sandbox
aadbbc89576a7062eeda570a9390ecb6e144482c
86bbcd64c97de6d33fa35a6308291178aa964095
refs/heads/master
2021-01-22T14:54:58.759205
2017-09-24T15:54:14
2017-09-24T15:54:14
102,370,463
0
0
null
null
null
null
UTF-8
Python
false
false
1,906
py
#!/usr/bin/env python3 import subprocess, contextlib, logging, os, shutil, msbuild from pathlib import Path logging.basicConfig(level=logging.INFO) @contextlib.contextmanager def cwd(new_cwd): """Context manager for current working directory.""" old_cwd = Path.cwd() logging.info('Change cwd: %s', str(new_cwd)) os.chdir(str(new_cwd)) yield logging.info('Restore cwd: %s', str(old_cwd)) os.chdir(str(old_cwd)) def setup(): with cwd('.'): subprocess.check_call(['git', 'submodule', 'update', '--init', '--recursive']) intermediate_path = '_obj-libs-etc' root_path = Path(__file__).parent.resolve() build_path = Path(intermediate_path) / 'windows' / 'sharedtec' build_path.mkdir(parents=True, exist_ok=True) with cwd(build_path): cmd = [ 'cmake', '-G', 'Visual Studio 15 2017 Win64', str(root_path) # source dir ] logging.info('Run cmake command: %s', str(cmd)) subprocess.check_call(cmd) with cwd('boost-cmake/boost/boost_1_64_0'): if not os.path.exists("bjam.exe"): p = subprocess.Popen("bootstrap.bat", cwd=r".") stdout, stderr = p.communicate() subprocess.call([r'bjam', r'--stagedir=stage/x64', r'-j10', r'toolset=msvc', r'address-model=64', r'variant=release', r'threading=multi', r'link=static', r'runtime-link=static,shared', r'define=_SECURE_SCL=0', r'define=_HAS_ITERATOR_DEBUGGING=0', r'define=BOOST_TEST_NO_MAIN']) subprocess.call([r'bjam', r'--stagedir=stage/x64', r'-j10', r'toolset=msvc', r'address-model=64', r'variant=debug' , r'threading=multi', r'link=static', r'runtime-link=static,shared', r'define=BOOST_TEST_NO_MAIN']) with cwd("third_party"): msbuild.build('third_party.sln', 'Release', 'x64') with cwd("Stable"): msbuild.build('libs.sln', 'Release', 'x64') setup()
9e15bdb8ad4adcd44dc951620563b54217ec1841
45d00c4b8c9464d3ecdcc370e7a33f04c41ec433
/_example/sdk/python/CarInformationAPILib/APIException.py
dce719b555543e696ee331afc6d984b82473f74a
[ "Apache-2.0", "MIT" ]
permissive
commonledger/accounting-api-sdks
6cac5373f17aae85032fb19947ea3f29fb07a57f
db078c2523ae60ba9a5b5d201d180b6dac69b996
refs/heads/master
2020-04-21T14:32:37.371655
2014-11-02T22:02:32
2014-11-02T22:02:32
26,002,106
0
1
null
2014-11-02T22:02:32
2014-10-31T04:32:44
Java
UTF-8
Python
false
false
869
py
''' CarInformationAPILib This file was automatically generated by APIMATIC BETA v2.0 on 11/01/2014 ''' class APIException(Exception): def __init__(self, reason , responseCode): ''' :param reason: String containing the reason for raising an exception :param code: The HTTP response code from the API request ''' Exception.__init__(self, reason) self.responseCode= reason def getResponseCode(self): ''' The HTTP response code from the API request :returns: http response code :rType: int ''' return self.responseCode def getReason(self): ''' The reason for raising an exception :returns: the reason for raising an exception :rtype: str ''' return self.message
33e50feaba3f5e4aa2db0651cf4fb18fcdcdda02
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/PORMain/pirates/pvp/PVPInviter.py
0f67bb934799713dcb4996ee7f7dd4bea8e35126
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
15,768
py
from panda3d.core import TextNode from direct.gui.DirectGui import * from direct.task.Task import Task from direct.fsm import ClassicFSM from direct.fsm import State from direct.directnotify import DirectNotifyGlobal from otp.otpbase import OTPLocalizer from otp.otpbase import OTPGlobals from otp.uberdog.RejectCode import RejectCode from pirates.piratesbase import PiratesGlobals from pirates.piratesbase import PLocalizer from pirates.piratesgui import SocialPage from pirates.piratesgui import PiratesGuiGlobals from pirates.uberdog import UberDogGlobals from pirates.battle.DistributedBattleNPC import DistributedBattleNPC from pirates.piratesgui.RequestButton import RequestButton class PVPInviterButton(RequestButton): def __init__(self, text, command): RequestButton.__init__(self, text, command) self.initialiseoptions(PVPInviterButton) class PVPInviter(SocialPage.SocialPage): notify = DirectNotifyGlobal.directNotify.newCategory('PVPInviter') def __init__(self, avId, avName): SocialPage.SocialPage.__init__(self, 'PVPInviter') self.initialiseoptions(PVPInviter) self.setPos(-0.6, 0, 0.47) self.avId = avId self.avName = avName self.avDisableName = 'disable-%s' % avId self.fsm = ClassicFSM.ClassicFSM('PVPInviter', [State.State('off', self.enterOff, self.exitOff), State.State('begin', self.enterBegin, self.exitBegin), State.State('inBattle', self.enterInBattle, self.exitInBattle), State.State('notYet', self.enterNotYet, self.exitNotYet), State.State('checkAvailability', self.enterCheckAvailability, self.exitCheckAvailability), State.State('notAvailable', self.enterNotAvailable, self.exitNotAvailable), State.State('notAcceptingChallenges', self.enterNotAcceptingChallenges, self.exitNotAcceptingChallenges), State.State('wentAway', self.enterWentAway, self.exitWentAway), State.State('alreadyChallenging', self.enterAlreadyChallenging, self.exitAlreadyChallenging), State.State('alreadyInvited', self.enterAlreadyInvited, self.exitAlreadyInvited), State.State('askingNPC', self.enterAskingNPC, self.exitAskingNPC), State.State('endChallenge', self.enterEndChallenge, self.exitEndChallenge), State.State('challengeNoMore', self.enterChallengeNoMore, self.exitChallengeNoMore), State.State('self', self.enterSelf, self.exitSelf), State.State('ignored', self.enterIgnored, self.exitIgnored), State.State('asking', self.enterAsking, self.exitAsking), State.State('yes', self.enterYes, self.exitYes), State.State('no', self.enterNo, self.exitNo), State.State('otherInBattle', self.enterOtherInBattle, self.exitOtherInBattle), State.State('maybe', self.enterMaybe, self.exitMaybe), State.State('down', self.enterDown, self.exitDown), State.State('cancel', self.enterCancel, self.exitCancel)], 'off', 'off') guiMain = loader.loadModel('models/gui/gui_main') self.box = OnscreenImage(parent = self, pos = (0.25, 0, 0.275), image = guiMain.find('**/general_frame_e'), scale = 0.25) self.title = DirectLabel(parent = self, relief = None, text = PLocalizer.PVPInviterTitle, text_scale = PiratesGuiGlobals.TextScaleExtraLarge, text_align = TextNode.ACenter, text_fg = PiratesGuiGlobals.TextFG2, text_shadow = PiratesGuiGlobals.TextShadow, text_font = PiratesGlobals.getPirateOutlineFont(), pos = (0.25, 0, 0.42), image = None, image_scale = 0.25) self.message = DirectLabel(parent = self, relief = None, text = '', text_scale = PiratesGuiGlobals.TextScaleLarge, text_align = TextNode.ACenter, text_fg = PiratesGuiGlobals.TextFG2, text_shadow = PiratesGuiGlobals.TextShadow, text_wordwrap = 11, pos = (0.25, 0, 0.325), textMayChange = 1) self.context = None self.bOk = PVPInviterButton(text = OTPLocalizer.DialogOK, command = self.__handleOk) self.bOk.reparentTo(self) self.bOk.setPos(0.2, 0, 0.05) self.bOk.hide() self.bCancel = PVPInviterButton(text = OTPLocalizer.DialogCancel, command = self.__handleCancel) self.bCancel.reparentTo(self) self.bCancel.setPos(0.2, 0, 0.05) self.bCancel.hide() self.bStop = PVPInviterButton(text = 'Stop', command = self.__handleStop) self.bStop.reparentTo(self) self.bStop.setPos(0.2, 0, 0.15) self.bStop.hide() self.bYes = PVPInviterButton(text = OTPLocalizer.DialogYes, command = self.__handleYes) self.bYes.reparentTo(self) self.bYes.setPos(0.1, 0, 0.05) self.bYes.hide() self.bNo = PVPInviterButton(text = OTPLocalizer.DialogNo, command = self.__handleNo) self.bNo.reparentTo(self) self.bNo.setPos(0.3, 0, 0.05) self.bNo.hide() self.fsm.enterInitialState() self.fsm.request('begin') def destroy(self): if hasattr(self, 'destroyed'): return self.destroyed = 1 self.fsm.request('cancel') del self.fsm SocialPage.SocialPage.destroy(self) def enterOff(self): pass def exitOff(self): pass def enterBegin(self): myId = base.localAvatar.doId self.accept(self.avDisableName, self.__handleDisableAvatar) if self.avId == myId: self.fsm.request('self') else: self.fsm.request('notYet') def exitBegin(self): self.ignore(self.avDisableName) def enterSendChallenge(self): pass def exitSendChallenge(self): pass def enterInBattle(self): self.message['text'] = PLocalizer.PVPInviterBusy % self.avName self['text_pos'] = (0.0, 0.2) self.bCancel.show() self.bCancel.setPos(0.0, 0.0, -0.16) def exitInBattle(self): self.bCancel.hide() def enterNotYet(self): self.accept(self.avDisableName, self.__handleDisableAvatar) self.message['text'] = PLocalizer.PVPInviterNotYet % self.avName self.bYes.show() self.bNo.show() def exitNotYet(self): self.ignore(self.avDisableName) self.bYes.hide() self.bNo.hide() def enterCheckAvailability(self): self.accept(self.avDisableName, self.__handleDisableAvatar) avatar = base.cr.doId2do.get(self.avId) if not avatar: self.fsm.request('wentAway') return if isinstance(avatar, DistributedBattleNPC): self.fsm.request('askingNPC') return base.cr.pvpManager.sendRequestChallenge(self.avId) self.message['text'] = PLocalizer.PVPInviterCheckAvailability % self.avName self.accept(PiratesGlobals.PVPAcceptEvent, self.__challengeAccepted) self.accept(PiratesGlobals.PVPRejectEvent, self.__challengeRejected) self.bCancel.show() def __challengeAccepted(self, avIds): if self.avId in avIds: self.fsm.request('yes') def exitCheckAvailability(self): self.ignore(self.avDisableName) self.ignore('challengeConsidering') self.ignore('challengeResponse') self.ignore(PiratesGlobals.PVPAcceptEvent) self.ignore(PiratesGlobals.PVPRejectEvent) self.bCancel.hide() def enterNotAvailable(self): self.message['text'] = PLocalizer.PVPInviterBusy % self.avName self.context = None self.bOk.show() def exitNotAvailable(self): self.bOk.hide() def enterNotAcceptingChallenges(self): self.message['text'] = PLocalizer.PVPInviterBusy % self.avName self.context = None self.bOk.show() def exitNotAcceptingChallenges(self): self.bOk.hide() def enterWentAway(self): self.message['text'] = PLocalizer.PVPInviterBusy % self.avName if self.context != None: self.context = None self.bOk.show() def exitWentAway(self): self.bOk.hide() def enterAlreadyChallenging(self): self.message['text'] = PLocalizer.PVPInviterBusy % self.avName self['text_pos'] = (0.0, 0.2) self.context = None self.bStop.show() self.bCancel.show() def exitAlreadyChallenging(self): self.message['text'] = '' self['text_pos'] = (0.0, 0.13) self.bStop.hide() self.bCancel.hide() def enterAlreadyInvited(self): self.message['text'] = PLocalizer.PVPInviterBusy % self.avName self['text_pos'] = (0.0, 0.2) self.context = None self.bStop.show() self.bCancel.show() def exitAlreadyInvited(self): self.message['text'] = '' self['text_pos'] = (0.0, 0.13) self.bStop.hide() self.bCancel.hide() def enterAskingNPC(self): self.message['text'] = PLocalizer.PVPInviterAskingNPC % self.avName taskMgr.doMethodLater(2.0, self.npcReplies, 'npcChallenge') self.bCancel.show() def exitAskingNPC(self): taskMgr.remove('npcChallenge') self.bCancel.hide() def npcReplies(self, task): self.fsm.request('no') return Task.done def enterEndChallenge(self): self.message['text'] = PLocalizer.PVPInviterEndChallenge % self.avName self.context = None self.bYes.show() self.bNo.show() def exitEndChallenge(self): self.bYes.hide() self.bNo.hide() def enterChallengeNoMore(self): self.message['text'] = PLocalizer.PVPInviterChallengeNoMore % self.avName self.bOk.show() if not self.avId in base.cr.doId2do: messenger.send(self.avDisableName) def exitChallengeNoMore(self): self.bOk.hide() def enterSelf(self): self.message['text'] = PLocalizer.PVPInviterSelf self.context = None self.bOk.show() def exitSelf(self): self.bOk.hide() def enterIgnored(self): self.message['text'] = PLocalizer.PVPInviterBusy % self.avName self.context = None self.bOk.show() def exitIgnored(self): self.bOk.hide() def enterAsking(self): self.accept(self.avDisableName, self.__handleDisableAvatar) self.message['text'] = PLocalizer.PVPInviterAsking % self.avName self.accept('challengeResponse', self.__challengeResponse) self.accept(PiratesGlobals.PVPAcceptEvent, self.__challengeAccepted) self.bCancel.show() def exitAsking(self): self.ignore(self.avDisableName) self.ignore('challengeResponse') self.ignore(PiratesGlobals.PVPAcceptEvent) self.bCancel.hide() def enterYes(self): self.message['text'] = PLocalizer.PVPInviterSaidYes % self.avName self.context = None self.bOk.show() def exitYes(self): self.bOk.hide() def enterNo(self): self.message['text'] = PLocalizer.PVPInviterSaidNo % self.avName self.context = None self.bOk.show() def exitNo(self): self.bOk.hide() def enterOtherInBattle(self): self.message['text'] = PLocalizer.PVPInviterBusy % self.avName self.context = None self.bOk.show() def exitOtherInBattle(self): self.bOk.hide() def enterMaybe(self): self.message['text'] = PLocalizer.PVPInviterMaybe % self.avName self.context = None self.bOk.show() def exitMaybe(self): self.bOk.hide() def enterDown(self): self.message['text'] = PLocalizer.PVPInviterDown self.context = None self.bOk.show() def exitDown(self): self.bOk.hide() def enterCancel(self): if self.context != None: self.context = None self.fsm.request('off') def exitCancel(self): pass def __handleOk(self): self.destroy() def __handleCancel(self): self.destroy() def __handleStop(self): self.fsm.request('endChallenge') def __handleYes(self): if self.fsm.getCurrentState().getName() == 'notYet': localAvatar.guiMgr.showLookoutPanel() localAvatar.guiMgr.lookoutPage.displayLookout(gameType = PiratesGlobals.GAME_TYPE_PVP, gameStyle = PiratesGlobals.GAME_STYLE_TEAM_BATTLE, inviteOptions = [ PiratesGlobals.LOOKOUT_INVITE_CREW], additionalAvs = [ self.avId]) self.__handleOk() elif self.fsm.getCurrentState().getName() == 'endChallenge': self.fsm.request('challengeNoMore') else: self.destroy() def __handleNo(self): self.destroy() def __challengeConsidering(self, yesNoAlready, context): if yesNoAlready == 1: self.context = context self.fsm.request('asking') elif yesNoAlready == 0: self.fsm.request('notAvailable') elif yesNoAlready == 2: self.fsm.request('alreadyChallenging') elif yesNoAlready == 3: self.fsm.request('self') elif yesNoAlready == 4: self.fsm.request('ignored') elif yesNoAlready == 6: self.fsm.request('notAcceptingChallenges') elif yesNoAlready == 10: self.fsm.request('no') elif yesNoAlready == 13: self.fsm.request('otherInBattle') else: self.notify.warning('Got unexpected response to challengeConsidering: %s' % yesNoAlready) self.fsm.request('maybe') def __challengeRejected(self, avId, reason): if reason == RejectCode.INVITEE_NOT_ONLINE: self.fsm.request('notAvailable') elif reason == RejectCode.ALREADY_INVITED: self.fsm.request('alreadyInvited') elif reason == RejectCode.ALREADY_CHALLENGED: self.fsm.request('alreadyChallenging') elif reason == RejectCode.PVP_IN_BATTLE: self.fsm.request('inBattle') elif reason == RejectCode.PVP_OTHER_IN_BATTLE: self.fsm.request('otherInBattle') elif reason == RejectCode.INVITATION_DECLINED: self.fsm.request('no') else: self.notify.warning('challengeRejectInvite: %s unknown reason: %s.' % (avId, reason)) def __challengeResponse(self, yesNoMaybe, context): if self.context != context: self.notify.warning('Unexpected change of context from %s to %s.' % (self.context, context)) self.context = context if yesNoMaybe == 1: self.fsm.request('yes') elif yesNoMaybe == 0: self.fsm.request('no') elif yesNoMaybe == 3: self.fsm.request('otherInBattle') else: self.notify.warning('Got unexpected response to challengeResponse: %s' % yesNoMaybe) self.fsm.request('maybe') def __handleDisableAvatar(self): self.fsm.request('wentAway')
3366215c57d1585842ec4e3e63f72078d46d1d4a
b25704097a87b2819600c92f8943596bfdf6794d
/villageapp/urls.py
79b9fef5c5018b4f8dc42cd65470129b0a8b81fd
[]
no_license
jarrishmakingsly/village-projects
ffefe849aad9194c73b44165246f015c87612747
85930b43bc230b00f1cb8a98e3ca855175847c1d
refs/heads/main
2023-04-20T08:54:21.017012
2021-05-04T13:25:56
2021-05-04T13:25:56
364,262,122
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
from . import views from django.urls import path app_name = 'villageapp' urlpatterns = [ path('',views.index,name='index'), path('register_panchayath/',views.register_panchayath,name='register_panchayath') ]
3c7fd070d6df865841d2e2c6ee47e4586822f6aa
a1fbde85a164bd4c5025a46e37dbe48243875bf8
/07-one-dimensional-DP/rod_cutting.py
8e15cbe974d80569cbe3462b2a82fdd5cb755e4d
[]
no_license
Ventrosky/dynamic-programming
e6dfd3e2e5311eb1fd7427609772484116b55889
49b58fe3836e000366795042dcd9b04bb124daf2
refs/heads/master
2020-08-19T03:09:34.027872
2019-11-01T05:49:06
2019-11-01T05:49:06
215,870,046
1
0
null
null
null
null
UTF-8
Python
false
false
1,724
py
import sys from one_dimensional.util.stop_watch import start_watch, stop_watch_print def max_profit(l, p): if l == 0: return 0 max_p = -sys.maxsize for i in range(0, l): max_p = max(max_p, p[i] + max_profit(l - i - 1, p)) return max_p def max_profit_memo(l, p, cache): if l == 0: return 0 if cache[l] != -1: return cache[l] max_p = -sys.maxsize for i in range(0, l): max_p = max(max_p, p[i] + max_profit(l - i - 1, p)) cache[l] = max_p return max_p def max_profit_dp(L, p): dp = [0 for _ in range(0, L + 1)] for l in range(1, L + 1): dp[l] = -sys.maxsize for i in range(0, l): dp[l] = max(dp[l], p[i] + dp[l - i - 1]) return dp[L] def max_profit_dp_reconstruct(L, p): dp = [0 for _ in range(0, L + 1)] cuts = [i for i in range(0, L+1)] for l in range(1, L + 1): dp[l] = -sys.maxsize for i in range(0, l): if p[i] + dp[l - i - 1] > dp[l]: dp[l] = p[i] + dp[l - i - 1] cuts[l] = i+1 l = L cut = cuts[L] while cut != 0: print(str(cut)+',',end='') l = l-cut cut = cuts[l] return dp[L] profits_table = [1, 5, 8, 9, 10, 13, 17, 20, 24, 30] l = 8 start_watch() res = max_profit(l, profits_table) print(res) stop_watch_print("Recursion {} milli seconds") cache = [-1 for _ in range(0, l + 1)] start_watch() res = max_profit_memo(l, profits_table, cache) print(res) stop_watch_print("Memoization {} milli seconds") start_watch() res = max_profit_dp(l, profits_table) print(res) stop_watch_print("Bottom up {} milli seconds") res = max_profit_dp_reconstruct(l,profits_table) print(res)
22cf9c8ffb50b58d453a62b9eaa8609878b54f08
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/web/v20201201/web_app_instance_function_slot.py
1a7fe3db3da90cc3dad7d6bcb87d27e394f09544
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
24,849
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = ['WebAppInstanceFunctionSlotArgs', 'WebAppInstanceFunctionSlot'] @pulumi.input_type class WebAppInstanceFunctionSlotArgs: def __init__(__self__, *, name: pulumi.Input[str], resource_group_name: pulumi.Input[str], slot: pulumi.Input[str], config: Optional[Any] = None, config_href: Optional[pulumi.Input[str]] = None, files: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, function_app_id: Optional[pulumi.Input[str]] = None, function_name: Optional[pulumi.Input[str]] = None, href: Optional[pulumi.Input[str]] = None, invoke_url_template: Optional[pulumi.Input[str]] = None, is_disabled: Optional[pulumi.Input[bool]] = None, kind: Optional[pulumi.Input[str]] = None, language: Optional[pulumi.Input[str]] = None, script_href: Optional[pulumi.Input[str]] = None, script_root_path_href: Optional[pulumi.Input[str]] = None, secrets_file_href: Optional[pulumi.Input[str]] = None, test_data: Optional[pulumi.Input[str]] = None, test_data_href: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a WebAppInstanceFunctionSlot resource. :param pulumi.Input[str] name: Site name. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[str] slot: Name of the deployment slot. :param Any config: Config information. :param pulumi.Input[str] config_href: Config URI. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] files: File list. :param pulumi.Input[str] function_app_id: Function App ID. :param pulumi.Input[str] function_name: Function name. :param pulumi.Input[str] href: Function URI. :param pulumi.Input[str] invoke_url_template: The invocation URL :param pulumi.Input[bool] is_disabled: Gets or sets a value indicating whether the function is disabled :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] language: The function language :param pulumi.Input[str] script_href: Script URI. :param pulumi.Input[str] script_root_path_href: Script root path URI. :param pulumi.Input[str] secrets_file_href: Secrets file URI. :param pulumi.Input[str] test_data: Test data used when testing via the Azure Portal. :param pulumi.Input[str] test_data_href: Test data URI. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "slot", slot) if config is not None: pulumi.set(__self__, "config", config) if config_href is not None: pulumi.set(__self__, "config_href", config_href) if files is not None: pulumi.set(__self__, "files", files) if function_app_id is not None: pulumi.set(__self__, "function_app_id", function_app_id) if function_name is not None: pulumi.set(__self__, "function_name", function_name) if href is not None: pulumi.set(__self__, "href", href) if invoke_url_template is not None: pulumi.set(__self__, "invoke_url_template", invoke_url_template) if is_disabled is not None: pulumi.set(__self__, "is_disabled", is_disabled) if kind is not None: pulumi.set(__self__, "kind", kind) if language is not None: pulumi.set(__self__, "language", language) if script_href is not None: pulumi.set(__self__, "script_href", script_href) if script_root_path_href is not None: pulumi.set(__self__, "script_root_path_href", script_root_path_href) if secrets_file_href is not None: pulumi.set(__self__, "secrets_file_href", secrets_file_href) if test_data is not None: pulumi.set(__self__, "test_data", test_data) if test_data_href is not None: pulumi.set(__self__, "test_data_href", test_data_href) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ Site name. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ Name of the resource group to which the resource belongs. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter def slot(self) -> pulumi.Input[str]: """ Name of the deployment slot. """ return pulumi.get(self, "slot") @slot.setter def slot(self, value: pulumi.Input[str]): pulumi.set(self, "slot", value) @property @pulumi.getter def config(self) -> Optional[Any]: """ Config information. """ return pulumi.get(self, "config") @config.setter def config(self, value: Optional[Any]): pulumi.set(self, "config", value) @property @pulumi.getter(name="configHref") def config_href(self) -> Optional[pulumi.Input[str]]: """ Config URI. """ return pulumi.get(self, "config_href") @config_href.setter def config_href(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "config_href", value) @property @pulumi.getter def files(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ File list. """ return pulumi.get(self, "files") @files.setter def files(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "files", value) @property @pulumi.getter(name="functionAppId") def function_app_id(self) -> Optional[pulumi.Input[str]]: """ Function App ID. """ return pulumi.get(self, "function_app_id") @function_app_id.setter def function_app_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "function_app_id", value) @property @pulumi.getter(name="functionName") def function_name(self) -> Optional[pulumi.Input[str]]: """ Function name. """ return pulumi.get(self, "function_name") @function_name.setter def function_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "function_name", value) @property @pulumi.getter def href(self) -> Optional[pulumi.Input[str]]: """ Function URI. """ return pulumi.get(self, "href") @href.setter def href(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "href", value) @property @pulumi.getter(name="invokeUrlTemplate") def invoke_url_template(self) -> Optional[pulumi.Input[str]]: """ The invocation URL """ return pulumi.get(self, "invoke_url_template") @invoke_url_template.setter def invoke_url_template(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "invoke_url_template", value) @property @pulumi.getter(name="isDisabled") def is_disabled(self) -> Optional[pulumi.Input[bool]]: """ Gets or sets a value indicating whether the function is disabled """ return pulumi.get(self, "is_disabled") @is_disabled.setter def is_disabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_disabled", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) @property @pulumi.getter def language(self) -> Optional[pulumi.Input[str]]: """ The function language """ return pulumi.get(self, "language") @language.setter def language(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "language", value) @property @pulumi.getter(name="scriptHref") def script_href(self) -> Optional[pulumi.Input[str]]: """ Script URI. """ return pulumi.get(self, "script_href") @script_href.setter def script_href(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "script_href", value) @property @pulumi.getter(name="scriptRootPathHref") def script_root_path_href(self) -> Optional[pulumi.Input[str]]: """ Script root path URI. """ return pulumi.get(self, "script_root_path_href") @script_root_path_href.setter def script_root_path_href(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "script_root_path_href", value) @property @pulumi.getter(name="secretsFileHref") def secrets_file_href(self) -> Optional[pulumi.Input[str]]: """ Secrets file URI. """ return pulumi.get(self, "secrets_file_href") @secrets_file_href.setter def secrets_file_href(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "secrets_file_href", value) @property @pulumi.getter(name="testData") def test_data(self) -> Optional[pulumi.Input[str]]: """ Test data used when testing via the Azure Portal. """ return pulumi.get(self, "test_data") @test_data.setter def test_data(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "test_data", value) @property @pulumi.getter(name="testDataHref") def test_data_href(self) -> Optional[pulumi.Input[str]]: """ Test data URI. """ return pulumi.get(self, "test_data_href") @test_data_href.setter def test_data_href(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "test_data_href", value) class WebAppInstanceFunctionSlot(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, config: Optional[Any] = None, config_href: Optional[pulumi.Input[str]] = None, files: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, function_app_id: Optional[pulumi.Input[str]] = None, function_name: Optional[pulumi.Input[str]] = None, href: Optional[pulumi.Input[str]] = None, invoke_url_template: Optional[pulumi.Input[str]] = None, is_disabled: Optional[pulumi.Input[bool]] = None, kind: Optional[pulumi.Input[str]] = None, language: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, script_href: Optional[pulumi.Input[str]] = None, script_root_path_href: Optional[pulumi.Input[str]] = None, secrets_file_href: Optional[pulumi.Input[str]] = None, slot: Optional[pulumi.Input[str]] = None, test_data: Optional[pulumi.Input[str]] = None, test_data_href: Optional[pulumi.Input[str]] = None, __props__=None): """ Function information. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param Any config: Config information. :param pulumi.Input[str] config_href: Config URI. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] files: File list. :param pulumi.Input[str] function_app_id: Function App ID. :param pulumi.Input[str] function_name: Function name. :param pulumi.Input[str] href: Function URI. :param pulumi.Input[str] invoke_url_template: The invocation URL :param pulumi.Input[bool] is_disabled: Gets or sets a value indicating whether the function is disabled :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] language: The function language :param pulumi.Input[str] name: Site name. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[str] script_href: Script URI. :param pulumi.Input[str] script_root_path_href: Script root path URI. :param pulumi.Input[str] secrets_file_href: Secrets file URI. :param pulumi.Input[str] slot: Name of the deployment slot. :param pulumi.Input[str] test_data: Test data used when testing via the Azure Portal. :param pulumi.Input[str] test_data_href: Test data URI. """ ... @overload def __init__(__self__, resource_name: str, args: WebAppInstanceFunctionSlotArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Function information. :param str resource_name: The name of the resource. :param WebAppInstanceFunctionSlotArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(WebAppInstanceFunctionSlotArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, config: Optional[Any] = None, config_href: Optional[pulumi.Input[str]] = None, files: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, function_app_id: Optional[pulumi.Input[str]] = None, function_name: Optional[pulumi.Input[str]] = None, href: Optional[pulumi.Input[str]] = None, invoke_url_template: Optional[pulumi.Input[str]] = None, is_disabled: Optional[pulumi.Input[bool]] = None, kind: Optional[pulumi.Input[str]] = None, language: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, script_href: Optional[pulumi.Input[str]] = None, script_root_path_href: Optional[pulumi.Input[str]] = None, secrets_file_href: Optional[pulumi.Input[str]] = None, slot: Optional[pulumi.Input[str]] = None, test_data: Optional[pulumi.Input[str]] = None, test_data_href: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = WebAppInstanceFunctionSlotArgs.__new__(WebAppInstanceFunctionSlotArgs) __props__.__dict__["config"] = config __props__.__dict__["config_href"] = config_href __props__.__dict__["files"] = files __props__.__dict__["function_app_id"] = function_app_id __props__.__dict__["function_name"] = function_name __props__.__dict__["href"] = href __props__.__dict__["invoke_url_template"] = invoke_url_template __props__.__dict__["is_disabled"] = is_disabled __props__.__dict__["kind"] = kind __props__.__dict__["language"] = language if name is None and not opts.urn: raise TypeError("Missing required property 'name'") __props__.__dict__["name"] = name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["script_href"] = script_href __props__.__dict__["script_root_path_href"] = script_root_path_href __props__.__dict__["secrets_file_href"] = secrets_file_href if slot is None and not opts.urn: raise TypeError("Missing required property 'slot'") __props__.__dict__["slot"] = slot __props__.__dict__["test_data"] = test_data __props__.__dict__["test_data_href"] = test_data_href __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:web/v20201201:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web/v20160801:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web/v20160801:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web/v20180201:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web/v20180201:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web/v20181101:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web/v20181101:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web/v20190801:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web/v20190801:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web/v20200601:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web/v20200601:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web/v20200901:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web/v20200901:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web/v20201001:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web/v20201001:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web/v20210101:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web/v20210101:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-native:web/v20210115:WebAppInstanceFunctionSlot"), pulumi.Alias(type_="azure-nextgen:web/v20210115:WebAppInstanceFunctionSlot")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(WebAppInstanceFunctionSlot, __self__).__init__( 'azure-native:web/v20201201:WebAppInstanceFunctionSlot', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'WebAppInstanceFunctionSlot': """ Get an existing WebAppInstanceFunctionSlot resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = WebAppInstanceFunctionSlotArgs.__new__(WebAppInstanceFunctionSlotArgs) __props__.__dict__["config"] = None __props__.__dict__["config_href"] = None __props__.__dict__["files"] = None __props__.__dict__["function_app_id"] = None __props__.__dict__["href"] = None __props__.__dict__["invoke_url_template"] = None __props__.__dict__["is_disabled"] = None __props__.__dict__["kind"] = None __props__.__dict__["language"] = None __props__.__dict__["name"] = None __props__.__dict__["script_href"] = None __props__.__dict__["script_root_path_href"] = None __props__.__dict__["secrets_file_href"] = None __props__.__dict__["test_data"] = None __props__.__dict__["test_data_href"] = None __props__.__dict__["type"] = None return WebAppInstanceFunctionSlot(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def config(self) -> pulumi.Output[Optional[Any]]: """ Config information. """ return pulumi.get(self, "config") @property @pulumi.getter(name="configHref") def config_href(self) -> pulumi.Output[Optional[str]]: """ Config URI. """ return pulumi.get(self, "config_href") @property @pulumi.getter def files(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ File list. """ return pulumi.get(self, "files") @property @pulumi.getter(name="functionAppId") def function_app_id(self) -> pulumi.Output[Optional[str]]: """ Function App ID. """ return pulumi.get(self, "function_app_id") @property @pulumi.getter def href(self) -> pulumi.Output[Optional[str]]: """ Function URI. """ return pulumi.get(self, "href") @property @pulumi.getter(name="invokeUrlTemplate") def invoke_url_template(self) -> pulumi.Output[Optional[str]]: """ The invocation URL """ return pulumi.get(self, "invoke_url_template") @property @pulumi.getter(name="isDisabled") def is_disabled(self) -> pulumi.Output[Optional[bool]]: """ Gets or sets a value indicating whether the function is disabled """ return pulumi.get(self, "is_disabled") @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def language(self) -> pulumi.Output[Optional[str]]: """ The function language """ return pulumi.get(self, "language") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="scriptHref") def script_href(self) -> pulumi.Output[Optional[str]]: """ Script URI. """ return pulumi.get(self, "script_href") @property @pulumi.getter(name="scriptRootPathHref") def script_root_path_href(self) -> pulumi.Output[Optional[str]]: """ Script root path URI. """ return pulumi.get(self, "script_root_path_href") @property @pulumi.getter(name="secretsFileHref") def secrets_file_href(self) -> pulumi.Output[Optional[str]]: """ Secrets file URI. """ return pulumi.get(self, "secrets_file_href") @property @pulumi.getter(name="testData") def test_data(self) -> pulumi.Output[Optional[str]]: """ Test data used when testing via the Azure Portal. """ return pulumi.get(self, "test_data") @property @pulumi.getter(name="testDataHref") def test_data_href(self) -> pulumi.Output[Optional[str]]: """ Test data URI. """ return pulumi.get(self, "test_data_href") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")
acea0b64fbbc0712fea0c97e0aaa0b47a570d546
87371f38a9d78ed24d7bb199e3ee31a5eb6b5276
/page/makepagemeta.py
216b50e3faabafdca25278c398d0a49791498f67
[ "MIT" ]
permissive
afcarl/20cgenres
d42969ff50670f8fa347d467fcdc712c0db4fbe6
98edee2745acd5f322afa7c49a2dea318901abe7
refs/heads/master
2020-03-21T06:33:26.186781
2016-08-05T18:13:39
2016-08-05T18:13:39
138,227,806
1
0
null
null
null
null
UTF-8
Python
false
false
7,093
py
#!/usr/bin/env python3 # Based on inferfromreaders. # We read volume metadata and produce page metadata, # confirming along the way that the number of pages # in our metadata matches the number in the json import csv, os, sys, shutil from collections import Counter import numpy as np import pandas as pd # import utils currentdir = os.path.dirname(__file__) libpath = os.path.join(currentdir, '../../lib') sys.path.append(libpath) import SonicScrewdriver as utils import parsefeaturejsons as parser readers = ['donofrio', 'erickson', 'alvarez', 'flynn', 'rubio', 'barajas', 'koh', 'trondson', 'lin', 'buck', 'fleming'] sourcedir = '/Volumes/TARDIS/work/readers/' subobjects = os.listdir(sourcedir) subdirs = [x for x in subobjects if os.path.isdir(os.path.join(sourcedir, x))] tagset = set() taglist = [] paths = dict() readerowners = dict() for subdir in subdirs: thisreader = 'none' for reader in readers: if reader in subdir.lower(): thisreader = reader break if thisreader == 'none': print(subdir + ' lacks a recognized reader.') sys.exit(0) wholepath = os.path.join(sourcedir, subdir, 'tags') if os.path.isdir(wholepath): tagfiles = [x for x in os.listdir(wholepath) if x.endswith('.csv')] for f in tagfiles: thispath = os.path.join(wholepath, f) okaytoadd = True with open(thispath, encoding = 'utf-8') as file: reader = csv.DictReader(file) for row in reader: if 'tag' not in row or len(row['tag']) < 3: okaytoadd = False break if okaytoadd: tagset.add(f) if f not in readerowners: readerowners[f] = [] paths[f] = [] if thisreader not in readerowners[f]: readerowners[f].append(thisreader) paths[f].append(thispath) print(len(tagset)) allfiles = tagset # This is a list of all the filenames (note, filenames not docids) # that we found in the /readers sourcedir. train1 = pd.read_csv('../bzipmeta.csv', dtype = 'object', index_col = 'docid') tidx = set(train1.index.values) for filename in allfiles: docid = filename.replace('.csv', '') if utils.dirty_pairtree(docid) not in tidx: print(docid) genrestocheck = ['fic', 'poe'] equivalences = {'non', 'bio', 'other'} volumesingenre = dict() for g in genrestocheck: volumesingenre[g] = [] alldocids = set() for filename, owners in readerowners.items(): path = paths[filename][0] if 'metadat' in filename: print(filename) continue docid = utils.dirty_pairtree(filename.replace('.csv', '')) alldocids.add(docid) expectedgenre = train1.loc[docid, 'sampledas'] with open(path, encoding = 'utf-8') as f: reader = csv.DictReader(f) genrectr = Counter() allct = 0 for row in reader: allct += 1 genrectr[row['tag'].lower()] += 1 genrectr['all'] = allct for g in genrestocheck: if g in genrectr and genrectr[g] > (genrectr['all'] / 2): volumesingenre[g].append(filename) jsondirs = ['/Volumes/TARDIS/work/hathifiles/counts/', '/Volumes/TARDIS/work/hathifiles/secondcounts/'] numlost = 0 numpages = dict() destination = '/Users/tunder/work/pagedata' for g in genrestocheck: for filename in volumesingenre[g]: docid = utils.dirty_pairtree(filename.replace('.csv', '')) jsonname = filename.replace('.csv', '.basic.json.bz2') found = False for directory in jsondirs: thispath = os.path.join(directory, jsonname) if os.path.isfile(thispath): vol = parser.PagelistFromJson(thispath, docid) print(vol.numpages) destinationpath = os.path.join(destination, jsonname) shutil.copyfile(thispath, destinationpath) found = True numpages[docid] = vol.numpages if not found: numlost += 1 outcols = list(train1.columns.values) outcols.append('groupid') outcols.append('pageid') outcols.append('class') toignore = {'/Volumes/TARDIS/work/readers/april20trondson/tags/inu.39000004302985.csv', '/Volumes/TARDIS/work/readers/march27trondson/tags/mdp.39015030775509.csv'} for g in genrestocheck: print(g) thisdf = [] for filename in volumesingenre[g]: if 'metadat' in filename: print(filename) continue docid = utils.dirty_pairtree(filename.replace('.csv', '')) binarized = [] for path in paths[filename]: if path in toignore: continue recordedgenres = [] with open(path, encoding = 'utf-8') as f: reader = csv.DictReader(f) for row in reader: recordedgenres.append(row['tag']) if len(recordedgenres) != numpages[docid]: print('Error in page count in doc ' + docid) print(paths[filename]) binarygenres = [1] * len(recordedgenres) # the following loop zeroes out the front # until it hits two successive pages of # the expected genre for idx, g1 in enumerate(recordedgenres): if g1 != g: binarygenres[idx] = 0 elif idx + 1 >= len(recordedgenres): break elif g1 == g and recordedgenres[idx + 1] != g: binarygenres[idx] = 1 elif g1 == g and recordedgenres[idx + 1] == g: break for idx, g1 in reversed(list(enumerate(recordedgenres))): if g1 != g: binarygenres[idx] = 0 elif idx - 1 < 0: break elif g1 == g and recordedgenres[idx - 1] != g: binarygenres[idx] = 1 elif g1 == g and recordedgenres[idx - 1] == g: break binarized.append(binarygenres) pagediscrepancy = 0 if len(binarized) > 1: for idx, bingenre in enumerate(binarized[0]): if bingenre != binarized[1][idx]: pagediscrepancy += 1 print('DISCREP: ' + str(pagediscrepancy)) print(docid) for idx, bgenre in enumerate(binarygenres): # we are arbitrarily using the last one # but there were in practice no discrepancies, so ... corerow = train1.loc[docid, : ] newrow = corerow.append(pd.Series(docid, index = ['groupid'])) pageid = docid + '||' + str(idx) newrow = newrow.append(pd.Series(pageid, index = ['pageid'])) newrow = newrow.append(pd.Series(bgenre, index = ['class'])) thisdf.append(newrow) outpath = g + '.csv' thisdf = pd.DataFrame(thisdf) thisdf.to_csv(outpath)
62e405f2d313ab45545521d60dc94e45b278395c
908eac70186d7d5e3066731ae73c4030e6d5c109
/Pertemuan6/DemoProgressBar/DemoQProgressBar.py
7d32916d34cf28efbc5843f80b0f892e154ffc5f
[]
no_license
rezafp01/GUI
1f5faf5b32299feff6e5efb8a915ddc1467e695f
e779a104bc3e19e6100790901c6682e69f042e28
refs/heads/master
2022-09-10T02:46:30.699978
2020-06-02T01:47:59
2020-06-02T01:47:59
268,673,894
0
0
null
null
null
null
UTF-8
Python
false
false
1,094
py
import sys from PyQt5.QtCore import * from PyQt5.QtWidgets import * class MainForm(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, 280, 150) self.setWindowTitle('Demo QProgressBar') self.show() self.pbar = QProgressBar(self) self.pbar.setGeometry(30, 40, 200, 25) self.btn = QPushButton('Start', self) self.btn.move(40, 80) self.btn.clicked.connect(self.doAction) layout = QVBoxLayout() layout.addWidget(self.pbar) layout.addWidget(self.btn) self.setLayout(layout) self.timer = QBasicTimer() self.step = 0 def timerEvent(self, e): if self.step >= 100: self.timer.stop() self.btn.setText('Selesai') self.btn.setText('Ulangi') self.step=0 return self.step = self.step + 1 self.pbar.setValue(self.step) def doAction(self, e): if self.timer.isActive(): self.timer.stop() self.btn.setText('Start') else: self.timer.start(100, self) self.btn.setText('Stop') if __name__ == '__main__': app = QApplication(sys.argv) ex = MainForm() sys.exit(app.exec_())
0fabc77cc1c6a7e77f260c487a3f99fda50b6326
c4ea92cd16ed772bf623f521e6c117d286d3169c
/simple1/simpledu/handlers/front.py
69f8e9047168930eda917236976aec8f618025f6
[]
no_license
temprani/temprani
875adf871e5851a26f496ca4ad3ee0e753379bdc
e9e7e39b14b38a33fff330dbd4dde668b5fa0066
refs/heads/master
2020-04-10T22:57:32.878312
2019-02-28T07:40:04
2019-02-28T07:40:04
161,337,449
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from flask import Blueprint, render_template from simpledu.models import Course front = Blueprint('front',__name__) @front.route('/') def index(): courses =Course.query.all() return render_template('index.html',courses=courses)
e2905bfdb23d2f11287df6794e7e7358e16c9393
0cb2db16abfafc325a865c0529f7d231165655b6
/hackerrank/algorithms/greedy/grid_challenge.py
0589e2b93ae0c48b981bef0ffa31a49b0e2419b6
[]
no_license
ExpLog/Challenger
a73e83ac920ea648d4962c12942d6d1089e28757
a53fe99f4bf9da0780cec21ae952b51374f8697f
refs/heads/master
2021-01-09T20:36:12.098535
2016-10-27T21:57:51
2016-10-27T21:57:51
60,499,064
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
def read_matrix(): n = int(input().strip()) matrix = [list(input().strip()) for i in range(n)] return matrix def col_sorted(matrix): n = len(matrix) for j in range(n): for i in range(1, n): if matrix[i-1][j] > matrix[i][j]: return False return True tests = int(input().strip()) for t in range(tests): matrix = read_matrix() for row in matrix: row.sort() print("YES" if col_sorted(matrix) else "NO")
19611ed31b1eaf47bb29a4de4ea1ae6637f0cd45
f1bef7256b9ab78c1f2e86e7fb89d6f18acf8a82
/HW8/Driver.py
f64d515f38db951701e858edac0a1bfaa099d920
[]
no_license
waiwaikim/Algorithms
7695a6b0f41fbee5e9584623efa1f67d15db68ca
4d0b3c8064a4ac6354a4dd1f09ab785e404f3528
refs/heads/master
2020-11-28T10:28:01.901717
2018-11-24T17:18:02
2018-11-24T17:18:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
739
py
import sys from Solution import Solution def main(): if (len(sys.argv) < 2): print("Please provide the input filepath as the argument") sys.exit() input_file = sys.argv[1] graph = [] node = 0 # Reading and parsing the file with open(input_file, 'r') as file: for line in file: adjList = [int(neighbor) for neighbor in line.split()] graph.append(adjList) node += 1 # Get the path path = Solution(graph).output_edges(); print('Your Solution:') print('=========================================================') print(path) print('=========================================================') if __name__ == '__main__': main()
33244fa1af1fee5573f2c32603ec290fa5f45de1
a61906e0296c8e7a71474390026f279a99eaec7d
/AnalysisResults/manage.py
015fd37b6cb09e820246fc33cea271e8fc87515e
[]
no_license
Kamesh1993/ecanalysis
dfdb820e8c1c6d35747956a94f86fa4e7a230be4
80a15af4bcd099012fff90de7706476bf0eb7a45
refs/heads/master
2020-05-16T16:03:19.378078
2019-04-24T07:28:22
2019-04-24T07:28:22
183,148,596
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
#!/usr/bin/env python """ Command-line utility for administrative tasks. """ import os import sys if __name__ == "__main__": os.environ.setdefault( "DJANGO_SETTINGS_MODULE", "AnalysisResults.settings" ) from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
cc6fc1662b4e1aea8588076e192231c0f0f06bfd
605847f7005661400a3753278e05be104f679b85
/8. List Comprenhension/simple list compreshension.py
24ad90cbd4e447cdeb9457078569d25bbcd92348
[]
no_license
kamalsingh-engg/udemy_courses_python
6923b48e3d1ee78cb0c9aa5dedc57d001dde28b1
96b29bb5475f459ac2f4d8180aef7f85efe8283d
refs/heads/master
2023-02-13T01:29:13.848719
2021-01-03T16:36:29
2021-01-03T16:36:29
296,244,994
0
0
null
null
null
null
UTF-8
Python
false
false
310
py
# this is the program for the simple list compreshansion # in which we can see the some modification and something with the for loop as here we can divided each element with # divided with 10 element temps = [12,34,56,67,78] new_temps = [] for temp in temps: new_temps.append(temp/10) print(new_temps)
[ "444kamalsingh@gmail,com" ]
444kamalsingh@gmail,com
9052d8eeee5292b0bcad8a3247ae22e23d75cb73
c8cf583664bcb5d3dec45f120e530108465d8fda
/modelexp/models/sas/_superballCSCoupled.py
071e94a0fcd9ace9c9b566168619dfa939d1fb3e
[ "MIT" ]
permissive
DomiDre/modelexp
c02324da765edd7afdb19137f792a0d08885805b
1ec25f71e739dac27716f9a8637fa6ab067499b9
refs/heads/master
2022-05-30T01:28:01.073861
2022-05-27T09:20:44
2022-05-27T09:20:44
130,115,633
0
0
MIT
2019-06-18T13:40:56
2018-04-18T20:02:52
Python
UTF-8
Python
false
false
2,968
py
from modelexp.models.sas import SAXSModel from fortSAS import superball_cs_coupled from numpy.polynomial.hermite import hermgauss from numpy.polynomial.legendre import leggauss class SuperballCSCoupled(SAXSModel): def initParameters(self): self.params.add('particleSize', 100) self.params.add('d', 20) self.params.add('pVal', 2.3) self.params.add('sldCore', 40e-6) self.params.add('sldShell', 8e-6) self.params.add('sldSolvent', 10e-6) self.params.add('sigParticleSize', 0.) self.params.add('i0', 1) self.params.add('bg', 1e-6) self.params.add('orderHermite', 20) self.params.add('orderLegendre', 20) self.addConstantParam('orderHermite') self.addConstantParam('orderLegendre') def initMagneticParameters(self): self.params.add('magSldCore', 5e-6, min=0) self.params.add('magSldShell', 0, min=0, vary=False) self.params.add('magSldSolvent', 0, vary=False) self.addConstantParam('magSldShell') self.addConstantParam('magSldSolvent') def calcModel(self): self.x_herm, self.w_herm = hermgauss(int(self.params['orderHermite'])) self.x_leg, self.w_leg = leggauss(int(self.params['orderLegendre'])) self.I = self.params['i0'] * superball_cs_coupled.formfactor( self.q, self.params['particleSize'], self.params['d'], self.params['pVal'], self.params['sldCore'], self.params['sldShell'], self.params['sldSolvent'], self.params['sigParticleSize'], self.x_herm, self.w_herm, self.x_leg, self.w_leg ) + self.params['bg'] self.r, self.sld = superball_cs_coupled.sld( self.params['particleSize'], self.params['d'], self.params['sldCore'], self.params['sldShell'], self.params['sldSolvent'] ) def calcMagneticModel(self): self.x_herm, self.w_herm = hermgauss(int(self.params['orderHermite'])) self.x_leg, self.w_leg = leggauss(int(self.params['orderLegendre'])) self.I = self.params['i0'] * superball_cs_coupled.magnetic_formfactor( self.q, self.params['particleSize'], self.params['d'], self.params['pVal'], self.params['sldCore'], self.params['sldShell'], self.params['sldSolvent'], self.params['sigParticleSize'], self.params['magSldCore'], self.params['magSldShell'], self.params['magSldSolvent'], self.params['xi'], self.params['sin2alpha'], self.params['polarization'], self.x_herm, self.w_herm, self.x_leg, self.w_leg ) + self.params['bg'] self.r, self.sld = superball_cs_coupled.sld( self.params['particleSize'], self.params['d'], self.params['sldCore'], self.params['sldShell'], self.params['sldSolvent'] ) self.rMag, self.sldMag = superball_cs_coupled.sld( self.params['particleSize'], self.params['d'], self.params['magSldCore'], self.params['magSldShell'], self.params['magSldSolvent'], )
ee25728090ed11d3d00c80b6eeb6145349a3b9ef
3e6589ecd807f61ff27afdca74d79f53d2f3af68
/tests/client/test_proxy.py
d9894a0f8dc75f64b3918d24083dddee5aa74f69
[ "BSD-2-Clause" ]
permissive
elacuesta/python-scrapinghub
27e0cbc90f188b586f8e3e79e537e7183b4d8f67
06fe95cb9cb71a41571bc05f58e5e5e8ea78b040
refs/heads/master
2023-06-23T05:25:34.121179
2022-03-10T13:54:51
2022-03-10T13:54:51
125,394,178
0
0
NOASSERTION
2022-03-10T11:13:25
2018-03-15T16:15:02
Python
UTF-8
Python
false
false
1,854
py
import mock import pytest from scrapinghub.client.proxy import _format_iter_filters from scrapinghub.client.proxy import _ItemsResourceProxy def test_format_iter_filters(): # work with empty params assert _format_iter_filters({}) == {} # doesn't affect other params params = {'a': 123, 'b': 456} assert _format_iter_filters(params) == params # pass filter as-is if not list params = {'filter': 'some-string'} assert _format_iter_filters(params) == params # work fine with empty filter params = {'filter': []} assert _format_iter_filters(params) == params # pass string filters as-is params = {'filter': ['str1', 'str2']} assert _format_iter_filters(params) == params # converts list-formatted filters params = {'filter': [['field', '>=', ['val']], 'filter2']} assert (_format_iter_filters(params) == {'filter': ['["field", ">=", ["val"]]', 'filter2']}) # works the same with tuple entries params = {'filter': [('field', '==', ['val'])]} assert (_format_iter_filters(params) == {'filter': ['["field", "==", ["val"]]']}) # exception if entry is not list/tuple or string with pytest.raises(ValueError): _format_iter_filters({'filter': ['test', 123]}) def test_item_resource_iter_no_params(): items_proxy = _ItemsResourceProxy(mock.Mock, mock.Mock(), 'mocked_key') items_proxy._origin = mock.Mock() items_proxy.iter(count=123) assert items_proxy._origin.list.call_args == mock.call(None, count=123) def test_item_resource_iter_with_params(): items_proxy = _ItemsResourceProxy(mock.Mock, mock.Mock(), 'mocked_key') items_proxy._origin = mock.Mock() items_proxy.iter(count=123, startts=12345) assert (items_proxy._origin.list.call_args == mock.call(None, count=123, startts=12345))
d9d55a72e98e29e4039f89f49bac5a69f4cc2204
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_5/ddnami001/question2.py
ceb2fdb7f0f9cf771a033796bc3dadfd254515cb
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
1,078
py
#Amitha Doodnath #DDNAMI001 #14/04/2014 #Programme to simulate a vending machine cost=eval(input("Enter the cost (in cents):\n")) moneyIn=0 while moneyIn < cost: deposit=eval(input("Deposit a coin or note (in cents):\n")) moneyIn+=deposit change=moneyIn-cost #print(change) dollar=0 c25=0 c10=0 c5=0 c1=0 #determines amount of change and in which denominations while change>0: print("Your change is:") if change/100 >=1: dollar=change//100 change=change-(dollar*100) if change/25 >=1: c25=change//25 change=change-(c25*25) if change/10 >=1: c10=change//10 change=change-(c10*10) if change/5 >=1: c5=change/5 change=change-(c5*5) if change/1 >=1: c1=change//1 change=change-(c1*1) #prints denomination of change if dollar: print(dollar,"x $1") if c25: print(c25,"x 25c") if c10: print(c10,"x 10c") if c5: print(c5,"x 5c") if c1: print(c1,"x 1c")
951aee3d2c72976bf9b533837c9957d5641c85bb
2ef5b78a1a750ee33d86f36bba176796163e3933
/demo26/scripts/generate_test_datas.py
f7b0284f2b57846a453c8b0b09421163ac2ab3c4
[]
no_license
LIZEJU/flask-demo
08f8419757dc4902239b89b3df9ea71ce918ad26
6ae201e3cc078b7a3fd18fb6d114b0b83f1b4b41
refs/heads/master
2020-09-27T05:58:09.742198
2020-01-30T11:04:41
2020-01-30T11:04:41
226,445,858
0
0
null
null
null
null
UTF-8
Python
false
false
1,938
py
# -*- coding:utf-8 -*- # Author: 李泽军 # Date: 2020/1/26 10:07 PM # Project: flask-demo import os import json from random import randint from faker import Faker from simpledu.modes import db , User , Course, Chapter # 创建faker 工厂对象 fake = Faker() # 生成一个教师用户 def iter_users(): yield User( username='jack lee', email='[email protected]', password='111111', job='研发工程师', ) # 从datas 读取客户才能数据,生成课程数据,将课程教师设置为jack lee def iter_courses(): author = User.query.filter_by(username='jack lee').first() with open(os.path.join(os.path.dirname(__file__),'..','datas','courses.json')) as f : courses = json.load(f) for course in courses: yield Course( name=course['name'], description=course['description'], image_url=course['image_url'], author=author ) def iter_chapters(): for course in Course.query: # 每个课程生成2-10 个章节 for i in range(randint(2,10)): yield Chapter( # 使用faker 生成一个句子作为章节名称 name=fake.sentence(), course=course, # 所有章节的视频设置成了楼+课程中的某个视频 video_url='https://labfile.oss.aliyuncs.com/courses/923/week2_mp4/2-1-1-mac.mp4', # 视频时长 video_duration='{}:{}'.format(randint(10,30),randint(1,59)) ) def run(): for user in iter_users(): print(user) db.session.add(user) for course in iter_courses(): db.session.add(course) for chapter in iter_chapters(): db.session.add(chapter) try: db.session.commit() except Exception as e: print(e) db.session.rollback() if __name__ == '__main__': run()
95b7c972313c50df40993634568ef6963b13af42
89148db614d4b982b9bc2cbcc0773bfa8b7ff786
/tests/addProductTest.py
521f04391cdec153f399832602fc0c3e63a14750
[]
no_license
vaish222/mfscrmTest
e9a8cd1cffd0cef71ed16c191b54044d553c7520
b019c1e8b4167aeef1d2855b5ab976bba906ea2b
refs/heads/master
2020-04-06T19:50:17.415576
2018-11-24T18:00:24
2018-11-24T18:00:24
157,751,408
0
0
null
null
null
null
UTF-8
Python
false
false
2,187
py
#Vaishali Goel import unittest import time from selenium import webdriver class addProductTest(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome() def test_add_product(self): user = "instructor" pwd = "instructor1a" driver = self.driver driver.maximize_window() driver.get("https://foodserviceapp.herokuapp.com/accounts/login/") time.sleep(1) # elem = driver.find_element_by_xpath("/html/body/section[1]/div/div/div/div/div/p[2]/a[1]").click() # time.sleep(3) elem = driver.find_element_by_id("id_username") elem.send_keys(user) elem = driver.find_element_by_id("id_password") elem.send_keys(pwd) # Click Login button elem = driver.find_element_by_xpath("/html/body/div/div/div/form/input[2]").click() assert "Logged in" time.sleep(1) # Click View details under Product elem = driver.find_element_by_xpath("/html/body/div/div/div/div[2]/div/div/div/div/div[3]/div/div/p[2]/a").click() time.sleep(1) # Click Add Product button elem = driver.find_element_by_xpath("/html/body/div/div/div/div[3]/div/a/span").click() time.sleep(1) elem = driver.find_element_by_id("id_cust_name") elem.send_keys("Barbara York") elem = driver.find_element_by_id("id_product") elem.send_keys("Box Lunch - Turkey on Wheat") elem = driver.find_element_by_id("id_p_description") elem.send_keys("Box Lunch - Turkey on Wheat bread. Apple or Orange and Chips Cookie") elem = driver.find_element_by_id("id_quantity") elem.send_keys("9") # elem = driver.find_element_by_id("id_pickup_time") # elem.send_keys("2018-11-09 17:31:26") # time.sleep(1) elem = driver.find_element_by_id("id_charge") elem.send_keys("60") # Click Save elem = driver.find_element_by_xpath("/html/body/div/div/div/form/button").click() time.sleep(1) assert "Added Product successfully" def tearDown(self): self.driver.close() if __name__ == "__main__": unittest.main()
4314ae635541aafeba9d42e4454dcc044959abd0
8d8df0b09ea14903fec5cf0de0def074ab16c9b8
/myapi/migrations/0001_initial.py
2aef52ee7cb3a26bb1aa948309932ee7013dd0ff
[]
no_license
bhupender009sharma/milk-distributor
f90d47f2914d0559b958df0819fc13ced69788db
b5883ac6c528de0795881515492b20f0586c6cdd
refs/heads/main
2023-07-09T20:49:22.529473
2021-08-12T10:47:00
2021-08-12T10:47:00
395,286,449
0
0
null
null
null
null
UTF-8
Python
false
false
2,796
py
# Generated by Django 3.2.6 on 2021-08-03 05:50 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Customers', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_id', models.CharField(blank=True, max_length=32)), ('name', models.CharField(blank=True, max_length=100)), ('mobile', models.PositiveBigIntegerField(blank=True)), ('address', models.CharField(blank=True, max_length=300)), ('pincode', models.PositiveIntegerField(blank=True)), ('type_of_customer', models.CharField(choices=[('individual', 'individual'), ('professional', 'professional')], default='individual', max_length=100)), ('is_active', models.BooleanField(default=True)), ], options={ 'verbose_name_plural': 'Customers', }, ), migrations.CreateModel( name='DistributionRequired', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type_of_milk', models.CharField(choices=[('cow', 'cow'), ('buffalo', 'buffalo')], default='cow', max_length=100)), ('price', models.FloatField(default=0)), ('unit', models.CharField(choices=[('litre', 'litre'), ('kilogram', 'kilogram')], default='litre', max_length=100)), ('time_of_delivery', models.CharField(choices=[('morning', 'morning'), ('evening', 'evening')], default='morning', max_length=100)), ('customers', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='myapi.customers')), ], options={ 'verbose_name_plural': 'Distribution_Required', }, ), migrations.CreateModel( name='DailyDistribution', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('time_period', models.CharField(choices=[('morning', 'morning'), ('evening', 'evening')], default='morning', max_length=100)), ('quantity', models.FloatField(default=0)), ('delivered_at', models.DateField(default=0)), ('customers', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='myapi.customers')), ], options={ 'verbose_name_plural': 'Daily_Distribution', }, ), ]
31a3234f46c1c3f2fe7b6251c7cf41483b7f6a65
8d3af1282c04bfdd4e8684474be6cd4a539ceb81
/Homeworks/HW-1.py
fc18ad8f9b50e2ecffa86c5ad657af34adef6bd6
[]
no_license
sriniavireddy/UCSD_BigData_2016
5c7fbbaabf6f3ffd9880eefeb3b2099dc0731d93
fcd28181f49ceb8c08fee76ee95a1053c5bcbddf
refs/heads/master
2021-01-18T01:10:55.146986
2016-05-15T05:17:11
2016-05-15T05:17:11
56,786,119
0
0
null
2016-05-15T05:17:12
2016-04-21T15:40:53
Jupyter Notebook
UTF-8
Python
false
false
1,603
py
#Name: Srinivas Avireddy # Email: [email protected] # PID: A53101356 from pyspark import SparkContext sc = SparkContext() import re import string textRDD = sc.newAPIHadoopFile('/data/Moby-Dick.txt', 'org.apache.hadoop.mapreduce.lib.input.TextInputFormat', 'org.apache.hadoop.io.LongWritable', 'org.apache.hadoop.io.Text', conf={'textinputformat.record.delimiter': "\r\n\r\n"}) \ .map(lambda x: x[1]) sentences=textRDD.flatMap(lambda x: x.split(". ")) def printOutput(n,freq_ngramRDD): top=freq_ngramRDD.take(5) print '\n============ %d most frequent %d-grams'%(5,n) print '\nindex\tcount\tngram' for i in range(5): print '%d.\t%d: \t"%s"'%(i+1,top[i][0]," ".join(top[i][1])) def removePunctuation(line): regex = re.compile('[%s]' % re.escape(string.punctuation)) out = regex.sub(' ', line) return out def ngram(line,n): line = removePunctuation(line.lower()) array = line.split() ngrams = [] for i in xrange(0,len(array)-n+1): ngrams.append(tuple(array[i:i+n])) return ngrams for n in range(1,6): # Put your logic for generating the sorted n-gram RDD here and store it in freq_ngramRDD variable RDD = sentences.flatMap(lambda sentence: ngram(sentence,n))\ .map(lambda ngram: (ngram,1))\ .reduceByKey(lambda x,y:x+y)\ .map(lambda (c,v):(v,c))\ .sortByKey(False) #print RDD.take(5) printOutput(n,RDD)
9e39ab3cc176f1ba7c324cf05e3fffd74413b407
4e7617ea978782741c85ef4beb20e21eb39fbec1
/Test4.py
0418729f17d3c14348c1b084e7c4b0912b3d9bdd
[]
no_license
Pattaraponggg/Programming
2c4f259b1d4aed25346c939ecdc954e7040ee789
0ed56faac07f65bb25f4c0b59ab3e659722895e6
refs/heads/master
2020-06-12T19:39:02.905181
2019-10-18T16:19:24
2019-10-18T16:19:24
194,404,521
0
0
null
null
null
null
UTF-8
Python
false
false
569
py
#!/usr/bin/env python # coding: utf-8 # In[4]: #4.จงเขียนโปรแกรมวนซ้ำโดยบังคับใช้คำสั่ง for ให้แสดงผลคูณแม่ ๒ for k in range(1): print(2,"*",1,"=",2) print(2,"*",2,"=",4) print(2,"*",3,"=",6) print(2,"*",4,"=",8) print(2,"*",5,"=",10) print(2,"*",6,"=",12) print(2,"*",7,"=",14) print(2,"*",8,"=",16) print(2,"*",9,"=",18) print(2,"*",10,"=",20) print(2,"*",11,"=",22) print(2,"*",12,"=",24) # In[ ]:
05d47706d13e2620da6a5a875214046f5759297f
866dee1b3d01b863c31332ec81330d1b5ef5c6fa
/openquake.hazardlib/openquake/hazardlib/gsim/drouet_2015_brazil.py
0167472402875787bd260b3108f6df2766043010
[ "MIT", "AGPL-3.0-only" ]
permissive
rainzhop/ConvNetQuake
3e2e1a040952bd5d6346905b83f39889c6a2e51a
a3e6de3f7992eac72f1b9883fec36b8c7fdefd48
refs/heads/master
2020-08-07T16:41:03.778293
2019-11-01T01:49:00
2019-11-01T01:49:00
213,527,701
0
0
MIT
2019-10-08T02:08:00
2019-10-08T02:08:00
null
UTF-8
Python
false
false
10,453
py
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2015-2016 GEM Foundation # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. """ Module exports :class:`DrouetBrazil2015` :class:`DrouetBrazil2015_with_depth` """ from __future__ import division import numpy as np from openquake.hazardlib.gsim.base import CoeffsTable, GMPE from openquake.hazardlib import const from openquake.hazardlib.imt import PGA, PGV, SA from scipy.constants import g class DrouetBrazil2015(GMPE): """ Implements GMPE developed by S. Drouet unpublished for Brazil based on the method described in Douet & Cotton (2015) BSSA doi: 10.1785/0120140240. """ #: Supported tectonic region type is stable continental crust given that #: the equations have been derived for Eastern North America. DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.STABLE_CONTINENTAL #: Supported intensity measure types are spectral acceleration, #: and peak ground acceleration, see table 6, page 1022 (PGA is assumed #: to be equal to SA at 0.01 s) DEFINED_FOR_INTENSITY_MEASURE_TYPES = set([ PGA, PGV, SA ]) #: Supported intensity measure component is the geometric mean of #two : horizontal components #:attr:`~openquake.hazardlib.const.IMC.AVERAGE_HORIZONTAL`, DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.AVERAGE_HORIZONTAL #: Supported standard deviation type is only total, see equation 35, page #: 1021 DEFINED_FOR_STANDARD_DEVIATION_TYPES = set([ const.StdDev.TOTAL, const.StdDev.INTER_EVENT, const.StdDev.INTRA_EVENT ]) #: No site parameters are needed REQUIRES_SITES_PARAMETERS = set() #: Required rupture parameter is only magnitude, see equation 30 page #: 1021. REQUIRES_RUPTURE_PARAMETERS = set(('mag', )) #: Required distance measure is closest distance to rupture, see equation #: 30 page 1021. REQUIRES_DISTANCES = set(('rjb', )) def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ #assert all(stddev_type in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES # for stddev_type in stddev_types) C = self.COEFFS[imt] mean = self._compute_mean(C, rup, dists.rjb) if isinstance(imt, (SA, PGA)): # Convert from m/s**2 to g mean -= np.log(g) elif isinstance(imt, PGV): # Convert from m/s to cm/s mean += np.log(100.0) stddevs = self._get_stddevs(C, stddev_types, rup.mag, dists.rjb.shape) return mean, stddevs def _compute_mean(self, C, rup, rjb): """ Compute mean value according to equation 30, page 1021. """ mean = (C['c1'] + self._compute_magnitude_term(C, rup) + self._compute_distance_term(C, rup, rjb)) return mean def _get_stddevs(self, C, stddev_types, mag, num_sites): """ Return total standard deviation as for equation 35, page 1021. """ stddevs = [] for stddev_type in stddev_types: assert stddev_type in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES if stddev_type == const.StdDev.TOTAL: sigma_t = np.sqrt(C['sigma'] ** 2. + C['tau'] ** 2.) stddevs.append(sigma_t + np.zeros(num_sites)) elif stddev_type == const.StdDev.INTRA_EVENT: stddevs.append(C['sigma'] + np.zeros(num_sites)) elif stddev_type == const.StdDev.INTER_EVENT: stddevs.append(C['tau'] + np.zeros(num_sites)) return stddevs def _compute_magnitude_term(self, C, rup): """ This computes the term f1 equation 8 Drouet & Cotton (2015) """ return C['c2'] * (rup.mag - 8.0) + C['c3'] * (rup.mag - 8.0) ** 2 def _compute_distance_term(self, C, rup, rjb): """ This computes the term f2 equation 8 Drouet & Cotton (2015) """ return (C['c4'] + C['c5'] * rup.mag) * np.log( np.sqrt(rjb ** 2. + C['c6'] ** 2.)) + C['c7'] * rjb #: Coefficient tables are constructed from the electronic suplements of #: the original paper. COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c1 c2 c3 c4 c5 c6 c7 sigma tau pgv 0.457169 0.230048 -0.140795 -1.785544 0.162408 7.201555 -0.002832 0.526166 0.393025 pga 2.575109 -0.243140 -0.155164 -1.807995 0.156084 7.629410 -0.003996 0.625075 0.481226 0.010 2.586201 -0.242271 -0.154703 -1.808695 0.156141 7.623170 -0.004020 0.630187 0.481707 0.020 2.717172 -0.261739 -0.152580 -1.859646 0.160136 7.773640 -0.004048 0.688591 0.486003 0.030 2.930319 -0.236637 -0.147729 -1.831982 0.155727 7.918015 -0.004558 0.751663 0.490319 0.040 3.156209 -0.266436 -0.143032 -1.915769 0.162181 8.224381 -0.004350 0.779379 0.498289 0.050 3.268731 -0.189794 -0.140262 -1.753521 0.144779 7.767181 -0.004910 0.780218 0.497182 0.075 3.352582 -0.164010 -0.140254 -1.691894 0.140095 7.428414 -0.004756 0.706350 0.493511 0.100 3.455122 -0.203575 -0.148680 -1.708867 0.139700 7.707583 -0.004261 0.652456 0.490010 0.150 3.456514 -0.169395 -0.160434 -1.607720 0.131021 7.274064 -0.004025 0.587130 0.480912 0.200 3.480893 -0.155262 -0.168476 -1.646459 0.132556 7.424609 -0.002871 0.556933 0.462619 0.250 3.358985 -0.255601 -0.194574 -1.669187 0.134462 7.753731 -0.002732 0.533650 0.458696 0.300 3.115954 -0.237559 -0.215762 -1.451276 0.114182 7.212529 -0.003761 0.526336 0.452876 0.400 2.806835 -0.340296 -0.250121 -1.418762 0.114054 6.837724 -0.004081 0.519411 0.440790 0.500 2.837393 -0.355473 -0.271003 -1.453916 0.111753 7.298391 -0.003037 0.512892 0.427910 0.750 2.383076 -0.374649 -0.298428 -1.472297 0.117984 7.051676 -0.002899 0.507442 0.405868 1.000 2.070536 -0.263869 -0.303220 -1.410898 0.117144 6.815268 -0.003307 0.511352 0.384417 1.250 1.944386 -0.196142 -0.309115 -1.408815 0.116519 6.904435 -0.003017 0.511909 0.376152 1.500 1.973072 -0.160616 -0.313180 -1.493457 0.122469 7.427893 -0.002316 0.511871 0.370833 1.750 1.747518 -0.129961 -0.320672 -1.400692 0.116855 7.143261 -0.003402 0.508641 0.361738 2.000 1.667278 -0.083863 -0.319818 -1.405853 0.114769 7.128404 -0.003174 0.505025 0.353357 3.000 1.292331 0.312316 -0.263539 -1.464213 0.130085 6.416692 -0.002621 0.512370 0.344082 """) class DrouetBrazil2015withDepth(DrouetBrazil2015): """ Implements GMPE developed by S. Drouet unpublished for Brazil based on the method described in Douet & Cotton (2015) BSSA doi: 10.1785/0120140240. Model with magnitude-dependent depth distribution and depth-dependent stress distribution """ #: Required rupture parameter is only magnitude, see equation 30 page #: 1021. REQUIRES_RUPTURE_PARAMETERS = set(('mag', 'hypo_depth')) def _compute_distance_term(self, C, rup, rjb): """ This computes the term f2 equation 8 Drouet & Cotton (2015) """ return (C['c4'] + C['c5'] * rup.mag) * np.log( np.sqrt(rjb ** 2. + rup.hypo_depth ** 2.)) + C['c6'] * rjb #: Coefficient tables are constructed from the electronic supplements of #: the original paper. COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c1 c2 c3 c4 c5 c6 sigma tau pgv 1.296890 0.307642 -0.155927 -1.727495 0.128331 -0.002079 0.507600 0.474106 pga 3.393123 -0.139286 -0.169796 -1.695729 0.116686 -0.003491 0.609317 0.573384 0.010000 3.405471 -0.138584 -0.169352 -1.696947 0.116766 -0.003513 0.614578 0.574138 0.020000 3.512058 -0.152120 -0.167461 -1.725659 0.119114 -0.003688 0.674715 0.580870 0.030000 3.695045 -0.123957 -0.162204 -1.688566 0.114624 -0.004259 0.738161 0.585416 0.040000 3.856703 -0.140850 -0.157819 -1.721169 0.117496 -0.004400 0.768733 0.597967 0.050000 4.085005 -0.080044 -0.155124 -1.628430 0.103907 -0.004434 0.766573 0.593676 0.075000 4.242841 -0.056117 -0.154044 -1.601802 0.100823 -0.004025 0.691819 0.587975 0.100000 4.278594 -0.087360 -0.162257 -1.582776 0.098667 -0.003803 0.638952 0.582946 0.150000 4.358265 -0.063108 -0.173452 -1.530628 0.092988 -0.003244 0.572059 0.565676 0.200000 4.385790 -0.041305 -0.181717 -1.553364 0.092537 -0.002134 0.539692 0.543338 0.250000 4.162408 -0.135372 -0.207677 -1.531599 0.092853 -0.002369 0.520273 0.534858 0.300000 3.991746 -0.134064 -0.227479 -1.386035 0.078380 -0.002944 0.511192 0.519484 0.400000 3.746791 -0.248433 -0.261965 -1.396553 0.080903 -0.002965 0.502079 0.499394 0.500000 3.728968 -0.246365 -0.282618 -1.384885 0.074963 -0.002185 0.495203 0.483281 0.750000 3.298203 -0.278081 -0.310518 -1.431361 0.083594 -0.001906 0.488881 0.452970 1.000000 2.966504 -0.185734 -0.315139 -1.405592 0.087333 -0.002169 0.492014 0.426399 1.250000 2.810007 -0.117505 -0.320881 -1.394705 0.086834 -0.001981 0.493565 0.416078 1.500000 2.760153 -0.068911 -0.325231 -1.426076 0.089344 -0.001624 0.494063 0.410019 1.750000 2.538491 -0.052014 -0.332247 -1.367936 0.087458 -0.002541 0.491032 0.398572 2.000000 2.485648 -0.001655 -0.331560 -1.370772 0.084286 -0.002297 0.487175 0.392599 3.000000 2.205128 0.365128 -0.276508 -1.504904 0.104957 -0.001304 0.492143 0.384311 """)
ff0707ebc435e47ab9158e5c3e2aa41285ec26d8
ead629ba15f3e3c314edf239cb6aeed45ddb2f61
/lianjia/lianjia/spiders/lianjiaSz.py
df3dc74cab372e77720f2fb27f4ce48debf451eb
[]
no_license
cqu1012/WebSpider
2b0bfef52f92886fa2e6b018d7e0eb03178af015
5e83542241ead79864ca6402849e2d3dc25d7c0a
refs/heads/master
2021-10-22T08:11:15.101032
2019-03-09T07:05:43
2019-03-09T07:05:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,601
py
# -*- coding: utf-8 -*- import scrapy import re #使用分布式写法 from lianjia.items import LianjiaItem from scrapy_redis.spiders import RedisSpider #lpush lianjia:start_urls https://sz.lianjia.com/zufang/pg1rt200600000002/ #set lianjia:start_urls https://sz.lianjia.com/zufang/pg1rt200600000002/ class LianjiaszSpider(RedisSpider): name = 'lianjiaSz' allowed_domains = ['sz.lianjia.com'] redis_key = 'lianjia:start_urls' index = 2 # start_urls = ['https://sz.lianjia.com/zufang/pg{}rt200600000002/'.format(i) for i in range(1)] def parse(self, response): base_url = 'https://sz.lianjia.com/zufang/pg{}rt200600000002/' url_list = response.xpath("//div[@class='content__list--item--main']/p[1]/a/@href").extract() for url in url_list: #过滤公寓类型房屋 if re.match(r'/zufang/',url): yield scrapy.Request(response.urljoin(url),callback=self.getInfo) yield scrapy.Request(base_url.format(self.index),callback=self.parse) self.index += 2 def getInfo(self,response): #租房标题 title = response.xpath("//p[@class='content__title']/text()").extract_first() #租房价格 price = response.xpath("string(//p[@class='content__aside--title'])").extract_first() #地址 location = response.xpath("string(//div[@class= 'content__article__info4']/ul/li[1])").extract_first().strip().replace('\n ','') #租房信息 base_Info = response.xpath("//p[@class='content__article__table']") rent_way = base_Info.xpath("./span[1]/text()").extract_first() rent_type = base_Info.xpath("./span[2]/text()").extract_first() rent_area = base_Info.xpath("./span[3]/text()").extract_first() rent_dire = base_Info.xpath("./span[4]/text()").extract_first() #楼层与电梯 floor = response.xpath("//div[@class='content__article__info']/ul/li[8]/text()").extract_first() elevator = response.xpath("//div[@class='content__article__info']/ul/li[last()-8]/text()").extract_first() if elevator == None: elevator='暂无数据' if floor == None: floor ='暂无数据' items = LianjiaItem() items['title'] = title items['price'] = price items['location'] = location items['rent_way'] = rent_way items['rent_type'] = rent_type items['rent_area'] = rent_area items['rent_dire'] = rent_dire items['floor'] = floor items['elevator'] = elevator yield items
3168b0f779902de00ad73ac085d18405f5b646c6
dbc755cca2f10aa669c2b770e5e38611575031c1
/example/updated/behaviors.py
50669596a636ac037d840ce6efddb50671f0078a
[]
no_license
zenweasel/django-model-behaviors-example
88345ec806ace9e625e84d8ae3e1c6e359d9702c
d0038a9f7947c2591fecfa98d0494547eaec937d
refs/heads/master
2020-12-31T03:41:03.699193
2013-06-01T06:42:42
2013-06-01T06:42:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,728
py
from django.db import models from django.contrib.auth.models import User from model_utils.managers import PassThroughManager from .querysets import PublishableQuerySet, AuthorableQuerySet class Permalinkable(models.Model): slug = models.SlugField() class Meta: abstract = True def get_url_kwargs(self, **kwargs): kwargs.update(getattr(self, 'url_kwargs', {})) return kwargs @models.permalink def get_absolute_url(self): url_kwargs = self.get_url_kwargs(slug=self.slug) return (self.url_name, (), url_kwargs) def pre_save(self, instance, add): from django.utils.text import slugify if not instance.slug: instance.slug = slugify(self.slug_source) class Publishable(models.Model): publish_date = models.DateTimeField(null=True) class Meta: abstract = True objects = PassThroughManager.for_queryset_class(PublishableQuerySet)() def publish_on(self, date=None): from django.utils import timezone if not date: date = timezone.now() self.publish_date = date self.save() @property def is_published(self): from django.utils import timezone return self.publish_date and self.publish_date < timezone.now() class Authorable(models.Model): author = models.ForeignKey(User, null=True) class Meta: abstract = True objects = PassThroughManager.for_queryset_class(AuthorableQuerySet)() class Timestampable(models.Model): create_date = models.DateTimeField(auto_now_add=True) modified_date = models.DateTimeField(auto_now=True) class Meta: abstract = True
d7e2a9c33bc7b4f1705fbbd5194992afd68f6127
236f1e8fb21ede4d72b5e397786945582eab915a
/timelogger/urls.py
6df4c27b16efa06ec0a72c27d20fedb541169cbf
[]
no_license
shotijohan/time-logging
24ab044ed780c5e34b61a090db902f9ed323a132
d7261064a0a26cfb81e8ff5e044980fac6f70c13
refs/heads/master
2020-07-14T00:41:27.830399
2017-06-27T05:14:19
2017-06-27T05:14:19
94,295,322
0
0
null
null
null
null
UTF-8
Python
false
false
817
py
from django.conf.urls import url from .views import Login, TimeInTimeOutHandler from .views import Register from .views import Logout from .views import API urlpatterns = [ url(r'^$', Login.as_view(), name='index'), url(r'^register', Register.as_view(), name='register'), url(r'^register-member', Register.as_view(), name='register-member'), url(r'^login', Login.as_view(), name='login'), url(r'^logout', Logout.as_view(), name='login'), url(r'^timer-start-end', TimeInTimeOutHandler.as_view(), name="timer-start-end"), url(r'^api/v1/timeintimeout', API.as_view(), name="API") # url(r'^$', # ListView.as_view(queryset=User_accounts.objects.all().order_by("-created_date")[:25], # template_name="timelogger/home.html" # )), ]
edd3d69bf4477b28424f4f09443d1a6f4b00fafe
05e6c528cb252245b4e41bb39d010b427d002746
/tests/test_topology.py
88d9e9116b40cef765b9edee55abdedc04d54f3a
[]
no_license
gdaneels/6tisch-new-ReSF
b529cb5f2b5efbf8e9c851c449fc01770a290a36
e669bddf2c932326b82b372b6eb7a072a84fb938
refs/heads/main
2022-12-29T21:05:50.053671
2020-10-18T16:49:47
2020-10-18T16:49:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
583
py
""" \brief Tests for TopologyCreator Factory \author Yasuyuki Tanaka <[email protected]> """ import SimEngine.Topology as Topology def test_create_random_topology_1(settings): settings() assert isinstance(Topology.Topology([]), Topology.RandomTopology) def test_create_random_topology_2(settings): settings(**{'topology': 'random'}) assert isinstance(Topology.Topology([]), Topology.RandomTopology) def test_create_linear_topology(settings): settings(**{'topology': 'linear'}) assert isinstance(Topology.Topology([]), Topology.LinearTopology)
7b69ac95fe4eb4d1b71290b2a73c3f15e71e885a
d571d407cfda435fcab8b7ccadb1be812c7047c7
/examples/tensorboard/nested.py
b7c6df93916a72fa3dc3b5903a942a8fbc2d13cd
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
guildai/guildai
2d8661a2a6bf0d1ced6334095c8bf5a8e391d8af
149055da49f57eaf4aec418f2e339c8905c1f02f
refs/heads/main
2023-08-25T10:09:58.560059
2023-08-12T20:19:05
2023-08-12T20:19:05
105,057,392
833
86
Apache-2.0
2023-08-07T19:34:27
2017-09-27T18:57:50
Python
UTF-8
Python
false
false
350
py
import tensorboardX with tensorboardX.SummaryWriter("foo") as w: w.add_scalar("a", 1.0, 1) w.add_scalar("a", 2.0, 2) with tensorboardX.SummaryWriter("foo/bar") as w: w.add_scalar("a", 3.0, 3) w.add_scalar("a", 4.0, 4) with tensorboardX.SummaryWriter("foo/bar/baz") as w: w.add_scalar("a", 5.0, 5) w.add_scalar("a", 6.0, 6)
30f9220b765956c3736dcde82c9cc8d27e983f04
b50f0d3b4a7cac4ad33c23654c330655ed740930
/pythonx/python_function_expander/ultisnipsaide/px/cursor/__init__.py
512d278a8b0605a8002271f9b927dd9893883015
[ "MIT" ]
permissive
ColinKennedy/vim-python-function-expander
869c8025a948ee48ca8aac758001c4c2b8765218
7fbaac0bdb6316177c85284052694175a2819638
refs/heads/master
2020-04-04T13:04:28.664537
2019-10-07T00:15:57
2019-10-07T00:15:57
155,947,699
22
0
MIT
2018-11-07T18:36:40
2018-11-03T03:50:14
Python
UTF-8
Python
false
false
715
py
# coding=utf8 import re import vim def get(): return from_vim(vim.current.window.cursor) def set(cursor): vim.current.window.cursor = to_vim(cursor) def get_adjusted(): (line, column) = get() if vim.eval('mode()') != 'i': return (line, column + 1) else: return (line, column) def to_vim(cursor): return (cursor[0] + 1, cursor[1]) def to_vim_lang(cursor): return (cursor[0] + 1, cursor[1] + 1) def from_vim(cursor): return (cursor[0] - 1, cursor[1]) def is_between(line, cursor, before, after): if not re.search(before, line[:cursor[1]+1]): return False if not re.search(after, line[cursor[1]:]): return False return True
083a5b0c421eb59429cbdf13f0339347fa57c6c7
36d83f9cdc9cea663e9a6bf5478812c49d6d4971
/new/forms.py
912faae3195c3da2b41dec0fd3f6655ccd188820
[]
no_license
Anas-Darwish-SB/django-the-day-news
9eec63c10a341f8f6dc182aa91a8658a14954b28
bdb14b704bf0b69f8ff85c643793e6abd9cf88bd
refs/heads/main
2023-03-24T03:22:24.005753
2021-03-16T05:01:16
2021-03-16T05:01:16
348,074,008
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
from django import forms from .models import News, Category class NewsForm(forms.ModelForm): class Meta: model = News fields = '__all__' class CategoryForm(forms.ModelForm): class Meta: model = Category fields = '__all__'
47d3e3490fe59455b27844024bf9970b5fa53982
ae23f3cbe903d7e39c1747c7d2a28cbe5ed8d2bb
/1/Exercise1.py
1e6dfd5b50447974c592d2802faac57bfc06138e
[]
no_license
steinarc/Sanntidsprogrammering-Exercises
e3b4c2289761d01e971082a1d040ca4484e76c5d
27f8b2e36aae4bd39e38ed1c914bd3d5426b0dca
refs/heads/master
2021-01-11T11:18:11.767625
2017-03-17T10:15:45
2017-03-17T10:15:45
78,627,426
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
import threading import time i = 0 def someThreadFunction1(): global i for x in range (0,1000000): i = i + 1 def someThreadFunction2(): global i for x in range (0, 1000000): i = i - 1 def main(): global i someThread1 = threading.Thread(target = someThreadFunction1) someThread2 = threading.Thread(target = someThreadFunction2) someThread1.start() someThread2.start() someThread1.join() someThread2.join() print(i) main()
0f01a2a77659430427724586a974a95a50818b14
cd336e0b7fbd83bda52c5452cab25a187b4e24a2
/preview.py
c2b5fbba763eb2a1e43f88273e9cff154661d0ce
[]
no_license
atorman/piCamera
828a2608f75884e4c84cb4713917044d768f7de4
96d57518e78d86722f0063d3da122ef265bcca52
refs/heads/master
2023-03-16T06:38:56.988694
2021-03-05T20:34:54
2021-03-05T20:34:54
344,908,035
1
0
null
null
null
null
UTF-8
Python
false
false
858
py
# Test script for using a rasberry pi camera # more here: https://projects.raspberrypi.org/en/projects/getting-started-with-picamera from picamera import PiCamera, Color from os import system import datetime from time import sleep import numpy as np effect = np.array(['solarize', 'emboss', 'colorswap', 'cartoon', 'oilpaint']) brightness = np.array([50, 60, 70, 80]) contrast = np.array([30, 40, 50]) iso = np.array([100, 200, 400, 800]) camera = PiCamera() camera.start_preview() camera.rotation = 180 for x in iso: camera.iso = x camera.annotate_text = "ISO: %s" %x sleep(10) #for i in effect: #camera.image_effect = i #camera.annotate_text = "Effect: %s" % i #sleep(5) #for j in brightness: #camera.brightness = j #camera.annotate_text = "Brightness: %s" % j #sleep(2) camera.stop_preview()
27cdb7a3d462e40e7ee9c8f59c8423c6d90c0a1f
a19a5306c29267994f42fc5f3ec5b10c35a8dedf
/lnumber.py
7b9f61a53cb0de73df37f6c007a8c6fcabe34a09
[]
no_license
csaranbalaji/Guvi
ec604b093106c007268cad70b26d59deb9d7376e
559e389d770f33a53e61c4e0ff1aa4f0d61d852b
refs/heads/master
2021-06-23T07:10:18.253846
2017-08-29T13:31:12
2017-08-29T13:31:12
95,778,759
0
0
null
null
null
null
UTF-8
Python
false
false
67
py
s=raw_input().strip().split() s.sort() s.reverse() print ''.join(s)
6cb2fd0bc1f295cdc7cc1b00f7b2bfbe9afb356c
d8deb202df3cd4222c642c5c4412652461c4ebb5
/backend/back_office_15184/settings.py
5575a47e87ff63b30bc68d351602f6664a202efc
[]
no_license
crowdbotics-apps/back-office-15184
1770eb660bd198768a2690bbb58145a70f5f899a
7dca6056d171e402a7c9f91488a2b815f5077d54
refs/heads/master
2023-01-29T13:29:11.195837
2020-03-29T16:00:52
2020-03-29T16:00:52
251,072,394
0
0
null
2023-01-24T01:48:34
2020-03-29T16:00:01
JavaScript
UTF-8
Python
false
false
5,803
py
""" Django settings for back_office_15184 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', # start fcm_django push notifications 'fcm_django', # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'back_office_15184.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'back_office_15184.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "mandatory" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # start fcm_django push notifications FCM_DJANGO_SETTINGS = { "FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "") } # end fcm_django push notifications if DEBUG: # output email to console instead of sending EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
ccbe2ea2e2f57bac89f8d8c74ec0a7372656992c
d2a70f4228fe42f89d54bb2091741c934d4d5f5a
/entregableDjango/gestionNoticias/admin.py
5ba6fba33fb59e734717b3c760218c95a4127698
[]
no_license
morolok/AII
9aa12e27b1eb9b62aaec8e9f4f56df8a489aa380
2bbdc282cf6f6fbc00bbe16470dceb891c132d2a
refs/heads/master
2023-08-15T08:35:23.407354
2021-10-05T19:17:34
2021-10-05T19:17:34
242,849,953
1
0
null
null
null
null
UTF-8
Python
false
false
205
py
from django.contrib import admin from gestionNoticias.models import Autor, Fuente, Noticia # Register your models here. admin.site.register(Autor) admin.site.register(Fuente) admin.site.register(Noticia)
e8c64dbd9200cd63a46de802d536e53edc756c06
22c5fc7dd52149ebd4338a487ae9ab0db0e43f01
/monai/transforms/utility/dictionary.py
fb3d88a0ba180a732df1b25d2ac37103a9703a2d
[ "Apache-2.0" ]
permissive
precision-medicine-um/MONAI-Deep_Learning
3d3f547dd9815152561a6853f8d4727b0e5ca4c4
d94c4d3a2c465717ba3fae01b7acea7fada9885b
refs/heads/master
2022-12-28T07:04:07.768415
2020-10-17T13:11:56
2020-10-17T13:11:56
305,346,962
3
0
Apache-2.0
2022-12-27T15:44:13
2020-10-19T10:30:07
Python
UTF-8
Python
false
false
21,673
py
# Copyright 2020 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A collection of dictionary-based wrappers around the "vanilla" transforms for utility functions defined in :py:class:`monai.transforms.utility.array`. Class names are ended with 'd' to denote dictionary-based transforms. """ import copy import logging from typing import Callable, Dict, Hashable, Mapping, Optional, Sequence, Union import numpy as np import torch from monai.config import KeysCollection from monai.transforms.compose import MapTransform from monai.transforms.utility.array import ( AddChannel, AsChannelFirst, AsChannelLast, CastToType, DataStats, FgBgToIndices, Identity, LabelToMask, Lambda, RepeatChannel, SimulateDelay, SqueezeDim, ToNumpy, ToTensor, ) from monai.utils import ensure_tuple, ensure_tuple_rep class Identityd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.Identity`. """ def __init__(self, keys: KeysCollection) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` """ super().__init__(keys) self.identity = Identity() def __call__(self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]) -> Dict[Hashable, np.ndarray]: d = dict(data) for key in self.keys: d[key] = self.identity(d[key]) return d class AsChannelFirstd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelFirst`. """ def __init__(self, keys: KeysCollection, channel_dim: int = -1) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` channel_dim: which dimension of input image is the channel, default is the last dimension. """ super().__init__(keys) self.converter = AsChannelFirst(channel_dim=channel_dim) def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]: d = dict(data) for key in self.keys: d[key] = self.converter(d[key]) return d class AsChannelLastd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AsChannelLast`. """ def __init__(self, keys: KeysCollection, channel_dim: int = 0) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` channel_dim: which dimension of input image is the channel, default is the first dimension. """ super().__init__(keys) self.converter = AsChannelLast(channel_dim=channel_dim) def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]: d = dict(data) for key in self.keys: d[key] = self.converter(d[key]) return d class AddChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.AddChannel`. """ def __init__(self, keys: KeysCollection) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` """ super().__init__(keys) self.adder = AddChannel() def __call__( self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]] ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]: d = dict(data) for key in self.keys: d[key] = self.adder(d[key]) return d class RepeatChanneld(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.RepeatChannel`. """ def __init__(self, keys: KeysCollection, repeats: int) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` repeats: the number of repetitions for each element. """ super().__init__(keys) self.repeater = RepeatChannel(repeats) def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]: d = dict(data) for key in self.keys: d[key] = self.repeater(d[key]) return d class CastToTyped(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.CastToType`. """ def __init__( self, keys: KeysCollection, dtype: Union[Sequence[Union[np.dtype, torch.dtype]], np.dtype, torch.dtype] = np.float32, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dtype: convert image to this data type, default is `np.float32`. it also can be a sequence of np.dtype or torch.dtype, each element corresponds to a key in ``keys``. """ MapTransform.__init__(self, keys) self.dtype = ensure_tuple_rep(dtype, len(self.keys)) self.converter = CastToType() def __call__( self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]] ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]: d = dict(data) for idx, key in enumerate(self.keys): d[key] = self.converter(d[key], dtype=self.dtype[idx]) return d class ToTensord(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToTensor`. """ def __init__(self, keys: KeysCollection) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` """ super().__init__(keys) self.converter = ToTensor() def __call__(self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]) -> Dict[Hashable, torch.Tensor]: d = dict(data) for key in self.keys: d[key] = self.converter(d[key]) return d class ToNumpyd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.ToNumpy`. """ def __init__(self, keys: KeysCollection) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` """ super().__init__(keys) self.converter = ToNumpy() def __call__(self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]) -> Dict[Hashable, np.ndarray]: d = dict(data) for key in self.keys: d[key] = self.converter(d[key]) return d class DeleteItemsd(MapTransform): """ Delete specified items from data dictionary to release memory. It will remove the key-values and copy the others to construct a new dictionary. """ def __init__(self, keys: KeysCollection) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` """ super().__init__(keys) def __call__(self, data): return {key: val for key, val in data.items() if key not in self.keys} class SqueezeDimd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.SqueezeDim`. """ def __init__(self, keys: KeysCollection, dim: int = 0) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` dim: dimension to be squeezed. Default: 0 (the first dimension) """ super().__init__(keys) self.converter = SqueezeDim(dim=dim) def __call__( self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]] ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]: d = dict(data) for key in self.keys: d[key] = self.converter(d[key]) return d class DataStatsd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.DataStats`. """ def __init__( self, keys: KeysCollection, prefix: Union[Sequence[str], str] = "Data", data_shape: Union[Sequence[bool], bool] = True, value_range: Union[Sequence[bool], bool] = True, data_value: Union[Sequence[bool], bool] = False, additional_info: Optional[Union[Sequence[Callable], Callable]] = None, logger_handler: Optional[logging.Handler] = None, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` prefix: will be printed in format: "{prefix} statistics". it also can be a sequence of string, each element corresponds to a key in ``keys``. data_shape: whether to show the shape of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. value_range: whether to show the value range of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. data_value: whether to show the raw value of input data. it also can be a sequence of bool, each element corresponds to a key in ``keys``. a typical example is to print some properties of Nifti image: affine, pixdim, etc. additional_info: user can define callable function to extract additional info from input data. it also can be a sequence of string, each element corresponds to a key in ``keys``. logger_handler: add additional handler to output data: save to file, etc. add existing python logging handlers: https://docs.python.org/3/library/logging.handlers.html """ super().__init__(keys) self.prefix = ensure_tuple_rep(prefix, len(self.keys)) self.data_shape = ensure_tuple_rep(data_shape, len(self.keys)) self.value_range = ensure_tuple_rep(value_range, len(self.keys)) self.data_value = ensure_tuple_rep(data_value, len(self.keys)) self.additional_info = ensure_tuple_rep(additional_info, len(self.keys)) self.logger_handler = logger_handler self.printer = DataStats(logger_handler=logger_handler) def __call__( self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]] ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]: d = dict(data) for idx, key in enumerate(self.keys): d[key] = self.printer( d[key], self.prefix[idx], self.data_shape[idx], self.value_range[idx], self.data_value[idx], self.additional_info[idx], ) return d class SimulateDelayd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.SimulateDelay`. """ def __init__(self, keys: KeysCollection, delay_time: Union[Sequence[float], float] = 0.0) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` delay_time: The minimum amount of time, in fractions of seconds, to accomplish this identity task. It also can be a sequence of string, each element corresponds to a key in ``keys``. """ super().__init__(keys) self.delay_time = ensure_tuple_rep(delay_time, len(self.keys)) self.delayer = SimulateDelay() def __call__( self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]] ) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]: d = dict(data) for idx, key in enumerate(self.keys): d[key] = self.delayer(d[key], delay_time=self.delay_time[idx]) return d class CopyItemsd(MapTransform): """ Copy specified items from data dictionary and save with different key names. It can copy several items together and copy several times. """ def __init__(self, keys: KeysCollection, times: int, names: KeysCollection) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` times: expected copy times, for example, if keys is "img", times is 3, it will add 3 copies of "img" data to the dictionary. names: the names corresponding to the newly copied data, the length should match `len(keys) x times`. for example, if keys is ["img", "seg"] and times is 2, names can be: ["img_1", "seg_1", "img_2", "seg_2"]. Raises: ValueError: When ``times`` is nonpositive. ValueError: When ``len(names)`` is not ``len(keys) * times``. Incompatible values. """ super().__init__(keys) if times < 1: raise ValueError(f"times must be positive, got {times}.") self.times = times names = ensure_tuple(names) if len(names) != (len(self.keys) * times): raise ValueError( "len(names) must match len(keys) * times, " f"got len(names)={len(names)} len(keys) * times={len(self.keys) * times}." ) self.names = names def __call__(self, data): """ Raises: KeyError: When a key in ``self.names`` already exists in ``data``. """ d = dict(data) for key, new_key in zip(self.keys * self.times, self.names): if new_key in d: raise KeyError(f"Key {new_key} already exists in data.") d[new_key] = copy.deepcopy(d[key]) return d class ConcatItemsd(MapTransform): """ Concatenate specified items from data dictionary together on the first dim to construct a big array. Expect all the items are numpy array or PyTorch Tensor. """ def __init__(self, keys: KeysCollection, name: str, dim: int = 0) -> None: """ Args: keys: keys of the corresponding items to be concatenated together. See also: :py:class:`monai.transforms.compose.MapTransform` name: the name corresponding to the key to store the concatenated data. dim: on which dimension to concatenate the items, default is 0. Raises: ValueError: When insufficient keys are given (``len(self.keys) < 2``). """ super().__init__(keys) if len(self.keys) < 2: raise ValueError("Concatenation requires at least 2 keys.") self.name = name self.dim = dim def __call__(self, data): """ Raises: TypeError: When items in ``data`` differ in type. TypeError: When the item type is not in ``Union[numpy.ndarray, torch.Tensor]``. """ d = dict(data) output = list() data_type = None for key in self.keys: if data_type is None: data_type = type(d[key]) elif not isinstance(d[key], data_type): raise TypeError("All items in data must have the same type.") output.append(d[key]) if data_type == np.ndarray: d[self.name] = np.concatenate(output, axis=self.dim) elif data_type == torch.Tensor: d[self.name] = torch.cat(output, dim=self.dim) else: raise TypeError(f"Unsupported data type: {data_type}, available options are (numpy.ndarray, torch.Tensor).") return d class Lambdad(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.Lambda`. For example: .. code-block:: python :emphasize-lines: 2 input_data={'image': np.zeros((10, 2, 2)), 'label': np.ones((10, 2, 2))} lambd = Lambdad(keys='label', func=lambda x: x[:4, :, :]) print(lambd(input_data)['label'].shape) (4, 2, 2) Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` func: Lambda/function to be applied. It also can be a sequence of Callable, each element corresponds to a key in ``keys``. """ def __init__(self, keys: KeysCollection, func: Union[Sequence[Callable], Callable]) -> None: super().__init__(keys) self.func = ensure_tuple_rep(func, len(self.keys)) self.lambd = Lambda() def __call__(self, data): d = dict(data) for idx, key in enumerate(self.keys): d[key] = self.lambd(d[key], func=self.func[idx]) return d class LabelToMaskd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.LabelToMask`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` select_labels: labels to generate mask from. for 1 channel label, the `select_labels` is the expected label values, like: [1, 2, 3]. for One-Hot format label, the `select_labels` is the expected channel indices. merge_channels: whether to use `np.any()` to merge the result on channel dim. if yes, will return a single channel mask with binary data. """ def __init__( # pytype: disable=annotation-type-mismatch self, keys: KeysCollection, select_labels: Union[Sequence[int], int], merge_channels: bool = False, ) -> None: # pytype: disable=annotation-type-mismatch super().__init__(keys) self.converter = LabelToMask(select_labels=select_labels, merge_channels=merge_channels) def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]: d = dict(data) for key in self.keys: d[key] = self.converter(d[key]) return d class FgBgToIndicesd(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.FgBgToIndices`. Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` fg_postfix: postfix to save the computed foreground indices in dict. for example, if computed on `label` and `postfix = "_fg_indices"`, the key will be `label_fg_indices`. bg_postfix: postfix to save the computed background indices in dict. for example, if computed on `label` and `postfix = "_bg_indices"`, the key will be `label_bg_indices`. image_key: if image_key is not None, use ``label == 0 & image > image_threshold`` to determine the negative sample(background). so the output items will not map to all the voxels in the label. image_threshold: if enabled image_key, use ``image > image_threshold`` to determine the valid image content area and select background only in this area. output_shape: expected shape of output indices. if not None, unravel indices to specified shape. """ def __init__( self, keys: KeysCollection, fg_postfix: str = "_fg_indices", bg_postfix: str = "_bg_indices", image_key: Optional[str] = None, image_threshold: float = 0.0, output_shape: Optional[Sequence[int]] = None, ) -> None: super().__init__(keys) self.fg_postfix = fg_postfix self.bg_postfix = bg_postfix self.image_key = image_key self.converter = FgBgToIndices(image_threshold, output_shape) def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]: d = dict(data) image = d[self.image_key] if self.image_key else None for key in self.keys: d[str(key) + self.fg_postfix], d[str(key) + self.bg_postfix] = self.converter(d[key], image) return d IdentityD = IdentityDict = Identityd AsChannelFirstD = AsChannelFirstDict = AsChannelFirstd AsChannelLastD = AsChannelLastDict = AsChannelLastd AddChannelD = AddChannelDict = AddChanneld RepeatChannelD = RepeatChannelDict = RepeatChanneld CastToTypeD = CastToTypeDict = CastToTyped ToTensorD = ToTensorDict = ToTensord DeleteItemsD = DeleteItemsDict = DeleteItemsd SqueezeDimD = SqueezeDimDict = SqueezeDimd DataStatsD = DataStatsDict = DataStatsd SimulateDelayD = SimulateDelayDict = SimulateDelayd CopyItemsD = CopyItemsDict = CopyItemsd ConcatItemsD = ConcatItemsDict = ConcatItemsd LambdaD = LambdaDict = Lambdad LabelToMaskD = LabelToMaskDict = LabelToMaskd FgBgToIndicesD = FgBgToIndicesDict = FgBgToIndicesd
7f0ed5bfb86883201842207f74bfd612e2da804f
c2f4d3892dec8859d7795a1bce4bfe0e5c85e9b9
/StudentskaSluzbaConsole/FakultetPrikazObican/rs/uns/ftn/fakultet/prikaz_obican.py
b3a84bd0c57319b65d562092bdacf0427f58ddbb
[]
no_license
unsftn/SOK-primeri
517423d6e60ab7ce7576fe1cbcefdf10f642b2f2
a90ab5e6867e5bb14c0aa6690c57424282f88008
refs/heads/master
2021-05-04T07:13:49.239755
2016-12-13T06:43:45
2016-12-13T06:43:45
70,586,070
1
0
null
null
null
null
UTF-8
Python
false
false
448
py
from rs.uns.ftn.studentska.sluzba.services.fakultet import FakultetPrikazBase class FakultetPrikazObican(FakultetPrikazBase): def identifier(self): return "FakultetPrikazObican" def name(self): return "Prikaz samo naziva fakulteta" def prikazati_fakultete(self, lista_fakulteta): prikaz="{}\n".format("Naziv") for f in lista_fakulteta: prikaz+="{}\n".format(f.naziv) return prikaz
98be9ef6212d83414b73189c6c2d2fa7f6c99add
db1f67ee43986019df2edf622ee5ad617e3a08c6
/ML/SVM-Support_Vector_Machine/what_whey.py
62df6ac272e33d3028195b554a77094e54b53c47
[]
no_license
RafaelGoulartB/learning-machine-learning
61dcd0428429d68c52f70330ceb241cdbf6ab724
e3d77be195186f1b5c771513f75d7675bd6cf2dc
refs/heads/master
2021-09-27T18:05:17.352268
2018-11-10T13:00:36
2018-11-10T13:00:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
830
py
# Packages for analysis import pandas as pd import numpy as np from sklearn import svm recipes = pd.read_csv('Iso-vs-Con.csv') #Specific input models ingredients = recipes[['Carb','Protein']].as_matrix() #Creat a list sorted with Carb and Protein type_label = np.where(recipes['Type']=='Concentrado', 0, 1) #If Type == Concentrado add 0 else add 1 #Fit the model model = svm.SVC(kernel='linear') model.fit(ingredients, type_label) # Create a function to guess when a whey isolado or concentrado def concentrado_or_isolado(carb, protein): if(model.predict([[carb, protein]]))==0: print("\nIt's a whey Concentrado") else: print("\nIt's a whey Isolado") carb = float(input("How many Carb has in your whey? ")) prot = float(input("How many Protein has in your whey? ")) concentrado_or_isolado(carb, prot)
891a67ea8b42a8d19fc90a9867adb2f20065b0a6
9fe6c602622625dc598c90b33208660aec0d9305
/scripts/test/run_unittests.py
965877e40c4edaa524f420a6b5cdf3a7f47b01d7
[ "BSD-3-Clause" ]
permissive
mmocny/devtools-frontend
efc55015ffd8900bbc76e7f2d392be04fdfb8032
4b644f76915b1dd9f7a039b0c6c7811198776cc6
refs/heads/master
2022-12-13T13:07:55.137491
2020-08-19T00:52:02
2020-08-19T17:02:58
288,804,874
0
0
BSD-3-Clause
2020-08-19T18:17:13
2020-08-19T18:17:13
null
UTF-8
Python
false
false
3,692
py
#!/usr/bin/env python # # Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Run unit tests on a pinned version of chrome. """ import os import platform import re from subprocess import Popen import sys import signal import argparse scripts_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(scripts_path) import test_helpers import devtools_paths def run_tests(chrome_binary, target, no_text_coverage, coverage): cwd = devtools_paths.devtools_root_path() karmaconfig_path = os.path.join(cwd, 'out', target, 'gen', 'test', 'unittests', 'front_end', 'karma.conf.js') if not os.path.exists(karmaconfig_path): print('Unable to find Karma config at ' + karmaconfig_path) print('Make sure to set the --ninja-build-name argument to the folder name of "out/target"') sys.exit(1) print('Using karma config ' + karmaconfig_path) exec_command = [devtools_paths.node_path(), devtools_paths.karma_path(), 'start', test_helpers.to_platform_path_exact(karmaconfig_path)] env = os.environ.copy() env['NODE_PATH'] = devtools_paths.node_path() if (no_text_coverage is not False): env['NO_TEXT_COVERAGE'] = '1' if (coverage is True): env['COVERAGE'] = '1' if (chrome_binary is not None): env['CHROME_BIN'] = chrome_binary exit_code = test_helpers.popen(exec_command, cwd=cwd, env=env) if exit_code == 1: return True return False def run_unit_tests_on_ninja_build_target(target, no_text_coverage=True, coverage=False, chrome_binary=None): if chrome_binary and not test_helpers.check_chrome_binary(chrome_binary): print( 'Chrome binary argument path does not exist or is not executable, reverting to downloaded binary' ) chrome_binary = None if not chrome_binary: # Default to the downloaded / pinned Chromium binary downloaded_chrome_binary = devtools_paths.downloaded_chrome_binary_path( ) if test_helpers.check_chrome_binary(downloaded_chrome_binary): chrome_binary = downloaded_chrome_binary if (chrome_binary is None): print('Unable to run, no Chrome binary provided') sys.exit(1) print('Using Chromium binary (%s)\n' % chrome_binary) errors_found = run_tests(chrome_binary, target, no_text_coverage, coverage) if errors_found: print('ERRORS DETECTED') sys.exit(1) def main(): parser = argparse.ArgumentParser(description='Run unittests on Ninja targets.') parser.add_argument( '--target', '-t', default='Default', dest='target', help='The name of the Ninja output directory. Defaults to "Default"') parser.add_argument( '--no-text-coverage', action='store_true', default=False, dest='no_text_coverage', help='Whether to output text coverage') parser.add_argument('--coverage', action='store_true', default=False, dest='coverage', help='Whether to output coverage') parser.add_argument('--chrome-binary', dest='chrome_binary', help='Path to Chromium binary') args = parser.parse_args(sys.argv[1:]) run_unit_tests_on_ninja_build_target(args.target, args.no_text_coverage, args.coverage, args.chrome_binary) if __name__ == '__main__': main()
5e23fa117afbbafd120a6171ec70a82428e5c1e7
a25223f5be818b549323e8232c31a606fcca275a
/work/lib_learn/threading_demo.py
a43f663e14785bff3331cff64b38037fa4b71d61
[]
no_license
Jsonming/workspace
4ef1119606b3c138ff9594b3e0cf16de8077e28d
2ac1b07d85deeb611600f5e64083c4eb0688fdb4
refs/heads/master
2020-06-13T04:23:15.492080
2020-03-31T10:34:30
2020-03-31T10:34:30
194,531,923
1
0
null
null
null
null
UTF-8
Python
false
false
718
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/12/11 11:15 # @Author : yangmingming # @Site : # @File : threading_demo.py # @Software: PyCharm from threading import Thread import time """ Python中使用线程有两种方式:函数或者用类来包装线程对象。 函数式:调用thread模块中的start_new_thread()函数来产生新线程 thread.start_new_thread ( function, args[, kwargs] ) """ global a a = [] def aaa(): print(1111) time.sleep(1) print(2222) a.append("1") def bbb(): print(333) time.sleep(1) print(444) a.append("2") t_1 = Thread(target=aaa) t_2 = Thread(target=bbb) t_1.start() t_1.join() t_2.start() t_2.join() print(a)
de29935be8c92874d76f532ba472260e179f3885
d4beed3fb9c04ab10857a0ea582a10611d27a913
/ABC_from001to100/ABC066/c.py
10c5c0f60347f41bf83314233e2fb4b506ae7357
[]
no_license
jjitch/AtCoder
f797923556441d1fb9c8563614edff5a9c3f4c6f
54ea96fbd1dfd8741f53d35dbcb5e59fcc2d794e
refs/heads/master
2023-08-22T02:32:55.137339
2021-10-11T17:18:08
2021-10-11T17:18:08
292,009,390
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
from collections import deque n = int(input()) a_s = list(map(int, input().split())) d = deque() for i in range(n): if i % 2 == 0: d.append(a_s[i]) else: d.appendleft(a_s[i]) if n%2==1: d.reverse() print(' '.join(map(str, d)))
ef644fd83609cab01e950f379bfe1760ba929b57
dfd48ac5cdcf7b964b6f1eb67230d3427366b3dd
/2. Image processing/opencv_image_processing.py
7e9dc95210474f18a2e072cc5dda221c11743b31
[]
no_license
ujhoang/computer-vision
f5344164f7c772e154b57892ad2fc8eb337a8c71
90676379b0397ee232bc1f78dbf8d2b9f194d6be
refs/heads/master
2020-12-21T20:30:09.209795
2020-03-22T18:01:35
2020-03-22T18:01:35
236,548,943
0
0
null
null
null
null
UTF-8
Python
false
false
2,990
py
# importing packages import cv2, imutils import time import matplotlib.pyplot as plt name="./images/uj.jpg" #loading the image, images are stored as (height, width, dimension) image = cv2.imread(name) (h, w, d) = image.shape print("width={}, height={}, dimension={}".format(w,h,d)) cv2.imshow("Image", image) cv2.waitKey(0) # access the (B, G, R) pixel in x=50 and y=100 (B, G, R) = image[100, 50] print("B={}, G={}, R={}".format(B, G, R)) #Array slicing and cropping #extract region of interest starting from (320,60) to (420,160) ''' roi = image[80:270, 130:280] cv2.imshow("Region of Interest Dr", roi) cv2.waitKey(0) cv2.imwrite("./images/cropped.jpg", roi) ''' #Resizing images #In deep learning we resize images, ignoring aspect ratios, #so that the volume fits into a network which requires #the image to be square and to be of certain dimesion ''' resize = imutils.resize(image, width=300) cv2.imshow("resized uj", resize) cv2.waitKey(0) cv2.imwrite("./images/resized.jpg", resize) ratio = 200/w dim = (200, int(h*ratio)) resize = cv2.resize(image, dim) cv2.imshow("resized photo", resize) cv2.waitKey(0) ''' # Rotating Images ''' rotated = imutils.rotate(image, 45) cv2.imshow("rotated uj", rotated) cv2.waitKey(0) cv2.imwrite("./images/rotated.jpg", rotated) ''' #Rotating image within boundary using imutils ''' rotate_bound = imutils.rotate_bound(image, -45) cv2.imshow("rotated uj", rotate_bound) cv2.waitKey(0) cv2.imwrite("./images/rotated in boundary.jpg", rotate_bound) ''' # Skeletonize the picture (edge detection) ''' grey = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) skeleton = imutils.skeletonize(grey, size=(3,3)) cv2.imshow("matplot",skeleton) cv2.waitKey(0) cv2.imwrite("./images/skeleton.jpg", skeleton) ''' # Smoothing images # In many image processing, we need to reduce the high frequency noise, # making it easier for our algorithm to understand the contents rather # than the noise which will confuse the algorithm. Blurring an image is # one of the easiest way of doing so! ''' blurred = cv2.GaussianBlur(image, (11,11), 10,0,10) cv2.imshow("blurred", blurred) cv2.waitKey(0) cv2.imwrite("./images/blurred uj.jpg", blurred) ''' # Drawing on an image # Note when drawing on an image, we are drawing in place # Hence, it is a good practice to create a copy (image.copy()) # when drawing so we do not destroy the original image ''' output = image.copy() cv2.rectangle(output, (140,90), (280,280),(0,0,255), 5) cv2.imshow("output rectangle", output) cv2.waitKey(0) cv2.imwrite("./images/uj_rectangle.jpg", output) ''' ''' output = image.copy() cv2.circle(output, (140,280), 40, (50,255,50), -1) # -1 makes the circle solid fill cv2.imshow("circle", output) cv2.waitKey(0) cv2.imwrite("./images/uj_circle.jpg", output) ''' ''' output = image.copy() cv2.putText(output, "ujhoang, Data Scientist", (10,30),cv2.FONT_HERSHEY_SIMPLEX, 0.55, (255,255,255),1) cv2.imshow("uj with text", output) cv2.waitKey(0) cv2.imwrite("./images/uj_text.jpg", output) '''
b435a28b080aada90a007675590ff6531adf2c14
5c05866275988edb7cf31d096569e83c3e1138e1
/career/models.py
da570f73439fa3e7b2838c364f1885ed4ce06f1f
[]
no_license
kljopu/fixo-back-fork
3203952a8a72c67f545c7d30cd42b0b8df2d790c
bd7b116f2d7c01655e02b30a6b07bf913d0bf0cc
refs/heads/master
2022-12-15T03:17:55.829477
2020-09-14T05:36:24
2020-09-14T05:36:24
295,312,045
0
0
null
null
null
null
UTF-8
Python
false
false
574
py
from django.db import models from utils.models import TimeStampModel class Service(TimeStampModel): corrector = models.ForeignKey("accounts.Corrector", on_delete=models.CASCADE) name = models.CharField(max_length=2000) service_description = models.CharField(max_length=2000) image = models.URLField(max_length=2000) price = models.IntegerField() price_description = models.CharField(max_length=2000, null=True) career_detail = models.CharField(max_length=1000, null = True) class Meta: db_table = "services" managed = True
b9e53559090239af7ea0299aa3616f5a7fea2643
02cc235dcbfc9f3d645b9905d1bf19a8d746420b
/amazon/amazon_bu/mapper_rdf copy.py
a1b0e03ab3060e1ab0008246bc0ba999426460fa
[]
no_license
manzikki/hadooprdf
9300b7186c5b86fabeac367278824f9cdf9b1c0e
d7bec4323e3ee0f9a199239f4dfaed70bb00d020
refs/heads/master
2020-04-12T19:00:14.654709
2019-03-01T09:13:50
2019-03-01T09:13:50
162,696,817
0
0
null
null
null
null
UTF-8
Python
false
false
532
py
#!/usr/bin/env python """A more advanced Mapper, using Python iterators and generators.""" import sys import rdflib def main(separator='\t'): # input comes from STDIN (standard input) g = rdflib.Graph() g.load(sys.stdin) q = g.query('SELECT ?a WHERE { ?a hip:hasContinent hip:Asia }', initNs = { 'hip' : 'http://wiki.hip.fi/xml/ontology/olapdim_st.owl#'}) qs=q.serialize(destination=None,format='xml') print(qs) #for row in q: # print (row) if __name__ == "__main__": main()
1227ba925d1a893df632f37cec27a2fdf940ba58
bd2057543881ae2b64c37f295df036567ef53f3d
/bonds/migrations/0005_auto_20170307_1711.py
072e4944b7d3d052363c2562b66dd8de8f5b6b2a
[ "MIT" ]
permissive
reddress/bondtracker
fccad222df9733345988500489a9ef6a7997c2f4
432f2ed1962cf0019fb5ebdabad8354a123088c8
refs/heads/master
2021-04-28T15:39:50.829990
2019-03-08T20:05:11
2019-03-08T20:05:11
121,995,258
0
0
null
null
null
null
UTF-8
Python
false
false
422
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-03-07 20:11 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('bonds', '0004_auto_20170307_0022'), ] operations = [ migrations.AlterModelOptions( name='bond', options={'ordering': ['bondtype', 'maturity']}, ), ]
8f18834b8d94f9186ba897a70ec8fcb25f13f461
bf2a9f9284bee1d75da497dba8cfd69cf1cf001b
/subliminal/plugins/TheSubDB.py
6c7588d4ed5b8dff2b9ef06ada49e982b410d277
[]
no_license
mrcrabby/subliminal
eb668f29a34e22ef98fe3647def0a7514a6b5142
f3292c2916e53cdbe393ce4d31e56c5bf2089d20
refs/heads/master
2021-01-18T10:16:03.246677
2011-10-08T17:44:14
2011-10-08T17:44:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,735
py
# -*- coding: utf-8 -*- # # Subliminal - Subtitles, faster than your thoughts # Copyright (c) 2008-2011 Patrick Dessalle <[email protected]> # Copyright (c) 2011 Antoine Bertin <[email protected]> # # This file is part of Subliminal. # # Subliminal is free software; you can redistribute it and/or modify it under # the terms of the Lesser GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # Subliminal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Lesser GNU General Public License for more details. # # You should have received a copy of the Lesser GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import PluginBase import hashlib import os import urllib2 from subliminal.classes import Subtitle class TheSubDB(PluginBase.PluginBase): site_url = 'http://thesubdb.com' site_name = 'SubDB' server_url = 'http://api.thesubdb.com' # for testing purpose, use http://sandbox.thesubdb.com instead api_based = True user_agent = 'SubDB/1.0 (Subliminal/1.0; https://github.com/Diaoul/subliminal)' # defined by the API _plugin_languages = {'af': 'af', 'cs': 'cs', 'da': 'da', 'de': 'de', 'en': 'en', 'es': 'es', 'fi': 'fi', 'fr': 'fr', 'hu': 'hu', 'id': 'id', 'it': 'it', 'la': 'la', 'nl': 'nl', 'no': 'no', 'oc': 'oc', 'pl': 'pl', 'pt': 'pt', 'ro': 'ro', 'ru': 'ru', 'sl': 'sl', 'sr': 'sr', 'sv': 'sv', 'tr': 'tr'} # list available with the API at http://sandbox.thesubdb.com/?action=languages def __init__(self, config_dict=None): super(TheSubDB, self).__init__(self._plugin_languages, config_dict) def list(self, filepath, languages): possible_languages = self.possible_languages(languages) if not possible_languages: return [] if not os.path.isfile(filepath): return [] return self.query(filepath, self.hashFile(filepath), possible_languages) def query(self, filepath, moviehash, languages): searchurl = '%s/?action=%s&hash=%s' % (self.server_url, 'search', moviehash) self.logger.debug(u'Query URL: %s' % searchurl) try: req = urllib2.Request(searchurl, headers={'User-Agent': self.user_agent}) page = urllib2.urlopen(req, timeout=self.timeout) except urllib2.HTTPError as inst: if inst.code == 404: # no result found return [] self.logger.error(u'Error: %s - %s' % (searchurl, inst)) return [] except urllib2.URLError as inst: self.logger.error(u'TimeOut: %s' % inst) return [] available_languages = page.readlines()[0].split(',') self.logger.debug(u'Available languages: %s' % available_languages) subs = [] for l in available_languages: if l in languages: result = Subtitle(filepath, self.getSubtitlePath(filepath, l), self.__class__.__name__, l, '%s/?action=download&hash=%s&language=%s' % (self.server_url, moviehash, l)) subs.append(result) return subs def hashFile(self, filepath): """TheSubDB specific hash function""" readsize = 64 * 1024 with open(filepath, 'rb') as f: data = f.read(readsize) f.seek(-readsize, os.SEEK_END) data += f.read(readsize) return hashlib.md5(data).hexdigest() def download(self, subtitle): self.downloadFile(subtitle.link, subtitle.path) return subtitle
51aa44dcaa7e5c3afc095422120d33f9cd7d4158
2fad894e9e041fc98c0ec2641480cbbaf3034764
/ood_special_method.py
dcf0a0c7d8e9ee2f2693a27ec47cc73a0ea79ee2
[]
no_license
mohammadasim/python-course
04698e19a90d5d5dec715a9b640c78da3cc0e4a7
688617ded71ff1c025bdcd25caefba5b6d4665fb
refs/heads/master
2021-04-30T04:39:16.023071
2018-08-02T16:16:53
2018-08-02T16:16:53
121,540,215
0
0
null
null
null
null
UTF-8
Python
false
false
871
py
# When we create a list object and pring the list, we will get the list object containing the list. However if I create a book object # using this book class what we will get is the object in memory. Behind the scene the pring object gets the string representation of the # book object and prints that. So inorder to enable the print() method to print the real book object i-e the title, author and pages of # the book we have to overwrite the __str__(self) method. class Book(): def __init__(self, title, author, pages): self.title = title self.author = author self.pages = pages # String representation of this book class def __str__(self): return "{} by {}".format(self.title, self.author) def __len__(self): return self.pages myBook = Book('My story', 'Asim', '202') print(myBook) print(str(myBook))
d4d778b9a2b0dad95e29227cf48aad56ae424e50
ff4244bace9897d2ff9f32748e3e51d5d7df2f90
/setup.py
ceec156f2cad4aa8a067f405d37a231b9c3a0c47
[ "MIT" ]
permissive
kouzapo/altrobot
d3c8e3efe4002d415ebe0b09f1aa4e39883c7fcd
4d31701bbd47c29acbc9ba2b65c2cb84b2b88d94
refs/heads/master
2021-08-02T19:32:13.600302
2021-07-24T09:20:26
2021-07-24T09:20:26
213,660,071
3
4
MIT
2021-01-22T18:11:22
2019-10-08T14:08:10
Python
UTF-8
Python
false
false
767
py
#!/usr/bin/env python3 import setuptools with open('README.md', 'r', encoding = 'utf-8') as f: long_description = f.read() setuptools.setup( name = 'altrobot', version = '0.0.1', author = 'Apostolos Anastasios Kouzoukos', author_email = '[email protected]', description = 'A backtesting library for algorithmic trading, based on neural networks', long_description = long_description, long_description_content_type = 'text/markdown', url = 'https://github.com/kouzapo/altrobot', packages = setuptools.find_packages(), classifiers = [ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', ], python_requires = '>=3.6', )
a136480a9e699fc70d57d1c9205dde7c20f919bb
b5ac08012751057a410951890eab0b13f1e30e42
/users/migrations/0005_auto_20190509_0446.py
7780f17ee8f4127c013895fc7746d7e1189e9312
[]
no_license
TheSuperiorStanislav/practice-django-utilities_stats
1934062df07333efdb0753f4a3d9f0f398453afc
93b8b32eedc63dc0c425f49e7f8f666808a4b885
refs/heads/master
2023-04-29T19:35:50.928377
2022-04-28T04:42:54
2022-04-28T04:42:54
185,186,204
0
1
null
2023-04-21T22:10:06
2019-05-06T11:48:10
Python
UTF-8
Python
false
false
447
py
# Generated by Django 2.2.1 on 2019-05-09 04:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0004_auto_20190430_1305'), ] operations = [ migrations.AlterField( model_name='utilitiesuser', name='email', field=models.EmailField(blank=True, max_length=254, unique=True, verbose_name='email address'), ), ]
f66c3193943c46902e71914540ea3d2d9ef152cc
bb8c36271b45ba80b0b2074d7704bb2c0e9839be
/home/forms.py
0d3dc760d6d5598369cce1073a05879924dbd71c
[]
no_license
alexeysorok/learn_django_specialist_2020
f0df4fe1ad8c3ee8e038e5f4df39168185654f80
cb08f0a61b32f2c59d995cdb4d956207b8980b74
refs/heads/master
2020-12-08T20:51:07.239868
2020-01-10T17:09:09
2020-01-10T17:09:09
233,091,636
0
0
null
null
null
null
UTF-8
Python
false
false
149
py
from django import forms class LoginForm(forms.Form): login = forms.CharField(label='login') password = forms.CharField(label='password')
[ "alexe@W10SSD" ]
alexe@W10SSD
4db691364a9d81a959c8bcf57a843628ce0d0c64
b73d4b5f169a2a43b0e7e29da369e701028663d9
/Event_Listeners/main.py
02c58865cee50c9e30f789f94421bca7e1ae7137
[ "BSD-3-Clause" ]
permissive
yash-agrawal20/Python-Project
3824b93e2fb02bb93919b439a9d472486c4d821e
29780c4741daf2ef299cc3cb93b88b851f270f51
refs/heads/main
2023-09-03T07:00:47.232547
2021-09-23T06:31:54
2021-09-23T06:31:54
406,480,236
1
0
null
null
null
null
UTF-8
Python
false
false
616
py
#Using Event Listeners #Date: 14-09-2021 import turtle as t my_turtle = t.Turtle() def move_forward(): my_turtle.forward(50) def move_backward(): my_turtle.backward(50) def move_clockwise(): my_turtle.right(30) def move_counter_clockwise(): my_turtle.left(30) def clear_screen(): my_turtle.reset() screen = t.Screen() screen.listen() screen.onkey(fun = move_forward, key = "w") screen.onkey(fun = move_backward, key = "s") screen.onkey(fun = move_clockwise, key = "d") screen.onkey(fun = move_counter_clockwise, key = "a") screen.onkey(fun = clear_screen, key = "c") screen.exitonclick()
91c956e0bced4cf8c7ac59bc5f8f643ceb4d0a72
cd52f86c04e10bdf6cda9539ace5c518209c72b1
/ocr_main.py
c14ae83eccbbaae5a7ec23e9bbde9f237bde5d7b
[]
no_license
TonyChouZJU/SimuOCR
033a5d3b717fbab49b509332ba96581aaad048bf
794a875cef6be61fe6662e8fa0b6de9cbcb4517e
refs/heads/master
2021-01-11T17:27:32.831039
2017-01-23T05:23:48
2017-01-23T05:23:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,593
py
#coding=utf-8 import _init_paths import sys import os import subprocess import pickle import numpy as np import subprocess import matplotlib.pylab as plt import cv2 import json from font_effects import FontsEffects ''' backcolor is using with label:'福' xc:transparent -annotate 0x0 '福' ''' def parse_fonts_list(fonts_list_file='./sys_fonts_list.txt', fonts_pkl_file='./fonts.pkl'): fonts_list = [] if os.path.exists(fonts_pkl_file): fonts_list = pickle.load(open(fonts_pkl_file, 'r')) return fonts_list with open(fonts_list_file, 'r') as f: for line in f: line = line.strip('\n').strip(' ') if line[:5] != 'Font:': continue else: fonts_split = line.split(':') print fonts_split fonts_list.append(fonts_split[1].strip(' ')) with open(fonts_pkl_file, 'w+') as f: pickle.dump(fonts_list, f) return fonts_list def parse_color_list(color_list_file='./im_color_list.txt', color_pkl_file='./color.pkl'): color_list = [] if os.path.exists(color_pkl_file): color_list = pickle.load(open(color_pkl_file, 'r')) return color_list with open(color_list_file, 'r') as f: for line in f: line_split = line.split(' ') color_list.append(line_split[0]) with open(color_pkl_file, 'w+') as f: pickle.dump(color_list, f) return color_list def parse_gradients_json(color_json_file='./gradients.json'): with open(color_json_file, 'r') as f: color_list = json.load(f) return color_list def get_cn_fonts_list(fonts_pkl_file='./fonts.pkl', cn_dir='/mnt/exhdd/tomorning_dataset/wonderland/raw_data/word/fu_cn', cn_fonts_pkl_file='./cn_fonts.pkl'): if os.path.exists(cn_fonts_pkl_file): cn_fonts_list = pickle.load(open(cn_fonts_pkl_file, 'r')) return cn_fonts_list fonts_list = parse_fonts_list() cn_idx_list = [int(img_file.split('_')[0]) for img_file in os.listdir(cn_dir)] cn_fonts_list = [fonts_list[ii] for ii in cn_idx_list] with open(cn_fonts_pkl_file, 'w+') as f: pickle.dump(cn_fonts_list, f) return cn_fonts_list def get_tile_list(tile_dir): tile_list = [os.path.join(tile_dir, img_file) for img_file in os.listdir(tile_dir)] return tile_list if __name__ == "__main__": sys_fonts_list = parse_fonts_list() im_color_list = parse_color_list() local_gradient_list = parse_gradients_json() sys_cn_fonts_list = get_cn_fonts_list() local_tile_list = get_tile_list(tile_dir='/home/zyb/cv/simultate_detection_examples/words_bg/words_color') word = u'福' FontMaker = FontsEffects(fonts_list=sys_cn_fonts_list, color_list=im_color_list, gradient_list=local_gradient_list, tile_list=local_tile_list, wd=word) FontEffectsList = dir(FontsEffects) FontEffectsList.remove('__doc__') FontEffectsList.remove('__module__') FontEffectsList.remove('__init__') FontFuncsList = ['FontMaker.' + func_name for func_name in FontEffectsList] # BE CAREFULL TO USE "EVAL" for idx in range(len(FontFuncsList)): FontFuncName = FontFuncsList[idx] save_file = '/home/zyb/cv/simultate_detection_examples/word_imgs/fu/' + str(idx) +'.png' callFontFuncName = FontFuncName + '()' params = eval(callFontFuncName) + [save_file] print idx, callFontFuncName, params subprocess.check_call(params)
6b13a3be85c021acb5f723df9c5da292421f2649
363670e1c658045f7145c12d64a0b70aaa24662f
/BusyLoop/__init__.py
2723459c0bb7277739c30bf077c1d1479db0ca88
[]
no_license
fortune/azure-functions-sample-in-python
609ce8c4a564ce1dfb3707686eb20a03b31e6119
cf301fdb990e3efb4f84326c5788212e20d2207d
refs/heads/master
2022-12-10T11:51:07.350793
2019-08-22T06:16:22
2019-08-22T06:16:22
173,325,622
1
0
null
2022-12-08T01:39:20
2019-03-01T15:33:57
Python
UTF-8
Python
false
false
385
py
import logging import os, time import azure.functions as func def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') pid = os.getpid() start_time = time.time() while True: if time.time() - start_time > 3: break return func.HttpResponse('pid = ' + str(pid))
f62a38f0d528e475c40d662e31ce90855a495fae
58f6e51e0da894dd04d2a6cec7736719611f6df6
/aorta_detection/addSRM/merge_dl_srm.py
2e47a3b81b8ee97c1233e137a6191f84616f4d69
[]
no_license
RitaOlenchuk/bachelor_thesis
9e45f36cc42a741caac7b0eda54e64dc9fb1f8e4
1dfb7972fcf6f7c04780e2a65668fbe2773575f1
refs/heads/master
2020-06-27T17:44:34.170761
2020-04-27T21:15:07
2020-04-27T21:15:07
200,010,889
0
1
null
2019-08-05T08:18:29
2019-08-01T08:33:46
Jupyter Notebook
UTF-8
Python
false
false
2,436
py
import numpy as np from PIL import Image import imageio from matplotlib import pyplot as plt img_path = '/Users/rita/Uni/bachelor_thesis/DL/2_outfile.png' img = Image.open(img_path) img = np.array(img, dtype=np.float32) img = img / np.max(np.max(img)) print(set(img.flatten())) img [img < 0.3] = 0 selParts = (img > 0.3) & (img < 0.5) img [img >= 0.5] = 1 img [selParts] = 2 img [img >= 3] = 0 print(set(img.flatten())) background = np.argwhere(img==0) membrane = np.argwhere(img==1) plaque = np.argwhere(img==2) img_path2 = '/Users/rita/Uni/bachelor_thesis/DL/segmented2.png' img2 = Image.open(img_path2) img2 = np.array(img2) n_segments = (len(set(img2.flatten()))) print('Number of segments: ',n_segments) fig = plt.figure() plt.subplot(221) plt.imshow(img, cmap='gray') plt.axis('off') plt.title('DL', fontsize=16) plt.subplot(222) plt.imshow(img2, cmap='gray') plt.axis('off') plt.title('Segmented', fontsize=16) plt.show() #fig = plt.figure() #plt.subplot(221) #plt.imshow(img2, cmap='gray') #plt.axis('off') #plt.title('DL', fontsize=16) #m = 38 #tmp = np.argwhere(img2==m) #plt.subplot(222) #plt.imshow(img2, cmap='gray') #plt.scatter([t1[1] for t1 in tmp], [t2[0] for t2 in tmp], c='red', s=1, label='Segment '+str(m)) #plt.axis('off') #plt.legend() #plt.title('Segmented', fontsize=16) #plt.show() output_image = np.zeros(img.shape) for segm in range(n_segments): coords = np.argwhere(img2 == segm) #all coordinates that belong to the segment frequencies = [0, 0, 0] #how often the coordinate in selected segment belong to (background, membrane, plaque) for coord in coords: if img[coord[0], coord[1]] == 0: frequencies[0] += 1 elif img[coord[0], coord[1]] == 1: frequencies[1] += 1 elif img[coord[0], coord[1]] == 2: frequencies[2] += 1 struct = np.argmax(frequencies) for c in coords: output_image[c[0], c[1]] = struct #output_image[coords] = struct fig = plt.figure() fig.suptitle('Q = 0.002', fontsize=16) plt.subplot(131) plt.imshow(img) plt.axis('off') plt.title('DL', fontsize=16) plt.subplot(132) plt.imshow(img2) #plt.scatter([t1[1] for t1 in tmp], [t2[0] for t2 in tmp], c='red', s=1, label='Segment '+str(m)) plt.axis('off') plt.title('Segmented', fontsize=16) plt.subplot(133) plt.imshow(output_image) plt.axis('off') plt.title('Mix', fontsize=16) plt.savefig('dl_segm_mixed2.png') plt.show()
5d1ae22b5fa8aff66aa85311dfd7724f3d15d47c
a26c2e7ed5adc0ac0971182d1715ccba258ba88d
/Flask_package/main_route.py
cb39358184e7d5bb13396342e876365a7d7a0b87
[]
no_license
LalithaPrasad/ERMS_Falcon_Angular
6af39833beb9aa24df8f60a57894361829c6d981
2d4c4b6e46edaa039eacde119602fdb28f010755
refs/heads/master
2022-05-30T03:21:23.705641
2020-05-04T03:47:01
2020-05-04T03:47:01
261,074,448
0
0
null
null
null
null
UTF-8
Python
false
false
123
py
from Flask_package import app @app.route("/", methods=["GET"]) def index(): return app.send_static_file("index.html")
e656fa42de5a5ea7295f63e5901d7b38a56bc1b3
5db6e9e2d3d2892e51cd8d90fb1a319ca6ee92e7
/Streaming/capture_send.py
9eb773a61267da274c9216e7fdd0370a464af0cc
[ "MIT" ]
permissive
rprabhuh/SDNDDoS
e27c6bce7a3bb483c2bda5ea3f53c28638c3ebe7
91a23c0b817999bce5b07359681c5b2dddf89b9d
refs/heads/master
2021-01-20T20:56:36.874380
2015-01-14T07:41:53
2015-01-14T07:41:53
24,749,134
3
5
null
2014-10-15T00:50:26
2014-10-03T06:41:46
Lua
UTF-8
Python
false
false
1,125
py
#!/usr/bin/env python import socket from scapy.all import * # prepare the listening connection TCP_IP = '127.0.0.1' #TCP_PORT = int(sys.argv[-1]) TCP_PORT = 3000 BUFFER_SIZE = 1024 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((TCP_IP, TCP_PORT)) s.listen(20) conn, addr = s.accept() print 'Connection address:', addr def pkt_callback(pkt): #pkt.show() if not IP in pkt: return "not IP" global conn # data fields: # class label, length of ethernet frame, src IP, dst IP, # network layer protocol(UDP=1, else=0), src port, dst port, # monlist req(exist=1, otherwise=0) label = 1 if "\x17\x00\x03\x2a\x00\x00\x00\x00" in str(pkt[IP]) and len(pkt) <= 100 else 0 output = [label, len(pkt), 1 if (UDP in pkt) else 0, pkt[IP].sport, pkt[IP].dport] if "\x17\x00\x03\x2a" in str(pkt[IP]): output.append(1) else: output.append(0) # do remember to append the newline char otherwise Spark will wait outputStr = ' '.join(map(str, output)) + '\n' conn.send(outputStr) print outputStr sniff(iface="wlan0", prn=pkt_callback, filter="ip", store=0) conn.close()
e3bb201ac79fa6cc8dd092ae3b68e430b7375067
772915fc1d85ba50892d6aadcff9d5d55e1a62b5
/11_Standart_library/task_11_02_01_Logging_app/code/main.py
ec061b93687234d23dc72cf568661d9275562cd4
[]
no_license
dolphin-in-a-coma/python-course
eb90b9797e4ef397acd1577b30c31e372ffb6ed7
c5dd67c3e699a62eb5f9594bc13dabbed830fecc
refs/heads/master
2020-04-15T19:24:53.277011
2019-01-09T22:48:04
2019-01-09T22:48:04
164,948,718
2
0
null
null
null
null
UTF-8
Python
false
false
3,337
py
# ПРОБЛЕМА ВКЛЮЧЕНИЯ!!!!!!!!! import datetime import platform from settings import Settings def get_last_run_info(settings, launch_dt): """Вернуть кортеж вида: ( Количество запусков программы, Количество секунд с последнего запуска, Информация о платформе ). Если программа не была запущена ранее: - количество запусков: 0, - количество секунд: -1, - информации о платформе: пустой кортеж. Параметры: - settings: настройки - экземпляр класса Settings; - launch_dt (datetime.datetime): дата/время запуска программы. """ last_time = settings.get_value('last_run_datetime', False) if last_time: sek = (launch_dt - last_time).total_seconds() else: sek = -1 return (settings.get_value('run_count', 0), sek, tuple(settings.get_value('last_run_platform_info', ()))) def update_last_run_info(settings, launch_dt): """Установить новые значения для настроек: - количество запусков программы должно быть увеличено на 1; - установлена дата/время последнего запуска (текущая); - установлена информация о текущей платформе (platform.uname()). Параметры: - settings: настройки - экземпляр класса Settings; - launch_dt (datetime.datetime): дата/время запуска программы. """ settings.set_value('run_count', settings.get_value('run_count', 0) + 1) settings.set_value('last_run_datetime', launch_dt) settings.set_value('last_run_platform_info', tuple(platform.uname())) if __name__ == "__main__": launch_dt = datetime.datetime.now() # Время запуска приложения settings = Settings() try: settings.load() run_count, last_run_seconds, last_run_platform_info = \ get_last_run_info(settings, launch_dt) print("Сейчас программа запущена: {}-й раз.".format(run_count + 1)) if run_count > 0: print("С предыдущего запуска прошло {} с.". format(last_run_seconds)) print("Информация о платформе: {}".format(last_run_platform_info)) update_last_run_info(settings, launch_dt) settings.save() except Exception as err: print("Во время работы приложения произошла ошибка:", err) # ------------- # Пример вывода: # # Сейчас программа запущена: 1-й раз. # ------------- # Пример вывода: # # Сейчас программа запущена: 3-й раз. # С предыдущего запуска прошло 12 с. # Информация о платформе: ('Windows', 'user-pc', '10', '10.0.14393', 'AMD64', # 'Intel64 Family 6 Model 58 Stepping 9, GenuineIntel')
ee8ffd4568bff2eeceefd329d0b1ea1cae90f7de
2a3c0d083fa73d89e3ca9a86928a98f738c07055
/pydb/pydb/__init__.py
0361e2125f60781f20cf377afbd47dcdce65233e
[]
no_license
hacchuu0119/pip_packages
8ebef92f9196c57aedb4e9cb60ec3623f534c10f
e79ee0ca6f76d7ebce33d0de02280cd58ea809f7
refs/heads/master
2020-08-29T08:25:25.911142
2019-12-17T07:44:50
2019-12-17T07:44:50
217,981,027
3
0
null
2019-11-07T03:00:38
2019-10-28T06:34:33
Python
UTF-8
Python
false
false
1,781
py
from .connection import Connection CONNECTION_MYSQL = None def setup_connection_instance_mysql(): global CONNECTION_MYSQL CONNECTION_MYSQL = Connection() def _get_connection_instance_mysql(): if not CONNECTION_MYSQL: setup_connection_instance_mysql() return CONNECTION_MYSQL def mysql(user=None, password=None, host=None, port=None, database=None, *args, **kwargs): return _get_connection_instance_mysql().create_connection_mysql(user=user, password=password, host=host, port=port, database=database, *args, **kwargs) CONNECTION_ORACLE = None def setup_connection_instance_oracle(): global CONNECTION_ORACLE CONNECTION_ORACLE = Connection() def _get_connection_instance_oracle(): if not CONNECTION_ORACLE: setup_connection_instance_oracle() return CONNECTION_ORACLE def oracle(user=None, password=None, host=None, port=None, sid=None, *args, **kwargs): return _get_connection_instance_oracle().create_connection_oracle(user=user, password=password, host=host, port=port, sid=sid, *args, **kwargs)
ae00f2a571e93364b014c7430ef774d27668efb1
eaf00759ebec00f930c936b0beacc4b65cee6452
/7.0/ursa_product_customizations/product.py
17bd1ad0934adc534465c6ade5a61bc7bb1cb01e
[]
no_license
alephobjects/ao-openerp
b73bbeedc2149b08a946660aeb6d78f4eafa3698
3a0d7ddb85d497b4f576678370a1fbbfd71379f4
refs/heads/master
2020-04-12T03:53:47.210221
2016-07-27T09:44:24
2016-07-27T09:44:24
15,320,631
3
5
null
null
null
null
UTF-8
Python
false
false
1,769
py
# -*- coding: utf-8 -*- ############################################################################## # # Ursa Information Systems # Author: Balaji Kannan # Copyright (C) 2013 (<http://www.ursainfosystems.com>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from osv import fields, osv from tools.translate import _ class product_product(osv.osv): _inherit = "product.product" def _product_code(self, cr, uid, ids, name, arg, context=None): res = {} if context is None: context = {} for p in self.browse(cr, uid, ids, context=context): res[p.id] = self._get_partner_code_name(cr, uid, [], p, context.get('partner_id', None), context=context)['code'] return res _columns = { 'code': fields.function(_product_code, type='char', string='Internal Code'), 'manf_country': fields.many2one('res.country', 'Country of Origin'), 'scheduleb' : fields.char('Schedule B #', size=128, help='Schedule B number for item'), } product_product()
8823a2139da983b787778dd99adf5495845f9d38
3c397042e7fa0d7d4fa25cd75f0d10babd9f933f
/lab_8/mysite/mysite/settings.py
7e02b37905d7097f51689bd92ff721a407afe78c
[]
no_license
StepanIonov/RIP_lab
f34f2a95fb8ddcfeeb703efd7088320f40ac1fc5
0fefaf77d664ed404d791422658a062fc3e9201c
refs/heads/master
2023-02-20T12:38:33.389360
2021-01-18T10:13:24
2021-01-18T10:13:24
295,768,234
1
0
null
null
null
null
UTF-8
Python
false
false
3,094
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 3.1.4. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'n-)*r0pos6$$3p=*+vx+fwz%j80f$s6pn@#x*57(^#1o4b54wn' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'dishes.apps.DishesConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
06c458fbca9c45c83e062349ed1b4c3d1ba8b0bd
af34f6e3cb1d0bc783dc354b295f81d9a15120be
/pytorchocr/postprocess/fce_postprocess.py
ae4633fbea17091db90456cbe9eaffc81c2b655d
[ "Apache-2.0" ]
permissive
znsoftm/PaddleOCR2Pytorch
1785a820a1361b556963ef3d986161aebefd387a
947674812acaeaa62d2ad56a17a135c9a0582f31
refs/heads/main
2023-07-05T22:49:30.358494
2023-04-16T06:04:04
2023-04-16T06:04:04
356,120,953
0
0
Apache-2.0
2021-04-09T03:20:42
2021-04-09T03:20:42
null
UTF-8
Python
false
false
8,040
py
""" This code is refer from: https://github.com/open-mmlab/mmocr/blob/v0.3.0/mmocr/models/textdet/postprocess/wrapper.py """ import cv2 import torch import numpy as np from numpy.fft import ifft from pytorchocr.utils.poly_nms import poly_nms, valid_boundary def fill_hole(input_mask): h, w = input_mask.shape canvas = np.zeros((h + 2, w + 2), np.uint8) canvas[1:h + 1, 1:w + 1] = input_mask.copy() mask = np.zeros((h + 4, w + 4), np.uint8) cv2.floodFill(canvas, mask, (0, 0), 1) canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool) return ~canvas | input_mask def fourier2poly(fourier_coeff, num_reconstr_points=50): """ Inverse Fourier transform Args: fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1), with n and k being candidates number and Fourier degree respectively. num_reconstr_points (int): Number of reconstructed polygon points. Returns: Polygons (ndarray): The reconstructed polygons shaped (n, n') """ a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype='complex') k = (len(fourier_coeff[0]) - 1) // 2 a[:, 0:k + 1] = fourier_coeff[:, k:] a[:, -k:] = fourier_coeff[:, :k] poly_complex = ifft(a) * num_reconstr_points polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2)) polygon[:, :, 0] = poly_complex.real polygon[:, :, 1] = poly_complex.imag return polygon.astype('int32').reshape((len(fourier_coeff), -1)) class FCEPostProcess(object): """ The post process for FCENet. """ def __init__(self, scales, fourier_degree=5, num_reconstr_points=50, decoding_type='fcenet', score_thr=0.3, nms_thr=0.1, alpha=1.0, beta=1.0, box_type='poly', **kwargs): self.scales = scales self.fourier_degree = fourier_degree self.num_reconstr_points = num_reconstr_points self.decoding_type = decoding_type self.score_thr = score_thr self.nms_thr = nms_thr self.alpha = alpha self.beta = beta self.box_type = box_type def __call__(self, preds, shape_list): score_maps = [] for key, value in preds.items(): if isinstance(value, torch.Tensor): value = value.numpy() cls_res = value[:, :4, :, :] reg_res = value[:, 4:, :, :] score_maps.append([cls_res, reg_res]) return self.get_boundary(score_maps, shape_list) def resize_boundary(self, boundaries, scale_factor): """Rescale boundaries via scale_factor. Args: boundaries (list[list[float]]): The boundary list. Each boundary with size 2k+1 with k>=4. scale_factor(ndarray): The scale factor of size (4,). Returns: boundaries (list[list[float]]): The scaled boundaries. """ boxes = [] scores = [] for b in boundaries: sz = len(b) valid_boundary(b, True) scores.append(b[-1]) b = (np.array(b[:sz - 1]) * (np.tile(scale_factor[:2], int( (sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist() boxes.append(np.array(b).reshape([-1, 2])) return np.array(boxes, dtype=np.float32), scores def get_boundary(self, score_maps, shape_list): assert len(score_maps) == len(self.scales) boundaries = [] for idx, score_map in enumerate(score_maps): scale = self.scales[idx] boundaries = boundaries + self._get_boundary_single(score_map, scale) # nms boundaries = poly_nms(boundaries, self.nms_thr) boundaries, scores = self.resize_boundary( boundaries, (1 / shape_list[0, 2:]).tolist()[::-1]) boxes_batch = [dict(points=boundaries, scores=scores)] return boxes_batch def _get_boundary_single(self, score_map, scale): assert len(score_map) == 2 assert score_map[1].shape[1] == 4 * self.fourier_degree + 2 return self.fcenet_decode( preds=score_map, fourier_degree=self.fourier_degree, num_reconstr_points=self.num_reconstr_points, scale=scale, alpha=self.alpha, beta=self.beta, box_type=self.box_type, score_thr=self.score_thr, nms_thr=self.nms_thr) def fcenet_decode(self, preds, fourier_degree, num_reconstr_points, scale, alpha=1.0, beta=2.0, box_type='poly', score_thr=0.3, nms_thr=0.1): """Decoding predictions of FCENet to instances. Args: preds (list(Tensor)): The head output tensors. fourier_degree (int): The maximum Fourier transform degree k. num_reconstr_points (int): The points number of the polygon reconstructed from predicted Fourier coefficients. scale (int): The down-sample scale of the prediction. alpha (float) : The parameter to calculate final scores. Score_{final} = (Score_{text region} ^ alpha) * (Score_{text center region}^ beta) beta (float) : The parameter to calculate final score. box_type (str): Boundary encoding type 'poly' or 'quad'. score_thr (float) : The threshold used to filter out the final candidates. nms_thr (float) : The threshold of nms. Returns: boundaries (list[list[float]]): The instance boundary and confidence list. """ assert isinstance(preds, list) assert len(preds) == 2 assert box_type in ['poly', 'quad'] cls_pred = preds[0][0] tr_pred = cls_pred[0:2] tcl_pred = cls_pred[2:] reg_pred = preds[1][0].transpose([1, 2, 0]) x_pred = reg_pred[:, :, :2 * fourier_degree + 1] y_pred = reg_pred[:, :, 2 * fourier_degree + 1:] score_pred = (tr_pred[1]**alpha) * (tcl_pred[1]**beta) tr_pred_mask = (score_pred) > score_thr tr_mask = fill_hole(tr_pred_mask) tr_contours, _ = cv2.findContours( tr_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # opencv4 mask = np.zeros_like(tr_mask) boundaries = [] for cont in tr_contours: deal_map = mask.copy().astype(np.int8) cv2.drawContours(deal_map, [cont], -1, 1, -1) score_map = score_pred * deal_map score_mask = score_map > 0 xy_text = np.argwhere(score_mask) dxy = xy_text[:, 1] + xy_text[:, 0] * 1j x, y = x_pred[score_mask], y_pred[score_mask] c = x + y * 1j c[:, fourier_degree] = c[:, fourier_degree] + dxy c *= scale polygons = fourier2poly(c, num_reconstr_points) score = score_map[score_mask].reshape(-1, 1) polygons = poly_nms(np.hstack((polygons, score)).tolist(), nms_thr) boundaries = boundaries + polygons boundaries = poly_nms(boundaries, nms_thr) if box_type == 'quad': new_boundaries = [] for boundary in boundaries: poly = np.array(boundary[:-1]).reshape(-1, 2).astype(np.float32) score = boundary[-1] points = cv2.boxPoints(cv2.minAreaRect(poly)) points = np.int0(points) new_boundaries.append(points.reshape(-1).tolist() + [score]) boundaries = new_boundaries return boundaries