blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
eb920e9f0de524db868175ec191b9a196ff81020
77f82fcab63aaa5972c2c26faf97989dc4a22f33
/tictactoe-javiluna/Tic_Tac_Toe__repaso_funciones_.py
ec0f44b961769029ac7f055a9fa9c2c70e4a1378
[]
no_license
albertogcmr/data-analytics-examples-lessons-stuff
64ea20d395e8b8fc9348729e2c1b53b3ffad7684
d565ed2a21d43c0420a73387a3976efcf70364cc
refs/heads/master
2020-06-08T10:53:56.009487
2019-10-05T12:38:48
2019-10-05T12:38:48
193,216,571
1
4
null
null
null
null
UTF-8
Python
false
false
2,719
py
import json CELL_EMPTY = " " CELL_PLAYER_1 = "O" CELL_PLAYER_2 = "X" def initialize_game_state(): return {'turn': 0, 'board': initialize_board()} def initialize_board(): """ Creates a new empty board :return: A board """ return [[CELL_EMPTY for _ in range(3)] for _ in range(3)] def display_board(board): """ Displays a board :param board: Board to be displayed """ print("\t" + "\t".join([str(i + 1) for i, cell in enumerate(board[0])])) for i, row in enumerate(board): print(i + 1, end='\t') for j, cell in enumerate(row): print(cell, end='\t') print() def set_chip_to_board(board, row, column, chip): """ Sets a chip to a cell in a board :param board: Board to be modified :param row: Row in which we will set the chip :param column: Column in which we will set the chip :param chip: Chip to be set in the board :return: Modified board """ board[row][column] = chip return board def check_empty_cell(board, row, column): """ Checks if a determined cell is empty :param board: Board :param row: Row :param column: Column :return: Whether the determined cell is empty or not """ return board[row][column] == CELL_EMPTY def check_cell_in_board(board, row, column): """ :param board: :param row: :param column: :return: """ return 0 <= row < len(board) and 0 <= column < len(board[0]) def safe_set_chip(board, row, column, chip): """ Checks if the chip can be set and sets it if its alright :param board: Board to be modified :param row: Row :param column: Column :param chip: Chip to be set to the board :return: Whether the chip has been set or not """ # ~~~~DANGER ZONE~~~~~~ if not check_cell_in_board(board, row, column): print("Illo you cannot go outside the board!") return False elif not check_empty_cell(board, row, column): print("Illo you have to have a lil bit of respect for other chips in the board!") return False # ~~~~END OF DANGER~~~~~ set_chip_to_board(board, row, column, chip) return True """ game_state = initialize_game_state() with open('game.holis', 'w') as output_file: json.dump(game_state, output_file, indent=4, sort_keys=True) """ with open('game.holis', 'r') as input_file: game_state = json.load(input_file) def int_input(text=""): while 1: try: return int(input(text)) except: pass int_input("> ") display_board(game_state['board'])
ecd28a40a8d91ac0a2c2d3e1803050e423261aae
9b6b3f4b30e9bd8a821d8df16bd71e62b9c6eb98
/day3/modules/mod_a.py
2e50a02f49096cd18895d8fb24323b210b42966b
[]
no_license
shobhit-nigam/snape_mar
b7f2155cfcd83482230c339fe45f9ea851061318
b7b33a767cc00d35a22e40c940b4331e4898c8d5
refs/heads/main
2023-03-25T05:44:21.244078
2021-03-26T05:27:28
2021-03-26T05:27:28
350,555,721
1
1
null
null
null
null
UTF-8
Python
false
false
91
py
# modules import os import time print(os.getcwd()) time.sleep(5) print("hi")
c6fd29782994efa2e50c0c1e5ac53afafd2fd765
67925cfa807f767013eb9df1207d48980bce100c
/model.py
dae151371c9336b4b3910aeb26c750bb0e3dafbe
[]
no_license
Gryton/carnd-behavioral-cloning
9ea8d48440aea9d37f42e13fd69968dada5f8b6b
7f480c0c18c737dcc6429c9f8392d9cb8ee0d581
refs/heads/master
2021-01-24T08:54:19.481768
2017-06-05T10:45:11
2017-06-05T10:45:11
93,392,051
0
0
null
null
null
null
UTF-8
Python
false
false
3,041
py
import csv import cv2 import numpy as np import random import os from keras.models import Sequential from keras.layers import Flatten, Dense, Lambda, Convolution2D, Cropping2D, Dropout, Activation from keras.layers.pooling import MaxPooling2D import sklearn from sklearn.model_selection import train_test_split main_source = './train_data' with open(main_source + '/driving_log.csv') as csv_file: reader = csv.reader(csv_file) lines = [line for line in reader] train_samples, validation_samples = train_test_split(lines, test_size=0.2) def generator(samples, batch_size=32): num_samples = len(samples) while 1: # Loop forever so the generator never terminates sklearn.utils.shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset+batch_size] images = [] angles = [] for batch_sample in batch_samples: name = main_source+'/IMG/'+os.path.basename(batch_sample[0]) center_image = cv2.imread(name) center_angle = float(batch_sample[3]) left_image = cv2.imread(main_source+'/IMG/'+os.path.basename(batch_sample[1])) right_image = cv2.imread(main_source+'/IMG/'+os.path.basename(batch_sample[2])) images.append(center_image) images.append(left_image) images.append(right_image) images.append(cv2.flip(center_image, 1)) angles.append(center_angle) angles.append(center_angle+0.3) angles.append(center_angle-0.3) angles.append(-1.0*center_angle) # trim image to only see section with road X_train = np.array(images) y_train = np.array(angles) yield sklearn.utils.shuffle(X_train, y_train) # compile and train the model using the generator function train_generator = generator(train_samples, batch_size=32) validation_generator = generator(validation_samples, batch_size=32) ch, row, col = 3, 85, 320 # Trimmed image format model = Sequential() # normalize data model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=(160, 320, 3))) # crop image to leave road model.add(Cropping2D(cropping=((55, 20), (0,0)))) model.add(Convolution2D(24, 5, 5, subsample=(2,2))) model.add(Dropout(0.5)) model.add(Activation('relu')) model.add(Convolution2D(36, 5, 5, subsample=(2,2), activation = 'relu')) model.add(Convolution2D(48, 5, 5, subsample=(2,2), activation = 'relu')) model.add(Convolution2D(64, 3, 3, activation = 'relu')) model.add(Convolution2D(64, 3, 3)) model.add(Flatten()) model.add(Dense(100)) model.add(Dropout(0.5)) model.add(Activation('relu')) model.add(Dense(50)) model.add(Dense(10)) model.add(Dense(1)) model.compile(loss='mse', optimizer='adam') model.fit_generator(train_generator, 4*len(train_samples), validation_data=validation_generator, nb_val_samples=4*len(validation_samples), nb_epoch=3, verbose=1) model.save('model.h5')
37804720a48a867b3c2c30c5e078c92dc6a170fd
571b507e91d24eeb79d44fff4ed16bb9e806d957
/test1.py
0037b5ec6880b91e467cd27ff55839633e8ae01f
[]
no_license
143vsahani/tests
9a5104a05774c07574ff47fea038778041599cca
9d349157e453d790c5655a49a8011ce8c3cf5e36
refs/heads/master
2023-06-19T04:48:51.559392
2021-07-08T08:42:58
2021-07-08T08:42:58
384,055,823
0
0
null
null
null
null
UTF-8
Python
false
false
6,603
py
from kivy.lang import Builder from kivymd.app import MDApp from kivy.uix.screenmanager import ScreenManager, Screen import json from kivymd.uix.button import MDFlatButton from kivymd.uix.dialog import MDDialog import requests from kivy.core.window import Window Window.size=(412, 732) help_str = ''' ScreenManager: WelcomeScreen: MainScreen: LoginScreen: SignupScreen: <WelcomeScreen>: name:'welcomescreen' Image: source: '1.jpg' allow_stretch: True MDLabel: text:'Login' font_style:'H2' halign:'center' pos_hint: {'center_y':0.9} MDLabel: text:'&' font_style:'H2' halign:'center' pos_hint: {'center_y':0.7} MDLabel: text:'Signup' font_style:'H2' halign:'center' pos_hint: {'center_y':0.5} MDRaisedButton: text:'Login' pos_hint : {'center_x':0.4,'center_y':0.3} size_hint: (0.13,0.1) on_press: root.manager.current = 'loginscreen' root.manager.transition.direction = 'left' MDRaisedButton: text:'Signup' pos_hint : {'center_x':0.6,'center_y':0.3} size_hint: (0.13,0.1) on_press: root.manager.current = 'signupscreen' root.manager.transition.direction = 'left' <LoginScreen>: name:'loginscreen' Image: source: '1.jpg' allow_stretch: True MDLabel: text:'Login' font_style:'H2' halign:'center' pos_hint: {'center_y':0.9} MDTextField: id:login_email pos_hint: {'center_y':0.6,'center_x':0.5} size_hint : (0.7,0.08) hint_text: 'Email' helper_text:'Required' helper_text_mode: 'on_error' icon_right: 'account' icon_right_color: app.theme_cls.primary_color required: True mode: "rectangle" MDTextField: id:login_password pos_hint: {'center_y':0.4,'center_x':0.5} size_hint : (0.7,0.08) hint_text: 'Password' helper_text:'Required' helper_text_mode: 'on_error' icon_right: 'account' icon_right_color: app.theme_cls.primary_color required: True mode: "rectangle" MDRaisedButton: text:'Login' size_hint:(.5,.08) pos_hint: {'center_x':0.5,'center_y':0.2} on_press: app.login() # app.username_changer() MDTextButton: text: 'Create an account' pos_hint: {'center_x':0.5,'center_y':0.1} on_press: root.manager.current = 'signupscreen' root.manager.transition.direction = 'up' <SignupScreen>: name:'signupscreen' Image: source: '1.jpg' allow_stretch: True MDLabel: text:'Signup' font_style:'H2' halign:'center' pos_hint: {'center_y':0.9} MDTextField: id:signup_email pos_hint: {'center_y':0.6,'center_x':0.5} size_hint : (0.7,0.1) hint_text: 'Email' helper_text:'Required' helper_text_mode: 'on_error' icon_right: 'account' icon_right_color: app.theme_cls.primary_color required: True mode: "rectangle" MDTextField: id:signup_username pos_hint: {'center_y':0.75,'center_x':0.5} size_hint : (0.7,0.1) hint_text: 'Username' helper_text:'Required' helper_text_mode: 'on_error' icon_right: 'account' icon_right_color: app.theme_cls.primary_color required: True MDTextField: id:signup_password pos_hint: {'center_y':0.4,'center_x':0.5} size_hint : (0.7,0.1) hint_text: 'Password' helper_text:'Required' helper_text_mode: 'on_error' icon_right: 'account' icon_right_color: app.theme_cls.primary_color required: True mode: "rectangle" MDRaisedButton: text:'Signup' size_hint: (0.13,0.07) pos_hint: {'center_x':0.5,'center_y':0.2} on_press: app.signup() MDTextButton: text: 'Already have an account' pos_hint: {'center_x':0.5,'center_y':0.1} on_press: root.manager.current = 'loginscreen' root.manager.transition.direction = 'down' <MainScreen>: name: 'mainscreen' MDLabel: id:username_info text:'Hello Main' font_style:'H1' halign:'center' ''' class WelcomeScreen(Screen): pass class MainScreen(Screen): pass class LoginScreen(Screen): pass class SignupScreen(Screen): pass sm = ScreenManager() sm.add_widget(WelcomeScreen(name = 'loginscreen')) sm.add_widget(MainScreen(name = 'mainscreen')) sm.add_widget(LoginScreen(name = 'loginscreen')) sm.add_widget(SignupScreen(name = 'signupscreen')) class LoginApp(MDApp): def build(self): self.strng = Builder.load_string(help_str) return self.strng def signup(self): signupEmail = self.strng.get_screen('signupscreen').ids.signup_email.text signupPassword = self.strng.get_screen('signupscreen').ids.signup_password.text signupUsername = self.strng.get_screen('signupscreen').ids.signup_username.text if signupEmail.split() == [] or signupPassword.split() == [] or signupUsername.split() == []: cancel_btn_username_dialogue = MDFlatButton(text = 'Retry',on_release = self.close_username_dialog) self.dialog = MDDialog(title = 'Invalid Input',text = 'Please Enter a valid Input',size_hint = (0.7,0.2),buttons = [cancel_btn_username_dialogue]) self.dialog.open() if len(signupUsername.split())>1: cancel_btn_username_dialogue = MDFlatButton(text = 'Retry',on_release = self.close_username_dialog) self.dialog = MDDialog(title = 'Invalid Username',text = 'Please enter username without space',size_hint = (0.7,0.2),buttons = [cancel_btn_username_dialogue]) self.dialog.open() else: print(signupEmail,signupPassword) def login(self): loginEmail = self.strng.get_screen('loginscreen').ids.login_email.text loginPassword = self.strng.get_screen('loginscreen').ids.login_password.text self.login_check = False supported_loginEmail = loginEmail.replace('.','-') supported_loginPassword = loginPassword.replace('.','-') print(supported_loginEmail,supported_loginPassword) def close_username_dialog(self,obj): self.dialog.dismiss() LoginApp().run()
7ee7d8d8618f8f470f5e832f43ceaa90554dff09
08c83dbf4f1faaa8a7ef3e4596d34241f95fac37
/server/hubco/dataLogging/generate_report_data.py
72e83a9e3cb489cb0e7bc81e3f075c6c0b052b19
[]
no_license
mzh1994/DJANGO_REST
d14a361114e7be4ea5cf8210d6a254191b7b2e61
1651238c1913f26a65645932b5eb098aaca379ee
refs/heads/master
2023-06-27T23:19:15.650712
2023-06-27T10:08:03
2023-06-27T10:08:03
392,342,962
0
0
null
null
null
null
UTF-8
Python
false
false
2,945
py
from json import load from sqlalchemy import create_engine import pandas as pd import warnings warnings.filterwarnings('ignore') import numpy as np import datetime from .load_kks_data_table import load_kks_table def generate_daily_report(): n_days = 10 #threshold for report # making connection # conn_str = 'postgresql://gveoaihnqvuuvj:dfe4ed4802ec0afa6cca854eb97b5e5d9a3f1f0bbae6ddba7f7585004f50363c@ec2-34-204-128-77.compute-1.amazonaws.com:5432/dvifbu9viiudm' # engine = create_engine(conn_str) conn_str = 'postgresql://postgres:password@localhost:5432/test_db' engine = create_engine(conn_str) date_limit = (datetime.datetime.now()-datetime.timedelta(n_days)).strftime('%Y-%m-%d 00:00:00') # loading data tables #df_kks_table = pd.read_sql("""SELECT * FROM kks_description;""",con=engine).drop('id',axis=1) df_kks_table = load_kks_table() #loading from local as this table is fixed df_data_input_table = pd.read_sql("""SELECT * FROM data_input_table WHERE date>='{}';""".format(date_limit),con=engine).drop('id',axis=1) col = ['date', 'shift', 'max_value_breached', 'min_value_breached', 'kks_inactive_count', 'kks_reading_percentage'] if df_data_input_table.empty: #create empty df and put date to record empty values df = pd.DataFrame(columns=col) df.date = datetime.datetime.now().strftime('%Y-%m-%d') return df else: latest_date_in_input_table = pd.to_datetime(df_data_input_table.date).max() #Main report calculation df_kks_filter = df_kks_table[['kks','min_value','max_value']] df_join = df_kks_filter.merge(df_data_input_table,on = 'kks',how='left') df_join.date = pd.to_datetime(df_join.date) df_join['shift'] = np.where(((df_join.date.dt.hour>=8) & (df_join.date.dt.hour<20)),'Morning Shift','Night Shift') df_join['max_value_breached'] = np.where(df_join.value>=df_join.max_value,1,0) df_join['min_value_breached'] = np.where(df_join.value<=df_join.min_value,1,0) df_join['kks_inactive_count'] = np.where(df_join.inactive.isin(['true','True',1]),1,0) df_reporting_table = df_join[['date','shift','max_value_breached','min_value_breached','kks_inactive_count','kks']] df_reporting_table = df_reporting_table.groupby([df_reporting_table.date.dt.date,'shift'])\ .agg({'max_value_breached':sum,'min_value_breached':sum,'kks_inactive_count':sum,'kks':'count'}).reset_index() df_reporting_table['kks_reading_percentage'] = round( (df_reporting_table.kks-df_reporting_table.kks_inactive_count)*100/(603-df_reporting_table.kks_inactive_count),2) df_reporting_table.drop('kks',axis=1,inplace=True) if df_reporting_table.empty: df_reporting_table = pd.DataFrame(columns=col) else: record = df_reporting_table return record
3503300c1f32e5ec079dd43499facd3a092e0957
c11b2ef3f8d7a71ec9c8bd7149f148733c7036ef
/swagger_server/models/loan_application.py
fa8f47ee10b93e91f28480bfdee3d97002af2182
[]
no_license
HebbaleLabs/Python-Assessment-Template
e1e72a8c7dc9db8e779fc471e5d557ee83133fd2
0b652638dda3d96cf7c953282ff112e8557b640f
refs/heads/master
2021-05-02T02:21:35.249188
2018-02-13T15:20:54
2018-02-13T15:20:54
120,881,447
0
0
null
null
null
null
UTF-8
Python
false
false
8,512
py
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from swagger_server.models.base_model_ import Model from swagger_server import util class LoanApplication(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, id: str=None, version: int=None, business_pan: str=None, business_name: str=None, org_name: str=None, referred_by: str=None, initiator: str=None, loan_amount_required: str=None, currency: str='INR'): # noqa: E501 """LoanApplication - a model defined in Swagger :param id: The id of this LoanApplication. # noqa: E501 :type id: str :param version: The version of this LoanApplication. # noqa: E501 :type version: int :param business_pan: The business_pan of this LoanApplication. # noqa: E501 :type business_pan: str :param business_name: The business_name of this LoanApplication. # noqa: E501 :type business_name: str :param org_name: The org_name of this LoanApplication. # noqa: E501 :type org_name: str :param referred_by: The referred_by of this LoanApplication. # noqa: E501 :type referred_by: str :param initiator: The initiator of this LoanApplication. # noqa: E501 :type initiator: str :param loan_amount_required: The loan_amount_required of this LoanApplication. # noqa: E501 :type loan_amount_required: str :param currency: The currency of this LoanApplication. # noqa: E501 :type currency: str """ self.swagger_types = { 'id': str, 'version': int, 'business_pan': str, 'business_name': str, 'org_name': str, 'referred_by': str, 'initiator': str, 'loan_amount_required': str, 'currency': str } self.attribute_map = { 'id': '_id', 'version': 'version', 'business_pan': 'business_pan', 'business_name': 'business_name', 'org_name': 'org_name', 'referred_by': 'referred_by', 'initiator': 'initiator', 'loan_amount_required': 'loan_amount_required', 'currency': 'currency' } self._id = id self._version = version self._business_pan = business_pan self._business_name = business_name self._org_name = org_name self._referred_by = referred_by self._initiator = initiator self._loan_amount_required = loan_amount_required self._currency = currency @classmethod def from_dict(cls, dikt) -> 'LoanApplication': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The LoanApplication of this LoanApplication. # noqa: E501 :rtype: LoanApplication """ return util.deserialize_model(dikt, cls) @property def id(self) -> str: """Gets the id of this LoanApplication. :return: The id of this LoanApplication. :rtype: str """ return self._id @id.setter def id(self, id: str): """Sets the id of this LoanApplication. :param id: The id of this LoanApplication. :type id: str """ self._id = id @property def version(self) -> int: """Gets the version of this LoanApplication. :return: The version of this LoanApplication. :rtype: int """ return self._version @version.setter def version(self, version: int): """Sets the version of this LoanApplication. :param version: The version of this LoanApplication. :type version: int """ self._version = version @property def business_pan(self) -> str: """Gets the business_pan of this LoanApplication. :return: The business_pan of this LoanApplication. :rtype: str """ return self._business_pan @business_pan.setter def business_pan(self, business_pan: str): """Sets the business_pan of this LoanApplication. :param business_pan: The business_pan of this LoanApplication. :type business_pan: str """ if business_pan is None: raise ValueError("Invalid value for `business_pan`, must not be `None`") # noqa: E501 self._business_pan = business_pan @property def business_name(self) -> str: """Gets the business_name of this LoanApplication. :return: The business_name of this LoanApplication. :rtype: str """ return self._business_name @business_name.setter def business_name(self, business_name: str): """Sets the business_name of this LoanApplication. :param business_name: The business_name of this LoanApplication. :type business_name: str """ if business_name is None: raise ValueError("Invalid value for `business_name`, must not be `None`") # noqa: E501 self._business_name = business_name @property def org_name(self) -> str: """Gets the org_name of this LoanApplication. :return: The org_name of this LoanApplication. :rtype: str """ return self._org_name @org_name.setter def org_name(self, org_name: str): """Sets the org_name of this LoanApplication. :param org_name: The org_name of this LoanApplication. :type org_name: str """ if org_name is None: raise ValueError("Invalid value for `org_name`, must not be `None`") # noqa: E501 self._org_name = org_name @property def referred_by(self) -> str: """Gets the referred_by of this LoanApplication. :return: The referred_by of this LoanApplication. :rtype: str """ return self._referred_by @referred_by.setter def referred_by(self, referred_by: str): """Sets the referred_by of this LoanApplication. :param referred_by: The referred_by of this LoanApplication. :type referred_by: str """ self._referred_by = referred_by @property def initiator(self) -> str: """Gets the initiator of this LoanApplication. :return: The initiator of this LoanApplication. :rtype: str """ return self._initiator @initiator.setter def initiator(self, initiator: str): """Sets the initiator of this LoanApplication. :param initiator: The initiator of this LoanApplication. :type initiator: str """ if initiator is None: raise ValueError("Invalid value for `initiator`, must not be `None`") # noqa: E501 self._initiator = initiator @property def loan_amount_required(self) -> str: """Gets the loan_amount_required of this LoanApplication. :return: The loan_amount_required of this LoanApplication. :rtype: str """ return self._loan_amount_required @loan_amount_required.setter def loan_amount_required(self, loan_amount_required: str): """Sets the loan_amount_required of this LoanApplication. :param loan_amount_required: The loan_amount_required of this LoanApplication. :type loan_amount_required: str """ if loan_amount_required is None: raise ValueError("Invalid value for `loan_amount_required`, must not be `None`") # noqa: E501 self._loan_amount_required = loan_amount_required @property def currency(self) -> str: """Gets the currency of this LoanApplication. :return: The currency of this LoanApplication. :rtype: str """ return self._currency @currency.setter def currency(self, currency: str): """Sets the currency of this LoanApplication. :param currency: The currency of this LoanApplication. :type currency: str """ allowed_values = ["INR"] # noqa: E501 if currency not in allowed_values: raise ValueError( "Invalid value for `currency` ({0}), must be one of {1}" .format(currency, allowed_values) ) self._currency = currency
ceebbf785332c097febd92baa4e81421ab4a76b8
73ea4a0895a0b79950736cdbd4a386c5a9980714
/users/tests/test_unit_email_templates.py
912e06f4191b127d560920f3497c1dec4010b25e
[]
no_license
Code-Poets/sheetstorm
a34881590ba3dde325413b92eaba65444bcc9428
338ff87d9617b1f30678d18b1ce8792ab4434319
refs/heads/develop
2022-12-01T11:37:52.876469
2021-11-29T14:35:10
2021-11-29T14:35:10
149,592,796
1
0
null
2022-11-22T06:00:42
2018-09-20T10:33:23
Python
UTF-8
Python
false
false
1,963
py
from django.contrib.sites.models import Site from django.test import TestCase from common.utils import render_create_user_email from users.models import CustomUser class TestRenderCreateUserEmail(TestCase): def setUp(self) -> None: self.password = "password" self.user_type = CustomUser.UserType.EMPLOYEE.name self.user = CustomUser.objects._create_user( email="[email protected]", password=self.password, is_staff=False, is_superuser=False, user_type=self.user_type, need_change_password=True, ) self.user.activate_user() self.domain = self._get_website_domain() def test_render_create_user_email_pass_proper_parameters_to_email_when_first_name_is_set(self): self._set_user_first_name_and_last_name() message = render_create_user_email(user=self.user, domain=self.domain, password=self.password) self.assertIn(self.user.first_name, message) self.assertIn(self.domain, message) self.assertIn(self.password, message) def test_render_create_user_email_pass_proper_parameters_to_email_when_first_name_is_not_set(self): self._set_to_empty_string_user_first_name_and_last_name() message = render_create_user_email(user=self.user, domain=self.domain, password=self.password) self.assertIn(self.user.email, message) self.assertIn(self.domain, message) self.assertIn(self.password, message) @staticmethod def _get_website_domain() -> str: current_site = Site.objects.get_current() return current_site.domain def _set_user_first_name_and_last_name(self): self.user.first_name = "Johnny" self.user.last_name = "Test" self.user.save() def _set_to_empty_string_user_first_name_and_last_name(self): self.user.first_name = "" self.user.last_name = "" self.user.save()
1c36dc839d3a82cad01589ae58fd91abfadc91ac
b505894f001242f2f3a1872c727a0e3232296ed3
/leetcode/array/454_4sum2.py
d664230cc314b38da59da95c0e6b83c085a98516
[]
no_license
hanghang2333/zhuoluo
8eceee81e2886fd5547d218adc26cbc22fcd15af
32f4d693cb0022b3a2176c881b2c9b09529a46a7
refs/heads/master
2021-05-12T06:22:01.070355
2018-04-05T13:16:31
2018-04-05T13:16:31
117,215,718
1
0
null
null
null
null
UTF-8
Python
false
false
472
py
class Solution(object): def fourSumCount(self, A, B, C, D): N = len(A) ab = {} for i in range(N): for j in range(N): if A[i]+B[j] in ab: ab[A[i]+B[j]] += 1 else: ab[A[i]+B[j]] = 1 count = 0 for i in range(N): for j in range(N): if 0-C[i]-D[j] in ab: count += ab[0-C[i]-D[j]] return count
b573fe2717b46eeb3125dd32c7b4b64642d01cf9
267464d448f76a488bd4203ceafe984366fa7fb8
/백준/소수/11653[소인수분해].py
ea718871914ec038827a8f3737c4239b08303060
[]
no_license
fkalstj99/problemSolving
af3f6bb1627d532b51171c7c6e7037a4f54037a6
e1300a94397657592ccd163c54644dc0746e4f9d
refs/heads/master
2022-12-08T09:13:43.718965
2020-08-30T12:05:17
2020-08-30T12:05:17
281,834,809
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
N = int(input()) i = 2 while i <= N: if N % i == 0: print(i) N /= i else: i+=1 #나눌때 나머지가 0이 되지 않으면 +1
4dcb6398085c7ba8bd3018735b4dbc0ad2a0437b
5e0755091efd2d4ed61bead8aa38b45bab5a8b07
/python/anyascii/_data/_06b.py
d6363dfb69629742715d285e5af94c2c7511d2f9
[ "ISC" ]
permissive
casept/anyascii
c27261d87257c17c47fe0e9fc77438437de94c1c
d4f426b91751254b68eaa84c6cd23099edd668e6
refs/heads/master
2022-12-05T07:13:53.075144
2020-08-07T07:55:50
2020-08-07T07:55:50
285,904,577
0
0
ISC
2020-08-07T19:20:00
2020-08-07T19:19:59
null
UTF-8
Python
false
false
1,011
py
b='Xiang Nong Bo Chan Lan Ju Shuang She Wei Cong Quan Qu Cang Jiu Yu Luo Li Cuan Luan Dang Jue Yan Lan Lan Zhu Lei Li Ba Nang Yu Ling Guang Qian Ci Huan Xin Yu Yi Qian Ou Xu Chao Chu Qi Kai Yi Jue Xi Xu He Yu Kui Lang Kuan Shuo Xi Ai Yi Qi Chua Chi Qin Kuan Kan Kuan Kan Chuan Sha Gua Yin Xin Xie Yu Qian Xiao Ye Ge Wu Tan Jin Ou Hu Ti Huan Xu Pen Xi Xiao Chua She Shan Han Chu Yi E Yu Chuo Huan Zhi Zheng Ci Bu Wu Qi Bu Bu Wai Ju Qian Chi Se Chi Se Zhong Sui Sui Li Ze Yu Li Gui Dai E Si Jian Zhe Mo Mo Yao Mo Cu Yang Tian Sheng Dai Shang Xu Xun Shu Can Jue Piao Qia Qiu Su Qing Yun Lian Yi Fou Zhi Ye Can Hun Dan Ji Die Zhen Yun Wen Chou Bin Ti Jin Shang Yin Diao Jiu Hui Cuan Yi Dan Du Jiang Lian Bin Du Jian Jian Shu Ou Duan Zhu Yin Qing Yi Sha Qiao Ke Xiao Xun Dian Hui Hui Gu Qiao Ji Yi Ou Hui Duan Yi Xiao Wu Guan Mu Mei Mei Ai Jie Du Yu Bi Bi Bi Pi Pi Bi Chan Mao Hao Cai Pi Lie Jia Zhan Sai Mu Tuo Xun Er Rong Xian Ju Mu Hao Qiu Dou Sha Tan Pei Ju Duo Cui Bi San San Mao Sai Shu Shu Tuo He Jian Ta San'
ceb277dd66d56d8f9fe1e89835ffa948b8a7a063
377dc973a58d30154cf485de141223d7ca5424dd
/havok_classes/hkpRotationalConstraintDataAtoms.py
90f06db837bcc7e14a23c22bdb553b1f5dc852ee
[ "MIT" ]
permissive
sawich/havok-reflection
d6a5552f2881bb4070ad824fb7180ad296edf4c4
1d5b768fb533b3eb36fc9e42793088abeffbad59
refs/heads/master
2021-10-11T12:56:44.506674
2019-01-25T22:37:31
2019-01-25T22:37:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
700
py
from .hkpSetLocalRotationsConstraintAtom import hkpSetLocalRotationsConstraintAtom from .hkpAngConstraintAtom import hkpAngConstraintAtom class hkpRotationalConstraintDataAtoms(object): rotations: hkpSetLocalRotationsConstraintAtom ang: hkpAngConstraintAtom def __init__(self, infile): self.rotations = hkpSetLocalRotationsConstraintAtom(infile) # TYPE_STRUCT:TYPE_VOID self.ang = hkpAngConstraintAtom(infile) # TYPE_STRUCT:TYPE_VOID def __repr__(self): return "<{class_name} rotations={rotations}, ang={ang}>".format(**{ "class_name": self.__class__.__name__, "rotations": self.rotations, "ang": self.ang, })
73882ceaee9a66d915b0a76ecfdf796b2e046fa2
baf3996414315ffb60470c40c7ad797bf4e6897f
/02_ai/1_ml/3_data_preparation/code/chapter_24/02_evaluate_model_with_transforms.py
1c8d129c84e7049a72f57a88decf288a22d315e1
[ "MIT" ]
permissive
thiago-allue/portfolio
8fbbecca7ce232567aebe97c19944f444508b7f4
0acd8253dc7c5150fef9b2d46eead3db83ca42de
refs/heads/main
2023-03-15T22:10:21.109707
2022-09-14T17:04:35
2022-09-14T17:04:35
207,919,073
0
0
null
2019-11-13T18:18:23
2019-09-11T22:40:46
Python
UTF-8
Python
false
false
1,650
py
# example of using the ColumnTransformer for the Abalone dataset from numpy import mean from numpy import std from numpy import absolute from pandas import read_csv from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.svm import SVR # load dataset dataframe = read_csv('abalone.csv', header=None) # split into inputs and outputs last_ix = len(dataframe.columns) - 1 X, y = dataframe.drop(last_ix, axis=1), dataframe[last_ix] print(X.shape, y.shape) # determine categorical and numerical features numerical_ix = X.select_dtypes(include=['int64', 'float64']).columns categorical_ix = X.select_dtypes(include=['object', 'bool']).columns # define the data preparation for the columns t = [('cat', OneHotEncoder(), categorical_ix), ('num', MinMaxScaler(), numerical_ix)] col_transform = ColumnTransformer(transformers=t) # define the model model = SVR(kernel='rbf',gamma='scale',C=100) # define the data preparation and modeling pipeline pipeline = Pipeline(steps=[('prep',col_transform), ('m', model)]) # define the model cross-validation configuration cv = KFold(n_splits=10, shuffle=True, random_state=1) # evaluate the pipeline using cross validation and calculate MAE scores = cross_val_score(pipeline, X, y, scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1) # convert MAE scores to positive values scores = absolute(scores) # summarize the model performance print('MAE: %.3f (%.3f)' % (mean(scores), std(scores)))
22d4d81071f554dc838703c8b549ebcf2b774c45
c79c2703102949b1bcf079000e9891de28c5fede
/examples/cryptmachine.py
9aa236192ac59332ef923d887193b70106ed1e41
[ "MIT" ]
permissive
goffinet/secretpy
999222c4161d0bfed11c38a9e26f7f41dc9747ff
6be2e3ffb7e3ef88b99ab9390537e400f8fe5112
refs/heads/master
2023-05-06T00:37:44.586487
2021-06-01T09:57:44
2021-06-01T10:48:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,344
py
#!/usr/bin/python # -*- encoding: utf-8 -*- from secretpy import Atbash, Caesar, CryptMachine, alphabets from secretpy.cmdecorators import SaveAll, RemoveNonAlphabet def encdec(machine, plaintext): print(plaintext) enc = machine.encrypt(plaintext) print(enc) dec = machine.decrypt(enc) print(dec) print("-----------------------------------") plaintext = u"thequickbrownfoxjumpsoverthelazydog" key = 3 cipher = Caesar() cm = CryptMachine(cipher, key) encdec(cm, plaintext) cm.set_alphabet(alphabets.GERMAN) encdec(cm, plaintext) cm1 = SaveAll(cm) cm1.set_key(9) plaintext = u"the quick brown fox jumps over the lazy dog" encdec(cm1, plaintext) cm2 = RemoveNonAlphabet(cm) cm2.set_cipher(Atbash()) plaintext = u"Achtung Minen" encdec(cm2, plaintext) ''' Output: thequickbrownfoxjumpsoverthelazydog wkhtxlfneurzqiramxpsvryhuwkhodcbgrj thequickbrownfoxjumpsoverthelazydog ----------------------------------- thequickbrownfoxjumpsoverthelazydog wkhtxlfneurzqirämxpsvryhuwkhodüögrj thequickbrownfoxjumpsoverthelazydog ----------------------------------- the quick brown fox jumps over the lazy dog üqn zßrlt käxbw oxc sßvyö xanä üqn ujed mxp the quick brown fox jumps over the lazy dog ----------------------------------- Achtung Minen ßöwkjqxrvqzq achtungminen ----------------------------------- '''
6e30eef591902c83ff936151b14a8117be9b08df
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/FXJSMM/YW_FXJSMM_SZSJ_070_1.py
f7d883d8e4c6382924fb97a77b4bc566b49a2c88
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,025
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test/xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test/service") from ServiceConfig import * from mainService import * from QueryStkPriceQty import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test/mysql") from CaseParmInsertMysql import * sys.path.append("/home/yhl2/workspace/xtp_test/utils") from QueryOrderErrorMsg import queryOrderErrorMsg class YW_FXJSMM_SZSJ_070_1(xtp_test_case): # YW_FXJSMM_SZSJ_070_1 def test_YW_FXJSMM_SZSJ_070_1(self): title = '交易日即成剩撤卖-先卖整数股再卖零头股' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '全成', 'errorID': 0, 'errorMSG': '', '是否生成报单': '是', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('001006', '2', '0', '0', '0', 'S', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SZ_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST_OR_CANCEL'], 'price': stkparm['涨停价'], 'quantity': 99, 'position_effect': Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['用例测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) self.assertEqual(rs['用例测试结果'], True) # 0 if __name__ == '__main__': unittest.main()
9b53ca49a35ca37f780f44bc7225210966a4873d
26fff323560ed7f825f07753c715604423ca102b
/DAGMM/util.py
bafe3a12a4ca80c6a6704e4e1955657bf18ad32b
[]
no_license
Lijer/baseline_ad
276f42083a8b213f5b630f7a180b74f6f69c39fc
9cd09bf18d4ab0c8f5a9468dd0abefc7d617ebcb
refs/heads/master
2023-02-02T22:23:42.046525
2020-12-22T10:35:06
2020-12-22T10:35:06
323,594,983
1
0
null
null
null
null
UTF-8
Python
false
false
2,964
py
import pandas as pd import random from joblib import Memory from sklearn.datasets import load_svmlight_file from sklearn.metrics import average_precision_score, roc_auc_score import numpy as np import scipy.io as sio import time import datetime mem = Memory("./dataset/svm_data") @mem.cache def get_data_from_svmlight_file(path): data = load_svmlight_file(path) return data[0], data[1] def dataLoading(path, logfile=None): file_type = path.split('.')[-1] if file_type == 'csv': # loading data df = pd.read_csv(path) labels = df['class'] x_df = df.drop(['class'], axis=1) x = x_df.values print("Data shape: (%d, %d)" % x.shape) if logfile: logfile.write("Data shape: (%d, %d)\n" % x.shape) if file_type == 'mat': f = sio.loadmat(path) x = f['X'] y = f['y'] y = y.reshape((y.shape[0],)) print("Data shape: (%d, %d)" % x.shape) return x, labels def dataLoading_mat(path, logfile=None): # loading data f = sio.loadmat(path) x = f['X'] y = f['y'] y = y.reshape((y.shape[0],)) print("Data shape: (%d, %d)" % x.shape) return x, y # random sampling with replacement def random_list(start, stop, length): if length >= 0: length = int(length) start, stop = (int(start), int(stop)) if start <= stop else (int(stop), int(start)) random_list = [] for i in range(length): random_list.append(random.randint(start, stop)) # including start and stop return random_list def aucPerformance(scores, labels, logfile=None): roc_auc = roc_auc_score(labels, scores) # print(roc_auc) ap = average_precision_score(labels, scores) print("AUC-ROC: %.4f, AUC-PR: %.4f" % (roc_auc, ap)) if logfile: logfile.write("AUC-ROC: %.4f, AUC-PR: %.4f\n" % (roc_auc, ap)) # plt.title('Receiver Operating Characteristic') # plt.plot(fpr, tpr, label='AUC = %0.4f'% roc_auc) # plt.legend(loc='lower right') # plt.plot([0,1],[0,1],'r--') # plt.xlim([-0.001, 1]) # plt.ylim([0, 1.001]) # plt.ylabel('True Positive Rate') # plt.xlabel('False Positive Rate') # plt.show(); return roc_auc, ap def tic_time(): print("=====================================================") tic_datetime = datetime.datetime.now() print("tic_datetime:", tic_datetime) print("tic_datetime.strftime:", tic_datetime.strftime('%Y-%m-%d %H:%M:%S.%f')) tic_walltime = time.time() print("tic_walltime:", tic_walltime) tic_cpu = time.clock() print("tic_cpu:", tic_cpu) print("=====================================================\n") def writeResults_my(name, auc, std_auc = 0.0, ap = 0.0, ap_std = 0.0, func = 'dagmm', path = "./results/auc_performance_.csv"): csv_file = open(path, 'a') row = name + "," + func+ "," + str(auc) + "," + str(std_auc) + "," + str(ap) + "," + str(ap_std) + "\n" csv_file.write(row)
0c4eea4a48e2c43e530699dd4caf85253d2c7d0e
10f091bf946bdd6b50c3fa0637504ab19d9c65c2
/albums/3/challenge232_easy/code.py
1a5d010c936ea78f8bbc00386478b83fb1d45ddc
[]
no_license
Rich43/rog
ccebee00b982579c46c30a7dab55b4dbe6396fdc
029dd57c920aa869750b809d22092c9614e67ba9
refs/heads/master
2023-01-23T07:07:16.069821
2023-01-19T19:10:43
2023-01-19T19:10:43
109,163,883
0
0
null
null
null
null
UTF-8
Python
false
false
1,977
py
''' A palindrome is a word or sentence that is spelled the same backwards and forwards. A simple of example of this is Swedish pop sensation ABBA, which, when written backwards, is also ABBA. Their hit song (and winner of the 1974 Eurovision Song Contest!) "Waterloo" is not a palindrome, because "Waterloo" backwards is "Oolretaw". Palindromes can be longer than one word as well. "Solo gigolos" (the saddest of all gigolos) is a palindrome, because if you write it backwards it becomes "Sologig olos", and if you move the space three places back (which you are allowed to do), that becomes "Solo gigolos". Today, you are going to write a program that detects whether or not a particular input is a valid palindrome. On the first line of the input, you will receive a number specifying how many lines of input to read. After that, the input consists of some number of lines of text that you will read and determine whether or not it is a palindrome or not. The only important factor in validating palindromes is whether or not a sequence of letters is the same backwards and forwards. All other types of characters (spaces, punctuation, newlines, etc.) should be ignored, and whether a character is lower-case or upper-case is irrelevant. ''' def palindrome(file): with open(file) as f: strng = '' acc = 0 for line in f: count = int(line) for line in f: line.strip() strng += line acc += 1 if acc == count: break strng2 = '' for char in strng: if char.isalnum(): strng2 += char strng2 = strng2.lower() strng3 = strng2[::-1] if strng2 == strng3: return('Palindrome!') else: return ('not palindrome') if __name__ == '__main__': ans = palindrome('232input1.txt') print(ans) ans = palindrome('232input2.txt') print(ans)
a4214d6be5e7f6fa478185252aa734774a80071d
e3e2961454c30ff060a475b32ed75f19d0e72d0e
/setup_app/installers/admin_ui.py
1c00a64f1fcbb728f009070d674fbac2bde97506
[ "MIT" ]
permissive
klinux/jans-setup
648cf966d373929d1c05d8c86019d4c3e45dbc6f
8461556e07ecb6cb31b537959f78bad88b60e69e
refs/heads/master
2023-07-07T02:08:03.393135
2021-08-10T17:54:29
2021-08-10T17:54:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,403
py
import os import time import glob import json import ruamel.yaml import ldap3 from string import Template from setup_app import paths from setup_app.static import AppType, InstallOption, BackendTypes from setup_app.utils import base from setup_app.config import Config from setup_app.utils.setup_utils import SetupUtils from setup_app.installers.base import BaseInstaller from setup_app.pylib.ldif4.ldif import LDIFWriter class AdminUIInstaller(SetupUtils, BaseInstaller): def __init__(self): setattr(base.current_app, self.__class__.__name__, self) self.service_name = 'gluu-admin-ui' self.needdb = True self.app_type = AppType.SERVICE self.install_type = InstallOption.OPTONAL self.install_var = 'installAdminUI' self.register_progess() self.output_folder = os.path.join(Config.outputFolder,'gluu-admin-ui') self.clients_ldif_fn = os.path.join(self.output_folder, 'clients.ldif') self.root_dir = os.path.join(Config.jansOptFolder, 'gluu-admin-ui') self.gluuOxVersion = '5.0.0-SNAPSHOT' self.source_files = [ (os.path.join(Config.distJansFolder, 'gluu-admin-ui-app.jar'), 'https://ox.gluu.org/maven/org/gluu/gluu-admin-ui-app/{0}/gluu-admin-ui-app-{0}.jar'.format(self.gluuOxVersion)) ] self.load_ldif_files = [] def install(self): self.download_files(downloads=[self.source_files[0][0]]) self.copyFile(self.source_files[0][0], self.root_dir) self.generate_configuration() self.render_import_templates() def installed(self): return os.path.exists(self.root_dir) def create_folders(self): for d in (self.root_dir,self.output_folder): if not os.path.exists(d): self.createDirs(d) self.run([paths.cmd_chown, '-R', 'jetty:jetty', self.root_dir]) def generate_configuration(self): self.check_clients([('admin_ui_client_id', '1901.')]) if not Config.get('admin_ui_client_pw'): Config.admin_ui_client_pw = self.getPW(32) Config.admin_ui_client_encoded_pw = self.obscure(Config.admin_ui_client_pw) createClient = True config_api_dn = 'inum={},ou=clients,o=jans'.format(Config.admin_ui_client_id) if Config.installed_instance and self.dbUtils.search('ou=clients,o=jans', search_filter='(&(inum={})(objectClass=jansClnt))'.format(Config.admin_ui_client_id)): createClient = False if createClient: clients_ldif_fd = open(self.clients_ldif_fn, 'wb') ldif_clients_writer = LDIFWriter(clients_ldif_fd, cols=1000) ldif_clients_writer.unparse( config_api_dn, { 'objectClass': ['top', 'jansClnt'], 'del': ['false'], 'displayName': ['Jans Admin UI Client'], 'inum': [Config.admin_ui_client_id], 'jansAccessTknAsJwt': ['false'], 'jansAccessTknSigAlg': ['RS256'], 'jansAppTyp': ['web'], 'jansAttrs': ['{"tlsClientAuthSubjectDn":"","runIntrospectionScriptBeforeAccessTokenAsJwtCreationAndIncludeClaims":false,"keepClientAuthorizationAfterExpiration":false,"allowSpontaneousScopes":false,"spontaneousScopes":[],"spontaneousScopeScriptDns":[],"backchannelLogoutUri":[],"backchannelLogoutSessionRequired":false,"additionalAudience":[],"postAuthnScripts":[],"consentGatheringScripts":[],"introspectionScripts":[],"rptClaimsScripts":[]}'], 'jansClntSecret': [Config.admin_ui_client_encoded_pw], 'jansDefAcrValues': ['simple_password_auth'], 'jansDisabled': ['false'], 'jansGrantTyp': ['authorization_code', 'refresh_token', 'client_credentials'], 'jansIdTknSignedRespAlg': ['RS256'], 'jansInclClaimsInIdTkn': ['false'], 'jansLogoutSessRequired': ['false'], 'jansPersistClntAuthzs': ['true'], 'jansRequireAuthTime': ['false'], 'jansRespTyp': ['code'], 'jansRptAsJwt': ['false'], 'jansPostLogoutRedirectURI': ['http://localhost:4100'], 'jansRedirectURI': ['http://localhost:4100'], 'jansLogoutURI': ['http://localhost:4100/logout'], 'jansScope': ['inum=43F1,ou=scopes,o=jans','inum=6D90,ou=scopes,o=jans','inum=FOC4,ou=scopes,o=jans'], 'jansSubjectTyp': ['pairwise'], 'jansTknEndpointAuthMethod': ['client_secret_basic'], 'jansTrustedClnt': ['false'], }) clients_ldif_fd.close() self.load_ldif_files.append(self.clients_ldif_fn) admin_dn = 'inum={},ou=people,o=jans'.format(Config.admin_inum) backend_location = self.dbUtils.get_backend_location_for_dn(admin_dn) result = self.dbUtils.dn_exists(admin_dn) if result and not 'jansAdminUIRole' in result: if backend_location == BackendTypes.LDAP: ldap_operation_result = self.dbUtils.ldap_conn.modify( admin_dn, {'jansAdminUIRole': [ldap3.MODIFY_ADD, 'api-admin']}) self.dbUtils.log_ldap_result(ldap_operation_result) def render_import_templates(self): self.dbUtils.import_ldif(self.load_ldif_files)
7a72d546d3294f73f1162641774d3ed7bf3f2bc9
cce6e3fbb235e87e14cdc7557acf15884509566b
/Python codes/Simple Robot Movements/backward.py
c9bd03ab570bbac9d6486fa4d97cb0a6d1dfe084
[]
no_license
ArpithaGanesh/AutonomousIndoorNavigationRobot
c3bb4ec2a94aaa7dd7e66427358b2483b37f01df
8927f0ce8cb413e4e1f918969a3bdf59306f0499
refs/heads/master
2020-06-04T22:23:26.059161
2019-06-16T15:54:19
2019-06-16T15:54:19
192,188,290
0
1
null
null
null
null
UTF-8
Python
false
false
577
py
import RPi.GPIO as GPIO import time GPIO.setwarnings(False) GPIO.setmode(GPIO.BOARD) Motor1A = 16 Motor1B = 18 Motor1E = 22 Motor2A = 23 Motor2B = 21 Motor2E = 19 GPIO.setup(Motor1A,GPIO.OUT) GPIO.setup(Motor1B,GPIO.OUT) GPIO.setup(Motor1E,GPIO.OUT) GPIO.setup(Motor2A,GPIO.OUT) GPIO.setup(Motor2B,GPIO.OUT) GPIO.setup(Motor2E,GPIO.OUT) print("GOING BACKWARD") GPIO.output(Motor1A,GPIO.LOW) GPIO.output(Motor1B,GPIO.HIGH) GPIO.output(Motor1E,GPIO.HIGH) GPIO.output(Motor2A,GPIO.LOW) GPIO.output(Motor2B,GPIO.HIGH) GPIO.output(Motor2E,GPIO.HIGH) time.sleep(10) GPIO.cleanup()
84f4c3299373152eb7d4df6231395ae80d30a844
bc11e10521fa313d83011e77a2c31a0b6ed581af
/lib/rubyfox/server/data/lib/Lib/test/zxjdbc/jndi.py
d384bf3292bf6216162f2bcb8bc3d8bd348fa1b8
[ "MIT" ]
permissive
neopoly/rubyfox-server
f6f191c68dcc30b8c56d22c8209e4a69251f4f27
26d67687fc642111ef8d02507f2b567828bd1ebd
refs/heads/master
2023-07-20T15:04:32.028192
2023-07-17T09:16:36
2023-07-17T09:33:20
6,457,322
3
4
MIT
2020-08-11T06:53:50
2012-10-30T13:06:32
Python
UTF-8
Python
false
false
828
py
# Jython Database Specification API 2.0 # # $Id: jndi.py 1962 2001-12-14 04:20:03Z bzimmer $ # # Copyright (c) 2001 brian zimmer <[email protected]> """ This script is used to bind a JNDI reference for testing purposes only. """ from java.util import Hashtable from org.gjt.mm.mysql import MysqlDataSource from javax.naming import Context, InitialContext, NameAlreadyBoundException env = Hashtable() env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.fscontext.RefFSContextFactory") ds = MysqlDataSource() ds.setServerName("localhost") ds.setDatabaseName("ziclix") ds.setPort(3306) ctx = InitialContext(env) try: try: ctx.bind("/jdbc/mysqldb", ds) except NameAlreadyBoundException, e: ctx.unbind("/jdbc/mysqldb") ctx.bind("/jdbc/mysqldb", ds) finally: ctx.close() print "bound [%s] at /jdbc/mysqldb" % (ds)
5da039e71cdb6a91ad5608bdb989cf7ea546be34
aa0988f0c2639e80392d76afc3d853c61dd10af7
/venv/bin/easy_install-3.7
2702ad329d06bafb37a6eb7f38fc0a5c72a9c7b8
[]
no_license
lgsxiaosen/crawler_comic
26a52f1925a3a74b09574e32a5a2dd2bcf406762
7b94e2cc94254f4e71ce72557d5e4e64d64e0616
refs/heads/master
2022-04-27T07:42:57.072178
2020-04-30T10:24:29
2020-04-30T10:24:29
260,149,882
0
0
null
null
null
null
UTF-8
Python
false
false
471
7
#!/Users/danlan/Documents/CODE/personal-code/one_person_comic/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.7')() )
70abbc5cecb282dfd49f08753c9179be6f5f255f
3388e1171fff7e31837aea83eba0baabcc41350c
/storagebox.py
c918226a4c370831c31118254a580bad83aff93d
[]
no_license
mhermans/3dprinting
5aafdd8299ac0d13a3e3bd508de60b43107ee841
4c2a6002c9ad7247e3917092aafe9e7d9de3ba10
refs/heads/main
2023-01-24T04:37:29.030608
2020-11-25T20:55:38
2020-11-25T20:55:38
316,052,008
0
0
null
null
null
null
UTF-8
Python
false
false
1,642
py
# Parametric storage boxes for parts # ################################## import cadquery as cq box_with = 50 # x-axis box_depth = 100 # y-axis box_height = 50 # z-axis wall_with = 1 tab_width = box_depth/2 # default tag along half the wall tab_depth = 13 # 13mm is Dymo tag height tab_height = 2 tab_slope_depth = 12 # create box # ---------- box = cq.Workplane("XY").box(box_with, box_depth, box_height) box = box.faces(">Z").shell(- wall_with) # create shell with top Z-face open box = box.edges('|Z').fillet(1) # fillet all edges parallel to Z-axis box = box.edges('<Z').fillet(1) # fillet edges at bottom of Z-axis box = box.faces("<Z[-2]").fillet(1) # fillet second to last bottom face of Z-axis (inner edges at bottom) # create tab # ---------- tab = cq.Workplane("XY").box(tab_depth, tab_width , tab_height) # tab slope (suffciently sloping to avoid supports) tab = tab.faces('<Z').rect(tab_depth, tab_width) # start top of slope on bottom face of tab # draw end rectangle of slope lower and sloping towards the wall of the box tab = tab.workplane(offset = tab_slope_depth).moveTo(-(tab_depth/2), 0).rect(0.1, tab_width) tab = tab.loft(combine=True) # loft between two rectangles, creating slope for tab # move tab & slope against wall tab_align_top = (box_height / 2) - (tab_height / 2) tab_align_wall = (box_with / 2) - (tab_depth / 2) - wall_with tab = tab.translate( (-tab_align_wall, 0, tab_align_top) ) box = box.union(tab) show_object(box) fn = ''.join(['storebox_', str(box_with), 'x', str(box_depth), 'x', str(box_height), '.stl']) cq.exporters.export(box , ''.join(['/home/mhermans/tmp/', fn]) )
cce21217107dcef9365691283c1fec36ae5c01ec
b3349e55b0f2ae3d0a644ffdf1518f802e2b1e57
/CodigoPython/Pregunta3CreacionImagen.py
ab61133cebaf06bb07663786dea3e4529eadd971
[]
no_license
psigelo/tarea1_ipd431
8379f0d7bad1f325ee0a6d38bf361b61c9b5aa92
260a6bd3ceac46c2d096554f9c1941ac548674e5
refs/heads/master
2021-01-20T05:08:25.829955
2015-05-06T21:53:54
2015-05-06T21:53:54
34,429,494
0
0
null
null
null
null
UTF-8
Python
false
false
919
py
import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt u = 1.5 x = np.linspace(0, 2 * np.pi, 100) z = x + 100 plt.ylim([0,1]) plt.xlim([0,1]) plt.fill_between(x, z, x/(u-1), color='black', facecolor='green', interpolate=True, alpha=0.3) plt.fill_between(x, x, x, color='black', facecolor='green', interpolate=True, alpha=0.3) plt.fill_between(x, x*(u-1), x-x , color='black', facecolor='red', interpolate=True, alpha=0.3) plt.text( 0.6, 0.1, "Region A1", ha="center", family='sans-serif', size=11) plt.text( 0.14, 0.65, "Region A2", ha="center", family='sans-serif', size=11) plt.text( 0.6, 0.5, "y=x", ha="center", family='sans-serif', size=11) plt.text( 0.55, 0.3, "y=x(u-1)", ha="center", family='sans-serif', size=11) plt.text( 0.37, 0.6 , "y=x/(u-1)", ha="center", family='sans-serif', size=11) plt.xlabel('X') plt.ylabel('Y') plt.savefig('../latex/img/pregunta3.pdf', bbox_inches=0)
5180882b117ac289e7fccdcb89a8e62bcac4eae7
c0e0de3bd94de0cc4e198b888b2025d243db61ee
/code2inv/common/constants.py
dfbc588814087d95422f067b5be25a9ddc8139e6
[]
no_license
alipourm/code2inv
8f728c55d78811edf6923e7904403f8a92c8f46f
b4d6f7e3e0c32005a07e9ecaf589a032610d18f2
refs/heads/master
2020-04-19T20:50:15.564141
2018-12-26T15:19:14
2018-12-26T15:19:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
AST_EDGE_TYPE = 0 CONTROL_EDGE_TYPE = 2 VAR_LINK_TYPE = 4 NUM_EDGE_TYPES = 6 # 3 edge types x 2 directions # boogie results AC_CODE = 0 POST_FAIL_CODE = 1 INDUCTIVE_FAIL_CODE = 2 ENTRY_FAIL_CODE = 3 INVALID_CODE = 4 # z3 pre-check ALWAYS_TRUE_EXPR_CODE = 3 ALWAYS_FALSE_EXPR_CODE = 4 NORMAL_EXPR_CODE = 5 from cmd_args import cmd_args LIST_PREDICATES = [w for w in cmd_args.list_pred.split(',')] LIST_OP = [w for w in cmd_args.list_op.split(',')] MAX_DEPTH = cmd_args.max_depth MAX_AND = cmd_args.max_and MAX_OR = cmd_args.max_or
fce4db1949627e363226c20b93f6dbc0bea0f98e
5fcc3fd608a794d260368318c62547f74d4c1416
/discard_blank_lines.py
c871672ecd765e8096b9971ff5ff20b2f9f2f1a3
[]
no_license
ds-gurukandhamoorthi/intro-python-exs
241fb9158096479a100ef378f291ba83e1a7d5d4
68c386e51c13d0f31e273016eefc4e29ddecdc04
refs/heads/master
2022-02-25T22:28:41.061722
2019-10-22T18:36:46
2019-10-22T18:36:46
103,829,521
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
from sys import stdin for line in stdin: if line.strip() == '': continue print(line, end='')
d7309ed6406863e1f95db2fe44a7e6108c68d5c2
8ddeb2e4d536e11dc25ca580a4e8c5bd62830202
/old_code.py
f8f6db5fa49c4b66e0374e8300800e3a8da05ab3
[]
no_license
kmb5/fretboard-learner
6b827e0c6209f522d8e7e106e3929387a5ec1fd4
5a0934b8fc36932f368782603c17842ca479c8fe
refs/heads/master
2023-02-16T15:59:36.598088
2021-01-18T17:42:49
2021-01-18T17:42:49
287,092,865
0
0
null
null
null
null
UTF-8
Python
false
false
3,145
py
import sys import time from random import choice #import pyaudio import sounddevice as sd from scipy.io.wavfile import write import numpy as np from aubio import notes, pitch from helpers import pitch2note, NOTES_PER_STRING CHUNK = 1024 FORMAT = pyaudio.paFloat32 CHANNELS = 1 RATE = 44100 RECORD_SECONDS = 5000 """ THIS IS THE OLD VERSION, KEEPING IT JUST COZ IM ATTACHED BUT main.py IS THE WORKING ONE """ # Pitch tolerance = 0.8 downsample = 1 win_s = 4096 // downsample # fft size hop_s = 1024 // downsample # hop size #notes_o = notes("default", win_s, hop_s, RATE) pitch_o = pitch("yinfft", win_s, hop_s, RATE) pitch_o.set_unit("Hz") pitch_o.set_silence(-40) pitch_o.set_tolerance(tolerance) while True: inp = input('Which string?\n') if inp not in('EADGBe'): print('Need to select from EADGBe') continue else: break prev_note_choice = None print('\n\nPress cmd+c to quit at any time\n\n') while True: note_choice = choice(NOTES_PER_STRING[inp]) if prev_note_choice == note_choice: continue else: prev_note_choice = note_choice note_choice_without_number = note_choice[:-1] print(f'Play this note: {note_choice_without_number}') p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) #print("* recording") frames = [] notes_list = [] for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): buffer = stream.read(CHUNK) frames.append(buffer) signal = np.frombuffer(buffer, dtype=np.float32) #new_note = notes_o(signal) # we get note from pitch as it is more accurate pitch = pitch_o(signal)[0] #confidence = pitch_o.get_confidence() if pitch != 0: note_played = pitch2note(pitch) notes_list.append(note_played[:-1]) # we append only note and not number (eg. E and not E2) if len(notes_list) == 10: # We listen for 10 signals and then select the most frequent note in the list # This is because when you pluck a note the frequency can deviate as you pluck it strongly most_likely_note = max(notes_list, key=notes_list.count) sys.stdout.write(f'\rYou played: {most_likely_note} ') sys.stdout.flush() if most_likely_note == note_choice_without_number: # we hit the desired note print('Good job!') break else: # if we don't hit the desired note, we get another 10 signals notes_list = [] stream.stop_stream() stream.close() p.terminate() time.sleep(1) # so the user is not bombarded by constant new things ''' if (new_note[0] != 0): note_str = ' '.join(["%.2f" % i for i in new_note]) print(f'{new_note[0]} - {pitch2note(int(new_note[0]))}') #print(pitch_o(signal) ''' #print("* done recording")
87e92eb32a80400e4da5670fc49fc25d5d68ab3a
579640d4603ee4239ea2b6dd592aa3f30decaca8
/week09/UserManger/user/urls.py
13865317fdd1e9223b9c4901e33361ddbc6f837b
[]
no_license
yangguangchao/Python001-class01
d5d8a8ee4f74dbd963f1e7a1944149dfcd9124c8
0c43223a362086257b182ec2f7ca7d034809e96c
refs/heads/master
2022-12-10T16:52:15.919865
2020-09-06T06:12:04
2020-09-06T06:12:04
273,133,647
0
0
null
2020-06-18T03:33:48
2020-06-18T03:33:48
null
UTF-8
Python
false
false
206
py
from django.urls import path, re_path, register_converter from . import views urlpatterns = [ path('', views.index), path('login', views.login_user), path('index', views.index, name='index') ]
636743aee653fe77c053c25d57c6367c379f5153
026ea2872634d86e1ad2916ffc9c460fc252edad
/hack.py
39b783cbdf4fb71f625277b0569a1a3f0d9613f0
[]
no_license
Ushasreetwinky/project-2
1cf2c0784106267e313ad59bcd76db4129a9943e
3262220d70ea76ee5024c4cd381ee66e6cfbbeb8
refs/heads/master
2020-12-03T08:05:14.622015
2016-09-08T13:28:57
2016-09-08T13:28:57
95,657,104
0
0
null
null
null
null
UTF-8
Python
false
false
842
py
from subprocess import Popen, PIPE import json import csv import sys def main(argv): print "argu received",argv[0] if argv[0]=="output.js": commandLine="node output.js" pass else: commandLine="python output.py" p = Popen(commandLine, stderr=PIPE, stdout=PIPE, shell=True) output, errors = p.communicate() result=[] if output=="": if errors!="": if argv[0]=="output.js": er=errors.split(errors[41]) result.extend(er) pass elif errors.index("\n")>0: er=errors.split("\n") result.extend(er) else: result.append(errors.split("\n")) pass else: result.append(output) with open('ouput.csv', 'wb') as csvfile: writer = csv.writer(csvfile, quoting=csv.QUOTE_MINIMAL) writer.writerow(["output"]) for res in result: writer.writerow([res]) if __name__ == "__main__": main(sys.argv[1:])
6cd72b223191312ffb848bfd4bc37e80f8d22f97
4624906bfa6d9a49b2601d5b3453dcf135023684
/seguimiento/settings.py
778163a2d3146e63eef8f1ccdf749043957244e0
[]
no_license
lobomacz/seguimiento
a04f40588fa4c64d0e65496acfb6f61e6fb6d8e2
32d8ed2998f6ee1bc903a8e4ebab8ca3a5b7aaf4
refs/heads/master
2023-07-04T23:39:50.528353
2021-07-30T18:09:39
2021-07-30T18:09:39
391,153,865
0
0
null
null
null
null
UTF-8
Python
false
false
3,912
py
""" Django settings for seguimiento project. Generated by 'django-admin startproject' using Django 3.2.5. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-ft^8agycw2x^lrqj(efy!u6zh1!rjz)-s1*(e6q52i#1ef2hy+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.gis', 'bootstrap4', 'django_bootstrap_icons', 'sispro', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'seguimiento.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.template.context_processors.static', 'django.template.context_processors.media', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'seguimiento.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': BASE_DIR / 'db.sqlite3', # } # } DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'seguimiento', 'USER': 'seguimiento', 'PASSWORD': '~{8"5Gy]br}K9c~8', 'HOST': '127.0.0.1', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Managua' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static/') # Almacenamiento de imágenes MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media/') # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
b891b84c1fffdf89fa571cec71ef4beed64a0c44
187a602feb94ead21bcfacbd5b4c92978424aeff
/angr/exp/08_angr_overflow/16_angr_arbitrary_write.py
1332a3dab03720a4cdbe1cd4c47344e5fbb21403
[]
no_license
Taardisaa/0x401RevTrain-Tools
c50ef252731547eaba68c97e12997e845ff31727
e7ea89037b98ae6bdcb2209ae933a270ac8bcb69
refs/heads/main
2023-08-22T07:58:10.669461
2021-10-11T07:56:39
2021-10-11T07:56:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
import angr import claripy proj = angr.Project('../dist/17_angr_arbitrary_jump') payload = claripy.BVS('payload', 64 * 8) state = proj.factory.entry_state(stdin=payload) simgr = proj.factory.simgr( state, save_unconstrained=True, stashes={ 'active':[state], 'unconstrained': [], 'found': [], }) while (len(simgr.active) or len(simgr.unconstrained)) and not len(simgr.found): for unconstrained in simgr.unconstrained: eip = unconstrained.regs.eip print_good_addr = 0x42585249 if unconstrained.satisfiable(extra_constraints=[eip == print_good_addr]): unconstrained.add_constraints(eip == print_good_addr) simgr.move('unconstrained', 'found') break simgr.drop(stash="unconstrained") simgr.step() print(simgr.found[0].posix.dumps(0))
3ee9a2aef250a7b26732547c29bf32266b68910d
2885d654eb99ca71bfeccd8d1f706c07064d8ad6
/polish_notation.py
4ca1be683294174e18e29a945d72f7b1707dc000
[]
no_license
confar/python_challenges
e521775a0c4b6da4e6ce045b3e2cdb3b3ab1fa56
a03eade2df9d6b1ab63fe5ae269556b38458e0f4
refs/heads/master
2023-07-10T04:20:57.146413
2021-08-15T20:59:06
2021-08-15T20:59:06
262,156,632
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
import io import operator mapping = {'+': operator.add, '*': operator.mul, '-': operator.sub} import sys def main(str_buffer): stack = [] for token in next(str_buffer).split(' '): if token.isdigit(): stack.append(int(token)) elif token in mapping: result = stack.pop() while stack: operation = mapping[token] result = operation(result, stack.pop()) stack.append(result) print(stack[0]) return stack[0] tst1 = io.StringIO('8 11 +') tst2 = io.StringIO('2 3 + 4 *') # tst3 = io.StringIO('6 7 8 + 3 * +') assert main(tst1) == 19 assert main(tst2) == 20 # assert main(tst3) == 20
f16cdfe295d547f8dc1f3d68e2f1cf83acf58463
d82995f33a603b61e06deecd644f5a293823b746
/forward_inverse_kinematics/quiz_rotation.py
c6f25841bacee9da4d1f21c03c89e4df9b1bc1c0
[]
no_license
RyanCargan/udacity-robond-term1
79d065aab42e4e308a93e36fa869bb48477aebef
a92a6e665e72930f9a33eb3a82f64da206b64fcf
refs/heads/master
2021-09-07T08:39:07.181342
2018-02-20T12:27:29
2018-02-20T12:27:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,607
py
# Two coding quizzes follow. The first requires you to perform an # intrinsic rotation sequence about the Y and then Z axes. # The second quiz requires you to perform an extrinsic rotation about # the Z and then Y axes. from sympy import symbols, cos, sin, pi, sqrt from sympy.matrices import Matrix # Create symbols for joint variables q1, q2 = symbols('q1:3') dtr = pi / 180.0 # degree to radians rtd = 180.0 / pi # radians to degrees q1 = 45 * dtr q2 = 60 * dtr # Create a symbolic matrix representing an intrinsic sequence of rotations # about the Y and then Z axes. # Let the rotation about the Y axis be described # by q1 and the rotation about Z by q2. ####### TO DO ######## # Replace R_y and R_z with the appropriate (symbolic) elementary rotation matrices # and then compute YZ_intrinsic. R_y = Matrix([[cos(q1), 0, sin(q1)], \ [0, 1, 0], \ [-sin(q1), 0, cos(q1)]]) R_z = Matrix([[cos(q2), -sin(q2), 0], \ [sin(q2), cos(q2), 0], \ [0, 0, 1]]) YZ_intrinsic_sym = R_y.evalf(subs={q1:q1 }) * R_z.evalf(subs={q2:q2}) ####### TO DO ######## # Numerically evaluate YZ_intrinsic assuming: # q1 = 45 degrees and q2 = 60 degrees. # NOTE: Trigonometric functions in Python assume the input is in radians! # Intrinsic -> moving axis -> post multiply # YZ_intrinsic_num = 1 #YZ_intrinsic_sym.evalf(subs={}) YZ_intrinsic_num = YZ_intrinsic_sym.evalf(subs={}) # Alternatively: # YZ_intrinsic_sym = R_y * R_z # YZ_intrinsic_num = YZ_intrinsic_sym.evalf(subs={q1: pi/4, q2: pi/3}) print("YZ_intrinsic_num: ") print(YZ_intrinsic_num)
795dff346d3aeb2e1858d868150cdee577936cc3
dd8ece85ddede58b33e745458323dc2c0c899aba
/Lesson6/ask5.py
5a86e88ab946a4c25b56fa8b2ed315183e32dbb5
[]
no_license
michnik3/Python
48f26c497577eaebade84b12a26fa3585bac32d6
aade74d8192ddfea5513bbbf5a3edc716d6c4356
refs/heads/main
2023-08-25T00:18:48.173146
2021-10-07T09:11:13
2021-10-07T09:11:13
362,200,151
0
0
null
null
null
null
UTF-8
Python
false
false
98
py
my_list = [number for number in range(100) if number % 2 ==0 and number % 3 ==0] print(my_list)
5a3a224eb388887427ba5aaea6b9f9fa0d43402b
237a72855fad3032c7bfe2cd944ae05d018b17f4
/model.py
83fe1df555f51fb0340c48adfe802b5984753e4b
[ "MIT" ]
permissive
wdecay/ShapeClassification
54a8897ab7cbfb109d96fec346ab92878522341e
0592a837f272c709322a1d7e74948268e8c82cce
refs/heads/master
2022-11-19T23:20:08.860894
2020-07-23T03:25:52
2020-07-23T03:25:52
281,619,306
0
0
null
null
null
null
UTF-8
Python
false
false
1,927
py
import tensorflow as tf import layers def compose_layers(num_classes, layer_dims, shape_input): embed_layer = layers.SelfInteractionSimple(layer_dims[0]) input_layer = layers.Input() model_layers = [] for dim in layer_dims[1:]: model_layers.append(layers.Convolution()) model_layers.append(layers.Concatenation()) model_layers.append(layers.SelfInteraction(dim)) model_layers.append(layers.Nonlinearity()) output_layer = layers.Output(num_classes) x, rbf, rij = input_layer(shape_input) input_tensor_list = {0: [embed_layer(x)]} for layer in model_layers: if isinstance(layer, layers.Convolution): input_tensor_list = layer([input_tensor_list, rbf, rij]) else: input_tensor_list = layer(input_tensor_list) output = output_layer(input_tensor_list) return output def build_model(num_classes, layer_dims = [1, 4, 4, 4], shape_input = tf.keras.Input(shape=(4, 3), dtype=tf.float32)): output = compose_layers(num_classes, layer_dims, shape_input) model = tf.keras.Model(inputs = shape_input, outputs = output) optimizer = tf.keras.optimizers.Adam(learning_rate=1.e-3) @tf.function def loss_fn(truth, pred): return tf.nn.sparse_softmax_cross_entropy_with_logits( labels = tf.cast(tf.squeeze(truth, axis=-1), tf.int32), logits = pred) model.compile(optimizer=optimizer, loss = loss_fn, metrics=['sparse_categorical_accuracy']) return model # test with eager execution if __name__ == "__main__": from dataset import get_dataset dataset, num_classes = get_dataset() test_data = dataset.map(lambda x, y: x).batch(1).take(1).as_numpy_iterator().next() print("Input:") print(test_data) result = compose_layers(num_classes, [1, 4, 4, 4], test_data) print("Output:") print(result)
0922a6895c74ad69b3aa2cc387e3b2483dd419a7
c9a809c5ef2a6b5e7e50da548c182510d203f430
/tests/unit/states/test_boto_sqs.py
93f56d4305805729802429fd15f700b3a67e9619
[ "Apache-2.0" ]
permissive
andyyumiao/saltx
676a44c075ce06d5ac62fc13de6dcd750b3d0d74
a05c22a60706b5c4389adbd77581b5cf985763b5
refs/heads/master
2022-02-24T00:51:42.420453
2022-02-09T06:46:40
2022-02-09T06:46:40
231,860,568
1
5
NOASSERTION
2022-02-09T06:46:40
2020-01-05T03:10:15
Python
UTF-8
Python
false
false
3,159
py
# -*- coding: utf-8 -*- ''' :codeauthor: Jayesh Kariya <[email protected]> ''' # Import Python libs from __future__ import absolute_import # Import Salt Testing Libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import skipIf, TestCase from tests.support.mock import NO_MOCK, NO_MOCK_REASON, MagicMock, patch # Import Salt Libs import salt.states.boto_sqs as boto_sqs @skipIf(NO_MOCK, NO_MOCK_REASON) class BotoSqsTestCase(TestCase, LoaderModuleMockMixin): ''' Test cases for salt.states.boto_sqs ''' def setup_loader_modules(self): return {boto_sqs: {}} # 'present' function tests: 1 def test_present(self): ''' Test to ensure the SQS queue exists. ''' name = 'mysqs' attributes = {'ReceiveMessageWaitTimeSeconds': 20} ret = {'name': name, 'result': False, 'changes': {}, 'comment': ''} mock = MagicMock(side_effect=[False, False, True, True]) mock_bool = MagicMock(return_value=False) mock_attr = MagicMock(return_value={}) with patch.dict(boto_sqs.__salt__, {'boto_sqs.exists': mock, 'boto_sqs.create': mock_bool, 'boto_sqs.get_attributes': mock_attr}): with patch.dict(boto_sqs.__opts__, {'test': False}): comt = ('Failed to create {0} AWS queue'.format(name)) ret.update({'comment': comt}) self.assertDictEqual(boto_sqs.present(name), ret) with patch.dict(boto_sqs.__opts__, {'test': True}): comt = ('AWS SQS queue {0} is set to be created.'.format(name)) ret.update({'comment': comt, 'result': None}) self.assertDictEqual(boto_sqs.present(name), ret) comt = ('Attribute(s) ReceiveMessageWaitTimeSeconds' ' to be set on mysqs.') ret.update({'comment': comt}) self.assertDictEqual(boto_sqs.present(name, attributes), ret) comt = ('mysqs present. Attributes set.') ret.update({'comment': comt, 'result': True}) self.assertDictEqual(boto_sqs.present(name), ret) # 'absent' function tests: 1 def test_absent(self): ''' Test to ensure the named sqs queue is deleted. ''' name = 'test.example.com.' ret = {'name': name, 'result': True, 'changes': {}, 'comment': ''} mock = MagicMock(side_effect=[False, True]) with patch.dict(boto_sqs.__salt__, {'boto_sqs.exists': mock}): comt = ('{0} does not exist in None.'.format(name)) ret.update({'comment': comt}) self.assertDictEqual(boto_sqs.absent(name), ret) with patch.dict(boto_sqs.__opts__, {'test': True}): comt = ('AWS SQS queue {0} is set to be removed.'.format(name)) ret.update({'comment': comt, 'result': None}) self.assertDictEqual(boto_sqs.absent(name), ret)
acb7bd4445608d425729d2bd9a6757c8d6b0dccb
8535bbc7781c4691880c935bd7025646f0dbb7c3
/area of farm 5 decimals.py
6f53c191bc9e407b2a7b5ac4f003a0ca36566bce
[]
no_license
Mahadev0317/Codekata
3b2149f3116ebe4b48b2059b873544c27b23ff39
c35fa0ed0c4870faea69152638f461e743a9ff69
refs/heads/master
2020-04-15T04:59:17.062947
2019-05-29T04:46:35
2019-05-29T04:46:35
164,404,727
1
2
null
null
null
null
UTF-8
Python
false
false
64
py
l,b=map(float,input().split()) p=l*b print("{0:.5f}".format(p))
4db3db6a15d4a0183be6148e2d90c7766e1b73c0
7c2c9f0c7ab918004d05e340d1f41e1e914650a5
/ex5.py
95b4e991f5460097c5fa9049381ac1b280994927
[]
no_license
blip-lorist/python-the-hard-way
f6ad2aa9cfcde25efdb0829f54780edda37f1aed
06a5256b915f364ebd68c518a277a42a92383e07
refs/heads/master
2022-10-20T01:17:28.676035
2016-01-01T21:36:46
2016-01-01T21:36:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
704
py
name = 'Zed A. Shaw' age = 35 # not a lie height_inches = 74 # inches height_cm = height_inches * 2.54 weight_lbs = 180 #lbs weight_kg = weight_lbs / 2.2 eyes = 'Blue' teeth = 'White' hair = 'Brown' print "Let's talk about %s." % name print "He's %d inches tall or %d cm tall." % (height_inches, height_cm) print "He's %d pounds heavy or %d kg heavy." % (weight_lbs, weight_kg) print "Actually that's not too heavy." print "He's got %s eyes and %s hair." % (eyes, hair) print "His teeth are usually %s depending on the coffee." % teeth # this line is tricky, try to get it exactly right print "If I add %d, %d, and %d I get %d" % ( age, height_inches, weight_lbs, age + height_inches + weight_lbs)
608929efefe568898dd796fd04a624caf4af1899
c2a15c1a4590982250d88c8125d4e6217c43fa17
/textman.py
0f003148fc51b826f4facd88708d82dfa01240d7
[]
no_license
simranbat/pitchfork
63bd9213db9d0b90acb48f0382d32097abf73a14
a84961e0d7447cbaa7b8edf16eea3d3be275653e
refs/heads/master
2020-05-17T22:29:05.165099
2019-04-30T13:52:19
2019-04-30T13:52:19
184,002,591
0
0
null
null
null
null
UTF-8
Python
false
false
7,901
py
import pandas as pd import nltk from nltk.corpus import stopwords from nltk.stem import PorterStemmer import numpy as np import sqlite3 def import_source(src_file, start_line=None, end_line=None, col_name='line', id_name='line_id', strip=True): """Imports a raw text file into a dataframe of lines. Removes extra lines.""" print('src_file', src_file) df = pd.DataFrame({col_name:open(src_file,'r').readlines()}) if not start_line: start_line = 0 if not end_line: end_line = len(df.index) df = df.loc[start_line:end_line] df.index.name = id_name if strip: df[col_name] = df[col_name].str.strip() return df def group_by_milestone(df, div_name, div_pat, src_idx, src_col, tmp_col='div_idx', id_suffix='_id'): """Splits text lines by a milestone and groups them into units, such as a chapters from chapter headings.""" df[div_name] = df[src_col].str.match(div_pat) df2 = df.loc[df[div_name], src_col].copy().reset_index(drop=True).to_frame()\ .rename(columns={src_col:div_name}) df2.index.name = div_name + id_suffix df[tmp_col] = None df[tmp_col] = df[df[div_name]].apply(lambda x: x.index) df[tmp_col] = df[tmp_col].ffill() df[tmp_col] = df[tmp_col].astype('int') df2[div_name] = df.groupby(tmp_col)[src_col].apply(lambda x: '\n'.join(x[:]))\ .to_frame().reset_index(drop=True) df2.index.name = div_name + id_suffix return df2 def split_by_delimitter(df, div_name=None, div_pat=None, src_col=None, join_pat='\n', id_suffix='_id'): """Splits lines in smaller units of text based on a delimitter.""" df2 = df[src_col].str.split(div_pat, expand=True).stack().to_frame()\ .rename(columns={0:div_name}).copy() df2.index.names = df.index.names + [div_name + id_suffix] df2[div_name] = df2[div_name].str.replace(join_pat, ' ') df2 = df2[~df2[div_name].str.match(r'^\s*$')] return df2 def gather_tokens(df, level=0, col='token', glue=' ', collapse=False): """Recombines units into larger units of text.""" idx = df.index.names[:level+1] df2 = df.groupby(idx)[col].apply(lambda x: glue.join(x)) return df2 def normalize_tokens(df, token_col='token'): """Lowercases and strips tokens.""" df['term_str'] = df[token_col].str.lower().str.strip() return df def add_pos_to_tokens(tokens, idx=['chap_id','para_id','sent_id'], token_col='token'): """Adds POS tages to tokens.""" df = tokens.groupby(idx).token.apply(lambda x: nltk.pos_tag(x.tolist()))\ .apply(pd.Series).stack()\ .to_frame().reset_index()\ .rename(columns={'level_{}'.format(len(idx)):'token_id', 0:'pos'})\ .set_index(idx + ['token_id']) tokens['pos'] = df.pos.apply(lambda x: x[1]) return tokens def create_vocab(df, col='term_str'): """Creates a vocabulary table from a token table.""" terms = df[col].value_counts()\ .to_frame().reset_index()\ .rename(columns={'index':'term_str',col:'n'})\ .sort_values('term_str').reset_index(drop=True) terms.index.name = 'term_id' terms['f'] = terms.n.div(terms.n.sum()) return terms def add_stems_to_vocab(vocab): """Adds stems to vocabulary table.""" ps = PorterStemmer() vocab['stem'] = vocab['term_str'].apply(lambda x: ps.stem(x)) return vocab def link_tokens_to_vocab(tokens, vocab, drop=False): """Adds term_id column to tokens table.""" tokens['term_id'] = tokens['term_str'].map(vocab.reset_index()\ .set_index('term_str').term_id) if drop: del(tokens['term_str']) return tokens # Todo: Codify these assumptions in config def identify_stopwords(vocab): """Identifies stopwords in the vocabulary table.""" sw = set(stopwords.words('english')) vocab['sw'] = vocab.apply(lambda x: x.term_str in sw or len(x.term_str) <= 2 or not x.term_str.isalpha() or x.n < 3, axis=1) vocab['go'] = ~vocab.sw return vocab def remove_stopwords(df, vocab, term_id_col='term_id'): """Removes stopwords from the tokens table.""" df = df[df[term_id_col].isin(vocab[vocab.go].index.values)].copy() return df def create_doc_table(tokens, index=['chap_id', 'para_id']): """Create the documents table from tokens tables.""" doc = tokens.groupby(index).term_id.count()\ .to_frame().rename(columns={'term_id':'n'}) return doc def create_bow(tokens, idx, index_name='doc_id'): """Create a bag-of-words table from tokens table.""" col = idx[-1] bow = tokens.groupby(idx)[col].count()\ .to_frame().rename(columns={col:'n'}) if index_name: bow.index.name = index_name return bow def create_dtm(bow, fill_val=0): """Create a document-term matrix from a bag-of-words.""" dtm = bow.unstack().fillna(fill_val) dtm.columns = dtm.columns.droplevel(0) return dtm def compute_term_freq(dtm, vocab): dtm_tf = dtm.apply(lambda x: x / x.sum(), 1) vocab['tf_sum'] = dtm_tf.sum() return dtm, vocab def compute_inv_doc_freq(dtm, vocab): N = len(dtm.index) dtm_idf = dtm.apply(lambda x: N / x[x > 0].count()) vocab['idf'] = dtm_idf return dtm_idf, vocab def compute_tfidf(dtm, vocab, doc, bow, sw=False): N = len(dtm.index) dtm_tfidf = dtm.apply(lambda row: row / row.sum(), 1)\ .apply(lambda col: col * np.log10(N/col[col > 0].count())) vocab['tfidf_sum'] = dtm_tfidf.sum() doc['tfidf_sum'] = dtm_tfidf.sum(1) bow['tfidf'] = dtm_tfidf.stack().to_frame().rename(columns={0:'tfidf'}) return dtm_tfidf, vocab, doc, bow def get_term_id(vocab, term): term_id = vocab[vocab.term==term].index[0] return term_id def get_term(vocab, term_id): term = vocab.loc[term_id].term return term def create_tokens_and_vocab(paras, idx=['chap_id','para_id','sent_id'], src_col='para', pos=False, drop=False): """Composite function to genereate tokens and vocabulary tables from units (e.g. paragraphs).""" cfg = dict( sent = dict( div_name = 'sent', div_pat = r'(?:[":;.?!\(\)]|--)', src_col = src_col, join_pat = ' ' ), token = dict( div_name = 'token', div_pat = r'\W+', src_col = 'sent', join_pat = ' ' ) ) sents = split_by_delimitter(paras, **cfg['sent']) tokens = split_by_delimitter(sents, **cfg['token']) tokens = normalize_tokens(tokens) if pos: tokens = add_pos_to_tokens(tokens, idx=idx) vocab = create_vocab(tokens) vocab = add_stems_to_vocab(vocab) vocab = identify_stopwords(vocab) tokens = link_tokens_to_vocab(tokens, vocab, drop=drop) tokens = remove_stopwords(tokens, vocab) return tokens, vocab def add_doc_len_features(df, str_col, prefix='doc_'): len = prefix + 'len' df[len] = df[str_col].str.len() df[prefix + 'z'] = (df[len] - df[len].mean()).div(df[len].str()) df[prefix + 's'] = (df[len] / df[len].max()).multiply(100).round().astype('int') df[prefix + 'p'] = df[len] / df[len].sum() df[prefix + 'h'] = df[prefix+'p'].multiply(np.log2(df[prefix+'p'])) * -1 return df def put_to_db(db, df, table_name, index=True, if_exists='replace'): r = df.to_sql(table_name, db, index=index, if_exists=if_exists) return r def get_from_db(db, table_name): df = pd.read_sql("SELECT * FROM {}".format(table_name), db) return df def get_table(table, db_file, fields='*', index_col=None): if type(fields) is list: fields = ','.join(fields) with sqlite3.connect(db_file) as db: return pd.read_sql("select {} from {}".format(fields, table), db, index_col=index_col) def get_sql(sql, db_file, params=None): with sqlite3.connect(db_file) as db: return pd.read_sql(sql, db, params)
42c5a2d68c0705069fc43d9678d3cec33f9a871d
5248e096abb7e7b8dcaf522c54f857f62dc8639c
/src/autoregkd/interface/cli.py
d0d958ce5a0316da235931073c497f3968448aab
[]
no_license
haroldrubio/autoregkd
b1858154595a3d2e8d9ab3fbe7621b88b21a5837
cac6e3d09aa137e5613879d90fed1c878b7460e2
refs/heads/master
2023-08-14T15:04:02.906017
2021-03-24T14:21:25
2021-03-24T14:21:25
342,059,131
1
0
null
2021-04-02T18:12:39
2021-02-24T23:00:08
Python
UTF-8
Python
false
false
849
py
import click @click.command( context_settings=dict(show_default=True), ) @click.option( "--log_batch_size", type=int, default=2, help="batch size for training will be 2**LOG_BATCH_SIZE", ) # Using batch sizes which are 2**n for some integer n may help optimize GPU efficiency @click.option( "--log_eval_batch_size", type=int, default=2, help="batch size for eval will be 2**LOG_EVAL_BATCH_SIZE", ) # Using batch sizes which are 2**n for some integer n may help optimize GPU efficiency @click.option( "--epochs", type=int, default=1, help="number of training epochs", ) @click.option( "--learning_rate", type=float, default=2e-5, help="learning rate", ) def experiment(**config): """Train a BART model""" from ..training.train import training training(config)
f9fb8c89a3998efb7df0b951cb1a4a44075afd5b
da099343970eaa367991f08b40c83a580fd09e57
/download-deveres/para-aulas-do-curso-em-video/aula10a.py
1400ca4701f8dc3c563aff41b3c010bfab29175f
[ "MIT" ]
permissive
Hugo-Oliveira-RD11/aprendendo-PYTHON-iniciante
dbae493b2f2b49d4a7527986836b6978c6b56829
b5e41015e2cb95946262678e82197e5f47d56271
refs/heads/master
2022-12-16T02:53:48.210283
2020-09-11T19:43:57
2020-09-11T19:43:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
n = str(input('qual e o seu nome?')) if n == 'hugo': print('que nome bonito em...') else: print('que nome ruim!!') print('tenha um bom dia {}'.format(n))
0f1db565b35c7cbfb8f04dab6e0e5c69df2458b9
34dc1805144d4971286b0b0989ba7417880e038c
/YoutubeNetwork/record_dataformat_version/train/model.py
4a6ccb67212d98d9733be1b8406fa26cda930ce8
[ "MIT" ]
permissive
ishigami33/deep_learning
b5856b6c5031dc2f5f0b22811a2b873dc39e13c0
e64ad4e10fb901b4e7efe777f5bd2efd0d6e0a39
refs/heads/master
2020-11-25T05:24:44.227455
2019-12-04T05:14:48
2019-12-04T05:14:48
228,519,783
1
0
MIT
2019-12-17T02:52:07
2019-12-17T02:52:07
null
UTF-8
Python
false
false
6,109
py
import tensorflow as tf class Model(object): def __init__(self, args): # self.sess=sess self.is_training = args.is_training # self.input_size=args.input_size self.embedding_size = args.embedding_size # self.basic_size=args.basic_size self.brand_list = args.brand_list self.msort_list = args.msort_list self.item_count = args.item_count self.brand_count = args.brand_count self.msort_count = args.msort_count self.checkpoint_dir = args.checkpoint_dir self.lr = args.lr def build_model(self, uij): self.u = uij[3] self.sub_sample = uij[1] self.y = uij[2] self.hist_i = uij[0] self.sl = uij[4] self.last = uij[5] # self.recall_skn_idx # emb variable item_emb_w = tf.get_variable("item_emb_w", [self.item_count, self.embedding_size]) item_b = tf.get_variable("item_b", [self.item_count], initializer=tf.constant_initializer(0.0)) brand_emb_w = tf.get_variable("brand_emb_w", [self.brand_count, self.embedding_size]) msort_emb_w = tf.get_variable("msort_emb_w", [self.msort_count, self.embedding_size]) brand_list = tf.convert_to_tensor(self.brand_list, dtype=tf.int32) msort_list = tf.convert_to_tensor(self.msort_list, dtype=tf.int32) # historty seq hist_b = tf.gather(brand_list, self.hist_i) hist_m = tf.gather(msort_list, self.hist_i) h_emb = tf.concat([tf.nn.embedding_lookup(item_emb_w, self.hist_i), tf.nn.embedding_lookup(brand_emb_w, hist_b), tf.nn.embedding_lookup(msort_emb_w, hist_m)], axis=2) # historty mask mask = tf.sequence_mask(self.sl, tf.shape(h_emb)[1], dtype=tf.float32) # [B,T] mask = tf.expand_dims(mask, -1) # [B,T,1] mask = tf.tile(mask, [1, 1, tf.shape(h_emb)[2]]) # [B,T,3*e] h_emb *= mask # [B,T,3*e] hist = tf.reduce_sum(h_emb, 1) # [B,3*e] hist = tf.div(hist, tf.cast(tf.tile(tf.expand_dims(self.sl, 1), [1, 3 * self.embedding_size]), tf.float32)) # [B,3*e] # last last_b = tf.gather(brand_list, self.last) last_m = tf.gather(msort_list, self.last) l_emb = tf.concat([tf.nn.embedding_lookup(item_emb_w, self.last), tf.nn.embedding_lookup(brand_emb_w, last_b), tf.nn.embedding_lookup(msort_emb_w, last_m)], axis=1) # net input self.input = tf.concat([hist, l_emb], axis=-1) # print('',) # dd net bn = tf.layers.batch_normalization(inputs=self.input, name='b1') layer_1 = tf.layers.dense(bn, 1024, activation=tf.nn.relu, name='f1') self.layer1 = self.input layer_2 = tf.layers.dense(layer_1, 512, activation=tf.nn.relu, name='f2') layer_3 = tf.layers.dense(layer_2, 3 * self.embedding_size, activation=tf.nn.relu, name='f3') self.layer1 = layer_3 # softmax if self.is_training: sa_b = tf.gather(brand_list, self.sub_sample) sa_m = tf.gather(msort_list, self.sub_sample) sample_w = tf.concat([tf.nn.embedding_lookup(item_emb_w, self.sub_sample), tf.nn.embedding_lookup(brand_emb_w, sa_b), tf.nn.embedding_lookup(msort_emb_w, sa_m)], axis=2) # [B,sample,3*e] # sample_w=tf.nn.embedding_lookup(item_emb_w,self.sub_sample) sample_b = tf.nn.embedding_lookup(item_b, self.sub_sample) # [B,sample] user_v = tf.expand_dims(layer_3, 1) # [B,1,3*e] sample_w = tf.transpose(sample_w, perm=[0, 2, 1]) # [B,3*e,sample] self.logits = tf.squeeze(tf.matmul(user_v, sample_w), axis=1) + sample_b # Step variable self.global_step = tf.Variable(0, trainable=False, name='global_step') # self.global_epoch_step = tf.Variable(0, trainable=False, name='global_epoch_step') # self.global_epoch_step_op = tf.assign(self.global_epoch_step, self.global_epoch_step + 1) ''' self.loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=self.logits, labels=self.y) ) ''' self.yhat = tf.nn.softmax(self.logits) self.loss = tf.reduce_mean(-tf.cast(self.y, dtype=tf.float32) * tf.log(self.yhat + 1e-24)) trainable_params = tf.trainable_variables() self.opt = tf.train.GradientDescentOptimizer(learning_rate=self.lr) gradients = tf.gradients(self.loss, trainable_params) clip_gradients, _ = tf.clip_by_global_norm(gradients, 5) self.train_op = self.opt.apply_gradients( zip(clip_gradients, trainable_params), global_step=self.global_step) else: all_emb = tf.concat([item_emb_w, tf.nn.embedding_lookup(brand_emb_w, brand_list), tf.nn.embedding_lookup(msort_emb_w, msort_list)], axis=1) self.logits = tf.matmul(layer_3, all_emb, transpose_b=True) + item_b self.output = tf.nn.softmax(self.logits) def save(self, sess, path): # saver = tf.train.Saver(tf.global_variables(), max_to_keep=10) saver = tf.train.Saver() saver.save(sess, save_path=path) # saver.save(sess, '{}/Ytb-model'.format(self.checkpoint_dir), global_step=self.global_step) def restore(self, sess, path): saver = tf.train.Saver() saver.restore(sess, save_path=path) ''' ckpt = tf.train.get_checkpoint_state(self.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: print("Successfully loaded:", ckpt.model_checkpoint_path) saver.restore(self.sess, ckpt.model_checkpoint_path) '''
368ce9e63801f449031d431acdc5d7e45ecad9c8
c9047f676a29d58943865d548ae70e43014a5881
/tools/99_gdb/gdb_timers.py
17e393eb6360dd89da1ad58f6a1e191c31090749
[ "BSD-3-Clause" ]
permissive
danome/prod
578045cd7a552dced0a5733fcf8f303fe55e15b7
8c0bdc2c8e0939bf4d04e46e1171a55e43500346
refs/heads/tp-master
2021-01-17T21:10:35.987764
2018-10-16T00:29:08
2018-10-16T00:29:08
44,350,128
0
0
null
2015-10-15T22:55:07
2015-10-15T22:55:06
null
UTF-8
Python
false
false
4,385
py
# Setup required to use this module # # copy gdb_timers.py to <app>/.gdb_timers.py # and add "source .gdb/.gdb_timers.py" to the <app>/.gdbinit file. # from __future__ import print_function from binascii import hexlify timer_dict = { } def simple_timer_name(timer_id): t_name = 't' + str(timer_id) return t_name def timer_name(timer_id): t_name = timer_dict.get(timer_id, None) if t_name == None: t_name = 't' + str(timer_id) else: t_name = '{}/{}'.format(t_name, timer_id) return t_name class TimerTrace(gdb.Command): """Display TinyOS Virtual Timer Trace buffers.""" def __init__ (self): super(TimerTrace, self).__init__("timerTrace", gdb.COMMAND_USER) def invoke (self, args, from_tty): start_format = '{:4d} start {:8x} {:s}' stop_format = '{:4d} stop {:8x} {:s}' usecs_format = '{:4d} {:8x} {:s}' fired_format = '{:4d} fired {:8x} {:s}' end_format = '{:4d} end {:8x} {:s}' delta_format = '{:4d} delta {:8x} {:s}' oops_format = '{:4d} oops {:8x} {:s}' START_LT = int(gdb.parse_and_eval('VirtualizeTimerImplP__0__TVT_START_LT')) START_USECS = int(gdb.parse_and_eval('VirtualizeTimerImplP__0__TVT_START_USECS')) STOPPED = int(gdb.parse_and_eval('VirtualizeTimerImplP__0__TVT_STOPPED')) FIRED = int(gdb.parse_and_eval('VirtualizeTimerImplP__0__TVT_FIRED')) END = int(gdb.parse_and_eval('VirtualizeTimerImplP__0__TVT_END')) DELTA = int(gdb.parse_and_eval('VirtualizeTimerImplP__0__TVT_DELTA')) nxt = int(gdb.parse_and_eval('VirtualizeTimerImplP__0__nxt_vt')) xmax = int(gdb.parse_and_eval('sizeof(VirtualizeTimerImplP__0__vtimer_trace)/' 'sizeof(VirtualizeTimerImplP__0__vtimer_trace[0])')) last = nxt - 1 if last < 0: last = xmax - 1 cur = nxt if cur >= xmax: cur = 0 while True: vtp = gdb.parse_and_eval('VirtualizeTimerImplP__0__vtimer_trace[0d{}]'.format(cur)) timer_num = int(vtp['num']) ttype = vtp['ttype'] ttype_name = ttype.__str__().replace('VirtualizeTimerImplP__0__TVT_','') ttype_num = int(ttype) val = int(vtp['val']) if ttype == START_LT: print(start_format.format(timer_num, val, timer_name(timer_num))) elif ttype == START_USECS: print(usecs_format.format(timer_num, val, timer_name(timer_num))) elif ttype == STOPPED: print(stop_format.format(timer_num, val, timer_name(timer_num))) elif ttype == FIRED: print(fired_format.format(timer_num, val, timer_name(timer_num))) elif ttype == END: print(end_format.format(timer_num, val, timer_name(timer_num))) elif ttype == DELTA: print(delta_format.format(timer_num, val, timer_name(timer_num))) else: print(oops_format.format(timer_num, val, ttype_name, timer_name(timer_num))) if cur == last: break cur += 1 if cur >= xmax: cur = 0 class DispTimers(gdb.Command): """Display TinyOS Virtual Timers.""" def __init__ (self): super(DispTimers, self).__init__("dispTimers", gdb.COMMAND_USER) def invoke (self, args, from_tty): num = int(gdb.parse_and_eval('VirtualizeTimerImplP__0__NUM_TIMERS')) print(' t state t0 dt max') for cur in range(num): tp = gdb.parse_and_eval('VirtualizeTimerImplP__0__m_timers[0d{}]'.format(cur)) t0 = int(tp['t0']) dt = int(tp['dt']) fired_max = int(tp['fired_max_us']) oneshot = int(tp['isoneshot']) running = int(tp['isrunning']) print(' {:2d} {:s}{:s} {:8x} {:8x} {:8x} {:s}'.format( cur, 'O' if oneshot else 'o', 'R' if running else 'r', t0, dt, fired_max, timer_name(cur))) TimerTrace() DispTimers()
9540c5649ece4f24a73054fe3f97086de5daa416
5af39f520889df20411a64ac8da65e8f9f173aa7
/ex3k.py
823f2a161cab4a06d12d656580e8746ddafcf71a
[]
no_license
Simranbassi/python_grapees
25661565f475d0b50acda9925441703ed06b574a
8cadae5a17a74e98e37137538cc963e268a55513
refs/heads/master
2020-06-03T14:33:52.975614
2019-06-18T10:53:48
2019-06-18T10:53:48
191,606,877
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
num=int(input("enter the number")) if num>0: print(num) else : num=num*-1 print(num)
c693c124a93e14d681de6049ad1cd8167f791fa9
993ef8924418866f932396a58e3ad0c2a940ddd3
/Production/python/PrivateSamples/EMJ_UL17_mMed-1800_mDark-20_ctau-60_unflavored-down_cff.py
2a10520ef0ce0dd92221fa106cd5e687f6923570
[]
no_license
TreeMaker/TreeMaker
48d81f6c95a17828dbb599d29c15137cd6ef009a
15dd7fe9e9e6f97d9e52614c900c27d200a6c45f
refs/heads/Run2_UL
2023-07-07T15:04:56.672709
2023-07-03T16:43:17
2023-07-03T16:43:17
29,192,343
16
92
null
2023-07-03T16:43:28
2015-01-13T13:59:30
Python
UTF-8
Python
false
false
1,971
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, secondaryFileNames = secFiles) readFiles.extend( [ 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-1.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-10.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-2.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-3.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-4.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-5.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-6.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-7.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-8.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1800_mDark-20_ctau-60_unflavored-down_n-500_part-9.root', ] )
0441299322b4b0eead09496baefc06a63c96530a
96a2e3b24678451cebe8787a7ddaee72e44c29a8
/leads/migrations/0001_initial.py
6f72465ecbfb120cb5cf72df8ba14ad28ae5c063
[]
no_license
maanavshah/leadmanager-react-redux
09e728cd98e45c5a7400c2ceb24f4f3918ac7569
f5dd9d626a29d0cbf71787f9bc03c445769a1fb3
refs/heads/master
2023-02-22T16:46:55.062335
2021-01-26T10:54:38
2021-01-26T10:54:38
332,445,763
0
0
null
null
null
null
UTF-8
Python
false
false
707
py
# Generated by Django 3.1.5 on 2021-01-20 13:54 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Lead', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('email', models.EmailField(max_length=100, unique=True)), ('message', models.CharField(blank=True, max_length=200)), ('created_at', models.DateTimeField(auto_now_add=True)), ], ), ]
c5238ef53cf37785c24d9eb98650e18e36970b92
9efd272118e522f269b0e001b09bfbafd20bed61
/lpp/lexer.py
d2d66355cd8555f3c36db60f827f498d15d5d062
[]
no_license
UnPolinomio/lpp-language
9cc37317f93d938ffdd5664510824f26a4d8ef85
24d92601e7f73aca43d65164ac4ee4ace74d4f64
refs/heads/main
2023-07-01T11:48:28.242742
2021-08-02T00:22:16
2021-08-02T00:22:16
391,224,088
0
0
null
null
null
null
UTF-8
Python
false
false
4,801
py
from lpp.token import Token, TokenType, lookup_token_type from re import compile, Pattern from typing import NamedTuple class TokenRegex(NamedTuple): n_characters: int regex: Pattern[str] token_type: TokenType TOKEN_REGEX = [ TokenRegex(2, compile(r'^==$'), TokenType.EQ), TokenRegex(2, compile(r'^!=$'), TokenType.NOT_EQ), TokenRegex(1, compile(r'^=$'), TokenType.ASSIGN), TokenRegex(1, compile(r'^\+$'), TokenType.PLUS), TokenRegex(1, compile(r'^$'), TokenType.EOF), TokenRegex(1, compile(r'^\($'), TokenType.LPAREN), TokenRegex(1, compile(r'^\)$'), TokenType.RPAREN), TokenRegex(1, compile(r'^{$'), TokenType.LBRACE), TokenRegex(1, compile(r'^}$'), TokenType.RBRACE), TokenRegex(1, compile(r'^,$'), TokenType.COMMA), TokenRegex(1, compile(r'^;$'), TokenType.SEMICOLON), TokenRegex(1, compile(r'^<$'), TokenType.LT), TokenRegex(1, compile(r'^>$'), TokenType.GT), TokenRegex(1, compile(r'^-$'), TokenType.MINUS), TokenRegex(1, compile(r'^/$'), TokenType.DIVISION), TokenRegex(1, compile(r'^\*$'), TokenType.MULTIPLICATION), TokenRegex(1, compile(r'^!$'), TokenType.NEGATION), ] TOKEN_REGEX.sort(key=lambda x: x.n_characters, reverse=True) LETTER_REGEX = compile(r'^[a-záéíóúA-ZÁÉÍÓÚñÑ_]$') NUMBER_REGEX = compile(r'^[0-9]$') WHITESPACE_REGEX = compile(r'^\s+$') QUOTATION_REGEX = compile(r'^"$') class Lexer: def __init__(self, source: str) -> None: self._source = source self._character: str = '' # _character is the current character self._read_position: int = 0 # _read_position is the index of the next character to read self._position: int = -1 # _position is the index of the current character self._read_character() def next_token(self) -> Token: self._skip_whitespace() for (n_characters, regex, token_type) in TOKEN_REGEX: literal = self._character + self._peek_character(n_characters - 1) if regex.match(literal): token = Token(token_type, literal) self._read_character(n_characters=n_characters) return token if self._is_letter(self._character): literal = self._read_identifier() token_type = lookup_token_type(literal) return Token(token_type, literal) if self._is_number(self._character): literal = self._read_number() return Token(TokenType.INT, literal) if QUOTATION_REGEX.match(self._character): literal = self._read_string() return Token(TokenType.STRING, literal) token = Token(TokenType.ILLEGAL, self._character) self._read_character() return token def _is_letter(self, character: str) -> bool: return bool(LETTER_REGEX.match(character)) def _is_number(self, character: str) -> bool: return bool(NUMBER_REGEX.match(character)) def _read_character(self, n_characters: int = 1) -> None: new_position = self._position + n_characters if new_position >= len(self._source): self._character = '' self._read_position = len(self._source) + 1 self._position = len(self._source) else: self._character = self._source[new_position] self._read_position += n_characters self._position = self._read_position - 1 def _read_identifier(self) -> str: initial_position = self._position if not self._is_letter(self._character): return '' self._read_character() while self._is_letter(self._character) or self._is_number(self._character): self._read_character() return self._source[initial_position:self._position] def _read_number(self) -> str: initial_position = self._position while self._is_number(self._character): self._read_character() return self._source[initial_position:self._position] def _read_string(self) -> str: self._read_character() initial_position = self._position while not QUOTATION_REGEX.match(self._character) and self._read_position <= len(self._source): self._read_character() string = self._source[initial_position:self._position] self._read_character() return string def _skip_whitespace(self) -> None: while WHITESPACE_REGEX.match(self._character): self._read_character() def _peek_character(self, n_characters: int) -> str: if self._read_position + n_characters >= len(self._source): return self._source[self._read_position:] else: return self._source[self._read_position:self._read_position + n_characters]
28ea271d752771a20d12b624809f486ecf9a9f48
9cc714fc5bcd171014ca661ff57a9350e31480a2
/lib/python3.6/site-packages/Django-3.0a1-py3.6.egg/django/utils/feedgenerator.py
8f31827ccff1d67ba51262a85367651c437495c6
[]
no_license
softdeveloper84/currency_tracker
b137a2a4fb8ae7cd3a636c8089ff0f1ea5048d23
adfe2062bc7c913afa0b753bac7a17af1a9bc71b
refs/heads/master
2022-02-19T06:20:26.330358
2019-09-19T20:45:06
2019-09-19T20:45:06
208,907,338
1
0
null
null
null
null
UTF-8
Python
false
false
15,117
py
""" Syndication feed generation library -- used for generating RSS, etc. Sample usage: >>> from django.utils import feedgenerator >>> feed = feedgenerator.Rss201rev2Feed( ... title="Poynter E-Media Tidbits", ... link="http://www.poynter.org/column.asp?id=31", ... description="A group Weblog by the sharpest minds in online media/journalism/publishing.", ... language="en", ... ) >>> feed.add_item( ... title="Hello", ... link="http://www.holovaty.com/test/", ... description="Testing." ... ) >>> with open('test.rss', 'w') as fp: ... feed.write(fp, 'utf-8') For definitions of the different versions of RSS, see: https://utils.archive.org/utils/20110718035220/http://diveintomark.org/archives/2004/02/04/incompatible-rss """ import datetime import email from io import StringIO from urllib.parse import urlparse from django.utils.encoding import iri_to_uri from django.utils.timezone import utc from django.utils.xmlutils import SimplerXMLGenerator def rfc2822_date(date): if not isinstance(date, datetime.datetime): date = datetime.datetime.combine(date, datetime.time()) return email.utils.format_datetime(date) def rfc3339_date(date): if not isinstance(date, datetime.datetime): date = datetime.datetime.combine(date, datetime.time()) return date.isoformat() + ('Z' if date.utcoffset() is None else '') def get_tag_uri(url, date): """ Create a TagURI. See https://utils.archive.org/utils/20110514113830/http://diveintomark.org/archives/2004/05/28/howto-atom-id """ bits = urlparse(url) d = '' if date is not None: d = ',%s' % date.strftime('%Y-%m-%d') return 'tag:%s%s:%s/%s' % (bits.hostname, d, bits.path, bits.fragment) class SyndicationFeed: "Base class for all syndication feeds. Subclasses should provide write()" def __init__(self, title, link, description, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs): def to_str(s): return str(s) if s is not None else s categories = categories and [str(c) for c in categories] self.feed = { 'title': to_str(title), 'link': iri_to_uri(link), 'description': to_str(description), 'language': to_str(language), 'author_email': to_str(author_email), 'author_name': to_str(author_name), 'author_link': iri_to_uri(author_link), 'subtitle': to_str(subtitle), 'categories': categories or (), 'feed_url': iri_to_uri(feed_url), 'feed_copyright': to_str(feed_copyright), 'id': feed_guid or link, 'ttl': to_str(ttl), **kwargs, } self.items = [] def add_item(self, title, link, description, author_email=None, author_name=None, author_link=None, pubdate=None, comments=None, unique_id=None, unique_id_is_permalink=None, categories=(), item_copyright=None, ttl=None, updateddate=None, enclosures=None, **kwargs): """ Add an item to the feed. All args are expected to be strings except pubdate and updateddate, which are datetime.datetime objects, and enclosures, which is an iterable of instances of the Enclosure class. """ def to_str(s): return str(s) if s is not None else s categories = categories and [to_str(c) for c in categories] self.items.append({ 'title': to_str(title), 'link': iri_to_uri(link), 'description': to_str(description), 'author_email': to_str(author_email), 'author_name': to_str(author_name), 'author_link': iri_to_uri(author_link), 'pubdate': pubdate, 'updateddate': updateddate, 'comments': to_str(comments), 'unique_id': to_str(unique_id), 'unique_id_is_permalink': unique_id_is_permalink, 'enclosures': enclosures or (), 'categories': categories or (), 'item_copyright': to_str(item_copyright), 'ttl': to_str(ttl), **kwargs, }) def num_items(self): return len(self.items) def root_attributes(self): """ Return extra attributes to place on the root (i.e. feed/channel) element. Called from write(). """ return {} def add_root_elements(self, handler): """ Add elements in the root (i.e. feed/channel) element. Called from write(). """ pass def item_attributes(self, item): """ Return extra attributes to place on each item (i.e. item/entry) element. """ return {} def add_item_elements(self, handler, item): """ Add elements on each item (i.e. item/entry) element. """ pass def write(self, outfile, encoding): """ Output the feed in the given encoding to outfile, which is a file-like object. Subclasses should override this. """ raise NotImplementedError('subclasses of SyndicationFeed must provide a write() method') def writeString(self, encoding): """ Return the feed in the given encoding as a string. """ s = StringIO() self.write(s, encoding) return s.getvalue() def latest_post_date(self): """ Return the latest item's pubdate or updateddate. If no items have either of these attributes this return the current UTC date/time. """ latest_date = None date_keys = ('updateddate', 'pubdate') for item in self.items: for date_key in date_keys: item_date = item.get(date_key) if item_date: if latest_date is None or item_date > latest_date: latest_date = item_date # datetime.now(tz=utc) is slower, as documented in django.utils.timezone.now return latest_date or datetime.datetime.utcnow().replace(tzinfo=utc) class Enclosure: """An RSS enclosure""" def __init__(self, url, length, mime_type): "All args are expected to be strings" self.length, self.mime_type = length, mime_type self.url = iri_to_uri(url) class RssFeed(SyndicationFeed): content_type = 'application/rss+xml; charset=utf-8' def write(self, outfile, encoding): handler = SimplerXMLGenerator(outfile, encoding) handler.startDocument() handler.startElement("rss", self.rss_attributes()) handler.startElement("channel", self.root_attributes()) self.add_root_elements(handler) self.write_items(handler) self.endChannelElement(handler) handler.endElement("rss") def rss_attributes(self): return { 'version': self._version, 'xmlns:atom': 'http://www.w3.org/2005/Atom', } def write_items(self, handler): for item in self.items: handler.startElement('item', self.item_attributes(item)) self.add_item_elements(handler, item) handler.endElement("item") def add_root_elements(self, handler): handler.addQuickElement("title", self.feed['title']) handler.addQuickElement("link", self.feed['link']) handler.addQuickElement("description", self.feed['description']) if self.feed['feed_url'] is not None: handler.addQuickElement("atom:link", None, {"rel": "self", "href": self.feed['feed_url']}) if self.feed['language'] is not None: handler.addQuickElement("language", self.feed['language']) for cat in self.feed['categories']: handler.addQuickElement("category", cat) if self.feed['feed_copyright'] is not None: handler.addQuickElement("copyright", self.feed['feed_copyright']) handler.addQuickElement("lastBuildDate", rfc2822_date(self.latest_post_date())) if self.feed['ttl'] is not None: handler.addQuickElement("ttl", self.feed['ttl']) def endChannelElement(self, handler): handler.endElement("channel") class RssUserland091Feed(RssFeed): _version = "0.91" def add_item_elements(self, handler, item): handler.addQuickElement("title", item['title']) handler.addQuickElement("link", item['link']) if item['description'] is not None: handler.addQuickElement("description", item['description']) class Rss201rev2Feed(RssFeed): # Spec: https://cyber.harvard.edu/rss/rss.html _version = "2.0" def add_item_elements(self, handler, item): handler.addQuickElement("title", item['title']) handler.addQuickElement("link", item['link']) if item['description'] is not None: handler.addQuickElement("description", item['description']) # Author information. if item["author_name"] and item["author_email"]: handler.addQuickElement("author", "%s (%s)" % (item['author_email'], item['author_name'])) elif item["author_email"]: handler.addQuickElement("author", item["author_email"]) elif item["author_name"]: handler.addQuickElement( "dc:creator", item["author_name"], {"xmlns:dc": "http://purl.org/dc/elements/1.1/"} ) if item['pubdate'] is not None: handler.addQuickElement("pubDate", rfc2822_date(item['pubdate'])) if item['comments'] is not None: handler.addQuickElement("comments", item['comments']) if item['unique_id'] is not None: guid_attrs = {} if isinstance(item.get('unique_id_is_permalink'), bool): guid_attrs['isPermaLink'] = str(item['unique_id_is_permalink']).lower() handler.addQuickElement("guid", item['unique_id'], guid_attrs) if item['ttl'] is not None: handler.addQuickElement("ttl", item['ttl']) # Enclosure. if item['enclosures']: enclosures = list(item['enclosures']) if len(enclosures) > 1: raise ValueError( "RSS feed items may only have one enclosure, see " "http://www.rssboard.org/rss-profile#element-channel-item-enclosure" ) enclosure = enclosures[0] handler.addQuickElement('enclosure', '', { 'url': enclosure.url, 'length': enclosure.length, 'type': enclosure.mime_type, }) # Categories. for cat in item['categories']: handler.addQuickElement("category", cat) class Atom1Feed(SyndicationFeed): # Spec: https://tools.ietf.org/html/rfc4287 content_type = 'application/atom+xml; charset=utf-8' ns = "http://www.w3.org/2005/Atom" def write(self, outfile, encoding): handler = SimplerXMLGenerator(outfile, encoding) handler.startDocument() handler.startElement('feed', self.root_attributes()) self.add_root_elements(handler) self.write_items(handler) handler.endElement("feed") def root_attributes(self): if self.feed['language'] is not None: return {"xmlns": self.ns, "xml:lang": self.feed['language']} else: return {"xmlns": self.ns} def add_root_elements(self, handler): handler.addQuickElement("title", self.feed['title']) handler.addQuickElement("link", "", {"rel": "alternate", "href": self.feed['link']}) if self.feed['feed_url'] is not None: handler.addQuickElement("link", "", {"rel": "self", "href": self.feed['feed_url']}) handler.addQuickElement("id", self.feed['id']) handler.addQuickElement("updated", rfc3339_date(self.latest_post_date())) if self.feed['author_name'] is not None: handler.startElement("author", {}) handler.addQuickElement("name", self.feed['author_name']) if self.feed['author_email'] is not None: handler.addQuickElement("email", self.feed['author_email']) if self.feed['author_link'] is not None: handler.addQuickElement("uri", self.feed['author_link']) handler.endElement("author") if self.feed['subtitle'] is not None: handler.addQuickElement("subtitle", self.feed['subtitle']) for cat in self.feed['categories']: handler.addQuickElement("category", "", {"term": cat}) if self.feed['feed_copyright'] is not None: handler.addQuickElement("rights", self.feed['feed_copyright']) def write_items(self, handler): for item in self.items: handler.startElement("entry", self.item_attributes(item)) self.add_item_elements(handler, item) handler.endElement("entry") def add_item_elements(self, handler, item): handler.addQuickElement("title", item['title']) handler.addQuickElement("link", "", {"href": item['link'], "rel": "alternate"}) if item['pubdate'] is not None: handler.addQuickElement('published', rfc3339_date(item['pubdate'])) if item['updateddate'] is not None: handler.addQuickElement('updated', rfc3339_date(item['updateddate'])) # Author information. if item['author_name'] is not None: handler.startElement("author", {}) handler.addQuickElement("name", item['author_name']) if item['author_email'] is not None: handler.addQuickElement("email", item['author_email']) if item['author_link'] is not None: handler.addQuickElement("uri", item['author_link']) handler.endElement("author") # Unique ID. if item['unique_id'] is not None: unique_id = item['unique_id'] else: unique_id = get_tag_uri(item['link'], item['pubdate']) handler.addQuickElement("id", unique_id) # Summary. if item['description'] is not None: handler.addQuickElement("summary", item['description'], {"type": "html"}) # Enclosures. for enclosure in item['enclosures']: handler.addQuickElement('link', '', { 'rel': 'enclosure', 'href': enclosure.url, 'length': enclosure.length, 'type': enclosure.mime_type, }) # Categories. for cat in item['categories']: handler.addQuickElement("category", "", {"term": cat}) # Rights. if item['item_copyright'] is not None: handler.addQuickElement("rights", item['item_copyright']) # This isolates the decision of what the system default is, so calling code can # do "feedgenerator.DefaultFeed" instead of "feedgenerator.Rss201rev2Feed". DefaultFeed = Rss201rev2Feed
872e4b1067be2faaeadf9080be75b0cd11135a5c
f374cbc5ce21cad22bb2b8d28d249bcba28b9025
/generator/group.py
41991721998b7238bdc788a329eefeecfadc60fb
[ "Apache-2.0" ]
permissive
nechaeva-irina/python_training
064eb7ec4bff04723bcfcd874f4ffe8e86e369b0
f4e4c1788525b64ce86eefe261cdb4adfa32f839
refs/heads/main
2023-02-08T21:25:12.638509
2020-12-31T11:03:04
2020-12-31T11:03:04
306,890,209
0
0
null
null
null
null
UTF-8
Python
false
false
1,021
py
# -*- coding: utf-8 -*- from model.group import Group import random import string import os.path import jsonpickle import getopt import sys try: opts, args = getopt.getopt(sys.argv[1:], "n:f:", ["number of groups", "file"]) except getopt.GetoptError as err: print(err) getopt.usage() sys.exit(2) n = 5 f = "data/groups.json" for o, a in opts: if o == "-n": n = int(a) elif o == "-f": f = a def random_string(prefix, maxlen): symbols = string.ascii_letters + string.digits + " " * 10 return prefix + "".join([random.choice(symbols) for i in range(random.randrange(maxlen))]) testdata = [Group(name="", header="", footer="")] + [ Group(name=random_string("name", 10), header=random_string("header", 20), footer=random_string("footer", 20)) for i in range(n) ] file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", f) with open(file, "w") as out: jsonpickle.set_encoder_options("json", indent=2) out.write(jsonpickle.encode(testdata))
662df77b0315dc3d3f49efb24dc706cd6a9adf76
6ff196d013be61815db06580c98133f8f70dd389
/bike/settings.py
27f27f50e232dff07ef0c841a2e475d6628d091b
[]
no_license
B0rjitaaa/bikes
0629ac5418612c1f9bdafe3b97719cf7dfadc840
fb7298b6558462ac218768c768b9d1989d8c9c93
refs/heads/master
2016-09-01T08:37:22.872400
2016-01-09T17:46:06
2016-01-09T17:46:06
49,059,366
0
0
null
null
null
null
UTF-8
Python
false
false
3,910
py
""" Django settings for bike project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) IS_ON_OPENSHIFT = False if 'OPENSHIFT_REPO_DIR' in os.environ: IS_ON_OPENSHIFT = True # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 's7&&h8rw+ev#hp_7t#tl5tmeu-x8s3lkg0vh%6#$+s8xdil7jv' # SECURITY WARNING: don't run with debug turned on in production! if IS_ON_OPENSHIFT: DEBUG = False TEMPLATE_DEBUG = False else: DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'shop' ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'bike.urls' WSGI_APPLICATION = 'bike.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'es_ES' TIME_ZONE = 'Europe/Madrid' USE_I18N = True USE_L10N = True USE_TZ = True DATE_FORMAT = 'd/m/Y' DATE_INPUT_FORMATS = ('%d/%m/%Y',) DATETIME_INPUT_FORMATS = ('%d/%m/%Y %H:%M',) # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/' if IS_ON_OPENSHIFT: STATIC_ROOT = os.path.join(os.environ.get('OPENSHIFT_REPO_DIR'), 'wsgi', 'static') else: STATIC_ROOT = os.path.join(BASE_DIR, 'wsgi', 'static') if IS_ON_OPENSHIFT: STATICFILES_DIRS = ( os.path.join(os.environ.get('OPENSHIFT_REPO_DIR'), 'static'), ) else: STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), # Needed for the general static files ) STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'django.contrib.staticfiles.finders.FileSystemFinder', ) # Media files (Uploaded files) if IS_ON_OPENSHIFT: MEDIA_URL = '/static/media/' MEDIA_ROOT = os.path.join(os.environ.get('OPENSHIFT_DATA_DIR'), 'media') else: MEDIA_URL = '/images/' MEDIA_ROOT = os.path.join(BASE_DIR, 'images') # Debug Mode in terminal LOGGING = { 'version': 1, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, 'simple': { 'format': '%(levelname)s %(message)s' }, }, 'handlers': { 'console': { 'level': 'WARNING', 'class': 'logging.StreamHandler', 'formatter': 'simple' }, }, 'loggers': { 'django': { 'handlers': ['file'], 'level': 'WARNING', 'propagate': True, }, } } for logger in LOGGING['loggers']: LOGGING['loggers'][logger]['handlers'] = ['console']
9fe39473b2a83f53bf55e35d99c1defac0fc2043
a2b60aebc26c35baf8e06300893edb3bd1fa9670
/extune/tune/utils.py
6ff16ff6e7fa5923992d5e9902b64809c1a936e6
[ "MIT" ]
permissive
imsb-uke/podometric_u_net
81322df451459434e4e36149013d93a5d24bb41c
a33afcc186d618889df73c7ab2941dfbb63574ac
refs/heads/main
2023-02-05T21:07:46.342749
2020-12-23T15:25:51
2020-12-23T15:25:51
323,162,676
0
0
null
null
null
null
UTF-8
Python
false
false
879
py
import tensorflow class TuneKerasCallback(tensorflow.keras.callbacks.Callback): def __init__(self, reporter, config, logs={}): self.reporter = reporter self.config = config self.iteration = 0 self.logs_copy = {} super(TuneKerasCallback, self).__init__() def on_train_end(self, logs={}): print(logs) print(self.logs_copy) self.reporter( timesteps_total=self.iteration, done=1, val_metric=(1.0 - float(self.logs_copy["val_" + self.config.METRIC[self.config.MONITORED_METRIC]]))) def on_epoch_end(self, epoch, logs={}): print(logs) self.logs_copy = logs self.iteration += 1 self.reporter( timesteps_total=self.iteration, val_metric=(1.0 - float(self.logs_copy["val_" + self.config.METRIC[self.config.MONITORED_METRIC]])))
04df0299ef957d4333f41b335d3239c4a60fb66b
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/d6fd4eb8e6b84d51b7344f8a2c9321faf1dd0ce3-<create_bgp_import_route>-bug.py
73177bc6902d60f22d29709d05ea09df2e20461c
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
808
py
def create_bgp_import_route(self, **kwargs): ' create_bgp_import_route ' module = kwargs['module'] vrf_name = module.params['vrf_name'] af_type = module.params['af_type'] import_protocol = module.params['import_protocol'] import_process_id = module.params['import_process_id'] if ((import_protocol == 'direct') or (import_protocol == 'static')): import_process_id = '0' conf_str = (CE_CREATE_BGP_IMPORT_ROUTE % (vrf_name, af_type, import_protocol, import_process_id)) recv_xml = self.netconf_set_config(module=module, conf_str=conf_str) if ('<ok/>' not in recv_xml): module.fail_json(msg='Error: Create bgp import route failed.') cmds = [] cmd = ('import-route %s %s' % (import_protocol, import_process_id)) cmds.append(cmd) return cmds
30311f47ca61590596c3277770b649a5a3a5f480
47109d686222fcb36fbdd95994e4458b9bda867b
/Exercises/list_factors.py
a35ca857ca5b8f134f91f1434e98ad9d0b9eef0f
[]
no_license
gormac23/Python
641fc800775eaa250a59aad3f8e8164ef5e43452
fead3432302c689f8b0b3d50b7c4a771b7d39262
refs/heads/master
2021-07-11T09:40:53.058073
2020-11-30T10:27:22
2020-11-30T10:27:22
222,804,711
0
0
null
2019-11-20T12:27:16
2019-11-19T22:47:46
Python
UTF-8
Python
false
false
594
py
def list_factors(x): # We will store all factors in factors factors = [] i = 1 while i*i <= x: # Check if i divides x without leaving a remainder if x % i == 0: factors.append(i) # If it does, find the matching factor, i.e. how mnay times it divideds if x//i != i: factors.append(x//i) i += 1 # Return the list of factors of x return factors def main(): factor = int(input("Enter number you want factor list of...")) print(list_factors(factor)) if __name__ == '__main__': main()
38483227c506a6ba14ddc65b05ab9de16db49c85
496a55a346c08798186c0f4cefbf3aa4c3e598b8
/test/bot_gateway/bot_gateway_test.py
649aad50c2ca1e08f3d7dd460f095867331ed288
[ "MIT" ]
permissive
olivierSaintCyr/BigBot
adb1d8982b60d60b6250371811f953fedaa423ed
3db5c07fbfc6f66f59cab91318282abfce210314
refs/heads/main
2023-03-12T20:27:25.687768
2021-03-01T06:31:49
2021-03-01T06:31:49
343,248,642
1
0
null
null
null
null
UTF-8
Python
false
false
492
py
import requests BASE = "http://localhost:5000/" query_good = {"server_id":"799761080720687164", "service":"echo_test"} query_not_sub = {"server_id":"799761080720687164", "service":"not_a_service"} query_server_not_setup = {"server_id":"799761080720687160", "service":"echo_test"} response = requests.get(BASE, query_good) print(response.json()) response = requests.get(BASE, query_not_sub) print(response.json()) response = requests.get(BASE, query_server_not_setup ) print(response.json())
8b617444a7d6c9cb578d137482b6b235bd235f9a
d6475976a503e78fb52cdba57124f8cd98a178bc
/PagesApp/pages_project/settings.py
9a18100a92ea8855bfa57cafd5d8503c3d84bf7c
[]
no_license
alexprodan99/TrainingDJango
0d61db72d3ae58d90e35e46cbdb18aa535505c23
6c2543aea68c00d5b65505caa6eb3b276c374d92
refs/heads/master
2021-01-01T02:49:18.093373
2020-02-29T15:34:59
2020-02-29T15:34:59
239,149,078
0
0
null
2020-02-09T13:18:17
2020-02-08T14:51:37
Python
UTF-8
Python
false
false
3,174
py
""" Django settings for pages_project project. Generated by 'django-admin startproject' using Django 2.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'vg!x!k5$u+yr4d*_05gz*se10b!5!)&1&v&9o&wn4s)o$de5j6' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'pages.apps.PagesConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'pages_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR,'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'pages_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
a650fc0ebfb9eeaaa1ef45b563caca1ab197d0af
709034a7ad54aefe36c3fd7c26bf13c975a2afcb
/bin/converter_grpah.py
b8f777f49b541e208c2b2800d884fec371f26cd5
[ "Apache-2.0" ]
permissive
zh794390558/ML-KWS-for-MCU
d57023ae9c275984c711e2e47009091186b7de85
38f4dcec9ac2e74154a024a7795459a3049efd0d
refs/heads/master
2021-08-18T07:29:17.108746
2018-11-12T09:32:36
2018-11-12T09:32:36
137,883,318
0
0
null
2018-06-19T11:38:35
2018-06-19T11:38:35
null
UTF-8
Python
false
false
1,492
py
# This file is useful for reading the contents of the ops generated by ruby. # You can read any graph defination in pb/pbtxt format generated by ruby # or by python and then convert it back and forth from human readable to binary format. from absl import app as absl_app from absl import flags import tensorflow as tf from google.protobuf import text_format from tensorflow.python.platform import gfile def pbtxt_to_graphdef(filename): with open(filename, 'r') as f: graph_def = tf.GraphDef() file_content = f.read() text_format.Merge(file_content, graph_def) tf.import_graph_def(graph_def, name='') tf.train.write_graph(graph_def, 'pbtxt/', 'protobuf.pb', as_text=False) def graphdef_to_pbtxt(filename): with gfile.FastGFile(filename,'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='') tf.train.write_graph(graph_def, 'pbtxt/', 'protobuf.pbtxt', as_text=True) return def main(_): FLAGS = flags.FLAGS if FLAGS.binary: graphdef_to_pbtxt(FLAGS.graph_file) # here you can write the name of the file to be converted else: pbtxt_to_graphdef(FLAGS.graph_file) if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) tf.flags.DEFINE_string('graph_file', default=None, help='graph.pb file name') tf.flags.DEFINE_bool('binary', default=True, help='binary graph file or not') absl_app.run(main) # and then a new file will be made in pbtxt directory.
7f7eccfa7cfae87b951c259963ece51c6d6df66f
884112003b7bd1e200325bba3e3ac9a2f9d3ea8b
/server/samba/actions.py
5ec098de997fba2224528230be1acdd5d083749a
[]
no_license
pars-linux/pardus-1.0
e1a4049c17ac9f2fbc2ae50c61d81c15e03e5823
4d2196b7558b3870908e799e02568ee9a6eee419
refs/heads/master
2021-01-24T19:12:02.809085
2006-06-14T07:07:39
2006-06-14T07:07:39
82,460,626
1
0
null
null
null
null
UTF-8
Python
false
false
3,815
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2005 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/copyleft/gpl.txt. # # Name <email@address> from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import shelltools from pisi.actionsapi import get def setup(): shelltools.cd("source/") autotools.autoconf() autotools.configure("--with-fhs \ --sysconfdir=/etc/samba \ --localstatedir=/var \ --with-configdir=/etc/samba \ --with-libdir=/usr/lib/samba \ --with-piddir=/var/run/samba \ --with-lockdir=/var/cache/samba \ --with-logfilebase=/var/log/samba \ --with-privatedir=/var/lib/samba/private \ --with-libsmbclient \ --without-spinlocks \ --with-acl-support \ --with-aio-support \ --enable-cups \ --with-pam \ --with-pam_smbpass \ --with-python \ --with-quotas \ --with-sys-quotas \ --with-readline \ --with-smbmount \ --with-syslog \ --with-expsam=xml \ --without-ldapsam \ --with-winbind \ --with-shared-modules=idmap_rid") def build(): shelltools.cd("source/") autotools.make("proto") autotools.make("everything") # build python modules shelltools.system("python python/setup.py build") def install(): shelltools.cd("source/") autotools.rawInstall("DESTDIR=%s" % get.installDIR(), "install-everything") # remove invalid symlink pisitools.remove("/sbin/mount.smbfs") # Nsswitch extensions. Make link for wins and winbind resolvers pisitools.dolib_so("nsswitch/libnss_wins.so") pisitools.dosym("libnss_wins.so", "/usr/lib/libnss_wins.so.2") pisitools.dolib_so("/nsswitch/libnss_winbind.so") pisitools.dosym("libnss_winbind.so", "/usr/lib/libnss_winbind.so.2") # pam extensions pisitools.doexe("bin/pam_smbpass.so", "/lib/security") pisitools.doexe("nsswitch/pam_winbind.so", "/lib/security") pisitools.dodir("/sbin") pisitools.dosym("/usr/bin/smbmount", "/sbin/mount.smbfs") pisitools.dosym("/usr/bin/mount.cifs", "/sbin/mount.cifs") # needed symlink pisitools.dosym("samba/libsmbclient.so", "/usr/lib/libsmbclient.so.0") pisitools.dosym("samba/libsmbclient.so", "/usr/lib/libsmbclient.so") # cups support pisitools.dodir("/usr/lib/cups/backend") pisitools.dosym("/bin/smbspool", "/usr/lib/cups/backend/smb") # directory things pisitools.dodir("/var/spool/samba") pisitools.chown("/var/spool/samba", "01777") pisitools.dodir("/var/log/samba") pisitools.dodir("/var/run/samba") pisitools.dodir("/var/cache/samba") pisitools.dodir("/var/lib/samba/netlogon") pisitools.dodir("/var/lib/samba/profiles") pisitools.dodir("/var/lib/samba/printers/W32X86") pisitools.dodir("/var/lib/samba/printers/WIN40") pisitools.dodir("/var/lib/samba/printers/W32ALPHA") pisitools.dodir("/var/lib/samba/printers/W32MIPS") pisitools.dodir("/var/lib/samba/printers/W32PPC") pisitools.dodir("/usr/lib/samba/auth") pisitools.dodir("/usr/lib/samba/idmap") pisitools.dodir("/usr/lib/samba/auth") # install python modules shelltools.system("python python/setup.py install --root=%s" % get.installDIR())
d3d3080077d5aec86def74dd226754e332a1d179
24a1da610a57d9558a7261ed9ca92b20d8689634
/June/48Day/All_Paths_From_Source_to_Target_144ms_15.8mb.py
a3c26ce5b93ff3ce602dec9785daf5399496efdf
[]
no_license
JadeKim042386/LeetCode
b5b70a8100a19d705150f276ee8e0dc11c5038b2
77234a14dc97bd0e023842cd57698b37d1460511
refs/heads/master
2023-06-09T20:16:36.352246
2021-07-06T09:25:15
2021-07-06T09:25:15
349,680,046
0
0
null
null
null
null
UTF-8
Python
false
false
974
py
from typing import List from collections import deque # BFS class Solution: def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]: answer = [] end = max([max(i) for i in graph if len(i)]) m, n = len(graph), len(graph[0]) q = deque([[0]]) while q: cur_path = q.popleft() cur_node = cur_path[-1] nxt_nodes = graph[cur_node] if cur_path[-1] == end: answer.append(cur_path) else: for nxt_node in nxt_nodes: q.append(cur_path + [nxt_node]) return answer ''' from collections import deque class Solution: def allPathsSourceTarget(self, graph): def dfs(cur, path): if cur == len(graph) - 1: res.append(path) else: for i in graph[cur]: dfs(i, path + [i]) res = [] dfs(0, [0]) return res '''
1f4d159101bca3e1e85456a9c828e3e82757ec28
2521e6427a7668d8cc91eabb368a5cf0eb7310f9
/Cap13_Date&Time/06_gmtime.py
f3cec30d0e447568a0954814f81fa192e849d239
[]
no_license
frclasso/turma3_Python1_2018
4a7bc0ba0eb538100400c15fc5c5b3ac1eeb7e50
47cd3aaa6828458b7f5164a8bce717bb8dd83a7c
refs/heads/master
2020-04-06T16:18:00.889198
2019-06-10T15:11:32
2019-06-10T15:11:32
157,614,408
1
1
null
null
null
null
UTF-8
Python
false
false
84
py
#!/usr/bin/env python3 import time print('gmtime', time.gmtime(1547073589.537185))
8bfacc9a6ebf6d271091d9203ff0b250d4c453c8
e69f4daddf771f154c55bef4f0b8e667f453ebcd
/Assignment_07/Question_04.py
9ba49fac0c207551270aa0774df6f73d3ece2d80
[]
no_license
ismailsinansahin/PythonAssignments
b03eb0000838594e6e3d5e230c29b5de0f793906
20bbc5598a3b1dd7cfc114f4e121ba5575e6be17
refs/heads/master
2022-04-09T14:39:59.868718
2020-03-11T12:26:22
2020-03-11T12:26:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
299
py
row = int(input("Please enter the upper number: ")) for i in range(1,row+1): for j in range(1,i+1): if j%2!=0: print("1",end="") else: print("0",end="") print("") # Please enter the upper number: 7 # 1 # 10 # 101 # 1010 # 10101 # 101010 # 1010101
cf513806ff9e036486c751330f323fe84b059ffa
48377e027a031036b9ebc5c9dcfc9a35ceed76d7
/ykdl/extractors/ifeng/gongkaike.py
55c7079ea75809bb3f1aeb472bbf3085dc4bc035
[ "MIT" ]
permissive
MichioY/bilibiliupload
ed83a3836b09365f801ba93d5de818c2de147fbf
623e0d06e6acb4b5f2c3d6291450f27bbf83667e
refs/heads/master
2020-06-25T21:22:15.097945
2019-07-28T09:54:29
2019-07-28T09:54:29
199,425,286
1
0
MIT
2019-07-29T09:48:56
2019-07-29T09:48:56
null
UTF-8
Python
false
false
1,138
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from ykdl.extractor import VideoExtractor from ykdl.videoinfo import VideoInfo from xml.dom.minidom import parseString from ykdl.util.html import get_content from ykdl.util.match import match1, matchall class IfengOpenC(VideoExtractor): name = u'凤凰公开课 (ifeng open course)' def prepare(self): info = VideoInfo(self.name) if not self.vid: self.vid= match1(self.url, '#([a-zA-Z0-9\-]+)', '/([a-zA-Z0-9\-]+).shtml') if not self.vid: html = get_content(self.url) self.vid = match1(html, '"vid": "([^"]+)', 'vid: "([^"]+)') xml = get_content('http://vxml.ifengimg.com/video_info_new/{}/{}/{}.xml'.format(self.vid[-2], self.vid[-2:], self.vid)) info.title = match1(xml, 'SE_Title="([^"]+)') urls = matchall(xml, ['playurl="([^"]+)']) urls = ['http://ips.ifeng.com/' + u[7:] for u in urls ] info.stream_types.append('current') info.streams['current'] = {'container': 'mp4', 'video_profile': 'current', 'src' : urls, 'size': 0} return info site = IfengOpenC()
b91266a173a0d0de9baadd96961442fa038891e4
be652b0b1b255df320d244caf115e6fabb60c77d
/bhp2/bh_ssh_scp.py
f74c19cdb7079c41cd63bb4427050c5df67a6d92
[]
no_license
bpinkert/portfolio
4b505458bbdca3bada05039ea791c6cba3e58ffd
d8ff0582611f9dabaeee6d6ae94113fd17b98ccb
refs/heads/master
2022-12-05T08:25:10.105766
2019-06-24T22:25:59
2019-06-24T22:25:59
192,994,316
0
0
null
null
null
null
UTF-8
Python
false
false
597
py
#!/home/bpubi/Devel/bhp/py2.7.3/bin/python2.7 import threading import paramiko import subprocess def ssh_command(ip, user, passwd, command): client = paramiko.SSHClient() #client.load_host_keys('/home/bpubi/.ssh/known_hosts') client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect(ip, username=user, password=passwd) ssh_session = client.get_transport().open_session() if ssh_session.active: ssh_session.exec_command(command) print ssh_session.recv(1024) return ssh_command('', '', '', '')
6dcd3e1acaa627be37e9626af756bc8e9d3cf49d
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/8/sT5.py
06899f2942ca4deac672a79c7a4f6261974d0e27
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'sT5': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
3c98110e0218be3a1f361b9580924a45f5b84b29
dab8f93ce0cbe8a63a980c40ff97590a32f74472
/mp_sort/application.py
b08a5a29d7f3f6319cfc4d5f68a0ce4f2bc52d2b
[ "MIT" ]
permissive
AlkaffAhamed/fip_powerx_mini_projects
549040f981413d452d209a182970674df1943dd0
3bc9c8b4bc7ce49603b0824da354c74f4d223117
refs/heads/master
2023-07-20T00:49:09.085118
2021-08-12T14:55:28
2021-08-12T14:55:28
388,461,044
0
1
MIT
2021-07-25T16:50:54
2021-07-22T12:52:05
Python
UTF-8
Python
false
false
112
py
from app import application if __name__ == "__main__": application.run(host="0.0.0.0", port=8080, debug=True)
955e461abb4b7873b67c0b2439879de2661d65b1
b81668a2cc43654cf6a3ed952d781310876838f9
/venv/Lib/site-packages/spacy/lang/en/syntax_iterators.py
86695cf6f2a3d3fdb3f04bd8679ff5376299d0b6
[]
no_license
gowthamr1999/docbot-1
6a8b873407f15035fb8b30b69ed66ded343bd1e4
3119958d68e95673b4c9187d58d8cad5c18a6b2c
refs/heads/master
2023-04-07T02:16:55.574750
2021-04-16T02:52:38
2021-04-16T02:52:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,547
py
from ...symbols import NOUN, PROPN, PRON def noun_chunks(obj): """ Detect base noun phrases from a dependency parse. Works on both Doc and Span. """ labels = [ "nsubj", "dobj", "nsubjpass", "pcomp", "pobj", "dative", "appos", "attr", "ROOT", ] doc = obj.doc # Ensure works on both Doc and Span. np_deps = [doc.vocab.strings.add(label) for label in labels] conj = doc.vocab.strings.add("conj") np_label = doc.vocab.strings.add("NP") seen = set() for i, word in enumerate(obj): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.i in seen: continue if word.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.i + 1)) yield word.left_edge.i, word.i + 1, np_label elif word.dep == conj: head = word.head while head.dep == conj and head.head.i < head.i: head = head.head # If the head is an NP, and we're coordinated to it, we're an NP if head.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.i + 1)) yield word.left_edge.i, word.i + 1, np_label SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}
d466f2fffdbb03cdaea47b83eeaafc9ac11fd8e4
52a930e04ebae70eca592eac7bced74aff8a1702
/test/two.py
41cd72fb91d718e7c73bd11eb88757b4c362492f
[]
no_license
lifengze97/LI-FENGZE-work-portfolio
cd05f53222bd6d8906b6bc00d80c195e836a8e36
668b4641ae7995645e765eb66970ce410967e84b
refs/heads/master
2020-05-21T15:36:17.841891
2019-05-11T06:35:00
2019-05-11T06:35:00
186,095,306
0
0
null
null
null
null
UTF-8
Python
false
false
8,217
py
import numpy as np import cv2 as cv import mnist from operator import itemgetter def measure(image): blur = cv.GaussianBlur(image, (5, 5), 0) cv.imwrite("./aa/1.jpg", blur) gray = cv.cvtColor(blur, cv.COLOR_RGB2GRAY) cv.imwrite("./aa/2.jpg", gray) _, out = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU) cv.imwrite("./aa/3.jpg", out) ret, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU) # ------------------------------------------------------------------------------------ # 最重要的调参位置 --- (71,71) --- 要使用奇数 --- 根据手写的图片调节 # ------------------------------------------------------------------------------------ kernel = cv.getStructuringElement(cv.MORPH_RECT, (111,111)) erode = cv.dilate(thresh, kernel) cv.imwrite("./aa/4.jpg", erode) clone_image, contours, hierarchy = cv.findContours(erode, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) all = [] for i, contour in enumerate(contours): x1, y1, w1, h1 = cv.boundingRect(contour) cv.rectangle(image, (x1, y1), (x1 + w1, y1 + h1), (0, 255, 0), 2) img = out[y1:(y1 + h1), x1:(x1 + w1)] clone_image, contours, hierarchy = cv.findContours(img, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # ------------------------------------------------------------------------------------ # # 识别两位数字的主要思想 ---> # 使用 --- 使用形态学转换 --- 膨胀 --- 去掉两个数字之间的间隔 --- 得到两个数字的轮廓,外包矩形 --- # --- 在小矩形内部继续找数字的轮廓 --- 识别出两个数字 --- 这两个数字识别的顺序不定,可能是先识别到前面的数字 # 也可能先识别到后面的数字,所以对两个数字的位子进行判断 --- r得到正确的顺序 --- 在图像上显示正确的数字 # # 简单说就是在大轮廓中找到小的轮廓,再对小的轮廓进行处理,得到正确的数字 --- # x, y, w, h = cv.boundingRect(contour) --- 得到大矩形内部小矩形的四个参数 --- 左上角的横坐标,纵坐标,宽,高 # cv.rectangle --- 绘制小矩形 # if h > 50: --- 对小矩形进行一个判断,达到一定大小的时候,才认为矩形框里面确实是存在数字, # result = img[y:(y + h), x:(x + w)] --- 得到小矩形内部的图像 # constant = cv.copyMakeBorder --- 对小矩形加一个轮廓 --- 原因是训练数据集的图片中的数字都在中间的位置 # cv.imwrite --- 将处理后的图片保存 # predict = mnist.recognition(_dir) --- 识别得到数字 # cv.putText --- 绘制通过神经网络得到的数字 # res.append([predict, x]) --- 将得到的预测数字和小框左上角的横坐标保存在res中 --- # 之后 --- 一个大矩形循环后 --- 用于判断识别的数字是在第一个位置还是在第二个位置 # cv.imshow('rect', image) --- 显示的作用 # # ------------------------------------------------------------------------------------ res = [] for j, contour in enumerate(contours): x, y, w, h = cv.boundingRect(contour) cv.rectangle(image, (x1+x, y1+y), (x1+x+w, y1+y+h), (0, 0, 255), 2) if h > 50: result = img[y:(y + h), x:(x + w)] black = [0, 0, 0] constant = cv.copyMakeBorder(result, 40, 40, 40, 40, cv.BORDER_CONSTANT, value=black) _dir = './data/' + str(j) + '.png' cv.imwrite('./data/' + str(j) + '.png', constant) predict = mnist.recognition(_dir) text = "{}".format(predict[0]) cv.putText(image, text, (int(x1+x), int(y1+y)), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) res.append([predict, x]) cv.imshow('rect', image) cv.waitKey(0) print(res) # ------------------------------------------------------------------------------------ # # 下面的代码用于判断一个大矩形中识别的数字哪一个是在第一个位置,哪一个是在第二个位置 # if len(res) == 1: --- 这个用于处理单个数字 --- 如果是单个数字直接绘制识别的数字即可 --- # all.append([x1, y1, str(res[0][0][0])]) --- all --- 用于存放所有的数字(大矩形里面的数字,一位或者两位) # --- 这个用于最后的排序,因为大矩形框的识别也不是按照顺序识别的 --- 所以需要判断 --- # if len(res) == 2: --- 这个用于处理两位数字 --- # res类型 --- [[array([4]), 35], [array([6]), 148]] --- [array([4]), 35] --- 第一个小矩形 --- 内部数字是4 # --- [array([6]), 148] --- 第二个小矩形 --- 内部数字是6 # res[0][1] --- 35, res[1][1] --- 148,可以判断出4所在的小矩形在前面,6所在的小矩形在后面 # --- 于是这样得到了大矩形里面的数字是 --- 46 # 同理 --- 第一个识别个位数的小矩形,第二次得到十位数的小矩形 --- 这样的也可以按照正常的顺序排列 # text = '' --- 初始化一个存放字符的变量 # res --- [[array([4]), 35], [array([6]), 148]] # res[0] --- [array([4]), 35] # res[0][0] --- [4] # res[0][0][0] --- 4 # # res[1][0][0] --- 得到的是数字,但是要转成字符串的形式 --- str() # # ------------------------------------------------------------------------------------ print(res) if len(res) == 1: cv.putText(image, str(res[0][0][0]), (int(x1), int(y1-30)), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) all.append([x1, y1, str(res[0][0][0])]) if len(res) == 2: if res[0][1] > res[1][1]: text = '' text += str(res[1][0][0]) text += str(res[0][0][0]) print(text) cv.putText(image, text, (int(x1), int(y1 - 30)), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) all.append([x1, y1, text]) else: text = '' text += str(res[0][0][0]) text += str(res[1][0][0]) print(text) cv.putText(image, text, (int(x1), int(y1 - 30)), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) all.append([x1, y1, text]) # ------------------------------------------------------------------------------------ # # 两位数字的保存 --- 可以保存一行数字,或者一列数字,两行数字现在还没有想到合适的算法 # 混乱排序的数字 --- [[1300, 173, '46'], [982, 159, '23'], [721, 151, '11'], [393, 111, '7'], [18, 107, '10']] # --- 拿出一个解释 --- [1300, 173, '46'] --- 第一个是大轮廓的横坐标,第二个是大轮廓的纵坐标,第三个是大轮廓里面识别出的数字 # 顺序排列的数字 --- [[18, 107, '10'], [393, 111, '7'], [721, 151, '11'], [982, 159, '23'], [1300, 173, '46']] # sorted(all, key=(lambda x: [x[0], x[1]])) --- 排序 --- 以第一个位置的数据为主关键字,第二个位置为辅助关键字 # --- 这个是按照X的大小来排序 --- 横轴较小的排在前面,也可以按照Y轴的大小进行排序 --- 用于处理竖排的数字 # 处理之后的数字保存在txt文件中,在txt中储存的是字符,所以要转换数据类型,然后在后面加入一个换行符,这样出来的格式比较清晰 # with open('./data/data.txt', 'w') as f: --- 打开txt文件, # f.write --- 写入数据 # # ------------------------------------------------------------------------------------ print(all) all = sorted(all, key=(lambda x: [x[0], x[1]])) print(all) with open('./data/data.txt', 'w') as f: for i in range(0, len(all)): f.write(str(all[i][2]) + "\n") src = cv.imread('./data/test10.jpeg') measure(src) cv.waitKey(0) cv.destroyAllWindows()
76a7f7756f97cde7cf7dfa05108ed98396a6ec61
6e4ac1a8bb85b7b39c173adfc14d1d4d70a79e03
/question/permissions.py
4dbbf6e96f76a960bdbc107041cb7b188622384e
[ "MIT" ]
permissive
salva-imm/backend
4f860da4efd374daa06349dde96e53820f497596
4201eccac5c040caac8330911ed0530385dd1b69
refs/heads/master
2023-04-11T16:09:08.182517
2021-05-05T12:24:59
2021-05-05T12:24:59
364,716,745
1
0
MIT
2021-05-05T22:04:11
2021-05-05T22:04:10
null
UTF-8
Python
false
false
725
py
from datetime import datetime, timedelta from utilities.exceptions import CustomException from question.models import Question, Answer def check_create_question_permission(user, company): last_question = Question.objects.filter(company=company, creator=user).last() if not last_question: return elif last_question.created + timedelta(days=5) < datetime.now(): return else: raise CustomException(detail='You question before', code=403) def check_create_answer_permission(user, question): answered = Answer.objects.filter(creator=user, question=question).last() if not answered: return else: raise CustomException(detail='You answered before', code=403)
29eb637fd7c69ee63ff42753a2493565813f803f
db4e95730de8e333480e575df8f9792494524df3
/Python/Startup/LongestShotMaker.py
e061ef5807b660a1a5b7de467efe19c9fcf58375
[]
no_license
horitin/dotStudio
99f2065b598f1fd6c960cee00603e982a55f0d98
5958706af127e91dde8d00559cafe17536201054
refs/heads/master
2021-01-23T23:02:37.828574
2015-09-15T15:15:33
2015-09-15T15:15:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,487
py
import hiero.core from PySide.QtGui import QAction # Longest Shot from Sequence # Creates a new Sequence which contains Shots with the longest range of frames used across all shots. class LongestSequenceFromSelectionAction(QAction): def __init__(self): QAction.__init__(self, "Create Longest Shot Sequence", None) self.triggered.connect(self.doit) hiero.core.events.registerInterest((hiero.core.events.EventType.kShowContextMenu, hiero.core.events.EventType.kBin), self.eventHandler) def doit(self): selection = list(hiero.ui.activeView().selection()) sequences = [item.activeItem() for item in selection if isinstance(item.activeItem(),hiero.core.Sequence)] # For every Sequence, we need to build a list of shots # This will assume that the first track is the master track, as if it were from the original EDL all_shots = [] for seq in sequences: tracks = seq.videoTracks() for track in tracks: shots = list(track.items()) all_shots.extend(shots) # We now must determine shots which have the same Source Clip across the selection of Sequences clipMatches = {} for shot in all_shots: print str(shot) clipName = shot.source().name() if clipName in clipMatches.keys(): clipMatches[clipName]+=[{'trackItem':shot, 'clip':shot.source(), 'duration':shot.duration(), 'sourceIn':shot.sourceIn(), 'sourceOut':shot.sourceOut() }] else: clipMatches[clipName]=[{'trackItem':shot, 'clip':shot.source(), 'duration':shot.duration(), 'sourceIn':shot.sourceIn(), 'sourceOut':shot.sourceOut() }] longestShots = [] hiero.core.clipMatches = clipMatches for clipName in clipMatches.keys(): MAX = max([item['duration'] for item in clipMatches[clipName]]) print 'Max duration for Shot: %s is %i' % (str(clipName),MAX) # Now find the dict inside clipMatches which has this duration longestShot = [item['trackItem'] for item in clipMatches[clipName] if item['duration']==MAX] longestShots.extend(longestShot) longestShots = hiero.core.util.uniquify(longestShots) print 'LONGEST SHOTS WERE: ' + str(longestShots) # Create a new Sequence seq2 = hiero.core.Sequence("Longest Shots") longestTrack = hiero.core.VideoTrack('Longest') seq2.addTrack(longestTrack) t0 = 0 for shot in longestShots: print 'ADDING SHOT: ' + str(shot) newShot = shot.copy() newShot.setTimelineIn(t0) newShot.setTimelineOut(t0+shot.duration()-1) longestTrack.addTrackItem(newShot) t0 = t0+shot.duration() print "Sequence duration is %i" % t0 proj = seq.project() root = proj.clipsBin() root.addItem(hiero.core.BinItem(seq2)) def eventHandler(self, event): if not hasattr(event.sender, 'selection'): return # Disable if nothing is selected selection = event.sender.selection() selectedSequences = [item for item in selection if isinstance(item.activeItem(),hiero.core.Sequence)] self.setEnabled( len(selectedSequences) > 1 ) event.menu.addAction(self) action = LongestSequenceFromSelectionAction()
5658a3a70b04b16670fd202bd763cc6512ff4448
f4b60f5e49baf60976987946c20a8ebca4880602
/lib/python2.7/site-packages/acimodel-1.3_2j-py2.7.egg/cobra/modelimpl/l2/rtresl2instpol.py
859da4c1e5fe74c7218a2aa5517591d92b42eaae
[]
no_license
cqbomb/qytang_aci
12e508d54d9f774b537c33563762e694783d6ba8
a7fab9d6cda7fadcc995672e55c0ef7e7187696e
refs/heads/master
2022-12-21T13:30:05.240231
2018-12-04T01:46:53
2018-12-04T01:46:53
159,911,666
0
0
null
2022-12-07T23:53:02
2018-12-01T05:17:50
Python
UTF-8
Python
false
false
4,772
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2016 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class RtResL2InstPol(Mo): """ A target relation to the layer 2 instance policy information. This is an internal object. """ meta = TargetRelationMeta("cobra.model.l2.RtResL2InstPol", "cobra.model.fabric.Inst") meta.moClassName = "l2RtResL2InstPol" meta.rnFormat = "rtresL2InstPol" meta.category = MoCategory.RELATIONSHIP_FROM_LOCAL meta.label = "Fabric Instance" meta.writeAccessMask = 0x4000000001 meta.readAccessMask = 0x4000000001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.l2.InstPol") meta.superClasses.add("cobra.model.reln.From") meta.superClasses.add("cobra.model.reln.Inst") meta.superClasses.add("cobra.model.pol.NFromRef") meta.rnPrefixes = [ ('rtresL2InstPol', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "tCl", "tCl", 11738, PropCategory.REGULAR) prop.label = "Target-class" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 1004 prop.defaultValueStr = "fabricInst" prop._addConstant("fabricInst", None, 1004) prop._addConstant("unspecified", "unspecified", 0) meta.props.add("tCl", prop) prop = PropMeta("str", "tDn", "tDn", 100, PropCategory.REGULAR) prop.label = "Target-dn" prop.isImplicit = True prop.isAdmin = True meta.props.add("tDn", prop) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("l2InstPolToPortGroups", "Portgroups", "cobra.model.vmm.EpPD")) meta.deploymentQueryPaths.append(DeploymentPathMeta("l2InstPolToVirtualMachines", "Virtual Machines", "cobra.model.comp.Vm")) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
5d812f9c38a3ade282d96b5d62081a22e1493992
742ef72c0e2455222c9a5b02abb46f4a792940ec
/shop/migrations/0001_initial.py
acb7f8a57feedf8e87809bfa7137e504b41fc3ea
[]
no_license
dongju93/mydogs_website
7af03ddbde39ce8c4f3907c9b8d7e6434961adec
86688d62d3b5bfd4da79f1980c0b97b8022b6abb
refs/heads/master
2021-01-03T10:37:26.559646
2020-02-21T10:18:13
2020-02-21T10:18:13
240,044,192
1
0
null
2020-02-12T15:22:48
2020-02-12T15:17:31
Python
UTF-8
Python
false
false
2,228
py
# Generated by Django 2.2.2 on 2019-06-16 09:48 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(db_index=True, max_length=200)), ('meta_description', models.TextField(blank=True)), ('slug', models.SlugField(allow_unicode=True, max_length=200, unique=True)), ], options={ 'verbose_name': 'category', 'verbose_name_plural': 'categories', 'ordering': ['name'], }, ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(db_index=True, max_length=200)), ('slug', models.SlugField(allow_unicode=True, max_length=200, unique=True)), ('image', models.ImageField(blank=True, upload_to='products/%Y/%m/%d')), ('description', models.TextField(blank=True)), ('meta_description', models.TextField(blank=True)), ('price', models.DecimalField(decimal_places=2, max_digits=10)), ('stock', models.PositiveIntegerField()), ('available_display', models.BooleanField(default=True, verbose_name='Display')), ('available_order', models.BooleanField(default=True, verbose_name='Order')), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('category', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='products', to='shop.Category')), ], options={ 'ordering': ['-created'], 'index_together': {('id', 'slug')}, }, ), ]
291112da9b483ea2150b7e5e28754d866fcc58d9
572ce2b8a9c687f302ea4953dd9bd978470d0c4b
/pythonOOPS/apartments/apartments/middlewares.py
cc017802cc872bb34397da9a233787a5f2e6543f
[]
no_license
fainaszar/pythonPrograms
5f539c8b80deb5d57e6aa984b0325389cf3b6f51
03f6c8b540981332e6f940308c7407a5038faac9
refs/heads/master
2021-09-07T18:10:43.603405
2018-02-27T05:27:37
2018-02-27T05:27:37
106,532,756
0
0
null
null
null
null
UTF-8
Python
false
false
1,973
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # http://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals import scrapy from selenium import webdriver class ApartmentsSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
836c3f361ef8f0313135b27ba270a86d9d72085b
80244495df04ff2e5dc8d3af62b8173625a3379f
/app/appbase.py
23ef2fe4f49fd3922854e1ca3f783d0c9c1ca26d
[ "Apache-2.0" ]
permissive
Jiyvn/pyautotest
a0c24a90ea1626402d1d403a4cef7c9355220011
a33281d0a6f6edd9c9c60c1e83e2534436818146
refs/heads/main
2023-03-26T22:57:09.256738
2021-04-02T18:25:03
2021-04-02T18:25:03
338,061,457
0
0
null
null
null
null
UTF-8
Python
false
false
14,616
py
from appium.webdriver.common.mobileby import MobileBy appPackage = { 'fake_location': 'com.lerist.fakelocation', 'chrome': "com.android.chrome", 'settings': 'com.android.settings', 'gmail': 'com.google.android.gm', } appActivity = { 'fake_location': '.ui.activity.MainActivity', 'chrome': "com.google.android.apps.chrome.Main", 'settings': '.Settings', 'gmail': '.ConversationListActivityGmail', 'gmail_wel': '.welcome.WelcomeTourActivity', } appBundleId = { 'chrome': 'com.google.chrome.ios', 'gmail': 'com.google.Gmail', 'safari': 'com.apple.mobilesafari', 'settings': 'com.apple.Preferences', 'appstore': 'com.apple.AppStore', } android_base = { 'text': lambda value: (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("{0}")'.format(value)), 'text_contains': lambda value: ( MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().textContains("{0}")'.format(value)), 'text_view': lambda value: (MobileBy.XPATH, '//android.widget.TextView[@text="{0}"]'.format(value)), 'button': lambda value: ( MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().className("android.widget.Button").text("{0}")'.format(value)), 'edittext': lambda value: (MobileBy.XPATH, '//android.widget.EditText[@text="{0}"]'.format(value)), 'desc_contains': lambda value: ( MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().descriptionContains("{0}")'.format(value)), # content-desc属性 } ios_base = { 'value': lambda v: (MobileBy.XPATH, '//*[@value="{}"]'.format(v)), 'value_contains': lambda v: (MobileBy.XPATH, '//*[contains(@value,"{}")]'.format(v)), 'name': lambda v: (MobileBy.XPATH, '//*[@name="{}"]'.format(v)), 'name_contains': lambda v: (MobileBy.XPATH, '//*[contains(@name,"{}")]'.format(v)), 'btn_name': lambda v: (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeButton" AND name=="{}"'.format(v)), 'btn_name_contains': lambda v: ( MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeButton" AND name CONTAINS "{}"'.format(v)), 'switch_name': lambda v: (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeSwitch" AND name=="{}"'.format(v)), 'switch_name_contains': lambda v: ( MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeSwitch" AND name CONTAINS "{}"'.format(v)), 'cell_name': lambda v: (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeCell" AND name=="{}"'.format(v)), 'cell_name_contains': lambda v: ( MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeCell" AND name CONTAINS "{}"'.format(v)), } ''' iOS键盘上的按键, 大小写敏感。特殊键shift, delete, more, space, @, ., Return, Next keyboard(切换文字, 比如中英文)大小写不敏感 ''' ios_keyboard = { 'done': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label MATCHES "Done|完成"`]'), 'key': lambda k: (MobileBy.ACCESSIBILITY_ID, '{0}'.format(k)) } def scrollable(locators: [list, str]): if isinstance(locators, list): return (MobileBy.ANDROID_UIAUTOMATOR, 'new UiScrollable(new UiSelector().scrollable(true).instance(0)).scrollIntoView(new UiSelector().%s)' % '.'.join(locators)) elif isinstance(locators, str): return (MobileBy.ANDROID_UIAUTOMATOR, 'new UiScrollable(new UiSelector().scrollable(true).instance(0)).scrollIntoView(new UiSelector().%s)' % locators) def selector(locators: [list, str]): if isinstance(locators, list): return (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().%s' % '.'.join(locators)) elif isinstance(locators, str): return (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().%s' % locators) settings = { 'nothing_en': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("%s")' % 'Nothing'), 'nothing_zh': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("%s")' % '无'), 'None': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("%s")' % 'None'), 'fake_location': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("{0}")'.format('Fake Location')), 'select_mock_app_en': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().textContains("%s")' % 'Mock'), 'select_mock_app_zh': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().textContains("%s")' % '模拟位置'), 'select_text_zh': '选择模拟位置信息应用', 'select_text_en': 'Select mock location app', # ********* iOS ************ 'ios_setting_page_title': (MobileBy.XPATH, '//XCUIElementTypeStaticText[@name="Settings"]'), 'ios_setting_search_field': (MobileBy.ACCESSIBILITY_ID, 'Search'), # 蓝牙页面元素:开启时,value属性为1,关闭时value属性为0 'ios_bluetooth': (MobileBy.IOS_PREDICATE, 'type=="{0}" AND name=="{1}"'.format('XCUIElementTypeSwitch','Bluetooth')), 'ios_bluetooth2': (MobileBy.XPATH, '//XCUIElementTypeSwitch[@name="Bluetooth"]'), # setting主页元素:On/Off元素,点击进入蓝牙页面 'ios_bluetooth_item': (MobileBy.XPATH, '//XCUIElementTypeStaticText[@name="Bluetooth"]/following-sibling::XCUIElementTypeStaticText[1]'), 'ios_setting_items': lambda x: (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeCell" AND name=="{0}"'.format(x)), 'ios_setting_toggles': lambda x: (MobileBy.XPATH, '//XCUIElementTypeSwitch[@name="{0}"]'.format(x)), 'ios_setting_wifi': (MobileBy.XPATH, '//XCUIElementTypeSwitch[@name="Wi-Fi"]'), 'ios_back_to_current_app': (MobileBy.ACCESSIBILITY_ID, 'breadcrumb'), # 这个记得要加approach = 'p' 'ios_setting_items_title': lambda x: (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeOther" AND name=="{0}"'.format(x)), # 'ios_general': (MobileBy.IOS_PREDICATE, 'type=="{0}" AND name=="{1}"'.format('XCUIElementTypeCell', 'General')), 'ios_general': (MobileBy.IOS_PREDICATE, 'type=="{0}" AND name=="{1}"'.format('XCUIElementTypeCell', '通用')), 'ios_date&time': (MobileBy.IOS_PREDICATE, 'type=="{0}" AND name=="{1}"'.format('XCUIElementTypeCell', 'Date & Time')), 'ios_profile&devicemanagement': (MobileBy.IOS_PREDICATE, 'type=="{0}" AND name CONTAINS "{1}"'.format('XCUIElementTypeCell', 'Device Management')), 'ios_trust_app_btn': lambda x: (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeStaticText" AND value=="Trust “{0}”"'.format(x)), # e.g. Trust “Fisher-Price, Inc.” 'ios_trust_app_dialog_title': lambda x: (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeStaticText" AND value CONTAINS "Trust “iPhone Distribution: {0}”"'.format(x)), # e.g. Trust “iPhone Distribution: Fisher-Price, Inc.” Apps on This iPhone 'ios_trust_btn': (MobileBy.ACCESSIBILITY_ID, 'Trust'), # 24小时制的按钮,如果当前为12小时制,其value为0,否则为1 'ios_24hr': (MobileBy.IOS_PREDICATE, 'type=="{0}" AND name=="{1}"'.format('XCUIElementTypeCell','24-Hour Time')), 'ios_24hr_x': (MobileBy.XPATH, '//XCUIElementTypeCell[@name="24-Hour Time"]'), } app_store = { 'continue': (MobileBy.IOS_PREDICATE, 'label == "继续" AND name == "继续" AND type == "XCUIElementTypeButton"'), # 继续 弹窗页面 'allow_when_using': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "使用App时允许"`]'), 'app_item': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "App"`]'), 'account': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "我的帐户"`]'), 'search_item': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "搜索"`]'), 'search_field': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeNavigationBar[`name == "搜索"`]/XCUIElementTypeSearchField'), 'keyboard_continue': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "继续"`]'), # 点击searchfield后出现 'keyboard_search_btn': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`name == "Search"`]'), # 点击searchfield后出现 'progress_circle': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeActivityIndicator[`label MATCHES "正在载入|进行中"`]'), # 加载搜索结果的按钮 'retry': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "重试"`]'), # 搜索失败时 'app': lambda a: (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label CONTAINS "{}"`]'.format(a)), # Fisher-Price® Smart Connect™ 'navigate_search_btn': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeNavigationBar[`name == "搜索"`]`]'), # app详情页面 'reload_btn': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "重新下载"`]'), # app详情页面 'get_btn': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "获取"`]'), # app详情页面first time download 'upgrade_btn': (MobileBy.IOS_CLASS_CHAIN, ''), 'in_process': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "正在载入"`]'), # circle按钮 'downloading': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "正在下载"`]'), # 暂停按钮 'open_app': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "打开"`]'), } notification = { 'ios_notification': lambda msg_title: (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeScrollView" AND (name CONTAINS "{0}" OR label CONTAINS "{0}")'.format(msg_title)), # 某个app的通知,多个的时候通常会重叠在一起,需要点击展开。需传入name值,一般为展开的消息的app title,如:SMART CONNECT 'ios_nt_msg': lambda c: (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeButton" AND name=="NotificationCell" AND label CONTAINS "{}"'.format(c)), # (右滑可删除)如消息: Animal projection on your My Child's Deluxe Soother is turning off soon. 'ios_nt_clear': lambda msg_title: (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label BEGINSWITH "{}"`]/XCUIElementTypeButton[`label == "Clear"`][1]'.format(msg_title)), # 向左滑动消息出现的Clear button 'ios_nt_clear_all': (MobileBy.IOS_CLASS_CHAIN, '**/XCUIElementTypeButton[`label == "Clear All"`]'), # 向左滑动消息出现的Clear All button 'ios_clear_all_btn': (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeButton" AND name=="clear-button" AND value=="Notification Center"'), # 清除所有app消息按钮(x) 'ios_clear_btn': lambda app: (MobileBy.XPATH, '//XCUIElementTypeStaticText[@name="{}"]/../following::XCUIElementTypeButton[@name="clear-button"]'.format(app)), # 清除某个app消息按钮(x),没有label值,如Smart Connect 'ios_confirm_clear': (MobileBy.IOS_PREDICATE, 'type=="XCUIElementTypeButton" AND name=="clear-button" AND label=="Confirm Clear"'), # 点击x出现的clear按钮,通用 } camera = { # App内嵌拍照界面 'ios_capture': (MobileBy.ACCESSIBILITY_ID, 'PhotoCapture'), 'ios_cancel_capture': (MobileBy.ACCESSIBILITY_ID, 'Cancel'), 'ios_switch_camera': (MobileBy.ACCESSIBILITY_ID, 'FrontBackFacingCameraChooser'), # 闪光灯有三个value, 分别是Automatic,On, Off, 不能使用send_keys来设置, 需要点Flash图标然后再在下面的二级菜单中选择 'ios_flash_light': (MobileBy.ACCESSIBILITY_ID, 'Flash'), 'ios_flash_auto': (MobileBy.ACCESSIBILITY_ID, 'Auto'), 'ios_flash_on': (MobileBy.ACCESSIBILITY_ID, 'On'), 'ios_flash_off': (MobileBy.ACCESSIBILITY_ID, 'Off'), # 预览界面 'ios_retake': (MobileBy.ACCESSIBILITY_ID, 'Retake'), 'ios_use': (MobileBy.ACCESSIBILITY_ID, 'Use Photo'), # 剪切界面 'ios_crop_use': (MobileBy.ACCESSIBILITY_ID, 'useButton'), 'ios_crop_cancel': (MobileBy.ACCESSIBILITY_ID, 'cancelButton'), } albums = { # App相册界面(选取相) 'ios_cancel': (MobileBy.ACCESSIBILITY_ID, 'Cancel'), # 各个相册, 使用时引用相册的名字即可, 系统默认的相册一般有: Camera Roll, Recently Added, Screenshots, 还有各个App自建的相册 'ios_albums': lambda x: (MobileBy.ACCESSIBILITY_ID, '{0}'.format(x)), 'ios_back_btn': (MobileBy.ACCESSIBILITY_ID, 'Photos'), # 这个位于左上角的返回键, 是用于返回相册列表的 # 相册里的相, 一般来说最新的相会出现在相册的最后, 可以引入last()来获取, 或者输入数字来获取第N张相, 比如输入200就会获得相册中第200张相 # 这里要注意相册里可以显示的相是有限的, 选取了没显示的相点击第一次, 相册会自动跳转到被选择的相的可显示位置, 再点击一次才最终选择到这张相 'ios_photos_by_position': lambda x: (MobileBy.XPATH, '//XCUIElementTypeCollectionView[@name="PhotosGridView"]/XCUIElementTypeCell[{0}]'.format(x)), # 剪切界面 'ios_crop_use': (MobileBy.ACCESSIBILITY_ID, 'useButton'), 'ios_crop_cancel': (MobileBy.ACCESSIBILITY_ID, 'cancelButton'), } fake_location = { 'menu_btn': (MobileBy.ACCESSIBILITY_ID, 'Open navigation drawer'), 'start_to_fake': (MobileBy.ID, 'com.lerist.fakelocation:id/f_fakeloc_tv_service_switch'), 'add_btn': (MobileBy.ID, 'com.lerist.fakelocation:id/fab'), 'current_coords': (MobileBy.ID, 'com.lerist.fakelocation:id/f_fakeloc_tv_current_latlong'), 'running_mode': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("{0}")'.format('运行模式')), 'no_root_mode': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().textContains("{0}")'.format('NOROOT')), 'root_mode': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().textContains("{0}")'.format('ROOT(推荐)')), 'permission_allow': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("{0}")'.format('允许')), 'permission_allow_id': (MobileBy.ID, 'com.android.packageinstaller:id/dialog_container'), 'title_choose_location': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("{0}")'.format('选择位置')), 'search_btn': (MobileBy.ID, 'com.lerist.fakelocation:id/m_item_search'), 'search_box': (MobileBy.ID, 'com.lerist.fakelocation:id/l_search_panel_et_input'), 'confirm_btn': (MobileBy.ID, 'com.lerist.fakelocation:id/a_map_btn_done'), 'back_btn': (MobileBy.ACCESSIBILITY_ID, '转到上一层级'), 'update_next_time': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("{0}")'.format('下次再说')), 'forward_toset': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("{0}")'.format('前往设置')), 'get_permission': (MobileBy.ANDROID_UIAUTOMATOR, 'new UiSelector().text("{0}")'.format('前往授权')), # 通用元素-提示框&提示框的确认取消按钮 'native_dialog': (MobileBy.ID, 'android:id/parentPanel'), 'prompt_dialog': (MobileBy.ID, 'com.lerist.fakelocation:id/parentPanel'), 'dialog_confirm_btn': (MobileBy.ID, 'android:id/button1'), 'dialog_cancel_btn': (MobileBy.ID, 'android:id/button2'), }
b5304469b0c795fc2fc873e765b6f4fb6c3654ba
f5140d8ccf46eafc47744721fe0c99dbfba9560b
/backend/fitniccs_application_4727/urls.py
f91a0396aeac62b1d8efdf48a0a8d39eeb2a7540
[]
no_license
crowdbotics-apps/fitniccs-application-4727
9b627c7af2975f941c5ba7f5428ffa48a7b8e7df
9aae1da337c82fa08fa724eebd08860d5cf57493
refs/heads/master
2022-12-14T00:14:16.229075
2019-06-15T22:54:41
2019-06-15T22:54:41
192,130,450
0
0
null
2022-12-09T06:28:58
2019-06-15T22:54:25
Python
UTF-8
Python
false
false
1,073
py
"""fitniccs_application_4727 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('', include('home.urls')), path('accounts/', include('allauth.urls')), path('api/v1/', include('home.api.v1.urls')), path('admin/', admin.site.urls), ] admin.site.site_header = 'Fitniccs Application' admin.site.site_title = 'Fitniccs Application Admin Portal' admin.site.index_title = 'Fitniccs Application Admin'
62f00d103a9a67819d4e00e25a7ff17f9883ca84
8f271650eafdaddc1de637024175517da21397b7
/src/evalRegularJacobian.py
d8110a3124e8849e202acbbca333771c08a429cd
[]
no_license
ebjarkason/randomTSVDLM
dbf0ea549015892c067f61991ecf97a1b7156118
29af2ea6df534c26e0592c88eb18809dd4827c17
refs/heads/master
2021-09-27T06:06:02.870026
2021-09-14T08:34:10
2021-09-14T08:34:10
115,983,364
0
1
null
null
null
null
UTF-8
Python
false
false
2,045
py
# Regularization Jacobian # Coded by: Elvar K. Bjarkason (2017) import scipy as sp from scipy.sparse import csr_matrix, lil_matrix # Generates the Regularization Jacobian for the 2D slice model with 8000 rock-types and 16,000 parameters. # Could generalize for adjsutable permeabilities in every block this # by using grid connection information. def regjac(NRadj): NRadjHalf = NRadj/2 mpr = sp.load('mprior.npy') Npr = len(mpr) Nregsmooth = 2*15820 # 2 times the number of connections between adjustable rock-types Nreglocalxz = 8000 # Number of adjustable rock-types Nreg = Nregsmooth + Nreglocalxz + Npr sp.save('Nreg.npy',Nreg) rJac = lil_matrix((Nreg,NRadj)) x = 0 # Create horizontal smoothing of log10kx (perm index 1): for i in range(0,80): for j in range(0,99): rJac[x,j + i*100] = 1 rJac[x,j + i*100 + 1] = -1 x += 1 # Create vertical smoothing of log10kx (perm index 1): for i in range(0,79): for j in range(0,100): rJac[x,j + i*100] = 1 rJac[x,j + (i+1)*100] = -1 x += 1 # Create horizontal smoothing of log10kz (perm index 3): for i in range(0,80): for j in range(0,99): rJac[x,j + i*100 + NRadjHalf] = 1 rJac[x,j + i*100 + 1 + NRadjHalf] = -1 x += 1 ## Create vertical smoothing of log10kz (perm index 3): for i in range(0,79): for j in range(0,100): rJac[x,j + i*100 + NRadjHalf] = 1 rJac[x,j + (i+1)*100 + NRadjHalf] = -1 x += 1 # Add regularization to make log10kx similar to log10kz: for i in range(0,Nreglocalxz): rJac[x,i] = 1 rJac[x,i + NRadjHalf] = -1 x += 1 # Add prior paramater regularisation: for i in range(0,Npr): rJac[x,i] = 1*0.001 x += 1 return csr_matrix(rJac)
e9542b66ed5574f740d6ff518ec4553140597af8
ff9db4805947a40e9cc40d6ebcd2350d960e2ade
/federatedml/nn/homo_nn/enter_point.py
913f8f062fec765f580333060e2b842fbf56905a
[]
no_license
jiahuanluo/cv_task
97f40e8380e99ee0ecfb210f259e96381eac7b53
c904f6e7319ae068bc3ba1980d6ea1aac9be34f0
refs/heads/master
2022-10-14T19:59:14.735009
2020-06-12T05:40:23
2020-06-12T05:40:23
266,522,413
0
0
null
null
null
null
UTF-8
Python
false
false
28,373
py
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from arch.api import session from arch.api.utils.log_utils import LoggerFactory from fate_flow.entity.metric import MetricType, MetricMeta, Metric from federatedml.framework.homo.blocks import secure_mean_aggregator, loss_scatter, has_converged from federatedml.framework.homo.blocks.base import HomoTransferBase from federatedml.framework.homo.blocks.has_converged import HasConvergedTransVar from federatedml.framework.homo.blocks.loss_scatter import LossScatterTransVar from federatedml.framework.homo.blocks.secure_aggregator import SecureAggregatorTransVar from federatedml.model_base import ModelBase from federatedml.nn.homo_nn import nn_model from federatedml.nn.homo_nn.nn_model import restore_nn_model from federatedml.optim.convergence import converge_func_factory from federatedml.param.homo_nn_param import HomoNNParam from federatedml.util import consts from cv_task import dataloader_detector, net, models from cv_task.utils.utils import * # from cv_task.lib.roi_data_layer.roidb import combined_roidb # from cv_task.lib.roi_data_layer.roibatchLoader import roibatchLoader # from cv_task.lib.model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir # from cv_task.lib.model.utils.net_utils import weights_normal_init, save_net, load_net, \ # adjust_learning_rate, save_checkpoint, clip_gradient # from cv_task.lib.model.faster_rcnn.vgg16 import vgg16 from cv_task.utils.config import opt from cv_task.data.dataset import Dataset, TestDataset, inverse_normalize from cv_task.model import FasterRCNNVGG16 from torch.utils import data as data_ from cv_task.fasterrcnntrainer import FasterRCNNTrainer from cv_task.utils import array_tool as at from cv_task.utils.vis_tool import visdom_bbox from cv_task.utils.eval_tool import eval_detection_voc import torch from torch.autograd import Variable from federatedml.nn.backend.pytorch.nn_model import PytorchNNModel from torch.utils.data import DataLoader from torch.utils.data.sampler import Sampler import numpy as np import time import os import warnings warnings.filterwarnings("ignore") Logger = LoggerFactory.get_logger() MODEL_META_NAME = "HomoNNModelMeta" MODEL_PARAM_NAME = "HomoNNModelParam" def _build_model_dict(meta, param): return {MODEL_META_NAME: meta, MODEL_PARAM_NAME: param} def _extract_param(model_dict: dict): return model_dict.get(MODEL_PARAM_NAME, None) def _extract_meta(model_dict: dict): return model_dict.get(MODEL_META_NAME, None) class ObjDict(dict): """ Makes a dictionary behave like an object,with attribute-style access. """ def __getattr__(self, name): try: return self[name] except: raise AttributeError(name) def __setattr__(self, name, value): self[name] = value class HomoNNBase(ModelBase): def __init__(self, trans_var): super().__init__() self.model_param = HomoNNParam() self.aggregate_iteration_num = 0 self.transfer_variable = trans_var def _suffix(self): return self.aggregate_iteration_num, def _init_model(self, param: HomoNNParam): self.param = param self.enable_secure_aggregate = param.secure_aggregate self.max_aggregate_iteration_num = param.max_iter class HomoNNServer(HomoNNBase): def __init__(self, trans_var): super().__init__(trans_var=trans_var) self.model = None self.aggregator = secure_mean_aggregator.Server(self.transfer_variable.secure_aggregator_trans_var) self.loss_scatter = loss_scatter.Server(self.transfer_variable.loss_scatter_trans_var) self.has_converged = has_converged.Server(self.transfer_variable.has_converged_trans_var) def _init_model(self, param: HomoNNParam): super()._init_model(param=param) early_stop = self.model_param.early_stop self.converge_func = converge_func_factory(early_stop.converge_func, early_stop.eps).is_converge self.loss_consumed = early_stop.converge_func != "weight_diff" def callback_loss(self, iter_num, loss): metric_meta = MetricMeta(name='train', metric_type="LOSS", extra_metas={ "unit_name": "iters", }) self.callback_meta(metric_name='loss', metric_namespace='train', metric_meta=metric_meta) self.callback_metric(metric_name='loss', metric_namespace='train', metric_data=[Metric(iter_num, loss)]) def _is_converged(self): loss = self.loss_scatter.weighted_loss_mean(suffix=self._suffix()) Logger.info(f"loss at iter {self.aggregate_iteration_num}: {loss}") self.callback_loss(self.aggregate_iteration_num, loss) if self.loss_consumed: is_converged = self.converge_func(loss) else: is_converged = self.converge_func(self.model) self.has_converged.remote_converge_status(is_converge=is_converged, suffix=self._suffix()) return is_converged def fit(self, data_inst): while self.aggregate_iteration_num < self.max_aggregate_iteration_num: self.model = self.aggregator.weighted_mean_model(suffix=self._suffix()) self.aggregator.send_aggregated_model(model=self.model, suffix=self._suffix()) if self._is_converged(): Logger.info(f"early stop at iter {self.aggregate_iteration_num}") break self.aggregate_iteration_num += 1 else: Logger.warn(f"reach max iter: {self.aggregate_iteration_num}, not converged") def save_model(self): return self.model class HomoNNClient(HomoNNBase): def __init__(self, trans_var): super().__init__(trans_var=trans_var) self.aggregator = secure_mean_aggregator.Client(self.transfer_variable.secure_aggregator_trans_var) self.loss_scatter = loss_scatter.Client(self.transfer_variable.loss_scatter_trans_var) self.has_converged = has_converged.Client(self.transfer_variable.has_converged_trans_var) self.nn_model = None def _init_model(self, param: HomoNNParam): super()._init_model(param=param) self.batch_size = param.batch_size self.aggregate_every_n_epoch = param.aggregate_every_n_epoch self.nn_define = param.nn_define self.config_type = param.config_type self.optimizer = param.optimizer self.loss = param.loss self.metrics = param.metrics self.data_converter = nn_model.get_data_converter(self.config_type) self.model_builder = nn_model.get_nn_builder(config_type=self.config_type) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # self.device = torch.device("cpu") def _is_converged(self, data, epoch_degree): if self.config_type=="cv": loss = data elif self.config_type == "yolo": loss = data elif self.config_type == "faster": loss = data else: metrics = self.nn_model.evaluate(data) Logger.info(f"metrics at iter {self.aggregate_iteration_num}: {metrics}") loss = metrics["loss"] self.loss_scatter.send_loss(loss=(loss, epoch_degree), suffix=self._suffix()) is_converged = self.has_converged.get_converge_status(suffix=self._suffix()) return is_converged def __build_nn_model(self, input_shape): self.nn_model = self.model_builder(input_shape=input_shape, nn_define=self.nn_define, optimizer=self.optimizer, loss=self.loss, metrics=self.metrics) def __build_pytorch_model(self, nn_define): self.nn_model = self.model_builder(nn_define=nn_define, optimizer=self.optimizer, loss=self.loss, metrics=self.metrics) def fit(self, data_inst, *args): if self.config_type == "pytorch": data = self.data_converter.convert(data_inst, batch_size=self.batch_size) self.__build_pytorch_model(self.nn_define) epoch_degree = float(len(data)) * self.aggregate_every_n_epoch elif self.config_type == "cv": config_default = ObjDict(self.nn_define[0]) config, model, loss, get_pbb = net.get_model() dataset_train = dataloader_detector.get_trainloader("train", config, config_default) optimizer = torch.optim.SGD( model.parameters(), config_default.lr, momentum=config_default.momentum, weight_decay=config_default.weight_decay) self.nn_model = PytorchNNModel(model=model, optimizer=optimizer, loss=loss) epoch_degree = float(len(dataset_train))*self.aggregate_every_n_epoch elif self.config_type == "yolo": config_default = ObjDict(self.nn_define[0]) model = models.get_model() dataset_train, _ = dataloader_detector.get_dataset('train') optimizer = torch.optim.Adam(model.parameters()) self.nn_model = PytorchNNModel(model=model, optimizer=optimizer, loss=None) epoch_degree = float(len(dataset_train))*self.aggregate_every_n_epoch elif self.config_type == "faster": config_default = ObjDict(self.nn_define[0]) dataset = Dataset(opt) base_model = FasterRCNNVGG16() model = FasterRCNNTrainer(base_model) optimizer = model.optimizer self.nn_model = PytorchNNModel(model=model, optimizer=optimizer, loss=None) epoch_degree = float(len(dataset))*self.aggregate_every_n_epoch else: data = self.data_converter.convert(data_inst, batch_size=self.batch_size) self.__build_nn_model(data.get_shape()[0]) epoch_degree = float(len(data)) * self.aggregate_every_n_epoch while self.aggregate_iteration_num < self.max_aggregate_iteration_num: Logger.info(f"start {self.aggregate_iteration_num}_th aggregation") #train if self.config_type == "cv": trainloader = DataLoader(dataset_train, batch_size=config_default.batch_size, shuffle=True, pin_memory=False) epoch_degree = float(len(trainloader)) metrics = [] self.nn_model._model.train() for i, (data, target, coord) in enumerate(trainloader): # print('shape of data:', data.shape) # print('shape of coord:', coord.shape) # print('*******************', i, "/", str(len(trainloader))) Logger.info(f"{i}:shape of data: {data.shape}, shape of coord:{coord.shape}") output = self.nn_model._model(data, coord) loss_output = loss(output, target) optimizer.zero_grad() loss_output[0].backward() optimizer.step() metrics.append(loss_output) Logger.info(f"finish{i}th data") metrics = np.asarray(metrics, np.float32) #metrics acc = (np.sum(metrics[:, 6]) + np.sum(metrics[:, 8])) / (np.sum(metrics[:, 7]) + np.sum(metrics[:, 9])) tpr = np.sum(metrics[:, 6]) / np.sum(metrics[:, 7]) tnr = np.sum(metrics[:, 8]) / np.sum(metrics[:, 9]) tp = np.sum(metrics[:, 6]) p = np.sum(metrics[:, 7]) tn = np.sum(metrics[:, 8]) n = np.sum(metrics[:, 9]) total_loss = np.mean(metrics[:, 0]) #设定需要用于聚合的loss用于后面判断 data = total_loss classification_loss = np.mean(metrics[:, 1]) bbox_regressiong_loss_1 = np.mean(metrics[:, 2]) bbox_regressiong_loss_2 = np.mean(metrics[:, 3]) bbox_regressiong_loss_3 = np.mean(metrics[:, 4]) bbox_regressiong_loss_4 = np.mean(metrics[:, 5]) Logger.info('EPOCH {}, acc: {:.2f}, tpr: {:.2f} ({}/{}), tnr: {:.1f} ({}/{}), total_loss: {:.3f}, classification loss: {:.3f}, bbox regression loss: {:.2f}, {:.2f}, {:.2f}, {:.2f}\ '.format(self.aggregate_iteration_num, acc, tpr, tp, p, tnr, tn, n, total_loss, classification_loss, bbox_regressiong_loss_1, bbox_regressiong_loss_2, bbox_regressiong_loss_3, bbox_regressiong_loss_4)) elif self.config_type == "yolo": trainloader = DataLoader(dataset_train, batch_size=config_default.batch_size, shuffle=True, num_workers=config_default.workers, pin_memory=False, collate_fn=dataset_train.collate_fn) epoch_degree = float(len(trainloader)) self.nn_model._model.to(self.device) self.nn_model._model.train() metrics = [] for batch_i, (_, imgs, targets) in enumerate(trainloader): imgs = Variable(imgs.to(self.device)) targets = Variable(targets.to(self.device), requires_grad=False) loss, outputs = self.nn_model._model(imgs, targets) loss.backward() optimizer.step() optimizer.zero_grad() log_str = "---- [Batch %d/%d] ----" % (batch_i, len(trainloader)) log_str += f"---- Total loss {loss.item()}" metrics.append(loss.item()) Logger.info(log_str) # assert False total_loss = np.mean(metrics) data = total_loss elif self.config_type == "faster": trainloader = data_.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=1) self.nn_model._model.reset_meters() self.nn_model._model.to(self.device) self.nn_model._model.train() for ii, (img, bbox_, label_, scale) in enumerate(trainloader): scale = at.scalar(scale) img, bbox, label = img.to(self.device).float(), bbox_.to(self.device), label_.to(self.device) self.nn_model._model.train_step(img, bbox, label, scale) loss = self.nn_model._model.get_meter_data() total_loss = loss["total_loss"] log_str = "---- [Batch %d/%d] ----" % (ii, len(trainloader)) log_str += f"---- Total loss {total_loss}" Logger.info(log_str) data = total_loss else: self.nn_model.train(data, aggregate_every_n_epoch=self.aggregate_every_n_epoch) # send model for aggregate, then set aggregated model to local self.nn_model._model.to( torch.device("cpu")) self.aggregator.send_weighted_model(weighted_model=self.nn_model.get_model_weights(), weight=epoch_degree * self.aggregate_every_n_epoch, suffix=self._suffix()) weights = self.aggregator.get_aggregated_model(suffix=self._suffix()) self.nn_model.set_model_weights(weights=weights) self.nn_model._model.to(self.device) #calc loss and check convergence if self._is_converged(data, epoch_degree): Logger.info(f"early stop at iter {self.aggregate_iteration_num}") break Logger.info(f"role {self.role} finish {self.aggregate_iteration_num}_th aggregation") self.aggregate_iteration_num += 1 else: Logger.warn(f"reach max iter: {self.aggregate_iteration_num}, not converged") def export_model(self): return _build_model_dict(meta=self._get_meta(), param=self._get_param()) def _get_meta(self): from federatedml.protobuf.generated import nn_model_meta_pb2 meta_pb = nn_model_meta_pb2.NNModelMeta() meta_pb.params.CopyFrom(self.model_param.generate_pb()) meta_pb.aggregate_iter = self.aggregate_iteration_num return meta_pb def _get_param(self): from federatedml.protobuf.generated import nn_model_param_pb2 param_pb = nn_model_param_pb2.NNModelParam() param_pb.saved_model_bytes = self.nn_model.export_model() return param_pb def predict(self, data_inst): if self.config_type == "cv": config_default = ObjDict(self.nn_define[0]) Logger.info(f"{self.nn_define}") #这里只有的model不会用于预测,使用的模型为self.nn_model config, model, loss, get_pbb = net.get_model() dataset_validation = dataloader_detector.get_trainloader("validation", config, config_default) validateloader = DataLoader(dataset_validation, batch_size=config_default.batch_size, shuffle=False, pin_memory=False) Logger.info("validate begin.") #模型在这里 self.nn_model._model.eval() metrics = [] start_time = time.time() for i, (data, target, coord) in enumerate(validateloader): print('*******************', i, "/", str(len(validateloader))) # data = Variable(data.cuda()) data = Variable(data) # target = Variable(target.cuda()) target = Variable(target) # coord = Variable(coord.cuda()) coord = Variable(coord) with torch.no_grad(): output = self.nn_model._model(data, coord) loss_output = loss(output, target, train=False) metrics.append(loss_output) end_time = time.time() metrics = np.asarray(metrics, np.float32) epoch = 1 msg = 'EPOCH {} '.format( epoch) + 'Validation: tpr %3.2f, tnr %3.8f, total pos %d, total neg %d, time %3.2f' % ( 100.0 * np.sum(metrics[:, 6]) / np.sum(metrics[:, 7]), 100.0 * np.sum(metrics[:, 8]) / np.sum(metrics[:, 9]), np.sum(metrics[:, 7]), np.sum(metrics[:, 9]), end_time - start_time) + 'loss %2.4f, classify loss %2.4f, regress loss %2.4f, %2.4f, %2.4f, %2.4f' % ( np.mean(metrics[:, 0]), np.mean(metrics[:, 1]), np.mean(metrics[:, 2]), np.mean(metrics[:, 3]), np.mean(metrics[:, 4]), np.mean(metrics[:, 5])) print(msg) Logger.info(msg) elif self.config_type == "yolo": dataset_valid, class_names = dataloader_detector.get_dataset('valid') validloader = DataLoader(dataset_valid, batch_size=1, shuffle=False, pin_memory=False, collate_fn=dataset_valid.collate_fn) if type(self.nn_model._model) == dict: state_dict = self.nn_model._model["model"] model = models.get_model() self.nn_model._model = model self.nn_model._model.load_state_dict(state_dict) self.nn_model._model.to(self.device) self.nn_model._model.eval() Logger.info("validate begin.") labels = [] sample_metrics = [] for batch_i, (_, imgs, targets) in enumerate(validloader): labels += targets[:, 1].tolist() # Rescale target targets[:, 2:] = xywh2xyxy(targets[:, 2:]) targets[:, 2:] *= 416 imgs = Variable(imgs.type(torch.FloatTensor).to(self.device), requires_grad=False) with torch.no_grad(): outputs = self.nn_model._model(imgs) outputs = non_max_suppression(outputs, conf_thres=0.5, nms_thres=0.5) sample_metrics += get_batch_statistics(outputs, targets, iou_threshold=0.5) # Concatenate sample statistics if len(sample_metrics) == 0: precision, recall, AP, f1, ap_class = np.array([0]), np.array([0]), np.array([0]), np.array([0]), np.array([0], dtype=np.int) else: true_positives, pred_scores, pred_labels = [np.concatenate(x, 0) for x in list(zip(*sample_metrics))] precision, recall, AP, f1, ap_class = ap_per_class(true_positives, pred_scores, pred_labels, labels) evaluation_metrics = [ ("val_precision", precision.mean()), ("val_recall", recall.mean()), ("val_mAP", AP.mean()), ("val_f1", f1.mean()), ] Logger.info(evaluation_metrics) # Print class APs and mAP # ap_table = [["Index", "Class name", "AP"]] # for i, c in enumerate(ap_class): # ap_table += [[c, class_names[c], "%.5f" % AP[i]]] # Logger.info(AsciiTable(ap_table).table) Logger.info(f"---- mAP {AP.mean()}") # assert False elif self.config_type == "faster": if type(self.nn_model._model) == dict: state_dict = self.nn_model._model["model"] base_model = FasterRCNNVGG16() model = FasterRCNNTrainer(base_model) self.nn_model._model = model self.nn_model._model.load_state_dict(state_dict) self.nn_model._model.to(self.device) self.nn_model._model.eval() testset = TestDataset(opt) test_dataloader = data_.DataLoader(testset, batch_size=1, num_workers=1, shuffle=False, pin_memory=True) pred_bboxes, pred_labels, pred_scores = list(), list(), list() gt_bboxes, gt_labels, gt_difficults = list(), list(), list() for ii, (imgs, sizes, gt_bboxes_, gt_labels_, gt_difficults_) in enumerate(test_dataloader): sizes = [sizes[0][0].item(), sizes[1][0].item()] pred_bboxes_, pred_labels_, pred_scores_ = self.nn_model._model.faster_rcnn.predict(imgs, [sizes]) gt_bboxes += list(gt_bboxes_.numpy()) gt_labels += list(gt_labels_.numpy()) gt_difficults += list(gt_difficults_.numpy()) pred_bboxes += pred_bboxes_ pred_labels += pred_labels_ pred_scores += pred_scores_ result = eval_detection_voc( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults, use_07_metric=True) Logger.info(f"---- test result {result}") else: data = self.data_converter.convert(data_inst, batch_size=self.batch_size) predict = self.nn_model.predict(data) num_output_units = data.get_shape()[1] threshold = self.param.predict_param.threshold if num_output_units[0] == 1: kv = [(x[0], (0 if x[1][0] <= threshold else 1, x[1][0].item())) for x in zip(data.get_keys(), predict)] pred_tbl = session.parallelize(kv, include_key=True) return data_inst.join(pred_tbl, lambda d, pred: [d.label, pred[0], pred[1], {"label": pred[0]}]) else: kv = [(x[0], (x[1].argmax(), [float(e) for e in x[1]])) for x in zip(data.get_keys(), predict)] pred_tbl = session.parallelize(kv, include_key=True) return data_inst.join(pred_tbl, lambda d, pred: [d.label, pred[0].item(), pred[1][pred[0]] / (sum(pred[1])), {"raw_predict": pred[1]}]) def load_model(self, model_dict): model_dict = list(model_dict["model"].values())[0] model_obj = _extract_param(model_dict) meta_obj = _extract_meta(model_dict) self.model_param.restore_from_pb(meta_obj.params) self._init_model(self.model_param) self.aggregate_iteration_num = meta_obj.aggregate_iter self.nn_model = restore_nn_model(self.config_type, model_obj.saved_model_bytes) # server: Arbiter, clients: Guest and Hosts class HomoNNDefaultTransVar(HomoTransferBase): def __init__(self, server=(consts.ARBITER,), clients=(consts.GUEST, consts.HOST), prefix=None): super().__init__(server=server, clients=clients, prefix=prefix) self.secure_aggregator_trans_var = SecureAggregatorTransVar(server=server, clients=clients, prefix=self.prefix) self.loss_scatter_trans_var = LossScatterTransVar(server=server, clients=clients, prefix=self.prefix) self.has_converged_trans_var = HasConvergedTransVar(server=server, clients=clients, prefix=self.prefix) class HomoNNDefaultClient(HomoNNClient): def __init__(self): super().__init__(trans_var=HomoNNDefaultTransVar()) class HomoNNDefaultServer(HomoNNServer): def __init__(self): super().__init__(trans_var=HomoNNDefaultTransVar()) # server: Arbiter, clients: Guest and Hosts class HomoNNGuestServerTransVar(HomoNNDefaultTransVar): def __init__(self, server=(consts.GUEST,), clients=(consts.HOST,), prefix=None): super().__init__(server=server, clients=clients, prefix=prefix) class HomoNNGuestServerClient(HomoNNClient): def __init__(self): super().__init__(trans_var=HomoNNGuestServerTransVar()) class HomoNNGuestServerServer(HomoNNServer): def __init__(self): super().__init__(trans_var=HomoNNGuestServerTransVar()) # server: Arbiter, clients: Hosts class HomoNNArbiterSubmitTransVar(HomoNNDefaultTransVar): def __init__(self, server=(consts.ARBITER,), clients=(consts.HOST,), prefix=None): super().__init__(server=server, clients=clients, prefix=prefix) class HomoNNArbiterSubmitClient(HomoNNClient): def __init__(self): super().__init__(trans_var=HomoNNArbiterSubmitTransVar()) class HomoNNArbiterSubmitServer(HomoNNServer): def __init__(self): super().__init__(trans_var=HomoNNArbiterSubmitTransVar())
2672b6cac374b1ef9e6b36c2ec32f204ddea26fe
8554533e2b19993ec3a78759f3d06444497995c4
/week4/project/core/models.py
16b46a035bcdd1d7276e2b7c3051adb64f081c7c
[]
no_license
Aiganymus/django2019
45568dd82763de4623ee9e15251263e816ecc895
3605562be5f796e0e6f12d4d58c3b16550ea80a8
refs/heads/master
2022-12-01T02:17:56.398215
2019-10-22T17:27:58
2019-10-22T17:27:58
206,342,331
0
1
null
2022-11-22T04:15:27
2019-09-04T14:44:17
Python
UTF-8
Python
false
false
3,847
py
from datetime import datetime from django.db import models from core.constants import TASK_TYPES, TASK_NEW from user.models import MainUser class Project(models.Model): name = models.CharField(max_length=50) description = models.TextField(max_length=300, blank=True, default='') creator = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='created_projects') created_at = models.DateField(auto_now_add=True) class Meta: db_table = 'project' ordering = ('created_at', ) def __str__(self): return self.name + '\n' + self.description def get_short_description(self): return self.description[: 10] + '...' class ProjectMember(models.Model): user = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='assigned_projects') project = models.ForeignKey(Project, on_delete=models.CASCADE, related_name='members') joined_at = models.DateField(auto_now_add=True) class Meta: db_table = 'project_member' ordering = ('joined_at', ) def __str__(self): return self.project.name + ' member ' + self.user.profile.full_name class NewTasksBlockManager(models.Manager): def get_queryset(self): return super().get_queryset().filter(type=TASK_NEW) def new_tasks(self): return self.filter(type=TASK_NEW) def filter_by_type(self, status): return self.filter(type=type) class Block(models.Model): name = models.CharField(max_length=20) type = models.PositiveSmallIntegerField(choices=TASK_TYPES, default=TASK_NEW) project = models.ForeignKey(Project, on_delete=models.CASCADE, related_name='blocks') objects = models.Manager() new_tasks_block = NewTasksBlockManager() class Meta: db_table = 'block' ordering = ('type', ) def __str__(self): return self.name + ' ' + self.project.name class Task(models.Model): name = models.CharField(max_length=100) description = models.CharField(max_length=300, blank=True) order = models.IntegerField() creator = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='created_tasks') executor = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='assigned_tasks') block = models.ForeignKey(Block, on_delete=models.CASCADE, related_name='tasks') created_at = models.DateField(auto_now_add=True) class Meta: db_table = 'task' unique_together = ('block', 'order', ) ordering = ('block', 'order', ) def __str__(self): return self.name + '\n' + self.description @classmethod def get_recent_projects(cls): today = datetime.now() return cls.objects.filter(created_at__day=today.day, created_at__month=today.month, created_at__year=today.year) class TaskDocument(models.Model): document = models.FileField() task = models.ForeignKey(Task, on_delete=models.CASCADE, related_name='documents') creator = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='uploaded_documents') created_at = models.DateField(auto_now_add=True) class Meta: db_table = 'task_document' ordering = ('created_at', ) @staticmethod def get_doc_len(doc): return len(doc.document) class TaskComment(models.Model): body = models.TextField(max_length=200) creator = models.ForeignKey(MainUser, on_delete=models.CASCADE, related_name='tasks_comments') task = models.ForeignKey(Task, on_delete=models.CASCADE, related_name='comments') created_at = models.DateField(auto_now_add=True) class Meta: db_table = 'task_comment' ordering = ('created_at', ) def __str__(self): return self.creator.username + ': ' + self.body
e3fd5dd342af9721b6cf3269f297b37f79ffd579
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4148/codes/1585_1015.py
08a5545beb80ec90b3bded9dc3f7fdb8b9ea446b
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
363
py
# Teste seu codigo aos poucos. # Nao teste tudo no final, pois fica mais dificil de identificar erros. # Nao se intimide com as mensagens de erro. Elas ajudam a corrigir seu codigo. a = int(input("digite um valor a: ")) b = int(input("digite um valor b: ")) c = int(input("digite um valor c: ")) print(min(a, b, c), a+b+c-min(a, b, c)-max(a, b, c), max(a, b, c))
6c80ca7edf3db7c014c4da28b458a3c707d36583
bc49915f9d6ba300cbef49da2142198a0185dea3
/zodiac.py
7cf0d47d37770f36934a7517f9e61e07ebdf2cf2
[]
no_license
vidyanathan/tele-butt
3a8a9d70fff6728d5e1b0c693b5b7299c6f91458
165d7cab2844b1c72ce98eb3a4f19a8f8ab9e7b9
refs/heads/master
2020-12-26T15:31:39.587936
2020-02-01T07:12:41
2020-02-01T07:12:41
237,551,626
0
0
null
null
null
null
UTF-8
Python
false
false
1,210
py
from datetime import date def getSign(day, month): year = 2020 temp = date(year, month,day) if date(year, 3, 21) <= temp <= date(year, 4, 20): return "aries" elif date(year, 4, 21) <= temp <= date(year, 5, 21): return "taurus" elif date(year, 5, 22) <= temp <= date(year, 6, 21): return "gemini" elif date(year, 6, 22) <= temp <= date(year, 7, 22): return "cancer" elif date(year, 7, 23) <= temp <= date(year, 8, 23): return "leo" elif date(year, 8, 24) <= temp <= date(year, 9, 22): return "virgo" elif date(year, 9, 23) <= temp <= date(year, 10, 23): return "libra" elif date(year, 10, 24) <= temp <= date(year, 11, 22): return "scorpio" elif date(year, 11, 23) <= temp <= date(year, 12, 21): return "sagittarius" elif date(year, 12, 22) <= temp <= date(year, 12, 31): return "capricorn" elif date(year, 1, 1) <= temp <= date(year, 1, 20): return "capricorn" elif date(year, 1, 21) <= temp <= date(year, 2, 18): return "aquarius" elif date(year, 2, 19) <= temp <= date(year, 3, 20): return "pisces" #(getSign(25, 12))
7c102741dbc6f69ffd3c01e5b562b46b83ad07f0
c3fc7865f163a43fbd3e832547005cf3c89547c5
/bin/oldScripts/bokeh_deneme.py
194c894fecaba5e15b1f6e143d85898a56650bf0
[]
no_license
ahmetrifaioglu/PyTorch
936d5317ca90a147e147241cbf75ae0864477f13
fff02012eb5f05cdd634b5128f8bdceb9ed3b2a7
refs/heads/master
2021-10-24T19:27:53.495478
2021-10-12T22:05:08
2021-10-12T22:05:08
165,693,778
0
0
null
2021-10-12T22:04:20
2019-01-14T16:24:32
Jupyter Notebook
UTF-8
Python
false
false
1,375
py
from numpy import linspace import numpy as np from scipy.stats.kde import gaussian_kde from bokeh.io import output_file, show from bokeh.models import ColumnDataSource, FixedTicker, PrintfTickFormatter from bokeh.plotting import figure from bokeh.sampledata.perceptions import probly import colorcet as cc output_file("ridgeplot.html") def ridge(category, data, scale=20): return list(zip([category]*len(data), scale*data)) cats = list(reversed(probly.keys())) palette = [cc.rainbow[i*15] for i in range(17)] x = linspace(-20,110, 500) source = ColumnDataSource(data=dict(x=x)) p = figure(y_range=cats, plot_width=700, x_range=(-5, 105), toolbar_location=None) for i, cat in enumerate(reversed(cats)): #pdf = gaussian_kde(probly[cat]) # pdf = np.random.normal(0.01, 0.001, 1000) y = np.random.normal(2, 2, 1000) source.add(y, cat) p.patch('x', cat, color=palette[i], alpha=0.6, line_color="black", source=source) p.outline_line_color = None p.background_fill_color = "#efefef" p.xaxis.ticker = FixedTicker(ticks=list(range(0, 101, 10))) p.xaxis.formatter = PrintfTickFormatter(format="%d%%") p.ygrid.grid_line_color = None p.xgrid.grid_line_color = "#dddddd" p.xgrid.ticker = p.xaxis[0].ticker p.axis.minor_tick_line_color = None p.axis.major_tick_line_color = None p.axis.axis_line_color = None p.y_range.range_padding = 0.12 show(p)
9a9968534d4b4d87eb829b640d1fc781677d07bb
f6f098049c7d49dd44c157796aaf8aaee9cd3861
/testando.py
bbdcde7c11ed626c5907b53b0fbd83a48ff54ff7
[]
no_license
emesonfilho/dashboard_stocks
18c0edde2bf670cd4af73875c8d710ea4e98c4f4
b5cd4ce3b682833db57c6b89dd9d93147892a8e2
refs/heads/master
2022-11-16T06:42:58.165845
2020-07-12T03:25:12
2020-07-12T03:25:12
277,551,687
1
0
null
null
null
null
UTF-8
Python
false
false
145
py
import investpy as inv import numpy as np import matplotlib.pyplot as plt import pandas as pd import json from dashboard import dados_dowload
1e81d4557c4ce4b7b3e7043c3952ad5baa848153
b43b142c80821dd7704a3cd9279e92a89b217f9b
/Authors.py
cced9ad88047115deb7395d7a6ab79f1015656cf
[]
no_license
JoshKallagunta/ITEC-2905-Lab-1
711897da6d101911d01172477a3ca6f59ce8021e
e9acf937d23c01e059d4872ce0c6bdaec5d7da7c
refs/heads/master
2020-07-14T09:04:44.749439
2019-09-05T23:59:27
2019-09-05T23:59:27
205,289,155
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
class Author: def _init_(self, name): self.name = name self.books = [] def publish(self, book_title): self.books.append(book_title) # def __str__(self, publish) def main(): josh = Author('Josh Kallagunta') josh.publish('Book 1') josh.publish('Book 2') print(josh) jake = Author('Jake') print(jake) main()
3cbd7aea80a3af1cb159eebbb6e14062ae4b04f1
c068f19f14749c7e29a5450871da81d0e4b57348
/inasilentway/last.py
8f1aeecef4c21702868e97d87f4a1d541f550c01
[]
no_license
davidmiller/inasilentway
42b94adea60143a70e7fa82ecd8504fa6a1142f1
c88ccd1cc0f79aa167f8a2ff082a20a043d64556
refs/heads/master
2022-12-10T11:47:51.052379
2021-01-22T12:41:33
2021-01-22T12:41:33
161,032,907
0
0
null
2022-12-08T01:29:25
2018-12-09T11:38:22
HTML
UTF-8
Python
false
false
7,025
py
# """ # interact with Last.fm # """ # import datetime # import time # import pylast # from inasilentway import utils # LASTFM_CORRECTIONS = { # # Sometimes Last.fm "corrects" album titles. # # Where these are different to Discogs album title versions this means we # # are unable to match the scrobbles to the album. # # # # We keep a mapping of known corrections here so we can move between them # # # 'album': { # 'Desafinado: Bossa Nova & Jazz Samba': 'Desafinado Coleman Hawkins Plays Bossa Nova & Jazz Samba', # noqa # 'Oscar Peterson Plays the Duke Ellington Songbook': 'The Duke Ellington Songbook', # noqa # 'Standard Time Vol.2 - Intimacy Calling': 'Standard Time Vol. 2 (Intimacy Calling)', # noqa # 'White Light/White Heat': 'White Light / White Heat', # }, # 'artist': { # 'Duke Ellington & His Orchestra': 'Duke Ellington And His Orchestra' # } # } # SPOTIFY_EQUIVALENTS = { # 'album': { # 'Way Out West (OJC Remaster)': 'Way Out West', # "Workin' (RVG Remaster)": "Workin' With The Miles Davis Quintet" # } # } # def get_lastfm(): # utils.setup_django() # from django.conf import settings # lastfm = pylast.LastFMNetwork( # api_key=settings.LASTFM_API_KEY, # api_secret=settings.LASTFM_SECRET, # username=settings.LASTFM_USER, # password_hash=settings.LASTFM_PASS # ) # return lastfm # def scrobble_django_record(record, when): # # TODO: Rename this # start_time = time.mktime(when.timetuple()) # tracks = [] # for track in record.track_set.all(): # tracks.append( # { # 'artist' : record.artist.first().name, # 'title' : track.title, # 'album' : record.title, # 'timestamp': start_time # } # ) # if track.duration: # mins, secs = track.duration.split(':') # seconds = int(secs) + (int(mins) * 60) # start_time += seconds # else: # start_time += (3 * 60) + 41 # lastfm = get_lastfm() # lastfm.scrobble_many(tracks) # def get_scrobbles(): # """ # Get this user's scrobbles. All of them. # """ # from django.conf import settings # from inasilentway.models import Scrobble # lastfm = get_lastfm() # if Scrobble.objects.count() > 0: # # oldest = Scrobble.objects.all().order_by('timestamp').first() # # oldest_scrobble = oldest.timestamp # newest = Scrobble.objects.all().order_by('timestamp').last() # print(newest.title) # newest_scrobble = newest.timestamp # user = lastfm.get_user(settings.LASTFM_USER) # tracks = user.get_recent_tracks(limit=1000, time_from=newest_scrobble) # print(tracks) # return tracks # def save_scrobbles(scrobbles): # """ # Give some scrobbles, save them to the database # """ # from inasilentway.models import Scrobble # from django.utils import timezone # for scrobble in scrobbles: # scrob, _ = Scrobble.objects.get_or_create( # timestamp=scrobble.timestamp, # title=scrobble.track.title # ) # scrob.artist = scrobble.track.artist # scrob.album = scrobble.album # scrob.timestamp = int(scrobble.timestamp) # format_string = '%d %b %Y, %H:%M' # scrob.datetime = timezone.make_aware( # datetime.datetime.strptime(scrobble.playback_date, format_string) # ) # scrob.save() # def save_scrobbles_since(when): # from django.conf import settings # lastfm = get_lastfm() # user = lastfm.get_user(settings.LASTFM_USER) # tracks = user.get_recent_tracks( # limit=1000, time_from=time.mktime(when.timetuple())) # save_scrobbles(tracks) # def load_scrobbles(args): # """ # Commandline entrypoint to get scrobbles and print them (warning, big) # """ # utils.setup_django() # scrobbles = get_scrobbles() # save_scrobbles(scrobbles) # from inasilentway.models import Scrobble # print('We have {} scrobbles'.format(Scrobble.objects.count())) # if len(scrobbles) > 0: # print('Going again') # load_scrobbles(args) # def match_artist(artist_name): # """ # Given the name of an artist, return a matching Artist # or None # """ # from inasilentway.models import Artist # artist_matches = Artist.objects.filter( # name__iexact=artist_name # ) # if len(artist_matches) == 0: # if artist_name in LASTFM_CORRECTIONS['artist']: # return match_artist(LASTFM_CORRECTIONS['artist'][artist_name]) # return None # if len(artist_matches) == 1: # return artist_matches[0] # if len(artist_matches) > 1: # import pdb; pdb.set_trace() # noqa # print(artist_matches) # def match(artist, album, title): # """ # Return matches if we have them or none # """ # from inasilentway.models import Record # match_album = None # match_track = None # matching_artist = match_artist(artist) # if album in LASTFM_CORRECTIONS['album']: # album = LASTFM_CORRECTIONS['album'][album] # album_matches = Record.objects.filter( # title__iexact=album, # artist=matching_artist # ) # if len(album_matches) == 0: # return matching_artist, match_album, match_track # if len(album_matches) == 1: # match_album = album_matches[0] # if len(album_matches) > 1: # # E.g. Billie holiday with many "all or nothing at all" albums # return matching_artist, match_album, match_track # for track in match_album.track_set.all(): # if track.title.lower() == title.lower(): # match_track = track # return matching_artist, match_album, match_track # def make_links(scrobbles): # print('{} unlinked scrobbles'.format(scrobbles.count())) # matches_added = 0 # for scrobble in scrobbles: # matches = match(scrobble.artist, scrobble.album, scrobble.title) # artist, album, track = matches # if track: # scrobble.isw_track = track # if artist: # scrobble.isw_album = album # matches_added += 1 # if album: # scrobble.isw_artist = artist # if any([track, artist, album]): # scrobble.save() # else: # print('No matches, next') # continue # print('This run added {} album matches'.format(matches_added)) # def link_scrobbles(args): # """ # Commandline entrypoint to get scrobbles and link them with # records in our collection # """ # utils.setup_django() # from inasilentway.models import Scrobble # unlinked = Scrobble.objects.filter( # isw_album__isnull=True, # album__isnull=False # ) # make_links(unlinked)
87b353e77d5eca80f7fc31e540192a304eeeaeb6
a4b21c130ab9b1093b84b925c18579083f05abd7
/chunk_traj_proc.py
6b03ebeb1527643c44a366ed63d4de376cd85751
[]
no_license
fischcheng/CMS_postproc
3a97e58e7cfda7fb1221da871f9a5ddeedc7469f
737c21cf2b0d8e0e1945c2106385fe44124ca8d8
refs/heads/master
2021-01-11T01:02:31.823488
2016-10-17T16:09:39
2016-10-17T16:09:39
71,063,136
3
0
null
null
null
null
UTF-8
Python
false
false
2,946
py
''' 2016/5/24 Auto chunking for large/eddy separation since single sequence runs too slow. 2016/5/31 modified for HRC07m2d 2016/6/13 modified for HRC07m2d 2016/6/23 modified for shuffle experiment 2016/7/11 modified for chunk traj processing. Yu Cheng ''' import os import glob # User-defined variables, experiment and so on case='HRC07p2d' shuf='shift2' # Directories parent='/scratch/projects/cpp/ycheng/CMSexpt/Shuffle/'+shuf #inputchunk='/scratch/projects/cpp/ycheng/CMSexpt/HRC07m2d/input_HRC07m2d_chunk' flist=sorted(glob.glob('/projects/rsmas/kirtman/ycheng/rawCMS/ACTmatfiles/HRC07p2d/'+shuf+'/vertTrans_ACTvoltrans_HRC07p2d_*.mat')) #glob.glob('HRIE_10ATM_01.cam2.1.h0.*.nc') #121-163, ensemble member 1-9 last=2 num=2 for i in range(last,last+num): os.chdir(parent) cmd='cp -f ./postprocess_tool_ascii/traj_proc_update.m proc_traj_chunk'+str(i+1).zfill(2)+'.m' os.system(cmd) # copy the set of separation scr cmd2='cp -f ./postprocess_tool_ascii/proc_sub proc_sub_chunk'+str(i+1).zfill(2) os.system(cmd2) # Find number of trajectory files trajoutput='expt_'+case+'_'+shuf+'_chunk'+str(i+1).zfill(2)+'/output' num_traj=len(os.listdir(trajoutput)) # Modify the proc_traj_chunk.m file Sdate=flist[i][97:107] YYs=flist[i][97:101] Yend=int(YYs)+9 old_exptname="exptname='HRC07p2d_shift2_chunk01'" new_exptname="exptname='"+case+'_'+shuf+'_chunk'+str(i+1).zfill(2)+"'" old_numtraj='num_traj=64' new_numtraj='num_traj='+str(num_traj) old_shuf="shuf='shift2'" new_shuf="shuf='"+shuf+"'" old_stdate="stdate='1951-01-01'" new_stdate="stdate='"+Sdate+"'" old_endate="endate='1960-12-31'" new_endate="endate='"+str(Yend)+"-12-31'" text = open('proc_traj_chunk'+str(i+1).zfill(2)+'.m').read() open('proc_traj_chunk'+str(i+1).zfill(2)+'.m', "w").write(text.replace(old_exptname,new_exptname)) text = open('proc_traj_chunk'+str(i+1).zfill(2)+'.m').read() open('proc_traj_chunk'+str(i+1).zfill(2)+'.m', "w").write(text.replace(old_numtraj,new_numtraj)) text = open('proc_traj_chunk'+str(i+1).zfill(2)+'.m').read() open('proc_traj_chunk'+str(i+1).zfill(2)+'.m', "w").write(text.replace(old_stdate,new_stdate)) text = open('proc_traj_chunk'+str(i+1).zfill(2)+'.m').read() open('proc_traj_chunk'+str(i+1).zfill(2)+'.m', "w").write(text.replace(old_endate,new_endate)) text = open('proc_traj_chunk'+str(i+1).zfill(2)+'.m').read() open('proc_traj_chunk'+str(i+1).zfill(2)+'.m', "w").write(text.replace(old_shuf,new_shuf)) # Modify the submit script old_chunk='chunk01' new_chunk='chunk'+str(i+1).zfill(2) text = open('proc_sub_chunk'+str(i+1).zfill(2)).read() open('proc_sub_chunk'+str(i+1).zfill(2),"w").write(text.replace(old_chunk,new_chunk))
e112803d2a59c825c238dba119194041f92561ef
ae095900b0d28eaa7172ca18c51a2e33586390e1
/Backgammon/mcts_alphaZero.py
908727dd25c3a19bb2cb5bfab942fab310192d69
[]
no_license
krayc425/MobileLab
095f386e54fc0965ae1e11d4c5a35f952486e9e8
73af48dbdaa82954b082efe01453e47acbc0e2fe
refs/heads/master
2023-08-18T09:03:53.731650
2018-07-07T14:18:14
2018-07-07T14:18:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,843
py
# -*- coding: utf-8 -*- """ Monte Carlo Tree Search in AlphaGo Zero style, which uses a policy-value network to guide the tree search and evaluate the leaf nodes @author: Junxiao Song """ import numpy as np import copy def softmax(x): probs = np.exp(x - np.max(x)) probs /= np.sum(probs) return probs class TreeNode(object): """A node in the MCTS tree. Each node keeps track of its own value Q, prior probability P, and its visit-count-adjusted prior score u. """ def __init__(self, parent, prior_p): self._parent = parent self._children = {} # a map from action to TreeNode self._n_visits = 0 self._Q = 0 self._u = 0 self._P = prior_p def expand(self, action_priors): """Expand tree by creating new children. action_priors: a list of tuples of actions and their prior probability according to the policy function. """ for action, prob in action_priors: if action not in self._children: self._children[action] = TreeNode(self, prob) def select(self, c_puct): """Select action among children that gives maximum action value Q plus bonus u(P). Return: A tuple of (action, next_node) """ return max(self._children.items(), key=lambda act_node: act_node[1].get_value(c_puct)) def update(self, leaf_value): """Update node values from leaf evaluation. leaf_value: the value of subtree evaluation from the current player's perspective. """ # Count visit. self._n_visits += 1 # Update Q, a running average of values for all visits. self._Q += 1.0*(leaf_value - self._Q) / self._n_visits def update_recursive(self, leaf_value): """Like a call to update(), but applied recursively for all ancestors. """ # If it is not root, this node's parent should be updated first. if self._parent: self._parent.update_recursive(-leaf_value) self.update(leaf_value) def get_value(self, c_puct): """Calculate and return the value for this node. It is a combination of leaf evaluations Q, and this node's prior adjusted for its visit count, u. c_puct: a number in (0, inf) controlling the relative impact of value Q, and prior probability P, on this node's score. """ self._u = (c_puct * self._P * np.sqrt(self._parent._n_visits) / (1 + self._n_visits)) return self._Q + self._u def is_leaf(self): """Check if leaf node (i.e. no nodes below this have been expanded).""" return self._children == {} def is_root(self): return self._parent is None class MCTS(object): """An implementation of Monte Carlo Tree Search.""" def __init__(self, policy_value_fn, c_puct=5, n_playout=10000): """ policy_value_fn: a function that takes in a board state and outputs a list of (action, probability) tuples and also a score in [-1, 1] (i.e. the expected value of the end game score from the current player's perspective) for the current player. c_puct: a number in (0, inf) that controls how quickly exploration converges to the maximum-value policy. A higher value means relying on the prior more. """ self._root = TreeNode(None, 1.0) self._policy = policy_value_fn self._c_puct = c_puct self._n_playout = n_playout def _playout(self, state): """Run a single playout from the root to the leaf, getting a value at the leaf and propagating it back through its parents. State is modified in-place, so a copy must be provided. """ node = self._root while 1: if node.is_leaf(): break # Greedily select next move. action, node = node.select(self._c_puct) state.do_move(action) # Evaluate the leaf using a network which outputs a list of # (action, probability) tuples p and also a score v in [-1, 1] # for the current player. action_probs, leaf_value = self._policy(state) # Check for end of game. end, winner = state.game_end() if not end: node.expand(action_probs) else: # for end state,return the "true" leaf_value if winner == -1: # tie leaf_value = 0.0 else: leaf_value = ( 1.0 if winner == state.get_current_player() else -1.0 ) # Update value and visit count of nodes in this traversal. node.update_recursive(-leaf_value) def get_move_probs(self, state, temp=1e-3): """Run all playouts sequentially and return the available actions and their corresponding probabilities. state: the current game state temp: temperature parameter in (0, 1] controls the level of exploration """ for n in range(self._n_playout): state_copy = copy.deepcopy(state) self._playout(state_copy) # calc the move probabilities based on visit counts at the root node act_visits = [(act, node._n_visits) for act, node in self._root._children.items()] acts, visits = zip(*act_visits) act_probs = softmax(1.0/temp * np.log(np.array(visits) + 1e-10)) return acts, act_probs def update_with_move(self, last_move): """Step forward in the tree, keeping everything we already know about the subtree. """ if last_move in self._root._children: self._root = self._root._children[last_move] self._root._parent = None else: self._root = TreeNode(None, 1.0) def __str__(self): return "MCTS" class MCTSPlayer(object): """AI player based on MCTS""" def __init__(self, policy_value_function, c_puct=5, n_playout=2000, is_selfplay=0): self.mcts = MCTS(policy_value_function, c_puct, n_playout) self._is_selfplay = is_selfplay def set_player_ind(self, p): self.player = p def reset_player(self): self.mcts.update_with_move(-1) def get_action(self, board, temp=1e-3, return_prob=0): sensible_moves = board.availables # the pi vector returned by MCTS as in the alphaGo Zero paper move_probs = np.zeros(board.width*board.height) if len(sensible_moves) > 0: acts, probs = self.mcts.get_move_probs(board, temp) move_probs[list(acts)] = probs if self._is_selfplay: # add Dirichlet Noise for exploration (needed for # self-play training) move = np.random.choice( acts, p=0.75*probs + 0.25*np.random.dirichlet(0.3*np.ones(len(probs))) ) # update the root node and reuse the search tree self.mcts.update_with_move(move) else: # with the default temp=1e-3, it is almost equivalent # to choosing the move with the highest prob move = np.random.choice(acts, p=probs) # reset the root node self.mcts.update_with_move(-1) # location = board.move_to_location(move) # print("AI move: %d,%d\n" % (location[0], location[1])) if return_prob: return move, move_probs else: return move else: print("WARNING: the board is full") def __str__(self): return "MCTS {}".format(self.player)
cd3ad0cf3d1730377cdd51d886b98fbe17ed2a13
2bd2ad4931c25491f54d5a8b1808f78e7dda1dbe
/salesman.py
a6482481626516b1f0c7122f210052ebf3a210e1
[]
no_license
edilsonmassuete/EC016
08096c7634810c0de75e24a9f4b8e71ad0aaceff
ea4c75dc5cfa26e434fc5eb1fd142cc3bdf1dedc
refs/heads/master
2021-01-11T00:07:36.571117
2015-12-03T12:12:35
2015-12-03T12:12:35
47,299,307
0
0
null
null
null
null
UTF-8
Python
false
false
9,174
py
# encoding:utf-8 ''' Solution for Travelling Salesman Problem using PSO (Particle Swarm Optimization) Autor: Marcos Castro Adaptado por : Edilson Massuete ''' from operator import attrgetter import random, sys, time, copy # class that represents a graph class Graph: def __init__(self, amount_vertices): self.edges = {} # dictionary of edges self.vertices = set() # set of vertices self.amount_vertices = amount_vertices # amount of vertices # adds a edge linking "src" in "dest" with a "cost" def addEdge(self, src, dest, cost = 0): # checks if the edge already exists if not self.existsEdge(src, dest): self.edges[(src, dest)] = cost self.vertices.add(src) self.vertices.add(dest) # checks if exists a edge linking "src" in "dest" def existsEdge(self, src, dest): return (True if (src, dest) in self.edges else False) # returns total cost of the path def getCostPath(self, path): total_cost = 0 for i in range(self.amount_vertices - 1): total_cost += self.edges[(path[i], path[i+1])] # add cost of the last edge total_cost += self.edges[(path[self.amount_vertices - 1], path[0])] return total_cost # gets random unique paths - returns a list of lists of paths def getRandomPaths(self, max_size): random_paths, list_vertices = [], list(self.vertices) initial_vertice = random.choice(list_vertices) if initial_vertice not in list_vertices: print('Error: initial vertice %d not exists!' % initial_vertice) sys.exit(1) list_vertices.remove(initial_vertice) list_vertices.insert(0, initial_vertice) for i in range(max_size): list_temp = list_vertices[1:] random.shuffle(list_temp) list_temp.insert(0, initial_vertice) if list_temp not in random_paths: random_paths.append(list_temp) return random_paths # class that represents a complete graph class CompleteGraph(Graph): # generates a complete graph def generates(self): for i in range(self.amount_vertices): for j in range(self.amount_vertices): if i != j: weight = random.randint(1, 10) self.addEdge(i, j, weight) # class that represents a particle class Particle: def __init__(self, solution, cost): # current solution self.solution = solution # best solution (fitness) it has achieved so far self.pbest = solution # set costs self.cost_current_solution = cost self.cost_pbest_solution = cost # velocity of a particle is a sequence of 4-tuple # (1, 2, 1, 'beta') means SO(1,2), prabability 1 and compares with "beta" self.velocity = [] # set pbest def setPBest(self, new_pbest): self.pbest = new_pbest # returns the pbest def getPBest(self): return self.pbest # set the new velocity (sequence of swap operators) def setVelocity(self, new_velocity): self.velocity = new_velocity # returns the velocity (sequence of swap operators) def getVelocity(self): return self.velocity # set solution def setCurrentSolution(self, solution): self.solution = solution # gets solution def getCurrentSolution(self): return self.solution # set cost pbest solution def setCostPBest(self, cost): self.cost_pbest_solution = cost # gets cost pbest solution def getCostPBest(self): return self.cost_pbest_solution # set cost current solution def setCostCurrentSolution(self, cost): self.cost_current_solution = cost # gets cost current solution def getCostCurrentSolution(self): return self.cost_current_solution # removes all elements of the list velocity def clearVelocity(self): del self.velocity[:] # PSO algorithm class PSO: def __init__(self, graph, iterations, size_population, beta=1, alfa=1): self.graph = graph # the graph self.iterations = iterations # max of iterations self.size_population = size_population # size population self.particles = [] # list of particles self.beta = beta # the probability that all swap operators in swap sequence (gbest - x(t-1)) self.alfa = alfa # the probability that all swap operators in swap sequence (pbest - x(t-1)) # initialized with a group of random particles (solutions) solutions = self.graph.getRandomPaths(self.size_population) # checks if exists any solution if not solutions: print('Initial population empty! Try run the algorithm again...') sys.exit(1) # creates the particles and initialization of swap sequences in all the particles for solution in solutions: # creates a new particle particle = Particle(solution=solution, cost=graph.getCostPath(solution)) # add the particle self.particles.append(particle) # updates "size_population" self.size_population = len(self.particles) # set gbest (best particle of the population) def setGBest(self, new_gbest): self.gbest = new_gbest # returns gbest (best particle of the population) def getGBest(self): return self.gbest # shows the info of the particles def showsParticles(self): print('Showing particles...\n') for particle in self.particles: print('pbest: %s\t|\tcost pbest: %d\t|\tcurrent solution: %s\t|\tcost current solution: %d' \ % (str(particle.getPBest()), particle.getCostPBest(), str(particle.getCurrentSolution()), particle.getCostCurrentSolution())) print('') def run(self): # for each time step (iteration) for t in range(self.iterations): # updates gbest (best particle of the population) self.gbest = min(self.particles, key=attrgetter('cost_pbest_solution')) # for each particle in the swarm for particle in self.particles: particle.clearVelocity() # cleans the speed of the particle temp_velocity = [] solution_gbest = copy.copy(self.gbest.getPBest()) # gets solution of the gbest solution_pbest = particle.getPBest()[:] # copy of the pbest solution solution_particle = particle.getCurrentSolution()[:] # gets copy of the current solution of the particle # generates all swap operators to calculate (pbest - x(t-1)) for i in range(self.graph.amount_vertices): if solution_particle[i] != solution_pbest[i]: # generates swap operator swap_operator = (i, solution_pbest.index(solution_particle[i]), self.alfa) # append swap operator in the list of velocity temp_velocity.append(swap_operator) # makes the swap aux = solution_pbest[swap_operator[0]] solution_pbest[swap_operator[0]] = solution_pbest[swap_operator[1]] solution_pbest[swap_operator[1]] = aux # generates all swap operators to calculate (gbest - x(t-1)) for i in range(self.graph.amount_vertices): if solution_particle[i] != solution_gbest[i]: # generates swap operator swap_operator = (i, solution_gbest.index(solution_particle[i]), self.beta) # append swap operator in the list of velocity temp_velocity.append(swap_operator) # makes the swap aux = solution_gbest[swap_operator[0]] solution_gbest[swap_operator[0]] = solution_gbest[swap_operator[1]] solution_gbest[swap_operator[1]] = aux # updates velocity particle.setVelocity(temp_velocity) # generates new solution for particle for swap_operator in temp_velocity: if random.random() <= swap_operator[2]: # makes the swap aux = solution_particle[swap_operator[0]] solution_particle[swap_operator[0]] = solution_particle[swap_operator[1]] solution_particle[swap_operator[1]] = aux # updates the current solution particle.setCurrentSolution(solution_particle) # gets cost of the current solution cost_current_solution = self.graph.getCostPath(solution_particle) # updates the cost of the current solution particle.setCostCurrentSolution(cost_current_solution) # checks if current solution is pbest solution if cost_current_solution < particle.getCostPBest(): particle.setPBest(solution_particle) particle.setCostPBest(cost_current_solution) if __name__ == "__main__": # Creating a Graph according the first image of article. graph = Graph(amount_vertices=6) graph.addEdge(0, 1, 146) graph.addEdge(1, 0, 146) graph.addEdge(0, 2, 365) graph.addEdge(2, 0, 365) graph.addEdge(0, 3, 300) graph.addEdge(3, 0, 300) graph.addEdge(0, 4, 222) graph.addEdge(4, 0, 222) graph.addEdge(1, 2, 213) graph.addEdge(2, 1, 213) graph.addEdge(1, 3, 456) graph.addEdge(3, 1, 456) graph.addEdge(1, 4, 321) graph.addEdge(4, 1, 321) graph.addEdge(2, 3, 99) graph.addEdge(3, 2, 99) graph.addEdge(2, 4, 321) graph.addEdge(4, 2, 321) graph.addEdge(3, 4, 236) graph.addEdge(4, 3, 236) graph.addEdge(5, 0, 421) graph.addEdge(0, 5, 421) graph.addEdge(5, 3, 78) graph.addEdge(3, 5, 78) graph.addEdge(5, 4, 102) graph.addEdge(4, 5, 102) graph.addEdge(5, 1, 563) graph.addEdge(1, 5, 563) graph.addEdge(2, 5, 134) graph.addEdge(5, 2, 134) # creates a PSO instance # Were made test with diferent numbers of iterations, results on article pso = PSO(graph, iterations=100, size_population=10, beta=1, alfa=0.1) pso.run() # runs the PSO algorithm pso.showsParticles() # shows the particles # shows the global best particle print('gbest: %s | cost: %d\n' % (pso.getGBest().getPBest(), pso.getGBest().getCostPBest()))
42e1389f6954d28a78c7f5431a57049e087ba49b
c3ca05c5569393b10f8ebf735884291646bac1e8
/random/annograms.py
3668a2ce14601b12b1c30633ba6c001663cdc395
[]
no_license
weeksghost/snippets
318582bd8a9fa7603c4997fe25620170dc93377b
99e118109779cde3b5c3d057baba34dbf3188cc6
refs/heads/master
2021-01-10T01:36:31.848065
2016-11-02T21:41:31
2016-11-02T21:41:31
36,667,194
0
0
null
null
null
null
UTF-8
Python
false
false
932
py
''' Question: ---- Implement a function that uses a word list to return the annograms of a given word. Answer: ---- ''' def annograms(word): ''' For every string in WORD.LST return a copy of the string with trailing characters removed and assign it to the var 'words' ''' words = [ _.rstrip() for _ in open('WORD.LST')] ''' Assign list of items in arg (word) to var sword. Ex: yard would now read: ['a', 'd', 'r', 'y'] ''' sword = sorted(word) ''' For each arg (word) passed into the function assign it to var 'annogram' if sorted items from 'WORD.LST' match sorted arg word ''' annogram = [ _ for _ in words if sorted(_) == sword ] if annogram: return annogram else: raise NotImplementedError if __name__ == '__main__': print annograms('yard') print '--' print annograms('drive') print '--' print annograms('python')
dea87f5906e21e06b8f57e83a9310e91e6af6e37
c302376bf97171d64360316aaf955142d8f95dc4
/code/config/param_2day_label_small_trainable25.py
f4d491eec5438587ab63b86e5968b4434a773b8a
[]
no_license
THODESAIPRAJWAL/candlestick_model
98c8d406584f24ffec054dd5fb0e48c9d1612471
0f6198556285388756171c16a8ae329b0955e125
refs/heads/master
2023-03-15T06:05:15.249485
2020-08-20T18:58:32
2020-08-20T18:58:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,426
py
import os # tensorflowのINFOレベルのログを出さないようにする os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import tensorflow as tf from tensorflow import keras def get_class_fine_tuning_parameter_base() -> dict: """ Get parameter sample for class fine_tuning (like Keras) Returns: dict: parameter sample generated by trial object """ my_IDG_options = { "rescale": 1.0 / 255.0, #'width_shift_range': 0.2, #'height_shift_range': 0.2, #'horizontal_flip': True, #'vertical_flip': True, #'shear_range': 20, #'zoom_range': 0.2, #'rotation_range': 20, #'channel_shift_range': 50, #'brightness_range': [0.3, 1.0], # "random_erasing_prob": 0.5, # "random_erasing_maxpixel": 255, #'mix_up_alpha': 0.2, #'random_crop': [224,224], #'ricap_beta': 0.3, #'ricap_use_same_random_value_on_batch': True, "randaugment_N": 3, "randaugment_M": 4, #'is_kuzushiji_gen': True, "cutmix_alpha": 1.0, } ## Augmentor使う場合のoption # train_augmentor_options = { # 'input_width': 80, # 'input_height': 80, # 'random_dist_prob': 0.3, # 'zoom_prob': 0.3, # 'zoom_min': 0.5 # , 'zoom_max': 1.9 # , 'flip_left_right': 0.3 # , 'flip_top_bottom': 0.3 # , 'random_erasing_prob': 0.3 # , 'random_erasing_area': 0.3 # } return { "output_dir": r"D:\work\candlestick_model\output\model\ts_dataset_all_2day_label_small\Xception\_25", "gpu_count": 1, "img_rows": 80, "img_cols": 80, "channels": 3, "batch_size": 256, "classes": ["0", "1", "2"], "num_classes": 3, # "classes": ["0", "1"], # "num_classes": 2, # "train_data_dir": r"D:\work\candlestick_model\output\ts_dataset_all_2day_label_small\train", # "validation_data_dir": r"D:\work\candlestick_model\output\ts_dataset_all_2day_label_small\test", # "test_data_dir": r"D:\work\candlestick_model\output\ts_dataset_all_2day_label_small\test", "train_data_dir": r"D:\work\candlestick_model\output\ts_dataset_all_2day_label_small_class2_reduce\train", "validation_data_dir": r"D:\work\candlestick_model\output\ts_dataset_all_2day_label_small_class2_reduce\test", "test_data_dir": r"D:\work\candlestick_model\output\ts_dataset_all_2day_label_small_class2_reduce\test", "color_mode": "rgb", "class_mode": "categorical", # generatorのラベルをone-hotベクトルに変換する場合。generatorのラベルを0か1のどちらかに変えるだけなら'binary' "activation": "softmax", # "loss": "categorical_crossentropy", "loss": keras.losses.CategoricalCrossentropy(label_smoothing=0.1), "metrics": [ "accuracy", keras.metrics.Precision(name="precision"), keras.metrics.Recall(name="recall"), keras.metrics.AUC(name="auc"), ], "model_path": None, # "model_path": r"D:\work\candlestick_model\output\model\ts_dataset_all_2day_label\best_val_loss_20200727.h5", "num_epoch": 3, # 200, "n_multitask": 1, # マルチタスクのタスク数 "multitask_pred_n_node": 1, # マルチタスクの各クラス数 # model param "weights": "imagenet", "choice_model": "Xception", # "choice_model": "model_paper", "fcpool": "GlobalAveragePooling2D", "is_skip_bn": False, # "trainable": "all", # 249, "trainable": 25, "efficientnet_num": 3, # full layer param "fcs": [100], "drop": 0.3, "is_add_batchnorm": False, # True, "l2_rate": 1e-4, # optimizer param "choice_optim": "sgd", "lr": 1e-1, "decay": 1e-5, "my_IDG_options": my_IDG_options, #'train_augmentor_options': train_augmentor_options, "TTA": "", # 'flip', "TTA_rotate_deg": 0, "TTA_crop_num": 0, "TTA_crop_size": [224, 224], "preprocess": 1.0, "resize_size": [100, 100], "is_flow": False, "is_flow_from_directory": True, "is_flow_from_dataframe": False, # "is_lr_finder": False, "is_lr_finder": True, "is_class_weight": True, }
5876f0c0d68dd4f85f24210348646af4c796f8c2
3e48d5d460645e767bde0d4769ef97a679e94dbc
/manage.py
65536e79f44b8aeafb0ea1bfca5bb6c7cbd7c3a2
[]
no_license
Vabs3/Splitwise
aa1e20e26747a06fb7f561dfeee285369c75e2e2
ab489cb41d8a50929b51ad76097b14cdd57d22a1
refs/heads/master
2022-08-03T17:49:28.477881
2020-05-25T06:09:51
2020-05-25T06:09:51
266,598,928
0
0
null
null
null
null
UTF-8
Python
false
false
629
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Splitwise.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
fbc443913e03e766600e25b0b04391cdb8c0713e
f8846f9459e6ee07829602cfa61ce16022e7b422
/mypy/sortdir.py
8c9d947198217fe68610508bec316dd9899274d6
[]
no_license
evgiz/fish_config
3250489b70f74b79c3dcbebe1f08440fe23dd5bd
46219ddea84f98d1aa52e89e107112c19e7f2186
refs/heads/master
2021-07-20T04:53:34.317070
2020-09-10T13:28:57
2020-09-10T13:28:57
213,622,075
2
0
null
null
null
null
UTF-8
Python
false
false
3,604
py
# Sorts directory by category # Used to sort downloads folder automatically import os, sys import shutil CATEGORIES = { "images": ["png", "jpg", "jpeg", "heic", "ico"], "gifs": ["gif"], "zips": ["zip", "tar", "gz", "bz2", "tbz2"], "pdfs": ["pdf"], "audio": ["wav", "mp3", "aiff"], "dmgs": ["dmg"], "office": ["docx", "pptx", "xlsx", "xlsm", "doc", "ppt", "xls", "dotx"], "java": ["jar", "java"], "text": ["txt", "csv", "log", "tex", "html", "md", "xml"], "fonts": ["ttf", "otf"], "apps": ["app"], "script": ["py", "lua", "sql", "js", "fish"] } MAX_RECENT_FILES = 15 recent_files = [] # Paths path = os.getcwd() recent_path = os.path.join(path, "recent") recent_file_path = os.path.join(path, ".recent") all_path = os.path.join(path, "all") def load_recent_files(): global recent_files # Create .recent file if not os.path.exists(recent_file_path): with open(recent_file_path, "w") as f: pass # Load recent files if os.path.exists(".recent"): with open(recent_file_path, "r") as f: lines = f.readlines() for line in lines: # Assert file still exists if os.path.exists(os.path.join(path, line.strip())): recent_files.append(line.strip()) def get_category(filename): _, ext = os.path.splitext(filename) ext = ext[1:].lower() for cat in CATEGORIES: if ext in CATEGORIES[cat]: return cat if os.path.isdir(os.path.join(path, filename)): return "directories" return "other" def move_file(filename): cat = get_category(filename) # Make category dir if not exists cat_path = os.path.join(all_path, cat) if not os.path.exists(cat_path): os.mkdir(cat_path) # Filename split fn, ext = os.path.splitext(filename) # Dodge duplicates move_name = filename move_path = os.path.join(cat_path, filename) number = 2 while os.path.exists(move_path): move_name = fn+"_"+str(number)+ext move_path = os.path.join(cat_path, move_name) number += 1 if move_name != filename: os.rename(filename, move_name) # Move file shutil.move(move_name, move_path) def scan_root(): global recent_files files = os.listdir(path) new_files = [f for f in files if f not in recent_files] for filename in new_files: fn, ext = os.path.splitext(filename) ext = ext[1:].lower() # Ignore meta or downloads if fn in ["all", ".recent", ".DS_Store"] or ext in ["download", "part"]: continue # Check if new file print(f"Detected new file '{filename}', current recent = {len(recent_files)}") # Remove oldest file in max limit if len(recent_files) == MAX_RECENT_FILES: oldest = recent_files.pop(0) move_file(oldest) print(f" ... moved oldest file {oldest}, now {len(recent_files)} remain") # Add new file recent_files.append(filename) # Write recents file print("\n .recent") with open(recent_file_path, "w") as f: for r in recent_files: f.write(r+"\n") print(f" {r}") if __name__ == "__main__": if len(sys.argv) < 2 or sys.argv[1] != "skip": if input("Are you sure? [y/n]") not in ["Y","y"]: print("Aborted") exit(-1) # Create directories if not os.path.exists(all_path): os.mkdir(all_path) load_recent_files() scan_root() print("Done")
b45e2833b634df979dfe3276e9d41a87ff6681ce
8e7d8e72902ad14c9cf40a5685ac363ac10e7f73
/贪吃蛇.py
4c55b9fbba5dbd329519ee688798750045d765cf
[]
no_license
zhr088168853/test
accf8bae86cd639125be103d9651c055ca2f5fb4
96e9f264b205ebfac2b205cbf8015931cd7071bb
refs/heads/master
2022-12-11T03:26:42.454744
2020-08-15T02:53:03
2020-08-15T02:53:03
287,535,425
2
0
null
null
null
null
UTF-8
Python
false
false
5,657
py
import pygame, sys, random from pygame.locals import * # 颜色配置 snake_color = pygame.Color("#8B7D1C") food_color = pygame.Color("#8B0000") background_color = pygame.Color("#BACB03") text_color = pygame.Color("#EFEFEF") speed = 5 # 长度单位 pixel = 15 line = 44 row = 36 window_width = pixel * line window_high = pixel * row point_left_up = [pixel * 2, pixel * 4] point_left_down = [pixel * 2, pixel * (row - 2)] point_right_up = [pixel * (line - 2), pixel * 4] point_right_down = [pixel * (line - 2), pixel * (row - 2)] # 蛇头位置 snake_head = [pixel * 8, pixel * 8] # 蛇身 snake_body = [[snake_head[0] - x * pixel, snake_head[1]] for x in range(5)] # 方向 direction_right = 0 direction_up = 90 direction_left = 180 direction_down = 270 move = {direction_right: [pixel, 0], direction_left: [-pixel, 0], direction_up: [0, -pixel], direction_down: [0, pixel]} # 分数设置 score = 5 filename = 'db.txt' def write_score(content): with open(filename, 'w+') as f: f.write(str(content)) def read_score(): with open(filename, 'w+') as f: result = f.readline() return 0 if result.strip() == '' else int(result) def init(): # 初始化 pygame.init() # new a window my_screen = pygame.display.set_mode((window_width, window_high), 0, 32) # 设置标题 pygame.display.set_caption("Greedy Snake") return my_screen # 游戏结束 def game_over(max_score, current_score): if max_score < current_score: write_score(current_score) pygame.quit() sys.exit() screen = init() time_clock = pygame.time.Clock() # 画边线 def draw_box(): for point in [[point_left_up, point_right_up], [point_right_up, point_right_down], [point_right_down, point_left_down], [point_left_down, point_left_up]]: pygame.draw.line(screen, snake_color, point[0], point[1], 1) def is_alive(): # 越界 -> game over if (snake_head[0] < point_left_up[0] or snake_head[0] > (point_right_down[0] - pixel) or snake_head[1] < point_left_up[1] or snake_head[1] > (point_right_down[1]) - pixel): return False # 头触碰到身体 -> game over if snake_head in snake_body: return False return True # 随机产生食物 def create_food(): while True: x = random.randint(point_left_up[0] / pixel, point_right_down[0] / pixel - 1) * pixel y = random.randint(point_left_up[1] / pixel, point_right_down[1] / pixel - 1) * pixel if [x, y] not in snake_body: break return [x, y] def draw_snake(food_position): # 画蛇 for point in snake_body: pygame.draw.rect(screen, snake_color, Rect(point[0], point[1], pixel, pixel)) # 画食物 pygame.draw.rect(screen, food_color, Rect(food_position[0], food_position[1], pixel, pixel)) def display_message(text, color, size, postion): font = pygame.font.Font(None, size) text = font.render(text, True, color) screen.blit(text, postion) pygame.display.update() # 入口函数 def run(): food_position = create_food() max_score = read_score() current_score = 0 is_dead = False origin_direction = direction_right target_direction = origin_direction while True: # 监听键盘按键 退出 OR 换方向 for event in pygame.event.get(): if event.type == pygame.QUIT: game_over(max_score, current_score) if event.type == KEYDOWN: # 方向键 or asdw 控制方向 if event.key == K_RIGHT or event.key == K_d: target_direction = direction_right if event.key == K_LEFT or event.key == K_a: target_direction = direction_left if event.key == K_UP or event.key == K_w: target_direction = direction_up if event.key == K_DOWN or event.key == K_s: target_direction = direction_down # esc 退出 if event.key == K_ESCAPE: game_over(max_score, current_score) # 夹角为 90 or 270 可以转换方向 angle = abs(origin_direction - target_direction) if angle == 90 or angle == 270: origin_direction = target_direction if not is_dead: snake_head[0] += move[origin_direction][0] snake_head[1] += move[origin_direction][1] if not is_dead and is_alive(): # 按 origin_direction 方向运动 snake_body.insert(0, list(snake_head)) # 吃到食物后重新生成 if snake_head[0] == food_position[0] and snake_head[1] == food_position[1]: food_position = create_food() current_score += score else: # 移除最后一格 snake_body.pop() else: is_dead = True # 画背景 screen.fill(background_color) # 画边框 draw_box() # 画蛇 draw_snake(food_position) # 刷新画面 pygame.display.update() # 更新分数 display_message(f"{current_score}/{max_score}", text_color, 30, (pixel * 2, pixel * 2)) if is_dead: display_message(f"Game Over", text_color, 50, (pixel * 16, pixel * 15)) # 控制游戏速度 time_clock.tick(speed) if __name__ == '__main__': run()
3efab4aed123784165a00f01d13fd0339ec738f3
469aa7b1ec468ed7c22a31f4b0edeecfd660124d
/client/old.py
d93af52fa1169baf4db23e4c89c41b75e1e19b6a
[]
no_license
miksuk28/iskaffe-system
f90cb226ed86cbfe6d6dd1cfcff5a6659bc3df94
7dab3e3e0d2bccc886e4f8c64ff175c8c26aa55a
refs/heads/main
2023-08-16T17:33:05.301733
2021-09-18T10:32:29
2021-09-18T10:32:29
404,483,735
0
0
null
2021-09-10T19:11:18
2021-09-08T20:18:09
Python
UTF-8
Python
false
false
825
py
import PySimpleGUI as sg from PySimpleGUI.PySimpleGUI import Input sg.theme("Reddit") def login_window(): layout = [ [sg.Text("Username")], [sg.Input(key="USERNAME", size=(40,1))], [sg.Text("Password")], [sg.Input(key="PASSWORD", size=(40,1), password_char="*")], [sg.Button("Sign In", key="SIGN-IN", size=(10,1)), sg.Button("Exit", size=(10,1))] ] window = sg.Window("Sign in", layout) while True: event, values = window.read() if event == "Exit" or event == sg.WIN_CLOSED: break if event == "SIGN-IN": if values["USERNAME"] == "" or values["PASSWORD"] == "": sg.Popup("Please enter a valid username and password", keep_on_top=True) window.close() if __name__ == "__main__": login_window()
13eef7b59c507152a25d96815aa093ded46399c1
092c36abbef360801c2e79346c7776a1341f30ed
/graficado/graficado_simple.py
eb18161ce5c9ac2d58c34448ddd9271920ff384d
[]
no_license
axvargas/algoritmos-python
06cd500b111af9c5709920cb3654a11ae82c14f7
cfa491035432f111bc4c8b2e50b8c7eb6a924049
refs/heads/master
2023-07-25T11:53:17.013716
2021-09-12T05:33:29
2021-09-12T05:33:29
405,555,679
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
''' Created Date: Saturday September 11th 2021 11:24:18 pm Author: Andrés X. Vargas ----- Last Modified: Saturday September 11th 2021 11:33:07 pm Modified By: the developer known as Andrés X. Vargas at <[email protected]> ----- Copyright (c) 2021 MattuApps ''' from bokeh.plotting import figure, output_file, show if __name__ == "__main__": output_file("graficado_simple.html") fig = figure(title="Graficado Simple", x_axis_label='x', y_axis_label='y') total_values = int(input("Ingrese el número de valores: ")) x_values = list(range(total_values)) y_values=[] for i in range(total_values): y_values.append(int(input(f"Ingrese el valor de y para el valor {i}: "))) fig.line(x_values, y_values, legend_label="Linea 1", line_width=2) show(fig)
29445b20446762745a98720d1ca878dc858f650c
22d0d9d1acaa9a3652c563c31d6920503a489042
/puck/stdlib.py
4e31c852abf510085a4fe6a330867990451fc936
[ "BSD-3-Clause" ]
permissive
pipermerriam/puck
6b0d8cdcf3867794741075e0d086033101cdaef2
6d78be8867f68c9121d7f8eba4140591d3e6a179
refs/heads/master
2023-08-28T09:41:59.879612
2014-03-31T23:20:27
2014-03-31T23:20:27
18,305,777
0
1
null
null
null
null
UTF-8
Python
false
false
76
py
import __builtin__ callable = __builtin__.callable list = __builtin__.list
fc39092389ac6e1d50011d70868744f38c9e1da6
de97b23e15d3fb1258d9bd1bd980b9c869a2d38a
/canvasapi/__init__.py
0d5f79f429efa1f4eabc2a3c0a42baf756963a05
[ "MIT" ]
permissive
a-goetz/canvasapi
8b0a109a00ad7d87794506d6907544539ae6857c
20b62e4c9f7f5360a8be8b79579899c6e9804df4
refs/heads/master
2021-07-13T12:32:27.237673
2017-10-23T20:09:08
2017-10-23T20:09:08
96,371,191
1
0
null
2017-07-06T00:12:38
2017-07-06T00:12:37
null
UTF-8
Python
false
false
190
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from canvasapi.canvas import Canvas __all__ = ["Canvas"] __version__ = '0.7.0'
9814103765a376d4375c692490ba9df35f5da243
b1983c893b2fa9fb71c6a1d398ba4a79cd79fa5b
/src/menu.py
f12df58e7392f4277bf84f2ba6236d01c3dc2d69
[]
no_license
wmemorgan/Intro-Python-II
c3c02ff0ef3c9a6f5e063eac8648bf51d22bde93
9d7b8f3291bc8d5fae44bd91e49bf29a09d90755
refs/heads/master
2020-09-13T00:34:51.825597
2019-11-27T02:30:35
2019-11-27T02:30:35
222,607,051
0
0
null
2019-11-19T04:18:35
2019-11-19T04:18:34
null
UTF-8
Python
false
false
1,646
py
from design import Color class Menu: """Game menu system""" def __init__(self, name, options, instructions): self.name = name self.options = options self.instructions = instructions def show_menu(self): size = max(len(k) + len(v) for k, v in self.options.items()) padding = 5 print(f"{Color.GREEN}{'=' * (size + padding)}") for k, v in self.options.items(): print(f"| {k.upper()}: {v}{' ' * (size-(len(k) + len(v)))}|") print(f"{'=' * (size + padding)}{Color.END}\n") def get_selection(self): selection = input(self.instructions).lower().strip() return selection main_menu_options = { 'm': 'Menu', 'i': 'Inventory Menu', 'd': 'Available direction(s) ', 'q': 'Quit the game', } main_menu = Menu("main", main_menu_options, f"\nChoose a selection or press {Color.GREEN}{Color.BOLD}'m'{Color.END} for the menu: ") inventory_menu = { 'i': 'Inventory Menu', 'p': 'Player inventory', 'r': 'Room inventory', 'm': 'Main menu', 'q': 'Quit the game' } inventory_menu = Menu("inventory", inventory_menu, f"\nChoose from the inventory menu or press {Color.GREEN}{Color.BOLD}'m'{Color.END} to return to the main menu: ") item_menu = { 'b': 'Previous Menu', 'p': 'Player inventory', 'r': 'Room inventory', 'get': 'Get [ITEM_NAME]', 'drop': 'Drop [ITEM_NAME]', 'q': 'Quit the game', } item_menu = Menu("item", item_menu, f"\nGET or DROP an item or press {Color.GREEN}{Color.BOLD}'b'{Color.END} to return to the previous menu: ")
ba478c6b41b71c5cb27fab0fafa51b0a08945d23
52a7271d9ce64ebb1a7ff406122d5738dbd3b4a9
/python_modules/dagster/dagster/_core/definitions/definitions_class.py
0f7574839c7e0021bf2dad64f5b7ebdcbd40c0b4
[ "Apache-2.0" ]
permissive
jmsanders/dagster
67f188f53ed2cbce7eebdda421e00dd799e42ec5
390032c4627730be5a4b57fea456e6060e5f3e69
refs/heads/master
2023-08-21T12:58:50.017148
2023-08-16T13:58:33
2023-08-16T13:58:33
313,052,917
2
1
Apache-2.0
2021-01-12T15:59:57
2020-11-15T14:47:10
null
UTF-8
Python
false
false
22,577
py
from typing import ( TYPE_CHECKING, Any, Dict, Iterable, List, Mapping, NamedTuple, Optional, Sequence, Type, Union, ) import dagster._check as check from dagster._annotations import deprecated, experimental, public from dagster._config.pythonic_config import ( attach_resource_id_to_key_mapping, ) from dagster._core.definitions.asset_graph import InternalAssetGraph from dagster._core.definitions.events import AssetKey, CoercibleToAssetKey from dagster._core.definitions.executor_definition import ExecutorDefinition from dagster._core.definitions.logger_definition import LoggerDefinition from dagster._core.execution.build_resources import wrap_resources_for_execution from dagster._core.execution.with_resources import with_resources from dagster._core.executor.base import Executor from dagster._core.instance import DagsterInstance from dagster._utils.cached_method import cached_method from .assets import AssetsDefinition, SourceAsset from .cacheable_assets import CacheableAssetsDefinition from .decorators import repository from .job_definition import JobDefinition, default_job_io_manager from .partitioned_schedule import UnresolvedPartitionedAssetScheduleDefinition from .repository_definition import ( SINGLETON_REPOSITORY_NAME, PendingRepositoryDefinition, RepositoryDefinition, ) from .schedule_definition import ScheduleDefinition from .sensor_definition import SensorDefinition from .unresolved_asset_job_definition import UnresolvedAssetJobDefinition if TYPE_CHECKING: from dagster._core.storage.asset_value_loader import AssetValueLoader @public @experimental def create_repository_using_definitions_args( name: str, assets: Optional[ Iterable[Union[AssetsDefinition, SourceAsset, CacheableAssetsDefinition]] ] = None, schedules: Optional[ Iterable[Union[ScheduleDefinition, UnresolvedPartitionedAssetScheduleDefinition]] ] = None, sensors: Optional[Iterable[SensorDefinition]] = None, jobs: Optional[Iterable[Union[JobDefinition, UnresolvedAssetJobDefinition]]] = None, resources: Optional[Mapping[str, Any]] = None, executor: Optional[Union[ExecutorDefinition, Executor]] = None, loggers: Optional[Mapping[str, LoggerDefinition]] = None, ) -> Union[RepositoryDefinition, PendingRepositoryDefinition]: """Create a named repository using the same arguments as :py:class:`Definitions`. In older versions of Dagster, repositories were the mechanism for organizing assets, schedules, sensors, and jobs. There could be many repositories per code location. This was a complicated ontology but gave users a way to organize code locations that contained large numbers of heterogenous definitions. As a stopgap for those who both want to 1) use the new :py:class:`Definitions` API and 2) but still want multiple logical groups of assets in the same code location, we have introduced this function. Example usage: .. code-block:: python named_repo = create_repository_using_definitions_args( name="a_repo", assets=[asset_one, asset_two], schedules=[a_schedule], sensors=[a_sensor], jobs=[a_job], resources={ "a_resource": some_resource, } ) """ return _create_repository_using_definitions_args( name=name, assets=assets, schedules=schedules, sensors=sensors, jobs=jobs, resources=resources, executor=executor, loggers=loggers, ) class _AttachedObjects(NamedTuple): jobs: Iterable[Union[JobDefinition, UnresolvedAssetJobDefinition]] schedules: Iterable[Union[ScheduleDefinition, UnresolvedPartitionedAssetScheduleDefinition]] sensors: Iterable[SensorDefinition] def _io_manager_needs_replacement(job: JobDefinition, resource_defs: Mapping[str, Any]) -> bool: """Explicitly replace the default IO manager in jobs that don't specify one, if a top-level I/O manager is provided to Definitions. """ return ( job.resource_defs.get("io_manager") == default_job_io_manager and "io_manager" in resource_defs ) def _jobs_which_will_have_io_manager_replaced( jobs: Optional[Iterable[Union[JobDefinition, UnresolvedAssetJobDefinition]]], resource_defs: Mapping[str, Any], ) -> List[Union[JobDefinition, UnresolvedAssetJobDefinition]]: """Returns whether any jobs will have their I/O manager replaced by an `io_manager` override from the top-level `resource_defs` provided to `Definitions` in 1.3. We will warn users if this is the case. """ jobs = jobs or [] return [ job for job in jobs if isinstance(job, JobDefinition) and _io_manager_needs_replacement(job, resource_defs) ] def _attach_resources_to_jobs_and_instigator_jobs( jobs: Optional[Iterable[Union[JobDefinition, UnresolvedAssetJobDefinition]]], schedules: Optional[ Iterable[Union[ScheduleDefinition, UnresolvedPartitionedAssetScheduleDefinition]] ], sensors: Optional[Iterable[SensorDefinition]], resource_defs: Mapping[str, Any], ) -> _AttachedObjects: """Given a list of jobs, schedules, and sensors along with top-level resource definitions, attach the resource definitions to the jobs, schedules, and sensors which require them. """ jobs = jobs or [] schedules = schedules or [] sensors = sensors or [] # Add jobs in schedules and sensors as well jobs = [ *jobs, *[ schedule.job for schedule in schedules if isinstance(schedule, ScheduleDefinition) and schedule.has_loadable_target() and isinstance(schedule.job, (JobDefinition, UnresolvedAssetJobDefinition)) ], *[ job for sensor in sensors if sensor.has_loadable_targets() for job in sensor.jobs if isinstance(job, (JobDefinition, UnresolvedAssetJobDefinition)) ], ] # Dedupe jobs = list({id(job): job for job in jobs}.values()) # Find unsatisfied jobs unsatisfied_jobs = [ job for job in jobs if isinstance(job, JobDefinition) and ( job.is_missing_required_resources() or _io_manager_needs_replacement(job, resource_defs) ) ] # Create a mapping of job id to a version of the job with the resource defs bound unsatisfied_job_to_resource_bound_job = { id(job): job.with_top_level_resources( { **resource_defs, **job.resource_defs, # special case for IO manager - the job-level IO manager does not take precedence # if it is the default and a top-level IO manager is provided **( {"io_manager": resource_defs["io_manager"]} if _io_manager_needs_replacement(job, resource_defs) else {} ), } ) for job in jobs if job in unsatisfied_jobs } # Update all jobs to use the resource bound version jobs_with_resources = [ unsatisfied_job_to_resource_bound_job[id(job)] if job in unsatisfied_jobs else job for job in jobs ] # Update all schedules and sensors to use the resource bound version updated_schedules = [ ( schedule.with_updated_job(unsatisfied_job_to_resource_bound_job[id(schedule.job)]) if ( isinstance(schedule, ScheduleDefinition) and schedule.has_loadable_target() and schedule.job in unsatisfied_jobs ) else schedule ) for schedule in schedules ] updated_sensors = [ ( sensor.with_updated_jobs( [ ( unsatisfied_job_to_resource_bound_job[id(job)] if job in unsatisfied_jobs else job ) for job in sensor.jobs ] ) if sensor.has_loadable_targets() and any(job in unsatisfied_jobs for job in sensor.jobs) else sensor ) for sensor in sensors ] return _AttachedObjects(jobs_with_resources, updated_schedules, updated_sensors) def _create_repository_using_definitions_args( name: str, assets: Optional[ Iterable[Union[AssetsDefinition, SourceAsset, CacheableAssetsDefinition]] ] = None, schedules: Optional[ Iterable[Union[ScheduleDefinition, UnresolvedPartitionedAssetScheduleDefinition]] ] = None, sensors: Optional[Iterable[SensorDefinition]] = None, jobs: Optional[Iterable[Union[JobDefinition, UnresolvedAssetJobDefinition]]] = None, resources: Optional[Mapping[str, Any]] = None, executor: Optional[Union[ExecutorDefinition, Executor]] = None, loggers: Optional[Mapping[str, LoggerDefinition]] = None, ): check.opt_iterable_param( assets, "assets", (AssetsDefinition, SourceAsset, CacheableAssetsDefinition) ) check.opt_iterable_param( schedules, "schedules", (ScheduleDefinition, UnresolvedPartitionedAssetScheduleDefinition) ) check.opt_iterable_param(sensors, "sensors", SensorDefinition) check.opt_iterable_param(jobs, "jobs", (JobDefinition, UnresolvedAssetJobDefinition)) check.opt_inst_param(executor, "executor", (ExecutorDefinition, Executor)) executor_def = ( executor if isinstance(executor, ExecutorDefinition) or executor is None else ExecutorDefinition.hardcoded_executor(executor) ) # Generate a mapping from each top-level resource instance ID to its resource key resource_key_mapping = {id(v): k for k, v in resources.items()} if resources else {} # Provide this mapping to each resource instance so that it can be used to resolve # nested resources resources_with_key_mapping = ( { k: attach_resource_id_to_key_mapping(v, resource_key_mapping) for k, v in resources.items() } if resources else {} ) resource_defs = wrap_resources_for_execution(resources_with_key_mapping) check.opt_mapping_param(loggers, "loggers", key_type=str, value_type=LoggerDefinition) # Binds top-level resources to jobs and any jobs attached to schedules or sensors ( jobs_with_resources, schedules_with_resources, sensors_with_resources, ) = _attach_resources_to_jobs_and_instigator_jobs(jobs, schedules, sensors, resource_defs) @repository( name=name, default_executor_def=executor_def, default_logger_defs=loggers, _top_level_resources=resource_defs, _resource_key_mapping=resource_key_mapping, ) def created_repo(): return [ *with_resources(assets or [], resource_defs), *(schedules_with_resources), *(sensors_with_resources), *(jobs_with_resources), ] return created_repo @deprecated( breaking_version="2.0", additional_warn_text=( "Instantiations can be removed. Since it's behavior is now the default, this class is now a" " no-op." ), ) class BindResourcesToJobs(list): """Used to instruct Dagster to bind top-level resources to jobs and any jobs attached to schedules and sensors. Now deprecated since this behavior is the default. """ class Definitions: """A set of definitions explicitly available and loadable by Dagster tools. Parameters: assets (Optional[Iterable[Union[AssetsDefinition, SourceAsset, CacheableAssetsDefinition]]]): A list of assets. Assets can be created by annotating a function with :py:func:`@asset <asset>` or :py:func:`@observable_source_asset <observable_source_asset>`. Or they can by directly instantiating :py:class:`AssetsDefinition`, :py:class:`SourceAsset`, or :py:class:`CacheableAssetsDefinition`. schedules (Optional[Iterable[Union[ScheduleDefinition, UnresolvedPartitionedAssetScheduleDefinition]]]): List of schedules. sensors (Optional[Iterable[SensorDefinition]]): List of sensors, typically created with :py:func:`@sensor <sensor>`. jobs (Optional[Iterable[Union[JobDefinition, UnresolvedAssetJobDefinition]]]): List of jobs. Typically created with :py:func:`define_asset_job <define_asset_job>` or with :py:func:`@job <job>` for jobs defined in terms of ops directly. Jobs created with :py:func:`@job <job>` must already have resources bound at job creation time. They do not respect the `resources` argument here. resources (Optional[Mapping[str, Any]]): Dictionary of resources to bind to assets. The resources dictionary takes raw Python objects, not just instances of :py:class:`ResourceDefinition`. If that raw object inherits from :py:class:`IOManager`, it gets coerced to an :py:class:`IOManagerDefinition`. Any other object is coerced to a :py:class:`ResourceDefinition`. These resources will be automatically bound to any assets passed to this Definitions instance using :py:func:`with_resources <with_resources>`. Assets passed to Definitions with resources already bound using :py:func:`with_resources <with_resources>` will override this dictionary. executor (Optional[Union[ExecutorDefinition, Executor]]): Default executor for jobs. Individual jobs can override this and define their own executors by setting the executor on :py:func:`@job <job>` or :py:func:`define_asset_job <define_asset_job>` explicitly. This executor will also be used for materializing assets directly outside of the context of jobs. If an :py:class:`Executor` is passed, it is coerced into an :py:class:`ExecutorDefinition`. loggers (Optional[Mapping[str, LoggerDefinition]): Default loggers for jobs. Individual jobs can define their own loggers by setting them explictly. Example usage: .. code-block:: python defs = Definitions( assets=[asset_one, asset_two], schedules=[a_schedule], sensors=[a_sensor], jobs=[a_job], resources={ "a_resource": some_resource, } ) Dagster separates user-defined code from system tools such the web server and the daemon. Rather than loading code directly into process, a tool such as the webserver interacts with user-defined code over a serialization boundary. These tools must be able to locate and load this code when they start. Via CLI arguments or config, they specify a Python module to inspect. A Python module is loadable by Dagster tools if there is a top-level variable that is an instance of :py:class:`Definitions`. Before the introduction of :py:class:`Definitions`, :py:func:`@repository <repository>` was the API for organizing defintions. :py:class:`Definitions` provides a few conveniences for dealing with resources that do not apply to old-style :py:func:`@repository <repository>` declarations: * It takes a dictionary of top-level resources which are automatically bound (via :py:func:`with_resources <with_resources>`) to any asset passed to it. If you need to apply different resources to different assets, use legacy :py:func:`@repository <repository>` and use :py:func:`with_resources <with_resources>` as before. * The resources dictionary takes raw Python objects, not just instances of :py:class:`ResourceDefinition`. If that raw object inherits from :py:class:`IOManager`, it gets coerced to an :py:class:`IOManagerDefinition`. Any other object is coerced to a :py:class:`ResourceDefinition`. """ def __init__( self, assets: Optional[ Iterable[Union[AssetsDefinition, SourceAsset, CacheableAssetsDefinition]] ] = None, schedules: Optional[ Iterable[Union[ScheduleDefinition, UnresolvedPartitionedAssetScheduleDefinition]] ] = None, sensors: Optional[Iterable[SensorDefinition]] = None, jobs: Optional[Iterable[Union[JobDefinition, UnresolvedAssetJobDefinition]]] = None, resources: Optional[Mapping[str, Any]] = None, executor: Optional[Union[ExecutorDefinition, Executor]] = None, loggers: Optional[Mapping[str, LoggerDefinition]] = None, ): self._created_pending_or_normal_repo = _create_repository_using_definitions_args( name=SINGLETON_REPOSITORY_NAME, assets=assets, schedules=schedules, sensors=sensors, jobs=jobs, resources=resources, executor=executor, loggers=loggers, ) @public def get_job_def(self, name: str) -> JobDefinition: """Get a job definition by name. If you passed in a an :py:class:`UnresolvedAssetJobDefinition` (return value of :py:func:`define_asset_job`) it will be resolved to a :py:class:`JobDefinition` when returned from this function. """ check.str_param(name, "name") return self.get_repository_def().get_job(name) @public def get_sensor_def(self, name: str) -> SensorDefinition: """Get a sensor definition by name.""" check.str_param(name, "name") return self.get_repository_def().get_sensor_def(name) @public def get_schedule_def(self, name: str) -> ScheduleDefinition: """Get a schedule definition by name.""" check.str_param(name, "name") return self.get_repository_def().get_schedule_def(name) @public def load_asset_value( self, asset_key: CoercibleToAssetKey, *, python_type: Optional[Type] = None, instance: Optional[DagsterInstance] = None, partition_key: Optional[str] = None, metadata: Optional[Dict[str, Any]] = None, ) -> object: """Load the contents of an asset as a Python object. Invokes `load_input` on the :py:class:`IOManager` associated with the asset. If you want to load the values of multiple assets, it's more efficient to use :py:meth:`~dagster.Definitions.get_asset_value_loader`, which avoids spinning up resources separately for each asset. Args: asset_key (Union[AssetKey, Sequence[str], str]): The key of the asset to load. python_type (Optional[Type]): The python type to load the asset as. This is what will be returned inside `load_input` by `context.dagster_type.typing_type`. partition_key (Optional[str]): The partition of the asset to load. metadata (Optional[Dict[str, Any]]): Input metadata to pass to the :py:class:`IOManager` (is equivalent to setting the metadata argument in `In` or `AssetIn`). Returns: The contents of an asset as a Python object. """ return self.get_repository_def().load_asset_value( asset_key=asset_key, python_type=python_type, instance=instance, partition_key=partition_key, metadata=metadata, ) @public def get_asset_value_loader( self, instance: Optional[DagsterInstance] = None ) -> "AssetValueLoader": """Returns an object that can load the contents of assets as Python objects. Invokes `load_input` on the :py:class:`IOManager` associated with the assets. Avoids spinning up resources separately for each asset. Usage: .. code-block:: python with defs.get_asset_value_loader() as loader: asset1 = loader.load_asset_value("asset1") asset2 = loader.load_asset_value("asset2") """ return self.get_repository_def().get_asset_value_loader( instance=instance, ) def get_all_job_defs(self) -> Sequence[JobDefinition]: """Get all the Job definitions in the code location.""" return self.get_repository_def().get_all_jobs() def has_implicit_global_asset_job_def(self) -> bool: return self.get_repository_def().has_implicit_global_asset_job_def() def get_implicit_global_asset_job_def(self) -> JobDefinition: """A useful conveninence method when there is a single defined global asset job. This occurs when all assets in the code location use a single partitioning scheme. If there are multiple partitioning schemes you must use get_implicit_job_def_for_assets instead to access to the correct implicit asset one. """ return self.get_repository_def().get_implicit_global_asset_job_def() def get_implicit_job_def_for_assets( self, asset_keys: Iterable[AssetKey] ) -> Optional[JobDefinition]: return self.get_repository_def().get_implicit_job_def_for_assets(asset_keys) @cached_method def get_repository_def(self) -> RepositoryDefinition: """Definitions is implemented by wrapping RepositoryDefinition. Get that underlying object in order to access an functionality which is not exposed on Definitions. This method also resolves a PendingRepositoryDefinition to a RepositoryDefinition. """ return ( self._created_pending_or_normal_repo.compute_repository_definition() if isinstance(self._created_pending_or_normal_repo, PendingRepositoryDefinition) else self._created_pending_or_normal_repo ) def get_inner_repository_for_loading_process( self, ) -> Union[RepositoryDefinition, PendingRepositoryDefinition]: """This method is used internally to access the inner repository during the loading process at CLI entry points. We explicitly do not want to resolve the pending repo because the entire point is to defer that resolution until later. """ return self._created_pending_or_normal_repo def get_asset_graph(self) -> InternalAssetGraph: """Get the AssetGraph for this set of definitions.""" return self.get_repository_def().asset_graph
dbb5da8fa5cfcb7e869dd263729b1301b36b35ce
c6ed9aa97166d4778b89321b580af80c543bacc9
/hackerrank/implementation/cavitymap.py
941fc9b2ecf066a2f0a6fc08c4eb96a3d61420b7
[]
no_license
bradyz/sandbox
381bcaf2f3719dee142a00858f7062aeff98d1ab
ff90335b918886d5b5956c6c6546dbfde5e7f5b3
refs/heads/master
2021-01-23T09:03:54.697325
2018-02-27T20:47:48
2018-02-27T20:47:48
21,292,856
10
0
null
2015-09-03T16:53:15
2014-06-28T00:29:18
Python
UTF-8
Python
false
false
730
py
import sys def marked_map(d_map, side): tmp_map = d_map for x in range(1, side - 1): for y in range(1, side - 1): cur = d_map[x][y] if cur > d_map[x - 1][y] and cur > d_map[x + 1][y]: if cur > d_map[x][y - 1] and cur > d_map[x][y + 1]: tmp_map[x][y] = "X" for row in range(side): print(''.join([str(x) for x in tmp_map[row]])) return if __name__ == "__main__": dep_map = [] for i, line in enumerate(sys.stdin): if i == 0: side_len = int(line.strip("\n")) elif i > 0: tmp_line = [int(x) for x in line.strip("\n")] dep_map.append(tmp_line) marked_map(dep_map, side_len)
15b59d08369ec7ed415314c70999e3ac58ae20f2
6adad4985eb7446cccb9066257b3b9e03cb044ca
/Homework/Hangman.py
a6c9a4a9a8e513c920cbd78634b32935f1428a45
[]
no_license
MikaMahaputra/Binus
298a176c8b3c0669819840a8d0ea1748cd5e98d0
1fa3fba60d5882ddc99e8f3e6038b4b9c8643b28
refs/heads/master
2020-07-27T01:37:47.984077
2020-06-20T18:58:07
2020-06-20T18:58:07
208,825,205
0
0
null
null
null
null
UTF-8
Python
false
false
1,523
py
# -*- coding: utf-8 -*- """ Created on Wed Sep 25 11:46:58 2019 @author: user """ import random def get_word() : words= ["Happy", "Sad", "Angry", "Dog", "Cat", "Mouse", "Air", "Land", "Sea", "January", "May", "June", "December"] return random.choice(words).upper() def check (word, guesses, guess): guess= guess.upper status= "" matches= 0 for letter in word: if letter in guesses: status += letter else: status += "*" if letter == guess: matches += 1 if matches == 1: print("Yes, this word contains the letter", + guess) else: print ("Sorry, the word does not contain this letter") return status def main (): word = get_word() guesses = [] guessed = False print ("The word contains", len(word), "letters") while not guessed: text = ("Please enter one letter: " , len(word)) guess = input (text) guess = guess.upper() if guess in guesses: print ("You've already guessed that letter") elif len(guess) == 1 : guesses.append (guess) result = check(word,guesses,guess) if result == word: guessed = True else: print(result) else: print("Error, please try again") print("Yes the word is",word ) main () #Made By Almada Putra and Mika Mahaputra
cfd2b37c895af427caacb966b2ac30bc49a3feaf
82c0c89857c1935204c1fb1c03427117275af81c
/upload_form/urls.py
9329daef402cefa3dc7d4666b65007eabaad5dfc
[]
no_license
KaijiS/Cut_Vowel
41132c33ff2ca99a7d9d636e85d07869c48d0b62
10e1dd8ae8715e6287efdcd8dbffe12319140794
refs/heads/master
2020-03-19T18:09:56.133826
2018-06-18T10:01:44
2018-06-18T10:01:44
136,796,831
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
from django.urls import path from . import views app_name = 'upload_form' urlpatterns = [ path('', views.form, name='form'), path('download/', views.download, name='download'), ]
18fc3c3fe3e000f701c5ed4f6e84bacfdedf80f3
d3019be00f73f6d479e17632a1f2ce1ebfbfba6c
/Sentience/sol.py
76db5134ca011d29007793c9a71bd9489fd6d016
[ "MIT" ]
permissive
AJ1479/code-golf-challenges
2c779c6f5cdd175748305014835b41b6ff4ff747
ea543f260f6f2fb3f7b7845a8efa436c1b8b6f12
refs/heads/master
2023-02-10T11:35:27.779814
2020-10-03T18:21:47
2020-10-03T18:21:47
298,393,031
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
mod=pow(10,9)+7 def fibonacci(n): a = 0 b = 1 if n == 0: return a elif n == 1: return b else: for i in range(2,n+1): c = (a + b)%mod a = b b = c return b t=int(input()) for _ in range(t): n=int(input()) print(fibonacci(n+1))
7f386af6ec040149f7dc365a98c0fe74e4cecb11
7f7bbe413eefb90bb783c987faf42edb3db05e26
/users/urls.py
0b2ce076728ee8ced51d1b65fe5fadb76a75fed4
[]
no_license
Ka4mar/Geekshop-server
abbff5a93a4f41f4216c71bb828aff7198459dac
94cfab1d9f5432efee32b20bf32724ff439101e9
refs/heads/master
2023-07-15T03:37:40.619547
2021-08-24T13:56:17
2021-08-24T13:56:17
380,510,493
0
0
null
2021-08-20T21:09:03
2021-06-26T13:38:45
CSS
UTF-8
Python
false
false
402
py
from django.urls import path from users.views import login, registration, profile, logout, verify app_name = 'users' urlpatterns = [ path('login/', login, name='login'), path('registration/', registration, name='registration'), path('profile/', profile, name='profile'), path('logout/', logout, name='logout'), path('verify/<email>/<activation_key>/', verify, name='verify'), ]
e1ec834f94f09b1099ff834e8bfffae534ef1417
99b7c99762dcb0c089db759f82d7f544fa8b1b55
/backend/tstec2020110601_dev_14711/settings.py
01a73faf2ee732883ee770447aa5040da44a418c
[]
no_license
crowdbotics-apps/tstec2020110601-dev-14711
a5425bc05f4b40a3127715583d46d21fc041ebaa
d8f065b3475c9d782a5f9dd61d1430a2f3848e34
refs/heads/master
2023-01-11T03:31:33.462079
2020-11-13T11:18:30
2020-11-13T11:18:30
310,740,945
0
0
null
null
null
null
UTF-8
Python
false
false
6,125
py
""" Django settings for tstec2020110601_dev_14711 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', # start fcm_django push notifications 'fcm_django', # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'tstec2020110601_dev_14711.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'tstec2020110601_dev_14711.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # start fcm_django push notifications FCM_DJANGO_SETTINGS = { "FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "") } # end fcm_django push notifications # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"