blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
f571d7fd74861a01016aa8d5246617c43b02e16f
311f21fb14439cc6d09b8dcc1ade0070303092a1
/slt_Code/change_detection_new/getExcelData.py
8feacc66bca9b23409259a64f4fc520b57613455
[]
no_license
janardangit/web_service
a1aeded8694ae78494b4a69d91b8cc16f37aeef3
6ca09d8b7b2e746e3c184f32e6bbb1e3be36bb86
refs/heads/master
2016-08-06T08:49:26.008001
2015-09-01T07:38:26
2015-09-01T07:38:26
41,724,349
0
0
null
null
null
null
UTF-8
Python
false
false
1,276
py
#from openpyxl import Workbook, load_workbook import xlrd def __readExcelX(fname): #wb2 = load_workbook(fname) #sheets = wb2.get_sheet_names() #print sheets return def __readExcel(fname): wb = xlrd.open_workbook(fname) sheet = wb.sheet_by_index(0) sheets = wb.sheets() bookDict = {} for i, each_sheet in enumerate(sheets): #print 'sheet Name : ', each_sheet.name #print 'no of cols : ', each_sheet.ncols #print 'no of rows : ', each_sheet.nrows bookDict[i] = {} bookDict[i]['sheet_name'] = each_sheet.name bookDict[i]['ncols'] = each_sheet.ncols bookDict[i]['nrows'] = each_sheet.nrows cellDict = {} for row in range(each_sheet.nrows): for col in range(each_sheet.ncols): #print each_sheet.cell_value(row, col).strip(), '\t', cellDict[(row, col)] = {} cellDict[(row, col)]['data'] = each_sheet.cell_value(row, col) #print bookDict[i]['cell_dict'] = cellDict #data = [sheet.cell_value(0, col) for col in range(sheet.ncols)] #print data return bookDict def getFileData(fname): return __readExcel(fname) fname = '../M_A_URL_2015_05_06.xlsx' print getFileData(fname)
aafe85502a3639873aba5094ad36db7af8bc0de7
68a4c0522b3cec8458ec4d8fba032cb0e9cfcbbb
/data.py
a864b29370063d464c9d22194a97786fdd2aac17
[]
no_license
satorres1/Tarea4TI
80a7af4737cc8aa32ada31e206b29e5dc5f2b2bb
ade407c065bc33158371ff00f08b946a0766a3a6
refs/heads/main
2023-05-30T14:45:22.240451
2021-06-14T08:43:17
2021-06-14T08:43:17
376,757,759
0
0
null
null
null
null
UTF-8
Python
false
false
4,514
py
from gspread.models import Worksheet import requests import xml.etree.ElementTree as ET import pandas as pd import gspread import df2gspread as d2g from gspread_dataframe import get_as_dataframe, set_with_dataframe albania='http://tarea-4.2021-1.tallerdeintegracion.cl/gho_ALB.xml' nueva_zelanda='http://tarea-4.2021-1.tallerdeintegracion.cl/gho_NZL.xml' canada='http://tarea-4.2021-1.tallerdeintegracion.cl/gho_CAN.xml' australia='http://tarea-4.2021-1.tallerdeintegracion.cl/gho_AUS.xml' japon='http://tarea-4.2021-1.tallerdeintegracion.cl/gho_JPN.xml' españa='http://tarea-4.2021-1.tallerdeintegracion.cl/gho_ESP.xml' r_albania = requests.get(albania) r_nueva_zelanda = requests.get(nueva_zelanda) r_canada = requests.get(canada) r_australia = requests.get(australia) r_japon = requests.get(japon) r_españa = requests.get(españa) albania_tree = ET.fromstring(r_albania.content) nueva_zelanda_tree = ET.fromstring(r_nueva_zelanda.content) canada_tree = ET.fromstring(r_canada.content) australia_tree = ET.fromstring(r_australia.content) japon_tree = ET.fromstring(r_japon.content) españa_tree = ET.fromstring(r_españa.content) all_trees = [albania_tree, nueva_zelanda_tree, canada_tree, australia_tree, japon_tree, españa_tree] all_data = [] gho_index = ["Number of deaths", "Number of infant deaths", "Number of under-five deaths", "Mortality rate for 5-14 year-olds (probability of dying per 1000 children aged 5-14 years)", "Adult mortality rate (probability of dying between 15 and 60 years per 1000 population)", "Estimates of number of homicides", "Crude suicide rates (per 100 000 population)", "Mortality rate attributed to unintentional poisoning (per 100 000 population)", "Number of deaths attributed to non-communicable diseases, by type of disease and sex", "Estimated road traffic death rate (per 100 000 population)", "Estimated number of road traffic deaths", "Mean BMI (kg/m&#xb2;) (crude estimate)", "Mean BMI (kg/m&#xb2;) (age-standardized estimate)", "Prevalence of obesity among adults, BMI &GreaterEqual; 30 (age-standardized estimate) (%)", "Prevalence of obesity among children and adolescents, BMI > +2 standard deviations above the median (crude estimate) (%)", "Prevalence of overweight among adults, BMI &GreaterEqual; 25 (crude estimate) (%)", "Prevalence of overweight among children and adolescents, BMI > +1 standard deviations above the median (crude estimate) (%)", "Prevalence of underweight among adults, BMI < 18.5 (age-standardized estimate) (%)", "Prevalence of thinness among children and adolescents, BMI < -2 standard deviations below the median (crude estimate) (%)", "Alcohol, recorded per capita (15+) consumption (in litres of pure alcohol)", "Estimate of daily cigarette smoking prevalence (%)", "Estimate of daily tobacco smoking prevalence (%)", "Estimate of current cigarette smoking prevalence (%)", "Estimate of current tobacco smoking prevalence (%)", "Mean systolic blood pressure (crude estimate)", "Mean fasting blood glucose (mmol/l) (crude estimate)", "Mean Total Cholesterol (crude estimate)"] for tree in all_trees: for row in tree.findall('Fact'): gho = row.find('GHO').text if gho in gho_index: try: country = row.find('COUNTRY').text sex = row.find('SEX').text year = row.find('YEAR').text ghecauses = row.find('GHECAUSES').text agegroup = row.find('AGEGROUP').text display = row.find('Display').text numeric = row.find('Numeric').text low = row.find('Low').text high = row.find('High').text result = {'GHO':gho, 'COUNTRY':country, 'SEX':sex, 'YEAR':year, 'GHECAUSES':ghecauses, 'AGEGROUP':agegroup, 'Display':display, 'Numeric':numeric, 'Low':low, 'High':high} all_data.append(result) except: pass df = pd.DataFrame(data=all_data) print(df) spreadsheet_key = '1Yt0xRNR94tJf0TFak2oq-5KxK9d3JK-UsTMEZB6xRY8' gc=gspread.service_account(filename='credentials.json') sh=gc.open_by_key('1Yt0xRNR94tJf0TFak2oq-5KxK9d3JK-UsTMEZB6xRY8') worksheet = sh.get_worksheet(0) worksheet.clear() set_with_dataframe(worksheet, df)
731934b122d5bcdc8e8a9343a05eec4b8e5f89b4
727f1bc2205c88577b419cf0036c029b8c6f7766
/out-bin/py/google/fhir/models/model_test.runfiles/com_google_fhir/external/pypi__tensorflow_1_12_0/tensorflow-1.12.0.data/purelib/tensorflow/contrib/signal/python/ops/window_ops.py
1ba1a5a2ec5ddd557b4b98870ad7721d7904c398
[ "Apache-2.0" ]
permissive
rasalt/fhir
55cf78feed3596a3101b86f9e9bbf6652c6ed4ad
d49883cc4d4986e11ca66058d5a327691e6e048a
refs/heads/master
2020-04-13T00:16:54.050913
2019-01-15T14:22:15
2019-01-15T14:22:15
160,260,223
0
0
Apache-2.0
2018-12-03T22:07:01
2018-12-03T22:07:01
null
UTF-8
Python
false
false
191
py
/home/rkharwar/.cache/bazel/_bazel_rkharwar/c4bcd65252c8f8250f091ba96375f9a5/external/pypi__tensorflow_1_12_0/tensorflow-1.12.0.data/purelib/tensorflow/contrib/signal/python/ops/window_ops.py
eff87214ef891dd2b1e40fed52039191e02f5b3d
c8e5d2aa94b21a2102213176ff7cbeeb93dca89b
/multilayer_p_project1/classifier.py
f04438fd5c2eb2e1bfc1b65c31e3639cc1d8c43a
[]
no_license
jurajmaslej/neuronky
c67348e0606bd6e7bac78b19940eadda8ab2d530
6bbb55cd8d913a772b5aa3d18b0b63355cd986c8
refs/heads/master
2020-03-19T00:40:37.131584
2018-07-02T20:54:45
2018-07-02T20:54:45
135,496,040
0
0
null
null
null
null
UTF-8
Python
false
false
5,890
py
import numpy as np from mlp import * from util import * import data_handler class MLPRegressor(MLP): def __init__(self, dim_in, dim_hid, dim_out, validation_data, validation_label): super().__init__(dim_in, dim_hid, dim_out, validation_data, validation_label) ## functions def cost(self, targets, outputs): # new return np.sum((targets - outputs)**2, axis=0) def f_hid(self, x): # override return(1/(1 + np.exp(-x))) # sigmoid def df_hid(self, x): # override return self.f_hid(x)*(1 - self.f_hid(x)) # derivation of sigmoid def f_out(self, x): # override #return(1/(1 + np.exp(-x))) # sigmoid """Compute the softmax of vector x in a numerically stable way.""" shiftx = x - np.max(x) exps = np.exp(shiftx) return exps / np.sum(exps) #softmax def df_out(self, x): # override #f_h = self.f_hid(x)*(1 - self.f_hid(x)) #print(" fh sh ", f_h.shape) #return jac return self.f_out(x)*(1 - self.f_out(x)) # derivation of sigmoid def stablesoftmax(self, x): """Compute the softmax of vector x in a numerically stable way.""" shiftx = x - np.max(x) exps = np.exp(shiftx) return exps / np.sum(exps) def der_softmax(self, x): x = np.atleast_2d(x) J = - x[..., None] * x[:, None, :] # off-diagonal Jacobian iy, ix = np.diag_indices_from(J[0]) J[:, iy, ix] = x * (1. - x) # diagonal return J.sum(axis=1) # sum across-rows for each sample ## prediction pass def predict(self, inputs): outputs, *_ = self.forward(inputs) # if self.forward() can take a whole batch # outputs = np.stack([self.forward(x)[0] for x in inputs.T]) # otherwise return outputs def early_stopping(self, train_errors, val_errors): quotient = 0 #print('val errors ', val_errors[-1], min(val_errors)) #print('pomer val errors ', (val_errors[-1] / min(val_errors))) gener_loss = 100 * ((val_errors[-1] / min(val_errors)) - 1) #print ('gener loss ', gener_loss) #print('train train_progress ', sum(train_errors) / (len(train_errors) * (min(train_errors)))) #print('train errors ', train_errors) train_progress = 1000 * (sum(train_errors) / (len(train_errors) * (min(train_errors))) - 1) try: quotient = gener_loss / train_progress except: #print('was 0 ', gener_loss, '#', train_progress) quotient = 0 #print('train_progress ', train_progress) #print('quotient ', quotient) return quotient ## training def train(self, inputs, targets, alpha=0.1, eps=100, early_stop_slice_len = 10, quotient_lvl = 1, early_stopping = True): (_, count) = inputs.shape errors = [] CEs = [] REs = [] valE = [] temp_REs = [] all_weights = [] #print('inputs sh', targets.shape) for ep in range(eps): print('Ep {:3d}/{}: '.format(ep+1, eps), end='') E = 0 RE = 0 for i in np.random.permutation(count): x = inputs[:, i] # FIXME #print (x) #print ("x sh ", x.shape) d = targets[:, i] # FIXME #print(d) y, dW_hid, dW_mid, dW_out = self.backward(x, d) #print('dw hid shape ', dW_hid.shape) #print(d) #print(self.decode_argmax(y)) #print(RE) #print(self.cost(d,y)) #print('@@@@') E += self.cost(d,y) RE += self.decode_argmax(d) != self.decode_argmax(y) #print (RE) #print('####') self.W_hid += alpha * dW_hid # FIXME self.W_firstmid += alpha * dW_mid self.W_out += alpha * dW_out # FIXME all_weights.append((self.W_hid, self.W_firstmid, self.W_out)) E /= count #get percentage RE /= count temp_REs.append(RE) # list of errors for last 'early_stop_slice_len' epochs if ep > 0 and (ep % early_stop_slice_len == 0) and early_stopping: # we have done 'early_stop_slice_len' epochs, now we want check if we are overfitting #print('in early early_stopping') outputs = self.predict(self.validation_data) outputs = data_handler.Handler().decode_labels(outputs).T #3,1600 validation_error = self.evaluate_model(self.validation_label, outputs) #print('vali error ', validation_error) valE.append(validation_error) quotient = self.early_stopping(temp_REs, valE) if quotient > quotient_lvl: print('OVERFITTING , pls stop trainin at epoch ', ep, ' with train error ', temp_REs) #print('last validation err ', validation_error) #self.W_hid -= alpha * dW_hid # FIXME #self.W_out -= alpha * dW_out # FIXME #print('go "slice" episodes back, ep to goto: ', ep - early_stop_slice_len) #print('previous slice val err ', valE) self.W_hid = all_weights[ep - early_stop_slice_len][0] self.W_firstmid = all_weights[ep - early_stop_slice_len][1] self.W_out = all_weights[ep - early_stop_slice_len][2] return (errors, REs) temp_REs = [] errors.append(E) #append only after we sure early stop did not interrupt REs.append(RE) #print('E = {:.3f}'.format(E)) #print(E) #print(RE) #print('RE = {:.5f}'.format(RE)) print('CE = {:6.2%}, RE = {:.5f}'.format(E, RE)) return (errors, REs) def decode_argmax(self, to_decode): max_index = to_decode.argmax(axis = 0) if max_index == 0: return 'A' if max_index == 1: return 'B' if max_index == 2: return 'C' def evaluate_model(self, targets, outputs): targets = targets.T outputs = outputs.T #print(targets.shape) #print(outputs.shape) data_count,_ = outputs.shape count_errors = 0 for i in range(0, data_count): if (outputs[i] == targets[i]).all() == False: count_errors += 1 #print(self.validation_label.T[i]) #print('#') #print(outputs.T[i]) #print('@@@@') #print('num of count_errors in prediction ', count_errors) #print('count_errors / num of samples ', count_errors/data_count) return (count_errors / data_count)
0f78526bcafec34871cd9dace8e966cf5eb716ac
cf5077d06c5145d93b44c0c00bb93f93fbf4d59d
/static_page/middleware.py
b9781cdb1dd5bc55c28f71d93a202db0d403174c
[]
no_license
su-danny/famdates
16a9ee01d259c9978278415943d918fd47bdfc9e
301cf997985172c146d917c832390e0db57c03c5
refs/heads/master
2016-08-06T18:17:30.345319
2014-03-11T10:34:31
2014-03-11T10:34:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
706
py
from static_page.views import static_page from django.http import Http404 from django.conf import settings class StaticpageFallbackMiddleware(object): def process_response(self, request, response): if response.status_code != 404: return response # No need to check for a flatpage for non-404 responses. try: return static_page(request, request.path_info) # Return the original response if any errors happened. Because this # is a middleware, we can't assume the errors will be caught elsewhere. except Http404: return response except: if settings.DEBUG: raise return response
9e022ee4eb24c50cf3826993896166dd171db0fa
aba0055290156515e6befc47d06183dee2663aec
/tensorflow2/tf2cv/models/pnasnet.py
42c4d3657a4aec53bc30e3f77e60430c214ba3da
[ "MIT" ]
permissive
piyop/imgclsmob
f320aeb4675be57042cf661190e19d9299d46731
780dc56eddc95ce58c34eb6f6e48d2fb4c566571
refs/heads/master
2022-11-05T17:34:34.076150
2020-06-26T12:06:16
2020-06-26T12:06:16
275,135,197
1
0
MIT
2020-06-26T10:59:46
2020-06-26T10:59:45
null
UTF-8
Python
false
false
23,517
py
""" PNASNet for ImageNet-1K, implemented in TensorFlow. Original paper: 'Progressive Neural Architecture Search,' https://arxiv.org/abs/1712.00559. """ __all__ = ['PNASNet', 'pnasnet5large'] import os import tensorflow as tf import tensorflow.keras.layers as nn from .common import MaxPool2d, conv1x1, flatten, is_channels_first, get_channel_axis from .nasnet import nasnet_dual_path_sequential, nasnet_batch_norm, NasConv, NasDwsConv, NasPathBlock, NASNetInitBlock class PnasMaxPoolBlock(nn.Layer): """ PNASNet specific Max pooling layer with extra padding. Parameters: ---------- strides : int or tuple/list of 2 int, default 2 Strides of the convolution. extra_padding : bool, default False Whether to use extra padding. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, strides=2, extra_padding=False, data_format="channels_last", **kwargs): super(PnasMaxPoolBlock, self).__init__(**kwargs) self.extra_padding = extra_padding self.data_format = data_format self.pool = MaxPool2d( pool_size=3, strides=strides, padding=1, data_format=data_format, name="pool") if self.extra_padding: self.pad = nn.ZeroPadding2D( padding=((1, 0), (1, 0)), data_format=data_format) def call(self, x, training=None): if self.extra_padding: x = self.pad(x) x = self.pool(x) if self.extra_padding: if is_channels_first(self.data_format): x = x[:, :, 1:, 1:] else: x = x[:, 1:, 1:, :] return x def pnas_conv1x1(in_channels, out_channels, strides=1, data_format="channels_last", **kwargs): """ 1x1 version of the PNASNet specific convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int, default 1 Strides of the convolution. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ return NasConv( in_channels=in_channels, out_channels=out_channels, kernel_size=1, strides=strides, padding=0, groups=1, data_format=data_format, **kwargs) class DwsBranch(nn.Layer): """ PNASNet specific block with depthwise separable convolution layers. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. strides : int or tuple/list of 2 int Strides of the convolution. extra_padding : bool, default False Whether to use extra padding. stem : bool, default False Whether to use squeeze reduction if False. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, in_channels, out_channels, kernel_size, strides, extra_padding=False, stem=False, data_format="channels_last", **kwargs): super(DwsBranch, self).__init__(**kwargs) assert (not stem) or (not extra_padding) mid_channels = out_channels if stem else in_channels padding = kernel_size // 2 self.conv1 = NasDwsConv( in_channels=in_channels, out_channels=mid_channels, kernel_size=kernel_size, strides=strides, padding=padding, extra_padding=extra_padding, data_format=data_format, name="conv1") self.conv2 = NasDwsConv( in_channels=mid_channels, out_channels=out_channels, kernel_size=kernel_size, strides=1, padding=padding, data_format=data_format, name="conv2") def call(self, x, training=None): x = self.conv1(x, training=training) x = self.conv2(x, training=training) return x def dws_branch_k3(in_channels, out_channels, strides=2, extra_padding=False, stem=False, data_format="channels_last", **kwargs): """ 3x3 version of the PNASNet specific depthwise separable convolution branch. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int, default 2 Strides of the convolution. extra_padding : bool, default False Whether to use extra padding. stem : bool, default False Whether to use squeeze reduction if False. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ return DwsBranch( in_channels=in_channels, out_channels=out_channels, kernel_size=3, strides=strides, extra_padding=extra_padding, stem=stem, data_format=data_format, **kwargs) def dws_branch_k5(in_channels, out_channels, strides=2, extra_padding=False, stem=False, data_format="channels_last", **kwargs): """ 5x5 version of the PNASNet specific depthwise separable convolution branch. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int, default 2 Strides of the convolution. extra_padding : bool, default False Whether to use extra padding. stem : bool, default False Whether to use squeeze reduction if False. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ return DwsBranch( in_channels=in_channels, out_channels=out_channels, kernel_size=5, strides=strides, extra_padding=extra_padding, stem=stem, data_format=data_format, **kwargs) def dws_branch_k7(in_channels, out_channels, strides=2, extra_padding=False, data_format="channels_last", **kwargs): """ 7x7 version of the PNASNet specific depthwise separable convolution branch. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int, default 2 Strides of the convolution. extra_padding : bool, default False Whether to use extra padding. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ return DwsBranch( in_channels=in_channels, out_channels=out_channels, kernel_size=7, strides=strides, extra_padding=extra_padding, stem=False, data_format=data_format, **kwargs) class PnasMaxPathBlock(nn.Layer): """ PNASNet specific `max path` auxiliary block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, in_channels, out_channels, data_format="channels_last", **kwargs): super(PnasMaxPathBlock, self).__init__(**kwargs) self.maxpool = PnasMaxPoolBlock( data_format=data_format, name="maxpool") self.conv = conv1x1( in_channels=in_channels, out_channels=out_channels, data_format=data_format, name="conv") self.bn = nasnet_batch_norm( channels=out_channels, data_format=data_format, name="bn") def call(self, x, training=None): x = self.maxpool(x) x = self.conv(x) x = self.bn(x, training=training) return x class PnasBaseUnit(nn.Layer): """ PNASNet base unit. Parameters: ---------- data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, data_format="channels_last", **kwargs): super(PnasBaseUnit, self).__init__(**kwargs) self.data_format = data_format def cell_forward(self, x, x_prev, training=None): assert (hasattr(self, 'comb0_left')) x_left = x_prev x_right = x x0 = self.comb0_left(x_left, training=training) + self.comb0_right(x_left, training=training) x1 = self.comb1_left(x_right, training=training) + self.comb1_right(x_right, training=training) x2 = self.comb2_left(x_right, training=training) + self.comb2_right(x_right, training=training) x3 = self.comb3_left(x2, training=training) + self.comb3_right(x_right, training=training) x4 = self.comb4_left(x_left, training=training) + (self.comb4_right(x_right, training=training) if self.comb4_right else x_right) x_out = tf.concat([x0, x1, x2, x3, x4], axis=get_channel_axis(self.data_format)) return x_out class Stem1Unit(PnasBaseUnit): """ PNASNet Stem1 unit. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, in_channels, out_channels, data_format="channels_last", **kwargs): super(Stem1Unit, self).__init__(**kwargs) mid_channels = out_channels // 5 self.conv_1x1 = pnas_conv1x1( in_channels=in_channels, out_channels=mid_channels, data_format=data_format, name="conv_1x1") self.comb0_left = dws_branch_k5( in_channels=in_channels, out_channels=mid_channels, stem=True, data_format=data_format, name="comb0_left") self.comb0_right = PnasMaxPathBlock( in_channels=in_channels, out_channels=mid_channels, data_format=data_format, name="comb0_right") self.comb1_left = dws_branch_k7( in_channels=mid_channels, out_channels=mid_channels, data_format=data_format, name="comb1_left") self.comb1_right = PnasMaxPoolBlock( data_format=data_format, name="comb1_right") self.comb2_left = dws_branch_k5( in_channels=mid_channels, out_channels=mid_channels, data_format=data_format, name="comb2_left") self.comb2_right = dws_branch_k3( in_channels=mid_channels, out_channels=mid_channels, data_format=data_format, name="comb2_right") self.comb3_left = dws_branch_k3( in_channels=mid_channels, out_channels=mid_channels, strides=1, data_format=data_format, name="comb3_left") self.comb3_right = PnasMaxPoolBlock( data_format=data_format, name="comb3_right") self.comb4_left = dws_branch_k3( in_channels=in_channels, out_channels=mid_channels, stem=True, data_format=data_format, name="comb4_left") self.comb4_right = pnas_conv1x1( in_channels=mid_channels, out_channels=mid_channels, strides=2, data_format=data_format, name="comb4_right") def call(self, x, training=None): x_prev = x x = self.conv_1x1(x, training=training) x_out = self.cell_forward(x, x_prev, training=training) return x_out class PnasUnit(PnasBaseUnit): """ PNASNet ordinary unit. Parameters: ---------- in_channels : int Number of input channels. prev_in_channels : int Number of input channels in previous input. out_channels : int Number of output channels. reduction : bool, default False Whether to use reduction. extra_padding : bool, default False Whether to use extra padding. match_prev_layer_dimensions : bool, default False Whether to match previous layer dimensions. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, in_channels, prev_in_channels, out_channels, reduction=False, extra_padding=False, match_prev_layer_dimensions=False, data_format="channels_last", **kwargs): super(PnasUnit, self).__init__(**kwargs) mid_channels = out_channels // 5 stride = 2 if reduction else 1 if match_prev_layer_dimensions: self.conv_prev_1x1 = NasPathBlock( in_channels=prev_in_channels, out_channels=mid_channels, data_format=data_format, name="conv_prev_1x1") else: self.conv_prev_1x1 = pnas_conv1x1( in_channels=prev_in_channels, out_channels=mid_channels, data_format=data_format, name="conv_prev_1x1") self.conv_1x1 = pnas_conv1x1( in_channels=in_channels, out_channels=mid_channels, data_format=data_format, name="conv_1x1") self.comb0_left = dws_branch_k5( in_channels=mid_channels, out_channels=mid_channels, strides=stride, extra_padding=extra_padding, data_format=data_format, name="comb0_left") self.comb0_right = PnasMaxPoolBlock( strides=stride, extra_padding=extra_padding, data_format=data_format, name="comb0_right") self.comb1_left = dws_branch_k7( in_channels=mid_channels, out_channels=mid_channels, strides=stride, extra_padding=extra_padding, data_format=data_format, name="comb1_left") self.comb1_right = PnasMaxPoolBlock( strides=stride, extra_padding=extra_padding, data_format=data_format, name="comb1_right") self.comb2_left = dws_branch_k5( in_channels=mid_channels, out_channels=mid_channels, strides=stride, extra_padding=extra_padding, data_format=data_format, name="comb2_left") self.comb2_right = dws_branch_k3( in_channels=mid_channels, out_channels=mid_channels, strides=stride, extra_padding=extra_padding, data_format=data_format, name="comb2_right") self.comb3_left = dws_branch_k3( in_channels=mid_channels, out_channels=mid_channels, strides=1, data_format=data_format, name="comb3_left") self.comb3_right = PnasMaxPoolBlock( strides=stride, extra_padding=extra_padding, data_format=data_format, name="comb3_right") self.comb4_left = dws_branch_k3( in_channels=mid_channels, out_channels=mid_channels, strides=stride, extra_padding=extra_padding, data_format=data_format, name="comb4_left") if reduction: self.comb4_right = pnas_conv1x1( in_channels=mid_channels, out_channels=mid_channels, strides=stride, data_format=data_format, name="comb4_right") else: self.comb4_right = None def call(self, x, x_prev, training=None): x_prev = self.conv_prev_1x1(x_prev, training=training) x = self.conv_1x1(x, training=training) x_out = self.cell_forward(x, x_prev, training=training) return x_out class PNASNet(tf.keras.Model): """ PNASNet model from 'Progressive Neural Architecture Search,' https://arxiv.org/abs/1712.00559. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. stem1_blocks_channels : list of 2 int Number of output channels for the Stem1 unit. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (331, 331) Spatial size of the expected input image. classes : int, default 1000 Number of classification classes. data_format : str, default 'channels_last' The ordering of the dimensions in tensors. """ def __init__(self, channels, init_block_channels, stem1_blocks_channels, in_channels=3, in_size=(331, 331), classes=1000, data_format="channels_last", **kwargs): super(PNASNet, self).__init__(**kwargs) self.in_size = in_size self.classes = classes self.data_format = data_format self.features = nasnet_dual_path_sequential( return_two=False, first_ordinals=2, last_ordinals=2, name="features") self.features.add(NASNetInitBlock( in_channels=in_channels, out_channels=init_block_channels, data_format=data_format, name="init_block")) in_channels = init_block_channels self.features.add(Stem1Unit( in_channels=in_channels, out_channels=stem1_blocks_channels, data_format=data_format, name="stem1_unit")) prev_in_channels = in_channels in_channels = stem1_blocks_channels for i, channels_per_stage in enumerate(channels): stage = nasnet_dual_path_sequential( name="stage{}".format(i + 1)) for j, out_channels in enumerate(channels_per_stage): reduction = (j == 0) extra_padding = (j == 0) and (i not in [0, 2]) match_prev_layer_dimensions = (j == 1) or ((j == 0) and (i == 0)) stage.add(PnasUnit( in_channels=in_channels, prev_in_channels=prev_in_channels, out_channels=out_channels, reduction=reduction, extra_padding=extra_padding, match_prev_layer_dimensions=match_prev_layer_dimensions, data_format=data_format, name="unit{}".format(j + 1))) prev_in_channels = in_channels in_channels = out_channels self.features.add(stage) self.features.add(nn.ReLU(name="activ")) self.features.add(nn.AveragePooling2D( pool_size=11, strides=1, data_format=data_format, name="final_pool")) self.output1 = tf.keras.Sequential(name="output1") self.output1.add(nn.Dropout( rate=0.5, name="dropout")) self.output1.add(nn.Dense( units=classes, input_dim=in_channels, name="fc")) def call(self, x, training=None): x = self.features(x, training=training) x = flatten(x, self.data_format) x = self.output1(x) return x def get_pnasnet(model_name=None, pretrained=False, root=os.path.join("~", ".tensorflow", "models"), **kwargs): """ Create PNASNet model with specific parameters. Parameters: ---------- model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ repeat = 4 init_block_channels = 96 stem_blocks_channels = [270, 540] norm_channels = [1080, 2160, 4320] channels = [[ci] * repeat for ci in norm_channels] stem1_blocks_channels = stem_blocks_channels[0] channels[0] = [stem_blocks_channels[1]] + channels[0] net = PNASNet( channels=channels, init_block_channels=init_block_channels, stem1_blocks_channels=stem1_blocks_channels, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file in_channels = kwargs["in_channels"] if ("in_channels" in kwargs) else 3 input_shape = (1,) + (in_channels,) + net.in_size if net.data_format == "channels_first" else\ (1,) + net.in_size + (in_channels,) net.build(input_shape=input_shape) net.load_weights( filepath=get_model_file( model_name=model_name, local_model_store_dir_path=root)) return net def pnasnet5large(**kwargs): """ PNASNet-5-Large model from 'Progressive Neural Architecture Search,' https://arxiv.org/abs/1712.00559. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_pnasnet(model_name="pnasnet5large", **kwargs) def _test(): import numpy as np import tensorflow.keras.backend as K data_format = "channels_last" pretrained = False models = [ pnasnet5large, ] for model in models: net = model(pretrained=pretrained, data_format=data_format) batch_saze = 14 x = tf.random.normal((batch_saze, 3, 331, 331) if is_channels_first(data_format) else (batch_saze, 331, 331, 3)) y = net(x) assert (tuple(y.shape.as_list()) == (batch_saze, 1000)) weight_count = sum([np.prod(K.get_value(w).shape) for w in net.trainable_weights]) print("m={}, {}".format(model.__name__, weight_count)) assert (model != pnasnet5large or weight_count == 86057668) if __name__ == "__main__": _test()
45c3da155377e5eb40278aa304fefbe65f4e8e04
ac2142d192bde034ae3c6d7e07045c39d9a34aa3
/面试题/打乱一个排好序的list对象alist.py
2ce47af69449852469742a5d2902fec7d4baacc3
[]
no_license
budaLi/-500-
ee33a93a6c7f7d36e30a29dd1e12634034712d12
69c42389717f003198f652035bfc922eac8a6fef
refs/heads/master
2022-11-20T08:42:24.255264
2020-07-22T07:41:52
2020-07-22T07:41:52
281,352,944
0
0
null
null
null
null
UTF-8
Python
false
false
325
py
# @Time : 2020/7/22 15:12 # @Author : Libuda # @FileName: 打乱一个排好序的list对象alist.py # @Software: PyCharm list = list(range(1,100)) import random def shuffle(list): # 要注意 不会返回 random.shuffle(list) return list if __name__ == '__main__': res = shuffle(list) print(res)
28c8ccf78fb493260749111e0f7eaf2d01e32a19
8767c6db0699133e96447f56624dadb9eb89ef32
/Leetcode/Factorial Trailing Zeroes.py
eac9d8fd54aa18ad4ab426a8ff54e14fef7191ef
[]
no_license
ran0527/Coding
8667f34e568fa16e38d5050be0d1f9f892b1051f
e613aea74c43274793653eb160b36b12db1fb605
refs/heads/master
2021-01-10T05:37:53.348116
2015-12-01T21:54:04
2015-12-01T21:54:04
45,228,996
0
0
null
null
null
null
UTF-8
Python
false
false
256
py
class Solution(object): def trailingZeroes(self, n): """ :type n: int :rtype: int """ i = 5 result = 0 while n >= i: result += n / i i *= 5 return result
db786b96b9bd2c680d18def2be8b505743bdebec
715239e1d30f384ec040fe0cd49053252420ec15
/exampleSite/local_public.py
2a365d6d0a38cedee9b0fcc0fabbbd435763b537
[ "MIT" ]
permissive
brangpd/hugo-xmin
cac3dfec737e3621f4b06b25931876990d651e6c
08264a4a30d6bf2fc08a9e89309892d3b5ceb604
refs/heads/master
2023-08-18T14:13:53.689813
2021-10-12T04:51:12
2021-10-12T04:51:12
284,719,103
0
0
MIT
2020-08-03T14:16:18
2020-08-03T14:16:17
null
UTF-8
Python
false
false
205
py
import os import tempfile def get_local_public_dir(): return '{tempdir}{sep}{public}'.format( tempdir=tempfile.gettempdir(), sep=os.path.sep, public='hugo_local_public' )
7faf1390cd057e273a7e64857234173695677762
3aafaa865594aa58d056a79fdae4d0658774d3ab
/setup.py
eede62ba499ebbc973b5357cc960f237d47318d5
[ "Apache-2.0", "MIT", "Intel" ]
permissive
asamarah1/lpot
56aac0d46692e1864de2f06390ab435cd079e741
881bde402db387b04c2f33cc96fb817f47c4d623
refs/heads/master
2023-01-20T15:55:39.088923
2020-12-01T13:22:59
2020-12-01T14:25:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,520
py
from io import open from setuptools import find_packages, setup import re import sys try: filepath = './lpot/version.py' with open( filepath ) as version_file: __version__ ,= re.findall( '__version__ = "(.*)"', version_file.read() ) except Exception as error: assert False, "Error: Could not open '%s' due %s\n" % (filepath, error) setup( name="lpot", version=__version__, author="Intel MLP/MLPC Team", author_email="[email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]", description="Repository of Intel® Low Precision Optimization Tool", long_description=open("README.md", "r", encoding='utf-8').read(), long_description_content_type="text/markdown", keywords='quantization, auto-tuning, post-training static quantization, post-training dynamic quantization, quantization-aware training, tuning strategy', license='', url="https://github.com/intel/lpot", packages = find_packages(), package_dir = {'':'.'}, package_data={'': ['*.py', '*.yaml']}, install_requires=['numpy', 'pyyaml', 'scikit-learn', 'schema', 'py-cpuinfo', 'hyperopt', 'pandas'], entry_points={ 'console_scripts': [""] }, python_requires='>=3.5.0', classifiers=[ 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], )
200fcefe0011f3bc6221235c3a84e460fd5bf3aa
fee22561b220389e14a5ba3c09d5795b92299e64
/article/migrations/0003_auto_20160325_1638.py
df39a190f838a857549b956e6a4eb772dd7af8fc
[]
no_license
zionchao/myhome
88687e369e24456eaab983c415d554bf64e15799
38343f9cc6c928f9622565a2c909b96b7e0942e3
refs/heads/master
2021-01-10T01:48:44.846660
2016-03-31T07:13:00
2016-03-31T07:13:00
54,965,012
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('article', '0002_auto_20160325_1621'), ] operations = [ migrations.AlterField( model_name='classification', name='name', field=models.CharField(max_length=50), ), ]
4c1b490c17b1790112416a464aac3b5646a91ef4
5ae8e983ec6159c82d6551ff8333ebe4ead3526d
/Hangman_Game/hangman.py
0526f1e36af3123952698f8a264bcbd17b97b377
[]
no_license
karan-47/turtle-python
0aa7d0ed9d66671a73d196a31f1b8a7fcf526239
70319407298b1721a98a5fe2a026dcc483d5a1f9
refs/heads/main
2023-04-10T10:32:09.402686
2021-04-25T15:01:11
2021-04-25T15:01:11
361,450,698
0
0
null
null
null
null
UTF-8
Python
false
false
3,849
py
import turtle alphabets = [] answer = "" current = "" guessedanswer = [] count = 10 clearedlist = [] isGuessed = False display_turtle = turtle.Turtle() display_turtle.hideturtle() display_turtle.speed(0) display_count = turtle.Turtle() display_count.hideturtle() display_count.speed(0) turtle.tracer(0) def countDisplay(): global count display_count.clear() display_count.hideturtle() display_count.penup() display_count.goto(100, 100) display_count.write(count) def displayAnswer(): global current display_turtle.clear() display_turtle.hideturtle() display_turtle.penup() display_turtle.goto(0,100) cn = "" for i in range (len(current)): cn += current[i]+" " display_turtle.write(cn) def setAnswer(): global alphabets,answer,guessedanswer,isGuessed,current,clearedlist,count setAlphabets() count = 10 answer = 'hello'.upper() for i in range(len(answer)): current = current + '_' guessedanswer = list(current) clearedlist = [] isGuessed = False def resetAnswer(): global alphabets,answer,guessedanswer,isGuessed,current,clearedlist,count current = '' count = 10 clearedlist = [] alphabets = [] answer = "" guessedanswer = [] isGuessed = False def setAlphabets(): global alphabets for i in range(26): t = turtle.Turtle() t.hideturtle() t.penup() t.speed(0) alphabets.append(t) t.goto(i*25 - 320, -200) t.write(chr(i+65)) def removeAlphabets(): global alphabets for i in range(26): alphabets[i].clear() def checkAnswer( char ): global answer,clearedlist,count global guessedanswer,current,alphabets if char not in clearedlist: clearedlist.append(char) if char in answer and char not in current: for i in range(len(answer)): if answer[i] == char: guessedanswer[i] = char current = "".join(guessedanswer) else: count -= 1 displayAnswer() countDisplay() t1 = list(char) clearAlphabet(ord(t1[0])-65) def clearAlphabet(i): global alphabets alphabets[i].clear() def a(): checkAnswer('A') def b(): checkAnswer('B') def c(): checkAnswer('C') def d(): checkAnswer('D') def e(): checkAnswer('E') def f(): checkAnswer('F') def g(): checkAnswer('G') def h(): checkAnswer('H') def i(): checkAnswer('I') def j(): checkAnswer('J') def k(): checkAnswer('K') def l(): checkAnswer('L') def m(): checkAnswer('M') def n(): checkAnswer('N') def o(): checkAnswer('O') def p(): checkAnswer('P') def q(): checkAnswer('Q') def r(): checkAnswer('R') def s(): checkAnswer('S') def t(): checkAnswer('T') def u(): checkAnswer('U') def v(): checkAnswer('V') def w(): checkAnswer('W') def x(): checkAnswer('X') def y(): checkAnswer('Y') def z(): checkAnswer('Z') turtle.listen() setAnswer() displayAnswer() countDisplay() turtle.onkey(a,"a") turtle.onkey(b,"b") turtle.onkey(c,"c") turtle.onkey(d,"d") turtle.onkey(e,"e") turtle.onkey(f,"f") turtle.onkey(g,"g") turtle.onkey(h,"h") turtle.onkey(i,"i") turtle.onkey(j,"j") turtle.onkey(k,"k") turtle.onkey(l,"l") turtle.onkey(m,"m") turtle.onkey(n,"n") turtle.onkey(o,"o") turtle.onkey(p,"p") turtle.onkey(q,"q") turtle.onkey(r,"r") turtle.onkey(s,"s") turtle.onkey(t,"t") turtle.onkey(u,"u") turtle.onkey(v,"v") turtle.onkey(w,"w") turtle.onkey(x,"x") turtle.onkey(y,"y") turtle.onkey(z,"z") # while True: # turtle.update() # turtle.tracer(0, 0) turtle.mainloop()
a0ff3272428bf429d2bdb5f83aef3f90e3f4a975
878365a0283fb353bf82b561e9004652b50c84bc
/SPN-DAG Project/Important/src/kNN.py
971ea003544a53de65c8e7497c8974e785472a0f
[ "BSD-3-Clause" ]
permissive
atcbosselut/spn-discriminative
7e844b97f38c607d4da9d5b5c8878042a45f98c0
9baca470dc17079bbbb1ec8c6426cb1ee7163373
refs/heads/master
2021-01-19T07:29:44.702944
2017-07-03T18:42:21
2017-07-03T18:42:21
28,318,902
0
0
null
null
null
null
UTF-8
Python
false
false
2,437
py
from __future__ import division import numpy as np import scipy as sp from scipy import linalg import cPickle import random as rd import SPN import Nodes import Tensors import Data import time import sklearn.neighbors as sk #Set Hyperparameters epsilon = .00005 eta = .1 N=10000 N_test=10000 pictureSize = 32 tensorSize = 3 numColors = 3 print "Get Data" #Unpickle Data data_batch1 = Data.unpickle("cifar-10-batches-py/data_batch_1") #data_batch2 = Data.unpickle("cifar-10-batches-py/data_batch_2") #data_batch3 = Data.unpickle("cifar-10-batches-py/data_batch_3") #data_batch4 = Data.unpickle("cifar-10-batches-py/data_batch_4") #data_batch5 = Data.unpickle("cifar-10-batches-py/data_batch_5") test_batch = Data.unpickle("cifar-10-batches-py/test_batch") #Get Data batch1_labels, batch1_data = Data.GetLabelsAndData(data_batch1) #batch2_labels, batch2_data = Data.GetLabelsAndData(data_batch2) #batch3_labels, batch3_data = Data.GetLabelsAndData(data_batch3) #batch4_labels, batch4_data = Data.GetLabelsAndData(data_batch4) #batch5_labels, batch5_data = Data.GetLabelsAndData(data_batch5) test_batch_labels, test_batch_data = Data.GetLabelsAndData(test_batch) MPGaussianTrain = np.loadtxt('Input_Train1.txt') Y=batch1_labels start = time.time() nbrs = sk.KNeighborsClassifier(n_neighbors = 10, weights = 'distance') nbrs.fit(MPGaussianTrain,Y) end=time.time() Ypredtrain = nbrs.predict(MPGaussianTrain) end=time.time() print "Compute Training Error" #Calculate Training Error train_error = np.sum(np.array(Y) != np.array(Ypredtrain))/10000 print train_error Ytest=test_batch_labels MPGaussianTest = np.loadtxt("Input_test.txt") "Compute Test Error" #Get Test Error Ypredtest = nbrs.predict(MPGaussianTest) test_error = np.sum(np.array(Ytest) != np.array(Ypredtest))/10000 np.savetxt('YpredtestkNN.txt', Ypredtest) print test_error timing = end-start f = open('10000-10NNResults.txt', 'w+') f.write('Training Error: %s\n' %train_error) f.write('Test Error: %s\n' %test_error) f.write('Timing: %s\n' %timing) f.close()
7ab0180b3df108a22aee4895e8a24eeca98b83b3
8a43bcad26f266dab04b3430bb83c8ebe822bfd9
/기초알고리즘/조합,순열_알고리즘/combinations.py
11631f14ca49c05429dd376fbb4d507d783a0a0e
[]
no_license
Ha-Young/algorithm
e80b3b4dafc4f55bbfc38fb4f356c316d9307618
376a4f23d92d52ac30cd3817a37fb137c657a4af
refs/heads/master
2022-06-24T12:00:04.440801
2020-05-07T14:42:27
2020-05-07T14:42:27
250,194,650
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
# 조합 알고리즘 # 제네레이터 사용 def combinations(arr, r): for i in range(len(arr)): if r == 1: yield [arr[i]] else: for next in combinations(arr[i + 1:], r - 1): yield [arr[i]] + next combi = combinations([1,2,3,4,5],3) print(list(combi))
6667031e2bc9b493017b306fe5752e9c86966c61
bed0735d6e067d7d1491d463acf2409374abcd79
/content/migrations/0013_auto_20170529_0350.py
3d366602d69096a4f9b5cc30ea90f04a8a197eef
[]
no_license
bitapardaz/magia_wifi
9ba515c3e162989280336f214788bb4577b45bac
282978a64586af2486580ac56238aed3b35582f7
refs/heads/master
2021-01-22T23:05:28.511187
2017-05-30T04:13:00
2017-05-30T04:13:00
92,797,045
0
0
null
null
null
null
UTF-8
Python
false
false
616
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-05-29 03:50 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('content', '0012_category_file_path'), ] operations = [ migrations.RemoveField( model_name='category', name='file_path', ), migrations.AddField( model_name='movie', name='file_path', field=models.FilePathField(blank=True, null=True, path='/mnt/FlashDrive/wifi_storage/movies/'), ), ]
f655308c6590a8d2eec45dc2d83e1818e2d5ee36
c839bb0899fb6665f59e8ce8644d094035f3d3bc
/thomas/edsurface.py
b9d7010135378c14a9558ea623888256ac91f27f
[ "Apache-2.0" ]
permissive
ThomasDerZweifler/pyPro
53467f029c9ca057e546b2d74766927fd1657cf3
8bc6531483f08982b19c08a4cdb1a0c9dbd03737
refs/heads/master
2023-03-17T13:58:13.813111
2021-03-28T09:30:59
2021-03-28T09:30:59
280,870,639
0
1
null
null
null
null
UTF-8
Python
false
false
615
py
import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Create the mesh in polar coordinates and compute corresponding Z. r = np.linspace(0, 1.25, 50) p = np.linspace(0, 2*np.pi, 50) R, P = np.meshgrid(r, p) Z = ((R**2 - 1)**2) # Express the mesh in the cartesian system. X, Y = R*np.cos(P), R*np.sin(P) # Plot the surface. ax.plot_surface(X, Y, Z, cmap=plt.cm.YlGnBu_r) # Tweak the limits and add latex math labels. ax.set_zlim(0, 1) ax.set_xlabel(r'$\phi_\mathrm{real}$') ax.set_ylabel(r'$\phi_\mathrm{im}$') ax.set_zlabel(r'$V(\phi)$') plt.show()
0440e6fe39352fb099147feba38f8f2123481e02
d1601687464225857b492f4b5009283932f91e2f
/student/urls.py
fc0f3c7e7bec0f53a5dc149d4e925f11c030978d
[]
no_license
Barolina/mp_06_08
010a4906153c297f21098ef90811dba1f1aacc0b
0f3e30ccb8fe178f11918836d958533365a1d99a
refs/heads/master
2021-06-28T20:09:38.345537
2017-09-19T08:50:55
2017-09-19T08:50:55
103,932,600
0
0
null
null
null
null
UTF-8
Python
false
false
422
py
# -*- coding: utf-8 -*- from django.conf.urls import url, include from django.contrib import admin from django.views.generic import TemplateView from material.frontend import urls as frontend_urls from student.views import AddStudentWizard, FORMS, StudentsView urlpatterns = [ url(r'^addstudent/$', AddStudentWizard.as_view(FORMS), name='addstudent'), url(r'', StudentsView.as_view(), name='liststudent'), ]
28d8b073824c0f7153f5892108c1e04a83927893
086ab7897780542bb26b46fa10cd42e31319e496
/Marcas/Examen Marcas/Funciones.py
f5257464c8f77b277760462293841e5eb509cda6
[]
no_license
alexrr12341/1ASIR
2d75bffbaaabb773cf8f38e6f222889423c64387
5d148a30ebafce452957ada842e2511fae40fbbe
refs/heads/master
2021-07-22T19:30:18.646010
2021-07-10T09:16:36
2021-07-10T09:16:36
189,486,719
1
0
null
null
null
null
UTF-8
Python
false
false
1,542
py
'''Nombre:Alejandro Rodríguez Rojas 1) Queremos gestionar los precios en un supermercado para ello vamos a crear dos pequeñas funciones: CalcularPrecio: Esta función recibe el nombre de un artículo, su precio y la cantidad que ha comprado el cliente, y devuelve el precio final. Para realizar el cálculo tenemos que usar la siguiente función que nos indica si el articulo esta rebajado. Si está rebajado tendremos que utilizar el 50% del precio. EstaRebajado: Recibe el nombre de un artículo, si el nombre contiene la palabra “Rebajas” el artículo está rebajado. Esta función devuelve si el articulo esta rebajado o no. Crea estas dos funciones en un fichero, y a continuación crea dos programas (en dos ficheros distintos) que hagan lo siguiente: 2) Realiza un programa que vaya pidiendo artículos (nombre y precio) y la cantidad que el cliente ha comprado y te vaya mostrando el precio final (utilizando las funciones anteriores). El programa termina cuando introducimos un * como nombre de artículo. 3) Realiza un programa que lea el siguiente fichero de texto (el contenido es variable, y lo puedes cambiar, este es sólo un ejemplo), con la siguiente información: nombre del artículo, precio, cantidad comprada: Fregona Rebajas, 4.5, 3 Detergente, 2.0, 5 Escoba, 1.5, 7''' def CalcularPrecio(articulo,precio,cantidad): preciofinal=precio*cantidad return articulo,preciofinal def EstaRebajado(articulo,precio,cantidad): preciofinal=(precio*cantidad)*0.5 return articulo,preciofinal
b7fc81ac1762dbaa2af2112824262c538c6a3aaa
ea713b507484d485bfce58a5869e069fc679cce2
/Interpolation/0.2_convolutionMamba.py
37d55aacde51c4b51afd9e55b40b54aeb65ffdad
[]
no_license
TPhilippon/SATELITIMEscripts
e689bc83f5c71600c69beca82d40bf73b7ed05bc
5e97e21cccd9b335dc3b3926293798cb6880f8db
refs/heads/master
2020-12-24T18:23:18.544761
2016-06-06T13:44:38
2016-06-06T13:44:38
57,040,095
1
1
null
null
null
null
UTF-8
Python
false
false
4,376
py
# -*- coding: utf-8 -*- """ Created on Tue Apr 26 14:55:40 2016 @author: terencephilippon """ import os,sys #from pyhdf.SD import SD, SDC from pylab import mpl as mpl from mpl_toolkits.axes_grid1 import make_axes_locatable #from netCDF4 import Dataset import matplotlib.pyplot as plt import numpy as np import scipy.signal import glob from PIL import Image from astropy.convolution import convolve, Gaussian2DKernel from matplotlib.colors import Colormap from mamba import * import mambaDisplay.extra #============================================================================== # DEFINITIONS #============================================================================== homepath = os.environ['HOMEPATH'] # Windows = os.environ['HOMEPATH'] ;;; Linux = os.environ['HOME'] path = homepath+'//SATELITIME//data//ZR//' # Windows = '//SATELITIME//data//ZR//' ;;; Linux = '/SATELITIME/data/ZR/' path2 = homepath+'//SATELITIME//data//convolve//' outpath = homepath+'//SATELITIME//data//convolve//' # Windows = //SATELITIME//data//Output//' ;;; Linux = '/SATELITIME/data/Output/' # **Colormap Chl de ref** # COULEUR norm_chl=mpl.colors.LogNorm(vmin=0.01, vmax=20) colors = [(0.33,0.33,0.33)] + [(plt.cm.jet(i)) for i in xrange(1,256)] new_map_chl = mpl.colors.LinearSegmentedColormap.from_list('new_map_chl', colors, N=256) new_map_chl._init(); new_map_chl._lut[0,:] = new_map_chl._lut[1,:] # Replace lowest value of colormap (which is gray) with the one before (dark blue) Colormap.set_under(new_map_chl,color=new_map_chl._lut[0,:]) # Set color for values outside colormap to be the lowest of the colormap (dark blue) ##Colormap.set_over(new_map_chl,color=(0.0, 0.0, 0.517825311942959, 1.0)) ## to get rgba from colormap for a specific value : new_map_chl(specificvalue for example ex : 0.2) # BLACK AND WHITE grays = [(0.33,0.33,0.33)] + [(plt.cm.gray(i)) for i in xrange(1,256)] new_map_gray_chl = mpl.colors.LinearSegmentedColormap.from_list('new_map_gray_chl', grays, N=256) # **** #path = '/Users/terencephilippon/Desktop/Python/Input/' #outpath = '/Users/terencephilippon/Desktop/Python/Output/' print 'starting...' print path # Data we want to read data = glob.glob(path+'*.npy') data.sort() print data # Def kernels gauss = Gaussian2DKernel(stddev=1) #gauss_fft = Gaussian2DKernel(stddev=1) #============================================================================== # LOOP #============================================================================== for myfile in data: print 'reading data...' print myfile zr = np.load(myfile) #============================================================================== # CONVOLVE #============================================================================== zr_conv = convolve(zr,gauss) # zr_convfft = convolve_fft(zr,gauss_fft) # fig1 = plt.gcf() # fig, (ax1, ax2) = plt.subplots(1,2) fig, (ax1) = plt.subplots(1,1) # plt.imshow(zr_conv, norm=norm_chl, origin='upper', cmap=new_map_chl,) # ax1.imshow(zr, norm=norm_chl, origin='upper', cmap=new_map_chl,) ax1.imshow(zr_conv, norm=norm_chl, origin='upper', cmap=new_map_gray_chl,) # ax3.imshow(zr_convfft, norm=norm_chl, origin='upper', cmap=new_map_chl,) plt.show() fig.savefig(outpath+myfile[-46:-4]+'_convolve'+'.npy', dpi=200, bbox_inches='tight') plt.close() #============================================================================== # MAMBA #============================================================================== data2 = glob.glob(path2+'*Gray.png') data2.sort() print data2 for myfile in data2: im = imageMb(myfile) imSeg = imageMb(im, 32) print(mambaDisplay.extra.interactiveSegment(im, imSeg)) # fig, (ax1, ax2) = plt.subplots(1,2) ## plt.imshow(zr_conv, norm=norm_chl, origin='upper', cmap=new_map_chl,) # ax1.imshow(zr, norm=norm_chl, origin='upper', cmap=new_map_chl,) # ax2.imshow(zr_conv, norm=norm_chl, origin='upper', cmap=new_map_chl,) ## ax3.imshow(zr_convfft, norm=norm_chl, origin='upper', cmap=new_map_chl,) # plt.show() # fig.savefig(outpath+myfile[-46:-4]+'_convolve'+'.png', dpi=200, bbox_inches='tight') # plt.close()
df1d2d6e5379d791010f6961de52b537702755ee
fa8c6888e3ccd25a605c971c9e2345cd5ce3d4b2
/FTacv_experiments/dispersion_class.py
28f5f0896ef19ec59e10fd7921f3f5ffee5509fd
[]
no_license
HOLL95/FTacV_2
c48b4c1827e2b58e5d4e519dae5df4b6db4077bd
e8e7dab1bbc7b6e2c62c3777b9de169593a5d586
refs/heads/master
2022-12-08T20:42:01.955678
2020-09-24T15:51:33
2020-09-24T15:51:33
179,301,880
0
0
null
null
null
null
UTF-8
Python
false
false
6,994
py
from scipy.stats import norm, lognorm import numpy as np import itertools import copy import math class dispersion: def __init__(self, simulation_options, optim_list): self.simulation_options=simulation_options if "dispersion_parameters" not in self.simulation_options: raise ValueError("Dispersion parameters not defined") if len(self.simulation_options["dispersion_bins"])!=len(self.simulation_options["dispersion_parameters"]): print(self.simulation_options["dispersion_bins"],self.simulation_options["dispersion_parameters"]) raise ValueError("Need to define number of bins for each parameter") if len(self.simulation_options["dispersion_distributions"])!=len(self.simulation_options["dispersion_parameters"]): print(self.simulation_options["dispersion_distributions"],self.simulation_options["dispersion_parameters"]) raise ValueError("Need to define distributions for each parameter") for i in range(0, len(self.simulation_options["dispersion_parameters"])): if self.simulation_options["dispersion_distributions"][i]=="uniform": if (self.simulation_options["dispersion_parameters"][i]+"_lower" not in optim_list) or (self.simulation_options["dispersion_parameters"][i]+"_upper" not in optim_list): raise ValueError("Uniform distribution requires "+self.simulation_options["dispersion_parameters"][i]+"_lower and " + self.simulation_options["dispersion_parameters"][i]+"_upper") elif self.simulation_options["dispersion_distributions"][i]=="normal": if (self.simulation_options["dispersion_parameters"][i]+"_std" not in optim_list): raise ValueError("Normal distribution requires "+self.simulation_options["dispersion_parameters"][i]+"_mean and " + self.simulation_options["dispersion_parameters"][i]+"_std") elif self.simulation_options["dispersion_distributions"][i]=="lognormal": if (self.simulation_options["dispersion_parameters"][i]+"_shape" not in optim_list) or (self.simulation_options["dispersion_parameters"][i]+"_scale" not in optim_list): raise ValueError("Lognormal distribution requires "+self.simulation_options["dispersion_parameters"][i]+"_shape and " + self.simulation_options["dispersion_parameters"][i]+"_loc and " + self.simulation_options["dispersion_parameters"][i]+"_scale") else: raise KeyError(self.simulation_options["dispersion_distributions"][i]+" distribution not implemented") def generic_dispersion(self, nd_dict, GH_dict=None): weight_arrays=[] value_arrays=[] for i in range(0, len(self.simulation_options["dispersion_parameters"])): if self.simulation_options["dispersion_distributions"][i]=="uniform": value_arrays.append(np.linspace(self.simulation_options["dispersion_parameters"][i]+"_lower", self.simulation_options["dispersion_parameters"][i]+"_upper", self.simulation_options["dispersion_bins"][i])) weight_arrays.append([1/self.simulation_options["dispersion_bins"][i]]*self.simulation_options["dispersion_bins"][i]) elif self.simulation_options["dispersion_distributions"][i]=="normal": param_mean=nd_dict[self.simulation_options["dispersion_parameters"][i]+"_mean"] param_std=nd_dict[self.simulation_options["dispersion_parameters"][i]+"_std"] if type(GH_dict) is dict: param_vals=[(param_std*math.sqrt(2)*node)+param_mean for node in GH_dict["nodes"]] param_weights=GH_dict["normal_weights"] else: min_val=norm.ppf(1e-4, loc=param_mean, scale=param_std) max_val=norm.ppf(1-1e-4, loc=param_mean, scale=param_std) param_vals=np.linspace(min_val, max_val, self.simulation_options["dispersion_bins"][i]) param_weights=np.zeros(self.simulation_options["dispersion_bins"][i]) param_weights[0]=norm.cdf(param_vals[0],loc=param_mean, scale=param_std) param_midpoints=np.zeros(self.simulation_options["dispersion_bins"][i]) param_midpoints[0]=norm.ppf((1e-4/2), loc=param_mean, scale=param_std) for j in range(1, self.simulation_options["dispersion_bins"][i]): param_weights[j]=norm.cdf(param_vals[j],loc=param_mean, scale=param_std)-norm.cdf(param_vals[j-1],loc=param_mean, scale=param_std) param_midpoints[j]=(param_vals[j-1]+param_vals[j])/2 param_midpoints=param_vals value_arrays.append(param_vals) weight_arrays.append(param_weights) elif self.simulation_options["dispersion_distributions"][i]=="lognormal": param_loc=0 param_shape=nd_dict[self.simulation_options["dispersion_parameters"][i]+"_shape"] param_scale=nd_dict[self.simulation_options["dispersion_parameters"][i]+"_scale"] min_val=lognorm.ppf(1e-4, param_shape, loc=param_loc, scale=param_scale) max_val=lognorm.ppf(1-1e-4, param_shape, loc=param_loc, scale=param_scale) param_vals=np.linspace(min_val, max_val, self.simulation_options["dispersion_bins"][i]) param_weights=np.zeros(self.simulation_options["dispersion_bins"][i]) param_weights[0]=lognorm.cdf(param_vals[0],param_shape, loc=param_loc, scale=param_scale) param_midpoints=np.zeros(self.simulation_options["dispersion_bins"][i]) param_midpoints[0]=lognorm.ppf((1e-4/2),param_shape, loc=param_loc, scale=param_scale) print(param_loc) for j in range(1, self.simulation_options["dispersion_bins"][i]): param_weights[j]=lognorm.cdf(param_vals[j],param_shape, loc=param_loc, scale=param_scale)-lognorm.cdf(param_vals[j-1],param_shape, loc=param_loc, scale=param_scale) param_midpoints[j]=(param_vals[j-1]+param_vals[j])/2 value_arrays.append(param_midpoints) weight_arrays.append(param_weights) total_len=np.prod(self.simulation_options["dispersion_bins"]) weight_combinations=list(itertools.product(*weight_arrays)) value_combinations=list(itertools.product(*value_arrays)) sim_params=copy.deepcopy(self.simulation_options["dispersion_parameters"]) print(len(value_combinations)) for i in range(0, len(sim_params)): if sim_params[i]=="E0": sim_params[i]="E_0" if sim_params[i]=="k0": sim_params[i]="k_0" return sim_params, value_combinations, weight_combinations
38b714655a56fb14337d07fc43bdf153b0262b4c
63cf47ff7a2bf9b1c73d1874dc7182473e392d95
/0x08-python-more_classes/0-rectangle.py
28abf4d9dd6dafd5a69920366300443bcc6db82a
[]
no_license
paurbano/holbertonschool-higher_level_programming
cddbf9fd7145e3ba059df3d155312e0d9845abea
2c055b5240ddd5298996400d8f2a7bc4d33c0ea4
refs/heads/master
2020-09-29T04:14:33.125185
2020-05-16T05:18:42
2020-05-16T05:18:42
226,903,807
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
#!/usr/bin/python3 class Rectangle(): '''empty Class that define a rectangle''' pass
14853ce04e6da9955110846824a06e6f747aa1ca
f7719066ca2e8abdfc38e69d3747ffabe62d774a
/project/misc/baby_bakrepo/experiment_N_SECONDS_SPLIT/mfcc_0.0.py
f80ce7286dada090af02916c8ee4a8e70934572b
[]
no_license
wubinbai/2020
2ca5dfaee85d80621631ed034135429daf7bc025
bd99f5cf495f8a17532c1939aef7782b7f8e629f
refs/heads/master
2021-08-15T18:51:19.036470
2021-07-24T09:14:29
2021-07-24T09:14:29
231,207,351
0
0
null
null
null
null
UTF-8
Python
false
false
10,403
py
import numpy as np import config as cfg ## data_all.py imports import os import wave import librosa import numpy as np from tqdm import tqdm import pickle as pkl import librosa from sklearn.preprocessing import normalize import config as cfg ### end of data_all.py imports ### functions of data_all.py def extract_logmel(y, sr, size): # normalization y = y.astype(np.float32) normalization_factor = 1 / np.max(np.abs(y)) y = y * normalization_factor # random crop if len(y) <= size * sr: new_y = np.zeros((int(size * sr)+1, )) new_y[:len(y)] = y y = new_y # extract log mel spectrogram ##### melspectrogram = librosa.feature.melspectrogram( y=y, sr=sr, n_fft=2048, hop_length=1024, n_mels=cfg.N_MEL) logmelspec = librosa.power_to_db(melspectrogram) return logmelspec.T def extract_mfcc(y,sr,size): # normalization y = y.astype(np.float32) normalization_factor = 1 / np.max(np.abs(y)) y = y * normalization_factor # random crop if len(y) <= size * sr: new_y = np.zeros((int(size * sr)+1, )) new_y[:len(y)] = y y = new_y mfccs = librosa.feature.mfcc(y,sr,n_mfcc=40) return mfccs.T def get_wave_norm(file): y, sr = librosa.load(file, sr=cfg.SR) ####### this +0.3 from 0.51 -> 0.54 # add trim for comparison #y_trimmed, idx = librosa.effects.trim(y) y_trimmed = y.copy() # add hpss for comparison, use harmonic (h) h,p = librosa.effects.hpss(y_trimmed) ####### great code ## more experiment below: this doesn't improve a lot, instead it goes from 0.535 back to 0.49, and there exist file test_210.wav empty error, solved manually by replacing this file with some other 1 file. Also, this may work but you may add in extra time difference information and also take in to account: examine each file processed result, also, experiment more on this, e.g. .2 seconds or something else. # split using librosa, using harmonic component ''' yhs = librosa.effects.split(h,top_db=30,hop_length=64) select = np.diff(yhs/sr)>.15 select_audio = np.array([],dtype=h.dtype) for i in range(select.shape[0]): if select[i][0]: temp_y = h[yhs[i][0]:yhs[i][1]] new = np.concatenate([select_audio,temp_y]) select_audio = new data = select_audio ''' return h, sr ### end of functions of data_all.py ### model.py imports import keras.backend as K from keras import regularizers from keras import layers from keras.models import Sequential import keras import os import wave import numpy as np import pickle as pkl from keras.layers import GaussianNoise import config as cfg import json ### end of model.py ### test.py imports import keras.backend as K from keras import regularizers from keras import layers from keras.models import Sequential import keras import os import wave import numpy as np import pickle as pkl from tqdm import tqdm import pandas as pd from keras.models import load_model import config as cfg ### end of test.py imports # for constants start = 1.4#1.385#0.5#1.39 end = 1.41#1.390#10.5#1.41 increment = 0.1#0.005#0.005 for duration in np.arange(start,end,increment): cfg.TIME_SEG = duration ### data_all.py if True:#not os.path.isfile('data.pkl'): DATA_DIR = './input/train' file_glob = [] for i, cls_fold in tqdm(enumerate(cfg.LABELS)): cls_base = os.path.join(DATA_DIR, cls_fold) files = os.listdir(cls_base) print('{} train num:'.format(cls_fold), len(files)) for pt in files: file_pt = os.path.join(cls_base, pt) file_glob.append((file_pt, cfg.LABELS.index(cls_fold))) print('done.') data = [] for file, lbl in tqdm(file_glob): raw, sr = get_wave_norm(file) seg = int(sr * cfg.TIME_SEG) length = raw.shape[0] for i in range((length//seg)*cfg.STRIDE+1): start = i * int(seg/cfg.STRIDE)#seg/cfg.STRIDE means "walk length = segment length/cfg.STRIDE" end = start + seg if end <= length: x = raw[start:end] y = np.zeros(cfg.N_CLASS) y[lbl] = 1 #x = extract_logmel(x, sr, size=cfg.TIME_SEG) x = extract_mfcc(x,sr,cfg.TIME_SEG) data.append((x, y)) print(len(data)) with open('data.pkl', 'wb') as f: pkl.dump(data, f) ### end of data_all.py ### data_test.py if True:#not os.path.isfile('data_test.pkl'): DATA_DIR = './input/test' file_glob = [] for cls_fold in tqdm(os.listdir(DATA_DIR)): file_pt = os.path.join(DATA_DIR, cls_fold) file_glob.append(file_pt) print(len(file_glob)) print('done.') data = {} for file in tqdm(file_glob): temp = [] raw, sr = get_wave_norm(file) length = raw.shape[0] seg = int(sr * cfg.TIME_SEG) for i in range((length//seg)*cfg.STRIDE+1): start = i * int(seg/cfg.STRIDE) end = start + seg if end <= length: x = raw[start:end] #x = extract_logmel(x, sr, size=cfg.TIME_SEG) x = extract_mfcc(x,sr,size=cfg.TIME_SEG) temp.append(x) data[file] = np.array(temp) with open('data_test.pkl', 'wb') as f: pkl.dump(data, f) ### end of data_test.py ### data_val.py if True:#not os.path.isfile('data_val.pkl'): DATA_DIR = './input/val' file_glob = [] for i, cls_fold in tqdm(enumerate(cfg.LABELS)): cls_base = os.path.join(DATA_DIR, cls_fold) files = os.listdir(cls_base) print('{} train num:'.format(cls_fold), len(files)) for pt in files: file_pt = os.path.join(cls_base, pt) file_glob.append((file_pt, cfg.LABELS.index(cls_fold))) print('done.') data = [] for file, lbl in tqdm(file_glob): raw, sr = get_wave_norm(file) seg = int(sr * cfg.TIME_SEG) length = raw.shape[0] for i in range((length//seg)*cfg.STRIDE+1): start = i * int(seg/cfg.STRIDE)#seg/cfg.STRIDE means "walk length = segment length/cfg.STRIDE" end = start + seg if end <= length: x = raw[start:end] y = np.zeros(cfg.N_CLASS) y[lbl] = 1 #x = extract_logmel(x, sr, size=cfg.TIME_SEG) x = extract_mfcc(x,sr,size=cfg.TIME_SEG) data.append((x, y)) print(len(data)) with open('data_val.pkl', 'wb') as f: pkl.dump(data, f) ### end of data_val.py ### model.py with open('./data.pkl', 'rb') as f: raw_data = pkl.load(f) with open('./data_val.pkl', 'rb') as f: raw_data_val = pkl.load(f) raw_x = [] raw_y = [] raw_x_val = [] raw_y_val = [] for x, y in raw_data: raw_x.append(x) raw_y.append(y) for x, y in raw_data_val: raw_x_val.append(x) raw_y_val.append(y) np.random.seed(5) np.random.shuffle(raw_x) np.random.shuffle(raw_x_val) np.random.seed(5) np.random.shuffle(raw_y) np.random.shuffle(raw_y_val) print(len(raw_x), raw_x[0].shape) print(len(raw_x_val), raw_x_val[0].shape) train_x = np.array(raw_x) val_x = np.array(raw_x_val) train_y = np.array(raw_y) val_y = np.array(raw_y_val) print(train_x.shape) model = Sequential() model.add(layers.Conv1D(32*2, 3, input_shape=(train_x.shape[1], train_x.shape[2]), kernel_regularizer=regularizers.l2(1e-7), activity_regularizer=regularizers.l1(1e-7))) model.add(GaussianNoise(0.1)) model.add(layers.Dropout(0.5)) model.add(layers.Conv1D(32*2, 3, activation='elu', kernel_regularizer=regularizers.l1_l2(1e-7))) model.add(layers.BatchNormalization()) model.add(layers.MaxPool1D()) model.add(GaussianNoise(0.1)) model.add(layers.Dropout(0.5)) model.add(layers.Bidirectional(layers.LSTM(32*4, dropout=0.5, return_sequences=True, kernel_regularizer=regularizers.l1_l2(1e-7)))) model.add(GaussianNoise(0.1)) model.add(layers.Bidirectional(layers.LSTM(32*4, dropout=0.5, return_sequences=True, kernel_regularizer=regularizers.l1_l2(1e-7)))) model.add(layers.LSTM(32*2, kernel_regularizer=regularizers.l1_l2(1e-7))) model.add(GaussianNoise(0.1)) model.add(layers.Dense(16*2, activation='elu', kernel_regularizer=regularizers.l1_l2(1e-7))) model.add(layers.Dropout(0.5)) model.add(layers.Dense(cfg.N_CLASS, activation="softmax")) model.summary() adam = keras.optimizers.adam(2e-5) model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) # Train model on dataset batch_size = cfg.BATCH_SIZE steps = len(train_x) // batch_size # model.load_weights('./my_model.h5') history = model.fit(x=train_x, y=train_y, batch_size=batch_size, epochs=cfg.EPOCHES, validation_data=(val_x,val_y), shuffle=True) model.save('./my_model.h5') # may be used with "with open xxx" json.dump(history.history,open('output/fit_history_duration_{}.json'.format(duration),'w')) # Read data from file: # data = json.load( open('fit_history_duration_{}.json'.format(duration))) ### end of model.py ### test.py with open('./data_test.pkl', 'rb') as f: raw_data = pkl.load(f) #model = load_model('my_model.h5') result = {'id': [], 'label': []} for key, value in tqdm(raw_data.items()): x = np.array(value) y = model.predict(x) y = np.mean(y, axis=0) pred = cfg.LABELS[np.argmax(y)] result['id'].append(os.path.split(key)[-1]) result['label'].append(pred) result = pd.DataFrame(result) result.to_csv('./submission.csv', index=False) ### end of test.py
32fcd8b993858d0113216f757fc9230001723120
1b59d3bcc76401d86a0ea0d0e9cb60ccf9f6de5b
/test/py/test_parsemd.py
6a78290a1abbab3a2e3d5aa3a7b2cae63f7346ac
[ "Apache-2.0" ]
permissive
uogbuji/versa
baebe45018abed103eafdc1246d121cf7ae1907e
9fd34102d6c04eba8890c5bba1bcbfccecda097c
refs/heads/master
2022-05-09T11:16:51.960946
2022-04-19T15:37:41
2022-04-19T15:37:41
17,493,493
8
2
Apache-2.0
2022-04-12T16:02:19
2014-03-06T21:36:26
Python
UTF-8
Python
false
false
3,366
py
import os import logging from versa import I from versa.driver import memory from versa.serial import literate from versa.driver.memory import newmodel VERSA_BASEIRI = 'http://bibfra.me/purl/versa/' VERSA_LITERATE1 = """<!-- Test Versa literate model --> # @docheader * @iri: * @base: http://bibfra.me/vocab/ * @schema: http://bibfra.me/purl/versa/support # Resource * synonyms: http://bibframe.org/vocab/Resource http://schema.org/Thing * label: Resource * description: Conceptual Resource * properties: label description image link """ def Xtest_versa_syntax1(): # logging.debug(recs) m = newmodel() m.create_space() # from_markdown(VERSA_LITERATE1, m, encoding='utf-8') literate.parse(VERSA_LITERATE1, m) logging.debug('VERSA LITERATE EXAMPLE 1') for link in m.match(): logging.debug('Result: {0}'.format(repr(link))) # assert result == () # assert results == None, "Boo! " def test_versa_syntax1(testresourcepath): config = { 'autotype-h1': 'http://example.org/r1', 'autotype-h2': 'http://example.org/r2', 'interpretations': { VERSA_BASEIRI + 'refines': VERSA_BASEIRI + 'resourceset', VERSA_BASEIRI + 'properties': VERSA_BASEIRI + 'resourceset', VERSA_BASEIRI + 'synonyms': VERSA_BASEIRI + 'resourceset' } } m1 = newmodel(baseiri='http://example.org/') # from_markdown(VERSA_LITERATE1, m, encoding='utf-8') doc = open(os.path.join(testresourcepath, 'doc1.md')).read() literate.parse(doc, m1, config=config) # Use -s to see this print('='*10, 'test_versa_syntax1, pt 1', '='*10) literate.write(m1) m2 = newmodel(baseiri='http://example.org/') # from_markdown(VERSA_LITERATE1, m, encoding='utf-8') doc = open(os.path.join(testresourcepath, 'doc1.abbr.md')).read() literate.parse(doc, m2, config=config) # Use -s to see this print('='*10, 'test_versa_syntax1, pt 2', '='*10) literate.write(m2) # logging.debug('VERSA LITERATE EXAMPLE 1') equiv_results = [list(m1.match()), list(m2.match())] for results in equiv_results: import pprint; pprint.pprint(results) assert len(results) == 6 assert (I('http://uche.ogbuji.net/ndewo/'), I('http://bibfra.me/purl/versa/type'), 'http://www.w3.org/TR/html5/#Document', {}) in results assert (I('http://uche.ogbuji.net/ndewo/'), I('http://www.w3.org/TR/html5/title'), 'Ndewo, Colorado', {}) in results # assert (I('http://uche.ogbuji.net/ndewo/'), I('http://www.w3.org/TR/html5/title'), 'Ndewo, Colorado', {'@lang': None}) in results assert (I('http://uche.ogbuji.net/ndewo/'), I('http://www.w3.org/TR/html5/link-type/author'), I('http://uche.ogbuji.net/'), {I('http://www.w3.org/TR/html5/link/description'): 'Uche Ogbuji'}) in results assert (I('http://uche.ogbuji.net/ndewo/'), I('http://www.w3.org/TR/html5/link-type/see-also'), I('http://www.goodreads.com/book/show/18714145-ndewo-colorado'), {I('http://www.w3.org/TR/html5/link/label'): 'Goodreads'}) in results assert (I('http://uche.ogbuji.net/'), I('http://bibfra.me/purl/versa/type'), 'http://www.w3.org/TR/html5/#Document', {}) in results assert (I('http://uche.ogbuji.net/'), I('http://www.w3.org/TR/html5/link-type/see-also'), I('http://uche.ogbuji.net/ndewo/'), {}) in results
7237aa4a102bc3d588885c99560fa78789531184
31226e1b0400dd5435ce91cf8602eb6858c2e1bc
/make_trajectory_graphic.py
3b8e4583538ba05d4f9cf976c69eb98096477461
[]
no_license
fmailhot/acq_evo_vh_phd
f14cb337b109e2cc9b244d0ffed9e2c985545213
c2312c5aac52790ac12a661cc011b652f76064c5
refs/heads/master
2021-09-28T09:51:22.905304
2018-11-16T14:56:37
2018-11-16T14:56:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,556
py
#!/usr/bin/python import sys from LIbPhon import LIbPhon from matplotlib import rc rc('font', **{'family': 'serif', 'serif': ['Palatino']}) import pylab as plt params = {'backend': 'ps', 'legend.fontsize': 14, 'xtick.labelsize': 14, 'ytick.labelsize': 14, 'text.usetex': True} plt.rcParams.update(params) if len(sys.argv) != 3: print '\nUsage: %s <LEX MEANING> <opaq|trans>\n' % sys.argv[0] sys.exit(2) teach = LIbPhon(teacher=True, lex="teacher_lexicon_hTrue_cTrue_pTrue_n%s.pck" % sys.argv[2]) nom = teach.produce("%s NOM" % sys.argv[1]) acc = teach.produce("%s ACC" % sys.argv[1]) pl_nom = teach.produce("%s PL NOM" % sys.argv[1]) pl_acc = teach.produce("%s PL ACC" % sys.argv[1]) plt.subplot(211) l1 = plt.plot(pl_nom[:10][:, 0], "k-", linewidth=3, label="F1") l2 = plt.plot(pl_nom[:10][:, 1], "k--", linewidth=3, label="F2") plt.legend() plt.text(0.5, 2700, r"\textbf{\textsc{%s nom}}" % sys.argv[1], size="x-large") plt.text(5.5, 2700, r"\textbf{\texttt{%sgu}}" % sys.argv[1], size="x-large") plt.xlim(0, 12) plt.ylim(0, 3250) if sys.argv[2] == "opaq": suff = "bo" else: suff = "be" plt.subplot(212) l1 = plt.plot(pl_acc[:12][:, 0], "k-", linewidth=3, label="F1") l2 = plt.plot(pl_acc[:12][:, 1], "k--", linewidth=3, label="F2") plt.legend() plt.text(0.5, 2700, r"\textbf{\textsc{%s acc}}" % sys.argv[1], size="x-large") plt.text(5.5, 2700, r"\textbf{\texttt{%sgu%s}}" % (sys.argv[1], suff), size="x-large") plt.xlim(0, 12) plt.ylim(0, 3250) plt.show()
2fbe178a8e92eaa3d97e9be259350bba2545582d
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_118/2987.py
8932bed90c351ccec4bf80077cad58a7b656c257
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
831
py
from math import * import fileinput def isPalindrome(n): t = n r = 0 while(n > 0): r = r*10 + n%10 n = n//10 if(t == r): return(1) else: return(0) fairAndSquare_memo = {} def isFairAndSquare(n): if n in fairAndSquare_memo: return fairAndSquare_memo[n] if(isPalindrome(n) and modf(sqrt(n))[0] == 0 and isPalindrome(sqrt(n))): fairAndSquare_memo[n] = 1 return 1 else: fairAndSquare_memo[n] = 0 return 0 def isFairAndSquareRanged(m, n): sum = 0 for i in range(m, n+1): if(isFairAndSquare(i)): sum = sum + 1 return sum f = open("C-small-attempt0.in") t = int(f.readline().rstrip()) for i in range(1, t+1): line = f.readline().rstrip().split(" ") print("Case #" + str(i) + ": " + str(isFairAndSquareRanged(int(line[0]), int(line[1])))) f.close()
18fd2025d50c8970a17a74adb3741a9ec3e2e6e3
1fdeb21f10e99e4ce52da5d1a51a12ab78af6261
/send_mail.py
17b9c06d093569632160c3fb5dcb4c25ebc60968
[]
no_license
techgirlariin/scraping-stocks
8f040e8cf309387deae70fb122139abce567ecea
85dbc1c5afef5670c319239ee8993af8c723f068
refs/heads/master
2022-12-01T13:56:27.240277
2020-07-27T14:09:45
2020-07-27T14:09:45
282,904,164
0
0
null
null
null
null
UTF-8
Python
false
false
987
py
import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email import encoders from_add='[email protected]' to_add='[email protected]' subject = "Finance BY Aradhana" def send(filename): #header msg= MIMEMultipart() msg['From']=from_add msg['To']=to_add msg['Subject']= subject #body body="<i>Stock REport</i>" msg.attach(MIMEText(body,'html')) my_file=open("filename","rb") part= MIMEBase('application','octet-stream') part.set_payload((my_file).read()) encoders.encode_base64(part) part.add_header('Content-Disposition','attachment;filename=' + 'filename') msg.attach(part) message=msg.as_string() server = smtplib.SMTP('smtp.gmail.com',587) server.starttls() server.login('[email protected]','zpvrplezkomwsxkb') server.sendmail(from_add,to_add,message) server.quit()
89cbf924f90063217548abf38a8aae1c32aa5837
b6b08275f058b8c4cad0a2dc37cb061fe1c776ba
/collective/leadingmedia/indexers.py
f5b531f14f5c832e64d14751be388b0f3a70d6b1
[]
no_license
intk/collective.media
0d4b07e9390bd896b1d9e5664094f667a72b0aad
3336946d2aeace8110ac305e81e9f98d62861f70
refs/heads/master
2021-01-19T05:19:39.039670
2014-11-07T11:25:14
2014-11-07T11:25:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,343
py
# Handling indexes from plone.indexer.decorator import indexer from collective.leadingmedia.interfaces import ICanContainMedia from plone.dexterity.interfaces import IDexterityContainer from plone.app.contenttypes.interfaces import ICollection, IFolder @indexer(IDexterityContainer) def hasMedia(object, **kw): return ICanContainMedia(object).hasMedia() @indexer(IDexterityContainer) def leadMedia(object, **kw): lead = ICanContainMedia(object).getLeadMedia() if lead is not None: if hasattr(lead, 'getURL'): return lead.getURL() else: return lead.absolute_url() @indexer(ICollection) def collection_hasMedia(object, **kw): return ICanContainMedia(object).hasMedia() @indexer(ICollection) def collection_leadMedia(object, **kw): lead = ICanContainMedia(object).getLeadMedia() if lead is not None: if hasattr(lead, 'getURL'): return lead.getURL() else: return lead.absolute_url() @indexer(IFolder) def folder_hasMedia(object, **kw): return ICanContainMedia(object).hasMedia() @indexer(IFolder) def folder_leadMedia(object, **kw): lead = ICanContainMedia(object).getLeadMedia() if lead is not None: if hasattr(lead, 'getURL'): return lead.getURL() else: return lead.absolute_url()
52756449b9d37312fca86c6bc3c3f3aacfb0fdab
dbf137f3e42c3f963c7e02a7581bc56375900420
/Analysis/_scp_lpc.py
3fb039d449412804217a6d75a399ca39bf4549dd
[]
no_license
abdollah110/BoostedHTT
41dcc31ea864e0595441e981befc103caf9b6d84
55536aa0631f8423776080dc3ed7486f73408f47
refs/heads/master
2023-08-22T16:59:28.946116
2020-08-19T12:37:54
2020-08-19T12:37:54
181,378,000
0
0
null
null
null
null
UTF-8
Python
false
false
172
py
import os import sys for i in sys.argv: print i os.system('scp %s cmslpc26.fnal.gov:/uscms_data/d3/abdollah/Analysis/Limit/CMSSW_8_1_0/src/auxiliaries/shapes/'%i)
32144e38a4a3e556fc65dad9a3425e538831844e
19564fe219ff687d5190f58edeb01887ed65091e
/pytrap/pytrap-data-access.py
8cd4e9e9399c1b6abd1ea0df40c33680a94fdf00
[ "BSD-3-Clause" ]
permissive
krkos/Nemea-Framework
24be5f1de43df0083ea6b2ab81329a6e583f2633
f9c3265724649968cdc260c3c4c4fbd548b304ff
refs/heads/master
2021-08-28T21:00:02.661192
2021-07-30T16:22:34
2021-07-30T16:22:34
245,998,946
1
0
null
2020-03-09T09:53:50
2020-03-09T09:53:50
null
UTF-8
Python
false
false
803
py
# coding: utf-8 import sys import pdb import pytrap ctx = pytrap.TrapCtx() ctx.init(sys.argv) ctx.setRequiredFmt(0) print("\nReceiving one UniRec message") try: a = ctx.recv(0) except pytrap.FormatChanged as e: fmt = ctx.getDataFmt(0) rec = pytrap.UnirecTemplate(fmt[1]) a = e.data del(e) print(rec) rec.setData(a) print("\nDirect access using index") for i in range(len(rec)): print(rec.get(i, a)) print("\nAttribute access") print(rec.SRC_IP) for i in ["SRC_IP", "DST_IP", "SRC_PORT", "DST_PORT"]: v = getattr(rec, i) print(v) print("\nIteration over all fields") for i in rec: print(i) print("\nPrint values, ids and names of fields") print(rec.strRecord()) print("\nDict from all fields") d = {} for k, v in rec: d[k] = str(v) print(d) ctx.finalize()
7ec24322e91532daee50c59e27c003388a072525
eb85c96c3783be407b396956c13448d89f5e5fee
/building_more_python_design_patterns/7-python-design-patterns-building-more-m7-exercise-files/Composite/tree.py
db30708f1df216f30dbfb95537eec7637c234eb6
[]
no_license
ForeverDreamer/python_learning
83c2c290271dbf060ee1718140b8dfd128b82b20
ff905c4811ddb688f8ee44aed8c4d8067db6168b
refs/heads/master
2022-04-30T03:23:45.162498
2019-07-05T07:55:01
2019-07-05T07:55:01
181,037,513
1
0
null
2022-04-22T21:12:46
2019-04-12T15:41:44
Jupyter Notebook
UTF-8
Python
false
false
627
py
from collections import Iterable from functools import reduce from datetime import date from abs_composite import AbsComposite class Tree(Iterable, AbsComposite): def __init__(self, members): self.members = members def __iter__(self): return iter(self.members) def get_oldest(self): def f(t1, t2): t1_, t2_ = t1.get_oldest(), t2.get_oldest() return t1_ if t1_.birthdate < t2_.birthdate else t2_ return reduce(f, self, NullPerson()) class NullPerson(AbsComposite): name = None birthdate = date.max def get_oldest(self): return self
1985108aa2ca37b00d6a95e9161685201a33adbc
03c42654c3fedca05a4627b8b6a228af9725bb88
/myproject/geno/admin.py
3e1862b9a2269245dcc0bb3fd0a82150d4f29cab
[]
no_license
ftconsult/geno
091c6848fe7316d6357a76e752b1f8baeca30145
794753f24b906def87ce85612ee8bb827dcc3430
refs/heads/master
2021-01-19T00:43:15.027690
2013-03-20T01:27:55
2013-03-20T01:27:55
8,880,236
0
0
null
null
null
null
UTF-8
Python
false
false
318
py
import models from django.contrib import admin from myproject.geno.models import Nodo, NodoLog class NodoAdmin(admin.ModelAdmin): list_display = ('year_born','nombre','a_paterno','a_materno') search_fields = ('nombre','a_paterno','a_materno') admin.site.register(Nodo,NodoAdmin) admin.site.register(NodoLog)
3469bc511211215a25b8bff121d757849742b955
e23236b63dbcd74767ba2da627b2e0490faf45e9
/naanalmart/seller/migrations/0001_initial.py
17c9b8f9d23e38f1d1eb2ce21745027eff2b695c
[]
no_license
JanardhanReddyMeeniga/project
d964c738b3da5244c82887a7b272a7408f29864b
3d2b4ee55e5ea654d92ac27e946273d88a0317a4
refs/heads/master
2021-01-11T13:36:12.515735
2017-06-21T13:05:26
2017-06-21T13:05:26
95,003,898
0
0
null
null
null
null
UTF-8
Python
false
false
2,131
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('auth', '0006_require_contenttypes_0002'), ] operations = [ migrations.CreateModel( name='Seller', fields=[ ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(null=True, verbose_name='last login', blank=True)), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('seller_id', models.AutoField(serialize=False, primary_key=True)), ('email', models.EmailField(unique=True, max_length=254)), ('seller_firstname', models.CharField(max_length=254)), ('seller_lastname', models.CharField(max_length=254)), ('subscription_grand_date', models.DateTimeField(default=django.utils.timezone.now)), ('subscription_end_date', models.DateTimeField(null=True, blank=True)), ('grant_access', models.BooleanField(default=False)), ('is_staff', models.BooleanField(default=False)), ('is_active', models.BooleanField(default=True)), ('date_joined', models.DateTimeField(default=django.utils.timezone.now)), ('groups', models.ManyToManyField(related_query_name='user', related_name='user_set', to='auth.Group', blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', verbose_name='groups')), ('user_permissions', models.ManyToManyField(related_query_name='user', related_name='user_set', to='auth.Permission', blank=True, help_text='Specific permissions for this user.', verbose_name='user permissions')), ], options={ 'abstract': False, }, ), ]
4cae035dc2efad2ff69323b90c19e2423188273c
38aa92a75a52d17eb78705aa1e514a98f6ea16e5
/oldboyedu/memtest.py
1157611a4dc2ae486cb7383de7b2912e55db9ef5
[]
no_license
roguewang/python
89acc3e869a8ec372a298f7de86ed8ceec8fe6b7
0f3e9edb65d67d43c827d6d75325fb1dfcf8c124
refs/heads/master
2020-07-02T08:55:19.646488
2018-12-07T04:31:19
2018-12-07T04:31:19
66,704,129
1
0
null
null
null
null
UTF-8
Python
false
false
185
py
#!/usr/bin/env python # Author:rogue def fun(name1): print(name1) name1 = input("函数内的赋值:") print(name1) name = input("press any word:") fun(name) print(name)
42e034bc50a68991d35c7521feb74d490e5d4ff4
f66c0484ba5ad176fb006287a58fbcc824d58500
/14 - 236A - Boy or Girl.py
d6d56afcd22832322c9bbfc3ff313853aa3a9791
[]
no_license
love1024/codeforces-journery
a9388f2bb5d2fab6e89638e715120b3c2c219609
b7c121486f7e4ff132eb3bbf57200d3a95b8a668
refs/heads/main
2023-03-12T01:57:46.948788
2021-03-06T18:31:40
2021-03-06T18:31:40
323,282,208
0
0
null
null
null
null
UTF-8
Python
false
false
309
py
""" Problem: http://codeforces.com/problemset/problem/236/A """ def solve(): # Take string input and convert to set and check even or odd string = input() if(len(set(string)) % 2 == 0): print("CHAT WITH HER!") else: print("IGNORE HIM!") if __name__ == '__main__': solve()
c72ec5d5e9f00aa58651292a079e78452986823d
ff1f833b6c8b7ac83213c1a517d2830104e75b64
/FlattenedFiles.py
f026b1bce28c742d85039dcb7f2b19593fcf328c
[]
no_license
rorymulcahey/MathSystems
215b5ca607172c118c863186c064e1333120c135
68c8580f5f012f402b40c69ac7c947a1c100a1ea
refs/heads/master
2020-03-17T08:25:41.159814
2018-06-04T16:33:14
2018-06-04T16:33:14
133,437,928
0
0
null
null
null
null
UTF-8
Python
false
false
171
py
''' Flattened Files: string[] GetAllFiles(string[] paths, string rootPath) Given some array of file. Give a function that returns all paths with the given root path. '''
d2cf15d94e7122584dd7596ee2ce7b1ef5ff1eac
fb9f01b6200bd2576acf2d6ffd5782f91af995e6
/django_project/settings.py
453b88b44a55c18fb5035aa899912ab2a140c2db
[]
no_license
bigsandip/Django_Blog
5bc8277a1efa30c0efa8c6faf0038725a11f5b3d
a7181f6cd0554e5608250ec1c34ca69f3bcc8364
refs/heads/master
2022-11-24T12:56:52.948405
2020-01-02T15:10:47
2020-01-02T15:10:47
229,528,606
3
0
null
2022-11-22T04:56:27
2019-12-22T06:38:14
Python
UTF-8
Python
false
false
4,040
py
""" Django settings for django_project project. Generated by 'django-admin startproject' using Django 3.0. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os import django_heroku # for heroku # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! # SECRET_KEY = 'vgr7m)k8mzslgvlzzbdw=6qdz1&4t#0y6*z4vj$0rc)lxllh(s' SECRET_KEY = os.environ.get('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = (os.environ.get('DEBUG_VALUE')=='True') ALLOWED_HOSTS = ['hamro-blog.herokuapp.com'] # Application definition INSTALLED_APPS = [ 'blog.apps.BlogConfig', 'users.apps.UsersConfig', 'crispy_forms', # look down 'django_cleanup.apps.CleanupConfig', # for auto replacing old profile pic 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'django_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'django_project.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') # added for heroku deployment STATIC_URL = '/static/' # below are self added MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' CRISPY_TEMPLATE_PACK = 'bootstrap4' LOGIN_REDIRECT_URL = 'blog-home' # to redirect to homepage after successful login LOGIN_URL = 'login' # for login required decoretor to show path EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 587 EMAIL_USE_TLS = True EMAIL_HOST_USER = os.environ.get('EMAIL_USER') EMAIL_HOST_PASSWORD = os.environ.get('EMAIL_PASS') django_heroku.settings(locals())
1162fae836ec236f0544189549a2863490f0fc0c
bff3053fcc40995bbd8c8bf251042ada99d15427
/re Module - How to Write and Match Regular Expressions (Regex).py
6960e617c405862d01e742ef55bd6224d3deee8b
[]
no_license
iampaavan/Pure_Python
e67213eb42229614517c249b4f5b0a01c71c8ce9
e488b05ea526ab104ebc76a8e5e621301bed8827
refs/heads/master
2020-04-27T23:10:48.482213
2019-06-30T19:32:08
2019-06-30T19:32:08
174,765,589
1
0
null
2019-04-21T01:39:53
2019-03-10T01:39:13
Python
UTF-8
Python
false
false
1,750
py
import re text_to_search = ''' abcdefghijklmnopqurtuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567890 Ha HaHa MetaCharacters (Need to be escaped): . ^ $ * + ? { } [ ] \ | ( ) paavan.com 321-555-4321 123.555.1234 123*555*1234 800-555-1234 900-555-1234 Mr. Schafer Mr Smith Ms Davis Mrs. Robinson Mr. T cat mat pat bat ''' sentence = 'Start a sentence and then bring it to an end' # pattern = re.compile(r'abc') # pattern = re.compile(r'\.') # pattern = re.compile(r'paavan\.com') # pattern = re.compile(r'\d') # pattern = re.compile(r'\D') # pattern = re.compile(r'\BHa') # pattern = re.compile(r'^Start') # pattern = re.compile(r'end$') # pattern = re.compile(r'\d\d\d[.]\d\d\d[.]\d\d\d\d') # pattern = re.compile(r'[89]00[-]\d\d\d[-]\d\d\d\d') # pattern = re.compile(r'[1-5]') # pattern = re.compile(r'[a-zA-Z]') # pattern = re.compile(r'[^a-zA-Z]') # pattern = re.compile(r'[^b]at') # pattern = re.compile(r'\d{3}.\d{3}.\d{4}') # pattern = re.compile(r'M(r|s|rs)\.?\s[A-Z]\w*') pattern = re.compile(r'(Mr|Ms|Mrs)\.?\s[A-Z]\w*') # pattern = re.compile(r'\d{3}.\d{3}.\d{4}') # pattern = re.compile(r'Start') # matches = pattern.findall(text_to_search) matches = pattern.finditer(text_to_search) # matches = pattern.match(sentence) for match in matches: print(match) print() print('**************************************************') with open('data.txt', 'r') as f: contents = f.read() # pattern = re.compile(r'\d\d\d[-]\d\d\d[-]\d\d\d\d') # pattern = re.compile(r'[89]00[-]\d\d\d[-]\d\d\d\d') pattern = re.compile(r'[89]00[-]\d{3}[-]\d{4}') matches = pattern.finditer(contents) # print(matches) for match in matches: print(match) # print(text_to_search[1:4])
25fc4fe9e428fa70179a9f3a6a69991b043f20bc
c8d652dca4ca71e32482eefe17aeb9cf1d0b2b59
/practice/contagions/Hypergraph SI SIS SIR/SIR/Hypergraph_SIR_CP.py
2bac3efcb9592e5a31308583501ce7660fc1a869
[]
no_license
chqlee/Hypergraphs
6701e7273f35c0fcb32b4dd26138d4145c738669
42026f77b758168d59bc1d11ae643a5cadc7ce0d
refs/heads/master
2023-07-12T16:42:25.552346
2021-08-12T11:43:30
2021-08-12T11:43:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,422
py
# @Title : 超图上的传播 # @Author : tony # @Date : 2021/8/5 # @Dec : CP strategy import pandas as pd import numpy as np import matplotlib.pyplot as plt import time import random from tqdm import tqdm def constructMatrix(): """ 构造超图的点边矩阵 :return: 超图的点边矩阵 matrix """ matrix = np.random.randint(0, 2, size=(100, 10)) for i in range(100): if sum(matrix[i]) == 0: j = np.random.randint(0, 10) matrix[i, j] = 1 return matrix def findAdjNode(inode, df_hyper_matrix): """ 找到邻居节点集合 :param I_list: 感染节点集 :param df_hyper_matrix: 超图的点边矩阵 :return: 不重复的邻居节点集 np.unique(nodes_in_edges) """ # 找到该点所属的超边集合 edges_conclude_nodes = np.where(np.array(df_hyper_matrix.loc[inode]) == 1)[0] # 找到可能传播到超边中的顶点集合 edge = random.sample(list(edges_conclude_nodes), 1)[0] nodes = np.where(np.array(df_hyper_matrix[edge]) == 1)[0] return nodes def formatInfectedList(I_list, infected_list, infected_T): """ 筛选出不在I_list当中的节点 :param I_list: 感染节点集 :param infected_list: 本次受感染的节点(未筛选) :return: 本次受感染的节点(筛选后)format_list """ format_list = [] for i in range(0, len(infected_list)): if infected_list[i] not in I_list and infected_list[i] not in infected_T: format_list.append(infected_list[i]) return format_list def getTrueStateNode(adj_nodes, I_list, R_list): """ 从所有可能感染节点中排查筛选只是S态的节点 :param adj_nodes: 所有可能感染节点 :param I_list: 截至上一时刻全部感染节点 :param R_list: 截至上一时刻全部恢复节点 :return: """ adj_list = list(adj_nodes) for i in range(0, len(adj_nodes)): if adj_nodes[i] in I_list or adj_nodes[i] in R_list: adj_list.remove(adj_nodes[i]) return np.array(adj_list) if __name__ == '__main__': start = time.perf_counter() # 构造超图矩阵 hyper_matrix = constructMatrix() df_hyper_matrix = pd.DataFrame(hyper_matrix) # 初始态赋值一个感染节点 N = len(df_hyper_matrix.index.values) total_matrix = [] total_matrix_R = [] for i_node in tqdm(range(N), desc="Loading..."): I_list = [i_node] R_list = [] # 开始传播 beta = 0.02 gamma = 0.1 iters = 50 I_total_list = [1] R_total_list = [0] for t in range(0, iters): infected_T = [] for inode in I_list: # 找到邻居节点集 adj_nodes = findAdjNode(inode, df_hyper_matrix) # 排查筛选只是S态的节点 adj_nodes = getTrueStateNode(adj_nodes, I_list, R_list) # 开始对邻节点传播 random_list = np.random.random(size=len(adj_nodes)) index_list = np.where(random_list < beta)[0] infected_list = adj_nodes[index_list] infected_list_unique = formatInfectedList(I_list, infected_list, infected_T) infected_T.extend(infected_list_unique) # 上次感染的节点开始恢复 for each in I_list: if random.random() < gamma and each not in R_list: I_list.remove(each) R_list.append(each) # 加入本次所感染的节点 I_list.extend(infected_T) I_total_list.append(len(I_list)) R_total_list.append(len(R_list)) total_matrix.append(I_total_list) total_matrix_R.append(R_total_list) # 计算均值并绘图 final_I_list = pd.DataFrame(total_matrix).mean(axis=0) / N final_R_list = pd.DataFrame(total_matrix_R).mean(axis=0) / N final_S_list = 1 - final_I_list - final_R_list T_list = np.arange(len(final_I_list)) plt.title("Hypergraph SIR of CP strategy " + "beta:" + str(beta) + " gamma:" + str(gamma)) plt.plot(T_list, final_I_list, label='i(t)', color='r') plt.plot(T_list, final_R_list, label='r(t)', color='g') plt.plot(T_list, final_S_list, label='s(t)') plt.legend() plt.show() end = time.perf_counter() print(str(end - start))
d2d8c5342f11ff8d50bfa0ea3c1cc6e60990afbf
e0b47c8d885e43fb61a29320c83a85211c0389b3
/bio1/freq_with_mismatches.py
4c3f057f2601993b5452f4901cb171ac7a292877
[]
no_license
mdk2029/rl
f3e2ddad33b4045e0391baea1e3ca4edd91329a8
00be11906e63c47280f65c7c0d4ed9124a8946d5
refs/heads/master
2020-03-11T07:03:59.735123
2018-05-02T02:34:49
2018-05-02T02:34:49
54,302,264
0
0
null
null
null
null
UTF-8
Python
false
false
1,785
py
import sys from freqArray import patternToNumber, numberToPattern from base import complement,hamming_neighborhood def freqarray_with_mismatches_reverse(genome,k,distance): all_kmers_freq = [0]*(pow(4,k)) max_freq = 0 for idx in xrange(0,len(genome)-k+1): for current in [genome[idx:idx+k], complement(genome[idx:idx+k])] : dneighbors = hamming_neighborhood(current,distance) for neigh in dneighbors : rank = patternToNumber(neigh) all_kmers_freq[rank] = all_kmers_freq[rank]+1 max_freq = max(max_freq,all_kmers_freq[rank]) return (all_kmers_freq,max_freq) def freq_with_mismatches_reverse(genome, k, distance) : all_kmers_freq,max_freq = freqarray_with_mismatches_reverse(genome,k,distance) most_freq = [] for rank,freq in enumerate(all_kmers_freq): if freq == max_freq : most_freq.append(rank) ret = [numberToPattern(rank,k) for rank in most_freq] return ret #def freq_with_mismatches_reverse(genome,k,distance) : if __name__ == '__main__' : # print hamming_neighborhood("AT", 1) # print hamming_neighborhood("AT", 2) # genome = 'ACGTTGCATGTCGCATGATGCATGAGAGCT' # k = 4 # d = 1 # ret = freq_with_mismatches_reverse(genome,k,d) # map(lambda x : sys.stdout.write("%s " % x), ret) # # with open("Downloads/dataset_9_8.txt") as f: # # genome = f.readline().strip() # kd = f.readline().strip().split() # k = int(kd[0]) # d = int(kd[1]) # # ret = freq_with_mismatches_reverse(genome,k,d) # map(lambda x : sys.stdout.write("%s " % x), ret) a = hamming_neighborhood('TGCAT', 2) print len(a) # map(lambda x : sys.stdout.write("%s " % x), a)
d30edb238944fcda7e202e56d3cdb666786c310f
10542df4e26a9553cad3bb973b746eebaf1cffdb
/relationship_extraction/binary_classification_rel/f1_binary_classification_rel.py
cd2c6070ffa32d7265736978e1ec60d5f3bdea38
[]
no_license
taotao033/information-extraction-baseline2.0
87ef4971a0ea364a55194106d8777f588bd4ad46
a788c8b8d1bd06f33d6bd4da1ae0fbe68087d0b3
refs/heads/master
2022-01-16T13:06:40.583319
2019-05-16T10:33:37
2019-05-16T10:33:40
186,995,416
0
0
null
null
null
null
UTF-8
Python
false
false
790
py
from sklearn.metrics import f1_score, precision_score, recall_score, classification_report import numpy as np gold_file = './runs_logs/2019514/dev_gold.txt' prediction_file = './runs_logs/2019514/logs/predictions.txt' ture = [] with open(gold_file, 'r') as gold_f: for line in gold_f.readlines(): ture.append(int(line)) gold_f.close() pred = [] with open(prediction_file, 'r') as pred_f: for line in pred_f.readlines(): pred.append(int(line.split('\t')[1])) pred_f.close() ture = np.array(ture) pred = np.array(pred) binary_classification_report = classification_report(ture, pred) print(binary_classification_report) with open('./runs_logs/2019514/binary_classification_report.txt', 'w') as report: report.write(binary_classification_report) report.close()
94ec9cf8bb7d7c701718257565dd7a03589b7388
55e2bec3ad5a937a9914fcddec62827a84e50441
/frontend/keras.py
fa5964f8764667c40de77bdeba3e72bae489cf33
[ "MIT" ]
permissive
mp-chet/Neural-Network-Translator
b59ad4d1b71cdafb21dd1d25d8ed0c195666fc9a
5ce95d9d0a3603800bff2576760984d068ad841d
refs/heads/master
2021-05-21T17:35:00.334584
2020-03-29T14:05:06
2020-03-29T14:05:06
252,736,594
0
0
MIT
2020-04-03T13:15:25
2020-04-03T13:15:24
null
UTF-8
Python
false
false
1,841
py
from plugin_collection import FrontendPlugin import json class Keras(FrontendPlugin): """Keras frontend plugin transforms given Keras h5-file to the intermediate format""" def __init__(self): super().__init__('keras', 'Keras Frontend Plugin') def transform_to_intermediate_format(self, input): """Returns the intermediate format represenation of the given h5-file""" from tensorflow import keras #? Loading the given model and transforming it to a json object model = keras.models.load_model(input) model_json = json.loads(model.to_json()) count=0 #? Adding batch_input_shape, units, weight- and bias-values for each layer to the generated json object for layer in model_json['config']['layers']: if (layer['class_name']=='Dense'): weights = model.layers[count].get_weights()[0] biases = model.layers[count].get_weights()[1] layer['kernel_values'] = weights.tolist() layer['bias_values'] = biases.tolist() count+=1 #? Deleting unnecessary information from the json object del model_json['keras_version'] del model_json['backend'] #? Removing unnecessary information from config object for layer in model_json['config']['layers']: layer['config'].pop('trainable', None) layer['config'].pop('kernel_initializer', None) layer['config'].pop('bias_initializer', None) layer['config'].pop('kernel_regularizer', None) layer['config'].pop('bias_regularizer', None) layer['config'].pop('activity_regularizer', None) layer['config'].pop('kernel_constraint', None) layer['config'].pop('bias_constraint', None) return model_json
c5a787c18a915d3a1cf69841583549dd5a9cc2cf
1f290bd29534a719ed94d30eea6a9bff241908af
/Find Minimum in Rotated Sorted Array.py
79e83a60738fd04332d195192b91b5e425a31f03
[]
no_license
nan0445/Leetcode-Python
3a838a9178cd86220ace85da2d6a8b084975552d
bccd0f6ebb00e9569093f8ec18ebf0e94035dce6
refs/heads/master
2020-03-18T18:19:19.010566
2018-08-11T02:17:36
2018-08-11T02:17:36
135,084,509
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
class Solution: def findMin(self, nums): """ :type nums: List[int] :rtype: int """ if nums[0]<=nums[-1]: return nums[0] l, r = 0, len(nums)-1 while l<r-1: mid = (l+r)//2 if nums[mid]>nums[r]: l = mid + 1 else: r = mid return min(nums[l],nums[r])
12717307e45c601099299047d414b8dd0913ccb3
3e4071f68b45ab88c4110aacbf3c33e5f8bb60c9
/hyde/ast_printer.py
ef86f4d46bf6144557f21078d4f6f0e4080c0f11
[ "MIT" ]
permissive
ty-porter/hyde
661eb39802341939843cab16d3ae4de4da8c767d
69387e072e80adf2b2f72c3660da8093d6e2297c
refs/heads/main
2023-08-31T00:20:05.396617
2021-09-30T14:25:43
2021-09-30T14:25:43
405,208,896
0
0
null
null
null
null
UTF-8
Python
false
false
791
py
from hyde.expressions import Visitor class ASTPrinter(Visitor): def generate(self, expr): return self.visit(expr) def print(self, expr): print(self.generate(expr)) def visit_binary(self, binary): return self.parenthesize(binary.operator.lexeme, binary.left, binary.right) def visit_grouping(self, grouping): return self.parenthesize('group', grouping.expression) def visit_literal(self, literal): return str(literal.value) def visit_unary(self, unary): return self.parenthesize(unary.operator.lexeme, unary.right) def parenthesize(self, name, *exprs): text = f'({name}' for expr in exprs: text += ' ' text += self.visit(expr) text += ')' return text
90741935a4a1dc373bf6e279fe3a00a4291bba9a
f55353533f1fe1f0cbbf29f97e9222ae8d705937
/InstaFernando/manage.py
bb3a39c651da5e496ff7bfef99f12260cac89ffb
[]
no_license
fernandosfar/proyecto
9e75fbc3001d837dea6cc954e351d52460068b33
a9a28666494189e064dde7a9d1632e13e653e21e
refs/heads/master
2022-12-04T08:42:52.070826
2020-08-20T00:45:50
2020-08-20T00:45:50
275,403,478
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'InstaFernando.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
bfd3762733762e2ac2f360dfa7cf87d8b7043810
28a3483eb15fe904cf72ba63efd422058776cf61
/bissextile.py
12078bda5a1783fb6852b39fc55d0f42e92a7729
[]
no_license
cyaoyapi/bissextile
c8f77250e874cb0309d8ca9ee67e418671bc5d65
47874b26b0027f24e50191462de5682a48894c5c
refs/heads/master
2021-01-23T06:02:07.295380
2017-03-27T12:35:44
2017-03-27T12:35:44
86,333,489
0
0
null
null
null
null
UTF-8
Python
false
false
931
py
#!/usr/bin/python #-*- coding:utf-8 -*- """Ce module vous permet de tester si une année est bissexitle ou pas""" print("Ce programme vous permet de tester si une année est bissexitle ou pas.\n") quitter = raw_input("Voulez-vous demarrez le programme ?\nTapez 'o' pour 'oui' et 'n' pour 'non'\n") while quitter.upper() == "O": try: annee = int(raw_input("Entrez l'année : \n")) if annee < 0: raise ValueError("L'année que vous que vous avez saisie est négative.\n") except ValueError: print "L'année que vous avez saisie est soit négative ou est une alphanumérique.\n" else: if (annee%400 == 0) or (annee%4 == 0 and annee%100 != 0): print annee," est une année bissextile.\n" else: print annee," n'est pas une année bissextile.\n" finally: quitter = raw_input("Voulez-vous continuez le programme ?\nTapez 'o' pour 'oui' et 'n' pour 'non'\n") print("Fin du programme. Merci et à bientôt!\n")
1d1d7b72a08cd500f9882a19ec17f0ac932e83ba
e35a20601622605ccee79e8a15b424e04618a73f
/koku/reporting/models.py
6ebd2ea2722d8940ffc4892857cae18e0e30e3d9
[ "Apache-2.0" ]
permissive
erhwenkuo/koku
1e59796cc1a49e15c5f4c30bbcdf312e4b65db20
e3924c15240d97ba8852467016f3e10b2505f785
refs/heads/main
2023-08-10T21:46:55.484467
2021-09-10T19:31:48
2021-09-10T19:31:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,452
py
# # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Models for cost entry tables.""" # flake8: noqa from reporting.currency.models import CurrencySettings from reporting.partition.models import PartitionedTable from reporting.provider.all.openshift.models import OCPAllComputeSummary from reporting.provider.all.openshift.models import OCPAllCostLineItemDailySummary from reporting.provider.all.openshift.models import OCPAllCostLineItemProjectDailySummary from reporting.provider.all.openshift.models import OCPAllCostSummary from reporting.provider.all.openshift.models import OCPAllCostSummaryByAccount from reporting.provider.all.openshift.models import OCPAllCostSummaryByRegion from reporting.provider.all.openshift.models import OCPAllCostSummaryByService from reporting.provider.all.openshift.models import OCPAllDatabaseSummary from reporting.provider.all.openshift.models import OCPAllNetworkSummary from reporting.provider.all.openshift.models import OCPAllStorageSummary from reporting.provider.aws.models import AWSAccountAlias from reporting.provider.aws.models import AWSComputeSummary from reporting.provider.aws.models import AWSComputeSummaryByAccount from reporting.provider.aws.models import AWSComputeSummaryByRegion from reporting.provider.aws.models import AWSComputeSummaryByService from reporting.provider.aws.models import AWSCostEntry from reporting.provider.aws.models import AWSCostEntryBill from reporting.provider.aws.models import AWSCostEntryLineItem from reporting.provider.aws.models import AWSCostEntryLineItemDaily from reporting.provider.aws.models import AWSCostEntryLineItemDailySummary from reporting.provider.aws.models import AWSCostEntryPricing from reporting.provider.aws.models import AWSCostEntryProduct from reporting.provider.aws.models import AWSCostEntryReservation from reporting.provider.aws.models import AWSCostSummary from reporting.provider.aws.models import AWSCostSummaryByAccount from reporting.provider.aws.models import AWSCostSummaryByRegion from reporting.provider.aws.models import AWSCostSummaryByService from reporting.provider.aws.models import AWSDatabaseSummary from reporting.provider.aws.models import AWSEnabledTagKeys from reporting.provider.aws.models import AWSNetworkSummary from reporting.provider.aws.models import AWSOrganizationalUnit from reporting.provider.aws.models import AWSStorageSummary from reporting.provider.aws.models import AWSStorageSummaryByAccount from reporting.provider.aws.models import AWSStorageSummaryByRegion from reporting.provider.aws.models import AWSStorageSummaryByService from reporting.provider.aws.models import AWSTagsSummary from reporting.provider.aws.openshift.models import OCPAWSComputeSummary from reporting.provider.aws.openshift.models import OCPAWSCostLineItemDailySummary from reporting.provider.aws.openshift.models import OCPAWSCostLineItemProjectDailySummary from reporting.provider.aws.openshift.models import OCPAWSCostSummary from reporting.provider.aws.openshift.models import OCPAWSCostSummaryByAccount from reporting.provider.aws.openshift.models import OCPAWSCostSummaryByRegion from reporting.provider.aws.openshift.models import OCPAWSCostSummaryByService from reporting.provider.aws.openshift.models import OCPAWSDatabaseSummary from reporting.provider.aws.openshift.models import OCPAWSNetworkSummary from reporting.provider.aws.openshift.models import OCPAWSStorageSummary from reporting.provider.aws.openshift.models import OCPAWSTagsSummary from reporting.provider.azure.models import AzureComputeSummary from reporting.provider.azure.models import AzureCostEntryBill from reporting.provider.azure.models import AzureCostEntryLineItemDaily from reporting.provider.azure.models import AzureCostEntryLineItemDailySummary from reporting.provider.azure.models import AzureCostEntryProductService from reporting.provider.azure.models import AzureCostSummary from reporting.provider.azure.models import AzureCostSummaryByAccount from reporting.provider.azure.models import AzureCostSummaryByLocation from reporting.provider.azure.models import AzureCostSummaryByService from reporting.provider.azure.models import AzureDatabaseSummary from reporting.provider.azure.models import AzureEnabledTagKeys from reporting.provider.azure.models import AzureMeter from reporting.provider.azure.models import AzureNetworkSummary from reporting.provider.azure.models import AzureStorageSummary from reporting.provider.azure.models import AzureTagsSummary from reporting.provider.azure.openshift.models import OCPAzureComputeSummary from reporting.provider.azure.openshift.models import OCPAzureCostLineItemDailySummary from reporting.provider.azure.openshift.models import OCPAzureCostLineItemProjectDailySummary from reporting.provider.azure.openshift.models import OCPAzureCostSummary from reporting.provider.azure.openshift.models import OCPAzureCostSummaryByAccount from reporting.provider.azure.openshift.models import OCPAzureCostSummaryByLocation from reporting.provider.azure.openshift.models import OCPAzureCostSummaryByService from reporting.provider.azure.openshift.models import OCPAzureDatabaseSummary from reporting.provider.azure.openshift.models import OCPAzureNetworkSummary from reporting.provider.azure.openshift.models import OCPAzureStorageSummary from reporting.provider.azure.openshift.models import OCPAzureTagsSummary from reporting.provider.gcp.models import GCPComputeSummary from reporting.provider.gcp.models import GCPComputeSummaryByAccount from reporting.provider.gcp.models import GCPComputeSummaryByProject from reporting.provider.gcp.models import GCPComputeSummaryByRegion from reporting.provider.gcp.models import GCPComputeSummaryByService from reporting.provider.gcp.models import GCPCostEntryBill from reporting.provider.gcp.models import GCPCostEntryLineItemDailySummary from reporting.provider.gcp.models import GCPCostEntryProductService from reporting.provider.gcp.models import GCPCostSummary from reporting.provider.gcp.models import GCPCostSummaryByAccount from reporting.provider.gcp.models import GCPCostSummaryByProject from reporting.provider.gcp.models import GCPCostSummaryByRegion from reporting.provider.gcp.models import GCPCostSummaryByService from reporting.provider.gcp.models import GCPDatabaseSummary from reporting.provider.gcp.models import GCPEnabledTagKeys from reporting.provider.gcp.models import GCPNetworkSummary from reporting.provider.gcp.models import GCPStorageSummary from reporting.provider.gcp.models import GCPStorageSummaryByAccount from reporting.provider.gcp.models import GCPStorageSummaryByProject from reporting.provider.gcp.models import GCPStorageSummaryByRegion from reporting.provider.gcp.models import GCPStorageSummaryByService from reporting.provider.gcp.models import GCPTagsSummary from reporting.provider.ocp.costs.models import CostSummary from reporting.provider.ocp.models import OCPCostSummary from reporting.provider.ocp.models import OCPCostSummaryByNode from reporting.provider.ocp.models import OCPCostSummaryByProject from reporting.provider.ocp.models import OCPEnabledTagKeys from reporting.provider.ocp.models import OCPNodeLabelLineItem from reporting.provider.ocp.models import OCPNodeLabelLineItemDaily from reporting.provider.ocp.models import OCPPodSummary from reporting.provider.ocp.models import OCPPodSummaryByProject from reporting.provider.ocp.models import OCPStorageLineItem from reporting.provider.ocp.models import OCPStorageLineItemDaily from reporting.provider.ocp.models import OCPStorageVolumeLabelSummary from reporting.provider.ocp.models import OCPUsageLineItem from reporting.provider.ocp.models import OCPUsageLineItemDaily from reporting.provider.ocp.models import OCPUsageLineItemDailySummary from reporting.provider.ocp.models import OCPUsagePodLabelSummary from reporting.provider.ocp.models import OCPUsageReport from reporting.provider.ocp.models import OCPUsageReportPeriod from reporting.provider.ocp.models import OCPVolumeSummary from reporting.provider.ocp.models import OCPVolumeSummaryByProject AWS_MATERIALIZED_VIEWS = ( AWSComputeSummary, AWSComputeSummaryByAccount, AWSComputeSummaryByRegion, AWSComputeSummaryByService, AWSCostSummary, AWSCostSummaryByAccount, AWSCostSummaryByRegion, AWSCostSummaryByService, AWSDatabaseSummary, AWSNetworkSummary, AWSStorageSummary, AWSStorageSummaryByAccount, AWSStorageSummaryByRegion, AWSStorageSummaryByService, ) AZURE_MATERIALIZED_VIEWS = ( AzureCostSummary, AzureCostSummaryByAccount, AzureCostSummaryByLocation, AzureCostSummaryByService, AzureComputeSummary, AzureStorageSummary, AzureNetworkSummary, AzureDatabaseSummary, ) OCP_MATERIALIZED_VIEWS = ( OCPPodSummary, OCPPodSummaryByProject, OCPVolumeSummary, OCPVolumeSummaryByProject, OCPCostSummary, OCPCostSummaryByProject, OCPCostSummaryByNode, ) OCP_ON_AWS_MATERIALIZED_VIEWS = ( OCPAWSCostSummary, OCPAWSCostSummaryByAccount, OCPAWSCostSummaryByService, OCPAWSCostSummaryByRegion, OCPAWSComputeSummary, OCPAWSStorageSummary, OCPAWSNetworkSummary, OCPAWSDatabaseSummary, ) OCP_ON_AZURE_MATERIALIZED_VIEWS = ( OCPAzureCostSummary, OCPAzureCostSummaryByAccount, OCPAzureCostSummaryByService, OCPAzureCostSummaryByLocation, OCPAzureComputeSummary, OCPAzureStorageSummary, OCPAzureNetworkSummary, OCPAzureDatabaseSummary, ) OCP_ON_INFRASTRUCTURE_MATERIALIZED_VIEWS = ( # OCPAllCostLineItemDailySummary, # OCPAllCostSummary, # OCPAllCostSummaryByAccount, # OCPAllCostSummaryByService, # OCPAllCostSummaryByRegion, # OCPAllComputeSummary, # OCPAllDatabaseSummary, # OCPAllNetworkSummary, # OCPAllStorageSummary, # OCPAllCostLineItemProjectDailySummary, OCPCostSummary, OCPCostSummaryByProject, OCPCostSummaryByNode, ) GCP_MATERIALIZED_VIEWS = ( GCPCostSummary, GCPCostSummaryByAccount, GCPCostSummaryByProject, GCPCostSummaryByRegion, GCPCostSummaryByService, GCPComputeSummary, GCPComputeSummaryByProject, GCPComputeSummaryByAccount, GCPComputeSummaryByService, GCPComputeSummaryByRegion, GCPStorageSummary, GCPStorageSummaryByProject, GCPStorageSummaryByService, GCPStorageSummaryByAccount, GCPStorageSummaryByRegion, GCPNetworkSummary, GCPDatabaseSummary, )
e226ec01ee58cfd6403fc00dd962dcf900f3a5c2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03030/s415212285.py
b6d01ec72d51213db9fcd1d248a31bdd56180770
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
343
py
N = int(input()) R = [input().split() for i in range(N)] R2 = [{'i':i+1, 's':R[i][0], 'p':int(R[i][1])} for i in range(N)] S = [] for r in R: if r[0] not in S: S.append(r[0]) S.sort() for s in S: rs = [r for r in R2 if r['s'] == s] sorted_rs = sorted(rs, key=lambda x:x['p'], reverse=True) for r in sorted_rs: print(r['i'])
c7cf457bd820b7994ff62baedbbfdfc38c0a4abb
eb7281135d73e253500421c0464329e12fcac3b1
/anvilCore/service_pb2.py
a2795dff5cd04bb3715d22f213be9f399f98338d
[]
no_license
ladybug-tools/honeybee-anvil
8f1820e4d17ef2314a534bb1c0afa00569a62e89
5be53caaf412d247ca88c90ebe4e193b2ff7a780
refs/heads/master
2021-11-20T04:55:33.967003
2018-01-03T00:51:31
2018-01-03T00:51:31
114,935,599
0
1
null
null
null
null
UTF-8
Python
false
true
40,120
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: anvilCore/service.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='anvilCore/service.proto', package='Autodesk.Anvil.Protos', syntax='proto3', serialized_pb=_b('\n\x17\x61nvilCore/service.proto\x12\x15\x41utodesk.Anvil.Protos\"\x14\n\x12\x44\x65scriptionRequest\"\xfd\x01\n\x13\x44\x65scriptionResponse\x12\x14\n\x0c\x63ompany_name\x18\x01 \x01(\t\x12\x14\n\x0cservice_name\x18\x02 \x01(\t\x12\x1b\n\x13service_description\x18\x03 \x01(\t\x12\x61\n\x14\x61pplication_metadata\x18\x04 \x03(\x0b\x32\x43.Autodesk.Anvil.Protos.DescriptionResponse.ApplicationMetadataEntry\x1a:\n\x18\x41pplicationMetadataEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\x0f\n\rProtosRequest\"$\n\x0eProtosResponse\x12\x12\n\nfile_paths\x18\x01 \x03(\t\"\x11\n\x0f\x45xamplesRequest\"&\n\x10\x45xamplesResponse\x12\x12\n\nfile_paths\x18\x01 \x03(\t\"\x0e\n\x0cTestsRequest\"#\n\rTestsResponse\x12\x12\n\nfile_paths\x18\x01 \x03(\t\"\x0f\n\rGuidesRequest\"$\n\x0eGuidesResponse\x12\x12\n\nfile_paths\x18\x01 \x03(\t\"\x1c\n\x0b\x46ileRequest\x12\r\n\x05paths\x18\x01 \x03(\t\":\n\x0c\x46ileResponse\x12*\n\x05\x66iles\x18\x01 \x03(\x0b\x32\x1b.Autodesk.Anvil.Protos.File\"&\n\x04\x46ile\x12\x0c\n\x04path\x18\x01 \x01(\t\x12\x10\n\x08\x63ontents\x18\x02 \x01(\x0c\"\x0f\n\rStatusRequest\"x\n\x0eStatusResponse\x12<\n\x06status\x18\x01 \x01(\x0e\x32,.Autodesk.Anvil.Protos.StatusResponse.Status\"(\n\x06Status\x12\t\n\x05READY\x10\x00\x12\x08\n\x04\x42USY\x10\x01\x12\t\n\x05\x45RROR\x10\x64\"\xf8\x01\n\x17ReservationAddedRequest\x12\x11\n\tuser_data\x18\x01 \x01(\x0c\x12\x61\n\x12session_decorators\x18\x02 \x03(\x0b\x32\x45.Autodesk.Anvil.Protos.ReservationAddedRequest.SessionDecoratorsEntry\x12\x19\n\x11reservation_token\x18\x03 \x01(\t\x12\x12\n\nsession_id\x18\x04 \x01(\t\x1a\x38\n\x16SessionDecoratorsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\x95\x01\n\x18ReservationAddedResponse\x12\x46\n\x06status\x18\x01 \x01(\x0e\x32\x36.Autodesk.Anvil.Protos.ReservationAddedResponse.Status\"1\n\x06Status\x12\x06\n\x02OK\x10\x00\x12\x15\n\x11PERMISSION_DENIED\x10\x01\x12\x08\n\x04\x42USY\x10\x02\"7\n\x1aReservationReleasedRequest\x12\x19\n\x11reservation_token\x18\x01 \x01(\t\"\x87\x01\n\x1bReservationReleasedResponse\x12I\n\x06status\x18\x01 \x01(\x0e\x32\x39.Autodesk.Anvil.Protos.ReservationReleasedResponse.Status\"\x1d\n\x06Status\x12\x06\n\x02OK\x10\x00\x12\x0b\n\x07RESTART\x10\x01\x32\xb0\x05\n\nReservable\x12P\n\x05\x46iles\x12\".Autodesk.Anvil.Protos.FileRequest\x1a#.Autodesk.Anvil.Protos.FileResponse\x12U\n\x06Protos\x12$.Autodesk.Anvil.Protos.ProtosRequest\x1a%.Autodesk.Anvil.Protos.ProtosResponse\x12[\n\x08\x45xamples\x12&.Autodesk.Anvil.Protos.ExamplesRequest\x1a\'.Autodesk.Anvil.Protos.ExamplesResponse\x12R\n\x05Tests\x12#.Autodesk.Anvil.Protos.TestsRequest\x1a$.Autodesk.Anvil.Protos.TestsResponse\x12U\n\x06Guides\x12$.Autodesk.Anvil.Protos.GuidesRequest\x1a%.Autodesk.Anvil.Protos.GuidesResponse\x12s\n\x10ReservationAdded\x12..Autodesk.Anvil.Protos.ReservationAddedRequest\x1a/.Autodesk.Anvil.Protos.ReservationAddedResponse\x12|\n\x13ReservationReleased\x12\x31.Autodesk.Anvil.Protos.ReservationReleasedRequest\x1a\x32.Autodesk.Anvil.Protos.ReservationReleasedResponse2\xc8\x01\n\tReadiness\x12\x64\n\x0b\x44\x65scription\x12).Autodesk.Anvil.Protos.DescriptionRequest\x1a*.Autodesk.Anvil.Protos.DescriptionResponse\x12U\n\x06Status\x12$.Autodesk.Anvil.Protos.StatusRequest\x1a%.Autodesk.Anvil.Protos.StatusResponse2\xef\x06\n\x0cMicroservice\x12\x64\n\x0b\x44\x65scription\x12).Autodesk.Anvil.Protos.DescriptionRequest\x1a*.Autodesk.Anvil.Protos.DescriptionResponse\x12U\n\x06Status\x12$.Autodesk.Anvil.Protos.StatusRequest\x1a%.Autodesk.Anvil.Protos.StatusResponse\x12P\n\x05\x46iles\x12\".Autodesk.Anvil.Protos.FileRequest\x1a#.Autodesk.Anvil.Protos.FileResponse\x12U\n\x06Protos\x12$.Autodesk.Anvil.Protos.ProtosRequest\x1a%.Autodesk.Anvil.Protos.ProtosResponse\x12[\n\x08\x45xamples\x12&.Autodesk.Anvil.Protos.ExamplesRequest\x1a\'.Autodesk.Anvil.Protos.ExamplesResponse\x12R\n\x05Tests\x12#.Autodesk.Anvil.Protos.TestsRequest\x1a$.Autodesk.Anvil.Protos.TestsResponse\x12U\n\x06Guides\x12$.Autodesk.Anvil.Protos.GuidesRequest\x1a%.Autodesk.Anvil.Protos.GuidesResponse\x12s\n\x10ReservationAdded\x12..Autodesk.Anvil.Protos.ReservationAddedRequest\x1a/.Autodesk.Anvil.Protos.ReservationAddedResponse\x12|\n\x13ReservationReleased\x12\x31.Autodesk.Anvil.Protos.ReservationReleasedRequest\x1a\x32.Autodesk.Anvil.Protos.ReservationReleasedResponseB\x08Z\x06protosb\x06proto3') ) _STATUSRESPONSE_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='Autodesk.Anvil.Protos.StatusResponse.Status', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='READY', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='BUSY', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ERROR', index=2, number=100, options=None, type=None), ], containing_type=None, options=None, serialized_start=777, serialized_end=817, ) _sym_db.RegisterEnumDescriptor(_STATUSRESPONSE_STATUS) _RESERVATIONADDEDRESPONSE_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='Autodesk.Anvil.Protos.ReservationAddedResponse.Status', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='PERMISSION_DENIED', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='BUSY', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=1171, serialized_end=1220, ) _sym_db.RegisterEnumDescriptor(_RESERVATIONADDEDRESPONSE_STATUS) _RESERVATIONRELEASEDRESPONSE_STATUS = _descriptor.EnumDescriptor( name='Status', full_name='Autodesk.Anvil.Protos.ReservationReleasedResponse.Status', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OK', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='RESTART', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=1386, serialized_end=1415, ) _sym_db.RegisterEnumDescriptor(_RESERVATIONRELEASEDRESPONSE_STATUS) _DESCRIPTIONREQUEST = _descriptor.Descriptor( name='DescriptionRequest', full_name='Autodesk.Anvil.Protos.DescriptionRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=50, serialized_end=70, ) _DESCRIPTIONRESPONSE_APPLICATIONMETADATAENTRY = _descriptor.Descriptor( name='ApplicationMetadataEntry', full_name='Autodesk.Anvil.Protos.DescriptionResponse.ApplicationMetadataEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='Autodesk.Anvil.Protos.DescriptionResponse.ApplicationMetadataEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='Autodesk.Anvil.Protos.DescriptionResponse.ApplicationMetadataEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=268, serialized_end=326, ) _DESCRIPTIONRESPONSE = _descriptor.Descriptor( name='DescriptionResponse', full_name='Autodesk.Anvil.Protos.DescriptionResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='company_name', full_name='Autodesk.Anvil.Protos.DescriptionResponse.company_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='service_name', full_name='Autodesk.Anvil.Protos.DescriptionResponse.service_name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='service_description', full_name='Autodesk.Anvil.Protos.DescriptionResponse.service_description', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='application_metadata', full_name='Autodesk.Anvil.Protos.DescriptionResponse.application_metadata', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_DESCRIPTIONRESPONSE_APPLICATIONMETADATAENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=73, serialized_end=326, ) _PROTOSREQUEST = _descriptor.Descriptor( name='ProtosRequest', full_name='Autodesk.Anvil.Protos.ProtosRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=328, serialized_end=343, ) _PROTOSRESPONSE = _descriptor.Descriptor( name='ProtosResponse', full_name='Autodesk.Anvil.Protos.ProtosResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='file_paths', full_name='Autodesk.Anvil.Protos.ProtosResponse.file_paths', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=345, serialized_end=381, ) _EXAMPLESREQUEST = _descriptor.Descriptor( name='ExamplesRequest', full_name='Autodesk.Anvil.Protos.ExamplesRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=383, serialized_end=400, ) _EXAMPLESRESPONSE = _descriptor.Descriptor( name='ExamplesResponse', full_name='Autodesk.Anvil.Protos.ExamplesResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='file_paths', full_name='Autodesk.Anvil.Protos.ExamplesResponse.file_paths', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=402, serialized_end=440, ) _TESTSREQUEST = _descriptor.Descriptor( name='TestsRequest', full_name='Autodesk.Anvil.Protos.TestsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=442, serialized_end=456, ) _TESTSRESPONSE = _descriptor.Descriptor( name='TestsResponse', full_name='Autodesk.Anvil.Protos.TestsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='file_paths', full_name='Autodesk.Anvil.Protos.TestsResponse.file_paths', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=458, serialized_end=493, ) _GUIDESREQUEST = _descriptor.Descriptor( name='GuidesRequest', full_name='Autodesk.Anvil.Protos.GuidesRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=495, serialized_end=510, ) _GUIDESRESPONSE = _descriptor.Descriptor( name='GuidesResponse', full_name='Autodesk.Anvil.Protos.GuidesResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='file_paths', full_name='Autodesk.Anvil.Protos.GuidesResponse.file_paths', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=512, serialized_end=548, ) _FILEREQUEST = _descriptor.Descriptor( name='FileRequest', full_name='Autodesk.Anvil.Protos.FileRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='paths', full_name='Autodesk.Anvil.Protos.FileRequest.paths', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=550, serialized_end=578, ) _FILERESPONSE = _descriptor.Descriptor( name='FileResponse', full_name='Autodesk.Anvil.Protos.FileResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='files', full_name='Autodesk.Anvil.Protos.FileResponse.files', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=580, serialized_end=638, ) _FILE = _descriptor.Descriptor( name='File', full_name='Autodesk.Anvil.Protos.File', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='path', full_name='Autodesk.Anvil.Protos.File.path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='contents', full_name='Autodesk.Anvil.Protos.File.contents', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=640, serialized_end=678, ) _STATUSREQUEST = _descriptor.Descriptor( name='StatusRequest', full_name='Autodesk.Anvil.Protos.StatusRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=680, serialized_end=695, ) _STATUSRESPONSE = _descriptor.Descriptor( name='StatusResponse', full_name='Autodesk.Anvil.Protos.StatusResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='status', full_name='Autodesk.Anvil.Protos.StatusResponse.status', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _STATUSRESPONSE_STATUS, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=697, serialized_end=817, ) _RESERVATIONADDEDREQUEST_SESSIONDECORATORSENTRY = _descriptor.Descriptor( name='SessionDecoratorsEntry', full_name='Autodesk.Anvil.Protos.ReservationAddedRequest.SessionDecoratorsEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='Autodesk.Anvil.Protos.ReservationAddedRequest.SessionDecoratorsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='Autodesk.Anvil.Protos.ReservationAddedRequest.SessionDecoratorsEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1012, serialized_end=1068, ) _RESERVATIONADDEDREQUEST = _descriptor.Descriptor( name='ReservationAddedRequest', full_name='Autodesk.Anvil.Protos.ReservationAddedRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='user_data', full_name='Autodesk.Anvil.Protos.ReservationAddedRequest.user_data', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_decorators', full_name='Autodesk.Anvil.Protos.ReservationAddedRequest.session_decorators', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='reservation_token', full_name='Autodesk.Anvil.Protos.ReservationAddedRequest.reservation_token', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='session_id', full_name='Autodesk.Anvil.Protos.ReservationAddedRequest.session_id', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_RESERVATIONADDEDREQUEST_SESSIONDECORATORSENTRY, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=820, serialized_end=1068, ) _RESERVATIONADDEDRESPONSE = _descriptor.Descriptor( name='ReservationAddedResponse', full_name='Autodesk.Anvil.Protos.ReservationAddedResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='status', full_name='Autodesk.Anvil.Protos.ReservationAddedResponse.status', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _RESERVATIONADDEDRESPONSE_STATUS, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1071, serialized_end=1220, ) _RESERVATIONRELEASEDREQUEST = _descriptor.Descriptor( name='ReservationReleasedRequest', full_name='Autodesk.Anvil.Protos.ReservationReleasedRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='reservation_token', full_name='Autodesk.Anvil.Protos.ReservationReleasedRequest.reservation_token', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1222, serialized_end=1277, ) _RESERVATIONRELEASEDRESPONSE = _descriptor.Descriptor( name='ReservationReleasedResponse', full_name='Autodesk.Anvil.Protos.ReservationReleasedResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='status', full_name='Autodesk.Anvil.Protos.ReservationReleasedResponse.status', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _RESERVATIONRELEASEDRESPONSE_STATUS, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1280, serialized_end=1415, ) _DESCRIPTIONRESPONSE_APPLICATIONMETADATAENTRY.containing_type = _DESCRIPTIONRESPONSE _DESCRIPTIONRESPONSE.fields_by_name['application_metadata'].message_type = _DESCRIPTIONRESPONSE_APPLICATIONMETADATAENTRY _FILERESPONSE.fields_by_name['files'].message_type = _FILE _STATUSRESPONSE.fields_by_name['status'].enum_type = _STATUSRESPONSE_STATUS _STATUSRESPONSE_STATUS.containing_type = _STATUSRESPONSE _RESERVATIONADDEDREQUEST_SESSIONDECORATORSENTRY.containing_type = _RESERVATIONADDEDREQUEST _RESERVATIONADDEDREQUEST.fields_by_name['session_decorators'].message_type = _RESERVATIONADDEDREQUEST_SESSIONDECORATORSENTRY _RESERVATIONADDEDRESPONSE.fields_by_name['status'].enum_type = _RESERVATIONADDEDRESPONSE_STATUS _RESERVATIONADDEDRESPONSE_STATUS.containing_type = _RESERVATIONADDEDRESPONSE _RESERVATIONRELEASEDRESPONSE.fields_by_name['status'].enum_type = _RESERVATIONRELEASEDRESPONSE_STATUS _RESERVATIONRELEASEDRESPONSE_STATUS.containing_type = _RESERVATIONRELEASEDRESPONSE DESCRIPTOR.message_types_by_name['DescriptionRequest'] = _DESCRIPTIONREQUEST DESCRIPTOR.message_types_by_name['DescriptionResponse'] = _DESCRIPTIONRESPONSE DESCRIPTOR.message_types_by_name['ProtosRequest'] = _PROTOSREQUEST DESCRIPTOR.message_types_by_name['ProtosResponse'] = _PROTOSRESPONSE DESCRIPTOR.message_types_by_name['ExamplesRequest'] = _EXAMPLESREQUEST DESCRIPTOR.message_types_by_name['ExamplesResponse'] = _EXAMPLESRESPONSE DESCRIPTOR.message_types_by_name['TestsRequest'] = _TESTSREQUEST DESCRIPTOR.message_types_by_name['TestsResponse'] = _TESTSRESPONSE DESCRIPTOR.message_types_by_name['GuidesRequest'] = _GUIDESREQUEST DESCRIPTOR.message_types_by_name['GuidesResponse'] = _GUIDESRESPONSE DESCRIPTOR.message_types_by_name['FileRequest'] = _FILEREQUEST DESCRIPTOR.message_types_by_name['FileResponse'] = _FILERESPONSE DESCRIPTOR.message_types_by_name['File'] = _FILE DESCRIPTOR.message_types_by_name['StatusRequest'] = _STATUSREQUEST DESCRIPTOR.message_types_by_name['StatusResponse'] = _STATUSRESPONSE DESCRIPTOR.message_types_by_name['ReservationAddedRequest'] = _RESERVATIONADDEDREQUEST DESCRIPTOR.message_types_by_name['ReservationAddedResponse'] = _RESERVATIONADDEDRESPONSE DESCRIPTOR.message_types_by_name['ReservationReleasedRequest'] = _RESERVATIONRELEASEDREQUEST DESCRIPTOR.message_types_by_name['ReservationReleasedResponse'] = _RESERVATIONRELEASEDRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) DescriptionRequest = _reflection.GeneratedProtocolMessageType('DescriptionRequest', (_message.Message,), dict( DESCRIPTOR = _DESCRIPTIONREQUEST, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.DescriptionRequest) )) _sym_db.RegisterMessage(DescriptionRequest) DescriptionResponse = _reflection.GeneratedProtocolMessageType('DescriptionResponse', (_message.Message,), dict( ApplicationMetadataEntry = _reflection.GeneratedProtocolMessageType('ApplicationMetadataEntry', (_message.Message,), dict( DESCRIPTOR = _DESCRIPTIONRESPONSE_APPLICATIONMETADATAENTRY, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.DescriptionResponse.ApplicationMetadataEntry) )) , DESCRIPTOR = _DESCRIPTIONRESPONSE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.DescriptionResponse) )) _sym_db.RegisterMessage(DescriptionResponse) _sym_db.RegisterMessage(DescriptionResponse.ApplicationMetadataEntry) ProtosRequest = _reflection.GeneratedProtocolMessageType('ProtosRequest', (_message.Message,), dict( DESCRIPTOR = _PROTOSREQUEST, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.ProtosRequest) )) _sym_db.RegisterMessage(ProtosRequest) ProtosResponse = _reflection.GeneratedProtocolMessageType('ProtosResponse', (_message.Message,), dict( DESCRIPTOR = _PROTOSRESPONSE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.ProtosResponse) )) _sym_db.RegisterMessage(ProtosResponse) ExamplesRequest = _reflection.GeneratedProtocolMessageType('ExamplesRequest', (_message.Message,), dict( DESCRIPTOR = _EXAMPLESREQUEST, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.ExamplesRequest) )) _sym_db.RegisterMessage(ExamplesRequest) ExamplesResponse = _reflection.GeneratedProtocolMessageType('ExamplesResponse', (_message.Message,), dict( DESCRIPTOR = _EXAMPLESRESPONSE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.ExamplesResponse) )) _sym_db.RegisterMessage(ExamplesResponse) TestsRequest = _reflection.GeneratedProtocolMessageType('TestsRequest', (_message.Message,), dict( DESCRIPTOR = _TESTSREQUEST, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.TestsRequest) )) _sym_db.RegisterMessage(TestsRequest) TestsResponse = _reflection.GeneratedProtocolMessageType('TestsResponse', (_message.Message,), dict( DESCRIPTOR = _TESTSRESPONSE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.TestsResponse) )) _sym_db.RegisterMessage(TestsResponse) GuidesRequest = _reflection.GeneratedProtocolMessageType('GuidesRequest', (_message.Message,), dict( DESCRIPTOR = _GUIDESREQUEST, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.GuidesRequest) )) _sym_db.RegisterMessage(GuidesRequest) GuidesResponse = _reflection.GeneratedProtocolMessageType('GuidesResponse', (_message.Message,), dict( DESCRIPTOR = _GUIDESRESPONSE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.GuidesResponse) )) _sym_db.RegisterMessage(GuidesResponse) FileRequest = _reflection.GeneratedProtocolMessageType('FileRequest', (_message.Message,), dict( DESCRIPTOR = _FILEREQUEST, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.FileRequest) )) _sym_db.RegisterMessage(FileRequest) FileResponse = _reflection.GeneratedProtocolMessageType('FileResponse', (_message.Message,), dict( DESCRIPTOR = _FILERESPONSE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.FileResponse) )) _sym_db.RegisterMessage(FileResponse) File = _reflection.GeneratedProtocolMessageType('File', (_message.Message,), dict( DESCRIPTOR = _FILE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.File) )) _sym_db.RegisterMessage(File) StatusRequest = _reflection.GeneratedProtocolMessageType('StatusRequest', (_message.Message,), dict( DESCRIPTOR = _STATUSREQUEST, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.StatusRequest) )) _sym_db.RegisterMessage(StatusRequest) StatusResponse = _reflection.GeneratedProtocolMessageType('StatusResponse', (_message.Message,), dict( DESCRIPTOR = _STATUSRESPONSE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.StatusResponse) )) _sym_db.RegisterMessage(StatusResponse) ReservationAddedRequest = _reflection.GeneratedProtocolMessageType('ReservationAddedRequest', (_message.Message,), dict( SessionDecoratorsEntry = _reflection.GeneratedProtocolMessageType('SessionDecoratorsEntry', (_message.Message,), dict( DESCRIPTOR = _RESERVATIONADDEDREQUEST_SESSIONDECORATORSENTRY, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.ReservationAddedRequest.SessionDecoratorsEntry) )) , DESCRIPTOR = _RESERVATIONADDEDREQUEST, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.ReservationAddedRequest) )) _sym_db.RegisterMessage(ReservationAddedRequest) _sym_db.RegisterMessage(ReservationAddedRequest.SessionDecoratorsEntry) ReservationAddedResponse = _reflection.GeneratedProtocolMessageType('ReservationAddedResponse', (_message.Message,), dict( DESCRIPTOR = _RESERVATIONADDEDRESPONSE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.ReservationAddedResponse) )) _sym_db.RegisterMessage(ReservationAddedResponse) ReservationReleasedRequest = _reflection.GeneratedProtocolMessageType('ReservationReleasedRequest', (_message.Message,), dict( DESCRIPTOR = _RESERVATIONRELEASEDREQUEST, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.ReservationReleasedRequest) )) _sym_db.RegisterMessage(ReservationReleasedRequest) ReservationReleasedResponse = _reflection.GeneratedProtocolMessageType('ReservationReleasedResponse', (_message.Message,), dict( DESCRIPTOR = _RESERVATIONRELEASEDRESPONSE, __module__ = 'anvilCore.service_pb2' # @@protoc_insertion_point(class_scope:Autodesk.Anvil.Protos.ReservationReleasedResponse) )) _sym_db.RegisterMessage(ReservationReleasedResponse) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('Z\006protos')) _DESCRIPTIONRESPONSE_APPLICATIONMETADATAENTRY.has_options = True _DESCRIPTIONRESPONSE_APPLICATIONMETADATAENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _RESERVATIONADDEDREQUEST_SESSIONDECORATORSENTRY.has_options = True _RESERVATIONADDEDREQUEST_SESSIONDECORATORSENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b('8\001')) _RESERVABLE = _descriptor.ServiceDescriptor( name='Reservable', full_name='Autodesk.Anvil.Protos.Reservable', file=DESCRIPTOR, index=0, options=None, serialized_start=1418, serialized_end=2106, methods=[ _descriptor.MethodDescriptor( name='Files', full_name='Autodesk.Anvil.Protos.Reservable.Files', index=0, containing_service=None, input_type=_FILEREQUEST, output_type=_FILERESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Protos', full_name='Autodesk.Anvil.Protos.Reservable.Protos', index=1, containing_service=None, input_type=_PROTOSREQUEST, output_type=_PROTOSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Examples', full_name='Autodesk.Anvil.Protos.Reservable.Examples', index=2, containing_service=None, input_type=_EXAMPLESREQUEST, output_type=_EXAMPLESRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Tests', full_name='Autodesk.Anvil.Protos.Reservable.Tests', index=3, containing_service=None, input_type=_TESTSREQUEST, output_type=_TESTSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Guides', full_name='Autodesk.Anvil.Protos.Reservable.Guides', index=4, containing_service=None, input_type=_GUIDESREQUEST, output_type=_GUIDESRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='ReservationAdded', full_name='Autodesk.Anvil.Protos.Reservable.ReservationAdded', index=5, containing_service=None, input_type=_RESERVATIONADDEDREQUEST, output_type=_RESERVATIONADDEDRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='ReservationReleased', full_name='Autodesk.Anvil.Protos.Reservable.ReservationReleased', index=6, containing_service=None, input_type=_RESERVATIONRELEASEDREQUEST, output_type=_RESERVATIONRELEASEDRESPONSE, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_RESERVABLE) DESCRIPTOR.services_by_name['Reservable'] = _RESERVABLE _READINESS = _descriptor.ServiceDescriptor( name='Readiness', full_name='Autodesk.Anvil.Protos.Readiness', file=DESCRIPTOR, index=1, options=None, serialized_start=2109, serialized_end=2309, methods=[ _descriptor.MethodDescriptor( name='Description', full_name='Autodesk.Anvil.Protos.Readiness.Description', index=0, containing_service=None, input_type=_DESCRIPTIONREQUEST, output_type=_DESCRIPTIONRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Status', full_name='Autodesk.Anvil.Protos.Readiness.Status', index=1, containing_service=None, input_type=_STATUSREQUEST, output_type=_STATUSRESPONSE, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_READINESS) DESCRIPTOR.services_by_name['Readiness'] = _READINESS _MICROSERVICE = _descriptor.ServiceDescriptor( name='Microservice', full_name='Autodesk.Anvil.Protos.Microservice', file=DESCRIPTOR, index=2, options=None, serialized_start=2312, serialized_end=3191, methods=[ _descriptor.MethodDescriptor( name='Description', full_name='Autodesk.Anvil.Protos.Microservice.Description', index=0, containing_service=None, input_type=_DESCRIPTIONREQUEST, output_type=_DESCRIPTIONRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Status', full_name='Autodesk.Anvil.Protos.Microservice.Status', index=1, containing_service=None, input_type=_STATUSREQUEST, output_type=_STATUSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Files', full_name='Autodesk.Anvil.Protos.Microservice.Files', index=2, containing_service=None, input_type=_FILEREQUEST, output_type=_FILERESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Protos', full_name='Autodesk.Anvil.Protos.Microservice.Protos', index=3, containing_service=None, input_type=_PROTOSREQUEST, output_type=_PROTOSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Examples', full_name='Autodesk.Anvil.Protos.Microservice.Examples', index=4, containing_service=None, input_type=_EXAMPLESREQUEST, output_type=_EXAMPLESRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Tests', full_name='Autodesk.Anvil.Protos.Microservice.Tests', index=5, containing_service=None, input_type=_TESTSREQUEST, output_type=_TESTSRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='Guides', full_name='Autodesk.Anvil.Protos.Microservice.Guides', index=6, containing_service=None, input_type=_GUIDESREQUEST, output_type=_GUIDESRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='ReservationAdded', full_name='Autodesk.Anvil.Protos.Microservice.ReservationAdded', index=7, containing_service=None, input_type=_RESERVATIONADDEDREQUEST, output_type=_RESERVATIONADDEDRESPONSE, options=None, ), _descriptor.MethodDescriptor( name='ReservationReleased', full_name='Autodesk.Anvil.Protos.Microservice.ReservationReleased', index=8, containing_service=None, input_type=_RESERVATIONRELEASEDREQUEST, output_type=_RESERVATIONRELEASEDRESPONSE, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_MICROSERVICE) DESCRIPTOR.services_by_name['Microservice'] = _MICROSERVICE # @@protoc_insertion_point(module_scope)
be4a4c4e765b75796466260e45263b74991714ce
982390f1f83cb0d1c0544434b376cac25fb0966a
/beakerx/beakerx/object/__init__.py
ddba819f8c7fa1cfa43de34c4f053f78729b3109
[ "Apache-2.0", "EPL-1.0", "MPL-2.0", "LicenseRef-scancode-proprietary-license", "BSD-3-Clause", "MIT" ]
permissive
splicemachine/beakerx
a72365614eef98c94e37fdf7ba43e17447962b42
afce8900a08d6cbea540608f0c9c88af7b3f7bc0
refs/heads/master
2021-07-13T21:13:45.196374
2020-01-30T21:38:34
2020-01-30T21:38:34
236,809,369
1
0
Apache-2.0
2021-02-18T06:51:54
2020-01-28T18:34:30
Java
UTF-8
Python
false
false
645
py
# Copyright 2014 TWO SIGMA OPEN SOURCE, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..runtime import BeakerX beakerx = BeakerX()
d07a279ceb53a60b79996d5a1dff2ba6f27a2bd8
1f9900bf0876bc70d9c02c59317c12193f727870
/Projeto/program.py
95369794cdfcf9677902819397d61e7fd7e67b69
[]
no_license
nhortensioUAL/ualap2021_grupo1
652ad5085ab9b7c7fa8cc67f39ab787fce5cb8ba
9e4fcc04d42141f3e0ad9a74094f567ec5367cb6
refs/heads/main
2023-02-25T16:11:20.059864
2021-02-01T21:26:08
2021-02-01T21:26:08
310,278,359
0
1
null
null
null
null
UTF-8
Python
false
false
119
py
from views import cli import sys if __name__ == "__main__": sys.stdout.reconfigure(encoding="UTF-8") cli.cli()
eeed939904651f42894f02c40e68bf68d1d98f7a
889a31c40749d9c3d7ac1e2b96f2fb4acce1b640
/index.py
21d1551c1b941f7a9da166c07bbcedc3207463fa
[ "MIT" ]
permissive
dogerish/mc-copy-paste
f0e0318a19ba0610d5f195f786b21da4771200ee
e256aa22d9474e14ace48749d06723b2d650ab2f
refs/heads/master
2023-06-26T17:30:57.889528
2021-07-26T00:59:26
2021-07-26T00:59:26
387,288,728
0
0
null
null
null
null
UTF-8
Python
false
false
1,287
py
# builtin import asyncio # third party from aioconsole import ainput # custom from utils import cfg, MCP from selection import copysel from commands import parse mc = MCP() async def cmdloop() -> None: try: parse(mc, cfg["autoexec"], fatal=True) except Exception as e: print(f"Error in autoexec; quitting.") exit(1) mc.log("Ready") while True: parse(mc, await ainput() or "list") async def blockhitloop() -> None: while True: for e in mc.events.pollBlockHits(): mc.coords.append(e.pos) mc.log(f"Selected block at {tuple(e.pos)}") if (mc.mode == "normal" or mc.mode == "copy") and len(mc.coords) == 2: mc.log("Copying...") mc.sel = copysel(*mc.coords, mc) mc.done() if mc.mode == "copy": mc.coords.clear() elif mc.mode == "paste" or (mc.mode == "normal" and len(mc.coords) > 2): mc.log("Pasting...") mc.sel.paste(mc.coords[2] if mc.mode == "normal" else mc.coords[0]) mc.coords.clear() mc.done() await asyncio.sleep(0.1) async def main() -> None: await asyncio.gather(cmdloop(), blockhitloop()) if __name__ == "__main__": asyncio.run(main())
842c3a971ee8072cd3907667b4b99dee4ad1446b
add72f4d6f9f7af1f437d19213c14efb218b2194
/glamkit_collections/migrations/0004_geographiclocation_slug.py
22f6e481c9855aeeb7ed0fd74eb7909ed143de04
[ "MIT" ]
permissive
ic-labs/django-icekit
6abe859f97c709fcf51207b54778501b50436ff7
c507ea5b1864303732c53ad7c5800571fca5fa94
refs/heads/develop
2022-08-08T21:26:04.144852
2018-01-08T02:55:17
2018-01-08T02:55:17
65,470,395
53
12
MIT
2022-07-06T19:59:39
2016-08-11T13:11:02
Python
UTF-8
Python
false
false
1,304
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.template.defaultfilters import slugify from forms_builder.forms.utils import unique_slug def create_slugs(apps, _): GL = apps.get_model('glamkit_collections', 'GeographicLocation') for self in GL.objects.all(): if not self.slug: levels = [x for x in ( self.neighborhood, self.city, self.state_province) if x] if self.country: levels.append(self.country.title) r = ", ".join(levels) if self.colloquial_historical: if r: r ="{0} ({1})".format(self.colloquial_historical, r) else: r = self.colloquial_historical self.slug = unique_slug(type(self).objects, 'slug', slugify(unicode(r))) self.save() class Migration(migrations.Migration): dependencies = [ ('glamkit_collections', '0003_auto_20170412_1742'), ] operations = [ migrations.AddField( model_name='geographiclocation', name='slug', field=models.SlugField(blank=True), ), migrations.RunPython(create_slugs, lambda x, y: None) ]
e2695b6d9241f820810b705e59de67da5f7a870b
a14c2c92722fff497d79baa6ce1e03cba6d3ab42
/root/localeinfo.py
f660406fe3309b6574f63af6e5010327b373b7e8
[]
no_license
MMOTutkunlari/AltyapiPack
f12c3789d9e9ca8ac131bd51d4653abda349832c
a7982d7ff9a162fc561d89f7be7d0a9c327ca04e
refs/heads/master
2023-07-10T00:17:57.170770
2021-04-30T14:39:18
2021-04-30T14:39:18
278,165,483
2
0
null
null
null
null
UHC
Python
false
false
32,904
py
import app import constInfo MAP_TRENT02 = "MAP_TRENT02" # 임시 MAP_WL = "MAP_WL" # 임시 MAP_NUSLUCK = "MAP_NUSLUCK" # 임시 MAP_TREE2 = "MAP_TREE2" BLEND_POTION_NO_TIME = "BLEND_POTION_NO_TIME" BLEND_POTION_NO_INFO = "BLEND_POTION_NO_INFO" APP_TITLE = "METIN2" GUILD_HEADQUARTER = "Main Building" GUILD_FACILITY = "Facility" GUILD_OBJECT = "Object" GUILD_MEMBER_COUNT_INFINITY = "INFINITY" LOGIN_FAILURE_WEB_BLOCK = "BLOCK_LOGIN(WEB)" LOGIN_FAILURE_BLOCK_LOGIN = "BLOCK_LOGIN" CHANNEL_NOTIFY_FULL = "CHANNEL_NOTIFY_FULL" GUILD_BUILDING_LIST_TXT = app.GetLocalePath() + "/GuildBuildingList.txt" GUILD_MARK_MIN_LEVEL = "3" GUILD_MARK_NOT_ENOUGH_LEVEL = "길드레벨 3이상 부터 가능합니다." ERROR_MARK_UPLOAD_NEED_RECONNECT = "UploadMark: Reconnect to game" ERROR_MARK_CHECK_NEED_RECONNECT = "CheckMark: Reconnect to game" VIRTUAL_KEY_ALPHABET_LOWERS = r"[1234567890]/qwertyuiop\=asdfghjkl;`'zxcvbnm.," VIRTUAL_KEY_ALPHABET_UPPERS = r'{1234567890}?QWERTYUIOP|+ASDFGHJKL:~"ZXCVBNM<>' VIRTUAL_KEY_SYMBOLS = '!@#$%^&*()_+|{}:"<>?~' VIRTUAL_KEY_NUMBERS = "1234567890-=\[];',./`" VIRTUAL_KEY_SYMBOLS_BR = '!@#$%^&*()_+|{}:"<>?~蓀呻郵悠壬蛭衝銜' __IS_ENGLISH = "ENGLISH" == app.GetLocaleServiceName() __IS_HONGKONG = "HONGKONG" == app.GetLocaleServiceName() __IS_NEWCIBN = "locale/newcibn" == app.GetLocalePath() __IS_EUROPE = "EUROPE" == app.GetLocaleServiceName() __IS_CANADA = "locale/ca" == app.GetLocalePath() __IS_BRAZIL = "locale/br" == app.GetLocalePath() __IS_SINGAPORE = "locale/sg" == app.GetLocalePath() __IS_VIETNAM = "locale/vn" == app.GetLocalePath() __IS_ARABIC = "locale/ae" == app.GetLocalePath() __IS_CIBN10 = "locale/cibn10" == app.GetLocalePath() __IS_WE_KOREA = "locale/we_korea" == app.GetLocalePath() __IS_TAIWAN = "locale/taiwan" == app.GetLocalePath() __IS_JAPAN = "locale/japan" == app.GetLocalePath() LOGIN_FAILURE_WRONG_SOCIALID = "ASDF" LOGIN_FAILURE_SHUTDOWN_TIME = "ASDF" if __IS_CANADA: __IS_EUROPE = True def IsYMIR(): return "locale/ymir" == app.GetLocalePath() def IsJAPAN(): return "locale/japan" == app.GetLocalePath() def IsENGLISH(): global __IS_ENGLISH return __IS_ENGLISH def IsHONGKONG(): global __IS_HONGKONG return __IS_HONGKONG def IsTAIWAN(): return "locale/taiwan" == app.GetLocalePath() def IsNEWCIBN(): return "locale/newcibn" == app.GetLocalePath() def IsCIBN10(): global __IS_CIBN10 return __IS_CIBN10 def IsEUROPE(): global __IS_EUROPE return __IS_EUROPE def IsCANADA(): global __IS_CANADA return __IS_CANADA def IsBRAZIL(): global __IS_BRAZIL return __IS_BRAZIL def IsVIETNAM(): global __IS_VIETNAM return __IS_VIETNAM def IsSINGAPORE(): global __IS_SINGAPORE return __IS_SINGAPORE def IsARABIC(): global __IS_ARABIC return __IS_ARABIC def IsWE_KOREA(): return "locale/we_korea" == app.GetLocalePath() # SUPPORT_NEW_KOREA_SERVER def LoadLocaleData(): if IsYMIR(): import net SERVER = "쾌도 서버" if SERVER == net.GetServerInfo()[:len(SERVER)]: app.SetCHEONMA(0) app.LoadLocaleData("locale/we_korea") constInfo.ADD_DEF_BONUS_ENABLE = 0 else: app.SetCHEONMA(1) app.LoadLocaleData("locale/ymir") constInfo.ADD_DEF_BONUS_ENABLE = 1 else: app.LoadLocaleData(app.GetLocalePath()) def IsCHEONMA(): return IsYMIR() # 이제 YMIR 로케일은 무조건 천마서버임. 천마서버가 문을 닫기 전까지 변할 일 없음. # END_OF_SUPPORT_NEW_KOREA_SERVER def mapping(**kwargs): return kwargs def SNA(text): def f(x): return text return f def SA(text): def f(x): return text % x return f def LoadLocaleFile(srcFileName, localeDict): funcDict = {"SA":SA, "SNA":SNA} lineIndex = 1 try: lines = pack_open(srcFileName, "r").readlines() except IOError: import dbg dbg.LogBox("LoadLocaleError(%(srcFileName)s)" % locals()) app.Abort() for line in lines: try: tokens = line[:-1].split("\t") if len(tokens) == 2: localeDict[tokens[0]] = tokens[1] elif len(tokens) >= 3: type = tokens[2].strip() if type: localeDict[tokens[0]] = funcDict[type](tokens[1]) else: localeDict[tokens[0]] = tokens[1] else: raise RuntimeError, "Unknown TokenSize" lineIndex += 1 except: import dbg dbg.LogBox("%s: line(%d): %s" % (srcFileName, lineIndex, line), "Error") raise all = ["locale","error"] if IsEUROPE() and IsBRAZIL() : FN_GM_MARK = "%s/effect/gm.mse" % app.GetLocalePath() LOCALE_FILE_NAME = "%s/locale_game.txt" % app.GetLocalePath() constInfo.IN_GAME_SHOP_ENABLE = 0 elif IsSINGAPORE() : FN_GM_MARK = "%s/effect/gm.mse" % app.GetLocalePath() LOCALE_FILE_NAME = "%s/locale_game.txt" % app.GetLocalePath() constInfo.IN_GAME_SHOP_ENABLE = 0 elif IsNEWCIBN() : ##게임명이깨진다. APP_TITLE = "劤祿莖2" FN_GM_MARK = "%s/effect/gm.mse" % app.GetLocalePath() LOCALE_FILE_NAME = "%s/locale_game.txt" % app.GetLocalePath() constInfo.IN_GAME_SHOP_ENABLE = 1 elif IsTAIWAN(): APP_TITLE = "갓III곌" FN_GM_MARK = "%s/effect/gm.mse" % app.GetLocalePath() LOCALE_FILE_NAME = "%s/locale_game.txt" % app.GetLocalePath() constInfo.IN_GAME_SHOP_ENABLE = 1 else: FN_GM_MARK = "%s/effect/gm.mse" % app.GetLocalePath() LOCALE_FILE_NAME = "%s/locale_game.txt" % app.GetLocalePath() constInfo.IN_GAME_SHOP_ENABLE = 1 LoadLocaleFile(LOCALE_FILE_NAME, locals()) ######################################################################################################## ## NOTE : 아이템을 버릴때 "무엇을/를 버리시겠습니까?" 문자열의 조사 선택을 위한 코드 dictSingleWord = { "m":1, "n":1, "r":1, "M":1, "N":1, "R":1, "l":1, "L":1, "1":1, "3":1, "6":1, "7":1, "8":1, "0":1, } dictDoubleWord = { "가":1, "갸":1, "거":1, "겨":1, "고":1, "교":1, "구":1, "규":1, "그":1, "기":1, "개":1, "걔":1, "게":1, "계":1, "과":1, "괘":1, "궈":1, "궤":1, "괴":1, "귀":1, "긔":1, "까":1, "꺄":1, "꺼":1, "껴":1, "꼬":1, "꾜":1, "꾸":1, "뀨":1, "끄":1, "끼":1, "깨":1, "꺠":1, "께":1, "꼐":1, "꽈":1, "꽤":1, "꿔":1, "꿰":1, "꾀":1, "뀌":1, "끠":1, "나":1, "냐":1, "너":1, "녀":1, "노":1, "뇨":1, "누":1, "뉴":1, "느":1, "니":1, "내":1, "냬":1, "네":1, "녜":1, "놔":1, "놰":1, "눠":1, "눼":1, "뇌":1, "뉘":1, "늬":1, "다":1, "댜":1, "더":1, "뎌":1, "도":1, "됴":1, "두":1, "듀":1, "드":1, "디":1, "대":1, "댸":1, "데":1, "뎨":1, "돠":1, "돼":1, "둬":1, "뒈":1, "되":1, "뒤":1, "듸":1, "따":1, "땨":1, "떠":1, "뗘":1, "또":1, "뚀":1, "뚜":1, "뜌":1, "뜨":1, "띠":1, "때":1, "떄":1, "떼":1, "뗴":1, "똬":1, "뙈":1, "뚸":1, "뛔":1, "뙤":1, "뛰":1, "띄":1, "라":1, "랴":1, "러":1, "려":1, "로":1, "료":1, "루":1, "류":1, "르":1, "리":1, "래":1, "럐":1, "레":1, "례":1, "롸":1, "뢔":1, "뤄":1, "뤠":1, "뢰":1, "뤼":1, "릐":1, "마":1, "먀":1, "머":1, "며":1, "모":1, "묘":1, "무":1, "뮤":1, "므":1, "미":1, "매":1, "먜":1, "메":1, "몌":1, "뫄":1, "뫠":1, "뭐":1, "뭬":1, "뫼":1, "뮈":1, "믜":1, "바":1, "뱌":1, "버":1, "벼":1, "보":1, "뵤":1, "부":1, "뷰":1, "브":1, "비":1, "배":1, "뱨":1, "베":1, "볘":1, "봐":1, "봬":1, "붜":1, "붸":1, "뵈":1, "뷔":1, "븨":1, "빠":1, "뺘":1, "뻐":1, "뼈":1, "뽀":1, "뾰":1, "뿌":1, "쀼":1, "쁘":1, "삐":1, "빼":1, "뺴":1, "뻬":1, "뼤":1, "뽜":1, "뽸":1, "뿨":1, "쀄":1, "뾔":1, "쀠":1, "쁴":1, "사":1, "샤":1, "서":1, "셔":1, "소":1, "쇼":1, "수":1, "슈":1, "스":1, "시":1, "새":1, "섀":1, "세":1, "셰":1, "솨":1, "쇄":1, "숴":1, "쉐":1, "쇠":1, "쉬":1, "싀":1, "싸":1, "쌰":1, "써":1, "쎠":1, "쏘":1, "쑈":1, "쑤":1, "쓔":1, "쓰":1, "씨":1, "쌔":1, "썌":1, "쎄":1, "쎼":1, "쏴":1, "쐐":1, "쒀":1, "쒜":1, "쐬":1, "쒸":1, "씌":1, "아":1, "야":1, "어":1, "여":1, "오":1, "요":1, "우":1, "유":1, "으":1, "이":1, "애":1, "얘":1, "에":1, "예":1, "와":1, "왜":1, "워":1, "웨":1, "외":1, "위":1, "의":1, "자":1, "쟈":1, "저":1, "져":1, "조":1, "죠":1, "주":1, "쥬":1, "즈":1, "지":1, "재":1, "쟤":1, "제":1, "졔":1, "좌":1, "좨":1, "줘":1, "줴":1, "죄":1, "쥐":1, "즤":1, "짜":1, "쨔":1, "쩌":1, "쪄":1, "쪼":1, "쬬":1, "쭈":1, "쮸":1, "쯔":1, "찌":1, "째":1, "쨰":1, "쩨":1, "쪠":1, "쫘":1, "쫴":1, "쭤":1, "쮀":1, "쬐":1, "쮜":1, "쯰":1, "차":1, "챠":1, "처":1, "쳐":1, "초":1, "쵸":1, "추":1, "츄":1, "츠":1, "치":1, "채":1, "챼":1, "체":1, "쳬":1, "촤":1, "쵀":1, "춰":1, "췌":1, "최":1, "취":1, "츼":1, "카":1, "캬":1, "커":1, "켜":1, "코":1, "쿄":1, "쿠":1, "큐":1, "크":1, "키":1, "캐":1, "컈":1, "케":1, "켸":1, "콰":1, "쾌":1, "쿼":1, "퀘":1, "쾨":1, "퀴":1, "킈":1, "타":1, "탸":1, "터":1, "텨":1, "토":1, "툐":1, "투":1, "튜":1, "트":1, "티":1, "태":1, "턔":1, "테":1, "톄":1, "톼":1, "퇘":1, "퉈":1, "퉤":1, "퇴":1, "튀":1, "틔":1, "파":1, "퍄":1, "퍼":1, "펴":1, "포":1, "표":1, "푸":1, "퓨":1, "프":1, "피":1, "패":1, "퍠":1, "페":1, "폐":1, "퐈":1, "퐤":1, "풔":1, "풰":1, "푀":1, "퓌":1, "픠":1, "하":1, "햐":1, "허":1, "혀":1, "호":1, "효":1, "후":1, "휴":1, "흐":1, "히":1, "해":1, "햬":1, "헤":1, "혜":1, "화":1, "홰":1, "훠":1, "훼":1, "회":1, "휘":1, "희":1, } locale = mapping( ) def GetAuxiliaryWordType(text): textLength = len(text) if textLength > 1: singleWord = text[-1] if (singleWord >= '0' and singleWord <= '9') or\ (singleWord >= 'a' and singleWord <= 'z') or\ (singleWord >= 'A' and singleWord <= 'Z'): if not dictSingleWord.has_key(singleWord): return 1 elif dictDoubleWord.has_key(text[-2:]): return 1 return 0 def CutMoneyString(sourceText, startIndex, endIndex, insertingText, backText): sourceLength = len(sourceText) if sourceLength < startIndex: return backText text = sourceText[max(0, sourceLength-endIndex):sourceLength-startIndex] if not text: return backText if int(text) <= 0: return backText text = str(int(text)) if backText: backText = " " + backText return text + insertingText + backText def SecondToDHM(time): if time < 60: if IsARABIC(): return "%.2f %s" % (time, SECOND) else: return "0" + MINUTE second = int(time % 60) minute = int((time / 60) % 60) hour = int((time / 60) / 60) % 24 day = int(int((time / 60) / 60) / 24) text = "" if day > 0: text += str(day) + DAY text += " " if hour > 0: text += str(hour) + HOUR text += " " if minute > 0: text += str(minute) + MINUTE return text def SecondToHM(time): if time < 60: if IsARABIC(): return "%.2f %s" % (time, SECOND) else: return "0" + MINUTE second = int(time % 60) minute = int((time / 60) % 60) hour = int((time / 60) / 60) text = "" if hour > 0: text += str(hour) + HOUR if hour > 0: text += " " if minute > 0: text += str(minute) + MINUTE return text def GetAlignmentTitleName(alignment): if alignment >= 12000: return TITLE_NAME_LIST[0] elif alignment >= 8000: return TITLE_NAME_LIST[1] elif alignment >= 4000: return TITLE_NAME_LIST[2] elif alignment >= 1000: return TITLE_NAME_LIST[3] elif alignment >= 0: return TITLE_NAME_LIST[4] elif alignment > -4000: return TITLE_NAME_LIST[5] elif alignment > -8000: return TITLE_NAME_LIST[6] elif alignment > -12000: return TITLE_NAME_LIST[7] return TITLE_NAME_LIST[8] OPTION_PVPMODE_MESSAGE_DICT = { 0 : PVP_MODE_NORMAL, 1 : PVP_MODE_REVENGE, 2 : PVP_MODE_KILL, 3 : PVP_MODE_PROTECT, 4 : PVP_MODE_GUILD, } error = mapping( CREATE_WINDOW = GAME_INIT_ERROR_MAIN_WINDOW, CREATE_CURSOR = GAME_INIT_ERROR_CURSOR, CREATE_NETWORK = GAME_INIT_ERROR_NETWORK, CREATE_ITEM_PROTO = GAME_INIT_ERROR_ITEM_PROTO, CREATE_MOB_PROTO = GAME_INIT_ERROR_MOB_PROTO, CREATE_NO_DIRECTX = GAME_INIT_ERROR_DIRECTX, CREATE_DEVICE = GAME_INIT_ERROR_GRAPHICS_NOT_EXIST, CREATE_NO_APPROPRIATE_DEVICE = GAME_INIT_ERROR_GRAPHICS_BAD_PERFORMANCE, CREATE_FORMAT = GAME_INIT_ERROR_GRAPHICS_NOT_SUPPORT_32BIT, NO_ERROR = "" ) GUILDWAR_NORMAL_DESCLIST = [GUILD_WAR_USE_NORMAL_MAP, GUILD_WAR_LIMIT_30MIN, GUILD_WAR_WIN_CHECK_SCORE] GUILDWAR_WARP_DESCLIST = [GUILD_WAR_USE_BATTLE_MAP, GUILD_WAR_WIN_WIPE_OUT_GUILD, GUILD_WAR_REWARD_POTION] GUILDWAR_CTF_DESCLIST = [GUILD_WAR_USE_BATTLE_MAP, GUILD_WAR_WIN_TAKE_AWAY_FLAG1, GUILD_WAR_WIN_TAKE_AWAY_FLAG2, GUILD_WAR_REWARD_POTION] MINIMAP_ZONE_NAME_DICT = { "metin2_map_a1" : MAP_A1, "map_a2" : MAP_A2, "metin2_map_a3" : MAP_A3, "metin2_map_b1" : MAP_B1, "map_b2" : MAP_B2, "metin2_map_b3" : MAP_B3, "metin2_map_c1" : MAP_C1, "map_c2" : MAP_C2, "metin2_map_c3" : MAP_C3, "map_n_snowm_01" : MAP_SNOW, "metin2_map_n_flame_01" : MAP_FLAME, "metin2_map_n_desert_01" : MAP_DESERT, "metin2_map_milgyo" : MAP_TEMPLE, "metin2_map_spiderdungeon" : MAP_SPIDER, "metin2_map_deviltower1" : MAP_SKELTOWER, "metin2_map_guild_01" : MAP_AG, "metin2_map_guild_02" : MAP_BG, "metin2_map_guild_03" : MAP_CG, "metin2_map_trent" : MAP_TREE, "metin2_map_trent02" : MAP_TREE2, "season1/metin2_map_WL_01" : MAP_WL, "season1/metin2_map_nusluck01" : MAP_NUSLUCK, "Metin2_map_CapeDragonHead" : MAP_CAPE, "metin2_map_Mt_Thunder" : MAP_THUNDER, "metin2_map_dawnmistwood" : MAP_DAWN, "metin2_map_BayBlackSand" : MAP_BAY, } JOBINFO_TITLE = [ [JOB_WARRIOR0, JOB_WARRIOR1, JOB_WARRIOR2,], [JOB_ASSASSIN0, JOB_ASSASSIN1, JOB_ASSASSIN2,], [JOB_SURA0, JOB_SURA1, JOB_SURA2,], [JOB_SHAMAN0, JOB_SHAMAN1, JOB_SHAMAN2,], ] JOBINFO_DATA_LIST = [ [ ["타고난 용맹과 굽히지 않는 무사의", "기개를 사람들은 일컬어 [용자]라고", "부른다. 어떠한 위기에서도 그들은 ", "뒤로 물러서지 않으며, 다치고 움직", "이기 힘든 동료를 위해 단신으로", "적들과 마주 싸우기도 한다. 이들은", "잘 단련된 근육과 힘, 강력한 공격력", "으로 전장 최선두에서 공격진으로", "활약한다. ",], ["가장 일반적인 공격형 무사로, ", "적접전에 따른 직접 공격으로 전장", "에서 활약한다. 군직 특성상 근력을", "메인으로 스텟 포인트를 투자하되, ", "적접전에 따른 생명력 / 방어력", "확보를 위해 체력을 올린다. 또한", "공격의 정확성을 높이기 위해 민첩", "에도 포인트를 투자할 필요가 있다.",], ["상당 수준의 정신력을 이용하는", "중/근거리 접전형 무사로, 각 기술", "하나하나의 높은 공격력으로 전장에서", "활약한다. 군직 특성상 근력을 메인", "으로 스탯 포인트를 투자하되, ", "중/근거리 공격의 정확성과 명중률을", "위해 민첩을 올린다. 또한 접전 시 ", "적 공격에 따른 생명력 / 방어력", "확보를 위해 체력에도 포인트를", "투자할 필요가 있다. ",], ], [ ["자객은 어떠한 상황에서도 자신의", "몸을 숨기고 은밀한 어둠의 임무를", "수행하면서 전장의 후위를 지원하는", "자들이다. 이들은 아주 빠르고 신속", "하며, 비할 데 없이 과감하고 절제된", "행동으로 적의 급소에 치명타를 날리", "되, 전장에선 적진을 향해 무수한", "화살을 내뿜으며 자신의 용맹을", "선보인다. "], ["두손 단검을 주무기로 다루며, 신속", "하게 치고 빠지는 자객 특유의 움직임", "으로 전장에서 활약한다. 군직 특성상", "민첩을 메인으로 스텟 포인트를 투자", "하되, 근력을 올려 공격력을 높인다.", "또한 근접전에 따른 생명력/방어력 ", "상승을 위해 체력에도 포인트를", "투자할 필요가 있다. ",], ["활을 주무기로 다루며, 긴 시야와", "사정거리에 따른 원거리 공격으로", "전장에서 활약한다. 군직 특성상", "공격 성공률의 증가를 위해 민첩을", "메인으로 올려야 하며, 원거리", "공격의 데미지 증가를 위해 근력을", "올릴 필요가 있다. 또한 적들에게", "포위되었을 시, 적 공격에 버티기", "위한 생명력/방어력 상승을 위해", "체력에도 포인트를 투자할 필요가", "있다. ", ], ], [ ["수라는 [독은 독으로]의 속성으로", "창설된 특수 속성의 군직이다. ", "그들은 전장에서 적들의 사기를 저하", "시키고, 악마의 힘을 실은 마탄으로", "적의 영혼과 육신을 짓뭉갠다. 때로", "이들은 자신의 검과 갑옷에 어둠의", "힘을 실어, 전장에서 무사 못지 않은", "공격력을 발휘하기도 하는데, 적들을", "죽여대는그 모습이 워낙에 끔찍해", "사람들은 수라를 일컬어 [마신]이라", "부르기를 주저 앉는다."], ["환무군의 수라는 악마의 씨에서", "얻어지는 마력을 무기나 방어구에", "실어 무사 못지 않은 전투력으로", "전장에서 활약한다. 군직 특성상", "지능이 높아질수록 착용 장비에", "실리는 마력의 위력이 증대되므로,", "지능과 근력을 메인으로 스탯", "포인트를 투자하되, 접전에 따른", "생명력/방어력 확보를 위해 체력을", "올린다. 또한 공격의 정확성과", "회피를 위해서 민첩에도 포인트를", "투자할 필요가 있다. ",], ["흑마군의 수라들은 각종 어둠의", "주문과 악마의 마법으로 전장에서", "활약한다. 군직 특성상 마법 공격이", "주이므로 지능을 메인으로 스텟", "포인트를 투자하되, 원거리 마법", "공격의 정확성을 위해 민첩을 올린다.", "또한 포위 되었을시, 적 공격에 따른", "생명력 / 방어력 확보를 위해 체력에도", "포인트를 투자할 필요가 있다. ",], ], [ ["무당은 용신과 자연, 두 고대의", "힘을 다룰 수 있는 유일한 직종이다.", "그들은 후방에서 아군을 보조하고", "다친 동료의 부상을 회복 시키며", "떨어진 사기를 상승시킨다. 그들은", "아군의 수면과 휴식을 방해하는 자를 ", "절대 용서하지 않으며, 그런 자들", "에게는 한 점 주저 없이 주문을", "터트려 그 비겁함을 엄히 징계한다.",], ["천룡군의 무당들은 각종 부적술과", "보조주문에 능하며, 적의 직 / 간접", "공격으로부터 아군을 지킨다. 군직", "특성상 마법 능력이 주이므로 지능을", "메인으로 스텟 포인트를 투자하되,", "포위되었을 시, 적 공격에 따른", "생명력 / 방어력 확보를 위해 체력을", "올린다. 또한 원거리 마법 공격의", "정확성을 위에 민첩에도 포인트를", "투자할 필요가 있다. ",], ["광뢰군의 무당들은 자연의 힘을", "빌려 아군을 회복하고, 뇌신의 ", "힘으로 밀집한 적들에게 큰 충격을", "입힐 수 있는 이들이다. 군직의", "특성상 마법 능력이 주이므로 지능을", "메인으로 스텟 포인트를 투자하되,", "포위되었을시, 적 공격에 따른", "생명력 / 방어력 확보를 위해 체력을", "올린다. 또한 원거리 마법 공격의", "정확성을 위에 민첩에도 포인트를", "투자할 필요가 있다. "], ], ] WHISPER_ERROR = { 1 : CANNOT_WHISPER_NOT_LOGON, 2 : CANNOT_WHISPER_DEST_REFUSE, 3 : CANNOT_WHISPER_SELF_REFUSE, } NOTIFY_MESSAGE = { "CANNOT_EQUIP_SHOP" : CANNOT_EQUIP_IN_SHOP, "CANNOT_EQUIP_EXCHANGE" : CANNOT_EQUIP_IN_EXCHANGE, } ATTACK_ERROR_TAIL_DICT = { "IN_SAFE" : CANNOT_ATTACK_SELF_IN_SAFE, "DEST_IN_SAFE" : CANNOT_ATTACK_DEST_IN_SAFE, } SHOT_ERROR_TAIL_DICT = { "EMPTY_ARROW" : CANNOT_SHOOT_EMPTY_ARROW, "IN_SAFE" : CANNOT_SHOOT_SELF_IN_SAFE, "DEST_IN_SAFE" : CANNOT_SHOOT_DEST_IN_SAFE, } USE_SKILL_ERROR_TAIL_DICT = { "IN_SAFE" : CANNOT_SKILL_SELF_IN_SAFE, "NEED_TARGET" : CANNOT_SKILL_NEED_TARGET, "NEED_EMPTY_BOTTLE" : CANNOT_SKILL_NEED_EMPTY_BOTTLE, "NEED_POISON_BOTTLE" : CANNOT_SKILL_NEED_POISON_BOTTLE, "REMOVE_FISHING_ROD" : CANNOT_SKILL_REMOVE_FISHING_ROD, "NOT_YET_LEARN" : CANNOT_SKILL_NOT_YET_LEARN, "NOT_MATCHABLE_WEAPON" : CANNOT_SKILL_NOT_MATCHABLE_WEAPON, "WAIT_COOLTIME" : CANNOT_SKILL_WAIT_COOLTIME, "NOT_ENOUGH_HP" : CANNOT_SKILL_NOT_ENOUGH_HP, "NOT_ENOUGH_SP" : CANNOT_SKILL_NOT_ENOUGH_SP, "CANNOT_USE_SELF" : CANNOT_SKILL_USE_SELF, "ONLY_FOR_ALLIANCE" : CANNOT_SKILL_ONLY_FOR_ALLIANCE, "CANNOT_ATTACK_ENEMY_IN_SAFE_AREA" : CANNOT_SKILL_DEST_IN_SAFE, "CANNOT_APPROACH" : CANNOT_SKILL_APPROACH, "CANNOT_ATTACK" : CANNOT_SKILL_ATTACK, "ONLY_FOR_CORPSE" : CANNOT_SKILL_ONLY_FOR_CORPSE, "EQUIP_FISHING_ROD" : CANNOT_SKILL_EQUIP_FISHING_ROD, "NOT_HORSE_SKILL" : CANNOT_SKILL_NOT_HORSE_SKILL, "HAVE_TO_RIDE" : CANNOT_SKILL_HAVE_TO_RIDE, } LEVEL_LIST=["", HORSE_LEVEL1, HORSE_LEVEL2, HORSE_LEVEL3] HEALTH_LIST=[ HORSE_HEALTH0, HORSE_HEALTH1, HORSE_HEALTH2, HORSE_HEALTH3, ] USE_SKILL_ERROR_CHAT_DICT = { "NEED_EMPTY_BOTTLE" : SKILL_NEED_EMPTY_BOTTLE, "NEED_POISON_BOTTLE" : SKILL_NEED_POISON_BOTTLE, "ONLY_FOR_GUILD_WAR" : SKILL_ONLY_FOR_GUILD_WAR, } SHOP_ERROR_DICT = { "NOT_ENOUGH_MONEY" : SHOP_NOT_ENOUGH_MONEY, "SOLDOUT" : SHOP_SOLDOUT, "INVENTORY_FULL" : SHOP_INVENTORY_FULL, "INVALID_POS" : SHOP_INVALID_POS, "NOT_ENOUGH_MONEY_EX" : SHOP_NOT_ENOUGH_MONEY_EX, } STAT_MINUS_DESCRIPTION = { "HTH-" : STAT_MINUS_CON, "INT-" : STAT_MINUS_INT, "STR-" : STAT_MINUS_STR, "DEX-" : STAT_MINUS_DEX, } MODE_NAME_LIST = ( PVP_OPTION_NORMAL, PVP_OPTION_REVENGE, PVP_OPTION_KILL, PVP_OPTION_PROTECT, ) TITLE_NAME_LIST = ( PVP_LEVEL0, PVP_LEVEL1, PVP_LEVEL2, PVP_LEVEL3, PVP_LEVEL4, PVP_LEVEL5, PVP_LEVEL6, PVP_LEVEL7, PVP_LEVEL8, ) def GetLetterImageName(): return "season1/icon/scroll_close.tga" def GetLetterOpenImageName(): return "season1/icon/scroll_open.tga" def GetLetterCloseImageName(): return "season1/icon/scroll_close.tga" if 949 == app.GetDefaultCodePage(): def EUL(name): if GetAuxiliaryWordType(name): return "를 " else: return "을 " def I(name): if GetAuxiliaryWordType(name): return "가 " else: return "이 " def DO_YOU_SELL_ITEM(sellItemName, sellItemCount, sellItemPrice): name = sellItemName if sellItemCount > 1: name += " " name += str(sellItemCount) name += "개" return name + EUL(name) + str(sellItemPrice) + "냥에 파시겠습니까?" def DO_YOU_BUY_ITEM(sellItemName, sellItemCount, sellItemPrice): name = sellItemName if sellItemCount > 1: name += " " name += str(sellItemCount) name += "개" return name + EUL(name) + str(sellItemPrice) + "에 사시겠습니까?" def REFINE_FAILURE_CAN_NOT_ATTACH(attachedItemName): return attachedItemName+EUL(attachedItemName)+"부착할 수 없는 아이템입니다" def REFINE_FAILURE_NO_SOCKET(attachedItemName): return attachedItemName+EUL(attachedItemName)+"부착할 수 있는 소켓이 없습니다" def REFINE_FAILURE_NO_GOLD_SOCKET(attachedItemName): return attachedItemName+EUL(attachedItemName)+"부착할 수 있는 황금 소켓이 없습니다" def HOW_MANY_ITEM_DO_YOU_DROP(dropItemName, dropItemCount): name = dropItemName if dropItemCount > 1: name += " " name += str(dropItemCount) name += "개" return name+EUL(name)+"버리시겠습니까?" def NumberToMoneyString(number): if number <= 0: return "0냥" number = str(number) result = CutMoneyString(number, 0, 4, "", "") result = CutMoneyString(number, 4, 8, "만", result) result = CutMoneyString(number, 8, 12, "억", result) result = result + "냥" return result def NumberToSecondaryCoinString(number): if number <= 0: return "0전" number = str(number) result = CutMoneyString(number, 0, 4, "", "") result = CutMoneyString(number, 4, 8, "만", result) result = CutMoneyString(number, 8, 12, "억", result) result = result + "전" return result def FISHING_NOTIFY(isFish, fishName): if isFish: return fishName + I(fishName) + "문 듯 합니다." else: return fishName + I(fishName) + "걸린듯 합니다." def FISHING_SUCCESS(isFish, fishName): if isFish: return fishName + EUL(fishName) + "잡았습니다!" else: return fishName + EUL(fishName) + "얻었습니다!" elif 932 == app.GetDefaultCodePage(): def DO_YOU_SELL_ITEM(sellItemName, sellItemCount, sellItemPrice): if sellItemCount > 1 : return "%s %s 뙿귩 %s궸봽귟귏궥궔갎" % ( sellItemName, sellItemCount, NumberToMoneyString(sellItemPrice) ) else: return "%s 귩 %s궳봽귟귏궥궔갎" % (sellItemName, NumberToMoneyString(sellItemPrice) ) def DO_YOU_BUY_ITEM(buyItemName, buyItemCount, buyItemPrice) : if buyItemCount > 1 : return "%s %s뙿귩 %s궳봼궋귏궥궔갎" % ( buyItemName, buyItemCount, buyItemPrice ) else: return "%s귩 %s궳봼궋귏궥궔갎" % ( buyItemName, buyItemPrice ) def REFINE_FAILURE_CAN_NOT_ATTACH(attachedItemName) : return "%s귩몧뭶궳궖궶궋귺귽긡?궳궥갃" % (attachedItemName) def REFINE_FAILURE_NO_SOCKET(attachedItemName) : return "%s귩몧뭶궥귡?긑긞긣궕궇귟귏궧귪갃" % (attachedItemName) def REFINE_FAILURE_NO_GOLD_SOCKET(attachedItemName) : return "%s귩몧뭶궳궖귡돥뗠?긑긞긣궕궇귟귏궧귪갃" % (attachedItemName) def HOW_MANY_ITEM_DO_YOU_DROP(dropItemName, dropItemCount) : if dropItemCount > 1 : return "%s %d 뙿귩롆궲귏궥궔갎" % (dropItemName, dropItemCount) else : return "%s귩롆궲귏궥궔갎" % (dropItemName) def FISHING_NOTIFY(isFish, fishName) : if isFish : return "%s 궕륣궋궰궋궫귝궎궳궥" % ( fishName ) else : return "%s 궕궔궔궯궫귝궎궳궥" % ( fishName ) def FISHING_SUCCESS(isFish, fishName) : if isFish : return "%s 귩뺕귏궑귏궢궫갏" % (fishName) else : return "%s 귩롨궸볺귢귏궢궫갏" % (fishName) def NumberToMoneyString(number) : if number <= 0 : return "0뿼" number = str(number) result = CutMoneyString(number, 0, 4, "", "") result = CutMoneyString(number, 4, 8, "뼔", result) result = CutMoneyString(number, 8, 12, "돪", result) result = result + "뿼" return result def NumberToSecondaryCoinString(number) : if number <= 0 : return "0jun" number = str(number) result = CutMoneyString(number, 0, 4, "", "") result = CutMoneyString(number, 4, 8, "뼔", result) result = CutMoneyString(number, 8, 12, "돪", result) result = result + "jun" return result elif IsHONGKONG(): def DO_YOU_SELL_ITEM(sellItemName, sellItemCount, sellItemPrice): if sellItemCount > 1 : return DO_YOU_SELL_ITEM2 % (sellItemName, sellItemCount, NumberToMoneyString(sellItemPrice) ) else: return DO_YOU_SELL_ITEM1 % (sellItemName, NumberToMoneyString(sellItemPrice) ) def DO_YOU_BUY_ITEM(buyItemName, buyItemCount, buyItemPrice) : if buyItemCount > 1 : return DO_YOU_BUY_ITEM2 % ( buyItemName, buyItemCount, buyItemPrice ) else: return DO_YOU_BUY_ITEM1 % ( buyItemName, buyItemPrice ) def REFINE_FAILURE_CAN_NOT_ATTACH(attachedItemName) : return REFINE_FAILURE_CAN_NOT_ATTACH0 % (attachedItemName) def REFINE_FAILURE_NO_SOCKET(attachedItemName) : return REFINE_FAILURE_NO_SOCKET0 % (attachedItemName) def REFINE_FAILURE_NO_GOLD_SOCKET(attachedItemName) : return REFINE_FAILURE_NO_GOLD_SOCKET0 % (attachedItemName) def HOW_MANY_ITEM_DO_YOU_DROP(dropItemName, dropItemCount) : if dropItemCount > 1 : return HOW_MANY_ITEM_DO_YOU_DROP2 % (dropItemName, dropItemCount) else : return HOW_MANY_ITEM_DO_YOU_DROP1 % (dropItemName) def FISHING_NOTIFY(isFish, fishName) : if isFish : return FISHING_NOTIFY1 % ( fishName ) else : return FISHING_NOTIFY2 % ( fishName ) def FISHING_SUCCESS(isFish, fishName) : if isFish : return FISHING_SUCCESS1 % (fishName) else : return FISHING_SUCCESS2 % (fishName) def NumberToMoneyString(number) : if number <= 0 : return "0 %s" % (MONETARY_UNIT0) number = str(number) result = CutMoneyString(number, 0, 4, "", "") result = CutMoneyString(number, 4, 8, MONETARY_UNIT1, result) result = CutMoneyString(number, 8, 12, MONETARY_UNIT2, result) result = result + MONETARY_UNIT0 return result def NumberToSecondaryCoinString(number) : if number <= 0 : return "0 %s" % (MONETARY_UNIT_JUN) number = str(number) result = CutMoneyString(number, 0, 4, "", "") result = CutMoneyString(number, 4, 8, MONETARY_UNIT1, result) result = CutMoneyString(number, 8, 12, MONETARY_UNIT2, result) result = result + MONETARY_UNIT_JUN return result elif IsNEWCIBN() or IsCIBN10(): def DO_YOU_SELL_ITEM(sellItemName, sellItemCount, sellItemPrice): if sellItemCount>1: return "횅땍狼겉%s몸%s鹿%s쏜귑찡딜찐?" % (str(sellItemCount), sellItemName, str(sellItemPrice)) else: return "횅땍狼겉%s鹿%s쏜귑찡딜찐?" % (sellItemName, str(sellItemPrice)) def DO_YOU_BUY_ITEM(sellItemName, sellItemCount, sellItemPrice): if sellItemCount>1: return "횅땍狼겉%s몸%s鹿%s쏜귑찜쏵찐?" % (str(sellItemCount), sellItemName, str(sellItemPrice)) else: return "횅땍狼겉%s鹿%s쏜귑찜쏵찐?" % (sellItemName, str(sellItemPrice)) def REFINE_FAILURE_CAN_NOT_ATTACH(attachedItemName): return "轟랬穹퓌%s 돨陋구" % (attachedItemName) def REFINE_FAILURE_NO_SOCKET(attachedItemName): return "청唐옵鹿穹퓌%s 돨왝" % (attachedItemName) def REFINE_FAILURE_NO_GOLD_SOCKET(attachedItemName): return "청唐옵鹿穹퓌%s 돨뼝쏜왝" % (attachedItemName) def HOW_MANY_ITEM_DO_YOU_DROP(dropItemName, dropItemCount): if dropItemCount>1: return "횅땍狼휀딜%d몸%s찐?" % (dropItemCount, dropItemName) else: return "횅땍狼휀딜%s찐?" % (dropItemName) def FISHING_NOTIFY(isFish, fishName): if isFish: return fishName # 본래 여기에 어떤 말이 붙어있는데, 인코딩이 깨져있어서 복원할 수가 없다 ㅠㅠ... cython에서 인코딩 에러 나서 지워버림... else: return "딥淪" + fishName + "죄。" def FISHING_SUCCESS(isFish, fishName): if isFish: return "딥淪" + fishName + "죄。" else: return "삿돤" + fishName + "죄。" def NumberToMoneyString(number): if number <= 0: return "0좃" number = str(number) result = CutMoneyString(number, 0, 4, "", "") result = CutMoneyString(number, 4, 8, "拱", result) result = CutMoneyString(number, 8, 12, "聾", result) result = result + "좃" return result def NumberToSecondaryCoinString(number): if number <= 0: return "0JUN" number = str(number) result = CutMoneyString(number, 0, 4, "", "") result = CutMoneyString(number, 4, 8, "拱", result) result = CutMoneyString(number, 8, 12, "聾", result) result = result + "JUN" return result elif IsEUROPE() and not IsWE_KOREA() and not IsYMIR(): def DO_YOU_SELL_ITEM(sellItemName, sellItemCount, sellItemPrice): if sellItemCount > 1 : return DO_YOU_SELL_ITEM2 % (sellItemName, sellItemCount, NumberToMoneyString(sellItemPrice) ) else: return DO_YOU_SELL_ITEM1 % (sellItemName, NumberToMoneyString(sellItemPrice) ) def DO_YOU_BUY_ITEM(buyItemName, buyItemCount, buyItemPrice) : if buyItemCount > 1 : return DO_YOU_BUY_ITEM2 % ( buyItemName, buyItemCount, buyItemPrice ) else: return DO_YOU_BUY_ITEM1 % ( buyItemName, buyItemPrice ) def REFINE_FAILURE_CAN_NOT_ATTACH(attachedItemName) : return REFINE_FAILURE_CAN_NOT_ATTACH0 % (attachedItemName) def REFINE_FAILURE_NO_SOCKET(attachedItemName) : return REFINE_FAILURE_NO_SOCKET0 % (attachedItemName) def REFINE_FAILURE_NO_GOLD_SOCKET(attachedItemName) : return REFINE_FAILURE_NO_GOLD_SOCKET0 % (attachedItemName) def HOW_MANY_ITEM_DO_YOU_DROP(dropItemName, dropItemCount) : if dropItemCount > 1 : return HOW_MANY_ITEM_DO_YOU_DROP2 % (dropItemName, dropItemCount) else : return HOW_MANY_ITEM_DO_YOU_DROP1 % (dropItemName) def FISHING_NOTIFY(isFish, fishName) : if isFish : return FISHING_NOTIFY1 % ( fishName ) else : return FISHING_NOTIFY2 % ( fishName ) def FISHING_SUCCESS(isFish, fishName) : if isFish : return FISHING_SUCCESS1 % (fishName) else : return FISHING_SUCCESS2 % (fishName) def NumberToMoneyString(n) : if n <= 0 : return "0 %s" % (MONETARY_UNIT0) return "%s %s" % ('.'.join([ i-3<0 and str(n)[:i] or str(n)[i-3:i] for i in range(len(str(n))%3, len(str(n))+1, 3) if i ]), MONETARY_UNIT0) def NumberToSecondaryCoinString(n) : if n <= 0 : return "0 %s" % (MONETARY_UNIT_JUN) return "%s %s" % ('.'.join([ i-3<0 and str(n)[:i] or str(n)[i-3:i] for i in range(len(str(n))%3, len(str(n))+1, 3) if i ]), MONETARY_UNIT_JUN)
f8510941bd63a0e9d1c3dc21992422e227aa330c
0aa2627e32c9fc5b81d76c0bd979ec741eb2094f
/Practice/A.Babintsev/Task_4/task4_5.py
8fa73362cb5dfe81c33780a9184b934a9057c8a1
[]
no_license
leksiam/PythonCourse
7548596f57273fe4f90f56f6fe7fc18e03f58b0a
f626c6ec636f712cb65e89afc63774abb86f9725
refs/heads/master
2020-08-28T20:42:31.485332
2019-10-25T22:25:25
2019-10-25T22:25:25
206,125,407
0
0
null
2019-09-03T16:44:19
2019-09-03T16:44:18
null
UTF-8
Python
false
false
556
py
""" Интерполировать некие шаблоны в строке. Есть строка с определенного вида форматированием. необходимо заменить в этой строке все вхождения шаблонов на их значение из словаря. """ str1 = 'Привет, rod_f nam_f!' dict1 = {'rod_m': 'дядя', 'rod_f': 'тетя', 'nam_m': 'Ваня', 'nam_f': 'Мотя'} for k, v in dict1.items(): str1 = str1.replace(k, v) print(str1)
cd3200f21c9114aabd3bf8de8f8f25fcd28713bd
f925499f896b012624118cfafd02fef76ff5075a
/src/testcase/GN_Y201H/case/GN_Y201H_NORMAL_TIMER/GN_Y201H_NORMAL_TIMER_001.py
db553092c8decb6ca656271e96b02093737f7c6e
[ "Apache-2.0" ]
permissive
maiyajj/AutoTest_script-Appium_Connect
f7c06db1d2f58682d1a9d6f534f7dd5fb65d766d
f9c2c42c281a9e2f984acb4a72dda0694b053f22
HEAD
2019-07-26T01:39:48.413753
2018-04-11T02:11:38
2018-04-11T02:11:38
112,449,369
30
22
null
null
null
null
UTF-8
Python
false
false
1,252
py
# coding=utf-8 from src.testcase.GN_Y201H.WidgetOperation import * class GNY201HNormalTimer1(WidgetOperation): @case_run(False) def run(self): self.case_module = u"普通定时(#246)" # 用例所属模块 self.case_title = u'在线状态,临界点1组开与1组关的定时执行状态检查' # 用例名称 self.zentao_id = "2079" # 禅道ID # 用例动作 def case(self): self.choose_home_device(conf["MAC"]["HW"][0]) self.delete_normal_timer() self.delete_delay_timer() self.set_power("power_off") self.widget_click(self.page["control_device_page"]["normal_timer"], self.page["normal_timer_page"]["title"]) now = time.strftime("%H:%M") time_1, time_2 = ["point", "23:59"], ["point", "00:00"] start_time_1, set_time_1, start_time_2, set_time_2, cycle1, cycle2 = \ self.create_normal_timer(now, time_1, time_2) self.widget_click(self.page["normal_timer_page"]["to_return"], self.page["control_device_page"]["title"]) self.check_timer(start_time_1, set_time_1, u"电源已开启") self.check_timer(start_time_2, set_time_2, u"电源已关闭")
a1d5cc1ea0836818f5d5db326760c1213c307d11
033cd27a3b2c1e62525dc30c2e57b95bc06a497f
/C1/C1S10JSON/ZhengZe2.py
53dbae1c258b52bafd207bc78c8d7ff585985f75
[]
no_license
lpjlsing/LearnwithVS
4d2e24c30830c4eded5e30c570bdd6ca259a8eef
3551f3a398647eeb2dc4ad003c4d934c211b6baf
refs/heads/master
2020-05-31T10:49:11.845784
2019-09-30T08:19:43
2019-09-30T08:19:43
190,248,895
1
0
null
null
null
null
UTF-8
Python
false
false
1,995
py
""" 正则表达式 re.sub实现函数替换 re.search re.match 分组:group()函数:可以传递一个参数,指定获取的组号,默认为0 group(0)返回的是完整的匹配结果,跟有多少个组无关 """ import re s = 'ABC345629867396dGainWHAT' s1 = 'ABC345629867396dGainWHAT' def convert(value): matched = value.group() if int(matched) >= 6: # 需要先把字符数字转换为整数数字 return '9' # 这里的输出应该符合所调用的规则,在正则中必须是字符串而不是数字9 else: return '0' r = re.sub('\d', convert, s) print(r) print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') # re.search, match print('其它正则表达式函数:') s2 = re.match('\d',s1) # match从字符串首字母匹配,如果没有符合的字符串将返回为空 print(s2) s3 = re.search('\d',s1) print(s3) print(s3.group()) print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') #分组group方法 print('~~~~~~~~~匹配字符串中间的部分:') life = 'life is short, I use python, I love python' life1 = re.search('life.*python',life) # * 前面的字符串处\n外全部匹配 life2 = re.search('life(.*)python',life) life3 = re.search('life(.*)python(.*)python',life) life4 = re.findall('life(.*)python',life) print('search仍包括用于匹配的字符:没有()组') print(life1.group()) # 这里匹配出了包括用于匹配字符的字符life和python # group(0)返回的是完整的匹配结果,跟有多少个组无关 print('search通过group匹配指定位置字符串;返回字符串,多个组时同时返回时返回 元组') print(life3.group(0,1,2)) # group(0)返回的是完整的匹配结果,跟有多少个组无关 print(life3.groups()) # 只返回组之间的字符串 元组 print('findall通过group匹配指定位置字符串:返回 列表') print(life4) #匹配指定的第一个字符串组 print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
ea70a6ea9cfe96cf9c8ccaeae282c589bd2ace7a
dbffcac24ad03d4d21505b4161645e410304aa5d
/editor/dbloader.py
eb480b21c49cfb8e26dcb3f61eae1d50ef9b5b19
[]
no_license
evertqin/RogerBlog
c3e7c376f482b81eb876994e9ff7b74c94d2b65e
64e60195bbce0800a98af80956b3f16d7dafae97
refs/heads/master
2021-01-22T11:07:19.146197
2017-03-19T20:49:50
2017-03-19T20:49:50
36,478,656
0
0
null
null
null
null
UTF-8
Python
false
false
1,438
py
#!/usr/local/bin/python3.4 # the purpose of this script is to help loading blog entries into the mongodb # will support following actions # 1) insert blog entries # 2) retrive certain entries # 3) update certain entry # 4) delete certain entry # blog entry structure from pymongo import MongoClient from bson.objectid import ObjectId from logger import MongoLogger logger = MongoLogger().getLogger() logger.info("Program started") DB_CONNECTION_STRING = 'mongodb://evertqin:[email protected]:47632/blog' class MongoConnector: _client = None _db = None _posts = None def __init__(self, dbname): try: logger.info("Connecting to mongo client") self._client = MongoClient(DB_CONNECTION_STRING) logger.info("Successfully conntect to mongodb") except e: print(e) logger.info("Connecting to db") self._db = self._client[dbname] logger.info("Successfully connected to " + dbname) self._posts = self._db.posts def listAllDBCollection(self): print(self._db.collection_names(include_system_collections=False)) def listAllDBEntries(self): for post in self._posts.find(): yield def getCollection(self, name): return self._db[name] if __name__ == "__main__": mongodb = MongoConnector("blog") mongodb.listAllDBCollection() #mongodb.listAllDBEntries()
93fbf3872d3bc072632736a89eb7442b9e7c7fc2
a5616b991606bc76fe2a44b422a570f0acc7f9fa
/deep-learning-face-detection-class1/detect_faces.py
98f16ea53dc6be3010a868b894589f08aaa3d23e
[]
no_license
Adiiigo/ComputerVision
0c2b39f166dc38bce8ecdacbbf6a9ba2432ec214
dbfa9dc1b83ee9ddbadaaf9b8f6390855f369cba
refs/heads/master
2022-11-13T17:18:45.601706
2020-06-20T13:01:27
2020-06-20T13:01:27
272,775,008
0
0
null
null
null
null
UTF-8
Python
false
false
2,367
py
# USAGE python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt --model # res10_300x300_ssd_iter_140000.caffemodel # import the necessary packages import numpy as np import argparse import cv2 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to input image") ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) # load our serialized model from disk print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) # load the input image and construct an input blob for the image # by resizing to a fixed 300x300 pixels and then normalizing it image = cv2.imread(args["image"]) (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) # pass the blob through the network and obtain the detections and # predictions print("[INFO] computing object detections...") net.setInput(blob) detections = net.forward() # loop over the detections for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with the # prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if confidence > args["confidence"]: # compute the (x, y)-coordinates of the bounding box for the # object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # draw the bounding box of the face along with the associated # probability text = "{:.2f}%".format(confidence * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2) cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) # show the output image cv2.imshow("Output", image) cv2.waitKey(0)
716a4428e5e13bcb8880401933b12900fb520ba6
9fdb870bb8011ab7c7d37fb584a4b353f24629ac
/Deployment/pm_install/update_ip.py
21c1aa99902140f37362f4e3295abaa63af038af
[]
no_license
DeploymentHZ/zonekey
aacfee5d41e817be37a74248e1aa00330b27f0c8
5729f530a107b0f45fca449c3677c5a0d14f1b3b
refs/heads/master
2021-01-01T16:59:39.125116
2015-04-27T02:23:03
2015-04-27T02:23:03
33,844,168
0
0
null
null
null
null
UTF-8
Python
false
false
2,247
py
#!/usr/bin/python import os import re import ConfigParser import check_netfile from socket import socket, SOCK_DGRAM, AF_INET config=ConfigParser.ConfigParser() config.readfp(open('./conf/config.ini',"rb")) NetInterface=config.get("global",'NetInterface') ip=config.get("global",'ip') netmask=config.get("global",'netmask') gateway=config.get("global",'gateway') dns1=config.get("global",'dns1') dns2=config.get("global",'dns2') path='/etc/sysconfig/network-scripts/' def update_onboot(): a=open(path+NetInterface,'r') match=re.compile(r'ONBOOT') list=[] while 1: c= a.readline() if not c: break elif match.search(c): pass else: list.append(c) a.close() list.append("ONBOOT=yes\n") a=open(path+NetInterface,'w') for i in list: a.write(i) a.close() def update_ip(): a=open(path+NetInterface,'r') match_bootproto=re.compile(r'BOOTPROTO') match_ip=re.compile(r'IPADDR') match_netmask=re.compile(r'NETMASK') match_gateway=re.compile(r'GATEWAY') match_dns1=re.compile(r'DNS1') match_dns2=re.compile(r'DNS2') list=[] while 1: c= a.readline() if not c: break elif match_bootproto.search(c): pass elif match_ip.search(c): pass elif match_netmask.search(c): pass elif match_gateway.search(c): pass elif match_dns1.search(c): pass elif match_dns2.search(c): pass else: list.append(c) a.close() list.append("BOOTPROTO=static\n") list.append("IPADDR=%s\n"%ip) list.append("NETMASK=%s\n"%netmask) list.append("GATEWAY=%s\n"%gateway) list.append("DNS1=%s\n"%dns1) list.append("DNS2=%s\n"%dns2) a=open(path+NetInterface,'w') for i in list: a.write(i) a.close() def restart_ip(): if check_netfile.isfile()==True: update_onboot() update_ip() os.system('/etc/init.d/network restart >>/dev/null') else: print "No found network files" def get_ip(): s=socket(AF_INET,SOCK_DGRAM) s.connect(('baidu.com',0)) return s.getsockname()
9a8814ec3bdddcd2c38ad5fdae72c9647dea261a
90fb8ce0e374248214b4aa676dd0e6c2c8c21fc6
/kanga/cdaudio/cd.py
86b8cf5494d32998339240305fe13f19c9ac672e
[ "Apache-2.0" ]
permissive
dacut/kanga-cdaudio
7a4dc4ecd576770652a6dce624f15d682ae6321f
cb93c4d9a8104eac44ac41f2c4a9192dfe57eae6
refs/heads/master
2020-06-01T05:05:45.302932
2019-06-24T03:32:55
2019-06-24T03:32:55
190,648,123
1
0
null
null
null
null
UTF-8
Python
false
false
4,682
py
""" Constants in the CD audio world. """ from base64 import b64encode from enum import auto, Enum, IntFlag from hashlib import sha1 from typing import NamedTuple, Tuple SECONDS_PER_MINUTE = 60 FRAMES_PER_SECOND = 75 FRAMES_PER_MINUTE = FRAMES_PER_SECOND * SECONDS_PER_MINUTE BYTES_PER_FRAME = 2048 # Bytes per frame without error correction headers BYTES_PER_FRAME_RAW = 2352 # Bytes per frame with error correction headers GAP_FRAMES = 150 # Standard leadin gap size TRACK_MAX = 99 INDEX_MAX = 99 LEADOUT_TRACK = 0xAA # Leadout track identifier class TrackType(Enum): """ The type of track on a CD (audio, data, or the leadout track). """ audio = auto() data = auto() leadout = auto() class TrackFlags(IntFlag): """ Flags applied to a track. """ # pylint: disable=C0326 QUAD_CHANNEL = 0b1000 # Audio tracks only DATA_TRACK = 0b0100 COPY_PERMITTED = 0b0010 PREEMPHASIS = 0b0001 # Audio tracks -- preemphasis applied INCREMENTAL = 0b0001 # Data tracks -- data recorded incrementally class TrackInformation(NamedTuple): """ Information about a track. """ track: int # LEADOUT_TRACK (0xAA) if this is the leadout track_type: TrackType flags: TrackFlags start_frame: int class DiscInformation(NamedTuple): """ Information about the tracks on a disc. """ first_track: int last_track: int track_information: Tuple[TrackInformation, ...] @property def musicbrainz_id(self) -> str: """ The MusicBrainz disc ID. """ leadout = self.track_information[-1] assert leadout.track_type == TrackType.leadout hasher = sha1( f"{self.first_track:02X}{self.last_track:02X}" f"{leadout.start_frame + GAP_FRAMES:08X}" .encode("ascii")) n_audio_tracks = 0 for track in self.track_information: if track.track_type == TrackType.audio: hasher.update( f"{track.start_frame + GAP_FRAMES:08X}".encode("ascii")) n_audio_tracks += 1 # We always encode 99 track offsets; the remainder are 0. for _ in range(n_audio_tracks, 99): hasher.update(b"00000000") return ( b64encode(hasher.digest(), altchars=b"._").replace(b"=", b"-") .decode("ascii")) class MSF(NamedTuple): """ Position on a disc specified in minutes, seconds, and frames. """ minute: int second: int frame: int @property def lba(self) -> int: """ Returns this MSF position to a logical block address (LBA) -- i.e. pure frame count. """ return (self.minute * FRAMES_PER_MINUTE + self.second * FRAMES_PER_SECOND + self.frame) @property def is_valid(self): """ Indicates whether this position is valid: all fields are non-negative, frame < 75, and second < 60. """ # pylint: disable=C0122 return (0 <= self.minute and 0 <= self.second < SECONDS_PER_MINUTE and 0 <= self.frame < FRAMES_PER_SECOND) @staticmethod def from_lba(frame: int) -> "MSF": """ Convert a logical block address (in frames) to MSF. """ minute, frame = divmod(frame, FRAMES_PER_MINUTE) second, frame = divmod(frame, FRAMES_PER_SECOND) return MSF(minute=minute, second=second, frame=frame) class TrackIndex: """ Position on a disc specified in track and index. """ __slots__ = ("_track", "_index") def __init__(self, track: int, index: int) -> None: super(TrackIndex, self).__init__() if not isinstance(track, int): raise TypeError("track must be an int") if not 0 <= track <= TRACK_MAX: raise ValueError( f"track must be between 0 and {TRACK_MAX}, inclusive: {track}") if not isinstance(index, int): raise TypeError("index must be an int") if not 0 <= index <= INDEX_MAX: raise ValueError( f"index must be between 0 and {INDEX_MAX}, inclusive: {index}") self._track = track self._index = index @property def track(self) -> int: """ The track on the disc. """ return self._track @property def index(self) -> int: """ The index within the track. """ return self._index def __repr__(self) -> str: return f"TrackIndex(track={self.track}, index={self.index})"
13f8adf1c5b6a70c92addcf66ba9d5242f299965
d8e88d6ee4bd75bbfbd16f9a5ee2cba1f85c524a
/report/migrations/0001_initial.py
150639e72f7975b45efcee2f37ea50e50b41cac6
[]
no_license
grahamgilbert/imagr_server
5c813f662086811d63026afa2d54e84d374fc309
7865954167aa0e007f415d8ffc520963b316e659
refs/heads/master
2021-06-27T03:28:57.393777
2017-02-09T00:56:14
2017-02-09T00:56:14
37,206,092
18
3
null
2017-02-09T00:56:15
2015-06-10T15:38:03
JavaScript
UTF-8
Python
false
false
566
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Computer', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('serial_number', models.CharField(max_length=200)), ('date_added', models.DateTimeField(auto_now_add=True)), ], ), ]
3e90bac4074c33e939a8c0524831f3abee050c39
2853afc099ad4e56e0b1a3304a74d5401eb6c268
/diffopt/tests/test_logreg.py
52fb8daca7d49d7abc66339158057da775ecd9be
[]
no_license
tomMoral/diffopt
6f0211129da66ced6f0245e45efd3b0a093b217c
e32f4584cecbb88683d0ad4e3a747df0a9c6287c
refs/heads/master
2022-04-05T11:30:09.275398
2020-02-07T01:50:00
2020-02-07T01:50:00
238,401,092
3
0
null
null
null
null
UTF-8
Python
false
false
4,239
py
import pytest import autograd.numpy as np from diffopt.logreg import LogReg from autograd import grad, jacobian def logreg_loss(x, D, z, lbda): res = - x * np.dot(D, z) return np.mean(np.log1p(np.exp(res))) + .5 * lbda * np.sum(z ** 2) def gradient_descent(x, D, lbda, step, n_iter): n, p = D.shape z = np.zeros(p) for i in range(n_iter): grad_z = np.dot(D.T, - x / (1. + np.exp(x * np.dot(D, z)))) / n grad_z += lbda * z z -= step * grad_z return z def gradient_descent_loss(x, D, lbda, step, n_iter): z = gradient_descent(x, D, lbda, step, n_iter) return logreg_loss(x, D, z, lbda) def d2(x, D, z, lbda): n, p = D.shape u = np.dot(D, z) res = x * u f_res = np.exp(res) / (1 + np.exp(res)) ** 2 dzz = np.dot(D.T, (x ** 2 * f_res)[:, None] * D) / n dzz += lbda * np.eye(p) dxz = D * (u * x * f_res - 1 / (1. + np.exp(res)))[:, None] / n return dzz, dxz def grad_analytic(x, D, lbda, step, n_iter): n, p = D.shape z = gradient_descent(x, D, lbda, step, n_iter) return -np.dot(D, z) / (1. + np.exp(x * np.dot(D, z))) / n def grad_implicit(x, D, lbda, step, n_iter): n, p = D.shape z = gradient_descent(x, D, lbda, step, n_iter) dzz, dxz = d2(x, D, z, lbda) dx = -np.dot(D, z) / (1. + np.exp(x * np.dot(D, z))) / n dz = np.dot(D.T, - x / (1. + np.exp(x * np.dot(D, z)))) / n dz += lbda * z return dx - np.dot(dxz, np.linalg.solve(dzz, dz)) grad_autodiff = grad(gradient_descent_loss) @pytest.mark.parametrize('n_iter', [1, 10, 100, 1000]) def test_logreg_np(n_iter): n, p = 10, 30 reg = 1.3 rng = np.random.RandomState(0) D = rng.randn(n, p) x = rng.randn(1, n) # Compute true minimizer logreg = LogReg(n_layers=n_iter) z_star, _ = logreg.transform(x, D, reg) step = 1 / (np.linalg.norm(D, ord=2) ** 2 / 4 / n + reg) print(np.linalg.norm(D, ord=2)) z_np = gradient_descent(x.reshape(-1), D, reg, step, n_iter) assert np.allclose(z_np[None], z_star) loss = logreg.score(x, D, reg) loss_np = logreg_loss(x, D, z_np, reg) assert np.isclose(loss, loss_np) def test_gradient_definition(): n_iter = 1000 n, p = 10, 30 reg = 1.3 rng = np.random.RandomState(0) D = rng.randn(n, p) x = rng.randn(1, n) step = 1 / (np.linalg.norm(D, ord=2) ** 2 / 4 / n + reg) g1 = grad_analytic(x.reshape(-1), D, reg, step, n_iter) g2 = grad_autodiff(x.reshape(-1), D, reg, step, n_iter) g3 = grad_implicit(x.reshape(-1), D, reg, step, n_iter) assert np.allclose(g2, g1) assert np.allclose(g2, g3) @pytest.mark.parametrize('n_iter', [1, 10, 100, 1000]) @pytest.mark.parametrize('grad, f_grad', [('analytic', grad_analytic), ('implicit', grad_implicit), ('autodiff', grad_autodiff)]) def test_gradient(n_iter, grad, f_grad): n, p = 10, 30 reg = 1.3 rng = np.random.RandomState(0) D = rng.randn(n, p) x = rng.randn(1, n) step = 1 / (np.linalg.norm(D, ord=2) ** 2 / 4 / n + reg) g_np = f_grad(x.reshape(-1), D, reg, step, n_iter) # Compute gradient with default parameters logreg_ana = LogReg(n_layers=n_iter, gradient_computation=grad) g_star = logreg_ana.get_grad_x(x, D, reg) assert np.allclose(g_np[None], g_star) # Compute gradient changing the parameter with pytest.raises(NotImplementedError): g_star = logreg_ana.get_grad_x(x, D, reg, computation='fake') g_star = logreg_ana.get_grad_x(x, D, reg, computation=grad) assert np.allclose(g_np[None], g_star) @pytest.mark.parametrize('n_iter', [1, 10, 100, 1000]) def test_jacobian(n_iter): n, p = 10, 30 reg = 1.3 rng = np.random.RandomState(0) D = rng.randn(n, p) x = rng.randn(1, n) # Compute true minimizer logreg_ana = LogReg(n_layers=n_iter, gradient_computation='autodiff') z_star, J_star, _ = logreg_ana.transform_with_jacobian(x, D, reg) step = 1 / (np.linalg.norm(D, ord=2) ** 2 / 4 / n + reg) auto_jacobian = jacobian(gradient_descent) J_np = auto_jacobian(x.reshape(-1), D, reg, step, n_iter) assert np.allclose(J_np[None], J_star)
b91185af076db82111f12b7f041c859ee9ad7af4
be9820090b95012d95f90deaa9f8007934dedc37
/scripts/longevity_analysis/dailyScansPlot.py
d530106a9fad1d4f13ca4cdf9629b735e4ad0b69
[]
no_license
apingault/webdcs-GIF
c97d4c0d6206976dddf0fce200798138b8d889d5
b4980bd72c9486ffc802a614013ca879edb01327
refs/heads/master
2020-04-02T17:36:59.124251
2018-09-15T10:11:53
2018-09-15T10:11:53
154,664,598
0
0
null
null
null
null
UTF-8
Python
false
false
5,789
py
import sys,os,glob import ROOT import MySQLdb import shutil from optparse import OptionParser from subprocess import call, check_output from array import array import ROOT ROOT.gROOT.SetBatch() ROOT.gStyle.SetOptStat(0) ROOT.gStyle.SetOptTitle(0) # load the GIFPP library execfile("GIFppLib.py") parser = OptionParser() parser.add_option("", "--chamber", dest='chamber', type='string', help="Chamber name") (opts,args) = parser.parse_args() if opts.chamber is None: parser.error('Please provide chamber name') # Definition of the CMS RE scan modes # WP > 8500, STBY < 8500, OFF < 2000 scan_modes = ["DG_WP", "SG_BOT_WP", "SG_TOP_WP", "SG_TN_WP", "SG_TW_WP", "DG_STBY", "SG_BOT_STBY", "SG_TN_STBY", "SG_TW_STBY"] scan_labels = ["Double gap - working point", "Single gap BOT - working point", "Single gap TN+TW - working point", "Single gap TN - working point", "Single gap TW - working point", "Double gap - standby", "Single gap BOT - standby", "Single gap TN - standby", "Single gap TW - standby"] ''' longevity_daily ''' # select all runs HVbound1 = 8500 HVbound2 = 2000 # Dict holding arrays of all the data curr = {} rate = {} xTime = [] xQint = [] for mode in scan_modes: curr[mode] = [] rate[mode] = [] # Select all run IDs for daily scan db = MySQLdb.connect(host='localhost', user='root', passwd='UserlabGIF++', db='webdcs', cursorclass=MySQLdb.cursors.DictCursor) cu = db.cursor() runids = [] cu.execute("SELECT id FROM hvscan WHERE label = 'longevity_daily' AND id > 1935 AND id") for l in cu.fetchall(): if 1947 == int(l['id']): continue runids.append(int(l['id'])) if __name__ == "__main__": for id in runids: print "Analyze run %d" % id scan = GIFppLib() # load the scan object scan.loadScan(id) # set the scan ID pointFound = False #xQint.append() # loop over all the HV points in the scan for i in scan.getHVPoints(): print " - HVPoint %s" % i HV_BOT = scan.getHV(opts.chamber, "BOT", i) HV_TN = scan.getHV(opts.chamber, "TN", i) HV_TW = scan.getHV(opts.chamber, "TW", i) scan_mode = "" if HV_BOT > HVbound2 and HV_TN > HVbound2 and HV_TW > HVbound2: scan_mode = "DG" if HV_BOT > HVbound2 and HV_TN < HVbound2 and HV_TW < HVbound2: scan_mode = "SG_BOT" if HV_BOT < HVbound2 and HV_TN > HVbound2 and HV_TW > HVbound2: scan_mode = "SG_TOP" if HV_BOT < HVbound2 and HV_TN > HVbound2 and HV_TW < HVbound2: scan_mode = "SG_TN" if HV_BOT < HVbound2 and HV_TN < HVbound2 and HV_TW > HVbound2: scan_mode = "SG_TW" if scan_mode == "": continue if max([HV_BOT, HV_TN, HV_TW]) > HVbound1: scan_mode += "_WP" else: scan_mode += "_STBY" if not (scan_mode == "DG_WP" or scan_mode == "DG_STBY"): continue print scan_mode # Get currents I_BOT = scan.getADC(opts.chamber, "BOT", i)*11694.25 I_TN = scan.getADC(opts.chamber, "TN", i)*6432.00 I_TW = scan.getADC(opts.chamber, "TW", i)*4582.82 I_TOT = I_BOT + I_TN + I_TW # Get rates R_A = scan.getRate(opts.chamber, "A", i) R_B = scan.getRate(opts.chamber, "B", i) R_C = scan.getRate(opts.chamber, "C", i) R_TOT = scan.getRate(opts.chamber, "TOT", i) # Calculate charge deposition #area = ch['area'] # chamber area in cm2 #charge_dep = 1e6 * I_TOT / ( R_TOT) #print charge_dep #charge_dep_err = 0 # Fill data curr[scan_mode].append(I_TOT) rate[scan_mode].append(R_TOT) pointFound = True if pointFound: xTime.append(scan.time_start) # make the plots print len(rate["DG_STBY"]) print len(xTime) #sys.exit() c = ROOT.TCanvas("c", "c", 600, 600) c.SetTopMargin(0.06) c.SetRightMargin(.05) c.SetBottomMargin(1) c.SetLeftMargin(0.12) for mode in ["DG_WP", "DG_STBY"]: for param in ["rate", "curr"]: for t in ["time", "qint"]: if t == "qint": continue xLabel = "Integrated charge [mC/cm#{2}]" x = None else: xLabel = "Date" x = xTime if param == "rate": yLabel = "Rate [Hz/cm]" y = rate[mode] else: yLabel = "Current [#muA]" y = curr[mode] g = ROOT.TGraph(len(x), array('d', x), array('d', y)) g.GetXaxis().SetTitleSize(.04); g.GetXaxis().SetTitle(xLabel) if t == "time": g.GetXaxis().SetTimeDisplay(1); g.GetXaxis().SetNdivisions(-505); g.GetXaxis().SetTimeFormat("%d/%m %F 1970-01-01 00:00:00"); g.GetYaxis().SetTitleOffset(1.3) g.GetYaxis().SetTitleSize(.04) g.GetYaxis().SetTitle(yLabel) g.SetMarkerStyle(21) g.SetMarkerSize(.8) g.SetLineWidth(2) g.SetMarkerStyle(21) g.SetMarkerSize(.8) g.SetLineWidth(2) g.SetLineColor(ROOT.kRed) g.SetMarkerColor(ROOT.kRed) miny = .95*ROOT.TMath.MinElement(g.GetN(), g.GetY()) maxy = 1.15*ROOT.TMath.MaxElement(g.GetN(), g.GetY()) g.GetYaxis().SetRangeUser(miny, maxy) g.SetMinimum(miny) g.SetMaximum(maxy) g.Draw("ALP") # topText LEFT leftText = ROOT.TLatex() leftText.SetNDC() leftText.SetTextFont(43) leftText.SetTextSize(20) leftText.SetTextAlign(11) leftText.DrawLatex(.12, .95, scan_labels[scan_modes.index(mode)]) # topText RIGHT right = ROOT.TLatex() right.SetNDC() right.SetTextFont(43) right.SetTextSize(20) right.SetTextAlign(31) right.DrawLatex(.95, .95, "") # CMS flag text1 = ROOT.TLatex() text1.SetTextFont(42); text1.SetNDC(); text1.DrawLatex(c.GetLeftMargin()+ 0.02, 1-c.GetTopMargin()- 0.05, "#bf{CMS},#scale[0.75]{ #it{Work in progress}}"); c.SaveAs("/var/operation/STABILITY/SUMMARY/%s/Daily_Scan/%s_%s_%s.pdf" % (opts.chamber, param, mode, t)) c.SaveAs("/var/operation/STABILITY/SUMMARY/%s/Daily_Scan/%s_%s_%s.png" % (opts.chamber, param, mode, t)) c.Clear()
fcdd4b11c39b95c8a0ee94ecc2ef64ebe2ac8717
e9eed586eb25a8805411a0c1069f79fb70be957d
/Home/migrations/0021_auto_20190423_2056.py
10ea2db9049f62e62370fb769a5a163e8687c091
[ "MIT" ]
permissive
jay1999ke/PureQPA
61d250f85889867502a46f87385d825b764bab0c
c5ba6d7998d5fb1544b81bc076dbd19c3017fa9e
refs/heads/master
2020-04-24T18:05:00.321716
2019-06-21T17:39:51
2019-06-21T17:39:51
172,169,063
2
0
null
null
null
null
UTF-8
Python
false
false
372
py
# Generated by Django 2.1.5 on 2019-04-23 15:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Home', '0020_scoreexam_outof'), ] operations = [ migrations.AlterField( model_name='scoreexam', name='outof', field=models.IntegerField(), ), ]
9e28733749a2689a4eb44106562c0bee9d47cee7
d721258b53f0f44b1010cb8e8efac8e2a5c96c26
/player/migrations/0009_move_activity_log.py
a3ede81b0cbaf3374740ff87efa489c26a11c33c
[ "LicenseRef-scancode-proprietary-license", "MIT" ]
permissive
kdechant/eamon
a6662285f51a6cad5797bb9be92ca709ae36921c
080a43aa80c3a1605c402e68616545a8e9c7975c
refs/heads/master
2023-05-24T08:20:18.551604
2022-08-14T10:27:01
2023-04-08T07:31:45
49,559,304
28
7
MIT
2023-03-14T21:09:55
2016-01-13T08:07:28
TypeScript
UTF-8
Python
false
false
665
py
# Generated by Django 3.2.12 on 2022-05-15 08:36 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('player', '0008_activitylog'), ] operations = [ migrations.RunSQL('SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0'), migrations.RunSQL( 'REPLACE INTO eamon.player_activitylog ' '(id, `type`, value, created, adventure_id, player_id) ' ' SELECT id, `type`, value, created, adventure_id, player_id ' ' FROM adventure_activitylog'), migrations.RunSQL('SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS') ]
5187813ddac759a286058ca54516eb8487319722
dd07c7d498e7f8193383b9e30b983d792d2f6708
/src/data/make_dataset_3.py
6fdd4c9462fa9e59349f2951953de14c0fe8b313
[]
no_license
saurabh-kataria/9-jhu
5b5d3ea94287db332dde1e45f44e4a164fb15a5b
fb00c5635a3662fd0f1ababfb31f7bfceeed5b2a
refs/heads/master
2020-03-18T10:41:37.997529
2018-04-11T17:56:16
2018-04-11T17:56:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,295
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 25 10:50:15 2018 @author: peter """ from torch.utils.data import DataLoader import os from src.data.data_functions import Data_synthesis_1, save_audio_ from src.features.features_functions import makedir from src.datasets.make_dataset_1 import save_preproccesing_parameters def make_dataset_3(output_dir): """ Dataset 1 consists of 6*5 hours of synthetic noisy speech. About the same length as the noise, however it has been sampled with It has been sampled with replacemnt. The Clean files are from switchboard and the noise is anotated noise only segments from the lre17_dev set. Each sample is 5 seconds long. SNR 10 % is reserved for the validation set """ # output_dir a = Path('.') / 'data' / 'processed' / 'dataset_1' train_len = int(6.6 * .9 * 3600 / 5 * 5) # synthesise 5 times the train noise test_len = int(6.6 * .1 * 3600 / 5 * 5) # synthesise 5 times the test noise train_set = Data_synthesis_1(length=train_len, speech_list='lre_train') training_data_loader = DataLoader(train_set, batch_size=1, num_workers=2) t_path_str_x = os.path.join(output_dir, 'train', 'x', 'sample_{}.wav') t_path_str_y = os.path.join(output_dir, 'train', 'y', 'sample_{}.wav') validation_set = Data_synthesis_1(length=test_len, test=True, speech_list='lre_train') validation_data_loader = DataLoader(validation_set, batch_size=1, num_workers=2) v_path_str_x = os.path.join(output_dir, 'val', 'x', 'sample_{}.wav') v_path_str_y = os.path.join(output_dir, 'val', 'y', 'sample_{}.wav') list_ = ((t_path_str_x, t_path_str_y, training_data_loader), (v_path_str_x, v_path_str_y, validation_data_loader) ) for path_str_x, path_str_y, data_loader in list_: makedir(os.path.dirname(path_str_x)) makedir(os.path.dirname(path_str_y)) for i, (x, y) in enumerate(data_loader): x, y = x.numpy()[0], y.numpy()[0] save_audio_(x, path_str_x.format(i)) save_audio_(y, path_str_y.format(i)) if __name__ == '__main__': dataset_dir = os.path.join(*['data', 'processed', 'dataset_3']) make_dataset_3(dataset_dir) save_preproccesing_parameters(dataset_dir)
070e718d595c6d3fb558b4037c8a23039926c5b7
7118408358390c53d13e2993a75cac4b8e745675
/unittests/heuristic_tests.py
5b94bc240d0e504d45cc2da5d3d32e6a25deb110
[]
no_license
wsgan001/repeated_pattern_discovery
aefcab272968c29ac461d767729fb3514d2efdc3
53e813743780bfdc9ca80ea7c2512b6df9fdf246
refs/heads/master
2020-03-31T04:19:20.364370
2018-03-27T08:21:40
2018-03-27T09:20:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
954
py
import unittest from tec import TEC from vector import Vector from dataset import Dataset import heuristics class HeuristicTest(unittest.TestCase): def test_bounding_box(self): dataset = Dataset('unittest_data/heuristics_test.csv') dataset = Dataset.sort_ascending(dataset) tec = TEC([Vector([1, 3]), Vector([3, 5]), Vector([4, 1]), Vector([5, 3])], [0, 3, 4, 6], [Vector([0, 0])]) self.assertEqual(heuristics.bounding_box_compactness(tec, dataset), 4/9) def test_pattern_width(self): tec = TEC([Vector([1, 3, 4]), Vector([1, 1, 5]), Vector([5, 1, 2])], [0, 1, 2], [Vector([0, 0, 0])]) self.assertEqual(heuristics.pattern_width(tec), 4) def test_pattern_volume(self): tec = TEC([Vector([2, -1, 0]), Vector([-1, 2, -1]), Vector([0, 1, 2])], [0, 1, 2], [Vector([0, 0, 0])]) self.assertEqual(heuristics.pattern_volume(tec), 27) if __name__ == '__main__': unittest.main()
afb5a14d99e8e12b35967c08435773a376ea4b94
bb771867f01da0df9750dd0e06ac12c491326c57
/server.py
9a99e8ad64cc25eb3ea991a73a3dfae440aa51cb
[]
no_license
prasannakarki77/portfo
c373623ea6b62eff22e986e94d8e86d1defab1bb
8c5d2c8de93066f46e4c76f75874e7002b198a38
refs/heads/master
2023-01-12T04:56:56.782759
2020-11-18T08:11:50
2020-11-18T08:11:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,206
py
from flask import Flask, render_template, url_for, request, redirect import csv app = Flask(__name__) @app.route('/') def my_home(): return render_template('index.html') @app.route('/<string:page_name>') def html_page(page_name): return render_template(page_name) def write_to_file(data): with open('database.txt', mode='a') as database: email= data["email"] subject= data["message"] message = data["message"] file = database.write(f'\n{email},{subject},{message}') def write_to_csv(data): with open('database.csv',newline='', mode='a') as database2: email= data["email"] subject= data["message"] message = data["message"] csv_writer = csv.writer(database2, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) csv_writer.writerow([email,subject,message]) @app.route('/submit_form', methods=['POST', 'GET']) def submit_form(): if request.method=='POST': try: data = request.form.to_dict() write_to_csv(data) return redirect('/thank_you.html') except: return 'did not save database' else: return 'something went wrong. Try again'
160692ada22f13ed67894780e73e61c7aff4f97c
de59ece5d773d8607ba7afe747088ff07062494c
/py-core/None/none.check-variable-is-none.py
b552c37b1721f7e771989f267bdcddc3d8d68aba
[]
no_license
loggar/py
4094c6919b040dfc0bb5453dc752145b5f3b46ba
1116969fa6de00bbc30fe8dcf6445aa46190e506
refs/heads/master
2023-08-21T16:47:41.721298
2023-08-14T16:12:27
2023-08-14T16:12:27
114,955,782
0
0
null
2023-07-20T15:11:04
2017-12-21T03:01:54
Python
UTF-8
Python
false
false
544
py
null_variable = None not_null_variable = 'Hello There!' # The is keyword if null_variable is None: print('null_variable is None') else: print('null_variable is not None') if not_null_variable is None: print('not_null_variable is None') else: print('not_null_variable is not None') # The == operator if null_variable == None: print('null_variable is None') else: print('null_variable is not None') if not_null_variable == None: print('not_null_variable is None') else: print('not_null_variable is not None')
21a3f7ff6f84770d3750f3c4df26b2baba6fd5a2
e8ebcccc0d810d0da1fe6dbec855a13e75f47f60
/plone/app/toolbar/testing.py
936139369f23a5de2c4d71fd89a49304b0ca54b1
[]
no_license
izak/plone.app.toolbar
3254be14c0ac769d2f0890e00821698b5d1db9db
1cbe514a9216bbbe6f6f42f7701523a9ee14d1f7
refs/heads/master
2021-01-16T21:31:08.976374
2012-02-28T12:53:41
2012-02-28T12:53:41
3,371,208
0
0
null
null
null
null
UTF-8
Python
false
false
1,770
py
from plone.app.testing import PLONE_FIXTURE from plone.app.testing import PloneSandboxLayer from plone.app.testing import TEST_USER_NAME from plone.app.testing import TEST_USER_PASSWORD from plone.app.testing import applyProfile from plone.app.testing.layers import FunctionalTesting from plone.app.testing.layers import IntegrationTesting from Products.CMFCore.utils import getToolByName from zope.configuration import xmlconfig class Toolbar(PloneSandboxLayer): defaultBases = (PLONE_FIXTURE,) def setUpZope(self, app, configurationContext): # load ZCML import plone.app.toolbar xmlconfig.file('configure.zcml', plone.app.toolbar, context=configurationContext) def setUpPloneSite(self, portal): # install into the Plone site applyProfile(portal, 'plone.app.toolbar:default') workflowTool = getToolByName(portal, 'portal_workflow') workflowTool.setDefaultChain('plone_workflow') TOOLBAR_FIXTURE = Toolbar() TOOLBAR_INTEGRATION_TESTING = IntegrationTesting(bases=(TOOLBAR_FIXTURE,), name="TOOLBAR:Integration") TOOLBAR_FUNCTIONAL_TESTING = FunctionalTesting(bases=(TOOLBAR_FIXTURE,), name="TOOLBAR:Functional") def browser_login(portal, browser, username=None, password=None): handleErrors = browser.handleErrors try: browser.handleErrors = False browser.open(portal.absolute_url() + '/login_form') if username is None: username = TEST_USER_NAME if password is None: password = TEST_USER_PASSWORD browser.getControl(name='__ac_name').value = username browser.getControl(name='__ac_password').value = password browser.getControl(name='submit').click() finally: browser.handleErrors = handleErrors
93835ef44bb55e7086e23d364a0db3f238cb6244
80ab0c5d43c4d65562c7d7918b477418d49c38de
/tutorial/tutorial_04.py
e421383039911da2c256a06f6be39bbdbf2ad413
[]
no_license
peterpeter5/shallot
7cb30c723417031bff8bb2ec4b0ab1dd3d5dd788
bd6be27ad73e648f148c4aa222306e8be4eef303
refs/heads/master
2021-08-17T03:08:56.523537
2020-04-18T10:23:54
2020-04-18T10:23:54
162,873,412
3
0
null
null
null
null
UTF-8
Python
false
false
1,241
py
import time import asyncio from shallot import websocket, standard_not_found, build_server from shallot.response import ws_send from shallot.middlewares import wrap_routes, apply_middleware @websocket async def fan_in(request, receiver): async for message in receiver: # do something usefull. For example print the data print(message) @websocket async def fan_out(request, receiver): while True: yield(ws_send(f"current-time-stamp {time.time()}")) await asyncio.sleep(1) @websocket async def one_to_one(request, receiver): async for message in receiver: if message == "hello": yield ws_send("hello beautiful") elif message == "exit": yield ws_send("byebye") break elif message == "i like you": yield ws_send("That is very nice! I like you too!") else: yield ws_send("pardon me. I do not have a reply to this") routes = [ ("/fan-in", ["WS"], fan_in), ("/fan-out", ["WS"], fan_out), ("/chatbot", ["WS"], one_to_one), ] app = build_server(apply_middleware( wrap_routes(routes) )(standard_not_found)) if __name__ == "__main__": import uvicorn uvicorn.run(app)
[ "dev.peterpeter5@gmailcom" ]
dev.peterpeter5@gmailcom
1560783a20acc84a7d8df5bb1bed611ed7028089
e6d6a0a1998cc2cca6ae9ed6643bd6704ecd245e
/apps/orgs/migrations/0005_orginfo_is_famous.py
b7c90e23e23d3f1e35d1292b3383ca76118047a9
[]
no_license
a371057600/Guliedu-1
9341b5393360e9b9df67c0522d1e54c4aa21d474
22ebdd7dfb53d1e326ee2d586960bc0309633fb0
refs/heads/master
2020-06-11T23:25:55.664582
2018-11-25T00:39:25
2018-11-25T00:39:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2018-08-28 20:21 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('orgs', '0004_auto_20180826_1017'), ] operations = [ migrations.AddField( model_name='orginfo', name='is_famous', field=models.BooleanField(default=0, verbose_name='是否经典'), ), ]
97f12a6f607074ec0cddd991b1b388544bee6cb3
ca773907880a5a15351c1b9fe7a9fbff9891631a
/netrunner/connections/__init__.py
9b4efc06a2cfa796622826bdd30039a6fc6c078a
[]
no_license
rbraddev/netrunner
88c32ade798ec126679b2d16497a816d73be84cb
964c145b940a7a80487616641c84b23af8d8884e
refs/heads/main
2023-08-11T08:52:40.164771
2021-09-24T09:00:03
2021-09-24T09:00:03
401,962,224
0
0
null
2021-09-21T17:27:16
2021-09-01T06:55:32
Python
UTF-8
Python
false
false
56
py
from netrunner.connections.ssh import SSH # noqa: F401
8c6b6ae33e61b724026b1fb0892ab0df127fccba
3784495ba55d26e22302a803861c4ba197fd82c7
/venv/lib/python3.6/site-packages/torchx/version.py
2075926507396aafc624de6753f05dc7d0a3619b
[ "MIT" ]
permissive
databill86/HyperFoods
cf7c31f5a6eb5c0d0ddb250fd045ca68eb5e0789
9267937c8c70fd84017c0f153c241d2686a356dd
refs/heads/master
2021-01-06T17:08:48.736498
2020-02-11T05:02:18
2020-02-11T05:02:18
241,407,659
3
0
MIT
2020-02-18T16:15:48
2020-02-18T16:15:47
null
UTF-8
Python
false
false
48
py
__version__ = '0.4.1' debug = False cuda = None
93e23d4818b5f7cf902ae367d5601fefa6793f76
d629301e2c41fc5d1c7f1a6ca4688117bbd93117
/RoBO/build/lib.linux-x86_64-2.7/robo/task/ml/var_size_data_freeze_convnet_cifar_2para.py
8aee0a32cc5ffe8e4fc2d1026ee3e5b2f0356565
[ "BSD-3-Clause" ]
permissive
mrenoon/datafreezethaw
db1dd377e9bf8c6fe22c442128e6d1eda1a3bb13
c2ce2e78bd98236618c99fe3453fc24389d48ead
refs/heads/master
2021-01-19T01:13:18.384209
2017-04-05T04:32:26
2017-04-05T04:32:26
87,232,729
5
0
null
null
null
null
UTF-8
Python
false
false
7,513
py
import numpy as np import time import theano import theano.tensor as T import lasagne import os, subprocess from lasagne.regularization import regularize_layer_params, l2, l1 from robo.task.base_task import BaseTask ROOT_ML_DIR = "/data/ml/" EXAMPLES_LINK = "/data/ml/RoBo/examples/" class VarSizeDataConvNetCifar(BaseTask): # def __init__(self, train, train_targets, # valid, valid_targets, # test, test_targets, # n_classes, num_epochs=500, # save=False, file_name=None): def __init__(self, save=False, file_name=None, num_epochs=500, train_range=5): # the last dimension of input is always the data-size # currently, its the [7] self.num_epochs = num_epochs # self.save = save self.file_name = file_name self.base_name = "VarSizeFreezeConvNetCifar" self.is_old = False # self.filename_to_epochs = dict() # self.train_range = train_range # 1 Dim Learning Rate: # 2 Dim L2 regularization: 0 to 1 # 3 Dim Batch size: 20 to 2000 # 4 Dim Dropout rate: 0 to 0.75 # 5 Dim L1 regularization: 0.1 to 20 # 6 Dim Epochs Number: 1 to 100 # X_lower = np.array([np.log(1e-6), 0.0, 20, 0, 0.1, 1]) X_lower = np.array([0.00001, 0.00001, 10]) self.params = X_lower #X_lower = np.array([np.log(1e-6), 0.0, 1000, 0, 0.1, 1]) #X_upper = np.array([np.log(1e-1), 1.0, 2000, 0.75, 20, 100]) #X_upper = np.array([np.log(1e-1), 1.0, 2000, 0.75, 20, 10]) # X_upper = np.array([np.log(1e-1), 1.0, 2000, 0.75, 20, 7]) X_upper = np.array([0.01, 0.02, 500]) #X_upper = np.array([np.log(1e-1), 1.0, 2000, 0.75, 20, 3]) super(VarSizeDataConvNetCifar, self).__init__(X_lower, X_upper) def set_weights(self, old_file_name): # FREEZE **********************************TODO #actually dont need to do anything since the config is already in filename.cfg #while the data is at filename.data pass # file_name = old_file_name + '.npz' # with np.load(file_name) as f: # param_values = [f['arr_%d' % i] for i in range(len(f.files))] # lasagne.layers.set_all_param_values(self.network, param_values) def set_epochs(self, n_epochs): # FREEZE **********************************TODO self.num_epochs = n_epochs def set_save_modus(self, is_old=True, file_old=None, file_new=None): # FREEZE **********************************TODO self.is_old = is_old self.save = True if self.is_old: self.file_name = file_old else: self.file_name = file_new def objective_function(self, x): print 'in objective_function x: ', x #well now if its even an old model, we don't need to care about the past data #and just learn from fresh. # print("filename = " + self.file_name) # dir_path = os.path.dirname(os.path.realpath(__file__)) # return [ np.random.rand() ] dir_path = ROOT_ML_DIR + "RoBO/examples/" os.chdir(ROOT_ML_DIR + "/cuda-convnet2-modified") dataPath = ROOT_ML_DIR + "/data/vu-cifar-10" save_file = os.path.join(dir_path,self.file_name + ".data") layersCfg = ROOT_ML_DIR + "/Spearmint-EI/examples/convnetcifar/layers-80sec.cfg" layersParams = os.path.join(dir_path, self.file_name + ".cfg") # testFreq = self.num_epochs * 5 # testFreq = str(self.train_range) layersParamsTemplatePath = ROOT_ML_DIR + "RoBO/examples/dataFreeze/layer-params-template_2para.cfg" #write the layersParams file # if os.path.exists(save_file): # subprocess.call("rm -rf " + save_file, shell=True) # subprocess.call("rm " + layersParams, shell=True) template = open(layersParamsTemplatePath,"r").read() epsW = x[0][0] epsB = x[0][1] open(layersParams,"w").write(template % ( epsW, epsB, epsW, epsB, epsW, epsB, epsW, epsB, epsW, epsB )) dataSize = x[0][2] num_epochs = int( self.num_epochs * 500 / dataSize ) dataSize = int(dataSize+0.00000000001) dataSize = min(dataSize, 500) testRange = str( max(500 + dataSize/5,502) ) testRange = "600" testFreq = str(4 * dataSize) #Lets just make it 3 * dataSize for now if not self.is_old: #its a new model, we need to write the layersParams file if os.path.exists(save_file): temp = subprocess.check_output("rm -rf " + save_file, shell=True) # temp = subprocess.check_output("rm " + layersParams, shell=True) # self.filename_to_epochs[self.file_name] = self.num_epochs command = "python convnet.py --data-provider cifar --test-range 501-" + testRange + " --train-range 1-" + str(dataSize) + " --data-path " + dataPath + " --inner-size 24 --save-file " + save_file + " --gpu 0 --layer-def " + layersCfg + " --layer-params " + layersParams + " --epochs " + str(num_epochs) + " --test-freq " + testFreq # command = "python convnet.py --data-provider cifar --test-range 6 --train-range 1-" + str(self.train_range) + " --data-path " + dataPath + " --inner-size 24 --save-file " + save_file + " --gpu 0 --layer-def " + layersCfg + " --layer-params " + layersParams + " --epochs " + str(self.num_epochs) + " --test-freq " + testFreq else: # self.filename_to_epochs[self.file_name] += self.num_epochs # if the model is already run, we need to load file command = "python convnet.py --data-provider cifar --test-range 501-" + testRange + " --train-range 1-" + str(dataSize) + " --data-path " + dataPath + " --inner-size 24 --save-file " + save_file + " --gpu 0 --layer-def " + layersCfg + " --layer-params " + layersParams + " --epochs " + str(num_epochs) + " --test-freq " + testFreq + " --load-file " + save_file # command = "python convnet.py --data-provider cifar --test-range 501-" + testRange + " --train-range 1-" + str(dataSize) + " --data-path " + dataPath + " --inner-size 24 --save-file " + save_file + " --gpu 0 --layer-def " + layersCfg + " --layer-params " + layersParams + " --epochs " + str(num_epochs) + " --test-freq " + testFreq output = subprocess.check_output(command, shell=True) # print("+++++ Command = _" + command) # print("+++++ ml.convnet_cifar_freeze, In objective function, output from command: ") # print(output) open(layersParams+".log","a").write(command+"\n"+output+"\n\n\n\n") losses_strings = output.split("STOPPING TRAINING")[1] # def get_val_loss(s): # AveragesId = s.find("Averages-") # output = s[:AveragesId] # resultString = output.split(" ")[3][:-1] # return float( resultString ) stoppingStringId = losses_strings.find("logprob") val_loss = losses_strings[stoppingStringId:].split(", ")[1] print "::::: ml.convnet_cifar_freeze, In objective function, after training, filtered, got this val_loss: ", val_loss return [float(val_loss),] def objective_function_test(self, x): self.objective_function(x) return self.test_error
147dcdf93727142f1333c7fa452dc503f0d433c8
0f1a60e09c8db4b2914a7b6aca26576b9b991b97
/Урок 3. Практическое задание/urls.py
2827c0824c7e4ce28163b5798578c736fe8b1af4
[]
no_license
daniilro/python_patterns
798cccf87e49c9fb47ec8fbae2b0e59bc36067b8
89c3410be3607309fb1b3007a19ef71c5b9487d5
refs/heads/master
2023-04-26T04:26:17.459561
2021-05-19T14:10:25
2021-05-19T14:10:25
360,465,187
0
0
null
2021-04-24T09:55:07
2021-04-22T09:33:47
HTML
UTF-8
Python
false
false
597
py
''' ''' import time from datetime import date # Front controllers ############################################################# def fc_base(request): print("fc_base") request['timestamp'] = time.time() request['data'] = date.today() ############################################################# def fc_debug(request): print("fc_debug") if True: request['debug'] = True request['key'] = 'key' ############################################################# fc_list = [fc_base, fc_debug] #############################################################
139fa8c391640ecabacc71828360a09224f658ba
3ae0a536d08e871c5b67fafac3c068c15d53a792
/app/__init__.py
7ba5faa28dbde8964c239cf31c1aca7cc96d5765
[]
no_license
bethconna/Library
2034f359d8f9ec5fe70568b0cd7035c966baa3ae
ebea0f713404d54306a202fc4f1a0cd9a1212d93
refs/heads/master
2022-04-11T07:31:13.584455
2020-03-19T19:40:52
2020-03-19T19:40:52
248,577,763
0
0
null
null
null
null
UTF-8
Python
false
false
1,011
py
# -*- coding:utf-8 -*- from flask import Flask from app.models.base import db from flask_login import LoginManager from flask_mail import Mail login_manager = LoginManager() mail = Mail() def create_app(): # app:flask全局只有一个 # flask静态文件夹:默认static_folder = 'statics' app = Flask(__name__) # 导入配置文件 # from_object导入的配置文件要求:大写字母 app.config.from_object('app.secure') app.config.from_object('app.setting') # 注册蓝图 register_blueprint(app) # LoginManager初始化 login_manager.init_app(app) login_manager.login_view = 'web.login' login_manager.login_message = '请登录或注册' # 注册Mail mail.init_app(app) # 数据库初始化 db.init_app(app) # 手动将app推入栈中:current.app with app.app_context(): db.create_all() return app def register_blueprint(app): from app.web.blueprint import web app.register_blueprint(web)
a32fbb9bc02d3dac7f26f8e022e0b96da9fc8686
837fb6ca890d109371bc60558327c007af1991f5
/mainEmtelco.py
3c6bc1721f608ed600dd279b06e9f31ccc9157ef
[]
no_license
JhomarDaza/Automatizaci-n
b73c6f0b80eda710bcf8d54710662cceb8144ae8
235e7ac26cd9891adeb5bb1f4a4a6799004dc42b
refs/heads/master
2022-12-10T13:13:48.061158
2020-09-05T19:49:43
2020-09-05T19:49:43
279,809,929
0
0
null
null
null
null
UTF-8
Python
false
false
1,376
py
import time from selenium import webdriver from selenium.webdriver.support.ui import Select driver = webdriver.Chrome('chromedriver.exe') driver.get('http://automationpractice.com/index.php?controller=authentication') time.sleep(5) user_box = driver.find_element_by_id('email') pass_box = driver.find_element_by_id('passwd') sing_button = driver.find_element_by_id('SubmitLogin') user_box.send_keys('[email protected]') pass_box.send_keys('pruebas1234') sing_button.click() address_button = driver.find_element_by_xpath('/html/body/div/div[2]/div/div[3]/div/div/div[1]/ul/li[3]/a') address_button.click() time.sleep(5) new_address_button = driver.find_element_by_xpath('//*[@id="center_column"]/div[2]/a') new_address_button.click() address_box = driver.find_element_by_id('address1') city_box = driver.find_element_by_id('city') state_Dropdawn = Select(driver.find_element_by_name('id_state')) zipcode_box = driver.find_element_by_id('postcode') phone_box = driver.find_element_by_id('phone') title_address_box = driver.find_element_by_id('alias') save_button =driver.find_element_by_css_selector('#submitAddress') address_box.send_keys('Cra 123 # 45') city_box.send_keys('prueba') state_Dropdawn.select_by_value("3") zipcode_box.send_keys('00010') phone_box.send_keys('3333333') title_address_box.send_keys('dir_prueba1') save_button.click() time.sleep(5) driver.quit()
7988181c24bb1148b29d1dd823e47e340401062f
5ddf2118455c8285bbfc657f3a2cabdf224beaf4
/modules/pose_estimator/head_position.py
322d9cc799efb10163e6baa700ca7ba677d323c3
[]
no_license
Vadbeg/human_pose_estimation
004b7ac49514561cc1615c94e44f8b8bb6547c41
64dbef23ab9e671f9ab039e14d86956a4d6e07a0
refs/heads/master
2023-04-27T12:22:26.941687
2021-05-13T23:38:23
2021-05-13T23:38:23
354,088,045
0
0
null
null
null
null
UTF-8
Python
false
false
2,052
py
"""Module for checking if head position is good""" import math from typing import Tuple, List import numpy as np from modules.models.utils import get_annotated_facial_landmarks class HeadPositionChecker: def __init__(self, edge_value: float = 15.0): self.edge_value = edge_value self.max_value = 90 @staticmethod def __get_nose_landmarks(facial_landmarks: np.ndarray) -> List[Tuple[int, int]]: annotated_facial_landmarks = get_annotated_facial_landmarks( landmarks=facial_landmarks ) nose_landmarks = annotated_facial_landmarks['nose'] return nose_landmarks def is_head_position_good(self, facial_landmarks): nose_landmarks = self.__get_nose_landmarks( facial_landmarks=facial_landmarks ) top_nose_point, bottom_nose_point = self.__get_nose_line_points( nose_landmarks=nose_landmarks ) angle = self.__get_angle_between_vertical_and_nose( top_nose_point=top_nose_point, bottom_nose_point=bottom_nose_point ) if np.abs(self.max_value - angle) > self.edge_value: return False return True @staticmethod def __get_nose_line_points( nose_landmarks: List[Tuple[int, int]] ) -> Tuple[Tuple[int, int], Tuple[int, int]]: top_nose_point = nose_landmarks[0] all_bottom_nose_points = nose_landmarks[3:9] bottom_nose_point = np.sum(np.array(all_bottom_nose_points), axis=0) / len(all_bottom_nose_points) bottom_nose_point = np.uint16(bottom_nose_point) return top_nose_point, bottom_nose_point @staticmethod def __get_angle_between_vertical_and_nose( top_nose_point: Tuple[int, int], bottom_nose_point: Tuple[int, int] ) -> float: tg_angle = np.abs(top_nose_point[1] - bottom_nose_point[1]) / \ np.abs(top_nose_point[0] - bottom_nose_point[0]) angle = (math.atan(tg_angle) / np.pi) * 180 return angle
26c2c8eb47aacbf4b90c8f01845dee35cd36f251
66b38de752573365d25ff637cdd7f69eb6afbc90
/text_normalizer/normalizer.py
e6d019a53e22860757b7abf3380c55bd4602ef9a
[]
no_license
mailtonfcarvalho/Thesaurus
211d3113bea0c245e5ecb93e6c096631bea5c6dc
e5c2d40cbf3fdae3a202cad9e6fe9f7cc07700f6
refs/heads/master
2020-06-16T04:57:27.636854
2019-07-06T02:45:34
2019-07-06T02:45:34
195,484,899
0
0
null
2019-10-31T05:15:30
2019-07-06T01:33:38
Python
UTF-8
Python
false
false
2,089
py
import nltk import re import string from unidecode import unidecode from utils import paths class Normalizer(object): @staticmethod def remove_html(text): return unidecode(re.sub(re.compile("<.*?>"), '', text)) @staticmethod def has_digit(sentence): return any(char.isdigit() for char in sentence) def remove_characteres(self,text): text_no_links = self.remove_html(text) links = re.findall(r"https?://[\w:/.'\"_%#-]+", text_no_links) for link in links: text_no_links = text_no_links.replace(link, '') chars_to_remove = nltk.word_tokenize(string.punctuation) regex = '[' + re.escape(' '.join(chars_to_remove)) + ']' clean_text = re.sub(regex, ' ',text_no_links) clean_text = ' '.join( [ word for word in clean_text.split() if not self.has_digit(word) ] ) clean_text = clean_text.lower() return clean_text @staticmethod def remove_stopwords(text): STOP_WORDS = open(paths.STOPWORDS_FILE_PATH, 'r').read().split() text_tokenize = nltk.word_tokenize(text) no_stopwords = ' '.join( [ word.replace('\"', '') for word in text_tokenize if word not in STOP_WORDS ] ) return no_stopwords @staticmethod def retrieve_nouns_and_verbs(text): tokens = nltk.word_tokenize(text) words = ( [ n for n, t in nltk.pos_tag(tokens) if t in ('NN', 'VB') ] ) return words def normalize(self, text): delete_chars = self.remove_characteres(text) delete_stopwords = self.remove_stopwords(delete_chars) nouns_verbs = self.retrieve_nouns_and_verbs(delete_stopwords) return nouns_verbs if __name__ == '__main__': w = Normalizer() data = open(paths.DOCUMENTS_FILE_PATH, 'r').read() words = w.normalize(data) words_list = list(set(words)) print(words_list)
fcfa912fbbde293329c2a0f645dbbb9eb913faff
33d46ee082d496af1775c1124d0a5b61eeac6e43
/OldCode/Extra Files/helloworld.py
9579a7d359c45a1e021336c5ae4b47c225bac008
[]
no_license
SophiaMVaughn/Treeo
7355ab5eeb004bb13a4b79000374b9fad3dade3f
f619e2f673d13fb7852fee5874a0b7e3f68aba6f
refs/heads/master
2023-04-18T06:46:57.339396
2021-04-21T05:18:53
2021-04-21T05:18:53
264,577,585
0
1
null
null
null
null
UTF-8
Python
false
false
2,833
py
from flask import Flask from flask import Flask, flash, redirect, render_template, request, session, abort from password_strength import PasswordPolicy import password_strength app = Flask(__name__) @app.route("/") def index(): option = [] option.append("Provider1") option.append("Provider2") option.append("Provider3") option.append("Provider4") return render_template("testForm.html", options=option) @app.route('/approve', methods=['POST','GET']) def approve(): return "help" @app.route('/approve/<username>', methods=['POST','GET']) def approveForm(username): #mySQL_userDB.verifyProvider(username, cursor, cnx) return render_template("approveTest.html", providername = username) # def usernamencheck(): # #text = request.args.get('jsdata') # policy = PasswordPolicy.from_names( # length=8, # min length: 8 # uppercase=2, # need min. 2 uppercase letters # numbers=2 # need min. 2 digits # ) # ##PASSWORD STRENGTH # #isEnough = policy.test("abcAAAaa") # if len(isEnough): # #print(type(isEnough[0])) # if len(isEnough)==1: # if type(isEnough[0])==password_strength.tests.Length: # return "<8 characters" # elif type(isEnough[0])==password_strength.tests.Uppercase: # return "<2 capital letters" # elif type(isEnough[0])==password_strength.tests.Numbers: # return "<2 digits" # elif len(isEnough)==2: #any 2 combinationsS # if type(isEnough[0])==password_strength.tests.Length: # if type(isEnough[1])==password_strength.tests.Uppercase: # return "<8 characters\n<2 capital letters" # elif type(isEnough[1])==password_strength.tests.Numbers: # return "<8 characters\n<2 digits" # elif type(isEnough[0])==password_strength.tests.Uppercase: # if type(isEnough[1])==password_strength.tests.Numbers: # return "<2 capital letters\n<2 digits" # elif type(isEnough[1])==password_strength.tests.Length: # return "<2 capital letters\n<8 characters" # elif type(isEnough[0])==password_strength.tests.Numbers: # if type(isEnough[1])==password_strength.tests.Uppercase: # return "<2 digits\n<2 capital letters" # elif type(isEnough[1])==password_strength.tests.Length: # return "<2 digits\n<8 characters" # else: #all 3 # return "<8 characters\n<2 capital letters\n<2 digits" # #CHANGE THE FORMAT of the message #[x]/[x]/[x]? #usernamecheck() if __name__ == "__main__": app.run(host='0.0.0.0', port=4000)
5433f326ab81dd4476ccb946c13c972d8677d656
930e9a18693fc56efa4f32c634290afed5034c3f
/build-time-graph.py
ce92d0f6407bfad6b9e6bc69494f261884092163
[]
no_license
doloopwhile/aggregate-jenkins-job
aa3a4b7d42a89182aead12b6a35f9cec2b39f3a5
5827862ee096b4f15f291b8a282938fc939c129d
refs/heads/master
2016-09-09T17:49:06.450128
2014-06-05T10:29:20
2014-06-05T10:29:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,778
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from argparse import ArgumentParser from pathlib import Path from urllib.parse import urljoin from urllib.request import urlopen import urllib.request from operator import itemgetter import pyjq as jq import math import webbrowser def main(): parser = ArgumentParser() parser.add_argument('host', action='store') parser.add_argument('job', action='store') parser.add_argument('--port', action='store', default=80) args = parser.parse_args() def api_url(url): return urljoin(url, 'api/json') job_api_url = api_url('http://{0.host}:{0.port}/job/{0.job}/'.format(args)) # builds = [] # for build_url in jq.all('.builds[].url', url=job_api_url): # build = jq.one('{duration: .duration, number: .number, result: .result}', url=api_url(build_url)) # builds.append(build) builds = [{'number': 415, 'duration': 1817465, 'result': 'SUCCESS'} ,{'number': 416, 'duration': 1490033, 'result': 'SUCCESS'} ,{'number': 419, 'duration': 1803128, 'result': 'SUCCESS'} ,{'number': 421, 'duration': 1753199, 'result': 'SUCCESS'} ,{'number': 426, 'duration': 1686575, 'result': 'SUCCESS'} ,{'number': 427, 'duration': 2449128, 'result': 'SUCCESS'} ,{'number': 428, 'duration': 1752961, 'result': 'SUCCESS'} ,{'number': 429, 'duration': 1424184, 'result': 'SUCCESS'} ,{'number': 430, 'duration': 1540526, 'result': 'SUCCESS'} ,{'number': 431, 'duration': 1776849, 'result': 'SUCCESS'} ,{'number': 432, 'duration': 1380645, 'result': 'SUCCESS'} ,{'number': 433, 'duration': 2087693, 'result': 'SUCCESS'} ,{'number': 435, 'duration': 1629043, 'result': 'SUCCESS'}] builds = [build for build in builds if build['result'] == 'SUCCESS'] builds.sort(key=itemgetter('number')) import string import json graph_data = [['build', 'duration']] + [[str(b['number']), (b['duration'] // 1000 / 60)] for b in builds] from pprint import pprint pprint(graph_data) pprint([ ['x', 'Blanket 2'], ['A', 0.5], ['B', 1], ['C', 0.5], ['D', 1], ['E', 0.5], ['F', 1], ['G', 0.5], ['H', 1], ['I', 0.5], ['J', 1], ['K', 0.5], ['L', 1], ['M', 0.5], ['N', 1] ]) html = string.Template('''\ <!DOCTYPE html> <html> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"/> <title> Google Visualization API Sample </title> <script type="text/javascript" src="http://www.google.com/jsapi"></script> <script type="text/javascript"> google.load('visualization', '1', {packages: ['corechart']}); </script> <script type="text/javascript"> function drawVisualization() { // Create and populate the data table. var data = google.visualization.arrayToDataTable($json_graph_data); // Create and draw the visualization. new google.visualization.LineChart(document.getElementById('visualization')). draw(data, {curveType: "none", width: 800, height: 400, vAxis: {maxValue: 10}} ); } google.setOnLoadCallback(drawVisualization); </script> </head> <body style="font-family: Arial;border: 0 none;"> <div id="visualization" style="width: 500px; height: 400px;"></div> </body> </html>''').substitute(json_graph_data=json.dumps(graph_data)) import tempfile t = tempfile.NamedTemporaryFile(delete=False) t.write(html.encode('ascii')) t.close() from pathlib import Path webbrowser.open(Path(t.name).as_uri()) if __name__ == '__main__': main()
388fcbd63eb525dcea423f765b12cc6b3cc9a56f
4c57cd567f665e6350c8e49996e1ac51a9d059b0
/caffe_in/apps/cafe/models.py
6dfd47fd4b0e5551d1b009bcec264c1a78552729
[]
no_license
dayatz/caffe_in_project
ba568c4c3354f637db1388581ed06baede83d916
c884e8ba8fd9382b00c54ea698dbc0c2dbcaa2c9
refs/heads/master
2021-01-13T16:31:09.775539
2016-09-25T22:56:33
2016-09-25T22:56:33
69,189,378
0
0
null
null
null
null
UTF-8
Python
false
false
1,477
py
from django.db import models from versatileimagefield.fields import VersatileImageField class NameDescriptionMixin(models.Model): name = models.CharField(max_length=50) description = models.TextField() created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Meta: abstract = True class Cafe(NameDescriptionMixin): photo = VersatileImageField(upload_to='cafe/') # Contact phone = models.CharField(max_length=12) fb = models.CharField(max_length=30, null=True, blank=True) tw = models.CharField(max_length=30, null=True, blank=True) # Location address = models.TextField() lng = models.CharField(max_length=20) lat = models.CharField(max_length=20) class Meta: verbose_name = "Cafe" verbose_name_plural = "Cafes" def __str__(self): return self.name class Menu(NameDescriptionMixin): cafe = models.ForeignKey(Cafe, related_name='menus') photo = VersatileImageField(upload_to='menu/') price = models.FloatField() class Meta: verbose_name = "Menu" verbose_name_plural = "Menus" def __str__(self): return "%s: %s" % (self.cafe.name, self.name) class Gallery(models.Model): cafe = models.ForeignKey(Cafe) caption = models.CharField(max_length=50, null=True, blank=True) photo = VersatileImageField(upload_to='cafe/') def __str__(self): return self.cafe.name
3bf45def4e1931283ba586eda4d1f670f7a94bca
81ffa8fd63ff894a2f8e65692c974ef5b7c2c259
/nn/data/Easy_Image_Annotation_Tool--master/Easy_Image_Annotation_Tool--master/Manual_Image_Annotation.py
f138cdc191597ceaccc9fb3dda4e65dadc764840
[]
no_license
n0lean/enet_deploy
73ef8ebffd6276eea66bbd3f89eb9f6dc5e52836
093f3e3c0471cbc0070b3fb063b4b0135c7a151f
refs/heads/master
2021-06-23T12:37:57.348175
2017-08-16T19:44:38
2017-08-16T19:44:38
100,507,587
0
0
null
null
null
null
UTF-8
Python
false
false
4,517
py
# Free Hand Drawing for image Annotation # Author :- Harish Pullagurla ( [email protected] ) # Last Updated :- 19th March 2017 # How to use :- # 1. put images in the images folder # 2. draw pattern on image # 3. press Esc # 4. Enter the image label value # 5. Press 1 to continue annotating the same image # Handling errors # 6. Press 0 in the image lable value if you feel you did some mistake in selecting during free hand drawing as '0' is the base class # 7. Try to draw closed loops during free hand drawing , else fulling dosent happen import cv2 import numpy as np import os ''' drawing=False # true if mouse is pressed mode=True # if True, draw rectangle. Press 'm' to toggle to curve pt = [] file_locations = [] # mouse callback function def freehand_draw(event,former_x,former_y,flags,param): global current_former_x,current_former_y,drawing, mode if event==cv2.EVENT_LBUTTONDOWN: drawing=True current_former_x,current_former_y=former_x,former_y pt.append([former_x,former_y]) elif event==cv2.EVENT_MOUSEMOVE: if drawing==True: if mode==True: cv2.line(im,(current_former_x,current_former_y),(former_x,former_y),(255,255,255),2) cv2.line(im2, (current_former_x, current_former_y), (former_x, former_y), 255, 2) current_former_x = former_x current_former_y = former_y pt.append([former_x, former_y]) #print former_x,former_y elif event==cv2.EVENT_LBUTTONUP: drawing=False if mode==True: cv2.line(im,(current_former_x,current_former_y),(former_x,former_y),(255,255,255),2) cv2.line(im2,(current_former_x,current_former_y),(former_x,former_y),255,2) current_former_x = former_x current_former_y = former_y pt.append([former_x, former_y]) return former_x,former_y # Main Program starts here directory = os.getcwd() directory_1 = directory + '\\Images\\' for filename in os.listdir(directory_1): if filename.endswith(".jpg") or filename.endswith(".png"): file_locations.append(os.path.join(directory_1, filename)) continue else: continue for h in range(len(file_locations)): filename = file_locations[h] im_base = cv2.imread(filename) #im = cv2.resize(im_base,(400,300),fx = 1,fy =1) im = im_base im_annotated = 100*np.ones((np.size(im,0),np.size(im,1)),dtype='uint8') response = '1' while(response == '1'): #print response im2 = np.zeros((np.size(im,0),np.size(im,1)),dtype='uint8') cv2.namedWindow("colour image") cv2.setMouseCallback('colour image',freehand_draw) while(1): cv2.imshow('colour image',im) k=cv2.waitKey(1)&0xFF if k==27: break kernel = np.ones((5,5),np.uint8) closing = cv2.morphologyEx(im2, cv2.MORPH_CLOSE, kernel) # Copy the thresholded image. im_floodfill = closing.copy() # Mask used to flood filling. # Notice the size needs to be 2 pixels than the image. h, w = im2.shape[:2] mask = np.zeros((h + 2, w + 2), np.uint8) # Floodfill from point (0, 0) cv2.floodFill(im_floodfill, mask, (0, 0), 255) # Invert floodfilled image im_floodfill_inv = cv2.bitwise_not(im_floodfill) # Combine the two images to get the foreground. im_out = closing | im_floodfill_inv cv2.imshow("Foreground", im_out) cv2.waitKey(10) category = raw_input("enter the label number") if category == 500: print 'invalied_catogree' continue img_rows, img_cols = im_out.shape for i in range(img_rows): for j in range(img_cols): if im_out[i,j] == 255 : im_annotated[i,j] = category #cv2.imshow("final label map", im_annotated) k=cv2.waitKey(1)&0xFF if k==97: break response = raw_input('press 1 to continue') cv2.destroyAllWindows() image_name = filename.split(directory_1) image_name_1 = image_name[1].split('.') filename_annotated_image = directory +'\\Annotated\\'+image_name_1[0]+'_annotated_image.png' finished_labeling = directory +'\\Finished_Labeling\\'+ str(image_name[1]) os.rename(filename,finished_labeling) cv2.imwrite(filename_annotated_image,im_annotated) cv2.destroyAllWindows() '''
fc65c7f5983670a239b99ce19baf7bf53c1ed218
37fc0a4886070ca56375393c05b6368060309273
/curves.py
b79fc0e11d7afca717bb795f477191331aa91b8c
[ "Apache-2.0" ]
permissive
Green-Resilience/Orchestration_HollyFerguson
86e8f56f8ae1d75c4d047f6f859146e9e164de48
238ab738a1a05e9bf716768490804f6d407715a1
refs/heads/master
2021-01-01T18:06:01.084692
2017-07-25T01:29:56
2017-07-25T01:29:56
98,250,052
0
0
null
null
null
null
UTF-8
Python
false
false
3,125
py
# ------------------------------------------------------------------------------- # Name: curves.py # Purpose: Use USGS data to create and query hazard curves # # Author: Holly Tina Ferguson [email protected] # # Created: 07/06/2017 # Copyright: (c) Holly Tina Ferguson 2017 # Licence: The University of Notre Dame # Acknowledgement: S. Nagrecha 2017 # ------------------------------------------------------------------------------- # #!/usr/bin/python import os import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import UnivariateSpline def ImputeZeros(_x, _y): """Returns modified in-place versions _x & _y where the value of zero is slightly shifted by DELTA""" _x = list(_x) #because tuples are special creatures... _y = list(_y) # Do not worry about overflow errors: (RuntimeWarning: overflow encountered in power)... # Numbers will still compute and print...see output, this same example running is something like [-9.62392027] for that one model DELTA = 2**(-256) for i in range(len(_x)): if _x[i]==0: _x[i] += DELTA if _y[i]==0: _y[i] += DELTA return tuple(_x), tuple(_y) #re-cast the modified lists as tuples befoire returning # import multipolyfit as mpf def InferSpline(x,y,cityname,modelname,savefigures,degree=3,GRANULARITY=500): x_lin = np.linspace(min(x),max(x),GRANULARITY) # make sure you don't have any zeroes around, or else you'll get an -Inf. # I don't know what that does to splines, all I know is that it can't be good #print "X = ", x #print "Y = ", y #print "log(X) = ", np.log(x) #print "log(Y) = ", np.log(y) x_clean,y_clean = ImputeZeros(x,y) spl = UnivariateSpline(np.log(x_clean),np.log(y_clean),k=degree) y_lin = np.exp(spl(np.log(x_lin))) if savefigures: plt.plot(x, y, 'kx') plt.plot(x_lin, y_lin, 'b-') plt.title(cityname + "\n" + modelname) plt.xscale("log") plt.yscale("log") plt.savefig(os.path.join("figures",cityname + modelname + ".png"),dpi=500) return spl class Curves(): # Input parameters def querycurves(self,citydatanesteddict,savefigs): """ Builds an interpolated spline for each model for each city citydatanesteddict: looks like this {city_name: {model: (X,Y) }} savefigs: Boolean. Saves figures into a common directory for now if 'True' returns: {city_name: {model: spline}} In a future version, something more advanced / modular than splines can be swapped out and vars can be renamed """ model_splines = {} for _city in citydatanesteddict: model_splines[_city] = {} for _model in citydatanesteddict[_city]: hazardcurve_coarse = citydatanesteddict[_city][_model] hazard_x, hazard_y = zip(*hazardcurve_coarse) hazard_spl = InferSpline(hazard_x,hazard_y,cityname=_city, modelname=_model, savefigures=savefigs) model_splines[_city][_model] = hazard_spl return model_splines
272435e3dc1c043b9bf0dafded30b3c2c4e0a782
bbb633cf5a156714fd072c116c802b0a45745513
/BasantBookFestival/BookFest/migrations/0002_book_link.py
43ed2b004e6e0136ea97a81917dbcc7fe941bdc9
[]
no_license
darmis007/Basant-Book-Festival-Backend
e41613885abcb385d80eb08057b13272b6658ef9
f3aca9e79d876f00d2fb312d9535922469fcd5df
refs/heads/main
2023-03-09T16:52:11.315240
2021-02-25T15:46:20
2021-02-25T15:46:20
329,369,536
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
# Generated by Django 3.0.7 on 2021-01-27 14:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('BookFest', '0001_initial'), ] operations = [ migrations.AddField( model_name='book', name='link', field=models.URLField(blank=True, null=True), ), ]
8d26e14f8102dc796688c29472bb87e5230ae97d
a259e74299ddf20bb821a667f9656e8d25389651
/parser/lc_quad_linked.py
d9c61ba9a8646f52f6021311b60aa80da01c84c6
[]
no_license
karthi2016/query_generation
1dad6a5eff462768df46e0d130ee8067fe35617f
6290bdef582bb425d982b0dab2379484c23db724
refs/heads/master
2021-07-07T00:46:21.144462
2017-10-04T11:42:26
2017-10-04T11:42:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,317
py
import json import re from common.qapair import QApair from common.uri import Uri from kb.dbpedia import DBpedia from answerparser import AnswerParser class LC_Qaud_Linked: def __init__(self, path="./data/LC-QUAD/linked.json"): self.raw_data = [] self.qapairs = [] self.path = path self.parser = LC_Qaud_LinkedParser() def load(self): with open(self.path) as data_file: self.raw_data = json.load(data_file) def parse(self): for raw_row in self.raw_data: self.qapairs.append( QApair(raw_row["question"], raw_row.get("answers"), raw_row["sparql_query"], raw_row, raw_row["id"], self.parser)) def print_pairs(self, n=-1): for item in self.qapairs[0:n]: print item print "" class LC_Qaud_LinkedParser(AnswerParser): def __init__(self): super(LC_Qaud_LinkedParser, self).__init__(DBpedia()) def parse_question(self, raw_question): return raw_question def parse_answerset(self, raw_answers): return self.parse_queryresult(raw_answers) def parse_sparql(self, raw_query): uris = [Uri(raw_uri, self.kb.parse_uri) for raw_uri in re.findall('(<[^>]*>|\?[^ ]*)', raw_query)] return raw_query, True, uris
1ede98ce26d5624c114d96d33e1a04c1d3265fe8
969b2895158993c593596881e1957463111f95e1
/Mxnet/CNN/DenseNet/DenseBlock.py
efb41004bbb32263db035fe8ed2e1250a15ed7b1
[]
no_license
JYLFamily/Python_Study_Note
4f3fda1a4374df48db3aeeac2c27b8ef28673795
eb6d5a7f359e24659054b61a382668b3ef3e9234
refs/heads/master
2021-01-02T09:46:15.687725
2018-04-28T11:21:35
2018-04-28T11:21:35
99,296,027
2
0
null
null
null
null
UTF-8
Python
false
false
774
py
# coding:utf-8 from mxnet import nd from mxnet.gluon import nn def conv_block(channels): out = nn.Sequential() out.add( nn.BatchNorm(), nn.Activation("relu"), nn.Conv2D(channels, kernel_size=3, padding=1) ) return out class DenseBlock(nn.Block): # layers 这个 DenseBlock 中包含 layer 个 conv_block # 每个 layers 的 output_channels 是 growth_rate def __init__(self, layers, growth_rate, **kwargs): super(DenseBlock, self).__init__(**kwargs) self.net = nn.Sequential() for i in range(layers): self.net.add(conv_block(growth_rate)) def forward(self, x): for layer in self.net: out = layer(x) x = nd.concat(x, out, dim=1) return x
7e2c40d30cf8b10bd6dd710e7ee833f008999675
44132a86288fb076e72b1ee9c1ddd711bb1af272
/DavinciStripping/MCSelDetachedN.py
58e564f349c4be492ec26b5091aa26ee3e6ebd67
[]
no_license
mboubdir/lhcb_analysis
40f00ac3e734513ec57a9a9f198a25c8b788c0d6
fbac1dbcf13d5a800327aa6b12847e7687dbe5f4
refs/heads/master
2020-04-17T18:41:05.883872
2019-01-21T17:36:50
2019-01-21T17:36:50
166,836,983
0
0
null
null
null
null
UTF-8
Python
false
false
7,922
py
# LHCb standard definitions # -*- coding: utf-8 -*- ## from os import environ ## import math from Gaudi.Configuration import * from GaudiKernel.SystemOfUnits import MeV, GeV, mm from GaudiConfUtils import ConfigurableGenerators from Configurables import FilterDesktop, CombineParticles, TupleToolDecayTreeFitter, TupleToolDecay, OfflineVertexFitter from PhysSelPython.Wrappers import Selection, SelectionSequence, DataOnDemand, AutomaticData from Configurables import DecayTreeTuple, BTaggingTool, SubstitutePID, TrackScaleState, CheckPV, CondDB from Configurables import TupleToolPid, TupleToolTrackInfo, TupleToolKinematic, TupleToolPropertime, TupleToolPrimaries, TupleToolEventInfo, TupleToolGeometry, TupleToolRecoStats, TupleToolTrackPosition, TupleToolMCBackgroundInfo , TupleToolMCTruth, MCTupleToolKinematic, MCTupleToolHierarchy , MCTupleToolEventType , MCTupleToolInteractions , TupleToolGeneration , MCTupleToolReconstructed, TupleToolTrigger, TupleToolTISTOS, TupleToolANNPID from Configurables import DaVinci, HltSelReportsDecoder, HltVertexReportsDecoder, HltDecReportsDecoder, LoKi__Hybrid__TupleTool, TupleToolJets from DecayTreeTuple.Configuration import * from Configurables import LoKi__Hybrid__PlotTool as PlotTool from Configurables import LoKi__VertexFitter as VertexFitter from Configurables import AddRelatedInfo, RelInfoConeVariables, RelInfoTrackIsolationBDT, RelInfoVertexIsolationBDT, RelInfoVertexIsolation from PhysSelPython.Wrappers import AutomaticData, Selection, SelectionSequence from StrippingConf.Configuration import StrippingConf, StrippingStream from StrippingSettings.Utils import strippingConfiguration from StrippingArchive.Utils import buildStreams from StrippingArchive import strippingArchive #--------------------------------------------------------------- #Use Stripping21r0p1 on MC for Run I #--------------------------------------------------------------- from StrippingArchive.Stripping21r0p1.StrippingRD.StrippingB2Lambda0MuLines import B2Lambda0MuLines from StrippingSettings.Stripping21r0p1.LineConfigDictionaries_RD import B2Lambda0Mu #from StrippingArchive.Stripping23.StrippingRD.StrippingB2Lambda0MuLines import B2Lambda0MuLines #from StrippingSettings.Stripping23r1.LineConfigDictionaries_RD import B2Lambda0Mu B2Lambda0MuConf = B2Lambda0MuLines('B2Lambda0MuLines', B2Lambda0Mu['CONFIG']) B2Lambda0MuLines = B2Lambda0MuConf.lines() sc = StrippingConf( HDRLocation = "DecReports" ) sstream = StrippingStream("TestStream") sstream.appendLines( B2Lambda0MuLines ) sstream.OutputLevel = 2 sc.appendStream( sstream ) #--------------------------------------------------------------- #Use specific Stripping23r1 on MC for Run II #--------------------------------------------------------------- ## from StrippingArchive.Stripping23.StrippingRD.StrippingB2Lambda0MuLines import B2Lambda0MuLines ## from StrippingSettings.Stripping23r1.LineConfigDictionaries_RD import B2Lambda0Mu ## B2Lambda0MuConf = B2Lambda0MuLines('B2Lambda0MuLines', B2Lambda0Mu['CONFIG']) ## B2Lambda0MuLines = B2Lambda0MuConf.lines() ## ## stripline = B2Lambda0MuLines[0] ## sc = StrippingConf( HDRLocation = "DecReports" ) ## sstream = StrippingStream("TestStream") ## sstream.appendLines( B2Lambda0MuLines ) ## sstream.OutputLevel = 2 ## sc.appendStream( sstream ) #--------------------------- # Make Ntuples #--------------------------- #from Configurables import PrintDecayTree, PrintDecayTreeTool #printer = PrintDecayTree("Printer") #printer.addTool( PrintDecayTreeTool, name = "PrintDecay" ) #printer.PrintDecay.Information = "Name M P Px Py Pz Pt chi2" #printer.Inputs = TupleInputs #--------------------------- # Configure lines and Decay #--------------------------- tuple = DecayTreeTuple('DetachedN') TupleInputs = [] for line in B2Lambda0MuLines : TupleInputs.append( line.outputLocation() ) tuple.Inputs = TupleInputs tuple.OutputLevel = INFO tuple.Decay = "[B- -> ^(Lambda0 -> ^mu- ^pi+) ^mu-]CC" tuple.addBranches({ "B" : "[B- -> (Lambda0 -> mu- pi+) mu-]CC", "N" : "[B- -> ^(Lambda0 -> mu- pi+) mu-]CC", "mu_prim" : "[B- -> (Lambda0 -> mu- pi+) ^mu-]CC", "mu_sec" : "[B- -> (Lambda0 -> ^mu- pi+) mu-]CC", "pi" : "[B- -> (Lambda0 -> mu- ^pi+) mu-]CC" }) #--------------------------- # Define nTuple Variables #--------------------------- tuple.ToolList = [ "TupleToolKinematic", "TupleToolPid", "TupleToolGeometry", "TupleToolPrimaries", "TupleToolTrackInfo", "TupleToolEventInfo", "TupleToolIsolationTwoBody", "TupleToolRecoStats", "TupleToolAngles", "TupleToolANNPID", "TupleToolMCBackgroundInfo", "TupleToolMCTruth", "TupleToolTrigger", "TupleToolDira", "TupleToolEventInfo", "TupleToolPropertime", "TupleToolRecoStats", ] coneIso = tuple.addTupleTool("TupleToolTrackIsolation") # cone isolation #coneIso.MinConeAngle() # Set the minimal deltaR of the cone (default = 0.5), in radians #coneIso.MaxConeAngle() # Set the maximum deltaR of the cone (default = 1.0), in radians #coneIso.StepSize() # Set the step of deltaR between two iterations (default = 0.1), in radians #coneIso.TrackType() # Set the type of tracks which are considered inside the cone (default = 3) #coneIso.FillAsymmetry() # Flag to fill the asymmetry variables (default = false) #coneIso.FillDeltaAngles() # Flag to fill the delta angle variables (default = false) ") # gregs isolation from Configurables import TupleToolApplyIsolation tuple.B.addTupleTool(TupleToolApplyIsolation, name="TupleToolApplyIsolationHard") tuple.B.TupleToolApplyIsolationHard.OutputSuffix="_Hard" tuple.B.TupleToolApplyIsolationHard.WeightsFile="weights_110614_Lc_pX.xml" tuple.B.ToolList+=["TupleToolApplyIsolation/TupleToolApplyIsolationHard"] #tuple.B.addTupleTool(TupleToolApplyIsolation, name="TupleToolApplyIsolationSoft") #tuple.B.TupleToolApplyIsolationSoft.OutputSuffix="_Soft" #tuple.B.TupleToolApplyIsolationSoft.WeightsFile="weightsSoft.xml" #tuple.B.ToolList+=["TupleToolApplyIsolation/TupleToolApplyIsolationSoft"] trigger_list = [ 'L0MuonDecision' ,'L0HadronDecision' ,'L0DiMuonDecision' ,'Hlt1TrackAllL0Decision' ,'Hlt1TrackMuonDecision' ,'Hlt2TopoMu2BodyBBDTDecision' ,'Hlt2TopoMu3BodyBBDTDecision' ,'Hlt2TopoMu4BodyBBDTDecision' ,'Hlt2Topo2BodyBBDTDecision' ,'Hlt2Topo3BodyBBDTDecision' ,'Hlt2Topo4BodyBBDTDecision' ,'Hlt2Topo2BodySimpleBBDTDecision' ,'Hlt2Topo3BodySimpleBBDTDecision' ,'Hlt2Topo4BodySimpleBBDTDecision' ] #trigger config trigger = tuple.addTupleTool(TupleToolTISTOS) trigger.TriggerList = trigger_list trigger.Verbose = True trigger.VerboseL0 = True trigger.VerboseHlt1 = True trigger.VerboseHlt2 = True stripping_line = 'B2Lambda0MuBu2LambdaSSMuLine' stream = 'AllStreams' LoKiTool = tuple.addTupleTool("LoKi::Hybrid::TupleTool/LoKiTool") LoKiTool.Variables = { "InAccMuon" : "PPINFO(LHCb.ProtoParticle.InAccMuon, -1)", "ETA" : "ETA", "LOKI_DTF_CTAU" : "DTF_CTAU( 0, True )", "LOKI_DTF_CTAUS" : "DTF_CTAUSIGNIFICANCE( 0, True )", "LOKI_DTF_CHI2NDOF" : "DTF_CHI2NDOF( True )", "LOKI_DTF_CTAUERR" : "DTF_CTAUERR( 0, True )", "LOKI_DTF_MASS" : "DTF_FUN ( M , True )" , "LOKI_DTF_VCHI2NDOF" : "DTF_FUN ( VFASPF(VCHI2/VDOF) , True )"} #MC Information# MCTruth = TupleToolMCTruth() MCTruth.addTool(MCTupleToolHierarchy()) MCTruth.addTool(MCTupleToolKinematic()) MCTruth.addTool(MCTupleToolReconstructed()) MCTruth.ToolList += ["MCTupleToolHierarchy", "MCTupleToolKinematic", "MCTupleToolReconstructed" ] #--------------------------- # Configure DaVinci #--------------------------- from Configurables import DaVinci DaVinci().UserAlgorithms = [sc.sequence(), tuple] DaVinci().InputType = 'DST' DaVinci().DataType = '2012' DaVinci().Simulation = True DaVinci().Lumi = False DaVinci().PrintFreq = 10000 DaVinci().EvtMax = -1
f6506f8e94f4a7cca99932feaaa520aeec30af64
6ce97c840d75672c2b880b5b249dd817f3a0e887
/utils.py
09a746b0496594b8d24d6de89d01f48204fc5c4f
[]
no_license
grzegorznowacki/tsp
b4c208ead9518dcf2c9975ec8ceb240155159885
6f1399c6a892cbde6b57d2912cd72b6077091946
refs/heads/master
2020-05-14T14:39:19.778549
2019-06-02T08:47:55
2019-06-02T08:47:55
181,837,816
0
0
null
null
null
null
UTF-8
Python
false
false
5,099
py
import csv import random from random import randint from itertools import groupby import algorithms_utils import numpy as np import matplotlib.pyplot as plt from config import * def load_file_to_list(input_file_path): points_list = [] with open(input_file_path) as csvfile: reader = csv.reader(csvfile) next(reader) for row in reader: points_list.append((int(row[1]), int(row[2]))) return points_list def load_file_to_dict(input_file_path): point_index_dict = {} with open(input_file_path) as csvfile: reader = csv.reader(csvfile) next(reader) for row in reader: point_index_dict[(int(row[1]), int(row[2]))] = int(row[0]) return point_index_dict def draw_starting_point(points_list): return random.choice(points_list) def draw_starting_point_index(points_list): return randint(0, len(points_list) - 1) def save_paths_to_file(found_path1, found_path2, output_file_path): with open(output_file_path, 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['path1', 'path2']) for index1, index2 in zip(found_path1, found_path2): writer.writerow([index1, index2]) def save_edges_len_to_file(edges_len1, edges_len2, output_file_path): with open(output_file_path, 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['edges_len1', 'edges_len2']) for index1, index2 in zip(edges_len1, edges_len2): writer.writerow([index1, index2]) def create_points_list_from_indices_list(indices_list, points_list_from_file): result_points_list = [] for index in indices_list: result_points_list.append(points_list_from_file[index]) return result_points_list def find_outer_square_size(points_list): max_x = 0 max_y = 0 for point in points_list: if point[0] > max_x: max_x = point[0] if point[1] > max_y: max_y = point[1] if max_x >= max_y: return max_x else: return max_y def divide_range(portion, start=0, end=2**32): threshold_list_start = [] threshold_list_end = [] for i in range(start, end, portion): threshold_list_start.append(i+1) threshold_list_end.append(i) threshold_list_start[0] = start threshold_list_end = threshold_list_end[1:] threshold_list_end.append(end) ip_range_list = list(zip(threshold_list_start, threshold_list_end)) return ip_range_list def divide_list(my_list, n): return [my_list[i * n:(i + 1) * n] for i in range((len(my_list) + n - 1) // n)] def create_buckets(divided_range_list): buckets_list = [] for range_x in divided_range_list: for range_y in divided_range_list: buckets_list.append((range_x, range_y)) divided_list = divide_list(buckets_list, len(divided_range_list)) even_list = divided_list[0::2] odd_list = divided_list[1::2] for sublist in odd_list: sublist.reverse() result = [None] * (len(even_list) + len(odd_list)) result[::2] = even_list result[1::2] = odd_list final_list = [j for i in result for j in i] return final_list def list_bucketing(points_list, buckets_list): bucket_points_dict = dict() bucket_points_list = [] for point in points_list: for bucket in buckets_list: if bucket[0][0] <= point[0] <= bucket[0][1] and bucket[1][0] <= point[1] <= bucket[1][1]: if bucket not in bucket_points_dict: bucket_points_dict[bucket] = [point] else: bucket_points_dict[bucket].append(point) for bucket in buckets_list: bucket_points_list.append((bucket, bucket_points_dict[bucket])) bucket_points_list = [list(grp) for k, grp in groupby(bucket_points_list)] bucket_points_list_final = [] for elem in bucket_points_list: [unpacked_elem] = elem bucket_points_list_final.append(unpacked_elem) return bucket_points_list_final def find_starting_point_for_square(bucket_points_list): starting_points_in_squares_list = [] for bucket_pointslist_tuple in bucket_points_list: edge_coords = (bucket_pointslist_tuple[0][0][0], bucket_pointslist_tuple[0][1][0]) starting_point_index = algorithms_utils.find_nearest_neighbour(edge_coords, bucket_pointslist_tuple[1])[1] starting_point = bucket_pointslist_tuple[1][starting_point_index] starting_points_in_squares_list.append(starting_point) return starting_points_in_squares_list def visualize_path(indices_path_list, points_list, grid=False): list_for_numpy = [] for index in indices_path_list: list_for_numpy.append([points_list[index][0], points_list[index][1]]) data = np.array(list_for_numpy) if grid == True: fig = plt.figure() ax = fig.gca() ax.set_xticks(np.arange(0, 20001, SQUARE_DIVIDOR)) ax.set_yticks(np.arange(0, 20001, SQUARE_DIVIDOR)) plt.grid() plt.plot(data[:, 0], data[:, 1], linewidth=LINE_WIDTH) plt.show()
abfb14599399def4b82f686676637764d4d74c00
98f730ec6a43d8be4a34b0f2a44a9d35989d2287
/pynifi_client/models/prioritizer_types_entity.py
077f502372d2648325475e08fbe1e818db88e730
[]
no_license
scottwr98/pynifi-client
9337a4f322536ee466d419a788b8b5948cdc62d7
013ac2ffa591284a0d6cbb9ed552681cc6f91165
refs/heads/master
2020-04-18T08:47:03.680749
2017-11-04T23:59:58
2017-11-04T23:59:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,782
py
# coding: utf-8 """ NiFi Rest Api The Rest Api provides programmatic access to command and control a NiFi instance in real time. Start and stop processors, monitor queues, query provenance data, and more. Each endpoint below includes a description, definitions of the expected input and output, potential response codes, and the authorizations required to invoke each service. # noqa: E501 OpenAPI spec version: 1.4.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from pynifi_client.models.documented_type_dto import DocumentedTypeDTO # noqa: F401,E501 class PrioritizerTypesEntity(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'prioritizer_types': 'list[DocumentedTypeDTO]' } attribute_map = { 'prioritizer_types': 'prioritizerTypes' } def __init__(self, prioritizer_types=None): # noqa: E501 """PrioritizerTypesEntity - a model defined in Swagger""" # noqa: E501 self._prioritizer_types = None self.discriminator = None if prioritizer_types is not None: self.prioritizer_types = prioritizer_types @property def prioritizer_types(self): """Gets the prioritizer_types of this PrioritizerTypesEntity. # noqa: E501 :return: The prioritizer_types of this PrioritizerTypesEntity. # noqa: E501 :rtype: list[DocumentedTypeDTO] """ return self._prioritizer_types @prioritizer_types.setter def prioritizer_types(self, prioritizer_types): """Sets the prioritizer_types of this PrioritizerTypesEntity. :param prioritizer_types: The prioritizer_types of this PrioritizerTypesEntity. # noqa: E501 :type: list[DocumentedTypeDTO] """ self._prioritizer_types = prioritizer_types def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PrioritizerTypesEntity): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
66379b8547c3b4354da6d9e4f77292594852c4e9
5d2f12197894a7998e609c40bfb5dfcb6eb93382
/textbook-work/stacks_and_queues.py
dfc22ed71b3ba7431a9e67120d3d8330ba67d302
[]
no_license
dawes206/leet-code
cb5167c6e3f17c24dad9c4b69e5c5f98c9bb892c
d4895982ff07db0e44f7c30afb501f4ef9ecb9c2
refs/heads/master
2020-05-30T10:47:42.932138
2019-06-07T23:43:20
2019-06-07T23:43:20
189,681,692
0
0
null
null
null
null
UTF-8
Python
false
false
1,595
py
class Stack(list): def __init__(self, size): self.top = 0 for i in [None]*size: self.append(i) def push(self,num): if self[self.top]==None: self[self.top] = num else: self.top = self.top + 1 self[self.top] = num def pop(self): if len(self) == 0: print('underflow') else: popped = self[self.top] self.top -= 1 return popped # test = Stack(5) # test.push(3) # test.push(4) # test.push(3) # print('test after pushing', test) # r= test.pop() # print('pointer and val after pop: ',test.top, test[test.top]) # print('value of popped: ', r) # r2 = test.pop() # print('pointer and val after pop2: ',test.top, test[test.top]) # print('value of popped2: ', r2) class Queue(list): def __init__(self,size): for i in [None]*size: self.append(i) self.head = 0 self.tail = 0 def enqueue(self,num): # print('old tail: ', self[self.tail]) self[self.tail]=num self.tail += 1 if self.tail == len(self): self.tail = 0 # print('new tail -1 : ', self[self.tail -1 ]) def dequeue(self): x = self[self.head] self.head += 1 if self.head == len(self) + 1: self.head = 0 return x # test= Queue(5) # print(test) # test.enqueue(3) # test.enqueue(5) # test.enqueue(6) # print(test) # d1 = test.dequeue() # print('d1: ', d1) # print('head', test[test.head]) # d2 = test.dequeue() # print('d2: ', d2) # print(test)
cf1489565952ed71607ef160b9f9c9ee52dbdcbd
939abe018ff10248ae2236575b0d2f3410c096d4
/1 exercise-rekognition/FlaskApp/application.py
243a1aa360fe88e724ab5816137b9a864bb39108
[]
no_license
ge8/photo-app
f0bd911c4980dc58ff3156ad20a91e3971e648e6
c18e7f0c25629cd84e115615cbc630f87832e376
refs/heads/master
2020-03-22T16:51:32.227428
2018-08-22T13:55:03
2018-08-22T13:55:03
140,356,745
1
0
null
null
null
null
UTF-8
Python
false
false
5,393
py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except # in compliance with the License. A copy of the License is located at # # https://aws.amazon.com/apache-2-0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. "Demo Flask application" import sys import requests import boto3 from flask import Flask, render_template_string from flask_wtf import FlaskForm from flask_wtf.file import FileField, FileRequired import config import util application = Flask(__name__) application.secret_key = config.FLASK_SECRET ### FlaskForm set up class PhotoForm(FlaskForm): """flask_wtf form class the file upload""" photo = FileField('image', validators=[ FileRequired() ]) @application.route("/", methods=('GET', 'POST')) def home(): """Homepage route""" all_labels = ["No labels yet"] ##### # s3 getting a list of photos in the bucket ##### s3_client = boto3.client('s3') prefix = "photos/" response = s3_client.list_objects( Bucket=config.PHOTOS_BUCKET, Prefix=prefix ) photos = [] if 'Contents' in response and response['Contents']: photos = [s3_client.generate_presigned_url( 'get_object', Params={'Bucket': config.PHOTOS_BUCKET, 'Key': content['Key']} ) for content in response['Contents']] form = PhotoForm() url = None if form.validate_on_submit(): image_bytes = util.resize_image(form.photo.data, (300, 300)) if image_bytes: ####### # s3 excercise - save the file to a bucket ####### key = prefix + util.random_hex_bytes(8) + '.png' s3_client.put_object( Bucket=config.PHOTOS_BUCKET, Key=key, Body=image_bytes, ContentType='image/png' ) # http://boto3.readthedocs.io/en/latest/guide/s3.html#generating-presigned-urls url = s3_client.generate_presigned_url( 'get_object', Params={'Bucket': config.PHOTOS_BUCKET, 'Key': key}) ####### # rekcognition exercise ####### rek = boto3.client('rekognition') response = rek.detect_labels( Image={ 'S3Object': { 'Bucket': config.PHOTOS_BUCKET, 'Name': key } }) all_labels = [label['Name'] for label in response['Labels']] return render_template_string(""" {% extends "main.html" %} {% block content %} <h4>Upload Photo</h4> <form method="POST" enctype="multipart/form-data" action="{{ url_for('home') }}"> {{ form.csrf_token }} <div class="control-group"> <label class="control-label">Photo</label> {{ form.photo() }} </div> &nbsp; <div class="control-group"> <div class="controls"> <input class="btn btn-primary" type="submit" value="Upload"> </div> </div> </form> {% if url %} <hr/> <h3>Uploaded!</h3> <img src="{{url}}" /><br/> {% for label in all_labels %} <span class="label label-info">{{label}}</span> {% endfor %} {% endif %} {% if photos %} <hr/> <h4>Photos</h4> {% for photo in photos %} <img width="150" src="{{photo}}" /> {% endfor %} {% endif %} {% endblock %} """, form=form, url=url, photos=photos, all_labels=all_labels) @application.route("/info") def info(): "Webserver info route" metadata = "http://169.254.169.254" instance_id = requests.get(metadata + "/latest/meta-data/instance-id").text availability_zone = requests.get(metadata + "/latest/meta-data/placement/availability-zone").text return render_template_string(""" {% extends "main.html" %} {% block content %} <b>instance_id</b>: {{instance_id}} <br/> <b>availability_zone</b>: {{availability_zone}} <br/> <b>sys.version</b>: {{sys_version}} <br/> {% endblock %}""", instance_id=instance_id, availability_zone=availability_zone, sys_version=sys.version) if __name__ == "__main__": # http://flask.pocoo.org/docs/0.12/errorhandling/#working-with-debuggers # https://docs.aws.amazon.com/cloud9/latest/user-guide/app-preview.html#app-preview-share use_c9_debugger = False application.run(use_debugger=not use_c9_debugger, debug=True, use_reloader=not use_c9_debugger, host='0.0.0.0')
6bb39bf0814bcf4b4e5787dcdfa7a670bd2b8146
16fa0fd1cc6fa4f8996a626ab4cc625e5e33207c
/Contact_me/migrations/0001_initial.py
a75e17d6b2553a210609651e27dd2ba25621407f
[]
no_license
Arash3f/zoro_blog
ead1fba404f8140f4f7b13b23515fa280063072f
9157afe5352481b8befa15bdd2ef093297b52cf0
refs/heads/master
2023-07-19T04:31:27.348756
2021-08-29T00:30:45
2021-08-29T00:30:45
400,917,468
1
1
null
null
null
null
UTF-8
Python
false
false
993
py
# Generated by Django 3.2.6 on 2021-08-28 12:44 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Contact', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=30, null=True, verbose_name='Name')), ('email', models.EmailField(blank=True, max_length=254, null=True, verbose_name='Email')), ('subject', models.CharField(blank=True, max_length=30, null=True, verbose_name='Subject')), ('message', models.TextField(blank=True, max_length=300, null=True, verbose_name='Mesmessage')), ], options={ 'verbose_name': 'Contact', 'verbose_name_plural': 'Contacts', }, ), ]
c9b56f5d05836f4ddbd82f57359b3e2ec025ed94
46fdd2668392639d4f21e660ab3523958af17b30
/avgn/custom_parsing/bird_db.py
59e96922468691bb4969c4cf717359abc943a175
[ "MIT" ]
permissive
timsainb/avgn_paper
fe45d241597f9167e87f41123a405e9ca315663c
63e25ca535a230f96b7fb1017728ead6ee0bf36b
refs/heads/V2
2023-04-12T05:10:19.641026
2020-11-20T00:04:17
2020-11-20T00:04:17
192,464,252
39
17
MIT
2022-09-01T17:27:02
2019-06-18T04:19:23
Jupyter Notebook
UTF-8
Python
false
false
2,883
py
import librosa from avgn.utils.json import NoIndent, NoIndentEncoder import pandas as pd from datetime import datetime from praatio import tgio from avgn.utils.paths import DATA_DIR, ensure_dir from avgn.utils.audio import get_samplerate import json from datetime import time as dtt def generate_json(wavfile, DT_ID, song_db): indv = wavfile.parent.parent.stem dt = datetime.strptime(wavfile.stem, "%Y-%m-%d_%H-%M-%S-%f") datestring = dt.strftime("%Y-%m-%d") row = song_db[ (song_db.SubjectName == indv) & (song_db.recording_date == datestring) & (song_db.recording_time == dt.time()) ].iloc[0] # make json dictionary json_dict = {} for key in dict(row).keys(): if type(row[key]) == pd._libs.tslibs.timestamps.Timestamp: json_dict[key] = row[key].strftime("%Y-%m-%d_%H-%M-%S") elif type(row[key]) == dtt: json_dict[key] = row[key].strftime("%H:%M:%S") elif type(row[key]) == pd._libs.tslibs.nattype.NaTType: continue else: json_dict[key] = row[key] species_dict = { "CAVI": {"species": "Vireo cassinii", "common_name": "Cassin's vireo"}, "CATH": { "species": "Toxostoma redivivum", "common_name": "California thrasher", }, } DATASET_ID = "BIRD_DB_" + species_dict[row.Species_short_name]["species"].replace(" ", "_") row.Species_short_name json_dict["species"] = species_dict[row.Species_short_name]["species"] json_dict["common_name"] = species_dict[row.Species_short_name]["common_name"] json_dict["datetime"] = datestring sr = get_samplerate(wavfile.as_posix()) wav_duration = librosa.get_duration(filename=wavfile.as_posix()) json_dict["wav_loc"] = wavfile.as_posix() # rate and length json_dict["samplerate_hz"] = sr json_dict["length_s"] = wav_duration tg = wavfile.parent.parent / "TextGrids" / (wavfile.stem + ".TextGrid") if not tg.exists(): print(tg.as_posix(), 'File does not exist') return textgrid = tgio.openTextgrid(fnFullPath=tg) tierlist = textgrid.tierDict[textgrid.tierNameList[0]].entryList start_times = [i.start for i in tierlist] end_times = [i.end for i in tierlist] labels = [i.label for i in tierlist] json_dict["indvs"] = { indv: { "syllables": { "start_times": NoIndent(start_times), "end_times": NoIndent(end_times), "labels": NoIndent(labels), } } } # generate json json_txt = json.dumps(json_dict, cls=NoIndentEncoder, indent=2) json_out = ( DATA_DIR / "processed" / DATASET_ID / DT_ID / "JSON" / (wavfile.stem + ".JSON") ) # save json ensure_dir(json_out.as_posix()) print(json_txt, file=open(json_out.as_posix(), "w"))
9eb1a6445fdf8895df59d5415988e23973d31f8d
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/cv/object_tracking/SiamMask_for_Pytorch/experiments/siammask_sharp/custom.py
455d4557b8a40ebc871dd01fb38c856582b605f1
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
7,820
py
# Copyright (c) Facebook, Inc. and its affiliates. # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from models.siammask_sharp import SiamMask from models.features import MultiStageFeature from models.rpn import RPN, DepthCorr from models.mask import Mask import torch import torch.nn as nn import torch.nn.functional as F from utils.load_helper import load_pretrain from resnet import resnet50 class ResDownS(nn.Module): def __init__(self, inplane, outplane): super(ResDownS, self).__init__() self.downsample = nn.Sequential( nn.Conv2d(inplane, outplane, kernel_size=1, bias=False), nn.BatchNorm2d(outplane)) def forward(self, x): x = self.downsample(x) if x.size(3) < 20: l = 4 r = -4 x = x[:, :, l:r, l:r] return x class ResDown(MultiStageFeature): def __init__(self, pretrain=False): super(ResDown, self).__init__() self.features = resnet50(layer3=True, layer4=False) if pretrain: load_pretrain(self.features, 'resnet.model') self.downsample = ResDownS(1024, 256) self.layers = [self.downsample, self.features.layer2, self.features.layer3] self.train_nums = [1, 3] self.change_point = [0, 0.5] self.unfix(0.0) def param_groups(self, start_lr, feature_mult=1): lr = start_lr * feature_mult def _params(module, mult=1): params = list(filter(lambda x:x.requires_grad, module.parameters())) if len(params): return [{'params': params, 'lr': lr * mult}] else: return [] groups = [] groups += _params(self.downsample) groups += _params(self.features, 0.1) return groups def forward(self, x): output = self.features(x) p3 = self.downsample(output[-1]) return p3 def forward_all(self, x): output = self.features(x) p3 = self.downsample(output[-1]) return output, p3 class UP(RPN): def __init__(self, anchor_num=5, feature_in=256, feature_out=256): super(UP, self).__init__() self.anchor_num = anchor_num self.feature_in = feature_in self.feature_out = feature_out self.cls_output = 2 * self.anchor_num self.loc_output = 4 * self.anchor_num self.cls = DepthCorr(feature_in, feature_out, self.cls_output) self.loc = DepthCorr(feature_in, feature_out, self.loc_output) def forward(self, z_f, x_f): cls = self.cls(z_f, x_f) loc = self.loc(z_f, x_f) return cls, loc class MaskCorr(Mask): def __init__(self, oSz=63): super(MaskCorr, self).__init__() self.oSz = oSz self.mask = DepthCorr(256, 256, self.oSz**2) def forward(self, z, x): return self.mask(z, x) class Refine(nn.Module): def __init__(self): super(Refine, self).__init__() self.v0 = nn.Sequential(nn.Conv2d(64, 16, 3, padding=1), nn.ReLU(), nn.Conv2d(16, 4, 3, padding=1),nn.ReLU()) self.v1 = nn.Sequential(nn.Conv2d(256, 64, 3, padding=1), nn.ReLU(), nn.Conv2d(64, 16, 3, padding=1), nn.ReLU()) self.v2 = nn.Sequential(nn.Conv2d(512, 128, 3, padding=1), nn.ReLU(), nn.Conv2d(128, 32, 3, padding=1), nn.ReLU()) self.h2 = nn.Sequential(nn.Conv2d(32, 32, 3, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 3, padding=1), nn.ReLU()) self.h1 = nn.Sequential(nn.Conv2d(16, 16, 3, padding=1), nn.ReLU(), nn.Conv2d(16, 16, 3, padding=1), nn.ReLU()) self.h0 = nn.Sequential(nn.Conv2d(4, 4, 3, padding=1), nn.ReLU(), nn.Conv2d(4, 4, 3, padding=1), nn.ReLU()) self.deconv = nn.ConvTranspose2d(256, 32, 15, 15) self.post0 = nn.Conv2d(32, 16, 3, padding=1) self.post1 = nn.Conv2d(16, 4, 3, padding=1) self.post2 = nn.Conv2d(4, 1, 3, padding=1) for modules in [self.v0, self.v1, self.v2, self.h2, self.h1, self.h0, self.deconv, self.post0, self.post1, self.post2,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): nn.init.kaiming_uniform_(l.weight, a=1) def forward(self, f, corr_feature, pos=None, test=False): if test: p0 = torch.nn.functional.pad(f[0], [16, 16, 16, 16])[:, :, 4*pos[0]:4*pos[0]+61, 4*pos[1]:4*pos[1]+61] p1 = torch.nn.functional.pad(f[1], [8, 8, 8, 8])[:, :, 2 * pos[0]:2 * pos[0] + 31, 2 * pos[1]:2 * pos[1] + 31] p2 = torch.nn.functional.pad(f[2], [4, 4, 4, 4])[:, :, pos[0]:pos[0] + 15, pos[1]:pos[1] + 15] else: p0 = F.unfold(f[0], (61, 61), padding=0, stride=4).permute(0, 2, 1).contiguous().view(-1, 64, 61, 61) if not (pos is None): p0 = torch.index_select(p0, 0, pos) p1 = F.unfold(f[1], (31, 31), padding=0, stride=2).permute(0, 2, 1).contiguous().view(-1, 256, 31, 31) if not (pos is None): p1 = torch.index_select(p1, 0, pos) p2 = F.unfold(f[2], (15, 15), padding=0, stride=1).permute(0, 2, 1).contiguous().view(-1, 512, 15, 15) if not (pos is None): p2 = torch.index_select(p2, 0, pos) if not(pos is None): p3 = corr_feature[:, :, pos[0], pos[1]].view(-1, 256, 1, 1) else: p3 = corr_feature.permute(0, 2, 3, 1).contiguous().view(-1, 256, 1, 1) out = self.deconv(p3) out = self.post0(F.upsample(self.h2(out) + self.v2(p2), size=(31, 31))) out = self.post1(F.upsample(self.h1(out) + self.v1(p1), size=(61, 61))) out = self.post2(F.upsample(self.h0(out) + self.v0(p0), size=(127, 127))) out = out.view(-1, 127*127) return out def param_groups(self, start_lr, feature_mult=1): params = filter(lambda x:x.requires_grad, self.parameters()) params = [{'params': params, 'lr': start_lr * feature_mult}] return params class Custom(SiamMask): def __init__(self, pretrain=False, **kwargs): super(Custom, self).__init__(**kwargs) self.features = ResDown(pretrain=pretrain) self.rpn_model = UP(anchor_num=self.anchor_num, feature_in=256, feature_out=256) self.mask_model = MaskCorr() self.refine_model = Refine() def refine(self, f, pos=None): return self.refine_model(f, pos) def template(self, template): self.zf = self.features(template) def track(self, search): search = self.features(search) rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, search) return rpn_pred_cls, rpn_pred_loc def track_mask(self, search): self.feature, self.search = self.features.forward_all(search) rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, self.search) self.corr_feature = self.mask_model.mask.forward_corr(self.zf, self.search) pred_mask = self.mask_model.mask.head(self.corr_feature) return rpn_pred_cls, rpn_pred_loc, pred_mask def track_refine(self, pos): pred_mask = self.refine_model(self.feature, self.corr_feature, pos=pos, test=True) return pred_mask
5157e077ce5ffc745c29f7e368d3e5a341315683
394b9ab2160d7a04c01e1c0fac6bf8eb11cd443c
/morty.py
52dfbaabc8f0c582c8fb59422207bfb4f2d595e8
[]
no_license
skbmir/Morty
426fdb8ac142e7c683cab85d5336d717e6b13383
43fed219b2aa62486a1994dd9757a49646e788ae
refs/heads/master
2020-04-12T11:02:14.096657
2018-12-19T18:29:43
2018-12-19T18:29:43
162,447,936
0
0
null
null
null
null
UTF-8
Python
false
false
2,373
py
import os import time import random import re from slackclient import SlackClient class Morty(): def __init__(self, token): self.token = token self.id = -1 self.name = 'Morty' self._client = SlackClient(self.token) def connect(self): if self._client.rtm_connect(with_team_state=False): print('Morty connected.') self._query_id() print('My Slack id is: {}.'.format(self.id)) return True else: print('Connection failed.') return False def main_loop(self): while True: command, channel = self._handle_events(self._client.rtm_read()) if command: self._handle_commands(command, channel) time.sleep(0.5) def _query_id(self): self.id = self._client.api_call('auth.test')['user_id'] def _handle_events(self, events): if len(events) > 0: for event in events: if event['type'] == 'message' and not 'subtype' in event: user_id, message = self._get_mention(event['text']) if user_id == self.id: return message, event['channel'] return None, None def _get_mention(self, msg): matches = re.search('^<@(.+)>.(.*)', msg) return (matches.group(1), matches.group(2).strip()) if matches else (None, None) def _handle_commands(self, cmd, chnl): def_msgs = [ 'хз че это. ¯\_(ツ)_/¯', '╮ (. ❛ ᴗ ❛.) ╭', '(・_・ヾ' ] response = None if cmd.startswith('/test'): response = 'tested. ヘ( ^o^)ノ\(^_^ )' elif cmd.startswith('/help'): response = ''' Help: /help - эта справка /test - test bot привет - приветствие остальное - ему не понятно ''' elif cmd.startswith('привет') or cmd.startswith('Привет'): response = 'Хуй тебе в ответ.' else: response = random.choice(def_msgs) self._client.api_call( 'chat.postMessage', channel=chnl, text=response )
2f6d6e8502daa5a977294adc0b6e50a2d2e9437f
504f47c6421cb691e7b2381d46f2ed079bb1f6b4
/carlist/admin.py
2d6f24f99d384765d99f91e127268dc8d1460084
[]
no_license
kremerNK/cardealership
3e4dd10b338f9c5fd22351213b347216ac27d99b
e3c409187fc9e2acb6d61c215c38655d06922f5d
refs/heads/master
2022-05-31T21:24:45.065635
2020-04-28T18:37:22
2020-04-28T18:37:22
248,649,838
0
1
null
null
null
null
UTF-8
Python
false
false
120
py
from django.contrib import admin from .models import Vehicle # Register your models here. admin.site.register(Vehicle)
3f93d691c1cf7bd55311c6b0acb04564ea975929
d8b10ffdd20256520f551ae62779e4f604d60c3c
/Client1.py
785595993f807e9c8452abf473f96af7c5b2c047
[]
no_license
Ammar-Abid92/Chat-Application
4c7d6f8c852e2a3603cce9b1d34de47c740e4b0b
c8c22e3e049d069f3969b486dccbd479fc825df4
refs/heads/main
2023-04-03T17:23:59.812955
2021-04-07T16:11:33
2021-04-07T16:11:33
355,607,845
0
0
null
null
null
null
UTF-8
Python
false
false
6,038
py
# import all the required modules import socket import threading from tkinter import * from tkinter import font from tkinter import ttk # from chat import * PORT = 5000 SERVER = "192.168.0.153" ADDRESS = (SERVER, PORT) FORMAT = "utf-8" # Creating a new client socket and connect to the server client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(ADDRESS) # GUI class for the chat class CampCo: # constructor method def __init__(self): # chat window self.Window = Tk() self.Window.iconbitmap("E:\Ammar work\CAMCom\icon.ico") self.Window.withdraw() self.login = Toplevel() self.login.iconbitmap("E:\Ammar work\CAMCom\icon.ico") self.bg = PhotoImage(file='E:\Ammar work\CAMCom\Logo.png') self.l = Label(self.login, image=self.bg) self.l.place(x=0, y=0, relwidth=1, relheight=1) # self.l.after(3000, self.l.destroy) # set the title self.login.title("Login") self.login.resizable(width=False, height=False) self.login.geometry("587x480+400+100") def clear_login(event): self.entryName.delete(0, END) self.entryName = Entry(self.login, font="Helvetica 14") self.entryName.insert(0, "Name") self.entryName.bind("<Button-1>", clear_login) self.entryName.place(relwidth=0.4, relheight=0.08, relx=0.25, rely=0.7) self.entryName.focus() self.go = Button(self.login, text="CONTINUE", font="Helvetica 14 bold", bg="#008080", command=lambda: self.goAhead(self.entryName.get())) self.go.place(relx=0.68, rely=0.7) self.Window.mainloop() def goAhead(self, name): self.login.destroy() self.layout(name) # the thread to receive messages rcv = threading.Thread(target=self.receive) rcv.start() # The main layout of the chat def layout(self, name): self.name = name # to show chat window self.Window.deiconify() self.Window.title("CampCo") self.Window.geometry("500x600+450+50") self.Window.resizable(width=False, height=False) self.Window.configure(bg="#02D6D9") self.labelHead = Label(self.Window, bg="#008080", fg="#EAECEE", text=self.name, font="Helvetica 13 bold", pady=5) self.labelHead.place(relwidth=1) self.line = Label(self.Window, width=450, bg="#02D6D9") self.line.place(relwidth=1, rely=0.07, relheight=0.012) self.textCons = Text(self.Window, width=20, height=10, bg="#008080", fg="#EAECEE", font="Helvetica 14", padx=5, pady=5) self.textCons.place(relheight=0.745, relwidth=1, rely=0.08) self.labelBottom = Label(self.Window, bg="#02D6D9", height=50) self.labelBottom.place(relwidth=1, rely=0.825) self.entryMsg = Entry(self.labelBottom, bg="#018788", fg="#EAECEE", font="Georgia 18") self.entryMsg.place(relwidth=0.74, relheight=0.07, rely=0.035, relx=0.011) self.buttonMsg = Button(self.labelBottom, text="Send", font="Helvetica 10 bold", width=20, bg="#018788", command=lambda: self.sendButton(self.entryMsg.get())) self.buttonMsg.place(relx=0.77, rely=0.035, relheight=0.07, relwidth=0.22) self.textCons.config(cursor="arrow") scrollbar = Scrollbar(self.textCons) scrollbar.place(relheight=1, relx=0.974) scrollbar.config(command=self.textCons.yview) self.textCons.config(state=DISABLED) def sendButton(self, msg): self.textCons.config(state=DISABLED) self.msg = msg self.entryMsg.delete(0, END) snd = threading.Thread(target=self.sendMessage) snd.start() def receive(self): while True: try: message = client.recv(1024).decode(FORMAT) if message == 'NAME': client.send(self.name.encode(FORMAT)) else: self.textCons.config(state=NORMAL) self.textCons.insert(END, message + "\n\n") self.textCons.config(state=DISABLED) self.textCons.see(END) except: print("An error occured!") client.close() break def sendMessage(self): self.textCons.config(state=DISABLED) while True: message = f"{self.name}: {self.msg}" client.send(message.encode(FORMAT)) break p = CampCo()
819377a42faca137e6f3c8552ba40278d718d397
61dfa0ac80a6979d135e969b5b7b78a370c16904
/analysis/sph/sph_to_grid.py
b8e2e61e6f5694b4914d9dc415446eab48893b98
[]
no_license
bvillasen/cosmo_tools
574d84f9c18d92d2a9610d1d156113730d80f5a4
6bb54534f2242a15a6edcf696f29a3cf22edd342
refs/heads/master
2021-07-13T06:43:32.902153
2020-10-05T21:17:30
2020-10-05T21:17:30
207,036,538
0
0
null
null
null
null
UTF-8
Python
false
false
10,248
py
import sys, os, time import numpy as np import h5py as h5 import matplotlib.pyplot as plt from scipy.spatial import KDTree cosmo_dir = os.path.dirname(os.path.dirname(os.getcwd())) + '/' subDirectories = [x[0] for x in os.walk(cosmo_dir)] sys.path.extend(subDirectories) from tools import * from sph_functions import * from domain_decomposition import get_domain_block from internal_energy import get_temp X = 0.75984603480 + 1.53965115054e-4 Y = 0.23999999997 + 9.59999999903e-15 + 9.59999999903e-18 use_mpi = True if use_mpi : from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nprocs = comm.Get_size() else: rank = 0 nprocs = 1 print_out = False if rank == 0: print_out = True dataDir = '/data/groups/comp-astro/bruno/' inDir = dataDir + 'cosmo_sims/ewald_512/particles_files/' output_dir = dataDir + 'cosmo_sims/ewald_512/grid_files/' if rank == 0: create_directory( output_dir ) if use_mpi: comm.Barrier() Lbox = 10. proc_grid = [ 8, 8, 8] box_size = [ Lbox, Lbox, Lbox ] grid_size = [ 512, 512, 512 ] domain = get_domain_block( proc_grid, box_size, grid_size ) domain_x = domain[rank]['box']['x'] domain_y = domain[rank]['box']['y'] domain_z = domain[rank]['box']['z'] grid_x = domain[rank]['grid']['x'] grid_y = domain[rank]['grid']['y'] grid_z = domain[rank]['grid']['z'] dx = Lbox / grid_size[0] dy = Lbox / grid_size[1] dz = Lbox / grid_size[2] nSnap = 11 in_file_name = inDir + '{0}_particles.h5.{1}'.format(nSnap, rank) if print_out: print("Loading File: ", in_file_name) inFile = h5.File( in_file_name, 'r' ) current_z = inFile.attrs['current_z'] Lbox = inFile.attrs['Lbox'] Omega_M = inFile.attrs['Omega_M'] Omega_L = inFile.attrs['Omega_L'] h = inFile.attrs['h'] N_local = inFile.attrs['N_local'] hsml_max = inFile.attrs['hsml_max'] if print_out: print("N_local: ", N_local) data = {} if print_out: print('Loading Data ') fields = [ 'mass', 'rho', 'u', 'hsml', 'pos_x', 'pos_y', 'pos_z', 'Nh', 'HeI', 'HeII' , 'vel_x' ] for field in fields: if print_out: print(" Loading Field ", field) data[field] = inFile[field][...] inFile.close() if use_mpi: comm.Barrier() pos_x = data['pos_x'] pos_y = data['pos_y'] pos_z = data['pos_z'] pos = np.array([ pos_x, pos_y, pos_z ]).T mass = data['mass'] rho = data['rho'] u = data['u'] Nh = data['Nh'] HeI = data['HeI'] HeII = data['HeII'] hsml = data['hsml'] vel_x = data['vel_x'] mass_HI = Nh * X * mass HI_rho = Nh * X * rho HII_rho = X * rho - HI_rho HeI_rho = HeI * X * rho * 4 HeII_rho = HeII * X * rho * 4 HeIII_rho = Y * rho - HeI_rho - HeII_rho mu = rho / ( HI_rho + 2*HII_rho + ( HeI_rho + 2*HeII_rho + 3*HeIII_rho) / 4 ) # print mu.min(), mu.max() if print_out: print('Building Tree') tree = KDTree( pos ) offset = np.array([ grid_x[0], grid_y[0], grid_z[0] ]) dims_local = np.array([ grid_x[1] - grid_x[0], grid_y[1] - grid_y[0], grid_z[1] - grid_z[0] ]) data_kernel = {} data_kernel['smooth'] = {} data_kernel['scatter'] = {} data_kernel['smooth']['density'] = np.zeros(dims_local) data_kernel['smooth']['mu'] = np.zeros(dims_local) data_kernel['smooth']['u'] = np.zeros(dims_local) data_kernel['smooth']['vel_x'] = np.zeros(dims_local) data_kernel['smooth']['HI_density_0'] = np.zeros(dims_local) data_kernel['smooth']['HI_density'] = np.zeros(dims_local) data_kernel['scatter']['density'] = np.zeros(dims_local) data_kernel['scatter']['mu'] = np.zeros(dims_local) data_kernel['scatter']['u'] = np.zeros(dims_local) data_kernel['scatter']['vel_x'] = np.zeros(dims_local) data_kernel['scatter']['HI_density_0'] = np.zeros(dims_local) data_kernel['scatter']['HI_density'] = np.zeros(dims_local) if print_out: print('Starting Grid Interpolation') if use_mpi: comm.Barrier() N_smooth = 64 n_total = dims_local[0] * dims_local[1] * dims_local[2] counter = 0 start = time.time() for indx_x in range( dims_local[0] ): for indx_y in range( dims_local[1] ): for indx_z in range( dims_local[2] ): if ( counter % (n_total/128) == 0 ): line = " Interpolating to Grid {0:.0f} %".format( 100.0 * float(counter)/ n_total) print_line_flush( line ) # if counter > n_total/100: break c_pos_x = ( offset[0] + indx_x + 0.5 ) * dx c_pos_y = ( offset[1] + indx_y + 0.5 ) * dy c_pos_z = ( offset[2] + indx_z + 0.5 ) * dz c_pos = np.array([ c_pos_x, c_pos_y, c_pos_z]) r = hsml_max neig_indices = tree.query_ball_point( c_pos, r ) N = len(neig_indices) while N < N_smooth: r = 2*r neig_indices = tree.query_ball_point( c_pos, r ) N = len(neig_indices) neig_indices = np.array( neig_indices ) neig_pos = pos[neig_indices] delta_pos = neig_pos - c_pos neig_distances = np.sqrt( (delta_pos**2).sum( axis = 1) ) neig_indices_sort = np.argsort( neig_distances ) neig_distances = neig_distances[neig_indices_sort] neig_indices = neig_indices[neig_indices_sort] h_smooth = neig_distances[N_smooth-1] if h_smooth == 0.0: print("ERROR: h=0 in rank: {0} indx: [ {1} {2} {3} ]".format( rank, indx_x, indx_y, indx_z )) # Initializa the smooth values smooth_mass = 0 smooth_rho = 0 smooth_GE = 0 smooth_mu_rho = 0 smooth_px = 0 smooth_HI_rho = 0 smooth_mass_HI = 0 # Initializa the scatter values scatter_mass = 0 scatter_rho = 0 scatter_GE = 0 scatter_mu_rho = 0 scatter_px = 0 scatter_HI_rho = 0 scatter_mass_HI = 0 # Loop over the neighbors for i,neig_id in enumerate(neig_indices): neig_mass = mass[neig_id] neig_rho = rho[neig_id] neig_u = u[neig_id] neig_mu = mu[neig_id] neig_vx = vel_x[neig_id] neig_hsml = hsml[neig_id] neig_dist = neig_distances[i] neig_HI_rho = HI_rho[neig_id] neig_mass_HI = mass_HI[neig_id] # Add to the scatter kernel values if neig_dist <= neig_hsml: W_scatter = kernel_gadget( neig_dist, neig_hsml ) scatter_mass += neig_mass * W_scatter scatter_rho += neig_rho * W_scatter scatter_GE += neig_rho * neig_u * W_scatter scatter_mu_rho += neig_rho * neig_mu * W_scatter scatter_px += neig_rho * neig_vx * W_scatter scatter_HI_rho += neig_rho * neig_HI_rho * W_scatter scatter_mass_HI += neig_mass_HI * W_scatter # Add to the smooth kernel values if i < N_smooth: W_smooth = kernel_gadget( neig_dist, h_smooth ) smooth_mass += neig_mass * W_smooth smooth_rho += neig_rho * W_smooth smooth_GE += neig_rho * neig_u * W_smooth smooth_mu_rho += neig_rho * neig_mu * W_smooth smooth_px += neig_rho * neig_vx * W_smooth smooth_HI_rho += neig_rho * neig_HI_rho * W_smooth smooth_mass_HI += neig_mass_HI * W_smooth # Write the kernel data to the 3D arrays dens_smooth = smooth_mass * 10 u_smooth = smooth_GE / smooth_rho mu_smooth = smooth_mu_rho / smooth_rho vx_smooth = smooth_px / smooth_rho HI_density_smooth_0 = smooth_HI_rho / smooth_rho * 10 HI_density_smooth = smooth_mass_HI * 10 data_kernel['smooth']['density'][indx_x, indx_y, indx_z] = dens_smooth data_kernel['smooth']['u'][indx_x, indx_y, indx_z] = u_smooth data_kernel['smooth']['mu'][indx_x, indx_y, indx_z] = mu_smooth data_kernel['smooth']['vel_x'][indx_x, indx_y, indx_z] = vx_smooth data_kernel['smooth']['HI_density_0'][indx_x, indx_y, indx_z] = HI_density_smooth_0 data_kernel['smooth']['HI_density'][indx_x, indx_y, indx_z] = HI_density_smooth dens_scatter = scatter_mass * 10 u_scatter = scatter_GE / scatter_rho mu_scatter = scatter_mu_rho / scatter_rho vx_scatter = scatter_px / scatter_rho HI_density_scatter_0 = scatter_HI_rho / scatter_rho * 10 HI_density_scatter = scatter_mass_HI * 10 data_kernel['scatter']['density'][indx_x, indx_y, indx_z] = dens_scatter data_kernel['scatter']['u'][indx_x, indx_y, indx_z] = u_scatter data_kernel['scatter']['mu'][indx_x, indx_y, indx_z] = mu_scatter data_kernel['scatter']['vel_x'][indx_x, indx_y, indx_z] = vx_scatter data_kernel['scatter']['HI_density_0'][indx_x, indx_y, indx_z] = HI_density_scatter_0 data_kernel['scatter']['HI_density'][indx_x, indx_y, indx_z] = HI_density_scatter # temp = get_temp( u_local * 1e6, mu=mu_local) # print dens_smooth # if rank == 0: print dens_smooth / dens_scatter counter += 1 if use_mpi: comm.Barrier() if print_out: print("") end = time.time() if print_out: print(( ' Elapsed Time: {0:.2f} min'.format((end - start)/60.) )) outputFileName = output_dir + "{0}.h5.{1}".format( nSnap, rank ) if print_out: print("Writing File: ", outputFileName) outFile = h5.File( outputFileName, 'w' ) outFile.attrs['Current_z'] = np.array([current_z]) outFile.attrs['offset'] = offset outFile.attrs['dims_local'] = dims_local group_smooth = outFile.create_group( 'smooth' ) group_smooth.create_dataset('density', data=data_kernel['smooth']['density'] ) group_smooth.create_dataset('u', data=data_kernel['smooth']['u'] ) group_smooth.create_dataset('mu', data=data_kernel['smooth']['mu'] ) group_smooth.create_dataset('vel_x', data=data_kernel['smooth']['vel_x'] ) group_smooth.create_dataset('HI_density_0', data=data_kernel['smooth']['HI_density_0'] ) group_smooth.create_dataset('HI_density', data=data_kernel['smooth']['HI_density'] ) group_scatter = outFile.create_group( 'scatter' ) group_scatter.create_dataset('density', data=data_kernel['scatter']['density'] ) group_scatter.create_dataset('u', data=data_kernel['scatter']['u'] ) group_scatter.create_dataset('mu', data=data_kernel['scatter']['mu'] ) group_scatter.create_dataset('vel_x', data=data_kernel['scatter']['vel_x'] ) group_scatter.create_dataset('HI_density_0', data=data_kernel['scatter']['HI_density_0'] ) group_scatter.create_dataset('HI_density', data=data_kernel['scatter']['HI_density'] ) outFile.close() if print_out: print("Saved File: ", outputFileName)