blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
f229805f9cf2c5e9ccf9db6b269e61c6ee22a9e6
739e91039c05943352a3fc07e768641f74097482
/BaekJoon_Online/Math/No_10569.py
81399b6ffd373638043c6a8784cd45439e70058c
[]
no_license
doublejy715/Problem-Solve
651182079ded1a9da3478dd30a4c4507894de85e
57d5a672a48103769c8cc022cb7132d988624600
refs/heads/master
2023-07-13T09:51:23.145427
2021-08-31T04:35:04
2021-08-31T04:35:04
234,250,382
0
0
null
null
null
null
UTF-8
Python
false
false
87
py
T = int(input()) for _ in range(T): V,E = map(int,input().split()) print(2-V+E)
b59e2feb7ab32d6a99987df4967c61e8d778901a
ebdd865324a7e3bd2e3a4de357483a3056a093e4
/web/django_server/scripts/init_db.py
07502590b9ebeb5b488180db88c9abccbed45220
[]
no_license
hanaui-call/contacts-v2
73f4d9fb68d0936b441b14f4339273806b4731ed
a14649cb45d41d91a9a2a20e5047e7fd572e2e30
refs/heads/main
2023-02-16T06:52:38.876648
2020-12-30T00:21:15
2020-12-30T03:05:41
325,415,016
0
0
null
2021-01-08T16:32:24
2020-12-30T00:20:20
CSS
UTF-8
Python
false
false
1,161
py
from django_server.models import Member from django.contrib.auth.models import User from django_server.const import SexEnum import datetime def run(*args): members = [ { 'name': '홍길동', 'email': '[email protected]', 'password': '12345', 'birth': datetime.date(1997, 10, 19), 'sex': SexEnum.MALE.value, 'phone': '010-1234-5678', 'tags': ['가족모임리더', '소명센터'], }, { 'name': '김영희', 'email': '[email protected]', 'password': '09876', 'birth': datetime.date(1982, 2, 3), 'sex': SexEnum.FEMALE.value, 'phone': '010-6789-1234', 'tags': [], } ] for m in members: user = User.objects.create(username=m['email'], password=m['password'], email=m['email']) member = Member.objects.create( user=user, name=m['name'], phone=m['phone'], birth=m['birth'], sex=m['sex'], tags=m['tags'], is_active=True, ) print(member)
cb0467cf7981a70c05b02c4b293a20023ed38dcf
f036605fdf878e9c5bd44dad0f72f078d3b9ed25
/main.py
625c40050e2c2d99f87f967c7b14eab467019979
[]
no_license
hiriorima/audio-collecter
760b1892e64b67850759b9b772beea6c53f16c55
80d2b23e68a55ddb584e11135d8ff372d7a0a34c
refs/heads/master
2020-04-05T15:37:46.780798
2018-11-10T12:03:27
2018-11-10T12:03:27
156,977,008
0
0
null
null
null
null
UTF-8
Python
false
false
736
py
import pyaudio import sys import pylab import numpy chunk = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 44100 #秒数指定 RECORD_SECONDS = 2 WAVE_OUTPUT_FILENAME = "output.wav" p = pyaudio.PyAudio() stream = p.open(format = FORMAT, channels = CHANNELS, rate = RATE, input = True, frames_per_buffer = chunk) print("* recording") all = [] for i in range(0, int(RATE / chunk * RECORD_SECONDS)): data = stream.read(chunk) all.append(data) print("* done recording") stream.close() p.terminate() # write data to WAVE file data = ''.join(all) result = numpy.frombuffer(data,dtype="int16") / float(2**15) pylab.plot(result) pylab.ylim([-1,1]) pylab.show()
72095e6fd93a46905b087fc69f644ed46ff8da49
c762ab8c1c25ffa97229a62ff43a33543093f963
/venv/lib/python3.7/site-packages/cvxpy/tests/test_lin_ops.py
17e3218df682a1ee8db6508e8333ac3f078755cc
[ "Apache-2.0" ]
permissive
nahyunkwon/multi-ttach
e68948d66541e85b764216efc54a82f6fc9ac044
971d0d93cc39f295deb23ea71146647f6db50ebc
refs/heads/master
2023-08-09T18:25:31.658950
2023-07-24T17:46:04
2023-07-24T17:46:04
297,783,964
0
1
Apache-2.0
2021-04-07T07:46:24
2020-09-22T22:08:53
G-code
UTF-8
Python
false
false
5,197
py
""" Copyright 2013 Steven Diamond Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from cvxpy.lin_ops.lin_utils import (create_var, create_param, sum_expr, sum_entries, get_expr_vars, neg_expr, create_const, create_eq, create_leq) from cvxpy.lin_ops.lin_op import (VARIABLE, PARAM, SCALAR_CONST, NEG, DENSE_CONST, SPARSE_CONST, SUM_ENTRIES) import numpy as np import scipy.sparse as sp from cvxpy.tests.base_test import BaseTest import sys PY2 = sys.version_info < (3, 0) class test_lin_ops(BaseTest): """ Unit tests for the lin_ops module. """ def test_variables(self): """Test creating a variable. """ var = create_var((5, 4), var_id=1) self.assertEqual(var.shape, (5, 4)) self.assertEqual(var.data, 1) self.assertEqual(len(var.args), 0) self.assertEqual(var.type, VARIABLE) def test_param(self): """Test creating a parameter. """ var = create_param((5, 4)) self.assertEqual(var.shape, (5, 4)) self.assertEqual(len(var.args), 0) self.assertEqual(var.type, PARAM) def test_constant(self): """Test creating a constant. """ # Scalar constant. shape = (1, 1) mat = create_const(1.0, shape) self.assertEqual(mat.shape, shape) self.assertEqual(len(mat.args), 0) self.assertEqual(mat.type, SCALAR_CONST) assert mat.data == 1.0 # Dense matrix constant. shape = (5, 4) mat = create_const(np.ones(shape), shape) self.assertEqual(mat.shape, shape) self.assertEqual(len(mat.args), 0) self.assertEqual(mat.type, DENSE_CONST) assert (mat.data == np.ones(shape)).all() # Sparse matrix constant. shape = (5, 5) mat = create_const(sp.eye(5), shape, sparse=True) self.assertEqual(mat.shape, shape) self.assertEqual(len(mat.args), 0) self.assertEqual(mat.type, SPARSE_CONST) assert (mat.data.todense() == sp.eye(5).todense()).all() def test_add_expr(self): """Test adding lin expr. """ shape = (5, 4) x = create_var(shape) y = create_var(shape) # Expanding dict. add_expr = sum_expr([x, y]) self.assertEqual(add_expr.shape, shape) assert len(add_expr.args) == 2 def test_get_vars(self): """Test getting vars from an expression. """ shape = (5, 4) x = create_var(shape) y = create_var(shape) A = create_const(np.ones(shape), shape) # Expanding dict. add_expr = sum_expr([x, y, A]) vars_ = get_expr_vars(add_expr) ref = [(x.data, shape), (y.data, shape)] if PY2: self.assertItemsEqual(vars_, ref) else: self.assertCountEqual(vars_, ref) def test_neg_expr(self): """Test negating an expression. """ shape = (5, 4) var = create_var(shape) expr = neg_expr(var) assert len(expr.args) == 1 self.assertEqual(expr.shape, shape) self.assertEqual(expr.type, NEG) def test_eq_constr(self): """Test creating an equality constraint. """ shape = (5, 5) x = create_var(shape) y = create_var(shape) lh_expr = sum_expr([x, y]) value = np.ones(shape) rh_expr = create_const(value, shape) constr = create_eq(lh_expr, rh_expr) self.assertEqual(constr.shape, shape) vars_ = get_expr_vars(constr.expr) ref = [(x.data, shape), (y.data, shape)] if PY2: self.assertItemsEqual(vars_, ref) else: self.assertCountEqual(vars_, ref) def test_leq_constr(self): """Test creating a less than or equal constraint. """ shape = (5, 5) x = create_var(shape) y = create_var(shape) lh_expr = sum_expr([x, y]) value = np.ones(shape) rh_expr = create_const(value, shape) constr = create_leq(lh_expr, rh_expr) self.assertEqual(constr.shape, shape) vars_ = get_expr_vars(constr.expr) ref = [(x.data, shape), (y.data, shape)] if PY2: self.assertItemsEqual(vars_, ref) else: self.assertCountEqual(vars_, ref) def test_sum(self): """Test sum entries op. """ shape = (5, 5) x = create_var(shape) expr = sum_entries(x, (1, 1)) self.assertEqual(expr.shape, (1, 1)) self.assertEqual(len(expr.args), 1) self.assertEqual(expr.type, SUM_ENTRIES)
8b0bbf53df939cdde5cf9d36134a502b02f7ccc9
21ff9739497feef293fdc438ecdb9946884abb3f
/Linear algebra/beta estimate by QRdecomp and QRsolve.py
4a84a07a365a1f7559a7ce7dd8fcb177fbe888f8
[]
no_license
mshasan/Python-Computing
877c8bcaaf1bdb9bd030945c4aec09ae1a96b269
dc4f6031becba29f601089677ac5e438c0014da8
refs/heads/master
2021-01-20T03:53:09.358852
2017-04-28T15:33:47
2017-04-28T15:33:47
89,597,755
0
0
null
null
null
null
UTF-8
Python
false
false
3,338
py
#------------------------------------------------------------------------------------------------------------------- #################################################################################################################### """some libraries to perform our desired calculations""" import math # used to perform mathematical calculation import random # used to generate random number import scipy # for decomposition and matrix import numpy # for matrix operation from scipy.linalg import * # for linear algebra from math import sqrt # to perform square root from pprint import pprint # to get better output interface #################################################################################################################### #------------------------------------------------------------------------------------------------------------------- """Defining the given quadratic curve to simulate random data random.gauss(0.0,5.0)' generate Normal(0,25)'""" def infunc(x): return(x*x + 3.0*x + 4.0 + random.gauss(0.0,5.0)) #------------------------------------------------------------------------------------------------------------------- """the function 'RandomData will be used ' to simulate random data, it takes n=# of simulation and s=random seed,""" def RandomData(n,s): random.seed(s) # set seed one = range(n) # a variable to store 1 x = range(n) # variable to store x x_sq = range(n) # variable to store x square y = range(n) # variable to store y for i in range(n): # initializing a for loop to simulate data one[i] = 1 # vector of one x[i] = random.uniform(-20.0, 20.0) # vector of x x_sq[i] = x[i]**2 # vector of x square y[i] = infunc(x[i]) # vector of y random.seed(s) # stopping seed return (y,one,x,x_sq) # returns different variables required for design matrix #------------------------------------------------------------------------------------------------------------------- """applying 'RandomData' function to simulate data""" n = 100 # number of simulated data s = 897894321 # random seed y1,one,x,x_sq = RandomData(n,s) #################################################################################################################### # Problem - l------------------------------------------------------------------------------------------------------- #################################################################################################################### print "-----------------------------Problem-l------------------------------------------------------------------" """using QRdecomp and QRsolve to find beta_hat by using matrix 'A' from problem - a""" Q,R = QRdecomp(A) # QRdecomp function to get QR decomposition QRsolve(Q, R, Y) # applying QRsolve function #------------------------------------------------------------------------------------------------------------------ ####################################################################################################################
7eb3286fb99fbbdb30d332b99846691d24f337d6
f507ddbb7b07a9e9acec144120bbf7d1a48747a6
/책/이진탐색/me부품찾기.py
af9e7dbf94b8a4828bfbe330f3bc8c3d661209df
[]
no_license
Insookim0702/python_Algorithm
9f3c95b61f07bce46a5dc82c613a23d5aec6d5cd
56ac719330ce03e2764c372cd37373e1e27a0614
refs/heads/master
2023-01-08T04:41:02.935269
2020-10-28T08:55:17
2020-10-28T08:55:17
298,799,593
1
0
null
null
null
null
UTF-8
Python
false
false
555
py
# 15:53~ #16:00 n = 5 arr = [8, 3, 7, 9, 2] request = [5, 7, 9] def binary_search(start, end, target): if start > end: return None mid = (start + end) // 2 if arr[mid] == target: return mid elif arr[mid] > target: return binary_search(start, mid - 1, target) else: return binary_search(mid + 1, end, target) request.sort() arr.sort() for target in request: search = binary_search(0, len(arr) - 1, target) if search == None: print('no', end=' ') else: print('yes', end=' ')
e5aa57a5343b0198c4e1e63d15dafb59d41583a5
010279e2ba272d09e9d2c4e903722e5faba2cf7a
/catboost/spark/catboost4j-spark/core/src/test/python/config.py
cd3c8b838d1d6354736665b42fbcdda4ac15a0b9
[ "Apache-2.0" ]
permissive
catboost/catboost
854c1a1f439a96f1ae6b48e16644be20aa04dba2
f5042e35b945aded77b23470ead62d7eacefde92
refs/heads/master
2023-09-01T12:14:14.174108
2023-09-01T10:01:01
2023-09-01T10:22:12
97,556,265
8,012
1,425
Apache-2.0
2023-09-11T03:32:32
2017-07-18T05:29:04
Python
UTF-8
Python
false
false
58
py
CATBOOST_TEST_DATA_DIR = '../../../../../../pytest/data'
2fbb577a3736eb77df3b1f053a2b458f58cc1e6c
9cc1b58d0319308da98187d071295b2fabf1f080
/0727/a0728_台灣高鐵_爬蟲_05.py
d34d89a8c031566971cc6b77d581391a658c394d
[ "MIT" ]
permissive
Arwen0905/Python_Test
60d1dee383c9cf27df6b93cfde7884c91092229c
c75357e4354a684a9fae41f751dae60d4cf0716c
refs/heads/master
2023-01-13T13:14:55.355898
2020-10-31T18:52:07
2020-10-31T18:52:07
265,150,874
0
1
null
null
null
null
UTF-8
Python
false
false
609
py
import requests import pandas as pd from bs4 import BeautifulSoup as soup url = "https://www.twse.com.tw/exchangeReport/STOCK_DAY?response=json&date=20190101&stockNo=2633&_=1595925201119" # url = "https://rate.bot.com.tw/xrt/all/2020-01-06" # def convertDate(date): # str1 = str(date) # yearst = str1[:3] #取出民國年 # ryear = str(int(yearst)+1911) #轉為西元年 # findata = ryear + str1[4:6] + str1[7:9] # return findata # ans = lambda x:int(x)+1911 # print(ans("109")) re = requests.get(url) re.encoding = "utf-8" rs = soup(re.text,"html.parser") # rq = rs.select() print(rs)
b7b085e55826b6bf4cb38342d4c8fdf379526942
b7da8b6ded5b59938d20a915c43e310c7324041d
/app/config/urls.py
9c9cfcb8b012a781a89d22ee314f74b6aeed6c38
[]
no_license
miguel250/miguelpz-core
1afb20b9f5386b246f94a9c163415a25e4fbb24c
a4dc01fbc8ec74382d36b21b66262a94eb8438f0
refs/heads/master
2021-03-12T23:33:55.312067
2012-07-02T05:40:54
2012-07-02T05:40:54
4,618,243
0
1
null
null
null
null
UTF-8
Python
false
false
152
py
from app.api import views as views_api from app.core import views as views_core prints = { views_core.main : '/', views_api.main : '/api', }
4a1a3fb6fa603b30f35c6503a4fbb2bcdd9db378
2f48beec577a5ec1357e3ed703bbb08ea45bec44
/01_jumptopy/chap03/116_tax_ver2.py
1889daa82b7b45e289014e642fea8f7f42d206a1
[]
no_license
kimgwanghoon/openbigdata
2a09edcce96f927692656e051d9c37499007edb7
274c3e8cf0b0562facfb496743b879fef6164c73
refs/heads/master
2021-09-11T15:25:13.973451
2018-04-09T07:52:40
2018-04-09T07:52:40
null
0
0
null
null
null
null
UHC
Python
false
false
421
py
# coding: cp949 print("\n-----택시 안내 가이드 프로그램 ver1-----") #money=2000 print("가지고 계신 금액을 입력하세요 : ",end='') money =int(input()) print("\n현재 가지고 계신 금액은 "+str(money)+"원 입니다") if money>=3000: print("택시를 타고 갈 수 있습니다") else: print("돈이 부족하니 걸어가야 합니다.") print("프로그램을 종료합니다")
7a433b27298f388c3634d5d6bc9acade8ea7a957
9d6debb136268baeed974370d043c17e1d476ba2
/27-10-2020/s1.py
e9673c7f9e554a91ef966c4e4579c5dc6fc6431d
[]
no_license
Prasannarajmallipudi/Django_Batch8
55a8d1460c75a1564ff0c02f00d6eacfb0150fa0
914d106ed1873793642428839b776be9e6ad5589
refs/heads/main
2023-01-03T05:09:12.207833
2020-10-28T05:13:43
2020-10-28T05:13:43
307,913,360
0
0
null
2020-10-28T05:13:03
2020-10-28T05:13:03
null
UTF-8
Python
false
false
593
py
'''class New: def __init__(self,name,designation): self.name = name self.designation = designation obj = New('Prasanna Raj','Multi Skill Tranier') class Abc: def __newfun__(self): print("Welcome New Function") ob = Abc() ob.__newfun__() ''' # Multiple Inheritances class P1: def G1(self): print("Parent1 Method") class P2: def G2(self): print("Parent2 Method") class C(P1,P2): def G3(self): print("Child Method") obj = C() obj.G1() obj.G2() obj.G3()
197c293cdb4e2329c9dc3f518eee7110737180ea
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/xrR8zHmdTvEWqdr5g_12.py
74311c6d3a51d72cede937f4cc9e28786e2be6af
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
654
py
""" Given the shortest side of a 30 60 90 triangle you have to find out the other 2 sides, (return the longest side, medium-length side). ### Examples returnsides(1) ➞ (2, 1.73) returnsides(2) ➞ (4, 3.46) returnsides(3) ➞ (6, 5.2) ### Notes * 30 60 90 triangles always follow this rule, let's say the shortest side length is x units, the hypotenuse would be 2x units and the other side would be x * root3 units. * In the **Tests** , the decimal is rounded to 2 places. * Return the values as a tuple. """ import math ​ def returnsides(length): tup = (2*length,round(length * math.sqrt(3),2)) return tup
3c3e54dc504faee77326ce820cc0425e79b31ef0
9b290a914350b2ba0b386b0427d29a29268f3c9a
/controllers/mainh.py
bd4a176be851aec091813c183a38ac55e5ce5102
[]
no_license
bhaskarb/Donor-database
2a069ffecc14ec49a73631d8dd02ae471568e0ea
2fd8f3410ba66629426175a6750b4d050ac87e48
refs/heads/master
2021-01-19T04:55:34.888246
2012-02-08T00:36:52
2012-02-08T00:36:52
3,382,893
0
0
null
null
null
null
UTF-8
Python
false
false
805
py
#!/usr/bin/env/python __author__ = 'Bhaskar Bharath' #import re import urllib2 import os from models.models import * from google.appengine.ext import webapp from google.appengine.api import users from google.appengine.ext.webapp import template class MainPage(webapp.RequestHandler): def get(self): #logging.debug("In main Page") path = os.path.join(os.path.dirname(__file__), '..', 'views', 'main.html') projects=Project.all() if projects.count(): options=["Donor", "Recipient", "Steward"] else: options=["Steward"] template_values = { 'projects' : projects, 'options' : options, 'logout' : users.create_logout_url('/'), } self.response.out.write(template.render(path, template_values))
cd1ab1c2f86ee030b100d3545064382f648bb42a
2a54e8d6ed124c64abb9e075cc5524bb859ba0fa
/.history/1-Python-Basics/25-dictionary-keys_20200413193453.py
2c7728e6e1aa45c4887103c0fb3fa3c9ef41a1c6
[]
no_license
CaptainStorm21/Python-Foundation
01b5fbaf7a913506518cf22e0339dd948e65cea1
a385adeda74f43dd7fb2d99d326b0be23db25024
refs/heads/master
2021-05-23T01:29:18.885239
2020-04-23T19:18:06
2020-04-23T19:18:06
253,171,611
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
# Dictionary key has to be immutable # do not create an array as a key # for example [32]: true --- this does not work # 2 same keys game_archive = { 'weapons': [1,2,3], 'greeting': "Good day", 'is_Magic': True } print(game_archive['a'[1]])
1096e2be2a1a93f744e62127a8fb95b52a2e5b07
1a6c35729dcd7bf9d7661f1260f0a7b94a527ff3
/ParameterManager/get_from_db.py
31bd3eee45ba89d97365e720c2ccc1c388977fa2
[]
no_license
lentiann/production-manager
f433870da7e1990055002cfc48b26bab336650ee
d70cf7674c50cc82b61a475ed42276db496a57be
refs/heads/master
2020-09-01T16:50:03.367073
2019-12-02T08:44:19
2019-12-02T08:44:19
219,008,052
0
0
null
null
null
null
UTF-8
Python
false
false
9,596
py
from django.shortcuts import render from django.http import JsonResponse from opcua import Client from .models import Database, Node, Value from .models import Node, Value from datetime import datetime import time from .update_db import get_from_plc from django.db.models import Q from django.contrib.auth.decorators import login_required, user_passes_test import json def walk_db(node, data): if not data: data.append({"id": node.node_id, 'parent': '#', 'important': node.important, 'text': node.name}) a = node.node_set.all() for node in a: # If it is not an endpoint create a nested list and call walk_(node) again to get node's children if node.node_set.all(): data.append({"id": node.node_id, 'parent': node.parent.node_id, 'important': node.important, 'text': node.name}) # Call walk_db again for the child walk_db(node, data) # If it is an endpoint add nodes to the list ------- else: data.append({"id": node.node_id, 'parent': node.parent.node_id, 'important': node.important, 'text': node.name, "state": {"checked": node.important}}) return data # @user_passes_test(lambda u: u.is_superuser) def get_database(request): dbs = Database.objects.filter(updating=True) for db in dbs: data = [] databases = Database.objects.all() dbs = Database.objects.filter(next=True) if dbs: curr_db = dbs[0] else: curr_db = Database.objects.get(pk=1) all_nodes = Node.objects.filter(database=curr_db, first=True) if all_nodes: parent_node = all_nodes[0] data = walk_db(parent_node, data) else: time.sleep(10) get_database(request) check = False for db in databases: if db.id == curr_db.id + 1: db.next = True db.save() check = True else: db.next = False db.save() if not check: first_db = Database.objects.get(pk=1) first_db.next = True first_db.save() return JsonResponse(data, safe=False) # @user_passes_test(lambda u: u.is_superuser) def get_importants(request): data_list = [] nodes = Node.objects.filter(important=True) for node in nodes: if node.value_set: last_value = node.value_set.all().order_by('-id') if last_value: last_value = last_value[0] value = last_value.str_data if not value: value = last_value.float_data data_list.append((node, last_value.date, value)) if request.is_ajax(): dict_ = {} for parameter in data_list: dict_[parameter[0].pk] = [parameter[1], str(parameter[2])] return JsonResponse(dict_) return render(request, 'show_importants.html', {"parameters": data_list}) # @user_passes_test(lambda u: u.is_superuser) def get_history(request): id = int(request.POST['parameter']) parameter = Node.objects.get(id=id) values = parameter.value_set.all() data_list = [] for value in values: data_fields = [] all_fields = [value.float_data, value.str_data, value.detail] for field in all_fields: if field: data_fields.append(field) data_list.append((value.date.strftime("%Y-%m-%d %H:%M:%S"), data_fields)) data_list.sort() dict_ = {'data': data_list} return JsonResponse(dict_) main_dict = {'Inputs': {}, 'Memory': {}, 'Outputs': {}} def iomem_db(node): global main_dict try: display_name = str(node.get_display_name()) start = display_name.index('Text:') + 5 node_name = display_name[start:-1] except: node_name = node if node_name == "Inputs": v = node.get_children() for node in v: display_name = str(node.get_display_name()) start = display_name.index('Text:') + 5 node_name = display_name[start:-1] main_dict['Inputs'][node_name] = node.get_value() elif node_name == "Outputs": v = node.get_children() for node in v: display_name = str(node.get_display_name()) start = display_name.index('Text:') + 5 node_name = display_name[start:-1] main_dict['Outputs'][node_name] = node.get_value() elif node_name == "Memory": v = node.get_children() for node in v: display_name = str(node.get_display_name()) start = display_name.index('Text:') + 5 node_name = display_name[start:-1] main_dict['Memory'][node_name] = node.get_value() return main_dict # @login_required() def get_iomem(request): global main_dict inputs = Node.objects.filter(name="Inputs") outputs = Node.objects.filter(name="Outputs") memories = Node.objects.filter(name="Memory") if inputs and outputs and memories: inputs = Node.objects.filter(parent=inputs[0]) for input in inputs: input_name = input.name input_value = input.value_set.all().order_by('-id') i_value = input_value[0].str_data if not i_value: i_value = input_value[0].float_data elif not i_value: i_value = input_value[0].detail main_dict['Inputs'][input_name] = str(i_value) outputs = Node.objects.filter(parent=outputs[0]) for output in outputs: output_name = output.name output_value = output.value_set.all().order_by('-id') o_value = output_value[0].str_data if not o_value: o_value = output_value[0].float_data elif not o_value: o_value = output_value[0].detail main_dict['Outputs'][output_name] = str(o_value) memories = Node.objects.filter(parent=memories[0]) for memory in memories: memory_name = memory.name memory_value = memory.value_set.all().order_by('-id') m_value = memory_value[0].str_data if not m_value: m_value = memory_value[0].float_data elif not m_value: m_value = memory_value[0].detail main_dict["Memory"][memory_name] = str(m_value) return render(request, 'iomem.html', {'data': main_dict}) # Walk through all databases # node = client.get_objects_node() # return render(request, 'iomem.html', {'data': iomem(node)}) # # Walk through all databases # node = client.get_objects_node() # main_dict_ = iomem(node) # client.disconnect() # return render(request, 'iomem.html', {'data': main_dict_}) # @login_required() def get_certain_data(request): client = Client("opc.tcp://192.168.160.215:4840") client.connect() # ns = request.POST['ns'] s = request.POST['s'] # node = client.get_node("ns="+ns+';'+'s=\"'+s+'\"').get_variables() vars = {} for i in range(1, 6): node = client.get_node("ns=" + str(i) + ';' + 's=\"' + s + '\"').get_variables() for v in node: display_name = str(v.get_display_name()) start = display_name.index('Text:') + 5 node_name = display_name[start:-1] vars[node_name] = v.get_value() client.disconnect() return render(request, 'certain-data.html', {'data': vars, 's': s}) # @login_required() def certain_data_form(request): return render(request, "certain-data-form.html", {}) # @login_required() def filter_by_time(request): # start_date = datetime.strptime("2018-09-18 7:00:00", '%Y-%m-%d %H:%M:%S') # end_date = datetime.strptime("2018-09-24 12:56:00", '%Y-%m-%d %H:%M:%S') start_date = request.GET['startDate'] end_date = request.GET['endDate'] hour = start_date.split(' ') end_h = end_date.split(' ') start_date = datetime.strptime(hour[0], '%Y-%m-%d') end_date = datetime.strptime(end_h[0], '%Y-%m-%d') start = datetime.strptime(hour[1], '%H:%M') end = datetime.strptime(end_h[1], '%H:%M') start_hour = start.strftime('%H') end_hour = end.strftime('%H') start_min = start.strftime('%M') end_min = end.strftime('%M') parameter_list = [] parameters = Value.objects.filter(Q(date__range=[start_date, end_date], date__hour__gte=start_hour, date__hour__lte=end_hour), Q(date__minute__gte=start_min) | Q(date__minute__lte=end_min)) if parameters: for parameter in parameters: if parameter.node.important: date = parameter.date.strftime("%Y-%m-%d %H:%M:%S") value = parameter.str_data if not value: value = parameter.float_data elif not value: value = parameter.detail parameter_list.append(({'parameterName' : parameter.node.name, 'parameterValue' :value, 'parameterDate': date})) else: return JsonResponse(parameter_list, safe=False) def filter_by_value(request): value = "False" number = 0 dict = {} parameters = Value.objects.filter(Q(str_data=value) | Q(float_data=number), node__important=True) for parameter in parameters: last_value = parameter.node.value_set.all().order_by('-id') if last_value: last_value = last_value[0] value = last_value.str_data if not value: value = last_value.float_data dict[parameter.node.name] = value
2fbaf648ba5bae81e14b36d711e2c3c32e9d6a84
782add83942f817364080f9dc8df298d94d53bc4
/circuits/http/server/routing/router.py
65ae15bc1d1d1da807d7bd994aed546a1cf20311
[]
no_license
spaceone/circuits.http
058ea3538600a9f82465dac85196da839d5d23c5
ad204b161ee45899ed4672384e4236d3ef3a9374
refs/heads/master
2021-11-22T17:50:07.660090
2021-10-07T23:31:24
2021-10-07T23:33:10
34,882,701
5
1
null
null
null
null
UTF-8
Python
false
false
1,172
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from httoop import FORBIDDEN, NOT_FOUND from circuits import BaseComponent from circuits.http.events import request, response from circuits.http.utils import httphandler class Router(BaseComponent): @httphandler('routing_success') def _on_routing_success(self, evt, result): if not evt.stopped: client = evt.args[0] channels = [c.channel for c in (client.domain, client.resource) if c is not None] if client.events.request: return client.events.request = self.fire(request(client), *channels).event @httphandler('request_success') def _on_request_success(self, evt, result): if not evt.stopped and not getattr(evt, '_request_success_foobar', None): evt._request_success_foobar = True # FIXME: it seems this handler is called twice (for each channel?) client = evt.args[0] self.fire(response(client), client.server.channel) @httphandler('routing', priority=-0.12) def _on_resource_routing(self, client): if client.resource is None: if client.request.method in ('PUT', 'POST'): raise FORBIDDEN() raise NOT_FOUND(client.request.uri.path)
369118c3bb63fadbf9c81dbf0990bdd9080dcb3a
bba684fcdf354c5cbb0cde6c2ab7e26270056436
/links/views.py
ac0b98ee5a2818cd546a7aa1f414c00b94948859
[]
no_license
bekaarcoder/amazon-price-tracker
d2017b63076f1e67c84d2f8bc1234988f1564919
bcfe2e6bfad5e7e8627111c0bb8277ed306274ae
refs/heads/main
2023-04-04T16:30:09.514951
2021-04-20T17:22:18
2021-04-20T17:22:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,399
py
from django.shortcuts import render, redirect from .forms import AddLinkForm from .models import Link def home_view(request): no_discounted = 0 error = None form = AddLinkForm(request.POST or None) if request.method == "POST": try: if form.is_valid(): form.save() except AttributeError: error = "Error Occured! Coudn't get the data for the url." except: error = "Something went wrong!" form = AddLinkForm() links = Link.objects.all().order_by("created") items_no = links.count() if items_no > 0: discount_list = [] for item in links: if item.old_price > item.current_price: discount_list.append(item) no_discounted = len(discount_list) context = { "links": links, "items_no": items_no, "no_discounted": no_discounted, "form": form, "error": error, } return render(request, "links/main.html", context) def update_items(request): links = Link.objects.all() for link in links: link.save() return redirect("home") def delete_item(request, id): link = Link.objects.get(pk=id) context = {"link": link} if request.method == "POST": link.delete() return redirect("home") return render(request, "links/delete.html", context)
9d12cb3b60ff395ea9823f4727db08d662aec2d3
7c18e950ac82775020cd118abc01840907c6a57f
/accounts/views.py
6fd48dfdd70dcc5c41b41dc6286caf67b65eda1e
[]
no_license
jayedeep/colortogreyscale
104998e1c7a6e1df091a0176c7abfb305aa3aa6a
5b854d00812c7a86c3e0608cbd71fe8ab49425e0
refs/heads/master
2022-12-28T16:05:59.304248
2020-10-01T02:43:17
2020-10-01T02:43:17
300,119,431
0
0
null
2020-10-01T02:42:34
2020-10-01T02:42:34
null
UTF-8
Python
false
false
2,036
py
from django.shortcuts import render, redirect, HttpResponse from django.contrib import messages, auth from django.contrib.auth.models import User def signup(request): if request.method == "POST": username = request.POST['username'] email = request.POST['email'] password = request.POST['password'] confirm_password = request.POST['confirm_password'] if password == confirm_password: if User.objects.filter(username=username).exists(): messages.error(request,"Username already exists") return redirect('signup') else: if User.objects.filter(email=email).exists(): messages.error(request,"Email already exists") return redirect('signup') else: user = User.objects.create_user(username=username, email=email, password=password) user.save() messages.success(request, "You're are registered!") return redirect('login') else: messages.error(request, "Both passowrd should be match") return redirect('signup') else: return render(request, 'accounts/signup.html') def login(request): if request.method == "POST": username = request.POST['username'] password = request.POST['password'] print(username) print(password) user= auth.authenticate(username=username, password=password) if user: auth.login(request, user) messages.success(request, "You're logged in") return redirect("upload") else: messages.error(request, "Invalied Username or Password") return redirect("login") else: return render(request, 'accounts/login.html') def logout(request): if request.method == 'POST': auth.logout(request) messages.success(request, 'You are logged out') return redirect('upload')
b10f329072040843fe29da3ea7ff80d7ed7c4668
06bd8ff7e4b07b223639c9f462579b6e31bb9974
/read_data.py
da24129235512e196fda353414027df19b282f7a
[]
no_license
atantczak/Basic_Finance
e259b17d1593325c612ca2a6867a04030482b277
a59b53f3794888e5407aaab2e1273b23fcc51b20
refs/heads/master
2023-02-24T18:42:50.380161
2021-01-20T16:37:10
2021-01-20T16:37:10
274,242,961
0
0
null
null
null
null
UTF-8
Python
false
false
1,293
py
# This is the SECOND 'Python Programming for Finance' episode from sentdex. import datetime as dt import matplotlib.pyplot as plt from matplotlib import style import pandas as pd import pandas_datareader.data as web style.use('ggplot') # This is simply a style choice. Feel free to look into others once you get going. ''' Important to note: You need to write the file path as seen below. Let's say I have a folder titled "Stocks"; that's why I tell the "filename" portion of the command to go to "Stocks/AAPL.csv" ... if I was already in the folder with the AAPL data, I would simply write 'AAPL.csv'. Often times, however, you will keep data in separate folders. ''' df = pd.read_csv('Stocks/AAPL.csv',parse_dates=True, index_col=0) # Parse_dates ensures the format of all dates will be legible. # index_col = 0 is telling it to treat the first column as the index, or 0th column. # You can read from many different file formats such as: json, SQL, excel, etc.) df['Adj Close'].plot() plt.show() ''' I chose to only plot adjusted close here. Of course, you can plot the highs, volume, or whatever else you may want to look at. This is where the awesome powers of customization come into play. When you get comfortable with this stuff, you can really make all of these your own. '''
b732e224201c0f33230cda944132b44b1a322524
a652b1bcb5dbd5bbe57b1e26a1e80c45c42ed856
/apptest.py
90dbc8660f359a5ef64ad0b5ed1858c8cea365e7
[]
no_license
kvenkatasai4/test
a9f151265455b3adf5ac1dbfb0e9faf1fcc2346d
2ecf5e14ed7dc0fef9873205690194c130a69a4e
refs/heads/master
2021-09-24T10:11:12.188871
2018-10-07T21:32:57
2018-10-07T21:32:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
class App: a = 10 print(a)
5b2f410ad7d3aee2f2ebdb956b213c8d3ceaddfa
b8cc42d12d19129cd79850c5c17ee55fca12ffa1
/src/music/views.py
04ac79a74b859c25dbe47029c420c579fbfff110
[]
no_license
shashikantedx/django-music-project
eab7de3b1b4d71d3566d9954529e0ac1dec1b36f
c66411b14b64a24cef1622312afd3802f6706770
refs/heads/master
2021-07-13T08:05:22.388806
2020-09-02T12:44:10
2020-09-02T12:44:10
201,950,537
0
0
null
null
null
null
UTF-8
Python
false
false
4,833
py
from django.shortcuts import render, get_object_or_404 from django.contrib.auth import authenticate,login from django.contrib.auth.models import User from django.contrib.auth import logout from django.db.models import Q from .models import Album, Song , myplay from .forms import User_Forms # Create your views here. #-----------------------------------------# # view to define the home detail page........ def home_detail(request): albums = Album.objects.all() song_results = Song.objects.all() query = request.GET.get("q") if query: albums = albums.filter( Q(Album_title__icontains=query) | Q(Artist__icontains=query) ).distinct() song_results = song_results.filter( Q(song_title__icontains=query) ).distinct() return render(request, 'home-detail.html', { 'albums': albums, 'songs': song_results, }) else: return render(request, 'home-detail.html', {'albums': albums}) # view to define the signup page............. def SignUp(request): form = User_Forms(request.POST or None) if form.is_valid(): user = form.save(commit=False) username = form.cleaned_data['username'] password = form.cleaned_data['password'] user.set_password(password) user.save() user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(request, user) hello='Welcome' albums = Album.objects.all() return render(request, 'after-login-home.html', {'albums': albums,'hello':hello}) context = { "form": form, } return render(request, 'signup.html', context) # view to define the detail page.......... def detail(request, album_id): if not request.user.is_authenticated: return render(request, 'login.html') else: user = request.user album = get_object_or_404(Album, pk=album_id) return render(request, 'detail.html', {'album': album, 'user': user}) # view to define the logout page for app..... def logout_user(request): logout(request) form = User_Forms(request.POST or None) context = { "form": form, } return render(request, 'login.html', context) # view to define the login page for app....... def login_user(request): if request.method == "POST": username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(request, user) albums = Album.objects.all() return render(request, 'after-login-home.html', {'albums': albums,}) else: return render(request, 'login.html', {'error_message': 'Your account has been disabled'}) else: return render(request, 'login.html', {'error_message': 'Invalid login'}) return render(request, 'login.html') # view to define the user after loin page to provide thr message functionality and to provide the mlay music app detail... def after_login_home(request): if not request.user.is_authenticated: return render(request, 'login.html') else: albums = Album.objects.all() song_results = Song.objects.all() query = request.GET.get("q") if query: albums = albums.filter( Q(Album_title__icontains=query) | Q(Artist__icontains=query) ).distinct() song_results = song_results.filter( Q(song_title__icontains=query) ).distinct() return render(request, 'after-login-home.html', { 'albums': albums, 'songs': song_results, }) return render(request, 'after-login-home.html', {'albums': albums}) # view to define the add function to add the fav song to your play list.... def add(request,song_id): if not request.user.is_authenticated(): return render(request, 'login.html') else: song = get_object_or_404(Song, pk=song_id) my=myplay.objects.all() my.mysong=song.pk my.save() albums = Album.objects.all() song_results = Song.objects.all() query = request.GET.get("q") if query: albums = albums.filter( Q(Album_title__icontains=query) | Q(Artist__icontains=query) ).distinct() song_results = song_results.filter( Q(song_title__icontains=query) ).distinct() return render(request, 'after-login-home.html', { 'albums': albums, 'songs': song_results, }) return render(request, 'after-login-home.html', {'albums': albums})
657c41b1196bbd52be0069b9a51ee59954b7e73d
02b877ecb1922cbca67973970ea0873a21e6528c
/Queries-CM-Diagrams/Mean-AG-EBminR-Queries/OB-dataset_mean_AG-EBminR.py
8000567a034fc98b60949cfae62eda737986682d
[]
no_license
renlliang3/Gaia_research
681132c660622ecfe0c304501c8870e0433af133
6303185c41d549ebc8bc7bce020a5cbec0f8159f
refs/heads/master
2021-09-19T11:47:27.137611
2018-07-27T17:37:34
2018-07-27T17:37:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,825
py
import astropy.units as u from astropy.coordinates.sky_coordinate import SkyCoord from astropy.units import Quantity from astropy.io.votable import parse from astropy.table import Table from matplotlib.colors import LogNorm from astropy.io import fits import matplotlib.pyplot as plt import numpy as np extra_data = np.genfromtxt("Data/Mean_extinction_excess_SourceID_500pc_AG-4.4_BminR-1.7.dat", names = True, dtype=None) source_id = extra_data['source_id'] readresults = Table.read('Data/All-star-500pc-AG-4.4-BminR-1.7.fits',format='fits') results = np.array(readresults) nonmatches = np.array([]) j=0 for i in range(len(source_id)): not_found = True while not_found: if source_id[i]!=results['source_id'][j]: nonmatches = np.append(nonmatches,j) j+=1 else: not_found = False j+=1 print(j) for k in range(len(nonmatches)): results = np.delete(results,nonmatches[k]-k) j=0 nonmatches_check = np.array([]) for i in range(len(source_id)): not_found = True while not_found: if source_id[i]!=results['source_id'][j]: nonmatches_check = np.append(nonmatches_check,j) j+=1 else: not_found = False j+=1 print(j) print('Making OB-Dataset') #Build a new array with only the OB-Sources. first_indices = np.array([]) k=0 for i in range(len(results)): if results['bp_rp'][i]-extra_data['EBminR'][i] <= 0.0 and (results['phot_g_mean_mag'][i] + 5 * np.log10(results['parallax'][i]) - 10 - extra_data['AG'][i]) <= (3*(results['bp_rp'][i]-extra_data['EBminR'][i]) + 2.1): if k==2: OB_sources = np.append(results[int(first_indices[0])],results[int(first_indices[1])]) k+=1 elif k>2: OB_sources = np.append(OB_sources, results[i]) else: first_indices = np.append(first_indices,i) k+=1 t_OB = Table(OB_sources) t_OB.write('OB_corrected_mean_AG_EBminR.fits', format='fits')
96f88354793d8a9149846bf4e8fa205689bdf6b1
6dae400af965a87f209e5e72b18868927ae00053
/rooms/admin.py
2ffab64a5e43ca0a83a4d764f9e5bb31675f2f8e
[]
no_license
junha6316/airbnb-clone-using-Django
341ab71d7723ad413379723fc36c7a35a4d6fbba
fbce59ef9092c5ffbe6799b8c590492a9f0d40bf
refs/heads/master
2023-01-19T17:36:24.220832
2020-12-01T06:50:47
2020-12-01T06:50:47
292,712,609
0
0
null
null
null
null
UTF-8
Python
false
false
2,862
py
from django.contrib import admin from django.utils.html import mark_safe from . import models @admin.register(models.Photo) class PhotoAdmin(admin.ModelAdmin): """ Photo Admin Definition""" list_display = ("__str__", "get_thumbnail") def get_thumbnail(self, obj): return mark_safe(f"<img width = 50px src ={obj.file.url} />") get_thumbnail.short_description = "Thumbnail" # class PhotoInline(admin.TabularInline): class PhotoInline(admin.StackedInline): model = models.Photo @admin.register(models.Room) class RoomAdmin(admin.ModelAdmin): """ Room Admin Definition""" inlines = (PhotoInline,) fieldsets = ( ( "Basic_Info", {"fields": ("name", "description", "country", "city", "address", "price")}, ), ("Times", {"fields": ("check_in", "check_out", "instant_book")}), ( "Spaces", { "fields": ( "guests", "bedrooms", "baths", ), }, ), ( "More About the Space", { "fields": ( "amenities", "facilities", "houseRules", ) }, ), ("Last Details", {"fields": ("host",)}), ) list_display = ( "name", "description", "country", "city", "price", "guests", "bedrooms", "baths", "check_in", "check_out", "instant_book", "countItems", "Count_Photos", "Rating_Reviews", ) ordering = ("price",) list_filter = ( "instant_book", "host__superhost", "host__gender", "amenities", "facilities", "houseRules", "country", "city", ) raw_id_fields = ("host",) # Item들을 아이디를 이용해 관리하게 한다. search_fields = ("^city", "host__username") filter_horizontal = ( # filter_horizontal "amenities", "facilities", "houseRules", ) def save_model(self, request, obj, form, change): print(obj, change, form) super().save_model(request, obj, form, change) def countItems(self, obj): # self: admin class /obj : current row return obj.amenities.count() # queryset def Count_Photos(self, obj): return obj.photos.count() Count_Photos.short_description = "Photo Count" @admin.register(models.RoomType, models.Amenity, models.Facility, models.HouseRule) class ItemAdmin(admin.ModelAdmin): """ Item Admin Definition """ list_display = ("name", "used_by") def used_by(selfm, obj): # ROOMS THAT HAVE THE ITEM return obj.rooms.count() # Register your models here.
5d8aeed4c432b6a82a177870497c7821f93d0c08
e16f5e6158a9b1e3f9206744996f94f682248725
/assignment2/cs231n/classifiers/cnn.py
13984995b0cc61bce2adf12eb7c49953d17b9a93
[]
no_license
fighting-liu/cs231n
435284acc0511f6f6213294a345fe70b924ef469
952534f9d132068f41f08f7968c5c0174fe4a698
refs/heads/master
2021-01-01T05:17:37.137220
2016-05-05T02:46:54
2016-05-05T02:46:54
57,176,180
0
0
null
null
null
null
UTF-8
Python
false
false
5,905
py
import numpy as np from cs231n.layers import * from cs231n.fast_layers import * from cs231n.layer_utils import * class ThreeLayerConvNet(object): """ A three-layer convolutional network with the following architecture: conv - relu - 2x2 max pool - affine - relu - affine - softmax The network operates on minibatches of data that have shape (N, C, H, W) consisting of N images, each with height H and width W and with C input channels. """ def __init__(self, input_dim=(3, 32, 32), num_filters=32, filter_size=7, hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0, dtype=np.float32): """ Initialize a new network. Inputs: - input_dim: Tuple (C, H, W) giving size of input data - num_filters: Number of filters to use in the convolutional layer - filter_size: Size of filters to use in the convolutional layer - hidden_dim: Number of units to use in the fully-connected hidden layer - num_classes: Number of scores to produce from the final affine layer. - weight_scale: Scalar giving standard deviation for random initialization of weights. - reg: Scalar giving L2 regularization strength - dtype: numpy datatype to use for computation. """ self.params = {} self.reg = reg self.dtype = dtype ############################################################################ # TODO: Initialize weights and biases for the three-layer convolutional # # network. Weights should be initialized from a Gaussian with standard # # deviation equal to weight_scale; biases should be initialized to zero. # # All weights and biases should be stored in the dictionary self.params. # # Store weights and biases for the convolutional layer using the keys 'W1' # # and 'b1'; use keys 'W2' and 'b2' for the weights and biases of the # # hidden affine layer, and keys 'W3' and 'b3' for the weights and biases # # of the output affine layer. # ############################################################################ C, H, W = input_dim W1 = weight_scale * np.random.randn(num_filters, C, filter_size, filter_size) b1 = np.zeros((num_filters)) W2 = weight_scale * np.random.randn(num_filters * H * W / 4, hidden_dim) b2 = np.zeros((hidden_dim)) W3 = weight_scale * np.random.randn(hidden_dim, num_classes) b3 = np.zeros((num_classes)) self.params['W1'] = W1 self.params['b1'] = b1 self.params['W2'] = W2 self.params['b2'] = b2 self.params['W3'] = W3 self.params['b3'] = b3 ############################################################################ # END OF YOUR CODE # ############################################################################ for k, v in self.params.iteritems(): self.params[k] = v.astype(dtype) def loss(self, X, y=None): """ Evaluate loss and gradient for the three-layer convolutional network. Input / output: Same API as TwoLayerNet in fc_net.py. """ W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] W3, b3 = self.params['W3'], self.params['b3'] # pass conv_param to the forward pass for the convolutional layer filter_size = W1.shape[2] conv_param = {'stride': 1, 'pad': (filter_size - 1) / 2} # pass pool_param to the forward pass for the max-pooling layer pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2} scores = None ############################################################################ # TODO: Implement the forward pass for the three-layer convolutional net, # # computing the class scores for X and storing them in the scores # # variable. # ############################################################################ out, cache_conv_relu_pool = conv_relu_pool_forward(X, W1, b1, conv_param, pool_param) out, cache_affine_relu = affine_relu_forward(out, W2, b2) out, cache_affine = affine_forward(out, W3, b3) scores = out ############################################################################ # END OF YOUR CODE # ############################################################################ if y is None: return scores loss, grads = 0, {} ############################################################################ # TODO: Implement the backward pass for the three-layer convolutional net, # # storing the loss and gradients in the loss and grads variables. Compute # # data loss using softmax, and make sure that grads[k] holds the gradients # # for self.params[k]. Don't forget to add L2 regularization! # ############################################################################ data_loss, dscores = softmax_loss(scores, y) reg_loss = 1.0 / 2 * self.reg * (np.sum(W1 * W1) + np.sum(W2 * W2) + np.sum(W3 * W3)) loss = data_loss + reg_loss dx, dW3, db3 = affine_backward(dscores, cache_affine) dx, dW2, db2 = affine_relu_backward(dx, cache_affine_relu) dx, dw1, db1 = conv_relu_pool_backward(dx, cache_conv_relu_pool) grads['W3'] = dW3 + self.reg * W3 grads['W2'] = dW2 + self.reg * W2 grads['W1'] = dw1 + self.reg * W1 grads['b3'] = db3 grads['b2'] = db2 grads['b1'] = db1 ############################################################################ # END OF YOUR CODE # ############################################################################ return loss, grads pass
4f86eca5a3468acb69cf9475c5fe32630dff5d7d
a9c3db07c29a46baf4f88afe555564ed0d8dbf2e
/src/0653-two-sum-iv-input-is-a-bst/two-sum-iv-input-is-a-bst.py
72232f21d6dd661901232bc99868e4c984563a8f
[]
no_license
HLNN/leetcode
86d2f5b390be9edfceadd55f68d94c78bc8b7644
35010d67341e6038ae4ddffb4beba4a9dba05d2a
refs/heads/master
2023-03-13T16:44:58.901326
2023-03-03T00:01:05
2023-03-03T00:01:05
165,402,662
6
6
null
null
null
null
UTF-8
Python
false
false
1,135
py
# Given the root of a binary search tree and an integer k, return true if there exist two elements in the BST such that their sum is equal to k, or false otherwise. # #   # Example 1: # # # Input: root = [5,3,6,2,4,null,7], k = 9 # Output: true # # # Example 2: # # # Input: root = [5,3,6,2,4,null,7], k = 28 # Output: false # # #   # Constraints: # # # The number of nodes in the tree is in the range [1, 104]. # -104 <= Node.val <= 104 # root is guaranteed to be a valid binary search tree. # -105 <= k <= 105 # # # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def findTarget(self, root: Optional[TreeNode], k: int) -> bool: q = deque([root]) seen = set() while q: cur = q.popleft() if cur: if k - cur.val in seen: return True seen.add(cur.val) q.append(cur.left) q.append(cur.right) return False
e0697c83f283140deb66bb3ec28117302a6ef0c3
47243c719bc929eef1475f0f70752667b9455675
/bungeni.main/branches/sterch-del-proxy/bungeni/core/workflows/transitioncron.py
21bf28399ed6dbf3bad899a54ce1e0ca84463de4
[]
no_license
malangalanga/bungeni-portal
bbf72ce6d69415b11287a8796b81d4eb6520f03a
5cf0ba31dfbff8d2c1b4aa8ab6f69c7a0ae9870d
refs/heads/master
2021-01-19T15:31:42.943315
2014-11-18T09:03:00
2014-11-18T09:03:00
32,453,405
0
0
null
null
null
null
UTF-8
Python
false
false
3,292
py
# encoding: utf-8 #Automatically transition Questions #The system needs to provide a settable time-frame beyond which “Admissible” #questions which are available for scheduling - change status to “Deferred” import sys import datetime import zope.lifecycleevent import sqlalchemy.sql.expression as sql from bungeni.alchemist import Session import bungeni.models.domain as domain import bungeni.models.schema as schema import bungeni.core.audit as audit #import bungeni.core.workflows.question as question_workflow import bungeni.core.globalsettings as prefs import bungeni.core.workflows.dbutils as dbutils from ore.workflow.interfaces import IWorkflowInfo ############################## # imports for main from zope import component from sqlalchemy import create_engine import ore.workflow.workflow from bungeni.alchemist.interfaces import IDatabaseEngine import bungeni.core.interfaces import bungeni.core.workflows.question import bungeni.core.workflows.adapters from bungeni import core as model #import pdb def _getQuestionsApprovedBefore(date, status): """ get all questions with the workflow status before date """ session = Session() qfilter=sql.and_( (domain.Question.approval_date < date ), (domain.Question.status == status) ) query = session.query(domain.Question).filter(qfilter) return query.all() def _deferAdmissibleQuestionsBefore(date): """ set all admissible Questions before this date to defered """ status = u"admissible" admissibleQuestions = _getQuestionsApprovedBefore(date, status) for question in admissibleQuestions: IWorkflowInfo(question).fireTransitionToward(u'deferred', check_security=False) def deferAdmissibleQuestions(): """ get the timeframe and defer all questions before the current date - timeframe """ timedelta = prefs.getDaysToDeferAdmissibleQuestions() deferDate = datetime.date.today() - timedelta _deferAdmissibleQuestionsBefore(deferDate) def main(argv=None): """ run this as a cron job and execute all time based transitions """ db = create_engine('postgres://localhost/bungeni', echo=False) component.provideUtility( db, IDatabaseEngine, 'bungeni-db' ) model.metadata.bind = db session = Session() component.provideAdapter( bungeni.core.workflows.states.WorkflowState, (bungeni.core.interfaces.IBungeniContent,)) component.provideAdapter( bungeni.core.workflows.question.QuestionWorkflowAdapter, (domain.Question,)) component.provideAdapter( bungeni.core.workflows.states.StateWorkflowInfo, (domain.Question,)) component.provideHandler( bungeni.core.workflows.question.workflowTransitionEventDispatcher) # add autitor for time based transitions #component.provideAdapter( # (bungeni.core.interfaces.IAuditable, bungeni.core.interfaces.IQuestion, ), # (domain.Question, )) #component.provideAdapter( audit.objectModified, #(domain.Question, bungeni.core.interfaces.IAuditable, )) deferAdmissibleQuestions() session.flush() session.commit() if __name__ == "__main__": sys.exit(main())
[ "ashok.hariharan@fc5d704a-7d24-0410-8c4a-57ddeba10ffc" ]
ashok.hariharan@fc5d704a-7d24-0410-8c4a-57ddeba10ffc
dfb663789d60d50ac6cd1c56b4a8bf9a33a5d07b
abea9a09bf265a19bb947789e814b1c3e1f21e24
/iepy/preprocess/ner/literal.py
f3fafbba5df518d09cc9c67d1495cb37ae209e35
[ "LGPL-2.0-or-later", "GPL-1.0-or-later", "Apache-2.0", "LicenseRef-scancode-public-domain", "BSD-3-Clause" ]
permissive
hanjx16/iepy_zh
ea28289c807ae97e131e68dd7b67c3f884dc5ee7
98c9acf76410a085c0a77dfbe8837daf81c27a48
refs/heads/master
2022-11-06T18:34:24.533294
2018-07-16T08:06:11
2018-07-16T08:06:11
141,105,817
1
0
BSD-3-Clause
2022-11-03T13:08:05
2018-07-16T07:58:03
Python
UTF-8
Python
false
false
3,791
py
import codecs from iepy.preprocess.ner.base import BaseNERRunner class LiteralNER(object): """Trivial Named Entity Recognizer that tags exact matches. """ def __init__(self, labels, src_filenames): """The i-th label is used to tag the occurrences of the terms in the i-th source file. If a term can have several labels, the last one in the list is selected. """ assert len(labels) == len(src_filenames) self.labels = labels self.src_filenames = src_filenames names = set() names_map = {} for label, filename in zip(labels, src_filenames): f = codecs.open(filename, encoding="utf8") namelist = f.read().strip().split('\n') names.update(namelist) for name in namelist: names_map[name] = label self.names = frozenset(names) self.names_map = names_map # compute prefix closure prefixes = set() for name in self.names: sname = name.split() prefixes.update([' '.join(sname[:i]) for i in range(1, len(sname) + 1)]) self.prefixes = frozenset(prefixes) def tag(self, sent): """Tagger with output a la Stanford (no start/end markers). """ entities = self.entities(sent) # dummy entity for nicer code: entities.append(((len(sent), len(sent)), 'X')) next_entity = entities.pop(0) result = [] for i, t in enumerate(sent): if i >= next_entity[0][1]: # assert entities next_entity = entities.pop(0) if i < next_entity[0][0]: result.append((t, 'O')) elif i < next_entity[0][1]: result.append((t, next_entity[1])) return result def entities(self, sent): """Return entities as a list of pairs ((offset, offset_end), label). """ result = [] i = 0 while i < len(sent): j = i + 1 prev_segment = segment = ' '.join(sent[i:j]) while segment in self.prefixes and j <= len(sent): j += 1 prev_segment = segment segment = ' '.join(sent[i:j]) if prev_segment in self.names: label = self.names_map[prev_segment] result.append(((i, j - 1), label)) i = j - 1 else: i += 1 return result class LiteralNERRunner(BaseNERRunner): def __init__(self, labels, src_filenames, override=False): super(LiteralNERRunner, self).__init__(override=override) self.lit_tagger = LiteralNER(labels, src_filenames) def run_ner(self, doc): entities = [] sent_offset = 0 for sent in doc.get_sentences(): sent_entities = self.lit_tagger.entities(sent) for ((i, j), label) in sent_entities: name = ' '.join(sent[i:j]) kind = label.lower() # XXX: should be in models.ENTITY_KINDS entities.append( self.build_occurrence( key=name, kind_name=kind, alias=name, offset=sent_offset + i, offset_end=sent_offset + j) ) sent_offset += len(sent) return entities def to_lower_normalizer(name): """Utility normalizer that converts a name to lowercase unless it is an acronym. To be used as parameter of download_freebase_type(). """ words = name.split() result = [] for w in words: if not w.isupper(): w = w.lower() result.append(w) return ' '.join(result)
27c8f713e9ddf86a65a0a33babb885ac9b025b97
0a0deefcf08355576acae85b47b9807574ccb552
/x.py
39a3b9b94a9827733f36ba137ab2fc2db3f95ad6
[]
no_license
val-labs/ll
792a38bf48174498c54cb8e407a8b6f43de9724b
2f3af6648fd3b9f6039ec1db9b143384ac614d14
refs/heads/master
2021-01-23T03:54:10.086043
2017-03-29T00:59:29
2017-03-29T00:59:29
86,135,184
0
0
null
null
null
null
UTF-8
Python
false
false
1,228
py
#!/usr/bin/env python def push(x,y): x.append(y) ; return x def pop(x): return x.pop() import sys fni=sys.argv[1] ; fno=fni[:-1]+'o' fi,fo=open(fni),open(fno,'w') stack = [ 0 ] prev_line = '' N=-1 def count_spaces(line): for n,c in enumerate(line): if c!=' ': return n return -1 def do_line(last_line=False): global c c = curr = count_spaces(curr_line) p = prev = count_spaces(prev_line) if c == -1: c = 0 if p == -1: p = 0 if last_line: c = 0 if prev == -1: print(".") else: line_str = prev_line if c > p: ch = '>' line_str = '('+line_str push(stack, c) elif c == p: ch = '=' line_str = '.'+line_str+close(c) elif c < p: ch = '<' line_str = ':'+line_str+close(c) pass print("x", N, ch, c, curr, p, prev, last_line, line_str) def close(c): ret = [] while stack[-1] > c: pop(stack) push(ret, ')') pass return ''.join(ret) for N,line in enumerate(fi): curr_line = line[:-1] if N>0: do_line() prev_line = curr_line pass do_line(last_line=True)
a5062b3d6841fb040c6222a02ba3122f057374e1
09f8a3825c5109a6cec94ae34ea17d9ace66f381
/cohesity_management_sdk/models/cloud_domain_migration_query_result.py
c7fa752fad7e5795b19de2a2f86a934d61dca4d9
[ "Apache-2.0" ]
permissive
cohesity/management-sdk-python
103ee07b2f047da69d7b1edfae39d218295d1747
e4973dfeb836266904d0369ea845513c7acf261e
refs/heads/master
2023-08-04T06:30:37.551358
2023-07-19T12:02:12
2023-07-19T12:02:12
134,367,879
24
20
Apache-2.0
2023-08-31T04:37:28
2018-05-22T06:04:19
Python
UTF-8
Python
false
false
4,050
py
# -*- coding: utf-8 -*- # Copyright 2023 Cohesity Inc. import cohesity_management_sdk.models.common_job_info import cohesity_management_sdk.models.universal_id class CloudDomainMigrationQueryResult(object): """Implementation of the 'CloudDomainMigrationQueryResult' model. CloudDomainMigrationQueryResult represents the info returned while querying cloud domain migration. Attributes: app_job_uid_list (list of UniversalId): Specifies the list of the application jobs discovered. cloud_domain_id (long|int): Specifies the Id of a specific cloud domain present inside the vault, that needs to be migrated. If not set, all cloud domains found in the vault or under the 'domain_namespace' specified in CADConfig will be migrated. common_job_info (CommonJobInfo): Specifies the common job info. is_cad_mode (bool): Specifies if the migration mode is CAD or not. is_migration_ready (bool): Specifies whether the protection jobs/objects in the cloud domain are ready to be migrated. This is set after required snap trees have been downloaded and CM tables have been populated. num_of_bytes_downloaded (long|int): Specifies the Number of bytes downloaded by this job. The downloaded bytes are for reading metadata object, data objects and index files. """ # Create a mapping from Model property names to API property names _names = { "app_job_uid_list":'appJobUidList', "cloud_domain_id":'cloudDomainId', "common_job_info":'commonJobInfo', "is_cad_mode":'isCadMode', "is_migration_ready":'isMigrationReady', "num_of_bytes_downloaded":'numOfBytesDownloaded', } def __init__(self, app_job_uid_list=None, cloud_domain_id=None, common_job_info=None, is_cad_mode=None, is_migration_ready=None, num_of_bytes_downloaded=None, ): """Constructor for the CloudDomainMigrationQueryResult class""" # Initialize members of the class self.app_job_uid_list = app_job_uid_list self.cloud_domain_id = cloud_domain_id self.common_job_info = common_job_info self.is_cad_mode = is_cad_mode self.is_migration_ready = is_migration_ready self.num_of_bytes_downloaded = num_of_bytes_downloaded @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary app_job_uid_list = None if dictionary.get('appJobUidList') != None: app_job_uid_list = list() for structure in dictionary.get('appJobUidList'): app_job_uid_list.append(cohesity_management_sdk.models.universal_id.UniversalId.from_dictionary(structure)) cloud_domain_id = dictionary.get('cloudDomainId') common_job_info = cohesity_management_sdk.models.common_job_info.CommonJobInfo.from_dictionary(dictionary.get('commonJobInfo')) if dictionary.get('commonJobInfo') else None is_cad_mode = dictionary.get('isCadMode') is_migration_ready = dictionary.get('isMigrationReady') num_of_bytes_downloaded = dictionary.get('numOfBytesDownloaded') # Return an object of this model return cls( app_job_uid_list, cloud_domain_id, common_job_info, is_cad_mode, is_migration_ready, num_of_bytes_downloaded )
ec31bc444aed72d7d0050366d378bddac1e55dab
1d230067a680871af1127f89cc23dda6901f02e3
/python/cursoemvideo/ex046.py
4795ce11e5367dd3ae8b87045d5eb898782bdca1
[]
no_license
pedrocambui/exercicios_e_desafios
981f47d8ef5b37eda5c637da76918c29f4a4d700
65eb86f232aad4abc7cc2e95897ca0d5bb72dcf2
refs/heads/main
2023-03-13T13:28:46.058769
2021-03-30T16:25:08
2021-03-30T16:25:08
353,064,135
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
import time for c in range(10, 0, -1): print(c) time.sleep(1) print('FELIZ ANO NOVO!')
e3a9d91fb649e5c2c2eda79763d811cec1053536
9fdd0b9b581c169f4e3f8e1cf8bb20a32285da7a
/misc/server/communicator.py
e5a95ecc52f182c4cb479f0b17439ebdd45cf9e0
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Adrien4193/windshape
ddf716e5554e2a94b3bb5f6bae5950ed1a1dd5a3
4c73a4a85409f04518029f0ddb8bd7e3c60e4905
refs/heads/master
2020-03-23T14:55:37.532702
2018-08-17T07:07:58
2018-08-17T07:07:58
141,708,616
0
1
null
null
null
null
UTF-8
Python
false
false
5,433
py
import socket import os import MySQLdb import threading import time import dbapi from Module import Module # THREAD 1: Get modules state from NUCLEO ######################################################################## def recvUDP(): time.sleep(0.1) print "[RECVTH] Receiving thread started..." # While sending thread is running while sendth.isAlive(): # Receive a message on socket recvd, sAddr = sock.recvfrom(256) # Safety if len(recvd) == 0: continue # DATA (Module state) if recvd[0] == 'D': # Get data of interest from the incomming message data = recvd[2:recvd.index('\0')] isPowered, isFlashing, modID, _, rpm = data.split(';') ipAddr = sAddr[0] #print 'RECEIVED: '+str(recvd)+'\nFROM: '+str(ipAddr) # Get sender if switch_fake: modID = int(modID) else: if ipAddr in id_from_ip.keys(): modID = id_from_ip[ipAddr] else: continue # Safety if not modID in modules.keys(): continue # Write immediately if new modules[modID].setAttribute('isPowered', isPowered) modules[modID].setAttribute('isFlashing', isFlashing) # Will be written at update modules[modID]['rpm'] = rpm # MAC elif recvd[0] == 'M': macAddr = recvd[2:-1] ipAddr = sAddr[0] #print 'RECEIVED: '+str(recvd)+'\nFROM: '+str(ipAddr) # Get ID from MAC modID = id_from_mac[macAddr] # Update IP if ipAddr in id_from_ip: del id_from_ip[ipAddr] id_from_ip[ipAddr] = modID # Write immediately if new modules[modID].setAttribute('ipAddr', ipAddr) modules[modID].resetLifePoints() print "[RECVTH] terminated" # THREAD 2: Send modules state from DB to NUCLEO def sendUDP(): dbCon, dbCur = openDB_function() time.sleep(0.1) print "[SENDTH] Sending thread started..." # Sending rate dt = 0.01 # While receiving thread is running while recvth.isAlive(): for i in range(10): for mod in dbapi.getModules(dbCon, dbCur): isPowered = mod['isPowered'] isFlashing = mod['isFlashing'] pwm_str = mod['pwm'] cmd = "O:{};{};{};{};{}\0".format(isPowered, isFlashing, 0, 0, pwm_str) ipAddr = mod['ipAddr'] try: sock.sendto(cmd, (ipAddr, port)) except: print 'ERROR: CANNOT SEND '+str(cmd)+' TO '+str(ipAddr) time.sleep(dt) # Send broadcast message sock.sendto("B", ('<broadcast>', port)) # Decay life points of modules for module in modules.values(): module.decayLifePoints() print "[SENDTH] terminated" # THREAD 3: Update RPM in DB def updateDB(): con, cur = openDB_function() time.sleep(0.1) print '[UPDATETH] Start ...' while recvth.isAlive(): ref = time.time() cmd = 'UPDATE modules SET rpm=CASE modID ' cmds = [] values = [] for modID in modules.keys(): cmds.append('WHEN %s THEN %s') values.append(modID) values.append(modules[modID]['rpm']) cmds.append('ELSE rpm END;') cmd += ' '.join(cmds) with con: cur.execute(cmd, values) duration = time.time() - ref #print duration if duration < 1.0 / Module.rate: time.sleep(1.0/Module.rate - duration) print "[UPDATETH] terminated" def create_modules(modulesDict): global id_from_ip, id_from_mac # Indexing IDs to find modules from IP or MAC id_from_ip = {} id_from_mac = {} con, cur = openDB_function() for modID in modulesDict.keys(): macAddr = modulesDict[modID]['macAddr'] x = modulesDict[modID]['posX'] y = modulesDict[modID]['posY'] # Index modules Ids with MAC for optimization id_from_mac[macAddr] = modID # Create Module instance modules[modID] = Module(con, cur, modID, macAddr, x, y) def create_socket(port_number): global sock, port # Same as fake and modules port = port_number # Set socket as UDP and use IPv4 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Make the socket reusable in case of inproper closure sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) # Block until data available sock.setblocking(True) # Bind to port sock.bind(('', port)) # Allow broadcast sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) # INITIALIZATION ######################################################################## def start(open_function, modulesDict, fake, port_number): global modules modules = {} global openDB_function openDB_function = open_function global switch_fake switch_fake = fake global recvth, sendth global log_file log_file = open('log.txt', 'w') # Create empty module table on DB dbCon, dbCur = open_function() dbapi.createModulesTable(dbCon, dbCur) dbapi.removeModuleFromDB(dbCon, dbCur, None) # Fill table with modules for modID in modulesDict.keys(): dbapi.insertModuleToDB(dbCon, dbCur, modID, modulesDict[modID]) # Communication with DB create_modules(modulesDict) # Init communication with modules create_socket(port_number) # Initiate and start a thread for receiving over UDP recvth = threading.Thread(target=recvUDP) recvth.setDaemon(True) recvth.start() # Initiate and start a thread for sending over UDP sendth = threading.Thread(target=sendUDP) sendth.setDaemon(True) sendth.start() # Update modules state in DB updateth = threading.Thread(target=updateDB) updateth.setDaemon(True) updateth.start()
906045475be3ddf2f4693588bbc982f9337e92ff
9a731b24a38e356f0c53e2ef181d7bccf01f030c
/pythonProject/udiacce/android/gradle/UdiAcce/app/src/main/assets/python/app_packages/toga_android/window.py
2ebfa068c6713de41f094c287a32ada714f03753
[ "BSD-3-Clause" ]
permissive
yarinudi/udiacce
aa7a83237195c23ace7a4fe7ff57d6b81c76806c
4d0fc9734646768a117f28880cd606c66cc36fef
refs/heads/master
2023-07-13T05:55:35.400126
2021-08-06T12:14:47
2021-08-06T12:14:47
393,357,998
0
0
null
null
null
null
UTF-8
Python
false
false
3,775
py
from . import dialogs from .libs.android import R__attr from .libs.android.util import TypedValue class AndroidViewport: def __init__(self, native): self.native = native self.dpi = self.native.getContext().getResources().getDisplayMetrics().densityDpi # Toga needs to know how the current DPI compares to the platform default, # which is 160: https://developer.android.com/training/multiscreen/screendensities self.baseline_dpi = 160 @property def width(self): return self.native.getContext().getResources().getDisplayMetrics().widthPixels @property def height(self): screen_height = self.native.getContext().getResources().getDisplayMetrics().heightPixels return screen_height - self._status_bar_height() - self._action_bar_height() def _action_bar_height(self): """ Get the size of the action bar. The action bar shows the app name and can provide some app actions. """ tv = TypedValue() has_action_bar_size = self.native.getContext().getTheme().resolveAttribute(R__attr.actionBarSize, tv, True) if not has_action_bar_size: return 0 return TypedValue.complexToDimensionPixelSize( tv.data, self.native.getContext().getResources().getDisplayMetrics()) def _status_bar_height(self): """ Get the size of the status bar. The status bar is typically rendered above the app, showing the current time, battery level, etc. """ resource_id = self.native.getContext().getResources().getIdentifier("status_bar_height", "dimen", "android") if resource_id <= 0: return 0 return self.native.getContext().getResources().getDimensionPixelSize(resource_id) class Window: def __init__(self, interface): self.interface = interface self.interface._impl = self self.create() def create(self): pass def set_app(self, app): self.app = app def set_content(self, widget): # Set the widget's viewport to be based on the window's content. widget.viewport = AndroidViewport(widget.native) # Set the app's entire contentView to the desired widget. This means that # calling Window.set_content() on any Window object automatically updates # the app, meaning that every Window object acts as the MainWindow. self.app.native.setContentView(widget.native) # Attach child widgets to widget as their container. for child in widget.interface.children: child._impl.container = widget child._impl.viewport = widget.viewport def set_title(self, title): pass def set_position(self, position): pass def set_size(self, size): pass def create_toolbar(self): pass def show(self): pass def set_full_screen(self, is_full_screen): self.interface.factory.not_implemented('Window.set_full_screen()') def info_dialog(self, title, message): dialogs.info(self, title, message) def question_dialog(self, title, message): self.interface.factory.not_implemented('Window.question_dialog()') def confirm_dialog(self, title, message): self.interface.factory.not_implemented('Window.confirm_dialog()') def error_dialog(self, title, message): self.interface.factory.not_implemented('Window.error_dialog()') def stack_trace_dialog(self, title, message, content, retry=False): self.interface.factory.not_implemented('Window.stack_trace_dialog()') def save_file_dialog(self, title, suggested_filename, file_types): self.interface.factory.not_implemented('Window.save_file_dialog()')
e72b97ba944366314ab410155e3a81c1c4b77eb5
fe97a6d69fa1a18a280768a2aeb43c573a3b8e28
/A3/TTP.py
d39f45609a146e5591ae423ca1b29c96f511612d
[]
no_license
dylnstwrt/cpsc418
d4acccf4f7443d81635087070c86bce559b5f41f
a7bf4f3dd51ea10f02242d225822a5fe57df2cc6
refs/heads/master
2022-06-25T14:02:20.929829
2020-04-20T00:32:18
2020-04-20T00:32:18
235,682,883
0
0
null
null
null
null
UTF-8
Python
false
false
4,076
py
#!/usr/bin/env python3 ''' File: TTP.py Class: CPSC418 - Winter 2020 Name: Dylan Stewart UCID: 30024193 Assignment : 3 Problem: 8 ''' import socket import sys import os import sympy import secrets import time from cryptography.hazmat.primitives import hashes from cryptography.hazmat.backends import default_backend HOST = '127.0.4.18' # Standard loopback interface address (localhost) PORT = 31802 # Port to listen on (non-privileged ports are > 1023) def xgcd(a, b): """return (g, x, y) such that a*x + b*y = g = gcd(a, b)""" x0, x1, y0, y1 = 0, 1, 1, 0 while a != 0: (q, a), b = divmod(b, a), a y0, y1 = y1, y0 - q * y1 x0, x1 = x1, x0 - q * x1 return b, x0, y0 def modinv(a, b): """return x such that (x * a) % b == 1""" g, x, _ = xgcd(a, b) return x % b def generate_RSA_Prime(size): while True: p = secrets.randbits(size) while True: if sympy.isprime(p): p = (2*p) + 1 if sympy.isprime(p): return p else: break else: if (p % 2 == 0): p = p + 1 p = p + 2 def gen_rsa_pub(phi_n): while True: e = secrets.randbelow(phi_n) if (e >= 1) & (sympy.gcd(e, phi_n) == 1): return e def hashBytes(bytesToHash): digest = hashes.Hash(hashes.SHA3_512(), backend=default_backend()) digest.update(bytesToHash) return digest.finalize() def rsa_keygen(): p = generate_RSA_Prime(256) q = generate_RSA_Prime(256) n = p*q phi_n = (p - 1)*(q - 1) e = gen_rsa_pub(phi_n) d = modinv(e, phi_n) print("TTP: TTP_p =",p,flush=True) print("TTP: TTP_q =",q,flush=True) print("TTP: TTP_N =",n,flush=True) print("TTP: TTP_e =", e,flush=True) print("TTP: TTP_d =",d,flush=True) return e, d, n def rsa_sig_gen(data, d, n): t = hashBytes(data) t_naught = hashBytes(t) t_naught = int.from_bytes(t+t_naught, byteorder='big') % n return pow(t_naught, d, n) def main(): e, d, n = rsa_keygen() with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind((HOST,PORT)) while True:# print("TTP Listening for connections...") s.listen() conn, addr = s.accept() with conn: msg = conn.recv(11).decode('utf-8') if (msg == "REQUEST SIG"): conn.recv(1) print("REQUEST SIGN") nameLength = int.from_bytes(conn.recv(4), byteorder='big') name_bytes = conn.recv(nameLength) print("TTP: S = \'"+name_bytes.decode('utf-8')+"\'", flush=True) Server_N = conn.recv(128) print("TTP: Server_N =", int.from_bytes(Server_N, byteorder='big'), flush=True) Server_e = conn.recv(128) print("TTP: Server_e =", int.from_bytes(Server_e, byteorder='big'), flush=True) signature = rsa_sig_gen(name_bytes+Server_N+Server_e, d, n) print("TTP: TTP_SIG =",signature,flush='True') print("TTP: Sending TTP_N <"+n.to_bytes(128, byteorder='big').hex()+">",flush=True) print("TTP: Sending TTP_SIG <"+signature.to_bytes(128, byteorder='big').hex()+">",flush=True) conn.sendall(n.to_bytes(128, byteorder='big') + signature.to_bytes(128, byteorder='big')) conn.close() if (msg == "REQUEST KEY"): print("REQUEST KEY") print("TTP: Sending TTP_N <"+n.to_bytes(128, byteorder='big').hex()+">",flush=True) print("TTP: Sending TTP_e <"+e.to_bytes(128, byteorder='big').hex()+">",flush=True) conn.sendall(n.to_bytes(128, byteorder='big') + e.to_bytes(128, byteorder='big')) #exit(0) if __name__ == "__main__": main()
72603b9a0cf234e5000de9a40607dcc4a986fda7
17a3418a6143ea2d953cf6509aeca7cc6e074686
/Final-Project/backend/venv/bin/mid3v2
e4b1fef5fc4f98a75b18321d25adc4e23bd0ab9d
[]
no_license
francolmenar-USYD/Internet-Software-Platforms
addb69a5582a63877e5f3408d64485a7ca942721
9e82ab6e7d0f8d4b3d55789cf5cfcd8e524a85df
refs/heads/master
2022-04-22T02:07:25.419086
2020-04-22T10:02:43
2020-04-22T10:02:43
256,714,630
0
0
null
null
null
null
UTF-8
Python
false
false
484
#!/mnt/c/Shared/ELEC3609/bird-repo/backend/venv/bin/python3 # -*- coding: utf-8 -*- # Copyright 2016 Christoph Reiter # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. import sys from mutagen._tools.mid3v2 import entry_point if __name__ == "__main__": sys.exit(entry_point())
6c29e4c998dee4f35cd93f6f38bb8e40e1f9e3c0
ce4202088bf28a070d9ff015f916c1e09f107dfb
/trivial_main.py
43a88671aa5d854bc41452adbbb402e9c18192eb
[]
no_license
AHKerrigan/Epidemic-Control
f7b0fae49307317ca15565becb034f324157816d
dc3f2e315fb67f50e4f808c70e08088cbdb60bb2
refs/heads/master
2020-04-20T09:39:54.446033
2019-10-02T11:37:10
2019-10-02T11:37:10
168,770,608
0
2
null
null
null
null
UTF-8
Python
false
false
10,279
py
import argparse import sys import math from collections import namedtuple from itertools import count import gym import numpy as np import scipy.optimize from gym import wrappers import networkx as nx import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as T from torch.autograd import Variable import epi_env from models import Policy, Value, ActorCritic from replay_memory import Memory from running_state import ZFilter # from utils import * torch.set_default_tensor_type('torch.DoubleTensor') PI = torch.DoubleTensor([3.1415926]) parser = argparse.ArgumentParser(description='PyTorch actor-critic example') parser.add_argument('--gamma', type=float, default=0.995, metavar='G', help='discount factor (default: 0.995)') parser.add_argument('--env-name', default="Reacher-v1", metavar='G', help='name of the environment to run') parser.add_argument('--tau', type=float, default=0.97, metavar='G', help='gae (default: 0.97)') # parser.add_argument('--l2_reg', type=float, default=1e-3, metavar='G', # help='l2 regularization regression (default: 1e-3)') # parser.add_argument('--max_kl', type=float, default=1e-2, metavar='G', # help='max kl value (default: 1e-2)') # parser.add_argument('--damping', type=float, default=1e-1, metavar='G', # help='damping (default: 1e-1)') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 1)') parser.add_argument('--batch-size', type=int, default=5000, metavar='N', help='batch size (default: 5000)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=20, metavar='N', help='interval between training status logs (default: 10)') parser.add_argument('--entropy-coeff', type=float, default=0.0, metavar='N', help='coefficient for entropy cost') parser.add_argument('--clip-epsilon', type=float, default=0.2, metavar='N', help='Clipping for PPO grad') parser.add_argument('--use-joint-pol-val', action='store_true', help='whether to use combined policy and value nets') args = parser.parse_args() import pickle graph = pickle.load(open("Standard_Watts100.pkl", "rb")) env = epi_env.Epi_Env(B=0.3, graph=graph, beta_hi=0.177, beta_low=0.071, delta_low=0.20, delta_hi=0.285) print(env.observation_space) num_inputs = env.observation_space num_actions = env.action_space env.seed(args.seed) torch.manual_seed(args.seed) if args.use_joint_pol_val: ac_net = ActorCritic(num_inputs, num_actions) opt_ac = optim.Adam(ac_net.parameters(), lr=0.001) else: policy_net = Policy(num_inputs, num_actions) value_net = Value(num_inputs) opt_policy = optim.Adam(policy_net.parameters(), lr=0.001) opt_value = optim.Adam(value_net.parameters(), lr=0.001) def select_action(state): """ state = torch.from_numpy(state).unsqueeze(0) action_mean, _, action_std = policy_net(Variable(state)) action = torch.normal(action_mean, action_std) """ action = np.full(env.action_space, 100) return action def select_action_actor_critic(state): """ state = torch.from_numpy(state).unsqueeze(0) action_mean, _, action_std, v = ac_net(Variable(state)) action = torch.normal(action_mean, action_std) """ action = np.full(env.action_space, 100) return action def normal_log_density(x, mean, log_std, std): var = std.pow(2) log_density = -(x - mean).pow(2) / (2 * var) - 0.5 * torch.log(2 * Variable(PI)) - log_std return log_density.sum(1) def update_params_actor_critic(batch): rewards = torch.Tensor(batch.reward) masks = torch.Tensor(batch.mask) actions = torch.Tensor(np.concatenate(batch.action, 0)) states = torch.Tensor(batch.state) action_means, action_log_stds, action_stds, values = ac_net(Variable(states)) returns = torch.Tensor(actions.size(0),1) deltas = torch.Tensor(actions.size(0),1) advantages = torch.Tensor(actions.size(0),1) prev_return = 0 prev_value = 0 prev_advantage = 0 for i in reversed(range(rewards.size(0))): returns[i] = rewards[i] + args.gamma * prev_return * masks[i] deltas[i] = rewards[i] + args.gamma * prev_value * masks[i] - values.data[i] advantages[i] = deltas[i] + args.gamma * args.tau * prev_advantage * masks[i] prev_return = returns[i, 0] prev_value = values.data[i, 0] prev_advantage = advantages[i, 0] targets = Variable(returns) # kloldnew = policy_net.kl_old_new() # oldpi.pd.kl(pi.pd) # ent = policy_net.entropy() #pi.pd.entropy() # meankl = torch.reduce_mean(kloldnew) # meanent = torch.reduce_mean(ent) # pol_entpen = (-args.entropy_coeff) * meanent action_var = Variable(actions) # compute probs from actions above log_prob_cur = normal_log_density(action_var, action_means, action_log_stds, action_stds) action_means_old, action_log_stds_old, action_stds_old, values_old = ac_net(Variable(states), old=True) log_prob_old = normal_log_density(action_var, action_means_old, action_log_stds_old, action_stds_old) # backup params after computing probs but before updating new params ac_net.backup() advantages = (advantages - advantages.mean()) / advantages.std() advantages_var = Variable(advantages) opt_ac.zero_grad() ratio = torch.exp(log_prob_cur - log_prob_old) # pnew / pold surr1 = ratio * advantages_var[:,0] surr2 = torch.clamp(ratio, 1.0 - args.clip_epsilon, 1.0 + args.clip_epsilon) * advantages_var[:,0] policy_surr = -torch.min(surr1, surr2).mean() vf_loss1 = (values - targets).pow(2.) vpredclipped = values_old + torch.clamp(values - values_old, -args.clip_epsilon, args.clip_epsilon) vf_loss2 = (vpredclipped - targets).pow(2.) vf_loss = 0.5 * torch.max(vf_loss1, vf_loss2).mean() total_loss = policy_surr + vf_loss total_loss.backward() torch.nn.utils.clip_grad_norm(ac_net.parameters(), 40) opt_ac.step() def update_params(batch): rewards = torch.Tensor(batch.reward) masks = torch.Tensor(batch.mask) actions = torch.Tensor(np.concatenate(batch.action, 0)) states = torch.Tensor(batch.state) values = value_net(Variable(states)) returns = torch.Tensor(actions.size(0),1) deltas = torch.Tensor(actions.size(0),1) advantages = torch.Tensor(actions.size(0),1) prev_return = 0 prev_value = 0 prev_advantage = 0 for i in reversed(range(rewards.size(0))): returns[i] = rewards[i] + args.gamma * prev_return * masks[i] deltas[i] = rewards[i] + args.gamma * prev_value * masks[i] - values.data[i] advantages[i] = deltas[i] + args.gamma * args.tau * prev_advantage * masks[i] prev_return = returns[i, 0] prev_value = values.data[i, 0] prev_advantage = advantages[i, 0] targets = Variable(returns) opt_value.zero_grad() value_loss = (values - targets).pow(2.).mean() value_loss.backward() opt_value.step() # kloldnew = policy_net.kl_old_new() # oldpi.pd.kl(pi.pd) # ent = policy_net.entropy() #pi.pd.entropy() # meankl = torch.reduce_mean(kloldnew) # meanent = torch.reduce_mean(ent) # pol_entpen = (-args.entropy_coeff) * meanent action_var = Variable(actions) action_means, action_log_stds, action_stds = policy_net(Variable(states)) log_prob_cur = normal_log_density(action_var, action_means, action_log_stds, action_stds) action_means_old, action_log_stds_old, action_stds_old = policy_net(Variable(states), old=True) log_prob_old = normal_log_density(action_var, action_means_old, action_log_stds_old, action_stds_old) # backup params after computing probs but before updating new params policy_net.backup() advantages = (advantages - advantages.mean()) / advantages.std() advantages_var = Variable(advantages) opt_policy.zero_grad() ratio = torch.exp(log_prob_cur - log_prob_old) # pnew / pold surr1 = ratio * advantages_var[:,0] surr2 = torch.clamp(ratio, 1.0 - args.clip_epsilon, 1.0 + args.clip_epsilon) * advantages_var[:,0] policy_surr = -torch.min(surr1, surr2).mean() policy_surr.backward() torch.nn.utils.clip_grad_norm(policy_net.parameters(), 40) opt_policy.step() running_state = ZFilter((num_inputs,), clip=5) running_reward = ZFilter((1,), demean=False, clip=10) episode_lengths = [] running_reward = 0 f = open("noninvestmentWatts100.csv", "w+") for i_episode in count(1): memory = Memory() num_steps = 0 reward_batch = 0 num_episodes = 0 while num_steps < args.batch_size: state = env.reset() state = running_state(state) reward_sum = 0 for t in range(10000): # Don't infinite loop while learning if args.use_joint_pol_val: action = select_action_actor_critic(state) else: action = select_action(state) next_state, reward, done, _ = env.step(action) reward_sum += reward next_state = running_state(next_state) mask = 1 if done: mask = 0 #memory.push(state, np.array([action]), mask, next_state, reward) if args.render: env.render() if done: break state = next_state num_steps += (t-1) num_episodes += 1 reward_batch += reward_sum reward_batch /= num_episodes #batch = memory.sample() #if args.use_joint_pol_val: # update_params_actor_critic(batch) #else: # update_params(batch) running_reward = (running_reward * 0.995) + (reward_batch * 0.005) if i_episode % args.log_interval == 0: f.write("{}\n".format(str(running_reward))) print('Episode {}\tLast reward: {}\tAverage reward {:.2f}\tRunning reward: {}'.format( i_episode, reward_sum, reward_batch, running_reward))
3f20447565c06c4aa890c48c346f5587bbadcc92
e35ae6f6b15e81842f941988e9ee30deb142827b
/python/54.py
9b9541246364669514e6b9e37e7b7599c8c895eb
[]
no_license
MrHuxu/leetcode150
97f9862271f659a482c9e6775e47d421e779f1f1
dc6be12ae5d46f32d3f9334e2f0f0a866fc2c837
refs/heads/master
2023-08-22T03:58:19.400027
2023-08-15T03:55:53
2023-08-15T03:55:53
211,640,798
1
0
null
2023-04-25T07:08:47
2019-09-29T09:47:46
Go
UTF-8
Python
false
false
1,242
py
import unittest from operator import le from typing import List class Solution: def spiralOrder(self, matrix: List[List[int]]) -> List[int]: ret: List[int] = [] level = 0 m = len(matrix) n = len(matrix[0]) while len(matrix) > 0 and len(ret) < m * n: for i in range(level, n - level): ret.append(matrix[level][i]) for i in range(level + 1, m - level - 1): ret.append(matrix[i][n - level - 1]) tmp = n - level - 1 while level != m - level - 1 and tmp >= level: ret.append(matrix[m - level - 1][tmp]) tmp -= 1 tmp = m - level - 2 while level != n - level - 1 and tmp > level: ret.append(matrix[tmp][level]) tmp -= 1 level += 1 return ret class TestSolution(unittest.TestCase): def test(self): solution = Solution() self.assertListEqual([1, 2, 3, 6, 9, 8, 7, 4, 5], solution.spiralOrder( [[1, 2, 3], [4, 5, 6], [7, 8, 9]])) self.assertListEqual([1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7], solution.spiralOrder( [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]))
6a4ced94e320a4124a9df23a43204e5406060955
e65fb2168c4aaa3def9c752f7b161cb430e7d9fb
/onap_tests/utils/utils.py
ea3ec54b15cded631ba21a491e605545c038873c
[ "Apache-2.0" ]
permissive
Orange-OpenSource/xtesting-onap-tests
ead27e0f809d53f1ad4aa407be578207454acdfd
ce4237f49089a91c81f5fad552f78fec384fd504
refs/heads/master
2023-06-11T00:57:37.514952
2018-05-16T08:34:40
2018-05-16T08:34:40
126,787,905
0
2
null
null
null
null
UTF-8
Python
false
false
4,297
py
#!/usr/bin/python # # This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # # http://www.apache.org/licenses/LICENSE-2.0 # # pylint: disable=missing-docstring from difflib import SequenceMatcher import logging import random import string import os import requests import yaml # ---------------------------------------------------------- # # YAML UTILS # # ----------------------------------------------------------- def get_parameter_from_yaml(parameter, config_file): """ Returns the value of a given parameter in file.yaml parameter must be given in string format with dots Example: general.openstack.image_name """ with open(config_file) as my_file: file_yaml = yaml.safe_load(my_file) my_file.close() value = file_yaml # Ugly fix as workaround for the .. within the params in the yaml file ugly_param = parameter.replace("..", "##") for element in ugly_param.split("."): value = value.get(element.replace("##", "..")) if value is None: raise ValueError("The parameter %s is not defined" % parameter) return value def get_config(parameter): """ Get configuration parameter from yaml configuration file """ local_path = os.path.dirname(os.path.abspath(__file__)) yaml_ = local_path.replace("utils", "onap-testing.yaml") return get_parameter_from_yaml(parameter, yaml_) def get_template_param(vnf_type, parameter): """ Get VNF template """ local_path = os.path.dirname(os.path.abspath(__file__)) if "ims" in vnf_type: template_path = "templates/service-ClearwaterVims-template.yml" elif "vfw" in vnf_type: template_path = "templates/service-VfwService-template.yml" else: template_path = "templates/service-VmrfService-template.yml" yaml_ = local_path.replace("utils", template_path) return get_parameter_from_yaml(parameter, yaml_) # ---------------------------------------------------------- # # LOGGER UTILS # # ----------------------------------------------------------- def get_logger(module): """ Get Logger """ log_formatter = logging.Formatter("%(asctime)s [" + module + "] [%(levelname)-5.5s] %(message)s") logger = logging.getLogger() log_file = get_config('general.log.log_file') log_level = get_config('general.log.log_level') file_handler = logging.FileHandler("{0}/{1}".format('.', log_file)) file_handler.setFormatter(log_formatter) logger.addHandler(file_handler) console_handler = logging.StreamHandler() console_handler.setFormatter(log_formatter) logger.addHandler(console_handler) logger.setLevel(log_level) return logger # ---------------------------------------------------------- # # Misc # # ----------------------------------------------------------- def random_string_generator(size=6, chars=string.ascii_uppercase + string.digits): """ Get a random String for VNF """ return ''.join(random.choice(chars) for _ in range(size)) def get_vf_module_index(vnf_list, target): # until we understand how to match vnf & vf from the service template best_index = 0 best_index_proba = 0 for i, elt in enumerate(vnf_list): current_proba = SequenceMatcher(None, target.lower(), elt.lower()).ratio() if current_proba > best_index_proba: best_index = i best_index_proba = current_proba return best_index # ---------------------------------------------------------- # # requests # # ----------------------------------------------------------- def get_simple_request(url, headers, proxy): try: response = requests.get(url, headers=headers, proxies=proxy, verify=False) request_info = response.json() except Exception: # pylint: disable=broad-except request_info = response.text return request_info
b8e31604babd214cfd29e449025f1312f75e49db
4b0ccc880137b8d46501b84ba25af92449919e04
/screenshot.name.py
b4716e451eb382008e1b368893102d7cc38b06b8
[]
no_license
P-Jayaprakash/python_projects
6113309e9b64547da9cc6c48a338b1de4f073926
198d7879eabc5e6633fdaf16ebba987c5de9728e
refs/heads/master
2022-12-19T08:18:35.928697
2020-09-12T14:57:08
2020-09-12T14:57:08
291,396,317
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
#In this program a new name is generated for each screenshot according to the time. So there will be no chance for the overwritten of previous clicked screenshots. import time import pyautogui def screenshot(): name=int(round(time.time()*100)) name='{}.png'.format(name) time.sleep(5) img=pyautogui.screenshot(name) img.show() screenshot()
e8ed8b7bbc2c950827cdf8d68de707dbc93fde74
d483cd30d2ddea0da535e18258ea6906deae1495
/harmonic.py
4a27ff52e35066ec302c4f12cd0758d6facde4f8
[]
no_license
xLuis190/Python-School-work
4b19a3cb52e1ad9f565789eb3aed61e7f8aacbc2
235136aae3de5af2949b4ec3b314d3809e216706
refs/heads/master
2020-03-18T13:39:36.103043
2018-05-25T03:42:26
2018-05-25T03:42:26
134,798,828
0
0
null
null
null
null
UTF-8
Python
false
false
149
py
def harmonic(n): i = 1 if(n > 1): return n / 2 elif(i == n): return i + harmonic(i+1) print(harmonic(10))
61bef9e4c7d1006aa90c415eebbab965bb28228a
32b72152fa92d3f87e233325d3050dbdb9a7fe20
/Django_blog/mysite/blog/migrations/0010_auto_20171011_1155.py
d141f39646f270c921e22f0a426d6c656bb2a1b2
[]
no_license
mshava/django-learning-projects
aa710243df461d84b965749dbb7c1cdc1f8e65e8
b95a10c1cb94e64169b1a2f92434efea312fd556
refs/heads/master
2021-07-13T17:04:04.866801
2017-10-18T12:23:01
2017-10-18T12:23:01
105,898,284
0
0
null
null
null
null
UTF-8
Python
false
false
786
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-10-11 09:55 from __future__ import unicode_literals import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('blog', '0009_auto_20171011_1140'), ] operations = [ migrations.AlterField( model_name='comment', name='create_date', field=models.DateTimeField(default=datetime.datetime(2017, 10, 11, 9, 55, 48, 903718, tzinfo=utc)), ), migrations.AlterField( model_name='post', name='create_date', field=models.DateTimeField(default=datetime.datetime(2017, 10, 11, 9, 55, 48, 903718, tzinfo=utc)), ), ]
8a52917c00fc0bd7d1f0e5ffd6d1db0c38a5ed36
bdf630acc7cb153b53fe4b6b300e4d4ecfd23e96
/starmap.py
414142776565b710ba0b752b78da36d55d5f3bf1
[ "MIT" ]
permissive
icefoxen/games-ig
f4c5e569773c2f58abebbe710b30be75082cc121
89ef1e102b52bfb58d9511373475a3def300b2cf
refs/heads/master
2020-07-03T12:01:49.218366
2016-11-18T23:34:45
2016-11-18T23:34:45
74,171,274
0
0
null
null
null
null
UTF-8
Python
false
false
1,732
py
# starmap.py # A map full of stars. Yay! # # This could be converted to blit itself onto a surface at an arbitrary # location, but it'd be a pain in the ass. It doesn't really matter, # so I'm not gonna bother. import star, sprite import spaceobj import wx class Starmap: w = 0 h = 0 # A quadtree would be rather nicer for this than a list. Oh well! objects = [] selected = () def __init__( self, x, y, numstars ): self.w = x self.h = y for i in range( numstars ): self.objects.append( star.Star( x, y ) ) self.selected = self.objects[0] def getSelectedObj( self ): return self.selected # Returns True if a new star has been selected, False otherwise # Should call the object-defined getLocation method! This'll let fleets # in orbit report slightly false values, which would work. def selectObj( self, x, y ): delta = 7 for obj in self.objects: objx, objy = obj.getLocation() if ((x > (objx - delta)) and (x < (objx + delta))) and \ ((y > (objy - delta)) and (y < (objy + delta))): self.selected = obj print obj # DEBUG return True return False def getStar( self, x, y ): for thingy in objects: if thingy.x == x and thingy.y == y: return thingy return False def getStarByName( self, name ): for thingy in objects: if thingy.name == name: return thingy return False def add( self, obj ): self.objects.append( obj ) def remove( self, obj ): try: self.objects.remove( obj ) except ValueError: print "Tried to remove %s twice!" % str( obj )
861f58abc577b1b4cd88a46137677a2b41e1d526
05df41d9fdee79a5004bd5530864f3d8c42e52c2
/import_textures.py
6de3e3b611c80eee65cfcc62761867185e700779
[]
no_license
Aralta/NSI_Projet
675d69ae08042cfbe3e842bcf7a3a2a11dcfc004
619db4d5bc95fc3a42e79c18ff9b3f18caa3837f
refs/heads/master
2023-04-16T02:23:49.438544
2021-04-26T18:05:33
2021-04-26T18:05:33
312,720,442
2
0
null
2021-04-26T18:05:34
2020-11-14T01:15:14
Python
UTF-8
Python
false
false
5,355
py
import pygame zz = 0 aa= 1 ab = 2 ac = 3 ad = 4 ae = 5 af = 6 ag = 7 ah = 8 ai = 9 aj = 10 ak = 11 al = 12 am = 13 an = 14 ao = 15 ap = 16 aq = 17 ar = 18 aS = 19 at = 20 au = 21 av = 22 aw = 23 ax = 24 ay = 25 az = 26 ba = 27 bb = 28 bc = 29 bd = 30 be = 31 bf = 32 bg = 33 bh = 34 bi = 35 bj = 36 bk = 37 bl = 38 bm = 39 bn = 40 bo = 41 bp = 42 bq = 43 br = 44 bs = 45 bt = 46 bu = 47 bv = 48 bw = 49 bx = 50 by = 51 bz = 52 ca = 53 cb = 54 cc = 55 cd = 56 ce = 57 cf = 58 cg = 59 ch = 60 ci = 61 cj = 62 ck = 63 cl = 64 cm = 65 cn = 66 co = 67 TEXTURES ={ zz: pygame.image.load("./Textures/herbe.png"), #texture pour lac (eau) bg: pygame.image.load("./Textures/lac/eau.png"), bi: pygame.image.load("./Textures/lac/eau_sup_gauche.png"), bj: pygame.image.load("./Textures/lac/eau_cote_sup.png"), bk: pygame.image.load("./Textures/lac/eau_sup_droit.png"), bh: pygame.image.load("./Textures/lac/eau_cote_droit.png"), be: pygame.image.load("./Textures/lac/eau_inf_droit.png"), bd: pygame.image.load("./Textures/lac/eau_cote_inf.png"), bc: pygame.image.load("./Textures/lac/eau_inf_gauche.png"), bf: pygame.image.load("./Textures/lac/eau_cote_gauche.png"), #texture maison aa: pygame.image.load("./Textures/maison/aa.png"), ab: pygame.image.load("./Textures/maison/ab.png"), ac: pygame.image.load("./Textures/maison/ac.png"), ad: pygame.image.load("./Textures/maison/ad.png"), ae: pygame.image.load("./Textures/maison/ae.png"), af: pygame.image.load("./Textures/maison/af.png"), ag: pygame.image.load("./Textures/maison/ag.png"), ah: pygame.image.load("./Textures/maison/ah.png"), ai: pygame.image.load("./Textures/maison/ai.png"), aj: pygame.image.load("./Textures/maison/aj.png"), ak: pygame.image.load("./Textures/maison/ak.png"), al: pygame.image.load("./Textures/maison/al.png"), am: pygame.image.load("./Textures/maison/am.png"), an: pygame.image.load("./Textures/maison/an.png"), ao: pygame.image.load("./Textures/maison/ao.png"), ap: pygame.image.load("./Textures/maison/ap.png"), aq: pygame.image.load("./Textures/maison/aq.png"), ar: pygame.image.load("./Textures/maison/ar.png"), aS: pygame.image.load("./Textures/maison/as.png"), at: pygame.image.load("./Textures/maison/at.png"), au: pygame.image.load("./Textures/maison/au.png"), av: pygame.image.load("./Textures/maison/av.png"), aw: pygame.image.load("./Textures/maison/aw.png"), ax: pygame.image.load("./Textures/maison/ax.png"), ay: pygame.image.load("./Textures/maison/ay.png"), az: pygame.image.load("./Textures/maison/az.png"), ba: pygame.image.load("./Textures/maison/ba.png"), bb: pygame.image.load("./Textures/maison/bb.png"), #chemin bl: pygame.image.load("./Textures/chemin/bl.png"), bm: pygame.image.load("./Textures/chemin/bm.png"), bn: pygame.image.load("./Textures/chemin/bn.png"), bo: pygame.image.load("./Textures/chemin/bo.png"), bp: pygame.image.load("./Textures/chemin/bp.png"), bq: pygame.image.load("./Textures/chemin/bq.png"), br: pygame.image.load("./Textures/chemin/br.png"), bs: pygame.image.load("./Textures/chemin/bs.png"), bt: pygame.image.load("./Textures/chemin/bt.png"), bu: pygame.image.load("./Textures/chemin/bu.png"), bv: pygame.image.load("./Textures/chemin/bv.png"), bw: pygame.image.load("./Textures/chemin/bw.png"), bx: pygame.image.load("./Textures/chemin/bx.png"), #texture toit maison 2 by: pygame.image.load("./Textures/maison2/by.png"), bz: pygame.image.load("./Textures/maison2/bz.png"), ca: pygame.image.load("./Textures/maison2/ca.png"), cb: pygame.image.load("./Textures/maison2/cb.png"), cc: pygame.image.load("./Textures/maison2/cc.png"), cd: pygame.image.load("./Textures/maison2/cd.png"), ce: pygame.image.load("./Textures/maison2/ce.png"), cf: pygame.image.load("./Textures/maison2/cf.png"), cg: pygame.image.load("./Textures/maison2/cg.png"), ch: pygame.image.load("./Textures/maison2/ch.png"), ci: pygame.image.load("./Textures/maison2/ci.png"), cj: pygame.image.load("./Textures/maison2/cj.png"), ck: pygame.image.load("./Textures/maison2/ck.png"), cl: pygame.image.load("./Textures/maison2/cl.png"), cm: pygame.image.load("./Textures/maison2/cm.png"), cn: pygame.image.load("./Textures/maison2/cn.png"), co: pygame.image.load("./Textures/maison2/co.png"), #ar: pygame.image.load("./Textures/toit-maison2/ar.png"), #aS: pygame.image.load("./Textures/toit-maison2/as.png"), #at: pygame.image.load("./Textures/toit-maison2/at.png"), #au: pygame.image.load("./Textures/toit-maison2/au.png"), #av: pygame.image.load("./Textures/toit-maison2/av.png"), #aw: pygame.image.load("./Textures/toit-maison2/aw.png"), #ax: pygame.image.load("./Textures/toit-maison2/ax.png"), #ay: pygame.image.load("./Textures/toit-maison2/ay.png"), #az: pygame.image.load("./Textures/toit-maison2/az.png"), #ba: pygame.image.load("./Textures/toit-maison2/ba.png"), #bb: pygame.image.load("./Textures/toit-maison2/bb.png"), # i: pygame.image.load("./Textures/chemin/ .png"), # j: pygame.image.load("./Textures/chemin/ .png"), # k: pygame.image.load # l: pygame.image.load # m: pygame.image.load }
d9d59927e2b551be7e2189f9d1e9d85d7cf08b1e
8f8423134350b754aa6fd7f431ebdbcecd0f4646
/files/babycrypto1.py
66d68d9a4d5dd272cdec6671ded6818ac518218b
[ "MIT" ]
permissive
niktay/niktay.github.io
363870e59c05d32cd775119dc196ea2dc6075890
4f7e81e9d8debb51618172bcdd731ce240b6d1b7
refs/heads/master
2022-03-26T09:28:02.285140
2022-03-13T01:44:50
2022-03-13T01:44:50
101,560,268
0
1
null
null
null
null
UTF-8
Python
false
false
2,316
py
#!/usr/bin/env python from base64 import b64decode from base64 import b64encode import socket import multiprocessing from Crypto.Cipher import AES from Crypto.Random import get_random_bytes from Crypto.Util.Padding import pad, unpad import hashlib import sys class AESCipher: def __init__(self, key): self.key = key def encrypt(self, data): iv = get_random_bytes(AES.block_size) self.cipher = AES.new(self.key, AES.MODE_CBC, iv) return b64encode(iv + self.cipher.encrypt(pad(data, AES.block_size))) def encrypt_iv(self, data, iv): self.cipher = AES.new(self.key, AES.MODE_CBC, iv) return b64encode(iv + self.cipher.encrypt(pad(data, AES.block_size))) def decrypt(self, data): raw = b64decode(data) self.cipher = AES.new(self.key, AES.MODE_CBC, raw[:AES.block_size]) return unpad(self.cipher.decrypt(raw[AES.block_size:]), AES.block_size) flag = open("flag", "rb").read().strip() COMMAND = [b'test',b'show'] def run_server(client, aes_key, token): client.send(b'test Command: ' + AESCipher(aes_key).encrypt(token+COMMAND[0]) + b'\n') client.send(b'**Cipher oracle**\n') client.send(b'IV...: ') iv = b64decode(client.recv(1024).decode().strip()) client.send(b'Message...: ') msg = b64decode(client.recv(1024).decode().strip()) client.send(b'Ciphertext:' + AESCipher(aes_key).encrypt_iv(msg,iv) + b'\n\n') while(True): client.send(b'Enter your command: ') tt = client.recv(1024).strip() tt2 = AESCipher(aes_key).decrypt(tt) client.send(tt2 + b'\n') if tt2 == token+COMMAND[1]: client.send(b'The flag is: ' + flag) client.close() break if __name__ == '__main__': server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server.bind(('0.0.0.0', 16001)) server.listen(1) while True: client, address = server.accept() aes_key = get_random_bytes(AES.block_size) token = b64encode(get_random_bytes(AES.block_size*10))[:AES.block_size*10] process = multiprocessing.Process(target=run_server, args=(client, aes_key, token)) process.daemon = True process.start()
07fa1a691d141b0be42e0ba1259ed7f1121db648
10b8fa6ce869e23c2d603f1a8aacda4136f907f2
/metrics/publisher/event_publisher_test.py
c62a483213687c9c21e3f936febdd5b05f45641e
[ "Apache-2.0" ]
permissive
GoogleCloudPlatform/ml-testing-accelerators
2fdbaa42fcc1cee19c0b191e83801dfd767112b1
96a8320b941d0bf9023657bd2e18ea8fedd03247
refs/heads/master
2023-09-01T01:07:35.887904
2023-08-29T23:12:18
2023-08-29T23:12:18
244,933,863
65
62
Apache-2.0
2023-09-13T20:45:03
2020-03-04T15:21:13
Jsonnet
UTF-8
Python
false
false
5,662
py
import collections import datetime import json import os from absl.testing import absltest from absl.testing import parameterized import kubernetes import event_publisher from google.protobuf import duration_pb2 from google.protobuf import timestamp_pb2 from google.protobuf import json_format import metrics_pb2 _START_TIME = datetime.datetime.fromisoformat('2020-12-15T19:58:44') _END_TIME = datetime.datetime.fromisoformat('2020-12-15T20:14:56') # HACK: See https://github.com/kubernetes-client/python/issues/977#issuecomment-594045477 def _job_from_dict(d): _FakeResponse = collections.namedtuple('FakeResponse', 'data') resp = _FakeResponse(json.dumps(d, default=str)) return kubernetes.client.BatchV1Api().api_client.deserialize(resp, 'V1Job') class EventPublisherTest(parameterized.TestCase): def assertProtoEqual(self, first, second): self.assertJsonEqual( json_format.MessageToJson(first, including_default_value_fields=True), json_format.MessageToJson(second, including_default_value_fields=True), ) @parameterized.named_parameters( ('passing', 1, 0, [('Complete', None)], 'COMPLETED'), ('retried_passing', 1, 1, [('Complete', None)], 'COMPLETED'), ('failing', 0, 2, [('Failed', 'BackoffLimitExceeded')], 'FAILED'), ('timed_out', 0, 1, [('Failed', 'DeadlineExceeded')], 'TIMEOUT'), ('barely_timed_out', 0, 1, [('Failed', 'DeadlineExceeded'), ('Complete', None)], 'TIMEOUT'), ) def test_create_test_completed_event(self, succeeded_count, failed_count, conditions, expected_status): job = _job_from_dict({ 'metadata': { 'name': 'job-name', 'namespace': 'namespace', 'labels': { 'benchmarkId': 'test-job', }, }, 'status': { 'startTime': _START_TIME, 'succeeded': succeeded_count, 'failed': failed_count, 'conditions': [ { 'status': True, 'reason': reason, 'type': cond_type, 'lastTransitionTime': _END_TIME, } for cond_type, reason in conditions ] } }) actual_event = event_publisher.create_test_completed_event( job, model_output_bucket='gs://fake-bucket', cluster_name='cluster-name', cluster_location='cluster-location', project='project-id' ) start_time = timestamp_pb2.Timestamp() start_time.FromDatetime(_START_TIME) duration = duration_pb2.Duration() duration.FromTimedelta(_END_TIME - _START_TIME) expected_event = metrics_pb2.TestCompletedEvent( benchmark_id='test-job', output_path='gs://fake-bucket/job-name', status=metrics_pb2.TestCompletedEvent.TestStatus.Value(expected_status), num_attempts=succeeded_count + failed_count, start_time=start_time, duration=duration, labels={'benchmarkId': 'test-job'}, debug_info=metrics_pb2.DebugInfo( logs_link='https://console.cloud.google.com/logs?project=project-id&advancedFilter=resource.type%3Dk8s_container%0Aresource.labels.project_id%3Dproject-id%0Aresource.labels.cluster_name%3Dcluster-name%0Aresource.labels.namespace_name%3Dnamespace%0Aresource.labels.pod_name%3Ajob-name%0Aresource.labels.location%3Acluster-location%0A', details_link=f'https://console.cloud.google.com/kubernetes/job/cluster-location/cluster-name/namespace/job-name?project=project-id' ), metric_collection_config=metrics_pb2.MetricCollectionConfig(), ) self.assertProtoEqual(expected_event, actual_event) @parameterized.named_parameters( ('with_subdir', 'some/subdir/path'), ('no_subdir', None), ) def test_metric_collection_config(self, gcs_subdir): job = _job_from_dict({ 'metadata': { 'name': 'job-name', 'namespace': 'namespace', 'labels': { 'benchmarkId': 'test-job', }, 'annotations': { 'ml-testing-accelerators/metric-config': json.dumps({ 'sources': [{ 'literals': { 'assertions': { 'duration': { 'within_bounds': { 'lower_bound': 1, 'upper_bound': 2, } } } } }] }) } }, 'status': { 'startTime': _START_TIME, 'completionTime': _END_TIME, 'succeeded': 1, 'conditions': [ { 'status': True, 'type': 'Complete', 'lastTransitionTime': _END_TIME, } ] } }) if gcs_subdir: job.metadata.annotations['ml-testing-accelerators/gcs-subdir'] = gcs_subdir actual_event = event_publisher.create_test_completed_event( job, model_output_bucket='gs://fake-bucket', cluster_name='cluster-name', cluster_location='cluster-location', project='project-id' ) actual_mcc = actual_event.metric_collection_config expected_mcc = metrics_pb2.MetricCollectionConfig( sources=[ metrics_pb2.MetricSource( literals=metrics_pb2.LiteralSource( assertions={ 'duration': metrics_pb2.Assertion( within_bounds=metrics_pb2.Assertion.WithinBounds( lower_bound=1, upper_bound=2, ) ) } ) ) ] ) self.assertEqual(actual_event.output_path, os.path.join('gs://fake-bucket', gcs_subdir or '', 'job-name')) self.assertProtoEqual(expected_mcc, actual_mcc) if __name__ == "__main__": absltest.main()
b31c5121c198fa52ab61ce34b003dc8c404bb232
aece9569373acc984da8a2c45faa8272772e4486
/RTD_ws/src/autonomous_mode/FRS_intersect_ipopt.py
4ea32a10284cafd583ff4a9856daf5ad575ba7be
[]
no_license
ramvasudevan/roahm-rover
368e24d35cc234a8efd517fafbecaefc8896e044
f7e9b6606817e553f434b29dd0908089c630a669
refs/heads/master
2020-12-18T20:00:28.443179
2020-05-06T03:46:40
2020-05-06T03:46:40
235,506,314
0
0
null
null
null
null
UTF-8
Python
false
false
19,067
py
#! /usr/bin/env python # ----------------------------------------------------------------------------- # This script implements the online component of RTD. # It intersects the offline generated FRS (Forward Reachable Set) with # obstacles online and optimizes for a trajectory based on the safe parameters. # # Adopted from matlab simulation code found at # https://github.com/skousik/RTD_tutorial # https://github.com/ramvasudevan/RTD # # Search ADJUSTABLE to find easily changed parameters # # Author of this script: Steven van Leeuwen ([email protected]) # ----------------------------------------------------------------------------- import sys import rospy from std_msgs.msg import Header from nav_msgs.msg import OccupancyGrid from nav_msgs.msg import Odometry from ackermann_msgs.msg import AckermannDriveStamped from autonomous_mode.msg import TrajStamped from autonomous_mode.msg import RoverPoseGlobalStamped from autonomous_mode.msg import FloatStamped from rover_dynamics import rover_dynamics from FRS_solver_obj import solver_obj import ipopt import numpy as np import scipy.io as sio import math #------------------------------------------------------------------------------ # These functions are support functions for the scipt, do not relate to # the RTD pipeline #------------------------------------------------------------------------------ def MSG_TIME(msg1=None,msg2=None,msg3=None,msg4=None): # # Print to std out is msg1 given # global time_start if (msg1 != True): return if time_start == 0: time_start = rospy.get_time() return else: print msg2, time_rec = rospy.get_time() print '-Elapsed time:',time_rec-time_start if type(msg3) is int: print ' Number of constraints:',msg3 elif type(msg3) is tuple: print ' ',['%.3f' % k for k in msg3] print ' ',['%.3f' % k for k in msg4] elif type(msg3) is np.ndarray: print ' Control commands:',msg3 print '- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' print ' ' print '- - - - - - - - - - - - - - B E G I N - - - - - - - - - - - - - - - - -' time_start = 0 #------------------------------------------------------------------------------ # These functions have to do with processing the obstacle points. #------------------------------------------------------------------------------ def gen_buf_discrete(oc_box_xy,oc_wh,oc_1,data,oc_buffer,oc,xy0,res): # # Generate occupancy points a certain spacing around each occupied point # When the buffer generation is done, add the buffer points as constraints # to the solver format. # obs = [] # Buffer each point registered with oc_buffer. for x in oc_box_xy[0]: for y in oc_box_xy[1]: if data[y*oc_wh[0]+x] >= oc_1: oc[x-oc_buffer:x+oc_buffer+1,y-oc_buffer:y+oc_buffer+1] = 1 # Remove interior points and add to obstacle list. for x in oc_box_xy[0]: for y in oc_box_xy[1]: if oc[x,y] == 1 and not sum_surround_oc(x,y,oc,oc_wh) == 8: # Put obstacles in FRS frame. Shift to initial_x, initial_y # as in FRS computation. obs_FRS = obs_map_2_FRS(res*x+xy0[0],res*y+xy0[1],pose_future[0:3]) # Append as a constraint if it is reachable in the FRS frame. # Further trim the [-1,1] box according to FRS countour to reduce # number of constraints. if (obs_FRS[0] >= box_FRS[0] and obs_FRS[0] <= box_FRS[1] and obs_FRS[1] >= box_FRS[2] and obs_FRS[1] <= box_FRS[3]): obs.append(obs_FRS) return obs def check_buf_discrete_ok(res,d,W): # # It is possible the rover can pass far enough through the discretized buffer. # Ensure this is not the case. # a = res/2 if (W <= res): return 0 buf = res+(d-1)*res if (buf <= a): return 0 return 1 def gen_oc_box_ind(ind,ind_expand,lim,oc_buffer): # # Make the list of indicies of the occupancy grid for # occupancy consideration. # oc_box = np.arange(max(ind-((ind_expand-1)/2),oc_buffer), min(ind+((ind_expand-1)/2),lim-oc_buffer)) return oc_box def sum_surround_oc(x,y,oc,oc_wh): # # A utility function to gather whether a point is an interior point. # sum_ = 0 if not (x < 1 or x >= oc_wh[0]-1): if not (y < 1 or y >= oc_wh[1]-1): sum_ = (oc[x-1,y-1]+oc[x-1,y]+oc[x-1,y]+oc[x,y-1]+ oc[x,y+1]+oc[x+1,y-1]+oc[x+1,y]+oc[x+1,y+1]) return sum_ #------------------------------------------------------------------------------ # These functions have to do with transforming between the occupancy map # and FRS frames. #------------------------------------------------------------------------------ def obs_map_2_FRS(x,y,pose): # # The FRS frame has the rover heading as zero heading, and in this # implementation at (0,0) position. # pose_xy = np.array([[x-pose[0]],[y-pose[1]]]) R = np.array([[np.cos(pose[2]),np.sin(pose[2])], [-np.sin(pose[2]),np.cos(pose[2])]]) pose_frs = (1/dist_scale)*np.matmul(R,pose_xy) return [pose_frs[0]+initial_x,-pose_frs[1]+initial_y] def k_FRS_2_map(k): # # Scale the k parameters to their control commands. # U = [0,0] U[0] = k[0]*k_scale[0]+k_const U[1] = k[1]*k_scale[1] return U def cart_rover_global_2_map(): # # Get pose into map frame. Additionally # get velocity estimate. # return (pose_raw.x,-pose_raw.y,-pose_raw.psi,vel_est) #------------------------------------------------------------------------------ # These functions have to do with constraint generation, setting up, and # solving for the optimization of k. #------------------------------------------------------------------------------ def proj_obs_to_k(obs): # # For each obstacle point, a constraint polynomial as a function of # k is generated # n = len(obs) z_0 = np.zeros((n,2)) # Create solver_obj object that is in the ipopt solver form. constr_obj = solver_obj(rover_dynamics,oc_box_xy,w_p,w_c,w_k) for k in range(n): z_0[k,:] = [round(obs[k][0],2),round(obs[k][1],2)] p_tmp = w_p.astype(float) # Evaluate all powers of the current z variable in w c_tmp = w_c.astype(float)*np.power(z_0[k,0],w_p[:,w_z[0]])*\ np.power(z_0[k,1],w_p[:,w_z[1]]) # Zero out z columns p_tmp[:,w_z[0]] = 0 p_tmp[:,w_z[1]] = 0 # Realize the obstacle point as a constraint. constr_obj.add_constraint(p_tmp,c_tmp,w_k) constr_obj.finalize() return constr_obj def solver_opt_k_FRS(solver_obj): # # Calls the solver to optimize over the cost function given constraints. # global brake # Solver options k_lb = [-1,-1] k_ub = [1,1] c_lb = -1e19*np.ones(solver_obj.cnt) c_ub = np.ones(solver_obj.cnt) solver_obj.set_goal(Z_FRS_goal) nlp = ipopt.problem(len(opt_result),len(c_ub),problem_obj=solver_obj, lb=k_lb,ub=k_ub,cl=c_lb,cu=c_ub) # Below are ADJUSTABLE********************************************* t_opt = 0.07 # Min time alloted to do optimization. If less than this time # before t_plan will not do optimization. t_latency = 0.12 # Unusable time at the end of the planning period to # account for latency. This time is subtracted from # the computed optimization time allowed. nlp.addOption('tol',0.1) nlp.addOption('acceptable_iter',4) nlp.addOption('acceptable_tol',0.1) nlp.addOption('linear_solver','ma97') # Options specific to Ipopt. # See online documentation # for a description of all options if solver_print_: nlp.addOption('print_level',3) else: nlp.addOption('print_level',0) # End ADJUSTABLE*************************************************** # Decide if the algorithm should undergo optimization. t_j_to_now = rospy.get_time()-t_j if t_j_to_now+t_opt > t_plan: brake = True else: # Call solver # Initial point likely to be feasible nlp.addOption('max_cpu_time',max(0.02,round(t_plan-t_j_to_now-t_latency,2))) (result,result_info) = nlp.solve([-1,0]) # Check status since latency can cause time beyond t_opt # Allow suboptimal solution that satisifies constraint violation if rospy.get_time()-t_j > t_plan: brake = True elif (result_info['status'] == 0 or result_info['status'] == 1): brake = False elif result_info['status'] == -4 and solver_obj.constr_viol < 1e-3: brake = False else: brake = True if brake == True: result = [-float(k_const)/k_scale[0],opt_result[1]] MSG_TIME(print_,'- -\n- - **BRAKING**\n- - **Optimization not used**') return result #------------------------------------------------------------------------------ # This function is executed every time a new k is desired. All above # functions are called through the algorithm_main. #------------------------------------------------------------------------------ def algorithm_main(oc): # # This function processes the occupancy grid from the environment # and produces a trajectory to track. # global oc_box_xy,tpoints_traj_push,pose_future,ts_h,Z_FRS_goal,Z_h_roverinit MSG_TIME(print_) # Get pose in map frame, the same frame the occupancy grid is in pose_init = cart_rover_global_2_map() # Parse Occupancy Grid oc_wh = (oc.info.width,oc.info.height) oc_res = oc.info.resolution oc_xy0 = (oc.info.origin.position.x,oc.info.origin.position.y) oc_ = np.zeros((oc_wh[0],oc_wh[1]),dtype=int) oc_rover_xy_ind = [] oc_box_xy = [] # Below are ADJUSTABLE********************************************* oc_buffer = 1 # Distance in grid points for the buffer. # For example oc_buffer=1 registers the 8 surrounding # grid points as occupied. oc_box_size = 4.0 # Centered box area side length, (m), to register occupied # grid points oc_1 = 60 # Confidence level criteria of oc grid point 0(none)-100(max) ts_h = 0.05 # Time step for ref traj generation and future pose # calculation with high fid dynamics # End ADJUSTABLE*************************************************** # Estimate future pose of rover and form box to evaluate obstacles # Calculate future pose at t_plan elapsed time displ = rover_dynamics.flowf('low','no_record',[0,0,0,pose_init[3]], [0,t_plan],ts_h) pose_future = np.array([pose_init[0],pose_init[1],0,0])+\ rover_dynamics.roverinit_2_map(displ,pose_init[2]) MSG_TIME(print_,'- - **Poses calculated, current pose and xy goal**', pose_init,Z_map_goal) # Only looking at the occupancy grid in a conservative box area around # the pose of rover will further reduce the computation time. oc_box_ind_expand = int(math.floor((oc_box_size/oc_res))) if oc_box_ind_expand%2 == 0: oc_box_ind_expand = oc_box_ind_expand+1 for k in range(2): oc_rover_xy_ind.append(int(math.floor((pose_future[k]-oc_xy0[k])/oc_res))) oc_box_xy.append(gen_oc_box_ind(oc_rover_xy_ind[k],oc_box_ind_expand, oc_wh[k],oc_buffer)) # Buffer obstacles and obtain objects which to evaulate FRS against # Rover is estimated to have a rectangular footprint, L is longitudinal, # W is lateral (m) if not check_buf_discrete_ok(oc_res,oc_buffer,footprint_W): MSG_TIME(print_,'- - **Discretization of buffer not ok**') obs = gen_buf_discrete(oc_box_xy,oc_wh,oc_1,oc.data,oc_buffer, oc_,oc_xy0,oc_res) MSG_TIME(print_,'- - **Generated buffer**') # Find the unsafe k parameters (constraint polynomials in k) solver_obj = proj_obs_to_k(obs) MSG_TIME(print_,'- - **Generated constraints**',solver_obj.cnt) # Decision to optimize and if yes then do Z_FRS_goal = obs_map_2_FRS(Z_map_goal[0],Z_map_goal[1],pose_future) opt_result = solver_opt_k_FRS(solver_obj) MSG_TIME(print_,'- - **Optimized**') # Realize the traj with chosen k opt_U = k_FRS_2_map(opt_result) rover_dynamics.pass_U(opt_U) if brake: t_horz = t_stop-(t_stop%ts_h)+ts_h else: t_horz = t_plan-(t_plan%ts_h)+ts_h tpoints_traj_push = np.linspace(0,t_horz,num=math.ceil(1+t_horz/ts_h)) X_h_roverinit = rover_dynamics.flowf('high','record',[0,0,0,pose_future[3]], tpoints_traj_push,ts_h) # Convention in use is X is [x,y,psi,vel], while Z is [X' U']' Z_h_roverinit = np.concatenate((X_h_roverinit, opt_U*np.ones((np.size(X_h_roverinit,0),2))),axis=1) # Push traj_to_low_RTD while rospy.get_time()-t_j < t_plan and not brake: # Wait until t_plan elapsed time to push pass traj_publisher(Z_h_roverinit) MSG_TIME(print_,'- - **Done**',Z_h_roverinit[0,4:]) #------------------------------------------------------------------------------ # Publisher functions #------------------------------------------------------------------------------ def traj_publisher(Z): # # Format the message that contains the trajectory to track, and publish. # global t_j traj_msg = TrajStamped() traj_msg_header = Header(stamp=rospy.Time.now(),frame_id='base_link') traj_msg.ref_traj = Z.flatten() traj_msg.ref_size = np.size(Z[:,0],0) traj_msg.Ts = ts_h; traj_pub.publish(traj_msg) while rospy.get_time()-t_j < t_plan and brake: # Wait until t_plan to report t_j pass t_j = rospy.get_time() #------------------------------------------------------------------------------ # Callback functions #------------------------------------------------------------------------------ def callback_oc(occupancy_grid): # # This function gathers the occupancy grid from the environment # global cur_oc cur_oc = occupancy_grid def callback_pose(pose): # # This function gathers the pose from the environment # global pose_raw pose_raw = pose def callback_goal(goal): # # This function gets the goal from the planner # global Z_map_goal Z_map_goal = goal.data def callback_odom(odom): # # Calculate vx # global vel_est vel_est = abs(np.cos(rover_dynamics.U[1]))*odom.twist.twist.linear.x #------------------------------------------------------------------------------ # Main #------------------------------------------------------------------------------ if __name__ == '__main__': # # Default main function. Will enter into algorithm_main. # global w_p,w_c,w_z,w_k,dist_scale,k_scale,k_const,t_plan,t_stop,footprint_W,\ initial_x,initial_y,rover_dynamics,Z_h_roverinit,pose_raw,pose_rate,\ Z_map_goal,time_start,t_j,print_,solver_print_,opt_result,brake,box_FRS try: rospy.init_node('FRS_intersect_opt',anonymous=False) # Initialize time_start = 0 tpoints_traj_push = 0 Z_h_roverinit = np.zeros((1,6)) cur_oc = None pose_rate = 15.0 opt_result = [0,0] # Load FRS data structure # -Assume not sparse # -Assume w_z and w_k are each size 2, with the lower indexed column x, # higher indexed column y for w_z frs = sio.loadmat( '/home/nvidia/RTD_ws/src/autonomous_mode/Mat_Files/FRS/rover_FRS_deg_10.mat') w_p = frs['pows'] w_c = np.squeeze(frs['coef']) w_z = np.squeeze(frs['z_cols']) w_k = np.squeeze(frs['k_cols']) dist_scale = np.squeeze(frs['dist_scale']) k_scale = np.squeeze(frs['k_scale']) k_const = np.squeeze(frs['k_const']) t_f = np.squeeze(frs['t_f']) t_plan = np.squeeze(frs['t_plan']) t_stop = np.squeeze(frs['t_stop']) footprint_W = np.squeeze(frs['footprint_W']) wb = np.squeeze(frs['wb']) initial_x = np.squeeze(frs['initial_x']) initial_y = np.squeeze(frs['initial_y']) box_FRS = np.squeeze(frs['box_FRS']) coeffile = sio.loadmat( '/home/nvidia/RTD_ws/src/autonomous_mode/Mat_Files/newest_traj_lqr.mat') c = coeffile['coeffs'] c = np.squeeze(c,0) # Below are ADJUSTABLE************************************************** Z_map_goal = [-4.04,4.633] # Goal position for the rover for single goal mode, # At where it would not move any further. print_ = True # Print elapsed time and diagnostic information to # to standard out. solver_print_ = True # Print solver specific information. # End ADJUSTABLE******************************************************** # Check for high-level planner try: rospy.wait_for_message('goal_to_mid_RTD',FloatStamped,timeout=0.2) planner = True print('Starting RTD with planner') except: # Single goal mode # Check for Z_map_goal entered on command line y_n = raw_input('Starting RTD. No planner. Enter Z_map_goal (y/n): ') try: if y_n == 'y': gx,gy = raw_input().split() Z_map_goal = [float(gx),float(gy)] except: pass planner = False # Create rover dynamics object # NOTE the lambda functions as found in the rover_dynamics class # are FRS specific for fast runtime rover_dynamics = rover_dynamics() rover_dynamics.pass_coeff(c,wb,(t_f/dist_scale),dist_scale) rover_dynamics.setup() # Publications to ros topics traj_pub = rospy.Publisher('traj_to_low_RTD',TrajStamped,queue_size=100) # Subscriptions to ros topics. # Wait for enough info before proceeding to algorithm_main. vesc_sub = rospy.Subscriber('/vesc/odom',Odometry,callback_odom) rospy.wait_for_message('/vesc/odom',Odometry) grid_sub = rospy.Subscriber('map',OccupancyGrid,callback_oc) rospy.wait_for_message('map',OccupancyGrid) pose_raw = rospy.wait_for_message('cart_rover_global',RoverPoseGlobalStamped) pose_sub = rospy.Subscriber('cart_rover_global',RoverPoseGlobalStamped,callback_pose) rospy.wait_for_message('cart_rover_global',RoverPoseGlobalStamped) if planner: goal_sub = rospy.Subscriber('goal_to_mid_RTD',FloatStamped,callback_goal) rospy.wait_for_message('goal_to_mid_RTD',FloatStamped) t_j = rospy.get_time() while not rospy.is_shutdown(): # Loop algorithm_main(cur_oc) rospy.spin() except rospy.ROSInterruptException: pass
ffd22fe756867d898a76925bc17830736ee33079
5fc266d4f08a9222744b3597b72e81c91dd94269
/Camera Calibration/undistort_img.py
9c3d262d29e807d60082c7e1f855b6c1d27afd01
[]
no_license
aldinataITS/BAYUSUTA
3986bb38486d12d0c007e5768b20f65ca2a4204b
48511b089ff80a4bd542d42d0822e80eff55f55a
refs/heads/master
2020-03-30T04:49:58.242740
2018-10-23T11:37:25
2018-10-23T11:37:25
150,764,424
0
0
null
null
null
null
UTF-8
Python
false
false
638
py
import numpy as np import cv2 #Loading Calibration Data calibrationData = np.load('camcalib_3.npz') mtx = calibrationData['mtx'] dist = calibrationData['dist'] newcameramtx = calibrationData['newcameramtx'] roi = calibrationData['roi'] #Close File calibrationData.close() print mtx print dist print newcameramtx print roi x,y,w,h = roi print x print y print w print h img = cv2.imread('c.jpg') img = cv2.undistort(img, mtx, dist, None, newcameramtx) #img = img[y:y+h, x:x+w] #img = cv2.resize(img, dim, interpolation = cv2.INTER_AREA) #cv2.imshow('img', img) cv2.imwrite("undistort_c0.png",img)
e9562b760fcfc452be8a8be746853fa3948c58d2
bf9ff34412dbeadba43b4a355c351947d2f8c80e
/src/Functions.py
7eeeda272ad3203dac831cd7d6294fb6b87b35c0
[ "MIT" ]
permissive
zibaparsons/DPFL-IADMM-Classification
3b53d7fd2057a2a4135e598f2f9254ea1df23f6a
4610458edaad176f5108199393f2bc18c93659e2
refs/heads/main
2023-07-31T00:37:12.831700
2021-08-06T20:31:35
2021-08-06T20:31:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,506
py
import numpy as np #(activate this if CPU is used) # import cupy as np #(activate this if GPU is used) import math from scipy.stats import matrix_normal import time def calculate_hypothesis(W_val, x_train): Temp_H = np.exp( np.matmul(x_train, W_val) ) H = Temp_H/Temp_H.sum(axis=1)[:,None] H = np.clip(H,1e-9, 1.) ## I X K matrix return H def calculate_cost(par, num_data, H, y_train_Bin): return -np.sum( np.multiply(y_train_Bin, np.log(H)) ) / num_data + par.gamma * np.sum( np.square(par.W_val) ) def calculate_accuracy(par, W, x_train, y_train): H = calculate_hypothesis(W, x_train) H_argmax = np.argmax(H, axis=1) return np.mean( np.equal(H_argmax, y_train ) ) def calculate_gradient(par, num_data, H, x_train, y_train_Bin): grad = np.zeros((par.num_features, par.num_classes)) ## J X K matrix H_hat= np.subtract(H, y_train_Bin) ## I X K matrix grad = np.matmul(x_train.transpose(), H_hat) / num_data + 2. * par.gamma * par.W_val ## J X K matrix return grad def calculate_residual(par): Temp = np.absolute(par.W_val - par.Z_val) residual = np.sum(Temp) / par.split_number return residual def generate_laplacian_noise(par, H, num_data, x_train, y_train_Bin, tilde_xi): H_hat=np.subtract(H, y_train_Bin) ## I_p X K matrix H_hat_abs = np.absolute(H_hat) x_train_sum = np.sum(x_train, axis = 1) H_hat_abs_sum = np.sum(H_hat_abs, axis = 1) x_train_H_hat_abs = np.multiply(x_train_sum,H_hat_abs_sum) / num_data bar_lambda = np.max(x_train_H_hat_abs)/float(par.bar_eps_str) tilde_xi_shape = par.M + bar_lambda tilde_xi = np.random.laplace( par.M, tilde_xi_shape, [par.num_features, par.num_classes]) return tilde_xi def calculate_eta_Base(par,num_data, Iteration): delta = 1e-6 ## (epsilon, delta)-differential privacy c1 = num_data*1 c3 = num_data*0.25 cw = math.sqrt( par.num_features*par.num_classes*4 ) if par.bar_eps_str != "infty": par.eta = 1.0 / ( c3 + 4.0*c1*math.sqrt( par.num_features*par.num_classes*(Iteration+1)*math.log(1.25/delta) )/(num_data*float(par.bar_eps_str)*cw) ) else: par.eta = 1.0 / c3 par.eta = par.eta * float(par.a_str) return par.eta def generate_matrix_normal_noise(par, num_data,tilde_xi): c1 = num_data*1 delta = 1e-6 ## 1e-308, 1e-6 sigma = 2*c1*math.sqrt(2*math.log(1.25/delta)) / (num_data*float(par.bar_eps_str)*(par.rho + 1.0/par.eta)) tilde_xi_shape = par.M + sigma*sigma tilde_xi = np.random.normal( par.M, tilde_xi_shape, [par.num_features, par.num_classes]) return tilde_xi def hyperparameter_rho(par, iteration): if par.rho_str == "dynamic_1" or par.rho_str == "dynamic_2": if par.Instance =="MNIST": c1 = 2.0; c2=5.0; Tc = 10000.0; rhoC=1.2 if par.Instance =="FEMNIST": c1 = 0.005; c2=0.05; Tc = 2000.0; rhoC=1.2 if par.bar_eps_str == "infty": par.rho = c1 * math.pow(rhoC, math.floor( (iteration+1) / Tc ) ) else: par.rho = c1 * math.pow(rhoC, math.floor( (iteration+1) / Tc ) ) + c2/float(par.bar_eps_str) if par.rho_str == "dynamic_2": par.rho = par.rho/100.0 else: par.rho = float(par.rho_str) # the parameter is bounded above if par.rho > 1e9: par.rho = 1e9
39e0d8160a3b0812c2a752531ce2c6e65bf47201
f3b233e5053e28fa95c549017bd75a30456eb50c
/mcl1_input/L43/43-27_MD_NVT_rerun/set.py
c90bf6739886a0bcd70e144171deac7ecf6d72b5
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,082
py
import os dir = '/mnt/scratch/songlin3/run/mcl1/L43/MD/ti_one-step/43_27/' filesdir = dir + 'files/' temp_equiin = filesdir + 'temp_equi.in' temp_prodin = filesdir + 'temp_prod.in' temp_pbs = filesdir + 'temp.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.system("rm -r %6.5f" %(j)) os.system("mkdir %6.5f" %(j)) os.chdir("%6.5f" %(j)) os.system("rm *") workdir = dir + "%6.5f" %(j) + '/' #equiin eqin = workdir + "%6.5f_equi.in" %(j) os.system("cp %s %s" %(temp_equiin, eqin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, eqin)) #prodin prodin = workdir + "%6.5f_prod.in" %(j) os.system("cp %s %s" %(temp_prodin, prodin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, prodin)) #PBS pbs = workdir + "%6.5f.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #top os.system("cp ../43-27_merged.prmtop .") os.system("cp ../0.5_equi_0.rst .") #submit pbs os.system("qsub %s" %(pbs)) os.chdir(dir)
7530a00760c2d03d1c4025884ae463e500444761
80be7278883df59d4cb045d1e97f01ec18f9e32a
/PivotRule.py
551a13362b3da9c63a2ef057214927547913e1f5
[ "MIT" ]
permissive
vladan-jovicic/SimplexMethod
05a60faa916aebd77e118ceaff2a27f247025511
9acf12db07da046f8563d3500183e54bb3d01860
refs/heads/master
2021-01-22T05:05:46.699376
2017-02-10T22:47:29
2017-02-10T22:47:29
81,613,885
1
0
null
null
null
null
UTF-8
Python
false
false
1,565
py
#Pivot rule from fractions import Fraction import random class PivotRule: def __init__(self): self.bounded = True def bland_rule(self, curr_dict, n, m): enter, leave = (-1, -1) poss_enter = [idx for idx in range(n+m+1) if curr_dict[-1][idx] > 0] if (len(poss_enter) == 0): return (-1, -1) else: enter = min(poss_enter) poss_leave = [(Fraction(-1)*curr_dict[i][-1]/curr_dict[i][enter],i) for i in range(m) if curr_dict[i][enter] < 0] if (len(poss_leave) == 0): return (enter, -1) else: return (enter,min(poss_leave)[1]) def max_coef(self, curr_dict, n, m): enter, leave = (-1, -1) poss_enter = [(val,idx) for idx,val in enumerate(curr_dict[-1][:n+m+1]) if val > 0] if (len(poss_enter) == 0): return (-1, -1) enter = max(poss_enter)[1] poss_leave = [(Fraction(-1)*curr_dict[i][-1]/curr_dict[i][enter],i) for i in range(m) if curr_dict[i][enter] < 0] if (len(poss_leave) == 0): return (enter, -1) else: return (enter,min(poss_leave)[1]) def my_rule(self, curr_dict, n, m): enter, leave = (-1, -1) poss_enter = [(val,idx) for idx,val in enumerate(curr_dict[-1][:n+m+1]) if val > 0] if (len(poss_enter) == 0): return (-1, -1) inc_val = [] for tmp_e in poss_enter: poss_leave = [(Fraction(-1)*curr_dict[i][-1]/curr_dict[i][tmp_e[1]],i) for i in range(m) if curr_dict[i][tmp_e[1]] < 0] if(len(poss_leave) == 0): return (tmp_e[1], -1) tmp_l = min(poss_leave) inc_val.append((tmp_e[0]*tmp_l[0], tmp_e[1], tmp_l[1])) leave = max(inc_val) return (leave[1], leave[2])
d729f9bd86b204be425d7c8cc856b17c2f0b8974
1982eca7dbeaa012c52bd045dd2acc54432792ad
/blog/tests.py
8dfe1372c6e5da8d7789c27a40000c6195b7aa61
[]
no_license
joshkatz1/blog
3385b75d7baafb702f4c8edcc53213daa3860d3f
4053e7a9ebf440e62b528d741c9144fb6e1b42fa
refs/heads/master
2023-06-26T08:30:13.862244
2021-07-22T13:57:31
2021-07-22T13:57:31
387,840,350
0
0
null
null
null
null
UTF-8
Python
false
false
2,277
py
from django.test import TestCase # Create your tests here. from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse from .models import Post class BlogTests(TestCase): def setUp(self): self.user = get_user_model().objects.create_user( username='testuser', email='[email protected]', password='secret' ) self.post = Post.objects.create( title='A good title', body='Nice body content', author=self.user, ) def test_string_representation(self): post = Post(title='A sample title') self.assertEqual(str(post), post.title) def test_post_content(self): self.assertEqual(f'{self.post.title}', 'A good title') self.assertEqual(f'{self.post.author}', 'testuser') self.assertEqual(f'{self.post.body}', 'Nice body content') def test_post_list_view(self): response = self.client.get(reverse('home')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'Nice body content') self.assertTemplateUsed(response, 'home.html') def test_post_detail_view(self): response = self.client.get('/post/1/') no_response = self.client.get('/post/100000/') self.assertEqual(response.status_code, 200) self.assertEqual(no_response.status_code, 404) self.assertContains(response, 'A good title') self.assertTemplateUsed(response, 'post_detail.html') def test_post_create_view(self): # new response = self.client.post(reverse('post_new'), { 'title': 'New title', 'body': 'New text', 'author': self.user, }) self.assertEqual(response.status_code, 200) self.assertContains(response, 'New title') self.assertContains(response, 'New text') def test_post_update_view(self): # new response = self.client.post(reverse('post_edit', args='1'), { 'title': 'Updated title', 'body': 'Updated text', }) self.assertEqual(response.status_code, 302) def test_post_delete_view(self): # new response = self.client.post( reverse('post_delete', args='1')) self.assertEqual(response.status_code, 302)
874356f7c15835a2cbfbcaec020e7f92a683ee3a
a18369348e9ca657d15c47a0b6d5f05ecbe7f26e
/main.py
86cd7a5e577fc92a47e9f7e8248602ef9ee63aa2
[]
no_license
stevie-h/1.7.2021
39060bbb667874f8817a2db73f49a2c6738ac2d8
15ed20e3097a20c333ce1fdb64b38ec8eb60adc3
refs/heads/main
2023-06-17T18:16:43.786929
2021-07-07T19:28:54
2021-07-07T19:28:54
383,188,307
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
# HW # exercises from https://qaarchint.wordpress.com/2021/07/02/python-marathon/
8bc1b80e842f887f3ee0f579212732acf07cdd82
a302095a04f7781f1c264eb17fa9ebee8f6b26c4
/ch1-ex2.py
1e6704f6344a141e5c2d492c645bf737dab7af01
[]
no_license
opi-lab/preliminares-aosoriob
1f7459a5a1f928bfce7f7aafc58cfbd7105cab28
e9519bf98eeba18570e7b7e375bf22d2699124ff
refs/heads/master
2021-01-25T12:44:20.443481
2018-03-08T22:49:05
2018-03-08T22:49:05
123,505,690
0
0
null
null
null
null
UTF-8
Python
false
false
471
py
from PIL import Image from pylab import * from scipy.ndimage import filters im = array(Image.open("imagen2.jpg").convert('L'), "f") # Creando imagen blurred sigma = 3 blurred = filters.gaussian_filter(im,sigma) weight = 0.25# escalar que multiplica a la imagen una vez blurred unsharp = im - weight*blurred # construyendo la imegen figure() imshow(im) gray() title("Imagen antes") figure() imshow(unsharp) gray() title("Imagen despues".format(weight)) show()
3ee4f2addec32c0e331746ce8d188d7dfa38e847
9a692b550b257a2e19ab146925b88ed172bbc6cf
/test_api/test_api/settings.py
f10126f29e2fa2b2c518c11740d0753a10c20fa0
[]
no_license
VVD-byte/py_dev_test
e1613d90ef548d891295813eacae16e438745dfd
a6930193bd0f64bec4ed8f2e410e2e1a9e7f8af4
refs/heads/main
2023-03-24T15:22:46.717750
2021-03-23T08:16:25
2021-03-23T08:16:25
349,413,207
0
0
null
null
null
null
UTF-8
Python
false
false
3,257
py
""" Django settings for test_api project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'd8_on3x2k)ocw0&#=^e%u7rh=pfv52mc*v4pns&#1f%^6wg*t%' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['192.168.1.149', '127.0.0.1'] REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework.authentication.BasicAuthentication', ] } # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'api', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'test_api.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'test_api.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
3d9ae9ed97e2086ac26476056509fc5b0de09fd3
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/ddpm_w_distillation/ddpm_w_distillation/config/dir_sample_cifar_condw_stage2.py
21ef73b70eed5bf50147b39ceb9c3b6117bd6ed4
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
6,859
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=missing-module-docstring,missing-function-docstring # pylint: disable=g-no-space-after-comment,g-bad-todo # pylint: disable=invalid-name,line-too-long import ml_collections class hyper: pass def D(**kwargs): return ml_collections.ConfigDict(initial_dictionary=kwargs) # added, edited end_num_steps = 1 # eventual number of steps in the distilled sampler start_num_steps = 1024 #512 #1024 #1024 #512 #1024 #NOTE: todo change to #1024 # number of steps in baseline sampler distill_steps_per_iter = 50000 #50000 #10000 #10000 #1000 #50000 # NOTE alithough it's stage1 it's actually stage 2 teacher_ckpt_path = 'projects/diffusion/cifar_stage1_43492025/1/retained_checkpoints/checkpoint_620000' train_batch = 128 #2048 # 256 lr = 1e-4 #3e-4 #1e-4 sampling_num_steps_train_start = 128 use_eval_ckpt_dir = True # # # our two stage approach # eval_ckpt_dir = 'projects/diffusion/cifar10_stage2_50k_ema_decay0_43877018/1/retained_checkpoints/' # sampler='ddim' # nvidia_2step approach eval_ckpt_dir = 'projects/diffusion/cifar_stage2_twostep_nvidia_50k_43902200/1/retained_checkpoints/' sampler = 'new_two_step_nvidia' # previous runs with ema-decay 0.9999 # 'projects/diffusion/cifar_stage1_43555434/1/retained_checkpoints/' use_retained_ckpt = True w_sample_const = 1.0 #0. waiting_for_new_ckpt = False progressive_sampling_step = True def get_config(): config = D( launch=D( sweep=hyper.product([ hyper.sweep('config.seed', [0]), #TODO [1, 2, 3] change to [0] hyper.sweep('config.model.args.uncond_prob', [0.]), # check NOTE not 0.1 hyper.sweep('config.eval.w_sample_const', [0., 0.3, 1., 2., 4.]) ]),), # added distillation=D( # teacher checkpoint is used for teacher and initial params of student teacher_checkpoint_path=teacher_ckpt_path, steps_per_iter=distill_steps_per_iter, # number of distillation training steps per halving of sampler steps only_finetune_temb=False, start_num_steps=start_num_steps, end_num_steps=end_num_steps, another_teacher_init=False, #True, # added ), # added seed=0, progressive_distill=True, # a flag for stage 2 training main_class='Model', dataset=D( name='CIFAR10', args=D( # image_size=64, class_conditional=True, randflip=True, ), ), sampler=sampler, #'noisy', use_eval_ckpt_dir=use_eval_ckpt_dir, eval_ckpt_dir=eval_ckpt_dir, waiting_for_new_ckpt=waiting_for_new_ckpt, progressive_sampling_step=progressive_sampling_step, model=D( # architecture name='w_unet3', args=D( ch=256, emb_ch=1024, # default is ch * 4 ch_mult=[1, 1, 1], num_res_blocks=3, attn_resolutions=[8, 16], num_heads=1, # head_dim=64, dropout=0., # NOTE changes 0.1, logsnr_input_type='inv_cos', w_input_type='inv_cos', # w embedding added resblock_resample=True, uncond_prob=0.1, #NOTE: default, but as sweep 0., # extra_class=True, ), teacher_extra_class=True, #NOTE added mean_type='v', #'eps', #both might not work since the teach model uses eps, 'both', #NOTE: need to implement 'eps', teacher_mean_type='v', # added logvar_type='fixed_large', #'fixed_medium:0.3', # TODO: check mean_loss_weight_type='snr_trunc', #NOTE:default 'snr_trunc', 'snr' performs worse #'constant', #NOTE changed defalut 'snr_trunc', #constant='mse', snr, snr_trunc logvar_loss_type='none', # logsnr schedule train_num_steps=end_num_steps, eval_sampling_num_steps=end_num_steps, train_logsnr_schedule=D( name='cosine', logsnr_min=-20., logsnr_max=20.), eval_logsnr_schedule=D( name='cosine', logsnr_min=-20., logsnr_max=20.), eval_clip_denoised=True, # added eval_sampling_num_steps_train_start=sampling_num_steps_train_start, # NOTE: need to change noisy_sampler_interpolation=0.2, train_w_schedule=D( name='uniform', # logsnr_min=0., logsnr_max=0.5), # logsnr_min=0., logsnr_max=1.0), # logsnr_min=0., logsnr_max=2.0), logsnr_min=0., logsnr_max=4.), ), train=D( # optimizer batch_size=train_batch, #2048, # TODO: change back 2048, optimizer='adam', learning_rate=lr, # 1e-4 for 50k, 2e-4 for 10k #3e-4, #NOTE: todo #1e-4, #edited 3e-4, learning_rate_warmup_steps=0, #edited 10000, # used to be 1k, but 10k helps with stability learning_rate_anneal_type='linear', # TODO: checked learning_rate_anneal_steps=distill_steps_per_iter, # TODO: checked weight_decay=0.0, ema_decay=0.9999, #0., grad_clip=1.0, substeps=10, enable_update_skip=False, # logging log_loss_every_steps=100, checkpoint_every_secs=900, # 15 minutes retain_checkpoint_every_steps=20000, # old checkpoints won't get deleted eval_every_steps=20000, w_conditoned_training=True, # added w_warmup_steps=0, # NOTE, set 0 10000, # added to worm up w embedding ), eval=D( batch_size=128, # TODO change to 128, num_inception_samples=50000, sampling_fixed_classes=[0, 5], # visualize malamute, siamese cat sampling_fixed_w=[0.1, 0.3, 0.5], # NOTE, not used use_retained_ckpt=use_retained_ckpt, w_sample_const=w_sample_const, ), ) # added if hasattr(config, 'progressive_distill'): # run some sanity checks on inputs assert config.distillation.start_num_steps > 0 assert config.distillation.end_num_steps > 0 assert config.distillation.start_num_steps % config.distillation.end_num_steps == 0 return config
4ba728c054427c96406b9abe05531f8c65c9a67a
e03e118dfb61e4f414035011c80718cff026ba9e
/main/analysis.py
dda3fc0df74a8891cf93466725399d16861d61cb
[]
no_license
15minutOdmora/RedditAnalysis
6a946a9896a59f878425d38a75de874679c6cf4c
fdec33443cb889ed74c687a960f8e2fe679ca62a
refs/heads/master
2021-01-26T04:42:42.918884
2020-04-14T09:22:28
2020-04-14T09:22:28
243,310,546
2
0
null
null
null
null
UTF-8
Python
false
false
20,298
py
import numpy as np import matplotlib.pyplot as plt import os import json import math class Analysis: def __init__(self, dir): self.dir = dir self.counted_data_dir = self.dir + r'\counted_data' self.data_files = self.dir + r'\data' self.sorted_data = json.load(open(self.dir + r'\analysed_data\sorted_data.json')) self.subs = json.load(open(self.dir + r'\subreddit_dict_fin.json')) self.date_files = ['08_03_2020_14', '09_03_2020_19', '10_03_2020_20', '11_03_2020_17', '12_03_2020_20', '13_03_2020_20', '14_03_2020_19', '15_03_2020_19', '16_03_2020_23', '17_03_2020_20', '18_03_2020_18'] # Create a dict with only the lower names of subs, keys = normal, nsfw ... self.sorted_subs = dict() for key, value in self.subs.items(): self.sorted_subs[key] = [dat[0].lower() for dat in value] def search(self, where, filter, what1, what2=None, what3=None, specs=None): """FUNCTION: Searches for the 'what' data in the 'where' data group, adds them up in lists, returs a touple(or triple) of lists where = 'data', 'counted_data', 'analysed_data' what1, what2, what3 = depends where we search. specs = are only used if we want a speciffic sub. """ data1, data2, data3 = [], [], [] if where == 'data': # Reads from the 'data' file if filter == 'all': # Ads up all the lists from every subreddit from every day for date in self.date_files: for file in os.listdir(os.fsencode(self.data_files + r'\{}'.format(date))): filename = os.fsdecode(file) if filename.endswith(".json"): sub = json.load(open(self.data_files + r'\{}\{}'.format(date, filename))) data1 += sub[what1] if data2 is not None: data2 += sub[what2] if what3 is not None: data3 += sub[what3] return data1, data2, data3 elif filter == 'specific_sub': # Only adds up from the specific sub specs for _ in specs: for date in self.date_files: for file in os.listdir(os.fsencode(self.data_files + r'\{}'.format(date))): filename = os.fsdecode(file) if filename[:-5] in specs: if filename.endswith(".json"): sub = json.load(open(self.data_files + r'\{}\{}'.format(date, filename))) data1 += sub[what1] if data2 is not None: data2 += sub[what2] if what3 is not None: data3 += sub[what3] return data1, data2, data3 elif filter in ['normal', 'europe', 'usa', 'nsfw']: # Only adds up from the subs in the category filter for date in self.date_files: for file in os.listdir(os.fsencode(self.data_files + r'\{}'.format(date))): filename = os.fsdecode(file) if filename[:-5] in self.sorted_subs[filter]: if filename.endswith(".json"): sub = json.load(open(self.data_files + r'\{}\{}'.format(date, filename))) data1 += sub[what1] if data2 is not None: data2 += sub[what2] if what3 is not None: data3 += sub[what3] return data1, data2, data3 elif where == 'counted_data': # Reads from the 'counted_data' file if filter == 'all': # Appends all the lists sub = json.load(open(self.counted_data_dir + r'\all_sub_data.json')) if what2 is None: return sub[what1] elif what3 is None and what2 is not None: return sub[what1], sub[what2] else: return sub[what1], sub[what2], sub[what3] if filter == 'specific_sub': sub = json.load(open(self.counted_data_dir + r'\{}.json'.format(specs))) if what2 is None: return sub[what1] elif what3 is None and what2 is not None: return sub[what1], sub[what2] else: return sub[what1], sub[what2], sub[what3] if filter in ['normal', 'europe', 'usa', 'nsfw']: for file in os.listdir(os.fsencode(self.counted_data_dir)): filename = os.fsdecode(file) if filename[:-5] in self.sorted_subs[filter]: sub = json.load(open(self.counted_data_dir + r'\{}'.format(filename))) data1.append(sub[what1]) if what2 is None: pass elif what3 is None and what2 is not None: data2.append(sub[what2]) elif what3 is not None: data2.append(sub[what2]) data3.append(sub[what3]) if what2 is None: return data1 elif what3 is None and what2 is not None: return data1, data2 else: return data1, data2, data3 elif where == 'analysed_data': # Reads from the analysed where we have rankings in a json file if filter == 'all': if what2 is None: return self.sorted_data['all'][what1] elif what3 is None: return self.sorted_data['all'][what1], self.sorted_data['all'][what2] else: return self.sorted_data['all'][what1], self.sorted_data['all'][what2], self.sorted_data['all'][what3] if filter in ['normal', 'europe', 'usa', 'nsfw']: if what2 is None: return self.sorted_data[filter][what1] elif what3 is None: return self.sorted_data[filter][what1], self.sorted_data[filter][what2] else: return self.sorted_data[filter][what1], self.sorted_data[filter][what1],\ self.sorted_data[filter][what1] def meaning(self, sho): """Returns the meaning of shortcuts(sho) used in bar charts""" if sho == "s_avg_comments": return "average number of comments" elif sho == "s_avg_upvotes": return "average number of upvotes" elif sho == "s_avg_ud_ratio": return "average upvote/downvote ratio" elif sho == "s_avg_uc_ratio": return "upvote/comment ratio" elif sho == "s_topcomupv_to_upv": return "number of upvotes of the top comment / number of upvotes on post" elif sho == "s_topcomupv_to_2topcomupv": return "number of upvotes of the top comment / number of upvotes on the 2nd top comment" else: return "error: No title" def scatter_plot_upv_com_ud(self, filter, specs=None, lin_regression=False, log_scale=False): """ PYPLOT: plots the scatter plot of all the data from the filter(normal, nsfw...) and the lin. regression function""" plt.style.use('seaborn') # Use the search function to get all the data points = self.search(where='data', filter=filter, what1='upvotes', what2='comments', what3='ud_ratio', specs=specs) num_of_posts = len(points[0]) # Set the log scaling to the axes if true if log_scale: plt.yscale('log') plt.xscale('log') # Plot and set the settings to the scatter plt.scatter(points[0], points[1], c=points[2], cmap='summer', s=30, edgecolor='black', alpha=0.7) # Add a colorbar and set the label cbar = plt.colorbar() cbar.set_label('Upvote/Downvote ratio') # Zoom out plt.margins(5, 5) # Nastavljeno za log scale # Set labels plt.xlabel('Upvotes') plt.ylabel('Comments') if filter == "specific_sub": tit = "r/" + specs[0].upper() + specs[1:] else: tit = "the group " + filter[0].upper() + filter[1:] plt.title("The relation of upvotes to comments in {}.\n Number of posts: {}".format(tit, num_of_posts)) # Calculates and plots the lin. regression function if lin_regression is set to True if lin_regression: x = np.array(points[0]) y = np.array(points[1]) k, n = np.polyfit(x, y, 1) print('Linear regression function = {} x + {}'.format(round(k, 3), round(n, 3))) plt.show() def plot_post_and_avgupv_freq(self, filter, specs=None): """Plots the average upvotes per hour and post freq.""" freq, upv = self.search('counted_data', what1="time_freq_hour", what2="time_freq_hour_upv", filter=filter, specs=specs) all_freq, all_upv = np.zeros((1, 25)), np.zeros((1, 25)) if filter in ["specific_sub", "all"]: index = 0 for number in freq[0]: all_freq[0, index] += number index += 1 index = 0 for number in upv[0]: all_upv[0, index] += number index += 1 else: for sub in freq: index = 0 for post in sub[0]: all_freq[0, index] += post index += 1 for sub in upv: index = 0 for post in sub[0]: all_upv[0, index] += post index += 1 x_axis = np.array([x for x in range(0, 25)]) # connect the last number with the first one as they should be the same ar = [] for x in range(25): if x < 24: ar.append(all_upv[0, x]/all_freq[0, x]) else: ar.append(all_upv[0, 0]/all_freq[0, 0]) avg_upv = np.array(ar) plt.style.use('ggplot') plt.subplot(211) plt.xlim(0, 24) plt.plot(x_axis, avg_upv, c='red') plt.title("Average post upvotes per hour and number of posts per hour\n(UTC)") plt.ylabel('Average number of upvotes') plt.subplot(212) plt.xlim(0, 24) all_freq[0, 24] = all_freq[0, 0] plt.plot(x_axis, all_freq[0], c='blue') plt.ylabel("Number of posts") plt.xlabel("Hour") plt.show() def compare_plots_post_avgupv_freq(self, filter1, filter2, what1, what2, specs1=None, specs2=None): """ METHOD: Displays 4 plots for two different groups/subreddits left = group1, right = group2""" # Search the data: group1 = self.search(where='counted_data', filter=filter1, what1=what1, what2=what2, specs=specs1) group2 = self.search(where='counted_data', filter=filter2, what1=what1, what2=what2, specs=specs2) # Set the time period, and the data variables if what1 == 'time_freq_hour': time_period = 24 else: time_period = 72 post_freq1, post_upv1 = np.zeros((1, time_period)), np.zeros((1, time_period)) post_freq2, post_upv2 = np.zeros((1, time_period)), np.zeros((1, time_period)) if filter1 in ["specific_sub", "all"]: for i in range(len(group1[0][0])): post_freq1[0, i] += group1[0][0][i] for i in range(len(group2[0][0])): post_freq2[0, i] += group2[0][0][i] else: # Add up the lists for the two groups for sub in range(len(group1[0])): # Post freq. p. time period group1 for i in range(len(group1[0][sub][0])): post_freq1[0, i] += group1[0][sub][0][i] for sub in range(len(group2[0])): # Post freq. p. time period group2 for i in range(len(group2[0][sub][0])): post_freq2[0, i] += group2[0][sub][0][i] if filter2 in ["specific_sub", "all"]: for i in range(len(group1[1][0])): post_upv1[0, i] += group1[1][0][i] for i in range(len(group2[1][0])): post_upv2[0, i] += group2[1][0][i] else: for sub in range(len(group1[1])): # Sum of upvotes p. h. group1 for i in range(len(group1[1][sub][0])): post_upv1[0, i] += group1[1][sub][0][i] for sub in range(len(group2[1])): # Sum of upvotes p. h. group2 for i in range(len(group2[1][sub][0])): post_upv2[0, i] += group2[1][sub][0][i] # Create the average upv. p. h. for the two groups avg_upv1, avg_upv2 = np.zeros((1, 24)), np.zeros((1, 24)) for i in range(len(post_upv1[0])): avg_upv1[0, i] = post_upv1[0, i] / post_freq1[0, i] for i in range(len(post_upv2[0])): avg_upv2[0, i] = post_upv2[0, i] / post_freq2[0, i] # Label names hours = [x for x in range(24)] if filter1 == "specific_sub": name1 = specs1 name2 = specs2 else: name1 = filter1 name2 = filter2 # Use subplots fig, axs = plt.subplots(2, 2) axs[0, 0].plot(hours, avg_upv1[0]) # Upper left plot axs[0, 0].set_title('{}'.format(name1)) axs[0, 1].plot(hours, avg_upv2[0], 'tab:orange') # Upper right plot axs[0, 1].set_title('{}'.format(name2)) axs[1, 0].plot(hours, post_freq1[0], 'tab:green') # Bottom left plot axs[1, 1].plot(hours, post_freq2[0], 'tab:red') # Bottom right plot # Set the labels counter = 0 for ax in axs.flat: if counter == 0: ax.set(xlabel='0', ylabel='Average upvotes per hour') elif counter == 2: ax.set(xlabel='Hour', ylabel='Number of posts per hour') elif counter == 3: ax.set(xlabel='Hour', ylabel='3') counter += 1 # Hide x labels and tick labels for top plots and y ticks for right plots. for ax in axs.flat: ax.label_outer() plt.show() def sorted_bar_chart(self, filter, what, top, specs=None): """ METHOD: Displays sorted bar-charts of subs. ranked by different categories """ data = self.search(where='analysed_data', filter=filter, what1=what) if what == 's_awards': if specs == 'platinum': color = 'aquamarine' elif specs == 'coins': color = 'yellow' else: color = specs # title text and label text if specs == 'coins': title_text = "All rewards recieved in coins worth for each" + \ " {} subreddit in a 11 day period".format(filter) label_text = "Number of coins worth" else: title_text = "All {} awards recieved for each {} subreddit in a 11 day period".format(specs, filter) label_text = "Number of {} awards".format(specs) specs_dict = {'silver': 0, 'gold': 1, 'platinum': 2, 'coins': 3} if len(data[specs_dict[specs]]) < top: top = len(data[specs_dict[specs]]) sub_names, sub_data = list(), list() for index in range(top): num = data[specs_dict[specs]][index][1] sub_names.append(data[specs_dict[specs]][index][0]) sub_data.append(num) plt.barh(y=[2 * x for x in range(top, 0, -1)], width=sub_data, tick_label=sub_names, height=1.6, color=color, edgecolor='black', linewidth=0.5) # Setting the numbers on bars """for i,+ v in enumerate(sub_data[::-1]): if specs == 'coins': k = str(v / 1000) + 'k' else: k = str(v) plt.text(25 + v, 2 * i + 1.3, k, color='black', fontsize=7)""" plt.title(title_text) plt.xlabel(label_text) plt.show() else: if len(data) < top: top = len(data) sub_names, sub_data = list(), list() for index in range(top): sub_names.append(data[index][0]) sub_data.append(data[index][1]) plt.barh(y=[2*x for x in range(top, 0, -1)], width=sub_data, tick_label=sub_names, height=1.6) # Setting the numbers on bars """for i, v in enumerate(sub_data[::-1]): plt.text(10, 2*i +1.4, str(round(v)), color='white', fontsize=7)""" plt.title("Top {} subreddits from the category {}\n ranked by {}".format(top, filter, self.meaning(what))) plt.show() def number_of_submissions_prediction(self): """Coming soon""" pass def standard_deviation(self, filter, specs=None): """Returns the standard deviation for upvotes, comments, and us_ratio""" upv, com, ud = self.search(where="data", filter=filter, what1="upvotes", what2="comments", what3="ud_ratio", specs=specs) # Calc. the averages, lengths of the lists should in theory be the same length = len(upv) avg_upv = sum(upv) / length avg_com = sum(com) / length avg_ud = sum(ud) / length # Calculate the s. deviation d_upv, d_com, d_ud = 0, 0, 0 for i in range(length): d_upv += (upv[i] - avg_upv)**2 d_com += (com[i] - avg_com)**2 d_ud += (ud[i] - avg_ud)**2 return math.sqrt(d_upv/(length-1)), math.sqrt(d_com/(length-1)), math.sqrt(d_ud/(length-1)) def stats(self, filter, specs=None): """ FUNCTION: returns a list of different stats from group/subreddit touple of averages: (sum_num_of_submissions, sum_number_comments, sum_num_upvotes, sum_ud ,[sum_of_awards_list_of3lists], sum_title_length_words)""" # Fetch the data, for the groups if filter in ["europe", "nsfw", "normal", "usa"]: num_sub, com, upv = self.search('counted_data', filter=filter, what1="number_of_submissions", what2="comments", what3="upvotes") ud, awards, title_len = self.search('counted_data', filter=filter, what1="ud_ratio", what2="awards", what3="title_length") # calculate the averages sum_num_sub = sum(num_sub) sum_com = round(sum(com), 2) sum_upv = round(sum(upv), 2) sum_ud = round(sum(ud), 2) # do the averages for the awards and title lengths silver, gold, plat, words = 0, 0, 0, 0 for i in range(len(awards)): silver += awards[i][0] gold += awards[i][1] plat += awards[i][2] words += title_len[i][0] return sum_num_sub, sum_com, sum_upv, sum_ud, [silver, gold, plat], words else: num_sub, com, upv = self.search('counted_data', filter=filter, what1="number_of_submissions", what2="comments", what3="upvotes", specs=specs) ud, awards, title_len = self.search('counted_data', filter=filter, what1="ud_ratio", what2="awards", what3="title_length", specs=specs) return num_sub, com, upv, ud, awards, title_len[0] #if __name__ == '__main__':
e58beda762c47efd010b46b6c3e5309149104c90
19b7d0e225839b75a767cc62aeff15159e33a451
/day-5/part-2.py
78873479e442acf4437cb77018c5bd2544c25f46
[]
no_license
TomBombadilV/advent-of-code-2020
6942aa2f4cf703adc54beafd653ef21b0da02d11
09e9d30ad8871d6561c0c52c6e4f9815d7bf7f89
refs/heads/master
2023-02-04T01:55:15.008358
2020-12-19T16:29:04
2020-12-19T16:29:04
318,918,687
1
0
null
null
null
null
UTF-8
Python
false
false
1,777
py
# Day 5 Part 2 from typing import List def decode(seat: str, rows: int, cols: int) -> int: """ Converts a seat into its seat code """ # Keep track of current seat window row_left, row_right = 0, rows - 1 col_left, col_right = 0, cols - 1 # Iterate through seat string, updating current seat window for c in seat: if c == "F": # Move window to front half row_right = (row_left + row_right + 1) // 2 elif c == "B": # Move window to back half row_left = (row_left + row_right + 1) // 2 elif c == "L": # Move window to left half col_right = (col_left + col_right + 1) // 2 elif c == "R": # Move window to right half col_left = (col_left + col_right + 1) // 2 else: print("Invalid letter") return -1 # Convert to seast code return row_left * 8 + col_left def missing_seat(seats: List[str], rows: int, cols: int) -> int: """ Finds missing seat that is not from beginning or end """ # Array marking whether seat code has been encountered found = [False for _ in range(rows * cols)] # Decode each seat and mark it as encountered for seat in seats: code = decode(seat, rows, cols) found[code] = True # Move past beginning nonexistent seats i = 0 while found[i] == False: i += 1 # Iterate until you find a missing seat while found[i] == True: i += 1 return i if __name__ == "__main__": # Parse input with open("input.txt", "r") as file: lines = [line.strip() for line in file] # Define plane size rows, cols = 128, 8 # Get max seat code print("Missing seat code is {0}".format(missing_seat(lines, rows, cols)))
88ab09b0541b8ab896ba88063c9590026c36615d
785f5a4bfd97ac77559110fb831f18a3822b4e17
/01-python_crash_course/01-ejercicios_teoria/chapter_03_lists/bicycles.py
ca801e145ff518b9cf4696b1a32b4130de4d5840
[]
no_license
lionelherrerobattista/practica_python
c552ae06336eb805172decd0d527b26a17c09cb9
44f09bae58748c2c7c2449adc5117591abd2828d
refs/heads/master
2020-03-28T02:28:09.910563
2020-03-14T21:31:31
2020-03-14T21:31:31
147,572,377
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
bicycles = ['trek', 'cannondale', 'redline', 'specialized'] # ~ print(bicycles) # ~ print(bicycles[0].title()) # ~ print(bicycles[1]) # ~ print(bicycles[3]) # ~ print(bicycles[-1]) message = "My first bicyle was a " + bicycles[0].title() + "." print(message)
[ "-" ]
-
630d30611df501066fd29f0272f88adbd73b6db0
977e49e3d9940b79ad7cc55fdd6a31a85e199ee0
/devtracker/time.py
b6a47db0e42cf97d5b56271813a142ee58685759
[ "MIT" ]
permissive
ConSou/devtracker
e051045ea5a27e633426dbd7da572df2490c2493
ea892d6d48aa5d4627b429469b59ae3f0ce7f10f
refs/heads/master
2023-01-11T13:41:52.849977
2019-03-27T20:02:38
2019-03-27T20:02:38
177,614,070
1
1
MIT
2022-12-27T15:34:29
2019-03-25T15:29:25
Python
UTF-8
Python
false
false
3,074
py
import csv from .dir_and_path_helpers import mk_file_path, check_file from .time_and_date_helpers import get_date, get_time, total_time def make_project_csv(dir): if check_file(mk_file_path(dir)): start_time(dir) else: print("[+] First time working on {0}, creating file...".format(dir)) initalize_list = ["start_date", "start_time", "end_date", "end_time", "total"] with open(mk_file_path(dir), 'w', newline='') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) wr.writerow(initalize_list) start_time(dir) def start_time(dir): start_arr = [get_date(), get_time()] with open(mk_file_path(dir), 'r', newline='') as myFile: reader = list(csv.reader(myFile)) last_row = reader.pop() if len(last_row) == 2: print("[-] You are already tracking this project.") else: with open(mk_file_path(dir), 'a', newline='') as myfile: wr = csv.writer(myfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL) wr.writerow(start_arr) print("[+] Starting work on {0}".format(dir)) def end_time(dir): end_date = get_date() end_time = get_time() if check_file(mk_file_path(dir)): with open(mk_file_path(dir), 'r', newline='') as myFile: reader = list(csv.reader(myFile)) last_row = reader.pop() if len(last_row) == 2: total = total_time(last_row[1], end_time) last_row.extend([end_date, end_time, total]) reader.append(last_row) with open(mk_file_path(dir), 'w', newline='') as myfile: wr = csv.writer(myfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL) for i in reader: wr.writerow(i) print("[+] Stopped tracking in {0}, with a total time of {1}!".format(dir, total)) else: reader.append(last_row) print("[-] 'devtracker stop' was entered. You must run 'devtracker start' first to start tracking time first.") else: print("[-] 'devtracker stop' was entered. You must run 'devtracker start' to create project tracking file.") def current_status(dir): if check_file(mk_file_path(dir)): with open(mk_file_path(dir), 'r', newline='') as myFile: reader = list(csv.reader(myFile)) last_row = reader.pop() if len(last_row) == 2: temp_time = get_time() total = total_time(last_row[1], temp_time) print("[+] You have been working on {0} for {1} so far. \n" "Use 'devtracker stop' to stop working or continue working on this project.".format(dir, total)) else: print("[+] Status report for '{0}': You have not started work on this project yet.".format(dir)) else: print("[-] 'devtracker status' was entered. You must run 'devtracker start' to create project tracking file.")
d9227e657d330eebfff8a7108bd6c60f522b0fd3
f83845488fb40ca954cc7785499e6f44a4efe3ee
/solution/admin.py
6f555088b794c33f64c3e7874e04807daf2e503f
[]
no_license
justin3527/security_solution_api_app
3f7ef0a1bc1651cb63c47ae06f129af340deda7e
264004e5b0244cee5776c113bad194e46931d3e4
refs/heads/master
2020-04-23T19:40:28.961961
2019-06-26T02:13:24
2019-06-26T02:13:24
171,412,595
0
0
null
null
null
null
UTF-8
Python
false
false
125
py
from django.contrib import admin from .models import ServerData # Register your models here. admin.site.register(ServerData)
e54b24fa76a561c7a37d1d7e336ccb90544fbd02
e8f73030d427792a9c934fd6e096ea67494bc378
/launcher.py
5f895fecfb44ee98992b48f86252f6a1e8b0945e
[]
no_license
renanklehm/WM-Lages
e474dad636e0a043a0edd976a56a711484404ab9
933d2a7482f4741e5295fec5a6a3edf797ce28d9
refs/heads/master
2022-11-30T04:17:43.076969
2020-08-19T20:31:36
2020-08-19T20:31:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,075
py
from DataBase import DataBaseConnection import main import shutil import os import glob """def recursive_copy_files(source_path, destination_path, override=True): files_count = 0 if not os.path.exists(destination_path): os.mkdir(destination_path) print('Creating destination directory') items = glob.glob(source_path + '/*') for item in items: if os.path.isdir(item): path = os.path.join(destination_path, item.split('/')[-1]) files_count += recursive_copy_files(source_path=item, destination_path=path, override=override) else: file = os.path.join(destination_path, item.split('/')[-1]) if not os.path.exists(file) or override: shutil.copyfile(item, file) files_count += 1 return files_count if not (main.VER == DataBaseConnection().GetVersion()): print(recursive_copy_files('C:\\Users\\renan.klehm\\Desktop\\backup', 'C:\\Users\\renan.klehm\\Desktop\\WM-Lages')) main.launch() else: main.launch()""" main.launch()
7a4e7e606d7f94222297752f4a930850506e838e
215ea0eebf40b9e1037de4edc95db4fb8b3506b4
/boards/models.py
d7980143ad65186d29849b0454921e21ee82f5db
[]
no_license
kaznakamura193/ky_app
ba648f9c2f27b389ea6393a83ef14f9f49df3773
55b6e5674062c6aab6a13aacc13ac31bcd895939
refs/heads/master
2020-04-01T01:50:55.068110
2018-10-12T13:32:33
2018-10-12T13:32:33
152,754,816
0
0
null
null
null
null
UTF-8
Python
false
false
967
py
from django.db import models from django.contrib.auth.models import User class Board(models.Model): name = models.CharField(max_length=30, unique=True) description = models.CharField(max_length=100) class Topic(models.Model): subject = models.CharField(max_length=255) last_updated = models.DateTimeField(auto_now_add=True) board = models.ForeignKey(Board, on_delete=models.CASCADE, related_name='topics') starter = models.ForeignKey(User, on_delete=models.CASCADE, related_name='topics') class Post(models.Model): message = models.TextField(max_length=4000) topic = models.ForeignKey(Topic, on_delete=models.CASCADE, related_name='posts') created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(null=True) created_by = models.ForeignKey(User, on_delete=models.CASCADE, related_name='posts') updated_by = models.ForeignKey(User, on_delete=models.CASCADE, null=True, related_name='+')
b35416f37ad9cfc67851d947813070decac673a1
caf8cbcafd448a301997770165b323438d119f5e
/.history/chapter01/python_05_if_condition_20201128215219.py
71f44fdea34ec2a59f9af31a0d6f8d10ae606e99
[ "MIT" ]
permissive
KustomApe/nerdape
03e0691f675f13ce2aefa46ee230111247e90c72
aef6fb2d1f8c364b26d91bf8570b4487a24de69a
refs/heads/main
2023-01-23T10:13:26.584386
2020-11-28T22:29:49
2020-11-28T22:29:49
309,897,105
0
0
null
null
null
null
UTF-8
Python
false
false
927
py
"""[if文について] もし〜だったら、こうして """ # if 条件: # 実行するブロック # 条件によって処理を適応したい場合 # 3000kmごとにオイル交換しないといけない distance = 3403 if distance > 3000: print('オイル交換時期です') # 文字列を比較する/リストを比較する if 'abc' == 'ABC': print('1同類です') if 'CDE' == 'CDE': print('2同類です') if 'あいうえお' == 'あいうえお': print('3同類です') if ['apple', 'banana'] == ['apple', 'banana']: print('1リスト同類')) # 文字列を検索する/リストの要素を検索する # if 'abc' in "ABC": # print('ヒットしました!') # if 'ドリフト' in '僕はドリフトが好きです': # print('ヒットしました!') # if 'japan' in 'japanese domestic market vehicle': # print('ヒットしました!') # else文 # elif文
5fbc5c34b348b43fdf08241bcc02815f1289c467
6732ecf2f4277a59fd0877373bdd69d1c3d218f4
/book/urls.py
d0126601e3ee4fcd157b26a2bff91be0fe06cf48
[]
no_license
MatinaBajracharya/book-review-system
2cf29e9560b7639d2e7bc06962f4e6b4da852d71
434f9bba1068fee814533311e3579df23ee59939
refs/heads/master
2023-04-25T16:51:06.400151
2021-05-11T10:44:05
2021-05-11T10:44:05
309,442,967
0
0
null
null
null
null
UTF-8
Python
false
false
464
py
from django.urls import path from .views import * from django.conf.urls import url urlpatterns=[ # path('browse/', BookListView.as_view(template_name='browse.html'), name='browse'), path('browse/', book_list, name='browse'), path('browse/<int:pk>/', detail, name='book-detail'), path('history/', history, name='history'), url(r'^books/$', searchbook, name="searchbook"), path('autosuggestbook/', autosuggestbook, name='autosuggestbook'), ]
bf078dfcd61f760ea0651879022062800b6f6d61
d54dd2e67a0df874abbe6e1a8d8b94700b1d4913
/brollop1/settings.py
2c91c1ddfbeb53a57ee1e600ffc1678ec16f20ea
[]
no_license
AAnkanJ/brollop
d381c720b9ecb06c9714ea8e3408bd92fb9d6ad9
95ad8fac01988774f75e64478c5bcccf22307174
refs/heads/master
2023-04-28T03:04:11.538490
2023-04-13T15:18:21
2023-04-13T15:18:21
223,752,159
0
0
null
2023-04-21T20:42:50
2019-11-24T13:53:41
HTML
UTF-8
Python
false
false
4,129
py
""" Django settings for brollop1 project. Generated by 'django-admin startproject' using Django 2.2.6. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os from decouple import config, Csv import dj_database_url SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', default=False, cast=bool) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ fn = os.path.join(os.path.dirname(__file__), '../../etc/secret_key.txt') with open(fn) as f: SECRET_KEY = f.read().strip() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['www.thornberg.pm', 'thornberg.pm','127.0.0.1'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'widget_tweaks', 'accounts', 'boards', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'brollop1.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'brollop1.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static'), ] LOGOUT_REDIRECT_URL = 'home' LOGIN_REDIRECT_URL = 'home' LOGIN_URL = 'login' EMAIL_BACKEND = config('EMAIL_BACKEND', default='django.core.mail.backends.smtp.EmailBackend') EMAIL_HOST = config('EMAIL_HOST', default='') EMAIL_PORT = config('EMAIL_PORT', default=587, cast=int) EMAIL_HOST_USER = config('EMAIL_HOST_USER', default='') EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD', default='') EMAIL_USE_TLS = config('EMAIL_USE_TLS', default=True, cast=bool) DEFAULT_FROM_EMAIL = 'Brollop <[email protected]>' EMAIL_SUBJECT_PREFIX = '[Brollop] '
b4423b66842562f192d05801e125386cca36aff8
9a5b9c29c87bf3a2d325e85fdf582e6f44dcec5f
/chapter4/exercises/p09.py
4682911a9fe128b56e5edf5072c58004c9590726
[]
no_license
ksomemo/NltkStudy
814a9f8ca7a41fa790157607a6d46538ab87f2af
d4ab99d0bc68feae02ff5bc9fe6328f7548aa98a
refs/heads/master
2020-06-03T10:30:57.969586
2014-04-06T02:38:41
2014-04-06T02:38:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
# -*- coding: utf-8 -*- import unittest class TestSequenceFunctions(unittest.TestCase): """ 文字列の先頭と末尾の空白を削除して、単語間の空白を1文字にする """ def setUp(self): self.expected = 'a b c d' self.target = ' a b c d ' def test_split_join(self): actual = ' '.join(self.target.split()) self.assertEqual(self.expected, actual) def test_regex(self): import re actual = re.sub('^ +| +$', '', self.target) actual = re.sub(' +', ' ', actual) self.assertEqual(self.expected, actual) if __name__ == '__main__': unittest.main()
413cc13fdfa37037259e369fca378ec613bff873
d4f2f62ce6042382abd5e2f4be6993fd45c706d5
/pystone/nested_enviroment.py
ab3547d4ea99f4088659bb15b03b60ac23ac5ff8
[]
no_license
CosmosShadow/pystone
62667bb5f098eddca4b11586c4e539e35d7e5891
62cfcd21b37f834569a7a54ae8c707003683f44c
refs/heads/master
2021-03-27T15:46:57.594007
2017-10-15T17:21:14
2017-10-15T17:21:14
104,151,274
2
0
null
null
null
null
UTF-8
Python
false
false
1,151
py
# coding: utf-8 from __future__ import absolute_import from __future__ import print_function from __future__ import division import copy import json from .enviroment import Enviroment from .exception import * class NestedEnv(Enviroment): def __init__(self, outer=None): super(NestedEnv, self).__init__() self._outer = outer def set_outer(self, outer): self._outer = outer def __getitem__(self, key): assert isinstance(key, str) if key in self._values: return self._values[key] else: if self._outer is not None: return self._outer[key] else: raise StoneException('value %s should assign before use' % key) def put_new(self, key, value): self._values[key] = value def __setitem__(self, key, value): assert isinstance(key, str) obj = self.where(key) obj = obj or self obj.put_new(key, value) def where(self, key): if key in self._values: return self elif self._outer is None: return None else: return self._outer.where(key) def __repr__(self): values = copy.deepcopy(self._values) if self._outer is not None: values['_outer'] = repr(self._outer) return json.dumps(values)
b39ca9d3645b3881d5ac6e6afc2ad3e6641815d9
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/cv/semantic_segmentation/DeeplabV3_for_Pytorch/mmseg/models/utils/inverted_residual.py
01b9be23cc2a64dc5a71e842fd2b365f099dd07c
[ "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
7,777
py
# Copyright 2021 Huawei # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from mmcv.cnn import ConvModule from torch import nn from torch.utils import checkpoint as cp from .se_layer import SELayer class InvertedResidual(nn.Module): """InvertedResidual block for MobileNetV2. Args: in_channels (int): The input channels of the InvertedResidual block. out_channels (int): The output channels of the InvertedResidual block. stride (int): Stride of the middle (first) 3x3 convolution. expand_ratio (int): Adjusts number of channels of the hidden layer in InvertedResidual by this amount. dilation (int): Dilation rate of depthwise conv. Default: 1 conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU6'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: Tensor: The output tensor. """ def __init__(self, in_channels, out_channels, stride, expand_ratio, dilation=1, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU6'), with_cp=False, **kwargs): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2], f'stride must in [1, 2]. ' \ f'But received {stride}.' self.with_cp = with_cp self.use_res_connect = self.stride == 1 and in_channels == out_channels hidden_dim = int(round(in_channels * expand_ratio)) layers = [] if expand_ratio != 1: layers.append( ConvModule( in_channels=in_channels, out_channels=hidden_dim, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, **kwargs)) layers.extend([ ConvModule( in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=hidden_dim, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, **kwargs), ConvModule( in_channels=hidden_dim, out_channels=out_channels, kernel_size=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None, **kwargs) ]) self.conv = nn.Sequential(*layers) def forward(self, x): def _inner_forward(x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out class InvertedResidualV3(nn.Module): """Inverted Residual Block for MobileNetV3. Args: in_channels (int): The input channels of this Module. out_channels (int): The output channels of this Module. mid_channels (int): The input channels of the depthwise convolution. kernel_size (int): The kernel size of the depthwise convolution. Default: 3. stride (int): The stride of the depthwise convolution. Default: 1. se_cfg (dict): Config dict for se layer. Default: None, which means no se layer. with_expand_conv (bool): Use expand conv or not. If set False, mid_channels must be the same with in_channels. Default: True. conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. Returns: Tensor: The output tensor. """ def __init__(self, in_channels, out_channels, mid_channels, kernel_size=3, stride=1, se_cfg=None, with_expand_conv=True, conv_cfg=None, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU'), with_cp=False): super(InvertedResidualV3, self).__init__() self.with_res_shortcut = (stride == 1 and in_channels == out_channels) assert stride in [1, 2] self.with_cp = with_cp self.with_se = se_cfg is not None self.with_expand_conv = with_expand_conv if self.with_se: assert isinstance(se_cfg, dict) if not self.with_expand_conv: assert mid_channels == in_channels if self.with_expand_conv: self.expand_conv = ConvModule( in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) self.depthwise_conv = ConvModule( in_channels=mid_channels, out_channels=mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, conv_cfg=dict( type='Conv2dAdaptivePadding') if stride == 2 else conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) if self.with_se: self.se = SELayer(**se_cfg) self.linear_conv = ConvModule( in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=None) def forward(self, x): def _inner_forward(x): out = x if self.with_expand_conv: out = self.expand_conv(out) out = self.depthwise_conv(out) if self.with_se: out = self.se(out) out = self.linear_conv(out) if self.with_res_shortcut: return x + out else: return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) return out
a457dfaf302c3936e9ab61ace2a95fb9b664ca19
462a3ff3a280623c0f76389e61fe129ad87f3f39
/tests/test_config.py
eabd0fc8ea84c8cdcf36488dbe62038d7b58ae2c
[]
no_license
cgnitash/MABE_testing
8c2365ae062633523d2bfcea0b4ed2a1771d2d53
b37bf7da89edc3634ba0e89bff806e20adf700ec
refs/heads/master
2020-03-19T04:44:46.428424
2018-05-30T16:25:16
2018-05-30T16:25:16
135,861,600
0
0
null
null
null
null
UTF-8
Python
false
false
4,386
py
import os, subprocess, pytest from utils.helpers import this_repo_path, mabe, dotSlashMabe, dirname_baseline, dirname_testline, path_baseline_exe, path_testline_exe from utils.helpers import cd, diff, repoDiff, runCmdAndHideOutput, runCmdAndShowOutput, runCmdAndSaveOutput, getFileContents from utils.helpers import copyfileAndPermissions, movefile, movefileSwap from utils.helpers import thisTestName, repoDiffForDifference, repoDiffForSimilarity, diffForDifference, diffForSimilarity ## ## all tests run IN ORDER OF DEFINITION and are run if they begin with 'test_' ## a test_fn() will fail on first failure and stop testing that test_fn, continuing on to the next test_fn. ## use `assert condition, "error message"` in a test_fn() to print a useful message on failure ## @pytest.fixture ## indicates this is the constructor fn for all the test fns in this module def ctx(): ## create a context for all the tests - you could potentially use this to pass an obj to all test fns if not ctx.ran: ## generate cfg (have to 'cd' there, because mabe '-s' ignores 'GLOBAL-outputDirectory' setting) ## and run mabe with defaults dirs = [dirname_baseline, dirname_testline] for eachdir in dirs: ## loop through each of baseline and testline and generate the files for later diffing cd(this_repo_path) cd(eachdir) runStr = dotSlashMabe+" -s" runCmdAndSaveOutput( runStr, filename='screen-settings' ) ## save settings to file for eachfile in ["settings.cfg", "settings_organism.cfg", "settings_world.cfg"]: ## make a backup of the settings files copyfileAndPermissions(eachfile, eachfile+".bak") runStr = dotSlashMabe+" -f settings*.cfg -s" runCmdAndSaveOutput( runStr, filename='screen-settings-reload' ) ## load and save settings to file for eachfile in ["settings.cfg", "settings_organism.cfg", "settings_world.cfg"]: ## make a backup of the settings files copyfileAndPermissions(eachfile, eachfile+".bak") ## ## MORE GENERATION OF FILES OR BEHAVIOR HERE ## cd('..') ## could also have done cd(this_repo_path) ## FYI, could have done it the following way if we were up one dir in mabe_testing #runCmdAndSaveOutput( "{exe} -p GLOBAL-outputDirectory {path}".format(exe=path_baseline_exe, path=dirname_baseline), filename=dirname_baseline+'screen-simulation' ) ctx.ran = True yield None ## could have actually passed a context object here to all the test fns ## ## teardown happens after the last test in the module finishes ## return ctx.ran = False ## testing consistency of screen output def test_screen_settings(ctx): repoDiffForSimilarity('screen-settings') def test_screen_settings_reload(ctx): repoDiffForSimilarity('screen-settings-reload') ## cfg from -s def test_settings_cfg(ctx): repoDiffForSimilarity('settings.cfg') def test_settings_organism_cfg(ctx): repoDiffForSimilarity('settings_organism.cfg') def test_settings_world_cfg(ctx): repoDiffForSimilarity('settings_world.cfg') ## cfg from -f *fg -s def test_settings_reload_cfg(ctx): diffForSimilarity(dirname_baseline+'settings.cfg.bak', dirname_baseline+'settings.cfg', outfilename='diffForSimilarity-baseline-settings.cfg') diffForSimilarity(dirname_testline+'settings.cfg.bak', dirname_testline+'settings.cfg', outfilename='diffForSimilarity-testline-settings.cfg') def test_settings_reload_organism_cfg(ctx): diffForSimilarity(dirname_baseline+'settings_organism.cfg.bak', dirname_baseline+'settings_organism.cfg', outfilename='diffForSimilarity-baseline-settings_organism.cfg') diffForSimilarity(dirname_testline+'settings_organism.cfg.bak', dirname_testline+'settings_organism.cfg', outfilename='diffForSimilarity-testline-settings_organism.cfg') def test_settings_reload_world_cfg(ctx): diffForSimilarity(dirname_baseline+'settings_world.cfg.bak', dirname_baseline+'settings_world.cfg', outfilename='diffForSimilarity-baseline-settings_world.cfg') diffForSimilarity(dirname_testline+'settings_world.cfg.bak', dirname_testline+'settings_world.cfg', outfilename='diffForSimilarity-testline-settings_world.cfg')
ea5d1188a37085eef617480b440ef7078d84af08
6be5dfe95f8b4d60267b00aab6e162f62cb66e43
/jobscheduler/jobscheduler.py
c22cf03eb71efccf2997689afb5726eff5649575
[ "MIT" ]
permissive
wenbobuaa/pykit
5f0db60be4d86b46eb5c49739f5c05c1f8b7aae3
43e38fe40297a1e7a9329bcf3db3554c7ca48ead
refs/heads/master
2021-04-26T23:52:28.091347
2018-07-17T01:57:14
2018-07-18T10:02:34
123,873,359
0
0
MIT
2018-03-28T05:58:17
2018-03-05T06:12:41
Python
UTF-8
Python
false
false
8,685
py
import ctypes import datetime import logging import threading import time import pytz import tzlocal from pykit import threadutil from pykit import timeutil from pykit import utfjson SYS_gettid = 186 logger = logging.getLogger(__name__) class NextFireTimeError(Exception): pass class JobExistError(Exception): pass SECOND = { 'second': 1, 'minute': 60, 'hour': 60 * 60, 'day': 60 * 60 * 24, 'week': 60 * 60 * 24 * 7, 'month': 60 * 60 * 24 * 31, } def get_time_info(ts=None, tz=None): if ts is None: ts = time.time() if tz is None: tz = tzlocal.get_localzone() dt = datetime.datetime.fromtimestamp(ts, tz) time_info = { 'ts': ts, 'string': str(dt), } return time_info def get_next_fire_time(conf, last_fire_ts): n, unit = conf['every'] interval = n * SECOND[unit] next_ts = last_fire_ts + interval at = conf.get('at') if at is None: return get_time_info(next_ts) timezone_name = conf.get('timezone') if timezone_name is None: tz = tzlocal.get_localzone() else: tz = pytz.timezone(timezone_name) next_dt = datetime.datetime.fromtimestamp(next_ts, tz) actual_next_dt = next_dt.replace(**at) actual_next_ts = timeutil.datetime_to_ts(actual_next_dt) next_fire_time = get_time_info(actual_next_ts) if actual_next_ts <= last_fire_ts: msg = ('next fire time: %s, is before last fire ts: %f, conf: %s' % (repr(next_fire_time), last_fire_ts, repr(conf))) raise NextFireTimeError(msg) return next_fire_time class JobScheduler(object): def __init__(self, jobs, dump_status=None, reload_status=None, should_job_run=None): self.lock = threading.RLock() self.jobs = jobs self.status = {} self.dump_status = dump_status self.reload_status = reload_status self.should_job_run = should_job_run if self.reload_status is not None: try: status = self.reload_status() logger.info('loaded job_status: %s', repr(status)) if status is not None: self.status = status except Exception as e: logger.exception('failed to reload job status: %s' % repr(e)) def append_log(self, job_status, job_conf, log_msg): job_status['log'].append(log_msg) # log at start and end, add keep 3 more entries. n = job_conf['concurrence_n'] * 2 + 3 job_status['log'] = job_status['log'][-n:] def run_job(self, curr_time, job_name, job_conf, job_status): thread_id = None thread_ident = threading.current_thread().ident try: libc = ctypes.cdll.LoadLibrary('libc.so.6') thread_id = libc.syscall(SYS_gettid) except Exception as e: logger.info('failed to get thread id: %s' + repr(e)) with self.lock: job_status['active_threads'][thread_ident] = { 'start_time': curr_time, 'thread_ident': thread_ident, 'thread_id': thread_id, } log_msg = 'thread: %s-%s started at: %s' % ( thread_ident, thread_id, curr_time) self.append_log(job_status, job_conf, log_msg) try: job_conf['func'](*job_conf['args'], **job_conf['kwargs']) with self.lock: log_msg = 'thread: %s-%s finished at: %s' % ( thread_ident, thread_id, get_time_info(ts=time.time())) self.append_log(job_status, job_conf, log_msg) del(job_status['active_threads'][thread_ident]) except Exception as e: logger.exception('failed to run job: %s, %s' % (job_name, repr(e))) with self.lock: log_msg = 'thread: %s-%s failed at: %s' % ( thread_ident, thread_id, get_time_info(ts=time.time())) self.append_log(job_status, job_conf, log_msg) del(job_status['active_threads'][thread_ident]) job_status['message'] = repr(e) def fire(self, curr_time, job_name, job_conf, job_status): thread_n = len(job_status['active_threads']) if thread_n >= job_conf['concurrence_n']: log_msg = 'at time: %s, already have %d threads for job: %s' % ( curr_time, thread_n, job_name) self.append_log(job_status, job_conf, log_msg) logger.error('too many threads for job: %s' % job_name) return logger.info('at time: %s, start to run job: %s' % (curr_time, job_name)) threadutil.start_daemon_thread( self.run_job, args=(curr_time, job_name, job_conf, job_status)) job_status['message'] = '' def schedule_one_job(self, curr_time, job_name, job_conf): if 'concurrence_n' not in job_conf: job_conf['concurrence_n'] = 1 if job_name not in self.status: self.status[job_name] = { 'active_threads': {}, 'log': [], } job_status = self.status[job_name] job_status['curr_time'] = curr_time if self.should_job_run is not None: should_run = self.should_job_run(job_conf) if not should_run: job_status['message'] = 'this job do not need to run' return if 'next_fire_time' not in job_status: if job_conf.get('at') is None: job_status['fire_time'] = curr_time self.fire(curr_time, job_name, job_conf, job_status) job_status['next_fire_time'] = get_next_fire_time( job_conf, curr_time['ts']) else: n, unit = job_conf['every'] interval = n * SECOND[unit] next_fire_time = get_next_fire_time( job_conf, curr_time['ts'] - interval) if next_fire_time['ts'] < curr_time['ts']: next_fire_time = get_next_fire_time( job_conf, curr_time['ts']) job_status['next_fire_time'] = next_fire_time if curr_time['ts'] >= job_status['next_fire_time']['ts']: job_status['fire_time'] = curr_time self.fire(curr_time, job_name, job_conf, job_status) job_status['next_fire_time'] = get_next_fire_time( job_conf, job_status['next_fire_time']['ts']) def _schedule(self, curr_time): for job_name, job_conf in self.jobs.iteritems(): try: self.schedule_one_job(curr_time, job_name, job_conf) except Exception as e: logger.exception('failed to schedule job %s: %s' % (job_name, repr(e))) def schedule(self): for job_name, job_status in self.status.items(): if job_name not in self.jobs: del(self.status[job_name]) continue if len(job_status['active_threads']) > 0: msg = 'threads aborted by restart: %s' % ( job_status['active_threads']) self.status[job_name]['message'] = msg self.status[job_name]['active_threads'] = {} while True: curr_time = get_time_info(time.time()) with self.lock: self._schedule(curr_time) if self.dump_status is not None: try: self.dump_status(self.status) except Exception as e: logger.exception('failed to dump job status: %s' % repr(e)) for job_name, job_status in self.status.items(): logger.info('status of job %s, %s' % (job_name, utfjson.dump(job_status))) end_time = time.time() logger.info('scheduled at: %s, time used: %f' % (repr(curr_time), end_time - curr_time['ts'])) to_sleep = 60 - (end_time % 60) + 1 time.sleep(to_sleep) def add_job(self, job_name, job_conf): with self.lock: if job_name in self.jobs: raise JobExistError('job: %s already exists' % job_name) self.jobs[job_name] = job_conf def delete_job(self, job_name): with self.lock: if job_name in self.jobs: del(self.jobs[job_name]) if job_name in self.status: del(self.status[job_name])
1f3a8832fcfc01a0ed8057f1fccc758b30dd56cb
b3cb41c81069ad2e447a7bab98fd269235996a51
/dev/phillips_compare.py
84e5f261e2193c6b85e1c4b41bff7cd61ce6b9d9
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
usuaero/PyProp
e289e8bd64d2d0db51547a808a1f019b37b14fc4
e568dda610632adf1ab208a6861cca8d8dd84e75
refs/heads/master
2023-06-03T01:35:08.525608
2021-06-21T16:45:51
2021-06-21T16:45:51
280,196,572
15
1
null
null
null
null
UTF-8
Python
false
false
2,831
py
"""Duplicates Phillips' "Mechanics of Flight" Example 2.3.1""" import pyprop import numpy as np from pyprop.helpers import to_rpm import matplotlib.pyplot as plt # Declare prop getter functions def airfoil_CL(**kwargs): alpha = kwargs.get("alpha", 0.0) a_b = np.asarray(alpha+np.radians(2.1)) return np.where(a_b <= 0.25, 2.0*np.pi*a_b, 0.5*np.pi*np.cos(a_b)/np.cos(0.25)) def airfoil_Cm(**kwargs): return 0.0 def airfoil_CD(**kwargs): alpha = kwargs.get("alpha", 0.0) a_b = np.asarray(alpha+np.radians(2.1)) return np.where(a_b <= 0.25, 0.224*a_b**2+0.006, np.where(a_b <= 0.3, 16.6944*a_b**2-1.0234, 0.5*np.pi*np.sin(a_b)/np.cos(0.25))) # Declare prop input phillips_prop = { "airfoils" : { "phillips" : { "type" : "functional", "CL" : airfoil_CL, "Cm" : airfoil_Cm, "CD" : airfoil_CD } }, "geometry" : { "n_blades" : 2, "hub_radius" : 0.05, "weight" : 4.0, "diameter" : 1.0, "geom_pitch" : 0.5, "chord" : ["elliptic", 0.075], "rotation" : "CCW", "airfoil" : "phillips", "grid" : 100 } } # Reproduce Figures 2.3.7-9 num_pitches = 10 num_Js = 100 Js = np.linspace(0.0, 1.4, num_Js) K_cs = np.linspace(0.3, 1.2, num_pitches) C_T = np.zeros((num_pitches, num_Js)) C_P = np.zeros((num_pitches, num_Js)) eta = np.zeros((num_pitches, num_Js)) w = 2000 # arbitrary since we have no Reynolds dependence # Loop through pitches for i, K_c in enumerate(K_cs): phillips_prop["geometry"]["geom_pitch"] = K_c prop = pyprop.BladeElementProp("phillips_prop", phillips_prop) # Loop through advance ratios for j, J in enumerate(Js): V = prop.get_velocity(to_rpm(w), J) C_T[i,j] = prop.get_thrust_coef(w, V) C_P[i,j] = prop.get_power_coef(w, V) # Create figure 2.3.5 if K_c == 0.5: prop.plot_angles_over_zeta(w, 0.0) V = prop.get_velocity(to_rpm(w), 0.25) prop.plot_angles_over_zeta(w, V) # Calculate efficiency eta = C_T*Js[np.newaxis,:]/C_P # Plot thrust coefficient plt.figure() for i, K_c in enumerate(K_cs): plt.plot(Js, C_T[i,:], label=str(round(K_c, 1))) plt.xlabel("J") plt.ylabel("C_T") plt.legend() plt.gca().set_xlim([0.0, 1.4]) plt.gca().set_ylim([0.0, 0.11]) plt.show() # Plot power coefficient plt.figure() for i, K_c in enumerate(K_cs): plt.plot(Js, C_P[i,:], label=str(round(K_c, 1))) plt.xlabel("J") plt.ylabel("C_P") plt.legend() plt.gca().set_xlim([0.0, 1.4]) plt.gca().set_ylim([0.0, 0.09]) plt.show() # Plot efficiency plt.figure() for i, K_c in enumerate(K_cs): plt.plot(Js, eta[i,:], label=str(round(K_c, 1))) plt.xlabel("J") plt.ylabel("Propulsive Efficiency") plt.legend() plt.gca().set_xlim([0.0, 1.4]) plt.gca().set_ylim([0.0, 1.0]) plt.show()
bc9a9fb49c34d6e77443b627f5818349c827d6ab
afb584832c8b70e15b93cf92bc2029c165c66482
/014-timecycle.py
1c7c49cd2fc0c40c44fe0db471ee72ce53d82e8d
[]
no_license
zenogears/BuRasPi
474c20856884b44c735180d608e3a14af5c9ebe7
d5284b7c2c3fbdb218e09f3b6a10d8b3079536bb
refs/heads/master
2020-12-29T01:54:50.352209
2016-04-20T23:33:12
2016-04-20T23:33:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,906
py
#!/usr/bin/python3.4 #coding=utf-8 import time from datetime import datetime import RPi.GPIO as GPIO import os GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) #Почему-то только в этом режиме #для моей схемы подключения модуля из 4 реле. Пример работы распиновки: http://www.youtube.com/watch?v=Ln2owTgYv9M&index=4&list=PLTejl8qzLUsQuvwGsrdSC7KPgWu7mahWn GPIO.setup(17, GPIO.OUT) GPIO.setup(18, GPIO.OUT) GPIO.setup(22, GPIO.OUT) GPIO.setup(27, GPIO.OUT) GPIO.output(17, 1) GPIO.output(18, 1) GPIO.output(22, 1) GPIO.output(27, 1) f = open("commonlog.txt", "a") f.write("Перезапуск скрипта: " + str(datetime.strftime(datetime.now(), "%d.%m.%Y %H:%M:%S")) + " \n") f.close() #Считывает план и возвращает список. Вызывается по ходу выполнения в контексте "по ЭТОМУ плану" для функций device_off и device_on def planreader(plan): list = [] f = open(plan, "r") line = f.read() list = line.split("\n") f.close() return list #print (planreader("ONplan.txt")) #debug #print (planreader("OFFplan.txt")) #debug #print("Текущее время: ", datetime.strftime(datetime.now(), "%H:%M:%S")) #контроль времени #Функция вЫключения. Принимает пин, план и логфайл #Пин указывать номером согласно базовой схеме подключения. Если указать не тот, то неверное устройство будет работать по неверному плану. #Логфайл лучше всего именовать по имени девайса, например, LampaLog.txt. #В будущем лучше сделать единый лог без параметра функции, но уже сейчас можно писать в один файл, просто указав его для всех вызовов def device_off(pin, offplan, logfile="commonlog.txt"): for moment in planreader(offplan): #Дадада, я псих, рекурсия в наличии. Вызывает считыватель плана ещё раз на всякий пожарный if moment == datetime.strftime(datetime.now(), "%H:%M:%S"): GPIO.output(pin,1) print("Выключено в ", moment) #при ручном запуске лучше раскомментировать, чтобы не смотреть в логи #Пишем в лог f = open(logfile, "a") f.write("Устройство на пине " + str(pin) + " выключено " + str(datetime.strftime(datetime.now(), "%d.%m.%Y %H:%M:%S")) + "\n") f.close() #Функция Включения. Принимает пин, план и логфайл #полностью аналогична предыдущей, только включает, а не выключает. def device_on(pin, onplan, logfile="commonlog.txt"): for moment in planreader(onplan): #Дадада, я псих, рекурсия в наличии. Вызывает считыватель плана ещё раз на всякий пожарный if moment == datetime.strftime(datetime.now(), "%H:%M:%S"): GPIO.output(pin,0) print("Включено в ", moment) #при ручном запуске лучше раскомментировать, чтобы не смотреть в логи #Пишем в лог f = open(logfile, "a") f.write("Устройство на пине " + str(pin) + " включено " + str(datetime.strftime(datetime.now(), "%d.%m.%Y %H:%M:%S")) + "\n") f.close() while True: time.sleep(0.1) #Слегка снижает нагрузку на процессор, сокращая активность до 9-10 проходов в секунду #----БЛОК РАЗМНОЖИТЬ ДЛЯ КАЖДОГО НУЖНОГО УСТРОЙСТВА--- #Смотрим указанный план и вызываем функцию включения и выключения #План для КАЖДОГО устройства должен существовать! #Включение for moment in planreader("ONplan.txt"): if moment == datetime.strftime(datetime.now(), "%H:%M:%S"): #Вызываем функцию включения device_on(18, "ONplan.txt", "commonlog.txt") #Подавляет актвность блока после первой отработки в эту же секунду, иначе загадит лог очередным вызовом функции. На всякий случай лучше не использовать одно и то же время для всех устройств, мало ли что... while moment == datetime.strftime(datetime.now(), "%H:%M:%S"): continue #Выключение for moment in planreader("OFFplan.txt"): if moment == datetime.strftime(datetime.now(), "%H:%M:%S"): #Вызываем функцию включения device_off(18, "OFFplan.txt", "commonlog.txt") #Подавляет актвность блока после первой отработки в эту же секунду, иначе загадит лог очередным вызовом функции. На всякий случай лучше не использовать одно и то же время для всех устройств, мало ли что... while moment == datetime.strftime(datetime.now(), "%H:%M:%S"): continue #----Конец размножаемого блока---
4be336dfbf169295360a2a105ef7008b6e59a2a1
3241c360a6fa528ab282d5864ecaf054afd09360
/Algorithm/SANGMIN/11501.py
e85725c35e0b40b5e85b67c3071c7fdb036deff7
[]
no_license
sangjun-Leee/SangSangPlus
33128044a58fc4f428e3ac8318b06fdc75d9bd31
f7d976ef72489d393de4475463ca279ae4cb167f
refs/heads/main
2023-08-20T12:01:31.325122
2021-10-15T06:44:28
2021-10-15T06:44:28
406,429,498
0
0
null
null
null
null
UTF-8
Python
false
false
1,483
py
''' https://www.acmicpc.net/problem/11501 주식 [풀이] 1. 핵심은, 두 가지이다. => 미래에 가격이 오르면 무조건 현재 산다. => 미래에 가격이 최대인 날에 주식을 판다. 2. 또한, 주어진 주식 데이터 길이가 1,000,000 이므로 N^2은 불가능 => N 으로 진행해야 겠다는 생각을 할 수 있음 3. 이 때, 현재를 기준으로 미래의 데이터를 조사(미래에 가격이 최대인 날을 찾는 과정)하려고 하면 N^2이 소요된다. => 따라서, 현재를 기준으로 과거 데이터를 조사하는 방향으로 하자. 4. 그렇게 되면 다음과 같은 통찰을 얻는다. => 지금 있는 시점이 가격이 최대라면 과거 시점들은 모두 이 시점에 판매하겠군. => 지금 있는 시점이 가격이 최대가 아니라면 지금 시점 보다 값이 비싼 과거 시점에 판매를 하겠군 => 그리고 그 시점 이후에는 내 시점에서 판매하겠군. (만약 아니라면 또 반복) 5. 이에 대한 구현을 한다. => 매번 최대 가격을 구하며, 각각의 시점에서의 가격은 최대 가격에서 팔것이므로 뺀 값을 매번 추가 ''' import sys input = sys.stdin.readline T = int(input()) for _ in range(T): N = int(input()) prices = list(map(int, input().split())) answer = selling_price = 0 for price in prices[::-1]: selling_price = max(selling_price, price) answer += selling_price-price print(answer)
be07696d50b5ada8255d3fd83bee4267a66a07dd
2ad789090db7a377f746413e397b603c76f547fa
/V-REP_PRO_EDU_V3_6_0_Ubuntu16_04/programming/bluezero/bindings/python-ctypes/test-publisher.py
27a990ea5006c9e13b6a60bca395ffb9342c2393
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
JasonLeeUT/Robotics
442b8217918a32b3e8df454b9890ab83280ee7f3
7e21e5d18b42cfcaafd01b0243f221a051692f11
refs/heads/master
2023-01-23T00:14:41.801025
2020-11-19T02:23:55
2020-11-19T02:23:55
314,112,186
0
1
null
null
null
null
UTF-8
Python
false
false
441
py
# -*- coding: utf-8 -*- import b0 import time node = b0.Node('python-publisher') pub = b0.Publisher(node, 'A') node.init() print('Publishing to topic "%s"...' % pub.get_topic_name()) i = 0 while not node.shutdown_requested(): msg_str = u'µsg-%d' % i i += 1 print('Sending message "%s"...' % msg_str) msg = msg_str.encode('utf-8') pub.publish(msg) node.spin_once() time.sleep(1) node.cleanup()
6f8999c0633473f5d33dcc21aa6d0f460b475531
b853c3b9e7892280bd4095a975e8dd762363f5f5
/api/migrations/0001_initial.py
3b1df9126365ff50502f09a889a81fb7dea0d1bf
[]
no_license
yeswanthannadata/genderapi
d3c3d89b21690b264b3eb94b01dd6e7cff6b612c
b9c3e4b840c8246e51e9d9a76e954c0a474923ab
refs/heads/master
2020-04-11T04:23:12.639388
2016-09-12T15:33:15
2016-09-12T15:33:15
68,022,115
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Details', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('first_name', models.CharField(max_length=255)), ('last_name', models.CharField(max_length=255)), ('gender', models.CharField(max_length=255)), ], options={ 'db_table': 'details', }, ), ]
d0dec12e629ac375ae18b31e5bc6d115b4badd64
f6f0cadc0d74aaad6512a3faab3fce2cfc858f10
/run_copy.py
fb1a1f244319e886d79d9f5d5c6c0c3ca227447e
[ "MIT" ]
permissive
wxwxzhang/extreme-summarization-of-source-code
f70f0a4ce7861866e012e52de4931a24c6cf7e35
e62b8174faa548bc4f240762835e61af46e5223e
refs/heads/master
2020-09-03T15:30:30.325805
2018-09-21T11:46:27
2018-09-21T11:46:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,161
py
import torch import torch.optim as optim import torch.nn as nn from torchtext.data import Field, LabelField from torchtext.data import TabularDataset from torchtext.data import BucketIterator import os import argparse import random import models import utils parser = argparse.ArgumentParser(description='Implemention of \'A Convolutional Attention Network for Extreme Summarization of Source Code\'', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--project', default='cassandra', type=str, help='Which project to run on') parser.add_argument('--data_dir', default='data', type=str, help='Where to find the training data') parser.add_argument('--checkpoints_dir', default='checkpoints', type=str, help='Where to save the model checkpoints') parser.add_argument('--no_cuda', action='store_true', help='Use this flag to stop using the GPU') parser.add_argument('--min_freq', default=2, help='Minimum times a token must appear in the dataset to not be unk\'d') parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--emb_dim', default=128, type=int) parser.add_argument('--k1', default=32, type=int) parser.add_argument('--k2', default=16, type=int) parser.add_argument('--w1', default=18, type=int) parser.add_argument('--w2', default=19, type=int) parser.add_argument('--w3', default=2, type=int) parser.add_argument('--dropout', default=0.4, type=float) parser.add_argument('--clip', default=0.75, type=float) parser.add_argument('--epochs', default=100, type=int) parser.add_argument('--seed', default=1234, type=int) args = parser.parse_args() assert os.path.exists(f'{args.data_dir}/{args.project}_train.json') assert os.path.exists(f'{args.data_dir}/{args.project}_test.json') if not os.path.exists(f'{args.checkpoints_dir}'): os.mkdir(f'{args.checkpoints_dir}') #make deterministic torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) random.seed(args.seed) #get available device device = torch.device('cuda' if (torch.cuda.is_available() and not args.no_cuda) else 'cpu') #set up fields BODY = Field() NAME = Field() fields = {'name': ('name', NAME), 'body': ('body', BODY)} #get data from json train, test = TabularDataset.splits( path = 'data', train = f'{args.project}_train.json', test = f'{args.project}_test.json', format = 'json', fields = fields ) #build the vocabulary BODY.build_vocab(train.body, train.name, min_freq=args.min_freq) NAME.build_vocab(train.body, train.name, min_freq=args.min_freq) # make iterator for splits train_iter, test_iter = BucketIterator.splits( (train, test), batch_size=args.batch_size, sort_key=lambda x: len(x.name), repeat=False, device=-1 if device == 'cpu' else None) #calculate these for the model vocab_size = len(BODY.vocab) pad_idx = BODY.vocab.stoi['<pad>'] unk_idx = BODY.vocab.stoi['<unk>'] #initialize model model = models.CopyAttentionNetwork(vocab_size, args.emb_dim, args.k1, args.k2, args.w1, args.w2, args.w3, args.dropout, pad_idx) #place on GPU if available model = model.to(device) #initialize optimizer optimizer = optim.RMSprop(model.parameters(), momentum=0.9, lr=1e-3) def train(model, iterator, optimizer, clip): #turn on dropout/bn model.train() epoch_loss = 0 n_examples = 0 precision = 0 recall = 0 f1 = 0 for i, batch in enumerate(iterator): bodies = batch.body names = batch.name optimizer.zero_grad() I = torch.zeros(names.shape[0], names.shape[1], bodies.shape[0]).to(device) _ones = torch.ones(bodies.shape[0]).to(device) _zeros = torch.zeros(bodies.shape[0]).to(device) #create the I tensor #the length of the method body where elements are: # 1 in the position where the current token you are trying to predict are in the body # 0 otherwise for j, name in enumerate(names): for k, token in enumerate(name): I[j,k,:] = torch.where(bodies[:,k] == token, _ones, _zeros) #output is predictions #kappas are copy-attention over the body #lambdas are probability of copy over generate from vocab output, kappas, lambdas = model(bodies, names) examples = names.shape[1] n_examples += examples copy_preds = kappas.max(2)[1] vocab_preds = output.max(2)[1] for ex in range(examples): predicted = [] actual = [n.item() for n in names[:,ex][1:]] for n, l in enumerate(lambdas[:,ex][1:], start=1): if l.item() >= 0.5: #do copy copied_token_position = copy_preds[n,ex] predicted.append(bodies[copied_token_position, ex].item()) else: predicted.append(vocab_preds[n,ex].item()) _precision, _recall, _f1 = utils.token_precision_recall(predicted, actual, unk_idx) precision += _precision recall += _recall f1 += _f1 #reshape parameters output = output[1:].view(-1, output.shape[2]) kappas = kappas[1:].view(-1, kappas.shape[2]) lambdas = lambdas[1:].view(-1) I = I[1:].view(-1, I.shape[2]) names = names[1:].view(-1, 1) #probability of using copy and model predictions from vocab use_copy = torch.log(lambdas + 10e-8) + torch.sum(I * kappas, dim=1) use_model = torch.log(1 - lambdas + 10e-8) + torch.gather(output, 1, names).squeeze(1) #calculate loss loss = torch.mean(utils.logsumexp(use_copy, use_model)) #calculate gradients loss.backward() #clip to prevent exploding gradients torch.nn.utils.clip_grad_norm_(model.parameters(), clip) #update parameters optimizer.step() epoch_loss += loss.item() return epoch_loss / len(iterator), precision/n_examples, recall/n_examples, f1/n_examples def evaluate(model, iterator): #turn off bn/dropout model.eval() epoch_loss = 0 n_examples = 0 precision = 0 recall = 0 f1 = 0 with torch.no_grad(): for i, batch in enumerate(iterator): bodies = batch.body names = batch.name I = torch.zeros(names.shape[0], names.shape[1], bodies.shape[0]).to(device) _ones = torch.ones(bodies.shape[0]).to(device) _zeros = torch.zeros(bodies.shape[0]).to(device) for j, name in enumerate(names): for k, token in enumerate(name): I[j,k,:] = torch.where(bodies[:,k] == token, _ones, _zeros) output, kappas, lambdas = model(bodies, names, 0) #set teacher forcing to zero examples = names.shape[1] n_examples += examples copy_preds = kappas.max(2)[1] vocab_preds = output.max(2)[1] for ex in range(examples): predicted = [] actual = [n.item() for n in names[:,ex][1:]] for n, l in enumerate(lambdas[:,ex][1:], start=1): if l.item() >= 0.5: #do copy copied_token_position = copy_preds[n,ex] predicted.append(bodies[copied_token_position, ex].item()) else: predicted.append(vocab_preds[n,ex].item()) _precision, _recall, _f1 = utils.token_precision_recall(predicted, actual, unk_idx) precision += _precision recall += _recall f1 += _f1 output = output[1:].view(-1, output.shape[2]) kappas = kappas[1:].view(-1, kappas.shape[2]) lambdas = lambdas[1:].view(-1) I = I[1:].view(-1, I.shape[2]) names = names[1:].view(-1,1) use_copy = torch.log(lambdas + 10e-8) + torch.sum(I * kappas, dim=1) use_model = torch.log(1 - lambdas + 10e-8) + torch.gather(output, 1, names).squeeze(1) loss = torch.mean(utils.logsumexp(use_copy, use_model)) epoch_loss += loss.item() return epoch_loss / len(iterator), precision/n_examples, recall/n_examples, f1/n_examples best_test_loss = float('inf') if not os.path.isdir(f'{args.checkpoints_dir}'): os.makedirs(f'{args.checkpoints_dir}') for epoch in range(args.epochs): train_loss, train_precision, train_recall, train_f1 = train(model, train_iter, optimizer, args.clip) test_loss, test_precision, test_recall, test_f1 = evaluate(model, test_iter) if test_loss < best_test_loss: best_test_loss = test_loss torch.save(model.state_dict(), f'{args.checkpoints_dir}/{args.project}-copy-model.pt') print(f'| Epoch: {epoch+1:03} | Train Loss: {train_loss:.3f} | Train F1: {train_f1:.3f} | Test Loss: {test_loss:.3f} | Test F1: {test_f1:.3f}')
3def15806b2c6935dae0896a56b6fcfb20bc592b
c225a68767e1d2a4123e19772f2e08e8967fb592
/mainsite/models.py
bd5259a67b860ad815b55e4bf228b644fc536050
[]
no_license
Sajor-X/Sajor_blog
379087e1b41874c4878e398ae09895d7d43d21b0
f318eb4494e120c6ee8f7e05eba111b54b32d1c5
refs/heads/master
2022-11-18T23:20:30.225447
2018-04-03T12:04:01
2018-04-03T12:04:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
from django.db import models from django.utils import timezone # Create your models here. class Post(models.Model): title = models.CharField(max_length=200) slug = models.CharField(max_length=200) body = models.TextField() pub_date = models.DateTimeField(default=timezone.now) class Meta: ordering = ('-pub_date', ) def __unicode__(self): return self.title
480cd6b1eaf6e81feaa834bfd246f0e85cf9695e
9e96e21a9c51a1ca4e2183f163e566bc24c07d42
/maskrcnn_benchmark/utils/comm.py
b12072aea4fd0f46b6578ee6c1b86782b587594d
[]
no_license
zhouhaocv/RLM-Net
7a13263f591a99bbd5abd126004240aff9ca66d7
c1a692e6b84e59957da7369dc6426a8515cb5d8e
refs/heads/master
2020-06-25T12:51:36.971532
2020-06-22T07:21:10
2020-06-22T07:21:10
199,311,490
16
2
null
null
null
null
UTF-8
Python
false
false
6,143
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ This file contains primitives for multi-gpu communication. This is useful when doing distributed training. """ import os import pickle import tempfile import time import torch import torch.distributed as dist def get_world_size(): if not torch.distributed.is_initialized(): return 1 return torch.distributed.get_world_size() def get_rank(): if not torch.distributed.is_initialized(): return 0 return torch.distributed.get_rank() def is_main_process(): if not torch.distributed.is_initialized(): return True return torch.distributed.get_rank() == 0 def synchronize(): """ Helper function to synchronize between multiple processes when using distributed training """ if not torch.distributed.is_initialized(): return world_size = torch.distributed.get_world_size() rank = torch.distributed.get_rank() if world_size == 1: return def _send_and_wait(r): if rank == r: tensor = torch.tensor(0, device="cuda") else: tensor = torch.tensor(1, device="cuda") torch.distributed.broadcast(tensor, r) while tensor.item() == 1: time.sleep(1) _send_and_wait(0) # now sync on the main process _send_and_wait(1) def _encode(encoded_data, data): # gets a byte representation for the data encoded_bytes = pickle.dumps(data) # convert this byte string into a byte tensor storage = torch.ByteStorage.from_buffer(encoded_bytes) tensor = torch.ByteTensor(storage).to("cuda") # encoding: first byte is the size and then rest is the data s = tensor.numel() assert s <= 255, "Can't encode data greater than 255 bytes" # put the encoded data in encoded_data encoded_data[0] = s encoded_data[1 : (s + 1)] = tensor def _decode(encoded_data): size = encoded_data[0] encoded_tensor = encoded_data[1 : (size + 1)].to("cpu") return pickle.loads(bytearray(encoded_tensor.tolist())) # TODO try to use tensor in shared-memory instead of serializing to disk # this involves getting the all_gather to work def scatter_gather(data): """ This function gathers data from multiple processes, and returns them in a list, as they were obtained from each process. This function is useful for retrieving data from multiple processes, when launching the code with torch.distributed.launch Note: this function is slow and should not be used in tight loops, i.e., do not use it in the training loop. Arguments: data: the object to be gathered from multiple processes. It must be serializable Returns: result (list): a list with as many elements as there are processes, where each element i in the list corresponds to the data that was gathered from the process of rank i. """ # strategy: the main process creates a temporary directory, and communicates # the location of the temporary directory to all other processes. # each process will then serialize the data to the folder defined by # the main process, and then the main process reads all of the serialized # files and returns them in a list if not torch.distributed.is_initialized(): return [data] synchronize() # get rank of the current process rank = torch.distributed.get_rank() # the data to communicate should be small data_to_communicate = torch.empty(256, dtype=torch.uint8, device="cuda") if rank == 0: # manually creates a temporary directory, that needs to be cleaned # afterwards tmp_dir = tempfile.mkdtemp() _encode(data_to_communicate, tmp_dir) synchronize() # the main process (rank=0) communicates the data to all processes torch.distributed.broadcast(data_to_communicate, 0) # get the data that was communicated tmp_dir = _decode(data_to_communicate) # each process serializes to a different file file_template = "file{}.pth" tmp_file = os.path.join(tmp_dir, file_template.format(rank)) torch.save(data, tmp_file) # synchronize before loading the data synchronize() # only the master process returns the data if rank == 0: data_list = [] world_size = torch.distributed.get_world_size() for r in range(world_size): file_path = os.path.join(tmp_dir, file_template.format(r)) d = torch.load(file_path) data_list.append(d) # cleanup os.remove(file_path) # cleanup os.rmdir(tmp_dir) return data_list def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.IntTensor([tensor.numel()]).to("cuda") size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list
39bea274ace88e368afd36d0ea7fb79c2d3db73a
be6b100e09aeeb7e7172abd037a00a6d29dca4f4
/feeds/views.py
392b277ba842e20b217a1da03e5135ad09fb98e5
[]
no_license
forstleblue/DemoAppUser
fc93fe97398a1151fa9be10cdc60cb8f152ce9ec
6a31a82e0b7a82ae1e09631c86a787e7ae08eb1a
refs/heads/master
2021-07-08T01:55:00.244423
2017-10-01T04:01:05
2017-10-01T04:01:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,922
py
import json from django.contrib.auth.decorators import login_required from django.core.paginator import EmptyPage, PageNotAnInteger, Paginator from django.http import (HttpResponse, HttpResponseBadRequest, HttpResponseForbidden) from django.shortcuts import get_object_or_404, render from django.template.context_processors import csrf from django.template.loader import render_to_string from decorators import ajax_required from feeds.models import Feed FEEDS_NUM_PAGES = 10 @login_required def feeds(request): all_feeds = Feed.get_feeds() paginator = Paginator(all_feeds, FEEDS_NUM_PAGES) feeds = paginator.page(1) from_feed = -1 if feeds: from_feed = feeds[0].id #import pdb; pdb.set_trace() return render(request, 'feeds.html', { 'feeds': feeds, 'from_feed': from_feed, 'page': 1, 'username': request.user.username, }) def feed(request, pk): feed = get_object_or_404(Feed, pk=pk) return render(request, 'feed.html', {'feed': feed}) @login_required @ajax_required def load(request): from_feed = request.GET.get('from_feed') page = request.GET.get('page') feed_source = request.GET.get('feed_source') all_feeds = Feed.get_feeds(from_feed) if feed_source != 'all': all_feeds = all_feeds.filter(user__id=feed_source) paginator = Paginator(all_feeds, FEEDS_NUM_PAGES) try: feeds = paginator.page(page) except PageNotAnInteger: return HttpResponseBadRequest() except EmptyPage: feeds = [] html = '' csrf_token = (csrf(request)['csrf_token']) for feed in feeds: html = '{0}{1}'.format(html, render_to_string('partial_feed.html', { 'feed': feed, 'user': request.user, 'csrf_token': csrf_token })) return HttpResponse(html) def _html_feeds(last_feed, user, csrf_token, feed_source='all'): feeds = Feed.get_feeds_after(last_feed) if feed_source != 'all': feeds = feeds.filter(user__id=feed_source) html = '' for feed in feeds: html = '{0}{1}'.format(html, render_to_string('partial_feed.html', { 'feed': feed, 'user': user, 'csrf_token': csrf_token })) return html @login_required @ajax_required def load_new(request): last_feed = request.GET.get('last_feed') user = request.user csrf_token = (csrf(request)['csrf_token']) html = _html_feeds(last_feed, user, csrf_token) return HttpResponse(html) @login_required @ajax_required def check(request): last_feed = request.GET.get('last_feed') feed_source = request.GET.get('feed_source') feeds = Feed.get_feeds_after(last_feed) if feed_source != 'all': feeds = feeds.filter(user__id=feed_source) count = feeds.count() return HttpResponse(count) @login_required @ajax_required def post(request): last_feed = request.POST.get('last_feed') user = request.user csrf_token = (csrf(request)['csrf_token']) feed = Feed() feed.user = user post = request.POST['post'] post = post.strip() if len(post) > 0: feed.post = post[:255] feed.save() html = _html_feeds(last_feed, user, csrf_token) return HttpResponse(html) @login_required @ajax_required def comment(request): if request.method == 'POST': feed_id = request.POST['feed'] feed = Feed.objects.get(pk=feed_id) post = request.POST['post'] post = post.strip() if len(post) > 0: post = post[:255] user = request.user feed.comment(user=user, post=post) user.profile.notify_commented(feed) user.profile.notify_also_commented(feed) return render(request, 'partial_feed_comments.html', {'feed': feed}) else: feed_id = request.GET.get('feed') feed = Feed.objects.get(pk=feed_id) return render(request, 'partial_feed_comments.html', {'feed': feed}) @login_required @ajax_required def update(request): first_feed = request.GET.get('first_feed') last_feed = request.GET.get('last_feed') feed_source = request.GET.get('feed_source') feeds = Feed.get_feeds().filter(id__range=(last_feed, first_feed)) if feed_source != 'all': feeds = feeds.filter(user__id=feed_source) dump = {} for feed in feeds: dump[feed.pk] = {'likes': feed.likes, 'comments': feed.comments} data = json.dumps(dump) return HttpResponse(data, content_type='application/json') @login_required @ajax_required def track_comments(request): feed_id = request.GET.get('feed') feed = Feed.objects.get(pk=feed_id) return render(request, 'partial_feed_comments.html', {'feed': feed}) @login_required @ajax_required def remove(request): try: feed_id = request.POST.get('feed') feed = Feed.objects.get(pk=feed_id) import pdb; pdb.set_trace() if feed.user == request.user: likes = feed.get_likes() parent = feed.parent for like in likes: like.delete() feed.delete() if parent: parent.calculate_comments() return HttpResponse() else: return HttpResponseForbidden() except Exception: return HttpResponseBadRequest()
592b026eea60637891126979c84878aa55bba9f2
b76e39e535499704368eddc26237dc0016ef7d06
/CASTERSIMULATION/Instrumentplc/latestfiles/calallABPdrives_V3.py
6729dbb4d7d6816a1535e1bf0a9b89eb163319bc
[]
no_license
BUBAIMITRA2018/castersimulation
0532e53df7d346c2824e577cc91cd0ac2ce4694c
eca5fddff5c0f33f785168f6b1e9f572c1622be0
refs/heads/master
2022-12-10T02:45:04.207196
2020-09-09T05:35:54
2020-09-09T05:35:54
260,110,682
0
0
null
null
null
null
UTF-8
Python
false
false
1,998
py
from logger import * from fn_ABP_drive_V3 import * import logging logger = logging.getLogger("main.log") class Cal_ABBDrives: def __init__(self,df,com): self.df = df self.com = com self.listofdrives = [] self.listofdrivearea = [] self.devicelistperarea = [[]] self.setup() def setup(self): try: self.listofdrivearea = list(set(self.df['Sub-Area'])) n= 0 self.listofdrives.clear() while n< len(self.df.index): self.df.iloc[n, 0] = Fn_ABP_Drive(self.com, self.df, n) self.listofdrives.append(self.df.iloc[n,0]) n = n + 1 # per area wise device list # Declear empty list for area in self.listofdrivearea: list1 = [] for item in self.listofdrives: if item.areaname == area: list1.append(item) self.devicelistperarea.append(list1) keys = self.listofdrivearea values = self.devicelistperarea[1:] # Declear empty list self.dictionary = dict(zip(keys, values)) print(self.dictionary) except Exception as e : level = logging.ERROR messege = 'Event:' + "callalldrives" + str(e.args) logger.log(level, messege) log_exception(e) def __getstate__(self): state = self.__dict__.copy() # Remove the unpicklable entries. del state['mylock'] return state def __setstate__(self, state): # Restore instance attributes. self.__dict__.update(state) @property def listofalldrives(self): if len(self.listofalldrives) > 0: return self.listofalldrives @property def listofdriveareas(self): return self.listofdrivearea @property def getmotordictionary(self): return self.dictionary
309d07035024a6f4c4a5c2c4c3f509c78a162f46
0fc78025778bc2905be091e7840c0364d987133e
/weather_spider/__init__.py
4f6477075fee5c631cadede144c0956910e5a917
[]
no_license
jeffreyzzh/myspider
5e5acc52906ffb944c1c112be0ee9ab15ebe2868
d72befdd45edd059dfae4077cfde5969928323a8
refs/heads/master
2021-01-13T07:22:34.998234
2017-04-27T14:13:21
2017-04-27T14:13:21
71,528,170
1
0
null
null
null
null
UTF-8
Python
false
false
41
py
# -*- coding: utf-8 -*- # 2017/4/26 0026
7e0d728ad0e25fb39f5845003077a6be5587cfaa
5483eb59f8e0c950b1f2a337f0805da4081b06c1
/polls_project/polls/views.py
19a8bf634c1b40aefa084da76380528957031b54
[]
no_license
aust10/django_fun
666957414d7f4f069f2770c55db5cb5c46815817
93f7f9dde6b1b046582d5dd0685d274a7ac30bca
refs/heads/master
2021-09-27T05:19:55.651347
2020-07-22T18:12:36
2020-07-22T18:12:36
250,668,790
0
0
null
2021-09-22T18:55:42
2020-03-27T23:07:26
Python
UTF-8
Python
false
false
1,957
py
from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import get_object_or_404, render from django.urls import reverse from django.views import generic from django.utils import timezone from .models import Question, Choice class IndexView(generic.ListView): template_name = 'polls/index.html' context_object_name = 'latest_question_list' def get_queryset(self): return Question.objects.filter(pub_date__lte=timezone.now()).order_by('-pub_date')[:5] class DetailView(generic.DetailView): model = Question template_name = 'polls/detail.html' def get_queryset(self): return Question.objects.filter(pub_date__lte=timezone.now()) class ResultsView(generic.DetailView): model = Question template_name = 'polls/results.html' # def index(request): # latest_question_list = Question.objects.order_by('-pub_date')[:5] # context = { # 'latest_question_list': latest_question_list # } # return render(request, 'polls/index.html', context) # def detail(request, question_id): # question = get_object_or_404(Question, pk=question_id) # return render(request, 'polls/detail.html', {'question': question}) # def results(request, question_id): # question = get_object_or_404(Question, pk=question_id) # # model = Question # # template_name = 'polls/results.html' # return render(request, 'polls/results.html', {'question': question}) def vote(request, question_id): question = get_object_or_404(Question, pk=question_id) try: selected_choice = question.choice_set.get(pk=request.POST['choice']) except (KeyError, Choice.DoesNotExist): return render(request, 'polls/detail.html', {'question': question, 'error_message': "You didn't select a choice."}) else: selected_choice.votes += 1 selected_choice.save() return HttpResponseRedirect(reverse('polls:results', args=(question.id,)))
edddb4dd1cd91eae4a9a569c9a35726d8a593b9c
47502e9033b20ad03d5861e3940c7ec6c95ffc86
/treemodeladmin/templatetags/treemodeladmin_tags.py
e952d2bc6dd6c12030bd1f6b39138ac371a29ba5
[ "CC0-1.0" ]
permissive
DalavanCloud/wagtail-treemodeladmin
30000aeb14815c1b733267e7a436cae06399f4ad
e2c49ceea5f378ff639f4bf467de189fe86fd3a0
refs/heads/master
2020-04-25T06:42:54.939620
2018-11-05T18:17:58
2018-11-05T18:17:58
172,590,191
1
0
null
2019-02-25T21:45:49
2019-02-25T21:45:49
null
UTF-8
Python
false
false
1,198
py
from django.template import Library from wagtail.contrib.modeladmin.templatetags.modeladmin_tags import ( result_list, result_row_display, ) register = Library() @register.inclusion_tag("treemodeladmin/includes/tree_result_list.html", takes_context=True) def tree_result_list(context): """ Displays the headers and data list together with a link to children """ context = result_list(context) return context @register.inclusion_tag( "treemodeladmin/includes/tree_result_row.html", takes_context=True) def tree_result_row_display(context, index): context = result_row_display(context, index) obj = context['object_list'][index] view = context['view'] child_url_helper = view.child_url_helper if view.has_child_admin: context.update({ 'children': view.get_children(obj), 'child_index_url': child_url_helper.get_index_url_with_parent( view.child_model_admin.parent_field, obj.pk ), 'child_create_url': child_url_helper.get_create_url_with_parent( view.child_model_admin.parent_field, obj.pk ), }) return context
4b59ec8381847efc181138f5b97710431cf9436a
a1e4b21a5fe07c9d9332e10dbcce25a6f5ed92de
/test.py
7ff6e92a921f2739360b039c3b751c85604e572c
[]
no_license
uditsharma29/AttributePredictionsVRAI
defaab8e7b3230f2345aa335817a96508338348c
fbd16971a9fa2d5bf14a993d570d08a33a1d898a
refs/heads/master
2023-01-14T12:05:19.681051
2020-11-20T01:53:15
2020-11-20T01:53:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,276
py
# -*- coding: utf-8 -*- """ Created on Sun Sep 6 17:29:46 2020 @author: udits """ import argparse import os import warnings import matplotlib.pyplot as plt import numpy as np import torch import torchvision.transforms as transforms #from dataset import FashionDataset, AttributesDataset, mean, std from model import AttributePrediction from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, balanced_accuracy_score from torch.utils.data import DataLoader def checkpoint_load(model, name): print('Restoring checkpoint: {}'.format(name)) model.load_state_dict(torch.load(name, map_location='cpu')) epoch = int(os.path.splitext(os.path.basename(name))[0].split('-')[1]) return epoch def validate(model, dataloader, iteration, device, predictions, ground_truths, checkpoint=None): if checkpoint is not None: checkpoint_load(model, checkpoint) model.eval() with torch.no_grad(): avg_loss = 0 accuracy_color = 0 accuracy_type = 0 accuracy_wheel = 0 accuracy_luggage = 0 accuracy_sky = 0 accuracy_bumper = 0 epochs = [] loss = [] acc_col = [] acc_type = [] acc_wheel = [] acc_luggage = [] acc_sky = [] acc_bumper = [] for batch in dataloader: img = batch['image'] target_labels = batch['labels'] target_labels = {t: target_labels[t].to(device) for t in target_labels} output = model(img.to(device)) val_train, val_train_losses = model.get_loss(output, target_labels) avg_loss += val_train.item() accuracies, predictions, ground_truths = calculate_metrics(output, target_labels, predictions, ground_truths) accuracy_color += accuracies['color'] accuracy_type += accuracies['type'] accuracy_wheel += accuracies['wheel'] accuracy_luggage += accuracies['luggage'] accuracy_sky += accuracies['sky'] accuracy_bumper += accuracies['bumper'] n_samples = len(dataloader) avg_loss /= n_samples accuracy_color /= n_samples accuracy_type /= n_samples accuracy_wheel /= n_samples accuracy_luggage /= n_samples accuracy_sky /= n_samples accuracy_bumper /= n_samples print('-' * 72) print("Validation loss: {:.4f}, color: {:.4f}, type: {:.4f}, wheel: {:.4f}, luggage: {:.4f}, sky: {:.4f}, bumper: {:.4f}\n".format( avg_loss, accuracy_color, accuracy_type, accuracy_wheel, accuracy_luggage, accuracy_sky, accuracy_bumper)) epochs.append(iteration) acc_col.append(accuracy_color) acc_type.append(accuracy_type) acc_wheel.append(accuracy_wheel) acc_luggage.append(accuracy_luggage) acc_sky.append(accuracy_sky) acc_bumper.append(accuracy_bumper) loss.append(avg_loss) metrics = np.array((epochs, acc_col,acc_type, acc_wheel, acc_luggage, acc_sky, acc_bumper, loss)) #logger.add_scalar('val_loss', avg_loss, iteration) #logger.add_scalar('val_accuracy_color', accuracy_color, iteration) #logger.add_scalar('val_accuracy_type', accuracy_type, iteration) model.train() return metrics, predictions, ground_truths def visualize_grid(model, dataloader, attributes, device, show_cn_matrices=True, show_images=True, checkpoint=None, show_gt=False): if checkpoint is not None: checkpoint_load(model, checkpoint) model.eval() imgs = [] labels = [] gt_labels = [] gt_color_all = [] gt_type_all = [] predicted_color_all = [] predicted_type_all = [] accuracy_color = 0 accuracy_type = 0 with torch.no_grad(): for batch in dataloader: img = batch['img'] gt_colors = batch['labels']['color_labels'] gt_types = batch['labels']['type_labels'] output = model(img.to(device)) batch_accuracy_color, batch_accuracy_type = \ calculate_metrics(output, batch['labels']) accuracy_color += batch_accuracy_color accuracy_type += batch_accuracy_type # get the most confident prediction for each image _, predicted_colors = output['color'].cpu().max(1) _, predicted_types = output['type'].cpu().max(1) for i in range(img.shape[0]): image = np.clip(img[i].permute(1, 2, 0).numpy() * std + mean, 0, 1) predicted_color = attributes.color_id_to_name[predicted_colors[i].item()] predicted_type = attributes.type_id_to_name[predicted_types[i].item()] gt_color = attributes.color_id_to_name[gt_colors[i].item()] gt_types = attributes.type_id_to_name[gt_types[i].item()] gt_color_all.append(gt_color) gt_type_all.append(gt_types) predicted_color_all.append(predicted_color) predicted_type_all.append(predicted_type) imgs.append(image) labels.append("{}\n{}\n{}".format(predicted_type, predicted_color)) gt_labels.append("{}\n{}\n{}".format(gt_types, gt_color)) if not show_gt: n_samples = len(dataloader) print("\nAccuracy:\ncolor: {:.4f}, type: {:.4f}, article: {:.4f}".format( accuracy_color / n_samples, accuracy_type / n_samples)) # Draw confusion matrices if show_cn_matrices: # color cn_matrix = confusion_matrix( y_true=gt_color_all, y_pred=predicted_color_all, labels=attributes.color_labels, normalize='true') ConfusionMatrixDisplay(cn_matrix, attributes.color_labels).plot( include_values=False, xticks_rotation='vertical') plt.title("Colors") plt.tight_layout() plt.show() # gender cn_matrix = confusion_matrix( y_true=gt_type_all, y_pred=predicted_type_all, labels=attributes.type_labels, normalize='true') ConfusionMatrixDisplay(cn_matrix, attributes.gender_labels).plot( xticks_rotation='horizontal') plt.title("Genders") plt.tight_layout() plt.show() if show_images: labels = gt_labels if show_gt else labels title = "Ground truth labels" if show_gt else "Predicted labels" n_cols = 5 n_rows = 3 fig, axs = plt.subplots(n_rows, n_cols, figsize=(10, 10)) axs = axs.flatten() for img, ax, label in zip(imgs, axs, labels): ax.set_xlabel(label, rotation=0) ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) ax.imshow(img) plt.suptitle(title) plt.tight_layout() plt.show() model.train() def calculate_metrics(output, target, predictions, ground_truths): _, predicted_color = output['color'].cpu().max(1) gt_color = target['color_labels'].cpu() _, predicted_types = output['type'].cpu().max(1) gt_type = target['type_labels'].cpu() _, predicted_luggage = output['luggage'].cpu().max(1) gt_luggage = target['luggage_labels'].cpu() _, predicted_wheel = output['wheel'].cpu().max(1) gt_wheel = target['wheel_labels'].cpu() _, predicted_sky = output['sky'].cpu().max(1) gt_sky = target['sky_labels'].cpu() _, predicted_bumper = output['bumper'].cpu().max(1) gt_bumper = target['bumper_labels'].cpu() #print(gt_color) predictions['color'].append(predicted_color.numpy()) ground_truths['color'].append(gt_color.numpy()) predictions['type'].append(predicted_types.numpy()) ground_truths['type'].append(gt_type.numpy()) predictions['wheel'].append(predicted_wheel.numpy()) ground_truths['wheel'].append(gt_wheel.numpy()) predictions['luggage'].append(predicted_luggage.numpy()) ground_truths['luggage'].append(gt_luggage.numpy()) predictions['sky'].append(predicted_sky.numpy()) ground_truths['sky'].append(gt_sky.numpy()) predictions['bumper'].append(predicted_bumper.numpy()) ground_truths['bumper'].append(gt_bumper.numpy()) with warnings.catch_warnings(): # sklearn may produce a warning when processing zero row in confusion matrix warnings.simplefilter("ignore") accuracy_color = balanced_accuracy_score(y_true=gt_color.numpy(), y_pred=predicted_color.numpy()) accuracy_type = balanced_accuracy_score(y_true=gt_type.numpy(), y_pred=predicted_types.numpy()) accuracy_luggage = balanced_accuracy_score(y_true=gt_luggage.numpy(), y_pred=predicted_luggage.numpy()) accuracy_wheel = balanced_accuracy_score(y_true=gt_wheel.numpy(), y_pred=predicted_wheel.numpy()) accuracy_sky = balanced_accuracy_score(y_true=gt_sky.numpy(), y_pred=predicted_sky.numpy()) accuracy_bumper = balanced_accuracy_score(y_true=gt_bumper.numpy(), y_pred=predicted_bumper.numpy()) accuracies = {'color': accuracy_color, 'type': accuracy_type, 'luggage':accuracy_luggage, 'wheel': accuracy_wheel, 'sky':accuracy_sky, 'bumper': accuracy_bumper} return accuracies, predictions, ground_truths if __name__ == '__main__': parser = argparse.ArgumentParser(description='Inference pipeline') parser.add_argument('--checkpoint', type=str, required=True, help="Path to the checkpoint") parser.add_argument('--attributes_file', type=str, default='./fashion-product-images/styles.csv', help="Path to the file with attributes") parser.add_argument('--device', type=str, default='cuda', help="Device: 'cuda' or 'cpu'") args = parser.parse_args() device = torch.device("cuda" if torch.cuda.is_available() and args.device == 'cuda' else "cpu") # attributes variable contains labels for the categories in the dataset and mapping between string names and IDs attributes = AttributesDataset(args.attributes_file) # during validation we use only tensor and normalization transforms val_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean, std) ]) test_dataset = FashionDataset('./val.csv', attributes, val_transform) test_dataloader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=8) model = MultiOutputModel(n_color_classes=attributes.num_colors, n_gender_classes=attributes.num_genders, n_article_classes=attributes.num_articles).to(device) # Visualization of the trained model visualize_grid(model, test_dataloader, attributes, device, checkpoint=args.checkpoint)
eea81f8d92a5f4b5914eb02992153a06f56c77aa
f4d362f3c3a1bd127923ed3fa30c03a1587caa38
/pyactivemodel/base.py
be0a2dc7be4dbe0df77855ef7353b2b5e29633e2
[ "MIT" ]
permissive
zhuyifei1999/wmcn-activemodel-py
e8be64d06bb529d12a9ae11a6509aaf4345085ee
143d8f55fbd34fb21c401a9574530eba7f8d287b
refs/heads/master
2021-01-02T09:42:16.068768
2017-08-04T02:52:16
2017-08-04T02:55:22
99,283,216
0
0
null
null
null
null
UTF-8
Python
false
false
559
py
# -*- coding: UTF-8 -*- noop = lambda *args, **kwargs: None # noqa: E731 class ActiveModelBase(type): def __new__(metacls, name, bases, namespace, **kwargs): """Create the new class, run classinit_includes.""" cls = super().__new__(metacls, name, bases, namespace) for classes in reversed(cls.__mro__): classes.__dict__.get('classinit_include', noop).__get__(None, cls)() for classes in cls.__mro__: classes.__dict__.get('classinit_include_post', noop).__get__(None, cls)() return cls
108209cb2a4a35deba0f4aa4d5f213e33ac9aea3
c8d8e570a1936952f170e4863a1fde871756160f
/core/management/commands/index_titles.py
783e8bb74b4258ed5e253d7d0ea3b40e88d6b5e5
[]
no_license
CDRH/nebnews
90db170cf4091dec328898f5e12a487f2f632929
b8f064c4dcc2561c0f130cfc0db02f114da527da
refs/heads/main
2023-08-22T20:25:04.638718
2018-08-09T17:29:30
2018-08-09T17:29:30
34,015,551
3
0
null
null
null
null
UTF-8
Python
false
false
465
py
import logging from django.core.management.base import BaseCommand from chronam.core.management.commands import configure_logging from chronam.core.index import index_titles configure_logging("index_titles_logging.config", "index_titles.log") _logger = logging.getLogger(__name__) class Command(BaseCommand): def handle(self, **options): _logger.info("indexing titles") index_titles() _logger.info("finished indexing titles")
2c9f982ff712ff03b6c2fb9764ef24fc322a0f82
650b516b1214c4d44fd6f04941e87e28e9049cde
/addons/script.mtvguide/streaming.py
8f841b20c43e14c1555bef8e094786504de6c532
[]
no_license
MultiWu/build
b85cc45a33b871f4ade58de8457fcd094761f385
f50a64f674b6499668e0a5758fe0879b016f5c38
refs/heads/master
2022-10-31T20:35:53.382826
2019-12-20T22:50:16
2019-12-20T22:50:16
228,462,984
0
3
null
2022-10-07T08:47:18
2019-12-16T19:46:39
Python
UTF-8
Python
false
false
11,622
py
# Copyright (C) 2012 Tommy Winther # http://tommy.winther.nu # # This Program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This Program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this Program; see the file LICENSE.txt. If not, write to # the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. # http://www.gnu.org/copyleft/gpl.html import os, ConfigParser import xbmc, xbmcaddon from xml.etree import ElementTree from xml.parsers.expat import ExpatError from strings import * class StreamsService(object): def __init__(self): path = os.path.join(ADDON_PATH, 'resources', 'addons.ini') self.addonsParser = ConfigParser.ConfigParser(dict_type=OrderedDict) self.addonsParser.optionxform = lambda option: option try: self.addonsParser.read(path) except: print 'unable to parse addons.ini' def loadFavourites(self): entries = list() path = xbmc.translatePath('special://userdata/favourites.xml') if os.path.exists(path): f = open(path) xml = f.read() f.close() try: doc = ElementTree.fromstring(xml) for node in doc.findall('favourite'): value = node.text if value[0:11] == 'PlayMedia("': value = value[11:-2] elif value[0:10] == 'PlayMedia(': value = value[10:-1] elif value[0:22] == 'ActivateWindow(10025,"': value = value[22:-9] elif value[0:22] == 'ActivateWindow(10025,': value = value[22:-9] else: continue entries.append((node.get('name'), value)) except ExpatError: pass return entries def getAddons(self): return self.addonsParser.sections() def getAddonStreams(self, id): return self.addonsParser.items(id) def detectStream(self, channel): try: """ @param channel: @type channel: source.Channel """ favourites = self.loadFavourites() # First check favourites, if we get exact match we use it for label, stream in favourites: if label == channel.title: return stream # Second check all addons and return all matches matches = list() for id in self.getAddons(): try: xbmcaddon.Addon(id) except Exception: continue # ignore addons that are not installed for (label, stream) in self.getAddonStreams(id): try: if label == channel.title or label.startswith(channel.title+' @'): matches.append((id, label, stream)) except: continue if len(matches) == 1: return matches[0][2] else: return matches except: return None class OrderedDict(dict): # From: http://code.activestate.com/recipes/576693/ 'Dictionary that remembers insertion order' # An inherited dict maps keys to values. # The inherited dict provides __getitem__, __len__, __contains__, and get. # The remaining methods are order-aware. # Big-O running times for all methods are the same as for regular dictionaries. # The internal self.__map dictionary maps keys to links in a doubly linked list. # The circular doubly linked list starts and ends with a sentinel element. # The sentinel element never gets deleted (this simplifies the algorithm). # Each link is stored as a list of length three: [PREV, NEXT, KEY]. def __init__(self, *args, **kwds): '''Initialize an ordered dictionary. Signature is the same as for regular dictionaries, but keyword arguments are not recommended because their insertion order is arbitrary. ''' if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.__root except AttributeError: self.__root = root = [] # sentinel node root[:] = [root, root, None] self.__map = {} self.__update(*args, **kwds) def __setitem__(self, key, value, dict_setitem=dict.__setitem__): 'od.__setitem__(i, y) <==> od[i]=y' # Setting a new item creates a new link which goes at the end of the linked # list, and the inherited dictionary is updated with the new key/value pair. if key not in self: root = self.__root last = root[0] last[1] = root[0] = self.__map[key] = [last, root, key] dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__): 'od.__delitem__(y) <==> del od[y]' # Deleting an existing item uses self.__map to find the link which is # then removed by updating the links in the predecessor and successor nodes. dict_delitem(self, key) link_prev, link_next, key = self.__map.pop(key) link_prev[1] = link_next link_next[0] = link_prev def __iter__(self): 'od.__iter__() <==> iter(od)' root = self.__root curr = root[1] while curr is not root: yield curr[2] curr = curr[1] def __reversed__(self): 'od.__reversed__() <==> reversed(od)' root = self.__root curr = root[0] while curr is not root: yield curr[2] curr = curr[0] def clear(self): 'od.clear() -> None. Remove all items from od.' try: for node in self.__map.itervalues(): del node[:] root = self.__root root[:] = [root, root, None] self.__map.clear() except AttributeError: pass dict.clear(self) def popitem(self, last=True): '''od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false. ''' if not self: raise KeyError('dictionary is empty') root = self.__root if last: link = root[0] link_prev = link[0] link_prev[1] = root root[0] = link_prev else: link = root[1] link_next = link[1] root[1] = link_next link_next[0] = root key = link[2] del self.__map[key] value = dict.pop(self, key) return key, value # -- the following methods do not depend on the internal structure -- def keys(self): 'od.keys() -> list of keys in od' return list(self) def values(self): 'od.values() -> list of values in od' return [self[key] for key in self] def items(self): 'od.items() -> list of (key, value) pairs in od' return [(key, self[key]) for key in self] def iterkeys(self): 'od.iterkeys() -> an iterator over the keys in od' return iter(self) def itervalues(self): 'od.itervalues -> an iterator over the values in od' for k in self: yield self[k] def iteritems(self): 'od.iteritems -> an iterator over the (key, value) items in od' for k in self: yield (k, self[k]) def update(*args, **kwds): '''od.update(E, **F) -> None. Update od from dict/iterable E and F. If E is a dict instance, does: for k in E: od[k] = E[k] If E has a .keys() method, does: for k in E.keys(): od[k] = E[k] Or if E is an iterable of items, does: for k, v in E: od[k] = v In either case, this is followed by: for k, v in F.items(): od[k] = v ''' if len(args) > 2: raise TypeError('update() takes at most 2 positional ' 'arguments (%d given)' % (len(args),)) elif not args: raise TypeError('update() takes at least 1 argument (0 given)') self = args[0] # Make progressively weaker assumptions about "other" other = () if len(args) == 2: other = args[1] if isinstance(other, dict): for key in other: self[key] = other[key] elif hasattr(other, 'keys'): for key in other.keys(): self[key] = other[key] else: for key, value in other: self[key] = value for key, value in kwds.items(): self[key] = value __update = update # let subclasses override update without breaking __init__ __marker = object() def pop(self, key, default=__marker): '''od.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' if key in self: result = self[key] del self[key] return result if default is self.__marker: raise KeyError(key) return default def setdefault(self, key, default=None): 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' if key in self: return self[key] self[key] = default return default def __repr__(self, _repr_running={}): 'od.__repr__() <==> repr(od)' call_key = id(self), _get_ident() if call_key in _repr_running: return '...' _repr_running[call_key] = 1 try: if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, self.items()) finally: del _repr_running[call_key] def __reduce__(self): 'Return state information for pickling' items = [[k, self[k]] for k in self] inst_dict = vars(self).copy() for k in vars(OrderedDict()): inst_dict.pop(k, None) if inst_dict: return (self.__class__, (items,), inst_dict) return self.__class__, (items,) def copy(self): 'od.copy() -> a shallow copy of od' return self.__class__(self) @classmethod def fromkeys(cls, iterable, value=None): '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S and values equal to v (which defaults to None). ''' d = cls() for key in iterable: d[key] = value return d def __eq__(self, other): '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive while comparison to a regular mapping is order-insensitive. ''' if isinstance(other, OrderedDict): return len(self)==len(other) and self.items() == other.items() return dict.__eq__(self, other) def __ne__(self, other): return not self == other
65a327b0db2fe61c17d851aef22248b05b86c466
9ff0e35334f06fa98d46b844d6bcd27e5c191266
/pageAction/order_action.py
01d14f70a0ab5faf524a5d68f80fbeeb64cda2ee
[]
no_license
zhangyuyu0222/mtx0117
ec6bfbd068b3422ac4d96d49a1756bbbac0be4a8
8a93c8bbab3dfcf11d59b9061380c74a1a3506ea
refs/heads/master
2023-02-16T14:24:44.150213
2021-01-16T03:39:43
2021-01-16T03:39:43
330,388,119
0
0
null
null
null
null
UTF-8
Python
false
false
638
py
# 导包 import time from lesson13.lesson13_1买裙子调用类.pageAction.action_manager import ActionManage ''' 组合业务 引入页面对象 ''' class Buy_pinkskirt(ActionManage): def buy_pinkskirt_business(self): self.pageindex.click_pinkskirt() time.sleep(1) self.pageindex.change_window() time.sleep(1) self.pagegoogsdetail.click_pink() time.sleep(1) self.pagegoogsdetail.click_M() time.sleep(1) self.pagegoogsdetail.click_buy_now() time.sleep(1) self.pagebuy.click_givemoney() time.sleep(1) self.pagebuy.submit()
6267eb1c55485c3686510613a53527be2a437057
6e1fae6052a9fca260585439311128f06d449a34
/Python/createTablesSQLite3.py
b737711f4b3c0bf8fe8ca8e31beebc44087827ac
[]
no_license
thecodearrow/Programming-Tasks
797d687f405e021ae37b07ae6c15175ad693154c
8779dfb14a79b4451f8feafde9b1daf30eea9e4b
refs/heads/master
2020-05-22T02:33:56.289954
2018-07-28T09:18:51
2018-07-28T09:18:51
84,663,349
1
0
null
null
null
null
UTF-8
Python
false
false
1,495
py
""" Table CREATION-- Books,Titles,Publishers,Zip Codes, Authors Titles, AUthors """ import sqlite3 def create_table(): #Exception handling for the sqlite connection try: conn=sqlite3.connect('library.db') c=conn.cursor() #CREATING TABLES c.execute('CREATE TABLE ZIPCODES(ZIP_CODE_ID TEXT PRIMARY KEY NOT NULL,CITY TEXT,STATE TEXT,ZIP_CODE INT)') c.execute('CREATE TABLE PUBLISHERS(PUBLISHER_ID TEXT PRIMARY KEY NOT NULL,NAME TEXT,STREET_ADDRESS CHAR(50),SUITE_NUMBER INT,ZIP_CODE_ID INT NOT NULL,FOREIGN KEY(ZIP_CODE_ID) REFERENCES ZIPCODES(ZIP_CODE_ID));') c.execute('CREATE TABLE TITLES(TITLE_ID TEXT PRIMARY KEY NOT NULL,TITLE TEXT,ISBN INT,PUBLISHER_ID TEXT NOT NULL,PUBLICATION_YEAR INT,FOREIGN KEY(PUBLISHER_ID) REFERENCES PUBLISHERS(PUBLISHER_ID));') c.execute('CREATE TABLE BOOKS(BOOK_ID TEXT PRIMARY KEY NOT NULL, TITLE_ID TEXT NOT NULL,LOCATION TEXT,GENRE TEXT,FOREIGN KEY(TITLE_ID) REFERENCES TITLES(TITLE_ID));') c.execute('CREATE TABLE AUTHORS(AUTHOR_ID TEXT PRIMARY KEY NOT NULL, FIRST_NAME TEXT,MIDDLE_NAME TEXT,LAST_NAME TEXT') c.execute('CREATE TABLE AUTHOR_TITLES(AUTHOR_TITLE_ID TEXT PRIMARY KEY NOT NULL, AUTHOR_ID TEXT,TITLE_ID TEXT,FOREIGN KEY(TITLE_ID) REFERENCES TITLES(TITLE_ID),FOREIGN KEY(AUTHOR__ID) REFERENCES AUTHORS(AUTHOR_ID))'), conn.commit() #committing changes except sqlite3.Error as e: print("There was a problem! ", e) finally: if conn: conn.close() #if conn was established, finally close it
0a89bf2cf3823d660a7228315a6db6e090c2d5b3
08d6dba0d2fbde98f572f2d1423a95d4f0addfb5
/modulo-1/desafio007.py
b9f94863e19e9b67dcbb436cfbee22eb313f71e6
[ "MIT" ]
permissive
Maximos007/Exercicios-Python-Modulo1
b859cf695d442a7abfb1f441d38160fb7cb6be19
fc269296e4fc2f4b08d949040c5e7fff51495f2c
refs/heads/main
2023-03-02T03:27:06.463453
2021-02-08T22:39:22
2021-02-08T22:39:22
336,445,295
1
0
null
null
null
null
UTF-8
Python
false
false
165
py
nota1 = float(input('Primeira nota : ')) nota2 = float(input('Segunda nota : ')) soma = nota1 + nota2 media = soma / 2 print('Soma {} média {}'.format(soma, media))
b269e0594b7094cc006a3156adb471214675a64e
457c3e20036060adfb6a019fc1917546b8585cc9
/dark.py
608d6af4e80b6867eb0e1e911c984a45c0e350be
[]
no_license
D1ARK-VA4U3/Birthday.wish
6973acdf5df4ca55c87b114e6055f333e479c6e6
041b2bc3091144d5ac5172f53119e7b8d0e16076
refs/heads/main
2023-06-21T19:30:22.693097
2021-07-17T15:58:46
2021-07-17T15:58:46
386,980,943
0
0
null
null
null
null
UTF-8
Python
false
false
1,548
py
import itertools ban = ''' ''' print('\n------------------\n\n D1ARK-VA4U3 \033[32m2.0\033[m | Its Me Dark King\n\n~ Tools Make by: D1ARK-VA4U3 FROM BCA TEAM\n\n------------------\n') scale = input('\033[36m[!] provide a size scale [eg: "1 to 8" = 1:8] : ') start = int(scale.split(':')[0]) final = int(scale.split(':')[1]) use_nouse = str(input("\n\033[36m[?] Do you want to enter personal data ? [y/N]: ")) if use_nouse == 'y': first_name = str(input("\n\033[36m[*] Fist Name: ")) last_name = str(input("\n\033[36m[*] Last Name: ")) birthday = str(input("\n\033[36m[*] Birthday: ")) month = str(input("\n\033[36m[*] Month: ")) year = str(input("\n\033[36m[*] Year: ")) chrs = first_name + last_name + birthday + month + year else: chrs = 'abcdefghijklmnopqrstuvwxyz' pass chrs_up = chrs.upper() chrs_specials = '!\][/?.,~-=";:><@#$%&*()_+\' ' chrs_numerics = '1234567890' file_name = input('\n\033[36m[!] Insert a name for your wordlist file: ') arq = open(file_name, 'w') if input('\n\033[36m[?] Do you want to use uppercase characters? (y/n): ') == 'y': chrs = ''.join([chrs, chrs_up]) if input('\n\033[36m[?] Do you want to use special characters? (y/n): ') == 'y': chrs = ''.join([chrs, chrs_specials]) if input('\n\033[36m[?] Do you want to use numeric characters? (y/n): ') == 'y': chrs = ''.join([chrs, chrs_numerics]) for i in range(start, final+1): for j in itertools.product(chrs, repeat=i): temp = ''.join(j) print(temp) arq.write(temp + '\n') arq.close()
b0e2416d470cc5f24e7731d0491051295cc4f4b0
197420c1f28ccb98059888dff214c9fd7226e743
/happy_pythoning_cource/Part_4/4.1.1.Password_comparing/4.1.1.password_comparing.py
c522343418d97a0fd058b829a9b6f0fe5eff3384
[]
no_license
Vovanuch/python-basics-1
fc10b6f745defff31364b66c65a704a9cf05d076
a29affec12e8b80a1d3beda3a50cde4867b1dee2
refs/heads/master
2023-07-06T17:10:46.341121
2021-08-06T05:38:19
2021-08-06T05:38:19
267,504,364
0
0
null
null
null
null
UTF-8
Python
false
false
1,286
py
''' Пароль При регистрации на сайтах требуется вводить пароль дважды. Это сделано для безопасности, поскольку такой подход уменьшает возможность неверного ввода пароля. Напишите программу, которая сравнивает пароль и его подтверждение. Если они совпадают, то программа выводит: «Пароль принят», иначе: «Пароль не принят». Формат входных данных На вход программе подаются две строки. Формат выходных данных Программа должна вывести одну строку в соответствии с условием задачи. Sample Input 1: qwerty qwerty Sample Output 1: Пароль принят Sample Input 2: qwerty Qwerty Sample Output 2: Пароль не принят Sample Input 3: PythonROCKS PythonROCKS Sample Output 3: Пароль принят ''' a = input().strip() b = input().strip() if (a == b) and (a != ""): print('Пароль принят') else: print('Пароль не принят')
f1b1f2e7cdbd3782caf07c6d8fac5894512e2308
27044bb88c709e7ffa5278afc7c81f37e0b6e9e4
/venv/lib/python3.10/site-packages/rich/errors.py
ab1fb97994c508091d92fe3fc2098585aa21c320
[]
no_license
mesaye85/organika_Inventory_project-with-React-
48c93efb6aba64d5e9310c57e4c5a06d3f2cc502
6aa3d29e8be3e22b8dc9163d558cdcc8c9122fd1
refs/heads/main
2023-02-19T10:11:47.880754
2023-02-14T01:55:43
2023-02-14T01:55:43
298,101,393
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
/home/runner/.cache/pip/pool/e6/93/f7/29ce5de1027f734285b31adfca18e23d57bb275ccea9215b140cdc57e6
214bbafb9ca631e71c4cff2fd4d55f1af76b2482
6c85401ae391b8c63808789ac4eaf583085b761e
/data_sync/sync_main/entrance.py
08ab1afef4643161607fd038d3587eb464199fe3
[]
no_license
rkzhang/data_sync
60691d8f1c3027b76722d5d41f3afcdda26c127b
cd98a4dc8e7ff9fe7b36df08d8c21eba2cee1f6d
refs/heads/master
2016-09-02T04:55:20.486096
2015-01-06T02:34:21
2015-01-06T02:34:21
28,586,594
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
362
py
#-*-coding:UTF-8-*- ''' Created on 2014Äê12ÔÂ24ÈÕ @author: zhangr01 ''' from sync_main.watcher import WatcherThread from sync_main.data_consumer import ConsumerThread import time t_watcher = WatcherThread(); t_watcher.start() for i in range(5) : t_consumer = ConsumerThread(); t_consumer.start() while True : time.sleep(10)
c5c85e191d1f5478a197ed951010c41e372ca36b
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-ocr/huaweicloudsdkocr/v1/model/smart_document_recognizer_kv_result.py
3808e6c70a5cbc3fc914f863fa9c73ed150831e2
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
4,572
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class SmartDocumentRecognizerKvResult: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'kv_block_count': 'int', 'kv_block_list': 'list[SmartDocumentRecognizerKVBlock]' } attribute_map = { 'kv_block_count': 'kv_block_count', 'kv_block_list': 'kv_block_list' } def __init__(self, kv_block_count=None, kv_block_list=None): """SmartDocumentRecognizerKvResult The model defined in huaweicloud sdk :param kv_block_count: 模型识别到的键值对数量。 :type kv_block_count: int :param kv_block_list: 键值对识别结果列表。 :type kv_block_list: list[:class:`huaweicloudsdkocr.v1.SmartDocumentRecognizerKVBlock`] """ self._kv_block_count = None self._kv_block_list = None self.discriminator = None if kv_block_count is not None: self.kv_block_count = kv_block_count if kv_block_list is not None: self.kv_block_list = kv_block_list @property def kv_block_count(self): """Gets the kv_block_count of this SmartDocumentRecognizerKvResult. 模型识别到的键值对数量。 :return: The kv_block_count of this SmartDocumentRecognizerKvResult. :rtype: int """ return self._kv_block_count @kv_block_count.setter def kv_block_count(self, kv_block_count): """Sets the kv_block_count of this SmartDocumentRecognizerKvResult. 模型识别到的键值对数量。 :param kv_block_count: The kv_block_count of this SmartDocumentRecognizerKvResult. :type kv_block_count: int """ self._kv_block_count = kv_block_count @property def kv_block_list(self): """Gets the kv_block_list of this SmartDocumentRecognizerKvResult. 键值对识别结果列表。 :return: The kv_block_list of this SmartDocumentRecognizerKvResult. :rtype: list[:class:`huaweicloudsdkocr.v1.SmartDocumentRecognizerKVBlock`] """ return self._kv_block_list @kv_block_list.setter def kv_block_list(self, kv_block_list): """Sets the kv_block_list of this SmartDocumentRecognizerKvResult. 键值对识别结果列表。 :param kv_block_list: The kv_block_list of this SmartDocumentRecognizerKvResult. :type kv_block_list: list[:class:`huaweicloudsdkocr.v1.SmartDocumentRecognizerKVBlock`] """ self._kv_block_list = kv_block_list def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SmartDocumentRecognizerKvResult): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
f721f383bba5a9421e5b1e98752bd34c7f0aa7fb
4ca59fa23ed7d26a5d1d29ad0b182d87df6885ad
/venv/Menu/Burgers.py
189d5fa858e62c6ce6bf5883603e20f5401fee79
[]
no_license
RAVISH-KUMAR-PANDEY/POS
2be8311fdf5ced6098b49dbdbf5a94720065f8d1
0a2fd3fd40223b4d329166ea07bd6ca9cff0453d
refs/heads/master
2020-03-21T23:19:00.950938
2018-06-29T17:54:08
2018-06-29T17:54:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
506
py
from Menu import lsBrg class Brg: def __init__(self,name,price): self.name=name self.price=price @classmethod def setterBrg(cls): objbrg=[] for i, j in zip(lsBrg.keys(), lsBrg.values()): objbrg.append(Brg(i,j)) return objbrg @classmethod def ShowBrg(cls,ls): count=1 for i in ls: print(count,". Name = ",i.name ," price = ",i.price) count=count+1 #l1=FoodItem.setter() #FoodItem.ShowBrg(l1)
b50ccde95c834b12913d5b58f2734a388a0872a7
bc464d2f33ee41e4b2595b01dd3f29e5347edaaf
/PDF/01development/read_PDFtk_dumpdata.py
b917a6c1eff059193dbec535670b2dc954b7d0e4
[]
no_license
peterhsprenger/VuRProjects
b6256260ea36193bbb631398fbbae3572e1a822d
b082b1592b2bc1094a53086a1698a630f23e5e39
refs/heads/master
2021-01-10T05:31:52.989976
2015-11-05T01:58:04
2015-11-05T01:58:04
44,212,869
0
0
null
null
null
null
ISO-8859-1
Python
false
false
1,938
py
# -*- coding: iso-8859-1 -*- import os #import subprocess import re #import string dump_data = [] dump_data_path = "F:\UTBeScholars\LIEFERUNG\Inhaltsverzeichnisse\TMP" bookmarks = {} # Zusammenstellung aller Dateien im Verzeichnis zu weiteren Bearbeitung; es werden die Dateinamen ohne Pfad ausgegeben for dd in os.listdir(dump_data_path): if os.path.isfile(os.path.join(dump_data_path, dd)): #pdf_files_path.append(os.path.join(dump_data_path, dd)) dump_data.append(dd) print 'Dump Data', dump_data print 'Length Dump Data', len(dump_data) print 'Bookmarks Dictionary', bookmarks # zunächst werden aus den mit pdftk erzeugten Dateien für jedes verfügbare PDF die Bookmarks für die Table of Contents ausgelesen for dd in dump_data: o_dd = open(os.path.join(dump_data_path, dd)) r_dd = o_dd.read() f_dd = re.findall('BookmarkTitle: Table of Contents\sBookmarkLevel: [0-9]\sBookmarkPageNumber: ([0-9]+)\sBookmarkBegin\sBookmarkTitle: Body\sBookmarkLevel: [0-9]\sBookmarkPageNumber: ([0-9]+)', r_dd) # vor der Zusammenführung muss die Seitenzahl der letzten Seite eines Inhaltsverzeichnisses um den Wert "1" verringert werden # (es hört ja auf der Seite VOR dem nächsten Bookmark auf!) for x, y in f_dd: pp = int(x), int(y) - 1 # aus dem Dateinamen wird die ISBN extrahiert für das spätere Dictionary mit ISBN-Seitenzahl-Paaren isbn = re.findall('(\d\d\d\d\d\d\d\d\d\d\d\d\d).*', dd) print "DD", dd print "FDD", f_dd print "PP", pp print "ISBN", isbn bookmarks_tmp = [] bookmarks_tmp.append(isbn) print "Bookmarks_TMP", bookmarks_tmp print "Seitenzahl", f_dd for isbn in bookmarks_tmp[0]: #print "Bookmark", isbn if isbn not in bookmarks: bookmarks[isbn] = pp print 'Bookmarks Dictionary - neu:', bookmarks
0a874592b2b9ca19355cf79fad234aa814e89655
26b87e8933578c041232e60bc8f6f033c8bbdfb1
/main_app/migrations/0012_auto_20190825_1438.py
a573815651584c1a7765acaa948d4aaa78574bf8
[]
no_license
mchlsdrv/lucidpy_site
bb37bf84736eccf493a11d9e6eff915f6a561cdd
c04dfa534d2e192f0943541461821657f8c4c094
refs/heads/master
2023-09-02T18:43:42.196169
2021-11-01T09:49:07
2021-11-01T09:49:07
217,487,431
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
# Generated by Django 2.1.5 on 2019-08-25 11:38 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main_app', '0011_auto_20190825_1429'), ] operations = [ migrations.AlterField( model_name='post', name='date', field=models.DateTimeField(default=datetime.datetime(2019, 8, 25, 14, 38, 16, 956766), verbose_name='publishing date'), ), ]
f3006e05e8c84437c800d6eddecf68c544327558
53cc7d0c2cbeb3c2d6e26739e2b64c36e7580869
/networks/db1/3-3/submit.py
ee603cce95375c6067163d7adf8117440b15066a
[]
no_license
jkitchin/amp-tutorial
951720dc1071f62ca220b0aa7ec841e227086162
ea89852cbfea602db061dde48837604565b26f40
refs/heads/master
2020-12-25T03:21:25.386984
2017-03-16T16:53:33
2017-03-16T16:53:33
50,206,355
1
0
null
2016-01-22T20:41:32
2016-01-22T20:41:32
null
UTF-8
Python
false
false
456
py
#!/usr/bin/env python from amp import Amp from amp.descriptor import * from amp.regression import * calc = Amp(label="./", descriptor=Behler(cutoff=6.0), regression=NeuralNetwork(hiddenlayers=(2, 3))) calc.train("../train.db", # The training data cores=1, global_search=None, # not found the simulated annealing feature useful extend_variables=False) # feature does not work properly and will crash
465fd2c3192b8abcca71593d9b3ee7bc1848867e
b4ccb7e67d066649e5ece45d556e76ba45778683
/students/forms.py
89bf1de2af8b1dea340ec6bcb3daaafec34b3bfa
[]
no_license
elbination/Django-ELearning
51ca6e5feb411bf279729410abcc2e2e54241804
07d57a415885af37fac1e818ed172937df8798dd
refs/heads/main
2023-07-19T22:38:03.816242
2021-08-24T02:53:35
2021-08-24T02:53:35
392,744,316
0
0
null
null
null
null
UTF-8
Python
false
false
339
py
from django import forms from courses.models import Course class CourseEnrollForm(forms.Form): # Use HiddenInput widget to not to show this field the user. # This form is used in the CourseDetailView course = forms.ModelChoiceField(queryset=Course.objects.all(), widget=forms.HiddenInput)
7ada391c8583896595b322ab1117e8ecfb68820e
9f2ade5d29f61d1426ecbbe13120b14102b274ae
/core/settings.py
59a443f19ed3aca9f73d6d5a5a2dde1a084a588b
[]
no_license
Dieggg/DLD-Desarrollo-ET
4c7004bd02de97ad73a9bcd74763a4eabe5a2e78
f50f98e53ac2a5e4047c1547c2dcbc1ce908d77b
refs/heads/master
2022-12-10T19:43:08.624276
2019-12-13T03:37:21
2019-12-13T03:37:21
227,510,172
0
0
null
2019-12-12T03:17:01
2019-12-12T03:15:33
Python
UTF-8
Python
false
false
3,676
py
""" Django settings for core project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'e2hae7m**_v1n_x7*6!24^buw!mhiksxpy1dj-uz5ehl75-_h7' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'compras', 'registro', 'crispy_forms', 'django.contrib.sites', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.facebook', 'pwa', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'core.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'core.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ gettext = lambda s: s LANGUAGES = ( ('es', gettext('Español')), ) LANGUAGE_CODE = 'es-cl' TIME_ZONE = 'America/Santiago' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' #CRISPY FORMS CRISPY_TEMPLATE_PACK="bootstrap4" # redirección despues de loggeasrse LOGIN_REDIRECT_URL = "panel" # accion para desloggearse LOGOUT_REDIRECT_URL = "/" #AUTH LOGIN FB Y GOOGLE SITE_ID = 1 PWA_SERVICE_WORKER_PATH = os.path.join(BASE_DIR,'serviceworker.js')