blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
f770460af92c083939a9077de2e0ff05c4d2e287
81539aba88c22cf75bd2e14f5e0e92f2bf54e962
/DarkMatterMap2017/TTbarDMJets_Inclusive_pseudoscalar_LO_TuneCP5_13TeV_madgraph_mcatnlo_pythia8/TTbarDMJets_Inclusive_pseudoscalar_LO_Mchi-55_Mphi-100_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/TTbarDMJets_Inclusive_pseudoscalar_LO_TuneCP5_13TeV_madgraph_mcatnlo_pythia8_230000_21_cff.py
46e64e91dd2c9553f431c1f2ed047e1d5fbdff6d
[]
no_license
nistefan/RandomizedParametersSeparator
ad35b48b95e9745814c0bf9d8d8b6eb8aa479177
66a0e291b59113c6b5301768f1c10e36cf23d3c3
refs/heads/master
2021-01-03T00:41:17.415005
2020-02-19T13:30:54
2020-02-19T13:30:54
239,838,928
0
0
null
null
null
null
UTF-8
Python
false
false
2,005
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, lumisToProcess = cms.untracked.VLuminosityBlockRange(*('1:64595', '1:67002', '1:89900', '1:77078', '1:70987', '1:89308', '1:96817', '1:88552', '1:95790', '1:97608', '1:97710', '1:97959', '1:97964', '1:73811', '1:77032', '1:66553', '1:67863', '1:82190', '1:82453', '1:78967', '1:88229', '1:79761', '1:81211', '1:98820', '1:103174', '1:26404', '1:26444', '1:26492', '1:26591', '1:26640', '1:26937', '1:31018', '1:40577', '1:41094', '1:42735', '1:42832', '1:42929', '1:44245', '1:44277', '1:44097', '1:44179', '1:74399', '1:42014', '1:42776', '1:90050', '1:104683', '1:102324', '1:102453', '1:102527', '1:102543', '1:102616', '1:102929', '1:84859', '1:85096', '1:85478', '1:67435', '1:89390', '1:104524', '1:92758', '1:92571', '1:95371', '1:95873', '1:96281', '1:86766', '1:102101', '1:88951', '1:89933', '1:52600', '1:52673', '1:52794', '1:52811', '1:52819', '1:52909', '1:104138', '1:104155', '1:104511', )) ) readFiles.extend( ['/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Inclusive_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/230000/E4D2AD02-D40A-EA11-A0B7-0025905B8582.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Inclusive_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/230000/E48D6400-92FB-E911-A2F9-0CC47A7FC6D0.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Inclusive_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/230000/F89F393C-D012-EA11-B06C-44A842BE76FE.root', '/store/mc/RunIIFall17MiniAODv2/TTbarDMJets_Inclusive_pseudoscalar_LO_TuneCP5_13TeV-madgraph-mcatnlo-pythia8/MINIAODSIM/PU2017_12Apr2018_rp_94X_mc2017_realistic_v14-v1/230000/56BCA64F-BC12-EA11-86AC-002590D425C0.root']);
1b12a7d6ad2c4b6ef67aca576b7ce3ed3d735639
dbc3e853a1aa22db5d8a58c8dab04108fd82d38f
/order/migrations/0004_auto_20181004_1605.py
7e690da0f34a3ec30a4a2ac5a5c67bf7ffff7c34
[]
no_license
izonenav/subul
a6f1baeccec936f91a27ce0ddbb098e13c385b9a
8128666d4e14878cfb04e7a35eb7e1178c61756e
refs/heads/master
2022-11-13T04:47:40.943093
2020-07-14T02:29:09
2020-07-14T02:29:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
# Generated by Django 2.0 on 2018-10-04 07:05 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('order', '0003_auto_20181004_1557'), ] operations = [ migrations.AlterField( model_name='order', name='setProduct', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='product.SetProductCode'), ), ]
63293f3162d18bbda0f7150cfc3e85c652108004
04e99e6d9375cd6fe2d0f872539c9f86245466c1
/60-1.py
a92aa1b5294afbce04f1ec3a739324f0caca20de
[]
no_license
joyce0623/AE401-Python
5265612e19c0526d54a6236b8817768df3d34b57
92f742e93cb1d851d562c962ccb2825ca03b9d74
refs/heads/main
2023-03-01T22:08:59.629509
2021-02-05T06:06:32
2021-02-05T06:06:32
334,825,887
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
score=input('請輸入成績') score=int(score) if score>60: print('PASS') elif score==60: print('低空飛過') else: print('gg')
8239948750c25d3e8bbbcbdfe375b03ae5d8dc57
7fe4daab7282d08933cef12b1bd9dfb4671c3817
/logging/adv_logging.py
77bd967eb6e9ed1e6194e30240029aa97d7b1ade
[]
no_license
cheshen1/python_summary
0055ea34bb7527934e8bf7d45fb923395cb2b4ce
c3e62190202d4c80ca5e9bba4f73cefa003d05ed
refs/heads/master
2020-03-11T22:45:35.390689
2018-04-21T20:39:01
2018-04-21T20:39:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
323
py
import logging import logging.config import json with open('conf.json', 'r') as fd: logging.config.dictConfig(json.load(fd)) logger = logging.getLogger('simpleExample') logger.debug('debug level') logger.info("info level") logger.warning("warning level") logger.error('error level') logger.critical('critical level')
d3a513e37855de056093224b683e5255b9333014
7c278ab8887095e82b074464527c349cc67bad65
/spider_review/822/show_timeout.py
fc13baf6cb9fe6f57112f92f72b59fa5704304b1
[]
no_license
Berg1994/project_test
a452f01ffc9b01f7cdda060e84ee80d4aef2e31b
56ed0a04e4e5ea3a3e60d0aa9db3918818dcfa6d
refs/heads/master
2020-03-22T16:58:06.179871
2018-08-31T01:08:22
2018-08-31T01:08:22
140,363,773
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
import urllib.request response = urllib.request.urlopen('http://httpbin.org/get',timeout=1) print(response.read().decode('utf8'))
fd400b0ea89ea5ce4a711be812d9523550c30172
8bba6bc097af5161946ffbaa18d69cf3d3fac44f
/processFile.py
dc872a2e1201513970bf32f3799a4c4834d038cf
[]
no_license
fahimbinkhair/python-for-beginner
8febf40c205a5a17a3e9e2f707316d0e69df0d4e
db15850e9b88a421ac191c33c05d821917504304
refs/heads/master
2021-06-16T06:14:53.427621
2021-04-11T12:01:52
2021-04-11T12:01:52
190,476,364
0
0
null
2021-04-11T12:01:32
2019-06-05T22:18:53
Python
UTF-8
Python
false
false
746
py
#!/usr/bin/python3 from lib import DB from datetime import datetime db_conn = DB.DbConn() sql = """ INSERT INTO student (name, address_line_1, address_line_2, postcode, when_created) VALUES (%s, %s, %s, %s, %s)""" # open and read the file line by line lines = open("student.txt", "r") for line in lines: line = line.strip() line = line.strip("|") lineData = line.split('|') name = lineData[0] addressLine1 = lineData[1] addressLine2 = lineData[2] postCode = lineData[3] print('Saving: ' + name) sqlValue = (name, addressLine1, addressLine2, postCode, datetime.now()) db_conn.get_cursor().execute(sql, sqlValue) db_conn.commit().close_cursor().close_db_connection()
c44711e666d734e379abb3124c353bfc29294675
7e62f0928681aaaecae7daf360bdd9166299b000
/external/DirectXShaderCompiler/tools/clang/utils/check_cfc/obj_diff.py
f89ffd12de55259283b177f26b3af86efdfc3de9
[ "NCSA", "LicenseRef-scancode-unknown-license-reference" ]
permissive
yuri410/rpg
949b001bd0aec47e2a046421da0ff2a1db62ce34
266282ed8cfc7cd82e8c853f6f01706903c24628
refs/heads/master
2020-08-03T09:39:42.253100
2020-06-16T15:38:03
2020-06-16T15:38:03
211,698,323
0
0
null
null
null
null
UTF-8
Python
false
false
3,664
py
#!/usr/bin/env python2.7 from __future__ import print_function import argparse import difflib import filecmp import os import subprocess import sys disassembler = 'objdump' def keep_line(line): """Returns true for lines that should be compared in the disassembly output.""" return "file format" not in line def disassemble(objfile): """Disassemble object to a file.""" p = subprocess.Popen([disassembler, '-d', objfile], stdout=subprocess.PIPE, stderr=subprocess.PIPE) (out, err) = p.communicate() if p.returncode or err: print("Disassemble failed: {}".format(objfile)) sys.exit(1) return filter(keep_line, out.split(os.linesep)) def dump_debug(objfile): """Dump all of the debug info from a file.""" p = subprocess.Popen([disassembler, '-WliaprmfsoRt', objfile], stdout=subprocess.PIPE, stderr=subprocess.PIPE) (out, err) = p.communicate() if p.returncode or err: print("Dump debug failed: {}".format(objfile)) sys.exit(1) return filter(keep_line, out.split(os.linesep)) def first_diff(a, b, fromfile, tofile): """Returns the first few lines of a difference, if there is one. Python diff can be very slow with large objects and the most interesting changes are the first ones. Truncate data before sending to difflib. Returns None is there is no difference.""" # Find first diff first_diff_idx = None for idx, val in enumerate(a): if val != b[idx]: first_diff_idx = idx break if first_diff_idx == None: # No difference return None # Diff to first line of diff plus some lines context = 3 diff = difflib.unified_diff(a[:first_diff_idx+context], b[:first_diff_idx+context], fromfile, tofile) difference = "\n".join(diff) if first_diff_idx + context < len(a): difference += "\n*** Diff truncated ***" return difference def compare_object_files(objfilea, objfileb): """Compare disassembly of two different files. Allowing unavoidable differences, such as filenames. Return the first difference if the disassembly differs, or None. """ disa = disassemble(objfilea) disb = disassemble(objfileb) return first_diff(disa, disb, objfilea, objfileb) def compare_debug_info(objfilea, objfileb): """Compare debug info of two different files. Allowing unavoidable differences, such as filenames. Return the first difference if the debug info differs, or None. If there are differences in the code, there will almost certainly be differences in the debug info too. """ dbga = dump_debug(objfilea) dbgb = dump_debug(objfileb) return first_diff(dbga, dbgb, objfilea, objfileb) def compare_exact(objfilea, objfileb): """Byte for byte comparison between object files. Returns True if equal, False otherwise. """ return filecmp.cmp(objfilea, objfileb) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('objfilea', nargs=1) parser.add_argument('objfileb', nargs=1) parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() diff = compare_object_files(args.objfilea[0], args.objfileb[0]) if diff: print("Difference detected") if args.verbose: print(diff) sys.exit(1) else: print("The same")
908fc268a280cf50cef0db9a60f38306992badae
e288eda6ddbba137a33f137cbf0b23b003847b4d
/auto/exception.py
7987b78e9f1cca64b7b817dff19fd232715b7476
[ "MIT" ]
permissive
awake006/auto
f0e932f86e51d2a624f1ffb30c96edf31a59b77d
7966115621e342dcac3feab45289358dd7b85cbd
refs/heads/master
2021-06-24T04:56:16.479874
2019-06-14T07:33:10
2019-06-14T07:33:10
99,061,581
1
0
null
null
null
null
UTF-8
Python
false
false
355
py
class TestCaseNotException(Exception): pass class ParameterBuildFailedException(Exception): pass class ResponseErr(Exception): pass class ReturnFormatException(Exception): pass class CaseFailException(Exception): pass class CaseRequiredDataException(Exception): pass class ParameterFormatException(Exception): pass
a345bd157f88e5758b1a12545dce0ad7fc4fd07b
3dbe42f81501c7538741b03d634eefdedcd95e72
/Homework/hw3_knapsack_&_slicing/hw3_template.py
5f9ed17771a8f00197483c7903b9b249855a06c2
[]
no_license
krodrig91/intro-to-prog-python
195025958bcbeeda0e40c57570ee2729440e2ba3
19aeb980c3acbe819368c36c9239e4c19795262e
refs/heads/master
2020-05-17T02:34:29.787831
2015-09-10T01:35:48
2015-09-10T01:35:48
42,210,701
0
0
null
null
null
null
UTF-8
Python
false
false
2,679
py
# Be sure to submit hw3.py. Remove the '_template' from the file name. ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ' PROBLEM 0 ' Implement the function giveChange() here: ' See the PDF in Canvas for more details. ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' # your code goes here # Here's the list of letter values and a small dictionary to use. # Leave the following lists in place. scrabbleScores = \ [ ['a', 1], ['b', 3], ['c', 3], ['d', 2], ['e', 1], ['f', 4], ['g', 2], ['h', 4], ['i', 1], ['j', 8], ['k', 5], ['l', 1], ['m', 3], ['n', 1], ['o', 1], ['p', 3], ['q', 10], ['r', 1], ['s', 1], ['t', 1], ['u', 1], ['v', 4], ['w', 4], ['x', 8], ['y', 4], ['z', 10] ] Dictionary = ['a', 'am', 'at', 'apple', 'bat', 'bar', 'babble', 'can', 'foo', 'spam', 'spammy', 'zzyzva'] ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ' PROBLEM 1 ' Implement wordsWithScore() which is specified below. ' Hints: Use map. Feel free to use some of the functions you did for ' homework 2 (Scrabble Scoring). As always, include any helper ' functions in this file, so we can test it. ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def wordsWithScore(dct, scores): '''List of words in dct, with their Scrabble score. Assume dct is a list of words and scores is a list of [letter,number] pairs. Return the dictionary annotated so each word is paired with its value. For example, wordsWithScore(scrabbleScores, Dictionary) should return [['a', 1], ['am', 4], ['at', 2] ...etc... ] ''' return None # your code goes here ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ' PROBLEM 2 ' For the sake of an exercise, we will implement a function ' that does a kind of slice. You must use recursion for this ' one. Your code is allowed to refer to list index L[0] and ' also use slice notation L[1:] but no other slices. ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def take(n, L): '''Returns the list L[0:n].''' return None # your code goes here ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ' PROBLEM 3 ' Similar to problem 2, will implement another function ' that does a kind of slice. You must use recursion for this ' one. Your code is allowed to refer to list index L[0] and ' also use slice notation L[1:] but no other slices. ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' def drop(n, L): '''Returns the list L[n:].''' return None # your code goes here
92a0a08e2763650f2669521f631586dc290cc80f
20109ea82489e7eb55a76812d34ff8ada0b1a4d5
/scripts/generate_gene_fasta.py
478f5f65c40c15dfa5dd61a06d36159326f7d16e
[]
no_license
mbhall88/tubemaps_pilot
e8ece81f5ec8f456cc9abb2f34d770de10fcba14
31471f2afb390be9340d213cb4e91019b81f69d2
refs/heads/master
2022-11-25T22:56:22.222974
2019-06-19T13:08:08
2019-06-20T05:39:13
109,889,266
1
1
null
2022-11-08T22:05:07
2017-11-07T20:50:09
xBase
UTF-8
Python
false
false
2,185
py
""" The purpose of this script is to take a GFF file and a reference genome and generate a fasta file for each gene in the GFF file - based on the coordinates in the GFF file. The GFF file should obviously be for the given reference genome. First argument is the reference genome. Second argument is the GFF file containing genes you want fastas for. Third argument is the directory to write the fastas to. """ import os import sys def fasta_parser(filename): """Parse a fasta file and withdraw the sequences and their sequence/read id Args: ¦ filename (str): Path for the fasta file. ¦ Returns: ¦ fasta (dict[str]): A dictionary where the keys are the sequence/read ¦ id and the value is the sequence for that sequence/read. ¦ """ fasta = {} with open(filename, 'r') as f: contents = f.read()[1:].split('\n>') for section in contents: sample = section.split('\n') sample_id = sample[0] seq = ''.join(sample[1:]).strip() fasta[sample_id] = seq return fasta def fasta_writer(file_obj, header, seq, wrap=60): """file_obj must be an open file object""" file_obj.write(header + '\n') for i in range(0, len(seq), wrap): file_obj.write(seq[i: i + wrap] + '\n') def get_gene_name(field): return field.split('Name=')[-1].split(';')[0] ref = fasta_parser(sys.argv[1]) ref_genome = list(ref.values())[0] gff_filename = sys.argv[2] output_dir = os.path.realpath(sys.argv[3]) offset = 100 with open(gff_filename, 'r') as gff: for row in gff: if row.startswith('#'): continue elements = row.split('\t') gene = get_gene_name(elements[-1]) # minus one for start index due to 0-based vs 1-based indexing start = int(elements[3]) - 1 end = int(elements[4]) with open(os.path.join(output_dir, gene + '.fa'), 'w') as fout: seq = ref_genome[start-offset: end+offset] header = '>{0}|gene_start={2}|offset={3}|gene={1}'\ .format(list(ref.keys())[0], gene, start, offset) # write fasta file fasta_writer(fout, header, seq)
f1e29b62c9a28e72424aa83a0914d9bb39afb379
30c43c3ecea184bccfa63a5b94af7553aff26208
/Scrapy/Maoyan/Maoyan/pipelines.py
23355ac6f14c0d25fc78006d6ffc63bc226b57f2
[]
no_license
wangxinchao-bit/SpiderProject
d1f8940b4e7b33e28f93120d18cb4685714bb97f
771d71e39635840e93bd43dbfe3731c80e7b81b0
refs/heads/master
2023-02-24T23:55:08.112114
2021-01-30T02:21:18
2021-01-30T02:21:18
329,494,442
4
0
null
null
null
null
UTF-8
Python
false
false
345
py
# -*- coding: utf-8 -*- import csv # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html class MaoyanPipeline: def process_item(self, item, spider): print('*'*50) print(item ,'\n') # print(item,'\t')
eba1f95254ed280e1ccf7b3ad2d9ca703ea47941
f485dff7fcb036868d6e4053a7a6ccd7f95214bf
/week11/triathlete_v3_111.py
3cece7689cd808f21dbf758baf8fc6549c695eb9
[]
no_license
jamesfallon99/CA117
aa4f851365aafe8a4888c85e1b8b2f571e2c9b2a
0055ccbbd710453c9574930b361c26fcde2b9036
refs/heads/master
2020-06-28T14:26:06.829418
2019-08-02T16:41:38
2019-08-02T16:41:38
200,254,591
3
1
null
null
null
null
UTF-8
Python
false
false
753
py
#!/usr/bin/env python3 class Triathlete(object): def __init__(self, name, tid): self.name = name self.tid = tid self.times = {} self.race_time = 0 def add_time(self, sport, time): self.times[sport] = time self.race_time += time def get_time(self, sport): return self.times[sport] def __eq__(self, other): return self.race_time == other.race_time def __gt__(self, other): return self.race_time > other.race_time def __str__(self): l = [] l.append("Name: {}".format(self.name)) l.append("ID: {}".format(self.tid)) l.append("Race time: {}".format(self.race_time)) return "\n".join(l)
112c208e0ac353fc8cd0be37ffb0547e0eee41a2
d6a24411501e6a004e3f5357830d9eafb85651e4
/mysite/stockAnalysis/forms.py
1245aa4e2c00854ed84e5ce7a64d4d39ac95212a
[]
no_license
kelvonlys/Double-Top-and-Bottom
f38957753ef059362dc86a194eff217adcaa369f
9ac0e9993e23d20bd542137bd4f685d448bbdc9f
refs/heads/master
2023-03-10T06:01:09.600940
2021-02-20T15:43:39
2021-02-20T15:43:39
340,569,010
10
2
null
null
null
null
UTF-8
Python
false
false
119
py
from django import forms class NameForm(forms.Form): stockNum = forms.CharField(label='Stock num', max_length=100)
013f2e30cd5d895440421b5907eff3e4fb6a0c0e
5333649845c6c6dbee1be2cea7250ac97f1c4d91
/spider/app_spider/app_spider/run.py
9148e834890f1247d69c3c2bfa1ef507d36fad4e
[]
no_license
shy-shhy/Top5
8c9ef21cb7bc73f245cbcfa47156f9fcb5e3aaff
e3b542b7867fc59084a845ff6206f091239e1797
refs/heads/master
2022-11-12T10:09:10.483114
2020-07-02T10:54:49
2020-07-02T10:54:49
276,609,425
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
from scrapy import cmdline cmdline.execute('scrapy crawl score'.split())
05534d99c100465e8105af77ff2a572f4486ffdd
761852e730557bd2c5e4fe2417d7891fc115dd9a
/app/healthcare/migrations/0030_auto_20191020_0029.py
0de0b082fff306e7dd1b3ea1d81ed6c6a6d51b86
[]
no_license
ajay2016/ZenWellness
468810aef2d7298ccfe7961c519a23ed7d355ebb
94f80b7352523f33dec9cd78157bdd02bb68a31c
refs/heads/master
2023-06-01T21:55:10.374847
2021-06-21T06:47:28
2021-06-21T06:47:28
378,832,761
0
0
null
null
null
null
UTF-8
Python
false
false
632
py
# Generated by Django 2.2.4 on 2019-10-20 00:29 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('healthcare', '0029_auto_20191020_0019'), ] operations = [ migrations.RemoveField( model_name='patientlabtest', name='requested_delivery_date', ), migrations.AddField( model_name='patientlabtest', name='requested_date', field=models.DateTimeField(default=datetime.datetime(2019, 10, 20, 0, 29, 50, 989477)), preserve_default=False, ), ]
0c7c403ed0564e6700eb2d19b217eb94edb2927e
4f9e6b686bc369ea9ba0e712a268bef22727657a
/build/arbotix_ros-indigo-devel/arbotix_controllers/catkin_generated/pkg.installspace.context.pc.py
9db299a9f026fd7e7a7c15c51f419aef02736ba9
[]
no_license
YongzheZhang/catkin_make
ce8efd05887b6bbaa6c01294c37a5a939bd29e33
ad79cc20ef0021b8f8e6ab10d9183044acd151e2
refs/heads/master
2020-03-19T07:41:38.271776
2018-06-05T08:51:55
2018-06-05T08:51:55
136,106,020
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "arbotix_controllers" PROJECT_SPACE_DIR = "/home/zhe/catkin_ws/install" PROJECT_VERSION = "0.10.0"
30f98cefec9fc5094ffbd13f37ef7228eb03829c
dd27808508beb837acd99ef4dbe3089b442a5171
/mrlwebsite/ui/views.py
0ebcf71a9e90f6a3a94e7f2447f5216f965ffb40
[]
no_license
ayushmr/mrlwebsite
b18762248dba7f20768d6d2a23abe2a36fb9f297
3acca2685558a0f153e8599dea833b52b7ee989f
refs/heads/master
2022-08-13T19:16:06.009230
2020-05-22T11:38:17
2020-05-22T11:38:17
266,092,613
0
0
null
null
null
null
UTF-8
Python
false
false
2,855
py
from django.shortcuts import render from .models import Master,Countries,ComCountryRelation,RegulatoryParameters,TypeOfParameters,Profile,Commodities # Create your views here. from django.http import HttpResponse from django.db.models import Q from django.shortcuts import redirect import xlwt import csv from operator import itemgetter from itertools import groupby from .forms import Getdata def index(request): countrieslist=request.session['col'] commoditylist=request.session['coml'] parameterlist=request.session['parl'] master=Master.objects.filter(Q(country__in=countrieslist)&Q(product__in=commoditylist)&Q(parameter__in=parameterlist)).all() # master_by_countries=Master.objects.values('country') # master_by_commodities=Master.objects.values('product') # master_by_country_commodity=master.filter() # master_by_parameters=Master.objects.values('parameter') # for country in master_by_countries: # for commodity in master_by_commodities: # for parameter in master_by_parameters: # master.filter() countries=Countries.objects.all() com=Commodities.objects.all() comcon=ComCountryRelation.objects.all() params=RegulatoryParameters.objects.all() paramtype=TypeOfParameters.objects.all() prof=Profile.objects.all() return render(request,'report.html',{'master': master,'countries':countries,'com':com,'comcon':comcon,'params':params,'paramtype':paramtype,'prof':prof}) # def new_report(request): # form=Getdata(request.POST or None) # if request.POST: # data=request.POST.copy() # countrylist=data.getlist('countries') # comlist=data.getlist('commodities') # paramlist=data.getlist('parameters') def form(request): # context={'form':} form=Getdata(request.POST or None) # context['form']= Getdata() if request.POST: # if form.is_valid(): data = request.POST.copy() request.session['col']=data.getlist('countries') request.session['coml']=data.getlist('commodities') request.session['parl']=data.getlist('parameters') return redirect('/ui') # temp=form.cleaned_data.get() # print(temp) return render(request,"form.html",{'form':form,}) def excel_view(request): normal_style = xlwt.easyxf(""" font: name Verdana """) response = HttpResponse(content_type='ui/ms-excel') # response['Content-Disposition'] = 'attachment; filename="data.csv"' # writer = csv.writer(response) # writer.writerow(['Username', 'First name', 'Last name', 'Email address']) # print(request.GET.copy()) wb = xlwt.Workbook() ws0 = wb.add_sheet('Worksheet') ws0.write(0, 0, "something", normal_style) wb.save(response) return response
9ad54547b06cefe0619d3bd07eaed8a5feaee11f
4a752714c4b967f7ba0cc25dceacd32791e7d427
/SchemaPages/schemapages_pb2.py
74777ad128f2bba30abebbe01d8db769119be2a7
[ "LicenseRef-scancode-free-unknown", "Apache-2.0" ]
permissive
shaedrich/schemaorg
9d734c4c6e14ded1b4d6cdd592d6eff831652358
69a0cd2470fcf85daf527097506e4087831289c2
refs/heads/main
2023-03-06T06:17:45.384106
2020-09-30T19:45:40
2020-09-30T19:45:40
430,631,313
1
0
Apache-2.0
2021-11-22T08:54:56
2021-11-22T08:54:55
null
UTF-8
Python
false
true
34,111
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: schemapages.proto from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='schemapages.proto', package='SchemaPages', syntax='proto2', serialized_options=None, create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x11schemapages.proto\x12\x0bSchemaPages\"\x1e\n\tSuperPath\x12\x11\n\tsuperPath\x18\x01 \x03(\t\"\x97\x02\n\x07SDOTerm\x12\'\n\x08termType\x18\x01 \x02(\x0e\x32\x15.SchemaPages.TermType\x12\x0b\n\x03uri\x18\x02 \x02(\t\x12\r\n\x05label\x18\x04 \x02(\t\x12*\n\nsuperPaths\x18\x06 \x03(\x0b\x32\x16.SchemaPages.SuperPath\x12\x18\n\x10\x61\x63knowledgements\x18\x05 \x03(\t\x12\x0f\n\x07\x63omment\x18\x07 \x02(\t\x12\x13\n\x0b\x65quivalents\x18\x08 \x03(\t\x12\x0f\n\x07pending\x18\t \x02(\x08\x12\x0f\n\x07retired\x18\n \x02(\x08\x12\x14\n\x0csupersededBy\x18\x0b \x01(\t\x12\x12\n\nsupersedes\x18\x0c \x03(\t\x12\x0f\n\x07sources\x18\r \x03(\t\"\xd8\x01\n\x0bSDOBaseType\x12\n\n\x02id\x18\x01 \x02(\t\x12,\n\x0etermdescriptor\x18\x02 \x03(\x0b\x32\x14.SchemaPages.SDOTerm\x12\x12\n\nproperties\x18\x03 \x03(\t\x12\x15\n\rallproperties\x18\x04 \x03(\t\x12\x17\n\x0f\x65xpectedTypeFor\x18\x05 \x03(\t\x12\x1a\n\x12\x65numerationMembers\x18\x06 \x03(\t\x12\x0c\n\x04subs\x18\t \x03(\t\x12\x0e\n\x06supers\x18\n \x03(\t\x12\x11\n\ttermStack\x18\x0b \x03(\t\"\xb8\x01\n\x0bSDOProperty\x12\n\n\x02id\x18\x01 \x02(\t\x12,\n\x0etermdescriptor\x18\x02 \x03(\x0b\x32\x14.SchemaPages.SDOTerm\x12\x16\n\x0e\x64omainIncludes\x18\x03 \x03(\t\x12\x15\n\rrangeIncludes\x18\x04 \x03(\t\x12\x0f\n\x07inverse\x18\x05 \x02(\t\x12\x0c\n\x04subs\x18\x06 \x03(\t\x12\x0e\n\x06supers\x18\x07 \x03(\t\x12\x11\n\ttermStack\x18\x08 \x03(\t\"j\n\x13SDOEnumerationValue\x12\n\n\x02id\x18\x01 \x02(\t\x12,\n\x0etermdescriptor\x18\x02 \x03(\x0b\x32\x14.SchemaPages.SDOTerm\x12\x19\n\x11\x65numerationParent\x18\x03 \x02(\t\"\'\n\x0cSDOReference\x12\n\n\x02id\x18\x01 \x02(\t\x12\x0b\n\x03uri\x18\x02 \x02(\t\"\xa8\x02\n\x13SDOBaseTypeExpanded\x12\n\n\x02id\x18\x01 \x02(\t\x12,\n\x0etermdescriptor\x18\x02 \x03(\x0b\x32\x14.SchemaPages.SDOTerm\x12,\n\nproperties\x18\x03 \x03(\x0b\x32\x18.SchemaPages.SDOProperty\x12\x31\n\x0f\x65xpectedTypeFor\x18\x04 \x03(\x0b\x32\x18.SchemaPages.SDOProperty\x12\x1a\n\x12\x65numerationMembers\x18\x05 \x03(\t\x12\x0c\n\x04subs\x18\x06 \x03(\t\x12\x0e\n\x06supers\x18\x07 \x03(\t\x12<\n\ttermStack\x18\x08 \x03(\x0b\x32).SchemaPages.SDOBaseTypeExpandedPropsOnly\"\x86\x02\n\x1cSDOBaseTypeExpandedPropsOnly\x12\n\n\x02id\x18\x01 \x02(\t\x12,\n\x0etermdescriptor\x18\x02 \x03(\x0b\x32\x14.SchemaPages.SDOTerm\x12,\n\nproperties\x18\x03 \x03(\x0b\x32\x18.SchemaPages.SDOProperty\x12\x31\n\x0f\x65xpectedTypeFor\x18\x04 \x03(\x0b\x32\x18.SchemaPages.SDOProperty\x12\x1a\n\x12\x65numerationMembers\x18\x05 \x03(\t\x12\x0c\n\x04subs\x18\x06 \x03(\t\x12\x0e\n\x06supers\x18\x07 \x03(\t\x12\x11\n\ttermStack\x18\x08 \x03(\t*f\n\x08TermType\x12\x08\n\x04TYPE\x10\x00\x12\x0c\n\x08PROPERTY\x10\x01\x12\x0c\n\x08\x44\x41TATYPE\x10\x02\x12\x0f\n\x0b\x45NUMERATION\x10\x03\x12\x14\n\x10\x45NUMERATIONVALUE\x10\x04\x12\r\n\tREFERENCE\x10\x05' ) _TERMTYPE = _descriptor.EnumDescriptor( name='TermType', full_name='SchemaPages.TermType', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='TYPE', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='PROPERTY', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='DATATYPE', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='ENUMERATION', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='ENUMERATIONVALUE', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='REFERENCE', index=5, number=5, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=1467, serialized_end=1569, ) _sym_db.RegisterEnumDescriptor(_TERMTYPE) TermType = enum_type_wrapper.EnumTypeWrapper(_TERMTYPE) TYPE = 0 PROPERTY = 1 DATATYPE = 2 ENUMERATION = 3 ENUMERATIONVALUE = 4 REFERENCE = 5 _SUPERPATH = _descriptor.Descriptor( name='SuperPath', full_name='SchemaPages.SuperPath', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='superPath', full_name='SchemaPages.SuperPath.superPath', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=34, serialized_end=64, ) _SDOTERM = _descriptor.Descriptor( name='SDOTerm', full_name='SchemaPages.SDOTerm', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='termType', full_name='SchemaPages.SDOTerm.termType', index=0, number=1, type=14, cpp_type=8, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='uri', full_name='SchemaPages.SDOTerm.uri', index=1, number=2, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='label', full_name='SchemaPages.SDOTerm.label', index=2, number=4, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='superPaths', full_name='SchemaPages.SDOTerm.superPaths', index=3, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='acknowledgements', full_name='SchemaPages.SDOTerm.acknowledgements', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='comment', full_name='SchemaPages.SDOTerm.comment', index=5, number=7, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='equivalents', full_name='SchemaPages.SDOTerm.equivalents', index=6, number=8, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='pending', full_name='SchemaPages.SDOTerm.pending', index=7, number=9, type=8, cpp_type=7, label=2, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='retired', full_name='SchemaPages.SDOTerm.retired', index=8, number=10, type=8, cpp_type=7, label=2, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='supersededBy', full_name='SchemaPages.SDOTerm.supersededBy', index=9, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='supersedes', full_name='SchemaPages.SDOTerm.supersedes', index=10, number=12, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='sources', full_name='SchemaPages.SDOTerm.sources', index=11, number=13, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=67, serialized_end=346, ) _SDOBASETYPE = _descriptor.Descriptor( name='SDOBaseType', full_name='SchemaPages.SDOBaseType', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='id', full_name='SchemaPages.SDOBaseType.id', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='termdescriptor', full_name='SchemaPages.SDOBaseType.termdescriptor', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='SchemaPages.SDOBaseType.properties', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='allproperties', full_name='SchemaPages.SDOBaseType.allproperties', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='expectedTypeFor', full_name='SchemaPages.SDOBaseType.expectedTypeFor', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='enumerationMembers', full_name='SchemaPages.SDOBaseType.enumerationMembers', index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='subs', full_name='SchemaPages.SDOBaseType.subs', index=6, number=9, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='supers', full_name='SchemaPages.SDOBaseType.supers', index=7, number=10, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='termStack', full_name='SchemaPages.SDOBaseType.termStack', index=8, number=11, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=349, serialized_end=565, ) _SDOPROPERTY = _descriptor.Descriptor( name='SDOProperty', full_name='SchemaPages.SDOProperty', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='id', full_name='SchemaPages.SDOProperty.id', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='termdescriptor', full_name='SchemaPages.SDOProperty.termdescriptor', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='domainIncludes', full_name='SchemaPages.SDOProperty.domainIncludes', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='rangeIncludes', full_name='SchemaPages.SDOProperty.rangeIncludes', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='inverse', full_name='SchemaPages.SDOProperty.inverse', index=4, number=5, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='subs', full_name='SchemaPages.SDOProperty.subs', index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='supers', full_name='SchemaPages.SDOProperty.supers', index=6, number=7, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='termStack', full_name='SchemaPages.SDOProperty.termStack', index=7, number=8, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=568, serialized_end=752, ) _SDOENUMERATIONVALUE = _descriptor.Descriptor( name='SDOEnumerationValue', full_name='SchemaPages.SDOEnumerationValue', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='id', full_name='SchemaPages.SDOEnumerationValue.id', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='termdescriptor', full_name='SchemaPages.SDOEnumerationValue.termdescriptor', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='enumerationParent', full_name='SchemaPages.SDOEnumerationValue.enumerationParent', index=2, number=3, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=754, serialized_end=860, ) _SDOREFERENCE = _descriptor.Descriptor( name='SDOReference', full_name='SchemaPages.SDOReference', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='id', full_name='SchemaPages.SDOReference.id', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='uri', full_name='SchemaPages.SDOReference.uri', index=1, number=2, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=862, serialized_end=901, ) _SDOBASETYPEEXPANDED = _descriptor.Descriptor( name='SDOBaseTypeExpanded', full_name='SchemaPages.SDOBaseTypeExpanded', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='id', full_name='SchemaPages.SDOBaseTypeExpanded.id', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='termdescriptor', full_name='SchemaPages.SDOBaseTypeExpanded.termdescriptor', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='SchemaPages.SDOBaseTypeExpanded.properties', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='expectedTypeFor', full_name='SchemaPages.SDOBaseTypeExpanded.expectedTypeFor', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='enumerationMembers', full_name='SchemaPages.SDOBaseTypeExpanded.enumerationMembers', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='subs', full_name='SchemaPages.SDOBaseTypeExpanded.subs', index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='supers', full_name='SchemaPages.SDOBaseTypeExpanded.supers', index=6, number=7, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='termStack', full_name='SchemaPages.SDOBaseTypeExpanded.termStack', index=7, number=8, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=904, serialized_end=1200, ) _SDOBASETYPEEXPANDEDPROPSONLY = _descriptor.Descriptor( name='SDOBaseTypeExpandedPropsOnly', full_name='SchemaPages.SDOBaseTypeExpandedPropsOnly', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='id', full_name='SchemaPages.SDOBaseTypeExpandedPropsOnly.id', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='termdescriptor', full_name='SchemaPages.SDOBaseTypeExpandedPropsOnly.termdescriptor', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='properties', full_name='SchemaPages.SDOBaseTypeExpandedPropsOnly.properties', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='expectedTypeFor', full_name='SchemaPages.SDOBaseTypeExpandedPropsOnly.expectedTypeFor', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='enumerationMembers', full_name='SchemaPages.SDOBaseTypeExpandedPropsOnly.enumerationMembers', index=4, number=5, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='subs', full_name='SchemaPages.SDOBaseTypeExpandedPropsOnly.subs', index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='supers', full_name='SchemaPages.SDOBaseTypeExpandedPropsOnly.supers', index=6, number=7, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='termStack', full_name='SchemaPages.SDOBaseTypeExpandedPropsOnly.termStack', index=7, number=8, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1203, serialized_end=1465, ) _SDOTERM.fields_by_name['termType'].enum_type = _TERMTYPE _SDOTERM.fields_by_name['superPaths'].message_type = _SUPERPATH _SDOBASETYPE.fields_by_name['termdescriptor'].message_type = _SDOTERM _SDOPROPERTY.fields_by_name['termdescriptor'].message_type = _SDOTERM _SDOENUMERATIONVALUE.fields_by_name['termdescriptor'].message_type = _SDOTERM _SDOBASETYPEEXPANDED.fields_by_name['termdescriptor'].message_type = _SDOTERM _SDOBASETYPEEXPANDED.fields_by_name['properties'].message_type = _SDOPROPERTY _SDOBASETYPEEXPANDED.fields_by_name['expectedTypeFor'].message_type = _SDOPROPERTY _SDOBASETYPEEXPANDED.fields_by_name['termStack'].message_type = _SDOBASETYPEEXPANDEDPROPSONLY _SDOBASETYPEEXPANDEDPROPSONLY.fields_by_name['termdescriptor'].message_type = _SDOTERM _SDOBASETYPEEXPANDEDPROPSONLY.fields_by_name['properties'].message_type = _SDOPROPERTY _SDOBASETYPEEXPANDEDPROPSONLY.fields_by_name['expectedTypeFor'].message_type = _SDOPROPERTY DESCRIPTOR.message_types_by_name['SuperPath'] = _SUPERPATH DESCRIPTOR.message_types_by_name['SDOTerm'] = _SDOTERM DESCRIPTOR.message_types_by_name['SDOBaseType'] = _SDOBASETYPE DESCRIPTOR.message_types_by_name['SDOProperty'] = _SDOPROPERTY DESCRIPTOR.message_types_by_name['SDOEnumerationValue'] = _SDOENUMERATIONVALUE DESCRIPTOR.message_types_by_name['SDOReference'] = _SDOREFERENCE DESCRIPTOR.message_types_by_name['SDOBaseTypeExpanded'] = _SDOBASETYPEEXPANDED DESCRIPTOR.message_types_by_name['SDOBaseTypeExpandedPropsOnly'] = _SDOBASETYPEEXPANDEDPROPSONLY DESCRIPTOR.enum_types_by_name['TermType'] = _TERMTYPE _sym_db.RegisterFileDescriptor(DESCRIPTOR) SuperPath = _reflection.GeneratedProtocolMessageType('SuperPath', (_message.Message,), { 'DESCRIPTOR' : _SUPERPATH, '__module__' : 'schemapages_pb2' # @@protoc_insertion_point(class_scope:SchemaPages.SuperPath) }) _sym_db.RegisterMessage(SuperPath) SDOTerm = _reflection.GeneratedProtocolMessageType('SDOTerm', (_message.Message,), { 'DESCRIPTOR' : _SDOTERM, '__module__' : 'schemapages_pb2' # @@protoc_insertion_point(class_scope:SchemaPages.SDOTerm) }) _sym_db.RegisterMessage(SDOTerm) SDOBaseType = _reflection.GeneratedProtocolMessageType('SDOBaseType', (_message.Message,), { 'DESCRIPTOR' : _SDOBASETYPE, '__module__' : 'schemapages_pb2' # @@protoc_insertion_point(class_scope:SchemaPages.SDOBaseType) }) _sym_db.RegisterMessage(SDOBaseType) SDOProperty = _reflection.GeneratedProtocolMessageType('SDOProperty', (_message.Message,), { 'DESCRIPTOR' : _SDOPROPERTY, '__module__' : 'schemapages_pb2' # @@protoc_insertion_point(class_scope:SchemaPages.SDOProperty) }) _sym_db.RegisterMessage(SDOProperty) SDOEnumerationValue = _reflection.GeneratedProtocolMessageType('SDOEnumerationValue', (_message.Message,), { 'DESCRIPTOR' : _SDOENUMERATIONVALUE, '__module__' : 'schemapages_pb2' # @@protoc_insertion_point(class_scope:SchemaPages.SDOEnumerationValue) }) _sym_db.RegisterMessage(SDOEnumerationValue) SDOReference = _reflection.GeneratedProtocolMessageType('SDOReference', (_message.Message,), { 'DESCRIPTOR' : _SDOREFERENCE, '__module__' : 'schemapages_pb2' # @@protoc_insertion_point(class_scope:SchemaPages.SDOReference) }) _sym_db.RegisterMessage(SDOReference) SDOBaseTypeExpanded = _reflection.GeneratedProtocolMessageType('SDOBaseTypeExpanded', (_message.Message,), { 'DESCRIPTOR' : _SDOBASETYPEEXPANDED, '__module__' : 'schemapages_pb2' # @@protoc_insertion_point(class_scope:SchemaPages.SDOBaseTypeExpanded) }) _sym_db.RegisterMessage(SDOBaseTypeExpanded) SDOBaseTypeExpandedPropsOnly = _reflection.GeneratedProtocolMessageType('SDOBaseTypeExpandedPropsOnly', (_message.Message,), { 'DESCRIPTOR' : _SDOBASETYPEEXPANDEDPROPSONLY, '__module__' : 'schemapages_pb2' # @@protoc_insertion_point(class_scope:SchemaPages.SDOBaseTypeExpandedPropsOnly) }) _sym_db.RegisterMessage(SDOBaseTypeExpandedPropsOnly) # @@protoc_insertion_point(module_scope)
8da6a8f21c3b11a94d0b449b2031f7f8329cc06d
8ed2a620a7b61a9cef6b059caca4c8c82c792aaf
/training/ocr_training.py
e09d60026ba1a1756f64320e6687121d6d938b47
[]
no_license
Chappelliu/646project
d2a68ac33af0964d61923fa454f61ef61af5142a
1bcf7f06427f20d622fd74a411152b8602907f65
refs/heads/master
2020-11-24T11:39:17.670142
2019-12-15T12:26:11
2019-12-15T12:26:11
228,128,465
0
0
null
null
null
null
UTF-8
Python
false
false
2,355
py
#training alogrithm is modified from ALPR in Unscontrained Scenarios https://github.com/sergiomsilva/alpr-unconstrained/blob/master/license-plate-ocr.py import sys import numpy as np import cv2 import keras from random import choice from os.path import isfile, isdir, basename, splitext from os import makedirs from src.keras_utils import save_model, load_model from src.label import readShapes from src.loss import loss from src.utils import image_files_from_folder, show from src.sampler import augment_sample, labels2output_map from src.data_generator import DataGenerator, process_data_item from pdb import set_trace as pause def process_data_item(data_item,dim,model_stride): XX,llp,pts = augment_sample(data_item[0],data_item[1].pts,dim) YY = labels2output_map(llp,pts,dim,model_stride) return XX,YY if __name__ == '__main__': netname = basename('ocr-trained') outdir = 'trained_data' iterations = 30000 batch_size = 32 #load model from the pre-created model file model = load_model('646-ocr') xshape = (dim,dim,3) inputs = keras.layers.Input(shape=(dim,dim,3)) outputs = model(inputs) yshape = tuple([s.value for s in outputs.shape[1:]]) output_dim = yshape[1] model_stride = dim / output_dim opt = getattr(keras.optimizers,'Adam')(lr=0.01) model.compile(loss=loss, optimizer=opt) #read the database from the input folder print 'Scanning the data from the input file...' Files = image_files_from_folder('input') Data = [] for file in Files: labfile = splitext(file)[0] + '.txt' if isfile(labfile): L = readShapes(labfile) I = cv2.imread(file) Data.append([I,L[0]]) dg = DataGenerator( data=Data, \ process_data_item_func=lambda x: process_data_item(x,dim,model_stride),\ xshape=xshape, \ yshape=(yshape[0],yshape[1],yshape[2]+1), \ nthreads=2, \ pool_size=1000, \ min_nsamples=100 ) dg.start() Xtrain = np.empty((batch_size,dim,dim,3),dtype='single') Ytrain = np.empty((batch_size,dim/model_stride,dim/model_stride,2*4+1)) model_path_final = '%s/%s_final' % (outdir,netname) for it in range(iterations): print 'Iter. %d (of %d)' % (it+1,iterations) Xtrain,Ytrain = dg.get_batch(batch_size) train_loss = model.train_on_batch(Xtrain,Ytrain) print '\tLoss: %f' % train_loss print 'Saving model (%s)' % model_path_final save_model(model,model_path_final)
e109d5583405fbf4abcf7259c341444c299fc477
d014a0f60ffe2e3e5ca923d7bc3578ecb2c8dd75
/componentapp/cylinder/migrations/0001_initial.py
ffa39ee44c72b072f82b5e3ba8fbd5e450472aa8
[]
no_license
shovan777/pressureVessel
d4e625bb1b769659d29face15513ba134b7527bb
909dd54576d267cd32ea0c0f4e2129e702be6ce7
refs/heads/master
2022-12-12T09:13:52.429923
2019-04-28T04:11:36
2019-04-28T04:11:36
151,068,742
0
3
null
2022-12-08T01:21:00
2018-10-01T10:05:18
CSS
UTF-8
Python
false
false
492
py
# Generated by Django 2.1.1 on 2018-10-02 06:20 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Parameter', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('thickness', models.IntegerField(default=0)), ], ), ]
17e14b24f0f7ce2bfd2f52cc400fc31c5426beef
2e70365b8639d6414b1ad452371bbf289e032747
/ex14.py
a3ee00577a788d2b6ecda8d4a22bb2abc6a7426d
[]
no_license
godumuyiwa/learnpythonthehardway
023e49869ccb3b67b30a0a6392065e4c4925332c
35c7ad699c2b452c2230ed306d49165b893a0e73
refs/heads/master
2020-04-13T16:47:15.958298
2019-01-01T19:22:38
2019-01-01T19:22:38
163,330,354
0
0
null
null
null
null
UTF-8
Python
false
false
563
py
from sys import argv script, user_name, age = argv prompt = '---->' print(f"Hi {user_name}, I'm the {script} script.") print("I'd like to ask you a few questions.") print(f"Do you like me {user_name}?") likes = input(prompt) print(f"Where do you live {user_name}") lives = input(prompt) print("What kind of computer do you have?") computer =input(prompt) print(f""" Alright, so you have said {likes} about liking me. You live in {lives} and you are {age} years old. Not sure where that is. And you have a {computer} computer. Nice. """)
482797ecc0beecf9ce5e79b621802f66c79379d9
6ac2d54a00b484551971f77fddb9042e4671a656
/src/pyrad_proc/pyrad/proc/process_spectra.py
18803d319044ec057a04fe797864d06a9fc04591
[ "BSD-3-Clause" ]
permissive
Guidicel/pyrad
15f26a9921b75c2e978949f70694d82ab79f7d67
95def11a6cb8fa956034bb227e2ad31dbdb1e7fb
refs/heads/master
2020-11-25T01:36:56.276000
2019-12-10T14:31:41
2019-12-10T14:31:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
65,062
py
""" pyrad.proc.process_spectra ========================== Functions to processes spectral data. .. autosummary:: :toctree: generated/ process_raw_spectra process_ifft process_spectra_point process_filter_0Doppler process_filter_srhohv process_filter_spectra_noise process_spectra_ang_avg process_spectral_power process_spectral_noise process_spectral_phase process_spectral_reflectivity process_spectral_differential_reflectivity process_spectral_differential_phase process_spectral_rhohv process_pol_variables process_noise_power process_reflectivity process_differential_reflectivity process_differential_phase process_rhohv process_Doppler_velocity process_Doppler_width """ from copy import deepcopy from warnings import warn import numpy as np from netCDF4 import num2date import pyart from ..io.io_aux import get_datatype_fields, get_fieldname_pyart def process_raw_spectra(procstatus, dscfg, radar_list=None): """ Dummy function that returns the initial input data set Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, _, _, _ = get_datatype_fields(datatypedescr) break ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None new_dataset = {'radar_out': deepcopy(radar_list[ind_rad])} return new_dataset, ind_rad def process_ifft(procstatus, dscfg, radar_list=None): """ Compute the Doppler spectrum width from the spectral reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None radarnr, _, datatype, _, _ = get_datatype_fields(dscfg['datatype'][0]) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None radar = radar_list[ind_rad] wind_params = dscfg.get('window', ['None']) if len(wind_params) == 1: window = wind_params[0] if window == 'None': window = None else: try: window = float(window) except ValueError: pass else: window = wind_params for i in range(1, len(window)): window[i] = float(window[i]) window = tuple(window) fields_in_list = [] fields_out_list = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_name = get_fieldname_pyart(datatype) if field_name not in radar.fields: warn(field_name+' not in radar') continue if field_name in ('unfiltered_complex_spectra_hh_ADU', 'complex_spectra_hh_ADU'): fields_out_list.append('IQ_hh_ADU') elif field_name in ('unfiltered_complex_spectra_vv_ADU', 'complex_spectra_vv_ADU'): fields_out_list.append('IQ_vv_ADU') elif field_name == 'spectral_noise_power_hh_ADU': fields_out_list.append('IQ_noise_power_hh_ADU') elif field_name == 'spectral_noise_power_vv_ADU': fields_out_list.append('IQ_noise_power_vv_ADU') else: warn(field_name+' can not be inverse Fourier transformed') fields_in_list.append(field_name) radar_out = pyart.retrieve.compute_iq( radar, fields_in_list, fields_out_list, window=window) # prepare for exit new_dataset = {'radar_out': radar_out} return new_dataset, ind_rad def process_spectra_point(procstatus, dscfg, radar_list=None): """ Obtains the spectra or IQ data at a point location. Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : string. Dataset keyword The data type where we want to extract the point measurement latlon : boolean. Dataset keyword if True position is obtained from latitude, longitude information, otherwise position is obtained from antenna coordinates (range, azimuth, elevation). Default False truealt : boolean. Dataset keyword if True the user input altitude is used to determine the point of interest. if False use the altitude at a given radar elevation ele over the point of interest. Default True lon : float. Dataset keyword the longitude [deg]. Use when latlon is True. lat : float. Dataset keyword the latitude [deg]. Use when latlon is True. alt : float. Dataset keyword altitude [m MSL]. Use when latlon is True. Default 0. ele : float. Dataset keyword radar elevation [deg]. Use when latlon is False or when latlon is True and truealt is False azi : float. Dataset keyword radar azimuth [deg]. Use when latlon is False rng : float. Dataset keyword range from radar [m]. Use when latlon is False AziTol : float. Dataset keyword azimuthal tolerance to determine which radar azimuth to use [deg]. Default 0.5 EleTol : float. Dataset keyword elevation tolerance to determine which radar elevation to use [deg]. Default 0.5 RngTol : float. Dataset keyword range tolerance to determine which radar bin to use [m]. Default 50. radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the data and metadata at the point of interest ind_rad : int radar index """ if procstatus == 0: return None, None field_names = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_names.append(get_fieldname_pyart(datatype)) ind_rad = int(radarnr[5:8])-1 if procstatus == 2: if dscfg['initialized'] == 0: return None, None # prepare for exit new_dataset = { 'radar_out': dscfg['global_data']['psr_poi'], 'point_coordinates_WGS84_lon_lat_alt': ( dscfg['global_data']['point_coordinates_WGS84_lon_lat_alt']), 'antenna_coordinates_az_el_r': ( dscfg['global_data']['antenna_coordinates_az_el_r']), 'final': True} return new_dataset, ind_rad if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid psr') return None, None psr = radar_list[ind_rad] projparams = dict() projparams.update({'proj': 'pyart_aeqd'}) projparams.update({'lon_0': psr.longitude['data']}) projparams.update({'lat_0': psr.latitude['data']}) truealt = dscfg.get('truealt', True) latlon = dscfg.get('latlon', False) if latlon: lon = dscfg['lon'] lat = dscfg['lat'] alt = dscfg.get('alt', 0.) latlon_tol = dscfg.get('latlonTol', 1.) alt_tol = dscfg.get('altTol', 100.) x, y = pyart.core.geographic_to_cartesian(lon, lat, projparams) if not truealt: ke = 4./3. # constant for effective radius a = 6378100. # earth radius re = a * ke # effective radius elrad = dscfg['ele'] * np.pi / 180. r_ground = np.sqrt(x ** 2. + y ** 2.) r = r_ground / np.cos(elrad) alt_psr = psr.altitude['data']+np.sqrt( r ** 2. + re ** 2. + 2. * r * re * np.sin(elrad)) - re alt_psr = alt_psr[0] else: alt_psr = alt r, az, el = pyart.core.cartesian_to_antenna( x, y, alt_psr-psr.altitude['data']) r = r[0] az = az[0] el = el[0] else: r = dscfg['rng'] az = dscfg['azi'] el = dscfg['ele'] azi_tol = dscfg.get('AziTol', 0.5) ele_tol = dscfg.get('EleTol', 0.5) rng_tol = dscfg.get('RngTol', 50.) x, y, alt = pyart.core.antenna_to_cartesian(r/1000., az, el) lon, lat = pyart.core.cartesian_to_geographic(x, y, projparams) lon = lon[0] lat = lat[0] d_az = np.min(np.abs(psr.azimuth['data'] - az)) if d_az > azi_tol: warn(' No psr bin found for point (az, el, r):(' + str(az)+', '+str(el)+', '+str(r) + '). Minimum distance to psr azimuth '+str(d_az) + ' larger than tolerance') return None, None d_el = np.min(np.abs(psr.elevation['data'] - el)) if d_el > ele_tol: warn(' No psr bin found for point (az, el, r):(' + str(az)+', '+str(el)+', '+str(r) + '). Minimum distance to psr elevation '+str(d_el) + ' larger than tolerance') return None, None d_r = np.min(np.abs(psr.range['data'] - r)) if d_r > rng_tol: warn(' No psr bin found for point (az, el, r):(' + str(az)+', '+str(el)+', '+str(r) + '). Minimum distance to psr range bin '+str(d_r) + ' larger than tolerance') return None, None ind_ray = np.argmin(np.abs(psr.azimuth['data'] - az) + np.abs(psr.elevation['data'] - el)) ind_rng = np.argmin(np.abs(psr.range['data'] - r)) time_poi = num2date(psr.time['data'][ind_ray], psr.time['units'], psr.time['calendar']) # initialize dataset if not dscfg['initialized']: psr_poi = deepcopy(psr) # prepare space for field psr_poi.fields = dict() for field_name in field_names: psr_poi.add_field(field_name, deepcopy(psr.fields[field_name])) psr_poi.fields[field_name]['data'] = np.array([]) # fixed psr objects parameters psr_poi.range['data'] = np.array([r]) psr_poi.ngates = 1 psr_poi.time['units'] = pyart.io.make_time_unit_str(time_poi) psr_poi.time['data'] = np.array([]) psr_poi.scan_type = 'poi_time_series' psr_poi.sweep_number['data'] = np.array([], dtype=np.int32) psr_poi.nsweeps = 1 psr_poi.sweep_mode['data'] = np.array(['poi_time_series']) psr_poi.rays_are_indexed = None psr_poi.ray_angle_res = None psr_poi.fixed_angle['data'] = np.array([az]) # ray dependent psr objects parameters psr_poi.sweep_end_ray_index['data'] = np.array([-1], dtype='int32') psr_poi.rays_per_sweep['data'] = np.array([0], dtype='int32') psr_poi.azimuth['data'] = np.array([], dtype='float64') psr_poi.elevation['data'] = np.array([], dtype='float64') psr_poi.nrays = 0 psr_poi.npulses['data'] = np.array([], dtype=np.int) if psr_poi.Doppler_velocity is not None: psr_poi.Doppler_velocity['data'] = np.array([]) if psr_poi.Doppler_frequency is not None: psr_poi.Doppler_frequency['data'] = np.array([]) dscfg['global_data'] = { 'psr_poi': psr_poi, 'point_coordinates_WGS84_lon_lat_alt': [lon, lat, alt], 'antenna_coordinates_az_el_r': [az, el, r]} dscfg['initialized'] = 1 psr_poi = dscfg['global_data']['psr_poi'] start_time = num2date( 0, psr_poi.time['units'], psr_poi.time['calendar']) psr_poi.time['data'] = np.append( psr_poi.time['data'], (time_poi - start_time).total_seconds()) psr_poi.sweep_end_ray_index['data'][0] += 1 psr_poi.rays_per_sweep['data'][0] += 1 psr_poi.nrays += 1 psr_poi.azimuth['data'] = np.append(psr_poi.azimuth['data'], az) psr_poi.elevation['data'] = np.append(psr_poi.elevation['data'], el) psr_poi.gate_longitude['data'] = ( np.ones((psr_poi.nrays, psr_poi.ngates), dtype='float64')*lon) psr_poi.gate_latitude['data'] = ( np.ones((psr_poi.nrays, psr_poi.ngates), dtype='float64')*lat) psr_poi.gate_altitude['data'] = np.broadcast_to( alt, (psr_poi.nrays, psr_poi.ngates)) for field_name in field_names: dtype = psr.fields[field_name]['data'].dtype if field_name not in psr.fields: warn('Field '+field_name+' not in psr object') poi_data = np.ma.masked_all((1, 1, psr.npulses_max), dtype=dtype) else: poi_data = psr.fields[field_name]['data'][ind_ray, ind_rng, :] poi_data = poi_data.reshape(1, 1, psr.npulses_max) # Put data in radar object if np.size(psr_poi.fields[field_name]['data']) == 0: psr_poi.fields[field_name]['data'] = poi_data.reshape( 1, 1, psr_poi.npulses_max) else: if psr_poi.npulses_max == psr.npulses_max: psr_poi.fields[field_name]['data'] = np.ma.append( psr_poi.fields[field_name]['data'], poi_data, axis=0) elif psr.npulses_max < psr_poi.npulses_max: poi_data_aux = np.ma.masked_all( (1, 1, psr_poi.npulses_max), dtype=dtype) poi_data_aux[0, 0, 0:psr.npulses_max] = poi_data psr_poi.fields[field_name]['data'] = np.ma.append( psr_poi.fields[field_name]['data'], poi_data_aux, axis=0) else: poi_data_aux = np.ma.masked_all( (psr_poi.nrays, 1, psr.npulses_max), dtype=dtype) poi_data_aux[0:psr_poi.nrays-1, :, 0:psr_poi.npulses_max] = ( psr_poi.fields[field_name]['data']) poi_data_aux[psr_poi.nrays-1, :, :] = poi_data psr_poi.fields[field_name]['data'] = poi_data_aux psr_poi.npulses['data'] = np.append( psr_poi.npulses['data'], psr.npulses['data'][ind_ray]) if psr_poi.Doppler_velocity is not None: if np.size(psr_poi.Doppler_velocity['data']) == 0: psr_poi.Doppler_velocity['data'] = ( psr.Doppler_velocity['data'][ind_ray, :].reshape( 1, psr_poi.npulses_max)) else: Doppler_data = psr.Doppler_velocity['data'][ind_ray, :] Doppler_data = Doppler_data.reshape(1, psr.npulses_max) if psr_poi.npulses_max == psr.npulses_max: psr_poi.Doppler_velocity['data'] = np.ma.append( psr_poi.Doppler_velocity['data'], Doppler_data, axis=0) elif psr.npulses_max < psr_poi.npulses_max: Doppler_aux = np.ma.masked_all((1, psr_poi.npulses_max)) Doppler_aux[0, 0:psr.npulses_max] = Doppler_data psr_poi.Doppler_velocity['data'] = np.ma.append( psr_poi.Doppler_velocity['data'], Doppler_aux, axis=0) else: Doppler_aux = np.ma.masked_all( (psr_poi.nrays, psr.npulses_max)) Doppler_aux[0:psr_poi.nrays-1, 0:psr_poi.npulses_max] = ( psr_poi.Doppler_velocity['data']) Doppler_aux[psr_poi.nrays-1, :] = Doppler_data psr_poi.Doppler_velocity['data'] = Doppler_aux if psr_poi.Doppler_frequency is not None: if np.size(psr_poi.Doppler_frequency['data']) == 0: psr_poi.Doppler_frequency['data'] = ( psr.Doppler_frequency['data'][ind_ray, :].reshape( 1, psr_poi.npulses_max)) else: Doppler_data = psr.Doppler_frequency['data'][ind_ray, :] Doppler_data = Doppler_data.reshape(1, psr.npulses_max) if psr_poi.npulses_max == psr.npulses_max: psr_poi.Doppler_frequency['data'] = np.ma.append( psr_poi.Doppler_frequency['data'], Doppler_data, axis=0) elif psr.npulses_max < psr_poi.npulses_max: Doppler_aux = np.ma.masked_all((1, psr_poi.npulses_max)) Doppler_aux[0, 0:psr.npulses_max] = Doppler_data psr_poi.Doppler_frequency['data'] = np.ma.append( psr_poi.Doppler_frequency['data'], Doppler_aux, axis=0) else: Doppler_aux = np.ma.masked_all( (psr_poi.nrays, psr.npulses_max)) Doppler_aux[0:psr_poi.nrays-1, 0:psr_poi.npulses_max] = ( psr_poi.Doppler_frequency['data']) Doppler_aux[psr_poi.nrays-1, :] = Doppler_data psr_poi.Doppler_frequency['data'] = Doppler_aux psr_poi.npulses_max = max(psr_poi.npulses_max, psr.npulses_max) dscfg['global_data']['psr_poi'] = psr_poi # prepare for exit new_dataset = { 'radar_out': psr_poi, 'point_coordinates_WGS84_lon_lat_alt': ( dscfg['global_data']['point_coordinates_WGS84_lon_lat_alt']), 'antenna_coordinates_az_el_r': ( dscfg['global_data']['antenna_coordinates_az_el_r']), 'final': False} return new_dataset, ind_rad def process_filter_0Doppler(procstatus, dscfg, radar_list=None): """ Function to filter the 0-Doppler line bin and neighbours of the Doppler spectra Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types filter_width : float The Doppler filter width. Default 0. filter_units : str Can be 'm/s' or 'Hz'. Default 'm/s' radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None field_name_list = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_name_list.append(get_fieldname_pyart(datatype)) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] filter_width = dscfg.get('filter_width', 0.) filter_units = dscfg.get('filter_units', 'm/s') if filter_units == 'm/s': axis = psr.Doppler_velocity['data'] else: axis = psr.Doppler_frequency['data'] fields = dict() for field_name in field_name_list: if field_name not in psr.fields: warn('Unable to filter 0-Doppler. Missing field '+field_name) continue field_name_aux = field_name.replace('unfiltered_', '') field = pyart.config.get_metadata(field_name_aux) field['data'] = deepcopy(psr.fields[field_name]['data']) for ray in range(psr.nrays): ind = np.ma.where(np.logical_and( axis[ray, :] >= -filter_width/2., axis[ray, :] <= filter_width/2.)) field['data'][ray, :, ind] = np.ma.masked fields.update({field_name_aux: field}) # prepare for exit new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() for field_name in fields.keys(): new_dataset['radar_out'].add_field(field_name, fields[field_name]) return new_dataset, ind_rad def process_filter_srhohv(procstatus, dscfg, radar_list=None): """ Filter Doppler spectra as a function of spectral RhoHV Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types sRhoHV_threshold : float Data with sRhoHV module above this threshold will be filtered. Default 1. radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None field_name_list = [] sRhoHV_found = False for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('sRhoHV', 'sRhoHVu') and not sRhoHV_found: sRhoHV_field = get_fieldname_pyart(datatype) sRhoHV_found = True else: field_name_list.append(get_fieldname_pyart(datatype)) if not sRhoHV_found: warn('sRhoHV field is required for sRhoHV filtering') return None, None ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if sRhoHV_field not in psr.fields: warn('Unable to obtain apply sRhoHV filter. Missing field ' + sRhoHV_field) return None, None sRhoHV_threshold = dscfg.get('sRhoHV_threshold', 0.9) sRhoHV = psr.fields[sRhoHV_field]['data'] fields = dict() for field_name in field_name_list: if field_name not in psr.fields: warn('Unable to filter according to sRhoHV. Missing field ' + field_name) continue field_name_aux = field_name.replace('unfiltered_', '') field = pyart.config.get_metadata(field_name_aux) field['data'] = deepcopy(psr.fields[field_name]['data']) field['data'][np.ma.abs(sRhoHV) <= sRhoHV_threshold] = np.ma.masked fields.update({field_name_aux: field}) # prepare for exit new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() for field_name in fields.keys(): new_dataset['radar_out'].add_field(field_name, fields[field_name]) return new_dataset, ind_rad def process_filter_spectra_noise(procstatus, dscfg, radar_list=None): """ Filter the noise of the Doppler spectra by clipping any data below the noise level plus a margin Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types clipping_level : float The clipping level [dB above noise level]. Default 10. radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None field_name_list = [] signal_found = False noise_found = False for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if (datatype in ('ShhADU', 'SvvADU', 'ShhADUu', 'SvvADUu') and not signal_found): signal_field = get_fieldname_pyart(datatype) signal_found = True elif datatype in ('sNADUh', 'sNADUv') and not noise_found: noise_field = get_fieldname_pyart(datatype) noise_found = True else: field_name_list.append(get_fieldname_pyart(datatype)) if not signal_found or not noise_found: warn('Signal and noise fields are required for noise filtering') return None, None ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if signal_field not in psr.fields or noise_field not in psr.fields: warn('Unable to obtain apply spectral noise filter. Missing fields') return None, None clipping_level = dscfg.get('clipping_level', 10.) # get Doppler bins below clipping level clip_pwr = ( psr.fields[noise_field]['data']*np.power(10., 0.1*clipping_level)) s_pwr = pyart.retrieve.compute_spectral_power( psr, units='ADU', signal_field=signal_field, noise_field=noise_field) mask = np.ma.less_equal(s_pwr['data'], clip_pwr) # filter data new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() for field_name in field_name_list: if field_name not in psr.fields: warn('Unable to filter field '+field_name) continue new_dataset['radar_out'].add_field( field_name, psr.fields[field_name]) new_dataset['radar_out'].fields[field_name]['data'][mask] = ( np.ma.masked) return new_dataset, ind_rad def process_spectra_ang_avg(procstatus, dscfg, radar_list=None): """ Function to average the spectra over the rays. This function is intended mainly for vertically pointing scans. The function assumes the volume is composed of a single sweep, it averages over the number of rays specified by the user and produces a single ray output. Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types navg : int Number of spectra to average. If -1 all spectra will be averaged. Default -1. radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None field_name_list = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_name_list.append(get_fieldname_pyart(datatype)) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] navg = dscfg.get('navg', -1) # keep only fields of interest psr_aux = deepcopy(psr) psr_aux.fields = dict() for field_name in field_name_list: if field_name not in psr.fields: warn('Field '+field_name+' missing') continue psr_aux.add_field(field_name, psr.fields[field_name]) psr_aux = pyart.util.interpol_spectra(psr_aux) if navg == -1: navg = psr.nrays elif navg > psr.nrays: warn('Number of rays '+str(psr.nrays)+' smaller than number of ' 'desired spectra to average '+str(navg)) navg = psr.nrays for field_name in psr_aux.fields.keys(): data_mean = np.ma.mean( psr_aux.fields[field_name]['data'][ 0:navg, :, 0:psr_aux.npulses_max], axis=0) psr_aux.fields[field_name]['data'] = np.ma.masked_all( (1, psr_aux.ngates, psr_aux.npulses_max), dtype=psr_aux.fields[field_name]['data'].dtype) psr_aux.fields[field_name]['data'][0, :, :] = data_mean psr_aux.time['data'] = np.array([psr_aux.time['data'][int(navg/2)]]) psr_aux.azimuth['data'] = np.array([0], dtype=np.float32) psr_aux.elevation['data'] = np.array( [psr_aux.elevation['data'][int(navg/2)]]) psr_aux.nrays = 1 psr_aux.sweep_end_ray_index['data'] = np.array([0.], dtype=np.int32) psr_aux.init_rays_per_sweep() psr_aux.init_gate_x_y_z() psr_aux.init_gate_longitude_latitude() psr_aux.init_gate_altitude() if psr_aux.Doppler_velocity is not None: psr_aux.Doppler_velocity['data'] = np.ma.expand_dims( psr_aux.Doppler_velocity['data'][0, :], axis=0) if psr_aux.Doppler_frequency is not None: psr_aux.Doppler_frequency['data'] = np.ma.expand_dims( psr_aux.Doppler_frequency['data'][0, :], axis=0) # prepare for exit new_dataset = {'radar_out': psr_aux} return new_dataset, ind_rad def process_spectral_power(procstatus, dscfg, radar_list=None): """ Computes the spectral power Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types units : str The units of the returned signal. Can be 'ADU', 'dBADU' or 'dBm' subtract_noise : Bool If True noise will be subtracted from the signal smooth_window : int or None Size of the moving Gaussian smoothing window. If none no smoothing will be applied radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None noise_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'SvvADU', 'ShhADUu', 'SvvADUu'): signal_field = get_fieldname_pyart(datatype) elif datatype in ('sNADUh', 'sNADUv'): noise_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if signal_field not in psr.fields: warn('Unable to obtain spectral signal power. Missing field ' + signal_field) return None, None units = dscfg.get('units', 'dBADU') subtract_noise = dscfg.get('subtract_noise', False) smooth_window = dscfg.get('smooth_window', None) s_pwr = pyart.retrieve.compute_spectral_power( psr, units=units, subtract_noise=subtract_noise, smooth_window=smooth_window, signal_field=signal_field, noise_field=noise_field) # prepare for exit new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(s_pwr['standard_name'], s_pwr) return new_dataset, ind_rad def process_spectral_noise(procstatus, dscfg, radar_list=None): """ Computes the spectral noise Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types units : str The units of the returned signal. Can be 'ADU', 'dBADU' or 'dBm' navg : int Number of spectra averaged rmin : int Range from which the data is used to estimate the noise nnoise_min : int Minimum number of samples to consider the estimated noise power valid radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'SvvADU', 'ShhADUu', 'SvvADUu'): signal_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if signal_field not in psr.fields: warn('Unable to obtain spectral noise power. Missing field ' + signal_field) return None, None units = dscfg.get('units', 'ADU') navg = dscfg.get('navg', 1) rmin = dscfg.get('rmin', 0.) nnoise_min = dscfg.get('nnoise_min', 100) s_pwr = pyart.retrieve.compute_spectral_noise( psr, units=units, navg=navg, rmin=rmin, nnoise_min=nnoise_min, signal_field=signal_field) # prepare for exit new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(s_pwr['standard_name'], s_pwr) return new_dataset, ind_rad def process_spectral_phase(procstatus, dscfg, radar_list=None): """ Computes the spectral phase Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'SvvADU', 'ShhADUu', 'SvvADUu'): signal_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if signal_field not in psr.fields: warn('Unable to obtain spectral phase. Missing field ' + signal_field) return None, None s_phase = pyart.retrieve.compute_spectral_phase( psr, signal_field=signal_field) # prepare for exit new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(s_phase['standard_name'], s_phase) return new_dataset, ind_rad def process_spectral_reflectivity(procstatus, dscfg, radar_list=None): """ Computes spectral reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types subtract_noise : Bool If True noise will be subtracted from the signal smooth_window : int or None Size of the moving Gaussian smoothing window. If none no smoothing will be applied radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None noise_field = None signal_field = None pwr_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'SvvADU', 'ShhADUu', 'SvvADUu'): signal_field = get_fieldname_pyart(datatype) elif datatype in ('sNADUh', 'sNADUv'): noise_field = get_fieldname_pyart(datatype) elif datatype in ('sPhhADU', 'sPvvADU', 'sPhhADUu', 'sPvvADUu'): pwr_field = get_fieldname_pyart(datatype) if pwr_field is None and signal_field is None: warn('Either signal or power fields must be specified') return None, None ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] compute_power = True if pwr_field is not None: compute_power = False if compute_power and signal_field not in psr.fields: warn('Unable to obtain spectral reflectivity. Missing field ' + signal_field) return None, None if not compute_power and pwr_field not in psr.fields: warn('Unable to obtain spectral reflectivity. Missing field ' + pwr_field) return None, None subtract_noise = dscfg.get('subtract_noise', False) smooth_window = dscfg.get('smooth_window', None) sdBZ = pyart.retrieve.compute_spectral_reflectivity( psr, compute_power=compute_power, subtract_noise=subtract_noise, smooth_window=smooth_window, pwr_field=pwr_field, signal_field=signal_field, noise_field=noise_field) # prepare for exit new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(sdBZ['standard_name'], sdBZ) return new_dataset, ind_rad def process_spectral_differential_reflectivity(procstatus, dscfg, radar_list=None): """ Computes spectral differential reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types subtract_noise : Bool If True noise will be subtracted from the signal smooth_window : int or None Size of the moving Gaussian smoothing window. If none no smoothing will be applied radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None noise_h_field = None noise_v_field = None signal_h_field = None signal_v_field = None pwr_h_field = None pwr_v_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'ShhADUu'): signal_h_field = get_fieldname_pyart(datatype) elif datatype in ('SvvADU', 'SvvADUu'): signal_v_field = get_fieldname_pyart(datatype) elif datatype == 'sNADUh': noise_h_field = get_fieldname_pyart(datatype) elif datatype == 'sNADUv': noise_v_field = get_fieldname_pyart(datatype) elif datatype in ('sPhhADU', 'sPhhADUu'): pwr_h_field = get_fieldname_pyart(datatype) elif datatype in ('sPvvADU', 'sPvvADUu'): pwr_v_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] compute_power = True if pwr_h_field is not None and pwr_v_field is not None: compute_power = False if (compute_power and (signal_h_field not in psr.fields or signal_v_field not in psr.fields)): warn('Unable to obtain spectral differential reflectivity. ' + 'Missing fields') return None, None if (not compute_power and (pwr_h_field not in psr.fields or pwr_v_field not in psr.fields)): warn('Unable to obtain spectral differential reflectivity. ' + 'Missing fields') return None, None subtract_noise = dscfg.get('subtract_noise', False) smooth_window = dscfg.get('smooth_window', None) sZDR = pyart.retrieve.compute_spectral_differential_reflectivity( psr, compute_power=compute_power, subtract_noise=subtract_noise, smooth_window=smooth_window, pwr_h_field=pwr_h_field, pwr_v_field=pwr_v_field, signal_h_field=signal_h_field, signal_v_field=signal_v_field, noise_h_field=noise_h_field, noise_v_field=noise_v_field) # prepare for exit new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(sZDR['standard_name'], sZDR) return new_dataset, ind_rad def process_spectral_differential_phase(procstatus, dscfg, radar_list=None): """ Computes the spectral differential phase Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None signal_h_field = None signal_v_field = None srhohv_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'ShhADUu'): signal_h_field = get_fieldname_pyart(datatype) elif datatype in ('SvvADU', 'SvvADUu'): signal_v_field = get_fieldname_pyart(datatype) elif datatype in ('sRhoHV', 'sRhoHVu'): srhohv_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] use_rhohv = False if srhohv_field is not None: use_rhohv = True if (not use_rhohv and (signal_h_field not in psr.fields or signal_v_field not in psr.fields)): warn('Unable to obtain spectral signal differential phase. ' + 'Missing fields') return None, None if use_rhohv and srhohv_field not in psr.fields: warn('Unable to obtain spectral signal differential phase. ' + 'Missing fields') return None, None sPhiDP = pyart.retrieve.compute_spectral_differential_phase( psr, use_rhohv=use_rhohv, srhohv_field=srhohv_field, signal_h_field=signal_h_field, signal_v_field=signal_v_field) # prepare for exit new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(sPhiDP['standard_name'], sPhiDP) return new_dataset, ind_rad def process_spectral_rhohv(procstatus, dscfg, radar_list=None): """ Computes the spectral RhoHV Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types subtract_noise : Bool If True noise will be subtracted from the signal radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None noise_h_field = None noise_v_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'ShhADUu'): signal_h_field = get_fieldname_pyart(datatype) elif datatype in ('SvvADU', 'SvvADUu'): signal_v_field = get_fieldname_pyart(datatype) elif datatype == 'sNADUh': noise_h_field = get_fieldname_pyart(datatype) elif datatype == 'sNADUv': noise_v_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if signal_h_field not in psr.fields or signal_v_field not in psr.fields: warn('Unable to obtain spectral RhoHV. ' + 'Missing fields') return None, None subtract_noise = dscfg.get('subtract_noise', False) sRhoHV = pyart.retrieve.compute_spectral_rhohv( psr, subtract_noise=subtract_noise, signal_h_field=signal_h_field, signal_v_field=signal_v_field, noise_h_field=noise_h_field, noise_v_field=noise_v_field) # prepare for exit new_dataset = {'radar_out': deepcopy(psr)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field(sRhoHV['standard_name'], sRhoHV) return new_dataset, ind_rad def process_pol_variables(procstatus, dscfg, radar_list=None): """ Computes the polarimetric variables from the complex spectra Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types subtract_noise : Bool If True noise will be subtracted from the signal smooth_window : int or None Size of the moving Gaussian smoothing window. If none no smoothing will be applied variables : list of str list of variables to compute. Default dBZ radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None noise_h_field = None noise_v_field = None signal_h_field = None signal_v_field = None pwr_h_field = None pwr_v_field = None srhohv_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'ShhADUu'): signal_h_field = get_fieldname_pyart(datatype) elif datatype in ('SvvADU', 'SvvADUu'): signal_v_field = get_fieldname_pyart(datatype) elif datatype == 'sNADUh': noise_h_field = get_fieldname_pyart(datatype) elif datatype == 'sNADUv': noise_v_field = get_fieldname_pyart(datatype) elif datatype in ('sPhhADU', 'sPhhADUu'): pwr_h_field = get_fieldname_pyart(datatype) elif datatype in ('sPvvADU', 'sPvvADUu'): pwr_v_field = get_fieldname_pyart(datatype) elif datatype in ('sRhoHV', 'sRhoHVu'): srhohv_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] use_pwr = False if (pwr_h_field is not None or pwr_v_field is not None or srhohv_field is not None): use_pwr = True if (not use_pwr and (signal_h_field not in psr.fields and signal_v_field not in psr.fields)): warn('Unable to obtain polarimetric variables. Missing fields') return None, None if (use_pwr and (pwr_h_field not in psr.fields and pwr_h_field not in psr.fields and srhohv_field not in psr.fields)): warn('Unable to obtain polarimetric variables. Missing fields') return None, None subtract_noise = dscfg.get('subtract_noise', False) smooth_window = dscfg.get('smooth_window', None) variables = dscfg.get('variables', ['dBZ']) fields_list = [] for variable in variables: fields_list.append(get_fieldname_pyart(variable)) radar = pyart.retrieve.compute_pol_variables( psr, fields_list, use_pwr=use_pwr, subtract_noise=subtract_noise, smooth_window=smooth_window, srhohv_field=srhohv_field, pwr_h_field=pwr_h_field, pwr_v_field=pwr_v_field, signal_h_field=signal_h_field, signal_v_field=signal_v_field, noise_h_field=noise_h_field, noise_v_field=noise_v_field) # prepare for exit new_dataset = {'radar_out': radar} return new_dataset, ind_rad def process_noise_power(procstatus, dscfg, radar_list=None): """ Computes the noise power from the spectra Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types units : str The units of the returned signal. Can be 'ADU', 'dBADU' or 'dBm' navg : int Number of spectra averaged rmin : int Range from which the data is used to estimate the noise nnoise_min : int Minimum number of samples to consider the estimated noise power valid radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'SvvADU', 'ShhADUu', 'SvvADUu'): signal_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if signal_field not in psr.fields: warn('Unable to obtain spectral noise power. Missing field ' + signal_field) return None, None units = dscfg.get('units', 'ADU') navg = dscfg.get('navg', 1) rmin = dscfg.get('rmin', 0.) nnoise_min = dscfg.get('nnoise_min', 100) noise = pyart.retrieve.compute_noise_power( psr, units=units, navg=navg, rmin=rmin, nnoise_min=nnoise_min, signal_field=signal_field) # prepare for exit new_dataset = {'radar_out': pyart.util.radar_from_spectra(psr)} new_dataset['radar_out'].add_field(noise['standard_name'], noise) return new_dataset, ind_rad def process_reflectivity(procstatus, dscfg, radar_list=None): """ Computes reflectivity from the spectral reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('sdBZ', 'sdBZv', 'sdBuZ', 'sdBuZv'): sdBZ_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if sdBZ_field not in psr.fields: warn('Unable to obtain reflectivity. ' + 'Missing field '+sdBZ_field) return None, None dBZ = pyart.retrieve.compute_reflectivity( psr, sdBZ_field=sdBZ_field) reflectivity_field = 'reflectivity' if datatype in ('sdBZv', 'sdBuZv'): reflectivity_field += 'vv' if datatype in ('sdBuZ', 'sdBuZv'): reflectivity_field = 'unfiltered_'+reflectivity_field # prepare for exit new_dataset = {'radar_out': pyart.util.radar_from_spectra(psr)} new_dataset['radar_out'].add_field(reflectivity_field, dBZ) return new_dataset, ind_rad def process_differential_reflectivity(procstatus, dscfg, radar_list=None): """ Computes differential reflectivity from the horizontal and vertical spectral reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('sdBZ', 'sdBuZ'): sdBZ_field = get_fieldname_pyart(datatype) elif datatype in ('sdBZv', 'sdBuZv'): sdBZv_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if sdBZ_field not in psr.fields or sdBZv_field not in psr.fields: warn('Unable to obtain differential reflectivity. ' + 'Missing fields.') return None, None zdr = pyart.retrieve.compute_differential_reflectivity( psr, sdBZ_field=sdBZ_field, sdBZv_field=sdBZv_field) zdr_field = 'differential_reflectivity' if 'unfiltered' in sdBZ_field: zdr_field = 'unfiltered_'+zdr_field # prepare for exit new_dataset = {'radar_out': pyart.util.radar_from_spectra(psr)} new_dataset['radar_out'].add_field(zdr_field, zdr) return new_dataset, ind_rad def process_differential_phase(procstatus, dscfg, radar_list=None): """ Computes the differential phase from the spectral differential phase and the spectral reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('sdBZ', 'sdBZv', 'sdBuZ', 'sdBuZv'): sdBZ_field = get_fieldname_pyart(datatype) elif datatype in ('sPhiDP', 'sPhiDPu'): sPhiDP_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if sdBZ_field not in psr.fields or sPhiDP_field not in psr.fields: warn('Unable to obtain PhiDP. Missing fields') return None, None uphidp = pyart.retrieve.compute_differential_phase( psr, sdBZ_field=sdBZ_field, sPhiDP_field=sPhiDP_field) uphidp_field = 'uncorrected_differential_phase' if 'unfiltered' in sPhiDP_field: uphidp_field = 'uncorrected_unfiltered_differential_phase' # prepare for exit new_dataset = {'radar_out': pyart.util.radar_from_spectra(psr)} new_dataset['radar_out'].add_field(uphidp_field, uphidp) return new_dataset, ind_rad def process_rhohv(procstatus, dscfg, radar_list=None): """ Computes RhoHV from the complex spectras Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types subtract_noise : Bool If True noise will be subtracted from the signal radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None noise_h_field = None noise_v_field = None signal_h_field = None signal_v_field = None pwr_h_field = None pwr_v_field = None srhohv_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('ShhADU', 'ShhADUu'): signal_h_field = get_fieldname_pyart(datatype) elif datatype in ('SvvADU', 'SvvADUu'): signal_v_field = get_fieldname_pyart(datatype) elif datatype == 'sNADUh': noise_h_field = get_fieldname_pyart(datatype) elif datatype == 'sNADUv': noise_v_field = get_fieldname_pyart(datatype) elif datatype in ('sPhhADU', 'sPhhADUu'): pwr_h_field = get_fieldname_pyart(datatype) elif datatype in ('sPvvADU', 'sPvvADUu'): pwr_v_field = get_fieldname_pyart(datatype) elif datatype in ('sRhoHV', 'sRhoHVu'): srhohv_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if srhohv_field is not None: use_rhohv = True rhohv_field = 'cross_correlation_ratio' if 'unfiltered' in srhohv_field: rhohv_field = 'unfiltered_cross_correlation_ratio' else: use_rhohv = False rhohv_field = 'cross_correlation_ratio' if 'unfiltered' in signal_h_field: rhohv_field = 'unfiltered_cross_correlation_ratio' if (not use_rhohv and (signal_h_field not in psr.fields or signal_v_field not in psr.fields)): warn('Unable to obtain RhoHV. Missing fields') return None, None if use_rhohv and (srhohv_field not in psr.fields or pwr_h_field not in psr.fields or pwr_v_field not in psr.fields): warn('Unable to obtain RhoHV. Missing fields') return None, None subtract_noise = dscfg.get('subtract_noise', False) rhohv = pyart.retrieve.compute_rhohv( psr, use_rhohv=use_rhohv, subtract_noise=subtract_noise, srhohv_field=srhohv_field, pwr_h_field=pwr_h_field, pwr_v_field=pwr_v_field, signal_h_field=signal_h_field, signal_v_field=signal_v_field, noise_h_field=noise_h_field, noise_v_field=noise_v_field) # prepare for exit new_dataset = {'radar_out': pyart.util.radar_from_spectra(psr)} new_dataset['radar_out'].add_field(rhohv_field, rhohv) return new_dataset, ind_rad def process_Doppler_velocity(procstatus, dscfg, radar_list=None): """ Compute the Doppler velocity from the spectral reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('sdBZ', 'sdBZv', 'sdBuZ', 'sdBuZv'): sdBZ_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if sdBZ_field not in psr.fields: warn('Unable to obtain Doppler velocity. ' + 'Missing field '+sdBZ_field) return None, None vel = pyart.retrieve.compute_Doppler_velocity( psr, sdBZ_field=sdBZ_field) vel_field = 'velocity' if datatype in ('sdBZv', 'sdBuZv'): vel_field += '_vv' if datatype in ('sdBuZ', 'sdBuZv'): vel_field = 'unfiltered_'+vel_field # prepare for exit new_dataset = {'radar_out': pyart.util.radar_from_spectra(psr)} new_dataset['radar_out'].add_field(vel_field, vel) return new_dataset, ind_rad def process_Doppler_width(procstatus, dscfg, radar_list=None): """ Compute the Doppler spectrum width from the spectral reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted configuration keywords:: datatype : list of string. Dataset keyword The input data types radar_list : list of spectra objects Optional. list of spectra objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype in ('sdBZ', 'sdBZv', 'sdBuZ', 'sdBuZv'): sdBZ_field = get_fieldname_pyart(datatype) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None psr = radar_list[ind_rad] if sdBZ_field not in psr.fields: warn('Unable to obtain Doppler spectrum width. ' + 'Missing field '+sdBZ_field) return None, None width = pyart.retrieve.compute_Doppler_width( psr, sdBZ_field=sdBZ_field) width_field = 'spectrum_width' if datatype in ('sdBZv', 'sdBuZv'): width_field += '_vv' if datatype in ('sdBuZ', 'sdBuZv'): width_field = 'unfiltered_'+width_field # prepare for exit new_dataset = {'radar_out': pyart.util.radar_from_spectra(psr)} new_dataset['radar_out'].add_field(width_field, width) return new_dataset, ind_rad
63bbe3a79c758a557d44b17a3559c97ae68c211a
21400be8b89db652343673086ad74440f2c158cc
/TestAPI/asgi.py
3aef68716bc5a15ebe04ec79a422c11aeba9ed02
[]
no_license
terminator-droid/TestAPI
1e7c890a2b0afdb00fff6240d20581234b2a097b
33052e6c5742dc39c9fb2e7ffa18a36685b0cca3
refs/heads/main
2023-09-05T20:24:45.025790
2021-11-11T19:01:28
2021-11-11T19:01:28
427,109,830
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
""" ASGI config for TestAPI project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'TestAPI.settings') application = get_asgi_application()
76c6726b4c4b2e498fb2ca77e6c9905dd6660ea3
ea919ac3f7c91f62fdf849b67edf02a9dc3d034e
/examples/ent-rsvp/backend/src/schema/versions/19e7969c6a61_2021129232023_add_auth_codes_table.py
36e6b3c14f0cf83cea826f77e26c0e3898c8098a
[ "MIT" ]
permissive
lazytype/ent
ae8e03906c76cad33274452687fdc5a8bcf5e97a
d9729f3bb5c2410021e58dfdac0ef03efb439edb
refs/heads/main
2023-08-28T17:23:23.532296
2021-11-03T20:33:35
2021-11-03T20:33:35
425,598,003
0
0
MIT
2021-11-07T19:35:12
2021-11-07T19:35:11
null
UTF-8
Python
false
false
1,682
py
# Code generated by github.com/lolopinto/ent/ent, DO NOT edit. """add auth_codes table Revision ID: 19e7969c6a61 Revises: 2a5627d47472 Create Date: 2021-01-29 23:20:23.550366+00:00 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '19e7969c6a61' down_revision = '2a5627d47472' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('auth_codes', sa.Column('id', postgresql.UUID(), nullable=False), sa.Column('created_at', sa.TIMESTAMP(), nullable=False), sa.Column('updated_at', sa.TIMESTAMP(), nullable=False), sa.Column('code', sa.Text(), nullable=False), sa.Column('guest_id', postgresql.UUID(), nullable=False), sa.Column('email_address', sa.Text(), nullable=False), sa.ForeignKeyConstraint(['guest_id'], [ 'guests.id'], name='auth_codes_guest_id_fkey', ondelete='CASCADE'), sa.PrimaryKeyConstraint('id', name='auth_codes_id_pkey'), sa.UniqueConstraint( 'email_address', 'code', name='uniqueCode'), sa.UniqueConstraint( 'guest_id', name='auth_codes_unique_guest_id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('auth_codes') # ### end Alembic commands ###
bb42f667fba2b0c8fc157bfbf14569d44db6c0b9
64d7bb916a9db3e5630750a423872cd136947d9a
/ecom_app/migrations/0008_auto_20200805_0100.py
539b4d2c1a6ae9ce3fcb48222d0edf1e3bcf9803
[]
no_license
KaiserKamruzzaman/Django-E-Commerce-
6c979ab29885ef5c97c788857d9b6d4d2ed3ff64
93d00568ad78cd6c2a3a0daada6ae28f5ddb9243
refs/heads/master
2022-12-03T04:45:34.493236
2020-08-24T05:52:15
2020-08-24T05:52:15
289,840,142
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
# Generated by Django 3.0.3 on 2020-08-04 19:00 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('ecom_app', '0007_auto_20200804_1928'), ] operations = [ migrations.RenameField( model_name='order', old_name='Customer', new_name='customer', ), ]
394014b3cf84399204151193a86550a25e7cf426
8c3bb557767824f2b80f84352d3c9e1fc898467a
/ToDo_project_files/routes.py
dce6179f011fb178c4795a19ee56bc65431c1064
[]
no_license
shreyanshshah91/Flask_To-Do
340d20eb55c910df817071babb89c2be310ec071
62c56350c694fc053c316006389adcd71594e78c
refs/heads/main
2023-03-11T04:09:43.438520
2021-03-01T17:11:16
2021-03-01T17:11:16
343,491,458
0
0
null
null
null
null
UTF-8
Python
false
false
4,509
py
from flask import render_template, redirect, request, flash from ToDo_project_files import app, db, bcrypt from ToDo_project_files.models import User, Todo from ToDo_project_files.forms import RegistrationForm, LoginForm from flask_login import login_user, current_user, logout_user #displays the homepage @app.route("/") def home_page(): return render_template("home.html") #registeration processing route @app.route("/register", methods=["GET", "POST"]) def register(): if current_user.is_authenticated: return redirect("/task/" + str(current_user.id)) form = RegistrationForm() if form.validate_on_submit(): password_hashed = bcrypt.generate_password_hash(form.password.data).decode('utf-8') user = User(username=form.username.data, email=form.email.data, password=password_hashed) db.session.add(user) db.session.commit() flash("Account Created! Please login.") return redirect("/login") return render_template("register.html", title='Register', form=form) #login processing route @app.route("/login", methods=["GET", "POST"]) def login(): if current_user.is_authenticated: return redirect("/task/" + str(current_user.id)) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user and bcrypt.check_password_hash(user.password, form.password.data): login_user(user) return redirect("/task/" + str(current_user.id)) else: flash('Login Failed!') return render_template("login.html", title='Login', form=form) #route that will display all tasks of that specific logged in user @app.route("/task/<int:get_id>") def display_tasks(get_id): if current_user.is_authenticated: tasking = User.query.get(get_id) task_list = tasking.tasks return render_template("display.html", task_list = task_list) else: return redirect("/register") #for adding new tasks and redirecting back to homescreen to display @app.route("/task/<int:get_id>/add-task", methods = ["GET", "POST"]) def add_task(get_id): task = request.form["fetch_task"] if task: new_task = Todo(task) #creating an instance for the model new_task.user = current_user #fetching details of the current logged in users who create a task if get_id == current_user.id: db.session.add(new_task) db.session.commit() return redirect("/task/" + str(get_id)) else: raise Exception("Please check the input!") #for updating a particular task @app.route("/task/<int:get_userid>/edit-task/<int:get_id>", methods = ["GET", "POST"]) def edit_task(get_userid, get_id): task = request.form["edit_task"] if task: fetch = Todo.query.filter_by(id = get_id).first() if get_userid == current_user.id: fetch.tasks = task db.session.commit() return redirect('/task/' + str(get_userid)) else: raise Exception("Please enter the updated task!") #for deleting a particular task @app.route("/task/<int:get_userid>/delete-task/<int:get_id>") def delete_task(get_userid, get_id): fetched_task = Todo.query.get(get_id) if get_userid == current_user.id: db.session.delete(fetched_task) db.session.commit() return redirect("/task/" + str(get_userid)) else: raise Exception("Attempt Failed! Please try again!") #striking of or unstriking (Mark as done) a task @app.route("/task/<int:get_userid>/completed/<int:get_id>") def mark_as_complete(get_userid, get_id): fetched_task = Todo.query.get(get_id) if get_userid == current_user.id: if fetched_task.marked_complete: fetched_task.marked_complete = False else: fetched_task.marked_complete = True db.session.commit() return redirect("/task/" + str(get_userid)) else: raise Exception("Attempt Failed! Please try again!") #searching for tasks based on __searchable__ in model @app.route("/task/<int:get_id>/search") def search(get_id): tasks = Todo.query.whoosh_search(request.args.get('query')).all() if get_id == current_user.id: return render_template("/task/" + str(get_id), task_list=tasks) else: raise Exception("Attempt Failed!") #logging out process for current user @app.route("/logout") def logout(): logout_user() return redirect("/")
cb66827182a2da5d52aff216601272cbf9917ff5
e88ac5c879326f47fa154baa6f0319240707d10f
/removeDuplication.py
7f7025b72708bbd54b9efe5b656aee309b29b4e4
[]
no_license
Clempops/algorithms
af326124379faf402aeb59383965b05ce7ef55f3
5576bbd47715c37b7f711ae43e6481d2947afa45
refs/heads/master
2020-05-19T09:46:26.502991
2015-06-23T19:47:56
2015-06-23T19:47:56
37,941,161
3
0
null
null
null
null
UTF-8
Python
false
false
167
py
string = 'hello' def removeDuplication(string): res = '' for i in string: if i not in res: res += i return res print removeDuplication(string)
e50aa6aef1cfcde44c6922636a2032ccbb64594b
6a250dcf1e1a294d4cb2f467ddb481cd67bc271f
/www/app.py
821f3a2bd19d208f82e60b9645c2fd7b7ba44ca5
[]
no_license
czj4093/awesome-python3-webapp
eea7765afdd62d751e6197d8f265fd94f8cb1b50
1061542cc3599d1cab6a5f6bcfcc1d639d7ecae0
refs/heads/master
2020-05-09T17:03:58.666619
2019-04-14T12:46:51
2019-04-14T12:46:51
181,294,633
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'chenzejin' ''' async web application. ''' import logging; logging.basicConfig(level=logging.INFO) import asyncio, os, json, time from datetime import datetime from aiohttp import web def index(request): return web.Response(body=b'<h1>Awesome</h1>',content_type='text/html') @asyncio.coroutine def init(loop): app = web.Application(loop=loop) app.router.add_route('GET','/',index) srv = yield from loop.create_server(app.make_handler(), '127.0.0.1',9000) logging.info('server started at http://127.0.0.1:9000...') return srv loop = asyncio.get_event_loop() loop.run_until_complete(init(loop)) loop.run_forever()
c749abb0e1a9f27ebd9ec5fcc93d2afaa0b99d41
a66e0ca90bbc98fef62a24c2826d76a171b3fa6e
/main.py
652df02a52edda412864bcb4cb2d316ecc5868d2
[]
no_license
dillondesilva/dingo-bot
934b8584ffe0a411282e18f94bba81b9e49c0776
b9ef602291a8f5bd3cee14e127ed79c196d8bf21
refs/heads/master
2020-09-16T05:27:43.088390
2019-12-31T01:01:18
2019-12-31T01:01:18
223,667,563
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
#!/usr/bin/env python import time import serial ser = serial.Serial( port='/dev/ttyAMA0', baudrate = 9600, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=1 ) while True: txt = ser.readline() print(txt) time.sleep(100)
e9560659a9ebcc10e180e3d6f2ea34632653e2b5
684a7d56589f7b96002646dfc26ba2de52eb7d80
/source/callback/callback.py
c0fcf24a8585a430d2e0d7670736cac95efafde9
[ "Apache-2.0" ]
permissive
adewin/lambda-deep-learning-demo
7a42b935ca1ab1e92a0170bf28c7e526cffa5cb6
ebbbd63c0abf87a1a4155b17cef145039b7a1ef7
refs/heads/master
2020-07-08T13:15:51.476791
2019-04-26T21:25:44
2019-04-26T21:25:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
""" Copyright 2018 Lambda Labs. All Rights Reserved. Licensed under ========================================================================== """ from __future__ import print_function class Callback(object): def __init__(self, config): self.config = config def before_run(self, *argv): pass def after_run(self, *argv): pass def before_step(self, *argv): pass def after_step(self, *argv): pass def build(config): return Callback(config)
db1709241653d86d91f1534902bd829e968cad18
7eb45006096f6bc3560af0ef1e54923e3f6b35d2
/geofdw/fdw/geocode.py
f1c01490ad83c14ca8ce827e2323ab61ca77db9c
[]
no_license
Vadim0908/geofdw
51112543fb93cb3b5263b7f876d797343ee03d68
629e97d9fea9c235fdc6abc60624498cb2075b20
refs/heads/master
2021-01-17T06:35:06.849460
2015-08-09T09:37:27
2015-08-09T09:37:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,307
py
""" :class:`FGeocode` and `RGeocode` are foreign data wrappers for the geopy geocoding module. """ from geofdw.base import * from shapely.geometry import Point import geopy import pypg class _Geocode(GeoFDW): def __init__(self, options, columns): super(_Geocode, self).__init__(options, columns, srid=4326) self.service = options.get('service', 'googlev3') geocoder = geopy.get_geocoder_for_service(self.service) if geocoder == geopy.geocoders.googlev3.GoogleV3: api_key = options.get('api_key') self.geocoder = geocoder(api_key = api_key) elif geocoder == geopy.geocoders.arcgis.ArcGIS: username = options.get('username') password = options.get('password') self.geocoder = geocoder(username = username, password = password) else: self.geocoder = geocoder() def get_path_keys(self): """ Query planner helper. """ return [ ('rank', 1), ('geom', 1), ('address', 1) ] class FGeocode(_Geocode): """ The FGeocode foreign data wrapper can do forward geocoding using a number of online services. The following columns may exist in the table: query TEXT, rank INTEGER, geom GEOMETRY(POINTZ, 4326), address TEXT. Note that the geometry will be a 3d point with SRID 4326. At present, no supported geocoder returns a useful elevation (the GoogleV3 geocoder, for example, returns a static elevation of 0). """ def __init__(self, options, columns): """ Create the table that uses GoogleV3 by default or one of the following named geocoders: ArcGIS; GoogleV3; Nominatim. :param dict options: Options passed to the table creation. service: 'arcgis', 'googlev3', 'nominatim' api_key: API key for GoogleV3 (optional) username: user name for ArcGIS (optional) password: password for ArcGIS (optional) :param list columns: Columns the user has specified in PostGIS. """ super(FGeocode, self).__init__(options, columns) def execute(self, quals, columns): """ Execute the query on the geocoder. :param list quals: List of predicates from the WHERE clause of the SQL statement. The geocoder expects that one of these predicates will be of the form "query = 'Helsinki, Finland". Optionally, a bounding polygon can be used to influence the geocoder if it is supported; the following formats are recognised (and treated equivalently): geom && ST_GeomFromText('POLYGON(...)') ST_GeomFromText('POLYGON(...)') && geom geom @ ST_GeomFromText('POLYGON(...)') ST_GeomFromText('POLYGON(...)') ~ geom Other predicates may be added, but they will be evaluated in PostgreSQL and not here. :param list columns: List of columns requested in the SELECT statement. """ query, bounds = self._get_predicates(quals) if query: return self._execute(columns, query, bounds) else: return [] def _execute(self, columns, query, bounds = None): rank = 0 col_geom = 'geom' in columns col_addr = 'address' in columns col_query = 'query' in columns locations = self._get_locations(query, bounds) if locations: for location in locations: rank = rank + 1 row = { 'rank' : rank } if col_geom: geom = pypg.geometry.shape.to_postgis(Point(location.latitude, location.longitude, location.altitude), self.srid) row['geom'] = geom if col_addr: row['address'] = location.address if col_query: row['query'] = query yield row def _get_predicates(self, quals): query = None bounds = None for qual in quals: if qual.field_name == 'query' and qual.operator == '=': query = qual.value if qual.field_name == 'geom' and qual.operator in ['&&', '@']: # note A ~ B is transformed into B @ A shape, srid = pypg.geometry.postgis.to_shape(qual.value) bounds = shape.bounds elif qual.value == 'geom' and qual.operator == '&&': shape, srid = pypg.geometry.postgis.to_shape(qual.field_name) bounds = shape.bounds return query, bounds def _get_locations(self, query, bounds): log_to_postgres('Geocode (%s): running query "%s" with bounds = %s' % (self.service, query, str(bounds)), DEBUG) if bounds and self.service == 'googlev3': return self.geocoder.geocode(query, False, bounds = bounds) else: return self.geocoder.geocode(query, False) class RGeocode(_Geocode): """ The RGeocode foreign data wrapper can do reverse geocoding using a number of online services. The following columns may exist in the table: query GEOMETRY(POINT, 4326), rank INTEGER, geom GEOMETRY(POINTZ, 4326), address TEXT. Note that the geometry will be a 3d point with SRID 4326. At present, no supported geocoder returns a useful elevation (the GoogleV3 geocoder, for example, returns a static elevation of 0). """ def __init__(self, options, columns): """ Create the table that uses GoogleV3 by default or one of the following named geocoders: ArcGIS; GoogleV3; Nominatim. :param dict options: Options passed to the table creation. service: 'arcgis', 'googlev3', 'nominatim' api_key: API key for GoogleV3 (optional) username: user name for ArcGIS (optional) password: password for ArcGIS (optional) :param list columns: Columns the user has specified in PostGIS. """ super(RGeocode, self).__init__(options, columns) def execute(self, quals, columns): """ Execute the query on the geocoder. :param list quals: List of predicates from the WHERE clause of the SQL statement. The geocoder expects that one of these predicates will be of the form "query = ST_MakePoint(52, 0)" Other predicates may be added, but they will be evaluated in PostgreSQL and not here. :param list columns: List of columns requested in the SELECT statement. """ query = self._get_predicates(quals) if query: return self._execute(columns, query) else: return [] def _execute(self, columns, query): rank = 0 col_geom = 'geom' in columns col_addr = 'address' in columns col_query = 'query' in columns locations = self._get_locations(query) for location in locations: rank = rank + 1 row = { 'rank' : rank } if col_geom: geom = pypg.geometry.shape.to_postgis(Point(location.latitude, location.longitude, location.altitude), self.srid) row['geom'] = geom if col_addr: row['address'] = location.address if col_query: row['query'] = pypg.geometry.shape.to_postgis(query, self.srid) yield row def _get_predicates(self, quals): for qual in quals: if qual.field_name == 'query' and qual.operator == '=': shape, srid = pypg.geometry.postgis.to_shape(qual.value) return shape return None def _get_locations(self, query): log_to_postgres('GeocodeR (%s): running query "%s"' % (self.service, query.wkt), DEBUG) return self.geocoder.reverse([query.x, query.y])
2ff36457c22757394018c77a76b95d9a1928e8d6
31d5db91af6591206174fa3e2c862b94bf8d9235
/getfullscreenimage.py
22af92b449e968ae352a629bb39d24baf5bf40ba
[]
no_license
gdnyfcuso/ElementPosition
adb2a585688ff9d86168e87bd419ea9681675a28
5784f61d1f4cc4cf8a94a56c18759c282783f46b
refs/heads/main
2023-07-12T16:31:14.521148
2021-08-20T07:23:09
2021-08-20T07:23:09
398,186,657
0
0
null
null
null
null
UTF-8
Python
false
false
1,927
py
import time import win32gui, win32ui, win32con, win32api def window_capture(filename): hwnd = 0 # 窗口的编号,0号表示当前活跃窗口 # 根据窗口句柄获取窗口的设备上下文DC(Divice Context) hwndDC = win32gui.GetWindowDC(hwnd) # 根据窗口的DC获取mfcDC mfcDC = win32ui.CreateDCFromHandle(hwndDC) # mfcDC创建可兼容的DC saveDC = mfcDC.CreateCompatibleDC() # 创建bigmap准备保存图片 saveBitMap = win32ui.CreateBitmap() # 获取监控器信息 MoniterDev = win32api.EnumDisplayMonitors(None, None) w = MoniterDev[0][2][2] h = MoniterDev[0][2][3] # print w,h   #图片大小 # 为bitmap开辟空间 saveBitMap.CreateCompatibleBitmap(mfcDC, w, h) # 高度saveDC,将截图保存到saveBitmap中 saveDC.SelectObject(saveBitMap) # 截取从左上角(0,0)长宽为(w,h)的图片 saveDC.BitBlt((0, 0), (w, h), mfcDC, (0, 0), win32con.SRCCOPY) saveBitMap.SaveBitmapFile(saveDC, filename) if __name__ == "__main__": beg = time.time() for i in range(10): window_capture("haha.jpg") end = time.time() print(end - beg) # import sys # from PyQt5.QtWidgets import * # from PyQt5.QtGui import * # from PyQt5.QtCore import Qt # from PyQt5.QtWidgets import * # from PyQt5.QtCore import * # from PyQt5 import QtGui,QtCore # import keyboard # import random # class Trans(QWidget): # def cut(self): # screenshot = QApplication.primaryScreen().grabWindow(QApplication.desktop().winId()) # outputRegion = screenshot.copy() # outputRegion.save('sho54t.bmp', format = 'bmp', quality = 100) # self.close() # if __name__ == '__main__': # app = QApplication(sys.argv) # trans = Trans() # trans.cut() # trans.show() # sys.exit(app.exec_())
8b9260ba1a175ef2441418fc049795b45fc5084a
a838d4bed14d5df5314000b41f8318c4ebe0974e
/eng/versioning/version_increment.py
3ac56b45ee4c4c9cd8d2ab2669167b90040d2ab8
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
scbedd/azure-sdk-for-python
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
refs/heads/master
2023-09-01T08:38:56.188954
2021-06-17T22:52:28
2021-06-17T22:52:28
159,568,218
2
0
MIT
2019-08-11T21:16:01
2018-11-28T21:34:49
Python
UTF-8
Python
false
false
2,599
py
#!/usr/bin/env python # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Below are common methods for the devops build steps. This is the common location that will be updated with # package targeting during release. import os import argparse from packaging.version import parse import logging from version_shared import get_packages, set_version_py, set_dev_classifier, update_change_log logging.getLogger().setLevel(logging.INFO) def increment_version(old_version): parsed_version = parse(old_version) release = parsed_version.release if parsed_version.is_prerelease: prerelease_version = parsed_version.pre[1] return '{0}.{1}.{2}b{3}'.format(release[0], release[1], release[2], prerelease_version + 1) return '{0}.{1}.{2}'.format(release[0], release[1], release[2] + 1) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Increments version for a given package name based on the released version') parser.add_argument('--package-name', required=True, help='name of package (accetps both formats: azure-service-package and azure_service_pacage)') parser.add_argument( dest="glob_string", nargs="?", help=( "A comma separated list of glob strings that will target the top level directories that contain packages." 'Examples: All = "azure-*", Single = "azure-keyvault", Targeted Multiple = "azure-keyvault,azure-mgmt-resource"' ), ) parser.add_argument('--service', required=True, help='name of the service for which to set the dev build id (e.g. keyvault)') args = parser.parse_args() package_name = args.package_name.replace('_', '-') packages = get_packages(args, package_name) package_map = { pkg[1][0]: pkg for pkg in packages } if package_name not in package_map: raise ValueError("Package name not found: {}".format(package_name)) target_package = package_map[package_name] new_version = increment_version(target_package[1][1]) print('{0}: {1} -> {2}'.format(package_name,target_package[1][1], new_version)) set_version_py(target_package[0], new_version) set_dev_classifier(target_package[0], new_version) update_change_log(target_package[0], new_version, args.service, args.package_name, True, False)
0ce168ab0aa8130b7f3107d039fdc86989a2f07c
e180e68c468557b186d083869c005c98abdf539a
/Testing Hardcoded format/test8.py
886890d05c57d885c0e77ab4610ea4ab489df179
[]
no_license
singhalshubh/Notification-system-Testing-using-selenium
8a58977d7d63c1216e420363f408826e9bfccf7a
e460e7ceeb63e5eea9a914be0ed84febaebe47c7
refs/heads/master
2020-03-21T21:33:03.046748
2020-01-17T09:53:24
2020-01-17T09:53:24
139,069,652
0
0
null
null
null
null
UTF-8
Python
false
false
1,816
py
__author__= 'shubh' import unittest from selenium import webdriver class signup(unittest.TestCase): def setUp(self): self.driver = webdriver.Firefox() def test_unsubscribe_community(self): user ="admin" pwd= "sha123#56su" driver = webdriver.Firefox() driver.maximize_window() #For maximizing window driver.implicitly_wait(20) #gives an implicit wait for 20 seconds driver.get("http://127.0.0.1:8000/") driver.find_element_by_xpath('//a [@href="/login/?next=/"]').click() driver.get("http://localhost:8000/login/?next=/") elem = driver.find_element_by_id("id_username") elem.send_keys(user) elem = driver.find_element_by_id("id_password") elem.send_keys(pwd) driver.find_element_by_class_name('btn-block').click() driver.find_element_by_xpath('//a [@href="/communities/"]').click() driver.find_element_by_xpath('//a [@href="/community-view/1/"]').click() driver.find_element_by_xpath('//a [@href="/community_content/1/"]').click() driver.find_element_by_xpath('//a [@href="/article-view/5/"]').click() driver.find_element_by_xpath('//a [@href="/article-edit/5/"]').click() #publish is an id driver.find_element_by_id("publish").click() driver.find_element_by_xpath('//a [@href="/logout/"]').click() user ="shubh" pwd= "sha123#56su" driver.get("http://127.0.0.1:8000/") driver.find_element_by_xpath('//a [@href="/login/?next=/"]').click() driver.get("http://localhost:8000/login/?next=/") elem = driver.find_element_by_id("id_username") elem.send_keys(user) elem = driver.find_element_by_id("id_password") elem.send_keys(pwd) driver.find_element_by_class_name('btn-block').click() driver.find_element_by_xpath('//a [@href="/notifications/"]').click() def tearDown(self): self.driver.quit() if __name__ == '__main__': unittest.main()
d4ebbd0498578f14b876e398a62aab73d0bc638c
56b6b15d1ceddf544fb7f80b6cbdc4c1b068577e
/stable_baselines_custom/common/mpi_adam.py
4ad503d1c9f05c27826298da9334279b38ec1ba0
[ "MIT" ]
permissive
iamlab-cmu/stable-baselines
c83c5a598ed8b37adfc9ecd465bac3cf4b44db6b
6e9a8b2ad1d690bd9a9611405e4f319a52101540
refs/heads/master
2022-09-17T13:13:50.792728
2020-05-29T18:57:13
2020-05-29T18:57:13
266,206,473
0
0
MIT
2020-05-29T18:57:14
2020-05-22T21:00:05
Python
UTF-8
Python
false
false
4,558
py
import tensorflow as tf import numpy as np import mpi4py import stable_baselines_custom.common.tf_util as tf_utils class MpiAdam(object): def __init__(self, var_list, *, beta1=0.9, beta2=0.999, epsilon=1e-08, scale_grad_by_procs=True, comm=None, sess=None): """ A parallel MPI implementation of the Adam optimizer for TensorFlow https://arxiv.org/abs/1412.6980 :param var_list: ([TensorFlow Tensor]) the variables :param beta1: (float) Adam beta1 parameter :param beta2: (float) Adam beta1 parameter :param epsilon: (float) to help with preventing arithmetic issues :param scale_grad_by_procs: (bool) if the scaling should be done by processes :param comm: (MPI Communicators) if None, mpi4py.MPI.COMM_WORLD :param sess: (TensorFlow Session) if None, tf.get_default_session() """ self.var_list = var_list self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.scale_grad_by_procs = scale_grad_by_procs size = sum(tf_utils.numel(v) for v in var_list) # Exponential moving average of gradient values # "first moment estimate" m in the paper self.exp_avg = np.zeros(size, 'float32') # Exponential moving average of squared gradient values # "second raw moment estimate" v in the paper self.exp_avg_sq = np.zeros(size, 'float32') self.step = 0 self.setfromflat = tf_utils.SetFromFlat(var_list, sess=sess) self.getflat = tf_utils.GetFlat(var_list, sess=sess) self.comm = mpi4py.MPI.COMM_WORLD if comm is None else comm def update(self, local_grad, learning_rate): """ update the values of the graph :param local_grad: (numpy float) the gradient :param learning_rate: (float) the learning_rate for the update """ if self.step % 100 == 0: self.check_synced() local_grad = local_grad.astype('float32') global_grad = np.zeros_like(local_grad) self.comm.Allreduce(local_grad, global_grad, op=mpi4py.MPI.SUM) if self.scale_grad_by_procs: global_grad /= self.comm.Get_size() self.step += 1 # Learning rate with bias correction step_size = learning_rate * np.sqrt(1 - self.beta2 ** self.step) / (1 - self.beta1 ** self.step) # Decay the first and second moment running average coefficient self.exp_avg = self.beta1 * self.exp_avg + (1 - self.beta1) * global_grad self.exp_avg_sq = self.beta2 * self.exp_avg_sq + (1 - self.beta2) * (global_grad * global_grad) step = (- step_size) * self.exp_avg / (np.sqrt(self.exp_avg_sq) + self.epsilon) self.setfromflat(self.getflat() + step) def sync(self): """ syncronize the MPI threads """ theta = self.getflat() self.comm.Bcast(theta, root=0) self.setfromflat(theta) def check_synced(self): """ confirm the MPI threads are synced """ if self.comm.Get_rank() == 0: # this is root theta = self.getflat() self.comm.Bcast(theta, root=0) else: thetalocal = self.getflat() thetaroot = np.empty_like(thetalocal) self.comm.Bcast(thetaroot, root=0) assert (thetaroot == thetalocal).all(), (thetaroot, thetalocal) @tf_utils.in_session def test_mpi_adam(): """ tests the MpiAdam object's functionality """ np.random.seed(0) tf.set_random_seed(0) a_var = tf.Variable(np.random.randn(3).astype('float32')) b_var = tf.Variable(np.random.randn(2, 5).astype('float32')) loss = tf.reduce_sum(tf.square(a_var)) + tf.reduce_sum(tf.sin(b_var)) learning_rate = 1e-2 update_op = tf.train.AdamOptimizer(learning_rate).minimize(loss) do_update = tf_utils.function([], loss, updates=[update_op]) tf.get_default_session().run(tf.global_variables_initializer()) for step in range(10): print(step, do_update()) tf.set_random_seed(0) tf.get_default_session().run(tf.global_variables_initializer()) var_list = [a_var, b_var] lossandgrad = tf_utils.function([], [loss, tf_utils.flatgrad(loss, var_list)], updates=[update_op]) adam = MpiAdam(var_list) for step in range(10): loss, grad = lossandgrad() adam.update(grad, learning_rate) print(step, loss) if __name__ == "__main__": # Run with mpirun -np 2 python <filename> test_mpi_adam()
156e3872790dc73bdc64d9acd45216282f9550eb
2999692f7f535e91f9d9da2d2d4db32b1c271114
/chapter_3/lesson2_step9_error_messages_for_substrings.py
5adf19a02d621c9507ba0bab1c323510f86f2ac1
[]
no_license
Tester5657/stepik-auto-tests-course
aa026eee07fd22a22482a84b95f5a37aaf51eb15
d97c660f6eb960bf4ee4c133dc901244f9eb49fb
refs/heads/master
2021-06-27T14:23:46.693036
2020-01-29T12:37:18
2020-01-29T12:37:18
230,717,325
0
0
null
2021-06-02T00:52:44
2019-12-29T07:22:07
Python
UTF-8
Python
false
false
335
py
s = 'My Name is Julia' if 'Name' in s: print('Substring found') index = s.find('Name') if index != -1: print(f'Substring found at index {index}') full_string = "text" substring = "text2" assert substring in full_string, f"expected \'{substring}\' to be substring of \'{full_string}\'" if __name__ == '__main__': main()
[ "Uezdny_gorod12" ]
Uezdny_gorod12
db0f1e75164799cda6029b459b5690ad20b51f7d
6189f34eff2831e3e727cd7c5e43bc5b591adffc
/WebMirror/management/rss_parser_funcs/feed_parse_extractNellietranslationWordpressCom.py
c62296b95129383ec41b43e5473b47f679d163d3
[ "BSD-3-Clause" ]
permissive
fake-name/ReadableWebProxy
24603660b204a9e7965cfdd4a942ff62d7711e27
ca2e086818433abc08c014dd06bfd22d4985ea2a
refs/heads/master
2023-09-04T03:54:50.043051
2023-08-26T16:08:46
2023-08-26T16:08:46
39,611,770
207
20
BSD-3-Clause
2023-09-11T15:48:15
2015-07-24T04:30:43
Python
UTF-8
Python
false
false
574
py
def extractNellietranslationWordpressCom(item): ''' Parser for 'nellietranslation.wordpress.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
f64852dade55046f20d33c1f29c23c4208ccdacc
3395a234e7c80d011607e79c49cd48bf516f256b
/dependencies/jedi/third_party/typeshed/third_party/2and3/flask/json/tag.pyi
b1648dc79877207e7cc04222ee66c11f34502a79
[ "MIT", "Apache-2.0" ]
permissive
srusskih/SublimeJEDI
67329b72e184bc9584843968dcc534a002c797a1
95c185d778425c04536d53517b0e3fe6dedf8e59
refs/heads/master
2023-08-24T11:30:37.801834
2022-08-30T09:04:17
2022-08-30T09:04:17
6,241,108
669
125
MIT
2022-08-30T09:04:18
2012-10-16T08:23:57
Python
UTF-8
Python
false
false
2,037
pyi
# Stubs for flask.json.tag (Python 3.6) # # NOTE: This dynamically typed stub was automatically generated by stubgen. from typing import Any, Optional class JSONTag: key: Any = ... serializer: Any = ... def __init__(self, serializer: Any) -> None: ... def check(self, value: Any) -> None: ... def to_json(self, value: Any) -> None: ... def to_python(self, value: Any) -> None: ... def tag(self, value: Any): ... class TagDict(JSONTag): key: str = ... def check(self, value: Any): ... def to_json(self, value: Any): ... def to_python(self, value: Any): ... class PassDict(JSONTag): def check(self, value: Any): ... def to_json(self, value: Any): ... tag: Any = ... class TagTuple(JSONTag): key: str = ... def check(self, value: Any): ... def to_json(self, value: Any): ... def to_python(self, value: Any): ... class PassList(JSONTag): def check(self, value: Any): ... def to_json(self, value: Any): ... tag: Any = ... class TagBytes(JSONTag): key: str = ... def check(self, value: Any): ... def to_json(self, value: Any): ... def to_python(self, value: Any): ... class TagMarkup(JSONTag): key: str = ... def check(self, value: Any): ... def to_json(self, value: Any): ... def to_python(self, value: Any): ... class TagUUID(JSONTag): key: str = ... def check(self, value: Any): ... def to_json(self, value: Any): ... def to_python(self, value: Any): ... class TagDateTime(JSONTag): key: str = ... def check(self, value: Any): ... def to_json(self, value: Any): ... def to_python(self, value: Any): ... class TaggedJSONSerializer: default_tags: Any = ... tags: Any = ... order: Any = ... def __init__(self) -> None: ... def register(self, tag_class: Any, force: bool = ..., index: Optional[Any] = ...) -> None: ... def tag(self, value: Any): ... def untag(self, value: Any): ... def dumps(self, value: Any): ... def loads(self, value: Any): ...
8be2dbc27574f4b50a8b455aa7f1fde1b1d1a032
86ae81570cf5ab07e07c40ee3ec41a25ca8b871e
/manage.py
44acc6d5a44cc7aabe7e1526a6aa4af2a95396a2
[]
no_license
damscassiani1994/apiusuarios
df0ded67af752ab3165c719d6eb442af9b67d66e
9603134639d3fb1f9e7d833cc43de6c83039e459
refs/heads/master
2021-08-07T08:25:02.612742
2017-11-07T22:18:07
2017-11-07T22:18:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
810
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "api_usuarios.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
d4403a791ecc88f293464b246c21949eee1a9a90
061ff7a2155d206cbe30a4a3c247a0537f263044
/portal/gradebook.py
e921ee60cf3946e6a938b1e8e2b049a9a6d4ba23
[ "MIT" ]
permissive
BillSpyro/tsct-portal
6436eba8104633c0cff9a2c8341253ed829f0dcb
dced1220f04234cc80c1975f960a1470d503cfc4
refs/heads/master
2021-05-24T12:25:41.949604
2020-05-01T20:33:27
2020-05-01T20:33:27
253,560,906
2
0
MIT
2020-05-01T20:33:28
2020-04-06T16:53:16
Python
UTF-8
Python
false
false
3,736
py
from flask import ( Blueprint, flash, g, redirect, render_template, request, session, url_for ) from portal.auth import (login_required, teacher_required) from . import db bp = Blueprint('gradebook', __name__, url_prefix='/portal/gradebook') @bp.route('/') @login_required def gradebook(): if g.users['role'] == 'teacher': cur = db.get_db().cursor() cur.execute("""SELECT * FROM courses""") courses = cur.fetchall() cur.execute("""SELECT courses.id AS c_id, session.* FROM session JOIN courses ON courses.id = session.courses_id""") sessions = cur.fetchall() cur.execute("""SELECT session.id AS s_id, users.id AS u_id, SUM(submissions.points) AS s_points, SUM(assignments.points) AS a_points, '' as grade FROM users JOIN roster ON roster.users_id = users.id JOIN session ON roster.session_id = session.id JOIN assignments ON assignments.session_id=session.id JOIN submissions ON submissions.assignments_id = assignments.id and users.id = submissions.users_id GROUP BY session.id, users.id ORDER BY session.id""") grades = cur.fetchall() else: cur = db.get_db().cursor() cur.execute(""" SELECT DISTINCT ON (courses.id) roster.*, users.*, session.*, courses.* FROM roster JOIN users ON users.id = roster.users_id JOIN session ON session.id = roster.session_id JOIN courses ON courses.id = session.courses_id WHERE users.id = %s;""", (g.users['id'],)) courses = cur.fetchall() cur.execute(""" SELECT DISTINCT ON (session.id) session.*, roster.id AS r_id, users.id AS u_id, courses.id AS c_id FROM roster JOIN users ON users.id = roster.users_id JOIN session ON session.id = roster.session_id JOIN courses ON courses.id = session.courses_id WHERE users.id = %s;""", (g.users['id'],)) sessions = cur.fetchall() cur.execute("""SELECT session.id AS s_id, users.id AS u_id, SUM(submissions.points) AS s_points, SUM(assignments.points) AS a_points, '' as grade FROM users JOIN roster ON roster.users_id = users.id JOIN session ON roster.session_id = session.id JOIN assignments ON assignments.session_id=session.id JOIN submissions ON submissions.assignments_id = assignments.id and users.id = submissions.users_id WHERE users.id = %s GROUP BY session.id, users.id ORDER BY session.id""", (g.users['id'],)) grades = cur.fetchall() for grade in grades: grade[4] = grade[2]/grade[3] if grade[4] >= 0.98: grade[4] = 'A+' elif grade[4] >= 0.93: grade[4] = 'A' elif grade[4] >= 0.90: grade[4] = 'A-' elif grade[4] >= 0.87: grade[4] = 'B+' elif grade[4] >= 0.83: grade[4] = 'B' elif grade[4] >= 0.80: grade[4] = 'B-' elif grade[4] >= 0.77: grade[4] = 'C+' elif grade[4] >= 0.73: grade[4] = 'C' elif grade[4] >= 0.70: grade[4] = 'C-' elif grade[4] >= 0.67: grade[4] = 'D+' elif grade[4] >= 0.63: grade[4]= 'D' elif grade[4] >= 0.60: grade[4] = 'D-' else: grade[4] = 'F' cur.close() return render_template('portal/gradebook/view-gradebook.html', courses=courses, sessions=sessions, grades=grades)
0f646ca51eea59fd4f4fe0e3e10b1824d8c540d9
cbfb679bd068a1153ed855f0db1a8b9e0d4bfd98
/leet/dp/1140_Stone_Game_II.py
d1ed5925f0f4caf1298bf5358edbaf4abe9af491
[]
no_license
arsamigullin/problem_solving_python
47715858a394ba9298e04c11f2fe7f5ec0ee443a
59f70dc4466e15df591ba285317e4a1fe808ed60
refs/heads/master
2023-03-04T01:13:51.280001
2023-02-27T18:20:56
2023-02-27T18:20:56
212,953,851
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
from typing import List class Solution: def stoneGameII(self, piles: List[int]) -> int: n = len(piles) A = 0 L = 0 def helper(i, m, cur, turn=1): if i >= n: return 0 res = 0 for j in range(1, 2 * m + 1): if turn == 1: res = max(helper(cur + piles[i:i+ j], max(m, j), turn ^ 1), 0) else: res = max(helper(cur + piles[i:i+ j], max(m, j), turn ^ 1), 0) return res helper(0,1,0,1) print('done') if __name__ == '__main__': s = Solution() s.stoneGameII([2,7,9,4,4])
8f250333563f5a706d986bac623086de8c233d7f
a3175746b3304108d261f163c2ff231454ead4cd
/Facebookapi.py
c2c9b2e5d930d1c94c0c8506a28318fe858c9156
[]
no_license
christianangel15/CodeSnippets
dccc6ecbad8d64a3be490f4199fddf28fa01e595
f43bdf36efc8055a72447e06e5d3ef10121e1bd1
refs/heads/master
2023-02-17T10:31:21.877630
2021-01-18T15:21:08
2021-01-18T15:21:08
267,920,642
2
0
null
null
null
null
UTF-8
Python
false
false
310
py
import facebook token = 'Your token here' fbobj = facebook.GraphAPI(access_token=token) # fbobj.put_object('me', 'feed', message='Posted using Graph API') fbobj.put_photo(image=open('photo-1522364723953-452d3431c267.jpg', 'rb'), message='Photo posted using Graph API..Cool!') print('Posted')
cb9e4681176994e682013a8fd58c66406e38dba8
fa4829f71092aeb8fd7b66b3c97f3bfa957daf41
/MyProject/settings.py
f285ba90178060a902613da0bf29622c00f82792
[]
no_license
bfrost831/DjangoProj_repo
da545c703dc79062252b60ff5a0ec9002278d66e
a93ef915133e63d44896d4737e0d270c1b085e20
refs/heads/master
2021-04-24T05:48:47.810489
2020-03-25T20:42:51
2020-03-25T20:42:51
250,087,378
0
0
null
null
null
null
UTF-8
Python
false
false
3,112
py
""" Django settings for MyProject project. Generated by 'django-admin startproject' using Django 3.0.4. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '(9+i$c#hjn9x#20yjzer7bnm55@h$3cml*piigjg#k&7uulac0' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'homepage', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'homepage.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'MyProject.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
5490a436cce969d697354cec0600e851e31852cd
030724b60fb4f8b63953b7401702a98072993e94
/python/140.word_break_II.py
2647735c996d2fc35d3f3ac0926b4beba47ec0ba
[]
no_license
MtTsai/Leetcode
5f51a892b78cf6427ce2b4891a10bc2d4ed4d972
21e83294aee779a16a8c1b96089da4a40eb03035
refs/heads/master
2021-01-24T17:17:52.909429
2019-08-04T06:53:53
2019-08-04T06:54:23
123,228,705
0
0
null
null
null
null
UTF-8
Python
false
false
1,167
py
class Solution(object): def wordBreak(self, s, wordDict): """ :type s: str :type wordDict: List[str] :rtype: List[str] """ tree = {} for w in wordDict: trie = tree for c in w: if c not in trie.keys(): trie[c] = {} trie = trie[c] trie['#'] = '#' def find(s, start, tree, dp): if start == len(s): return [[]] if type(dp[start]) is list: return dp[start] trie = tree dp[start] = [] for i in range(start, len(s)): c = s[i] if c in trie: trie = trie[c] if '#' in trie: ret = find(s, i + 1, tree, dp) dp[start] += [[s[start:i + 1]] + str_list for str_list in ret] else: break return dp[start] no_visit_dp = [0] * len(s) return [' '.join(str_list) for str_list in find(s, 0, tree, no_visit_dp)]
35bacb289cdf03acdbbf11dec16583ce0e68e78e
b10aa7305fa3e1947c949026984aaacc32b9e350
/sql_datas.py
ede79501b4c23813b40aa860dc2bc49dc3ae17c5
[]
no_license
MYoung-coder/Pi_flask
a319b9edb5b3df4d4fd31f1b1dd484e7fc3074c0
7cf6a51051af7514e2bd44d3da40f4822ece0efc
refs/heads/master
2020-12-06T21:51:08.420574
2020-01-08T12:37:04
2020-01-08T12:37:04
232,559,836
0
0
null
null
null
null
UTF-8
Python
false
false
713
py
import psycopg2 def latest_row(): conn = psycopg2.connect(dbname="AgroIot", user="postgres",password="950315", host="39.97.186.109", port="5432") cur = conn.cursor() str_sql = "select * from dbo.klha_data" cur.execute(str_sql) rows = cur.fetchall() # print(len(rows)) # print(rows[-1]) data_time=rows[-1][5].strftime(('%H:%M %d/%m') ) # print(data_time) soil_humidity=rows[-1][4] soil_temp=rows[-2][4] light=rows[-3][4] air_humidity=rows[-4][4] air_temp=rows[-5][4] latest_row_data=[air_temp,air_humidity,light,soil_temp,soil_humidity,data_time] conn.commit() conn.close() # print(latest_row_data) return latest_row_data # latest_row()
3f953d162b2d1a1d32bc9b8b49129d395aa5a6e9
68a66b222a8e81fbbef36e3b26cff16215a21f90
/fibonacci.py
ec1b4d14a3fd6a21f92b05116541b6d3cd20ba78
[]
no_license
jeffwright13/codewars
725fd7d19db4b31f1d4c45fbb21f0e2b8f774425
92d16edd1441230e7c4ddc466b893e5ba5929e98
refs/heads/master
2020-04-15T15:02:36.704016
2016-11-09T18:38:17
2016-11-09T18:38:17
53,176,971
1
0
null
null
null
null
UTF-8
Python
false
false
478
py
def fibonacci(n): if n<0: return None if n==0: return 0 if n==1 or n==2: return 1 else: return fibonacci(n-2) + fibonacci(n-1) def test_fibonacci(): assert fibonacci(-1) == None assert fibonacci(0) == 0 assert fibonacci(1) == 1 assert fibonacci(2) == 1 assert fibonacci(3) == 2 assert fibonacci(6) == 8 assert fibonacci(13) == 233 assert fibonacci(20) == 6765 assert fibonacci(38) == 39088169
f2ceca0732225c696b0d45ea0f94c8dd333138d6
bc22137812d53cda9c3c056484b10a0619f21184
/snippets/views/syntaxes.py
d71bf331fe0a7dde00a071ad9ab319f982f11369
[]
no_license
vovean/code.re
58edbd7415bd9b5c81d5e5fbd51e01d3c1cdc160
425ed18ba11ab487b46b4c20f406084eb3a5342f
refs/heads/master
2023-04-30T05:35:14.368705
2021-05-18T21:26:41
2021-05-18T21:26:41
343,167,938
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
from django.core.handlers.wsgi import WSGIRequest from django.http import HttpResponseBadRequest, JsonResponse from snippets.models import Snippet def list_syntaxes(request: WSGIRequest): if request.method != 'GET': return HttpResponseBadRequest(f"Unacceptable method {request.method}") return JsonResponse(Snippet.SyntaxChoices.values, safe=False)
ee6a5db8a7b96b90ba2f91d343dac58cf8e81c81
3a5786a907af3f96d7f3200b94df21f3be4b1211
/AMDiS_Sandbox2/saves/nonicPressedExt_badShape/evalFinalEnergy.py
07576f875e14c0371e9f86c0ee4cc93aa8661bba
[]
no_license
nitschke/main
7635879bba3fb603e23e5678511fcbfcbca13d3d
ecc4db17f46de87c8e7027f0e37031893f9dc5a9
refs/heads/master
2021-04-12T04:35:53.825044
2017-06-08T15:04:06
2017-06-08T15:04:06
13,807,165
0
0
null
null
null
null
UTF-8
Python
false
false
1,237
py
#!/usr/bin/python import csv from pylab import * fn = "finalEnergy.csv" lineStyles = ['-','--', '-.', ':'] lw = 3; with open(fn, 'rb') as f: reader = csv.DictReader(f, skipinitialspace = True) stretch=[]; press=[]; e2D=[]; e4D=[]; for row in reader: stretch.append(row['stretch']) press.append(row['press']) e2D.append(row['EnergyOf2Defects']) e4D.append(row['EnergyOf4Defects']) stretch = array(stretch,dtype=float) press = array(press,dtype=float) e2D = array(e2D,dtype=float) e4D = array(e4D,dtype=float) fig = plt.figure() ax1 = fig.add_subplot(111) plot(stretch, e2D, label='2 Defects', linewidth=lw) cFusion = 0.625 #(0.83325+0.8335)/2. # lin. interpol. dataFilter = stretch > cFusion plot(stretch[dataFilter], e4D[dataFilter], '*-',label='4 Defects', linewidth=lw) axvspan(0.0,cFusion, facecolor='0.5', alpha=0.5) text(0.4, 16.2, "Not Stable 4 Defects", horizontalalignment='center') text(1.4, 16.2, "Stable 4 Defects", horizontalalignment='center') xlim(0.0,2.0) xlabel('Stretch Factor C') ylabel('Energy E') locator_params(nbins=10) grid(True) legend() # C = (20/7)*B ax2 = ax1.twiny() ax2.set_xlabel('Press Factor B') ax2.set_xlim(0.0,0.7) #grid(True) show()
dcd7a41f7881f0548c60d58a4613f7acfb721adb
a002850e2d2f6f183751f2a761d717f6ef97e4f4
/hello/pages/migrations/0016_auto_20190928_0409.py
4ec1cb0fd70ea854af225a8f000406ae9b7b54a1
[]
no_license
dipak122/Hackathon_Project
73cea235527530503c737b2e1052246b6911e202
dba65ac0ce6c588865f5b50ccb0d989eda80c39d
refs/heads/master
2022-12-03T19:08:56.956980
2021-04-16T07:17:01
2021-04-16T07:17:01
210,911,196
2
1
null
2022-11-22T07:38:14
2019-09-25T18:15:42
JavaScript
UTF-8
Python
false
false
585
py
# Generated by Django 2.2.5 on 2019-09-27 22:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pages', '0015_auto_20190928_0349'), ] operations = [ migrations.AddField( model_name='logtable', name='opt', field=models.IntegerField(default=12, max_length=5), preserve_default=False, ), migrations.AlterField( model_name='logtable', name='email', field=models.TextField(max_length=20), ), ]
6fe7f545a1be0fce9b8dd4f94b6d9a90bdcc9aa8
abaa6a5d1bced4c01f425ed65daced74110a119a
/demos/form/forms.py
746ade2acd739fd06c5cb6dc29a68700deab5846
[]
no_license
bigbigrock/flaskstudy
6fe4d16bfb903757d57915bdfa9a4fac0914b66b
880208af82bfe672816a9424fe5aff5a1ab3e4c5
refs/heads/master
2023-01-30T10:33:32.023378
2020-12-15T12:21:19
2020-12-15T12:21:19
309,948,898
0
0
null
null
null
null
UTF-8
Python
false
false
1,940
py
from flask_wtf import FlaskForm from wtforms import StringField,PasswordField,BooleanField,SubmitField,IntegerField,MultipleFileField from wtforms.validators import DataRequired,Length,ValidationError from flask_wtf.file import FileField,FileRequired,FileAllowed from flask_ckeditor import CKEditorField class LoginForm(FlaskForm): username = StringField('Username',validators=[DataRequired()]) password = PasswordField('Password',validators=[DataRequired(),Length(8,128)]) remember = BooleanField('Remember me') submit = SubmitField('Log in') #行内验证器 class FortyTwoForm(FlaskForm): answer = IntegerField('The Number') submit = SubmitField() def validate_answer(form,field): if field.data != 42: raise ValidationError("Must be 42") #全局验证器 def is_42(form,field): if field.data !=42: raise ValidationError('Must be 42') class FortyTwoForm(FlaskForm): answer = IntegerField('The Number',validators=[is_42]) submit = SubmitField() #工厂函数形式的全局验证器示例 def is_42(message=None): if message is None: message = 'Must be 42' def _is_42(form,field): if field.data != 42: raise ValidationError(message) return _is_42 class FortyTwoForm(FlaskForm): answer = IntegerField('The Number',validators=[is_42()]) submit = SubmitField #创建上传表单 class UploadForm(FlaskForm): photo = FileField('Upload Image',validators=[FileRequired(),FileAllowed(['jpg','jpeg','png','gif'])]) submit = SubmitField() #多文件上传 class MultiUploadForm(FlaskForm): photo = MultipleFileField('Upload Image',validators=[DataRequired()]) submit = SubmitField() #文章表单 class RichTextForm(FlaskForm): title = StringField('title',validators=[DataRequired(),Length(1,50)]) body = CKEditorField('Body',validators=[DataRequired()]) submit = SubmitField('Publish')
ab6541cecef8408ea284de51aaf882d1b5618307
48123b667ed75e550b83e90cf756cce84ed43f76
/blockchain_davidcoin/Module 2 - Create a Cryptocurrency/davidcoin_node_5003.py
5b186cfc660db2aa835998769f3252fc608b75eb
[ "MIT" ]
permissive
mrn01/Blockchain_Project
e7ada6d4ca5b1d2c5bb9895738844a6e5b470756
c91602686331e6917482731b9ad8e2e64fbf640f
refs/heads/master
2022-11-09T03:10:37.442224
2020-06-27T17:34:32
2020-06-27T17:34:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,517
py
# Module 2 - Create a Cryptocurrency # Importing the libraries from datetime import datetime from hashlib import sha256 from json import dumps from flask import Flask, jsonify, request from requests import get from uuid import uuid4 from urllib.parse import urlparse # Part 1 - Building a blockchain_davidcoin class Blockchain: def __init__(self): self.chain = [] self.transactions = [] self.create_block(proof=1, previous_hash="0") self.nodes = set() def create_block(self, proof, previous_hash): block = { "index": len(self.chain) + 1, "timestamp": str(datetime.now()), "proof": proof, "previous_hash": previous_hash, "transactions": self.transactions } self.transactions = [] self.chain.append(block) return block def get_previous_block(self): return self.chain[-1] @staticmethod def proof_of_work(previous_proof): new_proof = 1 check_proof = False while check_proof is False: hash_operation = sha256(str(new_proof ** 2 - previous_proof ** 2).encode()).hexdigest() if hash_operation[:4] == "0000": check_proof = True else: new_proof += 1 return new_proof @staticmethod def hash(block): encoded_block = dumps(block, sort_keys=True).encode() return sha256(encoded_block).hexdigest() def is_chain_valid(self, chain): previous_block = chain[0] block_index = 1 while block_index < len(chain): block = chain[block_index] if block["previous_hash"] != self.hash(previous_block): return False previous_proof = previous_block["proof"] proof = block["proof"] hash_operation = sha256(str(proof ** 2 - previous_proof ** 2).encode()).hexdigest() if hash_operation[:4] != "0000": return False previous_block = block block_index += 1 return True def add_transactions(self, sender, receiver, amount): self.transactions.append( { "sender": sender, "receiver": receiver, "amount": amount } ) previous_block = self.get_previous_block() return previous_block["index"] + 1 def add_node(self, address): parsed_url = urlparse(address) self.nodes.add(parsed_url.netloc) def replace_chain(self): network = self.nodes longest_chain = None max_length = len(self.chain) for node in network: response = get(f"http://{node}/get_chain") if response.status_code == 200: length = response.json()["length"] chain = response.json()["chain"] if length > max_length and self.is_chain_valid(chain): max_length = length longest_chain = chain if longest_chain: self.chain = longest_chain return True return False # Part 2 - Mining our blockchain_davidcoin # Creating a Web App app = Flask(__name__) # Creating an address for the node on Port 5000 node_address = str(uuid4()).replace("-", "") # Creating a blockchain_davidcoin blockchain = Blockchain() # Mining a new block @app.route("/mine_block", methods=["GET"]) def mine_block(): previous_block = blockchain.get_previous_block() previous_proof = previous_block["proof"] proof = blockchain.proof_of_work(previous_proof) previous_hash = blockchain.hash(previous_block) blockchain.add_transactions(node_address, "You", 1) block = blockchain.create_block(proof, previous_hash) response = { "message": "Congratulation, you just mined a block", "index": block["index"], "timestamp": block["timestamp"], "proof": block["proof"], "previous_hash": block["previous_hash"], "transactions": block["transactions"] } return jsonify(response), 200 # Getting the full blockchain_davidcoin @app.route("/get_chain", methods=["GET"]) def get_chain(): response = { "chain": blockchain.chain, "length": len(blockchain.chain) } return jsonify(response), 200 # Checking if the blockchain_davidcoin is valid @app.route("/is_valid", methods=["GET"]) def is_valid(): is_valid_ = blockchain.is_chain_valid(blockchain.chain) if is_valid_: response = {"message": "All good. The blockchain_davidcoin is valid."} else: response = {"message": "BRO, we've a problem. The blockchain_davidcoin isn't valid."} return response, 200 # Adding a new transaction to the blockchain @app.route("/add_transaction", methods=["POST"]) def add_transaction(): json = request.get_json() transaction_keys = ["sender", "receiver", "amount"] if not all(key in json for key in transaction_keys): return "Some elements of the transaction are missing", 400 index = blockchain.add_transactions(json["sender"], json["receiver"], json["amount"]) response = {"message": f"This transaction will be added to Block {index}"} return jsonify(response), 201 # Part 3 - Decentralizing our blockchain_davidcoin # Connecting new nodes @app.route("/connect_node", methods=["POST"]) def connect_node(): json = request.get_json() nodes = json.get("nodes") if nodes is None: return "No node", 400 for node in nodes: blockchain.add_node(node) response = { "message": "All the nodes are now connected. The Davidcoin blockchain_davidcoin now contains teh following nodes: ", "total_nodes": list(blockchain.nodes), } return jsonify(response), 201 # Replacing the chain by the longest chain if needed @app.route("/replace_chain", methods=["GET"]) def replace_chain(): is_chain_replaced = blockchain.replace_chain() if is_chain_replaced: response = {"message": "The node had different chains so the chain was replaced by the longest one.", "new_chain": blockchain.chain} else: response = {"message": "All good. The chain is the largest one", "actual_chain": blockchain.chain} return response, 200 # Running the app app.run(host="0.0.0.0", port=5003)
7292e2f8a9ab85385480226ae620e9a019cf6abf
5fd449b430afe4c5c05e13b3076aaae3595b9fe4
/models/planet.py
e0955b80d9044e670a7c3f06e1bf5f01ff1e8ec9
[]
no_license
perodriguezl/weather_calculator
ff1f542b147c8e0310da28e9ab96df043d98947e
49786bb5da40ff83bc4e9f41e0c7cc9f85dc3b64
refs/heads/master
2020-03-26T07:18:37.889524
2018-08-22T02:24:31
2018-08-22T02:24:31
144,647,727
0
0
null
2018-08-22T02:27:39
2018-08-14T00:24:56
Python
UTF-8
Python
false
false
1,264
py
class planet(): ''' Planet model -- 6/6 methods expected to be testeables ''' name = None speed = None ratio = None def __init__(self, name, speed, ratio): ''' @param self: @param name: planet name string @param speed: speed numeric value @param ratio: ratio numeric value @return: ''' self.name = name self.speed = speed self.ratio = ratio def set_name(self, name): ''' @param self: @param: name string value ''' self.name = name def set_speed(self, speed): ''' @param self: @param: speed numeric value ''' self.speed = speed def set_ratio(self, ratio): ''' @param self: @param: ratio numeric value ''' self.ratio = ratio def get_name(self): ''' @param self: @return: name string value ''' return self.name def get_speed(self): ''' @param self: @return: speed numeric value ''' return self.speed def get_ratio(self): ''' @param self: @return: ratio numeric value ''' return self.ratio
3f743c23fbdbd2148dd3da3c2781d36792943cb5
259a933d406fafb661272e82a1db260291ffbe5a
/ex_06.py
0785a56c4bc089bbbb7a91c9bb34e1483e55538d
[]
no_license
jnassula/exercicios_python
276d0825ad02fd287f249b1417e4539fb148c397
b121ac3051a3c843fac9fabcf3c19271e663fadd
refs/heads/master
2022-11-06T21:31:59.274761
2020-06-21T18:08:20
2020-06-21T18:08:20
273,950,706
0
0
null
null
null
null
UTF-8
Python
false
false
208
py
valor_h = float(input("Informe o valor da hora: ")) h = int(input("Informe a quantidade de horas trabalhadas no mês: ")) salario = h * valor_h print("O sálario desse mês é €{0:.2f}.".format(salario))
acacf18f9a5bb341086503508081cc9a538e6d95
943322afb21045fabb6c33bb2f38d3f676ad4403
/weppy_haml/ext.py
0d485eb44c4d9c70095c983da9edf415f82f9eac
[ "BSD-3-Clause" ]
permissive
gi0baro/weppy-haml
673af96899cc2ab7beba5b5085db37d8664ba10f
1bbcd44290fcf41f9d9c1fc73622b74320c0d8e1
refs/heads/master
2021-01-20T10:15:38.356433
2017-07-17T12:51:09
2017-07-17T12:51:09
25,488,086
2
0
null
null
null
null
UTF-8
Python
false
false
2,951
py
# -*- coding: utf-8 -*- """ weppy_haml.ext -------------- Provides the Haml extension for weppy :copyright: (c) 2017 by Giovanni Barillari :license: BSD, see LICENSE for more details. """ import os import codecs from weppy.extensions import Extension, TemplateExtension from weppy.utils import cachedprop from .hamlpy import Compiler def _read_source(filepath): with codecs.open(filepath, 'r', encoding='utf-8') as f: rv = f.read() return rv def _store_compiled(filepath, code): with codecs.open(filepath + ".html", 'w', encoding='utf-8') as dest: dest.write(code) class Haml(Extension): default_config = dict( set_as_default=False, auto_reload=False, preload=True ) def on_load(self): self.env.ext = self self.env.mtimes = {} self.env.builts = {} self.env.compiler = Compiler() self.app.add_template_extension(HamlTemplate) if self.config.set_as_default: self.app.template_default_extension = '.haml' if not self.config.preload: return for path, dirs, files in os.walk(self.app.template_path): for fname in files: if os.path.splitext(fname)[1] == ".haml": file_path = os.path.join(path, fname) rel_path = file_path.split(self.app.template_path + "/")[1] self._build_html( os.path.join(path, fname), rel_path) @property def changes(self): return self.config.auto_reload or self.app.debug def _build_html(self, file_path, fname): source = _read_source(file_path) code = self.env.compiler.process_lines(source.splitlines()) _store_compiled(file_path, code) self.env.mtimes[file_path] = os.stat(file_path).st_mtime self.env.builts[file_path] = fname + '.html' return self.env.builts[file_path] class HamlTemplate(TemplateExtension): namespace = 'Haml' file_extension = '.haml' def is_cache_valid(self, file_path): try: mtime = os.stat(file_path).st_mtime except Exception: return False old_time = self.env.mtimes.get(file_path, 0) if mtime > old_time: return False return True def reloader_get(self, file_path): if self.is_cache_valid(file_path): return self.cached_get(file_path) return None def cached_get(self, file_path): return self.env.builts.get(file_path) @cachedprop def get_template(self): if self.env.ext.changes: return self.reloader_get return self.cached_get def preload(self, path, name): file_path = os.path.join(path, name) html_name = self.get_template(file_path) or self.env.ext._build_html( file_path, name) return path, html_name
7d087a15abe85b5f42109f936590af5881f4435b
ee699abb42daa4ccaadcd1f4183527fb1439ea52
/ex17.py
1ba1ea213d8bdf2db204d993328ecbffcd30a1a2
[]
no_license
PavelKabenyuk/Python-Example
316bafaa2f729dd844940a0cb9de4201bcb72779
a01a063f17b3c548a41801b40815350e10a90ace
refs/heads/master
2020-07-19T02:37:52.592534
2019-09-05T05:02:59
2019-09-05T05:02:59
206,360,270
0
0
null
null
null
null
UTF-8
Python
false
false
655
py
# ex17 from sys import argv from os.path import exists script, from_file, to_file = argv print(f"Копирование данных из файла {from_file} в файл {to_file}") in_file = open(from_file) indata = in_file.read() print(f"Исходный размер файла {len(indata)} байт") print(f"Целевой файл существует? {exists(to_file)}") print("Готов, нажимай клавишу Enter для продолжения или CTRL+C для отмены.") input() out_file = open(to_file, 'w') out_file.write(indata) print("Отлично, все сделано.") out_file.close() in_file.close()
bb71910acae04af227a92320850a5661f4c776dc
b0d616237d9eee802f70880c39141fbb620f3dfe
/ntutm/vocab/doc2vocab_count/standford_vocab.py
0870dc2c4c4e35e13d6470ca4fc1eca8c15b6f8a
[ "MIT" ]
permissive
m516825/IR_Lab_Package
6b25e5c92de1eeb8a9f764b66d22a42b727fb2ac
eabb30cd2898b4cdf39b514038fa42d509d67e77
refs/heads/master
2021-01-01T05:13:06.856099
2016-05-22T09:55:23
2016-05-22T09:55:23
58,849,847
0
0
null
null
null
null
UTF-8
Python
false
false
2,512
py
#!/usr/bin/env python #-*- coding: utf-8 -*- import xml.etree.ElementTree as ET import vocab import os import sys, getopt from nltk.tokenize.stanford_segmenter import StanfordSegmenter def count_em(valid_path): x = 0 for root, dirs, files in os.walk(valid_path): for f in files: x = x+1 return x if __name__ == "__main__": ######################### inputdir = '' outputfile = '' data_type = '' try: opts, args = getopt.getopt(sys.argv[1:],"ht:d:o",["idir=","ofile="]) except getopt.GetoptError: print 'test.py -t <datatype> -d <inputdir> -o <outputfile>' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'test.py -t <datatype> -d <inputdir> -o <outputfile>' sys.exit() elif opt in ("-d", "--idir"): inputdir = arg elif opt in ("-t"): data_type = arg elif opt in ("-o", "--ofile"): outputfile = arg if inputdir == '': print 'test.py -t <datatype> -d <inputdir> -o <outputfile>' sys.exit(2) if outputfile == '': outputfile = 'vocab.out' ######################### segmenter = StanfordSegmenter(path_to_jar="../stanford-segmenter-2015-12-09/stanford-segmenter-3.6.0.jar", path_to_slf4j = "../stanford-segmenter-2015-12-09/slf4j-api.jar", path_to_sihan_corpora_dict="../stanford-segmenter-2015-12-09/data", path_to_model="../stanford-segmenter-2015-12-09/data/pku.gz", path_to_dict="../stanford-segmenter-2015-12-09/data/dict-chris6.ser.gz") vocabDict = dict() build_time = 0. total = count_em(inputdir) for dirPath, dirNames, fileNames in os.walk(inputdir): if len(fileNames) > 0 : sumContain = '' for f in fileNames: try: if data_type == 'CIRB010': root = ET.parse(dirPath+'/'+f).getroot() date = root[0][1].text.strip() title = root[0][2].text.strip() text = '' for p in root[0][3]: text += p.text.strip() contain = date + title + text sumContain += contain else: fin = open(dirPath+'/'+f, 'r') for line in fin.readlines(): sumContain += line.strip() except: a = '' build_time += 1. parsed_data = segmenter.segment(sumContain).split() for w in parsed_data: try: vocabDict[word] += 1 except: vocabDict[word] = 1 print >> sys.stderr, '\rdone building '+str(float("{0:.2f}".format(build_time/total*100.)))+'% vocabulary set ', print >> sys.stderr, '\nstart dumping vocabulary set' vocab.dumpVocabWithCount('vocab_count_wordS.out', vocabDict, key=0) print >> sys.stderr, 'done dumping vocabulary set'
22fb865c991fc1bdacb9423fa47687f5a9aef42f
c66aff7b083adee01d265d1bf487ccee3af42488
/group/group_ug1.py
524e51c0ca86ba2377402813699123d39b8109d3
[]
no_license
qinlu520/stats_expample
f9e7a4deff4fbabfdbacf479848e3850960a3805
0bf744006f000d91566e84eeea520c4087982b6b
refs/heads/main
2023-04-19T16:57:48.934366
2021-05-13T14:34:24
2021-05-13T14:34:24
360,178,956
0
1
null
null
null
null
UTF-8
Python
false
false
243
py
import pandas as pd import numpy as np index = pd.date_range("1999/1/1", periods=1100) ts = pd.Series(data=np.random.normal(0.5, 2, 1100), index=index) # print(ts) ts = ts.rolling(window=100, min_periods=100).mean().dropna() print(ts.head())
26d7045e30f6c04d9c96abe28e2a6fac267874d3
bcd7ff0ebf80e61b5602d66afd8c43078b28b034
/Capstone/Merge_LargeData.py
a197d6545e2d12959687d0322267489a96690597
[]
no_license
prashantkolkur/UCSD
a22e57c6bb0ab90b4278486b722d90df15777ea6
fc00f68927b850f4c3d7f6678689eb66eb0d11ad
refs/heads/master
2020-06-21T02:15:12.872352
2019-07-17T07:19:14
2019-07-17T07:19:14
134,093,961
1
0
null
null
null
null
UTF-8
Python
false
false
5,908
py
# Merge LargeData # # After segmentation of smaller image packages this # script will stitch the initial dataset back together # Assumes Packages are in the subdirectories of 1fm / 3fm / 5fm # an expects a de_augmentation_info.mat in the parent directory thereof. # # Runs after StartPostProcessing which merges the 16variations # and already removed z-padding. # # # Use: Merge_LargeData ~/prediction/1fm # expects de_augmentation_info.mat in the parent directory # #------------------------------------------------------------------ ## NCMIR/NBCR, UCSD -- Author: M Haberl -- Date: 10/2017 #------------------------------------------------------------------ import os import sys import time import json import numpy as np import skimage from read_files_in_folder import read_files_in_folder from PIL import Image Image.MAX_IMAGE_PIXELS = 10000000000000 print('Starting to merge large image dataset') if len(sys.argv) == 1: print('Use -> Merge_LargeData ~/prediction/1fm') exit() else: fm_dir = sys.argv[1] tic = time.time() path_separator = os.path.join(fm_dir, '')[-1] if fm_dir[-1]==path_separator: #fixing special case which can cause error fm_dir=fm_dir[:-1] parent_dir = path_separator.join(fm_dir.split(path_separator)[:-1]) de_aug_file = os.path.join(parent_dir, 'de_augmentation_info.json') print('Processing:', de_aug_file) with open(de_aug_file, 'r') as json_file: json_file_contents = json.load(json_file) packages = json_file_contents['packages'] num_of_pkg = json_file_contents['num_of_pkg'] imagesize = json_file_contents['imagesize'] #zplanes = json_file_contents['zplanes'] z_blocks = json_file_contents['z_blocks'] ## Merge Z-sections # first combine images from the same x/y areas through all z-planes print('Combining image stacks') for x_y_num in range(1, len(packages)+1): imcounter = 0 #Reset imagecounter to combine next Package combined_folder = os.path.join(fm_dir, "Pkg_%03d"%(x_y_num)) os.mkdir(combined_folder) for z_plane in range(1, len(z_blocks)): in_folder = os.path.join(fm_dir, 'Pkg%03d_Z%02d'%(x_y_num, z_plane)) print('Reading:', in_folder) imlist = read_files_in_folder(in_folder)[0] imlist = [file_name for file_name in imlist if file_name.endswith('.png')] for filenum in range(0, len(imlist)): imcounter = imcounter + 1 in_filename = os.path.join(in_folder, imlist[filenum]) out_filename = os.path.join(combined_folder, 'segmentation_%04d.png' %(imcounter)) os.rename(in_filename, out_filename) z_found = len([file_name for file_name in read_files_in_folder(os.path.join(fm_dir, 'Pkg_001'))[0] if file_name.endswith('.png')]) print('Expected number of planes: %s ... Found: %s planes\n' %(str(z_blocks[-1]), str(z_found))) ## Now stitch individual sections combined_folder = os.path.join(fm_dir, 'Pkg_%03d'%(1)) #read in the filenames of the first Pkg filelist = read_files_in_folder(combined_folder)[0] for z_plane in range(0, z_found): #one z-plane at a time print('Merging image no. %s\n'%(str(z_plane))) merger_image = np.array(np.zeros(imagesize[0:2])) #Initialize empty image in x/y 2 in z for x_y_num in range(0, len(packages)): packagedir = os.path.join(fm_dir, 'Pkg_%03d'%(x_y_num+1)) filename = os.path.join(packagedir, filelist[z_plane]) small_patch = skimage.io.imread(filename) #bitdepth = single(2.^([1:16])); #[~,idx] = min(abs(bitdepth - max(small_patch(:)))); #fprintf('Scaling %s bit image\n', num2str(idx)); #save_plane = uint8((255 /bitdepth(idx))*combined_plane); #small_patch = single((255 /bitdepth(idx))*small_patch); #small_patch = single((255 /max(small_patch(:)))*small_patch); area = packages[x_y_num] if len(packages)>1: corners = [area[0]+12, area[1]-12, area[2]+12, area[3]-12] if area[0]==0: corners[0] = 0 if area[1]==np.shape(merger_image)[0]: corners[1] = np.shape(merger_image)[0] if area[2]==0: corners[2] = 0 if area[3]==np.shape(merger_image)[1]: corners[3] = np.shape(merger_image)[1] if corners[1]>np.shape(merger_image)[0]: corners[1] = np.shape(merger_image)[0] if corners[3]>np.shape(merger_image)[1]: corners[3] = np.shape(merger_image)[1] insertsize = [corners[1]-corners[0], corners[3]-corners[2]] merger_image[corners[0]:corners[1], corners[2]:corners[3]] = small_patch[12:insertsize[0]+12, 12:insertsize[1]+12] else: #if there is only one package start = [0, 0] if imagesize[0]<=1012: #define where the image has been padded start[0] = 12 else: start[0] = 0 if imagesize[1]<=1012: #define where the image has been padded start[1] = 12; else: start[1] = 0; #clear merger_image; merger_image = small_patch[start[0]:(imagesize[0]+start[0]), start[1]:(imagesize[1]+start[1])] bitdepth = [2**i for i in range(1, 17)] #print('Scaling %s bit image\n' %(num2str(idx))) idx = abs(np.array(bitdepth) - max(merger_image.flatten())).argmin() save_plane = np.uint8(np.round((255.0 / bitdepth[idx])*merger_image)) outfile = os.path.join(fm_dir, 'Segmented_%04d.png' %(z_plane+1)) #print('Saving image %s\n' %(outfile)) try: skimage.io.imsave(outfile, save_plane, as_grey=True) except: skimage.io.imsave(outfile, save_plane) print('Merging large image dataset completed') print("Total time = ", time.time()-tic) print('Your results are in: %s\n' %(fm_dir)) with open(os.path.join(fm_dir, "DONE"), "w") as done_file: done_file.write("0\n")
117bd3a2e1b64dd036264d6602970ec73d177027
f2befaae3840bafd181cc712108e3b64caf2696f
/app/portal/horizon/openstack_dashboard/contrib/developer/profiler/urls.py
78549a3554efe7781a1b9a5f6429ee2ab6cfa203
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
F5Networks/f5-adcaas-openstack
17d5c408d421dcfe542002e1f850b2d9f29f1663
02bd8a606215c0fa08b926bac1b092b5e8b278df
refs/heads/master
2023-08-28T12:09:54.972191
2022-08-12T02:03:43
2022-08-12T02:03:43
164,592,273
4
23
Apache-2.0
2022-08-12T02:03:44
2019-01-08T07:40:35
Python
UTF-8
Python
false
false
806
py
# Copyright 2016 Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.conf.urls import url from openstack_dashboard.contrib.developer.profiler import views urlpatterns = [ url(r'^$', views.IndexView.as_view(), name='index'), ]
3b7da18a374ec699d64dd6dcd89b452ffaab245d
0b38252762c708ca2e696d671cb8dc36be39a307
/P75AssignmentProblem/AssignmentProblem_pulp.py
335b4485496782507c3f8a1e40faa8c801fd4392
[]
no_license
84monta/OR
edc8266fe1f8b0d99afd170c0c00eb6a870b2e2c
23378e06cb4befda81b67336ecc20723d84bddc6
refs/heads/master
2023-02-22T02:59:27.314837
2021-01-28T09:47:36
2021-01-28T09:47:36
290,365,152
2
0
null
null
null
null
UTF-8
Python
false
false
1,587
py
import pulp import numpy as np import random from itertools import product import pandas as pd #ランダム設定 同じ条件で評価できるように random.seed(1) np.random.seed(1) #仕事の数m、エージェント数n m=10 n=5 #仕事の最大サイズ(調整用) JOB_SIZE=10 #仕事jの資源要求量 a = np.random.randint(2,JOB_SIZE,size=(n,m)) #エージェントの利用可能資源量 b = np.random.randint(3,JOB_SIZE*2,size=n) #コスト c = np.random.randint(1,10,size=(n,m)) ################################################################################ ##### Pulpで解く p = pulp.LpProblem("AssignmentProblem") x = pulp.LpVariable.dict("x",indexs=(range(n),range(m)),lowBound=0,upBound=1,cat=pulp.LpBinary) #目的関数定義 p += pulp.lpSum([x[(i,j)]*c[i,j] for i,j in product(range(n),range(m))]) #エージェントの利用可能資源量を超えない for i in range(n): p += pulp.lpSum([x[(i,j)]*a[i,j] for j in range(m)]) <= b[i] #全ての仕事をエージェントに割り振る for j in range(m): p += pulp.lpSum([x[(i,j)] for i in range(n)]) == 1 p.solve() #解が最適解であれば結果を表示 if p.status == 1: print("Optimization Result by Pulp") cols = [] assigned_agents=[] for j in range(m): cols.append(f"JOB{j}") assigned_agents.append(int(sum(i*x[(i,j)].value() for i in range(n)))) df = pd.DataFrame([assigned_agents],columns=cols,index=["result"]) print(df) print(f"Value = {pulp.value(p.objective)}") elif p.status == -1: print("実行不能解") exit(0)
f491af9b118e0a51af1aa743cb5dd99057a5baec
fdbb74a95924e2677466614f6ab6e2bb13b2a95a
/third_party/python/Tools/scripts/find-uname.py
b6ec1b6d79060cfa6705dab7dfe4c258da21d304
[ "Python-2.0", "GPL-1.0-or-later", "LicenseRef-scancode-python-cwi", "LicenseRef-scancode-free-unknown", "LicenseRef-scancode-other-copyleft", "ISC" ]
permissive
jart/cosmopolitan
fb11b5658939023977060a7c6c71a74093d9cb44
0d748ad58e1063dd1f8560f18a0c75293b9415b7
refs/heads/master
2023-09-06T09:17:29.303607
2023-09-02T03:49:13
2023-09-02T03:50:18
272,457,606
11,887
435
ISC
2023-09-14T17:47:58
2020-06-15T14:16:13
C
UTF-8
Python
false
false
1,207
py
#!/usr/bin/env python3 """ For each argument on the command line, look for it in the set of all Unicode names. Arguments are treated as case-insensitive regular expressions, e.g.: % find-uname 'small letter a$' 'horizontal line' *** small letter a$ matches *** LATIN SMALL LETTER A (97) COMBINING LATIN SMALL LETTER A (867) CYRILLIC SMALL LETTER A (1072) PARENTHESIZED LATIN SMALL LETTER A (9372) CIRCLED LATIN SMALL LETTER A (9424) FULLWIDTH LATIN SMALL LETTER A (65345) *** horizontal line matches *** HORIZONTAL LINE EXTENSION (9135) """ import unicodedata import sys import re def main(args): unicode_names = [] for ix in range(sys.maxunicode+1): try: unicode_names.append((ix, unicodedata.name(chr(ix)))) except ValueError: # no name for the character pass for arg in args: pat = re.compile(arg, re.I) matches = [(y,x) for (x,y) in unicode_names if pat.search(y) is not None] if matches: print("***", arg, "matches", "***") for match in matches: print("%s (%d)" % match) if __name__ == "__main__": main(sys.argv[1:])
0c208e72fe41124ae5ee5ec5bb3df1ed79c49f3f
211d73361b7f67f75a1cb77083a775fc0b219325
/matrixportal/code.py
2188f9b9997fc1ae13eb0adb16566e6371bc46b3
[]
no_license
georgeloyer/pm25
b1f583be47e3fc11aacfe4835e414cf52f36dfc0
73c157e40fa9fa4a00d4bc451590aaad744f144f
refs/heads/master
2023-01-24T00:17:24.999194
2020-12-06T00:57:15
2020-12-06T00:57:15
300,921,199
0
0
null
null
null
null
UTF-8
Python
false
false
4,199
py
# Purple Air AQI Display # for Metro M4 Airlift with RGB Matrix Shield # or Matrix Portal # and 64 x 32 RGB LED Matrix import time import board import terminalio import busio from adafruit_pm25.i2c import PM25_I2C from adafruit_matrixportal.matrixportal import MatrixPortal def aqi_transform(val): aqi = pm_to_aqi(val) # derive Air Quality Index from Particulate Matter 2.5 value return "AQI:%d" % aqi def message_transform(val): # picks message based on thresholds index = aqi_to_list_index(pm_to_aqi(val)) messages = ( "Hazardous", "Very Unhealthy", "Unhealthy", "Unhealthy for Sensitive Groups", "Moderate", "Good", ) if index is not None: return messages[index] return "Unknown" SENSOR_ID = 69897 # Ashbury Terrace, SF SENSOR_REFRESH_PERIOD = 30 # seconds DATA_SOURCE = "https://www.purpleair.com/json?show=" + str(SENSOR_ID) SCROLL_DELAY = 0.02 DATA_LOCATION = ["results", 0, "PM2_5Value"] # navigate the JSON response # --- Display setup --- matrixportal = MatrixPortal( status_neopixel=board.NEOPIXEL, debug=True, url=DATA_SOURCE, json_path=(DATA_LOCATION, DATA_LOCATION), ) # Create a static label to show AQI matrixportal.add_text( text_font=terminalio.FONT, text_position=(0, 7), text_transform=aqi_transform, ) # Create a scrolling label to show level message matrixportal.add_text( text_font=terminalio.FONT, text_position=(0, 23), scrolling=True, text_transform=message_transform, ) # pylint: disable=too-many-return-statements def aqi_to_list_index(aqi): aqi_groups = (301, 201, 151, 101, 51, 0) for index, group in enumerate(aqi_groups): if aqi >= group: return index return None def calculate_aqi(Cp, Ih, Il, BPh, BPl): # wikipedia.org/wiki/Air_quality_index#Computing_the_AQI return round(((Ih - Il)/(BPh - BPl)) * (Cp - BPl) + Il) def pm_to_aqi(pm): pm = float(pm) if pm < 0: return pm if pm > 1000: return 1000 if pm > 350.5: return calculate_aqi(pm, 500, 401, 500, 350.5) elif pm > 250.5: return calculate_aqi(pm, 400, 301, 350.4, 250.5) elif pm > 150.5: return calculate_aqi(pm, 300, 201, 250.4, 150.5) elif pm > 55.5: return calculate_aqi(pm, 200, 151, 150.4, 55.5) elif pm > 35.5: return calculate_aqi(pm, 150, 101, 55.4, 35.5) elif pm > 12.1: return calculate_aqi(pm, 100, 51, 35.4, 12.1) elif pm >= 0: return calculate_aqi(pm, 50, 0, 12, 0) else: return None def get_color(aqi): index = aqi_to_list_index(aqi) colors = ( (115, 20, 37), (140, 26, 75), (234, 51, 36), (239, 133, 51), (255, 255, 85), (104, 225, 67), ) if index is not None: return colors[index] return (150, 150, 150) sensor_refresh = None reset_pin = None # If you have a GPIO, its not a bad idea to connect it to the RESET pin # reset_pin = DigitalInOut(board.G0) # reset_pin.direction = Direction.OUTPUT # reset_pin.value = False # Create library object, use 'slow' 100KHz frequency! i2c = busio.I2C(board.SCL, board.SDA, frequency=100000) # Connect to a PM2.5 sensor over I2C pm25 = PM25_I2C(i2c, reset_pin) print("Found PM2.5 sensor, reading data...") while True: if (not sensor_refresh) or (time.monotonic() - sensor_refresh) > SENSOR_REFRESH_PERIOD: try: value = matrixportal.fetch() print("PurpleAir response is", value[0]) matrixportal.set_text_color(get_color(pm_to_aqi(value[0]))) sensor_refresh = time.monotonic() except RuntimeError as e: print("Unable to read from PurpleAir, retrying...", e) continue try: aqdata = pm25.read() print("Local PlanTower PM2.5 reading is", aqdata["particles 25um"]) matrixportal.set_text(aqi_transform(value[0]) + " " + str(pm_to_aqi(aqdata["particles 25um"])), 0) except RuntimeError as e: print("Unable to read from local sensor, retrying...", e) continue # Scroll it matrixportal.scroll_text(SCROLL_DELAY)
75d39712832c4b0a6402ab7afe9f40d275e8ff25
6006480f9a0442143022dccb4241e61dbee71c49
/chapter3/section3.1/contact.py
db53b089506140a53c878d65b818bab201cfae22
[]
no_license
riffschelder/train.usaco.org
2f5c1e177bcb00853b599065dc1bef4c56fe19c4
28cab6d80d96f00683b0bb23f47ce7d3c47ead0c
refs/heads/master
2022-12-20T18:06:31.096633
2020-09-27T20:56:55
2020-09-27T20:56:55
275,011,781
0
0
null
null
null
null
UTF-8
Python
false
false
2,037
py
""" ID: riff.sc1 LANG: PYTHON3 TASK: contact """ from collections import defaultdict def main(): fin = open('contact.in') (low, high, amount_to_print) = [int(x) for x in fin.readline().split()] last_pattern = ['' for _ in range(13)] # 0..12 inclusive frequency_of = defaultdict(int) # frequency_of[pattern] while True: line = fin.readline().strip() if not line: break for char in line: if char not in '01': # Skip '\n', etc. continue for i in range(1, 13): # 1..12 inclusive if low <= i <= high: # could have used range(low, high+1), in hindsight last_pattern[i] = new_pattern(last_pattern[i], i, char) record_pattern(last_pattern[i], i, frequency_of) patterns_at = defaultdict(list) # patterns_at[frequency] just_frequencies = set() for pattern, frequency in frequency_of.items(): patterns_at[frequency].append(pattern) just_frequencies.add(frequency) just_frequencies = list(just_frequencies) just_frequencies.sort(reverse=True) print_answer(patterns_at, just_frequencies, amount_to_print) def new_pattern(pattern, length, new_char): pattern = pattern + new_char if len(pattern) > length: # should only be over by 1 pattern = pattern[1:] return pattern def record_pattern(pattern, length, frequency_of): if len(pattern) == length: frequency_of[pattern] += 1 def print_answer(patterns_at, sorted_frequencies, amount_to_print): with open('contact.out', 'w') as fout: for i in range(min(amount_to_print, len(sorted_frequencies))): frequency = sorted_frequencies[i] fout.write(f'{frequency}\n') patterns = patterns_at[frequency] patterns.sort(key=length_first) count = 0 for pattern in patterns[:-1]: fout.write(f'{pattern}') count += 1 if count < 6: fout.write(' ') else: count = 0 fout.write('\n') fout.write(f'{patterns[-1]}\n') def length_first(pattern): return (len(pattern), pattern) main()
b9045576fb2eb6b8ea0bfaff18a617b57d215c9c
c24fa89450cccb48fcd481c3cfa475ee0e412e09
/UnitTests/rbfUnitTest.py
82e7e1a5252bc38d63310a3ab622216d36bb4dbb
[]
no_license
PhoenixYanrongLi/CareEcoSystem_ServerCodeNew
e95d1c552cdcc70aac09482dfda63e253e01fcb0
b627484694863c425483a04391eedc2ec2ec1098
refs/heads/master
2021-01-01T04:34:51.858543
2016-04-14T17:57:30
2016-04-14T17:57:30
56,258,674
0
0
null
null
null
null
UTF-8
Python
false
false
2,869
py
""" rbfUnitTest.py is a collection of unit tests that validate Matlab algorithms ported over to Python have the same behavior rbfTester is a class that contains all of the unit tests. setUp imports test data and assigns them to variables. TtoN is a test that verifies it can find 1s in a matrix. """ __author__ = "Bradley Zylstra" __version__ = "1.0" __maintainer__ = "Bradley Zylstra" __email__ = "[email protected]" __status__ = "Development" import unittest import scipy.io import numpy as np import numpy from InHomeMonitoringCode.rbfMain import TtoN,rbfnn_raw,rMeans, pnnHuer,radial,decide,initialize class rbfTester(unittest.TestCase): def setUp(self): self.rkmeansInTestData = scipy.io.loadmat( 'C:\Users\Brad\Desktop\Programming\InHomeMonitoring\PythonServerCode\UnitTests\\testData\\rkmeansInTestData.mat') self.rkmeansOutTestData = scipy.io.loadmat( 'C:\Users\Brad\Desktop\Programming\InHomeMonitoring\PythonServerCode\UnitTests\\testData\\rkmeansOutTestData.mat') self.exampleKmeansData = scipy.io.loadmat( 'C:\Users\Brad\Desktop\Programming\InHomeMonitoring\PythonServerCode\UnitTests\\testData\\seeds.mat') #self.examplePnnData=scipy.io.loadmat('C:\Users\Brad\Desktop\Programming\InHomeMonitoring\PythonServerCode\UnitTests\\testData\\') self.testData=scipy.io.loadmat('C:\Users\Brad\Desktop\RSSI Localization with path resolution - Jul 9 2014\MATLAB\exportedData.mat') #self.X = self.rkmeansInTestData['X'] self.R=self.testData['R'] self.X=self.testData['X'] self.ET=self.testData['Et'] self.Y=self.testData['Y'] self.L=self.testData['L'] #self.X,self.R=initialize(self.X,self.R,self.ET,self.Y,self.L) #print(self.X) self.k = self.rkmeansInTestData['k'] #self.Y=self.exampleKmeansData['Y'] self.Stest = self.rkmeansOutTestData['S'] self.Ctest = self.rkmeansOutTestData['C'] self.seeds = self.exampleKmeansData['Seeds'] #self.C, self.S = rMeans(self.seeds, self.X) #self.B = pnnHuer(self.Ctest, self.k[0][0]-1) #self.G=radial(self.X,self.k[0][0],self.Ctest,self.B) #self.V=numpy.dot(numpy.linalg.pinv(self.G),self.Y) #self.That=numpy.dot(radial(self.R,33.0,self.C,self.B),self.V) #self.Yhat=decide(self.That) #self.Yhat=rbfnn_raw(self.R,self.X,self.Y,self.k,self.seeds) #print self.Yhat initialize('C:\Users\Brad\Desktop\Programming\InHomeMonitoring\PythonServerCode\UnitTests\\testData\\exportedData.mat') #def tests(self): # self.assertEqual(1, 1) def testTtoN(self): AF=numpy.zeros((3,3)) AF[0,1]=1 AF[1,2]=1 AF[2,0]=1 print AF print TtoN(AF) if __name__ == '__main__': runner = unittest.main() #unittest.main()
eeb4a44ac5937539eae4d6286c811973d57f7cf4
eb8d1b878ea214a135df5cc89b8a8efe14b9010a
/Baskets/__init__.py
8c574be477d48a4259da9f6b93cae9ecf0d10c5a
[]
no_license
Firexd2/OnlineMarket
099d7ebb303c224ea081159fe4afc9e11bdc65c6
5af3ef8665e4ad61d02891d5ec6fcbe81809c789
refs/heads/master
2021-09-16T06:03:59.258112
2018-06-17T19:02:22
2018-06-17T19:02:22
115,608,183
1
0
null
null
null
null
UTF-8
Python
false
false
49
py
default_app_config = "Baskets.apps.BasketsConfig"
1bb9a75f02fb42a43cefc37c6be027f711841964
42fbb1295dfe0eea84507a71bbf8a57107626511
/test/test_error_response.py
bfb2043ae20e7d6040b1a2edb13bde81e3c240f2
[]
no_license
joeynebula/ynab_pie
bd6642bcd747869630e837fb02df808e16e0b9cc
c6d3c73309b64d8df4bd70fa9892a2edf22599a9
refs/heads/master
2020-03-28T04:48:22.756956
2018-09-07T14:38:34
2018-09-07T14:38:34
147,737,690
0
0
null
null
null
null
UTF-8
Python
false
false
1,083
py
# coding: utf-8 """ YNAB API Endpoints Our API uses a REST based design, leverages the JSON data format, and relies upon HTTPS for transport. We respond with meaningful HTTP response codes and if an error occurs, we include error details in the response body. API Documentation is at https://api.youneedabudget.com # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import ynab_pie from ynab_pie.models.error_response import ErrorResponse # noqa: E501 from ynab_pie.rest import ApiException class TestErrorResponse(unittest.TestCase): """ErrorResponse unit test stubs""" def setUp(self): pass def tearDown(self): pass def testErrorResponse(self): """Test ErrorResponse""" # FIXME: construct object with mandatory attributes with example values # model = ynab_pie.models.error_response.ErrorResponse() # noqa: E501 pass if __name__ == '__main__': unittest.main()
3ed51e8fad3f739ea3d00caaa0b669d8d1d22a02
2e9e51d88e6969dd1ca298accda219f4331591b6
/14_LongestCommonPrefix.py
1e1d3cbe125d3b771c20a2d6598fd43d09d12ea8
[]
no_license
juzen2003/LeetCode-python-practice
88474325868df8829c808ca6897d576959b01c37
7d5610667f907d9960f3ea05302fc86451cb0a51
refs/heads/master
2021-01-12T01:22:58.105303
2017-01-16T08:08:10
2017-01-16T08:08:10
78,379,078
0
0
null
null
null
null
UTF-8
Python
false
false
907
py
# LeetCode #14 Longest Common Prefix # Dave Chang # 2017/01/02 class Solution(object): def longestCommonPrefix(self, strs): """ :type strs: List[str] :rtype: str """ #empty list if strs == []: return "" temp = "" s = strs[0] minLength = len(s) isCommon = True # get the minimum length of string to reduce the search for item in strs: minLength = min(minLength, len(item)) if minLength == 0: return "" for i in xrange(0, minLength): for item in strs: if s[i] == item[i]: continue else: isCommon = False if isCommon: temp += s[i] return temp
48768834b1fef2caf84e039e98d955323a38b991
5f300418ce1605eb41276b0a9a79fe5f46fa8198
/users/schema.py
8d340c5905761a66ecfbc65fac423793a88a2f5a
[]
no_license
Academia-MagicKode/FastAPI
daaeea85152717a484a32309acf77be92435b53d
139942870a5ee76a1e29bcbfb5d1262af0b2a832
refs/heads/master
2023-05-09T02:03:45.804484
2021-05-29T14:37:47
2021-05-29T14:37:47
371,967,214
0
0
null
null
null
null
UTF-8
Python
false
false
437
py
from pydantic import BaseModel from typing import Optional class UserSchema(BaseModel): username: str email: str password: str full_name: Optional[str] = None class UserShowSchema(BaseModel): id:int username:str email:str class Config(): orm_mode= True class TokenSchema(BaseModel): access_token:str token_type:str class TokenData(BaseModel): username: Optional[str] = None
86cd6ba4970b1c67cc4bfb02b0ea766a92fceb11
6b6308031cb70672edbf69e753b175a66bc80940
/hel.py
e3c10d3a699db959e3ee55157ab194618f5da51a
[]
no_license
mposypkin/papmanager
bd30a37d9ffde03ded3d88e43442459af8c9cb52
e5b76d2af52c0a475332b68570489cea0395267a
refs/heads/master
2021-05-06T05:28:40.116982
2018-02-17T21:02:07
2018-02-17T21:02:07
115,090,743
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
from tkinter import filedialog from tkinter import * import json import bibprint root = Tk() name = filedialog.askopenfilename(initialdir="/", title="Select file", filetypes= (("json files","*.json"),("all files","*.*"))) print(name) s = "" with open(name) as f: s = f.read(); #print(s) parsed = json.loads(s) #print(parsed) contrs = parsed['contributions'] i = 57 for contr in contrs: i = i + 1 #prn = bibprint.printForDissSovetRinc(contr, i) # prn = bibprint.printForDissSovetBases(contr, i) # bibprint.printForMiet(contr, i) prn = bibprint.printForGost(contr, i) #bibprint.printJSON(contr) if prn: print(prn) #for aut in auth: # fst = aut['1st'] # snd = aut['2nd'] # print(fst[0] + ". " + snd) #weird_json = '{"x": 1, "y": 2, "z": 3}' #json.loads(weird_json)
4e19590238f7ad5a0154a3fcd149292e9009c141
301e7bb7f758dcb97fff090aae92226c75f5ddb1
/MNIST/mnist.py
86cb4cfa6afee06f5ece3557fee3e85d5a22d021
[]
no_license
Ionnia/ML-Python
860f1c3dc055c292b5330c6cb5ae46dbfa5509f6
d1fff39d2945b77dfb8d71ce3f9a997fe1331b37
refs/heads/master
2020-03-24T12:30:48.925698
2018-08-06T01:01:24
2018-08-06T01:01:24
142,716,340
0
0
null
null
null
null
UTF-8
Python
false
false
1,746
py
import idx_decompressor as idxd import download_mnist as dm from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from keras.utils import to_categorical import numpy as np # Downloading and extracting mnist dataset dm.get_mnist() train_images = idxd.idx_decompress('train-images-idx3-ubyte') train_labels = idxd.idx_decompress('train-labels-idx1-ubyte') test_images = idxd.idx_decompress('t10k-images-idx3-ubyte') test_labels = idxd.idx_decompress('t10k-labels-idx1-ubyte') train_images = np.array(train_images, dtype=np.float32) train_labels = np.array(train_labels, dtype=np.float32) test_images = np.array(test_images, dtype=np.float32) test_labels = np.array(test_labels, dtype=np.float32) train_images = train_images.reshape((60000, 28, 28, 1)) test_images = test_images.reshape((10000, 28, 28, 1)) train_labels = to_categorical(train_labels, 10) test_labels = to_categorical(test_labels, 10) # Normalizing images train_images = train_images/255 test_images = test_images/255 NUM_OF_EPOCHS = 10 BATCH_SIZE = 128 # Creating model model = Sequential() model.add(Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(2, 2)) model.add(Conv2D(16, (3, 3), activation='relu')) model.add(MaxPooling2D(2, 2)) model.add(Flatten()) model.add(Dense(units=128, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(units=10, activation='softmax')) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x=train_images, y=train_labels, batch_size=BATCH_SIZE, epochs=NUM_OF_EPOCHS, validation_data=(test_images, test_labels)) model.save('mnist_model.h5')
4221d825e44541bbd9aefe57229a3c8124657c89
880d75590e82c74c05616aba471fc63b624dffb5
/Workshop 5/Excercise_page_149/excercise_01_page_149.py
a7c6147050452128be9a5b4a498876ae19f30069
[]
no_license
Scaletts/Python
7591a6ae29e7d8a77072ebe5b8af597d40612b78
d55a7ab0f8824178aae0e43b4e1b78785773fa1e
refs/heads/master
2023-08-18T12:34:39.900662
2021-10-17T16:19:41
2021-10-17T16:19:41
402,992,628
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
""" Author: DuongTruongTho Date: 09/08/2021 Program: Exersice_01_page_149.py Problem: What roles do the parameters and the return statement play in a function definition? Solution: The return statement terminates the execution of a function and returns control to the calling function. Execution resumes in the calling function at the point immediately following the call. Areturn statement can also return a value to the calling function. """
bdd93a2261bd97e02005e332392751213a22294c
42b799b2ff8283511472b76152a3ca70af445ebd
/Election-Analysis/python_practice.py
e6f102627bbdc95cc7c5460a08a3b849c5810aa4
[]
no_license
ducluu27/Election-Analysis
3173a1384cfd784db8bda5dec52bd48a65eeda3c
68e16c3dd02d29e9eecd22f78c9560c2ce83f48b
refs/heads/master
2022-12-04T21:36:54.057932
2020-08-16T19:26:36
2020-08-16T19:26:36
286,522,121
0
0
null
null
null
null
UTF-8
Python
false
false
68
py
counties= ["arapahoe",'denver',"jefferson"] counties_dict ={}
4fc8d5244e37373fb0ec5effd26f848f88a4864d
6b5fd328e3aa38acc6ef0b97a8e1e253a42ee385
/supervised_learning/0x11-attention/10-transformer_decoder.py
a0e62a79e62a999313bab85074fc02f120ef3bd7
[]
no_license
oscarmrt/holbertonschool-machine_learning
c43251b74b16c50b8ee1853f0644cf80af055d2b
b1d0995023630f2a2b7ed953983c405077c0d5a8
refs/heads/master
2023-04-02T23:51:44.545003
2021-03-31T17:19:35
2021-03-31T17:19:35
280,184,789
1
1
null
null
null
null
UTF-8
Python
false
false
1,391
py
#!/usr/bin/env python3 """Class Decoder""" import tensorflow as tf positional_encoding = __import__('4-positional_encoding').positional_encoding DecoderBlock = __import__('8-transformer_decoder_block').DecoderBlock class Decoder(tf.keras.layers.Layer): """class Decoder""" def __init__(self, N, dm, h, hidden, target_vocab, max_seq_len, drop_rate=0.1): """Class constructor""" super(Decoder, self).__init__() self.N = N self.dm = dm self.embedding = tf.keras.layers.Embedding(target_vocab, dm) self.positional_encoding = positional_encoding(max_seq_len, dm) self.blocks = [DecoderBlock(dm, h, hidden, drop_rate) for _ in range(N)] self.dropout = tf.keras.layers.Dropout(drop_rate) def call(self, x, encoder_output, training, look_ahead_mask, padding_mask): """Public instance method that returns a tensor of shape (batch, target_seq_len, dm) containing the decoder output""" seq_len = x.shape[1] x = self.embedding(x) x *= tf.math.sqrt(tf.cast(self.dm, tf.float32)) x += self.positional_encoding[:seq_len] x = self.dropout(x, training=training) for i in range(self.N): x = self.blocks[i](x, encoder_output, training, look_ahead_mask, padding_mask) return x
d2fd7a84f08b247847499681ef0c54a84674c851
c67c2d26b71638455278149a3771949659cf96b2
/led-nod.py~
c1f8f673ac3116274da75e4dcaee88782ffb50d8
[]
no_license
rafitzadik/rpimove
71706590367217be865307002af221837827d953
3ef53b611c97cc69578477a55feaf01ad2a8c41c
refs/heads/master
2021-01-23T02:59:10.941143
2015-10-29T17:13:36
2015-10-29T17:13:36
37,815,114
0
0
null
null
null
null
UTF-8
Python
false
false
197
#!/usr/bin/env python from gopigo import * import sys import atexit atexit.register(stop) for count in range(0,3): led_on(1) led_on(0) time.sleep(0.2) led_off(1) led_off(0) time.sleep(0.2)
863f8f1e4c02e3a6d287a9f3eb7ceadbe731f4d8
56207908c6681d3c23e4385d37c560c5bee17664
/Util/GetKey.py
3e8858cd82b02ae27a4b432f01d69a1a36ccd70d
[]
no_license
idealegg/Get_Vip_Vedio
75642459be6eabe6033791995e4724c4685729e7
2d57468d7d5a1aa634ecb814d7fbc7f9072e8a9f
refs/heads/master
2022-10-24T13:23:33.274444
2022-10-04T17:35:57
2022-10-04T17:35:57
164,870,540
4
1
null
null
null
null
UTF-8
Python
false
false
1,531
py
# -*- coding:utf-8 -*- import requests import re def GetKey(url, addr, host, ref): ret = "" textmod={ "url": addr, } header_dict = {"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "Accept-Encoding": "gzip,deflate", "Accept-Language": "zh-CN,zh;q=0.9", "Connection": "keep-alive", "Host": host, "Referer": "%s%s" % (ref, addr), "User-Agent": "Mozilla/5.0(Windows NT 6.1; Win64; x64) AppleWebKit/537.36(KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36", "Upgrade-Insecure-Requests": "1" } req = requests.get(url=url, params=textmod, headers=header_dict) print req.encoding print req.headers print req.reason print req.content res = re.search("eval\(\"(.*?)\"\);", req.content) if not res: print "GetKey error: %s\n" % addr else: ret = "".join(map(lambda x: chr(int(x, 16)), res.group(1).split('\\x')[1:]))[17:-3] print 'GetKey: key[%s]' % ret req.close() return ret if __name__ == "__main__": #print GetKey(url='http://all.baiyug.cn:2021/vip_all/index.php', # addr='https://www.iqiyi.com/v_19rrok775g.html?vfm=2008_aldbd', # host='all.baiyug.cn:2021', # ref='http://app.baiyug.cn:2019/vip/iqiyi.php?url=') print GetKey(url='http://www.1717yun.com/1717yun/', addr='https://www.iqiyi.com/v_19rrf3hzfs.html?vfm=2008_aldbd', host='www.1717yun.com', ref='http://www.1717yun.com/jx/ty.php?url=&url=')#
6e725fc04ccc427d7f62de141bd77b5808e7d874
6d31e7b62a9a6438d648becf8708171e2773c49c
/day/migrations/0005_auto_20160911_1719.py
8aa67e314549f3e44622db9aa2f5747b64a42de9
[]
no_license
jakeseaton/fop
74d6e27f3afe9b3652873ca5a987e534f60cc392
8d21ab8bfb5916311bebabb267298933c0774bf5
refs/heads/master
2020-08-04T16:06:29.365540
2016-09-12T01:51:48
2016-09-12T01:51:48
67,883,777
0
0
null
null
null
null
UTF-8
Python
false
false
605
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2016-09-11 21:19 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('day', '0004_day_day_type'), ] operations = [ migrations.AddField( model_name='day', name='date', field=models.DateField(blank=True, null=True), ), migrations.AddField( model_name='day', name='is_national_forest', field=models.BooleanField(default=False), ), ]
f10e035392a68b9897e6aa8a80b0395349d1d82a
bd0fb69648ff4516e8e1ac3840509d22c5e4e6fa
/二叉树/PathSum.py
3c939ca21d8224a318b9313e770db0c83b73597d
[]
no_license
takenmore/Leetcode_record
d523b997f7e1b80e1841f007e48b6ed84b38e6c5
7ebe6f3a373403125549346c49a08f9c554dafac
refs/heads/master
2022-12-02T04:50:02.000415
2020-08-08T05:45:20
2020-08-08T05:45:20
262,273,250
0
0
null
null
null
null
UTF-8
Python
false
false
1,661
py
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None from typing import List ''' 给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。 hasPathSum -> 判断有没有 pathSum -> 记录下路径。 ''' ''' 两道 dfs 题 (虽然记录是利用了回溯的思想。) ''' class Solution: def hasPathSum(self, root: TreeNode, sum: int) -> bool: if not root: return False if not root.left and not root.right: return sum == root.val return self.hasPathSum(root.left, sum - root.val) or self.hasPathSum( root.right, sum - root.val) def pathSum(self, root: TreeNode, sum: int) -> List[List[int]]: res = [] path = [] if not root: return res def dfs(root, target): if not root: return target -= root.val path.append(root.val) if target == 0 and not root.left and not root.right: res.append(path.copy()) dfs(root.left, target) dfs(root.right, target) path.pop() dfs(root, sum) return res S = Solution() root = TreeNode(5) l_1 = TreeNode(4) r_1 = TreeNode(8) l_2 = TreeNode(11) r_2_l = TreeNode(13) r_2_r = TreeNode(4) l_3_l = TreeNode(7) l_3_r = TreeNode(2) r_3_l = TreeNode(5) r_3_r = TreeNode(2) root.left = l_1 root.right = r_1 l_1.left = l_2 r_1.left = r_2_l r_1.right = r_2_r l_2.left = l_3_l l_2.right = l_3_r r_2_r.left = r_3_l r_2_r.right = r_3_r print(S.pathSum(root, 22))
492314193bdd779078c2f05799fa7b84b4a5bf04
ec2b3b8b61cef4e94447ad70e543b690d70050e5
/static_d-fold_rectangle_tree_variant/core/Util.py
6418041839b8a9806ad1c275f21645cd3f310f3e
[ "MIT" ]
permissive
bzliu94/algorithms
d6e491f6d3c68c50a37bab504501a73362b9a94d
43ccefd7ea1fd88339bf2afa0b35b0a3bdf6acff
refs/heads/master
2021-01-17T02:22:26.044478
2020-08-02T01:13:59
2020-08-02T01:13:59
36,104,048
0
0
null
null
null
null
UTF-8
Python
false
false
1,116
py
import math import decimal def comp(a, b): if a < b: return -1 elif a == b: return 0 elif a > b: return 1 def getDistance(loc1, loc2): x1, y1 = loc1 x2, y2 = loc2 delta_x = x2 - x1 delta_y = y2 - y1 distance = math.sqrt(delta_x ** 2 + delta_y ** 2) return distance # truncates the value x to have n digits after the decimal point def truncate(x, n): d = decimal.Decimal(str(x)) result = d.quantize(decimal.Decimal(str(pow(10, -1 * n))), rounding = decimal.ROUND_DOWN) value = float(result) return value """ print truncate(1, 2) print truncate(1.001, 2) print truncate(1.001, 3) print truncate(1.001, 4) print truncate(100.001, 2) print truncate(100.001, 3) print truncate(100.001, 4) print truncate(-100.001, 1) print truncate(-100.001, 2) print truncate(-100.001, 3) print truncate(-100.001, 4) print truncate(10500, 0) print truncate(10500, 1) print truncate(10500, 2) print truncate(10500.000009, 3) print truncate(10500.000009, 4) print truncate(10500.000009, 5) print truncate(10500.000009, 6) print truncate(10500.000009, 7) """
eb1c7cf4cd3827cda705f975119f960bd5605afa
50bd16c857db1fd7074f7b56df64da3112d18d5f
/backend/patient_hill_19535/wsgi.py
9666dcb595d33b5dd9464a10f06797968ebb57f2
[]
no_license
andremcb/patient-hill-19535
ae2469733bdbfd5577b8942aa9702f77536945c9
e7dda9549c93511acc11a927ee022708579c5a3b
refs/heads/master
2023-03-03T23:59:32.449515
2021-02-18T21:33:17
2021-02-18T21:33:17
340,182,747
0
0
null
null
null
null
UTF-8
Python
false
false
413
py
""" WSGI config for patient_hill_19535 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'patient_hill_19535.settings') application = get_wsgi_application()
9b5a26ccd793a7f16ec99c306e0fc6f9ee28b36f
3a634668e9f83116b49b7e742bbba54ea47615ec
/ft_odd_even_analysis_lst.py
05c47d389e084c85d1c9f6f39a0eaffd815a343c
[]
no_license
Linellian/this_shit_i_always_get_an_f_for
715583bba3596012433650ee80653808310125a6
0254ada959f79ab9a63e46aacedacf0f2ff9f056
refs/heads/main
2023-01-10T07:13:50.377162
2020-11-13T07:04:02
2020-11-13T07:04:02
312,498,041
0
0
null
null
null
null
UTF-8
Python
false
false
1,261
py
def ft_odd_even_analysis_lst(lst): ev = 0 nev = 0 max_ev = 0 min_ev = 9999999999999999999999999 max_nev = 0 min_nev = 9999999999999999999999999 sum_ev = 0 sum_nev = 0 for i in lst: if i % 2 == 0: ev += 1 sum_ev += i if i < min_ev: min_ev = i if i > max_ev: max_ev = i elif i % 2 != 0: nev += 1 sum_nev += i if i < min_nev: min_nev = i if i > max_nev: max_nev = i print("Анализ списка:") print("Количество четных чисел:", ev, end=",\t\t") print("Количество нечетных чисел:", nev) print("Максимальная четная цифра:", max_ev, end=",\t\t") print("Максимальная нечетная цифра:", max_nev) print("Минимальная четная цифра:", min_ev, end=",\t\t") print("Минимальная нечетная цифра:", min_nev) print("Сумма четных чисел:", sum_ev, end=",\t\t") print("Сумма нечетных чисел:", sum_nev, end=",")
9098862e6382e92a3078581798a715abbec82bd2
2d0209e35956674baf7117dc607887bb7e9a043d
/learning_site/views.py
10803613ec5b054b0d66a03345740ca853b624ef
[]
no_license
Jaxx0/learning-site
38cf6068ba1061bd6e9544274ed958ad52501434
2fac65357dd78f3a6a2111bed0362b222bdfe84b
refs/heads/master
2020-07-26T23:19:02.938907
2019-10-09T07:35:03
2019-10-09T07:35:03
208,795,355
0
0
null
null
null
null
UTF-8
Python
false
false
968
py
from django.contrib import messages from django.core.mail import send_mail from django.http import HttpResponseRedirect from django.shortcuts import render from django.urls import reverse from . import forms def hello_world(request): return render(request, 'home.html') def suggestion_view(request): form = forms.SuggestionForm() if request.method == 'POST': form = forms.SuggestionForm(request.POST) if form.is_valid(): print('good form') send_mail( 'Suggestion from {}'.format(form.cleaned_data['name']), form.cleaned_data['suggestion'], '{name} <{email}>'.format(**form.cleaned_data), ['[email protected]'] ) messages.add_message(request, messages.SUCCESS, 'Thanks for your suggestion') return HttpResponseRedirect(reverse('home')) return render(request, 'suggestion_form.html', {'form': form})
562fcf223ee20b63577a6becbc0c7f022bc9c9a7
640f7ba8ce3f79e3b41fa972edcabae2f6aa82dd
/deep-twi-bot.py
fe9611554d384ebed1646a084773ea4ca049a303
[]
no_license
deepthi10-code/Twitter-name-changing-bot
93a11f3eeb6d1205c667fa8c067ab5030dd341fc
6f335938497d2eb26d245321df75dfc4c8f8bdb8
refs/heads/master
2022-12-04T12:00:12.485453
2020-08-25T08:09:06
2020-08-25T08:09:06
290,146,951
0
0
null
null
null
null
UTF-8
Python
false
false
1,178
py
import tweepy import os def create_api(): consumer_key = os.getenv('consumer_key') consumer_secret = os.getenv('consumer_secret') access_token = os.getenv('access_token') access_token_secret = os.getenv('access_token_secret') auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth,wait_on_rate_limit=True,wait_on_rate_limit_notify=True) api.verify_credentials() print('API Created') return api import time def follower_count(user): emoji_numbers = {0: "0️⃣", 1: "1️⃣", 2: "2️⃣", 3: "3️⃣", 4: "4️⃣", 5: "5️⃣", 6: "6️⃣", 7: "7️⃣", 8: "8️⃣", 9: "9️⃣"} uf_split = [int(i) for i in str(user.followers_count)] emoji_followers = ''.join([emoji_numbers[j] for j in uf_split if j in emoji_numbers.keys()]) return emoji_followers api = create_api() while True: user = api.get_user('Deep07397886') api.update_profile(name=f'DEEP|{follower_count(user)} Followers') print(f'Updating Twitter Name : DEEP|{follower_count(user)} Followers') print('Waiting to refresh') time.sleep(60)
7ef03c4c91a20c4be8570f7e64d9b0d1855f71c7
568d0281cad4cdc7bd5d070b142ca19af781af20
/uwont/app/models.py
96d1a11e715d72267e3f326ef8df654accc4acc5
[]
no_license
robertrenecker/uwont.io
48502c4a01f73a65780a6389ea1cbdfb8dbf10e5
0f22640b19d2933ffd4e8b9a835f62b33b01f619
refs/heads/master
2021-01-13T16:34:41.038210
2017-01-15T21:57:22
2017-01-15T21:57:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
from django.db import models from mongoengine import * class User(Document): firstname = StringField(max_length=200) lastname = StringField(max_length=200) # Create your models here.
00c6b32985e34e7e8e39f37029cae2eac5ca2d14
4311ed18fbcc2d0f3326658ed22a10f6555c4f26
/1.两数之和.py
d8a81836c52d34ba7788a27560777161291f7159
[]
no_license
823858275/leetcode_python
a5ec6034d5ac3d12c6c5e6415cb85ca7c2b7f5e9
136d7f08c9de9259ad1fcdfe902e49dd7f0e4f37
refs/heads/master
2022-03-04T12:41:27.604433
2019-09-23T10:31:06
2019-09-23T10:31:06
198,064,872
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
# # @lc app=leetcode.cn id=1 lang=python3 # # [1] 两数之和 # class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: dic={} res=[] for i in range(len(nums)): if dic.get(target-nums[i])!=None: res.append(dic[target-nums[i]]) res.append(i) break dic[nums[i]]=i return res
5557e6d5a399aec61a87ff8ac49b2592e489890a
f0f66324c82c00e5552e71b3632dc242aa3d7927
/colors.py
ab75604890fe3511c9c50cf53f5fe4dc9b735d2e
[]
no_license
jcdragon/pi-pong
43e1e1b8c0e6f5b5e5f99a9fc7197a0ba5f91b26
f6055515cf793037071be04adf500b0028c778b3
refs/heads/master
2020-12-30T09:58:18.972377
2017-08-06T19:01:14
2017-08-06T19:01:14
99,453,176
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
RED = (128, 0, 0) GREEN = (0, 128, 0) BLUE = (0, 0, 128) YELLOW = (200, 200, 0) BLACK = (0, 0, 0) PUKE_GREEN = (53, 67, 3) BLOOD_RED = (187, 10, 30) HUSKY_PURPLE = (51, 0, 111) HUSKY_GOLD = (232, 211, 162)
ced3ffd52e01898a76bf7b8123f468234fec7a3c
a0fcc981869be99e32cae8208c4b00ed1a516844
/archives/oldMyApp/crud_app.py
3493557084f2898f0f6af16bafd087842202c8ee
[]
no_license
hmuus01/data-and-the-web
21f52b24a0cdd45c4ad2af5c5f2896838a2457b5
a1f512a6af3b458a6ee40848849e06e55d0e5d73
refs/heads/master
2023-07-19T18:22:05.730806
2019-03-30T00:00:04
2019-03-30T00:00:04
310,714,647
0
0
null
null
null
null
UTF-8
Python
false
false
1,565
py
from flask import Flask, flash, redirect, render_template, \ request, url_for, session , redirect from flask.ext.pymongo import Pymongo import bcrypt app = Flask(__name__) app.secret_key = 'some_secret' @app.route('/') def index(): if 'username' in session: return 'You are logged in' return render_template('index.html') @app.route('/login', methods=['GET', 'POST']) def login(): error = None if request.method == 'POST': if request.form['username'] != 'hamze' or request.form['password'] != 'hmuus001': error = 'Inval' flash('ERROR!!') else: flash('You were successfully logged in') return render_template('welcome.html') return render_template('login.html', error=error) @app.route('/register', methods = ['POST', 'GET']) def register(): if request.method == 'POST': users = mongo.db.users existing_user = users.find_one({'name': request.form['username']}) if existing_user is None: hashpass = bcrypt.hashpw[request.form['password'].encode('utf-8'), bcrypt.gensalt()) users.insert({'name' : request.form['username'],' password' : hashpass}) session['username'] = request.form['username'] return redirect(ur_for('index')) return 'That username already exists!' @app.route('/search/') @app.route('/search/<name>') def hello(name=None): return render_template('welcome.html', name=name) if __name__ == '__main__': app.run(debug=True,host='0.0.0.0',port=8000)
6cf5d41c21216e328ea3fa19f931e73221a9c6e5
a9a7f83e1f9e629fdd07d028e738fbc11ded3a4f
/AutoLogin_@TRUEWIFI_with_chrome.py
8591f933900b597699ef09f9b6b8f1a2b730dce8
[]
no_license
StartloJ/AutoWiFiLogin_TrueWIFI
c99af5b9222a4b4a17ba0173f490324f1713c8cc
acecf0cf5daaaaeaf5dc523ab8baab14b7305236
refs/heads/master
2021-10-10T17:48:56.182144
2019-01-15T04:04:24
2019-01-15T04:04:24
97,491,256
0
0
null
null
null
null
UTF-8
Python
false
false
2,045
py
import os from selenium import webdriver from selenium.webdriver.common.keys import Keys # from selenium.webdriver.firefox.firefox_binary import FirefoxBinary import time # def createSession(): # try: # # binary = FirefoxBinary('/Applications/Firefox.app/Contents/MacOS/firefox-bin') # # driver = webdriver.Firefox(firefox_binary=binary) # # profile = webdriver.FirefoxProfile(os.path.expanduser("~/Library/Application Support/Firefox/Profiles/Selenium/")) # chromedriver = "chromedriver" # driver = webdriver.Chrome(chromedriver) # driver.implicitly_wait(10) # # WebDriverWait(driver , 10) # print "Page already" # return driver # except Exception as e: def auto_login(chromedriver , userName , passWord): try: # chromedriver = r"/Users/l31ank5pace/Desktop/PyScripts/chromedriver" driver = webdriver.Chrome(chromedriver) driver.implicitly_wait(5) # time.sleep(1) print "Now to go..." driver.get("https://portal.trueinternet.co.th/wifiauthen/web/wifi-login.php") # time.sleep(1) print "finding usernameFill..." user = driver.find_element_by_name("username") user.send_keys(userName) pwd = driver.find_element_by_name("password") pwd.clear() pwd.send_keys(passWord) submit = driver.find_element_by_id("confirm").click() print "Finished on!!!!" # time.sleep(2) driver.quit() except Exception as e: raise e ######################### Main Function ############################# os.chdir(os.path.dirname(__file__)) path = os.getcwd() ope = open("user.txt" , "r") keep = ope.read().split('\n') while(1): print "Test Connection...." chNet = os.system("ping www.google.com") if(chNet > 0): print "Internet disconnect try to Login .@TRUEWIFI" ############## to Different for anyone ############################# uName = keep[0] pWord = keep[1] chromedriver = path + "/chromedriver.exe" #################################################################### auto_login(chromedriver , uName , pWord) else: print "Now you connected to Internet..." pass time.sleep(7)
e36cc8ab36ca699d7897499867d918b0505bcf13
4f11fd7653a6548764c5e9956d6ce82550082cf2
/count_factor(codility practice).py
afe77b6c7842f8d84eacddfe4f928ae19771e45f
[]
no_license
prasojojiwandono/logic
fd323a1ae5217ee5e98fecff04080dba659fb10a
4936531786604274667d8fec60ac724e7ce05fdd
refs/heads/master
2022-05-05T10:21:24.119078
2022-04-14T04:12:29
2022-04-14T04:12:29
158,405,085
0
0
null
null
null
null
UTF-8
Python
false
false
732
py
#kodingan ini untuk melatih logic programming #untuk soal bisa dilihat di tautan berikut: #https://app.codility.com/programmers/lessons/10-prime_and_composite_numbers/count_factors/ def solution(N): # write your code in Python 3.6 # write your code in Python 3.6 if N ==1: return 1 if N ==2: return 2 a=[] u = 0 for i in range(N+1): if i>0 : if N % i==0 and i <= N**(0.5): a.append(i) if i>N**(0.5): u = 1 break if u==1: break b = len(a) hasil = 2 * b if N%(N**(0.5))==0: return hasil-1 else: return hasil #contoh, untuk mengetahui banyak faktor dari 24 faktor24= solution(24) print(faktor(24)) ##hasilnya 8 , dan memang faktor dari 24 ada sebanyak 8 yaitu --> 1,2,3,4,6,8,12,24
b56726cb37c89ee4fefdeb060663be2e06bf528e
992a8fd483f1b800f3ccac44692a3dd3cef1217c
/python 学习/objectives/string.py
471ed23f6413b8b8c2b45453ef7fb007126efdd6
[]
no_license
xinshuaiqi/My_Scripts
c776444db3c1f083824edd7cc9a3fd732764b869
ff9d5e38d1c2a96d116e2026a88639df0f8298d2
refs/heads/master
2020-03-17T02:44:40.183425
2018-10-29T16:07:29
2018-10-29T16:07:29
133,203,411
3
1
null
null
null
null
WINDOWS-1256
Python
false
false
357
py
####### string S="songshanshan" len(S) S[0] S[-1] ## last iterm S[-3:] ## from last 3 to the end S[:-3] ## print, except the last three S + '123' #string جو´ْ name="qxs" age="32" s="my name is {name}, my age is {age}" print(s) ##remove empty part a=' abc' a.strip() b='\t\tsss' b.strip() c='ATCG\n\r' c.strip()
6f090196d342d803900a2d3a622859ed3c951b90
40b69f48b0aad6fb1fde23b41f34d000236b3136
/ppdet/data/tools/visDrone/test_output_process.py
3371b85ea37ac9e809a52ce3a7be3aeaf7f7c48b
[ "Apache-2.0" ]
permissive
TrendingTechnology/AFSM
e88d36d757229dc1266a0ec62d61fd6e48d29649
54af2f072071779789ba0baa4e4270a1403fd0dd
refs/heads/master
2023-01-22T03:28:17.868009
2020-12-10T09:47:17
2020-12-10T09:47:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,326
py
import torch from mmdet.models import CenterNetHead from mmdet.datasets.my_dataset import vis_bbox from mmdet.datasets.loader.build_loader import build_dataloader import mmcv from mmdet.core import tensor2imgs from mmdet.datasets import get_dataset def gt2out(gt_bboxes_list, gt_labels_list, inp_shapes_list, stride, categories): """transform ground truth into output format""" batch_size = len(gt_bboxes_list) inp_shapes = gt_bboxes_list[0].new_tensor(inp_shapes_list, dtype=torch.int) output_size = inp_shapes[0] / stride height_ratio, width_ratio = output_size.float() / inp_shapes[0].float() # allocating memory tl_heatmaps = -2 * gt_bboxes_list[0].new_ones(batch_size, categories, output_size[0], output_size[1]) br_heatmaps = -2 * gt_bboxes_list[0].new_ones(batch_size, categories, output_size[0], output_size[1]) ct_heatmaps = -2 * gt_bboxes_list[0].new_ones(batch_size, categories, output_size[0], output_size[1]) tl_regrs = gt_bboxes_list[0].new_zeros(batch_size, 2, output_size[0], output_size[1]) br_regrs = gt_bboxes_list[0].new_zeros(batch_size, 2, output_size[0], output_size[1]) ct_regrs = gt_bboxes_list[0].new_zeros(batch_size, 2, output_size[0], output_size[1]) tl_emds = gt_labels_list[0].new_zeros(batch_size, 1, output_size[0], output_size[1]) br_emds = gt_labels_list[0].new_zeros(batch_size, 1, output_size[0], output_size[1]) for b_ind in range(batch_size): # loop through batch-images for obj_ind, detection in enumerate(gt_bboxes_list[b_ind]): # loop through objects in one image category = gt_labels_list[b_ind][obj_ind] - 1 xtl, ytl = detection[0], detection[1] xbr, ybr = detection[2], detection[3] xct, yct = (detection[2] + detection[0]) / 2., (detection[3] + detection[1]) / 2. fxtl = (xtl * width_ratio) fytl = (ytl * height_ratio) fxbr = (xbr * width_ratio) fybr = (ybr * height_ratio) fxct = (xct * width_ratio) fyct = (yct * height_ratio) xtl = int(fxtl) ytl = int(fytl) xbr = int(fxbr) ybr = int(fybr) xct = int(fxct) yct = int(fyct) # heatmaps tl_heatmaps[b_ind, category, ytl, xtl] = 1 br_heatmaps[b_ind, category, ybr, xbr] = 1 ct_heatmaps[b_ind, category, yct, xct] = 1 # offsets tl_regrs[b_ind, 0, ytl, xtl] = fxtl - xtl # tl_tx tl_regrs[b_ind, 1, ytl, xtl] = fytl - ytl # tl_ty br_regrs[b_ind, 0, ybr, xbr] = fxbr - xbr # br_tx br_regrs[b_ind, 1, ybr, xbr] = fybr - ybr # br_ty ct_regrs[b_ind, 0, yct, xct] = fxct - xct # ct_tx ct_regrs[b_ind, 1, yct, xct] = fyct - yct # ct_ty # embeddings tl_emds[b_ind, 0, ytl, xtl] = 2 br_emds[b_ind, 0, ybr, xbr] = 2 tl_out=(tl_heatmaps, tl_emds, tl_regrs) br_out=(br_heatmaps, br_emds, br_regrs) ct_out=(ct_heatmaps, None, ct_regrs) return tl_out, br_out, ct_out def out2box(outs, img_meta, num_clses): """transform output format into final detection results""" decode_cfg = dict( K=100, kernel=3, ae_threshold=0.5, num_dets=1000) ct_cfg = dict( score_thr=0.05, nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05), max_per_img=100) head = CenterNetHead(in_channels=1, inner_channels=1, num_classes=num_clses) det_bboxes, det_labels = head.get_det_bboxes( *outs, img_meta, decode_cfg, rescale=False, cfg=ct_cfg) bboxes = det_bboxes.numpy() labels = det_labels.numpy() return bboxes, labels def main(cfg_file, test_num=1): """ data_path: path to images label_path: path to annotations idxes: index of image is going to be tested with output process """ cfg = mmcv.Config.fromfile(cfg_file) dataset = get_dataset(cfg.data.val) data_loader = build_dataloader( dataset, imgs_per_gpu=1, workers_per_gpu=1, num_gpus=1, dist=True, shuffle=False) for i, data in enumerate(data_loader): imgs = tensor2imgs(data['img'].data[0], **cfg.img_norm_cfg) gt_boxes = data['gt_bboxes'].data[0] gt_labels = data['gt_labels'].data[0] inp_shapes = [meta['pad_shape'][:2] for meta in data['img_meta'].data[0]] outs = gt2out(gt_boxes, gt_labels, inp_shapes, stride=4, categories=len(dataset.CLASSES)) bboxes, labels = out2box(outs, data['img_meta'].data[0], len(dataset.CLASSES)) vis_bbox(imgs[0], gt_boxes[0].cpu().numpy(), gt_labels[0].cpu().numpy(), show=True, show_str='ground truth') print('num detected box:', bboxes.shape[0]) vis_bbox(imgs[0], bboxes, labels, show=True, show_str='transformed boxes', color='green') if i >= test_num: break if __name__ == '__main__': """ test whether the output process is right.trun ground truth into output format then use the output process to get final detected boxes """ cfg_file = '/media/jp/新加卷/ZEHUI_DATA/pytorch_code/mmdetection/configs/centernet/centernet_hourglass-52_1x.py' main(cfg_file, test_num=1)
ba744cd1b663e1a7434d02b1da7afbc8bb00966d
0bf3cdca7dcdde6704bf436c6941fab4766ffba6
/students/K33401/Polyakov_Sergey/pr2/django_project_polyakov/project_first_app/views.py
826c574ff49e56d0038317dab5f629ddf909f490
[ "MIT" ]
permissive
spolyakovs/ITMO_ICT_WebDevelopment_2020-2021
4ef99309c1662356791662cb77e20896853746bd
b83b609676554afd6cd5d0cf989cda7e0d571000
refs/heads/master
2023-03-31T09:27:31.028586
2021-04-09T15:37:35
2021-04-09T15:37:35
298,790,962
0
0
MIT
2020-09-26T10:32:47
2020-09-26T10:32:47
null
UTF-8
Python
false
false
2,043
py
from django.shortcuts import render from django.http import Http404 from django.views import View from django.views.generic.detail import DetailView from django.views.generic.list import ListView from django.views.generic.edit import UpdateView from django.views.generic.edit import CreateView from django.views.generic.edit import DeleteView from .models import Owner, Car from .forms import OwnerForm class IndexPage(View): template_name = 'project_first_app/index.html' def get(self, request): return render(request, self.template_name) def owner_detail_view(request, id): template_name = 'project_first_app/owner_detail.html' try: owner = Owner.objects.get(id=id) except Owner.DoesNotExist: raise Http404("Owner does not exist") return render(request, template_name, {'owner': owner}) def owners_list_view(request): template_name = 'project_first_app/owners_list.html' context = {'owners_list': Owner.objects.all()} return render(request, template_name, context) def owner_create_view(request): template_name = 'project_first_app/owner_create.html' context = {} form = OwnerForm(request.POST or None) if form.is_valid(): form.save() context['form'] = form return render(request, template_name, context) class CarDetailView(DetailView): model = Car template_name = 'project_first_app/car_detail.html' class CarsListView(ListView): model = Car template_name = 'project_first_app/cars_list.html' class CarUpdateView(UpdateView): model = Car fields = ['licence_number', 'make', 'model', 'color'] success_url = '/cars/' template_name = 'project_first_app/car_update.html' class CarCreateView(CreateView): model = Car fields = [ 'licence_number', 'make', 'model', 'color'] success_url = '/cars/' template_name = 'project_first_app/car_create.html' class CarDeleteView(DeleteView): model = Car success_url = '/cars/' template_name = 'project_first_app/car_delete.html'
2c26c402ff37f9a9d45c366b9db7c6dce8fd8249
930a4bb24a575a85dc569ca5f5fbd262a0db7404
/investorkopo/views.py
098c2a3e3d4c2e8f001fe34fcaa7611a1646e6a4
[]
no_license
difasdfs/dashboardcb2
11937480e0c2cf52b41806772c74731567b67ba0
6d070e72a3bc2c557c13246bdec280679537d9f3
refs/heads/main
2023-07-02T20:48:54.932302
2021-08-02T03:55:48
2021-08-02T03:55:48
344,037,530
0
1
null
2021-06-21T06:09:06
2021-03-03T07:20:53
HTML
UTF-8
Python
false
false
3,663
py
from django.shortcuts import render, redirect from . import update_struk, update_sales, format_rupiah, kumpulan_struk from datetime import date, timedelta from .models import Sales from django.contrib.auth.decorators import login_required from django.contrib.auth import authenticate, login, logout from django.contrib import messages from .decorators import unauthenticated_user # Create your views here. def logoutuser(request): # ini halaman logout logout(request) return redirect('loginpage') @unauthenticated_user def loginpage(request): context = {} # jika metode request adalah post if request.method == 'POST': # ambil username dan passwordnya username = request.POST.get('username') password = request.POST.get('password') # autentifikasi usernya user = authenticate(request, username=username, password=password) # kalau user berhasil diautentifikasi, login if user is not None: login(request, user) return redirect('indexcrisbarkopo') else: messages.info(request, 'username atau password salah') return render(request, 'investorkopo/login.html', context) return render(request, 'login.html', context) @login_required(login_url='loginpage') def index(request): update_struk.main() update_sales.main() tanggal_akhir = date.today() tanggal_awal = tanggal_akhir - timedelta(days=7) if request.method == 'POST': tanggal_akhir = date.fromisoformat(request.POST.get('tanggal_akhir')) tanggal_awal = date.fromisoformat(request.POST.get('tanggal_awal')) if tanggal_akhir < tanggal_awal: tanggal_awal, tanggal_akhir = tanggal_akhir, tanggal_awal if tanggal_akhir > date.today(): tanggal_akhir = date.today() kumpulan_sales = Sales.objects.filter(tanggal__range=[tanggal_awal, tanggal_akhir]) list_sales = [a.total_sales for a in kumpulan_sales] print(list_sales) total_sales = sum(list_sales) maksimum = max(list_sales) maksimum_grafik = maksimum*1.4 pembagi = maksimum_grafik // 5 urutan = [format_rupiah.main(a*pembagi) for a in range(6)] urutan.reverse() persenan = ["{:.2f}".format((b / maksimum_grafik)*100) for b in list_sales] list_tanggal = [a.tanggal for a in kumpulan_sales] query_grafik = [(persenan[a], list_tanggal[a], format_rupiah.main(list_sales[a])) for a in range(len(persenan))] # query kotak depan total_penjualan = format_rupiah.main(total_sales, total_penjualan=True) jumlah_struk = kumpulan_struk.main(tanggal_awal, tanggal_akhir) average_spend = format_rupiah.main(total_sales / jumlah_struk, total_penjualan=True) revenue_sharing = format_rupiah.main(total_sales*0.15, total_penjualan=True) # akhir query kotak depan # timezone asia/jakarta, untuk ngeliatin aja. kalau di sistem pakenya harus utc context = { 'tanggal_awal' : str(tanggal_awal), 'tanggal_akhir' : str(tanggal_akhir), 'total_penjualan' : total_penjualan, 'jumlah_struk' : jumlah_struk, 'average_spend' : average_spend, 'revenue_sharing' : revenue_sharing, 'urutan_grafik' : urutan, 'persenan' : persenan, 'list_tanggal' : list_tanggal, 'list_sales' : list_sales, 'query_grafik' : query_grafik, 'tanggal_awal_date' : tanggal_awal, 'tanggal_akhir_date' : tanggal_akhir, } return render(request, 'investorkopo/index.html', context)
a9150869bbc758e33d5796c863d0b70d6994ab50
394fad0dbb422a2996a3fe50b204338b665d8efd
/k_fold_Cross_validation.py
555708793c70d492fe588c8ae1d807a74753168d
[]
no_license
strategist922/semEval_Task6_Text_Classification
32b0405a6b5cf9aa9fc0919592034f1228ed96ff
190d5340284b56e3dcae0bd0665538fe54c28dfb
refs/heads/master
2020-12-05T23:42:00.384463
2019-01-17T20:35:28
2019-01-17T20:35:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,652
py
import random import math import Data_cleaner import extract_features import naive_bayes import logistic_regression import warnings import tree_classifier import svm import random_forest import Kneighbours_Clf # divides data into k chunks and prompts score def validate(k,data,labels): list = [] for i in range(0,len(data)): list.append((data[i],labels[i])) random.shuffle(list) print(k , " fold Cross Validation\n\n") chunk_size = math.floor(len(list)/k) #print(chunk_size) for i in range(0,k): test = [] train = [] # divided our data k-1 for training , 1 for testing for j in range(0,len(list)): if math.floor(j/chunk_size) == i: test.append(list[j]) else: train.append(list[j]) #print(len(test),len(train)) if i == 0: print("1st test") elif i == 1: print("2nd test") elif i == 2: print("3rd test") else: print(i+1,"th test") train_data = [] test_data = [] train_labels = [] test_labels = [] # get divided and cleaned data train_data,train_labels,test_data,test_labels = preprocess(test, train) #get features train_features,test_features = extract_features.get_features_TF_IDF(train_data,test_data) # runs classifier run_clf(train_features,train_labels,test_features,test_labels) def preprocess(test,train): train_data = [] train_labels = [] test_data = [] test_labels = [] # separate data and labels for i in range(0,len(train)): train_data.append(train[i][0]) train_labels.append(train[i][1]) for i in range(0,len(test)): test_data.append(test[i][0]) test_labels.append(test[i][1]) # clean data test_data = Data_cleaner.remove_noise(test_data) train_data = Data_cleaner.remove_noise(train_data) return train_data,train_labels,test_data,test_labels def run_clf(train_features,train_labels,test_features,test_labels): # naive_bayes.run_naive_bayes(train_features, test_features, train_labels, test_labels) # logistic_regression.run(train_features, test_features, train_labels, test_labels) #tree_classifier.run(train_features, test_features, train_labels, test_labels) # svm.run(train_features, test_features, train_labels, test_labels) # random_forest.run(train_features, test_features, train_labels, test_labels) Kneighbours_Clf.run(train_features, test_features, train_labels, test_labels) print("\n")
5a6a44dc8927d3270bafd0fc1c567851897acc08
1056747bc425646e51e1bbbc42fd3ab27b0bed93
/src/smartcar/scripts/image_resizer_node.py
242a399684a41979451eadedac67ea5030cb17c0
[]
no_license
kdshuo/rosProject
1df71d9c20d9a2dab0e3460d21ce6065c18905bd
38ddcbbbba13e6589e9a8c67fd959f1af69a5376
refs/heads/master
2023-04-24T04:47:23.505565
2021-05-10T12:07:09
2021-05-10T12:07:09
366,025,577
0
0
null
null
null
null
UTF-8
Python
false
false
2,703
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np #import sys, time import rospy #import roslib import cv2 #import numpy as np #from sensor_msgs.msg import CompressedImage from sensor_msgs.msg import Image from cv_bridge import CvBridge, CvBridgeError NODE_NAME = "image_resizer_node" #SUB_TOPIC = "/image" SUB_TOPIC = "/image_raw" PUB_TOPIC = "image_preproc_resized" QUEUE_SIZE = 1 DEFAULT_HEIGHT = 216 DEFAULT_WIDTH = 384 class ImageReziserNode: def initial_parameters(self): global intrinsicMat global distortionCoe #global perspective_transform_matrix #global kernel intrinsicMat = np.array([[669.0672, -0.2097, 490.6801], [0, 671.0723, 283.2345], [0, 0, 1]]) distortionCoe = np.array([-0.3739,0.1119,3.5478e-04,0.002, 0]) startx = 280 starty = 220 length_pers = 400 width_pers = length_pers srcps = np.float32([[(289,250), (93,415), (870,419), (680,256)]]) #srcps_ramp = np.float32([[(27, 349), (177, 207), (452, 207), (599, 349)]]) dstps = np.float32([[(startx, starty), (startx, starty + width_pers), (startx + length_pers, starty + width_pers), (startx + length_pers, starty)]]) #perspective_transform_matrix = cv2.getPerspectiveTransform(srcps, dstps) #kernel = np.ones((3,3),np.uint8) def __init__(self, node_name, sub_topic, pub_topic): self.bridge = CvBridge() self.initial_parameters() self.image_pub = rospy.Publisher(pub_topic, Image, queue_size=QUEUE_SIZE) rospy.init_node(node_name, anonymous=True) #self.image_sub = rospy.Subscriber(sub_topic, CompressedImage, self.callback) self.image_sub = rospy.Subscriber(sub_topic, Image, self.callback) self.rate = rospy.Rate(20) rospy.spin() def callback(self, data): try: cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") cv_image = cv2.pyrDown(cv_image) undstrt = cv2.undistort(cv_image, intrinsicMat, distortionCoe, None, intrinsicMat) except CvBridgeError as e: rospy.logerr(e) #height = 1080 #width = 1920 #cv_image = cv2.resize(cv_image, (width, height), 0, 0, 0) #print(cv_image.shape) try: self.image_pub.publish(self.bridge.cv2_to_imgmsg(undstrt, "bgr8")) except CvBridgeError as e: rospy.logerr(e) def main(): try: ImageReziserNode(NODE_NAME, SUB_TOPIC, PUB_TOPIC) except KeyboardInterrupt: rospy.loginfo("Shutting down node %s", NODE_NAME) if __name__ == '__main__': main()
50fdcd5dc69bcd6c62fd815ac6c60e63d90605d1
a0dc7e0c139b727d77781137c53b3ee886a7d7e5
/crawl_ccass/crawl_ccass/pipelines.py
6a4244e04425f0cd0d29a28ed0fbee8a5ab55511
[ "MIT" ]
permissive
easy00000000/crawl_ccass
313db81578f5defa1c80a31016bea0652276ba8f
d7cad1ed11858c68d680c9a0d83e376f0c9c6a8a
refs/heads/master
2021-07-11T17:10:15.339568
2017-10-14T06:05:46
2017-10-14T06:05:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,719
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html from scrapy.conf import settings from bs4 import BeautifulSoup import json import MySQLdb class Json_Pipeline(object): def open_spider(self, spider): self.file = open('brokerinfo.jl', 'a') def close_spider(self, spider): self.file.close() def process_item(self, item, spider): for tr in item['broker_info']: broker_info = [] for td in tr.find_all('td'): broker_info.append(td.getText().strip()) # Set ID for HKSFC if (broker_info[1] == 'HONG KONG SECURITIES CLEARING CO. LTD.'): broker_info[0] = 'SFC001' # Set empty ID = Name if (broker_info[0] == ''): broker_info[0] = broker_info[1] # remove Shares_Number's ',' broker_info[3] = broker_info[3].replace(',','') # remove Shares_%'s '%' broker_info[4] = broker_info[4].replace('%','') br_data = { 'StockID' : item['stockid'], 'Date' : item['sdate'], 'Broker_ID' : broker_info[0], 'Broker_Name' : broker_info[1], 'Shares_Number' : broker_info[3], 'Share_Percent' : broker_info[4] } line = json.dumps(br_data) + "\n" self.file.write(line) return item class MYSQL_Pipeline(object): def open_spider(self, spider): self.conn = MySQLdb.connect(host = settings.get('MYSQL_HOST'), db = settings.get('CCASS_DB'), user = settings.get('MYSQL_USER'), passwd = settings.get('MYSQL_PASSWD'), charset = 'utf8', use_unicode = True ) self.cursor = self.conn.cursor() def close_spider(self, spider): self.conn.close() def process_item(self, item, spider): # Create Table of StockID if not exists try: mysql_command = "create table if not exists HK" + item['stockid'] mysql_command = mysql_command + " (StockID VARCHAR(5), Broker_ID VARCHAR(100), Broker_Name VARCHAR(100), Date DATE, Shares BIGINT, Percent FLOAT)" self.cursor.execute(mysql_command) self.conn.commit() except MySQLdb.Error, e: print 'Error %d %s' % (e.args[0], e.args[1]) # Add Item into Index try: mysql_command = "INSERT INTO stockid_date_index (StockID, Date) VALUES (%s, %s)" self.cursor.execute(mysql_command, ( item['stockid'], item['sdate'], )) self.conn.commit() except MySQLdb.Error, e: print 'Error %d %s' % (e.args[0], e.args[1]) # Add Items into StockID Table for tr in item['broker_info']: broker_info = [] for td in tr.find_all('td'): broker_info.append(td.getText().strip()) # Set ID for HKSFC if (broker_info[1] == 'HONG KONG SECURITIES CLEARING CO. LTD.'): broker_info[0] = 'SFC001' # Set empty ID = Name if (broker_info[0] == ''): broker_info[0] = broker_info[1] # remove Shares_Number's ',' broker_info[3] = broker_info[3].replace(',','') # remove Shares_%'s '%' if len(broker_info)<5: broker_info.append('0') else: broker_info[4] = broker_info[4].replace('%','') try: mysql_command = "INSERT INTO " + "HK" + item['stockid'] + " (StockID, Date, Broker_ID, Broker_Name, Shares, Percent) VALUES (%s, %s, %s, %s, %s, %s)" self.cursor.execute(mysql_command, ( item['stockid'], item['sdate'], broker_info[0], broker_info[1], broker_info[3], broker_info[4], )) self.conn.commit() except MySQLdb.Error, e: print 'Error %d %s' % (e.args[0], e.args[1]) return item
1d28d5aa54abb9d2cf7d82a6e75c565253701ba1
05329cc0ccc814c5204379b2ed5cbe8ee2503879
/library/python/runtime_py3/test/test_arcadia_source_finder.py
193336d17a1fc602bf83e4756e8e754cae0f4c79
[ "Apache-2.0" ]
permissive
wayfair-contribs/catboost
3d01a5fabf60187b27d7d543409235940fba8abc
849b66e4c4faf832cd6ee9c39a3022f29d18819f
refs/heads/master
2023-09-01T09:07:45.153072
2021-10-22T11:39:45
2021-10-22T11:39:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,913
py
import unittest from unittest.mock import patch from parameterized import parameterized import __res as res NAMESPACE_PREFIX = b'py/namespace/' TEST_SOURCE_ROOT = '/home/arcadia' TEST_FS = { 'home': { 'arcadia': { 'project': { 'normal_lib': { 'mod1.py': '', 'package1': { 'mod2.py': '', }, }, 'lib_with_namespace': { 'ns_mod1.py': '', 'ns_package1': { 'ns_mod2.py': '', }, }, 'top_level_lib': { 'tl_mod1.py': '', 'tl_package1': { 'tl_mod2.py': '', }, }, 'normal_lib_extension': { 'mod3.py': '', 'package1': { 'mod4.py': '', }, }, }, 'contrib': { 'python': { 'pylib': { 'libmod.py': '', 'tests': { 'conftest.py': '', 'ya.make': '', }, }, }, }, }, }, } TEST_RESOURCE = { b'py/namespace/unique_prefix1/project/normal_lib': b'project.normal_lib.', # 'normal_lib_extension' extend normal_lib by additional modules b'py/namespace/unique_prefix1/project/normal_lib_extension': b'project.normal_lib.', b'py/namespace/unique_prefix2/project/lib_with_namespace': b'virtual.namespace.', b'py/namespace/unique_prefix3/project/top_level_lib': b'.', # Contrib: the library is in the top level namespace but 'tests' project is not b'py/namespace/unique_prefix4/contrib/python/pylib': b'.', b'py/namespace/unique_prefix4/contrib/python/pylib/tests': b'contrib.python.pylib.tests.', } MODULES = { 'project.normal_lib.mod1': b'project/normal_lib/mod1.py', 'project.normal_lib.mod3': b'project/normal_lib_extension/mod3.py', 'project.normal_lib.package1.mod2': b'project/normal_lib/package1/mod2.py', 'project.normal_lib.package1.mod4': b'project/normal_lib_extension/package1/mod4.py', 'virtual.namespace.ns_mod1': b'project/lib_with_namespace/ns_mod1.py', 'virtual.namespace.ns_package1.ns_mod2': b'project/lib_with_namespace/ns_package1/ns_mod2.py', 'tl_mod1': b'project/top_level_lib/tl_mod1.py', 'tl_package1.tl_mod2': b'project/top_level_lib/tl_package1/tl_mod2.py', 'libmod': b'contrib/python/pylib/libmod.py', 'contrib.python.pylib.tests.conftest': b'contrib/python/pylib/tests/conftest.py', } PACKAGES = [ 'project', 'project.normal_lib', 'project.normal_lib.package1', 'virtual', 'virtual.namespace', 'virtual.namespace.ns_package1', 'tl_package1', 'contrib', 'contrib.python', 'contrib.python.pylib', 'contrib.python.pylib.tests', ] UNKNOWN_MODULES = [ 'project.normal_lib.unknown_module', 'virtual.namespace.unknown_module', 'unknown_module', # contribr/python/pylib directory is not a regular package and cannot be used for a usual module lookup 'contrib.python.pylib.libmod', # Parent project contrib/python/pylib with top level namespace should not affect nested 'tests' project 'tests.conftest', ] def iter_keys_mock(prefix): assert prefix == NAMESPACE_PREFIX l = len(prefix) for k in TEST_RESOURCE.keys(): yield k, k[l:] def resource_find_mock(key): return TEST_RESOURCE.get(key) def find_fake_fs(filename): path = filename.lstrip('/').split('/') curdir = TEST_FS for item in path: if item in curdir: curdir = curdir[item] else: return None return curdir def path_isfile_mock(filename): f = find_fake_fs(filename) return isinstance(f, str) def path_isdir_mock(filename): f = find_fake_fs(filename) return isinstance(f, dict) def os_listdir_mock(dirname): f = find_fake_fs(dirname) if isinstance(f, dict): return f.keys() else: return [] class TestArcadiaSourceFinder(unittest.TestCase): def setUp(self): self.patchers = [ patch('__res.iter_keys', wraps=iter_keys_mock), patch('__res.__resource.find', wraps=resource_find_mock), patch('__res._path_isdir', wraps=path_isdir_mock), patch('__res._path_isfile', wraps=path_isfile_mock), patch('__res._os.listdir', wraps=os_listdir_mock), ] for patcher in self.patchers: patcher.start() self.arcadia_source_finder = res.ArcadiaSourceFinder(TEST_SOURCE_ROOT) def tearDown(self): for patcher in self.patchers: patcher.stop() @parameterized.expand(MODULES.items()) def test_get_module_path_for_modules(self, module, path): assert path == self.arcadia_source_finder.get_module_path(module) @parameterized.expand(PACKAGES) def test_get_module_path_for_packages(self, package): assert self.arcadia_source_finder.get_module_path(package) is None @parameterized.expand(UNKNOWN_MODULES) def test_get_module_path_for_unknown_modules(self, unknown_module): assert self.arcadia_source_finder.get_module_path(unknown_module) is None @parameterized.expand(MODULES.keys()) def test_is_package_for_modules(self, module): assert self.arcadia_source_finder.is_package(module) is False @parameterized.expand(PACKAGES) def test_is_package_for_packages(self, package): assert self.arcadia_source_finder.is_package(package) is True @parameterized.expand(UNKNOWN_MODULES) def test_is_package_for_unknown_modules(self, unknown_module): self.assertRaises(ImportError, lambda: self.arcadia_source_finder.is_package(unknown_module)) @parameterized.expand([ ('project.', { ('PFX.normal_lib', True), }), ('project.normal_lib.', { ('PFX.mod1', False), ('PFX.mod3', False), ('PFX.package1', True), }), ('project.normal_lib.package1.', { ('PFX.mod2', False), ('PFX.mod4', False), }), ('virtual.', { ('PFX.namespace', True), }), ('virtual.namespace.', { ('PFX.ns_mod1', False), ('PFX.ns_package1', True), }), ('virtual.namespace.ns_package1.', { ('PFX.ns_mod2', False), }), ('', { ('PFX.project', True), ('PFX.virtual', True), ('PFX.tl_mod1', False), ('PFX.tl_package1', True), ('PFX.contrib', True), ('PFX.libmod', False), }), ('tl_package1.', { ('PFX.tl_mod2', False), }), ('contrib.python.pylib.', { ('PFX.tests', True), }), ('contrib.python.pylib.tests.', { ('PFX.conftest', False), }), ]) def test_iter_modules(self, package_prefix, expected): got = self.arcadia_source_finder.iter_modules(package_prefix, 'PFX.') assert expected == set(got) # Check iter_modules() don't crash and return correct result after not existing module was requested def test_iter_modules_after_unknown_module_import(self): self.arcadia_source_finder.get_module_path('project.unknown_module') assert {('normal_lib', True)} == set(self.arcadia_source_finder.iter_modules('project.', '')) class TestArcadiaSourceFinderForEmptyResources(unittest.TestCase): @staticmethod def _unreachable(): raise Exception() def setUp(self): self.patchers = [ patch('__res.iter_keys', wraps=lambda x: []), patch('__res.__resource.find', wraps=self._unreachable), patch('__res._path_isdir', wraps=self._unreachable), patch('__res._path_isfile', wraps=self._unreachable), patch('__res._os.listdir', wraps=self._unreachable), ] for patcher in self.patchers: patcher.start() self.arcadia_source_finder = res.ArcadiaSourceFinder(TEST_SOURCE_ROOT) def tearDown(self): for patcher in self.patchers: patcher.stop() def test_get_module_path(self): assert self.arcadia_source_finder.get_module_path('project.normal_lib.mod1') is None def test_is_package(self): self.assertRaises(ImportError, lambda: self.arcadia_source_finder.is_package('project')) self.assertRaises(ImportError, lambda: self.arcadia_source_finder.is_package('project.normal_lib.mod1')) def test_iter_modules(self): assert [] == list(self.arcadia_source_finder.iter_modules('', 'PFX.'))
f6294fd2619f26947669c79bceb7f26f41082eba
15cf8ab8d96083d84409d88b6db2e66c506084a4
/Python/CotaçãoDolar e Clima.py
60bfeaca5fd0ca55420d2ca435914a5b69bff730
[ "MIT" ]
permissive
ABHISHEK-AMRUTE/Hello-world-1
59bea839af5a5e064ede374ac593f47a5f8249d5
ba8ab6f1a5e6a23a49a2cb17eaa44e616d04ee36
refs/heads/master
2020-08-29T10:21:34.438677
2019-10-28T08:58:22
2019-10-28T08:58:22
218,004,701
2
0
MIT
2019-10-28T08:56:58
2019-10-28T08:56:57
null
UTF-8
Python
false
false
725
py
# COTAÇÃO DO DOLAR E CLIMA ATUAL import re import requests import json rc = requests.get('http://api.promasters.net.br/cotacao/v1/valores').text cotacoes = re.findall(r'\d\.\d+', rc) # TODAS COTAÇÕES cidade = str(input('Digite a cidade: ')).strip().lower() cidade = cidade.split(' ') cidade = '%20'.join(cidade) rt = requests.get('https://api.hgbrasil.com/weather/?format=json&city_name=' + cidade + '&key=bcb790a1').text dic = json.loads(rt) print(dic) print('O dolar está custando: {}\n'.format(cotacoes[0])) print('Em {}'.format(dic['results']['city_name'])) print('Faz {}ºC e está {}\nSão exatamente {}'.format(dic['results']['temp'], dic['results']['description'], dic['results']['time']))
384d3eda1b59936bccfc0cf7d0b3aee330fae824
dde079f27589bc5b2141c7522e6b682338510e71
/Project 1 - Classification/preprocessors/kdd/KDD.py
f97b3287b18ca1f3bc556c8329e3ef83cdbf207f
[]
no_license
gentrexha/machine-learning
60923d5b944ba950260cfdf1e5f4d3aa399e31b6
f4bb49acd61a84d81b3883a31ec3dce1bcadfa96
refs/heads/master
2022-05-08T05:21:11.705372
2020-04-20T11:34:43
2020-04-20T11:34:43
257,257,831
0
0
null
null
null
null
UTF-8
Python
false
false
8,528
py
import sys import pandas as pd import numpy as np from sklearn.base import TransformerMixin from classifiers.config import DATASETS, kdd_data_folder def split_mdmaud_and_domain(dataset: pd.DataFrame) -> pd.DataFrame: # split the data from MDMAUD column to three meaningful columns dataset = dataset.assign( RecencyOfGiving=dataset['MDMAUD'].apply(lambda x: get_recency_of_giving(x))) dataset = dataset.assign( FrequencyOfGiving=dataset['MDMAUD'].apply(lambda x: x[1] if x and x[1] != 'X' else 0)) dataset = dataset.assign( AmountOfGiving=dataset['MDMAUD'].apply(lambda x: get_amount_of_giving_level(x))) dataset.drop(columns='MDMAUD', inplace=True) # split DOMAIN column into two meaningful columns dataset = dataset.assign( UrbanicityLevel=dataset['DOMAIN'].apply(lambda x: get_urbanicity_level(x))) dataset = dataset.assign( SocioEconomicStatus=dataset['DOMAIN'].apply(lambda x: get_socio_economic_status(x))) dataset.drop(columns='DOMAIN', inplace=True) return dataset def get_recency_of_giving(value: str): """ MDMAUD column description: The Major Donor Matrix code The codes describe frequency and amount of giving for donors who have given a $100+ gift at any time in their giving history. An RFA (recency/frequency/monetary) field. The (current) concatenated version is a nominal or symbolic field. The individual bytes could separately be used as fields and refer to the following: First byte: Recency of Giving C=Current Donor L=Lapsed Donor I=Inactive Donor D=Dormant Donor 2nd byte: Frequency of Giving 1=One gift in the period of recency 2=Two-Four gifts in the period of recency 5=Five+ gifts in the period of recency 3rd byte: Amount of Giving L=Less than $100(Low Dollar) C=$100-499(Core) M=$500-999(Major) T=$1,000+(Top) 4th byte: Blank/meaningless/filler 'X' indicates that the donor is not a major donor. For the first bit (RecencyOfGiving), we map as follows: Current = 4, Lapsed = 3, Dormant = 2, Inactive = 1, None = 0 """ if not value or value[0] == 'X': return 0 if value[0] == 'C': return 4 elif value[0] == 'L': return 3 elif value[0] == 'D': return 2 elif value[0] == 'O': return 1 else: return 0 def get_amount_of_giving_level(value: str): """ For the third bit (AmountOfGiving), we map as follows: L=Less than $100(Low Dollar) - 1 C=$100-499(Core) - 2 M=$500-999(Major) - 3 T=$1,000+(Top) - 4 None - 0 """ if not value or value[2] == 'X': return 0 if value[2] == 'L': return 1 elif value[2] == 'C': return 2 elif value[2] == 'M': return 3 elif value[2] == 'T': return 4 else: return 0 def get_urbanicity_level(value: str): """ DOMAIN column description: DOMAIN/Cluster code. A nominal or symbolic field. could be broken down by bytes as explained below. 1st byte = Urbanicity level of the donor's neighborhood U=Urban C=City S=Suburban T=Town R=Rural 2nd byte = Socio-Economic status of the neighborhood 1 = Highest SES 2 = Average SES 3 = Lowest SES (except for Urban communities, where 1 = Highest SES, 2 = Above average SES, 3 = Below average SES, 4 = Lowest SES.) For the Urbanicity level, we do the following mapping: U=Urban - 5 C=City - 4 S=Suburban - 3 T=Town - 2 R=Rural - 1 None - 0 """ if not value or value[0] == 'X': return 0 if value[0] == 'R': return 1 elif value[0] == 'T': return 2 elif value[0] == 'S': return 3 elif value[0] == 'C': return 4 elif value[0] == 'U': return 5 else: return 0 def get_socio_economic_status(value: str): """ Keep the same variables for SES: 1 = Highest SES 2 = Average SES 3 = Lowest SES (except for Urban communities, where 1 = Highest SES, 2 = Above average SES, 3 = Below average SES, 4 = Lowest SES.) """ # sometimes value is just a string which contains a white space. Remove it value = value.replace(' ', '') if not value or value[1] == 'X': return 0 else: return value[1] def get_cluster_as_float(value: str): """ """ value = value.replace(' ', '') try: return float(value) except ValueError: return pd.np.nan def main(): """ Pre-processes kdd dataset and stores it Procedure: - Load dataset - Perform pre processing as described in README - Store preprocessed dataset - Apply classification algorithms on the preprocessed file Here we preprocess only the columns in the `target_variables` list, which were picked from https://pdfs.semanticscholar.org/865a/6dba275f21ea42a10616f59d85da6d26eae1.pdf, page 75+ """ dataset_name = 'kdd' dataset_train: pd.DataFrame = pd.read_csv(DATASETS[dataset_name]['initial_path_train']) dataset_test: pd.DataFrame = pd.read_csv(DATASETS[dataset_name]['initial_path_test']) target_variables = ['RECINHSE', 'RECP3', 'RECPGVG', 'RECSWEEP', 'MDMAUD', 'DOMAIN', 'CLUSTER', 'HOMEOWNR', 'NUMCHLD', 'INCOME', 'GENDER', 'WEALTH1'] flag_variables = ['RECINHSE', 'RECP3', 'RECPGVG', 'RECSWEEP', 'HOMEOWNR', 'WEALTH1'] # replace flag variables with either 1 or 0 for column in flag_variables: dataset_train[column] = dataset_train[column].apply(lambda x: 1 if x == 'X' else 0) dataset_test[column] = dataset_test[column].apply(lambda x: 1 if x == 'X' else 0) # update gender column with M=1, F=0 dataset_train['GENDER'] = dataset_train['GENDER'].apply(lambda x: 1 if x == 'M' else 0) dataset_test['GENDER'] = dataset_test['GENDER'].apply(lambda x: 1 if x == 'M' else 0) # split MDMAUD and DOMAIN columns dataset_train = split_mdmaud_and_domain(dataset_train) dataset_test = split_mdmaud_and_domain(dataset_test) dataset_train['CLUSTER'] = dataset_train['CLUSTER'].apply(lambda x: get_cluster_as_float(x)) dataset_test['CLUSTER'] = dataset_test['CLUSTER'].apply(lambda x: get_cluster_as_float(x)) # replace NaN's foreach column with the mean value dataset_train.fillna(dataset_train.mean(), inplace=True) dataset_test.fillna(dataset_test.mean(), inplace=True) # put target column (which in this case is class) as the last column class_column = dataset_train['TARGET_B'] dataset_train.drop(columns='TARGET_B', inplace=True) dataset_train.insert(len(dataset_train.columns), 'TARGET_B', class_column) print('Storing preprocessed datasets...') dataset_train.to_csv(kdd_data_folder / 'kdd-train-preprocessed.csv', index=False) dataset_test.to_csv(kdd_data_folder / 'kdd-test-preprocessed.csv', index=False) print('Done preprocessing!') def no_nominal(): """ Preprocess kdd without any nominal values and store it. :return: """ dataset_name = 'kdd' dataset_train: pd.DataFrame = pd.read_csv(DATASETS[dataset_name]['initial_path_train']) dataset_test: pd.DataFrame = pd.read_csv(DATASETS[dataset_name]['initial_path_test']) # remove all nominal values dataset_train = dataset_train._get_numeric_data() dataset_test = dataset_test._get_numeric_data() # replace NaN's foreach column with the mean value dataset_train.fillna(dataset_train.mean(), inplace=True) dataset_test.fillna(dataset_test.mean(), inplace=True) # put target column (which in this case is class) as the last column class_column = dataset_train['TARGET_B'] dataset_train.drop(columns='TARGET_B', inplace=True) dataset_train.insert(len(dataset_train.columns), 'TARGET_B', class_column) print('Storing preprocessed datasets...') dataset_train.to_csv(kdd_data_folder / 'kdd-train-preprocessed-no_nominal.csv', index=False) dataset_test.to_csv(kdd_data_folder / 'kdd-test-preprocessed-no_nominal.csv', index=False) print('Done preprocessing!') if __name__ == '__main__': # main() no_nominal() sys.exit(0)
04cf6a286b8a5e7e7fbef16c441136ab4fba3821
fd4f50ff353ae456e9b9223204cd20b34296cd8c
/code/terra/migrations/0002_delete_feedback.py
c6220e06adcc36ad24aec25eeb628cf1726fefbd
[]
no_license
jaejunha/Terra-Coding
b406dd40a68664d36fee0b48eccb500e2da262d9
3f3daa7bbed6baf449e0bd1533ab6d9bd6056820
refs/heads/master
2021-09-08T00:24:02.081338
2018-03-04T05:04:41
2018-03-04T05:04:41
103,519,799
1
4
null
2017-09-29T01:25:00
2017-09-14T10:33:19
Python
UTF-8
Python
false
false
349
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-09-27 16:21 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('terra', '0001_initial'), ] operations = [ migrations.DeleteModel( name='Feedback', ), ]
bc7772704aee021e9a6e3fcfb0e66c4fb233f3a4
1ae4d3632f788f1a5e8f1e919e3f43b5f53d9ecd
/lesson2 (Variables)/task8/comparison_operators.py
7336e2dc96cee41c856c334f12f966e7cc43b8d9
[]
no_license
catharsis96/pythonintro2
fc1f2dc3380efff92918c4bf9f77615b39380c0a
ac896af08e0835372bd1e6901b99f005bf0bb4b8
refs/heads/master
2021-04-29T11:37:30.599143
2017-01-02T16:23:48
2017-01-02T16:23:48
77,846,129
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
one = 1 two = 2 three = 3 print(one < two < three) # This chained comparison means that the (one < two) and (two < three) comparisons are performed at the same time. is_greater = three operator two print(is_greater)