blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
69e60d082f827c096460c5d45d78477079781d57
02561ee089dddf0ac683aa5821028acb1cce2327
/make_localization_cues/get_sod_model/DSS-pytorch-master/tools/visual.py
edc191c23e52bf9b0d2a7cb6fc52f5037a8e48a4
[]
no_license
DQDH/Semantic_Image_Segmentation
d50f062527a78b6740db5956ba5b285a2baf1b70
91bb5c066e72f1854860b5352d47d088456004e7
refs/heads/master
2022-10-31T14:26:31.896743
2020-06-18T01:57:54
2020-06-18T01:57:54
272,595,555
1
1
null
null
null
null
UTF-8
Python
false
false
3,268
py
import torch import numpy as np import matplotlib.pyplot as plt class Viz_visdom(object): def __init__(self, name, display_id=0): self.name = name self.display_id = display_id self.idx = display_id self.plot_data = {} if display_id > 0: import visdom self.vis = visdom.Visdom(port=8097) def plot_current_errors(self, epoch, counter_ratio, errors, idx=0): if idx not in self.plot_data: self.plot_data[idx] = {'X': [], 'Y': [], 'legend': list(errors.keys())} # self.plot_data = {'X': [], 'Y': [], 'legend': list(errors.keys())} self.plot_data[idx]['X'].append(epoch + counter_ratio) self.plot_data[idx]['Y'].append([errors[k] for k in self.plot_data[idx]['legend']]) self.vis.line( X=np.stack([np.array(self.plot_data[idx]['X'])] * len(self.plot_data[idx]['legend']), 1) if len(errors) > 1 else np.array(self.plot_data[idx]['X']), Y=np.array(self.plot_data[idx]['Y']) if len(errors) > 1 else np.array(self.plot_data[idx]['Y'])[:, 0], opts={ 'title': self.name + ' loss over time %d' % idx, 'legend': self.plot_data[idx]['legend'], 'xlabel': 'epoch', 'ylabel': 'loss'}, win=self.display_id + idx) if self.idx < self.display_id + idx: self.idx = self.display_id + idx def plot_current_img(self, visuals, c_prev=True): idx = self.idx + 1 for label, image_numpy in visuals.items(): if c_prev: self.vis.image(image_numpy, opts=dict(title=label), win=self.display_id + idx) else: image_numpy = image_numpy.swapaxes(0, 2).swapaxes(1, 2) self.vis.image(image_numpy, opts=dict(title=label), win=self.display_id + idx) idx += 1 # reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html def plot_image(inp, fig_size, title=None, swap_channel=False, norm=False): """Imshow for Tensor.""" if torch.is_tensor(inp): inp = inp.numpy().transpose((1, 2, 0)) if swap_channel else inp.numpy() else: inp = inp.transpose((1, 2, 0)) if swap_channel else inp if norm: mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.figure(figsize=fig_size) if inp.shape[0] == 1: plt.imshow(inp[0], cmap='gray') else: plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.0001) # pause a bit so that plots are updated def make_simple_grid(inp, padding=2, padding_value=1): inp = torch.stack(inp, dim=0) nmaps = inp.size(0) height, width = inp.size(2), int(inp.size(3) + padding) grid = inp.new(1, height, width * nmaps + padding).fill_(padding_value) for i in range(nmaps): grid.narrow(2, i * width + padding, width - padding).copy_(inp[i]) return grid if __name__ == '__main__': inp = [torch.randn(1, 5, 5), torch.randn(1, 5, 5)] out = make_simple_grid(inp) print(out.size()) plot_image(out)
01911c7523c4459f34569d28aa130a9361835017
00978681ffb1ece4342532fa0071d6d5427e30f8
/Tree Hierarchy/main.py
028c787d69c031c1d8d2b6af9ad2fd434abbb9da
[]
no_license
sounboul/ICD-11-Visualizer
f240f1ef1c9e53548bc58955ebffed2bc1a21aff
80bba937ef877d0e3139c34c22ea2753a361bd56
refs/heads/master
2022-09-04T06:58:52.108896
2020-05-28T16:48:30
2020-05-28T16:48:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,661
py
from ICD11 import release_data as database from pprint import pprint import networkx as nx import matplotlib.pyplot as plt from networkx.drawing.nx_agraph import write_dot, graphviz_layout master = {} def get_title(icd11_code): # this returns a string title return database(str(icd11_code))["title"]["@value"] def get_title_id(icd11_code): # this returns a string id return database(str(icd11_code))["@id"][45:] def get_child_id(icd11_code): # this returns a child list of ICD11 codes if "child" in database(str(icd11_code)): # reduce time by getting rid of .keys() temp_list = [] codes = database(str(icd11_code))["child"] for i in codes: if i[45:].isdigit(): # stops taking in other/unspecified temp_list.append(i[45:]) return temp_list def get_child_name(icd11_code): # this returns a child list of ICD11 names if "child" in database(str(icd11_code)): # reduce time by getting rid of .keys() temp_list = [] for i in get_child_id(icd11_code): temp_list.append(database(str(i))["title"]["@value"]) return temp_list def get_parent_id(icd11_code): if "parent" in database(str(icd11_code)): # reduce time by getting rid of .keys() return database(str(icd11_code))["parent"][0][45:] def master_dict_initializer(icd11_code): id_only = {} for i in get_child_id(icd11_code): master[get_title(i)] = get_child_name(i) id_only[get_title_id(i)] = get_child_id(i) return id_only def increase_layer(dictionary): values = list(dictionary.values()) hidden = {} for i in values: if i is None: continue else: for q in range(len(i)): master[get_title(i[q])] = get_child_name(i[q]) hidden[get_title(i[q])] = get_child_id(i[q]) return hidden def tuple_creator(start_code): tuple_list = [] for k, v in master.items(): if v is not None: for i in range(len(v)): tuple_list.append((k, v[i])) return tuple_list def graph_visual(start_code, layers): dict_ = master_dict_initializer(str(start_code)) for i in range(layers): new_dict = increase_layer(dict_) dict_ = new_dict edges = tuple_creator(str(start_code)) graph = nx.DiGraph() graph.add_nodes_from(master.keys()) graph.add_edges_from(edges) write_dot(graph, 'test.dot') plt.figure(figsize=(50, 50)) pos = graphviz_layout(graph, prog='dot') nx.draw(graph, pos, with_labels=True, arrows=True) plt.savefig('Example 4.png') graph_visual(426429380, 4)
c9e1ff0e4ec36697558947f4a2e18309922cc088
6135140b0c48f189c5672858b9d09732f178c829
/proj3/akeelah/testeditdist.py
3c8ba45c45948a74bc2cd23102be3fda648ce010
[]
no_license
jw-develop/cs384-self
8b23fcd39dd78e9a57876b7ac35452f962083ef2
9002d8ca254cc43ba9df7faab2df77167ca007f7
refs/heads/master
2020-05-21T01:30:57.870603
2019-05-09T19:18:08
2019-05-09T19:18:08
185,858,010
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
''' Created on Oct 20, 2015 @author: thomasvandrunen ''' import sys from editdist import edit_distance source_word = sys.argv[1] target_word = sys.argv[2] print edit_distance(source_word, target_word, 25)
d3cd6c302249bc0a45cafb3e724725c383462017
6ce00e75df0425405568e6d3a1b27090f9968555
/utils/labelme2csv.py
05fbc6f5c8a6db40c322ec854e526c51d383cc4c
[]
no_license
XiaokangLei/img_utils
b48b7437980705569926c61811b67afdd6f8999a
94c89bd286e10e678eed7ffdeea446445b4ed1cb
refs/heads/master
2023-06-23T17:26:44.226676
2021-07-26T09:46:34
2021-07-26T09:46:34
368,769,922
1
0
null
null
null
null
UTF-8
Python
false
false
3,546
py
''' Author: leixk_ai Date: 2021-05-19 14:25:58 LastEditTime: 2021-06-08 15:26:01 LastEditors: Please set LastEditors Description: 将labelme生成的json文件转换成csv格式(x1, y1, x2, y2, x3, y3, x4, y4, label)的数据 FilePath: /img_utils/utils/labelme2csv.py ''' import os import json import shutil from argparse import ArgumentParser def main(): # 接收传参 parser = ArgumentParser() parser.add_argument('--in_dir', type=str, default='E:/fsdownload/fsdownload/bl_field_ann/high', help="labelme标注数据所在路径,图像和对应的json文件在同一路径,文件名前缀相同") parser.add_argument('--out_dir', type=str, default='E:/fsdownload/fsdownload/bl_field_ann/high', help="数据输出目录") parser.add_argument("--copy", type=int, default=0, help="是否复制图片到输出目录") # 1代表复制 args = parser.parse_args() # 创建文件输出路径 if not os.path.isdir(args.out_dir): os.makedirs(args.out_dir) # 搜索输入路径下的json文件 json_files = [name for name in os.listdir(args.in_dir) if name.endswith('.json')] # 遍历所有json文件 for name in json_files: # 读取json文件信息 print(name) try: d = json.loads(open(os.path.join(args.in_dir, name), 'r').read()) except UnicodeDecodeError: d = json.loads(open(os.path.join(args.in_dir, name), 'r', encoding='gbk').read()) stem = name[:-5] shapes = d['shapes'] # 判断该图像是否没标,json文件没有shapes数据 if len(shapes) == 0: print("%s shapes is null, skiped" % name) continue # 创建.txt文件,输出标注信息 with open(os.path.join(args.out_dir, stem + '.txt'), 'w', encoding='utf-8') as f: for box in shapes: label = box['label'] points = box['points'] if len(points) == 2: x1, y1 = points[0] x2, y2 = points[1] if x1 < x2 and y1 < y2: points = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)] elif x1 > x2 and y1 < y2: points = [(x1, y1), (x1, y2), (x2, y2), (x2, y1)] elif x1 > x2 and y1 > y2: points = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)] else: points = [(x1, y1), (x1, y2), (x2, y2), (x2, y1)] elif len(points) == 4: # xmin = min(points[0][0],points[1][0],points[2][0],points[3][0]) # xmax = max(points[0][0],points[1][0],points[2][0],points[3][0]) # # ymin = min(points[0][1],points[1][1],points[2][1],points[3][1]) # # ymax = max(points[0][1],points[1][1],points[2][1],points[3][1]) # points = [(xmin, points[0][1]), (xmax, points[1][1]), (xmax, points[2][1]), (xmin, points[3][1])] pass else: print('=> {}points数量异常.'.format(name)) continue loc = [a for pt in points for a in pt] loc = list(map(str, loc)) loc.append(label) f.write(','.join(loc) + '\n') # 复制图像到输出路径 if args.copy: shutil.copyfile(os.path.join(args.in_dir, d['imagePath']), os.path.join(args.out_dir, d['imagePath'])) if __name__ == '__main__': main()
fe7101167f9d2763f0fed8f480827e333e0fa2eb
8d9790a41d2b6422f47b3c199ff271d148ed3757
/napari/layers/image/experimental/octree_image.py
94f3a24938c40aec8823fef85386f81f5056753a
[ "BSD-3-Clause" ]
permissive
michalk8/napari
de62056b51ce6643e1a97f3830d56abcd8280d42
1d784cf8373495d9591594b6dd6ac479d5566ed1
refs/heads/master
2023-01-31T16:53:17.441082
2020-12-12T07:20:35
2020-12-12T07:20:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,844
py
"""OctreeImage class. An eventual replacement for Image that combines single-scale and chunked/tiled multi-scale into one implementation. """ import logging from typing import List, Set import numpy as np from ....components.experimental.chunk import ChunkRequest, LayerRef from ....utils.events import Event from ..image import Image from ._octree_multiscale_slice import OctreeMultiscaleSlice, OctreeView from .octree_chunk import OctreeChunk, OctreeChunkKey from .octree_intersection import OctreeIntersection from .octree_level import OctreeLevelInfo from .octree_util import OctreeDisplayOptions, SliceConfig LOGGER = logging.getLogger("napari.async.octree") class OctreeImage(Image): """OctreeImage layer. Experimental variant of Image that renders using an octree. For 2D images the octree is really just a quadtree. For 3D volumes it will be a real octree. This class is intended to eventually fully replace the existing Image class. Background ---------- The original Image class handled single-scale and multi-scale images, but they were handled quite differently. And its multi-scale did not use chunks or tiles. It worked well locally, but was basically unusable for remote or high latency data. OctreeImage always uses chunk/tiles. Today those tiles are always "small". However, as a special case, if an image is smaller than the max texture size, we could some day allow OctreeImage to set its tile size equal to that image size. At that point "small" images would be draw with a single texture, the same way the old Image class drew then. So it would be very efficient. But larger images would have multiple chunks/tiles and multiple levels. Unlike the original Image class multi-scale, the chunks/tiles mean we only have to incrementally load more data as the user pans and zooms. The goal is OctreeImage gets renamed to just Image and it efficiently handles images of any size. It make take a while to get there. Attributes ---------- _view : OctreeView Describes a view frustum which implies what portion of the OctreeImage needs to be draw. _slice : OctreeMultiscaleSlice When _set_view_slice() is called we create a OctreeMultiscaleSlice() that's looking at some specific slice of the data. While the Image._slice was the data that was drawn on the screen, an OctreeMultiscaleSlice contains a full Octree. The OctreeImage visuals (VispyTiledImageLayer and TiledImageVisual) draw only the portion for OctreeImage which is visible in the OctreeView. _display : OctreeDisplayOptions Settings for how we draw the octree, such as tile size. """ def __init__(self, *args, **kwargs): self._view: OctreeView = None self._slice: OctreeMultiscaleSlice = None self._intersection: OctreeIntersection = None self._display = OctreeDisplayOptions() # super().__init__ will call our _set_view_slice() which is kind # of annoying since we are aren't fully constructed yet. super().__init__(*args, **kwargs) # Call after super().__init__ self.events.add(octree_level=Event, tile_size=Event) # TODO_OCTREE: this is hack that we assign OctreeDisplayOptions # this event after super().__init__(). Will cleanup soon. self._display.loaded_event = self.events.loaded def _get_value(self): """Override Image._get_value().""" return (0, (0, 0)) # TODO_OCTREE: need to implement this. @property def loaded(self) -> bool: """Has the data for this layer been loaded yet. As far as the visual system is concerned we are always "loaded" in that we can always be drawn. Because our VispyTiledImageLayer can always be drawn. Even if no chunk/tiles are loaded yet. """ return True @property def _empty(self) -> bool: """Is this layer completely empty so it can't be drawn. As with self.loaded, we are never really empty. Our VispyTiledImageLayer can always be drawn. Even if there is nothing to draw. """ return False def _update_thumbnail(self): # TODO_OCTREE: replace Image._update_thumbnail with nothing for # the moment until we decide how to do thumbnail. pass @property def _data_view(self): """Viewable image for the current slice. (compatibility)""" # Override Image._data_view return np.zeros((64, 64, 3)) # fake: does octree need this? @property def display(self) -> OctreeDisplayOptions: """The display options for this octree image layer.""" return self._display @property def tile_size(self) -> int: """Return the edge length of single tile, for example 256. Return ------ int The edge length of a single tile. """ return self._display.tile_size @tile_size.setter def tile_size(self, tile_size: int) -> None: """Set new tile_size. Parameters ---------- tile_size : int The new tile size. """ self._display.tile_size = tile_size self.events.tile_size() self._slice = None # For now must explicitly delete it self.refresh() # Creates a new slice. @property def tile_shape(self) -> tuple: """Return the shape of a single tile, for example 256x256x3. Return ------ tuple The shape of a single tile. """ # TODO_OCTREE: Must be an easier way to get this shape based on # information already stored in Image class? if self.multiscale: init_shape = self.data[0].shape else: init_shape = self.data.shape tile_shape = (self.tile_size, self.tile_size) if self.rgb: # Add the color dimension (usually 3 or 4) tile_shape += (init_shape[-1],) return tile_shape @property def slice_config(self) -> SliceConfig: """Return information about the current octree. Return ------ SliceConfig Configuration information. """ if self._slice is None: return None return self._slice.slice_config @property def octree_level_info(self) -> OctreeLevelInfo: """Return information about the current level of the current octree. Returns ------- OctreeLevelInfo Information about the current octree level. """ if self._slice is None: return None return self._slice.octree_level_info @property def data_level(self) -> int: """Current level of multiscale. The base full resolution image is level 0. The highest and coarsest level usually contains only a single tile. """ return self._data_level @data_level.setter def data_level(self, level: int) -> None: """Set the octree level we should be displaying. Parameters ---------- level : int Display this octree level. """ if self._data_level == level: return # It didn't change. # Quickly check for less than 0. We can't check for a level # that's too high because the Octree might have extended levels? if level < 0: raise ValueError(f"Octree level {level} is negative.") self._data_level = level self.events.octree_level() if self._slice is not None: # This will raise if the level is too high. self._slice.octree_level = level self.events.loaded() # redraw @property def num_octree_levels(self) -> int: """Return the total number of octree levels. Return ------ int The number of octree levels. """ return len(self.data) # Multiscale def _new_empty_slice(self) -> None: """Initialize the current slice to an empty image. Overides Image._new_empty_slice() and does nothing because we don't need an empty slice. We create self._slice when self._set_view_slice() is called. The empty slice was needed to satisfy the old VispyImageLayer that used a single ImageVisual. But OctreeImage is drawn with VispyTiledImageVisual. It does not need an empty image. It gets chunks from our self.drawable_chunks property, and it will just draw nothing if that returns an empty list. When OctreeImage become the only image class, this can go away. """ def get_drawable_chunks( self, drawn_chunk_set: Set[OctreeChunkKey] ) -> List[OctreeChunk]: """Get the chunks in the current slice which are drawable. The visual calls this and then draws what we send it. The call to get_intersection() will chose the appropriate level of the octree to intersect, and then return all the chunks within the intersection with that level. These are the "ideal" chunks because they are at the level whose resolution best matches the current screen resolution. Drawing chunks at a lower level than this will work fine, but it's a waste in that those chunks will just be downsampled by the card. You won't see any "extra" resolution at all. The card can do this super fast, so the issue not such much speed as it is RAM and VRAM. For example, suppose we want to draw 40 ideal chunks at level N, and the chunks are (256, 256, 3) with dtype uint8. That's around 8MB. If instead we draw lower levels than the ideal, the number of chunks and storage goes up quickly: Level (N - 1) is 160 chunks = 32M Level (N - 2) is 640 chunks = 126M Level (N - 3) is 2560 chunks = 503M In the opposite direction, drawing chunks from a higher, the number of chunks and storage goes down quickly. The only issue there is visual quality, the imagery might look blurry. Parameters ----------- drawn_chunk_set : Set[OctreeChunkKey] The chunks that are currently being drawn by the visual. Return ------ List[OctreeChunk] The drawable chunks. """ if self._slice is None or self._view is None: return [] # There is nothing to draw. # Get the current intersection and save it off. self._intersection = self._slice.get_intersection(self._view) if self._intersection is None: return [] # No chunks to draw. # Get the ideal chunks. These are the chunks at the preferred # resolution. The ones we ideally want to draw once they are in RAM # and in VRAM. When all loading is done, we will draw all the ideal # chunks. ideal_chunks = self._intersection.get_chunks(create=True) # If we are seting the data level level automatically, then update # our level to match what was chosen for the intersection. if self._view.auto_level: self._data_level = self._intersection.level.info.level_index # The loader will initiate loads on any ideal chunks which are not # yet in memory. And it will return the chunks we should draw. The # chunks might be ideal chunks, if they are in memory, but they # might be chunks from higher or lower levels in the octree. In # general we try to draw cover the view with the "best available" # data. return self._slice.loader.get_drawable_chunks( drawn_chunk_set, ideal_chunks ) def _update_draw( self, scale_factor, corner_pixels, shape_threshold ) -> None: """Override Layer._update_draw completely. The base Layer._update_draw does stuff for the legacy multi-scale that we don't want. And it calls refresh() which we don't need. We create our OctreeView() here which has the corners in it. Parameters ---------- scale_factor : float Scale factor going from canvas to world coordinates. corner_pixels : array Coordinates of the top-left and bottom-right canvas pixels in the world coordinates. shape_threshold : tuple Requested shape of field of view in data coordinates. """ # Compute our 2D corners from the incoming n-d corner_pixels data_corners = self._transforms[1:].simplified.inverse(corner_pixels) corners = data_corners[:, self._dims_displayed] # Update our self._view to to capture the state of things right # before we are drawn. Our self._view will used by our # drawable_chunks() method. self._view = OctreeView(corners, shape_threshold, self.display) def get_intersection(self) -> OctreeIntersection: """The the interesection between the current view and the octree. Returns ------- OctreeIntersection The intersection between the current view and the octree. """ if self._slice is None: return None return self._slice.get_intersection(self._view) def _outside_data_range(self, indices) -> bool: """Return True if requested slice is outside of data range. Return ------ bool True if requested slice is outside data range. """ extent = self._extent_data not_disp = self._dims_not_displayed return np.any( np.less( [indices[ax] for ax in not_disp], [extent[0, ax] for ax in not_disp], ) ) or np.any( np.greater( [indices[ax] for ax in not_disp], [extent[1, ax] for ax in not_disp], ) ) def _set_view_slice(self): """Set the view given the indices to slice with. This replaces Image._set_view_slice() entirely. The hope is eventually this class OctreeImage becomes Image. And the non-tiled multiscale logic in Image._set_view_slice goes away entirely. """ if self._slice is not None: # For now bail out so we don't nuke an existing slice which # contains an existing octree. Soon we'll need to figure out # if we are really changing slices (and need a new octree). return indices = np.array(self._slice_indices) if self._outside_data_range(indices): return # Indices to get at the data we are currently viewing. indices = self._get_slice_indices() # TODO_OCTREE: easier way to do this? base_shape = self.data[0].shape base_shape_2d = [base_shape[i] for i in self._dims_displayed] slice_config = SliceConfig( base_shape_2d, len(self.data), self._display.tile_size ) # OctreeMultiscaleSlice wants all the levels, but only the dimensions # of each level that we are currently viewing. slice_data = [level_data[indices] for level_data in self.data] # Create _layer_ref that matches the current indices and slice. indices = self._get_slice_indices() layer_ref = LayerRef.create_from_layer(self, indices) # Create the slice, it will create the actual Octree. self._slice = OctreeMultiscaleSlice( slice_data, layer_ref, slice_config, self._raw_to_displayed, ) def _get_slice_indices(self) -> tuple: """Get the slice indices including possible depth for RGB.""" indices = tuple(self._slice_indices) if self.rgb: indices += (slice(None),) return indices def on_chunk_loaded(self, request: ChunkRequest) -> None: """An asynchronous ChunkRequest was loaded. Override Image.on_chunk_loaded() fully. Parameters ---------- request : ChunkRequest This request was loaded. """ # Pass it to the slice, it will insert the newly loaded data into # the OctreeChunk at the right location. if self._slice.on_chunk_loaded(request): self.events.loaded() # Redraw with teh new chunk. @property def remote_messages(self) -> dict: """Messages we should send to remote clients.""" if self._intersection is None: return {} return { "tile_state": self._intersection.tile_state, "tile_config": self._intersection.tile_config, }
4df80986be4944f55373874a0764e8385fc5047d
647efb68e1e7ec6614f86d57302f2e6b3fea6b0a
/src/constants.py
0f0172ac017fe79d07e0088c4e769871b2192a30
[]
no_license
Beavl/NowPension
1d6cacb467f3a2f470626138a14789ca17f0090e
5fcfec5aacec89573a77416f79e7855d39fa5d6f
refs/heads/master
2023-01-30T17:48:45.023913
2020-12-09T12:31:56
2020-12-09T12:31:56
319,949,840
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
""" Script with the common constants of the module """ SEPARATOR=' ' END_LINE='.'
967b2f623b1738ca567c502efd894d42447223e1
c38a2f25d2654dd5d807a7dddd9ae569a7bd5857
/factorial.py
4b1c5e01bc203b350e9c0c53376535878d1f302b
[]
no_license
pranjalgupt/Python-lab
253588e8e6a21b48cc987745b5d59429cda0dd12
e411d3077c2bfaa1974da2eee9c6834f3e1bbf77
refs/heads/main
2023-03-15T01:04:17.817156
2021-03-22T10:09:37
2021-03-22T10:09:37
347,915,874
0
0
null
null
null
null
UTF-8
Python
false
false
70
py
n = int(input()) p = 1 while n>0: p*=n n = n-1 print(p)
da4709175da480d1d754b645e999b98d051d37b1
8af8df74ac5ef039481e78ada357a7f6ef31062c
/app/handlers/handle_internal_donation_email.py
d951b28e5d65c14c47649687a1bc0d6cc9d1b5d3
[]
no_license
KevynKelso/markhor-do
987816b201f1f7bafda6cf594d18c15a1cbd8562
b40bea85effa31d91f45b6d3622bba266d5e99d4
refs/heads/main
2023-02-15T04:26:27.557682
2021-01-05T19:47:36
2021-01-05T19:47:36
327,102,223
0
0
null
null
null
null
UTF-8
Python
false
false
2,590
py
from requests import HTTPError from apis import sendToPymail def handleInternalDonationEmail(request_data, items_index): try: in_memory_slash_honor_of = None if len(request_data['content']['items'][items_index]['customFields']) == 1: in_memory_slash_honor_of = ( request_data['content']['items'][items_index]['customFields'][0]['value'] ) data = { "sendto": ['Lauren Novo', 'Aleigh Raffelson', 'Valerie Maltese'], "form_name": 'Internal Donation', "invoice_number": request_data['content']['invoiceNumber'], "donation_type": request_data['content']['items'][items_index]['name'], "name": request_data['content']['user']['billingAddressName'], "email": request_data['content']['user']['email'], "in_memory_slash_honor_of": in_memory_slash_honor_of, "total_price": request_data['content']['items'][items_index]['totalPrice'], "billing_name": request_data['content']['billingAddressName'], "billing_company_name": request_data['content']['billingAddressCompanyName'], "billing_address1": request_data['content']['billingAddressAddress1'], "billing_address2": request_data['content']['billingAddressAddress2'], "billing_city": request_data['content']['billingAddressCity'], "billing_state": request_data['content']['billingAddressProvince'], "billing_country": request_data['content']['billingAddressCountry'], "billing_zip": request_data['content']['billingAddressPostalCode'], "billing_phone": request_data['content']['billingAddressPhone'], "shipping_name": request_data['content']['shippingAddressName'], "shipping_company_name": request_data['content']['shippingAddressCompanyName'], "shipping_address1": request_data['content']['shippingAddressAddress1'], "shipping_address2": request_data['content']['shippingAddressAddress2'], "shipping_city": request_data['content']['shippingAddressCity'], "shipping_state": request_data['content']['shippingAddressProvince'], "shipping_country": request_data['content']['shippingAddressCountry'], "shipping_zip": request_data['content']['shippingAddressPostalCode'], "shipping_phone": request_data['content']['shippingAddressPhone'] } response = sendToPymail(data) return response except (TypeError, HTTPError, KeyError): raise
884517c264aa7b9fe8d3adf58769051fffefc1e0
0e2bac9b62d41575632fcd9dfe115a72a5fd9412
/handler.py
4034602e8171ca47cf74cf672deea5f378f5c648
[]
no_license
mayingming/serverlessbot
7d444aeae22e7e13838cbd3c7796d23f36a52c45
5dc35fe1af812010b24a9050cc2dc5d7eac6e7fa
refs/heads/main
2023-01-07T21:10:57.452415
2020-11-04T08:12:43
2020-11-04T08:12:43
304,585,295
1
0
null
null
null
null
UTF-8
Python
false
false
3,056
py
import json import tweepy import config import csv import os import boto3 import botocore # Send twitter every 5 minutes def tweet(event, context): # Authenticate to Twitter auth = tweepy.OAuthHandler(config.CONSUMER_KEY, config.CONSUMER_SECRET) auth.set_access_token(config.ACCESS_TOKEN, config.ACCESS_TOKEN_SECRET) # Create API object api = tweepy.API(auth) # Post the first message and deleted it from message file # If no messsage left, send error s3 = boto3.resource("s3") s3_client = boto3.client('s3') bucket_name = "tbot-bucket" bucket = s3.Bucket(bucket_name) newname = '/tmp/'+config.TEMP_FILE_TO_DELETE try: s3_client.download_file(bucket_name, config.TEMP_FILE, newname) # The object does exist. with open(newname, 'r') as readfile, open('/tmp/'+config.TEMP_FILE, 'w') as writefile: reader = csv.reader(readfile) mlist = list(reader) writer = csv.writer(writefile) if len(mlist) > 1: writer = csv.writer(writefile) for i, row in enumerate(mlist): if i == 1: api.update_status(row[0]) else: writer.writerow(row) body = { "message": "twitter posted", "input": event } response = { "statusCode": 200, "body": json.dumps(body) } else: error = { "message": "No message left, twitter post failed.", "input": event } response = { "statusCode": 400, "error": json.dumps(error) } readfile.close() writefile.close() bucket.upload_file('/tmp/'+config.TEMP_FILE, config.TEMP_FILE) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": # The object does not exist. with open(config.MESSAGE_FILE, 'r') as readfile, open('/tmp/'+config.TEMP_FILE, 'w') as writefile: reader = csv.reader(readfile) mlist = list(reader) writer = csv.writer(writefile) for i, row in enumerate(mlist): if i == 1: api.update_status(row[0]) else: writer.writerow(row) body = { "message": "twitter posted", "input": event } response = { "statusCode": 200, "body": json.dumps(body) } readfile.close() writefile.close() bucket.upload_file('/tmp/'+config.TEMP_FILE, config.TEMP_FILE) else: # Something else has gone wrong. raise return response
bfda84e6ba0476ea5cfa870d4a9d4995f1c5e155
137cba430172ebb225a411cc59cf01c2c55cc55e
/src/python/modules/TorchScript/torch_multigammaln.py
c550d249e3839fe547df9ee0ec1502b99eded09b
[ "MIT" ]
permissive
microsoft/ADBench
56bce08eb67d63b0ed5019526ecce710987afad1
38cb7931303a830c3700ca36ba9520868327ac87
refs/heads/master
2023-06-21T12:38:53.426980
2022-11-28T19:14:19
2022-11-28T19:14:19
38,539,834
77
30
MIT
2023-06-20T09:41:41
2015-07-04T16:16:32
C++
UTF-8
Python
false
false
1,114
py
# TorchScript adapation # https://github.com/scipy/scipy/blob/c1372d8aa90a73d8a52f135529293ff4edb98fc8/scipy/special/spfun_stats.py import numpy as np # from scipy.special import gammaln as loggam import torch import math @torch.jit.script def multigammaln(a, d: int): # Python builtin <built-in function array> is currently not supported in Torchscript: # https://github.com/pytorch/pytorch/issues/32268 # a = np.asarray(a) # if not np.isscalar(d) or (np.floor(d) != d): # raise ValueError("d should be a positive integer (dimension)") # if np.any(a <= 0.5 * (d - 1)): # raise ValueError("condition a (%f) > 0.5 * (d-1) (%f) not met" # % (a, 0.5 * (d-1))) # res = (d * (d-1) * 0.25) * np.log(np.pi) # res += np.sum(loggam([(a - (j - 1.)/2) for j in range(1, d+1)]), axis=0) # Need to check relative performance res = (d * (d - 1) * 0.25) * math.log(math.pi) res += torch.sum( torch.tensor( [math.lgamma(float(a) - ((j - 1.0) / 2)) for j in range(1, d + 1)] ), dim=0, ) return res
5f2ec4a1caf26dd0c6854ddb62224c95d850cf7a
93376fdda5911125ce0a72c3ba6bd0c5b81d2fd0
/venv/bin/flask
0fecd1d9aa4ec87b97362e6b31ea8968574e1fbe
[]
no_license
sheffley201/shopping-cart
508c353c13e2467cb7395a28da71aadc40b85b19
e63d663df31ec146e9c1c9cea707705eb012f798
refs/heads/master
2023-03-24T02:19:27.386383
2021-03-26T17:24:48
2021-03-26T17:24:48
350,412,767
0
0
null
null
null
null
UTF-8
Python
false
false
249
#!/Users/spencerheffley/code/shopping-cart/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
cbac09e3ab3a33ec7effb97c5d4a07b0f8e001f9
a3fab9eca1c26f35bd30e1b029b64ee1ad4fc8cc
/SocialTennis_proj/wsgi.py
6d3843f851f60966d0a89d9d701c42e41b0ad2d7
[]
no_license
dansgithubuser/SocialTennis
cf86110eef72c2818692673177127f7554cf5fc6
cd84d996bfae1a515dd62ff658002ff5fc501aa6
refs/heads/master
2021-06-10T22:46:03.117970
2021-04-08T19:04:09
2021-04-08T19:04:09
171,059,299
0
1
null
2021-06-06T19:06:24
2019-02-16T22:38:24
Python
UTF-8
Python
false
false
411
py
""" WSGI config for SocialTennis_proj project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'SocialTennis_proj.settings') application = get_wsgi_application()
1f3d6d8617a2f3652d4aa9fd89a36a0a52a2dedf
3b91ec3304ca0c177ef0cea12097474668a1666d
/easy_rmg_model/rmg2arc/sensitivity.py
595d83b7d90510bd78b67af33f7e06b0edc7c599
[ "MIT" ]
permissive
Roolthasiva/easy_rmg_model
d0cffb77c96e721f9549f11d191796f4fcb55ac3
194321629e41495482e1ccffbfb15958bd90a02a
refs/heads/master
2023-07-08T20:59:11.716927
2021-08-19T18:54:42
2021-08-19T18:54:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,497
py
#!/usr/bin/env python3 # encoding: utf-8 """ The toolbox for sensitivity analysis related tasks """ import os from typing import Union import pandas as pd from easy_rmg_model.common import get_files_by_regex def find_sensitivity_results(path: str) -> list: """ Find all of the flux diagrams in the given directory. Flux diagrams under the same folder have the same species if generated from RMG or RMS. Args: path (str): The path from where to find flux diagrams based on '.dot file avoid_repeats (bool): Whether to avoid the repeats. Returns: list: A list of paths to flux diagram dot files. """ if not os.path.isdir(path): raise ValueError( f'Not a invalid path ({path}), need to be a dir path.') sensitivities = get_files_by_regex(path, r"^sensitivity.+\.csv$") return sensitivities def get_spc_label_from_sensitivity(file: str, N: int = 50) -> list: """ Get the list of species contained in multiple sensitivity analysis Args: file (str): a sensitivity analysis csv file N (int): the upperbound number of species to be extracted Returns: list: a list contains species labels """ # Open the sensitivity result in DataFrame df = pd.read_csv(file) # Find the most sensitve species max_sensitivity = [] for header in df.columns: if 'dG' in header: label = header.split('dG')[1][1:-1] max_sensitivity.append((label, abs(df[header]).max())) sorted_labels = sorted(max_sensitivity, key=lambda tup: tup[1]) label_list = [tup[0] for tup in sorted_labels[:min(len(sorted_labels), N)]] return label_list def get_spc_info_from_sensitivities(files: Union[str, list], N: int = 50) -> dict: """ Get the list of species contained in multiple sensitivity analysis Args: files (Union[str, list]): a list contains the paths of sensitivity analysis csv files N (int): the upperbound number of species to be extracted in each SA Returns: dict: a dictionary contains species information (labels) """ if isinstance(files, str): files = [files] label_list = [] for sa_file in files: label_list += get_spc_label_from_sensitivity(sa_file, N) # remove duplicates label_list = list(set(label_list)) return {label: {'label': label} for label in label_list}
218fef243d24f0c570240a111af436b200b31a0b
96c8dad8103ab34636d562a0d0284419dc1c3332
/dfsbfs/dfs1.py
f95a4bd788b790a283cf8ea026d24130a6881587
[]
no_license
misombae/algorithm
67d052b6e29f50da9383e698fa44ec76edfc17d8
4cf38a58d736298955814349b259e45dd86ef3dd
refs/heads/master
2023-06-06T06:36:56.271585
2021-07-06T08:41:14
2021-07-06T08:41:14
312,466,156
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
def dfs(graph, v, visited): visited[v] = True print(v, end=' ') for i in graph[v]: if not visited[i]: dfs(graph, i, visited) graph = [ [], [2,3,8], [1,7], [1,4,5], [3,5], [3,4], [7], [2,6,8], [1,7] ] visited = [False] * 9 dfs(graph, 1, visited)
0b32ee51da6520203c238f484f0612348ef855f4
07c25b0830a57105fa0e7f9864f740132267aace
/cuboid/Ae20a_Ae40a/rbc_simulation_cuboid2_4ext20_40/src/libs_dataset/cells_dataset.py
4b821c4d457358e541b9ef9710d45d42eba85c96
[]
no_license
katkaj/rbc_classification
d0486760e5fe04ba3c7c586e616d1253070f71ed
21b1c80bc2e61ecdf5fe04fe8c66a93cb3f4c43d
refs/heads/master
2023-04-05T09:16:07.450794
2021-04-15T10:22:19
2021-04-15T10:22:19
331,882,944
0
0
null
null
null
null
UTF-8
Python
false
false
5,399
py
import numpy import torch from .dats_load import * class CellsDataset: ''' create dataset for classification usage : 1, load data, just calling constructor @param training_files : list of paths to dats files @param training_labels : list of class IDs, integer numbers, from range <0, classes_count) @param testing_files : list of paths to dats files @param testing_labels : list of class IDs, integer numbers, from range <0, classes_count) @param classes_count : number of classes @param window_size : time sequence window size @param cols : list which colums will be readed from dats files @param augmentations_count : count of differen augmentations for training data 2, obtain input x, and target output by calling : x, y = dataset.get_training_batch() x.shape = (batch_size, len(cols), window_size) y.shape = (batch_size, classes_count) note : for classes y, one-hot encoding is used note : real dataset is too big to hold in RAM (I have only 32G) that's why dataset is created runtime ''' def __init__(self, training_files, training_labels, testing_files, testing_labels, classes_count, window_size = 1024, cols = [1, 2, 3, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24], augmentations_count = 32): self.width = window_size self.channels = len(cols) self.input_shape = (self.channels, self.width) self.classes_count = classes_count self.output_shape = (self.classes_count, ) self.augmentations_count = augmentations_count self.training_dats = DatsLoad(training_files, cols = cols) self.training_labels = training_labels self.testing_dats = DatsLoad(testing_files, cols = cols) self.testing_labels = testing_labels self.training_count = (1 + self.augmentations_count)*self.training_dats.data.shape[0]*self.training_dats.data.shape[1] self.testing_count = self.testing_dats.data.shape[0]*self.testing_dats.data.shape[1] print("\n\n\n\n") print("dataset summary : \n") print("training_dats shape = ", self.training_dats.data.shape) print("testing_dats shape = ", self.testing_dats.data.shape) print("training_count = ", self.get_training_count()) print("testing_count = ", self.get_testing_count()) print("channels_count = ", self.channels) print("sequence_length = ", self.width) print("classes_count = ", self.classes_count) x, y = self.get_training_batch(batch_size=32) print("batch(32) tensor shape = ", x.shape, y.shape) print("\n\n\n\n") def get_training_count(self): return self.training_count def get_testing_count(self): return self.testing_count def get_training_batch(self, batch_size = 128): return self._get_batch(self.training_dats.data, self.training_labels, batch_size, agumentation = True) def get_testing_batch(self, batch_size = 128): return self._get_batch(self.testing_dats.data, self.testing_labels, batch_size) def _get_batch(self, x, y, batch_size = 128, agumentation = False): cells_count = x.shape[0] time_steps = x.shape[1] result_x = torch.zeros((batch_size, self.channels, self.width)) result_y = torch.zeros((batch_size, self.classes_count)) for i in range(batch_size): cell_idx = numpy.random.randint(cells_count) time_idx = numpy.random.randint(time_steps - self.width) tmp = x[cell_idx][time_idx:time_idx + self.width] tmp = tmp.transpose() class_id = y[cell_idx] result_x[i] = torch.from_numpy(tmp).float() result_y[i][class_id] = 1.0 if agumentation: result_x = self._augmentation(result_x) return result_x, result_y def _augmentation(self, x, gaussian_noise_level = 0.001, offset_noise_level = 1.0): noise = gaussian_noise_level*torch.randn(x.shape) offset_noise = 2.0*torch.rand((x.shape[0], x.shape[1])).unsqueeze(2).repeat(1, 1, x.shape[2]) - 1.0 x = x + noise + offset_noise_level*offset_noise return x if __name__ == "__main__": path = "/Users/michal/dataset/cells_dataset/sim26/" training_files = [] training_files.append(path + "rbc0_data_sim26.dat") training_files.append(path + "rbc1_data_sim26.dat") training_files.append(path + "rbc2_data_sim26.dat") training_files.append(path + "rbc3_data_sim26.dat") training_labels = [] training_labels.append(0) training_labels.append(1) training_labels.append(0) training_labels.append(1) testing_files = [] testing_files.append(path + "rbc0_data_sim26.dat") testing_files.append(path + "rbc1_data_sim26.dat") testing_files.append(path + "rbc2_data_sim26.dat") testing_files.append(path + "rbc3_data_sim26.dat") testing_labels = [] testing_labels.append(0) testing_labels.append(1) testing_labels.append(0) testing_labels.append(1) dataset = CellsDataset(training_files, training_labels, testing_files, testing_labels, classes_count = 2) x, y = dataset.get_training_batch() print(x.shape, y.shape)
d60fd0cd20b5ebb9ad94e8a5ff23d7cf6b3a157d
10ecee5ad6bbd1b53922ffcd0f88d047d3cad67c
/bullet.py
c7480f03732dbbb446e41923cff8919dbf0a3441
[]
no_license
AlexeyNarush/Tankgame
0e52384cfbd5c1be7b454d6b8eba316833708ce3
a446bcb9335aa69d727207e8406627c5f48eaffc
refs/heads/master
2021-06-25T22:31:33.650261
2021-01-15T11:30:31
2021-01-15T11:30:31
198,632,807
0
0
null
null
null
null
UTF-8
Python
false
false
2,250
py
import threading import pygame from color import * import settings # Main part of the class class Bullet: def __init__(self, x, y, tank, enemy, boxes, screen, grid): dx = 0 dy = 0 if (tank.direct == 1): dy = tank.reverse if (tank.direct == 2): dx = -tank.reverse if (tank.direct == 3): dy = -tank.reverse if (tank.direct == 4): dx = tank.reverse x += 25 y += 25 x += dx * 25 + dx y += dy * 25 + dy self.X = x self.Y = y self.dx = dx self.dy = dy self.clock = pygame.time.Clock() self.thread = threading.Thread(target=self.move, args=(tank, enemy, boxes, screen, grid)) self.thread.start() # Function that makes bullet move def move(self, tank, enemy, boxes, screen, grid): while True: pygame.draw.circle(screen,BLACK, (self.X, self.Y), 5) grid.draw(screen) pygame.display.update(pygame.Rect(self.X - 10, self.Y - 10, 20, 20)) if self.X < 0 or self.Y < 0 or self.X > 600 or self.Y > 600: return if (self.collision(enemy)): if enemy.sheald == 0: enemy.hp -= 1 threading.Thread(target=enemy.Sheald, args=()).start() return for i in boxes: if (self.collision(i)): if i.destroy() == True: pygame.draw.rect(screen, BLACK, (i.X, i.Y, settings.block, settings.block)) boxes.remove(i) return self.X += self.dx * 5 self.Y += self.dy * 5 pygame.draw.circle(screen, YELLOW, (self.X, self.Y), 5) pygame.display.update(pygame.Rect(self.X - 10, self.Y - 10, 20, 20)) self.clock.tick(120) # Functino that makes sure that bullet hit the tank or box def collision(self, object): if (self.X >= object.X and self.X <= object.X + 50) and (self.Y >= object.Y and self.Y <= object.Y + 50): return True return False
6a41cba7b5b408fb7bf3f0a195e14dcd1b736ff7
57e71ac3b8766c5330aefbbf97b36d55543b3135
/user/urls.py
0aca3a86de749c9e3d9109e750721b45570a45aa
[]
no_license
soha4597/SoftwareEngineering
804869d1d88b9b3705a3f7c6de65901534e8a975
efc44204bbaac045cb1c16a375b0e8474c774c31
refs/heads/master
2022-05-25T10:25:28.450031
2020-04-25T19:06:28
2020-04-25T19:06:28
257,473,906
0
0
null
null
null
null
UTF-8
Python
false
false
4,955
py
from django.conf.urls import include, url from django.contrib.auth import \ views as auth_views from django.contrib.auth.forms import \ AuthenticationForm from django.urls import reverse_lazy from django.views.generic import ( RedirectView, TemplateView) from .views import ( ActivateAccount, CreateAccount, DisableAccount, ProfileDetail, ProfileUpdate, PublicProfileDetail, ResendActivationEmail) #password_urls = [ # url(r'^$', # RedirectView.as_view( # pattern_name='dj-auth:pw_reset_start', # permanent=False)), #url(r'^change/$', # auth_views.password_change, # {'template_name': # 'user/password_change_form.html', # 'post_change_redirect': reverse_lazy( # 'dj-auth:pw_change_done')}, #name='pw_change'), #url(r'^change/done/$', # auth_views.password_change_done, # {'template_name': # 'user/password_change_done.html'}, # name='pw_change_done'), # url(r'^reset/$', # auth_views.password_reset, # {'template_name': # 'user/password_reset_form.html', # 'email_template_name': # 'user/password_reset_email.txt', # 'subject_template_name': # 'user/password_reset_subject.txt', # 'post_reset_redirect': reverse_lazy( # 'dj-auth:pw_reset_sent')}, # name='pw_reset_start'), # url(r'^reset/sent/$', # auth_views.password_reset_done, # {'template_name': # 'user/password_reset_sent.html'}, # name='pw_reset_sent'), # url(r'^reset/' # r'(?P<uidb64>[0-9A-Za-z_\-]+)/' # r'(?P<token>[0-9A-Za-z]{1,13}' # r'-[0-9A-Za-z]{1,20})/$', # auth_views.password_reset_confirm, # {'template_name': # 'user/password_reset_confirm.html', # 'post_reset_redirect': reverse_lazy( # 'dj-auth:pw_reset_complete')}, # name='pw_reset_confirm'), # url(r'reset/done/$', # auth_views.password_reset_complete, # {'template_name': # 'user/password_reset_complete.html', # 'extra_context': # {'form': AuthenticationForm}}, # name='pw_reset_complete'), #] urlpatterns = [ url(r'^$', RedirectView.as_view( pattern_name='login', permanent=False)), # in case the url is user/, we redirect him immediately to the login page. url(r'^activate/' r'(?P<uidb64>[0-9A-Za-z_\-]+)/' r'(?P<token>[0-9A-Za-z]{1,13}' r'-[0-9A-Za-z]{1,20})/$', ActivateAccount.as_view(), name='activate'), # We use the uidb64 and tokn to make sure that the user actually received an activation email url(r'^activate/resend/$', ResendActivationEmail.as_view(), name='resend_activation'), # This is where the activation email is resent. url(r'^activate', RedirectView.as_view( pattern_name=( 'resend_activation'), permanent=False)), # The RedirectView is simply a view that redirects to the given url pattern # This catches all the urls that start with activate - it doesn't end with $ - but don't match what is above and redirects them to the Resend Activation View # We do this because we don't have a page that matches the prefix activate url(r'^create/$', CreateAccount.as_view(), name='create'), #url to create an account # We included in the base from and in the login.html directly under the from. url(r'^create/done/$', TemplateView.as_view( template_name=( 'user/user_create_done.html')), name='create_done'), # TemplateView is used to simply create the template without the need for a view. # url(r'^disable/$', # DisableAccount.as_view(), # name='disable'), # url(r'^login/$', auth_views.LoginView.as_view( template_name= 'user/login.html'), name='login'), # this is redirect to the view that displays the login page for the user to enter credentials url(r'^logout/$', auth_views.LogoutView.as_view( template_name = 'user/logged_out.html', extra_context = {'form': AuthenticationForm}), name='logout'), #this is redirect to the view that displays logout where the credentials reappear in case the user wants to log in again directly #after logging out # url(r'^password/', include(password_urls)), url(r'^profile/$', ProfileDetail.as_view(), name='profile'), # We display the Profile of the user at the static url: user/profile url(r'^profile/edit/$', ProfileUpdate.as_view(), name='profile_update'), # We allow the user to update the profile url(r'^(?P<slug>[\w\-]+)/$', PublicProfileDetail.as_view(), name='public_profile'), # This link would display the profiles of other users ]
dd1796069eca388c891cdb81582a79e9a4753f55
18cd88b68c1d859d17b1191d85003a7a8dc2c0c5
/Algorithms and data structures (Python)/N. Test №2/E-Sort, even first.py
4048d765c7b1dc26aa60e8f002f586613a42d10f
[]
no_license
GrigorevEv/Hello-World
f9783b3293958a4ed4e78b7f6727d577da6e0b85
2c376c8be1c95a1124fea4ce8de7e196abfa47ad
refs/heads/master
2021-07-14T09:14:39.064437
2021-07-05T08:33:09
2021-07-05T08:33:09
241,601,746
1
0
null
null
null
null
UTF-8
Python
false
false
1,004
py
# Сортировка: сначала чётные # Дан список целых чисел. Отсортировать его так, # чтобы сначала шли чётные по возрастанию, потом — нечётные во возрастанию. # Формат входных данных # Одна строка — список чисел через пробел. Длина списка не превосходит 10000. # Формат выходных данных # Отсортированный список чисел через пробел digits = list(map(int, input().split())) even_sorted_digits = [] odd_even_sorted_digits = [] sorted_digits = [] digits.sort() for i in range(len(digits)): if digits[i] % 2 == 0: even_sorted_digits.append(digits[i]) else: odd_even_sorted_digits.append(digits[i]) sorted_digits = even_sorted_digits + odd_even_sorted_digits for i in range(len(sorted_digits)): print(sorted_digits[i], end=' ')
5696a36c2f8f7768f1c9549ab216ada16a7a7de9
b17cc16682b9fecd8584c14d407db1f7d7be8285
/Pythons/PlayList/playlist.py
f8798c916618fbdb803168f38618619a8dc30c5e
[]
no_license
mosesadelere/SeleniumTesting
67a825ca809b0800ed4d7c185b090a7e813129b5
95916bbca20890600b4da43c6ebd25e42df93546
refs/heads/master
2023-01-09T22:35:38.200351
2019-11-08T20:16:29
2019-11-08T20:16:29
207,618,220
0
0
null
2022-12-27T15:37:34
2019-09-10T17:10:39
C#
UTF-8
Python
false
false
5,290
py
import argparse #import sys from matplotlib import pyplot import plistlib import numpy as np def findCommonTrack(fileNames): """ find common tracks in given playlist files, and save them to common.txt """ # a list of sets of track names trackNameSets = [] for fileName in fileNames: # create a new set trackNames = set() #read in playlist plist = plistlib.readPlist(fileName) tracks = plist['Tracks'] # iterate through the tracks for trackId, track in tracks.items(): try: # add the track names to a set trackNames.add(track['Name']) except: #ignore pass # add to list trackNameSets.append(trackNames) # get the set of common tracks commonTracks = set.intersection(*trackNameSets) #write to fileName if len(commonTracks) > 0: f = open("common.txt", 'wb') for val in commonTracks: s = "%s\n" % val f.write(s.encode("UTF-8")) f.close() print("%d common tracks found. " "Track names written to common.txt." % len(commonTracks)) else: print("No common tracks!") def plotStats(fileName): """ Plot some statistics by reading track information fromom playlist. """ # read in a playlist plist = plistlib.readPlist(fileName) # get the tracks from the playlist tracks = plist['Tracks'] # create lists of song ratings and track durations ratings = [] durations = [] # iterate through the tracks for trackId, track in tracks.items(): try: ratings.append(track['Album Rating']) durations.append(track['Total Time']) except: pass # ensure that valid data was collected if ratings == [] or durations == []: print("No valid Album Rating/Total Time data in %s." % fileName) return # scatter plot x = np.array(durations, np.int32) # convert to minutes x /= 60000.0 y = np.array(ratings, np.int32) pyplot.subplot(2, 1, 1) pyplot.plot(x, y, 'o') pyplot.axis([0, 1.05*np.max(x), -1, 110]) pyplot.xlabel('Track duration') pyplot.ylabel('Track rating') #plot histogram pyplot.subplot(2, 1, 2) pyplot.hist(x, bins=20) pyplot.xlabel('Track duration') pyplot.ylabel('Count') pyplot.show() def findDuplicates(fileName): """ Find duplicate tracks in given playlist. """ print('Finding duplicate tracks in %s...' % fileName) # read in playlist plist = plistlib.readPlist(fileName) #get the tracks from the Tracks dictionary tracks = plist['Tracks'] # create a track name dictionary trackNames = {} # iterate through tracks for trackId, track in tracks.items(): try: name = track['Name'] duration = track['Total Time'] # look for existing entries if name in trackNames: # if a name and duration match, increment the count # round the track lenngth to the nearest second if duration//1000 == trackNames[name][0]//1000: count = trackNames[name][1] trackNames[name] = (duration, count+1) else: # add dictionary entries as tuple (duration, count) trackNames[name] = (duration, 1) except: pass # store duplicates as (name, count) tuples dups = [] for k, v in trackNames.items(): if v[1] > 1: dups.append((v[1], k)) # save duplicates to a file if len(dups) > 0: print("Found %d duplicates. Track names saved to dups.txt" % len(dups)) else: print("No duplicate tracks found!") f = open("dups.txt", 'w') for val in dups: f.write("[%d] %s\n" % (val[0], val[1])) f.close() # Gather our code in a main() function def main(): # create parser descStr = """ This program analyses playlist files (.xml) exported from iTunes.""" parser = argparse.ArgumentParser(description = descStr) # add a mutually exclusive group of arguments group = parser.add_mutually_exclusive_group() # add expected arguments group.add_argument('--common', nargs = '*', dest='plFiles', required=False) group.add_argument('--stats', dest='plFile', required=False) group.add_argument('--dup', dest='plFileD', required=False) #parse args args = parser.parse_args() if args.plFiles: #find common tracks findCommonTrack(args.plFiles) elif args.plFile: # plot stats plotStats(args.plFile) elif args.plFileD: # find duplicate track findDuplicates(args.plFileDd) else: print("These are not the tracks you are looking for.") if __name__ == '__main__': main()
8bbdf1ea9a66ac4566bc2f4eeb58a4233a72cbef
5783df40921343441c4b14128d8fd15052cbcc9f
/Assignment4/frozen_test_policy.py
b05e85aa9a179593ea53acad94867874d21399e0
[]
no_license
dheeraj141/CS7641
38fd819026ada35f65f7eda099acde42e90dc04b
c312762ae0890f7e4619188785c6686cf99b5e0c
refs/heads/master
2020-12-15T11:27:08.259467
2020-04-13T02:12:38
2020-04-13T02:12:38
235,086,781
0
0
null
null
null
null
UTF-8
Python
false
false
6,705
py
import numpy as np import gym from gym import wrappers import time import sys import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from gym.envs.toy_text.frozen_lake import generate_random_map # using the Bellman equation, we find the action providing the highest value for the given state s. # V is the list of values of all states def choose_best_action(env, V, s, gamma): a_best = None q_best = float('-inf') nb_actions = env.action_space.n for a in range (0, nb_actions): env.env.s = s # go to state s s_next, r, done, info = env.step(a) #take the action a q = r + gamma * V[s_next] # compute the value future value after taking action a if q > q_best: q_best = q a_best = a return a_best # value iteration algorithm def compute_value_iteration(env, gamma=.9, v_delta_threshold=.000001, V = None, verbose=True): env.reset() nb_actions = env.action_space.n nb_states = env.observation_space.n # values vector if V == None: V = np.zeros([nb_states]) # policy vector P = np.zeros([nb_states], dtype=int) iteration = 0 while True: v_delta = 0 for s in range (0, nb_states): v_previous = V[s] a_best = choose_best_action(env, V, s, gamma) # find an action with the highest future reward env.env.s = s # go to the state s s_next, r, done, info = env.step(a_best) #take the best action V[s] = r + gamma * V[s_next] # update the value of the state P[s] = a_best # store the best action in the policy vector for the state v_delta = max(v_delta, np.abs(v_previous - V[s])) # calculate the rate of value improvment for the state iteration += 1 if v_delta < v_delta_threshold: if verbose: print (iteration,' iterations done') break return V, P # compute values for a 4x4 board #V_4, P_4 = compute_value_iteration() #print( V_4) # function for displaying a heatmap def display_value_iteration(P, env ): nb_states = env.observation_space.n visited_states = np.zeros(nb_states).astype(bool) visited_states[0] = 1 states_labels = np.where(P==0, '<', np.where(P==1, '>', np.where(P==2, 'v', np.where(P==3, '^', P) ) ) ) desc = env.unwrapped.desc.ravel().astype(str) colors = np.where(desc=='S','y',np.where(desc=='F','b',np.where(desc=='H','r',np.where(desc=='G','g',desc)))) states_labels = np.zeros(nb_states).astype(str) states_labels[:] = '' total_reward = 0 s = env.reset() #env.render() done = False while done != True: best_a = P[s] # select the best next action from the policy states_labels[s] = '^' if best_a==0 else ('v' if best_a==1 else ('>' if best_a==2 else '<')) #print(s, best_a) s, rew, done, info = env.step(best_a) #take step using selected action total_reward = total_reward + rew visited_states[s] = 1 # mark the state as visited #env.render() ax = sns.heatmap(P.reshape(int(np.sqrt(nb_states)),int(np.sqrt(nb_states))), linewidth=0.5, annot=states_labels.reshape(int(np.sqrt(nb_states)),int(np.sqrt(nb_states))), cmap=list(colors), fmt = '', cbar=False) plt.show() print("Total Reward: ", total_reward) # display heatmap for a 4x4 board #display_value_iteration(P_4) # function for performing policy iteration def compute_policy_iteration(env, gamma=.9, v_delta_threshold=.00001, P = None, verbose=True): env.reset() nb_actions = env.action_space.n nb_states = env.observation_space.n # values vector V = np.zeros([nb_states]) # policy vector if P == None: P = np.random.choice(nb_actions, size=nb_states) P = np.zeros([nb_states], dtype=int) max_iterations = 200000 iteration = 0 for i in range(max_iterations): # policy evaluation while True: v_delta = 0 for s in range (0, nb_states): v_previous = V[s] env.env.s = s # go to state s s_next, r, done, info = env.step(P[s]) #take the action recommended by policy V[s] = r + gamma * V[s_next] # update value after applying policy v_delta = max(v_delta, np.abs(v_previous - V[s])) # calculate the rate of value improvment for the state if v_delta < v_delta_threshold: break print( V.reshape(4,4)) # policy improvement policy_stable = True for s in range (0, nb_states): a_old = P[s] # ask policy for action to perform a_best = choose_best_action(env, V, s, gamma) # find an action with the highest future reward P[s] = a_best # store the best action in the policy vector for the state if a_old != a_best: policy_stable = False if policy_stable: break print( P.reshape(4,4)) iteration += 1 if verbose: print (iteration,' iterations done') return V, P breakpoint() env = gym.make('FrozenLake-v0', is_slippery=False) Vp_4, Pp_4 = compute_policy_iteration(env) print(Vp_4) display_value_iteration(Pp_4, env) # compute values for a 4x4 board V_4, P_4 = compute_value_iteration(env) print( V_4) display_value_iteration(P_4, env) V_8, P_8 = compute_value_iteration(env = gym.make('FrozenLake8x8-v0', is_slippery=False)) print(V_8) display_value_iteration(P_8, env = gym.make('FrozenLake8x8-v0', is_slippery=False)) V_8, P_8 = compute_policy_iteration(env = gym.make('FrozenLake8x8-v0', is_slippery=False)) print(V_8) display_value_iteration(P_8, env = gym.make('FrozenLake8x8-v0', is_slippery=False)) env = gym.make('FrozenLake-v0') Vp_4, Pp_4 = compute_policy_iteration(env) print(Vp_4) display_value_iteration(Pp_4, env) # compute values for a 4x4 board V_4, P_4 = compute_value_iteration(env) print( V_4) display_value_iteration(P_4, env) V_8, P_8 = compute_value_iteration(env = gym.make('FrozenLake8x8-v0')) print(V_8) display_value_iteration(P_8, env = gym.make('FrozenLake8x8-v0'))
de595e301bdb831393d86ebe115a6d1a6c36418f
a2e19fd174bedd860297bcc72032dce0f1ea2339
/graphs/torch_geometric/transforms/target_indegree.py
72931a2e680b9cf2cbcdde83d215c688111fe7a3
[ "MIT" ]
permissive
Cyanogenoid/fspool
29772ea76fa96c35b59e1c0cdb7581b3714028ee
a9f93cc774610c6d96c2c3095a1ab16f53abbefb
refs/heads/master
2023-08-03T10:58:16.139258
2022-11-22T23:16:32
2022-11-22T23:16:32
190,535,015
47
8
MIT
2023-07-22T07:41:22
2019-06-06T07:25:24
Python
UTF-8
Python
false
false
1,579
py
import torch from torch_geometric.utils import degree class TargetIndegree(object): r"""Saves the globally normalized degree of target nodes (mapped to the fixed interval :math:`[0, 1]`) .. math:: \mathbf{u}(i,j) = \frac{\deg(j)}{\max_{v \in \mathcal{V}} \deg(v)} in its edge attributes. Args: cat (bool, optional): Concat pseudo-coordinates to edge attributes instead of replacing them. (default: :obj:`True`) .. testsetup:: import torch from torch_geometric.data import Data .. testcode:: from torch_geometric.transforms import TargetIndegree edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]]) data = Data(edge_index=edge_index) data = TargetIndegree()(data) print(data.edge_attr) .. testoutput:: tensor([[1.0000], [0.5000], [0.5000], [1.0000]]) """ def __init__(self, cat=True): self.cat = cat def __call__(self, data): col, pseudo = data.edge_index[1], data.edge_attr deg = degree(col, data.num_nodes) deg = deg / deg.max() deg = deg[col] deg = deg.view(-1, 1) if pseudo is not None and self.cat: pseudo = pseudo.view(-1, 1) if pseudo.dim() == 1 else pseudo data.edge_attr = torch.cat([pseudo, deg.type_as(pseudo)], dim=-1) else: data.edge_attr = deg return data def __repr__(self): return '{}(cat={})'.format(self.__class__.__name__, self.cat)
2f9507e0023317b7c1bcad8b2b356ae0211bfdb9
474316f5dd548bb184f95c637fdeef2014c639b0
/lesson104.py
9e4a8508e4c5f0c5eb4ca1c5ffcccabb290a40a3
[]
no_license
ipcoo43/openpyxl
c9a3669ddc9bd81402676cdda41d21bbe03b0bc9
8cc35f86b280a192c0b473cc88e1affdf39707da
refs/heads/master
2020-06-03T16:41:39.418059
2019-06-13T00:50:49
2019-06-13T00:50:49
191,653,620
0
0
null
null
null
null
UTF-8
Python
false
false
1,078
py
import pandas as pd # 데이터 가져오기 df_01 = pd.read_csv('https://goo.gl/VwsTBR', parse_dates=['년/월/일'], thousands=',', index_col='년/월/일') # 삼성전자 df_02 = pd.read_csv('https://goo.gl/2udsQq', parse_dates=['년/월/일'], thousands=',', index_col='년/월/일') # SK하이닉스 df_03 = pd.read_csv('https://goo.gl/TbBGhJ', parse_dates=['년/월/일'], thousands=',', index_col='년/월/일') # 셀트리온 print(df_01.head(1)) print(df_02.head(1)) print(df_03.head(1)) # 종가 취합하기 df_close = pd.DataFrame() df_close['삼성전자'] = df_01['종가'] df_close['SK하이닉스'] = df_02['종가'] df_close['셀트리온'] = df_03['종가'] print(df_close.head(3)) # 엑셀로 저장 df_close.to_excel('./xlsx/종목별종가_104.xlsx', sheet_name='종목별종가') # 별도의 시트에 종가 저장하기 writer = pd.ExcelWriter('./xlsx/종목별종가_시트별_104.xlsx') df_01['종가'].to_excel(writer,'삼성전자') df_02['종가'].to_excel(writer,'SK하이닉스') df_03['종가'].to_excel(writer,'셀트리온') writer.save()
59191c77f25619736c50028ce314e77aaf3e30e8
5ad0a8ab299d852cfccf2c2a2300ace1deffa567
/profiles/urls.py
a909bf12551cfd7f9fdb6caf5dd0a83538baae1f
[]
no_license
Code-Institute-Submissions/wilsons_express_v1
ee12bf6f2e4925f09d75a2863e0f1326a0a38a5a
a9f7cfc701c77b8457a23d60f1b77b9b1282843a
refs/heads/master
2023-05-12T10:31:19.359384
2021-06-03T06:46:08
2021-06-03T06:46:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
from django.urls import path from . import views urlpatterns = [ path('', views.profile, name='profile'), path('order_history/<order_ref>', views.order_history, name='order_history') ]
84969d228479d87b46b5c3f1187ed6c1ed997aac
260aa7c38bfbae2bf7bdc17ab4e178f93bd60ec6
/week8/hackerrank/H.py
23844744f951d5a28f555af3e257dd750cdd69fd
[]
no_license
Orik236/Web_Orka236
0fe177febe193821f62cf3687865a11799662e13
49ddf61de35213be490b4aa08ad041231fe584e7
refs/heads/master
2023-01-09T22:22:40.846945
2020-04-16T22:47:38
2020-04-16T22:47:38
247,916,965
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
if __name__ == '__main__': n = int(raw_input()) arr = map(int, raw_input().split()) arr.sort() for i in range(n-1, -1, -1): if arr[i] != arr[n-1]: print(arr[i]) break
fd4e92bc1ce559550f5ed0eefe3489856b8f2c3e
bfa9de121fd150f6ae35b09e66a3a422b7d0d724
/jobbole/spiders/blogjobbole.py
13c24cada5d7a45e24663fa6ce7b17a1742584cf
[]
no_license
Damaomaomao/jobbole
566a43780cd85f44ecf3060ba2ffb5d73e086a20
c3b498131d48b2d61b269e93157e7b1caddf6c19
refs/heads/master
2020-03-27T09:48:09.207979
2018-08-28T01:25:51
2018-08-28T01:25:51
146,373,677
1
0
null
null
null
null
UTF-8
Python
false
false
5,908
py
# -*- coding: utf-8 -*- import scrapy from urllib import parse from scrapy import Request from jobbole.items import JobBoleArticleItem from jobbole.utils.common import get_md5 from scrapy.loader import ItemLoader class BlogjobboleSpider(scrapy.Spider): name = 'blogjobbole' allowed_domains = ['blog.jobbole.com'] start_urls = ['http://blog.jobbole.com/all-posts/'] def parse(self, response): """ 1. 获取文章列表页中的文章url并交给scrapy下载后并进行解析 2. 获取下一页的url并交给scrapy进行下载, 下载完成后交给parse """ # 解析列表页中的所有文章url并交给scrapy下载后并进行解析 post_nodes = response.css("#archive .floated-thumb .post-thumb a") for post_node in post_nodes: image_url = post_node.css("img::attr(src)").extract_first("") post_url = post_node.css("::attr(href)").extract_first("") yield Request(url=parse.urljoin(response.url, post_url), meta={"front_image_url": image_url},#meta:在下载网页的时候把获取到的封面图的url传给parse_detail的response callback=self.parse_detail) # 提取下一页并交给scrapy进行下载 next_url = response.css(".next.page-numbers::attr(href)").extract_first("") if next_url: yield Request(url=parse.urljoin(response.url, next_url), callback=self.parse) def parse_detail(self, response): #-----------<<itemload方法>>------------------ item_loader = ItemLoader(item = JobBoleArticleItem(),response=response) front_image_url = response.meta.get("front_image_url", "") item_loader.add_css("title", ".entry-header h1::text") item_loader.add_value("url", response.url) item_loader.add_value("url_object_id", get_md5(response.url)) item_loader.add_css("create_date", "p.entry-meta-hide-on-mobile::text") item_loader.add_value("front_image_url", [front_image_url]) item_loader.add_css("praise_nums", ".vote-post-up h10::text") item_loader.add_css("comment_nums", "a[href='#article-comment'] span::text") item_loader.add_css("fav_nums", ".bookmark-btn::text") item_loader.add_css("tags", "p.entry-meta-hide-on-mobile a::text") #item_loader.add_css("content", "div.entry") article_item = item_loader.load_item() yield article_item #所有的值都变成了list形式 #在item.py中可以对该字段进行处理 #article_item = JobBoleArticleItem() #加载item # #-----------<xpath方法>--------------------------------------- # front_image_url = response.meta.get("front_image_url", "") # 文章封面图 # title = response.xpath('//div[@class="entry-header"]/h1/text()').extract_first("") # create_date = response.xpath("//p[@class='entry-meta-hide-on-mobile']/text()").extract()[0].strip().replace("·","").strip() # praise_nums = response.xpath("//span[contains(@class, 'vote-post-up')]/h10/text()").extract()[0] # fav_nums = response.xpath("//span[contains(@class, 'bookmark-btn')]/text()").extract()[0] # match_re = re.match(".*?(\d+).*", fav_nums) # if match_re: # fav_nums = match_re.group(1) # # comment_nums = response.xpath("//a[@href='#article-comment']/span/text()").extract()[0] # match_re = re.match(".*?(\d+).*", comment_nums) # if match_re: # comment_nums = match_re.group(1) # # content = response.xpath("//div[@class='entry']").extract()[0] # # tag_list = response.xpath("//p[@class='entry-meta-hide-on-mobile']/a/text()").extract() # tag_list = [element for element in tag_list if not element.strip().endswith("评论")] # tags = ",".join(tag_list) # #-----------<CSS方法>--------------------------------------- # front_image_url = response.meta.get("front_image_url", "") #文章封面图 # title = response.css(".entry-header h1::text").extract()[0] # create_date = response.css("p.entry-meta-hide-on-mobile::text").extract()[0].strip().replace("·","").strip() # praise_nums = response.css(".vote-post-up h10::text").extract()[0] # fav_nums = response.css(".bookmark-btn::text").extract()[0] # match_re = re.match(".*?(\d+).*", fav_nums) # if match_re: # fav_nums = int(match_re.group(1)) # else: # fav_nums = 0 # # comment_nums = response.css("a[href='#article-comment'] span::text").extract()[0] # match_re = re.match(".*?(\d+).*", comment_nums) # if match_re: # comment_nums = int(match_re.group(1)) # else: # comment_nums = 0 # # content = response.css("div.entry").extract()[0] # # tag_list = response.css("p.entry-meta-hide-on-mobile a::text").extract() # tag_list = [element for element in tag_list if not element.strip().endswith("评论")] # tags = ",".join(tag_list) #--把提取的内容填入到item中 # article_item["url_object_id"] = get_md5(response.url) # article_item["title"] = title # article_item["url"] = response.url # try: # create_date = datetime.datetime.strptime(create_date, "%Y/%m/%d").date() # except Exception as e: # create_date = datetime.datetime.now().date() # article_item["create_date"] = create_date # article_item["front_image_url"] = [front_image_url] # article_item["praise_nums"] = praise_nums # article_item["comment_nums"] = comment_nums # article_item["fav_nums"] = fav_nums # article_item["tags"] = tags # article_item["content"] = content #yield article_item
dcbb3a2a64f363d7f18000a2d5f5d1e90f843698
4124ece01d93b56476f43150f3b74a2f6bee58de
/combine_imagees.py
807f521e1a6ef5c1a7fdaa136e4748854e9490a3
[]
no_license
codeWorth/Risk
73eaadf20c3137731a72a4881cbec5ef931a3123
f15b93b239862418e5fee0bfba2fa601b1a1d310
refs/heads/master
2020-04-13T03:13:30.623612
2019-01-07T21:32:42
2019-01-07T21:32:42
162,925,491
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
import cv2 as cv import numpy as np from matplotlib import pyplot as plt import os folder = "Risk_Game_Masks" img_names = os.listdir(folder)[1:] print("Images:", img_names) imgs = [] im = cv.imread(folder + "/" + img_names[0]) for i in range(1,len(img_names)): print("Combining", img_names[i]) im_add = cv.imread(folder + "/" + img_names[i]) im[im_add == 255] = 255-i cv.imwrite("total_imgs.png", im)
293750a1df2e071993a368ed11baa5af6cd47c45
6c2949fdd8bb3f84d6c5724ac2696f7b2aacb1d5
/Chap10/zipCompress.py
d664de31fb59f24d8983aa872306232b9910a380
[]
no_license
KhubiThakkar/Automate_boring_stuff_with_python
e20b4678587cf4d318faa4c5466851268537eb87
4437df78fad638e69472f04836f9ef3ae2d80a59
refs/heads/master
2022-12-26T21:03:41.045900
2020-10-02T11:20:54
2020-10-02T11:20:54
268,807,491
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
import zipfile newZip = zipfile.ZipFile('new.zip','w') newZip.write('notes.txt',compress_type=zipfile.ZIP_DEFLATED) newZip.close()
aee25b2c0432faa4054629f062c5552c6b6ca076
3d2892dee75f10dd896bcc3164eb7794234f99c7
/Web/migrations/0003_auto_20170219_1010.py
52ce4bfc3a8c6c8ad028eacd6f6479261d011fd5
[]
no_license
character123/NN
9f3772de00f58d4622943cdc382fe0ec7cad5824
74d40f4a5a43034722c84cb9c1d55c6df6d01e5c
refs/heads/master
2021-01-20T11:40:52.928062
2017-03-05T02:53:12
2017-03-05T02:53:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
455
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-19 02:10 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Web', '0002_administrator'), ] operations = [ migrations.AlterField( model_name='user', name='username', field=models.CharField(max_length=20, unique=True), ), ]
2c1f69352b450d8c39cc563eeb0e9d94e66c2049
b17cf12c9bc640843500b67f7a57ba5566db973b
/main.py
1b1066e4b3ed0da4ff573fb31a49f4e6708b8686
[ "MIT" ]
permissive
catarinaacsilva/smartcard-application
a3a6453dd8ea40241d6f8df482ceaea2fc21f548
f5225b6054a101ba6c86ef6a8168481aca732191
refs/heads/main
2023-07-03T07:05:06.489618
2021-08-19T15:44:17
2021-08-19T15:44:17
348,493,376
1
0
null
null
null
null
UTF-8
Python
false
false
1,726
py
# coding: utf-8 import base64 from flask import Flask, request, jsonify from pteid import PortugueseCitizenCard from flask_cors import CORS app = Flask(__name__) CORS(app) @app.route('/sign', methods=['GET']) def sign(): data = request.args.get('data') print(data) data = base64.urlsafe_b64decode(data).decode('UTF-8') print(data) pteid = PortugueseCitizenCard() if len(pteid.sessions) > 0: pteid.login(0) signedData = pteid.sign_data(0, data) encoded_signedData = base64.urlsafe_b64encode(signedData) cert = pteid.PTEID_GetCertificate(0) encoded_cert = base64.urlsafe_b64encode(cert) pteid.logout(0) pteid.sessions[0].closeSession() return jsonify({'signedReceipt': encoded_signedData.decode('UTF-8'), 'cert': encoded_cert.decode('UTF-8')}) return jsonify({'error': 'Card not found'}) @app.route('/verify', methods=['GET']) def verify(): data = request.args.get('data') data = base64.urlsafe_b64decode(data).decode('UTF-8') signedData = request.args.get('signedData') signedData = base64.urlsafe_b64decode(signedData).decode('UTF-8') pteid = PortugueseCitizenCard() if len(pteid.sessions) > 0: pteid.login(0) verified = False decoded = signedData.encode('UTF-8') decoded_bytes = base64.urlsafe_b64decode(decoded) if (pteid.verifySignature(pteid.PTEID_GetCertificate(0), data, decoded_bytes)): verified = True pteid.logout(0) pteid.sessions[0].closeSession() return jsonify({'verify': verified}) return jsonify({'error': 'Card not found'}) if __name__ == '__main__': app.run(host='localhost', port=8686, debug=False)
5c50a6c864458a2d13557be69ad99984215c517d
ff0205f9bb32d4ba3722062b5e006091baa0a075
/Mnist_loader.py
059e7ea53006c690fe1a5c688ece5cd821f15773
[ "MIT" ]
permissive
Morbotu/drone-PWS
aa2897c32c21139cba57d13734c640bddd6536d3
face9cbf30a55783592cce8af59c1c70da982b6a
refs/heads/main
2023-08-13T23:55:24.361691
2021-09-29T19:15:18
2021-09-29T19:15:18
369,836,141
0
0
null
null
null
null
UTF-8
Python
false
false
3,132
py
#### Libraries # Standard library import pickle import gzip # Third-party libraries import numpy as np def load_data(): """Return the MNIST data as a tuple containing the training data, the validation data, and the test data. The ``training_data`` is returned as a tuple with two entries. The first entry contains the actual training images. This is a numpy ndarray with 50,000 entries. Each entry is, in turn, a numpy ndarray with 784 values, representing the 28 * 28 = 784 pixels in a single MNIST image. The second entry in the ``training_data`` tuple is a numpy ndarray containing 50,000 entries. Those entries are just the digit values (0...9) for the corresponding images contained in the first entry of the tuple. The ``validation_data`` and ``test_data`` are similar, except each contains only 10,000 images. This is a nice data format, but for use in neural networks it's helpful to modify the format of the ``training_data`` a little. That's done in the wrapper function ``load_data_wrapper()``, see below. """ f = gzip.open('mnist.pkl.gz', 'rb') training_data, validation_data, test_data = pickle.load(f,encoding='iso-8859-1') f.close() return (training_data, validation_data, test_data) def load_data_wrapper(): """Return a tuple containing ``(training_data, validation_data, test_data)``. Based on ``load_data``, but the format is more convenient for use in our implementation of neural networks. In particular, ``training_data`` is a list containing 50,000 2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray containing the input image. ``y`` is a 10-dimensional numpy.ndarray representing the unit vector corresponding to the correct digit for ``x``. ``validation_data`` and ``test_data`` are lists containing 10,000 2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional numpy.ndarry containing the input image, and ``y`` is the corresponding classification, i.e., the digit values (integers) corresponding to ``x``. Obviously, this means we're using slightly different formats for the training data and the validation / test data. These formats turn out to be the most convenient for use in our neural network code.""" tr_d, va_d, te_d = load_data() training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]] training_results = [vectorized_result(y) for y in tr_d[1]] training_data = list(zip(training_inputs, training_results)) validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]] validation_data = list(zip(validation_inputs, va_d[1])) test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]] test_data = list(zip(test_inputs, te_d[1])) return (training_data, validation_data, test_data) def vectorized_result(j): """Return a 10-dimensional unit vector with a 1.0 in the jth position and zeroes elsewhere. This is used to convert a digit (0...9) into a corresponding desired output from the neural network.""" e = np.zeros((10, 1)) e[j] = 1.0 return e
1ed1fd53c05132b0db20d7e934c8223cee591b0b
138cc74989e553406675ad147fa68eea68857ddd
/roamer/constant.py
ab357735cc7e3aeec0ba58a239dd8b815e653797
[ "MIT" ]
permissive
skiningham/roamer
0e59a109eeb634d9e162f24a7494361ddfc911f3
95d15c3f5fcadb15acf256da22ce8b5e891ee113
refs/heads/master
2021-01-15T19:17:57.474588
2017-08-08T13:18:00
2017-08-08T13:18:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
487
py
""" App wide constants. """ import os from os.path import expanduser, join, exists ROAMER_DATA_PATH = os.environ.get('ROAMER_DATA_PATH') or expanduser('~/.roamer-data/') ENTRIES_JSON_PATH = expanduser(join(ROAMER_DATA_PATH, 'entries.json')) TRASH_JSON_PATH = expanduser(join(ROAMER_DATA_PATH, 'trash.json')) TRASH_DIR = expanduser(join(ROAMER_DATA_PATH, 'trash/')) TEST_DIR = expanduser(join(ROAMER_DATA_PATH, 'tmp/test/mock_dir')) if not exists(TRASH_DIR): os.makedirs(TRASH_DIR)
96255d4f2ce8784e80468c3d0f97586ad4b37598
351cce7faf6d7b7d5d9ced841a2c43e56a64b382
/python/pcc/alien_invasion/alien_invasion.py
b0a699b67d067399782cad5ed17e678a8556b933
[]
no_license
uniqueyehu/snippet
3bb70c766e4610d7c36db7616477f0982c669612
705624670efa299ead7af0dde3103214147ef72f
refs/heads/master
2021-01-19T18:40:09.794143
2018-06-21T09:48:36
2018-06-21T09:48:36
101,152,003
0
0
null
null
null
null
UTF-8
Python
false
false
1,265
py
import pygame from pygame.sprite import Group from settings import Settings from ship import Ship from game_stats import GameStats from button import Button import game_functions as gf def run_game(): # 初始化游戏并创建一个屏幕对象 pygame.init() ai_settings = Settings() screen = pygame.display.set_mode( (ai_settings.screen_width, ai_settings.screen_height)) pygame.display.set_caption("Alien Invasion") # 创建Play按钮 play_button = Button(ai_settings, screen, "Play") # 创建一个用于存储游戏统计信息的实例 stats = GameStats(ai_settings) # 创建一艘飞船 ship = Ship(ai_settings, screen) # 创建一个用于存储子弹的编组 bullets = Group() # 创建一个外星人的编组 aliens = Group() # 创建外星人群 gf.create_fleet(ai_settings, screen, ship, aliens) # 开始游戏的主循环 while True: # 监视键盘和鼠标事件 gf.check_events(ai_settings, screen, stats, play_button, ship, aliens, bullets) if stats.game_active: ship.update() gf.update_bullets(ai_settings, screen, ship, aliens, bullets) gf.update_aliens(ai_settings, stats, screen, ship, aliens, bullets) gf.update_screen(ai_settings, screen, stats, ship, aliens, bullets, play_button) run_game()
73792dca5929690baefc1e1de428047a6769f82e
9fbcb46606ac2ef683d8d4c15a1e5659013874b6
/LimitSetting/test/amsbLimitConfigBkgds_2016BC.py
5cc90edd199aa7919a4234d32c3a06930858297b
[]
no_license
Mohammed2/DisappTrks
9431b1c221909d4e0b00da94f95a71785e1d036b
954afb1c826afe59b7f86a56e08c06eb62f0d7c2
refs/heads/master
2021-01-09T09:38:13.325448
2017-02-06T23:14:10
2017-02-06T23:14:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,440
py
#!/usr/bin/env python # Bkgd configuration file for limit-setting produced with makeANTables.py backgrounds = { 'Fake2016BC' : { 'N' : '0', 'alpha' : '0.613186900771', }, 'Elec2016BC' : { 'N' : '19', 'alpha' : '0.112543527986', }, 'Muon2016BC' : { 'N' : '25', 'alpha' : '0.056900137794', }, 'Tau2016BC' : { 'N' : '8', 'alpha' : '0.0135152593502', }, } background_systematics = { 'Fake2016BC_alpha' : { # error on alpha 'value' : '1.00084739905', 'background' : 'Fake2016BC', }, 'Elec2016BC_alpha' : { # error on alpha 'value' : '1.01452781398', 'background' : 'Elec2016BC', }, 'Muon2016BC_alpha' : { # error on alpha 'value' : '1.00714427592', 'background' : 'Muon2016BC', }, 'Tau2016BC_alpha' : { # error on alpha 'value' : '1.16704422709', 'background' : 'Tau2016BC', }, 'Fake2016BC_syst' : { # error on fake track rate assumption 'value' : str (1.0 + 31.3831354534 / 100.0), 'background' : 'Fake2016BC', }, 'Elec2016BC_energy' : { # error on energy assumption 'value' : str (1.0 + 10.8548021022 / 100.0), 'background' : 'Elec2016BC', }, 'Tau2016BC_energy' : { # error on energy assumption 'value' : str (1.0 + 20.0071895962 / 100.0), 'background' : 'Tau2016BC', }, }
440b04e023befaf72d7d3678165ee4c37222007b
bf6e3d9831292ccb0b5d80f43eef4d746743e8ad
/motion_planning.py
eac48db5d3eb8cb76049ccf166eb0646e6b7bec8
[]
no_license
aherreraGH/fcnd-submission
214a7c6bb2a1de7e5b3e878aeacbef6f39d94bcb
97ebfbd40bdb2ccf47764c4926849e20b02b7122
refs/heads/master
2020-04-12T01:51:28.680051
2018-12-19T03:11:14
2018-12-19T03:11:14
162,230,132
0
0
null
null
null
null
UTF-8
Python
false
false
9,057
py
import argparse import time import msgpack from enum import Enum, auto import numpy as np from planning_utils import a_star, heuristic, create_grid from udacidrone import Drone from udacidrone.connection import MavlinkConnection from udacidrone.messaging import MsgID from udacidrone.frame_utils import global_to_local from my_utils import prune_path, adjust_bearing class States(Enum): MANUAL = auto() ARMING = auto() TAKEOFF = auto() WAYPOINT = auto() LANDING = auto() DISARMING = auto() PLANNING = auto() class MotionPlanning(Drone): def __init__(self, connection): super().__init__(connection) self.target_position = np.array([0.0, 0.0, 0.0]) self.waypoints = [] self.in_mission = True self.check_state = {} # initial state self.flight_state = States.MANUAL # register all your callbacks here self.register_callback(MsgID.LOCAL_POSITION, self.local_position_callback) self.register_callback(MsgID.LOCAL_VELOCITY, self.velocity_callback) self.register_callback(MsgID.STATE, self.state_callback) def local_position_callback(self): if self.flight_state == States.TAKEOFF: if -1.0 * self.local_position[2] > 0.95 * self.target_position[2]: self.waypoint_transition() elif self.flight_state == States.WAYPOINT: if np.linalg.norm(self.target_position[0:2] - self.local_position[0:2]) < 1.0: if len(self.waypoints) > 0: self.waypoint_transition() else: if np.linalg.norm(self.local_velocity[0:2]) < 1.0: self.landing_transition() def velocity_callback(self): if self.flight_state == States.LANDING: if self.global_position[2] - self.global_home[2] < 0.1: if abs(self.local_position[2]) < 0.01: self.disarming_transition() def state_callback(self): if self.in_mission: if self.flight_state == States.MANUAL: self.arming_transition() elif self.flight_state == States.ARMING: if self.armed: self.plan_path() elif self.flight_state == States.PLANNING: self.takeoff_transition() elif self.flight_state == States.DISARMING: if ~self.armed & ~self.guided: self.manual_transition() def arming_transition(self): self.flight_state = States.ARMING print("arming transition") self.arm() self.take_control() def takeoff_transition(self): self.flight_state = States.TAKEOFF print("takeoff transition") self.takeoff(self.target_position[2]) def waypoint_transition(self): self.flight_state = States.WAYPOINT print("waypoint transition") self.target_position = self.waypoints.pop(0) print('target position', self.target_position) self.cmd_position(self.target_position[0], self.target_position[1], self.target_position[2], self.target_position[3]) def landing_transition(self): self.flight_state = States.LANDING print("landing transition") self.land() def disarming_transition(self): self.flight_state = States.DISARMING print("disarm transition") self.disarm() self.release_control() def manual_transition(self): self.flight_state = States.MANUAL print("manual transition") self.stop() self.in_mission = False def send_waypoints(self): print("Sending waypoints to simulator ...") data = msgpack.dumps(self.waypoints) self.connection._master.write(data) def plan_path(self): self.flight_state = States.PLANNING print("Searching for a path ...") TARGET_ALTITUDE = 5 SAFETY_DISTANCE = 5 self.target_position[2] = TARGET_ALTITUDE # DONE: read lat0, lon0 from colliders into floating point values # line below provided by mentor Christopher with open('colliders.csv') as f: origin_pos_data = f.readline().split(',') lat0 = float(origin_pos_data[0].strip().split(' ')[1]) lon0 = float(origin_pos_data[1].strip().split(' ')[1]) # DONE: set home position to (lon0, lat0, 0) self.set_home_position(lon0, lat0, 0.0) # DONE: retrieve current global position current_global_position = [self._longitude, self._latitude, self._altitude] # DONE: convert to current local position using global_to_local() current_local_position = global_to_local(current_global_position, self.global_home) print('global home {0}, position {1}, local position {2}'.format(self.global_home, self.global_position, self.local_position)) # Read in obstacle map data = np.loadtxt('colliders.csv', delimiter=',', dtype='Float64', skiprows=2) print(data[:2]) # Define a grid for a particular altitude and safety margin around obstacles grid, north_offset, east_offset = create_grid(data, TARGET_ALTITUDE, SAFETY_DISTANCE) print("North offset = {0}, east offset = {1}".format(north_offset, east_offset)) # Define starting point on the grid (this is just grid center) # need to cast to integers for N and E here start_north = int(current_local_position[0]) start_east = int(current_local_position[1]) print('Grid start N: {0} E: {1}'.format(start_north, start_east)) grid_start = ((start_north + -north_offset), (start_east + -east_offset)) # DONE: convert start position to current position rather than map center # Set goal as some arbitrary position on the grid # grid_goal = (-north_offset + 10, -east_offset + 10) # Set to a grassy area just a bit SW of the original starting point. goal_lon = -122.397745 goal_lat = 37.793837 goal_alt = 0 # The following was done with help/guidance from student Maruf Aytekin # DONE: adapt to set goal as latitude / longitude position and convert # set the global position for the goal goal_global_position = [goal_lon, goal_lat, goal_alt] # convert to the local formatted position goal_local_position = global_to_local(goal_global_position, self.global_home) # need to cast to an integer the values for N and E (goal_north, goal_east) = (int(goal_local_position[0]), int(goal_local_position[1])) # use numpy ceil to get the integer value as at the top of the rounding # the offset is used to set the goal in the correct NE position based on the grid grid_goal = (int(np.ceil(goal_north - north_offset)), int(np.ceil(goal_east - east_offset))) # Run A* to find a path from start to goal # DONE: add diagonal motions with a cost of sqrt(2) to your A* implementation # or move to a different search space such as a graph (not done here) print('Local Start and Goal: ', grid_start, grid_goal) print('running A*, this takes a while... stand by...') """ NOTE: if the simulator craps out due to a timeout, it may be that the simulator has a memory leak somewhere close the simulator, reopen it, then retry again. """ path, _ = a_star(grid, heuristic, grid_start, grid_goal) print(path) # DONE: prune path to minimize number of waypoints # NOT DONE TODO (if you're feeling ambitious): Try a different approach altogether! print('pruning the paths...') path = prune_path(path) print(path) # Convert path to waypoints waypoints = [[p[0] + north_offset, p[1] + east_offset, TARGET_ALTITUDE, 0] for p in path] # Set self.waypoints print('show the first waypoint: ', waypoints[0]) # Add bearing to waypoints waypoints = adjust_bearing(waypoints) print('waypoints with bearing: ', waypoints[1]) self.waypoints = waypoints # DONE: send waypoints to sim (this is just for visualization of waypoints) self.send_waypoints() def start(self): self.start_log("Logs", "NavLog.txt") print("starting connection") self.connection.start() # Only required if they do threaded # while self.in_mission: # pass self.stop_log() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--port', type=int, default=5760, help='Port number') parser.add_argument('--host', type=str, default='127.0.0.1', help="host address, i.e. '127.0.0.1'") args = parser.parse_args() conn = MavlinkConnection('tcp:{0}:{1}'.format(args.host, args.port), timeout=60) drone = MotionPlanning(conn) time.sleep(1) drone.start()
ba2717b239459dfb1604420e0c25d61e892727a9
9f25ae744df70ce1318833b5b454f03cdc8721ac
/tensorflow_federated/python/research/flars/run_emnist.py
9448653a421e6eca44920fc22b9b645ea715c53e
[ "Apache-2.0" ]
permissive
zhenzhenclaire/federated
ae4bb49f134cc747c737d197874b30ac55523103
6749c9f51f3457c2377c95763afe6484062c7dcf
refs/heads/master
2020-09-17T13:20:51.574956
2019-11-25T19:54:30
2019-11-25T19:55:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,950
py
# Lint as: python3 # Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trains and evaluates EMNIST classification model using TFF.""" import collections import functools import io import logging import os import pprint import random import sys import time from absl import app from absl import flags import attr import pandas as pd import tensorflow as tf import tensorflow_federated as tff import tree from tensorboard.plugins.hparams import api as hp from tensorflow_federated.python.research.baselines.emnist import models from tensorflow_federated.python.research.flars import flars_fedavg from tensorflow_federated.python.research.flars import flars_optimizer from tensorflow_federated.python.research.simple_fedavg import simple_fedavg from tensorflow_federated.python.research.utils import checkpoint_utils from tensorflow_federated.python.research.utils import utils_impl with utils_impl.record_new_flags() as hparam_flags: # Metadata flags.DEFINE_string( 'exp_name', 'emnist', 'Unique name for the experiment, suitable for use ' 'in filenames.') # Training hyperparameters flags.DEFINE_boolean( 'digit_only_emnist', True, 'Whether to train on the digits only (10 classes) data ' 'or the full data (62 classes).') flags.DEFINE_integer('total_rounds', 500, 'Number of total training rounds.') flags.DEFINE_integer('rounds_per_eval', 1, 'How often to evaluate') flags.DEFINE_integer( 'rounds_per_checkpoint', 25, 'How often to emit a state checkpoint. Higher numbers ' 'mean more lost work in case of failure, lower numbers ' 'mean more overhead per round.') flags.DEFINE_integer('train_clients_per_round', 2, 'How many clients to sample per round.') flags.DEFINE_integer('client_epochs_per_round', 1, 'Number of epochs in the client to take per round.') flags.DEFINE_integer('batch_size', 20, 'Batch size used on the client.') # Client optimizer configuration (it defines one or more flags per optimizer). utils_impl.define_optimizer_flags('client') # Server optimizer configuration (it defines one or more flags per optimizer). flags.DEFINE_enum('server_optimizer', 'flars', ['sgd', 'flars'], 'Server optimizer') flags.DEFINE_float('server_learning_rate', 1., 'Server learning rate.') flags.DEFINE_float( 'server_momentum', 0.9, 'Server momentum. This is also the `beta1` parameter for ' 'the Yogi optimizer.') # Parameter for FLARS. flags.DEFINE_float('max_ratio', 0.1, 'max_ratio for optimizer FLARS.') # Parameter for Yogi. flags.DEFINE_float('initial_accumulator_value', 1e-6, 'initial_accumulator_value for optimizer Yogi.') # End of hyperparameter flags. # Root output directories. flags.DEFINE_string( 'root_output_dir', '/tmp/emnist_fedavg/', 'Root directory for writing experiment output. This will ' 'be the destination for metrics CSV files, Tensorboard log ' 'directory, and checkpoint files.') flags.DEFINE_boolean( 'disable_check_exists', True, 'Disable checking the ' 'existence of root_output_dir. If False, code will exit ' 'without running the experiment if root_output_dir ' 'exists.') FLAGS = flags.FLAGS CHECKPOINT_PREFIX = 'ckpt_' def federated_averaging_training_loop(model_fn, server_optimizer_fn, client_datasets_fn, total_rounds=500, rounds_per_eval=1, metrics_hook=lambda *args: None): """A simple example of training loop for the Federated Averaging algorithm. Args: model_fn: A no-arg function that returns a `tff.learning.Model`. server_optimizer_fn: A no-arg function that returns a `tf.keras.optimizers.Optimizer`. client_datasets_fn: A function that takes the round number, and returns a list of `tf.data.Datset`, one per client. total_rounds: Number of rounds to train. rounds_per_eval: How often to call the `metrics_hook` function. metrics_hook: A function taking arguments (server_state, train_metrics, round_num) and performs evaluation. Optional. Returns: Final `ServerState`. """ logging.info('Starting federated_training_loop') checkpoint_dir = os.path.join(FLAGS.root_output_dir, FLAGS.exp_name) if FLAGS.server_optimizer != 'flars': iterative_process = simple_fedavg.build_federated_averaging_process( model_fn, server_optimizer_fn=server_optimizer_fn) ServerState = simple_fedavg.ServerState # pylint: disable=invalid-name else: iterative_process = flars_fedavg.build_federated_averaging_process( model_fn, server_optimizer_fn=server_optimizer_fn) ServerState = flars_fedavg.ServerState # pylint: disable=invalid-name server_state = ServerState.from_anon_tuple(iterative_process.initialize()) round_num = None train_metrics = {} latest_checkpoint_dir = checkpoint_utils.latest_checkpoint( checkpoint_dir, CHECKPOINT_PREFIX) logging.info('Looking for checkpoints in [%s/%s]', checkpoint_dir, CHECKPOINT_PREFIX) while latest_checkpoint_dir is not None: # Restart from a previous round. logging.info('Loading a previous checkpoint') try: server_state, metrics_hook.results, round_num = read_checkpoint( latest_checkpoint_dir, server_state) break except OSError as e: # Likely corrupted checkpoint, possibly job died while writing. Delete the # checkpoint directory and try again. logging.error('Exception [%s]', e) logging.warning('Deleteing likely corrupted checkpoint at [%s]', latest_checkpoint_dir) tf.io.gfile.rmtree(latest_checkpoint_dir) latest_checkpoint_dir = checkpoint_utils.latest_checkpoint( checkpoint_dir, CHECKPOINT_PREFIX) if round_num is not None: logging.info('Restarted from checkpoint round %d', round_num) else: # Write the initial checkpoint logging.info('No previous checkpoints, initializing experiment') round_num = 0 metrics_hook(server_state, train_metrics, round_num) write_checkpoint(checkpoint_dir, server_state, metrics_hook.results, round_num) while round_num < total_rounds: round_num += 1 # Reset the executor to clear the cache, and clear the default graph to # garbage collect tf.Functions that will no longer be used. tff.framework.set_default_executor( tff.framework.create_local_executor(max_fanout=25)) tf.compat.v1.reset_default_graph() round_start_time = time.time() data_prep_start_time = time.time() federated_train_data = client_datasets_fn(round_num) train_metrics['prepare_datasets_secs'] = time.time() - data_prep_start_time training_start_time = time.time() anon_tuple_server_state, tff_train_metrics = iterative_process.next( server_state, federated_train_data) server_state = ServerState.from_anon_tuple(anon_tuple_server_state) train_metrics.update(tff_train_metrics._asdict(recursive=True)) train_metrics['training_secs'] = time.time() - training_start_time logging.info('Round {:2d} elapsed time: {:.2f}s .'.format( round_num, (time.time() - round_start_time))) train_metrics['total_round_secs'] = time.time() - round_start_time if round_num % FLAGS.rounds_per_checkpoint == 0: write_checkpoint_start_time = time.time() write_checkpoint(checkpoint_dir, server_state, metrics_hook.results, round_num) train_metrics['write_checkpoint_secs'] = ( time.time() - write_checkpoint_start_time) if round_num % rounds_per_eval == 0: metrics_hook(server_state, train_metrics, round_num) metrics_hook(server_state, train_metrics, total_rounds) write_checkpoint(checkpoint_dir, server_state, metrics_hook.results, round_num) return server_state def _check_not_exists(f, disable_check_exists=False): """Checks if file `f` exists.""" if disable_check_exists: return if tf.io.gfile.exists(f): print('{} already exists.\n' 'Please ensure only a single worker is executing each experiment ' 'in the grid.\n' 'When re-running a grid, please use a fresh output directory.'.format( f)) sys.exit(1) @attr.s(frozen=False) class MetricsHook(object): """A callback for evaluation. This class holds all the logic for evaluating the FedAvg on EMNIST classification and writing output for later analysis (to .csv files and tensorboard). Hyperparameters are also recorded. This class should be constructed via the `MetricsHook.build` classmethod. """ # Derived, conceptually post-init or in constructor, used in methods. results_file = attr.ib() summary_writer = attr.ib() eval_dataset = attr.ib() model = attr.ib() results = attr.ib(factory=pd.DataFrame) @classmethod def build(cls, exp_name, output_dir, eval_dataset, hparam_dict): """Constructs the MetricsHook. Args: exp_name: A unique filesystem-friendly name for the experiment. output_dir: A root output directory used for all experiment runs in a grid. The MetricsHook will combine this with exp_name to form suitable output directories for this run. eval_dataset: Evaluation dataset. hparam_dict: A dictionary of hyperparameters to be recorded to .csv and exported to TensorBoard. Returns: The `MetricsHook` object. """ summary_logdir = os.path.join(output_dir, 'logdir/{}'.format(exp_name)) _check_not_exists(summary_logdir, FLAGS.disable_check_exists) tf.io.gfile.makedirs(summary_logdir) summary_writer = tf.compat.v2.summary.create_file_writer( summary_logdir, name=exp_name) with summary_writer.as_default(): hp.hparams(hparam_dict) # Using .bz2 rather than .zip due to # https://github.com/pandas-dev/pandas/issues/26023 results_file = os.path.join(output_dir, exp_name, 'results.csv.bz2') # Also write the hparam_dict to a CSV: hparam_dict['results_file'] = results_file hparams_file = os.path.join(output_dir, exp_name, 'hparams.csv') utils_impl.atomic_write_to_csv(pd.Series(hparam_dict), hparams_file) model = create_compiled_keras_model() logging.info('Writing ...') logging.info(' result csv to: %s', results_file) logging.info(' summaries to: %s', summary_logdir) return cls( results_file=results_file, summary_writer=summary_writer, eval_dataset=eval_dataset, model=model) def __attrs_post_init__(self): _check_not_exists(self.results_file, FLAGS.disable_check_exists) def __call__(self, server_state, train_metrics, round_num): """A function suitable for passing as an eval hook to the training_loop. Args: server_state: A `ServerState`. train_metrics: A `dict` of training metrics computed in TFF. round_num: The current round number. """ tff.learning.assign_weights_to_keras_model(self.model, server_state.model) eval_metrics = self.model.evaluate(self.eval_dataset, verbose=0) metrics = { 'train': train_metrics, 'eval': collections.OrderedDict( zip(['loss', 'sparse_categorical_accuracy'], eval_metrics)) } flat_metrics = tree.flatten_with_path(metrics) flat_metrics = [ ('/'.join(map(str, path)), item) for path, item in flat_metrics ] flat_metrics = collections.OrderedDict(flat_metrics) flat_metrics['round'] = round_num logging.info('Evaluation at round {:d}:\n{!s}'.format( round_num, pprint.pformat(flat_metrics))) # Also write metrics to a tf.summary logdir with self.summary_writer.as_default(): for name, value in flat_metrics.items(): tf.compat.v2.summary.scalar(name, value, step=round_num) self.results = self.results.append(flat_metrics, ignore_index=True) utils_impl.atomic_write_to_csv(self.results, self.results_file) @attr.s(frozen=False) class ExperimentState(object): round_num = attr.ib() metrics_csv_string = attr.ib() server_state = attr.ib() def write_checkpoint(checkpoint_dir, server_state, metrics_dataframe, round_num): """Write the current experiment state to disk.""" # Clean-up old checkpoints if more than 5 exist; but not the initialization # checkpoint. checkpoints = sorted(tf.io.gfile.glob(os.path.join(checkpoint_dir, 'ckpt_*'))) for checkpoint in checkpoints[1:-3]: tf.io.gfile.rmtree(checkpoint) # We must flatten the pd.Dataframe to a single string, otherwise we don't # know the nested structure (how many rounds have passed) to unpack # in `checkpoint_utils.load()` during `read_checkpoint`. csv_string = io.StringIO() metrics_dataframe.to_csv(csv_string, header=True) experiment_state = ExperimentState( round_num=round_num, metrics_csv_string=csv_string.getvalue(), server_state=server_state) checkpoint_utils.save( experiment_state, os.path.join(checkpoint_dir, 'ckpt_{:03d}'.format(round_num))) def read_checkpoint(filepath, example_server_state): """Read a previously saved experiment state to memory.""" experiment_state = ExperimentState( round_num=0, metrics_csv_string='', server_state=example_server_state) experiment_state = checkpoint_utils.load(filepath, experiment_state) metrics_dict = pd.read_csv( io.BytesIO(experiment_state.metrics_csv_string.numpy()), header=0, index_col=0, engine='c') return (experiment_state.server_state, metrics_dict, experiment_state.round_num.numpy()) def create_compiled_keras_model(): """Create compiled keras model.""" model = models.create_original_fedavg_cnn_model( only_digits=FLAGS.digit_only_emnist) model.compile( loss=tf.keras.losses.sparse_categorical_crossentropy, optimizer=utils_impl.create_optimizer_from_flags('client'), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) return model def run_experiment(): """Data preprocessing and experiment execution.""" emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data( only_digits=FLAGS.digit_only_emnist) example_tuple = collections.namedtuple('Example', ['x', 'y']) def element_fn(element): return example_tuple( x=tf.reshape(element['pixels'], [-1]), y=tf.reshape(element['label'], [1])) def preprocess_train_dataset(dataset): """Preprocess training dataset.""" return dataset.map(element_fn).apply( tf.data.experimental.shuffle_and_repeat( buffer_size=10000, count=FLAGS.client_epochs_per_round)).batch(FLAGS.batch_size) def preprocess_test_dataset(dataset): """Preprocess testing dataset.""" return dataset.map(element_fn).batch(100, drop_remainder=False) emnist_train = emnist_train.preprocess(preprocess_train_dataset) emnist_test = preprocess_test_dataset( emnist_test.create_tf_dataset_from_all_clients()) example_dataset = emnist_train.create_tf_dataset_for_client( emnist_train.client_ids[0]) sample_batch = tf.nest.map_structure(lambda x: x.numpy(), next(iter(example_dataset))) def model_fn(): keras_model = create_compiled_keras_model() return tff.learning.from_compiled_keras_model(keras_model, sample_batch) def client_datasets_fn(round_num): """Returns a list of client datasets.""" del round_num # Unused. sampled_clients = random.sample( population=emnist_train.client_ids, k=FLAGS.train_clients_per_round) return [ emnist_train.create_tf_dataset_for_client(client) for client in sampled_clients ] tf.io.gfile.makedirs(FLAGS.root_output_dir) hparam_dict = collections.OrderedDict([ (name, FLAGS[name].value) for name in hparam_flags ]) hparam_dict = utils_impl.remove_unused_flags('client', hparam_dict) metrics_hook = MetricsHook.build(FLAGS.exp_name, FLAGS.root_output_dir, emnist_test, hparam_dict) if FLAGS.server_optimizer == 'sgd': optimizer_fn = functools.partial( tf.keras.optimizers.SGD, learning_rate=FLAGS.server_learning_rate, momentum=FLAGS.server_momentum) elif FLAGS.server_optimizer == 'flars': optimizer_fn = functools.partial( flars_optimizer.FLARSOptimizer, learning_rate=FLAGS.server_learning_rate, momentum=FLAGS.server_momentum, max_ratio=FLAGS.max_ratio) else: raise ValueError('Optimizer %s is not supported.' % FLAGS.server_optimizer) federated_averaging_training_loop( model_fn, optimizer_fn, client_datasets_fn, total_rounds=FLAGS.total_rounds, rounds_per_eval=FLAGS.rounds_per_eval, metrics_hook=metrics_hook) def main(argv): if len(argv) > 1: raise app.UsageError('Expected no command-line arguments, ' 'got: {}'.format(argv)) tf.compat.v1.enable_v2_behavior() try: tf.io.gfile.makedirs(os.path.join(FLAGS.root_output_dir, FLAGS.exp_name)) except tf.errors.OpError: pass run_experiment() if __name__ == '__main__': app.run(main)
c085a12af46eb81e89314a45406944f8eae28655
c452b223adf390edddf4339dd7360fe6de66b8d8
/common/models/general/arrangement_param_category.py
af4e79144973fc3d344abf6729f539cd45a73b87
[]
no_license
dev1andriy/creditbase_server
a321b16976c7cfe87d3ee5cfaf700850ea1b689c
4ee067e175a1cca3f907a61ebc3d369ecdcebd66
refs/heads/master
2023-05-13T17:13:23.486966
2020-07-16T07:50:56
2020-07-16T07:50:56
280,089,440
0
0
null
2021-06-10T23:10:15
2020-07-16T07:49:41
Python
UTF-8
Python
false
false
828
py
from django.db import models from common.models.abstract import * from common.models.general import ArrangementCategory class ArrangementParamCategory(DescribeableModel, HostableModel, TimeStampedModel, InsertableModel, UpdateableModel, StatusRecordableModel, MakeableModel, CheckableModel): ArrangementParamCategoryId = models.AutoField(primary_key=True, null=False) ArrangementCategory = models.ForeignKey(ArrangementCategory, null=True, blank=True, on_delete=models.CASCADE) objects = models.Manager() def __str__(self): return "{} - {}".format(self.ArrangementParamCategoryId, self.Description) class Meta: verbose_name = 'ArrangementParamCategory' verbose_name_plural = 'ArrangementParamCategory' db_table = 'ArrangementParamCategory'
ec374575740741eacd925cc5ae3600c4e7d3485f
80d9b0e7562ab21a91fd41211d3158d0f2ffb6f4
/views.py
9221e9b08e9467f3dceafe6dd8abda81f447c3e4
[]
no_license
andrewsdb/app
d5b03d9dd30e2bb0072574a96427b14aad65cfc8
50d97894f2ec65053732b953ba9531954d06fbec
refs/heads/master
2021-01-10T13:46:38.300605
2015-11-14T19:47:54
2015-11-14T19:47:54
46,189,547
0
0
null
null
null
null
UTF-8
Python
false
false
818
py
from flask import render_template from app import app @app.route('/') @app.route('/index') def index(): user = { 'nickname': 'Andrew' } posts = [ { 'author': { 'nickname': 'Andrew' }, 'body': 'Beautiful New York!' }, { 'author': { 'nickname': 'Susan' }, 'body': 'Cool!' }, { 'author': { 'nickname': 'Bobby' }, 'body': 'Frank Sinatra the best!:)!' } ] return render_template("index.html", title = 'Home', user = user, posts = posts) @app.route('/lasvegas/') def currency(): return render_template("lasvegas.html", title = 'Las Vegas') @app.route('/panama/') def quantity(): return render_template("panama.html", title = 'Panama City')
e51e9d8e55037af7027c1f21826354efb2f4e844
97ccb80711a21f48d4bc931f7e0fe2a4bd3e7b31
/mysite/settings.py
925d11ab029f8020b2c8324a55eb7a1b2e5de845
[]
no_license
van130712/my-first-blog
6a2fdd0e1dcaa40a5a014f89708a9094012bfce4
479c15604c1d86bbd7ab36312652f10749c8f639
refs/heads/master
2020-03-07T07:20:24.248663
2018-03-29T20:44:39
2018-03-29T20:44:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,209
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.11.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '_0p@f1s^1dv2pkj%%=+i-3io@(vp+ihpiax+^2b!x2p4etim8k' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', 'van130712.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'ru-ru' TIME_ZONE = 'Europe/Moscow' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
54a16eb5e58dcb11b6d7cf9660c0f23195d77d80
1ae4d3632f788f1a5e8f1e919e3f43b5f53d9ecd
/lesson8 (Classes and Objects)/task1/tests.py
cddd379483e0bf414ccf987e4108c929e001695d
[]
no_license
catharsis96/pythonintro2
fc1f2dc3380efff92918c4bf9f77615b39380c0a
ac896af08e0835372bd1e6901b99f005bf0bb4b8
refs/heads/master
2021-04-29T11:37:30.599143
2017-01-02T16:23:48
2017-01-02T16:23:48
77,846,129
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
from test_helper import run_common_tests if __name__ == '__main__': run_common_tests()
86f82641a1c080209a57cf5742d18c46d141af45
3459c022f192229e787672c170ac72df666826d2
/cgi-bin/cUpdateInfo.py
7e956a1c21988f56bb5cefc750fbdfd4fff680ed
[]
no_license
RebeccaAxelro/TherapyClinicProject
380950491b014944ed97a32826b8befc6765a8d3
d81bdd31375c117d168dd2e686e6239b525680de
refs/heads/master
2020-05-29T23:17:36.919339
2019-09-26T20:53:40
2019-09-26T20:53:40
189,431,909
0
0
null
null
null
null
UTF-8
Python
false
false
826
py
#!/usr/bin/python3 import mysql.connector from mysql.connector import errorcode import cgi # Connecting to DB cnx = mysql.connector.connect(user='raxelro1', database='raxelro11', host='localhost', password='rikikiki98') cursor = cnx.cursor() # get values from form form = cgi.FieldStorage() clientID = form.getvalue('clientID') address = form.getvalue('address') phoneNumber = form.getvalue('phoneNumber') email = form.getvalue('email') # start of html print('Content-type:text/html\r\n\r\n') print('<html>') print('<body>') print('<div>') # Update query = 'UPDATE client SET address = %s, phoneNumber = %s, email = %s WHERE clientID=%s' value = (address, phoneNumber, email, clientID) cursor.execute(query, value) cnx.commit() print('<p>IT WORKS</p>') print('</div>') print('</body>') print('</html>')
79a1e28b6284f2ab644f930fcb922a65d1c1e49e
0e383dc880cb1494695796b22c2d6e4944606f8d
/ResimAktarma/1_resim_ice_aktarma.py
b3c28db9dfb36da6a9909496c9b3db4e65e13a49
[]
no_license
mustafaermehan/ImageProcessing
2bacce9874558c05743e99360c54a7069fa49e0a
ba5e2308a8ff87e9e78adb830244aa34b2b79b31
refs/heads/master
2023-04-16T07:01:24.538617
2021-04-09T21:25:46
2021-04-09T21:25:46
356,519,690
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
import cv2 #ice aktarma img = cv2.imread("messi5.jpg",0) #gorsellestirme cv2.imshow("ilk resim",img) k = cv2.waitKey(0) &0xFF if k == 27: cv2.destroyAllWindows() elif k == ord('s'): cv2.imwrite("messi_gray.png", img) cv2.destroyAllWindows()
7b572c56260cb84c647162a4b997c9efd4fb1876
835a4d70cbde27aa243cc29a444edba2ceece3c9
/livemark/plugins/rating/__init__.py
54309eb242f2b4875d2e36db64aa491a32045a61
[ "MIT" ]
permissive
gassantos/livemark
288b4ea2f828fe70971ccacdf86a8ed0367aa440
81f2fe6b80f867c605066b4f3d461a0b8376fac3
refs/heads/main
2023-08-18T04:16:48.653679
2021-10-05T15:00:29
2021-10-05T15:00:29
413,883,159
1
0
MIT
2021-10-05T15:52:12
2021-10-05T15:52:12
null
UTF-8
Python
false
false
33
py
from .plugin import RatingPlugin
8f45b32ff54590216f23d71428a9af02912ec472
63ca3ae6d647d56f4b4899717101e96165cadc10
/facenet_sandberg/validation/src/calculator/threshold_calculator.py
d0781ab220355fbe86279ce80494dd6deaa2dafc
[ "MIT" ]
permissive
beholder-ai/Facial-Recognition-and-Alignment
2da9f13b8eacf03258e47e32a8443e549e378b36
58f74668e5fe9f5e39ed294309345f50b90dc61a
refs/heads/master
2020-06-01T01:48:10.965259
2019-06-06T18:49:15
2019-06-06T18:49:15
190,583,417
0
0
MIT
2019-06-06T13:09:33
2019-06-06T13:09:32
null
UTF-8
Python
false
false
2,849
py
from parser.pair import Pair from typing import Callable from typing import Iterable from typing import Union from typing import cast import numpy as np from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from calculator.calculator import Calculator from calculator.distance_calculator import DistanceCalculator from metrics.metrics import DistanceMetric from metrics.metrics import ThresholdMetric from metrics.metrics import ThresholdMetricException # pylint: disable=too-few-public-methods class ThresholdCalculator(Calculator): # pylint: disable=too-many-arguments def __init__(self, distance_metric: Union[str, DistanceMetric], threshold_metric: Union[str, ThresholdMetric], threshold_start: float, threshold_end: float, threshold_step: float) -> None: if isinstance(threshold_metric, str): self._threshold_metric = getattr(ThresholdMetric, cast(str, threshold_metric)) else: self._threshold_metric = threshold_metric self._distance_metric = distance_metric self._threshold_start = threshold_start self._threshold_end = threshold_end self._threshold_step = threshold_step def calculate(self, pairs: Iterable[Pair]) -> float: threshold_scorer = self._get_threshold_scorer() dist = DistanceCalculator(self._distance_metric).calculate(pairs) labels = [pair.is_match for pair in pairs] best_score = float('-inf') best_threshold_index = 0 thresholds = np.arange(self._threshold_start, self._threshold_end, self._threshold_step) for i, threshold in enumerate(thresholds): predictions = np.less(dist, threshold) score = threshold_scorer(labels, predictions) if score > best_score: best_score = score best_threshold_index = i return thresholds[best_threshold_index] def _get_threshold_scorer( self) -> Callable[[np.ndarray, np.ndarray], float]: if self._threshold_metric == ThresholdMetric.ACCURACY: return accuracy_score if self._threshold_metric == ThresholdMetric.PRECISION: return precision_score if self._threshold_metric == ThresholdMetric.RECALL: return recall_score if self._threshold_metric == ThresholdMetric.F1: return f1_score metrics = [str(metric) for metric in ThresholdMetric] err = f"Undefined {ThresholdMetric.__qualname__}. \ Choose from {metrics}" raise ThresholdMetricException(err)
8a557df71b669e1288c1046d61e2f9c5d36d7fb9
94c1877436496b76f6147033936b1a87bab8eb0b
/linguistic/params.py
956b447f15c9b0c241dbe4fd98dabb69caaa42f4
[ "MIT" ]
permissive
tejasvaidhyadev/IA-for-AI
787852705915ad781d650b0b963e1df098c8904d
8e6f21e9489e5e1651bfc8500708bf5fb10625ea
refs/heads/main
2023-08-04T04:10:18.054185
2021-09-14T10:41:28
2021-09-14T10:41:28
405,497,716
4
0
null
null
null
null
UTF-8
Python
false
false
717
py
import argparse parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=4214) parser.add_argument("--test_mode", type=str, default="False") parser.add_argument("--batch_size", type=int, default=16) parser.add_argument("--lr", type=float, default=1e-5) parser.add_argument("--n_epochs", type=int, default=5) parser.add_argument("--dummy_run", dest="dummy_run", action="store_true", help="Run the model on one sample for debugging") parser.add_argument("--device", type=str, default="cuda", help="name of the device to be used for training") parser.add_argument("--bert_type", type=str, required=True) params = parser.parse_args() params.test_mode = params.test_mode.lower() == "true"
7d3f714af967bd72c5b298559703ad61836d1ef6
7f1d7ab26d7451d463a259c5c3afdc2cb7c406a8
/src/py/server.py
29d6665a1b0bfe7eef9c29658159b11707e6ba72
[ "Apache-2.0" ]
permissive
mitre-cyber-academy/2013-networking-400
47abe21d73ea8bd4ee99a2f8cf156aabb44a9250
7e69e3066ae9728ab135b78bbf1190cbbee18718
refs/heads/master
2020-04-09T18:39:14.962220
2015-01-30T22:37:53
2015-01-30T22:37:53
21,870,221
0
0
null
null
null
null
UTF-8
Python
false
false
1,516
py
import socket import hashlib import time #Create a UDP socket servSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #Bind to localhost on port 12345 # (change this to the system hostname to make sure the port is accessible # externally) servSocket.bind(('localhost', 12345)) #These are the accepted values for the login: good_key = "96c70ab05a922178e0668ba5402160d7" goodUName = "Smith" goodPWord = "IronFan30" #Continuously listen for connections: while(True): #Get data from (a) client data, addr = servSocket.recvfrom(4096) #XOR with the good key and see if it looks right catString = ''.join(chr(ord(a) ^ ord(b)) for a, b in zip(data, good_key)) #Try and split their message arrVals = catString.split('_') #Get the current time for a (dummy) return message tmpTime = "%s" % time.time() #Hash the time for the bad return m = hashlib.md5() m.update(tmpTime) #Default return value is the bad one retVal = m.digest() #First, make sure they have a full message delimited by '_' if(len(arrVals) == 3): #Split up the given values uName, pWord, currTime = arrVals #And check them against the good ones if(uName == goodUName and pWord == goodPWord): #Then, build the 'good' response - a SHA256 hash # of the given time code and the CD key sh = hashlib.sha256() sh.update(currTime + "_" + good_key) retVal = sh.digest() print "Successful login" else: print "Valid message format, bad data" else: print "Invalid message format" servSocket.sendto(retVal, addr)
26588a5bd6c60329fb9784354d63a7c210882afd
3232dbec06a45acb9f9b9b5b632206e4dfec1edb
/sandbox/forms.py
98bac101f317c682bc72e0cd4816e17517bc6bbc
[]
no_license
Krzewskimichal/Python_tutorial
301dc7a64c3227afaeff3f3b66a20c54c03c6d76
adc883a7fddb0436fbfe53cd00aca26c1265afb9
refs/heads/master
2020-04-28T03:56:48.448864
2019-03-26T19:17:19
2019-03-26T19:17:19
174,958,404
0
0
null
null
null
null
UTF-8
Python
false
false
2,456
py
from django import forms from django.forms import ModelForm, TextInput from sandbox.models import BuiltInFunction, Exams, StringMethods, ListMethods, DictionaryMethods, TupleMethods, \ Keywords, SetMethods, Messenger class LoginForm(forms.Form): username = forms.CharField(label='Login', max_length=128) password = forms.CharField(label='Password', max_length=128, widget=forms.PasswordInput) class RegisterForm(forms.Form): username = forms.CharField(label='Login', max_length=128) password1 = forms.CharField(label='Password', max_length=128, widget=forms.PasswordInput) password2 = forms.CharField(label='Confirm Password', max_length=128, widget=forms.PasswordInput) email = forms.EmailField(label='Email', max_length=256) # -------------------add data-------------------------------- class AddBuiltInFunctionForm(ModelForm): class Meta: model = BuiltInFunction fields = ['name', 'definition'] class AddStringMethodsForm(ModelForm): class Meta: model = StringMethods fields = ['name', 'definition'] class AddListMethodsForm(ModelForm): class Meta: model = ListMethods fields = ['name', 'definition'] class AddDictionaryMethodsForm(ModelForm): class Meta: model = DictionaryMethods fields = ['name', 'definition'] class AddTupleMethodsForm(ModelForm): class Meta: model = TupleMethods fields = ['name', 'definition'] class AddSetMethodsForm(ModelForm): class Meta: model = SetMethods fields = ['name', 'definition'] class AddKeywordsForm(ModelForm): class Meta: model = Keywords fields = ['name', 'definition'] class AddExamForm(ModelForm): class Meta: model = Exams fields = ['task', 'answer', 'lesson'] class DeleteDataForm(forms.Form): databases = (('BuiltInFunction', BuiltInFunction.__name__), ('DictionaryMethods', DictionaryMethods.__name__), ('ListMethods', ListMethods.__name__), ('Keywords', Keywords.__name__), ('SetMethods', SetMethods.__name__), ('StringMethods', StringMethods.__name__), ('TupleMethods', TupleMethods.__name__)) database = forms.ChoiceField(choices=databases) class UserWriteMessageForm(ModelForm): class Meta: model = Messenger fields = ['to_user', 'message_title', 'message']
e454e998b10b71eb2c5e4296521d0d1b6049e620
6aef2fdd5b98038fc6ecc7551dd76dccf370c4ae
/dam_files/GPOMDP_SVRG_WV_ada_verA_fr_nver.py
3d7b6f4be390313cd231003fe202c8f7f2f11b2a
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Bobeye/rllab
29b1cf3f29b748f93af4ac103d1a0eaa40290e7f
53c0afb73f93c4a78ff21507914d7f7735c21ea9
refs/heads/master
2020-05-02T07:18:17.323566
2019-03-26T02:34:02
2019-03-26T02:34:02
177,814,299
0
0
NOASSERTION
2019-03-26T15:14:46
2019-03-26T15:14:45
null
UTF-8
Python
false
false
14,358
py
from rllab.envs.box2d.cartpole_env import CartpoleEnv from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy from rllab.envs.normalized_env import normalize import numpy as np import theano import theano.tensor as TT from rllab.sampler import parallel_sampler from lasagne.updates import sgd import matplotlib.pyplot as plt from rllab.envs.gym_env import GymEnv import pandas as pd from lasagne.updates import get_or_compute_grads from lasagne import utils from collections import OrderedDict max_sub_iter = 30 def unpack(i_g): i_g_arr = [np.array(x) for x in i_g] res = i_g_arr[0].reshape(i_g_arr[0].shape[0]*i_g_arr[0].shape[1]) res = np.concatenate((res,i_g_arr[1])) res = np.concatenate((res,i_g_arr[2][0])) res = np.concatenate((res,i_g_arr[3])) return res def adam_svrg(loss_or_grads, params, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8): all_grads = get_or_compute_grads(loss_or_grads, params) t_prev = [] updates = [] updates_of = [] grads_adam = [] for m_r in range(max_sub_iter): t_prev.append(theano.shared(utils.floatX(0.))) updates.append(OrderedDict()) # grads_adam.append([TT.matrix('eval_grad0'),TT.vector('eval_grad1'),TT.col('eval_grad3'),TT.vector('eval_grad4')]) # norm_adam.append([TT.matrix('eval_grad0'),TT.vector('eval_grad1'),TT.col('eval_grad3'),TT.vector('eval_grad4')]) updates_of.append(OrderedDict()) # Using theano constant to prevent upcasting of float32 one = TT.constant(1) t = t_prev[-1] + 1 if (m_r==0): a_t = learning_rate*TT.sqrt(one-beta2**t)/(one-beta1**t) else: beta2 = 0.9 a_t = learning_rate/2*TT.sqrt(one-beta2**t)/(one-beta1**t) i = 0 l = [] h = [] for param, g_t in zip(params, all_grads): value = param.get_value(borrow=True) m_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) v_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) m_t = beta1*m_prev + (one-beta1)*g_t v_t = beta2*v_prev + (one-beta2)*g_t**2 step = a_t*m_t/(TT.sqrt(v_t) + epsilon) # eff_step = TT.sum(TT.square(step,None)) h.append(TT.sum(TT.square(step))) l.append(TT.sum(TT.square(m_t))) updates[-1][m_prev] = m_t updates[-1][v_prev] = v_t updates_of[-1][param] = param - step i+=1 updates[-1][t_prev[-1]] = t grads_adam.append(TT.sqrt((h[0]+h[1]+h[2]+h[3])/(l[0]+l[1]+l[2]+l[3]))) return updates_of,grads_adam load_policy=True # normalize() makes sure that the actions for the environment lies # within the range [-1, 1] (only works for environments with continuous actions) env = normalize(CartpoleEnv()) #env = GymEnv("InvertedPendulum-v1") # Initialize a neural network policy with a single hidden layer of 8 hidden units policy = GaussianMLPPolicy(env.spec, hidden_sizes=(8,),learn_std=False) snap_policy = GaussianMLPPolicy(env.spec, hidden_sizes=(8,),learn_std=False) back_up_policy = GaussianMLPPolicy(env.spec, hidden_sizes=(8,),learn_std=False) parallel_sampler.populate_task(env, policy) # policy.distribution returns a distribution object under rllab.distributions. It contains many utilities for computing # distribution-related quantities, given the computed dist_info_vars. Below we use dist.log_likelihood_sym to compute # the symbolic log-likelihood. For this example, the corresponding distribution is an instance of the class # rllab.distributions.DiagonalGaussian dist = policy.distribution snap_dist = snap_policy.distribution # We will collect 100 trajectories per iteration N = 100 # Each trajectory will have at most 100 time steps T = 100 #We will collect M secondary trajectories M = 10 #Number of sub-iterations #m_itr = 100 # Number of iterations #n_itr = np.int(10000/(m_itr*M+N)) # Set the discount factor for the problem discount = 0.99 # Learning rate for the gradient update learning_rate = 0.01 s_tot = 10000 observations_var = env.observation_space.new_tensor_variable( 'observations', # It should have 1 extra dimension since we want to represent a list of observations extra_dims=1 ) actions_var = env.action_space.new_tensor_variable( 'actions', extra_dims=1 ) d_rewards_var = TT.vector('d_rewards') importance_weights_var = TT.vector('importance_weight') # policy.dist_info_sym returns a dictionary, whose values are symbolic expressions for quantities related to the # distribution of the actions. For a Gaussian policy, it contains the mean and (log) standard deviation. dist_info_vars = policy.dist_info_sym(observations_var) snap_dist_info_vars = snap_policy.dist_info_sym(observations_var) surr = TT.sum(- dist.log_likelihood_sym_1traj_GPOMDP(actions_var, dist_info_vars) * d_rewards_var) params = policy.get_params(trainable=True) snap_params = snap_policy.get_params(trainable=True) importance_weights = dist.likelihood_ratio_sym_1traj_GPOMDP(actions_var,dist_info_vars,snap_dist_info_vars) grad = theano.grad(surr, params) eval_grad1 = TT.matrix('eval_grad0',dtype=grad[0].dtype) eval_grad2 = TT.vector('eval_grad1',dtype=grad[1].dtype) eval_grad3 = TT.col('eval_grad3',dtype=grad[2].dtype) eval_grad4 = TT.vector('eval_grad4',dtype=grad[3].dtype) surr_on1 = TT.sum(dist.log_likelihood_sym_1traj_GPOMDP(actions_var,snap_dist_info_vars)*d_rewards_var*importance_weights_var) surr_on2 = TT.sum(-snap_dist.log_likelihood_sym_1traj_GPOMDP(actions_var,dist_info_vars)*d_rewards_var) grad_imp = theano.grad(surr_on1,snap_params) update,step =adam_svrg([eval_grad1, eval_grad2, eval_grad3, eval_grad4], params, learning_rate=learning_rate) f_train = theano.function( inputs = [observations_var, actions_var, d_rewards_var], outputs = grad ) f_update = [theano.function( inputs = [eval_grad1, eval_grad2, eval_grad3, eval_grad4], outputs = step[n_sub_iter], updates = update[n_sub_iter] ) for n_sub_iter in range(max_sub_iter)] f_importance_weights = theano.function( inputs = [observations_var, actions_var], outputs = importance_weights ) f_update_SVRG = [theano.function( inputs = [eval_grad1, eval_grad2, eval_grad3, eval_grad4], outputs = step[n_sub_iter], updates = update[n_sub_iter] ) for n_sub_iter in range(max_sub_iter)] f_imp_SVRG = theano.function( inputs=[observations_var, actions_var, d_rewards_var, importance_weights_var], outputs=grad_imp, ) alla = {} variance_svrg_data={} variance_sgd_data={} importance_weights_data={} rewards_snapshot_data={} rewards_subiter_data={} n_sub_iter_data={} for k in range(10): if (load_policy): snap_policy.set_param_values(np.loadtxt('policy_novar.txt'), trainable=True) policy.set_param_values(np.loadtxt('policy_novar.txt'), trainable=True) else: policy.set_param_values(snap_policy.get_param_values(trainable=True), trainable=True) avg_return = np.zeros(s_tot) #np.savetxt("policy_novar.txt",snap_policy.get_param_values(trainable=True)) n_sub_iter=[] rewards_sub_iter=[] rewards_snapshot=[] importance_weights=[] variance_svrg = [] variance_sgd = [] diff_lr = [] alfa_t = [] j=0 while j<s_tot-N: paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),N,T,show_bar=False) paths = paths[:N] #baseline.fit(paths) j+=N observations = [p["observations"] for p in paths] actions = [p["actions"] for p in paths] d_rewards = [p["rewards"] for p in paths] temp = list() for x in d_rewards: z=list() t=1 for y in x: z.append(y*t) t*=discount temp.append(np.array(z)) d_rewards=temp s_g = f_train(observations[0], actions[0], d_rewards[0]) s_g_fv = [unpack(s_g)] for ob,ac,rw in zip(observations[1:],actions[1:],d_rewards[1:]): i_g = f_train(ob, ac, rw) s_g_fv.append(unpack(i_g)) s_g = [sum(x) for x in zip(s_g,i_g)] s_g = [x/len(paths) for x in s_g] stp_snp = f_update[0](s_g[0],s_g[1],s_g[2],s_g[3]) print("step snapshot:", stp_snp) rewards_snapshot.append(np.array([sum(p["rewards"]) for p in paths])) avg_return[j-N:j] = np.repeat(np.mean([sum(p["rewards"]) for p in paths]),N) var_4_fg = np.cov(s_g_fv,rowvar=False) var_fg = var_4_fg/(N) print(str(j-1)+' Average Return:', avg_return[j-1]) back_up_policy.set_param_values(policy.get_param_values(trainable=True), trainable=True) n_sub = 0 while j<s_tot-M: j += M sub_paths = parallel_sampler.sample_paths_on_trajectories(policy.get_param_values(),M,T,show_bar=False) sub_paths[:M] #baseline.fit(paths) sub_observations=[p["observations"] for p in sub_paths] sub_actions = [p["actions"] for p in sub_paths] sub_d_rewards = [p["rewards"] for p in sub_paths] temp = list() for x in sub_d_rewards: z=list() t=1 for y in x: z.append(y*t) t*=discount temp.append(np.array(z)) sub_d_rewards=temp n_sub+=1 s_g_sgd = f_train(sub_observations[0], sub_actions[0], sub_d_rewards[0]) s_g_fv_sgd = [unpack(s_g_sgd)] iw_var = f_importance_weights(sub_observations[0], sub_actions[0]) s_g_is = f_imp_SVRG(sub_observations[0], sub_actions[0], sub_d_rewards[0],iw_var) s_g_fv_is = [unpack(s_g_is)] w_cum=np.max(iw_var) importance_weights.append(np.mean(iw_var)) for ob,ac,rw in zip(sub_observations[1:],sub_actions[1:],sub_d_rewards[1:]): i_g_sgd = f_train(ob, ac, rw) s_g_fv_sgd.append(unpack(i_g_sgd)) s_g_sgd = [sum(x) for x in zip(s_g_sgd,i_g_sgd)] iw_var = f_importance_weights(ob, ac) s_g_is_sgd = f_imp_SVRG(ob, ac, rw,iw_var) s_g_fv_is.append(unpack(s_g_is_sgd)) s_g_is = [sum(x) for x in zip(s_g_is,s_g_is_sgd)] importance_weights.append(np.mean(iw_var)) w_cum+=np.max(iw_var) s_g_is = [x/len(sub_paths) for x in s_g_is]#w_cum s_g_sgd = [x/len(sub_paths) for x in s_g_sgd] var_sgd = np.cov(s_g_fv_sgd,rowvar=False) var_batch = var_sgd/(M) var_is_sgd = np.cov(s_g_fv_is,rowvar=False) var_is = var_is_sgd/(M) m_is = np.mean(s_g_fv_is,axis=0) m_sgd = np.mean(s_g_fv_sgd,axis=0) cov= np.outer(s_g_fv_is[0]-m_is,s_g_fv_sgd[0]-m_sgd) for i in range(M-1): cov += np.outer(s_g_fv_is[i+1]-m_is,s_g_fv_sgd[i+1]-m_sgd) for i in range(M): cov += np.outer(s_g_fv_sgd[i]-m_sgd,s_g_fv_is[i]-m_is) cov = cov/(M*M) var_svrg = var_fg + var_is + var_batch + cov var_dif = var_svrg-var_batch variance_svrg.append((np.diag(var_svrg).sum())) variance_sgd.append((np.diag(var_batch).sum())) rewards_sub_iter.append(np.array([sum(p["rewards"]) for p in sub_paths])) avg_return[j-M:j] = np.repeat(np.mean([sum(p["rewards"]) for p in sub_paths]),M) back_up_policy.set_param_values(policy.get_param_values(trainable=True), trainable=True) g = [sum(x) for x in zip(s_g_is,s_g_sgd,s_g)] stp = f_update[n_sub](g[0],g[1],g[2],g[3]) print("step:",stp) diff_lr.append(stp/M-stp_snp/N) alfa_t.append(stp) if (stp/M<stp_snp/N or n_sub+1>= max_sub_iter): break #print(str(j)+' Average Return:', avg_return[j]) n_sub_iter.append(n_sub) snap_policy.set_param_values(policy.get_param_values(trainable=True), trainable=True) plt.plot(avg_return[::10]) plt.show() rewards_subiter_data["rewardsSubIter"+str(k)]=rewards_sub_iter rewards_snapshot_data["rewardsSnapshot"+str(k)]= rewards_snapshot n_sub_iter_data["nSubIter"+str(k)]= n_sub_iter variance_sgd_data["variancceSgd"+str(k)] = variance_sgd variance_svrg_data["varianceSvrg"+str(k)]=variance_svrg importance_weights_data["importanceWeights"+str(k)] = importance_weights avg_return=np.array(avg_return) #plt.plot(avg_return) #plt.show() alla["avgReturn"+str(k)]=avg_return alla = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in alla.items() ])) rewards_subiter_data = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in rewards_subiter_data.items() ])) rewards_snapshot_data = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in rewards_snapshot_data.items() ])) n_sub_iter_data = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in n_sub_iter_data.items() ])) variance_sgd_data = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in variance_sgd_data.items() ])) variance_svrg_data = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in variance_svrg_data.items() ])) importance_weights_data = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in importance_weights_data.items() ])) rewards_subiter_data.to_csv("rewards_subiter_v2.csv",index=False) rewards_snapshot_data.to_csv("rewards_snapshot_v2.csv",index=False) n_sub_iter_data.to_csv("n_sub_iter_v2.csv",index=False) variance_sgd_data.to_csv("variance_sgd_v2.csv",index=False) variance_svrg_data.to_csv("variance_svrg_v2.csv",index=False) importance_weights_data.to_csv("importance_weights_v2.csv",index=False) alla.to_csv("GPOMDP_SVRG_adaptive_m06_ver2.csv",index=False)
e5adbda3bfd130759ee55d9236a7a02a81be12f4
c4b4c822cf145cca03d6234fa9b116e7db4e10f6
/Djangoshop/Shopapp/views.py
b64073aa0ca3b927c5bdd038c58bb5f163b55d71
[]
no_license
BeefpasteC/Django_shop
98bff8a5242b3b86e9b98378846551dc0ac51f2b
276ce6a8b21997b0854308f883c0a2cccc15bf2b
refs/heads/master
2022-02-13T11:16:03.012290
2019-08-05T14:19:39
2019-08-05T14:19:39
198,127,325
0
0
null
null
null
null
UTF-8
Python
false
false
12,454
py
import hashlib from django.http import HttpResponse from rest_framework import viewsets from django.shortcuts import render from django.core.paginator import Paginator from django.http import HttpResponseRedirect from django_filters.rest_framework import DjangoFilterBackend #导入过滤器 from Shopapp.models import * from Buyerapp.models import * from Shopapp.serializers import * # 密码加密 def set_password(password): md5 = hashlib.md5() md5.update(password.encode()) response = md5.hexdigest() return response # 注册 def register(request): if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') nickname = request.POST.get('nickname') if username and password: seller = Seller() seller.username = username seller.password = set_password(password) seller.nickname = nickname seller.save() return HttpResponseRedirect('/shop/login/') return render(request,'shopapp/register.html') # cookie值校验登录 def cook_session(fun): def inner(request,*args,**kwargs): cookie_data = request.COOKIES.get('username') session_data = request.session.get('username') if cookie_data and session_data: user = Seller.objects.filter(username=cookie_data).first() if user and session_data == cookie_data: return fun(request,*args,**kwargs) return HttpResponseRedirect('/shop/login/') return inner # 登录 def login(request): response = render(request,'shopapp/login.html') #如果从登录页加载, response.set_cookie("login_from","login_page") # 获得cookie值 if request.method == "POST": username = request.POST.get("username") password = request.POST.get("password") if username and password : # 校验用户名是否存在 user = Seller.objects.filter(username = username).first() if user : web_password = set_password(password) # 校验密码是否正确 cookies = request.COOKIES.get("login_from") # 校验请求是否来源于登录页面 if user.password == web_password and cookies == 'login_page': response = HttpResponseRedirect('/shop/index/') response.set_cookie('username',username) response.set_cookie('user_id',user.id) #cookie提供用户id方便其他功能查询 request.session['username'] = username store = Store.objects.filter(user_id=user.id).first()# 查询用户是否有店铺 if store: response.set_cookie('has_store',store.id) #存在,将cookie设置为店铺id else: response.set_cookie('has_store', "")# 不存在,将cookie设置为空 return response return response # 首页 @ cook_session def index(request): ''' 检查店铺是否有逻辑 :param request: :return: ''' # 查询当前用户 user_id = request.COOKIES.get('user_id') if user_id: user_id = int(user_id) else: user_id = 0 # 通过用户查询店铺是否存在(店铺和用户的id进行关联) store = Store.objects.filter(user_id=user_id).first() if store: is_store = 1 else: is_store = 0 return render(request,'shopapp/index.html',{'is_store':is_store}) # 店铺注册 @ cook_session def resgister_store(request): type_list = StoreType.objects.all() if request.method == 'POST': post_data = request.POST # 接收post数据 store_name = post_data.get('store_name') store_description = post_data.get('store_description') store_phone = post_data.get('store_phone') store_money = post_data.get('store_money') store_address = post_data.get('store_address') user_id = int(request.COOKIES.get('user_id')) #通过cookie,来得到user_id type_list = post_data.get('type')#通过request.post得到类型,但是是一个列表 store_logo = request.FILES.get('store_logo')#通过request.Files得到 #保存非多对多数据 store = Store() store.store_name =store_name store.store_descripton = store_description store.store_phone = store_phone store.store_money = store_money store.store_address = store_address store.user_id = user_id store.store_logo = store_logo #django1.8之后图片可以直接保存 store.save() #保存。生成数据库当中的一条数据 # 在生成的数据当中添加多对多字段。 for i in type_list: #循环type列表,得到类型id store_type = StoreType.objects.get(id=i) # 查询类型数据 store.type.add(store_type) #添加到类型字段,多对多的映射表 store.save() # 保存数据 response = HttpResponseRedirect("/shop/index/") response.set_cookie("has_store", store.id) return response return render(request,'shopapp/resgister_store.html',locals()) # 添加商品 @ cook_session def add_goods(request): """ 负责添加商品 """ goodstype_list = GoodsType.objects.all() if request.method == "POST": #获取post请求 goods_name = request.POST.get("goods_name") goods_price = request.POST.get("goods_price") goods_number = request.POST.get("goods_number") goods_description = request.POST.get("goods_description") goods_date = request.POST.get("goods_date") goods_safeDate = request.POST.get("goods_safeDate") goods_store = request.COOKIES.get("has_store") goods_image = request.FILES.get("goods_image") goods_type = request.POST.get('goods_type') #开始保存数据 goods = Goods() goods.goods_name = goods_name goods.goods_price = goods_price goods.goods_number = goods_number goods.goods_description = goods_description goods.goods_date = goods_date goods.goods_safeDate = goods_safeDate goods.goods_image = goods_image goods.goods_type = GoodsType.objects.get(id = int(goods_type)) goods.store_id = Store.objects.get(id= int(goods_store)) goods.save() return HttpResponseRedirect("/shop/sl/up/") return render(request,"shopapp/add_goods.html",locals()) # 商品列表 @ cook_session def shop_list(request,state): """ 商品的列表页 :param request: :return: """ if state == 'up': # up 在售 down下架 state_num = 1 else: state_num = 0 #获取两个关键字 keywords = request.GET.get("keywords","") #查询关键词 page_num = request.GET.get("page_num",1) #页码 # 查询店铺 store_id = request.COOKIES.get('has_store') store = Store.objects.get(id=int(store_id)) if keywords: #判断关键词是否存在 goods_list = store.goods_set.filter(goods_name__contains=keywords,goods_state=state_num)#完成了模糊查询 else: #如果关键词不存在,查询所有 goods_list = store.goods_set.filter(goods_state=state_num) #分页,每页3条 paginator = Paginator(goods_list,3) page = paginator.page(int(page_num)) page_range = paginator.page_range #返回分页数据 return render(request,"shopapp/shop_list.html",{"page":page,"page_range":page_range,"keywords":keywords,'state':state}) # 商品详情页 @ cook_session def goods_summary(request,goods_id): goods = Goods.objects.filter(id = goods_id).first() return render(request,'shopapp/goods_summary.html',locals()) # 修改商品详情 @ cook_session def update_goods(request,goods_id): goods_data = Goods.objects.filter(id = goods_id).first() if request.method == "POST": # 获取post请求 goods_name = request.POST.get("goods_name") goods_price = request.POST.get("goods_price") goods_number = request.POST.get("goods_number") goods_description = request.POST.get("goods_description") goods_date = request.POST.get("goods_date") goods_safeDate = request.POST.get("goods_safeDate") goods_store = request.POST.get("goods_store") goods_image = request.FILES.get("goods_image") # 开始修改数据 goods = Goods.objects.get(id = int(goods_id)) goods.goods_name = goods_name goods.goods_price = goods_price goods.goods_number = goods_number goods.goods_description = goods_description goods.goods_date = goods_date goods.goods_safeDate = goods_safeDate if goods_image: #如果有上传图片在更改 goods.goods_image = goods_image goods.save() return HttpResponseRedirect('/shop/gs/%s'%goods_id) return render(request,'shopapp/update_goods.html',locals()) # 404 @ cook_session def error_404(request): return render(request,'shopapp/404.html') # 商品上下架 @ cook_session def set_goods(request,state): if state == "up": state_num = 1 else: state_num = 0 id = request.GET.get("id") #get获取id referer = request.META.get("HTTP_REFERER") #返回当前请求的来源地址 if id: goods = Goods.objects.filter(id = id).first() #获取指定id的商品 if state == "delete": goods.delete() else: goods.goods_state = state_num #修改状态 goods.save() #保存 return HttpResponseRedirect(referer) #跳转到请求来源页 # 商品类别分类 def goods_type(request): goodstype_list = GoodsType.objects.all() if request.method == 'POST': username = request.POST.get('name') description = request.POST.get('description') picture = request.FILES.get('picture') goodstype = GoodsType() goodstype.name = username goodstype.description = description goodstype.picture = picture goodstype.save() return HttpResponseRedirect('/shop/gt/') return render(request,'shopapp/goods_type.html',locals()) def delete_goods_types(request): id = int(request.GET.get('id')) goodstype = GoodsType.objects.get(id = id) goodstype.delete() return HttpResponseRedirect('/shop/gt/') # 商品类型详情 def goods_type_summary(request): id = int(request.GET.get('id')) goods = GoodsType.objects.filter(id = id).first() return render(request,'shopapp/goods_type_summary.html',locals()) # 查询所有订单 def order_list(request): store_id = request.COOKIES.get('has_store') order_list = OrderDetail.objects.filter(order_id__order_status=2,goods_store=store_id) return render(request,'shopapp/order_list.html',locals()) # 当前部分是为了练习接口的查询逻辑 class UserViewSet(viewsets.ModelViewSet): ''' 返回具体查询的内容 ''' queryset = Goods.objects.all() # 具体返回的数据 serializer_class = UserSerializer # 指定过滤的类 filter_backends = [DjangoFilterBackend] # 采用哪个过滤器 filterset_fields = ['goods_name','goods_price'] #进行过滤的字段 class TypeViewSet(viewsets.ModelViewSet): queryset = GoodsType.objects.all() serializer_class = GoodsTypeSerializer def ajax_goods_list(request): return render(request,'shopapp/ajax_goods_list.html') from CeleryTask.tasks import add from django.http import JsonResponse def get_add(request): add.delay(2,3) return JsonResponse({'status':200}) #中间件测试 def small_white_views(request): print('我是小白') raise TypeError('小白视图错了') def small_template_response(request): def hello(): return HttpResponse('hello world') rep = HttpResponse('i am rep') rep.render = hello return rep #缓存 from django.views.decorators.cache import cache_page from django.core.cache import cache @cache_page(60*15) #底层缓存接口 # set 设置 # get 获取 # add 添加 def memcache_views(request): store_data = cache.grt('store_data') if store_data: store_data = store_data else: data = Store.objects.all() cache.set('store_data',data,30) store_data = data return render(request,'shopapp/index.html',locals())
f5008b11b7c269198447176e0be1ed0159fb3293
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03643/s854792404.py
21c5aecd6628fea2e59a9a75708442b6a3221801
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
30
py
print("ABC", input(), sep='')
00f48aaa623569a716ff694a42aefda03ced3f3f
cb1c89fa0ff9d6be258f79225432baa0557ea7e4
/setup.py
7ad925d18c07d69d8c3d5705bcc41ab8309954cb
[ "MIT" ]
permissive
MehdiKhiatiDS/pyzel
6ee6cbdbfb531774e6be59602bd7026766384762
068efcb93d17b1ff55a1b3ff98f11b763696b531
refs/heads/master
2021-07-16T12:45:54.651089
2020-01-16T23:51:57
2020-01-16T23:51:57
234,185,576
1
0
MIT
2021-02-02T22:44:38
2020-01-15T22:24:44
Python
UTF-8
Python
false
false
874
py
""" lambdata - a collection of data science helper functions for lambda school """ import setuptools REQUIRED = [ "numpy", "pandas" ] with open("README.md", "r") as fh: LONG_DESCRIPTION = fh.read() setuptools.setup( name="lambda-MehdiKhiatiDS", version="0.1.1", author="mehdikhiati", description="a collection of data science helper functions", long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", url="https://github.com/MehdiKhiatiDS/lambdata", packages=setuptools.find_packages(), python_requires=">=3.5", install_requires=REQUIRED, classifiers=["Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ] )
18cb5655c01d6818570cc0a5be0580119604d7dd
04a7c28bc4a5cc8b60de89790014e8c55a257aaa
/Tests/test_shopping_cart.py
4ab0c29c3d7cb2bf4e7fdd1bf41ce2b652bf7858
[]
no_license
samphillips1879/bangazon-cli
6752ff95c866a202aadf3bb6974aee6cc5e2f501
9aeb75bb63e4eae683c60e92de7039dc432a22d2
refs/heads/master
2021-01-11T13:29:22.100642
2017-02-09T15:53:52
2017-02-09T15:53:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,334
py
import unittest import sys sys.path.append("../") from models.shopping_cart import ShoppingCart class TestShoppingCart(unittest.TestCase): """ A test suite for the Shopping cart Feature of Bangazon CLI Methods: test_current_cart_should_be_ShoppingCart_object test_ShoppingCart_should_add_product test_ShoppingCart_should_be_able_to_be_closed """ @classmethod def setUpClass(self): """ Method to setup global values needed for all tests """ print('Set up class') # Create an instance of the ShoppingCart that can be used in all tests self.current_cart = ShoppingCart() # Create an instance of a product that can be used in all tests # Product tuple will need alteration self.product1 = (1, "Widget", 5) self.product2 = (2, "FooBar", 10) self.payment_method = (1, "Visa", "1234567812345678") def test_current_cart_should_be_ShoppingCart_object(self): """ Method to test whether the ShoppingCart object id created correctly """ self.assertIsInstance(self.current_cart, ShoppingCart) def test_ShoppingCart_should_add_product(self): """ Method to test whether the ShoppingCart object can add a product """ current_cart = ShoppingCart() self.assertEqual(current_cart.get_all_products(), []) current_cart.add_product(self.product1) self.assertEqual(current_cart.get_all_products(), [self.product1]) current_cart.add_product(self.product2) self.assertEqual(current_cart.get_all_products(), [self.product1, self.product2]) def test_ShoppingCart_should_return_cart_total_price(self): """ Method to test whether the shopping cart can return the total """ total = self.current_cart.get_cart_total() self.assertEqual(total, 15) def test_ShoppingCart_should_accept_payment_method(self): """ Method to test whether the shopping cart can be closed """ self.current_cart.accept_payment(payment_method) self.assertEqual(self.current_cart.get_payment_method(), [(1, "Visa", "1234567812345678")]) self.assertTrue(self.current_cart.order_is_closed()) if __name__ == '__main__': unittest.main()
2eec319a9772ff9612bfe2709b8c3b2df9b1914c
f7801b1663359e743c6480a8c88673e59e3a7526
/UIskeleton/settingsUI.py
f67750640d660d4ba947dbe231ba6e0b154237df
[]
no_license
Wireless-Research-Tester/demo-day-1
889981b3b6b5e07c6b18c1404c09921a8fffde9b
941fd84a73f133fff1d95e1c409236789b21e8ce
refs/heads/master
2022-04-20T01:35:24.212114
2020-04-19T14:24:17
2020-04-19T14:24:17
254,984,751
0
0
null
null
null
null
UTF-8
Python
false
false
12,343
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'settingsUIui.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_SettingsWindow(object): def setupUi(self, SettingsWindow): SettingsWindow.setObjectName("SettingsWindow") SettingsWindow.resize(649, 540) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(SettingsWindow.sizePolicy().hasHeightForWidth()) SettingsWindow.setSizePolicy(sizePolicy) SettingsWindow.setFocusPolicy(QtCore.Qt.NoFocus) SettingsWindow.setAcceptDrops(False) SettingsWindow.setLayoutDirection(QtCore.Qt.LeftToRight) SettingsWindow.setAutoFillBackground(False) self.verticalLayout = QtWidgets.QVBoxLayout(SettingsWindow) self.verticalLayout.setObjectName("verticalLayout") self.main_layout = QtWidgets.QGridLayout() self.main_layout.setHorizontalSpacing(1) self.main_layout.setObjectName("main_layout") self.pos_settings_layout = QtWidgets.QGridLayout() self.pos_settings_layout.setObjectName("pos_settings_layout") self.azimuth_rbttn = QtWidgets.QRadioButton(SettingsWindow) self.azimuth_rbttn.setObjectName("azimuth_rbttn") self.pos_settings_layout.addWidget(self.azimuth_rbttn, 4, 1, 1, 1) self.spinBox = QtWidgets.QSpinBox(SettingsWindow) self.spinBox.setObjectName("spinBox") self.pos_settings_layout.addWidget(self.spinBox, 3, 1, 1, 1) self.increment_suffix_label = QtWidgets.QLabel(SettingsWindow) self.increment_suffix_label.setObjectName("increment_suffix_label") self.pos_settings_layout.addWidget(self.increment_suffix_label, 3, 2, 1, 1) self.elevation_rbttn = QtWidgets.QRadioButton(SettingsWindow) self.elevation_rbttn.setObjectName("elevation_rbttn") self.pos_settings_layout.addWidget(self.elevation_rbttn, 5, 1, 1, 1) self.sweep_type_cBox = QtWidgets.QComboBox(SettingsWindow) self.sweep_type_cBox.setObjectName("sweep_type_cBox") self.pos_settings_layout.addWidget(self.sweep_type_cBox, 2, 1, 1, 1) self.sweep_type_label = QtWidgets.QLabel(SettingsWindow) self.sweep_type_label.setObjectName("sweep_type_label") self.pos_settings_layout.addWidget(self.sweep_type_label, 2, 0, 1, 1) self.increment_label = QtWidgets.QLabel(SettingsWindow) self.increment_label.setObjectName("increment_label") self.pos_settings_layout.addWidget(self.increment_label, 3, 0, 1, 1) self.main_layout.addLayout(self.pos_settings_layout, 3, 1, 1, 1) self.pos_settings_label = QtWidgets.QLabel(SettingsWindow) self.pos_settings_label.setMaximumSize(QtCore.QSize(16777215, 20)) self.pos_settings_label.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignTop) self.pos_settings_label.setObjectName("pos_settings_label") self.main_layout.addWidget(self.pos_settings_label, 2, 0, 1, 1) self.meas_type_label = QtWidgets.QLabel(SettingsWindow) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.meas_type_label.sizePolicy().hasHeightForWidth()) self.meas_type_label.setSizePolicy(sizePolicy) self.meas_type_label.setMaximumSize(QtCore.QSize(16777215, 20)) self.meas_type_label.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignTop) self.meas_type_label.setObjectName("meas_type_label") self.main_layout.addWidget(self.meas_type_label, 0, 0, 1, 1) self.vna_settings_tabs = QtWidgets.QTabWidget(SettingsWindow) self.vna_settings_tabs.setEnabled(True) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.vna_settings_tabs.sizePolicy().hasHeightForWidth()) self.vna_settings_tabs.setSizePolicy(sizePolicy) self.vna_settings_tabs.setMaximumSize(QtCore.QSize(16777215, 300)) self.vna_settings_tabs.setTabPosition(QtWidgets.QTabWidget.North) self.vna_settings_tabs.setTabShape(QtWidgets.QTabWidget.Rounded) self.vna_settings_tabs.setUsesScrollButtons(False) self.vna_settings_tabs.setMovable(False) self.vna_settings_tabs.setObjectName("vna_settings_tabs") self.list_tab = QtWidgets.QWidget() self.list_tab.setEnabled(True) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.list_tab.sizePolicy().hasHeightForWidth()) self.list_tab.setSizePolicy(sizePolicy) self.list_tab.setObjectName("list_tab") # self.list_tab_layout = QtWidgets.QGridLayout(self.list_tab) self.list_tab_layout.setObjectName("list_tab_layout") self.freq_list_label = QtWidgets.QLabel(self.list_tab) self.freq_list_label.setEnabled(True) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.freq_list_label.sizePolicy().hasHeightForWidth()) self.freq_list_label.setSizePolicy(sizePolicy) self.freq_list_label.setObjectName("freq_list_label") self.list_tab_layout.addWidget(self.freq_list_label, 0, 0, 1, 1) self.freq_list_lineEdit = QtWidgets.QLineEdit(self.list_tab) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.freq_list_lineEdit.sizePolicy().hasHeightForWidth()) self.freq_list_lineEdit.setSizePolicy(sizePolicy) self.freq_list_lineEdit.setObjectName("freq_list_lineEdit") self.list_tab_layout.addWidget(self.freq_list_lineEdit, 0, 1, 1, 1) self.vna_settings_tabs.addTab(self.list_tab, "") self.sweep_tab = QtWidgets.QWidget() self.sweep_tab.setObjectName("sweep_tab") # Sweep tab Layout self.sweep_tab_layout = QtWidgets.QGridLayout(self.sweep_tab) self.sweep_tab_layout.setObjectName("sweep_tab_layout") self.start_label = QtWidgets.QLabel(self.sweep_tab) self.start_label.setObjectName("start_label") self.sweep_tab_layout.addWidget(self.start_label, 0, 0, 1, 1) self.start_freq_lineEdit = QtWidgets.QLineEdit(self.sweep_tab) self.start_freq_lineEdit.setObjectName("start_freq_lineEdit") self.sweep_tab_layout.addWidget(self.start_freq_lineEdit, 0, 1, 1, 1) self.start_label_suffix = QtWidgets.QLabel(self.sweep_tab) self.start_label_suffix.setObjectName("start_label_suffix") self.sweep_tab_layout.addWidget(self.start_label_suffix, 0, 2, 1, 1) self.end_label = QtWidgets.QLabel(self.sweep_tab) self.end_label.setObjectName("end_label") self.sweep_tab_layout.addWidget(self.end_label, 1, 0, 1, 1) self.end_freq_lineEdit = QtWidgets.QLineEdit(self.sweep_tab) self.end_freq_lineEdit.setObjectName("end_freq_lineEdit") self.sweep_tab_layout.addWidget(self.end_freq_lineEdit, 1, 1, 1, 1) self.end_label_suffix = QtWidgets.QLabel(self.sweep_tab) self.end_label_suffix.setObjectName("end_label_suffix") self.sweep_tab_layout.addWidget(self.end_label_suffix, 1, 2, 1, 1) self.num_pts_label = QtWidgets.QLabel(self.sweep_tab) self.num_pts_label.setObjectName("num_pts_label") self.sweep_tab_layout.addWidget(self.num_pts_label, 2, 0, 1, 1) self.num_points_lineEdit = QtWidgets.QLineEdit(self.sweep_tab) self.num_points_lineEdit.setObjectName("num_points_lineEdit") self.sweep_tab_layout.addWidget(self.num_points_lineEdit, 2, 1, 1, 1) self.vna_settings_tabs.addTab(self.sweep_tab, "") self.main_layout.addWidget(self.vna_settings_tabs, 1, 0, 1, 2) self.calibration_cbox = QtWidgets.QCheckBox(SettingsWindow) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.calibration_cbox.sizePolicy().hasHeightForWidth()) self.calibration_cbox.setSizePolicy(sizePolicy) self.calibration_cbox.setAcceptDrops(False) self.calibration_cbox.setLayoutDirection(QtCore.Qt.RightToLeft) self.calibration_cbox.setObjectName("calibration_cbox") self.main_layout.addWidget(self.calibration_cbox, 4, 1, 1, 1) self.select_pbttn = QtWidgets.QPushButton(SettingsWindow) self.select_pbttn.setMaximumSize(QtCore.QSize(100, 16777215)) self.select_pbttn.setToolTip("") self.select_pbttn.setLayoutDirection(QtCore.Qt.RightToLeft) self.select_pbttn.setObjectName("select_pbttn") # self.select_pbttn.clicked.connect(self.switch) self.main_layout.addWidget(self.select_pbttn, 5, 1, 1, 1) self.cancel_pbttn = QtWidgets.QPushButton(SettingsWindow) self.cancel_pbttn.setEnabled(True) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.cancel_pbttn.sizePolicy().hasHeightForWidth()) self.cancel_pbttn.setSizePolicy(sizePolicy) self.cancel_pbttn.setLayoutDirection(QtCore.Qt.LeftToRight) self.cancel_pbttn.setObjectName("cancel_pbttn") self.main_layout.addWidget(self.cancel_pbttn, 5, 0, 1, 1) self.verticalLayout.addLayout(self.main_layout) self.retranslateUi(SettingsWindow) self.vna_settings_tabs.setCurrentIndex(1) QtCore.QMetaObject.connectSlotsByName(SettingsWindow) def retranslateUi(self, SettingsWindow): _translate = QtCore.QCoreApplication.translate SettingsWindow.setWindowTitle(_translate("SettingsWindow", "Settings Window")) self.azimuth_rbttn.setText(_translate("SettingsWindow", "Azimuth")) self.increment_suffix_label.setText(_translate("SettingsWindow", "degrees")) self.elevation_rbttn.setText(_translate("SettingsWindow", "Elevation")) self.sweep_type_label.setText(_translate("SettingsWindow", "Sweep Type:")) self.increment_label.setText(_translate("SettingsWindow", "Increment:")) self.pos_settings_label.setText(_translate("SettingsWindow", "Positioner Settings")) self.meas_type_label.setText(_translate("SettingsWindow", "Measurement Type")) self.freq_list_label.setText(_translate("SettingsWindow", "Enter List of Frequencies:")) self.vna_settings_tabs.setTabText(self.vna_settings_tabs.indexOf(self.list_tab), _translate("SettingsWindow", "List")) self.start_label.setText(_translate("SettingsWindow", "Start:")) self.start_label_suffix.setText(_translate("SettingsWindow", "Hz")) self.end_label.setText(_translate("SettingsWindow", "End:")) self.end_label_suffix.setText(_translate("SettingsWindow", "Hz")) self.num_pts_label.setText(_translate("SettingsWindow", "Number of Points:")) self.vna_settings_tabs.setTabText(self.vna_settings_tabs.indexOf(self.sweep_tab), _translate("SettingsWindow", "Sweep")) self.calibration_cbox.setText(_translate("SettingsWindow", "Calibration")) self.select_pbttn.setText(_translate("SettingsWindow", "Select")) self.cancel_pbttn.setText(_translate("SettingsWindow", "Cancel"))
5db3c4e86d1a6261f1a040a0848cd0b6e9f505f8
b50a3e5bffcf4bc74e82d1325078795188c9e693
/appium_native/NativeScript_example.py
69b3bb0c7c10ec043454f9a3be3421b3c3a203bf
[]
no_license
hyuhyu2001/Performance_Test
0fe7a7261b4bbfc1441f97c46b2607bc83831490
350829c2245120d0d91e5b3042a35521ce7522c4
refs/heads/master
2021-01-20T13:54:49.298009
2017-09-04T07:18:46
2017-09-04T07:18:46
90,532,888
0
0
null
null
null
null
UTF-8
Python
false
false
4,426
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: jinzj @desc: """ import time from appium import webdriver import unittest class MyTestCase(unittest.TestCase): #脚本初始化,获取操作实例 def setUp(self): desired_caps = {} desired_caps['platformName'] = 'Android' desired_caps['platformVersion'] = '4.3' desired_caps['deviceName'] = '192.168.56.101:5555' #desired_caps['appPackage'] = 'com.android.calculator2' #desired_caps['appActivity'] = '.Calculator' #desired_caps['appPackage'] = 'com.android.customlocale2' #desired_caps['appActivity'] = '.CustomLocaleActivity' desired_caps['appPackage'] = 'com.example.zhangjian.minibrowser2' desired_caps['appActivity'] = '.myapplication.MainActivity' desired_caps["unicodeKeyboard"] = "True" desired_caps["resetKeyboard"] = "True" self.driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) #释放实例,释放资源 def tearDown(self): self.driver.quit() #测试的脚本, LOVE原则 '''def testAdd(self): #Locate 定位一个元素 number8 = self.driver.find_element_by_id("digit8") # Operate 操作一个元素 number8.click() # Locate 定位一个元素 addopertion = self.driver.find_element_by_id("plus") # Operate 操作一个元素 addopertion.click() # Locate 定位一个元素 number5 = self.driver.find_element_by_id("digit5") # Operate 操作一个元素 number5.click() # Locate 定位一个元素 equal = self.driver.find_element_by_id("equal") # Operate 操作一个元素 equal.click() #Verify 验证操作的结果 result = self.driver.find_element_by_class_name("android.widget.EditText") value = result.text self.assertEqual(u"13", value) #Exception 处理异常的情况''' def testOtherAPI(self): '''elements = self.driver.find_elements_by_id("digit8") elements[0].click() time.sleep(5) print(len(elements))''' time.sleep(3) #self.driver.press_keycode(8) #self.driver.press_keycode(7) input = self.driver.find_element_by_class_name("android.widget.EditText") input.send_keys("10") element = self.driver.find_element_by_accessibility_id(u"除") element.click() self.driver.press_keycode(12) equal = self.driver.find_element_by_id("equal") equal.click() time.sleep(5) #其他更多APIs的使用实例 def testMoreAPIs(self): #获取元素列表 els = self.driver.find_elements_by_class_name('android.widget.CheckedTextView') #滚动API scroll 的用法 #self.driver.scroll(els[10], els[1]) #拖拽API drag_and_drop的用法 #self.driver.drag_and_drop(els[10], els[3]) #滑动API swipe的用法 #self.driver.swipe(100, 750, 100, 100) #点击API tap的用法 #self.driver.tap([(100, 750)]) #快速滑动 API flick的用法 #self.driver.flick(100, 750, 100, 100) #当前activity API current_Activity的用法 #print self.driver.current_activity #将某一个App置于后台 #self.driver.background_app(3) #等待指定activity显示 API wait_activity的用法 #print self.driver.wait_activity(".CustomLocaleActivity", 3, 1) #判断app是否安装了 #print self.driver.is_app_installed("com.example.zhangjian.minibrowser2") #删除app #self.driver.remove_app("com.example.zhangjian.minibrowser2") #安装app #self.driver.install_app("/Users/zhangjian/Downloads/app-debug.apk") #启动app #self.driver.launch_app() #关闭app #self.driver.close_app() #self.driver.launch_app() #启动activity self.driver.start_activity("com.example.zhangjian.minibrowser2", ".myapplication.NewActivity") time.sleep(3) #截屏 self.driver.get_screenshot_as_file("test.png") time.sleep(5) if __name__ == '__main__': suite = unittest.TestSuite() suite.addTest(MyTestCase('testMoreAPIs')) runner = unittest.TextTestRunner(verbosity=2) runner.run(suite)
56b73c378dc15cd1cb9b85ce3fbac27d7a98a8d2
5b2da553d6730c4a12dd79cc4b131ca5e9caa1e5
/3.3. FindDistances.py
fff71a47ccb150ba3a09c0a9b149cf0c97ce7806
[]
no_license
kyle-musser/pyQGIS
5ddc3d9ba03326c57c80a0ed7db9d1dc08fd7a0e
3da7a27e472cea89cde5b87ef35b0f0f1ce5a672
refs/heads/main
2023-03-14T04:48:23.679180
2021-03-02T20:53:21
2021-03-02T20:53:21
343,826,124
0
0
null
null
null
null
UTF-8
Python
false
false
1,689
py
from geopy.distance import lonlat, geodesic import pandas as pd import os # Set current directory of files os.chdir(r"D:/cenBlock") # Read in NCES directory 2018 CSV to Pandas DF (this data made in stata with .do file ("get_nces_dir.do") cenBlks = pd.read_csv("points_AlbersXY.csv") # Get list of unique states to loop through states = cenBlks.state_abbrev.unique() # loop through states to make distance matrix for each state one at a time. for state in states: print("Calculating Distance Matrix for State: ", state) st_dat = cenBlks[cenBlks['state_abbrev'] == str(state)] # subset to one state (current state in the loop) st_dat = st_dat[['GEOID10', 'lat', 'lon']] # only keep lat/lon and ID variables # using merge to generate all possibilities between origin and destination # this will make an (N^2 x 6) length matrix with all possible combinations of lat/lon in the state df = pd.merge(st_dat.assign(key=0), st_dat.assign(key=0), suffixes=('', '_x'), on='key').drop('key', axis=1) # Use geopy to calculate miles between all nces combinations in the dataframe we just made df['Miles'] = df.apply( (lambda row: geodesic(lonlat(row['lon'], row['lat']), lonlat(row['lon_x'], row['lat_x'])).miles), axis=1) # Now reshape the data to look like the distance matrix we want df = df.groupby(['GEOID10', 'GEOID10_x'])['Miles'].max().unstack() # Add in state variable to dataset as first variable df.insert(0, 'state', [state] * len(df)) # Save each unique state distance matrix flnm = "stateDistances/" + state + "distMatrix.csv" df.to_csv(flnm)
a6107f7c2a4bb3af826b9f687c7e29f7e8bb9073
afd9c05005fba757f764c6bc8b102437b2901750
/models/store.py
126dd891e12ed31804a15c82d532a448d0657253
[ "MIT" ]
permissive
LEMSantos/udemy-flask_rest_api_advanced
083e29c82784ffa07f6b87dd0e8d9083f0df939e
c93f6643272154900f40b68f8afb33ff0e796d0a
refs/heads/main
2023-04-23T10:14:04.132884
2021-05-15T15:30:10
2021-05-15T15:30:10
359,181,193
0
0
null
null
null
null
UTF-8
Python
false
false
685
py
from typing import List from db import db class StoreModel(db.Model): __tablename__ = 'stores' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(80), nullable=False, unique=True) items = db.relationship('ItemModel', lazy='dynamic') @classmethod def find_by_name(cls, name: str) -> 'StoreModel': return cls.query.filter_by(name=name).first() @classmethod def find_all(cls) -> List['StoreModel']: return cls.query.all() def save_to_db(self) -> None: db.session.add(self) db.session.commit() def delete_from_db(self) -> None: db.session.delete(self) db.session.commit()
1244cffa917235f8cc158bfee7ded70f12f8a100
5b03cd12bd8ed9e3cc14cdba32417c6012d9ba58
/Chap 1 WRITING YOUR OWN FUNCTIONS.py
0c6182594504d64f1cd33241e93252d4d80d1daa
[]
no_license
thediaryofmos/Python-Data-Science-Toolbox-Part-1-
f6b4426486219c3ac868073bbaa44d6400ead03a
15b622ce1764ceef34317cf81ca0e7b302e44118
refs/heads/master
2020-03-26T06:57:14.752097
2018-08-14T17:26:40
2018-08-14T17:26:40
144,629,408
2
1
null
null
null
null
UTF-8
Python
false
false
3,299
py
# Define the function shout def shout(): """Print a string with three exclamation marks""" # Concatenate the strings: shout_word shout_word='congratulations'+'!!!' # Print shout_word print(shout_word) # Call shout shout() ###### # Define shout with the parameter, word def shout(word): """Print a string with three exclamation marks""" # Concatenate the strings: shout_word shout_word = word + '!!!' # Print shout_word print(shout_word) # Call shout with the string 'congratulations' shout('congratulations') ###### # Define shout with the parameter, word def shout(word): """Return a string with three exclamation marks""" # Concatenate the strings: shout_word shout_word=word+'!!!' # Replace print with return return(shout_word) # Pass 'congratulations' to shout: yell yell=shout('congratulations') # Print yell print(yell) ###### # Define shout with parameters word1 and word2 def shout(word1, word2): """Concatenate strings with three exclamation marks""" # Concatenate word1 with '!!!': shout1 shout1=word1+'!!!' # Concatenate word2 with '!!!': shout2 shout2=word2+'!!!' # Concatenate shout1 with shout2: new_shout new_shout=shout1+shout2 # Return new_shout return new_shout # Pass 'congratulations' and 'you' to shout(): yell yell=shout('congratulations','you') # Print yell print(yell) ###### # Define shout_all with parameters word1 and word2 def shout_all(word1, word2): # Concatenate word1 with '!!!': shout1 shout1=word1+'!!!' # Concatenate word2 with '!!!': shout2 shout2=word2+'!!!' # Construct a tuple with shout1 and shout2: shout_words shout_words=(shout1,shout2) # Return shout_words return shout_words # Pass 'congratulations' and 'you' to shout_all(): yell1, yell2 yell1,yell2=shout_all('congratulations','you') # Print yell1 and yell2 print(yell1) print(yell2) ###### # Import pandas import pandas as pd # Import Twitter data as DataFrame: df df = pd.read_csv('tweets.csv') # Initialize an empty dictionary: langs_count langs_count = {} # Extract column from DataFrame: col col = df['lang'] # Iterate over lang column in DataFrame for entry in col: # If the language is in langs_count, add 1 if entry in langs_count.keys(): langs_count[entry]+=1 # Else add the language to langs_count, set the value to 1 else: langs_count[entry]=1 # Print the populated dictionary print(langs_count) ###### # Define count_entries() def count_entries(df, col_name): """Return a dictionary with counts of occurrences as value for each key.""" # Initialize an empty dictionary: langs_count langs_count = {} # Extract column from DataFrame: col col = df[col_name] # Iterate over lang column in DataFrame for entry in col: # If the language is in langs_count, add 1 if entry in langs_count.keys(): langs_count[entry]+=1 # Else add the language to langs_count, set the value to 1 else: langs_count[entry]=1 # Return the langs_count dictionary return(langs_count) # Call count_entries(): result result=count_entries(tweets_df,'lang') # Print the result print(result) ######
527edb431dd1457f28ca1352dd2e56a613093674
43e8af55bd953a3e435810574f0d4db8a00bcd82
/nut/script/brand.py
48321e0aea25cc7b349bf5cad31bf840e6c63ae8
[]
no_license
bopopescu/nut
3818cc66e543870180dae943944ef026f191a385
39c58afe7fa7be185b1a3ac64e8c295d16601bd6
refs/heads/master
2022-11-18T05:28:14.209311
2017-09-29T10:32:54
2017-09-29T10:32:54
282,010,209
0
0
null
2020-07-23T17:05:57
2020-07-23T17:05:56
null
UTF-8
Python
false
false
660
py
import os, sys BASE_DIR = os.path.dirname(os.path.dirname(__file__)) sys.path.append(BASE_DIR) os.environ['DJANGO_SETTINGS_MODULE'] = 'settings.production' from apps.core.models import Entity, Brand brands = Brand.objects.filter(icon__isnull=False).order_by('name') for row in brands: print row.name # brands = Entity.objects.raw("select id, brand, count(*) from core_entity where brand !='' and status >= 0 group by brand") # for row in brands: # print row.brand.strip() # b = Brand() # b.name = row.brand.strip() # try: # b.save() # except Exception, e: # print e.message # pass __author__ = 'edison'
8afc4b175d6daf29d8d76024f3fed50f27bd6e88
f4fee13ab9d3c474b404ded89459c0e198ccb3d9
/spotinst_sdk/test/test_deployment_action.py
6d0e24b769ada670d02215aa24799f7e1d896f9a
[ "MIT" ]
permissive
nironkoren/spotinst-sdk-python
6f195332f8d0fcaf47e7fbf9ae24a0e1d58c4a1b
f7ddca5a2510b9601a83e9d8f0befb8518cfe3c2
refs/heads/master
2021-01-13T21:02:08.739229
2020-03-09T10:23:29
2020-03-09T10:23:29
242,493,287
0
0
MIT
2020-02-23T09:58:01
2020-02-23T09:58:00
null
UTF-8
Python
false
false
1,556
py
import os import unittest from spotinst_sdk import SpotinstClient from spotinst_sdk.spotinst_deployment_action import * class AwsElastigroupTestCase(unittest.TestCase): def setUp(self): self.client = SpotinstClient( auth_token='dummy-token', account_id='dummy-account') self.mock_group_json = self.load_group_json() def create_formatted_deployment_request(self, deployment): group_request = DeploymentActionRequest(deployment) excluded_group_dict = self.client.exclude_missing( json.loads(group_request.toJSON())) formatted_group_dict = self.client.convert_json( excluded_group_dict, self.client.underscore_to_camel) return formatted_group_dict @staticmethod def load_group_json(): with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'test_lib/input/deployment_action.json')) as group_json: return json.load(group_json) # region B/G Deployment class AwsElastigroupTestDeploymentAction(AwsElastigroupTestCase): def runTest(self): da = DeploymentAction( action_type="DETACH_NEW", should_handle_all_batches=True, draining_timeout=60, should_decrement_target_capacity=False ) formatted_group_dict = self.create_formatted_deployment_request(da) actual_request_json = formatted_group_dict expected_request_json = self.mock_group_json self.assertDictEqual(actual_request_json, expected_request_json)
62f1bec1bce5d85beddd91380d21928a6282091f
96d20f2e1f74f5fbc55832a0cb9cb1d8fd3337f6
/21-occurence_of_a.py
efb5984aab4c4fa2aef6caae0dddb4e2a7d3f7f4
[]
no_license
Anupama-Regi/python_lab
e2e5e38fd9233493f7a9d25ab5e8a5eb59e29689
3f79776a02f5565a3e908bfcfa56e4a2800bff47
refs/heads/main
2023-03-03T09:03:48.055327
2021-02-16T17:52:48
2021-02-16T17:52:48
314,258,356
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
print("*Program that store a list of first names.Count the occurences of 'a' within the list.*") s=input("Enter list of names : ") l=list(s.split()) print("List of names : ",l) c=0 #for i in range(s): # n=input("Enter the name : ") # l.append(n) for i in l: for j in i: if j in "Aa": c=c+1 print("Occurrences of 'a' in list : ",c) #x=s.count('a') #print(x)
1cad745cb3fc25575b6ba2e453d2efb213f69eaa
96d7fc7b53c881da09b460e4a6e6ad4faabe8fe7
/spiking_model.py
759b1c2c76a663d7c51531c7ed660e3d85f7ee65
[]
no_license
zcqsata/depression-model-tdcs
cb43759264ab5b167e62eb4d36ac313b2fbf8c42
cb8da08e2b29667aa71c34ae5b45fdbecbf23521
refs/heads/master
2022-12-08T04:41:43.837298
2020-09-01T18:34:38
2020-09-01T18:34:38
292,067,211
0
0
null
null
null
null
UTF-8
Python
false
false
10,916
py
############################################################################################ # # Simulation code for "A computational model of Major Depression: The role of glutamate # dysfunction on cingulo-frontal network dynamics" # Ramirez-Mahaluf J.P., Roxin A., Mayberg H.S. and Compte A. Cerebral Cortex, 2015 # ############################################################################################ # This Python code requires the installation of Brian www.briansimulator.org from brian import * from numpy.fft import rfft,irfft from scipy.io import savemat import numpy #Network parameters NE=80 # Excitatory neurons, for fast simulations in the article we use 80 NI=20 # Inhibitory neurons, for fast simulations in the article we use 20 #Biophysical parameters tauav = 2*ms # tau AMPA decay on vACC, this parameter was used to simulate MDD. Mild MDD (2.5%) = 2.05; Moderate MDD (5%) = 2.1; Severe MDD (7.5%) = 2.15 tauad = 2*ms # tau AMPA decay on dlPFC taun = 100*ms # tau NMDA decay taux = 2*ms # tau NMDA rise taug = 10*ms # tau GABA decay Vt =-50*mvolt # spike threshold Vr =-55*mvolt # reset value Elv =-70*mvolt # resting potential ventral ACC, this parameter was used to simulate SSRI treatment. El =-70*mvolt # resting potential dlPFC Ven = 16.129*mV refE= 2*ms # refractory periods piramidal cell refI= 1*ms # refractory period inhibitory cell cmE= 500*pF #capacitance piramidal cel cmI= 200*pF #capacitance interneuron tauE =20*ms #tau piramidal cel tauI =10*ms #tau interneuron alpha =0.5*kHz S=1 #Connectivity sparsensess; S=1, all-to-all connectivity was used in the article; use S<1 for sparse random connectivity N=100/NE # Factor for rescaling the weights according to the number of neurons tacs_start_time = 2000*ms tacs_end_time = 3000*ms #Connection parameters wgEEN = 0.001761*(1/S)*N #weight excitatory to excitatory through NMDA wgEEA = 0.0009454*(1/S)*N #weight excitatory to excitatory through AMPA wgEIN = 0.0012*(1/S)*N #weight excitatory to inhibitory through NMDA wgEIA = 0.0004*(1/S)*N #weight excitatory to inhibitory through AMPA wgIEG = 0.005*(1/S)*N #weight inhibitory to excitatory through GABA wgIIG = 0.004865*(1/S)*N #weight inhibitory to inhibitory through GABA wgEIA1 = 0.0004*(1/S)*N #weight vACC excitatory to dlPFC inhibitory through NMDA wgEIA2 = 0.0004*(1/S)*N #weight dlPFC excitatory to vACC excitatory through NMDA #equations excitatory cell vACC eqsE1 = ''' dV/dt = (-gea*V-gen*V/(1+exp(-V/Ven)/3.57)-gi*(V+70*mV)-(V-Elv))/(tauE) + I/cmE : volt dgea/dt = -gea/(tauav) : 1 dgi/dt = -gi/(taug) : 1 dspre/dt = -spre/(taun)+alpha*xpre*(1-spre) : 1 dxpre/dt = -xpre/(taux) : 1 gen: 1 I: amp ''' #equations inhibitory cell vACC eqsI1 = ''' dV/dt = (-gea*V-gen*V/(1+exp(-V/Ven)/3.57)-gi*(V+70*mV)-(V-El))/(tauI) + I/cmI : volt dgea/dt = -gea/(tauav) : 1 dgi/dt = -gi/(taug) : 1 dspre/dt = -spre/(taun)+alpha*xpre*(1-spre) : 1 dxpre/dt = -xpre/(taux) : 1 gen: 1 I: amp ''' #equations excitatory cell dlPFC eqsE2 = ''' dV/dt = (-gea*V-gen*V/(1+exp(-V/Ven)/3.57)-gi*(V+70*mV)-(V-El))/(tauE) + I/cmE : volt dgea/dt = -gea/(tauad) : 1 dgi/dt = -gi/(taug) : 1 dspre/dt = -spre/(taun)+alpha*xpre*(1-spre) : 1 dxpre/dt = -xpre/(taux) : 1 gen: 1 I: amp ''' #equations inhibitory cell dlPFC eqsI2 = ''' dV/dt = (-gea*V-gen*V/(1+exp(-V/Ven)/3.57)-gi*(V+70*mV)-(V-El))/(tauI) + I/cmI : volt dgea/dt = -gea/(tauad) : 1 dgi/dt = -gi/(taug) : 1 dspre/dt = -spre/(taun)+alpha*xpre*(1-spre) : 1 dxpre/dt = -xpre/(taux) : 1 gen: 1 I: amp ''' #Populations of neurons: Pev = NeuronGroup(NE, model= eqsE1, threshold=Vt, reset= Vr, refractory=refE) #vACC excitatory neurons Piv = NeuronGroup(NI, model= eqsI1, threshold=Vt, reset= Vr, refractory=refI) #vACC inhibitory neurons Ped = NeuronGroup(NE, model= eqsE2, threshold=Vt, reset= Vr, refractory=refE) #dlPFC excitatory neurons Pid = NeuronGroup(NI, model= eqsI2, threshold=Vt, reset= Vr, refractory=refI) #dlPFC inhibitory neurons #Connection NMDA: selfnmda_v = IdentityConnection(Pev, Pev, 'xpre', weight=1.0) #NMDA connections, excitatory to excitatory neurons in vACC selfnmda_d = IdentityConnection(Ped, Ped, 'xpre', weight=1.0) #NMDA connections, excitatory to excitatory neurons in dlPF #Connections AMPA and GABA: Ceeav = Connection(Pev, Pev, 'gea', structure='dense') #AMPA connections, excitatory to excitatory neurons in vACC Ceiav = Connection(Pev, Piv, 'gea', structure='dense') #AMPA connections, excitatory to inhibitory neurons in vACC Ciev = Connection(Piv, Pev, 'gi', structure='dense') # GABA connections, inhibitory to excitatory neurons in vACC Ciiv = Connection(Piv, Piv, 'gi', structure='dense') # GABA connections, excitatory to excitatory neurons in vACC Ceead = Connection(Ped, Ped, 'gea', structure='dense')#AMPA connections, excitatory to excitatory neurons in dlPFC Ceiad = Connection(Ped, Pid, 'gea', structure='dense') #AMPA connections, excitatory to inhibitory neurons in dlPFC Cied = Connection(Pid, Ped, 'gi', structure='dense')# GABA connections, inhibitory to excitatory neurons in dlPFC Ciid = Connection(Pid, Pid, 'gi', structure='dense')# GABA connections, excitatory to excitatory neurons in dlPFC Ceiav1 = Connection(Pev, Pid, 'gea' )#AMPA connections, excitatory neurons in vACC target inhibitory neurons in dlPFC Ceiad1 = Connection(Ped, Piv, 'gea' )#AMPA connections excitatory neurons in dlPFC target inhibitory neurons in vACC Ceeav.connect_random(Pev, Pev, S, weight=wgEEA) #AMPA connections, excitatory to excitatory neurons in vACC Ceiav.connect_random(Pev, Piv, S, weight=wgEIA) #AMPA connections, excitatory to inhibitory neurons in vACC Ciev.connect_random(Piv, Pev, S, weight=wgIEG) # GABA connections, inhibitory to excitatory neurons in vACC Ciiv.connect_random(Piv, Piv, S, weight=wgIEG) # GABA connections, excitatory to excitatory neurons in vACC Ceead.connect_random(Ped, Ped, S, weight=wgEEA) #AMPA connections, excitatory to excitatory neurons in dlPFC Ceiad.connect_random(Ped, Pid, S, weight=wgEIA) #AMPA connections, excitatory to inhibitory neurons in dlPFC Cied.connect_random(Pid, Ped, S, weight=wgIEG) # GABA connections, inhibitory to excitatory neurons in dlPFC Ciid.connect_random(Pid, Pid, S,weight=wgIIG) # GABA connections, excitatory to excitatory neurons in dlPFC Ceiav1.connect_random(Pev, Pid, S, weight=wgEIA1) #AMPA connections, excitatory neurons in vACC target inhibitory neurons in dlPFC Ceiad1.connect_random(Ped, Piv, S, weight=wgEIA2) #AMPA connections excitatory neurons in dlPFC target inhibitory neurons in vACC #NMDA synapses E_nmda_v = asarray(Pev.spre) E_nmda_d = asarray(Ped.spre) E_gen_v = asarray(Pev.gen) E_gen_d = asarray(Ped.gen) I_gen_v = asarray(Piv.gen) I_gen_d = asarray(Pid.gen) #Calculate NMDA contributions @network_operation(when='start') def update_nmda(): E_gen_v[:] = wgEEN/wgEEA * numpy.dot(E_nmda_v,Ceeav.W) I_gen_v[:] = wgEIN/wgEIA * numpy.dot(E_nmda_v,Ceiav.W) E_gen_d[:] = wgEEN/wgEEA * numpy.dot(E_nmda_d,Ceead.W) I_gen_d[:] = wgEIN/wgEIA * numpy.dot(E_nmda_d,Ceiad.W) #@network_operation(when='start') def inject_current(): if (defaultclock.t>tacs_start_time)&(defaultclock.t <tacs_end_time): Pev.I = 0.00000000000*amp Piv.I = 0.000000000000*amp Ped.I = 0.00000000000*amp Pid.I = 0.000000000000*amp #External noise: extinput1E=PoissonGroup(NE,rates=1800*Hz) extinput1I=PoissonGroup(NI,rates=1800*Hz) input1_coE=IdentityConnection(extinput1E,Pev,'gea',weight=0.082708) input1_coI=IdentityConnection(extinput1I,Piv,'gea',weight=0.081) extinput2E=PoissonGroup(NE,rates=1800*Hz) extinput2I=PoissonGroup(NI,rates=1800*Hz) input2_coE=IdentityConnection(extinput2E,Ped,'gea',weight=0.082708) input2_coI=IdentityConnection(extinput2I,Pid,'gea',weight=0.081) #Sadnnes task, emotional signal to vACC exttaskinput1_on=4500*ms exttaskinput1_off=5525*ms exttaskinput1E=PoissonGroup(100,rates=lambda t: (t>exttaskinput1_on)*(t<exttaskinput1_off)*800*Hz) #taskinput1_coE=IdentityConnection(exttaskinput1E,Pev,'gea',weight=0.0955) #exttaskinput2_on=50000*ms #exttaskinput2_off=50250*ms #exttaskinput2E=PoissonGroup(100,rates=lambda t: (t>exttaskinput2_on)*(t<exttaskinput2_off)*800*Hz) #taskinput2_coE=IdentityConnection(exttaskinput2E,Pev,'gea',weight=0.0955) #exttaskinput3_on=55000*ms #exttaskinput3_off=55250*ms #exttaskinput3E=PoissonGroup(80,rates=lambda t: (t>exttaskinput3_on)*(t<exttaskinput3_off)*800*Hz) #taskinput3_coE=IdentityConnection(exttaskinput3E,Pev,'gea',weight=0.0955) #Working memory task, cognitive signal to dlPFC exttaskinput4_on=6000*ms exttaskinput4_off=6525*ms exttaskinput4E=PoissonGroup(100,rates=lambda t: (t>exttaskinput4_on)*(t<exttaskinput4_off)*800*Hz) #taskinput4_coE=IdentityConnection(exttaskinput4E,Ped,'gea',weight=0.0955) #exttaskinput5_on=65000*ms #exttaskinput5_off=65250*ms #exttaskinput5E=PoissonGroup(80,rates=lambda t: (t>exttaskinput5_on)*(t<exttaskinput5_off)*800*Hz) #taskinput5_coE=IdentityConnection(exttaskinput5E,Ped,'gea',weight=0.0955) #exttaskinput6_on=70000*ms #exttaskinput6_off=70250*ms #exttaskinput6E=PoissonGroup(80,rates=lambda t: (t>exttaskinput6_on)*(t<exttaskinput6_off)*800*Hz) #taskinput6_coE=IdentityConnection(exttaskinput6E,Ped,'gea',weight=0.0955) #Deep Brain Stimulation (DBS): #extinput3I=SpikeGeneratorGroup(1,c_[zeros(2597),linspace(0*ms,19996.9*ms,2597)]) #input3_coI=Connection(extinput3I,Piv,'gea',weight=0.03) #Save files Miv = SpikeMonitor(Piv) Mev = SpikeMonitor(Pev) Mid = SpikeMonitor(Pid) Med = SpikeMonitor(Ped) Mv=PopulationRateMonitor(Pev,bin=0.1*second) Md=PopulationRateMonitor(Ped,bin=0.1*second) Mvm=PopulationRateMonitor(Pev,bin=0.5*second) Mdm=PopulationRateMonitor(Ped,bin=0.5*second) spikes_Ev = FileSpikeMonitor(Pev,'spikes_E_vACC.dat',record=True) spikes_Ed = FileSpikeMonitor(Ped,'spikes_E_dlPFC.dat',record=True) spikes_Iv = FileSpikeMonitor(Piv,'spikes_I_vACC.dat',record=True) spikes_Id = FileSpikeMonitor(Pid,'spikes_I_dlPFC.dat',record=True) #run run(20*second) #plot subplot(2,2,1) raster_plot(Mev, title=' vACC') subplot(2,2,2) plot(Mv.times,Mv.rate,Mvm.times,Mvm.rate,'ro:') title('vACC') ylabel('firing rate (Hz)') xlabel('time (s)') subplot(2,2,3) raster_plot(Med, title='dlPFC') subplot(2,2,4) plot(Md.times,Md.rate,Mdm.times,Mdm.rate,'ro:') title('dlPFC') ylabel('firing rate (Hz)') xlabel('time (s)') show() spikes_Ev.close_file() spikes_Ed.close_file() spikes_Iv.close_file() spikes_Id.close_file()
a785fa75ca5f54312b34d6bd5aac24470cbef85a
ea9d5e38d55d7e69bcb4ae74bb3dfd3028fba4d3
/open/Alibaba/scripts/restore_full_accuracy_logs.py
4f38d42ed16346c08f49ba912ba62b8fd81f07fb
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ltechkorea/inference_results_v1.0
cbe29d0f32c525b74525c1c215bf66d8385f3fd0
48e24f151f2625a579d34f0a721ad3698d173dbb
refs/heads/ltech
2023-07-04T06:38:49.691181
2021-08-09T23:40:48
2021-08-10T01:33:22
387,295,024
0
0
NOASSERTION
2021-07-31T00:54:06
2021-07-19T00:20:19
C++
UTF-8
Python
false
false
8,293
py
#! /usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys sys.path.insert(0, os.getcwd()) import re import subprocess import shutil import glob import argparse import datetime import json from scripts.utils import Tree, SortingCriteria, get_system_type def run_command(cmd, get_output=False, tee=True, custom_env=None): """ Runs a command. Args: cmd (str): The command to run. get_output (bool): If true, run_command will return the stdout output. Default: False. tee (bool): If true, captures output (if get_output is true) as well as prints output to stdout. Otherwise, does not print to stdout. """ print("Running command: {:}".format(cmd)) if not get_output: return subprocess.check_call(cmd, shell=True) else: output = [] if custom_env is not None: print("Overriding Environment") p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True, env=custom_env) else: p = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) for line in iter(p.stdout.readline, b""): line = line.decode("utf-8") if tee: sys.stdout.write(line) sys.stdout.flush() output.append(line.rstrip("\n")) ret = p.wait() if ret == 0: return output else: raise subprocess.CalledProcessError(ret, cmd) nightly_system_list = [ "A100", "A100-PCIe", "A100-PCIex2", "A100_MIG_1x1g_5gb", "A100x8", "T4", "T4x8", "T4x20", "Xavier", "XavierNX" ] def download_artifact(username, api_key, artifacts_dir, artifact_id): print("Checking artifact {:}...".format(artifact_id)) # Check if it's pushed by nightly. matches = re.match(r"({:})-[\w-]+-\d+-[\w-]+".format("|".join(nightly_system_list)), artifact_id) is_L1 = matches is not None if is_L1: new_path = os.path.join(artifacts_dir, artifact_id + ".gz") remote_path = "L1/{:}/{:}".format(matches.group(1), artifact_id) else: old_path = os.path.join(artifacts_dir, "full-results_" + artifact_id + ".gz") new_path = os.path.join(artifacts_dir, artifact_id + ".gz") remote_path = "full_result_logs/full-results_" + artifact_id if os.path.exists(new_path): print("File {:} already exists.".format(new_path)) return new_path print("Downloading artifact {:}...".format(artifact_id)) command_fmt = "cd {:} && curl -u{:}:{:} -O \"https://urm.nvidia.com/artifactory/sw-mlpinf-generic/{:}.gz\"" command = command_fmt.format(artifacts_dir, username, api_key, remote_path) run_command(command) if not is_L1: # Strip the 'full-results_' prefix shutil.move(old_path, new_path) return new_path def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--artifactory_username", help="Username for Artifactory", ) parser.add_argument( "--artifactory_api_key", help="API key for Artifactory", ) parser.add_argument( "--artifacts_dir", help="Path to directory that stores the artifacts", default="build/artifacts" ) parser.add_argument( "--result_ids", help="Comma separated list of unique result IDs", default=None ) parser.add_argument( "--metadata_file", help="File that stores metadata about these results", default="results_metadata.json" ) parser.add_argument( "--division", help="Division: open/closed", choices=["open", "closed"], default="closed" ) parser.add_argument( "--systems", help="Comma separated list of system IDs", default="*" ) parser.add_argument( "--benchmarks", help="Comma separated list of benchmarks. Use official names (i.e. dlrm-99.9 instead of dlrm)", default="*" ) parser.add_argument( "--scenarios", help="Comma separated list of scenarios.", default="*" ) parser.add_argument( "--test_ids", help="Comma separated list of test ids (i.e. TEST01,TEST04-B).", default="TEST01" ) return parser.parse_args() def main(): args = get_args() metadata = None if os.path.exists(args.metadata_file): with open(args.metadata_file) as f: metadata = json.load(f) metadata = Tree(starting_val=metadata) artifact_ids = set() if args.result_ids is None else set(args.result_ids.split(",")) test_ids = [i for i in args.test_ids.split(",") if len(i) > 0] # Populate the set of all artifacts we should get for system in args.systems.split(","): for benchmark in args.benchmarks.split(","): for scenario in args.scenarios.split(","): res_id = metadata.get([system, benchmark, scenario, "accuracy", "result_id"], default=None) if res_id is not None: artifact_ids.add(res_id) for test_id in test_ids: res_id = metadata.get([system, benchmark, scenario, "compliance", test_id, "accuracy", "result_id"], default=None) if res_id is not None: artifact_ids.add(res_id) # Download all for artifact_id in artifact_ids: download_artifact(args.artifactory_username, args.artifactory_api_key, args.artifacts_dir, artifact_id) # Prepare to extract logs into build/full_results extract_map = {} for system in args.systems.split(","): for benchmark in args.benchmarks.split(","): for scenario in args.scenarios.split(","): res_id = metadata.get([system, benchmark, scenario, "accuracy", "result_id"], default=None) if res_id is None: continue tarball_path = os.path.join(args.artifacts_dir, res_id + ".gz") archive_path = "build/full_results/results/{:}/{:}/{:}/accuracy/mlperf_log_accuracy.json ".format( system, benchmark, scenario ) if tarball_path in extract_map: extract_map[tarball_path] += archive_path else: extract_map[tarball_path] = archive_path for test_id in test_ids: res_id = metadata.get([system, benchmark, scenario, "compliance", test_id, "accuracy", "result_id"], default=None) if res_id is not None: archive_path = "build/full_results/compliance/{:}/{:}/{:}/{:}/accuracy/mlperf_log_accuracy.json ".format( system, benchmark, scenario, test_id ) extract_map[tarball_path] += archive_path # Actually extract the files for tarball_path in extract_map: archive_paths = extract_map[tarball_path] print("Extracting files {:} from tarball {:}...".format(archive_paths, tarball_path)) cmd = "tar -xvzf {:} {:}".format(tarball_path, archive_paths) run_command(cmd) # Move the files to results/ and compliance/ glob_to_logs = os.path.join("build/full_results", "**", "mlperf_log_accuracy.json") all_logs = glob.glob(glob_to_logs, recursive=True) for log in all_logs: dst = log.replace("build/full_results/", "") print("Moving {:} -> {:}".format(log, dst)) shutil.move(log, dst) print("Done!") if __name__ == '__main__': main()
131bd775fbf3660157f4776eed1ec7adfd17b2bf
4bb2dd97c277feaa7da5fbe08d3cdf979fef27d2
/Handwritten digit recognition/Handwritten_digit_recognition.py
406487547b10e3f08baf66c9273b0b4ea142b525
[]
no_license
mtraino/Projects
5aec66678aea70701646fa631fa1de7e7fba09f9
acd4e52c7cf3f353cc749f2f48c83bbe8209bb46
refs/heads/master
2021-06-21T00:11:01.867485
2021-01-27T16:19:10
2021-01-27T16:19:10
168,620,227
1
0
null
null
null
null
UTF-8
Python
false
false
2,344
py
""" Matthew Traino Handwritten digit recognition Use a neural network for simple hand written number classification. Python 3.6.7 """ import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import numpy as np import ipdb # Loading the data (training_data, training_labels), (testing_data, testing_labels) = mnist.load_data() # Setting the seed np.random.seed(3520) # Setting variables num_classes = 10 batch_size = 100 epochs = 100 num_inputs = training_data.shape learning_rate = 0.02 # Converting the labels from 0-9 to their binary form training_labels = keras.utils.to_categorical(training_labels) testing_labels_binary = keras.utils.to_categorical(testing_labels) # Reshaping the data training_data.shape = (60000, 784) testing_data.shape = (10000, 784) # Creating the neural network # Adding the layers in a 784-300-10 model with relu for the layer's activations and softmax for the output model = Sequential() model.add(Dense(units=300, activation='relu', input_dim=784)) model.add(Dense(units=300, activation='relu')) model.add(Dense(units=num_classes, activation='softmax')) model.summary() sgd = keras.optimizers.SGD(lr=learning_rate) model.compile(loss='mean_squared_error', optimizer=sgd, metrics=['accuracy']) # Training the model training = model.fit(training_data, training_labels, batch_size=batch_size, epochs=epochs, verbose=2, validation_data=(testing_data, testing_labels_binary)) score = model.evaluate(training_data, training_labels, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) # Plotting accuracy by epochs Y = np.arange(0, 1, .05) # array of all the numbers between 0 and 1 with .05 increments X = np.arange(0, epochs, 9) # array of all the numbers between 0 and the number of epochs run incrementing by 10s plt.title('Accuracy vs Epochs') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.yticks(Y) plt.xticks(X) plt.plot(training.history['acc']) plt.show() pred = model.predict(testing_data) pred = np.argmax(pred, axis=1) b = confusion_matrix(testing_labels, pred) print("Confusion matrix") print(b) #ipdb.set_trace()
231e4d07e29b17f02396788300517879e737412d
8da5e4898e3371da60f9b59683709ff9fe7d2426
/PostProcesing.py
41c580d8bcdf487d70e8da6e0090807f5cafa7a0
[]
no_license
deepakkumar18035/ScriptToAnimation
29664028b690c84814da75804ac01d3f29ef79b5
ea81be4837ce21b47742d46e45cf6a3d783984ac
refs/heads/main
2023-04-18T05:29:27.869645
2021-05-05T03:29:54
2021-05-05T03:29:54
362,127,932
1
1
null
null
null
null
UTF-8
Python
false
false
1,067
py
import moviepy.video.io.ImageSequenceClip import moviepy.editor as mpe import sys import os destinFolder = "VideoOut/" def CleanDestinFolder(): for x in os.listdir(destinFolder): os.remove(destinFolder + x) return def combine_audio(vidname, audname, outname, fps=24): my_clip = mpe.VideoFileClip(vidname) audio_background = mpe.AudioFileClip(audname) final_clip = my_clip.set_audio(audio_background) final_clip.write_videofile(outname,fps=fps) text = sys.argv[1].split(".")[0] fps=24 audname = "Audio/"+text+".wav" out = "Final/Out.mp4" image_files = [destinFolder+'/'+img for img in os.listdir(destinFolder) if img.endswith(".png")] clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(image_files, fps=fps) if text+'.wav' in os.listdir("Audio/"): audio_background = mpe.AudioFileClip(audname) final_clip = clip.set_audio(audio_background) final_clip.write_videofile(out) else: print("No audio generated.") clip.write_videofile(out) print("Video generated sucessfully....") """ CleanDestinFolder()"""
1757b4ada40fc740822f3b724ac68b278d18e210
400797adf8ff2a1e72e7d9782e114c1ce29fcf1b
/guoanan/ybsmt/manage.py
36314349be59a9bf735c1ec682cbf34872ee8cfa
[]
no_license
guoanan2013/guoanan
d42106fc497bb19dc64549f01825b319e24f219c
fa79cea662f685aadaa2ae81d89c6743f04b6beb
refs/heads/master
2016-09-05T12:47:07.268876
2014-04-19T08:01:02
2014-04-19T08:01:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ManagementTool.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
4861fd1d218577378ff34c1e71ad307195501e93
d0ba48b0f15020009d8ccdc0cac913a2f310734d
/Triplet_DataLoader.py
7928acb3a90914f36250f9915487758c22124d33
[]
no_license
hangxiu/MetricEmbeddingNet
4bf1c61ba9d1dfd167621f9b4d4230f527b46f06
e9ca2efc41a88bb87378635ac62e9e0a1b26cbaa
refs/heads/master
2022-12-20T05:57:21.797528
2020-09-12T17:22:50
2020-09-12T17:22:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,714
py
import torch.utils.data.dataloader as dataloader import os import torch import torchaudio import numpy as np from random import sample as Sampler from random import shuffle as shuffle import matplotlib.pyplot as plt import numpy as np import math import time PATH = "/home/lucas/PycharmProjects/Papers_with_code/data/AMI/triplet_splits" class TripletLoader(torch.utils.data.Dataset): def __init__(self,base_path, anchor_positive_pairs,sample_list,train=True): self.base_path = base_path self.anchor_positive_pairs = [] self.sample_list = [] self.train = train for line in open(os.path.join(self.base_path, sample_list)): self.sample_list.append((line.split()[0], line.split()[1])) for line in open(os.path.join(self.base_path,anchor_positive_pairs)): negative = Sampler([sample[0] for sample in self.sample_list if sample[1] != line.split()[2]],1) self.anchor_positive_pairs.append((line.split()[0],line.split()[1], negative[0])) #print(line.split()[0], line.split()[1], negative[0]) shuffle(self.anchor_positive_pairs) if self.train: self.anchor_positive_pairs = self.anchor_positive_pairs[0:int(0.8*len(self.anchor_positive_pairs))] else: self.anchor_positive_pairs = self.anchor_positive_pairs[int(0.8*len(self.anchor_positive_pairs)):] def __getitem__(self,index): anchor, positive, negative = str(self.anchor_positive_pairs[index][0]), str(self.anchor_positive_pairs[index][1]), str(self.anchor_positive_pairs[index][2]) anchor, sample_rate = torchaudio.load(os.path.join(self.base_path,anchor)) positive, sample_rate = torchaudio.load(os.path.join(self.base_path,positive)) negative, sample_rate = torchaudio.load(os.path.join(self.base_path,negative)) anchor_specgram = torchaudio.transforms.Spectrogram(normalized=True, power=1, n_fft=400, hop_length=100)(anchor) positive_specgram = torchaudio.transforms.Spectrogram(normalized=True, power=1, n_fft=400, hop_length=100)(positive) #negatives = [sample[0] for sample in self.sample_list if sample[1] != label] #random_state = np.random.RandomState(29) #negative = Sampler(negatives,1) #negative, sample_rate = torchaudio.load(os.path.join(self.base_path,negative[0])) negative_specgram = torchaudio.transforms.Spectrogram(normalized=True, power=1, n_fft=400, hop_length=100)(negative) return anchor_specgram,positive_specgram,negative_specgram def __len__(self): return len(self.anchor_positive_pairs) class Selective_Loader(torch.utils.data.Dataset): def __init__(self, base_path, sample_list, label, train=True, negative=True): self.base_path = base_path self.sample_list = sample_list self.train = train self.label = label self.samples = [] self.negative = negative for line in open(os.path.join(self.base_path, sample_list)): self.samples.append((line.split()[0], line.split()[1])) if self.negative: self.samples = [sample[0] for sample in self.samples if sample[1] != self.label] print(self.samples) shuffle(self.samples) else: self.samples = [sample[0] for sample in self.samples if sample[1] == self.label] print(self.samples) shuffle(self.samples) def __getitem__(self, index): sample_name = str(self.samples[index]) track , sample_rate = torchaudio.load(os.path.join(self.base_path, sample_name)) spectrogram = torchaudio.transforms.Spectrogram(normalized=True, power=1, n_fft=400, hop_length=100)(track) return spectrogram #test_loader = Negative_Loader(base_path="/home/lucas/PycharmProjects/Papers_with_code/data/AMI/triplet_splits", sample_list="sample_list.txt",label='5', train=True, negative=False) class Frame_Loader: def __init__(self,path, frame_list): self.path = path self.frame_list = frame_list self.track, self.sample_rate = torchaudio.load(self.path) def __getitem__(self, index): start_sample = self.frame_list[index][0]*self.sample_rate end_sample = self.frame_list[index][1]*self.sample_rate spectrogram = torchaudio.transforms.Spectrogram(normalized=True, power=1, n_fft=400, hop_length=100)(self.track) return spectrogram def __len__(self): return len(self.frame_list) class Triplet_Time_Loader: def __init__(self, path, spectrogram=True, train=True): self.path = path self.as_spectrogram = spectrogram self.samples = [] self.samples = [(line.split()[0], line.split()[1], line.split()[2], line.split()[3], line.split()[4]) for line in open(self.path)] #shuffle(self.samples) if train: self.samples = self.samples[0:int(0.8 * len(self.samples))] print("TRAIN LENGTH", len(self.samples)) else: self.samples = self.samples[int(0.8 * len(self.samples)):] print("TEST LENGTH", len(self.samples)) def __getitem__(self, index): sample, string_label, int_label, start_time, stop_time = self.samples[index][0], self.samples[index][1], int(self.samples[index][2]), int(self.samples[index][3]), int(self.samples[index][4]) track, sample_rate = torchaudio.load(sample) print(torch.mean(track)) print(sample_rate) track = track[0][(start_time):(stop_time)] if self.as_spectrogram: track = track.view(1, -1) print(track) spectrogram = torchaudio.transforms.Spectrogram(normalized=True, power=1, n_fft=400, hop_length=100)(track) return spectrogram, torch.tensor(int_label), string_label else: return track, torch.tensor(int_label), string_label def __len__(self): return len(self.samples) class Spectrogram_Loader(torch.utils.data.Dataset): def __init__(self, filename, mel=False): """ Load spectrograms from given input audio snippet :param filename: .txt file containing snippet information :param mel: bool --> return melspectrogram """ self.path = filename self.mel = mel self.samples = [(line.split()[0], line.split()[1], line.split()[2], line.split()[3], line.split()[4]) for line in open(self.path)] print("The length is: {}".format(len(self.samples))) def __getitem__(self, index): sample, string_label, int_label, start_time, stop_time = self.samples[index][0], self.samples[index][1], int( self.samples[index][2]), int(self.samples[index][3]), int(self.samples[index][4]) track, sample_rate = torchaudio.backend.sox_backend.load_wav(sample, normalization=False) track = track[0][(start_time):(stop_time)] track = track.view(1, -1) if self.mel == False: #print(track.size()) spectrogram = torchaudio.transforms.Spectrogram(normalized=True, power=1, n_fft=400, hop_length=100)(track) #print(spectrogram.size()) return spectrogram, torch.tensor(int_label), string_label else: spectrogram = torchaudio.transforms.MelSpectrogram(sample_rate=sample_rate, n_fft=400, hop_length=100, n_mels=128) return spectrogram, torch.tensor(int_label), string_label def __len__(self): return len(self.samples) class Triplet_Tensor_Loader: def __init__(self, path,spectrogram=True, train=True): self.path = path self.as_spectrogram = spectrogram self.samples = [] self.samples = [(line.split()[0], line.split()[1], line.split()[2], line.split()[3], line.split()[4]) for line in open(self.path)] #shuffle(self.samples) if train: self.samples = self.samples[0:int(0.8 * len(self.samples))] print("TRAIN LENGTH", len(self.samples)) else: self.samples = self.samples[int(0.8 * len(self.samples)):] print("TEST LENGTH", len(self.samples)) def __getitem__(self, index): sample, string_label, int_label, start_time, stop_time = self.samples[index][0], self.samples[index][1], int(self.samples[index][2]), int(self.samples[index][3]), int(self.samples[index][4]) track = torch.load(sample) track = track[(start_time):(stop_time)] if self.as_spectrogram: track = track.view(1, -1) spectrogram = torchaudio.transforms.Spectrogram(normalized=True, power=1, n_fft=400, hop_length=100)(track) return spectrogram, torch.tensor(int_label), string_label else: return track, torch.tensor(int_label), string_label def __len__(self): return len(self.samples) class Single_Speaker_Loader: """ The Single_Speaker_Loader class is used to load samples from a SINGLE SPECIFIED SPEAKER path: Path to the sample list (txt file) speaker: Label of desired speaker """ def __init__(self,path, speaker): self.path = path self.samples = [(line.split()[0], line.split()[1], line.split()[2], line.split()[3], line.split()[4]) for line in open(self.path)] self.samples = [sample for sample in self.samples if (sample[1] == speaker)] def __getitem__(self, index): sample, string_label, int_label, start_time, stop_time = self.samples[index][0], self.samples[index][1], int( self.samples[index][2]), int(self.samples[index][3]), int(self.samples[index][4]) track, sample_rate = torchaudio.load(sample) track = track[0][(start_time * sample_rate):(stop_time * sample_rate)] track = track.view(1, -1) spectrogram = torchaudio.transforms.Spectrogram(normalized=True, power=1, n_fft=400, hop_length=100)(track) return spectrogram, torch.tensor(int_label), string_label def __len__(self): return len(self.samples) class Window_Loader(torch.utils.data.Dataset): def __init__(self, filename,windowed=True, window_length=0.2, overlap=0.01): self.path = filename self.samples = [] self.samples = [(line.split()[0], line.split()[1], line.split()[2], line.split()[3], line.split()[4]) for line in open(self.path)] self.window_length = int(window_length*16000) self.overlap = int(overlap*16000) self.windowed = windowed def __getitem__(self, index): sample, string_label, int_label, start_time, stop_time = self.samples[index][0], self.samples[index][1], int(self.samples[index][2]), int(self.samples[index][3]), int(self.samples[index][4]) track = torchaudio.backend.sox_backend.load(sample, normalization=True) track, sample_rate = track[0], track[1] track = track[0][(start_time):(stop_time)] if self.windowed: n_windows = 1 + math.floor((len(track)-self.window_length)/(self.window_length-self.overlap)) n_windows = int(n_windows) window_tensor = torch.zeros(n_windows, self.window_length) for i in range(n_windows): offset = self.overlap*i window_tensor[i, :] = track[offset:offset+self.window_length] return window_tensor, torch.tensor(int_label), string_label else: return track, torch.tensor(int_label), string_label def __len__(self): return len(self.samples) #test = Triplet_Time_Loader(path=os.path.join('/home/lucas/PycharmProjects/Papers_with_code/data/AMI/amicorpus_individual/Extracted_Speech','trimmed_sample_list.txt')) #print(test.__getitem__(1))
de208f04509fcd32302469aab73510ac8b2d37a0
a6ae30df32be713ea300f3c855be34c400b60a2a
/app/analyseData.py
991a469b07eb6b7eb5687659b63e427c6e6e3046
[ "MIT" ]
permissive
amelie-fri/munch-api
894f54e430443876c9ed4c1f43ff8b3cd3c4e646
cbb205acbb5b1a107862cd8a53197de5317a26e4
refs/heads/master
2023-02-12T22:44:16.585945
2021-01-04T15:46:53
2021-01-04T15:46:53
295,173,268
2
1
null
null
null
null
UTF-8
Python
false
false
3,362
py
# script used to analyse how successful the approaches to extracting data are from dataManager import parentManager from TeiParser import Family import os import pprint analysisFile = "analyse.txt" # write to analysis file - analyse.txt def writeToFile(_text, mode="a", pretty=None): # Append to file with open(analysisFile, mode, encoding="utf-8") as _file: if pretty: pprint.pprint(_text, _file) else: print(_text, file=_file) # path to "_data/N" folder path_N = os.path.join("_data", "N") # create the parent manager pm_N = parentManager(path_N) # Initialise file writeToFile("Data Analysis", mode="w") writeToFile("File: {}".format(analysisFile)) writeToFile("Data: {}".format(path_N)) # Check all .xml files in directory allFiles = [] for item in os.listdir(path_N): if os.path.splitext(item)[-1].lower() == ".xml": allFiles.append(item) # Initialise foundFiles = [] types = {} dates = {"when": {}, "from": {}, "to": {}} whenCount = 0 # For each parent for i, parentFile in enumerate(pm_N.parents): # Print process to command line percent = str(int((100 * (i + 1) / len(pm_N.parents)))) print(f"\r Progress: {percent}% ", end="\r") # Initialize parent object parent = Family(os.path.join(path_N, parentFile)) # append parent filename to foundFiles foundFiles.append(parent.filename) # if the parent has a type if parent.data.type: # if the type already exists in types if parent.data.type in types: # increment type types[parent.data.type] += 1 else: # start counting type types[parent.data.type] = 1 # for each child for child in parent.children: # append childname to foundfiles foundFiles.append(child.filename) # if child has date dict if child.date: # for each key in dates for item in dates: # if date key exists in child date if item in child.date: # for each date in dates key for date in child.date[item]: # pick only the year number if "-" in date: date = date.split("-")[0] # count when if item == "when": whenCount += 1 # increment date if date in dates[item]: dates[item][date] += 1 # start counting date else: dates[item][date] = 1 # Add the count to the dict dates["whenCount"] = whenCount # Build/Calculate Info info = { "files": len(allFiles), "found": len(foundFiles), "notFound": len(allFiles) - len(foundFiles), "parents": len(pm_N.parents), "children": len(foundFiles) - len(pm_N.parents), } # Write Types writeToFile("\nTYPES") writeToFile(types, pretty=True) # Write Dates writeToFile("\nDATES") writeToFile(dates, pretty=True) # Write Info writeToFile("\nINFO") writeToFile(info, pretty=True) # Which files are not found? notFound = list(set(allFiles) - set(foundFiles)) # Write Output writeToFile("\nFiles that are not found") for i, item in enumerate(notFound): writeToFile("\t" + item)
d3fe713ff5f60fc69efa875fdd910f323bdca4de
f9e80950ce3db2fc7075329d62fffd736c09f705
/helpers.py
e01f9832461b7309290ef4b92cbb8d8f30f9dfba
[]
no_license
pjcunningham/kivy-slideshow
9535a710ae80444978fcd1cbbbad4ce4d634e0fe
7b7ee0aa59be1835926fde8101c60c88c68325b3
refs/heads/master
2021-09-04T00:39:49.667576
2018-01-13T12:52:16
2018-01-13T12:52:16
115,718,229
1
0
null
null
null
null
UTF-8
Python
false
false
848
py
# coding: utf-8 __author__ = 'Paul Cunningham' __copyright = 'Copyright 2017, Paul Cunningham' __all__ = ('InformationPopup', ) from kivy.uix.popup import Popup from kivy.properties import StringProperty from kivy.factory import Factory from kivy.lang import Builder from kivy.clock import Clock Builder.load_string(''' <InformationPopup>: auto_dismiss: True size_hint: None, None size: 400, 200 on_open: root.dismiss_trigger() title: root.title Label: text: root.text ''') class InformationPopup(Popup): title = StringProperty('Information') text = StringProperty('') def __init__(self, time=1.5, **kwargs): super(InformationPopup, self).__init__(**kwargs) self.dismiss_trigger = Clock.create_trigger(self.dismiss, time) Factory.register('InformationPopup', cls=InformationPopup)
fba3d916cd1e71365c605eae8806f8a831fd0736
5e8ed29add41ca0a1ac0eacbda447292313874c3
/algo/neural_nets/models/transformers/common/utils.py
2f252bd98a5e8af2e8a4c398bd737a204108ced7
[]
no_license
TharinduDR/Offenseval_2020
aa4961937bc98158b2e24c28934411df2a853c2d
a08764ae5980223ae8577c9fd6f160d8a450cfd6
refs/heads/master
2023-07-20T06:12:48.467268
2020-03-03T17:08:30
2020-03-03T17:08:30
224,734,186
2
0
null
2023-07-06T21:55:29
2019-11-28T21:41:28
Jupyter Notebook
UTF-8
Python
false
false
13,750
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BERT classification fine-tuning: utilities to work with GLUE tasks """ from __future__ import absolute_import, division, print_function import csv import logging from multiprocessing import Pool, cpu_count from tqdm.auto import tqdm from util.logginghandler import TQDMLoggingHandler logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[TQDMLoggingHandler()]) csv.field_size_limit(2147483647) class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """ Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id def convert_example_to_feature( example_row, pad_token=0, sequence_a_segment_id=0, sequence_b_segment_id=1, cls_token_segment_id=1, pad_token_segment_id=0, mask_padding_with_zero=True, sep_token_extra=False ): example, max_seq_length, tokenizer, output_mode, cls_token_at_end, cls_token, sep_token, cls_token_segment_id, pad_on_left, pad_token_segment_id, sep_token_extra, multi_label, stride = example_row tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3". " -4" for RoBERTa. special_tokens_count = 4 if sep_token_extra else 3 _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - special_tokens_count) else: # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = 3 if sep_token_extra else 2 if len(tokens_a) > max_seq_length - special_tokens_count: tokens_a = tokens_a[:(max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = tokens_a + [sep_token] segment_ids = [sequence_a_segment_id] * len(tokens) if tokens_b: tokens += tokens_b + [sep_token] segment_ids += [sequence_b_segment_id] * (len(tokens_b) + 1) if cls_token_at_end: tokens = tokens + [cls_token] segment_ids = segment_ids + [cls_token_segment_id] else: tokens = [cls_token] + tokens segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids else: input_ids = input_ids + ([pad_token] * padding_length) input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length # if output_mode == "classification": # label_id = label_map[example.label] # elif output_mode == "regression": # label_id = float(example.label) # else: # raise KeyError(output_mode) return InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=example.label ) def convert_example_to_feature_sliding_window( example_row, pad_token=0, sequence_a_segment_id=0, sequence_b_segment_id=1, cls_token_segment_id=1, pad_token_segment_id=0, mask_padding_with_zero=True, sep_token_extra=False, ): example, max_seq_length, tokenizer, output_mode, cls_token_at_end, cls_token, sep_token, cls_token_segment_id, pad_on_left, pad_token_segment_id, sep_token_extra, multi_label, stride = example_row if stride < 1: stride = int(max_seq_length * stride) bucket_size = max_seq_length - (3 if sep_token_extra else 2) token_sets = [] tokens_a = tokenizer.tokenize(example.text_a) special_tokens_count = 3 if sep_token_extra else 2 if len(tokens_a) > bucket_size: token_sets = [tokens_a[i:i + bucket_size] for i in range(0, len(tokens_a), stride)] else: token_sets.append(tokens_a) if example.text_b: raise ValueError("Sequence pair tasks not implemented for sliding window tokenization.") # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. input_features = [] for tokens_a in token_sets: tokens = tokens_a + [sep_token] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens = tokens + [cls_token] segment_ids = segment_ids + [cls_token_segment_id] else: tokens = [cls_token] + tokens segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids else: input_ids = input_ids + ([pad_token] * padding_length) input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length # if output_mode == "classification": # label_id = label_map[example.label] # elif output_mode == "regression": # label_id = float(example.label) # else: # raise KeyError(output_mode) input_features.append( InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=example.label ) ) return input_features def convert_examples_to_features( examples, max_seq_length, tokenizer, output_mode, cls_token_at_end=False, sep_token_extra=False, pad_on_left=False, cls_token="[CLS]", sep_token="[SEP]", pad_token=0, sequence_a_segment_id=0, sequence_b_segment_id=1, cls_token_segment_id=1, pad_token_segment_id=0, mask_padding_with_zero=True, process_count=cpu_count() - 2, multi_label=False, silent=False, use_multiprocessing=True, sliding_window=False, flatten=False, stride=None ): """ Loads a data file into a list of `InputBatch`s `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ examples = [(example, max_seq_length, tokenizer, output_mode, cls_token_at_end, cls_token, sep_token, cls_token_segment_id, pad_on_left, pad_token_segment_id, sep_token_extra, multi_label, stride) for example in examples] if use_multiprocessing: if sliding_window: logging.info('sliding_window enabled') with Pool(process_count) as p: features = list(tqdm(p.imap(convert_example_to_feature_sliding_window, examples, chunksize=500), total=len(examples), disable=silent)) if flatten: features = [feature for feature_set in features for feature in feature_set] logging.info(f'{len(features)} features created from {len(examples)} samples.') else: with Pool(process_count) as p: features = list(tqdm(p.imap(convert_example_to_feature, examples, chunksize=500), total=len(examples), disable=silent)) else: if sliding_window: logging.info('sliding_window enabled') features = [convert_example_to_feature_sliding_window(example) for example in tqdm(examples, disable=silent)] if flatten: features = [feature for feature_set in features for feature in feature_set] logging.info(f'{len(features)} features created from {len(examples)} samples.') else: features = [convert_example_to_feature(example) for example in tqdm(examples, disable=silent)] return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
47a668f3b3c71dc906e455e0af643c0e9956d44c
d7c4fb488735495bf180ba8862b7526273cfe6ab
/034.py
ea9f7b56719f971829eff00432cc7a31800a55ec
[]
no_license
vasundhara7/Hangman-Game
9c3d6938aacfc87c6ca8fe1c01824cfcacec3e9f
21bf5164c420e07aad1be8121a9a5a758d3d013f
refs/heads/master
2020-08-29T23:37:56.261315
2019-10-29T04:54:03
2019-10-29T04:54:03
218,203,863
0
1
null
2019-10-29T04:54:04
2019-10-29T04:24:56
null
UTF-8
Python
false
false
3,909
py
def game_category(): intro = True Bg = p.Surface((1280,720)) Bg.fill(black) Bg = Bg.convert() image=p.image.load('hng7.JPG') screen.blit(image,(0,0)) while intro: for event in p.event.get(): print(event) if event.type == p.QUIT: p.quit() quit() myfont = p.font.SysFont("None", 100) mytext = myfont.render('Categories', True, white) mytext = mytext.convert_alpha() screen.blit(mytext,(900//2,180//2)) button_2("Animals",500,240,250,50,dark_red,red,game_difficulty) button_2("Countries",500,320,250,50,dark_yellow,yellow,game_difficulty) button_2("Cartoons",500,400,250,50,dark_blue,blue,game_difficulty) button_2("Harry Potter",500,480,250,50,dark_purple,purple,game_difficulty) button_2("Marvel",500,560,250,50,dark_green,green,game_difficulty) button_2("Brands",500,640,250,50,dark_orange,orange,game_difficulty) p.display.update() clock.tick(15) def game_difficulty(): intro = True Bg = p.Surface((1280,720)) Bg.fill(black) Bg = Bg.convert() screen.blit(Bg,(0,0)) image=p.image.load('hng5.JPG') screen.blit(image,(0,0)) while intro: for event in p.event.get(): print(event) if event.type == p.QUIT: p.quit() quit() myfont = p.font.SysFont("None", 70) mytext = myfont.render('Difficulty', True, white) mytext = mytext.convert_alpha() screen.blit(mytext,(1000//2,40//2)) button_3("Easy",500,100,250,50,dark_yellow,yellow,game_loop) button_3("Medium",500,200,250,50,dark_blue,blue,game_loop) button_3("Hard",500,300,250,50,dark_red,red,game_loop) p.display.update() clock.tick(15) def button_2(msg,x,y,w,h,ic,ac,action=None): mouse = p.mouse.get_pos() click = p.mouse.get_pressed() if x+w > mouse[0] > x and y+h > mouse[1] > y: p.draw.rect(screen, ac,(x,y,w,h)) if click[0] == 1 and action != None: global category category = msg action() else: p.draw.rect(screen, ic,(x,y,w,h)) smallText = p.font.Font("freesansbold.ttf",20) textSurf, textRect = text_objects(msg, smallText) textRect.center = ( (x+(w/2)), (y+(h/2)) ) screen.blit(textSurf, textRect) def button_3(msg,x,y,w,h,ic,ac,action=None): mouse = p.mouse.get_pos() click = p.mouse.get_pressed() if x+w > mouse[0] > x and y+h > mouse[1] > y: p.draw.rect(screen, ac,(x,y,w,h)) if click[0] == 1 and action != None: global difficulty difficulty = msg action() else: p.draw.rect(screen, ic,(x,y,w,h)) smallText = p.font.Font("freesansbold.ttf",20) textSurf, textRect = text_objects(msg, smallText) textRect.center = ( (x+(w/2)), (y+(h/2)) ) screen.blit(textSurf, textRect) ################################################################ DRAWING THE ENTERED ALPHABETS IN ORDER myfont = p.font.SysFont("None", 34) m = myfont.render(chr(i), True, (white)) m = m.convert_alpha() screen.blit(m,(50,dx)) dx+=25
f919b9550febb7ecf8b2528040e9d305db4824f9
962c6ebc7926557c2364ba3b160c16ec0dc3d177
/src/prob_particle_advection.py
e04794cf0592f94e9a9b06799b8138061f70f572
[]
no_license
behollis/bv-interp-python-etc
25a0cd015d8c4df6b9b042c553db7eb7e6701e91
1de6c20511e58e01a083464d06ab91d0be57530f
refs/heads/master
2021-01-20T13:47:32.905642
2014-03-19T22:37:05
2014-03-19T22:37:05
34,290,580
0
0
null
null
null
null
UTF-8
Python
false
false
88,044
py
#!/usr/bin/python # This is statement is required by the build system to query build info if __name__ == '__build__': raise Exception ''' Author: Brad Hollister. Started: 10/7/2012. Code shows advection of particles in 2d velocity field with configurable distributions at each grid point. ''' import netCDF4 import sys, struct import rpy2.robjects as robjects import random import math as pm import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import matplotlib.cm as cm import pylab as p import mpl_toolkits.mplot3d.axes3d as p3 import math #import gaussian_fit import sum_of_gaussians_interpolation as sog from netcdf_reader import * #from spline_cdf_curve_morphing import * from mayavi.mlab import * import mayavi from peakfinder import * from quantile_lerp import * q_prev_max_vel_x = 0.0 q_prev_max_vel_y = 0.0 e_prev_max_vel_x = 0.0 e_prev_max_vel_y = 0.0 gmm_prev_max_vel_x = 0.0 gmm_prev_max_vel_y = 0.0 QUANTILES = 100 TOTAL_STEPS = 25 integration_step_size = 0.1 SEED_LAT = 42 SEED_LON = 21 SEED_LEVEL = 0 vclin = [] cf_vclin = [] reused_vel_quantile = 0 DEBUG = False MODE = 1 FILE_NAME = 'pe_dif_sep2_98.nc' FILE_NAME_CENTRAL_FORECAST = 'pe_fct_aug25_sep2.nc' INPUT_DATA_DIR = '../../data/in/ncdf/' OUTPUT_DATA_DIR = '../../data/out/csv/' MODE_DIR1 = 'mode1/' MODE_DIR2 = 'mode2/' COM = 2 LON = 53 LAT = 90 LEV = 16 MEM = 600 MAX_GMM_COMP = 3 EM_MAX_ITR = 2000 EM_MAX_RESTARTS = 1000 DEPTH = -2.0 INTEGRATION_DIR = 'b' THRESHOLD_PER = 0.9 #percentage that second greatest peak needs to be of the max peak g_cc = np.zeros(shape=(LAT,LON)) g_crisp_streamlines = [] g_part_positions_ensemble = [[],[],[],[],[],[],[]] g_part_positions_quantile = [[],[],[],[],[],[],[]] g_part_positions_gmm = [[],[],[],[],[],[],[]] g_part_positions_g = [[],[],[],[],[],[],[]] g_part_positions_ensemble_b = [[],[],[],[],[],[],[]] g_part_positions_quantile_b = [[],[],[],[],[],[],[]] g_part_positions_gmm_b = [[],[],[],[],[],[],[]] g_part_positions_g_b = [[],[],[],[],[],[],[]] part_pos_e = [];part_pos_q = [];part_pos_gmm = [];part_pos_g = [] part_pos_e.append([0,0]) part_pos_e[0][0] = SEED_LAT part_pos_e[0][1] = SEED_LON part_pos_q.append([0,0]) part_pos_q[0][0] = SEED_LAT part_pos_q[0][1] = SEED_LON part_pos_gmm.append([0,0]) part_pos_gmm[0][0] = SEED_LAT part_pos_gmm[0][1] = SEED_LON part_pos_g.append([0,0]) part_pos_g[0][0] = SEED_LAT part_pos_g[0][1] = SEED_LON part_pos_e_b = [];part_pos_q_b = [];part_pos_gmm_b = [];part_pos_g_b = [] part_pos_e_b.append([0,0]) part_pos_e_b[0][0] = SEED_LAT part_pos_e_b[0][1] = SEED_LON part_pos_q_b.append([0,0]) part_pos_q_b[0][0] = SEED_LAT part_pos_q_b[0][1] = SEED_LON part_pos_gmm_b.append([0,0]) part_pos_gmm_b[0][0] = SEED_LAT part_pos_gmm_b[0][1] = SEED_LON part_pos_g_b.append([0,0]) part_pos_g_b[0][0] = SEED_LAT part_pos_g_b[0][1] = SEED_LON r = robjects.r ZERO_ARRAY = np.zeros(shape=(MEM,1)) # from.. http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html #http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method def rk4(x, v, a, dt): """Returns final (position, velocity) tuple after time dt has passed. x: initial position (number-like object) v: initial velocity (number-like object) a: acceleration function a(x,v,dt) (must be callable) dt: timestep (number)""" x1 = x v1 = v a1 = a(x1, v1, 0) x2 = x + 0.5*v1*dt v2 = v + 0.5*a1*dt a2 = a(x2, v2, dt/2.0) x3 = x + 0.5*v2*dt v3 = v + 0.5*a2*dt a3 = a(x3, v3, dt/2.0) x4 = x + v3*dt v4 = v + a3*dt a4 = a(x4, v4, dt) xf = x + (dt/6.0)*(v1 + 2*v2 + 2*v3 + v4) vf = v + (dt/6.0)*(a1 + 2*a2 + 2*a3 + a4) return xf, vf def plotParticles(ts_per_gp=[]): #http://docs.enthought.com/mayavi/mayavi/mlab_figures_decorations.html f = mayavi.mlab.gcf() #cam = f.scene.camera #cam.parallel_scale = 10 f.scene.isometric_view() grid_verts = np.zeros(shape=(LAT,LON)) grid_lat, grid_lon = np.ogrid[0:LAT,0:LON] grid_plane = mayavi.mlab.surf(grid_lat, grid_lon, grid_verts, color=(1,1,0),representation='wireframe',line_width=0.1) ks_plane = mayavi.mlab.surf(grid_lat, grid_lon, ts_per_gp, colormap='gray') #xmin=0; xmax=LAT; ymin=0; ymax=LON; zmin=-1; zmax=-1 #ext = [xmin, xmax, ymin, ymax,zmin,zmax] #cc_plane = mayavi.mlab.imshow(g_cc, colormap='Blues', interpolate=True,transparent=True) #mayavi.mlab.points3d(63, 21, -5, color=(1,0,0),scale_factor=0.1) mode1 = np.loadtxt( OUTPUT_DATA_DIR + "crisp/" \ + 'mode_members1_'+str(SEED_LAT)+'_lon'+str(SEED_LON)\ +'_lev'+str(SEED_LEVEL)) mode2 = np.loadtxt( OUTPUT_DATA_DIR + "crisp/" \ + 'mode_members2_'+str(SEED_LAT)+'_lon'+str(SEED_LON)\ +'_lev'+str(SEED_LEVEL)) col1 = (255./255.,228./255.,196./255.) col_mode1 = (1.,0.,0.) col_mode2 = (0.,1.,0.) for idx in range(0,MEM, 1): if idx not in mode1 and idx not in mode2: mayavi.mlab.plot3d(g_crisp_streamlines[idx][0][:], g_crisp_streamlines[idx][1][:], \ g_crisp_streamlines[idx][2][:],tube_radius = None,line_width=0.1, \ color=col1, name='Crisp Member '+str(idx+1)) for idx in range(0,MEM,1): if idx in mode1: mayavi.mlab.plot3d(g_crisp_streamlines[idx][0][:], g_crisp_streamlines[idx][1][:], \ g_crisp_streamlines[idx][2][:],tube_radius = None,line_width=0.1, \ color=col_mode1, name='Crisp Member '+str(idx+1)) elif idx in mode2: mayavi.mlab.plot3d(g_crisp_streamlines[idx][0][:], g_crisp_streamlines[idx][1][:], \ g_crisp_streamlines[idx][2][:],tube_radius = None,line_width=0.1, \ color=col_mode2, name='Crisp Member '+str(idx+1)) #tubes with peak number ''' mayavi.mlab.plot3d(g_part_positions_ensemble[0][:], g_part_positions_ensemble[1][:], g_part_positions_ensemble[2][:], \ g_part_positions_ensemble[5][:], colormap='Greens',name='Ensemble peaks') mayavi.mlab.plot3d(g_part_positions_quantile[0][:], g_part_positions_quantile[1][:], g_part_positions_quantile[2][:], \ g_part_positions_quantile[5][:], colormap='Blues',name='Quantile peaks') mayavi.mlab.plot3d(g_part_positions_gmm[0][:], g_part_positions_gmm[1][:], g_part_positions_gmm[2][:], \ g_part_positions_gmm[5][:], colormap='Reds',name='GMM peaks') mayavi.mlab.plot3d(g_part_positions_g[0][:], g_part_positions_g[1][:], g_part_positions_g[2][:], \ g_part_positions_g[5][:], colormap='Purples',name='g peaks') #tubes with speed mayavi.mlab.plot3d(g_part_positions_ensemble[0][:], g_part_positions_ensemble[1][:], g_part_positions_ensemble[2][:], \ g_part_positions_ensemble[3][:], colormap='Greens',name='Ensemble speed') mayavi.mlab.plot3d(g_part_positions_quantile[0][:], g_part_positions_quantile[1][:], g_part_positions_quantile[2][:], \ g_part_positions_quantile[3][:], colormap='Blues',name='Quantile speed') mayavi.mlab.plot3d(g_part_positions_gmm[0][:], g_part_positions_gmm[1][:], g_part_positions_gmm[2][:], \ g_part_positions_gmm[3][:], colormap='Reds',name='GMM speed') mayavi.mlab.plot3d(g_part_positions_g[0][:], g_part_positions_g[1][:], g_part_positions_g[2][:], \ g_part_positions_g[3][:], colormap='Purples',name='g speed') #tubes with speed mayavi.mlab.plot3d(g_part_positions_ensemble[0][:], g_part_positions_ensemble[1][:], g_part_positions_ensemble[2][:], \ g_part_positions_ensemble[6][:], colormap='Greens',name='Ensemble peak separation') mayavi.mlab.plot3d(g_part_positions_quantile[0][:], g_part_positions_quantile[1][:], g_part_positions_quantile[2][:], \ g_part_positions_quantile[6][:], colormap='Blues',name='Quantile peak separation') mayavi.mlab.plot3d(g_part_positions_gmm[0][:], g_part_positions_gmm[1][:], g_part_positions_gmm[2][:], \ g_part_positions_gmm[6][:], colormap='Reds',name='GMM peak separation') mayavi.mlab.plot3d(g_part_positions_g[0][:], g_part_positions_g[1][:], g_part_positions_g[2][:], \ g_part_positions_g[6][:], colormap='Purples',name='g speed separation') ''' mayavi.mlab.show() def advectGaussian(step, dir = 'f'): if step % 50 == 0: print '********************************' + str(step) + ' out of ' + str(TOTAL_STEPS) for particle in range(0, len(part_pos_e)): # get modal velocities @ position, if more than one modal position # spawn a new particle for each mode idx over one if dir == 'f': ppos = [ part_pos_g[particle][0], part_pos_g[particle][1] ] else: ppos = [ part_pos_g_b[particle][0], part_pos_g_b[particle][1] ] #velx, vely, velz = interpVel(ppos) params = interpFromGaussian(ppos) velx = params[0][0] vely = params[1][0] var_u = params[0][1] var_v = params[1][1] if dir == 'f': part_pos_g[particle][0] += velx*integration_step_size part_pos_g[particle][1] += vely*integration_step_size # enqueue for rendering for part in part_pos_g: g_part_positions_g[0].append(part[0]) g_part_positions_g[1].append(part[1]) g_part_positions_g[2].append(DEPTH) g_part_positions_g[3].append(np.sqrt(np.square(velx)+np.square(vely))) g_part_positions_g[4].append((var_u + var_v) / 2.0) g_part_positions_g[5].append((len(velx_prob)+len(vely_prob)) / 2.0)#g_part_positions[5].append(var_v) g_part_positions_g[6].append(0.0) else: part_pos_g_b[particle][0] -= velx*integration_step_size part_pos_g_b[particle][1] -= vely*integration_step_size # enqueue for rendering for part in part_pos_g_b: g_part_positions_g_b[0].append(part[0]) g_part_positions_g_b[1].append(part[1]) g_part_positions_g_b[2].append(DEPTH) g_part_positions_g_b[3].append(np.sqrt(np.square(velx)+np.square(vely))) g_part_positions_g_b[4].append((var_u + var_v) / 2.0) g_part_positions_g_b[5].append((len(velx_prob)+len(vely_prob)) / 2.0)#g_part_positions_b[5].append(var_v) g_part_positions_g_b[6].append(0.0) def getMaxPeaks(vel_prob,vel): m = max(vel_prob) p = vel_prob.index(m) max_1 = vel[p] vel_prob.pop(p) m = max(vel_prob) p = vel_prob.index(m) max_2 = vel[p] meet_threshold = False if max_2 >= THRESHOLD_PER * max_1: meet_threshold = True return max_1, max_2, meet_threshold def advectGMM(step, dir = 'f'): if step % 50 == 0: print '********************************' +str(step) + ' out of ' + str(TOTAL_STEPS) for particle in range(0, len(part_pos_e)): global gmm_prev_max_vel_x global gmm_prev_max_vel_y # get modal velocities @ position, if more than one modal position # spawn a new particle for each mode idx over one if dir == 'f': ppos = [ part_pos_gmm[particle][0], part_pos_gmm[particle][1] ] else: ppos = [ part_pos_gmm_b[particle][0], part_pos_gmm_b[particle][1] ] #get peaks #velx, vely, velz = interpVel(ppos) velx, velx_prob, vely, vely_prob, velz, var_u, var_v, u_params, v_params = interpFromGMM(ppos) #find highest prob vel velx_hp = gmm_prev_max_vel_x vely_hp = gmm_prev_max_vel_y #find difference in peaks max_x_1 = 0.0 max_x_2 = 0.0 max_y_1 = 0.0 max_y_2 = 0.0 x_diff = 0.0;y_diff = 0.0 max_peak_diff = 0.0 num_x_peaks = len(velx_prob) #len(u_params) num_y_peaks = len(vely_prob) #len(v_params) # take peaks from largest g comps ''' if len(u_params) > 0: temp_max = 0 max_idx = 0 for i in range(0,len(u_params)): if u_params[i] > temp_max: max_idx = i #get max peak mean max_x_1 = u_params[max_idx][0] u_params[0].pop(max_idx);u_params[1].pop(max_idx);u_params[2].pop(max_idx) temp_max = 0 max_idx = 0 for i in range(0,len(u_params)): if u_params[i] > temp_max: max_idx = i #get 2nd peak mean max_x_2 = u_params[max_idx][0] # take peaks from largest g comps if len(v_params) > 0: temp_max = 0 max_idx = 0 for i in range(0,len(v_params)): if v_params[i] > temp_max: max_idx = i #get max peak mean max_y_1 = v_params[max_idx][0] v_params[0].pop(max_idx);v_params[1].pop(max_idx);v_params[2].pop(max_idx) temp_max = 0 max_idx = 0 for i in range(0,len(v_params)): if v_params[i] > temp_max: max_idx = i #get 2nd peak mean max_y_2 = v_params[max_idx][0] x_diff = math.fabs(max_x_1 - max_x_2) y_diff = math.fabs(max_y_1 - max_y_2) max_peak_diff = max([x_diff,y_diff]) if MODE == 1: velx_hp = max_x_1 else: #MODE ==2: velx_hp = max_x_2 if MODE == 1: vely_hp = max_y_1 else: #MODE ==2: vely_hp = max_y_2 ''' if num_x_peaks > 1: velx_prob_copy = velx_prob[:] velx_copy = velx[:] max_x_1, max_x_2, sig = getMaxPeaks(velx_prob_copy,velx_copy) if sig == True: x_diff = pm.fabs(max_x_1 - max_x_2) if num_y_peaks > 1: vely_prob_copy = vely_prob[:] vely_copy = vely[:] max_y_1, max_y_2, sig = getMaxPeaks(vely_prob_copy,vely_copy) if sig == True: y_diff = pm.fabs(max_y_1 - max_y_2) if x_diff > y_diff: max_peak_diff = x_diff else: max_peak_diff = y_diff if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) if MODE == 1 or num_x_peaks == 1: velx_hp = velx[p] elif MODE == 2 and num_x_peaks > 1: velx_prob.pop(p) m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] else: print "WARNING: no max velx returned for GMM lerp @ position " + str(ppos) if num_y_peaks > 0: m = max(vely_prob) p = vely_prob.index(m) if MODE == 1 or num_y_peaks == 1: vely_hp = vely[p] elif MODE == 2 and num_y_peaks > 1: vely_prob.pop(p) m = max(vely_prob) p = vely_prob.index(m) vely_hp = vely[p] else: print "WARNING: no max vely returned for GMM lerp @ position " + str(ppos) gmm_prev_max_vel_x = velx_hp gmm_prev_max_vel_y = vely_hp #if step % 10 == 0 or step == 1: # print str(step) + " ensemble: pos " + str(ppos) + " u peak: " + str(velx_hp) + " v peak: " + str(vely_hp) if dir == 'f': part_pos_gmm[particle][0] += velx_hp*integration_step_size part_pos_gmm[particle][1] += vely_hp*integration_step_size # enqueue for rendering for part in part_pos_gmm: g_part_positions_gmm[0].append(part[0]) g_part_positions_gmm[1].append(part[1]) g_part_positions_gmm[2].append(DEPTH) g_part_positions_gmm[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_gmm[4].append((var_u + var_v) / 2.0) g_part_positions_gmm[5].append((len(velx_prob)+len(vely_prob)) / 2.0)#g_part_positions[5].append(var_v) g_part_positions_gmm[6].append(max_peak_diff) else: part_pos_gmm_b[particle][0] -= velx_hp*integration_step_size part_pos_gmm_b[particle][1] -= vely_hp*integration_step_size # enqueue for rendering for part in part_pos_gmm_b: g_part_positions_gmm_b[0].append(part[0]) g_part_positions_gmm_b[1].append(part[1]) g_part_positions_gmm_b[2].append(DEPTH) g_part_positions_gmm_b[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_gmm_b[4].append((var_u + var_v) / 2.0) g_part_positions_gmm_b[5].append((len(velx_prob)+len(vely_prob)) / 2.0)#g_part_positions_b[5].append(var_v) g_part_positions_gmm_b[6].append(max_peak_diff) def advectEnsemble(step, dir = 'f'): if step % 50 == 0: print '********************************' + str(step) + ' out of ' + str(TOTAL_STEPS) for particle in range(0, len(part_pos_e)): global e_prev_max_vel_x global e_prev_max_vel_y # get modal velocities @ position, if more than one modal position # spawn a new particle for each mode idx over one if dir == 'f': ppos = [ part_pos_e[particle][0], part_pos_e[particle][1] ] else: ppos = [ part_pos_e_b[particle][0], part_pos_e_b[particle][1] ] #get peaks #velx, vely, velz = interpVel(ppos) velx, velx_prob, vely, vely_prob, velz, var_u, var_v = interpVelFromEnsemble(ppos) #find highest prob vel velx_hp = e_prev_max_vel_x vely_hp = e_prev_max_vel_y #find difference in peaks max_x_1 = 0.0 max_x_2 = 0.0 max_y_1 = 0.0 max_y_2 = 0.0 x_diff = 0.0;y_diff = 0.0 max_peak_diff = 0.0 num_x_peaks = len(velx_prob) num_y_peaks = len(vely_prob) if num_x_peaks > 1: velx_prob_copy = velx_prob[:] velx_copy = velx[:] max_x_1, max_x_2, sig = getMaxPeaks(velx_prob_copy,velx_copy) if sig == True: x_diff = pm.fabs(max_x_1 - max_x_2) if num_y_peaks > 1: vely_prob_copy = vely_prob[:] vely_copy = vely[:] max_y_1, max_y_2, sig = getMaxPeaks(vely_prob_copy,vely_copy) if sig == True: y_diff = pm.fabs(max_y_1 - max_y_2) if x_diff > y_diff: max_peak_diff = x_diff else: max_peak_diff = y_diff ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if num_y_peaks > 0: m1 = max(vely_prob) p1 = vely_prob.index(m1) vely_hp = vely[p1] ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) if MODE == 1 or num_x_peaks == 1: velx_hp = velx[p] elif MODE == 2 and num_x_peaks > 1: velx_prob.pop(p) m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] else: print "WARNING: no max velx returned for ensemble lerp @ position " + str(ppos) if num_y_peaks > 0: m = max(vely_prob) p = vely_prob.index(m) if MODE == 1 or num_y_peaks == 1: vely_hp = vely[p] elif MODE == 2 and num_y_peaks > 1: vely_prob.pop(p) m = max(vely_prob) p = vely_prob.index(m) vely_hp = vely[p] else: print "WARNING: no max vely returned for ensemble lerp @ position " + str(ppos) e_prev_max_vel_x = velx_hp e_prev_max_vel_y = vely_hp print "Ensemble u vel: " + str(velx_hp) print "Ensemble v vel: " + str(vely_hp) #if step % 10 == 0 or step == 1: # print str(step) + " ensemble: pos " + str(ppos) + " u peak: " + str(velx_hp) + " v peak: " + str(vely_hp) if dir == 'f': part_pos_e[particle][0] += velx_hp*integration_step_size part_pos_e[particle][1] += vely_hp*integration_step_size # enqueue for rendering for part in part_pos_e: g_part_positions_ensemble[0].append(part[0]) g_part_positions_ensemble[1].append(part[1]) g_part_positions_ensemble[2].append(DEPTH) g_part_positions_ensemble[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_ensemble[4].append((var_u + var_v) / 2.0) g_part_positions_ensemble[5].append((len(velx_prob)+len(vely_prob)) / 2.0)#g_part_positions[5].append(var_v) g_part_positions_ensemble[6].append(max_peak_diff) else: part_pos_e_b[particle][0] -= velx_hp*integration_step_size part_pos_e_b[particle][1] -= vely_hp*integration_step_size # enqueue for rendering for part in part_pos_e_b: g_part_positions_ensemble_b[0].append(part[0]) g_part_positions_ensemble_b[1].append(part[1]) g_part_positions_ensemble_b[2].append(DEPTH) g_part_positions_ensemble_b[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_ensemble_b[4].append((var_u + var_v) / 2.0) g_part_positions_ensemble_b[5].append((len(velx_prob)+len(vely_prob)) / 2.0)#g_part_positions_b[5].append(var_v) g_part_positions_ensemble_b[6].append(max_peak_diff) def advectQuantile(step, dir = 'f'): global reused_vel_quantile if step % 50 == 0: print str(step) + ' out of ' + str(TOTAL_STEPS) for particle in range(0, len(part_pos_q)): global q_prev_max_vel_x global q_prev_max_vel_y # get modal velocities @ position, if more than one modal position # spawn a new particle for each mode idx over one if dir == 'f': ppos = [ part_pos_q[particle][0], part_pos_q[particle][1] ] else: ppos = [ part_pos_q_b[particle][0], part_pos_q_b[particle][1] ] #get peaks #velx, vely, velz = interpVel(ppos) velx, velx_prob, vely, vely_prob, velz, var_u, var_v = interpFromQuantiles(ppos) #find highest prob vel velx_hp = q_prev_max_vel_x vely_hp = q_prev_max_vel_y #find difference in peaks max_x_1 = 0.0 max_x_2 = 0.0 max_y_1 = 0.0 max_y_2 = 0.0 x_diff = 0.0;y_diff = 0.0 max_peak_diff = 0.0 num_x_peaks = len(velx_prob) num_y_peaks = len(vely_prob) if num_x_peaks > 1: velx_prob_copy = velx_prob[:] velx_copy = velx[:] max_x_1, max_x_2, sig = getMaxPeaks(velx_prob_copy,velx_copy) if sig == True: x_diff = pm.fabs(max_x_1 - max_x_2) if num_y_peaks > 1: vely_prob_copy = vely_prob[:] vely_copy = vely[:] max_y_1, max_y_2, sig = getMaxPeaks(vely_prob_copy,vely_copy) if sig == True: y_diff = pm.fabs(max_y_1 - max_y_2) if x_diff > y_diff: max_peak_diff = x_diff else: max_peak_diff = y_diff ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if num_y_peaks > 0: m1 = max(vely_prob) p1 = vely_prob.index(m1) vely_hp = vely[p1] ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) if MODE == 1 or num_x_peaks == 1: velx_hp = velx[p] elif MODE == 2 and num_x_peaks > 1: velx_prob.pop(p) m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] else: print "WARNING: no max velx returned for quantile lerp @ position " + str(ppos) if num_y_peaks > 0: m = max(vely_prob) p = vely_prob.index(m) if MODE == 1 or num_y_peaks == 1: vely_hp = vely[p] elif MODE == 2 and num_y_peaks > 1: vely_prob.pop(p) m = max(vely_prob) p = vely_prob.index(m) vely_hp = vely[p] else: print "WARNING: no max vely returned for quantile lerp @ position " + str(ppos) print "Quantile u vel: " + str(velx_hp) print "Quantile v vel: " + str(vely_hp) ''' if velx_hp <= 0.15 and velx_hp >= -0.15 and velx_hp == q_prev_max_vel_x: velx_hp = 0 if vely_hp <= 0.15 and vely_hp >= -0.15 and vely_hp == q_prev_max_vel_y: vely_hp = 0 ''' q_prev_max_vel_x = velx_hp q_prev_max_vel_y = vely_hp #if step % 10 == 0 or step == 1: # print str(step) + " quantile: pos " + str(ppos) + " u peak: " + str(velx_hp) + " v peak: " + str(vely_hp) if dir == 'f': part_pos_q[particle][0] += velx_hp*integration_step_size part_pos_q[particle][1] += vely_hp*integration_step_size # enqueue for rendering for part in part_pos_q: g_part_positions_quantile[0].append(part[0]) g_part_positions_quantile[1].append(part[1]) g_part_positions_quantile[2].append(DEPTH) g_part_positions_quantile[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_quantile[4].append((var_u + var_v) / 2.0) g_part_positions_quantile[5].append((len(velx_prob)+len(vely_prob)) / 2.0) g_part_positions_quantile[6].append(max_peak_diff) else: part_pos_q_b[particle][0] -= velx_hp*integration_step_size part_pos_q_b[particle][1] -= vely_hp*integration_step_size # enqueue for rendering for part in part_pos_q_b: g_part_positions_quantile_b[0].append(part[0]) g_part_positions_quantile_b[1].append(part[1]) g_part_positions_quantile_b[2].append(DEPTH) g_part_positions_quantile_b[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_quantile_b[4].append((var_u + var_v) / 2.0) g_part_positions_quantile_b[5].append((len(velx_prob)+len(vely_prob)) / 2.0) g_part_positions_quantile_b[6].append(max_peak_diff) def interpVelFromEnsemble(ppos=[0.0,0.0]): #assume grid points are defined by integer indices #decompose fract / whole from particle position ppos_parts = [[0.0,0.0],[0.0,0.0]] #[fract,whole] for each x,y comp ppos_parts[0][0] = pm.modf(ppos[0])[0];ppos_parts[0][1] = pm.modf(ppos[0])[1] ppos_parts[1][0] = pm.modf(ppos[1])[0];ppos_parts[1][1] = pm.modf(ppos[1])[1] #print "ensemble alpha x: " + str( ppos_parts[0][0] ) #print "ensemble alpha y: " + str( ppos_parts[1][0] ) # grid point numbers: # # (2)---(3) # | | # | | # (0)---(1) #find four corner grid point indices, numbered from gpt0 = (bottom, left) TO gpt3 = (top, right) #calculated from whole parts gpt0 = [ppos_parts[0][1], ppos_parts[1][1]] gpt1 = [ppos_parts[0][1] + 1, ppos_parts[1][1]] gpt2 = [ppos_parts[0][1], ppos_parts[1][1] + 1] gpt3 = [ppos_parts[0][1] + 1, ppos_parts[1][1] + 1] gpt0_dist = np.zeros(shape=(2,600)) gpt1_dist = np.zeros(shape=(2,600)) gpt2_dist = np.zeros(shape=(2,600)) gpt3_dist = np.zeros(shape=(2,600)) ''' if DEBUG is True: print "ensemble interp" print "gp0";print gpt0[0]; print gpt0[1] print "gp1";print gpt1[0]; print gpt1[1] print "gp2";print gpt2[0]; print gpt2[1] print "gp3";print gpt3[0]; print gpt3[1] ''' for idx in range(0,600): gpt0_dist[0][idx] = vclin[idx][gpt0[0]][gpt0[1]][SEED_LEVEL][0] gpt0_dist[1][idx] = vclin[idx][gpt0[0]][gpt0[1]][SEED_LEVEL][1] gpt1_dist[0][idx] = vclin[idx][gpt1[0]][gpt1[1]][SEED_LEVEL][0] gpt1_dist[1][idx] = vclin[idx][gpt1[0]][gpt1[1]][SEED_LEVEL][1] gpt2_dist[0][idx] = vclin[idx][gpt2[0]][gpt2[1]][SEED_LEVEL][0] gpt2_dist[1][idx] = vclin[idx][gpt2[0]][gpt2[1]][SEED_LEVEL][1] gpt3_dist[0][idx] = vclin[idx][gpt3[0]][gpt3[1]][SEED_LEVEL][0] gpt3_dist[1][idx] = vclin[idx][gpt3[0]][gpt3[1]][SEED_LEVEL][1] #SAMP = 2000 #lerp ensemble samples lerp_u_gp0_gp1 = lerp( np.asarray(gpt0_dist[0] ), np.asarray(gpt1_dist[0]), w = ppos_parts[0][0] ) lerp_u_gp2_gp3 = lerp( np.asarray(gpt2_dist[0] ), np.asarray(gpt3_dist[0]), w = ppos_parts[0][0] ) lerp_u = lerp( np.asarray(lerp_u_gp0_gp1), np.asarray(lerp_u_gp2_gp3), w = ppos_parts[1][0] ) lerp_v_gp0_gp1 = lerp( np.asarray(gpt0_dist[1] ), np.asarray(gpt1_dist[1]), w = ppos_parts[0][0] ) lerp_v_gp2_gp3 = lerp( np.asarray(gpt2_dist[1] ), np.asarray(gpt3_dist[1]), w = ppos_parts[0][0] ) lerp_v = lerp( np.asarray(lerp_v_gp0_gp1), np.asarray(lerp_v_gp2_gp3), w = ppos_parts[1][0] ) #x = linspace( lerp_u[0], lerp_u[-1], len(lerp_u) ) #y = linspace( lerp_v[0], lerp_v[-1], len(lerp_v) ) x = linspace( -50, 50, 600 ) y = linspace( -50, 50, 600 ) #find peaks... try: k = [ stats.gaussian_kde(lerp_u), stats.gaussian_kde(lerp_v) ] except: return ([], [], [], [], 0.0, 0.0, 0.0) var0 = np.std(k[0](x), axis=None, dtype=None, out=None, ddof=0) var1 = np.std(k[1](y), axis=None, dtype=None, out=None, ddof=0) _max_u, _min_u = peakdetect(k[0](x),x,lookahead=2,delta=0) _max_v, _min_v = peakdetect(k[1](y),y,lookahead=2,delta=0) xm_u = [p[0] for p in _max_u] xm_v = [p[0] for p in _max_v] ym_u = [p[1] for p in _max_u] ym_v = [p[1] for p in _max_v] ''' #plot interpolated kde's plt.figure() plt.title("ensemble") p1, = plt.plot(x,k[0](x),'-', color='red') p2, = plt.plot(y,k[1](y),'-', color='blue') plt.legend([p2, p1], ["v", "u"]) #plot peaks plt.hold(True) plt.plot(xm_u, ym_u, 'x', color='black') plt.plot(xm_v, ym_v, 'x', color='black') plt.savefig('../png/e_'+str(ppos)+'.png') ''' return (xm_u, ym_u, xm_v, ym_v, 0.0, var0, var1) def interpFromQuantiles(ppos=[0.0,0.0]): #assume grid points are defined by integer indices #decompose fract / whole from particle position ppos_parts = [[0.0,0.0],[0.0,0.0]] #[fract,whole] for each x,y comp ppos_parts[0][0] = pm.modf(ppos[0])[0];ppos_parts[0][1] = pm.modf(ppos[0])[1] ppos_parts[1][0] = pm.modf(ppos[1])[0];ppos_parts[1][1] = pm.modf(ppos[1])[1] #print "quantile alpha x: " + str( ppos_parts[0][0] ) #print "quantile alpha y: " + str( ppos_parts[1][0] ) # grid point numbers: # # (2)---(3) # | | # | | # (0)---(1) #find four corner grid point indices, numbered from gpt0 = (bottom, left) TO gpt3 = (top, right) #calculated from whole parts gpt0 = [ppos_parts[0][1], ppos_parts[1][1]] gpt1 = [ppos_parts[0][1] + 1, ppos_parts[1][1]] gpt2 = [ppos_parts[0][1], ppos_parts[1][1] + 1] gpt3 = [ppos_parts[0][1] + 1, ppos_parts[1][1] + 1] gpt0_dist = np.zeros(shape=(2,600)) gpt1_dist = np.zeros(shape=(2,600)) gpt2_dist = np.zeros(shape=(2,600)) gpt3_dist = np.zeros(shape=(2,600)) ''' if DEBUG is True: print "quantile interp" print "gp0";print gpt0[0]; print gpt0[1] print "gp1";print gpt1[0]; print gpt1[1] print "gp2";print gpt2[0]; print gpt2[1] print "gp3";print gpt3[0]; print gpt3[1] ''' for idx in range(0,600): gpt0_dist[0][idx] = vclin[idx][gpt0[0]][gpt0[1]][SEED_LEVEL][0] gpt0_dist[1][idx] = vclin[idx][gpt0[0]][gpt0[1]][SEED_LEVEL][1] gpt1_dist[0][idx] = vclin[idx][gpt1[0]][gpt1[1]][SEED_LEVEL][0] gpt1_dist[1][idx] = vclin[idx][gpt1[0]][gpt1[1]][SEED_LEVEL][1] gpt2_dist[0][idx] = vclin[idx][gpt2[0]][gpt2[1]][SEED_LEVEL][0] gpt2_dist[1][idx] = vclin[idx][gpt2[0]][gpt2[1]][SEED_LEVEL][1] gpt3_dist[0][idx] = vclin[idx][gpt3[0]][gpt3[1]][SEED_LEVEL][0] gpt3_dist[1][idx] = vclin[idx][gpt3[0]][gpt3[1]][SEED_LEVEL][1] quantiles = list(spread(0, 1.0, QUANTILES-1, mode=3)) quantiles.sort() #find random variable value of quantiles for pdf q_gpt0_dist_u = [];q_gpt0_dist_v = [] q_gpt1_dist_u = [];q_gpt1_dist_v = [] q_gpt2_dist_u = [];q_gpt2_dist_v = [] q_gpt3_dist_u = [];q_gpt3_dist_v = [] for q in quantiles: q_gpt0_dist_u.append(r.quantile(robjects.FloatVector(gpt0_dist[0]), q)[0]) q_gpt0_dist_v.append(r.quantile(robjects.FloatVector(gpt0_dist[1]), q)[0]) q_gpt1_dist_u.append(r.quantile(robjects.FloatVector(gpt1_dist[0]), q)[0]) q_gpt1_dist_v.append(r.quantile(robjects.FloatVector(gpt1_dist[1]), q)[0]) q_gpt2_dist_u.append(r.quantile(robjects.FloatVector(gpt2_dist[0]), q)[0]) q_gpt2_dist_v.append(r.quantile(robjects.FloatVector(gpt2_dist[1]), q)[0]) q_gpt3_dist_u.append(r.quantile(robjects.FloatVector(gpt3_dist[0]), q)[0]) q_gpt3_dist_v.append(r.quantile(robjects.FloatVector(gpt3_dist[1]), q)[0]) #create np arrays #q_gpt0_dist_u_array = np.asarray(q_gpt0_dist_u);q_gpt0_dist_v_array = np.asarray(q_gpt0_dist_v) #q_gpt1_dist_u_array = np.asarray(q_gpt1_dist_u);q_gpt1_dist_v_array = np.asarray(q_gpt1_dist_v) #q_gpt2_dist_u_array = np.asarray(q_gpt2_dist_u);q_gpt2_dist_v_array = np.asarray(q_gpt2_dist_v) #q_gpt3_dist_u_array = np.asarray(q_gpt3_dist_u);q_gpt3_dist_v_array = np.asarray(q_gpt3_dist_v) #lerp quantiles #find peaks... ''' if len(gpt0_dist[0]) < 5 or len(gpt1_dist[0]) < 5 or len(gpt2_dist[0]) < 5 or len(gpt3_dist[0]) < 5 or \ len(gpt0_dist[1]) < 5 or len(gpt1_dist[1]) < 5 or len(gpt2_dist[1]) < 5 or len(gpt3_dist[1]) < 5: print "return in quantile interp @" + str(ppos) return ([], [], [], [], 0.0, 0.0, 0.0) if np.array_equal(gpt0_dist[0], ZERO_ARRAY) or np.array_equal(gpt1_dist[0], ZERO_ARRAY): print "return in quantile interp @" + str(ppos) return ([], [], [], [], 0.0, 0.0, 0.0) ''' try: k = stats.gaussian_kde(gpt0_dist[0]); l = stats.gaussian_kde(gpt1_dist[0]) except: return ([], [], [], [], 0.0, 0.0, 0.0) lerp_u_gp0_gp1_prob = quantileLerp( k, l, np.asarray(q_gpt0_dist_u), np.asarray(q_gpt1_dist_u), alpha = ppos_parts[0][0] ) lerp_u_gp0_gp1_values = lerp(np.asarray(q_gpt0_dist_u), np.asarray(q_gpt1_dist_u), w = ppos_parts[0][0] ) try: lerp_u_gp2_gp3_prob = quantileLerp( stats.gaussian_kde(gpt2_dist[0]), stats.gaussian_kde(gpt3_dist[0]), np.asarray(q_gpt2_dist_u), np.asarray(q_gpt3_dist_u), alpha = ppos_parts[0][0] ) except: return ([], [], [], [], 0.0, 0.0, 0.0) lerp_u_gp2_gp3_values = lerp(np.asarray(q_gpt2_dist_u), np.asarray(q_gpt3_dist_u), w = ppos_parts[0][0] ) ''' plt.figure() plt.title("gpt0_dist, alpha: " + str(ppos_parts[0][0])) x = linspace( -5, 2, 600 ) plt.plot(lerp_u_gp0_gp1_values,lerp_u_gp0_gp1_prob,'-', color='black') plt.show() ''' NUM_SAMPLES = 1000 samples_numbers = lerp_u_gp0_gp1_prob * NUM_SAMPLES samples_gp0_gp1_lerp = [] for prob_idx in range(0,len(lerp_u_gp0_gp1_prob)): #if not math.isnan(samples_numbers[prob_idx]): # continue for num in range(0,int(samples_numbers[prob_idx])): samples_gp0_gp1_lerp.append(lerp_u_gp0_gp1_values[prob_idx]) samples_numbers2 = lerp_u_gp2_gp3_prob * NUM_SAMPLES samples_gp2_gp3_lerp = [] for prob_idx in range(0,len(lerp_u_gp2_gp3_prob)): #if not math.isnan(samples_numbers2[prob_idx]): # continue for num in range(0,int(samples_numbers2[prob_idx])): samples_gp2_gp3_lerp.append(lerp_u_gp2_gp3_values[prob_idx]) ''' plt.figure() plt.title("gpt0_dist resampled, alpha: " + str(ppos_parts[0][0])) x = linspace( -5, 2, 600 ) plt.plot(x,stats.gaussian_kde(samples_gp0_gp1_lerp)(x),'-', color='black') plt.show() ''' ''' plt.figure() plt.title("lerp_u_gp0_gp1, alpha: " + str(ppos_parts[0][0])) x = linspace( -10, 10, 600 ) plt.plot(x,stats.gaussian_kde(lerp_u_gp0_gp1)(x),'-', color='black') plt.show() plt.figure() plt.title("lerp_u_gp2_gp3") x = linspace( -10, 10, 600 ) plt.plot(x,stats.gaussian_kde(lerp_u_gp2_gp3)(x),'-', color='black') plt.show() ''' q_lerp_gpt0_gpt1_dist_u = [];q_lerp_gpt2_gpt3_dist_u = [] for q in quantiles: q_lerp_gpt0_gpt1_dist_u.append(r.quantile(robjects.FloatVector(samples_gp0_gp1_lerp), q)[0]) q_lerp_gpt2_gpt3_dist_u.append(r.quantile(robjects.FloatVector(samples_gp2_gp3_lerp), q)[0]) try: lerp_u_prob = quantileLerp( stats.gaussian_kde(samples_gp0_gp1_lerp), stats.gaussian_kde(samples_gp2_gp3_lerp), np.asarray(q_lerp_gpt0_gpt1_dist_u), np.asarray(q_lerp_gpt2_gpt3_dist_u), alpha = ppos_parts[1][0] ) lerp_u_prob_2 = quantileLerp( interpolate.interp1d( lerp_u_gp0_gp1_values, lerp_u_gp0_gp1_prob ), \ interpolate.interp1d( lerp_u_gp2_gp3_values, lerp_u_gp2_gp3_prob ), \ np.asarray(q_lerp_gpt0_gpt1_dist_u), \ np.asarray(q_lerp_gpt2_gpt3_dist_u), alpha = ppos_parts[1][0] ) except: return ([], [], [], [], 0.0, 0.0, 0.0) lerp_u_values = lerp(np.asarray(q_lerp_gpt0_gpt1_dist_u), np.asarray(q_lerp_gpt2_gpt3_dist_u), w = ppos_parts[1][0] ) samples_numbers3 = lerp_u_prob * NUM_SAMPLES samples_u_lerp = [] for prob_idx in range(0,len(lerp_u_prob)): #if not math.isnan(samples_numbers3[prob_idx]): # continue for num in range(0,int(samples_numbers3[prob_idx])): if not math.isnan(lerp_u_values[prob_idx]) and not math.isinf(lerp_u_values[prob_idx]): samples_u_lerp.append(lerp_u_values[prob_idx]) ''' plt.figure() x = linspace( -10, 10, 600 ) plt.plot(x,stats.gaussian_kde(samples_lerp_u)(x),'-', color='black') plt.show() ''' ''' if np.array_equal(gpt0_dist[1], ZERO_ARRAY) or np.array_equal(gpt1_dist[1], ZERO_ARRAY): print "return in quantile interp @" + str(ppos) return ([], [], [], [], 0.0, 0.0, 0.0) ''' try: k = stats.gaussian_kde(gpt0_dist[1]); l = stats.gaussian_kde(gpt1_dist[1]) except: return ([], [], [], [], 0.0, 0.0, 0.0) lerp_v_gp0_gp1_prob = quantileLerp( k, l, np.asarray(q_gpt0_dist_v), np.asarray(q_gpt1_dist_v), alpha = ppos_parts[0][0] ) lerp_v_gp0_gp1_values = lerp(np.asarray(q_gpt0_dist_v), np.asarray(q_gpt1_dist_v), w = ppos_parts[0][0] ) try: lerp_v_gp2_gp3_prob = quantileLerp( stats.gaussian_kde(gpt2_dist[1]), stats.gaussian_kde(gpt3_dist[1]), \ np.asarray(q_gpt2_dist_v), np.asarray(q_gpt3_dist_v), alpha = ppos_parts[0][0] ) except: return ([], [], [], [], 0.0, 0.0, 0.0) lerp_v_gp2_gp3_values = lerp(np.asarray(q_gpt2_dist_v), np.asarray(q_gpt3_dist_v), w = ppos_parts[0][0] ) samples_numbers4 = lerp_v_gp0_gp1_prob * NUM_SAMPLES samples_gp0_gp1_lerp_v = [] for prob_idx in range(0,len(lerp_v_gp0_gp1_prob)): #if not math.isnan(samples_numbers4[prob_idx]): # continue for num in range(0,int(samples_numbers4[prob_idx])): samples_gp0_gp1_lerp_v.append(lerp_v_gp0_gp1_values[prob_idx]) samples_numbers5 = lerp_v_gp2_gp3_prob * NUM_SAMPLES samples_gp2_gp3_lerp_v = [] for prob_idx in range(0,len(lerp_v_gp2_gp3_prob)): #if not math.isnan(samples_numbers5[prob_idx]): # continue for num in range(0,int(samples_numbers5[prob_idx])): samples_gp2_gp3_lerp_v.append(lerp_v_gp2_gp3_values[prob_idx]) #samples_gp2_gp3_lerp_v = #samples_gp2_gp3_lerp_v = q_lerp_gpt0_gpt1_dist_v = [];q_lerp_gpt2_gpt3_dist_v = [] for q in quantiles: q_lerp_gpt0_gpt1_dist_v.append(r.quantile(robjects.FloatVector(samples_gp0_gp1_lerp_v), q)[0]) q_lerp_gpt2_gpt3_dist_v.append(r.quantile(robjects.FloatVector(samples_gp2_gp3_lerp_v), q)[0]) try: lerp_v_prob = quantileLerp( stats.gaussian_kde(samples_gp0_gp1_lerp_v), stats.gaussian_kde(samples_gp2_gp3_lerp_v), \ np.asarray(q_lerp_gpt0_gpt1_dist_v), np.asarray(q_lerp_gpt2_gpt3_dist_v), alpha = ppos_parts[1][0] ) lerp_v_prob_2 = quantileLerp( interpolate.interp1d( lerp_v_gp0_gp1_values, lerp_v_gp0_gp1_prob ), \ interpolate.interp1d( lerp_v_gp2_gp3_values, lerp_v_gp2_gp3_prob ), \ np.asarray(q_lerp_gpt0_gpt1_dist_v), \ np.asarray(q_lerp_gpt2_gpt3_dist_v), alpha = ppos_parts[1][0] ) except: return ([], [], [], [], 0.0, 0.0, 0.0) lerp_v_values = lerp(np.asarray(q_lerp_gpt0_gpt1_dist_v), np.asarray(q_lerp_gpt2_gpt3_dist_v), w = ppos_parts[1][0] ) samples_numbers6 = lerp_v_prob * NUM_SAMPLES samples_v_lerp = [] for prob_idx in range(0,len(lerp_v_prob)): #if not math.isnan(samples_numbers6[prob_idx]): # continue for num in range(0,int(samples_numbers6[prob_idx])): if not math.isnan(lerp_v_values[prob_idx]) and not math.isinf(lerp_v_values[prob_idx]): samples_v_lerp.append(lerp_v_values[prob_idx]) x = linspace( -20, 20, 1000 ) y = linspace( -20, 20, 1000 ) #find peaks... ''' if len(samples_u_lerp) < 20 or len(samples_v_lerp) < 20: print "return in quantile interp @" + str(ppos) return ([], [], [], [], 0.0, 0.0, 0.0) ''' quantile_interp_u = interpolate.interp1d(lerp_u_values,lerp_u_prob_2) quantile_interp_v = interpolate.interp1d(lerp_v_values,lerp_v_prob_2) try: k = [ stats.gaussian_kde(samples_u_lerp), stats.gaussian_kde(samples_v_lerp) ] k2 = [ quantile_interp_u, quantile_interp_v ] except: return ([], [], [], [], 0.0, 0.0, 0.0) #var0 = np.std(k[0](x), axis=None, dtype=None, out=None, ddof=0) #var1 = np.std(k[1](y), axis=None, dtype=None, out=None, ddof=0) x = linspace( min(lerp_u_values), max(lerp_u_values), 1000 ) y = linspace( min(lerp_v_values), max(lerp_v_values), 1000 ) var0 = np.std(k2[0](x), axis=None, dtype=None, out=None, ddof=0) var1 = np.std(k2[1](y), axis=None, dtype=None, out=None, ddof=0) #_max_u, _min_u = peakdetect(k[0](x),x,lookahead=5,delta=0) #_max_v, _min_v = peakdetect(k[1](y),y,lookahead=5,delta=0) _max_u, _min_u = peakdetect(k2[0](x),x,lookahead=5,delta=0) _max_v, _min_v = peakdetect(k2[1](y),y,lookahead=5,delta=0) xm_u = [p[0] for p in _max_u] xm_v = [p[0] for p in _max_v] ym_u = [p[1] for p in _max_u] ym_v = [p[1] for p in _max_v] ''' #plot interpolated kde's #if len(_max_u) == 0 or len(_max_v) == 0: plt.figure() plt.title("quantile") p1, = plt.plot(x,k[0](x),'-', color='red') p2, = plt.plot(y,k[1](y),'-', color='blue') plt.legend([p2, p1], ["v", "u"]) #plot peaks plt.hold(True) plt.plot(xm_u, ym_u, 'x', color='black') plt.plot(xm_v, ym_v, 'x', color='black') plt.savefig('../png/q_'+str(ppos)+'.png') ''' return (xm_u, ym_u, xm_v, ym_v, 0.0, var0, var1) def fitGaussian(gp=[0.,0.]): #fit single gaussian m = r.mean(robjects.vectors.FloatVector(gp));var= r.var(robjects.vectors.FloatVector(gp)) return [m[0],var[0]] def fitGMM(gp, max_gs=2): #suppress std out number of iterations using r.invisible() try: mixmdl = r.invisible(r.normalmixEM(robjects.vectors.FloatVector(gp), k = max_gs, maxit = EM_MAX_ITR, maxrestarts=EM_MAX_RESTARTS)) except: return [[0.]*max_gs,[0.]*max_gs, [0.]*max_gs ] mu = [];sd = [];lb = [] for i in mixmdl.iteritems(): if i[0] == 'mu': mu.append(i[1]) if i[0] == 'sigma': sd.append(i[1]) if i[0] == 'lambda': lb.append(i[1]) n_params = [] for idx in range(0,len(mu[0])): n_params.append([mu[0][idx], sd[0][idx], lb[0][idx]]) return n_params def lerpGMMPair(norm_params1, norm_params2, alpha, steps=1, num_gs=3): ''' handles equal number of constituent gaussians ''' sorted(norm_params2, key=operator.itemgetter(0), reverse=False) sorted(norm_params1, key=operator.itemgetter(0), reverse=False) if steps != 0: incr = alpha / steps else: incr = alpha for idx in range(0,steps+1): #resort to minimize distances in means of pairings sorted(norm_params1, key=operator.itemgetter(0), reverse=False) subalpha = float(idx) * incr inter_means = []; inter_stdevs = []; inter_comp_ratios = [] max_comps = len(norm_params1) if max_comps < len(norm_params2): max_comps = len(norm_params2) # interpolate each gaussian for idx in range(0,max_comps): cur_mean1 = norm_params1[idx][0] cur_std1 = norm_params1[idx][1] cur_ratio1 = norm_params1[idx][2] cur_mean2 = norm_params2[idx][0] cur_std2 = norm_params2[idx][1] cur_ratio2 = norm_params2[idx][2] inter_means.append(cur_mean1*(1.0-subalpha) + cur_mean2*subalpha) inter_stdevs.append(cur_std1*(1.0-subalpha) + cur_std2*subalpha) inter_comp_ratios.append(cur_ratio1*(1.0-subalpha) + cur_ratio2*subalpha) norm_params1 = [] for j in range(len(inter_means)): norm_params1.append([inter_means[j], inter_stdevs[j], inter_comp_ratios[j]]) #return interp GMM params return norm_params1 def interpFromGMM(ppos=[0.0,0.0]): #assume grid points are defined by integer indices #decompose fract / whole from particle position ppos_parts = [[0.0,0.0],[0.0,0.0]] #[fract,whole] for each x,y comp ppos_parts[0][0] = pm.modf(ppos[0])[0];ppos_parts[0][1] = pm.modf(ppos[0])[1] ppos_parts[1][0] = pm.modf(ppos[1])[0];ppos_parts[1][1] = pm.modf(ppos[1])[1] # grid point numbers: # # (2)---(3) # | | # | | # (0)---(1) #find four corner grid point indices, numbered from gpt0 = (bottom, left) TO gpt3 = (top, right) #calculated from whole parts gpt0 = [ppos_parts[0][1], ppos_parts[1][1]] gpt1 = [ppos_parts[0][1] + 1, ppos_parts[1][1]] gpt2 = [ppos_parts[0][1], ppos_parts[1][1] + 1] gpt3 = [ppos_parts[0][1] + 1, ppos_parts[1][1] + 1] gpt0_dist = np.zeros(shape=(2,600)) gpt1_dist = np.zeros(shape=(2,600)) gpt2_dist = np.zeros(shape=(2,600)) gpt3_dist = np.zeros(shape=(2,600)) ''' if DEBUG is True: print "gp0";print gpt0[0]; print gpt0[1] print "gp1";print gpt1[0]; print gpt1[1] print "gp2";print gpt2[0]; print gpt2[1] print "gp3";print gpt3[0]; print gpt3[1] ''' for idx in range(0,MEM): gpt0_dist[0][idx] = vclin[idx][gpt0[0]][gpt0[1]][SEED_LEVEL][0] gpt0_dist[1][idx] = vclin[idx][gpt0[0]][gpt0[1]][SEED_LEVEL][1] gpt1_dist[0][idx] = vclin[idx][gpt1[0]][gpt1[1]][SEED_LEVEL][0] gpt1_dist[1][idx] = vclin[idx][gpt1[0]][gpt1[1]][SEED_LEVEL][1] gpt2_dist[0][idx] = vclin[idx][gpt2[0]][gpt2[1]][SEED_LEVEL][0] gpt2_dist[1][idx] = vclin[idx][gpt2[0]][gpt2[1]][SEED_LEVEL][1] gpt3_dist[0][idx] = vclin[idx][gpt3[0]][gpt3[1]][SEED_LEVEL][0] gpt3_dist[1][idx] = vclin[idx][gpt3[0]][gpt3[1]][SEED_LEVEL][1] #check for "bad" distributions if len(gpt0_dist[0]) < 5 or len(gpt1_dist[0]) < 5 or len(gpt2_dist[0]) < 5 or len(gpt3_dist[0]) < 5 or \ len(gpt0_dist[1]) < 5 or len(gpt1_dist[1]) < 5 or len(gpt2_dist[1]) < 5 or len(gpt3_dist[1]) < 5: print "return in GMM interp @" + str(ppos) return ([], [], [], [], 0.0, 0.0, 0.0, [], []) #get gmm's #NOTE: need to check if dist is guassian-like. if so, don't try to fit more than one gaussian to distribution or you'll get convergence issues with EM alg gp0_parms_u = fitGMM(gp=list(gpt0_dist[0][:]),max_gs=MAX_GMM_COMP);gp0_parms_v = fitGMM(list(gpt0_dist[1][:]),max_gs=MAX_GMM_COMP) gp1_parms_u = fitGMM(gp=list(gpt1_dist[0][:]),max_gs=MAX_GMM_COMP);gp1_parms_v = fitGMM(list(gpt1_dist[1][:]),max_gs=MAX_GMM_COMP) gp2_parms_u = fitGMM(gp=list(gpt2_dist[0][:]),max_gs=MAX_GMM_COMP);gp2_parms_v = fitGMM(list(gpt2_dist[1][:]),max_gs=MAX_GMM_COMP) gp3_parms_u = fitGMM(gp=list(gpt3_dist[0][:]),max_gs=MAX_GMM_COMP);gp3_parms_v = fitGMM(list(gpt3_dist[1][:]),max_gs=MAX_GMM_COMP) lerp_u_gp0_gp1_params = lerpGMMPair(np.asarray(gp0_parms_u), np.asarray(gp1_parms_u), alpha = ppos_parts[0][0], steps = 1, num_gs = MAX_GMM_COMP ) lerp_u_gp2_gp3_params = lerpGMMPair(np.asarray(gp2_parms_u), np.asarray(gp3_parms_u), alpha = ppos_parts[0][0], steps = 1, num_gs = MAX_GMM_COMP ) lerp_u_params = lerpGMMPair( np.asarray(lerp_u_gp0_gp1_params), np.asarray(lerp_u_gp2_gp3_params), alpha = ppos_parts[1][0], steps = 1, num_gs = MAX_GMM_COMP ) lerp_v_gp0_gp1_params = lerpGMMPair(np.asarray(gp0_parms_v), np.asarray(gp1_parms_v), alpha = ppos_parts[0][0], steps = 1, num_gs = MAX_GMM_COMP ) lerp_v_gp2_gp3_params = lerpGMMPair(np.asarray(gp2_parms_v), np.asarray(gp3_parms_v), alpha = ppos_parts[0][0], steps = 1, num_gs = MAX_GMM_COMP ) lerp_v_params = lerpGMMPair( np.asarray(lerp_v_gp0_gp1_params), np.asarray(lerp_v_gp2_gp3_params), alpha = ppos_parts[1][0], steps = 1, num_gs = MAX_GMM_COMP ) x = linspace( -50, 50, MEM ) y = linspace( -50, 50, MEM ) #return interp GMM SAMPLES = MEM total_dist_u = [] for idx in range(0,len(lerp_u_params)): cur_inter_mean = lerp_u_params[idx][0];cur_inter_stdev = lerp_u_params[idx][1];cur_inter_ratio = lerp_u_params[idx][2] total_dist_u += list(np.asarray(r.rnorm(int(SAMPLES*cur_inter_ratio), mean=cur_inter_mean, sd = cur_inter_stdev))) total_dist_v = [] for idx in range(0,len(lerp_v_params)): cur_inter_mean = lerp_v_params[idx][0];cur_inter_stdev = lerp_v_params[idx][1];cur_inter_ratio = lerp_v_params[idx][2] total_dist_v += list(np.asarray(r.rnorm(int(SAMPLES*cur_inter_ratio), mean=cur_inter_mean, sd = cur_inter_stdev))) try: k = [ stats.gaussian_kde(total_dist_u), stats.gaussian_kde(total_dist_v) ] except: return ([], [], [], [], 0.0, 0.0, 0.0, [], []) var0 = np.std(k[0](x), axis=None, dtype=None, out=None, ddof=0) var1 = np.std(k[1](y), axis=None, dtype=None, out=None, ddof=0) _max_u, _min_u = peakdetect(k[0](x),x,lookahead=2,delta=0) _max_v, _min_v = peakdetect(k[1](y),y,lookahead=2,delta=0) xm_u = [p[0] for p in _max_u] xm_v = [p[0] for p in _max_v] ym_u = [p[1] for p in _max_u] ym_v = [p[1] for p in _max_v] return (xm_u, ym_u, xm_v, ym_v, 0.0, var0, var1,lerp_u_params,lerp_v_params) def interpFromGaussian(ppos=[0.0,0.0]): #assume grid points are defined by integer indices #decompose fract / whole from particle position ppos_parts = [[0.0,0.0],[0.0,0.0]] #[fract,whole] for each x,y comp ppos_parts[0][0] = pm.modf(ppos[0])[0];ppos_parts[0][1] = pm.modf(ppos[0])[1] ppos_parts[1][0] = pm.modf(ppos[1])[0];ppos_parts[1][1] = pm.modf(ppos[1])[1] # grid point numbers: # # (2)---(3) # | | # | | # (0)---(1) #find four corner grid point indices, numbered from gpt0 = (bottom, left) TO gpt3 = (top, right) #calculated from whole parts gpt0 = [ppos_parts[0][1], ppos_parts[1][1]] gpt1 = [ppos_parts[0][1] + 1, ppos_parts[1][1]] gpt2 = [ppos_parts[0][1], ppos_parts[1][1] + 1] gpt3 = [ppos_parts[0][1] + 1, ppos_parts[1][1] + 1] gpt0_dist = np.zeros(shape=(2,600)) gpt1_dist = np.zeros(shape=(2,600)) gpt2_dist = np.zeros(shape=(2,600)) gpt3_dist = np.zeros(shape=(2,600)) ''' if DEBUG is True: print "gp0";print gpt0[0]; print gpt0[1] print "gp1";print gpt1[0]; print gpt1[1] print "gp2";print gpt2[0]; print gpt2[1] print "gp3";print gpt3[0]; print gpt3[1] ''' for idx in range(0,MEM): gpt0_dist[0][idx] = vclin[idx][gpt0[0]][gpt0[1]][SEED_LEVEL][0] gpt0_dist[1][idx] = vclin[idx][gpt0[0]][gpt0[1]][SEED_LEVEL][1] gpt1_dist[0][idx] = vclin[idx][gpt1[0]][gpt1[1]][SEED_LEVEL][0] gpt1_dist[1][idx] = vclin[idx][gpt1[0]][gpt1[1]][SEED_LEVEL][1] gpt2_dist[0][idx] = vclin[idx][gpt2[0]][gpt2[1]][SEED_LEVEL][0] gpt2_dist[1][idx] = vclin[idx][gpt2[0]][gpt2[1]][SEED_LEVEL][1] gpt3_dist[0][idx] = vclin[idx][gpt3[0]][gpt3[1]][SEED_LEVEL][0] gpt3_dist[1][idx] = vclin[idx][gpt3[0]][gpt3[1]][SEED_LEVEL][1] #get gmm's #NOTE: need to check if dist is guassian-like. if so, don't try to fit more than one gaussian to distribution or you'll get convergence issues with EM alg gp0_parms_u = fitGaussian(gp=list(gpt0_dist[0][:]));gp0_parms_v = fitGaussian(list(gpt0_dist[1][:])) gp1_parms_u = fitGaussian(gp=list(gpt1_dist[0][:]));gp1_parms_v = fitGaussian(list(gpt1_dist[1][:])) gp2_parms_u = fitGaussian(gp=list(gpt2_dist[0][:]));gp2_parms_v = fitGaussian(list(gpt2_dist[1][:])) gp3_parms_u = fitGaussian(gp=list(gpt3_dist[0][:]));gp3_parms_v = fitGaussian(list(gpt3_dist[1][:])) lerp_u_gp0_gp1_params = lerp(np.asarray(gp0_parms_u), np.asarray(gp1_parms_u), w = ppos_parts[0][0] ) lerp_u_gp2_gp3_params = lerp(np.asarray(gp2_parms_u), np.asarray(gp3_parms_u), w = ppos_parts[0][0] ) lerp_u_params = lerp( np.asarray(lerp_u_gp0_gp1_params), np.asarray(lerp_u_gp2_gp3_params), w = ppos_parts[1][0] ) lerp_v_gp0_gp1_params = lerp(np.asarray(gp0_parms_v), np.asarray(gp1_parms_v), w = ppos_parts[0][0] ) lerp_v_gp2_gp3_params = lerp(np.asarray(gp2_parms_v), np.asarray(gp3_parms_v), w = ppos_parts[0][0] ) lerp_v_params = lerp( np.asarray(lerp_v_gp0_gp1_params), np.asarray(lerp_v_gp2_gp3_params), w = ppos_parts[1][0] ) return [lerp_u_params, lerp_v_params] def KSTestForLevel(vclin, curr_level=0): array_of_ts_per_gp = np.zeros(shape=(LAT,LON)) max_ts = 0 curr_gp = np.zeros(shape=(2, MEM), dtype = float, order = 'F') for curr_lon in range(LON): for curr_lat in range(LAT): for curr_realization in range(MEM): curr_gp[0][curr_realization] = vclin[curr_realization][curr_lat][curr_lon][curr_level][0] curr_gp[1][curr_realization] = vclin[curr_realization][curr_lat][curr_lon][curr_level][1] #print "lon " + str(curr_lon) #print "lat " + str(curr_lat) #print 'mem ' + str(curr_realization) #print "vclin values: " + str(curr_gp[0][curr_realization]) #curr_gp[curr_realization][2] = vclin[curr_realization][curr_lat][curr_lon][curr_level][2] x = linspace(-15, +15, 1000) u_pass = False;v_pass = False for idx in range(0,MEM): if not u_pass and curr_gp[0][idx] != 0.: u_pass = True gp_u_kd = stats.gaussian_kde(curr_gp[0][:]) if not v_pass and curr_gp[1][idx] != 0.: v_pass = True gp_v_kd = stats.gaussian_kde(curr_gp[1][:]) mu = np.mean(curr_gp[0][:],axis=0) sigma = np.var(curr_gp[0][:],axis=0) ts = 1. if not math.isinf(sigma) and not math.isnan(sigma): normed_data = (curr_gp[0][:]-mu)/sigma var_std_norm = np.var(normed_data,axis=0) #equals one for std normal dist with mean = 0 ts, p_val = stats.kstest(normed_data,'norm') k2, pvalue = stats.normaltest(curr_gp[0][:], axis=0) zscore, pvalue_s = stats.skewtest(curr_gp[0][:], axis=0) vals, counts = stats.mode(curr_gp[0][:], axis=0) ''' if u_pass and p_val == 0.0 and var_std_norm <= 1.0 :#and pvalue > 0.01 and pvalue_s > 0.01: plt.figure() plt.title( str(ts) + "_" + str(curr_level) + "_" + str(curr_lon) + "_" + str(curr_lat) + "_u") plt.hist(curr_gp[0][:],normed=1,alpha=.3,color='purple') plt.plot(x,gp_u_kd(x),'-',color='red') #file = "./png/" + str(ts) + "_" + str(depth) + "_" + str(curr_level) + "_" + str(curr_lon) + "_" + str(curr_lat) + "_u" + ".png" #plt.savefig(file) #sendFile(file) plt.show() ''' mu2 = np.mean(curr_gp[1][:],axis=0) sigma2 = np.var(curr_gp[1][:],axis=0) ts2 = 1. if not math.isinf(sigma2) and not math.isnan(sigma2): normed_data = (curr_gp[1][:]-mu2)/sigma2 var_std_norm = np.var(normed_data,axis=0) #equals one for std normal dist with mean = 0 ts, p_val = stats.kstest(normed_data,'norm') k2, pvalue = stats.normaltest(curr_gp[0][:], axis=0) zscore, pvalue_s = stats.skewtest(curr_gp[0][:], axis=0) vals, counts = stats.mode(curr_gp[0][:], axis=0) ''' if v_pass and p_val == 0.0 and var_std_norm <= 1.0 :#and pvalue > 0.01 and pvalue_s > 0.01: plt.figure() plt.title( str(ts) + "_" + str(curr_level) + "_" + str(curr_lon) + "_" + str(curr_lat) + "_v") plt.hist(curr_gp[0][:],normed=1,alpha=.3,color='purple') plt.plot(x,gp_u_kd(x),'-',color='red') #file = "./png/" + str(ts) + "_" + str(depth) + "_" + str(curr_level) + "_" + str(curr_lon) + "_" + str(curr_lat) + "_u" + ".png" #plt.savefig(file) #sendFile(file) plt.show() ''' avg_u_v_ts = (ts + ts2) / 2.0 #print ts #print ts2 #print avg_u_v_ts array_of_ts_per_gp[curr_lat][curr_lon] = avg_u_v_ts if avg_u_v_ts > max_ts: max_ts = avg_u_v_ts return array_of_ts_per_gp, max_ts #from http://stackoverflow.com/questions/8661537/how-to-perform-bilinear-interpolation-in-python def bilinear_interpolation(x, y, points): '''Interpolate (x,y) from values associated with four points. The four points are a list of four triplets: (x, y, value). The four points can be in any order. They should form a rectangle. >>> bilinear_interpolation(12, 5.5, ... [(10, 4, 100), ... (20, 4, 200), ... (10, 6, 150), ... (20, 6, 300)]) 165.0 ''' # See formula at: http://en.wikipedia.org/wiki/Bilinear_interpolation # points = sorted(points) # order points by x, then by y (x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = points if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2: raise ValueError('points do not form a rectangle') if not x1 <= x <= x2 or not y1 <= y <= y2: raise ValueError('(x, y) not within the rectangle') return (q11 * (x2 - x) * (y2 - y) + q21 * (x - x1) * (y2 - y) + q12 * (x2 - x) * (y - y1) + q22 * (x - x1) * (y - y1) ) / ((x2 - x1) * (y2 - y1) + 0.0) #http://www.unidata.ucar.edu/software/netcdf/examples/programs/ def writeNetCDF(array): # the output array to write will be nx x ny nx = LAT; ny = LON # open a new netCDF file for writing. ncfile = netCDF4.Dataset('ks_test_level_0.nc','w') # create the output data. data_out = array#arange(nx*ny) # 1d array data_out.shape = array.shape # reshape to 2d array # create the x and y dimensions. ncfile.createDimension('lat',nx) ncfile.createDimension('lon',ny) # create the variable (4 byte integer in this case) # first argument is name of variable, second is datatype, third is # a tuple with the names of dimensions. data = ncfile.createVariable('ks_test_stat',np.dtype('float64').char,('lat','lon')) # write data to variable. data[:] = data_out # close the file. ncfile.close() #http://www.unidata.ucar.edu/software/netcdf/examples/programs/ def writeUVelocityNetCDF(array): # the output array to write will be nx x ny nx = LAT; ny = LON # open a new netCDF file for writing. ncfile = netCDF4.Dataset('vclin_level_0.nc','w') # create the output data. data_out = array#arange(nx*ny) # 1d array data_out.shape = array.shape # reshape to 2d array # create the x and y dimensions. ncfile.createDimension('lat',nx) ncfile.createDimension('lon',ny) # create the variable (4 byte integer in this case) # first argument is name of variable, second is datatype, third is # a tuple with the names of dimensions. data = ncfile.createVariable('u',np.dtype('float64').char,('lat','lon')) #data2 = ncfile.createVariable('v',np.dtype('float64').char,('lat','lon')) # write data to variable. data[:] = data_out # close the file. ncfile.close() def readVelNetCDF(file): # open a the netCDF file for reading. ncfile = netCDF4.Dataset(file,'r') # read the data in variable named 'data'. data = ncfile.variables['ks_test_stat'][:] #nx,ny = data.shape # check the data. #data_check = arange(nx*ny) # 1d array #data_check.shape = (nx,ny) # reshape to 2d array # close the file. ncfile.close() return data ''' def writeVelocityToCSBinary(data,filename): writer = csv.writer(open(filename + ".csv", 'w')) #writes velocities with central forecast... for curr_level in range(LEV): for curr_lon in range(LON): for curr_lat in range(LAT): for curr_realization in range(MEM): writer.writerow(data[curr_realization][curr_lat][curr_lon][curr_level][0]) writer.writerow(data[curr_realization][curr_lat][curr_lon][curr_level][1]) def readVelocityToCSBinary(filename): reader = csv.reader(open(filename + ".csv", 'w')) #writes velocities with central forecast... for curr_level in range(LEV): for curr_lon in range(LON): for curr_lat in range(LAT): for curr_realization in range(MEM): writer.writerow(data[curr_realization][curr_lat][curr_lon][curr_level][0]) writer.writerow(data[curr_realization][curr_lat][curr_lon][curr_level][1]) ''' def writeStreamlinePositions(data,filename): #change to 'wb' after initial debug... filename = OUTPUT_DATA_DIR + filename writer = csv.writer(open(filename + ".csv", 'w')) #writes velocities with central forecast... for curr_comp in range(0,len(data),1): #for curr_pos in range(0,len(data[curr_comp][:]),1): #print "curr pos " + str(curr_pos) #print "curr comp" + str(curr_comp) #print data[curr_comp][curr_pos] writer.writerow(data[curr_comp][:]) def readStreamlinePositions(data, filename): #change to 'wb' after initial debug... filename = OUTPUT_DATA_DIR + filename reader = csv.reader(open(filename + ".csv", 'r'), delimiter=',') idx = 0 for row in reader: #print row data[idx] = [float(i) for i in row] idx += 1 def readCellCounts(data,filename): #read cell counts filename = OUTPUT_DATA_DIR + filename reader = csv.reader(open(filename + ".csv", 'r'), delimiter=',') lat = 0;lon = 0 for row in reader: print g_cc[lat][lon] g_cc[lat][lon] = len(row)-1 if lon < LON - 1: lon += 1 else: lon = 0 lat += 1 if lat >= LAT: break def writeParticles(dir = 'f'): str_integration_values = '_ss' + str(integration_step_size) + '_ts' + str(TOTAL_STEPS) + '_dir_' + str(INTEGRATION_DIR) mode_dir = '' if MODE == 1: mode_dir = MODE_DIR1 elif MODE == 2: mode_dir = MODE_DIR2 if dir == 'f': writeStreamlinePositions(g_part_positions_ensemble,mode_dir+'e_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) writeStreamlinePositions(g_part_positions_quantile,mode_dir+'q_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) writeStreamlinePositions(g_part_positions_gmm,mode_dir+'gmm_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) writeStreamlinePositions(g_part_positions_g,mode_dir+'g_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) elif dir == 'b': writeStreamlinePositions(g_part_positions_ensemble_b,mode_dir+'e_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) writeStreamlinePositions(g_part_positions_quantile_b,mode_dir+'q_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) writeStreamlinePositions(g_part_positions_gmm_b,mode_dir+'gmm_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) writeStreamlinePositions(g_part_positions_g_b,mode_dir+'g_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) else: # forward and backward streamlines # concatenate particle positions e = [];q = [];gmm = [];g = [] #for each component for idx in range(0,len(g_part_positions_ensemble_b)): g_part_positions_ensemble_b[idx].reverse() g_part_positions_quantile_b[idx].reverse() g_part_positions_gmm_b[idx].reverse() g_part_positions_g_b[idx].reverse() e.append(g_part_positions_ensemble_b[idx] + g_part_positions_ensemble[idx]) q.append(g_part_positions_quantile_b[idx] + g_part_positions_quantile[idx]) gmm.append(g_part_positions_gmm_b[idx] + g_part_positions_gmm[idx]) g.append(g_part_positions_g_b[idx] + g_part_positions_g[idx]) writeStreamlinePositions(e,mode_dir+'e_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) writeStreamlinePositions(q,mode_dir+'q_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) writeStreamlinePositions(gmm,mode_dir+'gmm_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) writeStreamlinePositions(g,mode_dir+'g_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) def readParticles(): str_integration_values = '_ss' + str(integration_step_size) + '_ts' + str(TOTAL_STEPS) + '_dir_' + str(INTEGRATION_DIR) mode_dir = '' if MODE == 1: mode_dir = MODE_DIR1 elif MODE == 2: mode_dir = MODE_DIR2 ''' readStreamlinePositions(g_part_positions_ensemble,mode_dir+'e_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) readStreamlinePositions(g_part_positions_quantile,mode_dir+'q_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) readStreamlinePositions(g_part_positions_gmm,mode_dir+'gmm_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) readStreamlinePositions(g_part_positions_g,mode_dir+'g_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values) ''' #read crisp sphaghetti plots #crisp_lat45.0_lon26.0_lev0_mem277_ss0.01_ts100_dir_a.csv for idx in range(0,MEM): curr_member_sl = [[],[],[]] readStreamlinePositions(curr_member_sl,'crisp/crisp_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+'_mem'+str(idx)+str_integration_values) g_crisp_streamlines.append(curr_member_sl) #read cell counts filename = 'crisp/cellcounts_lat'+str(SEED_LAT)+'_lon'+str(SEED_LON)+'_lev'+str(SEED_LEVEL)+str_integration_values readCellCounts(g_cc, filename) #def getCmdLineArgs(): # for arg in sys.argv[1:]: # print arg def readNetCDF(file): # open a the netCDF file for reading. ncfile = netCDF4.Dataset(file,'r') # read the data in variable named 'data'. data = ncfile.variables['ks_test_stat'][:] #nx,ny = data.shape # check the data. #data_check = arange(nx*ny) # 1d array #data_check.shape = (nx,ny) # reshape to 2d array # close the file. ncfile.close() return data if __name__ == "__main__": SEED_LAT = float(sys.argv[2]) SEED_LON = float(sys.argv[3]) SEED_LEVEL = int(sys.argv[4]) integration_step_size = float(sys.argv[5]) TOTAL_STEPS = int(sys.argv[6]) INTEGRATION_DIR = str(sys.argv[7]).lower() MODE = int(sys.argv[8]) level = SEED_LEVEL #realizations file pe_dif_sep2_98_file = INPUT_DATA_DIR + FILE_NAME pe_fct_aug25_sep2_file = INPUT_DATA_DIR + FILE_NAME_CENTRAL_FORECAST #realizations reader rreader = NetcdfReader(pe_dif_sep2_98_file) #central forecasts reader creader = NetcdfReader(pe_fct_aug25_sep2_file) vclin8 = creader.readVarArray('vclin', 7) #deviations from central forecast for all 600 realizations vclin = rreader.readVarArray('vclin') vclin = addCentralForecast(vclin, vclin8, level_start=SEED_LEVEL, level_end=SEED_LEVEL) #vclin = readVelocityFromCSV(filename) #writeVelocityToCSVBinary(vclin) ts_per_gp = readNetCDF(INPUT_DATA_DIR +'ks_test_level_0.nc') #vclin = readNetCDF('vclin_level_0.nc') gen_streamlines = 'True' gen_streamlines = sys.argv[1] if gen_streamlines == 'True': r.library('mixtools') print "generating streamlines" particle = 0 part_pos_q[particle][0] = SEED_LAT; part_pos_q[particle][1] = SEED_LON part_pos_gmm[particle][0] = SEED_LAT; part_pos_gmm[particle][1] = SEED_LON part_pos_g[particle][0] = SEED_LAT; part_pos_g[particle][1] = SEED_LON part_pos_e[particle][0] = SEED_LAT; part_pos_e[particle][1] = SEED_LON part_pos_q_b[particle][0] = SEED_LAT; part_pos_q_b[particle][1] = SEED_LON part_pos_gmm_b[particle][0] = SEED_LAT; part_pos_gmm_b[particle][1] = SEED_LON part_pos_g_b[particle][0] = SEED_LAT; part_pos_g_b[particle][1] = SEED_LON part_pos_e_b[particle][0] = SEED_LAT; part_pos_e_b[particle][1] = SEED_LON ppos = [ part_pos_q[particle][0], part_pos_q[particle][1] ] velx, velx_prob, vely, vely_prob, velz, var_u, var_v = interpFromQuantiles(ppos) #find highest prob vel velx_hp = e_prev_max_vel_x vely_hp = e_prev_max_vel_y #find difference in peaks max_x_1 = 0.0 max_x_2 = 0.0 max_y_1 = 0.0 max_y_2 = 0.0 x_diff = 0.0;y_diff = 0.0 max_peak_diff = 0.0 num_x_peaks = len(velx_prob) num_y_peaks = len(vely_prob) if num_x_peaks > 1: velx_prob_copy = velx_prob[:] velx_copy = velx[:] max_x_1, max_x_2, sig = getMaxPeaks(velx_prob_copy,velx_copy) if sig == True: x_diff = pm.fabs(max_x_1 - max_x_2) if num_y_peaks > 1: vely_prob_copy = vely_prob[:] vely_copy = vely[:] max_y_1, max_y_2, sig = getMaxPeaks(vely_prob_copy,vely_copy) if sig == True: y_diff = pm.fabs(max_y_1 - max_y_2) if x_diff > y_diff: max_peak_diff = x_diff else: max_peak_diff = y_diff ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if num_y_peaks > 0: m1 = max(vely_prob) p1 = vely_prob.index(m1) vely_hp = vely[p1] ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) if MODE == 1 or num_x_peaks == 1: velx_hp = velx[p] elif MODE == 2 and num_x_peaks > 1: velx_prob.pop(p) m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if num_y_peaks > 0: m = max(vely_prob) p = vely_prob.index(m) if MODE == 1 or num_y_peaks == 1: vely_hp = vely[p] elif MODE == 2 and num_y_peaks > 1: vely_prob.pop(p) m = max(vely_prob) p = vely_prob.index(m) vely_hp = vely[p] q_prev_max_vel_x = velx_hp q_prev_max_vel_y = vely_hp g_part_positions_quantile[0].append(SEED_LAT) g_part_positions_quantile[1].append(SEED_LON) g_part_positions_quantile[2].append(DEPTH) g_part_positions_quantile[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_quantile[4].append((var_u + var_v) / 2.0) g_part_positions_quantile[5].append((len(velx_prob)+len(vely_prob)) / 2.0) g_part_positions_quantile[6].append(max_peak_diff) #get peaks for ensemble #velx, vely, velz = interpVel(ppos) ppos = [ part_pos_e[particle][0], part_pos_e[particle][1] ] velx, velx_prob, vely, vely_prob, velz, var_u, var_v = interpVelFromEnsemble(ppos) #find highest prob vel velx_hp = e_prev_max_vel_x vely_hp = e_prev_max_vel_y ''' if len(velx_prob) > 0: m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if len(vely_prob) > 0: m1 = max(vely_prob) p1 = vely_prob.index(m1) vely_hp = vely[p1] ''' #find difference in peaks max_x_1 = 0.0 max_x_2 = 0.0 max_y_1 = 0.0 max_y_2 = 0.0 x_diff = 0.0;y_diff = 0.0 max_peak_diff = 0.0 num_x_peaks = len(velx_prob) num_y_peaks = len(vely_prob) if num_x_peaks > 1: velx_prob_copy = velx_prob[:] velx_copy = velx[:] max_x_1, max_x_2, sig = getMaxPeaks(velx_prob_copy,velx_copy) if sig == True: x_diff = pm.fabs(max_x_1 - max_x_2) if num_y_peaks > 1: vely_prob_copy = vely_prob[:] vely_copy = vely[:] max_y_1, max_y_2, sig = getMaxPeaks(vely_prob_copy,vely_copy) if sig == True: y_diff = pm.fabs(max_y_1 - max_y_2) if x_diff > y_diff: max_peak_diff = x_diff else: max_peak_diff = y_diff ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if num_y_peaks > 0: m1 = max(vely_prob) p1 = vely_prob.index(m1) vely_hp = vely[p1] ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) if MODE == 1 or num_x_peaks == 1: velx_hp = velx[p] elif MODE == 2 and num_x_peaks > 1: velx_prob.pop(p) m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if num_y_peaks > 0: m = max(vely_prob) p = vely_prob.index(m) if MODE == 1 or num_y_peaks == 1: vely_hp = vely[p] elif MODE == 2 and num_y_peaks > 1: vely_prob.pop(p) m = max(vely_prob) p = vely_prob.index(m) vely_hp = vely[p] e_prev_max_vel_x = velx_hp e_prev_max_vel_y = vely_hp g_part_positions_ensemble[0].append(SEED_LAT) g_part_positions_ensemble[1].append(SEED_LON) g_part_positions_ensemble[2].append(DEPTH) g_part_positions_ensemble[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_ensemble[4].append((var_u + var_v) / 2.0) g_part_positions_ensemble[5].append((len(velx_prob)+len(vely_prob)) / 2.0) g_part_positions_ensemble[6].append(max_peak_diff) #get peaks for gmm #velx, vely, velz = interpVel(ppos) ppos = [ part_pos_gmm[particle][0], part_pos_gmm[particle][1] ] velx, velx_prob, vely, vely_prob, velz, var_u, var_v, u_params, v_params = interpFromGMM(ppos) #find highest prob vel velx_hp = gmm_prev_max_vel_x vely_hp = gmm_prev_max_vel_y ''' if len(velx_prob) > 0: m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if len(vely_prob) > 0: m1 = max(vely_prob) p1 = vely_prob.index(m1) vely_hp = vely[p1] ''' #find difference in peaks ''' max_x_1 = 0.0 max_x_2 = 0.0 max_y_1 = 0.0 max_y_2 = 0.0 x_diff = 0.0;y_diff = 0.0 max_peak_diff = 0.0 num_x_peaks = len(u_params)#len(velx_prob) num_y_peaks = len(v_params)#len(vely_prob) # take peaks from largest g comps if len(u_params) > 0: temp_max = 0 max_idx = 0 for i in range(0,len(u_params)): if u_params[i] > temp_max: max_idx = i #get max peak mean max_x_1 = u_params[max_idx][0] u_params[0].pop(max_idx);u_params[1].pop(max_idx);u_params[2].pop(max_idx) temp_max = 0 max_idx = 0 for i in range(0,len(u_params)): if u_params[i] > temp_max: max_idx = i #get 2nd peak mean max_x_2 = u_params[max_idx][0] # take peaks from largest g comps if len(v_params) > 0: temp_max = 0 max_idx = 0 for i in range(0,len(v_params)): if v_params[i] > temp_max: max_idx = i #get max peak mean max_y_1 = v_params[max_idx][0] v_params[0].pop(max_idx);v_params[1].pop(max_idx);v_params[2].pop(max_idx) temp_max = 0 max_idx = 0 for i in range(0,len(v_params)): if v_params[i] > temp_max: max_idx = i #get 2nd peak mean max_y_2 = v_params[max_idx][0] x_diff = math.fabs(max_x_1 - max_x_2) y_diff = math.fabs(max_y_1 - max_y_2) max_peak_diff = max([x_diff,y_diff]) if MODE == 1: velx_hp = max_x_1 else: #MODE ==2: velx_hp = max_x_2 if MODE == 1: vely_hp = max_y_1 else: #MODE ==2: vely_hp = max_y_2 ''' #find difference in peaks max_x_1 = 0.0 max_x_2 = 0.0 max_y_1 = 0.0 max_y_2 = 0.0 x_diff = 0.0;y_diff = 0.0 max_peak_diff = 0.0 num_x_peaks = len(velx_prob) num_y_peaks = len(vely_prob) if num_x_peaks > 1: velx_prob_copy = velx_prob[:] velx_copy = velx[:] max_x_1, max_x_2, sig = getMaxPeaks(velx_prob_copy,velx_copy) if sig == True: x_diff = pm.fabs(max_x_1 - max_x_2) if num_y_peaks > 1: vely_prob_copy = vely_prob[:] vely_copy = vely[:] max_y_1, max_y_2, sig = getMaxPeaks(vely_prob_copy,vely_copy) if sig == True: y_diff = pm.fabs(max_y_1 - max_y_2) if x_diff > y_diff: max_peak_diff = x_diff else: max_peak_diff = y_diff ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if num_y_peaks > 0: m1 = max(vely_prob) p1 = vely_prob.index(m1) vely_hp = vely[p1] ''' if num_x_peaks > 0: m = max(velx_prob) p = velx_prob.index(m) if MODE == 1 or num_x_peaks == 1: velx_hp = velx[p] elif MODE == 2 and num_x_peaks > 1: velx_prob.pop(p) m = max(velx_prob) p = velx_prob.index(m) velx_hp = velx[p] if num_y_peaks > 0: m = max(vely_prob) p = vely_prob.index(m) if MODE == 1 or num_y_peaks == 1: vely_hp = vely[p] elif MODE == 2 and num_y_peaks > 1: vely_prob.pop(p) m = max(vely_prob) p = vely_prob.index(m) vely_hp = vely[p] gmm_prev_max_vel_x = velx_hp gmm_prev_max_vel_y = vely_hp g_part_positions_gmm[0].append(SEED_LAT) g_part_positions_gmm[1].append(SEED_LON) g_part_positions_gmm[2].append(DEPTH) g_part_positions_gmm[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_gmm[4].append((var_u + var_v) / 2.0) g_part_positions_gmm[5].append((len(velx_prob)+len(vely_prob)) / 2.0) g_part_positions_gmm[6].append(max_peak_diff) #get peaks for gaussian ppos = [ part_pos_g[particle][0], part_pos_g[particle][1] ] params = interpFromGaussian(ppos) velx = params[0][0] vely = params[1][0] var_u = params[0][1] var_v = params[1][1] g_part_positions_g[0].append(SEED_LAT) g_part_positions_g[1].append(SEED_LON) g_part_positions_g[2].append(DEPTH) g_part_positions_g[3].append(np.sqrt(np.square(velx_hp)+np.square(vely_hp))) g_part_positions_g[4].append((var_u + var_v) / 2.0) g_part_positions_g[5].append((len(velx_prob)+len(vely_prob)) / 2.0) g_part_positions_g[6].append(0.0) if INTEGRATION_DIR == 'f': for i_step in range(1, TOTAL_STEPS): advectEnsemble(i_step,dir = 'f') advectQuantile(i_step, dir = 'f') advectGMM(i_step, dir = 'f') advectGaussian(i_step, dir = 'f') writeParticles(dir = 'f') elif INTEGRATION_DIR == 'b': for i_step in range(1, TOTAL_STEPS): advectEnsemble(i_step,dir = 'b') advectQuantile(i_step, dir = 'b') advectGMM(i_step, dir = 'b') advectGaussian(i_step, dir = 'b') writeParticles(dir = 'b') else: for i_step in range(1, TOTAL_STEPS ): advectEnsemble(i_step,dir = 'f') advectQuantile(i_step, dir = 'f') advectGMM(i_step, dir = 'f') advectGaussian(i_step, dir = 'f') for i_step in range(1, TOTAL_STEPS + 1): advectEnsemble(i_step,dir = 'b') advectQuantile(i_step, dir = 'b') advectGMM(i_step, dir = 'b') advectGaussian(i_step, dir = 'b') writeParticles(dir = 'a') print "reused vel for quantile lerp: " + str(reused_vel_quantile) print "finished!" else: print "reading particles" readParticles() plotParticles(ts_per_gp)
e141b5109ef148c76ef47552c65a7500e0ccd86e
d63cc8ea5b5e9bf06f0c62032dc1065dda0b5056
/apps/order/models.py
5b12e73107a9dfb2fa4c81aa786f92e5b61c27a4
[]
no_license
henya-lee/ecommerce
4757bfe7f30d8bcc70b4a0ee997ab4f440462863
285ea86ed5d3643346fe1ef88d7b3e4e48765a72
refs/heads/master
2023-04-11T18:35:42.795797
2021-05-17T09:40:25
2021-05-17T09:40:25
363,979,302
0
0
null
null
null
null
UTF-8
Python
false
false
1,227
py
from django.db import models from django.contrib.auth.models import User from apps.store.models import Product # Create your models here. class Order(models.Model): user = models.ForeignKey(User, related_name='orders', on_delete=models.SET_NULL, blank=True, null=True) first_name = models.CharField(max_length=100) last_name = models.CharField(max_length=100) email = models.CharField(max_length=100) address = models.CharField(max_length=100) zipcode = models.CharField(max_length=100) place = models.CharField(max_length=100) created_at = models.DateTimeField(auto_now_add=True) paid = models.BooleanField(default=False) paid_amount = models.FloatField(blank=True, null=True) def __str__(self): return '%s' % self.first_name def get_total_quantity(self): return sum(int(item.quantity) for item in self.items.all()) class OrderItem(models.Model): order = models.ForeignKey(Order, related_name='item', on_delete=models.CASCADE) product = models.ForeignKey(Product, related_name='items', on_delete=models.DO_NOTHING) price = models.FloatField() quantity = models.IntegerField(default=1) def __str__(self): return '%s' % self.id
68a88e898837c2b48769ce8f329b01880312bcd8
c16074df9284162febda485038e53fdabc734a0d
/events/migrations/0027_auto_20161008_1342.py
5cd603bd42cc53ceba5682fd5e2a9bb8f88a6aa5
[]
no_license
CharterTechChair/Charter-Website
42e8a4d5c5a5bc0925f8a55c8be276d926d112c8
ddf53ec492202c3a8dc678ebabcd0c394e6884cb
refs/heads/master
2023-02-12T20:02:56.143737
2021-01-17T00:40:59
2021-01-17T00:40:59
32,171,388
2
1
null
2021-01-16T22:30:17
2015-03-13T17:46:54
Python
UTF-8
Python
false
false
1,912
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import datetime from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('events', '0026_auto_20161002_0127'), ] operations = [ migrations.AlterField( model_name='event', name='date', field=models.DateField(default=datetime.datetime(2016, 10, 8, 17, 42, 37, 259364, tzinfo=utc), verbose_name=b'Date of Event'), preserve_default=True, ), migrations.AlterField( model_name='event', name='junior_signup_start', field=models.DateField(default=datetime.datetime(2016, 10, 8, 17, 42, 37, 259364, tzinfo=utc), blank=True), preserve_default=True, ), migrations.AlterField( model_name='event', name='prospective_signup_start', field=models.DateField(default=datetime.datetime(2016, 10, 8, 17, 42, 37, 259364, tzinfo=utc), blank=True), preserve_default=True, ), migrations.AlterField( model_name='event', name='senior_signup_start', field=models.DateField(default=datetime.datetime(2016, 10, 8, 17, 42, 37, 259364, tzinfo=utc), blank=True), preserve_default=True, ), migrations.AlterField( model_name='event', name='signup_end_time', field=models.DateField(default=datetime.datetime(2016, 10, 8, 17, 42, 37, 259364, tzinfo=utc)), preserve_default=True, ), migrations.AlterField( model_name='event', name='sophomore_signup_start', field=models.DateField(default=datetime.datetime(2016, 10, 8, 17, 42, 37, 259364, tzinfo=utc), blank=True), preserve_default=True, ), ]
c3714a4e0accb876c1bd652b5af80327436ed625
adf253ebc9c3bb326a727d87ba2e071ded76d608
/ci_scripts/test_linux-daemon-gui.py
b29ae50d3a3e638eb5cde43fd9125dc4f71a011a
[ "MIT" ]
permissive
NeblioTeam/neblio
5e0da815df7f1d69d04090fe5e7fed2445962dce
cebf9fcb1fb4e9935fcfdf459d5185488a2c04e5
refs/heads/master
2023-05-01T20:35:36.266611
2023-03-02T07:31:07
2023-03-02T07:31:07
98,357,215
143
71
MIT
2023-04-19T10:07:40
2017-07-25T23:06:34
C++
UTF-8
Python
false
false
3,035
py
import os import urllib2 import multiprocessing as mp import neblio_ci_libs as nci nci.setup_travis_or_gh_actions_env_vars() working_dir = os.getcwd() deploy_dir = os.path.join(os.environ['BUILD_DIR'],'deploy', '') nci.mkdir_p(deploy_dir) os.chdir(deploy_dir) build_target = '' build_target_alt = '' if(os.environ['target_v'] == "linux_daemon"): build_target = 'nebliod' build_target_alt = 'nebliod' elif(os.environ['target_v'] == "linux_wallet_test"): build_target = 'tests-neblio-qt' build_target_alt = 'tests-neblio-Qt' os.chdir(os.environ['BUILD_DIR']) # download test data nci.call_with_err_code('wget --progress=dot:giga https://assets.nebl.io/testdata/test_data_mainnet_tab.tar.xz -O ./wallet/test/data/test_data_mainnet_tab.tar.xz') nci.call_with_err_code('wget --progress=dot:giga https://assets.nebl.io/testdata/test_data_testnet_tab.tar.xz -O ./wallet/test/data/test_data_testnet_tab.tar.xz') nci.call_with_err_code('tar -xJvf ./wallet/test/data/test_data_mainnet_tab.tar.xz -C ./wallet/test/data') nci.call_with_err_code('tar -xJvf ./wallet/test/data/test_data_testnet_tab.tar.xz -C ./wallet/test/data') nci.call_with_err_code('rm ./wallet/test/data/*.tar.xz') os.chdir(deploy_dir) else: build_target = 'neblio-qt' build_target_alt = 'neblio-Qt' # Install docker # nci.call_with_err_code('curl -fsSL https://get.docker.com -o get-docker.sh && sudo sh get-docker.sh && rm get-docker.sh') # move .ccache folder to our deploy directory nci.mkdir_p(os.path.join(working_dir,'.ccache', '')) nci.call_with_err_code('mv ' + os.path.join(working_dir,'.ccache', '') + ' ' + os.path.join(deploy_dir,'.ccache', '')) # Start Docker Container to Build nebliod or neblio-Qt nci.call_with_err_code('sudo docker run -e BUILD=' + build_target + ' -v ' + os.environ['BUILD_DIR'] + ':/root/vol -t neblioteam/nebliod-build-ccache') nci.call_with_err_code('sleep 15 && sudo docker kill $(sudo docker ps -q);exit 0') # move .ccache folder back to ccache dir nci.call_with_err_code('mv ' + os.path.join(deploy_dir,'.ccache', '') + ' ' + os.path.join(working_dir,'.ccache', '')) file_name = '$(date +%Y-%m-%d)---' + os.environ['BRANCH'] + '-' + os.environ['COMMIT'][:7] + '---' + build_target_alt + '---ubuntu16.04.tar.gz' # Check if binary exists before trying to package it. # If it does not exist we had a build timeout if(os.path.isfile(build_target)): nci.call_with_err_code('tar -zcvf "' + file_name + '" ' + build_target) nci.call_with_err_code('rm -f ' + build_target) nci.call_with_err_code('echo "Binary package at ' + deploy_dir + file_name + '"') # set the SOURCE_DIR & SOURCE_PATH env vars, these point to the binary that will be uploaded nci.call_with_err_code('echo "SOURCE_DIR=' + deploy_dir + '" >> $GITHUB_ENV') nci.call_with_err_code('echo "SOURCE_PATH=' + deploy_dir + file_name + '" >> $GITHUB_ENV') # if we are just running tests, delete the deploy package if(os.environ['target_v'] == "linux_wallet_test"): nci.call_with_err_code('rm -f ' + deploy_dir + file_name)
384655f551d569d0d82ac2fef4cb9233e2021e67
0eb77a906c13057f3156bcb8e0ccc10feac48f3b
/tests/test_expected_failures.py
2ac2ea9be78d10daa460573c15add9080b21bb37
[ "MIT" ]
permissive
VM-development/UnitTesting
7afbbfbbd8558d8a196146c40b86841f18c28102
937e9988e5dac1aa888bf874a1e7b0f2f86422d7
refs/heads/master
2020-07-28T22:49:42.377462
2019-09-18T09:08:08
2019-09-18T09:08:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,294
py
from unittest.case import _ExpectedFailure, _UnexpectedSuccess from unittesting import DeferrableTestCase, expectedFailure class TestExpectedFailures(DeferrableTestCase): def test_expected_failure_coroutine(self): @expectedFailure def testitem(): yield 1 / 0 try: yield from testitem() except _ExpectedFailure: pass else: self.fail('Expected _ExpectedFailure') def test_expected_failure(self): @expectedFailure def testitem(): 1 / 0 try: yield from testitem() except _ExpectedFailure: pass else: self.fail('Expected _ExpectedFailure') def test_unexpected_success_coroutine(self): @expectedFailure def testitem(): yield try: yield from testitem() except _UnexpectedSuccess: pass else: self.fail('Expected _UnexpectedSuccess') def test_unexpected_success(self): @expectedFailure def testitem(): ... try: yield from testitem() except _UnexpectedSuccess: pass else: self.fail('Expected _UnexpectedSuccess')
f859154d5f57224e28ff3c86d52fb20ef3daa727
32c56293475f49c6dd1b0f1334756b5ad8763da9
/google-cloud-sdk/lib/surface/firebase/test/android/models/describe.py
2e6269eaff842799d27a35ceee33f6973b77541a
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "MIT" ]
permissive
bopopescu/socialliteapp
b9041f17f8724ee86f2ecc6e2e45b8ff6a44b494
85bb264e273568b5a0408f733b403c56373e2508
refs/heads/master
2022-11-20T03:01:47.654498
2020-02-01T20:29:43
2020-02-01T20:29:43
282,403,750
0
0
MIT
2020-07-25T08:31:59
2020-07-25T08:31:59
null
UTF-8
Python
false
false
2,172
py
# -*- coding: utf-8 -*- # # Copyright 2017 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The 'gcloud firebase test android models describe' command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.firebase.test import exceptions from googlecloudsdk.api_lib.firebase.test import util from googlecloudsdk.calliope import base DETAILED_HELP = { 'EXAMPLES': """ To see the attributes of the android model 'my-model', run: $ {command} my-model """, } class Describe(base.DescribeCommand): """Describe an Android model.""" @staticmethod def Args(parser): """Method called by Calliope to register flags for this command. Args: parser: An argparse parser used to add arguments that follow this command in the CLI. Positional arguments are allowed. """ # Positional arg parser.add_argument( 'model_id', help='ID of the model to describe, found using ' '$ {parent_command} list.') def Run(self, args): """Run the 'gcloud firebase test android models describe' command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation (i.e. group and command arguments combined). Returns: The Android model we want to show a description of. """ catalog = util.GetAndroidCatalog(self.context) for model in catalog.models: if model.id == args.model_id: return model raise exceptions.ModelNotFoundError(args.model_id) Describe.detailed_help = DETAILED_HELP
bd713cacf29a8daa5bc11405e1234ffe4d5053e6
808c626eb8d3ec779cb9a579740fc3b71637973e
/verification/tests/core/pro_results.py
979155fdca9b46b9815a877bdd904b7330fb262a
[ "MIT" ]
permissive
hossamfadeel/pito_riscv
86777518cc2eee2ef1d43fc28a5c47fcbf99e9ac
94df6f2201798765984017c82d1fdf0355f68d45
refs/heads/master
2023-07-10T04:20:03.861621
2021-08-07T02:52:59
2021-08-07T02:52:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
782
py
all_tests = ['add','andi','bge','bltu','jalr','lbu','lui','ori','sll','slti','srl','sw', 'xori','addi','auipc', 'bgeu','bne','j','lh','lw','sb','slli','sra','srli', 'test','and','beq','blt','jal','lb','lhu','or','sh','slt','srai','sub','xor'] result = {} for test in all_tests: filename = "log_" + test + ".log" with open(filename, 'r', errors='replace') as f: #print("processing {:s}".format(test)) lines = f.readlines() result[test] = "NOT COMPLETE" for line in lines: if "O K" in line: result[test] = "PASS" break elif "E R O" in line: result[test] = "FAIL" break print("{:10s}: {:s}".format(test, result[test]))
21da6730408720e864074b332fe8aa9c76b7bd59
8aa3862892f0728eba5c31b27f56440962763551
/count_and_say.py
fe237ffbd95f6981ffcaa6126524bd8c98247f03
[]
no_license
WendyBaiYunwei/leetCodeSoln
3220988407ac839a98a12df179993ae6784637ae
16e2b3be21f8d0892e3323e57a41a0c7abe499b0
refs/heads/master
2022-04-17T12:14:07.189844
2020-04-17T06:29:11
2020-04-17T06:29:11
256,421,132
0
0
null
null
null
null
UTF-8
Python
false
false
977
py
class Solution: def countAndSay(self, n: int) -> str: res = [1,1] if n == 1: return '1' if n == 2: return '11' for _ in range(1,n-1): new = [] subList = [] for num in res: if not subList: subList.append(num) else: if subList[-1] == num: subList.append(num) else: new.append(subList.copy()) subList.clear() subList.append(num) new.append(subList.copy()) newRes = [] for subList in new: count = len(subList) val = subList[0] newRes.append(count) newRes.append(val) res = newRes final = "" for char in newRes: final+=str(char) return final
867eef15b10f56265c0191117aa6083a3190b598
5da5c1dcc7358dd0d5d1a1c26a853b633e31e512
/YQ/wsgi.py
e08c8b45c902b3976effbe8d7d6b55d3fef6c42e
[]
no_license
zwj4386/YQ
94b6d0493a08ccdddcfb7ed006ae215a26edf268
83315e70be45a8d04dc9e6606ebddda556dd3927
refs/heads/master
2021-05-11T09:19:01.273317
2018-01-19T04:06:55
2018-01-19T04:06:55
118,074,351
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
""" WSGI config for YQ project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "YQ.settings") application = get_wsgi_application()
8c49ec26ee9a34f09bae0f21d55ed20b5381019d
8e411080e358b4f765a6240047483bc45d8ba141
/migrations/versions/5fca91e724f3_addresses_table.py
a8ed6821dfbc185c18d59012ca14fb18923a8a49
[]
no_license
bplantico/address_book
6dab03ce610ec4e441cae988e876b30315bbb96f
bb95b58058d0807201c7b26d731f07d7bb14bbdc
refs/heads/master
2022-12-11T07:06:59.764008
2019-10-07T17:13:34
2019-10-07T17:13:34
212,234,584
0
0
null
2022-12-08T06:40:39
2019-10-02T01:45:40
Python
UTF-8
Python
false
false
1,180
py
"""addresses table Revision ID: 5fca91e724f3 Revises: Create Date: 2019-10-03 14:25:28.902577 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '5fca91e724f3' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('address', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=60), nullable=True), sa.Column('address', sa.String(length=120), nullable=True), sa.Column('city', sa.String(length=60), nullable=True), sa.Column('state', sa.String(length=60), nullable=True), sa.Column('zip', sa.Integer(), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_address_timestamp'), 'address', ['timestamp'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_address_timestamp'), table_name='address') op.drop_table('address') # ### end Alembic commands ###
108813c2966f2d28ebb9bd0f2bc7b804dff57b7b
18dd49bbbb26e9aa7dfcc130c5056a6d71c806dd
/Second/venv/Scripts/pip3.6-script.py
603907a7ffde12bbf64fdc8f52c64b193e04fa1d
[]
no_license
jin234/Python
f20f8f35347bd731c18e4fab81344d9b3bf1c51d
e0b7d27c0d91a157ec50400a94607d58c6e7c465
refs/heads/master
2020-04-06T17:23:00.721984
2018-11-15T06:56:10
2018-11-15T06:56:10
157,656,914
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
#!D:\58121003-6\Python02\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip3.6' __requires__ = 'pip==9.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.1', 'console_scripts', 'pip3.6')() )
b057ac191b726d52a6f84bef87683ab909713538
807f7a447ab6fcda12109b9835a28c85c62bf071
/scripts/add_valid_user.lmns
e38a0e268db81b0c7d2a81fedc4f406f14f71ded
[]
no_license
tosbaa/samba_final
81d816a09a34af36f9944f7143592a21ce4fa05b
47ccba1e7822dfac3a3312aca49eda92b2f59737
refs/heads/master
2022-01-17T10:41:51.489928
2019-07-19T07:22:46
2019-07-19T07:22:46
197,715,334
0
0
null
null
null
null
UTF-8
Python
false
false
3,329
lmns
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # 1 # User ile dosya paylaş # Verilen kullanıcı samba paylaşımına eklenir # 1.0 # samba # section_name:string,user_name:string # 3 # Yagiz Kocer # [email protected] # Havelsan # add_valid_user import configparser import json import sys import subprocess import re SAMBA_CONFIG_PARSER = configparser.ConfigParser() SAMBA_FILE_PATH = "/etc/samba/smb.conf" SAMBA_CONFIG_PARSER.read(SAMBA_FILE_PATH) SECTION_NAME = sys.argv[2] USER_NAME = sys.argv[3] def get_option_value(section_name, option_name): """ Takes two str and returns the option as string, exceptions are NoOptionError and NoSectionError""" return (SAMBA_CONFIG_PARSER.get(section_name, option_name)) def add_user(section_name, user_name): """ Simply adds given user name to valid users option in config file """ if not SAMBA_CONFIG_PARSER.has_option(section_name, "valid users"): add_option(section_name, "valid users", user_name) else: sed_script = r"sed -r -i '/^\[%s\]/,/^\[/{s/(^valid users = .*)/\1 %s/}' %s" % ( section_name, user_name, SAMBA_FILE_PATH) subprocess.Popen(sed_script, shell=True) def user_exist(section_name, user_name): """ Checks user in config file, doesn't check user exist in the machine """ try: already_defined_users = [user.strip() for user in get_option_value( section_name, "valid users").split(" ")] return user_name in already_defined_users except configparser.NoOptionError: return False def user_exist_in_system(user_name): """Check username in etc/passwd""" bash_command = "getent passwd | grep -c '^{:s}:'".format(user_name) user_exist = subprocess.run(bash_command, shell=True, stdout=subprocess.PIPE).stdout return True if user_exist.decode("utf-8") == 1 else False def add_option(section_name, option_name, value): sed_script = r"sed -i '/\[{:s}\]/a {:s} \= {:s}' {:s}".format( section_name, option_name, value, SAMBA_FILE_PATH) subprocess.Popen(sed_script, shell=True) def before(): if not SAMBA_CONFIG_PARSER.has_section(SECTION_NAME): print("Section name : '{:s}' not exist".format(SECTION_NAME)) exit() if user_exist(SECTION_NAME, USER_NAME): print("User : '{:s}' already in valid users".format(USER_NAME)) exit() if not user_exist_in_system(USER_NAME): print("User : '{:s}' does not exist".format(USER_NAME)) exit() print("ok") def run(): add_user(SECTION_NAME, USER_NAME) def after(): if not user_exist(SECTION_NAME, USER_NAME): print("User: '{:s}' can not be added".format(USER_NAME)) exit() print("ok") def automate(): before_output = make_bash_call('before') if before_output != "ok\n": print(before_output) exit() print('before ok') make_bash_call('run') after_output = make_bash_call('after') if after_output != 'ok\n': print(after_output) exit() print('after ok') def make_bash_call(stage_name): bash = ['python3.7', __file__, stage_name, sys.argv[2], sys.argv[3]] output = subprocess.Popen(bash, stdout=subprocess.PIPE).stdout return output.read().decode('utf-8') if __name__ == "__main__": globals()[sys.argv[1]]()
250bea95e339f759048f6e65e8d2ab46e2e0255b
fe5ace1dbd848d01c94395195c4cfa03d7bdbc42
/test_solver.py
1e1f0e35ee2db8859b831cf08256ba07639889b4
[]
no_license
mikemercer87/particle-diffusion-test
dd119ba5a6fb1334c91e86981706b20e38d3a802
00afde78d5f000e085982bc906eb3b26f54ffdd7
refs/heads/master
2020-04-04T10:05:32.035111
2018-11-01T16:07:08
2018-11-01T16:07:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
from solver import * def test_j_function(): d = Diffusion() d.j() for i in self.j_array: assert i <= self.J_0
ef2ce05740e7b844a4e6ec703eaeddecf5ca482f
f52bce3bbd32e16b340edb9789fb6494e27afa38
/pythings/hourglass_array.py
af6a233bd2cdddfe0ce3d0c075c18ba82a9afdb0
[]
no_license
hsoni1687/crackDCode
e9332f731862b08864c5f6d34eb77892fe317c89
9143e8220fcfc7b99bf48e39d0b2b9b5df0828fc
refs/heads/master
2020-09-17T05:58:03.402721
2020-03-29T14:35:47
2020-03-29T14:35:47
224,012,244
0
0
null
2020-03-29T14:37:24
2019-11-25T18:12:06
Python
UTF-8
Python
false
false
2,786
py
"""Given a 2D Array, : 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 We define an hourglass in to be a subset of values with indices falling in this pattern in 's graphical representation: a b c d e f g There are hourglasses in , and an hourglass sum is the sum of an hourglass' values. Calculate the hourglass sum for every hourglass in , then print the maximum hourglass sum. For example, given the 2D array: -9 -9 -9 1 1 1 0 -9 0 4 3 2 -9 -9 -9 1 2 3 0 0 8 6 6 0 0 0 0 -2 0 0 0 0 1 2 4 0 We calculate the following hourglass values: -63, -34, -9, 12, -10, 0, 28, 23, -27, -11, -2, 10, 9, 17, 25, 18 Our highest hourglass value is from the hourglass: 0 4 3 1 8 6 6 Note: If you have already solved the Java domain's Java 2D Array challenge, you may wish to skip this challenge. Function Description Complete the function hourglassSum in the editor below. It should return an integer, the maximum hourglass sum in the array. hourglassSum has the following parameter(s): arr: an array of integers Input Format Each of the lines of inputs contains space-separated integers . Constraints Output Format Print the largest (maximum) hourglass sum found in . Sample Input 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 2 4 4 0 0 0 0 2 0 0 0 0 1 2 4 0 Sample Output 19 Explanation contains the following hourglasses: image The hourglass with the maximum sum () is: 2 4 4 2 1 2 4""" #!/bin/python3 import math import os import random import re import sys #Complete the hourglassSum function below. def hourglassSum(arr): hourglass_length = 3 hourglass_height = 3 no_of_hourglass_by_length = 6-3+1 no_of_hourglass_by_height=6-3+1 for start_length in range(no_of_hourglass_by_length): for start_height in range(no_of_hourglass_by_height): sum=get_hourglass_sum(arr, start_length, start_height, hourglass_length, hourglass_height) print(sum) def get_hourglass_sum(arr, length, height, hourglass_length, hourglass_height): sum_length = 0 for h in range(height, height+hourglass_height): if h == height or h == hourglass_height-1: for l in range(length, length+hourglass_length): sum_length = sum_length+arr[h][l] else: sum_length = sum_length+arr[h][math.floor(hourglass_length/2)+length] return sum_length if __name__ == '__main__': #fptr = open(os.environ['OUTPUT_PATH'], 'w') arr =[]# [[1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] for _ in range(6): arr.append(list(map(int, input().rstrip().split()))) print(arr) hourglassSum(arr) #fptr.write(str(result) + '\n') #fptr.close()
379bb60b989827755983015f3c8a215044afd5c6
6aaed35d75e1867fe1e66c4e7ffc634e9c4c015d
/run_CORDOVA.py
c77191d10c12b479613b7df9ad5d2b8e3e366307
[]
no_license
ancordovag/assignment4
ca7f5c110d17510dca4d28f1b6d76ecb9eec26ce
6c8e5a2ca19abdebfec8ab52a0d80632cd53ec0f
refs/heads/main
2023-06-17T20:26:38.257374
2021-07-21T17:24:56
2021-07-21T17:24:56
379,573,170
0
0
null
null
null
null
UTF-8
Python
false
false
10,153
py
import os import argparse import yaml import random import torch import time from utils import Dataset from model import NLINet from torch.utils.data import DataLoader from torch.optim import Adam from torch import nn as nn from tqdm import tqdm from time import sleep def parse_args(): """Parse input arguments""" parser = argparse.ArgumentParser(description='Experiment Args') parser.add_argument( '--RUN_MODE', dest='RUN_MODE', choices=['train', 'val', 'test'], help='{train, val, test}', type=str, required=True ) parser.add_argument( '--CPU', dest='CPU', help='use CPU instead of GPU', action='store_true' ) parser.add_argument( '--RESUME', dest='RESUME', help='resume training', action='store_true' ) parser.add_argument( '--CKPT_E', dest='CKPT_EPOCH', help='checkpoint epoch', type=int ) parser.add_argument( '--VERSION', dest='VERSION', help='model version', type=int ) parser.add_argument( '--DEBUG', dest='DEBUG', help='enter debug mode', action='store_true' ) args = parser.parse_args() return args class MainExec(object): def __init__(self, args, configs): self.args = args self.cfgs = configs if self.args.CPU: self.device = torch.device("cpu") else: self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu" ) # for failsafe if self.args.VERSION is None: self.model_ver = str(random.randint(0, 99999999)) else: self.model_ver = str(self.args.VERSION) print("Model version:", self.model_ver) # Fix seed self.seed = int(self.model_ver) torch.manual_seed(self.seed) torch.cuda.manual_seed_all(self.seed) random.seed(self.seed) def train(self): data = Dataset(self.args) pretrained_emb = data.pretrained_emb token_size = data.token_size label_size = data.label_size data_size = data.data_size #print("Token Size = {}".format(token_size)) #print("Label Size = {}".format(label_size)) #print("Pretrained Embed Size = {}".format(pretrained_emb.size)) """ # TODO: You should declare the model here (and send it to your selected device). You should define the loss function and optimizer, with learning rate obtained from the configuration file. You should also use `torch.utils.data.Dataloader` to load the data from Dataset object. For more information, see: https://pytorch.org/docs/stable/data.html#module-torch.utils.data . """ pretrained_emb_torch = torch.from_numpy(pretrained_emb) batch_size = self.cfgs["batch_size"] lr = self.cfgs["lr"] net = NLINet(configs=self.cfgs,pretrained_emb=pretrained_emb_torch,token_size=token_size,label_size=label_size) net = net.to(self.device) loss_fn = nn.CrossEntropyLoss() optimizer = Adam(net.parameters(), lr=lr) dataloader = DataLoader(data,batch_size=batch_size,shuffle=True) # ----------------------------------------------------------------------- if self.args.RESUME: print('Resume training...') start_epoch = self.args.CKPT_EPOCH path = os.path.join(os.getcwd(), self.model_ver, 'epoch' + str(start_epoch) + '.pkl') # Load state dict of the model and optimizer ckpt = torch.load(path, map_location=self.device) net.load_state_dict(ckpt['state_dict']) optimizer.load_state_dict(ckpt['optimizer']) else: start_epoch = 0 os.mkdir(os.path.join(os.getcwd(), self.model_ver)) loss_sum = 0 for epoch in range(start_epoch, self.cfgs["epochs"]): with tqdm(dataloader) as tepoch: for step, ( premise_iter, hypothesis_iter, label_iter ) in enumerate(tepoch): tepoch.set_description("Epoch {}".format(str(epoch))) """ #TODO: Fill the training loop. """ optimizer.zero_grad() outputs = net(premise_iter,hypothesis_iter) #print("Outputs size: {}".format(outputs.size())) #print("Label size: {}".format(label_iter.size())) loss = loss_fn(outputs, label_iter.squeeze(1)) loss_sum += loss.item() loss.backward() optimizer.step() # --------------------------------------------------- tepoch.set_postfix(loss=loss.item()) sleep(0.1) print('Average loss: {:.4f}'.format(loss_sum/len(dataloader))) epoch_finish = epoch + 1 # Save checkpoint state = { 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict() } torch.save( state, os.path.join(os.getcwd(), self.model_ver, 'epoch' + str(epoch_finish) + '.pkl') ) loss_sum = 0 def eval(self): data = Dataset(self.args) pretrained_emb = data.pretrained_emb token_size = data.token_size label_size = data.label_size data_size = data.data_size """ # TODO: You should declare the model here (and send it to your selected device). Don't forget to set the model to evaluation mode. You should also use `torch.utils.data.Dataloader` to load the data from Dataset object. """ pretrained_emb_torch = torch.from_numpy(pretrained_emb) batch_size = self.cfgs["batch_size"] net = NLINet(configs=self.cfgs, pretrained_emb=pretrained_emb_torch, token_size=token_size, label_size=label_size) net = net.to(self.device) path = os.path.join(os.getcwd(), self.model_ver, 'epoch' + str(self.args.CKPT_EPOCH) + '.pkl') dataloader = DataLoader(data, batch_size=batch_size,shuffle=False) # Load state dict of the model ckpt = torch.load(path, map_location=self.device) net.load_state_dict(ckpt['state_dict']) net.eval() """TODO : Evaluate the model using accuracy as metrics.""" corrects = 0 N = 0 with tqdm(dataloader) as tepoch: with torch.no_grad(): for step, ( premise_iter, hypothesis_iter, label_iter ) in enumerate(tepoch): outputs = net(premise_iter, hypothesis_iter) #print("Outputs {}".format(outputs.shape)) best_outs = torch.argmax(outputs,1) #print("Best outputs {}".format(best_outs)) for l, o in zip(label_iter, best_outs): if l == o: corrects += 1 N += 1 accuracy = corrects / N print(accuracy) # ------------------------------------------------- def overfit(self): data = Dataset(self.args) pretrained_emb = data.pretrained_emb token_size = data.token_size label_size = data.label_size data_size = data.data_size """ TODO : You should declare the model here (and send it to your selected device). You should define the loss function and optimizer, with learning rate obtained from the configuration file. You should also use `torch.utils.data.Dataloader` to load the data from Dataset object. Use only a single batch to ensure your model is working correctly. """ pretrained_emb_torch = torch.from_numpy(pretrained_emb) batch_size = 1 lr = self.cfgs["lr"] net = NLINet(configs=self.cfgs, pretrained_emb=pretrained_emb_torch, token_size=token_size, label_size=label_size) net = net.to(self.device) loss_fn = nn.CrossEntropyLoss() optimizer = Adam(net.parameters(), lr=lr) dataloader = DataLoader(data, batch_size=batch_size) # ----------------------------------------------------------------------- start_epoch = 0 """ TODO : Train using a single batch and observe the loss. Does it converge?. """ loss_sum = 0 with tqdm(dataloader) as tepoch: for step, ( premise_iter, hypothesis_iter, label_iter ) in enumerate(tepoch): optimizer.zero_grad() outputs = net(premise_iter, hypothesis_iter) loss = loss_fn(outputs, label_iter.squeeze(1)) loss_sum += loss.item() loss.backward() optimizer.step() print("Total Loss : {}".format(loss_sum)) # ----------------------------------------------------------------- def run(self, run_mode): if run_mode == 'train' and self.args.DEBUG: print('Overfitting a single batch...') self.overfit() elif run_mode == 'train': print('Starting training mode...') self.train() elif run_mode == 'val': print('Starting validation mode...') self.eval() elif run_mode == 'test': print('Starting test mode...') self.eval() else: exit(-1) if __name__ == "__main__": args = parse_args() with open('./config.yml', 'r') as f: model_config = yaml.safe_load(f) exec = MainExec(args, model_config) exec.run(args.RUN_MODE)
479909e738c2439397c85cf7b05aeff54cd8ae06
c2471dcf74c5fd1ccf56d19ce856cf7e7e396b80
/chap15/2.py
903e0714bb432e40595c1ec7820bcb7a9ec1d98c
[]
no_license
oc0de/pythonEpi
eaeef2cf748e6834375be6bc710132b572fc2934
fb7b9e06bb39023e881de1a3d370807b955b5cc0
refs/heads/master
2021-06-18T05:33:19.518652
2017-07-07T04:34:52
2017-07-07T04:34:52
73,049,450
0
0
null
null
null
null
UTF-8
Python
false
false
596
py
class Node(object): def __init__(self, data, left=None, right=None): self.data = data self.left = left self.right = right def findNextKey(root, key): if not root: return if key > root.data: return findNextKey(root.right, key) if key < root.data: p = findNextKey(root.left, key) if not p: return root.data return p if key == root.data and root.right: return root.right.data return tree = Node(8, Node(5, Node(3), Node(7)), Node(12, Node(9, None, Node(11, Node(10))), Node(14))) print findNextKey(tree, 9)
7eb6aa2c7a3a61820192f4a616810ac257d6c0b7
2ab5463706f9f70dcb717745127c4dd350f08342
/Src/Decorators/Decorator_to_calculate_functionTime.py
df4fbbca8f0e34c4a36880b34b7775ac5f43316e
[]
no_license
ChinmayTagare/Advanced-Python-Concepts
63c08d2d9971727c675e35a54360d7e4d221f9e2
3b25e06ebf5a023f06924c3ae2d73718426c9988
refs/heads/main
2023-06-03T09:31:17.155323
2021-06-29T05:23:27
2021-06-29T05:23:27
375,720,971
1
0
null
null
null
null
UTF-8
Python
false
false
698
py
# -*- coding: utf-8 -*- """ Topic : Decorators in Python Author : Chinmay Tagare """ import time import math # Define decorator function def calculate_time(main_func): def inner_func(*args, **kwargs): begin = time.time() main_func(*args, **kwargs) end = time.time() print('Total time taken = {}'.format(end-begin)) return inner_func @calculate_time def sqr_func(limit): sqrs = [x*x for x in range(limit)] return sqrs @calculate_time def factorial_func(limit): fact_result = math.factorial(limit) print(fact_result) return fact_result sqr_func(1000000) print('---------') factorial_func(25)
118208c4fd8ae6100b849572f1987522739c72ef
36d1af455d542a3321289c974f4b1a2b4dadf3be
/CompOp.py
d7b1126de16bccc5df68df2a2b0f66f5a02a90ab
[]
no_license
motomaniak/InterpreterProgram
778a1d24c1357c2465dd7610318e9676b82b8e84
0b4fe1e71cfc4d85388d5a3e60c602c9abf3d8e1
refs/heads/master
2021-01-10T14:35:27.242613
2017-01-27T21:43:07
2017-01-27T21:43:07
80,242,973
0
0
null
null
null
null
UTF-8
Python
false
false
789
py
import sys class CompOp: def __init__(self, t): self.case= 0 self.t = t def parse(self): #check which operator is being used by token number and assign a different case for each x = int(self.t.peek()) if x == 25: #!= pass elif x == 26: #== self.case= 1 elif x == 27: #< self.case= 2 elif x == 28: #> self.case= 3 elif x == 29: #<= self.case= 4 elif x == 30: #>= self.case= 5 else: print "Invalid comparison operator." sys.exit() self.t.getToken() def execute(self): return self.case def Print(self): if self.case== 0: return '!=' elif self.case== 1: return '==' elif self.case== 2: return '<' elif self.case== 3: return '>' elif self.case== 4: return '<=' elif self.case== 5: return '>='
824fb823da3b50f2ee3f0f8725e12ef232d652af
0d97cf653219d2e12a868ff94890f00d6673e864
/Database/gamedb.py
519372b822dbb1cd25060e5bed308c036971b1fc
[]
no_license
ChitharaKarunasekera/BouncingMath
03c617391d308c82f239e87408168d6cf6f4194a
fb49ca72db16c315ebae43f58a3acf7dbfb1a8d5
refs/heads/main
2023-07-27T22:55:00.990519
2021-09-20T15:16:25
2021-09-20T15:16:25
408,475,200
1
0
null
null
null
null
UTF-8
Python
false
false
3,288
py
import mysql.connector from prettytable import PrettyTable def connect(): "This function is to bulid connection with thw database" global conDict global db global cursor #Open database connection with a dictionery conDict = {'host':'localhost', 'database':'bouncing_math', 'user':'root', 'password':''} db = mysql.connector.connect(**conDict) cursor = db.cursor() return def insert(name,num,score,perc,lev,time,date): "Function to insert values to the database" #SQL query mySQLText = "INSERT INTO gameinfo(name, correct, totQues,percentage, Level, Time, Date) VALUES (%s,%s,%s,%s,%s,%s,%s)" myValues = (name, score, num, perc,lev,time,date) cursor.execute(mySQLText, myValues) db.commit() db.close() return def allInfo(): "Function to display information of all players" tbl = PrettyTable() tbl.field_names = ["Name", "Corrct answers", "Total questions", "Percentage"] #Execute SQL query cursor.execute("SELECT name, correct, totQues, percentage FROM gameinfo") data = cursor.fetchall() for item in data: tbl.add_row(item) print("Past player results") print(tbl) db.close() return def user(): user = [] global uName #Get record name of user uName = input("Enter user name: ") #Execute SQL query using execute() method cursor.execute("SELECT name FROM gameinfo") data = cursor.fetchall() for item in data: for nameitem in item: user.append(nameitem) if uName in user: use = 1 else: use = 0 db.close() return use def userinfo(): uName = input("Enter user name: ") tbl = PrettyTable() tbl.field_names = ["Record No.", "Name", "Corrct answers", "No. of questions", "Percentage","Level","Time","Date"] #Execute SQL query shwTxt= "SELECT * FROM gameinfo WHERE name = %s" getTxt = (uName,) cursor.execute(shwTxt,getTxt) data = cursor.fetchall() for item in data: tbl.add_row(item) print("Information of user") print(tbl) print("Total number of records: ",cursor.rowcount) db.close() return def method(): global m print("----Past game infromation method----") print("1 - All game records") print("2 - Player's game infromation") print("\n") methd = input("Select records viewing method: ") if(methd == "2"): userinfo() delete() elif(methd == "1"): allInfo() else: print("Invalied option") return def delete(): connect() while True: delt = input("Do you want to delete a record (Y\\N)?") if (delt == "y" or delt == "Y" ): try: delrcd = input("Enter record number: ") cursor = db.cursor() cursor.execute("DELETE FROM gameinfo WHERE rcdNo =" + delrcd + "") db.commit() print(cursor.rowcount, "Record", delrcd, "Deleted") db.close() except: print("Invalied Record number!") elif(delt == "n" or delt == "N"): break
0f0065ea7a5f13dced622e24fa758ba9deeb184e
0c0f6a6e47120afad8ff01e701a27bc6bb359f6c
/settings.py
22e08e148d689e7565735d9d6b13cc8378806bce
[]
no_license
gundamjr/Fabrica
dedd0bf9d0a2672afc7339984a5f32e633f2aae5
8f7e243e796aa0c46ee404bfc10be7a9372e50b6
refs/heads/master
2021-01-01T03:53:54.312742
2016-06-08T20:04:32
2016-06-08T20:04:32
58,213,906
0
0
null
null
null
null
UTF-8
Python
false
false
2,823
py
""" Django settings for ceep project. Generated by 'django-admin startproject' using Django 1.8.5. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '3=(0nhtdbmf@kjugj_@cuer(2wpuq)i2iumzf6h(#s2o&4gq!g' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'page', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'ceep.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ceep.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'Ceep', 'USER': 'postgres', 'PASSWORD': '123456', 'HOST': 'localhost', 'PORT': '5432', } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'America/Sao_Paulo' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') LOGIN_REDIRECT_URL = '/'
8d9e85dc3c307a5bcdedab7d153ca207622be8c9
41c605bf3a002a757cb2344cff526d7a7ae56ea9
/plotly/graph_objs/area/hoverlabel/__init__.py
fc3a516acf6390598c9ea92f63b06b09005b52f1
[ "MIT" ]
permissive
Jonathan-MW/plotly.py
9674b90b5de11fd9089e6afefd04b57bc4587829
7528c00772f44dee24c0df7e15d70a4852f171a8
refs/heads/master
2020-05-30T06:04:13.621478
2019-05-31T10:34:15
2019-05-31T10:34:15
189,571,988
2
0
MIT
2019-05-31T09:59:53
2019-05-31T09:59:53
null
UTF-8
Python
false
false
10,981
py
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Font(_BaseTraceHierarchyType): # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self['color'] @color.setter def color(self, val): self['color'] = val # colorsrc # -------- @property def colorsrc(self): """ Sets the source reference on plot.ly for color . The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self['colorsrc'] @colorsrc.setter def colorsrc(self, val): self['colorsrc'] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self['family'] @family.setter def family(self, val): self['family'] = val # familysrc # --------- @property def familysrc(self): """ Sets the source reference on plot.ly for family . The 'familysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self['familysrc'] @familysrc.setter def familysrc(self, val): self['familysrc'] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray """ return self['size'] @size.setter def size(self, val): self['size'] = val # sizesrc # ------- @property def sizesrc(self): """ Sets the source reference on plot.ly for size . The 'sizesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self['sizesrc'] @sizesrc.setter def sizesrc(self, val): self['sizesrc'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'area.hoverlabel' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . """ def __init__( self, arg=None, color=None, colorsrc=None, family=None, familysrc=None, size=None, sizesrc=None, **kwargs ): """ Construct a new Font object Sets the font used in hover labels. Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.area.hoverlabel.Font color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . Returns ------- Font """ super(Font, self).__init__('font') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.area.hoverlabel.Font constructor must be a dict or an instance of plotly.graph_objs.area.hoverlabel.Font""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop('skip_invalid', False) # Import validators # ----------------- from plotly.validators.area.hoverlabel import (font as v_font) # Initialize validators # --------------------- self._validators['color'] = v_font.ColorValidator() self._validators['colorsrc'] = v_font.ColorsrcValidator() self._validators['family'] = v_font.FamilyValidator() self._validators['familysrc'] = v_font.FamilysrcValidator() self._validators['size'] = v_font.SizeValidator() self._validators['sizesrc'] = v_font.SizesrcValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop('color', None) self['color'] = color if color is not None else _v _v = arg.pop('colorsrc', None) self['colorsrc'] = colorsrc if colorsrc is not None else _v _v = arg.pop('family', None) self['family'] = family if family is not None else _v _v = arg.pop('familysrc', None) self['familysrc'] = familysrc if familysrc is not None else _v _v = arg.pop('size', None) self['size'] = size if size is not None else _v _v = arg.pop('sizesrc', None) self['sizesrc'] = sizesrc if sizesrc is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
faea1d2d3aff94918153747b463fda5afb5fea96
85a32fc66050b5590f6a54774bbb4b88291894ab
/python/closures-and-decorators/standardize-mobile-number-using-decorators/python3.py
9edf509c54cd1e971677c0957f8a99e5e94b5ce6
[]
no_license
charlesartbr/hackerrank-python
59a01330a3a6c2a3889e725d4a29a45d3483fb01
bbe7c6e2bfed38132f511881487cda3d5977c89d
refs/heads/master
2022-04-29T07:40:20.244416
2022-03-19T14:26:33
2022-03-19T14:26:33
188,117,284
46
37
null
2022-03-19T14:26:34
2019-05-22T21:38:18
Python
UTF-8
Python
false
false
336
py
def wrapper(f): def fun(l): for i in range(len(l)): p = len(l[i]) - 5 l[i] = '+91 ' + l[i][p-5:p] + ' ' + l[i][p:] f(l) return fun @wrapper def sort_phone(l): print(*sorted(l), sep='\n') if __name__ == '__main__': l = [input() for _ in range(int(input()))] sort_phone(l)
212144725dd7bdb891489e66befa687a6cc7d9e4
635f8f5581c98dc22c6f5ff7210ae489d2b03197
/src/editor/__init__.py
173efc7150bbd80cb4ea3cbcf9f9568172e2b6cb
[]
no_license
moshev/project-viking
2f03dd4fcf05a1c790c3230b7eff956a76d73081
0da83d070bde32687aeacdb7971d70a6848de57c
refs/heads/master
2016-08-04T02:20:40.302063
2015-12-01T20:49:00
2015-12-01T20:49:07
1,097,047
1
0
null
null
null
null
UTF-8
Python
false
false
208
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, generators, print_function, with_statement from .hitbox_editor import hitboxeditor_main from .level_editor import leveleditor_main
307e9a9c5e278b06a5bf2d2f92840be5798d15ff
1dae87abcaf49f1d995d03c0ce49fbb3b983d74a
/programs/subroutines/Delta1CurrentRamp100-200A.sub.py
5e686740bcd7a62709180483dd7887e9c8792f82
[]
no_license
BEC-Trento/BEC1-data
651cd8e5f15a7d9848f9921b352e0830c08f27dd
f849086891bc68ecf7447f62962f791496d01858
refs/heads/master
2023-03-10T19:19:54.833567
2023-03-03T22:59:01
2023-03-03T22:59:01
132,161,998
0
0
null
null
null
null
UTF-8
Python
false
false
2,144
py
prg_comment = "" prg_version = "0.5.1" def program(prg, cmd): prg.add(0, "Delta 1 Current", 100.000000) prg.add(141540, "Delta 1 Current", 102.560000) prg.add(283080, "Delta 1 Current", 105.130000) prg.add(424620, "Delta 1 Current", 107.690000) prg.add(566150, "Delta 1 Current", 110.260000) prg.add(707690, "Delta 1 Current", 112.820000) prg.add(849230, "Delta 1 Current", 115.380000) prg.add(990770, "Delta 1 Current", 117.950000) prg.add(1132310, "Delta 1 Current", 120.510000) prg.add(1273850, "Delta 1 Current", 123.080000) prg.add(1415380, "Delta 1 Current", 125.640000) prg.add(1556920, "Delta 1 Current", 128.210000) prg.add(1698460, "Delta 1 Current", 130.770000) prg.add(1840000, "Delta 1 Current", 133.330000) prg.add(1981540, "Delta 1 Current", 135.900000) prg.add(2123080, "Delta 1 Current", 138.460000) prg.add(2264620, "Delta 1 Current", 141.030000) prg.add(2406150, "Delta 1 Current", 143.590000) prg.add(2547690, "Delta 1 Current", 146.150000) prg.add(2689230, "Delta 1 Current", 148.720000) prg.add(2830770, "Delta 1 Current", 151.280000) prg.add(2972310, "Delta 1 Current", 153.850000) prg.add(3113850, "Delta 1 Current", 156.410000) prg.add(3255380, "Delta 1 Current", 158.970000) prg.add(3396920, "Delta 1 Current", 161.540000) prg.add(3538460, "Delta 1 Current", 164.100000) prg.add(3680000, "Delta 1 Current", 166.670000) prg.add(3821540, "Delta 1 Current", 169.230000) prg.add(3963080, "Delta 1 Current", 171.790000) prg.add(4104620, "Delta 1 Current", 174.360000) prg.add(4246150, "Delta 1 Current", 176.920000) prg.add(4387690, "Delta 1 Current", 179.490000) prg.add(4529230, "Delta 1 Current", 182.050000) prg.add(4670770, "Delta 1 Current", 184.620000) prg.add(4812310, "Delta 1 Current", 187.180000) prg.add(4953850, "Delta 1 Current", 189.740000) prg.add(5095380, "Delta 1 Current", 192.310000) prg.add(5236920, "Delta 1 Current", 194.870000) prg.add(5378460, "Delta 1 Current", 197.440000) prg.add(5520000, "Delta 1 Current", 200.000000) return prg
e664f8382f027c8384062ba1d4e5d656f1e6baf6
82e1ba90dd94df783e70bc27e09d89026c145abc
/bin/p/__init__.py
08c9990f6c4dcc33359b3f681a15910e811e6fb1
[]
no_license
pebbe/Gabmap
a8fe44c6b23cbb4a1e297dd0dbc4126c539c56ad
7801f901f1c8bfbf4f62e52c74fcb84652cbf1f9
refs/heads/master
2023-06-08T22:58:18.436693
2023-05-31T13:40:30
2023-05-31T13:40:30
1,847,250
2
1
null
null
null
null
UTF-8
Python
false
false
50
py
""" This does parts of the user hierarchy """
[ "peter@localhost.(none)" ]
peter@localhost.(none)
e895078315d65068f1ccad0d76516477f7fe6d4e
f0b654037e9d236e42f893d8eddf7393fb73c433
/copy_file.py
32f30e4229681c81a0f592ef64e4a5f5f140801a
[]
no_license
greg00m/greg00m
d80f3e4e51b08e6616f763e723c9ea0ac5b4a1c3
e37792cc5411685cfca1fe0a739a38b110163f61
refs/heads/master
2023-05-01T09:40:25.016078
2023-04-21T04:23:16
2023-04-21T04:23:16
142,930,250
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
#!/usr/bin/python3 file_path = "alice.txt" try: fh = open(file_path, 'r') #open text file for reading except Exception: print("unable to read file") try: out_file = "%s.out" % (file_path) #opens text file for writing fh = open(file_path, 'w') #opens text file for writing except Exception: print("unable to write to file") try: fh = (file_path, 'r+') #opens file for read/write except Exception: print("unable to add read to file attribute") try: open(file_path, 'rb') #opens a binary file for reading fh.close() except Exception: print("uanble to open a binary file for reading") #open("copy.txt","w").write(open("alice.txt","r").read()
140bc0541699a65cdf1095b23526c93f841db5bb
5ef186f87c1b58e57b8ba443e9a1039bdf044ef0
/tests/test_gitone.py
d956d384ed2611a5125d7fff9063c2ea37b1db84
[ "MIT" ]
permissive
litchilin/gitone
d48bb4e1e9030cec1123349687c95d065fd0c9c4
9f7ea61a55fecf39663f5721e7e82bcbe41da4d1
refs/heads/master
2020-08-03T22:19:11.417293
2019-07-04T15:03:05
2019-07-04T15:03:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `gitone` package.""" import pytest from click.testing import CliRunner from cli import camp_cli @pytest.fixture def response(): """Sample pytest fixture. See more at: http://doc.pytest.org/en/latest/fixture.html """ def test_content(response): """Sample pytest test function with the pytest fixture as an argument.""" def test_command_line_interface(): """Test the CLI.""" runner = CliRunner()
056832faf9403db5ced2cbaed918067783f17c86
a3a26ec5d5ac4aa034484f1652ed212ec7464baf
/MyEnv/lib/python3.7/locale.py
ae80cc80f6d8db74f005c52f5c4fa13a269240b6
[ "MIT" ]
permissive
pratikagarwal2203/manim_simulations
b3aabe8eb0491dba0f0061b46387da4d6ad259c0
9d7820b894914afcb40e7f859387d9120110fa2b
refs/heads/master
2020-05-06T12:30:29.916096
2019-04-21T13:18:11
2019-04-21T13:18:11
180,126,215
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
/home/pratik/anaconda3/lib/python3.7/locale.py
b070204450dcf546ea365cff9ab64ac507811a85
4f8cca207c443108a5406d6a1fa4180326f96d9b
/scrapy/med126/med126/items.py
cd8d4dffa8ff2ad6abf491d9f65a051e6c1ff005
[]
no_license
owenxu10/WebSpider
d1e73ddc90a565dec545594f48b05b308d3babb6
6d41172f4d6716589b7c63a3fb604596283822c7
refs/heads/master
2021-10-25T22:41:04.095730
2019-04-07T22:30:57
2019-04-07T22:30:57
79,695,240
1
1
null
null
null
null
UTF-8
Python
false
false
335
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class Med126Item(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() number = scrapy.Field() name = scrapy.Field()
30da647e3ae38a8c0285ab9e395f297040d07d23
bb150497a05203a718fb3630941231be9e3b6a32
/inference/benchmark/jetson/utils/utilities.py
b7394c9faa4d10c3d6978d21fc1a4693607452c8
[ "MIT" ]
permissive
PaddlePaddle/PaddleTest
4fb3dec677f0f13f7f1003fd30df748bf0b5940d
bd3790ce72a2a26611b5eda3901651b5a809348f
refs/heads/develop
2023-09-06T04:23:39.181903
2023-09-04T11:17:50
2023-09-04T11:17:50
383,138,186
42
312
null
2023-09-13T11:13:35
2021-07-05T12:44:59
Python
UTF-8
Python
false
false
5,241
py
import os import subprocess import sys import time FNULL = open(os.devnull, "w") # Class for Utilities (TRT check, Power mode switching) # https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%2520Linux%2520Driver%2520Package%2520Development%2520Guide%2Fpower_management_jetson_xavier.html%23wwpID0E0KD0HA class utilities(): def __init__(self, jetson_devkit, gpu_freq, dla_freq): self.jetson_devkit = jetson_devkit self.gpu_freq = gpu_freq self.dla_freq = dla_freq def set_power_mode(self, power_mode, jetson_devkit): power_cmd0 = "nvpmodel" power_cmd1 = str("-m"+str(power_mode)) subprocess.call("sudo {} {}".format(power_cmd0, power_cmd1), shell=True, stdout=FNULL) print("Setting Jetson {} in max performance mode".format(jetson_devkit)) def set_jetson_clocks(self): clocks_cmd = "jetson_clocks" subprocess.call("sudo {}".format(clocks_cmd), shell=True, stdout=FNULL) print("Jetson clocks are Set") def set_jetson_fan(self, switch_opt): fan_cmd = "sh" + " " + "-c" + " " + ""echo" + " " + str( switch_opt) + " " + ">" + " " + "/sys/devices/pwm-fan/target_pwm"" subprocess.call("sudo {}".format(fan_cmd), shell=True, stdout=FNULL) def run_set_clocks_withDVFS(self): if self.jetson_devkit == "tx2": self.set_user_clock(device="gpu") self.set_clocks_withDVFS(frequency=self.gpu_freq, device="gpu") if self.jetson_devkit == "nano": self.set_user_clock(device="gpu") self.set_clocks_withDVFS(frequency=self.gpu_freq, device="gpu") if self.jetson_devkit == "xavier" or self.jetson_devkit == "xavier-nx": self.set_user_clock(device="gpu") self.set_clocks_withDVFS(frequency=self.gpu_freq, device="gpu") self.set_user_clock(device="dla") self.set_clocks_withDVFS(frequency=self.dla_freq, device="dla") def set_user_clock(self, device): if self.jetson_devkit == "tx2": self.enable_register = "/sys/devices/gpu.0/aelpg_enable" self.freq_register = "/sys/devices/gpu.0/devfreq/17000000.gp10b" if self.jetson_devkit == "nano": self.enable_register = "/sys/devices/gpu.0/aelpg_enable" self.freq_register = "/sys/devices/gpu.0/devfreq/57000000.gpu" if self.jetson_devkit == "xavier" or self.jetson_devkit == "xavier-nx": if device == "gpu": self.enable_register = "/sys/devices/gpu.0/aelpg_enable" self.freq_register = "/sys/devices/gpu.0/devfreq/17000000.gv11b" elif device == "dla": base_register_dir = "/sys/kernel/debug/bpmp/debug/clk" self.enable_register = base_register_dir + "/nafll_dla/mrq_rate_locked" self.freq_register = base_register_dir + "/nafll_dla/rate" def set_clocks_withDVFS(self, frequency, device): from_freq = self.read_internal_register(register=self.freq_register, device=device) self.set_frequency(device=device, enable_register=self.enable_register, freq_register=self.freq_register, frequency=frequency, from_freq=from_freq) time.sleep(1) to_freq = self.read_internal_register(register=self.freq_register, device=device) print("{} frequency is set from {} Hz --> to {} Hz".format(device, from_freq, to_freq)) def set_frequency(self, device, enable_register, freq_register, frequency, from_freq): self.write_internal_register(enable_register, 1) if device == "gpu": max_freq_reg = freq_register+"/max_freq" min_freq_reg = freq_register+"/min_freq" if int(frequency) > int(from_freq): self.write_internal_register(max_freq_reg, frequency) self.write_internal_register(min_freq_reg, frequency) else: self.write_internal_register(min_freq_reg, frequency) self.write_internal_register(max_freq_reg, frequency) elif device =="dla": self.write_internal_register(freq_register, frequency) def read_internal_register(self, register, device): if device == "gpu": register = register+"/cur_freq" reg_read = open(register, "r") reg_value = reg_read.read().rstrip("\n") reg_read.close() return reg_value def write_internal_register(self, register, value): reg_write = open(register, "w") reg_write.write("%s" % value) reg_write.close() def clear_ram_space(self): cmd_0 = str("sh" + " " + "-c") cmd_1 = str(""echo") + " " + "2" + " " + " >" + " " + "/proc/sys/vm/drop_caches"" cmd = cmd_0 + " " + cmd_1 subprocess.call("sudo {}".format(cmd), shell=True) def close_all_apps(self): input("Please close all other applications and Press Enter to continue...") def check_trt(self): if not os.path.isfile("/usr/src/tensorrt/bin/trtexec"): # Check if TensorRT is installed print("Exiting. Check if TensorRT is installed \n Use ``dpkg -l | grep nvinfer`` ") return True return False
4b7511e6ab31a4735b18cdb5bb56cdebcb1f391a
ecf25af68a32600e462e27f8ae205cac8a35978f
/venv/bin/wheel
301a42b9b315ad33267ddee83003b8ffb1942f77
[]
no_license
bennettdrew35/resume_courses_python
4c36e326ad453c1936b5c5890e5a878fc2304254
c6b394babe361ba88b31d6f702e4587e5d14c5f1
refs/heads/master
2018-12-27T15:10:51.858169
2018-10-24T15:36:39
2018-10-24T15:36:39
119,621,817
0
0
null
null
null
null
UTF-8
Python
false
false
253
#!/home/drew/PycharmProjects/matplotlib/venv/bin/python3.5 # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())