blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
2203668db377a10685419a408b6e9a15f41782ba
a8927d693f885e202021379da0244d5991fdcba5
/classe4/test_devices.py
2df110cbbaf95cc28efbc41158c59fd8e530b16c
[]
no_license
HassanHbar/pynet_ansible
28c007193c612752b212763c3f38d0f5c024dc3b
a0cc9cd696bf1e9d0448876d39022da1140a55be
refs/heads/master
2020-04-15T13:37:21.042826
2016-08-31T10:32:43
2016-08-31T10:32:43
58,642,117
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
pynet1 = { 'device_type': 'cisco_ios', 'username': 'pyclass', } pynet2 = { 'device_type': 'cisco_ios', 'username': 'pyclass', 'secret': '', } juniper_srx = { 'device_type': 'juniper', 'username': 'pyclass', }
cb09beba8a6df9801c13f0845c0c182a4d71c943
5c729eb7b7d294482f5c614e99205f12047006bb
/Modulo_4_Ciencia da Computacao/Bloco 36: Algoritmos e Estrutura de Dados/dia_3: Algoritmos de ordenação e busca/conteudo/merge-sort.py
8ff4b733daa4ab78e1efcea7ac8912dd55997841
[]
no_license
marcelosoliveira/trybe-exercises
132c42304cdaf9a82d3d1b030fdf12a456a096da
025d81eba6e14dc2abf1600f4a271dde06d593d9
refs/heads/master
2023-07-17T20:35:30.013110
2021-08-24T21:38:22
2021-08-24T21:38:22
288,297,968
1
0
null
2020-08-18T22:23:49
2020-08-17T22:19:09
Shell
UTF-8
Python
false
false
2,554
py
# # Vamos supor os números não ordenados # - coleção = 7 5 1 2 8 4 6 3 # # Separamos nosso array em porções menores # - 7 5 1 2 8 4 6 3 # # continuamos fazendo isto # # até a menor porção possível (1) # - 7 5 1 2 8 4 6 3 # # Até a menor porção possível (1) # - 7 5 1 2 8 4 6 3 # # Feito o processo de divisão, vamos ao processo de conquista. # # Vamos reagrupando as divisões mas de forma ordenada # - 5 7 1 2 8 4 6 3 # - 5 7 1 2 8 4 6 3 # - 5 7 1 2 4 8 6 3 # - 5 7 1 2 4 8 3 6 # # Continuamos o reagrupamento # - 1 2 5 7 4 8 3 6 # - 1 2 5 7 3 4 6 8 # # Por fim misturamos todos os elementos # - 1 2 3 4 5 6 7 8 def merge_sort(array): # caso base: se já atingiu a menor porção (1) if len(array) <= 1: # retorne o array return array # calculo do pivot: índice que indica onde o array será particionado # no caso, metade mid = len(array) // 2 # para cada metade do array # chama a função merge_sort de forma recursiva left, right = merge_sort(array[:mid]), merge_sort(array[mid:]) # mistura as partes que foram divididas return merge(left, right, array.copy()) # função auxiliar que realiza a mistura dos dois arrays def merge(left, right, merged): left_cursor, right_cursor = 0, 0 # enquanto nenhumas das partes é percorrida por completo while left_cursor < len(left) and right_cursor < len(right): # compare os dois itens das partes e insira no array de mistura o menor if left[left_cursor] <= right[right_cursor]: merged[left_cursor + right_cursor] = left[left_cursor] left_cursor += 1 else: merged[left_cursor + right_cursor] = right[right_cursor] right_cursor += 1 # a iteração acima irá inserir os elementos de forma ordenada # quando uma das partes termina, devemos garantir # que a outra sera totalmente inserida no array de mistura # itera sobre os elementos restantes na partição "esquerda" # inserindo-os no array de mistura for left_cursor in range(left_cursor, len(left)): merged[left_cursor + right_cursor] = left[left_cursor] # itera sobre os elementos restantes na partição "direita" # inserindo-os no array de mistura for right_cursor in range(right_cursor, len(right)): merged[left_cursor + right_cursor] = right[right_cursor] return merged print(merge_sort([100, 4, 6, 33, 56, 67]))
b515d720289ec7fabc547f59cebd2a8436f4be7e
7f8d6b47c41d7ca312c94779230dd00101eb305d
/TaxiFareModel/encoders.py
0c35c630f670aaa069a215164d766b10ded70e75
[]
no_license
pierrevermeulen/TaxiFareModel
ee3a7cab334b4c247e690615d76613bfe5d585ad
f871e85fdcacefd6831f3a17779370157e64a6f5
refs/heads/master
2023-01-21T13:26:17.978691
2020-12-03T20:20:05
2020-12-03T20:20:05
317,551,886
0
0
null
null
null
null
UTF-8
Python
false
false
5,530
py
import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin import pygeohash as gh from TaxiFareModel.utils import haversine_vectorized, minkowski_distance DIST_ARGS = dict(start_lat="pickup_latitude", start_lon="pickup_longitude", end_lat="dropoff_latitude", end_lon="dropoff_longitude") # Implement DistanceTransformer and TimeFeaturesEncoder class TimeFeaturesEncoder(BaseEstimator, TransformerMixin): def __init__(self, time_column, time_zone_name='America/New_York'): self.time_column = time_column self.time_zone_name = time_zone_name def transform(self, X, y=None): assert isinstance(X, pd.DataFrame) X.index = pd.to_datetime(X[self.time_column]) X.index = X.index.tz_convert(self.time_zone_name) X["dow"] = X.index.weekday X["hour"] = X.index.hour X["month"] = X.index.month X["year"] = X.index.year return X[["dow", "hour", "month", "year"]].reset_index(drop=True) def fit(self, X, y=None): return self class AddGeohash(BaseEstimator, TransformerMixin): def __init__(self, precision=6): self.precision = precision def fit(self, X, y=None): return self def transform(self, X, y=None): assert isinstance(X, pd.DataFrame) X['geohash_pickup'] = X.apply( lambda x: gh.encode(x.pickup_latitude, x.pickup_longitude, precision=self.precision), axis=1) X['geohash_dropoff'] = X.apply( lambda x: gh.encode(x.dropoff_latitude, x.dropoff_longitude, precision=self.precision), axis=1) return X[['geohash_pickup', 'geohash_dropoff']] class DistanceTransformer(BaseEstimator, TransformerMixin): def __init__(self, distance_type="euclidian", **kwargs): self.distance_type = distance_type def transform(self, X, y=None): assert isinstance(X, pd.DataFrame) if self.distance_type == "haversine": X["distance"] = haversine_vectorized(X, **DIST_ARGS) if self.distance_type == "euclidian": X["distance"] = minkowski_distance(X, p=2, **DIST_ARGS) if self.distance_type == "manhattan": X["distance"] = minkowski_distance(X, p=1, **DIST_ARGS) return X[["distance"]] def fit(self, X, y=None): return self class DistanceToCenter(BaseEstimator, TransformerMixin): def __init__(self, verbose=False): self.verbose = verbose def transform(self, X, y=None): nyc_center = (40.7141667, -74.0063889) X["nyc_lat"], X["nyc_lng"] = nyc_center[0], nyc_center[1] args_pickup = dict(start_lat="nyc_lat", start_lon="nyc_lng", end_lat="pickup_latitude", end_lon="pickup_longitude") args_dropoff = dict(start_lat="nyc_lat", start_lon="nyc_lng", end_lat="dropoff_latitude", end_lon="dropoff_longitude") X['pickup_distance_to_center'] = haversine_vectorized(X, **args_pickup) X['dropoff_distance_to_center'] = haversine_vectorized(X, **args_dropoff) return X[["pickup_distance_to_center", "dropoff_distance_to_center"]] def fit(self, X, y=None): return self class DistanceTojfk(BaseEstimator, TransformerMixin): def __init__(self, verbose=False): self.verbose = verbose def transform(self, X, y=None): jfk_center = (40.6441666667, -73.7822222222) X["jfk_lat"], X["jfk_lng"] = jfk_center[0], jfk_center[1] args_pickup = dict(start_lat="jfk_lat", start_lon="jfk_lng", end_lat="pickup_latitude", end_lon="pickup_longitude") args_dropoff = dict(start_lat="jfk_lat", start_lon="jfk_lng", end_lat="dropoff_latitude", end_lon="dropoff_longitude") X['pickup_distance_to_jfk'] = haversine_vectorized(X, **args_pickup) X['dropoff_distance_to_jfk'] = haversine_vectorized(X, **args_dropoff) X['from_to_airport'] = (np.logical_or(X['pickup_distance_to_jfk']<2,\ X['dropoff_distance_to_jfk']<2))*1 #return X[["pickup_distance_to_center", "dropoff_distance_to_center",'from_to_airport']] return X[['from_to_airport']] def fit(self, X, y=None): return self class Direction(BaseEstimator, TransformerMixin): def __init__(self, start_lat="pickup_latitude", start_lon="pickup_longitude", end_lat="dropoff_latitude", end_lon="dropoff_longitude"): self.start_lat = start_lat self.start_lon = start_lon self.end_lat = end_lat self.end_lon = end_lon def transform(self, X, y=None): def calculate_direction(d_lon, d_lat): result = np.zeros(len(d_lon)) l = np.sqrt(d_lon ** 2 + d_lat ** 2) result[d_lon > 0] = (180 / np.pi) * np.arcsin(d_lat[d_lon > 0] / l[d_lon > 0]) idx = (d_lon < 0) & (d_lat > 0) result[idx] = 180 - (180 / np.pi) * np.arcsin(d_lat[idx] / l[idx]) idx = (d_lon < 0) & (d_lat < 0) result[idx] = -180 - (180 / np.pi) * np.arcsin(d_lat[idx] / l[idx]) return result X['delta_lon'] = X[self.start_lon] - X[self.end_lon] X['delta_lat'] = X[self.start_lat] - X[self.end_lat] X['direction'] = calculate_direction(X.delta_lon, X.delta_lat) return X[["delta_lon", "delta_lat", "direction"]] def fit(self, X, y=None): return self
8ec54b6d8b7c076822df3455b18119ff1f057e01
13058b4d2b4a8d02f529e1a06d3080fc07afaf40
/orderportal/scripts/messenger.py
945cad0f1ee6cae11e29b238c24f92335ed46c03
[ "MIT" ]
permissive
ewels/OrderPortal
c23f2c2c76235373d2cdfd20a12cfd799f575ab4
4c15981558e84389eda8136a4e56993ce1c7d659
refs/heads/master
2021-01-15T09:46:34.414406
2015-12-11T14:59:33
2015-12-11T14:59:33
29,193,166
0
0
null
2015-12-11T14:59:35
2015-01-13T14:19:56
Python
UTF-8
Python
false
false
11,247
py
"""OrderPortal: Send messages to users about recent events from log records. The logic is that it gets the timestamp for the latest message, and looks through all log entries since that timestamp for new events that require messages to be sent. The messaging rules and texts are configured in the files defined by settings ACCOUNT_MESSAGES_FILENAME and ORDER_MESSAGES_FILENAME. This script is to be run as a cron job. """ from __future__ import print_function, absolute_import import email.mime.text import smtplib import urllib import couchdb import yaml from orderportal import constants from orderportal import saver from orderportal import settings from orderportal import utils class MessageSaver(saver.Saver): doctype = constants.MESSAGE def log(self): "No log entry for message; its creation is a log in itself." pass class Messenger(object): "Process log records and send messages for interesting events." def __init__(self, db, verbose=False, dry_run=False): self.db = db self.verbose = verbose self.dry_run = dry_run if self.verbose: print('Messenger', utils.timestamp()) try: with open(settings['ACCOUNT_MESSAGES_FILENAME']) as infile: self.account_messages = yaml.safe_load(infile) except (IOError, KeyError): self.account_messages = {} try: with open(settings['ORDER_MESSAGES_FILENAME']) as infile: self.order_messages = yaml.safe_load(infile) except (IOError, KeyError): self.order_messages = {} @property def server(self): try: return self._server except AttributeError: host = settings['EMAIL']['HOST'] try: port = settings['EMAIL']['PORT'] except KeyError: self._server = smtplib.SMTP(host) else: self._server = smtplib.SMTP(host, port=port) if settings['EMAIL'].get('TLS'): self._server.starttls() try: user = settings['EMAIL']['USER'] password = settings['EMAIL']['PASSWORD'] except KeyError: pass else: self._server.login(user, password) return self._server def __del__(self): try: self._server.quit() except AttributeError: pass def absolute_url(self, *args, **query): path = '/' if args: path += '/'.join(args) if query: path += '?' + urllib.urlencode(query) return settings['BASE_URL'].rstrip('/') + path def process(self): """Go through unprocessed log entries for items to send messages about. Currently, account and order logs are checked. """ view = self.db.view('message/modified', descending=True, limit=1) messages = list(view) try: endkey = messages[0].key except IndexError: endkey = None if self.verbose: print('latest message', endkey) view = self.db.view('log/modified', include_docs=True, descending=True, startkey=constants.CEILING, endkey=endkey) for row in view: if self.verbose: print('log', row.id) if row.value == constants.ACCOUNT: self.process_account(row.doc) elif row.value == constants.ORDER: self.process_order(row.doc) def process_account(self, logdoc): "Check for relevant event in account log entry and send message(s)." message = None if logdoc['changed'].get('status') == constants.PENDING: self.process_account_pending(logdoc) # Account has been enabled. elif logdoc['changed'].get('status') == constants.ENABLED: self.process_account_enabled(logdoc) # Account password has been reset; must be checked after 'enabled'! elif logdoc['changed'].get('code'): self.process_account_reset(logdoc) def get_account_params(self, account, **kwargs): "Get the template parameters for the account message." result = dict(site=settings['SITE_NAME'], support=settings.get('SITE_SUPPORT', '[not defined]'), account=account['email'], url=self.absolute_url('account', account['email'])) result.update(kwargs) return result def process_account_pending(self, logdoc): "Account was created, is pending. Tell the admins to enable it." message = self.account_messages.get('pending') if not message: if self.verbose: print('No message for account pending.') return try: account = self.db[logdoc['entity']] except couchdb.ResourceNotFound: return params = self.get_account_params(account) self.send_email(self.get_admins(), message, params) def process_account_enabled(self, logdoc): """Account was enabled. Send URL and code for setting password.""" message = self.account_messages.get('enabled') if not message: if self.verbose: print('No message for account enabled.') return try: account = self.db[logdoc['entity']] except couchdb.ResourceNotFound: return params = self.get_account_params( account, password=self.absolute_url('password'), password_code=self.absolute_url('password', email=account['email'], code=account['code']), code=account['code']) self.send_email([account['owner']], message, params) def process_account_reset(self, logdoc): "Account password was reset. Send URL and code for setting password." message = self.account_messages.get('reset') if not message: if self.verbose: print('No message for account reset.') return try: account = self.db[logdoc['entity']] except couchdb.ResourceNotFound: return params = self.get_account_params( account, password=self.absolute_url('password'), password_code=self.absolute_url('password', email=account['email'], code=account['code']), code=account['code']) self.send_email([account['owner']], message, params) def process_order(self, logdoc): "Check for relevant event in order log entry and send message(s)." status = logdoc['changed'].get('status') message = self.order_messages.get(status) if not message: if self.verbose: print("No message for order status {0}.".format(status)) return try: order = self.db[logdoc['entity']] except couchdb.ResourceNotFound: return owner = self.get_account(order['owner']) # Owner may have disappeared (OK, OK, unlikely) if not owner: return params = self.get_order_params(order) # Send to administrators, if so configured for role in message['recipients']: if role == 'admin': self.send_email(self.get_admins(), message, params) break # Send to owner and group, if so configured recipients = set() for role in message['recipients']: if role == 'owner': recipients.add(owner['email']) elif role == 'group': recipients.update(self.get_colleagues(owner['email'])) self.send_email(list(recipients), message, params) def get_order_params(self, order, **kwargs): "Get the template parameters for the order message." result = dict(site=settings['SITE_NAME'], support=settings.get('SITE_SUPPORT', '[not defined]'), owner=owner['email'], order=order.get('title') or order['_id'], url=self.absolute_url('order', order['_id'])) result.update(kwargs) return result def send_email(self, recipients, message, params): "Actually send the message as email; not if the dry_run flag is set." if not recipients: return subject = message['subject'].format(**params) text = message['text'].format(**params) sender = settings['MESSAGE_SENDER_EMAIL'] mail = email.mime.text.MIMEText(text) mail['Subject'] = subject mail['From'] = sender for recipient in recipients: mail['To'] = recipient if self.dry_run: print(mail.as_string()) else: self.server.sendmail(sender, recipients, mail.as_string()) with MessageSaver(db=self.db) as saver: saver['sender'] = sender saver['recipients'] = recipients saver['subject'] = subject saver['text'] = text saver['type'] = 'email' if self.verbose: print("sent email '{0}' to {1}".format(subject, ', '.join(recipients))) def get_account(self, email): "Get the account document for the email." view = self.db.view('account/email', include_docs=True) try: return [r.doc for r in view[email]][0] except IndexError: return None def get_admins(self): "Get the list of enabled admin emails." view = self.db.view('account/role', include_docs=True) admins = [r.doc for r in view[constants.ADMIN]] return [a['email'] for a in admins if a['status'] == constants.ENABLED] def get_colleagues(self, email): "Get list of emails for accounts in same groups as the given email." colleagues = set() for row in self.db.view('group/member', include_docs=True, key=email): for member in row.doc['members']: account = self.get_account(member) if account['status'] == constants.ENABLED: colleagues.add(account['email']) return list(colleagues) def get_args(): parser = utils.get_command_line_parser(description= 'Send messages for recent log record events.') parser.add_option('-d', '--dry-run', action='store_true', dest='dry_run', default=False, help='do not send messages; for debug') return parser.parse_args() if __name__ == '__main__': (options, args) = get_args() utils.load_settings(filepath=options.settings, verbose=options.verbose) messenger = Messenger(utils.get_db(), verbose=options.verbose, dry_run=options.dry_run) messenger.process()
9ced7efaf19574dd504e7070e03dd19af25de5e0
230bc6445bac6aa009284eb7bbd0665bba0ef3c6
/run.py
a083ada2e3eb1038e298fc9955f43fd45687737c
[]
no_license
bioinfo-fr/pythonfaitlanumba
a8f7373f987ae17ddf14b19d2186959dd659f726
13fd5a5183d8a160af1494e1d618e914267d787e
refs/heads/master
2021-01-20T04:32:29.791015
2014-10-30T15:47:52
2014-10-30T15:47:52
25,976,666
1
0
null
null
null
null
UTF-8
Python
false
false
2,322
py
# coding: utf-8 import random import timeit import matplotlib.pyplot as plt from numba import autojit from taille_cython import cython_test, cython_test_nocdef #################### ## TEST FUNCTIONS ## #################### ### TRIPLE FOR def triplefor(taille): count = 0 for i in xrange(taille): for j in xrange(taille): for k in xrange(taille): count += i * j + k return count / taille tripleforN = autojit(triplefor) ####################### ## TIMINGS FUNCTIONS ## ####################### def timings(nb_tries, start=1, stop=200, step=10): values = range(start, stop, step) setup = { 'triplefor': ('triplefor(%s)', 'from __main__ import triplefor'), 'tripleforN': ('tripleforN(%s)', 'from __main__ import tripleforN'), 'tripleforC': ('cython_test(%s)', 'from __main__ import cython_test'), 'tripleforCnocdef': ('cython_test_nocdef(%s)', 'from __main__ import cython_test_nocdef'), } def do(setup): result = {} for k, v in setup.iteritems(): print k, v result[k] = [timeit.timeit(v[0] % x, number=nb_tries, setup=v[1]) for x in values] return result return do(setup), values #################### ## PLOT FUNCTIONS ## #################### def plot(timings, title, ranked_labels, labels, orders_n): plt.rcParams.update({'font.size': 12}) plt.figure(figsize=(11, 10)) for lb in ranked_labels: plt.plot(orders_n, timings[lb], alpha=0.5, label=labels[lb], marker='o', lw=3) plt.xlabel('sample size n (items in the list)') plt.ylabel('time per computation') plt.xlim([min(orders_n) / 10, max(orders_n) * 10]) plt.legend(loc=2) plt.grid() plt.xscale('log') plt.yscale('log') plt.title(title) plt.savefig('myfilename.png') ########## ## MAIN ## ########## if __name__ == '__main__': N = 5 # nombre d'essais t, values = timings(5, start=10, stop=2000, step=10) labels = { 'triplefor': 'For loop', 'tripleforN': 'For loop (numba)', 'tripleforC': 'For loop (cython)', 'tripleforCnocdef': 'For loop (cython_nocdef)', } plot(t, 'Title', [ #'triplefor', 'tripleforN', 'tripleforC', #'tripleforCnocdef' ], labels, values)
3bc05a9a9df7031514ea03d8d64ed1360cc8e2e9
789a8d480b2b1accb30a01e5c7e8eb8698418c19
/setup.py
c61a6ed7eeedbf172b4801ac92118e500c1e7290
[ "MIT" ]
permissive
wuyeguo/qqbot
edeb0b126ef228ad8a7539e652f12e3c8eb80d47
77fd6c927e9700598f4ded449d370244c8a82cb6
refs/heads/master
2021-05-11T05:21:36.455917
2018-01-15T11:59:38
2018-01-15T11:59:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
# -*- coding: utf-8 -*- from setuptools import setup version = 'v2.3.9' setup( name = 'qqbot', version = version, packages = ['qqbot', 'qqbot.qcontactdb', 'qqbot.plugins'], entry_points = { 'console_scripts': [ 'qqbot = qqbot:RunBot', 'qq = qqbot:QTerm' ] }, install_requires = ['requests', 'certifi', 'apscheduler'], description = "QQBot: A conversation robot base on Tencent's SmartQQ", author = 'pandolia' , author_email = '[email protected]', url = 'https://github.com/pandolia/qqbot/', download_url = 'https://github.com/pandolia/qqbot/archive/%s.tar.gz' % version, keywords = ['QQBot', 'conversation robot', 'tencent', 'qq', 'web', 'network', 'python', 'http'], classifiers = [], )
e376c31e4f81b43df7a1f8bd768f7d4051f9029b
0eb0fc983eab95e06d412249fbf3d0f52727e34c
/party.py
b9616e34bc1637e58005c53bb2a1317ec30c8fec
[]
no_license
groovycol/testing-py
0b1f79559ed8742aaad5608d7ddc717c429cf308
0cd38c04f44709aed02887e012458ac93381edb1
refs/heads/master
2016-09-12T20:47:59.648040
2016-04-22T19:54:12
2016-04-22T19:54:12
56,881,568
0
0
null
null
null
null
UTF-8
Python
false
false
3,781
py
"""Flask site for Balloonicorn's Party.""" from flask import Flask, session, render_template, request, flash, redirect from flask_debugtoolbar import DebugToolbarExtension app = Flask(__name__) app.secret_key = "SECRETSECRETSECRET" def is_mel(name, email): """Is this user Mel? >>> is_mel('Mel Melitpolski', '[email protected]') True >>> is_mel('Colleen Michelle', '[email protected]') False >>> is_mel('Mel Melitpolski', '[email protected]') True >>> is_mel('Runtime Rabbit', '[email protected]') True """ return name == "Mel Melitpolski" or email == "[email protected]" def most_and_least_common_type(treats): """Given list of treats, return {most, least} common types. >>> treats = [{'type': 'dessert'}, {'type': 'dessert'}, {'type': 'drink'}, {'type': 'drink'}, {'type': 'appetizer'}, {'type': 'drink'}] >>> most_and_least_common_type(treats) ('drink', 'appetizer') >>> treats = [{'type': 'dessert'}, {'type': 'drink'}, {'type': 'appetizer'}] >>> most_and_least_common_type(treats) ('dessert', 'dessert') >>> treats = [{'type': 'appetizer'}] >>> most_and_least_common_type(treats) ('appetizer', 'appetizer') >>> most_and_least_common_type([]) (None, None) """ types = {} # Count number of each type and store as value in `types` for treat in treats: types[treat['type']] = types.get(treat['type'], 0) + 1 most_count = most_type = None least_count = least_type = None # Find most, least common by comparing each item for ttype, count in types.items(): if most_count is None or count > most_count: most_count = count most_type = ttype if least_count is None or count < least_count: least_count = count least_type = ttype return (most_type, least_type) def get_treats(): """Get treats being brought to the party. One day, I'll move this into a database! -- Balloonicorn """ return [ {'type': 'dessert', 'description': 'Chocolate mousse', 'who': 'Heather'}, {'type': 'dessert', 'description': 'Cardamom-Pear pie', 'who': 'Joel'}, {'type': 'appetizer', 'description': 'Humboldt Fog cheese', 'who': 'Meggie'}, {'type': 'dessert', 'description': 'Lemon bars', 'who': 'Cynthia'}, {'type': 'appetizer', 'description': 'Mini-enchiladas', 'who': 'David'}, {'type': 'drink', 'description': 'Sangria', 'who': 'Kari'}, {'type': 'dessert', 'description': 'Chocolate-raisin cookies', 'who': 'Denise'}, {'type': 'dessert', 'description': 'Brownies', 'who': 'Lavinia'} ] @app.route("/") def homepage(): """Show homepage.""" return render_template("homepage.html") @app.route("/treats") def show_treats(): """Show treats people are bringing.""" treats = get_treats() most, least = most_and_least_common_type(get_treats()) return render_template("treats.html", treats=treats, most=most, least=least) @app.route("/rsvp", methods=['POST']) def rsvp(): """Register for the party.""" name = request.form.get("name") email = request.form.get("email") if not is_mel(name, email): session['rsvp'] = True flash("Yay!") return redirect("/") else: flash("Sorry, Mel. This is kind of awkward.") return redirect("/") if __name__ == "__main__": app.debug = True app.config['DEBUG_TB_INTERCEPT_REDIRECTS'] = False DebugToolbarExtension(app) app.run()
37f1f7cf6b1d633e238e4303987ac629fc97486e
e4de33a639446e329e058a67e0418d97f5c0d1a9
/venv/Scripts/pip3.7-script.py
a2f0581dbbe1e0da6ea7535ae01c4550378892d8
[]
no_license
bopopescu/LyricsSearchEngine_python_API
1fd761f8a36758c142a10d9d39c235d235f5a989
a321a92cf9874e7cf84df58f0265d8a83b139a6c
refs/heads/master
2022-11-22T19:01:39.712625
2020-02-26T15:25:29
2020-02-26T15:25:29
281,265,993
0
0
null
2020-07-21T01:36:32
2020-07-21T01:36:31
null
UTF-8
Python
false
false
420
py
#!D:\PyCharm\PyCharm_workspace\0208exercise\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3.7' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3.7')() )
24fb13323f0a0122a05a534bc09c6891d1ff7451
f505bc6cb86d783569b3c3dcfc8dc6047cfe7ebe
/Loading model.py
3a66d947872ffe298cfd9c0d902d35ab225265c2
[]
no_license
se7ven012/Keras
58627d6863e255865bfa3da80d03170034452efa
0fa0880fa3c5bd655ed9200deb7daf7fff8ac72d
refs/heads/master
2020-07-25T19:40:55.266541
2019-09-14T07:33:27
2019-09-14T07:33:27
208,405,313
0
0
null
null
null
null
UTF-8
Python
false
false
1,013
py
#%% import keras import numpy as np import matplotlib.pyplot as plt #傻瓜式网络结构模块 from keras.models import Sequential #Dense全连接层 from keras.layers import Dense,Activation # from keras.optimizers import SGD from keras.models import load_model #%% #生成100个点 x_data = np.linspace(-0.5,0.5,200) noise = np.random.normal(0,0.02,x_data.shape) y_data = np.square(x_data) + noise #显示随机点 plt.scatter(x_data,y_data) plt.show() #%% #loading model model = load_model('test.h5') #print wight, bias W,b = model.layers[0].get_weights() print('W:',W,'b:',b) #predict y_pred y_pred = model.predict(x_data) #display random dots plt.scatter(x_data,y_data) #display prediction result plt.plot(x_data,y_pred) plt.show() #save weights model.save_weights('weights.h5') model.load_weights('weights.h5') #save network structure, loading network structure from keras.models import model_from_json json_string = model.to_json() model=model_from_json(json_string) #%% print(json_string) #%%
380aeccf87ff7ee654c887306c7c69d1c1b96697
8f24e443e42315a81028b648e753c50967c51c78
/python/ray/data/datasource/parquet_datasource.py
674410a1c29b24325030d270b2eab7d5f232104d
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
simon-mo/ray
d07efdada8d05c6e10417f96e8dfc35f9ad33397
1e42e6cd15e2fb96c217cba8484e59ed0ef4b0c8
refs/heads/master
2023-03-06T00:09:35.758834
2022-12-23T18:46:48
2022-12-23T18:46:48
122,156,396
4
2
Apache-2.0
2023-03-04T08:56:56
2018-02-20T04:47:06
Python
UTF-8
Python
false
false
18,880
py
import itertools import logging from typing import TYPE_CHECKING, Callable, Iterator, List, Optional, Union import numpy as np from ray.data._internal.output_buffer import BlockOutputBuffer from ray.data._internal.progress_bar import ProgressBar from ray.data._internal.remote_fn import cached_remote_fn from ray.data._internal.util import _check_pyarrow_version from ray.data.block import Block from ray.data.context import DatasetContext from ray.data.datasource.datasource import Reader, ReadTask from ray.data.datasource.file_based_datasource import _resolve_paths_and_filesystem from ray.data.datasource.file_meta_provider import ( DefaultParquetMetadataProvider, ParquetMetadataProvider, _handle_read_os_error, ) from ray.data.datasource.parquet_base_datasource import ParquetBaseDatasource from ray.types import ObjectRef from ray.util.annotations import PublicAPI import ray.cloudpickle as cloudpickle if TYPE_CHECKING: import pyarrow from pyarrow.dataset import ParquetFileFragment logger = logging.getLogger(__name__) PIECES_PER_META_FETCH = 6 PARALLELIZE_META_FETCH_THRESHOLD = 24 # The number of rows to read per batch. This is sized to generate 10MiB batches # for rows about 1KiB in size. PARQUET_READER_ROW_BATCH_SIZE = 100000 FILE_READING_RETRY = 8 # The default size multiplier for reading Parquet data source in Arrow. # Parquet data format is encoded with various encoding techniques (such as # dictionary, RLE, delta), so Arrow in-memory representation uses much more memory # compared to Parquet encoded representation. Parquet file statistics only record # encoded (i.e. uncompressed) data size information. # # To estimate real-time in-memory data size, Datasets will try to estimate the correct # inflation ratio from Parquet to Arrow, using this constant as the default value for # safety. See https://github.com/ray-project/ray/pull/26516 for more context. PARQUET_ENCODING_RATIO_ESTIMATE_DEFAULT = 5 # The lower bound size to estimate Parquet encoding ratio. PARQUET_ENCODING_RATIO_ESTIMATE_LOWER_BOUND = 2 # The percentage of files (1% by default) to be sampled from the dataset to estimate # Parquet encoding ratio. PARQUET_ENCODING_RATIO_ESTIMATE_SAMPLING_RATIO = 0.01 # The minimal and maximal number of file samples to take from the dataset to estimate # Parquet encoding ratio. # This is to restrict `PARQUET_ENCODING_RATIO_ESTIMATE_SAMPLING_RATIO` within the # proper boundary. PARQUET_ENCODING_RATIO_ESTIMATE_MIN_NUM_SAMPLES = 2 PARQUET_ENCODING_RATIO_ESTIMATE_MAX_NUM_SAMPLES = 10 # The number of rows to read from each file for sampling. Try to keep it low to avoid # reading too much data into memory. PARQUET_ENCODING_RATIO_ESTIMATE_NUM_ROWS = 1024 # TODO(ekl) this is a workaround for a pyarrow serialization bug, where serializing a # raw pyarrow file fragment causes S3 network calls. class _SerializedPiece: def __init__(self, frag: "ParquetFileFragment"): self._data = cloudpickle.dumps( (frag.format, frag.path, frag.filesystem, frag.partition_expression) ) def deserialize(self) -> "ParquetFileFragment": # Implicitly trigger S3 subsystem initialization by importing # pyarrow.fs. import pyarrow.fs # noqa: F401 (file_format, path, filesystem, partition_expression) = cloudpickle.loads( self._data ) return file_format.make_fragment(path, filesystem, partition_expression) # Visible for test mocking. def _deserialize_pieces( serialized_pieces: List[_SerializedPiece], ) -> List["pyarrow._dataset.ParquetFileFragment"]: return [p.deserialize() for p in serialized_pieces] # This retry helps when the upstream datasource is not able to handle # overloaded read request or failed with some retriable failures. # For example when reading data from HA hdfs service, hdfs might # lose connection for some unknown reason expecially when # simutaneously running many hyper parameter tuning jobs # with ray.data parallelism setting at high value like the default 200 # Such connection failure can be restored with some waiting and retry. def _deserialize_pieces_with_retry( serialized_pieces: List[_SerializedPiece], ) -> List["pyarrow._dataset.ParquetFileFragment"]: min_interval = 0 final_exception = None for i in range(FILE_READING_RETRY): try: return _deserialize_pieces(serialized_pieces) except Exception as e: import random import time retry_timing = ( "" if i == FILE_READING_RETRY - 1 else (f"Retry after {min_interval} sec. ") ) log_only_show_in_1st_retry = ( "" if i else ( f"If earlier read attempt threw certain Exception" f", it may or may not be an issue depends on these retries " f"succeed or not. serialized_pieces:{serialized_pieces}" ) ) logger.exception( f"{i + 1}th attempt to deserialize ParquetFileFragment failed. " f"{retry_timing}" f"{log_only_show_in_1st_retry}" ) if not min_interval: # to make retries of different process hit hdfs server # at slightly different time min_interval = 1 + random.random() # exponential backoff at # 1, 2, 4, 8, 16, 32, 64 time.sleep(min_interval) min_interval = min_interval * 2 final_exception = e raise final_exception @PublicAPI class ParquetDatasource(ParquetBaseDatasource): """Parquet datasource, for reading and writing Parquet files. The primary difference from ParquetBaseDatasource is that this uses PyArrow's `ParquetDataset` abstraction for dataset reads, and thus offers automatic Arrow dataset schema inference and row count collection at the cost of some potential performance and/or compatibility penalties. Examples: >>> import ray >>> from ray.data.datasource import ParquetDatasource >>> source = ParquetDatasource() # doctest: +SKIP >>> ray.data.read_datasource( # doctest: +SKIP ... source, paths="/path/to/dir").take() [{"a": 1, "b": "foo"}, ...] """ def create_reader(self, **kwargs): return _ParquetDatasourceReader(**kwargs) class _ParquetDatasourceReader(Reader): def __init__( self, paths: Union[str, List[str]], local_uri: bool = False, filesystem: Optional["pyarrow.fs.FileSystem"] = None, columns: Optional[List[str]] = None, schema: Optional[Union[type, "pyarrow.lib.Schema"]] = None, meta_provider: ParquetMetadataProvider = DefaultParquetMetadataProvider(), _block_udf: Optional[Callable[[Block], Block]] = None, **reader_args, ): _check_pyarrow_version() import pyarrow as pa import pyarrow.parquet as pq paths, filesystem = _resolve_paths_and_filesystem(paths, filesystem) if len(paths) == 1: paths = paths[0] self._local_scheduling = None if local_uri: import ray from ray.util.scheduling_strategies import NodeAffinitySchedulingStrategy self._local_scheduling = NodeAffinitySchedulingStrategy( ray.get_runtime_context().get_node_id(), soft=False ) dataset_kwargs = reader_args.pop("dataset_kwargs", {}) try: pq_ds = pq.ParquetDataset( paths, **dataset_kwargs, filesystem=filesystem, use_legacy_dataset=False ) except OSError as e: _handle_read_os_error(e, paths) if schema is None: schema = pq_ds.schema if columns: schema = pa.schema( [schema.field(column) for column in columns], schema.metadata ) if _block_udf is not None: # Try to infer dataset schema by passing dummy table through UDF. dummy_table = schema.empty_table() try: inferred_schema = _block_udf(dummy_table).schema inferred_schema = inferred_schema.with_metadata(schema.metadata) except Exception: logger.debug( "Failed to infer schema of dataset by passing dummy table " "through UDF due to the following exception:", exc_info=True, ) inferred_schema = schema else: inferred_schema = schema try: prefetch_remote_args = {} if self._local_scheduling: prefetch_remote_args["scheduling_strategy"] = self._local_scheduling self._metadata = ( meta_provider.prefetch_file_metadata( pq_ds.pieces, **prefetch_remote_args ) or [] ) except OSError as e: _handle_read_os_error(e, paths) self._pq_ds = pq_ds self._meta_provider = meta_provider self._inferred_schema = inferred_schema self._block_udf = _block_udf self._reader_args = reader_args self._columns = columns self._schema = schema self._encoding_ratio = self._estimate_files_encoding_ratio() def estimate_inmemory_data_size(self) -> Optional[int]: total_size = 0 for file_metadata in self._metadata: for row_group_idx in range(file_metadata.num_row_groups): row_group_metadata = file_metadata.row_group(row_group_idx) total_size += row_group_metadata.total_byte_size return total_size * self._encoding_ratio def get_read_tasks(self, parallelism: int) -> List[ReadTask]: # NOTE: We override the base class FileBasedDatasource.get_read_tasks() # method in order to leverage pyarrow's ParquetDataset abstraction, # which simplifies partitioning logic. We still use # FileBasedDatasource's write side (do_write), however. read_tasks = [] for pieces, metadata in zip( np.array_split(self._pq_ds.pieces, parallelism), np.array_split(self._metadata, parallelism), ): if len(pieces) <= 0: continue serialized_pieces = [_SerializedPiece(p) for p in pieces] input_files = [p.path for p in pieces] meta = self._meta_provider( input_files, self._inferred_schema, pieces=pieces, prefetched_metadata=metadata, ) if meta.size_bytes is not None: meta.size_bytes = int(meta.size_bytes * self._encoding_ratio) block_udf, reader_args, columns, schema = ( self._block_udf, self._reader_args, self._columns, self._schema, ) read_tasks.append( ReadTask( lambda p=serialized_pieces: _read_pieces( block_udf, reader_args, columns, schema, p, ), meta, ) ) return read_tasks def _estimate_files_encoding_ratio(self) -> float: """Return an estimate of the Parquet files encoding ratio. To avoid OOMs, it is safer to return an over-estimate than an underestimate. """ if not DatasetContext.get_current().decoding_size_estimation: return PARQUET_ENCODING_RATIO_ESTIMATE_DEFAULT # Sample a few rows from Parquet files to estimate the encoding ratio. # Launch tasks to sample multiple files remotely in parallel. # Evenly distributed to sample N rows in i-th row group in i-th file. # TODO(ekl/cheng) take into account column pruning. num_files = len(self._pq_ds.pieces) num_samples = int(num_files * PARQUET_ENCODING_RATIO_ESTIMATE_SAMPLING_RATIO) min_num_samples = min( PARQUET_ENCODING_RATIO_ESTIMATE_MIN_NUM_SAMPLES, num_files ) max_num_samples = min( PARQUET_ENCODING_RATIO_ESTIMATE_MAX_NUM_SAMPLES, num_files ) num_samples = max(min(num_samples, max_num_samples), min_num_samples) # Evenly distributed to choose which file to sample, to avoid biased prediction # if data is skewed. file_samples = [ self._pq_ds.pieces[idx] for idx in np.linspace(0, num_files - 1, num_samples).astype(int).tolist() ] sample_piece = cached_remote_fn(_sample_piece) futures = [] scheduling = self._local_scheduling or "SPREAD" for sample in file_samples: # Sample the first rows batch in i-th file. # Use SPREAD scheduling strategy to avoid packing many sampling tasks on # same machine to cause OOM issue, as sampling can be memory-intensive. serialized_sample = _SerializedPiece(sample) futures.append( sample_piece.options(scheduling_strategy=scheduling).remote( self._reader_args, self._columns, self._schema, serialized_sample, ) ) sample_bar = ProgressBar("Parquet Files Sample", len(futures)) sample_ratios = sample_bar.fetch_until_complete(futures) sample_bar.close() ratio = np.mean(sample_ratios) logger.debug(f"Estimated Parquet encoding ratio from sampling is {ratio}.") return max(ratio, PARQUET_ENCODING_RATIO_ESTIMATE_LOWER_BOUND) def _read_pieces( block_udf, reader_args, columns, schema, serialized_pieces: List[_SerializedPiece] ) -> Iterator["pyarrow.Table"]: # This import is necessary to load the tensor extension type. from ray.data.extensions.tensor_extension import ArrowTensorType # noqa # Deserialize after loading the filesystem class. pieces: List[ "pyarrow._dataset.ParquetFileFragment" ] = _deserialize_pieces_with_retry(serialized_pieces) # Ensure that we're reading at least one dataset fragment. assert len(pieces) > 0 import pyarrow as pa from pyarrow.dataset import _get_partition_keys ctx = DatasetContext.get_current() output_buffer = BlockOutputBuffer( block_udf=block_udf, target_max_block_size=ctx.target_max_block_size, ) logger.debug(f"Reading {len(pieces)} parquet pieces") use_threads = reader_args.pop("use_threads", False) batch_size = reader_args.pop("batch_size", PARQUET_READER_ROW_BATCH_SIZE) for piece in pieces: part = _get_partition_keys(piece.partition_expression) batches = piece.to_batches( use_threads=use_threads, columns=columns, schema=schema, batch_size=batch_size, **reader_args, ) for batch in batches: table = pa.Table.from_batches([batch], schema=schema) if part: for col, value in part.items(): table = table.set_column( table.schema.get_field_index(col), col, pa.array([value] * len(table)), ) # If the table is empty, drop it. if table.num_rows > 0: output_buffer.add_block(table) if output_buffer.has_next(): yield output_buffer.next() output_buffer.finalize() if output_buffer.has_next(): yield output_buffer.next() def _fetch_metadata_remotely( pieces: List["pyarrow._dataset.ParquetFileFragment"], **ray_remote_args, ) -> List[ObjectRef["pyarrow.parquet.FileMetaData"]]: remote_fetch_metadata = cached_remote_fn(_fetch_metadata_serialization_wrapper) metas = [] parallelism = min(len(pieces) // PIECES_PER_META_FETCH, 100) meta_fetch_bar = ProgressBar("Metadata Fetch Progress", total=parallelism) for pcs in np.array_split(pieces, parallelism): if len(pcs) == 0: continue metas.append( remote_fetch_metadata.options(**ray_remote_args).remote( [_SerializedPiece(p) for p in pcs] ) ) metas = meta_fetch_bar.fetch_until_complete(metas) return list(itertools.chain.from_iterable(metas)) def _fetch_metadata_serialization_wrapper( pieces: str, ) -> List["pyarrow.parquet.FileMetaData"]: pieces: List[ "pyarrow._dataset.ParquetFileFragment" ] = _deserialize_pieces_with_retry(pieces) return _fetch_metadata(pieces) def _fetch_metadata( pieces: List["pyarrow.dataset.ParquetFileFragment"], ) -> List["pyarrow.parquet.FileMetaData"]: piece_metadata = [] for p in pieces: try: piece_metadata.append(p.metadata) except AttributeError: break return piece_metadata def _sample_piece( reader_args, columns, schema, file_piece: _SerializedPiece, ) -> float: # Sample the first rows batch from file piece `serialized_piece`. # Return the encoding ratio calculated from the sampled rows. piece = _deserialize_pieces_with_retry([file_piece])[0] # Only sample the first row group. piece = piece.subset(row_group_ids=[0]) batch_size = max( min(piece.metadata.num_rows, PARQUET_ENCODING_RATIO_ESTIMATE_NUM_ROWS), 1 ) # Use the batch_size calculated above, and ignore the one specified by user if set. # This is to avoid sampling too few or too many rows. reader_args.pop("batch_size", None) batches = piece.to_batches( columns=columns, schema=schema, batch_size=batch_size, **reader_args, ) # Use first batch in-memory size as ratio estimation. try: batch = next(batches) except StopIteration: ratio = PARQUET_ENCODING_RATIO_ESTIMATE_LOWER_BOUND else: if batch.num_rows > 0: in_memory_size = batch.nbytes / batch.num_rows metadata = piece.metadata total_size = 0 for idx in range(metadata.num_row_groups): total_size += metadata.row_group(idx).total_byte_size file_size = total_size / metadata.num_rows ratio = in_memory_size / file_size else: ratio = PARQUET_ENCODING_RATIO_ESTIMATE_LOWER_BOUND logger.debug( f"Estimated Parquet encoding ratio is {ratio} for piece {piece} " f"with batch size {batch_size}." ) return ratio
9a6110eea7dd40e138e1870e4daa4a6be79d007a
44b28bbe3f01428417c20ea712e5999aa3dc950a
/mmdet/datasets/extra_aug.py
0e48c08869deab649bd1b618447abf6fd34e0252
[ "Apache-2.0" ]
permissive
gfjiangly/AerialDetection
1ce9e15685b19c8228b0269ee3d7a54e67b5008e
ee8a945c67c8e9ddef725900ac300d2d5a785e08
refs/heads/master
2023-04-02T17:03:28.711163
2021-04-08T03:10:24
2021-04-08T03:10:24
322,861,321
0
0
null
null
null
null
UTF-8
Python
false
false
16,319
py
import mmcv import numpy as np from numpy import random from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps from mmdet.core.mask.utils import mask_expand, mask_crop class MixUp(object): """暂未实现在loss上对label按mix加权""" def __init__(self, p=0.3, lambd=0.5): self.lambd = lambd self.p = p self.img2 = None self.boxes2 = None self.labels2 = None self.masks2 = None def __call__(self, img1, boxes1, labels1, masks1=None): if random.random() < self.p and self.img2 is not None \ and img1.shape[1] == self.img2.shape[1]: height = max(img1.shape[0], self.img2.shape[0]) width = max(img1.shape[1], self.img2.shape[1]) mixup_image = np.zeros([height, width, 3], dtype='float32') mixup_image[:img1.shape[0], :img1.shape[1], :] = \ img1.astype('float32') * self.lambd mixup_image[:self.img2.shape[0], :self.img2.shape[1], :] += \ self.img2.astype('float32') * (1. - self.lambd) mixup_image = mixup_image.astype('uint8') mixup_boxes = np.vstack((boxes1, self.boxes2)) mixup_labels = np.hstack((labels1, self.labels2)) if masks1 is not None: mixup_masks = np.vstack((masks1, self.masks2)) else: mixup_image = img1 mixup_boxes = boxes1 mixup_labels = labels1 mixup_masks = masks1 # 更新img2信息用于mix的样本 self.img2 = img1 self.boxes2 = boxes1 self.labels2 = labels1 self.masks2 = masks1 return mixup_image, mixup_boxes, mixup_labels, mixup_masks class CutOut(object): """CutOut operation. Randomly drop some regions of image used in `Cutout <https://arxiv.org/abs/1708.04552>`_. Args: n_holes (int | tuple[int, int]): Number of regions to be dropped. If it is given as a list, number of holes will be randomly selected from the closed interval [`n_holes[0]`, `n_holes[1]`]. cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate shape of dropped regions. It can be `tuple[int, int]` to use a fixed cutout shape, or `list[tuple[int, int]]` to randomly choose shape from the list. cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The candidate ratio of dropped regions. It can be `tuple[float, float]` to use a fixed ratio or `list[tuple[float, float]]` to randomly choose ratio from the list. Please note that `cutout_shape` and `cutout_ratio` cannot be both given at the same time. fill_in (tuple[float, float, float] | tuple[int, int, int]): The value of pixel to fill in the dropped regions. Default: (0, 0, 0). """ def __init__(self, n_holes, cutout_shape=None, cutout_ratio=None, fill_in=(0, 0, 0)): assert (cutout_shape is None) ^ (cutout_ratio is None), \ 'Either cutout_shape or cutout_ratio should be specified.' assert (isinstance(cutout_shape, (list, tuple)) or isinstance(cutout_ratio, (list, tuple))) if isinstance(n_holes, tuple): assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1] else: n_holes = (n_holes, n_holes) self.n_holes = n_holes self.fill_in = fill_in self.with_ratio = cutout_ratio is not None self.candidates = cutout_ratio if self.with_ratio else cutout_shape def __call__(self, img, bboxes, labels=None, masks=None): """Call function to drop some regions of image.""" h, w, c = img.shape n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1) if n_holes > len(bboxes): n_holes = len(bboxes) holes_idxs = random.choice(range(len(bboxes)), n_holes, replace=False) for idx in holes_idxs: bbox = bboxes[idx] bbox_x1, bbox_y1 = bbox[0], bbox[1] bbox_x2, bbox_y2 = bbox[2], bbox[3] bbox_w = bbox_x2 - bbox_x1 + 1 bbox_h = bbox_y2 - bbox_y1 + 1 if bbox_x1 >= bbox_x2 or bbox_y1 >= bbox_y2: continue x1 = np.random.randint(bbox_x1, bbox_x2) y1 = np.random.randint(bbox_y1, bbox_y2) cutout_w = random.uniform(self.candidates[0], self.candidates[1]) cutout_h = random.uniform(self.candidates[0], self.candidates[1]) if self.with_ratio: cutout_w = int(cutout_w * bbox_w) cutout_h = int(cutout_h * bbox_h) x2 = np.clip(x1 + cutout_w, 0, w) y2 = np.clip(y1 + cutout_h, 0, h) img[y1:y2, x1:x2, :] = self.fill_in return img, bboxes, labels, masks def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(n_holes={self.n_holes}, ' repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio else f'cutout_shape={self.candidates}, ') repr_str += f'fill_in={self.fill_in})' return repr_str class MixCut(object): """暂未实现对label的mix""" def __init__(self, n_holes, cutout_shape=None, cutout_ratio=None): assert (cutout_shape is None) ^ (cutout_ratio is None), \ 'Either cutout_shape or cutout_ratio should be specified.' assert (isinstance(cutout_shape, (list, tuple)) or isinstance(cutout_ratio, (list, tuple))) if isinstance(n_holes, tuple): assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1] else: n_holes = (n_holes, n_holes) self.n_holes = n_holes self.with_ratio = cutout_ratio is not None self.candidates = cutout_ratio if self.with_ratio else cutout_shape self.img2 = None def __call__(self, img1, boxes1, labels1, masks1=None): if self.img2 is not None: h, w, _ = img1.shape n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1) if n_holes > len(boxes1): n_holes = len(boxes1) holes_idxs = random.choice(range(len(boxes1)), n_holes, replace=False) for idx in holes_idxs: bbox = boxes1[idx] bbox_x1, bbox_y1 = bbox[0], bbox[1] bbox_x2, bbox_y2 = bbox[2], bbox[3] bbox_w = bbox_x2 - bbox_x1 + 1 bbox_h = bbox_y2 - bbox_y1 + 1 if bbox_x1 >= bbox_x2 or bbox_y1 >= bbox_y2: continue x1 = np.random.randint(bbox_x1, bbox_x2) y1 = np.random.randint(bbox_y1, bbox_y2) cutout_w = random.uniform(self.candidates[0], self.candidates[1]) cutout_h = random.uniform(self.candidates[0], self.candidates[1]) if self.with_ratio: cutout_w = int(cutout_w * bbox_w) cutout_h = int(cutout_h * bbox_h) x2 = np.clip(x1 + cutout_w, 0, w) y2 = np.clip(y1 + cutout_h, 0, h) # cut from img2 img2_h, img2_w = self.img2.shape[:2] cut2_w, cut2_h = x2 - x1, y2 - y1 if cut2_w >= img2_w - cut2_w or cut2_h >= img2_h - cut2_h: continue img2_x1 = np.random.randint(cut2_w, img2_w - cut2_w) img2_y1 = np.random.randint(cut2_h, img2_h - cut2_h) img2_cut = self.img2[img2_y1:img2_y1+cut2_h, img2_x1:img2_x1+cut2_w].copy() # update img2 self.img2 = img1.copy() try: img1[y1:y2, x1:x2, :] = img2_cut except Exception as e: print(e) else: self.img2 = img1.copy() return img1, boxes1, labels1, masks1 class PhotoMetricDistortion(object): def __init__(self, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18, color_choose=0, gray_p=0.3): self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta self.color_choose = color_choose self.gray_p = gray_p def __call__(self, img, boxes, labels, masks=None): if self.color_choose == 0: if random.uniform() < self.gray_p: gray = mmcv.bgr2gray(img) img = mmcv.gray2bgr(gray) return img, boxes, labels, masks # random brightness if random.randint(2): delta = random.uniform(-self.brightness_delta, self.brightness_delta) img += delta # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: if random.randint(2): alpha = random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # convert color from BGR to HSV img = mmcv.bgr2hsv(img) # random saturation if random.randint(2): img[..., 1] *= random.uniform(self.saturation_lower, self.saturation_upper) # random hue if random.randint(2): img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta) img[..., 0][img[..., 0] > 360] -= 360 img[..., 0][img[..., 0] < 0] += 360 # convert color from HSV to BGR img = mmcv.hsv2bgr(img) # random contrast if mode == 0: if random.randint(2): alpha = random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # randomly swap channels if random.randint(2): img = img[..., random.permutation(3)] else: if self.color_choose == 1: # random brightness if random.randint(2): delta = random.uniform(-self.brightness_delta, self.brightness_delta) img += delta elif self.color_choose == 2: # random contrast first if random.randint(2): alpha = random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha else: # convert color from BGR to HSV img = mmcv.bgr2hsv(img) if self.color_choose == 3: # random saturation if random.randint(2): img[..., 1] *= random.uniform(self.saturation_lower, self.saturation_upper) if self.color_choose == 4: # random hue if random.randint(2): img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta) img[..., 0][img[..., 0] > 360] -= 360 img[..., 0][img[..., 0] < 0] += 360 # convert color from HSV to BGR img = mmcv.hsv2bgr(img) return img, boxes, labels, masks class Expand(object): def __init__(self, mean=(0, 0, 0), to_rgb=True, ratio_range=(1, 4)): if to_rgb: self.mean = mean[::-1] else: self.mean = mean self.min_ratio, self.max_ratio = ratio_range def __call__(self, img, boxes, labels, masks): if random.randint(2): return img, boxes, labels, masks h, w, c = img.shape ratio = random.uniform(self.min_ratio, self.max_ratio) expand_img = np.full((int(h * ratio), int(w * ratio), c), self.mean).astype(img.dtype) left = int(random.uniform(0, w * ratio - w)) top = int(random.uniform(0, h * ratio - h)) expand_img[top:top + h, left:left + w] = img img = expand_img boxes += np.tile((left, top), 2) if masks is not None: masks = mask_expand(masks, expand_img.shape[0], expand_img.shape[1], top, left) return img, boxes, labels, masks class RandomCrop(object): def __init__(self, min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3): # 1: return ori img self.sample_mode = (1, *min_ious, 0) self.min_crop_size = min_crop_size def __call__(self, img, boxes, labels, masks): h, w, c = img.shape while True: mode = random.choice(self.sample_mode) if mode == 1: return img, boxes, labels, masks min_iou = mode for i in range(50): new_w = random.uniform(self.min_crop_size * w, w) new_h = random.uniform(self.min_crop_size * h, h) # h / w in [0.5, 2] if new_h / new_w < 0.5 or new_h / new_w > 2: continue left = random.uniform(w - new_w) top = random.uniform(h - new_h) patch = np.array((int(left), int(top), int(left + new_w), int(top + new_h))) overlaps = bbox_overlaps( patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1) if overlaps.min() < min_iou: continue # center of boxes should inside the crop img center = (boxes[:, :2] + boxes[:, 2:]) / 2 mask = (center[:, 0] > patch[0]) * ( center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * ( center[:, 1] < patch[3]) if not mask.any(): continue boxes = boxes[mask] labels = labels[mask] # adjust boxes img = img[patch[1]:patch[3], patch[0]:patch[2]] boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:]) boxes[:, :2] = boxes[:, :2].clip(min=patch[:2]) boxes -= np.tile(patch[:2], 2) if masks is not None: masks = masks[mask] masks = mask_crop(masks, patch) return img, boxes, labels, masks class ExtraAugmentation(object): def __init__(self, photo_metric_distortion=None, expand=None, random_crop=None, mixup=None, cutout=None, mixcut=None): self.transforms = [] if photo_metric_distortion is not None: self.transforms.append( PhotoMetricDistortion(**photo_metric_distortion)) if expand is not None: self.transforms.append(Expand(**expand)) if random_crop is not None: self.transforms.append(RandomCrop(**random_crop)) if mixup is not None: self.transforms.append(MixUp(**mixup)) if cutout is not None: self.transforms.append(CutOut(**cutout)) if mixcut is not None: self.transforms.append(MixCut(**mixcut)) def __call__(self, img, boxes, labels, masks=None): img = img.astype(np.float32) for transform in self.transforms: if masks is not None: img, boxes, labels, masks = transform(img, boxes, labels, masks) else: img, boxes, labels = transform(img, boxes, labels) if masks is not None: return img, boxes, labels, masks else: return img, boxes, labels
215b0cc5ee454bc4870b1fc88195a77867b0fa9c
a066134017b7d4cb7ac6f342b18f75c3b768fb87
/3-exceptions/1-basics/FinallyBlock.py
da3b0ef05534f4166a184889876a3c38c8ca423d
[]
no_license
akyare/Python-Students-IoT
e6612af05629a32bae841225f17c5076a4499ca9
3886e7cced42622e3989873749d33476cc6b5f6f
refs/heads/main
2023-01-22T04:43:41.723276
2020-12-03T10:56:01
2020-12-03T10:56:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
830
py
path = 'GeneralExceptions.py' # There are times in Python that we need to work with resources like: # files; # DB connections; # network connections; # ... # And if we are using certain resources we should always close those resources at the end of our program. # We can handle this in the following way: # BAD WAY: try: file = open(path) file.write('Would be to easy right?') except OSError as oe: file.close() print('Something went wrong with IO operation') else: file.close() # GOOD WAY, no code duplication [good programmers avoid that shit]. try: file = open(path) file.write('Would be to easy right?') except OSError as oe: print('Something went wrong with IO operation') finally: file.close() # This way even if an exception is raised the resource used will be closed.
745ebd5a93fa292c9280ac4ca66f3ec83dcc627b
6dee59b96671f2adcfbfe4d5732b7a585e05a419
/bin/wheel
cf05771a23e8690b10679a2739fe9f0a3b0eae70
[]
no_license
arnoldblandon/microserviciodocumento
dbd747a459caef63125bbf7fa1920ef5f66724b0
73889ab1acbbfef317c03b4a074a866e751a73d8
refs/heads/master
2021-06-27T07:18:26.632327
2017-09-14T17:10:41
2017-09-14T17:10:41
102,908,938
0
0
null
null
null
null
UTF-8
Python
false
false
246
#!/home/arnold/Escritorio/microservicio/bin/python3 # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "ay.blandon.mesfix.co" ]
ay.blandon.mesfix.co
5316a4c200e07018aca93fa33bea460da0c3a5ad
e31fd8de16f5d928ad7f8a423bb6f26cfd0871b1
/Python/Day 4/To find cubes of all numbers of list using 'map' fn.py
e6868cf4f2d4eba3ba1dd8b913057f586e5c40da
[]
no_license
adrija24/languages_learning
47f8755b950058658501e69748457bbda9529c52
851bafca2c27cb87a6ea2f4edf316da178168d8b
refs/heads/master
2023-08-24T07:28:08.233696
2021-10-02T13:38:03
2021-10-02T13:38:03
412,806,715
0
0
null
2021-10-02T13:37:52
2021-10-02T13:37:51
null
UTF-8
Python
false
false
108
py
"""To find cubes of all numbers of list using 'map' fn""" a=[1,2,3,4] print(list(map(lambda x:pow(x,3),a)))
58a1479231c6df07a1390e753e25667f72519694
7a2965bb69ca8e0966fd9077f8e9180e63e1b6a2
/app.py
81d2cf878b6628e4b362c45e5298506a9f1eac7d
[]
no_license
thorntcj/team1
f085271e712da7f3ced87520765906e1b6731d65
26bf976e9979dff711132324e49751780c90f8e2
refs/heads/main
2023-06-21T22:12:07.039039
2021-07-12T22:19:25
2021-07-12T22:19:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
820
py
#!/usr/bin/env python3 # # Installed packages: # # from flask import (Flask, redirect, render_template, url_for) from markupsafe import escape app = Flask(__name__) @app.route('/') def index(): return redirect('http://127.0.0.1:5000/welcome') @app.route('/welcome') def welcome(): return render_template('welcome.html') @app.route('/budget') def budget(): return render_template('budget.html') @app.route('/lodging') def lodging(): return render_template('lodging.html') @app.route('/meals') def meals(): return render_template('meals.html') @app.route('/entertainment') def entertainment(): return render_template('entertainment.html') @app.route('/itinerary') def itinerary(): return render_template('itinerary.html') if __name__ == '__main__': app.run(debug=True)
b922221aa6a8d382df22ff335a91e74dc8ce015a
becf33483b318e0101f2e23cc57eda5c76626fbd
/model/bert.py
e28e6bef3e9abd6ba9125bf39bd6c9c8d9b00466
[]
no_license
LearningHarder/query_similar_tianchi_2020
fc74aa1d74423faf6ac53e254abba6f6f097ef3d
6208a0b1ff9b896b56179989200a1c48372e3ad3
refs/heads/master
2023-08-11T02:25:11.982982
2021-09-17T07:14:46
2021-09-17T07:14:46
269,318,002
1
0
null
2020-06-04T09:36:17
2020-06-04T09:36:16
null
UTF-8
Python
false
false
965
py
from bert4keras.bert import build_bert_model from tensorflow.keras.layers import Dropout, Dense from tensorflow.keras import Model class BertModel: def __init__(self, config_path: str, checkpoint_path: str): """ 初始化预训练的模型参数 :param config_path : :param checkpoint_path: """ self.config_path = config_path self.checkpoint_path = checkpoint_path def get_model(self): # 加载预训练模型 bert = build_bert_model( config_path=self.config_path, checkpoint_path=self.checkpoint_path, with_pool=True, return_keras_model=False, model="albert") output = Dropout(rate=0.1)(bert.model.output) output = Dense(units=2, activation='softmax', kernel_initializer=bert.initializer)(output) model = Model(bert.model.input, output) model.summary() return model
c3d0c5088b17dc4892ea8a5da270c9658f67e475
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/helpers/typeshed/stdlib/email/errors.pyi
656cbd374ac4c6ac5b1341328348f5c65ab2666a
[ "Apache-2.0", "MIT" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
1,532
pyi
import sys class MessageError(Exception): ... class MessageParseError(MessageError): ... class HeaderParseError(MessageParseError): ... class BoundaryError(MessageParseError): ... class MultipartConversionError(MessageError, TypeError): ... class CharsetError(MessageError): ... class MessageDefect(ValueError): def __init__(self, line: str | None = ...) -> None: ... class NoBoundaryInMultipartDefect(MessageDefect): ... class StartBoundaryNotFoundDefect(MessageDefect): ... class FirstHeaderLineIsContinuationDefect(MessageDefect): ... class MisplacedEnvelopeHeaderDefect(MessageDefect): ... class MultipartInvariantViolationDefect(MessageDefect): ... class InvalidMultipartContentTransferEncodingDefect(MessageDefect): ... class UndecodableBytesDefect(MessageDefect): ... class InvalidBase64PaddingDefect(MessageDefect): ... class InvalidBase64CharactersDefect(MessageDefect): ... class InvalidBase64LengthDefect(MessageDefect): ... class CloseBoundaryNotFoundDefect(MessageDefect): ... class MissingHeaderBodySeparatorDefect(MessageDefect): ... MalformedHeaderDefect = MissingHeaderBodySeparatorDefect class HeaderDefect(MessageDefect): ... class InvalidHeaderDefect(HeaderDefect): ... class HeaderMissingRequiredValue(HeaderDefect): ... class NonPrintableDefect(HeaderDefect): def __init__(self, non_printables: str | None) -> None: ... class ObsoleteHeaderDefect(HeaderDefect): ... class NonASCIILocalPartDefect(HeaderDefect): ... if sys.version_info >= (3, 10): class InvalidDateDefect(HeaderDefect): ...
3af0d9e86e8534f2ebc70878d3b6cc81f137dbe0
21700527a1a4d572331fc2d236fdf4e5920e7834
/Domashka/env/bin/pip3
c116a1464b98aa3b884ddc49dffacc16bbbb21f8
[]
no_license
ilovepizzawithpineapples/dz
7d68030554e2bec65472030348cd1745e09f873a
1e7df1fbd51b1a552db58cf51abec66b0e2c4b43
refs/heads/master
2020-05-19T17:15:26.839101
2019-05-06T05:39:19
2019-05-06T05:39:19
185,129,404
0
0
null
null
null
null
UTF-8
Python
false
false
267
#!/home/pixelsmaker/Projects_for_study_django/Youtube_molchanov/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
8fd967ac11f6f58b538c09958fa15f834b7c0f27
34bfba985cf6a2ae98e9ea19b58b3f7c25dda9d9
/alembic/versions/23a622f768da_initial_revision.py
cc9e947b84af99fe1d293ecd12effd0d2336b86f
[]
no_license
buddyup/buddyup
19c05fa5d83abe9611f4dad407538a9ea898969a
c5a64ff1680b48e3bc552434539d051166e665fd
refs/heads/master
2021-03-27T20:15:13.772744
2015-08-11T03:21:39
2015-08-11T03:21:39
18,304,362
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
"""Initial Revision Revision ID: 23a622f768da Revises: None Create Date: 2013-11-19 21:15:03.210863 """ # revision identifiers, used by Alembic. revision = '23a622f768da' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): pass def downgrade(): pass
aa3a6e385c0912000d5014878d7a916a15c8ceb6
7dab8df68b1a11011d401555471cd74b965626b7
/plotter.py
e78bbc1ac4339820ef86812b451755618523863d
[]
no_license
brilund/3D-PAWS
cb4cd31ec53850302d75cb4da55d6c6b0b9ffa0a
fb973d32cd3699ee01c02a7b68a803cdafc86833
refs/heads/master
2023-07-15T15:52:41.911569
2021-02-04T00:57:31
2021-02-04T00:57:31
269,197,084
0
0
null
null
null
null
UTF-8
Python
false
false
40,133
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 4 16:05:12 2020 @author: blund """ ############################################################################### ''' _____ _____ _ ____ ___ ___ _____ | \ | / \ | \ | \ / | | |____/ |__ /___\ | | | \/ | |__ | \ | / \ | | | | | | \ |____ / \ |___/ | | |____ ''' #This code plots 3D-PAWS data based on user input from a parent program. # #Written by Brianna Lund # #QUESTIONS? #Email me at [email protected] # #LICENSE: #This code may be used and distributed freely, provided proper attribution is # given to UCAR and the author. # # #REQUIREMENTS: # Python 3 # Numpy # Pandas # Sys # # #HISTORY: # Nov 04, 2020 - First Write; modified from original BMP_weekly_plotter.py # # #PLANNED FEATURES: # # #HOW TO USE: # 1. Save this file/program in the same directory as the parent program you # will use this function in conjunction with # 2. Import this function in the parent program (no need for file # extensions): # # a) from plotter import plotter # ... or... # b) import plotter as pltr # # 3. Call the function in the parent program, ensuring that you pass the # appropriate attributes/parameters: # # a) call_plotter = plotter(mintime, maxtime, df) # ... or... # b) call_plotter = pltr.plotter(mintime, maxtime, df) # # 4. Run the parent program within terminal (e.g. "python main.py"), # or open the parent program in Spyder and run from there. # # #Example header from files --> no file header(s)!!! (this could change...) # #Example data from files: # # # #NOTES: At the moment, this program reads in all data (the whole dataframe) # even if a subset of time is requested for plotting, analysis, etc., # which is a bit of an overkill ############################################################################## ######################### IMPORTING MODULES ############################ ############################################################################## import matplotlib.pyplot as plt import numpy as np import pandas as pd import sys import datetime ############################################################################## ##################### UNIVERSAL PLOTTING PARAMETERS ##################### ############################################################################## def _universal_params(ax,df,mintime,maxtime,sensor,site_ID): #add dashed grid lines plt.grid(which='major', linestyle='--', color='dimgray') plt.grid(which='minor', linestyle=':',color='gray') #set x-axis limits/range ax.set_xlim(df.time[mintime], df.time[maxtime]) #set the plot's title if sensor.lower() == "wind_vane": plt.title("%s : %s" % (site_ID, ''.join(sensor.replace('_', ' ')).upper()), fontsize=12) elif sensor.lower == "rain": plt.title("%s : TIPPING BUCKET" % site_ID, fontsize=12) else: #all other sensors follow the standard plot title below plt.title("%s : %s" % (site_ID, sensor.upper()), fontsize=12) #set the x-axis label plt.xlabel("Date / Time (UTC)") #set the plot legend plt.legend(loc='upper left', bbox_to_anchor=(1, 1), framealpha=0.95, fancybox=True, shadow=True, fontsize=10) return ############################################################################## ############################## SAVE FIGURE ############################## ############################################################################## def _save_figure(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, maxtime, plot_opt, tag, df): if plot_opt == "weekly": #'tag' here represents the dates for which the figure's time frame is valid; # it is used in the name of the figure tag = str(df.time[mintime])[:10].split("-")+["-"]+str(df.time[maxtime])[:10].split("-") tag = ''.join(x for x in tag) elif plot_opt =="daily": #'tag' here represents the date for which the figure's time frame is valid; # it is used in the name of the figure tag = str(df.time[mintime])[:10].split("-") tag = ''.join(x for x in tag) elif plot_opt == "monthly": #'tag' here represents the dates for which the figure's time frame is valid; # it is used in the name of the figure tag = str(df.time[mintime])[:7] #replace underscores in 'var_name' with hyphens/dashes; merely a personal # preference for figure naming var_name = ''.join(var_name.replace('_', '-')) #save the figure if sensor.lower() == "anemometer": var_name = "wind-spd" if averaged == False: plt.savefig('%s%s_%s-%s_%s.png' % (save_dir, site_ID, var_name, units, tag), \ dpi=500, bbox_inches='tight') elif averaged == True: plt.savefig('%s%s_%s-%s_%s-min_%s.png' % (save_dir, site_ID, var_name, units, avg_window, tag), \ dpi=500, bbox_inches='tight') elif averaged == "static" or averaged == "resampled": plt.savefig('%s%s_%s-%s_%s-min-%s_%s.png' % (save_dir, site_ID, var_name, units, avg_window, averaged, tag), \ dpi=500, bbox_inches='tight') elif sensor.lower() == "wind_vane": var_name = "wind-dir" plt.savefig('%s%s_%s_%s.png' % (save_dir, site_ID, var_name, tag), \ dpi=500, bbox_inches='tight') elif sensor.lower() == "rain": plt.savefig('%s%s_%s-%s_%s.png' % (save_dir, site_ID, sensor.upper(), units, tag), \ dpi=500, bbox_inches='tight') else: plt.savefig('%s%s_%s_%s_%s.png' % (save_dir, site_ID, sensor, var_name, tag), dpi=500, bbox_inches='tight') #show the figure that was generated plt.show() ############################################################################## ############################## PLOTTERs ################################# ############################################################################## #to plot figures for the user-defined time frame, call this function; this is # the default plotting function; the other plotting options depend on this # function; think of this one as the PARENT plotter def plotter(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, maxtime, plot_opt, tag, df): #no print statement here telling the user that this function was called # because this one gets called MANY times from the other plotting # functions (daily, weekly and monthly) #plot based on 'sensor' if sensor.lower() == "anemometer": #import matplotlib for anemometer only because we need to use that # rcParams thing import matplotlib as mpl #not sure what this does, but supposedly it is necessary for larger datasets; # this will not plot without it mpl.rcParams['agg.path.chunksize'] = 10000 #plot based on the user-defined averaging/smoothing parameters if averaged == False: #plotting all raw data ax = df.plot(x='time', y='wind_speed', color='b', label='wind_%s' % units, figsize=(30,5)) elif averaged == True: #plotting running averaged data ax = df.plot(x='time', y='windspd_avg', color='b', label='%s_%s-min' % (units, avg_window), figsize=(30,5)) elif averaged == "static": #plotting static averaged data (fewer data points) ax = df[::avg_window].plot(x='time', y='windspd_avg', color='b',label='%s_%s-min-%s' % (units, avg_window, averaged), figsize=(30,5)) elif averaged == "resampled": #plotting every nth raw data point (fewer data points) ax = df[::avg_window].plot(x='time', y='wind_speed', color='b', label='wind_%s_%s' % (units, averaged), figsize=(30,5)) else: #plotting all raw data; should eliminate this statement because # averaging parameters are checked in input_checker.py and if # 'averaged' does not meet any of the above conditions, the # program will exit at the input-checking stage, never getting # to this stage so the line below is a wasted of space; will # vet this thoroughly ax = df.plot(x='time', y='wind_speed', color='b', label='wind_%s' % units, figsize=(30,5)) ########## #some parameters specific to 'units' if units == "mps": #plot wind speed in meters per second #set y-axis limits/range ax.set_ylim(0., 10.) #set the y-axis label plt.ylabel("Wind Speed (m s$^-1$)") elif units == "kmph": #plot wind speed in kilometers per hour #set y-axis limits/range ax.set_ylim(0., 90.) #set the y-axis label plt.ylabel("Wind Speed (km h$^-1$)") elif units == "mph": #set y-axis limits/range ax.set_ylim(0., 50.) #set the y-axis label plt.ylabel("Wind Speed (m h$^-1$)") elif units == "kts": #plot wind speed in knots #set y-axis limits/range ax.set_ylim(0., 50.) #set the y-axis label plt.ylabel("Wind Speed (kts)") else: #in theory, we have already accounted for this potential error with # the input_checker, so this is redundant; may remove at some # point print("'units' not recognized. Program exiting...") sys.exit() ########## elif sensor.lower() == "wind_vane": ax = df.plot(x='time', y='wind_dir', color='b', label='wind_dir', figsize=(30,5)) #set y-axis limits/range ax.set_ylim(0., 360.) #set the y-axis label plt.ylabel("Wind Direction (degrees)") ########## elif sensor.lower() == "rain": ax = df.plot(x='time', y=['rain', 'no_rain'], color=['b','r'], label=['rain','no-rain'], figsize=(30,5)) #set y-axis range and title based on "millimeters" if units == "mm": #set y-axis limits/range ax.set_ylim(-0.1, 5.) #set the y-axis label plt.ylabel("Precipitation (mm)") #set y-axis range and title based on "inches" elif units == "inches": #set y-axis limits/range ax.set_ylim(-0.01, 0.2) #set the y-axis label plt.ylabel("Precipitation (in.)") ########## else: #for all other sensors, we plot here ax = df.plot(x='time', y=var_name, color='b', label=var_name, figsize=(30,5)) #plot parameters within these 'if' statements are those specific to each # variable if var_name == "temp_C": #plot temperature in Celsius #set y-axis limits/range ax.set_ylim(-20., 45.) #set the y-axis label plt.ylabel("Temperature ($^o$C)") elif var_name == "temp_F": #plot temperature in Fahrenheit #set y-axis limits/range ax.set_ylim(-10., 110.) #set the y-axis label plt.ylabel("Temperature ($^o$F)") elif var_name == "rel_hum": #plot relative humidity (%) #set y-axis limits/range ax.set_ylim(0., 100.) #set the y-axis label plt.ylabel("Relative Humidity (%)") elif var_name == "station_P": #plot station pressure (hPa)) #set y-axis limits/range ax.set_ylim(800., 875.) #set the y-axis label plt.ylabel("Station Pressure (hPa)") elif var_name == "SLP_hPa": #plot sea-level pressure (hPa) #set y-axis limits/range ax.set_ylim(900., 1100.) #set the y-axis label plt.ylabel("Sea-Level Pressure (hPa)") elif var_name == "SLP_inHg": #plot sea-level pressure (inches of Hg) #set y-axis limits/range ax.set_ylim(28., 32.) #set the y-axis label plt.ylabel("Sea-Level Pressure (inches of Hg)") elif var_name == "alt": #plot altitude (m) #set y-axis limits/range ax.set_ylim(1400., 1800.) #set the y-axis label plt.ylabel("Altitude (m)") #plot a horizontal line marking the actual altitude (according to Google # Earth) #plt.axhline(y=1617, color='r', linestyle=":", label="1617 m") elif var_name == "vis": #plot temperature in Celsius #set y-axis limits/range ax.set_ylim(0., 1600.) #set the y-axis label plt.ylabel("Visible (W m$^-2$)") elif var_name == "ir": #plot temperature in Fahrenheit #set y-axis limits/range ax.set_ylim(0., 10000.) #set the y-axis label plt.ylabel("Infrared (W m$^-2$)") elif var_name == "uv": #plot temperature in Fahrenheit #set y-axis limits/range ax.set_ylim(0., 700.) #set the y-axis label plt.ylabel("Ultraviolet (W m$^-2$)") elif var_name == "uvi": #plot temperature in Fahrenheit #set y-axis limits/range ax.set_ylim(0., 7.) #set the y-axis label plt.ylabel("UV Index") else: #if none of the conditions above are met, print an error statement # pointing the user to the potential cause (i.e. spelling) print("Variable name not found. Check the spelling of 'var_name'. Program exiting...") sys.exit() #Need to include a section that accounts for the wind BARB plotter ### UNIVERSAL PLOTTING PARAMETERS ### #call the function that sets up all the universal plotting parameters: # gridlines, x-axis limits, titles, labels, legends, etc. _universal_params(ax,df,mintime,maxtime,sensor,site_ID) #save the figure by calling the hidden '_save_figure' function _save_figure(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, maxtime, plot_opt, tag, df) return ############################################################################## ########################### DAILY PLOTTER ############################## ############################################################################## #to plot figures on a daily basis within the user-defined time frame, call # this function def daily_plotter(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, maxtime, plot_opt, tag, df): #tell the user that the function was called print("------------------------------------------------------------------\n") print("'daily_plotter' function called...\n") ''' Note that the very first occurrence of a 00:00 UTC time in the dataset should never occur later than the 1,439th index because there are 1,440 minutes in a day''' #set two counters: one to count the total number of days, and the other to # count the number of days that were actually plotted (skipping days # for which there are no data) #NOTE: the total count is technically equivalent to n-2 total FULL days for # time frames not perfectly divisible by 1440 minutes; if the last # interval does not equate to a full day but contains data, it will # still be counted in the total count of days total_count = 0 #count for ALL weeks possible within the time frame plotted_count = 0 #count for all weeks that were plotted within the time frame #this line will find the first occurrence of a 00:00 UTC time in the # selected timeframe; this is the start of your range to loop through # for making daily plots start = pd.DatetimeIndex(df.time[mintime:maxtime]).indexer_at_time('00:00:00')[0] + mintime #before getting into the loop, to account for instances such that the # dataset or the time frame set by the user begins with a partial day # (e.g. the first timestamp is NOT 00:00 UTC) plot that partial day all # by itself only up to the index marking the first occurrence of a # 00:00 UTC timestamp in the dataset / timeframe (a.k.a. 'start' # variable) if df.time[mintime:start].dt.time.empty != True and df.time[mintime:start].dt.time[mintime] != datetime.time(0,0): #increase total counter by 1 total_count += 1 #skip the creation of plot if there are no data within the current 1-day # period if (averaged == True or averaged == "static") and (df[df.columns[2]][mintime:start].notna().any() == False): #we need this special except above because when 'averaged' is set # to either of those two conditions, a new column is created in # the dataframe and it contains a different number of NaNs than # the column from which it was computed->created; the only # change is that we are referring to df.columns[2] instead of # df.columns[1]; this will likely have to change if I add the # ability to average ANY variable (not just wind speed) print("%s - %s not plotted --> No data" % (df.time[mintime], df.time[start])) pass #don't plot else: if df[df.columns[1]][mintime:start].empty == True: #this little condition avoids printing the statement that # "2019-01-08 00:00 - 2019-01-08 00:00" has no data because, of # course, this is a single time so it has no length/data; this # will only happen for datasets or given time frames that # exactly equal 1 day / 1440 minutes pass elif df[df.columns[1]][mintime:start].notna().any() == False: #tell the user this time frame was not plotted due to the absence of # any data print("%s - %s not plotted --> No data" % (df.time[mintime], df.time[start])) pass #move on the next iteration of the loop #if there is even a single data point within the current time frame, # plot it else: #increase the plotting counter by 1 plotted_count += 1 #call the default plotter function here; this also sets up the # universal plotting parameters AND saves the figures all in one plotter(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, start, plot_opt, tag, df) #since data are recorded every minute, and there are 1440 minutes in 1 day, # we set the range interval to 1440 (equivalent to 'every 1440th index'); #NOTE: this hard-coded method only works because we explicitly set each # record at a 1-minute interval and we fill any gaps in data with NaNs; # this will get more complicated if you start using raw seconds in # your timestamps interval = 1440 #find the ending index of the range over which to plot; this will be the # index of df.time that equals the 'maxtime' specified by the user; this, # too, is simply equal to 'maxtime', but we must add 1 to the index because # the 'range' function does not include the end value end = maxtime + 1 #store a list of dates/times that encompass weeks that were not plotted due to # missing data ####################### #now, loop through the entire time frame set by the user with 1-week intervals # making a week-long plot of the chosen variable for each iteration for d in range(start,end,interval): #increase total counter by 1 total_count += 1 #'mintime' and 'maxtime will now change through each iteration of the loop # to serve as the indices defining the 1-day intervals throughout the # dataset over which to plot; the difference between them, however, will # always represent 1 day / 1440 minutes mintime = d maxtime = d + interval #set 'maxtime' to the end of the range if 'maxtime' is out of the range # specified; this will only occur if the range is not perfectly # divisible by 1 day / 1440 minutes; in this instance, the very last # figure generated would NOT represent a 1-day period if maxtime > end: maxtime = end - 1 #now we subtract 1 because set_xlim() includes the # upper limit given when setting the range; if we # did not subtract 1, 'maxtime' would be out of # range for set_xlim() #skip the creation of plot if there are no data within the current 1-day # period if (averaged == True or averaged == "static") and (df[df.columns[2]][mintime:maxtime].notna().any() == False): #we need this special except above because when 'averaged' is set # to either of those two conditions, a new column is created in # the dataframe and it contains a different number of NaNs than # the column from which it was computed->created; the only # change is that we are referring to df.columns[2] instead of # df.columns[1]; this will likely have to change if I add the # ability to average ANY variable (not just wind speed) print("%s - %s not plotted --> No data" % (df.time[mintime], df.time[maxtime])) pass #don't plot else: if df[df.columns[1]][mintime:maxtime].empty == True: #this little condition avoids printing the statement that # "2019-01-08 00:00 - 2019-01-08 00:00" has no data because, of # course, this is a single time so it has no length/data; this # will only happen for datasets or given time frames that # exactly equal 1 day / 1440 minutes pass elif df[df.columns[1]][mintime:maxtime].notna().any() == False: #tell the user this time frame was not plotted due to the absence of # any data print("%s - %s not plotted --> No data" % (df.time[mintime], df.time[maxtime])) pass #move on the next iteration of the loop #if there is even a single data point within the current time frame, # plot it else: #increase the plotting counter by 1 plotted_count += 1 #call the default plotter function here; this also sets up the # universal plotting parameters AND saves the figures all in one plotter(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, maxtime, plot_opt, tag, df) return ############################################################################## ########################### WEEKLY PLOTTER ############################# ############################################################################## #to plot figures on a weekly basis within the user-defined time frame, call # this function def weekly_plotter(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, maxtime, plot_opt, tag, df): #tell the user that the function was called print("------------------------------------------------------------------\n") print("'weekly_plotter' function called...\n") #find the starting index of the range over which to plot; this is simply # 'mintime' but we will give it a different name because 'mintime' has a # differnt purpose within the 'for' loop below start = mintime #find the ending index of the range over which to plot; this will be the # index of df.time that equals the 'maxtime' specified by the user; this, # too, is simply equal to 'maxtime', but we must add 1 to the index because # the 'range' function does not include the end value end = maxtime + 1 #since data are recorded every minute, and there are 10080 minutes in 1 week, # we set the range interval to 10080 (equivalent to 'every 10080th index'); #NOTE: this hard-coded method only works because we explicitly set each # record at a 1-minute interval and we fill any gaps in data with NaNs; # this will get more complicated if you start using raw seconds in # your timestamps interval = 10080 #set two counters: one to count the total number of weeks, and the other to # count the number of weeks that were actually plotted (skipping weeks # for which there are no data) #NOTE: the total count is technically equivalent to n-1 total FULL weeks for # time frames not perfectly divisible by 7 days; if the last interval # does not equate to a full week but contains data, it will still be # counted in the total count of weeks total_count = 0 #count for ALL weeks possible within the time frame plotted_count = 0 #count for all weeks that were plotted within the time frame #store a list of dates/times that encompass weeks that were not plotted due to # missing data ####################### #now, loop through the entire time frame set by the user with 1-week intervals # making a week-long plot of the chosen variable for each iteration for w in range(start,end,interval): #increase total counter by 1 total_count += 1 #'mintime' and 'maxtime will now change through each iteration of the loop # to serve as the indices defining the 1-week intervals throughout the # dataset over which to plot; the difference between them, however, will # always represent 1 week / 7 days (i.e. 10080) mintime = w maxtime = w + interval #set 'maxtime' to the end of the range if 'maxtime' is out of the range # specified; this will only occur if the range is not perfectly # divisible by 1 week / 7 days; in this instance, the very last figure # generated would NOT represent a 7 day period if maxtime > end: maxtime = end - 1 #now we subtract 1 because set_xlim() includes the # upper limit given when setting the range; if we # did not subtract 1, 'maxtime' would be out of # range for set_xlim() #skip the creation of plot if there are no data within the current 7-day # period if df[df.columns[1]][mintime:maxtime].empty == True: #this little condition avoids printing the statement that # "2019-01-08 00:00 - 2019-01-08 00:00" has no data because, of # course, this is a single time so it has no length/data; this # will only happen for datasets or given time frames that # exactly equal 1 week / 7 days pass elif df[df.columns[1]][mintime:maxtime].notna().any() == False: #tell the user this time frame was not plotted due to the absence of # any data print("%s - %s not plotted --> No data" % (df.time[mintime], df.time[maxtime])) pass #move on the next iteration of the loop #if there is even a single data point within the current time frame, # plot it else: #increase the plotting counter by 1 plotted_count += 1 #call the default plotter function here; this also sets up the # universal plotting parameters AND saves the figures all in one plotter(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, maxtime, plot_opt, tag, df) return ############################################################################## ########################### MONTHLY PLOTTER ############################ ############################################################################## #to plot figures on a monthly basis within the user-defined time frame, call # this function def monthly_plotter(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, maxtime, plot_opt, tag, df): #tell the user that the function was called print("------------------------------------------------------------------\n") print("'monthly_plotter' function called...\n") #set two counters: one to count the total number of months, and the other to # count the number of months that were actually plotted (skipping months # for which there are no data) #NOTE: the total count is technically equivalent to n-2 total FULL months for # time frames that do not exactly start(end) on the very beginning(end) # of the month; if the last interval does not equate to a full month # but contains data, it will still be counted in the total count of # days total_count = 0 #count for ALL months possible within the time frame plotted_count = 0 #count for all months that were plotted within the time frame #this line will find the index of the very first day/time for each month in # the whole dataframe day1_of_month_idx = df.index[df.set_index('time').index.day == 1][::1440] #this line will find the index(indices) of the very first day/time for each # month within the time frame set by the user (within 'mintime' and # 'maxtime') day1_of_month_idx = day1_of_month_idx[(day1_of_month_idx>mintime) & (day1_of_month_idx<maxtime)] #the starting index of the range over which to plot; this is the first # index of 'day1_of_month_idx'; notice that if 'day1_of_month_idx' has # length of 1, 'start' and 'day1_of_month_idx' are the same start = day1_of_month_idx[0] #before getting into the loop, to account for instances such that the # dataset or the time frame set by the user begins with a partial month # (e.g. the first timestamp is NOT 00:00 UTC on the first of the mont) # plot that partial month all by itself only up to the index marking the # first of the month in the dataset / timeframe (a.k.a. 'start' variable) if (day1_of_month_idx.empty == False) and (mintime not in day1_of_month_idx): #increase total counter by 1 total_count += 1 #skip the creation of plot if there are no data within the current 1-day # period if (averaged == True or averaged == "static") and (df[df.columns[2]][mintime:start].notna().any() == False): #we need this special except above because when 'averaged' is set # to either of those two conditions, a new column is created in # the dataframe and it contains a different number of NaNs than # the column from which it was computed->created; the only # change is that we are referring to df.columns[2] instead of # df.columns[1]; this will likely have to change if I add the # ability to average ANY variable (not just wind speed) print("%s - %s not plotted --> No data" % (df.time[mintime], df.time[start])) pass #don't plot else: if df[df.columns[1]][mintime:start].empty == True: #this little condition avoids printing the statement that # "2019-01-08 00:00 - 2019-01-08 00:00" has no data because, of # course, this is a single time so it has no length/data; this # will only happen for datasets or given time frames that # exactly equal 1 day / 1440 minutes pass elif df[df.columns[1]][mintime:start].notna().any() == False: #tell the user this time frame was not plotted due to the absence of # any data print("%s - %s not plotted --> No data" % (df.time[mintime], df.time[start])) pass #move on the next iteration of the loop #if there is even a single data point within the current time frame, # plot it else: #increase the plotting counter by 1 plotted_count += 1 #call the default plotter function here; this also sets up the # universal plotting parameters AND saves the figures all in one plotter(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, start, plot_opt, tag, df) #find the ending index of the range over which to plot; this will be the # index of df.time that equals the 'maxtime' specified by the user; this, # too, is simply equal to 'maxtime' end = maxtime #store a list of dates/times that encompass weeks that were not plotted due to # missing data ####################### #now, loop through the entire time frame set by the user with 1-week intervals # making a week-long plot of the chosen variable for each iteration for m in range(len(day1_of_month_idx)): #increase total counter by 1 total_count += 1 #'mintime' and 'maxtime will now change through each iteration of the loop # to serve as the indices defining the 1-month intervals throughout # the dataset over which to plot; the difference between them will # vary depending on the date/time represented by them because the # duration of months are not always equal mintime = day1_of_month_idx[m] if mintime == day1_of_month_idx[-1] and mintime == end: #exit the loop if 'mintime' and 'end' are both equal to the last # element of 'day1_of_month_idx' break elif mintime == day1_of_month_idx[-1] and mintime != end: #set maxtime to 'end' if the last plot will not span a full month # (i.e. the original 'maxtime' was not equal to the first of a # month) maxtime = end else: #set 'maxtime' to the next element of 'day1_of_month_idx', after # 'mintime' maxtime = day1_of_month_idx[m+1] #skip the creation of plot if there are no data within the current 1-day # period if (averaged == True or averaged == "static") and (df[df.columns[2]][mintime:maxtime].notna().any() == False): #we need this special except above because when 'averaged' is set # to either of those two conditions, a new column is created in # the dataframe and it contains a different number of NaNs than # the column from which it was computed->created; the only # change is that we are referring to df.columns[2] instead of # df.columns[1]; this will likely have to change if I add the # ability to average ANY variable (not just wind speed) print("%s - %s not plotted --> No data" % (df.time[mintime], df.time[maxtime])) pass #don't plot else: if df[df.columns[1]][mintime:maxtime].empty == True: #this little condition avoids printing the statement that # "2019-01-08 00:00 - 2019-01-08 00:00" has no data because, of # course, this is a single time so it has no length/data; this # will only happen for datasets or given time frames that # exactly equal 1 day / 1440 minutes pass elif df[df.columns[1]][mintime:maxtime].notna().any() == False: #tell the user this time frame was not plotted due to the absence of # any data print("%s - %s not plotted --> No data" % (df.time[mintime], df.time[maxtime])) pass #move on the next iteration of the loop #if there is even a single data point within the current time frame, # plot it else: #increase the plotting counter by 1 plotted_count += 1 #call the default plotter function here; this also sets up the # universal plotting parameters AND saves the figures all in one plotter(sensor, save_dir, site_ID, var_name, units, averaged, avg_window, mintime, maxtime, plot_opt, tag, df) return ''' From here, you will want to use the indices in that list as the starting index from which to plot for each monthly plot. You only want to plot from that index to the next index in the list -1 in the dataframe (e.g. index for 2020-01-01 00:00 is 1236915 and index for 2020-02-01 00:00 is 1281555 so you plot from df.plot[1236915:1281555] so because indexing is exclusive of the ending value, you don't have to worry about subracting 1). For the very last plot in the dataset, you will have to make sure that it plots to the end of the time frame, even if not a complete month. Something similar to what you did with weekly plotting such that for the last iteration, you set the ending index to the last index of the dataframe+1 but make sure to subtract that +1 again so that set_xlim is not out of range''' # #returns a boolean array inditcating whether the datetimeindex given is the # # start of the month (doesn't care about time so any time on the first of # # the month will also return True); might be useful! # pd.DatetimeIndex(df.time[mintime:maxtime]).is_month_start ############################################################################## #only execute the functions if they are explicitly called from the parent # 3D_main.py program if __name__ == "__main__": plotter() daily_plotter() weekly_plotter() #monthly_plotter()
9771e560a49f34cfc2e40084ce20457d90961989
ab42fea7aaf909a9cdf63cbde2d169be841e4c01
/SHDY/merchant_agent_foreign/There_is_no_card/银二交易/银二提现.py
0661da3b483161be175ddd1e7636274f1db3096c
[]
no_license
niah161951/pytest
0e9692086f9ec450a7b1d5a3b310db807ab8982f
14b48950d956bbf05d226ba8dd39223a4bdd40e3
refs/heads/master
2022-11-05T16:54:10.408068
2020-06-22T08:18:36
2020-06-22T08:18:36
265,437,953
0
0
null
null
null
null
UTF-8
Python
false
false
868
py
# -*- coding: utf-8 -*- # @The_author: Lenovo # @Time : 2020/2/5 9:17 import requests from SHDY.Public.conf import Config tradeNo = Config().get_param("mer_order_no") dyMchNo = Config().get_param("mercid") dyMchNo1 = Config().get_param("id") url = 'http://localhost:8080/DemoJava/settle/mer/pay' data = { "orgNumber":"121", #机构号 "dyMchNo":dyMchNo, #电银商户号 "amt":"449", #提现金额 "fee":"1", #提现手续费 "tradeNo":tradeNo, #交易流水号获取交易的流水单号 "tradeDate":"20200219", #交易日期 "tradeTime":"174323", #交易时间 "token":"e41669b81958498182f6550a02ff13c0" } reg = requests.post(url,json=data).json() print(reg)
b2fd0b0e0edb47a2a5bbc7365ac7cf6d117dd589
1470cc68d35157084fca66ce76f342b3dd481d22
/test.py
18b1c2a3c4d4d315fec7a4d8b0116763cf30d26c
[]
no_license
desmondykl/AI-assignment-2
c44a35d946945ee4e48f265d7ba92a1f1a29deeb
b5074e9fe00c5c6217e890d2c157442179410b9d
refs/heads/main
2023-04-08T16:43:01.549268
2021-04-04T09:44:53
2021-04-04T09:44:53
354,506,985
0
0
null
null
null
null
UTF-8
Python
false
false
4,165
py
import argparse import random from environment import TreasureCube import numpy as np import matplotlib.pyplot as plt import pprint import pandas as pd # you need to implement your agent based on one RL algorithm class RandomAgent(object): def __init__(self): self.action_space = ['left','right','forward','backward','up','down'] # in TreasureCube self.Q = [] def take_action(self, state): action = random.choice(self.action_space) return action # implement your train/update function to update self.V or self.Q # you should pass arguments to the train function def train(self, state, action, next_state, reward): pass class Q_learnAgent(object): def __init__(self): self.action_space = ['left','right','forward','backward','up','down'] # in TreasureCube self.dim = 4 self.explorationRate = 0.01 self.discountFactor = 0.99 self.learningRate = 0.5 self.Q = {} for z in range(self.dim): for x in range(self.dim): for y in range(self.dim): allPossibleAction = {} for a in self.action_space: allPossibleAction[a] = 0 self.Q[str(z)+str(x)+str(y)] = allPossibleAction def print_Qtable(self): pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', 500) pd.set_option('display.max_colwidth', None) Qtable = pd.DataFrame.from_dict(self.Q, orient='index', columns=self.action_space) print(Qtable) Qtable.to_csv (r'export_dataframe.csv', index = False, header=True) def take_action(self, state): if random.random() < self.explorationRate: action = random.choice(self.action_space) else: Q_value_action = self.Q[state] maxKey = max(Q_value_action, key=Q_value_action.get) maxValue =Q_value_action[maxKey] BestAction = [] for a in Q_value_action: if Q_value_action[a] == maxValue: BestAction.append(a) action = np.random.choice(BestAction) return action # implement your train/update function to update self.V or self.Q # you should pass arguments to the train function def train(self, state, action, next_state, reward): #old estimation Q_old = self.Q[state][action] #new sample Q_old_next = self.Q[next_state] max_Q_old_next = Q_old_next[max(Q_old_next, key=Q_old_next.get)] #new estimation self.Q[state][action] = Q_old + self.learningRate*(reward + self.discountFactor*max_Q_old_next - Q_old) def test_cube(max_episode, max_step): env = TreasureCube(max_step=max_step) agent = Q_learnAgent() reward_per_episode = [] for epsisode_num in range(0, max_episode): state = env.reset() terminate = False t = 0 episode_reward = 0 while not terminate: action = agent.take_action(state) reward, terminate, next_state = env.step(action) episode_reward += reward # you can comment the following two lines, if the output is too much #env.render() # comment #print(f'step: {t} state:{state} action: {action}, reward: {reward}') # comment t += 1 agent.train(state, action, next_state, reward) state = next_state reward_per_episode.append(episode_reward) print(f'epsisode: {epsisode_num}, total_steps: {t} episode reward: {episode_reward}') agent.print_Qtable() plt.title('Episode rewards vs Episodes') plt.xlabel('Episodes') plt.ylabel('Episode rewards') plt.plot(reward_per_episode) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Test') parser.add_argument('--max_episode', type=int, default=500) parser.add_argument('--max_step', type=int, default=500) args = parser.parse_args() test_cube(args.max_episode, args.max_step)
d78ef6ecd64be809897d19645a1bbe40685bf247
b08d42933ac06045905d7c005ca9c114ed3aecc0
/src/coefSubset/evaluate/ranks/twentyPercent/rank_2xra_D.py
d4d58ac3ba1c1b78c36a4f1f987552c3ea5935e1
[]
no_license
TanemuraKiyoto/PPI-native-detection-via-LR
d148d53f5eb60a4dda5318b371a3048e3f662725
897e7188b0da94e87126a4acc0c9a6ff44a64574
refs/heads/master
2022-12-05T11:59:01.014309
2020-08-10T00:41:17
2020-08-10T00:41:17
225,272,083
1
0
null
null
null
null
UTF-8
Python
false
false
3,392
py
# 9 July 2019 # Kiyoto Aramis Tanemura # Several metrics are used to assess the performance of the trained RF model, notably native ranking. This script returns a ranking of the native protein-protein complex among a decoy set. For convenience, I will define as a function and will call in a general performance assessment script. # Modified 11 July 2019 by Kiyoto Aramis Tanemura. To parallelize the process, I will replace the for loop for the testFileList to a multiprocessing pool. # Modified 9 September 2019 by Kiyoto Aramis Tanemura. I will use the function to perform the calculation on one CSV file only. Thus instead of a function to import in other scripts, they will be individual jobs parallelized as individual jobs in the queue. import os import pandas as pd import numpy as np import pickle os.chdir('/mnt/scratch/tanemur1/') # Read the model and trainFile testFile = '2xra.csv' identifier = 'D' coefFrac = 0.2 testFilePath = '/mnt/scratch/tanemur1/CASF-PPI/nonb_descriptors/complete/' modelPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/twentyPercent/' outputPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/evaluate/twentyPercent/ranks/' pdbID = testFile[:4] with open(modelPath + 'model' + identifier + '.pkl', 'rb') as f: clf = pickle.load(f) result = pd.DataFrame() scoreList = [] df1 = pd.read_csv(testFilePath + testFile) dropList = ['Unnamed: 0', 'Unnamed: 0.1', 'ref'] df1 = df1.drop(dropList, axis = 1) df1 = df1.set_index('Pair_name') df1 = pd.DataFrame(df1.values.T, columns = df1.index, index = df1.columns) df1.fillna(0.0, inplace = True) #df1 = df1.reindex(sorted(df1.columns), axis = 1) # Keep coefficients within the given fraction when ordered by decreasing order of coefficient magnitude coefs = pd.read_csv('/mnt/home/tanemur1/6May2019/2019-11-11/results/medianCoefs.csv', index_col = 0, header = None, names = ['coefficients']) coefs['absVal'] = np.abs(coefs['coefficients']) coefs.sort_values(by = 'absVal', ascending = False, inplace = True) coefs = coefs[:int(14028 * coefFrac + 0.5)] keepList = list(coefs.index) del coefs df1 = df1[keepList] df1 = df1.reindex(sorted(df1.columns), axis = 1) with open(modelPath + 'standardScaler' + identifier + '.pkl', 'rb') as g: scaler = pickle.load(g) for i in range(len(df1)): # subtract from one row each row of the dataframe, then remove the trivial row[[i]] - row[[i]]. Also some input files have 'class' column. This is erroneous and is removed. df2 = pd.DataFrame(df1.iloc[[i]].values - df1.values, index = df1.index, columns = df1.columns) df2 = df2.drop(df1.iloc[[i]].index[0], axis = 0) # Standardize inut DF using the standard scaler used for training data. df2 = scaler.transform(df2) # Predict class of each comparison descriptor and sum the classes to obtain score. Higher score corresponds to more native-like complex predictions = clf.predict(df2) score = sum(predictions) scoreList.append(score) # Make a new DataFrame to store the score and corresponding descriptorID. Add rank as column. Note: lower rank corresponds to more native-like complex result = pd.DataFrame(data = {'score': scoreList}, index = df1.index.tolist()).sort_values(by = 'score', ascending = False) result['rank'] = range(1, len(result) + 1) with open(outputPath + pdbID + identifier + '.csv', 'w') as h: result.to_csv(h)
af6fb6ffc288d9afb0dd158a13136688eab72366
4d2ece7d5ba6ac767ffac5d8a14a0f0bee4e2d70
/class_linked.py
b51aaf8eb14a5f32876752c10d1301d3c5dd7895
[]
no_license
HarshSharma009/Python
dec5ba5ab535d949b396e5b3d1f597d15eceb6c9
a2393b88b58b740a0fd710eb4e9d67b8e26c6b61
refs/heads/master
2021-06-26T14:25:58.397856
2021-06-12T05:38:49
2021-06-12T05:38:49
228,650,183
0
0
null
null
null
null
UTF-8
Python
false
false
4,470
py
# -*- coding: utf-8 -*- """ Created on Mon Mar 2 14:43:41 2020 @author: Harsh Sharma """ class Node: def __init__(self,value=None): self.value=value self.next=None def isempty(self): return (self.value==None) def append(self,v): if self.isempty(): self.value=v elif self.next==None: nn=Node(v) self.next=nn else: (self.next).append(v) def inserthead(self,v): if self.isempty(): self.value=v return else: nn=Node(v) nn.value,self.value=self.value,nn.value self.next,nn.next=nn,self.next return def bubblesort(self): t1=self t2=self.next while t1!=None: tmp=t1 t2=t1.next while t2!=None: if t1.value>t2.value: t1.value,t2.value=t2.value,t1.value t1=t1.next t2=t2.next t1=tmp.next def bubblesort1(self): t1=self n=self.listLength() for i in range(n): for j in range(n-i-1): if t1.next.value<t1.value: t1.next.value,t1.value=t1.value,t1.next.value t1=t1.next t1=self @classmethod def addll(cls,l1,l2): n=Node(l1.value+l2.value) while l1.next!=None and l2.next!=None: l1=l1.next;l2=l2.next n.append(l1.value+l2.value) return n def listLength(self): le=1 l=self while l.next is not None: le+=1 l.next=l.next.next return le def count(self,c=0): if self.next==None: return 1 else: return 1+self.next.count() def delete(self,v): if self.isempty(): print('Empty List') return if self.value ==v: if self.next == None: self.value=None return else: self.value=self.next.value self.next=self.next.next return tmp=self while tmp.next!=None: if tmp.next.value==v: tmp.next=tmp.next.next return else: tmp=tmp.next else: print('not in list') return @classmethod def createList(cls,l): n=Node() for i in l: n.append(i) return n @classmethod def concat(cls,l1,l2): while l1.next != None: l1=l1.next l1.next=l2 @classmethod def reverse(cls,l): prev=None current_node=l while current_node is not None: n=current_node.next current_node.next=prev prev=current_node current_node=n return prev def swap(self): if self.next==None: return else: (self.value,self.next.value)=(self.next.value,self.value) self.next.swap() def leftrotate(self,n=1): n=n%self.listLength() for i in range(n): self.swap() def rswap(self): if self.next==None: return else: tmp=self while tmp.next!=None: tmp=tmp.next while self.next.next!=None: self.value,tmp.value=tmp.value,self.value self=self.next self.value,tmp.value=tmp.value,self.value def riswap(self): t1=self while t1.next.next!=None: t1=t1.next t2=t1.next t1.next=None self.inserthead(t2.value) def rightrotate(self,n=1): n=n%self.listLength() for i in range(n): self.riswap() def show(self): if self.isempty(): return elif self.next==None: print(self.value) return else: print(str(self.value)+'-->',end='') (self.next).show()
d9e98f51953a04b22a2f8bc4fd66c62fb3eb046a
18dca9a552f5aa9303536613ec39f19cebf6647c
/Evaluation/OnlineEvaluation/grouped_nlppapers.py
6d8de263c13fa0316b9700846890cd35bbd31a54
[ "MIT" ]
permissive
ashwath92/MastersThesis
9a39ed7eec825ed559d09507721c21bd12e2ab9c
f74755dc0c32f316da3c860dd5dbfa4c9cad97b3
refs/heads/master
2021-08-16T12:01:33.282459
2020-06-27T16:00:16
2020-06-27T16:00:16
197,282,312
0
0
null
null
null
null
UTF-8
Python
false
false
2,061
py
import pandas as pd import re import contractions from gensim.parsing import preprocessing from HyperDoc2Vec import * hd2vmodel = HyperDoc2Vec.load('/home/ashwath/Programs/MAGCS/MAG-hyperdoc2vec/models/magcsenglish_window20.model') def clean_text(text): """ Cleans the text in the only argument in various steps ARGUMENTS: text: content/title, string RETURNS: cleaned text, string""" # Replace newlines by space. We want only one doc vector. text = text.replace('\n', ' ').lower() # Remove URLs text = re.sub(r"http\S+", "", text) # Expand contractions: you're to you are and so on. text = contractions.fix(text) # Remove stop words text = preprocessing.remove_stopwords(text) # Remove punctuation -- all special characters text = preprocessing.strip_multiple_whitespaces(preprocessing.strip_non_alphanum(text)) return text filename='AllNLPcontexts.tsv' df = pd.read_csv(filename, sep='\t', encoding='utf-8') #17126 df = df[~df.duplicated()] # 17111 # KEEP ONLY CONTEXTS WHICH ARE IN THE TRAINING SET df = df[df.groundtruth.isin(hd2vmodel.docvecs.offset2doctag)] # 9206 df['normcontext'] = df['context'].apply(clean_text) contextdict = {normalized: original for normalized, original in df[['normcontext', 'context']].values} df['wordcount'] = df['normcontext'].apply(lambda x: len(x.split())) df = df[df.wordcount>8] # 9019 # Remove contexts with less than 9 non-stop words grouped_df = df.groupby(['magid', 'title', 'normcontext'])['groundtruth'].apply(list).to_frame('ground_truth').reset_index() # 8356 grouped_df['context'] = grouped_df['normcontext'].map(contextdict) grouped_df = grouped_df.drop('normcontext', axis=1) # Convert the list to a string with a comma between mag ids (no space) grouped_df['ground_truth'] = grouped_df['ground_truth'].apply(lambda x: ','.join(str(j) for j in x)) # 8356 left # Remove contexts with less than grouped_df.to_csv('/home/ashwath/Programs/OnlineEvaluation/NLPcontexts_grouped.tsv', sep='\t', encoding='utf-8', index=False) print(grouped_df.shape) #
62ac8f0793cc301b038d63a9b03e49348f29bf26
49e703cdf72110b2be85e94b71dcbe88660f05e7
/ssz/sedes/integer.py
2ec7bae305f54ce570acc64bc3aea1c19db8fd3a
[ "MIT" ]
permissive
vapory-staging/py-ssz
becf67f5b03e171719c7166ffe28eaa1a9f09b30
4968148ff7fd86d53d7d082fc0f218d18fc6a4c9
refs/heads/master
2021-10-10T10:20:53.913112
2019-01-07T05:48:51
2019-01-07T05:48:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,417
py
from ssz.exceptions import ( DeserializationError, SerializationError, ) class UnsignedInteger: """ A sedes for integers (uint<N>). """ num_bytes = 0 def __init__(self, num_bits): # Make sure the number of bits are multiple of 8 if num_bits % 8 != 0: raise ValueError( "Number of bits should be multiple of 8" ) if num_bits <= 0: raise ValueError( "Number of bits should be greater than 0" ) self.num_bytes = num_bits // 8 def serialize(self, val): if isinstance(val, bool) or not isinstance(val, int): raise SerializationError( 'As per specified sedes object, can only serialize non-negative integer values', val ) if val < 0: raise SerializationError( 'As per specified sedes object, can only serialize non-negative integer values', val ) try: serialized_obj = val.to_bytes(self.num_bytes, 'big') except OverflowError as err: raise SerializationError('As per specified sedes object, %s' % err, val) return serialized_obj def deserialize_segment(self, data, start_index): """ Deserialize the data from the given start_index """ # Make sure we have sufficient data for deserializing if len(data) + start_index < self.num_bytes: raise DeserializationError( 'Insufficient data for deserializing', data ) end_index = start_index + self.num_bytes return int.from_bytes(data[start_index:end_index], 'big'), end_index def deserialize(self, data): deserialized_data, end_index = self.deserialize_segment(data, 0) if end_index != len(data): raise DeserializationError( 'Data to be deserialized is too long', data ) return deserialized_data uint8 = UnsignedInteger(8) uint16 = UnsignedInteger(16) uint24 = UnsignedInteger(24) uint32 = UnsignedInteger(32) uint40 = UnsignedInteger(40) uint48 = UnsignedInteger(48) uint56 = UnsignedInteger(56) uint64 = UnsignedInteger(64) uint128 = UnsignedInteger(128) uint256 = UnsignedInteger(256) uint384 = UnsignedInteger(384) uint512 = UnsignedInteger(512)
d92679ec536a61db4990fe12808f260b7736ae90
a43c965e30916dc197b0995efcc8370627fe4d70
/runTrial.py
91a81bb60e8f898103de159f63dbbc87bfe5dbb9
[ "MIT" ]
permissive
avkhadiev/mdfun
021200d369a6946d5b036fc741359f848abf2c6d
cbf5b5ab01f6f14dd2cb9e3078a035d62ef3228f
refs/heads/master
2021-01-19T09:27:25.447428
2017-04-26T14:53:00
2017-04-26T14:53:00
82,113,060
0
0
null
null
null
null
UTF-8
Python
false
false
2,010
py
# -*- coding: utf-8 -*- # # 1D Simple Harmonic Oscillator MD simulation # launches a single simulation based on the provided configuration # TODO calculates and saves required observables in the file # from optparse import OptionParser parser = OptionParser() parser.add_option("-n", "--name", action="store", type="string", dest="name", help="specify simulation type") parser.add_option("-s", "--simulation", action="store", type="string", dest="sim", help="specify simulation type") parser.add_option("-c", "--config", action="store", type="string", dest="config", help="specify configuration via ':'-separated string") parser.add_option("-d", "--debug", action="store_true", dest="debug", help="turn on debugging mode") parser.add_option("-v", action="store_true", dest="verbose", help ="print status messages to standartd output") parser.add_option("-q", action="store_false", dest="verbose", help ="don't print status messages to standartd output") parser.add_option("-t", "--test", action="store_true", dest="test", help ="run tests") parser.set_defaults(name="newTrial", simulation="sho", config = ":".join([ "dt=0.001", "integration=velocityVerlet"]), debug = False, verbose = True, test = False) (options, args) = parser.parse_args() ############################################################################### from md import simulate name = options.name sim = options.sim verbose = options.verbose debug = options.debug test = options.test if (verbose): print "Verbose mode: on\n" if (debug): print "Debug mode: on\n" if (test): print "Test mode: on\n" config = simulate.parse(options.config) if (test): simulate.time_reversal( sim, config, verbose, debug ) else: simulate.run( sim, name, config, verbose, debug )
9b8b6cb47acb3e04aeeb079a08753d5a1a3e9123
3f47573a56d7347b125c91f69114b440f3f868ce
/bundle/jedi-vim/jedi/test/test_utils.py
049dffd0f3cede659fb389acd518036d3558d647
[ "MIT" ]
permissive
utylee/.vimwin
25c53eabeea8a5e6e69e4b7fab761e1e442840e3
a7714412d6cdc7744fe510617c62aa18358bdd99
refs/heads/master
2021-06-24T18:07:39.201913
2017-09-13T01:24:39
2017-09-13T01:24:39
103,337,893
0
0
null
null
null
null
UTF-8
Python
false
false
3,663
py
try: import readline except ImportError: readline = False from jedi import utils from .helpers import unittest, cwd_at @unittest.skipIf(not readline, "readline not found") class TestSetupReadline(unittest.TestCase): class NameSpace(object): pass def __init__(self, *args, **kwargs): super(type(self), self).__init__(*args, **kwargs) self.namespace = self.NameSpace() utils.setup_readline(self.namespace) def completions(self, text): completer = readline.get_completer() i = 0 completions = [] while True: completion = completer(text, i) if completion is None: break completions.append(completion) i += 1 return completions def test_simple(self): assert self.completions('list') == ['list'] assert self.completions('importerror') == ['ImportError'] s = "print BaseE" assert self.completions(s) == [s + 'xception'] def test_nested(self): assert self.completions('list.Insert') == ['list.insert'] assert self.completions('list().Insert') == ['list().insert'] def test_magic_methods(self): assert self.completions('list.__getitem__') == ['list.__getitem__'] assert self.completions('list().__getitem__') == ['list().__getitem__'] def test_modules(self): import sys import os self.namespace.sys = sys self.namespace.os = os try: assert self.completions('os.path.join') == ['os.path.join'] assert self.completions('os.path.join().upper') == ['os.path.join().upper'] c = set(['os.' + d for d in dir(os) if d.startswith('ch')]) assert set(self.completions('os.ch')) == set(c) finally: del self.namespace.sys del self.namespace.os def test_calls(self): s = 'str(bytes' assert self.completions(s) == [s, 'str(BytesWarning'] def test_import(self): s = 'from os.path import a' assert set(self.completions(s)) == set([s + 'ltsep', s + 'bspath']) assert self.completions('import keyword') == ['import keyword'] import os s = 'from os import ' goal = set([s + el for el in dir(os)]) # There are minor differences, e.g. the dir doesn't include deleted # items as well as items that are not only available on linux. assert len(set(self.completions(s)).symmetric_difference(goal)) < 20 @cwd_at('test') def test_local_import(self): s = 'import test_utils' assert self.completions(s) == [s] def test_preexisting_values(self): self.namespace.a = range(10) assert set(self.completions('a.')) == set(['a.' + n for n in dir(range(1))]) del self.namespace.a def test_colorama(self): """ Only test it if colorama library is available. This module is being tested because it uses ``setattr`` at some point, which Jedi doesn't understand, but it should still work in the REPL. """ try: # if colorama is installed import colorama except ImportError: pass else: self.namespace.colorama = colorama assert self.completions('colorama') assert self.completions('colorama.Fore.BLACK') == ['colorama.Fore.BLACK'] del self.namespace.colorama def test_version_info(): assert utils.version_info()[:2] > (0, 7)
5643d6fa09f8461e8561a37f89cf1607c6f6d73f
9e02354f6cbfd6529e0003b79c5a6ce0926ff573
/rtcommit.py
78fdc1e1b2b711327ec250fa79775745db3e3e30
[]
no_license
jhuttner/rtcommit
40997f1335d66a374e1df8db28fa2e75481ca55e
a0ca34131c0ae48fb484092980217cf6d338eae9
refs/heads/master
2021-03-12T23:48:11.178757
2011-03-22T21:33:56
2011-03-22T21:33:56
1,444,980
0
1
null
null
null
null
UTF-8
Python
false
false
8,617
py
#!/usr/local/bin/python # Written by Joseph Huttner -- [email protected] # Licensed under the GNU General Public License # # Change Log # # Jan 7, 2011. # First release. Commit against an RT ticket and have the # commit message automatically populate with the RT subject. # # Jan 17 # Add support for use as Git subcommand # Add support for rt#id=0 # # Feb 7 - # Add support for committing against multiple tickets in one commit. # # Feb 28 # "git rt" without ticket number uses ticket IDs from # last time they were passed # # March 5 # Add history option with -b flag # Usage "git rt -b 3" populates commit file w/ last 3 rt tix that were # referenced in commit messages. (Does not work for rt=0) # # March 12 # Add xmpp capability. Requires Git post commit hook. # Note: Once I switch off of git-svn the post commit hook will become a post # update hook. # # March 13 # Make 'git rtcommit init' set everything up. # Only import xmpp when necessary # # March 14 # Put recipients and message inside --blast. Separate with colon. import base64 from datetime import datetime import getopt import os import shlex import subprocess import sys try: import json except: import simplejson as json xmpp = None TMP_FILE = '/tmp/rtcommit' RT_HISTORY_FILE = os.path.join(os.getcwd(), '.rtcommit/history.json') BLAST_FILE = os.path.join(os.getcwd(), '.rtcommit/blast.json') ALIAS_FILE = os.path.join(os.getenv('HOME'), 'xmpp-aliases.json') XMPP_CONFIG_FILE = os.path.join(os.getenv('HOME'), 'xmpp-config.json') ################################################################################ # Helper functions def read(path, default='', as_json=False): try: fobj = open(path, 'r') data = fobj.read() fobj.close() if as_json: data = json.loads(data) return data except IOError: return default except ValueError: return default def write(path, data, as_json=False): fobj = open(path, 'w') if as_json: data = json.dumps(data) fobj.write(data) fobj.close() ################################################################################ # RT functions def format_ticket_id(ticket_id): return '00000' if int(ticket_id) == 0 else ticket_id def get_ticket_subject(ticket_id): if int(ticket_id) == 0: return 'YourMessageHere' else: command = 'rt show -t ticket ' + ticket_id + ' -f subject,id' subprocess.call(shlex.split(command), stdout=file(TMP_FILE, 'w')) subject = open(TMP_FILE).readline().split(":", 1)[1].strip() return subject def make_tmp_commit_file(ticket_ids): # TODO - make the commit msg formatted correctly commit_msg_parts = [] for tid in ticket_ids: formatted_tid = format_ticket_id(str(tid)); msg = " ".join(['#rt#' + formatted_tid + ':', get_ticket_subject(tid)]) commit_msg_parts.append(msg) commit_msg = '\n'.join(commit_msg_parts) write(TMP_FILE, commit_msg) def update_history_file(current, newest): if not current: result = newest else: for _id in reversed(newest): if current[0] != _id and id != 0: current.insert(0, _id) result = current write(RT_HISTORY_FILE, result, True) def exec_git_commit(): command = 'git commit -a --edit -F /tmp/rtcommit' subprocess.call(shlex.split(command)) ################################################################################ # Blast functions class Blast(object): def __init__(self): self.aliases = read(ALIAS_FILE, {}, True) self.blasts = read(BLAST_FILE, [], True) self.xmpp_config = read(XMPP_CONFIG_FILE, as_json=True) def not_at_no_op(self): return self.blasts and 'no_op' not in self.blasts[0] def store_blast(self, blast): if blast.find(':') != -1: to, msg = blast.split(':', 1) else: to = blast msg = '' to = [s.strip() for s in to.split(',')] timestamp = datetime.utcnow() new_blast = { 'to': to, 'msg': msg.strip(), 'timestamp': str(timestamp), } curr_blasts = read(BLAST_FILE, [], True) curr_blasts.insert(0, new_blast) write(BLAST_FILE, curr_blasts, True) def xmpp_connect(self): client = self.xmpp_config['client'] server = self.xmpp_config['server'] port = self.xmpp_config['port'] username = self.xmpp_config['username'] password = base64.b64decode(self.xmpp_config['password']) self.cnx = xmpp.Client(client, debug=[]) # Turn on debugging #self.cnx = xmpp.Client(client) self.cnx.connect(server=(server, port)) self.cnx.auth(username, password, 'botty') def _get_alias_type(self, alias): if alias in self.aliases['group']: return 'group' elif alias in self.aliases['user']: return 'user' return 'unknown_type' def _send_group_blast(self, room, blast): nickname = self.xmpp_config['nickname'] self.cnx.send(xmpp.Presence(to="%s/%s" % (room, nickname))) msg = xmpp.protocol.Message(body=blast) msg.setTo(room) msg.setType('groupchat') self.cnx.send(msg) def _send_user_blast(self, to, content): msg = xmpp.Message(to, content) self.cnx.send(msg) def store_no_op(self): """No-op prohibits blast from executing.""" curr_blasts = read(BLAST_FILE, [], True) curr_blasts.insert(0, {'no_op': 1}) write(BLAST_FILE, curr_blasts, True) def get_git_commit_info(self): command = 'git log -n 1' subprocess.call(shlex.split(command), stdout=file(TMP_FILE, 'w')) data = open(TMP_FILE).read() return data def send_blast(self): xmpp_targets = { 'group': [], 'user': [], 'unknown_type': [], } if self.not_at_no_op(): blast = self.blasts[0] for recipient in blast['to']: _type = self._get_alias_type(recipient) if _type in ['group', 'user']: full = self.aliases[_type][recipient] xmpp_targets[_type].append(full) else: xmpp_targets[_type].append(recipient) parts = [blast['msg'], '', self.get_git_commit_info()] msg = '\n'.join(parts) for r in xmpp_targets['group']: self._send_group_blast(r, msg) # users.append(current_user) ? # treat the unknowns as users for r in xmpp_targets['user'] + xmpp_targets['unknown_type']: self._send_user_blast(r, msg) ################################################################################ # Initialization functions def is_initialized(): look_for = os.path.join(os.getcwd(), '.rtcommit') return os.path.exists(look_for) def initialize(): if is_initialized(): return 'Error. Directory already exists.' else: def prepend_cwd(*items): """Build up paths with os.getcwd more easily.""" items = list(items) items.insert(0, os.getcwd()) return os.path.join(*items) history_parts = ['touch', prepend_cwd('.rtcommit', 'history.json')] blast_parts = ['touch', prepend_cwd('.rtcommit', 'blast.json')] mkdir_cmd = ' '.join(['mkdir', prepend_cwd('.rtcommit')]) init_history_file_cmd = ' '.join(history_parts) init_blast_file_cmd = ' '.join(blast_parts) subprocess.call(shlex.split(mkdir_cmd)) subprocess.call(shlex.split(init_history_file_cmd)) subprocess.call(shlex.split(init_blast_file_cmd)) return 'RT Commit library initialized successfully. To remove, \ \'rm -rf .rtcommit\'' ################################################################################ # Main function def main(argv): optlist, args = getopt.gnu_getopt(argv[0:], 'p:', ['blast=', 'send-blast']) optlist = dict(optlist) if 'init' in args: result = initialize() print result return else: try: assert is_initialized() except AssertionError: print 'You must initialize RT Commit with \'git rtcommit init\' \ before running that command.' return if '--send-blast' in optlist: instance = Blast() if instance.not_at_no_op(): global xmpp xmpp = __import__('xmpp') instance.xmpp_connect() instance.send_blast() instance.store_no_op() return if '--blast' in optlist: instance = Blast() blast = optlist['--blast'] instance.store_blast(blast) cl_ticket_ids = args history = read(RT_HISTORY_FILE, as_json=True) if '-p' in optlist: # Need 'map' because unicode breaks everything from_history = map(str, history[:int(optlist['-p'])]) else: from_history = [] ticket_ids = cl_ticket_ids + from_history if ticket_ids: make_tmp_commit_file(ticket_ids) update_history_file(history, cl_ticket_ids) exec_git_commit() if __name__ == '__main__': main(sys.argv[1:])
a1bc22d85ebb4a4a6709a2b40fc1b66ac428833b
312732cce4737a33bd0a13137936b14424db884e
/filter_month11_good_data.py
38755d2f3cda21807aaa952864f9a829cb2bdd7e
[]
no_license
marlboroug/mscode
21c7f6408c4869aeb90b08ae9a29a0f7d09344fb
ee453c958d3d1d07eb8cff693f913fe4176926c6
refs/heads/master
2021-01-21T17:13:48.932367
2017-12-22T08:19:18
2017-12-22T08:19:18
98,517,158
0
0
null
null
null
null
UTF-8
Python
false
false
13,070
py
# encoding: utf-8 """cross_validation_month_detail Usage: cross_validation_month_fault_detail.py [--fault_disk_take_top=<fault_disk_take_top>] [--good_disk_take_top=<good_disk_take_top>] [--source_file_name=<source_file_name>] [--model_type=<model_type>] cross_validation_month_fault_detail.py (-h | --help) cross_validation_month_fault_detail.py --version Options: --fault_disk_take_top=<fault_disk_take_top> epoch. [default: 10]. --good_disk_take_top=<good_disk_take_top> epoch. [default: None]. --source_file_name=<source_file_name> epoch. [default: backblaze_2016.csv]. --model_type=<model_type> model. [default: RandomForest]. -h --help Show this screen. --version Show version. """ # (--fault_train_month=<fault_train_month>) (--fault_test_month=<fault_test_month>) (--good_month_start=<good_month_start>) (--good_month_stop=<good_month_stop>) (--good_training_ratio=<good_training_ratio>) from docopt import docopt import pandas as pd import os from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from collections import Counter import numpy as np import logging from calendar import monthrange import datetime import _pickle as cPickle import matplotlib.pyplot as plt from sklearn import metrics from sklearn import tree import pydotplus import random import multiprocessing header_file_name = 'header.csv' #nrows_test 注意数量是不是批量的数据 nrows_test = None source_file_name1 = 'small_new_feature_11month_feature_top20_Good.csv' index_beg = 0 #11 = 0, 18 = 7 index_end = 3 experiment_type = 'generate_good_month_11_filter_time_index' year = 2016 def _get_experiment_base(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top): return "file" # return 'FTRM_{}-FTEM_{}-GM_{}_{}-GTR_{}-F_top_{}-G_top_{}'.format( # fault_train_month, fault_test_month, good_month_start, good_month_stop, round(good_training_ratio, 2), # fault_disk_take_top, good_disk_take_top # ) def _get_train_prefix(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top): return _get_experiment_base(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top) + '_train' def _get_test_prefix(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top): return _get_experiment_base(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top) + '_test' def _get_train_file_name(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top): return experiment_type + '_' + _get_train_prefix(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top) + '.csv' def _get_test_file_name(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top): return experiment_type + '_' + _get_test_prefix(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top) + '.csv' def _get_result_folder(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top): return experiment_type + '_' + _get_experiment_base(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio, fault_disk_take_top, good_disk_take_top) def __get_first_day_in_month(month): return datetime.datetime.strptime( '{}-{}-01'.format(int(year),month), "%Y-%m-%d") def __get_last_day_in_month(month): return datetime.datetime.strptime( '{}-{}-{}'.format(int(year),month, monthrange(int(year), month)[1]), "%Y-%m-%d") def _do_statistics(df): y = df["LabelId"] fault_unique_disks = df[df['LabelId'] == 1]['SerialNumber'].unique() good_unique_disks = df[df['LabelId'] == 0]['SerialNumber'].unique() logging.warning( 'good disks:{}, fault disks:{}, item statistic:{}'.format( len(good_unique_disks), len(fault_unique_disks), Counter(y))) def preprocessingGroup2(group, gid, topNum): # logging.warning("id "+str(gid)) return group[index_beg:index_end] def multiProcPreprocess2(dfgb, topNum, keys): multiprocessing.freeze_support() #cpus = multiprocessing.cpu_count() cpus = 64 results = [] #to test serial version with multiprocessing.Pool(processes=cpus) as pool: for x in keys: result = pool.apply_async(preprocessingGroup2, args=(dfgb.get_group(x), x, topNum,)) results.append(result) data = pd.concat([result.get() for result in results]) print('multiprocess2 end one cycle') return data def generate_data(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio,fault_disk_take_top, good_disk_take_top, source_file_name): #取出两个月的内容 # with open(header_file_name) as f: # header = f.readline().strip('\n').split(',') header = None logging.warning('reading source file...') logging.warning('reading source file...' + str(source_file_name1)) file1 = pd.read_csv(source_file_name1, names=header, nrows = nrows_test) logging.warning('init data...') logging.warning('file 1 : ') _do_statistics(file1) #bad get last data filter_data = multiProcPreprocess2(file1.groupby('SerialNumber'),1,file1['SerialNumber'].unique()) # finish bad get last data filter_data.to_csv('filter_' + str(index_beg) + '_' + str(index_end) + '_small_new_feature_11month_feature_Good.csv', index=None) logging.warning('save filter 11month.') #get all data ##replace nan with mode # good9_mode_dict = dict() # good10_mode_dict = dict() # good11_mode_dict = dict() # # bad9_mode_dict = dict() # bad10_mode_dict = dict() # bad11_mode_dict = dict() # # # logging.warning('getting mode of every columns in training data...') # for name in bad9.columns: # if name in ['Min_DiskPartFailedTime','Max_DiskPartFailedTime','NodeId', 'SerialNumber', 'PreciseTimeStamp','LabelId']: # continue # # good9_mode_dict[name] = good9[name].mode() # good10_mode_dict[name] = good10[name].mode() # good11_mode_dict[name] = good11[name].mode() # # bad10_mode_dict[name] = bad10[name].mode() # bad11_mode_dict[name] = bad11[name].mode() # bad11_mode_dict[name] = bad11[name].mode() # # for name in bad9.columns: # if name in ['Min_DiskPartFailedTime','Max_DiskPartFailedTime','NodeId', 'SerialNumber', 'PreciseTimeStamp','LabelId']: # continue # # good9[name][np.isnan(good9[name])] = good9_mode_dict[name] # good10[name][np.isnan(good10[name])] = good10_mode_dict[name] # good11[name][np.isnan(good11[name])] = good11_mode_dict[name] # # bad9[name][np.isnan(bad9[name])] = bad9_mode_dict[name] # bad10[name][np.isnan(bad10[name])] = bad10_mode_dict[name] # bad11[name][np.isnan(bad11[name])] = bad11_mode_dict[name] # logging.warning('done replace nan with mode in training and testing column {}'.format(name)) ##replace nan with mode # good_disks9 = good9['SerialNumber'].unique() # good_disks10 = good10['SerialNumber'].unique() # good_disks11 = good11['SerialNumber'].unique() # all_good = set(good_disks9)|set(good_disks10)|set(good_disks11) # # logging.warning('good disks 8:{} .'.format(len(good_disks9))) # logging.warning('good disks 9:{} .'.format(len(good_disks10))) # logging.warning('good disks 10:{} .'.format(len(good_disks11))) # logging.warning('all good disks :{} .'.format(len(all_good))) # bad_disks8 = bad9['SerialNumber'].unique() # bad_disks9 = bad10['SerialNumber'].unique() # bad_disks10 = bad11['SerialNumber'].unique() # all_bad= set(bad_disks8)|set(bad_disks9)|set(bad_disks10) # logging.warning('bad disks 8:{} .'.format(len(bad_disks8))) # logging.warning('bad disks 9:{} .'.format(len(bad_disks9))) # logging.warning('bad disks 10:{} .'.format(len(bad_disks10))) # logging.warning('all bad disks :{} .'.format(len(all_bad))) # # bad9.to_csv('bad9.csv', index=None) # logging.warning('save bad9.') # bad10.to_csv('bad10.csv', index=None) # logging.warning('save bad10.') # bad11.to_csv('bad11.csv', index=None) # logging.warning('save bad11.') # good9.to_csv('good9.csv', index=None) # logging.warning('save good9.') # good10.to_csv('good10.csv', index=None) # logging.warning('save good10.') # good11.to_csv('good11.csv', index=None) # logging.warning('save good11.') ##good sample # sample_disk1 = set() # sample_disk2 = set() # sample_disk3 = set() # # for single in good_disks9: # value = random.randint(1, 100) # if value % 10 == 5: # sample_disk1.add(single) # for single in good_disks10: # value = random.randint(1, 100) # if value % 10 == 5: # sample_disk2.add(single) # for single in good_disks11: # value = random.randint(1, 100) # if value % 10 == 5: # sample_disk3.add(single) # # logging.warning('sample_disk1:{} .'.format(len(sample_disk1))) # logging.warning('sample_disk2:{} .'.format(len(sample_disk2))) # logging.warning('sample_disk3:{} .'.format(len(sample_disk3))) # logging.warning('all sample disks :{} .'.format(len(sample_disk1|sample_disk2|sample_disk3))) # # import csv # cw = csv.writer(open("sample_good_disk9_SerialNumber.csv",'w')) # cw.writerow(list(sample_disk1)) # cw = csv.writer(open("sample_good_disk10_SerialNumber.csv",'w')) # cw.writerow(list(sample_disk2)) # cw = csv.writer(open("sample_good_disk11_SerialNumber.csv",'w')) # cw.writerow(list(sample_disk3)) # # good_sample1 = good9[good9['SerialNumber'].isin(sample_disk1)] # good_sample2 = good10[good10['SerialNumber'].isin(sample_disk2)] # good_sample3 = good11[good11['SerialNumber'].isin(sample_disk3)] # # good_sample1.to_csv('good_sample9.csv', index=None) # logging.warning('save good_sample9.') # good_sample2.to_csv('good_sample10.csv', index=None) # logging.warning('save good_sample10.') # good_sample3.to_csv('good_sample11.csv', index=None) # logging.warning('save good_sample11.') # logging.warning('test:{} '.format(2)) if __name__ == "__main__": # arguments = docopt(__doc__, version='cross_validation_month_detail 1.0') fault_train_month = [1,2,3] fault_test_month = [1,2,3] good_month_start = 1 good_month_stop = 1 good_training_ratio = float(0.5) fault_disk_take_top = 1 good_disk_take_top = 1 source_file_name = '' folder = _get_result_folder(fault_train_month, fault_test_month, good_month_start, good_month_stop,good_training_ratio,fault_disk_take_top, good_disk_take_top) if not os.path.exists(folder): logging.warning('create result folder {}.'.format(folder)) os.makedirs(folder) else: logging.warning( 'result folder {} exists! will overwrite files under it and appending logging file!'.format(folder)) logging.basicConfig(level=logging.WARNING,format='%(asctime)-15s %(message)s') # set logging logging.warning('removing previous logging handler...') rootLogger = logging.getLogger() for h in rootLogger.handlers[1:]: rootLogger.removeHandler(h) logging.warning('adding new handler...') fileHandler = logging.FileHandler(filename=os.path.join(folder, 'logging.txt')) logFormatter = logging.Formatter('%(asctime)-15s %(message)s') fileHandler.setFormatter(logFormatter) rootLogger.addHandler(fileHandler) logging.warning('analyse data...') generate_data(fault_train_month, fault_test_month, good_month_start, good_month_stop, good_training_ratio,fault_disk_take_top, good_disk_take_top, source_file_name) # used to sample good data and filter no use columns in all good and bad data
0d30e60a3c74c1f03015f06c6518907a8ddaad1f
8d5ab4d889a596eb3f6e367fcf6a9cd849c5df94
/node_modules/ccxt/python/ccxt/paymium.py
4b01786877e77812bf7004170a588ac16b468ac0
[ "MIT" ]
permissive
dleonard00/cryptoBot
0ea9c1d73513ae446f3ab67ea1186cf786de4857
1195823102989b6d37698d0da676dcc37d342a4c
refs/heads/master
2021-08-20T09:37:35.461416
2017-11-28T20:56:55
2017-11-28T20:56:55
112,361,285
4
0
null
null
null
null
UTF-8
Python
false
false
6,890
py
# -*- coding: utf-8 -*- from ccxt.base.exchange import Exchange from ccxt.base.errors import ExchangeError class paymium (Exchange): def describe(self): return self.deep_extend(super(paymium, self).describe(), { 'id': 'paymium', 'name': 'Paymium', 'countries': ['FR', 'EU'], 'rateLimit': 2000, 'version': 'v1', 'hasCORS': True, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27790564-a945a9d4-5ff9-11e7-9d2d-b635763f2f24.jpg', 'api': 'https://paymium.com/api', 'www': 'https://www.paymium.com', 'doc': [ 'https://github.com/Paymium/api-documentation', 'https://www.paymium.com/page/developers', ], }, 'api': { 'public': { 'get': [ 'countries', 'data/{id}/ticker', 'data/{id}/trades', 'data/{id}/depth', 'bitcoin_charts/{id}/trades', 'bitcoin_charts/{id}/depth', ], }, 'private': { 'get': [ 'merchant/get_payment/{UUID}', 'user', 'user/addresses', 'user/addresses/{btc_address}', 'user/orders', 'user/orders/{UUID}', 'user/price_alerts', ], 'post': [ 'user/orders', 'user/addresses', 'user/payment_requests', 'user/price_alerts', 'merchant/create_payment', ], 'delete': [ 'user/orders/{UUID}/cancel', 'user/price_alerts/{id}', ], }, }, 'markets': { 'BTC/EUR': {'id': 'eur', 'symbol': 'BTC/EUR', 'base': 'BTC', 'quote': 'EUR'}, }, }) def fetch_balance(self, params={}): balances = self.privateGetUser() result = {'info': balances} for c in range(0, len(self.currencies)): currency = self.currencies[c] lowercase = currency.lower() account = self.account() balance = 'balance_' + lowercase locked = 'locked_' + lowercase if balance in balances: account['free'] = balances[balance] if locked in balances: account['used'] = balances[locked] account['total'] = self.sum(account['free'], account['used']) result[currency] = account return self.parse_balance(result) def fetch_order_book(self, symbol, params={}): orderbook = self.publicGetDataIdDepth(self.extend({ 'id': self.market_id(symbol), }, params)) result = self.parse_order_book(orderbook, None, 'bids', 'asks', 'price', 'amount') result['bids'] = self.sort_by(result['bids'], 0, True) return result def fetch_ticker(self, symbol, params={}): ticker = self.publicGetDataIdTicker(self.extend({ 'id': self.market_id(symbol), }, params)) timestamp = ticker['at'] * 1000 vwap = float(ticker['vwap']) baseVolume = float(ticker['volume']) quoteVolume = baseVolume * vwap return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': float(ticker['high']), 'low': float(ticker['low']), 'bid': float(ticker['bid']), 'ask': float(ticker['ask']), 'vwap': vwap, 'open': float(ticker['open']), 'close': None, 'first': None, 'last': float(ticker['price']), 'change': None, 'percentage': float(ticker['variation']), 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } def parse_trade(self, trade, market): timestamp = int(trade['created_at_int']) * 1000 volume = 'traded_' + market['base'].lower() return { 'info': trade, 'id': trade['uuid'], 'order': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': market['symbol'], 'type': None, 'side': trade['side'], 'price': trade['price'], 'amount': trade[volume], } def fetch_trades(self, symbol, since=None, limit=None, params={}): market = self.market(symbol) response = self.publicGetDataIdTrades(self.extend({ 'id': market['id'], }, params)) return self.parse_trades(response, market) def create_order(self, market, type, side, amount, price=None, params={}): order = { 'type': self.capitalize(type) + 'Order', 'currency': self.market_id(market), 'direction': side, 'amount': amount, } if type == 'market': order['price'] = price response = self.privatePostUserOrders(self.extend(order, params)) return { 'info': response, 'id': response['uuid'], } def cancel_order(self, id, symbol=None, params={}): return self.privatePostCancelOrder(self.extend({ 'orderNumber': id, }, params)) def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'] + '/' + self.version + '/' + self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) if api == 'public': if query: url += '?' + self.urlencode(query) else: body = self.json(params) nonce = str(self.nonce()) auth = nonce + url + body headers = { 'Api-Key': self.apiKey, 'Api-Signature': self.hmac(self.encode(auth), self.secret), 'Api-Nonce': nonce, 'Content-Type': 'application/json', } return {'url': url, 'method': method, 'body': body, 'headers': headers} def request(self, path, api='public', method='GET', params={}, headers=None, body=None): response = self.fetch2(path, api, method, params, headers, body) if 'errors' in response: raise ExchangeError(self.id + ' ' + self.json(response)) return response
a7c0223148294123bd1252311d60669270ab2677
421338e0f5ad029885b7ae1b198dfde85798e313
/auxilaries/config_str.py
09b1bab56017945c0488842f5e8813742d12a321
[]
no_license
HaiFengZeng/nsynth_wavenet
985b0b0bea59b3a8cdee6be267259cdad5242a6c
1c276ea9f8f98d25aad7d9049c6e03101429ac53
refs/heads/master
2020-03-25T01:50:13.018446
2018-07-28T14:28:41
2018-07-28T14:28:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,617
py
from wavenet import parallel_wavenet, wavenet, masked import json import subprocess from argparse import Namespace import time from auxilaries import reader def get_config_srt(hparams, model, tag=''): prefix = 'ns_' # nsynth if model == 'wavenet': model_str = 'wn' elif model == 'parallel_wavenet': model_str = 'pwn' else: raise ValueError('unsupported model type {}'.format(model)) branch_names = subprocess.check_output(['git', 'branch']) current_branch_name = [bn for bn in branch_names.decode('utf-8').split('\n') if '*' in bn][0] current_branch_name = current_branch_name.split()[1] if getattr(hparams, 'use_mu_law', False): mu_law_tag = 'MU' else: mu_law_tag = 'n_MU' if getattr(hparams, 'use_weight_norm', False): weight_norm_tag = 'WN' if current_branch_name == 'data_dep_init': weight_norm_tag += '_DDI' if parallel_wavenet.MANUAL_FINAL_INIT and model == 'parallel_wavenet': weight_norm_tag += '_mfinit' else: weight_norm_tag = 'n_WN' loss_type = getattr(hparams, 'loss_type', '').upper() cstr = '-'.join([prefix + model_str, mu_law_tag, weight_norm_tag]) if reader.USE_NEW_MEL_EXTRACTOR: cstr += '-NM' if getattr(hparams, 'use_resize_conv', False): cstr += '-RS' else: cstr += '-TS' upsample_act = getattr(hparams, 'upsample_act', 'tanh') cstr += ('-' + upsample_act) if model == 'parallel_wavenet': if parallel_wavenet.USE_LOG_SCALE: cstr += '-LOGS' else: cstr += '-n_LOGS' if parallel_wavenet.CLIP: cstr += '-CLIP' else: cstr += '-n_CLIP' if parallel_wavenet.SPEC_ENHANCE_FACTOR == 0: cstr += '-NLABS' if parallel_wavenet.NORM_FEAT else '-LABS' elif parallel_wavenet.SPEC_ENHANCE_FACTOR == 1: cstr += '-NABS' if parallel_wavenet.NORM_FEAT else '-ABS' elif parallel_wavenet.SPEC_ENHANCE_FACTOR == 2: cstr += '-NPOW' if parallel_wavenet.NORM_FEAT else '-POW' elif parallel_wavenet.SPEC_ENHANCE_FACTOR == 3: cstr += '-NCOM' if parallel_wavenet.NORM_FEAT else '-COM' else: raise ValueError("SPEC_ENHANCE_FACTOR Value Error.") if parallel_wavenet.USE_MEL: cstr += '-MEL' else: cstr += '-n_MEL' if parallel_wavenet.USE_L1_LOSS: cstr += '-L1' else: cstr += '-L2' if parallel_wavenet.USE_PRIORITY_FREQ: cstr += '-PFS' else: cstr += '-n_PFS' if model == 'wavenet' and getattr(hparams, 'add_noise', False): cstr += '-NOISE' if loss_type: cstr += '-{}'.format(loss_type) if tag: cstr += '-{}'.format(tag) return cstr def get_time_str(): return time.strftime("%m_%d", time.localtime()) def get_config_time_str(hparams, model, tag=''): cstr = get_config_srt(hparams, model, tag) + '-' + get_time_str() return cstr if __name__ == '__main__': config1 = '../config_jsons/wavenet_mol.json' with open(config1, 'rt') as F: configs = json.load(F) hparams = Namespace(**configs) print(get_config_srt(hparams, 'wavenet')) config1 = '../config_jsons/parallel_wavenet.json' with open(config1, 'rt') as F: configs = json.load(F) hparams = Namespace(**configs) print(get_config_srt(hparams, 'parallel_wavenet')) print(get_config_time_str(hparams, 'parallel_wavenet'))
576f0fbb13855a3291afaad145ffb5d1e107c293
b6152611cfccc0289844293d693f98a88287de2e
/mysite/settings.py
8dc7584886955556b8e2a7065d68d8f86230e726
[]
no_license
babelcisco/mysite
059c30c3ce148fc15c4d8e06d46d5e012bde6af6
5a506c82e4ead1d463d9b7b03abe3253a88dc8b8
refs/heads/master
2021-04-12T02:41:07.395607
2018-03-19T16:10:40
2018-03-19T16:10:40
125,883,359
0
0
null
null
null
null
UTF-8
Python
false
false
3,088
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.0.3. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '_cp!jc(wb_v$qt600qs5k77l*1)t3&$-lb4rb!ki1-+ltqrku1' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
bb370fde71b86ce2b71d05a6b9c496760a47ffed
af7f6e1a1e4d964c3cce0d224effed08e9096ad0
/Garden.py
eb94cd01d530d383378342388ec3bb615de1b156
[]
no_license
saharsh2008/Ballon-Fight
e1cd4028822b35fd142dca400c1dc2c1c1b49f9f
3e70929a57f2328ac9fb604689bd20808a0c11e5
refs/heads/master
2022-11-26T22:42:57.174998
2020-08-03T16:45:38
2020-08-03T16:45:38
284,748,016
0
0
null
null
null
null
UTF-8
Python
false
false
6,136
py
import pgzrun from random import randint import time WIDTH = 800 HEIGHT = 600 CENTER_X = WIDTH / 2 CENTER_Y = HEIGHT / 2 game_over = False finalised = False garden_happy = True fangflower_collision = False time_elapsed = 0 start_time = time.time() cow = Actor("cow") cow.pos = 100, 500 flower_list = [ ] wilted_list = [ ] fangflower_list = [ ] fangflower_vy_list = [ ] fangflower_vx_list = [ ] def draw(): global game_over, time_elapsed, finalised if not game_over: screen.clear() screen.blit("garden", (0, 0)) cow.draw() for flower in flower_list: flower.draw() for fangflower in fangflower_list: fangflower.draw() time_elapsed = int(time.time() - start_time) screen.draw.text( "Garden happy for: " + str(time_elapsed) + " seconds", topleft=(10, 10), color="black" ) else: if not finalized: cow.draw() screen.draw.text( "Garden happy for: " + str(time_elapsed) + " seconds", topleft=(10, 10), color="black" ) if (not garden_happy): screen.draw.text( "GARDEN UNHAPPY - GAME OVER!", color="black", topleft=(10, 50) ) finalized = True else: screen.draw.text( "FANGFLOWER ATTACK - GAME OVER!", color="black", topleft=(10, 50) ) finalized = True return def new_flower(): global flower_list, wilted_list flower_new = Actor("flower") flower_new.pos = randint(50, WIDTH - 50), randint(150, HEIGHT - 100) flower_list.append(flower_new) wilted_list.append("happy") return def add_flowers(): global game_over if not game_over: new_flower() clock.schedule(add_flowers, 4) return def check_wilt_times(): global wilted_list, game_over, garden_happy if wilted_list: for wilted_since in wilted_list: if (not wilted_since == "happy"): time_wilted = int(time.time() - wilted_since) if (time_wilted) > 10.0: garden_happy = False game_over = True break return def wilt_flower(): global flower_list, wilted_list, game_over if not game_over: if flower_list: rand_flower = randint(0, len(flower_list) - 1) if (flower_list[rand_flower].image == "flower"): flower_list[rand_flower].image == "flower-wilt" wilted_list[rand_flower] = time.time() clock.schedule(wilt_flower, 3) return def check_flower_collision(): global cow, flower_list, wilted_list index = 0 for flower in flower_list: if (flower.colliderect(cow) and flower.image == "flower-wilt"): flower.image = "flower" wilted_list[index] = "happy" break index = index + 1 return def check_fangflower_collision(): global cow, fangflower_list, fangflower_collision global game_over for fangflower in fangflower_list: if fangflower.colliderect(cow): cow.image = "zap" game_over = True break return def velocity(): random_dir = randint(0, 1) random_velocity = randint(2, 3) if random_dir == 0: return -random_velocity else: return random_velocity def mutate(): global flower_list, fangflower_list, fangflower_vy_list global fang_flower_vx_list, game_over if not game_over and flower_list: rand_flower = randint(0, len(flower_list) - 1) fangflower_pos_x = flower_list[rand_flower].x fangflower_pos_y = flower_list[rand_flower].y del flower_list[rand_flower] fangflower = Actor("fangflower") fangflower.pos = fangflower_pos_x, fangflower_pos_y fangflower_vx = velocity() fangflower_vy = velocity() fangflower = fangflower_list.append(fangflower) fangflower_vx_list.append(fangflower_vx) fangflower_vy_list.append(fangflower_vy) clock.schedule(mutate, 20) return def update_fangflowers(): global fangflower_list, game_over if not game_over: index = 0 for fangflower in fangflower_list: fangflower_vx = fangflower_vx_list[index] fangflower_vy = fangflower_vy_list[index] fangflower.x = fangflower.x + fangflower_vx fangflower.y = fangflower.y + fangflower_vy if fangflower.left < 0: fangflower_vx_list[index] = -fangflower_vx if fangflower.right > WIDTH: fangflower_vx_list[index] = -fangflower_vx if fangflower.top < 150: fangflower_vy_list[index] = -fangflower_vy if fangflower.bottom > HEIGHT: fangflower_vy_list[index] = -fangflower_vy index = index + 1 return def reset_cow(): global game_over if not game_over: cow.image = "cow" return add_flowers() wilt_flower() def update(): global score, game_over, fangflower_collision global flower_list, fangflower_list, time_elapsed fangflower_collision = check_fangflower_collision() check_wilt_times() if not game_over: if keyboard.space: cow.image = "cow-water" clock.schedule(reset_cow, 0.5) check_flower_collision() if keyboard.left and cow.x > 0: cow.x -= 5 elif keyboard.right and cow.x < WIDTH: cow.x += 5 elif keyboard.up and cow.y > 150: cow.y -= 5 elif keyboard.down and cow.y < HEIGHT: cow.y += 5 if time_elapsed > 15 and not fangflower_list: mutate() update_fangflowers() pgzrun.go()
3f4fc8fb10f2b958cdadc43fb4838be1ffd9d192
e76683547c26a6f902e3c68ebfc207a1d9abe79f
/13_IntroductionToDjangoRESTFramework/djlibrary/app_api/v1/catalog/urls.py
9982bc10639cbc000410d116ff4887b82bcf13b6
[]
no_license
antoshkoo/python_django
03b19f3307b9aef1cc4c2bf2858b550334442ebe
ecb8b1c3edfe3e1af6a531cb237bb5d9f4e50601
refs/heads/master
2023-03-19T18:52:54.257903
2021-03-05T16:09:56
2021-03-05T16:09:56
339,375,918
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
from django.urls import include, path from rest_framework import routers from app_api.v1.catalog.api import AuthorViewSet, BookViewSet router = routers.DefaultRouter() router.register('authors', AuthorViewSet) router.register('books', BookViewSet) urlpatterns = [ path('', include(router.urls)), ]
e72ba02c8a3a0527c9964bf64f11e21586fa69ad
9b443b52a0eae62d624592a6fe7a73c05f046f64
/ex11_second_intro_rover/robot.py
462197bb9c615d8583b567c89ba2d4102d4043ee
[]
no_license
bruiken/DES-Exercises
93cc4b84f02c6c2e4fddcc4e9f49bc710cda8aea
2ae1c0d15bfdaf491e8b3dd7404a53fdea0bec2b
refs/heads/master
2023-02-20T10:57:43.369508
2021-01-27T13:20:44
2021-01-27T13:20:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,460
py
from ev3dev2.motor import OUTPUT_A, OUTPUT_D, MoveDifferential, SpeedRPM, SpeedPercent, SpeedDPS from ev3dev2.unit import STUD_MM from ev3dev2.wheel import EV3EducationSetTire from ev3dev2.sensor.lego import UltrasonicSensor, TouchSensor, ColorSensor from ev3dev2.led import Leds from ev3dev2.sound import Sound from datetime import datetime, timedelta import time import threading class Robot: """ Robot is a class that instantiates and sets up the robot so that it is ready for use. It initializes the sensors and the tank drive, and it sets up the sensors. On top of that it provides functions so that the robot can be controlled. """ def __init__(self, bluetooth=None): """ Initializer for a Robot. """ self.bluetooth = bluetooth if bluetooth: self.bluetooth.initiate_connection() print('connected') self.cs = ColorSensor() self.left_touch = TouchSensor('ev3-ports:in1') self.right_touch = TouchSensor('ev3-ports:in4') self.us = UltrasonicSensor() self.tank_drive = Robot.get_tank_drive() self.sound = Sound() self.leds = Leds() self.setup_sensors() @staticmethod def get_tank_drive(): """ Loads the setup of the motors of a Robot. Contains the motor outputs, the type of tire and the distance between the two wheels of the robot. :return: A tank_drive setup with the two motors, tire type and distance between tires. """ return MoveDifferential(OUTPUT_A, OUTPUT_D, EV3EducationSetTire, 15 * STUD_MM) def speak(self, text): """ Speak in separate thread so it does not block anything. """ threading.Thread( target=lambda: self.sound.speak(text, Sound.PLAY_NO_WAIT_FOR_COMPLETE) ).start() def setup_sensors(self): """ Sets up the "modes" of the sensors. For example sets the ultrasonic sensor to continuous centimeter measurement. """ self.us.mode = UltrasonicSensor.MODE_US_DIST_CM # continuous centimeter measurement def start_drive(self, speed_percentage=40): """ Activates the motors of the robot to move forward. :param speed_percentage: The speed of the Robot based on motor power. Percentage between 0 and 100. """ self.tank_drive.on(SpeedPercent(speed_percentage), SpeedPercent(speed_percentage)) def reverse_for_rotations(self, nr_rotations, rpm=60, lock=None): """ Reverses the Robot (makes it move backwards). :param nr_rotations: Number of degrees Robot turns. :param rpm: Speed at which the Robot reverses in rotations per minute. :param lock: Optional Lock to stop the operation when requested """ self.tank_drive.on_for_rotations(SpeedRPM(-rpm), SpeedRPM(-rpm), nr_rotations, block=False) end_time = datetime.now() + timedelta(seconds=(nr_rotations*60)/rpm) while datetime.now() < end_time: if lock.is_locked(): self.tank_drive.stop() break time.sleep(0.01) def turn_for_rotations(self, rotations, rpm=30, lock=None): """ Turn for a number of degrees with the given speed. Can be pre-empted when given a Lock. :param rotations: The number of rotations to turn. :param rpm: The speed to turn at. :param lock: Optional Lock to stop the operation when requested. """ self.tank_drive.on_for_rotations(SpeedRPM(rpm), SpeedRPM(-rpm), abs(rotations), block=False) end_time = datetime.now() + timedelta(seconds=(abs(rotations)*60)/abs(rpm)) while datetime.now() < end_time: if lock.is_locked(): self.tank_drive.stop() break time.sleep(0.01) def rotate_degrees(self, rotations, reverse_before_continue=True, rpm=35, lock=None): """ Rotates the Robot. :param rotations: Number of rotations the Robot rotates. :param reverse_before_continue: True if Robot needs to reverse before turning, False if not. :param rpm: Speed at which the Robot turns. :param lock: Optional Lock to stop the operation when requested """ if reverse_before_continue: self.reverse_for_rotations(.6, lock=lock) self.turn_for_rotations(rotations, rpm=rpm, lock=lock)
de81d1f7b6fa8546f1762a7e9b75f0a7e76b89af
adcdc01294ef1563f063b26c4513825879d34262
/spider/spider_server/app/service/service_user.py
d7a52343623b1b1afd5b2719d983e9d119227d88
[]
no_license
clearloveyin/Cararote
0312d18061fd6b23e72450d956ff2a4f07deb31a
2d764d5d682391a8909650387e84eb735044c5ff
refs/heads/master
2023-01-29T07:08:32.696111
2019-08-03T04:12:15
2019-08-03T04:12:15
200,329,856
0
0
null
2023-01-04T06:14:17
2019-08-03T04:07:49
Python
UTF-8
Python
false
false
5,560
py
import json import ldap from flask import g from flask import current_app from requests import post from ..service import * from token_manage import serializer from app.db import db from app.controller.ctrl_user import CtrlUser ldapServer = 'LDAP://apolo.storm' domain = 'storm' class ServiceUser(object): def __init__(self): self.ctrl_object = CtrlUser() def login_from_ldap(self, request_data): """ 登录走strom账号 :param username: :param password: :return: """ ctrl_object = self.ctrl_object result = {"type": SUCCESS, "content": None} username = request_data.get("username") password = request_data.get("password") if not username or not password: result["type"] = PROMPT_ERROR message = "工号和密码不能为空!" current_app.logger.info(message) result["message"] = message return result res = self.login_check(username, password) if res: try: user = ctrl_object.add_new_user(username) g.username = username g.password = password token = serializer.dumps({'username': username}) user['LoginToken'] = str(token, encoding='utf-8') result["content"] = user db.session.commit() return result except Exception as e: db.session.rollback() result = return_exception_message(e) return result else: result["type"] = PROMPT_ERROR message = "登录失败,请输入正确的用户名或密码!" current_app.logger.info(message) result["message"] = message return result def login_check(self, username, password): try: conn = ldap.initialize(ldapServer) domainUserName = domain + '\\' + username conn.simple_bind_s(domainUserName, password) return True except: return False def login_from_cactus(self, request_data): """ 登录走cactus :param work_id: :param password: :return: """ ctrl_object = self.ctrl_object work_id = request_data.get("username") password = request_data.get("password") employ = {"employeeNo": work_id, "password": password, "clientType": 0 } result = {"type": SUCCESS, "content": None} if not work_id or not password: result["type"] = PROMPT_ERROR message = "工号和密码不能为空!" current_app.logger.info(message) result["message"] = message return result try: user_dict = self.post_cactus(employ) if user_dict: username = user_dict.get('username') work_id = user_dict.get("work_id") user = ctrl_object.register(username=username, work_id=work_id) g.username = work_id g.password = password token = serializer.dumps({'username': username}) user['LoginToken'] = str(token, encoding='utf-8') result["content"] = user return result else: result["type"] = PROMPT_ERROR message = "登录失败,请输入正确的用户名或密码!" current_app.logger.info(message) result["message"] = message return result except Exception as e: db.session.rollback() result = return_exception_message(e) return result def post_cactus(self, employ): login_post = current_app.config["LOGIN_URL"] r = post(login_post, employ, timeout=30) user_dict = dict() if r.status_code == 200: # 成功 result = json.loads(r.content) if result.get("code") == 0: # 表示成功 # accessToken = result.get("info").get("accessToken") username = result.get("info").get("userName") work_id = result.get("info").get("employeeNo") user_dict = {'username': username, "work_id": work_id} return user_dict def get_user_list(self): """获取所有的用户""" ctrl_object = self.ctrl_object result = {"type": SUCCESS, "content": None} try: user_list = ctrl_object.get_all_users() if not user_list: result["type"] = NOT_DATA message = "暂无用户!" result["message"] = message else: result["content"] = user_list return result except Exception as e: result = return_exception_message(e) return result def get_role_list(self): """获取所有的角色""" ctrl_object = self.ctrl_object result = {"type": SUCCESS, "content": None} try: role_list = ctrl_object.get_all_roles() if not role_list: result["type"] = NOT_DATA message = "暂无用户!" result["message"] = message else: result["content"] = role_list return result except Exception as e: result = return_exception_message(e) return result
[ "1484091708@qq,com" ]
1484091708@qq,com
a4822140a61b3189d8c7e9ef0a5f04e97a365ed7
538f6481bcfcfacdd64d75e920862fd22a0e8dc0
/references/cpsc2019/CPSC0437_qrs8921_hr928/unet_lstm_mse_simple_9pool.py
81aafa06504eee130add55edc8495396ec82b76e
[ "MIT", "BSD-3-Clause" ]
permissive
wenh06/cpsc2020
cdf6097dc9d920b29a852a2896ba3f5a275a74f4
47acb884ea1f2f819e564d8a17ad37001ed0df27
refs/heads/master
2023-07-27T01:56:41.442556
2021-05-26T00:10:39
2021-05-26T00:10:39
370,730,725
0
0
BSD-3-Clause
2021-05-25T14:56:02
2021-05-25T14:56:01
null
UTF-8
Python
false
false
9,833
py
from keras import optimizers from keras.models import Model from keras.layers import Dropout, Lambda, Input, average, Reshape, UpSampling1D, Multiply,Concatenate from keras.layers import Conv1D, Flatten, Dense, Add, AveragePooling1D from keras.layers import ZeroPadding1D, Cropping1D, BatchNormalization, MaxPooling1D from keras import backend as K from keras.layers import * from keras import losses from keras.utils.np_utils import to_categorical import numpy as np from keras import regularizers def crop(tensors): ''' :param tensors: List of two tensors, the second tensor having larger spatial dims :return: ''' h_dims, w_dims = [], [] for t in tensors: b, h, w, d = K.get_variable_shape( t ) h_dims.append( h ) w_dims.append( w ) crop_h, crop_w = (h_dims[1] - h_dims[0]), (w_dims[1] - w_dims[0]) rem_h = crop_h % 2 rem_w = crop_w % 2 crop_h_dims = (crop_h // 2, crop_h // 2 + rem_h) crop_w_dims = (crop_w // 2, crop_w // 2 + rem_w) cropped = Cropping1D( cropping=(crop_h_dims, crop_w_dims) )( tensors[1] ) return cropped def dice_loss(y_true, y_pred): eps = 1e-5 intersection = K.sum(y_true * y_pred, axis=-1) + eps summation = K.sum(y_true, axis=-1) + K.sum(y_pred,axis=-1) + eps dice_loss = 1. - (2. * intersection/summation) return dice_loss # m: input # dim: the num of channel # res: controls the res connection # drop: controls the dropout layer # initpara: initial parameters def convblock(m, dim, layername, res=0, drop=0.5, **kwargs): n = Conv1D(filters=dim, name= layername + '_conv1', **kwargs)(m) n = BatchNormalization(momentum=0.95, epsilon=0.001)(n) n = Dropout(drop)(n) if drop else n n = Conv1D(filters=dim, name= layername + '_conv2', **kwargs)(n) n = BatchNormalization(momentum=0.95, epsilon=0.001)(n) # m = Conv1D(filters=dim, name= layername + '_conv3', kernel_size=1, padding='same', activation='relu')(m) # m = BatchNormalization(momentum=0.95, epsilon=0.001)(m) return Concatenate()([m, n]) if res else n def unet(input_shape, num_classes, lr, kernel_size=3, filter_num=32, res=0, maxpool=True, weights=None, drop_rate=0.5, use_lstm=True, loss_func='mse'): '''initialization''' kwargs = dict( kernel_size=kernel_size, strides=1, activation='relu', padding='same', use_bias=True, kernel_initializer='glorot_uniform', # Xavier均匀初始化 #kernel_initializer='he_normal', bias_initializer='zeros', bias_regularizer=None, activity_regularizer=None, # 施加在输出上的正则项 kernel_constraint=None, bias_constraint=None, trainable=True, # 权值是否更新 ) kwargs2 = dict( kernel_size=1, strides=1, activation='relu', padding='same', use_bias=True, kernel_initializer='glorot_uniform', # Xavier均匀初始化 #kernel_initializer='he_normal', bias_initializer='zeros', bias_regularizer=None, activity_regularizer=None, # 施加在输出上的正则项 kernel_constraint=None, bias_constraint=None, trainable=True, # 权值是否更新 ) num_classes = num_classes data = Input(shape=input_shape, dtype='float', name='data') # encoder enconv1 = convblock(data, dim=filter_num, res=res, drop=drop_rate, layername='block1', **kwargs) pool1 = MaxPooling1D(pool_size=3, strides=2,padding='same',name='pool1')(enconv1) if maxpool \ else Conv1D(filters=filter_num, strides=2, name='pool1')(enconv1) enconv2 = convblock(pool1, dim=filter_num, res=res, drop=drop_rate, layername='block2', **kwargs) pool2 = MaxPooling1D(pool_size=3, strides=2, padding='same', name='pool2')(enconv2) if maxpool \ else Conv1D(filters=filter_num, strides=2, name='pool2')(enconv2) enconv3 = convblock(pool2, dim=2*filter_num, res=res, drop=drop_rate, layername='block3', **kwargs) pool3 = MaxPooling1D(pool_size=3, strides=2, padding='same', name='pool3')(enconv3) if maxpool \ else Conv1D( filters=filter_num, strides=2, name='pool3')(enconv3) enconv4 = convblock(pool3, dim=2*filter_num, res=res, drop=drop_rate, layername='block4', **kwargs) pool4 = MaxPooling1D(pool_size=3, strides=2, padding='same', name='pool4')(enconv4) if maxpool \ else Conv1D(filters=filter_num, strides=2, name='pool4')(enconv4) enconv5 = convblock(pool4, dim=4*filter_num, res=res, drop=drop_rate, layername='block5', **kwargs) pool5 = MaxPooling1D(pool_size=3, strides=2, padding='same', name='pool5')(enconv5) if maxpool \ else Conv1D(filters=filter_num, strides=2, name='pool5')(enconv5) enconv6 = convblock(pool5, dim=4*filter_num, res=res, drop=drop_rate, layername='block6', **kwargs) pool6 = MaxPooling1D(pool_size=3, strides=2, padding='same', name='pool6')(enconv6) if maxpool \ else Conv1D(filters=filter_num, strides=2, name='pool6')(enconv6) enconv7 = convblock(pool6, dim=8*filter_num, res=res, drop=drop_rate, layername='block7', **kwargs) pool7 = MaxPooling1D(pool_size=3, strides=2, padding='same', name='pool7')(enconv7) if maxpool \ else Conv1D(filters=filter_num, strides=2, name='pool7')(enconv7) enconv8 = convblock(pool7, dim=8*filter_num, res=res, drop=drop_rate, layername='block8', **kwargs) pool8 = MaxPooling1D(pool_size=3, strides=2, padding='same', name='pool8')(enconv8) if maxpool \ else Conv1D(filters=filter_num, strides=2, name='pool8')(enconv8) enconv9 = convblock(pool8, dim=16*filter_num, res=res, drop=drop_rate, layername='block9', **kwargs) pool9 = MaxPooling1D(pool_size=3, strides=2, padding='same', name='pool9')(enconv9) if maxpool \ else Conv1D(filters=filter_num, strides=2, name='pool9')(enconv9) enconv10 = convblock(pool9, dim=16*filter_num, res=res, drop=drop_rate, layername='block10', **kwargs) if use_lstm: # LSTM lstm1 = Bidirectional(LSTM(8*filter_num, dropout=0.2, recurrent_dropout=0.2, return_state=False, return_sequences=True), merge_mode = 'concat')(enconv10) # decoder up9 = Conv1D(filters=16*filter_num, kernel_size=1, padding='same', activation='relu', name='up9')(UpSampling1D(size=2)(lstm1)) else: up9 = Conv1D(filters=16*filter_num, kernel_size=1, padding='same', activation='relu', name='up9')(UpSampling1D(size=2)(enconv10)) merge9 = Concatenate()([up9, enconv9]) deconv9 = convblock(merge9, dim=8*filter_num, res=res, drop=drop_rate, layername='deconv9', **kwargs2) up8 = Conv1D(filters=8*filter_num, kernel_size=1, padding='same', activation='relu', name='up8')(UpSampling1D(size=2)(deconv9)) merge8 = Concatenate()([up8, enconv8]) deconv8 = convblock(merge8, dim=8*filter_num, res=res, drop=drop_rate, layername='deconv8', **kwargs2) up7 = Conv1D(filters=8*filter_num, kernel_size=1, padding='same', activation='relu', name='up7')(UpSampling1D(size=2)(deconv8)) merge7 = Concatenate()([up7,enconv7]) deconv7 = convblock(merge7, dim=8*filter_num, res=res, drop=drop_rate, layername='deconv7', **kwargs2) up6 = Conv1D(filters=4*filter_num, kernel_size=1, padding='same', activation='relu', name='up6')(UpSampling1D(size=2)(deconv7)) merge6 = Concatenate()([up6,enconv6]) deconv6 = convblock(merge6, dim=filter_num, res=res, drop=drop_rate, layername='deconv6', **kwargs2) up5 = Conv1D(filters=4*filter_num, kernel_size=1, padding='same', activation='relu', name='up5')(UpSampling1D(size=2)(deconv6)) merge5 = Concatenate()([up5, enconv5]) deconv5 = convblock(merge5, dim=filter_num, res=res, drop=drop_rate, layername='deconv5', **kwargs2) up4 = Conv1D(filters=2*filter_num, kernel_size=1, padding='same', activation='relu', name='up4')(UpSampling1D(size=2)(deconv5)) merge4 = Concatenate()([up4, enconv4]) deconv4 = convblock(merge4, dim=filter_num, res=res, drop=drop_rate, layername='deconv4', **kwargs2) up3 = Conv1D(filters=2*filter_num, kernel_size=1, padding='same', activation='relu', name='up3')(UpSampling1D(size=2)(deconv4)) merge3 = Concatenate()([up3, enconv3]) deconv3 = convblock(merge3, dim=filter_num, res=res, drop=drop_rate, layername='deconv3', **kwargs2) up2 = Conv1D(filters=filter_num, kernel_size=1, padding='same', activation='relu', name='up2')(UpSampling1D(size=2)(deconv3)) merge2 = Concatenate()([up2, enconv2]) deconv2 = convblock(merge2, dim=filter_num, res=res, drop=drop_rate, layername='deconv2', **kwargs2) up1 = Conv1D(filters=filter_num, kernel_size=1, padding='same', activation='relu', name='up1')(UpSampling1D(size=2)(deconv2)) merge1 = Concatenate()([up1, enconv1]) deconv1 = convblock(merge1, dim=filter_num, res=res, drop=drop_rate, layername='deconv1', **kwargs2) conv10 = Conv1D( filters=num_classes, kernel_size=1, padding='same', activation='relu', name='conv10')(deconv1) predictions = Conv1D(filters=num_classes, kernel_size=1, activation='sigmoid', padding='same', name='predictions')(conv10) model = Model(inputs=data, outputs= predictions) #model.load_weights('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5', by_name=True) if weights is not None: model.load_weights(weights,by_name=True) sgd = optimizers.Adamax(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08) model.compile(optimizer=sgd, loss=loss_func) return model if __name__ == '__main__': model = unet((2500, 1), 1, 0.001, maxpool=True, weights=None)
eec69d7432435bb5123ce3378e2025ce0c3989f1
b4da3119fbf64b789566066a3c96a1c8fc9c5370
/cmframework/src/cmframework/lib/__init__.py
09f53caf10b16878d66bab068b291122b62db446
[ "Apache-2.0" ]
permissive
akraino-edge-stack/ta-config-manager
0c2ccf3d786829a77ad427cbc17673864640d482
8a3f88d0dbf6afdb0130b9d35e563f8a54d15d44
refs/heads/master
2023-05-25T16:42:32.723250
2020-01-16T08:11:37
2020-01-16T10:42:08
199,550,311
0
0
null
null
null
null
UTF-8
Python
false
false
607
py
# Copyright 2019 Nokia # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cmclientimpl import CMClientImpl
8130915fa36c2153f2eda28f95c56be4542177f8
f93da4fe323a4fb403f3a57eecd2387c8a6789ac
/doctype/extend_the_test_period/test_extend_the_test_period.py
8c81114919be0c1a658f57462ff429c1058c442c
[]
no_license
beshoyAtefZaki/hr-update
35d893eff958a151b96b0a3477f292fb86fd9d95
2601ecf70c02d893a01872ad6d63336f51491e5c
refs/heads/master
2020-08-18T09:20:04.126142
2019-10-17T11:16:36
2019-10-17T11:16:36
215,773,924
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
# -*- coding: utf-8 -*- # Copyright (c) 2018, Frappe Technologies Pvt. Ltd. and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestExtendthetestperiod(unittest.TestCase): pass
53a60bad2c5be52e6f5ce4f820cdccc85af98f97
e60dd32858b162eb28e673ac9cfdb1b2a403c695
/execptions_try_syntax.py
d9be623e83328f3919ab3a18116142ec8c1d70bb
[]
no_license
Hemanthtm2/playing_python
8d3419a46d50b2801283aa020be89a8003d4ad31
cb896916c6d84c564f7036a4ed6a2a5481bf2fd6
refs/heads/master
2020-05-23T13:10:51.753218
2019-02-20T21:52:34
2019-02-20T21:52:34
186,767,575
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
#!/usr/bin/python def try_syntax(numerator,denominator): try: print('In the try block {}/{}'.format(numerator,denominator)) result=numerator/denominator except ZeroDivisionError as zde: print(zde) else: print('The result is:',result) return result finally: print('Exiting') print(try_syntax(12,4)) print(try_syntax(12,0))
037e831a39a806490ee2f27ca98d8361163fd71f
6625575b7e6f020f25c7a099be940b5dae823b26
/transform_utils/dict_utils.py
ba78796bcdd88e0b9539d9214238fcf5576af02f
[]
no_license
dparadise28/transform
143cd43486f5f32938b2a18f7ff661069726099a
03ad9992ae57b3015016643a64df422362759bee
refs/heads/master
2020-12-24T07:55:04.508787
2016-11-10T06:59:08
2016-11-10T06:59:08
73,355,034
0
0
null
null
null
null
UTF-8
Python
false
false
1,050
py
from copy import deepcopy def unpack(nested_dict, dict_name = 'main'): ''' unpacks nested dicts example: nested_dict = { "1": "1", "2": { "2": ["4"] }, "3": [{ "1": "1", "3": [{ "1": "1" }] }] } return: [ { "main": {"2": {}, "1": "1", "3": []} },{ "3": {"1": "1","3": []} },{ "3": {"1": "1"} },{ "2": {"2": ["4"]} } ] ''' extracted_lists = [] def unpacked(r, key): #todo: reference to parent in dicts, removal of duplicates nonlocal extracted_lists def l(k, v): if isinstance(v[0], dict): extracted_dict.update({k: []}); unpacked(v[0], k) else: extracted_dict.update({k: v}) def d(k, v): extracted_dict.update({k: unpacked(v, k)}) def s(k, v): extracted_dict.update({k: v}) protocol, extracted_dict = {list: l, dict: d, str : s,}, {} for k,v in r.items(): protocol[type(v)](k, v) extracted_lists.append({key: extracted_dict}); return {} unpacked(nested_dict, dict_name); return list(reversed(extracted_lists))
1c7f9d355a8043570fbd6cc9913253ef39384e0a
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02771/s627765878.py
85fc06f4995007009269de5397302bc187300a6f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
143
py
a,b,c = map(int,input().split()) if (a == b and b != c) or (a == c and a != b) or (b == c and c != a): print('Yes') else: print('No')
b4a2405497961bc1b2a51c82a38be173a43bf86e
de9204aa4a471c266e7654571c5f88c798d41519
/rbaas/wsgi.py
468ec99d01293df59580d40543505a062d0fb525
[]
no_license
noxor0/async-rbaas
2bd1289ffbeda50beaf76e672b76d3b6fa0f2afb
8af47bc0904c6d170de0641689a603dc9a4bb002
refs/heads/main
2023-05-14T03:09:56.490615
2021-06-07T02:16:49
2021-06-07T02:16:49
374,504,941
0
0
null
null
null
null
UTF-8
Python
false
false
387
py
""" WSGI config for rbaas project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'rbaas.settings') application = get_wsgi_application()
22d1a3fd1c35d3c2c8d208486e40387a58501dbb
40aad3eefe91dfd9ec1673d35e98ad2e03b0cc37
/deepleanrning_practice.py
4c5f6e5698456de8cb2280ca46cec75a6fb99512
[]
no_license
xuxvming/ML-practicals-
7f3b8848113d7b707a816f167490dd5fec0c660f
24757f754aa497b7a5a86473c1ff0c75d01fc2c2
refs/heads/master
2020-03-22T19:58:42.694501
2018-10-06T17:32:25
2018-10-06T17:32:25
140,565,250
0
0
null
null
null
null
UTF-8
Python
false
false
6,187
py
# -*- coding: utf-8 -*- """ Created on Wed Jun 6 15:35:41 2018 @author: xxiu """ ''' input >weight> hidden layer2(activation function)> weights>hidden layer 2 (activation function)>weights> output 1.pass data straight through: feed forward nueral network 2.campare output with intended output > cost or loss fucntion ***(how close is the result) 3.optimaization function > minimize the error fucntion (the difference between expected values and actual values of Y) This is also known as the LOSS. optimiztation aiming to minimize loss backpropagation>go backwards and minipulate the weights which is also one of the optimization methods the simplest way of adjusting the weights is gradiant descent The function used in backpropagation is called optimize function feed forward + bakcpropagation = epoch (1 cycle) ''' ''' *** about cost function, loss function and objective function*** Loss function is usually a function defined on a data point, prediction and label, and measures the penalty. For example: square loss l(f(xi|θ),yi)=(f(xi|θ)−yi)2, used in linear regression hinge loss l(f(xi|θ),yi)=max(0,1−f(xi|θ)yi), used in SVM 0/1 loss l(f(xi|θ),yi)=1⟺f(xi|θ)≠yi, used in theoretical analysis and definition of accuracy Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example: Mean Squared Error MSE(θ)=1N∑Ni=1(f(xi|θ)−yi)2 SVM cost function SVM(θ)=∥θ∥2+C∑Ni=1ξi (there are additional constraints connecting ξi with C and with training set) Objective function is the most general term for any function that you optimize during training. For example, a probability of generating training set in maximum likelihood approach is a well defined objective function, but it is not a loss function nor cost function (however you could define an equivalent cost function). For example: MLE is a type of objective function (which you maximize) Divergence between classes can be an objective function but it is barely a cost function, unless you define something artificial, like 1-Divergence, and name it a cost Long story short, I would say that: A loss function is a part of a cost function which is a type of an objective function. ''' import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/",one_hot = True) #one_hot means on is on other is off #supppose we have 10 classes, 0-9 #0 = [1,0,0,0,0,0,0,0,0,0]> if we want 0 to output is also 0, only the 0th element is on #define hidden layers n_nodes_hl1 = 500 n_nodes_hl2 = 500 n_nodes_hl3 = 500 n_classes = 10 batch_size =100 #heigh x width #2ed parameter is the shape #x is the data and y is the label of that data x =tf.placeholder('float',[None,784]) y =tf.placeholder('float') def neural_network_model(data): #let the weights equal to a tensorflow varibale and random normal varible ##would be better to use a for loop in case there are 100 hidden layers hidden_1_layer = {'weights':tf.Variable(tf.random_normal([784,n_nodes_hl1])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))} hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))} hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))} output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])), 'biases':tf.Variable(tf.random_normal([n_classes]))} #input_data*weights + biases #this is linear model, the purpos of bisaes is to aviod when input_data is 0 #so that no neurons are ever fired #build the model, the behavoir of layers #matmul is used for multiplying matrix l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['biases']) # activation function Re(ctified) L(inear) (U)nit #relu function> f(x) = max(0,x) # The derivative of ReLU: #1 if x > 0 #2 otherwise l1 = tf.nn.relu(l1) l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['biases']) l2 = tf.nn.relu(l2) l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']), hidden_3_layer['biases']) l3 = tf.nn.relu(l3) output = tf.add(tf.matmul(l3,output_layer['weights']), output_layer['biases']) return output def train_neural_network(x): #rememer the output is onehot array prediction = neural_network_model(x) #cost fucntion #this will calculate the difference of prediction and known label cost =tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = prediction, labels = y)) #we want to use a optimizer to minize the cost nest step optimizer = tf.train.AdamOptimizer().minimize(cost) #define epochs we want hm_epochs = 50 with tf.Session() as sess: sess.run(tf.initialize_all_variables()) for epoch in range(hm_epochs): #calcluate the loss as we go epoch_loss = 0; #how many times we need to cycle for _ in range(int(mnist.train.num_examples/batch_size)): epoch_x, epoch_y = mnist.train.next_batch(batch_size) #c is the cost, run the optimizer for the cost function with feed direction in x and y _, c = sess.run([optimizer, cost], feed_dict = {x:epoch_x, y:epoch_y}) epoch_loss += c print('Epoch', epoch,'completed out of',hm_epochs,'loss',epoch_loss) #argmax return the max value of 2 #it's either 0 or 1 so we need to compare with 1 to get the max value correct = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct,'float')) print('Accuracy:', accuracy.eval({x:mnist.test.images, y:mnist.test.labels})) train_neural_network(x)
0a0aca32b392add0215c19553757eddf63b407b5
5013057778b9e0b0bce78185d5367eb8495521ec
/CVbook/ch1/interActiveAnnot.py
13577b6d39f9ee0b1cea35de0841ae02a4ccc367
[]
no_license
AdamBioprinter/OpenCV-Python-Tutorials
a31358b2b8bdb3bbb5b6c349ce067d2da680f822
5ab082c514e6bc554436e263c8e3b3aa2b1a27ee
refs/heads/master
2021-01-09T09:36:02.369649
2016-08-02T06:24:28
2016-08-02T06:24:28
60,224,649
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
# This script shows how to interacti with an image by marking points # the function that is used to do this is ginput() from PIL import Image from matplotlib import pyplot as plt import numpy as np im = np.array(Image.open('building.jpg')) plt.imshow(im) print('Please Click 3 points') x = plt.ginput(3) print('you clicked: ', x) plt.show()
b04a2a475e28f99b108ae6b96553f7c9218c2d58
cc8b0e1b215834aefb2cf0f9f025fe2a1763ccdd
/agents/sarsa/sarsa_fa.py
b358b5ba028054ea214047739cadd00403fcd47c
[ "MIT" ]
permissive
afcarl/DeepRL-arnomoonens
abf929814934feebdbc24ee6e4d920349d7ea369
3e5a3ed1dc77c0abc3a5b9f413f51b7054ff9798
refs/heads/master
2020-03-22T08:06:45.393738
2018-07-03T14:29:30
2018-07-03T14:29:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,632
py
# -*- coding: utf8 -*- from gym import wrappers from policies.e_greedy import EGreedy from agents.sarsa import Sarsa from traces.eligibility_traces import EligibilityTraces from functionapproximation.tile_coding import TileCoding # def draw_3d(tile_starts): # states = [] # for i in range(n_x_tiles): # for j in range(n_y_tiles): # states.append([i, j]) # states = np.array(states) class SarsaFA(object): """Learner using Sarsa and function approximation""" def __init__(self, env, monitor_path, video=True, **usercfg): super(SarsaFA, self).__init__() self.env = env self.env = wrappers.Monitor(self.env, monitor_path, force=True, video_callable=(None if video else False)) m = usercfg.get("m", 10) # Number of tilings self.config = dict( m=m, n_x_tiles=9, n_y_tiles=9, Lambda=0.9, epsilon=0, # fully greedy in this case alpha=(0.05 * (0.5 / m)), gamma=1, n_iter=1000, steps_per_episode=env.spec.tags.get("wrapper_config.TimeLimit.max_episode_steps") # Maximum number of allowed steps per episode, as determined (for this environment) by the gym library ) self.config.update(usercfg) O = env.observation_space self.x_low, self.y_low = O.low self.x_high, self.y_high = O.high self.nA = env.action_space.n self.policy = EGreedy(self.config["epsilon"]) self.function_approximation = TileCoding(self.x_low, self.x_high, self.y_low, self.y_high, m, self.config["n_x_tiles"], self.config["n_y_tiles"], self.nA) def learn(self): for i in range(self.config["n_iter"]): traces = EligibilityTraces(self.function_approximation.features_shape, self.config["gamma"], self.config["Lambda"]) state, action = self.env.reset(), 0 sarsa = Sarsa(self.config["gamma"], self.config["alpha"], self.policy, traces, self.function_approximation, range(self.nA), state, action) done = False # Done says if the goal is reached or the maximum number of allowed steps for the episode is reached (determined by the gym library itself) iteration = 0 while not(done): iteration += 1 state, reward, done, _ = self.env.step(action) if done and iteration < self.config["steps_per_episode"]: print("Episode {}: Less than {} steps were needed: {}".format(i, self.config["steps_per_episode"], iteration)) action = sarsa.step(state, reward)
57d4f0aa35b2142b608fef3059072af4dcb8f224
cb98df00075e55ea39d9e73662c9c575d197430b
/todolist/settings.py
615e51aff0f5aed5b26e36ac4203c4be623ee3d1
[]
no_license
phil-fiess/TodoList
c66bcc99333cc96d35e8078e1d5e7e7fb15180a0
02d5b789d0c3f8ca3e07bb004405f4356f0bbc18
refs/heads/main
2023-01-13T19:51:41.466170
2020-11-21T00:15:08
2020-11-21T00:15:08
314,699,649
0
0
null
null
null
null
UTF-8
Python
false
false
3,156
py
""" Django settings for todolist project. Generated by 'django-admin startproject' using Django 3.1.3. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'eqdvr6kq%m2@pm0*u1^qr86g0%iso65z8ly9e5mm!9i5kkv2q!' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'todo', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'todolist.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'todolist.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ]
470ab45981ad7834924041e8f6b3fadccffa08a2
3f0e403ccece5d35af9dcef40855e648d444f81d
/hw3/gene_finder.py
06cf0005510bafadfc4769125a275c92675564b9
[]
no_license
paulruvolo/SoftwareDesign
fbcf40c40cb8d62ae69d64a8cf15742fc1398e91
3c4f2d9b196653226dc5dba1b30583aca48731df
refs/heads/master
2020-05-20T10:04:25.879779
2014-05-01T15:45:17
2014-05-01T15:45:17
16,159,399
1
1
null
2014-04-03T07:01:41
2014-01-23T02:09:47
Python
UTF-8
Python
false
false
4,780
py
# -*- coding: utf-8 -*- """ Created on Sun Feb 2 11:24:42 2014 @author: YOUR NAME HERE """ # you may find it useful to import these variables (although you are not required to use them) from amino_acids import aa, codons def collapse(L): """ Converts a list of strings to a string by concatenating all elements of the list """ output = "" for s in L: output = output + s return output def coding_strand_to_AA(dna): """ Computes the Protein encoded by a sequence of DNA. This function does not check for start and stop codons (it assumes that the input DNA sequence represents an protein coding region). dna: a DNA sequence represented as a string returns: a string containing the sequence of amino acids encoded by the the input DNA fragment """ # YOUR IMPLEMENTATION HERE def coding_strand_to_AA_unit_tests(): """ Unit tests for the coding_strand_to_AA function """ # YOUR IMPLEMENTATION HERE def get_reverse_complement(dna): """ Computes the reverse complementary sequence of DNA for the specfied DNA sequence dna: a DNA sequence represented as a string returns: the reverse complementary DNA sequence represented as a string """ # YOUR IMPLEMENTATION HERE def get_reverse_complement_unit_tests(): """ Unit tests for the get_complement function """ # YOUR IMPLEMENTATION HERE def rest_of_ORF(dna): """ Takes a DNA sequence that is assumed to begin with a start codon and returns the sequence up to but not including the first in frame stop codon. If there is no in frame stop codon, returns the whole string. dna: a DNA sequence returns: the open reading frame represented as a string """ # YOUR IMPLEMENTATION HERE def rest_of_ORF_unit_tests(): """ Unit tests for the rest_of_ORF function """ # YOUR IMPLEMENTATION HERE def find_all_ORFs_oneframe(dna): """ Finds all non-nested open reading frames in the given DNA sequence and returns them as a list. This function should only find ORFs that are in the default frame of the sequence (i.e. they start on indices that are multiples of 3). By non-nested we mean that if an ORF occurs entirely within another ORF, it should not be included in the returned list of ORFs. dna: a DNA sequence returns: a list of non-nested ORFs """ # YOUR IMPLEMENTATION HERE def find_all_ORFs_oneframe_unit_tests(): """ Unit tests for the find_all_ORFs_oneframe function """ # YOUR IMPLEMENTATION HERE def find_all_ORFs(dna): """ Finds all non-nested open reading frames in the given DNA sequence in all 3 possible frames and returns them as a list. By non-nested we mean that if an ORF occurs entirely within another ORF and they are both in the same frame, it should not be included in the returned list of ORFs. dna: a DNA sequence returns: a list of non-nested ORFs """ # YOUR IMPLEMENTATION HERE def find_all_ORFs_unit_tests(): """ Unit tests for the find_all_ORFs function """ # YOUR IMPLEMENTATION HERE def find_all_ORFs_both_strands(dna): """ Finds all non-nested open reading frames in the given DNA sequence on both strands. dna: a DNA sequence returns: a list of non-nested ORFs """ # YOUR IMPLEMENTATION HERE def find_all_ORFs_both_strands_unit_tests(): """ Unit tests for the find_all_ORFs_both_strands function """ # YOUR IMPLEMENTATION HERE def longest_ORF(dna): """ Finds the longest ORF on both strands of the specified DNA and returns it as a string""" # YOUR IMPLEMENTATION HERE def longest_ORF_unit_tests(): """ Unit tests for the longest_ORF function """ # YOUR IMPLEMENTATION HERE def longest_ORF_noncoding(dna, num_trials): """ Computes the maximum length of the longest ORF over num_trials shuffles of the specfied DNA sequence dna: a DNA sequence num_trials: the number of random shuffles returns: the maximum length longest ORF """ # YOUR IMPLEMENTATION HERE def gene_finder(dna, threshold): """ Returns the amino acid sequences coded by all genes that have an ORF larger than the specified threshold. dna: a DNA sequence threshold: the minimum length of the ORF for it to be considered a valid gene. returns: a list of all amino acid sequences whose ORFs meet the minimum length specified. """ # YOUR IMPLEMENTATION HERE
0d8d9931fc39e117e208a6bbb14e8e319c51f5d8
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03618/s852100353.py
4ec50b5b200e61ec44a631e25644e2e5e81fbb35
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
A = input() N = len(A) count = {} ans = 1 for i in range(N): if A[i] in count.keys(): count[A[i]] += 1 else: count[A[i]] = 1 L = list(count.values()) M = len(L) for i in range(M): for j in range(i+1,M): ans += L[i] * L[j] print(ans)
0d8b708a8a3d87139068832ed3780276e9387b0f
71e640ac44a47e88a813b0019f1ce3031edaad3a
/BookZelle/10_animation.py
64fd9ba63655a7d3133700de5d96af58f17f8273
[]
no_license
PyRPy/algorithms_books
ef19b45f24c08a189cb9914f8423f28d609700e2
1804863ca931abedbbb8053bcc771115d0c23a2d
refs/heads/master
2022-05-25T20:22:03.776125
2022-05-10T13:47:33
2022-05-10T13:47:33
167,270,558
1
1
null
null
null
null
UTF-8
Python
false
false
3,987
py
# 10_animation.py from math import sqrt, sin, cos, radians, degrees from graphics import * from projectile import Projectile from button import Button class ShortTracker: def __init__(self, win, angle, velocity, height): """Win is the GraphWin to display the shot angle, velocity, and height are initial projectile parameters. """ self.proj = Projectile(angle, velocity, height) self.marker = Circle(Point(0, height), 3) self.marker.setFill("red") self.marker.setOutline("red") self.marker.draw(win) def update(self, dt): """ Move the shot dt seconds farther along its flight """ # update the projectile self.proj.update(dt) # move the circle to the new projectile location center = self.marker.getCenter() dx = self.proj.getX() - center.getX() dy = self.proj.getY() - center.getY() self.marker.move(dx, dy) def getX(self): return self.proj.getX() def getY(self): return self.proj.getY() def undraw(self): self.marker.undraw() class InputDialog: """ A custom window for getting simulation values(angle, vel, and height) from the user. """ def __init__(self, angle, vel, height): self.win = win = GraphWin("Initial values", 200, 300) win.setCoords(0, 4.5, 4, 0.5) Text(Point(1,1), "Angle").draw(win) self.angle = Entry(Point(3,1), 5).draw(win) self.angle.setText(str(angle)) Text(Point(1,2), "velocity").draw(win) self.vel = Entry(Point(3,2), 5).draw(win) self.vel.setText(str(vel)) Text(Point(1,3), "Height").draw(win) self.height = Entry(Point(3,3), 5).draw(win) self.height.setText(str(height)) self.fire = Button(win, Point(1,4), 1.25, 0.5, "Fire!") self.fire.activate() self.quit = Button(win, Point(3,4), 1.25, 0.5, "Quit") self.quit.activate() def interact(self): """Wait for user to click Quit or Fire button Returns a string indicating which button was clicked """ while True: pt = self.win.getMouse() if self.quit.clicked(pt): return "Quit" if self.fire.clicked(pt): return "Fire!" def getValues(self): """ return input values """ a = float(self.angle.getText()) v = float(self.vel.getText()) h = float(self.height.getText()) return a,v,h def close(self): """ close the input window """ self.win.close() def main(): # create animation window win = GraphWin("projectile animation", 640, 480, autoflush = False) win.setCoords(-10, -10, 210, 155) # draw baseline Line(Point(-10, 0), Point(210, 0)).draw(win) # draw labeled ticks every 50 meters for x in range(0, 210, 50): Text(Point(x, -5), str(x)).draw(win) Line(Point(x,0), Point(x,2)).draw(win) # event loop, each time through fires a single shot angle, vel, height = 45.0, 40.0, 2.0 while True: # interact with the user inputwin = InputDialog(angle, vel, height) choice = inputwin.interact() inputwin.close() if choice == "Quit": break # create a shot and track until it hits ground or leaves window angle, vel, height = inputwin.getValues() shot = ShortTracker(win, angle, vel, height) while 0<= shot.getY() and -10 < shot.getX() <= 210: shot.update(1/50) # this 'update()' comes from class method update(50) # this function comes from 'graphics.py' win.close() if __name__ == "__main__": main()
3be9437daa2a35e743a7785af6fc9535115a66b2
a61ffe4cde938b993202cd172c84d03cfc7ea955
/c3d_svm_py_develop/c3d_svm_create_inputlist_and_outputprefix.py
6a8156f7ef4e51584c25bdec7b4bf547e6db3735
[]
no_license
wujinjun/wujinjun_py
33f372944bcb0aa961503207df2c5743b309f46c
6cb100b06ebe8a66c59198b2a4dcdf263f91f521
refs/heads/master
2021-01-19T10:54:06.250551
2017-11-20T09:14:44
2017-11-20T09:14:44
87,911,232
0
1
null
null
null
null
UTF-8
Python
false
false
4,547
py
#此py脚本用于c3d_svm,可以用这个脚本可以得到inputlist.txt, outputprefix.txt #Usage:“数据集路径”“inputlist文件名”“ outputprefix文件名”,"起始video序号" ,"结束video序号" ,“帧采样间隔” #Example:create_inputlist_ouputprefix("/home/wjj/HDD/HDD/dataset_pytest/","input_list.txt","output_list_prefix.txt",1,13,8) #Author:Wu jinjun import re def change_to_outputprefix_format(string): #定义把路径转换为outputprefix格式的函数 return re.split(r".jpg",string)[0].replace("dataset","output") def change_to_inputlist_format(string,label): #定义把路径转换为inputlist格式的函数 pattern_frame_num = re.compile(r"\d+") #定义提取路径中所有数字的的正则表达式 str_num = re.findall(pattern_frame_num,string)[-1] #取所有数字中的最后一项 int_num = int(str_num) #将str型的数字(前面带有0的,比如“000128”)转为int型 str_num_withoutzero = str(int_num) #将int型的数字转换为str型,此时去掉了000 pattern_path = re.compile(r"000*") #找到000*之前的路径 str_path = re.split(pattern_path,string)[0] #按照以上的规则将帧的路径切片,取前面的路径 inputlist_string = str_path + ' '+ str_num_withoutzero + ' ' + str(label) #组合形成inputlist格式 return inputlist_string def match_item(string,floor,ceiling): #定义一个匹配item的函数,可以规定上限和下限 regex = re.compile(r"subject_*") #匹配subject_后的数字 int_num=int(re.split(regex,string)[-1]) #将匹配到的str型数字转为int型,即将数据切片得到最后的数字 if int_num <= ceiling and int_num >= floor: #如果小于期望值 return True import os def create_inputlist_ouputprefix(basepath,inputlist,outputprefix,floor,ceiling,sample_interval): #basepath是数据集的路径,inputlist文件名 outputprefix文件名,帧采样间隔 f_outputfile = open(outputprefix,'w') #打开文件准备写入 f_inputfile = open(inputlist,'w') classlist = os.listdir(basepath) #将basepath下的文件遍历并存入classlist label = 0 classlist.sort() #按照类别的首字母排序 #print classlist for classvar in classlist: #for数据集下的每个类 videodir = os.path.join('%s%s' % (basepath,classvar)) if os.path.isdir(videodir) == True: #判断该条目是否是文件夹 videolist = os.listdir(videodir) #将video条目存入videolist #print videodir videolist.sort() for videovar in videolist: #for每个类下的每个video clipdir = os.path.join('%s/%s' % (videodir,videovar)) #print videolist if os.path.isdir(clipdir) == True: #判断该条目是否是文件夹 if match_item(clipdir,floor=floor,ceiling=ceiling) == True: #print clipdir framelist = os.listdir(clipdir) framelist.sort() framelist = framelist[::sample_interval] framelist = framelist[:-1] for framevar in framelist: framedir = os.path.join('%s/%s/%s' % (videodir,videovar,framevar)) #print framedir,label #打印clip路径以及对应label frameitem_outputfile = change_to_outputprefix_format('%sc3d/%s_%s/%s' % (basepath,classvar,videovar,framevar)) frameitem_inputfile = change_to_inputlist_format(framedir,label) f_outputfile.write('%s\n' % (frameitem_outputfile)) #将条目写入文件 f_inputfile.write('%s\n' % (frameitem_inputfile)) #将条目写入文件 #print frameitem_inputfile #print frameitem_outputfile label=label+1 f_outputfile.close() f_inputfile.close() print("Processing...") #Usage:“数据集路径”“inputlist文件名”“ outputprefix文件名”,"起始video序号" ,"结束video序号" ,“帧采样间隔” #Example:create_inputlist_ouputprefix("/home/wjj/HDD/HDD/dataset_pytest/","input_list.txt","output_list_prefix.txt",1,13,8) create_inputlist_ouputprefix("/samba/HDD/dataset_20170117_error/","input_list_ori.txt","output_list_prefix_ori.txt",1,45,8) print("Done!")
3f506c4228fece459ff8e304cb3ff7c1c8f44ed0
4273556f701f70baccd7151ce0c51cb89e68a610
/moult/color.py
c8ae3a6dfebf203ea0be218df9986ab90917fda7
[ "MIT" ]
permissive
intermezzo-fr/moult
bef6166a99a181a91e610232d599cd669ca5f6fe
59f5f08931c7ed306d83a7a1696d95082c259c60
refs/heads/master
2021-01-16T17:59:35.345622
2015-04-27T18:51:02
2015-04-27T18:51:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,524
py
import sys FG_BLACK = 30 FG_RED = 31 FG_GREEN = 32 FG_YELLOW = 33 FG_BLUE = 34 FG_MAGENTA = 35 FG_CYAN = 36 FG_WHITE = 37 FG_RESET = 39 BG_BLACK = 40 BG_RED = 41 BG_GREEN = 42 BG_YELLOW = 43 BG_BLUE = 44 BG_MAGENTA = 45 BG_CYAN = 46 BG_WHITE = 47 BG_RESET = 49 enabled = True _enabled = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() class ColorCombo(object): def __init__(self, foreground=0, background=0, bright=None): self.foreground = foreground or FG_RESET self.background = background or BG_RESET self.set_bright(bright) def set_bright(self, bright): if bright is None: self.flag = 22 elif bright: self.flag = 1 else: self.flag = 2 def copy(self): c = ColorCombo(self.foreground, self.background) c.flag = self.flag return c def __repr__(self): return u'<ColorCombo [{:d}, {:d}]>'.format(self.foreground, self.background) HEY = ColorCombo(FG_RED) YAY = ColorCombo(FG_GREEN) MEH = ColorCombo(FG_YELLOW) GOOD = ColorCombo(FG_BLUE) NEAT = ColorCombo(FG_CYAN) SHHH = ColorCombo(FG_MAGENTA) NOOO = ColorCombo(FG_WHITE, BG_RED, bright=True) MAN = ColorCombo(FG_BLACK, BG_YELLOW, bright=True) class ColorTextRun(object): '''String imposter that supports multiple color strings, mostly so len() reports the actual text's length ''' def __init__(self, *items): self.items = list(items) def __len__(self): return sum(map(len, self.items)) def __unicode__(self): return u''.join(map(str, self.items)) def __str__(self): return self.__unicode__() def __repr__(self): return u'<ColorTextRun {}>'.format(repr(self.items)) def __add__(self, other): self.items.append(other) return self def __radd__(self, other): self.items.insert(0, other) return self def encode(self, *args, **kwargs): return str(self).encode(*args, **kwargs) def decode(self, *args, **kwargs): return str(self).decode(*args, **kwargs) class ColorText(object): '''String imposter that supports colored strings, mostly so len() reports the actual text's length ''' fmt = u'\033[{fg:d};{bg:d};{f}m{t}\033[0m' def __init__(self, text, foreground=0, background=0, ignore_setting=False): self.text = text if isinstance(foreground, ColorCombo): self.color = foreground else: self.color = ColorCombo(foreground or FG_RESET, background or BG_RESET) self.ignore_setting = ignore_setting def __len__(self): return len(self.text) def __unicode__(self): if not _enabled or (not self.ignore_setting and not enabled): return self.text return self.fmt.format(fg=self.color.foreground, bg=self.color.background, f=self.color.flag, t=self.text) def __str__(self): return self.__unicode__() def __repr__(self): return u'<ColorText "{}" ({})>'.format(self.text, repr(self.color)) def __add__(self, other): return ColorTextRun(self, other) def __radd__(self, other): return ColorTextRun(other, self) def encode(self, *args, **kwargs): return str(self).encode(*args, **kwargs) def decode(self, *args, **kwargs): return str(self).decode(*args, **kwargs)
64bc51802cab2944f30ecdc0a80ee6c55b246561
966e52a65041fffb09cc66c5b3593a4af6d2aadb
/tut_01_hello_triangle/__init__.py
d015788299204f0c562468eac7b44ee0004c8c23
[]
no_license
tymonpitts/pygltut
489c0fd2a6a10076624b76cfc77c777e034e8c2a
11868a764ffadae0bc439440e9f2273896ae7b3f
refs/heads/master
2021-01-06T20:36:54.883409
2014-04-06T22:49:40
2014-04-06T22:49:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,292
py
import glfw from OpenGL import GL from OpenGL.GL.shaders import compileShader, compileProgram from gltut_framework import AbstractTutorial VERTEX_SHADER = """ #version 330 layout(location = 0) in vec4 position; void main() { gl_Position = position; } """ FRAGMENT_SHADER = """ #version 330 out vec4 outputColor; void main() { outputColor = vec4(1.0f, 1.0f, 1.0f, 1.0f); } """ class Tutorial(AbstractTutorial): def __init__(self, *args, **kwargs): super(Tutorial, self).__init__(*args, **kwargs) self.theProgram = None self.vertexPositions = [ 0.75, 0.75, 0.0, 1.0, 0.75, -0.75, 0.0, 1.0, -0.75, -0.75, 0.0, 1.0] self.positionBufferObject = None self.vao = None self.vert_components = 4 self.size_float = 4 def initializeProgram(self): shaderList = [] shaderList.append(compileShader(VERTEX_SHADER, GL.GL_VERTEX_SHADER)) shaderList.append(compileShader(FRAGMENT_SHADER, GL.GL_FRAGMENT_SHADER)) self.theProgram = compileProgram(*shaderList) def initializeVertexBuffer(self): self.positionBufferObject = GL.glGenBuffers(1) GL.glBindBuffer(GL.GL_ARRAY_BUFFER,self.positionBufferObject) array_type = (GL.GLfloat*len(self.vertexPositions)) GL.glBufferData( GL.GL_ARRAY_BUFFER, len(self.vertexPositions)*self.size_float, array_type(*self.vertexPositions), GL.GL_STATIC_DRAW) GL.glBindBuffer(GL.GL_ARRAY_BUFFER,0) def init(self): self.vao = GL.glGenVertexArrays(1) GL.glBindVertexArray(self.vao) self.initializeProgram() self.initializeVertexBuffer() def display(self): GL.glClearColor(0.0, 0.0, 0.0, 0.0) GL.glClear(GL.GL_COLOR_BUFFER_BIT) GL.glUseProgram(self.theProgram) GL.glBindBuffer(GL.GL_ARRAY_BUFFER, self.positionBufferObject) GL.glEnableVertexAttribArray(0) GL.glVertexAttribPointer(0, self.vert_components, GL.GL_FLOAT, GL.GL_FALSE, 0, None) GL.glDrawArrays(GL.GL_TRIANGLES, 0, len(self.vertexPositions)//self.vert_components) GL.glDisableVertexAttribArray(0) GL.glUseProgram(0) glfw.SwapBuffers() def reshape(self, w, h): GL.glViewport(0, 0, w, h); def keyboard(self, key, press): if key == glfw.KEY_ESC: glfw.Terminate() return # import glfw # from OpenGL.GL import * # from OpenGL.raw.GL.ARB.vertex_array_object import \ # glGenVertexArrays, glBindVertexArray # import numpy # from gltut_framework import AbstractTutorial # from OpenGL.GL import shaders # from OpenGL.arrays import vbo # from OpenGL.arrays.arraydatatype import ArrayDatatype # # print OpenGL.GL.__file__ # class Tutorial(AbstractTutorial): # VERTEX_SHADER = """ # #version 330 # layout(location = 0) in vec4 position; # void main() # { # gl_Position = position; # } # """ # FRAGMENT_SHADER = """ # #version 330 # out vec4 outputColor; # void main() # { # outputColor = vec4(1.0f, 1.0f, 1.0f, 1.0f); # } # """ # def __init__(self, *args, **kwargs): # super(Tutorial, self).__init__(*args, **kwargs) # self.theProgram = None # self.vertexPositions = numpy.array([ # [0.75, 0.75, 0.0, 1.0], # [0.75, -0.75, 0.0, 1.0], # [-0.75, -0.75, 0.0, 1.0]], dtype='f') # # self.positionBufferObject = None # self.positionBufferObject = GLuint(0) # self.vao = GLuint(0) # def initializeProgram(self): # shaderList = [] # shaderList.append(shaders.compileShader(self.VERTEX_SHADER, GL_VERTEX_SHADER)) # shaderList.append(shaders.compileShader(self.FRAGMENT_SHADER, GL_FRAGMENT_SHADER)) # self.theProgram = shaders.compileProgram(*shaderList) # def initializeVertexBuffer(self): # glGenBuffers(1, self.positionBufferObject) # glBindBuffer(GL_ARRAY_BUFFER, self.positionBufferObject) # glBufferData(GL_ARRAY_BUFFER, ArrayDatatype.arrayByteCount(self.vertexPositions), self.vertexPositions, GL_STATIC_DRAW); # glBindBuffer(GL_ARRAY_BUFFER, 0); # # self.positionBufferObject = vbo.VBO(self.vertexPositions) # def init(self): # glGenVertexArrays(1, self.vao) # glBindVertexArray(self.vao) # self.initializeProgram() # self.initializeVertexBuffer() # # glGenVertexArrays(1, self.vao) # # glBindVertexArray(self.vao) # def display(self): # glClearColor(0.0, 0.0, 0.0, 0.0) # glClear(GL_COLOR_BUFFER_BIT) # glUseProgram(self.theProgram) # # glBindBuffer(GL_ARRAY_BUFFER, self.positionBufferObject) # self.positionBufferObject.bind() # glEnableVertexAttribArray(0) # glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0) # glDrawArrays(GL_TRIANGLES, 0, 3) # glDisableVertexAttribArray(0) # glUseProgram(0) # glfw.SwapBuffers() # def reshape(self, w, h): # glViewport(0, 0, w, h); # def keyboard(self, key, press): # if key == glfw.KEY_ESC: # glfw.Terminate() # return
39d2d1b7c2d82e8e5f7f14bf5ac912849bac3e28
ac06fe47b7b8bca32cce00823d5bf6b974634e53
/Geospatial/texas_freeze_NDVI.py
348b04388374000651d3e2cb5cf5bdcab1b418e9
[ "BSD-2-Clause" ]
permissive
veeeology/portfolio_projects
3277d99faad84785bcc67e52a353762292c23960
6ba7ae934bb678091815262f9af553dffc407f4f
refs/heads/main
2023-03-30T16:36:19.553748
2021-04-06T14:56:15
2021-04-06T14:56:15
347,794,288
0
0
null
null
null
null
UTF-8
Python
false
false
5,267
py
import os, zipfile, time, datetime, re import datetime as dt import rasterio import rasterio.mask import geopandas as gpd import numpy as np import matplotlib.pyplot as plt # File locations and configuration raster_crs = '+proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_0=0 +ellps=sphere +units=m +no_defs +type=crs' raster_dir = 'eMODIS_NDVI_v6/' states_shp_file = 'Culture/USA_States__Generalized_.geojson' # Load in the Texas outline to crop the rasters states_shp = gpd.read_file(states_shp_file) shp_crs = states_shp.crs texas = states_shp.loc[states_shp['STATE_NAME'] == 'Texas'] texas = texas.to_crs(raster_crs) # Because the state outline includes lakes, etc, locate the largest of the # multipolygons texas = texas.iloc[0].geometry texas_areas = [t.area for t in texas] texas = [texas[i] for i in range(len(texas)) if texas_areas[i]==max(texas_areas)][0] # # If needed, make sure the zip files have been extracted. # zip_files = [f for f in os.listdir(raster_dir) if f.endswith('.zip')] # for f in zip_files: # data_zip = zipfile.ZipFile(raster_dir + f) # data_zip.extractall(raster_dir) # Get the unique list of file prefixes and dates to use for each raster file_prefixes = dict() for f in os.listdir(raster_dir): # Look for the date part of the string date_pattern = '\d{4}.\d{3}-\d{3}' date_match = re.search(date_pattern, f) # If the date is present, store it in the dictionary with the file prefix if date_match != None: date_str = date_match.group() year = int(date_str[0:4]) start_days = int(date_str[5:8]) end_days = int(date_str[9:12]) # Convert from days since the beginning of the year to a date object start_date = dt.date(year, 1, 1) + dt.timedelta(days=start_days) end_date = dt.date(year, 1, 1) + dt.timedelta(days=end_days) # Construct the file prefix prefix = 'US_eMAH_NDVI_' + date_str + '.HKM.' if prefix not in file_prefixes.keys(): file_prefixes[prefix] = dict() file_prefixes[prefix]['start_date'] = start_date file_prefixes[prefix]['end_date'] = end_date if 'HKM.VI_NDVI' in f and f.endswith('.tif'): file_prefixes[prefix]['NDVI_file'] = f if 'HKM.VI_QUAL' in f and f.endswith('.tif'): file_prefixes[prefix]['QUAL_file'] = f # Iterate through each group of files to extract the data and for fp in file_prefixes: # First, open the NDVI raster and crop it to the state of Texas img = rasterio.open(raster_dir + file_prefixes[fp]['NDVI_file']) ndvi_masked, transform = rasterio.mask.mask(img, [texas]\ ,crop=True, filled=False) ndvi_masked = ndvi_masked[0] # Plot the figure for display f1 = plt.figure() plt.title('NDVI from ' + str(file_prefixes[fp]['start_date']) + ' to ' \ + str(file_prefixes[fp]['end_date'])) frame = plt.gca() frame.axes.get_xaxis().set_visible(False) frame.axes.get_yaxis().set_visible(False) plt.imshow(ndvi_masked, cmap='gist_earth_r', vmin=-2000, vmax=10000) plt.colorbar() # Then open the quality file so that we can use it to filter our data img = rasterio.open(raster_dir + file_prefixes[fp]['QUAL_file']) qual_masked, transform = rasterio.mask.mask(img, [texas] \ ,crop=True, filled=False) qual_masked = qual_masked[0] f1 = plt.figure() plt.title('QUAL from ' + str(file_prefixes[fp]['start_date']) + ' to ' \ + str(file_prefixes[fp]['end_date'])) frame = plt.gca() frame.axes.get_xaxis().set_visible(False) frame.axes.get_yaxis().set_visible(False) plt.imshow(qual_masked, cmap='viridis', vmin=0, vmax=4) plt.colorbar() # Use the data quality layer to exclude pixels from the ndvi map qual_flag = np.where(qual_masked>0.1, np.nan, 1.0) ndvi_masked_filtered = np.multiply(ndvi_masked, qual_flag) f1 = plt.figure() plt.title('NDVI from ' + str(file_prefixes[fp]['start_date']) + ' to ' \ + str(file_prefixes[fp]['end_date'])) frame = plt.gca() frame.axes.get_xaxis().set_visible(False) frame.axes.get_yaxis().set_visible(False) plt.imshow(ndvi_masked_filtered, cmap='gist_earth_r', vmin=-2000, vmax=10000) plt.colorbar() file_prefixes[fp]['cropped_filtered_map'] = ndvi_masked_filtered # Final step: Build the difference maps to calculate the difference in NDVI # from before and after the freeze start_comparison = 'US_eMAH_NDVI_2021.033-039.HKM.' for fp in file_prefixes: if fp != start_comparison: diffmap = file_prefixes[fp]['cropped_filtered_map'] \ - file_prefixes[start_comparison]['cropped_filtered_map'] f1 = plt.figure() plt.title('Difference in NDVI: pre-freeze (Feb 3-9) vs \n' \ + file_prefixes[fp]['start_date'].strftime('%b %d') \ + ' - ' + file_prefixes[fp]['end_date'].strftime('%b %d')) frame = plt.gca() frame.axes.get_xaxis().set_visible(False) frame.axes.get_yaxis().set_visible(False) plt.imshow(diffmap, cmap='RdYlGn', vmin=-1000, vmax=1000) plt.colorbar()
1dc803b5cbb87ff7d2b65bfecab4e5e6aa6afee4
c4a33b613ffc77dccf96d33c3a5cc127405c0e95
/home/tests.py
9124cedbe903776e5f9e6fcac0320003030903d1
[]
no_license
tsokac2/new-irish-life
25f49bd0b74dfa7c0a449772249f6cb51925b643
d09934b60a1fd4fbd4540d412dc5dab726f5b502
refs/heads/main
2023-07-02T09:54:55.082587
2021-07-30T04:42:57
2021-07-30T04:42:57
379,245,725
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
from django.test import TestCase class TestViews(TestCase): def test_home_page(self): """ Test home page renders correct page """ response = self.client.get('/') self.assertEqual(response.status_code, 200) self. assertTemplateUsed(response, 'home/home.html')
fc819fae94e9a16c18e0c3eede6e3712240680ff
ade1ad9128f7c31c69d468225bbf032fe96e0783
/src/StateHandler.py
22c3048426a0b2190fe0430cb9a55c5059274123
[]
no_license
UHSProgramming/StrategyGame
a59bef78916654bcf0f42a94693672b16af594eb
0795dc656e32903818e9f5aea47b9751f8471f7e
refs/heads/master
2021-09-02T12:49:20.202234
2018-01-02T19:44:37
2018-01-02T19:44:37
105,717,547
3
3
null
null
null
null
UTF-8
Python
false
false
664
py
import pygame """ StateHandler Handles all the given GameStates. StateHandler handles swapping states and maintaining state """ class StateHandler: def __init__(self): self.states = [] self.stateIndex = 0 def addState(self, newState): # add a state to the list of states self.states.append(newState) def changeState(self, newState): # change current state to states[newState] self.currentState = self.states[newState] self.stateIndex = newState def getCurrentState(self): # get the current state return self.states[self.stateIndex] def update(self): self.getCurrentState().update()
744795bf937a40082cce84199fe73e053eeeed12
9983450fb504387c767a4ea59cc149786388b245
/tests/mowgli_etl_test/pipeline/food_on/food_on_extractor_test.py
b76c05ca2a55c099f7c3cdf20e1dc5dc0ae4cd8a
[ "MIT" ]
permissive
tetherless-world/mowgli-etl
2e354f00df22f70323c3e05b3504c272903ded6d
28c19eba41e03e053ae4addff56a313d926e18d7
refs/heads/master
2023-04-18T15:16:14.051190
2021-01-04T15:32:01
2021-01-04T15:32:01
235,866,968
6
1
MIT
2021-04-20T20:05:35
2020-01-23T19:11:35
Python
UTF-8
Python
false
false
416
py
import os.path from mowgli_etl.pipeline.food_on.food_on_extractor import FoodOnExtractor def test_food_on_extractor(pipeline_storage): result = FoodOnExtractor().extract(force=False, storage=pipeline_storage) assert len(result) == 1 file_path = result["food_on_owl_file_path"] assert os.path.dirname(file_path) == str(pipeline_storage.extracted_data_dir_path) assert os.path.exists(file_path)
30c8425b09e3e4075bc5a238bd98f31b25ea39e6
a4dbabcae5bbc6f9aef63bd7dfad12eb92e3b1f9
/venv/Scripts/easy_install-3.7-script.py
c39a3d704356584c70032a4e0d652d4f704a4dc6
[]
no_license
RFarrow9/Zeitgeist
18de1ffdb4d8c2bbe3354d46f71011069b5ffe0f
9b2b90720a5be6ab1c46783110a09a855201a6c6
refs/heads/master
2020-08-01T07:37:41.541660
2019-09-25T19:36:29
2019-09-25T19:36:29
210,916,716
0
0
null
null
null
null
UTF-8
Python
false
false
465
py
#!C:\Users\robfa\PycharmProjects\SparkZeitgeist\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )
c5e76a9cc1641319109e8b0d11e62b3cc0fcd669
302c5257598ef7e66606672bc73183b0f41d97fd
/wsgi.py
f07be02fec44860e7144109cd42a9e91c05c52d3
[ "MIT" ]
permissive
jjmartens/mmq
87955c3d2437a757e5adf6f2e9ba394d46e12b5d
6fbff737e7c4ece100fcb4ab2844859d05b59dd2
refs/heads/master
2021-06-06T08:51:07.822333
2016-11-03T10:24:03
2016-11-03T10:24:03
33,864,801
5
1
MIT
2023-01-19T14:45:27
2015-04-13T11:35:55
Python
UTF-8
Python
false
false
304
py
from werkzeug.contrib.fixers import ProxyFix from app import app, db app.config['SQLALCHEMY_DATABASE_URI'] ='mysql://root:@localhost/mmq' app.wsgi_app = ProxyFix(app.wsgi_app) @app.errorhandler(500) def internal_error(error): db.session.rollback() if __name__ == '__main__': app.run(debug=True)
519e6292e702c8402b2db2212eabdbe6b3b18ae9
e7ebcf6603d134180f5b793643795c10a888aeca
/th23.py
ccb54cac015e7aa561cd2fdfd4c2885de5a56914
[]
no_license
tranvanquan1999/k-thu-t-l-p-tr-nh
c7469e78423e293062920ee11973d44c9c802857
5c9c5fff4b0d49a6eb62f041ac9bed8d4d6954e0
refs/heads/master
2020-04-28T02:57:20.890902
2019-06-01T05:40:06
2019-06-01T05:40:06
174,917,785
1
0
null
null
null
null
UTF-8
Python
false
false
177
py
# viết chương trình kiểm tra số chẵn lẻ in ra màn hình n=int(input("nhap so can kiem tra---->")) if n % 2==0: print("so chan"); else: print("so le ")
a475483643b30fae89103e4f7a12d3e27b64a13f
452c6ab91b09d4bec46cf49188c03cd6c7d4225c
/cifar100.py
d9de5d2a74dfd3097bb85f2e03ce8f39239f99ee
[]
no_license
bahar-j/computer-vision
a66197db8a75b2572e311a6c0daa530012e72adb
5703028e427f716a58036605ee99297b974fe54e
refs/heads/master
2022-12-24T21:17:21.639830
2020-09-06T12:21:19
2020-09-06T12:21:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,436
py
import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.keras import layers, datasets import numpy as np # Hyperparameter Tuning num_classes = 100 input_shape = (32, 32, 3) # Prepare Dataset (train_x, train_y), (test_x, test_y) = datasets.cifar100.load_data() print(train_x.shape, train_y.shape, test_x.shape, test_y.shape) train_y = tf.keras.utils.to_categorical(train_y, 100) test_y = tf.keras.utils.to_categorical(test_y, 100) train_x = train_x / 255 test_x = test_x / 255 print(train_y.shape, test_y.shape) # Build Model inputs = layers.Input(input_shape) # Feature Extraction net = layers.Conv2D(32, 3, strides=(1, 1), padding="SAME")(inputs) net = layers.Activation('relu')(net) net = layers.Conv2D(32, 3, strides=(1, 1), padding="SAME")(net) net = layers.Activation('relu')(net) net = layers.MaxPool2D((2, 2))(net) net = layers.Dropout(0.5)(net) net = layers.Conv2D(64, 3, strides=(1, 1), padding="SAME")(inputs) net = layers.Activation('relu')(net) net = layers.Conv2D(64, 3, strides=(1, 1), padding="SAME")(net) net = layers.Activation('relu')(net) net = layers.MaxPool2D((2, 2))(net) net = layers.Dropout(0.5)(net) # Fully Connected(Classification) net = layers.Flatten()(net) net = layers.Dense(512)(net) # 3236개의 노드 -> 512개의 노드 net = layers.Activation('relu')(net) net = layers.Dropout(0.5)(net) net = layers.Dense(num_classes)(net) net = layers.Activation('softmax')(net) model = tf.keras.Model(inputs = inputs, outputs = net, name='basic_cnn') # Optimization Setting model.compile(loss=tf.keras.losses.categorical_crossentropy, optimizer = tf.keras.optimizers.Adam(), metrics=['accuracy']) # Training Model hist = model.fit(train_x, train_y, batch_size = 32, shuffle = True, epochs = 20) # Evaluate histories = hist.history print(histories.keys()) plt.figure(figsize=(10, 5)) plt.subplot(121) plt.plot(histories['loss']) plt.title("Loss Curve") plt.subplot(122) plt.plot(histories['accuracy']) plt.ylim(0, 1) plt.title('Acccuracy Curve') plt.show() logits = model.predict(test_x) print(logits.shape) print(np.argmax(logits[0])) print(np.max(logits[0])) plt.imshow(test_x[0]) plt.title(np.argmax(logits[0])) plt.show() preds = np.argmax(logits, -1) print(preds.shape) print(preds[0]) plt.hist(preds) plt.hist(np.argmax(test_y, -1), color= 'red', alpha = 0.5) plt.show()
1b44382e8d09fb8bedca579dabdd3e87fc880555
6cdd96cf0a7f3aab3dbd9f870d6b1bf3fea214c0
/models/crnn.py
e08de010f001d7661fe16244ca9d28bc40d98a88
[ "MIT" ]
permissive
yanhongyu111/crnn.pytorch
40492ea2a0e9f59afd9e35d0addbd293fd79543c
143c28fc5abc585fc97c19e2e57090d39a7140c5
refs/heads/master
2020-06-20T01:40:53.034038
2019-07-14T06:50:22
2019-07-14T06:50:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,916
py
# -*- coding: utf-8 -*- # @Time : 18-11-16 下午5:46 # @Author : zhoujun import torch import torchvision from torchvision.models.densenet import _DenseBlock from torch import nn class VGG(nn.Module): def __init__(self, in_channels): super(VGG, self).__init__() self.features = nn.Sequential( # conv layer nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=(3, 3), padding=(1, 1)), nn.ReLU(), nn.BatchNorm2d(64, momentum=0.9), nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)), # second conv layer nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding=(1, 1)), nn.ReLU(), nn.BatchNorm2d(128, momentum=0.9), nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)), # third conv layer nn.Conv2d(in_channels=128, out_channels=256, kernel_size=(3, 3), padding=(1, 1)), nn.ReLU(), nn.BatchNorm2d(256, momentum=0.9), # fourth conv layer nn.Conv2d(in_channels=256, out_channels=256, kernel_size=(3, 3), padding=(1, 1)), nn.ReLU(), nn.BatchNorm2d(256, momentum=0.9), nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1)), # fifth conv layer nn.Conv2d(in_channels=256, out_channels=512, kernel_size=(3, 3), padding=(1, 1)), nn.ReLU(), nn.BatchNorm2d(512, momentum=0.9), # sixth conv layer nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), padding=(1, 1)), nn.ReLU(), nn.BatchNorm2d(512, momentum=0.9), nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1)), # seren conv layer nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(2, 2)), nn.ReLU(), nn.BatchNorm2d(512, momentum=0.9) ) def forward(self, x): return self.features(x) class BasicBlockV2(nn.Module): r"""BasicBlock V2 from `"Identity Mappings in Deep Residual Networks" <https://arxiv.org/abs/1603.05027>`_ paper. This is used for ResNet V2 for 18, 34 layers. Parameters ---------- channels : int Number of output channels. stride : int Stride size. downsample : bool, default False Whether to downsample the input. in_channels : int, default 0 Number of input channels. Default is 0, to infer from the graph. """ def __init__(self, in_channels, out_channels, stride, downsample=False): super(BasicBlockV2, self).__init__() self.bn1 = nn.BatchNorm2d(in_channels, momentum=0.9) self.relu1 = nn.ReLU() self.conv = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(out_channels, momentum=0.9), nn.ReLU(), nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, bias=False) ) if downsample: self.downsample = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, bias=False) else: self.downsample = None def forward(self, x): residual = x x = self.bn1(x) x = self.relu1(x) if self.downsample: residual = self.downsample(x) x = self.conv(x) return x + residual class ResNet(nn.Module): def __init__(self, in_channels): super(ResNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(64, momentum=0.9), nn.ReLU(), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=2, stride=2, bias=False), nn.BatchNorm2d(64, momentum=0.9), nn.ReLU(), BasicBlockV2(in_channels=64, out_channels=64, stride=1, downsample=True), BasicBlockV2(in_channels=64, out_channels=128, stride=1, downsample=True), nn.Dropout(0.2), BasicBlockV2(in_channels=128, out_channels=128, stride=2, downsample=True), BasicBlockV2(in_channels=128, out_channels=256, stride=1, downsample=True), nn.Dropout(0.2), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False), BasicBlockV2(in_channels=256, out_channels=512, stride=1, downsample=True), nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=0, bias=False), nn.BatchNorm2d(1024, momentum=0.9), nn.ReLU(), nn.Conv2d(in_channels=1024, out_channels=2048, kernel_size=2, padding=(0, 1), bias=False), nn.BatchNorm2d(2048, momentum=0.9), nn.ReLU() ) def forward(self, x): return self.features(x) class _Transition(nn.Sequential): def __init__(self, in_channels, out_channels, pool_stride, pool_pad, dropout): super(_Transition, self).__init__() self.add_module('norm', nn.BatchNorm2d(in_channels, momentum=0.9)) self.add_module('relu', nn.ReLU(inplace=True)) self.add_module('conv', nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False)) if dropout: self.add_module('dropout', nn.Dropout(dropout)) self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=pool_stride, padding=pool_pad)) class DenseNet(nn.Module): def __init__(self, in_channels): super(DenseNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(64, momentum=0.9), nn.ReLU(), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=2, stride=2, bias=False), _DenseBlock(num_input_features=64, num_layers=8, bn_size=4, growth_rate=8, drop_rate=0), _Transition(in_channels=128, out_channels=128, pool_stride=2, pool_pad=0, dropout=0.2), _DenseBlock(num_input_features=128, num_layers=8, bn_size=4, growth_rate=8, drop_rate=0), _Transition(in_channels=192, out_channels=192, pool_stride=(2, 1), pool_pad=(0, 1), dropout=0.2), _DenseBlock(num_input_features=192, num_layers=8, bn_size=4, growth_rate=8, drop_rate=0), nn.BatchNorm2d(256, momentum=0.9), nn.ReLU(), nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=0, bias=False), nn.BatchNorm2d(512, momentum=0.9), nn.ReLU(), nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=2, padding=(0, 1), bias=False), nn.BatchNorm2d(1024, momentum=0.9), nn.ReLU() ) def forward(self, x): return self.features(x) class BidirectionalLSTM(nn.Module): def __init__(self, in_channels, hidden_size, num_layers): super(BidirectionalLSTM, self).__init__() self.rnn = nn.LSTM(input_size=in_channels, hidden_size=hidden_size, num_layers=num_layers, bidirectional=True) def forward(self, x): x, _ = self.rnn(x) # x = self.fc(x) # [T * b, nOut] return x class Encoder(nn.Module): def __init__(self, in_channels, encoder_name): super(Encoder, self).__init__() encoder_dict = {'VGG': VGG, 'ResNet': ResNet, 'DenseNet': DenseNet} self.cnn = encoder_dict[encoder_name](in_channels=in_channels) def forward(self, x): return self.cnn(x) class RNNDecoder(nn.Module): def __init__(self, in_channels, n_class, hidden_size, num_layers=1): super(RNNDecoder, self).__init__() self.rnn = nn.Sequential( BidirectionalLSTM(in_channels=in_channels, hidden_size=hidden_size, num_layers=num_layers), BidirectionalLSTM(in_channels=hidden_size * 2, hidden_size=hidden_size, num_layers=num_layers)) self.fc = nn.Linear(hidden_size * 2, n_class) def forward(self, x): # remove the dim which is 1 x = x.squeeze(dim=2) # from (batch,chanal,w) to (w,batch,channel) x = x.permute(2, 0, 1) # [w, b, c] x = self.rnn(x) x = self.fc(x) # print(x.shape) return x class CNNDecoder(nn.Module): def __init__(self, in_channels, n_class): super(CNNDecoder, self).__init__() self.cnn_decoder = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=256, kernel_size=3, padding=1, stride=(2, 1), bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1, stride=(2, 1), bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1, stride=(2, 1), bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1, stride=(2, 1), bias=False), nn.BatchNorm2d(256), nn.ReLU(), ) self.fc = nn.Linear(256, n_class) def forward(self, x): x = self.cnn_decoder(x) x = x.squeeze(dim=2) x = x.permute(2, 0, 1) x = self.fc(x) # print(x.shape) return x class CRNN(nn.Module): def __init__(self, in_channels, n_class, model_config): super(CRNN, self).__init__() encoder_out_dict = {'VGG': 512, 'ResNet': 2048, 'DenseNet': 1024} if model_config['encoder'] not in encoder_out_dict: raise NotImplementedError self.encoder = Encoder(in_channels, model_config['encoder']) if model_config['decoder']['type'] == 'rnn': self.decoder = RNNDecoder(encoder_out_dict[model_config['encoder']], n_class, model_config['decoder']['rnn']['nh']) elif model_config['decoder']['type'] == 'cnn': self.decoder = CNNDecoder(encoder_out_dict[model_config['encoder']], n_class) else: raise NotImplementedError def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x if __name__ == '__main__': model = { 'encoder': 'VGG', # VGG ,ResNet or DenseNet 'decoder': { 'type': 'rnn', # cnn or rnn 'rnn': { 'nh': 100 } } } device = torch.device('cpu') a = torch.zeros((2, 3, 32, 320)).to(device) net = CRNN(3, 10, model) net.eval() net.to(device) b = net(a) print(b.size())
48ca5b34d8e4d69c03c18a6308499de393e3a28a
1f187ab1fea83acec04fed50aeb4e406670124cc
/django_events/users/managers.py
dbdfa46906009c03b8e4771962a5765283e338e2
[ "MIT" ]
permissive
chrisBrookes93/django-events-management
b231e4f7ff275a0910640e8138c06256b525f1fe
93886448a7bb85c8758324977ff67bcacc80bbec
refs/heads/master
2022-11-14T03:04:13.807371
2020-07-07T23:11:18
2020-07-07T23:11:18
275,236,675
0
0
null
null
null
null
UTF-8
Python
false
false
1,412
py
from django.contrib.auth.base_user import BaseUserManager from django.utils.translation import ugettext_lazy as _lazy class UserManager(BaseUserManager): def create_user(self, email, password, **other_fields): """ Creates a standard user :param email: Email Address (username) :type email: str :param password: Password :type password: str :param other_fields: Any other fields :type other_fields: dict :return: The user created """ if not email: raise ValueError(_lazy('Missing Email Address')) email = self.normalize_email(email) user = self.model(email=email, **other_fields) user.set_password(password) user.save() return user def create_superuser(self, email, password, **other_fields): """ Creates a super user :param email: Email Address (username) :type email: str :param password: Password :type password: str :param other_fields: Any other fields :type other_fields: dict :return: The user created """ other_fields.setdefault('is_staff', True) other_fields.setdefault('is_superuser', True) other_fields.setdefault('is_active', True) return self.create_user(email, password, **other_fields)
ec88518eb53c3c0dded01a3e0c3b84a151e70586
3abf30632aae0d19510f206e8fb477b36e5873f1
/dijkstra's_algorithm_queue.py
f93edc2517f7d7caf9e5ec5d848629d2623e885d
[]
no_license
ankita0204/DSA
2df8e7fda1b2c08dc6945bb0136a2bdacc194c78
03ad051476e97a02b20d3ded4163fe178128536c
refs/heads/main
2023-02-15T02:09:41.065637
2021-01-08T17:58:50
2021-01-08T17:58:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,256
py
""" Created on Fri Sep 11 23:10:36 2021 @author: Ankita Dasgupta Dijkstra's Algorithm application with the help of Queue """ import numpy as np class queue: size = None tail = None # End of the Queue: Elements enter from here head = None # Front of the Queue: Elements are deleted from here type = None arr = None def __init__(self, arrtype): self.arrtype = arrtype self.size = 1 self.arr = np.zeros(self.size,arrtype) self.tail = 0 self.head = 0 def empty(self): return self.head == self.tail def dequeue(self): if self.empty(): print(' Queue Underflow') return a = self.arr[self.head] self.head = self.head + 1 return a def full(self): return self.tail == self.size def enqueue(self, a): if self.full(): temp = self.arr self.size *= 2 self.arr = np.zeros(self.size, self.arrtype) for i in range(len(temp)): self.arr[i]=temp[i] self.arr[self.tail] = a self.tail += 1 # Dijstras Algorithm valstack = queue(int) opstack = queue(np.chararray) inp = input(' > ' ) token=inp.split() for tok in token: if tok== '(': pass elif tok== ')': r = valstack.dequeue() l = valstack.dequeue() op=opstack.dequeue() if op == '+': valstack.enqueue(l+r) elif op == '-': valstack.enqueue(l-r) elif op == '*': valstack.enqueue(l*r) elif op == '/': valstack.enqueue(l/r) elif op == '^': valstack.enqueue(l**r) else: print("ERROR: INVALID OPERATOR") elif '0' <= tok <= '999': valstack.enqueue(int(tok)) elif tok in ['+','-','*','/','^']: opstack.enqueue(tok) elif tok == '=': print('Result : ', valstack.dequeue()) assert valstack.empty() == True and opstack.empty() == True print(opstack.empty()) print(valstack.empty())
1fc7d09608203891efb389abfb3844062c39d487
b40ce231d42e8291f0150987a2c95a12be5ec021
/05_Regression/myridge.py
518c89d2b946a4274a5149955ee78dd3abbc3ec5
[]
no_license
Chenxu-nmsu/CS487_Applied_Machine_Learning_Python
43ebd87a97bd7ea088f4f4500d6b9107bd603dbd
8e9883576fc7592c1f0cd79cb1dc964d7c75b520
refs/heads/master
2022-12-16T21:30:49.174678
2020-09-28T06:03:41
2020-09-28T06:03:41
299,200,871
0
2
null
null
null
null
UTF-8
Python
false
false
80
py
from sklearn.linear_model import Ridge ridge = Ridge(alpha=1.0, solver='auto')
e91054180f016f14be9cad61fb09ea51c6127794
9d57a7c07f25905d393d96412c406754b37d8201
/CodeChallenge/TestSuites/conftest.py
88e6b5494737c7c69a1b92aae0b690b0bb05556a
[]
no_license
git4bess/HearQAChallenge
ee1b5b28d5ccb6f732e368c438c760542f29442d
f9312438d4cd1420c27272b36784a59f0326c24c
refs/heads/master
2022-11-26T20:25:57.280909
2020-08-09T16:59:34
2020-08-09T16:59:34
286,273,771
0
0
null
null
null
null
UTF-8
Python
false
false
1,126
py
import pathlib from pathlib import Path import pytest from selenium import webdriver # from selenium.webdriver.support.select import Select @pytest.fixture() def setup(request): base_path = Path.cwd() file_path = base_path.parent driver_path = file_path.as_posix() + "/Utilities/allDrivers/chromedriver" driver = webdriver.Chrome(executable_path=driver_path) #driver = webdriver.Chrome(executable_path="/home/sonitakooh/Downloads/allDrivers/chromedriver") driver.get("https://the-internet.herokuapp.com/login") driver.maximize_window() request.cls.driver = driver yield driver.close() @pytest.fixture(params=[("", "", "Your username is invalid"), ("tom", "mess!72", "Your username is invalid"), ("paul", "SuperSecretPassword!", "Your username is invalid"), ("tomsmith", "mypassword", "Your password is invalid")]) def logindata(request): return request.param @pytest.fixture() def chromeBrowserExecPath(): base_path = Path.cwd() base_path = base_path.parent driver_path = base_path.as_posix() + "/Utilities/allDrivers/chromedriver" return [str(driver_path)]
53b23974f6b368076f2691763ddb41b5e9498d13
c7787b22849ea99e94c030ea16b67fb6c96e370a
/tests/providers/aws/aws_dynamodb_test.py
ec28aa7fc0e96fe1b8415ce3d66b1e6a23335a7e
[ "Apache-2.0", "GPL-2.0-only", "LicenseRef-scancode-public-domain", "Classpath-exception-2.0", "BSD-3-Clause", "MIT", "AGPL-3.0-only" ]
permissive
mengdong/PerfKitBenchmarker
b8ec428f5c1a306d3375d699fafb39922fa0233b
e2b6ac90a4a62c2db4cba7a3b3ce8717c804df7f
refs/heads/master
2023-05-03T15:21:28.401706
2021-06-02T07:06:48
2021-06-02T07:07:19
264,105,279
0
0
Apache-2.0
2020-05-15T05:36:32
2020-05-15T05:36:31
null
UTF-8
Python
false
false
9,165
py
"""Tests for perfkitbenchmarker.providers.aws.aws_dynamodb.""" import json import unittest from absl import flags from absl.testing import flagsaver from absl.testing import parameterized import mock from perfkitbenchmarker import errors from perfkitbenchmarker.providers.aws import aws_dynamodb from perfkitbenchmarker.providers.aws import util from tests import pkb_common_test_case FLAGS = flags.FLAGS _DESCRIBE_TABLE_OUTPUT = """ { "Table": { "AttributeDefinitions": [ { "AttributeName": "test", "AttributeType": "S" } ], "TableName": "test", "KeySchema": [ { "AttributeName": "test", "KeyType": "HASH" } ], "TableStatus": "ACTIVE", "CreationDateTime": 1611605356.518, "ProvisionedThroughput": { "NumberOfDecreasesToday": 0, "ReadCapacityUnits": 5, "WriteCapacityUnits": 0 }, "TableSizeBytes": 0, "ItemCount": 0, "TableArn": "arn:aws:dynamodb:us-east-2:835761027970:table/test", "TableId": "ecf0a60a-f18d-4666-affc-525ca6e1d207" } } """ @flagsaver.flagsaver def GetTestDynamoDBInstance(table_name='test_table'): FLAGS.zone = ['us-east-1a'] return aws_dynamodb.AwsDynamoDBInstance(table_name) class AwsDynamodbTest(pkb_common_test_case.PkbCommonTestCase): def assertArgumentInCommand(self, mock_cmd, arg): """Given an AWS command, checks that the argument is present.""" command = ' '.join(mock_cmd.call_args[0][0]) self.assertIn(arg, command) @flagsaver.flagsaver def testInitTableName(self): test_instance = GetTestDynamoDBInstance('dynamo_test_table') self.assertEqual(test_instance.table_name, 'dynamo_test_table') @flagsaver.flagsaver def testInitLocation(self): FLAGS.zone = ['us-east-1a'] test_instance = aws_dynamodb.AwsDynamoDBInstance('test_table') self.assertEqual(test_instance.zone, 'us-east-1a') self.assertEqual(test_instance.region, 'us-east-1') @flagsaver.flagsaver def testInitKeysAndAttributes(self): FLAGS.aws_dynamodb_primarykey = 'test_primary_key' FLAGS.aws_dynamodb_sortkey = 'test_sort_key' FLAGS.aws_dynamodb_attributetype = 'test_attribute_type' test_instance = GetTestDynamoDBInstance() self.assertEqual(test_instance.primary_key, '{"AttributeName": "test_primary_key","KeyType": "HASH"}') self.assertEqual(test_instance.sort_key, '{"AttributeName": "test_sort_key","KeyType": "RANGE"}') self.assertEqual( test_instance.part_attributes, '{"AttributeName": "test_primary_key","AttributeType": "test_attribute_type"}' ) self.assertEqual( test_instance.sort_attributes, '{"AttributeName": "test_sort_key","AttributeType": "test_attribute_type"}' ) @flagsaver.flagsaver def testInitThroughput(self): FLAGS.aws_dynamodb_read_capacity = 1 FLAGS.aws_dynamodb_write_capacity = 2 test_instance = GetTestDynamoDBInstance() self.assertEqual(test_instance.throughput, 'ReadCapacityUnits=1,WriteCapacityUnits=2') @flagsaver.flagsaver def testGetResourceMetadata(self): FLAGS.zone = ['us-east-1a'] FLAGS.aws_dynamodb_primarykey = 'test_primary_key' FLAGS.aws_dynamodb_use_sort = 'test_use_sort' FLAGS.aws_dynamodb_sortkey = 'test_sortkey' FLAGS.aws_dynamodb_attributetype = 'test_attribute_type' FLAGS.aws_dynamodb_read_capacity = 1 FLAGS.aws_dynamodb_write_capacity = 2 FLAGS.aws_dynamodb_lsi_count = 3 FLAGS.aws_dynamodb_gsi_count = 4 FLAGS.aws_dynamodb_ycsb_consistentReads = 5 FLAGS.aws_dynamodb_connectMax = 6 test_instance = aws_dynamodb.AwsDynamoDBInstance('test_table') actual_metadata = test_instance.GetResourceMetadata() expected_metadata = { 'aws_dynamodb_primarykey': 'test_primary_key', 'aws_dynamodb_use_sort': 'test_use_sort', 'aws_dynamodb_sortkey': 'test_sortkey', 'aws_dynamodb_attributetype': 'test_attribute_type', 'aws_dynamodb_read_capacity': 1, 'aws_dynamodb_write_capacity': 2, 'aws_dynamodb_lsi_count': 3, 'aws_dynamodb_gsi_count': 4, 'aws_dynamodb_consistentReads': 5, 'aws_dynamodb_connectMax': 6, } self.assertEqual(actual_metadata, expected_metadata) @parameterized.named_parameters({ 'testcase_name': 'ValidOutput', 'output': json.loads(_DESCRIBE_TABLE_OUTPUT)['Table'], 'expected': True }, { 'testcase_name': 'EmptyOutput', 'output': {}, 'expected': False }) def testExists(self, output, expected): test_instance = GetTestDynamoDBInstance() self.enter_context( mock.patch.object( test_instance, '_DescribeTable', return_value=output)) actual = test_instance._Exists() self.assertEqual(actual, expected) def testSetThroughput(self): test_instance = GetTestDynamoDBInstance(table_name='throughput_table') cmd = self.enter_context( mock.patch.object( util, 'IssueRetryableCommand')) test_instance._SetThroughput(5, 5) self.assertArgumentInCommand(cmd, '--table-name throughput_table') self.assertArgumentInCommand(cmd, '--region us-east-1') self.assertArgumentInCommand( cmd, '--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5') def testGetThroughput(self): test_instance = GetTestDynamoDBInstance() output = json.loads(_DESCRIBE_TABLE_OUTPUT)['Table'] self.enter_context( mock.patch.object( test_instance, '_DescribeTable', return_value=output)) actual_rcu, actual_wcu = test_instance._GetThroughput() self.assertEqual(actual_rcu, 5) self.assertEqual(actual_wcu, 0) def testTagResourceFailsWithNonExistentResource(self): test_instance = GetTestDynamoDBInstance() # Mark instance as non-existing. self.enter_context( mock.patch.object(test_instance, '_Exists', return_value=False)) with self.assertRaises(errors.Resource.CreationError): test_instance._GetTagResourceCommand(['test', 'tag']) def testUpdateWithDefaultTags(self): test_instance = GetTestDynamoDBInstance() test_instance.resource_arn = 'test_arn' cmd = self.enter_context(mock.patch.object(util, 'IssueRetryableCommand')) # Mark instance as existing. self.enter_context( mock.patch.object(test_instance, '_Exists', return_value=True)) test_instance.UpdateWithDefaultTags() self.assertArgumentInCommand(cmd, '--region us-east-1') self.assertArgumentInCommand(cmd, '--resource-arn test_arn') def testUpdateTimeout(self): test_instance = GetTestDynamoDBInstance() test_instance.resource_arn = 'test_arn' # Mock the aws util tags function. self.enter_context( mock.patch.object( util, 'MakeDefaultTags', autospec=True, return_value={'timeout_utc': 60})) # Mock the actual call to the CLI cmd = self.enter_context(mock.patch.object(util, 'IssueRetryableCommand')) # Mark instance as existing. self.enter_context( mock.patch.object(test_instance, '_Exists', return_value=True)) test_instance.UpdateTimeout(timeout_minutes=60) self.assertArgumentInCommand(cmd, '--tags Key=timeout_utc,Value=60') @parameterized.named_parameters( { 'testcase_name': 'OnlyRcu', 'rcu': 5, 'wcu': 500, }, { 'testcase_name': 'OnlyWcu', 'rcu': 500, 'wcu': 5, }, { 'testcase_name': 'Both', 'rcu': 500, 'wcu': 500, }) def testFreezeLowersThroughputToFreeTier(self, rcu, wcu): test_instance = GetTestDynamoDBInstance() self.enter_context( mock.patch.object( test_instance, '_GetThroughput', return_value=(rcu, wcu))) mock_set_throughput = self.enter_context( mock.patch.object(test_instance, '_SetThroughput', autospec=True)) test_instance._Freeze() mock_set_throughput.assert_called_once_with( rcu=aws_dynamodb._FREE_TIER_RCU, wcu=aws_dynamodb._FREE_TIER_WCU) def testFreezeDoesNotLowerThroughputIfAlreadyAtFreeTier(self): test_instance = GetTestDynamoDBInstance() self.enter_context( mock.patch.object(test_instance, '_GetThroughput', return_value=(5, 5))) mock_set_throughput = self.enter_context( mock.patch.object(test_instance, '_SetThroughput', autospec=True)) test_instance._Freeze() mock_set_throughput.assert_not_called() def testRestoreSetsThroughputBackToOriginalLevels(self): test_instance = GetTestDynamoDBInstance() test_instance.rcu = 5000 test_instance.wcu = 1000 mock_set_throughput = self.enter_context( mock.patch.object(test_instance, '_SetThroughput', autospec=True)) test_instance._Restore() mock_set_throughput.assert_called_once_with( rcu=5000, wcu=1000) if __name__ == '__main__': unittest.main()
77f36774bc76d5d058496c9255280c51d8b36293
9ba1b921dd0c2e68345b3793131ad13aad671e20
/cnn_class/benchmark.py
5de59462bb63dfa48498c99a0b7ceb3854b3b81e
[]
no_license
racingicemen/DLCNNITT
3ceda12e3d70e80764465112aca8a97415c94ca5
4f3c3b8b017279ab0502f7c3bc715befa6f115d6
refs/heads/master
2020-06-10T12:39:14.561287
2016-12-06T02:45:33
2016-12-06T02:45:33
75,960,947
0
0
null
null
null
null
UTF-8
Python
false
false
3,372
py
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from scipy.io import loadmat from sklearn.utils import shuffle from datetime import datetime K = 10 # num classes def y2indicator(y): N = len(y) ind = np.zeros((N, K)) for i in range(N): ind[i, y[i]] = 1 return ind def error_rate(p, t): return np.mean(p != t) def flatten(X): # X.shape = (32,32,3,N) N 32 x 32 color images # flat.shape = (N, 32*32*3) N = X.shape[-1] flat = np.zeros((N, 3072)) for i in range(N): flat[i] = X[:,:,:,i].reshape(3072) return flat def main(): train = loadmat('/home/rkk/kaggle/SVHN/train_32x32.mat') test = loadmat('/home/rkk/kaggle/SVHN/test_32x32.mat') Xtrain = flatten(train['X'].astype(np.float32) / 255) Ytrain = train['y'].flatten() - 1 Xtrain, Ytrain = shuffle(Xtrain, Ytrain) Ytrain_ind = y2indicator(Ytrain) Xtest = flatten(test['X'].astype(np.float32) / 255) Ytest = test['y'].flatten() - 1 Ytest_ind = y2indicator(Ytest) max_iter = 20 print_period = 10 N, D = Xtrain.shape batch_sz = 500 n_batches = int(N / batch_sz) M1 = 1000 M2 = 500 W1_init = np.random.randn(D, M1) / np.sqrt(D + M1) b1_init = np.zeros(M1) W2_init = np.random.randn(M1, M2) / np.sqrt(M1 + M2) b2_init = np.zeros(M2) W3_init = np.random.randn(M2, K) / np.sqrt(M2 + K) b3_init = np.zeros(K) X = tf.placeholder(tf.float32, shape=(None, D), name='X') T = tf.placeholder(tf.float32, shape=(None, K), name='T') W1 = tf.Variable(W1_init.astype(np.float32)) b1 = tf.Variable(b1_init.astype(np.float32)) W2 = tf.Variable(W2_init.astype(np.float32)) b2 = tf.Variable(b2_init.astype(np.float32)) W3 = tf.Variable(W3_init.astype(np.float32)) b3 = tf.Variable(b3_init.astype(np.float32)) Z1 = tf.nn.relu(tf.matmul(X, W1) + b1) Z2 = tf.nn.relu(tf.matmul(Z1, W2) + b2) Yish = tf.matmul(Z2, W3) + b3 cost = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(Yish, T)) train_op = tf.train.RMSPropOptimizer(0.0001, decay=0.99, momentum=0.9).minimize(cost) ''' Think of the dimension argument of tf.argmax as the axis across which you reduce. tf.argmax(arr, 0) reduces across dimension 0, i.e. the rows. Reducing across rows means that you will get the argmax of each individual column. ''' predict_op = tf.argmax(Yish, 1) t0 = datetime.now() LL = [] init = tf.initialize_all_variables() with tf.Session() as session: session.run(init) for i in range(max_iter): for j in range(n_batches): Xbatch = Xtrain[j*batch_sz:(j+1)*batch_sz, :] Ybatch = Ytrain_ind[j*batch_sz:(j+1)*batch_sz, :] session.run(train_op, feed_dict={X:Xbatch, T:Ybatch}) if j % print_period == 0: test_cost = session.run(cost, feed_dict={X: Xtest, T: Ytest_ind}) prediction = session.run(predict_op, feed_dict={X: Xtest}) err = error_rate(prediction, Ytest) print("Cost / err at iteration i=%d, j=%d: %.3f / %.3f" % (i, j, test_cost, err)) LL.append(test_cost) print("Elapsed time:", (datetime.now() - t0)) plt.plot(LL) plt.show() if __name__ == '__main__': main()
3fa5bea453f85362291bf14b95b767b1c41d51f4
4203f7d65fb93fc5907821907be0e57dff3a9bf6
/monitor/migrations/0004_auto_20190329_1514.py
2acb231f88b78e876edaa49b1a487c8047fbacaa
[]
no_license
Wesly-Yu/Xmonitor
48afdd28ff24e5db7980b70b5f35ccf3b060d6ba
b8fc34adc3925fbd556fb94b302ad7ebede33528
refs/heads/master
2020-05-02T10:42:26.203476
2019-04-15T07:49:41
2019-04-15T07:49:41
177,904,853
2
0
null
null
null
null
UTF-8
Python
false
false
396
py
# Generated by Django 2.1.5 on 2019-03-29 07:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('monitor', '0003_auto_20190329_1513'), ] operations = [ migrations.AlterField( model_name='serviceindex', name='index_name', field=models.CharField(max_length=64), ), ]
f6e138d073472eb92edd8d8cdf87d9e963f1c4be
d6d1192e6817f5c37386b671328a238326611c04
/day6.py
a4c79f50464e0af8a0e75217bf3dc35e38768e49
[]
no_license
12cheny/Leetcode
0a3fdc8e2f8c8e2ccfacedec7446089508af7988
e1b90cb2a3dfd03590ce7511d56a9f3be02c60ff
refs/heads/master
2020-03-15T00:36:10.268271
2018-06-09T05:01:15
2018-06-09T05:01:15
131,872,859
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
#Add the two numbers and return it as a linked list. ''' class ListNode(object): def __init__(self,x): self.val=x self.next=None ''' def num(l): k=0 i=0 while l.next!=None: k+=l.val*pow(10,i) i+=1 l=l.next k+=l.val*pow(10,i) return k class Solution(object): def addTwoNumbers(self, l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ number=num(l1)+num(l2) out=str(number)[::-1] ans=ListNode(int(out[0])) l=ans for i in range(1,len(out)): p=ListNode(int(out[i])) ans.next=p ans=ans.next return l
d3f3761b4a237bbd0387788cc97266cc727c4f45
e9d93dd6b3b5ca9e11add097f700d6248ddff7ae
/fizzbuzz-test.py
d62aadb16cc15ace89bfdf8999b6e780d733ffd6
[]
no_license
ANDINDAE/Daytwochallenge
9fe203444bcedacc91c2c1e7920e5d7fd995d687
1a7cc03e3cbe5a5190eef0adf168cadcf554a507
refs/heads/master
2020-04-05T17:00:22.870745
2018-11-26T17:14:56
2018-11-26T17:14:56
157,039,489
0
0
null
2018-11-11T02:37:44
2018-11-11T02:10:51
null
UTF-8
Python
false
false
815
py
import unittest from fizzbuzz.fizzbuzz import fizzbuzz class TestFizzBuzz(unittest.TestCase): def test_non_list_inputs(self): self.assertEqual(fizzbuzz(5, 8), "Invalid input") def test_non_list_input(self): self.assertEqual(fizzbuzz([2, 3, 4], 7), "Invalid input") def test_fizz(self): self.assertEqual(fizzbuzz([1, 3, 4], ['a', 'b', 'c']), "fizz") def test_buzz(self): self.assertEqual(fizzbuzz([4, 5, 4], [3, 4]), "buzz") def test_fizz_buzz(self): self.assertEqual(fizzbuzz([1, 2, 3, 3, 4, 5, 5, 5, 5, 6], [7, 7, 4, 5, 9]), "fizzbuzz") def test_other_total(self): self.assertEqual(fizzbuzz([4, 5, 6], [3]), 4) def test_both_empty(self): self.assertEqual(fizzbuzz([1, 3, 5], []), "fizz")
c178f9017052339821c9a6ed7d596670dc281221
c2704596fa9e8def1731bfbda3299b6d19a4721b
/nse.py
310071d51dba565e4135f30ab102212c042e6e30
[]
no_license
say-paul/finblitz
391485f5b8da9cbe6af734b8f1f38dda34f6ef50
e3305fc2dac549ae6ffad4c6c5789bcc24cdd319
refs/heads/master
2022-10-19T00:52:37.835403
2020-06-11T22:28:28
2020-06-11T22:28:28
270,297,074
0
0
null
2020-06-12T05:48:07
2020-06-07T12:18:48
Python
UTF-8
Python
false
false
5,405
py
import urllib.request import json import time import os from queue import Queue from threading import Thread from utils import combiner import datetime def import_web(ticker): """ :param ticker: Takes the company ticker :return: Returns the HTML of the page """ url = 'https://www.nseindia.com/live_market/dynaContent/live_watch/get_quote/GetQuote.jsp?symbol='+ticker req = urllib.request.Request(url, headers={'User-Agent': "PostmanRuntime/7.25.0"}) fp = urllib.request.urlopen(req, timeout=4) mybytes = fp.read() mystr = mybytes.decode("utf8") fp.close() return mystr def get_quote(ticker): """ :param ticker: Takes the company ticker :return: None """ ticker = ticker.upper() try: print("fetching data for {}".format(ticker)) string_html = filter_data(import_web(ticker)) # exit() # get_data(string_html,ticker) except Exception as e: print("{} error for {}".format(e,ticker)) retry_list.append(ticker) return string_html def filter_data(string_html): searchString = '<div id="responseDiv" style="display:none">' #assign: stores html tag to find where data starts searchString2 = '</div>' #stores: stores html tag where data end sta = string_html.find(searchString) # returns & store: find() method returns the lowest index of the substring (if found). If not found, it returns -1. data = string_html[sta + 43:] #returns & stores: skips 43 characters and stores the index of substring end = data.find(searchString2) # returns & store: find() method returns the lowest index of the substring (if found). If not found, it returns -1. fdata = data[:end] #fetch: stores the fetched data into fdata stripped = fdata.strip() #removes: blank spaces return stripped def intraday_price_data(stripped): js = json.loads(stripped) datajs = js['data'][0] subdictionary = {} subdictionary['ltp'] = datajs['lastPrice'] subdictionary['open'] = datajs['open'] subdictionary['high'] = datajs['dayHigh'] subdictionary['low'] = datajs['dayLow'] subdictionary['close'] = datajs['lastPrice'] subdictionary['volume'] = datajs['totalTradedVolume'] subdictionary['pChange'] = datajs['pChange'] return {js['lastUpdateTime']: subdictionary} def buyer_seller(stripped): js = json.loads(stripped) datajs = js['data'][0] subdictionary = {} for keys in datajs: if (keys.__contains__("buyPrice") or keys.__contains__("sellPrice") or keys.__contains__("buyQuantity") or keys.__contains__("sellQuantity")): subdictionary[keys] = datajs[keys] subdictionary['deliveryToTradedQuantity'] = datajs['deliveryToTradedQuantity'] return {js['lastUpdateTime'] : subdictionary} def runner(ticker): try: print("Starting get_quote for ", ticker) filtered_data = get_quote(ticker) volume_data = buyer_seller(filtered_data) with open(volume_path+"/"+ticker, 'a+') as f: f.write(str(volume_data)) price_intraday = intraday_price_data(filtered_data) with open(intraday_path+"/"+ticker, 'a+') as f: f.write(str(price_intraday)) except Exception as e: print(e) def threader(q): while True: ticker = q.get(timeout=12) print("Ticker {}".format(ticker)) runner(ticker) combiner(volume_path, [ticker]) combiner(intraday_path, [ticker]) q.task_done() def main(): global retry_list retry_list = [] if not os.path.exists('historical_data'): os.makedirs('historical_data') os.makedirs('historical_data/buyer_seller_volume') os.makedirs('historical_data/intraday') with open(script_names,"r") as f: data = f.read() t_list = data.split("\n") for i in range(workers): worker = Thread(target=threader, args=(q,)) worker.setDaemon(True) worker.start() for ticker in t_list: q.put(ticker) q.join() # for x in range(1): # if (0 < len(retry_list)): # print("error found {}....".format(str(len(retry_list)))) # print("retrying {} times....".format(x)) # for i in range(workers): # worker = Thread(target=threader, args=(q,)) # worker.setDaemon(True) # worker.start() # for ticker in retry_list: # q.put(ticker) # q.join() # combiner(volume_path, t_list) # combiner(intraday_path, t_list) print("Total scripts: {}".format(str(len(t_list)))) print("Count of scripts failed: {}".format(str(len(retry_list)))) return retry_list q = Queue(maxsize=0) workers = 13 script_names = "data/stock" volume_path = "historical_data/buyer_seller_volume" intraday_path = "historical_data/intraday" retry_list = [] while(True): current = datetime.datetime.now() with open('report', 'a+') as f: f.write("Run at {} \n".format(current)) f.close() failed_list = main() with open('report', 'a+') as f: f.write("Time taken: {} sec \n".format((datetime.datetime.now()-current).seconds)) f.write("Could not fetch {} scripts \n\n".format(str(len(failed_list)))) f.close() print("Sleeping for 30 sec") time.sleep(30)
7b840d26e327da2dc003c0647989f1e088499f46
2b23e732ae616f6a3c07866906e14a1e3883a693
/Pandas Practice/Data Frames/dataframes.py
b4206591b7430020d600f928f3c67aa56f13b9cd
[]
no_license
JitenKumar/Data-Analysis-Visualization-With-Python
7d045e49b16ad30fb5e2b558a3e4f69457bf4697
d53d3738c10efc6882757692215d381321ee20a3
refs/heads/master
2020-03-18T12:28:40.146060
2018-05-28T18:28:12
2018-05-28T18:28:12
134,728,583
0
0
null
null
null
null
UTF-8
Python
false
false
1,267
py
import numpy as np import pandas as pd from pandas import Series,DataFrame # importing browser # import webbrowser # website_url = 'https://en.wikipedia.org/wiki/List_of_all-time_NFL_win%E2%80%93loss_records' # webbrowser.open(website_url) # copying a data from clipboard nfl_data = pd.read_clipboard() print(nfl_data) #getting all the columns name print(nfl_data.columns) # getting a particular column (only single words) print(nfl_data.Rank) # getting multiple words columsn print(nfl_data['Total Games']) #using the dataframs DataFrame(nfl_data,columns=['Rank','Team','Total Games','Division']) #getting few rows print(nfl_data.head(3)) #getting the last frames print(nfl_data.tail(4)) # getting the rows on particular index print(nfl_data.ix[4]) #Assigning the values nfl_data['Rank'] = 34 print(nfl_data) # using arrays nfl_data['Rank'] = np.arange(16) print(nfl_data) # importing the series into the data frame ins_data = Series(["Jiten","Palsra"],index=[4,9]) nfl_data['Team'] = ins_data print(nfl_data) # Deleting a particular columns del nfl_data['Rank'] print(nfl_data) # constructing a dataframe from a dictionary new_dict = {'Name':['Jiten','Palsra','Kumar'],'Rank':[1,2,3]} new_data_frame = DataFrame(new_dict) print(new_data_frame)
b4d3b672bf6814c0dd201d85c23b36d481f41e82
ec74eaaadc95dad2bc6f43a17687744c8e605787
/vsbuy_backend/products/models/products.py
75822f362644c7ba987b568f2468f3fd668c7cd3
[ "MIT" ]
permissive
leis94/vsbuy_backend
115c65eb3d6ccc3678f2956a0a7edfb64b4515bb
16dd21b7da9a454187fe8605d4c5d075a151adb7
refs/heads/master
2022-12-22T11:34:37.956384
2020-10-05T04:48:39
2020-10-05T04:48:39
296,889,339
0
1
MIT
2020-10-05T04:48:40
2020-09-19T14:43:42
Python
UTF-8
Python
false
false
437
py
"""Products mode. """ # Django from django.db import models # Utilities from vsbuy_backend.utils.models import VSbuyModel class Product(VSbuyModel): """Products model.""" name = models.CharField( max_length=20, ) is_active = models.BooleanField( default=True, help_text='Boolean field to get active a product' ) def __str__(self): """Return Name""" return self.name
32b375c749e72bc27f65d0e72ccc6839db65e9d6
06516db27e5c3f4467ef34b79c12256f986e2f7b
/remove_nth_node/remove_nth_node.py
0579e7bc57fe66c5933e941433f30827fea80b4b
[]
no_license
ryandavis3/leetcode
c4c6dc5a1606d204a2cf1beebb5b7f0e0cff3053
07f096c592053efd51bc2efbd3261380c0980b77
refs/heads/master
2023-04-06T17:44:15.036258
2021-04-09T16:17:48
2021-04-09T16:17:48
186,537,978
0
0
null
null
null
null
UTF-8
Python
false
false
1,022
py
# https://leetcode.com/problems/remove-nth-node-from-end-of-list/ class ListNode: """ Node in singly linked list. """ def __init__(self, x): self.val = x self.next = None def removeNthFromEnd(head: ListNode, n: int) -> ListNode: """ Remove nth node from end of a linked list. Solve in one pass. """ if not head.next and n == 1: return [] # Maintain two pointers. Move the first n+1 nodes ahead # of the original head. node_front = head L = [node_front] for i in range(n+1): node_front = node_front.next # Second pointer is behind node_back = head # Move two pointers at the same rate forward while node_front: node_front = node_front.next node_back = node_back.next # Update next field in back node to "skip" a node node_back.next = node_back.next.next return head class Solution: def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode: return removeNthFromEnd(head, n)
80ec25164dfa6d31167df667c3d4783afccf3b86
a8212baae786a140242d1de0d5b13aa925649661
/information_gain_ratio.py
1a45cc78130602283f99cda7cfa90fb2b699fb46
[]
no_license
wenyu-z/py_programming
8e218c82f176f5b22fe35b11855cd43d523786f2
2d832f9babc9e9e24e910009a4ef7e002b4b59a5
refs/heads/master
2021-01-23T10:54:46.539501
2018-07-14T00:23:10
2018-07-14T00:23:10
93,103,985
0
0
null
null
null
null
UTF-8
Python
false
false
1,587
py
# Reference # http://www.ke.tu-darmstadt.de/lehre/archiv/ws0809/mldm/dt.pdf def calc_var_entropy(df, var): total_count = len(df) levels = df[var].unique() per_level_count = df.groupby(by=var).agg('count').values[:,0] prob = map(lambda x: x/float(total_count), per_level_count) neglog = map(lambda x: -x*np.log2(x), prob) entropy = reduce(lambda x,y: x+y, neglog) return entropy def gain_ratio(df, features, target): total_count = len(df) target_entropy = calc_var_entropy(df, target) gain_ratio_df = pd.DataFrame(columns=['feature', 'gain_ratio']) for feat in features: target_entropy_per_feat_level = df.groupby(by = feat).apply(lambda dfnow: calc_var_entropy(dfnow, target)).values per_level_count = df.groupby(by = feat).agg('count').values[:,0] prob = map(lambda x: x/float(total_count), per_level_count) neglog = map(lambda (prob_this_level, target_entropy_this_level): -prob_this_level*target_entropy_this_level, zip(prob, target_entropy_per_feat_level)) gain = target_entropy + np.sum(neglog) split_info = calc_var_entropy(df, feat) gain_ratio = gain/float(split_info) gain_ratio_df = pd.concat((gain_ratio_df, pd.DataFrame(columns=['feature', 'gain_ratio'], data = [(feat, gain_ratio)]))) gain_ratio_df.sort_values(by = ['gain_ratio'], ascending = False, inplace = True) gain_ratio_df.reset_index(inplace = True, drop = True) return gain_ratio_df
b19e7f283ced51c9136bab66a234faa7a1349d94
b1c4a3fc1605e1b1da113fd1a2b97f7432866d9b
/Wm_UI_TEST/test_case/test_sellershop.py
47ddc3b5c7f17da33af2faa8aa780dc3c2b7c24c
[]
no_license
AdilSky/PyWork
f1b46bb1bea849621f8226029ecbe668e60052bb
fcd7e8a8d69c1a70ae874ce94c20f518d961ef6a
refs/heads/master
2021-08-24T14:09:21.819356
2017-12-10T05:04:42
2017-12-10T05:04:42
113,413,312
0
0
null
null
null
null
UTF-8
Python
false
false
7,106
py
#-*-coding:utf-8-*- #商城单店功能自动化测试用例 import sys reload(sys) sys.setdefaultencoding('utf8') from selenium import webdriver import time import unittest from selenium.webdriver.common.action_chains import ActionChains import baseinfo #from Wm_UI import baseinfo class sellershop(unittest.TestCase): '''单店功能测试''' ####登录系统 @ classmethod def setUpClass(self): self.base_url = baseinfo.base_url self.username = baseinfo.sellerName self.password = baseinfo.sellerPassword self.driver = webdriver.Firefox() time.sleep(1) self.driver.maximize_window() self.driver.get("%s/user/tologin" % self.base_url) double_click = self.driver.find_element_by_id("username") ActionChains(self.driver).double_click(double_click).perform() self.driver.find_element_by_id("username").send_keys("%s" % self.username) double_click = self.driver.find_element_by_id("password") ActionChains(self.driver).double_click(double_click).perform() self.driver.find_element_by_id("password").send_keys("%s" % self.password) self.driver.find_element_by_id("sign_btn").click() print(u"登录成功") @ classmethod def tearDownClass(self): time.sleep(1) self.driver.quit() def test_recommend(self): '''单店店铺推荐商品''' try: #进入卖家中心 time.sleep(1) self.driver.find_element_by_xpath(".//*[@id='slide_wrap']/ul/li[2]").click() time.sleep(1) #点击店铺管理 self.driver.find_element_by_xpath('/html/body/div[4]/div[2]/div/div/h3[3]').click() time.sleep(1) #点击左侧栏商品推荐页 self.driver.find_element_by_xpath('/html/body/div[4]/div[2]/div/div/div[3]/a[3]').click() time.sleep(1) #推荐商品 self.driver.find_element_by_xpath('/html/body/div[4]/div[1]/div/form/table/tbody/tr[1]/td[7]/button').click() #弹出的确认框,点击确认 self.driver.find_element_by_xpath('/html/body/div[7]/div[1]/div[3]/button[1]').click() #进入单店页 self.driver.find_element_by_xpath('/html/body/div[4]/div[1]/div/form/table/tbody/tr[1]/td[2]/a/span/img').click() #获取搜索页窗口句柄 recommend_windows = self.driver.current_window_handle #获取当前所有打开的窗口句柄 all_handles = self.driver.window_handles #切换到单店详情页 for shop_handle in all_handles: if shop_handle != recommend_windows: self.driver.switch_to.window(shop_handle) #点击首页 self.driver.find_element_by_xpath('/html/body/div[4]/div[2]/div/ul/li[1]/a').click() time.sleep(1) recommend_text = self.driver.find_element_by_xpath('/html/body/div[5]/div/div[1]/ul/li').text if recommend_text != "": print(u"店铺推荐商品成功") recommend_text = 1 else: print(u"店铺推荐商品失败") recommend_text = 0 self.assertEqual(recommend_text, 1, msg=None) #以下为取消推荐商品操作 time.sleep(1) #进入卖家中心 self.driver.find_element_by_xpath('/html/body/div[2]/ul/li[2]').click() time.sleep(1) #点击店铺管理 self.driver.find_element_by_xpath('/html/body/div[4]/div[2]/div/div/h3[3]').click() time.sleep(1) #进入商品推荐页 self.driver.find_element_by_xpath('/html/body/div[4]/div[2]/div/div/div[3]/a[3]').click() time.sleep(1) #取消推荐商品 self.driver.find_element_by_xpath(".//*[@id='productList']/table/tbody/tr[1]/td[7]/button").click() time.sleep(1) #弹出的确认框,点击确认 self.driver.find_element_by_xpath('/html/body/div[7]/div[1]/div[3]/button[1]').click() print(U"取消推荐商品成功") except BaseException as msg: print(U"因未找到对应元素,测试用例未正常执行!") print msg self.assertIsNone(msg, msg=None) def test_recommends(self): '''批量推荐商品''' try: #点击卖家中心首页 time.sleep(1) self.driver.find_element_by_xpath(".//*[@id='float']/a").click() time.sleep(1) #点击店铺管理 self.driver.find_element_by_xpath('/html/body/div[4]/div[2]/div/div/h3[3]').click() time.sleep(1) #点击左侧栏商品推荐页 self.driver.find_element_by_xpath('/html/body/div[4]/div[2]/div/div/div[3]/a[3]').click() time.sleep(1) #全选(当页所有) self.driver.find_element_by_xpath('/html/body/div[4]/div[1]/div/div[1]/span[1]/label/input').click() #把页面上最后 1 个 checkbox 勾去掉 self.driver.find_elements_by_css_selector('input[type=checkbox]').pop().click() print(U"可推荐19个商品") #点击批量推荐按钮 time.sleep(1) self.driver.find_element_by_xpath('/html/body/div[4]/div[1]/div/span/input[1]').click() #弹出的确认框,点击确认 time.sleep(1) self.driver.find_element_by_xpath('/html/body/div[7]/div[1]/div[3]/button[1]').click() #text_text = u"未推荐" recommend_text = self.driver.find_element_by_xpath('/html/body/div[4]/div[1]/div/form/table/tbody/tr[1]/td[6]').text #self.assertEqual(recommend_text, text_text, msg="批量推荐商品失败,未找到对应元素!") if recommend_text == "未推荐": print(u"批量推荐成功") recommend_text = 1 else: print(u"批量推荐失败") recommend_text = 0 self.assertEqual(recommend_text, 1, msg=None) #以下为批量取消推荐操作 time.sleep(1) #全选(当页所有) self.driver.find_element_by_xpath('/html/body/div[4]/div[1]/div/div[1]/span[1]/label/input').click() #点击批量取消推荐按钮 time.sleep(1) self.driver.find_element_by_xpath('/html/body/div[4]/div[1]/div/span/input[2]').click() #弹出的确认框,点击确认 time.sleep(1) self.driver.find_element_by_xpath('/html/body/div[7]/div[1]/div[3]/button[1]').click() except BaseException as msg: print(U"因未找到对应元素,测试用例未正常执行!") print msg self.assertIsNone(msg, msg=None) if __name__ == "__main__": unittest.main()
04619a2702ef2cecb1bc087adfc35c077a819f38
ea0223cda77710734c34408d86b54a2cc989bd45
/tests/metadata/mtl/test_ls7_definitive.py
db442ada15fd81ea2359ce8f7619c244231e7c6d
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
omad/eo-datasets
2b2d74707e57d4fb90606177450c5f445482410e
8a32120aa2cdf68dcb7003e1d61fa3a62fcf6b79
refs/heads/develop
2021-07-07T23:20:33.833426
2019-06-21T00:25:19
2019-06-25T02:01:35
197,543,844
0
0
Apache-2.0
2019-07-18T08:18:26
2019-07-18T08:18:25
null
UTF-8
Python
false
false
3,620
py
# coding=utf-8 from __future__ import absolute_import import unittest import uuid import datetime import os from pathlib import Path, PosixPath import eodatasets.type as ptype from tests.metadata.mtl import assert_expected_mtl FILENAME = 'ls7_definitive_mtl.txt' EXPECTED_OUT = ptype.DatasetMetadata( id_=uuid.UUID('3ff71eb0-d5c5-11e4-aebb-1040f381a756'), product_level='L1G', creation_dt=datetime.datetime(2015, 4, 7, 1, 58, 25), platform=ptype.PlatformMetadata( code='LANDSAT_7' ), instrument=ptype.InstrumentMetadata( name='ETM', operation_mode='SAM' ), format_=ptype.FormatMetadata( name='GeoTIFF' ), acquisition=ptype.AcquisitionMetadata( groundstation=ptype.GroundstationMetadata( code='ASA' ) ), usgs=ptype.UsgsMetadata( scene_id='LE71140732005007ASA00' ), extent=ptype.ExtentMetadata( coord=ptype.CoordPolygon( ul=ptype.Coord( lat=-17.82157, lon=115.58472 ), ur=ptype.Coord( lat=-17.82497, lon=117.82111 ), ll=ptype.Coord( lat=-19.72798, lon=115.56872 ), lr=ptype.Coord( lat=-19.73177, lon=117.83040 ) ), # TODO: python dt is one digit less precise than mtl (02:03:36.9270519Z). Does this matter? center_dt=datetime.datetime(2005, 1, 7, 2, 3, 36, 927051) ), grid_spatial=ptype.GridSpatialMetadata( projection=ptype.ProjectionMetadata( geo_ref_points=ptype.PointPolygon( ul=ptype.Point( x=350012.500, y=8028987.500 ), ur=ptype.Point( x=587012.500, y=8028987.500 ), ll=ptype.Point( x=350012.500, y=7817987.500 ), lr=ptype.Point( x=587012.500, y=7817987.500 ) ), datum='GDA94', ellipsoid='GRS80', map_projection='UTM', orientation='NORTH_UP', resampling_option='CUBIC_CONVOLUTION', zone=-50 ) ), image=ptype.ImageMetadata( satellite_ref_point_start=ptype.Point(x=114, y=73), cloud_cover_percentage=0.0, sun_azimuth=102.37071009, sun_elevation=58.08261077, # sun_earth_distance=0.998137, # ground_control_points_version=2, # ground_control_points_model=47, # geometric_rmse_model=4.582, # geometric_rmse_model_x=3.370, # geometric_rmse_model_y=3.104, bands={} ), lineage=ptype.LineageMetadata( algorithm=ptype.AlgorithmMetadata( name='LPGS', version='12.5.0', parameters={} ), ancillary_quality='DEFINITIVE', ancillary={ 'cpf': ptype.AncillaryMetadata( name='L7CPF20050101_20050331.09' ), # We have the properties (quality) of the ancillary but not the file. 'ephemeris': ptype.AncillaryMetadata( properties={'type': 'DEFINITIVE'} ) } ) ) class TestMtlRead(unittest.TestCase): def test_ls7_equivalence(self): assert_expected_mtl( Path(os.path.join(os.path.dirname(__file__), FILENAME)), EXPECTED_OUT )
ae7548d0538a443f1d20f3522313b3a6250ecaa7
b6c6b3e631984e80ae18e2665aa7bc5dd9e2750c
/modules/jobs.py
d3d53a671fdc2be2ef442848e3a568fe14f0bb51
[]
no_license
larryklean/soag
41d6edd4a00504867d1efa5e34e56e6b4670a5ed
4736fce81bacf558f7671e7d32425a14b6e0f58d
refs/heads/master
2020-03-25T05:07:07.695537
2013-09-09T21:13:18
2013-09-09T21:13:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
92,619
py
# -*- coding: utf-8 -*- from datetime import date import utilities as utl import datetime, traceback, os import ColunasEntidades def lrecl(db, entidade_id): retColunasEntidades = ColunasEntidades.ColunasEntidades(db).\ selectColunasEntidadesResolvidasByCodigoEntidade(entidade_id)[1] length = 0 for regcampo in retColunasEntidades: if not regcampo.colunasEntidades.ehNotNull: length += 1 if regcampo.datatypes.picture_cobol == '9': length += ((regcampo.colunas.tamanhoColuna / 2) + 1) else: length += regcampo.colunas.tamanhoColuna if regcampo.datatypes.descricao == 'NCHAR' or \ regcampo.datatypes.descricao == 'NVARCHAR' or \ regcampo.datatypes.descricao == 'VARCHAR': length += 2 return length def startLength(db, entidade, idcampo): regcampos = ColunasEntidades.ColunasEntidades(db).\ selectColunasEntidadesResolvidasByCodigoEntidade(entidade)[1] start = 0 length = 0 tipocampo = 'CH' for regcampo in regcampos: cpo = regcampo.colunas.id if cpo == idcampo: start += 1 length = 0 if regcampo.datatypes.picture_cobol == '9': length += ((regcampo.colunas.tamanhoColuna / 2) + 1) tipocampo = 'PD' else: length += regcampo.colunas.tamanhoColuna tipocampo = 'CH' if regcampo.datatypes.datatype == '-9' or \ regcampo.datatypes.datatype == '-15' or \ regcampo.datatypes.datatype == '12': length += 2 break if regcampo.datatypes.picture_cobol == '9': start += ((regcampo.colunas.tamanhoColuna / 2) + 1) else: start += regcampo.colunas.tamanhoColuna if str(regcampo.datatypes.datatype) == '-9' or \ str(regcampo.datatypes.datatype) == '-15' or \ str(regcampo.datatypes.datatype) == '12': start += 2 return ['%s,%s%s' % (start, length, ',%s' % tipocampo), tipocampo] def lreclBook(db, table, book, book_id): regcampos = db(db[table][book]==book_id).select() length = 0 nivel = 0 for regcampo in regcampos: if regcampo.redefines: nivel = regcampo.nivel continue if nivel and regcampo.nivel > nivel: continue nivel = 0 length += (regcampo.bytes * (regcampo.occurs \ if regcampo.occurs else 1)) return length def startLengthBook(db, table, book, book_id, idcampo): regcampos = db(db[table][book]==book_id).select() start = 0 length = 0 tipocampo = 'CH' for regcampo in regcampos: cpo = regcampo.id if cpo == idcampo: start = regcampo.posicao * (regcampo.occurs \ if regcampo.occurs else 1) length = regcampo.bytes if regcampo.natureza == '9': if regcampo.tipo.find('COMP-3') > -1: tipocampo = 'PD' elif regcampo.tipo.find('COMP') > -1: tipocampo = 'BI' else: tipocampo = 'ZD' else: tipocampo = 'CH' break return ['%s,%s%s' % (start, length, ',%s' % tipocampo), tipocampo] def booksImport(ids, db, folder, aplicacao, user): if not ids: return {'retorno': False, 'flash': 'Nenhum book selecionado', \ 'labelErrors': '', 'msgsErrors': {}} bookTxts = db(db.booksTxt.id.belongs((int(x) for x in ids))).select() procs = 0 flash = 'Processamento efetuado' labelErrors = 'Resultado do processamento' msgsErrors = {} for bookTxt in bookTxts: if bookTxt.codigoAplicacao <> aplicacao or \ bookTxt.status <> 2: continue procs += 1 book = bookTxt.nome rowbook = db(db.books.nome==book).select().first() if not rowbook: db(db.books.insert(codigoAplicacao=aplicacao, \ nome=book, \ descricao='Book ' + book, \ usuarioConfirmacao=user, \ dataConfirmacao=datetime.datetime.\ today())) else: db(db.books.id==rowbook.id).update(nome=book, \ descricao='Book %s' % \ book, \ usuarioConfirmacao=\ user, \ dataConfirmacao=\ datetime.datetime.today()) db(db.booksCampos.book==rowbook.id).delete() rowbook = db(db.books.nome==book).select().first() if bookTxt.nomeExtenso: arqFile = bookTxt.nomeExtenso else: arqFile = os.path.join( folder , 'uploads' , str(bookTxt.arquivo)) ib = importBook(db, arqFile, rowbook, user, folder) if not ib['retorno']: return {'retorno': False, \ 'flash': ib['flash'], \ 'labelErrors': ib['labelErrors'], \ 'msgsErrors': ib['msgsErrors']} db(db.booksTxt.id==bookTxt.id).update(status=3, \ mensagem='Carga efetuada no Sistema') if bookTxts: if procs: msgsErrors[0] = 'Importacao de Book. Done.' else: msgsErrors[0] = \ 'Nenhum book pendente encontrado para processamento' return {'retorno': True, 'flash': flash, 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, 'id': rowbook.id} def importBook(db, arqFile, rowbook, user, folder): flash = 'book importado' labelErrors = 'Resultado da importacao' msgsErrors = {} try: linFile = file(arqFile).readlines() except: erros = traceback.format_exc() if erros: idx = 0 for erro in erros.split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, \ 'flash': 'Erro na leitura do arquivo', \ 'labelErrors': arqFile, 'msgsErrors': msgsErrors} linhas = [] for arq in linFile: arq = arq.replace('\r', '').replace('\n', '') if arq <> '' and arq[6: 7] <> '*': linhas.append(arq.upper()) while True: copy = False for li in linhas: if li.find('COPY') > -1: copy = True break if not copy: break idx = -1 for li in linhas: idx += 1 if li.find('COPY') > -1: cols = li.split() book = cols[1].replace("'",'').replace('.','') rbook = db(db.books.nome==book).select().first() if not rbook: msgsErrors[idx] = 'COPY nao importado na ferramenta.' return {'retorno': False, \ 'flash': 'Erro na leitura do COPY', \ 'labelErrors': 'COPY: %s' % book, \ 'msgsErrors': msgsErrors} bookTxt = db(db.booksTxt.nome==book).select().first() if bookTxt.nomeExtenso: arqFile = bookTxt.nomeExtenso else: arqFile = os.path.join( folder , 'uploads' , str(bookTxt.arquivo)) try: linFile = file(arqFile).readlines() except: erros = traceback.format_exc() if erros: idx = 0 for erro in erros.split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, \ 'flash': 'Erro na leitura do arquivo', \ 'labelErrors': arqFile, 'msgsErrors': msgsErrors} linhas.pop(idx) idx2 = 0 for arq in linFile: if arq[6: 7] <> '*': linhas.insert(idx+idx2, arq.upper()) idx2 += 1 break linhaf = '' redefines = '' posdic = {} idxFiller = 1 idx = 0 posicao = 1 itemGrupo = [] nivel = 0 occurs = 0 niveloccurs = 0 idl = 0 for li in linhas: if li.find('.') < 0: linhaf += li.upper() continue linhaf += li.upper() linha = linhaf.split() idl += 1 nivel = int(linha[0]) campo = linha[1].replace('.','') if campo == 'FILLER': cpo = '%s_%s' % (campo, '{:>02}'.format(idxFiller)) idxFiller += 1 else: cpo = campo itemGrupo.append([nivel, cpo]) cpox = '' for idx in xrange(idl-1, 0, -1): if itemGrupo[idx][0] < nivel: cpox = itemGrupo[idx][1] break if linhaf.find('REDEFINES ') > -1 and linhaf.find('PIC ') < 0: redefines = linha[3].replace('.','') posdic[cpo] = posicao = posdic[redefines] db(db.booksCampos.insert(book=rowbook.id, nome=cpo, \ nivel=nivel, natureza='', posicao=posdic[cpo], \ picture='', tamanho='', inteiro=0, decimais=0, \ tipo='', bytes=0, redefines=redefines, \ itemGrupo=cpox, occurs=occurs, \ usuarioConfirmacao=user, \ dataConfirmacao=datetime.datetime.\ today())) linhaf = '' continue if linhaf.find('REDEFINES ') > -1 and \ linhaf.find('PIC ') > -1: picture = linha[5] picts = picture.replace('.','') if len(linha) > 6: if len(linha) == 7: picture += (' ' + linha[6]) else: for idx in xrange(6, len(linha)-1): if linha[idx].upper() <> 'VALUE': picture += (' ' + linha[idx]) picture = picture.replace('S','') pict = '' inteiro = 0 decimais = 0 tam = '' dec = '' idx = 0 while picture[idx:idx+1] <> '(' and \ picture[idx:idx+1] <> ' ' and \ picture[idx:idx+1] <> '.': pict += picture[idx:idx+1] idx += 1 idx += 1 while picture[idx:idx+1] == ' ': idx += 1 while picture[idx:idx+1] <> ')' and \ picture[idx:idx+1] <> ' ' and \ picture[idx:idx+1] <> '.': tam += picture[idx:idx+1] idx += 1 idx += 1 while picture[idx:idx+1] == ' ': idx += 1 if picture[idx:idx+1] == 'V': dec = 'V' idx += 1 while picture[idx:idx+1] == '9' or \ picture[idx:idx+1] == '(' or \ picture[idx:idx+1] == ' ' or \ picture[idx:idx+1] == '.': idx += 1 if picture[idx:idx+1] <> 'U' and \ picture[idx:idx+1] <> '.': while picture[idx:idx+1] <> ')' and \ picture[idx:idx+1] <> ' ' and \ picture[idx:idx+1] <> '.': dec += picture[idx:idx+1] idx += 1 if dec == 'V': dec = '' if dec <> '' and (dec[1:] >= '0' and dec[1:] <= '9'): inteiro = int(tam) decimais = int(dec[1:]) tam = str(int(tam) + int(dec[1:])) else: inteiro = int(tam) decimais = 0 tam += dec tipo = '' idxtipo = picture.find(' COMP') if idxtipo > -1: idxtipo += 1 while picture[idxtipo:idxtipo+1] <> ' ' and \ picture[idxtipo:idxtipo+1] <> '.': tipo += picture[idxtipo:idxtipo+1] idxtipo += 1 redefines = linha[3].replace('.','') posdic[cpo] = posicao = posdic[redefines] + 1 db(db.booksCampos.insert(book=rowbook.id, nome=cpo, \ nivel=nivel, natureza=pict, posicao=posdic[cpo], \ picture=picts, tamanho=tam, inteiro=inteiro, \ decimais=decimais if decimais else 0, \ tipo=tipo, bytes=0, redefines=redefines, \ itemGrupo=cpox, occurs=occurs, \ usuarioConfirmacao=user, \ dataConfirmacao=datetime.\ datetime.today())) linhaf = '' continue if linhaf.find('OCCURS ') > -1: if len(linha) == 4: occurs = int(linha[3].replace('.','')) elif len(linha) == 5: occurs = int(linha[3].replace('.','')) else: occurs = int(linha[5].replace('.','')) niveloccurs = nivel posdic[cpo] = posicao db(db.booksCampos.insert(book=rowbook.id, nome=cpo, \ nivel=nivel, natureza='', posicao=posdic[cpo], \ picture='', tamanho='', inteiro=0, decimais=0, \ tipo='', bytes=0, redefines='', \ itemGrupo=cpox, occurs=occurs, \ usuarioConfirmacao=user, \ dataConfirmacao=datetime.datetime.\ today())) linhaf = '' continue if linhaf.find('PIC ') < 0: posdic[cpo] = posicao db(db.booksCampos.insert(book=rowbook.id, nome=cpo, \ nivel=nivel, natureza='', posicao=posdic[cpo], \ picture='', tamanho='', inteiro=0, decimais=0, \ tipo='', bytes=0, redefines='', \ itemGrupo=cpox, occurs=occurs, \ usuarioConfirmacao=user, \ dataConfirmacao=datetime.datetime.\ today())) linhaf = '' continue if occurs: if nivel <= niveloccurs: occurs = 0 niveloccurs = 0 redefines = '' linhaf = '' picture = linha[3] picts = picture.replace('.','') if len(linha) > 4: if len(linha) == 5: picture += (' ' + linha[4]) else: for idx in xrange(4, len(linha)-1): if linha[idx].upper() <> 'VALUE': picture += (' ' + linha[idx]) picture = picture.replace('S','') pict = '' inteiro = 0 decimais = 0 tam = '' dec = '' idx = 0 while picture[idx:idx+1] <> '(' and \ picture[idx:idx+1] <> ' ' and \ picture[idx:idx+1] <> '.': pict += picture[idx:idx+1] idx += 1 idx += 1 while picture[idx:idx+1] == ' ': idx += 1 while picture[idx:idx+1] <> ')' and \ picture[idx:idx+1] <> ' ' and \ picture[idx:idx+1] <> '.': tam += picture[idx:idx+1] idx += 1 idx += 1 while picture[idx:idx+1] == ' ': idx += 1 qt9 = 0 if picture[idx:idx+1] == 'V': dec = 'V' idx += 1 qt9 = 0 while picture[idx:idx+1] == '9' or \ picture[idx:idx+1] == '(' or \ picture[idx:idx+1] == ' ' or \ picture[idx:idx+1] == '.': if picture[idx:idx+1] == '9': qt9 += 1 idx += 1 if picture[idx:idx+1] <> 'U' and \ picture[idx:idx+1] <> '.': while picture[idx:idx+1] <> ')' and \ picture[idx:idx+1] <> ' ' and \ picture[idx:idx+1] <> '' and \ picture[idx:idx+1] <> '.': dec += picture[idx:idx+1] idx += 1 if dec == 'V': dec = '' if dec <> '' and (dec[1:] >= '0' and dec[1:] <= '9'): inteiro = int(tam) decimais = int(dec[1:]) tam = str(int(tam) + int(dec[1:])) else: inteiro = int(tam) decimais = qt9 tam += dec tipo = '' idxtipo = picture.find(' COMP') if idxtipo > -1: idxtipo += 1 while picture[idxtipo:idxtipo+1] <> ' ' and \ picture[idxtipo:idxtipo+1] <> '.': tipo += picture[idxtipo:idxtipo+1] idxtipo += 1 if redefines: posdic[cpo] = posicao = posdic[redefines] + 1 else: posdic[cpo] = posicao nbytes = 0 if not redefines: if pict == '9': if tipo.find('COMP-3') > -1: nbytes = (((inteiro + decimais) / 2) + 1) posicao += nbytes elif tipo.find('COMP') > -1: if inteiro < 5: posicao += 2 nbytes = 2 elif inteiro < 10: posicao += 4 nbytes = 4 else: posicao += 8 nbytes = 8 else: nbytes = inteiro + decimais posicao += nbytes else: nbytes = inteiro posicao += nbytes db(db.booksCampos.insert(book=rowbook.id, nome=cpo, \ nivel=nivel, natureza=pict, posicao=posdic[cpo], \ picture=picts, tamanho=tam, inteiro=inteiro, \ decimais=decimais if decimais else 0, tipo=tipo, \ bytes=nbytes, redefines=redefines, \ itemGrupo=cpox, occurs=occurs, \ usuarioConfirmacao=user, \ dataConfirmacao=datetime.datetime.\ today())) return {'retorno': True, 'flash': flash, 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors} def imgtb(argv1, argv2, argv3): try: with open(argv3, 'w') as f1: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) f1.write(line) except: return traceback.format_exc() def gerarimgtb(db, idimgtb, folder, user): parms = db(db.parametros.id==1).select().first() regimgtb = db(db.imgtbs.id==idimgtb).select().first() aplicacao = db(db.aplicacoes.id==regimgtb.codigoAplicacao).\ select().first() nomeaplicacao = aplicacao.aplicacao sistema = nomeaplicacao + ' - ' + aplicacao.descricao author = aplicacao.analista regempresa = db(db.empresa.id==aplicacao.empresa).select().\ first() regentidade = db(db.entidades.id==regimgtb.codigoEntidade).\ select().first() regcolunasEntidades = ColunasEntidades.ColunasEntidades(db).\ selectColunasEntidadesResolvidasByCodigoEntidade( regimgtb.codigoEntidade)[1] templates = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.web2py , 'applications' , parms.soag , 'Template' , 'IMGTB') + os.sep gerimgtb = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.raiz , regempresa.nome , nomeaplicacao , 'GERADOS' , 'IMGTB') + os.sep gercpy = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.raiz , regempresa.nome , nomeaplicacao , 'GERADOS' , 'CPY') + os.sep try: os.makedirs(gerimgtb) except: pass try: os.makedirs(gercpy) except: pass descrs = '* ' idx = 0 for regto in regcolunasEntidades: if idx < 1: descrs += '{:<28}'.format(regimgtb.bookName + '-' + \ regto.colunas.columnName.replace('_','-')) + \ ' = ' + \ '{:<31}'.format(utl.txtAbrev(r'%s' % \ regto.colunas.attributeName, 31).upper()) + ' *' else: descrs += '\n' + ' * ' + '{:<28}'.\ format(regimgtb.bookName + '-' + \ regto.colunas.columnName.replace('_','-')) + \ ' = ' + '{:<31}'.format(utl.txtAbrev(r'%s' % \ regto.colunas.attributeName, 31).upper()) + ' *' idx += 1 imagems = '' for regto in regcolunasEntidades: if not regto.colunasEntidades.ehNotNull: texcoluna = regimgtb.bookName + '-' + regto.colunas.columnName.\ replace('_','-') if (len(texcoluna) + 5) > 30: if texcoluna[24:25] == '-': texcoluna = texcoluna[0:24] + '-NULL' else: texcoluna = texcoluna[0:25] + '-NULL' else: texcoluna = texcoluna + '-NULL' tamcoluna = len(texcoluna) if tamcoluna > 28: imagems += ('\n' + utl.repeat(' ', 14) if imagems else '') + \ '10 ' + texcoluna imagems += '\n' + utl.repeat(' ', 45) + \ ' PIC X(0001).' else: imagems += ('\n' + utl.repeat(' ', 14) if imagems else '') + \ '10 ' + \ '{:<28}'.format(texcoluna) + \ ' PIC X(0001).' if regto.datatypes.picture_cobol == '9': picture = 'S9(' + '{:>04}'.format(regto.colunas.tamanhoColuna - regto.colunas.decimais) + ')' if regto.colunas.decimais == 0: picture += ' COMP-3.' else: picture += 'V9(' + '{:>02}'.format(regto.colunas.decimais) + \ ')' + ' COMP-3.' else: picture = ' X(' + '{:>04}'.format(regto.colunas.tamanhoColuna) + ').' if regto.datatypes.datatype == '-9' or \ regto.datatypes.datatype == '-15' or \ regto.datatypes.datatype == '12': texcolunal = regimgtb.bookName + '-' + \ regto.colunas.columnName.replace('_','-') if (len(texcolunal) + 4) > 30: if texcolunal[25:26] == '-': texcolunal = texcolunal[0:25] + '-LEN' else: texcolunal = texcolunal[0:26] + '-LEN' else: texcolunal = texcolunal + '-LEN' texcolunat = regimgtb.bookName + '-' + regto.colunas.columnName.\ replace('_','-') if (len(texcolunat) + 5) > 30: if texcolunat[24:25] == '-': texcolunat = texcolunat[0:24] + '-TEXT' else: texcolunat = texcolunat[0:25] + '-TEXT' else: texcolunat = texcolunat + '-TEXT' tamcoluna = len(texcolunat) imagems += '\n' + utl.repeat(' ', 14) + '10 ' + \ regimgtb.bookName + '-' + \ regto.colunas.columnName.replace('_','-') + '.' if tamcoluna > 25: imagems += ('\n' + utl.repeat(' ', 17) if imagems else '') + \ ' 15 ' + texcolunal imagems += '\n' + utl.repeat(' ', 45) + \ ' PIC S9(0004) COMP.' imagems += '\n' + utl.repeat(' ', 17) + \ ' 15 ' + texcolunat imagems += '\n' + utl.repeat(' ', 45) + \ ' PIC ' + picture else: imagems += ('\n' + utl.repeat(' ', 17) if imagems else '') + \ ' 15 ' + \ '{:<25}'.format(texcolunal) + \ ' PIC S9(0004) COMP.' imagems += '\n' + utl.repeat(' ', 17) + \ ' 15 ' + \ '{:<25}'.format(texcolunat) + \ ' PIC ' + picture else: texcoluna = regimgtb.bookName + '-' + \ regto.colunas.columnName.replace('_','-') tamcoluna = len(texcoluna) if tamcoluna > 28: imagems += ('\n' + utl.repeat(' ', 14) if imagems else '') + \ '10 ' + texcoluna imagems += '\n' + utl.repeat(' ', 45) + \ ' PIC ' + picture else: imagems += ('\n' + utl.repeat(' ', 14) if imagems else '') + \ '10 ' + \ '{:<28}'.format(texcoluna) + \ ' PIC ' + picture now = date.today().strftime('%d/%m/%Y') db(db.imgtbs.id==idimgtb).update(usuarioGeracao=user, \ dataGeracao=datetime.datetime.today()) txt = '%s%s.cpy' % (gercpy, regimgtb.bookName) erros = gerarcpy(txt, imagems) if erros: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento Imagem Tabela' msgsErrors = {} idx = 0 for erro in erros.split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, 'msgsErrors': msgsErrors} db.booksTxt.insert(codigoAplicacao=regimgtb.codigoAplicacao, \ nome=regimgtb.bookName, \ arquivo=txt, \ nomeExtenso=txt, status=2, \ mensagem='Pendente de Processamento.', \ usuarioConfirmacao=user, dataConfirmacao=datetime.datetime.today()) flash = 'Imagem da Tabela gerado com sucesso.' labelErrors = 'Resultado da geracao da Imagem da Tabela' msgsErrors = {} idbook = db((db.booksTxt.nomeExtenso==txt) & (db.booksTxt.status==2)).select().first() if idbook: imp = booksImport([idbook.id], db, folder, \ regimgtb.codigoAplicacao, user) if imp['retorno']: msgsErrors[0] = 'Book %s - Done.' % regimgtb.bookName length = lreclBook(db, 'booksCampos', 'book', imp['id']) tpl = '%sIMAGEM_TABELA.txt' % templates tb = [['@BOOKSNAME', regimgtb.bookName], ['@BOOKNAME', '{:<49}'.format(regimgtb.bookName)], ['@TABLENAME', '{:<32}'.format('(%s) %s' % \ (regentidade.nomeExterno, regentidade.nomeFisico))], ['@MES', '{:<02}'.format(now[3:5])], ['@ANO', '{:<44}'.format(now[6:])], ['@EMPRESA', '{:<49}'.format(regempresa.descricao.\ upper())], ['@AUTHOR', '{:<49}'.format(author.upper())], ['@SISTEMA', '{:<49}'.format(utl.\ remover_acentos(sistema).upper())], ['@LENGTH', '{:>04}'.format(length)], ['@CAMPO_DESCRICAO', descrs], ['@IMAGEMS', imagems]] txt = '%s%s.cpy' % (gerimgtb, regimgtb.bookName) erros = imgtb(tpl, tb, txt) if erros: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento Imagem Tabela' msgsErrors = {} idx = 0 for erro in erros.split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors} else: msgsErrors[0] = 'Book %s - Done.' % regimgtb.bookName msgsErrors[1] = \ 'Book %s - Erro na importacao para booksTxt.' % regimgtb.bookName return {'retorno': True, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors} def gerarcpy(txt, lines): try: with open(txt, 'w') as f1: idx = 0 for line in lines.split('\n'): idx += 1 f1.write(('\n' if idx > 1 else '') + line) except: return traceback.format_exc() def hpu(argv1, argv2, argv3, job=False, step=''): li = '' try: if job: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) li += line return {'erros': '', 'linhas': li} else: with open(argv3, 'w') as f1: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) f1.write(line) li += line return {'erros': '', 'linhas': li} except: return {'erros': traceback.format_exc(), 'linhas': ''} def gerarhpu(db, idhpu, user, job=False, step=''): parms = db(db.parametros.id==1).select().first() reghpu = db(db.hpus.id==idhpu).select().first() if not reghpu: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento HPU' if step: msgsErrors = {1: '%s do HPU nao definido.' % step} else: msgsErrors = {1: 'HPU nao definido.'} return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': ''} aplicacao = db(db.aplicacoes.id==reghpu.codigoAplicacao).\ select().first() nomeaplicacao = aplicacao.aplicacao regempresa = db(db.empresa.id==aplicacao.empresa).select().first() regentidade = db(db.entidades.id==reghpu.codigoEntidade).\ select().first() templates = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.web2py , 'applications' , parms.soag , 'Template' , 'JCL') + os.sep gerhpu = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.raiz , regempresa.nome , nomeaplicacao , 'GERADOS' , 'HPU') + os.sep try: os.makedirs(gerhpu) except: pass regsysin = db(db.sysin.hpus==idhpu).select().first() sysin = '' sqx = '' if not regsysin.sql else regsysin.sql.replace('\r', '') if regsysin: if not regsysin.nome1: sysin += '//SYSIN DD *' sysin += '\nUNLOAD TABLESPACE @TABLEHEADER.@TABLESPACE' sysin += '\nDB2 NO' sysin += '\nQUIESCE YES' sysin += '\n@SELECT' sysin += '\nOUTDDN (SYSREC01)' sysin += '\nFORMAT DSNTIAUL' sysin += '\nLOADDDN SYSPUNCH' else: if regsysin.nome1 == '*': sysin += 'DSN=%s,' % (regsysin.nome1 + '.' + \ regsysin.nome2 + '.' + \ regsysin.nome3) else: nome2 = (reghpu.jobRotine + 'S' + '{:>02}'.\ format(step.split('STEP')[1]))\ if step else regsysin.nome2 sysin += 'DSN=AD.C87.%s.%s%s,' % (regsysin.nome1.upper(), \ nome2, \ ('.' + regsysin.nome3.upper()) \ if regsysin.nome3 else '') sysin += '\n// DISP=SHR' else: sysin += '//SYSIN DD *' sysin += '\nUNLOAD TABLESPACE @TABLEHEADER.@TABLESPACE' sysin += '\nDB2 NO' sysin += '\nQUIESCE YES' sysin += '\n@SELECT' sysin += '\nOUTDDN (SYSREC01)' sysin += '\nFORMAT DSNTIAUL' sysin += '\nLOADDDN SYSPUNCH' stp = regsysin.nome2 if not step \ else ('S' + '{:>02}'.format(step.split('STEP')[1])) rot = reghpu.jobRotine + (stp if stp else ('S' + '{:>02}'.format(reghpu.jobStep.split('STEP')[1]))) tb = [['@JOBNAME', reghpu.jobName.upper()], ['@ROTINA', rot], ['@APPLID', nomeaplicacao[0:5].upper()], ['@USER', reghpu.jobUser.upper()], ['@STEP', step if step else reghpu.jobStep \ if reghpu.jobStep else 'STEP1'], ['@SYSIN', sysin], ['@SELECT', sqx], ['@TABLEUID', regentidade.nomeExterno[0:4]+'A000'], ['@TABLEHEADER', regentidade.nomeExterno[0:4]+'D000'], ['@TABLESPACE', regentidade.nomeExterno.replace('B','S')], ['@TABLENAME', regentidade.nomeExterno], ['@TABLE', regentidade.nomeFisico]] txt = '%s%s.jcl' % (gerhpu, reghpu.jobName) if job: tpl = '%sJOB_HPU_SYSIN_CARTAO.txt' % templates else: tpl = '%sHPU_SYSIN_CARTAO.txt' % templates ghpu = hpu(tpl, tb, txt, job, step) if ghpu['erros']: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento HPU%s' % \ (' - %s' % step) if step else '' msgsErrors = {} idx = 0 for erro in ghpu['erros'].split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': ghpu['linhas']} db(db.hpus.id==idhpu).update(usuarioGeracao=user, \ dataGeracao=datetime.datetime.today()) flash = 'HPU gerado com sucesso.' labelErrors = 'Resultado da geracao do HPU' msgsErrors = {} msgsErrors[0] = 'JOB %s - Done.' % reghpu.jobName return {'retorno': True, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': ghpu['linhas']} def progckrs(argv1, argv2, argv3, job=False, step=''): li = '' try: if job: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) li += line return {'erros': '', 'linhas': li} else: with open(argv3, 'w') as f1: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) f1.write(line) li += line return {'erros': '', 'linhas': li} except: return {'erros': traceback.format_exc(), 'linhas': ''} def gerarckrs(db, idprog, user, job=False, step=''): parms = db(db.parametros.id==1).select().first() regprog = db(db.progckrs.id==idprog).select().first() if not regprog: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento Programa (CKRS)' if step: msgsErrors = {1: '%s do Programa nao definido.' % step} else: msgsErrors = {1: 'Programa nao definido.'} return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': ''} aplicacao = db(db.aplicacoes.id==regprog.codigoAplicacao).\ select().first() nomeaplicacao = aplicacao.aplicacao regempresa = db(db.empresa.id==aplicacao.empresa).select().first() # Comentarios regprogckrs2 = db(db.progckrs2.progckrs==idprog).select() if not regprogckrs2: flash = 'Comentarios nao definidos%s' % \ (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} # Entradas regprogckrs3 = db(db.progckrs3.progckrs==idprog).select() if not regprogckrs3: flash = 'Entradas nao definidas%s' % (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} # Saidas regprogckrs4 = db(db.progckrs4.progckrs==idprog).select() if not regprogckrs4: flash = 'Saidas nao definidas%s' % (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} templates = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.web2py , 'applications' , parms.soag , 'Template' , 'JCL') + os.sep gerprog = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.raiz , regempresa.nome , nomeaplicacao , 'GERADOS' , 'PROGCKRS') + os.sep try: os.makedirs(gerprog) except: pass comentario = '' entrada = '' saida = '' for regsort2 in regprogckrs2: comentario += regsort2.comentario.replace('\n','').upper() for regsort3 in regprogckrs3: if regsort3.nome2 == '*': entrada += '%s//%s DD DSN=%s,' % ('\n//*\n' if entrada else '', \ regsort3.nome1.upper(), \ regsort3.nome2 + '.' + \ regsort3.nome3 + '.' + \ regsort3.nome4) else: if regsort3.nome2: nome2 = regsort3.nome2 else: nome2 = (regprog.jobRotine + 'S' + '{:>02}'.\ format(step.split('STEP')[1]))\ if step else regsort3.nome2 entrada += '%s//%s DD DSN=AD.C87.%s.%s%s,' % ('\n//*\n' \ if entrada else '', regsort3.nome1.upper(), \ nome2, regsort3.nome3.upper(), \ ('.' + regsort3.nome4.upper()) \ if regsort3.nome4 else '') entrada += '\n// DISP=SHR' for regsort4 in regprogckrs4: lrecl = lreclBook(db, db.booksCampos, 'book', \ regsort4.book) nome2 = (regprog.jobRotine + 'S' + '{:>02}'.\ format(step.split('STEP')[1]))\ if step else regsort4.nome2 saida += '%s//%s DD DSN=AD.C87.%s.%s%s,' % ('\n//*\n' \ if saida else '', regsort4.nome1.upper(), \ nome2, regsort4.nome3.upper(), \ ('.' + regsort4.nome4.upper()) \ if regsort4.nome4 else '') saida += '\n// DISP=(,CATLG,DELETE),' saida += '\n// UNIT=(DISCO,04),' saida += '\n// SPACE=(TRK,(005000,1000),RLSE),' saida += '\n// DCB=(AD.A,LRECL=%s,RECFM=FB)' % \ '{:>04}'.format(lrecl) if not step: stp = 'S' + '{:>02}'.format(regprog.jobStep.split('STEP')[1]) else: stp = 'S' + '{:>02}'.format(step.split('STEP')[1]) rot = regprog.jobRotine + stp comentario = utl.remover_acentos(comentario) tb = [['@JOBNAME', regprog.jobName.upper()], ['@ROTINA', rot], ['@APPLID', regprog.jobRotine[0:5].upper()], ['@USER', regprog.jobUser.upper()], ['@STEP', step if step else regprog.jobStep \ if regprog.jobStep else 'STEP1'], ['@PROGRAMA', regprog.jobPrograma.upper()], ['@COMENTARIO', utl.stringList(comentario, 61, \ '//* *** ')], ['@ENTRADA', entrada], ['@SAIDA', saida]] txt = '%s%s.jcl' % (gerprog, regprog.jobName) if job: tpl = '%sJOB_PROGCKRS.txt' % templates else: tpl = '%sPROGCKRS.txt' % templates gckrs = progckrs(tpl, tb, txt, job) if gckrs['erros']: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento Programa (CKRS)%s' % \ (' - %s' % step) if step else '' msgsErrors = {} idx = 0 for erro in gckrs['erros'].split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': gckrs['linhas']} db(db.progckrs.id==idprog).update(usuarioGeracao=user, \ dataGeracao=datetime.datetime.today()) flash = 'Programa (CKRS) gerado com sucesso.' labelErrors = 'Resultado da geracao do JCL' msgsErrors = {} msgsErrors[0] = 'JCL %s - Done.' % regprog.jobName return {'retorno': True, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': gckrs['linhas']} def prognens(argv1, argv2, argv3, job=False, step=''): li = '' try: if job: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) li += line return {'erros': '', 'linhas': li} else: with open(argv3, 'w') as f1: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) f1.write(line) li += line return {'erros': '', 'linhas': li} except: return {'erros': traceback.format_exc(), 'linhas': ''} def gerarnens(db, idprog, user, job=False, step=''): parms = db(db.parametros.id==1).select().first() regprog = db(db.prognens.id==idprog).select().first() if not regprog: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento Programa' if step: msgsErrors = {1: '%s do Programa nao definido.' % step} else: msgsErrors = {1: 'Programa nao definido.'} return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': ''} aplicacao = db(db.aplicacoes.id==regprog.codigoAplicacao).\ select().first() nomeaplicacao = aplicacao.aplicacao regempresa = db(db.empresa.id==aplicacao.empresa).select().first() # Comentarios regprognens2 = db(db.prognens2.prognens==idprog).select() if not regprognens2: flash = 'Comentarios nao definidos%s' % \ (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} # Entradas regprognens3 = db(db.prognens3.prognens==idprog).select() if not regprognens3: flash = 'Entradas nao definidas%s' % \ (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} # Saidas regprognens4 = db(db.prognens4.prognens==idprog).select() if not regprognens4: flash = 'Saidas nao definidas%s' % (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} templates = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.web2py , 'applications' , parms.soag , 'Template' , 'JCL') + os.sep gerprog = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.raiz , regempresa.nome , nomeaplicacao , 'GERADOS' , 'PROGNENS') + os.sep try: os.makedirs(gerprog) except: pass comentario = '' entrada = '' saida = '' for regsort2 in regprognens2: comentario += regsort2.comentario.replace('\n','').upper() for regsort3 in regprognens3: if regsort3.nome2 == '*': entrada += '%s//%s DD DSN=%s,' % \ ('\n//*\n' if entrada else '', \ regsort3.nome1.upper(), \ regsort3.nome2 + '.' + \ regsort3.nome3 + '.' + \ regsort3.nome4) else: if regsort3.nome2: nome2 = regsort3.nome2 else: nome2 = (regprog.jobRotine + 'S' + '{:>02}'.\ format(step.split('STEP')[1]))\ if step else regsort3.nome2 entrada += '%s//%s DD DSN=AD.C87.%s.%s%s,' % ('\n//*\n' \ if entrada else '', regsort3.nome1.upper(), \ nome2, regsort3.nome3.upper(), \ ('.' + regsort3.nome4.upper()) \ if regsort3.nome4 else '') entrada += '\n// DISP=SHR' for regsort4 in regprognens4: lrecl = lreclBook(db, db.booksCampos, 'book', regsort4.book) nome2 = (regprog.jobRotine + 'S' + '{:>02}'.\ format(step.split('STEP')[1]))\ if step else regsort4.nome2 saida += '%s//%s DD DSN=AD.C87.%s.%s.%s%s,' % ('\n//*\n' \ if saida else '', regsort4.nome1.upper(), \ nome2, regsort4.nome3.upper(), \ regsort4.nome4.upper(), \ ('.' + regsort4.nome5.upper()) \ if regsort4.nome5 else '') saida += '\n// DISP=(,CATLG,DELETE),' saida += '\n// UNIT=(DISCO,04),' saida += '\n// SPACE=(TRK,(005000,1000),RLSE),' saida += '\n// DCB=(AD.A,LRECL=%s,RECFM=FB)' % \ '{:>04}'.format(lrecl) if not step: stp = 'S' + '{:>02}'.format(regprog.jobStep.split('STEP')[1]) else: stp = 'S' + '{:>02}'.format(step.split('STEP')[1]) rot = regprog.jobRotine + stp comentario = utl.remover_acentos(comentario) tb = [['@JOBNAME', regprog.jobName.upper()], ['@ROTINA', rot], ['@APPLID', regprog.jobRotine[0:5].upper()], ['@USER', regprog.jobUser.upper()], ['@STEP', step if step else regprog.jobStep \ if regprog.jobStep else 'STEP1'], ['@PROGRAMA', regprog.jobPrograma.upper()], ['@COMENTARIO', utl.stringList(comentario, 61, \ '//* *** ')], ['@ENTRADA', entrada], ['@SAIDA', saida]] txt = '%s%s.jcl' % (gerprog, regprog.jobName) if job: tpl = '%sJOB_PROGNENS.txt' % templates else: tpl = '%sPROGNENS.txt' % templates gnens = prognens(tpl, tb, txt, job, step) if gnens['erros']: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento Programa%s' % \ (' - %s' % step) if step else '' msgsErrors = {} idx = 0 for erro in gnens['erros'].split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': gnens['linhas']} db(db.prognens.id==idprog).update(usuarioGeracao=user, \ dataGeracao=datetime.datetime.today()) flash = 'Programa gerado com sucesso.' labelErrors = 'Resultado da geracao do JCL' msgsErrors = {} msgsErrors[0] = 'JCL %s - Done.' % regprog.jobName return {'retorno': True, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': gnens['linhas']} def sort1s(argv1, argv2, argv3, job=False, step=''): li = '' try: if job: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) li += line return {'erros': '', 'linhas': li} else: with open(argv3, 'w') as f1: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) f1.write(line) li += line return {'erros': '', 'linhas': li} except: return {'erros': traceback.format_exc(), 'linhas': ''} def gerarsort1s(db, idsrt, user, job=False, step=''): parms = db(db.parametros.id==1).select().first() regsrt = db(db.sort1s.id==idsrt).select().first() if not regsrt: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento SORT1S' if step: msgsErrors = {1: '%s do Sort nao definido.' % step} else: msgsErrors = {1: 'Sort nao definido.'} return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': ''} aplicacao = db(db.aplicacoes.id==regsrt.codigoAplicacao).\ select().first() nomeaplicacao = aplicacao.aplicacao regempresa = db(db.empresa.id==aplicacao.empresa).\ select().first() regentidade = db(db.entidades.id==regsrt.codigoEntidade).\ select().first() regsort2s = db(db.sort2s.codigoSort1s==idsrt).select() if not regsort2s: flash = 'Fields nao selecionados%s' % \ (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} regsort3s = db(db.sort3s.codigoSort1s==idsrt).select() templates = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.web2py , 'applications' , parms.soag , 'Template' , 'JCL') + os.sep gersrt = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.raiz , regempresa.nome , nomeaplicacao , 'GERADOS' , 'SORT1S') + os.sep try: os.makedirs(gersrt) except: pass classificacao = '' fields = '' formato = '' iguais = True slant = '' include = '' lreclc = lrecl(db, regsrt.codigoEntidade) idx = 0 for regsort2 in regsort2s: regcampo = db(db.colunas.id==regsort2.campo).select().first() sl = startLength(db, regsrt.codigoEntidade, regsort2.campo) if sl[1] <> slant and slant and iguais: iguais = False else: slant = sl[1] if idx < 1: fields += '%s,%s' % (sl[0], 'A' \ if regsort2.ordem=='ASCENDENTE' else 'D') classificacao += regcampo.columnName else: fields += ',' + '%s,%s' % (sl[0], 'A' \ if regsort2.ordem=='ASCENDENTE' else 'D') classificacao += ', ' + regcampo.columnName idx += 1 if iguais: fields = fields.replace(',%s' % slant, '') + ')' formato = ',FORMAT=%s' % slant else: fields += ')' if fields else '' idxin = 0 for regsort3 in regsort3s: regcampo = db(db.colunas.id==regsort3.campo).select().first() sl = startLength(db, regsrt.codigoEntidade, regsort3.campo) if regsort3.tipo == 'INCLUDE': if not idxin: include += '%s,%s,%s' % (sl[0], regsort3.operacao, regsort3.valor) else: include += '%s,%s,%s' % (sl[0], regsort3.operacao, regsort3.valor) idxin += 1 if include: include = 'OUTFIL INCLUDE=' + \ utl.stringList('(%s),FNAMES=SORTOUT' % \ include, 56, ' ') if not step: stp = 'S' + '{:>02}'.format(regsrt.jobStep.split('STEP')[1]) else: stp = 'S' + '{:>02}'.format(step.split('STEP')[1]) rot = regsrt.jobRotine[0:5] + stp tb = [['@JOBNAME', regsrt.jobName.upper()], ['@ROTINA', rot], ['@APPLID', nomeaplicacao[0:5]], ['@USER', regsrt.jobUser], ['@STEP', step if step else regsrt.jobStep \ if regsrt.jobStep else 'STEP1'], ['@ARQNAME', regsrt.jobArqName], ['@CLASSIFICACAO', utl.stringList(classificacao, 61, \ '//* *** ')], ['@TABLESPACE', regentidade.nomeExterno[0:4]+'S000'], ['@TABLENAME', regentidade.nomeExterno], ['@TABLE', regentidade.nomeFisico], ['@FIELDS', utl.stringList(fields + formato, 59, \ ' ')], ['@INCLUDE', ('\n ' if include else '') + include], ['@LRECL', '{:>04}'.format(lreclc)]] txt = '%s%s.jcl' % (gersrt, regsrt.jobName) if job: tpl = '%sJOB_SORT1S.txt' % templates else: tpl = '%sSORT1S.txt' % templates gs1s = sort1s(tpl, tb, txt, job, step) if gs1s['erros']: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento SORT1S%s' % \ (' - %s' % step) if step else '' msgsErrors = {} idx = 0 for erro in gs1s['erros'].split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': gs1s['linhas']} db(db.sort1s.id==idsrt).update(usuarioGeracao=user, \ dataGeracao=datetime.datetime.today()) flash = 'SORT1S gerado com sucesso.' labelErrors = 'Resultado da geracao do SORT' msgsErrors = {} msgsErrors[0] = 'JOB %s - Done.' % regsrt.jobName return {'retorno': True, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': gs1s['linhas']} def sortnens(argv1, argv2, argv3, job=False, step=''): li = '' try: if job: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) li += line return {'erros': '', 'linhas': li} else: with open(argv3, 'w') as f1: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) f1.write(line) li += line return {'erros': '', 'linhas': li} except: return {'erros': traceback.format_exc(), 'linhas': ''} def gerarsortnens(db, idsrt, user, job=False, step=''): parms = db(db.parametros.id==1).select().first() regsrt = db(db.sortnens.id==idsrt).select().first() if not regsrt: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento SORTNENS' if step: msgsErrors = {1: '%s do Sort nao definido.' % step} else: msgsErrors = {1: 'Sort nao definido.'} return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': ''} aplicacao = db(db.aplicacoes.id==regsrt.codigoAplicacao).\ select().first() nomeaplicacao = aplicacao.aplicacao regempresa = db(db.empresa.id==aplicacao.empresa).select().first() regsortnens2 = db(db.sortnens2.sortnens==idsrt).select() # Fields if not regsortnens2: flash = 'Fields nao definidos%s' % (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} regsortnens3 = db(db.sortnens3.sortnens==idsrt).select() # Sortin if not regsortnens3: flash = 'Sortin nao definido%s' % (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} regsortnens4 = db(db.sortnens4.sortnens==idsrt).select() # Sortout if not regsortnens4: flash = 'Sortout nao definido%s' % (' - %s' % step) if step else '' return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} qtdSortout = db(db.sortnens4.sortnens==idsrt).count() if qtdSortout > 1: temInclude = True sortout = '' for regto in regsortnens4: reginclude = db(db.sortnens5.sortnens4==regto.id).select() if not reginclude: sortout = regto.nome1 + ' - ' + regto.nome2 temInclude = False break if not temInclude: flash = 'Include nao definido para o Sortout %s%s' % (sortout , \ (' - %s' % step) if step else '') return {'retorno': False, 'flash': flash, \ 'labelErrors': '', 'msgsErrors': {}} templates = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.web2py , 'applications' , parms.soag , 'Template' , 'JCL') + os.sep gersrt = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.raiz , regempresa.nome , nomeaplicacao , 'GERADOS' , 'SORTNENS') + os.sep try: os.makedirs(gersrt) except: pass classificacao = '' sortin = '' sysout = '' fields = '' formato = '' iguais = True slant = '' include = '' incl = '' lrecl = lreclBook(db, db.booksCampos, 'book', regsrt.book) idx = 0 for regsort2 in regsortnens2: regcampo = db(db.booksCampos.id==regsort2.campo).select().first() sl = startLengthBook(db, db.booksCampos, 'book', \ regsrt.book, regsort2.campo) if sl[1] <> slant and slant and iguais: iguais = False else: slant = sl[1] if idx < 1: fields += '%s,%s' % (sl[0], 'A' \ if regsort2.ordem=='ASCENDENTE' else 'D') classificacao += regcampo.nome else: fields += ',' + '%s,%s' % (sl[0], 'A' \ if regsort2.ordem=='ASCENDENTE' else 'D') classificacao += ', ' + regcampo.nome idx += 1 if iguais: fields = fields.replace(',%s' % slant, '') + ')' formato = ',FORMAT=%s' % slant else: fields += ')' if fields else '' idxin = 0 for regsort3 in regsortnens3: if regsort3.nome1 == '*': nome1 = (regsort3.nome1 + '.' + regsort3.nome2 + '.' + \ regsort3.nome3) else: if regsort3.nome1: nome1 = regsort3.nome1 else: nome1 = (regsrt.jobRotine + 'S' + '{:>02}'. format(step.split('STEP')[1] if step else regsrt.jobStep.split('STEP')[1])) if not idxin: if regsort3.nome1 == '*': sortin += '//SORTIN DD DSN=%s,' % nome1 else: sortin += '//SORTIN DD DSN=AD.C87.%s.%s.%s%s,' % \ (nome1, regsort3.nome2, regsort3.nome3, \ ('.' + regsort3.nome4) \ if regsort3.nome4 else '') else: if regsort3.nome1 == '*': sortin += '\n// DD DSN=%s,' % nome1 else: sortin += '\n// DD DSN=AD.C87.%s.%s.%s%s,' % \ (nome1, regsort3.nome2, regsort3.nome3, \ ('.' + regsort3.nome4) \ if regsort3.nome4 else '') sortin += '\n// DISP=SHR' idxin += 1 if len(regsortnens4) == 1: nome1 = (regsrt.jobRotine + 'S' + '{:>02}'.format(step.split('STEP')[1] if step else regsrt.jobStep.split('STEP')[1])) sysout += '//SORTOUT DD DSN=AD.C87.%s.SORT.%s%s,' % \ (nome1, regsortnens4[0].nome1, \ ('.' + regsortnens4[0].nome2) \ if regsortnens4[0].nome2 else '') sysout += '\n// DISP=(,CATLG,DELETE),' sysout += '\n// UNIT=(DISCO,04),' sysout += '\n// SPACE=(TRK,(005000,1000),RLSE),' sysout += '\n// DCB=(AD.A,LRECL=@LRECL,RECFM=FB)' else: idxout = 1 nome1 = (regsrt.jobRotine + 'S' + '{:>02}'. format(step.split('STEP')[1] if step else regsrt.jobStep.split('STEP')[1])) for regsort4 in regsortnens4: sysout += '%s//SYSOUT%s DD DSN=AD.C87.%s.SORT.%s%s,' % \ ('\n//*\n' if sysout else '', \ '{:>02}'.format(idxout), \ nome1, regsort4.nome1, \ ('.' + regsort4.nome2) \ if regsort4.nome2 else '') sysout += '\n// DISP=(,CATLG,DELETE),' sysout += '\n// UNIT=(DISCO,04),' sysout += '\n// SPACE=(TRK,(005000,1000),RLSE),' sysout += '\n// DCB=(AD.A,LRECL=@LRECL,RECFM=FB)' idxout += 1 bn = '' idxout = 1 for regsort4 in regsortnens4: regsort5s = db(db.sortnens5.sortnens4==regsort4.id).select() if not regsort5s: continue incl = '' for regsort5 in regsort5s: regcampo = db(db.booksCampos.id==regsort5.campo).select().first() sl = startLengthBook(db, db.booksCampos, 'book', \ regsrt.book, regsort5.campo) if regsort5.tipo == 'INCLUDE': incl += '%s%s,%s,%s' % (',' if incl else '', sl[0], \ regsort5.operacao, regsort5.valor) include += ('%sOUTFIL INCLUDE=' % bn) + \ utl.stringList('(%s),FNAMES=%s%s' % \ (incl, 'SYSOUT' if qtdSortout > 1 else 'SORTOUT', \ '{:>02}'.format(idxout) \ if qtdSortout > 1 else ''), \ 56, ' ') idxout += 1 bn = '\n ' if not step: stp = 'S' + '{:>02}'.format(regsrt.jobStep.split('STEP')[1]) else: stp = 'S' + '{:>02}'.format(step.split('STEP')[1]) rot = regsrt.jobRotine + stp arqname = utl.remover_acentos(utl.stringList(\ 'CLASSIFICA O ARQUIVO %s POR:' % \ regsrt.jobArqName, 61, '//* *** ')).upper() classificacao = utl.remover_acentos(classificacao).upper() tb = [['@JOBNAME', regsrt.jobName.upper()], ['@ROTINA', rot], ['@APPLID', nomeaplicacao[0:5]], ['@USER', regsrt.jobUser], ['@STEP', step if step else regsrt.jobStep \ if regsrt.jobStep else 'STEP1'], ['@ARQNAME', arqname], ['@CLASSIFICACAO', utl.stringList(classificacao, 61, \ '//* *** ')], ['@SORTIN', sortin], ['@SYSOUT', sysout], ['@FIELDS', utl.stringList(fields + \ formato, 59, ' ')], ['@INCLUDE', ('\n ' if include else '') + include], ['@LRECL', '{:>04}'.format(lrecl)]] txt = '%s%s.jcl' % (gersrt, regsrt.jobName) if job: tpl = '%sJOB_SORTNENS.txt' % templates else: tpl = '%sSORTNENS.txt' % templates gsns = sortnens(tpl, tb, txt, job, step) if gsns['erros']: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento SORTNENS%s' % \ (' - %s' % step) if step else '' msgsErrors = {} idx = 0 for erro in gsns['erros'].split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': gsns['linhas']} db(db.sortnens.id==idsrt).update(usuarioGeracao=user, \ dataGeracao=datetime.datetime.today()) flash = 'SORTNENS gerado com sucesso.' labelErrors = 'Resultado da geracao do SORT' msgsErrors = {} msgsErrors[0] = 'JOB %s - Done.' % regsrt.jobName return {'retorno': True, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors, \ 'linhas': gsns['linhas']} def job(argv1, argv2, argv3): try: with open(argv3, 'w') as f1: with open(argv1) as f2: for line in f2: for tb in argv2: line = line.replace(tb[0], tb[1]) f1.write(line) except: return traceback.format_exc() def gerarJob(db, idjob, user): parms = db(db.parametros.id==1).select().first() regjob = db(db.jobs.id==idjob).select().first() regsteps = db(db.jobsteps.job==idjob).select(orderby='sequencia') aplicacao = db(db.aplicacoes.id==regjob.codigoAplicacao).\ select().first() nomeaplicacao = aplicacao.aplicacao regempresa = db(db.empresa.id==aplicacao.empresa).select().first() if not regsteps: flash = 'Steps nao definidos' return {'retorno': False, 'flash': flash, 'labelErrors': '', \ 'msgsErrors': {}} templates = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.web2py , 'applications' , parms.soag , 'Template' , 'JCL') + os.sep gerjob = os.path.join( '\\\\' , '127.0.0.1' , 'c$' , parms.raiz , regempresa.nome , nomeaplicacao , 'GERADOS' , 'JOBS') + os.sep try: os.makedirs(gerjob) except: pass jobs = '' for regstep in regsteps: if regstep.objeto == 'HPU': obj = gerarhpu(db, regstep.idObjeto, user, job=True, \ step=regstep.step) if not obj['retorno']: return {'retorno': False, 'flash': obj['flash'], \ 'labelErrors': obj['labelErrors'], \ 'msgsErrors': obj['msgsErrors']} jobs += obj['linhas'] continue if regstep.objeto == 'Programa': obj = gerarnens(db, regstep.idObjeto, user, job=True, \ step=regstep.step) if not obj['retorno']: return {'retorno': False, 'flash': obj['flash'], \ 'labelErrors': obj['labelErrors'], \ 'msgsErrors': obj['msgsErrors']} jobs += obj['linhas'] continue if regstep.objeto == 'Programa (CKRS)': obj = gerarckrs(db, regstep.idObjeto, user, job=True, \ step=regstep.step) if not obj['retorno']: return {'retorno': False, 'flash': obj['flash'], \ 'labelErrors': obj['labelErrors'], \ 'msgsErrors': obj['msgsErrors']} jobs += obj['linhas'] continue if regstep.objeto == 'Sort Tabela': obj = gerarsort1s(db, regstep.idObjeto, user, job=True, \ step=regstep.step) if not obj['retorno']: return {'retorno': False, 'flash': obj['flash'], \ 'labelErrors': obj['labelErrors'], \ 'msgsErrors': obj['msgsErrors']} jobs += obj['linhas'] continue if regstep.objeto == 'Sort Arquivo': obj = gerarsortnens(db, regstep.idObjeto, user, job=True, \ step=regstep.step) if not obj['retorno']: return {'retorno': False, 'flash': obj['flash'], \ 'labelErrors': obj['labelErrors'], \ 'msgsErrors': obj['msgsErrors']} jobs += obj['linhas'] continue tb = [['@JOBNAME', regjob.name], \ ['@ROTINA', regjob.rotine], \ ['@APPLID', regjob.rotine[0:4]], \ ['@USER', regjob.usuario], ['@STEPS', jobs]] txt = '%s%s.jcl' % (gerjob, regjob.name) tpl = '%sJOB.txt' % templates erros = job(tpl, tb, txt) if erros: flash = 'Falha na Execução' labelErrors = 'Resultado do processamento JOB' msgsErrors = {} idx = 0 for erro in erros.split('\n'): if len(erro) > 1: idx += 1 msgsErrors[idx] = erro return {'retorno': False, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors} db(db.jobs.id==idjob).update(usuarioGeracao=user, \ dataGeracao=datetime.datetime.today()) flash = 'JOB gerado com sucesso.' labelErrors = 'Resultado da geracao do JOB' msgsErrors = {} msgsErrors[0] = 'JOB %s - Done.' % regjob.name return {'retorno': True, 'flash': flash, \ 'labelErrors': labelErrors, \ 'msgsErrors': msgsErrors} def referback(db, idaplicacao, idstep, idcontroller, idobjeto): regstp = db(db.jobsteps.id==idstep).select().first() if regstp.objeto == 'HPU': nome1 = 'nome1' nome2 = 'nome2' nome3 = 'nome3' elif regstp.objeto == 'Programa': nome1 = 'nome2' nome2 = 'nome3' nome3 = 'nome4' elif regstp.objeto == 'Programa (CKRS)': nome1 = 'nome2' nome2 = 'nome3' nome3 = 'nome4' elif regstp.objeto == 'Sort Tabela': nome1 = 'nome2' nome2 = 'nome3' nome3 = 'nome4' else: nome1 = 'nome1' nome2 = 'nome2' nome3 = 'nome3' regsteps = db(db.jobsteps).select(orderby='job,step,sequencia') items = '' rotina = '' job = 0 step = '' ocor = 0 qtde = len(regsteps) for regstep in regsteps: ocor += 1 regjob = db(db.jobs.id==regstep.job).select().first() if regjob.codigoAplicacao <> idaplicacao: continue if regstep.job == int(session.idjob or 0) and (regstep.step == session.get('step', '') or regstep.sequencia > int(session.sequencia or 0)): continue if regjob.rotine <> rotina: items += ('</ul></ul></ul><ul>' if items else '<ul>') + '<li>Rotina: %s</li>' % regjob.rotine rotina = regjob.rotine items += '<ul><li>Job: %s</li>' % regjob.name job = regstep.job items += '<ul><li>%s - %s %s</li>' % (regstep.step, regstep.objeto, regstep.dsObjeto) step = regstep.step else: if regstep.job <> job: items += ('</ul><ul>' if items else '<ul>') + '<li>Job: %s</li>' % regjob.name job = regstep.job items += '<ul><li>%s - %s %s</li>' % (regstep.step, regstep.objeto, regstep.dsObjeto) step = regstep.step else: if regstep.step <> step: items += '%s<ul><li>%s - %s %s</li>' % ('<ul>' if ocor==qtde else '', regstep.step, regstep.objeto, regstep.dsObjeto) step = regstep.step if regstep.objeto == 'HPU': reghpu = db(db.hpus.id==regstep.idObjeto).select().first() if not reghpu: items += '<ul><li>Nenhuma saida definida</li></ul>' else: regent = db(db.tabelas.id==reghpu.codigoEntidade).select().first() items += '<ul>' dsname = 'SYSREC01 - AD.C87.%s.%s' % (regjob.rotine + 'S%s.HPU.SYSREC01' % regstep.sequencia, regent.nome) if regstep.job == int(session.idjob or 0): vlr1 = '*' vlr2 = step vlr3 = 'SYSREC01' vlr4 = '' else: vlr1 = regjob.rotine + 'S%s' % '{:>02}'.format(regstep.sequencia) vlr2 = 'SYSREC01' vlr3 = regent.nome vlr4 = '' items += '<li>' + str(A(dsname, _style=XML('cursor: pointer'), _onclick=XML("jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome1, vlr1) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome2, vlr2) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome3, vlr3) + ("jQuery('#%s_nome4').attr('value','%s');" % (idcontroller, vlr4) if regstp.objeto == 'Sort Arquivo' else '') + "jQuery('#referback_%s').text('');" % idobjeto))) items += '</li>' items += '</ul>' if regstep.objeto == 'Programa': regnens = db(db.prognens.id==regstep.idObjeto).select().first() if not regnens: items += '<ul><li>Nenhuma saida definida</li></ul>' else: idx = 0 regnens4s = db(db.prognens4.prognens==regnens.id).select() for regnens4 in regnens4s: idx += 1 items += '<ul>' dsname = '%s - AD.C87.%s%s%s%s' % \ (regnens4.nome1, regjob.rotine + 'S%s' % '{:>02}'.format(regstep.sequencia), ('.' + regnens4.nome3) if regnens4.nome3 else '', ('.' + regnens4.nome4) if regnens4.nome4 else '', ('.' + regnens4.nome5) if regnens4.nome5 else '') if regstep.job == int(session.idjob or 0): vlr1 = '*' vlr2 = step vlr3 = regnens4.nome1 vlr4 = '' else: vlr1 = regjob.rotine + 'S%s' % '{:>02}'.format(regstep.sequencia) vlr2 = (regnens4.nome3) if regnens4.nome3 else '' vlr3 = (regnens4.nome4) if regnens4.nome4 else '' vlr4 = (regnens4.nome5) if regnens4.nome5 else '' items += '<li>' + str(A(dsname, _style=XML('cursor: pointer'),\ _onclick=XML("jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome1, vlr1) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome2, vlr2) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome3, vlr3) + ("jQuery('#%s_nome4').attr('value','%s');" % (idcontroller, vlr4) if regstp.objeto == 'Sort Arquivo' else '') + "jQuery('#referback_%s').text('');" % idobjeto))) items += '</li>' items += '</ul>' if not idx: items += '<ul><li>Nenhuma Saida definida</li></ul>' if regstep.objeto == 'Programa (CKRS)': regckrs = db(db.progckrs.id==regstep.idObjeto).select().first() if not regckrs: items += '<ul><li>Nenhuma saida definida</li></ul>' else: idx = 0 regckrs4s = db(db.progckrs4.progckrs==regckrs.id).select() for regckrs4 in regckrs4s: idx += 1 items += '<ul>' dsname = '%s - AD.C87.%s%s%s%s' % \ (regnens4.nome1, regjob.rotine + 'S%s' % '{:>02}'.format(regstep.sequencia), ('.' + regckrs4.nome3) if regckrs4.nome3 else '', ('.' + regckrs4.nome4) if regckrs4.nome4 else '', ('.' + regckrs4.nome5) if regckrs4.nome5 else '') if regstep.job == int(session.idjob or 0): vlr1 = '*' vlr2 = step vlr3 = regckrs4.nome1 vlr4 = '' else: vlr1 = regjob.rotine + 'S%s' % '{:>02}'.format(regstep.sequencia) vlr2 = (regckrs4.nome3) if regckrs4.nome3 else '' vlr3 = (regckrs4.nome4) if regckrs4.nome4 else '' vlr4 = (regckrs4.nome5) if regckrs4.nome5 else '' items += '<li>' + str(A(dsname, _style=XML('cursor: pointer'), _onclick=XML("jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome1, vlr1) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome2, vlr2) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome3, vlr3) + ("jQuery('#%s_nome4').attr('value','%s');" % (idcontroller, vlr4) if regstp.objeto == 'Sort Arquivo' else '') + "jQuery('#referback_%s').text('');" % idobjeto))) items += '</li>' items += '</ul>' if not idx: items += '<ul><li>Nenhuma Saida definida</li>' if regstep.objeto == 'Sort Tabela': reg1s = db(db.sort1s.id==regstep.idObjeto).select().first() if not reg1s: items += '<ul><li>Nenhuma saida definida</li></ul>' else: regent = db(db.tabelas.id==reg1s.codigoEntidade).select().first() items += '<ul>' dsname = 'SORTOUT - AD.C87.%s%s%s' % (regjob.rotine + 'S%s.SORT' % '{:>02}'.format(regstep.sequencia), '.' + regent.nome, '.' + reg1s.jobArqName) if regstep.job == int(session.idjob or 0): vlr1 = '*' vlr2 = step vlr3 = 'SORTOUT' vlr4 = '' else: vlr1 = regjob.rotine vlr2 = 'S%s.SORT' % '{:>02}'.format(regstep.sequencia) vlr3 = regent.nome vlr4 = reg1s.jobArqName items += '<li>' + str(A(dsname, _style=XML('cursor: pointer'), _onclick=XML("jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome1, vlr1) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome2, vlr2) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome3, vlr3) + ("jQuery('#%s_nome4').attr('value','%s');" % (idcontroller, vlr4) if regstp.objeto == 'Sort Arquivo' else '') + "jQuery('#referback_%s').text('');" % idobjeto))) items += '</li>' items += '</ul>' if regstep.objeto == 'Sort Arquivo': regnens = db(db.sortnens.id==regstep.idObjeto).select().first() if not regnens: items += '<ul><li>Nenhuma saida definida</li></ul>' else: regnens4s = db(db.sortnens4.sortnens==regnens.id).select() idx = 0 for regnens4 in regnens4s: idx += 1 items += '<ul>' origem = 'SYSOUT%s' % '{:>02}'.format(idx) dsname = 'SYSOUT%s - AD.C87.%s%s%s' % ('{:>02}'.format(idx), regjob.rotine + 'S%s.SORT' % '{:>02}'.format(regstep.sequencia), '.' + regnens4.nome1, ('.' + regnens4.nome2) if regnens4.nome2 else '') if regstep.job == int(session.idjob or 0): vlr1 = '*' vlr2 = step vlr3 = origem vlr4 = '' else: vlr1 = regjob.rotine + 'S%s' % '{:>02}'.format(regstep.sequencia) vlr2 = 'SORT' vlr3 = regnens4.nome1 vlr4 = (regnens4.nome2) if regnens4.nome2 else '' items += '<li>' + str(A(dsname, _style=XML('cursor: pointer'), _onclick=XML("jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome1, vlr1) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome2, vlr2) + "jQuery('#%s_%s').attr('value','%s');" % (idcontroller, nome3, vlr3) + ("jQuery('#%s_nome4').attr('value','%s');" % (idcontroller, vlr4) if regstp.objeto == 'Sort Arquivo' else '') + "jQuery('#referback_%s').text('');" % idobjeto))) items += '</li>' items += '</ul>' if not idx: items += '<ul><li>Nenhuma Saida definida</li></ul>' items += '</ul>' return XML(items) # vim: ft=python
f37580c24968dd1c773b2fadeb70ecf90b5e8744
44791c21090478681c4d0b83154b7bebc6f398f0
/server/mongoModel.py
748fc29ac2663e9676842a26a0701a4ed5a22ecf
[]
no_license
prestondoris/OBP_AuthServer
ad916c29af0e956c0c42414abd59e39263275918
a4caf57592e09c74d5400484ef40fe63285fa43c
refs/heads/master
2022-12-27T18:23:01.935357
2019-06-27T23:16:41
2019-06-27T23:16:41
192,974,879
0
0
null
null
null
null
UTF-8
Python
false
false
1,183
py
import json from bson.objectid import ObjectId from bson.json_util import dumps, loads from flask_pymongo import PyMongo builtin_list = list mongo = None def _id(id): if not isinstance(id, ObjectId): return ObjectId(id) return id def init_app(app): global mongo mongo = PyMongo(app) mongo.init_app(app) # [START read] def read(email): try: result = mongo.db.users.find_one({'email': email}) return result except: return json.dumps({'error': 'Error Connecting to DB'}) # [END read] # [START create] def create(data): try: user = read(data["email"]) if not user: try: user = mongo.db.users.insert_one(data) return read(user.inserted_id) except: return json.dumps({'error': 'Error Connecting to DB'}) return None except: return json.dumps({'error': 'Error Connecting to DB'}) # [END create] # [START update] def update(data, email): mongo.db.users.replace_one({'email': email}, data) return read(email) # [END update] def delete(email): mongo.db.users.delete_one({'email': email})
0c36af70f72e559ca91174c96852a456071cc657
424717bb2008a93b374e958b730f4062c20314c0
/desginer_pattern_state.py
fbc9a8c374a73bf8fe7914418df4507e2ef084ad
[]
no_license
renatolaq/Python-Design-Paterns
5dcfe7a6c014c946efe6ba63bc0bae248180e45f
31237df5d74eab3bb60fb5f3c70d785ea4a459d5
refs/heads/master
2020-08-05T04:25:29.595037
2019-10-04T12:29:47
2019-10-04T12:29:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,223
py
class ComputerState(object): name = "state" allowed = [] def switch(self, state): if state.name in self.allowed: print('Current:', self, ' => switched to new state', state.name) self.__class__ = state else: print('Current:', self, ' => switching to', state.name, 'not possible.') def __str__(self): return self.name class Off(ComputerState): name = "off" allowed = ['on'] class On(ComputerState): name = "on" allowed = ['off', 'suspend', 'hibernate'] class Suspend(ComputerState): name = "suspend" allowed = ['on'] class Hibernate(ComputerState): name = "hibernate" allowed = ['on'] class Computer(object): def __init__(self, model='HP'): self.model = model self.state = Off() def change(self, state): self.state.switch(state) if __name__ == '__main__': comp = Computer() # Switch on comp.change(On) # Switch off comp.change(Off) # Switch on again comp.change(On) # Suspend comp.change(Suspend) # Try to hibernate - cannot! comp.change(Hibernate) # switch on back comp.change(On) # Finally off comp.change(Off)
8d1410c3b1419e23f80b80067b065a269fdcbe9f
5267ce24d7c8c5b5d742bffc22f9f8f3b80eb05f
/code/replot.py
67c70c0248cb20c210dd11d4df942a6a31dfad60
[ "MIT" ]
permissive
go-smart/glossia-quickstart
b6d31abd2a8dde964c3020d6c3539d43301bee41
b4245f29b184f7e8e7d643d1af8a95719af43954
refs/heads/master
2016-09-14T14:10:05.529552
2016-04-26T11:32:56
2016-04-26T11:32:56
56,546,747
0
0
null
null
null
null
UTF-8
Python
false
false
716
py
from __future__ import print_function import numpy as N import matplotlib.pyplot as P import sys import variables as v if len(sys.argv) < 2: print("Must have a filename!") exit(1) filename = sys.argv[1] # Output cumulative coverage curves as CSV output_arrays = N.loadtxt(filename) output_arrays = zip(*output_arrays) # Plot the coverage curves for pair, a in zip(v.electrode_pairs, output_arrays[1:]): P.plot(output_arrays[0], a, label="%d - %d" % pair) # Draw the plot P.draw() P.xlabel(r"Threshold level of $|E|$ ($\mathrm{J}$)") P.xlim([0, 1000]) P.ylabel(r"Fraction of tumour beneath level") P.ylim([0, 1]) # Show a legend for the plot P.legend(loc=3) # Display the plot P.show(block=True)
8298fe4b188526c579e1d765177c96f7516d529e
c3bf6dd16fe96246baa6ee122202ae380d2eb91b
/ch06a/ex0602.py
a2edb01dc6dd041a204625c00a0ebaf94f085ff5
[]
no_license
flyupwards/python3_source_code
f944c0965259a1848026d9794db63d9fffcbac94
2736c995f99c0db8c9ecd4021b1c06e1204bac26
refs/heads/master
2023-02-24T12:00:17.092864
2021-01-27T15:38:32
2021-01-27T15:38:32
333,469,650
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
''' 计算圆的面积s ''' def getcirclearea(r): print("圆的面积s={:8.2f}".format(3.14 * r * r)) return getcirclearea(3) getcirclearea # 函数名变量在内存中的地址 print(getcirclearea(3)) # return语句无返回值时,返回None
34ecf6296f533149652bcc9bdfc768e47934f237
7bb2ce3785d3aecd357be03651f3a7ee8b0d7ade
/ssd/evaluate/evaluate_net.py
b365975bb3c488193e98ee3574c2adc9c5a7cf5c
[]
no_license
yangfly/additions_mxnet
db930f781d991ae8c744d4cee7e51852011fd12c
8ed564a9e8fd4a50079baeb22aa5f2fdefc178fc
refs/heads/master
2020-05-29T22:41:11.270796
2017-12-06T08:08:33
2017-12-06T08:08:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,991
py
from __future__ import print_function import os import sys import importlib import mxnet as mx from dataset.iterator import DetRecordIter from config.config import cfg from evaluate.eval_metric import MApMetric, VOC07MApMetric import logging from symbol.symbol_factory import get_symbol from tools.do_nms import do_nms def evaluate_net(net, path_imgrec, num_classes, mean_pixels, data_shape, model_prefix, epoch, ctx=mx.cpu(), batch_size=1, path_imglist="", nms_thresh=0.45, force_nms=False, ovp_thresh=0.5, use_difficult=False, class_names=None, voc07_metric=False): """ evalute network given validation record file Parameters: ---------- net : str or None Network name or use None to load from json without modifying path_imgrec : str path to the record validation file path_imglist : str path to the list file to replace labels in record file, optional num_classes : int number of classes, not including background mean_pixels : tuple (mean_r, mean_g, mean_b) data_shape : tuple or int (3, height, width) or height/width model_prefix : str model prefix of saved checkpoint epoch : int load model epoch ctx : mx.ctx mx.gpu() or mx.cpu() batch_size : int validation batch size nms_thresh : float non-maximum suppression threshold force_nms : boolean whether suppress different class objects ovp_thresh : float AP overlap threshold for true/false postives use_difficult : boolean whether to use difficult objects in evaluation if applicable class_names : comma separated str class names in string, must correspond to num_classes if set voc07_metric : boolean whether to use 11-point evluation as in VOC07 competition """ # set up logger logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.INFO) # args if isinstance(data_shape, int): data_shape = (3, data_shape, data_shape) assert len(data_shape) == 3 and data_shape[0] == 3 model_prefix += '_' + str(data_shape[1]) # iterator eval_iter = DetRecordIter(path_imgrec, batch_size, data_shape, path_imglist=path_imglist, **cfg.valid) # model params load_net, args, auxs = mx.model.load_checkpoint(model_prefix, epoch) # network if net is None: net = load_net else: net = get_symbol(net, data_shape[1], num_classes=num_classes, nms_thresh=nms_thresh, force_suppress=force_nms) if not 'label' in net.list_arguments(): label = mx.sym.Variable(name='label') net = mx.sym.Group([net, label]) # init module mod = mx.mod.Module(net, label_names=('label',), logger=logger, context=ctx, fixed_param_names=net.list_arguments()) mod.bind(data_shapes=eval_iter.provide_data, label_shapes=eval_iter.provide_label) mod.set_params(args, auxs, allow_missing=False, force_init=True) # run evaluation if voc07_metric: metric = VOC07MApMetric(ovp_thresh, use_difficult, class_names) else: metric = MApMetric(ovp_thresh, use_difficult, class_names) for i, datum in enumerate(eval_iter): # mod.reshape(data_shapes=datum.provide_data, label_shapes=datum.provide_label) mod.forward(datum) preds = mod.get_outputs() for j in range(preds[0].shape[0]): det0 = preds[0][j].asnumpy() # (n_anchor, 6) det0 = do_nms(det0, n_class=20, th_nms=nms_thresh) preds[0][j] = mx.nd.array(det0, ctx=preds[0][j].context) metric.update(datum.label, preds) if i % 10 == 0: print('processed {} batches.'.format(i)) results = metric.get_name_value() # results = mod.score(eval_iter, metric, num_batch=None) for k, v in results: print("{}: {}".format(k, v))
772bc6013f219ad1c46eadc9d8058b9393df3313
883ddb559c7b54af22202685b279d899af48f497
/examen/models.py
28aa9e8af52fcbb70211e30c61652ff3364aa9ec
[]
no_license
kikega/oposiciones
3bd64e8b955b33ca5be0b24faf17de4e7c235310
65a33c47c95645e5499942982f2e6855ef81ee8b
refs/heads/master
2020-06-09T10:39:28.241903
2019-08-22T22:40:30
2019-08-22T22:40:30
103,585,900
0
0
null
null
null
null
UTF-8
Python
false
false
448
py
from django.db import models from django.contrib.postgres.fields import ArrayField # Create your models here. class Examen(models.Model): fecha = models.DateField(auto_now=True) p_falladas = ArrayField(models.IntegerField()) p_acertadas = models.IntegerField() fallos = models.IntegerField() nota = models.FloatField() class Meta: verbose_name_plural = "Examenes" def __str__(self): return str(self.fecha)
94d04dee1f8e390d9c5217e7c519fccc0f5fc0de
a82be1ed4ec980c45ee963ccbe15fa3c574d6c78
/Bike Rent Count.py
4c5b187fa709de4e61d9014f0a392347bcc440b2
[]
no_license
ytnvj2/bikerent
82326e25be66078a22a327512f00ff8e06277dd4
711f466f8e03fe545546928cf5bd0d9dd7569125
refs/heads/master
2020-04-08T18:51:16.164408
2018-12-01T03:47:26
2018-12-01T03:47:26
159,627,917
1
0
null
null
null
null
UTF-8
Python
false
false
5,762
py
import os import pandas as pd import numpy as np import fancyimpute import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import (explained_variance_score, mean_absolute_error, mean_squared_error) from sklearn.metrics import r2_score def load_data(): # define path of csv raw_data_path=os.path.join('day.csv') # import the dataset df=pd.read_csv(raw_data_path) df.columns=['Instant', 'Date', 'Season', 'Year', 'Month', 'Holiday', 'Weekday', 'WorkingDay', 'WeatherSituation', 'Temp', 'ActualTemp', 'Humidity', 'WindSpeed', 'Casual', 'Registered', 'Count'] # Convert the categorical columns to object cat_cols=['Instant','Season', 'Year', 'Month', 'Holiday', 'Weekday', 'WorkingDay', 'WeatherSituation'] for i in cat_cols: df[i] = df[i].astype(object) num_cols=[] for i in df.columns: if(df[i].dtype==np.dtype('int64') or df[i].dtype==np.dtype('float64')): num_cols.append(i) df[i] = df[i].astype(np.float64) # viewing the dataframe's info df.info() return df,num_cols,cat_cols def outlier_imputer(df_o,num_cols): # Outlier Analysis while True: for i in num_cols: min=(df_o[i].quantile(0.25)-1.5*(df_o[i].quantile(0.75)-df_o[i].quantile(0.25))) max=(df_o[i].quantile(0.75)+1.5*(df_o[i].quantile(0.75)-df_o[i].quantile(0.25))) df_o.loc[df_o[i]<min,i] = np.nan df_o.loc[df_o[i]>max,i] = np.nan missing_val = df_o.isnull().sum() print(missing_val) if(missing_val.sum()>0): df_o_knn=pd.DataFrame(fancyimpute.KNN(k = 3).complete(df_o[num_cols]), columns = num_cols) df_o_knn.head() df_o.iloc[:,9:15]=df_o_knn.iloc[:,:] else: break return df_o def feature_selection(df): #Set the width and hieght of the plot f, ax = plt.subplots(figsize=(7, 5)) #Generate correlation matrix corr = df.iloc[:,9:].corr() #Plot using seaborn library sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool), cmap=sns.diverging_palette(220, 10, as_cmap=True), square=True, ax=ax) return df.drop(['Instant','Date','Holiday','Temp','Registered'],axis=1,inplace=False) def split_dataset(df): X=df.iloc[:,:-1].values y=df.iloc[:,-1].values return train_test_split(X,y,test_size=0.2,random_state=123) def feature_scaling(X_train,X_test): standardScaler=StandardScaler() X_train[:,6:]=standardScaler.fit_transform(X_train[:,6:]) X_test[:,6:]=standardScaler.transform(X_test[:,6:]) return X_train,X_test,standardScaler def train_lm(X_train,y_train): lr_model=LinearRegression() lr_model.fit(X_train,y_train) return lr_model def train_dt(X_train,y_train): dtr_model=DecisionTreeRegressor(random_state=123) dtr_model.fit(X_train,y_train) return dtr_model def train_rf(X_train,y_train): rf_model=RandomForestRegressor(n_estimators=50,random_state=123) rf_model.fit(X_train,y_train) return rf_model def train_knn(X_train,y_train): rf_model=KNeighborsRegressor(n_neighbors=5) rf_model.fit(X_train,y_train) return rf_model def predict_vals(model,X_test,y_test): print(model.score(X_test,y_test)) preds=model.predict(X_test) return preds def evaluate_model(y_test,y_pred): print('R-Square',r2_score(y_test,y_pred)) print('MSE',mean_squared_error(y_test,y_pred)) print('MAE',mean_absolute_error(y_test,y_pred)) print('Explained Variance',explained_variance_score(y_test,y_pred)) def predict(model,X): df=X df.columns=['Instant', 'Date', 'Season', 'Year', 'Month', 'Holiday', 'Weekday', 'WorkingDay', 'WeatherSituation', 'Temp', 'ActualTemp', 'Humidity', 'WindSpeed', 'Casual', 'Registered'] # Convert the categorical columns to object cat_cols=['Season', 'Year', 'Month', 'Holiday', 'Weekday', 'WorkingDay', 'WeatherSituation'] for i in cat_cols: df[i] = df[i].astype(object) num_cols=[] for i in df.columns: if(df[i].dtype==np.dtype('int64') or df[i].dtype==np.dtype('float64')): num_cols.append(i) df[i] = df[i].astype(np.float64) X.drop(['Instant','Date','Holiday','Temp','Registered'],axis=1,inplace=True) X=X.values X[:,6:]=standardScaler.transform(X[:,6:]) return model.predict(X) df,num_cols,cat_cols=load_data() df=outlier_imputer(df,num_cols) df=feature_selection(df) X_train,X_test,y_train,y_test=split_dataset(df) X_train_scaled,X_test_scaled,standardScaler=feature_scaling(X_train,X_test) lr_model=train_lm(X_train,y_train) dt_model=train_dt(X_train,y_train) rf_model=train_rf(X_train,y_train) knn_model=train_knn(X_train,y_train) print('Linear Model') y_pred=predict_vals(lr_model,X_test,y_test) evaluate_model(y_test,y_pred) print('Decision Tree Model') y_pred=predict_vals(dt_model,X_test,y_test) evaluate_model(y_test,y_pred) print('Random Forest Model') y_pred=predict_vals(rf_model,X_test,y_test) evaluate_model(y_test,y_pred) print('K Nearest Neighbors(k=5)') y_pred=predict_vals(knn_model,X_test,y_test) evaluate_model(y_test,y_pred) # Sample Input Creation a=np.array([[399, '2012-02-03', 1, 1, 2, 0, 5, 1, 1, 0.313333, 0.309346, 0.526667, 0.17849600000000002, 310, 3841]], dtype=object) s=pd.DataFrame(a) print(s) # Output for sample input print("The Model's Prediction for the input is ",predict(rf_model,s))
98529b4cb54decdf4e7df6ee449955d6f8fe354c
91cdc8cf41dff4d179f9e8319bf9e5b19da64b1f
/backend/home/migrations/0003_hgfdjfd.py
d8c1aae2adf8e892905df603dde5c9609a4539fc
[]
no_license
crowdbotics-apps/mobile-1666-dev-7710
8b752505addfe8ae946f061d6fb57445f2eca1a5
4b2fba070ce3d95eb9b3c153a16af9d527079d03
refs/heads/master
2022-11-21T13:33:33.758230
2020-07-17T14:18:12
2020-07-17T14:18:12
280,130,885
0
0
null
null
null
null
UTF-8
Python
false
false
684
py
# Generated by Django 2.2.14 on 2020-07-17 07:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("home", "0002_load_initial_data"), ] operations = [ migrations.CreateModel( name="Hgfdjfd", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("jhjhjh", models.BigIntegerField()), ], ), ]
879e9eec961a0ae978e683b4e0a3c9e98b728095
203d26cb680c9ab4fc45990123ae9b17574a4908
/tools/grammar.py
430ebedab3d86d9658a7c731fe4fc1f1c439c089
[]
no_license
jprimeau/DE1-JP80
b608870a63c5a56063fb24bdd1f60ae653f399de
08d2150bd2153e540aa6e987c10abeef135b5492
refs/heads/master
2016-09-06T10:09:29.129759
2015-01-03T03:40:48
2015-01-03T03:40:48
26,215,097
0
0
null
null
null
null
UTF-8
Python
false
false
3,699
py
grammar = { 'ACI':['D', 2, 'CE'], 'ADC':['R', 1, {'A':'8F','B':'88','C':'89','D':'8A','E':'8B','H':'8C','L':'8D','M':'8E'}], 'ADD':['R', 1, {'A':'87','B':'80','C':'81','D':'82','E':'83','H':'84','L':'85','M':'86'}], 'ADI':['D', 2, 'C6'], 'ANA':['R', 1, {'A':'A7','B':'A0','C':'A1','D':'A2','E':'A3','H':'A4','L':'A5','M':'A6'}], 'ANI':['D', 2, 'E6'], 'CALL':['A', 3, 'CD'], 'CC':['A', 3, 'DC'], 'CNC':['A', 3, 'D4'], 'CP':['A', 3, 'F4'], 'CM':['A', 3, 'FC'], 'CPE':['A', 3, 'EC'], 'CPO':['A', 3, 'E4'], 'CZ':['A', 3, 'CC'], 'CNZ':['A', 3, 'C4'], 'CMA':['', 1, '2F'], 'CMC':['', 1, '3F'], 'CMP':['R', 1, {'A':'BF','B':'B8','C':'B9','D':'BA','E':'BB','H':'BC','L':'BD','M':'BE'}], 'CPI':['D', 2, 'FE'], 'DAA':['', 1, '27'], 'DAD':['Rp', 1, {'B':'09','D':'19','H':'29','SP':'39'}], 'DCR':['R', 1, {'A':'3D','B':'05','C':'0D','D':'15','E':'1D','H':'25','L':'2D','M':'35'}], 'DCX':['Rp', 1, {'B':'0B','D':'1B','H':'2B','SP':'3B'}], 'DI':['', 1, 'F3'], 'EI':['', 1, 'FB'], 'HLT':['', 1, '76'], 'IN':['D', 2, 'DB'], 'INR':['R', 1, {'A':'3C','B':'04','C':'0C','D':'14','E':'1C','H':'24','L':'2C','M':'34'}], 'INX':['Rp', 1, {'B':'03','D':'13','H':'23','SP':'33'}], 'JMP':['A', 3, 'C3'], 'JC':['A', 3, 'DA'], 'JNC':['A', 3, 'D2'], 'JP':['A', 3, 'F2'], 'JM':['A', 3, 'FA'], 'JPE':['A', 3, 'EA'], 'JPO':['A', 3, 'E2'], 'JZ':['A', 3, 'CA'], 'JNZ':['A', 3, 'C2'], 'LDA':['A', 3, '3A'], 'LDAX':['Rp', 3, {'B':'0A','D':'1A'}], 'LHDL':['A', 3, '2A'], 'LXI':['Rp,DD', 3, {'B':'01','D':'11','H':'21','SP':'31'}], 'MOV':['R,R', 1, {'A,A':'7F','A,B':'78','A,C':'79','A,D':'7A','A,E':'7B','A,H':'7C','A,L':'7D','A,M':'7E', 'B,A':'47','B,B':'40','B,C':'41','B,D':'42','B,E':'43','B,H':'44','B,L':'45','B,M':'46', 'C,A':'41','C,B':'48','C,C':'49','C,D':'4A','C,E':'4B','C,H':'4C','C,L':'4D','C,M':'4E', 'D,A':'57','D,B':'50','D,C':'51','D,D':'52','D,E':'53','D,H':'54','D,L':'55','D,M':'56', 'E,A':'5F','E,B':'58','E,C':'59','E,D':'5A','E,E':'5B','E,H':'5C','E,L':'5D','E,M':'5E', 'H,A':'67','H,B':'60','H,C':'61','H,D':'62','H,E':'63','H,H':'64','H,L':'65','H,M':'66', 'L,A':'6F','L,B':'68','L,C':'69','L,D':'6A','L,E':'6B','L,H':'6C','L,L':'6D','L,M':'6E', 'M,A':'77','M,B':'70','M,C':'71','M,D':'72','M,E':'73','M,H':'74','M,L':'75'}], 'MVI':['R,D', 2, {'A':'3E','B':'06','C':'0E','D':'16','E':'1E','H':'26','L':'2E','M':'36'}], 'NOP':['', 1, '00'], 'ORA':['R', 1, {'A':'B7','B':'B0','C':'B1','D':'B2','E':'B3','H':'B4','L':'B5','M':'B6'}], 'ORI':['D', 2, 'F6'], 'OUT':['D', 2, 'D3'], 'PCHL':[ '', 1, 'E9'], 'POP':['Rp', 1, {'B':'C1','D':'D1','H':'E1','PSW':'F1'}], 'PUSH':['Rp', 1, {'B':'C5','D':'D5','H':'E5','PSW':'F5'}], 'RAL':['', 1, '17'], 'RAR':['', 1, '1F'], 'RCL':['', 1, '07'], 'RRC':['', 1, '0F'], 'RET':['', 1, 'C9'], 'RC':['', 1, 'D8'], 'RNC':['', 1, 'D0'], 'RP':['', 1, 'F0'], 'RM':['', 1, 'F8'], 'RPE':['', 1, 'E8'], 'RPO':['', 1, 'E0'], 'RZ':['', 1, 'C8'], 'RNZ':['', 1, 'C0'], 'RIM':['', 1, '20'], 'RST':['N', 1, ['C7','CF','D7','DF','E7','EF','F7','FF']], 'SBB':['R', 1, {'A':'9F','B':'98','C':'99','D':'9A','E':'9B','H':'9C','L':'9D','M':'9E'}], 'SBI':['D', 2, 'DE'], 'SHLD':['A', 3, '22'], 'SIM':['', 1, '30'], 'SPHL':['', 1, 'F9'], 'STA':['A', 3, '32'], 'STAX':['Rp', 1, {'B':'02','D':'12'}], 'STC':['', 1, '37'], 'SUB':['R', 1, {'A':'97','B':'90','C':'91','D':'92','E':'93','H':'94','L':'95','M':'96'}], 'SUI':['D', 2, 'D6'], 'XCHG':['', 1, 'EB'], 'XRA':['R', 1, {'A':'AF','B':'A8','C':'A9','D':'AA','E':'AB','H':'AC','L':'AD','M':'AE'}], 'XRI':['D', 2, 'EE'], 'XTHL':['', 1, 'E3'], 'defw':['AD', 0, ''], 'defm':['AD', 0, ''], 'org':['AD', 0, ''], 'equ':['AD', 0, ''], }
973987e590757c2014e474ea2435574e52da4589
bdc59a03b8bc589eeda1f4c5a97d7e283f5cc81c
/Add_Project_GUI.py
b6e20a76544d2da6013c881b4955612d13b67999
[]
no_license
simplesports/ProjectManager
111e8f6a55afeaad7d0754008a329e99bcbbea9f
bf8ccb584bd25a4651e8be602cd9cb83fac5d046
refs/heads/master
2020-12-30T12:34:47.809607
2017-07-07T22:53:08
2017-07-07T22:53:08
91,388,807
0
0
null
null
null
null
UTF-8
Python
false
false
15,615
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'Add_Project_GUI.ui' # # Created by: PyQt5 UI code generator 5.6 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Add_Projects(object): def setupUi(self, Add_Projects): Add_Projects.setObjectName("Add_Projects") Add_Projects.resize(592, 724) self.gridLayout = QtWidgets.QGridLayout(Add_Projects) self.gridLayout.setObjectName("gridLayout") self.text_Additional_Comments = QtWidgets.QLabel(Add_Projects) self.text_Additional_Comments.setObjectName("text_Additional_Comments") self.gridLayout.addWidget(self.text_Additional_Comments, 7, 1, 1, 1) self.textEdit_Additional_Comments = QtWidgets.QTextEdit(Add_Projects) self.textEdit_Additional_Comments.setObjectName("textEdit_Additional_Comments") self.gridLayout.addWidget(self.textEdit_Additional_Comments, 8, 1, 1, 1) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.text_Project_Number = QtWidgets.QLabel(Add_Projects) self.text_Project_Number.setObjectName("text_Project_Number") self.horizontalLayout.addWidget(self.text_Project_Number) self.UserInput_Project_Number = QtWidgets.QLineEdit(Add_Projects) self.UserInput_Project_Number.setObjectName("UserInput_Project_Number") self.horizontalLayout.addWidget(self.UserInput_Project_Number) self.text_Project_Name = QtWidgets.QLabel(Add_Projects) self.text_Project_Name.setObjectName("text_Project_Name") self.horizontalLayout.addWidget(self.text_Project_Name) self.UserInput_Project_Name = QtWidgets.QLineEdit(Add_Projects) self.UserInput_Project_Name.setObjectName("UserInput_Project_Name") self.horizontalLayout.addWidget(self.UserInput_Project_Name) self.gridLayout.addLayout(self.horizontalLayout, 0, 1, 1, 1) self.horizontalLayout_5 = QtWidgets.QHBoxLayout() self.horizontalLayout_5.setObjectName("horizontalLayout_5") spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_5.addItem(spacerItem) self.Button_Add_Project = QtWidgets.QPushButton(Add_Projects) self.Button_Add_Project.setObjectName("Button_Add_Project") self.horizontalLayout_5.addWidget(self.Button_Add_Project) self.Button_Cancel = QtWidgets.QPushButton(Add_Projects) self.Button_Cancel.setObjectName("Button_Cancel") self.horizontalLayout_5.addWidget(self.Button_Cancel) self.gridLayout.addLayout(self.horizontalLayout_5, 10, 1, 1, 1) self.groupBox_DueDates = QtWidgets.QGroupBox(Add_Projects) self.groupBox_DueDates.setObjectName("groupBox_DueDates") self.gridLayout_3 = QtWidgets.QGridLayout(self.groupBox_DueDates) self.gridLayout_3.setObjectName("gridLayout_3") self.gridLayout_2 = QtWidgets.QGridLayout() self.gridLayout_2.setObjectName("gridLayout_2") self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.text_Description = QtWidgets.QLabel(self.groupBox_DueDates) self.text_Description.setObjectName("text_Description") self.horizontalLayout_4.addWidget(self.text_Description) self.UserInput_Description = QtWidgets.QLineEdit(self.groupBox_DueDates) self.UserInput_Description.setObjectName("UserInput_Description") self.horizontalLayout_4.addWidget(self.UserInput_Description) self.text_date = QtWidgets.QLabel(self.groupBox_DueDates) self.text_date.setObjectName("text_date") self.horizontalLayout_4.addWidget(self.text_date) self.dateEdit = QtWidgets.QDateEdit(self.groupBox_DueDates) self.dateEdit.setObjectName("dateEdit") self.horizontalLayout_4.addWidget(self.dateEdit) self.gridLayout_2.addLayout(self.horizontalLayout_4, 1, 0, 1, 1) self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(spacerItem1) self.Button_Add_To_Table_Due_Dates = QtWidgets.QPushButton(self.groupBox_DueDates) self.Button_Add_To_Table_Due_Dates.setObjectName("Button_Add_To_Table_Due_Dates") self.horizontalLayout_2.addWidget(self.Button_Add_To_Table_Due_Dates) self.Button_Dates_Update_Table = QtWidgets.QPushButton(self.groupBox_DueDates) self.Button_Dates_Update_Table.setObjectName("Button_Dates_Update_Table") self.horizontalLayout_2.addWidget(self.Button_Dates_Update_Table) self.Button_Dates_Remove = QtWidgets.QPushButton(self.groupBox_DueDates) self.Button_Dates_Remove.setObjectName("Button_Dates_Remove") self.horizontalLayout_2.addWidget(self.Button_Dates_Remove) self.gridLayout_2.addLayout(self.horizontalLayout_2, 2, 0, 1, 1) self.gridLayout_3.addLayout(self.gridLayout_2, 0, 0, 1, 1) self.tableWidget_Dates = QtWidgets.QTableWidget(self.groupBox_DueDates) self.tableWidget_Dates.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) self.tableWidget_Dates.setDragDropOverwriteMode(False) self.tableWidget_Dates.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.tableWidget_Dates.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.tableWidget_Dates.setObjectName("tableWidget_Dates") self.tableWidget_Dates.setColumnCount(2) self.tableWidget_Dates.setRowCount(0) item = QtWidgets.QTableWidgetItem() self.tableWidget_Dates.setHorizontalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() self.tableWidget_Dates.setHorizontalHeaderItem(1, item) self.gridLayout_3.addWidget(self.tableWidget_Dates, 1, 0, 1, 1) self.gridLayout.addWidget(self.groupBox_DueDates, 5, 1, 1, 1) self.groupBox = QtWidgets.QGroupBox(Add_Projects) self.groupBox.setObjectName("groupBox") self.gridLayout_4 = QtWidgets.QGridLayout(self.groupBox) self.gridLayout_4.setObjectName("gridLayout_4") self.text_Contact_name = QtWidgets.QLabel(self.groupBox) self.text_Contact_name.setObjectName("text_Contact_name") self.gridLayout_4.addWidget(self.text_Contact_name, 0, 0, 1, 1) self.checkBox = QtWidgets.QCheckBox(self.groupBox) self.checkBox.setObjectName("checkBox") self.gridLayout_4.addWidget(self.checkBox, 0, 7, 1, 1) self.text_Contact_PhoneNumber = QtWidgets.QLabel(self.groupBox) self.text_Contact_PhoneNumber.setObjectName("text_Contact_PhoneNumber") self.gridLayout_4.addWidget(self.text_Contact_PhoneNumber, 0, 2, 1, 1) self.UserInput_Main_Contact_Name = QtWidgets.QLineEdit(self.groupBox) self.UserInput_Main_Contact_Name.setObjectName("UserInput_Main_Contact_Name") self.gridLayout_4.addWidget(self.UserInput_Main_Contact_Name, 0, 1, 1, 1) self.text_Email = QtWidgets.QLabel(self.groupBox) self.text_Email.setObjectName("text_Email") self.gridLayout_4.addWidget(self.text_Email, 3, 0, 1, 1) self.label = QtWidgets.QLabel(self.groupBox) self.label.setObjectName("label") self.gridLayout_4.addWidget(self.label, 1, 0, 1, 1) self.label_2 = QtWidgets.QLabel(self.groupBox) self.label_2.setObjectName("label_2") self.gridLayout_4.addWidget(self.label_2, 1, 2, 1, 1) self.UserInput_Title = QtWidgets.QLineEdit(self.groupBox) self.UserInput_Title.setObjectName("UserInput_Title") self.gridLayout_4.addWidget(self.UserInput_Title, 1, 1, 1, 1) self.tableWidget_Contacts = QtWidgets.QTableWidget(self.groupBox) self.tableWidget_Contacts.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) self.tableWidget_Contacts.setDragDropOverwriteMode(False) self.tableWidget_Contacts.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.tableWidget_Contacts.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.tableWidget_Contacts.setObjectName("tableWidget_Contacts") self.tableWidget_Contacts.setColumnCount(6) self.tableWidget_Contacts.setRowCount(0) item = QtWidgets.QTableWidgetItem() self.tableWidget_Contacts.setHorizontalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() self.tableWidget_Contacts.setHorizontalHeaderItem(1, item) item = QtWidgets.QTableWidgetItem() self.tableWidget_Contacts.setHorizontalHeaderItem(2, item) item = QtWidgets.QTableWidgetItem() self.tableWidget_Contacts.setHorizontalHeaderItem(3, item) item = QtWidgets.QTableWidgetItem() self.tableWidget_Contacts.setHorizontalHeaderItem(4, item) item = QtWidgets.QTableWidgetItem() self.tableWidget_Contacts.setHorizontalHeaderItem(5, item) self.gridLayout_4.addWidget(self.tableWidget_Contacts, 7, 1, 1, 6) self.UserInput_Company = QtWidgets.QLineEdit(self.groupBox) self.UserInput_Company.setObjectName("UserInput_Company") self.gridLayout_4.addWidget(self.UserInput_Company, 1, 3, 1, 4) self.UserInput_Email = QtWidgets.QLineEdit(self.groupBox) self.UserInput_Email.setObjectName("UserInput_Email") self.gridLayout_4.addWidget(self.UserInput_Email, 3, 1, 1, 6) self.UserInput_Main_Contact_PhoneNumber = QtWidgets.QLineEdit(self.groupBox) self.UserInput_Main_Contact_PhoneNumber.setObjectName("UserInput_Main_Contact_PhoneNumber") self.gridLayout_4.addWidget(self.UserInput_Main_Contact_PhoneNumber, 0, 3, 1, 4) self.horizontalLayout_6 = QtWidgets.QHBoxLayout() self.horizontalLayout_6.setObjectName("horizontalLayout_6") spacerItem2 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_6.addItem(spacerItem2) self.Button_Add_To_Table_Contacts = QtWidgets.QPushButton(self.groupBox) self.Button_Add_To_Table_Contacts.setObjectName("Button_Add_To_Table_Contacts") self.horizontalLayout_6.addWidget(self.Button_Add_To_Table_Contacts) self.Button_Contacts_Update_Table = QtWidgets.QPushButton(self.groupBox) self.Button_Contacts_Update_Table.setObjectName("Button_Contacts_Update_Table") self.horizontalLayout_6.addWidget(self.Button_Contacts_Update_Table) self.Button_Contacts_Remove = QtWidgets.QPushButton(self.groupBox) self.Button_Contacts_Remove.setObjectName("Button_Contacts_Remove") self.horizontalLayout_6.addWidget(self.Button_Contacts_Remove) self.gridLayout_4.addLayout(self.horizontalLayout_6, 6, 0, 1, 8) self.gridLayout.addWidget(self.groupBox, 4, 1, 1, 1) self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.text_Project_Folder = QtWidgets.QLabel(Add_Projects) self.text_Project_Folder.setObjectName("text_Project_Folder") self.horizontalLayout_3.addWidget(self.text_Project_Folder) self.UserInput_Project_Folder = QtWidgets.QLineEdit(Add_Projects) self.UserInput_Project_Folder.setObjectName("UserInput_Project_Folder") self.horizontalLayout_3.addWidget(self.UserInput_Project_Folder) self.Button_Browse = QtWidgets.QPushButton(Add_Projects) self.Button_Browse.setObjectName("Button_Browse") self.horizontalLayout_3.addWidget(self.Button_Browse) self.gridLayout.addLayout(self.horizontalLayout_3, 6, 1, 1, 1) self.retranslateUi(Add_Projects) QtCore.QMetaObject.connectSlotsByName(Add_Projects) def retranslateUi(self, Add_Projects): _translate = QtCore.QCoreApplication.translate Add_Projects.setWindowTitle(_translate("Add_Projects", "Add a New Project :-)")) self.text_Additional_Comments.setText(_translate("Add_Projects", "Addtional Comments:")) self.text_Project_Number.setText(_translate("Add_Projects", "Project Number")) self.text_Project_Name.setText(_translate("Add_Projects", "Project Name")) self.Button_Add_Project.setText(_translate("Add_Projects", "Add Project")) self.Button_Cancel.setText(_translate("Add_Projects", "Cancel")) self.groupBox_DueDates.setTitle(_translate("Add_Projects", "Due Dates")) self.text_Description.setText(_translate("Add_Projects", "Description:")) self.text_date.setText(_translate("Add_Projects", "Date:")) self.Button_Add_To_Table_Due_Dates.setText(_translate("Add_Projects", "Add to Table")) self.Button_Dates_Update_Table.setText(_translate("Add_Projects", "Update Table")) self.Button_Dates_Remove.setText(_translate("Add_Projects", "Remove")) item = self.tableWidget_Dates.horizontalHeaderItem(0) item.setText(_translate("Add_Projects", "Description")) item = self.tableWidget_Dates.horizontalHeaderItem(1) item.setText(_translate("Add_Projects", "Due Date")) self.groupBox.setTitle(_translate("Add_Projects", "Contacts")) self.text_Contact_name.setText(_translate("Add_Projects", "Contact Name:")) self.checkBox.setText(_translate("Add_Projects", "Main?")) self.text_Contact_PhoneNumber.setText(_translate("Add_Projects", "Contact Phone Number:")) self.text_Email.setText(_translate("Add_Projects", "Email:")) self.label.setText(_translate("Add_Projects", "Title:")) self.label_2.setText(_translate("Add_Projects", "Company:")) item = self.tableWidget_Contacts.horizontalHeaderItem(0) item.setText(_translate("Add_Projects", "Contact Name:")) item = self.tableWidget_Contacts.horizontalHeaderItem(1) item.setText(_translate("Add_Projects", "Contact Phone Number:")) item = self.tableWidget_Contacts.horizontalHeaderItem(2) item.setText(_translate("Add_Projects", "Title:")) item = self.tableWidget_Contacts.horizontalHeaderItem(3) item.setText(_translate("Add_Projects", "Company")) item = self.tableWidget_Contacts.horizontalHeaderItem(4) item.setText(_translate("Add_Projects", "Email")) item = self.tableWidget_Contacts.horizontalHeaderItem(5) item.setText(_translate("Add_Projects", "Main Contact")) self.Button_Add_To_Table_Contacts.setText(_translate("Add_Projects", "Add to Table")) self.Button_Contacts_Update_Table.setText(_translate("Add_Projects", "Update Table")) self.Button_Contacts_Remove.setText(_translate("Add_Projects", "Remove")) self.text_Project_Folder.setText(_translate("Add_Projects", "Project Folder:")) self.Button_Browse.setText(_translate("Add_Projects", "Browse")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Add_Projects = QtWidgets.QWidget() ui = Ui_Add_Projects() ui.setupUi(Add_Projects) Add_Projects.show() sys.exit(app.exec_())
1a3d25ee2ab2d6274bd90c30781999f1a956cbdb
61afd923551491846ae827821f55c4fb5fd04c98
/packages/levylab_lib_lockin_multichannel/levylab_lib_lockin_multichannel-2.14.0.59.spec
d493c1230e5f712ce6a5b1e7090368ee412a0a98
[ "BSD-3-Clause" ]
permissive
laserengineer/levylabpitt.github.io
b74b711aff2a5eb1b46f880a1071ac0873f1a9ac
cdf9aeb6faaf136211291ce2232c239229d85bbe
refs/heads/master
2023-04-29T02:36:48.736236
2021-05-14T19:20:40
2021-05-14T19:20:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
37,044
spec
[Package] Name="levylab_lib_lockin_multichannel" Version="2.14.0.59" Release="" ID=3e298bc47804f097168f0d0fcf0f1965 File Format="vip" Format Version="2017" Display Name="Multichannel Lockin" [Description] Description="Multichannel Lockin for National Instruments' Dynamic Signal Acquisition hardware (4431, 4461, 4462). This version is configured to handle multiple cards (up to 16) for simultaneous, synchronized AI/AO. You can configure a number of analog outputs (up to 32) to output sine, square, sawtooth, or triangle functions with DC offsets. Each of the analog inputs (up to 32) can be demodulated at multiple frequencies." Summary="" License="BSD-3" Copyright="Copyright (c) 2021, LevyLab" Distribution="" Vendor="LevyLab" URL="" Packager="Patrick Irvin" Demo="FALSE" Release Notes="[2.14.0]\0D\0A[beta build]\0A- Updated AO Channels, AI Channels, Reference Channels datatypes: Array of Clusters instead of Cluster of Arrays\0A- Updated Lockin Results datatyp: Dictionary; APIs are provided for parsing the dicrtionary\0A- Each reference channel has independent control of time constant (Maximum of 4 reference channels)\\\0A- Individual choice for demodulating each AI Channel (e.g., demodulate each AI with choice of Reference channel, no demodulation, or all demodulation channels)\0A- Reset phase option: align AO and Reference phase without resetting DAQ tasks\0A- UI improvements" System Package="FALSE" Sub Package="FALSE" License Agreement="TRUE" [LabVIEW] close labview before install="FALSE" restart labview after install="FALSE" skip mass compile after install="FALSE" [Platform] Exclusive_LabVIEW_Version="LabVIEW>=16.0" Exclusive_LabVIEW_System="ALL" Exclusive_OS="ALL" [Script VIs] PreInstall="" PostInstall="" PreUninstall="" PostUninstall="" Verify="" PreBuild="" PostBuild="" [Dependencies] AutoReqProv=FALSE Requires="jdp_science_postgresql>=0.1.1.10,jki_lib_json_serialization>=1.1.10.37,jki_lib_serialization>=1.0.1.14,jki_lib_state_machine>=2018.0.7.45,jki_lib_unicode>=1.0.0.7,jki_statemachineobjects>=1.3.0.56,labview-zmq>=3.5.1.109,lava_lib_ui_tools>=1.4.1.74,levylab_lib_control_vi>=1.3.0.11,levylab_lib_fileutilities>=1.2.6.13,levylab_lib_graph_utilities>=2.1.6.9,levylab_lib_lvtoitx>=3.0.6.14,levylab_lib_postgresql>=1.3.3.21,levylab_lib_voltage_update>=1.0.3.5,levylab_lib_xy_utilities>=1.4.0.17,mgi_lib_1d_array>=1.0.2.3,mgi_lib_application_control>=1.1.1.10,mgi_lib_cluster>=1.1.0.1,mgi_lib_error_handling>=1.1.1.3,mgi_lib_error_reporter>=1.0.2.5,mgi_lib_file>=1.1.0.4,mgi_lib_numeric>=1.1.0.2,mgi_lib_picture_&_image>=1.0.2.1,mgi_lib_read_write_anything>=2.1.4.4,mgi_lib_string>=1.1.1.5,mgi_lib_timing>=1.1.0.2,national_instruments_lib_guid_generator>=1.0.2.3,ni_lib_stm>=3.1.0.9,oglib_appcontrol>=4.1.0.7,oglib_array>=4.1.1.14,oglib_dictionary>=4.0.0.4,oglib_error>=4.2.0.23,oglib_file>=4.0.1.22,oglib_lvdata>=5.0.0.27,oglib_lvzip>=4.0.1,oglib_numeric>=4.1.0.8,oglib_string>=5.0.0.25,oglib_time>=4.0.1.3,oglib_variantconfig>=4.0.0.5,wireflow_ab_lib_wf_progressbar>=1.0.2.56" Conflicts="" [Activation] License File="" Licensed Library="" [Files] Num File Groups="3" Sub-Packages="" Namespaces="" [File Group 0] Target Dir="<application>" Replace Mode="Always" Num Files=359 File 0="user.lib/LevyLab/Lockin-Multichannel/.dragon" File 1="user.lib/LevyLab/Lockin-Multichannel/Multichannel Lockin.lvproj" File 2="user.lib/LevyLab/Lockin-Multichannel/Multichannel Lockin.vi" File 3="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/4461-SIMULATEDDEVICES.NCE" File 4="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Lockin.DAQ.lvclass" File 5="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Lockin.DAQ.ResetPhase.vi" File 6="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Lockin.DAQ.setAI.vi" File 7="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Process.vi" File 8="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Waveguide Model/Waveguide Model--Cluster.ctl" File 9="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Waveguide Model/Waveguide Model.vi" File 10="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/446xAI-enum.ctl" File 11="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/446xAO-enum.ctl" File 12="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AI Prefilter-cluster.ctl" File 13="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AI Simulation-enum.ctl" File 14="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AI-cluster.ctl" File 15="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AI.config(UI)-array.ctl" File 16="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AI.config(UI)-cluster.ctl" File 17="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AI.config-array.ctl" File 18="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AI.config-cluster.ctl" File 19="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AI.coupling-enum.ctl" File 20="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AmplifierType-enum.ctl" File 21="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AO-cluster.ctl" File 22="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AO.config(UI)-array.ctl" File 23="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AO.config(UI)-cluster.ctl" File 24="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AO.config-array.ctl" File 25="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AO.config-cluster.ctl" File 26="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/AO_Channel-Numeric.ctl" File 27="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Cal Info - Cluster.ctl" File 28="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/DAQType-enum.ctl" File 29="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Front Panel Cluster.ctl" File 30="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Function+DC-enum.ctl" File 31="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Function-enum.ctl" File 32="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/INI-enum.ctl" File 33="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Cluster.ctl" File 34="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.autoContigureDAQ.ctl" File 35="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.measureOffset.ctl" File 36="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.Reset Phase.ctl" File 37="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setAI.ctl" File 38="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setAIconfig.ctl" File 39="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setAO.ctl" File 40="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setAOconfig.ctl" File 41="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setInputGain.ctl" File 42="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setOutputGain.ctl" File 43="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setPreFilter.ctl" File 44="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setREF.ctl" File 45="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setSampling.ctl" File 46="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setState.ctl" File 47="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.setSweep.ctl" File 48="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--Lockin.DAQ.zeroOffset.ctl" File 49="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--LockinDAQ.Calibrate.ctl" File 50="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PrivateEvents--LockinDAQ.setCalibration.ctl" File 51="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Cluster.ctl" File 52="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getAI.ctl" File 53="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getAO.ctl" File 54="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getAOChannels.ctl" File 55="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getCalibration.ctl" File 56="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getDAQconfig.ctl" File 57="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getDAQState.ctl" File 58="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getREF.ctl" File 59="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getREFChannels.ctl" File 60="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getResults.ctl" File 61="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getSweepResults.ctl" File 62="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--Lockin.DAQ.getSweepWaveforms.ctl" File 63="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/PublicEvents--LockinDAQ.Calibrate.ctl" File 64="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/REF-cluster.ctl" File 65="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/REF_Channel-Numeric.ctl" File 66="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Results--Cluster.ctl" File 67="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Sample Mode--Ring.ctl" File 68="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Sampling.ctl" File 69="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Set State-enum.ctl" File 70="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/State-enum.ctl" File 71="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Sweep Configuration--Cluster.ctl" File 72="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/Sweep Pattern--Enum.ctl" File 73="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/SweepResults--Cluster.ctl" File 74="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Typedefs/XP Style VISA Control.ctl" File 75="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Tests/Test LockinEngine.vi" File 76="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Tests/Test PLL.vi" File 77="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Tests/Test Sweep.vi" File 78="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/AddParametersToSweepResults.vi" File 79="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/Append Multiple Waveforms.vi" File 80="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/Append Waveforms Sweep.vi" File 81="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/Calcualte N_total and Updates.vi" File 82="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/ConcatenateSweepResults.vi" File 83="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/Create DC Waveforms.vi" File 84="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/Generate Sweep Pattern.vi" File 85="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/Generator DC Sweep Manager.vi" File 86="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/Get Sweep Pattern Subset.vi" File 87="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/Sweep Back and Forth.vi" File 88="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Sweep/Test New Sweep.vi" File 89="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getAI.vi" File 90="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getAO.vi" File 91="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getAOChannels.vi" File 92="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getCalibration.vi" File 93="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getDAQconfig.vi" File 94="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getDAQState.vi" File 95="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getIVSweepResults.vi" File 96="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.GetPrivateEvents.vi" File 97="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getREF.vi" File 98="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getREFChannels.vi" File 99="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getResults.vi" File 100="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Lockin.DAQ.getSweepResults.vi" File 101="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Tree.vi" File 102="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/private/Wait Until SMO Started.vi" File 103="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Methods (overrides)/CreatePrivateEvents.vi" File 104="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Methods (overrides)/CreatePublicEvents.vi" File 105="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Methods (overrides)/DestroyPrivateEvents.vi" File 106="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/Methods (overrides)/DestroyPublicEvents.vi" File 107="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/4461 - Create AO DC waveforms.vi" File 108="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/4461 - Create AO waveforms.vi" File 109="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/4461 - Create Reference Waveforms.vi" File 110="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/4461 Autophase.vi" File 111="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/4461 Export Triggers.vi" File 112="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/4461 Replace AO Ch.vi" File 113="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/44xx AI Min and Max.vi" File 114="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/44xx AO Min and Max.vi" File 115="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/44xx Ref Clk.vi" File 116="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Auto Configure DAQ.vi" File 117="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Example-Waveform Circular Buffer.vi" File 118="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Frequency Mixer.vi" File 119="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Get Dev Product Type.vi" File 120="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Get Master and Slave Tasks.vi" File 121="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Get Terminal Name with Device Prefix.vi" File 122="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Get Waveform AI Channel.vi" File 123="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Get Waveform Quadrature.vi" File 124="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Get Waveform Reference Channel.vi" File 125="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin Engine.vi" File 126="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Calibrate.vi" File 127="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Clear.vi" File 128="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Create.AI Task.vi" File 129="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Create.AO Task.vi" File 130="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Create.Sample Clock.vi" File 131="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Create.vi" File 132="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.DAQmx Read.vi" File 133="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.DAQmx Write.vi" File 134="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.ErrorHandler.vi" File 135="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.EventRegistration.vi" File 136="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Generate.Waveforms.vi" File 137="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Get Calibration.vi" File 138="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Read AI and Write AO.vi" File 139="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Read AI.vi" File 140="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Simulate Noisy AI.vi" File 141="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Simulate Waveguide.vi" File 142="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Start.AI.vi" File 143="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Start.AO.vi" File 144="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Start.vi" File 145="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Stop.vi" File 146="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.TimedLoop.vi" File 147="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Trigger.vi" File 148="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Lockin.DAQ.Write AO.vi" File 149="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Low Pass Filter subVI.vi" File 150="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Low Pass Filter.vi" File 151="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Multitone Eval.vi" File 152="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/PLL_PID.vi" File 153="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Set Waveform AI Channel.vi" File 154="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Set Waveform Quadrature.vi" File 155="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Set Waveform Reference Channel.vi" File 156="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Test Multitone.vi" File 157="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/Waveform Circular Buffer.vi" File 158="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Clip AO Waveforms.vi" File 159="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/decimate_waveforms.vi" File 160="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Divide Input Gain.vi" File 161="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Divide Output Gain.vi" File 162="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/FPDAQtoDAQstrings.vi" File 163="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Fs In Range.vi" File 164="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Fs_to_FilterDelay.vi" File 165="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/getTimeWithError.vi" File 166="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/lockin - add phase element.vi" File 167="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Lockin - Format Results.vi" File 168="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/lockin - replace AO DC.vi" File 169="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/lockin - replace AO Sweep Indicator.vi" File 170="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/lockin - Restore Saved AO.vi" File 171="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/lockin - Save AO.vi" File 172="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/lockin - Set REF f equal AO f.vi" File 173="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/lockin - Set REF phase equals zero.vi" File 174="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/lockin - zero amplitude.vi" File 175="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/ms to Hz.vi" File 176="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Multiply Input Gain.vi" File 177="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Multiply Output Gain.vi" File 178="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Prefilter_60Hz_Notch.vi" File 179="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Prefilter_LP.vi" File 180="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/read_lockin_FP_DSC.vi" File 181="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Replace timestamp.vi" File 182="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/SI prefix.vi" File 183="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Simple PID Array.vi" File 184="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Split 1D ARRAY in half.vi" File 185="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/Subtract DAQ Offset.vi" File 186="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/update_rate_and_time.vi" File 187="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/DAQ/support/write_lockin_FP_DSC.vi" File 188="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API (Class)/Write AI Configuration.vi" File 189="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API (Class)/Write AO Configuration.vi" File 190="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API (Class)/Write buffer size (S).vi" File 191="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API (Class)/Write Channels_ AO.vi" File 192="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API (Class)/Write Channels_ Reference.vi" File 193="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API (Class)/Write Gain.vi" File 194="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API (Class)/Write Ref TC and Order.vi" File 195="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API (Class)/Write sample mode.vi" File 196="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API (Class)/Write sampling.vi" File 197="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.autoConfigureDAQ.vi" File 198="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.GetPublicEvents.vi" File 199="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.measureOffset.vi" File 200="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setAIconfig.vi" File 201="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setAO.vi" File 202="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setAOconfig.vi" File 203="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setCalibration.vi" File 204="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setInputGain.vi" File 205="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setOutputGain.vi" File 206="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setPreFilter.vi" File 207="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setREF.vi" File 208="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setSampling.vi" File 209="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setstate.vi" File 210="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.setSweep.vi" File 211="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.TestLauncher.vi" File 212="user.lib/LevyLab/Lockin-Multichannel/Lockin.DAQ/API/Lockin.DAQ.zeroOffset.vi" File 213="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Instrument.Lockin.UI.lvclass" File 214="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Instrument.Lockin.UI.TestLauncher.vi" File 215="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Process.vi" File 216="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/AI Channel--Cluster.ctl" File 217="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/AO Channel--Cluster.ctl" File 218="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/Device Configuration--Cluster.ctl" File 219="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/Display-Enum.ctl" File 220="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/Lockin.Commands--Enum.ctl" File 221="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/REF Channel--Cluster.ctl" File 222="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/Sweep Channel--Cluster.ctl" File 223="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/Tiny Ring.ctl" File 224="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/X Axis-Enum.ctl" File 225="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/Y Axis Input-Enum.ctl" File 226="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/Typedefs/Y Axis Output-Enum.ctl" File 227="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/private/X Axis WFM Graph.vi" File 228="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockinl.UI/private/Y Axis Output WFM Graph.vi" File 229="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Instrument.Lockin.lvclass" File 230="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Instrument.Lockin.TestLauncher.vi" File 231="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Process.vi" File 232="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Typedefs/configSweepFile--cluster.ctl" File 233="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Typedefs/Lockin.Configuration--Cluster.ctl" File 234="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Typedefs/Lockin.getAll--Cluster.ctl" File 235="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Typedefs/Offset Mode--Enum.ctl" File 236="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Typedefs/Reference--Array of Cluster.ctl" File 237="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Typedefs/Results Type--Enum.ctl" File 238="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Typedefs/Sample Mode--Enum.ctl" File 239="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Coerce Timing.vi" File 240="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/formatSweepResults.vi" File 241="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Lockin.Client.vi" File 242="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Lockin.Command Enum to String.vi" File 243="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Lockin.Configuration Window.vi" File 244="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Lockin.Read Configuration File.vi" File 245="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Lockin.Read Configuration.vi" File 246="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Lockin.Write Configuration File.vi" File 247="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Lockin.Write Configuration.vi" File 248="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Parse Result Key.vi" File 249="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Retry Timeout.vi" File 250="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Update AO Parameter.vi" File 251="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Private/Update REF Parameter.vi" File 252="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Overrides/Configure Instrument.vi" File 253="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Overrides/Get SMO Name.vi" File 254="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Overrides/Get SMO Port.vi" File 255="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Overrides/Get SMO Public API.vi" File 256="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Overrides/getAll.vi" File 257="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/Overrides/Handle Command.vi" File 258="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/AI Array Add or Remove.vi" File 259="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/AI config not UI to UI.vi" File 260="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/AI config UI to not UI.vi" File 261="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/AO Array Add or Remove.vi" File 262="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/AO config not UI to UI.vi" File 263="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/AO config UI to not UI.vi" File 264="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/config not UI to UI (AO and AI).vi" File 265="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/config UI to not UI (AO and AI).vi" File 266="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/Initialize REF Channels.vi" File 267="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-public/REF Array Add or Remove.vi" File 268="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Channel String to Number of Channels.vi" File 269="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/decimate_waveforms.vi" File 270="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Display n or dt.vi" File 271="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Divide by Gain.vi" File 272="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/FloatApprox.vi" File 273="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/FloatApproxPoint1Percent.vi" File 274="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/format display.vi" File 275="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Fs and Ns for integer periods.vi" File 276="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Get AI REF (f) StringsAndValues.vi" File 277="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Get AI REF StringsAndValues.vi" File 278="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Get AI StringsAndValues.vi" File 279="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Get AO StringsAndValues.vi" File 280="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Get REF StringsAndValues.vi" File 281="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Initialize AI Channels.vi" File 282="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Initialize AO Channels.vi" File 283="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Initialize Input Gain.vi" File 284="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Initialize Ouput Gain.vi" File 285="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/LegendWaveformChart.vi" File 286="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/LegendWaveformGraph.vi" File 287="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/LegendWDTWaveformGraph.vi" File 288="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/LegendXYGraph.vi" File 289="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Limit AO Amplitude.vi" File 290="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/PS Chart.vi" File 291="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Set all f same.vi" File 292="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/Spinner.vi" File 293="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/DAQ-private/State History.vi" File 294="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write AI Configuration.vi" File 295="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write AI WFM.vi" File 296="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write AO Configuration.vi" File 297="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write AO WFM.vi" File 298="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write Channels_ AO.vi" File 299="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write Channels_ REF.vi" File 300="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write Input Gain.vi" File 301="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write Output Gain.vi" File 302="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write REF WFM.vi" File 303="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write Results.vi" File 304="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API (Class)/Write sampling.vi" File 305="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getAI.vi" File 306="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getAO.vi" File 307="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getAOconfig.vi" File 308="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getAutoSampling.vi" File 309="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getAUX.vi" File 310="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getInputGain.vi" File 311="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getIVmode.vi" File 312="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getOutputGain.vi" File 313="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getREFconfig.vi" File 314="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getRefreshTime.vi" File 315="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getResults.vi" File 316="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getSampling.vi" File 317="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getStatus.vi" File 318="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getSweepResults.vi" File 319="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getSweepWaveforms.vi" File 320="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/getTrigger.vi" File 321="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/Offset.vi" File 322="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/Open.vi" File 323="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/Parse Results (all).vi" File 324="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/Parse Results (single).vi" File 325="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/reset.vi" File 326="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setAO.vi" File 327="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setAO_Amp.vi" File 328="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setAO_DC.vi" File 329="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setAO_f.vi" File 330="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setAO_function.vi" File 331="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setAO_phi.vi" File 332="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setAutoSampling.vi" File 333="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setAUX.vi" File 334="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setDAQ.vi" File 335="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setInputGain.vi" File 336="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setIVmodeConfig.vi" File 337="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setOutputGain.vi" File 338="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setREF.vi" File 339="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setREF_f.vi" File 340="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setREF_phi.vi" File 341="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setSampling.vi" File 342="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/setSweepConfiguration.vi" File 343="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/startIVAndWait.vi" File 344="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/startIVSweepAndWait.vi" File 345="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/startSweep.vi" File 346="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/startSweepAndWait.vi" File 347="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/stopSweep.vi" File 348="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/trigger.vi" File 349="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/waitForNewResults.vi" File 350="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/waitForNewWaveforms.vi" File 351="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/waitStatusCreated.vi" File 352="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/waitStatusIdle.vi" File 353="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/waitStatusStarted.vi" File 354="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/waitStatusStopped.vi" File 355="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/waitStatusSweepingStarted.vi" File 356="user.lib/LevyLab/Lockin-Multichannel/Instrument.Lockin/API/waitStatusSweepingStopped.vi" File 357="examples/LevyLab/Multichannel Lockin/Examples/Example_IV_Curves.vi" File 358="examples/LevyLab/Multichannel Lockin/Examples/Example_Lockin.vi" [File Group 1] Target Dir="<menus>/Categories/LevyLab" Replace Mode="Always" Num Files=2 File 0="_functions_levylab_lib_lockin_multichannel_1.mnu" File 1="functions_LevyLab_lib_Lockin_Multichannel.mnu" [File Group 2] Target Dir="<menus>/Categories/LevyLab" Replace Mode="If Newer" Num Files=1 File 0="dir.mnu"
cb18200e2c81369663359804149cff1c5d66c90f
c9c33bbb53f73459f3d8642ba5bebda75d2d6bf3
/v01/sheets03.py
f94b06ac5fec554a6b11d5e616c219dceebd4270
[]
no_license
ernbilen/POS
90faa0c278b4ebbdd2470004b17227ff7b1b8a5b
43fa9316039f8640a8386d47ade62c2972638f06
refs/heads/main
2023-03-14T11:12:24.532756
2021-03-02T23:01:26
2021-03-02T23:01:26
343,936,512
0
0
null
null
null
null
UTF-8
Python
false
false
27,220
py
import tkinter as tk from tkinter import filedialog import csv from generate_pdf import * #-----------LOADS THE OUTPUT PATH-------------# def loadConfig(): file = open('config.csv','r') reader = csv.reader(file) path = "" for row in reader: if row[0]: return row[1] file.close() return "" ######################################################################################################### # GLOBAL VARIABLES # ######################################################################################################### entries = [['01','01 NOV 19','02 NOV 19','PEAR','$50',2,'1234567',100,20,120], ['02','03 NOV 19','04 NOV 19','CLOGGY','$50',2,'1234568',100,20,120], ['03','05 NOV 19','06 NOV 19','PYTHON','$50',2,'1234569',100,20,120], ['04','07 NOV 19','08 NOV 19','WEB','$50',2,'1234570',100,20,120], ['05','09 NOV 19','10 NOV 19','GLOBB','$50',2,'1234571',100,20,120]] output_path = loadConfig() extra_lines = [] gselected = None PO_number = None ########################################################################################################## captions = ['ID','Start date','End date', 'Company', 'Rate','Days', 'Invoice No','Sum','VAT','Total'] ######################################################################################################### # DICTIONARY VALUES # ######################################################################################################### dd = {'lm':100, 'rm' : 100, 'bh' : 100, 'rad' : 10, 'cap_font' : 'Helvetica 10', 'cap_font_bold' : 'Helvetica 10 bold', 'txt_font' : 'Helvetica 12 bold', 'ttl_font' : 'Helvetica 20 bold', 'bttn_font' : 'Helvetica 12 bold', 'ttl_clr' : '#fa4300', 'cap_row' : 10, 'cap_color' : 'gray80', 'cap_high' : 'white', 'cap_ttl' : 'gray70', 'bgclr' : '#2e343d', 'txt_row' : 75, 'txt_clr' : 'gray40', 'rect_bg' : 'white', 'rect_int' : 'gray95', 'rect_high' : '#fac000', 'rect_mover' : '#ffe89c', 'nw': 25, 'b_high': '#41bffa', 'tk_icon' : 'invoices.ico'} ######################################################################################################### # INITIATE TK WINDOW # ######################################################################################################### root = tk.Tk() root.geometry('1400x800+100+100') root.iconbitmap(dd['tk_icon']) root.title("Invoice creator") canvas = tk.Canvas(root,width = 1400, height = 1200, bg=dd['bgclr']) canvas.pack() ######################################################################################################### # BUTTON METHODS # ######################################################################################################### #---------------------------------------CHANGES THE OUTPUT PATH-----------------------------------------# def change_path(): global output_path output_path = filedialog.askdirectory(initialdir=output_path) file = open('config.csv') lines = file.read().splitlines() lines[0] = 'Output path,' + output_path file.close() file = open('config.csv', 'w') file.write('\n'.join(lines)) file.close() #---------------------------------------SPLASH SCREEN---------------------------------------------------# def splash(message, fontsize = 20): warning = tk.Toplevel(root, border = 0) s_w,s_h = 800,200 parent_geo = [int(dim) for dim in root.winfo_geometry().replace('x',' ').replace('+',' ').split()] w,h = parent_geo[0],parent_geo[1] x,y = parent_geo[2],parent_geo[3] warning.geometry('{}x{}+{}+{}'.format(s_w,s_h,x + w//2-s_w//2,y + h//2 - s_h//2)) warning.overrideredirect(True) warning.resizable(width=False, height=False) warning_canvas = tk.Canvas(warning,width=1400, height=1200, bg=dd['bgclr']) warning_canvas.pack() warning_canvas.bind('<Button-1>', lambda x :warning.destroy()) x,y = warning_canvas.canvasx(400),warning_canvas.canvasx(100) warning_canvas.create_text(x,y, text = message, font = 'Helvetica {} bold'.format(fontsize), fill = 'white') warning_canvas.create_text(x,y+85, text = 'Click to close', font = 'Helvetica 8', fill = 'white') #---------------------------------------LOADS ADDRESSES FROM A CSV FILE--------------------------------# def loadAddresses(): # Loads addresses from the cvs file = open('addresses.csv','r') reader = csv.reader(file) addresses = {} print(reader) for row in reader: print(row) if row and len(row)>1: addresses[row[0]] = row[1::] file.close() return addresses #---------------------------------------EVENT MANAGER FOR CANVAS---------------------------------------# def event_manager(event, list_of_objects): x,y = event.x, event.y if event.type[0] == '6': for object in list_of_objects: bbox = object.bbox object.on_mouse_off() x1,y1,x2,y2 = bbox[0],bbox[1],bbox[2],bbox[3], if x1<=x<=x2 and y1<=y<=y2: object.on_mouse_over() return if event.type[0] == '4': for object in list_of_objects: bbox = object.bbox object.on_mouse_off() x1,y1,x2,y2 = bbox[0],bbox[1],bbox[2],bbox[3], if x1<=x<=x2 and y1<=y<=y2: object.on_click() return #---------------------------------------CREATES A NICE INPUT BOX---------------------------------------# def add_input_box(p_canvas, left, top, width, height, just='left'): item_entry = tk.Entry(p_canvas, font='Helvetica 18 bold', background=dd['bgclr'], borderwidth=0, foreground='white', insertbackground='white', justify=just) #dd['bgclr'] item_window = p_canvas.create_window(left+5, top+5, anchor='nw', window=item_entry, width=width-10, height=height-10) round_rectangle(p_canvas, left, top, left + width, top+height, fill=dd['bgclr'], outline='', width=0) return item_entry #---------------------------------------CREATES A LINE OF INPUT BOXES----------------------------------# def add_input_line(p_canvas, left, top): input_line = [] round_rectangle(p_canvas,left-5,top-5,780,top+45, fill = '#556070') input_line.append(add_input_box(p_canvas, left, top, 300, 40)) input_line.append(add_input_box(p_canvas, left+520, top, 50, 40,'right')) p_canvas.create_text(left + 610,top+22, font = 'Helvetica 18 bold', fill = 'white', text = 'X') input_line.append(add_input_box(p_canvas, left + 650, top, 100, 40,'right')) return input_line #---------------------------------------ADD ECTRA LINE SCREEN------------------------------------------# def add_extra_lines_screen(): add_extra = tk.Toplevel(root) add_extra.iconbitmap(dd['tk_icon']) add_extra.title("Add extra items") s_w, s_h = 800, 600 parent_geo = [int(dim) for dim in root.winfo_geometry().replace('x', ' ').replace('+', ' ').split()] w, h = parent_geo[0], parent_geo[1] x, y = parent_geo[2], parent_geo[3] add_extra.geometry('{}x{}+{}+{}'.format(s_w, s_h, x + w // 2 - s_w // 2, y + h // 2 - s_h // 2)) add_extra_canvas = tk.Canvas(add_extra, width=800, height=600, bg=dd['bgclr']) add_extra_canvas.pack() add_extra_canvas_objects = [] x,y = add_extra_canvas.canvasx(0),add_extra_canvas.canvasy(0) inputs = [] def get_lines(inputs_lst): # READS THE LINES, REMOVES EMPTY ONES read = [[box.get() for index,box in enumerate(line) ] for line in inputs_lst] read = [line for line in read if any(line)] read = [(line[0], int(line[1]), float(line[2])) for line in read] global extra_lines extra_lines = read fontsize = 20-len(read) splash('Items added: \n' + '\n'.join(['{} {} x {}'.format(x,y,z) for x,y,z in read]),fontsize) add_extra.destroy() done_button = {'text': 'Done', 'bg': '', 'fcl': 'white', 'size': 40, 'font': 'Helvetica 12 bold', 'callback': lambda: get_lines(inputs), 'hl': 'white', 'hlc': dd['b_high'], 'fhl': 'Helvetica 14 bold', 'fhlc': 'white', 'ftxt': 'Done'} add_extra_canvas_objects.append(canvas_button(add_extra_canvas,(x+300,y+500,x+500,y+550),done_button)) add_extra_canvas.create_text(x+25,y+25, anchor = 'nw', fill = dd['cap_ttl'], font = 'Helvetica 14 bold', text = 'Items') add_extra_canvas.create_text(x + 25 + 520, y + 25, anchor='nw', fill=dd['cap_ttl'], font='Helvetica 14 bold', text='Units') add_extra_canvas.create_text(x + 25 + 650, y + 25, anchor='nw', fill=dd['cap_ttl'], font='Helvetica 14 bold', text='Price/Unit') #add_extra_canvas.create_text(x + 25 + 650, y + 400, anchor='nw', fill=dd['cap_ttl'], font='Helvetica 14 bold', text='Discount') for i in range(5): inputs.append(add_input_line(add_extra_canvas,x+25,y+75+(i*60))) #inputs.append(add_input_line(add_extra_canvas,x+25,y+75+(6*60))) add_extra_canvas.bind('<Button-1>', lambda event: event_manager(event, add_extra_canvas_objects) ) add_extra_canvas.bind('<Motion>', lambda event: event_manager(event, add_extra_canvas_objects)) return extra_lines #----------------SCREEN THAT APPEARS AFTER GENERATE INVOICE BUTTON IS PRESSED--------------------------# def generate_invoice_screen(): global PO_number PO_number = None if gselected == None: # IF NO INVOICE HAS BEEN SELECTED EXIT splash('Please select an invoice') return ##################################################################################### invoice_canvas_items = [] invoice_info = tk.Toplevel(root) invoice_info.iconbitmap(dd['tk_icon']) invoice_info.title("Check the info before you proceed") invoice_info.geometry('1400x800+100+100') invoice_canvas = tk.Canvas(invoice_info,width=1400, height=1200, bg=dd['bgclr']) invoice_canvas.pack() sel = entries[gselected] dd['nw']=50 header = entry_box(captions, sel, invoice_canvas) addresses = loadAddresses() #------------------------------------FUNCTIONS--------------------------------------------------# def close_invoice_info(): # when back button is pressed invoice_info.destroy() def generate_invoice_call(): # CALLS generate_invoice() funtion from generate_pdf.py and closes the windwo addresses = loadAddresses() sel = entries[gselected] if sel[3] not in addresses.keys(): splash('Please add the company address to the database') else: splash('Generating invoice') generate_invoice(sel,PO_number,extra_lines,output_path) invoice_canvas.delete('all') invoice_info.destroy() def add_address(address): # adds address of a company to the csv file if address: selected = entries[gselected] file = open('addresses.csv', 'a') file.write("\n{},{}".format(selected[3], address)) file.close() splash('Addres for {} added'.format(selected[3])) def addPO(number): # assigns a PO number global PO_number if number !='PO NUMBER': PO_number = number splash('Purchase number {} added'.format(number)) else: splash('Please enter a PO number') def add_extra_lines(): # when add custom lines is pressed add_extra_lines_screen() invoice_canvas.create_line(700,200,700,700, fill='gray50', width=1, capstyle = 'round') # Separator ######################################################################################################## # ADDRESS SECTION ######################################################################################################## left = 300 invoice_canvas.create_text(left, 250, text='Address', font=dd['ttl_font'], fill = 'gray50', anchor='sw') invoice_canvas.create_text(left, 325, text=sel[3], font=dd['ttl_font'], fill='White', anchor='sw') address_entry = tk.Text(invoice_canvas, font='Helvetica 14 bold', background = dd['bgclr'], borderwidth=0, foreground = 'white',insertbackground='white') address_entry.insert('1.0','No address \nfor this company found') address_window = invoice_canvas.create_window(left+5,355,anchor = 'nw', window = address_entry, width = 295, height=200) round_rectangle(invoice_canvas, left, 350, left+300, 555, fill='', outline='white', width=1) add_address_button = {'text': 'Add address', 'bg': '', 'fcl': 'white', 'size': 40, 'font': 'Helvetica 12 bold', 'callback': lambda : add_address(address_entry.get('1.0','end-1c')), 'hl': 'white', 'hlc': dd['b_high'], 'fhl': 'Helvetica 14 bold', 'fhlc': 'white', 'ftxt': 'Add address'} invoice_canvas_items.append(canvas_button(invoice_canvas,(left,575,left+300,675),add_address_button)) ######################################################################################################## # ADD PO SECTION ######################################################################################################## right = 800 # Alignment value # SECTION TITLE invoice_canvas.create_text(right, 320, text='Discount:', font=dd['ttl_font'], fill='gray50', anchor='sw') # ENTRY BOX PO_entry = tk.Entry(invoice_canvas, font='Helvetica 22 bold', background=dd['bgclr'], borderwidth=0, foreground='white', justify='center', text='Enter amount') PO_entry.delete(0,'end') PO_entry.insert('0', 'Enter amount') PO_window = invoice_canvas.create_window(right + 5, 355, anchor='nw', window=PO_entry, width=290, height=50) round_rectangle(invoice_canvas, right, 350, right + 300, 410, fill='', outline='white', width=1) # # ADD PO BUTTON add_po_button = {'text' : 'Add PO', 'bg' :'', 'fcl':'white', 'size' : 40,'font' : 'Helvetica 12 bold', 'callback' : lambda: addPO(PO_entry.get()) , 'hl' : 'white', 'hlc' : dd['b_high'], 'fhl' : 'Helvetica 14 bold', 'fhlc' : 'white', 'ftxt' : 'Add PO'} invoice_canvas_items.append(canvas_button(invoice_canvas, (right, 575, right+300, 675), add_po_button)) # ADD EXTRA LINES add_line_button = {'text': 'Add custom lines', 'bg': '', 'fcl': 'white', 'size': 40, 'font': 'Helvetica 12 bold', 'callback': add_extra_lines, 'hl': 'white', 'hlc': dd['b_high'], 'fhl': 'Helvetica 14 bold', 'fhlc': 'white', 'ftxt': 'Add custom lines'} invoice_canvas_items.append(canvas_button(invoice_canvas, (left,700,right+300,750),add_line_button)) # ######################################################################################################## # BACK AND NEXT BUTTONS ######################################################################################################## next_button = {'text': 'Next', 'bg': '', 'fcl': 'white', 'size': 40, 'font': 'Helvetica 12 bold', 'callback': generate_invoice_call, 'hl': 'white', 'hlc': dd['b_high'], 'fhl': 'Helvetica 14 bold', 'fhlc': 'white', 'ftxt': 'Next'} invoice_canvas_items.append(canvas_button(invoice_canvas,(right+400,350,right+500,400),next_button)) back_button = {'text': 'Back', 'bg': '', 'fcl': 'white', 'size': 40, 'font': 'Helvetica 12 bold', 'callback': close_invoice_info, 'hl': 'white', 'hlc': dd['b_high'], 'fhl': 'Helvetica 14 bold', 'fhlc': 'white', 'ftxt': 'Back'} invoice_canvas_items.append(canvas_button(invoice_canvas, (100, 350, 200, 400), back_button)) ######################################################################################################### # BINDINGS ######################################################################################################### invoice_canvas.bind('<Motion>', lambda event: event_manager(event,invoice_canvas_items)) invoice_canvas.bind('<Button-1>', lambda event: event_manager(event, invoice_canvas_items)) #--------------------------------DRAWS A ROUNDED RECTANGLE-------------------------------------# def round_rectangle(p_canvas,x1, y1, x2, y2, radius=10, **kwargs): points = [x1+radius, y1,x1+radius, y1,x2-radius, y1,x2-radius, y1,x2, y1,x2, y1+radius,x2, y1+radius,x2, y2-radius,x2, y2-radius,x2, y2, x2 - radius, y2,x2-radius, y2,x2-radius, y2,x2-radius, y2,x1+radius, y2,x1+radius, y2,x1, y2,x1, y2-radius,x1, y2-radius,x1, y1+radius,x1, y1+radius,x1, y1] return p_canvas.create_polygon(points, **kwargs, smooth=True) def select(index): global selected selected = index ############################################################################################################# # # CLASSES GFX ELEMENTS # ############################################################################################################# ############################################################################################################# # THIS ONE DISPLAYS INVOICE DATA ON THE FIRST PAGE ############################################################################################################# class entry_box: def __init__(self,captions,entry,p_canvas): f = ['{}']*7 + ['${:.0f}']*3 self.canvas = p_canvas self.col = [dd['lm']+20,dd['lm']+75,dd['lm']+200,dd['lm']+325,dd['lm']+525,dd['lm']+600,dd['lm']+700,dd['lm']+825,dd['lm']+950,dd['lm']+1075] self.cap_size = [dd['cap_font']] *9 + [dd['cap_font_bold']] self.cap_clr = [dd['cap_color']] * 9 + [dd['cap_ttl']] self.clr = [dd['txt_clr']] * 9 + [dd['ttl_clr']] self.size = [dd['txt_font']] * 9 + [dd['ttl_font']] self.static_background = round_rectangle(p_canvas,dd['lm'], dd['nw'], 1300, dd['nw'] + 100, fill=dd['rect_int']) self.dynamic_background = p_canvas.create_rectangle(self.col[1] - 15, dd['nw'], self.col[-1] - 25, dd['nw'] + 100, fill=dd['rect_bg'], width=0) self.cap_list = [p_canvas.create_text(self.col[i], dd['nw'] + dd['cap_row'], anchor='nw', font=self.cap_size[i], text=cap, fill=self.cap_clr[i]) for i, cap in enumerate(captions)] self.data_list = [ p_canvas.create_text(self.col[i], dd['nw'] + dd['txt_row'], anchor='sw', font=self.size[i], text=f[i].format(data), fill=self.clr[i]) for i, data in enumerate(entry)] self.bbox = (dd['lm'], dd['nw'], 1300, dd['nw'] + 100) self.callback = select def cap_style(self, color, font): for cap in self.cap_list[1:-1]: self.canvas.itemconfig(cap, fill = color, font = font) def entry_highlight(self, color): self.canvas.itemconfig(self.dynamic_background, fill = color) def remove_highlight(self): self.entry_highlight(dd['rect_bg']) self.cap_style(dd['cap_color'], dd['cap_font']) def mover(self, color): self.canvas.itemconfig(self.dynamic_background, fill = color) #BUTTONS DECRIPTION buttons = [{'text' : 'Invoices saved in: {}'.format(output_path), 'bg' :'#2e343d', 'fcl':'white', 'size' : 40,'font' : 'Helvetica 12 bold', 'callback' : change_path , 'hl' : 'white', 'hlc' : dd['rect_mover'], 'fhl' : 'Helvetica 14 bold', 'fhlc' : '#ff9500', 'ftxt' : 'Change output path'}, {'text' : 'Generate invoice', 'bg' : '#2e343d', 'fcl':'white', 'size' : 60,'font' : 'Helvetica 20 bold', 'callback' : generate_invoice_screen , 'hl' : '#aee887', 'hlc' : '#aee887','fhl' : 'Helvetica 22 bold', 'fhlc' : 'white','ftxt' : 'Generate invoice'}] ############################################################################################################# # THIS ONE DISPLAYS A BUTTON ON THE CANVAS ############################################################################################################# class canvas_button: def __init__(self,p_canvas,bbox, setup): self.canvas = p_canvas self.bgcolor = {'norm' : setup ['bg'], 'high' : setup ['hlc']} self.txtcolor = {'norm' : setup['fcl'], 'high' : setup['fhlc']} self.font = {'norm' : setup['font'],'high' : setup['fhl']} self.message = {'norm' : setup['text'], 'high':setup['ftxt']} x,y,xx,yy = bbox[0],bbox[1],bbox[2],bbox[3] self.dynamic_background = round_rectangle(p_canvas,x,y, xx, yy, fill=self.bgcolor['norm'], width=1, outline='white' ) self.cap_list = [p_canvas.create_text((x+xx)/2,(y+yy)/2, font=self.font['norm'], text=self.message['norm'], fill=self.txtcolor['norm'])] self.bbox = bbox self.on_click = setup['callback'] def on_click(self, color): self.on_click() def on_mouse_over(self): self.canvas.itemconfig(self.dynamic_background, fill=self.bgcolor['high']) self.canvas.itemconfig(self.cap_list[0], fill=self.txtcolor['high'], text=self.message['high'], font=self.font['high']) def on_mouse_off(self): self.canvas.itemconfig(self.dynamic_background, fill = self.bgcolor['norm']) self.canvas.itemconfig(self.cap_list[0], fill=self.txtcolor['norm'], text = self.message['norm'],font = self.font['norm']) ############################################################################################################# # THIS ONE DISPLAYS A BUTTON THAT UPDATES IT'S TEXT ############################################################################################################# class active_button: def __init__(self,p_canvas,title): self.canvas = p_canvas self.bgcolor = {'norm' : title['bg'], 'high' : title['hlc']} self.txtcolor = {'norm' : title['fcl'], 'high' : title['fhlc']} self.font = {'norm' : title['font'],'high' : title['fhl']} self.message = {'norm' : title['text'], 'high':title['ftxt']} self.dynamic_background = round_rectangle(p_canvas,dd['lm'], dd['nw'], 1300, dd['nw'] + title['size'], fill=self.bgcolor['norm'], width=1, outline='white' ) self.cap_list = [p_canvas.create_text(650,dd['nw'] + title['size']/2, font=self.font['norm'], text=self.message['norm'], fill=self.txtcolor['norm'])] self.bbox = (dd['lm'], dd['nw'], 1300, dd['nw'] + title['size']) dd['nw'] += title['size'] self.callback = title['callback'] self.update = False def cap_style(self, color, font): for cap in self.cap_list[1:-1]: self.canvas.itemconfig(cap, fill = color, font = font) def entry_highlight(self, color): self.canvas.itemconfig(self.dynamic_background, fill = color) def update_f(self): self.message['norm'] = 'Invoices saved in: {}'.format(output_path) self.canvas.itemconfig(self.cap_list[0], fill=self.txtcolor['norm'], text=self.message['norm'], font=self.font['norm']) def on_click(self): self.callback() if self.update: self.update_f() def mover(self,color): self.canvas.itemconfig(self.dynamic_background, fill=self.bgcolor['high']) self.canvas.itemconfig(self.cap_list[0], fill=self.txtcolor['high'], text=self.message['high'], font=self.font['high']) def remove_highlight(self): self.canvas.itemconfig(self.dynamic_background, fill = self.bgcolor['norm']) self.canvas.itemconfig(self.cap_list[0], fill=self.txtcolor['norm'], text = self.message['norm'],font = self.font['norm']) ############################################################################################################# # DRAWS THE FIRST PAGE ############################################################################################################# def draw_all_entries(entries, buttons): entries_list = [] for entry in entries: entries_list.append(entry_box(captions,entry,canvas)) dd['nw'] += 125 dd['nw'] += 10 for button in buttons: entries_list.append(active_button(canvas,button)) dd['nw'] += 10 entries_list[-2].update = True return entries_list ############################################################################################################# # EVENT MANAGER FOR THE FIRST PAGE HAS EXTRA OPTION FOR SELECTION ############################################################################################################# def register_click(event, display_list): x,y = event.x,event.y global gselected selected = None for index,object in enumerate(display_list): x1,y1,x2,y2 = object.bbox[0],object.bbox[1],object.bbox[2],object.bbox[3] if x1 <= x <= x2 and y1 <= y <= y2: if gselected == index: object.remove_highlight() gselected = None return selected = index if index in range(5): gselected = selected break if selected in range(5): for object in display_list[0:5]: object.entry_highlight(dd['rect_bg']) object.cap_style(dd['cap_color'], dd['cap_font']) object = display_list[selected] object.entry_highlight(dd['rect_high']) object.cap_style(dd['cap_high'], dd['cap_font_bold']) elif selected != None: for object in display_list[5::]: object.remove_highlight() object = display_list[selected] object.entry_highlight(dd['rect_high']) #object.callback() object.on_click() object.remove_highlight() ############################################################################################################# # EVENT MANAGER FOR THE FIRST PAGE JUST FOR MOUSE MOVEMENT AND HIGHLIGHTS ############################################################################################################# def register_mover(event,display_list): x, y = event.x, event.y for index,object in enumerate(display_list): if index == gselected: continue object.remove_highlight() for index,object in enumerate(display_list): x1, y1, x2, y2 = object.bbox[0], object.bbox[1], object.bbox[2], object.bbox[3] if x1 <= x <= x2 and y1 <= y <= y2: if index == gselected: continue object.mover(dd['rect_mover']) ############################################################################################################# # HOLDS ALL OBJECTS OF THE MAIN PAGE ############################################################################################################# display_list = draw_all_entries(entries, buttons) #+ draw_button(buttons) ############################################################################################################# # BINDINGS FOR THE FIRST PAGE ############################################################################################################# canvas.bind('<Button-1>', lambda event: register_click(event,display_list)) canvas.bind('<Motion>', lambda event: register_mover(event,display_list)) tk.mainloop()
792fdbb3cc101530963c57eaaf2b741d3620df5d
13bf0967b6421c990699677c327b252269fb75e4
/rapidz/core.py
86634359d5920c4725221f50ab7cf972426883e7
[ "BSD-3-Clause" ]
permissive
xpdAcq/rapidz
712b549a3d3cde3a08ed5a91d343d15fb7f0768e
a354853695a054477ce361d104f55c77a77c7d5d
refs/heads/main
2023-08-08T19:55:40.629387
2023-07-25T08:23:33
2023-07-25T08:23:33
150,287,875
6
7
BSD-3-Clause
2023-07-25T08:16:56
2018-09-25T15:26:41
Python
UTF-8
Python
false
false
43,036
py
from __future__ import absolute_import, division, print_function from collections.abc import Sequence, Hashable from collections import deque import copy from datetime import timedelta import functools import logging import six import sys import threading from time import time import weakref import toolz from tornado import gen from tornado.locks import Condition from tornado.ioloop import IOLoop from tornado.queues import Queue from collections.abc import Iterable from .compatibility import get_thread_identity from .orderedweakset import OrderedWeakrefSet no_default = "--no-default--" _global_sinks = set() _html_update_streams = set() thread_state = threading.local() logger = logging.getLogger(__name__) _io_loops = [] def _weakref_node(x): if isinstance(x, Stream): return weakref.ref(x) return x def _deref_weakref(x): if isinstance(x, weakref.ref): return x() return x def apply(func, args, args2=None, kwargs=None): if not isinstance(args, Sequence) or isinstance(args, str): args = (args,) if args2: args = args + args2 if kwargs: return func(*args, **kwargs) else: return func(*args) def move_to_first(node, f=True): """Promote current node to first in the execution order Parameters ---------- node : rapidz instance Node to be promoted f : bool or Sequence of rapidz The upstream node(s) to promote this node for. If True, promote all upstream nodes. Defaults to True Notes ----- This is often used for saving data, since saving data before the rest of the data is processed makes sure that all the data that can be saved (before an exception is hit) is saved. """ if f is True: f = node.upstreams if not isinstance(f, Sequence): f = (f,) for upstream in f: for n in upstream.downstreams.data: if n() is node: break upstream.downstreams.data._od.move_to_end(n, last=False) del n return node def args_kwargs(cls): def _(func): @functools.wraps(func) def wraps(*args, **kwargs): self = args[0] obj = func(*args, **kwargs) # TODO: decide if we want to capture self in args self._init_args = tuple([_weakref_node(a) for a in args[1:]]) self._init_kwargs = { k: _weakref_node(v) for k, v in kwargs.items() } return obj return wraps cls.__init__ = _(cls.__init__) return cls def get_io_loop(asynchronous=None): if asynchronous: return IOLoop.current() if not _io_loops: loop = IOLoop() thread = threading.Thread(target=loop.start) thread.daemon = True thread.start() _io_loops.append(loop) return _io_loops[-1] def identity(x): return x class Stream(object): """ A Stream is an infinite sequence of data Streams subscribe to each other passing and transforming data between them. A Stream object listens for updates from upstream, reacts to these updates, and then emits more data to flow downstream to all Stream objects that subscribe to it. Downstream Stream objects may connect at any point of a Stream graph to get a full view of the data coming off of that point to do with as they will. Parameters ---------- asynchronous: boolean or None Whether or not this stream will be used in asynchronous functions or normal Python functions. Leave as None if you don't know. True will cause operations like emit to return awaitable Futures False will use an Event loop in another thread (starts it if necessary) ensure_io_loop: boolean Ensure that some IOLoop will be created. If asynchronous is None or False then this will be in a separate thread, otherwise it will be IOLoop.current Examples -------- >>> def inc(x): ... return x + 1 >>> source = Stream() # Create a stream object >>> s = source.map(inc).map(str) # Subscribe to make new streams >>> s.sink(print) # take an action whenever an element reaches the end >>> L = list() >>> s.sink(L.append) # or take multiple actions (streams can branch) >>> for i in range(5): ... source.emit(i) # push data in at the source '1' '2' '3' '4' '5' >>> L # and the actions happen at the sinks ['1', '2', '3', '4', '5'] """ _graphviz_shape = "ellipse" _graphviz_style = "rounded,filled" _graphviz_fillcolor = "white" _graphviz_orientation = 0 str_list = ["func", "predicate", "n", "interval"] def __init__( self, upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None, ensure_io_loop=False, ): self.downstreams = OrderedWeakrefSet() if upstreams is not None: self.upstreams = list(upstreams) else: self.upstreams = [upstream] self._set_asynchronous(asynchronous) self._set_loop(loop) if ensure_io_loop and not self.loop: self._set_asynchronous(False) if self.loop is None and self.asynchronous is not None: self._set_loop(get_io_loop(self.asynchronous)) for upstream in self.upstreams: if upstream: upstream.downstreams.add(self) self.name = stream_name def _set_loop(self, loop): self.loop = None if loop is not None: self._inform_loop(loop) else: for upstream in self.upstreams: if upstream and upstream.loop: self.loop = upstream.loop break def _inform_loop(self, loop): """ Percolate information about an event loop to the rest of the stream """ if self.loop is not None: if self.loop is not loop: raise ValueError("Two different event loops active") else: self.loop = loop for upstream in self.upstreams: if upstream: upstream._inform_loop(loop) for downstream in self.downstreams: if downstream: downstream._inform_loop(loop) def _set_asynchronous(self, asynchronous): self.asynchronous = None if asynchronous is not None: self._inform_asynchronous(asynchronous) else: for upstream in self.upstreams: if upstream and upstream.asynchronous: self.asynchronous = upstream.asynchronous break def _inform_asynchronous(self, asynchronous): """ Percolate information about an event loop to the rest of the stream """ if self.asynchronous is not None: if self.asynchronous is not asynchronous: raise ValueError( "Stream has both asynchronous and synchronous elements" ) else: self.asynchronous = asynchronous for upstream in self.upstreams: if upstream: upstream._inform_asynchronous(asynchronous) for downstream in self.downstreams: if downstream: downstream._inform_asynchronous(asynchronous) @classmethod def register_api(cls, modifier=identity): """ Add callable to Stream API This allows you to register a new method onto this class. You can use it as a decorator.:: >>> @Stream.register_api() ... class foo(Stream): ... ... >>> Stream().foo(...) # this works now It attaches the callable as a normal attribute to the class object. In doing so it respsects inheritance (all subclasses of Stream will also get the foo attribute). By default callables are assumed to be instance methods. If you like you can include modifiers to apply before attaching to the class as in the following case where we construct a ``staticmethod``. >>> @Stream.register_api(staticmethod) ... class foo(Stream): ... ... >>> Stream.foo(...) # Foo operates as a static method """ def _(func): @functools.wraps(func) def wrapped(*args, **kwargs): return func(*args, **kwargs) setattr(cls, func.__name__, modifier(wrapped)) return func return _ def start(self): """ Start any upstream sources """ for upstream in self.upstreams: upstream.start() def __str__(self): s_list = [] if getattr(self, "name", False): s_list.append("{}; {}".format(self.name, self.__class__.__name__)) else: s_list.append(self.__class__.__name__) for m in self.str_list: s = "" at = getattr(self, m, None) if at: if not callable(at): s = str(at) elif hasattr(at, "__name__"): s = getattr(self, m).__name__ elif hasattr(at.__class__, "__name__"): s = getattr(self, m).__class__.__name__ else: s = None if s: s_list.append("{}={}".format(m, s)) if len(s_list) <= 2: s_list = [term.split("=")[-1] for term in s_list] text = "<" text += s_list[0] if len(s_list) > 1: text += ": " text += ", ".join(s_list[1:]) text += ">" return text __repr__ = __str__ def _ipython_display_(self, **kwargs): try: from ipywidgets import Output import IPython except ImportError: return self._repr_html_() output = Output(_view_count=0) output_ref = weakref.ref(output) def update_cell(val): output = output_ref() if output is None: return with output: IPython.display.clear_output(wait=True) IPython.display.display(val) s = self.map(update_cell) _html_update_streams.add(s) self.output_ref = output_ref s_ref = weakref.ref(s) def remove_stream(change): output = output_ref() if output is None: return if output._view_count == 0: ss = s_ref() ss.destroy() _html_update_streams.remove(ss) # trigger gc output.observe(remove_stream, "_view_count") return output._ipython_display_(**kwargs) def _emit(self, x): result = [] for downstream in list(self.downstreams): r = downstream.update(x, who=self) if type(r) is list: result.extend(r) else: result.append(r) return [element for element in result if element is not None] def emit(self, x, asynchronous=False): """ Push data into the stream at this point This is typically done only at source Streams but can theortically be done at any point """ ts_async = getattr(thread_state, "asynchronous", False) if self.loop is None or asynchronous or self.asynchronous or ts_async: if not ts_async: thread_state.asynchronous = True try: result = self._emit(x) if self.loop: return gen.convert_yielded(result) finally: thread_state.asynchronous = ts_async else: @gen.coroutine def _(): thread_state.asynchronous = True try: result = yield self._emit(x) finally: del thread_state.asynchronous raise gen.Return(result) sync(self.loop, _) def update(self, x, who=None): self._emit(x) def gather(self): """ This is a no-op for core rapidz This allows gather to be used in both dask and core streams """ return self def connect(self, downstream): """ Connect this stream to a downstream element. Parameters ---------- downstream: Stream The downstream stream to connect to """ self.downstreams.add(downstream) if downstream.upstreams == [None]: downstream.upstreams = [self] else: downstream.upstreams.append(self) def disconnect(self, downstream): """ Disconnect this stream to a downstream element. Parameters ---------- downstream: Stream The downstream stream to disconnect from """ self.downstreams.remove(downstream) downstream.upstreams.remove(self) @property def upstream(self): if len(self.upstreams) != 1: raise ValueError("Stream has multiple upstreams") else: return self.upstreams[0] def destroy(self, streams=None): """ Disconnect this stream from any upstream sources """ if streams is None: streams = self.upstreams for upstream in list(streams): upstream.downstreams.remove(self) self.upstreams.remove(upstream) if self in _global_sinks: _global_sinks.remove(self) def scatter(self, **kwargs): from .parallel import scatter return scatter(self, **kwargs) def remove(self, predicate): """ Only pass through elements for which the predicate returns False """ return self.filter(lambda x: not predicate(x)) @property def scan(self): return self.accumulate @property def concat(self): return self.flatten def sink_to_list(self): """ Append all elements of a stream to a list as they come in Examples -------- >>> source = Stream() >>> L = source.map(lambda x: 10 * x).sink_to_list() >>> for i in range(5): ... source.emit(i) >>> L [0, 10, 20, 30, 40] """ L = [] self.sink(L.append) return L def frequencies(self, **kwargs): """ Count occurrences of elements """ def update_frequencies(last, x): return toolz.assoc(last, x, last.get(x, 0) + 1) return self.scan(update_frequencies, start={}, **kwargs) def visualize(self, filename="mystream.png", **kwargs): """Render the computation of this object's task graph using graphviz. Requires ``graphviz`` to be installed. Parameters ---------- filename : str, optional The name of the file to write to disk. kwargs: Graph attributes to pass to graphviz like ``rankdir="LR"`` """ from .graph import visualize return visualize(self, filename, **kwargs) def to_dataframe(self, example): """ Convert a stream of Pandas dataframes to a DataFrame Examples -------- >>> source = Stream() >>> sdf = source.to_dataframe() >>> L = sdf.groupby(sdf.x).y.mean().stream.sink_to_list() >>> source.emit(pd.DataFrame(...)) # doctest: +SKIP >>> source.emit(pd.DataFrame(...)) # doctest: +SKIP >>> source.emit(pd.DataFrame(...)) # doctest: +SKIP """ from .dataframe import DataFrame return DataFrame(stream=self, example=example) def to_batch(self, **kwargs): """ Convert a stream of lists to a Batch All elements of the stream are assumed to be lists or tuples Examples -------- >>> source = Stream() >>> batches = source.to_batch() >>> L = batches.pluck('value').map(inc).sum().stream.sink_to_list() >>> source.emit([{'name': 'Alice', 'value': 1}, ... {'name': 'Bob', 'value': 2}, ... {'name': 'Charlie', 'value': 3}]) >>> source.emit([{'name': 'Alice', 'value': 4}, ... {'name': 'Bob', 'value': 5}, ... {'name': 'Charlie', 'value': 6}]) """ from .batch import Batch return Batch(stream=self, **kwargs) @args_kwargs @Stream.register_api() class sink(Stream): """ Apply a function on every element Examples -------- >>> source = Stream() >>> L = list() >>> source.sink(L.append) >>> source.sink(print) >>> source.sink(print) >>> source.emit(123) 123 123 >>> L [123] See Also -------- map Stream.sink_to_list """ _graphviz_shape = "trapezium" def __init__(self, upstream, func, *args, **kwargs): self.func = func # take the stream specific kwargs out stream_name = kwargs.pop("stream_name", None) self.kwargs = kwargs self.args = args Stream.__init__(self, upstream, stream_name=stream_name) _global_sinks.add(self) def update(self, x, who=None): result = self.func(x, *self.args, **self.kwargs) if gen.isawaitable(result): return result else: return [] @args_kwargs @Stream.register_api() class map(Stream): """ Apply a function to every element in the stream Parameters ---------- func: callable *args : The arguments to pass to the function. **kwargs: Keyword arguments to pass to func Examples -------- >>> source = Stream() >>> source.map(lambda x: 2*x).sink(print) >>> for i in range(5): ... source.emit(i) 0 2 4 6 8 """ def __init__(self, upstream, func, *args, **kwargs): self.func = func # this is one of a few stream specific kwargs stream_name = kwargs.pop("stream_name", None) self.kwargs = kwargs self.args = args Stream.__init__(self, upstream, stream_name=stream_name) def update(self, x, who=None): try: result = self.func(x, *self.args, **self.kwargs) except Exception as e: logger.exception(e) raise else: return self._emit(result) @args_kwargs @Stream.register_api() class starmap(Stream): """ Apply a function to every element in the stream, splayed out See ``itertools.starmap`` Parameters ---------- func: callable *args : The arguments to pass to the function. **kwargs: Keyword arguments to pass to func Examples -------- >>> source = Stream() >>> source.starmap(lambda a, b: a + b).sink(print) >>> for i in range(5): ... source.emit((i, i)) 0 2 4 6 8 """ def __init__(self, upstream, func, *args, **kwargs): self.func = func # this is one of a few stream specific kwargs stream_name = kwargs.pop("stream_name", None) self.kwargs = kwargs self.args = args Stream.__init__(self, upstream, stream_name=stream_name) def update(self, x, who=None): y = x + self.args try: result = self.func(*y, **self.kwargs) except Exception as e: logger.exception(e) raise else: return self._emit(result) def _truthy(x): return not not x @Stream.register_api() class filter(Stream): """ Only pass through elements that satisfy the predicate Parameters ---------- predicate : function The predicate. Should return True or False, where True means that the predicate is satisfied. Examples -------- >>> source = Stream() >>> source.filter(lambda x: x % 2 == 0).sink(print) >>> for i in range(5): ... source.emit(i) 0 2 4 """ def __init__(self, upstream, predicate, *args, **kwargs): if predicate is None: predicate = _truthy self.predicate = predicate stream_name = kwargs.pop("stream_name", None) self.kwargs = kwargs self.args = args Stream.__init__(self, upstream, stream_name=stream_name) def update(self, x, who=None): if self.predicate(x, *self.args, **self.kwargs): return self._emit(x) @args_kwargs @Stream.register_api() class accumulate(Stream): """ Accumulate results with previous state This performs running or cumulative reductions, applying the function to the previous total and the new element. The function should take two arguments, the previous accumulated state and the next element and it should return a new accumulated state. Parameters ---------- func: callable start: object Initial value. Defaults to the first submitted element returns_state: boolean, optional If true then func should return both the state and the value to emit If false then both values are the same, and func returns one value reset_stream : Stream instance or None, optional If not None, when the ``reset_stream`` stream emits the accumulate node's state will revert to the initial state (set by ``start``), defaults to None **kwargs: Keyword arguments to pass to func Examples -------- >>> source = Stream() >>> source.accumulate(lambda acc, x: acc + x).sink(print) >>> for i in range(5): ... source.emit(i) 1 3 6 10 """ _graphviz_shape = "box" def __init__( self, upstream, func, start=no_default, returns_state=False, reset_stream=None, **kwargs ): self.func = func self.kwargs = kwargs self.state = start # XXX: maybe don't need deepcopy? self._initial_state = copy.deepcopy(start) self.returns_state = returns_state self.reset_node = reset_stream # this is one of a few stream specific kwargs stream_name = kwargs.pop("stream_name", None) if reset_stream: Stream.__init__(self, upstreams=[upstream, reset_stream], stream_name=stream_name) else: Stream.__init__(self, upstream, stream_name=stream_name) def update(self, x, who=None): if who is self.reset_node: self.state = copy.deepcopy(self._initial_state) return if self.state is no_default: self.state = x return self._emit(x) else: try: result = self.func(self.state, x, **self.kwargs) except Exception as e: logger.exception(e) raise if self.returns_state: state, result = result else: state = result self.state = state return self._emit(result) @args_kwargs @Stream.register_api() class partition(Stream): """ Partition stream into tuples of equal size Examples -------- >>> source = Stream() >>> source.partition(3).sink(print) >>> for i in range(10): ... source.emit(i) (0, 1, 2) (3, 4, 5) (6, 7, 8) """ _graphviz_shape = "diamond" def __init__(self, upstream, n, **kwargs): self.n = n self.buffer = [] Stream.__init__(self, upstream, **kwargs) def update(self, x, who=None): self.buffer.append(x) if len(self.buffer) == self.n: result, self.buffer = self.buffer, [] return self._emit(tuple(result)) else: return [] @args_kwargs @Stream.register_api() class sliding_window(Stream): """ Produce overlapping tuples of size n Examples -------- >>> source = Stream() >>> source.sliding_window(3).sink(print) >>> for i in range(8): ... source.emit(i) (0, 1, 2) (1, 2, 3) (2, 3, 4) (3, 4, 5) (4, 5, 6) (5, 6, 7) """ _graphviz_shape = "diamond" def __init__(self, upstream, n, **kwargs): self.n = n self.buffer = deque(maxlen=n) Stream.__init__(self, upstream, **kwargs) def update(self, x, who=None): self.buffer.append(x) if len(self.buffer) == self.n: return self._emit(tuple(self.buffer)) else: return [] def convert_interval(interval): if isinstance(interval, str): import pandas as pd interval = pd.Timedelta(interval).total_seconds() return interval @args_kwargs @Stream.register_api() class timed_window(Stream): """ Emit a tuple of collected results every interval Every ``interval`` seconds this emits a tuple of all of the results seen so far. This can help to batch data coming off of a high-volume stream. """ _graphviz_shape = "octagon" def __init__(self, upstream, interval, **kwargs): self.interval = convert_interval(interval) self.buffer = [] self.last = gen.moment Stream.__init__(self, upstream, ensure_io_loop=True, **kwargs) self.loop.add_callback(self.cb) def update(self, x, who=None): self.buffer.append(x) return self.last @gen.coroutine def cb(self): while True: L, self.buffer = self.buffer, [] self.last = self._emit(L) yield self.last yield gen.sleep(self.interval) @args_kwargs @Stream.register_api() class delay(Stream): """ Add a time delay to results """ _graphviz_shape = "octagon" def __init__(self, upstream, interval, **kwargs): self.interval = convert_interval(interval) self.queue = Queue() Stream.__init__(self, upstream, ensure_io_loop=True, **kwargs) self.loop.add_callback(self.cb) @gen.coroutine def cb(self): while True: last = time() x = yield self.queue.get() yield self._emit(x) duration = self.interval - (time() - last) if duration > 0: yield gen.sleep(duration) def update(self, x, who=None): return self.queue.put(x) @args_kwargs @Stream.register_api() class rate_limit(Stream): """ Limit the flow of data This stops two elements of streaming through in an interval shorter than the provided value. Parameters ---------- interval: float Time in seconds """ _graphviz_shape = "octagon" def __init__(self, upstream, interval, **kwargs): self.interval = convert_interval(interval) self.next = 0 Stream.__init__(self, upstream, ensure_io_loop=True, **kwargs) @gen.coroutine def update(self, x, who=None): now = time() old_next = self.next self.next = max(now, self.next) + self.interval if now < old_next: yield gen.sleep(old_next - now) yield self._emit(x) @args_kwargs @Stream.register_api() class buffer(Stream): """ Allow results to pile up at this point in the stream This allows results to buffer in place at various points in the stream. This can help to smooth flow through the system when backpressure is applied. """ _graphviz_shape = "diamond" def __init__(self, upstream, n, **kwargs): self.queue = Queue(maxsize=n) Stream.__init__(self, upstream, ensure_io_loop=True, **kwargs) self.loop.add_callback(self.cb) def update(self, x, who=None): return self.queue.put(x) @gen.coroutine def cb(self): while True: x = yield self.queue.get() yield self._emit(x) @args_kwargs @Stream.register_api() class zip(Stream): """ Combine streams together into a stream of tuples We emit a new tuple once all streams have produce a new tuple. See also -------- combine_latest zip_latest """ _graphviz_orientation = 270 _graphviz_shape = "triangle" def __init__(self, *upstreams, **kwargs): self.maxsize = kwargs.pop("maxsize", 10) first = kwargs.pop("first", None) self.condition = Condition() self.literals = [ (i, val) for i, val in enumerate(upstreams) if not isinstance(val, Stream) ] self.buffers = { upstream: deque() for upstream in upstreams if isinstance(upstream, Stream) } upstreams2 = [ upstream for upstream in upstreams if isinstance(upstream, Stream) ] Stream.__init__(self, upstreams=upstreams2, **kwargs) if first: move_to_first(self, first) def pack_literals(self, tup): """ Fill buffers for literals whenever we empty them """ inp = list(tup)[::-1] out = [] for i, val in self.literals: while len(out) < i: out.append(inp.pop()) out.append(val) while inp: out.append(inp.pop()) return tuple(out) def update(self, x, who=None): L = self.buffers[who] # get buffer for stream L.append(x) if len(L) == 1 and all(self.buffers.values()): tup = tuple(self.buffers[up][0] for up in self.upstreams) for buf in self.buffers.values(): buf.popleft() self.condition.notify_all() if self.literals: tup = self.pack_literals(tup) return self._emit(tup) elif len(L) > self.maxsize: return self.condition.wait() @args_kwargs @Stream.register_api() class combine_latest(Stream): """ Combine multiple streams together to a stream of tuples This will emit a new tuple of all of the most recent elements seen from any stream. Parameters ---------- emit_on : stream or list of streams or None only emit upon update of the streams listed. If None, emit on update from any stream See Also -------- zip """ _graphviz_orientation = 270 _graphviz_shape = "triangle" def __init__(self, *upstreams, **kwargs): emit_on = kwargs.pop("emit_on", None) first = kwargs.pop("first", None) self.last = [None for _ in upstreams] self.missing = set(upstreams) if emit_on is not None: if not isinstance(emit_on, Iterable): emit_on = (emit_on,) emit_on = tuple( upstreams[x] if isinstance(x, int) else x for x in emit_on ) self.emit_on = emit_on else: self.emit_on = upstreams Stream.__init__(self, upstreams=upstreams, **kwargs) self._graphviz_edge_types = { u: {"style": "solid"} for u in self.upstreams } self._graphviz_edge_types.update( {u: {"style": "dashed"} for u in self.emit_on} ) if first: move_to_first(self, first) def update(self, x, who=None): if self.missing and who in self.missing: self.missing.remove(who) self.last[self.upstreams.index(who)] = x if not self.missing and who in self.emit_on: tup = tuple(self.last) return self._emit(tup) @args_kwargs @Stream.register_api() class flatten(Stream): """ Flatten streams of lists or iterables into a stream of elements Examples -------- >>> source = Stream() >>> source.flatten().sink(print) >>> for x in [[1, 2, 3], [4, 5], [6, 7, 7]]: ... source.emit(x) 1 2 3 4 5 6 7 See Also -------- partition """ def update(self, x, who=None): L = [] for item in x: y = self._emit(item) if type(y) is list: L.extend(y) else: L.append(y) return L @args_kwargs @Stream.register_api() class unique(Stream): """ Avoid sending through repeated elements This deduplicates a stream so that only new elements pass through. You can control how much of a history is stored with the ``history=`` parameter. For example setting ``history=1`` avoids sending through elements when one is repeated right after the other. Examples -------- >>> source = Stream() >>> source.unique(history=1).sink(print) >>> for x in [1, 1, 2, 2, 2, 1, 3]: ... source.emit(x) 1 2 1 3 """ def __init__(self, upstream, history=None, key=identity, **kwargs): self.seen = None self.key = key self.history = history Stream.__init__(self, upstream, **kwargs) def update(self, x, who=None): y = self.key(x) # If this is the first piece of data make the cache if self.seen is None: if isinstance(y, Hashable): self.seen = dict() if self.history: # if it is hashable use LRU cache if isinstance(y, Hashable): from zict import LRU self.seen = LRU(self.history, self.seen) # if not hashable use deque (since it doesn't need a hash else: self.seen = deque(maxlen=self.history) if isinstance(y, Hashable): if y not in self.seen: self.seen[y] = 1 return self._emit(x) # If y is a dict then we can't use LRU cache use FILO deque instead else: if y not in self.seen: self.seen.append(y) return self._emit(x) @args_kwargs @Stream.register_api() class union(Stream): """ Combine multiple streams into one Every element from any of the upstreams streams will immediately flow into the output stream. They will not be combined with elements from other streams. See also -------- Stream.zip Stream.combine_latest """ def __init__(self, *upstreams, **kwargs): super(union, self).__init__(upstreams=upstreams, **kwargs) def update(self, x, who=None): return self._emit(x) @args_kwargs @Stream.register_api() class pluck(Stream): """ Select elements from elements in the stream. Parameters ---------- pluck : object, list The element(s) to pick from the incoming element in the stream If an instance of list, will pick multiple elements. Examples -------- >>> source = Stream() >>> source.pluck([0, 3]).sink(print) >>> for x in [[1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 10, 11]]: ... source.emit(x) (1, 4) (4, 7) (8, 11) >>> source = Stream() >>> source.pluck('name').sink(print) >>> for x in [{'name': 'Alice', 'x': 123}, {'name': 'Bob', 'x': 456}]: ... source.emit(x) 'Alice' 'Bob' """ def __init__(self, upstream, pick, **kwargs): self.pick = pick super(pluck, self).__init__(upstream, **kwargs) def update(self, x, who=None): if isinstance(self.pick, list): return self._emit(tuple([x[ind] for ind in self.pick])) else: return self._emit(x[self.pick]) @args_kwargs @Stream.register_api() class collect(Stream): """ Hold elements in a cache and emit them as a collection when flushed. Examples -------- >>> source1 = Stream() >>> source2 = Stream() >>> collector = collect(source1) >>> collector.sink(print) >>> source2.sink(collector.flush) >>> source1.emit(1) >>> source1.emit(2) >>> source2.emit('anything') # flushes collector ... [1, 2] """ def __init__(self, upstream, cache=None, **kwargs): if cache is None: cache = deque() self.cache = cache Stream.__init__(self, upstream, **kwargs) def update(self, x, who=None): self.cache.append(x) def flush(self, _=None): out = tuple(self.cache) self._emit(out) self.cache.clear() @args_kwargs @Stream.register_api() class zip_latest(Stream): """Combine multiple streams together to a stream of tuples The stream which this is called from is lossless. All elements from the lossless stream are emitted reguardless of when they came in. This will emit a new tuple consisting of an element from the lossless stream paired with the latest elements from the other streams. Elements are only emitted when an element on the lossless stream are received, similar to ``combine_latest`` with the ``emit_on`` flag. See Also -------- Stream.combine_latest Stream.zip """ def __init__(self, lossless, *upstreams, **kwargs): first = kwargs.pop("first", None) upstreams = (lossless,) + upstreams self.last = [None for _ in upstreams] self.missing = set(upstreams) self.lossless = lossless self.lossless_buffer = deque() Stream.__init__(self, upstreams=upstreams, **kwargs) if first: move_to_first(self, first) def update(self, x, who=None): idx = self.upstreams.index(who) if who is self.lossless: self.lossless_buffer.append(x) self.last[idx] = x if self.missing and who in self.missing: self.missing.remove(who) if not self.missing: L = [] while self.lossless_buffer: self.last[0] = self.lossless_buffer.popleft() L.append(self._emit(tuple(self.last))) return L @args_kwargs @Stream.register_api() class latest(Stream): """ Drop held-up data and emit the latest result This allows you to skip intermediate elements in the stream if there is some back pressure causing a slowdown. Use this when you only care about the latest elements, and are willing to lose older data. This passes through values without modification otherwise. Examples -------- >>> source.map(f).latest().map(g) # doctest: +SKIP """ _graphviz_shape = "octagon" def __init__(self, upstream, **kwargs): self.condition = Condition() self.next = [] Stream.__init__(self, upstream, ensure_io_loop=True, **kwargs) self.loop.add_callback(self.cb) def update(self, x, who=None): self.next = [x] self.loop.add_callback(self.condition.notify) @gen.coroutine def cb(self): while True: yield self.condition.wait() [x] = self.next yield self._emit(x) def sync(loop, func, *args, **kwargs): """ Run coroutine in loop running in separate thread. """ # This was taken from distrbuted/utils.py timeout = kwargs.pop("callback_timeout", None) def make_coro(): coro = gen.maybe_future(func(*args, **kwargs)) if timeout is None: return coro else: return gen.with_timeout(timedelta(seconds=timeout), coro) e = threading.Event() main_tid = get_thread_identity() result = [None] error = [False] @gen.coroutine def f(): try: if main_tid == get_thread_identity(): raise RuntimeError("sync() called from thread of running loop") yield gen.moment thread_state.asynchronous = True result[0] = yield make_coro() except Exception as exc: logger.exception(exc) error[0] = sys.exc_info() finally: thread_state.asynchronous = False e.set() loop.add_callback(f) while not e.is_set(): e.wait(1000000) if error[0]: six.reraise(*error[0]) else: return result[0] @Stream.register_api() class starsink(Stream): """ Apply a function on every element Examples -------- >>> source = Stream() >>> L = list() >>> source.sink(L.append) >>> source.sink(print) >>> source.sink(print) >>> source.emit(123) 123 123 >>> L [123] See Also -------- map Stream.sink_to_list """ _graphviz_shape = "trapezium" def __init__(self, upstream, func, *args, **kwargs): self.func = func # take the stream specific kwargs out stream_name = kwargs.pop("stream_name", None) self.kwargs = kwargs self.args = args Stream.__init__(self, upstream, stream_name=stream_name) _global_sinks.add(self) def update(self, x, who=None): y = x + self.args result = self.func(*y, **self.kwargs) if gen.isawaitable(result): return result else: return [] def destroy_pipeline(source_node: Stream): """Destroy all the nodes attached to the source Parameters ---------- source_node : Stream The source node for the pipeline """ for ds in list(source_node.downstreams): destroy_pipeline(ds) if source_node.upstreams: try: source_node.destroy() # some source nodes are tuples and some are bad wekrefs except (AttributeError, KeyError): pass
cc3b85e9670631473525625c285ccfe5825c620d
4e28bb44058b3bfdaf24d1117838e6736e9b0ed5
/app/extensions.py
0e7fd9811c53f92bd480e7471b41dccd79179a8d
[]
no_license
Polikarpova/ad-vk-bot
130917752f4c354b09242cf8b548514d649581a6
1867ed1accb9f0483570f7c52aa46e44676fa624
refs/heads/main
2022-12-28T23:16:35.720661
2020-10-09T11:18:06
2020-10-09T11:18:06
302,617,341
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
import os from flask_sqlalchemy import SQLAlchemy from apscheduler.schedulers.background import BackgroundScheduler # SQLAlchemy db = SQLAlchemy() # APScheduler scheduler = BackgroundScheduler(daemon=True) weeklyJobName = 'weekly_job' playerAlarmName = 'player_alarm' # Данные о сообществе album_id = int(os.environ.get('ALBUM_ID')) # id альбома с мемами для send_blame_message
8c3c73ad65673c805d4e2f9b4a49f2cebb653539
b45f75091463b302c95daf6cd6fa2dea6ab7081b
/src/signer/context_processors.py
5e38c849199f40a6a76dfbd9d8dcfdf359da20f5
[]
no_license
joka/signer
3dd6b4b0838923690fae4ab766058097f9372fe5
1f0f84009221599e979410df1cf7bc33d490985e
refs/heads/master
2021-01-13T01:28:18.675061
2010-01-07T17:50:15
2010-01-07T17:50:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
# -*- coding: utf-8 -*- from django.conf import settings def currentpage(request): return { 'page_url': request.build_absolute_uri(), # 'page_url': '%s%s'%(settings.BASE_URL, request.get_full_path()), }
f20ae41427efa6bdfaf815d9104ff68383036252
fc98574ce6f6adb571d53e32dcb8041b032c4aae
/report2.py
a650dcde5f4a3d904417f4f7a9d692b71f591af5
[]
no_license
aTentori/REST_assignment
d23bb4f7d08193a22d50e11f6f184b8c6339f3a8
8da5bb23eef5f01695373212f3c3d564d95fee46
refs/heads/master
2022-12-09T10:38:10.136022
2020-09-02T01:50:55
2020-09-02T01:50:55
292,141,565
0
0
null
null
null
null
UTF-8
Python
false
false
668
py
import requests import time start = time.time() report = requests.get("http://localhost:21212/report").json() print('{:<2} {:<20} {:<10} {:<10} {}'.format('ID:', 'Name:', 'Num Loc:', 'Avg value:','Categories:')) for r in report: #print({} ).format(str(r[0]) + "\t\t\t" + str(r[1]) + "\t\t\t\t" + str(r[2]) + "\t\t\t" + str(r[3]) + "\t\t\t" + str(r[4])) print('{:<1} {:<20} {:<10} {:<10} {}'.format(str(r[0]), str(r[1]), str(r[2]), str(r[3]), str(r[4]))) end = time.time() time = end - start final_time = round(time,2) print("") print("Program time is: " + str(final_time) +" seconds")
60f17c6b3275abd5fe5fa0a5fdf553adf57b8a9f
093b415a408e3770c60c370dea539c1c7dbb1a2b
/netbox/virtualization/migrations/0013_deterministic_ordering.py
b5b0451a17ed3e38ca8fb9b474029a3bc208ce98
[ "Apache-2.0" ]
permissive
jathanism/netbox
0f710b9196226c049fc86bd3b15830c3e717463b
a94e5c7403a0aa07d60536a487cea2c868c9fa41
refs/heads/develop
2023-04-13T00:55:29.862161
2021-03-12T15:59:23
2021-03-12T15:59:23
347,462,807
1
0
Apache-2.0
2023-04-04T01:41:13
2021-03-13T19:40:48
null
UTF-8
Python
false
false
365
py
# Generated by Django 2.2.8 on 2020-01-15 18:10 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('virtualization', '0012_vm_name_nonunique'), ] operations = [ migrations.AlterModelOptions( name='virtualmachine', options={'ordering': ('name', 'pk')}, ), ]
47b9800f33759447156595cdedc80af7b88a3786
8320eb6213ca1648129519603818e637e78aed2a
/streamlit_multiapp.py
2e6e6617941e5631a839eb63db20de3507ae4fa8
[ "MIT" ]
permissive
NIH-CARD/AlignedUMAP-BiomedicalData
0147749f79e11eae52b8ce757ade41c349972fe4
d583e9ac0b9081ec2cd8bf2e3c26b88cadf0689b
refs/heads/main
2023-04-29T06:13:20.390510
2023-04-21T21:59:49
2023-04-21T21:59:49
591,063,147
0
2
null
null
null
null
UTF-8
Python
false
false
750
py
"""Frameworks for running multiple Streamlit applications as a single app. """ import streamlit as st class MultiApp: def __init__(self): self.apps = [] def add_app(self, title, func, params): self.apps.append({ "title": title, "function": func, "params": params }) def run(self): st.markdown( """<style> .boxBorder1 { outline-offset: 20px; font-size:128px; }</style> """, unsafe_allow_html=True) from st_btn_select import st_btn_select app = st_btn_select( self.apps, format_func=lambda app: '{}'.format(app['title']), ) app['function'](**app['params'])
0228f114db266e3c412cd650e31d2e3ba5b42cae
523f5c919a5dbf56985a91373b00dd91556a7bae
/myproject/urls.py
c24b6a10e385774124e25ae5817be0b31fbd8d8d
[]
no_license
liuliansp/Vue_Django_Mysql
8000d4d92bc4213f0cc1d2feb73e3c3247d11f2b
e7b582d35de8f63e5b6592f360236450516dce8a
refs/heads/master
2022-01-29T23:40:54.159792
2019-09-02T06:40:20
2019-09-02T06:40:20
205,355,944
0
0
null
null
null
null
UTF-8
Python
false
false
964
py
"""myproject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin # from django.urls import path from django.conf.urls import url,include from django.views.generic import TemplateView import myapp.urls urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^api/', include(myapp.urls)), url(r'^$', TemplateView.as_view(template_name="index.html")), ]
38cbaca239856f031f96c679a20502407b7e7761
df1eb6867a174910daae78f5436bf89810d52c29
/release.py
341bea189ea43cc6d7ccc16371d6b3cecfdec179
[ "MIT" ]
permissive
containers-tools/cct
26f38699c3853a157ce7e3ccdbfbab622540bf46
20bacd4b859a1dd0bcddb085eed9c4c887961135
refs/heads/master
2020-05-21T04:22:19.022569
2017-09-20T14:05:33
2017-09-20T14:05:33
36,220,969
12
10
null
2017-07-27T13:53:46
2015-05-25T09:03:41
Python
UTF-8
Python
false
false
268
py
#!/bin/python import os from zipfile import ZipFile with ZipFile('cct.zip', 'w') as zf: zf.write('__main__.py') for root, directory, files in os.walk('cct'): for f in files: arc_file = os.path.join(root, f) zf.write(arc_file)