blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
2622b4b48f92d9c5c9b8811b8a7a0759654b023b
66b88803ab13b2029217331fba15a6adacaa5798
/learn/ajax.py
0715e69947655e3698eb19d4d390565c5f8c55cb
[ "Unlicense" ]
permissive
ericmok/eri53
446e9f5ba14c3744f18cddf47346e1de3be59406
511f21787a7e1eae1eeb87399ae2b93bbcf1210e
refs/heads/master
2020-05-23T16:36:26.357975
2014-02-25T18:14:08
2014-02-25T18:17:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,364
py
import django.http import django.template import django.utils.simplejson from django.shortcuts import render_to_response import views import models import svm import svmutil def json(dict): ret = django.utils.simplejson.dumps(dict) return django.http.HttpResponse(ret, mimetype='application/json') def add_action(request): '''Adds a point''' new_point = models.Point2d() new_point.x = float( request.POST.get("x", 0) ) new_point.y = float( request.POST.get("y", 0) ) new_point.x = 1. * new_point.x new_point.y = 1. * new_point.y print("Label: " + request.POST.get("label")) new_point.label = request.POST.get("label", -1) new_point.save() data = {'x': new_point.x, 'y': new_point.y, 'label': new_point.label} return json(data) class PointEncoder(django.utils.simplejson.JSONEncoder): def default(self, obj): if not isinstance(obj, models.Point2d): return super(PointEncoder, self).default(obj) return {"x": obj.x, "y": obj.y, "label": obj.label} def read_action(request): points = models.Point2d.objects.all() data = {} data["length"] = len(points) i = 0 for point in points: data[i] = [point.x, point.y, point.label] i = i + 1 response_data = django.utils.simplejson.dumps(data, cls=PointEncoder) return django.http.HttpResponse(response_data, mimetype='application/json') def predict(request): predictX = float( request.POST.get("x", -1) ) predictY = float( request.POST.get("y", -1) ) predictLabel = int( request.POST.get("label", -1) ) if predictX == -1 or predictY == -1 or predictLabel == -1: return django.http.HttpResponse("Missing Params") points = models.Point2d.objects.all() # Storing the information to be presented to SVM labels = [] inputs = [] # For each point, store the information into arrays #for p in points: # labels.append( p.label ) # inputs.append([p.x, p.y]) #prob = svm.svm_problem(labels, inputs) #param = svm.svm_parameter('-t 2 -c 100') #model = svmutil.svm_train(prob, param) #svmutil.svm_save_model('libsvm.model', model) model = svmutil.svm_load_model('libsvm.model') p_label , acc, val = svmutil.svm_predict([0], [[predictX, predictY]], model) data = {'x': predictX, 'y': predictY, 'label': int( p_label[0] ) } return json(data) def predict_all(request): '''Predicts points in an array''' width = float( request.POST.get("width", "None") ) height = float( request.POST.get("height", "None") ) model = svmutil.svm_load_model('libsvm.model') # Get grid of points to query points = [] for counterY in [ 1.0 / 15.0 * y for y in range(0, 15) ]: for counterX in [ 1.0 / 15.0 * x for x in range(0, 15) ]: points.append([counterX, counterY]) #for counterY in [ 1.0 / 10.0 * x for x in range(0, 10) ]: # for counterX in [ 1.0 / 10.0 * y for y in range(0, 10) ]: # label , acc, val = svmutil.svm_predict( [0], [[counterX, counterY]], model ) # results[i] = [counterX, counterY, label] # i = i + 1 #results["length"] = i # Get labels labels, acc, val = svmutil.svm_predict([0] * len(points), points, model) results = {} for index, value in enumerate(points): results[index] = { "x" : points[index][0], "y" : points[index][1], "label" : labels[index] } results["length"] = len(points) return json(results) def train(request): points = models.Point2d.objects.all() # Storing the information to be presented to SVM labels = [] inputs = [] # For each point, store the information into arrays for p in points: labels.append( p.label ) inputs.append([p.x, p.y]) prob = svm.svm_problem(labels, inputs) param = svm.svm_parameter('-t 2 -c 100') model = svmutil.svm_train(prob, param) try: svmutil.svm_save_model('libsvm.model', model) except Exception as e: print "error: ", e, "\n" data = {"status": "trained"} return json(data) def handle_ajax_action(request): '''Routes ajax calls based on action parameter''' if request.POST.get("action", "None") == "add": return add_action(request) elif request.POST.get("action", "None") == "read": return read_action(request) elif request.POST.get("action", "None") == "predict": return predict(request) elif request.POST.get("action", "None") == "train": return train(request) elif request.POST.get("action", "None") == "predictAll": return predict_all(request) else: data = {'status': 'Invalid action'} return json(data) def handle_requests(request): '''Handles ajax requests directed to this learn/ajax/ If not post, then goes to index page''' if request.method == 'POST': return handle_ajax_action(request) return views.index(request)
882bc8305c6b4b4ae3fbbf64ffc2a1c691800e88
f987a6669e721747d4bbbcfc9e99a9d244e07bb8
/test/merge_sort.py
c06169c73def4b0205ec2dc751cecf13bc8e3e11
[]
no_license
matiTechno/various
ece6be63c0c032f97eb9dedc933f97112649977b
e482ac1d186914fdc798369679608a7ca2834272
refs/heads/master
2021-07-17T14:56:11.906189
2021-07-13T21:37:47
2021-07-13T21:37:47
252,883,529
1
0
null
null
null
null
UTF-8
Python
false
false
1,628
py
""" algorithm: merge sort input: (a_1, ..., a_n) output: sorted sequence step <- 2 half <- 1 while half < n do i <- 0 while i + half <= n do l <- ( a_i, ..., a_(i + half - 1) ) end <- min(i + step - 1, n) r <- ( a_(i + half), ..., a_(end) ) (a_i, ..., a_(end)) <- Merge(l, r) i <- i + step step <- 2 step half <- 2 half Merge input: l, r - sorted sequences output: o - merged (sorted) sequence o <- empty while |l| and |r| do if first(l) < first(r) then o <- (o_1, ..., o_n, first(l)) pop_first(l) else o <- (o_1, ..., o_n, first(r)) pop_first(r) o <- (o_1, ..., o_n, l_1, ..., l_n, r_1, ..., r_n) return o """ def merge_sort(values): step = 2 half = 1 while half < len(values): i = 0 while i + half < len(values): l = values[i : i + half] end = int( min(i + step, len(values)) ) r = values[i + half : end] m = merge(l, r) for k in range(len(m)): values[i + k] = m[k] i += step step *= 2 half *= 2 def merge(l, r): o = [] while len(l) and len(r): if l[0] < r[0]: o.append(l[0]) l.pop(0) else: o.append(r[0]) r.pop(0) return o + l + r import random for i in range(1, 100): values = [random.randint(1,100) for _ in range(i)] merge_sort(values) for k in range(0, len(values) - 1): assert values[k] <= values[k+1] print("success")
1b59d9d8da3ff73d6273decbaf467d407763001a
d69e59155c7eb8b692feb927bf12d13260d50ebb
/Admin_Panel/asgi.py
5fc512c293fcfe509121637253b2e6eac0921274
[]
no_license
susmitha009/Admin-Panel
8ee905150c84c6a197d77c0ddb03d3c7c81c3de4
4eddcfe60f95c07e79d57be7de2fb1ae2f155cc3
refs/heads/master
2023-06-22T01:16:14.085588
2021-07-17T10:42:54
2021-07-17T10:42:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" ASGI config for Admin_Panel project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Admin_Panel.settings') application = get_asgi_application()
e7f03e415f0656bb0c5cceb31b095325aff331d4
19eb60415bc13ccd65634511482a1b300c05c2ff
/droid.py
3a54fde5f815e90e3a2af148143f030b36603324
[]
no_license
vaiper79/probe_droid_diorama
87969f45cb783d5e47d7811a59eea317d5bf625d
60f7da1963d74d570bce37321115416e2ad0454a
refs/heads/master
2020-07-03T05:25:59.610389
2019-12-20T14:29:11
2019-12-20T14:29:11
201,796,602
0
0
null
null
null
null
UTF-8
Python
false
false
8,225
py
# Python3 # Version 7, 20.12.2019, OleA aka vaiper79 # Volume configuration by Adafruit: # Hardware: MCP3008 DAC Chip # Code: https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-volume-with-the-raspberry-pi/overview # Amplifier configuration by Adafruit: # Hardware: TPA2016 i2c amplifier # Code: https://learn.adafruit.com/adafruit-tpa2016-2-8w-agc-stereo-audio-amplifier/python-circuitpython # Logging Code: https://gist.github.com/sweenzor/1782457 # Shutdown: https://gpiozero.readthedocs.io/en/stable/recipes.html#shutdown-button import pygame, random, time, os, busio, digitalio, board, adafruit_tpa2016, logging, logging.handlers from gpiozero import Button, PWMLED, LED from subprocess import check_call from signal import pause ## Some variables # Shutdown shDwn = False # Audio volume = 0.1 maxVolume = 0.3 started = 0 rndmChatterMillis = 0 lastChatterMillis = 0 rndmTelemetryMillis = 0 lastTelemetryMillis = 0 buttonTriggered = True audioState = 0 # LEDs lastLEDMillis = 0 lastCountDMillis = 0 LEDMillis = 60 brList = [0.001, 0.02, 0.005, 0.01, 0.008, 0.012, 0.015, 0.002, 0.007, 0.017, 0.011, 0.009] # Brightnesses to use for flickering lights shDwnBr = 0.1 # Set up logging log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) handler = logging.handlers.SysLogHandler(address = '/dev/log') formatter = logging.Formatter('%(module)s.%(funcName)s: %(message)s') handler.setFormatter(formatter) log.addHandler(handler) # Amplifier code i2c = busio.I2C(board.SCL, board.SDA) tpa = adafruit_tpa2016.TPA2016(i2c) tpa.fixed_gain = 0 # Anything above and the way it is connected now causes clipping. Perhaps separate of more powerful PSU = more oomf! # GPIO Pins defined # GPIO19 is busted. Terminal wont hold. button_top = Button(17, hold_time=3) button_volUp = Button(4) button_volDwn = Button(27) led_front1 = PWMLED(5) led_front2 = PWMLED(6) led_front3 = PWMLED(13) led_front4 = PWMLED(24) led_button = PWMLED(26) #led_droidRed = GPIO.PWM(18, 1000) # HW PWM led_droidRed = PWMLED(18) led_droidYlw = PWMLED(25) pygame.init() # Required to get_ticks() since start bg_music = "/home/pi/droid/audio/background_music.wav" #set up the mixer freq = 44100 # audio CD quality bitsize = -16 # unsigned 16 bit channels = 2 # 1 is mono, 2 is stereo buffer = 2048 # number of samples (experiment to get right sound) pygame.mixer.init(freq, bitsize, channels, buffer) pygame.mixer.set_num_channels(10) # Not to be confused with the number of channels..right..this is # of "voices" # Load up the bg music for continous playback pygame.mixer.music.load(bg_music) #Create a Channel for each type of audio track musicChannel = pygame.mixer.Channel(1) chatterChannel = pygame.mixer.Channel(2) hoverChannel = pygame.mixer.Channel(3) telemetryChannel = pygame.mixer.Channel(4) # Set the volume for all channels separately.. start silent pygame.mixer.music.set_volume(0) pygame.mixer.Channel(1).set_volume(0) pygame.mixer.Channel(2).set_volume(0) pygame.mixer.Channel(3).set_volume(0) pygame.mixer.Channel(4).set_volume(0) # Set the droids lights led_droidRed.value = 0.1 led_droidYlw.value = 0.2 def volumeChange(volume): print(volume) pygame.mixer.music.set_volume(volume) pygame.mixer.Channel(1).set_volume(volume) pygame.mixer.Channel(2).set_volume(volume) pygame.mixer.Channel(3).set_volume(volume) pygame.mixer.Channel(4).set_volume(volume) def doIt(): # Could do one thing on the first press..something else on the next..etc...but what.. global audioState global buttonTriggered if(audioState == 0 and buttonTriggered == True): log.debug("Turning on soundfx") pygame.mixer.Channel(1).set_volume(volume) pygame.mixer.Channel(2).set_volume(volume) pygame.mixer.Channel(3).set_volume(volume) pygame.mixer.Channel(4).set_volume(volume) audioState = 1 buttonTriggered = False if (audioState == 1 and buttonTriggered == True): log.debug("Turning on music") pygame.mixer.music.set_volume(volume) audioState = 2 buttonTriggered = False if (audioState == 2 and buttonTriggered == True): log.debug("Turning off music") pygame.mixer.music.set_volume(0) audioState = 3 buttonTriggered = False if(audioState == 3 and buttonTriggered == True): log.debug("Turning off audiofx") pygame.mixer.Channel(1).set_volume(0) pygame.mixer.Channel(2).set_volume(0) pygame.mixer.Channel(3).set_volume(0) pygame.mixer.Channel(4).set_volume(0) audioState = 0 buttonTriggered = False buttonTriggered = True # Might seem counter productive, but we need to reset the value as we exit the function. def shutDown(): global shDwn shDwn = True log.debug("Shutting down amplifier") tpa.amplifier_shutdown = True log.debug("Counting down..") led_front1.value = shDwnBr led_front2.value = shDwnBr led_front3.value = shDwnBr led_front4.value = shDwnBr time.sleep(0.5) led_front4.value = 0 time.sleep(0.5) led_front3.value = 0 time.sleep(0.5) led_front2.value = 0 time.sleep(0.5) led_front1.value = 0 led_droidRed = 0 led_droidYlw = 0 led_button = 0 log.debug("Shutting down droid controller") check_call(['sudo', 'poweroff']) # Shutsdown the OS. Will leave this out until prod.. time.sleep(10) def volDwn(): log.debug("Volume Down") global volume volume = volume - 0.05 volumeChange(volume) def volUp(): log.debug("Volume Up") global volume global maxVolume volume = volume + 0.05 if (volume >= maxVolume): volume = maxVolume # Limit volume volumeChange(volume) # Start amplifier log.debug("Switching on the amplifier") tpa.amplifier_shutdown = False # Not strickly necessary..but for completeness. while True: ## BUTTONS ## - More or less done button_top.when_held = shutDown # Hold for 3 seconds to shut down..requires power cycle. button_top.when_released = doIt button_volUp.when_released = volUp button_volDwn.when_released = volDwn ## LIGHTS ## - FAR from done.. if (shDwn == False): if (pygame.time.get_ticks() - lastLEDMillis >= LEDMillis): led_front1.value = random.choice(brList) led_front2.value = random.choice(brList) led_front3.value = random.choice(brList) led_front4.value = random.choice(brList) led_button.value = random.choice(brList) lastLEDMillis = pygame.time.get_ticks() ## MUSIC ## - More or less done # Background Music Playing if started == 0: log.debug("Playing BG music indefinately") pygame.mixer.music.play(loops=-1) # Looping the loaded music file indef.. started = 1 # Droid Hover, randomized in content if hoverChannel.get_busy() == False: rand = str(random.randrange(1, 8)) log.debug("Playing hover:" + str(rand)) hoverChannel.play(pygame.mixer.Sound("/home/pi/droid/audio/hover"+rand+".wav")) # Droid Chatter, randomized in content and time if (pygame.time.get_ticks() - lastChatterMillis >= rndmChatterMillis) and (chatterChannel.get_busy() == False) and (telemetryChannel.get_busy() == False): rand = str(random.randrange(1, 19)) rndmChatterMillis = random.randrange(800, 8000) log.debug("Playing chatter:" + str(rand) + ", " + str(rndmChatterMillis) + " since last") lastChatterMillis = pygame.time.get_ticks() chatterChannel.play(pygame.mixer.Sound("/home/pi/droid/audio/chatter"+rand+".wav")) # Droid Chatter, randomized in content and time if (pygame.time.get_ticks() - lastChatterMillis >= rndmChatterMillis) and (chatterChannel.get_busy() == False) and (telemetryChannel.get_busy() == False): rand = str(random.randrange(1, 8)) rndmTelemetryMillis = random.randrange(1000, 15000) log.debug("Playing telemetry:" + str(rand) + ", " + str(rndmTelemetryMillis) + " since last") lastTelemetryMillis = pygame.time.get_ticks() telemetryChannel.play(pygame.mixer.Sound("/home/pi/droid/audio/telemetry"+rand+".wav"))
23f7b2ae612a0f3288a140242598fb0d27ce7b2b
36e1c37b4af7685840e145a3b444c2417d246438
/object/get-item.py
94e04a9354bee08d198131c50b7bcb21c0acd29e
[]
no_license
lynndotconfig/python-analysis
0850fa87cfbb5a295970ad3eebb2759371a469bf
dcfb4d139bc8df0e41a979fa6d9b89a6184ef786
refs/heads/master
2021-01-13T16:40:03.063075
2018-04-04T09:53:03
2018-04-04T09:53:03
78,192,318
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
"""object has no dict like method.""" class Vhost(object): def __init__(self, name, permission): self.name = name self.permission = permission if __name__ == '__main__': vhost1 = { "name": "test2", "permissions": "partily" } print "name:", vhost1["name"] print "permissions:", vhost1["permissions"] vhost = Vhost("test1", "all") print "name:", vhost["name"] print "permssion", vhost["permssion"]
68c721a16385f419d079d43fbc79a0b7a4f246ea
0ec6292fb64aaf66cee6172991a50a6db166c4a7
/venv/Scripts/pip-script.py
8f562948be7a119ad9082035d649059fe5ce21c3
[]
no_license
orjantonnessen/TDT4136IntroAI
1bca377c3b5464be94f79a181989bb10f8b9bfe1
9e5a4011e2b7931e152429d959975d9e49c260ca
refs/heads/master
2020-03-28T18:38:11.314966
2018-11-10T11:29:51
2018-11-10T11:29:51
148,897,251
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
#!C:\GitHub\TDT4136IntroAI\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip')() )
747a467ce325c42417835ac7a9bc48c51520fa31
21410fb2d07712ae4b95e1f74f8605f99b149856
/tests/test_environment_variables.py
d6ea97bdc39996d764c318378f84ece5aababf28
[]
no_license
decobots/sentence_sentences
22bf8ebea4c32d8daf005c7f8b9fd3e2a3f85820
01ae972a1490416d0142844cabbf8b5fef506b10
refs/heads/master
2022-12-15T08:55:26.264525
2020-03-03T09:56:10
2020-03-03T09:56:10
226,102,502
1
0
null
2022-12-08T03:35:37
2019-12-05T12:56:32
Python
UTF-8
Python
false
false
313
py
import pytest from preparation.environment_variables import get_env def test_environment_variables_correct(global_variable): assert get_env(global_variable[0]) == global_variable[1] def test_environment_variables_not_defined(): with pytest.raises(OSError): get_env("undefined_variable_name")
cbdd87c23c5758f0816784a7b7a07ec29a0d2930
ea50e9b44ca708cfb68bb51bd3f346a430818445
/dsl_parser/exceptions.py
bdb65ad5b7d7cdbf7fc69acb84c5a5f56d7f80fb
[ "Apache-2.0" ]
permissive
mahak/cloudify-dsl-parser
1dcbde1efe122214d6c7c47217f6eeaf5b418b11
dc76673abdd2b80ad42a49f620dcb7efeb97145a
refs/heads/master
2020-12-25T23:26:06.144065
2014-08-27T16:13:56
2014-08-27T16:13:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,167
py
######## # Copyright (c) 2014 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. class MissingRequiredInputError(Exception): """ An error raised when a deployment is created and a required input was not specified on its creation. """ def __init__(self, *args, **kwargs): super(MissingRequiredInputError, self).__init__(*args, **kwargs) class UnknownInputError(Exception): """ An error raised when an unknown input is specified on deployment creation. """ def __init__(self, *args, **kwargs): super(UnknownInputError, self).__init__(*args, **kwargs)
911253e690f721990fdf83a54bb4150a30380b41
4b4581e74a03442ee0293b1bbfdff7a171f8b8c5
/IndiaFacts/skill_env/ask_sdk_model/interfaces/videoapp/metadata.py
4edb57b5af1e586416f432f7dc56c8bd0fa5e129
[ "Apache-2.0" ]
permissive
JeremieBou/AlexaSkills
53d6b78e09cfbbb63dcdaf489b582da20ee86944
5d81c2c6e7ca8068e3850e8f2f2ebb3d9cca87cd
refs/heads/master
2022-12-14T01:11:42.975211
2018-12-20T17:02:26
2018-12-20T17:02:26
162,493,681
0
0
Apache-2.0
2022-11-22T02:54:58
2018-12-19T21:39:59
Python
UTF-8
Python
false
false
3,221
py
# coding: utf-8 # # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum if typing.TYPE_CHECKING: from typing import Dict, List, Optional from datetime import datetime class Metadata(object): """ :param title: :type title: (optional) str :param subtitle: :type subtitle: (optional) str """ deserialized_types = { 'title': 'str', 'subtitle': 'str' } attribute_map = { 'title': 'title', 'subtitle': 'subtitle' } def __init__(self, title=None, subtitle=None): # type: (Optional[str], Optional[str]) -> None """ :param title: :type title: (optional) str :param subtitle: :type subtitle: (optional) str """ self.__discriminator_value = None self.title = title self.subtitle = subtitle def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, Metadata): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
[ "JeremieBou" ]
JeremieBou
dbd1cb95a499b1e63d3f2bd7a291e479c1a24a56
db1bb993c1356265b64372471a09fc6e8313a07e
/final_module_iDIL_django/image_analysis/chat_engine.py
10287e8aebe0789e2cf6e5db2781e0df1f3b71b1
[]
no_license
nabajitdey/iDIL_final_module
c61878644271a5d08a5b6e37b69a9572d28aaf1f
a4505ca0b81f073d561806952338e56786919204
refs/heads/master
2022-11-30T07:09:16.193701
2020-08-17T16:12:14
2020-08-17T16:12:14
288,140,679
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
from .models import * from cv2 import cv2 import numpy as np from .forms import * import glob class ChatEngine: def chat_engine(self,question): x=1
5ca0355653e6138d821f89fc37bb78fd804a4efd
ca54cd99fd98fc938081248c06d2e077bdedca92
/pvae/datasets/__init__.py
a6ccfacbc2ff39cea3ccdc375ecdcbbc2d954109
[ "MIT" ]
permissive
emilemathieu/pvae
85b965d0b2556edaf53627cfc58f3c4ed933d486
c04ec2149fc4d37fd83946a366780816c0cbe3c0
refs/heads/master
2023-07-19T12:36:02.809762
2022-07-11T08:50:50
2022-07-11T08:50:50
183,016,471
124
39
MIT
2023-07-06T21:52:03
2019-04-23T13:03:27
Python
UTF-8
Python
false
false
23
py
from .datasets import *
4de46bf17c31dccd69fe817cec18302d393d27ea
b7ce1274bd442c0b8ec31493198edaa2efcf43ce
/hrl_fabric_based_tactile_sensor/src/hrl_fabric_based_tactile_sensor/pr2_tactile_sleeve_pps_driver_node.py
a8233ab45366103d1c39500d2977ad0884442f4a
[ "Apache-2.0" ]
permissive
JuChanyoung/hrl-haptic-manip
692a62a1cb7b02cabf9e31a74c2cad96a9655e47
6458187075033ecd3a22fbcdc1a632df39b0cba1
refs/heads/master
2021-01-18T12:10:37.422794
2014-10-09T21:36:50
2014-10-09T21:36:50
84,330,897
1
0
null
2017-03-08T14:44:22
2017-03-08T14:44:22
null
UTF-8
Python
false
false
2,997
py
#!/usr/bin/python import sys import math, numpy as np import copy import roslib; roslib.load_manifest('hrl_fabric_based_tactile_sensor') import rospy import hrl_lib.util as ut import hrl_lib.transforms as tr from m3skin_ros.msg import RawTaxelArray from geometry_msgs.msg import Transform from m3skin_ros.srv import None_TransformArray, None_TransformArrayResponse from m3skin_ros.srv import None_String from pr2_tactile_sleeve_driver_node import Tactile_Sleeve roslib.load_manifest('pr2_msgs') from pr2_msgs.msg import PressureState def pps_cb(msg): global l_fingertip, r_fingertip l_fingertip = copy.copy(msg.l_finger_tip) r_fingertip = copy.copy(msg.r_finger_tip) if __name__ == '__main__': import optparse p = optparse.OptionParser() p.add_option('--arm_to_use', action='store', dest='arm', type='string', help='l or r') opt, args = p.parse_args() if opt.arm != 'r' and opt.arm != 'l': rospy.logerr('Unsupported arm_to_use') raise RuntimeError('Unsupported arm_to_use') ts = Tactile_Sleeve(opt.arm) raw_data_left_pps_pub = rospy.Publisher('pr2_pps_left_sensor/taxels/raw_data', RawTaxelArray) raw_data_right_pps_pub = rospy.Publisher('pr2_pps_right_sensor/taxels/raw_data', RawTaxelArray) rospy.Service('pr2_pps_left_sensor/taxels/srv/local_coord_frames', None_TransformArray, ts.local_coord_frames_pps_left_cb) rospy.Service('pr2_pps_left_sensor/taxels/srv/link_name', None_String, ts.link_name_pps_left_cb) rospy.Service('pr2_pps_right_sensor/taxels/srv/local_coord_frames', None_TransformArray, ts.local_coord_frames_pps_right_cb) rospy.Service('pr2_pps_right_sensor/taxels/srv/link_name', None_String, ts.link_name_pps_right_cb) global l_fingertip, r_fingertip l_fingertip = None r_fingertip = None if opt.arm == 'l': input_topic = '/pressure/l_gripper_motor' if opt.arm == 'r': input_topic = '/pressure/r_gripper_motor' rospy.Subscriber(input_topic, PressureState, pps_cb) rospy.init_node('pps_driver_node') rospy.loginfo('waiting for fingertip data') while r_fingertip == None: rospy.sleep(0.1) rospy.loginfo('Started publishing data') rta_left = RawTaxelArray() rta_right = RawTaxelArray() import time start = time.time() while not rospy.is_shutdown(): l = l_fingertip r = r_fingertip #front, bottom, top is order of taxels data_left = [l[3]+l[4], l[5]+l[6], l[1]+l[2]] rta_left.val_z = data_left #front, bottom, top is order of taxels data_right = [r[3]+r[4], r[1]+r[2], r[5]+r[6]] rta_right.val_z = data_right raw_data_left_pps_pub.publish(rta_left) raw_data_right_pps_pub.publish(rta_right) rospy.sleep(0.02)
793e1359815f61e9f5619b8a1c5ad08b1c69c5d0
5f7e140c9fc6c9e4db6f9132126ff5747735c29f
/blog/migrations/0003_avatarimages_wallpaperimages.py
7130986ba7c58a4394a24fba4ec7c0ba27ddc811
[]
no_license
xw0235/django-blog-tutorial
29370bc76e1b06b1f5259da85517353b5746cca9
024d1ceabbabb45743f6d74e83bed392d732855a
refs/heads/master
2020-04-02T17:03:34.987972
2018-10-25T07:59:03
2018-10-25T07:59:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
833
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2018-10-12 05:42 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0002_qkcookies'), ] operations = [ migrations.CreateModel( name='avatarImages', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('url', models.TextField()), ], ), migrations.CreateModel( name='wallpaperImages', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('url', models.TextField()), ], ), ]
84adbc43e66bede94f5f3d17b8aa071e9becf93f
97930b7800bc26a84c46a4a1f026d12f3be80aae
/runtests.py
09f59e13547b6cb21d4f79df0aaee1ad928a8943
[]
no_license
iambibhas/imgee
3844abb984267454ea91cb36989304a911a814d6
a681733b0aeb4d031e241f3a25e546acb0d9e4e8
refs/heads/master
2021-01-12T08:02:50.513284
2016-08-31T15:10:16
2016-08-31T15:10:16
77,111,006
0
0
null
2016-12-22T04:06:34
2016-12-22T04:06:34
null
UTF-8
Python
false
false
77
py
#!/usr/bin/env python # -*- coding: iso-8859-15 -*- import nose nose.main()
1816403908201b8142c37717149c787cc4e1003f
ea231f0d8d4a367946db544ac5f3aa6e670d8829
/leakage-sort.py
1c5a082e14ddc45a117ca17e980ce6b2f3175739
[]
no_license
YuXinFan/prototype
844d26758d71fe36f05c207c2580cf0411cc5d24
be2cf2a771ab35289abeddc34e294c6ea8bfbeb0
refs/heads/main
2023-02-25T23:53:28.209731
2021-01-26T12:35:50
2021-01-26T12:35:50
333,078,883
0
0
null
null
null
null
UTF-8
Python
false
false
2,256
py
#!/usr/bin/python from z3 import * #semantic consequence def imply(range,lh, rh): return ForAll(range, Implies(lh, rh)) def declassifyBranchCondition(s, range, constrain, condition): s.push() s.add(imply(range, constrain, condition)) then_branch = s.check() s.pop(num=1) if (then_branch == sat): return 1 s.push() s.add(imply(range, constrain, Not(condition))) else_branch = s.check() s.pop(num=1) if (else_branch == sat): return -1 return 0 # def declassifyBranchCondition(s, range, constrain, condition): # return If( # condition, # ForAll(range, Implies(constrain, condition)), # ForAll(range, Implies(constrain, Not(condition)))) I = IntVector('I', 8) n = len(I) s = Solver() constrain = And(I[1] > I[2], I[2] > I[3], I[3] > I[4], I[4] > I[5], I[5] > I[6], I[6] > I[7], I[0] > I[1]) inputs = [I[i] for i in range(8)] def partition(s, arr,low,high): i = ( low-1 ) # index of smaller element pivot = arr[high] # pivot for j in range(low , high): c = declassifyBranchCondition(s, inputs, constrain, arr[j] < pivot) if (c == 1): #print("Branch to Then") i = i+1 arr[i],arr[j] = arr[j],arr[i] elif ( c == -1): #print("Branch to Else") pass else: print("Verification failed at condition: arr[j] < pivot") arr[i+1],arr[high] = arr[high],arr[i+1] return ( i+1 ) # The main function that implements QuickSort # arr[] --> Array to be sorted, # low --> Starting index, # high --> Ending index # Function to do Quick sort def quickSort(s, arr,low,high): if low < high: # pi is partitioning index, arr[p] is now # at right place pi = partition(s, arr,low,high) # Separately sort elements before # partition and after partition quickSort(s, arr, low, pi-1) quickSort(s, arr, pi+1, high) #arr = [10, 7, 8, 9, 1, 5] quickSort(s,I,0,n-1) print ("Sorted array is:") for i in range(n): print (I[i])
5d18fad5753e2a8aa91824a074334bac59808902
a2d885e1e700fe0107e5f9a34f006b854ea304d0
/messageBomber using amazon/messageBomber.py
f169a45380621afa7da90bce1edb55fea7ff1a6c
[]
no_license
sayon-moulik/automation-with-python
eec7c5d4435d91ae5fcbd4aa530671b856c781af
bb9c786953e9ed2154090ad8e01310122f9d34d3
refs/heads/master
2022-12-03T18:59:38.923668
2020-08-29T16:08:48
2020-08-29T16:08:48
291,299,678
0
0
null
null
null
null
UTF-8
Python
false
false
1,021
py
from selenium import webdriver number=input("give the phone number:") times = int(input('give the number of times to bomb:')) browser = webdriver.Firefox(executable_path='./geckodriver') browser.get('https://www.amazon.in/ap/signin?_encoding=UTF8&ignoreAuthState=1&openid.assoc_handle=inflex&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.mode=checkid_setup&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.max_auth_age=0&openid.return_to=https%3A%2F%2Fwww.amazon.in%2F%3Fref_%3Dnav_custrec_signin&switch_account=') phoneno=browser.find_element_by_id('ap_email') cont=browser.find_element_by_id('continue') phoneno.send_keys(number) cont.click() otp=browser.find_element_by_id('continue') otp.click() for i in range(times-1): otplink = browser.find_element_by_link_text('Resend OTP') otplink.click()
213b6d95f66148c90d8f72fb0b15ee4a02a875de
d952071b94a4a0dfd19bf45700919282fc5a0f54
/blog/forms.py
b911c0f5e7406d4f6e13bd3063178e9d0b5d8ad7
[]
no_license
bit1creative/django-blog
d96deb716455e115c46739e178775c597cc9e028
5bfebf7511ac2a8aa9c21ac2ed65559a3ce9c66b
refs/heads/master
2021-03-17T21:45:58.429759
2020-03-25T10:45:34
2020-03-25T10:45:34
247,020,424
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
from django import forms from .models import Post class PostForm(forms.ModelForm): picture = forms.ImageField(required = False) class Meta: model = Post fields = ('title', 'text', 'picture',)
ccc71337af5b2333284f5be54fd753ba6fb5cd6b
fd00425844776d26ddbea9af8b6cbcf2a0679131
/polpos/admin.py
f83d55d346eb7c5b6f78cb00c5c36f4c2baeedc7
[ "MIT" ]
permissive
InformaticsResearchCenter/kabayan
6066fd43d6b50148dfa64b8ded790f4a019ca8b5
98139958d6b42098c233f7a6e74bef8a0edde60d
refs/heads/master
2022-12-04T06:50:30.574503
2020-07-15T15:46:49
2020-07-15T15:46:49
276,532,891
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
from django.contrib import admin from .models import PenjadwalanProdi, PenjadwalanBAAK admin.site.register(PenjadwalanProdi) admin.site.register(PenjadwalanBAAK)
f9311c1afbc3f5b617fcd14c1e8ab7262aeba117
fb33ebb63b5b293eefbb7125532cc94269361df6
/prac_06/car.py
7804abf2224c6ecac18db3b8bc618c682bef199d
[]
no_license
Brendan-Hill-00/CP1404_Pracs
318ee76a103f98b5b78b9352e57d6ceb9cc85784
344d1bd73d63e759c4a241302562f2fecfea9190
refs/heads/master
2020-03-26T07:47:26.168018
2018-10-23T05:51:48
2018-10-23T05:51:48
144,670,916
0
0
null
2018-09-04T01:32:05
2018-08-14T05:03:42
Python
UTF-8
Python
false
false
954
py
"""CP1404/CP5632 Practical - Car class example.""" class Car: """Represent a Car object.""" def __init__(self, name="", fuel=0): """Initialise a Car instance. fuel: float, one unit of fuel drives one kilometre """ self.name = name self.fuel = fuel self.odometer = 0 def __str__(self): return "{}, fuel={}, odometer={}".format(self.name, self.fuel, self.odometer) def add_fuel(self, amount): """Add amount to the car's fuel.""" self.fuel += amount def drive(self, distance): """Drive the car a given distance. Drive given distance if car has enough fuel or drive until fuel runs out return the distance actually driven. """ if distance > self.fuel: distance = self.fuel self.fuel = 0 else: self.fuel -= distance self.odometer += distance return distance
08b5b79225c285027c5c22c3b2e35508d3c6dc76
247b63718b37a3cfdf08528f4724a2fd43f67100
/similarity matrix producer/similarity.py
d82aa13f50cef07a2cf47bb1b1c6a18a4e6c067f
[]
no_license
avaspataru/Dissertation
db70fe4998985c0dfc850ca5ded97dbec20410ad
8dbe9095dd66f2c31aa0ea4432831935d49f0470
refs/heads/master
2022-12-10T05:58:37.878487
2020-09-04T17:16:32
2020-09-04T17:16:32
155,190,087
0
0
null
null
null
null
UTF-8
Python
false
false
3,014
py
import numpy as np import pandas as pd from sklearn.preprocessing import scale def readData(fileName): fp = open( fileName, 'r') line = fp.readline() #ignore headers cnt = 1 array = [] while line: line = fp.readline() if line == "": continue qcnt = 0 #number of " dcnt = 0 #number of $ cluster_id_s = "" gene = "" avg_expr_s = "" for c in line: if c == '"': qcnt=qcnt+1 continue if c == '$': dcnt=dcnt+1 continue if c== ' ': continue if(qcnt == 3 and dcnt == 0): #in gene name gene = gene +c if(qcnt == 3 and dcnt == 1 ): #in cluster id cluster_id_s = cluster_id_s + c if(qcnt == 3 and dcnt == 2 ): # in avg value avg_expr_s = avg_expr_s + c avg_expr = float(avg_expr_s) cluster_id = int(cluster_id_s) elem = [gene, cluster_id, avg_expr] array.append(elem) cnt += 1 fp.close() d = ['gene', 'cluster_id', 'avg_expr'] df = pd.DataFrame(array, columns=d) return df def main(): print "Computing similarities for pre and post identified clusters." pre_data = readData('preGenesClusters.txt') post_data = readData('postGenesClusters.txt') pre_clusters = pre_data['cluster_id'].unique() post_clusters = post_data['cluster_id'].unique() top_n = input ("Enter the number of genes to look at (-1 if all):") for i in pre_clusters: print "-------------------------------------------------------------------" losses = [] for j in post_clusters: pre_cluster = pre_data.loc[pre_data['cluster_id'] == i] post_cluster = post_data.loc[post_data['cluster_id']==j] if(top_n == -1): lookup_genes = pre_cluster['gene'].unique() else: top_genes = pre_cluster.nlargest(top_n,'avg_expr') lookup_genes = top_genes['gene'].unique() loss = 0 ngene = lookup_genes.size for gene in lookup_genes: avg_expr_pre = pre_cluster.loc[pre_cluster['gene'] == gene]['avg_expr'].item() if(post_cluster.loc[post_cluster['gene'] == gene].empty): #gene doesn't exist in post cluster loss = loss + avg_expr_pre*avg_expr_pre continue avg_expr_post = post_cluster.loc[post_cluster['gene'] == gene]['avg_expr'].item() #print avg_expr_pre loss = loss + (avg_expr_pre - avg_expr_post) * (avg_expr_pre - avg_expr_post) loss = loss / ngene losses = losses + [loss] print "compare pre_" + str(i) + ", post_" + str(j) + ": loss " + str(loss) + "; looked at " + str(ngene) + " genes." #losses = scale( losses, axis=0, with_mean=True, with_std=True, copy=True ) #print losses main()
2b5b0f6b693cfac095904a5938f52e7ac20fcba1
24c14fa953f35eb23ead2a9b38547bd3ddafe841
/exercise_7/utils.py
9a134e82c56c99cec51c2b967ea229ebaff0db2b
[]
no_license
HaLamUs/machine-learning-coursera
ba79fec213091a9faf2bad0977a313eec431d3a0
e485f76daa8e9bea95a37425c6c53cd7d6c26bbd
refs/heads/master
2023-02-17T02:13:41.964492
2023-02-14T17:33:32
2023-02-14T17:33:32
249,435,919
1
0
null
null
null
null
UTF-8
Python
false
false
6,439
py
import sys import numpy as np from matplotlib import pyplot from matplotlib.animation import FuncAnimation import matplotlib as mpl sys.path.append('..') def displayData(X, example_width=None, figsize=(10, 10)): """ Displays 2D data in a nice grid. Parameters ---------- X : array_like The input data of size (m x n) where m is the number of examples and n is the number of features. example_width : int, optional THe width of each 2-D image in pixels. If not provided, the image is assumed to be square, and the width is the floor of the square root of total number of pixels. figsize : tuple, optional A 2-element tuple indicating the width and height of figure in inches. """ # Compute rows, cols if X.ndim == 2: m, n = X.shape elif X.ndim == 1: n = X.size m = 1 X = X[None] # Promote to a 2 dimensional array else: raise IndexError('Input X should be 1 or 2 dimensional.') example_width = example_width or int(np.round(np.sqrt(n))) example_height = int(n / example_width) # Compute number of items to display display_rows = int(np.floor(np.sqrt(m))) display_cols = int(np.ceil(m / display_rows)) fig, ax_array = pyplot.subplots(display_rows, display_cols, figsize=figsize) fig.subplots_adjust(wspace=0.025, hspace=0.025) ax_array = [ax_array] if m == 1 else ax_array.ravel() for i, ax in enumerate(ax_array): ax.imshow(X[i].reshape(example_height, example_width, order='F'), cmap='gray') ax.axis('off') def featureNormalize(X): """ Normalizes the features in X returns a normalized version of X where the mean value of each feature is 0 and the standard deviation is 1. This is often a good preprocessing step to do when working with learning algorithms. Parameters ---------- X : array_like An dataset which is a (m x n) matrix, where m is the number of examples, and n is the number of dimensions for each example. Returns ------- X_norm : array_like The normalized input dataset. mu : array_like A vector of size n corresponding to the mean for each dimension across all examples. sigma : array_like A vector of size n corresponding to the standard deviations for each dimension across all examples. """ mu = np.mean(X, axis=0) X_norm = X - mu sigma = np.std(X_norm, axis=0, ddof=1) X_norm /= sigma return X_norm, mu, sigma def plotProgresskMeans(i, X, centroid_history, idx_history): """ A helper function that displays the progress of k-Means as it is running. It is intended for use only with 2D data. It plots data points with colors assigned to each centroid. With the previous centroids, it also plots a line between the previous locations and current locations of the centroids. Parameters ---------- i : int Current iteration number of k-means. Used for matplotlib animation function. X : array_like The dataset, which is a matrix (m x n). Note since the plot only supports 2D data, n should be equal to 2. centroid_history : list A list of computed centroids for all iteration. idx_history : list A list of computed assigned indices for all iterations. """ K = centroid_history[0].shape[0] pyplot.gcf().clf() cmap = pyplot.cm.rainbow norm = mpl.colors.Normalize(vmin=0, vmax=2) for k in range(K): current = np.stack([c[k, :] for c in centroid_history[:i+1]], axis=0) pyplot.plot(current[:, 0], current[:, 1], '-Xk', mec='k', lw=2, ms=10, mfc=cmap(norm(k)), mew=2) pyplot.scatter(X[:, 0], X[:, 1], c=idx_history[i], cmap=cmap, marker='o', s=8**2, linewidths=1,) pyplot.grid(False) pyplot.title('Iteration number %d' % (i+1)) def runkMeans(X, centroids, findClosestCentroids, computeCentroids, max_iters=10, plot_progress=False): """ Runs the K-means algorithm. Parameters ---------- X : array_like The data set of size (m, n). Each row of X is a single example of n dimensions. The data set is a total of m examples. centroids : array_like Initial centroid location for each clusters. This is a matrix of size (K, n). K is the total number of clusters and n is the dimensions of each data point. findClosestCentroids : func A function (implemented by student) reference which computes the cluster assignment for each example. computeCentroids : func A function(implemented by student) reference which computes the centroid of each cluster. max_iters : int, optional Specifies the total number of interactions of K-Means to execute. plot_progress : bool, optional A flag that indicates if the function should also plot its progress as the learning happens. This is set to false by default. Returns ------- centroids : array_like A (K x n) matrix of the computed (updated) centroids. idx : array_like A vector of size (m,) for cluster assignment for each example in the dataset. Each entry in idx is within the range [0 ... K-1]. anim : FuncAnimation, optional A matplotlib animation object which can be used to embed a video within the jupyter notebook. This is only returned if `plot_progress` is `True`. """ K = centroids.shape[0] idx = None idx_history = [] centroid_history = [] for i in range(max_iters): idx = findClosestCentroids(X, centroids) if plot_progress: idx_history.append(idx) centroid_history.append(centroids) centroids = computeCentroids(X, idx, K) if plot_progress: fig = pyplot.figure() anim = FuncAnimation(fig, plotProgresskMeans, frames=max_iters, interval=500, repeat_delay=2, fargs=(X, centroid_history, idx_history)) return centroids, idx, anim return centroids, idx
f3833dd3d59f4158a04d1bd6615ecb69f32df1f0
cc4cd41a51b8bd7ed8ae3e8eaa5020c04a2bb9e8
/main.py
74a8db44072d27d656ae647715230fd524a20ff5
[]
no_license
fatmaerciyas/restaurant-reservation
b32fadad13752332bcd21ba450501af968baa478
522bc2c315d7e93bdf28bf115f1a40070e116947
refs/heads/master
2022-10-24T12:08:34.424714
2020-06-13T17:26:49
2020-06-13T17:26:49
272,054,700
3
0
null
null
null
null
UTF-8
Python
false
false
27,087
py
import json bilgiler = dict() def musteri_ekle(): global bilgiler with open("ornek_dosya_icerigi.txt", "r", encoding="utf-8") as file: try: bilgiler = json.load(file) # dosyadan verileri çek ve 'bilgiler' sözlüğüne ekle except ValueError: bilgiler = {} musteri = dict() # 'bilgiler' sözlüğünün içine 'müsteri' sözlükleri olacak ve her müşteriye ait bilgileri tutacak bayrak = 0 # a ve bayrak yanlış bilgiler girildiğinde while ile tekrar bilgi istemek için a = "bos" while (bayrak == 0): print("\n" * 20) tarih = input("Lütfen rezervasyon yapacağınız tarihi giriniz:(Örn. :2 = Bu ayın 2 si):") yerler = dict() # bu sözlüğün bi esprisi yok sadece müşteriye fiyatları göstermek için menü şeklinde ayarlandı yerler = {"kapalı_alan": {"2": 50, "4": 60, "6": 70, "8": 80}, "balkon": {"2": 75, "4": 90, "6": 100, "8": 125}, "teras": {"2": 90, "4": 100, "6": 150, "8": 200}} print("\n" * 3) for i, j in yerler.items(): print("{} masaya göre fiyatları : {}".format(i, j)) print("\n") print("Üç çeşit mekanımız bulunmaktadır.Teras, Balkon ve Kapalı alan.") yer = input("Lütfen oturacağınız mekanı yazınız:") bayrak2 = 0 # istenilen kişi sayısı tek ise tekrar istemek için while (bayrak2 == 0): print("\n") print("2,4,6 ve 8 kişilik olmak üzere masalarımız bulunmaktadır.") kisi_sayisi = input("Kaç kişilik masada yer ayırtmak istediğiniz giriniz:") if (int(kisi_sayisi) % 2 != 0): print("Lütfen mevcut masalardan yer ayırtınız") else: bayrak2 = 1 for i in range(1, len(bilgiler)): if (bilgiler[str(i)]["Tarih"] == tarih and bilgiler[str(i)]["Mekan"] == yer and bilgiler[str(i)][ "Masa"] == kisi_sayisi): print("Seçmek istediğiniz masa o tarihte dolu lütfen başka bir yer seçiniz") a = "bulundu" if (a == "bulundu"): bayrak = 0 elif (a == "bos"): bayrak = 1 print("\n") print("Seçmek istediğiniz yer o tarihte uygun") print("\n" * 3) isim = input("Müşterinin adını giriniz:") musteri["Ad"] = isim soyisim = input("Müşterinin soyadını giriniz:") musteri["Soyad"] = soyisim musteri["Tarih"] = tarih musteri["Mekan"] = yer musteri["Masa"] = kisi_sayisi bilgiler[len(bilgiler) + 1] = musteri # 'bilgiler' sözlüğünün son elemanı 'müsteri' sözlüğü olsun print("\n" * 7) print("Ayın {}'inde {} de {} kişilik masanın rezervasyonu {} {} adına yapılmıştır.".format(tarih, yer, kisi_sayisi, isim, soyisim)) with open("ornek_dosya_icerigi.txt", 'w', encoding="utf-8") as file: json.dump(bilgiler, file, ensure_ascii=False, indent=4) # müşteriyi dosyaya ekler ana_menu() def musteri_ara(): with open("ornek_dosya_icerigi.txt", "r", encoding="utf-8") as file: try: bilgiler = json.load(file) # load except ValueError: bilgiler = {} print("\n" * 20) isim = input("Aranacak müşterinin adını giriniz:") soyisim = input("Soyadını giriniz:") print("\n") for i in range(1, len( bilgiler) + 1): # 'bilgiler' sözlüğünün 0. elemanı yok 1 den başlıyor range de son elemaı almadığı için + 1 yaptım if (isim == bilgiler[str(i)]["Ad"] and soyisim == bilgiler[str(i)]["Soyad"]): print("{} {} adlı müşterinin, ayın {} ında {} de {} kişilik masa rezervasyonu bulunmaktadır.".format(isim, soyisim, bilgiler[ str( i)][ "Tarih"], bilgiler[ str( i)][ "Mekan"], bilgiler[ str( i)][ "Masa"])) # para hesaplaması için fonk çağırılır ve rezervasyon yaptırdığı masanın ücret bilgisi de gösterilir ana_menu() def musteri_guncelle(): with open("ornek_dosya_icerigi.txt", "r", encoding="utf-8") as file: try: bilgiler = json.load(file) # load except ValueError: bilgiler = {} print("\n" * 20) isim = input("Bilgilerini güncellemek istediğiniz müşterinin;\nAdını giriniz:") soyisim = input("Soyadını giriniz:") bayrak = 0 # müşteri bulunamadığında mesaj vermek için kullanılacak dolu = 0 # güncellenen yer başka müşteriye rezerve edilmiş mi onu kontrol edecek a = "bos" musteri_indisi = list() # müşterinin kaç tane rezervasonu olduğunu tutar for i in range(1, len(bilgiler) + 1): if (isim == bilgiler[str(i)]["Ad"] and soyisim == bilgiler[str(i)]["Soyad"]): bayrak = 1 # Oyle bir müsteri var musteri_indisi.append(i) for i in range(1, len(bilgiler) + 1): # 'bilgiler' sözlüğünün 0. elemanı yok 1 den başlıyor if (isim == bilgiler[str(i)]["Ad"] and soyisim == bilgiler[str(i)]["Soyad"]): if (len(musteri_indisi) == 1): # musterinin 1 rezervasyonu var demektir print("\n") print("Müşteri bulundu") print("\n" * 2) print("{} {} adlı müşteriye, ayın {} ında {} de {} kişilik masanın rezervasyonu yapılmıştır" .format(isim, soyisim, bilgiler[str(i)]["Tarih"], bilgiler[str(i)]["Mekan"], bilgiler[str(i)]["Masa"])) else: # musterinin 1 den fazla rezervasyonu var # hangi tarihteki güncellenmek istiyor sorulur for i in musteri_indisi: print( "{} {} adlı müşteriye, ayın {} ında {} de {} kişilik masanın rezervasyonu yapılmıştır".format( isim, soyisim, bilgiler[str(i)]["Tarih"], bilgiler[str(i)]["Mekan"], bilgiler[str(i)]["Masa"])) bul = input( "Müşteri rezervasyonlarına sahip. Hangi tarihteki rezervasyonda güncelleme yapmak istediğinizi giriniz:") for i in range(1, len(bilgiler) + 1): # tarih -> bul a atanır musteri sözlük içinde aranır if (isim == bilgiler[str(i)]["Ad"] and soyisim == bilgiler[str(i)]["Soyad"] and bul == bilgiler[str(i)]["Tarih"]): print("Müşteri bulundu\n") print("{} {} adlı müşteriye, ayın {} ında {} de {} kişilik masanın rezervasyonu yapılmıştır" .format(isim, soyisim, bilgiler[str(i)]["Tarih"], bilgiler[str(i)]["Mekan"], bilgiler[str(i)]["Masa"])) break print("Hangi bilgiyi değiştirmek istediğinizi girin") print("\n") guncel = input( "Müşteri adı değiştirmek için: 1\nTarih değiştirmek için: 2\nMekan değiştirmek için: 3\nMasa değiştirmek için: 4 ' e basınız:") if (guncel == "1"): print("\n") yeni_ad = input("Yeni adı giriniz:") yeni_soyad = input("Yeni soyadı giriniz:") print("\n") bilgiler[str(i)]["Ad"] = yeni_ad bilgiler[str(i)]["Soyad"] = yeni_soyad print("Müşteri bilgileri güncellenmiştir.") print( "{} {} adlı müşterinin rezervasyon bilgileri ayın {} ında {} de {} kişilik masa olmak üzere güncellenmiştir" .format(isim, soyisim, bilgiler[str(i)]["Tarih"], bilgiler[str(i)]["Mekan"], bilgiler[str(i)]["Masa"])) break elif (guncel == "2"): # Ad ve soyad değişikliğinde buna ihitiyacımız yoktu aynı müşteri 1 den fazla rezervasyon yapabilir # Ama bu değişiklik için diğer müşteri rezervasyonlarına bakılması gerekir çünkü güncellenmek istenen yer dolu olabilir while (dolu == 0): print("\n") yeni_tarih = input("Yeni tarihi giriniz:") # burada güncellenmek istenen yerin dolu olup olmadığı kontrol edilir for j in range(1, len(bilgiler) + 1): if (bilgiler[str(j)]["Tarih"] == yeni_tarih and bilgiler[str(j)]["Mekan"] == bilgiler[str(i)][ "Mekan"] and bilgiler[str(j)]["Masa"] == bilgiler[str(i)]["Masa"]): print("Seçmek istediğiniz masa o tarihte dolu lütfen başka bir yer seçiniz") a = "bulundu" break else: a = "bos" if (a == "bulundu"): dolu = 0 elif (a == "bos"): dolu = 1 # masa dolu değilse güncellenmek istenen bilgi alınır bilgiler[str(i)]["Tarih"] = yeni_tarih print("\n") print("Müşteri bilgileri güncellenmiştir.") print( "{} {} adlı müşterinin rezervasyon bilgileri ayın {} ında {} de {} kişilik masa olmak üzere güncellenmiştir" .format(isim, soyisim, bilgiler[str(i)]["Tarih"], bilgiler[str(i)]["Mekan"], bilgiler[str(i)]["Masa"])) break elif (guncel == "3"): # Ad ve soyad değişikliğinde buna ihitiyacımız yoktu aynı müşteri 1 den fazla rezervasyon yapabilir # Ama bu değişiklik için diğer müşteri rezervasyonlarına bakılması gerekir çünkü güncellenmek istenen yer dolu olabilir while (dolu == 0): print("\n") yeni_mekan = input("Yeni mekan giriniz:") # burada güncellenmek istenen yerin dolu olup olmadığı kontrol edilir for j in range(1, len(bilgiler) + 1): if (bilgiler[str(j)]["Tarih"] == bilgiler[str(i)]["Tarih"] and bilgiler[str(j)][ "Mekan"] == yeni_mekan and bilgiler[str(j)]["Masa"] == bilgiler[str(i)]["Masa"]): print("Seçmek istediğiniz masa o tarihte dolu lütfen başka bir yer seçiniz") a = "bulundu" break else: a = "bos" if (a == "bulundu"): dolu = 0 elif (a == "bos"): dolu = 1 # masa dolu değilse güncellenmek istenen bilgi alınır bilgiler[str(i)]["Mekan"] = yeni_mekan print("\n") print("Müşteri bilgileri güncellenmiştir.") print( "{} {} adlı müşterinin rezervasyon bilgileri ayın {} ında {} de {} kişilik masa olmak üzere güncellenmiştir" .format(isim, soyisim, bilgiler[str(i)]["Tarih"], bilgiler[str(i)]["Mekan"], bilgiler[str(i)]["Masa"])) break elif (guncel == "4"): # Ad ve soyad değişikliğinde buna ihitiyacımız yoktu aynı müşteri 1 den fazla rezervasyon yapabilir # Ama bu değişiklik için diğer müşteri rezervasyonlarına bakılması gerekir çünkü güncellenmek istenen yer dolu olabilir while (dolu == 0): print("\n") yeni_masa = input("Kaç kişilik masa istediğinizi giriniz:") if (int(yeni_masa) % 2 != 0): print("Lütfen geçerli masa sayısı giriniz") continue # burada güncellenmek istenen yerin dolu olup olmadığı kontrol edilir for j in range(1, len(bilgiler) + 1): if (bilgiler[str(j)]["Tarih"] == bilgiler[str(i)]["Tarih"] and bilgiler[str(j)]["Mekan"] == bilgiler[str(i)]["Mekan"] and bilgiler[str(j)]["Masa"] == yeni_masa): print("Seçmek istediğiniz masa o tarihte dolu lütfen başka bir yer seçiniz") a = "bulundu" break else: a = "bos" if (a == "bulundu"): dolu = 0 elif (a == "bos"): dolu = 1 # masa dolu değilse güncellenmek istenen bilgi alınır bilgiler[str(i)]["Masa"] = yeni_masa print("\n") print("Müşteri bilgileri güncellenmiştir.") print( "{} {} adlı müşterinin rezervasyon bilgileri ayın {} ında {} de {} kişilik masa olmak üzere güncellenmiştir" .format(isim, soyisim, bilgiler[str(i)]["Tarih"], bilgiler[str(i)]["Mekan"], bilgiler[str(i)]["Masa"])) break with open("ornek_dosya_icerigi.txt", 'w', encoding="utf-8") as file: json.dump(bilgiler, file, ensure_ascii=False, indent=4) # müşteriyi dosyaya ekler if (bayrak == 0): print("Öyle bir müşteri rezervasyonu bulunamadı.") ana_menu() def musteri_sil(): global bilgiler with open("ornek_dosya_icerigi.txt", "r", encoding="utf-8") as file: try: bilgiler = json.load(file) # load except ValueError: bilgiler = {} print("\n" * 20) isim = input("Silmek istediğiniz müşterinin adını giriniz:") soyisim = input("Soyadını giriniz:") rezervasyon_adeti = list() print("\n") for i in range(1, len(bilgiler) + 1): if (bilgiler[str(i)]["Ad"] == isim and bilgiler[str(i)]["Soyad"] == soyisim): rezervasyon_adeti.append(i) if (len(rezervasyon_adeti) == 1): # Müşterinin 1 rezervasyonu var anahtar = rezervasyon_adeti[0] for i in range(1, len(bilgiler) + 1): if (i == anahtar): del bilgiler[str(anahtar)] print("\n" * 2) print("Müşteri rezervasyonu iptal edildi") else: if (i > anahtar): a = i - 1 bilgiler[str(a)] = bilgiler[str(i)] del bilgiler[str(i)] elif (len(rezervasyon_adeti) > 1): # Müşterinin 1 den fazla rezervasyonu var for i in rezervasyon_adeti: print(bilgiler[str(i)]) print("Olmak üzere rezervasyonlarınız bulunmaktadır.") tarih = input("Hangi tarihteki rezervasyonu iptal ettirmek istiyorsanız o tarihi giriniz:") for i in range(1, len(bilgiler)): if (bilgiler[str(i)]["Ad"] == isim and bilgiler[str(i)]["Soyad"] == soyisim and bilgiler[str(i)][ "Tarih"] == tarih): rezervasyon_adeti.clear() # diğer müşteri rezervasyonları iptal et rezervasyon_adeti.append(i) # sadece seçilen tarihtekini listeye ekle anahtar = rezervasyon_adeti[0] for i in range(1, len(bilgiler) + 1): if (i == anahtar): del bilgiler[str(anahtar)] print("\n" * 2) print("Müşteri rezervasyonu iptal edildi") else: if (i > anahtar): a = i - 1 bilgiler[str(a)] = bilgiler[str(i)] del bilgiler[str(i)] with open("ornek_dosya_icerigi.txt", 'w', encoding="utf-8") as file: json.dump(bilgiler, file, ensure_ascii=False, indent=4) # müşteriyi dosyadan siler ana_menu() def fiyat_hesapla(): with open("ornek_dosya_icerigi.txt", "r", encoding="utf-8") as file: try: bilgiler = json.load(file) except ValueError: bilgiler = {} print("\n" * 20) isim = input("Rezervasyon fiyat bilgisini öğrenmek istediğiniz müşterinin \nAdını giriniz:") soyisim = input("Soyadını giriniz:") kapalı_alan = {"2": 50, "4": 60, "6": 70, "8": 80} balkon = {"2": 75, "4": 90, "6": 100, "8": 125} teras = {"2": 90, "4": 100, "6": 150, "8": 200} # yer fiyatlarını sözlüklerde tuttum musteri_rezervasyon_sayaci = 0 # müsterinin kaç tane rezervasyonu olduğunu tutacağım for i in range(1, len(bilgiler) + 1): if (bilgiler[str(i)]["Ad"] == isim and bilgiler[str(i)]["Soyad"] == soyisim): musteri_rezervasyon_sayaci += 1 tutar = 0 # toplam ödenmesi gereken sayac = 0 # bu müşteriye hangi tarihteki tutarı istediğini 1 kere soracak for i in range(1, len(bilgiler) + 1): if (bilgiler[str(i)]["Ad"] == isim and bilgiler[str(i)]["Soyad"] == soyisim): if (musteri_rezervasyon_sayaci > 1): # müsterinin 1 den fazla rezervasyonu varsa tarih bilgisi istenir if (sayac == 0): tarih = input("Hangi tarihteki tutarı istiyorsanız o tarihi giriniz:") sayac += 1 else: if (bilgiler[str(i)]["Ad"] == isim and bilgiler[str(i)]["Soyad"] == soyisim and bilgiler[str(i)][ "Tarih"] == tarih): pass else: continue if (bilgiler[str(i)]["Mekan"] == "kapalı alan" or bilgiler[str(i)]["Mekan"] == "Kapalı alan"): a = int(bilgiler[str(i)]["Masa"]) tutar = kapalı_alan[str(a)] print("\n" * 2) print("Ödemeniz gereken tutar {} TL.".format(tutar)) elif (bilgiler[str(i)]["Mekan"] == "balkon" or bilgiler[str(i)]["Mekan"] == "Balkon"): a = int(bilgiler[str(i)]["Masa"]) tutar = balkon[str(a)] print("\n" * 2) print("Ödemeniz gereken tutar {} TL.".format(tutar)) elif (bilgiler[str(i)]["Mekan"] == "teras" or bilgiler[str(i)]["Mekan"] == "Teras"): a = int(bilgiler[str(i)]["Masa"]) tutar = teras[str(a)] print("\n" * 2) print("Ödemeniz gereken tutar {} TL.".format(tutar)) if (1 < musteri_rezervasyon_sayaci < 5): print("\n") print("1'den fazla rezervasyon yaptırdığınız için size özel %5 indirimimiz mevcuttur :) ") print("Yaptırdığınız tüm rezervasyonların fiyatlarına %5 indirim yapılır") yeni_tutar = tutar - (tutar * (5 / 100)) print("\n") print("{} tarihinde indirimli ödemeniz gereken tutar {} TL.".format(bilgiler[str(i)]["Tarih"], yeni_tutar)) break elif (5 < musteri_rezervasyon_sayaci < 10): print("\n") print("Daha önce rezervasyon yaptırdığınız için size özel %5 indirimimiz mevcuttur :) ") yeni_tutar = tutar - (tutar * (10 / 100)) print("\n") print("{} tarihinde indirimli ödemeniz gereken tutar {} TL.".format(bilgiler[str(i)]["Tarih"], yeni_tutar)) break if (cocuk_ozel_sayac != 0): # burası cocuk_ozel fonksiyonu icin eğer oradan çalıştırılıyorsa bu fonksiyon ana menüye dönmez return tutar elif (cocuk_ozel_sayac == 0): # ama bunun çalışmasını ana menüden istediysem tekrar ana menüye döner ana_menu() cocuk_ozel_sayac = 0 # bu sayac fiyat_hesapla() fonkunun tekrar ana menüye dönmemesini sağlayacak def cocuk_ozel(): # Çocuklar için indirimler ya da fiyatlar global cocuk_ozel_sayac with open("ornek_dosya_icerigi.txt", "r", encoding="utf-8") as file: try: bilgiler = json.load(file) except ValueError: bilgiler = {} print("\n" * 20) cocuk_ozel_sayac += 1 # fiyat hesapla fonkunda da cocuk hesapla fonksiyonunu çağıracağım tutar = fiyat_hesapla() cocuk_sayisi = int(input("Kaç adet çocuğunuz olduğunu giriniz:")) for i in range(cocuk_sayisi): print("\n") cocuk_yas = int(input("{}. çocuğunuzun yaşını giriniz:".format(i + 1))) def eglence(yas): if (yas < 10): # eğer çocuk yaşı 10 dan küçükse teklifler sunulur fiyat = 0 oyun_park = input( " Restoranımızda çocuklara özel oyun parkı bulunmaktadır.\n" " İsterseniz rezervasyon ödemenize ek sadece 100 TL'ye oyun parkında dilediğinizce zaman geçirebilirsiniz.\n" " Bu tekliften yararlanmak istiyor musunuz (Evet veya Hayır) yazınız:") if (oyun_park == "evet" or oyun_park == "Evet"): fiyat = fiyat + 100 print("\n") print("Oyun parkında iyi eğlenceler dileriz :)") print("\n" * 2) print("Bizim için en önemlisi sizin ve çocuklarınızın rahatlığı") print("\n") bakici = input( " Yemek yerken sürekli çocuklarınıza göz kulak olmanıza gerek yok.\n" " İsterseniz rezervasyon ödemenize ek sadece 100 TL'ye çocuklarınıza bakıcı hizmeti sunuyoruz.\n" " Bu tekliften yararlanmak istiyor musunuz (Evet veya Hayır) yazınız:") if (bakici == "evet" or bakici == "Evet"): fiyat = fiyat + 100 print("\n") print("Bizi seçtiğiniz için teşekkür eder, iyi eğlenceler dileriz :)") # print("Ödemeniz gereken tutar {} Tl".format(tutar)) elif (bakici == "hayır" or bakici == "Hayır"): print("\n") print("Bizi seçtiğiniz için teşekkür ederiz :)") # print("Ödemeniz gereken tutar {} Tl".format(tutar)) elif (oyun_park == "hayır" or oyun_park == "Hayır"): print("\n") print("Bizi seçtiğiniz için teşekkür ederiz :)") else: pass return fiyat tutar = tutar + eglence(cocuk_yas) if (1 <= cocuk_sayisi <= 2): cocuk_ozel_sayac = 0 print("\n" * 2) print("Çocuklara özel %5 indirimimizden yararlanıyorsunuz.") tutar = tutar - (tutar * (5 / 100)) print("Ödemeniz gereken indirimli tutar: {} TL".format(tutar)) elif (cocuk_sayisi > 2): cocuk_ozel_sayac = 0 print("\n" * 2) print("Çocuklara özel %10 indirimimizden yararlanıyorsunuz.") tutar = tutar - (tutar * (10 / 100)) print("Ödemeniz gereken indirimli tutar: {} TL".format(tutar)) ana_menu() def ana_menu(): print("\n") islem = input("Ne tür bir işlem yapmak istediğinizi yazınız.\n" "Yeni bir müşteri rezervasyonu eklemek için -ekle- \n" "Müşteri aramak için -ara-\n" "Müşteri bilgilerini güncellemek için -güncelle-\n" "İptal olan rezervasyonları silmek için -sil-\n" "Müşteri rezervasyon fiyatı hesaplamak için -hesapla-\n" "Çocuklu müşterilerimize özel indirimler ve çocuklara özel eğlencelerden yararlanmak için -çocuk-\n" "Sistemden çıkış yapmak için -çıkış- yazınız:") if (islem == "ekle" or islem == "Ekle"): musteri_ekle() elif (islem == "ara" or islem == "Ara"): musteri_ara() elif (islem == "güncelle" or islem == "Güncelle"): musteri_guncelle() elif (islem == "sil" or islem == "Sil"): musteri_sil() elif (islem == "hesapla" or islem == "Hesapla"): fiyat_hesapla() elif (islem == "çocuk" or islem == "Çocuk"): cocuk_ozel() elif (islem == "çıkış" or islem == "Çıkış"): return None ana_menu()
7c41c9497b4849dcb62f2a90fddadf53879e5b91
259cc507d97bfeff84d21de3a0ab56640676a9eb
/venv1/Lib/site-packages/tensorflow/python/estimator/canned/head.py
44c0a891298d270c410658bb4a603de4ff466789
[ "MIT", "Apache-2.0" ]
permissive
Soum-Soum/Tensorflow_Face_Finder
c3ef71b6f718f6720b80f8760d28b6ca6e11e6d2
fec6c15d2df7012608511ad87f4b55731bf99478
refs/heads/master
2020-03-22T20:31:39.606644
2018-07-12T13:47:56
2018-07-12T13:47:56
140,607,068
0
0
null
null
null
null
UTF-8
Python
false
false
61,632
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Abstractions for the head(s) of a model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import six from tensorflow.python.estimator import model_fn from tensorflow.python.estimator import util from tensorflow.python.estimator.canned import metric_keys from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export_output from tensorflow.python.feature_column import feature_column as feature_column_lib from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import metrics as metrics_lib from tensorflow.python.ops import nn from tensorflow.python.ops import string_ops from tensorflow.python.ops import weights_broadcast_ops from tensorflow.python.ops.losses import losses from tensorflow.python.saved_model import signature_constants from tensorflow.python.summary import summary _DEFAULT_SERVING_KEY = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY # The above default is defined by TF Serving, but these next three are just # a local convention without any special meaning. _CLASSIFY_SERVING_KEY = 'classification' _REGRESS_SERVING_KEY = 'regression' _PREDICT_SERVING_KEY = 'predict' # A LossSpec contains # * a scalar `Tensor` representing reduced weighted training loss # * a scalar `Tensor` representing the unreduced unweighted loss # * a scalar `Tensor` representing the example weights # * possibly processed labels (e.g. vocabulary lookup, shape manipulation, etc) LossSpec = collections.namedtuple( 'LossSpec', ['training_loss', 'unreduced_loss', 'weights', 'processed_labels']) def _summary_key(head_name, val): return '%s/%s' % (val, head_name) if head_name else val class _Head(object): """Interface for the head/top of a model. Given logits (or output of a hidden layer), a Head knows how to compute predictions, loss, train_op, metrics and export outputs. It is meant to: 1. Simplify writing model_fn and to make model_fn more configurable 2. Support wide range of machine learning models. Since most heads can work with logits, they can support DNN, RNN, Wide, Wide&Deep, Global objectives, Gradient boosted trees and many other types of machine learning models. Common usage: Here is simplified model_fn to build a DNN regression model. ```python def _my_dnn_model_fn(features, labels, mode, params, config=None): # Optionally your callers can pass head to model_fn as a param. head = tf.contrib.learn.regression_head(...) input = tf.contrib.layers.input_from_feature_columns(features, ...) last_hidden_layer_out = tf.contrib.layers.stack( input, tf.contrib.layers.fully_connected, [1000, 500]) logits = tf.contrib.layers.fully_connected( last_hidden_layer_out, head.logits_dimension, activation_fn=None) def _train_op_fn(loss): return optimizer.minimize(loss) return head.create_estimator_spec( features=features, labels=labels, mode=mode, logits=logits, train_op_fn=_train_op_fn) ``` There are cases where computing and applying gradients can not be meaningfully captured with train_op_fn we support (for example, with sync optimizer). In such case, you can take the responsibility on your own. Here is a common use case, ```python estimator_spec = head.create_estimator_spec( features=features, labels=labels, mode=mode, logits=logits, train_op_fn=tf.contrib.learn.no_op_train_fn) if mode == model_fn.ModeKeys.TRAIN: optimizer = ... sync = tf.train.SyncReplicasOptimizer(opt=optimizer, ...) update_op = tf.contrib.layers.optimize_loss(optimizer=sync, loss=estimator_spec.loss, ...) hooks = [sync.make_session_run_hook(is_chief)] ... update train_op and hooks in EstimatorSpec and return ``` """ __metaclass__ = abc.ABCMeta @abc.abstractproperty def name(self): """The name of this head. Returns: A string. """ raise NotImplementedError('Calling an abstract method.') @abc.abstractproperty def logits_dimension(self): """Size of the last dimension of the logits `Tensor`. Typically, logits is of shape `[batch_size, logits_dimension]`. Returns: The expected size of the `logits` tensor. """ raise NotImplementedError('Calling an abstract method.') @abc.abstractmethod def create_loss(self, features, mode, logits, labels): """Returns a loss Tensor from provided logits. This function is designed to be used by framework developers. Almost all users should use create_estimator_spec(), which calls this internally. `mode` and `features` are most likely not used, but some Head implementations may require them. Args: features: Input `dict` of `Tensor` objects. mode: Estimator's `ModeKeys`. logits: logits `Tensor` to be used for loss construction. labels: Labels `Tensor`, or `dict` of same. Returns: A LossSpec that contains * the scalar `Tensor` representing reduced weighted training loss * the scalar `Tensor` representing the unreduced unweighted loss * the scalar `Tensor` representing the example weights * possibly processed labels (e.g. vocabulary lookup, shape manipulation, etc.) To be extendable in the future. """ raise NotImplementedError('Calling an abstract method.') @abc.abstractmethod def create_estimator_spec( self, features, mode, logits, labels=None, train_op_fn=None, regularization_losses=None): """Returns `EstimatorSpec` that a model_fn can return. Please note that, + All args must be passed via name. Args: features: Input `dict` of `Tensor` or `SparseTensor` objects. mode: Estimator's `ModeKeys`. logits: logits `Tensor` to be used by the head. labels: Labels `Tensor`, or `dict` of same. train_op_fn: Function that takes a scalar loss `Tensor` and returns an op to optimize the model with the loss. This is used in TRAIN mode and must not be None. None is allowed in other modes. If you want to optimize loss yourself you can pass `no_op_train_fn` and then use EstimatorSpec.loss to compute and apply gradients. regularization_losses: A list of additional scalar losses to be added to the training loss, such as regularization losses. Returns: `EstimatorSpec`. """ raise NotImplementedError('Calling an abstract method.') def _check_dense_labels_match_logits_and_reshape( labels, logits, expected_labels_dimension): """Checks that labels shape matches logits and reshapes if needed. Consider logits of shape [D0, D1, ... DN, logits_dimension]. Then labels shape must be [D0, D1, ... DN, expected_labels_dimension]. If expected_labels_dimension=1, labels could be [D0, D1, ... DN] and this method reshapes them to [D0, D1, ... DN, 1]. Args: labels: labels Tensor. logits: logits Tensor. expected_labels_dimension: Integer. Returns: Validated and reshaped labels Tensor. Raises: ValueError: If labels is a SparseTensor. ValueError: If labels shape is statically defined and fails validation. OpError: If labels shape is not statically defined and fails validation. """ if labels is None: raise ValueError( 'You must provide a labels Tensor. Given: None. ' 'Suggested troubleshooting steps: Check that your data contain ' 'your label feature. Check that your input_fn properly parses and ' 'returns labels.') with ops.name_scope(None, 'labels', (labels, logits)) as scope: labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels) if isinstance(labels, sparse_tensor.SparseTensor): raise ValueError( 'SparseTensor labels are not supported. ' 'labels must be a Tensor of shape [D0, D1, ..., DN, %s], ' 'e.g. [batch_size, %s]. ' 'Suggested Fix (1): Check the label feature in your data. ' 'Each example must contain %s value(s). If not, your choice of label ' 'was probably incorrect. ' 'Suggested Fix (2): In your input_fn, use ' 'tf.sparse_tensor_to_dense() to turn labels into a Tensor.' '' % (expected_labels_dimension, expected_labels_dimension, expected_labels_dimension)) if (labels.shape.ndims is not None and logits.shape.ndims is not None and labels.shape.ndims == logits.shape.ndims - 1): labels = array_ops.expand_dims(labels, -1) labels_shape = array_ops.shape(labels) logits_shape = array_ops.shape(logits) err_msg = ( 'labels shape must be [D0, D1, ... DN, {}]. ' 'Suggested Fix: check your n_classes argument to the estimator ' 'and/or the shape of your label.'.format(expected_labels_dimension)) assert_rank = check_ops.assert_rank_at_least(labels, 2, message=err_msg) with ops.control_dependencies([assert_rank]): static_shape = labels.shape if static_shape.ndims is not None: dim1 = static_shape[-1] if (dim1 is not None) and (dim1 != expected_labels_dimension): raise ValueError( 'Mismatched label shape. ' 'Classifier configured with n_classes=%s. Received %s. ' 'Suggested Fix: check your n_classes argument to the estimator ' 'and/or the shape of your label.' % (expected_labels_dimension, dim1)) expected_labels_shape = array_ops.concat( [logits_shape[:-1], [expected_labels_dimension]], axis=0) assert_dimension = check_ops.assert_equal( expected_labels_shape, labels_shape, message=err_msg, data=['expected_labels_shape: ', expected_labels_shape, 'labels_shape: ', labels_shape]) with ops.control_dependencies([assert_dimension]): return array_ops.identity(labels, name=scope) def _get_weights_and_check_match_logits( features, weight_column, logits, allow_per_logit_weights=False): """Fetches weights from features and checks that the shape matches logits. Consider logits of shape [D0, D1, ... DN, logits_dimension]. Weights shape can be either: * [D0, D1, ... DN, logits_dimension] if `allow_per_logit_weights=True`. * [D0, D1, ... DN, 1] * [D0, D1, ... DN]: In this case, weights is reshaped into [D0, D1, ... DN, 1] to work with weight broadcasting rules. Args: features: The features dict that contains weights. weight_column: The weight column. If not given, this method returns 1. logits: logits Tensor. allow_per_logit_weights: Boolean. Whether we allow weights along the logits dimension, namely shape `[D0, D1, ... DN, logits_dimension]`. Returns: Validated and reshaped weights Tensor. Raises: ValueError: If the weights `Tensor` cannot be cast into float. """ if allow_per_logit_weights: err_msg = ( 'weights shape must be [D0, D1, ... DN], [D0, D1, ... DN, 1] or ' '[D0, D1, ... DN, logits_dimension]') else: err_msg = ( 'weights shape must be [D0, D1, ... DN] or [D0, D1, ... DN, 1]') with ops.name_scope( None, 'weights', values=tuple(six.itervalues(features)) + (logits,)) as scope: # Fetch the weights. if weight_column is None: return 1. if isinstance(weight_column, six.string_types): weight_column = feature_column_lib.numeric_column( key=weight_column, shape=(1,)) if not isinstance(weight_column, feature_column_lib._NumericColumn): # pylint: disable=protected-access raise TypeError('Weight column must be either a string or _NumericColumn.' ' Given type: {}.'.format(type(weight_column))) weights = weight_column._get_dense_tensor( # pylint: disable=protected-access feature_column_lib._LazyBuilder(features)) # pylint: disable=protected-access if not (weights.dtype.is_floating or weights.dtype.is_integer): raise ValueError('Weight column should be castable to float. ' 'Given dtype: {}'.format(weights.dtype)) weights = math_ops.to_float(weights, name='weights') # Validate the weights shape. weights_shape = array_ops.shape(weights, name='weights_shape') logits_shape = array_ops.shape(logits, name='logits_shape') if (weights.shape.ndims is not None and logits.shape.ndims is not None and weights.shape.ndims == logits.shape.ndims - 1): assert_dimension = check_ops.assert_equal( logits_shape[:-1], weights_shape, message=err_msg, data=['logits_shape: ', logits_shape, 'weights_shape: ', weights_shape]) with ops.control_dependencies([assert_dimension]): return array_ops.expand_dims(weights, -1, name=scope) supported_weights_shape = array_ops.concat([logits_shape[:-1], [1]], axis=0) if allow_per_logit_weights: condition = math_ops.reduce_any( [math_ops.reduce_all(math_ops.equal(logits_shape, weights_shape)), math_ops.reduce_all(math_ops.equal( supported_weights_shape, weights_shape))]) assert_dimension = control_flow_ops.Assert( condition=condition, data=[err_msg, 'logits_shape: ', logits_shape, 'weights_shape: ', weights_shape]) else: assert_dimension = check_ops.assert_equal( supported_weights_shape, weights_shape, message=err_msg, data=['logits_shape: ', logits_shape, 'weights_shape: ', weights_shape]) with ops.control_dependencies([assert_dimension]): return array_ops.identity(weights, name=scope) def _check_logits_final_dim(logits, expected_logits_dimension): """Checks that logits shape is [D0, D1, ... DN, logits_dimension].""" with ops.name_scope(None, 'logits', (logits,)) as scope: logits = math_ops.to_float(logits) logits_shape = array_ops.shape(logits) assert_rank = check_ops.assert_rank_at_least( logits, 2, data=[logits_shape], message='logits shape must be [D0, D1, ... DN, logits_dimension]') with ops.control_dependencies([assert_rank]): static_shape = logits.shape if static_shape.ndims is not None and static_shape[-1] is not None: if static_shape[-1] != expected_logits_dimension: raise ValueError( 'logits shape must be [D0, D1, ... DN, logits_dimension], ' 'got %s.' % (static_shape,)) return logits assert_dimension = check_ops.assert_equal( expected_logits_dimension, logits_shape[-1], data=[logits_shape], message='logits shape must be [D0, D1, ... DN, logits_dimension]') with ops.control_dependencies([assert_dimension]): return array_ops.identity(logits, name=scope) def _validate_loss_fn_args(loss_fn): """Validates loss_fn arguments. Required arguments: labels, logits. Optional arguments: features. Args: loss_fn: The loss function. Raises: ValueError: If the signature is unexpected. """ loss_fn_args = util.fn_args(loss_fn) for required_arg in ['labels', 'logits']: if required_arg not in loss_fn_args: raise ValueError( 'loss_fn must contain argument: {}. ' 'Given arguments: {}'.format(required_arg, loss_fn_args)) invalid_args = list(set(loss_fn_args) - set(['labels', 'logits', 'features'])) if invalid_args: raise ValueError('loss_fn has unexpected args: {}'.format(invalid_args)) def _call_loss_fn(loss_fn, labels, logits, features, expected_loss_dim=1): """Calls loss_fn and checks the returned shape. Args: loss_fn: The loss function. labels: Processed labels Tensor. logits: Logits Tensor of shape [D0, D1, ... DN, logits_dimension]. features: Features dict. expected_loss_dim: The expected last dimension of loss Tensor. Returns: Loss Tensor with shape [D0, D1, ... DN, expected_loss_dim]. """ loss_fn_args = util.fn_args(loss_fn) kwargs = {} if 'features' in loss_fn_args: kwargs['features'] = features with ops.name_scope( None, 'call_loss_fn', values=[labels, logits] + list(six.itervalues(features))): unweighted_loss = loss_fn(labels=labels, logits=logits, **kwargs) logits_shape = array_ops.shape(logits, name='logits_shape') expected_loss_shape = array_ops.concat( [logits_shape[:-1], [expected_loss_dim]], axis=0, name='expected_loss_shape') loss_shape = array_ops.shape(unweighted_loss, name='loss_shape') check_loss_shape_op = control_flow_ops.Assert( math_ops.reduce_all(math_ops.equal(loss_shape, expected_loss_shape)), data=[ 'loss_fn must return Tensor of shape ' '[D0, D1, ... DN, {}]. '.format(expected_loss_dim), 'logits_shape: ', logits_shape, 'loss_shape: ', loss_shape], name='check_loss_shape') with ops.control_dependencies([check_loss_shape_op]): return array_ops.identity(unweighted_loss) def _indicator_labels_mean(labels, weights=None, name=None): with ops.name_scope(name, 'labels_mean', (labels, weights)) as scope: labels = math_ops.to_float(labels, name='labels') if weights is not None: weights = weights_broadcast_ops.broadcast_weights(weights, labels) return metrics_lib.mean(labels, weights=weights, name=scope) def _classification_output(scores, n_classes, label_vocabulary=None): batch_size = array_ops.shape(scores)[0] if label_vocabulary: export_class_list = label_vocabulary else: export_class_list = string_ops.as_string(math_ops.range(n_classes)) export_output_classes = array_ops.tile( input=array_ops.expand_dims(input=export_class_list, axis=0), multiples=[batch_size, 1]) return export_output.ClassificationOutput( scores=scores, # `ClassificationOutput` requires string classes. classes=export_output_classes) def _accuracy_baseline(labels_mean): """Return accuracy baseline based on labels mean. This is the best the model could do by always predicting one class. Args: labels_mean: Tuple of value and update op. Returns: Tuple of value and update op. """ with ops.name_scope(None, 'accuracy_baseline', labels_mean): value, update_op = labels_mean return ( math_ops.maximum(value, 1. - value, name='value'), math_ops.maximum(update_op, 1 - update_op, name='update_op')) def _predictions_mean(predictions, weights=None, name=None): with ops.name_scope( name, 'predictions_mean', (predictions, weights)) as scope: predictions = math_ops.to_float(predictions, name='predictions') if weights is not None: weights = weights_broadcast_ops.broadcast_weights(weights, predictions) return metrics_lib.mean(predictions, weights=weights, name=scope) def _auc(labels, predictions, weights=None, curve='ROC', name=None): with ops.name_scope(name, 'auc', (predictions, labels, weights)) as scope: predictions = math_ops.to_float(predictions, name='predictions') if weights is not None: weights = weights_broadcast_ops.broadcast_weights(weights, predictions) return metrics_lib.auc( labels=labels, predictions=predictions, weights=weights, curve=curve, name=scope) def _accuracy_at_threshold(labels, predictions, weights, threshold, name=None): with ops.name_scope( name, 'accuracy_at_%s' % threshold, (predictions, labels, weights, threshold)) as scope: threshold_predictions = math_ops.to_float( math_ops.greater_equal(predictions, threshold)) return metrics_lib.accuracy( labels=labels, predictions=threshold_predictions, weights=weights, name=scope) def _precision_at_threshold(labels, predictions, weights, threshold, name=None): with ops.name_scope( name, 'precision_at_%s' % threshold, (predictions, labels, weights, threshold)) as scope: precision_tensor, update_op = metrics_lib.precision_at_thresholds( labels=labels, predictions=predictions, thresholds=(threshold,), weights=weights, name=scope) return array_ops.squeeze(precision_tensor), array_ops.squeeze(update_op) def _recall_at_threshold(labels, predictions, weights, threshold, name=None): with ops.name_scope( name, 'recall_at_%s' % threshold, (predictions, labels, weights, threshold)) as scope: precision_tensor, update_op = metrics_lib.recall_at_thresholds( labels=labels, predictions=predictions, thresholds=(threshold,), weights=weights, name=scope) return array_ops.squeeze(precision_tensor), array_ops.squeeze(update_op) def _multi_class_head_with_softmax_cross_entropy_loss( n_classes, weight_column=None, label_vocabulary=None, loss_reduction=losses.Reduction.SUM, loss_fn=None, name=None): """Creates a '_Head' for multi class classification. The head expects `logits` with shape `[D0, D1, ... DN, n_classes]`. In many applications, the shape is `[batch_size, n_classes]`. `labels` must be a dense `Tensor` with shape matching `logits`, namely `[D0, D1, ... DN, 1]`. If `label_vocabulary` given, `labels` must be a string `Tensor` with values from the vocabulary. If `label_vocabulary` is not given, `labels` must be an integer `Tensor` with values specifying the class index. If `weight_column` is specified, weights must be of shape `[D0, D1, ... DN]`, or `[D0, D1, ... DN, 1]`. The loss is the weighted sum over the input dimensions. Namely, if the input labels have shape `[batch_size, 1]`, the loss is the weighted sum over `batch_size`. Also supports custom `loss_fn`. `loss_fn` takes `(labels, logits)` or `(labels, logits, features)` as arguments and returns unreduced loss with shape `[D0, D1, ... DN, 1]`. `loss_fn` must support integer `labels` with shape `[D0, D1, ... DN, 1]`. Namely, the head applies `label_vocabulary` to the input labels before passing them to `loss_fn`. Args: n_classes: Number of classes, must be greater than 2 (for 2 classes, use `_BinaryLogisticHeadWithSigmoidCrossEntropyLoss`). weight_column: A string or a `_NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. label_vocabulary: A list or tuple of strings representing possible label values. If it is not given, that means labels are already encoded as an integer within [0, n_classes). If given, labels must be of string type and have any value in `label_vocabulary`. Note that errors will be raised if `label_vocabulary` is not provided but labels are strings. loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to reduce training loss over batch. Defaults to `SUM`. loss_fn: Optional loss function. name: name of the head. If provided, summary and metrics keys will be suffixed by `"/" + name`. Also used as `name_scope` when creating ops. Returns: An instance of `_Head` for multi class classification. Raises: ValueError: If `n_classes`, `label_vocabulary` or `loss_reduction` is invalid. """ if label_vocabulary is not None and not isinstance(label_vocabulary, (list, tuple)): raise ValueError( 'label_vocabulary should be a list or a tuple. Given type: {}'.format( type(label_vocabulary))) if (loss_reduction not in losses.Reduction.all() or loss_reduction == losses.Reduction.NONE): raise ValueError('Invalid loss_reduction: {}'.format(loss_reduction)) if loss_fn: _validate_loss_fn_args(loss_fn) return _MultiClassHeadWithSoftmaxCrossEntropyLoss( n_classes=n_classes, weight_column=weight_column, label_vocabulary=label_vocabulary, loss_reduction=loss_reduction, loss_fn=loss_fn, name=name) class _MultiClassHeadWithSoftmaxCrossEntropyLoss(_Head): """See `_multi_class_head_with_softmax_cross_entropy_loss`.""" def __init__(self, n_classes, weight_column=None, label_vocabulary=None, loss_reduction=losses.Reduction.SUM, loss_fn=None, name=None): if (n_classes is None) or (n_classes <= 2): raise ValueError('n_classes must be > 2: %s.' % n_classes) self._n_classes = n_classes self._weight_column = weight_column self._label_vocabulary = label_vocabulary self._loss_reduction = loss_reduction self._loss_fn = loss_fn self._name = name @property def name(self): return self._name @property def logits_dimension(self): return self._n_classes def _eval_metric_ops( self, labels, class_ids, weights, unreduced_loss, regularization_loss): """Returns the Eval metric ops.""" with ops.name_scope( None, 'metrics', (labels, class_ids, weights, unreduced_loss, regularization_loss)): keys = metric_keys.MetricKeys metric_ops = { # Estimator already adds a metric for loss. # TODO(xiejw): Any other metrics? _summary_key(self._name, keys.LOSS_MEAN): metrics_lib.mean( values=unreduced_loss, weights=weights, name=keys.LOSS_MEAN), _summary_key(self._name, keys.ACCURACY): metrics_lib.accuracy( labels=labels, predictions=class_ids, weights=weights, name=keys.ACCURACY), } if regularization_loss is not None: metric_ops[_summary_key(self._name, keys.LOSS_REGULARIZATION)] = ( metrics_lib.mean( values=regularization_loss, name=keys.LOSS_REGULARIZATION)) return metric_ops def _label_ids(self, labels): """Converts labels to integer id space.""" if self._label_vocabulary is None: if not labels.dtype.is_integer: raise ValueError('Labels dtype should be integer. Instead got {}.'. format(labels.dtype)) label_ids = labels else: if labels.dtype != dtypes.string: raise ValueError('Labels dtype should be string if there is a ' 'vocabulary. Instead got {}'.format(labels.dtype)) label_ids = lookup_ops.index_table_from_tensor( vocabulary_list=tuple(self._label_vocabulary), name='class_id_lookup').lookup(labels) return _assert_range(label_ids, self._n_classes) def create_loss(self, features, mode, logits, labels): """See `Head`.""" del mode # Unused for this head. logits = ops.convert_to_tensor(logits) labels = _check_dense_labels_match_logits_and_reshape( labels=labels, logits=logits, expected_labels_dimension=1) label_ids = self._label_ids(labels) if self._loss_fn: unweighted_loss = _call_loss_fn( loss_fn=self._loss_fn, labels=label_ids, logits=logits, features=features, expected_loss_dim=1) else: unweighted_loss = losses.sparse_softmax_cross_entropy( labels=label_ids, logits=logits, reduction=losses.Reduction.NONE) # Restore the squeezed dim, so unweighted_loss matches the weights shape. unweighted_loss = array_ops.expand_dims(unweighted_loss, axis=-1) weights = _get_weights_and_check_match_logits( features=features, weight_column=self._weight_column, logits=logits) training_loss = losses.compute_weighted_loss( unweighted_loss, weights=weights, reduction=self._loss_reduction) return LossSpec( training_loss=training_loss, unreduced_loss=unweighted_loss, weights=weights, processed_labels=label_ids) def create_estimator_spec( self, features, mode, logits, labels=None, train_op_fn=None, regularization_losses=None): """Returns an `EstimatorSpec`. Args: features: Input `dict` of `Tensor` or `SparseTensor` objects. mode: Estimator's `ModeKeys`. logits: logits `Tensor` with shape `[D0, D1, ... DN, logits_dimension]`. For many applications, the shape is `[batch_size, logits_dimension]`. labels: Labels integer or string `Tensor` with shape matching `logits`, namely `[D0, D1, ... DN, 1]` or `[D0, D1, ... DN]`. `labels` is required argument when `mode` equals `TRAIN` or `EVAL`. train_op_fn: Function that takes a scalar loss `Tensor` and returns `train_op`. Required in TRAIN mode. regularization_losses: A list of additional scalar losses to be added to the training loss, such as regularization losses. These losses are usually expressed as a batch average, so for best results users need to set `loss_reduction=SUM_OVER_BATCH_SIZE` or `loss_reduction=SUM_OVER_NONZERO_WEIGHTS` when creating the head to avoid scaling errors. Returns: `EstimatorSpec`. Raises: ValueError: If `train_op_fn` is `None` in TRAIN mode. """ with ops.name_scope(self._name, 'head'): logits = _check_logits_final_dim(logits, self.logits_dimension) # Predict. pred_keys = prediction_keys.PredictionKeys with ops.name_scope(None, 'predictions', (logits,)): # class_ids's shape is [D0, D1, ... DN]. class_ids = math_ops.argmax(logits, axis=-1, name=pred_keys.CLASS_IDS) class_ids = array_ops.expand_dims(class_ids, axis=-1) if self._label_vocabulary: table = lookup_ops.index_to_string_table_from_tensor( vocabulary_list=self._label_vocabulary, name='class_string_lookup') classes = table.lookup(class_ids) else: classes = string_ops.as_string(class_ids, name='str_classes') probabilities = nn.softmax(logits, name=pred_keys.PROBABILITIES) predictions = { pred_keys.LOGITS: logits, pred_keys.PROBABILITIES: probabilities, # Expand to [batch_size, 1] pred_keys.CLASS_IDS: class_ids, pred_keys.CLASSES: classes, } if mode == model_fn.ModeKeys.PREDICT: classifier_output = _classification_output( scores=probabilities, n_classes=self._n_classes, label_vocabulary=self._label_vocabulary) return model_fn.EstimatorSpec( mode=model_fn.ModeKeys.PREDICT, predictions=predictions, export_outputs={ _DEFAULT_SERVING_KEY: classifier_output, _CLASSIFY_SERVING_KEY: classifier_output, _PREDICT_SERVING_KEY: export_output.PredictOutput(predictions) }) training_loss, unreduced_loss, weights, label_ids = self.create_loss( features=features, mode=mode, logits=logits, labels=labels) if regularization_losses: regularization_loss = math_ops.add_n(regularization_losses) regularized_training_loss = math_ops.add_n( [training_loss, regularization_loss]) else: regularization_loss = None regularized_training_loss = training_loss # Eval. if mode == model_fn.ModeKeys.EVAL: return model_fn.EstimatorSpec( mode=model_fn.ModeKeys.EVAL, predictions=predictions, loss=regularized_training_loss, eval_metric_ops=self._eval_metric_ops( labels=label_ids, class_ids=class_ids, weights=weights, unreduced_loss=unreduced_loss, regularization_loss=regularization_loss)) # Train. if train_op_fn is None: raise ValueError('train_op_fn cannot be None.') # Only summarize mean_loss for SUM reduction to preserve backwards # compatibility. Otherwise skip it to avoid unnecessary computation. if self._loss_reduction == losses.Reduction.SUM: example_weight_sum = math_ops.reduce_sum( weights * array_ops.ones_like(unreduced_loss)) mean_loss = training_loss / example_weight_sum else: mean_loss = None with ops.name_scope(''): keys = metric_keys.MetricKeys summary.scalar( _summary_key(self._name, keys.LOSS), regularized_training_loss) if mean_loss is not None: summary.scalar( _summary_key(self._name, keys.LOSS_MEAN), mean_loss) if regularization_loss is not None: summary.scalar( _summary_key(self._name, keys.LOSS_REGULARIZATION), regularization_loss) return model_fn.EstimatorSpec( mode=model_fn.ModeKeys.TRAIN, predictions=predictions, loss=regularized_training_loss, train_op=train_op_fn(regularized_training_loss)) def _binary_logistic_head_with_sigmoid_cross_entropy_loss( weight_column=None, thresholds=None, label_vocabulary=None, loss_reduction=losses.Reduction.SUM, loss_fn=None, name=None): """Creates a `_Head` for single label binary classification. This head uses `sigmoid_cross_entropy_with_logits` loss. The head expects `logits` with shape `[D0, D1, ... DN, 1]`. In many applications, the shape is `[batch_size, 1]`. `labels` must be a dense `Tensor` with shape matching `logits`, namely `[D0, D1, ... DN, 1]`. If `label_vocabulary` given, `labels` must be a string `Tensor` with values from the vocabulary. If `label_vocabulary` is not given, `labels` must be float `Tensor` with values in the interval `[0, 1]`. If `weight_column` is specified, weights must be of shape `[D0, D1, ... DN]`, or `[D0, D1, ... DN, 1]`. The loss is the weighted sum over the input dimensions. Namely, if the input labels have shape `[batch_size, 1]`, the loss is the weighted sum over `batch_size`. Also supports custom `loss_fn`. `loss_fn` takes `(labels, logits)` or `(labels, logits, features)` as arguments and returns unreduced loss with shape `[D0, D1, ... DN, 1]`. `loss_fn` must support float `labels` with shape `[D0, D1, ... DN, 1]`. Namely, the head applies `label_vocabulary` to the input labels before passing them to `loss_fn`. Args: weight_column: A string or a `_NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. thresholds: Iterable of floats in the range `(0, 1)`. For binary classification metrics such as precision and recall, an eval metric is generated for each threshold value. This threshold is applied to the logistic values to determine the binary classification (i.e., above the threshold is `true`, below is `false`. label_vocabulary: A list or tuple of strings representing possible label values. If it is not given, that means labels are already encoded within [0, 1]. If given, labels must be string type and have any value in `label_vocabulary`. Note that errors will be raised if `label_vocabulary` is not provided but labels are strings. loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to reduce training loss over batch. Defaults to `SUM`. loss_fn: Optional loss function. name: name of the head. If provided, summary and metrics keys will be suffixed by `"/" + name`. Also used as `name_scope` when creating ops. Returns: An instance of `_Head` for binary classification. Raises: ValueError: If `thresholds` contains a value outside of `(0, 1)`. ValueError: If `loss_reduction` is invalid. """ thresholds = tuple(thresholds) if thresholds else tuple() if label_vocabulary is not None and not isinstance(label_vocabulary, (list, tuple)): raise ValueError( 'label_vocabulary should be a list or tuple. Given type: {}'.format( type(label_vocabulary))) for threshold in thresholds: if (threshold <= 0.0) or (threshold >= 1.0): raise ValueError('thresholds not in (0, 1): {}.'.format((thresholds,))) if (loss_reduction not in losses.Reduction.all() or loss_reduction == losses.Reduction.NONE): raise ValueError('Invalid loss_reduction: {}'.format(loss_reduction)) if loss_fn: _validate_loss_fn_args(loss_fn) return _BinaryLogisticHeadWithSigmoidCrossEntropyLoss( weight_column=weight_column, thresholds=thresholds, label_vocabulary=label_vocabulary, loss_reduction=loss_reduction, loss_fn=loss_fn, name=name) class _BinaryLogisticHeadWithSigmoidCrossEntropyLoss(_Head): """See `_binary_logistic_head_with_sigmoid_cross_entropy_loss`.""" def __init__(self, weight_column=None, thresholds=None, label_vocabulary=None, loss_reduction=losses.Reduction.SUM, loss_fn=None, name=None): self._weight_column = weight_column self._thresholds = thresholds self._label_vocabulary = label_vocabulary self._loss_reduction = loss_reduction self._loss_fn = loss_fn self._name = name @property def name(self): return self._name @property def logits_dimension(self): return 1 def _eval_metric_ops(self, labels, logits, logistic, class_ids, weights, unreduced_loss, regularization_loss): with ops.name_scope(None, 'metrics', (labels, logits, logistic, class_ids, weights, unreduced_loss, regularization_loss)): keys = metric_keys.MetricKeys labels_mean = _indicator_labels_mean( labels=labels, weights=weights, name=keys.LABEL_MEAN) metric_ops = { # Estimator already adds a metric for loss. _summary_key(self._name, keys.LOSS_MEAN): metrics_lib.mean( values=unreduced_loss, weights=weights, name=keys.LOSS_MEAN), _summary_key(self._name, keys.ACCURACY): metrics_lib.accuracy( labels=labels, predictions=class_ids, weights=weights, name=keys.ACCURACY), _summary_key(self._name, keys.PREDICTION_MEAN): _predictions_mean( predictions=logistic, weights=weights, name=keys.PREDICTION_MEAN), _summary_key(self._name, keys.LABEL_MEAN): labels_mean, _summary_key(self._name, keys.ACCURACY_BASELINE): _accuracy_baseline(labels_mean), _summary_key(self._name, keys.AUC): _auc( labels=labels, predictions=logistic, weights=weights, name=keys.AUC), _summary_key(self._name, keys.AUC_PR): _auc( labels=labels, predictions=logistic, weights=weights, curve='PR', name=keys.AUC_PR) } if regularization_loss is not None: metric_ops[_summary_key(self._name, keys.LOSS_REGULARIZATION)] = ( metrics_lib.mean( values=regularization_loss, name=keys.LOSS_REGULARIZATION)) for threshold in self._thresholds: accuracy_key = keys.ACCURACY_AT_THRESHOLD % threshold metric_ops[_summary_key(self._name, accuracy_key)] = _accuracy_at_threshold( labels=labels, predictions=logistic, weights=weights, threshold=threshold, name=accuracy_key) # Precision for positive examples. precision_key = keys.PRECISION_AT_THRESHOLD % threshold metric_ops[_summary_key(self._name, precision_key)] = _precision_at_threshold( labels=labels, predictions=logistic, weights=weights, threshold=threshold, name=precision_key) # Recall for positive examples. recall_key = keys.RECALL_AT_THRESHOLD % threshold metric_ops[_summary_key(self._name, recall_key)] = _recall_at_threshold( labels=labels, predictions=logistic, weights=weights, threshold=threshold, name=recall_key) return metric_ops def create_loss(self, features, mode, logits, labels): """See `Head`.""" del mode # Unused for this head. logits = ops.convert_to_tensor(logits) labels = _check_dense_labels_match_logits_and_reshape( labels=labels, logits=logits, expected_labels_dimension=1) if self._label_vocabulary is not None: labels = lookup_ops.index_table_from_tensor( vocabulary_list=tuple(self._label_vocabulary), name='class_id_lookup').lookup(labels) labels = math_ops.to_float(labels) labels = _assert_range(labels, 2) if self._loss_fn: unweighted_loss = _call_loss_fn( loss_fn=self._loss_fn, labels=labels, logits=logits, features=features, expected_loss_dim=1) else: unweighted_loss = nn.sigmoid_cross_entropy_with_logits( labels=labels, logits=logits) weights = _get_weights_and_check_match_logits( features=features, weight_column=self._weight_column, logits=logits) training_loss = losses.compute_weighted_loss( unweighted_loss, weights=weights, reduction=self._loss_reduction) return LossSpec( training_loss=training_loss, unreduced_loss=unweighted_loss, weights=weights, processed_labels=labels) def create_estimator_spec( self, features, mode, logits, labels=None, train_op_fn=None, regularization_losses=None): """Returns an `EstimatorSpec`. Args: features: Input `dict` of `Tensor` or `SparseTensor` objects. mode: Estimator's `ModeKeys`. logits: logits `Tensor` with shape `[D0, D1, ... DN, 1]`. For many applications, the shape is `[batch_size, 1]`. labels: Labels integer or string `Tensor` with shape matching `logits`, namely `[D0, D1, ... DN, 1]` or `[D0, D1, ... DN]`. `labels` is required argument when `mode` equals `TRAIN` or `EVAL`. train_op_fn: Function that takes a scalar loss `Tensor` and returns `train_op`. Required in TRAIN mode. regularization_losses: A list of additional scalar losses to be added to the training loss, such as regularization losses. These losses are usually expressed as a batch average, so for best results users need to set `loss_reduction=SUM_OVER_BATCH_SIZE` or `loss_reduction=SUM_OVER_NONZERO_WEIGHTS` when creating the head to avoid scaling errors. Returns: `EstimatorSpec`. Raises: ValueError: If `train_op_fn` is `None` in TRAIN mode. """ # Predict. with ops.name_scope(self._name, 'head'): with ops.name_scope(None, 'predictions', (logits,)): pred_keys = prediction_keys.PredictionKeys logits = _check_logits_final_dim(logits, self.logits_dimension) logistic = math_ops.sigmoid(logits, name=pred_keys.LOGISTIC) two_class_logits = array_ops.concat( (array_ops.zeros_like(logits), logits), axis=-1, name='two_class_logits') probabilities = nn.softmax( two_class_logits, name=pred_keys.PROBABILITIES) class_ids = math_ops.argmax( two_class_logits, axis=-1, name=pred_keys.CLASS_IDS) class_ids = array_ops.expand_dims(class_ids, axis=-1) if self._label_vocabulary: table = lookup_ops.index_to_string_table_from_tensor( vocabulary_list=self._label_vocabulary, name='class_string_lookup') classes = table.lookup(class_ids) else: classes = string_ops.as_string(class_ids, name='str_classes') predictions = { pred_keys.LOGITS: logits, pred_keys.LOGISTIC: logistic, pred_keys.PROBABILITIES: probabilities, pred_keys.CLASS_IDS: class_ids, pred_keys.CLASSES: classes, } if mode == model_fn.ModeKeys.PREDICT: classifier_output = _classification_output( scores=probabilities, n_classes=2, label_vocabulary=self._label_vocabulary) return model_fn.EstimatorSpec( mode=model_fn.ModeKeys.PREDICT, predictions=predictions, export_outputs={ _DEFAULT_SERVING_KEY: classifier_output, _CLASSIFY_SERVING_KEY: classifier_output, _REGRESS_SERVING_KEY: export_output.RegressionOutput( value=logistic), _PREDICT_SERVING_KEY: export_output.PredictOutput(predictions) }) (training_loss, unreduced_loss, weights, processed_labels) = ( self.create_loss( features=features, mode=mode, logits=logits, labels=labels)) if regularization_losses: regularization_loss = math_ops.add_n(regularization_losses) regularized_training_loss = math_ops.add_n( [training_loss, regularization_loss]) else: regularization_loss = None regularized_training_loss = training_loss # Eval. if mode == model_fn.ModeKeys.EVAL: return model_fn.EstimatorSpec( mode=model_fn.ModeKeys.EVAL, predictions=predictions, loss=regularized_training_loss, eval_metric_ops=self._eval_metric_ops( labels=processed_labels, logits=logits, logistic=logistic, class_ids=class_ids, weights=weights, unreduced_loss=unreduced_loss, regularization_loss=regularization_loss)) # Train. if train_op_fn is None: raise ValueError('train_op_fn can not be None.') # Only summarize mean_loss for SUM reduction to preserve backwards # compatibility. Otherwise skip it to avoid unnecessary computation. if self._loss_reduction == losses.Reduction.SUM: example_weight_sum = math_ops.reduce_sum( weights * array_ops.ones_like(unreduced_loss)) mean_loss = training_loss / example_weight_sum else: mean_loss = None with ops.name_scope(''): keys = metric_keys.MetricKeys summary.scalar( _summary_key(self._name, keys.LOSS), regularized_training_loss) if mean_loss is not None: summary.scalar( _summary_key(self._name, keys.LOSS_MEAN), mean_loss) if regularization_loss is not None: summary.scalar( _summary_key(self._name, keys.LOSS_REGULARIZATION), regularization_loss) return model_fn.EstimatorSpec( mode=model_fn.ModeKeys.TRAIN, predictions=predictions, loss=regularized_training_loss, train_op=train_op_fn(regularized_training_loss)) def _regression_head_with_mean_squared_error_loss( weight_column=None, label_dimension=1, loss_reduction=losses.Reduction.SUM, loss_fn=None, inverse_link_fn=None, name=None): """Creates a `_Head` for regression using the `mean_squared_error` loss. The loss is the weighted sum over all input dimensions. Namely, if the input labels have shape `[batch_size, label_dimension]`, the loss is the weighted sum over both `batch_size` and `label_dimension`. The head expects `logits` with shape `[D0, D1, ... DN, label_dimension]`. In many applications, the shape is `[batch_size, label_dimension]`. The `labels` shape must match `logits`, namely `[D0, D1, ... DN, label_dimension]`. If `label_dimension=1`, shape `[D0, D1, ... DN]` is also supported. If `weight_column` is specified, weights must be of shape `[D0, D1, ... DN]`, `[D0, D1, ... DN, 1]` or `[D0, D1, ... DN, label_dimension]`. Supports custom `loss_fn`. `loss_fn` takes `(labels, logits)` or `(labels, logits, features)` as arguments and returns unreduced loss with shape `[D0, D1, ... DN, label_dimension]`. Also supports custom `inverse_link_fn`, also known as 'mean function'. `inverse_link_fn` takes `logits` as argument and returns predicted values. This function is the inverse of the link function defined in https://en.wikipedia.org/wiki/Generalized_linear_model#Link_function Namely, for poisson regression, set `inverse_link_fn=tf.exp`. Args: weight_column: A string or a `_NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. label_dimension: Number of regression labels per example. This is the size of the last dimension of the labels `Tensor` (typically, this has shape `[batch_size, label_dimension]`). loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to reduce training loss over batch. Defaults to `SUM`. loss_fn: Optional loss function. Defaults to `mean_squared_error`. inverse_link_fn: Optional inverse link function, also known as 'mean function'. Defaults to identity. name: name of the head. If provided, summary and metrics keys will be suffixed by `"/" + name`. Also used as `name_scope` when creating ops. Returns: An instance of `_Head` for linear regression. Raises: ValueError: If `label_dimension` or `loss_reduction` is invalid. """ if (loss_reduction not in losses.Reduction.all() or loss_reduction == losses.Reduction.NONE): raise ValueError('Invalid loss_reduction: {}'.format(loss_reduction)) if loss_fn: _validate_loss_fn_args(loss_fn) return _RegressionHeadWithMeanSquaredErrorLoss( weight_column=weight_column, label_dimension=label_dimension, loss_reduction=loss_reduction, loss_fn=loss_fn, inverse_link_fn=inverse_link_fn, name=name) class _RegressionHeadWithMeanSquaredErrorLoss(_Head): """`Head` for regression using the mean squared loss.""" def __init__( self, label_dimension, weight_column=None, loss_reduction=losses.Reduction.SUM, loss_fn=None, inverse_link_fn=None, name=None): """`Head` for regression.""" if label_dimension < 1: raise ValueError('Invalid label_dimension %s.' % label_dimension) self._logits_dimension = label_dimension self._weight_column = weight_column self._loss_reduction = loss_reduction self._loss_fn = loss_fn self._inverse_link_fn = inverse_link_fn self._name = name @property def name(self): return self._name @property def logits_dimension(self): return self._logits_dimension def create_loss(self, features, mode, logits, labels): """See `Head`.""" del mode # Unused for this head. logits = ops.convert_to_tensor(logits) labels = _check_dense_labels_match_logits_and_reshape( labels=labels, logits=logits, expected_labels_dimension=self._logits_dimension) labels = math_ops.to_float(labels) if self._loss_fn: unweighted_loss = _call_loss_fn( loss_fn=self._loss_fn, labels=labels, logits=logits, features=features, expected_loss_dim=self._logits_dimension) else: unweighted_loss = losses.mean_squared_error( labels=labels, predictions=logits, reduction=losses.Reduction.NONE) weights = _get_weights_and_check_match_logits( features=features, weight_column=self._weight_column, logits=logits, allow_per_logit_weights=True) training_loss = losses.compute_weighted_loss( unweighted_loss, weights=weights, reduction=self._loss_reduction) return LossSpec( training_loss=training_loss, unreduced_loss=unweighted_loss, weights=weights, processed_labels=labels) def create_estimator_spec( self, features, mode, logits, labels=None, train_op_fn=None, regularization_losses=None): """Returns an `EstimatorSpec`. Args: features: Input `dict` of `Tensor` or `SparseTensor` objects. mode: Estimator's `ModeKeys`. logits: logits `Tensor` with shape `[D0, D1, ... DN, logits_dimension]`. For many applications, the shape is `[batch_size, logits_dimension]`. labels: Labels `Tensor` with shape matching `logits`, namely `[D0, D1, ... DN, logits_dimension]`. When `logits_dimension=1`, shape `[D0, D1, ... DN]` is also supported. `labels` is required argument when `mode` equals `TRAIN` or `EVAL`. train_op_fn: Function that takes a scalar loss `Tensor` and returns `train_op`. Required in TRAIN mode. regularization_losses: A list of additional scalar losses to be added to the training loss, such as regularization losses. These losses are usually expressed as a batch average, so for best results users need to set `loss_reduction=SUM_OVER_BATCH_SIZE` or `loss_reduction=SUM_OVER_NONZERO_WEIGHTS` when creating the head to avoid scaling errors. Returns: `EstimatorSpec`. Raises: ValueError: If `train_op_fn` is `None` in TRAIN mode. """ # Predict. with ops.name_scope(self._name, 'head'): logits = _check_logits_final_dim(logits, self._logits_dimension) if self._inverse_link_fn: predicted_value = self._inverse_link_fn(logits) predictions = { prediction_keys.PredictionKeys.PREDICTIONS: predicted_value, prediction_keys.PredictionKeys.LOGITS: logits, } else: predicted_value = logits predictions = { prediction_keys.PredictionKeys.PREDICTIONS: predicted_value} if mode == model_fn.ModeKeys.PREDICT: regression_output = export_output.RegressionOutput( value=predicted_value) return model_fn.EstimatorSpec( mode=model_fn.ModeKeys.PREDICT, predictions=predictions, export_outputs={ _DEFAULT_SERVING_KEY: regression_output, _REGRESS_SERVING_KEY: regression_output, _PREDICT_SERVING_KEY: export_output.PredictOutput(predictions) }) training_loss, unreduced_loss, weights, _ = self.create_loss( features=features, mode=mode, logits=logits, labels=labels) if regularization_losses: regularization_loss = math_ops.add_n(regularization_losses) regularized_training_loss = math_ops.add_n( [training_loss, regularization_loss]) else: regularization_loss = None regularized_training_loss = training_loss # Eval. if mode == model_fn.ModeKeys.EVAL: keys = metric_keys.MetricKeys # Estimator already adds a metric for loss. eval_metric_ops = { _summary_key(self._name, keys.LOSS_MEAN): metrics_lib.mean( values=unreduced_loss, weights=weights) } if regularization_loss is not None: regularization_loss_key = _summary_key( self._name, keys.LOSS_REGULARIZATION) eval_metric_ops[regularization_loss_key] = metrics_lib.mean( values=regularization_loss, name=keys.LOSS_REGULARIZATION) return model_fn.EstimatorSpec( mode=model_fn.ModeKeys.EVAL, predictions=predictions, loss=regularized_training_loss, eval_metric_ops=eval_metric_ops) # Train. if train_op_fn is None: raise ValueError('train_op_fn can not be None.') # Only summarize mean_loss for SUM reduction to preserve backwards # compatibility. Otherwise skip it to avoid unnecessary computation. if self._loss_reduction == losses.Reduction.SUM: example_weight_sum = math_ops.reduce_sum( weights * array_ops.ones_like(unreduced_loss)) mean_loss = training_loss / example_weight_sum else: mean_loss = None with ops.name_scope(''): keys = metric_keys.MetricKeys summary.scalar( _summary_key(self._name, keys.LOSS), regularized_training_loss) if mean_loss is not None: summary.scalar( _summary_key(self._name, keys.LOSS_MEAN), mean_loss) if regularization_loss is not None: summary.scalar( _summary_key(self._name, keys.LOSS_REGULARIZATION), regularization_loss) return model_fn.EstimatorSpec( mode=model_fn.ModeKeys.TRAIN, predictions=predictions, loss=regularized_training_loss, train_op=train_op_fn(regularized_training_loss)) def _assert_range(labels, n_classes, message=None): with ops.name_scope(None, 'assert_range', (labels,)): assert_less = check_ops.assert_less( labels, ops.convert_to_tensor(n_classes, dtype=labels.dtype), message=message or 'Label IDs must < n_classes') assert_greater = check_ops.assert_non_negative( labels, message=message or 'Label IDs must >= 0') with ops.control_dependencies((assert_less, assert_greater)): return array_ops.identity(labels) # TODO(b/69000400): Delete this method. def _weights(features, weight_column): """Fetches weights from features.""" with ops.name_scope(None, 'weights', values=features.values()): if weight_column is None: return 1. if isinstance(weight_column, six.string_types): weight_column = feature_column_lib.numeric_column( key=weight_column, shape=(1,)) if not isinstance(weight_column, feature_column_lib._NumericColumn): # pylint: disable=protected-access raise TypeError('Weight column must be either a string or _NumericColumn.' ' Given type: {}.'.format(type(weight_column))) weights = weight_column._get_dense_tensor( # pylint: disable=protected-access feature_column_lib._LazyBuilder(features)) # pylint: disable=protected-access if not (weights.dtype.is_floating or weights.dtype.is_integer): raise ValueError('Weight column should be castable to float. ' 'Given dtype: {}'.format(weights.dtype)) return math_ops.to_float(weights, name='weights')
e59112aa5411caae42368ea3b747fbc042137c92
e6a53434fe18c6f4a9871dd8be9333e0f2800d0d
/redis_demo.py
49ec2212d905264d58d1015449b6624798bbd4cf
[]
no_license
13794521695/python_base
02754263f0f6d98bd46a54e8f7dc21c42a495c07
88469624d27d3f7790e4fbe7ec7d96be5ec8b46f
refs/heads/master
2020-04-07T13:31:08.857195
2018-11-20T15:30:06
2018-11-20T15:30:06
158,410,523
0
0
null
null
null
null
UTF-8
Python
false
false
1,467
py
import redis # 创建连接 re = redis.Redis(host='192.168.237.131', port='6379', password='123456') ########### 字符串 # key value # re.set('py_name', '你好') # b ==> byte # print(re.get('py_name').decode('utf8')) 中文的话,需要解码成utf8, 不然会变成乱码。 # print(re.get('py_name')) # re.mset('s_name', 'which', 'age', 18) # 不行的 # re.mset(s_name='hehe', age=19) # 和原生不同 # print(re.mget('s_name', 'age', 'py_name')) # re.expire('name', 20) # print(re.ttl('name')) # re.set('read_count1', 2) # re.incr('read_count1') # print(re.get('read_count1')) #### 列表 # re.lpush('py_list', 1, 2, 3, 'which') # print(re.lrange('py_list', 0, -1)) # re.hset('py_hash', 'username', 'which') # print(re.hget('py_hash', 'username')) # 不同 # re.hmset('py_hash', {"age":"18", "abc":"qwe"}) # print(re.hmget('py_hash', 'username', 'age', 'abc')) # print(re.hkeys('py_hash')) print(re.keys()) # re.sadd('py_set', 1, 2 , 3 ,1 , 5, 5) # print(re.smembers('py_set')) # re.spop('py_set') # print(re.smembers('py_set')) # re.zadd('py_zset', 'a', 11, 'z', 10, 'zz', 1) # print(re.zrange('py_zset', 0, -1, withscores=True, score_cast_func=int)) # print(re.zrevrange('py_zset', 0, -1, withscores=True, score_cast_func=int)) # 设置订阅 # p_s = re.pubsub() # # 订阅频道 # p_s.subscribe('fm915.8') # while True: # # 开始订阅 # p_s.parse_response() # # # # 发布 # p_l = re.publish('fm915.8', 'hello')
6f3ed7062a5c9335a152c8f552a54604184fda09
586767ee351748702c04b1dfa9d1d5377640cdc3
/evaluate.py
7e3a2b489519b70133cbe1cdb7718b7fd1d62f02
[]
no_license
timkambic/FaceRecognitionAndPresentationAttackDetection
e781b20d6329ae8108aaf25d5c28161d1ef5f692
fd76d1f76b8fdcc6138dc10d9e706a87d84512a1
refs/heads/master
2020-04-05T18:21:56.872758
2018-12-28T14:23:00
2018-12-28T14:23:00
157,098,833
5
0
null
null
null
null
UTF-8
Python
false
false
1,683
py
import numpy as np from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt import argparse ap = argparse.ArgumentParser() ap.add_argument("-s", "--scores", required=True, help="numpy array with scores") ap.add_argument("-l", "--true_labels", required=True, help="true labels") ap.add_argument("-t", "--threshold", required=True, help="classification threshold for score [-1,1]") args = vars(ap.parse_args()) score_list = np.loadtxt(args["scores"]) true_labels = np.loadtxt(args["true_labels"]) THRESHOLD = float(args["threshold"]) NC = np.where(true_labels >= 0)[0].size # n of true clients NI = np.where(true_labels < 0)[0].size # number of impostors print(NC, NI) FA = FR = 0 for i in range(score_list.size): true_label = true_labels[i] label = 1 if score_list[i] > THRESHOLD else -1 if label == -1 and true_label == 1: FR += 1 elif label == 1 and true_label == -1: FA += 1 print(FA, FR) FAR = FA / NI FRR = FR / NC HTER = (FAR + FRR) / 2 print("FAR:", FAR) print("FRR:", FRR) print("HTER:", HTER) # ------------------------------------------------------------------- fpr, tpr, threshold = roc_curve(true_labels, score_list) roc_auc = auc(fpr, tpr) fnr = 1 - tpr eer_threshold = threshold[np.nanargmin(np.absolute((fnr - fpr)))] EER = fpr[np.nanargmin(np.absolute((fnr - fpr)))] print("EER:", EER) plt.plot([0, 1], [0, 1], color='navy', lw=1, linestyle='--') plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.grid(True) plt.show()
4b45f7810f155b74596cdf39bc9d09a05fe545f6
4fe726c9fe9073f6f5774a0d0376389771f1aa06
/src/6_StrAndRe/9_strformat_startwith.py
f0ac1dda93342efff51dba6ee44c13de6fcc6a0c
[]
no_license
wangkangreg/LearnPython
3ebf8ac6f1e4e0a40873b37576b0db2de75f5219
59785b2caa36796c5c93f90c02630d5cfdc0d3f1
refs/heads/master
2021-01-10T01:35:38.204786
2015-12-03T07:18:01
2015-12-03T07:18:01
46,340,338
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
# -*- coding:utf-8 -*- ''' Created on 2015年11月11日 @author: Administrator ''' word = 'hello world' print 'hello' == word[0:5] print word.startswith('hello') print word.endswith('ld', 6) print word.endswith('ld', 6, 10) #False,不包括位置10 print word.endswith('ld', 6, len(word))
d1b78ac3b11c174a585c1148fdeb6c9e05f1caa4
b1cbace1dc6ad8519d983060ad0f974ccfd49560
/actions/O3E.py
dbb3d48ebfe1d2201ce01e9a09b974cedf9d642f
[]
no_license
saifilali/Crescendia
40665426f1952d329d2a709c2abdff578cfacc45
3eb6656ec53f6e8223baef2cc17ce37856123c26
refs/heads/master
2021-01-20T01:34:58.893394
2018-08-02T21:03:34
2018-08-02T21:03:34
89,301,645
0
0
null
null
null
null
UTF-8
Python
false
false
5,053
py
import argparse import pymysql import configparser import action_helper config = configparser.ConfigParser() config.read("/var/www/config.ini") sqlhost = config.get("configuration", "sqlhost") sqluser = config.get("configuration", "sqluser") sqlpassword = config.get("configuration", "sqlpassword") sqldatabase = config.get("configuration", "sqldatabase") parser = argparse.ArgumentParser() parser.add_argument("-battle_id", type=str, dest="battle_id") parser.add_argument("-team", type=str, dest="team") parser.add_argument("-turn", type=str, dest="turn") parser.add_argument("-unit", type=str, dest="unit") parser.add_argument("-unit_key", type=str, dest="unit_key") parser.add_argument("-unit_speed", type=str, dest="unit_speed") parser.add_argument("-action_target_team", type=str, dest="action_target_team") parser.add_argument("-action_target_unit", type=str, dest="action_target_unit") parser.add_argument("-turn_expire", type=str, dest="turn_expire") args = parser.parse_args() battle_id = args.battle_id team = args.team turn = args.turn unit = args.unit unit_key = args.unit_key unit_speed = args.unit_speed action_target_team = args.action_target_team action_target_unit = args.action_target_unit turn_expire = args.turn_expire balance = action_helper.get_balance("O3") cost = balance["cost"] scale = balance["scale"] target_team = action_helper.get_enemy(team) print("EVERYBODY HURTS IS GOIN YALLL") connection = pymysql.connect(host='localhost', user=sqluser, password=sqlpassword, db=sqldatabase, charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) with connection.cursor() as cursor: sql = "SELECT * FROM battle_unit_stats WHERE battle_id = %s AND team = %s AND slot = %s" params = (battle_id, team, unit) cursor.execute(sql, params) unit_stats = cursor.fetchone() if(unit_stats["energy_current"] < cost): action_helper.exhausted_action_receipt(battle_id, team, unit, unit_stats["title"], turn) else: action_helper.spend_energy(battle_id, team, unit, cost) sql = "SELECT * FROM battle_unit_stats WHERE battle_id = %s AND team = %s AND slot = %s" params = (battle_id, target_team, action_target_unit) cursor.execute(sql, params) target_stats = cursor.fetchone() power_multiplied = action_helper.key_bonus_enemy( action_helper.key_difference(target_stats["song_key"], unit_stats["song_key"])) * unit_stats["power_current"] * scale damage_percent = (power_multiplied * 0.01 + 0.05) print(damage_percent) damage = damage_percent * target_stats["health_current"] if(target_stats["defense_current"] > damage): damage = 1 else: damage = damage - target_stats["defense_current"] if(action_helper.is_immune(target_stats["immune"], battle_id, turn, target_stats["team"], target_stats["slot"]) != 0): damage = 0 newhealth = target_stats["health_current"] - damage ''' This is the part where it updates some stuff in the receipt ''' if(damage > target_stats["health_default"] * 0.2): effective_text = "It was extremely strong!" target_animation = "offensive_action_effect_strong" elif(damage > target_stats["health_default"] * 0.1): effective_text = "It was strong!" target_animation = "offensive_action_effect_moderate" elif(damage > target_stats["health_default"] * 0.05): effective_text = "It was weak!" target_animation = "offensive_action_effect_weak" elif(damage > 0): effective_text = "It did barely anything!" target_animation = "offensive_action_effect_nothing" if(newhealth < 0): effective_text = target_stats["title"] + " died!" target_animation = target_animation + " offensive_action_effect_nothing" sql = "UPDATE battle_unit_stats SET health_current = %s WHERE battle_id = %s AND team = %s AND slot = %s" params = (newhealth, battle_id, target_team, action_target_unit) cursor.execute(sql, params) source_animation = "" background_animation = "" target_animation = "offensive_action_effect" summary_code = "t{}u{} -{}".format(target_team, action_target_unit, damage) summary_text = "{} continues to hurt {} for {} damage with Everybody Hurts".format( unit_stats["title"], target_stats["title"], damage) + effective_text sql = "UPDATE battle_action_queue SET source_animation=%s, target_animation=%s, background_animation=%s, summary_code=%s, summary_text=%s, processed=1 WHERE battle_id=%s AND unit=%s AND team=%s AND turn =%s" params = (source_animation, target_animation, background_animation, summary_code, summary_text, battle_id, unit, team, turn) cursor.execute(sql, params) connection.commit() connection.close()
5d9bedd621589e37661167f4141544fdf25ba0ba
462385714beddead618fe0193a68685365793e5c
/Python/Python_Problems/Rosalind-master/036_KMER.py
27ad7ed199f2fa44d9af243b80a5829c416182b6
[]
no_license
0n1udra/Learning
7e3f83a3a1ed850cc476ef738c76759616d9e12e
69e656327c782465318db85abdee519e2f79dab0
refs/heads/master
2022-12-04T06:29:29.894406
2020-08-17T20:47:47
2020-08-17T20:47:47
73,001,058
2
0
null
null
null
null
UTF-8
Python
false
false
745
py
#!/usr/bin/env python ''' A solution to a ROSALIND bioinformatics problem. Problem Title: k-Mer Composition Rosalind ID: KMER Rosalind #: 036 URL: http://rosalind.info/problems/kmer/ ''' from itertools import product from scripts import ReadFASTA dna = ReadFASTA('data/rosalind_kmer.txt')[0][1] # Get a list of all 4-mers in lexiographic order. kmer_list = [''.join(kmer) for kmer in list(product('ACGT', repeat = 4))] # Initialize the count of each 4-mer at zero for each 4-mer. kmer_count = [0]*(4**4) # Count each 4-mer for i in range(len(dna)-3): kmer_count[kmer_list.index(dna[i:i+4])] += 1 print ' '.join(map(str,kmer_count)) with open('output/036_KMER.txt', 'w') as output_data: output_data.write(' '.join(map(str,kmer_count)))
5112b4e87a70c071052e9dc0329d0df3a393061f
98763b94e214d56806456a43b008ac3042fe97ad
/LinkedList.py
729de55824af51e30aa29ad2ee80a5a93fe76500
[]
no_license
sjshashank31/DSA-Using-Python
aedf19d9d78e59fe80548148430b717cba180e20
f5112e5a841c73b96f4be317b74274b1df050f8c
refs/heads/main
2023-05-04T09:44:51.642792
2021-05-17T12:49:23
2021-05-17T12:49:23
368,183,203
0
0
null
null
null
null
UTF-8
Python
false
false
1,981
py
class LinkedList: def __init__(self): self.node = None def listPrint(self): l = [] node = self.node while node is not None: l.append(node.data) node = node.next return l def insertAtBeginning(self, data): # create a newnode with data newnode = Node(data) # insert the first node of current Linkedlist in the node.next newnode.next = self.node # make the new node as the first node self.node = newnode def insertAtEnd(self, data): newNode = Node(data) if self.node is None: self.node = newNode return node = self.node while node.next: node = node.next node.next = newNode def insertInBeetween(self, nextval, data): start = self.node while start.next: if start.data == nextval: print("Match Found") newNode = Node(data) newNode.next = start.next start.next = newNode return else: start = start.next def removeNode(self, Removekey): start = self.node if (start is not None): if (start.data == Removekey): self.node = start.next start = None return while (start is not None): if start.data == Removekey: break prev = start start = start.next prev.next = start.next start = None class Node: def __init__(self, data=None): self.data = data self.next = None def getNext(self): return self.next llist = LinkedList() llist.node = Node(1) new = Node(2) new1 = Node(3) new2 = Node(2) new3 = Node(4) llist.node.next = new new.next = new1 new1.next = new2 new2.next = new3 print(llist.listPrint()) llist.removeNode(2) print(llist.listPrint())
d86deeb04414323dde6f6b016d006bd60a386e97
477ed010c5c0154fa6d2f2fae05403da982c684f
/raas/http/http_client.py
da1096892cf36c200468d9d34c0b75162a88a311
[ "MIT" ]
permissive
fahimahmedmasood/raas-v2-sdk-python
37235f3460c21bf1f80d08ee6965a64d9d55f4dc
300b4649e945aecc761c6f25cdbf829ff951788b
refs/heads/master
2020-03-26T08:40:40.890471
2018-08-14T12:52:55
2018-08-14T12:52:55
144,714,917
0
0
null
2018-08-14T12:07:34
2018-08-14T12:07:34
null
UTF-8
Python
false
false
7,094
py
# -*- coding: utf-8 -*- """ raas.http.http_client This file was automatically generated for Tango Card, Inc. by APIMATIC v2.0 ( https://apimatic.io ). """ from .http_request import HttpRequest from .http_method_enum import HttpMethodEnum class HttpClient(object): """An interface for the methods that an HTTP Client must implement This class should not be instantiated but should be used as a base class for HTTP Client classes. """ def execute_as_string(self, request): """Execute a given HttpRequest to get a string response back Args: request (HttpRequest): The given HttpRequest to execute. Returns: HttpResponse: The response of the HttpRequest. """ raise NotImplementedError("Please Implement this method") def execute_as_binary(self, request): """Execute a given HttpRequest to get a binary response back Args: request (HttpRequest): The given HttpRequest to execute. Returns: HttpResponse: The response of the HttpRequest. """ raise NotImplementedError("Please Implement this method") def convert_response(self, response, binary): """Converts the Response object of the HttpClient into an HttpResponse object. Args: response (dynamic): The original response object. Returns: HttpResponse: The converted HttpResponse object. """ raise NotImplementedError("Please Implement this method") def get(self, query_url, headers={}, query_parameters={}): """Create a simple GET HttpRequest object for the given parameters Args: query_url (string): The URL to send the request to. headers (dict, optional): The headers for the HTTP Request. query_parameters (dict, optional): Query parameters to add in the URL. Returns: HttpRequest: The generated HttpRequest for the given paremeters. """ return HttpRequest(HttpMethodEnum.GET, query_url, headers, query_parameters, None, None) def head(self, query_url, headers={}, query_parameters={}): """Create a simple HEAD HttpRequest object for the given parameters Args: query_url (string): The URL to send the request to. headers (dict, optional): The headers for the HTTP Request. query_parameters (dict, optional): Query parameters to add in the URL. Returns: HttpRequest: The generated HttpRequest for the given paremeters. """ return HttpRequest(HttpMethodEnum.HEAD, query_url, headers, query_parameters, None, None) def post(self, query_url, headers={}, query_parameters={}, parameters={}, files={}): """Create a simple POST HttpRequest object for the given parameters Args: query_url (string): The URL to send the request to. headers (dict, optional): The headers for the HTTP Request. query_parameters (dict, optional): Query parameters to add in the URL. parameters (dict, optional): Form or body parameters to be included in the body. files (dict, optional): Files to be sent with the request. Returns: HttpRequest: The generated HttpRequest for the given paremeters. """ return HttpRequest(HttpMethodEnum.POST, query_url, headers, query_parameters, parameters, files) def put(self, query_url, headers={}, query_parameters={}, parameters={}, files={}): """Create a simple PUT HttpRequest object for the given parameters Args: query_url (string): The URL to send the request to. headers (dict, optional): The headers for the HTTP Request. query_parameters (dict, optional): Query parameters to add in the URL. parameters (dict, optional): Form or body parameters to be included in the body. files (dict, optional): Files to be sent with the request. Returns: HttpRequest: The generated HttpRequest for the given paremeters. """ return HttpRequest(HttpMethodEnum.PUT, query_url, headers, query_parameters, parameters, files) def patch(self, query_url, headers={}, query_parameters={}, parameters={}, files={}): """Create a simple PATCH HttpRequest object for the given parameters Args: query_url (string): The URL to send the request to. headers (dict, optional): The headers for the HTTP Request. query_parameters (dict, optional): Query parameters to add in the URL. parameters (dict, optional): Form or body parameters to be included in the body. files (dict, optional): Files to be sent with the request. Returns: HttpRequest: The generated HttpRequest for the given paremeters. """ return HttpRequest(HttpMethodEnum.PATCH, query_url, headers, query_parameters, parameters, files) def delete(self, query_url, headers={}, query_parameters={}, parameters={}, files={}): """Create a simple DELETE HttpRequest object for the given parameters Args: query_url (string): The URL to send the request to. headers (dict, optional): The headers for the HTTP Request. query_parameters (dict, optional): Query parameters to add in the URL. parameters (dict, optional): Form or body parameters to be included in the body. files (dict, optional): Files to be sent with the request. Returns: HttpRequest: The generated HttpRequest for the given paremeters. """ return HttpRequest(HttpMethodEnum.DELETE, query_url, headers, query_parameters, parameters, files)
8b67ca6610cbc4bf66c2a1463e124df29e04d9bb
c3c864a8383b1b7fcb1a7f6743c82e1deb4b2b8b
/MyDjango/user/views.py
b9fbdcfecdceccdb1f9d44fa1b38f07f65e62849
[]
no_license
ytkz11/Playing-Django2.0
d7c2481737213f06923d60ab07f968034d7915b9
7232e376f6621e62974993056028f5a5d32ae819
refs/heads/master
2023-03-21T18:17:01.569154
2019-03-04T00:56:45
2019-03-04T00:56:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,526
py
from django.shortcuts import render, redirect from django.contrib.auth.models import User from django.contrib.auth import login, logout, authenticate # Create your views here. def loginView(request): # 设置标题和另外两个URL链接 title = '登录' unit_2 = '/user/register.html' unit_2_name = '立即注册' unit_1 = '/user/setpassword.html' unit_1_name = '修改密码' if request.method == 'POST': username = request.POST.get('username', '') password = request.POST.get('password', '') if User.objects.filter(username=username): user = authenticate(username=username, password=password) if user: if user.is_active: login(request, user) return redirect('/') else: tips = '账号密码错误,请重新输入' else: tips = '用户不存在,请注册' return render(request, 'user.html', locals()) def registerView(request): # 设置标题和另外两个URL链接 title = '注册' unit_2 = '/user/login.html' unit_2_name = '立即登录' unit_1 = '/user/setpassword.html' unit_1_name = '修改密码' if request.method == 'POST': username = request.POST.get("username", '') password = request.POST.get("password", '') if User.objects.filter(username=username): tips = '用户已存在' else: user = User.objects.create_user(username=username, password=password) user.save() tips = '注册成功,请登录' return render(request, 'user.html', locals()) def setpasswordView(request): # 设置标题和另外两个URL链接 title = '修改密码' unit_2 = '/user/login.html' unit_2_name = '立即登录' unit_1 = '/user/register.html' unit_1_name = '立即注册' new_password = True if request.method == 'POST': username = request.POST.get('username', '') old_password = request.POST.get('password', '') new_password = request.POST.get('new_password', '') if User.objects.filter(username=username): user = authenticate(username=username, password=old_password) user.set_password(new_password) user.save() tips = '密码修改成功' else: tips = '用户不存在' return render(request, 'user.html', locals()) def logoutView(request): logout(request) return redirect('/')
f2827e6f18278dc41439a58eb8e284eea0b23b2f
cfdf08cb9592760a1b676282b458e58779abb0dd
/20180103/zq805_tur_v5.py
52a83eceb88f46bfe7739529197dcad1b844ff5b
[ "MIT" ]
permissive
webturing/Python3
d830c22921fe1d1e6182e9481bcd0a930309f65c
6fcf6ee6cc5afba0225bd56e6928b01882eb9ecb
refs/heads/master
2021-06-12T13:13:44.421511
2020-06-28T11:56:01
2020-06-28T11:56:01
128,641,162
1
2
null
null
null
null
UTF-8
Python
false
false
4,741
py
# -*- coding: utf-8 -*- ''' zw_tur.py tur海龟策略 ''' import numpy as np import pandas as pd # zwQuant import zwSys as zw import zwTools as zwt import zwQTBox as zwx import zwQTDraw as zwdr import zwBacktest as zwbt import zwStrategy as zwsta import zw_talib as zwta # ======================= # ----策略函数 def tur10(qx): ''' 海龟策略:tur10 当今天的收盘价,大于过去n个交易日中的最高价时,以收盘价买入; 买入后,当收盘价小于过去n个交易日中的最低价时,以收盘价卖出。 ''' stknum = 0; xtim, xcod = qx.xtim, qx.stkCode dprice = qx.xbarWrk['dprice'][0]; x9 = qx.xbarWrk['xhigh'][0]; x1 = qx.xbarWrk['xlow'][0]; dcash = qx.qxUsr['cash']; dnum0 = zwx.xusrStkNum(qx, xcod) if dprice > x9: if dnum0 == 0: stknum = int(dcash * 0.9 / dprice); # dsum=stknum*kprice # stknum = 500 # print(xtim,stknum,dnum,'++b,%.2f,%.2f,%.2f,$,%.2f,%.2f' %(dprice,dlow,dup,kprice,dsum)) # print(xtim,stknum,'++xd',xcod,dprice,x9,x1) elif (dprice < x1): # stknum = -500 stknum = -1 # stknum = -1;dsum=dnum*kprice if stknum != 0: # print(xtim,stknum,'xd',xcod,dprice,x9,x1) pass; return stknum def tur10_dataPre(qx, xnam0, ksgn0): ''' 海龟策略:tur10, 数据预处理函数 说明 当今天的收盘价,大于过去n个交易日中的最高价时,以收盘价买入; 买入后,当收盘价小于过去n个交易日中的最低价时,以收盘价卖出。 Args: qx (zwQuantX): zwQuantX数据包 xnam0 (str):函数标签 ksgn0 (str): 价格列名称,一般是'adj close' ''' zwx.sta_dataPre0xtim(qx, xnam0); # ----对各只股票数据,进行预处理,提高后期运算速度 ksgn, qx.priceCalc = ksgn0, ksgn0; # 'adj close'; for xcod in zw.stkLibCode: d20 = zw.stkLib[xcod]; # 计算交易价格kprice和策略分析采用的价格dprice,kprice一般采用次日的开盘价 # d20['dprice']=d20['open']*d20[ksgn]/d20['close'] # d20['kprice']=d20['dprice'].shift(-1) d20['dprice'] = d20['close'] d20['kprice'] = d20['dprice'] # d = qx.staVars[0]; ksgn = 'xhigh0'; d20[ksgn] = pd.rolling_max(d20['high'], d) d = qx.staVars[1]; ksgn = 'xlow0'; d20[ksgn] = pd.rolling_min(d20['low'], d) d20['xhigh'] = d20['xhigh0'].shift(1) d20['xlow'] = d20['xlow0'].shift(1) # zw.stkLib[xcod] = d20; if qx.debugMod > 0: print(d20.tail()) # --- fss = 'tmp\\' + qx.prjName + '_' + xcod + '.csv' d20.to_csv(fss) def bt_endRets(qx): # ---ok ,测试完毕 # 保存测试数据,qxlib,每日收益等数据;xtrdLib,交易清单数据 # qx.qxLib=qx.qxLib.round(4) qx.qxLib.to_csv(qx.fn_qxLib, index=False, encode='utf-8') qx.xtrdLib.to_csv(qx.fn_xtrdLib, index=False, encode='utf-8') qx.prQLib() # # -------计算交易回报数据 zwx.zwRetTradeCalc(qx) zwx.zwRetPr(qx) # -------绘制相关图表,可采用不同的模板 # 初始化绘图模板:dr_quant3x zwdr.dr_quant3x_init(qx, 12, 8); # 设置相关参数 xcod = zw.stkLibCode[0]; ksgn = qx.priceBuy; # xcod='glng';ksgn=qx.priceBuy; # kmid8=[['aeti',ksgn],['egan',ksgn],['glng',ksgn,'ma_5','ma_30'],['simo',ksgn,'ma_5','ma_30']] kmid8 = [[xcod, ksgn, 'xhigh', 'xlow']] # 绘图 zwdr.dr_quant3x(qx, xcod, 'val', kmid8, '') # 可设置,中间图形窗口的标识 # qx.pltMid.legend([]); # print('') print('每日交易推荐') print('::xtrdLib', qx.fn_xtrdLib) print(qx.xtrdLib.tail()) # print(qx.xtrdLib) # ==================main # --------init,设置参数 # rss='\\zwdat\\cn\\day\\' rss = 'dat\\' xlst = ['600401'] # 600401,*ST海润,*SThr qx = zwbt.bt_init(xlst, rss, 'tur10', 10000); # # ---设置策略参数 # qx.staVars=[163,'2014-01-01',''] qx.staVars = [35, 15, '2014-01-01', ''] # 30,15,=14339.67,43.40 % qx.debugMod = 1 qx.staFun = tur10; # ---绑定策略函数&运行回溯主函数 # qx.staFun=zwsta.tur10; #---绑定策略函数&运行回溯主函数 # ---根据当前策略,对数据进行预处理 # zwsta.tur10_dataPre(qx,'sta00','close') tur10_dataPre(qx, 'tur10', 'close') # ----运行回溯主程序 zwbt.zwBackTest(qx) # ----输出回溯结果 bt_endRets(qx) ''' ,最终资产价值 ,回报率 30,10,=9325.77, -6.74 % 20,10,=$12407.49, 24.07 % 10,10,=$12544.90,25.45 % 5,10,=$15057.73, 50.58 % 5,5,=$19511.12,95.11 % '''
9d676d7395968293c805875f15eb1dc736e81eb2
d27af9d58b91b8cd998ac0eb87d980d304ff0670
/Grand-Contest/AGC004/AGC004_D.py
030a7c23d767d81445f1a33236c56c006519f836
[]
no_license
mongesan/Atcoder-m0_ngesan-py
29dd79daab149003ffc8b6b6bad5fa2e7daa9646
6654af034d4ff4cece1be04c2c8b756976d99a4b
refs/heads/master
2023-08-20T19:50:04.547025
2021-10-27T12:24:51
2021-10-27T12:24:51
258,486,105
1
0
null
null
null
null
UTF-8
Python
false
false
9
py
#AGC004_D
34d8d98cd8234d0e633ad686d0b4fcf7e3530d30
2109f71920e7b5783ae0070b2629f2138dfb20c1
/tmp/demo/create_service.py
cecf74824b367d75266b18550eea3f261835c954
[]
no_license
caocheng7979/selenium_test
d2d214b9bd84ae43e3fd0afe7815ba97538f4e86
67de0d1183a54caf7b70d0790ca962d0cfc5a84d
refs/heads/master
2020-03-11T07:35:00.143023
2018-05-15T12:57:31
2018-05-15T12:57:31
129,860,567
0
0
null
null
null
null
UTF-8
Python
false
false
1,744
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import time import common def main(url): # login browser=common.login(url) # Let the page load browser.implicitly_wait(30) browser.find_element_by_css_selector('#li_topologyComp > span').click() browser.find_element_by_xpath("//body[@id='ext-element-1']/div[3]/div/div/div[2]/div/div/div/div/div/div/div/div/a/span/span").click() browser.find_element_by_xpath("//body[@id='ext-element-1']/div[3]/div/div/div[2]/div/div/div/div/div[2]/div/div/div/div/div/a/span/span").click() common.set_service_name(browser,service_name='autotest') # state: Active, Pending common.set_service_state(browser,state='Active') # service_linerate: 100G, 10G, 10G-e, 200G common.set_service_linerate(browser,service_linerate='100G') # service_rtObj: Least Cost, Least Hops, Least Latency, Manual common.set_service_rtObj(browser,service_rtObj='Manual') # service Source Node common.set_service_tidA(browser,service_tidA='kanagawa-T310-4') # service Source End Point common.set_service_ctpAidA(browser) # service Target Node common.set_service_tidZ(browser,service_tidZ='tokyo-T310-3') # service Target End Point common.set_service_ctpAidZ(browser) # save browser.find_element_by_link_text('Next').click() # # linkcombo # linkcombo = browser.find_elements_by_name('linkCombo') # linkcombo_2 = linkcombo[0] # linkcombo_2.click() # # linkcombo_2.send_keys(Keys.DOWN) # linkcombo_2.send_keys(Keys.ENTER) # create browser.find_element_by_link_text('Create').click() if __name__ == '__main__': main(url='https://192.168.10.30:8443/virtuoranc/login.html')
34419ff2a426f39a2c5fcf8d970df3a306bcab8c
532964fa286f0ffd9a6d1ee5efad313fa91bcbc3
/core/main.py
31558605d9168029285351ae6d5949cd265f520c
[]
no_license
dalzymendoza/python-repo-template
39268a05419daba312fc7b818cafa18927920175
afea892810e7ade2bdc2773b9a16cee8c633d517
refs/heads/main
2023-02-03T00:03:01.382643
2020-12-22T04:08:31
2020-12-22T04:08:31
323,513,858
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
def main(): print("Hello World") return 0 if __name__ == "__main__": main()
7a692e40b1fd5219c7accd3ce76fc3dad4deb111
0f07b4ae2557578dcc4fd96048930aa79b56736e
/gpe_mcmc_tools/priors.py
a7a0a497edb8719a36cdac1225ad45b4dcfaf533
[]
no_license
swarder/GPE_MCMC_tools
8b661dd2a02f7ba863a475a54c9b309f34076ff2
eba4c34d10c81534125ec9ab2670b72e01e5b029
refs/heads/main
2023-05-06T21:37:47.734892
2021-05-26T16:17:15
2021-05-26T16:17:15
338,350,920
0
0
null
null
null
null
UTF-8
Python
false
false
1,645
py
import numpy as np class Prior: """ Base class for priors """ def __init__(self, log=False): self.log = log def evaluate(self, x): """ Evaluate prior in non-log space""" pass def evaluate_log(self, x): """Evaluate prior in log space""" p = self.evaluate(x) if p == 0: return -np.inf else: return np.log(p) def __call__(self, x): """Call relevant evaluation function""" if self.log: return self.evaluate_log(x) else: return self.evaluate(x) class FlatPrior(Prior): """Flat prior, always returns 1""" def __init__(self, **kwargs): super().__init__(**kwargs) def evaluate(self, x): return 1 class UniformPrior(Prior): """Uniform prior between specified min and max values""" def __init__(self, min_val, max_val, **kwargs): super().__init__(**kwargs) self.min_val = min_val self.max_val = max_val def evaluate(self, x): if x >= self.min_val and x <= self.max_val: return 1/(self.max_val - self.min_val) else: return 0 class GaussianPrior(Prior): """Gaussian prior for specified mean and standard deviation""" def __init__(self, mu, sigma, **kwargs): super().__init__(**kwargs) self.mu = mu self.sigma = sigma def evaluate(self, x): return np.exp(-0.5 * (x - self.mu)**2 / self.sigma**2) / (self.sigma * np.sqrt(2*np.pi)) def evaluate_log(self, x): return -0.5 * (x - self.mu)**2 / self.sigma**2 - np.log(self.sigma * np.sqrt(2*np.pi)) class JeffreysPrior(Prior): """Jeffreys prior, to be used for hyperparameters""" def __init__(self, **kwargs): super().__init__(**kwargs) def evaluate(self, x): if x > 0: return 1/x**2 else: return 0
0efd0348cc1782a86ccfa09781d30cca1fe25e65
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/55/usersdata/103/23187/submittedfiles/av2_p3_civil.py
4f8ae6b97b467691b490965b5681026eb0e327a2
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np linhas=input('Digide a dimensão da matriz:') colunas=linhas x=input('Digite a linha que contém a célula em questão:') y=input('Digite a coluna que contém a célula em questão:') a=np.zeros((linhas,colunas)) for i in range(0,a.shape[0],1): for j in range(0,a.shape[1],1): a[i,j]=input('Digite um valor:') somal=0 somac=0 for i in range(0,a.shape[0],1): somal=somal+a[i,y] for j in range(0,a.shape[1],1): somac=somac+a[x,j] Peso=somac+somal print Peso
2e506c50df709df29fe6ff6d203aaa9cb0127915
c9e8089d2dfd7e6fd207388c149645a509d03762
/users/serializers.py
c31feb779821ce08f047978c7b454d2143abe428
[]
no_license
fahad1226/Fahads-Blog
c554d7c06433dccbb5140bc0e55d80e6733155eb
e0ed2e5798e34788e70dd799a2208ba006ac4bf9
refs/heads/master
2020-05-15T15:04:43.552455
2019-04-20T06:09:15
2019-04-20T06:09:15
182,358,393
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
from django.contrib.auth import get_user_model from rest_framework import serializers from django.urls import reverse_lazy User = get_user_model() class UserDisplaySerializer(serializers.ModelSerializer): follower_count = serializers.SerializerMethodField() url = serializers.SerializerMethodField() class Meta: model = User fields = [ 'username', 'first_name', 'last_name', 'follower_count', 'url' ] def get_follower_count(self,obj): return 0 def get_url(self,obj): return reverse_lazy('Post:post-detail',kwargs={'username':obj.username})
26fa565e2057c6211af8a22ed06099b2f55222c3
0d73194c6fc5aedb0a7bcecc4dd551746139d174
/tools/CameraCapture.py
1464a6abf98b41dd26c477173eee9943497d5352
[]
no_license
t109368038/Specail_topic
c4474bbfc662b9326541ce95fca1b7893c7b5656
cfea70cac25682b10a6bfaf1307e6cecd7735a98
refs/heads/master
2023-05-02T06:51:00.541011
2021-05-19T10:44:47
2021-05-19T10:44:47
368,833,733
0
0
null
null
null
null
UTF-8
Python
false
false
2,895
py
import cv2 import threading as th import time import mediapipe as mp import sys class CamCapture(th.Thread): def __init__(self, thread_id, name, counter, th_lock, cam_queue=None, save_queue=None, status=0, mode=0,mp4_path=''): th.Thread.__init__(self) self.threadID = thread_id self.name = name self.counter = counter self.fourcc = cv2.VideoWriter_fourcc('X', 'V', 'I', 'D') self.lock = th_lock self.mode = mode self.cam_queue = cam_queue self.save_queue = save_queue self.status = status self.save_mp4_path = mp4_path print('Camera Capture Mode:{}'.format(mode)) print('========================================') def run(self): if self.mode == 1: ##------------------------- self.cam = cv2.VideoCapture(self.counter) self.cam.set(cv2.CAP_PROP_FPS, 20) fps = int(self.cam.get(5)) print('FPS:{}'.format(fps)) sz = (int(self.cam.get(cv2.CAP_PROP_FRAME_WIDTH)), int(self.cam.get(cv2.CAP_PROP_FRAME_HEIGHT))) self.fourcc = cv2.VideoWriter_fourcc(*'mp4v') self.vout = cv2.VideoWriter() self.vout.open(self.save_mp4_path + 'output'+str(self.counter)+'.mp4', self.fourcc, 20, sz, True) ret, frame = self.cam.read() # tmp_frame = frame # tmp_frame = cv2.cvtColor(cv2.flip(tmp_frame, 1), cv2.COLOR_BGR2RGB) # self.cam_queue.put(tmp_frame) # cv2.imshow(self.name, frame) print('Camera is opened') print("Camera[%s] open time: %s" % (self.counter, time.ctime(time.time()))) print('========================================') while self.cam.isOpened(): # print('fps', fps) # print(int(cam.get(cv2.CAP_PROP_FRAME_WIDTH))) ret, frame = self.cam.read() cv2.imshow(self.name, frame) tmp_frame = frame tmp_frame = cv2.cvtColor(tmp_frame, cv2.COLOR_BGR2RGB) self.copy_frame = tmp_frame.copy() if self.status == 1: # print(self.status) # self.save_queue.put(tmp_frame) # self.cam_queue.put(tmp_frame) self.vout.write(frame) pass # self.cam_queue.put(tmp_frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyWindow(self.name) self.cam.release() print('Close process') print("%s: %s" % (self.name, time.ctime(time.time()))) else: raise ValueError('CamCapture does not have this mode.') def close(self): self.cam.release() self.vout.release() def get_frame(self): return self.copy_frame
06f41b4f9db3b0d72109d8dbbfaa840b8c33c73e
690759d4fa4e5c66d89cd72dea84036a022ee745
/saxo/spiders/spider.py
f61a43ba38ef5396b52ef63a4c5f12a20d242acb
[]
no_license
SimeonYS/saxo
a2810f661c8ac7bb92986dad192b7f65553dd216
570ca7431b81f0edc0cd4189311900de076ebf83
refs/heads/main
2023-03-21T12:00:36.768452
2021-03-05T08:59:54
2021-03-05T08:59:54
344,751,795
0
0
null
null
null
null
UTF-8
Python
false
false
1,161
py
import re import scrapy from scrapy.loader import ItemLoader from ..items import SaxoItem from itemloaders.processors import TakeFirst pattern = r'(\xa0)?' class SaxoSpider(scrapy.Spider): name = 'saxo' start_urls = ['https://www.home.saxo/about-us/press-releases'] def parse(self, response): post_links = response.xpath('//section[@data-styles="media-element"]//a/@href').getall() + response.xpath('//div[@class="v2-bbox"]//a/@href').getall() yield from response.follow_all(post_links, self.parse_post) def parse_post(self, response): date = response.xpath('//time/@datetime').get() date = ''.join(re.findall(r'\d+\-\d+\-\d+',date)) title = response.xpath('//h1/text()').get() content = response.xpath('//div[@class="v2-wrapper v2-wrapper--small"]//text()').getall() content = [p.strip() for p in content if p.strip()] content = re.sub(pattern, "",' '.join(content)) item = ItemLoader(item=SaxoItem(), response=response) item.default_output_processor = TakeFirst() item.add_value('title', title) item.add_value('link', response.url) item.add_value('content', content) item.add_value('date', date) yield item.load_item()
12c8ac23f61c67f952c29319a037c8df56823a73
4500172cf203b078bd1826062821af16018747ee
/project/staff/migrations/0009_auto__add_field_aimtransaction_transaction_type.py
e9cf52cfec33962500d863ca0e268b48223c4a83
[]
no_license
chrisblythe812/gamemine
726ad338279a80676eee9693a6ecc6bfca5eaf13
7c3acc39a24c38ae2ee06b71104a24cfbbde8453
refs/heads/master
2020-04-05T22:53:46.622902
2012-01-26T00:50:28
2012-01-26T00:50:28
3,269,945
1
0
null
null
null
null
UTF-8
Python
false
false
7,724
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'AimTransaction.transaction_type' db.add_column('staff_aimtransaction', 'transaction_type', self.gf('django.db.models.fields.CharField')(max_length=32, null=True), keep_default=False) def backwards(self, orm): # Deleting field 'AimTransaction.transaction_type' db.delete_column('staff_aimtransaction', 'transaction_type') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'staff.aimrequest': { 'Meta': {'object_name': 'AimRequest'}, 'amount': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2'}), 'data': ('django_snippets.models.blowfish_field.BlowfishField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'transaction_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}) }, 'staff.aimresponse': { 'Meta': {'object_name': 'AimResponse'}, 'amount': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2'}), 'data': ('django_snippets.models.blowfish_field.BlowfishField', [], {'null': 'True'}), 'email_address': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'invoice_number': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'response_code': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'response_reason_code': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'response_reason_text': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True'}), 'response_subcode': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'transaction_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'db_index': 'True'}), 'transaction_type': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}) }, 'staff.aimtransaction': { 'Meta': {'object_name': 'AimTransaction'}, 'card_num': ('django.db.models.fields.CharField', [], {'max_length': '10', 'null': 'True', 'db_index': 'True'}), 'card_type': ('django.db.models.fields.CharField', [], {'max_length': '10', 'null': 'True', 'db_index': 'True'}), 'email': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'request': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['staff.AimRequest']", 'unique': 'True'}), 'response': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['staff.AimResponse']", 'unique': 'True'}), 'response_code': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'response_subcode': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'timestamp': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'transaction_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'db_index': 'True'}), 'transaction_type': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True'}) }, 'staff.muzeupdatelog': { 'Meta': {'object_name': 'MuzeUpdateLog'}, 'checksum': ('django.db.models.fields.CharField', [], {'max_length': '64', 'db_index': 'True'}), 'filename': ('django.db.models.fields.CharField', [], {'max_length': '512'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'status': ('django.db.models.fields.IntegerField', [], {}), 'timestamp': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}) } } complete_apps = ['staff']
978c0dd3aaec7962333cd38cc22995d9eb6f0e50
7d6a5d79fb1443b019bf135ade812e504e2e9a9c
/match_flann_orb.py
724425aeea1ab2edc88af2b97a0605aee94583ab
[]
no_license
tdrops/opencv
154a97d5a9ff394a2df6b67ef81112029185e67a
76fb94cfbb7746b6db3603ba1594a5876bc8376d
refs/heads/main
2023-06-28T11:32:23.556429
2021-08-03T05:59:35
2021-08-03T05:59:35
380,880,551
0
0
null
null
null
null
UTF-8
Python
false
false
1,085
py
""" opencv 출처 제목: 파이썬으로 만드는 OpenCV 프로젝트 저자: 이세우 출판: 프로그래밍인사이트 """ """ 요약 [예제 8-18] FLANNMatcher 와 ORB 로 매칭 """ import cv2 import numpy as np img1 = cv2.imread(filename="../img/taekwonv1.jpg") img2 = cv2.imread(filename="../img/figures.jpg") gray1 = cv2.cvtColor(src=img1, code=cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(src=img2, code=cv2.COLOR_BGR2GRAY) detector = cv2.ORB_create() kp1, desc1 = detector.detectAndCompute(gray1, None) kp2, desc2 = detector.detectAndCompute(gray2, None) index_params = dict(algorithm=6, table_number=6, key_size=12, multi_probe_level=1) search_params = dict(checks=32) matcher = cv2.FlannBasedMatcher(index_params, search_params) matches = matcher.match(queryDescriptors=desc1, trainDescriptors=desc2) res = cv2.drawMatches(img1=img1, keypoints1=kp1, img2=img2, keypoints2=kp2, matches1to2=matches, outImg=None, flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS) cv2.imshow(winname="result", mat=res) cv2.waitKey() cv2.destroyAllWindows()
604d167ee22f327db5a232ca5cfcf97e45146276
32114bed9535bcecf4c05f6a3546dbd95fc1b57a
/logdog/roles/formatters/base.py
a72420564f7fabfd44fd8e34f2a49e5314b7153c
[]
no_license
miphreal/python-logdog
8bd6e4067d73deecd7e2fe1debdeb6e007ef3b55
44194b199f1906a156aa15bb97a40bb8b13f3d52
refs/heads/master
2020-05-18T04:42:08.143627
2015-07-04T23:12:09
2015-07-04T23:12:09
30,718,313
19
1
null
null
null
null
UTF-8
Python
false
false
197
py
from __future__ import absolute_import, unicode_literals import logging from logdog.core.base_role import BaseRole logger = logging.getLogger(__name__) class BaseFormatter(BaseRole): pass
caf749c110411a6f35abe9cdfac7b7aea7d76df8
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/grorumaEjyFDmZQCx_8.py
fe3acccd6fdd436692863a4d9ddb364c77a9a3e9
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
892
py
def is_wristband(lst): a = check_horizontal(lst) b = check_vertical(lst) c = check_left_diagonal(lst) d = check_right_diagonal(lst) ​ if (a+b+c+d>0): return True else: return False def check_horizontal(lst): for i in range(0,len(lst)): for j in range(0,len(lst[i])-1): if(lst[i][j] != lst[i][j+1]): return 0 return 1 def check_vertical(lst): for i in range(0,len(lst[0])): for j in range(0,len(lst)-1): if(lst[j][i] != lst[j+1][i]): return 0 return 1 ​ def check_left_diagonal(lst): for i in range(0,len(lst)-1): for j in range(0,len(lst[0])-1): if(lst[i][j] != lst[i+1][j+1]): return 0 return 1 def check_right_diagonal(lst): for i in range(0,len(lst)-1): for j in range(0,len(lst[0])-1): if(lst[len(lst)-i-1][j] != lst[len(lst)-i-2][j+1]): return 0 return 1
9ff96557e800b32b0ff952b4c19545cc2d773048
fc81adee79f12d06e65283c1cb276e49292cc214
/myquora/urls.py
835bcf80b36713529715224f9a17829af550e8fc
[]
no_license
Joy-Cse/Q-A-forum-for-exam-preparationweb-app-like-quora-in-Django
335d1ac3733a365f0d515cd170b819c7fd0685ea
11476a58439bc4ab724cb95856440ec2a2c73fb4
refs/heads/master
2022-12-19T02:14:00.247944
2020-09-22T11:13:11
2020-09-22T11:13:11
297,620,207
1
0
null
null
null
null
UTF-8
Python
false
false
1,210
py
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('question/add/', views.QuestionCreate.as_view(), name='question-add'), path('questions/', views.QuestionListView.as_view(), name='questions'), path('answers/', views.AnswerListView.as_view(), name='answers'), path('question/<int:pk>', views.QuestionDetailView.as_view(), name='question-detail'), path('question/<int:pk>/answer/', views.AnswerCreate.as_view(), name='answer-add'), path('question/<int:pk>/update/', views.UpdateQuestion.as_view(), name='question-update'), path('answer/<int:pk>/update/', views.UpdateAnswer.as_view(), name='answer-update'), path('answer/<int:pk>/comment/', views.CommentCreate.as_view(), name='comment-add'), path('answer/upvote/<int:pk>', views.UpvoteCreate.as_view(), name='answer-upvote'), path('answer/downvote/<int:pk>', views.DownvoteCreate.as_view(), name='answer-downvote'), path('author/<int:pk>', views.AuthorDetailView.as_view(), name='author-detail'), path('author/add/', views.AuthorCreate.as_view(), name='author-add'), path('author/<int:pk>/', views.AuthorUpdate.as_view(), name='author-update') ]
6303afc4ff3f1b115da67e485f03d84430a0e26a
492e2bed8aaee614c37811fe99fa11b31cf858ca
/ship.py
393394b86291b7d931389b313af747be514dea6d
[]
no_license
foxyol/Cat_alien_invasion
93e5358a357b790ec6e2dcfb73a42ec6a4221ab4
2b100750d696a24b4aa3aa2a598e64a3bd20a6a8
refs/heads/master
2022-12-22T10:54:35.331762
2020-09-20T19:27:55
2020-09-20T19:27:55
294,505,419
0
0
null
null
null
null
UTF-8
Python
false
false
1,854
py
import pygame from pygame.sprite import Sprite class Ship(Sprite): ''' Класс для управления кораблем''' def __init__(self, ai_game): '''Инициализирует корабль и задаёт его начальную позицию''' super().__init__() self.screen = ai_game.screen self.screen_rect = ai_game.screen.get_rect() self.settings = ai_game.settings # Загружает изображение корабля и получает прямоугольник self.image = pygame.image.load('images/cat1.png') self.rect = self.image.get_rect() # Каждый новый корабль появляется у нижнего края экрана self.rect.midbottom = self.screen_rect.midbottom # Сохранение вещественной координаты центра корабля self.x = float(self.rect.x) # Флаг перемещения self.moving_right = False self.moving_left = False def update(self): ''' Обновляет позицию корабля в соответствии с флагом''' if self.moving_right and self.rect.right < self.screen_rect.right: self.x += self.settings.ship_speed if self.moving_left and self.rect.left > 0: self.x -= self.settings.ship_speed self.rect.x = self.x def blitme(self): '''Рисует корабль в текущей позиции''' self.screen.blit(self.image, self.rect) def center_ship(self): ''' Помещает корабль в центре bottom ''' self.rect.midbottom = self.screen_rect.midbottom self.x = float(self.rect.x)
80b153cbb7ed5da530a851223186462c4bdc392c
4e3518947811d63025a18f5ed96081aa82fe1da1
/getpaid/wiretransfer/tests.py
0efe16f594b22070cea395402e140340f3dded74
[]
no_license
collective/getpaid.wiretransfer
d8d8af1c3a273c1711c8946a3c00ef27cd7311c7
e6f87ee286d07fa446a4bcaa955e2091aacc7276
refs/heads/master
2023-08-24T23:45:03.992203
2009-11-14T12:57:22
2009-11-14T12:57:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,451
py
import unittest from zope.testing import doctestunit from zope.component import testing from Testing import ZopeTestCase as ztc from Products.Five import zcml from Products.Five import fiveconfigure from Products.PloneTestCase import PloneTestCase as ptc from Products.PloneTestCase.layer import PloneSite ptc.setupPloneSite() import getpaid.wiretransfer class TestCase(ptc.PloneTestCase): class layer(PloneSite): @classmethod def setUp(cls): fiveconfigure.debug_mode = True ztc.installPackage(getpaid.wiretransfer) fiveconfigure.debug_mode = False @classmethod def tearDown(cls): pass def test_suite(): return unittest.TestSuite([ # Unit tests #doctestunit.DocFileSuite( # 'README.txt', package='getpaid.wiretransfer', # setUp=testing.setUp, tearDown=testing.tearDown), #doctestunit.DocTestSuite( # module='getpaid.wiretransfer.mymodule', # setUp=testing.setUp, tearDown=testing.tearDown), # Integration tests that use PloneTestCase #ztc.ZopeDocFileSuite( # 'README.txt', package='getpaid.wiretransfer', # test_class=TestCase), #ztc.FunctionalDocFileSuite( # 'browser.txt', package='getpaid.wiretransfer', # test_class=TestCase), ]) if __name__ == '__main__': unittest.main(defaultTest='test_suite')
[ "[email protected]@5c657d5f-f92f-0410-bf4e-417a11dd3c0b" ]
[email protected]@5c657d5f-f92f-0410-bf4e-417a11dd3c0b
bb55fecab0a1fc36dfb41251345cbbc5e4f4a6d8
7a9e7fb91b344983cf2a986d60cddb49b348ba5a
/image/img_client.py
141bc13c7cd300007d1dbc43a608bdf9318a2ac4
[]
no_license
ivantrw/client---server
5d9463813f85ff399c12876c896ddd6888c5f06b
0396d9b8174fc7a76cbfc19c33293037019bde00
refs/heads/master
2022-07-30T17:08:03.790985
2020-05-20T06:59:11
2020-05-20T06:59:11
265,478,829
0
0
null
null
null
null
UTF-8
Python
false
false
765
py
# A very simple Flask Hello World app for you to get started with... from _future_ import print_function from flask import Flask import requests import json import cv2 app = Flask(_name_) @app.route('/') def hello_world(): addr = 'http://ivanserver.pythonanywhere.com/' test_url = addr + '/api/test' # prepare headers for http request content_type = 'image/jpeg' headers = {'content-type': content_type} img = cv2.imread('slideshow.jpg') # encode image as jpeg _, img_encoded = cv2.imencode('.jpg', img) # send http request with image and receive response response = requests.post(test_url, data=img_encoded.tostring(), headers=headers) # decode response return json.loads(response.text)
90ca5761541b1fa1bb8c2f881a15e991a3e39327
39cb4512737bafa6e6c8b33834420c4a3cbd0617
/tools/readable.py
bd64fa99c5ec7a8b8368584c5b97c237090e7e2e
[]
no_license
byui-cse/cse111-course
e691ab311ddf1880c3a8dc1d36b8affd6e30cb6c
113fcbcd545a03407d217ba33df482cca94ef2bb
refs/heads/master
2023-05-24T19:24:54.882191
2023-05-19T20:24:33
2023-05-19T20:24:33
215,662,254
4
8
null
2023-05-19T20:20:11
2019-10-16T23:26:14
HTML
UTF-8
Python
false
false
4,238
py
import os import os.path as path import re import sys import readability def main(argv): argv.pop(0) if len(argv) == 0: argv = ["."] if len(argv) == 2 and path.isfile(argv[0]) and path.isfile(argv[1]): srcpath = argv[0] dstpath = argv[1] measure = measure_file(srcpath, dstpath) print(measure, srcpath) else: measures = [] for srcpath in argv: if path.isdir(srcpath): measures.extend(process_dir(srcpath)) else: measures.append(process_dir(srcpath)) for measure in sorted(measures, key=lambda elem: elem[0], reverse=True): print(measure) def process_dir(dirpath): measures = [] for root, dirnames, filenames in os.walk(dirpath): for filename in filenames: suffix = path.splitext(filename)[1] if suffix == '.html': srcpath = path.join(root, filename) measures.append(process_file(srcpath)) return measures def process_file(srcpath, dstpath=None): if dstpath is None: parts = path.split(srcpath) dirname = parts[0] filename = parts[1] basename = path.splitext(filename)[0] dstpath = path.join(dirname, f"{basename}.txt") return measure_file(srcpath, dstpath), srcpath patterns = [ # Extract the article part of the HTML document. (re.compile('.*<article>(.*)</article>.*', re.I|re.S), r'\1'), # Remove all python and console preformatted content. (re.compile('<pre class="(python|console)">.*?</pre>', re.I|re.S), ''), # Remove all tables. (re.compile('<table>(.*?)</table>', re.I|re.S), ' \u00b6 '), (re.compile('<h[1-6]>', re.I), ' \u00b6 '), (re.compile('<li>', re.I), ' \u00b6 '), (re.compile('<p>', re.I), ' \u00b6 '), # Remove all mathematical expressions. (re.compile('<div class="[^"]*expr[^"]*">.*', re.I), ''), # Remove all remaing tags. (re.compile('</?[^>]+>'), ''), # HTML entities (re.compile('&larr;', re.I), ' <- '), (re.compile('&nbsp;', re.I), ' '), (re.compile('&mdash;', re.I), ' -- '), (re.compile('&minus;', re.I), ' - '), (re.compile('&ndash;', re.I), ' - '), (re.compile('&pi;', re.I), 'PI'), (re.compile('&rarr;', re.I), ' -> '), (re.compile('&lt;', re.I), ' < '), (re.compile('&gt;', re.I), ' > '), (re.compile('&amp;', re.I), ' & '), (re.compile('&[^;]+;'), ' '), # Tokenize the text so that the readability module can process it. # Convert all multiple blank lines to a single paragraph symbol. (re.compile(r'(\r?\n){2,}'), ' \u00b6 '), # Remove all tab and newline characters. (re.compile(r'\s+'), ' '), # Insert a space before and a newline after each [:;.?!]. (re.compile('[:;.?!]'), r' \g<0>\n'), # Insert a space before each comma. (re.compile(','), r' \g<0>'), # Insert a space before and after each [_"()[]{}]. (re.compile('[-"()[\]{}_]'), r' \g<0> '), # Clean up extra spaces. (re.compile(' {2,}'), ' '), # Replace all paragraph symbols with a blank line. (re.compile('( ?\u00b6 ?)+'), r'\n\n'), (re.compile(r'(\r?\n){3,}'), r'\n\n'), # Remove spaces at the start and end of each line. (re.compile(r'^[\t ]+', re.M), ''), (re.compile(r'[\t ]+$', re.M), ''), ] def measure_file(srcpath, dstpath): print(srcpath) with open(srcpath, 'rt', encoding='utf-8') as srcfile: text = srcfile.read() for pat, repl in patterns: text = re.sub(pat, repl, text) results = readability.getmeasures(text, lang='en') measure = results['readability grades']['GunningFogIndex'] with open(dstpath, 'wt', encoding='utf-8') as dstfile: for key in results: print('\t', key, sep='', file=dstfile) value = results[key] for key2 in value: value2 = value[key2] if isinstance(value2, float): value2 = round(value2, 2) print('\t\t', f"{key2} {value2}", sep='', file=dstfile) dstfile.write(text) #os.remove(dstpath) return round(measure, 2) if __name__ == "__main__": main(sys.argv)
03a23ef5796f720ff8f501a87a913af9728598fc
e2bd39106992b592de686e5bd79002edc05cc8bc
/429-N 叉树的层序遍历/LevelOrder.py
add08fd51114e2c7edf52a4c81ce76d29533ee4c
[]
no_license
Mumulhy/LeetCode
9b8ad3af9f9a3b838bdd54727cf8f33401292d27
269419ba2a2840fcf100fa217c5275029ffa229e
refs/heads/master
2022-10-28T23:06:54.081073
2022-10-23T07:48:49
2022-10-23T07:48:49
212,135,892
3
1
null
null
null
null
UTF-8
Python
false
false
715
py
# -*- coding: utf-8 -*- # LeetCode 429-N 叉树的层序遍历 """ Created on Fri Apr 8 10:18 2022 @author: _Mumu Environment: py38 """ from typing import List # Definition for a Node. class Node: def __init__(self, val=None, children=None): self.val = val self.children = children class Solution: def levelOrder(self, root: 'Node') -> List[List[int]]: if root is None: return [] stack = [root] ans = [] while stack: ans.append([]) new_stack = [] for node in stack: ans[-1].append(node.val) new_stack.extend(node.children) stack = new_stack return ans
ff3266e467c727ae0981e545f66227850fd75da1
3dc393ba07cfb57cdb1efbcd3824817a1bed9eb6
/src/my_package/todelete/functions/functions_pytorch0.2/InterpolationChLayer.py
f840fb7931113fd513ee4553899655db90cd63d4
[ "MIT" ]
permissive
laomao0/AIM_DAIN
c7ebf96db7b8b305d6574bc2252a7ca10ab2fc95
8322569498d675d3b2c1f35475c1299cad580bde
refs/heads/master
2020-07-23T07:34:51.043470
2019-09-10T13:20:58
2019-09-10T13:20:58
207,486,949
4
0
null
null
null
null
UTF-8
Python
false
false
3,129
py
# this is for wrapping the customized layer import torch from torch.autograd import Function import _ext.my_lib as my_lib #Please check how the STN FUNCTION is written : #https://github.com/fxia22/stn.pytorch/blob/master/script/functions/gridgen.py #https://github.com/fxia22/stn.pytorch/blob/master/script/functions/stn.py class InterpolationChLayer(Function): def __init__(self,ch): super(InterpolationChLayer,self).__init__() self.ch = ch def forward(self, input1,input2): # assert(input1.is_contiguous()) # assert(input2.is_contiguous()) self.input1 = input1.contiguous() # need to use in the backward process, so we need to cache it self.input2 = input2.contiguous() # TODO: Note that this is simply a shallow copy? if input1.is_cuda: self.device = torch.cuda.current_device() else: self.device = -1 # output = torch.zeros(input1.size()) if input1.is_cuda : # output = output.cuda() output = torch.cuda.FloatTensor().resize_(self.input1.size()).zero_() my_lib.InterpolationChLayer_gpu_forward(input1, input2, output) else: # output = torch.cuda.FloatTensor(input1.data.size()) output = torch.FloatTensor().resize_(self.input1.size()).zero_() my_lib.InterpolationChLayer_cpu_forward(input1, input2, output) # the function returns the output to its caller return output #TODO: if there are multiple outputs of this function, then the order should be well considered? def backward(self, gradoutput): # print("Backward of Interpolation Layer") # gradinput1 = input1.new().zero_() # gradinput2 = input2.new().zero_() # gradinput1 = torch.zeros(self.input1.size()) # gradinput2 = torch.zeros(self.input2.size()) if self.input1.is_cuda: # print("CUDA backward") # gradinput1 = gradinput1.cuda(self.device) # gradinput2 = gradinput2.cuda(self.device) gradinput1 = torch.cuda.FloatTensor().resize_(self.input1.size()).zero_() gradinput2 = torch.cuda.FloatTensor().resize_(self.input2.size()).zero_() # the input1 image should not require any gradients # print("Does input1 requires gradients? " + str(self.input1.requires_grad)) err = my_lib.InterpolationChLayer_gpu_backward(self.input1,self.input2,gradoutput,gradinput1,gradinput2) if err != 0 : print(err) else: # print("CPU backward") # print(gradoutput) gradinput1 = torch.FloatTensor().resize_(self.input1.size()).zero_() gradinput2 = torch.FloatTensor().resize_(self.input2.size()).zero_() err = my_lib.InterpolationChLayer_cpu_backward(self.input1, self.input2, gradoutput, gradinput1, gradinput2) # print(err) if err != 0 : print(err) # print(gradinput1) # print(gradinput2) # print(gradinput1) return gradinput1, gradinput2
6d273cadf77a130f8e83404e3653ad01bb4cae41
455cad4ee469c82f0f7f07e4f9964e72b5d8db59
/formatForKeepass_Objects.py
490f8406b93d584624fe8ab7375f6a7690b391fe
[]
no_license
RobertoChapa/Kaspersky_Keepass_import
0114eb7732619c048c5df0a70bc8aac97c54afa3
5651ea91a4b3758120b2257eb7fc71250a18e30d
refs/heads/main
2023-01-14T05:38:14.207872
2020-11-23T21:14:13
2020-11-23T21:14:13
315,440,970
0
0
null
null
null
null
UTF-8
Python
false
false
1,511
py
""" Bobby Chapa 11-5-2020 Format for keepass """ # format output for keepass. returns text file read for import by keepass class formatForKeepass: def __init__(self, read_timport): self.read_timport = read_timport # input output file stream. writes, reads, or appends to text file # arguments: name of text file, w/r/a, text def parse_timport(self): output = '"Account"' + ',' + '"Login Name"' + ',' + '"Password"' + ',' + '"Web Site"' + ',' + '"Comments"' + "\n" for key, value in self.read_timport.items(): # skip the first row if key != '': output += self.format_write(key, True) # print('Account', k.strip()) ln = self.read_timport[key][0] # Login Name output += self.format_write(ln, True) pw = self.read_timport[key][1] # Password output += self.format_write(pw, True) ws = self.read_timport[key][2] # Web Site output += self.format_write(ws, True) com = self.read_timport[key][3] # Comment output += self.format_write(com, False) # last value in row return output # adds a comma at the end of each value except for the last value in each row @staticmethod def format_write(kas_text, test): s = '"' + kas_text + '"' if test: s += ',' else: s += "\n" return s
b928a2599f378c149035d2366e023ce00be56d7c
99f30c49517d39e3695bdc287aa91e3150342ac4
/OpenAi-Gym/Basics/Basics_Reward.py
a57f2086e7c414aec3209b39aa10b14cd2150fcf
[]
no_license
Pavankunchala/Python
ab2c4786a60e66cd885a4ee257c5baf3ecba123f
0c6e542ac14bab1b8345fc2ac869eea8e11f1b8d
refs/heads/master
2020-08-01T01:46:08.167599
2020-05-27T04:54:40
2020-05-27T04:54:40
210,816,859
1
1
null
null
null
null
UTF-8
Python
false
false
715
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 31 12:32:06 2020 @author: pavankunchala """ import gym #creating the environment env = gym.make("CartPole-v1") env.reset() #Play 10 games for i in range(0, 10): #initalizing the variables done = False game_rew = 0 while not done: #choosing a random action action = env.action_space.sample() # take a step in the environmwenr new_obs ,reward, done ,info = env.step(action) game_rew += reward # printing the cumulative reward after done if done: print("Episode %d finished , Reward %d "%(i,game_rew)) env.reset()
332a75d5d3398638a690352b60ebc299c77435f9
b0653128bc312878778f1392fdda26eab454901f
/Challenges/chall_04.py
70f3a7f653b75675784b18413b89607c45cdcf13
[ "MIT" ]
permissive
HKuz/PythonChallenge
aef9df8e02e9e2710a8d7c3f77dba5890d16e063
e9d72616aa389483cab710bca3bccf708c0f99e0
refs/heads/master
2021-01-21T15:44:54.367043
2018-12-04T23:44:30
2018-12-04T23:44:30
91,855,491
0
0
null
null
null
null
UTF-8
Python
false
false
1,284
py
#!/usr/local/bin/python3 # Python Challenge - 4 # http://www.pythonchallenge.com/pc/def/linkedlist.html # http://www.pythonchallenge.com/pc/def/linkedlist.php # Keyword: peak import urllib.request import re def main(): ''' html page shows: linkedlist.php php page comment: urllib may help. DON'T TRY ALL NOTHINGS, since it will never end. 400 times is more than enough. Photo link: linkedlist.php?nothing=12345 http://www.pythonchallenge.com/pc/def/linkedlist.php?nothing=12345 44827 45439 ... ''' base_url = 'http://www.pythonchallenge.com/pc/def/linkedlist.php?nothing=' nothing = '12345' # nothing = '66831' # Cheat code for last nothing pattern = re.compile(r'next nothing is (\d+)') while True: with urllib.request.urlopen(base_url + nothing) as page: data = page.read().decode('utf-8') # print(data) match = re.search(pattern, data) if match: nothing = match.group(1) if nothing == '16044': nothing = str(16044 / 2) else: print('Hit break') break print('Last nothing found was: {}'.format(nothing)) return 0 if __name__ == '__main__': main()
f1a76ee4f36025e73c4d4a367b9438d92d130164
4fa9c8ae53e13784d5602d97aa223cb2c904c213
/Sliding Window/Longest Substring with maximum K Distinct Characters (medium)/solution.py
bc8555fe6a983694c07432709e179b966b4cb23b
[]
no_license
rykumar13/problem_solving-
e32c6f9a4d18fc53f2e37319fb0a6cd825d780f2
35e0c4a9c0b10bfefd83e0205fcd9a28c4c4d9d7
refs/heads/main
2023-07-23T11:02:20.435390
2021-08-27T16:30:05
2021-08-27T16:30:05
397,321,455
0
0
null
null
null
null
UTF-8
Python
false
false
728
py
def longest_substring_with_k_distinct(str1, k): window_start = 0 char_count = {} longest_window_sofar = 0 for window_end in str1: if window_end not in char_count: char_count.update({window_end: 0}) char_count[window_end] += 1 while len(char_count.keys()) > k: char_count[str1[window_start]] -= 1 if char_count[str1[window_start]] == 0: del char_count[str1[window_start]] window_start += 1 longest_window_sofar = max(longest_window_sofar, sum(char_count.values())) return longest_window_sofar str1_in = "araaci" k_in = 2 print(longest_substring_with_k_distinct(str1_in, k_in))
6ef05a8b7d726e1033756a873bcf34f33297c403
49b43859c65a0a32ddedd5c19eec30be37423b17
/test/unit/test_lr_scheduler.py
d94a55e850df7d92b1227f6589ce5854438ca91b
[ "Apache-2.0" ]
permissive
KellenSunderland/sockeye
665b9bccc7e4cacb70c28c21dc46adc4514b83dd
23a6fd3f3614f935fc9f5588eee2ca507aba3b20
refs/heads/master
2021-01-01T19:17:03.911163
2017-07-27T15:27:08
2017-07-27T15:45:09
98,554,080
1
0
null
2017-07-27T15:43:21
2017-07-27T15:43:21
null
UTF-8
Python
false
false
1,120
py
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from sockeye.lr_scheduler import LearningRateSchedulerInvSqrtT, LearningRateSchedulerInvT import pytest def test_lr_scheduler(): updates_per_epoch = 13 half_life_num_epochs = 3 schedulers = [LearningRateSchedulerInvT(updates_per_epoch, half_life_num_epochs), LearningRateSchedulerInvSqrtT(updates_per_epoch, half_life_num_epochs)] for scheduler in schedulers: scheduler.base_lr = 1.0 # test correct half-life: assert scheduler(updates_per_epoch * half_life_num_epochs) == pytest.approx(0.5)
340bf8ec998fe6a67518036364be5978b887cf81
83003007b7bc12493e2bca2b5c78be5ea86df56c
/Day56-Day70/Day57/shape.py
5ecbd3f55132627ccb0aa7fca7c2378a713dbdcc
[]
no_license
a6361117/code
fa7fe2f33c522ad38d92e6c429b50ef8a271bb1e
bd8bf877416acc5400dbda90212b7e83020ff643
refs/heads/master
2022-09-07T22:22:24.765271
2020-05-26T14:27:47
2020-05-26T14:27:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
278
py
import turtle sides=int(input('enter the number of sides:')) angle=360.0/sides length=400.0/sides turtle.fillcolor('blue') turtle.begin_fill() for side in range(sides): turtle.forward(length) turtle.right(angle) turtle.end_fill() turtle.done()
ef9bcffbb4f3daa7e4edb6dbf073902ecc54e597
cbbbd77bc292287003e622a8ff9231070364fb9b
/Users/migrations/0003_remove_articles_click_num.py
941cf01563c0fd2e8e31daddb65d777c4fb36f92
[]
no_license
NicoNicoDouban/Douban
b62d62de8269c206a02b3b7de6694b50c4f0b113
951bdc2b2bfd5b73db06209b7f50b9e4f5994502
refs/heads/classes
2021-04-09T17:57:51.708536
2018-03-21T13:28:41
2018-03-21T13:28:41
125,724,814
0
1
null
2018-04-02T09:20:24
2018-03-18T12:54:32
Python
UTF-8
Python
false
false
394
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-03-17 00:25 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Users', '0002_auto_20180317_0810'), ] operations = [ migrations.RemoveField( model_name='articles', name='click_num', ), ]
caff3311e78445f44ab4fc68b41dd9ce624974ac
87cecfcdcbae7fa42a5a9dc9c4e56ce4b5ee0645
/openstackM/OM/apps.py
a5cba4b4c394ac2da5b948500522338d451e9b25
[]
no_license
pinzBro/Django-for-openstack-services
a79afba24b1795bdb1c0d20cfcf690053f640ade
dcb4b1e5bf5356c1a124d1899a7f30328a7cc8b0
refs/heads/master
2021-10-19T04:38:01.595104
2019-02-18T05:47:48
2019-02-18T05:47:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
79
py
from django.apps import AppConfig class OmConfig(AppConfig): name = 'OM'
97075b6a6a696ee1e610f9344173a920d147eac9
793b45444a35ac762ebba1f7145aa4137efd0ef2
/iscsi_initiator/scandev.py
504644e54ac174ffd10e238c6b63cafe88eb2c5c
[ "Apache-2.0" ]
permissive
MatheMatrix/SoftSAN
aa6165b178c20868e877407b1be53b4496981018
1b8ab2cae92b7aac34211909b27d4ebe595275d7
refs/heads/master
2020-09-24T04:09:33.789116
2014-09-22T06:43:10
2014-09-22T06:43:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,415
py
import os # the blockdevice information about a target # can be found in directory'/sys/class/iscsi_session/' # # iscsi_session # | # ----------------------------- # | | ..... | # session1 session2 ..... sessionN # |---------- # | | # device targetname #here check the targetname # | # targetNo:0:0 # | # No:0:0:LunNo # | # block # | # blockdeviceName def check_targetname(targetfile_path, target): targetfile = file(targetfile_path).readlines() for name in targetfile: if name.find(target) > -1: return True return False def get_blockdev_by_targetname(target): path = '/sys/class/iscsi_session/' for session in os.listdir(path): if session.find('session') > -1: path_session = path+session+'/' if check_targetname(path_session+'targetname', target) is True: path_session_dev = path_session + 'device/' for tar in os.listdir(path_session_dev): if tar.find('target') > -1: path_session_dev_tar = path_session_dev+tar+'/' for fin in os.listdir(path_session_dev_tar): if fin.find(':0:0:') > -1 and fin.find(':0:0:0') is -1: path_session_dev_tar_final = path_session_dev_tar+fin+'/block/' while os.path.isdir(path_session_dev_tar_final) is False: pass device = os.listdir(path_session_dev_tar_final) return device[0]; print 'target not found'
0751150ee28930c1d6705eb9e3833545c8d89bba
df6af3eb8800c8d417dec2025af5dc154c7d23ac
/python/day2.py
240af16b046ffe0e15d0f014e858ff3e2a45e87d
[]
no_license
aravindsbr/GraduateTrainingProgram2018
e8e7f213f43da16de1ab87d1e65be5091443be1f
c374f7d2082ba92d40a0700a28c860f4c5bb2b93
refs/heads/master
2020-03-27T21:36:18.594429
2018-10-04T06:44:59
2018-10-04T06:44:59
147,160,502
0
0
null
null
null
null
UTF-8
Python
false
false
1,095
py
""" # 1) inventory = { 'gold' : 500, 'pouch' : ['flint', 'twine', 'gemstone'], 'backpack' : ['xylophone','dagger', 'bedroll','bread loaf'] } # qn 1 inventory["pocket"]=[] print(inventory) # qn 2 inventory["pocket"]=['seashell', 'strange berry','lint'] print(inventory) # qn 3 inventory["backpack"].sort() print(inventory) #qn 4 del inventory["backpack"][2] print(inventory) #qn 5 inventory["gold"]=[500,50] print(inventory) """ """ 2) # qn 1 #student_details={'student1':[90,85, 80], # 'student2':[70,80,60]} student_details={} n=input("Enter number of students") s=input("Enter number of subjects") i=1 while i<=n: k=input("Enter key") v=[] j=1 while j<=s: val=input("enter value for subject"+str(j)) v.append(val) j=j+1 student_details[k]=v i=i+1 print(student_details) # qn 2 total=0 avg=0 for a in student_details.iterkeys(): total=str(sum(student_details[a])) print("Total of "+a+" is "+total) total=int(total) avg=total/len(student_details[a]) print("Average of "+a+" is "+str(avg)) """
61bd7217fb13a193f920eb71fa014833220a44a0
2da68c7c34b19f6086c82e187a541a112e49bf91
/src/node_modules/socket.io/node_modules/socket.io-client/node_modules/ws/build/config.gypi
63cfd5ebcf7ab6860c30292b251d339af6940579
[ "MIT" ]
permissive
nuzelac/zavrsni
ad227514adef1baea35e1645734dbad47a6ab6fc
da2e488ba119a92012501c719ad8f04295f04378
refs/heads/master
2021-01-18T14:06:23.250395
2014-06-08T22:38:58
2014-06-08T22:38:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,055
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 1, "host_arch": "x64", "node_install_npm": "true", "node_prefix": "/usr/local/Cellar/node/0.10.26", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "true", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "python": "/usr/bin/python", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "true", "nodedir": "/Users/Nino/.node-gyp/0.10.26", "copy_dev_lib": "true", "standalone_static_library": 1, "save_dev": "", "browser": "", "viewer": "man", "rollback": "true", "usage": "", "globalignorefile": "/usr/local/share/npm/etc/npmignore", "init_author_url": "", "shell": "/bin/zsh", "parseable": "", "shrinkwrap": "true", "email": "", "init_license": "ISC", "cache_max": "null", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "registry": "https://registry.npmjs.org/", "fetch_retries": "2", "npat": "", "key": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/share/npm/etc/npmrc", "always_auth": "", "cache_lock_retries": "10", "heading": "npm", "fetch_retry_mintimeout": "10000", "proprietary_attribs": "true", "json": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/Nino/.npm-init.js", "userconfig": "/Users/Nino/.npmrc", "node_version": "v0.10.26", "user": "501", "editor": "vi", "save": "", "tag": "latest", "global": "", "optional": "true", "username": "", "bin_links": "true", "force": "", "searchopts": "", "depth": "null", "rebuild_bundle": "true", "searchsort": "name", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "strict_ssl": "true", "dev": "", "fetch_retry_factor": "10", "group": "20", "cache_lock_stale": "60000", "version": "", "cache_min": "10", "cache": "/Users/Nino/.npm", "searchexclude": "", "color": "true", "save_optional": "", "ignore_scripts": "", "user_agent": "node/v0.10.26 darwin x64", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "umask": "18", "git": "git", "init_author_name": "", "onload_script": "", "tmp": "/var/folders/s6/8nr3jnt52lq8sp4zgsjyjr1r0000gn/T/", "unsafe_perm": "true", "prefix": "/usr/local/share/npm", "link": "" } }
d6c55808982af7175dff9bb53cc42a74d57ef574
f842e97b92f1e56354fe412e84ed86dc5b96af11
/deoldify/utils.py
f2ae407d4b020e12f7c897c57959017781ece681
[ "MIT" ]
permissive
teejs2012/DeOldify
c1af30f256bdbcee1bde5bed59a7a6654f6173f0
3aa97d2ad4f293dfe2e44f115beae425d9157c68
refs/heads/master
2022-11-29T21:01:58.277172
2020-08-12T08:31:09
2020-08-12T08:31:09
269,106,950
0
0
MIT
2020-06-03T14:15:44
2020-06-03T14:15:43
null
UTF-8
Python
false
false
4,224
py
import random import numpy as np # from skimage.measure import block_reduce import cv2 from PIL import Image import os def mini_norm(x): y = x.astype(np.float32) y = 1 - y / 255.0 y -= np.min(y) temp = np.max(y) if temp>0: y /= np.max(y) return (255.0 - y * 255.0).astype(np.uint8) def sensitive(x, s=15.0): y = x.astype(np.float32) y -= s y /= 255.0 - s * 2.0 y *= 255.0 return y.clip(0, 255).astype(np.uint8) def my_resize(img,size,divisible=64): h,w = img.shape[0],img.shape[1] if h<w: target_w = w*size//h target_w = target_w//64*64 return cv2.resize(img,(target_w,size)) else: target_h = h*size//w target_h = target_h//64*64 return cv2.resize(img,(size,target_h)) def generate_user_point(image,img_size=-1, is_random=True): h,w,_ = image.shape if img_size==-1: result = np.zeros((h, w, 4)).astype(np.uint8) else: result = np.zeros((img_size,img_size,4)).astype(np.uint8) if is_random: hint_number = int(np.random.normal(20, 10, 1)[0]) for i in range(hint_number): # sample location y = int(np.clip(np.random.normal(h/2., h/5.), 0, h-1)) x = int(np.clip(np.random.normal(w/2., w/5.), 0, w-1)) # add color point color = image[y,x] if img_size == -1: cv2.circle(result, (x, y), 1, (int(color[0]), int(color[1]), int(color[2]), 255), -1) else: cv2.circle(result,(int(x*img_size/w),int(y*img_size/h)),1,(int(color[0]),int(color[1]),int(color[2]),255),-1) else: step = 9 x_interval = w//step y_interval = h//step for i in range(1,step): for j in range(1,step): x = i*x_interval y = j*y_interval # add color point color = image[y,x] if img_size == -1: cv2.circle(result, (x, y), 1, (int(color[0]), int(color[1]), int(color[2]), 255), -1) else: cv2.circle(result,(int(x*img_size/w),int(y*img_size/h)),1,(int(color[0]),int(color[1]),int(color[2]),255),-1) return Image.fromarray(cv2.cvtColor(result,cv2.COLOR_BGRA2RGBA)) class user_point_generator: def __init__(self): self.hint_number_mu = 20 self.hint_number_sigma = 10 self.sample_number = 1000 self.samples = np.clip(np.random.normal(self.hint_number_mu, self.hint_number_sigma, self.sample_number), 0, 500) def generate(self,image,img_size=-1, is_random=True): h,w,_ = image.shape if img_size==-1: result = np.zeros((h, w, 4)).astype(np.uint8) else: result = np.zeros((img_size,img_size,4)).astype(np.uint8) if is_random: hint_number = int(self.samples[random.randint(0,self.sample_number-1)]) for i in range(hint_number): # sample location y = int(np.clip(np.random.normal(h/2., h/5.), 0, h-1)) x = int(np.clip(np.random.normal(w/2., w/5.), 0, w-1)) # add color point color = image[y,x] if img_size == -1: cv2.circle(result, (x, y), 1, (int(color[0]), int(color[1]), int(color[2]), 255), -1) else: cv2.circle(result,(int(x*img_size/w),int(y*img_size/h)),1,(int(color[0]),int(color[1]),int(color[2]),255),-1) else: step = 9 x_interval = w//step y_interval = h//step for i in range(1,step): for j in range(1,step): x = i*x_interval y = j*y_interval # add color point color = image[y,x] if img_size == -1: cv2.circle(result, (x, y), 1, (int(color[0]), int(color[1]), int(color[2]), 255), -1) else: cv2.circle(result,(int(x*img_size/w),int(y*img_size/h)),1,(int(color[0]),int(color[1]),int(color[2]),255),-1) return Image.fromarray(cv2.cvtColor(result,cv2.COLOR_BGRA2RGBA))
51e417701a68ede865d60f6a5c4e6cc84ef5d56b
5a281cb78335e06c631181720546f6876005d4e5
/senlin-7.0.0/senlin/api/openstack/v1/webhooks.py
06fdf36a4269553ce0d9c367326b9dc133fdc167
[ "Apache-2.0" ]
permissive
scottwedge/OpenStack-Stein
d25b2a5bb54a714fc23f0ff0c11fb1fdacad85e8
7077d1f602031dace92916f14e36b124f474de15
refs/heads/master
2021-03-22T16:07:19.561504
2020-03-15T01:31:10
2020-03-15T01:31:10
247,380,811
0
0
Apache-2.0
2020-03-15T01:24:15
2020-03-15T01:24:15
null
UTF-8
Python
false
false
1,976
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Webhook endpoint for Senlin v1 REST API. """ from senlin.api.common import util from senlin.api.common import wsgi from senlin.objects import base as obj_base class WebhookController(wsgi.Controller): """WSGI controller for webhooks resource in Senlin v1 API.""" REQUEST_SCOPE = 'webhooks' @wsgi.Controller.api_version("1.0", "1.9") @util.policy_enforce def trigger(self, req, webhook_id, body=None): if body is None: body = {'params': None} body = obj_base.SenlinObject.normalize_req( 'WebhookTriggerRequestBody', body) obj = util.parse_request( 'WebhookTriggerRequest', req, {'identity': webhook_id, 'body': body}) res = self.rpc_client.call(req.context, 'webhook_trigger', obj) location = {'location': '/actions/%s' % res['action']} res.update(location) return res @wsgi.Controller.api_version("1.10") # noqa @util.policy_enforce def trigger(self, req, webhook_id, body=None): obj = util.parse_request( 'WebhookTriggerRequestParamsInBody', req, {'identity': webhook_id, 'body': body}) res = self.rpc_client.call(req.context, 'webhook_trigger', obj) location = {'location': '/actions/%s' % res['action']} res.update(location) return res
[ "Wayne [email protected]" ]
164a9e59f5de5e0e83c9c2b467c583b578612e3b
aedd5f417a49d61799ff35984419e5fee50b67a0
/NST-laplacian/NST_lp.py
223ce2eb8766e1d593e573ab54d54808d373fb26
[]
no_license
maxencealluin/NST
74ce96a3cc4ea25dd9240d5c539afe12be3920ee
d818f8ed00b3b0fffc2e315e7edc39b521f4bf4a
refs/heads/master
2020-05-31T15:33:56.772551
2019-06-24T09:38:18
2019-06-24T09:38:18
190,359,792
0
0
null
null
null
null
UTF-8
Python
false
false
15,052
py
import copy import os import sys import time import argparse import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.models as models import torchvision.transforms as transforms from PIL import Image import warnings warnings.filterwarnings("ignore", category=UserWarning) parser = argparse.ArgumentParser(description='Laplacian-Steered Neural Style Transfer') parser.add_argument('--steps', type=int, default=800, metavar='N', help='number of steps to train (default: 800)') parser.add_argument('--sw', type=int, default=1000000, metavar='N', help='Style weight (default: 1000000)') parser.add_argument('--cw', type=int, default=20, metavar='N', help='Content weight (default: 20)') parser.add_argument('--lw', type=int, default=100, metavar='N', help='Laplacian weight (default: 100)') parser.add_argument('--style', type=str, default='starry_night.jpg', metavar='X.jpg', help='Style image to use') parser.add_argument('--content', type=str, default='lozere.jpg', metavar='X.jpg', help='Content image to use') parser.add_argument('--random', type=int, default=0 , metavar='0-1', help='Initialize generated image at random (default 0: False)') dargs = vars(parser.parse_args()) print(dargs['steps']) #Timing program begin = time.time() #Defines directory for pretrained models download # os.environ['TORCH_MODEL_ZOO'] = '/sgoinfre/goinfre/Perso/malluin' #If GPU available use bigger image size device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.device_count(): print("Using GPU: {}\n".format(torch.cuda.get_device_name(device))) else: print("Using CPU") imsize = 512 if torch.cuda.is_available() else 256 #Load input image to a Tensor and resize to desired shape, in line with device computational power. loader = transforms.Compose([transforms.Resize((imsize, imsize)), transforms.ToTensor()]) #Unloader to transform back tensors to pillow images in order to save and plot output images. unloader = transforms.ToPILImage() def image_loader(image_name): image_load = Image.open(image_name) old_size = image_load.size image_load = loader(image_load).unsqueeze(0) new_size = (image_load.size()[2], image_load.size()[3]) print("Rescaling from {}x{} to {}x{}".format(old_size[0], old_size[1], new_size[0], new_size[1])) return image_load.to(device, torch.float) def show_image(tensor, i, row = 1, col = 2): tensor = tensor.squeeze(0) image = unloader(tensor) plt.subplot(row, col, i) plt.imshow(image) #Define content and image_style, if provided use arguments in command line to define images argc = len(sys.argv) default_content = "lozere.jpg" default_style = "stary_night.jpg" if (argc >= 3): style_img_path = sys.argv[1] content_img_path = sys.argv[2] elif (argc == 2): style_img_path = sys.argv[1] content_img_path = default_content else: style_img_path = default_style content_img_path = default_content print("Content image: {} \nStyle image: {} \n".format(content_img_path, style_img_path)) #Load both style and content images, save original size for rescaling output style_img = image_loader(style_img_path) content_img = image_loader(content_img_path) old_size = reversed(Image.open(content_img_path).size) old_size = tuple(old_size) # print(style_img.size(), content_img.size()) assert style_img.size() == content_img.size() #loader to resize output image to its original size load_resize = transforms.Compose([transforms.Resize(old_size), transforms.ToTensor()]) def scale_up_save(tensor, i): resized = tensor.squeeze(0) resized = unloader(resized.cpu()) resized = load_resize(resized) resized = resized.squeeze(0) resized = unloader(resized) resized.save('results_NST/output' + str(i) +'.jpg') print('saving results_NST/output' + str(i) +'.jpg...') #Optional show style and content images # show_image(style_img.cpu(), 1) # show_image(content_img.cpu(), 2) # plt.show() #Content loss function which inherits from pytorch nn.nodule #This function defines the mean squared error between the generated output and the input content image. #It is computed at each iteration and is used in the loss function. class ContentLoss(nn.Module): def __init__(self, target,): super(ContentLoss, self).__init__() # we 'detach' the target content from the tree used # to dynamically compute the gradient: this is a stated value, # not a variable. Otherwise the forward method of the criterion # will throw an error. self.target = target.detach() def forward(self, input): self.loss = F.mse_loss(input, self.target) # print(self.loss) return input #Implementation of laplacian Loss, a pooling layer and a laplacian filter are applied # to the original content image and the generated image # MSE loss is used in place of loss function in the paper, the only effect is on the order of magnitude of the loss # and therefore on the laplacian coefficient used later on. class LaplacianLoss(nn.Module): def __init__(self, target): super(LaplacianLoss, self).__init__() self.target = target.detach() def forward(self, input): lp_filter = torch.tensor([[0,-1,0], [-1,4,-1], [0,-1,0]], dtype= torch.float, device ='cuda') lp_filter = lp_filter.view(1, 1, 3, 3).repeat(1, 3, 1, 1) # print(lp_filter.shape) # print(self.target.shape) # print("\n\n\n\n\n") p_size = 2 target_conv = F.avg_pool2d(self.target, (p_size,p_size)) content_conv = F.avg_pool2d(input, (p_size,p_size)) target_conv = F.conv2d(target_conv, lp_filter, stride = 1, padding = 0) content_conv = F.conv2d(content_conv, lp_filter, stride = 1, padding = 0) self.loss = F.mse_loss(target_conv, content_conv) # self.loss = ((target_conv - content_conv) ** 2).sum() return input #Calculation of gram matrix to compute the style loss. def gram_matrix(input): a, b, c, d = input.size() # a=batch size(=1) / b=number of feature maps / (c,d)=dimensions of a f. map (N=c*d) features = input.view(a * b, c * d) #Torch.mm computes the gram product of the matruix by performing a dot product between the matrix and its transpose G = torch.mm(features, features.t()) # we 'normalize' the values of the gram matrix by dividing by the number of element in each feature maps. return G.div(a * b * c * d) #Style loss function which inherits from pytorch nn.nodule #This function calculate the mean squared difference between the gram matrix of the input and the gram matrix of the generated output image. #It is computed at each iteration and is used in the loss function paired with the content loss. class StyleLoss(nn.Module): def __init__(self, target,): super(StyleLoss, self).__init__() # we 'detach' the target content from the tree used to dynamically compute the gradient: this is a stated value, not a variable. # Otherwise the forward method of the criterion will throw an error. self.target = target.detach() def forward(self, input): self.loss = F.mse_loss(gram_matrix(input), gram_matrix(self.target)) return input #Loading of a pretrained vgg19 model, the model parameters are downloaded the first time this code is run. cnn = models.vgg19(pretrained = True).features.to(device).eval() #Normalization of input image is necessary for this pretrained network. cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) class Normalization(nn.Module): def __init__(self, mean, std): super(Normalization, self).__init__() self.mean = torch.tensor(mean).view(-1, 1, 1) self.std = torch.tensor(std).view(-1, 1, 1) def forward(self, input): return ((input - self.mean) / self.std) #Defining the content and style layers that will be used to compute the loss function. Best results are achieved with early conv layers. content_layers_default = ['conv_4'] style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] # style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5', 'conv_6', 'conv_7', 'conv_8', 'conv_9', 'conv_10', 'conv_11', 'conv_12', 'conv_13', 'conv_14', 'conv_15', 'conv_16'] #Defining model def get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img, content_layers=content_layers_default, style_layers=style_layers_default): #Copies instead of referencing CNN parameters, it seems that it doesnt have much effect on memory usage cnn = copy.deepcopy(cnn) cnn = cnn[0:16] #temp # print(cnn) normalization = Normalization(normalization_mean, normalization_std).to(device) content_losses = [] style_losses = [] laplacian_Loss = 0 # assuming that cnn is a nn.Sequential, so we make a new nn.Sequential to put in modules # that are supposed to be activated sequentially model = nn.Sequential(normalization) i = 0 #Iterating through pretrained CNN model layers, we add each layer to our own model # and build additionnal style and content layers depending on previously defined layers #adding laplacian loss target = model(content_img).detach() laplacian_Loss = LaplacianLoss(target) model.add_module('laplacian_loss_1', laplacian_Loss) for layer in cnn.children(): if isinstance(layer, nn.Conv2d): i += 1 name = 'conv_{}'.format(i) # print(name) elif isinstance(layer, nn.ReLU): name = 'relu_{}'.format(i) # The in-place version doesn't play very nicely with the ContentLoss # and StyleLoss we insert below. So we replace with out-of-place # ones here. layer = nn.ReLU(inplace=False) elif isinstance(layer, nn.MaxPool2d): name = 'pool_{}'.format(i) elif isinstance(layer, nn.BatchNorm2d): name = 'bn_{}'.format(i) else: raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) #Add CNN layer to our model model.add_module(name, layer) if name in content_layers: #Add content loss layer to our model which is defined by passing through the content loss function # the input image which has been processed by previous layers of the CNN target = model(content_img).detach() content_loss = ContentLoss(target) model.add_module("content_loss_{}".format(i), content_loss) content_losses.append(content_loss) if name in style_layers: #Add style loss layer to our model target_feature = model(style_img).detach() style_loss = StyleLoss(target_feature) model.add_module("style_loss_{}".format(i), style_loss) style_losses.append(style_loss) #Removing additional layers for i in range(len(model) - 1, -1, -1): if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss): break model = model[:(i + 1)] return model, style_losses, content_losses, laplacian_Loss #Define input image as a clone of content image to speed up convergence if dargs['random'] == 0: input_img = content_img.clone() else: input_img = torch.randn(content_img.data.size(), device=device) #Define LBFGS optimizer which converges quickly and efficiently compared to other algorithms. #Adam uses slightly less memory but is much slower and has trouble converging. def get_input_optimizer(input_img): optimizer = optim.LBFGS([input_img.requires_grad_()], lr = 1, max_iter = 20, history_size = 10) # optimizer = optim.Adam([input_img.requires_grad_()], lr = 1e-2) return optimizer def run_style_transfer(cnn, normalization_mean, normalization_std, content_img, style_img, input_img, num_steps=dargs['steps'], style_weight=dargs['sw'], content_weight=dargs['cw'], laplacian_weight=dargs['lw']): print('\n\nBuilding the style transfer model..') model, style_losses, content_losses, laplacian_loss = get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img) # print(model) optimizer = get_input_optimizer(input_img) print('Optimizing....') run = [0] #Iterate on num_steps ### var2 = input("\nTrain Model? (y/n) (default:y)\n") ### if var2 == "n": ### num_steps = 100 while run[0] <= num_steps: def closure(): # correct the values of updated input image input_img.data.clamp_(0, 1) #?? optimizer.zero_grad() #Run the input image through the model model(input_img) #Compute sum of style and content losses. style_score, content_score, laplacian_score = 0, 0, laplacian_loss.loss for sl in style_losses: style_score += sl.loss for cl in content_losses: content_score += cl.loss style_score *= style_weight content_score *= content_weight laplacian_score *= laplacian_weight loss = style_score + content_score + laplacian_score #Compute gradients based on loss function loss.backward() run[0] += 1 if run[0] % 50 == 49: print("run {}:".format(run)) print('Style Loss : {:4f} Content Loss: {:4f} Laplacian Loss {:4f}'.format( style_score.item(), content_score.item(), laplacian_score)) print('Memory usage: {} Mo'.format(round(torch.cuda.memory_allocated(device) / 1000000, 2))) print('Memory cached: {} Mo'.format(round(torch.cuda.memory_cached(device) / 1000000, 2))) print() #Save image every 50 iterations if run[0] % 50 == 49: tmp = copy.deepcopy(input_img.data.clamp_(0, 1)) scale_up_save(tmp, run[0] / 5) return style_score + content_score optimizer.step(closure) input_img.data.clamp_(0, 1) print('Training Finished') ### save = input("Save model ? (y/n)(default:y)\n") ### if save != "n": ### torch.save(model.state_dict(), "model_save.txt") return input_img output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std, content_img, style_img, input_img) i = 1 #Show final output and print time plt.figure(figsize=(20,20)) show_image(output.detach().cpu(), 1, 1, 1) print("Program has taken {}s to compute.".format(round(time.time() - begin, 2))) plt.show()
286c7731d8f8b34e7e7b66859dbdceddead2240a
9b01f7d430f7ee87217618cfa4567f42635e8923
/22-06-2017/cloudformation/nginx-demo-1/ansible/.env/lib/python2.7/site-packages/ansible/plugins/lookup/sequence.py
677d15319af9893132e24c8017e01a2a18639c86
[]
no_license
awsusergroupsantiago/demos
ccb045545d2a407a39d865cf19800d2b6d284b8f
e7f0dc8d9a4e8f2547c33a5a294fd76bf3ac9c9c
refs/heads/master
2022-04-30T23:43:30.646556
2020-08-08T01:35:40
2020-08-08T01:35:40
95,129,959
2
0
null
2022-03-29T21:54:09
2017-06-22T15:29:25
Python
UTF-8
Python
false
false
7,113
py
# (c) 2013, Jayson Vantuyl <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) __metaclass__ = type from re import compile as re_compile, IGNORECASE from ansible.compat.six.moves import xrange from ansible.errors import AnsibleError from ansible.parsing.splitter import parse_kv from ansible.plugins.lookup import LookupBase # shortcut format NUM = "(0?x?[0-9a-f]+)" SHORTCUT = re_compile( "^(" + # Group 0 NUM + # Group 1: Start "-)?" + NUM + # Group 2: End "(/" + # Group 3 NUM + # Group 4: Stride ")?" + "(:(.+))?$", # Group 5, Group 6: Format String IGNORECASE ) class LookupModule(LookupBase): """ sequence lookup module Used to generate some sequence of items. Takes arguments in two forms. The simple / shortcut form is: [start-]end[/stride][:format] As indicated by the brackets: start, stride, and format string are all optional. The format string is in the style of printf. This can be used to pad with zeros, format in hexadecimal, etc. All of the numerical values can be specified in octal (i.e. 0664) or hexadecimal (i.e. 0x3f8). Negative numbers are not supported. Some examples: 5 -> ["1","2","3","4","5"] 5-8 -> ["5", "6", "7", "8"] 2-10/2 -> ["2", "4", "6", "8", "10"] 4:host%02d -> ["host01","host02","host03","host04"] The standard Ansible key-value form is accepted as well. For example: start=5 end=11 stride=2 format=0x%02x -> ["0x05","0x07","0x09","0x0a"] This format takes an alternate form of "end" called "count", which counts some number from the starting value. For example: count=5 -> ["1", "2", "3", "4", "5"] start=0x0f00 count=4 format=%04x -> ["0f00", "0f01", "0f02", "0f03"] start=0 count=5 stride=2 -> ["0", "2", "4", "6", "8"] start=1 count=5 stride=2 -> ["1", "3", "5", "7", "9"] The count option is mostly useful for avoiding off-by-one errors and errors calculating the number of entries in a sequence when a stride is specified. """ def reset(self): """set sensible defaults""" self.start = 1 self.count = None self.end = None self.stride = 1 self.format = "%d" def parse_kv_args(self, args): """parse key-value style arguments""" for arg in ["start", "end", "count", "stride"]: try: arg_raw = args.pop(arg, None) if arg_raw is None: continue arg_cooked = int(arg_raw, 0) setattr(self, arg, arg_cooked) except ValueError: raise AnsibleError( "can't parse arg %s=%r as integer" % (arg, arg_raw) ) if 'format' in args: self.format = args.pop("format") if args: raise AnsibleError( "unrecognized arguments to with_sequence: %r" % args.keys() ) def parse_simple_args(self, term): """parse the shortcut forms, return True/False""" match = SHORTCUT.match(term) if not match: return False _, start, end, _, stride, _, format = match.groups() if start is not None: try: start = int(start, 0) except ValueError: raise AnsibleError("can't parse start=%s as integer" % start) if end is not None: try: end = int(end, 0) except ValueError: raise AnsibleError("can't parse end=%s as integer" % end) if stride is not None: try: stride = int(stride, 0) except ValueError: raise AnsibleError("can't parse stride=%s as integer" % stride) if start is not None: self.start = start if end is not None: self.end = end if stride is not None: self.stride = stride if format is not None: self.format = format def sanity_check(self): if self.count is None and self.end is None: raise AnsibleError( "must specify count or end in with_sequence") elif self.count is not None and self.end is not None: raise AnsibleError( "can't specify both count and end in with_sequence") elif self.count is not None: # convert count to end if self.count != 0: self.end = self.start + self.count * self.stride - 1 else: self.start = 0 self.end = 0 self.stride = 0 del self.count if self.stride > 0 and self.end < self.start: raise AnsibleError("to count backwards make stride negative") if self.stride < 0 and self.end > self.start: raise AnsibleError("to count forward don't make stride negative") if self.format.count('%') != 1: raise AnsibleError("bad formatting string: %s" % self.format) def generate_sequence(self): if self.stride >= 0: adjust = 1 else: adjust = -1 numbers = xrange(self.start, self.end + adjust, self.stride) for i in numbers: try: formatted = self.format % i yield formatted except (ValueError, TypeError): raise AnsibleError( "problem formatting %r with %r" % self.format ) def run(self, terms, variables, **kwargs): results = [] for term in terms: try: self.reset() # clear out things for this iteration try: if not self.parse_simple_args(term): self.parse_kv_args(parse_kv(term)) except Exception as e: raise AnsibleError("unknown error parsing with_sequence arguments: %r. Error was: %s" % (term, e)) self.sanity_check() if self.stride != 0: results.extend(self.generate_sequence()) except AnsibleError: raise except Exception as e: raise AnsibleError( "unknown error generating sequence: %s" % e ) return results
451282af5adab19e1e4c182523f7cc39af24bd1b
8034b64a63e9c23e255a2171cd441512b60a8316
/tasks.py
a3083f5a3b60dc8bc5418966c39c7972fd920447
[ "MIT" ]
permissive
Design-Machine-Group/compas_roomacoustics
bb1e90bc5f0764209c44fc71831db101b90bc5a5
1eb166fa56a636222d985b542f5ce4cc4453ce62
refs/heads/master
2022-12-12T03:07:29.243427
2020-08-25T17:48:08
2020-08-25T17:48:08
210,474,746
2
0
null
null
null
null
UTF-8
Python
false
false
5,988
py
# -*- coding: utf-8 -*- from __future__ import print_function import contextlib import glob import os import sys from shutil import rmtree from invoke import Exit from invoke import task try: input = raw_input except NameError: pass BASE_FOLDER = os.path.dirname(__file__) class Log(object): def __init__(self, out=sys.stdout, err=sys.stderr): self.out = out self.err = err def flush(self): self.out.flush() self.err.flush() def write(self, message): self.flush() self.out.write(message + '\n') self.out.flush() def info(self, message): self.write('[INFO] %s' % message) def warn(self, message): self.write('[WARN] %s' % message) log = Log() def confirm(question): while True: response = input(question).lower().strip() if not response or response in ('n', 'no'): return False if response in ('y', 'yes'): return True print('Focus, kid! It is either (y)es or (n)o', file=sys.stderr) @task(default=True) def help(ctx): """Lists available tasks and usage.""" ctx.run('invoke --list') log.write('Use "invoke -h <taskname>" to get detailed help for a task.') @task(help={ 'docs': 'True to clean up generated documentation, otherwise False', 'bytecode': 'True to clean up compiled python files, otherwise False.', 'builds': 'True to clean up build/packaging artifacts, otherwise False.'}) def clean(ctx, docs=True, bytecode=True, builds=True): """Cleans the local copy from compiled artifacts.""" with chdir(BASE_FOLDER): if builds: ctx.run('python setup.py clean') if bytecode: for root, dirs, files in os.walk(BASE_FOLDER): for f in files: if f.endswith('.pyc'): os.remove(os.path.join(root, f)) if '.git' in dirs: dirs.remove('.git') folders = [] if docs: folders.append('docs/api/generated') folders.append('dist/') if bytecode: for t in ('src', 'tests'): folders.extend(glob.glob('{}/**/__pycache__'.format(t), recursive=True)) if builds: folders.append('build/') folders.append('src/compas_roomacoustics.egg-info/') for folder in folders: rmtree(os.path.join(BASE_FOLDER, folder), ignore_errors=True) @task(help={ 'rebuild': 'True to clean all previously built docs before starting, otherwise False.', 'doctest': 'True to run doctests, otherwise False.', 'check_links': 'True to check all web links in docs for validity, otherwise False.'}) def docs(ctx, doctest=False, rebuild=True, check_links=False): """Builds package's HTML documentation.""" if rebuild: clean(ctx) with chdir(BASE_FOLDER): if doctest: ctx.run('sphinx-build -E -b doctest docsource docs') ctx.run('sphinx-build -E -b html docsource docs') if check_links: ctx.run('sphinx-build -E -b linkcheck docsource docs') @task() def check(ctx): """Check the consistency of documentation, coding style and a few other things.""" with chdir(BASE_FOLDER): log.write('Checking MANIFEST.in...') ctx.run('check-manifest --ignore-bad-ideas=test.so,fd.so,smoothing.so,drx_c.so') log.write('Checking metadata...') ctx.run('python setup.py check --strict --metadata') # log.write('Running flake8 python linter...') # ctx.run('flake8 src tests setup.py') # log.write('Checking python imports...') # ctx.run('isort --check-only --diff --recursive src tests setup.py') @task(help={ 'checks': 'True to run all checks before testing, otherwise False.'}) def test(ctx, checks=False, doctest=False): """Run all tests.""" if checks: check(ctx) with chdir(BASE_FOLDER): cmd = ['pytest'] if doctest: cmd.append('--doctest-modules') ctx.run(' '.join(cmd)) @task def prepare_changelog(ctx): """Prepare changelog for next release.""" UNRELEASED_CHANGELOG_TEMPLATE = '## Unreleased\n\n### Added\n\n### Changed\n\n### Removed\n\n\n## ' with chdir(BASE_FOLDER): # Preparing changelog for next release with open('CHANGELOG.md', 'r+') as changelog: content = changelog.read() changelog.seek(0) changelog.write(content.replace( '## ', UNRELEASED_CHANGELOG_TEMPLATE, 1)) ctx.run('git add CHANGELOG.md && git commit -m "Prepare changelog for next release"') @task(help={ 'release_type': 'Type of release follows semver rules. Must be one of: major, minor, patch.'}) def release(ctx, release_type): """Releases the project in one swift command!""" if release_type not in ('patch', 'minor', 'major'): raise Exit('The release type parameter is invalid.\nMust be one of: major, minor, patch') # Run checks ctx.run('invoke check test') # Bump version and git tag it ctx.run('bumpversion %s --verbose' % release_type) # Build project ctx.run('python setup.py clean --all sdist bdist_wheel') # Upload to pypi if confirm('You are about to upload the release to pypi.org. Are you sure? [y/N]'): files = ['dist/*.whl', 'dist/*.gz', 'dist/*.zip'] dist_files = ' '.join([pattern for f in files for pattern in glob.glob(f)]) if len(dist_files): ctx.run('twine upload --skip-existing %s' % dist_files) prepare_changelog(ctx) else: raise Exit('No files found to release') else: raise Exit('Aborted release') @contextlib.contextmanager def chdir(dirname=None): current_dir = os.getcwd() try: if dirname is not None: os.chdir(dirname) yield finally: os.chdir(current_dir)
b48812a7cf6c9c96ef3032fea5de658e810a739d
6527c6f9e0e3c81090a87894e1f9759d3ad9ca3e
/main_app/apps/delivery/delivery_exceptions.py
3d0f1b6d469473870daf72f0eef318dd6684b4bd
[]
no_license
worlddeleteRin/eda_edet_backend
7692611facc191b5a987dcc6a98b3c1e27ab1cff
593a77bcc8f9619b9db6e99c92b2880716b450e3
refs/heads/master
2023-08-24T03:38:34.809418
2021-10-29T15:21:38
2021-10-29T15:21:38
405,609,561
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
from fastapi import HTTPException, status class DeliveryMethodNotExist(HTTPException): def __init__(self): self.status_code = 400 self.detail = "DeliveryMethod not exist"
4526c354576f6fc27aea54a02a8cf7891d6e97a3
dc7daedfaa6207380873a5243888cc8dc9b410c4
/CataractProject_New/InformTable/migrations/0005_auto_20190923_0922.py
9200708197aa2fb151ad6e5049aee74f774a7725
[ "MIT" ]
permissive
Pangxiaox/Cataract-Platform
bd25ca897be8e333a34a05c70e91cb612e34c187
605293093f8a9c28b33e29ab4253f8e5c407788f
refs/heads/master
2020-07-15T08:33:35.589392
2019-11-04T16:53:25
2019-11-04T16:53:25
205,521,190
0
2
null
null
null
null
UTF-8
Python
false
false
949
py
# Generated by Django 2.2.5 on 2019-09-23 01:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('InformTable', '0004_auto_20190922_2231'), ] operations = [ migrations.AlterField( model_name='eyeexamine', name='left_intraocularpressure', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='eyeexamine', name='left_vision', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='eyeexamine', name='right_intraocularpressure', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='eyeexamine', name='right_vision', field=models.FloatField(blank=True, null=True), ), ]
5fe18f1d52089d6f4a506a552bc32aadb587f980
ed73bdb29c31f776fe22f7cae545b03084515bc2
/stack_usingLL.py
102dead96b9f53104ffcc4eff9ab9ebc9d2bc8ac
[]
no_license
pratiyush23/lecture0
8eca4d8ce22de717a01a72be5b4fb1511a8c46e7
0ad901bdce37cfbf0c6d3df5fbee5dcd628cda37
refs/heads/master
2021-05-23T08:16:00.913054
2020-12-25T12:45:44
2020-12-25T12:45:44
253,193,358
0
0
null
null
null
null
UTF-8
Python
false
false
985
py
# class to create new node class Node: def __init__(self,data): self.data = data self.next = None #class to implement stack class stack: # to create stack using LL, need to intialise head def __init__(self): self.__head = None self.__count = 0 def push(self,element): newnode = Node(element) newnode.next = self.__head self.__head = newnode self.__count = self.__count+1 def pop(self): if self.isEmpty() is True: print("stack is empty") return data = self.__head.data self.__head = self.__head.next self.__count = self.__count+1 return data def top(self): if self.isEmpty() is True: print("stack is empty") return data = self.__head.data return data def size(self): return self.__count def isEmpty(self): return self.size() == 0 print("Hello world")
7fcee8f82bd039ff027fc4ed9a2739cd4af5e95b
fb4bdb96dc895fe3d0d59e8087682499446d3338
/lab7/demoo/asgi.py
3c5792859cf22232d77073fd9f0fa01deef08ed1
[]
no_license
aiddana19/web
649fe21880a761bab7a7c008c71352c601970c9b
3554f2ea7397a1a2ef67c5e2258ba138f1964923
refs/heads/main
2023-04-06T21:11:56.891931
2021-04-14T21:27:50
2021-04-14T21:27:50
336,527,788
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
""" ASGI config for demoo project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'demoo.settings') application = get_asgi_application()
be0e4151b1eef7e095765d3b69de5b4a280c88ab
7207c610f771a20c7afd4e5e48ba79156ac621a9
/MultiObjectiveModel_YMPNet_Pavan/genrate_3dmodel/nwrite_ply_seg.py
4794a4e5ccd85b609b3301199aef1831635f7611
[ "MIT" ]
permissive
eva5covergence/EVA5_AI_Projects_new
56694909da2a057f85f47ebce0d04217a730f8c5
7052373c52b6b9901cd0bc05a4758dd4b63f7480
refs/heads/master
2023-01-22T11:40:14.236296
2020-12-06T18:09:56
2020-12-06T18:09:56
293,308,541
7
3
null
null
null
null
UTF-8
Python
false
false
7,853
py
import os import cv2 import random import numpy as np from PIL import Image from distutils.version import LooseVersion from sacred import Experiment from easydict import EasyDict as edict import torch import torch.nn.functional as F import torchvision.transforms as tf from models.baseline_same import Baseline as UNet from utils.disp import tensor_to_image from utils.disp import colors_256 as colors from bin_mean_shift import Bin_Mean_Shift from modules import get_coordinate_map from utils.loss import Q_loss from instance_parameter_loss import InstanceParameterLoss ex = Experiment() folder = './outputs' index = 0 @ex.main def predict(_run, _log): cfg = edict(_run.config) torch.manual_seed(cfg.seed) np.random.seed(cfg.seed) random.seed(cfg.seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # build network network = UNet(cfg.model) if not (cfg.resume_dir == 'None'): model_dict = torch.load(cfg.resume_dir, map_location=lambda storage, loc: storage) network.load_state_dict(model_dict) # load nets into gpu if cfg.num_gpus > 1 and torch.cuda.is_available(): network = torch.nn.DataParallel(network) network.to(device) network.eval() transforms = tf.Compose([ tf.ToTensor(), tf.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) bin_mean_shift = Bin_Mean_Shift(device=device) k_inv_dot_xy1 = get_coordinate_map(device) instance_parameter_loss = InstanceParameterLoss(k_inv_dot_xy1) h, w = 192, 256 focal_length = 517.97 offset_x = 320 offset_y = 240 K = [[focal_length, 0, offset_x], [0, focal_length, offset_y], [0, 0, 1]] K_inv = np.linalg.inv(np.array(K)) K_inv_dot_xy_1 = np.zeros((3, h, w)) for y in range(h): for x in range(w): yy = float(y) / h * 480 xx = float(x) / w * 640 ray = np.dot(K_inv, np.array([xx, yy, 1]).reshape(3, 1)) K_inv_dot_xy_1[:, y, x] = ray[:, 0] with torch.no_grad(): image = cv2.imread(cfg.image_path) # the network is trained with 192*256 and the intrinsic parameter is set as ScanNet image = cv2.resize(image, (w, h)) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = Image.fromarray(image) image = transforms(image) image = image.to(device).unsqueeze(0) # forward pass logit, embedding, _, _, param = network(image) prob = torch.sigmoid(logit[0]) # infer per pixel depth using per pixel plane parameter, currently Q_loss need a dummy gt_depth as input _, _, per_pixel_depth = Q_loss(param, k_inv_dot_xy1, torch.ones_like(logit)) # fast mean shift segmentation, sampled_segmentation, sample_param = bin_mean_shift.test_forward( prob, embedding[0], param, mask_threshold=0.1) # since GT plane segmentation is somewhat noise, the boundary of plane in GT is not well aligned, # we thus use avg_pool_2d to smooth the segmentation results b = segmentation.t().view(1, -1, h, w) pooling_b = torch.nn.functional.avg_pool2d(b, (7, 7), stride=1, padding=(3, 3)) b = pooling_b.view(-1, h*w).t() segmentation = b # infer instance depth instance_loss, instance_depth, instance_abs_disntace, instance_parameter = instance_parameter_loss( segmentation, sampled_segmentation, sample_param, torch.ones_like(logit), torch.ones_like(logit), False) # return cluster results segmentation = segmentation.cpu().numpy().argmax(axis=1) # mask out non planar region segmentation[prob.cpu().numpy().reshape(-1) <= 0.1] = 20 segmentation = segmentation.reshape(h, w) # visualization and evaluation image = tensor_to_image(image.cpu()[0]) mask = (prob > 0.1).float().cpu().numpy().reshape(h, w) depth = instance_depth.cpu().numpy()[0, 0].reshape(h, w) per_pixel_depth = per_pixel_depth.cpu().numpy()[0, 0].reshape(h, w) # use per pixel depth for non planar region depth = depth * (segmentation != 20) + per_pixel_depth * (segmentation == 20) # change non planar to zero, so non planar region use the black color segmentation += 1 segmentation[segmentation == 21] = 0 pred_seg = cv2.resize(np.stack([colors[segmentation, 0], colors[segmentation, 1], colors[segmentation, 2]], axis=2), (w, h)) # blend image blend_pred = (pred_seg * 0.4 + image * 0.6).astype(np.uint8) mask = cv2.resize((mask * 255).astype(np.uint8), (w, h)) mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) # visualize depth map as PlaneNet depth = 255 - np.clip(depth / 5 * 255, 0, 255).astype(np.uint8) depth = cv2.cvtColor(cv2.resize(depth, (w, h)), cv2.COLOR_GRAY2BGR) image_c = np.concatenate((image, pred_seg, blend_pred, mask, depth), axis=1) imageFilename = str(index) + '_model_texture.png' cv2.imwrite(folder + '/' + imageFilename, image_c) # create face from segmentation faces = [] for y in range(h-1): for x in range(w-1): segmentIndex = segmentation[y, x] # ignore non planar region if segmentIndex == 0: continue # add face if three pixel has same segmentatioin depths = [depth[y][x], depth[y + 1][x], depth[y + 1][x + 1]] if segmentation[y + 1, x] == segmentIndex and segmentation[y + 1, x + 1] == segmentIndex and np.array(depths).min() > 0 and np.array(depths).max() < 10: faces.append((x, y, x, y + 1, x + 1, y + 1)) depths = [depth[y][x], depth[y][x + 1], depth[y + 1][x + 1]] if segmentation[y][x + 1] == segmentIndex and segmentation[y + 1][x + 1] == segmentIndex and np.array(depths).min() > 0 and np.array(depths).max() < 10: faces.append((x, y, x + 1, y + 1, x + 1, y)) with open(folder + '/' + str(index) + '_model.ply', 'w') as f: header = """ply format ascii 1.0 comment VCGLIB generated comment TextureFile """ header += imageFilename header += """ element vertex """ header += str(h * w) header += """ property float x property float y property float z property uchar red { start of vertex color } property uchar green property uchar blue element face """ header += str(len(faces)) header += """ property list uchar int vertex_indices property list uchar float texcoord end_header """ f.write(header) for y in range(h): for x in range(w): segmentIndex = segmentation[y][x] if segmentIndex == 20: f.write("0.0 0.0 0.0\n") continue ray = K_inv_dot_xy_1[:, y, x] X, Y, Z = ray * depth[y, x] R, G, B = image[y,x] f.write(str(X) + ' ' + str(Y) + ' ' + str(Z) + ' ' + str(R) + ' ' + str(G) + ' ' + str(B) + '\n') for face in faces: f.write('3 ') for c in range(3): f.write(str(face[c * 2 + 1] * w + face[c * 2]) + ' ') f.write('6 ') for c in range(3): f.write(str(float(face[c * 2]) / w) + ' ' + str(1 - float(face[c * 2 + 1]) / h) + ' ') f.write('\n') f.close() pass return if __name__ == '__main__': assert LooseVersion(torch.__version__) >= LooseVersion('0.4.0'), \ 'PyTorch>=0.4.0 is required' ex.add_config('./configs/predict.yaml') ex.run_commandline()
9766f5ae5551f7b344ac55fbab96416af2689fc8
0bcf4b5027080223031b3c697408cedd7798afaa
/common/xrd-ui-tests-python/tests/xroad_audit_log/XroadAuditLog.py
3d0ad6aac1fad359d20d0a1adc0d4f58c919f9e3
[ "MIT" ]
permissive
asaquality/X-Road-tests
0fbfcf64a41ff4bc23f0083e35f834fab951ae24
51208cb7b06619f391c881e938a270c11ff00fab
refs/heads/develop
2021-01-15T23:20:55.096511
2018-06-13T13:28:06
2018-06-13T13:28:06
99,924,513
0
2
null
2017-08-10T13:11:48
2017-08-10T13:11:48
null
UTF-8
Python
false
false
3,303
py
# coding=utf-8 import unittest import tests.xroad_audit_log.audit_log as audit_log from main.maincontroller import MainController import json import sys class XroadAuditLog(unittest.TestCase): """ Stand-alone test for checking X-Road audit.log after running tests that generate log entries. Gets the parameters of the server to connect to from the configuration, specified by parameter audit.server. RIA URL: https://jira.ria.ee/browse/XTKB-8 Depends on finishing other test(s): Requires helper scenarios: X-Road version: 6.16.0 """ def test_xroad_audit_log(self): ''' audit.log checking test. Checks if audit.log of a specified server contains specified (in configuration or command-line parameters) entries. Test succeeds if all of the entries are found; fails otherwise. :return: None ''' main = MainController(self) # Set test name and number main.test_number = 'XroadAuditLog' main.test_name = self.__class__.__name__ # Get parameters from the configuration file. # We can supply a "server" name to this test. This means that it uses this name as a category name and # fetches ssh_host, ssh_user and ssh_pass of this category. For example, you can set audit.server=ss1 and # the values that are used are ss1.ssh_host, ss1.ssh_user, and ss1.ssh_pass respectively. audit_server = main.config.get('audit.server') if audit_server is not None: # audit.server was supplied so we're reading data from the sections xroad_server = main.config.get('{0}.ssh_host'.format(audit_server)) ssh_username = main.config.get('{0}.ssh_user'.format(audit_server)) ssh_password = main.config.get('{0}.ssh_pass'.format(audit_server)) else: # If audit.server was not supplied, we read each parameter separately xroad_server = main.config.get('audit.ssh_host') ssh_username = main.config.get('audit.ssh_user') ssh_password = main.config.get('audit.ssh_pass') # Get logfile logfile = main.config.get('audit.logfile') # Get data to be checked check_json = main.config.get('audit.check-logs') # Read data from this line from_line = main.config.get_int('audit.from-line', 0) # Because the supplied parameter may also be a string, use try-except try: check_entries = json.loads(check_json) except (ValueError, TypeError): check_entries = [check_json] sys.exc_clear() # Configure the service test_audit_log = audit_log.test_audit_log(case=main, xroad_server=xroad_server, ssh_username=ssh_username, ssh_password=ssh_password, logfile=logfile) try: # Run audit.log checking test_audit_log(check_lines=check_entries, from_line=from_line) except: main.log('XroadAuditLog: audit.log check failed for: {0}'.format(check_json)) main.save_exception_data() raise finally: # Test teardown main.tearDown()
3b830d17f916075a8bf9d0a4962c5d1436ba5103
3ae34c59cf0a0eb1ad02fc89bfa69acf32e3a581
/code/utils/patch.py
d712cf7090aea1f399b5f8342817551a8199d278
[]
no_license
hyliang96/pytorch_template
883b06658521ca214a2ee7a74cf2227cf1d26047
3031e812b9e1bab5955256cb21d303ae6d5f7ffc
refs/heads/master
2021-07-10T09:47:24.610579
2020-11-08T20:24:03
2020-11-08T20:24:03
203,366,515
4
1
null
null
null
null
UTF-8
Python
false
false
343
py
# __all__ = ["_tqdm", "_meter", "_state_dict", "_misc"] # from ._tqdm import * # from ._meter import * # from ._state_dict import * # from ._misc import * # from _tqdm import * # from _meter import * # from _state_dict import * # from _misc import * from . import _tqdm from . import _meter from . import _state_dict from . import _misc
8114a5dbf8b1606bf1387ec8f8939d36c5ea1eaf
1abb5ab0580d69b11d1688424adf1e624c554a7a
/gitdemo/wsgi.py
3ce89c28f219afa3c2dab7cad42bdda0fc01776a
[]
no_license
wzw5566/gitdemo
2994e768168f840cf9bb4e19a32ef49025fdde14
efe89493b1801830d3e445c049eabd52191fa527
refs/heads/master
2021-01-19T14:46:06.197242
2017-04-01T00:07:34
2017-04-01T00:07:34
86,638,627
0
0
null
null
null
null
UTF-8
Python
false
false
392
py
""" WSGI config for gitdemo project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "gitdemo.settings") application = get_wsgi_application()
5288b19cab98fb5e5d327276ad479db412c99148
51c13596cb3f56380c847ee6e5b888963f887929
/program.py
9761142394236bf414d37280b0286b3f7c13dcfe
[]
no_license
j-skalicky/shamir
9144c1d7cd12d040c7b88223ee4256fbf8c01750
9412255cc7c94e2311ab266a7d33a751c1995850
refs/heads/main
2023-07-05T14:48:44.639094
2021-09-04T12:10:24
2021-09-04T12:10:24
399,807,780
0
0
null
null
null
null
UTF-8
Python
false
false
4,196
py
from shamir import ShamirSecretShare from base64 import b32decode, b32encode, decode import os class Program: def __init__(self) -> None: self.shamir = ShamirSecretShare() def intro(self) -> None: print('\nVítejte! Toto je jednoduchý program na Shamirovo sdílení tajemství.\n\n') #print('Současné nastavení: ') print('Možnosti:\n\t1 zadat tajné heslo a rozdělit ho mezi několik účastníků\n' '\t2 zadat jednotlivé části a rekonstruovat celé tajemství\n') self.main_menu() def main_menu(self) -> None: r = input("Co chcete dělat? Zadejte 1 nebo 2 a stiskněte ENTER: ") if r == '1': self.split_secret() elif r == '2': self.enter_secret() else: self.cls() print('Musíte zadat 1 nebo 2, nic jiného. Zkuste to znovu.\n\n') self.main_menu() def split_secret(self) -> None: self.cls() secret = input("Zadejte své tajemství, které chcete rozdělit: ") self.shamir.set_message(secret) shares = self.shamir.split_secret() self.cls() print('Zadané tajemství bylo rozděleno na následující části:\n') for i in range(1, len(shares)+1): print('\t{:d}: {:s}'.format(i, self.share_to_string(shares[i]))) print('\nPamatujte, k obnovení tajemství stačí jen {:d} z {:d} částí.'.format(self.shamir.get_threshold(), self.shamir.get_holders())) def enter_secret(self) -> None: if self.shamir.is_solvable(): self.show_result() return print('Už mám {:d} část(i), potřebuji aspoň {:d}.\n'.format(self.shamir.get_shares_count(), self.shamir.get_threshold())) s = input('Zadejte 1 a ENTER k zadání další části tajemství - anebo cokoliv jiného pro ukončení programu: ') if s == '1': # secret number i = input('Zadejte číslo části tajemství: ') try: i = int(i) # secret value s = input('Zadejte část tajemství: ') # convert the Base32-encoded value to int and add it to the ShamirShare object b = b32decode(self.remove_human_readability(s)) r = int.from_bytes(b, byteorder='big') self.cls() self.shamir.add_share(i, r) except: print('Hmm, špatné zadání, zkuste to znovu.\n\n') self.enter_secret() else: s = input('Opravdu opustit program? (y/n) ') if s == 'y': print('Ukončování...\n\n') quit() else: self.enter_secret() def show_result(self) -> None: if self.shamir.is_solvable(): secret = self.shamir.reconstruct_secret() print('HOORAY! Podařilo se odkrýt skryté tajemství!\n\nSkrytá tajná hodnota je: {:s}\n\nA nezapomeňte: with great power comes great responsibility! :-)\n\n\n'.format(secret)) def remove_human_readability(self, val: str): noDashes = val.replace('-', '').upper() padLen = (len(noDashes) * 5) % 8 if padLen > 0: padLen = 8 - padLen return noDashes + ('=' * padLen) def string_to_human_readable(self, val: str): val = val.strip('=') r = '' for i in range(0, len(val), 5): r += val[i:i+5] + '-' return r[:-1] def share_to_string(self, share: int) -> str: shareBytes = self.remove_zeros((share).to_bytes(self.shamir.get_max_bytes(), byteorder='big')) return self.string_to_human_readable(b32encode(shareBytes).decode('utf-8')) def remove_zeros(self, b: bytes) -> bytes: if len(b) < 1: return b split = -1 for i in range(len(b)): if b[i] == 0: split = i else: break if split >= 0: b = b[split+1:] return b def cls(self): os.system('cls' if os.name=='nt' else 'clear')
aef0c8480c917bc229594cae6ec37dddd5516166
546646a49b5cc0a19c3659ecab21743401c1f418
/Problem 0010/main.py
834113b49cbbf92ae9a33748e3f637e4a7b3583a
[]
no_license
Kippiii/Project-Euler
12c2bd336c27e7408aee730f6a6094fc4afae8e0
2f1218929aab4c580882f8078572fb55e8fbc100
refs/heads/master
2020-07-07T06:38:46.627887
2019-08-23T02:44:55
2019-08-23T02:44:55
203,280,333
0
0
null
null
null
null
UTF-8
Python
false
false
321
py
LENGTH = 2000000 def attempt_removal(n, nums): for i in range(2 * n, LENGTH + 1, n): nums[i] = 0 nums = [0] * (LENGTH + 1) for i in range(2, len(nums)): nums[i] = i; for n in nums: if n != 0: attempt_removal(n, nums) sum = 0 for i in nums: sum += i print(f'The sum is {sum}.')
04bdd549e01ff64fbc6ecf237ca1619467cc6d2a
fb8dfbd2758ed01995687f2ce46923c96d86506f
/bikeshare.py
f302474ccac3f660854f7c568a587a0380684677
[]
no_license
dhruv-3d/bikeshare-data-analysis
a23aab90b9d74b93d726bfc504ef65f419b0e658
1615c66e13cd916bc103e275379eaefcb109d075
refs/heads/master
2022-12-12T15:17:38.340860
2021-02-16T21:49:31
2021-02-16T21:49:31
143,008,522
0
0
null
2021-06-01T22:32:59
2018-07-31T12:02:39
Python
UTF-8
Python
false
false
8,841
py
import time import pandas as pd import numpy as np CITY_DATA = {'chicago': 'chicago.csv', 'new york city': 'new_york_city.csv', 'washington': 'washington.csv'} DAYS = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] MONTHS = ['January', 'February', 'March', 'April', 'May', 'June'] def get_filters(): """ Asks user to specify a city and a choice for month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('='*60) print("\nHello! Let\'s explore some US bikeshare data!") print("Available cities are:- \n \ chicago\n \ new york city\n \ washington") # get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs city = '' while city not in ['chicago', 'new york city', 'washington']: if city != '': print('Wrong input, please enter a city name again from above.') city = input('Enter city name to analyze: ').lower() more_filter = input( 'Would you like to explore the bikshare data for particular month and day? \ Enter yes or no.\n').lower() if more_filter == 'yes': # get user input for month (all, january, february, ... , june) print('\nThe months range from January to June.') month = input( "Enter name of the month to filter by, or 'all' to apply no month filter:\n") # get user input for day of week (all, monday, tuesday, ... sunday) day = input( "Enter name of the day of week to filter by, or 'all' to apply no day filter:\n") else: month = 'all' day = 'all' print('-'*40) return city, month, day def load_data(city, month, day): """ Loads data for the specified city and filters by month and day if applicable. Args: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter Returns: df - Pandas DataFrame containing city data filtered by month and day """ print('\nPreparing the data...\n') df = pd.read_csv('./web_app/' + CITY_DATA[city]) df['Start Time'] = pd.to_datetime(df['Start Time']) df['End Time'] = pd.to_datetime(df['End Time']) df['month'] = df['Start Time'].dt.month df['day_of_week'] = df['Start Time'].dt.weekday_name df['hour'] = df['Start Time'].dt.hour # hour column df['routes'] = df['Start Station'] + ' to ' + \ df['End Station'] # station combination try: # filtering by month if applicable if month != 'all': # use the index of the MONTHS list to get the corresponding int month = MONTHS.index(month.title()) + 1 df = df[df['month'] == month] # filtering by day of week if applicable if day != 'all': df = df[df['day_of_week'] == day.title()] return df except: raise Exception def time_stats(df): """Displays statistics on the most frequent times of travel.""" print('\nCalculating The Most Frequent Times of Travel...\n') start_time = time.time() # Display the most common month common_month = df['month'].mode()[0] common_month = MONTHS[common_month-1].title() print("\nThe most popular month is: ", common_month) # Display the most common day of week common_day = df['day_of_week'].mode()[0] print("\nThe most popular day of the week is: ", common_day) # Display the most common start hour df['hour'] = df['Start Time'].dt.hour common_hour = df['hour'].mode()[0] print("\nThe most popular starting hour is: ", common_hour) print("\nThis took %.5s seconds." % (time.time() - start_time)) print('-'*40) def station_stats(df): """Displays statistics on the most popular stations and trip.""" print('\nCalculating The Most Popular Stations and Trip...\n') start_time = time.time() # Display most commonly used start station popular_start_st = df['Start Station'].mode()[0] print("\nThe most popular start station is: ", popular_start_st) # Display most commonly used end station popular_end_st = df['End Station'].mode()[0] print("\nThe most popular end station is: ", popular_end_st) # Display most frequent combination of start station and end station trip pop = df['routes'].value_counts() # fetched the id of the max value occured from "routes" column popular_route = pop.idxmax() print('\nMost popular route from Start Station to End Station is from\n', popular_route) print("\nThis took %.5s seconds." % (time.time() - start_time)) print('-'*40) def trip_duration_stats(df): """Displays statistics on the total and average trip duration.""" print('\nCalculating Trip Duration...\n') start_time = time.time() # Display total travel time total_time = df['Trip Duration'].sum() print("\nTotal travel time of all the trips is %d hours and %d minutes" % (total_time/3600, (total_time/60) % 60)) # Display mean travel time mean_time = df['Trip Duration'].mean() print("\nMean travel time of all the trips is %d minutes and %d seconds" % (mean_time/60, mean_time % 60)) print("\nThis took %.5s seconds." % (time.time() - start_time)) print('-'*40) def user_stats(df): """Displays statistics on bikeshare users.""" print('\nCalculating User Stats...\n') start_time = time.time() if('User Type' in df): # Display counts of user types user_types = df['User Type'].value_counts() print("The types of users and their counts:-\n") for i in range(len(user_types)): print("%s: %s" % (user_types.index[i], user_types[user_types.index[i]])) if('Gender' in df): # Display counts of gender gender_counts = df['Gender'].value_counts() print("\nGender counts of user:-\n") for i in range(len(gender_counts)): print("%s: %s" % (gender_counts.index[i], gender_counts[gender_counts.index[i]])) if('Birth Year' in df): # Display earliest, most recent, and most common year of birth most_recent_yob = int(df['Birth Year'].max()) earliest_yob = int(df['Birth Year'].min()) most_common_yob = int(df['Birth Year'].mode()[0]) print( "\n Earliest year of birth: {} \ \n Most recent year of birth: {} \ \n Most common year of birth: {} " .format(earliest_yob, most_recent_yob, most_common_yob) ) print("\nThis took %.5s seconds." % (time.time() - start_time)) print('-'*40) def main(): while True: city, month, day = get_filters() try: df = load_data(city, month, day) stat_choice = input( 'For what do you want the insights for?\n \ 1. Regarding the users\n \ 2. Regarding popular stations\n \ 3. Regarding the most frequent times of travel\n \ 4. Regarding trip durations\n \ 5. For all of the above\n \ 6. Show me the Raw Data\n \ Enter a number of your choice. \n' ) if int(stat_choice) == 1: user_stats(df) elif int(stat_choice) == 2: station_stats(df) elif int(stat_choice) == 3: time_stats(df) elif int(stat_choice) == 4: trip_duration_stats(df) elif int(stat_choice) == 5: user_stats(df) station_stats(df) time_stats(df) trip_duration_stats(df) elif int(stat_choice) == 6: print('-'*140 + '\nRaw data\n' + '-'*140) print(df.head(10)) restart = input( '\nWould you like to explore some more? Enter yes or no.\n') if restart.lower() != 'yes': break except: print( '\nSomething went wrong! You might have entered something incorrectly.\n' + 'Things you might have entered incorrect:\n' + '>> Enter a "Number" as your choice.\n' + '>> Enter a full name of the "Month" or "Day".\n' + 'Please try again...' ) if __name__ == "__main__": main()
432a1ed4d5c68641381ae0c6964b987b2d21b412
f2357c7fded6032e4d488e8f4437a089bab5454b
/numpy예제/소스코드_예제/ch10/ex10-2.py
d4aa5e401bba0f5390baa4e761f2483250a57569
[]
no_license
stufit/pycharm_test
094ba681b3bc5d27a827aa1ed12305da8be7ce30
aa98cd1d871596a71c52d068d08c1a529e5f13cd
refs/heads/master
2023-02-07T12:41:04.881144
2020-12-28T04:05:14
2020-12-28T04:05:14
324,903,682
0
0
null
null
null
null
UTF-8
Python
false
false
1,835
py
#!/usr/bin/env python # coding: utf-8 # # 10.2 Numpy를 이용한 plot 기능 # In[1]: #p164 get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np points = np.array([[1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3]]) p = np.array([2.5, 2]) import matplotlib.pyplot as plt plt.plot(points[:,0], points[:,1], "ro") plt.plot(p[0], p[1], "bo") # In[2]: import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 5, 10) y = x**2 plt.plot(x, y); # In[3]: #p166 x = np.linspace(0, 10, 20) y = x**2.0 plt.plot(x, y, "bo-", linewidth=3, markersize=5); # In[4]: plt.plot(x, y, "gs-", linewidth=1, markersize=3); # In[5]: #p167 x = np.linspace(0, 10, 20) y1 = x**2.0 y2 = x**1.5 plt.plot(x, y1, "bo-", linewidth=2, markersize=12, label="First") plt.plot(x, y2, "gs-", linewidth=2, markersize=12, label="Second") plt.xlabel("X") plt.ylabel("Y") plt.axis([-0.5, 10.5, -5, 105]) plt.legend(loc="upper left") plt.savefig("mplot.pdf") # In[6]: x = np.logspace(-1, 1, 20) y1 = x**2.0 y2 = x**1.5 plt.plot(x, y1, "bo-", linewidth=2, markersize=5, label="First") plt.plot(x, y2, "gs-", linewidth=2, markersize=5, label="Second") plt.xlabel("X") plt.ylabel("Y") plt.axis([-0.5, 10.5, -5, 105]) plt.legend(loc="upper left") plt.savefig("mplot.pdf") # In[7]: #p169 import matplotlib.pyplot as plt import numpy as np x = np.random.standard_normal(size=1000) plt.hist(x) # In[8]: plt.hist(x, density=True) # In[9]: #p170 import matplotlib.pyplot as plt import numpy as np x = np.random.randn(1000) plt.hist(x) # In[10]: import numpy as np import matplotlib.pyplot as plt x = np.random.rand(30) y = np.random.rand(30) colors = np.random.rand(30) shape = np.pi * (np.random.rand(30)*20) **2 plt.scatter(x, y, s=shape, c = colors, marker='*', alpha=0.7) plt.show() # In[ ]:
9bbd0defc841cae9736b86805843e05884596ebc
f137f67d96a83cb698a8f1bfc4547c3a8acf324c
/Chapter01/keras_MINST_V3.py
25d3357a9a695cd19e8e736ed33ed7d51dca0813
[ "MIT" ]
permissive
PacktPublishing/Deep-Learning-with-Keras
55740afe4680d9f8aaaa2232890cfcef462ec134
44b2b7e11e0db168ff861e91de832d4b22d80414
refs/heads/master
2023-01-23T02:23:23.560272
2023-01-18T09:24:20
2023-01-18T09:24:20
88,967,358
1,151
796
MIT
2018-10-05T16:43:05
2017-04-21T09:31:27
Jupyter Notebook
UTF-8
Python
false
false
2,528
py
from __future__ import print_function import numpy as np from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils import matplotlib.pyplot as plt np.random.seed(1671) # for reproducibility # network and training NB_EPOCH = 250 BATCH_SIZE = 128 VERBOSE = 1 NB_CLASSES = 10 # number of outputs = number of digits OPTIMIZER = SGD() # optimizer, explained later in this chapter N_HIDDEN = 128 VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATION DROPOUT = 0.3 # data: shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() #X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784 RESHAPED = 784 # X_train = X_train.reshape(60000, RESHAPED) X_test = X_test.reshape(10000, RESHAPED) X_train = X_train.astype('float32') X_test = X_test.astype('float32') # normalize X_train /= 255 X_test /= 255 print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, NB_CLASSES) Y_test = np_utils.to_categorical(y_test, NB_CLASSES) # M_HIDDEN hidden layers # 10 outputs # final stage is softmax model = Sequential() model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,))) model.add(Activation('relu')) model.add(Dropout(DROPOUT)) model.add(Dense(N_HIDDEN)) model.add(Activation('relu')) model.add(Dropout(DROPOUT)) model.add(Dense(NB_CLASSES)) model.add(Activation('softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer=OPTIMIZER, metrics=['accuracy']) history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT) score = model.evaluate(X_test, Y_test, verbose=VERBOSE) print("\nTest score:", score[0]) print('Test accuracy:', score[1]) # list all data in history print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
0a46bde86ddac7465d01e383e35eba1b8671078b
f3fb71fa8477812578448001dd87ed965a5848cd
/wxgigo/wxmp/api/webauth.py
77e1048da9cc794719964911b7bbf2dd86b86e2a
[ "MIT" ]
permissive
rfancn/wxgigo
0da920c27f8db2c0d30f9573184ea254c8e3554b
7ed64248e4df037dbb5ff0683f21f458d3f29a0e
refs/heads/master
2021-01-12T04:19:47.041858
2017-03-31T06:01:41
2017-03-31T06:01:41
77,586,025
0
0
null
null
null
null
UTF-8
Python
false
false
5,696
py
#!/usr/bin/env python # coding=utf-8 """ Copyright (C) 2010-2013, Ryan Fan <[email protected]> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ from __future__ import absolute_import import requests import json import urllib from celery import shared_task, Task from sdk.constants import * from sdk.web.helper import WebHelper class BaseWeb(Task): abstract = True web_helper = WebHelper(Task.app.db) app_id, app_key = Task.app.db.hmget(WXMP_CONFIG, 'APP_ID', 'APP_KEY') #class get_access_token(BaseWeb): # def run(self, open_id): # return self.web_helper.get_access_token(open_id) class auth(BaseWeb): """ Authorization to obtain web access token @param: code @return: if succeed, returns openid """ def run(self, code): if not self.app_id or not self.app_key: print "No app_id or app_key when doing web authentication" return None url = 'https://api.weixin.qq.com/sns/oauth2/access_token?' \ 'appid={0}&secret={1}&code={2}&' \ 'grant_type=authorization_code'.format(self.app_id, self.app_key, code) try: resp = requests.get(url).json() except Exception,e: print "Failed to do web authentication because of:{0}".format(e) return None if not isinstance(resp, dict): print "Invalid response format when do web authentication" return None if 'errcode' in resp.keys() and (resp['errcode'] != 0): print "Error response when do web authentication: {0}".format(resp['errmsg']) return None if not self.web_helper.save_auth_info(resp): return None return resp['openid'] class get_auth_url(BaseWeb): def run(self, redirect_url, scope): if not self.app_id: print "Failed to get app_id in get_auth_url()" return None auth_url = 'https://open.weixin.qq.com/connect/oauth2/authorize?' \ 'appid={0}&redirect_uri={1}&response_type=code' \ '&scope={2}#wechat_redirect'.format(self.app_id, urllib.quote_plus(redirect_url), scope) return auth_url class get_user_info(BaseWeb): def refresh_access_token(self, open_id): if not self.app_id: print "Failed to get app_id when refresh web access token" return None refresh_token = self.web_helper.get_refresh_token(open_id) if not refresh_token: return None url = 'https://api.weixin.qq.com/sns/oauth2/refresh_token?' \ 'appid={0}&grant_type=refresh_token&refresh_token={1}'.format( self.app_id, refresh_token ) try: resp = requests.get(url).json() except Exception,e: print "Failed to get refresh web access token because of:{0}".format(e) return None if not isinstance(resp, dict): print "Invalid response format when refresh web access token" return None if 'errcode' in resp.keys() and (resp['errcode'] != 0): print "Error response when refresh web access token: {0}".format(resp['errmsg']) return None # resp is a authentication info dict contains following: # # { # "access_token":"ACCESS_TOKEN", # "expires_in":7200, # "refresh_token":"REFRESH_TOKEN", # "openid":"OPENID", # "scope":"SCOPE" # } if not self.web_helper.save_auth_info(resp): return None return resp['access_token'] def run(self, open_id): access_token = self.web_helper.get_access_token(open_id) # first time check if we can get valid access_token from db if not access_token: # may be access_token expired, try refresh it print "Failed to get valid access_token from db, try to refresh it..." access_token = self.refresh_access_token(open_id) # second time check after refresh if not access_token: print "Failed to get access_token after refresh" return None url = 'https://api.weixin.qq.com/sns/userinfo?' \ 'access_token={0}&openid={1}&lang=zh_CN'.format(access_token, open_id) try: resp = requests.get(url) # Important: Must not use requests.response.json() method here # otherwise, requests will doing ascii encode against the unicode string resp = json.loads(resp.content) except Exception,e: print "Failed to get userinfo because of:{0}".format(e) return None if not isinstance(resp, dict): print "Invalid response format when get userinfo from Weixin server" return None if 'errcode' in resp.keys() and (resp['errcode'] != 0): print "Error response when get userinfo info from Weixin server: {0}".format(resp['errmsg']) return None return resp
d6e643149dea7d26fbc701c6232120ad1003e55e
beca83e67a86ec7c68f7b96d541938e31b2d1297
/index.py
eb66115c2226639be978c88c71348cfcf67b8985
[]
no_license
temilaj/opencv-object-tracking
8c5fc2212df73985c8792ad13bc70f978a3a31b0
83fb2b4f442696bc2f676cd9c338278b5505916d
refs/heads/master
2023-02-13T05:11:28.321623
2021-01-07T08:08:24
2021-01-07T08:08:24
326,603,619
0
0
null
null
null
null
UTF-8
Python
false
false
3,546
py
# Import Libraries import cv2 import sys from random import randint # Tracker Types tracker_types = ['BOOSTING', 'MIL', 'KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE', 'CSRT'] # Define trackers by name def tracker_name(tracker_type): # Create trackers by name with if statement if tracker_type == tracker_types[0]: tracker = cv2.TrackerBoosting_create() elif tracker_type == tracker_types[1]: tracker = cv2.TrackerMIL_create() elif tracker_type == tracker_types[2]: tracker = cv2.TrackerKCF_create() elif tracker_type == tracker_types[3]: tracker = cv2.TrackerTLD_create() elif tracker_type == tracker_types[4]: tracker = cv2.TrackerMedianFlow_create() elif tracker_type == tracker_types[5]: tracker = cv2.TrackerGOTURN_create() elif tracker_type == tracker_types[6]: tracker = cv2.TrackerMOSSE_create() elif tracker_type == tracker_types[7]: tracker = cv2.TrackerCSRT_create() else: tracker = None print('No tracker found') print('Choose from these trackers: ') for tr in tracker_types: print(tr) # return return tracker if __name__ == '__main__': print("Default tracking algorithm MOSSE \n" "Available algorithms are: \n") for tr in tracker_types: print(tr) tracker_type = 'MOSSE' # Create a video capture cap = cv2.VideoCapture('Video/Vehicles.mp4') # Read first frame success, frame = cap.read() # Quit if failure if not success: print('Cannot read the video') # Select boxes and colors rects = [] colors = [] # While loop while True: # draw rectangles, select ROI, open new window rect_box = cv2.selectROI('MultiTracker', frame) rects.append(rect_box) colors.append((randint(64, 255), randint(64, 255), randint(64, 255))) print('Press q to stop selecting boxes and start multitracking') print('Press any key to select another box') #close window if cv2.waitKey(0) & 0xFF == 113: break # print message print(f'Selected boxes {rects}') # Create multitracker multi_tracker = cv2.MultiTracker_create() # Initialize multitracker for rect_box in rects: multi_tracker.add(tracker_name(tracker_type), frame, rect_box) #Video and Tracker # while loop while cap.isOpened(): success, frame = cap.read() if not success: break # update location objects success, boxes = multi_tracker.update(frame) # draw the objects tracked for i, newbox in enumerate(boxes): pts1 = (int(newbox[0]), int(newbox[1])) pts2 = (int(newbox[0] + newbox[2]), int(newbox[1] + newbox[3])) cv2.rectangle(frame, pts1, pts2, colors[i], 2, 1) # display frame cv2.imshow('Multitracker', frame) # Close the frame if cv2.waitKey(30) & 0xFF == 27: break # Release and Destroy cap.release() cv2.destroyAllWindows()
ec0a70d28ff06e456905b87458756bd729bde88f
f99062c0aed4794b2e8ea0ce72222694e822a39f
/Contents/Code/common.py
b8b7e9e51820fb61e31f59e10937a6e1c7bac0de
[]
no_license
mrhenko/SVT-Play.bundle
b4e8f7fc775f59c06e2fc30feba0ac9112c28e85
71a89d13bb00cfa2b45378e655e6c8ece89a5089
refs/heads/master
2021-01-18T03:29:03.184943
2012-06-19T13:34:43
2012-06-19T13:34:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,569
py
# -*- coding: utf-8 -* # Global constants # - - - - - - - - - - - - - - - - - - - - - - - - - - - - VERSION="3.2b4" PLUGIN_PREFIX = "/video/svt" #URLs URL_SITE = "http://www.svtplay.se" URL_INDEX = URL_SITE + "/program" URL_LIVE = URL_SITE + "/?live=1" URL_LATEST_SHOWS = URL_SITE + "/?ep=1" URL_LATEST_NEWS = URL_SITE + "/?en=1" #Texts TEXT_LIVE_SHOWS = u'Livesändningar' TEXT_INDEX_SHOWS = u'Program A-Ö' TEXT_TITLE = u'SVT Play' #TEXT_NO_INFO = u'Ingen information hittades' TEXT_PREFERENCES = u'Inställningar' TEXT_LATEST_SHOWS = u'Senaste program' TEXT_LATEST_NEWS = u'Senaste nyhetsprogram' #The page step function will only step this many pages deep. Can be changed / function call. MAX_PAGINATE_PAGES = 5 ART = "art-default.jpg" THUMB = 'icon-default.png' #CACHE_TIME_LONG = 60*60*24*30 # Thirty days CACHE_TIME_SHORT = 60*10 # 10 minutes CACHE_TIME_1DAY = 60*60*24 CACHE_TIME_SHOW = CACHE_TIME_1DAY #CACHE_TIME_EPISODE = CACHE_TIME_LONG #Prefs settings PREF_PAGINATE_DEPTH = 'paginate_depth' def GetPaginateUrls(url, dataname="pr", baseurl=None): pageElement = HTML.ElementFromURL(url) xpath = "//div[@class='svtXClearFix']//ul[@data-name='%s']//@data-lastpage" % dataname urls = [] try: noPages = int(pageElement.xpath(xpath)[0]) except IndexError: return urls args = "?%s=%d" if(baseurl != None): url = baseurl for i in range(1, min(MAX_PAGINATE_PAGES, noPages + 1)): suburl = url + args % (dataname, i) urls.append(suburl) Log(suburl) return urls
c4172ddda4b37e3b5899a65e1c84aa267a569a13
ce39aefe6560e9671ab1979a94eb6768118dbbcc
/venv/bin/python-config
6065aada329a0d461974cb5c3b8a462085ea3057
[]
no_license
prakharrr/FlaskWebApp
47b6e859e813c4e1452746158c1869d20af78779
4576ebe52f1b4ed0e1f6a7f36bb92d2786f03552
refs/heads/master
2021-04-15T04:44:02.040680
2018-03-25T05:32:45
2018-03-25T05:32:45
126,663,830
0
0
null
null
null
null
UTF-8
Python
false
false
2,368
#!/Users/prakharrawat/PycharmProjects/untitled2/venv/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
8bcc948639a7d8f437c507c88481025bef23509d
eb9c3dac0dca0ecd184df14b1fda62e61cc8c7d7
/google/cloud/dataproc/v1/dataproc-v1-py/google/cloud/dataproc_v1/services/autoscaling_policy_service/pagers.py
6ecc0cd0d9b184d60845ea13568c5783c926dc36
[ "Apache-2.0" ]
permissive
Tryweirder/googleapis-gen
2e5daf46574c3af3d448f1177eaebe809100c346
45d8e9377379f9d1d4e166e80415a8c1737f284d
refs/heads/master
2023-04-05T06:30:04.726589
2021-04-13T23:35:20
2021-04-13T23:35:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,108
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Any, AsyncIterable, Awaitable, Callable, Iterable, Sequence, Tuple, Optional from google.cloud.dataproc_v1.types import autoscaling_policies class ListAutoscalingPoliciesPager: """A pager for iterating through ``list_autoscaling_policies`` requests. This class thinly wraps an initial :class:`google.cloud.dataproc_v1.types.ListAutoscalingPoliciesResponse` object, and provides an ``__iter__`` method to iterate through its ``policies`` field. If there are more pages, the ``__iter__`` method will make additional ``ListAutoscalingPolicies`` requests and continue to iterate through the ``policies`` field on the corresponding responses. All the usual :class:`google.cloud.dataproc_v1.types.ListAutoscalingPoliciesResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., autoscaling_policies.ListAutoscalingPoliciesResponse], request: autoscaling_policies.ListAutoscalingPoliciesRequest, response: autoscaling_policies.ListAutoscalingPoliciesResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.dataproc_v1.types.ListAutoscalingPoliciesRequest): The initial request object. response (google.cloud.dataproc_v1.types.ListAutoscalingPoliciesResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = autoscaling_policies.ListAutoscalingPoliciesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[autoscaling_policies.ListAutoscalingPoliciesResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[autoscaling_policies.AutoscalingPolicy]: for page in self.pages: yield from page.policies def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response) class ListAutoscalingPoliciesAsyncPager: """A pager for iterating through ``list_autoscaling_policies`` requests. This class thinly wraps an initial :class:`google.cloud.dataproc_v1.types.ListAutoscalingPoliciesResponse` object, and provides an ``__aiter__`` method to iterate through its ``policies`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListAutoscalingPolicies`` requests and continue to iterate through the ``policies`` field on the corresponding responses. All the usual :class:`google.cloud.dataproc_v1.types.ListAutoscalingPoliciesResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., Awaitable[autoscaling_policies.ListAutoscalingPoliciesResponse]], request: autoscaling_policies.ListAutoscalingPoliciesRequest, response: autoscaling_policies.ListAutoscalingPoliciesResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.dataproc_v1.types.ListAutoscalingPoliciesRequest): The initial request object. response (google.cloud.dataproc_v1.types.ListAutoscalingPoliciesResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = autoscaling_policies.ListAutoscalingPoliciesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterable[autoscaling_policies.ListAutoscalingPoliciesResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterable[autoscaling_policies.AutoscalingPolicy]: async def async_generator(): async for page in self.pages: for response in page.policies: yield response return async_generator() def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response)
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
3670b6fc6b5f37305e60b54993958638f85b4b0e
6c67ba252649110d4fc59a67bb1a7bf4691d0502
/backend/urls.py
18e6540e725fe35773ab413e2bf91d12a86942fd
[]
no_license
zhongrunqiu/WechatApp_assistant
f632cc03f9c4597cd326e04cf0a27db04d469b25
d8ed1cf5fe78e142d940907e77017586824ca7d5
refs/heads/master
2021-07-12T12:10:14.179701
2020-08-16T14:02:31
2020-08-16T14:02:31
192,075,746
0
0
null
2020-08-16T14:02:33
2019-06-15T12:24:36
Python
UTF-8
Python
false
false
863
py
"""backend_ch1_sec1 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), # path('weather/',include('apis.urls')) path('api/v1.0/',include('backend.version_1_0')) ]
dc71c972bd595603815a1a31980e602af8a47e8a
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02775/s024011055.py
5d23c1a3f899c3391966a9a6d01203faca1d9ba6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
N = list(map(int, list(input()))) dp=[[-1,-1] for i in range(len(N)+1)] dp[0]=[0,1] b=0 N.insert(0,0) for i in range(1,len(N)): up = 10-N[i] dp[i][0]=min(dp[i-1][0]+N[i],dp[i-1][1]+up) dp[i][1] = min(dp[i-1][0]+N[i]+1, dp[i-1][1]+up-1) print(dp[-1][0])
91b0cc3fb2bd9ff42cf6883343d3e40cc279c24f
2114ffa5fe09efaaf519b041a5c459561ba8f1ff
/work03/window.py
755c3c9206bd65fa9373aec2b394405aa6fec829
[]
no_license
wasabi-candy/python
daea3ff7d6265b156691bc4d5434e2cf9ef59b7a
ceec91be8eb12e50063bd4e3a065bdb8a764ab07
refs/heads/master
2020-05-01T12:44:29.211695
2015-07-09T05:11:30
2015-07-09T05:11:30
36,272,052
0
0
null
null
null
null
UTF-8
Python
false
false
1,360
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import threading import time import urllib.request as ur import tkinter as tk class GetBoard(): def __init__(self): self.url = "http://viper.2ch.net/news4vip/subback.html"; def get_data(self): self.fp = ur.urlopen(self.url) html = self.fp.read().decode("cp932"); self.fp.close() return html; def __del__(self): pass class LoopThread(threading.Thread): def __init__(self,fnc): super(LoopThread,self).__init__() self.daemon = True self.fnc = fnc def run(self): while True: time.sleep(1) self.fnc(); def __del__(self): print("loopend"); class Frame(tk.Frame): def __init__(self, master=None): tk.Frame.__init__(self,master,width=600,height=800,bg="#999") #ラベル追加・設定 self.label = tk.Label(self,height=55,width=80,bg="#ddd",anchor=tk.N) self.label.pack(padx=5,pady=5) #LoopThread self.timer = LoopThread(self.reload) #GetBoard self.board = GetBoard() self.pack() self.timer.start() self.reload() def reload(self): html = self.board.get_data() self.label.configure(text=html) def __del__(self): pass f = Frame() f.mainloop()
c39805898c26aa007db8eacb4fab4f796edbbadf
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/52/usersdata/106/20724/submittedfiles/matriz1.py
add0d8a2bfdbd3cf2ff19de84bb0eee193c9d9e3
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,244
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np #Funções def colunaEsquerda(a): Esquerda = 0 for j in range (0,a.shape[1],1): for i in range (0,a.shape[0],1): if a[i,j] == 1: Esquerda = j break return Esquerda def colunaDireita(a): Direita = a.shape[1] -1 for j in range (0,a.shape[1],1): for i in range (0,a.shape[0],1): if a[i,j] == 1: Direita = j return Direita def linhaCima(a): LC = 0 for i in range (0,a.shape[0],1): for j in range (0,a.shape[1],1): if a[i,j] == 1: LC = i break return LC def linhaBaixo(a): LB = a.shape[0]-1 for i in range (0,a.shape[0],1): for j in range (0,a.shape[1],1): if a[i,j] == 1: LB = i return LB #CódigoPrincipal linhas = input ('Digite a quantidade de linhas:') colunas = input ('Digite a quantidade de colunas:') a= np.zeros ((linhas,colunas)) for i in range (0,a.shape[0],1): for j in range (0,a.shape[1],1): a[i,j] = input ('Digite um número:') print (a[linhaCima(a):(linhaBaixo(a)+1),colunaEsquerda(a):(colunaDireita(a)+1)])
492c10c00dde0cddb679dbe7cc3733120630ba5b
75d8667735782cd1d0eb4877e52c89da5cd92dde
/nova/tests/unit/virt/libvirt/test_imagecache.py
040ee0c223bedf396922f127ac400909a4e0bed7
[ "Apache-2.0" ]
permissive
bopopescu/nova-token
ffecfd3ec561936b7d9d7e691bc57383cde05436
ec98f69dea7b3e2b9013b27fd55a2c1a1ac6bfb2
refs/heads/master
2022-11-22T09:53:31.073483
2016-05-14T02:47:01
2016-05-15T22:02:55
282,105,621
0
0
Apache-2.0
2020-07-24T02:42:19
2020-07-24T02:42:18
null
UTF-8
Python
false
false
87,385
py
begin_unit comment|'# Copyright 2012 Michael Still and Canonical Inc' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' nl|'\n' name|'import' name|'contextlib' newline|'\n' name|'import' name|'hashlib' newline|'\n' name|'import' name|'os' newline|'\n' name|'import' name|'time' newline|'\n' nl|'\n' name|'import' name|'mock' newline|'\n' name|'from' name|'oslo_concurrency' name|'import' name|'lockutils' newline|'\n' name|'from' name|'oslo_concurrency' name|'import' name|'processutils' newline|'\n' name|'from' name|'oslo_log' name|'import' name|'formatters' newline|'\n' name|'from' name|'oslo_log' name|'import' name|'log' name|'as' name|'logging' newline|'\n' name|'from' name|'oslo_serialization' name|'import' name|'jsonutils' newline|'\n' name|'from' name|'oslo_utils' name|'import' name|'importutils' newline|'\n' name|'from' name|'six' op|'.' name|'moves' name|'import' name|'cStringIO' newline|'\n' nl|'\n' name|'from' name|'nova' name|'import' name|'conductor' newline|'\n' name|'import' name|'nova' op|'.' name|'conf' newline|'\n' name|'from' name|'nova' name|'import' name|'context' newline|'\n' name|'from' name|'nova' name|'import' name|'objects' newline|'\n' name|'from' name|'nova' name|'import' name|'test' newline|'\n' name|'from' name|'nova' op|'.' name|'tests' op|'.' name|'unit' name|'import' name|'fake_instance' newline|'\n' name|'from' name|'nova' name|'import' name|'utils' newline|'\n' name|'from' name|'nova' op|'.' name|'virt' op|'.' name|'libvirt' name|'import' name|'imagecache' newline|'\n' name|'from' name|'nova' op|'.' name|'virt' op|'.' name|'libvirt' name|'import' name|'utils' name|'as' name|'libvirt_utils' newline|'\n' nl|'\n' DECL|variable|CONF name|'CONF' op|'=' name|'nova' op|'.' name|'conf' op|'.' name|'CONF' newline|'\n' nl|'\n' nl|'\n' op|'@' name|'contextlib' op|'.' name|'contextmanager' newline|'\n' DECL|function|intercept_log_messages name|'def' name|'intercept_log_messages' op|'(' op|')' op|':' newline|'\n' indent|' ' name|'try' op|':' newline|'\n' indent|' ' name|'mylog' op|'=' name|'logging' op|'.' name|'getLogger' op|'(' string|"'nova'" op|')' newline|'\n' name|'stream' op|'=' name|'cStringIO' op|'(' op|')' newline|'\n' name|'handler' op|'=' name|'logging' op|'.' name|'logging' op|'.' name|'StreamHandler' op|'(' name|'stream' op|')' newline|'\n' name|'handler' op|'.' name|'setFormatter' op|'(' name|'formatters' op|'.' name|'ContextFormatter' op|'(' op|')' op|')' newline|'\n' name|'mylog' op|'.' name|'logger' op|'.' name|'addHandler' op|'(' name|'handler' op|')' newline|'\n' name|'yield' name|'stream' newline|'\n' dedent|'' name|'finally' op|':' newline|'\n' indent|' ' name|'mylog' op|'.' name|'logger' op|'.' name|'removeHandler' op|'(' name|'handler' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|class|ImageCacheManagerTestCase dedent|'' dedent|'' name|'class' name|'ImageCacheManagerTestCase' op|'(' name|'test' op|'.' name|'NoDBTestCase' op|')' op|':' newline|'\n' nl|'\n' DECL|member|setUp indent|' ' name|'def' name|'setUp' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'super' op|'(' name|'ImageCacheManagerTestCase' op|',' name|'self' op|')' op|'.' name|'setUp' op|'(' op|')' newline|'\n' name|'self' op|'.' name|'stock_instance_names' op|'=' name|'set' op|'(' op|'[' string|"'instance-00000001'" op|',' nl|'\n' string|"'instance-00000002'" op|',' nl|'\n' string|"'instance-00000003'" op|',' nl|'\n' string|"'banana-42-hamster'" op|']' op|')' newline|'\n' nl|'\n' DECL|member|test_read_stored_checksum_missing dedent|'' name|'def' name|'test_read_stored_checksum_missing' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' name|'lambda' name|'x' op|':' name|'False' op|')' newline|'\n' name|'csum' op|'=' name|'imagecache' op|'.' name|'read_stored_checksum' op|'(' string|"'/tmp/foo'" op|',' name|'timestamped' op|'=' name|'False' op|')' newline|'\n' name|'self' op|'.' name|'assertIsNone' op|'(' name|'csum' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'os' op|'.' name|'path' op|',' string|"'exists'" op|',' name|'return_value' op|'=' name|'True' op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'time' op|',' string|"'time'" op|',' name|'return_value' op|'=' number|'2000000' op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'os' op|'.' name|'path' op|',' string|"'getmtime'" op|',' name|'return_value' op|'=' number|'1000000' op|')' newline|'\n' DECL|member|test_get_age_of_file name|'def' name|'test_get_age_of_file' op|'(' name|'self' op|',' name|'mock_getmtime' op|',' name|'mock_time' op|',' name|'mock_exists' op|')' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'exists' op|',' name|'age' op|'=' name|'image_cache_manager' op|'.' name|'_get_age_of_file' op|'(' string|"'/tmp'" op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'exists' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' number|'1000000' op|',' name|'age' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'os' op|'.' name|'path' op|',' string|"'exists'" op|',' name|'return_value' op|'=' name|'False' op|')' newline|'\n' DECL|member|test_get_age_of_file_not_exists name|'def' name|'test_get_age_of_file_not_exists' op|'(' name|'self' op|',' name|'mock_exists' op|')' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'exists' op|',' name|'age' op|'=' name|'image_cache_manager' op|'.' name|'_get_age_of_file' op|'(' string|"'/tmp'" op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'exists' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' number|'0' op|',' name|'age' op|')' newline|'\n' nl|'\n' DECL|member|test_read_stored_checksum dedent|'' name|'def' name|'test_read_stored_checksum' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' nl|'\n' name|'csum_input' op|'=' string|'\'{"sha1": "fdghkfhkgjjksfdgjksjkghsdf"}\\n\'' newline|'\n' name|'fname' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' string|"'aaa'" op|')' newline|'\n' name|'info_fname' op|'=' name|'imagecache' op|'.' name|'get_info_filename' op|'(' name|'fname' op|')' newline|'\n' name|'f' op|'=' name|'open' op|'(' name|'info_fname' op|',' string|"'w'" op|')' newline|'\n' name|'f' op|'.' name|'write' op|'(' name|'csum_input' op|')' newline|'\n' name|'f' op|'.' name|'close' op|'(' op|')' newline|'\n' nl|'\n' name|'csum_output' op|'=' name|'imagecache' op|'.' name|'read_stored_checksum' op|'(' name|'fname' op|',' nl|'\n' name|'timestamped' op|'=' name|'False' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'csum_input' op|'.' name|'rstrip' op|'(' op|')' op|',' nl|'\n' string|'\'{"sha1": "%s"}\'' op|'%' name|'csum_output' op|')' newline|'\n' nl|'\n' DECL|member|test_read_stored_checksum_legacy_essex dedent|'' dedent|'' name|'def' name|'test_read_stored_checksum_legacy_essex' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' nl|'\n' name|'fname' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' string|"'aaa'" op|')' newline|'\n' name|'old_fname' op|'=' name|'fname' op|'+' string|"'.sha1'" newline|'\n' name|'f' op|'=' name|'open' op|'(' name|'old_fname' op|',' string|"'w'" op|')' newline|'\n' name|'f' op|'.' name|'write' op|'(' string|"'fdghkfhkgjjksfdgjksjkghsdf'" op|')' newline|'\n' name|'f' op|'.' name|'close' op|'(' op|')' newline|'\n' nl|'\n' name|'csum_output' op|'=' name|'imagecache' op|'.' name|'read_stored_checksum' op|'(' name|'fname' op|',' nl|'\n' name|'timestamped' op|'=' name|'False' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'csum_output' op|',' string|"'fdghkfhkgjjksfdgjksjkghsdf'" op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'old_fname' op|')' op|')' newline|'\n' name|'info_fname' op|'=' name|'imagecache' op|'.' name|'get_info_filename' op|'(' name|'fname' op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'info_fname' op|')' op|')' newline|'\n' nl|'\n' DECL|member|test_list_base_images dedent|'' dedent|'' name|'def' name|'test_list_base_images' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'listing' op|'=' op|'[' string|"'00000001'" op|',' nl|'\n' string|"'ephemeral_0_20_None'" op|',' nl|'\n' string|"'17d1b00b81642842e514494a78e804e9a511637c_5368709120.info'" op|',' nl|'\n' string|"'00000004'" op|',' nl|'\n' string|"'swap_1000'" op|']' newline|'\n' name|'images' op|'=' op|'[' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3_sm'" op|',' nl|'\n' string|"'e09c675c2d1cfac32dae3c2d83689c8c94bc693b_sm'" op|',' nl|'\n' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3'" op|',' nl|'\n' string|"'17d1b00b81642842e514494a78e804e9a511637c'" op|',' nl|'\n' string|"'17d1b00b81642842e514494a78e804e9a511637c_5368709120'" op|',' nl|'\n' string|"'17d1b00b81642842e514494a78e804e9a511637c_10737418240'" op|']' newline|'\n' name|'listing' op|'.' name|'extend' op|'(' name|'images' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.listdir'" op|',' name|'lambda' name|'x' op|':' name|'listing' op|')' newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.isfile'" op|',' name|'lambda' name|'x' op|':' name|'True' op|')' newline|'\n' nl|'\n' name|'base_dir' op|'=' string|"'/var/lib/nova/instances/_base'" newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' string|"'/var/lib/nova/instances'" op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_list_base_images' op|'(' name|'base_dir' op|')' newline|'\n' nl|'\n' name|'sanitized' op|'=' op|'[' op|']' newline|'\n' name|'for' name|'ent' name|'in' name|'image_cache_manager' op|'.' name|'unexplained_images' op|':' newline|'\n' indent|' ' name|'sanitized' op|'.' name|'append' op|'(' name|'ent' op|'.' name|'replace' op|'(' name|'base_dir' op|'+' string|"'/'" op|',' string|"''" op|')' op|')' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'assertEqual' op|'(' name|'sorted' op|'(' name|'sanitized' op|')' op|',' name|'sorted' op|'(' name|'images' op|')' op|')' newline|'\n' nl|'\n' name|'expected' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' nl|'\n' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3'" op|')' newline|'\n' name|'self' op|'.' name|'assertIn' op|'(' name|'expected' op|',' name|'image_cache_manager' op|'.' name|'unexplained_images' op|')' newline|'\n' nl|'\n' name|'expected' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' nl|'\n' string|"'17d1b00b81642842e514494a78e804e9a511637c_'" nl|'\n' string|"'10737418240'" op|')' newline|'\n' name|'self' op|'.' name|'assertIn' op|'(' name|'expected' op|',' name|'image_cache_manager' op|'.' name|'unexplained_images' op|')' newline|'\n' nl|'\n' name|'unexpected' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' string|"'00000004'" op|')' newline|'\n' name|'self' op|'.' name|'assertNotIn' op|'(' name|'unexpected' op|',' name|'image_cache_manager' op|'.' name|'unexplained_images' op|')' newline|'\n' nl|'\n' name|'for' name|'ent' name|'in' name|'image_cache_manager' op|'.' name|'unexplained_images' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'assertTrue' op|'(' name|'ent' op|'.' name|'startswith' op|'(' name|'base_dir' op|')' op|')' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'assertEqual' op|'(' name|'len' op|'(' name|'image_cache_manager' op|'.' name|'originals' op|')' op|',' number|'2' op|')' newline|'\n' nl|'\n' name|'expected' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' nl|'\n' string|"'17d1b00b81642842e514494a78e804e9a511637c'" op|')' newline|'\n' name|'self' op|'.' name|'assertIn' op|'(' name|'expected' op|',' name|'image_cache_manager' op|'.' name|'originals' op|')' newline|'\n' nl|'\n' name|'unexpected' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' nl|'\n' string|"'17d1b00b81642842e514494a78e804e9a511637c_'" nl|'\n' string|"'10737418240'" op|')' newline|'\n' name|'self' op|'.' name|'assertNotIn' op|'(' name|'unexpected' op|',' name|'image_cache_manager' op|'.' name|'originals' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertEqual' op|'(' number|'1' op|',' name|'len' op|'(' name|'image_cache_manager' op|'.' name|'back_swap_images' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertIn' op|'(' string|"'swap_1000'" op|',' name|'image_cache_manager' op|'.' name|'back_swap_images' op|')' newline|'\n' nl|'\n' DECL|member|test_list_backing_images_small dedent|'' name|'def' name|'test_list_backing_images_small' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.listdir'" op|',' nl|'\n' name|'lambda' name|'x' op|':' op|'[' string|"'_base'" op|',' string|"'instance-00000001'" op|',' nl|'\n' string|"'instance-00000002'" op|',' string|"'instance-00000003'" op|']' op|')' newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' nl|'\n' name|'lambda' name|'x' op|':' name|'x' op|'.' name|'find' op|'(' string|"'instance-'" op|')' op|'!=' op|'-' number|'1' op|')' newline|'\n' name|'self' op|'.' name|'stubs' op|'.' name|'Set' op|'(' name|'libvirt_utils' op|',' string|"'get_disk_backing_file'" op|',' nl|'\n' name|'lambda' name|'x' op|':' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3_sm'" op|')' newline|'\n' nl|'\n' name|'found' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'CONF' op|'.' name|'instances_path' op|',' nl|'\n' name|'CONF' op|'.' name|'image_cache_subdirectory_name' op|',' nl|'\n' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3_sm'" op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'unexplained_images' op|'=' op|'[' name|'found' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'instance_names' op|'=' name|'self' op|'.' name|'stock_instance_names' newline|'\n' nl|'\n' name|'inuse_images' op|'=' name|'image_cache_manager' op|'.' name|'_list_backing_images' op|'(' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'inuse_images' op|',' op|'[' name|'found' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'len' op|'(' name|'image_cache_manager' op|'.' name|'unexplained_images' op|')' op|',' number|'0' op|')' newline|'\n' nl|'\n' DECL|member|test_list_backing_images_resized dedent|'' name|'def' name|'test_list_backing_images_resized' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.listdir'" op|',' nl|'\n' name|'lambda' name|'x' op|':' op|'[' string|"'_base'" op|',' string|"'instance-00000001'" op|',' nl|'\n' string|"'instance-00000002'" op|',' string|"'instance-00000003'" op|']' op|')' newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' nl|'\n' name|'lambda' name|'x' op|':' name|'x' op|'.' name|'find' op|'(' string|"'instance-'" op|')' op|'!=' op|'-' number|'1' op|')' newline|'\n' name|'self' op|'.' name|'stubs' op|'.' name|'Set' op|'(' name|'libvirt_utils' op|',' string|"'get_disk_backing_file'" op|',' nl|'\n' name|'lambda' name|'x' op|':' op|'(' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3_'" nl|'\n' string|"'10737418240'" op|')' op|')' newline|'\n' nl|'\n' name|'found' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'CONF' op|'.' name|'instances_path' op|',' nl|'\n' name|'CONF' op|'.' name|'image_cache_subdirectory_name' op|',' nl|'\n' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3_'" nl|'\n' string|"'10737418240'" op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'unexplained_images' op|'=' op|'[' name|'found' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'instance_names' op|'=' name|'self' op|'.' name|'stock_instance_names' newline|'\n' nl|'\n' name|'inuse_images' op|'=' name|'image_cache_manager' op|'.' name|'_list_backing_images' op|'(' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'inuse_images' op|',' op|'[' name|'found' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'len' op|'(' name|'image_cache_manager' op|'.' name|'unexplained_images' op|')' op|',' number|'0' op|')' newline|'\n' nl|'\n' DECL|member|test_list_backing_images_instancename dedent|'' name|'def' name|'test_list_backing_images_instancename' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.listdir'" op|',' nl|'\n' name|'lambda' name|'x' op|':' op|'[' string|"'_base'" op|',' string|"'banana-42-hamster'" op|']' op|')' newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' nl|'\n' name|'lambda' name|'x' op|':' name|'x' op|'.' name|'find' op|'(' string|"'banana-42-hamster'" op|')' op|'!=' op|'-' number|'1' op|')' newline|'\n' name|'self' op|'.' name|'stubs' op|'.' name|'Set' op|'(' name|'libvirt_utils' op|',' string|"'get_disk_backing_file'" op|',' nl|'\n' name|'lambda' name|'x' op|':' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3_sm'" op|')' newline|'\n' nl|'\n' name|'found' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'CONF' op|'.' name|'instances_path' op|',' nl|'\n' name|'CONF' op|'.' name|'image_cache_subdirectory_name' op|',' nl|'\n' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3_sm'" op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'unexplained_images' op|'=' op|'[' name|'found' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'instance_names' op|'=' name|'self' op|'.' name|'stock_instance_names' newline|'\n' nl|'\n' name|'inuse_images' op|'=' name|'image_cache_manager' op|'.' name|'_list_backing_images' op|'(' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'inuse_images' op|',' op|'[' name|'found' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'len' op|'(' name|'image_cache_manager' op|'.' name|'unexplained_images' op|')' op|',' number|'0' op|')' newline|'\n' nl|'\n' DECL|member|test_list_backing_images_disk_notexist dedent|'' name|'def' name|'test_list_backing_images_disk_notexist' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.listdir'" op|',' nl|'\n' name|'lambda' name|'x' op|':' op|'[' string|"'_base'" op|',' string|"'banana-42-hamster'" op|']' op|')' newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' nl|'\n' name|'lambda' name|'x' op|':' name|'x' op|'.' name|'find' op|'(' string|"'banana-42-hamster'" op|')' op|'!=' op|'-' number|'1' op|')' newline|'\n' nl|'\n' DECL|function|fake_get_disk name|'def' name|'fake_get_disk' op|'(' name|'disk_path' op|')' op|':' newline|'\n' indent|' ' name|'raise' name|'processutils' op|'.' name|'ProcessExecutionError' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'stubs' op|'.' name|'Set' op|'(' name|'libvirt_utils' op|',' string|"'get_disk_backing_file'" op|',' name|'fake_get_disk' op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'unexplained_images' op|'=' op|'[' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'instance_names' op|'=' name|'self' op|'.' name|'stock_instance_names' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertRaises' op|'(' name|'processutils' op|'.' name|'ProcessExecutionError' op|',' nl|'\n' name|'image_cache_manager' op|'.' name|'_list_backing_images' op|')' newline|'\n' nl|'\n' DECL|member|test_find_base_file_nothing dedent|'' name|'def' name|'test_find_base_file_nothing' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' name|'lambda' name|'x' op|':' name|'False' op|')' newline|'\n' nl|'\n' name|'base_dir' op|'=' string|"'/var/lib/nova/instances/_base'" newline|'\n' name|'fingerprint' op|'=' string|"'549867354867'" newline|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'res' op|'=' name|'list' op|'(' name|'image_cache_manager' op|'.' name|'_find_base_file' op|'(' name|'base_dir' op|',' name|'fingerprint' op|')' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertEqual' op|'(' number|'0' op|',' name|'len' op|'(' name|'res' op|')' op|')' newline|'\n' nl|'\n' DECL|member|test_find_base_file_small dedent|'' name|'def' name|'test_find_base_file_small' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'fingerprint' op|'=' string|"'968dd6cc49e01aaa044ed11c0cce733e0fa44a6a'" newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' nl|'\n' name|'lambda' name|'x' op|':' name|'x' op|'.' name|'endswith' op|'(' string|"'%s_sm'" op|'%' name|'fingerprint' op|')' op|')' newline|'\n' nl|'\n' name|'base_dir' op|'=' string|"'/var/lib/nova/instances/_base'" newline|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'res' op|'=' name|'list' op|'(' name|'image_cache_manager' op|'.' name|'_find_base_file' op|'(' name|'base_dir' op|',' name|'fingerprint' op|')' op|')' newline|'\n' nl|'\n' name|'base_file' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' name|'fingerprint' op|'+' string|"'_sm'" op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'res' op|',' op|'[' op|'(' name|'base_file' op|',' name|'True' op|',' name|'False' op|')' op|']' op|')' newline|'\n' nl|'\n' DECL|member|test_find_base_file_resized dedent|'' name|'def' name|'test_find_base_file_resized' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'fingerprint' op|'=' string|"'968dd6cc49e01aaa044ed11c0cce733e0fa44a6a'" newline|'\n' name|'listing' op|'=' op|'[' string|"'00000001'" op|',' nl|'\n' string|"'ephemeral_0_20_None'" op|',' nl|'\n' string|"'968dd6cc49e01aaa044ed11c0cce733e0fa44a6a_10737418240'" op|',' nl|'\n' string|"'00000004'" op|']' newline|'\n' nl|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.listdir'" op|',' name|'lambda' name|'x' op|':' name|'listing' op|')' newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' nl|'\n' name|'lambda' name|'x' op|':' name|'x' op|'.' name|'endswith' op|'(' string|"'%s_10737418240'" op|'%' name|'fingerprint' op|')' op|')' newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.isfile'" op|',' name|'lambda' name|'x' op|':' name|'True' op|')' newline|'\n' nl|'\n' name|'base_dir' op|'=' string|"'/var/lib/nova/instances/_base'" newline|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_list_base_images' op|'(' name|'base_dir' op|')' newline|'\n' name|'res' op|'=' name|'list' op|'(' name|'image_cache_manager' op|'.' name|'_find_base_file' op|'(' name|'base_dir' op|',' name|'fingerprint' op|')' op|')' newline|'\n' nl|'\n' name|'base_file' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' name|'fingerprint' op|'+' string|"'_10737418240'" op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'res' op|',' op|'[' op|'(' name|'base_file' op|',' name|'False' op|',' name|'True' op|')' op|']' op|')' newline|'\n' nl|'\n' DECL|member|test_find_base_file_all dedent|'' name|'def' name|'test_find_base_file_all' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'fingerprint' op|'=' string|"'968dd6cc49e01aaa044ed11c0cce733e0fa44a6a'" newline|'\n' name|'listing' op|'=' op|'[' string|"'00000001'" op|',' nl|'\n' string|"'ephemeral_0_20_None'" op|',' nl|'\n' string|"'968dd6cc49e01aaa044ed11c0cce733e0fa44a6a_sm'" op|',' nl|'\n' string|"'968dd6cc49e01aaa044ed11c0cce733e0fa44a6a_10737418240'" op|',' nl|'\n' string|"'00000004'" op|']' newline|'\n' nl|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.listdir'" op|',' name|'lambda' name|'x' op|':' name|'listing' op|')' newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' name|'lambda' name|'x' op|':' name|'True' op|')' newline|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.isfile'" op|',' name|'lambda' name|'x' op|':' name|'True' op|')' newline|'\n' nl|'\n' name|'base_dir' op|'=' string|"'/var/lib/nova/instances/_base'" newline|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_list_base_images' op|'(' name|'base_dir' op|')' newline|'\n' name|'res' op|'=' name|'list' op|'(' name|'image_cache_manager' op|'.' name|'_find_base_file' op|'(' name|'base_dir' op|',' name|'fingerprint' op|')' op|')' newline|'\n' nl|'\n' name|'base_file1' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' name|'fingerprint' op|')' newline|'\n' name|'base_file2' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' name|'fingerprint' op|'+' string|"'_sm'" op|')' newline|'\n' name|'base_file3' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'base_dir' op|',' name|'fingerprint' op|'+' string|"'_10737418240'" op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'res' op|',' op|'[' op|'(' name|'base_file1' op|',' name|'False' op|',' name|'False' op|')' op|',' nl|'\n' op|'(' name|'base_file2' op|',' name|'True' op|',' name|'False' op|')' op|',' nl|'\n' op|'(' name|'base_file3' op|',' name|'False' op|',' name|'True' op|')' op|']' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'contextlib' op|'.' name|'contextmanager' newline|'\n' DECL|member|_make_base_file name|'def' name|'_make_base_file' op|'(' name|'self' op|',' name|'checksum' op|'=' name|'True' op|',' name|'lock' op|'=' name|'True' op|')' op|':' newline|'\n' indent|' ' string|'"""Make a base file for testing."""' newline|'\n' nl|'\n' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' name|'fname' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' string|"'aaa'" op|')' newline|'\n' nl|'\n' name|'base_file' op|'=' name|'open' op|'(' name|'fname' op|',' string|"'w'" op|')' newline|'\n' name|'base_file' op|'.' name|'write' op|'(' string|"'data'" op|')' newline|'\n' name|'base_file' op|'.' name|'close' op|'(' op|')' newline|'\n' nl|'\n' name|'if' name|'lock' op|':' newline|'\n' indent|' ' name|'lockdir' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' string|"'locks'" op|')' newline|'\n' name|'lockname' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'lockdir' op|',' string|"'nova-aaa'" op|')' newline|'\n' name|'os' op|'.' name|'mkdir' op|'(' name|'lockdir' op|')' newline|'\n' name|'lock_file' op|'=' name|'open' op|'(' name|'lockname' op|',' string|"'w'" op|')' newline|'\n' name|'lock_file' op|'.' name|'write' op|'(' string|"'data'" op|')' newline|'\n' name|'lock_file' op|'.' name|'close' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' name|'base_file' op|'=' name|'open' op|'(' name|'fname' op|',' string|"'r'" op|')' newline|'\n' nl|'\n' name|'if' name|'checksum' op|':' newline|'\n' indent|' ' name|'imagecache' op|'.' name|'write_stored_checksum' op|'(' name|'fname' op|')' newline|'\n' nl|'\n' dedent|'' name|'base_file' op|'.' name|'close' op|'(' op|')' newline|'\n' name|'yield' name|'fname' newline|'\n' nl|'\n' DECL|member|test_remove_base_file dedent|'' dedent|'' name|'def' name|'test_remove_base_file' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'self' op|'.' name|'_make_base_file' op|'(' op|')' name|'as' name|'fname' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_remove_base_file' op|'(' name|'fname' op|')' newline|'\n' name|'info_fname' op|'=' name|'imagecache' op|'.' name|'get_info_filename' op|'(' name|'fname' op|')' newline|'\n' nl|'\n' name|'lock_name' op|'=' string|"'nova-'" op|'+' name|'os' op|'.' name|'path' op|'.' name|'split' op|'(' name|'fname' op|')' op|'[' op|'-' number|'1' op|']' newline|'\n' name|'lock_dir' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'CONF' op|'.' name|'instances_path' op|',' string|"'locks'" op|')' newline|'\n' name|'lock_file' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'lock_dir' op|',' name|'lock_name' op|')' newline|'\n' nl|'\n' comment|'# Files are initially too new to delete' nl|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'fname' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'info_fname' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'lock_file' op|')' op|')' newline|'\n' nl|'\n' comment|'# Old files get cleaned up though' nl|'\n' name|'os' op|'.' name|'utime' op|'(' name|'fname' op|',' op|'(' op|'-' number|'1' op|',' name|'time' op|'.' name|'time' op|'(' op|')' op|'-' number|'3601' op|')' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_remove_base_file' op|'(' name|'fname' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'fname' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'info_fname' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'lock_file' op|')' op|')' newline|'\n' nl|'\n' DECL|member|test_remove_base_file_original dedent|'' dedent|'' name|'def' name|'test_remove_base_file_original' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'self' op|'.' name|'_make_base_file' op|'(' op|')' name|'as' name|'fname' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'originals' op|'=' op|'[' name|'fname' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'_remove_base_file' op|'(' name|'fname' op|')' newline|'\n' name|'info_fname' op|'=' name|'imagecache' op|'.' name|'get_info_filename' op|'(' name|'fname' op|')' newline|'\n' nl|'\n' comment|'# Files are initially too new to delete' nl|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'fname' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'info_fname' op|')' op|')' newline|'\n' nl|'\n' comment|'# This file should stay longer than a resized image' nl|'\n' name|'os' op|'.' name|'utime' op|'(' name|'fname' op|',' op|'(' op|'-' number|'1' op|',' name|'time' op|'.' name|'time' op|'(' op|')' op|'-' number|'3601' op|')' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_remove_base_file' op|'(' name|'fname' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'fname' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'info_fname' op|')' op|')' newline|'\n' nl|'\n' comment|"# Originals don't stay forever though" nl|'\n' name|'os' op|'.' name|'utime' op|'(' name|'fname' op|',' op|'(' op|'-' number|'1' op|',' name|'time' op|'.' name|'time' op|'(' op|')' op|'-' number|'3600' op|'*' number|'25' op|')' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_remove_base_file' op|'(' name|'fname' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'fname' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'info_fname' op|')' op|')' newline|'\n' nl|'\n' DECL|member|test_remove_base_file_dne dedent|'' dedent|'' name|'def' name|'test_remove_base_file_dne' op|'(' name|'self' op|')' op|':' newline|'\n' comment|'# This test is solely to execute the "does not exist" code path. We' nl|'\n' comment|"# don't expect the method being tested to do anything in this case." nl|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' nl|'\n' name|'fname' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' string|"'aaa'" op|')' newline|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_remove_base_file' op|'(' name|'fname' op|')' newline|'\n' nl|'\n' DECL|member|test_remove_base_file_oserror dedent|'' dedent|'' name|'def' name|'test_remove_base_file_oserror' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'intercept_log_messages' op|'(' op|')' name|'as' name|'stream' op|':' newline|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' nl|'\n' name|'fname' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' string|"'aaa'" op|')' newline|'\n' nl|'\n' name|'os' op|'.' name|'mkdir' op|'(' name|'fname' op|')' newline|'\n' name|'os' op|'.' name|'utime' op|'(' name|'fname' op|',' op|'(' op|'-' number|'1' op|',' name|'time' op|'.' name|'time' op|'(' op|')' op|'-' number|'3601' op|')' op|')' newline|'\n' nl|'\n' comment|'# This will raise an OSError because of file permissions' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_remove_base_file' op|'(' name|'fname' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'fname' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertNotEqual' op|'(' name|'stream' op|'.' name|'getvalue' op|'(' op|')' op|'.' name|'find' op|'(' string|"'Failed to remove'" op|')' op|',' nl|'\n' op|'-' number|'1' op|')' newline|'\n' nl|'\n' DECL|member|test_handle_base_image_unused dedent|'' dedent|'' dedent|'' name|'def' name|'test_handle_base_image_unused' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'img' op|'=' string|"'123'" newline|'\n' nl|'\n' name|'with' name|'self' op|'.' name|'_make_base_file' op|'(' op|')' name|'as' name|'fname' op|':' newline|'\n' indent|' ' name|'os' op|'.' name|'utime' op|'(' name|'fname' op|',' op|'(' op|'-' number|'1' op|',' name|'time' op|'.' name|'time' op|'(' op|')' op|'-' number|'3601' op|')' op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'unexplained_images' op|'=' op|'[' name|'fname' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'_handle_base_image' op|'(' name|'img' op|',' name|'fname' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'unexplained_images' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'removable_base_files' op|',' nl|'\n' op|'[' name|'fname' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'corrupt_base_files' op|',' op|'[' op|']' op|')' newline|'\n' nl|'\n' dedent|'' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'libvirt_utils' op|',' string|"'update_mtime'" op|')' newline|'\n' DECL|member|test_handle_base_image_used name|'def' name|'test_handle_base_image_used' op|'(' name|'self' op|',' name|'mock_mtime' op|')' op|':' newline|'\n' indent|' ' name|'img' op|'=' string|"'123'" newline|'\n' nl|'\n' name|'with' name|'self' op|'.' name|'_make_base_file' op|'(' op|')' name|'as' name|'fname' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'unexplained_images' op|'=' op|'[' name|'fname' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'used_images' op|'=' op|'{' string|"'123'" op|':' op|'(' number|'1' op|',' number|'0' op|',' op|'[' string|"'banana-42'" op|']' op|')' op|'}' newline|'\n' name|'image_cache_manager' op|'.' name|'_handle_base_image' op|'(' name|'img' op|',' name|'fname' op|')' newline|'\n' nl|'\n' name|'mock_mtime' op|'.' name|'assert_called_once_with' op|'(' name|'fname' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'unexplained_images' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'removable_base_files' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'corrupt_base_files' op|',' op|'[' op|']' op|')' newline|'\n' nl|'\n' dedent|'' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'libvirt_utils' op|',' string|"'update_mtime'" op|')' newline|'\n' DECL|member|test_handle_base_image_used_remotely name|'def' name|'test_handle_base_image_used_remotely' op|'(' name|'self' op|',' name|'mock_mtime' op|')' op|':' newline|'\n' indent|' ' name|'img' op|'=' string|"'123'" newline|'\n' nl|'\n' name|'with' name|'self' op|'.' name|'_make_base_file' op|'(' op|')' name|'as' name|'fname' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'unexplained_images' op|'=' op|'[' name|'fname' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'used_images' op|'=' op|'{' string|"'123'" op|':' op|'(' number|'0' op|',' number|'1' op|',' op|'[' string|"'banana-42'" op|']' op|')' op|'}' newline|'\n' name|'image_cache_manager' op|'.' name|'_handle_base_image' op|'(' name|'img' op|',' name|'fname' op|')' newline|'\n' nl|'\n' name|'mock_mtime' op|'.' name|'assert_called_once_with' op|'(' name|'fname' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'unexplained_images' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'removable_base_files' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'corrupt_base_files' op|',' op|'[' op|']' op|')' newline|'\n' nl|'\n' DECL|member|test_handle_base_image_absent dedent|'' dedent|'' name|'def' name|'test_handle_base_image_absent' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'img' op|'=' string|"'123'" newline|'\n' nl|'\n' name|'with' name|'intercept_log_messages' op|'(' op|')' name|'as' name|'stream' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'used_images' op|'=' op|'{' string|"'123'" op|':' op|'(' number|'1' op|',' number|'0' op|',' op|'[' string|"'banana-42'" op|']' op|')' op|'}' newline|'\n' name|'image_cache_manager' op|'.' name|'_handle_base_image' op|'(' name|'img' op|',' name|'None' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'unexplained_images' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'removable_base_files' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'corrupt_base_files' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertNotEqual' op|'(' name|'stream' op|'.' name|'getvalue' op|'(' op|')' op|'.' name|'find' op|'(' string|"'an absent base file'" op|')' op|',' nl|'\n' op|'-' number|'1' op|')' newline|'\n' nl|'\n' DECL|member|test_handle_base_image_used_missing dedent|'' dedent|'' name|'def' name|'test_handle_base_image_used_missing' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'img' op|'=' string|"'123'" newline|'\n' nl|'\n' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' nl|'\n' name|'fname' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' string|"'aaa'" op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'unexplained_images' op|'=' op|'[' name|'fname' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'used_images' op|'=' op|'{' string|"'123'" op|':' op|'(' number|'1' op|',' number|'0' op|',' op|'[' string|"'banana-42'" op|']' op|')' op|'}' newline|'\n' name|'image_cache_manager' op|'.' name|'_handle_base_image' op|'(' name|'img' op|',' name|'fname' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'unexplained_images' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'removable_base_files' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'corrupt_base_files' op|',' op|'[' op|']' op|')' newline|'\n' nl|'\n' dedent|'' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'libvirt_utils' op|',' string|"'update_mtime'" op|')' newline|'\n' DECL|member|test_handle_base_image_checksum_fails name|'def' name|'test_handle_base_image_checksum_fails' op|'(' name|'self' op|',' name|'mock_mtime' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'checksum_base_images' op|'=' name|'True' op|',' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' nl|'\n' name|'img' op|'=' string|"'123'" newline|'\n' nl|'\n' name|'with' name|'self' op|'.' name|'_make_base_file' op|'(' op|')' name|'as' name|'fname' op|':' newline|'\n' indent|' ' name|'with' name|'open' op|'(' name|'fname' op|',' string|"'w'" op|')' name|'as' name|'f' op|':' newline|'\n' indent|' ' name|'f' op|'.' name|'write' op|'(' string|"'banana'" op|')' newline|'\n' nl|'\n' dedent|'' name|'d' op|'=' op|'{' string|"'sha1'" op|':' string|"'21323454'" op|'}' newline|'\n' name|'with' name|'open' op|'(' string|"'%s.info'" op|'%' name|'fname' op|',' string|"'w'" op|')' name|'as' name|'f' op|':' newline|'\n' indent|' ' name|'f' op|'.' name|'write' op|'(' name|'jsonutils' op|'.' name|'dumps' op|'(' name|'d' op|')' op|')' newline|'\n' nl|'\n' dedent|'' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'unexplained_images' op|'=' op|'[' name|'fname' op|']' newline|'\n' name|'image_cache_manager' op|'.' name|'used_images' op|'=' op|'{' string|"'123'" op|':' op|'(' number|'1' op|',' number|'0' op|',' op|'[' string|"'banana-42'" op|']' op|')' op|'}' newline|'\n' name|'image_cache_manager' op|'.' name|'_handle_base_image' op|'(' name|'img' op|',' name|'fname' op|')' newline|'\n' nl|'\n' name|'mock_mtime' op|'.' name|'assert_called_once_with' op|'(' name|'fname' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'unexplained_images' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'removable_base_files' op|',' op|'[' op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'corrupt_base_files' op|',' nl|'\n' op|'[' name|'fname' op|']' op|')' newline|'\n' nl|'\n' dedent|'' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'libvirt_utils' op|',' string|"'update_mtime'" op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'lockutils' op|',' string|"'external_lock'" op|')' newline|'\n' DECL|member|test_verify_base_images name|'def' name|'test_verify_base_images' op|'(' name|'self' op|',' name|'mock_lock' op|',' name|'mock_mtime' op|')' op|':' newline|'\n' indent|' ' name|'hashed_1' op|'=' string|"'356a192b7913b04c54574d18c28d46e6395428ab'" newline|'\n' name|'hashed_21' op|'=' string|"'472b07b9fcf2c2451e8781e944bf5f77cd8457c8'" newline|'\n' name|'hashed_22' op|'=' string|"'12c6fc06c99a462375eeb3f43dfd832b08ca9e17'" newline|'\n' name|'hashed_42' op|'=' string|"'92cfceb39d57d914ed8b14d0e37643de0797ae56'" newline|'\n' nl|'\n' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' string|"'/instance_path'" op|',' nl|'\n' name|'image_cache_subdirectory_name' op|'=' string|"'_base'" op|')' newline|'\n' nl|'\n' name|'base_file_list' op|'=' op|'[' string|"'00000001'" op|',' nl|'\n' string|"'ephemeral_0_20_None'" op|',' nl|'\n' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3_sm'" op|',' nl|'\n' string|"'e09c675c2d1cfac32dae3c2d83689c8c94bc693b_sm'" op|',' nl|'\n' name|'hashed_42' op|',' nl|'\n' name|'hashed_1' op|',' nl|'\n' name|'hashed_21' op|',' nl|'\n' name|'hashed_22' op|',' nl|'\n' string|"'%s_5368709120'" op|'%' name|'hashed_1' op|',' nl|'\n' string|"'%s_10737418240'" op|'%' name|'hashed_1' op|',' nl|'\n' string|"'00000004'" op|']' newline|'\n' nl|'\n' DECL|function|fq_path name|'def' name|'fq_path' op|'(' name|'path' op|')' op|':' newline|'\n' indent|' ' name|'return' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' string|"'/instance_path/_base/'" op|',' name|'path' op|')' newline|'\n' nl|'\n' comment|'# Fake base directory existence' nl|'\n' dedent|'' name|'orig_exists' op|'=' name|'os' op|'.' name|'path' op|'.' name|'exists' newline|'\n' nl|'\n' DECL|function|exists name|'def' name|'exists' op|'(' name|'path' op|')' op|':' newline|'\n' comment|'# The python coverage tool got angry with my overly broad mocks' nl|'\n' indent|' ' name|'if' name|'not' name|'path' op|'.' name|'startswith' op|'(' string|"'/instance_path'" op|')' op|':' newline|'\n' indent|' ' name|'return' name|'orig_exists' op|'(' name|'path' op|')' newline|'\n' nl|'\n' dedent|'' name|'if' name|'path' name|'in' op|'[' string|"'/instance_path'" op|',' nl|'\n' string|"'/instance_path/_base'" op|',' nl|'\n' string|"'/instance_path/instance-1/disk'" op|',' nl|'\n' string|"'/instance_path/instance-2/disk'" op|',' nl|'\n' string|"'/instance_path/instance-3/disk'" op|',' nl|'\n' string|"'/instance_path/_base/%s.info'" op|'%' name|'hashed_42' op|']' op|':' newline|'\n' indent|' ' name|'return' name|'True' newline|'\n' nl|'\n' dedent|'' name|'for' name|'p' name|'in' name|'base_file_list' op|':' newline|'\n' indent|' ' name|'if' name|'path' op|'==' name|'fq_path' op|'(' name|'p' op|')' op|':' newline|'\n' indent|' ' name|'return' name|'True' newline|'\n' dedent|'' name|'if' name|'path' op|'==' name|'fq_path' op|'(' name|'p' op|')' op|'+' string|"'.info'" op|':' newline|'\n' indent|' ' name|'return' name|'False' newline|'\n' nl|'\n' dedent|'' dedent|'' name|'if' name|'path' name|'in' op|'[' string|"'/instance_path/_base/%s_sm'" op|'%' name|'i' name|'for' name|'i' name|'in' op|'[' name|'hashed_1' op|',' nl|'\n' name|'hashed_21' op|',' nl|'\n' name|'hashed_22' op|',' nl|'\n' name|'hashed_42' op|']' op|']' op|':' newline|'\n' indent|' ' name|'return' name|'False' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'fail' op|'(' string|"'Unexpected path existence check: %s'" op|'%' name|'path' op|')' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.exists'" op|',' name|'lambda' name|'x' op|':' name|'exists' op|'(' name|'x' op|')' op|')' newline|'\n' nl|'\n' comment|'# Fake up some instances in the instances directory' nl|'\n' name|'orig_listdir' op|'=' name|'os' op|'.' name|'listdir' newline|'\n' nl|'\n' DECL|function|listdir name|'def' name|'listdir' op|'(' name|'path' op|')' op|':' newline|'\n' comment|'# The python coverage tool got angry with my overly broad mocks' nl|'\n' indent|' ' name|'if' name|'not' name|'path' op|'.' name|'startswith' op|'(' string|"'/instance_path'" op|')' op|':' newline|'\n' indent|' ' name|'return' name|'orig_listdir' op|'(' name|'path' op|')' newline|'\n' nl|'\n' dedent|'' name|'if' name|'path' op|'==' string|"'/instance_path'" op|':' newline|'\n' indent|' ' name|'return' op|'[' string|"'instance-1'" op|',' string|"'instance-2'" op|',' string|"'instance-3'" op|',' string|"'_base'" op|']' newline|'\n' nl|'\n' dedent|'' name|'if' name|'path' op|'==' string|"'/instance_path/_base'" op|':' newline|'\n' indent|' ' name|'return' name|'base_file_list' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'fail' op|'(' string|"'Unexpected directory listed: %s'" op|'%' name|'path' op|')' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.listdir'" op|',' name|'lambda' name|'x' op|':' name|'listdir' op|'(' name|'x' op|')' op|')' newline|'\n' nl|'\n' comment|'# Fake isfile for these faked images in _base' nl|'\n' name|'orig_isfile' op|'=' name|'os' op|'.' name|'path' op|'.' name|'isfile' newline|'\n' nl|'\n' DECL|function|isfile name|'def' name|'isfile' op|'(' name|'path' op|')' op|':' newline|'\n' comment|'# The python coverage tool got angry with my overly broad mocks' nl|'\n' indent|' ' name|'if' name|'not' name|'path' op|'.' name|'startswith' op|'(' string|"'/instance_path'" op|')' op|':' newline|'\n' indent|' ' name|'return' name|'orig_isfile' op|'(' name|'path' op|')' newline|'\n' nl|'\n' dedent|'' name|'for' name|'p' name|'in' name|'base_file_list' op|':' newline|'\n' indent|' ' name|'if' name|'path' op|'==' name|'fq_path' op|'(' name|'p' op|')' op|':' newline|'\n' indent|' ' name|'return' name|'True' newline|'\n' nl|'\n' dedent|'' dedent|'' name|'self' op|'.' name|'fail' op|'(' string|"'Unexpected isfile call: %s'" op|'%' name|'path' op|')' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.isfile'" op|',' name|'lambda' name|'x' op|':' name|'isfile' op|'(' name|'x' op|')' op|')' newline|'\n' nl|'\n' comment|'# Fake the database call which lists running instances' nl|'\n' name|'instances' op|'=' op|'[' op|'{' string|"'image_ref'" op|':' string|"'1'" op|',' nl|'\n' string|"'host'" op|':' name|'CONF' op|'.' name|'host' op|',' nl|'\n' string|"'name'" op|':' string|"'instance-1'" op|',' nl|'\n' string|"'uuid'" op|':' string|"'123'" op|',' nl|'\n' string|"'vm_state'" op|':' string|"''" op|',' nl|'\n' string|"'task_state'" op|':' string|"''" op|'}' op|',' nl|'\n' op|'{' string|"'image_ref'" op|':' string|"'1'" op|',' nl|'\n' string|"'kernel_id'" op|':' string|"'21'" op|',' nl|'\n' string|"'ramdisk_id'" op|':' string|"'22'" op|',' nl|'\n' string|"'host'" op|':' name|'CONF' op|'.' name|'host' op|',' nl|'\n' string|"'name'" op|':' string|"'instance-2'" op|',' nl|'\n' string|"'uuid'" op|':' string|"'456'" op|',' nl|'\n' string|"'vm_state'" op|':' string|"''" op|',' nl|'\n' string|"'task_state'" op|':' string|"''" op|'}' op|']' newline|'\n' name|'all_instances' op|'=' op|'[' name|'fake_instance' op|'.' name|'fake_instance_obj' op|'(' name|'None' op|',' op|'**' name|'instance' op|')' nl|'\n' name|'for' name|'instance' name|'in' name|'instances' op|']' newline|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' nl|'\n' comment|'# Fake the utils call which finds the backing image' nl|'\n' DECL|function|get_disk_backing_file name|'def' name|'get_disk_backing_file' op|'(' name|'path' op|')' op|':' newline|'\n' indent|' ' name|'if' name|'path' name|'in' op|'[' string|"'/instance_path/instance-1/disk'" op|',' nl|'\n' string|"'/instance_path/instance-2/disk'" op|']' op|':' newline|'\n' indent|' ' name|'return' name|'fq_path' op|'(' string|"'%s_5368709120'" op|'%' name|'hashed_1' op|')' newline|'\n' dedent|'' name|'self' op|'.' name|'fail' op|'(' string|"'Unexpected backing file lookup: %s'" op|'%' name|'path' op|')' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'stubs' op|'.' name|'Set' op|'(' name|'libvirt_utils' op|',' string|"'get_disk_backing_file'" op|',' nl|'\n' name|'lambda' name|'x' op|':' name|'get_disk_backing_file' op|'(' name|'x' op|')' op|')' newline|'\n' nl|'\n' comment|'# Fake out verifying checksums, as that is tested elsewhere' nl|'\n' name|'self' op|'.' name|'stubs' op|'.' name|'Set' op|'(' name|'image_cache_manager' op|',' string|"'_verify_checksum'" op|',' nl|'\n' name|'lambda' name|'x' op|',' name|'y' op|':' name|'True' op|')' newline|'\n' nl|'\n' comment|'# Fake getmtime as well' nl|'\n' name|'orig_getmtime' op|'=' name|'os' op|'.' name|'path' op|'.' name|'getmtime' newline|'\n' nl|'\n' DECL|function|getmtime name|'def' name|'getmtime' op|'(' name|'path' op|')' op|':' newline|'\n' indent|' ' name|'if' name|'not' name|'path' op|'.' name|'startswith' op|'(' string|"'/instance_path'" op|')' op|':' newline|'\n' indent|' ' name|'return' name|'orig_getmtime' op|'(' name|'path' op|')' newline|'\n' nl|'\n' dedent|'' name|'return' number|'1000000' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.path.getmtime'" op|',' name|'lambda' name|'x' op|':' name|'getmtime' op|'(' name|'x' op|')' op|')' newline|'\n' nl|'\n' comment|"# Make sure we don't accidentally remove a real file" nl|'\n' name|'orig_remove' op|'=' name|'os' op|'.' name|'remove' newline|'\n' nl|'\n' DECL|function|remove name|'def' name|'remove' op|'(' name|'path' op|')' op|':' newline|'\n' indent|' ' name|'if' name|'not' name|'path' op|'.' name|'startswith' op|'(' string|"'/instance_path'" op|')' op|':' newline|'\n' indent|' ' name|'return' name|'orig_remove' op|'(' name|'path' op|')' newline|'\n' nl|'\n' comment|"# Don't try to remove fake files" nl|'\n' dedent|'' name|'return' newline|'\n' nl|'\n' dedent|'' name|'self' op|'.' name|'stub_out' op|'(' string|"'os.remove'" op|',' name|'lambda' name|'x' op|':' name|'remove' op|'(' name|'x' op|')' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' name|'objects' op|'.' name|'block_device' op|'.' name|'BlockDeviceMappingList' op|',' nl|'\n' string|"'bdms_by_instance_uuid'" op|')' newline|'\n' nl|'\n' name|'ctxt' op|'=' name|'context' op|'.' name|'get_admin_context' op|'(' op|')' newline|'\n' name|'objects' op|'.' name|'block_device' op|'.' name|'BlockDeviceMappingList' op|'.' name|'bdms_by_instance_uuid' op|'(' nl|'\n' name|'ctxt' op|',' op|'[' string|"'123'" op|',' string|"'456'" op|']' op|')' op|'.' name|'AndReturn' op|'(' op|'{' op|'}' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'mox' op|'.' name|'ReplayAll' op|'(' op|')' newline|'\n' comment|"# And finally we can make the call we're actually testing..." nl|'\n' comment|'# The argument here should be a context, but it is mocked out' nl|'\n' name|'image_cache_manager' op|'.' name|'update' op|'(' name|'ctxt' op|',' name|'all_instances' op|')' newline|'\n' nl|'\n' comment|'# Verify' nl|'\n' name|'active' op|'=' op|'[' name|'fq_path' op|'(' name|'hashed_1' op|')' op|',' name|'fq_path' op|'(' string|"'%s_5368709120'" op|'%' name|'hashed_1' op|')' op|',' nl|'\n' name|'fq_path' op|'(' name|'hashed_21' op|')' op|',' name|'fq_path' op|'(' name|'hashed_22' op|')' op|']' newline|'\n' name|'for' name|'act' name|'in' name|'active' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'assertIn' op|'(' name|'act' op|',' name|'image_cache_manager' op|'.' name|'active_base_files' op|')' newline|'\n' dedent|'' name|'self' op|'.' name|'assertEqual' op|'(' name|'len' op|'(' name|'image_cache_manager' op|'.' name|'active_base_files' op|')' op|',' nl|'\n' name|'len' op|'(' name|'active' op|')' op|')' newline|'\n' nl|'\n' name|'for' name|'rem' name|'in' op|'[' name|'fq_path' op|'(' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3_sm'" op|')' op|',' nl|'\n' name|'fq_path' op|'(' string|"'e09c675c2d1cfac32dae3c2d83689c8c94bc693b_sm'" op|')' op|',' nl|'\n' name|'fq_path' op|'(' name|'hashed_42' op|')' op|',' nl|'\n' name|'fq_path' op|'(' string|"'%s_10737418240'" op|'%' name|'hashed_1' op|')' op|']' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'assertIn' op|'(' name|'rem' op|',' name|'image_cache_manager' op|'.' name|'removable_base_files' op|')' newline|'\n' nl|'\n' comment|'# Ensure there are no "corrupt" images as well' nl|'\n' dedent|'' name|'self' op|'.' name|'assertEqual' op|'(' name|'len' op|'(' name|'image_cache_manager' op|'.' name|'corrupt_base_files' op|')' op|',' number|'0' op|')' newline|'\n' nl|'\n' DECL|member|test_verify_base_images_no_base dedent|'' name|'def' name|'test_verify_base_images_no_base' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' string|"'/tmp/no/such/dir/name/please'" op|')' newline|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'update' op|'(' name|'None' op|',' op|'[' op|']' op|')' newline|'\n' nl|'\n' DECL|member|test_is_valid_info_file dedent|'' name|'def' name|'test_is_valid_info_file' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'hashed' op|'=' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3'" newline|'\n' nl|'\n' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' string|"'/tmp/no/such/dir/name/please'" op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/_base/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' name|'base_filename' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'CONF' op|'.' name|'instances_path' op|',' string|"'_base'" op|',' name|'hashed' op|')' newline|'\n' nl|'\n' name|'is_valid_info_file' op|'=' name|'imagecache' op|'.' name|'is_valid_info_file' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'is_valid_info_file' op|'(' string|"'banana'" op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'is_valid_info_file' op|'(' nl|'\n' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'CONF' op|'.' name|'instances_path' op|',' string|"'_base'" op|',' string|"'00000001'" op|')' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'is_valid_info_file' op|'(' name|'base_filename' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'is_valid_info_file' op|'(' name|'base_filename' op|'+' string|"'.sha1'" op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'is_valid_info_file' op|'(' name|'base_filename' op|'+' string|"'.info'" op|')' op|')' newline|'\n' nl|'\n' DECL|member|test_configured_checksum_path dedent|'' name|'def' name|'test_configured_checksum_path' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' nl|'\n' comment|'# Ensure there is a base directory' nl|'\n' name|'os' op|'.' name|'mkdir' op|'(' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' string|"'_base'" op|')' op|')' newline|'\n' nl|'\n' comment|'# Fake the database call which lists running instances' nl|'\n' name|'instances' op|'=' op|'[' op|'{' string|"'image_ref'" op|':' string|"'1'" op|',' nl|'\n' string|"'host'" op|':' name|'CONF' op|'.' name|'host' op|',' nl|'\n' string|"'name'" op|':' string|"'instance-1'" op|',' nl|'\n' string|"'uuid'" op|':' string|"'123'" op|',' nl|'\n' string|"'vm_state'" op|':' string|"''" op|',' nl|'\n' string|"'task_state'" op|':' string|"''" op|'}' op|',' nl|'\n' op|'{' string|"'image_ref'" op|':' string|"'1'" op|',' nl|'\n' string|"'host'" op|':' name|'CONF' op|'.' name|'host' op|',' nl|'\n' string|"'name'" op|':' string|"'instance-2'" op|',' nl|'\n' string|"'uuid'" op|':' string|"'456'" op|',' nl|'\n' string|"'vm_state'" op|':' string|"''" op|',' nl|'\n' string|"'task_state'" op|':' string|"''" op|'}' op|']' newline|'\n' nl|'\n' name|'all_instances' op|'=' op|'[' op|']' newline|'\n' name|'for' name|'instance' name|'in' name|'instances' op|':' newline|'\n' indent|' ' name|'all_instances' op|'.' name|'append' op|'(' name|'fake_instance' op|'.' name|'fake_instance_obj' op|'(' nl|'\n' name|'None' op|',' op|'**' name|'instance' op|')' op|')' newline|'\n' nl|'\n' DECL|function|touch dedent|'' name|'def' name|'touch' op|'(' name|'filename' op|')' op|':' newline|'\n' indent|' ' name|'f' op|'=' name|'open' op|'(' name|'filename' op|',' string|"'w'" op|')' newline|'\n' name|'f' op|'.' name|'write' op|'(' string|"'Touched'" op|')' newline|'\n' name|'f' op|'.' name|'close' op|'(' op|')' newline|'\n' nl|'\n' dedent|'' name|'old' op|'=' name|'time' op|'.' name|'time' op|'(' op|')' op|'-' op|'(' number|'25' op|'*' number|'3600' op|')' newline|'\n' name|'hashed' op|'=' string|"'e97222e91fc4241f49a7f520d1dcf446751129b3'" newline|'\n' name|'base_filename' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' name|'hashed' op|')' newline|'\n' name|'touch' op|'(' name|'base_filename' op|')' newline|'\n' name|'touch' op|'(' name|'base_filename' op|'+' string|"'.info'" op|')' newline|'\n' name|'os' op|'.' name|'utime' op|'(' name|'base_filename' op|'+' string|"'.info'" op|',' op|'(' name|'old' op|',' name|'old' op|')' op|')' newline|'\n' name|'touch' op|'(' name|'base_filename' op|'+' string|"'.info'" op|')' newline|'\n' name|'os' op|'.' name|'utime' op|'(' name|'base_filename' op|'+' string|"'.info'" op|',' op|'(' name|'old' op|',' name|'old' op|')' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'mox' op|'.' name|'StubOutWithMock' op|'(' nl|'\n' name|'objects' op|'.' name|'block_device' op|'.' name|'BlockDeviceMappingList' op|',' nl|'\n' string|"'bdms_by_instance_uuid'" op|')' newline|'\n' nl|'\n' name|'ctxt' op|'=' name|'context' op|'.' name|'get_admin_context' op|'(' op|')' newline|'\n' name|'objects' op|'.' name|'block_device' op|'.' name|'BlockDeviceMappingList' op|'.' name|'bdms_by_instance_uuid' op|'(' nl|'\n' name|'ctxt' op|',' op|'[' string|"'123'" op|',' string|"'456'" op|']' op|')' op|'.' name|'AndReturn' op|'(' op|'{' op|'}' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'mox' op|'.' name|'ReplayAll' op|'(' op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'update' op|'(' name|'ctxt' op|',' nl|'\n' name|'all_instances' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'base_filename' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'base_filename' op|'+' string|"'.info'" op|')' op|')' newline|'\n' nl|'\n' DECL|member|test_run_image_cache_manager_pass dedent|'' dedent|'' name|'def' name|'test_run_image_cache_manager_pass' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'was' op|'=' op|'{' string|"'called'" op|':' name|'False' op|'}' newline|'\n' nl|'\n' DECL|function|fake_get_all_by_filters name|'def' name|'fake_get_all_by_filters' op|'(' name|'context' op|',' op|'*' name|'args' op|',' op|'**' name|'kwargs' op|')' op|':' newline|'\n' indent|' ' name|'was' op|'[' string|"'called'" op|']' op|'=' name|'True' newline|'\n' name|'instances' op|'=' op|'[' op|']' newline|'\n' name|'for' name|'x' name|'in' name|'range' op|'(' number|'2' op|')' op|':' newline|'\n' indent|' ' name|'instances' op|'.' name|'append' op|'(' name|'fake_instance' op|'.' name|'fake_db_instance' op|'(' nl|'\n' name|'image_ref' op|'=' string|"'1'" op|',' nl|'\n' name|'uuid' op|'=' name|'x' op|',' nl|'\n' name|'name' op|'=' name|'x' op|',' nl|'\n' name|'vm_state' op|'=' string|"''" op|',' nl|'\n' name|'task_state' op|'=' string|"''" op|')' op|')' newline|'\n' dedent|'' name|'return' name|'instances' newline|'\n' nl|'\n' dedent|'' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'stub_out' op|'(' string|"'nova.db.instance_get_all_by_filters'" op|',' nl|'\n' name|'fake_get_all_by_filters' op|')' newline|'\n' name|'compute' op|'=' name|'importutils' op|'.' name|'import_object' op|'(' name|'CONF' op|'.' name|'compute_manager' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'use_local' op|'=' name|'True' op|',' name|'group' op|'=' string|"'conductor'" op|')' newline|'\n' name|'compute' op|'.' name|'conductor_api' op|'=' name|'conductor' op|'.' name|'API' op|'(' op|')' newline|'\n' name|'ctxt' op|'=' name|'context' op|'.' name|'get_admin_context' op|'(' op|')' newline|'\n' name|'compute' op|'.' name|'_run_image_cache_manager_pass' op|'(' name|'ctxt' op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'was' op|'[' string|"'called'" op|']' op|')' newline|'\n' nl|'\n' DECL|member|test_store_swap_image dedent|'' dedent|'' name|'def' name|'test_store_swap_image' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_store_swap_image' op|'(' string|"'swap_'" op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_store_swap_image' op|'(' string|"'swap_123'" op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_store_swap_image' op|'(' string|"'swap_456'" op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_store_swap_image' op|'(' string|"'swap_abc'" op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_store_swap_image' op|'(' string|"'123_swap'" op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_store_swap_image' op|'(' string|"'swap_129_'" op|')' newline|'\n' nl|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'len' op|'(' name|'image_cache_manager' op|'.' name|'back_swap_images' op|')' op|',' number|'2' op|')' newline|'\n' name|'expect_set' op|'=' name|'set' op|'(' op|'[' string|"'swap_123'" op|',' string|"'swap_456'" op|']' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' name|'image_cache_manager' op|'.' name|'back_swap_images' op|',' name|'expect_set' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'lockutils' op|',' string|"'external_lock'" op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'libvirt_utils' op|',' string|"'update_mtime'" op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'(' string|"'os.path.exists'" op|',' name|'return_value' op|'=' name|'True' op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'(' string|"'os.path.getmtime'" op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'(' string|"'os.remove'" op|')' newline|'\n' DECL|member|test_age_and_verify_swap_images name|'def' name|'test_age_and_verify_swap_images' op|'(' name|'self' op|',' name|'mock_remove' op|',' name|'mock_getmtime' op|',' nl|'\n' name|'mock_exist' op|',' name|'mock_mtime' op|',' name|'mock_lock' op|')' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'expected_remove' op|'=' name|'set' op|'(' op|')' newline|'\n' name|'expected_exist' op|'=' name|'set' op|'(' op|'[' string|"'swap_128'" op|',' string|"'swap_256'" op|']' op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'.' name|'back_swap_images' op|'.' name|'add' op|'(' string|"'swap_128'" op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'back_swap_images' op|'.' name|'add' op|'(' string|"'swap_256'" op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'.' name|'used_swap_images' op|'.' name|'add' op|'(' string|"'swap_128'" op|')' newline|'\n' nl|'\n' DECL|function|getmtime name|'def' name|'getmtime' op|'(' name|'path' op|')' op|':' newline|'\n' indent|' ' name|'return' name|'time' op|'.' name|'time' op|'(' op|')' op|'-' number|'1000000' newline|'\n' nl|'\n' dedent|'' name|'mock_getmtime' op|'.' name|'side_effect' op|'=' name|'getmtime' newline|'\n' nl|'\n' DECL|function|removefile name|'def' name|'removefile' op|'(' name|'path' op|')' op|':' newline|'\n' indent|' ' name|'if' name|'not' name|'path' op|'.' name|'startswith' op|'(' string|"'/tmp_age_test'" op|')' op|':' newline|'\n' indent|' ' name|'return' name|'os' op|'.' name|'remove' op|'(' name|'path' op|')' newline|'\n' nl|'\n' dedent|'' name|'fn' op|'=' name|'os' op|'.' name|'path' op|'.' name|'split' op|'(' name|'path' op|')' op|'[' op|'-' number|'1' op|']' newline|'\n' name|'expected_remove' op|'.' name|'add' op|'(' name|'fn' op|')' newline|'\n' name|'expected_exist' op|'.' name|'remove' op|'(' name|'fn' op|')' newline|'\n' nl|'\n' dedent|'' name|'mock_remove' op|'.' name|'side_effect' op|'=' name|'removefile' newline|'\n' nl|'\n' name|'image_cache_manager' op|'.' name|'_age_and_verify_swap_images' op|'(' name|'None' op|',' string|"'/tmp_age_test'" op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' number|'1' op|',' name|'len' op|'(' name|'expected_exist' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertEqual' op|'(' number|'1' op|',' name|'len' op|'(' name|'expected_remove' op|')' op|')' newline|'\n' name|'self' op|'.' name|'assertIn' op|'(' string|"'swap_128'" op|',' name|'expected_exist' op|')' newline|'\n' name|'self' op|'.' name|'assertIn' op|'(' string|"'swap_256'" op|',' name|'expected_remove' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'utils' op|',' string|"'synchronized'" op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'.' name|'object' op|'(' name|'imagecache' op|'.' name|'ImageCacheManager' op|',' string|"'_get_age_of_file'" op|',' nl|'\n' name|'return_value' op|'=' op|'(' name|'True' op|',' number|'100' op|')' op|')' newline|'\n' DECL|member|test_lock_acquired_on_removing_old_enough_files name|'def' name|'test_lock_acquired_on_removing_old_enough_files' op|'(' name|'self' op|',' name|'mock_get_age' op|',' nl|'\n' name|'mock_synchronized' op|')' op|':' newline|'\n' indent|' ' name|'base_file' op|'=' string|"'/tmp_age_test'" newline|'\n' name|'lock_path' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'CONF' op|'.' name|'instances_path' op|',' string|"'locks'" op|')' newline|'\n' name|'lock_file' op|'=' name|'os' op|'.' name|'path' op|'.' name|'split' op|'(' name|'base_file' op|')' op|'[' op|'-' number|'1' op|']' newline|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'image_cache_manager' op|'.' name|'_remove_old_enough_file' op|'(' nl|'\n' name|'base_file' op|',' number|'60' op|',' name|'remove_sig' op|'=' name|'False' op|',' name|'remove_lock' op|'=' name|'False' op|')' newline|'\n' name|'mock_synchronized' op|'.' name|'assert_called_once_with' op|'(' name|'lock_file' op|',' name|'external' op|'=' name|'True' op|',' nl|'\n' name|'lock_path' op|'=' name|'lock_path' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|class|VerifyChecksumTestCase dedent|'' dedent|'' name|'class' name|'VerifyChecksumTestCase' op|'(' name|'test' op|'.' name|'NoDBTestCase' op|')' op|':' newline|'\n' nl|'\n' DECL|member|setUp indent|' ' name|'def' name|'setUp' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'super' op|'(' name|'VerifyChecksumTestCase' op|',' name|'self' op|')' op|'.' name|'setUp' op|'(' op|')' newline|'\n' name|'self' op|'.' name|'img' op|'=' op|'{' string|"'container_format'" op|':' string|"'ami'" op|',' string|"'id'" op|':' string|"'42'" op|'}' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'checksum_base_images' op|'=' name|'True' op|',' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' nl|'\n' DECL|member|_make_checksum dedent|'' name|'def' name|'_make_checksum' op|'(' name|'self' op|',' name|'tmpdir' op|')' op|':' newline|'\n' indent|' ' name|'testdata' op|'=' op|'(' string|"'OpenStack Software delivers a massively scalable cloud '" nl|'\n' string|"'operating system.'" op|')' newline|'\n' nl|'\n' name|'fname' op|'=' name|'os' op|'.' name|'path' op|'.' name|'join' op|'(' name|'tmpdir' op|',' string|"'aaa'" op|')' newline|'\n' name|'info_fname' op|'=' name|'imagecache' op|'.' name|'get_info_filename' op|'(' name|'fname' op|')' newline|'\n' nl|'\n' name|'with' name|'open' op|'(' name|'fname' op|',' string|"'w'" op|')' name|'as' name|'f' op|':' newline|'\n' indent|' ' name|'f' op|'.' name|'write' op|'(' name|'testdata' op|')' newline|'\n' nl|'\n' dedent|'' name|'return' name|'fname' op|',' name|'info_fname' op|',' name|'testdata' newline|'\n' nl|'\n' DECL|member|_write_file dedent|'' name|'def' name|'_write_file' op|'(' name|'self' op|',' name|'info_fname' op|',' name|'info_attr' op|',' name|'testdata' op|')' op|':' newline|'\n' indent|' ' name|'f' op|'=' name|'open' op|'(' name|'info_fname' op|',' string|"'w'" op|')' newline|'\n' name|'if' name|'info_attr' op|'==' string|'"csum valid"' op|':' newline|'\n' indent|' ' name|'csum' op|'=' name|'hashlib' op|'.' name|'sha1' op|'(' op|')' newline|'\n' name|'csum' op|'.' name|'update' op|'(' name|'testdata' op|')' newline|'\n' name|'f' op|'.' name|'write' op|'(' string|'\'{"sha1": "%s"}\\n\'' op|'%' name|'csum' op|'.' name|'hexdigest' op|'(' op|')' op|')' newline|'\n' dedent|'' name|'elif' name|'info_attr' op|'==' string|'"csum invalid, not json"' op|':' newline|'\n' indent|' ' name|'f' op|'.' name|'write' op|'(' string|"'banana'" op|')' newline|'\n' dedent|'' name|'else' op|':' newline|'\n' indent|' ' name|'f' op|'.' name|'write' op|'(' string|'\'{"sha1": "banana"}\'' op|')' newline|'\n' dedent|'' name|'f' op|'.' name|'close' op|'(' op|')' newline|'\n' nl|'\n' DECL|member|_check_body dedent|'' name|'def' name|'_check_body' op|'(' name|'self' op|',' name|'tmpdir' op|',' name|'info_attr' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' name|'fname' op|',' name|'info_fname' op|',' name|'testdata' op|'=' name|'self' op|'.' name|'_make_checksum' op|'(' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'_write_file' op|'(' name|'info_fname' op|',' name|'info_attr' op|',' name|'testdata' op|')' newline|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'return' name|'image_cache_manager' op|',' name|'fname' newline|'\n' nl|'\n' DECL|member|test_verify_checksum dedent|'' name|'def' name|'test_verify_checksum' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|',' name|'fname' op|'=' name|'self' op|'.' name|'_check_body' op|'(' name|'tmpdir' op|',' string|'"csum valid"' op|')' newline|'\n' name|'res' op|'=' name|'image_cache_manager' op|'.' name|'_verify_checksum' op|'(' name|'self' op|'.' name|'img' op|',' name|'fname' op|')' newline|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'res' op|')' newline|'\n' nl|'\n' DECL|member|test_verify_checksum_disabled dedent|'' dedent|'' name|'def' name|'test_verify_checksum_disabled' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'checksum_base_images' op|'=' name|'False' op|',' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|',' name|'fname' op|'=' name|'self' op|'.' name|'_check_body' op|'(' name|'tmpdir' op|',' string|'"csum valid"' op|')' newline|'\n' name|'res' op|'=' name|'image_cache_manager' op|'.' name|'_verify_checksum' op|'(' name|'self' op|'.' name|'img' op|',' name|'fname' op|')' newline|'\n' name|'self' op|'.' name|'assertIsNone' op|'(' name|'res' op|')' newline|'\n' nl|'\n' DECL|member|test_verify_checksum_invalid_json dedent|'' dedent|'' name|'def' name|'test_verify_checksum_invalid_json' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'intercept_log_messages' op|'(' op|')' name|'as' name|'stream' op|':' newline|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|',' name|'fname' op|'=' op|'(' nl|'\n' name|'self' op|'.' name|'_check_body' op|'(' name|'tmpdir' op|',' string|'"csum invalid, not json"' op|')' op|')' newline|'\n' name|'res' op|'=' name|'image_cache_manager' op|'.' name|'_verify_checksum' op|'(' nl|'\n' name|'self' op|'.' name|'img' op|',' name|'fname' op|',' name|'create_if_missing' op|'=' name|'False' op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'res' op|')' newline|'\n' name|'log' op|'=' name|'stream' op|'.' name|'getvalue' op|'(' op|')' newline|'\n' nl|'\n' comment|'# NOTE(mikal): this is a skip not a fail because the file is' nl|'\n' comment|'# present, but is not in valid JSON format and therefore is' nl|'\n' comment|'# skipped.' nl|'\n' name|'self' op|'.' name|'assertNotEqual' op|'(' name|'log' op|'.' name|'find' op|'(' string|"'image verification skipped'" op|')' op|',' op|'-' number|'1' op|')' newline|'\n' nl|'\n' DECL|member|test_verify_checksum_invalid_repaired dedent|'' dedent|'' dedent|'' name|'def' name|'test_verify_checksum_invalid_repaired' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|',' name|'fname' op|'=' op|'(' nl|'\n' name|'self' op|'.' name|'_check_body' op|'(' name|'tmpdir' op|',' string|'"csum invalid, not json"' op|')' op|')' newline|'\n' name|'res' op|'=' name|'image_cache_manager' op|'.' name|'_verify_checksum' op|'(' nl|'\n' name|'self' op|'.' name|'img' op|',' name|'fname' op|',' name|'create_if_missing' op|'=' name|'True' op|')' newline|'\n' name|'self' op|'.' name|'assertIsNone' op|'(' name|'res' op|')' newline|'\n' nl|'\n' DECL|member|test_verify_checksum_invalid dedent|'' dedent|'' name|'def' name|'test_verify_checksum_invalid' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'intercept_log_messages' op|'(' op|')' name|'as' name|'stream' op|':' newline|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'image_cache_manager' op|',' name|'fname' op|'=' op|'(' nl|'\n' name|'self' op|'.' name|'_check_body' op|'(' name|'tmpdir' op|',' string|'"csum invalid, valid json"' op|')' op|')' newline|'\n' name|'res' op|'=' name|'image_cache_manager' op|'.' name|'_verify_checksum' op|'(' name|'self' op|'.' name|'img' op|',' name|'fname' op|')' newline|'\n' name|'self' op|'.' name|'assertFalse' op|'(' name|'res' op|')' newline|'\n' name|'log' op|'=' name|'stream' op|'.' name|'getvalue' op|'(' op|')' newline|'\n' name|'self' op|'.' name|'assertNotEqual' op|'(' name|'log' op|'.' name|'find' op|'(' string|"'image verification failed'" op|')' op|',' op|'-' number|'1' op|')' newline|'\n' nl|'\n' DECL|member|test_verify_checksum_file_missing dedent|'' dedent|'' dedent|'' name|'def' name|'test_verify_checksum_file_missing' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'with' name|'utils' op|'.' name|'tempdir' op|'(' op|')' name|'as' name|'tmpdir' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'flags' op|'(' name|'instances_path' op|'=' name|'tmpdir' op|')' newline|'\n' name|'self' op|'.' name|'flags' op|'(' name|'image_info_filename_pattern' op|'=' op|'(' string|"'$instances_path/'" nl|'\n' string|"'%(image)s.info'" op|')' op|',' nl|'\n' name|'group' op|'=' string|"'libvirt'" op|')' newline|'\n' name|'fname' op|',' name|'info_fname' op|',' name|'testdata' op|'=' name|'self' op|'.' name|'_make_checksum' op|'(' name|'tmpdir' op|')' newline|'\n' nl|'\n' name|'image_cache_manager' op|'=' name|'imagecache' op|'.' name|'ImageCacheManager' op|'(' op|')' newline|'\n' name|'res' op|'=' name|'image_cache_manager' op|'.' name|'_verify_checksum' op|'(' string|"'aaa'" op|',' name|'fname' op|')' newline|'\n' name|'self' op|'.' name|'assertIsNone' op|'(' name|'res' op|')' newline|'\n' nl|'\n' comment|'# Checksum requests for a file with no checksum now have the' nl|'\n' comment|'# side effect of creating the checksum' nl|'\n' name|'self' op|'.' name|'assertTrue' op|'(' name|'os' op|'.' name|'path' op|'.' name|'exists' op|'(' name|'info_fname' op|')' op|')' newline|'\n' dedent|'' dedent|'' dedent|'' endmarker|'' end_unit
368870cf443f5ff87fef8280e99d7f7666221e82
ab80d1978214ff59dc1baa18e09b7ec602f09664
/src/tp1/lab/repetidas.py
25070ab8782f17aa9622dfea12c1ce9fd6115898
[]
no_license
unmateo/7506-TP
5accb6dc72202748dcb8cb5e7897cbfce0af2b0e
3875906e3820c7eab597d71e08add5ab18297a61
refs/heads/master
2022-08-10T15:29:56.054968
2019-12-02T12:56:30
2019-12-02T12:56:30
204,795,454
0
0
null
2022-07-29T23:05:20
2019-08-27T21:43:01
HTML
UTF-8
Python
false
false
1,455
py
#!/usr/bin/env python # coding: utf-8 # ### Analizaremos la existencia de publicaciones repetidas # In[35]: import pandas as pd #importo las funciones para levantar los dataframes get_ipython().run_line_magic('run', '"../../utils/dataset_parsing.ipynb"') df = levantar_datos("../../"+DATASET_RELATIVE_PATH) #importo las funciones para graficar get_ipython().run_line_magic('run', '"../../utils/graphs.ipynb"') # ### Consideramos que una publicación es igual a otra si comparten ciudad, precio, direccion, tipo de propiedad y metros totales. # In[57]: repetidas = df.groupby(['ciudad','provincia','precio','direccion','metrostotales','tipodepropiedad']).agg({"id":"count"}) repetidas=repetidas.loc[repetidas.id>1] repetidas # ### La cantidad de publicaciones repetidas según nuestro criterio no es significativa frente al total de los datos. Quisieramos mencionar que en el caso de diferentes departamentos con iguales caracteristicas en un mismo edificio, las publicaciones matchearán como repetidas. # In[58]: repetidas=repetidas.groupby("tipodepropiedad").agg({"id":"count"}) repetidas=repetidas.rename(columns={"id":"total"}) get_barplot(repetidas["total"], title="Tipo de propiedad de las publicaciones repetidas", x_label="Tipo de propiedad", y_label="Total",) # #### El grafico nos permite ver que la cantidad de apartamentos repetidos es muy baja, de modo que la influencia de departamentos iguales en un edificio es casi nula.
130edc3275a971600e9bc89ac9832da9afce3a92
dee2d5c0d0308cab977856ebe5c3ac4b36a8f025
/hello.py
d592b533e124f63f3b0bf443db0b22b297c51ebe
[]
no_license
ShubhamGarg2001/nonu1
346e7301290794e513a5b9e405250c3cc95f4b66
54aca1f26380ea5dd74794548c28a8a38c695a8b
refs/heads/master
2022-04-26T04:10:45.974592
2020-04-29T15:55:05
2020-04-29T15:55:05
259,642,527
0
0
null
2020-04-28T13:49:34
2020-04-28T13:19:16
null
UTF-8
Python
false
false
24
py
print("Greetings Mummy")
738273917f078668e89f2bf2c5c54e511654c183
e1e804221b203c50d49569a68539cf2e61414ebb
/tools/static_code_analysis.py
ee7ce44c1ce26f316a2ab7636a51b56018285a44
[]
no_license
declankeyesbevan/api-skeleton
f6b5150d7edfd319f71e5b2891417ee5322ff736
432090cb2ed92939146ba9bda3aa447321d12de2
refs/heads/master
2023-05-07T19:35:02.413306
2021-05-27T04:44:57
2021-05-27T04:44:57
371,290,643
1
0
null
null
null
null
UTF-8
Python
false
false
3,624
py
import contextlib import os from pathlib import Path import anybadge from pylint.lint import Run from radon.cli import CCHarvester, Config, RawHarvester from radon.complexity import SCORE from app.constants import FIRST class StaticCodeAnalysis: @property def _paths(self): return ['app'] @property def _analyser(self): raise NotImplementedError('Subclasses should implement this') @property def _thresholds(self): raise NotImplementedError('Subclasses should implement this') def run_test(self): raise NotImplementedError('Subclasses should implement this') def create_badge(self, score): badge = anybadge.Badge( self._analyser, score, thresholds=self._thresholds, value_prefix=' ', value_suffix=' ' ) filename = self._analyser.replace(' ', '-') Path(f'{os.environ.get("BUILD_DIR", "build")}').mkdir(parents=True, exist_ok=True) analyser_svg = f'{os.environ.get("BUILD_DIR", "build")}/{filename}.svg' with contextlib.suppress(FileNotFoundError): os.remove(analyser_svg) badge.write_badge(analyser_svg) class Lint(StaticCodeAnalysis): @property def _analyser(self): return 'pylint' @property def _thresholds(self): return { 2: 'red', 4: 'orange', 6: 'yellow', 10: 'green', } def run_test(self): results = Run(['app'], do_exit=False) score = round(results.linter.stats['global_note'], 2) return score class CyclomaticComplexity(StaticCodeAnalysis): @property def _analyser(self): return 'cyclomatic complexity' @property def _thresholds(self): return { 'F': 'red', 'E': 'red', 'D': 'red', 'C': 'orange', 'B': 'yellow', 'A': 'green', } @property def _config(self): return Config( exclude=None, ignore=None, order=SCORE, no_assert=False, show_closures=False, average=True, total_average=True, show_complexity=True, min='A', max='F', ) def run_test(self): harvester = CCHarvester(self._paths, self._config) # Weird ripping apart of iterators because to_terminal() seems to be the only way to get the # overall average. And it is only returned through iterators. Maybe I should do a pull # request to the project. *_, last = harvester.to_terminal() _, mid, _ = last _, score, *_ = mid return score class LogicalLinesOfCode(StaticCodeAnalysis): @property def _analyser(self): return 'logical lines of code' @property def _thresholds(self): return { 0: 'green', } @property def _config(self): return Config( exclude=None, ignore=None, summary=True, ) def run_test(self): harvester = RawHarvester(self._paths, self._config) # This is horrible but the code wasn't designed to be used this way. This is parsing the # terminal output programmatically. I smells a pull request to the project. target_idx = 0 lloc = 0 for idx, item in enumerate(harvester.to_terminal()): if item[FIRST] == '** Total **': target_idx = idx + 2 if target_idx == idx: lloc = item score = lloc[1][1] return score
3b2bf47b29e824907b68e5277d4220df836181ad
5ac3f3ea75065a5ba1649b4b869f4f98136b9c41
/P1-Clasificación/ParseandoDatosConParametros.py
fa0522f2484ee9ba02cb4f536f6c9c1d62118f5f
[ "MIT" ]
permissive
jcgq/Inteligecia-de-negocio
4d199eec0c1bc334d1418019fe76bddb624b8bcc
78a993c339fb8eb399ef3513fc225bc951b293e6
refs/heads/main
2023-04-30T18:26:31.036977
2021-05-25T14:12:37
2021-05-25T14:12:37
369,571,654
1
0
null
null
null
null
UTF-8
Python
false
false
7,462
py
#!/usr/bin/env python # coding: utf-8 #Todas las librerías para los distintos algoritmos from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import ComplementNB from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC from sklearn.svm import OneClassSVM from sklearn.svm import SVC from sklearn.svm import NuSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import BaggingClassifier from sklearn import tree from statistics import mode from sklearn.svm import LinearSVC from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_val_predict import numpy as np from sklearn import impute import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing as pp from sklearn.metrics import roc_auc_score from sklearn.metrics import f1_score from sklearn.metrics import recall_score from sklearn.metrics import confusion_matrix #Primero con esto y luego con la media para ver si la mejora mamografias= pd.read_csv("./mamografias.csv",na_values=["?"]) mamografias['Density']=mamografias['Density'].fillna(mode(mamografias['Density'])) mamografias['BI-RADS']=mamografias['BI-RADS'].fillna(mode(mamografias['BI-RADS'])) mamografias['Margin']=mamografias['Margin'].fillna(mode(mamografias['Margin'])) mamografias['Age']=mamografias['Age'].fillna(mode(mamografias['Age'])) mamografias['Shape']=mamografias['Shape'].fillna(mode(mamografias['Shape'])) le = pp.LabelEncoder() columna_codificada=le.fit_transform(mamografias['Shape']) mamografias['Shape']=le.fit_transform(mamografias['Shape']) mamografias['Severity']=le.fit_transform(mamografias['Severity']) atributos=mamografias[['BI-RADS','Age','Shape','Margin','Density']] target=mamografias['Severity'] data_train, data_test, target_train, target_test = train_test_split(atributos ,target, test_size = 0.8, random_state = 5) #Definición de la función de la matriz def matrizCruzada(prediccion): m = confusion_matrix(target_test, prediccion, normalize="all") tn,fp,fn,tp=m.ravel(); print("TN ",tn*100) print("FP ",fp*100) print("FN ",fn*100) print("TP ",tp*100) print("FP-FN ",(fp-fn)*100) print("---------------------------------") return m #Primer algoritmo Nayve-Bayes #Nayve-Bayes Gaussian gnb = GaussianNB() modeloNBgau = gnb.fit(data_train, target_train) predNBgau = modeloNBgau.predict(data_test) scoresGau = cross_val_score(modeloNBgau, atributos, target, cv=5, scoring='accuracy') #Nayve-Bayes Complement cnb = ComplementNB() modeloNBcom = cnb.fit(data_train, target_train) predNBcom = modeloNBcom.predict(data_test) scoresCom = cross_val_score(modeloNBcom, atributos, target, cv=5, scoring='accuracy') #Nayve-Bayes Bernoulli bnb = BernoulliNB() modelNBBer = bnb.fit(data_train, target_train) predNBber = modelNBBer.predict(data_test) scoresBer = cross_val_score(modelNBBer, atributos, target, cv=5, scoring='accuracy') #Nayve-Bayes Multinominal mnb = MultinomialNB() modelNBMul = mnb.fit(data_train, target_train) predNBmul = modelNBMul.predict(data_test) scoresMul = cross_val_score(modelNBMul, atributos, target, cv=5, scoring='accuracy') #Porcentajes de acierto print("Usando NB Gaussian se tiene una tasa de acierto del ",np.mean(scoresGau)*100) print("Usando NB Complement se tiene una tasa de acierto del ",np.mean(scoresCom)*100) print("Usando NB Bernoulli se tiene una tasa de acierto del ",np.mean(scoresBer)*100) print("Usando NB Multinominal se tiene una tasa de acierto del ",np.mean(scoresMul)*100) #Matrices de validación print("Matriz Gaussian: ", matrizCruzada(predNBgau)) print("Matriz Complement: ", matrizCruzada(predNBcom)) print("Matriz Bernoulli: ", matrizCruzada(predNBber)) print("Matriz Multinominal: ", matrizCruzada(predNBmul)) #Segundo algoritmo Árboles de decisión #Árbol de decisión normal arbNor = tree.DecisionTreeClassifier(random_state=2, max_depth=2) arbNor = arbNor.fit(data_train, target_train) predADnor = arbNor.predict(data_test) scoresADnor = cross_val_score(arbNor, atributos, target, cv=5, scoring='accuracy') #Árbol de decisión extra arbEx = tree.ExtraTreeClassifier(random_state=4, max_depth=2) arbEx = arbEx.fit(data_train, target_train) predADex = arbEx.predict(data_test) scoresADex = cross_val_score(arbEx, atributos, target, cv=5, scoring='accuracy') #Porcentajes de acierto print("Usando AD normal se tiene una tasa de acierto del ",np.mean(scoresADnor)*100) print("Usando AD extra se tiene una tasa de acierto del ",np.mean(scoresADex)*100) #Matrices de validación print("Matriz ArbDec Normal: ",matrizCruzada(predADnor)) print("Matriz ArbDec Extra: ",matrizCruzada(predADex)) #Pintamos los árboles tree.plot_tree(arbNor) tree.plot_tree(arbEx) #Tercer algoritmo SUPPORT VECTOR MACHINE #SVM - NuSVC svr_nu = NuSVC(random_state=10,max_iter=3000) svr_nu.fit(data_train, target_train) predsvNu = svr_nu.predict(data_test) scoresNu = cross_val_score(svr_nu, atributos, target, cv=5, scoring='accuracy') #SVM - SVC svr_svc = SVC(max_iter=3000) svr_svc.fit(data_train, target_train) predsvSvc = svr_svc.predict(data_test) scoresSvc = cross_val_score(svr_svc, atributos, target, cv=5, scoring='accuracy') #Porcentajes de acierto print("Usando NuSVC se tiene una tasa de acierto del ",np.mean(scoresNu)*100) print("Usando SVC se tiene una tasa de acierto del ",np.mean(scoresSvc)*100) #Matrices de validación print("Matriz SVM - Nu: ",matrizCruzada(predsvNu)) print("Matriz SVM - SVC: ",matrizCruzada(predsvSvc)) #Cuarto algoritmo ENSEMBLED METHODS #Bagging meta-estimator bagging = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5) bagging.fit(data_train, target_train) preBag = bagging.predict(data_test) scoresBag = cross_val_score(bagging, atributos, target, cv=5, scoring='accuracy') #Random Forests forests = RandomForestClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0) forests.fit(data_train, target_train) preFo = forests.predict(data_test) scoresFo = cross_val_score(forests, atributos, target, cv=5, scoring='accuracy') #Porcentajes de acierto print("Usando EM meta-estimator se tiene una tasa de acierto del ",np.mean(scoresBag)*100) print("Usando EM Random Forests se tiene una tasa de acierto del ",np.mean(scoresFo)*100) #Matrices de validación print("Matriz EM - Nmeta-estimatoru: ",matrizCruzada(preBag)) print("Matriz EM - Random Forests: ",matrizCruzada(preFo)) #Quinto algoritmo Redes neuronales #MLPClassifier modelMLP = MLPClassifier(activation='tanh', max_iter=10000) modelMLP.fit(data_test, target_test) preMLP=modelMLP.predict(data_test) scoreMLP = cross_val_score(modelMLP, atributos, target, cv=5, scoring='accuracy') #KNC KNC = KNeighborsClassifier(n_neighbors= 2) KNC.fit(data_test,target_test) preKNC=KNC.predict(data_test) scoreKNC = cross_val_score(KNC, atributos, target, cv=5, scoring='accuracy') #Porcentajes de acierto print("Usando RN MLPClassifier se tiene una tasa de acierto del ",np.mean(scoreMLP)*100) print("Usando RN KNC se tiene una tasa de acierto del ",np.mean(scoreKNC)*100) #Matrices de validación print("Matriz RN MLPClassifier: ",matrizCruzada(preMLP)) print("Matriz RN KNC: ",matrizCruzada(preKNC))
8c92a6705b031f5ec8052f1b6563088effcb9459
a863483b9fa4e940718a3206340e698d9cdbc341
/elpy/rpc-venv/lib/python3.8/site-packages/yapf/yapflib/yapf_api.py
13b02a44f1dd80cfc0eb9d3899a867b92e56c35f
[ "BSD-2-Clause" ]
permissive
jhsygg/emacs.d
ebed42b52d4609e23ad9fa41fa873d2f52980bec
addf36f3e2fb3419f547df6180b835036a295542
refs/heads/main
2023-06-12T07:54:26.863128
2023-06-06T07:02:02
2023-06-06T07:02:02
124,079,470
0
0
null
null
null
null
UTF-8
Python
false
false
12,937
py
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entry points for YAPF. The main APIs that YAPF exposes to drive the reformatting. FormatFile(): reformat a file. FormatCode(): reformat a string of code. These APIs have some common arguments: style_config: (string) Either a style name or a path to a file that contains formatting style settings. If None is specified, use the default style as set in style.DEFAULT_STYLE_FACTORY lines: (list of tuples of integers) A list of tuples of lines, [start, end], that we want to format. The lines are 1-based indexed. It can be used by third-party code (e.g., IDEs) when reformatting a snippet of code rather than a whole file. print_diff: (bool) Instead of returning the reformatted source, return a diff that turns the formatted source into reformatter source. verify: (bool) True if reformatted code should be verified for syntax. """ import difflib import re import sys from yapf.pyparser import pyparser from yapf.pytree import pytree_unwrapper from yapf.pytree import pytree_utils from yapf.pytree import blank_line_calculator from yapf.pytree import comment_splicer from yapf.pytree import continuation_splicer from yapf.pytree import split_penalty from yapf.pytree import subtype_assigner from yapf.yapflib import errors from yapf.yapflib import file_resources from yapf.yapflib import identify_container from yapf.yapflib import py3compat from yapf.yapflib import reformatter from yapf.yapflib import style def FormatFile(filename, style_config=None, lines=None, print_diff=False, verify=False, in_place=False, logger=None): """Format a single Python file and return the formatted code. Arguments: filename: (unicode) The file to reformat. style_config: (string) Either a style name or a path to a file that contains formatting style settings. If None is specified, use the default style as set in style.DEFAULT_STYLE_FACTORY lines: (list of tuples of integers) A list of tuples of lines, [start, end], that we want to format. The lines are 1-based indexed. It can be used by third-party code (e.g., IDEs) when reformatting a snippet of code rather than a whole file. print_diff: (bool) Instead of returning the reformatted source, return a diff that turns the formatted source into reformatter source. verify: (bool) True if reformatted code should be verified for syntax. in_place: (bool) If True, write the reformatted code back to the file. logger: (io streamer) A stream to output logging. Returns: Tuple of (reformatted_code, encoding, changed). reformatted_code is None if the file is successfully written to (having used in_place). reformatted_code is a diff if print_diff is True. Raises: IOError: raised if there was an error reading the file. ValueError: raised if in_place and print_diff are both specified. """ _CheckPythonVersion() if in_place and print_diff: raise ValueError('Cannot pass both in_place and print_diff.') original_source, newline, encoding = ReadFile(filename, logger) reformatted_source, changed = FormatCode( original_source, style_config=style_config, filename=filename, lines=lines, print_diff=print_diff, verify=verify) if newline != '\n': reformatted_source = reformatted_source.replace('\n', newline) if in_place: if changed: file_resources.WriteReformattedCode(filename, reformatted_source, encoding, in_place) return None, encoding, changed return reformatted_source, encoding, changed def FormatTree(tree, style_config=None, lines=None, verify=False): """Format a parsed lib2to3 pytree. This provides an alternative entry point to YAPF. Arguments: tree: (pytree.Node) The root of the pytree to format. style_config: (string) Either a style name or a path to a file that contains formatting style settings. If None is specified, use the default style as set in style.DEFAULT_STYLE_FACTORY lines: (list of tuples of integers) A list of tuples of lines, [start, end], that we want to format. The lines are 1-based indexed. It can be used by third-party code (e.g., IDEs) when reformatting a snippet of code rather than a whole file. verify: (bool) True if reformatted code should be verified for syntax. Returns: The source formatted according to the given formatting style. """ _CheckPythonVersion() style.SetGlobalStyle(style.CreateStyleFromConfig(style_config)) # Run passes on the tree, modifying it in place. comment_splicer.SpliceComments(tree) continuation_splicer.SpliceContinuations(tree) subtype_assigner.AssignSubtypes(tree) identify_container.IdentifyContainers(tree) split_penalty.ComputeSplitPenalties(tree) blank_line_calculator.CalculateBlankLines(tree) llines = pytree_unwrapper.UnwrapPyTree(tree) for lline in llines: lline.CalculateFormattingInformation() lines = _LineRangesToSet(lines) _MarkLinesToFormat(llines, lines) return reformatter.Reformat(_SplitSemicolons(llines), verify, lines) def FormatAST(ast, style_config=None, lines=None, verify=False): """Format a parsed lib2to3 pytree. This provides an alternative entry point to YAPF. Arguments: unformatted_source: (unicode) The code to format. style_config: (string) Either a style name or a path to a file that contains formatting style settings. If None is specified, use the default style as set in style.DEFAULT_STYLE_FACTORY lines: (list of tuples of integers) A list of tuples of lines, [start, end], that we want to format. The lines are 1-based indexed. It can be used by third-party code (e.g., IDEs) when reformatting a snippet of code rather than a whole file. verify: (bool) True if reformatted code should be verified for syntax. Returns: The source formatted according to the given formatting style. """ _CheckPythonVersion() style.SetGlobalStyle(style.CreateStyleFromConfig(style_config)) llines = pyparser.ParseCode(ast) for lline in llines: lline.CalculateFormattingInformation() lines = _LineRangesToSet(lines) _MarkLinesToFormat(llines, lines) return reformatter.Reformat(_SplitSemicolons(llines), verify, lines) def FormatCode(unformatted_source, filename='<unknown>', style_config=None, lines=None, print_diff=False, verify=False): """Format a string of Python code. This provides an alternative entry point to YAPF. Arguments: unformatted_source: (unicode) The code to format. filename: (unicode) The name of the file being reformatted. style_config: (string) Either a style name or a path to a file that contains formatting style settings. If None is specified, use the default style as set in style.DEFAULT_STYLE_FACTORY lines: (list of tuples of integers) A list of tuples of lines, [start, end], that we want to format. The lines are 1-based indexed. It can be used by third-party code (e.g., IDEs) when reformatting a snippet of code rather than a whole file. print_diff: (bool) Instead of returning the reformatted source, return a diff that turns the formatted source into reformatter source. verify: (bool) True if reformatted code should be verified for syntax. Returns: Tuple of (reformatted_source, changed). reformatted_source conforms to the desired formatting style. changed is True if the source changed. """ try: tree = pytree_utils.ParseCodeToTree(unformatted_source) except Exception as e: e.filename = filename raise errors.YapfError(errors.FormatErrorMsg(e)) reformatted_source = FormatTree( tree, style_config=style_config, lines=lines, verify=verify) if unformatted_source == reformatted_source: return '' if print_diff else reformatted_source, False if print_diff: code_diff = _GetUnifiedDiff( unformatted_source, reformatted_source, filename=filename) return code_diff, code_diff.strip() != '' # pylint: disable=g-explicit-bool-comparison # noqa return reformatted_source, True def _CheckPythonVersion(): # pragma: no cover errmsg = 'yapf is only supported for Python 2.7 or 3.6+' if sys.version_info[0] == 2: if sys.version_info[1] < 7: raise RuntimeError(errmsg) elif sys.version_info[0] == 3: if sys.version_info[1] < 6: raise RuntimeError(errmsg) def ReadFile(filename, logger=None): """Read the contents of the file. An optional logger can be specified to emit messages to your favorite logging stream. If specified, then no exception is raised. This is external so that it can be used by third-party applications. Arguments: filename: (unicode) The name of the file. logger: (function) A function or lambda that takes a string and emits it. Returns: The contents of filename. Raises: IOError: raised if there was an error reading the file. """ try: encoding = file_resources.FileEncoding(filename) # Preserves line endings. with py3compat.open_with_encoding( filename, mode='r', encoding=encoding, newline='') as fd: lines = fd.readlines() line_ending = file_resources.LineEnding(lines) source = '\n'.join(line.rstrip('\r\n') for line in lines) + '\n' return source, line_ending, encoding except IOError as e: # pragma: no cover if logger: logger(e) e.args = (e.args[0], (filename, e.args[1][1], e.args[1][2], e.args[1][3])) raise except UnicodeDecodeError as e: # pragma: no cover if logger: logger('Could not parse %s! Consider excluding this file with --exclude.', filename) logger(e) e.args = (e.args[0], (filename, e.args[1][1], e.args[1][2], e.args[1][3])) raise def _SplitSemicolons(lines): res = [] for line in lines: res.extend(line.Split()) return res DISABLE_PATTERN = r'^#.*\b(?:yapf:\s*disable|fmt: ?off)\b' ENABLE_PATTERN = r'^#.*\b(?:yapf:\s*enable|fmt: ?on)\b' def _LineRangesToSet(line_ranges): """Return a set of lines in the range.""" if line_ranges is None: return None line_set = set() for low, high in sorted(line_ranges): line_set.update(range(low, high + 1)) return line_set def _MarkLinesToFormat(llines, lines): """Skip sections of code that we shouldn't reformat.""" if lines: for uwline in llines: uwline.disable = not lines.intersection( range(uwline.lineno, uwline.last.lineno + 1)) # Now go through the lines and disable any lines explicitly marked as # disabled. index = 0 while index < len(llines): uwline = llines[index] if uwline.is_comment: if _DisableYAPF(uwline.first.value.strip()): index += 1 while index < len(llines): uwline = llines[index] line = uwline.first.value.strip() if uwline.is_comment and _EnableYAPF(line): if not _DisableYAPF(line): break uwline.disable = True index += 1 elif re.search(DISABLE_PATTERN, uwline.last.value.strip(), re.IGNORECASE): uwline.disable = True index += 1 def _DisableYAPF(line): return (re.search(DISABLE_PATTERN, line.split('\n')[0].strip(), re.IGNORECASE) or re.search(DISABLE_PATTERN, line.split('\n')[-1].strip(), re.IGNORECASE)) def _EnableYAPF(line): return (re.search(ENABLE_PATTERN, line.split('\n')[0].strip(), re.IGNORECASE) or re.search(ENABLE_PATTERN, line.split('\n')[-1].strip(), re.IGNORECASE)) def _GetUnifiedDiff(before, after, filename='code'): """Get a unified diff of the changes. Arguments: before: (unicode) The original source code. after: (unicode) The reformatted source code. filename: (unicode) The code's filename. Returns: The unified diff text. """ before = before.splitlines() after = after.splitlines() return '\n'.join( difflib.unified_diff( before, after, filename, filename, '(original)', '(reformatted)', lineterm='')) + '\n'
00e9ff6636aa69231a33c1ca0e566fc09609f5cc
eb7ff98746500472a7e36f5fae666d68a76120e8
/world-maze.py
961b0444fd9eb9f83648c842d715392d3eb9d37a
[]
no_license
Jony-5/Python-2019
8d3744a0d595fcb9d59a49582b5810a78b968171
6a699f5962e2765ff2ff6f4432da77bca5ce7a7d
refs/heads/master
2020-07-29T02:04:31.935828
2020-02-20T19:38:59
2020-02-20T19:38:59
209,627,165
0
0
null
null
null
null
UTF-8
Python
false
false
3,527
py
#cwc 200121 from mcpi.minecraft import Minecraft from mcpi import block from array import * import random def flowe(mc,x,y,z, total): done = 0 while(done < total): h = random.randint(0,100) l = random.randint(0,100) mc.setBlock(x+h,y,z+l,37) done = done + 1 def init(): #ipString = "192.168.1.73" ipString = "192.168.7.2" #mc = Minecraft.create("127.0.0.1", 4711) mc = Minecraft.create(ipString, 4711) mc.setting("world_immutable",False) #x, y, z = mc.player.getPos() return mc numlist=[0,1,2,3,4,64,6,7,0,0,0,12,13,14,15,16,64,18,20,21,22,24,26,30,31,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,64,54,56,57,58,60,61,62,64,65,67,71,73,78,79,80,81,82,83,64,89,95,98,102,103,64 ,246,247] ''' mc.setBlocks(x,y, zz, x+4, y+4, zz, block.IRON_BLOCK.id) mc.setBlocks(x-1,y, zz, x-1, y+4, zz+4, block.SANDSTONE .id) mc.setBlocks(x-1,y, zz+4, x+4, y+4, zz+4, block.GOLD_ORE.id) mc.setBlocks(x+4,y, zz+1, x+4, y+4, zz+4, block.STONE.id) ''' def main(): mc=flowe mc=init() x,y,z=mc.player.getPos() for h in range (0,100): for l in range (0,100): mc.setBlocks(x+h,y, z+l, x+h,y+1,z+l,numlist[random.randint(0,len(numlist)-1)]) print() #mc.setBlocks(x-1,y-5, z-1, x+11,y-5,z+11,89) #mc.setBlocks(x-1,y+10, z-1, x+11,y+10,z+11,89) #mc.setBlocks(x-1,y+20, z-1, x+11,y+20,z+11,89) mc.player.setPos(x,y+20,z-10) if __name__ == "__main__": main() #API Blocks #==================== # AIR 0 # STONE 1 # GRASS 2 # DIRT 3 # COBBLESTONE 4 # WOOD_PLANKS 5 # SAPLING 6 # BEDROCK 7 # WATER_FLOWING 8 # WATER 8 # WATER_STATIONARY 9 # LAVA_FLOWING 10 # LAVA 10 # LAVA_STATIONARY 11 # SAND 12 # GRAVEL 13 # GOLD_ORE 14 # IRON_ORE 15 # COAL_ORE 16 # WOOD 17 # LEAVES 18 # GLASS 20 # LAPIS_LAZULI_ORE 21 # LAPIS_LAZULI_BLOCK 22 # SANDSTONE 24 # BED 26 # COBWEB 30 # GRASS_TALL 31 # WOOL 35 # FLOWER_YELLOW 37 # FLOWER_CYAN 38 # MUSHROOM_BROWN 39 # MUSHROOM_RED 40 # GOLD_BLOCK 41 # IRON_BLOCK 42 # STONE_SLAB_DOUBLE 43 # STONE_SLAB 44 # BRICK_BLOCK 45 # TNT 46 # BOOKSHELF 47 # MOSS_STONE 48 # OBSIDIAN 49 # TORCH 50 # FIRE 51 # STAIRS_WOOD 53 # CHEST 54 # DIAMOND_ORE 56 # DIAMOND_BLOCK 57 # CRAFTING_TABLE 58 # FARMLAND 60 # FURNACE_INACTIVE 61 # FURNACE_ACTIVE 62 # DOOR_WOOD 64 # LADDER 65 # STAIRS_COBBLESTONE 67 # DOOR_IRON 71 # REDSTONE_ORE 73 # SNOW 78 # ICE 79 # SNOW_BLOCK 80 # CACTUS 81 # CLAY 82 # SUGAR_CANE 83 # FENCE 85 # GLOWSTONE_BLOCK 89 # BEDROCK_INVISIBLE 95 # STONE_BRICK 98 # GLASS_PANE 102 # MELON 103 # FENCE_GATE 107 # GLOWING_OBSIDIAN 246 # NETHER_REACTOR_CORE 247
873f3c5c2bfb0a1878a7e950aea4ecd21d965b33
732605a2bf9bc5470fcca8d8710440ad563ac452
/23-day.py
76a422ba2c6fc0d5f4bf816b2f449a84458e77e4
[]
no_license
capJavert/advent-of-code-2017
6417f6b6fa16cc0c3383baa6bf0cab6edb47292a
0ad7669ea00251e0cbf63c30b964b363d4270d2f
refs/heads/master
2021-09-01T06:56:41.066536
2017-12-25T14:11:37
2017-12-25T14:11:37
112,718,287
0
0
null
null
null
null
UTF-8
Python
false
false
190
py
h = 0 for num in range(106500, 123500, step=17): prime = True for i in range(2, num): if num % i == 0: prime = False if prime: h += 1 print(1001-h)
42d4e5c41eb1c7f9addf3cd7d114f77ca73b49ea
1f1b62a23e9267fba41a5f9dc757d2c107d3d7c1
/nongji.butie/butie.1.py
7cf3504f4412053a303b8464d1143667406520d5
[ "Apache-2.0" ]
permissive
zzh-python/all-project
0e45e2e542b9e63f6ed080ad47725d71f1590772
915a47fb42d63ff3a36814992283c2f4ed8703a3
refs/heads/master
2020-07-24T01:47:19.924959
2019-09-11T08:48:17
2019-09-11T08:48:17
207,765,744
1
1
null
null
null
null
UTF-8
Python
false
false
2,679
py
from bs4 import BeautifulSoup import requests import xlsxwriter import re page=226 privince='10内蒙古' urlroot='http://222.143.21.233:2018/pub/GongShiSearch' cook='__RequestVerificationToken=; __RequestVerificationToken_Lw__=4EDW+mpynwTkqW3DETpxdWrxn5W8nj6kMXUofKCESrXXkSYTWX4iH7MuETUbxuum0oVst5OqG1adH3bD5CcZHbYB/Wi/nKWUpPe6aKuBOPQ9QUbdZJ+YGMdsYzv4so8C9APWkGQV8G1anChDbon7Gc/mgNG6PDcIVRMAd79hLPg=; ASP.NET_SessionId=3xallifuxjx0o4d34efwznwj' cook='__RequestVerificationToken=; CKIE_AD_ANGE=' dd='m+S6hUGtlQn2i+RhVMHrF2Am0045wGbq0cTIZLnTxHRD58cFn009D35pmOnJ8s2D2WwJs/cgQGdOX7soZYorHKQDQcEdOlCSZvmbbvHJbEVwzCbJVXC+Dw+LF6blmD84kkgr2189J4cuydeQR4vb/o0xtJFqrggQ0v0CMruTGKA=' header={ 'Cookie':cook, } data={ '__RequestVerificationToken':dd, 'p':'打(压)捆机' } def get_data(): f=open(privince+'.txt','w+',encoding='utf-8') for i in range(1,page+1): print('第'+str(i)+'页') # url=urlroot+'?pageIndex='+str(i) # req=requests.post(url,data=data,headers=header) url='http://2018.nmnjbt2015.com/pub/gongshi?pageIndex='+str(i)+'&p=%E6%89%93%EF%BC%88%E5%8E%8B%EF%BC%89%E6%8D%86%E6%9C%BA' req=requests.get(url,headers=header) bsObj=BeautifulSoup(req.text,'html.parser') trlist=bsObj.find('table',{'width':'1190'}).find_all('tr')[1:] for tr in trlist: row=[] tdlist=tr.find_all('td') # print(len(tdlist)) if len(tdlist)!=15: print('横向长度出现不为15的') for td in tdlist: row.append(td.get_text()) f.write(str(row)+'\n') if len(trlist)<15: break # break # print(req.text) f.close() def write_excel(): workbook = xlsxwriter.Workbook(privince+ '农机购置补贴情况.xlsx') #创建工作簿 sheet = workbook.add_worksheet() workformat = workbook.add_format({ 'bold': True, #字体加粗 }) # rowname=['序号','县','所在乡(镇)','所在村组','购机者姓名','机具品目','生产厂家','产品名称','购买机型','购买数量(台)','经销商','单台销售价格(元)','单台补贴额(元)','总补贴额(元)','状态',] # for m in range(15): # sheet.write(0,m,rowname[m],workformat) r=1 for line in open(privince+'.txt','r',encoding='utf-8'): line=eval(line) for m in range(len(line)): sheet.write(r,m,line[m].replace('\r','').replace('\n','').replace('\t','').replace('\xa0','').strip()) r=r+1 workbook.close() # get_data() write_excel()
1766d2cff2bfbb73ab2a5eaafc0d7abda24093a8
67b7e6d2c08f08403ec086c510622be48b8d26d8
/src/test/tinc/tincrepo/mpp/gpdb/tests/package/metadata_track/__init__.py
2b24a0179775914babb588e562817fc26853a33d
[ "Apache-2.0", "PostgreSQL", "LicenseRef-scancode-rsa-md4", "OLDAP-2.8", "HPND-sell-variant", "BSD-4-Clause-UC", "BSD-3-Clause", "Zlib", "LicenseRef-scancode-zeusbench", "LicenseRef-scancode-mit-modification-obligations", "OpenSSL", "MIT", "LicenseRef-scancode-other-copyleft", "bzip2-1.0.6", "NTP", "W3C", "metamail", "Beerware", "RSA-MD", "LicenseRef-scancode-rsa-1990", "LicenseRef-scancode-stream-benchmark", "LicenseRef-scancode-openssl", "X11-distribute-modifications-variant", "LicenseRef-scancode-pcre", "LicenseRef-scancode-ssleay-windows", "Spencer-94", "ISC", "LicenseRef-scancode-other-permissive", "BSD-2-Clause", "Python-2.0", "curl", "LicenseRef-scancode-sun-bcl-sdk-5.0", "MIT-CMU", "W3C-19980720" ]
permissive
sshyran/gpdb
41012411d22b0294204dfb0fe67a1f4c8d1ecaf6
2d065ecdd2b5535cb42474f17a0ee6592b4e6837
refs/heads/master
2023-04-09T14:05:44.030212
2016-11-12T08:33:33
2016-11-12T08:34:36
73,544,159
0
0
Apache-2.0
2023-04-04T00:30:10
2016-11-12T09:43:54
PLpgSQL
UTF-8
Python
false
false
3,727
py
""" Copyright (C) 2004-2015 Pivotal Software, Inc. All rights reserved. This program and the accompanying materials are made available under the terms of the under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import shutil import fileinput import os, re import socket import tinctest import getpass from mpp.lib.mppUtil import getOpenPort from mpp.lib.GPFDIST import GPFDIST from tinctest.lib import local_path class MDT: def __init__(self): self.host = str(socket.gethostbyname(socket.gethostname())) self.port = str(getOpenPort()) self.gpfdist_dir = local_path('') self.gpfdist = GPFDIST(self.port, self.host, directory=self.gpfdist_dir) def setup_gpfdist(self): self.gpfdist.killGpfdist() self.gpfdist.startGpfdist() def cleanup_gpfdist(self): self.gpfdist.killGpfdist() return True def pre_process_sql(self, sql_path = local_path("sql")): for dir in os.listdir(sql_path): file = os.path.join(local_path('sql'), dir) if os.path.isfile(file): self.do_insert_select(file) self.modify_sql_file(file) def pre_process_ans(self, sql_path = local_path("expected")): for dir in os.listdir(sql_path): file = os.path.join(local_path('expected'), dir) if os.path.isfile(file): self.modify_ans_file(file) def do_insert_select(self, filename=None): tmp_file = filename + '.tmp' a=0 #if (filename.find('alter_part_table')>=0) or (filename.find('create_table_partitions')>=0): if (filename.find('part')>=0): selectString='select classname,schemaname, objname, usestatus, usename, actionname, subtype, partitionlevel, parenttablename, parentschemaname from pg_stat_partition_operations where statime > ( select statime from pg_stat_partition_operations where objname =\'my_first_table\' and actionname =\'CREATE\') and objname not in (\'pg_stat_operations\',\'pg_stat_partition_operations\') order by statime;' else: selectString='select classname , schemaname , objname , usestatus , usename , actionname , subtype from pg_stat_operations where statime > ( select statime from pg_stat_operations where objname =\'my_first_table\' and actionname =\'CREATE\') and objname not in (\'pg_stat_operations\',\'pg_stat_partition_operations\') order by statime;' f = open(filename,'r') f1 = open(tmp_file, 'w') for line in f: if (line.find('drop ')!=-1) and (a==0): f1.write(selectString) f1.write('\n') a = 1 f1.write(line) f.close() f1.write(selectString) f1.write('\n') f1.close() shutil.move(tmp_file, filename) def modify_sql_file(self, file = None): for line in fileinput.FileInput(file,inplace=1): line = re.sub('(\d+)\.(\d+)\.(\d+)\.(\d+)\:(\d+)', self.host+':'+self.port, line) print str(re.sub('\n','',line)) def modify_ans_file(self, file = None): for line in fileinput.FileInput(file,inplace=1): line = re.sub('gpadmin', getpass.getuser(), line) print str(re.sub('\n','',line))
b59d0204f4a30c0e448cfec7c2eaa61ec8c8b964
db48843f666aed5d3c0a38a147e6b758fcac5376
/config/development.py
e6fa47f24e6ba64dcd93223715acd8740d577262
[ "Apache-2.0" ]
permissive
Cmlsltnl/mdpress
6dcb5dff97139a6a490c7b9ad8a51bd0487d38c0
6fe44f36833443dc7a6ae1c7c4609137ef20b2e2
refs/heads/master
2021-01-11T11:25:08.695125
2016-10-31T15:02:14
2016-10-31T15:02:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
341
py
# coding: utf-8 from .default import Config class DevelopmentConfig(Config): """Base config class.""" TESTING = False SECRET_KEY = "DevelopmentConfig" # Site domain SITE_TITLE = "mdpress" REDIS_CONFIG = { 'HOST': 'localhost', 'PORT': 6379, 'DB': 10 } UPLOAD_FOLDER = "/tmp/upload