blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
281
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
57
| license_type
stringclasses 2
values | repo_name
stringlengths 6
116
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 313
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 18.2k
668M
⌀ | star_events_count
int64 0
102k
| fork_events_count
int64 0
38.2k
| gha_license_id
stringclasses 17
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 107
values | src_encoding
stringclasses 20
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 4
6.02M
| extension
stringclasses 78
values | content
stringlengths 2
6.02M
| authors
listlengths 1
1
| author
stringlengths 0
175
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d4c73b518210b00ff4f14bb7bf1b7d93e8c7e2fd
|
9ed987c683b925b505bf7fa258cdf48d4962b6b0
|
/P0/Sin título0.py
|
8ed1625247aaa31a89582b4455015d450bc21f6c
|
[] |
no_license
|
victory06/AA
|
1789ee9efeb3b9ebc68275262e7eaf8da3d0bdf3
|
1d0bcc9edd4b425ab68145ddcad446bbddf40b77
|
refs/heads/master
| 2023-04-20T15:47:47.876228 | 2021-05-10T07:53:01 | 2021-05-10T07:53:01 | 339,379,562 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 711 |
py
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 24 18:02:50 2020
@author: victor
"""
import numpy as np
import matplotlib.pyplot as plt
# Create data
N = 60
g1 = (0.6 + 0.6 * np.random.rand(N), np.random.rand(N))
g2 = (0.4+0.3 * np.random.rand(N), 0.5*np.random.rand(N))
g3 = (0.3*np.random.rand(N),0.3*np.random.rand(N))
data = (g1, g2, g3)
colors = ("red", "green", "blue")
groups = ("coffee", "tea", "water")
# Create plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
for data, color, group in zip(data, colors, groups):
x, y = data
ax.scatter(x, y, alpha=0.8, c=color, edgecolors='none', s=30, label=group)
plt.title('Matplot scatter plot')
plt.legend(loc=2)
plt.show()
|
[
"[email protected]"
] | |
7af5765fa5c6edb401f7b850aa3101fbeaafd7f3
|
e825640a5d087fb0e14267111dda4fe010224a3a
|
/multiapp/helpers/multiapp.py
|
b25c3163809f8b7eccf466bcd8226f80406be5db
|
[] |
no_license
|
Nhiemth1985/PyPortfolioAnalytics
|
c2ee64a47fb58654528353cb8796a96eb6ed8d60
|
7f210c98b1dcc6f2a157372b34664d8d163a2874
|
refs/heads/master
| 2023-09-03T15:22:18.493060 | 2021-10-17T18:22:58 | 2021-10-17T18:22:58 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,366 |
py
|
"""Frameworks for running multiple Streamlit applications as a single app.
https://github.com/upraneelnihar/streamlit-multiapps
"""
import streamlit as st
class MultiApp:
"""Framework for combining multiple streamlit applications.
Usage:
def foo():
st.title("Hello Foo")
def bar():
st.title("Hello Bar")
app = MultiApp()
app.add_app("Foo", foo)
app.add_app("Bar", bar)
app.run()
It is also possible keep each application in a separate file.
import foo
import bar
app = MultiApp()
app.add_app("Foo", foo.app)
app.add_app("Bar", bar.app)
app.run()
"""
def __init__(self):
self.apps = []
def add_app(self, title, func):
"""Adds a new application.
Parameters
----------
func:
the python function to render this app.
title:
title of the app. Appears in the dropdown in the sidebar.
"""
self.apps.append({
"title": title,
"function": func
})
def run(self):
st.title('Py Portfolio Analytics')
app = st.selectbox(
'Navigate',
self.apps,
format_func=lambda app: app['title'])
st.write('---')
app['function']()
|
[
"[email protected]"
] | |
c5968b91f1e8556b70007f764784c56df35cfef6
|
2c89037666a3c3c9be55b53055c73aa9fcbde2b7
|
/webrobot/app/main/service/user_service.py
|
1aa181ef641092046126c96166d66c61d9b54523
|
[
"MIT"
] |
permissive
|
kakawaa/Auto-Test-System
|
844284de1eb5fac8fa8c5318371c99991caff62d
|
76b0690e4e49769ec5d6e65ab6c499396880c0bd
|
refs/heads/master
| 2020-06-17T11:42:38.121124 | 2019-07-05T03:32:39 | 2019-07-05T03:32:39 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,451 |
py
|
# import uuid
import datetime
import os
from pathlib import Path
from app.main import db
from app.main.model.database import User, Organization
from task_runner.runner import start_threads
from ..config import get_config
from ..util.errors import *
from ..util.identicon import *
USERS_ROOT = Path(get_config().USERS_ROOT)
def save_new_user(data, admin=None):
user = User.objects(email=data['email']).first()
if not user:
new_user = User(
# public_id=str(uuid.uuid4()),
email=data['email'],
name=data.get('username', ''),
registered_on=datetime.datetime.utcnow(),
roles=data.get('roles', ['admin']),
avatar=data.get('avatar', ''),
introduction=data.get('introduction', '')
)
new_user.password = data['password']
try:
new_user.save()
except Exception as e:
print(e)
return error_message(EINVAL, 'Field validating for User failed'), 401
user_root = USERS_ROOT / data['email']
try:
os.mkdir(user_root)
except FileExistsError as e:
return error_message(EEXIST), 401
try:
os.mkdir(user_root / 'test_results')
except FileExistsError as e:
return error_message(EEXIST), 401
if new_user.avatar == '':
img = render_identicon(hash(data['email']), 27)
img.save(user_root / ('%s.png' % new_user.id))
new_user.avatar = '%s.png' % new_user.id
if new_user.name == '':
new_user.name = new_user.email.split('@')[0]
if not admin:
organization = Organization(name='Personal')
organization.owner = new_user
organization.path = new_user.email
organization.save()
new_user.organizations = [organization]
new_user.save()
start_threads(new_user)
return generate_token(new_user)
else:
return error_message(USER_ALREADY_EXIST), 409
def get_all_users():
return User.objects()
def get_a_user(user_id):
return User.objects(pk=user_id).first()
def generate_token(user):
try:
# generate the auth token
auth_token = User.encode_auth_token(str(user.id))
return error_message(SUCCESS, token=auth_token.decode()), 201
except Exception as e:
print(e)
return error_message(UNKNOWN_ERROR), 401
|
[
"[email protected]"
] | |
c9c4d9cec089efc390d4bc9ec3d75c7bd405ae1b
|
4df17daecb32fd5ec6ae6a76ba6c9f5e58702203
|
/10-06/Factory/Factory_python/Factory.py
|
14f1a6bbc9f1371b216a045f2eda88ee44bc686b
|
[] |
no_license
|
celinalopez/DisenoDeSistemas
|
3ea29db526105a4bd2db44c70c4db8680ce68f1e
|
273fa9f800479285cd0d3e2a3ebe0561bd7469de
|
refs/heads/main
| 2023-08-24T18:23:21.669060 | 2021-11-04T04:46:52 | 2021-11-04T04:46:52 | 409,076,707 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 431 |
py
|
from pizzas import Muzzarella, Especial, Pepperonni, CuatroQuesos
class PizzaFactory():
@staticmethod
def pedir_pizza(tipo_pizza):
if tipo_pizza == 'Muzzarella':
return Muzzarella()
elif tipo_pizza == 'Especial':
return Especial()
elif tipo_pizza == 'Pepperonni':
return Pepperonni()
elif tipo_pizza == 'CuatroQuesos':
return CuatroQuesos()
|
[
"[email protected]"
] | |
ab2ac02cd6537896ff4fb77625eddfaab4018631
|
bc4554057c38800a8e6b69b569c053e35018b6bb
|
/tensorflow/src/main/python/service_pb2.py
|
28c04ccf89d20b07451e71b3ddfecd1ea6dc369d
|
[
"Apache-2.0"
] |
permissive
|
yaozhang2016/deepwater
|
c9c4249371733df38bcb3e9aeb719d23500e6774
|
861a2dbeffeafab83dd53956deeb4f8193b9cb2e
|
refs/heads/master
| 2020-09-30T14:59:21.131376 | 2017-12-28T19:45:59 | 2017-12-28T19:45:59 | 73,511,061 | 0 | 0 |
Apache-2.0
| 2017-12-28T19:46:00 | 2016-11-11T20:59:18 |
C++
|
UTF-8
|
Python
| false | true | 6,555 |
py
|
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: service.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
from google.protobuf import descriptor_pb2
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor.FileDescriptor(
name='service.proto',
package='deepwater',
syntax='proto3',
serialized_pb=_b('\n\rservice.proto\x12\tdeepwater\"\r\n\x0bPingRequest\"\x08\n\x06Status2>\n\x07Service\x12\x33\n\x04Ping\x12\x16.deepwater.PingRequest\x1a\x11.deepwater.Status\"\x00\x42!\n\x10\x61i.h2o.deepwaterB\x0bGRPCServiceP\x01\x62\x06proto3')
)
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
_PINGREQUEST = _descriptor.Descriptor(
name='PingRequest',
full_name='deepwater.PingRequest',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=28,
serialized_end=41,
)
_STATUS = _descriptor.Descriptor(
name='Status',
full_name='deepwater.Status',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
],
extensions=[
],
nested_types=[],
enum_types=[
],
options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=43,
serialized_end=51,
)
DESCRIPTOR.message_types_by_name['PingRequest'] = _PINGREQUEST
DESCRIPTOR.message_types_by_name['Status'] = _STATUS
PingRequest = _reflection.GeneratedProtocolMessageType('PingRequest', (_message.Message,), dict(
DESCRIPTOR = _PINGREQUEST,
__module__ = 'service_pb2'
# @@protoc_insertion_point(class_scope:deepwater.PingRequest)
))
_sym_db.RegisterMessage(PingRequest)
Status = _reflection.GeneratedProtocolMessageType('Status', (_message.Message,), dict(
DESCRIPTOR = _STATUS,
__module__ = 'service_pb2'
# @@protoc_insertion_point(class_scope:deepwater.Status)
))
_sym_db.RegisterMessage(Status)
DESCRIPTOR.has_options = True
DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\020ai.h2o.deepwaterB\013GRPCServiceP\001'))
import grpc
from grpc.beta import implementations as beta_implementations
from grpc.beta import interfaces as beta_interfaces
from grpc.framework.common import cardinality
from grpc.framework.interfaces.face import utilities as face_utilities
class ServiceStub(object):
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Ping = channel.unary_unary(
'/deepwater.Service/Ping',
request_serializer=PingRequest.SerializeToString,
response_deserializer=Status.FromString,
)
class ServiceServicer(object):
def Ping(self, request, context):
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_ServiceServicer_to_server(servicer, server):
rpc_method_handlers = {
'Ping': grpc.unary_unary_rpc_method_handler(
servicer.Ping,
request_deserializer=PingRequest.FromString,
response_serializer=Status.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'deepwater.Service', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
class BetaServiceServicer(object):
"""The Beta API is deprecated for 0.15.0 and later.
It is recommended to use the GA API (classes and functions in this
file not marked beta) for all further purposes. This class was generated
only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0."""
def Ping(self, request, context):
context.code(beta_interfaces.StatusCode.UNIMPLEMENTED)
class BetaServiceStub(object):
"""The Beta API is deprecated for 0.15.0 and later.
It is recommended to use the GA API (classes and functions in this
file not marked beta) for all further purposes. This class was generated
only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0."""
def Ping(self, request, timeout, metadata=None, with_call=False, protocol_options=None):
raise NotImplementedError()
Ping.future = None
def beta_create_Service_server(servicer, pool=None, pool_size=None, default_timeout=None, maximum_timeout=None):
"""The Beta API is deprecated for 0.15.0 and later.
It is recommended to use the GA API (classes and functions in this
file not marked beta) for all further purposes. This function was
generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0"""
request_deserializers = {
('deepwater.Service', 'Ping'): PingRequest.FromString,
}
response_serializers = {
('deepwater.Service', 'Ping'): Status.SerializeToString,
}
method_implementations = {
('deepwater.Service', 'Ping'): face_utilities.unary_unary_inline(servicer.Ping),
}
server_options = beta_implementations.server_options(request_deserializers=request_deserializers, response_serializers=response_serializers, thread_pool=pool, thread_pool_size=pool_size, default_timeout=default_timeout, maximum_timeout=maximum_timeout)
return beta_implementations.server(method_implementations, options=server_options)
def beta_create_Service_stub(channel, host=None, metadata_transformer=None, pool=None, pool_size=None):
"""The Beta API is deprecated for 0.15.0 and later.
It is recommended to use the GA API (classes and functions in this
file not marked beta) for all further purposes. This function was
generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0"""
request_serializers = {
('deepwater.Service', 'Ping'): PingRequest.SerializeToString,
}
response_deserializers = {
('deepwater.Service', 'Ping'): Status.FromString,
}
cardinalities = {
'Ping': cardinality.Cardinality.UNARY_UNARY,
}
stub_options = beta_implementations.stub_options(host=host, metadata_transformer=metadata_transformer, request_serializers=request_serializers, response_deserializers=response_deserializers, thread_pool=pool, thread_pool_size=pool_size)
return beta_implementations.dynamic_stub(channel, 'deepwater.Service', cardinalities, options=stub_options)
# @@protoc_insertion_point(module_scope)
|
[
"[email protected]"
] | |
56a9016f9048bf93ced9d3230e3e07125c5674b2
|
01bd00e6498190aac53210689c111d72018956fa
|
/companies/migrations/0047_auto_20190917_1011.py
|
a0c9fdef406a96c4ea5f7cbf5a40000ea2755162
|
[] |
no_license
|
dchaplinsky/edrdr
|
0494b31fe3a0ce54d0cf087fb11ef709cb002810
|
e9fd5295f8c7ca7db81fce2427456e779ff6637e
|
refs/heads/master
| 2022-06-01T07:01:59.049162 | 2020-10-12T08:04:42 | 2020-10-12T08:04:42 | 122,268,695 | 0 | 1 | null | 2022-04-22T20:52:45 | 2018-02-20T23:14:48 |
CSS
|
UTF-8
|
Python
| false | false | 571 |
py
|
# Generated by Django 2.2.3 on 2019-09-17 10:11
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('companies', '0046_pepowner_person_type'),
]
operations = [
migrations.AddField(
model_name='companyrecord',
name='charter_capital',
field=models.FloatField(default=None, null=True),
),
migrations.AddField(
model_name='companyrecord',
name='reg_date',
field=models.DateField(null=True),
),
]
|
[
"[email protected]"
] | |
8a90af3d8f8303466537548fe2ee18c2d1f3d983
|
3d48edf0c7335be78cdfb27764faae78f5b92270
|
/async_property/cached.py
|
4c1fafb08e39a01b6046054e2e8fe00dacb71b25
|
[
"MIT"
] |
permissive
|
18600575648/async_property
|
fc051acb291dfe7245d874974f6486311816da8c
|
9991fe614e89c04f5d9d93e150afe6cb10a42392
|
refs/heads/master
| 2023-07-06T10:11:01.917887 | 2023-07-03T17:22:23 | 2023-07-03T17:22:23 | 468,599,873 | 0 | 0 |
MIT
| 2023-09-05T07:44:36 | 2022-03-11T03:52:48 |
Python
|
UTF-8
|
Python
| false | false | 3,948 |
py
|
import asyncio
import functools
from collections import defaultdict
from async_property.proxy import AwaitableOnly, AwaitableProxy
is_coroutine = asyncio.iscoroutinefunction
ASYNC_PROPERTY_ATTR = '__async_property__'
def async_cached_property(func, *args, **kwargs):
assert is_coroutine(func), 'Can only use with async def'
return AsyncCachedPropertyDescriptor(func, *args, **kwargs)
class AsyncCachedPropertyInstanceState:
def __init__(self):
self.cache = {}
self.lock = defaultdict(asyncio.Lock)
__slots__ = 'cache', 'lock'
class AsyncCachedPropertyDescriptor:
def __init__(self, _fget, _fset=None, _fdel=None, field_name=None):
self._fget = _fget
self._fset = _fset
self._fdel = _fdel
self.field_name = field_name or _fget.__name__
functools.update_wrapper(self, _fget)
self._check_method_sync(_fset, 'setter')
self._check_method_sync(_fdel, 'deleter')
def __set_name__(self, owner, name):
self.field_name = name
def __get__(self, instance, owner):
if instance is None:
return self
if self.has_cache_value(instance):
return self.already_loaded(instance)
return self.not_loaded(instance)
def __set__(self, instance, value):
if self._fset is not None:
self._fset(instance, value)
self.set_cache_value(instance, value)
def __delete__(self, instance):
if self._fdel is not None:
self._fdel(instance)
self.del_cache_value(instance)
def setter(self, method):
self._check_method_name(method, 'setter')
return type(self)(self._fget, method, self._fdel, self.field_name)
def deleter(self, method):
self._check_method_name(method, 'deleter')
return type(self)(self._fget, self._fset, method, self.field_name)
def _check_method_name(self, method, method_type):
if method.__name__ != self.field_name:
raise AssertionError(
f'@{self.field_name}.{method_type} name must match property name'
)
def _check_method_sync(self, method, method_type):
if method and is_coroutine(method):
raise AssertionError(
f'@{self.field_name}.{method_type} must be synchronous'
)
def get_instance_state(self, instance):
try:
return getattr(instance, ASYNC_PROPERTY_ATTR)
except AttributeError:
state = AsyncCachedPropertyInstanceState()
object.__setattr__(instance, ASYNC_PROPERTY_ATTR, state)
return state
def get_lock(self, instance):
lock = self.get_instance_state(instance).lock
return lock[self.field_name]
def get_cache(self, instance):
return self.get_instance_state(instance).cache
def has_cache_value(self, instance):
cache = self.get_cache(instance)
return self.field_name in cache
def get_cache_value(self, instance):
cache = self.get_cache(instance)
return cache[self.field_name]
def set_cache_value(self, instance, value):
cache = self.get_cache(instance)
cache[self.field_name] = value
def del_cache_value(self, instance):
cache = self.get_cache(instance)
del cache[self.field_name]
def get_loader(self, instance):
@functools.wraps(self._fget)
async def load_value():
async with self.get_lock(instance):
if self.has_cache_value(instance):
return self.get_cache_value(instance)
value = await self._fget(instance)
self.__set__(instance, value)
return value
return load_value
def already_loaded(self, instance):
return AwaitableProxy(self.get_cache_value(instance))
def not_loaded(self, instance):
return AwaitableOnly(self.get_loader(instance))
|
[
"[email protected]"
] | |
821bcebfcedc6d629c6e2fbce307378367cc9129
|
1c88eef044c7ca83b545001e123b8bf064884bb5
|
/palindrome.py
|
465ca3b80f8bfacd18257869beb6ec3ec3ac0710
|
[] |
no_license
|
JacobDuvall/demosPy
|
05329592ad8526d0d72201a68faf7c8234774f73
|
c039943869d3a2cd62c4b6ff759857d3b5e7054e
|
refs/heads/master
| 2020-06-17T21:48:06.066695 | 2019-07-09T20:04:36 | 2019-07-09T20:04:36 | 196,067,803 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,409 |
py
|
import unittest
def digits(x):
"""Convert an integer into a list of digits.
Args:
x: The number whose digits we want.
Returns: A list of the digits, in order, of ``x``.
>>> digits(4586378)
[8, 7, 3, 6, 8, 5, 4]
"""
digs = []
while x != 0:
div, mod = divmod(x, 10)
digs.append(mod)
x = div
return digs
def is_palindrome(x):
"""Determine if an integer is a palindrome.
Args:
x: The number to check for palindromicity
Returns: True if the digits of ``x`` are a palindrome,
False otherwise.
>>> is_palindrome(1234)
False
>>> is_palindrome(2468642)
True
"""
digs = digits(x)
for f, r in zip(digs, reversed(digs)):
if f != r:
return False
return True
class Tests(unittest.TestCase):
"""Tests for the ``is_palindrome()`` function."""
def test_negative(self):
"Check that it returns False correctly."
self.assertFalse(is_palindrome(1234))
def test_positive(self):
"Check that it returns True correctly."
self.assertTrue(is_palindrome(1234321))
def test_single_digit(self):
"Check that it works for single digit numbers."
for i in range(10):
self.assertTrue(is_palindrome(i))
if __name__ == '__main__':
unittest.main()
|
[
"[email protected]"
] | |
f56c028822bfdd5126fdc099e68d3428e87abf7e
|
4762812376ef609248cbfad1d9b7586b3046877b
|
/ex4.py
|
f23947aa72fdfd443aa14370a14fddf799637527
|
[] |
no_license
|
Evansbee/Euler
|
8fa53c330d2de9d174dc4eb92e937a45d6c93d03
|
ca5ab80b291e47dcccb2b71be9b6f7749fab3c5d
|
refs/heads/master
| 2021-01-10T20:20:30.094465 | 2012-07-09T20:36:21 | 2012-07-09T20:36:21 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 328 |
py
|
def isPalindromic(number):
forward = str(number)
for i in range(0,len(forward)/2):
if forward[i] != forward[len(forward)-1-i]:
return False
return True
large = 0
for i in range(100,999):
for j in range(100,999):
if isPalindromic(i * j) and i*j>large:
large = i*j
print large
|
[
"[email protected]"
] | |
94ec66eea7c4ae730b2e71fc18b4f51f42d5626a
|
8f11b828a75180161963f082a772e410ad1d95c6
|
/packages/python/ram/ai/__init__.py
|
7fc0cd75962ad19cb0295be679c48e2ac7cb2ab8
|
[] |
no_license
|
venkatarajasekhar/tortuga
|
c0d61703d90a6f4e84d57f6750c01786ad21d214
|
f6336fb4d58b11ddfda62ce114097703340e9abd
|
refs/heads/master
| 2020-12-25T23:57:25.036347 | 2017-02-17T05:01:47 | 2017-02-17T05:01:47 | 43,284,285 | 0 | 0 | null | 2017-02-17T05:01:48 | 2015-09-28T06:39:21 |
C++
|
UTF-8
|
Python
| false | false | 282 |
py
|
# Copyright (C) 2007 Maryland Robotics Club
# Copyright (C) 2007 Joseph Lisee <[email protected]>
# All rights reserved.
#
# Author: Joseph Lisee <[email protected]>
# File: packages/python/ram/ai/__init__.py
# To allow the registration of SubsystemMakers
#import ram.ai.state as _state
|
[
"[email protected]"
] | |
4f87ef787f99622218a8f9229d6cbec20706919e
|
ad08d9c54500dde36e3067a9e1781d5ed7eff2f5
|
/app/utils/tests/test_xmlutils.py
|
938086a0e9c289d4c700e49de24f6ae8882988c4
|
[
"MIT"
] |
permissive
|
a410202049/flask_base_plus
|
0930ff9c1cc9f469e1915c46759a31300ee16cb2
|
c04ce546f02073c037dcfa6304c11c91dd3f6e48
|
refs/heads/master
| 2023-08-17T05:54:54.793871 | 2023-08-08T07:55:27 | 2023-08-08T07:55:27 | 141,976,633 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,246 |
py
|
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import unicode_literals
from test.unit.base import BaseTestCase
from utils.xmlutils import XMLUtils
class XMLUtilsTestCase(BaseTestCase):
"""
XMLUtilsTestCase
"""
def setUp(self):
pass
def tearDown(self):
pass
def test_xml2json(self):
xml_str = """
<BOSFXII xmlns="http://www.bankofshanghai.com/BOSFX/2010/08" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.bankofshanghai.com/BOSFX/2010/08 BOSFX2.0.xsd">
<XXXRq>
<CommonRqHdr>
<SPName>CBIB</SPName>
<RqUID>20150324800148246569</RqUID>
<ClearDate>20160331</ClearDate>
<TranDate>20160331</TranDate>
<TranTime>094338</TranTime>
<ChannelId/>
</CommonRqHdr>
<SubAcctNo>11022133</SubAcctNo>
<ProductCd>zzzzzz</ProductCd>
<Amount>11.02</Amount>
<Currency>156</Currency>
<TheirRef>AAA子账户转第三方(带赎回)</TheirRef>
<Purpose>AAA赎回</Purpose>
<Attach/>
<MemoInfo/>
<KoalB64Cert/>
<Signature/>
</XXXRq>
</BOSFXII>
"""
result = XMLUtils.xml2json(xml_str, need_dict=True)
self.assertEquals(result['BOSFXII']['XXXRq']['CommonRqHdr']['SPName'], 'CBIB')
def test_json2xml(self):
"""
json 字典必须有根元素
:return:
"""
json_data = {
"planets": {
"planet": [
{
"name": "Earth",
"radius": "6,371km"
},
{
"name": "Jupiter",
"radius": "69,911km"
},
{
"name": "Mars",
"radius": "3,390km"
}
],
"@xmlns": "http://www.bankofshanghai.com/BOSFX/2010/08"
},
}
result = XMLUtils.json2xml(json_data)
print result
|
[
"[email protected]"
] | |
96f433aced319800863be7a4873988b2e33c95bd
|
93c2f6a2eb88b67bc05f44ce901bc97878baddae
|
/flask_app/demo.py
|
ae4ec7c94074635d5a7c1fbc21abc6054a355bea
|
[] |
no_license
|
bkwi/wsgi-mux
|
dcbb827935e5bc7d646a2e8f83cca20f7d8a5bdc
|
386993473afcb75496ce2ef2d117d9619faa68f1
|
refs/heads/master
| 2021-01-12T03:20:22.602615 | 2017-01-06T10:17:56 | 2017-01-06T10:17:56 | 78,196,713 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 169 |
py
|
from flask import Flask, jsonify
app = Flask(__name__)
@app.route("/")
def hello():
return jsonify({'hello': 'flask'})
if __name__ == '__main__':
app.run()
|
[
"[email protected]"
] | |
307c00d035a25804ae38db2b5307c2a05f375b30
|
629bdff88aa44482487db5759607cff042e192b0
|
/users/views.py
|
88f000e048fe6607d671a8e1dc2e63d9c2b1f5d0
|
[] |
no_license
|
sharkops/LearningDjango1.11
|
2a51c15efb8a571e2b973642c5272dd5a1d8474a
|
5a4821eff30a609f48a5c9d39f7294d3913b732b
|
refs/heads/master
| 2020-04-01T03:36:19.188854 | 2018-10-13T12:26:41 | 2018-10-13T12:26:41 | 152,828,449 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,152 |
py
|
from django.shortcuts import render, HttpResponse
# Create your views here.
from django import forms
from captcha.fields import CaptchaField
from django.contrib.auth.hashers import make_password
class CaptchaTestForm(forms.Form):
email = forms.EmailField()
password = forms.CharField(min_length=6)
captcha = CaptchaField(error_messages={
"invalid": "验证码错误"
})
def some_view(request):
if request.POST:
register_form = CaptchaTestForm(request.POST)
if register_form.is_valid():
user_name = register_form.cleaned_data.get('email')
password = register_form.cleaned_data.get('password')
print(user_name, password)
password = make_password(password)
from users.models import UserProfile
UserProfile.objects.create(**{"username": user_name,
"email": user_name,
"password": password})
return HttpResponse("注册成功")
else:
register_form = CaptchaTestForm()
return render(request, 'register.html', locals())
|
[
"[email protected]"
] | |
01cead2a52a45405b93f86e704c848a52bea8b47
|
46c7e77d103a29f4cf94fea908fff34a2c13c8ad
|
/run.py
|
f7ab7cd9ea8f2348a77846c8a484ba51741781cd
|
[] |
no_license
|
baxtergu/ipe-crawler
|
b857a64185f3e4ead3f602282ce0d9ec7766e0ac
|
990e5aa38a65df45881de72d49f5e655b36234cc
|
refs/heads/master
| 2021-01-23T09:25:58.819170 | 2017-09-06T08:26:30 | 2017-09-06T08:26:30 | 102,580,328 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 78 |
py
|
from scrapy import cmdline
cmdline.execute("scrapy crawl exhaust_gas".split())
|
[
"[email protected]"
] | |
061a7f633a644ce258c8c3f0705117b3af16de49
|
4cc19ea37ba4b746c34aafc3c1391c54dbef65b3
|
/src/inner_source/manage.py
|
9a53b73ee6d62970c15c7bb7c268bf728dc2ad92
|
[
"Apache-2.0"
] |
permissive
|
innersourcedo/intergrow
|
d8684d3f7e59dbb874c71f9d3ba814444f1ba74d
|
7fb0854fc62e5cd719961e6201f73197bc3cd445
|
refs/heads/master
| 2020-08-25T04:47:35.420424 | 2020-01-23T15:08:46 | 2020-01-23T15:08:46 | 216,962,847 | 1 | 2 |
Apache-2.0
| 2020-03-20T21:29:46 | 2019-10-23T03:46:59 |
Python
|
UTF-8
|
Python
| false | false | 653 |
py
|
#!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'inner_source.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
fa06c71dbb665db2798a80f020f94620ea392755
|
93b7700d0deba59c6752693e9eda9047dd7b92f0
|
/action/evaluation/eval_classification.py
|
20580c5e9cfd545e99307c7045f9b939dd7f8af1
|
[
"MIT",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
scape1989/IKEA_ASM_Dataset
|
238851979d8a1cff53fb7bc41092a0a308043a95
|
1627ba894c974cf45a653d79598120202ea658b5
|
refs/heads/master
| 2022-12-24T10:29:13.705768 | 2020-09-28T23:57:12 | 2020-09-28T23:57:12 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 10,190 |
py
|
# source: ActivityNet: https://github.com/activitynet/ActivityNet/blob/master/Evaluation/eval_classification.py
# adapted to python3 and the IKEA ASM dataset
import json
# import urllib2
import numpy as np
import pandas as pd
# from utils import get_blocked_videos
from eval_utils import interpolated_prec_rec
class ANETclassification(object):
GROUND_TRUTH_FIELDS = ['version', 'database'] #['database', 'taxonomy', 'version']
PREDICTION_FIELDS = ['results', 'version'] #['results', 'version', 'external_data']
def __init__(self, ground_truth_filename=None, prediction_filename=None,
ground_truth_fields=GROUND_TRUTH_FIELDS,
prediction_fields=PREDICTION_FIELDS,
subset='validation', verbose=False, top_k=3,
check_status=True):
if not ground_truth_filename:
raise IOError('Please input a valid ground truth file.')
if not prediction_filename:
raise IOError('Please input a valid prediction file.')
self.subset = subset
self.verbose = verbose
self.gt_fields = ground_truth_fields
self.pred_fields = prediction_fields
self.top_k = top_k
self.ap = None
self.hit_at_k = None
self.check_status = check_status
# # Retrieve blocked videos from server.
# if self.check_status:
# self.blocked_videos = get_blocked_videos()
# else:
# self.blocked_videos = list()
# Import ground truth and predictions.
self.ground_truth, self.activity_index = self._import_ground_truth(
ground_truth_filename)
self.prediction = self._import_prediction(prediction_filename)
if self.verbose:
print('[INIT] Loaded annotations from {} subset.'.format(subset))
nr_gt = len(self.ground_truth)
print('\tNumber of ground truth instances: {}'.format(nr_gt))
nr_pred = len(self.prediction)
print('\tNumber of predictions: {}'.format(nr_pred))
def _import_ground_truth(self, ground_truth_filename):
"""Reads ground truth file, checks if it is well formatted, and returns
the ground truth instances and the activity classes.
Parameters
----------
ground_truth_filename : str
Full path to the ground truth json file.
Outputs
-------
ground_truth : df
Data frame containing the ground truth instances.
activity_index : dict
Dictionary containing class index.
"""
with open(ground_truth_filename, 'r') as fobj:
data = json.load(fobj)
# Checking format
if not all([field in data.keys() for field in self.gt_fields]):
raise IOError('Please input a valid ground truth file.')
# Initialize data frame
activity_index, cidx = {}, 0
video_lst, label_lst = [], []
for videoid, v in data['database'].items():
if self.subset != v['subset']:
continue
# if videoid in self.blocked_videos:
# continue
for ann in v['annotation']:
if ann['label'] not in activity_index:
activity_index[ann['label']] = cidx
cidx += 1
video_lst.append(videoid)
label_lst.append(activity_index[ann['label']])
ground_truth = pd.DataFrame({'video-id': video_lst,
'label': label_lst})
ground_truth = ground_truth.drop_duplicates().reset_index(drop=True)
return ground_truth, activity_index
def _import_prediction(self, prediction_filename):
"""Reads prediction file, checks if it is well formatted, and returns
the prediction instances.
Parameters
----------
prediction_filename : str
Full path to the prediction json file.
Outputs
-------
prediction : df
Data frame containing the prediction instances.
"""
with open(prediction_filename, 'r') as fobj:
data = json.load(fobj)
# Checking format...
if not all([field in data.keys() for field in self.pred_fields]):
raise IOError('Please input a valid prediction file.')
# Initialize data frame
video_lst, label_lst, score_lst = [], [], []
for videoid, v in data['results'].items():
# if videoid in self.blocked_videos:
# continue
for result in v:
label = self.activity_index[result['label']]
video_lst.append(videoid)
label_lst.append(label)
score_lst.append(result['score'])
prediction = pd.DataFrame({'video-id': video_lst,
'label': label_lst,
'score': score_lst})
return prediction
def wrapper_compute_average_precision(self):
"""Computes average precision for each class in the subset.
"""
ap = np.zeros(len(self.activity_index.items()))
for activity, cidx in self.activity_index.items():
gt_idx = self.ground_truth['label'] == cidx
pred_idx = self.prediction['label'] == cidx
ap[cidx] = compute_average_precision_classification(
self.ground_truth.loc[gt_idx].reset_index(drop=True),
self.prediction.loc[pred_idx].reset_index(drop=True))
return ap
def evaluate(self):
"""Evaluates a prediction file. For the detection task we measure the
interpolated mean average precision to measure the performance of a
method.
"""
ap = self.wrapper_compute_average_precision()
hit_at_k = compute_video_hit_at_k(self.ground_truth,
self.prediction, top_k=self.top_k)
avg_hit_at_k = compute_video_hit_at_k(
self.ground_truth, self.prediction, top_k=self.top_k, avg=True)
if self.verbose:
print ('[RESULTS] Performance on ActivityNet untrimmed video '
'classification task.')
print('\tMean Average Precision: {}'.format(ap.mean()))
print('\tHit@{}: {}'.format(self.top_k, hit_at_k))
print('\tAvg Hit@{}: {}'.format(self.top_k, avg_hit_at_k))
self.ap = ap
self.hit_at_k = hit_at_k
self.avg_hit_at_k = avg_hit_at_k
################################################################################
# Metrics
################################################################################
def compute_average_precision_classification(ground_truth, prediction):
"""Compute average precision (classification task) between ground truth and
predictions data frames. If multiple predictions occurs for the same
predicted segment, only the one with highest score is matched as
true positive. This code is greatly inspired by Pascal VOC devkit.
Parameters
----------
ground_truth : df
Data frame containing the ground truth instances.
Required fields: ['video-id']
prediction : df
Data frame containing the prediction instances.
Required fields: ['video-id, 'score']
Outputs
-------
ap : float
Average precision score.
"""
npos = float(len(ground_truth))
lock_gt = np.ones(len(ground_truth)) * -1
# Sort predictions by decreasing score order.
sort_idx = prediction['score'].values.argsort()[::-1]
prediction = prediction.loc[sort_idx].reset_index(drop=True)
# Initialize true positive and false positive vectors.
tp = np.zeros(len(prediction))
fp = np.zeros(len(prediction))
# Assigning true positive to truly grount truth instances.
for idx in range(len(prediction)):
this_pred = prediction.loc[idx]
gt_idx = ground_truth['video-id'] == this_pred['video-id']
# Check if there is at least one ground truth in the video associated.
if not gt_idx.any():
fp[idx] = 1
continue
this_gt = ground_truth.loc[gt_idx].reset_index()
if lock_gt[this_gt['index']] >= 0:
fp[idx] = 1
else:
tp[idx] = 1
lock_gt[this_gt['index']] = idx
# Computing prec-rec
tp = np.cumsum(tp).astype(np.float)
fp = np.cumsum(fp).astype(np.float)
rec = tp / npos
prec = tp / (tp + fp)
return interpolated_prec_rec(prec, rec)
def compute_video_hit_at_k(ground_truth, prediction, top_k=3, avg=False):
"""Compute accuracy at k prediction between ground truth and
predictions data frames. This code is greatly inspired by evaluation
performed in Karpathy et al. CVPR14.
Parameters
----------
ground_truth : df
Data frame containing the ground truth instances.
Required fields: ['video-id', 'label']
prediction : df
Data frame containing the prediction instances.
Required fields: ['video-id, 'label', 'score']
Outputs
-------
acc : float
Top k accuracy score.
"""
video_ids = np.unique(ground_truth['video-id'].values)
avg_hits_per_vid = np.zeros(video_ids.size)
for i, vid in enumerate(video_ids):
pred_idx = prediction['video-id'] == vid
if not pred_idx.any():
continue
this_pred = prediction.loc[pred_idx].reset_index(drop=True)
# Get top K predictions sorted by decreasing score.
sort_idx = this_pred['score'].values.argsort()[::-1][:top_k]
this_pred = this_pred.loc[sort_idx].reset_index(drop=True)
# Get labels and compare against ground truth.
pred_label = this_pred['label'].tolist()
gt_idx = ground_truth['video-id'] == vid
gt_label = ground_truth.loc[gt_idx]['label'].tolist()
avg_hits_per_vid[i] = np.mean([1 if this_label in pred_label else 0
for this_label in gt_label])
if not avg:
avg_hits_per_vid[i] = np.ceil(avg_hits_per_vid[i])
return float(avg_hits_per_vid.mean())
|
[
"[email protected]"
] | |
62468571196349acaac805658ec61d5532fcb955
|
dc4a42ad81013a1fdaa0c6be0559504e17bacb7e
|
/products/admin.py
|
a845d9021b184ff03ccdeed387467a77c73d2d28
|
[] |
no_license
|
deone/eqsupply
|
15afbda692779431357d2c69475da8503c4728b1
|
3af726b65c1658d364c6485ad36ef98d5c6e7fc3
|
refs/heads/master
| 2020-04-20T05:29:53.020966 | 2010-05-13T09:16:18 | 2010-05-13T09:16:18 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 229 |
py
|
from django.contrib import admin
from eqsupply.products.models import *
admin.site.register(Division)
admin.site.register(Category)
admin.site.register(Product)
admin.site.register(Accessory)
admin.site.register(ProductVariant)
|
[
"[email protected]"
] | |
0f19c8558985ad4cf18f9f3fe0bc103b1b031536
|
3121a85f6578b849c44a7c23d10454d4965616d2
|
/blog/forms/article.py
|
ace0c9c7c08b53f291c2a75184adee899956a521
|
[] |
no_license
|
myalcins/django-blog-tutorial
|
1bdaf2ac1437f6b4e25af1c2fdb3799b257701e8
|
eb7355952b2db164935c5302aecde1331379c515
|
refs/heads/master
| 2023-03-28T07:47:09.997745 | 2021-03-26T13:34:23 | 2021-03-26T13:34:23 | 350,349,811 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 400 |
py
|
from django import forms
from blog.models import Article
class ArticleForm(forms.ModelForm):
schedule_time = forms.DateTimeField(required=False ,input_formats=['%Y/%m/%d %H:%M'])
class Meta:
model = Article
fields = (
'image',
'title',
'content',
'category',
'schedule_time'
)
|
[
"[email protected]"
] | |
c4fa34f9aadc2e77c1beedfb47dbd46c1082e9cf
|
173488cc5a6b58a3d616fa61e150676c7d4937b3
|
/twentyThirdSuccessorArray.py
|
b253598013ce8f76eebc6a15901e0cb8f34f354c
|
[
"MIT"
] |
permissive
|
MSQFuersti/aoc2020
|
ef0bc2091b0e57704ccace9d15a676b5be0c7025
|
f5e163c426a6c481d645ace2cc8af7c493306291
|
refs/heads/master
| 2023-02-04T04:03:21.559461 | 2020-12-29T13:04:40 | 2020-12-29T13:04:40 | 318,316,081 | 0 | 0 |
MIT
| 2020-12-07T21:31:28 | 2020-12-03T20:49:19 |
Python
|
UTF-8
|
Python
| false | false | 977 |
py
|
puzzleInput = '614752839'
# puzzleInput = '389125467'
labels = [int(char) for char in puzzleInput]
labels.extend(list(range(10, 1000001)))
successors = {}
for index, label in enumerate(labels):
successors[label] = labels[index + 1] if index + 1 < len(labels) else labels[0]
currentCup = labels[0]
for _ in range(10000000):
cupOne = successors[currentCup]
cupTwo = successors[cupOne]
cupThree = successors[cupTwo]
takenCups = [cupOne, cupTwo, cupThree]
successors[currentCup] = successors[cupThree]
destinationCup = currentCup - 1
while True:
if destinationCup < 1:
destinationCup = 1000000
continue
if destinationCup in takenCups:
destinationCup = destinationCup - 1
continue
break
successors[cupThree] = successors[destinationCup]
successors[destinationCup] = cupOne
currentCup = successors[currentCup]
print(successors[1] * successors[successors[1]])
|
[
"[email protected]"
] | |
3f4c690093e0de6b4135513bea417fc2a6a5abf2
|
cd61ab53fd77d9b8e136c3e6fd575266a7450038
|
/apps/pinkslips/migrations/0013_auto_20180303_2042.py
|
1d341d1a45151869bdcb55013450da511b8cc825
|
[] |
no_license
|
vincentereyes/phpslips
|
c6e6885f4ca67b27da8783014d95a491ce797e64
|
9fc7c16806618cccbd1a24f957594d0ff8eb12f9
|
refs/heads/master
| 2021-01-25T14:55:25.253031 | 2018-03-03T21:38:30 | 2018-03-03T21:38:30 | 123,733,646 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 968 |
py
|
# -*- coding: utf-8 -*-
# Generated by Django 1.10 on 2018-03-03 20:42
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('pinkslips', '0012_auto_20180303_0916'),
]
operations = [
migrations.AlterField(
model_name='conversation',
name='latitude',
field=models.FloatField(default=121.031851),
),
migrations.AlterField(
model_name='conversation',
name='latitude2',
field=models.FloatField(default=121.057307),
),
migrations.AlterField(
model_name='conversation',
name='longitude',
field=models.FloatField(default=14.652723),
),
migrations.AlterField(
model_name='conversation',
name='longitude2',
field=models.FloatField(default=14.605568),
),
]
|
[
"[email protected]"
] | |
f0ec9069cd636274166bcd07ca0cebc104ee447b
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03598/s680963277.py
|
c8861d19ff2e2ce27d5b6a660a4fb273c93d87c7
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 173 |
py
|
N = int(input())
K = int(input())
x = list(map(int, input().split()))
A=[]
B=[]
for i in range(len(x)):
a = min(2*(x[i]), 2*abs(K-x[i]))
A.append(a)
print(sum(A))
|
[
"[email protected]"
] | |
036c944ee8502521b61d3c999781a4203c459970
|
7287193205f0e660ad99806c32a417a759db7a15
|
/survey_project/surveys/migrations/0002_surveyquestion_freetext_answer_available.py
|
6fd48481f913c7f2e1ba5f611e984349ca5e9b5a
|
[] |
no_license
|
pikkoui/survey
|
4a8f2df595a60499ccc976b2a2dc4ef88abfd075
|
d13c6a13abf4e1c18e433e3fd621e031bf430008
|
refs/heads/master
| 2023-08-27T21:27:31.271966 | 2021-11-11T17:33:46 | 2021-11-11T17:33:46 | 426,996,308 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 439 |
py
|
# Generated by Django 2.1.15 on 2021-11-05 09:58
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('surveys', '0001_initial'),
]
operations = [
migrations.AddField(
model_name='surveyquestion',
name='freetext_answer_available',
field=models.BooleanField(default=True),
preserve_default=False,
),
]
|
[
"[email protected]"
] | |
ee60c445bcd85a698f8701cbcc83850110f22520
|
f2a41d0f1fb7ef08e4992035c37438d9cd55d8b6
|
/FreeFishMaster/wsgi.py
|
405e26a7d6c06e969e9bbf104660f7b4cbb43b61
|
[
"MIT"
] |
permissive
|
xzengCB/FreeFishMaster
|
65f2fe116ea91e4ad3bc28bb3a5d6f4b09f06688
|
14418e108d1a25c56ff2e9801f4256f05f154c67
|
refs/heads/master
| 2021-01-01T16:18:18.341137 | 2017-08-01T05:21:48 | 2017-08-01T05:21:48 | 97,806,346 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 405 |
py
|
"""
WSGI config for FreeFishMaster project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "FreeFishMaster.settings")
application = get_wsgi_application()
|
[
"[email protected]"
] | |
2d70628d12511e51669b1661da522af5c72fb1a5
|
40c11c748f159d35cad1bc648509fc23fc7c0a8b
|
/l10n_py_base/res_currency_rate.py
|
ed151867088e6262f591a1d5a909226d275299f4
|
[] |
no_license
|
Icaruspy/addons
|
db4b1e33e046906aaf485b341d703dfb9b286565
|
93cb3352abb2998c33399170dd66329e39528a0e
|
refs/heads/master
| 2020-12-30T09:38:21.920380 | 2015-12-13T16:17:48 | 2015-12-13T16:17:48 | 39,844,715 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,219 |
py
|
# -*- encoding: utf-8 -*-
#################################################################################
# #
# Copyright (C) 2009 Renato Lima - Akretion, Gabriel C. Stabel #
# #
#This program is free software: you can redistribute it and/or modify #
#it under the terms of the GNU General Public License as published by #
#the Free Software Foundation, either version 3 of the License, or #
#(at your option) any later version. #
# #
#This program is distributed in the hope that it will be useful, #
#but WITHOUT ANY WARRANTY; without even the implied warranty of #
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
#GNU General Public License for more details. #
# #
#You should have received a copy of the GNU General Public License #
#along with this program. If not, see <http://www.gnu.org/licenses/>. #
#################################################################################
from openerp.osv import osv, fields
##############################################################################
# Parceiro Personalizado
##############################################################################
class res_currency_rate(osv.osv):
_inherit = 'res.currency.rate'
_columns = {
'tasa': fields.integer('Tasa Gs', digits=(16,2), required=True ),
}
# funcion para calcular el ratio estandart de trabajo de openerp
# en paraguay se usa el valor de tasa en guaranies
def on_change_tasa(self, cr, uid, ids, tasa , rate ):
rate3 = rate
rate3 = 1.000000000 / tasa
return {'value': { 'rate': rate3 } }
res_currency_rate()
# vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
|
[
"[email protected]"
] | |
07fed4cb0ac0a9c9fe7cf77a4577b118c598fd1f
|
6147d3da9c7f31a658f13892de457ed5a9314b22
|
/multithreading/without_threading.py
|
4f637839a61975629dea515f930117251368c52c
|
[] |
no_license
|
ashish-bisht/must_do_geeks_for_geeks
|
17ba77608eb2d24cf4adb217c8e5a65980e85609
|
7ee5711c4438660db78916cf876c831259109ecc
|
refs/heads/master
| 2023-02-11T22:37:03.302401 | 2021-01-03T05:53:03 | 2021-01-03T05:53:03 | 320,353,079 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 285 |
py
|
import threading
import time
start = time.perf_counter()
def working_on_something():
print("Sleeping for a sec")
time.sleep(1)
print("Woke up")
working_on_something()
working_on_something()
finish = time.perf_counter()
print("total time taken is ", finish - start)
|
[
"[email protected]"
] | |
55a67241ba31a2e626f336bfab70b83ce1f840a7
|
29cf500c7958da5a22829e8da85c5229e6445848
|
/rent/apps/authentication/models.py
|
e0d6fe2b451369d10ddc43afe75d2caf0179e412
|
[
"MIT"
] |
permissive
|
lenileiro/rent-django
|
86562af09fffe77fbf20a61b0c0981cf8df7cfc2
|
850d208fd93a7424a5c11b268df6c7c94add518d
|
refs/heads/develop
| 2022-12-12T13:25:44.584374 | 2019-08-24T23:54:48 | 2019-08-24T23:54:48 | 201,096,792 | 1 | 0 |
MIT
| 2022-12-08T06:00:03 | 2019-08-07T17:32:48 |
Python
|
UTF-8
|
Python
| false | false | 3,430 |
py
|
import re
from datetime import datetime, timedelta
from django.conf import settings
from django.contrib.auth.models import (
AbstractBaseUser, BaseUserManager, PermissionsMixin
)
from django.db import models
class Utils:
@staticmethod
def validate_email(email):
check_email = User.objects.filter(email=email)
email_regex = r'^([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-]+\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$'
if not re.search(email_regex, email):
raise TypeError("Incorrect email format please try again")
if check_email.exists():
raise TypeError("This email has already been used to create a user")
return email
# Create your models here.
class UserManager(BaseUserManager):
def create_user(self, name=None, email=None, password=None):
"""Create and return a `User` with an email, username and password."""
if name is None:
raise TypeError('User must have a name.')
if email is None:
raise TypeError('User must have an email address.')
if password is None:
raise TypeError('User Account must have a password.')
Utils.validate_email(email)
user = self.model(name=name, email=self.normalize_email(email))
user.set_password(password)
user.save()
return user
def create_superuser(self, name, email, password):
if password is None:
raise TypeError('Superuser must have a password.')
user = self.create_user(name, email, password)
user.is_superuser = True
user.is_staff = True
user.save()
return user
def create_owneruser(self, name, email, password):
user = self.create_user(name, email, password)
user.is_owner = True
user.save()
return user
def create_vendoruser(self, name, email, password, phone=None,contactperson=None):
if phone is None:
raise TypeError('Vendor Account must have a phone number.')
if contactperson is None:
raise TypeError('Vendor Account must have a contactperson.')
user = self.create_user(name, email, password)
user.is_vendor = True
user.phone = phone
user.contactperson = contactperson
user.save()
return user
class User(AbstractBaseUser, PermissionsMixin):
name = models.CharField(max_length=255)
email = models.EmailField(db_index=True, unique=True)
is_active = models.BooleanField(default=True)
is_vendor = models.BooleanField(default=False)
is_owner = models.BooleanField(default=False)
is_active = models.BooleanField(default=True)
is_staff = models.BooleanField(default=False)
created_at = models.DateTimeField(auto_now_add=True)
phone = models.CharField(default=False, max_length=255)
contactperson = models.CharField(default=False, max_length=255)
USERNAME_FIELD = 'email'
REQUIRED_FIELDS = ['name']
objects = UserManager()
def __str__(self):
return self.email
@property
def is_SuperUser(self):
return self.is_superuser
@property
def is_Owner(self):
return self.is_owner
@property
def is_Vendor(self):
return self.is_vendor
|
[
"[email protected]"
] | |
149385687b03ae443a677201627cdcc4ec051156
|
78e5bd1977cfb8d077a2999cae42a065c13452aa
|
/kaggle_event_recommendation/event_attendees.py
|
16b6943e083432543ec58877dc44181bf037134b
|
[] |
no_license
|
loyalzc/recommendation-system
|
9ed3f6ea781c6de1e77a50bbd316d87f8970aadd
|
6ac748e8d1b6fa252fd7188a315f0c4d75216e9a
|
refs/heads/master
| 2020-03-13T14:20:32.335425 | 2019-04-14T13:08:15 | 2019-04-14T13:08:15 | 131,156,451 | 1 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,168 |
py
|
# -*- coding: utf-8 -*-
"""
@author: Infaraway
@time: 2018/5/10 21:07
@Function: event 热度 活跃度
"""
import scipy.sparse as ss
import scipy.io as sio
from sklearn.preprocessing import normalize
class EventAttendees:
"""
统计活动 参加和不参加的人数
"""
def __init__(self, user_event_entity):
num_event = len(user_event_entity.event_index.keys())
self.event_poplarity = ss.dok_matrix((num_event, 1))
with open('data/event_attendees.csv', 'r') as event_att_f:
event_att_f.readline()
for line in event_att_f.readlines():
cols = line.strip().split(',')
event_id = cols[0]
if user_event_entity.event_index.__contains__(event_id):
event_index = user_event_entity.event_index[event_id]
# event 流行度 num_yes - num_no
self.event_poplarity[event_index, 0] = len(cols[1].split(' ')) - len(cols[4].split(' '))
self.event_poplarity = normalize(self.event_poplarity, norm='l1', axis=0, copy=False)
sio.mmwrite('prep_data/event_popularlity', self.event_poplarity)
|
[
"[email protected]"
] | |
f6fd2ac63f906cc9143cc1e76d8f6cdd8f119ab8
|
b3d0359204431dec3f96a0fc99c5260b9a810c91
|
/__latest_version.py
|
9e7f0197ec3ee9e69660392a6526c5ba4efc68ac
|
[
"MIT"
] |
permissive
|
marcel-valdez/launchpad-helper
|
d9fef583af8b055ae26dd555dae306775492f760
|
97682cb547c162ca4cc88ccd003285e59cc4eef1
|
refs/heads/master
| 2021-01-19T02:14:21.660848 | 2016-08-09T18:51:09 | 2016-08-09T18:51:09 | 61,316,092 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,345 |
py
|
#!/usr/bin/env python
import sys
from launchpadlib.launchpad import Launchpad
__DEBUG__ = False
DISTRO = 'ubuntu'
RELEASE = 'trusty'
ARCHITECTURE = 'amd64'
DISTRO_ARCH_SERIES_URL = 'https://api.launchpad.net/1.0/' + DISTRO + '/' + RELEASE + '/' + ARCHITECTURE
## TODO: Accept multiple app names and get all their versions line per line
def get_ppa_archive(launchpad, ppa_url):
(prefix, rest_ppa_url) = str.split(ppa_url, ':')
(owner_name, package_name) = str.split(rest_ppa_url, '/')
owner = launchpad.people[owner_name]
return owner.getPPAByName(name = package_name)
def get_distro_archive(launchpad, distro_name = DISTRO):
distro = launchpad.distributions[distro_name]
return distro.main_archive
def get_latest_source(archive, app_name, distro_url = DISTRO_ARCH_SERIES_URL):
for series in archive.distribution.series.entries:
if series['displayname'].lower() == RELEASE.lower():
distro_series = series['self_link']
sources = archive.getPublishedSources(
status = 'Published',
exact_match = True,
source_name = app_name,
distro_series = distro_series
)
if len(sources) == 0:
print("No entries found for app: " + sys.argv[1] + " in archive: " + str(archive))
sys.exit(1)
elif __DEBUG__ == True:
print("Found " + str(len(sources)) + " matches")
for source in sources:
print(str(source.display_name))
return sources[0]
def get_latest_package(archive, app_name, distro_url = DISTRO_ARCH_SERIES_URL):
binaries = archive.getPublishedBinaries(
status = 'Published',
exact_match = True,
binary_name = app_name,
distro_arch_series = distro_url
)
if len(binaries) == 0:
print("No entries found for app: " + sys.argv[1] + " in archive: " + str(archive))
sys.exit(1)
elif __DEBUG__ == True:
print("Found " + str(len(binaries)) + " matches")
for sources in binaries:
print(str(sources.display_name))
return binaries[0]
def parse_args():
if len(sys.argv) < 2:
print("Usage: " + sys.argv[0] + " <app name> [ppa url]")
print("Example: " + sys.argv[0] + " solaar ppa:daniel.pavel/solaar")
sys.exit(1)
app_name = sys.argv[1]
ppa_url = None
if len(sys.argv) > 2:
ppa_url = sys.argv[2]
get_url = None
if len(sys.argv) > 3:
get_url = sys.argv[3].lower() == "--get_url"
return { 'app_name': app_name, 'ppa_url': ppa_url, 'get_url': get_url }
def print_api(obj):
print('lp_attributes: ' + str(sorted(obj.lp_attributes)))
print('lp_operations: ' + str(sorted(obj.lp_operations)))
print('lp_entries: ' + str(sorted(obj.lp_entries)))
print('lp_collections: ' + str(sorted(obj.lp_collections)))
def get_archive(ppa_url):
launchpad = Launchpad.login_anonymously('launchpad-helper', 'production')
if ppa_url != None:
return get_ppa_archive(launchpad, ppa_url)
else:
return get_distro_archive(launchpad)
def get_latest_url(archive, app_name):
return get_latest_source(archive, app_name).binaryFileUrls()[0]
def get_latest_version(archive, app_name):
return get_latest_source(archive, app_name).source_package_version
if __name__ == '__main__':
args = parse_args()
archive = get_archive(args['ppa_url'])
if args['get_url'] == True:
print(get_latest_url(archive, args['app_name']))
else:
print(get_latest_version(archive, args['app_name']))
sys.exit(0)
|
[
"[email protected]"
] | |
9ab7745e8b4d48edd0fe67af3de20eca60454dcc
|
f59a3641f488dd40b0af4c0024a252170ab59998
|
/chap4/p35.py
|
d89dca31848be92a9ad88a15209c75b1fe2ad076
|
[] |
no_license
|
ujiuji1259/NLP100
|
478a5276514d2f21ac5ee5ec9b50f00dcba67d1a
|
c19f9ba00eec108dbc93d4cb7d33e86f539d3397
|
refs/heads/master
| 2023-04-01T23:05:14.376652 | 2021-04-13T05:21:37 | 2021-04-13T05:21:37 | 255,311,319 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 297 |
py
|
# mecab neko.txt > neko.txt.mecab
from p30 import load_mecab_output
import collections
if __name__ == '__main__':
lines = load_mecab_output('neko.txt.mecab')
lines = [l['surface'] for line in lines for l in line]
counter = collections.Counter(lines)
print(counter.most_common())
|
[
"[email protected]"
] | |
0d843d4556bf97c40beacc40c239357fa08e4b8a
|
05263538c3ad0f577cdbbdb9bac87dcf450230ce
|
/alexa/ask-sdk/ask_sdk_dynamodb/__version__.py
|
5cfdf120d47b16330d48f329ae8c0e26ce048100
|
[] |
no_license
|
blairharper/ISS-GoogleMap-project
|
cea027324fc675a9a309b5277de99fc0265dcb80
|
3df119036b454a0bb219af2d703195f4154a2471
|
refs/heads/master
| 2020-03-21T16:47:21.046174 | 2018-10-24T08:05:57 | 2018-10-24T08:05:57 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,140 |
py
|
#
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights
# Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
# OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the
# License.
#
__pip_package_name__ = 'ask-sdk-dynamodb-persistence-adapter'
__description__ = (
'The ASK SDK DynamoDB Persistence Adapter package provides DynamoDB '
'Adapter, that can be used with ASK SDK Core, for persistence management')
__url__ = 'http://developer.amazon.com/ask'
__version__ = '0.1'
__author__ = 'Alexa Skills Kit'
__author_email__ = '[email protected]'
__license__ = 'Apache 2.0'
__keywords__ = ['ASK SDK', 'Alexa Skills Kit', 'Alexa', 'ASK SDK Core',
'Persistence', 'DynamoDB']
__install_requires__ = ["boto3", "ask-sdk-core"]
|
[
"[email protected]"
] | |
57d50697a8b5a6199f35983afac98b3beb374b0e
|
af7eb83ef2fb3bcf3b17d2aac656b06269c7784f
|
/1-abrindoarquivo.py
|
a7048bb931752e2a8ad40dc5b4adf1953145357b
|
[] |
no_license
|
pablogonzalezz/curso-python
|
7a1202d01e452f60a258dd9ea90bcd622a99d8b4
|
d09059e7df65851d29b69b35f689db5f96090ff8
|
refs/heads/master
| 2020-04-10T20:26:36.653910 | 2018-12-12T04:45:59 | 2018-12-12T04:45:59 | 161,268,117 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 34 |
py
|
arquivo = open("carros.txt", "w")
|
[
"[email protected]"
] | |
4de795c8d948abca857de788593e235ee526ab89
|
3d96fcb008ecbe003bfd92c5b9f51ce526493d27
|
/railyard/railyard.py
|
653942862aed8d4f4db609f1976979d3bc2ff5db
|
[
"MIT"
] |
permissive
|
ktaletsk/railyard
|
a81da4033f3fba3cb33d0418b234de565e9b76d5
|
7eb47bb622787c1d017fbf7785ed6d9c8c6e0649
|
refs/heads/master
| 2022-04-09T04:50:50.619251 | 2020-03-03T20:29:15 | 2020-03-03T20:29:15 | 228,427,664 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 911 |
py
|
"""Main module."""
import tempfile
from railyard.assembler import readStacks, assembleStack
import railyard.builder as builder
import time
import os
def assemble(base_stack, additional_stacks, path):
s = readStacks(base_stack, additional_stacks)
if not os.path.exists(path):
os.mkdir(path)
if not os.path.exists(os.path.join(path, s['package_hash'])):
os.mkdir(os.path.join(path, s['package_hash']))
assembleStack(s, os.path.join(path, s['package_hash']))
def test(base_stack, additional_stack):
s = readStacks(base_stack, additional_stack)
tag = 'ktaletsk/polus-notebook:' + s['package_hash']
# Create temporary folder for Dockerfile and additional files
# Folder is securely created with `tempfile` and is destroyed afterwards
with tempfile.TemporaryDirectory() as tmpdirname:
assembleStack(s, tmpdirname)
builder.build(tmpdirname, tag)
|
[
"[email protected]"
] | |
2811f3f5befc58918de648f954c3be0ac299000b
|
8b467addc38a67019ff35dfd5394e36d4b7c7c5c
|
/src/gui_kill_creo.py
|
7642164d9eb6170bc800c8be19160c7a498b338b
|
[
"MIT"
] |
permissive
|
loleven/creo_kill_proc
|
f48e158ccb64744bd34d68bf96fa8868d6cbe017
|
9136889efe1a51fe057e538d080ca31f3f4c6de5
|
refs/heads/master
| 2020-05-24T00:48:23.222996 | 2017-03-13T09:34:28 | 2017-03-13T09:34:28 | 84,806,859 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,934 |
py
|
# -*- coding: utf-8 -*-
# Form implementation generated from reading ui file 'C:\Data\Development\PycharmProjects\KillCreo\src\gui_kill_creo.ui'
#
# Created by: PyQt5 UI code generator 5.5.1
#
# WARNING! All changes made in this file will be lost!
from PyQt5 import QtCore, QtGui, QtWidgets
class Ui_frm_kill_creo(object):
def setupUi(self, frm_kill_creo):
frm_kill_creo.setObjectName("frm_kill_creo")
frm_kill_creo.resize(400, 300)
frm_kill_creo.setMinimumSize(QtCore.QSize(400, 300))
frm_kill_creo.setMaximumSize(QtCore.QSize(400, 300))
self.horizontalLayout_2 = QtWidgets.QHBoxLayout(frm_kill_creo)
self.horizontalLayout_2.setObjectName("horizontalLayout_2")
self.verticalLayout = QtWidgets.QVBoxLayout()
self.verticalLayout.setObjectName("verticalLayout")
self.list_result = QtWidgets.QListWidget(frm_kill_creo)
self.list_result.setObjectName("list_result")
self.verticalLayout.addWidget(self.list_result)
self.horizontalLayout = QtWidgets.QHBoxLayout()
self.horizontalLayout.setObjectName("horizontalLayout")
spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum)
self.horizontalLayout.addItem(spacerItem)
self.btn_kill = QtWidgets.QPushButton(frm_kill_creo)
self.btn_kill.setObjectName("btn_kill")
self.horizontalLayout.addWidget(self.btn_kill)
self.verticalLayout.addLayout(self.horizontalLayout)
self.horizontalLayout_2.addLayout(self.verticalLayout)
self.retranslateUi(frm_kill_creo)
QtCore.QMetaObject.connectSlotsByName(frm_kill_creo)
def retranslateUi(self, frm_kill_creo):
_translate = QtCore.QCoreApplication.translate
frm_kill_creo.setWindowTitle(_translate("frm_kill_creo", "Kill Creo"))
self.btn_kill.setText(_translate("frm_kill_creo", "Kill Creo"))
|
[
"[email protected]"
] | |
c51438dca74d9ee3958675018e129bb173024552
|
c82490eb4903a9b6b23bdef7c528def682a2672f
|
/eightpuzzle.py
|
61084b4c00b5f6223a01ba7230814872d31e6b42
|
[] |
no_license
|
zariuq/Misc
|
5563b3f8c015c305a6023dca42e8e616e8dc146b
|
e5b5e4229b29a68e4a3d042bed62c200d3af8e2e
|
refs/heads/master
| 2020-05-20T23:55:43.067819 | 2015-08-10T07:48:06 | 2015-08-10T07:48:06 | 30,136,064 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 5,519 |
py
|
import pygame
from eightpuzzlesolver import aStar
pygame.init()
WIDTH = 500
HEIGHT = 400
screen = pygame.display.set_mode((WIDTH, HEIGHT))
done = False
clock = pygame.time.Clock()
# Switch for human or playthrough
HUMAN = False
# Define the colors we will use in RGB format
BLACK = ( 0, 0, 0)
WHITE = (255, 255, 255)
BLUE = ( 0, 0, 255)
GREEN = ( 0, 255, 0)
RED = (255, 0, 0)
# Find centers
centers = []
box_w = WIDTH // 3
box_h = HEIGHT // 3
for j in range(1,4): # switched i and j to make numbers ordered horizontally.
for i in range(1,4): #remember the colon!
centers = centers + [( (i * box_w + (i-1) * box_w) // 2 , (j * box_h + (j-1) * box_h) // 2 )]
#print (centers)
# Render numbers
font = pygame.font.Font(None, 36)
numbers = []
for i in range(0,9): # Don't forget the colon, damnit!
numbers = numbers + [font.render(str(i), True, BLUE)]
# Default board position (to be randomized eventually)
board2 = [1,5,3,2,8,4,6,7,0] # no solution?
board4 = [1,0,2,4,5,3,6,7,8]
win = [0,1,2,3,4,5,6,7,8]
# Surely there's a better way to do this. It reeks of a succinct pattern...
def get_adjacent(index):
if index == 0:
return [1,3]
if index == 1:
return [0,2,4]
if index == 2:
return [1,5]
if index == 3:
return [0,4,6]
if index == 4:
return [1,3,5,7]
if index == 5:
return [2,4,8]
if index == 6:
return [3,7]
if index == 7:
return [4,6,8]
if index == 8:
return [5,7]
return []
coordinates = [(0,0),(1,0),(2,0),(0,1),(1,1),(2,1),(0,2),(1,2),(2,2)]
# originally (s1,s2), but I'll assume one goal-state :P
def man_distance(s1):
sum = 0
for i in range(0,9): #Fucking colon!
ideal = coordinates[win[i]]
current = coordinates[s1[i]] #I had board[i] instead of s1[i]
sum += abs(ideal[0] - current[0]) + abs(ideal[1] -current[1])
return sum
if HUMAN == True:
while not done:
nearest_center = -1
for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
if event.type == pygame.KEYDOWN: #need to check this or .key produces an error
if event.key == pygame.K_ESCAPE:
done = True
if event.type == pygame.MOUSEBUTTONDOWN:
posi = event.pos
print (posi)
# find nearest center -- should totally be a function of its own :p
dis = []
px = posi[0]
py = posi[1]
for i in range(0,9):
dis = dis + [(px-centers[i][0])**2 + (py-centers[i][1])**2] # powers are with **, not ^
nearest_center = dis.index(min(dis))
print ("The position is: " + str(board[nearest_center]))
# perform swap if next to 0.
if nearest_center != -1:
zero_loc = board.index(0)
adjacents = get_adjacent(nearest_center)
if zero_loc in adjacents:
board[zero_loc] = board[nearest_center]
board[nearest_center] = 0
print("The Manhattan distance is: " + str(man_distance(board)))
else:
screen.fill(RED) # red doesn't
pygame.time.wait(500) # wait works
if win == board: # works, but just closing is ugly
done = True #doing anything else without more modular code seems icky :p
screen.fill(WHITE)
# Draw the grid
for i in range(1,3): # range(1,2) only drew one line!
pygame.draw.line(screen, BLACK, [i * (WIDTH // 3), 0], [i * (WIDTH // 3),HEIGHT], 5)
pygame.draw.line(screen, BLACK, [0, i * (HEIGHT // 3)], [WIDTH, i * (HEIGHT // 3)],5)
# Draw 'numbers'
for i in range(0,9):
p = board[i]
if p != 0:
screen.blit(numbers[p], (centers[i][0] - numbers[p].get_width() // 2, centers[i][1] - numbers[p].get_height() // 2))
#pygame.draw.circle(screen, BLUE, centers[i], 10)
pygame.display.flip()
clock.tick(60)
else:
solution = aStar(board4,win)
print("Length = " + str(len(solution)))
print("Solution = " + str(solution))
for step in solution:
for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
if event.type == pygame.KEYDOWN: #need to check this or .key produces an error
if event.key == pygame.K_ESCAPE:
done = True
screen.fill(WHITE)
# Draw the grid
for i in range(1,3): # range(1,2) only drew one line!
pygame.draw.line(screen, BLACK, [i * (WIDTH // 3), 0], [i * (WIDTH // 3),HEIGHT], 5)
pygame.draw.line(screen, BLACK, [0, i * (HEIGHT // 3)], [WIDTH, i * (HEIGHT // 3)],5)
# Draw 'numbers'
for i in range(0,9):
p = step[i]
if p != 0:
screen.blit(numbers[p], (centers[i][0] - numbers[p].get_width() // 2, centers[i][1] - numbers[p].get_height() // 2))
#pygame.draw.circle(screen, BLUE, centers[i], 10)
pygame.display.flip()
pygame.time.wait(350)
clock.tick(60)
pygame.time.wait(1500)
|
[
"[email protected]"
] | |
6789dd297f2257bed4110e83f0000b3c798dea43
|
303004eb1b84f247d959a2ac75e38f6e7b156715
|
/baixar.py
|
3bcd31baf17c38c5ce04a46c8c7a0ee91754fbbb
|
[] |
no_license
|
DiegoLins10/PyTube
|
5e3f5937361196448d081d9ea18c00049e2ce017
|
1787c6fa953bc04c69acc6fa0d28ac80ac9b3e07
|
refs/heads/master
| 2023-08-07T00:48:55.701767 | 2021-09-21T01:09:39 | 2021-09-21T01:09:39 | 408,627,985 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,178 |
py
|
## Para baixar a lib pytube: pip install pytube
## baixar um video do youtube com pytube
## python youtube.py https://youtu.be/61R6Qq7mmIA
## gerar arquivo exe pyinstaller --onefile -w baixar.py
## baixar pyinstaller pip install pyinstaller
from pytube import YouTube
from tkinter import *
def baixar():
##link = str(input("Digite o link: "))
link = vlink.get()
video = YouTube(link)
stream = video.streams.get_highest_resolution()
stream.download()
print("baixado com sucesso") ##pega o conteudo
indo()
def indo():
a= "baixado com sucesso"
Label(app, text=a,background="#dde", foreground="#009", anchor=W).place(x=10, y=100, width=200, height=20)
app = Tk() ##intanciando a classe
app.title("Youtube video download")
app.geometry("500x300") ## config tamanho janela
app.configure(background="#dde") ## mudar cor
Label(app, text="Link",background="#dde", foreground="#009", anchor=W).place(x=10, y=10, width=100, height=20) ##declarar label
## posicionando o label
vlink = Entry(app)
vlink.place(x=10, y=30, width=200, height=20)
Button(app, text="Baixar", command=baixar).place(x=10, y=80, width=100, height=20)
app.mainloop()
|
[
"[email protected]"
] | |
8f220b99ce9abe542226edff8616a3c76b131572
|
e4dfc0bff7e5f04a1b730ce80e026bc9f75028a8
|
/AdminControls.py
|
5f4c8900b2c503ff800007fc4ed4c971690d391e
|
[
"MIT"
] |
permissive
|
DevinDai13/PythonSQL1
|
79f761b71c1e682d00d44e5ab5f3569b6cfd276b
|
484fba42be97cfe8a92b9662f0e368d5d9f1e634
|
refs/heads/master
| 2020-04-15T04:22:52.981505 | 2019-01-07T05:08:32 | 2019-01-07T05:08:32 | 164,380,741 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 558 |
py
|
import hashlib
import sqlite3
def adduser(user_id, role, login, password):
sqlite_file = 'waste_management.db'
conn = sqlite3.connect(sqlite_file)
c = conn.cursor()
hash_name = 'sha256'
salt = 'ssdirf993lksiqb4'
iterations = 100000
dk = hashlib.pbkdf2_hmac(hash_name, bytearray(password, 'ascii'), bytearray(salt, 'ascii'), iterations)
c.execute('''INSERT INTO users(user_id, role, login, password)
VALUES(?,?,?,?)''', (user_id, role, login, str(dk)))
conn.commit()
conn.close()
return 0
|
[
"[email protected]"
] | |
08a2e20be25c466e50a8eb46e4b760fe2d09eabf
|
d57233c4d554a9311b52301decce4a046b743ae7
|
/projects/Intro5_6.py
|
0a75ccf5ae379dc0ff39a9c1d4b1bb4cc5a3d645
|
[] |
no_license
|
josenriagu/python-mini-projects
|
69f0ad9c30cd3742bd88efd191df1b2bb5e59b59
|
b7d300d3af180cddfa65a5eb89e010febb5067de
|
refs/heads/master
| 2020-06-14T06:26:49.826332 | 2019-07-02T20:57:25 | 2019-07-02T20:57:25 | 194,932,952 | 1 | 0 | null | 2019-07-02T20:57:26 | 2019-07-02T20:49:29 | null |
UTF-8
|
Python
| false | false | 2,664 |
py
|
#---LESSON 5: Dictionaries - Working
#with Key-Value Pairs---
student = {'name': 'Jose', 'age': 22, 'courses': ['Math', 'Communications']}
print(student)
print(student['name'])
print(student['courses'])
'''
Dictionaries can contain any immutable data type
as key or value. Accessing a key that doesn't exist
results in a KeyError
'''
#---Overiding KeyErrors (using the get() function)---
print(student.get('name'))
print(student.get('phone'))
print(student.get('phone', 'Not Found'))
#--Updating values using direct assignment---
student['phone'] = '555-5555' #adds a new Key-Value pair
student['name'] = 'Jane' #changes the existing value for the given key
print(student)
#---Updating values using update() function---
student.update({'name': 'Val', 'age': 26, 'phone': '555-5555'})
print(student)
#print(dir(student))
#--- deleting values from a dictionary---
del student['age']
phone = student.pop('phone')
print(student)
print(phone) #shows the poppped value saved in 'phone' variable
#---Want to know the number of keys in a dict?---
print(len(student))
print(student.keys()) #shows the keys
print(student.values()) #shows the values
print(student.items()) #shows the keys and values
#--Looping through dictionaries--
for key in student:
print(key)
for key,value in student.items():
#"for key,value in student:" will return a ValueError
print(key, value)
#---LESSON 6: Conditionals and Boolean - If, Else
#and Elif Statements---
if True:
print('Conditional was True')
if False:
print('Conditional was True') #doesn't evaluate
language = 'Python'
if language == 'Python':
print('Conditional was True')
'''
Comparisons:
Equal:----------------==
Not Equal:------------!=
Greater Than:--------->
Less Than:------------<
Greater or Equal:----->=
Less or Equal:--------<=
Object Identity:------is
'Object identity' is used for keyword check ie
to check if values have the same id
False Values:
False
None
Zero of any numeric type
Any Empty sequence, e.g., '', (), [].
Any empty mapping, e.g., {}
Boolean Operators:
and
or
not
'''
user = 'Admin'
logged_in = False
if user == 'Admin' and logged_in:
print('Admin Page')
else:
print('Bad Creds')
if user == 'Admin' or logged_in:
print('Admin Page')
else:
print('Bad Creds')
if not logged_in:
print('Please Log In')
else:
print('Welcome')
a = [1, 2, 3]
b = [1, 2, 3]
c = a
print(a==b)
print(a is b) #evaluates to False since they do not have same memory address as can ba seen below
print(a is c)
#---Print memory locations of the objects---
print(id(a))
print(id(c))
print(id(b))
'''
'is' operator like in (a is b) is synonymous to
id(a) == id(b) check behind the scene
'''
|
[
"[email protected]"
] | |
7fa3ca550e4a232b9a12738fe935a8f44deee0be
|
dc52dac6c6fd6ea01de20abaff781922f3fba924
|
/textclf/models/classifier/resrnn.py
|
fae2f115ca3b036cc6d03b0f8b470f269f806197
|
[
"MIT"
] |
permissive
|
luopeixiang/textclf
|
d92c2306180bb4b0990943b2b7ba88447fee83c7
|
fa4ad4813bf8cb49e8a0d080110014498f8dfc47
|
refs/heads/master
| 2023-07-29T05:04:00.593454 | 2022-05-27T07:00:08 | 2022-05-27T07:00:08 | 177,423,020 | 212 | 25 |
MIT
| 2023-07-21T21:45:38 | 2019-03-24T14:05:26 |
Python
|
UTF-8
|
Python
| false | false | 1,046 |
py
|
import torch.nn as nn
from textclf.config import ResRNNClassifierConfig
from .base import Classifier
from .components import RNN, AttentionLayer
class ResRNNClassifier(Classifier):
def __init__(self, config: ResRNNClassifierConfig):
super(ResRNNClassifier, self).__init__(config)
rnn_config = config.rnn_config
rnn_config.input_size = config.input_size
self.rnn = RNN(rnn_config)
if rnn_config.bidirectional:
hidden_size = rnn_config.hidden_size*2
else:
hidden_size = rnn_config.hidden_size
self.dropout = nn.Dropout(p=config.dropout)
self.output_layer = nn.Linear(hidden_size, config.output_size)
def forward(self, embedding, seq_lens):
outputs, last_hidden = self.rnn(embedding, seq_lens)
if self.use_attention: # attention mechanism
context = self.attention_layer(outputs, seq_lens)
else:
context = last_hidden
logits = self.output_layer(self.dropout(context))
return logits
|
[
"[email protected]"
] | |
038eac37ec8ceaec8c4e9d374c6e76d0d1dee5c7
|
2f878f17b90103491b1bce08b917ea5693b8af2b
|
/Lab 4/lab4.py
|
1a30f5929dc7bfc97514c32b527b1d4a421c53c9
|
[] |
no_license
|
HyperionNKJ/Computer-Vision
|
9db98e8ba3740fed453e9269df445fcc7cca44b3
|
550ee6be84171863487b9068af26ca2073e57e2c
|
refs/heads/master
| 2023-01-22T20:20:16.807793 | 2020-11-29T21:57:27 | 2020-11-29T21:57:27 | 317,050,720 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 17,238 |
py
|
""" CS4243 Lab 4: Tracking
Please read accompanying Jupyter notebook (lab4.ipynb) and PDF (lab4.pdf) for instructions.
"""
import cv2
import numpy as np
import random
from time import time
# Part 1
def meanShift(dst, track_window, max_iter=100,stop_thresh=1):
"""Use mean shift algorithm to find an object on a back projection image.
Args:
dst (np.ndarray) : Back projection of the object histogram of shape (H, W).
track_window (tuple) : Initial search window. (x,y,w,h)
max_iter (int) : Max iteration for mean shift.
stop_thresh(float) : Threshold for convergence.
Returns:
track_window (tuple) : Final tracking result. (x,y,w,h)
"""
completed_iterations = 0
""" YOUR CODE STARTS HERE """
centroid = np.array([-1,-1])
while (True):
old_centroid = centroid
x,y,w,h = track_window
start_x = 0 if x < 0 else x
start_y = 0 if y < 0 else y
end_x = dst.shape[1]-1 if x+w >= dst.shape[1] else x+w
end_y = dst.shape[0]-1 if y+h >= dst.shape[0] else y+h
coord_x = np.array(list(np.arange(start_x,end_x)) * (end_y-start_y))
coord_y = np.array([[i]*(end_x-start_x) for i in range(start_y,end_y)]).flatten()
weights = dst[start_y:end_y, start_x:end_x].flatten()
centroid_x = coord_x.dot(weights) / weights.sum()
centroid_y = coord_y.dot(weights) / weights.sum()
centroid = np.array([centroid_y, centroid_x])
track_window = (int(centroid_x) - w//2, int(centroid_y) - h//2,w,h)
completed_iterations += 1
if (np.max(np.abs(old_centroid-centroid)) <= stop_thresh or completed_iterations == max_iter): break
""" YOUR CODE ENDS HERE """
return track_window
def IoU(bbox1, bbox2):
""" Compute IoU of two bounding boxes.
Args:
bbox1 (tuple) : First bounding box position (x, y, w, h) where (x, y) is the top left corner of
the bounding box, and (w, h) are width and height of the box.
bbox2 (tuple) : Second bounding box position (x, y, w, h) where (x, y) is the top left corner of
the bounding box, and (w, h) are width and height of the box.
Returns:
score (float) : computed IoU score.
"""
x1, y1, w1, h1 = bbox1
x2, y2, w2, h2 = bbox2
score = 0
""" YOUR CODE STARTS HERE """
box1_x_start, box1_x_end, box1_y_start, box1_y_end = x1, x1+w1, y1, y1+h1
box2_x_start, box2_x_end, box2_y_start, box2_y_end = x2, x2+w2, y2, y2+h2
x_interset = box1_x_end-box2_x_start if box1_x_start < box2_x_start else box2_x_end-box1_x_start
y_interset = box1_y_end-box2_y_start if box1_y_start < box2_y_start else box2_y_end-box1_y_start
score = (x_interset*y_interset) / (w1*h1 + w2*h2 - x_interset*y_interset)
# sumOfAreas = w1*h1 + w2*h2
# x1_prime = x1 + w1
# y1_prime = y1 + h1
# x2_prime = x2 + w2
# y2_prime = y2+ h2
# x_lower_bound = max(x1, x2)
# x_upper_bound = min(x1_prime, x2_prime)
# y_lower_bound = max(y1, y2)
# y_upper_bound = min(y1_prime, y2_prime)
# if x_upper_bound < x_lower_bound :
# return 0
# if y_upper_bound < y_lower_bound :
# return 0
# intersect = (x_upper_bound - x_lower_bound) * (y_upper_bound - y_lower_bound)
# score = intersect / (sumOfAreas - intersect)
# xA = max(x1, x2)
# yA = max(y1, y2)
# xB = min(x1+w1, x2+w2)
# yB = min(y1+h1, y2+h2)
# # compute the area of intersection rectangle
# interArea = (xB - xA) * (yB - yA)
# # compute the area of both the prediction and ground-truth
# # rectangles
# boxAArea = w1*h1
# boxBArea = w2*h2
# # compute the intersection over union by taking the intersection
# # area and dividing it by the sum of prediction + ground-truth
# # areas - the interesection area
# score = interArea / float(boxAArea + boxBArea - interArea)
# return the intersection over union value
# """ YOUR CODE ENDS HERE """
# return score
""" YOUR CODE ENDS HERE """
return score
# Part 2:
def lucas_kanade(img1, img2, keypoints, window_size=9):
""" Estimate flow vector at each keypoint using Lucas-Kanade method.
Args:
img1 (np.ndarray) : Grayscale image of the current frame.
Flow vectors are computed with respect to this frame.
img2 (np.ndarray) : Grayscale image of the next frame.
keypoints (np.ndarray) : Coordinates of keypoints to track of shape (N, 2).
window_size (int) : Window size to determine the neighborhood of each keypoint.
A window is centered around the current keypoint location.
You may assume that window_size is always an odd number.
Returns:
flow_vectors (np.ndarray) : Estimated flow vectors for keypoints. flow_vectors[i] is
the flow vector for keypoint[i]. Array of shape (N, 2).
Hints:
- You may use np.linalg.inv to compute inverse matrix.
"""
assert window_size % 2 == 1, "window_size must be an odd number"
flow_vectors = []
w = window_size // 2
# Compute partial derivatives
Iy, Ix = np.gradient(img1)
It = img2 - img1
# For each [y, x] in keypoints, estimate flow vector [vy, vx]
# using Lucas-Kanade method and append it to flow_vectors.
for y, x in keypoints:
# Keypoints can be loacated between integer pixels (subpixel locations).
# For simplicity, we round the keypoint coordinates to nearest integer.
# In order to achieve more accurate results, image brightness at subpixel
# locations can be computed using bilinear interpolation.
y, x = int(round(y)), int(round(x))
""" YOUR CODE STARTS HERE """
A = []
b = []
for j in range(y-w, y+w+1):
for i in range(x-w, x+w+1):
A.append([Ix[j][i], Iy[j][i]])
b.append(It[j][i] * -1)
v,_,_,_ = np.linalg.lstsq(A, b, rcond=None)
flow_vectors.append(v)
""" YOUR CODE ENDS HERE """
flow_vectors = np.array(flow_vectors)
return flow_vectors
def compute_error(patch1, patch2):
""" Compute MSE between patch1 and patch2
- Normalize patch1 and patch2
- Compute mean square error between patch1 and patch2
Args:
patch1 (np.ndarray) : Grayscale image patch1 of shape (patch_size, patch_size)
patch2 (np.ndarray) : Grayscale image patch2 of shape (patch_size, patch_size)
Returns:
error (float) : Number representing mismatch between patch1 and patch2.
"""
assert patch1.shape == patch2.shape, 'Differnt patch shapes'
error = 0
""" YOUR CODE STARTS HERE """
std_patch1 = np.std(patch1)
mean_patch1 = np.mean(patch1)
norm_patch1 = (patch1 - mean_patch1) / std_patch1
std_patch2 = np.std(patch2)
mean_patch2 = np.mean(patch2)
norm_patch2 = (patch2 - mean_patch2) / std_patch2
error = np.square(np.subtract(norm_patch1, norm_patch2)).mean()
""" YOUR CODE ENDS HERE """
return error
def iterative_lucas_kanade(img1, img2, keypoints,
window_size=9,
num_iters=5,
g=None):
""" Estimate flow vector at each keypoint using iterative Lucas-Kanade method.
Args:
img1 (np.ndarray) : Grayscale image of the current frame.
Flow vectors are computed with respect to this frame.
img2 (np.ndarray) : Grayscale image of the next frame.
keypoints (np.ndarray) : Coordinates of keypoints to track of shape (N, 2).
window_size (int) : Window size to determine the neighborhood of each keypoint.
A window is centered around the current keypoint location.
You may assume that window_size is always an odd number.
num_iters (int) : Number of iterations to update flow vector.
g (np.ndarray) : Flow vector guessed from previous pyramid level.
Array of shape (N, 2).
Returns:
flow_vectors (np.ndarray) : Estimated flow vectors for keypoints. flow_vectors[i] is
the flow vector for keypoint[i]. Array of shape (N, 2).
"""
assert window_size % 2 == 1, "window_size must be an odd number"
# Initialize g as zero vector if not provided
if g is None:
g = np.zeros(keypoints.shape)
flow_vectors = []
w = window_size // 2
# Compute spatial gradients
Iy, Ix = np.gradient(img1)
for y, x, gy, gx in np.hstack((keypoints, g)):
v = np.zeros(2) # Initialize flow vector as zero vector
y1 = int(round(y)); x1 = int(round(x))
""" YOUR CODE STARTS HERE """
G = np.array([[0,0],[0,0]])
# for j in range(y1-w, y1+w+1):
# for i in range(x1-w, x1+w+1):
for i in range(x1-w, x1+w+1):
for j in range(y1-w, y1+w+1):
G = G + ([
[(Ix[j][i])**2, Ix[j][i]*Iy[j][i]],
[Ix[j][i]*Iy[j][i], (Iy[j][i])**2]
])
for k in range(num_iters):
b_k = np.array([0,0])
for i in range(x1-w, x1+w+1):
for j in range(y1-w, y1+w+1):
v_x = int(round(v[0]))
v_y = int(round(v[1]))
x_idx = int(round(i + gx + v_x))
y_idx = int(round(j + gy + v_y))
temp_diff = img1[j][i] - (img2[y_idx][x_idx])
to_add = np.array([temp_diff * Ix[j][i],
temp_diff * Iy[j][i]
])
b_k = b_k + to_add
G_inv = np.linalg.inv(G)
v_k = np.matmul(G_inv, b_k)
v = v + v_k
""" YOUR CODE ENDS HERE """
vx, vy = v
flow_vectors.append([vy, vx])
return np.array(flow_vectors)
def pyramid_lucas_kanade(img1, img2, keypoints,
window_size=9, num_iters=5,
level=2, scale=2):
""" Pyramidal Lucas Kanade method
Args:
img1 (np.ndarray) : Grayscale image of the current frame.
Flow vectors are computed with respect to this frame.
img2 (np.ndarray) : Grayscale image of the next frame.
keypoints (np.ndarray) : Coordinates of keypoints to track of shape (N, 2).
window_size (int) : Window size to determine the neighborhood of each keypoint.
A window is centered around the current keypoint location.
You may assume that window_size is always an odd number.
num_iters (int) : Number of iterations to run iterative LK method
level (int) : Max level in image pyramid. Original image is at level 0 of
the pyramid.
scale (float) : Scaling factor of image pyramid.
Returns:
d - final flow vectors
"""
# Build image pyramids of img1 and img2
pyramid1 = tuple(pyramid_gaussian(img1, max_layer=level, downscale=scale))
pyramid2 = tuple(pyramid_gaussian(img2, max_layer=level, downscale=scale))
# Initialize pyramidal guess
g = np.zeros(keypoints.shape)
""" YOUR CODE STARTS HERE """
# range from l to 0
for l in range(level, -1, -1):
p_L = keypoints / (scale**l)
d = iterative_lucas_kanade(pyramid1[l], pyramid2[l], p_L, g=g)
if l != 0:
g = scale * (g + d)
""" YOUR CODE ENDS HERE """
d = g + d
return d
"""Helper functions: You should not have to touch the following functions.
"""
import os
import cv2
import matplotlib.pyplot as plt
from matplotlib import animation
from matplotlib.patches import Rectangle
from skimage import filters, img_as_float
from skimage.io import imread
from skimage.transform import pyramid_gaussian
def load_frames_rgb(imgs_dir):
frames = [cv2.cvtColor(cv2.imread(os.path.join(imgs_dir, frame)), cv2.COLOR_BGR2RGB) \
for frame in sorted(os.listdir(imgs_dir))]
return frames
def load_frames_as_float_gray(imgs_dir):
frames = [img_as_float(imread(os.path.join(imgs_dir, frame),
as_gray=True)) \
for frame in sorted(os.listdir(imgs_dir))]
return frames
def load_bboxes(gt_path):
bboxes = []
with open(gt_path) as f:
for line in f:
x, y, w, h = line.split(',')
#x, y, w, h = line.split()
bboxes.append((int(x), int(y), int(w), int(h)))
return bboxes
def animated_frames(frames, figsize=(10,8)):
fig, ax = plt.subplots(figsize=figsize)
ax.axis('off')
im = ax.imshow(frames[0])
def animate(i):
im.set_array(frames[i])
return [im,]
ani = animation.FuncAnimation(fig, animate, frames=len(frames),
interval=60, blit=True)
return ani
def animated_bbox(frames, bboxes, figsize=(10,8)):
fig, ax = plt.subplots(figsize=figsize)
ax.axis('off')
im = ax.imshow(frames[0])
x, y, w, h = bboxes[0]
bbox = ax.add_patch(Rectangle((x,y),w,h, linewidth=3,
edgecolor='r', facecolor='none'))
def animate(i):
im.set_array(frames[i])
bbox.set_bounds(*bboxes[i])
return [im, bbox,]
ani = animation.FuncAnimation(fig, animate, frames=len(frames),
interval=60, blit=True)
return ani
def animated_scatter(frames, trajs, figsize=(10,8)):
fig, ax = plt.subplots(figsize=figsize)
ax.axis('off')
im = ax.imshow(frames[0])
scat = ax.scatter(trajs[0][:,1], trajs[0][:,0],
facecolors='none', edgecolors='r')
def animate(i):
im.set_array(frames[i])
if len(trajs[i]) > 0:
scat.set_offsets(trajs[i][:,[1,0]])
else: # If no trajs to draw
scat.set_offsets([]) # clear the scatter plot
return [im, scat,]
ani = animation.FuncAnimation(fig, animate, frames=len(frames),
interval=60, blit=True)
return ani
def track_features(frames, keypoints,
error_thresh=1.5,
optflow_fn=pyramid_lucas_kanade,
exclude_border=5,
**kwargs):
""" Track keypoints over multiple frames
Args:
frames - List of grayscale images with the same shape.
keypoints - Keypoints in frames[0] to start tracking. Numpy array of
shape (N, 2).
error_thresh - Threshold to determine lost tracks.
optflow_fn(img1, img2, keypoints, **kwargs) - Optical flow function.
kwargs - keyword arguments for optflow_fn.
Returns:
trajs - A list containing tracked keypoints in each frame. trajs[i]
is a numpy array of keypoints in frames[i]. The shape of trajs[i]
is (Ni, 2), where Ni is number of tracked points in frames[i].
"""
kp_curr = keypoints
trajs = [kp_curr]
patch_size = 3 # Take 3x3 patches to compute error
w = patch_size // 2 # patch_size//2 around a pixel
for i in range(len(frames) - 1):
I = frames[i]
J = frames[i+1]
flow_vectors = optflow_fn(I, J, kp_curr, **kwargs)
kp_next = kp_curr + flow_vectors
new_keypoints = []
for yi, xi, yj, xj in np.hstack((kp_curr, kp_next)):
# Declare a keypoint to be 'lost' IF:
# 1. the keypoint falls outside the image J
# 2. the error between points in I and J is larger than threshold
yi = int(round(yi)); xi = int(round(xi))
yj = int(round(yj)); xj = int(round(xj))
# Point falls outside the image
if yj > J.shape[0]-exclude_border-1 or yj < exclude_border or\
xj > J.shape[1]-exclude_border-1 or xj < exclude_border:
continue
# Compute error between patches in image I and J
patchI = I[yi-w:yi+w+1, xi-w:xi+w+1]
patchJ = J[yj-w:yj+w+1, xj-w:xj+w+1]
error = compute_error(patchI, patchJ)
if error > error_thresh:
continue
new_keypoints.append([yj, xj])
kp_curr = np.array(new_keypoints)
trajs.append(kp_curr)
return trajs
|
[
"[email protected]"
] | |
e23788ac80dab20c3cb46f534e00b56e8af74fb5
|
b6f780c8c751b224da2ec86017a69b6f9dcea275
|
/accounts/migrations/0007_auto_20210307_1517.py
|
5fb4e8b21ffa153ca0244206cda9fd7cc49f0f2d
|
[] |
no_license
|
alishkb/m42.django
|
c36d3b01c799323991cd875da48c2859ce82aada
|
bc99755889989acc45ae81c3b122194bce86fc18
|
refs/heads/master
| 2023-05-15T00:51:20.440239 | 2021-06-10T11:56:14 | 2021-06-10T11:56:14 | 334,120,936 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,251 |
py
|
# Generated by Django 3.1.5 on 2021-03-07 11:47
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('auth', '0012_alter_user_first_name_max_length'),
('accounts', '0006_auto_20210307_1515'),
]
operations = [
migrations.AddField(
model_name='user',
name='groups',
field=models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups'),
),
migrations.AddField(
model_name='user',
name='is_superuser',
field=models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status'),
),
migrations.AddField(
model_name='user',
name='user_permissions',
field=models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions'),
),
]
|
[
"[email protected]"
] | |
1a4e16d26cbece1da8bf316ed9f2e9de8365031c
|
508e3aa5be4a48354811726cdbf6555013fb431c
|
/main/services/product.py
|
e41edf07e5debd435859064954b3ad3c1d066110
|
[] |
no_license
|
JoaoRicardoSimplicio/buying_cheap
|
eb32362e0cb40048547366666890b25e631e1616
|
6561411af72f5a69a22e1474c11f507807f5ca1c
|
refs/heads/master
| 2023-06-27T06:11:09.927143 | 2021-07-31T17:12:52 | 2021-08-01T23:18:44 | 294,758,790 | 0 | 0 | null | 2020-12-01T12:00:36 | 2020-09-11T17:16:53 |
Python
|
UTF-8
|
Python
| false | false | 1,903 |
py
|
from main.crawlers.shop2gether import StoreShop2gether
from main.crawlers.kabum import StoreKabum
from main.crawlers.netshoes import StoreNetshoes
from main.crawlers.mercado_livre import StoreMercadoLivre
from main.crawlers.bikepointsc import StoreBikePointSC
from main.crawlers.bikeinn import Bikeinn
# from main.crawlers.zattini import StoreZattini
from main.crawlers.dafiti import StoreDafiti
from main.models import Product, Store
class ProductTool:
def __init__(self):
pass
def create(self, *args, **kwargs):
for item in args:
store_name = select_store(item['name'])
try:
store_crawler = store_name(item['url_product'])
store, _ = Store.objects.get_or_create(
name=store_crawler.store
)
product, _ = Product.objects.update_or_create(
url_product=store_crawler.url,
defaults={
'name': store_crawler.name,
'store': store,
'price_product': store_crawler.price,
'description_product': store_crawler.description,
'url_image': store_crawler.image,
'sizes': store_crawler.avaliable_sizes
}
)
except Exception as Error:
raise Error
def select_store(name):
if name == "Shop2gether":
return StoreShop2gether
elif name == "Kabum":
return StoreKabum
elif name == "Netshoes":
return StoreNetshoes
elif name == "MercadoLivre":
return StoreMercadoLivre
elif name == "BikePointSC":
return StoreBikePointSC
elif name == "Zattini":
return StoreZattini
elif name == "Dafiti":
return StoreDafiti
elif name == "Bikeinn":
return Bikeinn
|
[
"[email protected]"
] | |
d07d964851d7ea84722cc1c566fdb976f5049c0a
|
10d98fecb882d4c84595364f715f4e8b8309a66f
|
/non_semantic_speech_benchmark/distillation/train_keras_test.py
|
58293b999787e89c984afb7ffed56dbb033ecc48
|
[
"CC-BY-4.0",
"Apache-2.0"
] |
permissive
|
afcarl/google-research
|
51c7b70d176c0d70a5ee31ea1d87590f3d6c6f42
|
320a49f768cea27200044c0d12f394aa6c795feb
|
refs/heads/master
| 2021-12-02T18:36:03.760434 | 2021-09-30T20:59:01 | 2021-09-30T21:07:02 | 156,725,548 | 1 | 0 |
Apache-2.0
| 2018-11-08T15:13:53 | 2018-11-08T15:13:52 | null |
UTF-8
|
Python
| false | false | 3,089 |
py
|
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Tests for non_semantic_speech_benchmark.eval_embedding.keras.train_keras."""
from absl import flags
from absl.testing import absltest
from absl.testing import flagsaver
from absl.testing import parameterized
import mock
import tensorflow as tf
from non_semantic_speech_benchmark.distillation import train_keras
def _get_data(*args, **kwargs):
del args
assert 'samples_key' in kwargs
assert 'min_length' in kwargs
assert 'batch_size' in kwargs
bs = kwargs['batch_size']
samples = tf.zeros((bs, 16000), tf.float32)
targets = tf.ones([bs, 10], tf.float32)
return tf.data.Dataset.from_tensors((samples, targets)).repeat()
class TrainKerasTest(parameterized.TestCase):
@parameterized.parameters(
{'bottleneck_dimension': 3, 'alpha': 1.0},
{'bottleneck_dimension': 5, 'alpha': 0.5},
)
def test_get_model(self, bottleneck_dimension, alpha):
batched_samples = tf.zeros([3, 16000])
output_dimension = 10
targets = tf.ones([3, output_dimension])
model = train_keras.models.get_keras_model(
f'mobilenet_debug_{alpha}_False',
bottleneck_dimension=bottleneck_dimension,
output_dimension=output_dimension)
loss_obj = tf.keras.losses.MeanSquaredError()
opt = tf.keras.optimizers.Adam()
train_loss = tf.keras.metrics.MeanSquaredError()
train_mae = tf.keras.metrics.MeanAbsoluteError()
summary_writer = tf.summary.create_file_writer(
absltest.get_default_test_tmpdir())
train_step = train_keras.get_train_step(
model, loss_obj, opt, train_loss, train_mae, summary_writer)
gstep = opt.iterations
train_step(batched_samples, targets, gstep)
self.assertEqual(1, gstep)
train_step(batched_samples, targets, gstep)
self.assertEqual(2, gstep)
@mock.patch.object(train_keras.get_data, 'get_data', new=_get_data)
@mock.patch.object(train_keras.hub, 'load')
@flagsaver.flagsaver
def test_full_flow(self, mock_load):
del mock_load
flags.FLAGS.file_pattern = 'dummy'
flags.FLAGS.teacher_model_hub = 'dummy'
flags.FLAGS.output_key = 'dummmy'
flags.FLAGS.bottleneck_dimension = 2
flags.FLAGS.output_dimension = 10
flags.FLAGS.shuffle_buffer_size = 4
flags.FLAGS.samples_key = 'audio'
flags.FLAGS.logdir = absltest.get_default_test_tmpdir()
train_keras.train_and_report(debug=True)
if __name__ == '__main__':
tf.compat.v2.enable_v2_behavior()
assert tf.executing_eagerly()
absltest.main()
|
[
"[email protected]"
] | |
ba106a98267a6ec0d424113b2870654dbf4698b9
|
3154e6d1a9e9e9919cae75570969da36c45429d7
|
/codigo/tutorial/tut0C_camara.py
|
9e54589237d6c51292d941cdce95c822a95243c0
|
[] |
no_license
|
javacasm/TutorialPyGame
|
0d458c7155794668fc1464c466e4d740b3ac77ee
|
baeb7ce5dda151f8093e39f8b14182a8ee5de926
|
refs/heads/master
| 2021-07-25T20:01:04.504958 | 2021-05-10T12:33:26 | 2021-05-10T12:33:26 | 250,080,620 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,568 |
py
|
https://www.pygame.org/docs/tut/CameraIntro.html
```python
class Capture(object):
def __init__(self):
self.size = (640,480)
# create a display surface. standard pygame stuff
self.display = pygame.display.set_mode(self.size, 0)
# this is the same as what we saw before
self.clist = pygame.camera.list_cameras()
if not self.clist:
raise ValueError("Sorry, no cameras detected.")
self.cam = pygame.camera.Camera(self.clist[0], self.size)
self.cam.start()
# create a surface to capture to. for performance purposes
# bit depth is the same as that of the display surface.
self.snapshot = pygame.surface.Surface(self.size, 0, self.display)
def get_and_flip(self):
# if you don't want to tie the framerate to the camera, you can check
# if the camera has an image ready. note that while this works
# on most cameras, some will never return true.
if self.cam.query_image():
self.snapshot = self.cam.get_image(self.snapshot)
# blit it to the display surface. simple!
self.display.blit(self.snapshot, (0,0))
pygame.display.flip()
def main(self):
going = True
while going:
events = pygame.event.get()
for e in events:
if e.type == QUIT or (e.type == KEYDOWN and e.key == K_ESCAPE):
# close the camera safely
self.cam.stop()
going = False
self.get_and_flip()
```
|
[
"[email protected]"
] | |
b2b49c260bbc149b1e3d30761562a7747b95be52
|
6f1bd642081902970be5d59bebb2df87c2a32fb0
|
/Source/TensorFlowModels/Media-Eval/Regression/preprocess.py
|
1a89d76aaf9e7090c40ebd180ea03ae4506cacd8
|
[] |
no_license
|
aneekroy/mir
|
b317d5ff49341507ad223016d9488763d4dcc71b
|
1afdc020acc6732b4dab488d7070951a2ff8eaa6
|
refs/heads/master
| 2020-03-21T17:48:10.747151 | 2018-06-28T11:26:38 | 2018-06-28T11:26:38 | 138,854,870 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,796 |
py
|
import os
import math
import numpy as np
import ffmpy
from python_speech_features import *
import scipy.io.wavfile as wav
import matplotlib.pyplot as plt
import random
import Image
import csv
# This is subject to change if cross-validation is applied. Sticking to this cheap stuff for the time being.
TRAIN_PERCENT = 0.8
def normalize(A):
M = [[x]*A.shape[1] for x in np.mean(A, axis = 1)]
S = [[x]*A.shape[1] for x in np.std(A, axis = 1) if x is not 0]
A = (A - M)
for i in range(len(A)):
for j in range(len(A[i])):
if S[i][j] != 0.0:
A[i][j] = A[i][j]/S[i][j]
return A
'''
Converts mp3 files in mp3dir to wav files in wavdir
'''
def convert_mp3_to_wav(mp3dir, wavdir):
for _,_,files in os.walk(mp3dir):
for file in files:
filename = file[:file.find(".mp3")]
ff = ffmpy.FFmpeg(inputs = {os.path.join(mp3dir, filename + ".mp3"):None}, outputs = {os.path.join(wavdir, filename + ".wav"):None})
ff.run()
'''
Converts wav files in wavdir to corresponding spectograms in specdir
'''
def convert_wav_to_spec(wavdir, specdir):
for _,_, files in os.walk(wavdir):
for file in files:
filename = file[:file.find(".wav")]
(rate, sig) = wav.read(os.path.join(wavdir, file))
sig = sig[:, 0]
plt.clf()
_,_,_,spec = plt.specgram(sig, NFFT = 256, Fs = rate, noverlap = 16, cmap = plt.cm.jet)
image = Image.fromarray(spec)
image = image.convert("L")
image.save(os.path.join(specdir, filename + ".jpg"))
LAB_CLASSES = {"Happy":0, "Sad":1, "Tender":2, "Anger_Fear":3}
'''
Extracts mfcc and delta features from the wav files and
'''
def extract_features(wavdir, featuredir):
f = open("/home/soms/EmotionMusic/MediaEval/new-label-file.txt", "w")
infohandle = open("/home/soms/EmotionMusic/MediaEval-2013/annotations/songs_info.csv", "r")
labelhandle = open("/home/soms/EmotionMusic/MediaEval-2013/annotations/static_annotations.csv", "r")
reader1 = csv.reader(infohandle)
train = []
test = []
i = 0
for row in reader1:
if i !=0 :
if row[-1] == "development":
train.append(row[0])
else:
test.append(row[0])
i += 1
i = 0
labels = {}
reader2 = csv.reader(labelhandle)
m_a = 999.
M_a = -999.
m_v = 999.
M_v = -999.
for row in reader2:
if i != 0:
if float(row[1]) > M_a:
M_a = float(row[1])
if float(row[1]) < m_a:
m_a = float(row[1])
if float(row[3]) > M_v:
M_v = float(row[3])
if float(row[3]) < m_v:
m_v = float(row[3])
labels[row[0]] = [float(row[1]), float(row[3])]
i += 1
for label in labels.keys():
labels[label][0] = float(labels[label][0] - m_a)/(M_a - m_a) - 0.5
labels[label][1] = float(labels[label][1] - m_v)/(M_v - m_v) - 0.5
for _,_, files in os.walk(wavdir):
# Min shape 0 is 4458
m = 9999
cnt = 0
for file in files:
filename = file[:file.find(".wav")]
print(file)
(rate, sig) = wav.read(os.path.join(wavdir, file))
log_energy_feat = normalize(logfbank(sig, rate, winlen = 0.025, winstep = 0.01, nfilt = 32, nfft = 1024))
shape = log_energy_feat.shape
if shape[0] < 4500:
log_energy_feat = np.resize(np.asarray(log_energy_feat), [4500, shape[1]])
log_energy_feat = log_energy_feat[:4500,:]
image = np.split(log_energy_feat, 75)
print("Image segmented shape", np.asarray(image).shape)
index = 1
if filename in train:
cnt += 1
for image_segment in image:
if image_segment.shape[0] >= 57:
image_segment = image_segment[image_segment.shape[0] - 57 : ]
else:
print("Shape error",image_segment.shape[0])
if image_segment.shape[0] < m:
m = image_segment.shape[0]
print(image_segment.shape)
#plt.imsave(os.path.join(featuredir + "/Train", file + "_" + str(index) + ".png"), image_segment.T, cmap = "gray")
f.write(filename + "_" + str(index) + " " + str(labels[filename][0]) + " " + str(labels[filename][1]) + " D\n")
index += 1
elif filename in test:
cnt += 1
for image_segment in image:
image_segment = image_segment[image_segment.shape[0] - 57 : ]
if image_segment.shape[0] < m:
m = image_segment.shape[0]
print(image_segment.shape)
#plt.imsave(os.path.join(featuredir + "/Test", file + "_" + str(index) + ".png"), image_segment.T, cmap = "gray")
f.write(filename + "_" + str(index) + " " + str(labels[filename][0]) + " " + str(labels[filename][1]) + " E\n")
index += 1
else:
print("Duplicate")
print("Count = ", str(cnt))
print(m)
if __name__ == "__main__":
mp3dir = "/home/soms/EmotionMusic/MediaEval-2013/clips_45seconds"
wavdir = "/home/soms/EmotionMusic/MediaEval/WavFiles"
specdir = "/home/soms/EmotionMusic/Spectograms"
featuredir = "/home/soms/EmotionMusic/MediaEval/Spec_Feat"
#convert_mp3_to_wav(mp3dir, wavdir)
#convert_wav_to_spec(wavdir, specdir)
extract_features(wavdir, featuredir)
|
[
"[email protected]"
] | |
33a5265e87b96528d5b119a0bb47d33d67d2ce07
|
cc434c30dada236a0101be25510f172f6b3e0a43
|
/test/__main__.py
|
9d9c76746678514c68099418204a6fccd236ecb0
|
[
"Apache-2.0"
] |
permissive
|
TomasTomecek/osbuild
|
13c1896452336c8a880d4de50627309f91271297
|
9f5f4ebfa677783926888810b6b5c40453f1fbcf
|
refs/heads/master
| 2020-07-16T20:58:30.798496 | 2019-08-30T09:54:58 | 2019-09-02T08:28:21 | 205,867,643 | 0 | 0 |
Apache-2.0
| 2020-01-14T09:52:39 | 2019-09-02T13:52:13 |
Python
|
UTF-8
|
Python
| false | false | 2,768 |
py
|
import argparse
import logging
import subprocess
import os
from test.integration_tests.test_case import IntegrationTestCase, IntegrationTestType
from test.integration_tests.config import *
logging.basicConfig(level=logging.getLevelName(os.environ.get("TESTS_LOGLEVEL", "INFO")))
def test_is_system_running(result):
assert result.strip() == "running"
def test_timezone(extract_dir):
link = os.readlink(f"{extract_dir}/etc/localtime")
assert "Europe/Prague" in link
def test_firewall(extract_dir):
with open(f"{extract_dir}/etc/firewalld/zones/public.xml") as f:
content = f.read()
assert 'service name="http"' in content
assert 'service name="ftp"' in content
assert 'service name="telnet"' not in content
assert 'port port="53" protocol="tcp"' in content
assert 'port port="88" protocol="udp"' in content
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run integration tests')
parser.add_argument('--list', dest='list', action='store_true', help='list test cases')
parser.add_argument('--build-pipeline', dest='build_pipeline', metavar='PIPELINE',
type=os.path.abspath, help='the build pipeline to run tests in')
parser.add_argument('--case', dest='specific_case', metavar='TEST_CASE', help='run single test case')
args = parser.parse_args()
logging.info(f"Using {OBJECTS} for objects storage.")
logging.info(f"Using {OUTPUT_DIR} for output images storage.")
logging.info(f"Using {OSBUILD} for building images.")
f30_boot = IntegrationTestCase(
name="f30-boot",
pipeline="f30-boot.json",
build_pipeline=args.build_pipeline,
output_image="f30-boot.qcow2",
test_cases=[test_is_system_running],
type=IntegrationTestType.BOOT_WITH_QEMU
)
timezone = IntegrationTestCase(
name="timezone",
pipeline="timezone.json",
build_pipeline=args.build_pipeline,
output_image="timezone.tar.xz",
test_cases=[test_timezone],
type=IntegrationTestType.EXTRACT
)
firewall = IntegrationTestCase(
name="firewall",
pipeline="firewall.json",
build_pipeline=args.build_pipeline,
output_image="firewall.tar.xz",
test_cases=[test_firewall],
type=IntegrationTestType.EXTRACT
)
cases = [f30_boot, timezone, firewall]
if args.list:
print("Available test cases:")
for case in cases:
print(f" - {case.name}")
else:
if not args.specific_case:
for case in cases:
case.run()
else:
for case in cases:
if case.name == args.specific_case:
case.run()
|
[
"[email protected]"
] | |
867accc1fa0ae63cde0cb8f95b38ab6d178fb261
|
f9141cb0e7677d9892fe1edddad3dd20db96fc0a
|
/rule_class.py
|
e91f8826a7ec8eb72061b57bf50b4cbba436e3a9
|
[
"MIT"
] |
permissive
|
andytaylor823/play-euchre
|
beb47d26dbf35d08de97e4b51b2712338a69fe68
|
32887980487e07865b799de96069f50866760a12
|
refs/heads/master
| 2020-08-02T13:53:10.030200 | 2020-04-27T12:01:23 | 2020-04-27T12:01:23 | 211,376,784 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,271 |
py
|
import basicprogs as b
import boardstate_class as bsc
from inspect import signature # use this to check the "condition" argument
class rule:
def __init__(self, condition, rule_type, name='rule'):
if not callable(condition):
print('Error: condition argument must be a callable function')
raise(ValueError)
sig = signature(condition)
if len(sig.parameters) != 2:
print('Error: condition argument can only take two arguments')
raise(ValueError)
if not isinstance(rule_type, str):
print('Error: rule_type argument must be a string')
raise(ValueError)
if rule_type.lower() not in ['lead', 'follow', 'call']:
print('Error: rule_type argument can only be "lead", "follow", or "call"')
raise(ValueError)
self.type = rule_type
self.condition = condition
self.name = name
def is_satisfied(self, board, pos):
if not isinstance(board, bsc.boardstate):
print('Error: improper board argument')
raise(ValueError)
if not isinstance(pos, str):
print('Error: position argument not a string')
raise(ValueError)
if pos.lower() not in ['o1', 'o2', 'p', 'd']:
print('Error: invalid position choice given')
raise(ValueError)
c, have = self.condition(board, pos)
if have: return(c)
else: return(None)
|
[
"[email protected]"
] | |
bcdcdba6ff316a16065b95a2bba284abc290a417
|
9d25d1205da84db33bc425266bc3021cd7529cb1
|
/digitalearthau/testing/plugin.py
|
b73fdee1aba0e11cd5d8c9a183a595c1b7c6e754
|
[] |
no_license
|
GeoscienceAustralia/digitalearthau
|
9068970b2794a4ac55a34f910caa5877b548bb37
|
4cf486eb2a93d7de23f86ce6de0c3af549fe42a9
|
refs/heads/develop
| 2023-06-22T14:31:41.516829 | 2022-11-14T05:22:05 | 2022-11-14T05:22:05 | 51,411,119 | 31 | 21 | null | 2023-06-14T06:36:31 | 2016-02-10T00:16:36 |
Python
|
UTF-8
|
Python
| false | false | 2,081 |
py
|
import itertools
import os
import pytest
from pathlib import Path
from typing import Iterable
import datacube
import digitalearthau
import digitalearthau.system
from datacube.config import LocalConfig
from . import factories
# These are unavoidable in pytests due to fixtures
# pylint: disable=redefined-outer-name,protected-access,invalid-name
try:
from yaml import CSafeLoader as SafeLoader
except ImportError:
from yaml import SafeLoader
# The default test config options.
# The user overrides these by creating their own file in ~/.datacube_integration.conf
INTEGRATION_DEFAULT_CONFIG_PATH = Path(__file__).parent.joinpath('testing-default.conf')
def pytest_report_header(config):
if config.getoption('verbose') > 0:
return (
f"digitaleathau {digitalearthau.__version__}, "
f"opendatacube {datacube.__version__}"
)
return None
@pytest.fixture(scope='session')
def integration_config_paths():
if not INTEGRATION_DEFAULT_CONFIG_PATH.exists():
# Safety check. We never want it falling back to the default config,
# as it will alter/wipe the user's own datacube to run tests
raise RuntimeError(
'Integration default file not found. This should be built-in?')
return (
str(INTEGRATION_DEFAULT_CONFIG_PATH),
os.path.expanduser('~/.datacube_integration.conf')
)
@pytest.fixture(scope='session')
def global_integration_cli_args(integration_config_paths: Iterable[str]):
"""
The first arguments to pass to a cli command for integration test configuration.
"""
# List of a config files in order.
return list(
itertools.chain(*(('--config_file', f) for f in integration_config_paths)))
@pytest.fixture(scope='session')
def local_config(integration_config_paths):
return LocalConfig.find(integration_config_paths)
# Default fixtures which will drop/create on every individual test function.
db = factories.db_fixture('local_config')
index = factories.index_fixture('db')
dea_index = factories.dea_index_fixture('index')
|
[
"[email protected]"
] | |
30da4a8a5a19228bd3e60af5efea4574934cafb1
|
975452a3dd216b69b4042a1bc24f44b3a1cccf5f
|
/simple/commons.py
|
8c1116fe9bbd0bca3f18f0c80a606aeb5840c6cd
|
[] |
no_license
|
freedream520/django-ozgweb
|
b9e8e0a7c26500b4f3253e1a50d85d5987d2f40a
|
33c479d4a1c3800018ab4312f2c692a76af25241
|
refs/heads/master
| 2020-04-01T23:07:18.719337 | 2014-12-25T03:30:53 | 2014-12-25T03:30:53 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,029 |
py
|
import os
import sys
import random
import io
from django.shortcuts import render
from django.http import JsonResponse
from django.http import HttpResponse
from PIL import Image, ImageDraw, ImageFont
from math import ceil
from . import cfg
#验证码部分
#修改自https://github.com/tianyu0915/DjangoCaptcha,以支持python3
current_path = os.path.normpath(os.path.dirname(__file__))
class Captcha(object):
def __init__(self,request):
""" 初始化,设置各种属性
"""
self.django_request = request
self.session_key = '_django_captcha_key'
self.words = self._get_words()
# 验证码图片尺寸
self.img_width = 150
self.img_height = 30
self.type = 'number'
def _get_font_size(self):
""" 将图片高度的80%作为字体大小
"""
s1 = int(self.img_height * 0.8)
s2 = int(self.img_width // len(self.code))
return int(min((s1,s2)) + max((s1, s2)) * 0.05)
def _get_words(self):
""" 读取默认的单词表
"""
#TODO 扩充单词表
file_path = os.path.join(current_path, 'words.list')
f = open(file_path, 'r')
return [line.replace('\n', '') for line in f.readlines()]
def _set_answer(self,answer):
""" 设置答案
"""
self.django_request.session[self.session_key] = str(answer)
def _yield_code(self):
""" 生成验证码文字,以及答案
"""
# 英文单词验证码
def word():
code = random.sample(self.words,1)[0]
self._set_answer(code)
return code
# 数字公式验证码
def number():
m, n = 1, 50
x = random.randrange(m, n)
y = random.randrange(m, n)
r = random.randrange(0 ,2)
if r == 0:
code = "%s - %s = ?" % (x, y)
z = x - y
else:
code = "%s + %s = ?" % (x, y)
z = x + y
self._set_answer(z)
return code
fun = eval(self.type.lower())
return fun()
def display(self):
""" 生成验证码图片
"""
# font color
self.font_color = ['black', 'darkblue', 'darkred']
# background color
self.background = (random.randrange(230, 255), random.randrange(230, 255), random.randrange(230, 255))
# font path
self.font_path = os.path.join(current_path, 'timesbi.ttf')
#self.font_path = os.path.join(current_path, 'Menlo.ttc')
# clean
self.django_request.session[self.session_key] = ''
# creat a image
im = Image.new('RGB', (self.img_width, self.img_height), self.background)
self.code = self._yield_code()
# set font size automaticly
self.font_size = self._get_font_size()
# creat a pen
draw = ImageDraw.Draw(im)
# draw noisy point/line
if self.type == 'word':
c = int(8 // len(self.code) * 3) or 3
elif self.type == 'number':
c = 4
for i in range(random.randrange(c - 2, c)):
line_color = (random.randrange(0, 255), random.randrange(0, 255),random.randrange(0, 255))
xy = (
random.randrange(0, int(self.img_width * 0.2)),
random.randrange(0, self.img_height),
random.randrange(3 * self.img_width // 4, self.img_width),
random.randrange(0, self.img_height)
)
draw.line(xy, fill = line_color, width = int(self.font_size * 0.1))
#draw.arc(xy,fill = line_color, width = int(self.font_size * 0.1))
#draw.arc(xy, 0, 1400, fill = line_color)
# draw code
j = int(self.font_size * 0.3)
k = int(self.font_size * 0.5)
x = random.randrange(j, k) #starts point
for i in self.code:
# 上下抖动量,字数越多,上下抖动越大
m = int(len(self.code))
y = random.randrange(1, 3)
if i in ('+', '=', '?'):
# 对计算符号等特殊字符放大处理
m = ceil(self.font_size * 0.8)
else:
# 字体大小变化量,字数越少,字体大小变化越多
m = random.randrange(0, int( 45 // self.font_size) + int(self.font_size // 5))
self.font = ImageFont.truetype(self.font_path.replace('\\', '/'),self.font_size + int(ceil(m)))
draw.text((x, y), i, font = self.font, fill = random.choice(self.font_color))
x += self.font_size * 0.9
del x
del draw
buf = io.BytesIO()
im.save(buf, 'gif')
buf.closed
return HttpResponse(buf.getvalue(), 'image/gif')
def check(self, code):
"""
检查用户输入的验证码是否正确
"""
_code = self.django_request.session.get(self.session_key) or ''
self.django_request.session[self.session_key] = ''
return _code.lower() == str(code).lower()
#验证码部分 end
#公用的render函数,主要加入一些公用变量
def render_template(request, templates, res_data = None):
response_data = {
"cfg_jquery": cfg.jquery,
"cfg_title": cfg.web_name
}
if(res_data != None):
response_data["res_data"] = res_data
return render(request, templates, response_data)
#仅在这个模块用到
def res(res_code, desc, data):
res_data = {
"code": res_code,
"desc": desc,
}
if data:
res_data["data"] = data
response = JsonResponse(res_data)
return response
#回应请求成功
def res_success(desc, data = None):
return res(0, desc, data)
#回应请求失败
def res_fail(res_code, desc, data = None):
return res(res_code, desc, data)
#计算总页数
def page_count(count, page_size):
if(count % page_size == 0):
return (count // page_size)
else:
return (count // page_size) + 1;
|
[
"[email protected]"
] | |
61c84d50f2b2a028c625d955f4e469b7c998c883
|
cc5bdc851cc48050c869fced9373d8d5ff2af375
|
/env/lib/python3.8/site-packages/torpedo/clients.py
|
dbb744031972adba48afc1329b0491bf2a32e848
|
[
"Apache-2.0",
"BSD-3-Clause"
] |
permissive
|
vivekgupta1mg/miniprojectapp
|
fa6e4b8fd4565529b0c693a15abda5e5ce346dc4
|
2584a1696cc847767998c4fb5cf3413b006d6f67
|
refs/heads/master
| 2023-08-24T12:57:51.653656 | 2021-10-12T16:15:25 | 2021-10-12T16:15:25 | 416,296,679 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,193 |
py
|
import threading
from elasticapm import Client, async_capture_span
from elasticapm.instrumentation import register
from elasticapm.instrumentation.packages.asyncio.aiohttp_client import \
AioHttpClientInstrumentation
from elasticapm.instrumentation.packages.asyncio.asyncpg import \
AsyncPGInstrumentation
from elasticapm.instrumentation.packages.dbapi2 import extract_signature
from elasticapm.instrumentation.register import _instrumentation_singletons
from elasticapm.traces import DroppedSpan, execution_context
from elasticapm.utils import (default_ports, get_host_from_url, sanitize_url,
url_to_destination)
from elasticapm.utils.disttracing import TracingOptions
from elasticapm.utils.module_import import import_string
from .common_utils import CONFIG
_lock = threading.Lock()
apm_config = CONFIG.config.get('APM')
apm_config['SERVICE_NAME'] = CONFIG.config.get('NAME', 'undefined')
class CustomAioHttpClientInstrumentation(AioHttpClientInstrumentation):
async def call(self, module, method, wrapped, instance, args, kwargs):
method = kwargs["method"] if "method" in kwargs else args[0]
url = kwargs["url"] if "url" in kwargs else args[1]
url = str(url)
destination = url_to_destination(url)
signature = " ".join([method.upper(), get_host_from_url(url)])
sub_type = get_host_from_url(url)
url = sanitize_url(url)
transaction = execution_context.get_transaction()
async with async_capture_span(
signature,
span_type="external",
span_subtype=sub_type,
extra={"http": {"url": url}, "destination": destination},
leaf=True,
) as span:
leaf_span = span
while isinstance(leaf_span, DroppedSpan):
leaf_span = leaf_span.parent
parent_id = leaf_span.id if leaf_span else transaction.id
trace_parent = transaction.trace_parent.copy_from(
span_id=parent_id, trace_options=TracingOptions(recorded=True)
)
headers = kwargs.get("headers") or {}
self._set_disttracing_headers(headers, trace_parent, transaction)
kwargs["headers"] = headers
response = await wrapped(*args, **kwargs)
if response:
if span.context:
span.context["http"]["status_code"] = response.status
span.set_success() if response.status < 400 else span.set_failure() # pylint: disable=W0106
return response
class CustomAsyncPGInstrumentation(AsyncPGInstrumentation):
async def call(self, module, method, wrapped, instance, args, kwargs):
query = args[0] if len(args) else kwargs["query"]
name = extract_signature(query)
context = {"db": {"type": "sql", "statement": query}}
action = "query"
destination_info = {
"address": kwargs.get("host", "localhost"),
"port": int(kwargs.get("port", default_ports.get("postgresql"))),
"service": {"name": "postgres", "resource": "postgres", "type": "db"},
}
context['destination'] = destination_info
async with async_capture_span(
name, leaf=True, span_type="db", span_subtype="postgres", span_action=action, extra=context
):
return await wrapped(*args, **kwargs)
def instrument():
"""
Instruments all registered methods/functions with a wrapper
"""
with _lock:
for obj in register.get_instrumentation_objects():
custom = False
if isinstance(obj, AioHttpClientInstrumentation):
obj = 'torpedo.clients.CustomAioHttpClientInstrumentation'
custom = True
elif isinstance(obj, AsyncPGInstrumentation):
obj = 'torpedo.clients.CustomAsyncPGInstrumentation'
custom = True
if custom:
cls = import_string(obj)
_instrumentation_singletons[obj] = cls()
obj = _instrumentation_singletons[obj]
obj.instrument()
apm_client = Client(config=apm_config)
instrument()
|
[
"[email protected]"
] | |
d1f2676ff8d9ab324c0423935125dcea3d8e25d4
|
0affb6a667543c825dd44e85d6af6b7be5c8cf8b
|
/day11/day11_2.py
|
08c98ae924fdeff84a8823e3116c184578360091
|
[] |
no_license
|
233-wang-233/python
|
2fa4c7a7c4d7ba2579cea89d9ba30203956942d4
|
0824b9b50fba7d4557a3de60e2c0b830d6dac196
|
refs/heads/master
| 2021-01-25T22:33:42.960067 | 2020-04-02T07:55:45 | 2020-04-02T07:55:45 | 243,209,061 | 0 | 0 | null | 2020-03-02T06:50:27 | 2020-02-26T08:26:24 |
Python
|
UTF-8
|
Python
| false | false | 504 |
py
|
'''
两进程进行通信
一个输出Ping,一个输出Pong,两个进程输出的Ping和Pong加起来一共10个
'''
from multiprocessing import Process
from time import sleep
counter=0
def sub_task(string):
global counter
while counter<10:
print(string,end=' ',flush=True)
counter+=1
sleep(0.01)
def main():
Process(target=sub_task,args=('ping',)).start()
Process(target=sub_task,args=('pong',)).start()
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
c762cc47d5dd64dfe9ce9a6360e92b0bfa00928f
|
5e5d54c3d1c6b9f5de3c4f36f486506cd415e38e
|
/pyupbit/__init__.py
|
20af8b94c42227711af1b9fe318b1239ddb3bd02
|
[] |
no_license
|
lsjhome/pyupbit
|
1cded7e189d68a4e7566c87f6b259f4ba980925f
|
68c4541bd04532bcfdf46fa2004b5db4d11b9be9
|
refs/heads/master
| 2020-04-28T09:39:28.944916 | 2019-10-26T20:16:51 | 2019-10-26T20:16:51 | 175,174,679 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 59 |
py
|
from pyupbit.pyupbit import PyUpbit
__version__ = '1.0.0'
|
[
"[email protected]"
] | |
b07882d6172e17a77755b2fa73a71cae026b5b0d
|
357ee4a4bdc976fd1fe482988a19e9e59dbe796c
|
/composeexample/settings.py
|
d9c0d7ab97d90da6accd85f8f1061a19f0d511b9
|
[] |
no_license
|
jeremiak/docker-compose-django-digital-ocean
|
76ecde4f35cdbe45ca8d918df2e646c83fdbcb93
|
746f9d0d8657b6b85b19fd5dda2a8a78a9cf2edd
|
refs/heads/master
| 2021-07-19T11:33:08.203984 | 2017-10-25T18:51:17 | 2017-10-25T18:51:17 | 108,315,111 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,208 |
py
|
"""
Django settings for composeexample project.
Generated by 'django-admin startproject' using Django 1.11.6.
For more information on this file, see
https://docs.djangoproject.com/en/1.11/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/1.11/ref/settings/
"""
import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'qxji#2zzj%$s$*wj8ww54x#bg$gc889eogo%oz!70vgmz8v5gw'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = ['0.0.0.0']
# Application definition
INSTALLED_APPS = [
'polls.apps.PollsConfig',
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'composeexample.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'composeexample.wsgi.application'
# Database
# https://docs.djangoproject.com/en/1.11/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.postgresql',
'NAME': 'postgres',
'USER': 'postgres',
'HOST': 'db',
'PORT': 5432,
}
}
# Password validation
# https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/1.11/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/1.11/howto/static-files/
STATIC_URL = '/static/'
|
[
"[email protected]"
] | |
3ef50a5ab63dbe5576fb20f4c923d9c42fe54067
|
6f03463e17880ff8a1b70d27bf2176e58e27fa55
|
/scripts/daos/dao.py
|
f3a9255630163cd124c25c437fe977bf75a569c1
|
[] |
no_license
|
covid-maps/covid-maps
|
36ee3322a010f1d71b1b9d40d784fdac0270f9a1
|
e11fdc60176e427d705227a462048a83ac0f71ed
|
refs/heads/master
| 2022-06-10T03:25:17.924328 | 2020-05-04T20:18:42 | 2020-05-04T20:18:42 | 250,145,013 | 22 | 18 | null | 2020-05-03T01:33:33 | 2020-03-26T02:47:29 |
JavaScript
|
UTF-8
|
Python
| false | false | 675 |
py
|
from sqlalchemy import inspect, and_, func
from sqlalchemy.orm import sessionmaker, scoped_session
import logging
logger = logging.getLogger(__name__)
class DAO:
"""
This is the base data access object class
"""
def __init__(self, table, engine=None):
self.engine = engine
self.session = scoped_session(sessionmaker(bind=self.engine))()
self.table = table
def get(self, id):
return self.session.query(self.table).get(id)
def update(self, entity):
self.session.merge(entity)
return entity
def bulk_update(self, entities):
for entity in entities:
self.session.merge(entity)
|
[
"[email protected]"
] | |
86c5da7bb034a60aca742ec0d047145ea02fa45a
|
201edd307f8f43281d14bdec1a6dd080a1409ca9
|
/pyrave/__init__.py
|
9242209e0b5826de7c9d85d5cdae1a78ab72ecb9
|
[
"MIT"
] |
permissive
|
Olamyy/pyrave
|
1c5392444496d91f23a6af763b7cf6b77076a650
|
741bd0f68f29b0fd075b1060d53de99d91938224
|
refs/heads/master
| 2022-12-13T08:16:30.647440 | 2021-03-26T16:43:30 | 2021-03-26T16:43:30 | 122,391,698 | 11 | 7 | null | 2022-12-08T07:44:24 | 2018-02-21T20:48:21 |
Python
|
UTF-8
|
Python
| false | false | 290 |
py
|
__version__ = '1.0.3-alpha'
__author__ = "Olamilekan Wahab"
__license__ = 'MIT'
__copyright__ = 'Copyright 2017. Olamilekan Wahab'
from .payment import Payment
from .transaction import Transaction
from .misc import Misc
from .preauth import Preauth
from .encryption import RaveEncryption
|
[
"[email protected]"
] | |
f62111deb74e279775448c7d5a97f5ea7f6a8255
|
9f835d53232e954805b7ed1d93889e409209b36b
|
/1541_복습.py
|
134932438e9def1182112113c24eb401c83df29d
|
[] |
no_license
|
dmswl0311/Baekjoon
|
7c8a862fceff086b3d7740eef23b80164e1d5aeb
|
22040aff6b64d5081e86d91b0d118d1a718a4316
|
refs/heads/master
| 2023-04-29T13:48:51.448245 | 2021-05-26T14:35:32 | 2021-05-26T14:35:32 | 323,482,711 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 319 |
py
|
s = input().split('-')
sum = 0
result = []
for i in s:
if '+' in i:
a = i.split('+')
for j in a:
sum += int(j)
result.append(sum)
else:
result.append(int(i))
minus = result[0]
for i in range(1, len(result)):
minus -= result[i]
print(minus)
|
[
"[email protected]"
] | |
9f0c923813fa96aeb957cf818428b8bdd1080bfa
|
6aad7d9ba2aa2bfd058c3f953fe47b52de3725b3
|
/structs.py
|
7d9c7e6174b664ead1a172c240ab5b52dde238dd
|
[] |
no_license
|
shubhamDev73/3D
|
a3887463a8e32b535234079823e2b233f060248c
|
1ff3e5a40f98746196442f32e80b5fcd1d76ce7c
|
refs/heads/master
| 2021-05-17T17:24:39.298819 | 2020-04-02T21:17:05 | 2020-04-02T21:17:05 | 250,894,358 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,587 |
py
|
""" Implements basic structures used throughout """
import math
class matrix:
""" Class implementing all matrix functionality """
# Commonly used matrices as classmethods
@classmethod
def identity(cls, n=4):
# Identity matrix of degree n
result = matrix(n, n)
for i in range(n):
result.insert(i, i, 1)
return result
def __init__(self, rows=4, coloumns=4):
# Matrix is internally stored as an array of size rows (first index) x coloumns (second index)
self._rows = rows
self._coloumns = coloumns
self._matrix = [[0 for i in range(coloumns)] for i in range(rows)]
def getSize(self):
return (self._rows, self._coloumns)
def get(self, row, coloumn):
return self._matrix[row][coloumn]
def insert(self, row, coloumn, element):
self._matrix[row][coloumn] = element
return self
def __mul__(self, other):
if isinstance(other, vector):
# matrix * vector, returns vector
result = vector()
for i in range(4):
value = 0.0
for k in range(4):
value += self.get(i, k) * other.get(k)
result.insert(i, value)
return result
else:
# matrix * matrix, returns matrix
sizes = (self.getSize(), other.getSize())
if sizes[0][1] != sizes[1][0]:
raise TypeError
r = sizes[0][0]
c = sizes[1][1]
iterations = sizes[0][1]
result = matrix(r, c)
for i in range(r):
for j in range(c):
value = 0.0
for k in range(iterations):
value += self.get(i, k) * other.get(k, j)
result.insert(i, j, value)
return result
def __str__(self):
# Pretty formatting
string = ""
for i in range(self._rows):
for j in range(self._coloumns):
string += str(self.get(i, j)) + "\t"
string += "\n"
return string
class vector:
""" Class implementing all vector functionality """
# Commonly used vectors as classmethods
@classmethod
def direction(cls, n):
# Vector pointing along a particular axis (0 for x-axis, 1 for y-axis, 2 for z-axis)
result = vector()
result.insert(n, 1)
return result
@classmethod
def one(cls):
# Vector with all components as 1.0
return vector(1.0, 1.0, 1.0)
def __init__(self, x=0.0, y=0.0, z=0.0):
# Vector is internally stored as a 4x1 matrix (but does not inherit from it)
self._vector = matrix(4, 1)
self._vector.insert(0, 0, x)
self._vector.insert(1, 0, y)
self._vector.insert(2, 0, z)
self._vector.insert(3, 0, 1.0)
def get(self, index):
return self._vector.get(index, 0)
def getMagnitude(self):
return math.sqrt(sum(math.pow(self._vector.get(i), 2) for i in range(3)))
def normalized(self):
return self / self.getMagnitude()
def insert(self, index, element):
self._vector.insert(index, 0, element)
return self
# Vector transformations (commit is used to commit the change to self)
def translate(self, positionVector, commit=True):
result = self + positionVector
if commit:
self._vector = result.asMatrix()
return self
else:
return result
def rotate(self, rotationVector, commit=True):
result = self
for i in range(3):
# Separately for x, y, z axes
r = matrix.identity(4)
r.insert((i + 1) % 3, (i + 1) % 3, math.cos(math.radians(rotationVector.get(i))))
r.insert((i + 1) % 3, (i + 2) % 3, - math.sin(math.radians(rotationVector.get(i))))
r.insert((i + 2) % 3, (i + 1) % 3, math.sin(math.radians(rotationVector.get(i))))
r.insert((i + 2) % 3, (i + 2) % 3, math.cos(math.radians(rotationVector.get(i))))
result = r * result
if commit:
self._vector = result.asMatrix()
return self
else:
return result
def scale(self, scaleVector, commit=True):
s = matrix.identity(4)
s.insert(0, 0, scaleVector.get(0))
s.insert(1, 1, scaleVector.get(1))
s.insert(2, 2, scaleVector.get(2))
if commit:
self._vector = (s * self).asMatrix()
return self
else:
return s * self
# Converting vector in another form
def asMatrix(self):
m = matrix(4, 1)
for i in range(4):
m.insert(i, 0, self.get(i))
return m
def asList(self):
return [self.get(0), self.get(1), self.get(2)]
def __add__(self, other):
# Vector addition
result = vector()
for i in range(3):
result.insert(i, self.get(i) + other.get(i))
return result
def __mul__(self, num):
# Scalar multiplication
result = vector()
for i in range(3):
result.insert(i, self.get(i) * num)
return result
def __truediv__(self, num):
# Scalar division
result = vector()
for i in range(3):
result.insert(i, self.get(i) / num)
return result
def __str__(self):
# Pretty formatting
return "({}, {}, {})".format(self.get(0), self.get(1), self.get(2))
|
[
"[email protected]"
] | |
1c7d4bc21df35e1245c6c10e7f05a4b42cec7807
|
1cfbdee506b996c731db6850f55f92c1be0d136e
|
/training/forms.py
|
d1451fd8bfefd183677dad3546419a9ee1ec7904
|
[] |
no_license
|
alex2702/iotrec-backend
|
0d0334288ccdb6aae85b74d9522f5d0fb08e3281
|
e9c66baf789d3efc20cb109b7d69fff6d658760c
|
refs/heads/master
| 2022-12-03T08:01:21.950701 | 2019-12-23T07:12:14 | 2019-12-23T07:12:14 | 228,316,627 | 0 | 0 | null | 2022-11-22T04:38:09 | 2019-12-16T06:19:51 |
Python
|
UTF-8
|
Python
| false | false | 2,009 |
py
|
import random
from django import forms
from .models import Sample, ReferenceThing, ContextFactor
# form to collect five training samples for a reference thing
class SampleForm(forms.Form):
# thing, CF and CFV fields are all hidden
thing = forms.IntegerField(widget=forms.HiddenInput())
context_factor_1 = forms.IntegerField(widget=forms.HiddenInput())
context_factor_2 = forms.IntegerField(widget=forms.HiddenInput())
context_factor_3 = forms.IntegerField(widget=forms.HiddenInput())
context_factor_4 = forms.IntegerField(widget=forms.HiddenInput())
context_factor_5 = forms.IntegerField(widget=forms.HiddenInput())
context_factor_value_1 = forms.IntegerField(widget=forms.HiddenInput())
context_factor_value_2 = forms.IntegerField(widget=forms.HiddenInput())
context_factor_value_3 = forms.IntegerField(widget=forms.HiddenInput())
context_factor_value_4 = forms.IntegerField(widget=forms.HiddenInput())
context_factor_value_5 = forms.IntegerField(widget=forms.HiddenInput())
CHOICES = [
('-1', 'negative effect'),
('0', 'no effect'),
('1', 'positive effect')
]
value_1 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect)
value_2 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect)
value_3 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect)
value_4 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect)
value_5 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect)
user = forms.CharField(widget=forms.HiddenInput())
class Meta:
model = Sample
fields = ['thing',
'context_factor_1', 'context_factor_2', 'context_factor_3', 'context_factor_4', 'context_factor_5',
'context_factor_value_1', 'context_factor_value_2', 'context_factor_value_3',
'context_factor_value_4', 'context_factor_value_5','value_1', 'value_2', 'value_3', 'value_4',
'value_5', 'user']
|
[
"[email protected]"
] | |
643a7e8fab27c002a3adec8754905d174c27db19
|
ab4f74d127bfc89813ee359bb9c779eca5426ddc
|
/script/label_image.runfiles/org_tensorflow/tensorflow/contrib/resampler/python/ops/resampler_ops.py
|
77aba28802d7d37842990c9062030322f5f2eb39
|
[
"MIT"
] |
permissive
|
harshit-jain-git/ImageNET
|
cdfd5a340b62862ad8d1cc3b9a0f30cccc481744
|
1cd4c2b70917e4709ce75422c0205fe3735a1b01
|
refs/heads/master
| 2022-12-11T12:47:46.795376 | 2017-12-19T05:47:26 | 2017-12-19T05:47:26 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 102 |
py
|
/home/co/Documents/ImageClassifier/tensorflow/tensorflow/contrib/resampler/python/ops/resampler_ops.py
|
[
"[email protected]"
] | |
4b77de8df4c09f39015218c28428886bf20eb704
|
e0df57a2301e9b85fdd95645f5ec7c63e6929cfc
|
/my_app/currency/migrations/0001_initial.py
|
044fdfd08fb04514b3a11142463bde7f4e4a3e78
|
[] |
no_license
|
rajdip34/python-online-compiler
|
1eb5a8c68d2e019b061f01c91a0788a8d2d2229f
|
62fa21daf73a3816c8e0d8da38e7f45af28e2424
|
refs/heads/master
| 2020-05-04T08:17:05.594349 | 2019-04-02T13:21:31 | 2019-04-02T13:21:31 | 179,043,248 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,122 |
py
|
# -*- coding: utf-8 -*-
# Generated by Django 1.11 on 2019-03-30 04:51
from __future__ import unicode_literals
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]
operations = [
migrations.CreateModel(
name='Currency',
fields=[
('id', models.BigAutoField(db_column='Id', primary_key=True, serialize=False)),
('name', models.CharField(db_column='Name', max_length=3)),
('description', models.CharField(max_length=50)),
('modifydatetime', models.DateTimeField(db_column='ModifyDateTime')),
('modifyuserid', models.ForeignKey(blank=True, db_column='ModifyUserid', null=True, on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL)),
],
options={
'db_table': 'currency',
'managed': True,
},
),
]
|
[
"[email protected]"
] | |
f73f3bb6c439153d7bd119d6e542dfa392dbf1f5
|
913777b293fc18fc7d2ea08411bc3b25a72ca2df
|
/__manifest__.py
|
c2f185af678a6f51cb5ed21e8537defdf7752046
|
[] |
no_license
|
ValeroMateo/RecuperacionOdoo
|
4ebd6542a0a6e2a6d489e311dc58ae4ad595469a
|
02e3c86fae59f2ea10c09f0b5cc5b6e8c8d8e046
|
refs/heads/master
| 2020-12-07T17:56:19.724969 | 2020-01-28T10:40:05 | 2020-01-28T10:40:05 | 232,765,249 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 785 |
py
|
# -*- coding: utf-8 -*-
{
'name': "Remedial exam Odoo",
'summary': """Hoping for the best""",
'description': """
Remedial exam module with the purpose of making our professor feel better about his students
""",
'author': "Valero Mateo",
'website': "http://www.mybigassdisaster.com",
# Categories can be used to filter modules in modules listing
# Check https://github.com/odoo/odoo/blob/12.0/odoo/addons/base/data/ir_module_category_data.xml
# for the full list
'category': 'Test',
'version': '0.1',
# any module necessary for this one to work correctly
'depends': ['base', 'baseModule'],
# always loaded
'data': [
'security/ir.model.access.csv',
'views.xml',
'reports.xml'
],
}
|
[
"[email protected]"
] | |
ed0c506a4e560bd296f8b23da088c23994a9bb50
|
4f51225cd157b0e31bc4268d2eb4d31159b074c4
|
/simulation_main.py
|
23c41147d3dc73ef20228cbc66bb91777ae90a93
|
[] |
no_license
|
Jarvis-X/pioneer_free_run
|
3be03098349a0476a0b1ec91ce318b5aface54c7
|
5bad268f28d54a1da65930ec49ddde1404c5d878
|
refs/heads/master
| 2022-07-31T01:17:43.708467 | 2020-05-15T22:52:35 | 2020-05-15T22:52:35 | 264,040,655 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 8,711 |
py
|
# Make sure to have the server side running in CoppeliaSim:
# in a child script of a CoppeliaSim scene, add following command
# to be executed just once, at simulation start:
#
# simRemoteApi.start(19999)
#
# then start simulation, and run this program.
#
# created by: Jiawei Xu
try:
import sim
import numpy as np
import cv2
import time
except:
print ('--------------------------------------------------------------')
print ('Library loading failed!')
print ('')
def filter_red(img):
red1 = cv2.inRange(img, (0, 220, 100), (5, 255, 255))
red2 = cv2.inRange(img, (175, 220, 100), (180, 255, 255))
return red1+red2
def filter_green(img):
green = cv2.inRange(img, (55, 220, 100), (65, 255, 255))
return green
def sensor_color(img):
sensor_array = np.sum(img, 0, dtype=np.uint16)
sensor_array_shrunken = [0.0]*16
for i in range(16):
sensor_array_shrunken[i] = np.sum(sensor_array[i*16:(i+1)*16], dtype=np.uint32)*1.0
if sensor_array_shrunken[i] > 300000:
sensor_array_shrunken[i] = 1.0
elif sensor_array_shrunken[i] < 60000:
sensor_array_shrunken[i] = 0.0
else:
sensor_array_shrunken[i] = (sensor_array_shrunken[i]-60000)/(300000.0-60000.0)
# print sensor_array_shrunken
return sensor_array_shrunken
def free_running(sonar_readings, img, ID, left_motor, right_motor):
red_threshold = filter_red(img)
green_threshold = filter_green(img)
green_sensor_array = sensor_color(green_threshold)
red_sensor_array = sensor_color(red_threshold)
# cv2.imshow("red", red_threshold)
# cv2.imshow("green", green_threshold)
# cv2.waitKey(1)
v_left = 1.0
v_right = 1.0
for i in range(len(sonar_readings)):
v_left += sonar_readings[i]*braitenberg_sonar_L[i]
v_right += sonar_readings[i]*braitenberg_sonar_R[i]
print v_left, " ", v_right
# TODO: add red cube avoidance terms
for i in range(len(red_sensor_array)):
v_left += red_sensor_array[i] * braitenberg_red_L[i]
v_right += red_sensor_array[i] * braitenberg_red_R[i]
for i in range(len(green_sensor_array)):
v_left += green_sensor_array[i] * braitenberg_green_L[i]
v_right += green_sensor_array[i] * braitenberg_green_R[i]
print v_left, " ", v_right
# print v_left, " ", v_right
sim.simxSetJointTargetVelocity(ID, left_motor, v_left, sim.simx_opmode_oneshot)
sim.simxSetJointTargetVelocity(ID, right_motor, v_right, sim.simx_opmode_oneshot)
def read_image(image_ready, ID, handler):
res, resolution, image = sim.simxGetVisionSensorImage(ID, handler, 0, sim.simx_opmode_buffer)
if res == sim.simx_return_ok:
if not image_ready:
print "image OK!!!"
image_ready = True
img = np.array(image, dtype=np.uint8)
img.resize([resolution[1], resolution[0], 3])
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
return img, image_ready
elif res == sim.simx_return_novalue_flag:
if image_ready:
print "no image"
image_ready = False
return np.array([], dtype=np.uint8), image_ready
else:
print "error: " + str(res)
return np.array([], dtype=np.uint8), image_ready
def read_sonar(ID, handlers, sonar_ready):
points = [None]*8
states = [False]*8
for i in range(8):
res, states[i], points[i], _, normal_vec = sim.simxReadProximitySensor(ID, handlers[i], sim.simx_opmode_buffer)
dists = [i[2] for i in points]
if sonar_ready:
for i in range(len(dists)):
if states[i] and dists[i] < 0.5:
if dists[i] < 0.2:
dists[i] = 0.2
# map how close an obstacle is to the robot to [0, 1]
dists[i] = 1.0 - (dists[i] - 0.2) / (0.5 - 0.2)
else:
dists[i] = 0.0
return dists, sonar_ready
else:
flag = True
for i in range(len(dists)):
if dists[i] == 0.0:
flag = False
break
if flag:
sonar_ready = True
return None, sonar_ready
if __name__ == "__main__":
print ('Program started')
sim.simxFinish(-1) # just in case, close all opened connections
clientID = sim.simxStart('127.0.0.1', 19999, True, True, 5000, 5) # Connect to CoppeliaSim
if clientID != -1:
print ('Connected to remote API server')
# Now try to retrieve data in a blocking fashion (i.e. a service call):
res, objs = sim.simxGetObjects(clientID, sim.sim_handle_all, sim.simx_opmode_blocking)
if res == sim.simx_return_ok:
print ('Number of objects in the scene: ', len(objs))
else:
print ('Remote API function call returned with error code: ', res)
time.sleep(2)
# get vision sensor handler
print 'Vision Sensor object handling'
res, veh_camera = sim.simxGetObjectHandle(clientID, 'veh_camera', sim.simx_opmode_oneshot_wait)
# get sonor handler
print 'Sonar object handling'
veh_sonar = [None]*8
for i in range(8):
res, veh_sonar[i] = sim.simxGetObjectHandle(clientID, 'Pioneer_p3dx_ultrasonicSensor'+'{}'.format(i+1),
sim.simx_opmode_oneshot_wait)
# print res == sim.simx_return_ok
# get left motor handler
res, veh_left_motor = sim.simxGetObjectHandle(clientID, 'Pioneer_p3dx_leftMotor', sim.simx_opmode_oneshot_wait)
# print res == sim.simx_return_ok
# get right motor handler
res, veh_right_motor = sim.simxGetObjectHandle(clientID, 'Pioneer_p3dx_rightMotor', sim.simx_opmode_oneshot_wait)
# print res == sim.simx_return_ok
# let the server prepare the first image
print 'Getting first image'
res, resolution, image = sim.simxGetVisionSensorImage(clientID, veh_camera, 0, sim.simx_opmode_streaming)
image_ready_flag = False
# let the server prepare the first sonar reading
points = [None] * 8
for i in range(8):
res, state, points[i], _, normal_vec = sim.simxReadProximitySensor(clientID, veh_sonar[i],
sim.simx_opmode_streaming)
braitenberg_sonar_L = [0.2, 0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.2]
braitenberg_sonar_R = [-1.2, -1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2]
# TODO: fix the red cube avoidance
braitenberg_red_L = [-0.65, -0.6, -0.55, -0.5, -0.45, -0.4, -0.35, -0.3, -0.25, -0.2, -0.15, -0.1, -0.05, 0.0, 0.05, 0.10]
braitenberg_red_R = [0.10, 0.05, 0.0, -0.05, -0.1, -0.15, -0.2, -0.25, -0.3, -0.35, -0.4, -0.45, -0.5, -0.55, -0.6, -0.65]
braitenberg_green_L = [0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05]
braitenberg_green_R = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8]
# braitenberg_sonar_L = [0.6, 0.8, 0.6, 0.4, -0.4, -0.6, -0.8, -0.6]
# braitenberg_sonar_R = [-0.6, -0.8, -0.6, -0.4, 0.4, 0.6, 0.8, 0.6]
# print [j[2] for j in points]
sonar_ready_flag = False
# keep running until the server shuts down
while sim.simxGetConnectionId(clientID) != -1:
image, image_ready_flag = read_image(image_ready_flag, clientID, veh_camera)
detections, sonar_ready_flag = read_sonar(clientID, veh_sonar, sonar_ready_flag)
# print detections
# if image_ready_flag:
# cv2.imshow("image", image)
# cv2.waitKey(1)
if image_ready_flag and sonar_ready_flag and not detections is None:
free_running(detections, image, clientID, veh_left_motor, veh_right_motor)
cv2.destroyAllWindows()
# Now send some data to CoppeliaSim in a non-blocking fashion:
# sim.simxAddStatusbarMessage(clientID, 'Hello CoppeliaSim!', sim.simx_opmode_oneshot)
# Before closing the connection to CoppeliaSim, make sure that the last command sent out had time to arrive. You
# can guarantee this with (for example):
sim.simxGetPingTime(clientID)
# Now close the connection to CoppeliaSim:
sim.simxFinish(clientID)
else:
print 'Failed connecting to remote API server'
print 'Program ended'
|
[
"[email protected]"
] | |
d1ddaf333839d2b4c77c8c4265b2240ac9836035
|
8d6fa96da4220ba886ef8e858f1925b6dca34e58
|
/examples/wtf/wtf/config.py
|
7cf539ff078f59cb14f772090950734c0d091acb
|
[] |
no_license
|
FZambia/cyclone-wtforms
|
6ee26c920171685e027529e8f1fbb99c765edc30
|
c266b5f3bfff77e3a721b3335b74a294966f7daf
|
refs/heads/master
| 2016-09-05T15:23:08.336180 | 2012-10-05T18:55:00 | 2012-10-05T18:55:00 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,041 |
py
|
# coding: utf-8
#
# Copyright 2010 Alexandre Fiori
# based on the original Tornado by Facebook
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import os
import ConfigParser
from cyclone.util import ObjectDict
def xget(func, section, option, default=None):
try:
return func(section, option)
except:
return default
def parse_config(filename):
cfg = ConfigParser.RawConfigParser()
with open(filename) as fp:
cfg.readfp(fp)
fp.close()
settings = {'raw': cfg}
# web server settings
settings["debug"] = xget(cfg.getboolean, "server", "debug", False)
settings["xheaders"] = xget(cfg.getboolean, "server", "xheaders", False)
settings["cookie_secret"] = cfg.get("server", "cookie_secret")
settings["xsrf_cookies"] = xget(cfg.getboolean, "server", "xsrf_cookies",
False)
# get project's absolute path
root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
getpath = lambda k, v: os.path.join(root, xget(cfg.get, k, v))
# locale, template and static directories' path
settings["locale_path"] = getpath("frontend", "locale_path")
settings["static_path"] = getpath("frontend", "static_path")
settings["template_path"] = getpath("frontend", "template_path")
# sqlite support
if xget(cfg.getboolean, "sqlite", "enabled", False):
settings["sqlite_settings"] = ObjectDict(database=cfg.get("sqlite",
"database"))
else:
settings["sqlite_settings"] = None
# redis support
if xget(cfg.getboolean, "redis", "enabled", False):
settings["redis_settings"] = ObjectDict(
host=cfg.get("redis", "host"),
port=cfg.getint("redis", "port"),
dbid=cfg.getint("redis", "dbid"),
poolsize=cfg.getint("redis", "poolsize"))
else:
settings["redis_settings"] = None
# mysql support
if xget(cfg.getboolean, "mysql", "enabled", False):
settings["mysql_settings"] = ObjectDict(
host=cfg.get("mysql", "host"),
port=cfg.getint("mysql", "port"),
username=xget(cfg.get, "mysql", "username"),
password=xget(cfg.get, "mysql", "password"),
database=xget(cfg.get, "mysql", "database"),
poolsize=xget(cfg.getint, "mysql", "poolsize", 10),
debug=xget(cfg.getboolean, "mysql", "debug", False))
else:
settings["mysql_settings"] = None
return settings
|
[
"[email protected]"
] | |
831ecbe5f0e78dba57eef89d48c2de2dfde712b6
|
1152aeca900b16e4c9a659a1a014a892aa08fb01
|
/hello-django/question/migrations/0005_auto_20190108_1023.py
|
b4543fcab26962803577b5e012d6f0c42f93530f
|
[] |
no_license
|
mixkungz/django-for-deploy
|
923ff536fd8a2506bb53cb77bdd315513e40ae9c
|
187fe18ad85ca8bd04ee2e053248cdeff030cc85
|
refs/heads/master
| 2020-05-03T13:37:10.190004 | 2019-03-31T10:17:08 | 2019-03-31T10:17:08 | 178,657,364 | 0 | 0 | null | 2019-03-31T07:40:20 | 2019-03-31T07:40:20 | null |
UTF-8
|
Python
| false | false | 435 |
py
|
# Generated by Django 2.0.9 on 2019-01-08 03:23
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('question', '0004_auto_20190108_1010'),
]
operations = [
migrations.RemoveField(
model_name='answer',
name='created',
),
migrations.RemoveField(
model_name='answer',
name='modified',
),
]
|
[
"[email protected]"
] | |
fb04fa20f9674a3aa47b159387a398b15b39606b
|
b5906e0a8c000176faebdf7eeb9488ad42812985
|
/lib/python2.7/site-packages/tflearn/helpers/trainer.py
|
6810e5f1d7cd6031735772af89391561c9dcf689
|
[] |
no_license
|
ZachPhillipsGary/CS200-NLP-ANNsProject
|
58593b5ad79d578503ea1e1cc155e014a10f26c3
|
35db127effc2a427dfd6f1ff7022b35f31c8337b
|
refs/heads/master
| 2022-12-22T07:42:52.513314 | 2016-05-06T13:52:40 | 2016-05-06T13:52:40 | 56,972,642 | 0 | 1 | null | 2016-05-02T04:22:19 | 2016-04-24T13:21:29 |
Python
|
UTF-8
|
Python
| false | false | 33,519 |
py
|
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
import tensorflow as tf
from tensorflow.python.training import optimizer as tf_optimizer
import tflearn
from .. import callbacks
from ..config import init_training_mode
from ..utils import to_list, id_generator, check_dir_name, standarize_dict, \
get_dict_first_element, make_batches, slice_array, check_scope_path
from .summarizer import summaries, summarize, summarize_gradients, \
summarize_variables, summarize_activations
class Trainer(object):
""" Trainer.
Generic class to handle any TensorFlow graph training. It requires
the use of `TrainOp` to specify all optimization parameters.
Arguments:
train_ops: list of `TrainOp`. A list of a network training
operations for performing optimizations.
graph: `tf.Graph`. The TensorFlow graph to use. Default: default tf
graph.
clip_gradients: `float`. Clip gradient. Default: 5.0.
tensorboard_dir: `str`. Tensorboard log directory.
Default: "/tmp/tflearn_logs/".
tensorboard_verbose: `int`. Verbose level. It supports:
```python
0 - Loss, Accuracy. (Best Speed)
1 - Loss, Accuracy, Gradients.
2 - Loss, Accuracy, Gradients, Weights.
3 - Loss, Accuracy, Gradients, Weights, Activations, Sparsity.
(Best Visualization)
```
checkpoint_path: `str`. Path to store model checkpoints. If None,
no model checkpoint will be saved. Default: None.
max_checkpoints: `int` or None. Maximum amount of checkpoints. If
None, no limit. Default: None.
keep_checkpoint_every_n_hours: `float`. Number of hours between each
model checkpoints.
random_seed: `int`. Random seed, for test reproductivity.
Default: None.
session: `Session`. A session for running ops. If None, a new one will
be created. Note: When providing a session, variables must have been
initialized already, otherwise an error will be raised.
"""
def __init__(self, train_ops, graph=None, clip_gradients=5.0,
tensorboard_dir="/tmp/tflearn_logs/",
tensorboard_verbose=0, checkpoint_path=None,
max_checkpoints=None,
keep_checkpoint_every_n_hours=10000.0, random_seed=None,
session=None):
self.graph = tf.get_default_graph()
if graph:
self.graph = graph
with self.graph.as_default():
init_training_mode()
train_ops = to_list(train_ops)
duplicate_identical_ops(train_ops)
if random_seed:
tf.set_random_seed(random_seed)
self.restored = False
self.tensorboard_dir = check_dir_name(tensorboard_dir)
self.training_step = 0
self.train_ops = to_list(train_ops)
self.validate_trainop_names()
self.global_loss = None
self.global_step = tf.Variable(0., name='Global_Step',
trainable=False)
self.incr_global_step = tf.assign(self.global_step,
tf.add(self.global_step, 1))
config = None
tflearn_conf = tf.get_collection(tf.GraphKeys.GRAPH_CONFIG)
if tflearn_conf:
config = tflearn_conf[0]
if not session:
self.session = tf.Session(config=config)
else:
self.session = session
self.restored = True
for i, train_op in enumerate(self.train_ops):
# For display simplicity in Tensorboard, if only one optmizer,
# we don't display its name
if len(train_ops) == 1:
train_op.scope_name = ""
train_op.initialize_training_ops(i, self.session,
tensorboard_verbose,
clip_gradients)
# Saver for saving a model
self.saver = tf.train.Saver(
max_to_keep=max_checkpoints,
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
# Saver for restoring a model (With exclude variable list)
all_vars = tf.get_collection(tf.GraphKeys.VARIABLES)
excl_vars = tf.get_collection(tf.GraphKeys.EXCL_RESTORE_VARS)
to_restore = [item for item in all_vars if item not in excl_vars]
self.restorer = tf.train.Saver(
var_list=to_restore,
max_to_keep=max_checkpoints,
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
self.checkpoint_path = checkpoint_path
if not self.restored:
init = tf.initialize_all_variables()
self.session.run(init)
def fit(self, feed_dicts, n_epoch=10, val_feed_dicts=None, show_metric=False,
snapshot_step=None, snapshot_epoch=True, shuffle_all=None,
run_id=None):
""" fit.
Train network with feeded data dicts.
Examples:
```python
# 1 Optimizer
trainer.fit(feed_dicts={input1: X, output1: Y},
val_feed_dicts={input1: X, output1: Y})
trainer.fit(feed_dicts={input1: X1, input2: X2, output1: Y},
val_feed_dicts=0.1) # 10% of data used for validation
# 2 Optimizers
trainer.fit(feed_dicts=[{in1: X1, out1:Y}, {in2: X2, out2:Y2}],
val_feed_dicts=[{in1: X1, out1:Y}, {in2: X2, out2:Y2}])
```
Arguments:
feed_dicts: `dict` or list of `dict`. The dictionary to feed
data to the network. It follows Tensorflow feed dict
specifications: '{placeholder: data}'. In case of multiple
optimizers, a list of dict is expected, that will
respectively feed optimizers.
n_epoch: `int`. Number of epoch to runs.
val_feed_dicts: `dict`, list of `dict`, `float` or list of
`float`. The data used for validation. Feed dict are
following the same specification as `feed_dicts` above. It
is also possible to provide a `float` for splitting training
data for validation.
show_metric: `bool`. If True, accuracy will be calculated and
displayed at every step. Might give slower training.
snapshot_step: `int`. If not None, the network will be snapshot
every provided step (calculate validation loss/accuracy and
save model, if a `checkpoint_path` is specified in `Trainer`).
snapshot_epoch: `bool`. If True, snapshot the network at the end
of every epoch.
shuffle_all: `bool`. If True, shuffle all data batches (overrides
`TrainOp` shuffle parameter behavior).
run_id: `str`. A name for the current run. Used for Tensorboard
display. If no name provided, a random one will be generated.
"""
if not run_id:
run_id = id_generator(6)
print("---------------------------------")
print("Run id: " + run_id)
print("Log directory: " + self.tensorboard_dir)
# shuffle is an override for simplicty, it will overrides every
# training op batch shuffling
if isinstance(shuffle_all, bool):
for t in self.train_ops: t.shuffle = shuffle_all
with self.graph.as_default():
self.summ_writer = tf.train.SummaryWriter(
self.tensorboard_dir + run_id, self.session.graph_def)
# TODO: Add a check that all keys in feed dict match val feed dict
feed_dicts = to_list(feed_dicts)
for d in feed_dicts: standarize_dict(d)
val_feed_dicts = to_list(val_feed_dicts)
if val_feed_dicts: [standarize_dict(d) for d in val_feed_dicts]
# Handle validation split
validation_split(val_feed_dicts, feed_dicts)
termlogger = callbacks.TermLogger(self.training_step)
modelsaver = callbacks.ModelSaver(self.save,
self.training_step,
self.checkpoint_path,
snapshot_epoch)
for i, train_op in enumerate(self.train_ops):
vd = val_feed_dicts[i] if val_feed_dicts else None
# Prepare all train_ops for fitting
train_op.initialize_fit(feed_dicts[i], vd, show_metric,
self.summ_writer)
# Prepare TermLogger for training diplay
metric_term_name = None
if train_op.metric is not None:
if hasattr(train_op.metric, 'm_name'):
metric_term_name = train_op.metric.m_name
else:
metric_term_name = train_op.metric.name.split(':')[0]
termlogger.add(train_op.n_train_samples,
val_size=train_op.n_val_samples,
metric_name=metric_term_name,
name=train_op.name)
max_batches_len = np.max([t.n_batches for t in self.train_ops])
termlogger.on_train_begin()
modelsaver.on_epoch_begin()
try:
for epoch in range(n_epoch):
termlogger.on_epoch_begin()
modelsaver.on_epoch_begin()
# Global epoch are defined as loop over all data (whatever
# which data input), so one epoch loop in a multi-inputs
# model is equal to max(data_input) size.
for batch_step in range(max_batches_len):
self.training_step += 1
termlogger.on_batch_begin()
modelsaver.on_batch_begin()
global_loss, global_acc = 0., 0.
for i, train_op in enumerate(self.train_ops):
termlogger.on_sub_epoch_begin()
modelsaver.on_sub_batch_begin()
snapshot = train_op._train(self.training_step,
snapshot_epoch,
snapshot_step,
show_metric)
global_loss += train_op.loss_value
if train_op.acc_value and global_acc:
global_acc += train_op.acc_value / len(
self.train_ops)
else:
global_acc = None
# Optimizer batch end
termlogger.on_sub_batch_end(i, train_op.epoch,
train_op.step,
train_op.loss_value,
train_op.acc_value,
train_op.val_loss,
train_op.val_acc)
modelsaver.on_sub_batch_end()
# All optimizers batch end
self.session.run(self.incr_global_step)
termlogger.on_batch_end(global_loss, global_acc,
snapshot)
modelsaver.on_batch_end(snapshot)
# Epoch end
termlogger.on_epoch_end()
modelsaver.on_epoch_end()
finally:
termlogger.on_train_end()
modelsaver.on_train_end()
def save(self, model_file, global_step=None):
""" save.
Save a Tensorflow model
Arguments:
model_file: `str`. Saving path of tensorflow model
global_step: `float`. The training step to append to the
model file name (optional).
"""
# Temp workaround for tensorflow 0.7.0 dict proto serialization issue
try:
# Try latest api
l = tf.get_collection_ref("summary_tags")
except Exception:
l = tf.get_collection("summary_tags")
l_stags = list(l)
del l[:]
# Temp workaround for tensorflow 0.7.0 relative path issue
if model_file[0] not in ['/', '~']: model_file = './' + model_file
self.saver.save(self.session, model_file, global_step=global_step)
# 0.7 workaround, restore values
for t in l_stags:
tf.add_to_collection("summary_tags", t)
def restore(self, model_file):
""" restore.
Restore a Tensorflow model
Arguments:
model_file: path of tensorflow model to restore
"""
self.close_session()
self.session = tf.Session()
self.session.run(tf.initialize_all_variables())
self.restorer.restore(self.session, model_file)
for o in self.train_ops:
o.session = self.session
self.restored = True
self.training_step = int(self.global_step.eval(self.session))
def close_session(self):
""" Close session """
self.session.close()
def validate_trainop_names(self):
""" Give names to all TrainOp, handle no names and duplicated names """
t_len = len(self.train_ops)
# Rename optimizers without name
for i in range(t_len):
if not self.train_ops[i].name:
self.train_ops[i].name = 'Optimizer'
self.train_ops[i].scope_name = 'Optimizer'
# Handle duplicate names
for i in range(t_len):
dupl = 0
for j in range(i+1, t_len):
if not self.train_ops[i].name:
break
if self.train_ops[i].name == self.train_ops[j].name:
if dupl == 0:
self.train_ops[i].name += '_' + str(dupl)
self.train_ops[i].scope_name = self.train_ops[i].name
dupl += 1
self.train_ops[j].name += '_' + str(dupl)
self.train_ops[j].scope_name = self.train_ops[j].name
class TrainOp(object):
""" TrainOp.
TrainOp represents a set of operation used for optimizing a network.
A TrainOp is meant to hold all training parameters of an optimizer.
`Trainer` class will then instantiate them all specifically considering all
optimizers of the network (set names, scopes... set optimization ops...).
Arguments:
loss: `Tensor`. Loss operation to evaluate network cost.
Optimizer will use this cost function to train network.
optimizer: `Optimizer`. Tensorflow Optimizer. The optimizer to
use to train network.
metric: `Tensor`. The metric tensor to be used for evaluation.
batch_size: `int`. Batch size for data feeded to this optimizer.
Default: 64.
ema: `float`. Exponential moving averages.
trainable_vars: list of `tf.Variable`. List of trainable variables to
use for training. Default: all trainable variables.
shuffle: `bool`. Shuffle data.
step_tensor: `tf.Tensor`. A variable holding training step. If not
provided, it will be created. Early defining the step tensor
might be useful for network creation, such as for learning rate
decay.
name: `str`. A name for this class (optional).
graph: `tf.Graph`. Tensorflow Graph to use for training. Default:
default tf graph.
"""
def __init__(self, loss, optimizer, metric=None, batch_size=64, ema=0.,
trainable_vars=None, shuffle=True, step_tensor=None,
name=None, graph=None):
self.graph = tf.get_default_graph()
if graph:
self.graph = graph
self.name = name
self.scope_name = name
# Ops
self.loss = loss
self.optimizer = optimizer
self.metric = metric
self.metric_summ_name = ""
if metric is not None:
self.metric_summ_name = metric.name.split('/')[0]
self.grad = None
self.apply_grad = None
self.summ_op = None
self.val_summary_op = None
self.train_vars = trainable_vars
self.shuffle = shuffle
# Train utils
self.epoch = 0
self.step = 0
self.batches = None
self.batch_index = 0
self.batch_start = 0
self.batch_end = 0
self.batch_size = batch_size
self.data_size = 0
self.n_batches = 0
self.ema = ema
self.feed_dict = None
self.val_feed_dict = None
self.loss_value = None
self.val_loss = None
self.acc_value = None
self.val_acc = None
if step_tensor is None:
with self.graph.as_default():
self.training_steps = tf.Variable(0., name="Training_step",
trainable=False)
else:
self.training_steps = step_tensor
# Building
if not isinstance(self.loss, tf.Tensor):
raise ValueError("Unknown Loss type")
if not isinstance(self.optimizer, tf_optimizer.Optimizer):
raise ValueError("Unknown Optimizer")
if self.train_vars is None:
self.train_vars = tf.trainable_variables()
else:
self.train_var = to_list(self.train_vars)
self.train = None
def initialize_training_ops(self, i, session, tensorboard_verbose,
clip_gradients):
""" initialize_training_ops.
Initialize all ops used for training. Because a network can have
multiple optimizers, an id 'i' is allocated to differentiate them.
This is meant to be used by `Trainer` when initializing all train ops.
Arguments:
i: `int`. This optimizer training process ID.
session: `tf.Session`. The session used to train the network.
tensorboard_verbose: `int`. Logs verbose. Supports:
```
0 - Loss, Accuracy.
1 - Loss, Accuracy, Gradients.
2 - Loss, Accuracy, Gradients, Weights.
3 - Loss, Accuracy, Gradients, Weights, Activations, Sparsity..
```
clip_gradients: `float`. Option for clipping gradients.
"""
self.session = session
# Variables holding mean validation loss and accuracy, assigned after
# each model evaluation (by batch). For visualization in Tensorboard.
self.val_loss_T = tf.Variable(0., name='val_loss', trainable=False)
self.val_acc_T = tf.Variable(0., name='val_acc', trainable=False)
# Creating the accuracy moving average, for better visualization.
if self.metric is not None:
self.acc_averages = \
tf.train.ExponentialMovingAverage(0.9, self.training_steps,
name='moving_avg')
acc_avg_op = self.acc_averages.apply([self.metric])
else:
acc_avg_op = tf.no_op()
# Compute total loss, which is the loss of all optimizers plus the
# loss of all regularizers. Then, we summarize those losses for
# visualization in Tensorboard.
with tf.name_scope(self.name):
lss = [self.loss] + tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = tf.add_n(lss, name="Total_Loss")
loss_avg_op = summaries.add_loss_summaries(
total_loss,
self.loss,
regul_losses_collection_key=tf.GraphKeys.REGULARIZATION_LOSSES,
name_prefix=self.scope_name,
summaries_collection_key=self.name + "_training_summaries",
exp_moving_avg=0.9,
ema_num_updates=self.training_steps)
# Compute gradients operations
with tf.control_dependencies([loss_avg_op, acc_avg_op]):
self.grad = tf.gradients(total_loss, self.train_vars)
if clip_gradients > 0.0:
self.grad, self.grad_norm = \
tf.clip_by_global_norm(self.grad, clip_gradients)
self.grad = list(zip(self.grad, self.train_vars))
self.apply_grad = self.optimizer.apply_gradients(
grads_and_vars=self.grad,
global_step=self.training_steps,
name="apply_grad_op_" + str(i))
# Create other useful summary (weights, grads, activations...)
# according to 'tensorboard_verbose' level.
self.create_summaries(tensorboard_verbose)
# Track the moving averages of trainable variables
if self.ema > 0.:
var_averages = tf.train.ExponentialMovingAverage(
self.ema, self.training_steps)
var_averages_op = var_averages.apply(self.train_vars)
with tf.control_dependencies([var_averages_op]):
with tf.control_dependencies([self.apply_grad]):
self.train = tf.no_op(name="train_op_" + str(i))
else:
with tf.control_dependencies([self.apply_grad]):
self.train = tf.no_op(name="train_op_" + str(i))
def initialize_fit(self, feed_dict, val_feed_dict, show_metric,
summ_writer):
""" initialize_fit.
Initialize data for feeding the training process. It is meant to
be used by `Trainer` before starting to fit data.
Arguments:
feed_dict: `dict`. The data dictionary to feed.
val_feed_dict: `dict`. The validation data dictionary to feed.
show_metric: `bool`. If True, display accuracy at every step.
summ_writer: `SummaryWriter`. The summary writer to use for
Tensorboard logging.
"""
self.summary_writer = summ_writer
self.feed_dict = feed_dict
self.val_feed_dict = val_feed_dict
self.n_train_samples = len(get_dict_first_element(feed_dict))
self.n_val_samples = 0
if val_feed_dict:
self.n_val_samples = len(get_dict_first_element(val_feed_dict))
self.index_array = np.arange(self.n_train_samples)
self.create_testing_summaries(show_metric, self.metric_summ_name,
val_feed_dict)
if self.shuffle:
np.random.shuffle(self.index_array)
self.set_batches(make_batches(self.n_train_samples, self.batch_size))
def set_batches(self, batches):
self.batches = batches
self.n_batches = len(batches)
self.batch_size = int(batches[0][1] - batches[0][0])
self.data_size = self.batch_size * (self.n_batches - 1) + \
int(batches[-1][1] - batches[-1][0])
self.batch_start, self.batch_end = self.batches[self.batch_index]
def next_batch(self):
""" Return True if a next batch is available """
self.batch_index += 1
self.step = min(self.batch_index*self.batch_size, self.data_size)
if self.batch_index == self.n_batches:
self.batch_index = 0
self.epoch += 1
self.step = 0
return False
self.batch_start, self.batch_end = self.batches[self.batch_index]
return True
def _train(self, training_step, snapshot_epoch, snapshot_step,
show_metric):
""" Training process for this optimizer.
Arguments:
training_step: `int`. The global step.
snapshot_epoch: `bool`. If True, snapshot network at each epoch.
snapshot_step: `int`. If not None, snapshot network given 'step'.
show_metric: `bool`. If True, display accuracy at every step.
"""
tflearn.is_training(True, self.session)
self.loss_value, self.acc_value = None, None
self.val_loss, self.val_acc = None, None
train_summ_str, test_summ_str = None, None
snapshot = False
batch_ids = self.index_array[self.batch_start:self.batch_end]
feed_batch = {}
for key in self.feed_dict:
# Make batch for multi-dimensional data
if np.ndim(self.feed_dict[key]) > 0:
feed_batch[key] = slice_array(self.feed_dict[key], batch_ids)
else:
feed_batch[key] = self.feed_dict[key]
tflearn.is_training(True, self.session)
self.session.run([self.train], feed_batch)
tflearn.is_training(False, self.session)
if self.summ_op is not None:
train_summ_str = self.session.run(self.summ_op, feed_batch)
# Retrieve loss value from summary string
sname = "- Loss/" + self.scope_name
self.loss_value = summaries.get_value_from_summary_string(
sname, train_summ_str)
if show_metric and self.metric is not None:
# Retrieve accuracy value from summary string
sname = "- " + self.metric_summ_name + "/" + self.scope_name
self.acc_value = summaries.get_value_from_summary_string(
sname, train_summ_str)
# Check if data reached an epoch
if not self.next_batch():
if self.shuffle:
np.random.shuffle(self.index_array)
batches = make_batches(self.n_train_samples, self.batch_size)
self.set_batches(batches)
if snapshot_epoch:
snapshot = True
# Check if step reached snapshot step
if snapshot_step:
if training_step % snapshot_step == 0:
snapshot = True
# Calculate validation
if snapshot and self.val_feed_dict:
# Evaluation returns the mean over all batches.
self.val_loss = evaluate(self.session, self.loss,
self.val_feed_dict,
self.batch_size)
if show_metric and self.metric is not None:
self.val_acc = evaluate(self.session, self.metric,
self.val_feed_dict,
self.batch_size)
# Set evaluation results to variables, to be summarized.
if show_metric:
update_val_op = [tf.assign(self.val_loss_T, self.val_loss),
tf.assign(self.val_acc_T, self.val_acc)]
else:
update_val_op = tf.assign(self.val_loss_T, self.val_loss)
self.session.run(update_val_op)
# Run summary operation.
test_summ_str = self.session.run(self.val_summary_op,
self.val_feed_dict)
# Write to Tensorboard
n_step = self.training_steps.eval(session=self.session)
if n_step > 1:
if train_summ_str:
self.summary_writer.add_summary(
train_summ_str, n_step)
if test_summ_str:
self.summary_writer.add_summary(
test_summ_str, n_step)
return snapshot
def duplicate(self):
""" Returns a duplicated `TrainOp` """
return TrainOp(self.loss, optimizer=self.optimizer,
batch_size=self.batch_size, ema=self.ema,
metric=self.metric,
trainable_vars=self.train_vars,
shuffle=self.shuffle)
def create_summaries(self, verbose=2):
""" Create summaries with `verbose` level """
summ_collection = self.name + "_training_summaries"
if verbose in [3]:
# Summarize activations
activations = tf.get_collection(tf.GraphKeys.ACTIVATIONS)
summarize_activations(activations, summ_collection)
if verbose in [2, 3]:
# Summarize variable weights
summarize_variables(self.train_vars, summ_collection)
if verbose in [1, 2, 3]:
# Summarize gradients
summarize_gradients(self.grad, summ_collection)
self.summ_op = tf.merge_summary(tf.get_collection(summ_collection))
def create_testing_summaries(self, show_metric=False,
metric_name="Accuracy", validation_set=None):
""" Create accuracy and validation summaries """
tr_summ_collection = self.name + "_training_summaries"
te_summ_collection = self.name + "_testing_summaries"
mn = metric_name.replace('/Mean:0/', '')
if show_metric and self.metric is not None:
# Summarize Raw Accuracy
sname = "- " + mn + "/" + self.scope_name + " (raw)"
summarize(self.metric, "scalar", sname, tr_summ_collection)
# Summarize Accuracy's moving averages
sname = "- " + mn + "/" + self.scope_name
self.summ_op = summarize(self.acc_averages.average(self.metric),
"scalar", sname, tr_summ_collection)
if validation_set is not None:
# Summarive Validation Loss
loss_val_name = "- Loss/" + self.scope_name + "/Validation"
loss_val_name = check_scope_path(loss_val_name)
self.val_summary_op = summarize(self.val_loss_T, "scalar",
loss_val_name, te_summ_collection)
if show_metric and self.metric is not None:
# Summarize Validation Accuracy
acc_val_name = "- " + mn + "/" + self.scope_name + "/Validation"
acc_val_name = check_scope_path(acc_val_name)
self.val_summary_op = summarize(self.val_acc_T, "scalar",
acc_val_name,
te_summ_collection)
def duplicate_identical_ops(ops):
""" Duplicate identical `TrainOp` """
for i in range(len(ops)):
for j in range(i+1, len(ops)):
if ops[i] == ops[j]:
ops[j] = ops[i].duplicate()
def validation_split(val_feed_dicts, feed_dicts):
""" validation_split.
Handles validation split; build validation data based on a
percentage of training data. It checks all val_feed_dicts keys
values for a float, if found, it retrieves the exact same key in feed_dict
and split its data according to `float` value and move it to val_feed_dict.
Args:
val_feed_dicts: `dict` of arrays or float. validation dictionary.
feed_dicts: `dict` of arrays. training data dictionary.
"""
if val_feed_dicts:
for i, val_dict in enumerate(val_feed_dicts):
for key, val in val_dict.items():
if isinstance(val, float):
split = val
if type(feed_dicts[i][key]) in [list, np.ndarray]:
split_at = int(len(feed_dicts[i][key]) * (1 - split))
feed_dicts[i][key], val_feed_dicts[i][key] = \
(slice_array(feed_dicts[i][key], 0, split_at),
slice_array(feed_dicts[i][key], split_at))
else:
# If parameter is not an array, we duplicate value
val_feed_dicts[i][key] = feed_dicts[i][key]
def evaluate(session, op_to_evaluate, feed_dict, batch_size):
""" evaluate.
Evaluate an operation with provided data dict using a batch size
to save GPU memory.
Args:
session: `tf.Session`. Session for running operations.
op_to_evaluate: `tf.Op`. Operation to be evaluated.
feed_dict: `dict`. Data dictionary to feed op_to_evaluate.
batch_size: `int`. Batch size to be used for evaluation.
Ret:
`float`. op_to_evaluate mean over all batches.
"""
tflearn.is_training(False, session)
n_test_samples = len(get_dict_first_element(feed_dict))
batches = make_batches(n_test_samples, batch_size)
index_array = np.arange(n_test_samples)
avg = 0.0
for i, (batch_start, batch_end) in enumerate(batches):
batch_ids = index_array[batch_start:batch_end]
feed_batch = {}
for key in feed_dict:
# Make batch for multi-dimensional data
if np.ndim(feed_dict[key]) > 0:
feed_batch[key] = slice_array(feed_dict[key], batch_ids)
else:
feed_batch[key] = feed_dict[key]
avg += session.run(op_to_evaluate, feed_batch) / len(batches)
return avg
|
[
"[email protected]"
] | |
a95a21a906cbc61b1a494f65b0db168b544ba60c
|
3e65c4a3781359e1e68870f6419bb580cec3d670
|
/tests/front_office/not_sorted/example_suite.py
|
8e6a9c7a6af12a6447ad8d011d612ac059ef3aea
|
[] |
no_license
|
Maksim1988/test
|
deeff67fc3211c913d9be77008f38fe9e24a2a18
|
ea1fd32981fce2db2c8bb6ceeb477bc7561e58cd
|
refs/heads/master
| 2021-01-10T17:03:36.871180 | 2015-11-08T13:08:49 | 2015-11-08T13:08:49 | 45,779,091 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 608 |
py
|
__author__ = 'm.senchuk'
import itertools
from nose.loader import TestLoader
from nose import run
from nose.suite import LazySuite
#paths = ("C:\Users\\m.senchuk\\PycharmProjects\\FF4F\\api-tests\\tests\\front_office\\test_search.py:TestSearchSeller",
# )
#
#
#def run_my_tests():
# all_tests = ()
# for path in paths:
# all_tests = itertools.chain(all_tests, TestLoader().loadTestsFromName(path))
# suite = LazySuite(all_tests)
# result = run(suite=suite)
# assert result is True, "One or more tests FAILED. See console log."
#
#if __name__ == '__main__':
# run_my_tests()
|
[
"[email protected]"
] | |
beb4cb8c5fb98b584d7ccafc8ad7673035e22014
|
5c3cca4ea09b1cad4be3b5973f1c9028661a92b4
|
/flup/resolver/nopathinfo.py
|
93063e28daae4b8ec73476e411d81e94ee16ed2f
|
[] |
no_license
|
cwallenpoole/blog_m3
|
4cfec16a7cb1f504c8ba579476c18a783725a9aa
|
1de1e68ae959c092cf1c486d92a25d511881281d
|
refs/heads/master
| 2016-09-06T18:55:28.087462 | 2013-01-28T02:02:03 | 2013-01-28T02:02:03 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,521 |
py
|
# Copyright (c) 2005 Allan Saddi <[email protected]>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
# $Id: nopathinfo.py 1755 2005-04-15 03:35:59Z asaddi $
__author__ = 'Allan Saddi <[email protected]>'
__version__ = '$Revision: 1755 $'
from .resolver import *
__all__ = ['NoPathInfoResolver']
class NoPathInfoResolver(Resolver):
"""
Another meta-resolver. Disallows the existence of PATH_INFO (beyond
what's needed to resolve the function). Optionally allows a trailing
slash.
"""
def __init__(self, resolver, allowTrailingSlash=False):
self._resolver = resolver
self._allowTrailingSlash = allowTrailingSlash
def resolve(self, request, redirect=False):
orig_script_name, orig_path_info = request.scriptName, request.pathInfo
func = self._resolver.resolve(request, redirect)
try:
if func is not None:
path_info = request.pathInfo.split(';')[0]
if path_info and \
(not self._allowTrailingSlash or path_info != '/'):
func = None
return func
finally:
if func is None:
request.environ['SCRIPT_NAME'] = orig_script_name
request.environ['PATH_INFO'] = orig_path_info
|
[
"[email protected]"
] | |
626e284b40ec0447bfcba31a165d86827eb7df2a
|
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
|
/gHrMmA7emP6CFAMnb_6.py
|
35eeb43f5be552b55e650249bf1ff464b8e37754
|
[] |
no_license
|
daniel-reich/ubiquitous-fiesta
|
26e80f0082f8589e51d359ce7953117a3da7d38c
|
9af2700dbe59284f5697e612491499841a6c126f
|
refs/heads/master
| 2023-04-05T06:40:37.328213 | 2021-04-06T20:17:44 | 2021-04-06T20:17:44 | 355,318,759 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 200 |
py
|
def is_apocalyptic(n):
L=str(2**n).split('666')
if len(L)==1:
return "Safe"
elif len(L)==2:
return "Single"
elif len(L)==3:
return "Double"
elif len(L)==4:
return "Triple"
|
[
"[email protected]"
] | |
790f320f73573645f8c4d22bab38bef0a32c0b52
|
f112dfe38732f131156556ab724e2b9a01d317ae
|
/week2/43-reverse-num.py
|
1cc8c4dbef21bd1ef9aac050ea0e5115f52387a4
|
[] |
no_license
|
pharick/python-coursera
|
2a92bf467e0ddd35a573ea4e29fff9a37e45bd24
|
3e24ac9385eada126e7c4753f71cd38181987fbf
|
refs/heads/master
| 2020-04-04T03:44:45.067099 | 2019-03-20T07:10:22 | 2019-03-20T07:10:22 | 155,724,086 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 75 |
py
|
n = int(input())
while n:
print(n % 10, end="")
n //= 10
print()
|
[
"[email protected]"
] | |
0e743649d4432447a1728b244cf860d8f0e7dbf6
|
4b7d83793acd0c84f8bd2603f766b5d8ba10c2eb
|
/solutions/RegularSolutionThreads.py
|
1aa780dcdf05184559bff2d1b32f64bd705f905b
|
[] |
no_license
|
TudorOrha/Parallel-image-filter-application
|
021a5497182c916a9d0e10623a2b87dfe7d12d37
|
345f167eb9db621439556713f1923cbaa7052fdf
|
refs/heads/master
| 2021-09-03T20:57:08.597365 | 2018-01-11T23:41:17 | 2018-01-11T23:41:17 | 115,743,012 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,155 |
py
|
import time
import threading
import multiprocessing
from multiprocessing import Pool
from PIL import Image
nrOfThreads = multiprocessing.cpu_count()
class myThread (threading.Thread):
def __init__(self, threadID, kernel, img, originalImg):
threading.Thread.__init__(self)
self.threadID = threadID
self.kernel = kernel
self.img = img
self.originalImg = originalImg
self.pixels = img.load()
self.originalPixels = originalImg.load()
def run(self):
applyFilterOnPart(self.threadID, self.kernel, self.img, self.originalImg)
def applyFilterOnPart(threadNr, kernel, img, originalImg):
pixels = img.load()
originalPixels = originalImg.load()
fromI = int(round(threadNr*(img.size[0]-2*(len(kernel)//2))/nrOfThreads)) + len(kernel)//2
toI = int(round((1+threadNr)*(img.size[0]-2*(len(kernel)//2))/nrOfThreads)) + len(kernel)//2
for i in range(fromI, toI):
for j in range(len(kernel)//2, img.size[1] - len(kernel)//2):
accumulatorR = 0
accumulatorG = 0
accumulatorB = 0
for kerRow in range(len(kernel)):
for kerCol in range(len(kernel[kerRow])):
accumulatorR += kernel[kerRow][kerCol] * originalPixels[i+len(kernel)//2 - kerRow,j+len(kernel)//2 - kerCol][0]
accumulatorG += kernel[kerRow][kerCol] * originalPixels[i+len(kernel)//2 - kerRow,j+len(kernel)//2 - kerCol][1]
accumulatorB += kernel[kerRow][kerCol] * originalPixels[i+len(kernel)//2 - kerRow,j+len(kernel)//2 - kerCol][2]
pixels[i,j] = (int(round(accumulatorR)), int(round(accumulatorG)), int(round(accumulatorB)))
return img
def generateParameters(kernel, img, originalImg):
params = []
for k in range(nrOfThreads):
params.append((k, kernel, img, originalImg))
return params
def main(imageName, kernel, showResult):
print("Regular Solution With Threads Output:")
start = time.time()
originalImg = Image.open(imageName)
img = Image.open(imageName)
pixels = img.load()
with Pool(processes=nrOfThreads) as pool:
results = pool.starmap(applyFilterOnPart, generateParameters(kernel,img,originalImg))
for k in range(nrOfThreads):
fromI = int(round(k*(img.size[0]-2*(len(kernel)//2))/nrOfThreads)) + len(kernel)//2
toI = int(round((1+k)*(img.size[0]-2*(len(kernel)//2))/nrOfThreads)) + len(kernel)//2
for i in range(fromI, toI):
for j in range(len(kernel)//2, img.size[1] - len(kernel)//2):
pixels[i,j] = results[k].load()[i,j]
'''
threads = []
for i in range (nrOfThreads):
thread = myThread(i, kernel, img, originalImg)
threads.append(thread)
thread.start()
for i in range (nrOfThreads):
threads[i].join()
'''
width, height = img.size
img = img.crop((len(kernel)//2, len(kernel)//2, width - len(kernel)//2, height - len(kernel)//2))
end = time.time()
print(end - start,"\n")
if showResult:
img.show()
|
[
"[email protected]"
] | |
e1ec61ece7c4b94c6d91bb0b115a6a0aefd76e07
|
bc39253e56a81d65b30975a775ae18e59db75c47
|
/pygame_basic/game.py
|
a8a3257ad370d554bb98cdc99e55a5d1b8aae8a5
|
[] |
no_license
|
skysee6126/py_game
|
96ed06c93d7566907af61a2df0e199325a1d6191
|
5213692541817e63b32a4b33af46c2c940836961
|
refs/heads/master
| 2023-04-21T15:07:53.074074 | 2021-04-28T13:22:15 | 2021-04-28T13:22:15 | 360,445,007 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,917 |
py
|
import pygame
pygame.init()
screen_width = 640
screen_height = 480
screen = pygame.display.set_mode((screen_width, screen_height))
pygame.display.set_caption("Test game")
#FPS
clock = pygame.time.Clock()
# background = pygame.image.load("C:\Users\케이지케이\Documents\practice\game\pygame_basic\background.jpg")
character = pygame.image.load("https://www.flaticon.com/svg/vstatic/svg/3885/3885025.svg?token=exp=1619081421~hmac=9f4bd262dddec45be649b11af322333e")
character_size = character.get_rect().size
character_width = character_size[0]
character_height = character_size[1]
character_x_pos = (screen_width/2) - (character_width/2)
character_y_pos = screen_height - character_height
#Move
to_x = 0
to_y = 0
character_speed = 0.6
enemy = pygame.image.load("enemy.jpg")
enemy_size = enemy.get_rect().size
enemy_width = enemy_size[0]
enemy_height = enemy_size[1]
enemy_x_pos = (screen_width/2) - (enemy_width/2)
enemy_y_pos = screen_height - enemy_height
game_font = pygame.font.Font(None, 40)
total_time = 10
start_ticks = pygame.time.get_ticks()
#Even roof
running = True
while running:
dt = clock.tick(30)
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
to_x -= character_speed
elif event.key == pygame.K_RIGHT:
to_x += character_speed
elif event.key == pygame.K_UP:
to_y -= character_speed
elif event.key == pygame.K_DOWN:
to_y += character_speed
if event.type == pygame.KEYUP:
if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT:
to_x = 0
elif event.key == pygame.K_UP or event.key == pygame.K_DOWN:
to_y = 0
character_x_pos += to_x *dt
character_y_pos += to_y *dt
#가로
if character_x_pos < 0:
character_x_pos = 0
elif character_x_pos > screen_width - character_width:
character_x_pos = screen_width - character_width
#세로
if character_y_pos < 0:
character_y_pos = 0
elif character_y_pos > screen_height - character_height:
character_y_pos = screen_height - character_height
#collision
character_rect = character.get_rect()
character_rect.left = character_x_pos
character_rect.right = character_y_pos
enemy_rect = enemy.get_rect()
enemy_rect.left = enemy_x_pos
enemy_rect.right = enemy_y_pos
if character_rect.colliderect(enemy_rect):
print("Bump!")
running = False
screen.fill((0,0,130))
# screen.blit(background, (0,0))
screen.blit(character, (character_x_pos,character_y_pos))
screen.blit(enemy, (enemy_x_pos,enemy_y_pos))
elapsed_time = (pygame.time.get_ticks() - start_ticks)/ 1000
timer = game_font.render(str(int(total_time - elapsed_time)), True, (255, 255, 255))
screen.blit(timer, (10,10))
if total_time - elapsed_time <= 0:
print("Time out")
running = False
pygame.display.update()
pygame.time.delay(2000)
pygame.quit()
|
[
"[email protected]"
] | |
4e8d14003c2e112ef076b89c4c8a3ad6613f9a2c
|
8da91c26d423bacbeee1163ac7e969904c7e4338
|
/pyvisdk/do/customization_failed.py
|
b63b14e03d5fddb6d06ae4f32d77239d433f8930
|
[] |
no_license
|
pexip/os-python-infi-pyvisdk
|
5d8f3a3858cdd61fb76485574e74ae525cdc7e25
|
1aadea0afbc306d09f6ecb9af0e683dbbf961d20
|
refs/heads/master
| 2023-08-28T02:40:28.789786 | 2020-07-16T04:00:53 | 2020-07-16T04:00:53 | 10,032,240 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,169 |
py
|
import logging
from pyvisdk.exceptions import InvalidArgumentError
########################################
# Automatically generated, do not edit.
########################################
log = logging.getLogger(__name__)
def CustomizationFailed(vim, *args, **kwargs):
'''The customization sequence in the guest failed.'''
obj = vim.client.factory.create('{urn:vim25}CustomizationFailed')
# do some validation checking...
if (len(args) + len(kwargs)) < 5:
raise IndexError('Expected at least 6 arguments got: %d' % len(args))
required = [ 'template', 'chainId', 'createdTime', 'key', 'userName' ]
optional = [ 'logLocation', 'changeTag', 'computeResource', 'datacenter', 'ds', 'dvs',
'fullFormattedMessage', 'host', 'net', 'vm', 'dynamicProperty', 'dynamicType' ]
for name, arg in zip(required+optional, args):
setattr(obj, name, arg)
for name, value in kwargs.items():
if name in required + optional:
setattr(obj, name, value)
else:
raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional)))
return obj
|
[
"[email protected]"
] | |
b8e02cce761e458f0b3ef4e1dd2c7a741cb9b2ad
|
5131d61e51a227444717abf8180d00db95179b3b
|
/lessons/point.py
|
1ffd4a12965568ee3f8a4242ef1cffcf8805dfcf
|
[] |
no_license
|
yutika01/comp110-21f-workspace
|
fdfa9894c2d99a1a43c1c12bee3663632e772865
|
a575deba7283c1cbd3b5c5f52cff37af8de3fa89
|
refs/heads/main
| 2023-09-04T13:23:26.508125 | 2021-11-21T02:27:43 | 2021-11-21T02:27:43 | 422,988,649 | 0 | 0 | null | 2021-10-30T20:54:08 | 2021-10-30T20:54:08 | null |
UTF-8
|
Python
| false | false | 774 |
py
|
"""Example of a Point class."""
from __future__ import annotations
class Point:
x: float
y: float
def __init__(self, x: float, y: float):
"""Initialize a Point with its x, y components."""
self.x = x
self.y = y
def scale_by(self, factor: float) -> None:
"""Mutates multiplies components by factor."""
self.x *= factor
self.y *= factor
def scale(self, factor: float) -> Point:
"""Immutable: mutliplies components by factor without mutation."""
x: float = self.x * factor
y: float = self.y * factor
scaled_point: Point = Point(x, y)
return scaled_point
p0: Point = Point(1.0, 2.0)
p1: Point = p0.scale(2.0)
print(f"({p0.x}, {p0.y})")
print(f"({p1.x}, {p1.y})")
|
[
"[email protected]"
] | |
4037c0492bcce6dde2154f61c014bed9328f5868
|
ed36a77bf31a5e2d99f80fe4c13224976ea274fd
|
/blog/models.py
|
c1d564824fd2f82a1cb2709ca4bab96d404d49a3
|
[] |
no_license
|
lovelove0618/django_swu_website
|
b2752623112bf85a5789b42f6569156293ddd01a
|
b33c2f267bfcf00490226d8797c7f0190c7466b2
|
refs/heads/master
| 2022-11-29T10:06:26.382813 | 2020-08-17T16:39:13 | 2020-08-17T16:39:13 | 287,696,266 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 272 |
py
|
from django.db import models
from django.contrib.auth.models import User
class Post(models.Model):
title = models.CharField(max_length=30)
content = models.TextField()
created = models.DateTimeField()
author = models.ForeignKey(User, on_delete=True)
|
[
"[email protected]"
] | |
231b25ba70c9a57c6b57cd97838fe94e8da086cc
|
6140cd676c3c6f0e65d3be4515789e7c0f255ffd
|
/numeric-tsne-plotly/settings.py
|
2c6bcb14653175b3b8fc3e8c7a36707d9890c928
|
[] |
no_license
|
RezaKakooee/tsne-collection
|
1efa1ab109d00588ff749bbd5d8f6563c841ce2b
|
93e58071671e2dfbd9b7e395608c4b2b8dca98ac
|
refs/heads/master
| 2022-04-10T08:08:27.427761 | 2020-03-28T22:53:25 | 2020-03-28T22:53:25 | 241,490,880 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 814 |
py
|
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 18 23:53:36 2020
@author: rkako
"""
import os
class Params():
def __init__(self):
# Directories ans Pathes
self.current_dir = os.getcwd()
# self.dataset_folder_name = 'imageset'
self.dataset_dir = 'C:/Users/reza/gdrive-redu/hslu/HSLU-Secude/large-data'
self.data_file_name = 'pca_output_vectors.pickle'
self.data_path = os.path.join(self.dataset_dir, self.data_file_name)
self.log_dir_name = 'logs'
self.log_dir = os.path.join(self.current_dir, self.log_dir_name)
self.similarity_metric = 'cosine'
# clucters
self.num_clusters = 10
# TSNE
self.tsne_n_components = 3
self.tsne_perplexity = 5.0
#params = Params()
|
[
"[email protected]"
] | |
3974a3b8483800aaf3ad9f189e529ec6e246d184
|
f6c5aa5931b71a31246168c9049da50797e5ce57
|
/djangoapp/src/config/urls.py
|
80f6238a15460d9c83ea408eb5d3f925bf0bed62
|
[] |
no_license
|
AlexLoar/musicallity
|
7b724b8350cab3de516228636268b79ba51f5b4c
|
5dc09e8b7fed8c666181a4cb87e8d8328481f1d5
|
refs/heads/master
| 2023-01-02T12:20:38.648476 | 2020-10-06T16:00:49 | 2020-10-06T16:00:49 | 301,781,216 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,250 |
py
|
from django.contrib import admin
from django.conf import settings
from django.urls import path, include
from django.conf.urls.static import static
from django.utils.translation import ugettext_lazy as _
from django.views import defaults as default_views
from config.router import urlpatterns as api_urlpatterns
app_name = 'main_music'
# Admin URLs
admin.site.site_header = _('MUSIC Project')
urlpatterns = [
path(r'admin/', admin.site.urls),
]
# API URLs
# Create a router and register our resources with it.
urlpatterns += [
path('api/v1/', include(api_urlpatterns)),
]
if settings.DEBUG:
# This allows the error pages to be debugged during development, just visit
# these url in browser to see how these error pages look like.
urlpatterns += [
path(r'400/', default_views.bad_request, kwargs={'exception': Exception('Bad Request!')}),
path(r'403/', default_views.permission_denied, kwargs={'exception': Exception('Permission Denied')}),
path(r'404/', default_views.page_not_found, kwargs={'exception': Exception('Page not Found')}),
path(r'500/', default_views.server_error),
]
# Media URLs on debug
urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
|
[
"[email protected]"
] | |
23cb6c73db0e3711ff0ecbd0b6aa7165e94b3584
|
a01fb7bb8e8738a3170083d84bc3fcfd40e7e44f
|
/python3/module/pandas/df/sql/join.py
|
540fb2077f46a30f47e810c2b98ebc2c0a79da73
|
[] |
no_license
|
jk983294/CommonScript
|
f07acf603611b4691b176aa4a02791ef7d4d9370
|
774bcbbae9c146f37312c771c9e867fb93a0c452
|
refs/heads/master
| 2023-08-21T17:50:19.036159 | 2023-08-16T00:22:03 | 2023-08-16T00:22:03 | 42,732,160 | 5 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 739 |
py
|
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': np.random.randn(4)})
df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'], 'value': np.random.randn(4)})
print(df1)
print(df2)
# SELECT * FROM df1 INNER JOIN df2 ON df1.key = df2.key;
print(pd.merge(df1, df2, on='key'))
# in case join key is different
print(pd.merge(df1, df2, left_on='key', right_on='key'))
# SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.key = df2.key;
print(pd.merge(df1, df2, on='key', how='left'))
# SELECT * FROM df1 RIGHT OUTER JOIN df2 ON df1.key = df2.key;
print(pd.merge(df1, df2, on='key', how='right'))
# SELECT * FROM df1 FULL OUTER JOIN df2 ON df1.key = df2.key;
print(pd.merge(df1, df2, on='key', how='outer'))
|
[
"[email protected]"
] | |
128efb9b492a29c2e87a97b932e626a724b6af9f
|
52b9016932aa426eeaaade5d856af6a1a771683f
|
/tests/testapp/serializers.py
|
3c4be81a47c21da377120bda5b7ee7eb6deb647d
|
[
"MIT"
] |
permissive
|
marlncpe/django-rest-pandas
|
33033627d88c6467a9677133402fb519d5ea5a75
|
89a93c3ce8d30688f9137f5a9beacc7d63f621e0
|
refs/heads/master
| 2021-01-23T11:55:02.722962 | 2017-09-01T20:47:46 | 2017-09-01T20:47:46 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,844 |
py
|
from rest_framework.serializers import ModelSerializer
from rest_framework import serializers
from rest_pandas import PandasUnstackedSerializer
from .models import TimeSeries, MultiTimeSeries, ComplexTimeSeries
class TimeSeriesSerializer(ModelSerializer):
date = serializers.DateField(format=None)
class Meta:
model = TimeSeries
fields = '__all__'
class TimeSeriesNoIdSerializer(TimeSeriesSerializer):
class Meta:
model = TimeSeries
exclude = ['id']
class MultiTimeSeriesSerializer(ModelSerializer):
class Meta:
model = MultiTimeSeries
exclude = ['id']
pandas_index = ['date']
pandas_unstacked_header = ['series']
pandas_scatter_coord = ['series']
pandas_boxplot_group = 'series'
pandas_boxplot_date = 'date'
class ComplexTimeSeriesSerializer(ModelSerializer):
class Meta:
model = ComplexTimeSeries
exclude = ['id']
pandas_index = ['date', 'type']
pandas_unstacked_header = ['site', 'parameter', 'units']
class ComplexScatterSerializer(ComplexTimeSeriesSerializer):
class Meta(ComplexTimeSeriesSerializer.Meta):
exclude = ['id', 'flag']
pandas_scatter_coord = ['units', 'parameter']
pandas_scatter_header = ['site']
class ComplexBoxplotSerializer(ComplexTimeSeriesSerializer):
class Meta(ComplexTimeSeriesSerializer.Meta):
exclude = ['id', 'flag', 'type']
pandas_boxplot_group = 'site'
pandas_boxplot_date = 'date'
pandas_boxplot_header = ['units', 'parameter']
class NotUnstackableSerializer(ModelSerializer):
class Meta:
model = MultiTimeSeries
fields = '__all__'
list_serializer_class = PandasUnstackedSerializer
# pandas_unstacked_header = Missing
pandas_index = ['series']
|
[
"[email protected]"
] | |
2505a5e7e60a90a9d8a8586e237cbc32f6195255
|
0b024b99b7f79f299b9f63ffe08d6ab25c92c560
|
/rolePermission/wsgi.py
|
7a5ca7aca64ff5c22e1ddbb8a5511a208563fbce
|
[] |
no_license
|
Bakhodirov-Jakhongir/django-role-permission-based-app
|
924afebd9abeb494db89bbb17efc77b0ed3ed623
|
4f6e698a7bf0988ac1b72a577a83d2f84c3d5767
|
refs/heads/main
| 2023-08-25T07:17:06.292622 | 2021-11-02T11:21:04 | 2021-11-02T11:21:04 | 423,815,562 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 405 |
py
|
"""
WSGI config for rolePermission project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'rolePermission.settings')
application = get_wsgi_application()
|
[
"[email protected]"
] | |
76f794ba7b0ecbb4b8044008f296f605ccca2439
|
94838674ffd175df6194437c1ccc3f90ab409d6c
|
/pillowV3/log/2018-12-30 14:25:26.954969
|
574f467c8fb2f82034a73060e36f0973007e6bd0
|
[] |
no_license
|
WojciechKoz/MyFirstNeuralNetwork
|
4fdb3140d8f02257599d005638598f78055c1ac8
|
3cd032aba80ecd71edb0286724ae9ba565b75a81
|
refs/heads/master
| 2020-04-02T03:02:48.680433 | 2020-02-29T17:57:43 | 2020-02-29T17:57:43 | 153,943,121 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 498,667 |
954969
|
#!/usr/bin/env python3
# -*- coding: utf8 -*-
from __future__ import print_function # new print() on python2
from datetime import datetime
import sys
import numpy as np
from mnist import MNIST
# Display full arrays
np.set_printoptions(threshold=np.inf)
mndata = MNIST('./data')
images_full, labels_full = mndata.load_training()
images = []
labels = []
# dynamic arguments
batch_size = int(sys.argv[1])
size_1 = int(sys.argv[2])
size_2 = int(sys.argv[3])
batch_training_size = int(sys.argv[4])
data_part = 5 # only one fifth of the whole dataset to speed up training
for i in range(len(labels_full) // batch_size // data_part):
images.append(images_full[i*batch_size : (i+1)*batch_size])
labels.append(labels_full[i*batch_size : (i+1)*batch_size])
def sigmoid_prime(x):
return np.exp(-x) / ((np.exp(-x) + 1) ** 2)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# nowe, przyda się?
def relu(x):
return np.maximum(x, x * 0.01)
def relu_prime(x):
if x >= 0:
return 1
# ej nie jest tak xd
# a jak xd?
type(x) == no.ndarray
# no x to macierz xd
# np.exp jest przeładowane ale jakakoleiwk funkcja to chyba nie
# to co foreach ? :(
# właśnie nie wiem, a co z gpu?
# to miało być szybsze a nie xd
# mamy duzo mozliwosci zmian ale nie na raz trzeba ustalic jakos
# hm TODO gpu TODO wincyj procent TODO gui gotowe
# xd
# tamto myliło hah
# to co najpierw? :p
# ssh daje wglad do basha tylko tak ?
# nie, to jest taki fajny programik, byobu
# i ten pasek na dole też jest z byobu
# on udostepnia tylko basha ?
# tak, ale basha multiplayer xd
# szkoda że 2 kursorow nie ma
# hm
return 0.01 # chyba tak xd nikt nie widzial xd
# ale x to macierz :p
# ale to jest przeciazone i jak jest funkcja od macierzy to bierze po kolei kazdy element
# w sumie
# zobacze na drugiej karcie xd
#X = np.array([[0, 0],
# [0, 1],
# [1, 0],
# [1, 1]])
#X = np.array(images)
y = []
for batch in labels:
y.append([])
for label in batch:
y[-1].append([1.0 if i == label else 0.0 for i in range(10)])
y = np.array(y)
#y = np.array([[0],
# [1],
# [1],
# [0]])
np.random.seed(1)
LEN = len(labels)
SIZES = [ 784, size_1, size_2, 10 ]
syn0 = 2 * np.random.random((SIZES[0], SIZES[1])) - 1
syn1 = 2 * np.random.random((SIZES[1], SIZES[2])) - 1
syn2 = 2 * np.random.random((SIZES[2], SIZES[3])) - 1
# biases for respective layers
b0 = 2 * np.random.random((1, SIZES[1])) - 1
b1 = 2 * np.random.random((1, SIZES[2])) - 1
b2 = 2 * np.random.random((1, SIZES[3])) - 1
for i, batch in list(enumerate(images)):
X = np.array(batch)
print("x:")
print(np.shape(X))
print("======================= BATCH {} =======================".format(i))
error = 1
j = 0
while j < batch_training_size:
l0 = X
l1 = sigmoid(np.dot(l0, syn0) + b0)
l2 = sigmoid(np.dot(l1, syn1) + b1)
l3 = sigmoid(np.dot(l2, syn2) + b2)
l3_error = (y[i] - l3)#** 2
error = np.mean(np.abs(l3_error))
j += 1
if j % 20 == 0:
print(("[%d] error: " % j) + str(error))
l3_delta = l3_error * sigmoid_prime(l3)
l2_error = l3_delta.dot(syn2.T)
l2_delta = l2_error * sigmoid_prime(l2)
l1_error = l2_delta.dot(syn1.T)
l1_delta = l1_error * sigmoid_prime(l1)
syn2 += l2.T.dot(l3_delta)
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
b0 += l1_delta.mean(axis=0)
b1 += l2_delta.mean(axis=0)
b2 += l3_delta.mean(axis=0)
def predict(data):
l0 = [data]
l1 = sigmoid(np.dot(l0, syn0) + b0)
l2 = sigmoid(np.dot(l1, syn1) + b1)
l3 = sigmoid(np.dot(l2, syn2) + b2)
return np.argmax(l3)
print("Output after training: ")
print(l3)
for i, el in enumerate(l3):
print(labels[0][i], "=", np.argmax(el), " predictions: ", el)
testing_images, testing_labels = mndata.load_testing()
correct = 0.0
for i, (image, label) in enumerate(zip(testing_images, testing_labels)):
prediction = predict(image)
if label == prediction:
correct += 1.0
correct_rate = correct / (i + 1.0)
print("{} = {} (correct {}%)".format(label, prediction, 100 * correct_rate))
with open('log/' + str(datetime.now()), 'a') as f:
with open(__file__, 'r') as myself:
print(myself.read(), file=f)
print("", file=f)
print("#### answers:", file=f)
print("argv =", sys.argv, file=f)
print("correct_rate =", correct_rate, file=f)
print("SIZES =", SIZES, file=f)
print("syn0 =", syn0, file=f)
print("syn1 =", syn1, file=f)
print("syn2 =", syn2, file=f)
print("b0 =", b0, file=f)
print("b1 =", b1, file=f)
print("b2 =", b2, file=f)
#### answers:
argv = ['./main.py', '59', '36', '34', '25']
correct_rate = 0.594
SIZES = [784, 36, 34, 10]
syn0 = [[-1.65955991e-01 4.40648987e-01 -9.99771250e-01 -3.95334855e-01
-7.06488218e-01 -8.15322810e-01 -6.27479577e-01 -3.08878546e-01
-2.06465052e-01 7.76334680e-02 -1.61610971e-01 3.70439001e-01
-5.91095501e-01 7.56234873e-01 -9.45224814e-01 3.40935020e-01
-1.65390395e-01 1.17379657e-01 -7.19226123e-01 -6.03797022e-01
6.01489137e-01 9.36523151e-01 -3.73151644e-01 3.84645231e-01
7.52778305e-01 7.89213327e-01 -8.29911577e-01 -9.21890434e-01
-6.60339161e-01 7.56285007e-01 -8.03306332e-01 -1.57784750e-01
9.15779060e-01 6.63305699e-02 3.83754228e-01 -3.68968738e-01]
[ 3.73001855e-01 6.69251344e-01 -9.63423445e-01 5.00288630e-01
9.77722178e-01 4.96331309e-01 -4.39112016e-01 5.78558657e-01
-7.93547987e-01 -1.04212948e-01 8.17191006e-01 -4.12771703e-01
-4.24449323e-01 -7.39942856e-01 -9.61266084e-01 3.57671066e-01
-5.76743768e-01 -4.68906681e-01 -1.68536814e-02 -8.93274910e-01
1.48235211e-01 -7.06542850e-01 1.78611074e-01 3.99516720e-01
-7.95331142e-01 -1.71888024e-01 3.88800315e-01 -1.71641461e-01
-9.00093082e-01 7.17928118e-02 3.27589290e-01 2.97782241e-02
8.89189512e-01 1.73110081e-01 8.06803831e-01 -7.25050592e-01]
[-7.21447305e-01 6.14782577e-01 -2.04646326e-01 -6.69291606e-01
8.55017161e-01 -3.04468281e-01 5.01624206e-01 4.51995971e-01
7.66612182e-01 2.47344414e-01 5.01884868e-01 -3.02203316e-01
-4.60144216e-01 7.91772436e-01 -1.43817620e-01 9.29680094e-01
3.26882996e-01 2.43391440e-01 -7.70508054e-01 8.98978517e-01
-1.00175733e-01 1.56779229e-01 -1.83726394e-01 -5.25946040e-01
8.06759041e-01 1.47358973e-01 -9.94259346e-01 2.34289827e-01
-3.46710196e-01 5.41162045e-02 7.71884199e-01 -2.85460480e-01
8.17070302e-01 2.46720232e-01 -9.68357514e-01 8.58874467e-01]
[ 3.81793835e-01 9.94645701e-01 -6.55318983e-01 -7.25728501e-01
8.65190926e-01 3.93636323e-01 -8.67999655e-01 5.10926105e-01
5.07752377e-01 8.46049071e-01 4.23049517e-01 -7.51458076e-01
-9.60239732e-01 -9.47578026e-01 -9.43387024e-01 -5.07577865e-01
7.20055897e-01 7.76621287e-02 1.05643957e-01 6.84061785e-01
-7.51653370e-01 -4.41632642e-01 1.71518543e-01 9.39191497e-01
1.22060439e-01 -9.62705421e-01 6.01265345e-01 -5.34051452e-01
6.14210391e-01 -2.24278712e-01 7.27083709e-01 4.94243285e-01
1.12480468e-01 -7.27089549e-01 -8.80164621e-01 -7.57313089e-01]
[-9.10896243e-01 -7.85011742e-01 -5.48581323e-01 4.25977961e-01
1.19433964e-01 -9.74888040e-01 -8.56051441e-01 9.34552660e-01
1.36200924e-01 -5.93413531e-01 -4.95348511e-01 4.87651708e-01
-6.09141038e-01 1.62717855e-01 9.40039978e-01 6.93657603e-01
-5.20304482e-01 -1.24605715e-02 2.39911437e-01 6.57961799e-01
-6.86417211e-01 -9.62847596e-01 -8.59955713e-01 -2.73097781e-02
2.12658923e-01 1.37702874e-01 -3.65275181e-01 9.77232309e-01
1.59490438e-01 -2.39717655e-01 1.01896438e-01 4.90668862e-01
3.38465787e-01 -4.70160885e-01 -8.67330331e-01 -2.59831604e-01]
[ 2.59435014e-01 -5.79651980e-01 5.05511107e-01 -8.66927037e-01
-4.79369803e-01 6.09509127e-01 -6.13131435e-01 2.78921762e-01
4.93406182e-02 8.49615941e-01 -4.73406459e-01 -8.68077819e-01
4.70131927e-01 5.44356059e-01 8.15631705e-01 8.63944138e-01
-9.72096854e-01 -5.31275828e-01 2.33556714e-01 8.98032641e-01
9.00352238e-01 1.13306376e-01 8.31212700e-01 2.83132418e-01
-2.19984572e-01 -2.80186658e-02 2.08620966e-01 9.90958430e-02
8.52362853e-01 8.37466871e-01 -2.10248774e-01 9.26525057e-01
-6.52088667e-01 -7.47340961e-01 -7.29841684e-01 1.13243314e-02]
[-9.56950389e-01 8.95940422e-01 6.54230942e-01 -9.69962039e-01
-6.47607489e-01 -3.35872851e-01 -7.38006310e-01 6.18981384e-01
-3.10526695e-01 8.80214965e-01 1.64028360e-01 7.57663969e-01
6.89468891e-01 8.10784637e-01 -8.02394684e-02 9.26936320e-02
5.97207182e-01 -4.28562297e-01 -1.94929548e-02 1.98220615e-01
-9.68933449e-01 1.86962816e-01 -1.32647302e-01 6.14721058e-01
-3.69510394e-01 7.85777417e-01 1.55714431e-01 -6.31979597e-01
5.75858468e-01 2.24062354e-01 -8.92181456e-01 -1.59612640e-01
3.58137673e-01 8.37203556e-01 -9.99195950e-01 9.53518298e-01]
[-2.46839371e-01 9.47567077e-01 2.09432202e-01 6.57691616e-01
1.49423009e-01 2.56152397e-01 -4.28847437e-01 1.73666681e-01
5.00043527e-01 7.16627673e-01 5.10164377e-01 3.96114497e-01
7.28958860e-01 -3.54638006e-01 3.41577582e-01 -9.82521272e-02
-2.35794496e-01 -1.78377300e-01 -1.97040833e-01 -3.65232108e-01
2.43838736e-01 -1.39505458e-01 9.47604156e-01 3.55601783e-01
-6.02860223e-01 -1.46597981e-01 -3.13307520e-01 5.95277608e-01
7.59996577e-01 8.07683912e-01 3.25439625e-01 -4.59583476e-01
-4.95266597e-01 7.09795885e-01 5.54292926e-02 6.04322168e-01]
[ 1.44977034e-01 4.66285051e-01 3.80232549e-02 5.41767821e-01
1.37715981e-01 -6.85802428e-02 -3.14622184e-01 -8.63581303e-01
-2.44151641e-01 -8.40747845e-01 9.65634227e-01 -6.36774297e-01
6.23717395e-01 7.49923290e-01 3.76826505e-01 1.38988825e-01
-6.78057126e-01 -6.62399545e-02 -3.09655898e-01 -5.49920084e-01
1.85023738e-01 -3.75460325e-01 8.32611107e-01 8.19271050e-01
-4.85763412e-01 -7.78217399e-01 -6.14074536e-01 -8.31658642e-04
4.57171336e-01 -5.83611123e-01 -5.03932883e-01 7.03343750e-01
-1.68302563e-01 2.33370134e-01 -5.32667722e-01 -7.96065481e-01]
[ 3.17140339e-02 -4.57180259e-02 -6.94656712e-01 2.43612463e-01
8.80202376e-02 3.08274694e-01 -7.10908920e-01 5.03055634e-01
-5.55901720e-01 3.87036487e-02 5.70592056e-01 -9.55339144e-01
-3.51275081e-01 7.45844753e-01 6.89419215e-01 7.68811852e-02
7.33216548e-01 8.99611983e-01 6.52813995e-01 7.08230888e-01
-8.02513196e-01 3.02608665e-01 4.07033976e-01 2.20481625e-01
5.99230523e-01 -9.30857560e-01 5.40477469e-01 4.63457201e-01
-4.80603213e-01 -4.85861402e-01 2.64606635e-01 -3.09405077e-01
5.93177356e-01 -1.07707536e-01 5.65498830e-01 9.80943567e-01]
[-3.99503321e-01 -7.13988343e-01 8.02616873e-01 8.31187578e-02
9.49480742e-01 2.73208800e-01 9.87826049e-01 9.21416083e-02
5.28518678e-02 -7.29144194e-01 -2.88589658e-01 -9.47562865e-01
-6.79209641e-01 4.91274385e-01 -9.39200620e-01 -2.66913806e-01
7.24692506e-01 3.85355435e-01 3.81884284e-01 -6.22726398e-01
-1.16191439e-01 1.63154815e-01 9.79503415e-01 -5.92187550e-01
-5.04534196e-01 -4.75653832e-01 5.00344827e-01 -8.60493451e-02
-8.86141123e-01 1.70324812e-02 -5.76079671e-01 5.97208490e-01
-4.05337237e-01 -9.44787976e-01 1.86864899e-01 6.87680858e-01]
[-2.37967752e-01 4.99716621e-01 2.22829566e-02 8.19036099e-02
9.18868642e-01 6.07921783e-01 -9.35353867e-01 4.18774502e-01
-6.99970369e-02 8.95097883e-01 -5.57134531e-01 -4.65855961e-01
-8.37052070e-01 -1.42762343e-01 -7.81962472e-01 2.67573521e-01
6.05926475e-01 3.93600992e-01 5.32422762e-01 -3.15091760e-01
6.91702966e-01 -1.42462450e-01 6.48019741e-01 2.52992317e-01
-7.13153903e-01 -8.43226200e-01 -9.63334714e-01 -8.66550005e-01
-8.28323726e-02 -7.73316154e-01 -9.44433302e-01 5.09722963e-01
-2.10299039e-01 4.93876991e-01 -9.51903465e-02 -9.98265060e-02]
[-4.38549866e-02 -5.19921469e-02 6.06326684e-01 -1.95214960e-01
8.09372321e-01 -9.25877904e-01 5.47748685e-01 -7.48717238e-01
2.37027134e-01 -9.79271477e-01 7.72545652e-02 -9.93964087e-01
9.02387571e-01 8.10804067e-01 5.91933884e-01 8.30548640e-01
-7.08883538e-01 -6.84539860e-01 -6.24736654e-01 2.44991805e-01
8.11618992e-01 9.79910357e-01 4.22244918e-01 4.63600818e-01
8.18586409e-01 -1.98252535e-01 -5.00298640e-01 -6.53139658e-01
-7.61085899e-01 6.25221176e-01 -7.06415253e-01 -4.71405035e-01
6.38178357e-01 -3.78825496e-01 9.64834899e-01 -4.66722596e-01]
[ 6.73066899e-02 -3.71065978e-01 8.21545662e-01 -2.66886712e-01
-1.32815345e-01 2.45853846e-02 8.77772955e-01 -9.38101987e-01
4.33757327e-01 7.82037909e-01 -9.45425553e-01 4.41024945e-02
-3.48020376e-01 7.18978642e-01 1.17033102e-01 3.80455736e-01
-9.42930001e-02 2.56618075e-01 -4.19806297e-01 -9.81302844e-01
1.53511870e-01 -3.77111572e-01 3.45351970e-02 8.32811706e-01
-1.47050423e-01 -5.05207927e-01 -2.57412477e-01 8.63722233e-01
8.73736763e-01 6.88659897e-01 8.40413029e-01 -5.44199420e-01
-8.25035581e-01 -5.45380527e-01 -3.71246768e-01 -6.50468247e-01]
[ 2.14188324e-01 -1.72827170e-01 6.32703024e-01 -6.29739203e-01
4.03753060e-01 -5.19288750e-01 1.48438178e-01 -3.02024806e-01
-8.86071201e-01 -5.42372658e-01 3.28205111e-01 -5.49981328e-03
3.80319681e-02 -6.50559700e-01 1.41431703e-01 9.93506850e-01
6.33670218e-01 1.88745248e-01 9.51978137e-01 8.03125169e-01
1.91215867e-01 -9.35147349e-01 -8.12845808e-01 -8.69256570e-01
-9.65337026e-02 -2.49130334e-01 9.50700069e-01 -6.64033414e-01
9.45575184e-01 5.34949738e-01 6.48475679e-01 2.65231634e-01
3.37465540e-01 -4.62353330e-02 -9.73727286e-01 -2.93987829e-01]
[-1.58563970e-02 4.60182422e-01 -6.27433145e-02 -8.51901678e-02
-7.24674518e-01 -9.78222532e-01 5.16556521e-01 -3.60094324e-01
9.68766900e-01 -5.59531548e-01 -3.22583949e-01 4.77922713e-02
5.09782914e-01 -7.22844322e-02 -7.50354914e-01 -3.74997243e-01
9.03833940e-03 3.47698016e-01 5.40299913e-01 -7.39328438e-01
-9.54169737e-01 3.81646444e-02 6.19977421e-01 -9.74792466e-01
3.44939689e-01 3.73616453e-01 -1.01506493e-01 8.29577373e-01
2.88722170e-01 -9.89520325e-01 -3.11431090e-02 7.18635612e-01
6.60799140e-01 2.98308394e-01 3.47396848e-01 1.56999160e-01]
[-4.51760450e-01 1.21059981e-01 3.43459570e-01 -2.95140740e-01
7.11656735e-01 -6.09925028e-01 4.94641621e-01 -4.20794508e-01
5.47598574e-01 -1.44525341e-01 6.15396818e-01 -2.92930275e-01
-5.72613525e-01 5.34569017e-01 -3.82716105e-01 4.66490135e-01
4.88946306e-01 -5.57206598e-01 -5.71775726e-01 -6.02104153e-01
-7.14963324e-01 -2.45834802e-01 -9.46744231e-01 -7.78159262e-01
3.49128048e-01 5.99553074e-01 -8.38940946e-01 -5.36595379e-01
-5.84748676e-01 8.34667126e-01 4.22629036e-01 1.07769222e-01
-3.90964024e-01 6.69708095e-01 -1.29388085e-01 8.46912430e-01]
[ 4.12103609e-01 -4.39373841e-02 -7.47579793e-01 9.52087101e-01
-6.80332699e-01 -5.94795750e-01 -1.37636490e-01 -1.91596188e-01
-7.06497038e-01 4.58637839e-01 -6.22509866e-01 2.87791289e-01
5.08611901e-01 -5.78535216e-01 2.01908496e-01 4.97856750e-01
2.76437421e-01 1.94254606e-01 -4.09035429e-01 4.63212942e-01
8.90616880e-01 -1.48877219e-01 5.64363634e-01 -8.87717921e-01
6.70543205e-01 -6.15499966e-01 -2.09806262e-01 -3.99837908e-01
-8.39792712e-01 8.09262006e-01 -2.59691645e-01 6.13948770e-02
-1.17674682e-02 -7.35677716e-01 -5.87091882e-01 -8.47622382e-01]
[ 1.58433999e-02 -4.76900896e-01 -2.85876782e-01 -7.83869343e-01
5.75103679e-01 -7.86832246e-01 9.71417647e-01 -6.45677671e-01
1.44810225e-01 -9.10309331e-01 5.74232579e-01 -6.20788104e-01
5.58079568e-02 4.80155086e-01 -7.00137030e-01 1.02174348e-01
-5.66765583e-01 5.18392099e-01 4.45830387e-01 -6.46901931e-01
7.23933115e-01 -9.60449801e-01 7.20473995e-01 1.17807622e-01
-1.93559056e-01 5.17493862e-01 4.33858003e-01 9.74652350e-01
-4.43829903e-01 -9.92412655e-01 8.67805217e-01 7.15794209e-01
4.57701755e-01 3.33775658e-02 4.13912490e-01 5.61059114e-01]
[-2.50248113e-01 5.40645051e-01 5.01248638e-01 2.26422423e-01
-1.96268152e-01 3.94616039e-01 -9.93774284e-01 5.49793293e-01
7.92833205e-01 -5.21368585e-01 -7.58465631e-01 -5.59432024e-01
-3.95806537e-01 7.66057017e-01 8.63328605e-02 -4.26576701e-01
-7.23290620e-01 -4.19711074e-01 2.27742179e-01 -3.51722940e-01
-8.52796366e-02 -1.11765786e-01 6.56270721e-01 -1.47303692e-01
-3.08602358e-01 3.49943210e-01 -5.57035889e-01 -6.55083521e-02
-3.70468625e-01 2.53711204e-01 7.54720949e-01 -1.04622000e-01
5.68914838e-01 -8.60685989e-02 3.12458663e-01 -7.36318050e-01]
[-1.34036986e-01 8.18623977e-01 2.10958002e-01 5.33549174e-01
9.40121619e-03 -3.88875034e-03 6.85799680e-01 -8.64386131e-01
1.46544543e-01 8.85525151e-01 3.57200963e-02 -6.11068381e-01
6.95878785e-01 -4.96721715e-01 4.01452073e-01 8.05218808e-02
8.97672577e-01 2.48673405e-01 6.75955924e-01 -9.84134248e-01
9.78680112e-01 -8.44570859e-01 -3.55740973e-01 8.92304791e-01
-9.82121795e-01 6.45460011e-01 7.22423277e-01 -1.20338372e-01
-4.88509612e-01 6.05379039e-01 -4.42759911e-02 -7.31322783e-01
8.55697986e-01 7.91939934e-01 -1.69097000e-02 7.13404993e-01]
[-1.62843948e-01 3.66929800e-01 -2.04018721e-01 1.14840349e-02
-6.20896594e-01 9.29977848e-01 -4.11568624e-01 -7.93080888e-01
-7.11369200e-01 -9.71815412e-01 4.31891399e-01 1.28996640e-01
5.89156702e-01 1.41598466e-02 5.83642079e-01 3.91528429e-01
5.55696954e-01 -1.87034262e-01 2.95541266e-01 -6.40411405e-01
-3.56360073e-01 -6.54790760e-01 -1.82725550e-01 -5.17162504e-01
-1.86156012e-01 9.50444685e-01 -3.59361348e-01 9.64981890e-01
2.72612252e-01 -2.49817963e-01 7.14968998e-01 2.39173479e-01
-4.95933840e-01 5.85711356e-01 -1.34122983e-01 -2.84977665e-01]
[-3.39446127e-01 3.94737751e-01 -4.62699752e-01 6.16556027e-01
-4.09422411e-01 8.82427672e-02 -2.41570164e-02 7.10712825e-01
7.76772869e-01 -6.31231115e-01 1.70696918e-01 7.96410092e-01
-1.07765562e-01 8.43736611e-01 -4.42018219e-01 2.17662348e-01
3.64907420e-01 -5.43588533e-01 -9.72464975e-01 -1.66552075e-01
8.76963784e-01 -3.13943780e-01 5.59488591e-01 -6.50527374e-01
-3.16094327e-01 -7.10804558e-01 4.33541628e-01 3.98615247e-01
3.76994636e-01 -4.93207931e-01 3.84720243e-01 -5.45404918e-01
-1.50701768e-01 -2.56155757e-01 -2.89384177e-01 -8.84690386e-01]
[ 2.63293254e-01 4.14633205e-01 2.27177389e-01 2.96625512e-01
-6.60118572e-01 -7.01106402e-01 2.83500871e-02 7.50665453e-01
-6.32093117e-01 -7.43217626e-02 -1.42135332e-01 -5.42162816e-03
-6.76978459e-01 -3.15118718e-01 -4.76239192e-01 6.89053886e-01
6.00664492e-01 -1.46721683e-01 2.14030922e-01 -7.09068779e-01
1.92265884e-02 -4.06105828e-01 7.19301907e-01 3.43196762e-01
2.66948025e-01 -7.50497400e-01 -5.88242410e-02 9.73145559e-01
8.96598348e-01 2.90171281e-01 -6.96550258e-01 2.78253697e-01
1.31324225e-01 -6.26683247e-02 -1.43925061e-01 1.98539511e-01]
[ 6.99939777e-01 5.02242081e-01 1.58721081e-01 8.49408363e-01
-8.70520033e-01 9.82693017e-01 -8.94010915e-01 -6.01008908e-01
-1.54494677e-01 -7.84982248e-01 2.47340822e-01 -9.04014872e-01
-4.30752238e-01 -8.77926638e-01 4.07038662e-01 3.36912335e-01
-2.42838813e-01 -6.23611480e-01 4.94009658e-01 -3.19241418e-01
5.90602335e-01 -2.41981216e-02 5.13388887e-02 -9.43018301e-01
2.88464040e-01 -2.98686995e-01 -5.41589945e-01 -1.32233248e-01
-2.35065085e-01 -6.04219198e-02 9.58966708e-01 -2.71243859e-01
5.48820267e-01 1.05535193e-01 7.78262178e-01 -2.90094298e-01]
[-5.08962640e-01 8.22038479e-01 -9.12931472e-01 9.01506856e-01
1.12813831e-01 -2.47273567e-01 9.90104645e-01 -8.83274708e-01
3.34127195e-02 -9.37805849e-01 1.42351478e-01 -6.39062982e-01
2.61918401e-01 9.61847352e-01 7.49805102e-01 -9.63275012e-02
4.16921740e-01 5.54937500e-01 -1.03138316e-02 5.70669804e-02
-6.98431203e-01 -2.61200149e-01 -7.15557494e-01 4.53787507e-01
-4.59740112e-02 -1.02242327e-01 7.71995942e-01 5.52375446e-02
-1.81818336e-01 -4.62215956e-01 -8.55975930e-01 -1.63727733e-01
-9.48493035e-01 -4.17692119e-01 7.01901970e-03 9.31866130e-01]
[-7.81234172e-01 3.46082108e-01 -1.35257802e-04 5.54196459e-01
-7.12786004e-01 -8.33594727e-01 -2.01562789e-01 5.93924504e-01
-6.16648522e-01 5.35554384e-01 -4.19404006e-01 -5.66217025e-01
-9.66568822e-01 -2.02681880e-01 -2.37837017e-01 3.18689872e-01
-8.58163199e-01 -6.94792026e-01 -9.66848234e-01 -7.72407287e-01
3.03578552e-01 -1.94686296e-01 -3.57947372e-01 1.15823988e-01
9.86920926e-01 6.68973028e-01 3.99246365e-01 8.36517178e-01
-9.20542587e-01 -8.59333117e-01 -5.19874200e-02 -3.01665174e-01
8.74504124e-01 -2.08700777e-02 7.92982202e-02 7.90520731e-01]
[-1.06729908e-01 7.54068779e-01 -4.92836501e-01 -4.52380592e-01
-3.43277220e-01 9.51285410e-02 -5.59742652e-01 3.42858342e-01
-7.14413434e-01 -8.11799451e-01 7.40383492e-01 -5.26262593e-01
-2.27991978e-01 1.43084185e-01 5.16039399e-02 -8.47952241e-01
7.48251871e-01 9.02271237e-01 6.25014608e-01 -4.32396330e-01
5.56935922e-02 -3.21166552e-01 1.09334622e-01 9.48806938e-01
-3.76594165e-01 3.37593212e-01 -3.48065585e-01 5.48954532e-01
-3.48380067e-01 7.79654683e-01 5.03415442e-01 5.25264191e-01
-6.10419429e-02 -5.78470995e-01 -9.17049841e-01 -3.56342400e-01]
[-9.25774671e-01 3.87710823e-01 3.40700064e-01 -1.39056435e-01
5.35577955e-01 7.20169895e-02 -9.20280147e-01 -7.30413764e-01
-6.13167202e-01 -3.28672398e-01 -8.95374107e-01 2.10233561e-01
2.41220550e-02 2.34922024e-01 -1.35288810e-01 6.95400936e-01
-9.18818879e-02 -9.69192960e-01 7.46136297e-01 3.12403095e-01
6.46006081e-01 9.03551386e-01 -8.98175233e-01 -5.29856272e-01
-8.73313113e-01 -1.56684228e-01 7.27658291e-01 -8.36752035e-01
-5.37760942e-02 -7.48913780e-01 5.45771204e-01 6.82844314e-01
-9.13418124e-01 -2.71185137e-02 -5.21177912e-01 9.04947563e-01]
[ 8.87785256e-01 2.27868005e-01 9.46974795e-01 -3.10277313e-01
7.95701435e-01 -1.30810053e-01 -5.28370726e-01 8.81655926e-01
3.68436102e-01 -8.70176829e-01 7.40849714e-01 4.02760589e-01
2.09853746e-01 4.64749798e-01 -4.93121915e-01 2.00977911e-01
6.29238363e-01 -8.91772679e-01 -7.38978657e-01 6.84891620e-01
2.36691739e-01 6.25756210e-02 -5.03418542e-01 -4.09842850e-01
7.45372330e-01 -1.56668130e-01 -8.71139489e-01 7.93970139e-01
-5.93238334e-01 6.52455071e-01 7.63541246e-01 -2.64985104e-02
1.96929386e-01 5.45349130e-02 2.49642588e-01 7.10083443e-01]
[-4.35721103e-01 7.67511016e-01 1.35380660e-01 -7.69793918e-01
-5.45997670e-01 1.91964771e-01 -5.21107526e-01 -7.37168679e-01
-6.76304572e-01 6.89745036e-01 2.04367308e-01 9.27134174e-01
-3.08641573e-01 1.91250196e-01 1.97970578e-01 2.31408574e-01
-8.81645586e-01 5.00634369e-01 8.96418996e-01 6.93581144e-02
-6.14887958e-01 5.05851830e-01 -9.85362061e-01 -3.43487793e-01
8.35212695e-01 1.76734666e-01 7.10380568e-01 2.09344105e-01
6.45156305e-01 7.58967047e-01 -3.58027251e-01 -7.54090457e-01
4.42606688e-01 -1.19305826e-01 -7.46528582e-01 1.79647296e-01]
[-9.27863371e-01 -5.99635767e-01 5.76602379e-01 -9.75806480e-01
-3.93308657e-01 -9.57248078e-01 9.94969985e-01 1.64059953e-01
-4.13247443e-01 8.57898924e-01 1.42388471e-02 -9.06155449e-02
1.75743013e-01 -4.71724712e-01 -3.89423401e-01 -2.56690847e-01
-5.11104001e-01 1.69094532e-01 3.91692268e-01 -8.56105560e-01
9.42166639e-01 5.06141312e-01 6.12326326e-01 5.03280808e-01
-8.39878045e-01 -3.66074340e-02 -1.08654087e-01 3.44945301e-01
-1.02525482e-01 4.08626797e-01 3.63290675e-01 3.94297058e-01
2.37201485e-01 -6.98038533e-01 5.21604913e-01 5.62091644e-01]
[ 8.08205972e-01 -5.32462615e-01 -6.46642214e-01 -2.17801754e-01
-3.58870692e-01 6.30953858e-01 2.27051799e-01 5.20003505e-01
-1.44669801e-01 -8.01118874e-01 -7.69929976e-01 -2.53185737e-01
-6.12304465e-01 6.41492997e-01 1.99272017e-01 3.77690518e-01
-1.77800774e-02 -8.23652638e-01 -5.29844727e-01 -7.67958382e-02
-6.02816994e-01 -9.49047528e-01 4.58795397e-01 4.49833494e-01
-3.39216507e-01 6.86988252e-01 -1.43115048e-01 7.29372290e-01
3.14130849e-01 1.62071315e-01 -5.98545024e-01 5.90932210e-02
7.88864837e-01 -3.90012048e-01 7.41891218e-01 8.17490546e-01]
[-3.40310875e-01 3.66148733e-01 7.98441899e-01 -8.48606236e-01
7.57175726e-01 -6.18321273e-01 6.99537820e-01 3.34237577e-01
-3.11321609e-01 -6.97248860e-01 2.70741923e-01 6.95576087e-01
6.43698750e-01 2.56479194e-01 9.12603020e-01 1.79846254e-01
-6.04334431e-01 -1.41338555e-01 -3.26508003e-01 9.83890024e-01
-2.39527008e-01 9.85401747e-01 3.76085015e-02 -6.55440597e-01
-8.50851857e-01 -2.59388612e-01 -7.53162280e-01 2.69037433e-01
-1.72160309e-01 9.81831265e-01 8.59911247e-01 -7.01527935e-01
-2.10235475e-01 -7.68405781e-02 1.21897510e-01 5.60727047e-01]
[-2.56121819e-02 -1.60012896e-01 -4.76000591e-01 8.21612278e-01
-9.55456977e-01 6.42243796e-01 -6.23063201e-01 3.71513798e-01
-2.89581221e-01 9.48425256e-01 -7.54455741e-01 -6.24860215e-01
7.78884951e-01 1.66812629e-01 -3.81507231e-01 -9.98471229e-01
-5.44804523e-01 -7.09192732e-01 -5.93132351e-01 7.92645114e-01
7.46188757e-01 4.00578875e-01 -5.90046477e-02 6.54272005e-01
-8.34720583e-03 -2.73022633e-01 -4.48793794e-01 8.49481627e-01
-2.26021531e-01 -1.42382531e-02 -4.91123795e-01 7.69933038e-01
-2.33473086e-01 -4.04850569e-01 4.35189924e-01 -6.18260114e-01]
[ 1.85045130e+03 5.75004716e+03 -3.59898627e+02 7.80807336e+03
-4.32968047e+01 -1.53378496e+03 -3.93142172e+03 9.09489843e+03
2.96106485e+03 5.54228917e+03 -2.01271355e+03 -2.21276142e+03
9.11549042e+03 4.90249712e+03 -1.45300592e+03 4.04177119e+03
-9.48963419e+02 7.41749170e+03 -1.88532148e+02 -1.33019591e+03
-1.69725300e+03 -4.51351962e+03 9.11460124e+03 -1.13189480e+03
-2.48885186e+03 3.00463819e+02 1.38109134e+04 -1.52921400e+03
9.04945502e+03 3.29025346e+02 -1.25363007e+03 2.60783906e+03
-2.41405778e+03 -2.35560021e+03 9.93629379e+03 8.53791273e+03]
[ 6.18048528e+03 1.99989569e+04 -1.21730178e+03 2.73489143e+04
-3.81987800e+01 -5.48575103e+03 -1.48027871e+04 3.22798952e+04
1.01513350e+04 2.01981894e+04 -7.30696130e+03 -7.98782077e+03
3.30066159e+04 1.77011843e+04 -5.20376039e+03 1.52410367e+04
-3.47893370e+03 2.59012969e+04 -8.25115508e+02 -4.70835357e+03
-6.07268937e+03 -1.67218009e+04 3.27550153e+04 -4.10720076e+03
-8.92766887e+03 8.99533088e+02 4.98058234e+04 -5.47603183e+03
3.42155474e+04 5.63209904e+02 -4.44073983e+03 9.60419316e+03
-8.63405946e+03 -8.52373799e+03 3.57062972e+04 3.07083966e+04]
[ 1.30509994e+04 2.81423680e+04 -2.31030075e+03 5.43848463e+04
1.34417084e+03 -8.87628591e+03 1.80851019e+03 3.15940968e+04
1.87104513e+04 1.44062471e+04 -1.26036329e+04 -9.52459821e+03
2.21653596e+04 3.69027006e+03 -6.20735693e+03 2.54220450e+04
-6.69317453e+03 6.33829941e+04 3.11277768e+03 -6.70558798e+03
-6.96437879e+03 -1.40399977e+04 3.48911805e+04 -5.46482067e+03
-1.08350612e+04 -2.86009960e+03 4.48206101e+04 -7.73880977e+03
4.91384467e+04 1.05171811e+04 -6.55583308e+03 2.20967551e+04
-9.49937305e+03 -1.00685919e+04 3.63388694e+04 3.08434439e+04]
[ 1.92978749e+04 2.69269234e+04 5.74633277e+03 6.79657245e+04
9.66806885e+03 1.42602756e+03 3.55564971e+04 1.79572924e+04
2.58519110e+04 2.03328436e+03 -2.74908328e+03 6.58307106e+03
-6.92528449e+03 -1.70519245e+04 6.64697002e+03 3.17983680e+04
3.42520815e+03 8.98844588e+04 1.13052512e+04 3.24639044e+03
6.83851335e+03 8.07823640e+03 1.84572119e+04 6.91747766e+03
4.85606553e+03 -3.39187019e+02 9.27758934e+03 3.99528539e+03
4.33826638e+04 2.54354709e+04 3.21328983e+03 3.10341223e+04
6.08898325e+03 5.54730055e+03 1.35545210e+04 1.17143957e+04]
[ 5.84199808e+04 6.02553503e+04 3.99579630e+04 1.37897710e+05
4.23173751e+04 4.00736055e+04 1.17346761e+05 4.41480249e+04
7.11617691e+04 2.53604836e+04 3.12919301e+04 5.00575668e+04
-1.60321089e+04 -9.60475506e+03 4.70724945e+04 8.49124771e+04
4.38973131e+04 1.77193015e+05 3.84502488e+04 3.90288472e+04
4.74239357e+04 5.95098309e+04 2.83937413e+04 4.89600463e+04
4.68117096e+04 2.31072814e+04 -1.97411121e+03 4.38473410e+04
1.02009954e+05 7.72368839e+04 3.85471784e+04 8.15707978e+04
4.81301115e+04 4.97631782e+04 1.92709302e+04 1.29366104e+04]
[ 3.01930792e+04 1.42078603e+04 8.16634269e+03 8.42450380e+04
1.21333767e+04 5.80800713e+03 9.67146979e+04 -1.26248826e+04
3.58941978e+04 -1.78681289e+04 5.96597547e+02 1.33803601e+04
-5.45952616e+04 -4.21518360e+04 1.34795739e+04 4.39733657e+04
6.61325828e+03 1.15372032e+05 1.28871388e+04 8.30558320e+03
1.43526832e+04 3.82136543e+04 -2.78698026e+04 1.19069731e+04
1.27025196e+04 5.78227919e+03 -5.68973105e+04 7.99373273e+03
4.42704055e+04 5.35100277e+04 7.51639114e+03 4.41802841e+04
1.51288700e+04 1.47287904e+04 -4.41666272e+04 -4.13452727e+04]
[ 8.80945579e+04 4.00116840e+04 8.15056103e+04 9.62290278e+04
7.86111354e+04 7.71119728e+04 1.55988765e+05 2.64019948e+04
8.18897850e+04 4.49322526e+04 7.35617663e+04 7.74163473e+04
1.88159355e+04 3.81529547e+04 8.50222890e+04 1.07172511e+05
7.79290551e+04 1.00327709e+05 6.93755782e+04 8.06919657e+04
8.51987349e+04 1.14073135e+05 -2.11359266e+04 8.01182980e+04
8.22084202e+04 9.56374110e+04 -6.26956463e+03 7.76890167e+04
9.49112260e+04 1.13661324e+05 8.02626179e+04 9.31086289e+04
8.50279186e+04 8.24591361e+04 -6.40563548e+04 -4.65915741e+04]
[ 2.59526548e+05 1.19546381e+05 1.68863458e+05 1.58667805e+05
1.66484954e+05 1.47698153e+05 1.29306271e+05 6.41679887e+04
1.67772942e+05 5.51488659e+04 7.04568195e+04 7.45431555e+04
1.02420288e+05 1.31974730e+05 1.45408581e+05 1.73790013e+05
1.36840896e+05 1.39938344e+05 1.97907360e+05 1.48203262e+05
1.36818857e+05 1.35952320e+05 9.65903029e+04 1.38496520e+05
1.17490480e+05 4.57727756e+04 1.07956211e+05 1.41967288e+05
8.33544012e+04 7.41779830e+04 1.55959534e+05 2.18852699e+05
1.50798189e+05 1.18970821e+05 1.08094993e+05 8.89068938e+04]
[ 3.28036746e+05 4.42575293e+04 2.18419884e+05 1.62741272e+05
2.34437762e+05 1.67057860e+05 2.58309955e+05 -1.37568638e+04
1.96392086e+05 -1.19948892e+05 5.23480721e+04 6.64319845e+04
6.15212297e+04 8.57061758e+04 1.72049402e+05 2.08127379e+05
1.40200276e+05 2.05354984e+05 2.54604175e+05 1.83806127e+05
1.75485141e+05 1.99969021e+05 7.19585966e+04 1.58392974e+05
1.42955537e+05 -1.50491851e+04 3.27019063e+04 1.61499615e+05
1.42487907e+05 1.32073050e+05 1.94074645e+05 2.89258109e+05
1.86082047e+05 1.28750196e+05 8.09115740e+04 4.10791085e+04]
[ 2.09501801e+05 -7.43478048e+04 1.69453183e+05 1.43008073e+05
1.95065430e+05 1.37612679e+05 3.62418121e+05 -8.66545444e+04
1.88070369e+05 -1.64330433e+05 8.08974022e+04 1.21661407e+05
-2.37681234e+04 -4.13370545e+04 1.50025605e+05 1.88135752e+05
1.13182116e+05 2.81458717e+05 2.23568809e+05 1.47697129e+05
1.65202438e+05 2.05789025e+05 -7.27527425e+03 1.40468414e+05
1.60058395e+05 2.47723151e+04 -8.27987888e+04 1.45541830e+05
2.69127154e+05 2.68345162e+05 1.56120142e+05 2.57086367e+05
1.70843194e+05 1.39419360e+05 -3.06278518e+04 -3.51629396e+04]
[ 1.27013279e+05 5.83169992e+04 7.85528081e+04 2.02939873e+05
7.49799023e+04 9.58840786e+04 2.51000307e+05 1.09705090e+05
1.69017943e+05 1.16574236e+05 9.61656351e+04 1.26150372e+05
-3.29645849e+04 6.46961930e+03 1.02830641e+05 1.92743265e+05
1.00702379e+05 2.70448058e+05 1.18099132e+05 8.05593290e+04
1.04445099e+05 1.51284740e+05 2.44301212e+04 1.06405537e+05
1.15918110e+05 1.11046084e+05 -3.46421281e+04 1.03464573e+05
2.73544967e+05 2.28758951e+05 8.17439874e+04 1.98168602e+05
1.07700899e+05 1.20795081e+05 -3.96872967e+04 -2.23799772e+04]
[ 1.20541296e+05 1.25114689e+05 6.61063603e+04 2.01847616e+05
4.76193088e+04 9.25382991e+04 1.77134986e+05 1.34574794e+05
1.45222501e+05 1.85302078e+05 9.54500969e+04 1.09461947e+05
1.31725538e+04 7.85065876e+04 9.44118492e+04 1.61160566e+05
1.07947296e+05 2.05988071e+05 7.77819286e+04 7.08283583e+04
8.66863350e+04 1.29525093e+05 3.42210030e+04 1.01414397e+05
9.68917621e+04 1.14321894e+05 2.62457468e+04 9.43239062e+04
2.03503741e+05 1.61177815e+05 7.25958320e+04 1.51350091e+05
9.12414376e+04 1.10735128e+05 -1.66991519e+04 -3.38648436e+03]
[ 1.04515257e+05 1.23751682e+05 7.30259256e+04 1.63012773e+05
5.26089590e+04 1.06017335e+05 1.06667200e+05 1.20925496e+05
1.29795287e+05 1.86661268e+05 1.08069598e+05 1.20092354e+05
3.95018745e+04 8.93407581e+04 9.78593782e+04 1.28386051e+05
1.19420572e+05 1.55158879e+05 7.28587620e+04 7.87056449e+04
8.57732879e+04 1.12940791e+05 6.17906565e+04 1.06503768e+05
1.04575528e+05 1.26891123e+05 4.55035573e+04 1.08857642e+05
1.44285011e+05 1.20356250e+05 8.04901985e+04 1.16459913e+05
9.87568911e+04 1.18628204e+05 4.26929895e+04 5.33157296e+04]
[ 1.13587625e+05 1.49271451e+05 1.15481943e+05 1.44564225e+05
9.94776478e+04 1.44073562e+05 1.08379471e+05 1.41883493e+05
1.22784849e+05 1.72004646e+05 1.36443881e+05 1.46763702e+05
8.51775466e+04 1.20696813e+05 1.31436135e+05 1.17754944e+05
1.49431063e+05 1.35237775e+05 1.02227070e+05 1.18170832e+05
1.21721589e+05 1.28516657e+05 1.11027468e+05 1.38125150e+05
1.41592198e+05 1.24611874e+05 9.00210975e+04 1.47812483e+05
1.25326077e+05 1.12440790e+05 1.19032984e+05 1.12239301e+05
1.38957839e+05 1.45935395e+05 9.85495358e+04 1.17789197e+05]
[ 2.51376867e+04 3.76242244e+04 2.50187590e+04 3.55255731e+04
2.04410643e+04 3.36863541e+04 2.31893796e+04 3.43200471e+04
2.74599297e+04 4.37631337e+04 3.10756707e+04 3.35643240e+04
1.57393532e+04 2.81988022e+04 3.00712004e+04 2.56423272e+04
3.53686518e+04 3.24409570e+04 1.99698700e+04 2.59462651e+04
2.69220345e+04 2.73631328e+04 2.36226820e+04 3.18418105e+04
3.25889063e+04 2.77942462e+04 1.87505409e+04 3.43482964e+04
2.83555777e+04 2.41042216e+04 2.61124531e+04 2.23917531e+04
3.19400886e+04 3.36612226e+04 2.04981730e+04 2.71292892e+04]
[ 6.17289040e+03 6.50664666e+03 4.50597080e+03 1.04272486e+04
3.58641276e+03 7.01004397e+03 6.19022965e+03 5.15480709e+03
7.45635436e+03 6.45493511e+03 6.23447324e+03 7.43520889e+03
-4.08959241e+02 2.92973388e+03 6.39510528e+03 6.21620371e+03
7.63595993e+03 1.19619475e+04 1.81140644e+03 5.15198298e+03
5.96201315e+03 7.74078235e+03 1.96997870e+03 6.91710175e+03
7.37887297e+03 6.34081116e+03 -5.44489496e+02 7.29110765e+03
3.79100250e+03 7.09163500e+03 4.93024385e+03 3.68706540e+03
6.64940343e+03 7.46369317e+03 1.47364909e+03 3.04913765e+03]
[ 3.33393806e+03 2.62616050e+03 1.74895122e+03 8.56509712e+03
1.20039554e+03 3.45144217e+03 3.02736409e+03 5.99152304e+02
4.84197451e+03 4.70443332e+03 3.16413949e+03 3.91964401e+03
-3.65394503e+03 -1.36407900e+03 3.68492012e+03 5.09438252e+03
4.47279276e+03 1.09198938e+04 -3.03189675e+03 2.77719846e+03
3.40718970e+03 4.84903193e+03 -2.58542067e+03 3.81534885e+03
3.95864098e+03 3.69688564e+03 -4.28985235e+03 3.63785366e+03
1.55721386e+03 4.26625289e+03 2.38988363e+03 1.00616333e+03
2.96662028e+03 4.22297746e+03 -2.10894712e+03 -1.99511135e+03]
[-6.48998939e-02 3.33885086e-01 -9.32451470e-02 5.14231827e-02
3.17136083e-01 -6.37609236e-01 5.76099102e-01 2.05730675e-01
9.60665770e-01 -5.55233613e-01 -6.74670517e-02 7.91283605e-01
2.02866819e-01 4.51917692e-01 -1.72659672e-01 3.68619244e-01
8.92110060e-01 -5.99627869e-01 6.14730528e-01 9.39076024e-01
-9.70862536e-01 -5.69580827e-01 -7.65246159e-01 5.34847035e-01
-8.37566828e-01 9.96827117e-01 -2.20775968e-01 8.10405532e-01
-6.22844793e-01 -1.18255600e-01 6.89623638e-01 1.90539561e-01
-7.56838066e-02 2.52994935e-02 1.47771054e-01 -1.19361585e-01]
[-6.12882085e-01 -7.72068477e-01 -6.97544145e-01 -8.95018072e-01
1.17352822e-01 6.95442028e-01 -2.81761322e-01 -8.49378255e-01
-1.48551176e-01 2.04015677e-01 -1.49193069e-01 6.21442467e-01
8.83772492e-01 7.39821547e-01 4.07998997e-01 -5.94021504e-02
3.65396086e-01 -9.73163379e-01 9.64956237e-01 -6.55845336e-01
8.12520792e-01 6.14219803e-01 6.00279369e-01 -4.62127884e-01
-5.61692388e-01 -1.42398614e-01 6.98742201e-01 -9.92407151e-02
8.70840228e-01 -2.94641345e-01 2.38784331e-01 9.61398073e-01
2.86925044e-01 -9.09003568e-01 -7.28858181e-02 -3.30497313e-01]
[ 6.43630970e-02 -4.30507583e-01 -7.55477540e-01 3.36577978e-01
3.62719510e-01 7.34278600e-01 -7.35237013e-01 5.97240617e-01
6.53537477e-01 2.93099872e-01 -5.90155708e-01 -4.77158571e-01
-1.63006365e-01 8.35981456e-02 -4.51240888e-02 -6.50802159e-02
6.79681420e-01 7.40204731e-01 6.33507929e-01 7.55602837e-01
1.42017524e-01 9.28072267e-01 2.13088697e-01 2.07895482e-01
-3.61404526e-01 3.62408368e-01 -8.96068623e-01 -7.30907158e-01
-7.39515665e-01 3.10402574e-01 -6.49334816e-01 -3.17706353e-01
-9.11376688e-01 -5.32531280e-01 9.28448650e-01 1.82788050e-02]
[-6.97850963e-01 4.60170635e-02 8.87018768e-01 7.31372028e-01
-2.15868262e-01 -4.32264968e-01 5.23459725e-01 -5.19031350e-01
-4.91535291e-01 -8.31827292e-01 7.28288190e-01 -1.04202169e-01
1.23572521e-01 4.73421915e-01 5.92977734e-01 -1.04983722e-01
-6.31744888e-01 6.57465703e-01 -9.38004080e-01 8.93456539e-01
1.53955693e-01 7.50777477e-01 2.17130874e-01 -4.96680832e-01
-4.07740153e-01 6.58451181e-02 9.24156426e-01 -6.31008791e-01
1.97967563e-02 -3.12423793e-01 5.39450690e-01 6.05732973e-01
-1.50880179e-01 -5.91755000e-01 -8.65821079e-01 -6.02703471e-01]
[-4.55198300e-01 1.97577836e-01 7.46166995e-01 -7.43538122e-01
9.16377483e-01 3.66341688e-01 4.83928471e-01 9.65761572e-01
-1.67798455e-01 6.31669318e-02 3.58425900e-01 2.57502852e-02
-4.01775311e-01 -7.89230655e-01 -4.30135709e-01 5.37705697e-01
2.81565409e-01 6.02661406e-01 3.42410639e-02 -5.35799956e-01
2.55923854e-01 -3.91989020e-01 -9.40942510e-01 8.06662354e-01
-1.59260862e-01 -1.47738439e-01 4.82503471e-01 8.96916809e-01
-8.54968944e-01 -6.54597824e-01 -3.55285022e-01 -5.03151507e-01
-9.01003728e-03 6.48919222e-01 7.07944830e-01 1.91659884e-01]
[-5.19652532e-01 -6.27014623e-01 4.86781025e-01 -5.25571885e-01
7.89817819e-02 4.98561574e-01 -5.43501791e-01 -6.50997625e-01
-9.20528627e-01 -7.04862325e-01 7.02877814e-01 -7.90728177e-01
-5.52709909e-01 -9.34485601e-01 3.52713271e-01 -5.36593717e-01
-1.72816564e-01 -7.21397657e-01 -2.45565425e-01 -1.51125068e-01
-5.40700963e-02 -1.54316374e-01 -7.94486872e-01 5.45160533e-01
-7.25587993e-01 -1.51415251e-01 -4.56087775e-01 -3.97984114e-01
3.44841545e-01 3.55734476e-02 -6.19825899e-01 -6.17311203e-02
-3.20918262e-01 4.08994396e-01 -5.47809595e-01 6.89976275e-01]
[ 5.24593298e-02 1.23914585e-03 -4.92628386e-01 -6.27688661e-01
-5.63618745e-02 9.63648836e-01 -7.34187525e-01 -4.33075135e-01
6.01282349e-01 3.29553797e-01 -4.42483183e-01 -3.70704786e-01
-1.60103491e-01 2.05573524e-01 4.38677534e-01 7.14600667e-01
3.62222941e-01 -5.26035871e-01 8.51441071e-01 5.62390801e-01
-3.85237039e-01 -3.90068717e-01 7.62336637e-01 -7.47843039e-01
2.66921668e-01 -4.44574535e-01 6.54400650e-01 -2.70953105e-01
4.66732189e-01 -6.15164219e-01 -3.71082049e-02 6.07189253e-01
-2.06023577e-01 -6.76851920e-01 2.97964445e-01 5.06651612e-01]
[-4.39614729e-01 -9.72762775e-02 8.00897825e-01 7.43971262e-01
4.14375220e-01 1.81801199e-01 6.34764541e-01 8.15289292e-01
-9.94984881e-01 -2.05544468e-01 1.22819367e-01 4.67846273e-01
-8.25054476e-01 -2.00490025e-01 -4.40757641e-01 -1.52979894e-01
-4.04273465e-03 3.20030447e-01 -7.52772206e-03 2.40936401e-01
1.64879724e-01 -1.43335204e-01 -9.90047271e-01 -6.10967172e-01
-3.59586691e-01 -7.06043748e-01 1.97327763e-01 2.22998953e-01
1.86519194e-04 -3.58302197e-01 3.06516104e-01 -6.19433035e-01
-9.88238037e-01 4.69884037e-01 -1.12992316e-01 3.95683312e-01]
[-3.36327577e+02 -7.95739243e+02 -3.92959948e+02 -3.07608303e+02
-3.07761345e+02 -4.40485387e+02 4.07075562e+02 9.56864352e+02
-2.59788798e+02 -4.29153715e+02 -4.24138304e+02 -4.17928518e+02
-9.99253746e+02 -1.15963801e+03 -3.99860362e+02 -6.64679339e+01
-6.51476983e+02 -7.10052968e+01 1.50342230e+02 -2.96348157e+02
-3.01847466e+02 -1.78824541e+02 -1.36196711e+02 -5.40277579e+02
-2.58210993e+02 2.26821439e+02 -5.44201071e+02 -4.36365051e+02
-9.74997279e+01 3.75163804e+01 -3.32042059e+02 -2.36371603e+02
-3.21906840e+02 -5.14550702e+02 -1.17075214e+03 -4.40952736e+02]
[-7.58544475e+01 1.58887739e+02 -5.74710488e+01 1.60704218e+02
-3.65294283e+01 -1.17519228e+02 -2.89044715e+02 6.20286286e+02
1.92225042e+01 1.77122209e+02 -1.36803741e+02 -1.50978187e+02
4.19948115e+02 1.36243414e+02 -1.07509947e+02 1.09300858e+02
-1.15968002e+02 1.57956232e+02 -3.09538420e+01 -9.59979418e+01
-9.20567818e+01 -3.11231217e+02 5.15106970e+02 -9.91320114e+01
-1.42112343e+02 2.97626376e+01 7.81979096e+02 -1.23003472e+02
1.99431059e+02 -1.45909178e+02 -9.78477580e+01 -4.85711301e+01
-1.45827959e+02 -1.79773052e+02 4.00648184e+02 4.50230030e+02]
[ 1.31092366e+03 3.52417346e+03 3.82084223e+02 2.65427103e+03
5.90629010e+01 4.62686867e+02 -1.93948584e+03 2.81300183e+03
1.27773907e+03 3.77931286e+03 4.31002080e+02 2.64186432e+02
2.68189884e+03 1.98020368e+03 4.72523314e+02 2.19112618e+03
9.66420197e+02 1.69948089e+03 5.40168238e+02 -7.32623628e+01
-7.31851855e+00 -3.05223927e+02 3.20713906e+03 6.12568434e+02
-4.91936116e+01 7.01339993e+02 4.56192064e+03 4.48496795e+02
-3.25183788e+01 -7.91428949e+02 2.35572867e+02 8.50477154e+02
1.15452789e+02 3.51334926e+02 2.95364550e+03 3.14045790e+03]
[ 2.61237136e+03 -1.01430468e+04 6.76498049e+03 1.53101845e+04
7.43987304e+03 4.20187207e+03 -3.17748532e+03 9.73054127e+03
1.21665155e+04 -1.05972277e+03 3.87750344e+03 7.64032438e+03
1.09406455e+04 1.96529150e+03 5.24598917e+03 -1.64332029e+03
5.38718021e+03 2.32034636e+04 -1.05781643e+04 6.42197284e+03
6.58511433e+03 -1.78623404e+03 5.48879722e+03 6.59858485e+03
5.35481596e+03 2.55811924e+03 8.42432067e+03 5.54702489e+03
1.16743467e+04 1.25518172e+04 5.80477433e+03 -3.05937004e+03
3.48648022e+03 5.05330052e+03 1.11272006e+04 3.16777891e+03]
[ 7.03919919e+04 4.34606758e+04 1.67309441e+04 2.16579376e+05
1.92595211e+04 1.08290940e+04 1.44372743e+05 1.14888844e+05
9.41157347e+04 -4.48871810e+03 1.46166275e+04 4.54819257e+04
-2.94374022e+04 -7.43718794e+04 3.18383825e+04 7.64596344e+04
3.80092230e+04 3.50789684e+05 -3.00796937e+04 1.20851870e+04
4.71552176e+04 8.30685338e+04 2.64346695e+04 4.06101769e+04
5.19757697e+04 1.55601066e+04 -2.17019856e+04 2.72773849e+04
2.10913227e+05 1.49170944e+05 1.03182448e+04 6.27708774e+04
3.11833723e+04 3.61030001e+04 -4.91105246e+03 -1.71800538e+04]
[ 4.92994458e+05 7.71529937e+05 -7.18347120e+04 1.21894719e+06
-1.36463148e+05 1.12137812e+04 8.56089768e+05 8.24029887e+05
6.30895050e+05 7.12095881e+05 9.95365410e+04 1.63770801e+05
-4.19515914e+05 -2.26848238e+05 7.19923353e+04 6.49798505e+05
1.51793073e+05 1.58728147e+06 4.63696322e+04 -5.52864148e+04
6.71045328e+04 4.68324739e+05 2.42591314e+04 1.15667806e+05
1.14868760e+05 2.42526750e+05 -2.62266943e+05 5.66973894e+04
1.09148848e+06 7.79800128e+05 -5.74343455e+04 4.89076966e+05
5.58706835e+04 1.60282214e+05 -1.91994115e+05 -1.20865407e+05]
[ 7.65052472e+05 1.02339354e+06 1.82473283e+05 1.47995570e+06
1.83800712e+04 3.94998644e+05 7.85533276e+05 1.08070513e+06
1.00745975e+06 1.79384154e+06 4.88083890e+05 5.34652231e+05
-1.39627348e+05 2.40553338e+05 4.38383760e+05 1.13916980e+06
5.59950004e+05 1.67306211e+06 3.25302002e+05 2.38139255e+05
3.27145966e+05 6.95348115e+05 1.35771481e+05 4.37920310e+05
4.37174009e+05 7.66951402e+05 4.85331537e+04 4.40306923e+05
1.26903126e+06 9.10463333e+05 2.38937728e+05 8.83441833e+05
3.74325133e+05 5.15141351e+05 1.52852077e+04 7.70036561e+04]
[ 8.69206894e+05 7.58943540e+05 3.47720113e+05 1.36088454e+06
2.00129946e+05 4.85451754e+05 7.62671343e+05 7.82856679e+05
1.00687583e+06 1.27757039e+06 5.05072035e+05 5.62909874e+05
1.30569542e+04 2.90687655e+05 5.02008480e+05 9.85204073e+05
6.01402186e+05 1.46697609e+06 3.71174678e+05 3.63356036e+05
4.30583725e+05 7.26944066e+05 2.02749249e+05 5.06219413e+05
5.12260920e+05 6.59933891e+05 1.16244931e+05 5.14324234e+05
1.07544231e+06 8.43591668e+05 3.73299138e+05 8.44363732e+05
4.62384822e+05 5.70989469e+05 1.42860002e+05 1.60584515e+05]
[ 8.34607697e+05 5.98352669e+05 2.98914974e+05 1.16898863e+06
2.23436467e+05 3.72560335e+05 8.53455334e+05 2.54328472e+05
8.45293244e+05 7.46249634e+05 3.67951580e+05 4.15811334e+05
-1.49501452e+05 1.59471574e+05 3.80497925e+05 8.25074254e+05
4.88670697e+05 1.26806477e+06 3.31030040e+05 2.90610239e+05
3.32805789e+05 7.70381814e+05 -5.58522264e+04 4.31970177e+05
3.58764454e+05 5.01399186e+05 -1.52884107e+05 3.71614654e+05
6.78688259e+05 7.36718056e+05 3.09463720e+05 8.12035715e+05
3.62714434e+05 4.90384908e+05 -1.23098927e+05 -1.10671154e+05]
[ 1.25631839e+06 1.37142081e+06 3.35673990e+05 2.10715155e+06
2.09410671e+05 4.84062576e+05 1.74224085e+06 9.10598960e+05
1.32813006e+06 1.47815980e+06 5.45776386e+05 6.42826842e+05
-4.38455245e+05 2.41948357e+05 5.62932204e+05 1.58744105e+06
6.99097614e+05 2.28287729e+06 5.53757719e+05 3.34713532e+05
4.89256549e+05 1.31821917e+06 -4.63097524e+04 6.22789792e+05
5.51739712e+05 8.79358433e+05 -3.21507287e+05 5.14355478e+05
1.66466139e+06 1.35890036e+06 3.63482486e+05 1.41285568e+06
5.34545948e+05 7.11509256e+05 -4.25885868e+05 -3.48091567e+05]
[ 2.10380785e+06 2.06858644e+06 5.51003257e+05 3.08820465e+06
4.09222232e+05 6.38757559e+05 2.67837920e+06 1.33675069e+06
2.11851515e+06 1.82626811e+06 6.02844923e+05 7.08618664e+05
-5.29440972e+05 3.28571148e+05 7.63927021e+05 2.41292826e+06
8.93999597e+05 3.38894450e+06 1.22330281e+06 4.57231093e+05
6.52121886e+05 1.90015412e+06 3.42757843e+05 8.29239367e+05
6.52102940e+05 1.01458646e+06 -1.53287443e+05 6.76511157e+05
2.21793573e+06 2.02010347e+06 5.36658704e+05 2.32960903e+06
6.93918697e+05 8.76364421e+05 -1.64617745e+05 -1.44984237e+05]
[ 2.49887352e+06 2.60723215e+06 4.29713709e+05 3.87621491e+06
2.28400613e+05 5.71533617e+05 3.24321890e+06 2.06663844e+06
2.56346746e+06 2.22742128e+06 3.99409362e+05 6.04873049e+05
-7.78338861e+05 2.56308635e+05 7.11436511e+05 2.97035158e+06
8.80442817e+05 4.27169662e+06 1.45895295e+06 3.13511204e+05
5.87021804e+05 2.10912065e+06 5.67026481e+05 7.97172842e+05
5.90086811e+05 1.02413878e+06 -1.34601902e+05 6.26212489e+05
3.00963258e+06 2.46467159e+06 4.09385778e+05 2.78572910e+06
6.18017745e+05 8.17442115e+05 -1.55946453e+05 -1.11526610e+05]
[ 2.59860767e+06 3.10677203e+06 6.04357171e+05 4.18877359e+06
3.73114597e+05 7.85499819e+05 3.71419160e+06 2.86869191e+06
2.81051693e+06 2.58912105e+06 7.12319483e+05 9.78041720e+05
-4.36447370e+05 5.25005578e+05 8.89270253e+05 3.23018506e+06
1.13881516e+06 4.74340839e+06 1.86415645e+06 4.91269930e+05
8.42042759e+05 2.45456997e+06 1.08145265e+06 1.09379119e+06
8.82389173e+05 1.35431627e+06 3.54762340e+05 8.71514904e+05
3.86462714e+06 3.00144117e+06 5.79952438e+05 3.02940839e+06
8.30625921e+05 1.09850727e+06 5.32876176e+04 1.70232526e+05]
[ 2.38275502e+06 3.04164446e+06 9.30536040e+05 3.83639860e+06
6.25749198e+05 1.18445309e+06 3.53327583e+06 3.38820074e+06
2.80649845e+06 3.16922128e+06 1.24886109e+06 1.47059029e+06
1.51350472e+05 9.90277864e+05 1.25333923e+06 3.28950899e+06
1.52212495e+06 4.22167262e+06 1.90175435e+06 8.79552352e+05
1.21601741e+06 2.63839678e+06 1.31676534e+06 1.42118231e+06
1.29912896e+06 2.05550957e+06 8.42980442e+05 1.28271031e+06
3.97467215e+06 3.07154748e+06 9.34053132e+05 2.86221992e+06
1.20210591e+06 1.47710597e+06 2.76698032e+05 4.36527156e+05]
[ 1.88704711e+06 2.27191684e+06 1.00129333e+06 3.04011053e+06
6.65400988e+05 1.28779672e+06 2.81321902e+06 2.92865884e+06
2.48545860e+06 3.08786409e+06 1.41332665e+06 1.57879203e+06
4.83625910e+05 1.17065539e+06 1.30475332e+06 2.78002088e+06
1.54922906e+06 3.31122968e+06 1.67750203e+06 1.01648200e+06
1.24029918e+06 2.26800891e+06 1.20069048e+06 1.40885953e+06
1.37546266e+06 2.27574770e+06 9.74798932e+05 1.37908864e+06
3.48117471e+06 2.69329816e+06 1.04623631e+06 2.39145094e+06
1.25964846e+06 1.51313252e+06 4.52573974e+05 5.74674780e+05]
[ 1.49151680e+06 1.87463664e+06 9.38622445e+05 2.36474012e+06
7.00988676e+05 1.16045714e+06 2.18894129e+06 2.27072778e+06
1.86974471e+06 2.39989835e+06 1.24421655e+06 1.35203101e+06
4.72734921e+05 1.00910478e+06 1.16308819e+06 2.13667292e+06
1.33889713e+06 2.54710175e+06 1.31657295e+06 9.75940279e+05
1.12477884e+06 1.79282108e+06 9.73329783e+05 1.23438465e+06
1.23251768e+06 1.82352920e+06 8.31367081e+05 1.23647297e+06
2.56392358e+06 2.03060555e+06 9.80171196e+05 1.81588776e+06
1.16565895e+06 1.30711958e+06 4.90813123e+05 6.24219016e+05]
[ 9.97376024e+05 1.27867105e+06 5.44029329e+05 1.75630643e+06
3.95254672e+05 7.50155908e+05 1.35525612e+06 1.40030037e+06
1.20241534e+06 1.63100596e+06 8.06212036e+05 8.88297586e+05
1.17408666e+05 6.52280112e+05 7.48167069e+05 1.36683023e+06
9.18892559e+05 1.93645068e+06 6.48699797e+05 5.94393270e+05
7.18540796e+05 1.14281497e+06 4.75637311e+05 8.31617648e+05
8.14628865e+05 1.05899477e+06 3.08439355e+05 7.84776052e+05
1.62975868e+06 1.29610605e+06 5.80931298e+05 1.10102810e+06
7.70430999e+05 8.88184212e+05 1.32641993e+05 2.36890106e+05]
[ 5.39690563e+05 6.98434315e+05 2.60496499e+05 9.97411783e+05
1.80756951e+05 3.94786086e+05 7.12315284e+05 7.62080951e+05
6.53284235e+05 9.23054284e+05 4.38440579e+05 4.92419349e+05
-1.33566426e+04 3.13444241e+05 4.05026141e+05 7.08686745e+05
4.97031364e+05 1.10323504e+06 2.78838392e+05 3.00612191e+05
3.83132122e+05 5.87855448e+05 2.25988045e+05 4.41920160e+05
4.50349787e+05 5.25450711e+05 6.23103104e+04 4.13661997e+05
8.82376737e+05 6.96660276e+05 2.87814992e+05 5.76568062e+05
4.15118938e+05 4.83716026e+05 4.41322394e+04 9.14331193e+04]
[ 1.70442321e+05 2.24343795e+05 1.19853226e+05 2.83963993e+05
9.81443583e+04 1.56974017e+05 2.44737428e+05 2.73271199e+05
1.98677633e+05 2.92279141e+05 1.63754850e+05 1.79019139e+05
4.39271808e+04 1.28924692e+05 1.60548858e+05 2.37251826e+05
1.73609053e+05 2.98492122e+05 9.48332051e+04 1.30197314e+05
1.54953417e+05 2.11903120e+05 1.03566427e+05 1.59800343e+05
1.71750287e+05 1.81743457e+05 5.73865806e+04 1.60309844e+05
3.02049465e+05 2.10855185e+05 1.26389869e+05 1.94715485e+05
1.61541853e+05 1.73236261e+05 4.60073192e+04 5.85442123e+04]
[ 8.08897519e+03 8.09024971e+03 1.00742230e+04 1.28013862e+04
7.52724195e+03 1.60405873e+04 1.90610052e+04 2.82693929e+04
1.29090144e+04 2.31959870e+04 1.45052961e+04 1.60689128e+04
6.66474929e+03 1.36778334e+04 1.57612554e+04 2.13167172e+04
1.33719534e+04 1.06726806e+04 2.13919933e+03 1.22612184e+04
1.45381580e+04 1.93972321e+04 7.28115550e+03 1.05372931e+04
1.79727539e+04 2.20908508e+04 5.10468662e+03 1.63263250e+04
2.72467726e+04 1.30822906e+04 1.14735238e+04 1.75304347e+04
1.61496247e+04 1.34638461e+04 6.13824229e+03 5.33277783e+03]
[-6.19741681e+02 3.24668234e+02 -2.19851988e+03 -1.45238383e+03
-2.70820970e+03 -8.79394320e+02 1.41778781e+03 3.64805591e+03
-1.24508053e+02 2.43489202e+03 -1.18220846e+03 -1.14924775e+03
2.04497609e+02 1.90438765e+03 -1.35019902e+03 1.76874121e+03
-1.53055677e+03 -2.55944528e+03 1.07424894e+03 -1.95364884e+03
-1.71728103e+03 6.78144599e+02 1.11568948e+03 -2.07804545e+03
-7.32455727e+02 2.06839102e+03 1.60638775e+03 -9.30099818e+02
2.12068464e+03 9.77449615e+01 -1.97995121e+03 2.21291677e+03
-7.53164778e+02 -1.48652608e+03 8.13290894e+02 9.06007514e+02]
[ 1.07503625e-01 7.03952516e-01 5.89934849e-01 3.69513410e-01
-1.35785817e-01 3.80868040e-01 -5.67949297e-01 -4.32113124e-01
5.55641222e-01 8.59960273e-01 -6.19900993e-01 -4.07873421e-01
-9.87579466e-01 -1.36875509e-01 -5.79409856e-01 2.82849565e-01
4.19178431e-01 -7.62444571e-01 -8.35711996e-01 8.12670139e-01
-2.21522491e-01 6.68069945e-02 9.26483130e-01 5.18108024e-01
-3.48919405e-01 -8.28301398e-01 7.20480334e-02 -3.27749114e-01
-9.56629191e-01 5.42304667e-01 -2.30181740e-01 1.42642300e-01
5.11485712e-01 8.81694840e-01 2.24644677e-01 -3.69207642e-01]
[-7.79846984e-01 -8.52162224e-01 -3.60618452e-01 3.21678278e-01
3.90304129e-01 -5.84563920e-01 -8.34408123e-01 -3.88978677e-01
9.51491197e-02 5.09339349e-01 5.93146411e-02 -4.26032495e-01
2.48359447e-01 -4.70326690e-01 3.05385829e-01 6.83796016e-01
2.77895641e-01 1.31262938e-01 -3.85715781e-01 7.53554080e-01
9.77643769e-01 5.54958862e-01 1.47287715e-01 -7.17441335e-01
-3.70141955e-01 -2.66281363e-01 -4.16209558e-01 -1.08094371e-01
2.21265034e-01 -5.74170819e-01 -5.00480491e-01 -7.75699034e-01
-3.84822822e-01 -5.10344283e-03 -2.03844306e-02 9.91154424e-01]
[ 9.62217126e-01 -1.26874457e-01 9.44041244e-01 -5.71204192e-01
8.22417722e-02 -9.31293711e-02 9.35217795e-01 6.72352446e-01
-5.71706150e-01 -1.20921796e-01 -6.63046057e-01 5.81744209e-02
5.86969348e-01 -9.28241702e-01 -6.17282245e-01 9.54911129e-01
9.21594612e-01 1.13183318e-01 2.92181443e-01 -4.55813971e-01
9.04182171e-01 3.39549613e-01 3.33615990e-01 -9.77793333e-01
7.05939700e-01 5.56652437e-01 3.69847994e-01 4.81563626e-01
-6.86855151e-01 4.37550106e-01 -8.06363179e-01 4.13898896e-01
-9.94736408e-01 5.52411575e-01 -1.68856304e-02 -5.91226267e-01]
[ 4.58493229e-01 -3.68691736e-01 7.67635180e-01 -6.39532950e-01
8.77101309e-01 9.41500296e-01 -3.91029512e-01 7.24972799e-01
6.84358238e-01 -1.50774580e-01 -2.72631184e-01 -4.35125054e-01
9.86473569e-01 -4.88497946e-01 8.41351196e-01 -1.43329572e-01
8.70854025e-01 6.77689668e-01 -6.88445349e-01 1.48566709e-01
3.47006029e-01 -1.88359188e-01 -9.90245911e-01 -3.49337340e-01
6.77889896e-01 -8.74352040e-01 -7.89160507e-01 4.03574693e-01
2.83165355e-02 -3.66635001e-03 -2.52780562e-01 2.07027233e-01
7.02937534e-01 -4.46153887e-01 6.89522726e-01 -1.66761703e-01]
[ 1.96802479e-03 4.59246757e-01 -4.82556585e-01 8.43273837e-01
4.04138928e-01 2.37860846e-01 -4.53982325e-01 3.91696913e-01
-4.85570503e-01 6.32905341e-01 -9.77055090e-01 -6.66924713e-01
1.15657978e-01 4.24561999e-01 -1.50386922e-02 7.55619003e-01
9.51739875e-01 -7.14458649e-02 5.35973959e-01 -1.04557323e-02
3.30197557e-01 -5.50250040e-01 -7.80916566e-01 9.58017875e-01
6.29989319e-01 -4.29232935e-01 1.71656769e-01 -2.39857589e-01
-6.47323918e-01 -1.62329714e-01 -4.05624412e-01 -9.66751787e-01
-2.25263386e-01 8.41826008e-01 6.56400517e-01 1.48149510e-01]
[-3.62706270e-01 -5.37471410e-01 9.12039167e-01 1.29220198e-01
-5.64789393e-01 -5.01035898e-01 9.19192405e-01 -5.22371733e-01
-7.86571823e-01 -6.32076120e-01 5.32449614e-01 4.17528512e-01
-1.24116150e-01 5.87609014e-01 3.50253843e-02 -1.72803678e-01
-7.65116128e-01 7.67822132e-01 -4.48813571e-01 2.32521447e-01
9.69159558e-01 -6.21163956e-01 9.30375984e-01 3.05430737e-01
-7.42536791e-01 5.43854292e-01 9.03551557e-01 1.25561099e-01
3.77110400e-01 -9.47304242e-01 9.78151371e-01 -3.63085760e-01
-9.52192441e-01 6.17128301e-01 9.46505104e-01 4.75177020e-01]
[-9.94528388e-01 -8.73278977e-01 1.68538810e-01 -3.28569784e-01
7.63666962e-01 7.47338739e-01 9.75037817e-01 4.31663938e-01
7.53767400e-01 -3.60699776e-01 -7.77646096e-01 7.30728212e-01
-3.93054804e-01 -1.61335404e-01 2.92060514e-01 2.10198268e-01
-1.58153831e-01 -2.27698976e-01 -7.54637916e-01 6.77237686e-02
-5.34291806e-01 5.09615702e-01 3.49741168e-01 -8.56146070e-01
9.78529369e-01 5.60913871e-01 -5.44348226e-01 -9.38514363e-01
-4.32563379e-02 -2.94515125e-01 9.30229987e-02 3.19327911e-01
5.94439615e-01 -9.72911306e-01 4.28591028e-01 -4.09372068e-01]
[ 9.93846406e+03 9.11164602e+03 1.75551019e+03 2.19963780e+04
4.92680055e+02 3.91696606e+03 1.11981956e+04 2.48931522e+03
1.33296313e+04 9.81503438e+03 5.51609887e+03 6.83106424e+03
-9.42746232e+03 -2.97952065e+03 4.30885389e+03 1.30075825e+04
5.93913529e+03 2.72385627e+04 2.91752906e+03 1.96155943e+03
3.30022369e+03 8.82499657e+03 -2.06231297e+03 5.38929325e+03
5.39249916e+03 3.54365723e+03 -7.77383879e+03 4.54433278e+03
1.61167008e+04 1.39861951e+04 2.48223730e+03 1.16860736e+04
4.76503900e+03 6.80277448e+03 -4.45952315e+03 -3.13927861e+03]
[ 9.75360487e+04 1.47670650e+05 1.86613119e+04 2.40796986e+05
2.35525800e+04 2.32279902e+04 2.17524492e+05 -2.67622239e+04
8.67798840e+04 4.21160453e+03 5.11307168e+04 5.67362546e+04
-1.40214729e+05 -6.32856103e+04 3.62884558e+04 1.15438892e+05
3.31612672e+04 3.02248826e+05 3.37859791e+04 2.07897135e+04
3.48557573e+04 8.22074801e+04 -3.92476819e+04 4.77605265e+04
4.42428766e+04 -3.76994708e+04 -1.29463977e+05 2.56297721e+04
1.39965114e+05 1.15265376e+05 2.26697999e+04 9.96150055e+04
4.42520614e+04 5.43296508e+04 -6.32723704e+04 -4.22028059e+04]
[ 1.44090899e+05 1.93140178e+05 -1.66611178e+04 3.43611116e+05
3.49571535e+03 -1.02465857e+04 4.99974001e+05 -7.99788878e+04
9.77654367e+04 -1.04878566e+05 3.56465773e+04 5.26428402e+04
-3.91127818e+05 -2.24619041e+05 1.24953829e+04 1.30182362e+05
-1.58684645e+04 4.81214080e+05 9.23510322e+04 -6.93683054e+03
1.90508616e+04 1.47306242e+05 -1.47360720e+05 2.57619933e+04
3.94900954e+04 -8.73829905e+04 -3.81318266e+05 -8.66272599e+03
2.01607316e+05 1.92082094e+05 -4.17560318e+03 1.24878606e+05
3.42557987e+04 4.14780315e+04 -2.22107976e+05 -1.67114015e+05]
[ 5.44468454e+04 1.62067408e+05 -5.92130613e+04 1.19748778e+05
-2.41385793e+04 -5.40171568e+04 5.33333054e+05 -2.13596274e+05
-4.60345173e+04 -3.06153747e+05 -2.58099092e+03 -2.47064169e+04
-4.80922670e+05 -2.59302001e+05 -5.92288112e+04 -1.24503664e+05
-7.56084560e+04 2.43116084e+05 6.67244060e+02 -4.48782523e+04
-3.30347829e+04 -1.33362291e+03 -2.50306335e+05 -2.76176570e+04
-2.53232122e+04 -2.63042767e+05 -5.45370016e+05 -6.44980791e+04
9.39130294e+04 4.05745809e+04 -4.64226738e+04 -9.71832917e+04
-3.15652725e+04 -3.49285060e+04 -3.20514904e+05 -2.42467299e+05]
[ 1.22210673e+05 2.94380025e+05 -1.25084684e+05 4.80264572e+05
-8.18316279e+04 -1.21106084e+05 9.19171913e+05 -6.63979112e+04
1.08206003e+05 -3.18722322e+05 -2.44508028e+04 -2.47657637e+04
-7.09304366e+05 -4.62136964e+05 -9.67685606e+04 -8.94474161e+03
-1.11664611e+05 8.03273083e+05 -1.15653018e+05 -8.98396461e+04
-2.79861099e+04 1.81516201e+05 -3.91220666e+05 -5.22345302e+04
-2.44115693e+04 -1.77483363e+05 -7.90445617e+05 -1.14092160e+05
3.95425683e+05 3.36829680e+05 -1.16618295e+05 -4.88289016e+04
-7.02997850e+04 -5.89237009e+04 -5.02343290e+05 -4.35560106e+05]
[ 1.13099140e+06 1.05782354e+06 5.93791613e+04 2.43218367e+06
-1.31079350e+04 2.26778108e+05 2.16161131e+06 4.19904955e+05
1.37780718e+06 7.01271728e+05 3.86317835e+05 5.50704077e+05
-1.29092739e+06 -6.08968243e+05 3.01593862e+05 1.13323375e+06
4.32363154e+05 3.21517289e+06 3.41164292e+05 1.25341509e+05
2.97292331e+05 1.21401982e+06 -5.14942775e+05 4.23917980e+05
4.23441116e+05 4.13443831e+05 -1.27917162e+06 2.86111037e+05
1.67738699e+06 1.67953120e+06 1.20613900e+05 1.04853273e+06
3.24340080e+05 5.54265136e+05 -8.42869887e+05 -7.47262681e+05]
[ 1.93537690e+06 1.24107085e+06 7.46225153e+05 3.47926775e+06
5.94863797e+05 9.81270437e+05 2.84528857e+06 2.51402045e+05
2.36488766e+06 1.38976395e+06 1.16943185e+06 1.38419501e+06
-1.06864542e+06 -1.96413605e+05 1.06380914e+06 1.94516159e+06
1.29315360e+06 4.46108188e+06 8.46157435e+05 8.32549518e+05
1.01546872e+06 2.11414094e+06 -5.82491237e+05 1.23574053e+06
1.19028500e+06 1.18074721e+06 -1.21959046e+06 1.06973231e+06
2.18576630e+06 2.51596030e+06 8.19530318e+05 1.83568037e+06
1.06638893e+06 1.42541153e+06 -8.13413298e+05 -7.95169106e+05]
[ 2.19242056e+06 9.56808380e+05 9.66790722e+05 3.99717561e+06
8.54601492e+05 1.09245755e+06 3.70595976e+06 -2.57816534e+05
2.65391446e+06 3.88739808e+05 1.17810606e+06 1.57031059e+06
-1.47873076e+06 -6.63172452e+05 1.27772083e+06 2.00506951e+06
1.38582877e+06 5.36759919e+06 8.02605913e+05 9.96372943e+05
1.27300981e+06 2.69015752e+06 -9.07434836e+05 1.41322574e+06
1.47265282e+06 1.11353356e+06 -1.86378110e+06 1.23274570e+06
2.34233957e+06 3.04780140e+06 1.01787836e+06 2.00121173e+06
1.28706831e+06 1.63189050e+06 -1.27013670e+06 -1.26579678e+06]
[ 2.44854581e+06 4.91774855e+05 1.38043691e+06 3.93586880e+06
1.37273587e+06 1.30450926e+06 4.67903860e+06 -1.36945329e+06
2.76171709e+06 -7.67717293e+05 1.40889942e+06 1.77366722e+06
-1.66172250e+06 -6.99038699e+05 1.56244539e+06 2.02669848e+06
1.61434665e+06 5.60239889e+06 5.37551375e+05 1.38194232e+06
1.69500825e+06 3.35721079e+06 -1.49096056e+06 1.74621451e+06
1.76597676e+06 1.10904613e+06 -2.46947931e+06 1.45183568e+06
1.88805395e+06 3.38167419e+06 1.37257250e+06 1.95665010e+06
1.59922186e+06 1.90390578e+06 -1.70038036e+06 -1.85739146e+06]
[ 3.63450260e+06 1.56102343e+06 1.59314444e+06 5.94012988e+06
1.46452785e+06 1.61446239e+06 6.76374849e+06 -6.45088711e+05
4.21831589e+06 5.33541262e+05 1.95095463e+06 2.45926510e+06
-2.41060496e+06 -8.19185678e+05 2.05693082e+06 3.60041188e+06
2.23266066e+06 7.85119353e+06 9.60177406e+05 1.56232598e+06
2.09264606e+06 4.80327473e+06 -1.74493800e+06 2.31191325e+06
2.24709098e+06 2.03834625e+06 -3.19635301e+06 1.85723843e+06
3.34362622e+06 4.93188294e+06 1.62080368e+06 3.35913257e+06
1.96878104e+06 2.56680950e+06 -2.22697444e+06 -2.42131500e+06]
[ 3.69538871e+06 9.69854404e+05 2.08150504e+06 6.06777584e+06
1.98977018e+06 1.83497738e+06 8.08977286e+06 -3.76952803e+05
4.58103342e+06 -3.97301594e+05 2.18627214e+06 2.77278356e+06
-2.18005343e+06 -8.58545227e+05 2.42553983e+06 4.28313643e+06
2.40890429e+06 8.47117182e+06 1.17012465e+06 1.95101361e+06
2.58229463e+06 5.57298690e+06 -1.57094548e+06 2.60779886e+06
2.58915681e+06 2.53935576e+06 -2.95548829e+06 2.10293413e+06
3.77180470e+06 5.82913208e+06 2.04050813e+06 3.83965506e+06
2.32746738e+06 2.82392348e+06 -2.20241850e+06 -2.53068738e+06]
[ 4.45704671e+06 2.22020637e+06 2.43897598e+06 7.52408980e+06
2.32132158e+06 2.14822552e+06 9.55022873e+06 9.26587383e+05
5.20298870e+06 -3.43691232e+05 2.27807026e+06 3.03978183e+06
-2.12450324e+06 -6.16172610e+05 2.70383419e+06 4.85910991e+06
2.73927330e+06 1.04987412e+07 1.92927193e+06 2.19842109e+06
2.96399292e+06 5.96141038e+06 -5.12255899e+05 3.04982340e+06
2.87140489e+06 2.19546667e+06 -2.34342338e+06 2.37450955e+06
5.37755769e+06 6.73283764e+06 2.33214493e+06 4.61104361e+06
2.63601409e+06 3.13921047e+06 -1.61170349e+06 -1.85833238e+06]
[ 4.67706040e+06 3.53256743e+06 2.66874731e+06 7.59845299e+06
2.49544122e+06 2.37348129e+06 9.58358519e+06 2.19452186e+06
5.08903261e+06 3.52199987e+05 2.43269444e+06 3.03804441e+06
-1.10316789e+06 2.11566426e+05 2.72999571e+06 4.68639023e+06
2.95187924e+06 1.04401564e+07 2.67518986e+06 2.37612387e+06
3.12291434e+06 5.90731971e+06 6.53812541e+05 3.24630955e+06
2.95950465e+06 2.09089392e+06 -9.46360759e+05 2.55386792e+06
6.01131060e+06 6.76412385e+06 2.46717251e+06 4.56849770e+06
2.76042400e+06 3.18562196e+06 -8.01829188e+05 -9.55785788e+05]
[ 4.28065374e+06 3.98835863e+06 2.52975969e+06 7.72459836e+06
2.17692918e+06 2.56940560e+06 8.64814387e+06 3.77883065e+06
5.10157071e+06 2.44647387e+06 2.76237502e+06 3.21130944e+06
-3.92137608e+05 1.00847976e+06 2.74717532e+06 4.95541613e+06
3.15266793e+06 9.84526476e+06 2.66193472e+06 2.38609923e+06
2.99707494e+06 5.61614336e+06 1.28387451e+06 3.25226364e+06
2.99353669e+06 2.89139864e+06 2.91359917e+04 2.70741442e+06
6.67916423e+06 6.55276762e+06 2.43132862e+06 4.37201024e+06
2.73133618e+06 3.26341213e+06 -2.37139391e+05 -3.04182655e+05]
[ 3.45506171e+06 4.12349279e+06 2.11059927e+06 6.15674703e+06
1.58798781e+06 2.34243794e+06 6.40552819e+06 4.85661090e+06
4.25112852e+06 4.61013155e+06 2.77300789e+06 2.94120475e+06
7.66648324e+05 2.05415854e+06 2.42645318e+06 4.92965674e+06
2.83119849e+06 6.85520664e+06 2.37141925e+06 2.03238209e+06
2.46187910e+06 4.66961173e+06 1.73755318e+06 2.73510363e+06
2.55895548e+06 3.68114687e+06 1.33609779e+06 2.45350368e+06
6.35387341e+06 5.24661523e+06 2.08328983e+06 3.86271763e+06
2.34569192e+06 2.81473825e+06 4.19783654e+05 5.76366515e+05]
[ 3.40088211e+06 4.84142464e+06 2.06643176e+06 6.36469521e+06
1.44495835e+06 2.65914862e+06 4.67607659e+06 5.34199671e+06
4.25074885e+06 6.15497101e+06 2.94279238e+06 3.17166830e+06
7.80911125e+05 2.33707649e+06 2.70734571e+06 5.02042146e+06
3.11489202e+06 6.52150665e+06 2.11907333e+06 2.15066534e+06
2.50227453e+06 4.02473436e+06 1.85551677e+06 2.81059042e+06
2.84843961e+06 3.72379841e+06 1.45634657e+06 2.79609906e+06
6.25436689e+06 4.43418157e+06 2.18846479e+06 3.79908863e+06
2.61696103e+06 3.01888891e+06 7.12972925e+05 1.07951985e+06]
[ 2.19463840e+06 3.51514122e+06 1.18014013e+06 4.79573719e+06
6.58756239e+05 1.80705823e+06 2.76570864e+06 4.02408627e+06
2.90160128e+06 5.13311572e+06 1.92878198e+06 2.25189135e+06
8.42828282e+04 1.43059424e+06 1.88839399e+06 3.76182778e+06
2.14890532e+06 4.86886272e+06 1.27477033e+06 1.32118289e+06
1.62636972e+06 2.65140293e+06 1.01267667e+06 1.84305423e+06
2.01500345e+06 2.59425213e+06 5.68961267e+05 1.94108259e+06
4.53875401e+06 2.98114504e+06 1.36180290e+06 2.91930134e+06
1.82408758e+06 2.08753399e+06 8.22514819e+04 3.87899325e+05]
[ 1.16038967e+06 2.36043476e+06 3.43311913e+05 3.14038283e+06
2.22353933e+04 8.02361265e+05 1.61472220e+06 2.70777303e+06
1.66520441e+06 3.46186857e+06 8.57513961e+05 1.17138219e+06
-3.21653245e+05 5.13374780e+05 9.20024126e+05 2.46376740e+06
1.03250108e+06 3.12648167e+06 6.97972926e+05 4.37041697e+05
7.04392903e+05 1.50716418e+06 4.96216508e+05 8.40637181e+05
9.80793280e+05 1.38493866e+06 5.55396862e+04 9.24022992e+05
2.79908580e+06 1.73137045e+06 4.86929061e+05 1.93795875e+06
8.71759305e+05 1.03796941e+06 -1.92977667e+05 2.44204259e+04]
[ 3.12334905e+05 1.04716817e+06 -1.00121593e+05 1.45921137e+06
-2.41552952e+05 1.19578752e+05 7.85328876e+05 1.67348696e+06
7.39447729e+05 1.66347653e+06 1.19452334e+05 3.65691350e+05
-4.10970856e+05 -1.02711099e+05 2.79001060e+05 1.29355169e+06
2.07906032e+05 1.51383170e+06 3.26066343e+05 -4.54089981e+04
1.50200636e+05 6.40534259e+05 1.37848655e+05 1.44373276e+05
3.01462638e+05 6.86527408e+05 -1.61949490e+05 2.44446681e+05
1.38094343e+06 7.70206120e+05 -1.10081340e+04 9.18139485e+05
2.26988795e+05 2.60631199e+05 -3.36056921e+05 -1.75345099e+05]
[-8.23674246e+04 1.26266684e+05 -9.15874961e+04 3.59471812e+05
-1.27907197e+05 -4.47974700e+04 1.83448387e+05 6.42337615e+05
1.37489718e+05 3.88459949e+05 -8.00949339e+04 3.61142951e+04
-1.45691481e+05 -1.30415457e+05 3.10546490e+04 4.42744676e+05
-5.45907684e+04 4.34960707e+05 1.95567452e+04 -5.85057811e+04
3.70743759e+03 8.21865208e+04 7.86094603e+03 -5.82872378e+04
5.77393324e+04 2.03019516e+05 -6.82770466e+04 5.47739541e+03
3.87333133e+05 1.83952983e+05 -6.26980444e+04 1.98893608e+05
3.62856929e+04 -2.23380599e+03 -1.23756633e+05 -7.29256761e+04]
[-3.03421433e+04 1.02671888e+05 -6.72755697e+04 2.32739359e+05
-7.72145734e+04 -4.20113338e+04 1.00237587e+05 3.31927037e+05
5.59826718e+04 1.69046011e+05 -5.85992848e+04 8.46895217e+03
-1.18747441e+05 -9.81895237e+04 -3.29334638e+03 2.01078182e+05
-4.93087875e+04 3.20035326e+05 -2.35070363e+04 -4.51109245e+04
-6.71262089e+03 3.25880557e+04 -1.05113562e+04 -4.19955651e+04
1.95540551e+04 8.11487632e+04 -7.92571723e+04 -2.04656516e+04
2.27848401e+05 1.30795823e+05 -5.09375730e+04 7.45864789e+04
6.42083289e+03 -1.44130344e+04 -9.15795555e+04 -6.07115099e+04]
[ 2.31949216e+03 3.40116931e+03 -6.97179675e+02 1.31446350e+04
-2.34961355e+03 1.12995633e+03 6.21931434e+03 1.03578517e+04
7.11087698e+03 9.18841413e+03 1.89295902e+03 5.10025768e+03
-6.44019306e+03 -5.05779721e+03 2.59419379e+03 7.84043279e+03
2.15120989e+03 1.85358861e+04 3.89509895e+03 2.13632969e+02
2.22113667e+03 3.94156693e+03 -1.00832492e+03 2.15533211e+03
4.77983198e+03 5.07778113e+03 -4.64761200e+03 2.84854329e+03
1.07701477e+04 1.11200709e+04 5.18960232e+02 7.47144359e+03
2.96652929e+03 3.22782476e+03 -5.12907647e+03 -3.41322372e+03]
[ 9.51083956e-01 5.27440064e-01 -9.98518174e-01 4.70431108e-01
-9.56014980e-01 -6.62868635e-01 -9.78971983e-01 -7.01746002e-01
3.75011050e-01 4.04033751e-01 -2.57845187e-01 4.62381648e-01
6.94608411e-01 -7.39284971e-01 -8.25185368e-01 -2.56157087e-01
-1.92232725e-01 -4.47191560e-01 5.08336372e-01 -3.56427599e-01
6.00288624e-01 8.22616709e-01 2.62980151e-02 -1.41155941e-01
-8.16810396e-01 -4.52645392e-01 7.73295629e-01 -5.08111317e-01
2.42378774e-01 -9.98520831e-03 -8.11254928e-01 7.98737063e-01
-8.64458335e-01 3.61404651e-01 9.43996280e-01 4.18747582e-01]
[-3.48182559e-01 -8.53119667e-01 1.59474094e-01 4.67034037e-01
-2.82307933e-01 3.07502945e-01 1.33182816e-01 -9.31787165e-01
8.41388906e-01 -2.39988393e-01 -2.41196112e-01 6.92711752e-01
-3.14441960e-02 -9.78624115e-02 2.79713431e-01 -5.76457418e-01
5.66013854e-02 3.37137049e-01 7.75534000e-02 4.17522275e-01
1.97072984e-01 6.82811067e-01 7.58341526e-01 -8.04321594e-01
-4.82812011e-01 -8.90687689e-01 -5.42216264e-01 4.41833414e-01
-8.42909521e-01 -6.89760974e-01 5.41536655e-01 -1.11349645e-01
-4.19758525e-01 2.87969393e-01 7.73876809e-01 -9.24789119e-01]
[ 3.86188689e-01 3.37101448e-01 7.36024197e-01 -6.07255920e-01
4.25585259e-01 -7.92197783e-01 -8.86747286e-01 3.61592069e-01
-9.54730572e-01 -9.11401822e-01 -9.26093954e-01 -6.91789825e-02
5.15738888e-01 9.84398447e-01 -5.46784607e-01 5.84760451e-01
5.90491728e-01 7.44485419e-01 -3.71488019e-01 -7.34149890e-01
5.93403160e-01 1.34926675e-01 -1.70692146e-01 -8.82716646e-01
-9.86886249e-01 -3.67953073e-01 -4.57082429e-01 -4.85527454e-02
8.47223729e-01 -1.66631028e-01 -4.24232258e-01 6.90493066e-01
-3.86100265e-01 8.31168045e-01 7.26823687e-01 2.77638376e-01]
[ 4.95350387e-01 -6.85354409e-01 2.05748540e-01 -3.45925432e-01
-2.26438929e-02 -5.49229084e-01 8.03915355e-01 -1.76932446e-01
-4.65318936e-02 4.42805506e-01 -7.55606374e-01 6.13009710e-03
6.26295327e-01 3.54683720e-01 -3.56698548e-01 4.21330793e-01
8.68879197e-01 7.89552477e-01 4.84469576e-01 -4.67797662e-01
-2.55025186e-01 1.16835842e-01 -2.37902206e-01 -8.85062759e-02
5.87051888e-01 -7.92119736e-01 9.45993156e-01 4.09238132e-01
7.29455737e-01 5.63360108e-01 -1.35632573e-01 8.85022287e-01
-4.93827566e-01 -9.07503154e-01 -8.06243539e-01 -5.98526756e-01]
[ 7.81610727e-02 -5.52794895e-01 6.70641640e-01 -9.81322626e-01
4.91801858e-01 9.38015644e-01 -4.65633578e-01 2.47631013e-01
4.29559270e-01 -3.46085164e-01 -1.33746856e-01 4.68817692e-01
-7.37699626e-01 -7.12628054e-01 -2.49187355e-01 -5.43181896e-01
-3.86027212e-01 -6.99868630e-01 -8.06727880e-01 8.31968062e-01
-3.08213183e-01 1.31932513e-01 9.43975301e-02 -9.92849037e-02
4.95641161e-01 -3.36847085e-01 7.84954914e-01 -8.63933555e-01
1.49779185e-01 -3.21894846e-01 -2.72199310e-01 -3.89804212e-01
2.07172599e-01 -5.31184141e-01 -4.11387601e-01 -4.29010819e-01]
[-6.49117434e+03 -1.82824562e+04 1.30915175e+04 -1.25990238e+04
1.35179779e+04 9.78859091e+03 6.82336988e+03 -1.27006906e+04
-4.04611748e+03 -6.85109439e+03 1.13555777e+04 1.05264153e+04
3.69401141e+03 2.64529536e+03 1.17762904e+04 -2.49899227e+03
6.86226905e+03 -1.39576220e+04 -8.07119827e+03 1.31685115e+04
1.29300104e+04 6.64880930e+03 -1.29426043e+04 8.69604522e+03
1.19740098e+04 1.07954806e+04 -9.80434375e+03 9.74703324e+03
-5.18287850e+03 -1.38072999e+03 1.27825899e+04 -3.74239465e+03
1.14778304e+04 8.41201804e+03 -1.49871019e+04 -1.55538073e+04]
[-3.04350102e+04 -1.09846524e+05 6.32230611e+04 -6.13072919e+04
6.54585367e+04 4.75027500e+04 3.36374764e+04 -8.76519449e+04
-1.60863664e+04 -4.48825141e+04 5.51431505e+04 5.03762306e+04
6.98410920e+03 8.54954705e+03 5.60297770e+04 -2.09419565e+04
3.56631413e+04 -6.18345368e+04 -4.80284509e+04 6.32938351e+04
6.20572947e+04 2.30723826e+04 -7.57720736e+04 4.42120379e+04
5.55500355e+04 5.50029257e+04 -6.24018951e+04 4.67922092e+04
-4.07218340e+04 -7.98631745e+03 6.15262279e+04 -2.47532512e+04
5.38610450e+04 4.22150522e+04 -8.37548054e+04 -8.68202445e+04]
[ 7.15032699e+04 4.16118360e+04 8.63946215e+04 3.16458062e+05
1.02497648e+05 6.44780809e+04 5.93873691e+05 -2.74293355e+05
4.27352369e+04 -2.59554744e+05 1.05250409e+05 1.18112706e+05
-4.19039232e+05 -2.03240323e+05 7.36902852e+04 -4.71187149e+03
2.65683114e+04 4.74040260e+05 -8.85495602e+04 8.25198453e+04
9.24485993e+04 1.60185155e+05 -3.36736571e+05 8.73820388e+04
9.66133396e+04 -8.39091255e+04 -5.59574553e+05 4.09417932e+04
1.00479869e+05 1.28011347e+05 8.94124946e+04 -6.42359784e+04
8.89942212e+04 8.54126919e+04 -4.47366998e+05 -4.19613033e+05]
[ 7.55335514e+04 1.25549264e+05 2.72717871e+04 1.94904516e+05
9.52417530e+04 4.66080344e+03 1.02258650e+06 -4.62347910e+05
-7.53270732e+04 -5.75007357e+05 7.17885033e+04 9.00821037e+04
-7.95200815e+05 -4.67298020e+05 5.14940079e+04 -1.10963141e+05
-7.51647040e+04 4.55142425e+05 6.11356428e+04 4.77591336e+04
8.08253084e+04 2.37526659e+05 -6.20050100e+05 3.87436484e+04
1.14899083e+05 -1.91269050e+05 -1.06475224e+06 9.96621871e+03
5.15418564e+04 1.59387343e+05 4.91256348e+04 -1.21863012e+05
9.48204875e+04 6.01944604e+04 -8.77490892e+05 -7.83941988e+05]
[ 1.92218810e+05 -1.83364158e+05 1.59090931e+05 4.92292001e+05
2.78711796e+05 1.45354621e+05 1.95935883e+06 -1.12188140e+06
1.18883417e+05 -1.11262045e+06 2.97280712e+05 3.71940520e+05
-1.55237685e+06 -9.85768927e+05 2.42945139e+05 -1.25950614e+05
5.15017043e+04 1.03578613e+06 7.63284073e+04 2.43329727e+05
3.08874216e+05 6.89570199e+05 -1.33523508e+06 2.23097075e+05
3.79656821e+05 -8.92449195e+04 -2.21798079e+06 1.73758011e+05
-8.69928912e+04 5.51231704e+05 2.11441594e+05 -4.86417465e+04
3.24020729e+05 3.19231312e+05 -1.58045482e+06 -1.51034548e+06]
[ 5.56390216e+05 -6.08192767e+05 3.28889907e+05 1.29085258e+06
4.95972154e+05 2.27236650e+05 3.00454470e+06 -2.21950796e+06
5.01137844e+05 -2.02736524e+06 4.82421404e+05 5.84724416e+05
-2.31254796e+06 -1.57563895e+06 3.45381345e+05 -2.35145467e+05
2.21220817e+05 2.42220941e+06 7.87164068e+04 4.29947484e+05
4.95526842e+05 1.25770482e+06 -2.07265871e+06 4.55340632e+05
5.56320780e+05 -1.75108931e+05 -3.35277334e+06 2.61063376e+05
-2.05434389e+04 1.33472047e+06 3.67007013e+05 1.60878743e+04
4.63595137e+05 5.77473384e+05 -2.31437707e+06 -2.29981760e+06]
[ 1.44664012e+06 -1.25213760e+06 1.14829402e+06 2.56741536e+06
1.35735260e+06 9.50262650e+05 5.04553576e+06 -3.98223479e+06
1.48196878e+06 -3.28548395e+06 1.42287513e+06 1.57105816e+06
-3.10499076e+06 -2.13084188e+06 1.11269676e+06 -1.41643784e+05
1.13216472e+06 4.86413746e+06 1.85519193e+05 1.27741092e+06
1.41616037e+06 2.70042357e+06 -3.22225213e+06 1.44745547e+06
1.46342417e+06 1.12165295e+05 -4.89112840e+06 1.00820551e+06
4.57850912e+05 2.79181519e+06 1.16250920e+06 4.04992130e+05
1.28927735e+06 1.65304708e+06 -3.27559959e+06 -3.43922175e+06]
[ 2.15468246e+06 -2.33079011e+06 2.37290496e+06 3.66537347e+06
2.56473390e+06 2.01109341e+06 5.97253151e+06 -5.12019305e+06
2.53949030e+06 -4.01163726e+06 2.52418361e+06 2.82247053e+06
-3.16656977e+06 -2.24248427e+06 2.34316541e+06 3.90497989e+05
2.32021338e+06 6.69714459e+06 4.17277510e+05 2.49067668e+06
2.69772927e+06 3.81623685e+06 -3.64174516e+06 2.68796375e+06
2.71016167e+06 9.05854523e+05 -5.40950852e+06 2.15377416e+06
2.88823123e+05 3.86816114e+06 2.38662107e+06 8.52326175e+05
2.46837688e+06 2.95450246e+06 -3.53862210e+06 -3.83143396e+06]
[ 1.38059647e+06 -4.96210472e+06 3.06020426e+06 2.50904078e+06
3.55519152e+06 2.00953286e+06 6.62622344e+06 -7.56146506e+06
1.86617641e+06 -8.01260262e+06 2.45229233e+06 2.99848482e+06
-3.60490067e+06 -3.44452219e+06 2.63902794e+06 -1.23067663e+06
2.11066071e+06 6.40149757e+06 -5.70836770e+05 3.05977576e+06
3.34268022e+06 4.05788710e+06 -4.60133475e+06 2.89363810e+06
3.13994067e+06 1.42666309e+05 -6.59359892e+06 2.23019548e+06
-1.45051550e+06 3.83904934e+06 2.94225745e+06 -4.73201060e+05
2.73490682e+06 2.95876929e+06 -4.44293833e+06 -4.86815181e+06]
[ 1.77146120e+06 -6.45900001e+06 3.75529817e+06 3.37703954e+06
4.34309461e+06 2.45107793e+06 7.90554239e+06 -9.19520181e+06
2.63572401e+06 -1.04501446e+07 2.90796031e+06 3.57443212e+06
-4.21524583e+06 -4.04488760e+06 3.02426921e+06 -2.50089878e+06
2.80355121e+06 8.56827917e+06 -1.91312295e+06 3.66932749e+06
4.06431876e+06 4.63043528e+06 -5.49240513e+06 3.69341285e+06
3.72316855e+06 -5.80357151e+05 -7.81929231e+06 2.64960198e+06
-8.30648888e+05 4.76494764e+06 3.52789501e+06 -1.27588495e+06
3.09446556e+06 3.55187662e+06 -5.10821991e+06 -5.94970819e+06]
[ 2.83385623e+06 -6.65719401e+06 4.53718747e+06 4.83742924e+06
5.18075613e+06 3.16342644e+06 9.90674064e+06 -9.52062751e+06
3.83792704e+06 -1.10120847e+07 3.73949631e+06 4.49884505e+06
-4.18145377e+06 -3.90349942e+06 3.74022294e+06 -1.75356278e+06
3.74634537e+06 1.07593434e+07 -1.89728037e+06 4.43949907e+06
4.94484354e+06 5.55946573e+06 -5.76069918e+06 4.64256491e+06
4.50999012e+06 -3.38289094e+05 -8.21675677e+06 3.37593845e+06
5.68258323e+05 6.25104881e+06 4.26583332e+06 -4.59985541e+05
3.84650481e+06 4.52682392e+06 -4.85957527e+06 -6.26918866e+06]
[ 3.74703593e+06 -6.12310065e+06 5.32800477e+06 6.27907048e+06
5.88018360e+06 3.98398623e+06 1.15976092e+07 -8.29933996e+06
4.99737061e+06 -1.02706229e+07 4.53433245e+06 5.49366928e+06
-3.76672279e+06 -3.55300708e+06 4.66657370e+06 3.35984177e+04
4.61359249e+06 1.27370469e+07 -1.06393390e+06 5.19481463e+06
5.87777648e+06 6.88143538e+06 -4.78272482e+06 5.52484208e+06
5.42536318e+06 7.10308217e+05 -7.47222932e+06 4.24195018e+06
2.43254126e+06 7.79601047e+06 5.03911538e+06 1.41389606e+06
4.79744979e+06 5.48837814e+06 -4.03539379e+06 -5.56043780e+06]
[ 3.43885081e+06 -6.19568638e+06 5.27732825e+06 6.77180344e+06
5.94627058e+06 3.88742161e+06 1.45323091e+07 -7.14726498e+06
4.79307402e+06 -1.08564129e+07 4.49934589e+06 5.46563159e+06
-4.85469125e+06 -4.27896199e+06 4.68111859e+06 1.15320794e+06
4.08716325e+06 1.39695696e+07 -4.11174316e+05 5.21982481e+06
6.04918732e+06 7.91948648e+06 -4.73544510e+06 5.33386408e+06
5.45657608e+06 1.32524951e+06 -8.23476610e+06 4.06995735e+06
4.38936055e+06 9.15486948e+06 4.99059050e+06 2.48960839e+06
4.87927861e+06 5.38890143e+06 -4.83440193e+06 -6.10109527e+06]
[ 3.59502784e+06 -4.54118581e+06 5.13346622e+06 7.17061364e+06
5.56089770e+06 4.04995048e+06 1.45976262e+07 -4.56238281e+06
5.01346487e+06 -8.80160538e+06 4.57281972e+06 5.17376064e+06
-4.08602805e+06 -3.20207616e+06 4.54515351e+06 2.22330487e+06
4.08973132e+06 1.33182915e+07 9.82978892e+05 5.09611684e+06
5.71451419e+06 7.91983875e+06 -3.35081016e+06 5.12301725e+06
5.19301790e+06 2.22668691e+06 -6.63185347e+06 4.09639789e+06
6.30355728e+06 9.62193369e+06 4.90127418e+06 3.29984591e+06
4.72771366e+06 5.22516810e+06 -4.15764828e+06 -4.85419509e+06]
[ 4.20809939e+06 -1.40818167e+06 4.69049710e+06 7.83878421e+06
4.53117329e+06 4.30927533e+06 9.74385060e+06 -8.81683149e+05
5.50585833e+06 -3.46721131e+06 4.45659055e+06 4.65301679e+06
-1.18200340e+06 -1.31057177e+05 4.17778595e+06 3.39152627e+06
4.71985077e+06 1.15624461e+07 1.97546694e+06 4.56498734e+06
4.81804851e+06 6.49843782e+06 -5.27189820e+05 5.00095224e+06
4.50113718e+06 2.66354479e+06 -2.13680177e+06 4.16083644e+06
7.42477052e+06 8.45587952e+06 4.50940845e+06 3.86153086e+06
4.25227973e+06 5.00876202e+06 -1.59293519e+06 -1.79891461e+06]
[ 3.71630351e+06 2.10997384e+06 3.65495653e+06 6.46471177e+06
3.01567985e+06 3.79681603e+06 4.24710827e+06 2.30559677e+06
4.70202154e+06 2.99729244e+06 4.25289633e+06 4.12160364e+06
1.57053051e+06 2.57349409e+06 3.57922852e+06 4.05357499e+06
4.42640161e+06 6.96243103e+06 2.31490306e+06 3.47557991e+06
3.52236068e+06 4.76673554e+06 1.57821861e+06 4.20205527e+06
3.57471187e+06 3.60294491e+06 1.79800908e+06 3.71849483e+06
5.69898545e+06 5.44700652e+06 3.58645892e+06 3.60130800e+06
3.48522473e+06 4.21295717e+06 5.67738441e+05 8.04091028e+05]
[ 3.30221603e+06 3.75804755e+06 2.26339824e+06 5.70842722e+06
1.56161417e+06 2.75580655e+06 2.06833861e+06 3.52089950e+06
4.00735807e+06 5.75389980e+06 3.07472762e+06 2.89504090e+06
1.64676816e+06 2.93091852e+06 2.62581058e+06 4.48184545e+06
3.33489163e+06 4.91884294e+06 2.26043573e+06 2.12544488e+06
2.13797696e+06 3.46342375e+06 1.91530811e+06 2.95465459e+06
2.35631726e+06 3.29428564e+06 2.42249054e+06 2.72493730e+06
4.49414644e+06 3.52268418e+06 2.30412049e+06 3.81776672e+06
2.37773089e+06 3.03400212e+06 1.05965044e+06 1.38476592e+06]
[ 2.59530460e+06 3.86568368e+06 1.16541528e+06 4.69767099e+06
6.16867620e+05 1.83927876e+06 1.40912346e+06 3.72134425e+06
3.04225732e+06 6.41508096e+06 2.00423267e+06 2.00121239e+06
5.50982017e+05 2.30206815e+06 1.80695497e+06 4.33275359e+06
2.21798506e+06 3.37902485e+06 1.76957409e+06 1.24764335e+06
1.28091104e+06 2.53119574e+06 1.18023779e+06 1.84661284e+06
1.62304849e+06 2.88962593e+06 1.22905105e+06 1.83626310e+06
3.53451587e+06 2.38472070e+06 1.33456520e+06 3.39752462e+06
1.60276556e+06 2.03800150e+06 1.61213245e+05 5.26636971e+05]
[ 8.25025413e+05 2.65735170e+06 -3.87603676e+04 1.75900780e+06
-5.11827994e+05 5.91602209e+05 -1.86099241e+05 3.56445954e+06
1.16111669e+06 5.90425996e+06 8.01867311e+05 7.50454684e+05
4.28365285e+05 1.57783611e+06 7.83214324e+05 3.65120163e+06
8.56535210e+05 -1.38636247e+05 1.14079757e+06 9.65198938e+04
2.38208419e+05 9.82974528e+05 7.45128307e+05 4.70179676e+05
5.48152731e+05 2.25821954e+06 1.15961103e+06 7.03585100e+05
1.85387609e+06 5.39115089e+05 1.76812221e+05 2.42587277e+06
5.57308804e+05 6.57212623e+05 -2.47633756e+05 2.32481506e+05]
[-7.22915548e+05 4.91136459e+05 -5.69309061e+05 -5.38811959e+05
-7.34945662e+05 -3.48868074e+05 -5.01014856e+05 2.88492226e+06
-3.37317323e+05 2.54654991e+06 -2.17351911e+05 -3.34280197e+04
1.12699811e+05 6.61908235e+04 9.22286168e+04 1.84443060e+06
-3.79143437e+05 -1.51572490e+06 6.39288939e+05 -4.43448759e+05
-1.42167661e+05 -8.77922295e+03 3.32205728e+05 -4.31057775e+05
6.26545235e+03 1.28996870e+06 6.45913015e+05 -1.13543142e+05
1.39532538e+05 -3.61324403e+05 -4.22989540e+05 7.08082097e+05
-1.67115787e+04 -3.50974950e+05 -6.91964754e+05 -1.67107804e+05]
[-1.12480667e+06 -9.18262978e+05 -1.62767792e+05 -1.39181442e+06
-1.08599701e+05 -2.04094277e+05 -3.39981423e+05 2.09107075e+06
-6.82045650e+05 4.50064354e+05 -2.59759182e+05 1.30355433e+05
1.45387247e+05 -6.08363210e+05 2.85114537e+05 1.24068965e+06
-4.63815981e+05 -1.59462023e+06 6.78583527e+05 -3.01909027e+04
2.23701752e+05 -1.51268445e+05 1.09788017e+05 -3.14789117e+05
3.32294279e+05 1.07857293e+06 3.48347660e+05 4.48901691e+04
-7.16580393e+05 -3.71898487e+05 -5.87791283e+04 1.53965956e+05
3.08212604e+05 -2.27681593e+05 -6.38766023e+05 -2.30775412e+05]
[-1.00716728e+06 -1.15172420e+06 3.23721093e+04 -1.35264691e+06
1.26242085e+05 -1.04128031e+05 -2.37770843e+05 8.79138153e+05
-7.21094101e+05 -4.40660398e+05 -1.27180832e+05 7.81223365e+04
2.31724723e+05 -4.48021474e+05 1.86842398e+05 2.83560439e+05
-3.27217758e+05 -1.35315017e+06 1.70831940e+05 1.36851228e+05
2.33397067e+05 -1.67718261e+05 -8.69082537e+04 -1.76111816e+05
2.41672201e+05 6.07596128e+05 1.58489455e+05 3.86047692e+04
-8.20453874e+05 -3.23862919e+05 6.97225526e+04 -3.80641318e+05
2.17014596e+05 -1.40766344e+05 -3.27234342e+05 -1.76634236e+05]
[-3.89089732e+05 -4.80742295e+05 -3.42522892e+04 -5.82652813e+05
5.95354381e+03 -1.10846441e+05 -1.57425998e+05 1.23823375e+05
-3.27242618e+05 -2.88979101e+05 -9.14235632e+04 -4.93731694e+04
1.07269870e+05 -1.42713181e+05 -2.79200996e+04 -9.23963943e+04
-1.71808537e+05 -5.88088682e+05 -3.86507612e+04 -1.51743248e+04
2.31153876e+03 -1.44293557e+05 -4.72278100e+04 -1.22321888e+05
-4.63687871e+03 6.82373948e+04 5.14746779e+04 -6.93914032e+04
-3.34226186e+05 -1.71815417e+05 -3.38652538e+04 -2.45243733e+05
-2.81710445e+04 -1.21170145e+05 -6.00958261e+04 -5.53456919e+04]
[ 2.94380342e+02 6.64063555e+01 7.78869360e+02 6.98244559e+02
6.46856046e+02 7.55359560e+02 -9.07100003e+02 2.69841256e+03
6.94538990e+02 1.46306606e+03 7.72883066e+02 5.97809983e+02
1.93160776e+03 1.22748112e+03 6.22312941e+02 1.23462580e+03
7.09235039e+02 6.29783706e+02 -1.16709461e+03 6.72888354e+02
6.47548737e+02 -8.18546092e+02 7.64675754e+02 5.84737436e+02
5.94188159e+02 5.10364778e+02 1.84258776e+03 6.21402219e+02
2.33417317e+03 4.09278995e+02 6.89840055e+02 -7.47945239e+02
4.48217964e+02 4.38480350e+02 1.15787950e+03 8.11221412e+02]
[-8.17354520e-01 2.28149664e-01 -7.01298378e-01 4.15929934e-02
-8.13309813e-01 5.62400880e-01 5.45862035e-01 1.96297530e-01
-9.70913361e-01 -9.15951559e-01 -6.38058685e-01 9.44061342e-01
-4.90799622e-01 5.02017652e-01 -4.37529581e-01 -4.88962765e-01
-4.84272528e-01 -4.05894009e-01 -9.82110790e-01 9.74352364e-01
1.32921272e-01 2.03684823e-01 7.65201417e-02 -9.12324904e-01
-5.69590222e-02 7.93530024e-02 3.45911582e-01 6.83360054e-02
-8.89855382e-01 2.40197980e-01 1.62350406e-01 9.11926516e-02
6.86562560e-01 -1.05226481e-01 2.07130893e-01 -7.52774227e-01]
[-4.95241494e-01 7.00708652e-01 -9.67551275e-01 -6.87498044e-01
6.46769950e-01 -5.41324637e-01 -4.81610089e-01 4.01581213e-01
9.33050558e-01 -6.03440360e-01 4.94994576e-01 -7.18987510e-01
-2.35004857e-01 -3.53421497e-01 7.67571038e-01 3.10762792e-01
-3.32849280e-01 -9.56784082e-01 -2.61982682e-01 9.44361344e-01
5.81981736e-02 4.84289646e-01 -3.09222326e-01 -7.88202693e-02
-5.76728604e-01 6.73919460e-01 -2.80382281e-01 -9.25823734e-01
3.77978380e-01 -6.88422232e-01 5.97502339e-01 -9.69475095e-01
1.71246295e-01 -8.96744595e-03 9.94923468e-01 -7.31258527e-01]
[ 3.45107364e-01 -8.10109049e-01 -6.76463171e-01 9.76662583e-01
6.13330135e-01 -5.10719423e-01 6.92600891e-01 -9.28799482e-01
7.12141024e-02 -8.17050489e-01 9.41811333e-01 1.66201873e-01
1.11482549e-01 -3.64053854e-01 6.99809084e-01 6.03090269e-02
-9.65803552e-01 -6.30210219e-01 -1.33063380e-01 -8.40047178e-01
-4.38684893e-01 -4.99209427e-01 -9.98782715e-01 3.85770638e-01
5.47779273e-01 6.40698596e-01 7.03259229e-01 -6.96950238e-01
7.80073277e-01 3.16425780e-01 3.92267326e-01 1.28143328e-01
8.79363997e-01 -4.96305913e-01 5.73768567e-01 -9.48306726e-03]
[ 4.89297335e+03 2.57018470e+04 2.20614892e+04 4.01346769e+03
1.99930143e+04 2.28413072e+04 -5.49571424e+04 1.06989871e+04
3.41916105e+03 1.56042653e+04 1.43731548e+04 1.75363527e+04
4.57007680e+04 2.37698113e+04 1.96935053e+04 1.40786645e+03
1.98826909e+04 -4.91441815e+03 -1.06798941e+04 2.16149221e+04
1.85287789e+04 -1.10903643e+04 2.47169354e+04 1.91763759e+04
2.14957339e+04 -1.49564192e+04 4.71719839e+04 2.07532737e+04
1.15461706e+04 -2.04691794e+04 2.17174171e+04 -6.31676784e+03
2.14177975e+04 1.83549452e+04 4.84320838e+04 3.39216217e+04]
[ 3.98616427e+04 -7.79935089e+04 9.09559027e+04 3.33109873e+03
9.05414249e+04 8.04492049e+04 -6.89731725e+03 -1.30323266e+05
3.93568356e+04 -5.57084040e+04 6.66112567e+04 6.84860455e+04
1.98721726e+04 2.64022498e+04 7.71518139e+04 -1.31672323e+04
8.66301576e+04 3.16804348e+04 -1.94256467e+04 8.49248902e+04
7.79666064e+04 1.34212878e+04 -3.46459561e+04 8.61854653e+04
7.26406593e+04 -1.40931893e+04 -2.90684027e+04 7.62674466e+04
-2.94745164e+04 -1.85617523e+04 8.73933496e+04 1.18463663e+04
7.37332581e+04 7.79945486e+04 -1.30743076e+04 -3.60057221e+04]
[ 5.88959060e+04 -2.21830054e+05 5.20784872e+04 1.60011395e+05
6.05031406e+04 4.88594936e+04 2.60040429e+05 -5.50445230e+05
4.31969717e+04 -3.14385367e+05 3.98027476e+04 5.74001613e+04
-3.28669766e+05 -1.10436841e+05 3.26657887e+04 -1.23973285e+05
6.48952858e+04 2.72510485e+05 -1.21754388e+05 4.87850829e+04
3.82910419e+04 4.75934004e+04 -3.28346942e+05 6.94183853e+04
4.04248451e+04 -1.36253152e+05 -5.02669791e+05 2.88722779e+04
-7.37628363e+04 -3.55319844e+03 5.32287924e+04 -1.92474477e+04
4.36744128e+04 7.82505035e+04 -3.22057038e+05 -3.61507586e+05]
[ 2.61006707e+04 -3.11920832e+05 9.14065691e+04 1.97053188e+05
1.45539657e+05 4.10740569e+04 1.10126206e+06 -1.18415368e+06
-9.08538859e+04 -7.99685133e+05 1.67567945e+05 1.34282910e+05
-1.00423201e+06 -4.91560692e+05 7.63365501e+04 -3.98059143e+05
3.89299333e+04 6.08329475e+05 -9.71627820e+04 1.15235442e+05
1.38236387e+05 3.10514816e+05 -9.70815904e+05 1.32360082e+05
1.19125619e+05 -1.57055485e+05 -1.48346808e+06 2.36547444e+04
-2.23919449e+05 8.83941381e+04 9.68651346e+04 -2.36927284e+05
1.07000213e+05 1.49523320e+05 -1.19028399e+06 -1.16198554e+06]
[-1.37222188e+05 -7.87513237e+05 2.72804529e+05 -3.41569414e+05
4.75200572e+05 9.32875237e+04 1.60155023e+06 -2.52040061e+06
-5.75672162e+05 -2.20452923e+06 3.39635356e+05 2.72202864e+05
-1.59711511e+06 -1.05893090e+06 1.44806640e+05 -1.36251688e+06
1.08520305e+04 3.27673263e+05 -4.14339620e+05 2.94345475e+05
3.25328480e+05 2.79335454e+05 -1.78068522e+06 2.44791848e+05
2.67456369e+05 -7.43589891e+05 -2.62263895e+06 6.27203735e+04
-1.08365544e+06 -1.56760885e+05 2.52288348e+05 -1.01289655e+06
2.27344236e+05 2.49782711e+05 -2.01053264e+06 -1.93593863e+06]
[-3.88261486e+05 -2.17719924e+06 9.36673766e+05 -3.87237173e+05
1.31550215e+06 4.91809986e+05 2.32063787e+06 -4.53295559e+06
-7.24708412e+05 -4.38829031e+06 8.08719008e+05 7.42643813e+05
-2.07353583e+06 -1.68571571e+06 5.57691131e+05 -2.45620248e+06
3.69836320e+05 9.65594130e+05 -1.13961668e+06 1.02920921e+06
1.01426278e+06 7.43811613e+05 -2.96877382e+06 7.96331997e+05
7.79711912e+05 -9.14035072e+05 -3.93630816e+06 4.39437602e+05
-2.16863684e+06 2.67593983e+05 8.34240792e+05 -2.01144261e+06
7.30118032e+05 7.53410368e+05 -3.01537559e+06 -3.06249708e+06]
[-6.15244037e+04 -3.83587156e+06 1.73058791e+06 4.93583103e+05
2.20170341e+06 1.02832656e+06 4.13617121e+06 -6.85913175e+06
-1.96477257e+05 -6.80018809e+06 1.60990886e+06 1.60570619e+06
-3.21388853e+06 -2.82869763e+06 1.21978863e+06 -3.15303788e+06
9.93805956e+05 3.05901694e+06 -1.65940481e+06 1.88711040e+06
1.91102252e+06 1.83870173e+06 -4.65194661e+06 1.60377854e+06
1.62289452e+06 -8.47860873e+05 -6.04269334e+06 1.02486553e+06
-2.45979641e+06 1.50654527e+06 1.59791643e+06 -2.41687326e+06
1.46016807e+06 1.60824221e+06 -4.64998879e+06 -4.85328929e+06]
[ 6.05116545e+05 -4.65380938e+06 2.80056307e+06 1.89187572e+06
3.24787064e+06 1.95638454e+06 6.48274632e+06 -8.72080300e+06
8.02640857e+05 -8.03386860e+06 2.94524456e+06 3.05471418e+06
-4.78895896e+06 -4.08212083e+06 2.44268663e+06 -2.91623744e+06
2.16139302e+06 5.76817389e+06 -1.53100326e+06 2.98684632e+06
3.23998305e+06 3.54395487e+06 -6.21395336e+06 2.96404564e+06
2.97713056e+06 -3.89080947e+05 -8.47625693e+06 2.08722130e+06
-2.68190005e+06 3.20751972e+06 2.69331951e+06 -2.16451711e+06
2.61068551e+06 3.04189821e+06 -6.81884567e+06 -6.81560589e+06]
[ 1.00267425e+06 -6.03578175e+06 4.16138836e+06 2.36850099e+06
4.72749269e+06 2.92539385e+06 7.58560594e+06 -1.03528193e+07
1.44779716e+06 -9.58581767e+06 4.19777112e+06 4.53378247e+06
-5.02093657e+06 -4.78283921e+06 3.78788358e+06 -2.65202806e+06
3.29683967e+06 7.00257725e+06 -7.28144914e+05 4.28500849e+06
4.72757773e+06 5.00329634e+06 -6.70869050e+06 4.35545752e+06
4.37318568e+06 2.59578015e+05 -9.31630009e+06 3.26112228e+06
-3.97972734e+06 4.26886003e+06 4.01056395e+06 -1.68975981e+06
3.94040266e+06 4.47224858e+06 -7.72837406e+06 -7.51984125e+06]
[ 1.59372279e+06 -7.36345610e+06 5.09478917e+06 6.86217421e+05
5.87726375e+06 3.22464701e+06 9.10957126e+06 -1.18772844e+07
1.52329160e+06 -1.20344341e+07 4.72159859e+06 5.11076159e+06
-5.20097757e+06 -5.39057559e+06 4.40657626e+06 -2.81997774e+06
3.66051138e+06 5.76865455e+06 7.79698546e+05 4.98126789e+06
5.52342860e+06 6.44142785e+06 -6.98198089e+06 5.05548840e+06
5.00149711e+06 3.99917719e+05 -9.82279957e+06 3.79491069e+06
-5.14196246e+06 4.88238105e+06 4.85910403e+06 -9.48526495e+05
4.53366825e+06 4.91512168e+06 -8.63126805e+06 -8.18829593e+06]
[ 1.67726925e+06 -8.67060671e+06 6.36008220e+06 1.58827464e+04
7.27394254e+06 4.27020873e+06 1.10357902e+07 -1.32478043e+07
2.01485762e+06 -1.35714468e+07 6.25802786e+06 6.33728050e+06
-5.13278124e+06 -5.16634165e+06 5.28707745e+06 -4.10760682e+06
4.95669181e+06 6.07145863e+06 1.78296161e+05 6.38279484e+06
6.92106158e+06 8.11071343e+06 -7.65607694e+06 6.52104404e+06
6.16966149e+06 9.85127241e+05 -1.03284818e+07 4.82409686e+06
-4.41981784e+06 6.67513886e+06 6.03652914e+06 -1.51403151e+06
5.45429697e+06 6.07639011e+06 -9.52389434e+06 -9.18552045e+06]
[ 3.90932135e+06 -7.19009249e+06 8.83925286e+06 3.23305875e+06
9.52186739e+06 7.12162111e+06 1.36702748e+07 -1.32943666e+07
4.67561880e+06 -1.12931280e+07 9.34284344e+06 9.12240672e+06
-4.59250673e+06 -3.59073748e+06 7.76181808e+06 -2.57850007e+06
8.08310980e+06 9.48287312e+06 3.33862614e+05 9.11588005e+06
9.57084977e+06 1.06137769e+07 -7.18203173e+06 9.50390862e+06
8.72629735e+06 2.32801872e+06 -1.01945213e+07 7.51056845e+06
-2.02274564e+06 9.28864424e+06 8.54397626e+06 1.86038076e+05
8.02209566e+06 9.04807859e+06 -8.41765944e+06 -8.60370939e+06]
[ 5.73475154e+06 -4.97993479e+06 1.04833861e+07 5.79746431e+06
1.10703844e+07 9.12311907e+06 1.74276613e+07 -1.09795952e+07
6.87546081e+06 -9.23706201e+06 1.13146123e+07 1.09739025e+07
-4.45893120e+06 -2.63219802e+06 9.52955836e+06 -2.24044578e+05
1.00660596e+07 1.25379069e+07 2.16052297e+06 1.09276654e+07
1.14188432e+07 1.27353640e+07 -5.82135413e+06 1.14632472e+07
1.06259911e+07 4.09792343e+06 -9.32311878e+06 9.42621167e+06
1.55848240e+06 1.18693355e+07 1.02563831e+07 2.52591013e+06
9.89970034e+06 1.09720893e+07 -7.81606483e+06 -7.66215782e+06]
[ 6.74083759e+06 -2.88904375e+06 1.03691122e+07 6.29427602e+06
1.08687027e+07 9.29037078e+06 1.89651873e+07 -8.81149407e+06
7.58732631e+06 -7.33085030e+06 1.17697445e+07 1.10703470e+07
-4.65359098e+06 -2.56368698e+06 9.54787966e+06 1.78216690e+06
1.01464926e+07 1.29297159e+07 4.23120922e+06 1.07589037e+07
1.13415045e+07 1.37963822e+07 -4.29590682e+06 1.15127819e+07
1.06734235e+07 5.07167900e+06 -8.41519747e+06 9.57476619e+06
3.83204732e+06 1.29517686e+07 1.01736218e+07 4.49729475e+06
1.00295759e+07 1.11248004e+07 -7.94335874e+06 -7.01614969e+06]
[ 5.04440388e+06 -3.95099042e+06 9.35255261e+06 3.38034252e+06
9.86583851e+06 8.18415252e+06 1.66166497e+07 -6.58011186e+06
5.63711665e+06 -7.96784811e+06 1.08002859e+07 9.92238447e+06
-3.93981144e+06 -2.93872511e+06 8.45174292e+06 1.09714250e+06
8.58771131e+06 9.50894782e+06 4.38133979e+06 9.60899984e+06
1.02155678e+07 1.24984410e+07 -2.96213879e+06 9.99935246e+06
9.58971912e+06 5.07552354e+06 -6.92704840e+06 8.40899192e+06
3.35093667e+06 1.19303671e+07 9.20993812e+06 3.68907198e+06
8.91604876e+06 9.69105094e+06 -8.10090472e+06 -6.19400805e+06]
[ 4.69986766e+06 -2.20404551e+06 8.46735186e+06 2.23457269e+06
8.59674989e+06 7.71563123e+06 1.11767448e+07 -3.32640789e+06
4.90994382e+06 -4.05740681e+06 1.01065420e+07 9.11472876e+06
-7.83556773e+05 -5.01543853e+05 7.79059305e+06 2.02203378e+06
8.16356603e+06 6.08196290e+06 5.72007211e+06 8.49085014e+06
8.89926952e+06 1.06895306e+07 -3.13355397e+05 9.09680131e+06
8.63722844e+06 5.01330798e+06 -2.72960905e+06 7.99064301e+06
3.50577565e+06 1.02328601e+07 8.37992229e+06 4.33444527e+06
8.13923151e+06 8.82311778e+06 -5.77433293e+06 -3.37736879e+06]
[ 4.91478111e+06 8.91332811e+05 7.09839258e+06 2.53985288e+06
6.88922432e+06 6.98708390e+06 5.05646502e+06 2.42877120e+05
4.37590580e+06 1.45585638e+06 9.08572499e+06 8.26505870e+06
2.06485423e+06 2.06650055e+06 6.86838750e+06 3.04026057e+06
7.50907604e+06 3.64321131e+06 6.54809900e+06 7.00117663e+06
7.10629790e+06 8.36293929e+06 1.71675512e+06 7.90803498e+06
7.43446005e+06 4.71623697e+06 1.19691979e+06 7.26604840e+06
3.51933824e+06 7.19563129e+06 7.13629048e+06 4.59907755e+06
7.18368152e+06 7.78545456e+06 -2.60077157e+06 -3.21377252e+05]
[ 2.76380856e+06 -2.97732727e+04 4.35492766e+06 7.50406967e+05
4.19997000e+06 4.25256400e+06 3.37113877e+05 1.46740894e+06
2.38860972e+06 2.45129065e+06 5.74710419e+06 5.34801618e+06
2.54773420e+06 1.72716384e+06 4.50129538e+06 2.66109742e+06
4.52338446e+06 5.97051199e+05 4.55537765e+06 4.20326942e+06
4.20293021e+06 4.88733173e+06 1.61729163e+06 4.84729686e+06
4.68695671e+06 3.52173222e+06 2.20513809e+06 4.61266301e+06
9.55781388e+05 3.53517445e+06 4.43045924e+06 3.13019195e+06
4.52483643e+06 4.81774473e+06 -1.60845653e+06 1.80207408e+05]
[ 1.35417912e+06 5.24157915e+05 1.69310627e+06 1.38040558e+05
1.53842805e+06 1.91174274e+06 -1.76518815e+06 2.94403750e+06
1.31634683e+06 3.86851092e+06 2.65508819e+06 2.58764085e+06
1.56679891e+06 9.14221431e+05 2.43982547e+06 3.41677688e+06
1.85150104e+06 -1.49985441e+06 3.67433300e+06 1.71322313e+06
1.71267506e+06 2.39815876e+06 1.23561082e+06 1.98328897e+06
2.31511444e+06 2.93317649e+06 1.89510002e+06 2.28580886e+06
-1.50388522e+06 1.09451595e+06 1.94792060e+06 2.41295344e+06
2.24758445e+06 2.17375894e+06 -1.56881506e+06 6.88755748e+04]
[-1.63825154e+06 -9.04175408e+05 -7.53265014e+05 -4.51467209e+06
-9.03657750e+05 -5.83042894e+05 -3.68756299e+06 4.37061891e+06
-1.60739140e+06 3.80044313e+06 -2.07331683e+05 -4.34031294e+04
1.51299357e+06 -6.28844927e+04 3.83255183e+05 3.22197691e+06
-1.02598192e+06 -7.20178701e+06 3.78083698e+06 -6.58020579e+05
-4.38062487e+05 -1.19207638e+05 1.04469050e+06 -9.74018899e+05
1.73069875e+05 2.82603880e+06 2.43455824e+06 4.42445434e+04
-3.78412181e+06 -1.75920944e+06 -4.14482904e+05 1.23704165e+06
2.39389487e+05 -6.59375393e+05 -1.87252207e+06 -1.06282132e+05]
[-3.00175945e+06 -2.33015939e+06 -1.57982200e+06 -5.70994418e+06
-1.49162392e+06 -1.71817277e+06 -2.82351458e+06 3.76098757e+06
-2.98306383e+06 1.50119265e+06 -1.28336927e+06 -8.20291025e+05
6.44525751e+05 -1.41316368e+06 -4.64888453e+05 2.39506363e+06
-2.32402133e+06 -7.70424054e+06 2.55724537e+06 -1.42358806e+06
-9.69819515e+05 -8.38731990e+05 3.91501506e+05 -2.02003229e+06
-5.54289571e+05 1.97934353e+06 1.29255920e+06 -1.00969874e+06
-4.55632901e+06 -2.44691346e+06 -1.25608148e+06 2.30970972e+05
-5.11101376e+05 -1.67675271e+06 -1.90368071e+06 -5.34052666e+05]
[-3.52470975e+06 -4.02340553e+06 -7.87347572e+05 -5.44209328e+06
-5.28901178e+05 -1.12648267e+06 -1.65349265e+06 3.12533295e+06
-2.89902386e+06 -3.24454032e+05 -1.05850513e+06 -2.66246879e+05
5.14628105e+05 -1.81817290e+06 2.59834864e+05 2.18318989e+06
-1.95245283e+06 -6.48382828e+06 1.48546139e+06 -5.71673702e+05
-3.51211709e+04 -6.96221372e+05 -3.42847695e+05 -1.49038800e+06
2.07005806e+05 2.20463225e+06 4.89930226e+05 -4.44633619e+05
-3.97228956e+06 -1.92364835e+06 -5.09944687e+05 -3.70257363e+05
1.59832404e+05 -1.16582538e+06 -1.86386880e+06 -1.00629428e+06]
[-2.93287318e+06 -3.66280913e+06 -3.47506784e+05 -4.00322383e+06
-5.68100383e+04 -6.93807762e+05 -7.69559806e+05 1.69944535e+06
-2.31761826e+06 -1.20789791e+06 -7.98182982e+05 -1.67782566e+05
9.77896465e+04 -1.62576044e+06 3.27825207e+05 1.19691137e+06
-1.42217010e+06 -4.52481570e+06 3.60943473e+05 -1.19868974e+05
2.11226042e+05 -5.84121749e+05 -7.57774827e+05 -1.02891044e+06
2.97051604e+05 1.61410371e+06 -2.02591093e+05 -2.43899071e+05
-3.06702318e+06 -1.48975878e+06 -1.56356766e+05 -1.00045528e+06
2.36455591e+05 -8.11728148e+05 -1.54467621e+06 -1.08829839e+06]
[-1.17697064e+06 -1.55106613e+06 -1.14135536e+05 -1.75183983e+06
7.26712774e+04 -3.44741295e+05 -1.08046473e+05 3.15695338e+05
-1.11582612e+06 -1.04675429e+06 -3.01191057e+05 -1.21721156e+05
6.79574405e+02 -7.91977503e+05 2.44588940e+04 7.38619914e+04
-6.33391418e+05 -1.76375163e+06 -1.65026711e+04 -4.87016203e+04
5.65419765e+04 -3.20377304e+05 -3.15918448e+05 -4.32788524e+05
6.48405867e+04 2.14735679e+05 -2.07810782e+05 -1.69119736e+05
-1.09460107e+06 -5.63068930e+05 -6.33983294e+04 -6.34027976e+05
4.77320376e+03 -3.49148533e+05 -6.17485114e+05 -4.68947570e+05]
[ 7.24791564e+04 6.69297879e+04 7.27222025e+04 1.04537463e+04
7.33180606e+04 7.50272990e+04 6.77700272e+04 6.80716595e+04
4.12376234e+04 8.20351695e+04 1.05522847e+05 8.83427345e+04
-9.02261332e+03 -1.31612318e+04 7.99331914e+04 1.08880019e+05
7.05309281e+04 -6.51964465e+03 9.26059988e+04 7.27256397e+04
7.46668469e+04 8.20191250e+04 3.51317216e+04 7.62547019e+04
8.05908313e+04 8.14953020e+04 1.02762870e+04 7.90800467e+04
4.95721603e+03 6.56351252e+04 7.68909954e+04 7.77459990e+04
7.84685616e+04 8.42710142e+04 -3.14269577e+04 2.31251784e+04]
[-1.20663632e+03 -1.79522111e+03 4.87999051e+01 -5.90205959e+02
7.25604595e+01 7.74865852e+01 -3.79757236e+03 5.40515369e+02
-1.21302692e+03 -1.69753337e+03 -1.25498799e+02 3.63336156e+01
6.88673125e+02 -3.26297647e+02 7.30361913e+01 -2.69563741e+03
-7.43473641e+01 -1.36803657e+03 -1.55262734e+03 8.47406375e+01
3.61986487e+01 -1.79332028e+03 1.73304516e+03 -1.18147304e+02
1.49005991e+02 -1.31411312e+03 1.62194273e+03 1.32732357e+02
-1.30185881e+03 -1.55238029e+03 7.12725659e+01 -1.66404387e+03
1.10784236e+02 9.02147431e-01 1.74521827e+03 2.43485571e+03]
[-2.40894358e-01 6.92974762e-01 -7.93698698e-01 9.38779566e-01
4.56474780e-02 3.46673005e-01 4.63060861e-01 9.61957610e-01
1.05513955e-01 3.99448689e-01 3.65372643e-01 2.60466282e-01
5.98689923e-01 -3.08691001e-01 -3.62163355e-02 -8.43754922e-01
8.20211677e-01 1.18451482e-01 4.99723341e-02 -4.66096220e-01
7.99985771e-01 -9.72172864e-01 -8.05997728e-01 -8.79850150e-01
-5.18155315e-01 -6.30158108e-03 -7.29519052e-02 -4.58907582e-01
1.10218374e-01 -5.45329707e-01 -2.68607406e-01 -6.60073765e-01
3.28545158e-01 -8.36665637e-01 -3.13422621e-01 6.20506355e-02]
[ 9.90601644e-02 -2.64691283e-01 2.87504079e-01 -6.71103840e-01
4.48594330e-01 8.50499312e-01 9.79651875e-01 7.56965115e-01
-4.78162277e-01 -9.23813335e-01 9.48051530e-01 1.14239784e-01
7.94199584e-02 -7.07077734e-01 8.24984355e-01 9.15219177e-01
7.19259790e-01 3.85520930e-01 -2.28197303e-01 8.53455764e-01
7.08932796e-01 6.75772481e-01 1.68113786e-01 -8.60045065e-01
-9.48690449e-01 -5.48795761e-01 -8.15395344e-01 4.90210786e-01
7.02110891e-01 8.09399993e-02 2.22542327e-01 -5.37248309e-02
8.70377355e-01 2.25625405e-01 2.40722245e-01 7.16013207e-01]
[-3.06086230e+04 -1.52890615e+05 4.68967005e+04 -2.58637976e+04
6.53146926e+04 2.22902351e+04 1.04381259e+05 -2.26214700e+05
-2.13024523e+04 -2.05020783e+05 2.86598816e+04 4.32868242e+04
-9.53771551e+04 -1.08942099e+05 3.96377171e+04 -7.76744873e+04
1.03852803e+04 3.47826112e+04 -7.54070703e+04 5.27287133e+04
4.75121286e+04 8.18813604e+04 -1.42926671e+05 3.22044611e+04
4.85168436e+04 -2.24045768e+04 -1.77393871e+05 2.96066569e+04
-7.34493580e+04 1.58328061e+04 4.71647300e+04 -7.47759033e+04
4.27058142e+04 4.20298036e+04 -1.14423546e+05 -1.34477019e+05]
[-1.86485296e+05 -8.82043209e+05 1.76463271e+05 -3.07078867e+05
2.31706512e+05 7.09653867e+04 1.56632915e+05 -1.18754419e+06
-1.64551308e+05 -9.31311819e+05 9.33189145e+04 9.57444670e+04
-3.09291281e+05 -3.23177979e+05 1.06791741e+05 -4.90688005e+05
5.55985890e+04 -9.64734792e+04 -3.89673130e+05 1.81584844e+05
1.39734350e+05 1.04970494e+05 -6.16570601e+05 1.18949993e+05
1.11104421e+05 -1.38850223e+05 -6.82002327e+05 7.86154367e+04
-5.28884907e+05 -1.32165659e+05 1.65502684e+05 -3.89087174e+05
1.06562162e+05 1.22997834e+05 -4.09973520e+05 -5.36501091e+05]
[-3.40154632e+05 -8.65021102e+05 7.53433688e+04 -3.31577377e+05
1.38372525e+05 -6.99959599e+04 3.60514502e+05 -1.69672921e+06
-3.98432587e+05 -1.41771626e+06 7.09539221e+04 1.71834464e+04
-6.83347049e+05 -5.23197668e+05 -4.88780440e+04 -1.02715791e+06
-4.66080726e+04 3.06779198e+04 -7.09980191e+05 7.41818067e+04
4.28228279e+04 3.05119537e+04 -9.16486006e+05 3.84505383e+04
1.54522214e+03 -5.09161691e+05 -1.18239315e+06 -8.15931790e+04
-7.66823888e+05 -2.76533123e+05 3.02117209e+04 -8.46389529e+05
-1.82397478e+04 4.72898073e+04 -8.13918566e+05 -8.98678953e+05]
[-2.34021013e+05 -1.04239116e+06 2.76822422e+05 -2.40285177e+05
4.15327461e+05 4.60735527e+04 1.12335540e+06 -2.94431198e+06
-5.26933491e+05 -2.40106333e+06 4.12556811e+05 1.89287454e+05
-1.53103143e+06 -1.06547929e+06 2.34787535e+04 -1.78377520e+06
1.11579597e+05 5.85321605e+05 -1.15582927e+06 2.84556320e+05
2.83727692e+05 4.00150089e+05 -1.76351948e+06 2.78025537e+05
1.37751336e+05 -8.52687292e+05 -2.48282835e+06 -2.68713289e+04
-1.41152538e+06 -7.90501914e+04 1.75700502e+05 -1.42758841e+06
9.31960221e+04 2.55346713e+05 -1.91542683e+06 -1.88951842e+06]
[-2.83253868e+05 -2.05545576e+06 1.04683405e+06 -6.36832470e+05
1.36771064e+06 5.79716703e+05 1.81941458e+06 -5.35694192e+06
-8.25185906e+05 -4.22917106e+06 1.15936131e+06 8.51032744e+05
-1.99603599e+06 -1.58470769e+06 5.57955590e+05 -2.82373375e+06
6.66265039e+05 7.44985637e+05 -1.49888425e+06 1.07129795e+06
1.02575639e+06 8.28371526e+05 -2.84846224e+06 1.02633558e+06
7.23151756e+05 -1.31673316e+06 -3.83396714e+06 4.70889934e+05
-2.79233297e+06 1.10010085e+05 8.78005335e+05 -2.22680591e+06
6.86065217e+05 9.63539742e+05 -2.85578007e+06 -2.89554567e+06]
[-7.05202823e+05 -3.82488252e+06 2.36386850e+06 -6.77787921e+05
2.83783853e+06 1.51957913e+06 2.91317055e+06 -8.45158937e+06
-1.00873196e+06 -6.86875926e+06 2.36927684e+06 2.03138061e+06
-2.51532227e+06 -2.34694420e+06 1.65034148e+06 -4.41924897e+06
1.68418871e+06 1.66305946e+06 -2.40799802e+06 2.44838355e+06
2.39738830e+06 1.71594229e+06 -4.60016914e+06 2.32880184e+06
1.89808119e+06 -1.39790719e+06 -5.68120264e+06 1.47406076e+06
-4.55790134e+06 5.75686715e+05 2.11406901e+06 -3.73044942e+06
1.79957825e+06 2.16192864e+06 -4.63180845e+06 -4.79840536e+06]
[-4.43494309e+05 -6.17831494e+06 3.56655315e+06 -5.15952344e+05
4.12433886e+06 2.32118964e+06 4.84223263e+06 -1.22071229e+07
-6.77499556e+05 -9.87411487e+06 3.86198545e+06 3.30681648e+06
-4.05541639e+06 -3.87850990e+06 2.70589410e+06 -5.40188272e+06
2.63955094e+06 3.07867606e+06 -2.61898165e+06 3.69629591e+06
3.71750566e+06 3.53354004e+06 -6.76427974e+06 3.56599994e+06
3.13461885e+06 -8.36168154e+05 -8.47388891e+06 2.39167875e+06
-6.60082765e+06 2.09031362e+06 3.25313129e+06 -4.31806077e+06
2.86808458e+06 3.42072642e+06 -7.13013153e+06 -7.02344847e+06]
[ 3.63556430e+05 -6.96999241e+06 4.36907345e+06 6.05491517e+05
4.93713254e+06 3.07759836e+06 6.71203629e+06 -1.35732334e+07
7.17426303e+04 -1.04612539e+07 5.04428328e+06 4.77833148e+06
-5.80911913e+06 -5.33163644e+06 3.89941283e+06 -4.52313507e+06
3.48756661e+06 4.99549272e+06 -1.44158869e+06 4.62953543e+06
4.93106467e+06 5.43026321e+06 -8.16046133e+06 4.63911505e+06
4.54333721e+06 4.74382614e+05 -1.08282739e+07 3.35568308e+06
-7.63473822e+06 3.40839009e+06 4.15431154e+06 -3.70969433e+06
4.15527884e+06 4.77060101e+06 -9.56729791e+06 -8.73107311e+06]
[ 1.65441979e+06 -6.43841410e+06 5.78036807e+06 7.02578295e+05
6.50105889e+06 4.30601690e+06 9.67690443e+06 -1.41797612e+07
1.26284385e+06 -1.08783699e+07 6.73748556e+06 6.38763666e+06
-6.26719708e+06 -5.50618984e+06 5.33075370e+06 -3.40312811e+06
4.91768745e+06 5.69199813e+06 5.49295492e+05 6.00660291e+06
6.50146764e+06 8.14781722e+06 -8.23624265e+06 6.29663814e+06
6.00644881e+06 1.63419278e+06 -1.14895151e+07 4.76519230e+06
-7.16870256e+06 5.50346118e+06 5.53370933e+06 -1.88936106e+06
5.62225161e+06 6.34716723e+06 -1.08703011e+07 -9.35506203e+06]
[ 2.06005729e+06 -6.61940286e+06 6.57934072e+06 -2.26728035e+06
7.49708209e+06 4.84639347e+06 1.16624364e+07 -1.42430065e+07
1.10369481e+06 -1.20996477e+07 7.75210620e+06 7.11289785e+06
-5.63550251e+06 -5.38815547e+06 5.71245127e+06 -4.53625395e+06
5.54996284e+06 2.90864391e+06 1.94911407e+06 6.85441045e+06
7.42162971e+06 9.90580166e+06 -8.13318041e+06 7.11938598e+06
6.72819136e+06 2.18744588e+06 -1.10684597e+07 5.45513760e+06
-8.09594871e+06 6.72424589e+06 6.28654763e+06 -1.57154428e+06
6.22610607e+06 6.88276060e+06 -1.14466289e+07 -9.65590136e+06]
[ 1.77114855e+06 -7.43650600e+06 7.33730081e+06 -2.12815820e+06
8.37071019e+06 5.60758293e+06 1.50302570e+07 -1.44893340e+07
1.75081576e+06 -1.30339011e+07 8.78805542e+06 7.93462252e+06
-6.04063348e+06 -5.10230116e+06 6.17809306e+06 -5.36236319e+06
6.20308805e+06 3.68509037e+06 1.44784548e+06 7.98724583e+06
8.52106595e+06 1.08611314e+07 -8.93861496e+06 7.91182037e+06
7.52886420e+06 3.07031065e+06 -1.20859462e+07 6.14081442e+06
-6.25907423e+06 8.97217775e+06 7.11210442e+06 -1.59450432e+06
6.82811928e+06 7.59342412e+06 -1.22141313e+07 -1.09316632e+07]
[ 2.24906524e+06 -7.36132558e+06 8.43989425e+06 2.22327097e+05
9.39829634e+06 6.87008432e+06 1.67875487e+07 -1.30539322e+07
3.41638709e+06 -1.29722691e+07 9.41714855e+06 8.70335852e+06
-5.00733799e+06 -3.51381115e+06 6.81112841e+06 -6.03490643e+06
7.36403943e+06 6.72140442e+06 4.00055369e+05 9.42158026e+06
9.55214453e+06 1.07273808e+07 -8.32783407e+06 9.06572442e+06
8.40640803e+06 3.04936003e+06 -1.12753826e+07 7.22478502e+06
-3.47508954e+06 1.06913867e+07 8.34205672e+06 -2.10353279e+06
7.60275846e+06 8.40317532e+06 -1.03159494e+07 -1.04767852e+07]
[ 1.88852615e+06 -8.85301986e+06 8.17970335e+06 1.38796491e+06
9.30860223e+06 6.44888513e+06 1.83437533e+07 -1.12309100e+07
4.55372691e+06 -1.44269912e+07 8.42010639e+06 8.01929870e+06
-4.92337535e+06 -3.37400949e+06 6.08527835e+06 -6.14559045e+06
6.78281871e+06 9.03939739e+06 2.23968089e+05 9.36686641e+06
9.28449952e+06 1.01827935e+07 -7.79094485e+06 8.66218538e+06
7.96539800e+06 2.69391417e+06 -1.07175031e+07 6.77551822e+06
-1.35084523e+06 1.23952481e+07 8.07645013e+06 -2.46182852e+06
6.99052319e+06 7.74401753e+06 -9.59670295e+06 -1.05512756e+07]
[ 4.23769508e+05 -1.12716060e+07 6.59119737e+06 7.63472189e+05
7.87589922e+06 4.79331480e+06 1.84795561e+07 -9.23681681e+06
4.04546946e+06 -1.65428225e+07 6.47102410e+06 6.56624063e+06
-6.69775307e+06 -5.89893263e+06 4.40337944e+06 -6.83220308e+06
4.76685808e+06 1.00068387e+07 1.79149579e+05 7.86719873e+06
7.92774561e+06 8.95816439e+06 -8.08171450e+06 6.87655510e+06
6.69505409e+06 2.04057020e+06 -1.19246414e+07 5.18825752e+06
-4.38860925e+05 1.28997994e+07 6.58239754e+06 -2.85814682e+06
5.50275927e+06 6.07785447e+06 -1.10869339e+07 -1.18578614e+07]
[-2.99244942e+05 -1.20795291e+07 4.45353557e+06 -9.59297873e+05
5.65212977e+06 3.13905907e+06 1.60266742e+07 -9.06137742e+06
2.51179466e+06 -1.68805803e+07 4.84379572e+06 4.88697266e+06
-8.64111427e+06 -8.27889254e+06 2.77465707e+06 -7.17232169e+06
2.81397953e+06 7.96990454e+06 -7.17812927e+05 5.71802184e+06
5.90278689e+06 7.39392922e+06 -8.87285382e+06 4.81090881e+06
4.92669337e+06 1.08306535e+06 -1.33627903e+07 3.43276410e+06
-1.88263698e+06 1.13643995e+07 4.62334937e+06 -2.91932962e+06
3.87521638e+06 4.33688556e+06 -1.31115403e+07 -1.28690139e+07]
[-1.58546550e+05 -9.62627878e+06 4.16555149e+06 -3.66193009e+06
5.04147253e+06 3.17408802e+06 1.03328609e+07 -7.64218389e+06
6.93881151e+05 -1.31125564e+07 5.35558344e+06 4.74516940e+06
-5.71586033e+06 -6.34714620e+06 2.98080274e+06 -5.52440139e+06
2.70485074e+06 2.70977918e+06 7.51134681e+05 5.00702248e+06
5.16212866e+06 5.92347231e+06 -6.12640383e+06 4.34399267e+06
4.66602090e+06 8.17836649e+05 -9.28161368e+06 3.54277596e+06
-2.83615130e+06 7.96586726e+06 4.36310716e+06 -1.79883625e+06
3.96208128e+06 4.03544300e+06 -1.10353733e+07 -9.47224797e+06]
[-1.23578111e+06 -8.71734285e+06 2.57125297e+06 -7.93632088e+06
3.36037242e+06 1.78377527e+06 3.19842584e+06 -6.39258681e+06
-2.31421067e+06 -9.04769664e+06 4.03695248e+06 3.22291957e+06
-2.95222223e+06 -4.46430807e+06 2.02670946e+06 -3.55464170e+06
1.11829994e+06 -5.20034379e+06 3.05665974e+06 2.94235616e+06
3.00879074e+06 3.24496228e+06 -4.19764030e+06 2.35700612e+06
3.07928207e+06 2.08750886e+05 -5.63116329e+06 2.23828481e+06
-5.11464402e+06 2.66082681e+06 2.76985605e+06 -4.76558721e+05
2.83524684e+06 2.27961279e+06 -9.08724100e+06 -6.62630124e+06]
[-2.75623807e+06 -7.96801382e+06 1.49266757e+06 -9.12844517e+06
2.14483858e+06 8.91304417e+05 -1.08231981e+06 -4.37741460e+06
-3.90247023e+06 -4.64113201e+06 2.85842779e+06 2.29740333e+06
-1.57153017e+06 -3.25641698e+06 1.81096854e+06 -1.07941227e+06
-7.02678693e+04 -9.46007455e+06 2.95073197e+06 1.72283056e+06
1.74042693e+06 1.65073171e+06 -3.52687920e+06 8.78737417e+05
2.21701064e+06 1.12747286e+06 -3.94533239e+06 1.43688839e+06
-6.61780609e+06 -7.87385464e+05 1.76176691e+06 -4.77760235e+05
2.06177588e+06 1.04869308e+06 -8.12375882e+06 -5.26490676e+06]
[-3.87717068e+06 -8.84310194e+06 8.53270729e+05 -9.80670857e+06
1.72571131e+06 -1.76630598e+05 -2.65924229e+06 -2.91827404e+06
-4.82497088e+06 -5.11540230e+06 1.35864187e+06 1.44612888e+06
-6.26489056e+05 -3.86047790e+06 1.40569098e+06 2.41809003e+05
-1.44317417e+06 -1.04761056e+07 3.51960141e+06 1.02588778e+06
1.14681122e+06 1.10725651e+06 -2.73703097e+06 -2.95037140e+05
1.67838233e+06 2.07234570e+06 -2.54939137e+06 6.45277187e+05
-9.89333941e+06 -1.46663735e+06 1.09152845e+06 -1.14614854e+06
1.45767697e+06 8.46283911e+04 -7.03890963e+06 -4.28911522e+06]
[-4.25237185e+06 -5.99112537e+06 -6.86394190e+05 -1.02850520e+07
-9.85881428e+03 -1.53638752e+06 -3.83294791e+06 1.48854962e+06
-5.34148217e+06 -2.73904478e+06 -1.70712990e+05 1.38607548e+05
3.11447571e+05 -3.65641653e+06 3.42644794e+05 1.44194072e+06
-2.80756472e+06 -1.18734148e+07 4.63118386e+06 -5.93217929e+05
-1.56828506e+05 5.83465478e+04 -5.62466268e+05 -1.77288619e+06
5.39506046e+05 2.35176565e+06 1.16623964e+05 -4.82809842e+05
-9.46828908e+06 -2.39526630e+06 -3.34777804e+05 -1.09849671e+06
2.36157405e+05 -1.29131637e+06 -5.44306747e+06 -2.28742609e+06]
[-4.92261626e+06 -5.62338556e+06 -1.53672573e+06 -1.00748357e+07
-8.03010483e+05 -2.48246997e+06 -2.82613683e+06 3.57436911e+06
-5.67051544e+06 -2.13131947e+06 -1.59343658e+06 -6.48933133e+05
-3.14895204e+05 -4.64635349e+06 -1.17232980e+05 3.25141004e+06
-4.02408741e+06 -1.15499568e+07 4.33571723e+06 -1.42274388e+06
-6.52796987e+05 -5.59803826e+05 -5.07612792e+05 -2.98931998e+06
2.90971082e+04 2.51888204e+06 -2.78762397e+04 -1.25816409e+06
-8.61258989e+06 -3.00382162e+06 -1.13229735e+06 -1.97043255e+05
-1.91973635e+05 -2.22422606e+06 -4.83095601e+06 -2.06476386e+06]
[-5.37228042e+06 -6.05633767e+06 -1.15294520e+06 -8.94759439e+06
-5.00882581e+05 -2.01081258e+06 -1.69349675e+06 4.57553832e+06
-4.96339936e+06 -1.72077609e+06 -1.60801569e+06 -1.84832945e+05
-5.73208495e+05 -4.59936041e+06 4.59199460e+05 3.41040389e+06
-3.61777353e+06 -1.02431875e+07 3.16941609e+06 -9.56382074e+05
-6.16785223e+04 -4.95471200e+05 -1.09920667e+06 -2.66302230e+06
6.12109486e+05 3.44329318e+06 -5.63093908e+05 -7.61444157e+05
-6.75784165e+06 -2.69487373e+06 -7.25757426e+05 -5.21966182e+05
3.42665519e+05 -1.80320886e+06 -4.67287671e+06 -2.54422369e+06]
[-3.64994535e+06 -4.94858171e+06 -1.69537958e+05 -5.67044035e+06
3.11298996e+05 -8.56639825e+05 -6.39950954e+05 2.79484255e+06
-3.08638304e+06 -1.55545268e+06 -7.65691384e+05 3.31795067e+05
-3.88610636e+05 -3.20564091e+06 8.81774019e+05 2.70472719e+06
-2.03062046e+06 -6.29537742e+06 1.55851540e+06 -1.64889596e+04
5.92210769e+05 -3.85497356e+04 -1.11609276e+06 -1.35978560e+06
9.54480823e+05 2.90526971e+06 -6.80684483e+05 -2.30105436e+04
-4.47431167e+06 -1.49345790e+06 1.07918361e+05 -6.01850819e+05
7.48564062e+05 -7.67641171e+05 -3.25146763e+06 -1.94946850e+06]
[-1.25522664e+06 -1.83999042e+06 6.43556652e+04 -1.92988483e+06
2.56281624e+05 -2.24545449e+05 2.21822138e+05 1.36025103e+06
-1.03828998e+06 -4.65815234e+05 -1.96202177e+05 2.35884316e+05
-2.51315817e+05 -1.19962272e+06 4.46392901e+05 1.41193505e+06
-7.04345827e+05 -2.13406400e+06 5.68599689e+05 1.33347553e+05
3.60087508e+05 7.82918666e+04 -4.37583373e+05 -4.25054025e+05
4.72748671e+05 1.23850345e+06 -3.61705686e+05 9.90481858e+04
-1.08986133e+06 -2.81592091e+05 1.88886477e+05 9.50589936e+03
3.83358450e+05 -1.71831767e+05 -1.31586529e+06 -8.09904877e+05]
[ 1.30506030e+05 1.26358636e+05 2.05517286e+05 -2.36789215e+03
2.04195123e+05 1.89508614e+05 1.86006274e+05 4.26949335e+05
9.35219907e+04 3.41220705e+05 2.31914152e+05 2.69877962e+05
6.29737590e+04 7.81315068e+03 2.66488119e+05 5.46797025e+05
1.52296320e+05 -8.60641355e+04 2.46971954e+05 2.04304214e+05
2.37863317e+05 2.43625353e+05 1.15324606e+05 1.69183124e+05
2.63924239e+05 3.36838740e+05 1.12327994e+05 2.27392401e+05
4.75989481e+04 1.72070071e+05 2.29874947e+05 3.33038033e+05
2.54598672e+05 2.12424224e+05 -8.27713432e+04 4.57779581e+04]
[ 1.37201228e+05 1.34185871e+05 1.45918780e+05 1.43307019e+05
1.37329448e+05 1.52232037e+05 1.47874634e+05 1.53150451e+05
1.39542294e+05 1.49106154e+05 1.51542079e+05 1.57375021e+05
1.31015774e+05 1.25910270e+05 1.51611757e+05 1.56808140e+05
1.51335063e+05 1.43712088e+05 1.38978847e+05 1.46453116e+05
1.49074013e+05 1.53639198e+05 1.50547995e+05 1.50457869e+05
1.56590418e+05 1.40452625e+05 1.48358940e+05 1.58948665e+05
1.51390034e+05 1.40016651e+05 1.47148448e+05 1.45666378e+05
1.53651521e+05 1.55226541e+05 1.46292181e+05 1.45341839e+05]
[-1.13527887e+03 -2.21122289e+03 -9.02018707e+02 -1.43717975e+03
-5.94627422e+02 -1.23429023e+03 -1.63379736e+03 -2.49912237e+03
-1.12988022e+03 -1.51347112e+03 -1.30151738e+03 -1.25860591e+03
7.94780403e+01 -1.22511388e+03 -1.20180661e+03 -1.13305486e+03
-1.41522576e+03 -1.25331238e+03 -2.32366198e+03 -8.90764705e+02
-1.08928513e+03 -1.46208658e+03 -1.54728750e+03 -1.23613979e+03
-1.26491594e+03 -1.23491852e+03 -8.57566939e+02 -1.21057194e+03
-1.03669810e+03 -1.30073485e+03 -8.73240402e+02 -1.22566448e+03
-1.34128852e+03 -1.42641304e+03 -6.90369373e+02 -1.86774079e+03]
[-2.66125775e+03 -1.12850573e+04 1.52390248e+03 -1.10256457e+04
2.69697063e+03 -2.85566629e+03 -1.41321499e+04 -1.80889187e+04
-5.87167371e+03 2.43473719e+02 -2.88896911e+03 -4.05852829e+03
8.38415164e+03 1.48990779e+03 -2.06930002e+03 8.56254094e+03
-1.56719212e+03 -1.36872850e+04 5.30148925e+03 -6.08641193e+01
-2.36702083e+03 -5.64324571e+03 3.72524948e+03 -7.32489889e+02
-5.57534981e+03 -2.05522868e+03 1.02810417e+04 -3.74800892e+03
-5.29556235e+03 -3.59059915e+03 8.77671229e+02 1.03685067e+04
-4.82211690e+03 -3.50043224e+03 9.08708967e+03 5.25763826e+03]
[ 5.73102859e+03 -9.73448496e+04 5.53178246e+04 3.46587539e+04
7.07053779e+04 2.75822037e+04 1.29541600e+05 -1.96762272e+05
5.52018638e+03 -1.55616767e+05 2.54174503e+04 3.72397274e+04
-4.67765258e+04 -4.30136047e+04 3.75861564e+04 -2.01680212e+04
3.74826101e+04 8.07664726e+04 -2.51572867e+03 5.03239446e+04
4.36070836e+04 1.22453197e+05 -1.24091448e+05 5.52512014e+04
3.23173619e+04 1.97665693e+04 -1.18779181e+05 2.57424548e+04
6.47186910e+02 7.36643607e+04 4.83917548e+04 -4.93297435e+04
3.31504610e+04 4.93931559e+04 -7.18189748e+04 -1.18050529e+05]
[-3.90907849e+05 -1.35866255e+06 2.98217148e+05 -5.64168728e+05
3.83379493e+05 8.56182495e+04 6.26702314e+04 -2.03774136e+06
-3.91704134e+05 -1.53211140e+06 1.70747857e+05 3.96964040e+04
-2.26006700e+05 -2.82286348e+05 7.56854518e+04 -9.10459181e+05
1.10324626e+05 -2.81753894e+05 -8.15208707e+05 2.77300722e+05
1.68533860e+05 6.18428750e+04 -8.41796877e+05 1.75184940e+05
5.55269356e+04 -2.61676471e+05 -7.88145035e+05 3.16757986e+04
-8.73462207e+05 -2.61794477e+05 2.21105330e+05 -8.39174026e+05
6.45627149e+04 1.35210505e+05 -2.89685896e+05 -5.42598069e+05]
[-5.51305867e+05 -1.71360629e+06 3.12127895e+05 -7.27353214e+05
4.57668528e+05 -3.19500189e+04 -3.42868947e+04 -3.54883917e+06
-6.99796760e+05 -2.68597024e+06 2.02154908e+05 -8.32996729e+04
-4.97769222e+05 -4.95947431e+05 -1.13064668e+05 -1.87000334e+06
4.49294534e+04 -9.30572471e+04 -1.56027606e+06 2.65722847e+05
1.23446350e+05 1.06064848e+05 -1.21410351e+06 1.78864102e+05
-8.43909301e+04 -1.02292631e+06 -1.32018447e+06 -1.38434191e+05
-2.02091623e+06 -5.42545219e+05 1.58521775e+05 -1.71815752e+06
-8.53960990e+04 7.39083456e+04 -4.11613315e+05 -8.26730023e+05]
[-4.65974199e+05 -1.39352753e+06 5.48691359e+05 -7.90718265e+05
7.02507841e+05 1.68567570e+05 1.64385389e+05 -4.95959013e+06
-8.79690058e+05 -3.11298794e+06 7.14598522e+05 2.60835576e+05
-1.11886164e+06 -8.30696955e+05 3.79696101e+04 -2.66535906e+06
3.71536294e+05 3.96739383e+04 -1.80391584e+06 4.84679278e+05
3.25307413e+05 5.05335021e+05 -1.74472339e+06 5.72240846e+05
8.98926824e+04 -1.59525046e+06 -2.21302868e+06 3.76148944e+04
-2.99255419e+06 -7.34178460e+05 3.59881001e+05 -2.35789581e+06
7.84591043e+04 4.59570720e+05 -1.21436505e+06 -1.46544271e+06]
[-7.19602780e+05 -2.12529556e+06 1.09819888e+06 -1.29798102e+06
1.39432601e+06 3.75033794e+05 2.58496848e+05 -8.02642627e+06
-1.55883760e+06 -4.87084192e+06 1.18270052e+06 4.03083887e+05
-1.30698181e+06 -1.03545963e+06 2.14724006e+05 -3.95466047e+06
6.80027280e+05 -2.33061722e+05 -2.42050677e+06 9.90956259e+05
6.96203816e+05 5.68435079e+05 -2.42662492e+06 1.04863723e+06
1.49334777e+05 -2.31317579e+06 -2.97659684e+06 1.26866818e+05
-5.08819576e+06 -1.18657276e+06 7.74081131e+05 -3.46010935e+06
2.27031815e+05 7.86819954e+05 -1.30169956e+06 -1.73045717e+06]
[-1.37260605e+06 -3.50012474e+06 1.54564651e+06 -2.45460193e+06
1.95292331e+06 5.50209631e+05 9.38573998e+05 -1.15546993e+07
-2.55023542e+06 -6.80773219e+06 1.85191405e+06 7.10631557e+05
-2.19369649e+06 -1.91098827e+06 5.75105203e+05 -4.83035310e+06
9.05059074e+05 -1.02854220e+06 -3.13522674e+06 1.47626395e+06
1.18211964e+06 1.25332225e+06 -4.08648568e+06 1.41695543e+06
4.94433572e+05 -2.23317772e+06 -4.82497416e+06 3.15468315e+05
-7.60990640e+06 -1.48983649e+06 1.10885722e+06 -4.22470190e+06
5.88175819e+05 1.18074090e+06 -2.81775231e+06 -3.16359428e+06]
[-7.01357355e+05 -2.67483223e+06 1.73100834e+06 -2.76362844e+06
2.02625527e+06 1.00539536e+06 2.11608509e+06 -1.32657341e+07
-2.39994095e+06 -6.86678822e+06 2.82964425e+06 1.26544369e+06
-3.98405617e+06 -2.87015166e+06 1.11739402e+06 -4.58089864e+06
1.54062949e+06 -1.66451103e+06 -2.37098002e+06 1.71468116e+06
1.55716524e+06 2.86216968e+06 -5.33618781e+06 2.02605132e+06
9.80657626e+05 -1.57728632e+06 -6.78170871e+06 8.11604783e+05
-8.92352239e+06 -9.96818680e+05 1.34882471e+06 -3.49641049e+06
1.13849659e+06 1.91951734e+06 -5.21240108e+06 -4.45791093e+06]
[-9.97344908e+05 -3.67605908e+06 1.55058953e+06 -4.55211523e+06
2.03772204e+06 6.68354742e+05 2.72451991e+06 -1.37713914e+07
-3.18078273e+06 -7.73749924e+06 2.61519833e+06 1.20946902e+06
-4.56891621e+06 -3.70347354e+06 1.07793504e+06 -3.86320824e+06
1.01403664e+06 -3.45365165e+06 -7.51430903e+05 1.58877833e+06
1.53463163e+06 3.80718180e+06 -5.70190132e+06 1.65863442e+06
1.05357099e+06 -4.31175326e+05 -7.26261503e+06 5.83207906e+05
-9.68087322e+06 -8.78190599e+05 1.26186219e+06 -2.50466008e+06
1.23778616e+06 1.63134371e+06 -6.65084814e+06 -5.04479605e+06]
[-8.08100106e+05 -4.16195763e+06 1.37949709e+06 -5.80961650e+06
2.11976454e+06 2.99659364e+05 4.51285618e+06 -1.37920715e+07
-3.06091998e+06 -1.02002264e+07 2.31162973e+06 9.73844835e+05
-4.91995968e+06 -4.55368608e+06 5.76633247e+05 -5.12952359e+06
8.62055684e+05 -3.70132964e+06 5.55077041e+05 1.44823416e+06
1.43146858e+06 4.67816141e+06 -5.21947330e+06 1.63990461e+06
9.07617043e+05 -8.00108386e+05 -7.30759730e+06 3.66041687e+05
-1.01636424e+07 7.54096406e+05 1.05112674e+06 -2.39482820e+06
8.96502283e+05 1.43893216e+06 -6.73857471e+06 -4.88551237e+06]
[-1.21026023e+06 -6.12153866e+06 5.53128231e+05 -6.79402901e+06
1.51524041e+06 -6.37694695e+05 7.20107866e+06 -1.43310277e+07
-2.82291959e+06 -1.30788217e+07 1.10589314e+06 -1.68146050e+04
-5.62944040e+06 -5.21422995e+06 -7.85162902e+05 -7.43987233e+06
-2.25468359e+05 -3.98866876e+06 1.12983927e+06 9.22550647e+05
8.01343182e+05 4.32548161e+06 -5.78055837e+06 7.83851451e+05
-2.24736279e+04 -1.41842668e+06 -8.26489151e+06 -6.05233062e+05
-1.07042990e+07 2.26740043e+06 3.26408288e+05 -2.76000122e+06
-1.47610159e+05 5.30774632e+05 -6.36418835e+06 -5.58642910e+06]
[-3.22524633e+06 -1.00377797e+07 -7.82690686e+05 -6.53064999e+06
4.91098560e+05 -2.14166733e+06 8.25406239e+06 -1.48076277e+07
-3.29503807e+06 -1.75895532e+07 -1.68138631e+06 -2.28634170e+06
-5.77766542e+06 -5.65835228e+06 -3.06778389e+06 -1.07887947e+07
-2.36951607e+06 -2.50017838e+06 -1.74594409e+06 -5.11650657e+04
-6.14575718e+05 8.36179234e+05 -6.90933630e+06 -1.20794409e+06
-1.86345755e+06 -3.76833235e+06 -9.14073516e+06 -2.45075125e+06
-9.19934052e+06 2.48911707e+06 -9.36263795e+05 -5.27451794e+06
-2.01660485e+06 -1.75378275e+06 -5.39058636e+06 -6.78837630e+06]
[-4.65714715e+06 -1.28622444e+07 -3.02432643e+06 -3.74296127e+06
-1.58354783e+06 -4.39195326e+06 9.32288720e+06 -1.41566657e+07
-2.88521596e+06 -2.04387372e+07 -5.15941873e+06 -5.00296680e+06
-7.92171153e+06 -7.05665254e+06 -5.76320225e+06 -1.13806313e+07
-5.01880147e+06 2.49355876e+06 -5.55878242e+06 -1.96950325e+06
-2.75625467e+06 -1.91817284e+06 -8.16705361e+06 -3.68651343e+06
-4.32428341e+06 -6.20761790e+06 -1.09656894e+07 -4.99258197e+06
-6.44421559e+06 3.43664856e+06 -3.11286318e+06 -6.56815425e+06
-4.55461793e+06 -4.50153876e+06 -5.17412372e+06 -8.48493673e+06]
[-6.90786007e+06 -1.89129662e+07 -3.49037068e+06 -4.00103543e+06
-1.84310880e+06 -5.26349454e+06 1.02038306e+07 -1.48161117e+07
-2.78379981e+06 -2.38006377e+07 -6.22604678e+06 -5.59494349e+06
-8.74057654e+06 -7.92384917e+06 -6.58886330e+06 -1.19463352e+07
-5.95980018e+06 4.44560567e+06 -7.95634159e+06 -2.22307547e+06
-3.09314267e+06 -3.23536955e+06 -9.71985141e+06 -4.34828660e+06
-5.01767785e+06 -6.62261996e+06 -1.26003929e+07 -5.84971655e+06
-4.29994286e+06 5.04383780e+06 -3.54644597e+06 -7.50584358e+06
-5.47568702e+06 -5.23326196e+06 -5.24868324e+06 -1.02493472e+07]
[-7.23019349e+06 -2.06295888e+07 -4.63132829e+06 -3.58911093e+06
-2.92560908e+06 -6.17538672e+06 1.12078879e+07 -1.52189187e+07
-2.72904644e+06 -2.50640221e+07 -6.95014566e+06 -6.12968963e+06
-1.19636012e+07 -1.07043638e+07 -7.37963973e+06 -1.14881608e+07
-6.83815292e+06 6.20665633e+06 -9.27723057e+06 -3.17810857e+06
-3.86528244e+06 -3.30654171e+06 -1.18744243e+07 -5.21175512e+06
-5.59243837e+06 -7.09658097e+06 -1.60751064e+07 -6.66718796e+06
-3.79669964e+06 5.86987984e+06 -4.55464959e+06 -7.78312899e+06
-6.16729546e+06 -5.74084415e+06 -7.92113452e+06 -1.27859335e+07]
[-7.15342988e+06 -1.71676794e+07 -6.84774390e+06 -4.72143880e+06
-5.50947374e+06 -7.63075883e+06 6.62126100e+06 -1.39041194e+07
-4.13974741e+06 -2.21781791e+07 -8.40341000e+06 -7.98539176e+06
-1.34159782e+07 -1.18943057e+07 -8.77007747e+06 -1.11713624e+07
-8.24129742e+06 3.33773521e+06 -9.56984390e+06 -5.68113904e+06
-6.14889030e+06 -5.48710555e+06 -1.15983208e+07 -7.09142978e+06
-7.45669497e+06 -8.68596161e+06 -1.60289284e+07 -8.09802271e+06
-4.39869057e+06 2.73185903e+06 -6.65928856e+06 -7.29805845e+06
-7.75639394e+06 -7.39858089e+06 -9.72096618e+06 -1.27818355e+07]
[-8.13026603e+06 -1.62312045e+07 -6.83364072e+06 -1.03339698e+07
-5.31943067e+06 -8.22671237e+06 2.53618957e+05 -1.54384914e+07
-8.02168047e+06 -2.27529100e+07 -8.29309410e+06 -8.57046682e+06
-1.17458129e+07 -1.22017304e+07 -8.78604446e+06 -1.25629095e+07
-9.13536150e+06 -4.69434795e+06 -8.59776390e+06 -6.32844223e+06
-6.80759019e+06 -7.66625464e+06 -1.02946325e+07 -7.83336135e+06
-7.94968584e+06 -1.08134893e+07 -1.36983601e+07 -8.61816027e+06
-9.46142747e+06 -2.77036000e+06 -6.83227329e+06 -8.71196441e+06
-8.00211383e+06 -8.21218770e+06 -1.03657545e+07 -1.10503714e+07]
[-9.00711047e+06 -1.50113156e+07 -7.03336890e+06 -1.46757118e+07
-5.51310612e+06 -8.47816137e+06 -3.76841235e+06 -1.27148604e+07
-1.03996054e+07 -1.93870024e+07 -7.77047470e+06 -7.81062220e+06
-9.70692013e+06 -1.15030577e+07 -8.01380694e+06 -1.06580972e+07
-9.83316603e+06 -1.17838467e+07 -4.25240645e+06 -6.89924821e+06
-7.00554007e+06 -8.06408182e+06 -8.51305693e+06 -8.36525389e+06
-7.45290131e+06 -9.31193723e+06 -1.11329049e+07 -8.44435599e+06
-1.10349789e+07 -6.11278562e+06 -7.00963354e+06 -7.32909241e+06
-7.42968679e+06 -8.39689531e+06 -1.08490856e+07 -9.62212990e+06]
[-9.02444537e+06 -1.53632507e+07 -5.67743822e+06 -1.74812406e+07
-4.18782656e+06 -7.03283593e+06 -5.89758191e+06 -1.15416443e+07
-1.12313625e+07 -1.46567112e+07 -5.77675366e+06 -6.02246785e+06
-6.93794688e+06 -9.28383284e+06 -5.80354498e+06 -6.54739482e+06
-8.69869340e+06 -1.75142291e+07 -6.54016608e+04 -5.68279840e+06
-5.70841063e+06 -6.45791028e+06 -7.35566638e+06 -7.33893496e+06
-5.64327474e+06 -5.67366257e+06 -8.72520461e+06 -6.73461540e+06
-1.29810944e+07 -7.63844995e+06 -5.53792831e+06 -5.03796653e+06
-5.43662187e+06 -7.10311802e+06 -1.08263192e+07 -8.38558418e+06]
[-9.75791140e+06 -1.49901837e+07 -3.16960636e+06 -1.83839772e+07
-1.77376835e+06 -4.81477208e+06 -6.93255333e+06 -8.22830406e+06
-1.16385298e+07 -1.25183246e+07 -3.58650018e+06 -3.68707193e+06
-3.14031454e+06 -7.37076404e+06 -3.22650416e+06 -5.32553981e+06
-6.80266335e+06 -1.93679351e+07 5.46408362e+05 -3.06622004e+06
-3.10961572e+06 -4.68642187e+06 -5.24722057e+06 -5.49062292e+06
-2.93955364e+06 -2.38918491e+06 -5.17815993e+06 -4.26857227e+06
-1.53098004e+07 -7.26648399e+06 -3.06938246e+06 -6.45666969e+06
-3.03293011e+06 -5.14465181e+06 -8.46404460e+06 -5.57650921e+06]
[-7.01521141e+06 -1.06408019e+07 -1.83039232e+06 -1.49691108e+07
-5.95268547e+05 -3.34558326e+06 -4.27796308e+06 -2.20297574e+06
-8.51265263e+06 -7.83903850e+06 -1.83420123e+06 -1.53646614e+06
-8.80112005e+05 -5.99266261e+06 -1.25929846e+06 -1.33861252e+04
-5.07543247e+06 -1.57789118e+07 4.82660155e+06 -1.81216001e+06
-1.42947727e+06 -1.14221469e+06 -2.19969534e+06 -3.75694008e+06
-9.26750545e+05 1.40579100e+06 -1.52562865e+06 -2.31593937e+06
-1.16196021e+07 -3.23911504e+06 -1.64285663e+06 -2.25862206e+06
-1.19544075e+06 -3.14960795e+06 -6.74844292e+06 -3.32385133e+06]
[-5.32948454e+06 -7.59711947e+06 -1.22506442e+06 -1.25731083e+07
-1.99540216e+05 -2.40994692e+06 -2.29269435e+06 1.90324608e+06
-6.50586377e+06 -3.21054312e+06 -1.05538510e+06 -1.83250702e+05
-1.23268696e+06 -6.02003499e+06 2.81853317e+05 4.43059577e+06
-4.23570262e+06 -1.41177887e+07 6.44245446e+06 -1.19267504e+06
-3.32572195e+05 6.63468743e+05 -1.38884481e+06 -2.96581371e+06
4.54305203e+05 3.79675594e+06 -1.18414551e+06 -1.00963596e+06
-1.00171060e+07 -2.16585660e+06 -8.06324188e+05 1.22755816e+06
2.71657071e+05 -1.98696870e+06 -6.87358339e+06 -3.18082729e+06]
[-4.45285056e+06 -6.91841300e+06 -4.22327803e+05 -1.00282986e+07
4.57234865e+05 -1.61532001e+06 -6.44890487e+05 3.85838700e+06
-4.89615529e+06 -1.55778242e+06 -6.07913903e+05 8.76423826e+05
-1.65593711e+06 -5.93223802e+06 1.34506254e+06 5.78093287e+06
-3.40388437e+06 -1.13392176e+07 5.55306652e+06 -4.33132292e+05
5.41695742e+05 1.35874560e+06 -1.57400807e+06 -2.24148690e+06
1.50618824e+06 4.80414879e+06 -1.85846266e+06 -5.24038464e+04
-7.92290972e+06 -1.32787910e+06 4.37765551e+04 2.01460630e+06
1.21728601e+06 -9.60425135e+05 -6.62599384e+06 -3.59206816e+06]
[-3.45819636e+06 -5.88618057e+06 1.05158221e+05 -7.10964386e+06
7.33261521e+05 -8.93840001e+05 -6.05500506e+05 2.36346989e+06
-3.62952118e+06 -1.35304598e+06 -3.95303857e+05 7.87990057e+05
-9.38008542e+05 -4.11279197e+06 1.32074554e+06 4.35025999e+06
-2.27044980e+06 -8.16746719e+06 2.85460364e+06 9.57089658e+04
7.17869327e+05 6.89729363e+05 -1.54507298e+06 -1.46062502e+06
1.34353376e+06 3.81254092e+06 -1.37251809e+06 2.02311528e+05
-5.98887046e+06 -1.31810307e+06 4.35696511e+05 6.41970549e+05
1.14093334e+06 -4.89704920e+05 -4.47617328e+06 -2.61625077e+06]
[-1.29601566e+06 -2.82954619e+06 4.37994402e+05 -2.89295845e+06
6.86706127e+05 1.42388792e+04 -1.49203958e+05 1.04302565e+06
-1.25465923e+06 -6.51226583e+05 1.79622576e+05 6.36657412e+05
-2.11536968e+05 -1.59658480e+06 8.98004136e+05 1.93161513e+06
-6.06180248e+05 -3.33561273e+06 9.35699383e+05 4.32552028e+05
6.70243868e+05 4.16334687e+05 -6.87901814e+05 -2.97998142e+05
9.13683655e+05 2.03889038e+06 -5.14786752e+05 4.47374974e+05
-2.18862266e+06 -2.34913655e+05 5.72234550e+05 2.29014155e+05
7.95639648e+05 1.09794259e+05 -1.83316107e+06 -1.04620959e+06]
[-7.33274271e+03 -4.00778024e+05 3.39809771e+05 -3.05402749e+05
3.78718155e+05 2.54077851e+05 1.54637302e+05 2.82435860e+05
5.82906586e+03 -2.89972305e+04 2.60391913e+05 3.60067956e+05
2.47962642e+05 -3.33658268e+04 3.80192217e+05 5.34119462e+05
1.40655255e+05 -3.73830520e+05 3.94988870e+05 3.34656025e+05
3.61334775e+05 3.55959183e+05 1.15472364e+05 1.94306532e+05
4.00268063e+05 5.77006784e+05 1.93669932e+05 3.31259549e+05
-2.24066176e+05 2.01066072e+05 3.48917582e+05 2.62827614e+05
3.87669259e+05 2.77770490e+05 -2.58057246e+04 6.67352696e+04]
[ 1.11815769e+05 1.11490581e+05 1.19188031e+05 1.14340235e+05
1.12841020e+05 1.23585436e+05 1.44303619e+05 1.21194298e+05
1.14079969e+05 1.19158517e+05 1.26006843e+05 1.33981563e+05
9.10146855e+04 9.24247640e+04 1.27855849e+05 1.37492647e+05
1.23037655e+05 1.18184444e+05 1.15265549e+05 1.20268200e+05
1.23810897e+05 1.33894529e+05 1.02232936e+05 1.23342707e+05
1.32698757e+05 1.17449799e+05 9.65595523e+04 1.31810821e+05
1.29811416e+05 1.21573258e+05 1.21766360e+05 1.23479301e+05
1.29060929e+05 1.29913176e+05 9.23612075e+04 9.30750216e+04]
[-4.61458498e+03 -8.98788732e+03 -3.66469486e+03 -5.84271134e+03
-2.41475475e+03 -5.01671229e+03 -6.63559802e+03 -1.01529660e+04
-4.59099068e+03 -6.15466708e+03 -5.28717432e+03 -5.11381383e+03
3.26433661e+02 -4.97931237e+03 -4.88542576e+03 -4.60866036e+03
-5.75145675e+03 -5.09105910e+03 -9.43824422e+03 -3.62391556e+03
-4.42869609e+03 -5.94513308e+03 -6.29189758e+03 -5.02364165e+03
-5.14143161e+03 -5.02139323e+03 -3.48445789e+03 -4.91659994e+03
-4.21181119e+03 -5.28698671e+03 -3.54750969e+03 -4.98493811e+03
-5.45208659e+03 -5.79935548e+03 -2.80838273e+03 -7.59278798e+03]
[-2.79318068e+03 -1.46168400e+04 -1.19282817e+04 -7.21218134e+04
-1.24761195e+04 -1.56505720e+04 -9.64539230e+04 -8.37271781e+04
-3.76872099e+04 1.24159433e+04 -2.26173352e+04 -4.33280535e+04
5.90891622e+04 5.71925199e+04 -2.85248802e+04 1.38191926e+04
-9.55892534e+03 -1.09741505e+05 2.85721666e+04 -2.03707672e+04
-3.53252106e+04 -3.56120140e+04 4.70752333e+04 -1.93278203e+04
-4.48141619e+04 -1.65590730e+04 7.95305109e+04 -2.88578466e+04
-4.08859525e+04 -6.32301594e+04 -1.68925694e+04 4.77538488e+04
-3.17687417e+04 -2.71080609e+04 9.74500729e+04 8.74823661e+04]
[-3.89130086e+04 -9.00273557e+04 -3.19460334e+04 -1.30550584e+05
-2.14112521e+04 -7.02845234e+04 -1.68006234e+05 -2.59929823e+05
-1.11415345e+05 -1.15111030e+05 -1.00271889e+05 -1.22026274e+05
1.45478953e+05 1.25163174e+05 -8.73232506e+04 -2.12935908e+04
-5.43694750e+04 -1.66646277e+05 8.42171242e+04 -6.12483685e+04
-9.41547326e+04 -9.20049448e+04 1.01110545e+05 -6.25347191e+04
-1.20417617e+05 -8.54899237e+04 1.88716519e+05 -9.99336079e+04
-6.98025055e+04 -1.27946361e+05 -5.47495099e+04 3.52166245e+04
-9.39208223e+04 -9.06195795e+04 3.00288794e+05 2.23895879e+05]
[-4.98689742e+05 -1.60572723e+06 2.26319158e+05 -8.49652712e+05
3.31460616e+05 -3.96733206e+04 -5.20411003e+05 -2.63068247e+06
-5.92563890e+05 -1.69202985e+06 6.65774284e+04 -2.05473666e+05
1.49474444e+05 7.00494469e+04 -1.34583602e+05 -1.00364522e+06
2.57351885e+04 -6.30752923e+05 -9.21721701e+05 1.83356544e+05
5.17456323e+03 -1.61839622e+05 -5.60773334e+05 6.38047394e+04
-1.91831526e+05 -5.04595570e+05 -3.38294628e+05 -1.56959819e+05
-1.30927047e+06 -5.43211473e+05 9.13576246e+04 -8.96289955e+05
-1.36336279e+05 -4.40724208e+04 3.50274138e+05 -5.29988364e+04]
[-1.13922884e+06 -2.41668531e+06 -4.94513559e+04 -1.97456294e+06
1.40847663e+05 -5.47928819e+05 -1.43645651e+06 -5.55409678e+06
-1.64404073e+06 -3.45280126e+06 -2.35936161e+05 -9.42741825e+05
8.41915909e+04 -6.97047062e+04 -7.79020486e+05 -2.47232769e+06
-4.33178411e+05 -1.58957075e+06 -2.06259649e+06 -1.52698245e+05
-4.87201150e+05 -5.27669454e+05 -9.60843725e+05 -3.43475836e+05
-9.04337070e+05 -1.68467582e+06 -6.38307860e+05 -8.20886617e+05
-3.77375172e+06 -1.64426743e+06 -3.29520520e+05 -2.22274853e+06
-7.71389477e+05 -5.61773621e+05 8.23370649e+05 1.32478641e+05]
[-9.67776095e+05 -2.17018403e+06 -2.33893377e+04 -1.93258253e+06
1.98390334e+05 -6.03609617e+05 -1.63833761e+06 -7.34792050e+06
-1.88437890e+06 -4.15460115e+06 -2.98464443e+05 -1.10415246e+06
-2.20838487e+05 -2.39634424e+05 -8.95021095e+05 -2.97292210e+06
-4.15070332e+05 -1.47770466e+06 -2.01941543e+06 -2.59642428e+05
-6.87412992e+05 -5.32174061e+05 -1.03337111e+06 -3.09523004e+05
-1.14045678e+06 -2.52241548e+06 -9.18760399e+05 -9.44901470e+05
-4.94822859e+06 -2.25371260e+06 -3.66221322e+05 -2.51921340e+06
-8.69216380e+05 -5.35698406e+05 1.18403774e+06 3.52507874e+05]
[-1.13785546e+06 -1.39444872e+06 -5.23833595e+05 -2.65150674e+06
-2.79915751e+05 -1.16819977e+06 -2.44017093e+06 -8.90573005e+06
-2.76808748e+06 -3.82534503e+06 -5.71285236e+05 -1.78762009e+06
-4.54934246e+05 -3.44791098e+05 -1.47027008e+06 -3.01413772e+06
-8.46974101e+05 -2.67019356e+06 -1.54386137e+06 -8.52593917e+05
-1.35490619e+06 -6.97149969e+05 -5.70954440e+05 -7.86996850e+05
-1.90774516e+06 -2.72912090e+06 -6.12746170e+05 -1.61429764e+06
-6.62242071e+06 -3.21151642e+06 -9.72900045e+05 -2.46106117e+06
-1.51742169e+06 -1.02957237e+06 2.04621212e+06 1.47806465e+06]
[-2.27932448e+06 -5.51968648e+05 -1.65590270e+06 -5.47749006e+06
-1.51267867e+06 -2.18812010e+06 -4.27514253e+06 -9.99510338e+06
-4.77970984e+06 -3.26910321e+06 -1.24362497e+06 -3.02221733e+06
-5.94476968e+05 -2.12636548e+05 -2.41434007e+06 -3.24534440e+06
-1.76449030e+06 -6.74316019e+06 -1.28969159e+06 -2.10260622e+06
-2.61764942e+06 -1.83610648e+06 -5.38280019e+04 -1.85563010e+06
-3.14290872e+06 -3.16630434e+06 -5.30029576e+04 -2.69948914e+06
-8.69531040e+06 -5.43485144e+06 -2.19406633e+06 -2.35247339e+06
-2.58854117e+06 -2.13950989e+06 2.23891656e+06 2.44579895e+06]
[-3.01961658e+06 1.12733667e+06 -3.44033894e+06 -7.17099629e+06
-3.37538287e+06 -3.68506471e+06 -5.19046338e+06 -9.39278323e+06
-6.05084483e+06 -3.04154400e+06 -2.77363754e+06 -4.83726484e+06
-1.46569564e+06 -7.39577795e+05 -4.01263206e+06 -4.00957384e+06
-3.13683226e+06 -9.47784175e+06 -6.99703983e+05 -3.92122209e+06
-4.43288253e+06 -2.57535220e+06 1.54776142e+05 -3.42729181e+06
-4.83936066e+06 -4.17887068e+06 1.27269173e+05 -4.23269940e+06
-8.40014430e+06 -6.52082030e+06 -3.89880732e+06 -2.29786232e+06
-4.23656441e+06 -3.82696899e+06 1.53395054e+06 2.57543096e+06]
[-4.29386502e+06 -3.13126071e+05 -5.47006092e+06 -1.04838894e+07
-5.00554815e+06 -6.00294867e+06 -5.28006343e+06 -1.00601859e+07
-7.94595752e+06 -6.22285596e+06 -5.33983635e+06 -7.12458859e+06
-2.66055862e+06 -2.72504283e+06 -6.33258535e+06 -5.74618651e+06
-5.75936145e+06 -1.25697754e+07 7.76143043e+05 -6.00077647e+06
-6.53919332e+06 -3.05204663e+06 -1.26210238e+05 -5.82712390e+06
-6.86370994e+06 -4.99464031e+06 -4.80943301e+05 -6.51314999e+06
-1.05895703e+07 -7.11953408e+06 -5.90193611e+06 -2.37757804e+06
-6.28596873e+06 -6.23353684e+06 1.49549147e+05 1.77227178e+06]
[-3.30491177e+06 -2.03665905e+06 -7.48444366e+06 -1.02263629e+07
-6.88431537e+06 -7.86322130e+06 -3.24112785e+06 -1.03441664e+07
-6.88325653e+06 -8.29788838e+06 -7.57956276e+06 -8.94012099e+06
-4.65298677e+06 -4.60011766e+06 -8.71017316e+06 -6.59417011e+06
-7.37798715e+06 -1.08500385e+07 2.41114658e+06 -7.87669559e+06
-8.49803880e+06 -3.32614294e+06 -3.73309638e+05 -7.51424797e+06
-8.75372273e+06 -6.01395168e+06 -1.85336899e+06 -8.35394221e+06
-1.10616433e+07 -4.83946641e+06 -7.82092498e+06 -9.56748127e+05
-8.27711446e+06 -7.74332138e+06 1.34484081e+05 1.17533422e+06]
[-6.95148087e+06 -7.52500707e+06 -1.12937114e+07 -1.21220397e+07
-1.03243130e+07 -1.17122158e+07 -3.27887111e+06 -8.06731367e+06
-8.82368883e+06 -1.40040321e+07 -1.26871022e+07 -1.29303722e+07
-5.97359701e+06 -7.09875152e+06 -1.29190674e+07 -1.06238182e+07
-1.20522879e+07 -1.08521156e+07 -1.59961679e+05 -1.12282315e+07
-1.18509717e+07 -8.42169032e+06 -7.03850547e+05 -1.18786037e+07
-1.22270804e+07 -8.83431038e+06 -2.61978568e+06 -1.21703002e+07
-9.05278480e+06 -5.45900725e+06 -1.13530548e+07 -3.81721890e+06
-1.19587435e+07 -1.21170474e+07 1.02373193e+06 5.12499252e+05]
[-9.27719878e+06 -1.22827950e+07 -1.23566644e+07 -1.11788948e+07
-1.12605477e+07 -1.29402207e+07 -3.01453673e+06 -9.04292482e+06
-9.54924324e+06 -1.70443227e+07 -1.49308410e+07 -1.48177014e+07
-6.25868713e+06 -7.05674545e+06 -1.45324879e+07 -1.06438882e+07
-1.38651639e+07 -9.07068481e+06 -3.97045756e+06 -1.19962695e+07
-1.30228238e+07 -1.12942314e+07 -1.93686021e+06 -1.36307207e+07
-1.39220924e+07 -9.74313338e+06 -3.35124605e+06 -1.37397483e+07
-7.10483386e+06 -5.22442393e+06 -1.23872733e+07 -4.97918968e+06
-1.33863104e+07 -1.38443647e+07 2.59731905e+06 9.21740690e+04]
[-9.24254189e+06 -1.51951367e+07 -1.11227438e+07 -8.04882737e+06
-9.95787341e+06 -1.18081014e+07 -7.09464252e+05 -1.09606633e+07
-8.17942947e+06 -1.69620220e+07 -1.46534364e+07 -1.41630290e+07
-6.92172045e+06 -6.38372324e+06 -1.32991338e+07 -6.59369992e+06
-1.28791024e+07 -4.92386626e+06 -6.43768459e+06 -1.07444510e+07
-1.18811150e+07 -1.13775559e+07 -3.75833706e+06 -1.25404615e+07
-1.33435625e+07 -9.31735241e+06 -5.07506015e+06 -1.29552819e+07
-2.95229164e+06 -4.07319022e+06 -1.11501690e+07 -2.83678251e+06
-1.24860409e+07 -1.29942741e+07 3.13669819e+06 -1.40428801e+06]
[-9.25290504e+06 -1.91311085e+07 -1.00484823e+07 -6.97031415e+06
-9.06245941e+06 -1.07248087e+07 6.44150546e+05 -1.26824566e+07
-7.05102645e+06 -1.62276664e+07 -1.33225050e+07 -1.28742041e+07
-7.81306002e+06 -6.08767815e+06 -1.17962560e+07 -2.69375362e+06
-1.12842099e+07 -3.10700975e+06 -8.57586439e+06 -9.52027675e+06
-1.06238007e+07 -1.04269731e+07 -6.14929602e+06 -1.12299551e+07
-1.22962954e+07 -8.46919638e+06 -7.33479836e+06 -1.19016439e+07
1.20173264e+05 -2.42486170e+06 -9.98410352e+06 -7.40410434e+05
-1.13386448e+07 -1.14408974e+07 2.18414665e+06 -3.56685478e+06]
[-8.50989399e+06 -2.04847293e+07 -8.49361663e+06 -6.03677411e+06
-7.41580947e+06 -9.16625036e+06 6.19301315e+04 -1.59345072e+07
-6.25551213e+06 -1.80591994e+07 -1.13600959e+07 -1.12852085e+07
-8.56767278e+06 -6.84439219e+06 -1.03580015e+07 -3.36120890e+06
-9.30829347e+06 -1.12750747e+06 -1.08797054e+07 -7.93955588e+06
-9.09181520e+06 -1.00706224e+07 -7.63095685e+06 -9.35387741e+06
-1.08357613e+07 -9.16767358e+06 -9.10155391e+06 -1.04937710e+07
-4.15134621e+05 -1.74354975e+06 -8.52078879e+06 -1.96411715e+06
-9.94394031e+06 -9.55710340e+06 1.06750198e+06 -4.66892455e+06]
[-8.32609864e+06 -1.85574995e+07 -9.11625840e+06 -8.47913454e+06
-7.89055854e+06 -1.00804871e+07 -4.62713874e+06 -2.03514851e+07
-8.11663612e+06 -2.10079201e+07 -1.19718717e+07 -1.23754235e+07
-1.00523639e+07 -9.34892579e+06 -1.12396997e+07 -6.90405134e+06
-1.01700308e+07 -4.24641649e+06 -1.22976076e+07 -9.08354429e+06
-1.02599893e+07 -1.16642884e+07 -8.66598918e+06 -1.00792558e+07
-1.18948083e+07 -1.30862028e+07 -1.05039183e+07 -1.15078458e+07
-6.62732681e+06 -5.29970280e+06 -9.38397851e+06 -4.79131037e+06
-1.09573743e+07 -1.03856989e+07 -1.30328013e+06 -5.56208586e+06]
[-1.08181500e+07 -1.79029251e+07 -1.05080079e+07 -1.30819794e+07
-8.97372302e+06 -1.20904986e+07 -7.73441837e+06 -2.13876611e+07
-1.19433157e+07 -2.49041624e+07 -1.33010096e+07 -1.34666221e+07
-1.19147151e+07 -1.28638441e+07 -1.26003219e+07 -1.24189385e+07
-1.27759553e+07 -9.35847555e+06 -1.16156339e+07 -1.08244816e+07
-1.16717226e+07 -1.34447595e+07 -9.91974071e+06 -1.20517544e+07
-1.29238971e+07 -1.58181291e+07 -1.25631216e+07 -1.30701612e+07
-1.26331627e+07 -9.17890528e+06 -1.09408393e+07 -9.12796176e+06
-1.22725191e+07 -1.22310113e+07 -5.86263845e+06 -7.77107990e+06]
[-1.26704869e+07 -1.70587933e+07 -1.15981454e+07 -1.74437982e+07
-9.92371492e+06 -1.32547713e+07 -9.95104161e+06 -1.96013234e+07
-1.47588528e+07 -2.44858575e+07 -1.37259148e+07 -1.37441235e+07
-1.20312044e+07 -1.34378594e+07 -1.32366479e+07 -1.50582356e+07
-1.44889310e+07 -1.51268899e+07 -9.11191838e+06 -1.19890562e+07
-1.25107528e+07 -1.43571326e+07 -9.96705680e+06 -1.34169428e+07
-1.32828479e+07 -1.57951839e+07 -1.26196806e+07 -1.38722648e+07
-1.45811029e+07 -1.20432335e+07 -1.20069323e+07 -1.08478259e+07
-1.28618725e+07 -1.35031545e+07 -8.93045803e+06 -8.75211409e+06]
[-1.15906043e+07 -1.53272236e+07 -1.08014001e+07 -1.94851657e+07
-9.09731489e+06 -1.22202384e+07 -8.96922527e+06 -1.65841146e+07
-1.47938008e+07 -1.99518277e+07 -1.15554638e+07 -1.20493107e+07
-1.02358603e+07 -1.19610206e+07 -1.18493239e+07 -1.19933803e+07
-1.34470940e+07 -1.87305353e+07 -2.99921620e+06 -1.12292718e+07
-1.14594988e+07 -1.16820833e+07 -8.09242682e+06 -1.23875772e+07
-1.18192377e+07 -1.23518538e+07 -1.03328048e+07 -1.25375900e+07
-1.35238155e+07 -1.06926219e+07 -1.10697001e+07 -7.79376688e+06
-1.14417924e+07 -1.24361481e+07 -9.54451741e+06 -7.49168630e+06]
[-1.03216052e+07 -1.44674901e+07 -8.38356310e+06 -1.89579788e+07
-6.69990306e+06 -1.00203478e+07 -6.54067541e+06 -1.13775518e+07
-1.31559382e+07 -1.62111303e+07 -8.60068443e+06 -9.07103355e+06
-7.29272833e+06 -1.06208144e+07 -9.02699207e+06 -8.33642717e+06
-1.14681814e+07 -1.85663198e+07 7.33423974e+05 -8.57913848e+06
-8.65975546e+06 -8.12539817e+06 -6.13030785e+06 -1.03403356e+07
-8.61731514e+06 -7.15362074e+06 -7.59687704e+06 -9.77473193e+06
-1.27877381e+07 -7.50046006e+06 -8.43857089e+06 -6.41607458e+06
-8.65292934e+06 -1.00484483e+07 -8.74903069e+06 -6.22852087e+06]
[-6.82457936e+06 -1.08041066e+07 -4.26853261e+06 -1.65263945e+07
-2.88274649e+06 -5.78189441e+06 -4.84547295e+06 -5.73557786e+06
-9.40929486e+06 -1.01437397e+07 -4.03525862e+06 -4.52127627e+06
-2.42457097e+06 -6.92467720e+06 -4.43351599e+06 -2.53016268e+06
-7.14017470e+06 -1.68585355e+07 5.37700979e+06 -4.51024003e+06
-4.39255257e+06 -3.41335474e+06 -2.02625908e+06 -6.13484609e+06
-4.07354874e+06 -1.43003128e+06 -2.01303842e+06 -5.15191095e+06
-1.12394088e+07 -3.83980667e+06 -4.22819509e+06 -2.10431128e+06
-4.19259381e+06 -5.69996246e+06 -5.31816911e+06 -2.19102031e+06]
[-4.48160751e+06 -7.62846578e+06 -1.49725576e+06 -1.32775787e+07
-3.94627934e+05 -2.77507366e+06 -2.44843976e+06 -3.54015436e+05
-6.15539245e+06 -4.28959661e+06 -1.37499228e+06 -1.07260397e+06
-5.72498193e+05 -5.18033248e+06 -8.65219555e+05 2.63638641e+06
-4.33916065e+06 -1.43661180e+07 7.41426792e+06 -1.68739544e+06
-1.31027694e+06 2.39064667e+05 -3.02234132e+05 -3.26858130e+06
-6.34205353e+05 2.61816988e+06 -1.37753010e+05 -1.70490200e+06
-9.13259937e+06 -1.40884234e+06 -1.26669783e+06 1.63261333e+06
-7.93516623e+05 -2.54278174e+06 -4.71062972e+06 -1.61245583e+06]
[-3.27200577e+06 -5.75407948e+06 -3.84645566e+05 -1.04878491e+07
4.65154033e+05 -1.52743228e+06 -1.32046296e+06 2.81731783e+06
-4.38580793e+06 -1.34410510e+06 -5.70890728e+05 4.69565039e+05
-4.86333825e+05 -4.59735963e+06 6.92875503e+05 4.96793096e+06
-3.09367394e+06 -1.20076069e+07 7.02740068e+06 -6.11372924e+05
-3.06922813e+04 1.32797053e+06 -6.71695935e+04 -2.09552176e+06
8.42244861e+05 4.27894757e+06 -2.25711099e+05 -2.77756730e+05
-7.38178581e+06 -9.13770460e+05 -8.25539988e+04 3.01004323e+06
7.10210015e+05 -1.06331437e+06 -4.68312140e+06 -1.94467591e+06]
[-2.68223359e+06 -4.56072991e+06 6.39864393e+05 -7.09489575e+06
1.18188274e+06 -2.69175736e+05 -5.61134179e+05 2.50856261e+06
-3.07936195e+06 -1.50008493e+05 2.12657812e+05 1.16170604e+06
2.81085647e+05 -2.64527723e+06 1.66999884e+06 4.69555418e+06
-1.54586863e+06 -8.58456569e+06 3.98423936e+06 5.81437147e+05
9.93206472e+05 1.14831658e+06 -3.53549320e+05 -8.75387470e+05
1.64633369e+06 4.29632321e+06 1.50967580e+04 7.02286423e+05
-6.00562799e+06 -1.20037199e+06 9.41920258e+05 1.51445059e+06
1.52872496e+06 -6.97940991e+03 -2.78200614e+06 -1.22655321e+06]
[-1.53343042e+06 -2.71078927e+06 6.62816759e+04 -3.50890789e+06
3.05621205e+05 -3.65755548e+05 -9.58956303e+05 1.27715212e+06
-1.54695919e+06 -3.07336001e+05 -1.62002003e+05 3.15717345e+05
6.53498681e+04 -1.45771617e+06 5.55261768e+05 1.72994967e+06
-9.69646810e+05 -4.22185056e+06 1.03108118e+06 3.90350107e+04
2.53396563e+05 -6.49002207e+04 -4.36294167e+05 -6.92873069e+05
5.85224982e+05 1.98666047e+06 -1.29528765e+05 1.15373373e+05
-3.07869520e+06 -8.11178821e+05 2.17983211e+05 -1.19628718e+05
4.36017222e+05 -2.91047130e+05 -1.38889289e+06 -6.71589536e+05]
[-6.12016627e+04 -3.45464321e+05 2.23917863e+05 -3.01211378e+05
2.48612989e+05 1.56736082e+05 -3.83183049e+04 1.01121855e+05
-3.08706801e+04 -6.07508492e+04 1.66562502e+05 2.04898727e+05
1.91980702e+05 -4.18091611e+04 2.32882826e+05 2.34853476e+05
9.42160329e+04 -4.01638082e+05 1.29317557e+05 2.20157289e+05
2.26136553e+05 1.80755123e+05 -7.65540183e+03 1.18046890e+05
2.43823845e+05 3.76985773e+05 9.35087545e+04 2.05402612e+05
-2.57592806e+05 5.64351151e+04 2.22855113e+05 -4.84644661e+03
2.18411772e+05 1.48941680e+05 -1.29015745e+04 4.81663222e+04]
[ 4.98649769e+04 8.41956297e+04 1.99920633e+04 4.74048591e+04
1.44542636e+04 2.28625345e+04 1.13892376e+05 4.60571450e+04
4.59717239e+04 5.77401616e+04 4.39634838e+04 3.51951123e+04
-4.72637757e+04 -1.03519353e+04 3.09979260e+04 7.40413098e+04
3.87256258e+04 4.37049611e+04 3.09903762e+04 2.15056919e+04
2.87027650e+04 8.36329675e+04 -2.16778612e+04 3.76514074e+04
2.65057377e+04 4.77419490e+04 -4.37113711e+04 2.83022164e+04
9.38063942e+04 9.91444472e+04 2.13096285e+04 6.77720079e+04
2.37640937e+04 3.77254827e+04 -5.86837225e+04 -2.64024301e+04]
[-7.49789660e+02 -1.45930562e+03 -5.95020248e+02 -9.48694841e+02
-3.91933369e+02 -8.15144495e+02 -1.07737926e+03 -1.64857629e+03
-7.45556836e+02 -9.98503007e+02 -8.59211700e+02 -8.30340987e+02
5.21583173e+01 -8.07863542e+02 -7.92290927e+02 -7.46909958e+02
-9.33129531e+02 -8.26687940e+02 -1.53256153e+03 -5.88040894e+02
-7.17802817e+02 -9.64646968e+02 -1.02169059e+03 -8.15254968e+02
-8.34712719e+02 -8.14105868e+02 -5.66317812e+02 -7.98570552e+02
-6.82976115e+02 -8.57048954e+02 -5.75027191e+02 -8.08792889e+02
-8.84166973e+02 -9.41356810e+02 -4.56347969e+02 -1.23255259e+03]
[-2.92197888e+04 -2.02771395e+04 -2.63170955e+04 -1.30990571e+05
-2.96560848e+04 -3.14293386e+04 -1.78082943e+05 -1.30623166e+05
-8.45438003e+04 -9.75575253e+03 -4.26984289e+04 -7.74063090e+04
8.23427302e+04 7.89884836e+04 -5.25590054e+04 -2.59983166e+04
-2.32595270e+04 -1.88943915e+05 2.86232860e+03 -3.91325933e+04
-6.20717782e+04 -9.07678089e+04 7.19439514e+04 -3.93487558e+04
-7.77510162e+04 -5.74057843e+04 1.19784696e+05 -5.37267692e+04
-8.18146410e+04 -1.25558331e+05 -3.52386391e+04 3.54490714e+04
-5.71373233e+04 -5.14089279e+04 1.52363216e+05 1.42044611e+05]
[-1.85451454e+05 -4.78888215e+05 -5.19186327e+04 -2.97037674e+05
-9.86002712e+03 -1.36518936e+05 -3.12520762e+05 -7.60008525e+05
-2.42468859e+05 -5.37122442e+05 -1.37014510e+05 -1.95633545e+05
1.63154441e+05 6.15028017e+04 -1.66333434e+05 -2.27963937e+05
-1.35641106e+05 -2.30451516e+05 -2.23303752e+05 -7.15389550e+04
-1.37076870e+05 -2.04851867e+05 5.57711362e+04 -1.29007073e+05
-1.84835774e+05 -2.72213004e+05 1.32569286e+05 -1.82923477e+05
-4.07054671e+05 -2.03033159e+05 -1.02088630e+05 -1.44499838e+05
-1.60655043e+05 -1.50567449e+05 4.83899106e+05 3.26929656e+05]
[-8.25927162e+05 -1.72517319e+06 -8.66149832e+04 -1.41334188e+06
3.30917372e+04 -3.78123346e+05 -1.12046700e+06 -2.79658670e+06
-1.02426461e+06 -1.75520536e+06 -2.83918938e+05 -6.17034713e+05
4.12339972e+05 2.01208717e+05 -4.82030236e+05 -1.05941925e+06
-3.56650771e+05 -1.34593467e+06 -1.01911302e+06 -1.22588925e+05
-3.53000366e+05 -6.13012995e+05 -1.88988495e+05 -3.19119496e+05
-5.86144667e+05 -7.02432412e+05 1.51575067e+05 -5.28711281e+05
-1.72139712e+06 -9.84863916e+05 -2.38758360e+05 -8.90476127e+05
-5.01388914e+05 -4.45366439e+05 9.90572690e+05 5.54823016e+05]
[-9.78208182e+05 -9.85035849e+05 -7.58171299e+05 -2.34111202e+06
-6.43243741e+05 -1.11628547e+06 -2.37411625e+06 -4.82302472e+06
-2.08916933e+06 -2.04842445e+06 -9.51957328e+05 -1.74667471e+06
4.71446326e+05 4.50623678e+05 -1.37659192e+06 -1.56353627e+06
-9.74025153e+05 -2.79448642e+06 -9.68674073e+05 -9.86362044e+05
-1.36324535e+06 -1.13891160e+06 2.79421828e+05 -1.05145670e+06
-1.72924612e+06 -1.79470544e+06 6.86168490e+05 -1.46829131e+06
-3.47085636e+06 -2.39839544e+06 -1.05179946e+06 -8.80409943e+05
-1.41961735e+06 -1.22378983e+06 2.11597886e+06 1.70161418e+06]
[-9.73334133e+05 -5.90142012e+03 -1.38076616e+06 -2.75248954e+06
-1.24657073e+06 -1.85625879e+06 -3.73577498e+06 -6.06780311e+06
-2.74175018e+06 -2.42497845e+06 -1.85616437e+06 -2.89896534e+06
9.40316037e+05 8.47524854e+05 -2.27394308e+06 -2.35685746e+06
-1.56699219e+06 -3.42233106e+06 -9.78810830e+04 -1.86585683e+06
-2.38707922e+06 -2.09699934e+06 1.27117511e+06 -1.73174233e+06
-2.85265044e+06 -3.02495718e+06 1.87767432e+06 -2.34925937e+06
-4.62377452e+06 -3.72357942e+06 -1.80103956e+06 -1.14860399e+06
-2.35820960e+06 -2.09667666e+06 3.99923838e+06 3.34168696e+06]
[-2.03260967e+06 1.23111540e+06 -3.26812308e+06 -4.62224378e+06
-3.24419189e+06 -3.46373441e+06 -6.14775769e+06 -5.73726347e+06
-4.38084427e+06 -1.06556002e+06 -3.37912313e+06 -4.79454781e+06
9.37089727e+05 1.14273951e+06 -4.03796774e+06 -2.46686700e+06
-3.15188916e+06 -6.43976478e+06 1.18036626e+05 -3.80208425e+06
-4.41360687e+06 -4.06154316e+06 2.29882157e+06 -3.61029073e+06
-4.77777663e+06 -3.52037102e+06 3.12008975e+06 -4.07177870e+06
-5.22175934e+06 -5.90040003e+06 -3.71370966e+06 -1.27284298e+06
-4.13900348e+06 -3.94711755e+06 5.30600415e+06 5.03259502e+06]
[-3.98961513e+06 2.80183138e+06 -6.17254183e+06 -7.85882822e+06
-6.22623023e+06 -6.14250757e+06 -8.68563912e+06 -4.59198607e+06
-6.85494094e+06 -2.38914501e+05 -5.93774067e+06 -7.78849601e+06
4.43303253e+05 7.72020835e+05 -6.71998639e+06 -2.94869195e+06
-5.78174778e+06 -1.11747009e+07 -1.57376743e+05 -6.80465190e+06
-7.43396496e+06 -6.62451520e+06 3.33973720e+06 -6.43379933e+06
-7.71439421e+06 -5.08276074e+06 4.23282864e+06 -6.79578005e+06
-5.74209359e+06 -8.41977503e+06 -6.62311812e+06 -1.62550326e+06
-7.00321741e+06 -6.88111692e+06 5.50940549e+06 6.08123520e+06]
[-4.46182271e+06 5.13873250e+06 -8.80391887e+06 -9.84272000e+06
-8.98584688e+06 -8.27961705e+06 -1.06844778e+07 -2.38296564e+06
-8.18491914e+06 8.93273781e+05 -8.27058481e+06 -1.03263776e+07
4.38685277e+04 4.04172752e+05 -9.35281211e+06 -4.08464253e+06
-7.84148733e+06 -1.44504586e+07 1.20823795e+06 -9.55800928e+06
-1.02412259e+07 -7.95170390e+06 4.84755406e+06 -8.78632637e+06
-1.03099974e+07 -6.77920735e+06 5.55999550e+06 -9.04584273e+06
-5.72602629e+06 -9.55295865e+06 -9.17103178e+06 -9.53605228e+05
-9.46686103e+06 -9.35084829e+06 5.68133717e+06 7.01365782e+06]
[-5.56426083e+06 4.06814169e+06 -1.32106164e+07 -1.16866853e+07
-1.30930151e+07 -1.27378674e+07 -1.04689085e+07 3.35408595e+05
-9.50874752e+06 -1.54590345e+06 -1.32784296e+07 -1.43758811e+07
-2.68127156e+06 -3.19699804e+06 -1.38868146e+07 -5.82064878e+06
-1.27392409e+07 -1.57284362e+07 3.58589903e+06 -1.39522296e+07
-1.45017312e+07 -9.70859932e+06 5.13547394e+06 -1.35159252e+07
-1.41285597e+07 -8.44141752e+06 4.58552865e+06 -1.33286489e+07
-7.12147198e+06 -9.38804651e+06 -1.34452696e+07 -3.26989203e+05
-1.35134891e+07 -1.37866760e+07 4.22589830e+06 5.97046316e+06]
[-7.99188582e+06 -7.01327474e+05 -1.73065992e+07 -1.28411421e+07
-1.68458636e+07 -1.66740773e+07 -9.52374924e+06 2.91801521e+06
-1.00500739e+07 -5.32322210e+06 -1.78408949e+07 -1.74622836e+07
-5.83005745e+06 -7.12184654e+06 -1.77838625e+07 -8.19168399e+06
-1.72131946e+07 -1.46845785e+07 3.02444153e+06 -1.74898875e+07
-1.77528938e+07 -1.22899573e+07 4.00119571e+06 -1.76391465e+07
-1.69773070e+07 -9.30956376e+06 2.18033733e+06 -1.68629701e+07
-7.05381760e+06 -8.41184820e+06 -1.72511274e+07 -1.97541956e+06
-1.68775690e+07 -1.74132007e+07 2.92167412e+06 4.00386293e+06]
[-1.03909336e+07 -6.67032595e+06 -1.85317970e+07 -1.35400346e+07
-1.78319823e+07 -1.79230920e+07 -8.36864257e+06 4.76746785e+06
-1.07276182e+07 -8.72402574e+06 -2.00489968e+07 -1.87143477e+07
-6.56760310e+06 -8.11605407e+06 -1.87992896e+07 -7.08226033e+06
-1.90657861e+07 -1.37617509e+07 1.51513142e+06 -1.83446180e+07
-1.84349221e+07 -1.42947788e+07 3.09234629e+06 -1.93026468e+07
-1.78755422e+07 -8.76174958e+06 1.33671802e+06 -1.80372359e+07
-3.84512815e+06 -7.69333243e+06 -1.81933043e+07 -2.00156859e+06
-1.76566225e+07 -1.87905790e+07 3.23724876e+06 3.28402462e+06]
[-9.71483561e+06 -8.72699419e+06 -1.53772549e+07 -1.14670185e+07
-1.49496580e+07 -1.47531587e+07 -7.25534138e+06 3.23703304e+06
-9.41771624e+06 -6.38363521e+06 -1.73513753e+07 -1.63554485e+07
-4.29862089e+06 -4.82566983e+06 -1.56973069e+07 -1.75600962e+06
-1.57422945e+07 -1.20315082e+07 3.22441028e+05 -1.51547020e+07
-1.55677027e+07 -1.34081632e+07 2.89726817e+06 -1.62596835e+07
-1.55918279e+07 -6.32924915e+06 2.55037868e+06 -1.52125506e+07
4.22946441e+05 -6.28963249e+06 -1.51349787e+07 6.12000587e+05
-1.48185556e+07 -1.58673600e+07 4.74061317e+06 3.76794130e+06]
[-8.51532863e+06 -1.09596257e+07 -1.12252830e+07 -8.47262377e+06
-1.09348259e+07 -1.09128702e+07 -5.47982790e+06 -1.11632899e+06
-7.63444768e+06 -3.42083225e+06 -1.32458280e+07 -1.28772940e+07
-3.45133069e+06 -2.63019868e+06 -1.13017203e+07 4.79587068e+06
-1.15201471e+07 -9.04839164e+06 -2.08091032e+06 -1.11975600e+07
-1.17724151e+07 -1.07975366e+07 9.55404101e+05 -1.21794415e+07
-1.23922314e+07 -4.15483267e+06 1.50758427e+06 -1.17106863e+07
4.21618813e+06 -4.97323340e+06 -1.11289202e+07 4.13419853e+06
-1.12490879e+07 -1.20018997e+07 5.13122661e+06 2.97337297e+06]
[-7.76085316e+06 -1.51547740e+07 -6.76228611e+06 -8.39901351e+06
-6.76482293e+06 -6.67242738e+06 -6.66413556e+06 -7.99235822e+06
-6.46385089e+06 -3.56134178e+06 -8.42032761e+06 -9.16710844e+06
-1.34215812e+06 5.63946225e+05 -7.15175325e+06 5.50422696e+06
-6.55879179e+06 -9.50039012e+06 -7.00546610e+06 -6.63440906e+06
-7.76215003e+06 -9.42688169e+06 -1.49825720e+06 -7.68163339e+06
-8.96366333e+06 -3.24814008e+06 5.88784782e+05 -7.87919971e+06
4.27349562e+06 -5.50769240e+06 -6.72027561e+06 3.65747265e+06
-7.65158485e+06 -7.67209153e+06 6.84125584e+06 2.73542659e+06]
[-6.31305889e+06 -1.69528661e+07 -2.93914657e+06 -8.34991712e+06
-2.75222960e+06 -3.43450294e+06 -8.42797009e+06 -1.74463777e+07
-6.04810739e+06 -7.67250363e+06 -4.74930506e+06 -6.47181626e+06
-5.90522018e+05 8.21592216e+05 -4.33646122e+06 1.26118428e+06
-2.97948558e+06 -9.38452954e+06 -1.13454090e+07 -2.95657971e+06
-4.80190498e+06 -9.19688361e+06 -3.86382739e+06 -4.06579627e+06
-6.46684418e+06 -5.34720141e+06 -1.35540309e+06 -5.10356930e+06
-1.61214409e+06 -6.95285463e+06 -3.12883233e+06 1.50564152e+05
-5.00130399e+06 -4.31682375e+06 7.62811267e+06 2.40861661e+06]
[-7.16966169e+06 -1.43939486e+07 -4.57868430e+06 -1.00921213e+07
-4.02264182e+06 -5.65852497e+06 -1.17779283e+07 -2.29149919e+07
-8.67784884e+06 -1.34028086e+07 -6.76808821e+06 -8.50869849e+06
-3.76583959e+06 -3.35701213e+06 -6.66166239e+06 -6.34469055e+06
-5.32870116e+06 -1.09481514e+07 -1.30383778e+07 -4.96826889e+06
-6.82689718e+06 -1.12577810e+07 -5.65227678e+06 -5.83035420e+06
-8.37700967e+06 -1.11474288e+07 -4.70377807e+06 -7.36227759e+06
-1.02766909e+07 -1.09970600e+07 -5.10789092e+06 -5.63606149e+06
-7.18773076e+06 -6.34033523e+06 4.42578939e+06 3.16601195e+05]
[-1.01711406e+07 -1.31855551e+07 -8.84799989e+06 -1.30103238e+07
-7.96968700e+06 -1.00935870e+07 -1.30230371e+07 -2.25567940e+07
-1.22935407e+07 -1.84036155e+07 -1.06327951e+07 -1.17624006e+07
-8.35708584e+06 -8.72983424e+06 -1.09011073e+07 -1.37620502e+07
-1.03209087e+07 -1.27398659e+07 -1.25844096e+07 -9.32478962e+06
-1.05503974e+07 -1.30400105e+07 -7.62315288e+06 -1.01063227e+07
-1.16343719e+07 -1.52118579e+07 -9.10906687e+06 -1.13701207e+07
-1.50672671e+07 -1.34953769e+07 -9.46711797e+06 -1.05444238e+07
-1.10432081e+07 -1.05864675e+07 -1.72056058e+06 -3.39114075e+06]
[-1.23168970e+07 -1.33615653e+07 -1.20474880e+07 -1.61582279e+07
-1.07140532e+07 -1.32925397e+07 -1.26913619e+07 -2.24151874e+07
-1.51377778e+07 -2.31510233e+07 -1.36650270e+07 -1.44575985e+07
-1.03217736e+07 -1.09338567e+07 -1.43389622e+07 -1.97695658e+07
-1.38981150e+07 -1.47124828e+07 -1.09302425e+07 -1.25794668e+07
-1.34126000e+07 -1.48541900e+07 -8.56724077e+06 -1.32798929e+07
-1.42642191e+07 -1.80376243e+07 -1.11774520e+07 -1.43713098e+07
-1.54162353e+07 -1.43710044e+07 -1.27290649e+07 -1.32835311e+07
-1.38894675e+07 -1.38897336e+07 -5.12090134e+06 -5.57557059e+06]
[-1.02755571e+07 -8.84472599e+06 -1.28710318e+07 -1.72033225e+07
-1.13584079e+07 -1.38016220e+07 -9.19841164e+06 -1.72140854e+07
-1.47130033e+07 -2.02823039e+07 -1.34845026e+07 -1.49298742e+07
-9.26034362e+06 -1.00985788e+07 -1.50367516e+07 -1.66844927e+07
-1.44665770e+07 -1.64159481e+07 -3.44958372e+06 -1.34824699e+07
-1.40716946e+07 -1.32996403e+07 -5.46657396e+06 -1.39632606e+07
-1.46626809e+07 -1.62664858e+07 -7.96413422e+06 -1.47434561e+07
-1.07375989e+07 -1.14052900e+07 -1.34841635e+07 -9.10791644e+06
-1.41697348e+07 -1.45439054e+07 -4.87911824e+06 -3.64047622e+06]
[-8.14290915e+06 -1.00262597e+07 -1.03520902e+07 -1.63924190e+07
-8.82197996e+06 -1.14319311e+07 -5.66327966e+06 -1.42830174e+07
-1.18172354e+07 -1.72251073e+07 -1.01013407e+07 -1.18670865e+07
-6.95348037e+06 -8.69775223e+06 -1.22465547e+07 -1.13741411e+07
-1.20308458e+07 -1.52599214e+07 1.42675952e+06 -1.07307083e+07
-1.13236985e+07 -9.32319723e+06 -3.88296263e+06 -1.15207183e+07
-1.16830419e+07 -1.07054386e+07 -5.59545094e+06 -1.19885971e+07
-8.88334817e+06 -6.53167950e+06 -1.07427078e+07 -5.00713184e+06
-1.14227028e+07 -1.17966681e+07 -3.98933130e+06 -2.59294749e+06]
[-4.40159620e+06 -6.67736535e+06 -6.27822935e+06 -1.36125616e+07
-5.18447079e+06 -7.04415228e+06 -3.94536505e+06 -6.05159941e+06
-7.04869674e+06 -8.56009828e+06 -5.54475031e+06 -6.92264868e+06
-2.69420783e+06 -4.97423699e+06 -7.31820810e+06 -4.30972145e+06
-7.64216066e+06 -1.34859167e+07 6.64298428e+06 -6.60931655e+06
-7.05957203e+06 -4.53513304e+06 2.35992102e+05 -7.20772309e+06
-6.89258461e+06 -3.83253882e+06 -4.26738375e+05 -7.11267371e+06
-5.26531115e+06 -2.37478932e+06 -6.37811117e+06 2.34892073e+05
-6.81726266e+06 -7.27643745e+06 -1.65734164e+06 4.86784928e+05]
[-2.32602090e+06 -5.03687838e+06 -2.62091245e+06 -1.03122973e+07
-1.87974346e+06 -3.28364582e+06 -1.40098922e+06 3.74697798e+05
-3.55524623e+06 -2.47852228e+06 -2.16808003e+06 -2.51581370e+06
2.60405499e+04 -2.73690941e+06 -2.80607380e+06 1.88942559e+06
-4.12148163e+06 -1.07060597e+07 8.61194976e+06 -2.82725152e+06
-2.99938333e+06 -1.84630113e+05 1.86907169e+06 -3.59534950e+06
-2.58286879e+06 1.48120747e+06 1.81274381e+06 -2.85015286e+06
-2.82939900e+06 8.83340467e+05 -2.54671337e+06 3.88485638e+06
-2.57960437e+06 -3.29067930e+06 -1.48887247e+06 5.81779588e+05]
[-1.64061593e+06 -3.59407851e+06 -7.89083657e+05 -7.93631587e+06
-1.83532244e+05 -1.49749922e+06 -4.90639824e+05 2.12327775e+06
-2.42349187e+06 -8.05839479e+05 -6.29521149e+05 -4.42871976e+05
3.38027727e+05 -2.29169070e+06 -6.06736173e+05 3.08338782e+06
-2.36749291e+06 -8.61005036e+06 6.84429155e+06 -9.72322886e+05
-8.44095112e+05 1.28950867e+06 1.29545669e+06 -1.74058523e+06
-4.11127711e+05 2.75700160e+06 1.21463614e+06 -8.75728120e+05
-2.96983016e+06 7.94521746e+05 -7.00877885e+05 3.78674467e+06
-4.69662168e+05 -1.30405238e+06 -2.01927809e+06 -1.92134737e+05]
[-1.64361825e+06 -2.23545775e+06 2.81788162e+05 -5.29013593e+06
6.41960010e+05 -2.85991036e+05 -1.03047479e+06 7.68882728e+05
-2.23681048e+06 -7.20742686e+04 1.16088049e+05 4.21276829e+05
6.95228200e+05 -1.25689341e+06 6.53287258e+05 2.16673795e+06
-1.05833254e+06 -6.46439964e+06 3.12559646e+06 2.25927854e+05
3.60558770e+05 8.33342701e+05 2.96720716e+05 -6.34775459e+05
6.50971099e+05 2.47137041e+06 6.89362624e+05 2.23258505e+05
-4.41408574e+06 -9.06440887e+05 4.23247401e+05 1.19019884e+06
6.14595743e+05 -3.00223333e+05 -1.07063014e+06 -1.50232561e+05]
[-1.10544915e+06 -1.62509695e+06 5.42159848e+04 -2.74167154e+06
2.43367223e+05 -2.29776934e+05 -7.53392906e+05 -1.81055022e+05
-1.36532153e+06 -7.63075535e+05 -1.06074644e+05 6.72169651e+04
1.63721420e+05 -8.88355013e+05 2.06831933e+05 4.48812947e+05
-6.37564978e+05 -3.13560062e+06 6.36307685e+05 4.23125026e+04
1.38207186e+05 -9.53390796e+04 -2.71635738e+05 -4.31220474e+05
2.45732957e+05 7.79511597e+05 -6.54498909e+04 -1.63150812e+04
-2.63451534e+06 -8.35309860e+05 1.13273465e+05 -2.59722234e+05
2.01435553e+05 -2.73049824e+05 -6.10954986e+05 -2.70758574e+05]
[-1.24887194e+05 -1.20829856e+05 -1.38828312e+04 -2.62735192e+05
3.68535899e+03 -3.66334768e+04 -1.01096217e+05 -8.78653986e+04
-1.58421302e+05 -1.28733156e+05 -2.03125915e+04 -1.47873118e+04
-5.44996599e+04 -1.41417254e+05 -9.88728385e+03 -2.57876901e+04
-6.94649845e+04 -2.78547418e+05 2.81054434e+04 -1.64218812e+04
-3.24175752e+03 -2.55051561e+04 -6.76268331e+04 -4.99661887e+04
-1.57154190e+03 8.82095030e+03 -8.52021427e+04 -2.56510704e+04
-2.56023689e+05 -1.00578769e+05 -1.30778678e+04 -6.10464666e+04
-4.65700028e+03 -4.87712138e+04 -1.22090463e+05 -5.37076723e+04]
[-4.17789280e+03 -2.56156036e+04 1.85038116e+04 -9.59003207e+03
1.98759967e+04 1.36936722e+04 2.28088669e+03 -3.13601047e+04
-4.90828139e+03 -4.53334026e+03 1.86175549e+04 1.60014388e+04
4.24988560e+03 -2.36844235e+03 1.85112314e+04 2.46480520e+04
1.51457120e+04 -8.86300437e+03 -7.01475415e+03 1.89782246e+04
1.82728979e+04 1.41207791e+04 -1.21056370e+04 1.54273953e+04
1.54674565e+04 1.77505101e+04 -8.92822776e+03 1.35595614e+04
-2.39731425e+04 1.30011714e+04 1.87635643e+04 6.65225273e+03
1.63013625e+04 1.52093444e+04 1.50299166e+03 -9.73810110e+02]
[ 1.30692910e+02 5.28949036e+02 -7.37443594e+01 -3.96903977e+02
-9.36865585e+01 -6.14111381e+01 -2.83784933e+02 -2.34751257e+00
-3.08676999e+02 4.07594056e+02 -1.17397519e+02 -2.63600176e+02
7.68894489e+01 1.91758911e+02 -4.87038423e+01 1.83719468e+02
-1.00133877e+02 -8.98192933e+02 2.89944773e+02 -1.23868870e+02
-1.51123882e+02 -2.09376245e+02 1.67054220e+02 -2.13687156e+02
-1.34016461e+02 -2.01750911e+01 2.63846465e+02 -1.04496388e+02
1.24769621e+02 -6.74924345e+02 -9.99240432e+01 2.62100226e+02
-6.53641267e+01 -1.62293980e+02 1.97777724e+02 3.98579386e+02]
[-2.79801013e+04 7.77047103e+03 -8.74053425e+03 -1.21859775e+05
-1.25604488e+04 -1.36931483e+04 -1.73798773e+05 -8.37608665e+04
-8.58495681e+04 -5.53111864e+03 -3.06626673e+04 -6.17534866e+04
9.98860836e+04 9.13929706e+04 -3.25643918e+04 -3.09283003e+04
-1.00783361e+04 -1.83918892e+05 7.38148788e+03 -2.05243920e+04
-4.20575610e+04 -9.78289963e+04 1.07286395e+05 -2.65015478e+04
-5.53096392e+04 -6.02820662e+04 1.50726716e+05 -3.43599108e+04
-5.95104649e+04 -1.36266630e+05 -1.72117346e+04 3.63781864e+04
-3.53221946e+04 -3.66341227e+04 2.01045763e+05 1.90828230e+05]
[-1.46484278e+05 -3.38967435e+05 -3.27237440e+04 -3.47001859e+05
-4.73880914e+03 -1.04721239e+05 -3.28941819e+05 -8.13768764e+05
-3.19423080e+05 -5.04346722e+05 -1.17002816e+05 -2.10821018e+05
1.03361543e+05 2.01736490e+04 -1.34228787e+05 -1.86738657e+05
-1.05907042e+05 -3.65159703e+05 -2.21290147e+05 -6.92223962e+04
-1.37945543e+05 -2.26346487e+05 6.01552216e+04 -1.22227370e+05
-1.87713334e+05 -2.60563518e+05 1.09302536e+05 -1.65355257e+05
-4.20968613e+05 -3.07124481e+05 -8.52692679e+04 -5.18431033e+04
-1.37417446e+05 -1.27490306e+05 4.33723135e+05 3.45332267e+05]
[-7.15257236e+05 -9.90666287e+05 -2.55038676e+05 -1.37426486e+06
-1.66401652e+05 -4.58816974e+05 -1.37796416e+06 -2.40570909e+06
-1.14122789e+06 -1.27286639e+06 -4.59508475e+05 -8.48447704e+05
5.15351403e+05 4.04435955e+05 -6.22015508e+05 -9.66953233e+05
-4.16718853e+05 -1.61437791e+06 -1.06949252e+06 -3.12423465e+05
-5.61154919e+05 -8.55587714e+05 1.97426999e+05 -4.54253097e+05
-8.06309334e+05 -9.89434350e+05 5.51419136e+05 -6.64677884e+05
-1.58730561e+06 -1.31387518e+06 -4.11660590e+05 -7.18724585e+05
-6.67518125e+05 -5.80799631e+05 1.38079478e+06 1.05877089e+06]
[-9.08017735e+05 1.94665969e+05 -1.05437603e+06 -2.32038582e+06
-9.70009432e+05 -1.32359656e+06 -2.79528374e+06 -3.33480302e+06
-2.24805192e+06 -1.10693176e+06 -1.26990887e+06 -2.00074509e+06
7.79106366e+05 7.28507858e+05 -1.57136724e+06 -1.32634323e+06
-1.18493207e+06 -3.19256590e+06 -4.41610985e+05 -1.30648982e+06
-1.64038855e+06 -1.61473148e+06 1.09299094e+06 -1.32342053e+06
-1.95914237e+06 -1.91418700e+06 1.57951731e+06 -1.66185246e+06
-2.89444375e+06 -2.86276314e+06 -1.31257158e+06 -5.45853567e+05
-1.64422644e+06 -1.54667545e+06 2.75527608e+06 2.53960282e+06]
[-1.88103705e+06 9.43301489e+05 -2.66199644e+06 -3.80809101e+06
-2.55830906e+06 -2.92601125e+06 -4.48316648e+06 -2.84802835e+06
-3.53510412e+06 -1.39814323e+06 -3.00505936e+06 -3.86347751e+06
1.23062664e+06 9.51238420e+05 -3.32370660e+06 -2.43141530e+06
-2.76867231e+06 -4.93567182e+06 2.48634871e+05 -3.01410034e+06
-3.42431673e+06 -3.40113257e+06 2.09548691e+06 -3.00363972e+06
-3.76034593e+06 -2.90815423e+06 2.97821655e+06 -3.31691248e+06
-3.05889093e+06 -4.23960764e+06 -2.98953109e+06 -1.27023086e+06
-3.36460187e+06 -3.38007807e+06 4.17331275e+06 3.86008793e+06]
[-3.08935611e+06 2.71355552e+06 -5.52479742e+06 -5.39075900e+06
-5.57405807e+06 -5.34765422e+06 -7.05148221e+06 3.35013400e+04
-5.04895476e+06 4.39771753e+05 -5.46565454e+06 -6.48304350e+06
7.41787168e+05 5.45125500e+05 -5.88626816e+06 -2.41936013e+06
-5.28009839e+06 -7.61592878e+06 8.27133959e+05 -5.92036997e+06
-6.30144575e+06 -6.23729887e+06 3.17095679e+06 -5.83054273e+06
-6.31903391e+06 -3.76794286e+06 4.13467983e+06 -5.76152660e+06
-1.92181029e+06 -6.41726703e+06 -5.78853776e+06 -1.49503528e+06
-5.86157073e+06 -6.12648305e+06 4.50456865e+06 4.88631792e+06]
[-4.88471092e+06 4.85387304e+06 -9.18365842e+06 -7.92704956e+06
-9.32248801e+06 -8.60282408e+06 -9.08078672e+06 3.73232141e+06
-7.12511367e+06 1.62843323e+06 -8.80792916e+06 -9.79377384e+06
-8.70748913e+04 -3.64871254e+05 -9.23015553e+06 -3.35586723e+06
-8.61536448e+06 -1.12257801e+07 1.38007081e+06 -9.61195393e+06
-9.88747062e+06 -9.04302691e+06 4.58126707e+06 -9.31455068e+06
-9.62471080e+06 -5.42269288e+06 5.30768063e+06 -8.95770564e+06
-1.82506958e+06 -8.41397447e+06 -9.32255102e+06 -2.02128590e+06
-9.21110725e+06 -9.61473516e+06 4.35694145e+06 5.48961056e+06]
[-5.07697934e+06 7.21642260e+06 -1.36985699e+07 -8.82810228e+06
-1.39736890e+07 -1.24465576e+07 -1.04880005e+07 8.04788333e+06
-8.00475426e+06 3.37592560e+06 -1.30521367e+07 -1.36132205e+07
-2.18542086e+06 -2.44557835e+06 -1.34326771e+07 -3.80772758e+06
-1.25394312e+07 -1.31425092e+07 3.67248767e+06 -1.42168227e+07
-1.42655786e+07 -1.11259331e+07 5.79435903e+06 -1.35171662e+07
-1.35579114e+07 -7.71165590e+06 5.66965800e+06 -1.27328626e+07
-1.50084074e+06 -8.81752936e+06 -1.36475958e+07 -2.78097563e+05
-1.30753891e+07 -1.36663487e+07 2.98825970e+06 5.14186726e+06]
[-6.67258031e+06 4.84980230e+06 -1.87222472e+07 -9.84557076e+06
-1.87839479e+07 -1.71942900e+07 -1.01551880e+07 1.29859864e+07
-8.40470730e+06 2.19159456e+06 -1.82798888e+07 -1.73910256e+07
-5.54697591e+06 -6.53922047e+06 -1.81093472e+07 -4.61259942e+06
-1.78800000e+07 -1.35571069e+07 5.60013162e+06 -1.89680375e+07
-1.86934807e+07 -1.23518426e+07 5.64616399e+06 -1.87255822e+07
-1.72339566e+07 -7.71597513e+06 3.94722425e+06 -1.70390626e+07
-1.22051444e+06 -7.20966733e+06 -1.84527448e+07 5.88800837e+05
-1.71894790e+07 -1.81050259e+07 5.81833437e+05 3.32659147e+06]
[-8.70437181e+06 7.49106050e+05 -2.09941425e+07 -1.04652176e+07
-2.09331887e+07 -1.89895929e+07 -8.59759153e+06 1.81943237e+07
-8.23063506e+06 1.24005567e+06 -2.09154912e+07 -1.84496908e+07
-7.30142277e+06 -8.49249321e+06 -1.94467234e+07 -2.83174973e+06
-2.02638611e+07 -1.22885686e+07 6.13632896e+06 -2.07080626e+07
-1.99321116e+07 -1.35634822e+07 5.28569077e+06 -2.09322635e+07
-1.79085955e+07 -5.98320091e+06 3.04584199e+06 -1.84040684e+07
2.45047362e+06 -5.62941320e+06 -2.03186520e+07 9.65944837e+05
-1.82019175e+07 -1.97659904e+07 -6.65505141e+05 2.20974275e+06]
[-9.68825042e+06 -4.18093347e+06 -1.76613791e+07 -1.14316428e+07
-1.74932809e+07 -1.59318647e+07 -5.99466297e+06 1.78814971e+07
-8.05698356e+06 1.11891327e+06 -1.81675554e+07 -1.55115120e+07
-5.53414691e+06 -6.68172051e+06 -1.56663164e+07 1.40712807e+06
-1.76849794e+07 -1.26285574e+07 5.61080697e+06 -1.71083522e+07
-1.61820696e+07 -1.20622332e+07 4.31045717e+06 -1.81044256e+07
-1.45090281e+07 -2.06103360e+06 3.04935210e+06 -1.53113207e+07
4.66517424e+06 -4.77804331e+06 -1.68808714e+07 2.36455925e+06
-1.46018644e+07 -1.69032192e+07 -7.32983664e+05 1.46152560e+06]
[-7.84705404e+06 -4.83007106e+06 -1.07674832e+07 -9.83263562e+06
-1.07560327e+07 -9.72562266e+06 -4.00095746e+06 1.36589768e+07
-6.59946789e+06 4.03819520e+06 -1.08719512e+07 -9.62955961e+06
-1.62116478e+06 -2.37012639e+06 -9.16653664e+06 6.51595655e+06
-1.08816069e+07 -1.16823811e+07 4.86348317e+06 -1.03910852e+07
-9.72775499e+06 -7.58958115e+06 4.38025422e+06 -1.13100446e+07
-9.01103392e+06 1.57029611e+06 4.71892196e+06 -9.35967453e+06
6.72911255e+06 -2.46259106e+06 -1.03067708e+07 4.98282394e+06
-8.66922381e+06 -1.04470440e+07 5.79209369e+05 2.35388786e+06]
[-4.50432115e+06 -6.83593718e+06 -3.41789407e+06 -6.46454615e+06
-3.80403050e+06 -2.92921630e+06 -2.91450571e+06 5.03427508e+06
-3.01273538e+06 6.39121108e+06 -3.04485935e+06 -3.29020311e+06
1.38371937e+06 1.69771112e+06 -2.08229688e+06 1.11002306e+07
-3.03422239e+06 -8.98362558e+06 1.95403701e+06 -3.34565524e+06
-3.14633971e+06 -2.55203620e+06 2.72054005e+06 -3.75330158e+06
-3.26840784e+06 4.76753429e+06 4.41142287e+06 -2.88560462e+06
7.03615777e+06 -5.50752042e+05 -3.22660345e+06 7.96029022e+06
-2.59120991e+06 -3.24856501e+06 3.18539455e+06 2.99342176e+06]
[-3.11982889e+06 -1.11012084e+07 2.98404913e+06 -5.38921874e+06
2.21448948e+06 2.97772268e+06 -5.00765199e+06 -8.10738238e+06
-1.61431199e+06 5.06433419e+06 3.35454405e+06 1.20469641e+06
3.57794662e+06 5.89720921e+06 3.00615137e+06 7.59582937e+06
3.67983872e+06 -9.58358734e+06 -7.27885840e+06 3.22971676e+06
1.97170702e+06 -1.35474359e+06 -1.61465299e+06 2.49701019e+06
8.09937236e+05 4.30821405e+06 2.09487426e+06 2.11787283e+06
2.62833887e+06 -2.98543754e+06 3.02209455e+06 3.45926981e+06
1.73132336e+06 2.37927531e+06 5.77715953e+06 2.59180811e+06]
[-2.77446827e+06 -1.14584690e+07 5.07479158e+06 -5.46609976e+06
4.48013226e+06 4.59800943e+06 -8.47374444e+06 -1.88745217e+07
-2.01577215e+06 2.99413879e+05 5.49199820e+06 2.35858784e+06
3.78226891e+06 5.99035439e+06 3.79913303e+06 -2.27824138e+05
5.72434747e+06 -9.53123670e+06 -1.30380779e+07 5.42282151e+06
3.29175316e+06 -3.12608552e+06 -3.98758760e+06 4.72972032e+06
1.63010241e+06 -4.57745817e+05 -9.90135916e+04 3.24354120e+06
-6.26477774e+06 -6.47760391e+06 4.89264995e+06 -2.95391150e+06
2.53552154e+06 4.12062484e+06 7.36591546e+06 2.57516843e+06]
[-4.91636249e+06 -8.67427057e+06 1.10986826e+06 -7.70910252e+06
1.08886949e+06 1.94854476e+05 -1.13142386e+07 -2.29231764e+07
-5.94037688e+06 -8.75448861e+06 1.05872521e+06 -1.84914227e+06
-1.33686924e+05 9.57217449e+05 -1.20049011e+06 -1.14352321e+07
9.65828955e+05 -9.57196433e+06 -1.45012587e+07 1.32308425e+06
-6.36045374e+05 -6.74418665e+06 -5.23412501e+06 7.68196311e+05
-2.23223533e+06 -8.24283870e+06 -3.50536351e+06 -1.26269638e+06
-1.37301203e+07 -1.08350374e+07 6.08639523e+05 -1.03849209e+07
-1.79402410e+06 -3.52403042e+05 4.76307660e+06 9.02661196e+05]
[-7.44458466e+06 -4.61439668e+06 -6.41681417e+06 -8.53233466e+06
-5.95135449e+06 -7.09433833e+06 -1.36651314e+07 -2.16645098e+07
-9.84325099e+06 -1.53169050e+07 -6.76469258e+06 -8.73048109e+06
-4.84957798e+06 -4.52002742e+06 -9.11623265e+06 -2.05572217e+07
-6.58159739e+06 -8.15608398e+06 -1.32310874e+07 -6.56175353e+06
-7.91885536e+06 -1.11290183e+07 -5.15086627e+06 -6.37475759e+06
-8.97148152e+06 -1.60463422e+07 -6.23572092e+06 -8.40812803e+06
-1.47680111e+07 -1.30976535e+07 -7.09995048e+06 -1.45419001e+07
-8.90959217e+06 -7.68887797e+06 1.08859194e+06 -7.68206511e+05]
[-7.89751619e+06 -1.70798823e+06 -1.20690923e+07 -1.03743051e+07
-1.14960774e+07 -1.20895403e+07 -1.35126817e+07 -1.94139851e+07
-1.22200629e+07 -1.79222233e+07 -1.25082655e+07 -1.42244515e+07
-7.05802627e+06 -6.35685936e+06 -1.50607933e+07 -2.34518044e+07
-1.16543464e+07 -9.54169295e+06 -8.94548733e+06 -1.26451875e+07
-1.37483588e+07 -1.39419060e+07 -3.87196847e+06 -1.18404523e+07
-1.44833537e+07 -1.96015544e+07 -6.33604558e+06 -1.35755859e+07
-1.23614793e+07 -1.33177728e+07 -1.28854743e+07 -1.34467786e+07
-1.40570596e+07 -1.30132593e+07 8.74355343e+03 -4.88269110e+05]
[-6.27273019e+06 5.64943109e+05 -1.41443323e+07 -1.13005833e+07
-1.31703048e+07 -1.40793788e+07 -9.09193753e+06 -1.59320993e+07
-1.20474005e+07 -1.74411978e+07 -1.40329087e+07 -1.64104498e+07
-7.35412808e+06 -6.62531078e+06 -1.73499792e+07 -1.97686999e+07
-1.37627139e+07 -1.05444750e+07 -1.51495596e+06 -1.49354370e+07
-1.59335473e+07 -1.28217472e+07 -1.54615456e+06 -1.39191097e+07
-1.66854364e+07 -1.87774217e+07 -4.27284210e+06 -1.56104863e+07
-7.82734980e+06 -9.77203352e+06 -1.49329558e+07 -8.46883562e+06
-1.58589914e+07 -1.50288486e+07 -3.77012737e+04 6.05350487e+05]
[-3.62078236e+06 -2.16502354e+06 -1.08794582e+07 -1.00148159e+07
-9.94691944e+06 -1.09852778e+07 -5.49959257e+06 -1.13998553e+07
-7.90404406e+06 -1.25804824e+07 -1.02743570e+07 -1.27762402e+07
-4.62715309e+06 -4.35250508e+06 -1.36468630e+07 -1.19434107e+07
-1.05982049e+07 -9.15711013e+06 2.96347410e+06 -1.15620724e+07
-1.25999490e+07 -8.83746688e+06 3.59154122e+05 -1.08633651e+07
-1.30999062e+07 -1.21240232e+07 -1.18659271e+06 -1.22281109e+07
-2.45892537e+06 -4.49580692e+06 -1.15138383e+07 -2.98934206e+06
-1.25358546e+07 -1.17099138e+07 1.10164481e+06 1.74893874e+06]
[-1.87722529e+06 -2.75162825e+06 -7.17433655e+06 -8.21746710e+06
-6.57042662e+06 -7.08672786e+06 -3.27153050e+06 -3.15845040e+06
-4.01001500e+06 -5.36114737e+06 -6.37331267e+06 -8.03990632e+06
-1.95938609e+06 -2.04590901e+06 -8.80766393e+06 -4.48264288e+06
-7.01132023e+06 -7.50706081e+06 6.12170697e+06 -7.61256244e+06
-8.39872044e+06 -5.00634603e+06 2.48920568e+06 -7.26773139e+06
-8.38043777e+06 -5.34769795e+06 1.72548976e+06 -7.81732988e+06
2.38844532e+06 -6.62862761e+05 -7.48446256e+06 2.09163547e+06
-8.14943895e+06 -7.77627418e+06 1.21990700e+06 2.29802435e+06]
[-1.31122922e+06 -2.56315047e+06 -4.21507938e+06 -6.07849805e+06
-3.77799179e+06 -4.17490346e+06 3.24038907e+05 1.89103486e+06
-1.68723567e+06 -1.38504811e+06 -3.43351257e+06 -4.26689817e+06
-8.54649898e+05 -1.17239902e+06 -4.89666309e+06 2.57952388e+05
-4.28893142e+06 -5.27670981e+06 6.61844015e+06 -4.40284404e+06
-4.70789411e+06 -1.39246355e+06 2.19988222e+06 -4.25253728e+06
-4.63346710e+06 -1.07755471e+06 1.72454872e+06 -4.38350228e+06
4.67184468e+06 2.41540136e+06 -4.33592957e+06 4.50308616e+06
-4.60797708e+06 -4.52938554e+06 -7.06484644e+05 4.12045991e+05]
[-8.36689440e+05 -1.95274760e+06 -1.96797439e+06 -3.70278753e+06
-1.71847050e+06 -1.97502858e+06 9.60769189e+05 3.15756001e+06
-4.92754636e+05 7.34631836e+05 -1.55501772e+06 -1.59471732e+06
-4.77183815e+05 -9.10384772e+05 -1.96811570e+06 2.50013810e+06
-2.23545600e+06 -3.55886213e+06 4.99941152e+06 -2.00027602e+06
-1.97632097e+06 1.90355381e+05 1.25546172e+06 -2.09579733e+06
-1.77329807e+06 1.17746650e+06 9.07368347e+05 -1.85493536e+06
3.26573215e+06 2.11993688e+06 -1.93068338e+06 4.16676243e+06
-1.84947478e+06 -2.07163188e+06 -1.32113690e+06 -4.09121294e+05]
[-6.18589029e+05 -3.44632099e+05 -5.10384856e+05 -2.47904780e+06
-4.01393393e+05 -5.89345155e+05 -8.94627802e+04 5.78657721e+05
-8.33409386e+05 6.74187202e+05 -3.03986573e+05 -2.47972635e+05
-1.08917015e+05 -5.83251076e+05 -2.57689233e+05 1.49706478e+06
-8.65211014e+05 -3.23449167e+06 2.57745959e+06 -5.20823844e+05
-4.29922032e+05 4.39197025e+05 2.74033147e+05 -7.48596658e+05
-2.62413648e+05 1.06534359e+06 2.40317442e+05 -3.78242641e+05
-1.13838118e+06 -1.93921572e+04 -4.10249471e+05 1.92111887e+06
-2.41353262e+05 -6.35478809e+05 -6.83539000e+05 -1.74450020e+05]
[-4.21200796e+05 -3.80445492e+05 1.10200139e+04 -1.34845123e+06
6.93340058e+04 -7.66313255e+04 -3.37784128e+05 -4.31991133e+05
-6.39994381e+05 -1.57510704e+05 1.44451878e+04 -1.57790391e+03
1.56485432e+05 -1.77390173e+05 2.80924552e+04 6.55820265e+04
-2.12134601e+05 -1.68225625e+06 5.08980698e+05 -2.56252471e+03
1.83807279e+04 4.70898042e+04 -2.63547711e+04 -1.45357074e+05
4.16188224e+04 1.62443432e+05 6.69341672e+04 -1.74392449e+04
-1.10806073e+06 -3.52160167e+05 2.94122901e+04 1.76792326e+05
4.09475312e+04 -1.51544335e+05 -1.77434670e+05 -6.85071467e+04]
[-5.10054949e+04 -5.65496490e+04 5.67473755e+04 -1.42590924e+05
5.42021127e+04 5.26120231e+04 -1.01820159e+05 -6.71873626e+04
-5.38730709e+04 1.60635415e+04 4.57578195e+04 5.17286230e+04
8.86026801e+04 4.84257735e+04 6.09969539e+04 -1.29694880e+03
3.27239736e+04 -2.21604373e+05 8.77453221e+04 5.51509427e+04
5.20649119e+04 -3.57433220e+04 6.99499132e+04 3.55753820e+04
6.33678161e+04 1.31702749e+04 9.74439389e+04 5.54791666e+04
-1.32044166e+05 -8.93866186e+04 6.54060304e+04 2.26663892e+04
5.88516390e+04 2.57688353e+04 8.07290994e+04 8.26554803e+04]
[-3.46723239e+03 -1.10041242e+04 5.25100193e+03 -4.90386445e+03
5.77675087e+03 3.32696918e+03 4.07105942e+02 -1.47808495e+04
-3.22166755e+03 -3.54314644e+03 4.71949247e+03 4.06747669e+03
1.47413229e+03 -1.54534046e+03 4.92266467e+03 9.32914628e+03
3.34449101e+03 -4.44297634e+03 -3.69174260e+03 5.42764924e+03
5.00144372e+03 3.74038559e+03 -6.62745011e+03 3.46859451e+03
3.87876713e+03 4.71016459e+03 -6.17150339e+03 3.07255724e+03
-1.26321811e+04 3.67448487e+03 5.27422121e+03 2.99551671e+03
4.38463829e+03 3.56486760e+03 -1.03413346e+02 -2.16638346e+03]
[ 1.67075875e+04 6.76734457e+04 -9.40921221e+03 -5.08087614e+04
-1.19651816e+04 -7.79813745e+03 -3.63419209e+04 -4.09654465e+02
-3.94254902e+04 5.21059746e+04 -1.50075494e+04 -3.37647427e+04
9.81578814e+03 2.46695500e+04 -6.30943631e+03 2.36314964e+04
-1.27076028e+04 -1.14958063e+05 3.70461020e+04 -1.59494007e+04
-1.93965293e+04 -2.69146775e+04 2.14988289e+04 -2.74476012e+04
-1.72334213e+04 -2.46556152e+03 3.36895129e+04 -1.33812961e+04
1.59328360e+04 -8.63976970e+04 -1.28600274e+04 3.35636047e+04
-8.26513052e+03 -2.08422207e+04 2.52689590e+04 5.09456590e+04]
[-9.85123436e+03 7.49656354e+04 -3.89247955e+04 -1.20380271e+05
-4.21570507e+04 -3.78079491e+04 -1.22403974e+05 -3.83184335e+04
-9.61252517e+04 4.80334326e+04 -5.14503112e+04 -8.39683117e+04
2.38575900e+04 3.46511968e+04 -4.21371555e+04 -4.37458838e+03
-4.30253691e+04 -2.18898978e+05 2.60427290e+04 -5.00600123e+04
-6.10212451e+04 -8.99617585e+04 4.32666776e+04 -6.65726722e+04
-6.18483215e+04 -4.53251584e+04 6.83478180e+04 -5.05868316e+04
-1.57616214e+04 -1.72145608e+05 -4.49933454e+04 2.74289349e+04
-4.59165667e+04 -6.13667074e+04 7.49355278e+04 1.00605974e+05]
[-1.52069016e+05 -2.73667693e+05 -5.97387459e+04 -3.27346994e+05
-3.89290793e+04 -1.36244352e+05 -3.22727113e+05 -7.34647144e+05
-3.40095786e+05 -4.60377468e+05 -1.54753799e+05 -2.42320660e+05
6.56065243e+04 -2.47667083e+04 -1.49944854e+05 -1.82998371e+05
-1.38210723e+05 -3.71617973e+05 -1.91524120e+05 -1.07939837e+05
-1.68423817e+05 -2.56082826e+05 5.64206167e+04 -1.58258652e+05
-2.15568072e+05 -2.35112971e+05 9.71787642e+04 -1.91416341e+05
-3.87294879e+05 -3.85442984e+05 -1.10642927e+05 -5.06051957e+04
-1.64261879e+05 -1.61464183e+05 4.04505862e+05 3.38337947e+05]
[-3.56003665e+05 -4.15425061e+05 -2.13631695e+05 -7.18747691e+05
-1.86362165e+05 -3.59291578e+05 -1.14305654e+06 -1.71136369e+06
-7.37309128e+05 -8.00511674e+05 -3.54035817e+05 -5.94372432e+05
3.83565102e+05 2.83418608e+05 -4.62247727e+05 -7.37120164e+05
-2.50766805e+05 -9.11688866e+05 -5.86791638e+05 -3.07176593e+05
-4.79199554e+05 -6.68667397e+05 2.87055075e+05 -3.03627574e+05
-6.27193623e+05 -7.95405265e+05 5.11709888e+05 -5.01549749e+05
-1.10638957e+06 -9.65085368e+05 -3.29186214e+05 -5.25163725e+05
-5.29295953e+05 -3.81959081e+05 1.17970473e+06 9.49458097e+05]
[-7.71159786e+05 4.32734712e+05 -8.85920294e+05 -1.67338129e+06
-8.17394791e+05 -1.14304128e+06 -2.38655364e+06 -1.83289918e+06
-1.76182875e+06 -1.04530187e+06 -1.18137965e+06 -1.61758150e+06
8.63642217e+05 6.46940533e+05 -1.35099651e+06 -1.54870950e+06
-9.90287326e+05 -2.18921574e+06 -2.85765082e+05 -1.10559835e+06
-1.34817793e+06 -1.60476373e+06 1.14031414e+06 -1.07862299e+06
-1.58678668e+06 -1.82454053e+06 1.61944024e+06 -1.37849073e+06
-1.80404982e+06 -2.15484092e+06 -1.08791842e+06 -9.03814478e+05
-1.41613651e+06 -1.32634585e+06 2.26924007e+06 2.08759279e+06]
[-2.24922218e+06 1.52371046e+06 -3.36700422e+06 -3.02095792e+06
-3.31622871e+06 -3.39321038e+06 -3.44794241e+06 6.69401457e+05
-3.19173937e+06 -7.02373684e+05 -3.50688252e+06 -3.98265245e+06
4.98774893e+05 2.98206966e+05 -3.72851499e+06 -2.69328006e+06
-3.37454260e+06 -3.61739347e+06 5.78728940e+04 -3.49494475e+06
-3.70053699e+06 -4.06322348e+06 1.68539158e+06 -3.58321874e+06
-3.79162675e+06 -2.48524546e+06 2.33609572e+06 -3.62127966e+06
-3.32497247e+05 -3.30481643e+06 -3.53276254e+06 -2.09424035e+06
-3.70210941e+06 -3.89960918e+06 2.57630483e+06 2.60455654e+06]
[-3.36934555e+06 3.38728809e+06 -6.69938036e+06 -3.88696964e+06
-6.79295019e+06 -6.20932771e+06 -5.30489695e+06 5.57605445e+06
-4.18547904e+06 8.43806942e+05 -6.44056055e+06 -6.84786691e+06
-2.52708640e+05 -4.52385344e+05 -6.76903685e+06 -3.10192267e+06
-6.26629472e+06 -4.99737373e+06 6.49247764e+05 -6.79081985e+06
-6.81391913e+06 -6.96015791e+06 2.83354410e+06 -6.73938112e+06
-6.60768817e+06 -3.38862737e+06 3.44900743e+06 -6.40100699e+06
2.34603606e+06 -4.54266561e+06 -6.79159039e+06 -2.58150295e+06
-6.56971143e+06 -6.97990680e+06 2.22916889e+06 2.88304499e+06]
[-5.53053673e+06 4.52444139e+06 -1.19241169e+07 -5.99880865e+06
-1.21982977e+07 -1.09094281e+07 -8.49083805e+06 1.16035821e+07
-6.30604732e+06 2.24350576e+06 -1.16476904e+07 -1.14735451e+07
-1.95761175e+06 -2.75057109e+06 -1.15047489e+07 -4.49062603e+06
-1.12361231e+07 -8.05880796e+06 1.38290332e+06 -1.21304913e+07
-1.18959987e+07 -1.13109682e+07 3.98723099e+06 -1.19163143e+07
-1.11364076e+07 -5.87157670e+06 4.05248949e+06 -1.09155913e+07
2.95496073e+06 -6.86172404e+06 -1.17932266e+07 -3.50033014e+06
-1.12457529e+07 -1.20473503e+07 5.71514407e+05 2.25682283e+06]
[-5.83414091e+06 7.38692497e+06 -1.72901891e+07 -6.01782512e+06
-1.79085099e+07 -1.51850412e+07 -1.02921479e+07 1.85780937e+07
-6.51139913e+06 6.12290853e+06 -1.61288981e+07 -1.52722336e+07
-4.86133639e+06 -5.36062790e+06 -1.61655593e+07 -4.16879936e+06
-1.56645760e+07 -9.04916703e+06 3.82421964e+06 -1.74078177e+07
-1.68286564e+07 -1.33982831e+07 5.37972397e+06 -1.67055920e+07
-1.52457617e+07 -6.89966096e+06 4.24020297e+06 -1.50419760e+07
4.35058172e+06 -6.86919651e+06 -1.68395308e+07 -1.71970468e+06
-1.54976861e+07 -1.63939294e+07 -1.80671169e+06 1.66198134e+06]
[-8.80458799e+06 1.85203275e+06 -2.08499695e+07 -8.66626786e+06
-2.12594939e+07 -1.85072928e+07 -8.82584513e+06 2.12262519e+07
-7.24159600e+06 4.85251542e+06 -1.98722153e+07 -1.74873178e+07
-7.84349505e+06 -8.84893784e+06 -1.89174600e+07 -2.64040174e+06
-1.98045994e+07 -1.13329922e+07 5.17129040e+06 -2.04569452e+07
-1.96357801e+07 -1.31709970e+07 3.18543688e+06 -2.06712134e+07
-1.73124866e+07 -4.51745741e+06 1.33115015e+06 -1.77878370e+07
3.81949016e+06 -5.08010850e+06 -2.00412940e+07 5.60735176e+04
-1.78601340e+07 -1.94337176e+07 -5.24043490e+06 -1.58536171e+06]
[-9.40666947e+06 1.17999642e+05 -1.91047390e+07 -8.82331319e+06
-1.94789148e+07 -1.64282933e+07 -4.52888992e+06 2.60044299e+07
-6.18283115e+06 7.47559473e+06 -1.75657914e+07 -1.39835531e+07
-8.30306482e+06 -8.94832391e+06 -1.55683974e+07 1.90853660e+06
-1.82138024e+07 -1.06439662e+07 7.79090628e+06 -1.81409259e+07
-1.64989825e+07 -1.01209211e+07 2.78220294e+06 -1.86875126e+07
-1.36017051e+07 6.99533539e+05 5.01139981e+05 -1.49753527e+07
7.37566718e+06 -2.32115428e+06 -1.77855966e+07 2.98057737e+06
-1.44893197e+07 -1.69277330e+07 -7.47253644e+06 -2.99736304e+06]
[-1.01260248e+07 -2.96749367e+06 -1.18889721e+07 -1.24816710e+07
-1.19875311e+07 -1.04845942e+07 -2.51865276e+06 2.45400169e+07
-7.00713885e+06 7.78012577e+06 -1.04834598e+07 -7.50923286e+06
-3.36272188e+06 -5.80536826e+06 -8.35173362e+06 4.90972948e+06
-1.26542352e+07 -1.45125720e+07 8.72510506e+06 -1.09336863e+07
-9.06240901e+06 -5.80868865e+06 3.31163200e+06 -1.24023159e+07
-6.65601996e+06 6.18848824e+06 2.95071783e+06 -8.67086864e+06
5.84391269e+06 -1.73726769e+06 -1.07689082e+07 3.16686464e+06
-7.64292318e+06 -1.08590824e+07 -6.91076251e+06 -2.11791195e+06]
[-8.56837949e+06 -6.32943570e+06 -2.41750926e+06 -1.22561503e+07
-2.35045704e+06 -2.21205039e+06 1.47046651e+06 1.55413977e+07
-5.87991138e+06 5.79003705e+06 -7.57792169e+05 6.88725098e+05
6.91780669e+05 -2.16058983e+06 4.03173688e+05 7.21914733e+06
-3.90988435e+06 -1.38691564e+07 6.76851845e+06 -1.48406422e+06
1.90113168e+05 1.39303190e+06 2.05585440e+06 -3.18083170e+06
1.42996134e+06 1.03083537e+07 2.72355470e+06 -5.50626927e+05
4.01132005e+06 1.32823828e+06 -1.71482619e+06 3.64969560e+06
5.81365774e+05 -1.99195748e+06 -5.65165799e+06 -2.05602105e+06]
[-3.96713138e+06 -8.42614188e+06 5.03703649e+06 -7.83296999e+06
4.69012317e+06 4.91644034e+06 1.73410213e+06 1.97028763e+06
-1.45364673e+06 6.32121535e+06 7.43139759e+06 6.46769374e+06
3.02750098e+06 2.40649558e+06 6.83670419e+06 8.76649539e+06
4.72215307e+06 -9.98405327e+06 5.72377058e+05 6.01064305e+06
6.53192930e+06 5.83788135e+06 -7.84093490e+05 4.97535786e+06
6.31059810e+06 1.14449780e+07 1.10962410e+06 5.79591635e+06
1.38231607e+06 3.01485463e+06 5.46968139e+06 4.40994208e+06
6.13034212e+06 5.66421075e+06 -1.95714811e+06 -1.40382049e+06]
[-1.89288730e+06 -1.10489498e+07 1.03202065e+07 -5.42699434e+06
9.46145040e+06 9.72262283e+06 -4.03918973e+06 -1.26780061e+07
5.38288154e+05 4.13165735e+06 1.22687968e+07 9.10806763e+06
6.48055799e+06 7.61465524e+06 9.92567051e+06 1.46358824e+06
1.06951811e+07 -9.35557718e+06 -1.06547516e+07 1.13242065e+07
9.88082323e+06 4.14036680e+06 -3.77932464e+06 1.03242259e+07
8.36186938e+06 7.27859100e+06 5.88472760e+05 9.35530455e+06
-5.69027330e+06 -1.46725288e+06 1.04011356e+07 -2.76209230e+06
8.51767234e+06 9.75081534e+06 3.79349027e+06 4.11316548e+05]
[-1.32730296e+06 -8.70285486e+06 1.04390308e+07 -2.54242256e+06
9.55869204e+06 9.94142698e+06 -7.32993910e+06 -1.98364707e+07
1.08494765e+06 -1.31730876e+05 1.22927376e+07 8.63748725e+06
5.67281408e+06 7.78451635e+06 8.65408924e+06 -8.13525573e+06
1.14354381e+07 -5.42740300e+06 -1.73431437e+07 1.16195057e+07
9.36739204e+06 9.67940043e+05 -5.50331395e+06 1.11907097e+07
7.52917985e+06 6.12377975e+05 -1.54157421e+06 8.86098527e+06
-1.13421414e+07 -4.51637381e+06 1.03763573e+07 -1.05755346e+07
7.38204284e+06 9.80262281e+06 5.36470017e+06 3.17577319e+05]
[-3.77132368e+06 -3.04717274e+06 3.03619398e+06 -3.30130793e+06
2.82778873e+06 2.27155817e+06 -9.35576578e+06 -2.09311847e+07
-3.77555476e+06 -9.63479581e+06 4.34056549e+06 1.33824214e+06
5.38298374e+05 1.51778751e+06 2.25463651e+05 -1.96026156e+07
3.49710683e+06 -2.93787481e+06 -1.64800953e+07 3.79497738e+06
2.04635581e+06 -4.16812416e+06 -5.54891318e+06 4.00298430e+06
5.40006820e+05 -9.12521245e+06 -4.44201380e+06 1.29241059e+06
-1.60839242e+07 -8.17339519e+06 2.63451189e+06 -1.70284255e+07
7.07360800e+04 2.15303355e+06 2.56682415e+06 -9.58393940e+05]
[-4.39535990e+06 4.56403243e+06 -6.20560962e+06 -4.18975760e+06
-6.18517814e+06 -5.99893850e+06 -1.22036537e+07 -1.68073479e+07
-7.44848934e+06 -1.34570929e+07 -5.25708933e+06 -7.49494762e+06
-2.44710691e+06 -1.59979582e+06 -9.44607353e+06 -2.55576364e+07
-4.79207882e+06 -2.81805386e+06 -1.12681195e+07 -6.13294216e+06
-7.35703372e+06 -9.25482428e+06 -1.75033443e+06 -4.75730669e+06
-8.19686602e+06 -1.69882903e+07 -3.13645779e+06 -7.17169525e+06
-1.36342160e+07 -9.99259511e+06 -6.88412630e+06 -1.64803159e+07
-8.36534706e+06 -6.38766020e+06 3.07642820e+06 1.59403429e+06]
[-2.93537171e+06 1.01547646e+07 -1.19538065e+07 -3.91792234e+06
-1.20742151e+07 -1.08144544e+07 -1.09844761e+07 -1.35200934e+07
-8.58996493e+06 -1.24330355e+07 -1.11160602e+07 -1.35447033e+07
-4.29767313e+06 -1.98353112e+06 -1.51721946e+07 -2.34368173e+07
-9.44300696e+06 -3.48463718e+06 -5.07661662e+06 -1.26363995e+07
-1.35854958e+07 -1.11086270e+07 1.56435257e+06 -1.02152613e+07
-1.42244603e+07 -1.92502390e+07 -1.06207584e+06 -1.24624234e+07
-7.66756104e+06 -9.93660215e+06 -1.28006805e+07 -1.07543053e+07
-1.35830699e+07 -1.17257905e+07 4.44879865e+06 4.55207779e+06]
[-1.75709107e+06 8.97863456e+06 -1.36078841e+07 -3.99217445e+06
-1.33293637e+07 -1.26176484e+07 -7.81241609e+06 -1.08644981e+07
-7.84823089e+06 -1.19683197e+07 -1.31031215e+07 -1.59286642e+07
-4.70976840e+06 -2.22536144e+06 -1.70729947e+07 -1.88473758e+07
-1.13714674e+07 -3.57774317e+06 -6.25933024e+05 -1.45816130e+07
-1.57071068e+07 -1.14743914e+07 2.39714012e+06 -1.22318982e+07
-1.64853296e+07 -1.83744722e+07 3.03689594e+05 -1.45069379e+07
-2.00625020e+06 -7.41268322e+06 -1.44372622e+07 -6.96953406e+06
-1.54563396e+07 -1.37303953e+07 4.12175166e+06 4.46944406e+06]
[-3.61254985e+05 3.59395665e+06 -1.11223652e+07 -3.41487703e+06
-1.05923153e+07 -1.06375224e+07 -3.24376717e+06 -6.16848281e+06
-4.34799614e+06 -9.09202107e+06 -1.08781969e+07 -1.30890453e+07
-3.99105721e+06 -1.90801802e+06 -1.39348561e+07 -1.10477309e+07
-9.72893278e+06 -2.37733139e+06 3.26133134e+06 -1.20831989e+07
-1.30390388e+07 -8.31687544e+06 2.50699435e+06 -1.03555727e+07
-1.35586565e+07 -1.27500159e+07 7.74219738e+05 -1.21334975e+07
4.20028761e+06 -2.76401282e+06 -1.18292174e+07 -1.38099709e+06
-1.27730188e+07 -1.14965810e+07 3.06705331e+06 2.97252675e+06]
[-8.81705304e+05 -1.04828617e+06 -8.43511031e+06 -3.22255731e+06
-8.06077982e+06 -7.88433483e+06 -3.31213632e+05 4.33520925e+05
-1.73263609e+06 -3.56089174e+06 -7.74343089e+06 -9.14121907e+06
-3.29690501e+06 -1.30678823e+06 -9.94338866e+06 -4.11182283e+06
-7.27398981e+06 -1.47727388e+06 3.85815894e+06 -8.86448071e+06
-9.47741873e+06 -5.56041603e+06 1.88821318e+06 -7.83198903e+06
-9.61549479e+06 -6.36917197e+06 7.19277224e+05 -8.85609574e+06
1.01961160e+07 9.26262826e+05 -8.78322793e+06 2.48283988e+06
-9.41965931e+06 -8.59088483e+06 5.29139003e+05 5.77368418e+05]
[-1.39901914e+06 -2.17419546e+06 -5.14291130e+06 -2.84305238e+06
-4.91758936e+06 -4.73639739e+06 1.74555579e+06 3.97018431e+06
-5.35777946e+05 -5.89826572e+05 -4.65330614e+06 -5.36536499e+06
-1.91467151e+06 -5.27938436e+05 -5.80470654e+06 -2.15365805e+05
-4.54250900e+06 -1.24399844e+06 3.44727282e+06 -5.20953858e+06
-5.46108175e+06 -3.07090884e+06 1.26040326e+06 -4.81365321e+06
-5.62038152e+06 -2.12131543e+06 7.83281346e+05 -5.28409173e+06
1.06974758e+07 2.57815218e+06 -5.28657854e+06 3.45511263e+06
-5.71349129e+06 -5.42136140e+06 -1.30687100e+06 -1.02372254e+06]
[-9.41288130e+05 -1.64801631e+06 -2.77247642e+06 -9.87602401e+05
-2.72543572e+06 -2.38533916e+06 2.25325587e+06 3.97009493e+06
4.74168605e+05 1.06565428e+06 -2.24884659e+06 -2.32039022e+06
-1.93750599e+06 -8.09337217e+05 -2.69575260e+06 1.79453601e+06
-2.35456770e+06 5.23293120e+04 2.09073457e+06 -2.62197014e+06
-2.53762419e+06 -1.07707070e+06 3.48068268e+04 -2.47520674e+06
-2.46609587e+06 3.34057207e+05 -5.18665914e+05 -2.54538233e+06
7.70450974e+06 2.40843072e+06 -2.73127008e+06 2.86346493e+06
-2.69765910e+06 -2.66297771e+06 -2.28112823e+06 -1.82924826e+06]
[ 5.35957627e+04 2.50503184e+05 -6.98342021e+05 -3.61975745e+05
-7.30498316e+05 -5.03899658e+05 1.26901273e+06 1.09193357e+06
5.14191144e+05 1.14496934e+06 -2.50226535e+05 -2.46509893e+05
-9.84743659e+05 -4.74509825e+05 -4.14568711e+05 1.67124783e+06
-5.06406754e+05 -4.08402163e+05 1.81470747e+06 -6.23949470e+05
-4.84052805e+05 6.42719047e+05 -2.15977636e+05 -5.16499050e+05
-3.93705512e+05 9.63028548e+05 -5.61735644e+05 -4.47693279e+05
1.60756707e+06 1.13909199e+06 -5.95122591e+05 2.11191480e+06
-4.52762588e+05 -4.72999687e+05 -1.25232711e+06 -9.03343434e+05]
[-2.20715671e+05 -4.28050391e+04 -3.05467816e+04 -8.37741107e+05
-9.09467011e+03 -6.03665500e+04 -1.74964146e+05 -3.67215842e+05
-3.71528102e+05 8.88185234e+02 -3.56712975e+04 -5.68947421e+04
8.04649104e+04 1.25943906e+04 -1.66176381e+04 4.32430268e+04
-1.31203550e+05 -1.13976941e+06 4.17763908e+05 -4.98303691e+04
-5.38331610e+04 3.33393115e+04 -5.58992386e+04 -1.07764945e+05
-4.93788408e+04 2.67648205e+04 1.43600416e+04 -3.99101685e+04
-5.41958496e+05 -2.71036831e+05 -1.50239037e+04 2.61277337e+05
-3.83409765e+04 -1.44434548e+05 -1.52995255e+05 -1.08737456e+05]
[-1.13768334e+05 -1.08823411e+05 -1.12282091e+04 -2.75441912e+05
-5.06334828e+03 -2.85321711e+04 -1.68131676e+05 -1.23797672e+05
-1.39207736e+05 -6.78484222e+04 -4.44784145e+04 -5.27090513e+04
6.47793066e+04 1.36803935e+04 -2.62846562e+04 -6.68457976e+04
-5.42147512e+04 -3.69845563e+05 7.00320305e+04 -2.13507059e+04
-4.18544190e+04 -1.02004556e+05 2.02121558e+04 -5.03675067e+04
-3.75655666e+04 -6.63939397e+04 6.80520674e+04 -3.02789686e+04
-1.78281684e+05 -1.61945346e+05 -8.73045018e+03 -1.27610964e+04
-3.77902076e+04 -6.96504715e+04 3.41828563e+04 3.77397004e+04]
[-5.50527677e+02 1.45642010e+03 -1.14886196e+03 -9.84555667e+02
-1.12694996e+03 -1.14579056e+03 -2.69924321e+03 2.44505570e+03
-8.32990919e+02 1.23500361e+03 -8.59478103e+02 -1.11864503e+03
-1.90335934e+02 -3.85598754e+02 -1.24244901e+03 -1.47395781e+02
-9.29923150e+02 -1.54854080e+03 1.62109490e+03 -1.11143022e+03
-1.21761584e+03 8.10107405e+01 2.36749800e+03 -9.61817474e+02
-1.21294819e+03 4.85893804e+02 1.84560776e+03 -1.04599859e+03
-8.71063083e+02 1.51235387e+01 -1.13465241e+03 5.54677328e+02
-1.13517243e+03 -1.13908415e+03 2.57896029e+02 2.06269953e+03]
[-7.96111845e-01 5.70792021e-02 4.26165255e-01 9.82255076e-01
-5.30046477e-01 5.42295688e-01 -5.28967153e-02 -1.68554906e-01
-4.98611999e-01 6.78367760e-01 3.84686010e-02 -7.72120925e-01
-7.73273623e-03 -2.27466481e-02 7.38095713e-01 -9.73036179e-01
6.57795667e-02 7.79219821e-01 5.27514168e-02 -7.67999147e-01
-2.76223906e-01 -3.59570881e-01 -2.09891635e-01 -8.54666366e-01
8.74615668e-01 5.69708000e-01 8.27866109e-01 6.25074411e-01
4.74655830e-01 -7.80248650e-01 1.45172985e-01 -9.91087981e-01
7.45955354e-01 -1.91644886e-01 5.01559889e-01 -9.78181156e-01]
[ 2.16928249e+04 1.04368798e+05 -3.17133563e+04 -8.17403662e+04
-3.75114398e+04 -2.37070441e+04 -1.08012963e+05 -2.98841362e+04
-5.88738412e+04 8.70747910e+04 -2.58034080e+04 -6.31376065e+04
1.12075704e+04 2.19559947e+04 -3.59379949e+04 8.39040423e+03
-2.84963963e+04 -1.79366118e+05 4.76722665e+04 -4.49834762e+04
-5.75398376e+04 -6.61798188e+04 3.94145695e+04 -4.75021943e+04
-5.08032087e+04 -3.53275492e+04 4.37679960e+04 -3.79816526e+04
-6.54638178e+04 -1.61912731e+05 -3.46027876e+04 2.62926786e+04
-3.61321578e+04 -4.69410043e+04 4.49531427e+04 7.73702653e+04]
[-4.36315734e+04 1.12758828e+04 -1.07712713e+05 -1.59023897e+05
-1.11728901e+05 -1.19311326e+05 -3.05544661e+05 -1.72891266e+05
-1.45481803e+05 4.50771208e+03 -1.42688343e+05 -1.88081556e+05
1.05481677e+05 8.05948846e+04 -1.39267982e+05 -1.91180326e+04
-1.04294828e+05 -2.76564720e+05 3.95061973e+04 -1.41395374e+05
-1.71149864e+05 -1.91815672e+05 1.53972061e+05 -1.32694416e+05
-1.81790386e+05 -1.11294300e+05 2.07452843e+05 -1.48171800e+05
-1.50156795e+05 -2.69469389e+05 -1.25848360e+05 1.64273271e+04
-1.49849715e+05 -1.44774574e+05 3.06084169e+05 2.93642567e+05]
[-2.69159502e+05 -9.70193138e+04 -2.64784442e+05 -3.96841484e+05
-2.83114764e+05 -3.14594442e+05 -9.54805995e+05 -4.36587517e+05
-3.49691740e+05 -1.49907991e+05 -2.87691084e+05 -3.74521149e+05
2.69425772e+05 1.59179470e+05 -3.52939624e+05 -5.68910272e+05
-2.25640137e+05 -5.30030983e+05 -2.16395574e+05 -3.26574209e+05
-3.82031811e+05 -5.72031075e+05 2.78245102e+05 -2.72203712e+05
-4.01943107e+05 -4.70253426e+05 4.40305922e+05 -3.50949115e+05
-5.02743216e+05 -7.00077823e+05 -3.06207571e+05 -5.02532885e+05
-3.98299155e+05 -3.26521066e+05 6.48132472e+05 5.93951019e+05]
[-1.18194963e+06 4.29497784e+05 -1.11195625e+06 -1.39769593e+06
-1.11378688e+06 -1.23622306e+06 -2.25649797e+06 3.15341496e+05
-1.43447758e+06 -4.31156083e+05 -1.24669727e+06 -1.36089397e+06
6.80800456e+05 3.29683084e+05 -1.33851012e+06 -1.89494959e+06
-1.15378915e+06 -1.67376250e+06 -2.99018136e+05 -1.21006567e+06
-1.29852452e+06 -1.87722411e+06 9.11312603e+05 -1.19741936e+06
-1.34131495e+06 -1.40598323e+06 1.33479220e+06 -1.29370436e+06
-5.77990252e+05 -1.77416239e+06 -1.19242348e+06 -1.55647404e+06
-1.37978883e+06 -1.39429676e+06 1.32185457e+06 1.30215893e+06]
[-2.96300357e+06 1.31976392e+06 -4.32357055e+06 -2.77042102e+06
-4.29549382e+06 -4.19223451e+06 -3.00197971e+06 3.56487069e+06
-3.01786413e+06 -3.52496062e+05 -4.31060024e+06 -4.46963819e+06
-3.87326641e+05 -5.48311899e+05 -4.45228220e+06 -2.88137755e+06
-4.33072634e+06 -2.95130557e+06 -1.46942555e+05 -4.28272072e+06
-4.31488129e+06 -4.92649267e+06 1.17746485e+06 -4.50056666e+06
-4.21227311e+06 -2.31284912e+06 1.64485981e+06 -4.27131905e+06
1.99213799e+06 -2.86331213e+06 -4.36298012e+06 -2.68675541e+06
-4.36173700e+06 -4.75820907e+06 9.16046500e+05 1.27818696e+06]
[-4.33872501e+06 3.03789198e+06 -8.35250219e+06 -3.56265341e+06
-8.59924507e+06 -7.50884032e+06 -5.35802269e+06 1.03455115e+07
-3.99748748e+06 1.81244715e+06 -7.95213013e+06 -7.85447290e+06
-1.22205591e+06 -1.39813840e+06 -8.07761102e+06 -4.26622344e+06
-7.80372869e+06 -4.32632595e+06 -2.85394821e+05 -8.27061619e+06
-8.04718960e+06 -8.71441644e+06 2.25194171e+06 -8.34927497e+06
-7.50136600e+06 -3.32762530e+06 2.76542082e+06 -7.56154361e+06
5.42652147e+06 -4.47354052e+06 -8.26220988e+06 -4.28103995e+06
-7.85510310e+06 -8.51566502e+06 -2.38699715e+05 8.01778976e+05]
[-6.22556406e+06 4.24191852e+06 -1.39673591e+07 -4.19687625e+06
-1.45004469e+07 -1.23544654e+07 -8.19795849e+06 1.70388491e+07
-5.51696043e+06 3.54309545e+06 -1.31440373e+07 -1.25880352e+07
-3.61654258e+06 -3.94289873e+06 -1.31962873e+07 -5.94395501e+06
-1.28110455e+07 -5.37521349e+06 -9.30776494e+05 -1.39034665e+07
-1.33135994e+07 -1.31360246e+07 2.74523225e+06 -1.37059095e+07
-1.21768575e+07 -5.94394983e+06 2.48578277e+06 -1.23048469e+07
7.77285138e+06 -6.10410842e+06 -1.37202443e+07 -5.97275537e+06
-1.28232587e+07 -1.37602167e+07 -3.19697669e+06 -8.46085815e+05]
[-8.74873839e+06 2.87471455e+06 -1.93553698e+07 -5.24178644e+06
-1.99244930e+07 -1.70758613e+07 -9.10307052e+06 2.52439088e+07
-6.23442971e+06 4.55043424e+06 -1.82446019e+07 -1.59268374e+07
-6.90857810e+06 -8.02347507e+06 -1.75506476e+07 -5.90821882e+06
-1.81560293e+07 -6.17790267e+06 1.55541623e+06 -1.88398033e+07
-1.76733577e+07 -1.51279303e+07 2.68703247e+06 -1.88697043e+07
-1.55930316e+07 -5.97761567e+06 1.38827205e+06 -1.64055868e+07
8.18324390e+06 -5.40325684e+06 -1.85888298e+07 -5.50721252e+06
-1.66360153e+07 -1.82345934e+07 -6.97115620e+06 -3.29853391e+06]
[-1.19656488e+07 -1.89741335e+06 -1.98781170e+07 -8.36578719e+06
-2.03784083e+07 -1.75214990e+07 -7.22065845e+06 2.68166274e+07
-7.17278992e+06 5.03787172e+06 -1.85882614e+07 -1.48317599e+07
-8.44227153e+06 -1.01196249e+07 -1.68889521e+07 -3.44905584e+06
-1.94246881e+07 -9.58095164e+06 2.69417338e+06 -1.87633176e+07
-1.72560007e+07 -1.30128578e+07 2.59982232e+05 -1.97711583e+07
-1.44844162e+07 -1.59467357e+06 -1.26821686e+06 -1.60783425e+07
5.66406072e+06 -4.06286427e+06 -1.86240011e+07 -3.78161269e+06
-1.59341938e+07 -1.83102518e+07 -1.07495805e+07 -6.56927694e+06]
[-1.34985863e+07 -4.65673219e+06 -1.56846745e+07 -1.13824036e+07
-1.58072899e+07 -1.41289490e+07 -2.70318155e+06 2.82867780e+07
-7.81361458e+06 5.98044561e+06 -1.41545519e+07 -9.50106284e+06
-7.88741175e+06 -1.07870227e+07 -1.14374670e+07 8.71070549e+05
-1.67344569e+07 -1.18706422e+07 5.81967858e+06 -1.40992519e+07
-1.17835309e+07 -7.88247662e+06 -6.54559410e+05 -1.60030207e+07
-8.90378332e+06 4.50922435e+06 -2.17857949e+06 -1.17420007e+07
3.40569160e+06 -2.02629179e+06 -1.41811776e+07 -1.72797797e+06
-1.07255714e+07 -1.41930240e+07 -1.34489762e+07 -8.09006641e+06]
[-1.30694896e+07 -7.31919212e+06 -5.99283294e+06 -1.53227067e+07
-5.80686527e+06 -5.82784967e+06 1.67302996e+06 2.33721910e+07
-8.48570511e+06 5.69566491e+06 -3.61800436e+06 -1.35245220e+05
-3.98752088e+06 -8.28976485e+06 -1.63279499e+06 3.92600393e+06
-8.58375373e+06 -1.61741649e+07 7.35114594e+06 -4.26993776e+06
-1.67483575e+06 1.50426848e+05 -1.02873028e+06 -7.03881861e+06
8.55875245e+05 1.14017594e+07 -1.72834291e+06 -2.88650809e+06
-7.13720240e+05 1.11463094e+05 -4.64345073e+06 -1.04102113e+06
-1.26062909e+06 -5.16970589e+06 -1.39726134e+07 -7.65456576e+06]
[-7.60098933e+06 -7.88665834e+06 4.13810891e+06 -1.14958314e+07
4.29587612e+06 3.72386412e+06 6.84687184e+06 1.34870729e+07
-3.79379144e+06 4.93186789e+06 7.89070647e+06 9.42317323e+06
-1.03922435e+06 -4.62747365e+06 7.53512065e+06 5.49831913e+06
2.06452541e+06 -1.15116508e+07 5.88086036e+06 5.94528045e+06
8.18355089e+06 9.51410474e+06 -2.09233239e+06 3.83427655e+06
9.69207669e+06 1.56218174e+07 -3.00952811e+06 6.46868345e+06
-3.37348339e+06 5.83328684e+06 5.16573026e+06 5.68747748e+05
7.74704670e+06 5.48265050e+06 -1.20983959e+07 -7.23607043e+06]
[-3.24498413e+06 -8.04348314e+06 1.05797881e+07 -6.65477720e+06
1.02025674e+07 1.01456955e+07 3.72633796e+06 6.28638127e+05
4.07400911e+05 5.09505106e+06 1.48797835e+07 1.37906562e+07
2.98155658e+06 1.47442522e+06 1.22084283e+07 3.05050991e+06
1.00534478e+07 -7.77712578e+06 -2.85902217e+06 1.25332510e+07
1.31480914e+07 1.11928183e+07 -3.52048033e+06 1.11031166e+07
1.31346518e+07 1.38136502e+07 -2.47916681e+06 1.17484795e+07
-7.22946172e+06 5.21858554e+06 1.12643487e+07 -1.97370323e+06
1.18702563e+07 1.17832919e+07 -5.92472716e+06 -4.62501864e+06]
[-8.23859802e+04 -6.14996226e+06 1.40445810e+07 -1.06794198e+06
1.29200208e+07 1.38180708e+07 -3.40708703e+06 -9.71191957e+06
3.55243708e+06 5.55516504e+06 1.76415284e+07 1.47775911e+07
6.68361650e+06 7.40838001e+06 1.36038814e+07 -3.91045440e+06
1.50917224e+07 -4.20481538e+06 -1.40672288e+07 1.58851865e+07
1.47377138e+07 7.87519628e+06 -4.20267753e+06 1.52780438e+07
1.35651863e+07 8.05974188e+06 -9.43801689e+05 1.40151435e+07
-1.11791485e+07 2.32424589e+05 1.43851246e+07 -8.40133399e+06
1.26972379e+07 1.44637861e+07 1.75638080e+06 -9.78217872e+05]
[-3.03232820e+05 -2.30832802e+06 1.08574822e+07 1.00688443e+06
9.87907890e+06 1.06077955e+07 -5.47419518e+06 -1.28608440e+07
2.65151606e+06 5.62718270e+05 1.35879503e+07 1.10768159e+07
4.80626079e+06 5.55617651e+06 9.53673247e+06 -1.19652626e+07
1.19314288e+07 -4.40366687e+05 -1.58240101e+07 1.25132042e+07
1.11756868e+07 4.05184023e+06 -4.33895153e+06 1.23905968e+07
9.99342871e+06 1.11286599e+06 -2.12275182e+06 1.05323006e+07
-1.51306004e+07 -2.39538214e+06 1.10287579e+07 -1.32323701e+07
9.04332775e+06 1.10290623e+07 2.57707680e+06 -7.96764846e+05]
[-4.15584045e+05 7.06116133e+06 1.74418051e+06 6.79060302e+05
1.02335268e+06 1.99065098e+06 -7.98453844e+06 -1.21145920e+07
-1.39892248e+06 -4.09439123e+06 4.11215258e+06 1.94553521e+06
1.31936696e+06 2.13910718e+06 -2.11666300e+05 -1.82884446e+07
3.27231258e+06 2.50531368e+05 -1.01998502e+07 2.40523621e+06
1.43568086e+06 -1.55894543e+06 -1.02455714e+06 3.58273507e+06
9.85393231e+05 -7.77359627e+06 -1.18253065e+06 1.70598503e+06
-1.69059062e+07 -6.07596249e+06 1.57759854e+06 -1.42898708e+07
4.61054156e+05 2.21057998e+06 3.18724376e+06 1.63503480e+06]
[-1.29584111e+06 1.25883521e+07 -8.25008125e+06 -1.01892781e+06
-8.81617955e+06 -7.03974430e+06 -1.05024634e+07 -1.01598289e+07
-5.81390194e+06 -8.06247667e+06 -6.34395112e+06 -8.24598436e+06
-2.56666379e+06 -7.70829346e+05 -1.05338390e+07 -2.20716530e+07
-5.68771739e+06 -1.26290998e+06 -5.63903755e+06 -8.44576614e+06
-9.02179929e+06 -7.71839312e+06 1.67738546e+06 -6.09659393e+06
-9.09485883e+06 -1.48526132e+07 -6.28507943e+05 -7.89573880e+06
-1.37427021e+07 -8.96777911e+06 -8.72675195e+06 -1.23703591e+07
-8.95326645e+06 -7.15543279e+06 3.98782347e+06 4.10283298e+06]
[-1.84700484e+06 1.25435569e+07 -1.23576618e+07 -6.75390469e+05
-1.27805765e+07 -1.09817128e+07 -9.27514944e+06 -8.42208607e+06
-7.02575034e+06 -9.69632038e+06 -1.15857793e+07 -1.36074449e+07
-3.67672845e+06 -1.02116874e+06 -1.50046642e+07 -2.03507803e+07
-9.60936924e+06 -7.19243757e+05 -3.79177672e+06 -1.30941111e+07
-1.37424411e+07 -1.04506937e+07 2.92528496e+06 -1.04871747e+07
-1.41408806e+07 -1.67830541e+07 8.62120300e+05 -1.24224396e+07
-5.11668981e+06 -8.57926852e+06 -1.30261473e+07 -9.78623491e+06
-1.34877889e+07 -1.16961896e+07 4.85872003e+06 5.22076430e+06]
[-1.48742550e+06 7.70910167e+06 -1.26727675e+07 -1.21905432e+06
-1.26463643e+07 -1.17761341e+07 -6.83954880e+06 -5.49384788e+06
-5.96541030e+06 -9.85120490e+06 -1.31132331e+07 -1.50097169e+07
-3.24765656e+06 -7.76657304e+05 -1.55255589e+07 -1.57559063e+07
-1.06579318e+07 -4.19976576e+05 -1.05142771e+06 -1.36142896e+07
-1.44861817e+07 -1.10178779e+07 2.79744961e+06 -1.14977200e+07
-1.51500873e+07 -1.50293053e+07 1.86693103e+06 -1.34511100e+07
2.32593397e+06 -6.19833236e+06 -1.33838320e+07 -6.67049661e+06
-1.43162435e+07 -1.28980301e+07 3.80180912e+06 3.60621647e+06]
[-9.98857316e+05 7.36849521e+05 -9.67860357e+06 -2.01865730e+06
-9.31766221e+06 -9.41638340e+06 -1.34713118e+06 -1.35222904e+06
-2.97279176e+06 -7.50969738e+06 -1.04763471e+07 -1.16541119e+07
-3.23059006e+06 -1.06509240e+06 -1.19177107e+07 -8.49848695e+06
-8.76037412e+06 -4.06394075e+05 1.72581195e+06 -1.05500902e+07
-1.12245208e+07 -7.88578778e+06 1.93411575e+06 -9.29613781e+06
-1.16535796e+07 -1.00106149e+07 9.19106221e+05 -1.06632109e+07
8.90399993e+06 -1.91039388e+06 -1.03153682e+07 -1.35798985e+06
-1.12376375e+07 -1.03844994e+07 1.72873166e+06 1.15219103e+06]
[-1.19438032e+06 -1.57363253e+06 -7.26932905e+06 -1.80789855e+06
-7.01990784e+06 -6.80096640e+06 1.99080877e+06 4.41645346e+06
-6.01463977e+05 -1.94673077e+06 -7.13631409e+06 -7.77408509e+06
-2.74721390e+06 -5.75112404e+05 -8.36768206e+06 -2.56448452e+06
-6.29721919e+06 1.83517028e+05 2.86794575e+06 -7.58066997e+06
-7.87843462e+06 -4.94494734e+06 1.67236611e+06 -6.74477341e+06
-8.03313091e+06 -4.74448674e+06 7.74745528e+05 -7.57243035e+06
1.37354263e+07 1.89201533e+06 -7.56760016e+06 2.21105802e+06
-8.12367166e+06 -7.51751427e+06 -6.39323387e+05 -7.79971952e+05]
[-1.35946048e+06 -1.38586897e+06 -5.07026730e+06 -5.91450675e+05
-4.96010421e+06 -4.54998846e+06 3.37453458e+06 6.57079476e+06
2.35225441e+05 4.20689352e+05 -4.84456806e+06 -5.20276703e+06
-2.60030659e+06 -5.06767654e+05 -5.44495191e+06 3.47898911e+05
-4.32768777e+06 1.29221802e+06 1.56430315e+06 -5.04404905e+06
-4.99210019e+06 -3.51475156e+06 7.16165106e+05 -4.67152500e+06
-5.19884724e+06 -1.85806007e+06 -9.15809748e+03 -5.09475901e+06
1.41544287e+07 2.66756097e+06 -5.22129606e+06 2.63397373e+06
-5.49945531e+06 -5.33037215e+06 -2.36388097e+06 -2.10324100e+06]
[-7.70121648e+05 -9.62291629e+05 -2.99717359e+06 4.35846451e+05
-3.04596664e+06 -2.47260002e+06 3.27429695e+06 4.98028737e+06
8.93652230e+05 1.48502508e+06 -2.46107281e+06 -2.56119946e+06
-2.34067979e+06 -6.57495472e+05 -2.85615646e+06 1.67527422e+06
-2.37349272e+06 1.74095209e+06 9.14646146e+05 -2.75516616e+06
-2.59175022e+06 -1.35169112e+06 -3.14888217e+05 -2.59723625e+06
-2.60840743e+06 3.21736668e+05 -8.56241179e+05 -2.69319653e+06
9.92755070e+06 2.73394826e+06 -2.95658727e+06 2.33107231e+06
-2.92366624e+06 -2.83566377e+06 -2.70029952e+06 -2.41537923e+06]
[ 5.69233289e+05 2.79858094e+05 -6.76217116e+05 1.11387526e+06
-7.58948349e+05 -4.04169084e+05 2.14944494e+06 1.68552911e+06
1.30545438e+06 1.18279306e+06 -3.48616662e+05 -2.97312855e+05
-1.20292957e+06 -3.19107509e+05 -4.75701580e+05 1.69703371e+06
-3.31557991e+05 1.58102140e+06 1.12489417e+06 -5.86770080e+05
-4.57271094e+05 6.35902348e+05 -3.14667883e+05 -4.15513630e+05
-3.93438543e+05 8.90143937e+05 -7.53023562e+05 -4.36989379e+05
3.74421800e+06 1.93663961e+06 -6.19164497e+05 1.96089107e+06
-5.32157532e+05 -3.85022175e+05 -1.33549394e+06 -1.18972275e+06]
[ 4.84061417e+04 2.36597781e+04 1.00244492e+05 -3.66104607e+05
1.15541459e+05 6.32603808e+04 2.17756855e+05 -5.16325298e+05
-1.31067008e+05 -1.39501670e+05 -6.45870719e+03 -1.61063912e+04
3.48030332e+04 7.86826638e+04 8.40702465e+04 4.49701105e+04
2.00227593e+04 -5.04849619e+05 2.48758445e+05 6.46078946e+04
6.61937832e+04 1.49729974e+05 -1.69534117e+05 3.72063386e+04
2.99694170e+04 -9.95474283e+04 -1.27968051e+05 5.85660056e+04
-2.13805583e+05 -1.04600441e+05 9.38434026e+04 2.35632797e+05
5.69074476e+04 -1.26615292e+04 -1.40589934e+05 -2.09849682e+05]
[-1.04476802e+05 -2.00898655e+05 -7.57929214e+03 -4.23268802e+05
3.47165730e+04 -9.78725894e+04 -4.80692542e+04 -3.11853239e+05
-2.45277134e+05 -3.91137745e+05 -1.82530523e+05 -1.94334937e+05
3.15305326e+04 -7.20275401e+04 -7.62166226e+04 -1.42251185e+05
-1.52950575e+05 -4.64014501e+05 9.66312739e+04 -4.73251044e+04
-6.69057378e+04 -1.10818037e+05 -3.91776505e+04 -1.16415900e+05
-1.11717169e+05 -2.84483429e+05 -6.33684549e+03 -1.01081857e+05
-2.69955486e+05 -1.91916283e+05 -3.13632747e+04 -8.76743267e+03
-8.67320748e+04 -1.75882553e+05 -9.27667793e+03 -2.38073994e+04]
[-1.89140999e+03 4.99524214e+03 -3.93909106e+03 -3.37523474e+03
-3.86657528e+03 -3.92987752e+03 -9.25459063e+03 8.38084776e+03
-2.85720148e+03 4.23359504e+03 -2.94701133e+03 -3.83484540e+03
-6.54021148e+02 -1.32207981e+03 -4.25896601e+03 -5.07579714e+02
-3.18999975e+03 -5.30595900e+03 5.55565694e+03 -3.81115948e+03
-4.17456411e+03 2.75940518e+02 8.12036278e+03 -3.29588982e+03
-4.16105912e+03 1.66492205e+03 6.33049347e+03 -3.58497961e+03
-2.98398724e+03 4.91853018e+01 -3.88792644e+03 1.89831074e+03
-3.89420973e+03 -3.90523336e+03 8.88175385e+02 7.07467419e+03]
[ 8.51364635e-01 4.02262462e-01 -9.13928765e-01 6.64160557e-01
-1.67613636e-01 -6.91471758e-01 -3.27589214e-01 6.43102484e-01
3.91026728e-01 -4.58783137e-01 6.80641017e-01 -8.56709284e-01
-1.45006154e-01 9.86727948e-02 4.87544302e-01 -4.52280573e-01
2.41819601e-01 -7.88478875e-01 6.93000379e-01 6.57393547e-01
-8.30082632e-01 -5.13604569e-01 -1.78647894e-01 3.24711073e-01
1.02754886e-01 3.71298728e-02 3.30956102e-01 1.72097302e-01
8.82282964e-01 6.99064072e-01 -4.60503500e-01 1.33045516e-01
7.00055868e-01 6.90558351e-01 1.35096284e-01 4.41569252e-01]
[ 1.29101590e+04 5.55177444e+04 -1.77397856e+04 -2.90106951e+04
-2.03248561e+04 -1.13121206e+04 -4.75410687e+04 -3.86481676e+03
-2.31011604e+04 4.37563365e+04 -1.34472877e+04 -2.91805756e+04
1.08746430e+04 1.64332589e+04 -1.84360598e+04 5.26767902e+03
-1.45482632e+04 -7.51377322e+04 3.31022903e+04 -2.34435391e+04
-2.85582326e+04 -2.54324127e+04 1.89428926e+04 -2.41235617e+04
-2.34549840e+04 -1.22206953e+04 2.11106963e+04 -1.74323627e+04
-2.86989284e+04 -6.71324979e+04 -1.88393183e+04 1.24144238e+04
-1.66462466e+04 -2.21167715e+04 1.57127143e+04 3.42562000e+04]
[ 1.01967986e+04 4.02640123e+04 -3.46240164e+04 -7.83246323e+04
-3.73867452e+04 -3.78066895e+04 -1.14540533e+05 -7.20289269e+04
-5.32874428e+04 5.03013858e+04 -3.88841913e+04 -6.63749381e+04
2.68383525e+04 3.38033081e+04 -4.09105411e+04 4.29835146e+04
-2.96968746e+04 -1.48719173e+05 7.16400092e+04 -4.98488556e+04
-6.07975936e+04 -5.34537135e+04 4.91847094e+04 -4.39571808e+04
-6.33677603e+04 -1.82092913e+04 7.11051439e+04 -4.92840868e+04
-6.67820908e+04 -1.07444671e+05 -3.99228618e+04 4.02508560e+04
-4.82485475e+04 -4.54678241e+04 6.65154339e+04 9.13752422e+04]
[-2.50489021e+05 4.84325445e+04 -2.79783892e+05 -1.65617155e+05
-2.94977323e+05 -2.92523076e+05 -5.24660512e+05 2.23537340e+05
-1.81267431e+05 7.01649353e+03 -2.95717432e+05 -2.51230260e+05
8.72501884e+04 -1.76867944e+04 -2.69059453e+05 -4.37410359e+05
-2.42053139e+05 -1.42477199e+05 -1.50323577e+04 -3.10751577e+05
-2.87637426e+05 -4.74596707e+05 1.58118381e+05 -2.52778586e+05
-2.47141873e+05 -3.22540804e+05 2.08316709e+05 -2.64934518e+05
-2.49523134e+04 -4.20814801e+05 -2.82242314e+05 -3.97418430e+05
-2.99020589e+05 -2.93225499e+05 2.46699305e+05 2.51043231e+05]
[-1.41925466e+06 6.18200722e+05 -1.27265165e+06 -1.39830059e+06
-1.34056626e+06 -1.27464324e+06 -2.34630412e+06 1.17580421e+06
-1.46674218e+06 -2.88310796e+04 -1.31686868e+06 -1.37237276e+06
6.56873496e+05 3.66590649e+05 -1.39353742e+06 -2.30361022e+06
-1.24106885e+06 -1.77161627e+06 -4.26993017e+05 -1.30646137e+06
-1.37563476e+06 -2.27486848e+06 7.24301083e+05 -1.33312982e+06
-1.31816608e+06 -1.25476819e+06 1.23101622e+06 -1.29959795e+06
-1.52838529e+04 -2.01343504e+06 -1.28907384e+06 -2.08374925e+06
-1.40986179e+06 -1.53456952e+06 9.74661486e+05 9.83700188e+05]
[-3.50221647e+06 7.17899554e+05 -4.68728571e+06 -2.77956253e+06
-4.74018624e+06 -4.37949519e+06 -2.55379645e+06 5.51619912e+06
-2.96383155e+06 -1.62073245e+05 -4.50063533e+06 -4.52898976e+06
-9.70865412e+05 -9.35543931e+05 -4.64638610e+06 -3.21545210e+06
-4.63157128e+06 -2.62144421e+06 -6.17909053e+05 -4.50427666e+06
-4.44642561e+06 -5.58945698e+06 6.67135417e+05 -4.84181859e+06
-4.21769981e+06 -2.07784253e+06 9.93544232e+05 -4.43411772e+06
4.32665507e+06 -2.62569690e+06 -4.63362279e+06 -3.16410672e+06
-4.54835787e+06 -5.03614925e+06 -4.21318846e+05 1.47189877e+05]
[-4.87904012e+06 3.58742688e+06 -9.42374084e+06 -2.52686699e+06
-9.90721150e+06 -8.12219465e+06 -5.20499195e+06 1.35276484e+07
-3.62108566e+06 3.13380343e+06 -8.44892952e+06 -8.19094254e+06
-2.39232873e+06 -2.09222755e+06 -8.82079643e+06 -5.13820612e+06
-8.41394520e+06 -2.95644375e+06 -1.56766106e+06 -9.23265154e+06
-8.79361473e+06 -9.59104999e+06 1.61291467e+06 -9.08599054e+06
-7.96032018e+06 -3.74288150e+06 1.66136667e+06 -8.10654827e+06
8.90730886e+06 -4.06391807e+06 -9.22331859e+06 -5.30358372e+06
-8.61613661e+06 -9.19597658e+06 -2.80317761e+06 -1.14172691e+06]
[-6.94020151e+06 3.52575589e+06 -1.51539785e+07 -2.43401822e+06
-1.58513235e+07 -1.31467174e+07 -7.56108885e+06 2.16178781e+07
-4.60538113e+06 3.31110554e+06 -1.41061359e+07 -1.29550526e+07
-4.87875464e+06 -5.02192037e+06 -1.41343641e+07 -7.39587492e+06
-1.37578948e+07 -2.11679942e+06 -2.68960341e+06 -1.48569524e+07
-1.39810306e+07 -1.43409621e+07 1.82099054e+06 -1.46251862e+07
-1.25380678e+07 -6.46298021e+06 1.20518941e+06 -1.29968057e+07
1.23888333e+07 -4.69752201e+06 -1.48204436e+07 -7.95238143e+06
-1.36269314e+07 -1.45335281e+07 -6.44879802e+06 -3.58001559e+06]
[-9.97342379e+06 -3.58316400e+04 -1.82109035e+07 -3.84534057e+06
-1.87539516e+07 -1.61354701e+07 -7.19284078e+06 2.71544722e+07
-5.64899207e+06 1.48842524e+06 -1.75636936e+07 -1.46504256e+07
-7.47283192e+06 -8.76507196e+06 -1.64004559e+07 -8.27826765e+06
-1.74804715e+07 -2.84935520e+06 -2.31625493e+06 -1.73903448e+07
-1.59300822e+07 -1.54442003e+07 1.07192383e+05 -1.79072919e+07
-1.39022620e+07 -5.69145638e+06 -9.95853340e+05 -1.53232134e+07
1.17221111e+07 -3.77876221e+06 -1.74481076e+07 -9.62810270e+06
-1.55841871e+07 -1.72762954e+07 -1.11074137e+07 -7.30521955e+06]
[-1.32165569e+07 -3.95892964e+06 -1.75614229e+07 -6.40001594e+06
-1.79866613e+07 -1.59026144e+07 -3.99834223e+06 2.92154788e+07
-6.38541904e+06 2.09514186e+06 -1.66068473e+07 -1.21721532e+07
-8.78110888e+06 -1.06887039e+07 -1.45974959e+07 -5.89911733e+06
-1.78872646e+07 -5.41321679e+06 -3.04613296e+05 -1.61188957e+07
-1.41084901e+07 -1.20044964e+07 -2.13766468e+06 -1.75478732e+07
-1.16298463e+07 -9.08705590e+05 -3.56194114e+06 -1.41206989e+07
7.98253317e+06 -2.11436572e+06 -1.63155383e+07 -8.67169008e+06
-1.38391222e+07 -1.63435218e+07 -1.50988385e+07 -1.05939983e+07]
[-1.48210889e+07 -6.67524728e+06 -1.13591472e+07 -9.80372085e+06
-1.14282959e+07 -1.08130701e+07 1.08090729e+05 2.66265950e+07
-7.55869990e+06 2.39544278e+06 -9.85789664e+06 -5.16782866e+06
-7.59074671e+06 -1.07848311e+07 -7.66393910e+06 -4.15012955e+06
-1.32031718e+07 -8.24455163e+06 7.94517385e+05 -9.39476331e+06
-6.96500259e+06 -5.76730496e+06 -3.85515726e+06 -1.18090402e+07
-4.45626863e+06 4.61666178e+06 -5.29243134e+06 -8.09036651e+06
1.22221559e+06 -5.94144192e+05 -9.91453777e+06 -9.49394256e+06
-7.27184112e+06 -1.04632350e+07 -1.73680624e+07 -1.20809633e+07]
[-1.29940981e+07 -8.62596440e+06 -3.25868709e+06 -1.07106929e+07
-3.02656782e+06 -3.51024368e+06 6.35359136e+06 2.01534967e+07
-6.12995418e+06 1.08213568e+06 1.83295620e+05 3.91287644e+06
-7.34000457e+06 -1.08756519e+07 6.98786075e+05 -2.64550510e+06
-5.70449925e+06 -8.20750347e+06 2.17905191e+06 -6.69345159e+05
2.06064440e+06 3.84133702e+06 -6.46533134e+06 -3.36619993e+06
4.36435015e+06 1.10626324e+07 -8.89941394e+06 -1.16803719e+05
-4.96002697e+06 4.29310100e+06 -1.66941593e+06 -9.23088756e+06
1.12641496e+06 -1.75271631e+06 -2.03750634e+07 -1.45485656e+07]
[-6.15708807e+06 -5.10449954e+06 4.91255305e+06 -6.11997052e+06
5.00424536e+06 4.63593841e+06 1.10188942e+07 1.18782388e+07
-9.42644917e+05 2.59009644e+06 1.04922074e+07 1.21539906e+07
-5.51517715e+06 -7.85705644e+06 8.19012958e+06 -1.71310237e+05
3.65140040e+06 -3.98438001e+06 2.29094263e+06 7.63906430e+06
9.99627557e+06 1.33438812e+07 -6.39583870e+06 5.93008117e+06
1.15505212e+07 1.47453316e+07 -9.87963480e+06 7.88782078e+06
-9.54605548e+06 9.60764984e+06 6.35209120e+06 -5.49828418e+06
8.77955344e+06 7.65129592e+06 -1.76188145e+07 -1.25547282e+07]
[-1.49313204e+06 -3.01866133e+06 1.01713649e+07 -2.00352046e+06
9.55731230e+06 1.04038212e+07 4.81753552e+06 2.57140146e+06
2.97220171e+06 5.17573483e+06 1.57913234e+07 1.55516620e+07
-2.16733080e+05 -1.31464253e+06 1.22793735e+07 -1.21797102e+06
1.05579851e+07 -2.33787098e+06 -4.53928403e+06 1.28670200e+07
1.38569584e+07 1.32655909e+07 -5.57732998e+06 1.19883957e+07
1.43254061e+07 1.30818446e+07 -6.56947809e+06 1.26154628e+07
-1.44074074e+07 6.77666009e+06 1.13796980e+07 -6.38265171e+06
1.24968400e+07 1.27979663e+07 -9.40330364e+06 -7.81267904e+06]
[ 1.08043808e+06 2.02133718e+04 1.19453234e+07 2.67068055e+06
1.07211545e+07 1.23046400e+07 -7.84408070e+05 -2.24760320e+06
5.23508552e+06 5.91866885e+06 1.62207086e+07 1.55107088e+07
3.25106870e+06 2.84756860e+06 1.27933486e+07 -4.63437963e+06
1.32050903e+07 1.30194514e+06 -1.02987792e+07 1.41417298e+07
1.42609971e+07 1.01165621e+07 -4.04103248e+06 1.40125628e+07
1.41794175e+07 8.30692485e+06 -3.29520161e+06 1.36828134e+07
-1.52579522e+07 2.96099695e+06 1.27563687e+07 -8.87487007e+06
1.27249307e+07 1.38935283e+07 -2.86493972e+06 -3.81016003e+06]
[ 2.24716918e+06 7.19924898e+06 7.18145467e+06 4.95891646e+06
5.94500768e+06 7.69888105e+06 -2.81231128e+06 -3.43591385e+06
4.66395582e+06 4.17974331e+06 1.10385379e+07 1.02127124e+07
2.14575742e+06 2.19494861e+06 7.30701899e+06 -8.96154596e+06
8.94894378e+06 4.42896894e+06 -8.47614184e+06 8.59987741e+06
8.69416614e+06 6.74254702e+06 -1.44127626e+06 9.60004018e+06
8.82075874e+06 1.80395859e+06 -1.68317592e+06 8.85750063e+06
-1.58046947e+07 1.41288334e+06 7.61247726e+06 -9.47640284e+06
7.64199679e+06 9.19002368e+06 -4.32324662e+05 -1.14192999e+06]
[-1.01147980e+06 1.01170659e+07 -2.83789584e+06 1.32245830e+05
-3.50165293e+06 -2.26608738e+06 -6.22935990e+06 -6.35675896e+06
-2.38941568e+06 -4.31920880e+06 -2.71940153e+05 -1.18882081e+06
-1.29294818e+06 -1.21212513e+06 -3.81535607e+06 -1.54131633e+07
-1.26881594e+06 3.19777120e+05 -5.33341841e+06 -2.39951615e+06
-2.26622942e+06 -1.05342041e+06 1.20041698e+05 -7.97739732e+05
-2.11025023e+06 -7.84387111e+06 -1.49306956e+06 -1.83316177e+06
-1.64661655e+07 -3.69329824e+06 -2.90493402e+06 -1.07951906e+07
-2.55140401e+06 -1.39907324e+06 4.28116711e+05 7.06040937e+05]
[-3.92347403e+06 1.01523714e+07 -1.12877662e+07 -1.93881038e+06
-1.17149722e+07 -1.04656490e+07 -1.01394404e+07 -8.30389797e+06
-7.89771038e+06 -1.12985795e+07 -1.06758279e+07 -1.16332256e+07
-5.02104633e+06 -4.16479548e+06 -1.32557660e+07 -2.16267013e+07
-9.77206864e+06 -1.89603894e+06 -6.30781070e+06 -1.16649238e+07
-1.18185162e+07 -9.34062555e+06 1.40552380e+05 -9.92248630e+06
-1.18977403e+07 -1.49712163e+07 -2.36908878e+06 -1.11834220e+07
-1.48201829e+07 -9.77234129e+06 -1.17219129e+07 -1.37849535e+07
-1.17358561e+07 -1.07337804e+07 1.32991023e+06 1.85221661e+06]
[-5.71648236e+06 6.51860362e+06 -1.42327160e+07 -2.77540070e+06
-1.45844387e+07 -1.34034566e+07 -1.00876756e+07 -6.56494576e+06
-9.38036670e+06 -1.22191566e+07 -1.47828340e+07 -1.57952771e+07
-6.17712342e+06 -4.34105744e+06 -1.63310300e+07 -2.04521110e+07
-1.28094400e+07 -2.62124898e+06 -7.55124120e+06 -1.49840392e+07
-1.53306482e+07 -1.31962579e+07 -8.18154525e+05 -1.34624646e+07
-1.56550638e+07 -1.63735918e+07 -2.50981003e+06 -1.46591081e+07
-6.10123557e+06 -1.09791240e+07 -1.47139351e+07 -1.37132968e+07
-1.53088620e+07 -1.44281368e+07 9.06419413e+04 4.49767556e+05]
[-4.25759155e+06 2.58369248e+06 -1.10461878e+07 -1.93234394e+06
-1.13125609e+07 -1.03711602e+07 -7.14446846e+06 -9.63006638e+05
-5.85887326e+06 -7.59390135e+06 -1.21092042e+07 -1.26668836e+07
-2.74564045e+06 -1.05909015e+06 -1.26670162e+07 -1.37771027e+07
-9.82138670e+06 -1.47981438e+06 -4.05386352e+06 -1.18293723e+07
-1.22312594e+07 -1.14216303e+07 9.99714293e+05 -1.05428355e+07
-1.24108349e+07 -1.12979765e+07 1.03854786e+06 -1.14945295e+07
4.11344337e+06 -7.36206912e+06 -1.14867216e+07 -8.26588808e+06
-1.22307444e+07 -1.16174752e+07 1.30067710e+06 1.01632104e+06]
[-2.18948377e+06 -1.11168736e+06 -6.67333680e+06 -9.45915982e+05
-6.83650373e+06 -6.34993224e+06 -9.39197620e+04 3.30601254e+06
-1.60972836e+06 -3.76239977e+06 -7.67856220e+06 -8.11824287e+06
-1.00838039e+06 1.04739309e+06 -8.01409133e+06 -6.02361815e+06
-5.91253635e+06 2.90377127e+05 -4.83662460e+05 -7.23231569e+06
-7.57331184e+06 -6.91529696e+06 1.47477095e+06 -6.49535941e+06
-7.87445067e+06 -5.55430016e+06 1.93317863e+06 -7.34686312e+06
1.25852525e+07 -1.34682541e+06 -7.15257460e+06 -2.01899401e+06
-7.97136258e+06 -7.53764147e+06 3.62157326e+05 -1.57342132e+05]
[-2.02280998e+06 -3.20272770e+06 -5.62940190e+06 -9.77005608e+05
-5.63100030e+06 -5.23742258e+06 3.40807181e+06 7.10690370e+06
5.50590545e+04 -7.57630784e+05 -6.06454313e+06 -6.16994802e+06
-1.72637114e+06 2.06484648e+05 -6.23390377e+06 -1.04841263e+06
-4.99193089e+06 1.30078248e+06 8.28617843e+05 -5.73903337e+06
-5.74133277e+06 -4.50971582e+06 9.51229730e+05 -5.37838148e+06
-5.96090570e+06 -2.29004981e+06 9.16851498e+05 -5.85676315e+06
1.58120457e+07 2.24166549e+06 -5.91793269e+06 1.22932040e+06
-6.33184986e+06 -6.13434511e+06 -1.83988513e+06 -2.07023965e+06]
[-9.27944980e+05 -8.57207892e+05 -4.77563616e+06 6.41019793e+05
-4.85271457e+06 -4.12095831e+06 4.50396915e+06 8.12382465e+06
1.07143822e+06 1.81087200e+06 -4.51383017e+06 -4.65774676e+06
-2.67733233e+06 -2.62209000e+05 -4.83772680e+06 1.42483568e+06
-3.92036724e+06 2.53593985e+06 1.03357971e+06 -4.59901769e+06
-4.37317289e+06 -2.87760158e+06 2.67098050e+05 -4.33220740e+06
-4.52732958e+06 -7.53820735e+05 -3.13632264e+05 -4.56522493e+06
1.51663896e+07 2.97636000e+06 -4.86098058e+06 2.53374922e+06
-4.90734011e+06 -4.83914399e+06 -3.16209252e+06 -2.93565195e+06]
[-4.82786964e+04 -1.92807344e+05 -2.91976660e+06 2.02515209e+06
-3.02555882e+06 -2.34395003e+06 4.85023160e+06 6.02643479e+06
1.77433066e+06 1.89142875e+06 -2.54269397e+06 -2.43485043e+06
-2.67280893e+06 -7.19478579e+05 -2.67132502e+06 2.35865281e+06
-2.21929913e+06 3.66727683e+06 8.70355515e+05 -2.66629014e+06
-2.36187169e+06 -9.01405262e+05 -4.61348175e+05 -2.46582009e+06
-2.36573685e+06 4.97517421e+05 -1.24836293e+06 -2.53863794e+06
1.16424576e+07 3.66623484e+06 -2.89185693e+06 2.83081975e+06
-2.70833513e+06 -2.65958721e+06 -3.06652018e+06 -2.96432554e+06]
[ 5.97091353e+05 3.64792638e+05 -8.69272513e+05 1.56412448e+06
-8.93462135e+05 -6.86460063e+05 3.47700413e+06 2.16360495e+06
1.32710866e+06 8.54172492e+05 -7.28094127e+05 -6.53457575e+05
-1.65079329e+06 -5.87926259e+05 -6.89998144e+05 1.72875125e+06
-6.58159003e+05 2.39436914e+06 7.60495004e+05 -7.34293756e+05
-5.40205190e+05 6.26906863e+05 -7.26832563e+05 -6.87640065e+05
-5.50744315e+05 7.44950737e+05 -1.27986875e+06 -6.98407009e+05
4.96687156e+06 2.47433319e+06 -8.62672936e+05 1.84487708e+06
-7.31657339e+05 -7.21046078e+05 -1.78425060e+06 -1.76556743e+06]
[ 3.93779504e+05 3.43396377e+05 1.11582760e+05 2.44206669e+05
1.45548832e+05 5.07626881e+04 8.91107500e+05 -2.63340153e+05
1.76456116e+05 -1.05087019e+05 -2.97822585e+04 -2.74994867e+04
-1.95109400e+05 -5.08493827e+04 9.77627057e+04 2.88411493e+05
3.44028694e+04 2.44516121e+05 4.01704077e+05 7.07060048e+04
1.15487932e+05 4.07394682e+05 -1.24875009e+05 7.86771106e+04
4.64625050e+04 -7.04609790e+04 -2.40972821e+05 4.91129690e+04
2.78980135e+05 3.06364862e+05 8.75254751e+04 4.31673058e+05
8.20951455e+04 2.32437128e+04 -1.92834890e+05 -2.77962766e+05]
[-2.39517724e+04 -7.96715646e+04 3.97106425e+02 -1.24248574e+05
1.64542596e+04 -3.19764302e+04 3.26966350e+04 -1.14036807e+05
-7.35296778e+04 -1.49513242e+05 -6.36939314e+04 -6.56999065e+04
-6.77598775e+03 -3.24536942e+04 -2.21934205e+04 -3.86048679e+04
-5.27775971e+04 -1.26096334e+05 1.82726916e+04 -1.27234677e+04
-1.54216282e+04 -2.45524402e+04 -3.78179623e+04 -3.96856201e+04
-3.37238039e+04 -1.00578875e+05 -3.64294717e+04 -3.35791010e+04
-5.83855946e+04 -4.21588374e+04 -9.01834899e+03 6.84367032e+03
-2.48908266e+04 -5.82125464e+04 -2.15040489e+04 -3.60754211e+04]
[ 4.12345365e-01 -6.83282212e-01 -6.47111427e-01 3.75852738e-01
-2.76874280e-01 3.96367421e-01 6.01955341e-01 -9.21942450e-01
1.69688690e-01 1.90596398e-02 -7.00071884e-01 8.61455657e-01
7.24685741e-01 -3.66647034e-01 -8.59734563e-01 6.89886777e-01
-6.38289179e-01 4.27422957e-01 8.45260080e-01 7.05607350e-01
4.15191961e-02 3.76215767e-01 -2.02154296e-01 3.26522971e-01
5.27368252e-01 3.72239762e-01 -8.83229493e-01 8.44048127e-01
8.40052892e-01 9.28565479e-01 -2.23385522e-01 1.66849458e-01
-9.69801335e-01 -9.83475144e-01 4.86142792e-01 -3.40694264e-01]
[ 5.27216441e-02 5.95598186e-01 8.08863435e-01 9.72596115e-02
1.44549871e-01 -4.84633318e-02 3.91337490e-01 -6.04568083e-01
7.67412084e-01 -8.55948332e-01 -6.30083742e-01 2.95114253e-01
-7.74787242e-01 -7.33894382e-01 1.09763348e-01 4.80369804e-01
7.30554195e-01 -9.20188107e-02 9.16378807e-01 2.48297855e-02
9.22695237e-01 -1.37298732e-01 3.35289006e-01 -2.44383030e-01
8.97268309e-01 -6.50204528e-02 -1.23278467e-01 -1.59012451e-01
1.67287818e-01 -9.90216463e-01 -8.46648962e-01 -7.00619528e-01
8.53517064e-01 2.42697826e-01 4.54646920e-01 7.89956641e-01]
[-3.33699570e+03 1.05853327e+03 -6.64442610e+03 1.16621412e+02
-6.27251740e+03 -5.16488242e+03 -4.10233008e+03 2.39874107e+03
-2.66939438e+03 -2.38135903e+03 -5.98051781e+03 -5.08145625e+03
-2.83326648e+01 -1.31642790e+03 -6.11682395e+03 -3.83003979e+03
-5.99325399e+03 -5.37877145e+02 2.36290637e+03 -6.40593170e+03
-6.14313571e+03 -2.99824917e+03 -2.21277656e+03 -6.35763225e+03
-5.04875561e+03 -2.79004559e+03 -2.95257030e+03 -4.91946197e+03
-3.74035373e+03 -6.74130489e+02 -6.45164262e+03 -4.58316013e+03
-5.06903631e+03 -5.46632202e+03 -4.92096149e+03 -3.83358391e+03]
[-8.71178645e+03 -1.47106608e+03 -1.50708665e+04 -2.63921087e+03
-1.39829143e+04 -1.28617016e+04 -1.10861516e+04 2.31688128e+02
-7.39718617e+03 -6.94725360e+03 -1.41146851e+04 -1.25407435e+04
-1.40061916e+03 -3.95402385e+03 -1.42511003e+04 -7.21454610e+03
-1.39809261e+04 -3.80331634e+03 5.22093004e+03 -1.47357660e+04
-1.43746132e+04 -7.48796831e+03 -6.16009689e+03 -1.45605416e+04
-1.27837007e+04 -6.32142584e+03 -6.36404568e+03 -1.24205874e+04
-1.09741265e+04 -2.66023518e+03 -1.47369772e+04 -9.88797048e+03
-1.27140078e+04 -1.30299821e+04 -1.09067459e+04 -8.81063198e+03]
[-2.01307945e+05 2.29171378e+05 -2.73969268e+05 -2.50600144e+05
-3.03626007e+05 -2.28680220e+05 -3.66355149e+05 2.88838902e+05
-1.90874824e+05 1.03156395e+05 -2.22419091e+05 -1.91561734e+05
1.49773443e+04 -3.19346206e+04 -2.25309157e+05 -3.75503320e+05
-2.11487185e+05 -2.94010502e+05 6.81832612e+04 -2.87332158e+05
-2.52626347e+05 -3.48220858e+05 5.78070565e+04 -2.30582881e+05
-2.02671991e+05 -2.04245923e+05 9.40775142e+04 -1.97484363e+05
-3.76682054e+04 -3.45251293e+05 -2.56910797e+05 -2.60586920e+05
-2.26296651e+05 -2.53481592e+05 8.17423949e+03 5.39895360e+04]
[-1.34558807e+06 3.03218409e+05 -1.29962271e+06 -1.15358166e+06
-1.37234677e+06 -1.28687344e+06 -2.00448052e+06 1.43856630e+06
-1.28794563e+06 -5.33866068e+05 -1.39134967e+06 -1.35350122e+06
4.60607637e+05 1.34241389e+05 -1.43290221e+06 -2.47384246e+06
-1.27590714e+06 -1.23532142e+06 -4.66621620e+05 -1.34631497e+06
-1.37922660e+06 -2.34407519e+06 5.40107698e+05 -1.33694991e+06
-1.28551573e+06 -1.43858393e+06 9.42671522e+05 -1.30042845e+06
5.29773797e+05 -1.68111005e+06 -1.31325298e+06 -2.12593438e+06
-1.43074659e+06 -1.55212826e+06 5.13953160e+05 5.13123812e+05]
[-3.20517365e+06 7.25548164e+05 -5.03278960e+06 -1.50409182e+06
-5.19218768e+06 -4.45683277e+06 -1.80145034e+06 6.49361092e+06
-2.24423552e+06 1.66491497e+05 -4.74066854e+06 -4.66217126e+06
-1.66061307e+06 -1.05539481e+06 -4.91662542e+06 -3.22028633e+06
-4.61275289e+06 -7.75564857e+05 -1.14367785e+06 -4.89410450e+06
-4.75326462e+06 -5.78548314e+06 3.87490256e+05 -4.92328000e+06
-4.41838783e+06 -2.71708057e+06 3.30472237e+05 -4.59514467e+06
7.18993205e+06 -1.89820375e+06 -4.97928182e+06 -2.88097934e+06
-4.81954334e+06 -5.17026590e+06 -1.58474596e+06 -8.58333761e+05]
[-4.58217662e+06 2.54988187e+06 -9.59275894e+06 -6.17073354e+05
-1.00442343e+07 -8.16898254e+06 -3.67699764e+06 1.31065751e+07
-2.72588508e+06 1.42570248e+06 -8.74635538e+06 -8.38733699e+06
-3.25509963e+06 -2.36131422e+06 -9.21737771e+06 -6.23726977e+06
-8.35993583e+06 4.24351150e+05 -2.80825163e+06 -9.36659389e+06
-8.99425843e+06 -9.78066982e+06 6.51579954e+05 -9.05517243e+06
-8.13669003e+06 -5.05178959e+06 3.87449840e+05 -8.31612052e+06
1.25798886e+07 -2.61433814e+06 -9.45170003e+06 -5.98876329e+06
-8.96129824e+06 -9.24245595e+06 -4.43650973e+06 -2.82342153e+06]
[-6.69535403e+06 2.80825679e+06 -1.53707937e+07 -1.02780263e+06
-1.59960540e+07 -1.33974966e+07 -5.59656117e+06 2.07346688e+07
-3.96672731e+06 8.33534262e+05 -1.46020798e+07 -1.33292739e+07
-5.94279556e+06 -5.49837252e+06 -1.45872628e+07 -8.95358368e+06
-1.40527651e+07 5.11252303e+05 -3.50004623e+06 -1.51007607e+07
-1.42380240e+07 -1.42114370e+07 4.86824710e+05 -1.47710557e+07
-1.28581187e+07 -7.62611629e+06 -4.72243283e+05 -1.33635749e+07
1.53458239e+07 -3.45497797e+06 -1.50897643e+07 -8.76842413e+06
-1.40253312e+07 -1.47166070e+07 -8.44565384e+06 -5.70599968e+06]
[-8.87599860e+06 1.48017783e+06 -1.73730034e+07 -7.28003520e+05
-1.79056905e+07 -1.54115560e+07 -4.35003006e+06 2.62397091e+07
-4.26845036e+06 -8.63462688e+05 -1.69105316e+07 -1.40839088e+07
-8.29707404e+06 -8.54109105e+06 -1.59712323e+07 -1.00905528e+07
-1.65512507e+07 1.79770507e+06 -3.85198276e+06 -1.66169145e+07
-1.50926499e+07 -1.43661180e+07 -1.15046075e+06 -1.67528996e+07
-1.33838279e+07 -6.86229710e+06 -2.72851959e+06 -1.47941723e+07
1.47363783e+07 -1.94391978e+06 -1.67934884e+07 -1.13371635e+07
-1.51383793e+07 -1.63243472e+07 -1.32174802e+07 -9.59619126e+06]
[-1.04054774e+07 2.47671427e+04 -1.45679685e+07 -1.02260011e+06
-1.48991385e+07 -1.32581458e+07 4.54828331e+05 2.66971526e+07
-4.36731466e+06 -1.01679710e+06 -1.35346679e+07 -9.59565411e+06
-9.66348395e+06 -1.03310783e+07 -1.22738307e+07 -8.59582226e+06
-1.47229364e+07 2.39462438e+06 -3.14300815e+06 -1.31131552e+07
-1.08892964e+07 -9.66691942e+06 -3.70381532e+06 -1.39771183e+07
-8.98847073e+06 -2.83932559e+06 -6.01799600e+06 -1.16548705e+07
9.87591069e+06 2.36115463e+05 -1.36208191e+07 -1.21537947e+07
-1.14501296e+07 -1.32291403e+07 -1.74046653e+07 -1.29403003e+07]
[-1.02989366e+07 -1.80692125e+06 -9.76329462e+06 -4.29739151e+05
-9.96279605e+06 -8.82671526e+06 6.22151854e+06 2.54215978e+07
-2.92768565e+06 7.00401225e+05 -7.32152174e+06 -2.38194052e+06
-1.13647862e+07 -1.24072094e+07 -6.05214096e+06 -6.34615871e+06
-1.04407480e+07 4.27862718e+06 -1.45324136e+06 -7.64800210e+06
-4.71014256e+06 -2.26760973e+06 -6.73344133e+06 -8.69266565e+06
-2.14023870e+06 2.96037551e+06 -1.07482227e+07 -5.97854119e+06
4.26991455e+06 4.28173961e+06 -8.29068802e+06 -1.21354705e+07
-5.35095846e+06 -7.39078245e+06 -2.18635766e+07 -1.65693787e+07]
[-6.85733087e+06 -1.74263736e+05 -5.89473775e+06 1.60594509e+06
-5.89741012e+06 -5.03515728e+06 1.30161237e+07 2.08433504e+07
-1.75994482e+05 1.15006566e+06 -1.25870525e+06 3.60315131e+06
-1.52760116e+07 -1.58748815e+07 -1.27908103e+06 -3.73057392e+06
-6.23778925e+06 7.89903111e+06 2.49840758e+06 -3.30938146e+06
2.91443635e+05 6.53911387e+06 -9.85661592e+06 -3.73618162e+06
3.17041065e+06 7.19989793e+06 -1.68348945e+07 -1.31511801e+06
-1.31524122e+06 1.01008097e+07 -4.03946128e+06 -8.74478577e+06
-2.43230133e+05 -1.72387636e+06 -2.66278030e+07 -2.03372039e+07]
[-1.95580851e+06 4.08659013e+06 -7.75544333e+05 2.11666042e+06
-1.03700713e+06 6.29163386e+05 1.16099641e+07 1.37899958e+07
2.41195907e+06 4.59578953e+06 5.53296390e+06 8.41809190e+06
-1.17684915e+07 -1.13830272e+07 3.33314102e+06 -2.38847441e+06
4.18666114e+04 4.98839320e+06 2.91205038e+06 1.97146765e+06
4.79804683e+06 1.20596168e+07 -8.52015859e+06 2.08997009e+06
7.25973480e+06 9.40403629e+06 -1.49773013e+07 4.04584560e+06
-8.99445723e+06 1.06004063e+07 1.02625165e+06 -6.11050459e+06
4.70694364e+06 4.15041694e+06 -2.19508215e+07 -1.63990242e+07]
[ 1.07380251e+06 6.25598420e+06 3.63752112e+06 1.29758193e+06
2.92861614e+06 4.88717479e+06 4.67973403e+06 5.95822180e+06
3.47387918e+06 5.83388803e+06 9.32392653e+06 1.01785462e+07
-5.16883585e+06 -4.96448001e+06 6.39449770e+06 -3.04593664e+06
5.01367424e+06 4.74250493e+05 -6.91821292e+05 5.95407275e+06
7.46453243e+06 1.11235338e+07 -5.58995764e+06 6.40000063e+06
8.73758536e+06 7.62960805e+06 -8.90067588e+06 7.34027383e+06
-1.58519413e+07 5.82917908e+06 5.05433783e+06 -5.74018081e+06
7.36176108e+06 7.56250103e+06 -1.30690469e+07 -9.82669637e+06]
[ 5.28131103e+06 1.23045346e+07 6.28773066e+06 5.80867984e+06
4.81346118e+06 7.86454744e+06 1.14815053e+06 3.96254339e+06
6.72140366e+06 1.03726060e+07 1.19279795e+07 1.16757641e+07
2.94799687e+05 9.47306448e+05 8.33884031e+06 -7.06623789e+05
9.02493548e+06 3.49033298e+06 -2.31018025e+06 8.01139650e+06
9.03764146e+06 1.13568817e+07 -1.29114337e+06 9.59881454e+06
9.75372205e+06 6.39183371e+06 -2.43900891e+06 9.60985442e+06
-1.54144726e+07 4.67265586e+06 7.26802235e+06 -3.32257744e+06
8.97596401e+06 1.02216626e+07 -5.00810203e+06 -3.35947618e+06]
[ 6.39506165e+06 1.76697488e+07 2.70441981e+06 8.52286807e+06
1.11965676e+06 4.46947167e+06 -1.06839026e+06 7.68107538e+05
6.20165080e+06 9.41699516e+06 7.73259926e+06 7.11688160e+06
-3.52663548e+05 1.64916649e+06 4.00149713e+06 -2.64789073e+06
6.15794303e+06 6.37641935e+06 -1.94588162e+06 3.55188548e+06
4.38150485e+06 8.16436590e+06 1.25500028e+06 6.27927104e+06
5.15678307e+06 8.59167022e+05 -6.47755803e+05 5.68449353e+06
-1.40429886e+07 2.92013207e+06 3.22794721e+06 -2.87770554e+06
4.71909594e+06 6.64356191e+06 -9.84765320e+05 6.05755454e+05]
[-2.72767788e+06 1.20900920e+07 -7.84666736e+06 -2.36114093e+05
-8.58067390e+06 -6.92715504e+06 -7.24204710e+06 -3.33575275e+06
-4.64350615e+06 -5.67836326e+06 -5.63653512e+06 -6.20505828e+06
-3.46281147e+06 -3.11756173e+06 -8.49256895e+06 -1.49642000e+07
-5.89262960e+06 -2.53435606e+05 -5.51152296e+06 -7.66819467e+06
-7.08634172e+06 -3.97092273e+06 4.16002758e+05 -5.71631455e+06
-6.96664704e+06 -9.81456883e+06 -1.39771928e+06 -6.57924433e+06
-1.45296345e+07 -4.59867128e+06 -8.01102424e+06 -1.16570309e+07
-7.13564206e+06 -6.04648811e+06 -8.59983574e+05 6.08287343e+05]
[-9.36889381e+06 5.99871729e+06 -1.53649699e+07 -4.34198252e+06
-1.57973997e+07 -1.46561376e+07 -1.09239396e+07 -4.50084696e+06
-1.14837600e+07 -1.34689237e+07 -1.55376154e+07 -1.54210208e+07
-8.75666009e+06 -8.32654259e+06 -1.66150673e+07 -2.29345388e+07
-1.46402616e+07 -3.80771283e+06 -1.02748034e+07 -1.56407024e+07
-1.53200397e+07 -1.34566120e+07 -3.20372952e+06 -1.46848014e+07
-1.51534260e+07 -1.57943863e+07 -5.94695914e+06 -1.51674320e+07
-1.28570626e+07 -1.18606432e+07 -1.56147699e+07 -1.85598771e+07
-1.54529844e+07 -1.52229933e+07 -3.98598094e+06 -2.76687249e+06]
[-8.96899027e+06 2.40774876e+06 -1.36408573e+07 -5.51731047e+06
-1.40929941e+07 -1.29882240e+07 -1.19520879e+07 -4.42303916e+06
-1.11267820e+07 -1.12863545e+07 -1.43259304e+07 -1.47390913e+07
-5.95165016e+06 -5.19249188e+06 -1.50167749e+07 -2.09799611e+07
-1.29591236e+07 -5.92696107e+06 -1.07487840e+07 -1.42554472e+07
-1.43959298e+07 -1.47767022e+07 -2.80334747e+06 -1.35325081e+07
-1.43499827e+07 -1.44024775e+07 -3.61712968e+06 -1.39165268e+07
-5.83455098e+06 -1.32341389e+07 -1.39279665e+07 -1.70749310e+07
-1.44814578e+07 -1.43500193e+07 -2.65007121e+06 -1.93071854e+06]
[-5.82075515e+06 -1.12152788e+06 -8.21352951e+06 -3.85185630e+06
-8.74708760e+06 -7.65731475e+06 -6.82094083e+06 3.35608044e+05
-6.09577147e+06 -4.88238076e+06 -9.05931863e+06 -9.44738984e+06
-1.64233991e+06 -3.61272212e+05 -9.00170074e+06 -1.14917624e+07
-7.64721387e+06 -4.48932477e+06 -6.04641919e+06 -8.68679200e+06
-8.90650965e+06 -1.03969265e+07 -6.75209916e+05 -8.37449184e+06
-8.96416697e+06 -6.94802777e+06 4.05827105e+05 -8.52658006e+06
4.15637105e+06 -8.10290712e+06 -8.49616944e+06 -9.18276701e+06
-9.09152927e+06 -9.07823155e+06 -1.11500026e+06 -8.46502759e+05]
[-4.38001393e+06 -4.32920593e+06 -4.97713443e+06 -1.89472934e+06
-5.50815255e+06 -4.63937989e+06 -7.21596110e+05 6.04429840e+06
-1.77697351e+06 -1.65852713e+06 -5.86113347e+06 -5.72875910e+06
-7.15677535e+04 1.37880492e+06 -5.48845577e+06 -4.91638864e+06
-4.57173518e+06 -5.78174943e+05 -2.86408556e+06 -5.12367152e+06
-5.14176977e+06 -6.93585362e+06 3.95640096e+05 -5.14213010e+06
-5.22621736e+06 -2.02132137e+06 1.81278022e+06 -5.28153651e+06
1.23901277e+07 -1.62308168e+06 -5.27661978e+06 -3.72355732e+06
-5.78395388e+06 -5.89205234e+06 -1.58002181e+06 -1.64875472e+06]
[-2.50763560e+06 -4.18787522e+06 -4.26187519e+06 -8.78483217e+05
-4.53903691e+06 -3.92150493e+06 3.56911209e+06 7.95181485e+06
1.69108562e+05 5.53998314e+05 -4.60383783e+06 -4.48049459e+06
-1.23459565e+06 4.48931894e+05 -4.36445398e+06 3.14564844e+05
-3.81078481e+06 1.30927669e+06 1.00028171e+05 -4.16792470e+06
-3.96991007e+06 -3.83443357e+06 1.50948428e+05 -4.17732236e+06
-4.10008344e+06 2.32929495e+04 6.51619585e+05 -4.33477404e+06
1.44559450e+07 1.86173700e+06 -4.45036060e+06 6.00064457e+05
-4.58278746e+06 -4.69486969e+06 -3.11514162e+06 -3.08935266e+06]
[-1.21178324e+06 -1.63550155e+06 -4.25174701e+06 7.73210044e+05
-4.47828621e+06 -3.63944062e+06 4.35620548e+06 8.73475435e+06
1.26448317e+06 2.24127544e+06 -4.04558759e+06 -3.99874580e+06
-2.33543092e+06 -2.15150086e+05 -4.12081304e+06 1.68006521e+06
-3.52294118e+06 2.75632414e+06 4.41198357e+05 -3.97444928e+06
-3.72890305e+06 -2.59779204e+06 2.40393787e+04 -3.93692440e+06
-3.79462725e+06 3.33860632e+05 -2.45734939e+05 -3.96986685e+06
1.45002652e+07 2.80472409e+06 -4.28220144e+06 1.72208194e+06
-4.23371238e+06 -4.26758615e+06 -3.45477011e+06 -3.16860827e+06]
[-2.15991984e+05 -1.27731786e+05 -3.01063181e+06 2.05748154e+06
-3.12247514e+06 -2.44449669e+06 4.12796322e+06 6.72140337e+06
1.57985550e+06 1.83154466e+06 -2.71804270e+06 -2.49671539e+06
-2.31460193e+06 -6.75989808e+05 -2.69000224e+06 1.93185001e+06
-2.33662911e+06 3.74185260e+06 4.91395336e+05 -2.72811227e+06
-2.38886423e+06 -1.39008615e+06 4.30198428e+04 -2.58852444e+06
-2.35290168e+06 3.95610671e+05 -6.44823778e+05 -2.58464979e+06
1.09878766e+07 2.98915857e+06 -2.96820752e+06 1.94843208e+06
-2.71460392e+06 -2.75236274e+06 -2.49566997e+06 -2.31573849e+06]
[ 1.83829405e+05 3.58256449e+05 -1.14080588e+06 1.05301707e+06
-1.05036719e+06 -1.07189316e+06 2.63873627e+06 2.47498612e+06
6.81474663e+05 8.53145314e+04 -1.13991478e+06 -1.04838194e+06
-1.44584497e+06 -7.86338945e+05 -1.08008315e+06 7.76510986e+05
-1.07375175e+06 1.96653819e+06 4.03512038e+05 -1.01677352e+06
-8.30294906e+05 -1.22509274e+05 -3.08624252e+05 -1.02812722e+06
-8.89283848e+05 1.80160493e+05 -8.54415158e+05 -1.08037074e+06
4.25952999e+06 1.68504473e+06 -1.17381780e+06 8.97877987e+05
-1.06041978e+06 -1.13695525e+06 -1.36983975e+06 -1.24306182e+06]
[ 3.31430581e+05 3.50677959e+05 -4.23244456e+04 4.26977129e+05
-3.18144108e+04 -5.49723257e+04 5.90060997e+05 -1.23615232e+03
2.14439262e+05 9.53995947e+04 -7.02115539e+04 -4.20851186e+04
-2.70797445e+05 -1.39221263e+05 -1.62835443e+04 3.17607854e+05
-3.02671761e+04 4.31657070e+05 2.65811043e+05 -5.53496082e+04
-7.98211551e+03 2.57252917e+05 -3.40194190e+04 -1.47343013e+04
-3.39369044e+04 8.00375920e+04 -1.77399372e+05 -5.12999283e+04
2.71534732e+05 3.08300788e+05 -5.29982381e+04 3.30749778e+05
-2.83247442e+04 -1.58285674e+04 -1.52819549e+05 -1.75198166e+05]
[ 3.70735143e+04 2.80798620e+04 3.75800032e+03 7.71797416e+04
3.17833128e+03 9.73886281e+03 5.49963468e+04 -1.53680690e+03
4.12745735e+04 5.77450195e+03 2.30791616e+02 1.09561443e+04
-1.27170127e+04 3.61325969e+03 9.07052893e+03 1.36676535e+04
1.21534907e+04 1.00555388e+05 8.68987086e+03 3.02934524e+03
6.64555214e+03 1.95639198e+04 4.75923690e+03 9.86580424e+03
1.26406998e+04 -9.84544393e+03 -1.29258379e+04 1.14573467e+04
3.17813558e+04 4.96868401e+04 4.51419764e+03 4.77568627e+03
1.17471650e+04 1.15281839e+04 1.06367117e+04 -7.05437705e+03]
[-5.14019080e-01 8.82042125e-01 3.57976836e-01 6.51210548e-02
-9.31384934e-02 -3.34401184e-01 3.02766689e-01 -7.89355737e-01
-4.93219588e-01 8.59582296e-01 -5.87396813e-01 6.34903913e-01
-3.00504352e-01 4.63497068e-01 -9.64828995e-01 3.84823092e-01
-2.41618705e-01 5.66671233e-01 6.65282603e-02 8.30098511e-01
-8.03899960e-01 4.61935320e-02 -1.12370122e-01 5.97784792e-01
4.25957179e-01 1.72175369e-01 4.71524924e-01 1.37788579e-01
1.17276882e-01 1.05511931e-01 8.90962843e-01 -3.22809186e-01
-1.48934013e-02 -6.89915533e-01 -9.66437046e-01 7.29574222e-02]
[ 5.23011829e-01 8.60530391e-01 -5.12435590e-01 4.64878342e-01
4.16646953e-01 -7.01402087e-03 -4.01933967e-01 8.26675396e-01
8.66112780e-01 -8.66462505e-01 1.47177351e-01 7.60784152e-01
9.50551613e-01 9.55571494e-01 -2.41345855e-01 8.33726060e-01
-6.44782061e-01 -6.63602830e-01 -2.75727005e-01 -8.05995946e-01
9.81864274e-01 3.59641892e-01 8.77308144e-02 8.59534303e-01
9.94948517e-01 6.22941747e-01 -7.95335309e-01 -8.37654022e-01
-1.71502373e-01 1.09504856e-01 3.33920708e-01 5.88236670e-01
3.10246379e-01 -3.36584116e-01 5.74452116e-01 -5.51883324e-01]
[-1.65965091e+02 5.21619764e+01 -3.29560301e+02 5.75907961e+00
-3.10215061e+02 -2.57056318e+02 -2.02672196e+02 1.19270321e+02
-1.32496182e+02 -1.18598442e+02 -2.95868423e+02 -2.51042081e+02
-1.81947513e+00 -6.43859725e+01 -3.03732899e+02 -1.89567535e+02
-2.96629362e+02 -2.68891035e+01 1.18146397e+02 -3.17982704e+02
-3.05397243e+02 -1.49337554e+02 -1.10577240e+02 -3.15052437e+02
-2.50163252e+02 -1.38629391e+02 -1.46664028e+02 -2.43778739e+02
-1.85484930e+02 -3.29779111e+01 -3.19770975e+02 -2.26741157e+02
-2.50579907e+02 -2.71556336e+02 -2.44684252e+02 -1.90458012e+02]
[-5.51455962e+04 -7.92938711e+04 -2.30499436e+03 -3.07002855e+04
2.73603232e+03 -1.09490192e+04 -4.58934573e+03 -5.72216769e+04
-3.19913144e+04 -8.02254657e+04 -3.72804394e+03 -7.44618406e+03
-1.02465587e+04 -1.88421737e+04 -9.48045800e+03 -6.61809851e+04
-1.56574193e+04 1.12923041e+03 -4.98638724e+04 4.47257776e+03
5.50455710e+03 -1.54116973e+04 -3.42660565e+04 -9.78339909e+03
-1.57480694e+03 6.63135870e+03 -3.68183239e+04 -1.05341081e+04
-6.43596386e+04 -5.24571811e+03 -5.39403697e+03 -7.49377624e+04
-8.39918405e+03 -9.87437706e+03 -1.99365299e+04 -2.74414825e+04]
[-1.39493318e+05 1.10820936e+05 -1.63427839e+05 -3.50276088e+05
-1.53959605e+05 -1.82717410e+05 -2.59137813e+05 -7.80936056e+04
-2.35300344e+05 -3.02001245e+05 -1.95661638e+05 -1.95018786e+05
1.01714203e+04 -5.62187124e+04 -1.93012337e+05 -4.19668258e+05
-1.93130421e+05 -3.87752601e+05 4.15365177e+04 -2.19540497e+05
-2.01635571e+05 -2.20205581e+05 -7.90689526e+04 -1.86291101e+05
-1.89455205e+05 -3.15905516e+05 -2.75779866e+04 -1.68956468e+05
-2.19175181e+05 -3.06865884e+05 -1.78007252e+05 -2.71821425e+05
-1.71477416e+05 -2.20832156e+05 -1.50366742e+05 -1.21322918e+05]
[-1.09904894e+06 -3.83399879e+05 -1.24398438e+06 -1.05216139e+06
-1.21312273e+06 -1.27074852e+06 -1.03961555e+06 8.57367164e+05
-1.13739822e+06 -1.34788831e+06 -1.43380675e+06 -1.48904074e+06
-7.98955855e+04 -1.48251175e+05 -1.47073501e+06 -2.13299190e+06
-1.34623305e+06 -8.36246859e+05 -6.16189473e+05 -1.28225933e+06
-1.35675229e+06 -2.07506203e+06 -6.80071645e+03 -1.38004698e+06
-1.32321674e+06 -1.57370096e+06 2.12982703e+05 -1.34774061e+06
1.27713440e+06 -1.25193793e+06 -1.28902780e+06 -1.78140994e+06
-1.41111937e+06 -1.56189811e+06 -1.72533231e+05 -1.34830946e+05]
[-2.18718410e+06 -4.25461061e+05 -4.91870029e+06 1.24977101e+05
-4.96333836e+06 -4.39029470e+06 -3.33617879e+05 4.96906376e+06
-1.04104067e+06 -1.57496026e+06 -4.91279694e+06 -4.76024249e+06
-2.50965454e+06 -1.64853928e+06 -5.08626440e+06 -3.32254159e+06
-4.46088417e+06 1.88360496e+06 -1.24366443e+06 -4.82288037e+06
-4.82321505e+06 -5.18047644e+06 -3.60244493e+05 -4.70335533e+06
-4.53586399e+06 -3.76598189e+06 -9.03649909e+05 -4.65236236e+06
8.57077407e+06 -4.01591325e+05 -4.93409128e+06 -2.43998629e+06
-4.92892716e+06 -4.94531076e+06 -2.63725458e+06 -2.08362440e+06]
[-4.23140065e+06 3.15412638e+05 -9.75117991e+06 -6.83768589e+05
-9.88419261e+06 -8.69306448e+06 -2.48728654e+06 9.84478536e+06
-2.62879904e+06 -2.32997322e+06 -9.69680037e+06 -9.40064304e+06
-3.87496269e+06 -3.00655369e+06 -9.98639118e+06 -6.90015493e+06
-8.89728014e+06 1.37606412e+06 -2.52489399e+06 -9.75776531e+06
-9.66043026e+06 -9.55005343e+06 -2.88508266e+05 -9.42016152e+06
-9.06551583e+06 -6.88190529e+06 -7.65647212e+05 -9.06181272e+06
1.35066436e+07 -1.85909620e+06 -9.80108224e+06 -5.46368376e+06
-9.70482053e+06 -9.80027088e+06 -5.42418869e+06 -4.13651273e+06]
[-4.84212160e+06 2.27832948e+06 -1.39616292e+07 1.51911509e+06
-1.42704844e+07 -1.23187385e+07 -2.44470576e+06 1.60149116e+07
-2.51124115e+06 -2.34349063e+06 -1.39077299e+07 -1.27837353e+07
-6.36462299e+06 -5.14254013e+06 -1.37941540e+07 -8.66983434e+06
-1.27129896e+07 4.29090206e+06 -4.05614689e+06 -1.39003456e+07
-1.32577504e+07 -1.22669044e+07 -8.52802845e+05 -1.33081842e+07
-1.23058842e+07 -8.84837986e+06 -2.13118137e+06 -1.25738550e+07
1.75753871e+07 -1.18182434e+06 -1.38925135e+07 -7.54087956e+06
-1.32442169e+07 -1.34746901e+07 -8.92482946e+06 -7.03966675e+06]
[-5.23905756e+06 3.99224336e+06 -1.55361621e+07 3.42485830e+06
-1.58498030e+07 -1.36637498e+07 2.61612599e+05 2.08355438e+07
-1.94016287e+06 -3.03158226e+06 -1.54464884e+07 -1.31987631e+07
-8.95544719e+06 -7.44082478e+06 -1.46653227e+07 -8.76347138e+06
-1.43997861e+07 6.85592203e+06 -3.71082708e+06 -1.50907740e+07
-1.37028090e+07 -1.15691638e+07 -2.08819969e+06 -1.45861992e+07
-1.25092545e+07 -8.05858437e+06 -4.39836648e+06 -1.34466595e+07
1.72911932e+07 3.87769294e+05 -1.52112866e+07 -9.00956243e+06
-1.37983541e+07 -1.43671442e+07 -1.30060887e+07 -1.03194874e+07]
[-4.81025627e+06 5.43162391e+06 -1.30498213e+07 6.05086410e+06
-1.33127756e+07 -1.13707565e+07 3.54662781e+06 2.21224094e+07
-8.80809603e+05 -2.26671112e+06 -1.23322989e+07 -9.16825530e+06
-9.34652404e+06 -8.10400554e+06 -1.15963936e+07 -8.40604379e+06
-1.22082271e+07 1.04354496e+07 -2.64022027e+06 -1.21171561e+07
-1.01933047e+07 -7.29589670e+06 -2.62913001e+06 -1.17185921e+07
-8.65313897e+06 -5.59888743e+06 -5.91345640e+06 -1.03690781e+07
1.36446222e+07 2.59117162e+06 -1.24868265e+07 -9.52196997e+06
-1.04498374e+07 -1.12929443e+07 -1.46357412e+07 -1.12020037e+07]
[-3.38381420e+06 6.79041719e+06 -1.10506372e+07 7.73825271e+06
-1.12990699e+07 -9.20496520e+06 8.35777365e+06 2.03469638e+07
5.16678501e+05 -9.78275108e+05 -8.63016139e+06 -4.72193247e+06
-1.33266517e+07 -1.14897920e+07 -8.35070173e+06 -6.95300887e+06
-9.99545833e+06 1.36899953e+07 -7.38538065e+05 -9.56986861e+06
-6.95586912e+06 -1.25048462e+06 -5.64361481e+06 -8.81691775e+06
-4.69166903e+06 -2.46778788e+06 -1.15072410e+07 -7.18375181e+06
8.48887668e+06 6.08830921e+06 -9.96215928e+06 -9.01447199e+06
-6.94234160e+06 -7.67087485e+06 -1.95429112e+07 -1.47767526e+07]
[ 8.17125910e+05 1.07253333e+07 -7.70269941e+06 8.68736229e+06
-8.02255761e+06 -5.31065553e+06 1.27271156e+07 1.61146305e+07
3.29264821e+06 2.12858405e+06 -2.94162523e+06 5.95159265e+05
-1.50216308e+07 -1.25716254e+07 -3.97730385e+06 -3.53968048e+06
-5.74532346e+06 1.41685980e+07 4.23048971e+06 -5.89697655e+06
-2.94898357e+06 6.86595550e+06 -6.85125597e+06 -4.29117621e+06
-1.04945649e+05 1.20564688e+06 -1.48603392e+07 -2.53298802e+06
1.80164623e+06 1.04074766e+07 -6.15716548e+06 -4.09645926e+06
-2.11291053e+06 -2.39639893e+06 -2.14155157e+07 -1.58470278e+07]
[ 4.26942434e+06 1.42482308e+07 -4.35597121e+06 5.62001321e+06
-4.85725616e+06 -1.82608334e+06 8.09661845e+06 9.28354803e+06
3.61450664e+06 5.21082066e+06 1.38679103e+06 3.19778329e+06
-1.06943207e+07 -8.28325943e+06 -1.17456547e+06 -2.27878354e+06
-1.81003601e+06 6.61020084e+06 6.53035001e+06 -2.81696232e+06
-5.79095808e+05 1.05214160e+07 -4.16426895e+06 -6.73470229e+05
1.79358156e+06 2.42487497e+06 -1.08932832e+07 6.79634708e+05
-8.59482988e+06 8.10408212e+06 -2.95447006e+06 -2.71988692e+05
8.82981466e+05 1.09752060e+06 -1.59373465e+07 -1.09184122e+07]
[ 9.33031687e+06 1.95547076e+07 4.59178149e+05 7.88951487e+06
-6.04748276e+05 2.87356480e+06 4.67955242e+06 5.67452831e+06
6.79741210e+06 1.12541687e+07 6.22458276e+06 6.40005241e+06
-4.22708032e+06 -1.62569949e+06 2.92312521e+06 2.98608438e+06
3.89700036e+06 4.70652632e+06 7.83043608e+06 1.39850284e+06
2.80708089e+06 1.30102050e+07 2.61140350e+05 4.41977260e+06
4.24830050e+06 3.42501912e+06 -3.75260988e+06 4.66950041e+06
-1.16383766e+07 6.92995154e+06 1.49359517e+06 4.87479237e+06
4.42869912e+06 5.58442721e+06 -7.87593520e+06 -3.95093579e+06]
[ 1.20634249e+07 2.54071366e+07 2.90007537e+06 1.05866842e+07
1.07502997e+06 5.62674577e+06 1.16331146e+06 4.97919810e+06
8.85122867e+06 1.72676663e+07 8.51456970e+06 7.37894008e+06
1.81378823e+06 5.10774951e+06 4.93559501e+06 6.67142922e+06
7.52540530e+06 4.42269157e+06 6.00292542e+06 3.28708993e+06
4.06586536e+06 1.22517231e+07 4.82538394e+06 7.07843890e+06
4.96530415e+06 3.20215037e+06 3.46756205e+06 6.66611434e+06
-1.03444404e+07 4.92683494e+06 3.59554262e+06 6.61454976e+06
5.77797783e+06 7.76236987e+06 5.62916008e+05 3.33708424e+06]
[ 6.73368549e+06 2.34565211e+07 -1.47475503e+06 5.53775535e+06
-3.05359774e+06 6.69200139e+05 -5.98697917e+06 1.34602416e+06
2.66184459e+06 1.06596950e+07 1.96929777e+06 6.23937364e+05
3.36708938e+06 5.36131831e+06 -6.86558100e+05 -1.44582341e+05
2.31570161e+06 -7.77545678e+05 1.72240812e+06 -1.61114954e+06
-1.35437526e+06 3.56825315e+06 6.25398788e+06 1.62863522e+06
-9.65384421e+05 -3.16949169e+06 6.56054858e+06 9.77224820e+05
-1.27256196e+07 -2.35290317e+06 -1.24034061e+06 1.88243067e+05
5.49726410e+04 1.64460943e+06 5.46505320e+06 7.49039227e+06]
[-4.06171043e+06 1.37824114e+07 -1.18537959e+07 -1.74104132e+06
-1.23398401e+07 -1.07371784e+07 -9.34167110e+06 -2.22007321e+06
-8.03706064e+06 -6.55380313e+06 -1.09413593e+07 -1.09716067e+07
-4.63648247e+06 -4.40860274e+06 -1.21363884e+07 -1.38225723e+07
-1.01786800e+07 -3.81605297e+06 -4.06307845e+06 -1.21032522e+07
-1.15555911e+07 -7.46857275e+06 8.83302062e+05 -1.02046844e+07
-1.12485420e+07 -1.28740267e+07 -9.55997629e+05 -1.06418395e+07
-1.45610408e+07 -8.86550174e+06 -1.19276156e+07 -1.14532461e+07
-1.08575375e+07 -1.02660171e+07 -3.49092200e+05 1.71652566e+06]
[-1.07787936e+07 3.67545608e+06 -1.51912009e+07 -4.66922672e+06
-1.52562537e+07 -1.46361360e+07 -1.07670689e+07 -4.53192672e+06
-1.27081214e+07 -1.49197840e+07 -1.56095451e+07 -1.50361474e+07
-8.79899109e+06 -8.90519723e+06 -1.59690366e+07 -2.28563981e+07
-1.47611102e+07 -3.98459920e+06 -1.14792805e+07 -1.52909040e+07
-1.48059937e+07 -1.35443212e+07 -4.37764207e+06 -1.45852792e+07
-1.44823808e+07 -1.59783033e+07 -6.89653508e+06 -1.48465980e+07
-1.18861371e+07 -1.28573249e+07 -1.53031700e+07 -1.99518792e+07
-1.49000578e+07 -1.49419224e+07 -5.17631966e+06 -3.98111692e+06]
[-1.04913798e+07 -3.96795406e+06 -1.04137202e+07 -5.73161886e+06
-1.06654266e+07 -1.01866524e+07 -9.73065083e+06 -5.10788802e+06
-1.05070738e+07 -1.16372456e+07 -1.06691537e+07 -1.07557870e+07
-5.65662747e+06 -5.69247796e+06 -1.11939568e+07 -1.87689386e+07
-1.03828324e+07 -4.74088764e+06 -1.29013312e+07 -1.04762239e+07
-1.03089014e+07 -1.23294072e+07 -5.43737080e+06 -1.05274446e+07
-1.02455371e+07 -1.05718702e+07 -5.94268114e+06 -1.07576808e+07
-4.76014241e+06 -1.10142352e+07 -1.06518129e+07 -1.75586157e+07
-1.09562672e+07 -1.09715256e+07 -5.72655181e+06 -5.05952836e+06]
[-7.03572145e+06 -6.65118331e+06 -4.77882275e+06 -5.27722170e+06
-5.10997792e+06 -4.72759326e+06 -3.70533572e+06 -1.64394527e+06
-5.84833862e+06 -6.18363167e+06 -5.13887403e+06 -5.50908041e+06
-1.88558773e+06 -1.22145384e+06 -5.33410101e+06 -1.01586035e+07
-4.97842141e+06 -4.34290273e+06 -8.04229514e+06 -4.83539489e+06
-4.87577008e+06 -7.87503515e+06 -3.79140140e+06 -5.33190153e+06
-5.01430617e+06 -3.52123189e+06 -2.50668182e+06 -5.32127113e+06
3.93283001e+06 -5.68971663e+06 -5.10886237e+06 -9.73977667e+06
-5.60942346e+06 -5.78585774e+06 -4.73630109e+06 -4.28338401e+06]
[-5.68618369e+06 -7.80623939e+06 -3.08556722e+06 -3.11381534e+06
-3.42053608e+06 -3.26366782e+06 1.00737648e+06 5.36297644e+06
-2.01970638e+06 -2.82485510e+06 -3.58933884e+06 -3.53232769e+06
-5.00180913e+05 4.06045582e+05 -3.42837312e+06 -4.69408944e+06
-3.45320826e+06 -9.41837167e+05 -5.09777853e+06 -2.80699694e+06
-2.71066472e+06 -5.31963213e+06 -2.01228901e+06 -3.64033489e+06
-2.96719344e+06 6.01082593e+05 -3.27266078e+05 -3.60813027e+06
1.05995742e+07 -7.74389068e+05 -3.37025797e+06 -5.63071994e+06
-3.84265118e+06 -4.15446051e+06 -4.22869069e+06 -4.22777286e+06]
[-2.84371947e+06 -5.52183136e+06 -3.17746647e+06 -7.34049226e+05
-3.50318283e+06 -3.00348915e+06 5.18073614e+06 7.12334745e+06
5.37322978e+05 7.65975405e+05 -2.99035241e+06 -3.02303569e+06
-2.20855968e+06 -2.08961902e+05 -2.91619843e+06 1.37492368e+06
-3.00219312e+06 1.52132478e+06 -1.50961954e+06 -2.76927182e+06
-2.41168090e+06 -2.15019444e+06 -1.76884597e+06 -3.22536339e+06
-2.64009724e+06 2.21305814e+06 -1.31907824e+06 -3.23630762e+06
1.24840709e+07 2.26905116e+06 -3.29089846e+06 -2.31210876e+05
-3.25178571e+06 -3.38267161e+06 -5.13253603e+06 -4.93152477e+06]
[-1.40415840e+06 -2.94111667e+06 -3.48825993e+06 1.13775902e+06
-3.70919770e+06 -2.99093316e+06 5.60863119e+06 7.49178796e+06
1.44523893e+06 1.51416592e+06 -2.97862754e+06 -2.90233828e+06
-3.22868973e+06 -1.05702243e+06 -3.10977963e+06 2.06854262e+06
-2.88092161e+06 3.68787114e+06 -5.46467066e+05 -3.03108022e+06
-2.63044573e+06 -1.55095225e+06 -1.39477070e+06 -3.13268592e+06
-2.69606266e+06 1.52255592e+06 -1.88578746e+06 -3.16240011e+06
1.29729606e+07 3.32542978e+06 -3.48261408e+06 1.04185969e+06
-3.24464975e+06 -3.21800956e+06 -4.79701398e+06 -4.44802755e+06]
[-6.58257515e+05 -7.57919358e+05 -2.92063491e+06 2.03009962e+06
-3.00134876e+06 -2.46335166e+06 4.10983693e+06 5.46661735e+06
1.18709153e+06 1.04390854e+06 -2.71010551e+06 -2.49090041e+06
-2.78179541e+06 -1.19750837e+06 -2.61247736e+06 1.55040488e+06
-2.41973525e+06 3.98969532e+06 -3.34564380e+05 -2.58841812e+06
-2.26771358e+06 -1.46938364e+06 -7.49539159e+05 -2.60536017e+06
-2.30738439e+06 4.26295650e+05 -1.41220207e+06 -2.59692825e+06
9.44159121e+06 2.54850067e+06 -2.89325148e+06 1.02669394e+06
-2.65359919e+06 -2.68251650e+06 -2.90587801e+06 -2.75783408e+06]
[ 5.17571265e+05 1.04185961e+06 -1.02955318e+06 1.75681454e+06
-9.90365171e+05 -8.65264808e+05 2.58627829e+06 2.07063703e+06
9.85115873e+05 5.38692023e+05 -9.08391554e+05 -8.31557165e+05
-1.54321588e+06 -7.73397426e+05 -9.23364411e+05 8.35909541e+05
-7.85284605e+05 2.56319614e+06 2.40203001e+05 -9.30383975e+05
-7.60605261e+05 6.09764739e+04 -3.91909328e+05 -7.84868044e+05
-7.97429936e+05 5.36418247e+04 -9.58066750e+05 -9.01583554e+05
3.69445505e+06 1.73475246e+06 -1.04303114e+06 8.73888559e+05
-9.29379914e+05 -8.39439494e+05 -1.29575293e+06 -1.19610011e+06]
[ 2.09238200e+05 1.31975266e+04 -5.79068561e+04 2.05583105e+05
1.63877532e+04 -1.59848927e+05 4.84760197e+05 -4.93995501e+05
6.71598258e+04 -6.09943838e+05 -1.81191904e+05 -1.43896844e+05
-3.04650323e+05 -3.49271284e+05 -1.31156810e+05 -6.60976295e+04
-1.43864129e+05 3.08964711e+05 1.83322935e+05 -1.11710250e+05
-9.08110903e+04 1.62369636e+05 -1.83323098e+05 -7.45965265e+04
-1.53994942e+05 -1.68717369e+05 -3.24063162e+05 -1.54927520e+05
-1.99256029e+05 2.67789662e+05 -9.73248591e+04 1.02430378e+05
-1.30340822e+05 -8.92392567e+04 -2.35715134e+05 -3.00501743e+05]
[ 3.88205997e+04 -3.44037999e+04 -1.85419889e+04 1.35762521e+05
-8.11643340e+03 -2.35058949e+04 1.08988303e+05 -1.27483872e+05
5.29112247e+04 -1.46705862e+05 -4.98953756e+04 -1.65434065e+04
-8.33034685e+04 -8.68996827e+04 -2.09075173e+04 -5.87234731e+04
-2.22620407e+04 2.09841535e+05 3.37132452e+03 -2.84083948e+04
-2.21311922e+04 1.15769848e+03 -5.67427055e+04 -1.55499044e+04
-1.35478250e+04 -8.77561640e+04 -1.07899702e+05 -1.58384214e+04
-4.33390895e+04 8.61138947e+04 -1.98292318e+04 -5.97219250e+04
-1.37553181e+04 -1.39497213e+04 -3.88623641e+04 -7.69464333e+04]
[-2.45812719e+02 -1.80176640e+01 -3.55956656e+02 -1.30559093e+00
-3.36442058e+02 -2.82135371e+02 -4.52570735e+02 2.85824076e+01
-2.59186156e+02 -3.13962285e+02 -3.39184563e+02 -2.78984623e+02
1.06328354e+02 -9.61702598e+01 -3.35693681e+02 -4.35847719e+02
-3.19068408e+02 -1.31924269e+02 -1.51823287e+02 -3.43785184e+02
-3.36855789e+02 -2.93809735e+02 9.11709435e+01 -3.45526057e+02
-2.76783993e+02 -2.82338982e+02 1.32547235e+02 -2.63777178e+02
-2.83946786e+02 -1.80779890e+02 -3.42554003e+02 -3.09716117e+02
-2.82155534e+02 -2.95425856e+02 1.18962666e+02 1.34278865e+02]
[-8.44465227e-01 -9.50422627e-01 5.40680325e-01 3.91445360e-01
-5.18156121e-01 8.73091879e-01 -7.40108732e-01 -3.44728413e-01
-3.67718863e-01 -5.89357888e-01 -7.78840745e-01 -6.82734419e-01
-4.27730802e-01 -9.39667955e-01 5.78253468e-01 1.47990942e-01
-8.17980042e-01 3.53872446e-01 3.35722716e-01 -4.78478168e-01
-9.00314652e-01 1.01571639e-01 -3.09903443e-02 -3.98995210e-01
4.47850587e-01 4.95639366e-01 -4.37154227e-02 -1.93241879e-01
1.05791415e-01 -8.98120302e-02 7.84861225e-01 2.34139911e-01
-4.51767853e-01 -8.37313935e-01 -3.05167836e-01 9.50303409e-01]
[-7.23531162e+02 -2.85896111e+03 1.15900350e+03 1.44732168e+03
1.13321848e+03 5.44793463e+02 1.34296133e+03 -3.49524784e+03
1.00703327e+03 -2.99302098e+03 1.66822456e+03 1.31469722e+03
-1.44000666e+03 -4.12529161e+02 7.11539691e+02 -3.12975822e+03
1.34450727e+03 3.34375045e+03 -3.60860062e+03 1.39732025e+03
1.52879250e+03 -1.21467837e+02 -2.11306041e+03 1.31551164e+03
9.58826647e+02 9.17889857e+02 -2.50236883e+03 4.10658598e+02
-1.24345884e+03 1.92317249e+03 7.41820343e+02 -3.65091925e+03
6.81608100e+02 1.62448666e+03 -1.02973921e+03 -1.51526460e+03]
[-1.47649910e+05 -3.91800568e+05 8.38229108e+04 -1.80214588e+05
9.63981155e+04 3.74814737e+04 -3.19604381e+04 -3.04260748e+05
-9.03683062e+04 -2.82145242e+05 6.31739814e+04 3.53961275e+04
3.42542197e+04 -1.94314840e+04 4.28404369e+04 -1.85638748e+05
2.77242604e+04 -8.68646852e+04 -1.73721904e+05 9.95118197e+04
8.91056805e+04 -4.49624822e+04 -1.18612281e+05 4.69059520e+04
4.85607391e+04 5.99572179e+04 -7.21929864e+04 3.04105903e+04
-2.79203002e+05 -4.30980132e+04 7.07901746e+04 -2.09347769e+05
3.95726095e+04 3.50847200e+04 -1.45863762e+04 -6.54021915e+04]
[-9.34094252e+04 -4.39681190e+05 2.26458704e+05 -4.02114712e+05
2.72092358e+05 1.08332342e+05 -1.80700841e+04 -8.09519437e+05
-1.92238063e+05 -8.83928174e+05 1.53523087e+05 6.83108768e+04
1.57942301e+05 2.89237399e+04 8.42097737e+04 -5.66324401e+05
8.49471501e+04 -2.61477669e+05 -2.01592111e+05 2.02304473e+05
1.61495574e+05 -4.01107635e+04 -2.41897153e+05 1.29381131e+05
8.93995185e+04 -2.24108749e+05 -9.89395981e+04 8.23515623e+04
-6.33533262e+05 -1.50713561e+05 1.78735293e+05 -5.12679023e+05
1.13215461e+05 8.43631955e+04 -5.79264001e+04 -1.39872702e+05]
[-7.85666804e+05 -1.86478112e+06 -1.03108855e+06 -7.15558806e+05
-8.33215012e+05 -1.27031736e+06 6.88517796e+04 -6.52564970e+05
-7.95056689e+05 -3.47693635e+06 -1.50819834e+06 -1.51932837e+06
-7.19574853e+05 -8.81753361e+05 -1.50668832e+06 -2.21802781e+06
-1.42757983e+06 4.36226178e+05 -6.97643588e+05 -1.10031671e+06
-1.23824434e+06 -1.73176252e+06 -7.09980799e+05 -1.29697011e+06
-1.31255104e+06 -2.15912348e+06 -7.85466345e+05 -1.40974286e+06
1.27535875e+06 -3.09839159e+05 -1.14737786e+06 -1.67800416e+06
-1.38784113e+06 -1.45357726e+06 -8.39847113e+05 -9.91904998e+05]
[-9.45606647e+05 -1.93280913e+06 -4.45860800e+06 1.27803803e+06
-4.26844454e+06 -4.24608379e+06 1.41624928e+06 2.43142497e+06
4.01284083e+04 -4.17031443e+06 -4.90609667e+06 -4.73727661e+06
-3.42195859e+06 -2.44823299e+06 -5.01832841e+06 -3.20562103e+06
-4.19102201e+06 3.99013154e+06 -7.52103017e+05 -4.58828512e+06
-4.69545285e+06 -4.03296460e+06 -1.30908420e+06 -4.23093219e+06
-4.59431189e+06 -4.73978620e+06 -2.40846970e+06 -4.59893053e+06
8.81673289e+06 9.91586212e+05 -4.61275989e+06 -1.57478218e+06
-4.86954331e+06 -4.54367706e+06 -3.75769844e+06 -3.48156067e+06]
[-2.36637015e+06 -1.43209224e+06 -8.06517311e+06 1.26035492e+06
-7.91479593e+06 -7.51102809e+06 1.25934553e+06 5.76644883e+06
-8.28172350e+05 -5.06573000e+06 -8.95147290e+06 -8.44882091e+06
-4.87872550e+06 -3.64121863e+06 -8.67833994e+06 -5.25771398e+06
-7.70816041e+06 4.42587039e+06 -1.55264881e+06 -8.28243162e+06
-8.34471179e+06 -7.24950646e+06 -2.23232950e+06 -7.99426706e+06
-8.07646171e+06 -7.02468331e+06 -3.09107417e+06 -7.99066317e+06
1.43919737e+07 5.44722356e+05 -8.26345673e+06 -3.10113766e+06
-8.45886896e+06 -8.35509246e+06 -6.64670818e+06 -6.10652536e+06]
[-1.07008096e+06 3.09492228e+06 -1.06536164e+07 4.11243368e+06
-1.07728868e+07 -9.34827233e+06 2.09418894e+06 9.92571721e+06
-9.60523517e+04 -3.28989021e+06 -1.11374068e+07 -1.03563406e+07
-6.41263641e+06 -4.17295595e+06 -1.08126069e+07 -5.28872051e+06
-9.50883788e+06 6.89294056e+06 -1.04654099e+06 -1.09637750e+07
-1.05815158e+07 -8.16151521e+06 -1.83739548e+06 -1.01109880e+07
-9.92031759e+06 -8.08116493e+06 -3.43423477e+06 -9.78135580e+06
1.82931578e+07 1.12768881e+06 -1.07510606e+07 -2.87632301e+06
-1.03291936e+07 -1.03139992e+07 -8.59370246e+06 -7.31577589e+06]
[ 7.42148054e+05 8.09828586e+06 -1.11245642e+07 7.73898884e+06
-1.14200731e+07 -9.19118437e+06 5.06070846e+06 1.38703275e+07
1.65808040e+06 -2.10779965e+06 -1.10419826e+07 -9.83318435e+06
-7.44499782e+06 -4.07910763e+06 -1.09645073e+07 -5.65202436e+06
-9.35600518e+06 1.09220856e+07 -1.83320593e+05 -1.11419189e+07
-1.03148324e+07 -6.60799661e+06 -1.18947332e+06 -9.83038944e+06
-9.39451416e+06 -7.72953023e+06 -3.82937106e+06 -9.54478525e+06
1.90763132e+07 2.98471360e+06 -1.10619280e+07 -3.74496786e+06
-1.00603384e+07 -9.87116368e+06 -9.54085021e+06 -7.71711040e+06]
[ 1.93740952e+06 1.23968690e+07 -9.91475156e+06 1.01587746e+07
-1.03267277e+07 -7.62378674e+06 6.45086377e+06 1.65957379e+07
2.26841911e+06 5.36566656e+05 -9.14900672e+06 -7.59262140e+06
-7.07748724e+06 -3.59541851e+06 -9.28359906e+06 -4.39591065e+06
-7.82881518e+06 1.35050731e+07 1.87917118e+06 -9.54596629e+06
-8.36335776e+06 -3.44864432e+06 3.54506598e+05 -8.07854538e+06
-7.16497578e+06 -5.79115291e+06 -3.02944545e+06 -7.52262406e+06
1.66928094e+07 4.54329142e+06 -9.59537354e+06 -3.06387419e+06
-7.96681263e+06 -8.04642499e+06 -8.97668842e+06 -6.08380414e+06]
[ 6.46607893e+06 1.98812021e+07 -8.51278714e+06 1.48870950e+07
-9.37222054e+06 -5.12025414e+06 1.04785281e+07 1.83328026e+07
5.70194538e+06 5.64590584e+06 -5.55097115e+06 -3.54617814e+06
-9.23491132e+06 -4.52192147e+06 -6.49792795e+06 -6.19777757e+05
-4.85508387e+06 1.85847077e+07 6.97191838e+06 -7.84285803e+06
-5.96902822e+06 2.96479035e+06 1.42107755e+06 -5.08514970e+06
-3.80060705e+06 -2.80978467e+06 -4.75482952e+06 -4.28340007e+06
1.46959522e+07 8.57323871e+06 -7.70918220e+06 1.25999648e+06
-4.59774505e+06 -4.16162886e+06 -9.92098951e+06 -5.53509308e+06]
[ 9.17906909e+06 2.45705281e+07 -6.53550849e+06 1.32375295e+07
-7.55590272e+06 -2.89758681e+06 9.92595812e+06 1.39248808e+07
5.67030358e+06 7.96667710e+06 -1.89725676e+06 -9.05016270e+05
-8.49861484e+06 -3.67107012e+06 -4.33649783e+06 2.03198997e+05
-2.21504020e+06 1.51227378e+07 1.01781353e+07 -5.88844467e+06
-4.07356635e+06 7.29103702e+06 2.73487483e+06 -2.35621669e+06
-1.79819236e+06 -1.96368553e+06 -3.97962530e+06 -1.80333929e+06
6.44129020e+06 8.51263975e+06 -5.60892806e+06 4.17744571e+06
-2.06018720e+06 -1.19561870e+06 -8.34789044e+06 -3.12439805e+06]
[ 1.23647788e+07 2.62915610e+07 -2.67352695e+06 1.08497388e+07
-3.63574627e+06 3.66156305e+05 6.30262832e+06 4.88832719e+06
5.90963161e+06 8.69289395e+06 1.98307929e+06 1.35232366e+06
-4.51047483e+06 -1.59530430e+05 -1.46764171e+06 1.24136771e+06
1.48004079e+06 8.72377685e+06 1.15747609e+07 -2.61225171e+06
-1.62135017e+06 1.03940580e+07 4.43329182e+06 1.27290822e+06
-1.44905989e+05 -2.16188619e+06 -7.69562301e+05 1.11385616e+06
-4.01922918e+06 6.33096408e+06 -2.09351052e+06 7.20598245e+06
6.44763095e+05 2.05049618e+06 -3.46090054e+06 9.04372229e+05]
[ 1.45472650e+07 2.78966023e+07 3.47762010e+05 1.09211665e+07
-7.67884972e+05 2.83364945e+06 3.12858353e+06 2.70764293e+05
6.78852476e+06 1.18028012e+07 4.51858184e+06 2.76562267e+06
-1.41580771e+05 3.68555546e+06 9.94598943e+05 5.80346143e+06
4.64483210e+06 5.52669469e+06 1.15544977e+07 -2.93533758e+05
1.06480137e+05 1.14671062e+07 6.81086843e+06 4.12600667e+06
7.75959880e+05 -2.25974956e+06 3.64024307e+06 2.99962179e+06
-7.40411618e+06 4.50841528e+06 5.03250594e+05 1.06731072e+07
2.44524315e+06 4.43483719e+06 1.79309713e+06 5.19443964e+06]
[ 1.45994290e+07 3.00534841e+07 1.59571766e+06 1.15029654e+07
-3.39605947e+05 4.43983010e+06 -3.23975389e+06 -4.78000224e+05
7.68609911e+06 1.74297855e+07 5.14420308e+06 2.78665765e+06
6.12187907e+06 1.00427821e+07 2.28454448e+06 8.76468972e+06
6.89628960e+06 2.85046253e+06 8.85763161e+06 5.84601349e+05
3.61517917e+05 8.28112445e+06 1.01899718e+07 5.44935046e+06
6.16706164e+05 -2.17434375e+06 1.07363388e+07 4.03078689e+06
-6.16345215e+06 6.01042616e+05 1.61516263e+06 1.14820464e+07
2.87162772e+06 5.27676068e+06 9.88710715e+06 1.15008020e+07]
[ 6.10459498e+06 2.51136502e+07 -5.26227510e+06 3.45086264e+06
-6.89671295e+06 -2.72953541e+06 -1.23995490e+07 -1.49057140e+06
-9.45829465e+05 9.70685586e+06 -3.58428619e+06 -5.39062871e+06
5.32771434e+06 7.23681128e+06 -5.23077185e+06 -6.52746291e+05
-1.00682453e+06 -5.03361891e+06 2.52435748e+06 -6.39892980e+06
-6.85562529e+06 -2.46808992e+06 9.24958802e+06 -2.64291877e+06
-6.65275124e+06 -8.83423115e+06 1.10288824e+07 -3.52369327e+06
-1.09564426e+07 -8.61543776e+06 -5.32318737e+06 1.60256850e+06
-4.63209535e+06 -3.07278964e+06 1.10400643e+07 1.24018878e+07]
[-4.98747933e+06 1.29864818e+07 -1.39798231e+07 -3.73851813e+06
-1.41838231e+07 -1.28070704e+07 -1.17442594e+07 -3.28875560e+06
-1.01913169e+07 -7.86112619e+06 -1.43064374e+07 -1.40298282e+07
-4.50699238e+06 -5.02511216e+06 -1.42918639e+07 -1.33848902e+07
-1.27415877e+07 -7.29798082e+06 -2.63112507e+06 -1.46796058e+07
-1.45009629e+07 -1.02297304e+07 1.44134067e+06 -1.29815385e+07
-1.40197897e+07 -1.50886785e+07 -3.76745313e+04 -1.30226214e+07
-1.48819075e+07 -1.23199712e+07 -1.39141154e+07 -1.01163177e+07
-1.31534293e+07 -1.30840612e+07 1.53424411e+06 3.24141378e+06]
[-1.25380293e+07 -1.77652286e+06 -1.39428479e+07 -9.73319242e+06
-1.32799208e+07 -1.43271934e+07 -1.04791551e+07 -8.67079410e+06
-1.53431058e+07 -1.94798591e+07 -1.52644894e+07 -1.46461454e+07
-8.80774538e+06 -1.10202899e+07 -1.48964977e+07 -2.24102020e+07
-1.52444180e+07 -8.96235523e+06 -9.70194951e+06 -1.41371401e+07
-1.38081248e+07 -1.30028944e+07 -6.17911822e+06 -1.44414797e+07
-1.36293143e+07 -1.56731412e+07 -8.68675552e+06 -1.43555773e+07
-1.61254698e+07 -1.39928741e+07 -1.40716281e+07 -1.92407663e+07
-1.38398481e+07 -1.47097205e+07 -6.89666011e+06 -5.50486235e+06]
[-9.27548469e+06 -7.46072047e+06 -6.28384748e+06 -4.93925367e+06
-6.14801241e+06 -6.53125171e+06 -4.39418063e+06 -7.48064790e+06
-8.56075829e+06 -1.35214728e+07 -6.42148676e+06 -6.44942267e+06
-6.08291188e+06 -6.62788828e+06 -7.16994724e+06 -1.62992151e+07
-6.76536984e+06 -1.73842477e+06 -1.11318725e+07 -6.16350071e+06
-5.96891532e+06 -7.87582548e+06 -7.40564576e+06 -6.42122555e+06
-5.93481846e+06 -7.80274950e+06 -8.63615698e+06 -6.91525511e+06
-4.40930443e+06 -6.61295148e+06 -6.56593562e+06 -1.54349160e+07
-6.86638314e+06 -6.81070062e+06 -8.83795593e+06 -7.98222889e+06]
[-6.53090792e+06 -9.82696236e+06 -1.32483028e+06 -3.91670100e+06
-1.41445272e+06 -1.79769108e+06 9.03955799e+05 -2.76169848e+06
-3.69595866e+06 -7.92953118e+06 -1.66526161e+06 -1.95720537e+06
-1.75362746e+06 -1.42974966e+06 -2.23609785e+06 -9.45784966e+06
-1.84628939e+06 -6.37558228e+05 -8.59790910e+06 -1.15681779e+06
-1.15976633e+06 -4.46318816e+06 -5.50968537e+06 -1.83828967e+06
-1.50707900e+06 -1.55866162e+06 -4.44683971e+06 -2.31740916e+06
4.41876806e+06 -1.90370444e+06 -1.75212322e+06 -9.84906676e+06
-2.55589024e+06 -2.46564252e+06 -6.73802022e+06 -6.76224463e+06]
[-3.68866757e+06 -8.84458881e+06 -1.63692889e+05 -6.45226490e+05
-2.41203705e+05 -8.77876139e+05 6.49351429e+06 3.12035542e+06
4.43747003e+05 -4.37308837e+06 -6.07246883e+05 -6.21246995e+05
-1.38769032e+06 -1.84486560e+05 -8.40913010e+05 -3.30161189e+06
-8.98878579e+05 3.16232733e+06 -4.86686066e+06 2.10106514e+05
2.89027545e+05 -1.66595458e+06 -3.79943409e+06 -7.28647493e+05
-2.32389807e+05 1.92878192e+06 -2.82758841e+06 -1.17385431e+06
1.00042120e+07 2.94007381e+06 -5.45250263e+05 -5.09926689e+06
-1.33787281e+06 -1.17136979e+06 -5.92896723e+06 -6.34815201e+06]
[-1.74404617e+06 -7.49837251e+06 -1.11914554e+06 7.17779129e+05
-1.11373188e+06 -1.57573393e+06 8.28559865e+06 3.20929193e+06
1.66186734e+06 -1.97942475e+06 -1.19901339e+06 -1.39288775e+06
-3.06310126e+06 -1.03611725e+06 -1.37381813e+06 1.20687804e+06
-1.56239766e+06 4.05910764e+06 -2.15897055e+06 -6.89552483e+05
-5.35229270e+05 -9.34149155e+04 -3.60987730e+06 -1.41855120e+06
-1.06930511e+06 2.64681118e+06 -3.62555912e+06 -1.85402591e+06
1.04244731e+07 4.18389854e+06 -1.38738989e+06 -7.66923280e+05
-1.75246402e+06 -1.49679880e+06 -6.13451379e+06 -6.43208941e+06]
[-9.68742232e+05 -4.62333909e+06 -2.31238664e+06 1.97034251e+06
-2.18305651e+06 -2.37835723e+06 7.92788745e+06 2.83328203e+06
1.66219760e+06 -1.91586421e+06 -2.22000951e+06 -2.27518769e+06
-4.31700605e+06 -2.03814743e+06 -2.32538690e+06 1.82071707e+06
-2.31208629e+06 5.32940260e+06 -1.53722060e+06 -1.88752140e+06
-1.60015127e+06 -1.05026091e+05 -3.25347448e+06 -2.20385396e+06
-1.99831987e+06 9.61411487e+05 -4.20319096e+06 -2.61729130e+06
9.88404796e+06 4.15823777e+06 -2.43665429e+06 1.86720761e+05
-2.51333980e+06 -2.27662074e+06 -5.56199829e+06 -5.75391505e+06]
[ 3.26619472e+05 -9.56122873e+05 -2.10329588e+06 2.74341938e+06
-1.96567192e+06 -1.95061234e+06 5.50818063e+06 1.88623318e+06
1.58138757e+06 -1.11180287e+06 -2.18681435e+06 -2.08287765e+06
-3.44364878e+06 -1.86935301e+06 -2.05446660e+06 1.78052736e+06
-1.85513923e+06 4.88102503e+06 -7.37781226e+04 -1.92464564e+06
-1.66670514e+06 3.43594743e+04 -1.61211177e+06 -1.85640071e+06
-1.87045621e+06 -2.13815408e+05 -2.75383224e+06 -2.11675579e+06
6.79968161e+06 3.10259027e+06 -2.18112151e+06 1.31183503e+06
-2.04723185e+06 -1.87938053e+06 -3.21826612e+06 -3.24645937e+06]
[ 1.05660728e+06 1.05398962e+06 -7.17567795e+05 2.85057371e+06
-6.25282116e+05 -5.50689756e+05 3.56594587e+06 4.72954172e+05
1.45924637e+06 -3.04222489e+05 -6.85331285e+05 -4.19502488e+05
-2.29080242e+06 -1.28631341e+06 -5.31991370e+05 1.23713346e+06
-4.29423475e+05 3.95663069e+06 1.71370474e+05 -6.56390483e+05
-4.20302639e+05 9.47798962e+05 -1.08994001e+06 -3.77358318e+05
-4.11036816e+05 -2.18561917e+05 -2.15049560e+06 -5.25208700e+05
2.89356870e+06 2.26728872e+06 -7.20598925e+05 1.26993961e+06
-4.80856063e+05 -3.09502864e+05 -1.91959038e+06 -1.90984683e+06]
[ 5.66297729e+05 1.03962198e+05 1.84772909e+05 8.18407680e+05
2.82815499e+05 9.05847670e+04 1.16978241e+06 -9.12161473e+05
4.33356215e+05 -8.99525895e+05 2.16764169e+04 1.43887453e+05
-5.99632173e+05 -4.99365107e+05 1.12938458e+05 7.78090769e+04
1.58963044e+05 1.28193844e+06 3.34029672e+05 8.84214893e+04
1.42531445e+05 6.06486903e+05 -3.83875302e+05 2.42944144e+05
1.08372746e+05 -3.80162260e+05 -8.29286361e+05 1.05198708e+05
6.81802852e+03 8.02005536e+05 1.37760550e+05 3.52698690e+05
1.30275547e+05 2.47689837e+05 -5.56103385e+05 -6.10056880e+05]
[ 1.43354828e+05 -1.07185404e+04 4.18717303e+04 2.63968807e+05
6.49936957e+04 2.35969606e+04 2.20906479e+05 -2.65165975e+05
1.40909545e+05 -2.88133443e+05 -3.05031510e+04 1.57219988e+04
-7.81157114e+04 -1.00132813e+05 9.42513429e+03 -9.87664265e+04
5.19534710e+04 4.39357663e+05 5.19373815e+04 8.82886552e+03
1.54415111e+04 5.87681298e+04 -3.46597051e+04 7.05486243e+04
1.09358876e+04 -2.38416824e+05 -1.26602241e+05 2.38176815e+04
-3.87838639e+04 1.87631392e+05 2.68797431e+04 -2.48214984e+04
1.51514502e+04 5.36856098e+04 -6.01672720e+03 -7.76796781e+04]
[-4.51026846e+02 -3.19420458e+01 -6.52135570e+02 -9.26761111e-01
-6.15432751e+02 -5.16396482e+02 -8.30475832e+02 5.44456268e+01
-4.73656846e+02 -5.73756404e+02 -6.20856096e+02 -5.11479095e+02
1.95007332e+02 -1.73528279e+02 -6.13161440e+02 -7.98169151e+02
-5.85958081e+02 -2.42330184e+02 -2.78737324e+02 -6.31638847e+02
-6.18047711e+02 -5.36662451e+02 1.64606554e+02 -6.33296734e+02
-5.08651137e+02 -5.15834800e+02 2.41486452e+02 -4.84443161e+02
-5.18620411e+02 -3.31893150e+02 -6.26901548e+02 -5.66675686e+02
-5.16183611e+02 -5.42040975e+02 2.18520541e+02 2.46276329e+02]
[-6.01853703e-01 8.55358498e-01 -2.13715898e-01 -8.16647602e-01
-9.83412567e-01 5.37288628e-01 -4.64964356e-01 -7.78150338e-01
2.16348752e-01 2.56440702e-01 -9.02779893e-01 -6.30071630e-01
8.62481936e-01 -7.74783063e-01 -9.51922070e-01 7.20066700e-01
-5.60350685e-01 6.98578360e-01 2.88478476e-01 5.42921279e-01
2.56388443e-01 -6.52915058e-01 -6.26186934e-01 -6.38771620e-02
3.77627347e-01 8.05947882e-01 -5.03838411e-01 -9.54309407e-01
9.30470601e-01 2.54470556e-01 5.85521623e-01 7.77131372e-01
2.65719295e-01 -1.32294335e-01 5.56736473e-01 3.27631341e-01]
[ 2.81457547e+03 -1.78174376e+03 2.13352008e+04 7.59710845e+03
1.78862334e+04 1.62358969e+04 -1.79371291e+04 -3.95902973e+04
3.36033677e+03 -7.98679109e+03 2.22449497e+04 1.23948016e+04
1.70865496e+04 2.46796149e+04 1.23960935e+04 -2.38086062e+04
2.16899423e+04 -7.41480401e+02 -3.05186828e+04 2.16074620e+04
1.50434291e+04 -1.11050735e+03 -7.41285973e+03 1.68253595e+04
1.04887738e+04 8.89144268e+03 6.26839588e+03 1.24074447e+04
-4.45612359e+04 -8.96519714e+03 1.78125503e+04 -2.76422583e+04
1.18093370e+04 1.71088833e+04 1.87250790e+04 1.15002711e+04]
[-1.91251824e+05 -6.21972549e+05 1.45659563e+05 -2.91245048e+05
1.62571751e+05 7.14342067e+04 -7.91602646e+04 -5.29220406e+05
-1.31053939e+05 -4.57491086e+05 1.10931486e+05 6.18499023e+04
7.37621811e+04 -1.92585678e+04 7.48285528e+04 -2.86579362e+05
5.92095184e+04 -1.66616668e+05 -2.55754337e+05 1.62858090e+05
1.35149745e+05 -8.17423395e+04 -1.88365208e+05 8.65914098e+04
7.39281542e+04 6.88684584e+04 -9.86588232e+04 5.48739483e+04
-4.65687200e+05 -8.63202182e+04 1.25180738e+05 -3.07835790e+05
7.05248422e+04 6.93332292e+04 -2.65310182e+03 -8.76254648e+04]
[-4.05267138e+05 -1.95224824e+06 5.38879807e+05 -7.79331527e+05
7.33204268e+05 1.42279002e+05 2.72408579e+05 -2.40345875e+06
-5.25879571e+05 -2.83861835e+06 2.28316239e+05 1.06948312e+05
4.43361432e+04 -4.95788319e+05 2.05169422e+05 -1.21285731e+06
1.08213336e+04 -9.37242440e+04 -7.28194179e+05 5.39748410e+05
4.36091362e+05 -1.09348129e+04 -7.79998604e+05 2.22631489e+05
2.21858469e+05 -5.24790279e+05 -6.46617354e+05 8.87232649e+04
-1.82563369e+06 -1.10731877e+05 4.36794613e+05 -1.22516845e+06
2.34086107e+05 1.70279288e+05 -1.75379608e+05 -4.75118611e+05]
[-7.19772477e+05 -4.22361850e+06 -1.49279048e+05 -8.88359101e+05
3.12779740e+05 -8.99879272e+05 9.23573878e+05 -4.03022230e+06
-7.89345372e+05 -6.75959564e+06 -1.10719120e+06 -1.19384846e+06
-1.00824234e+06 -1.58749021e+06 -1.09688582e+06 -3.19131925e+06
-1.05002456e+06 1.20591198e+06 -1.32114877e+06 -3.62154956e+05
-6.05689298e+05 -1.15034063e+06 -1.80243302e+06 -6.35419626e+05
-9.67379297e+05 -2.95544539e+06 -2.03962950e+06 -1.10276587e+06
-4.05299490e+05 1.46594343e+05 -4.24255829e+05 -2.17007516e+06
-1.02709744e+06 -9.24839902e+05 -1.49400837e+06 -2.08426026e+06]
[-8.21864554e+05 -5.79444519e+06 -3.06975776e+06 1.31461253e+06
-2.36847160e+06 -3.66998748e+06 4.17688890e+06 -2.33338968e+06
2.05186210e+05 -9.28803150e+06 -4.45266399e+06 -4.03041955e+06
-4.70851455e+06 -4.30252526e+06 -4.07636769e+06 -3.04801806e+06
-3.84777013e+06 5.77206544e+06 -1.27571618e+06 -3.31801582e+06
-3.45368946e+06 -2.67960542e+06 -3.87428514e+06 -3.41288289e+06
-3.74903743e+06 -5.15068579e+06 -5.36084156e+06 -4.01106694e+06
6.88618504e+06 2.35330720e+06 -3.40126408e+06 -1.61193144e+06
-3.91652574e+06 -3.62906487e+06 -5.59619053e+06 -5.98769596e+06]
[-1.27440720e+06 -5.33525019e+06 -5.53122238e+06 1.63956366e+06
-4.87259580e+06 -5.84566615e+06 6.35278917e+06 -2.98402064e+05
8.98014038e+04 -9.52833802e+06 -7.00498247e+06 -6.33412715e+06
-6.89685250e+06 -5.73185120e+06 -6.29252863e+06 -3.01151563e+06
-6.21309732e+06 6.30381507e+06 -8.97121631e+05 -5.81973104e+06
-5.80503834e+06 -4.09136750e+06 -5.55076987e+06 -5.96390538e+06
-5.91288985e+06 -5.98498480e+06 -7.28887508e+06 -6.22765852e+06
1.18454784e+07 2.91109612e+06 -5.76591674e+06 -1.51013294e+06
-6.16481587e+06 -6.03038649e+06 -8.59161805e+06 -8.80290661e+06]
[ 5.40584964e+05 1.07707381e+06 -6.79061586e+06 4.54717654e+06
-6.51834451e+06 -6.26617774e+06 7.91130219e+06 4.54353374e+06
1.27373702e+06 -5.31047974e+06 -7.65212631e+06 -7.01963028e+06
-7.16763023e+06 -4.52882656e+06 -7.17550905e+06 -2.19518063e+06
-6.53061530e+06 8.45457552e+06 1.19349092e+06 -7.18511012e+06
-6.87458989e+06 -3.88885144e+06 -4.06387744e+06 -6.63827612e+06
-6.57184381e+06 -5.76326980e+06 -6.08663802e+06 -6.68910456e+06
1.69685864e+07 3.73773428e+06 -6.94240062e+06 -3.20639298e+05
-6.82920669e+06 -6.79440015e+06 -9.07967868e+06 -8.40867674e+06]
[ 4.63606792e+06 9.27156763e+06 -5.18563874e+06 9.00020809e+06
-5.42474116e+06 -3.76716046e+06 1.05633432e+07 9.40417769e+06
4.33829877e+06 7.40911083e+05 -5.00508048e+06 -4.49038033e+06
-5.27420286e+06 -1.16014700e+06 -5.12758636e+06 4.33056282e+05
-3.68631601e+06 1.19128592e+07 5.05693726e+06 -5.38635824e+06
-4.88391205e+06 -4.87866678e+05 -7.54419475e+04 -4.09148539e+06
-4.15468478e+06 -3.21466138e+06 -2.58263386e+06 -4.11818818e+06
1.87187525e+07 6.01975290e+06 -5.13433395e+06 2.33391853e+06
-4.40653281e+06 -4.18237333e+06 -6.12704328e+06 -4.72542035e+06]
[ 9.19871155e+06 1.84541167e+07 -3.12636579e+06 1.29954317e+07
-3.60293393e+06 -9.74574143e+05 1.35952669e+07 1.34752963e+07
7.02766802e+06 5.05589014e+06 -1.76070145e+06 -1.25974954e+06
-3.28126990e+06 1.10570118e+06 -2.66394144e+06 3.80071222e+06
-6.93752376e+05 1.58367191e+07 1.18865608e+07 -3.19534270e+06
-2.26141918e+06 5.19770351e+06 4.77732781e+06 -1.07854270e+06
-1.18473835e+06 -3.95003501e+05 1.03118573e+06 -1.01545459e+06
1.76648270e+07 9.99212688e+06 -2.91832984e+06 7.33178511e+06
-1.23301418e+06 -9.14905323e+05 -2.76563409e+06 -1.56200901e+05]
[ 1.49396214e+07 2.92455664e+07 -2.06896170e+06 1.93619714e+07
-3.45272971e+06 1.66430477e+06 1.52564926e+07 1.73863751e+07
1.14878752e+07 1.41293786e+07 1.61914627e+06 1.93770364e+06
-2.52261687e+06 3.72632580e+06 -5.66950599e+05 9.09720668e+06
3.10606869e+06 2.10602096e+07 1.69523761e+07 -2.12774552e+06
-6.93961633e+05 1.05763054e+07 9.33247395e+06 2.15739689e+06
9.67783260e+05 2.08329447e+06 4.07538504e+06 1.86433399e+06
1.88235872e+07 1.41349166e+07 -1.60648095e+06 1.43388721e+07
1.25743179e+06 2.69459427e+06 1.64449182e+05 4.00560905e+06]
[ 1.67156883e+07 3.23887627e+07 -9.56290327e+05 1.78687902e+07
-2.42488829e+06 2.76993057e+06 1.14190443e+07 1.19632973e+07
1.09934890e+07 1.48786837e+07 3.28297649e+06 2.57559753e+06
-1.22878129e+06 5.14675423e+06 1.82227441e+05 8.29694102e+06
4.69645129e+06 1.69580051e+07 1.66151055e+07 -1.39053046e+06
-2.53969654e+05 1.18680518e+07 1.02923297e+07 3.61771057e+06
1.20222502e+06 6.44526926e+05 5.36422227e+06 2.83128628e+06
1.17318531e+07 1.16716912e+07 -7.01941834e+05 1.53488605e+07
2.04575535e+06 4.02591321e+06 2.46930713e+06 6.45352158e+06]
[ 1.82537493e+07 3.35388554e+07 1.18990262e+06 1.68736144e+07
-3.57967602e+05 4.34838436e+06 8.27911890e+06 3.20900551e+06
1.05760561e+07 1.52330236e+07 4.88535031e+06 2.97067529e+06
-2.51286694e+05 6.75817175e+06 1.62243071e+06 8.23433500e+06
6.76367105e+06 1.27726179e+07 1.48227959e+07 1.36509779e+05
4.38891672e+05 1.21497560e+07 9.37195229e+06 5.40954579e+06
1.28756020e+06 -1.47453329e+06 5.55468720e+06 3.94281565e+06
4.87521831e+06 8.05545261e+06 1.13562533e+06 1.58449146e+07
2.82936624e+06 5.37693656e+06 4.78624202e+06 8.16186283e+06]
[ 1.60279209e+07 3.06508965e+07 1.39852011e+06 1.31516797e+07
-6.46977978e+04 3.66265614e+06 1.08032281e+06 -4.31713259e+06
7.59811034e+06 1.31275403e+07 3.80307651e+06 8.40552403e+05
3.25580516e+06 8.53528911e+06 9.41240723e+05 6.97238405e+06
6.31488338e+06 6.21917063e+06 9.67941672e+06 -3.19008861e+05
-8.09802444e+05 7.89403608e+06 9.15111829e+06 4.74687491e+06
-8.60749366e+05 -5.27794129e+06 8.28214941e+06 2.60914023e+06
-1.39572550e+06 1.64436502e+06 9.60582020e+05 1.24902621e+07
1.37685458e+06 3.96675513e+06 8.96073396e+06 1.04503555e+07]
[ 1.15950255e+07 2.77096170e+07 -1.21992852e+06 8.24702890e+06
-2.97818248e+06 1.10377307e+06 -8.77107683e+06 -5.39696815e+06
3.73065161e+06 1.32842506e+07 3.09401116e+05 -2.53019888e+06
7.46329402e+06 1.06714432e+07 -1.77045943e+06 5.12469821e+06
3.58671990e+06 -6.43693882e+05 5.59891084e+06 -3.04614896e+06
-4.03103092e+06 7.35410714e+05 1.08287417e+07 1.53432057e+06
-4.21468968e+06 -7.57203003e+06 1.31467175e+07 -2.00886328e+05
-4.69642697e+06 -5.02679955e+06 -1.60317658e+06 8.91013394e+06
-1.65740343e+06 5.87033733e+05 1.47712797e+07 1.45882518e+07]
[ 2.57059992e+06 1.79907663e+07 -8.55312122e+06 2.70523449e+05
-9.59911867e+06 -6.55271124e+06 -1.27988006e+07 -5.14057309e+06
-4.34573383e+06 2.75513357e+06 -8.69882962e+06 -1.01222594e+07
2.79833876e+06 4.03275632e+06 -9.14509319e+06 -2.66553984e+06
-5.42356919e+06 -6.49317625e+06 9.21982053e+05 -9.96895014e+06
-1.06361496e+07 -7.38971001e+06 7.00214474e+06 -7.05371328e+06
-1.06992428e+07 -1.19948146e+07 8.48873813e+06 -7.75449416e+06
-8.96442725e+06 -1.06882048e+07 -8.70138068e+06 2.62476701e+05
-8.48446486e+06 -7.65671262e+06 1.09424863e+07 1.08387742e+07]
[-6.38881315e+06 4.41177743e+06 -1.25291504e+07 -5.21408243e+06
-1.23042086e+07 -1.19817222e+07 -9.06963501e+06 -6.18267639e+06
-1.01166598e+07 -1.15308073e+07 -1.39242399e+07 -1.32045769e+07
-5.45545305e+06 -6.71455339e+06 -1.27590466e+07 -1.04813476e+07
-1.24998202e+07 -6.94377879e+06 -2.88836156e+06 -1.31604204e+07
-1.29685561e+07 -9.58780009e+06 -7.32307074e+05 -1.24232221e+07
-1.26602398e+07 -1.28619645e+07 -2.51159761e+06 -1.22243953e+07
-1.32706613e+07 -1.05649506e+07 -1.23806494e+07 -8.28472896e+06
-1.18387608e+07 -1.24406928e+07 1.58343980e+05 9.21600541e+05]
[-9.96546203e+06 -5.10003650e+06 -9.51923696e+06 -7.29646837e+06
-8.67053443e+06 -1.04077202e+07 -2.64729447e+06 -6.74917808e+06
-1.10419626e+07 -1.87177879e+07 -1.09808619e+07 -9.80875249e+06
-8.41893059e+06 -1.08661147e+07 -1.01093741e+07 -1.54175163e+07
-1.14195743e+07 -4.09818906e+06 -5.34775370e+06 -9.75628720e+06
-9.05857169e+06 -7.68407384e+06 -6.11490518e+06 -1.02181814e+07
-8.81929167e+06 -1.02209552e+07 -9.21761107e+06 -1.01321430e+07
-1.07170779e+07 -7.16258859e+06 -9.61232265e+06 -1.32599559e+07
-9.29889699e+06 -1.03622362e+07 -8.43208589e+06 -6.93750740e+06]
[-6.67842588e+06 -8.63139818e+06 -1.99309594e+06 -3.92647571e+06
-1.60865014e+06 -2.80418531e+06 2.57513000e+06 -4.26693992e+06
-5.07947377e+06 -1.29702521e+07 -2.67625833e+06 -2.14903536e+06
-4.28681761e+06 -5.49396282e+06 -2.68339099e+06 -1.09883658e+07
-3.12824740e+06 8.47288287e+05 -5.43827028e+06 -1.82244685e+06
-1.39942013e+06 -3.10694869e+06 -6.20622757e+06 -2.42173987e+06
-1.38051916e+06 -3.15299047e+06 -7.41370847e+06 -2.70206784e+06
-7.32127398e+05 -9.81195980e+05 -2.23650722e+06 -9.68054530e+06
-2.36301535e+06 -2.80773448e+06 -8.65040923e+06 -8.06724840e+06]
[-3.36862200e+06 -9.63276868e+06 1.33470331e+06 2.88590005e+05
1.38463208e+06 5.40859252e+05 7.64611039e+06 -1.41938942e+06
4.21980942e+05 -7.73993884e+06 8.53941607e+05 1.10840242e+06
-2.57402444e+06 -1.82394733e+06 4.79239679e+05 -5.99134358e+06
8.15463248e+05 5.44446798e+06 -5.28432039e+06 1.60858547e+06
1.84149213e+06 -2.89479040e+05 -5.89395263e+06 1.13002330e+06
1.41944179e+06 8.48919556e+05 -5.83866513e+06 3.58469221e+05
6.64626862e+06 3.49911614e+06 9.66835381e+05 -6.26193681e+06
2.24838365e+05 5.66613310e+05 -7.79348268e+06 -8.35241719e+06]
[-1.63572017e+06 -8.90410985e+06 1.58574477e+06 2.11383692e+06
1.93321624e+06 3.66718344e+05 1.19314337e+07 -5.90125579e+05
2.34941488e+06 -6.45872842e+06 1.07758213e+06 1.08206949e+06
-3.07314367e+06 -1.47501771e+06 7.06238306e+05 -2.08319737e+06
5.44158299e+05 7.47027676e+06 -3.29095584e+06 1.99234485e+06
2.14696637e+06 1.76172551e+06 -5.36959920e+06 1.19479502e+06
1.36904708e+06 2.13579469e+06 -5.58575330e+06 2.27652598e+05
8.42023263e+06 5.85722423e+06 1.18145087e+06 -3.50762219e+06
2.82296461e+05 7.25100162e+05 -7.20051082e+06 -8.23097072e+06]
[-1.09473996e+06 -9.73477496e+06 1.39813897e+05 1.83700680e+06
7.01137801e+05 -1.02831664e+06 1.17816157e+07 -1.49979929e+06
2.21436284e+06 -6.33558567e+06 -1.86597112e+05 -1.75571265e+05
-4.89676832e+06 -3.21561117e+06 -4.09846849e+05 6.90129288e+05
-9.05040253e+05 7.10399665e+06 -1.77505850e+06 5.32297891e+05
7.76320295e+05 2.13893696e+06 -5.89491992e+06 -1.68531312e+05
3.25267606e+04 1.93539438e+06 -6.97807208e+06 -1.09379336e+06
7.63042195e+06 6.41155409e+06 -2.02327089e+05 -1.10911890e+06
-7.19012818e+05 -2.47478642e+05 -7.93180092e+06 -8.71383098e+06]
[-7.47175474e+05 -6.02360514e+06 -1.20381681e+06 1.94532859e+06
-6.47837170e+05 -1.89837112e+06 9.20644347e+06 -1.95354225e+06
1.34509624e+06 -5.86659251e+06 -1.39880120e+06 -1.52484126e+06
-5.00933403e+06 -3.40386393e+06 -1.69654088e+06 3.29242803e+05
-1.79661325e+06 6.36452560e+06 -1.63379829e+06 -8.72049302e+05
-6.97654975e+05 1.34054814e+06 -4.66117030e+06 -1.21251433e+06
-1.33859958e+06 -3.76086268e+05 -6.15464201e+06 -2.07312232e+06
6.05889778e+06 4.91049764e+06 -1.46509059e+06 -9.60512466e+05
-1.78373905e+06 -1.34658114e+06 -6.30582973e+06 -6.78599354e+06]
[ 4.60429622e+05 -2.11432634e+06 -1.63375850e+06 2.40677494e+06
-1.20701276e+06 -1.81868876e+06 6.34371241e+06 -1.49462667e+06
1.30367385e+06 -3.93698925e+06 -1.87487762e+06 -1.58068284e+06
-4.25527880e+06 -3.00106644e+06 -1.70450793e+06 1.12978792e+06
-1.74939243e+06 5.22111910e+06 1.68921196e+05 -1.51979342e+06
-1.20992792e+06 1.21002065e+06 -2.90079311e+06 -1.40388354e+06
-1.42553658e+06 -9.31146230e+05 -4.57765649e+06 -1.86956826e+06
3.84781827e+06 3.43599285e+06 -1.73889705e+06 8.74985899e+05
-1.55650210e+06 -1.36035854e+06 -4.28617772e+06 -4.43262898e+06]
[ 1.12968371e+06 5.35122821e+04 -3.99966019e+05 2.46604009e+06
-1.59102840e+05 -4.37775031e+05 3.52734593e+06 -1.46439734e+06
1.27352240e+06 -2.00714747e+06 -5.90971584e+05 -1.92338322e+05
-2.47495629e+06 -1.82773324e+06 -3.75001282e+05 8.57461360e+05
-3.18964226e+05 4.17455554e+06 6.97952135e+05 -4.44667109e+05
-2.40293576e+05 1.38946631e+06 -1.48805313e+06 -1.36993078e+05
-1.99398602e+05 -8.03675373e+05 -2.82903753e+06 -3.70273500e+05
1.57732643e+06 2.46125012e+06 -4.40035282e+05 1.21740941e+06
-2.04086368e+05 -2.58147009e+03 -2.21934848e+06 -2.29317315e+06]
[ 5.95373133e+05 -1.35129595e+05 1.88929897e+05 9.11783035e+05
3.37447344e+05 1.73697239e+04 9.04664776e+05 -1.39092744e+06
4.07486031e+05 -1.57794739e+06 -1.30756584e+05 6.47782116e+04
-5.56166794e+05 -7.12993406e+05 8.21367305e+03 -2.26540052e+05
1.20829823e+05 1.77890250e+06 4.41683670e+05 2.31403050e+04
5.29757480e+04 4.92328962e+05 -2.93247607e+05 2.50363356e+05
3.35256316e+04 -9.08746811e+05 -8.03324689e+05 3.05610852e+04
-3.47364793e+05 7.83989093e+05 1.01049537e+05 1.74952169e+05
6.52347545e+04 2.19651085e+05 -4.45358384e+05 -5.49158365e+05]
[ 2.42694860e+05 -2.87730600e+04 1.66588744e+05 3.53861759e+05
1.88307268e+05 1.43118902e+05 2.44629956e+05 -4.57804406e+05
2.25300639e+05 -4.34592015e+05 5.74665303e+04 1.01676615e+05
-7.70927877e+03 -2.72158220e+04 9.50388113e+04 -1.51596838e+05
2.14679915e+05 6.33541488e+05 9.49946600e+04 1.02504652e+05
9.67393687e+04 1.40301101e+05 6.55698597e+03 2.25678186e+05
7.71166787e+04 -3.86118750e+05 -1.15137002e+05 1.20777105e+05
-5.47851346e+04 2.63249367e+05 1.31255855e+05 1.79774784e+04
9.24148154e+04 1.94143082e+05 3.11978217e+04 -6.80553591e+04]
[ 3.24153946e+03 4.40364954e+03 -1.26514895e+03 7.92579695e+03
-2.34740780e+03 1.01842335e+03 6.93630305e+03 2.79865403e+03
3.16138138e+03 1.36085317e+03 4.69129385e+01 6.76512215e+02
3.17062944e+03 4.51919825e+03 7.32693629e+00 1.56409626e+03
7.37877517e+02 6.48667209e+03 5.22426157e+03 -1.62714438e+03
-8.88473987e+02 5.72601050e+03 3.58017482e+02 -2.92285424e+02
4.06048723e+02 4.09030905e+03 4.72705510e+02 9.81108201e+02
1.89278861e+03 6.91987124e+03 -1.18779464e+03 2.98458920e+03
1.16295081e+03 1.35846123e+03 -3.94594152e+03 -6.94755534e+02]
[-1.88364551e+04 -3.22905077e+04 1.05063964e+03 2.08141509e+04
3.18792665e+03 -6.81160786e+02 2.50896462e+04 3.11050505e+03
9.82752127e+03 -3.38119569e+04 -2.72929697e+03 8.64343650e+03
-7.94664815e+03 -1.03102560e+04 1.04896905e+03 -1.80163453e+04
3.90161957e+02 5.20094476e+04 -3.00253328e+04 6.71388761e+03
8.64238982e+03 2.46511196e+03 -1.90446711e+04 6.16988620e+03
5.40793178e+03 -1.67171729e+03 -2.04070358e+04 3.07817609e+03
1.40591216e+04 4.28303426e+04 2.50611417e+03 -2.62344138e+04
3.64754580e+02 3.44539083e+03 -1.81072527e+04 -3.24465541e+04]
[-1.32239124e+03 -2.52041369e+03 4.74099897e+03 -9.57060541e+02
4.38255302e+03 2.87504634e+03 -4.22338754e+03 -1.13657565e+04
-1.50861773e+03 -6.71843208e+03 4.75443400e+03 2.48539191e+03
4.08786340e+03 3.85241562e+03 2.14435997e+03 -8.22880017e+03
4.09293015e+03 -1.48475281e+03 -8.22487656e+03 4.84218195e+03
3.48700144e+03 -5.22659856e+02 -2.37449711e+03 3.38515923e+03
2.15463619e+03 5.03309018e+02 9.99289196e+02 2.04824477e+03
-1.31497962e+04 -2.00913271e+03 3.70778956e+03 -8.82851798e+03
2.23672019e+03 3.35949988e+03 3.51053874e+03 2.01744342e+03]
[-2.93964342e+05 -8.34989206e+05 1.47783089e+05 -3.95207194e+05
1.85053231e+05 3.47001175e+04 -1.00778676e+05 -8.15737562e+05
-2.43773632e+05 -7.47440531e+05 9.60041807e+04 4.93293131e+04
8.00021786e+03 -1.40605470e+05 7.09414411e+04 -4.79299587e+05
7.71909602e+03 -2.03102763e+05 -2.99713767e+05 1.70833786e+05
1.38261562e+05 -1.08264711e+05 -3.05216296e+05 7.23052381e+04
7.06240187e+04 2.33214266e+03 -2.35426080e+05 2.62045390e+04
-6.92727663e+05 -1.50031063e+05 1.31213503e+05 -4.16530536e+05
6.37282423e+04 5.72232156e+04 -3.59966583e+04 -1.59824864e+05]
[-6.84972655e+05 -3.49125122e+06 1.05874589e+06 -1.20708228e+06
1.36761082e+06 4.54976306e+05 5.39822181e+05 -4.48150557e+06
-7.56182433e+05 -4.30790842e+06 5.94924458e+05 3.91876665e+05
-6.60795448e+04 -7.58465981e+05 5.32679812e+05 -1.89032682e+06
2.65777636e+05 -9.78214655e+04 -1.26168416e+06 1.10378734e+06
8.83424425e+05 1.71377408e+05 -1.55681245e+06 5.92322843e+05
5.57445914e+05 -6.15429992e+05 -1.38581752e+06 3.59021506e+05
-3.08989111e+06 -1.59442076e+05 9.34795936e+05 -1.81817530e+06
5.59430619e+05 5.18206255e+05 -3.91625912e+05 -9.61156510e+05]
[-7.99200194e+05 -6.95687979e+06 1.01122103e+06 -9.04234274e+05
1.77008169e+06 -2.29367718e+05 2.67891205e+06 -7.80978084e+06
-6.15169507e+05 -9.78358542e+06 -2.71211754e+05 -3.09356044e+05
-1.82271926e+06 -2.64794370e+06 -2.03382145e+05 -3.75616791e+06
-3.81366450e+05 2.34429727e+06 -1.99890882e+06 8.16371426e+05
5.04865741e+05 -2.23187054e+05 -3.69623730e+06 3.42783086e+05
-7.04397180e+04 -3.09808293e+06 -4.22567771e+06 -4.19935147e+05
-2.18037602e+06 9.76899519e+05 6.68441636e+05 -2.80262938e+06
-1.79525490e+05 5.03665461e+04 -2.85780100e+06 -3.81425858e+06]
[-2.14747674e+06 -1.09312998e+07 -9.42276246e+05 -1.07024210e+06
2.61460045e+05 -2.57222831e+06 5.68730318e+06 -8.08055369e+06
-1.01759074e+06 -1.46534974e+07 -3.03099934e+06 -2.49535839e+06
-5.05379462e+06 -5.81127653e+06 -2.31557955e+06 -4.07102162e+06
-3.06169936e+06 4.33215494e+06 -2.37560238e+06 -1.25818831e+06
-1.37321065e+06 -1.53282619e+06 -6.60614365e+06 -2.03233425e+06
-2.02107638e+06 -4.93932475e+06 -8.00114441e+06 -2.74501404e+06
1.84133294e+06 2.26768177e+06 -1.36777359e+06 -3.16458622e+06
-2.27517575e+06 -2.29311636e+06 -7.13913347e+06 -8.16115881e+06]
[-2.87331953e+06 -1.16100009e+07 -3.17503528e+06 -1.80378617e+06
-1.86656033e+06 -4.78476365e+06 7.91580954e+06 -6.17281478e+06
-1.52065579e+06 -1.52332682e+07 -5.42418487e+06 -4.45437172e+06
-7.64321478e+06 -8.29292386e+06 -4.12447317e+06 -2.72237662e+06
-5.60756832e+06 3.83078359e+06 -1.27586649e+06 -3.57568716e+06
-3.33146514e+06 -2.59139569e+06 -8.59573369e+06 -4.56186524e+06
-3.76617932e+06 -5.14225299e+06 -1.05116234e+07 -4.79774723e+06
5.17441709e+06 2.97033708e+06 -3.47435846e+06 -2.34202749e+06
-4.07131376e+06 -4.53791746e+06 -1.07157180e+07 -1.13399125e+07]
[ 3.32130441e+05 -4.29874756e+06 -2.93787705e+06 2.31026080e+06
-2.21138102e+06 -3.52616843e+06 1.03583983e+07 -2.61582089e+05
1.47287541e+06 -8.79959334e+06 -4.29966648e+06 -3.51279881e+06
-6.65428590e+06 -5.82197594e+06 -3.40620322e+06 5.60344338e+05
-4.03293548e+06 7.18467890e+06 2.95530239e+06 -3.41923027e+06
-3.02510130e+06 -5.02820179e+05 -5.25869624e+06 -3.52830650e+06
-2.95958210e+06 -3.11036977e+06 -7.42687586e+06 -3.55602546e+06
1.13726535e+07 5.71848912e+06 -3.14855805e+06 1.31095498e+06
-3.23500045e+06 -3.41951412e+06 -9.10617678e+06 -8.96632055e+06]
[ 6.98392530e+06 7.45521804e+06 -1.73163446e+05 8.71559077e+06
-1.20238017e+05 4.32680630e+05 1.49652717e+07 6.13711620e+06
6.39925754e+06 -1.43146831e+05 -1.83982904e+05 4.61483717e+05
-3.72580226e+06 -1.03742822e+06 -1.42882179e+05 5.39315958e+06
4.80887165e+05 1.26000871e+07 1.02704044e+07 -6.21612439e+05
2.61698846e+04 5.07474517e+06 1.23692328e+06 5.59320388e+05
7.23828342e+05 5.10228513e+05 -1.81923532e+06 5.06312189e+05
1.66196487e+07 1.02038517e+07 -1.94048854e+05 7.62800447e+06
6.02023802e+05 7.55159632e+05 -4.31523803e+06 -3.17782242e+06]
[ 1.35564528e+07 1.97019531e+07 2.53843609e+06 1.54444698e+07
1.82278838e+06 4.52733123e+06 1.92549680e+07 1.22401189e+07
1.14611285e+07 9.29954545e+06 4.56235128e+06 4.91474847e+06
-8.27313844e+05 3.99926043e+06 3.34214064e+06 1.13051443e+07
5.47117004e+06 1.80494071e+07 1.72997522e+07 2.22721220e+06
3.31491482e+06 1.20367535e+07 7.46556514e+06 5.06114164e+06
4.35926208e+06 5.14064377e+06 3.41083826e+06 4.70210109e+06
1.95119679e+07 1.57403970e+07 2.70117567e+06 1.52028733e+07
4.51583341e+06 5.46038936e+06 5.88419913e+05 2.96389866e+06]
[ 1.81688655e+07 2.87838721e+07 3.17249935e+06 2.06119181e+07
1.62881275e+06 6.27118840e+06 1.97965071e+07 1.56624590e+07
1.53473369e+07 1.77251175e+07 6.99247424e+06 6.74551514e+06
8.45786358e+05 7.52708631e+06 4.65969327e+06 1.61353953e+07
8.44216063e+06 2.12047965e+07 2.03875324e+07 2.81813431e+06
4.13887703e+06 1.60187970e+07 1.11398412e+07 7.39720437e+06
5.32562008e+06 7.52179134e+06 7.03816682e+06 6.44672133e+06
2.08651453e+07 1.84277936e+07 3.41330548e+06 2.11680263e+07
5.81195760e+06 7.85764874e+06 4.11657218e+06 7.07144655e+06]
[ 1.89969372e+07 3.16486285e+07 2.95557380e+06 2.00484478e+07
1.22755638e+06 6.14624998e+06 1.56326034e+07 1.08980857e+07
1.43835140e+07 1.91981267e+07 6.85185837e+06 5.77741650e+06
7.67096765e+05 8.36392255e+06 4.25744817e+06 1.52752203e+07
8.91464884e+06 1.80150185e+07 1.83668281e+07 2.19424456e+06
3.14439404e+06 1.52074606e+07 1.06073306e+07 7.50202104e+06
4.13826240e+06 4.69409867e+06 7.03665409e+06 6.04018552e+06
1.64506734e+07 1.43058112e+07 3.02007164e+06 2.12453298e+07
5.14644320e+06 7.62261942e+06 5.19470075e+06 7.95860565e+06]
[ 1.87729643e+07 3.06916485e+07 3.10329663e+06 1.96493019e+07
1.33190276e+06 5.87486995e+06 1.09169714e+07 2.19097379e+06
1.34663855e+07 1.81463373e+07 6.08465822e+06 4.14987434e+06
1.03459828e+06 9.21745518e+06 3.84174353e+06 1.41954980e+07
9.10525886e+06 1.53795687e+07 1.38115239e+07 1.82985130e+06
2.03397334e+06 1.25620849e+07 8.41046308e+06 7.31021772e+06
2.32152235e+06 1.16409843e+06 6.32824099e+06 5.22269611e+06
1.18342548e+07 1.03139260e+07 2.91127805e+06 1.97252817e+07
3.94013706e+06 7.03925235e+06 7.11654712e+06 8.52437456e+06]
[ 1.34332234e+07 2.54582856e+07 1.34589762e+06 1.23673475e+07
-6.48459997e+04 3.25285274e+06 4.22527756e+05 -5.92714808e+06
7.00455656e+06 1.22891073e+07 2.78892708e+06 -6.56354620e+04
4.69160729e+06 9.94749236e+06 8.11112171e+05 8.27796386e+06
6.16435667e+06 6.53019057e+06 6.77152108e+06 -2.52054332e+05
-9.48293486e+05 5.19346780e+06 7.92285889e+06 4.36504542e+06
-1.61616836e+06 -4.54098759e+06 9.16350540e+06 1.93844371e+06
3.16837971e+06 1.56409095e+06 8.20087208e+05 1.23086981e+07
6.39310443e+05 3.34588126e+06 1.18184123e+07 1.09509217e+07]
[ 6.67053336e+06 1.88492772e+07 -3.23198512e+06 4.60737138e+06
-4.23402778e+06 -1.95383150e+06 -6.88525681e+06 -7.11815238e+06
3.51396562e+05 5.65670073e+06 -3.13903806e+06 -5.47407576e+06
5.04012746e+06 7.23786161e+06 -4.37827693e+06 2.40025785e+06
8.26250324e+04 -6.24409801e+05 2.13875979e+06 -4.85945170e+06
-5.64928923e+06 -2.55802303e+06 7.74836576e+06 -1.48969277e+06
-6.51640583e+06 -8.66120479e+06 9.62972125e+06 -3.29166132e+06
-2.07852039e+06 -4.76602102e+06 -3.80959114e+06 5.91083005e+06
-4.30822865e+06 -2.57049810e+06 1.32915314e+07 1.18743769e+07]
[-2.84890819e+04 9.10567512e+06 -7.89015923e+06 -6.65592666e+05
-8.53843842e+06 -6.60287205e+06 -8.18857822e+06 -4.70692837e+06
-4.01173599e+06 -8.70707273e+05 -8.46101163e+06 -9.04299507e+06
7.52778958e+05 1.04755373e+06 -8.18008584e+06 -3.34129647e+05
-5.88083789e+06 -3.88117106e+06 -1.11719160e+05 -8.90768613e+06
-9.06683335e+06 -6.16587836e+06 4.79244346e+06 -6.96258396e+06
-9.31944769e+06 -8.78201216e+06 5.18219474e+06 -7.42676144e+06
-5.18511345e+06 -6.65922254e+06 -7.99276357e+06 1.85520822e+06
-7.66612721e+06 -7.22798983e+06 8.75663355e+06 7.94632139e+06]
[-4.48599210e+06 -7.63367063e+05 -7.80968873e+06 -4.25351246e+05
-7.62563957e+06 -7.43045624e+06 8.78631304e+05 -3.68753866e+06
-4.97672095e+06 -9.23969765e+06 -8.49359365e+06 -7.44076021e+06
-6.80308749e+06 -6.84603015e+06 -7.32131214e+06 -3.06132607e+06
-7.78507214e+06 1.44266691e+06 -2.52309893e+06 -7.90650598e+06
-7.12884490e+06 -3.87143312e+06 -2.49645587e+06 -7.36830430e+06
-7.02065128e+06 -6.07383721e+06 -5.46139076e+06 -7.45991825e+06
-4.06811654e+06 -2.45216576e+06 -7.54524836e+06 -3.35045150e+06
-6.83282507e+06 -7.18714961e+06 -3.31413191e+06 -2.72781589e+06]
[-5.44358172e+06 -6.85635813e+06 -4.58128347e+06 4.85299779e+05
-4.15956878e+06 -5.03590434e+06 8.16077606e+06 -2.03143961e+06
-2.90940862e+06 -1.26077617e+07 -4.61466084e+06 -3.00033474e+06
-9.61490346e+06 -9.64586380e+06 -4.05615345e+06 -6.38576767e+06
-5.43126302e+06 6.33419336e+06 -3.50509902e+06 -4.12860090e+06
-2.92550009e+06 -4.90939406e+05 -7.15060295e+06 -4.22612518e+06
-2.53767792e+06 -2.55681153e+06 -1.12282920e+07 -4.47729007e+06
-4.62163915e+05 2.71916137e+06 -4.33215421e+06 -6.28239247e+06
-3.72292629e+06 -3.94872020e+06 -1.09559828e+07 -9.94197012e+06]
[-3.85240103e+06 -9.98865325e+06 9.97647867e+05 4.27299627e+05
1.42985019e+06 -2.03566296e+05 1.10830185e+07 -1.02558972e+06
-1.02007918e+05 -1.08831193e+07 6.83743042e+05 1.95548087e+06
-5.63554494e+06 -6.13737333e+06 9.26322824e+05 -4.83487020e+06
-3.00501741e+05 7.16585938e+06 -2.54837573e+06 1.69095950e+06
2.49637696e+06 2.54720924e+06 -7.02121819e+06 8.44084844e+05
2.57767593e+06 1.77210123e+06 -9.06009905e+06 4.90205342e+05
3.13912262e+06 5.99950856e+06 9.52496068e+05 -5.47607752e+06
1.07747868e+06 9.01901132e+05 -1.09068191e+07 -1.03866513e+07]
[-1.65373801e+06 -1.01997472e+07 3.01777741e+06 1.69630331e+06
3.24134129e+06 1.68433964e+06 1.20699772e+07 -1.22314307e+06
2.56426642e+06 -8.25627171e+06 2.61158943e+06 3.14849677e+06
-3.90438603e+06 -3.09622777e+06 2.36700411e+06 -3.01214324e+06
1.88766387e+06 7.59133187e+06 -2.88133284e+06 3.55160532e+06
3.99752297e+06 3.26282270e+06 -6.70569985e+06 2.72777841e+06
3.37359774e+06 3.36714465e+06 -7.40342435e+06 1.86345851e+06
5.50092961e+06 6.73089272e+06 2.75050044e+06 -3.96226640e+06
2.08965568e+06 2.51887146e+06 -9.44148294e+06 -9.83021927e+06]
[-1.50862965e+06 -1.09416285e+07 2.12467818e+06 1.39837876e+06
2.82280888e+06 3.76318689e+05 1.17240254e+07 -3.68573592e+06
1.91300165e+06 -1.01324605e+07 1.23017194e+06 1.57809569e+06
-4.56352585e+06 -3.87514117e+06 1.02458101e+06 -3.49946877e+06
4.42503677e+05 7.70044038e+06 -2.97797883e+06 2.47499939e+06
2.70266365e+06 2.51142498e+06 -6.76547310e+06 1.52488107e+06
1.85701835e+06 1.46580478e+06 -7.73889911e+06 4.59347478e+05
3.89338950e+06 5.95113661e+06 1.74923980e+06 -4.32505411e+06
7.81098411e+05 1.15577955e+06 -8.52040261e+06 -9.50042643e+06]
[-9.18255413e+05 -1.09551500e+07 1.22082607e+06 1.69408689e+06
2.14303439e+06 -5.23929073e+05 1.17459280e+07 -6.11255529e+06
1.58394152e+06 -1.07812787e+07 3.07410763e+05 6.98757119e+05
-6.00988239e+06 -5.47591076e+06 3.52041255e+05 -1.56792911e+06
-5.53969046e+05 8.07237529e+06 -2.15944003e+06 1.46597233e+06
1.75132658e+06 2.94318138e+06 -7.42653289e+06 6.34782222e+05
9.75505504e+05 6.05130735e+05 -9.25536029e+06 -4.14364523e+05
3.00104288e+06 6.39239784e+06 8.54322653e+05 -2.36622799e+06
1.87521466e+05 5.35124185e+05 -8.79486931e+06 -9.71077500e+06]
[-1.54945017e+05 -6.33631739e+06 6.51225449e+04 2.31860291e+06
8.02194899e+05 -8.50846549e+05 9.54075540e+06 -5.03326268e+06
1.33703043e+06 -8.21946588e+06 -2.57859812e+05 9.11766331e+04
-6.08849523e+06 -5.06376068e+06 -3.89780226e+05 -6.78046004e+05
-8.11689592e+05 7.49776090e+06 -1.54166519e+06 3.02251157e+05
6.13574381e+05 2.53264933e+06 -5.88993015e+06 7.61552979e+04
1.72254520e+05 -9.14370030e+05 -8.36301824e+06 -7.90363698e+05
3.08022684e+06 5.38146977e+06 -1.40162977e+05 -1.26424895e+06
-3.10739541e+05 1.28516415e+05 -7.15641217e+06 -7.60267360e+06]
[ 1.18420897e+06 -1.94452155e+06 -7.26546687e+05 3.06466056e+06
-1.59126181e+05 -1.08999773e+06 6.93890489e+06 -3.04911695e+06
1.51488163e+06 -5.03246202e+06 -1.01347235e+06 -3.26156810e+05
-4.87218853e+06 -4.13000954e+06 -6.90206268e+05 1.28203907e+06
-1.10018493e+06 6.35883676e+06 9.74448014e+05 -6.90739561e+05
-2.86474380e+05 2.38193439e+06 -3.44324749e+06 -5.02525506e+05
-3.11339308e+05 -1.10358182e+06 -5.87147403e+06 -9.20889751e+05
1.76732045e+06 4.12499078e+06 -7.79011530e+05 1.20016586e+06
-4.03101449e+05 -2.22531994e+05 -4.71095930e+06 -4.79082508e+06]
[ 1.34869117e+06 -4.85738717e+05 -1.30020499e+05 2.29750947e+06
1.66311242e+05 -3.01031383e+05 3.16132011e+06 -2.83937031e+06
1.16721395e+06 -2.96695782e+06 -4.97429251e+05 -6.93423113e+04
-2.59735990e+06 -2.29785383e+06 -2.50514078e+05 6.20866750e+05
-2.81745506e+05 4.11898905e+06 8.95515660e+05 -2.38772115e+05
-1.38919113e+05 1.39411577e+06 -1.67307895e+06 -2.85851030e+04
-8.77650077e+04 -1.07752048e+06 -3.10489097e+06 -2.43608956e+05
1.93027901e+05 2.19883357e+06 -1.74366083e+05 1.01113920e+06
1.17920331e+04 1.97466450e+05 -1.95653289e+06 -2.03592729e+06]
[ 5.33169922e+05 5.24900439e+04 2.02650098e+05 8.11014943e+05
2.81835087e+05 1.41528957e+05 9.78818470e+05 -1.24877333e+06
3.82452895e+05 -9.73098730e+05 3.99541942e+04 1.40975008e+05
-5.51187622e+05 -4.90191549e+05 7.50725716e+04 9.22833906e+01
1.82733290e+05 1.36214279e+06 2.98898044e+05 1.17589505e+05
8.94053595e+04 5.10656681e+05 -4.18009310e+05 2.47665961e+05
9.44629472e+04 -5.36642293e+05 -7.83749054e+05 1.16675847e+05
-1.12322251e+05 6.54634856e+05 1.59097497e+05 1.66965211e+05
1.47295386e+05 2.81546847e+05 -3.61027291e+05 -4.41601733e+05]
[ 3.56117227e+04 -7.23919375e+04 7.42282883e+04 5.01393002e+04
8.37730249e+04 7.28918824e+04 1.94254256e+04 -2.14148222e+05
1.87741635e+04 -1.83419909e+05 3.91575673e+04 6.28489204e+04
-2.78079566e+04 -2.71719381e+04 5.86644848e+04 -7.78395990e+04
8.08505780e+04 1.05748648e+05 7.12363399e+03 6.22541962e+04
5.63413985e+04 5.75179802e+04 -4.14407345e+04 8.25955413e+04
5.71690401e+04 -9.35074991e+04 -9.96911120e+04 6.44917302e+04
-9.66397358e+04 3.02122536e+04 6.68686479e+04 -1.97725935e+04
6.48273907e+04 8.50580527e+04 -2.63162233e+04 -4.66740385e+04]
[ 4.28957382e+03 -1.12651701e+03 3.88083679e+03 5.24591889e+03
3.90131565e+03 2.82437654e+03 4.06846123e+03 -2.80952481e+03
4.50793447e+03 3.09578447e+03 2.23434933e+03 2.43580156e+03
7.60108998e+03 4.41551276e+03 2.79517749e+03 3.71368541e+03
2.39635524e+03 5.15520237e+03 -1.08832632e+01 3.56414777e+03
3.02411769e+03 4.17307206e+03 -8.27948501e+02 2.55973838e+03
2.07636088e+03 4.23940365e+03 3.76875906e+03 2.57958201e+03
3.84365542e+03 4.85805857e+03 3.51532942e+03 4.09964037e+03
2.58131746e+03 2.41657790e+03 3.30192092e+02 -1.65493016e+03]
[-7.90971360e-01 3.33110072e-01 6.76259745e-01 -9.04275117e-01
5.76304575e-01 -9.34789336e-01 -7.61572889e-01 -2.52175612e-01
2.40192277e-01 -6.45881665e-01 -8.81100427e-01 5.36194729e-01
-7.51220478e-02 -7.98135889e-01 2.00883376e-01 -7.07211632e-01
4.79663284e-01 -1.35395782e-01 -6.45431981e-01 -8.31306449e-01
-1.19099115e-01 2.05192549e-01 -7.53073193e-01 7.18537892e-01
-6.24191380e-01 -4.73380950e-01 4.80433785e-01 5.68531375e-02
5.25741293e-02 2.96072231e-01 6.18493760e-01 -5.11674694e-01
2.64483810e-01 5.72427910e-01 2.95026057e-01 -1.55769197e-02]
[ 2.86681488e-01 5.35069116e-02 -2.51663993e-01 7.37200319e-01
1.80622186e-01 2.45297053e-01 8.45545652e-01 -9.31291529e-01
7.40301663e-01 1.94072338e-02 1.84914624e-01 -6.79466692e-01
1.91939444e-01 -6.28583844e-01 -1.21833528e-01 -3.35175145e-01
4.79405887e-01 -5.16230798e-01 9.26418948e-01 -6.56568669e-01
5.44379694e-01 2.68667107e-02 8.49701795e-01 -9.88858143e-01
8.09872843e-01 8.26052992e-01 -9.39094520e-02 -6.41483252e-01
-2.52236216e-01 -9.42860655e-01 2.69882644e-01 -3.49470864e-01
3.55998647e-01 7.44821549e-01 5.63214851e-01 5.05603574e-01]
[-2.45766140e+05 -6.39942129e+05 1.71723985e+05 -3.75247543e+05
2.05631593e+05 7.33946818e+04 -1.38281062e+05 -7.51722456e+05
-2.34893029e+05 -6.08784083e+05 1.26130583e+05 7.19167160e+04
2.26550994e+04 -1.03347170e+05 1.09365464e+05 -4.49262717e+05
5.90985586e+04 -2.65814869e+05 -3.01039060e+05 1.91124499e+05
1.57764518e+05 -7.12571836e+04 -2.87153059e+05 1.07553984e+05
9.72493212e+04 5.36027234e+03 -2.02582149e+05 6.53687594e+04
-6.32042464e+05 -1.94318998e+05 1.56982621e+05 -3.98019033e+05
9.30955605e+04 8.96692931e+04 -6.24794037e+04 -1.36998691e+05]
[-7.10214601e+05 -3.38379430e+06 1.17346334e+06 -1.14930225e+06
1.49260124e+06 5.49446639e+05 7.23280683e+05 -5.45237047e+06
-7.67827827e+05 -4.45375327e+06 7.15209666e+05 4.26846073e+05
-2.62480141e+05 -7.28024899e+05 5.74813111e+05 -2.22165022e+06
3.96781197e+05 -1.42485415e+05 -1.52981225e+06 1.24299787e+06
9.29520393e+05 3.26732246e+05 -1.95364938e+06 7.20886155e+05
5.77066067e+05 -8.36721173e+05 -1.79256296e+06 4.19277194e+05
-3.54564894e+06 -2.15708425e+05 1.06412361e+06 -2.05355940e+06
5.75283939e+05 6.17898355e+05 -5.47780359e+05 -1.19858875e+06]
[-1.14164679e+06 -8.54111169e+06 1.97336997e+06 -1.05936574e+06
2.88036008e+06 4.87865986e+05 3.63795604e+06 -1.02477007e+07
-6.77988613e+05 -1.11272797e+07 7.80953897e+05 7.05299093e+05
-2.28252238e+06 -3.18862611e+06 6.95844685e+05 -4.20767205e+06
3.59009110e+05 2.71547918e+06 -2.81271429e+06 1.90340992e+06
1.60072399e+06 6.52518619e+05 -4.95624999e+06 1.28212502e+06
8.91942960e+05 -2.81798769e+06 -5.69648834e+06 3.35051631e+05
-3.96802425e+06 1.38068661e+06 1.62520438e+06 -3.43806625e+06
6.87397693e+05 9.76272202e+05 -3.58816176e+06 -4.73169309e+06]
[-3.33227983e+06 -1.52334483e+07 1.45657298e+06 -3.51087668e+06
3.06105423e+06 -9.17485654e+05 6.60397195e+06 -1.26049965e+07
-2.18346652e+06 -1.79451137e+07 -8.42361691e+05 -3.18545363e+05
-5.28080845e+06 -7.04979602e+06 -7.86583382e+04 -4.55066482e+06
-1.61635822e+06 2.73886953e+06 -3.08243619e+06 1.18447223e+06
1.14877545e+06 8.51307534e+04 -8.78275745e+06 -5.70571062e+04
2.11045934e+05 -3.87119659e+06 -1.02482449e+07 -9.62873150e+05
-2.96660727e+06 2.14379177e+06 9.96516761e+05 -4.11108915e+06
-1.10514040e+05 -3.69817461e+05 -8.78686284e+06 -9.91902562e+06]
[-5.70632847e+06 -1.91865337e+07 -2.46960262e+05 -7.65315030e+06
1.74052295e+06 -3.25230463e+06 7.81247730e+06 -1.15535583e+07
-4.41377898e+06 -2.16934895e+07 -3.35780419e+06 -2.31528432e+06
-7.14209918e+06 -1.01648842e+07 -1.58433362e+06 -4.09331449e+06
-4.65128602e+06 -1.17453836e+06 -1.62183581e+06 -6.84351824e+05
-4.22216193e+05 -1.24177844e+06 -1.04857640e+07 -2.73813677e+06
-1.22773926e+06 -4.16358020e+06 -1.21991695e+07 -2.91757058e+06
-3.17247831e+06 1.76944524e+06 -6.59786030e+05 -4.61991322e+06
-1.65017383e+06 -2.77055818e+06 -1.23849143e+07 -1.29209641e+07]
[-3.19391088e+06 -1.45596726e+07 -3.40750884e+05 -4.55922747e+06
1.28754606e+06 -2.60306564e+06 1.08518469e+07 -6.59127490e+06
-1.71358050e+06 -1.78570548e+07 -2.79033502e+06 -1.36750404e+06
-7.16423447e+06 -9.69610366e+06 -1.04558131e+06 -2.19082506e+04
-3.94815354e+06 2.05162658e+06 3.29857578e+06 -8.39240595e+05
-1.08673650e+05 1.15006115e+06 -7.34355982e+06 -2.28376669e+06
-3.64512945e+05 -2.28111509e+06 -1.01403605e+07 -1.97040488e+06
2.12821439e+06 5.51070749e+06 -6.12361542e+05 1.93346777e+05
-8.15368741e+05 -1.95185911e+06 -1.13148243e+07 -1.09927750e+07]
[ 4.91388639e+06 -2.77870083e+06 2.71685247e+06 3.53289552e+06
3.55581092e+06 1.78815241e+06 1.61340654e+07 -1.94513938e+05
4.71729419e+06 -8.26823217e+06 1.62565206e+06 3.14786458e+06
-4.20599919e+06 -4.71854534e+06 2.52479888e+06 6.39397713e+06
1.23142523e+06 9.33442585e+06 1.10206971e+07 2.11099279e+06
3.16471809e+06 7.83998906e+06 -7.42824594e+05 2.25052499e+06
3.60148202e+06 1.67835303e+06 -4.62101052e+06 2.53773079e+06
9.03091301e+06 1.15749340e+07 2.53438078e+06 8.54250088e+06
3.37518178e+06 2.87840197e+06 -5.93812338e+06 -4.96691244e+06]
[ 1.17434915e+07 9.96310149e+06 5.08958055e+06 1.10497926e+07
5.02383384e+06 5.66095668e+06 2.03242032e+07 6.36533439e+06
1.05459291e+07 3.14745524e+06 5.94962404e+06 7.02750303e+06
-1.23499989e+06 1.09338366e+06 5.67908047e+06 1.30307292e+07
6.22684188e+06 1.49803760e+07 1.71116467e+07 4.54367069e+06
5.77942732e+06 1.40130816e+07 4.88878850e+06 6.46963312e+06
6.55251897e+06 6.51843223e+06 7.54123957e+05 6.29032292e+06
1.41115072e+07 1.67136838e+07 5.06462989e+06 1.64532479e+07
6.72476484e+06 7.18424559e+06 -9.29287042e+05 7.00741580e+05]
[ 1.46577716e+07 1.74300839e+07 5.47021191e+06 1.48422826e+07
4.72414675e+06 6.79827476e+06 2.04066587e+07 8.24413998e+06
1.27984004e+07 1.12227488e+07 7.59083353e+06 7.81045675e+06
6.86694079e+05 5.10842121e+06 6.54672916e+06 1.69467048e+07
8.45142724e+06 1.64632422e+07 1.81440215e+07 4.86731207e+06
6.01521400e+06 1.64036513e+07 6.86000539e+06 8.14578742e+06
6.64925530e+06 8.34183275e+06 3.92767675e+06 7.21291905e+06
1.53318769e+07 1.71501888e+07 5.50314935e+06 2.02982868e+07
7.24854579e+06 8.49934490e+06 1.71958406e+06 3.28696785e+06]
[ 1.68676070e+07 2.28467414e+07 5.34279689e+06 1.89347228e+07
3.96804046e+06 7.31359726e+06 1.90093059e+07 6.03229431e+06
1.43721857e+07 1.64549022e+07 7.96082772e+06 7.37303060e+06
-7.86181538e+04 6.98349457e+06 6.86807609e+06 1.89934017e+07
9.84573644e+06 1.81841593e+07 1.44840972e+07 4.51352179e+06
5.56395341e+06 1.60910991e+07 5.85018934e+06 8.87686969e+06
5.93489169e+06 6.91382960e+06 3.28083529e+06 7.30274473e+06
1.65111186e+07 1.49635981e+07 5.33297581e+06 2.12431570e+07
6.87568981e+06 8.96821581e+06 3.15342936e+06 4.02785692e+06]
[ 1.49333810e+07 2.31742321e+07 3.25033217e+06 1.80798629e+07
1.66104539e+06 5.43184307e+06 1.28673997e+07 1.47225465e+06
1.21800155e+07 1.64844922e+07 5.68384219e+06 4.32273986e+06
5.46037747e+04 7.73424978e+06 4.56251167e+06 1.69439021e+07
8.37262267e+06 1.53859238e+07 9.33083928e+06 2.29494101e+06
2.84832091e+06 1.15553960e+07 4.83830990e+06 6.92079579e+06
2.62114918e+06 3.22642608e+06 3.57781185e+06 4.82901476e+06
1.36829643e+07 1.02894079e+07 3.16489754e+06 1.86181873e+07
4.03195980e+06 6.66259535e+06 5.47386121e+06 5.30114226e+06]
[ 9.15651827e+06 1.80493947e+07 -3.85259592e+04 1.10677583e+07
-1.32687676e+06 1.64475979e+06 3.08518629e+06 -3.19042718e+06
5.83927122e+06 1.15183115e+07 1.41264200e+06 -5.43205516e+05
2.12134661e+06 7.51679013e+06 2.40276412e+05 1.02464965e+07
4.12369570e+06 7.27809955e+06 3.19986593e+06 -9.89918858e+05
-1.11800663e+06 4.13954447e+06 4.35071207e+06 2.58449059e+06
-1.88956210e+06 -9.60022643e+05 5.45048507e+06 6.29041721e+05
7.30170038e+06 2.81703127e+06 -3.38296767e+05 1.11385046e+07
-1.84513316e+05 1.93472152e+06 8.46662961e+06 6.97096195e+06]
[ 3.33923204e+06 9.93936063e+06 -3.81771823e+06 4.70737408e+06
-4.79063885e+06 -2.52779816e+06 -2.07746980e+06 -3.92494239e+06
7.19286000e+05 4.68798462e+06 -3.21745948e+06 -4.75883334e+06
1.22473797e+06 4.00852051e+06 -3.98481877e+06 4.68390280e+06
-1.01121603e+06 2.45618023e+06 -6.86985781e+05 -4.59110041e+06
-4.76944277e+06 -2.07839217e+06 3.77578560e+06 -2.35449347e+06
-5.48555624e+06 -3.58205894e+06 4.57878590e+06 -3.54295993e+06
3.41647721e+06 -1.49690232e+06 -4.05886211e+06 5.39524930e+06
-4.12530484e+06 -2.83007482e+06 8.67516688e+06 7.05673439e+06]
[ 6.27474304e+05 3.09284345e+06 -5.32984375e+06 4.58811444e+06
-6.14276771e+06 -3.81682280e+06 2.09792191e+06 -6.03050819e+05
7.22572829e+05 1.58078941e+06 -4.47845717e+06 -4.54751294e+06
-3.55027926e+06 -1.18406456e+06 -4.44621029e+06 4.92292767e+06
-3.08829756e+06 5.07505561e+06 -1.77730777e+06 -5.36172585e+06
-4.78542477e+06 -1.30684576e+06 3.94610182e+05 -3.88017731e+06
-4.94448503e+06 -1.33598107e+06 -1.04668468e+06 -4.37959758e+06
4.49320777e+06 1.02378498e+06 -5.10974568e+06 3.98498664e+06
-4.35600972e+06 -3.66138803e+06 2.26559002e+06 1.30154552e+06]
[-1.76825229e+06 -3.19150998e+06 -4.39026441e+06 6.05240519e+06
-4.80370629e+06 -3.46236042e+06 1.02063896e+07 1.80042143e+06
1.88987915e+06 -2.39078278e+06 -2.88233709e+06 -1.62107344e+06
-8.88868523e+06 -6.09561655e+06 -2.88444726e+06 3.09915756e+06
-3.10709764e+06 1.05582992e+07 -2.25084966e+06 -3.55954452e+06
-2.35453228e+06 2.09926709e+06 -4.73036667e+06 -2.80102736e+06
-1.96500638e+06 1.47356109e+06 -8.67484130e+06 -3.15990066e+06
6.08828405e+06 6.10419071e+06 -3.81337341e+06 1.02866990e+06
-2.73107480e+06 -2.21962370e+06 -7.32598367e+06 -7.15464346e+06]
[-3.29094794e+06 -8.23957477e+06 -2.12868296e+06 5.12568702e+06
-2.11769088e+06 -2.13442055e+06 1.39715800e+07 1.48120648e+06
2.15400390e+06 -7.30453949e+06 -6.26535125e+05 1.08126211e+06
-1.13446685e+07 -9.19713429e+06 -8.22179943e+05 -1.72794316e+06
-2.06727071e+06 1.19782039e+07 -3.75009010e+06 -7.95938218e+05
5.64996113e+05 4.02128806e+06 -8.92341565e+06 -9.49074953e+05
1.12783405e+06 2.66116972e+06 -1.34492650e+07 -1.29222985e+06
5.05514299e+06 8.74459624e+06 -1.59693472e+06 -3.74217996e+06
-7.23948308e+05 -2.61424636e+05 -1.40580124e+07 -1.29470867e+07]
[-3.01558335e+06 -1.17567545e+07 1.20932791e+06 1.26083708e+06
1.76928547e+06 -1.75840470e+05 1.41238509e+07 -1.48919087e+06
1.32536658e+06 -1.13570479e+07 1.55159424e+06 3.05080265e+06
-8.46336780e+06 -8.32312569e+06 1.50366101e+06 -3.10145655e+06
-2.89120602e+05 8.78397383e+06 -1.97753414e+06 2.39626999e+06
3.43957971e+06 5.24091266e+06 -8.79804592e+06 1.28247698e+06
3.49503790e+06 3.12354186e+06 -1.20453782e+07 8.41507698e+05
2.00287706e+06 8.74590696e+06 1.30848995e+06 -4.22164732e+06
1.69401271e+06 1.68821937e+06 -1.38070948e+07 -1.27843730e+07]
[-3.03066698e+06 -1.35374621e+07 2.19930063e+06 -7.65116336e+05
3.03858721e+06 9.75792495e+04 1.10774009e+07 -4.69441742e+06
4.92024693e+05 -1.41492131e+07 1.39997418e+06 2.38946568e+06
-5.82284122e+06 -6.76880173e+06 1.32634901e+06 -5.22788123e+06
-1.73183784e+05 6.61627832e+06 -3.04440386e+06 2.91564595e+06
3.41164621e+06 3.12435333e+06 -8.10542850e+06 1.35576102e+06
2.84707075e+06 1.68098714e+06 -9.72406854e+06 7.06944992e+05
4.77866294e+04 6.41459695e+06 1.95716202e+06 -5.84683120e+06
1.35754258e+06 1.34672908e+06 -1.10723663e+07 -1.11856481e+07]
[-2.34417558e+06 -1.30713845e+07 1.98145443e+06 -4.82660956e+05
3.13926828e+06 -3.32296893e+05 1.15878449e+07 -7.41224503e+06
1.09154198e+05 -1.54803676e+07 8.37250147e+05 1.66558634e+06
-6.41293652e+06 -7.19984647e+06 7.09399897e+05 -5.69636033e+06
-5.57695702e+05 7.34134690e+06 -3.05582524e+06 2.35138759e+06
2.74920128e+06 2.92172395e+06 -8.79823240e+06 1.07959413e+06
2.03266045e+06 9.72558134e+04 -1.07649353e+07 1.17056311e+05
3.57522391e+05 5.94618627e+06 1.61519015e+06 -5.81733543e+06
8.20296540e+05 8.97028279e+05 -1.06366013e+07 -1.13808591e+07]
[-1.17242412e+06 -1.01941068e+07 1.35352878e+06 4.46815709e+05
2.42844975e+06 -4.48198283e+05 1.03226925e+07 -8.05253494e+06
3.05469012e+05 -1.31529207e+07 3.47651822e+05 1.07593768e+06
-6.79594040e+06 -7.00436723e+06 4.96733989e+05 -3.36287191e+06
-6.69473436e+05 7.02830567e+06 -2.12971511e+06 1.50481933e+06
1.88822426e+06 2.90135137e+06 -7.88290466e+06 7.03874777e+05
1.44630601e+06 -8.99853858e+05 -1.05624388e+07 -9.45130755e+04
8.05594413e+04 5.03097110e+06 1.07017796e+06 -3.60966089e+06
6.39106285e+05 6.50663793e+05 -9.26867349e+06 -9.81637318e+06]
[ 5.78580332e+05 -5.32831897e+06 7.19615975e+05 1.99220780e+06
1.55655413e+06 -2.55609871e+05 8.62043657e+06 -6.06369652e+06
1.12021674e+06 -9.01327574e+06 8.42138620e+02 7.69145207e+05
-5.89390207e+06 -5.62369109e+06 4.02381965e+05 -4.77270573e+05
-3.86331441e+05 6.75824923e+06 -5.87544868e+04 7.68424858e+05
1.16263348e+06 3.39975405e+06 -5.59697664e+06 6.26968148e+05
9.76718232e+05 -1.17958210e+06 -8.37127068e+06 4.36313298e+03
3.36803150e+05 4.57724220e+06 5.74727651e+05 -6.67108767e+05
6.68941416e+05 7.75353631e+05 -6.81879247e+06 -7.04740502e+06]
[ 2.18120876e+06 -9.30513815e+05 3.07576905e+05 3.22593455e+06
7.46086100e+05 3.74102201e+04 5.91488428e+06 -2.82361229e+06
2.02438837e+06 -3.95337722e+06 -1.02359377e+05 7.08829886e+05
-3.73762175e+06 -3.33835592e+06 4.27552087e+05 1.73490182e+06
4.11951936e+04 5.88964838e+06 1.76475996e+06 2.17938014e+05
5.61219980e+05 2.82092552e+06 -2.75877734e+06 5.29148578e+05
6.91982175e+05 -6.97222350e+05 -4.79611100e+06 2.58860374e+05
9.04011660e+05 3.69541846e+06 2.88387626e+05 1.83973299e+06
7.52599676e+05 8.94975766e+05 -3.47082773e+06 -3.55798362e+06]
[ 1.29960374e+06 -4.64571479e+05 2.66039757e+05 1.84531239e+06
4.82032423e+05 1.26795219e+05 2.81688370e+06 -2.46419804e+06
1.10137576e+06 -2.37769313e+06 -3.79876046e+04 3.26352364e+05
-1.96373142e+06 -1.75786431e+06 1.80398491e+05 5.86362903e+05
1.13418428e+05 3.26990523e+06 8.94531592e+05 1.85367999e+05
2.29452801e+05 1.30079591e+06 -1.43944435e+06 3.11565771e+05
3.07446746e+05 -6.53666513e+05 -2.51975637e+06 1.75116204e+05
1.42352973e+05 1.84365502e+06 2.48094487e+05 9.37605288e+05
3.98165240e+05 5.45282415e+05 -1.34009153e+06 -1.44238978e+06]
[ 3.88159950e+05 -5.65066090e+03 9.35922011e+04 6.46456557e+05
1.64689094e+05 3.55324548e+04 9.43638510e+05 -9.25432832e+05
3.20980014e+05 -8.99136843e+05 -3.88972034e+04 4.51277785e+04
-5.60522922e+05 -5.15446732e+05 -4.13073987e+03 -5.85523883e+04
5.57755516e+04 1.10112770e+06 1.61390214e+05 4.58873174e+04
2.90800634e+04 4.10937664e+05 -4.10170570e+05 1.18853527e+05
1.55948747e+04 -4.14180357e+05 -7.23803364e+05 1.94650305e+04
-3.00851149e+04 5.75975010e+05 5.98739914e+04 9.58419765e+04
5.28326193e+04 1.48241555e+05 -3.15611192e+05 -3.93304308e+05]
[ 3.23517977e+03 -6.38955170e+04 2.44305637e+04 -4.96251551e+03
3.36401995e+04 8.90618015e+03 -1.08030042e+04 -1.20467855e+05
-8.02895541e+03 -1.72513318e+05 -2.41450347e+04 -1.39913616e+04
2.13779334e+04 -2.25323396e+04 -1.04342755e+04 -9.90975479e+04
3.15449756e+03 2.17250543e+04 -1.06078452e+03 1.84316538e+04
-1.84461096e+02 -3.01238329e+03 -3.18959517e+03 7.06878509e+03
-8.04116149e+03 -5.78065620e+04 1.18260260e+04 -2.83164951e+03
-8.71776507e+04 3.46252904e+03 1.52369766e+04 -7.54684294e+04
-2.40519128e+03 -1.22833820e+03 3.97513552e+04 2.26567606e+04]
[ 1.23217587e+03 -1.48616575e+03 2.07500063e+03 7.90095489e+02
2.27368213e+03 1.21157758e+03 3.19082702e+02 -1.97930326e+03
1.36398365e+03 9.15063001e+02 1.07254664e+03 1.08477480e+03
2.80140064e+03 1.17531778e+03 1.36903844e+03 1.20433509e+03
1.03404223e+03 9.89785126e+02 -1.19049048e+03 2.00177774e+03
1.62702265e+03 7.26708406e+02 -5.13813485e+02 1.29016735e+03
9.91924283e+02 9.94446513e+02 1.45350649e+03 1.09428244e+03
1.12541320e+03 7.07433266e+02 1.90404384e+03 1.17503240e+03
1.08248859e+03 9.51608020e+02 8.61350834e+02 -6.57918500e+02]
[-3.40432080e-02 -8.62114143e-02 3.32930081e-01 5.58170640e-01
9.49958050e-01 -2.28558920e-01 -7.43295112e-01 -8.77703499e-01
-9.13417073e-01 -7.86322723e-01 -4.49834429e-01 -8.58034816e-01
2.49640755e-01 -7.13463019e-01 -9.35124299e-01 4.95315538e-01
9.31590643e-01 7.51266241e-01 7.49484665e-01 1.66415301e-01
-9.16258804e-01 3.67774283e-01 -1.36623198e-03 -7.88167521e-01
-2.51440328e-01 -1.84524665e-01 -8.26277803e-01 9.47432611e-01
5.51603673e-01 -5.94230990e-01 1.25763662e-01 -3.09606174e-01
-5.29967194e-01 3.80319734e-01 8.86435526e-01 -2.91082860e-01]
[ 7.07176149e+02 -4.40073563e+03 4.12288454e+03 4.05895433e+03
4.21071186e+03 2.14039097e+03 7.96665319e+02 -1.58245906e+04
2.73048125e+03 -2.21981724e+04 3.88994331e+03 1.83021531e+03
9.22101698e+02 -1.27291007e+03 -2.70098112e+02 -2.00594098e+04
4.11178065e+03 1.08906017e+04 -8.03879255e+03 4.36520108e+03
3.01656902e+03 -3.54003964e+03 -3.10809651e+03 3.74221666e+03
1.66104129e+03 -7.20235822e+03 -2.87489804e+03 3.90753468e+02
-1.10025511e+04 1.89552112e+03 2.62217574e+03 -1.40367404e+04
9.33816421e+02 3.78016190e+03 4.69128938e+03 2.89766473e+03]
[-3.15819868e+05 -5.78495298e+05 2.28332023e+05 -4.27090491e+05
2.72184732e+05 9.56127964e+04 -1.38059490e+05 -9.46331561e+05
-3.08841749e+05 -8.39090031e+05 1.74936745e+05 1.05233497e+05
5.07128207e+04 -1.08010060e+05 1.14121760e+05 -6.70404735e+05
1.02976056e+05 -3.12377149e+05 -4.68456322e+05 2.44122068e+05
2.00821987e+05 -3.22148885e+04 -3.29253272e+05 1.50971279e+05
1.25363093e+05 -1.84229910e+05 -2.37601953e+05 7.91855231e+04
-8.34161572e+05 -2.48606234e+05 2.03374826e+05 -6.01543874e+05
1.04312536e+05 1.09583248e+05 -8.12897757e+04 -1.67809425e+05]
[-1.28806903e+06 -3.98176274e+06 1.16059251e+06 -1.76302635e+06
1.54419606e+06 4.04806008e+05 4.87997784e+05 -6.20542810e+06
-1.35382568e+06 -5.29502318e+06 6.99980996e+05 3.87666536e+05
-4.08909174e+05 -1.13119394e+06 5.09776909e+05 -2.77742971e+06
2.73609063e+05 -6.46197118e+05 -1.93491797e+06 1.25514469e+06
9.58146062e+05 2.68538870e+05 -2.33657838e+06 6.62923058e+05
5.31230825e+05 -1.04203903e+06 -2.16711605e+06 2.91469846e+05
-4.33313472e+06 -4.93779235e+05 1.05086672e+06 -2.50252207e+06
5.07218614e+05 5.32587462e+05 -8.68080750e+05 -1.52471541e+06]
[-1.84424443e+06 -9.42548901e+06 2.63716358e+06 -2.21158603e+06
3.52880973e+06 1.02981025e+06 3.56831889e+06 -1.17707631e+07
-1.34806614e+06 -1.14922106e+07 1.66313713e+06 1.34357876e+06
-2.14566673e+06 -3.00262209e+06 1.36306708e+06 -4.52953970e+06
8.64300461e+05 1.28280855e+06 -3.46611328e+06 2.74658226e+06
2.37134683e+06 1.15605109e+06 -5.87445088e+06 1.84052296e+06
1.48396349e+06 -1.95689103e+06 -6.24352132e+06 8.67362242e+05
-5.72888477e+06 1.08679541e+06 2.33025208e+06 -4.09675643e+06
1.31278850e+06 1.56982208e+06 -3.91033136e+06 -5.21966185e+06]
[-3.42803791e+06 -1.62816519e+07 3.43579821e+06 -3.75724061e+06
4.95210912e+06 9.66453508e+05 6.77654940e+06 -1.53123721e+07
-1.98173138e+06 -1.75720106e+07 1.66902591e+06 1.84655050e+06
-4.93225045e+06 -6.43237543e+06 1.97243618e+06 -4.40290085e+06
4.11134862e+05 2.07143736e+06 -4.20406425e+06 3.51325802e+06
3.37716589e+06 2.02041690e+06 -9.90562509e+06 2.05332715e+06
2.22360463e+06 -1.99418321e+06 -1.10817458e+07 9.08688120e+05
-6.03224517e+06 2.37005445e+06 3.03009626e+06 -4.63331139e+06
1.85215037e+06 1.79384651e+06 -9.00130748e+06 -1.03056153e+07]
[-4.93333525e+06 -2.09962594e+07 2.74960332e+06 -7.34488433e+06
4.83274288e+06 -3.80988182e+05 9.06272388e+06 -1.51974606e+07
-3.54699666e+06 -2.13160136e+07 3.98261120e+05 1.29042009e+06
-7.88749628e+06 -1.05855246e+07 1.66401225e+06 -2.62174855e+06
-1.57631278e+06 -5.73480563e+05 -1.52334348e+06 2.64164002e+06
2.97865948e+06 2.46419286e+06 -1.21070616e+07 6.65267507e+05
2.06355430e+06 -1.56619319e+06 -1.44584226e+07 8.36833143e+04
-6.66576075e+06 3.31477357e+06 2.46455605e+06 -3.26746169e+06
1.58200898e+06 6.87929427e+05 -1.40395652e+07 -1.42073718e+07]
[-3.67665272e+06 -1.96954668e+07 3.22611269e+06 -7.13200675e+06
5.30256758e+06 5.81173361e+04 1.22917369e+07 -1.17100762e+07
-2.45264211e+06 -2.12864397e+07 8.80998266e+05 2.40594662e+06
-7.93700550e+06 -1.12430574e+07 2.50648867e+06 3.93542915e+05
-1.42114604e+06 3.50934973e+05 3.07151933e+06 2.93723053e+06
3.77443962e+06 4.43200818e+06 -9.68681144e+06 1.00515261e+06
3.26625192e+06 -2.12627932e+05 -1.30493487e+07 1.00556218e+06
-3.69653226e+06 6.12881192e+06 3.03921435e+06 2.90844354e+05
2.69220352e+06 1.43868076e+06 -1.38107665e+07 -1.31293577e+07]
[ 7.53174128e+05 -1.43291536e+07 4.56831503e+06 -2.83406037e+06
6.21809991e+06 2.17556077e+06 1.48221413e+07 -5.80560439e+06
1.47155682e+06 -1.59208590e+07 2.52822542e+06 4.53775158e+06
-5.47420637e+06 -8.18177708e+06 4.25913546e+06 5.09449171e+06
1.04164467e+06 4.11151998e+06 8.13549512e+06 4.14200897e+06
5.24417080e+06 7.71866498e+06 -4.44488457e+06 3.02141172e+06
5.24540602e+06 2.49721244e+06 -8.33593505e+06 3.27597937e+06
1.64249384e+06 1.01388082e+07 4.38727689e+06 5.82738605e+06
4.77890166e+06 3.70357845e+06 -9.55525421e+06 -8.44553988e+06]
[ 4.89282580e+06 -4.76780798e+06 4.60209780e+06 2.68931038e+06
5.31858272e+06 3.58512039e+06 1.53910764e+07 -2.64082704e+05
5.28167774e+06 -5.02625864e+06 3.64819829e+06 5.46431057e+06
-3.16295467e+06 -3.33346524e+06 5.10236755e+06 1.10008649e+07
3.13492547e+06 6.81187118e+06 1.22893914e+07 4.04635248e+06
5.04956081e+06 1.03494282e+07 -2.91845601e+04 4.19248149e+06
5.52834308e+06 5.51343373e+06 -3.46413618e+06 4.46663658e+06
6.08865791e+06 1.19648000e+07 4.59998944e+06 1.22858999e+07
5.59676997e+06 5.02635298e+06 -5.09242858e+06 -3.76677312e+06]
[ 8.44988674e+06 4.79525929e+06 4.55704507e+06 8.57983415e+06
4.31668636e+06 4.67563918e+06 1.55051486e+07 3.20044302e+06
8.27377156e+06 5.62268714e+06 5.28920475e+06 6.15249174e+06
-1.53980482e+06 1.19513020e+06 5.84311562e+06 1.56356725e+07
5.52950893e+06 9.85657761e+06 1.23452678e+07 4.12272551e+06
5.12132005e+06 1.22525444e+07 2.20116480e+06 5.64913110e+06
5.55395404e+06 7.46754006e+06 -1.82449145e+05 5.28742446e+06
9.86824068e+06 1.21388065e+07 4.72397149e+06 1.61892949e+07
5.97501319e+06 6.30182330e+06 -1.33601782e+06 -3.20546911e+05]
[ 1.07628901e+07 1.06865591e+07 4.27134386e+06 1.39256516e+07
3.21469533e+06 5.39540325e+06 1.58662769e+07 2.66784486e+06
1.10263879e+07 1.21825324e+07 6.10358294e+06 6.33286752e+06
-2.22683443e+06 3.56260928e+06 6.35576690e+06 1.87255906e+07
7.34722723e+06 1.34759545e+07 9.22485700e+06 3.80769000e+06
4.91549052e+06 1.28787856e+07 1.10845575e+06 6.70856903e+06
5.16566136e+06 7.85737103e+06 -8.44246475e+05 5.61726945e+06
1.32309533e+07 1.19713714e+07 4.47041192e+06 1.81519302e+07
5.77820355e+06 7.16791630e+06 -2.10200960e+05 -1.65859961e+05]
[ 8.49371936e+06 1.16010242e+07 9.72192652e+05 1.30709759e+07
-4.39107348e+05 2.71308785e+06 1.31612703e+07 2.37636359e+06
9.26751745e+06 1.36580909e+07 3.73081695e+06 3.43237476e+06
-3.32296816e+06 3.30475250e+06 3.35348425e+06 1.74128772e+07
4.95457765e+06 1.19876548e+07 6.48931851e+06 7.96553051e+05
1.85889465e+06 9.30900356e+06 9.11103180e+04 3.88557843e+06
1.97346258e+06 6.86602546e+06 -1.36562702e+06 2.66132751e+06
1.40949042e+07 9.55376793e+06 1.32828624e+06 1.64734918e+07
2.57272092e+06 4.24928796e+06 4.19638510e+05 1.20293473e+05]
[ 4.04513904e+06 6.21996255e+06 -1.19317942e+06 8.31147704e+06
-2.50504212e+06 2.46047341e+05 8.05543036e+06 1.14170942e+04
5.01359092e+06 9.01386997e+06 1.15341130e+06 3.89130976e+05
-2.97475596e+06 2.21928835e+06 3.50888592e+05 1.19515110e+07
2.06115618e+06 7.64030671e+06 1.77642618e+06 -1.15380002e+06
-4.39205082e+05 4.75182908e+06 -5.39202347e+05 1.01311271e+06
-7.39528144e+05 4.98829143e+06 -1.15334200e+06 -1.10346114e+05
1.04854520e+07 5.79336469e+06 -9.67117652e+05 1.04324714e+07
-2.68701726e+05 1.07482688e+06 1.28326127e+06 2.17121351e+05]
[ 1.50156459e+06 8.83082690e+05 -3.18290619e+06 5.87960522e+06
-4.36277525e+06 -1.56684384e+06 6.44971452e+06 6.49849714e+05
3.22541015e+06 6.33075696e+06 -8.44969190e+05 -1.44663651e+06
-4.51368331e+06 -1.85011016e+05 -1.74284873e+06 8.92422945e+06
-3.56918192e+05 6.52974897e+06 -5.58519236e+05 -2.72914759e+06
-2.12844989e+06 1.96472033e+06 -9.45654296e+05 -1.37083502e+06
-2.27549967e+06 4.35434908e+06 -2.37937531e+06 -2.08494991e+06
9.22936737e+06 4.41601199e+06 -2.77399327e+06 7.27687655e+06
-2.10828694e+06 -1.01445154e+06 6.48584956e+05 -3.85439828e+05]
[ 9.16304342e+05 -1.70577946e+06 -3.18927623e+06 7.92770600e+06
-4.31751122e+06 -1.42927671e+06 1.05338944e+07 4.95680368e+06
4.80763671e+06 6.18526474e+06 -1.44716886e+05 2.76173404e+05
-8.38417803e+06 -3.96248797e+06 -8.90041310e+05 9.28759704e+06
-5.49661869e+05 1.11104715e+07 -1.42413894e+06 -2.09314912e+06
-8.34123601e+05 3.48055319e+06 -3.39185374e+06 -1.10863216e+06
-4.91457038e+05 6.31322912e+06 -6.84927261e+06 -1.40682662e+06
1.12750965e+07 7.50297998e+06 -2.44370702e+06 6.26716783e+06
-1.02453096e+06 -1.23898626e+05 -4.98353549e+06 -4.95873039e+06]
[-8.72985669e+05 -4.14057544e+06 -2.75893995e+06 9.96123701e+06
-3.60092354e+06 -1.34007528e+06 1.48394775e+07 5.22142616e+06
5.12922959e+06 2.47381632e+06 6.69150643e+05 1.88200363e+06
-1.29707389e+07 -7.45237833e+06 -2.67096688e+05 4.73895996e+06
-6.02682196e+05 1.55519216e+07 -4.02580289e+06 -9.82983159e+05
4.92077055e+05 4.91285133e+06 -7.67111791e+06 -3.60781743e+05
1.13005624e+06 5.72614288e+06 -1.31580313e+07 -7.61325563e+05
1.03000225e+07 9.76526070e+06 -1.74661799e+06 1.41145830e+06
-3.92109235e+05 6.72398891e+05 -1.22752459e+07 -1.11875871e+07]
[-3.19350729e+06 -8.57309113e+06 -1.95302252e+06 4.13118165e+06
-1.95181895e+06 -1.85322605e+06 1.52616736e+07 1.50961599e+06
2.21212575e+06 -4.72804773e+06 7.46721349e+05 2.07521862e+06
-1.35884663e+07 -1.00579286e+07 -1.17756976e+05 -5.46194491e+05
-1.80675008e+06 1.04865719e+07 -3.27980576e+06 -7.49787199e+04
1.25891529e+06 5.38430874e+06 -1.07554685e+07 -6.05918060e+05
1.88135546e+06 4.70976560e+06 -1.59369473e+07 -7.91418109e+05
3.50815271e+06 8.80990273e+06 -1.18760400e+06 -2.98671488e+06
-4.10010885e+04 3.87938474e+05 -1.70831841e+07 -1.51279341e+07]
[-3.35819698e+06 -1.13522943e+07 6.84623803e+05 -1.45202780e+06
1.47785187e+06 -7.98138262e+05 1.40401733e+07 -3.33435811e+06
-3.87318594e+05 -1.17231534e+07 1.47969402e+06 2.72759234e+06
-1.01219202e+07 -9.89266507e+06 1.24950533e+06 -3.14133126e+06
-1.29130128e+06 5.58981539e+06 -4.27574964e+05 1.98598003e+06
3.00424592e+06 5.47894680e+06 -9.84541300e+06 5.41057396e+05
3.20793276e+06 2.86944086e+06 -1.38832240e+07 5.06799130e+05
-2.64958565e+06 7.21218959e+06 9.90461325e+05 -4.15518745e+06
1.56779856e+06 1.13814869e+06 -1.56835495e+07 -1.39755899e+07]
[-2.39687689e+06 -1.22473837e+07 1.80809501e+06 -1.83056324e+06
3.07467678e+06 -5.15591311e+05 1.02927632e+07 -7.78737852e+06
-1.08058942e+06 -1.70475833e+07 7.40675201e+05 1.88375000e+06
-7.48137399e+06 -9.02842371e+06 7.68016887e+05 -6.70666150e+06
-1.06558898e+06 5.81590390e+06 -1.82233223e+06 2.28953854e+06
2.76032660e+06 3.20471809e+06 -8.65519105e+06 8.51898059e+05
2.46375374e+06 -1.18074339e+06 -1.16520139e+07 2.86762476e+05
-4.04533710e+06 5.17448927e+06 1.59299546e+06 -6.73048031e+06
1.18412647e+06 9.54430178e+05 -1.23625501e+07 -1.18412514e+07]
[-5.59017638e+05 -1.03510605e+07 1.76416396e+06 9.16110859e+05
3.09467864e+06 -4.30395216e+05 1.01238839e+07 -1.01589046e+07
1.23066790e+05 -1.69992275e+07 3.56089716e+05 1.53861332e+06
-7.35912309e+06 -8.37705900e+06 4.14374042e+05 -5.90031606e+06
-7.20508842e+05 8.70824443e+06 -1.70917333e+06 1.80573156e+06
2.19565177e+06 3.35035027e+06 -8.37466817e+06 9.95842740e+05
1.82514265e+06 -2.42471229e+06 -1.15835010e+07 8.23111627e+04
-2.55496624e+06 5.31175487e+06 1.38125442e+06 -5.34353989e+06
9.99958186e+05 1.08668631e+06 -1.04723590e+07 -1.07645932e+07]
[ 8.26855831e+05 -6.24526310e+06 1.70777341e+06 2.04614460e+06
2.68730807e+06 2.07827550e+05 8.59475038e+06 -8.29063094e+06
9.56664162e+05 -1.24037845e+07 4.90107053e+05 1.53470874e+06
-5.98320146e+06 -6.47301852e+06 8.84506629e+05 -2.80914814e+06
3.85864697e+04 7.82567493e+06 -1.79400436e+05 1.48284078e+06
1.87537263e+06 3.23817380e+06 -6.23636619e+06 1.30128359e+06
1.74366010e+06 -2.30747878e+06 -9.26909082e+06 5.97214010e+05
-1.48637458e+06 4.49188935e+06 1.42492752e+06 -2.25361050e+06
1.33831504e+06 1.40781379e+06 -7.62834266e+06 -7.95462650e+06]
[ 1.47463528e+06 -2.51834126e+06 5.77857259e+05 2.30161064e+06
1.22980349e+06 -1.49346675e+05 5.80814725e+06 -4.12106264e+06
1.23256740e+06 -6.72677436e+06 -3.62563388e+05 7.52919423e+05
-4.25089485e+06 -4.56866878e+06 4.69587766e+05 2.49853054e+05
-3.06697504e+05 5.84948484e+06 1.85497423e+06 3.29667212e+05
7.71956645e+05 2.74237573e+06 -3.41950178e+06 4.78153576e+05
9.35191193e+05 -1.59148100e+06 -5.82933472e+06 2.26883210e+05
-2.49080167e+05 3.30768940e+06 5.14945458e+05 8.98651492e+05
8.41855655e+05 7.18034816e+05 -4.58844607e+06 -4.63793274e+06]
[ 1.58432319e+06 -3.26047904e+05 1.15814009e+05 2.06704992e+06
4.23105655e+05 -2.31442445e+04 4.05712098e+06 -1.42782370e+06
1.36108995e+06 -2.66972059e+06 -2.14097089e+05 5.55257728e+05
-2.65181730e+06 -2.51271388e+06 3.54290155e+05 1.30967219e+06
-1.07122346e+05 3.87718092e+06 2.18319387e+06 -1.96449020e+04
3.14989496e+05 1.99534682e+06 -1.72693945e+06 2.69188951e+05
5.48925040e+05 -5.24161867e+05 -3.32260840e+06 2.29230132e+05
8.27684051e+05 2.44240437e+06 1.65490842e+05 1.83047255e+06
6.15101264e+05 5.80225006e+05 -2.48493677e+06 -2.44371372e+06]
[ 7.22370995e+05 9.14416195e+04 2.84179234e+05 9.56135266e+05
3.76888217e+05 2.19882960e+05 1.01306106e+06 -1.26474522e+06
5.45531175e+05 -1.39013793e+06 8.55815866e+04 2.42671738e+05
-6.43999614e+05 -6.84957092e+05 2.13661715e+05 -9.20098281e+04
2.65340695e+05 1.68321625e+06 2.97585255e+05 1.89146014e+05
2.20149660e+05 4.85833821e+05 -4.61615004e+05 3.50526156e+05
2.31338912e+05 -6.59839697e+05 -9.15404921e+05 2.18182529e+05
-9.29183975e+03 5.88881263e+05 2.59921925e+05 2.02826882e+05
2.85296206e+05 3.84572446e+05 -3.75826055e+05 -4.83405119e+05]
[ 2.24702432e+05 -3.85854352e+04 7.97093817e+04 3.50837145e+05
1.07815731e+05 4.71642730e+04 2.49804606e+05 -4.78029036e+05
1.88109054e+05 -5.63289320e+05 -3.76603414e+04 2.54458326e+04
-2.11601822e+05 -2.41360915e+05 2.56560326e+04 -1.36773698e+05
7.68891762e+04 6.15360396e+05 4.97082172e+04 3.32068474e+04
2.97170286e+04 1.25282311e+05 -1.28197788e+05 9.69736288e+04
1.85685956e+04 -3.05099723e+05 -2.85713466e+05 3.82538742e+04
-7.04394045e+04 1.92485147e+05 5.82080418e+04 2.98267346e+04
3.95708485e+04 8.68728853e+04 -6.44410351e+04 -1.34813006e+05]
[ 8.39290056e+03 -6.44281936e+04 5.52605465e+04 -7.70555760e+03
6.09384116e+04 4.35995304e+04 -1.96222318e+04 -1.43264796e+05
8.09380807e+02 -1.16628688e+05 2.67600514e+04 2.66852279e+04
3.33146169e+04 1.26186887e+04 3.12735558e+04 -7.50038003e+04
4.54219010e+04 9.81410208e+02 -2.15105075e+04 4.83853988e+04
3.36582426e+04 4.02513480e+03 -2.12072273e+04 4.66647915e+04
2.61802138e+04 -4.01545674e+04 1.17804011e+03 3.66024696e+04
-9.40127819e+04 -6.58636377e+03 4.94298101e+04 -5.28522495e+04
3.33878970e+04 3.64873117e+04 3.26824486e+04 1.01222711e+04]
[-3.80601871e+03 -1.72414114e+04 3.86868290e+03 -5.25029795e+03
5.98055666e+03 1.08176765e+03 1.63112616e+03 -2.07533433e+04
-5.52364977e+03 -1.79287961e+04 1.34480913e+02 3.04071162e+03
-7.43607833e+03 -1.33481275e+04 3.18216494e+03 2.60784661e+03
-7.95599989e+02 2.28389834e+03 2.67639529e+03 3.58130097e+03
3.80862146e+03 5.46137204e+03 -8.58993136e+03 2.56726173e+02
3.94184619e+03 -1.52275965e+03 -1.26845960e+04 1.45363859e+03
-1.44962390e+04 -1.78730600e+02 3.23234274e+03 8.89468211e+03
3.73112108e+03 1.22535818e+03 -8.03706560e+03 -6.80564139e+03]
[ 1.37394371e-01 9.80948587e-01 7.29149767e-01 -5.47992638e-01
3.70818375e-01 1.17978036e-02 -6.26817855e-01 -7.47497533e-01
7.43715629e-01 9.98928249e-01 -8.67436998e-01 -5.41713538e-01
5.21558224e-01 -1.11790289e-01 8.34221230e-02 1.41399536e-01
5.26632862e-01 6.86825384e-01 -9.55403667e-01 -5.17708993e-01
4.97550364e-03 -2.26173848e-01 -7.65012780e-01 -3.39440177e-01
3.67107903e-01 5.56927465e-01 1.89250671e-01 -2.53458333e-01
4.49248848e-01 9.40700023e-01 5.65600495e-01 -8.57173958e-03
4.40056914e-01 6.61969894e-01 -8.27335626e-02 6.02401200e-01]
[ 4.96292456e+04 5.64510745e+04 3.17048548e+04 5.06255206e+04
2.82452897e+04 2.36667123e+04 -1.54372187e+04 -4.73225209e+04
3.43231469e+04 -2.96380803e+04 1.59111811e+04 9.03111098e+03
1.40359080e+04 1.27040393e+04 1.29296980e+04 -4.89136551e+04
3.56764845e+04 4.78500194e+04 -2.26240974e+04 2.26626217e+04
1.64867780e+04 -2.37439926e+03 1.48807286e+04 3.02164185e+04
1.14142533e+04 -4.89756313e+04 1.35726039e+04 1.60718379e+04
-5.41542340e+04 -1.33411996e+04 2.61847239e+04 -3.31312163e+04
1.01356760e+04 2.11154704e+04 3.18088872e+04 2.92414508e+04]
[-4.18196426e+05 -5.90853423e+05 2.58122664e+05 -5.14029994e+05
3.29178106e+05 7.47376086e+04 -1.56571181e+05 -1.01787066e+06
-4.43541472e+05 -1.17295995e+06 1.79501349e+05 1.08048180e+05
1.32128613e+05 -1.62486000e+05 8.33312362e+04 -8.54144671e+05
7.47194839e+04 -3.41407203e+05 -5.40242836e+05 2.52795570e+05
2.09502095e+05 -2.28249093e+04 -2.44381100e+05 1.43643199e+05
1.23213336e+05 -3.57008335e+05 -1.40116918e+05 5.08330732e+04
-1.03070492e+06 -2.98972721e+05 2.10776633e+05 -7.69251157e+05
8.93743615e+04 8.26506246e+04 -9.06394599e+03 -8.37437804e+04]
[-1.19540485e+06 -3.25091791e+06 1.04204793e+06 -1.34946358e+06
1.35204489e+06 3.93524885e+05 1.70263259e+05 -4.85359816e+06
-1.20577719e+06 -4.28494571e+06 6.39908632e+05 4.68160208e+05
-1.88819247e+05 -1.00076529e+06 5.36426340e+05 -2.14514082e+06
3.02577210e+05 -2.44197352e+05 -1.68892137e+06 1.11179022e+06
9.27648194e+05 2.22979263e+05 -1.72238753e+06 6.46557640e+05
5.87786344e+05 -8.60521298e+05 -1.56177343e+06 3.37148689e+05
-3.33395895e+06 -3.78498156e+05 9.61018388e+05 -2.02251710e+06
5.45737627e+05 5.27531063e+05 -5.92146362e+05 -1.11069966e+06]
[-2.07648847e+06 -7.98558528e+06 2.25512742e+06 -2.54225703e+06
2.96908325e+06 8.98954728e+05 2.10404015e+06 -9.84463002e+06
-1.71633803e+06 -9.03156807e+06 1.52058429e+06 1.19962897e+06
-1.39669981e+06 -2.28379332e+06 1.26969267e+06 -3.82592336e+06
7.48196864e+05 9.10291900e+03 -3.60243696e+06 2.45207571e+06
2.15099292e+06 8.76485453e+05 -4.73219957e+06 1.58102639e+06
1.31976665e+06 -1.42992112e+06 -4.80762322e+06 7.72377641e+05
-5.23559282e+06 3.57959233e+05 2.05132966e+06 -3.68763250e+06
1.16293095e+06 1.31695071e+06 -2.93156956e+06 -4.02937204e+06]
[-2.78232759e+06 -1.44122840e+07 4.02282483e+06 -3.01413665e+06
5.26167449e+06 1.81493393e+06 6.03488351e+06 -1.64652667e+07
-1.76599318e+06 -1.52388452e+07 3.01415664e+06 2.59363906e+06
-4.37654057e+06 -5.07329758e+06 2.56382546e+06 -4.46411216e+06
1.52632250e+06 1.79114029e+06 -5.28887327e+06 4.29584944e+06
3.98537507e+06 2.90483468e+06 -9.62323106e+06 3.03420903e+06
2.70539509e+06 -1.31339875e+06 -1.05445215e+07 1.61125596e+06
-7.25877641e+06 2.26782826e+06 3.69601857e+06 -5.02515752e+06
2.36496818e+06 2.70850356e+06 -7.94178957e+06 -9.36568290e+06]
[-3.32100648e+06 -1.97522453e+07 5.30407536e+06 -4.89230988e+06
7.22245679e+06 2.33350422e+06 1.02764986e+07 -1.77349822e+07
-1.87366050e+06 -1.91452094e+07 4.19314252e+06 4.44223821e+06
-7.70381809e+06 -9.20296490e+06 4.24447808e+06 -2.33833557e+06
1.61683107e+06 2.13727639e+06 -2.83319202e+06 5.58445935e+06
5.86340419e+06 5.54311493e+06 -1.25917333e+07 3.97971625e+06
4.71956345e+06 4.61018635e+05 -1.52590187e+07 2.71030877e+06
-7.69776758e+06 4.97414181e+06 5.10579070e+06 -3.19921973e+06
4.11565981e+06 3.89426907e+06 -1.36648534e+07 -1.40377905e+07]
[-3.30576588e+06 -2.25915439e+07 6.36084098e+06 -7.08077824e+06
8.60742151e+06 2.84219987e+06 1.37196495e+07 -1.61986764e+07
-1.85343945e+06 -2.12995924e+07 5.14547404e+06 6.10611747e+06
-8.78812967e+06 -1.14497019e+07 5.64916121e+06 -1.51281071e+04
1.76109572e+06 1.14451908e+06 7.71621933e+05 6.58735866e+06
7.34676985e+06 7.58934822e+06 -1.29549199e+07 4.59468762e+06
6.52359642e+06 2.39244185e+06 -1.64306624e+07 3.83321149e+06
-6.27900068e+06 7.55851089e+06 6.27712491e+06 -7.60524492e+05
5.68251241e+06 4.88541324e+06 -1.65136382e+07 -1.58495798e+07]
[-1.30984330e+06 -1.97039431e+07 6.72162377e+06 -5.12995683e+06
8.39123845e+06 4.13348765e+06 1.30482784e+07 -9.91924034e+06
5.13217932e+05 -1.59128697e+07 5.61458202e+06 7.01462387e+06
-6.41669006e+06 -8.57079212e+06 6.61020025e+06 4.21938408e+06
3.15775815e+06 1.57253952e+06 3.85951892e+06 6.85913909e+06
7.66099386e+06 8.03404726e+06 -8.41574113e+06 5.38228820e+06
7.39759055e+06 4.26360118e+06 -1.16254768e+07 5.12270716e+06
-1.40365403e+06 8.85241066e+06 6.78347800e+06 3.08244152e+06
6.70752916e+06 5.92636299e+06 -1.28603859e+07 -1.16712650e+07]
[-1.58442814e+06 -1.74825819e+07 4.90309846e+06 -4.76971353e+06
6.07313788e+06 2.90152263e+06 1.04592891e+07 -6.93610284e+06
5.31039709e+05 -1.09446932e+07 3.88194853e+06 5.35214547e+06
-5.66804610e+06 -6.98992780e+06 5.30524209e+06 6.79451637e+06
1.98858204e+06 -4.51662720e+05 4.96681834e+06 4.92655714e+06
5.58356003e+06 6.48049935e+06 -6.31304046e+06 3.60587755e+06
5.60795605e+06 4.93237067e+06 -8.90159163e+06 3.72138305e+06
7.09622440e+04 7.24690853e+06 5.04786003e+06 5.76409887e+06
5.25483625e+06 4.33716553e+06 -1.02692615e+07 -8.83505961e+06]
[ 9.61240163e+05 -1.04539730e+07 4.54091457e+06 -8.18776715e+05
4.82698964e+06 3.55001158e+06 1.02718749e+07 -3.53641364e+06
2.62416830e+06 -1.74215864e+06 4.69427364e+06 5.53484033e+06
-4.34129289e+06 -3.43062405e+06 5.68432692e+06 1.15368004e+07
3.46197316e+06 7.66190644e+05 6.11688150e+06 4.63463133e+06
5.10066507e+06 7.75291136e+06 -3.79041660e+06 4.15903878e+06
5.31715633e+06 6.94247926e+06 -5.57157716e+06 4.20134434e+06
3.22664614e+06 7.55282503e+06 4.90975843e+06 1.00940295e+07
5.31939571e+06 4.93750586e+06 -6.42455001e+06 -5.15107997e+06]
[ 2.47906419e+06 -4.31073100e+06 3.00838074e+06 3.42716278e+06
2.66370845e+06 3.01761001e+06 1.11216497e+07 -1.04428264e+06
4.57686742e+06 4.25664148e+06 4.36385912e+06 4.95119198e+06
-4.91785630e+06 -2.13309776e+06 5.02516841e+06 1.42609245e+07
3.91804262e+06 4.17176104e+06 5.44509030e+06 3.11886129e+06
4.05065804e+06 8.25725215e+06 -2.85848923e+06 3.98112074e+06
4.24950923e+06 7.39334937e+06 -4.80928756e+06 3.48244021e+06
6.96055115e+06 7.94550760e+06 3.44879742e+06 1.26094588e+07
4.25483880e+06 4.66704094e+06 -4.58547609e+06 -3.75604457e+06]
[ 2.16913711e+06 -1.71320580e+06 9.53274541e+05 5.06861189e+06
8.28193762e+04 1.73478322e+06 1.11673448e+07 2.45286350e+06
5.31276008e+06 7.24015094e+06 3.50328580e+06 3.86690389e+06
-5.79897422e+06 -1.85495419e+06 3.47146473e+06 1.41701522e+07
2.99916301e+06 6.29838211e+06 4.82832167e+06 1.32328957e+06
2.62100208e+06 7.21296225e+06 -2.47719892e+06 2.74656443e+06
2.91443579e+06 8.71631065e+06 -4.62166017e+06 2.18980375e+06
1.02136744e+07 8.36297773e+06 1.54387393e+06 1.21373859e+07
2.61546349e+06 3.30803007e+06 -4.75255698e+06 -3.81256415e+06]
[ 6.07797028e+05 -3.46380120e+06 -5.76126891e+05 2.93554342e+06
-1.56350771e+06 4.08527066e+05 7.39449210e+06 2.76700012e+06
3.55349853e+06 5.99603940e+06 2.24749031e+06 1.98892475e+06
-5.22856853e+06 -1.63010953e+06 1.14320595e+06 9.65680494e+06
1.57058269e+06 3.59167934e+06 2.44800475e+06 -2.80641568e+04
8.98294618e+05 4.63751158e+06 -1.37715959e+06 1.14846521e+06
9.60031843e+05 7.69308031e+06 -3.35096652e+06 4.79076436e+05
8.12791725e+06 6.33000356e+06 -1.22037534e+04 8.12609762e+06
6.11495408e+05 1.44790467e+06 -3.75507560e+06 -3.01895607e+06]
[-1.03078585e+06 -6.43213196e+06 -2.40709139e+06 7.86354893e+05
-3.22683612e+06 -1.30424706e+06 6.23318225e+06 2.98642198e+06
2.26944031e+06 4.48197283e+06 7.58527479e+05 2.93400491e+05
-6.65862144e+06 -3.40668225e+06 -8.27676175e+05 6.85166050e+06
-4.41669956e+05 2.28137438e+06 -8.83519122e+04 -1.42638261e+06
-4.98677008e+05 2.84638742e+06 -2.27200613e+06 -8.08301708e+05
-4.97790139e+05 6.79045288e+06 -4.65730946e+06 -1.30736818e+06
6.40976554e+06 5.28260469e+06 -1.76363080e+06 5.11652151e+06
-1.02128923e+06 -3.02398980e+05 -5.27329353e+06 -4.49795572e+06]
[-1.67594503e+06 -6.46378286e+06 -2.16478674e+06 1.28421879e+06
-3.06258078e+06 -9.29256798e+05 6.22290730e+06 3.77125552e+06
2.35716042e+06 5.38337989e+06 1.58243690e+06 1.47059026e+06
-7.95438486e+06 -4.74088892e+06 -2.82632281e+04 6.01206993e+06
-2.91385425e+05 3.41112419e+06 -1.90852176e+06 -8.03802062e+05
1.68260686e+05 2.55882824e+06 -3.99101242e+06 -4.84331771e+05
7.01391705e+05 6.84990319e+06 -6.85833859e+06 -5.19992849e+05
4.89589063e+06 4.91405071e+06 -1.31687145e+06 3.24913630e+06
-9.90415943e+04 4.37722380e+05 -7.73615579e+06 -6.36921729e+06]
[-4.39956814e+06 -8.89003988e+06 -1.89783773e+06 -6.04714850e+05
-1.93385508e+06 -1.90614826e+06 7.81213603e+06 1.33423395e+06
-1.79780173e+05 -2.64134093e+06 7.99288609e+05 1.37997949e+06
-9.67723172e+06 -7.89023804e+06 -3.65446483e+05 -1.76714196e+05
-1.86701229e+06 3.53540138e+06 -3.40102750e+06 -3.86286949e+05
5.76961855e+05 2.78047837e+06 -6.99491510e+06 -9.70968461e+05
1.05002613e+06 4.30891122e+06 -1.06122479e+07 -1.04049384e+06
-3.99715891e+05 4.42037195e+06 -1.20255716e+06 -2.42102160e+06
-3.43796623e+05 -2.25590376e+05 -1.21340077e+07 -1.02476706e+07]
[-3.62886704e+06 -7.78556533e+06 -1.46620785e+06 -1.48122704e+06
-1.02567976e+06 -1.79777305e+06 1.03755955e+07 -3.46657362e+05
-8.29088965e+05 -6.16402778e+06 7.93162461e+05 1.72600755e+06
-1.06611703e+07 -9.28066963e+06 2.62791329e+04 -1.75592120e+06
-2.05186797e+06 3.29067823e+06 -6.48250655e+05 5.80195929e+04
1.13144283e+06 4.81458975e+06 -8.68907470e+06 -6.83462371e+05
1.70730188e+06 3.36785163e+06 -1.28444476e+07 -5.80788403e+05
-3.36102213e+06 4.98178504e+06 -8.37352146e+05 -3.17982913e+06
3.92068157e+05 1.69788355e+05 -1.54812615e+07 -1.29073553e+07]
[-2.40497099e+06 -7.20752410e+06 -3.97357388e+04 -2.79537290e+06
7.06846618e+05 -1.09100009e+06 9.04024899e+06 -4.00361839e+06
-1.68443587e+06 -9.97836805e+06 9.28777152e+05 1.54019543e+06
-8.53482007e+06 -8.61630284e+06 2.64670823e+05 -4.25135176e+06
-1.49940056e+06 2.31370265e+06 2.16151530e+05 8.81529999e+05
1.58436900e+06 4.22517989e+06 -7.90651486e+06 -4.71647960e+04
1.87925398e+06 5.64269339e+05 -1.14877041e+07 -4.45598025e+04
-5.69656441e+06 3.91124126e+06 1.82907415e+05 -4.82017673e+06
8.23000717e+05 3.92240765e+05 -1.38487178e+07 -1.15529524e+07]
[-5.17277840e+05 -6.27320649e+06 1.04736650e+06 -9.92167329e+05
1.97835832e+06 -3.29408110e+05 7.68893319e+06 -6.96097822e+06
-9.12877088e+05 -1.23750794e+07 9.77586973e+05 1.52551408e+06
-6.97201504e+06 -7.41630184e+06 3.99816539e+05 -5.48854699e+06
-7.28744775e+05 4.29494168e+06 -2.37276043e+05 1.39621915e+06
1.74244572e+06 3.34345913e+06 -7.22996012e+06 6.39716676e+05
1.81968389e+06 -1.61658734e+06 -1.03856761e+07 3.28428918e+05
-5.04982431e+06 3.40524511e+06 9.66563468e+05 -5.21903552e+06
1.12368397e+06 9.55290419e+05 -1.11806737e+07 -9.98611854e+06]
[ 3.93359411e+05 -5.64085839e+06 7.84962078e+05 9.72559417e+05
1.74722585e+06 -6.41033856e+05 7.00554713e+06 -7.94135862e+06
1.21765080e+05 -1.29752357e+07 -2.43824064e+05 7.62904385e+05
-6.01849392e+06 -6.85483126e+06 -4.77376557e+04 -4.32047406e+06
-9.86925466e+05 6.32048372e+06 2.07827382e+04 6.27564360e+05
1.05668783e+06 2.41320139e+06 -6.27187996e+06 2.74607123e+05
9.74371413e+05 -2.70566981e+06 -9.07099062e+06 -1.36210346e+05
-3.54193666e+06 3.60353885e+06 5.66954501e+05 -3.53728324e+06
6.44205158e+05 5.54329321e+05 -8.34734305e+06 -8.16833091e+06]
[ 1.79253250e+06 -1.69058411e+06 2.95521418e+05 2.48617504e+06
9.35495440e+05 -4.70308380e+05 5.08747291e+06 -5.03283766e+06
1.10535913e+06 -8.05583007e+06 -5.35373189e+05 5.40878748e+05
-4.39286614e+06 -4.77807700e+06 -8.77765780e+04 -1.48446340e+06
-5.47248359e+05 5.93579178e+06 2.05270299e+06 -1.01176965e+05
3.20010571e+05 2.17669213e+06 -3.45030435e+06 2.51828259e+05
5.60304687e+05 -2.81570987e+06 -6.03345309e+06 -2.54394941e+04
-1.74016471e+06 3.04917910e+06 1.74785192e+05 2.52998754e+04
5.45845141e+05 5.84888899e+05 -4.97704920e+06 -4.87807552e+06]
[ 1.54569871e+06 1.15948261e+05 -1.03956983e+05 2.40224156e+06
2.50991508e+05 -3.81807609e+05 3.55061384e+06 -1.76414576e+06
1.07805636e+06 -3.99235816e+06 -7.99372933e+05 3.49291535e+05
-3.08501031e+06 -3.30230428e+06 1.90248432e+04 3.85972095e+05
-4.79131888e+05 4.61404512e+06 2.77369112e+06 -4.15041127e+05
-7.49980499e+03 1.50738667e+06 -1.56866958e+06 -2.33686396e+04
4.18564220e+05 -1.83616048e+06 -3.66838297e+06 8.70197761e+03
3.65981052e+05 2.21693046e+06 -6.20462234e+04 1.72406128e+06
4.01872173e+05 2.97897169e+05 -2.86836115e+06 -2.64290703e+06]
[ 7.94170069e+05 4.30676867e+05 -7.49133004e+04 1.10800875e+06
6.14967901e+04 -7.00205469e+04 1.66264054e+06 -8.47635630e+05
5.27647831e+05 -1.45005195e+06 -2.42140301e+05 1.91230080e+05
-1.43094084e+06 -1.28945711e+06 5.85024501e+04 1.55547992e+05
-9.86963415e+04 1.88681467e+06 1.14592150e+06 -1.74833990e+05
-7.42435026e+03 7.24454088e+05 -8.12372583e+05 4.06206515e+04
1.93067861e+05 -7.72277399e+05 -1.80451312e+06 7.70587331e+04
3.54239934e+05 8.97709351e+05 -2.08436853e+04 8.34167206e+05
2.21753604e+05 2.16136410e+05 -1.27553589e+06 -1.22909428e+06]
[ 5.50331862e+05 4.24448988e+05 1.40277506e+05 7.99696393e+05
1.73732977e+05 1.43549966e+05 6.94009869e+05 -6.67392080e+05
3.96378690e+05 -6.33105752e+05 6.15711619e+04 1.66095312e+05
-5.19769312e+05 -4.00168414e+05 1.39069637e+05 3.60969096e+04
1.95056060e+05 1.19540495e+06 2.25266347e+05 7.58096035e+04
1.15596581e+05 4.00358585e+05 -3.71978723e+05 2.23552731e+05
1.57237189e+05 -4.51046103e+05 -7.20932651e+05 1.55178289e+05
2.50769295e+05 4.41129817e+05 1.37511569e+05 2.34551022e+05
1.78034305e+05 2.47887596e+05 -4.27741682e+05 -4.68644671e+05]
[ 2.59374068e+05 2.07617574e+05 2.06451175e+05 3.59655642e+05
1.97864951e+05 2.27012281e+05 1.24131736e+05 -1.88321314e+05
2.37479448e+05 -2.12617130e+03 1.94038780e+05 2.26805506e+05
3.01986286e+04 4.76509199e+04 2.19419389e+05 9.27286685e+04
2.67977930e+05 4.32730009e+05 5.29151718e+04 1.89415395e+05
1.99348654e+05 2.37004879e+05 -4.97867065e+04 2.57909934e+05
2.20947386e+05 -3.81741267e+04 -9.04316872e+04 2.28226883e+05
2.00827461e+05 1.80961631e+05 2.07821358e+05 1.67957444e+05
2.30731202e+05 2.57038636e+05 7.02239704e+04 -1.87649024e+04]
[-6.72988787e+04 -1.22264098e+05 -1.70663866e+04 -3.11295394e+04
-2.66370210e+03 -2.49702781e+04 3.62999819e+04 -5.67051244e+04
-3.41552324e+04 -1.28365446e+05 -3.16496342e+04 -1.68788642e+04
-4.62471354e+04 -5.19126961e+04 -2.03333463e+04 -2.79880273e+04
-3.36503406e+04 1.65676228e+04 -2.54837449e+04 -1.00915779e+04
-7.36556489e+03 -1.20855294e+04 -6.90154278e+04 -2.57966200e+04
-1.16071622e+04 -2.15738560e+03 -7.74490413e+04 -2.29985594e+04
5.51682857e+04 5.48000666e+04 -1.73116825e+04 1.10895441e+04
-1.20146199e+04 -2.62069214e+04 -5.23480338e+04 -6.72448256e+04]
[-9.94120471e-01 9.63538817e-01 -3.57859193e-04 -6.72328742e-01
5.53269927e-01 4.84621398e-01 -1.29581448e-01 9.32066086e-01
-3.93659302e-01 2.88588127e-02 -5.09756345e-01 1.01570642e-02
7.22278981e-02 6.71160204e-01 1.32333901e-01 8.18763383e-01
8.32398180e-01 -5.22547459e-01 5.79552869e-01 -5.09105495e-01
-9.61091523e-02 1.06181330e-02 8.97112448e-01 5.36105960e-01
-5.22696615e-01 -4.07566760e-01 -8.61263609e-01 7.09781021e-01
-9.03740272e-01 -3.79888547e-01 -3.30804684e-01 -4.84500515e-01
4.70831094e-01 -2.41044841e-02 -8.12559676e-02 3.62127517e-01]
[-6.53125153e-01 8.62849827e-01 -4.82863050e-01 3.69460440e-01
-2.51560970e-01 -2.80387228e-01 6.61916373e-01 -7.57680204e-01
-8.20094855e-01 -3.89788959e-02 6.10125360e-01 7.13956239e-01
5.35947101e-01 -5.69909063e-01 -1.65857268e-01 -8.81070445e-01
1.25088113e-01 -9.21073409e-01 -6.09302177e-02 -4.46784059e-02
4.45483084e-01 -9.25319390e-01 -1.28799901e-01 4.27784246e-01
2.34362786e-01 -2.01219123e-01 -9.09708085e-01 -3.52970676e-01
4.07056613e-01 2.47370162e-01 -3.81664113e-02 1.37301847e-01
-3.48193354e-01 6.71218875e-01 3.45872049e-01 -3.26446645e-01]
[ 2.79008590e-01 1.59247674e-01 -4.42615198e-01 9.12122080e-01
-2.29640842e-01 -6.08707889e-01 5.81798387e-01 2.22746516e-01
4.64614295e-01 -4.21094561e-02 -1.80320220e-02 -5.05209525e-01
-2.98667197e-01 -3.98353085e-02 6.27660936e-01 6.13727214e-01
2.65434628e-01 -4.81829633e-02 6.94704982e-01 -7.45315808e-01
-3.24063333e-01 -5.88613948e-01 -3.10054762e-01 8.57533877e-01
3.36521956e-01 -2.69990089e-01 -3.39950956e-01 -8.71925742e-01
9.14611547e-02 4.46106877e-01 -3.65506547e-01 -6.60034783e-01
7.29748925e-01 9.02661169e-01 -4.86284357e-01 -2.31389809e-01]
[-4.53156026e+05 -6.34913097e+05 1.70103254e+05 -5.58006869e+05
2.37695525e+05 2.59212687e+04 -2.03964439e+04 -7.49446205e+05
-4.49932395e+05 -1.01072965e+06 1.33254151e+05 7.83707164e+04
6.27685826e+04 -1.93506944e+05 3.73976372e+04 -6.47424701e+05
-2.90295739e+03 -4.00255395e+05 -4.42420665e+05 1.70368523e+05
1.45010274e+05 1.29244500e+04 -2.16608257e+05 7.35951526e+04
7.77007398e+04 -2.56412009e+05 -1.60070310e+05 9.02353621e+03
-7.87777873e+05 -2.24850219e+05 1.39196528e+05 -6.18308244e+05
5.08304152e+04 3.01068058e+04 -7.87379551e+04 -1.32172743e+05]
[-9.54216170e+05 -2.15736301e+06 7.69755293e+05 -9.13293614e+05
9.81908459e+05 3.26667459e+05 1.85539587e+05 -2.93705394e+06
-8.92620450e+05 -2.95393436e+06 5.18352258e+05 4.07387731e+05
-9.05596008e+04 -6.42729694e+05 4.08255477e+05 -1.50199467e+06
2.63454527e+05 -1.31339017e+05 -1.37315303e+06 8.15030633e+05
7.33607468e+05 2.33355071e+05 -1.03102049e+06 5.15481271e+05
4.72558458e+05 -5.67100271e+05 -9.58058762e+05 2.80998226e+05
-2.04387906e+06 -2.23686472e+05 6.86833494e+05 -1.51072926e+06
4.17741502e+05 3.99858852e+05 -3.82137189e+05 -6.75698233e+05]
[-1.15719036e+06 -4.84475391e+06 1.59555800e+06 -1.23426636e+06
1.96460524e+06 8.10074779e+05 9.37404404e+05 -5.91660498e+06
-8.79995753e+05 -4.93109393e+06 1.23309109e+06 1.00023214e+06
-6.06942300e+05 -1.11300147e+06 9.94326986e+05 -2.06280020e+06
8.02247411e+05 2.73956427e+05 -2.56360380e+06 1.73163131e+06
1.54864338e+06 6.75434718e+05 -2.68400413e+06 1.23768597e+06
1.01170103e+06 -6.04757165e+05 -2.63773839e+06 7.06227274e+05
-2.93685620e+06 3.03461306e+05 1.46747851e+06 -2.12933188e+06
9.13482874e+05 1.07551311e+06 -1.47489515e+06 -2.14598337e+06]
[-1.44758551e+06 -9.17754627e+06 3.05458398e+06 -1.80397436e+06
3.82850316e+06 1.62963023e+06 4.15483570e+06 -1.09805852e+07
-1.12837179e+06 -9.22149591e+06 2.65269943e+06 2.21040471e+06
-2.79348826e+06 -3.06520948e+06 2.17873600e+06 -2.58094267e+06
1.51363990e+06 1.15533320e+06 -3.52172789e+06 3.30734314e+06
3.11038164e+06 2.47847542e+06 -6.21182775e+06 2.52295134e+06
2.17596851e+06 -2.79717715e+05 -6.85450609e+06 1.49363240e+06
-4.72753231e+06 1.80427131e+06 2.89971752e+06 -2.99095830e+06
1.97967260e+06 2.25236939e+06 -5.01962053e+06 -5.90851347e+06]
[-1.82278183e+06 -1.41898016e+07 5.72787482e+06 -3.06517291e+06
7.03145168e+06 3.52532516e+06 7.95872452e+06 -1.61474641e+07
-1.06969262e+06 -1.37019242e+07 5.49439649e+06 4.95795341e+06
-5.17027990e+06 -5.48993693e+06 4.65159241e+06 -2.94882926e+06
3.23404289e+06 1.89658516e+06 -3.61068015e+06 6.17441876e+06
6.12654853e+06 5.42847181e+06 -9.88715030e+06 5.03685676e+06
4.87248000e+06 1.28383412e+06 -1.15720146e+07 3.56291675e+06
-7.21862751e+06 4.02555821e+06 5.58406201e+06 -3.53054959e+06
4.48424554e+06 4.70084322e+06 -9.57526765e+06 -1.01258841e+07]
[-2.25029056e+06 -1.99504337e+07 7.78138888e+06 -5.87060435e+06
9.58864288e+06 4.73675590e+06 1.15895137e+07 -1.79099614e+07
-1.06088824e+06 -1.78953721e+07 7.36849353e+06 7.24159632e+06
-6.24779036e+06 -7.59693682e+06 6.75124974e+06 -1.57036492e+06
4.14696570e+06 1.21858788e+06 -1.53658885e+06 8.30772990e+06
8.61567809e+06 7.78989762e+06 -1.17026096e+07 6.63073009e+06
7.33674198e+06 3.27336090e+06 -1.40775477e+07 5.27237301e+06
-7.10796188e+06 6.60915867e+06 7.63766776e+06 -2.17801441e+06
6.67469001e+06 6.49186890e+06 -1.28101484e+07 -1.28271000e+07]
[-1.70911227e+06 -1.96712199e+07 8.25109176e+06 -6.23150198e+06
9.87978569e+06 5.47711736e+06 1.03351480e+07 -1.53698096e+07
-4.91975270e+05 -1.52143393e+07 7.80830657e+06 7.76666555e+06
-5.25797806e+06 -6.58185283e+06 7.46534171e+06 9.89364803e+05
4.87377751e+06 -5.79069614e+05 3.38900913e+05 8.52031098e+06
8.76200568e+06 7.70562119e+06 -9.49583105e+06 7.06964820e+06
7.79199926e+06 4.24567223e+06 -1.18578516e+07 6.00156853e+06
-4.82373257e+06 6.45995566e+06 8.16530416e+06 2.86243242e+05
7.25738452e+06 7.00552212e+06 -1.15866589e+07 -1.09133370e+07]
[-5.39654858e+06 -2.31903291e+07 6.15184983e+06 -1.09165501e+07
7.82783671e+06 3.19649059e+06 6.19239540e+06 -1.52925629e+07
-3.39267005e+06 -1.59784698e+07 5.20748656e+06 5.14264986e+06
-4.79909045e+06 -7.16048757e+06 5.36285903e+06 5.02701654e+04
2.18102507e+06 -6.83163080e+06 -7.92710060e+05 6.37785538e+06
6.29673313e+06 4.24004390e+06 -9.05169976e+06 4.29114777e+06
5.37620306e+06 3.27924384e+06 -1.03196004e+07 3.64442093e+06
-6.64901375e+06 3.02247140e+06 6.02731068e+06 -6.98491440e+05
4.94200619e+06 4.22994486e+06 -1.07029137e+07 -9.85715205e+06]
[-3.97911955e+06 -1.84228418e+07 5.01923191e+06 -1.12100795e+07
6.07023000e+06 2.87641648e+06 4.13609142e+06 -1.27515563e+07
-2.97426250e+06 -9.86090156e+06 5.02808666e+06 4.14629247e+06
-3.78543559e+06 -5.27783381e+06 4.63697188e+06 2.64916128e+06
2.31461274e+06 -1.00694829e+07 1.41434529e+06 5.15074682e+06
4.83343589e+06 4.04422382e+06 -6.05920659e+06 3.57067050e+06
4.17870739e+06 3.77918479e+06 -6.81549711e+06 3.12104242e+06
-5.89871313e+06 2.04306505e+06 4.99484789e+06 2.85610094e+06
4.05739429e+06 3.68165398e+06 -7.52652310e+06 -6.09138012e+06]
[-4.28463485e+06 -1.47169711e+07 3.18448439e+06 -1.14277565e+07
3.83106834e+06 1.67705690e+06 1.74039541e+06 -9.11447305e+06
-3.47776917e+06 -5.69936436e+06 3.85973538e+06 2.98026581e+06
-3.04418844e+06 -4.11005591e+06 3.26844427e+06 2.83763598e+06
1.43686178e+06 -1.14833819e+07 2.41994056e+06 3.40146525e+06
3.23102807e+06 2.90271804e+06 -3.74164744e+06 2.23178732e+06
2.93342101e+06 3.83671649e+06 -4.27061489e+06 1.94133118e+06
-5.58420754e+06 5.80951846e+05 3.31283220e+06 3.30674313e+06
2.69351205e+06 2.32994217e+06 -5.27212123e+06 -3.55134466e+06]
[-4.45525244e+06 -1.23096215e+07 7.38154759e+05 -1.02290140e+07
1.20702222e+06 -6.30837835e+04 1.85597460e+06 -4.41698587e+06
-3.36435066e+06 -3.96602629e+06 2.67550653e+06 1.87942411e+06
-4.39388515e+06 -5.10017451e+06 1.24431804e+06 2.19566187e+06
-8.34463571e+04 -9.16750965e+06 3.72522826e+06 1.25143060e+06
1.62245531e+06 2.84614381e+06 -2.25158515e+06 7.95505661e+05
1.49125475e+06 4.39703484e+06 -4.00793890e+06 4.37101996e+05
-3.24765160e+06 2.33654996e+06 1.04281650e+06 3.49431389e+06
1.02419167e+06 7.76851101e+05 -5.97426231e+06 -3.68382379e+06]
[-5.30594021e+06 -1.38761164e+07 -1.22393943e+06 -1.13398629e+07
-7.33640984e+05 -1.71171907e+06 8.19946760e+05 -2.82242524e+06
-3.95287867e+06 -5.40464438e+06 1.05417727e+06 3.80091712e+05
-5.64636084e+06 -6.52000938e+06 -8.66622618e+05 -2.34480138e+04
-1.88510374e+06 -9.97422760e+06 2.93260167e+06 -4.71388152e+05
-1.50616448e+03 1.52388995e+06 -2.42878757e+06 -1.02295962e+06
-1.17696269e+05 3.79272171e+06 -4.90752855e+06 -1.27420047e+06
-4.15818662e+06 2.05671904e+06 -8.67677780e+05 1.72361735e+06
-6.98235558e+05 -9.32463777e+05 -7.27378324e+06 -4.96777912e+06]
[-5.69278269e+06 -1.37019255e+07 -2.19558691e+06 -1.26959530e+07
-1.87659366e+06 -2.35669340e+06 -1.40219197e+06 -3.94379200e+06
-4.56759014e+06 -4.13108681e+06 4.52446646e+05 -4.47315983e+05
-5.83515468e+06 -6.65706686e+06 -1.73945298e+06 -9.70952039e+05
-2.63772119e+06 -1.22956974e+07 1.21888361e+06 -1.35889458e+06
-1.09892995e+06 1.57079969e+05 -3.05263485e+06 -2.07739154e+06
-9.30979464e+05 3.06155812e+06 -5.21944270e+06 -1.97840206e+06
-7.78218782e+06 -4.20061082e+05 -1.80159125e+06 3.46495676e+05
-1.35667745e+06 -1.67514768e+06 -7.47735398e+06 -5.16874115e+06]
[-6.15337931e+06 -1.14066948e+07 -1.38807712e+06 -1.26022409e+07
-1.24060373e+06 -1.65277956e+06 -3.62085838e+06 -4.30600200e+06
-5.49364850e+06 -3.25782857e+06 8.05544568e+05 -4.84098535e+04
-4.27841902e+06 -5.50866838e+06 -8.12240393e+05 -2.35150632e+06
-2.17481426e+06 -1.31110051e+07 -1.08996699e+06 -5.39028212e+05
-4.66241004e+05 -8.04848519e+05 -3.44802867e+06 -1.62235222e+06
-2.38694755e+05 2.23746781e+06 -4.57968151e+06 -1.14556966e+06
-1.10816947e+07 -3.29566248e+06 -1.00647571e+06 -1.95681334e+06
-5.29561016e+05 -1.12470303e+06 -7.02132167e+06 -4.75164297e+06]
[-7.97641019e+06 -1.08658226e+07 -1.87046845e+06 -1.23419765e+07
-1.26987653e+06 -2.82888480e+06 -2.97408598e+06 -4.41928336e+06
-7.03254562e+06 -7.92191110e+06 -8.91572482e+05 -1.03508316e+06
-4.32761537e+06 -6.35069396e+06 -1.71108218e+06 -6.38635033e+06
-3.63789476e+06 -1.16924137e+07 -3.40220704e+06 -1.01070681e+06
-8.28895895e+05 -1.32789520e+06 -5.00464483e+06 -2.53900001e+06
-8.27335376e+05 -1.34225928e+05 -5.88216829e+06 -2.13860248e+06
-1.26189124e+07 -4.07488044e+06 -1.67196989e+06 -6.25272935e+06
-1.40161102e+06 -2.37397486e+06 -8.79309135e+06 -6.48879220e+06]
[-4.21490569e+06 -4.90573592e+06 -2.22679571e+06 -7.02144377e+06
-1.70137494e+06 -2.59647379e+06 1.83668889e+06 -1.98030923e+06
-4.18176144e+06 -6.59667189e+06 -8.50031541e+05 -6.60271404e+05
-5.82331111e+06 -6.44267171e+06 -1.75853182e+06 -5.23323658e+06
-3.05526726e+06 -5.30482801e+06 1.87102605e+05 -1.49227010e+06
-9.53811020e+05 1.44678998e+06 -4.97303504e+06 -2.06880461e+06
-6.34680335e+05 -3.98214884e+05 -7.05547407e+06 -1.74982291e+06
-8.17615938e+06 -5.67645896e+05 -1.97395620e+06 -4.19151666e+06
-1.12835605e+06 -1.77829737e+06 -1.07200899e+07 -7.88867857e+06]
[-2.13601012e+06 -3.43036503e+06 -1.39715845e+06 -3.62313956e+06
-7.03932472e+05 -2.05565895e+06 3.64130091e+06 -2.49382886e+06
-2.54693073e+06 -7.77197463e+06 -6.20792677e+05 -3.07377772e+05
-5.35051834e+06 -6.13200085e+06 -1.35542438e+06 -4.88454823e+06
-2.50397508e+06 -6.20988013e+05 9.99046037e+05 -9.85852515e+05
-4.14500474e+05 1.62745124e+06 -4.66981528e+06 -1.42189082e+06
-1.68091144e+05 -1.36193635e+06 -6.97575320e+06 -1.25889153e+06
-5.90950716e+06 8.02780132e+05 -1.33999188e+06 -4.31550697e+06
-6.42308110e+05 -1.20465789e+06 -9.70545772e+06 -7.57072642e+06]
[-5.66976587e+05 -1.65348494e+06 -1.00982095e+06 -4.86000140e+05
-5.21723128e+05 -1.40536219e+06 3.26909344e+06 -2.50277510e+06
-1.02632134e+06 -7.14967438e+06 -5.52761724e+05 -1.54163823e+05
-4.74510808e+06 -5.15282103e+06 -1.08096663e+06 -4.35242112e+06
-1.65659742e+06 2.46984323e+06 3.19630560e+05 -7.95233444e+05
-3.47890693e+05 9.70720249e+05 -4.01721323e+06 -8.94382115e+05
-9.12399052e+04 -2.23944058e+06 -6.28771219e+06 -8.28525242e+05
-3.62642811e+06 1.57598854e+06 -9.84378293e+05 -3.69649740e+06
-4.26927281e+05 -5.80351872e+05 -7.47554652e+06 -6.10456053e+06]
[ 1.61386115e+05 -1.40528899e+05 -9.55388516e+05 9.23929611e+05
-5.93827121e+05 -1.22693619e+06 2.78629563e+06 -2.39897469e+06
-2.42964145e+05 -5.56665762e+06 -1.04636341e+06 -3.89874881e+05
-3.68925949e+06 -3.85975238e+06 -1.04503589e+06 -2.84901667e+06
-1.38024954e+06 3.28733456e+06 9.70084258e+05 -1.01869828e+06
-6.53139576e+05 6.51060488e+05 -2.87605096e+06 -8.43227623e+05
-4.17570926e+05 -2.44776528e+06 -4.70596944e+06 -7.94958181e+05
-2.27229219e+06 1.45192176e+06 -9.41549422e+05 -1.74868972e+06
-5.09792384e+05 -5.62042580e+05 -4.72150278e+06 -4.16697606e+06]
[ 9.90611335e+05 1.72936052e+06 -9.36892554e+05 2.02126629e+06
-7.35864455e+05 -9.69984325e+05 2.25712443e+06 -7.29092066e+05
4.72995538e+05 -3.04259003e+06 -1.03302700e+06 -3.10994446e+05
-2.87841487e+06 -2.70741751e+06 -8.73680035e+05 -1.48409745e+06
-9.68367339e+05 3.65850571e+06 1.92358793e+06 -1.09090011e+06
-7.62008465e+05 4.51479847e+05 -1.38432439e+06 -6.71457004e+05
-3.56507920e+05 -2.18045160e+06 -3.05961128e+06 -6.12033984e+05
-1.91147984e+05 1.32913937e+06 -8.80255710e+05 -1.30653251e+05
-4.26845039e+05 -3.87733432e+05 -2.72846534e+06 -2.26675555e+06]
[ 7.65177263e+05 1.30728029e+06 -5.80783085e+05 1.72162684e+06
-4.18244710e+05 -5.76709833e+05 1.76510240e+06 -4.75975274e+05
4.37887678e+05 -1.90807964e+06 -7.32344516e+05 -1.06178640e+05
-2.07982606e+06 -1.92300467e+06 -4.44010184e+05 -4.63444972e+05
-5.80998459e+05 2.87959999e+06 1.63386436e+06 -6.77630423e+05
-4.26451082e+05 4.42483095e+05 -7.14068603e+05 -3.54032450e+05
-1.14890243e+05 -1.53167724e+06 -2.07457580e+06 -3.22521128e+05
3.03452264e+05 1.10680885e+06 -5.14498780e+05 6.00759245e+05
-1.68624204e+05 -1.47064062e+05 -1.56096244e+06 -1.26046370e+06]
[ 2.84479519e+04 3.93536306e+04 -2.72567264e+05 2.45142091e+05
-1.19089729e+05 -3.75367039e+05 4.62800714e+05 -8.48855570e+05
-1.62052720e+05 -1.73408867e+06 -4.99296572e+05 -2.55018769e+05
-8.16029542e+05 -9.37813849e+05 -3.54950751e+05 -7.71829179e+05
-4.66434957e+05 8.50508356e+05 2.29412888e+05 -3.23021934e+05
-2.76163053e+05 -2.05309264e+05 -4.36556461e+05 -3.11618164e+05
-1.97921737e+05 -1.08633180e+06 -9.75859230e+05 -3.17915810e+05
-2.95714989e+05 1.49746348e+05 -2.68370076e+05 -3.62347488e+05
-1.98844291e+05 -2.43031915e+05 -6.22444342e+05 -5.98912958e+05]
[ 2.29242856e+05 1.31741546e+05 8.91665566e+04 3.54735909e+05
1.21598724e+05 7.85547308e+04 3.01100941e+05 -4.18795256e+05
1.54716551e+05 -4.21701071e+05 4.88727653e+04 1.17936804e+05
-2.05662594e+05 -1.88279983e+05 8.04165641e+04 -1.45246896e+04
8.37586900e+04 5.70157527e+05 1.34527986e+05 7.02031222e+04
9.11854163e+04 2.21797525e+05 -1.72710386e+05 1.21981662e+05
1.21556899e+05 -1.86630883e+05 -3.31165157e+05 9.79134050e+04
5.69485319e+04 2.72430371e+05 9.32724195e+04 6.66290630e+04
1.26132617e+05 1.40349937e+05 -1.62385562e+05 -1.95829467e+05]
[ 1.58447802e+05 1.42894379e+05 1.22247688e+05 2.26464786e+05
1.20347498e+05 1.34752276e+05 1.42929718e+05 -1.23300750e+05
1.39599732e+05 1.54177481e+02 1.31979838e+05 1.48073986e+05
1.99335396e+04 5.82865436e+04 1.29543323e+05 6.85510225e+04
1.60981488e+05 2.64321321e+05 4.99303034e+04 1.17918630e+05
1.24545549e+05 1.87670672e+05 -2.83407041e+04 1.56827413e+05
1.40497388e+05 -1.89505248e+04 -5.98371311e+04 1.36486506e+05
1.62992000e+05 1.49431877e+05 1.26224430e+05 1.13095414e+05
1.43485233e+05 1.60602281e+05 5.29782125e+04 2.66676986e+03]
[ 3.29352377e+03 3.09443644e+03 -5.67381671e+03 1.25211449e+04
-3.87270848e+03 -4.11537291e+03 2.83850699e+04 -2.39777350e+04
3.24482631e+03 -9.42193690e+03 -2.51720414e+03 -1.31557337e+03
-2.30225449e+04 -9.04534828e+03 -3.90907460e+03 3.86743707e+03
-2.21578990e+03 1.75192136e+04 4.82816592e+03 -4.17696086e+03
-3.63395601e+03 1.80587895e+04 -2.06479639e+04 -2.93208853e+03
-2.25382231e+03 -5.26289099e+03 -3.14236205e+04 -3.97365096e+03
2.06147682e+04 2.37643314e+04 -4.29775400e+03 1.46530124e+04
-2.14126045e+03 -4.00891649e+02 -1.45382303e+04 -1.66941265e+04]
[ 6.32906301e-01 -4.46936729e-01 4.71115746e-01 5.06667863e-01
-3.06810036e-02 -8.28292937e-01 -1.49641053e-01 -6.07360361e-01
3.00134833e-01 -3.93874607e-01 1.94012188e-01 -8.73040400e-01
4.34607978e-01 6.95198133e-01 -2.16788221e-01 -8.61859429e-01
-1.12639434e-01 5.77520780e-01 9.78047720e-01 3.42980604e-01
1.96451961e-02 -3.09521968e-01 4.08817885e-01 6.17871201e-01
5.54774395e-01 -1.27601078e-01 8.01443545e-01 -3.11427948e-01
1.13554213e-01 -9.88275778e-01 -2.64802758e-01 5.20319329e-01
-2.83446845e-02 -3.98100757e-01 2.20993172e-01 8.62818572e-01]
[-7.99929760e-01 -4.40562215e-01 3.67400161e-01 4.28380094e-01
9.50885748e-01 4.98503707e-01 3.57135955e-01 4.07910594e-01
-4.76394320e-01 -9.64423728e-02 3.63719054e-01 -9.54752789e-01
-9.01545309e-01 -9.87832228e-01 7.93111293e-01 -9.23212302e-01
2.93327071e-01 -3.58574904e-01 3.93829554e-01 9.60070899e-01
7.72879735e-01 2.17888026e-01 5.55615028e-01 -1.27230090e-01
-3.95376221e-01 6.14821950e-01 -7.24155563e-01 8.46802560e-01
-4.12658902e-01 9.09998354e-01 -6.03065316e-01 5.21686438e-01
-9.24924495e-01 3.07466447e-01 -5.78858989e-02 2.51161690e-01]
[ 2.10366245e-01 5.23439102e-01 -2.63062053e-01 9.11032568e-01
-8.82598388e-01 4.15816117e-01 -1.11701985e-01 -5.32998025e-01
-8.14917626e-01 -3.17695409e-01 9.80235303e-01 7.48507162e-01
4.12663570e-02 3.76262650e-01 5.84509349e-01 -3.32474682e-02
-1.32854102e-01 -4.45345929e-01 -1.16208939e-01 3.10469060e-01
-8.32131580e-01 3.10692028e-01 -3.67374769e-02 2.56714040e-01
-3.58866332e-01 -4.72834199e-01 3.37268801e-02 -8.76235064e-01
7.80181843e-01 -3.75263255e-01 -9.95999853e-01 1.36859274e-01
-1.33294873e-01 7.82656666e-01 5.37688737e-01 -2.15711650e-02]
[-2.87999996e+04 -1.20915703e+05 5.56127623e+04 -5.97910621e+04
5.86897478e+04 4.51643063e+04 6.71008049e+04 -1.30034587e+05
-1.97690875e+04 -7.34502990e+04 5.66389228e+04 4.49430958e+04
-3.79007726e+04 -1.80394497e+04 4.36755109e+04 -2.25045013e+04
4.04155372e+04 -5.54567054e+04 -7.19367768e+04 5.85616105e+04
5.17275903e+04 5.47078770e+04 -8.09203094e+04 5.04383374e+04
4.03689206e+04 9.92966717e+03 -9.38480072e+04 3.80876178e+04
-8.65855742e+04 -9.76520642e+03 5.73651346e+04 -5.02171057e+04
4.25881146e+04 4.55738072e+04 -5.89870122e+04 -7.10338269e+04]
[-3.74812680e+05 -9.86479232e+05 3.42883929e+05 -5.26724849e+05
3.99946812e+05 2.11551371e+05 1.40694065e+05 -9.62470622e+05
-3.12339281e+05 -8.30726650e+05 2.48372001e+05 2.26777555e+05
-6.82692386e+04 -1.67234996e+05 2.55773545e+05 -3.83880514e+05
1.62348503e+05 -3.48772989e+05 -5.06615895e+05 3.71020378e+05
3.43368896e+05 1.36228254e+05 -4.84181704e+05 2.45996596e+05
2.62906767e+05 -3.73360590e+04 -4.67697547e+05 2.06122484e+05
-6.32536350e+05 -1.41051925e+05 3.39058818e+05 -4.54612025e+05
2.37215278e+05 2.10219224e+05 -2.60544841e+05 -3.81721501e+05]
[-8.00092169e+05 -2.80622838e+06 9.05326522e+05 -8.93792154e+05
1.09832983e+06 4.61328359e+05 6.89314697e+05 -2.71890695e+06
-5.61071756e+05 -2.60683012e+06 6.64774113e+05 5.87769565e+05
-3.44817642e+05 -6.26728404e+05 6.05659995e+05 -1.03928044e+06
3.92505775e+05 -9.29964373e+04 -1.46528197e+06 9.88480938e+05
9.49811588e+05 3.81821736e+05 -1.43834516e+06 6.65614394e+05
6.33337004e+05 -7.16890228e+04 -1.44685445e+06 4.17015288e+05
-1.32159539e+06 1.57522752e+05 8.39570044e+05 -1.29632745e+06
5.36806422e+05 5.70439024e+05 -9.02071439e+05 -1.21500687e+06]
[-1.08037957e+06 -4.98033972e+06 1.43160231e+06 -1.37796539e+06
1.79145344e+06 7.21307272e+05 1.56295063e+06 -4.96866911e+06
-7.93705866e+05 -4.45005586e+06 1.19420888e+06 1.02029982e+06
-1.10441730e+06 -1.39344538e+06 9.80309936e+05 -1.51645448e+06
6.19795592e+05 1.45833859e+04 -2.15950260e+06 1.56459346e+06
1.48495437e+06 1.03463406e+06 -2.81322057e+06 1.11480961e+06
1.01593488e+06 -5.86281395e+04 -3.05540957e+06 6.36814844e+05
-2.38473883e+06 6.77170835e+05 1.34068473e+06 -1.85853343e+06
8.55602600e+05 9.52352732e+05 -2.16978399e+06 -2.57654141e+06]
[-7.59975659e+05 -7.85862920e+06 3.26872363e+06 -1.80691204e+06
3.92144485e+06 2.05972799e+06 3.55947214e+06 -9.32128190e+06
-5.13683332e+05 -6.89955659e+06 3.12307525e+06 2.78259002e+06
-2.27896543e+06 -2.45046468e+06 2.62543155e+06 -1.66153429e+06
2.08133404e+06 5.71484422e+05 -2.39242720e+06 3.46877924e+06
3.40514610e+06 3.18226007e+06 -5.11291715e+06 2.99757123e+06
2.65568438e+06 7.40975572e+05 -5.77150030e+06 2.02924456e+06
-4.80698832e+06 2.12132068e+06 3.11393938e+06 -2.04005805e+06
2.43923414e+06 2.70257685e+06 -4.50588131e+06 -4.91913881e+06]
[-6.53590198e+05 -1.07779610e+07 5.50361840e+06 -3.02208814e+06
6.34419557e+06 3.81598874e+06 4.95019839e+06 -1.23517807e+07
-2.60425707e+05 -8.94450712e+06 5.59357437e+06 4.88074850e+06
-2.46254816e+06 -2.68069768e+06 4.62231900e+06 -2.15939331e+06
3.89192281e+06 1.45764320e+05 -2.63922743e+06 5.78693864e+06
5.71735170e+06 4.89631974e+06 -6.39554739e+06 5.09117717e+06
4.73319812e+06 2.05558156e+06 -7.18738725e+06 3.85437980e+06
-5.74137550e+06 3.20697472e+06 5.31137987e+06 -2.39598051e+06
4.38214397e+06 4.66475097e+06 -5.87785204e+06 -6.09535314e+06]
[-1.25295103e+06 -1.29826785e+07 6.83373342e+06 -5.94939934e+06
7.75982164e+06 4.88961687e+06 3.81461363e+06 -1.34574447e+07
-1.14559302e+06 -8.57184805e+06 7.11644381e+06 5.88507621e+06
-1.62325677e+06 -2.15050584e+06 5.80826306e+06 -1.66091554e+06
4.71899647e+06 -3.64206231e+06 -2.09603860e+06 7.03459521e+06
6.69908699e+06 4.40236661e+06 -5.57879307e+06 5.99998323e+06
5.71148526e+06 3.23252715e+06 -6.29038478e+06 4.87141220e+06
-6.28924151e+06 1.96813600e+06 6.67614289e+06 -1.54994258e+06
5.40286489e+06 5.50576221e+06 -4.98461985e+06 -4.78100016e+06]
[-2.82169625e+06 -1.61514571e+07 7.00917634e+06 -8.11409295e+06
8.09860274e+06 4.96072022e+06 1.76635026e+06 -1.53503679e+07
-2.21628501e+06 -9.90429573e+06 7.09749885e+06 5.72464807e+06
-1.28509599e+06 -2.72371383e+06 5.77019374e+06 -2.20182857e+06
4.53269690e+06 -5.97854018e+06 -2.72141470e+06 7.23490851e+06
6.58109453e+06 3.39735675e+06 -5.10188692e+06 5.91706326e+06
5.54634733e+06 3.09699181e+06 -5.68609712e+06 4.77217494e+06
-7.78007276e+06 1.21024588e+06 6.83262284e+06 -1.87820372e+06
5.28757704e+06 5.39416736e+06 -4.00877558e+06 -3.87722268e+06]
[-4.82638259e+06 -1.59975935e+07 5.07135250e+06 -1.24174618e+07
6.06893629e+06 3.13902871e+06 -2.13722127e+06 -1.43915930e+07
-4.70527866e+06 -9.03512711e+06 5.33636022e+06 3.48910200e+06
-7.48822935e+05 -2.77176625e+06 3.77112186e+06 -3.84651987e+06
2.64478151e+06 -1.24655155e+07 -2.60167675e+06 5.33414034e+06
4.44874827e+06 7.97708222e+05 -4.01843860e+06 3.64716310e+06
3.50158572e+06 2.00314158e+06 -3.91236827e+06 2.83622867e+06
-1.00690077e+07 -1.97296415e+06 4.87213106e+06 -2.74736424e+06
3.23538276e+06 3.07971764e+06 -2.96432408e+06 -2.30999469e+06]
[-5.64563414e+06 -1.45646841e+07 2.62816036e+06 -1.55074676e+07
3.53052308e+06 1.00901726e+06 -3.29093091e+06 -1.13189542e+07
-5.79935927e+06 -7.82368028e+06 3.83766162e+06 1.89580300e+06
-8.17501518e+05 -3.20117578e+06 1.62530821e+06 -4.00124539e+06
6.15089289e+05 -1.57741778e+07 8.51733072e+05 2.98477307e+06
2.29677788e+06 6.22426995e+05 -2.45632415e+06 1.54304572e+06
1.73585902e+06 2.33509797e+06 -2.32212071e+06 1.07046834e+06
-1.06543301e+07 -1.60569531e+06 2.53080236e+06 -1.63260010e+06
1.46269922e+06 1.09896104e+06 -3.21779860e+06 -1.67975034e+06]
[-6.11616208e+06 -1.36290376e+07 5.45106466e+05 -1.69504771e+07
1.43619684e+06 -5.82256535e+05 -2.27749811e+06 -8.48760252e+06
-6.42008291e+06 -6.68149682e+06 2.89073261e+06 1.12359664e+06
-2.71068879e+06 -4.73409849e+06 1.46248301e+05 -3.44083115e+06
-1.09062254e+06 -1.70634540e+07 3.74079580e+06 1.23221267e+06
9.28406213e+05 1.38133505e+06 -2.08928152e+06 -6.82968517e+04
7.63492469e+05 3.38287311e+06 -3.14080017e+06 -1.59931440e+05
-1.20948929e+07 -6.55039241e+05 6.66588295e+05 -5.51744504e+05
3.62183138e+05 -9.67376752e+04 -4.98481083e+06 -2.47555475e+06]
[-6.36858930e+06 -1.29215600e+07 -1.03951044e+06 -1.80969229e+07
-1.39220359e+05 -1.82076531e+06 -3.49144614e+06 -8.71880385e+06
-7.35856995e+06 -6.56640756e+06 1.37690881e+06 -2.61504019e+05
-3.57495731e+06 -5.50201033e+06 -1.22646489e+06 -3.77395590e+06
-2.44363530e+06 -1.88188125e+07 3.75035730e+06 -1.92323298e+05
-4.68522465e+05 1.07012732e+06 -2.40327928e+06 -1.43216224e+06
-6.40418981e+05 2.71856816e+06 -3.66721080e+06 -1.33628885e+06
-1.54573345e+07 -1.87976749e+06 -7.79854059e+05 -2.05356740e+05
-7.44655062e+05 -1.32756418e+06 -5.56315289e+06 -3.08459953e+06]
[-6.08534927e+06 -9.00447175e+06 -1.93299659e+06 -1.76088403e+07
-1.36273266e+06 -2.27863849e+06 -6.55846569e+06 -8.53231462e+06
-8.11569020e+06 -4.70164701e+06 4.00188946e+05 -1.28066641e+06
-3.40343555e+06 -5.31767953e+06 -2.08711664e+06 -4.50387351e+06
-2.94961276e+06 -1.96931804e+07 1.49191753e+06 -1.38413546e+06
-1.67974213e+06 -4.11775827e+05 -1.87375537e+06 -2.31068575e+06
-1.63007366e+06 2.63887871e+05 -3.13357788e+06 -2.02137293e+06
-1.75052551e+07 -5.01443891e+06 -1.78150700e+06 -9.57136954e+05
-1.44233718e+06 -2.07336371e+06 -4.79485562e+06 -1.97007784e+06]
[-5.08510504e+06 -3.88918716e+06 -2.21042978e+06 -1.36881568e+07
-2.11958239e+06 -1.96298708e+06 -7.04960528e+06 -5.71571063e+06
-7.04416608e+06 -8.71857556e+05 4.57986845e+04 -1.61667565e+06
-2.13483741e+06 -2.99656844e+06 -2.08163534e+06 -3.41609599e+06
-2.29833645e+06 -1.65837666e+07 -6.85663837e+05 -1.75311076e+06
-2.03631891e+06 -9.61363151e+05 -1.06685087e+06 -2.13186161e+06
-2.00951162e+06 -5.02047430e+05 -1.56866719e+06 -1.84564812e+06
-1.44521671e+07 -5.80465096e+06 -2.06961907e+06 -1.07889174e+06
-1.59099034e+06 -2.04811231e+06 -3.72668304e+06 -8.81686434e+05]
[-3.85376871e+06 2.95460063e+05 -3.40056050e+06 -8.28903001e+06
-3.47801770e+06 -2.89674854e+06 -5.33909257e+06 -1.24117873e+06
-4.94600927e+06 3.09402407e+05 -1.42821548e+06 -2.24538836e+06
-2.65948693e+06 -2.93765053e+06 -2.94285168e+06 -3.84987532e+06
-3.01501883e+06 -1.02034421e+07 -5.01412473e+05 -3.09110323e+06
-2.93457806e+06 -1.36843156e+06 -9.55421562e+05 -2.85580236e+06
-2.65668636e+06 -1.79137092e+06 -1.77080429e+06 -2.57547053e+06
-9.79573101e+06 -4.55654474e+06 -3.21269579e+06 -1.88359476e+06
-2.53890937e+06 -2.83607466e+06 -4.76282322e+06 -1.87747698e+06]
[-1.96296828e+06 1.43607232e+06 -3.49360872e+06 -3.83548066e+06
-3.48738914e+06 -2.89249001e+06 -2.08732614e+06 4.41109245e+03
-2.69519307e+06 -4.84180671e+05 -1.75168198e+06 -2.13346813e+06
-3.17017066e+06 -3.10570136e+06 -3.09269352e+06 -3.85692494e+06
-2.97761517e+06 -4.24986637e+06 8.42115743e+05 -3.13052760e+06
-2.83877093e+06 -2.10627352e+05 -1.39990913e+06 -2.75043594e+06
-2.46383161e+06 -1.77813025e+06 -2.68968195e+06 -2.47798724e+06
-6.40371589e+06 -1.73867713e+06 -3.26516710e+06 -2.08904960e+06
-2.47391131e+06 -2.65019235e+06 -5.35256458e+06 -3.02118685e+06]
[-1.84475660e+06 1.11866813e+06 -3.19273492e+06 -1.65921596e+06
-2.93612879e+06 -3.01757856e+06 -2.89919649e+05 7.18625698e+05
-2.17717548e+06 -3.05161253e+06 -1.97488016e+06 -1.92165764e+06
-3.30644907e+06 -4.02988104e+06 -3.05233655e+06 -5.09730932e+06
-3.18241675e+06 -1.93177006e+05 8.54406873e+05 -2.90679235e+06
-2.51374938e+06 -7.44448001e+05 -1.62574330e+06 -2.65545917e+06
-2.11177563e+06 -2.61883356e+06 -3.34102594e+06 -2.45879013e+06
-4.13458181e+06 -4.65407771e+05 -3.06062321e+06 -3.84440255e+06
-2.37919273e+06 -2.54566921e+06 -5.10225060e+06 -3.51035918e+06]
[-1.24997130e+06 2.26166605e+06 -2.91146395e+06 -4.73085268e+05
-2.82586983e+06 -2.58625940e+06 -5.69649616e+05 2.46018621e+06
-1.46031698e+06 -2.34169316e+06 -2.10086255e+06 -1.70273054e+06
-2.33558292e+06 -2.88319679e+06 -2.64469882e+06 -4.41053058e+06
-2.67289961e+06 6.78839003e+05 1.02686943e+06 -2.68782572e+06
-2.24923571e+06 -1.31291417e+06 -8.15794272e+05 -2.37640881e+06
-1.82829862e+06 -2.59808313e+06 -2.05497179e+06 -2.08465930e+06
-1.91676369e+06 -1.19900125e+05 -2.76943353e+06 -3.14414532e+06
-2.06971517e+06 -2.22786146e+06 -3.55752179e+06 -2.44104498e+06]
[-1.27551066e+06 2.40609240e+06 -2.39088224e+06 -5.03237196e+05
-2.33095171e+06 -2.20109114e+06 -8.95750734e+05 2.61734644e+06
-1.49633702e+06 -1.83395906e+06 -2.10540719e+06 -1.61737435e+06
-1.47454835e+06 -2.05420129e+06 -2.20045138e+06 -3.65474395e+06
-2.35257312e+06 3.39621759e+05 3.56559859e+05 -2.27250132e+06
-1.92045365e+06 -1.79080102e+06 -2.52545593e+05 -2.14793204e+06
-1.61511601e+06 -2.23055641e+06 -8.97907201e+05 -1.84016036e+06
-9.93941452e+05 -7.96932431e+05 -2.28877447e+06 -2.92239378e+06
-1.82959150e+06 -2.05232859e+06 -2.00742597e+06 -1.26565610e+06]
[-1.04948429e+06 1.54901787e+06 -1.67985421e+06 -1.51624547e+05
-1.52211701e+06 -1.68041647e+06 -6.38167649e+04 1.88529239e+06
-1.12704380e+06 -2.05619381e+06 -1.70444810e+06 -1.16590537e+06
-1.34866336e+06 -1.80197492e+06 -1.62548521e+06 -2.74775368e+06
-1.84880708e+06 8.69527922e+05 4.33738592e+05 -1.60634961e+06
-1.32925820e+06 -1.34242341e+06 -2.44324201e+05 -1.62081606e+06
-1.09314163e+06 -1.75851849e+06 -8.94331264e+05 -1.39042672e+06
-1.32047449e+04 -3.13529853e+05 -1.59809772e+06 -2.10184471e+06
-1.31971979e+06 -1.53942685e+06 -1.37036372e+06 -9.31692656e+05]
[-7.25938984e+05 5.96070754e+05 -8.21120815e+05 -2.12426842e+05
-7.12858379e+05 -9.02692424e+05 -8.09903212e+04 6.36651115e+05
-7.72719445e+05 -1.44193427e+06 -8.86726646e+05 -6.05776801e+05
-6.84198633e+05 -9.72184355e+05 -8.63511991e+05 -1.61099924e+06
-1.04051218e+06 2.80016074e+05 1.94834363e+04 -7.84189195e+05
-6.71465139e+05 -8.11495848e+05 -2.21161234e+05 -8.83915114e+05
-5.62525177e+05 -1.09777893e+06 -5.62185617e+05 -7.73368791e+05
-2.87662917e+05 -3.31761293e+05 -7.93487616e+05 -1.35382846e+06
-6.86563956e+05 -8.05190099e+05 -6.70973785e+05 -4.68630099e+05]
[-4.39222743e+05 2.93749185e+05 -3.95450376e+05 -2.50998822e+05
-3.31299609e+05 -4.74967004e+05 -1.04408994e+05 -1.08522522e+05
-5.26385534e+05 -9.43056990e+05 -4.81386415e+05 -4.18398880e+05
-3.57721168e+05 -4.43850038e+05 -4.71621214e+05 -9.71414686e+05
-5.43816552e+05 -6.48238652e+04 -3.00344271e+05 -4.03384332e+05
-3.64907058e+05 -5.42376294e+05 -1.71728963e+05 -4.59585373e+05
-3.63101586e+05 -7.63441512e+05 -3.34905139e+05 -4.51684330e+05
-3.56946212e+05 -4.44809623e+05 -4.03462035e+05 -9.07182110e+05
-3.95313585e+05 -4.58629356e+05 -3.49152960e+05 -2.76547199e+05]
[-6.85852099e+04 9.34747841e+04 -5.07403971e+04 2.57918296e+04
-1.58976069e+04 -9.92404416e+04 1.03734414e+05 -1.38104845e+05
-1.24386447e+05 -4.03933215e+05 -1.08726547e+05 -9.16805885e+04
-1.04339240e+05 -1.19405571e+05 -9.57134520e+04 -2.13926216e+05
-1.14388864e+05 1.69106037e+05 -7.99016305e+04 -5.93936593e+04
-4.96063822e+04 -1.09243588e+05 -3.63096805e+04 -7.56616070e+04
-6.90268147e+04 -2.51627935e+05 -9.95448423e+04 -9.99070759e+04
-5.45340225e+04 -4.22567782e+04 -6.52997727e+04 -1.99384789e+05
-7.32790388e+04 -9.58156295e+04 -5.87396201e+04 -4.91232337e+04]
[ 2.46544799e+04 4.78460522e+04 4.92915726e+03 5.69557588e+04
5.56285625e+03 7.66020769e+03 5.43505465e+04 -3.80335272e+03
1.76503998e+04 7.89021301e+03 1.35022836e+04 1.54990485e+04
-3.04079065e+04 -3.61247751e+03 9.34544501e+03 2.51595372e+04
1.09645553e+04 6.68152608e+04 1.18011486e+04 5.51013981e+03
8.31798786e+03 2.61628915e+04 -6.77529299e+03 1.38563597e+04
1.17334991e+04 -1.01839069e+04 -2.87870629e+04 8.11452472e+03
3.98664565e+04 2.47105493e+04 6.23351925e+03 2.78644174e+04
1.16865873e+04 1.56524066e+04 -1.49383641e+04 -7.30125169e+03]
[ 8.51568489e+03 9.03650387e+03 5.05140515e+03 7.55828731e+03
4.61569862e+03 5.08119968e+03 9.26419266e+03 6.83171514e+03
8.00855460e+03 1.10497414e+04 5.93097958e+03 5.12222663e+03
6.54142938e+03 9.79610266e+03 5.68388006e+03 1.40458444e+04
6.48010038e+03 6.24285116e+03 1.58442047e+04 4.81824326e+03
5.23028336e+03 1.02120523e+04 6.18049785e+03 6.46026208e+03
4.75167953e+03 9.12614679e+03 9.19434267e+03 4.64653125e+03
1.22704215e+04 7.39082447e+03 5.08835825e+03 1.31799837e+04
5.03103602e+03 5.91835942e+03 2.69091886e+03 6.96910207e+03]
[ 9.57910758e-01 -1.85426791e-01 -3.23380262e-01 8.96759664e-02
4.79776772e-02 5.98782976e-02 -1.09582022e-01 -9.88936877e-01
-3.11595982e-01 2.77354084e-01 1.30092093e-01 -8.74141664e-02
-4.10013149e-02 -5.91150792e-01 -6.89055203e-01 -7.21222995e-01
2.81324516e-01 -2.04106391e-01 7.07519922e-03 -2.62977452e-01
-2.20824527e-02 5.85191872e-01 -5.94225899e-01 -1.80169309e-01
-8.19618518e-01 -7.41645742e-02 5.24353613e-01 -6.36286666e-01
-1.03850531e-01 -4.82264824e-01 -8.58920772e-01 -2.55656381e-01
6.92340341e-01 4.66885585e-01 -3.23755840e-01 2.88576202e-01]
[-9.21549655e-01 3.77198659e-01 -2.48568527e-01 -6.76090610e-01
6.45809848e-01 6.29723274e-01 -8.93211261e-01 -8.84545159e-01
9.68086467e-01 2.36628935e-01 -3.63315972e-01 -1.09617170e-01
-2.06505055e-01 9.71908705e-01 8.17480647e-01 3.97737740e-01
-1.74448376e-01 -9.92870885e-01 -8.00057176e-01 5.68292231e-01
6.29165784e-01 8.54250672e-01 6.09705448e-01 9.54822319e-01
-3.05893025e-01 -8.94045137e-01 -7.33603337e-01 -9.83577874e-01
8.85916608e-01 9.08655683e-01 -2.18104214e-02 2.57108793e-01
5.44981980e-01 -7.66689773e-01 -9.31657220e-01 1.17968581e-01]
[ 7.60856452e-01 7.12945521e-02 -6.23009910e-02 -8.07545462e-01
9.99514724e-01 5.83534787e-01 6.52534477e-02 5.48111678e-01
6.90686802e-01 1.10192030e-01 -7.00244224e-01 5.44289221e-01
-3.26118202e-01 -4.36358060e-01 1.19851265e-02 8.22342512e-01
5.41613386e-01 5.77196762e-01 5.06538848e-01 5.36204359e-01
6.07377265e-01 4.57107185e-01 1.60930106e-01 2.34244584e-02
6.06279990e-01 1.87259113e-01 -6.09848458e-01 -1.01819074e-01
-7.28232914e-01 -2.46244005e-01 -6.99503700e-01 3.67485565e-01
-9.46288633e-01 9.39727534e-02 -1.12655869e-01 -8.86893228e-01]
[ 7.24800850e-01 3.83507421e-01 -4.20755227e-01 8.59182235e-01
1.98656659e-01 6.41695060e-01 -9.62343754e-01 -4.26055907e-01
-3.13178571e-01 -7.61424054e-01 3.51198954e-01 -4.45193143e-01
3.08523220e-01 8.64046913e-01 1.83576657e-01 -2.60299779e-01
-5.37692498e-01 3.55415676e-01 1.43841829e-01 5.34757309e-01
6.94260509e-01 4.24257293e-01 -1.02887764e-01 -8.19595346e-01
-7.90694018e-01 -4.63979809e-01 6.86335047e-01 3.41931746e-01
7.88448034e-01 -8.90622347e-03 -1.52624540e-01 1.09720611e-01
-7.81424717e-01 -6.61513494e-01 -3.03312242e-01 -5.36370264e-02]
[-1.94307698e+05 -3.93260742e+05 1.22470391e+05 -3.45258816e+05
1.36671985e+05 7.45608815e+04 -3.94458315e+04 -3.17116256e+05
-1.82918524e+05 -2.68334969e+05 7.84284044e+04 5.07941785e+04
6.83500012e+04 1.95673487e+04 7.99060251e+04 -1.89154774e+05
4.01231356e+04 -3.42870044e+05 -1.91674062e+05 1.36551108e+05
1.22045440e+05 -2.35093638e+04 -1.74439319e+05 5.13183409e+04
7.99367081e+04 4.46153868e+04 -1.03990693e+05 6.36046567e+04
-2.28504679e+05 -1.10841823e+05 1.13301144e+05 -1.63569654e+05
6.93475054e+04 3.96577195e+04 -5.96318073e+04 -1.10517243e+05]
[-5.33905230e+05 -1.20482028e+06 2.72199782e+05 -7.16176309e+05
3.25279616e+05 1.01717428e+05 8.52454139e+04 -8.24215998e+05
-4.09366671e+05 -9.17111956e+05 1.78334515e+05 1.37262046e+05
1.62454215e+04 -1.35176988e+05 1.75850478e+05 -5.03646813e+05
2.60196723e+04 -5.50609230e+05 -5.94582293e+05 3.17662686e+05
3.10829544e+05 -5.76945038e+04 -5.51181939e+05 1.12280066e+05
1.88411273e+05 1.17442736e+05 -4.39130729e+05 9.16267927e+04
-5.63192371e+05 -1.54566867e+05 2.49375956e+05 -5.74024212e+05
1.37052786e+05 9.12640900e+04 -2.61453772e+05 -4.13643604e+05]
[-8.74869865e+05 -2.58906872e+06 4.55983505e+05 -1.15416429e+06
6.24240959e+05 7.12923834e+04 2.32371055e+05 -2.12535588e+06
-6.88111089e+05 -2.09882681e+06 2.80400596e+05 2.08555800e+05
-3.00903942e+05 -6.64620370e+05 2.42371908e+05 -9.08352498e+05
-6.92376469e+04 -5.55033569e+05 -1.15910212e+06 5.22338293e+05
5.02479668e+05 8.32159539e+04 -1.22381767e+06 1.71877801e+05
2.78290473e+05 8.05190529e+04 -1.18789190e+06 7.24716927e+04
-1.36386004e+06 7.11144611e+03 3.96974482e+05 -1.07449278e+06
1.82192287e+05 1.33533400e+05 -7.35297756e+05 -9.89146320e+05]
[-1.17495151e+06 -4.54857551e+06 8.08823797e+05 -1.64566404e+06
1.15512513e+06 1.17076096e+05 5.32271526e+05 -4.88229795e+06
-9.95454988e+05 -4.03943717e+06 6.13946160e+05 3.88517078e+05
-9.39886688e+05 -1.48598600e+06 3.77474582e+05 -1.46558881e+06
-2.58941215e+03 -2.81918993e+05 -2.06120639e+06 8.80580457e+05
8.62987390e+05 5.03381188e+05 -2.35541616e+06 4.41254345e+05
4.21213578e+05 -5.65630898e+03 -2.42639156e+06 8.23873586e+04
-2.99833152e+06 4.58160177e+05 6.51307541e+05 -1.74289534e+06
2.98205096e+05 3.65477078e+05 -1.59548278e+06 -1.90326175e+06]
[-2.09730054e+06 -6.07585842e+06 7.94733920e+05 -3.95437814e+06
1.24745430e+06 -1.15353065e+05 -8.72639974e+05 -7.57487971e+06
-2.32004334e+06 -5.48173284e+06 6.26400656e+05 3.07752494e+04
-1.04926598e+06 -1.72039717e+06 1.30468659e+05 -2.97854954e+06
-2.21855779e+05 -2.91036839e+06 -2.92158946e+06 8.30943030e+05
6.74866246e+05 -1.46723210e+05 -2.91312400e+06 2.67429758e+05
8.71798137e+04 -6.10744865e+05 -2.81306372e+06 -2.23491839e+05
-5.53579229e+06 -1.00699217e+06 5.87156954e+05 -2.74487355e+06
1.87575354e+04 5.92697174e+04 -1.64305700e+06 -1.84554332e+06]
[-2.70432650e+06 -6.95792016e+06 8.73564582e+05 -6.34841698e+06
1.43530154e+06 -1.93954835e+05 -1.84285448e+06 -8.39041726e+06
-3.42752034e+06 -5.65312181e+06 8.65399632e+05 -2.51786285e+04
-5.98387161e+05 -1.67205645e+06 4.94396235e+04 -3.42791056e+06
-4.38531405e+05 -5.83003709e+06 -2.62956149e+06 9.50412462e+05
6.40382969e+05 -6.28962053e+05 -2.30281009e+06 6.99524335e+04
5.37974599e+04 -4.42556150e+05 -2.21346427e+06 -3.20443556e+05
-6.90662925e+06 -2.16041245e+06 6.77792815e+05 -2.59789300e+06
-2.09967271e+04 -1.53320160e+05 -5.24442562e+05 -5.26749636e+05]
[-3.24291517e+06 -8.11784284e+06 8.70327578e+05 -7.76764189e+06
1.59944924e+06 -3.18382212e+05 -3.29479842e+06 -9.50419327e+06
-4.34105917e+06 -6.13585873e+06 6.50948460e+05 -2.56326753e+05
-3.25127316e+05 -2.06259690e+06 -1.34278813e+05 -3.99232249e+06
-7.13761706e+05 -7.44535883e+06 -2.58898404e+06 8.80763598e+05
3.62788750e+05 -1.42246577e+06 -1.52023141e+06 -2.05688880e+05
-1.03842835e+05 -7.97129174e+05 -1.74064184e+06 -4.91011748e+05
-8.61649726e+06 -3.18430723e+06 6.65392486e+05 -2.86894093e+06
-1.70843448e+05 -4.49464619e+05 1.05838234e+06 9.41224276e+05]
[-3.92601433e+06 -7.47437694e+06 -2.65878824e+05 -9.36550799e+06
3.28161316e+05 -1.35147539e+06 -6.71586039e+06 -9.91272689e+06
-5.36390983e+06 -5.71377268e+06 -3.90688503e+05 -1.48357418e+06
3.21722399e+05 -1.69063724e+06 -1.39885344e+06 -5.58873113e+06
-1.52584819e+06 -1.03150790e+07 -2.79942281e+06 -3.86056137e+05
-1.04225313e+06 -3.06873843e+06 -4.87184509e+05 -1.26184533e+06
-1.42378996e+06 -1.94974743e+06 -2.56644154e+05 -1.61614174e+06
-1.07883743e+07 -5.33668680e+06 -5.31291726e+05 -3.65732176e+06
-1.43032876e+06 -1.66054282e+06 2.74860378e+06 2.44468845e+06]
[-4.33292075e+06 -6.36187652e+06 -2.12342706e+06 -1.00058197e+07
-1.56707684e+06 -3.02412214e+06 -5.98694463e+06 -8.42595449e+06
-5.72268032e+06 -5.32564259e+06 -1.49850560e+06 -2.64165034e+06
-9.60827855e+05 -2.55483935e+06 -2.95710203e+06 -5.44525263e+06
-2.93675612e+06 -1.05943463e+07 -8.64196930e+05 -2.08373518e+06
-2.48249092e+06 -2.82992898e+06 -5.73737884e+05 -2.60762110e+06
-2.84868393e+06 -1.90498128e+06 -6.84076751e+05 -2.98253379e+06
-1.06262886e+07 -3.59309006e+06 -2.31124173e+06 -3.03102541e+06
-2.81688325e+06 -2.92624521e+06 8.14182430e+05 1.21500074e+06]
[-4.28498712e+06 -5.93566721e+06 -2.96568795e+06 -1.04333591e+07
-2.29036414e+06 -3.58423484e+06 -3.17294089e+06 -8.30693950e+06
-5.78089369e+06 -5.51661988e+06 -1.73145801e+06 -2.95103830e+06
-3.05703507e+06 -3.72744518e+06 -3.55215611e+06 -4.70740533e+06
-3.63419883e+06 -1.06251474e+07 9.78273174e+05 -2.60335688e+06
-2.91055359e+06 -1.03296543e+06 -1.65872822e+06 -3.10708382e+06
-3.25449416e+06 -1.12125054e+06 -2.76464175e+06 -3.42721867e+06
-1.12513935e+07 -2.04772045e+06 -2.99120452e+06 -1.61742614e+06
-3.15593232e+06 -3.21568699e+06 -1.64998241e+06 -6.83046783e+05]
[-2.87050066e+06 -4.60512777e+06 -3.23339793e+06 -9.61147699e+06
-2.68198225e+06 -3.39657198e+06 -1.73372438e+06 -8.40892885e+06
-4.56945829e+06 -3.70532373e+06 -1.84525642e+06 -2.97277409e+06
-3.45488966e+06 -3.19138567e+06 -3.63380287e+06 -2.13299620e+06
-3.34684941e+06 -1.04461060e+07 2.00266560e+06 -2.73104839e+06
-3.14472269e+06 9.94514697e+05 -1.75111210e+06 -2.90932344e+06
-3.47642985e+06 -7.95951942e+05 -2.99192907e+06 -3.27796925e+06
-1.12675727e+07 -8.60225576e+05 -3.13767693e+06 1.35514988e+06
-3.12177058e+06 -2.91577751e+06 -1.86974894e+06 -1.21684948e+06]
[-3.03500983e+06 -7.80260218e+05 -4.28098672e+06 -9.50011939e+06
-4.06257339e+06 -3.90890320e+06 -3.43380849e+06 -5.98664428e+06
-5.17826656e+06 -1.34554066e+06 -2.87490929e+06 -4.11604498e+06
-3.16213580e+06 -2.79769574e+06 -4.40872458e+06 -1.59342288e+06
-3.93828161e+06 -1.13414663e+07 1.45521545e+06 -3.92587905e+06
-4.30143198e+06 -3.57279189e+05 -5.49718302e+05 -3.90666772e+06
-4.42578950e+06 -1.90808363e+06 -1.59087586e+06 -3.93506613e+06
-1.04490247e+07 -3.04719606e+06 -4.22470241e+06 1.56270980e+06
-3.87192792e+06 -3.84861195e+06 -1.26840972e+06 7.06269979e+04]
[-2.83353652e+06 2.47190701e+06 -4.33656989e+06 -7.09415636e+06
-4.47661984e+06 -3.51226098e+06 -4.57741280e+06 -3.24054527e+06
-4.61546964e+06 1.40569246e+06 -2.92559445e+06 -4.30384986e+06
-1.84804830e+06 -1.00103297e+06 -4.29207130e+06 -1.82506941e+06
-3.52082943e+06 -9.79126746e+06 -3.40216947e+05 -4.07009815e+06
-4.48186843e+06 -1.73299940e+06 5.64054025e+05 -3.91098034e+06
-4.49542344e+06 -2.39423937e+06 1.16334261e+04 -3.73329441e+06
-7.78725550e+06 -4.46096212e+06 -4.26746418e+06 8.32007906e+05
-3.87913996e+06 -3.88360759e+06 1.07622795e+05 1.54729952e+06]
[-2.87438223e+06 2.79951318e+06 -5.05157884e+06 -4.00492132e+06
-5.11169745e+06 -4.43912963e+06 -3.86918788e+06 -3.72349703e+05
-3.69877097e+06 3.91321331e+05 -4.08307591e+06 -4.49992540e+06
-2.36732306e+06 -2.13271754e+06 -4.89958880e+06 -3.62154783e+06
-4.55362787e+06 -5.43627507e+06 -6.26760655e+05 -4.85486938e+06
-4.91391522e+06 -2.88330535e+06 1.84649819e+05 -4.71720984e+06
-4.68562205e+06 -3.34233509e+06 -7.76042567e+05 -4.38227524e+06
-5.25150187e+06 -3.58039147e+06 -4.92457117e+06 -1.24124019e+06
-4.51658167e+06 -4.59486933e+06 -8.57136273e+05 3.67435065e+05]
[-2.84458795e+06 1.64840024e+06 -4.76750663e+06 -2.34980696e+06
-4.66599232e+06 -4.36990172e+06 -2.83906971e+06 1.19485388e+06
-2.91565206e+06 -1.74562373e+06 -4.44959416e+06 -4.31711671e+06
-2.02948293e+06 -2.34701796e+06 -4.81257797e+06 -5.63373331e+06
-4.69156112e+06 -2.46730597e+06 -1.15841455e+06 -4.49902546e+06
-4.45447568e+06 -3.54683145e+06 -1.55928773e+05 -4.58438061e+06
-4.22336524e+06 -3.57272162e+06 -1.05742601e+06 -4.22256423e+06
-3.21238436e+06 -2.76494370e+06 -4.65444533e+06 -3.71883958e+06
-4.35782452e+06 -4.57694372e+06 -8.23427654e+05 -3.51374424e+05]
[-3.07701904e+06 2.34138231e+05 -4.22305886e+06 -1.78850296e+06
-4.01404113e+06 -4.14771601e+06 -2.64272148e+06 2.00596907e+06
-2.63163510e+06 -3.11739933e+06 -4.27299604e+06 -3.83087043e+06
-1.71255282e+06 -2.56008016e+06 -4.42955327e+06 -6.28245733e+06
-4.49479816e+06 -8.52381132e+05 -1.55644896e+06 -3.99240839e+06
-3.87805535e+06 -4.13854847e+06 -5.39628352e+05 -4.24526214e+06
-3.61980149e+06 -3.59976415e+06 -1.24395187e+06 -3.90536086e+06
-1.85871939e+06 -2.27651913e+06 -4.14662822e+06 -5.25659135e+06
-4.00717467e+06 -4.33948457e+06 -1.06147348e+06 -9.97492718e+05]
[-1.77670257e+06 1.38207503e+06 -2.94433741e+06 -3.66336104e+05
-2.84938367e+06 -2.78615464e+06 -1.90537888e+06 3.32774248e+06
-1.40955619e+06 -1.55480955e+06 -2.93929052e+06 -2.30936754e+06
-9.92174360e+05 -1.75624386e+06 -2.91047349e+06 -4.46906145e+06
-3.02070818e+06 2.07648981e+05 -3.59669267e+05 -2.78113632e+06
-2.59355754e+06 -2.72398987e+06 6.42706980e+04 -2.83167321e+06
-2.23399535e+06 -2.38121630e+06 -4.43784110e+05 -2.48758173e+06
-7.59119501e+05 -1.07145326e+06 -2.83179413e+06 -3.60611429e+06
-2.59190321e+06 -2.84787690e+06 -9.01314057e+05 -7.25470198e+05]
[-1.50353077e+06 1.55706785e+06 -2.08785107e+06 -5.70124282e+05
-2.01799959e+06 -1.98734101e+06 -1.60973055e+06 3.34079976e+06
-1.30276395e+06 -1.24238113e+06 -2.10961093e+06 -1.62986551e+06
-2.08749690e+05 -1.03056093e+06 -2.09057022e+06 -3.61847554e+06
-2.21555345e+06 -2.48760001e+04 -4.37873572e+05 -1.95669038e+06
-1.77176951e+06 -2.36705659e+06 4.33316429e+05 -2.05932326e+06
-1.56258013e+06 -1.76191885e+06 4.14083230e+05 -1.77223474e+06
-1.19354519e+05 -1.04752703e+06 -2.01558485e+06 -3.23625888e+06
-1.83165429e+06 -2.10925464e+06 -3.68989819e+05 -2.32837447e+05]
[-1.31786496e+06 1.06041558e+06 -1.34631759e+06 -7.74168879e+05
-1.29510037e+06 -1.36636883e+06 -1.41508119e+06 2.25542507e+06
-1.30389575e+06 -1.11078333e+06 -1.47793029e+06 -1.25633517e+06
2.04379453e+05 -4.50232703e+05 -1.48019078e+06 -2.71757349e+06
-1.54004918e+06 -4.80081536e+05 -6.50106214e+05 -1.26026949e+06
-1.17226669e+06 -2.15229804e+06 5.16513212e+05 -1.46689260e+06
-1.11812849e+06 -1.37656069e+06 7.12983857e+05 -1.27478686e+06
-1.30181227e+05 -1.22162878e+06 -1.33153158e+06 -2.67597044e+06
-1.30119106e+06 -1.54491636e+06 1.87180784e+05 2.65668400e+05]
[-8.51709512e+05 4.55065559e+05 -6.43399019e+05 -5.30172482e+05
-6.27265155e+05 -6.80438857e+05 -8.11418690e+05 8.99509451e+05
-8.07659426e+05 -6.00320658e+05 -7.17046410e+05 -6.64962997e+05
1.69023975e+05 -1.13756979e+05 -7.40534067e+05 -1.49148444e+06
-7.94002029e+05 -5.05016950e+05 -6.22625735e+05 -5.85921180e+05
-5.83018282e+05 -1.15989075e+06 1.80645366e+05 -7.68326607e+05
-5.70661743e+05 -7.05942326e+05 3.29053030e+05 -6.59404515e+05
-3.09070954e+05 -8.65930125e+05 -6.41389678e+05 -1.57447188e+06
-6.53569735e+05 -7.59237780e+05 1.59288801e+05 1.66149044e+05]
[-3.90327505e+05 2.41963312e+05 -2.91520230e+05 -7.47374723e+04
-2.74488934e+05 -3.19534475e+05 -1.66373392e+05 1.15928302e+05
-3.51061720e+05 -4.49493039e+05 -3.73992517e+05 -3.50557552e+05
-6.22072859e+04 -8.54009992e+04 -3.62001796e+05 -7.27226902e+05
-3.77481776e+05 -4.88107907e+04 -4.83047536e+05 -2.67395154e+05
-2.78926209e+05 -5.06372838e+05 -5.39038540e+04 -3.59556951e+05
-2.97217772e+05 -4.63015782e+05 -4.33991891e+04 -3.35145034e+05
-1.51103352e+05 -4.02143993e+05 -2.97367969e+05 -7.53702366e+05
-3.20232492e+05 -3.54640308e+05 2.24682118e+04 -3.16120214e+04]
[-2.47505736e+04 1.79273540e+05 -2.49591696e+04 9.75069809e+04
6.55338689e+03 -7.39149339e+04 1.47977348e+05 -1.77719737e+05
-8.17427090e+04 -3.70589629e+05 -7.93315605e+04 -7.94354792e+04
-1.08231324e+05 -1.06192423e+05 -7.98001061e+04 -1.54411468e+05
-8.47080858e+04 2.58179625e+05 -9.06912948e+04 -3.46912679e+04
-3.12317657e+04 -8.28893382e+04 -3.31255250e+04 -4.86777562e+04
-5.88120107e+04 -2.65769923e+05 -9.48184825e+04 -8.51908140e+04
-4.81935251e+04 -3.10941178e+04 -4.48011697e+04 -1.83645383e+05
-5.95693363e+04 -6.69959444e+04 -4.50060383e+04 -4.17644494e+04]
[ 5.92504284e+03 1.77568695e+04 3.11149384e+03 2.24404429e+04
3.04918591e+03 3.62448320e+03 2.84583161e+04 -8.21304292e+03
2.55323771e+03 5.86539750e+03 8.55370870e+03 8.30115601e+03
-1.79369589e+04 -7.71481194e+03 6.67884314e+03 1.72394981e+04
5.91074152e+03 2.88999838e+04 6.21431289e+02 3.91580371e+03
5.58796424e+03 1.33085245e+04 -6.94307306e+03 6.89566178e+03
6.52969839e+03 -3.64170746e+03 -1.81683869e+04 4.66122459e+03
1.39731121e+04 1.04383190e+04 3.97315595e+03 1.65044209e+04
6.40984678e+03 7.89358027e+03 -1.34589317e+04 -8.60323468e+03]
[ 8.87903506e-01 1.95819522e-01 -6.03208784e-01 6.26664178e-01
3.32486207e-01 -8.68560578e-01 -4.24811501e-01 7.88604758e-01
-1.58168660e-01 -6.37620032e-01 -1.04113531e-02 9.91399995e-01
9.02491486e-01 9.16234061e-01 5.78492243e-01 -5.51587575e-01
-4.19003114e-01 -2.87243662e-01 1.92200377e-01 -3.70488828e-01
9.33380931e-01 -3.82793268e-01 4.92226414e-01 -8.69945696e-01
8.86811901e-01 5.90128645e-01 6.97344967e-01 -8.23763192e-01
-4.77942764e-02 -9.45896280e-01 -1.79267685e-01 1.85576527e-01
7.68648410e-02 -3.12145381e-01 -7.86275607e-01 2.12717285e-01]
[-7.27224968e-01 2.11090189e-01 3.94870382e-01 8.32043566e-02
-2.24572796e-01 6.02355693e-01 3.92649882e-01 8.90571306e-01
-2.15472380e-01 -2.15616681e-01 1.79619927e-02 6.38756011e-01
-8.51916509e-01 7.56943373e-01 -8.18411845e-01 8.97331147e-01
1.68493721e-01 1.53551410e-01 -2.13256861e-02 -3.24260805e-01
3.03348281e-01 3.29876651e-01 -3.61722237e-01 3.78044924e-01
-7.99278972e-02 -6.77885916e-01 -9.47830384e-01 -4.88957130e-02
-6.85445832e-01 1.65646905e-01 -5.92542664e-01 9.29626635e-01
-8.01197111e-01 -8.71901104e-01 5.47148146e-01 5.27624537e-01]
[-4.09023746e-01 -2.63333674e-02 -1.05682566e-01 2.89187787e-01
-2.57997445e-01 -7.14498757e-01 2.41900528e-01 5.33251081e-01
-6.53472975e-02 -5.35879905e-01 -1.01515849e-01 4.55825958e-01
-9.16233120e-01 4.22750410e-01 -7.71142673e-01 -8.99058374e-01
1.41579203e-01 8.88210515e-01 -2.88283435e-01 6.95513190e-01
-4.95486065e-02 2.57005794e-01 -5.64592459e-01 -7.32775384e-01
-7.54086324e-01 -8.88382911e-01 -5.45901057e-01 -9.55838485e-01
1.74524939e-01 -5.15427616e-02 -6.39279088e-01 -8.46241127e-01
1.07023886e-01 -6.40317981e-02 8.11122501e-01 -1.55799393e-01]
[-5.82680369e-01 -8.52003414e-01 -2.62355247e-01 5.90519617e-01
4.88683921e-01 8.42915955e-01 -6.14274006e-01 5.38636669e-02
-9.19421672e-01 -7.00023346e-01 -8.54653972e-01 9.46525832e-01
9.37219236e-01 -1.38126102e-01 2.07546961e-01 2.30911511e-01
7.87354101e-01 5.40316601e-01 6.31215250e-01 -6.82840556e-01
9.33888932e-02 -4.20955261e-01 -2.56207620e-01 1.97904282e-01
-7.86917702e-01 5.86074180e-01 -9.24300716e-01 2.57807193e-01
-8.09751329e-01 9.47221733e-01 9.22163087e-02 2.72940567e-01
-3.00609555e-01 5.83725498e-02 1.81458025e-01 3.66812941e-01]
[ 5.65031623e-01 -7.74616330e-01 5.31140104e-01 9.81613761e-01
-5.69809366e-02 -7.27874315e-01 2.04819708e-01 -1.30370787e-01
-7.16970002e-01 4.78386781e-01 -6.98476874e-01 4.57237953e-01
-5.98062170e-01 -6.08092786e-01 9.42996208e-01 -5.80756933e-01
-9.38109741e-01 -2.44663309e-02 -6.14239727e-02 -4.08720398e-01
9.92624025e-01 -7.55997065e-01 6.62274455e-01 1.02096459e-01
9.69599446e-02 7.72500444e-01 -4.46747850e-01 -8.41062494e-01
3.14440413e-01 -5.20615243e-01 -7.34041895e-01 -6.31370832e-01
-1.80830282e-01 -1.75608175e-01 -9.21011439e-01 5.24847057e-01]
[-2.32418186e+04 -7.50133721e+03 2.25576420e+03 -5.19507625e+04
1.14561293e-01 3.13051459e+02 -3.23011575e+04 2.80980234e+04
-1.90944436e+04 1.11565310e+04 -9.59705429e+02 -2.82441044e+03
3.58814907e+04 2.65861542e+04 -1.92609247e+02 -2.78358432e+04
1.71853531e+03 -7.32885485e+04 -3.97354077e+02 5.02450524e+02
-2.26018400e+03 -1.56730558e+04 1.43830778e+04 -2.03276146e+03
7.92941088e+01 4.18185368e+02 3.43465608e+04 3.07762417e+03
-5.92131273e+03 -2.87655108e+04 5.25413458e+02 -2.18629546e+04
-2.04563403e+03 -5.72504798e+03 1.85057319e+04 1.57832893e+04]
[-1.91829330e+05 -1.97071062e+05 2.93619422e+04 -3.04351957e+05
2.88930647e+04 -9.02859612e+03 -1.70224972e+05 2.12379667e+04
-1.42709326e+05 -1.27286505e+05 -5.19874429e+03 -1.75535135e+04
1.78210168e+05 9.87333962e+04 -5.88468775e+03 -2.43565410e+05
-7.52611631e+03 -3.62659827e+05 -1.07770906e+05 2.50068541e+04
9.34424179e+03 -1.00659834e+05 1.05300435e+04 -1.14762380e+04
2.61302143e+03 -2.11199461e+04 1.19705445e+05 -1.09217866e+03
-1.07040933e+05 -1.45340091e+05 1.34873447e+04 -2.11946246e+05
-1.85480304e+04 -3.51096609e+04 8.86103319e+04 4.40014069e+04]
[-5.96000654e+05 -1.25653157e+06 -1.12380365e+05 -5.04674840e+05
-3.14887169e+04 -3.00124205e+05 -1.96967185e+05 -9.16887826e+05
-4.11420690e+05 -1.17702061e+06 -1.98933585e+05 -2.48504781e+05
-1.07047520e+05 -3.48610984e+05 -2.58967133e+05 -7.90323524e+05
-3.21065994e+05 -1.41755551e+05 -8.14491662e+05 -8.51815727e+04
-1.09678709e+05 -2.76485553e+05 -4.53741228e+05 -2.41994338e+05
-2.04534176e+05 -2.39472287e+05 -3.96359378e+05 -2.93154588e+05
-7.13676573e+05 -6.76010541e+04 -1.71830534e+05 -8.35311325e+05
-2.76379252e+05 -2.77419111e+05 -1.12641500e+05 -2.93064144e+05]
[-9.07766553e+05 -2.24407933e+06 -2.34617173e+05 -1.00239135e+06
-8.26810024e+04 -5.59939378e+05 -4.25460456e+05 -2.29261675e+06
-8.61715617e+05 -2.15610259e+06 -3.65485885e+05 -5.20393970e+05
-4.63277009e+05 -8.67920962e+05 -4.69903072e+05 -1.06949220e+06
-6.13734175e+05 -3.95800177e+05 -1.27562635e+06 -2.45140204e+05
-2.84958189e+05 -5.26558266e+05 -8.47211493e+05 -4.74629801e+05
-4.78672962e+05 -4.21161834e+05 -8.68395759e+05 -5.98345819e+05
-1.59545096e+06 -2.09340933e+05 -3.42553503e+05 -1.05271796e+06
-5.21523950e+05 -4.97912476e+05 -3.09191311e+05 -5.03046576e+05]
[-1.82917852e+06 -3.20502178e+06 -1.06704118e+06 -2.30549176e+06
-8.65254118e+05 -1.46795080e+06 -1.81780258e+06 -3.73128967e+06
-2.03203708e+06 -3.12909692e+06 -1.35806205e+06 -1.64657737e+06
-7.19212918e+05 -1.31859121e+06 -1.42350963e+06 -1.92167168e+06
-1.58739756e+06 -1.87992219e+06 -2.20392514e+06 -1.11728857e+06
-1.25563964e+06 -1.93847498e+06 -9.96318858e+05 -1.47654922e+06
-1.53858088e+06 -1.41606136e+06 -9.30572857e+05 -1.62211071e+06
-3.01078002e+06 -1.70850382e+06 -1.19872984e+06 -1.73908516e+06
-1.50744919e+06 -1.54231199e+06 4.02820466e+05 2.64566647e+04]
[-2.92168255e+06 -4.12642879e+06 -2.30398826e+06 -4.03843356e+06
-2.01321465e+06 -2.80012484e+06 -3.76568584e+06 -5.29540393e+06
-3.60252152e+06 -4.33570404e+06 -2.95227388e+06 -3.39501714e+06
-6.34195680e+05 -1.49454909e+06 -2.93958039e+06 -2.90130994e+06
-2.98922672e+06 -4.04837638e+06 -2.83992913e+06 -2.42005286e+06
-2.77117363e+06 -3.70214040e+06 -5.70476273e+05 -2.95044816e+06
-3.17919223e+06 -2.83319587e+06 -3.12287301e+05 -3.13677308e+06
-4.67125253e+06 -3.58027844e+06 -2.50033030e+06 -2.22885103e+06
-2.98856734e+06 -3.06619364e+06 2.09934722e+06 1.41984605e+06]
[-4.11690151e+06 -4.63882666e+06 -3.81910498e+06 -5.40658030e+06
-3.47374453e+06 -4.36157428e+06 -6.20866590e+06 -5.61531101e+06
-5.09053437e+06 -5.32445758e+06 -5.00783422e+06 -5.39168655e+06
-4.28078756e+05 -1.51539374e+06 -4.77066999e+06 -4.63181566e+06
-4.58240758e+06 -5.81649023e+06 -3.54870561e+06 -4.00259510e+06
-4.56272999e+06 -5.91810237e+06 -3.55180018e+04 -4.67565328e+06
-5.02114288e+06 -4.57957037e+06 5.17432873e+05 -4.87708699e+06
-5.43622213e+06 -5.66207519e+06 -4.09458472e+06 -3.38258507e+06
-4.74632319e+06 -4.90955167e+06 3.82451747e+06 2.77242996e+06]
[-4.92989153e+06 -4.75006875e+06 -5.14467747e+06 -6.00633991e+06
-4.78451261e+06 -5.68249818e+06 -7.59961424e+06 -5.70010815e+06
-5.86781841e+06 -6.02646519e+06 -6.41706980e+06 -6.67542930e+06
-7.74866907e+05 -1.88115905e+06 -6.18191709e+06 -6.17703696e+06
-5.82323214e+06 -6.44887564e+06 -4.11425854e+06 -5.33040758e+06
-5.89911987e+06 -7.29416987e+06 9.84283035e+04 -5.93707555e+06
-6.37507142e+06 -5.48889283e+06 5.74245865e+05 -6.22602154e+06
-6.06102322e+06 -6.40409541e+06 -5.42026789e+06 -4.36751999e+06
-6.13497951e+06 -6.26155788e+06 4.34776183e+06 3.03729921e+06]
[-4.94977321e+06 -4.89678459e+06 -5.68203953e+06 -5.55457285e+06
-5.24610274e+06 -6.24278072e+06 -7.57304214e+06 -6.32293881e+06
-5.67271155e+06 -7.23921951e+06 -7.08552891e+06 -7.35330285e+06
-8.39539246e+05 -1.77617568e+06 -7.00389196e+06 -7.36788586e+06
-6.29874875e+06 -5.66289753e+06 -4.23150772e+06 -5.88411961e+06
-6.54888361e+06 -7.59988624e+06 1.05080817e+05 -6.43609118e+06
-7.10897917e+06 -6.09852815e+06 5.38960967e+05 -6.80222166e+06
-5.95872481e+06 -5.85214535e+06 -5.98081324e+06 -5.28608513e+06
-6.85929344e+06 -6.89996591e+06 4.56556200e+06 2.76089150e+06]
[-4.76799422e+06 -5.66320381e+06 -5.25814763e+06 -6.05629555e+06
-4.81270426e+06 -5.68109011e+06 -6.74464886e+06 -7.65213164e+06
-5.43007334e+06 -7.85090869e+06 -6.54530439e+06 -7.01469554e+06
-9.44842589e+05 -1.54201386e+06 -6.68006294e+06 -7.11003616e+06
-5.82443130e+06 -6.27455308e+06 -4.58224847e+06 -5.32935346e+06
-6.15104829e+06 -6.64539935e+06 -6.09315398e+05 -5.95526506e+06
-6.85555524e+06 -5.77837463e+06 -1.60489005e+05 -6.35567716e+06
-6.51237772e+06 -5.28930525e+06 -5.51506712e+06 -5.05850118e+06
-6.50685528e+06 -6.39427379e+06 3.93131669e+06 1.74406544e+06]
[-4.21265112e+06 -5.21566426e+06 -4.97085176e+06 -6.43259507e+06
-4.60825672e+06 -5.18992625e+06 -6.60706184e+06 -8.27159239e+06
-5.45950852e+06 -7.51347488e+06 -6.35925249e+06 -7.00438810e+06
-7.21450446e+05 -1.09941628e+06 -6.45299622e+06 -6.78188953e+06
-5.35055364e+06 -7.06331202e+06 -4.43619353e+06 -5.07027644e+06
-6.06446408e+06 -6.58165885e+06 -4.59807907e+05 -5.66456736e+06
-6.77085669e+06 -6.26740637e+06 7.72611014e+04 -6.01466343e+06
-6.74501926e+06 -5.77705457e+06 -5.19665584e+06 -4.20221415e+06
-6.23285916e+06 -6.09474992e+06 4.37853678e+06 2.09604740e+06]
[-3.96945595e+06 -2.80588307e+06 -4.99854056e+06 -6.10992325e+06
-4.79450338e+06 -4.93192728e+06 -7.08025598e+06 -6.06393055e+06
-5.47012239e+06 -5.61217410e+06 -6.34115209e+06 -7.09815452e+06
1.78476933e+05 -1.07896848e+05 -6.36293502e+06 -6.27484723e+06
-5.12375132e+06 -7.47515718e+06 -4.35540335e+06 -5.12677479e+06
-6.09342496e+06 -6.84755991e+06 5.33142584e+05 -5.60171131e+06
-6.76366085e+06 -6.48479051e+06 1.43961964e+06 -5.83742987e+06
-5.32560514e+06 -6.57697166e+06 -5.20874061e+06 -3.51581395e+06
-6.12482744e+06 -6.09292516e+06 5.06997157e+06 3.14220101e+06]
[-4.08271702e+06 -1.94946618e+06 -4.81622585e+06 -6.52715537e+06
-4.61173476e+06 -4.79455104e+06 -7.03018346e+06 -4.45870208e+06
-5.69793345e+06 -4.61089828e+06 -6.13724053e+06 -6.92059316e+06
2.87718703e+05 -3.99965901e+05 -5.92685188e+06 -5.57906322e+06
-5.25124592e+06 -8.35358344e+06 -3.91226397e+06 -5.02667698e+06
-5.84076291e+06 -6.85318276e+06 6.26900971e+05 -5.72169184e+06
-6.34246295e+06 -5.64241791e+06 1.61088651e+06 -5.59047570e+06
-5.16425796e+06 -7.34660935e+06 -5.04583273e+06 -3.21334508e+06
-5.69547015e+06 -6.04723372e+06 4.45356403e+06 3.30000536e+06]
[-3.99854701e+06 -2.67511786e+06 -4.81584876e+06 -4.78471307e+06
-4.49335744e+06 -4.96516908e+06 -5.04179908e+06 -2.06237588e+06
-4.64307022e+06 -5.09184196e+06 -6.10525550e+06 -6.04635883e+06
-7.69982194e+05 -1.84611392e+06 -5.56808433e+06 -5.21709284e+06
-5.50417273e+06 -5.17927857e+06 -2.95482534e+06 -4.85628933e+06
-5.28242566e+06 -5.83478121e+06 8.91398098e+03 -5.61359692e+06
-5.54950324e+06 -4.57133121e+06 2.26713088e+05 -5.32842151e+06
-4.12484760e+06 -4.90209857e+06 -4.90593632e+06 -3.40417217e+06
-5.28477166e+06 -5.71521257e+06 2.45347128e+06 1.46711850e+06]
[-3.53070848e+06 -1.96059177e+06 -4.03656531e+06 -2.72579071e+06
-3.64206052e+06 -4.34767352e+06 -3.38910573e+06 -4.56469087e+05
-3.52018289e+06 -5.22420543e+06 -5.33715664e+06 -4.99651765e+06
-8.01941618e+05 -1.88878934e+06 -4.80962708e+06 -5.99732173e+06
-4.84657277e+06 -2.21515409e+06 -2.85810446e+06 -3.97757366e+06
-4.24236954e+06 -5.03724139e+06 -9.74175054e+04 -4.75747197e+06
-4.41459904e+06 -4.27623539e+06 -1.73569032e+05 -4.52827233e+06
-2.73410545e+06 -3.46615934e+06 -4.12178456e+06 -4.67292195e+06
-4.52031541e+06 -4.98575520e+06 1.80395858e+06 7.51522626e+05]
[-3.01826915e+06 -1.86992563e+06 -2.95980090e+06 -2.11115485e+06
-2.57271971e+06 -3.28638088e+06 -2.22973704e+06 5.64676135e+05
-2.67112605e+06 -4.29519257e+06 -3.91766218e+06 -3.53651028e+06
-4.56820659e+05 -1.42550402e+06 -3.59591932e+06 -5.45801823e+06
-3.75621556e+06 -1.41481016e+06 -1.97429011e+06 -2.79290078e+06
-2.99341397e+06 -4.01960091e+06 -1.76038109e+05 -3.55747414e+06
-3.05187260e+06 -3.14979156e+06 -2.26483529e+05 -3.33760916e+06
-1.88586934e+06 -2.52221342e+06 -2.98865476e+06 -4.61731286e+06
-3.30455713e+06 -3.74889440e+06 1.18611421e+06 2.69843235e+05]
[-1.84157421e+06 -1.46104914e+06 -1.75715727e+06 -1.13873041e+06
-1.45914057e+06 -1.95143903e+06 -1.20645924e+06 4.35306450e+05
-1.50663157e+06 -3.05226072e+06 -2.45237431e+06 -2.09062561e+06
-9.55386409e+04 -7.78237142e+05 -2.18593289e+06 -3.54050484e+06
-2.30228600e+06 -5.42356967e+05 -1.28851503e+06 -1.60441512e+06
-1.77727205e+06 -2.47945846e+06 -2.27441427e+05 -2.14197006e+06
-1.78260983e+06 -2.05882705e+06 -1.38539755e+05 -1.97187203e+06
-7.97519152e+05 -1.24267148e+06 -1.75967619e+06 -2.98796593e+06
-1.95409252e+06 -2.25812247e+06 8.37581436e+05 5.02151190e+04]
[-1.17415117e+06 -6.76004286e+05 -1.37971318e+06 -5.58818090e+05
-1.25483781e+06 -1.39061093e+06 -1.16536028e+06 8.43366501e+05
-8.92248929e+05 -1.55273061e+06 -1.78363327e+06 -1.46882368e+06
1.22481069e+05 -3.08272400e+05 -1.59113378e+06 -2.31022821e+06
-1.58553343e+06 -2.17360999e+05 -8.63298033e+05 -1.26323718e+06
-1.36001406e+06 -1.98612561e+06 9.77441115e+04 -1.54814636e+06
-1.30989707e+06 -1.46306631e+06 2.75372510e+05 -1.39552469e+06
-1.22622057e+05 -8.53105877e+05 -1.33920580e+06 -1.91734351e+06
-1.41758767e+06 -1.61432956e+06 8.47363355e+05 2.85995599e+05]
[-9.28731701e+05 -2.98641404e+05 -8.30333292e+05 -4.92666274e+05
-7.76831482e+05 -8.62682047e+05 -8.83600634e+05 8.59515690e+05
-6.59041719e+05 -9.01199018e+05 -1.10977008e+06 -9.30343919e+05
2.49798250e+05 -3.03874361e+04 -9.67444339e+05 -1.63540992e+06
-9.90731891e+05 -3.35302800e+05 -8.46734066e+05 -7.46080941e+05
-7.93097787e+05 -1.45402162e+06 1.80218008e+05 -9.71407120e+05
-7.97371954e+05 -8.99248923e+05 3.95666022e+05 -8.56665533e+05
-2.04552704e+04 -7.80477628e+05 -7.97593952e+05 -1.55145428e+06
-8.97393672e+05 -1.05212385e+06 6.51303699e+05 2.86411474e+05]
[-5.38792659e+05 -2.36638080e+05 -3.46819943e+05 -3.01962468e+05
-3.14508654e+05 -4.01342218e+05 -3.95423157e+05 3.76462308e+05
-3.73833931e+05 -4.88475753e+05 -5.14941024e+05 -4.46999792e+05
1.50331811e+05 -2.96223687e+04 -4.32831337e+05 -8.23799121e+05
-4.79931046e+05 -2.26959152e+05 -4.99100967e+05 -3.10655410e+05
-3.43939734e+05 -6.56314490e+05 3.11567970e+04 -4.56400032e+05
-3.63395780e+05 -3.68335761e+05 1.58518952e+05 -4.02915970e+05
-5.84239095e+04 -4.06503399e+05 -3.44012075e+05 -8.48722895e+05
-4.16291877e+05 -4.93122121e+05 2.36716787e+05 7.44704731e+04]
[-1.85241600e+05 -1.62279848e+05 -1.31796489e+05 -1.46301421e+05
-1.16228274e+05 -1.58744453e+05 -2.12885607e+05 -1.05212473e+04
-1.45658544e+05 -3.19577741e+05 -2.20948662e+05 -2.01145932e+05
6.84474245e+04 -1.83068465e+04 -1.89311569e+05 -4.04808354e+05
-1.88292709e+05 -1.25574788e+05 -2.03117547e+05 -1.30470951e+05
-1.50859022e+05 -2.74637746e+05 -8.91764440e+03 -1.82162020e+05
-1.64818090e+05 -1.93210745e+05 4.33035969e+04 -1.69479731e+05
-1.44505260e+05 -1.89316816e+05 -1.40954733e+05 -3.56942574e+05
-1.76595180e+05 -1.92701630e+05 1.08113274e+05 2.36860704e+04]
[-4.87677200e+04 -5.52025745e+04 -2.97588975e+04 -5.55812512e+04
-2.25742324e+04 -4.35504621e+04 -4.41074747e+04 -4.03639168e+04
-4.61253156e+04 -1.13404244e+05 -5.38298068e+04 -5.37346211e+04
5.48782707e+03 -1.70557156e+04 -4.86800282e+04 -1.09679546e+05
-4.91397886e+04 -3.83690560e+04 -4.54388687e+04 -3.13702696e+04
-3.58756482e+04 -6.93105448e+04 -1.65113321e+04 -4.37074625e+04
-4.46090180e+04 -5.71428777e+04 -2.85992889e+03 -4.67192848e+04
-5.46442030e+04 -4.81537261e+04 -3.41043736e+04 -1.01533234e+05
-4.67590408e+04 -5.00460862e+04 6.40336060e+03 -1.06695351e+04]
[-3.79132643e-02 -8.50024655e-01 -6.01455915e-01 3.00044387e-01
9.52610824e-01 9.22276193e-01 9.92620620e-01 9.60910524e-01
-1.18420080e-01 2.55165778e-01 -6.13294265e-01 -8.16359343e-01
-8.61328832e-01 9.18509928e-01 1.20815423e-01 6.08470690e-01
5.05489278e-01 -5.49347965e-01 -7.30464114e-02 6.31443689e-01
5.86929054e-01 7.48734160e-02 -9.02185002e-01 -4.64860684e-01
-8.06021988e-01 -5.63473573e-01 -8.45529808e-01 -9.95879195e-01
-7.24218355e-01 9.89222508e-01 -4.43389950e-01 -4.98758256e-04
8.06362474e-01 5.10864513e-01 6.81157838e-01 -6.65509549e-01]
[-7.27226454e-01 -5.22895664e-02 -9.05605430e-01 -9.17886550e-01
-1.51222116e-01 -5.07640307e-01 -2.01347869e-01 6.63757440e-01
-1.35910635e-01 -7.87545756e-01 1.80266475e-01 1.42880646e-01
-9.64724806e-01 -4.75344421e-01 -4.76175041e-01 -5.77337102e-01
-5.35824300e-01 4.76972984e-01 2.69707440e-01 9.95651410e-01
4.45078999e-01 5.14830564e-01 -9.06049193e-01 -2.73556883e-01
6.39985247e-01 8.80565262e-02 -1.32510081e-01 -9.06120367e-01
-5.30128457e-01 1.76901278e-01 -8.56964770e-01 -1.93621620e-01
4.91044503e-01 5.13142062e-01 -5.99735746e-01 8.92980557e-01]
[-3.19974192e-01 -4.63034036e-01 -3.96724002e-01 8.84067364e-01
9.26975174e-01 6.87404090e-01 -1.41705297e-01 -6.81092523e-01
8.79644564e-01 -5.39008612e-01 -2.12784477e-01 -8.02363780e-01
2.69750477e-01 -8.47810558e-01 -8.06672989e-01 4.92960324e-01
-7.32035163e-02 7.17433917e-01 -7.52547518e-01 4.62984842e-01
4.22352038e-01 -1.52228265e-01 -2.44020094e-01 -9.11503346e-01
5.30196715e-02 1.06642521e-01 -7.34103147e-01 8.65141343e-01
-8.25003931e-01 3.36319862e-01 6.86953403e-01 -6.22944793e-01
2.59803355e-01 1.71906221e-01 -8.06403832e-01 5.29146114e-01]
[ 6.07768310e-01 6.73571712e-01 7.83287470e-01 5.48586614e-01
9.18904650e-01 2.53600222e-01 -1.64814994e-01 -7.57999618e-01
7.15736434e-01 2.81968758e-01 7.58182827e-01 -8.41825605e-01
1.63551097e-01 3.40858068e-01 8.77560590e-01 3.19958076e-01
-9.47106401e-01 7.53385093e-01 9.21805426e-01 -9.99369224e-01
9.09735212e-01 -4.43245564e-01 1.40099625e-01 -6.27073392e-01
-2.84916450e-01 -5.84330990e-01 7.75173662e-01 7.22056966e-01
-5.52862864e-02 -6.11097028e-01 -6.97940150e-01 -5.21299483e-01
-7.69174495e-01 -5.51590318e-01 4.89878320e-01 6.84387684e-01]
[-1.21866898e-01 -5.49177081e-01 -6.69120752e-01 2.30843400e-01
-9.50167020e-01 6.86101810e-02 -2.52321282e-01 1.29466413e-01
3.90772296e-02 -8.85733430e-01 -6.46189865e-02 -4.29333050e-01
-1.84982789e-01 -9.84133073e-01 9.35313724e-01 8.23264291e-01
-8.82668915e-02 -6.58282513e-01 -2.82761943e-01 -4.03737852e-01
-4.20435442e-01 5.79509975e-01 -7.13070028e-01 2.89797900e-01
1.87961505e-01 -4.88154784e-01 9.39266245e-01 -5.43248647e-03
-1.98017504e-02 -6.36582347e-01 4.01046860e-01 -1.03619071e-01
-2.74944001e-01 -3.15932935e-01 -9.69985178e-01 -7.88132228e-01]
[-6.51219747e-01 -8.26791288e-01 -7.45239399e-01 -6.95904026e-01
-9.86664521e-01 -5.71349070e-01 2.33688571e-01 9.98202825e-01
2.96683644e-01 -1.42192300e-01 -6.47662131e-01 -5.00586860e-01
3.46249184e-02 -2.09404203e-01 5.67826057e-01 -7.53281572e-01
-4.29168646e-01 -3.90685306e-01 -7.27911546e-01 1.22733322e-01
-4.16990755e-01 2.75705303e-01 5.78109534e-01 -3.21930225e-01
7.48722426e-01 7.87457485e-01 -6.03200067e-01 -8.98711002e-01
-9.10957008e-01 9.94694147e-01 8.43025537e-01 7.43919088e-01
-6.90243404e-01 -7.83614870e-01 4.49865618e-01 -1.39643777e-01]
[-5.53905093e+03 -5.59857238e+03 -6.67772710e+03 -5.56217553e+03
-6.49295522e+03 -6.79437952e+03 -5.54909116e+03 -5.65412796e+03
-5.55138872e+03 -5.68631954e+03 -6.75258011e+03 -6.91138108e+03
-5.60797756e+03 -5.41536805e+03 -6.72202480e+03 -5.72261953e+03
-6.82159063e+03 -5.53712957e+03 -5.55816400e+03 -6.67925379e+03
-6.71820154e+03 -6.20126250e+03 -5.66145904e+03 -6.81746721e+03
-6.89092542e+03 -5.40988955e+03 -5.79898581e+03 -6.95128780e+03
-5.64510505e+03 -5.49003332e+03 -6.67638407e+03 -5.67712396e+03
-6.73692219e+03 -6.83831106e+03 -5.70159587e+03 -5.57979228e+03]
[-5.33730508e+04 -5.51610992e+04 -6.26909445e+04 -5.39602416e+04
-6.05035227e+04 -6.43344448e+04 -5.44383436e+04 -5.57587151e+04
-5.31554904e+04 -5.47979060e+04 -6.39131229e+04 -6.55424737e+04
-5.24906560e+04 -5.07447995e+04 -6.35479683e+04 -5.46931041e+04
-6.41865111e+04 -5.37139680e+04 -5.28787476e+04 -6.28493188e+04
-6.35145084e+04 -5.93550539e+04 -5.41196593e+04 -6.40496286e+04
-6.54753404e+04 -5.12581271e+04 -5.47611602e+04 -6.60478429e+04
-5.54337390e+04 -5.29840295e+04 -6.27867413e+04 -5.43300783e+04
-6.40856223e+04 -6.47260542e+04 -5.34352978e+04 -5.24289778e+04]
[-1.15399259e+05 -1.59120794e+05 -1.23091506e+05 -1.29989948e+05
-1.19034812e+05 -1.37044820e+05 -1.65671541e+05 -1.82759954e+05
-1.20202460e+05 -1.59549566e+05 -1.37030449e+05 -1.47738074e+05
-5.03311681e+04 -6.94725765e+04 -1.45767833e+05 -1.43328658e+05
-1.25672074e+05 -1.04297691e+05 -1.46064600e+05 -1.24321200e+05
-1.38298026e+05 -1.72872622e+05 -2.56664309e+04 -1.29752978e+05
-1.53868422e+05 -1.48106607e+05 -1.38202096e+04 -1.48388723e+05
-1.42432971e+05 -1.23467470e+05 -1.29900422e+05 -1.34488811e+05
-1.49281024e+05 -1.34798190e+05 4.99404275e+04 3.05347808e+04]
[-2.89170974e+05 -3.52862700e+05 -3.57380090e+05 -4.69880091e+05
-3.54712006e+05 -3.75073621e+05 -6.23062507e+05 -5.41706736e+05
-4.00936208e+05 -3.68398479e+05 -3.95634063e+05 -4.48670069e+05
-8.95069385e+04 -1.39370671e+05 -4.12950775e+05 -3.30002822e+05
-3.44975118e+05 -5.31259749e+05 -3.39285212e+05 -3.82303340e+05
-4.29857423e+05 -5.42888810e+05 -1.52908515e+04 -3.76714987e+05
-4.68181405e+05 -4.45352348e+05 3.95923114e+04 -4.26952810e+05
-4.58642166e+05 -4.61558303e+05 -3.75209809e+05 -2.26665941e+05
-4.29279551e+05 -3.86600351e+05 2.17914558e+05 1.84136562e+05]
[-7.06704652e+05 -5.28531334e+05 -8.52248313e+05 -1.11345517e+06
-8.47437347e+05 -8.74145524e+05 -1.49078585e+06 -1.05247917e+06
-9.93701825e+05 -5.77438225e+05 -9.85105946e+05 -1.10735147e+06
-7.71735461e+04 -2.19358381e+05 -9.54599760e+05 -6.78107392e+05
-8.50196566e+05 -1.42104913e+06 -6.81286413e+05 -9.29022531e+05
-1.03590532e+06 -1.31050508e+06 1.15691464e+05 -9.36076659e+05
-1.09750082e+06 -9.79604060e+05 2.56171274e+05 -9.86835254e+05
-9.47011533e+05 -1.33228751e+06 -8.85422997e+05 -4.53765789e+05
-1.00451764e+06 -9.86726700e+05 7.83015887e+05 6.41715455e+05]
[-1.33931977e+06 -9.66542121e+05 -1.60596754e+06 -1.79388278e+06
-1.56587091e+06 -1.69851057e+06 -2.79598868e+06 -1.57719583e+06
-1.77647483e+06 -1.21367595e+06 -2.04784884e+06 -2.15419675e+06
1.29808886e+05 -2.48988624e+05 -1.85278783e+06 -1.26896891e+06
-1.66361921e+06 -2.28222515e+06 -9.32929761e+05 -1.77536563e+06
-1.97566663e+06 -2.40157087e+06 4.71702202e+05 -1.80302774e+06
-2.08269818e+06 -1.83492480e+06 8.04898469e+05 -1.88891756e+06
-1.39934840e+06 -2.28771909e+06 -1.69740515e+06 -8.25501237e+05
-1.91490797e+06 -1.92163750e+06 1.83910492e+06 1.43550234e+06]
[-1.59981729e+06 -1.03180824e+06 -1.92277983e+06 -2.30925161e+06
-1.91388465e+06 -2.05907210e+06 -3.93837111e+06 -1.79304498e+06
-2.18898729e+06 -1.28543497e+06 -2.57907255e+06 -2.75663006e+06
6.09276916e+05 2.09174085e+05 -2.30067343e+06 -1.66520841e+06
-1.98404702e+06 -3.14764258e+06 -9.54706465e+05 -2.17399998e+06
-2.48056940e+06 -3.19729530e+06 9.91461040e+05 -2.21970531e+06
-2.64075930e+06 -2.23183435e+06 1.58795566e+06 -2.33249613e+06
-1.72202637e+06 -3.14598025e+06 -2.05697189e+06 -9.42304363e+05
-2.39845810e+06 -2.40039438e+06 2.90994015e+06 2.32409762e+06]
[-1.59324931e+06 -1.06990378e+06 -1.99339412e+06 -2.87090578e+06
-2.02287192e+06 -2.17436075e+06 -4.74691925e+06 -2.62055246e+06
-2.50782928e+06 -1.23854553e+06 -2.77474811e+06 -3.11027843e+06
1.10997011e+06 7.79215394e+05 -2.47769750e+06 -1.46814742e+06
-2.05717199e+06 -4.17925035e+06 -6.62598709e+05 -2.35317602e+06
-2.77115795e+06 -3.52908493e+06 1.58418607e+06 -2.40038501e+06
-3.01459570e+06 -2.24703043e+06 2.34431183e+06 -2.54342855e+06
-2.27885953e+06 -3.76995337e+06 -2.17861146e+06 -4.53977735e+05
-2.61326022e+06 -2.59516233e+06 4.11120724e+06 3.34834901e+06]
[-1.46311521e+06 -1.20432068e+06 -2.04767382e+06 -2.95137054e+06
-2.03739999e+06 -2.22824295e+06 -4.94379898e+06 -3.33956777e+06
-2.55095472e+06 -1.69810114e+06 -2.92445505e+06 -3.36162671e+06
1.44701027e+06 1.29851301e+06 -2.72386346e+06 -1.64940542e+06
-2.06014281e+06 -4.33770644e+06 -5.51684516e+05 -2.39669101e+06
-2.94125810e+06 -3.63627282e+06 1.87452411e+06 -2.47605582e+06
-3.27472502e+06 -2.54715864e+06 2.76697578e+06 -2.68007393e+06
-2.31252102e+06 -3.67781133e+06 -2.26246990e+06 -5.77168400e+05
-2.80038884e+06 -2.73206369e+06 4.90185486e+06 3.82956467e+06]
[-1.59738401e+06 -1.62357454e+06 -1.82092259e+06 -2.49843387e+06
-1.76984532e+06 -1.98571551e+06 -4.50283922e+06 -3.36675591e+06
-2.32282854e+06 -2.60137689e+06 -2.77208288e+06 -3.08302547e+06
1.42351537e+06 1.33981962e+06 -2.65404843e+06 -2.58517980e+06
-1.78183074e+06 -3.26838913e+06 -1.56533234e+06 -2.06147711e+06
-2.63201529e+06 -3.55501053e+06 1.48474531e+06 -2.12199319e+06
-3.05247265e+06 -3.04481377e+06 2.41003234e+06 -2.47993221e+06
-1.64352714e+06 -2.88852008e+06 -2.03150827e+06 -1.53298937e+06
-2.69981962e+06 -2.49301061e+06 4.57716831e+06 3.16546846e+06]
[-1.63192928e+06 -1.50894150e+06 -1.82012033e+06 -3.06927939e+06
-1.76084399e+06 -1.95188130e+06 -4.50844238e+06 -3.76467381e+06
-2.75104844e+06 -2.64435860e+06 -2.88642584e+06 -3.31259711e+06
1.31790822e+06 1.14748377e+06 -2.66787067e+06 -2.50509974e+06
-1.89202922e+06 -4.06546039e+06 -1.41542044e+06 -2.10434810e+06
-2.74884949e+06 -3.81140783e+06 1.30228029e+06 -2.25450672e+06
-3.14642880e+06 -3.23172627e+06 2.23223930e+06 -2.50740791e+06
-1.98563337e+06 -3.47030906e+06 -2.02374200e+06 -1.32295591e+06
-2.67945907e+06 -2.61088156e+06 4.27964876e+06 3.03834201e+06]
[-1.51681485e+06 -8.26555085e+05 -1.99855080e+06 -3.03196352e+06
-1.92293743e+06 -2.05586737e+06 -4.59721909e+06 -3.17551106e+06
-2.89884037e+06 -2.36232676e+06 -3.03518172e+06 -3.50410966e+06
1.13530086e+06 7.31406462e+05 -2.81781169e+06 -2.34331689e+06
-2.09245457e+06 -4.15059562e+06 -1.53950662e+06 -2.31579648e+06
-2.92321291e+06 -3.95746320e+06 1.37463500e+06 -2.47983858e+06
-3.26993012e+06 -3.43836535e+06 2.22270154e+06 -2.65865883e+06
-2.09241281e+06 -3.94474679e+06 -2.19969661e+06 -1.05796690e+06
-2.79015574e+06 -2.78786877e+06 4.21005877e+06 3.20799941e+06]
[-1.36366285e+06 -1.13619246e+06 -1.64071597e+06 -3.06949243e+06
-1.52003482e+06 -1.75841812e+06 -3.70093636e+06 -2.86872500e+06
-2.61717169e+06 -2.07290582e+06 -2.47113378e+06 -2.95060353e+06
7.31608939e+05 3.24425509e+05 -2.27366280e+06 -1.68614268e+06
-1.89279365e+06 -4.12547526e+06 -1.41703982e+06 -1.89498212e+06
-2.36527194e+06 -3.15438988e+06 8.58907121e+05 -2.18022676e+06
-2.68858818e+06 -2.59326888e+06 1.53971415e+06 -2.26051962e+06
-2.41762551e+06 -3.60757734e+06 -1.81137188e+06 -6.63733684e+05
-2.27000338e+06 -2.34140823e+06 3.17853005e+06 2.49862398e+06]
[-1.50484960e+06 -1.57898936e+06 -1.53431941e+06 -2.14367452e+06
-1.35511314e+06 -1.73042927e+06 -2.55168313e+06 -2.06865946e+06
-2.09174291e+06 -2.57737502e+06 -2.41840496e+06 -2.60053132e+06
3.32856469e+05 -9.42516760e+04 -2.09277484e+06 -1.83395682e+06
-1.90902681e+06 -2.40410971e+06 -1.71593613e+06 -1.65352660e+06
-1.97606770e+06 -2.77172948e+06 3.73449865e+05 -2.02637091e+06
-2.31297756e+06 -2.18017018e+06 8.60298961e+05 -2.10224949e+06
-1.68252316e+06 -2.40673847e+06 -1.66674023e+06 -1.17742456e+06
-2.06911594e+06 -2.19921130e+06 2.27108604e+06 1.54993517e+06]
[-1.31622270e+06 -7.34742916e+05 -1.63078378e+06 -1.11745102e+06
-1.46463947e+06 -1.78442379e+06 -1.70612619e+06 -7.02050256e+05
-1.55344551e+06 -1.99605170e+06 -2.30862311e+06 -2.29071017e+06
-2.29810025e+05 -4.97082715e+05 -2.01873698e+06 -2.25795333e+06
-1.98545508e+06 -1.21814712e+06 -1.28780157e+06 -1.67986852e+06
-1.86979620e+06 -2.36581413e+06 1.35038567e+05 -2.02520601e+06
-1.98287030e+06 -2.02860072e+06 1.96848861e+05 -1.96195728e+06
-1.10170394e+06 -2.13052601e+06 -1.69768442e+06 -1.78405741e+06
-1.93291942e+06 -2.13910334e+06 1.32242284e+06 8.31743933e+05]
[-7.42849219e+05 -2.15114781e+05 -1.27544202e+06 -7.14677611e+05
-1.15691412e+06 -1.36209201e+06 -1.30216618e+06 4.88161978e+04
-9.59639209e+05 -8.88898865e+05 -1.70771211e+06 -1.64955473e+06
-8.12170178e+04 -1.79186732e+05 -1.50119221e+06 -1.65037568e+06
-1.51798562e+06 -9.88318642e+05 -1.98643296e+05 -1.31718312e+06
-1.45735941e+06 -1.73748074e+06 2.66253849e+05 -1.57654442e+06
-1.40064089e+06 -1.36837681e+06 2.67019711e+05 -1.42767001e+06
-6.76073729e+05 -1.73976875e+06 -1.29993114e+06 -1.22720291e+06
-1.39811531e+06 -1.60744077e+06 1.08042690e+06 7.99886566e+05]
[-5.46870451e+05 -5.36448244e+05 -7.55877720e+05 -3.07589489e+05
-6.77104580e+05 -8.31330596e+05 -7.55067298e+05 1.62595538e+05
-4.13986756e+05 -5.89463955e+05 -1.10220942e+06 -9.28728988e+05
1.83608212e+05 9.75736797e+04 -8.95739115e+05 -1.00087148e+06
-9.02462558e+05 -3.26515877e+05 1.04680398e+04 -7.52684633e+05
-8.48872118e+05 -1.09391591e+06 2.46686280e+05 -9.14159984e+05
-8.04965238e+05 -7.64776867e+05 3.35110664e+05 -8.27811757e+05
-1.86803727e+05 -7.59434332e+05 -7.52032916e+05 -7.25012409e+05
-8.35764553e+05 -9.55321143e+05 9.67726571e+05 5.96407951e+05]
[-4.79247473e+05 -5.73699596e+05 -4.98463721e+05 -6.06075603e+04
-4.23941519e+05 -5.87730865e+05 -3.72698493e+05 2.42907720e+05
-2.36264432e+05 -7.78871565e+05 -7.72535558e+05 -5.61510663e+05
1.13470720e+05 -5.19537635e+04 -6.07783826e+05 -8.75042864e+05
-6.27744081e+05 1.80976493e+05 -2.03789109e+05 -4.70984003e+05
-5.11822383e+05 -7.74807690e+05 1.09720815e+05 -5.81904867e+05
-5.00364300e+05 -5.84160720e+05 1.59970489e+05 -5.53805729e+05
4.38034734e+04 -1.99699079e+05 -4.90158298e+05 -7.44422507e+05
-5.69296791e+05 -6.21662189e+05 5.37676489e+05 2.11370210e+05]
[-3.46040711e+05 -2.84534879e+05 -3.05943617e+05 -3.66673783e+04
-2.51391058e+05 -3.56218357e+05 -2.19892949e+05 2.99117195e+05
-1.79945779e+05 -5.57850997e+05 -4.61287855e+05 -3.22747798e+05
2.55364546e+04 -1.08119869e+05 -3.68757449e+05 -6.14327372e+05
-3.85603614e+05 1.81505436e+05 -3.31318118e+05 -2.73771222e+05
-2.74170631e+05 -4.93336263e+05 4.94201397e+04 -3.41193325e+05
-2.85985778e+05 -3.99678063e+05 8.23799276e+04 -3.34809844e+05
1.17594209e+05 -9.65603413e+04 -2.96018670e+05 -5.89105442e+05
-3.45677860e+05 -3.76618899e+05 2.49974102e+05 6.40392963e+04]
[-1.02433900e+05 1.40629671e+04 -1.37480111e+05 -6.11821713e+03
-1.34484353e+05 -1.29093798e+05 -1.46040833e+05 1.62505754e+05
-6.26077463e+04 -2.50893124e+04 -1.55337527e+05 -1.31029373e+05
1.02341138e+04 -2.79332564e+04 -1.45487240e+05 -1.48251331e+05
-1.39839334e+05 1.14660701e+03 -1.25699661e+05 -1.29090493e+05
-1.33187747e+05 -1.58138912e+05 4.91052772e+04 -1.42007058e+05
-1.23498681e+05 -1.22444780e+05 5.39454238e+04 -1.26638364e+05
3.31969402e+04 -9.53139211e+04 -1.32041129e+05 -1.30843726e+05
-1.35011840e+05 -1.46071794e+05 1.17702953e+05 7.24523791e+04]
[-2.13502612e+04 2.19986075e+04 -3.93832968e+04 -1.08471647e+04
-3.96579301e+04 -3.53170126e+04 -4.34785836e+04 3.59567579e+04
-2.13209931e+04 6.03580554e+03 -4.15166498e+04 -3.95783645e+04
-7.92470770e+02 -8.85687031e+03 -4.14898581e+04 -2.94403778e+04
-3.99701261e+04 -1.75341602e+04 -1.62823499e+04 -3.79717472e+04
-4.04142568e+04 -3.78172044e+04 2.10056596e+04 -4.15871582e+04
-3.74187736e+04 -3.32697751e+04 2.06123086e+04 -3.67628531e+04
-6.55140510e+03 -3.78633965e+04 -3.85047667e+04 -1.87726969e+04
-3.71824889e+04 -4.13174477e+04 3.61317472e+04 2.87356391e+04]
[-5.94176231e-01 -3.81076578e-02 -8.94473839e-01 -7.79055153e-01
6.11513233e-01 -9.37959906e-01 8.36163870e-01 -2.51016385e-01
-8.20312409e-01 8.07009835e-01 1.80355770e-02 4.38034226e-01
-7.15988026e-01 9.71745491e-01 2.09002873e-01 2.12852374e-01
-6.94409199e-01 -3.97018561e-01 -3.91759943e-02 -4.80968082e-01
3.96945512e-01 -2.65951073e-01 8.37271735e-01 7.86597035e-01
1.66302699e-01 -7.44952714e-01 -5.70958223e-01 -1.82543478e-01
-1.02552245e-01 3.03510895e-01 -2.75753211e-01 3.58297345e-01
-8.90259502e-01 4.69889746e-01 9.46135381e-01 -8.61946459e-01]
[ 5.97083676e-01 3.09771596e-01 2.01269447e-01 -1.19304515e-02
-6.86159424e-02 6.97997754e-02 3.01311490e-01 -3.25858986e-01
6.87539291e-02 -7.10419696e-01 6.20580727e-02 -5.53454274e-01
-6.41747609e-01 8.09202684e-01 -7.43186759e-01 7.62474920e-01
8.66169516e-01 5.01596312e-01 -4.53754699e-01 1.12996292e-01
1.77525736e-01 9.05375407e-02 -2.68762730e-01 -3.46325223e-01
-2.54221314e-01 -3.33890083e-01 -3.27066731e-03 -4.95667858e-01
5.02507375e-01 -7.95641199e-01 -9.63319348e-01 -5.74820832e-01
2.10427528e-01 -7.15339950e-03 -5.96345783e-01 -8.87656036e-01]
[-5.25848934e-01 8.79449453e-01 7.78512260e-01 9.19068615e-01
-8.39479399e-01 1.55587170e-01 2.46947027e-01 8.64048786e-01
1.44893535e-01 3.96948490e-01 -5.42654647e-01 -1.24569406e-01
1.69176480e-01 2.88179344e-01 -6.77254111e-02 -1.87835180e-01
3.55777205e-01 7.43809540e-01 1.77354230e-01 -1.65345002e-01
6.42933497e-01 -4.62340024e-01 6.67570264e-01 -8.69460624e-01
-7.13542520e-01 -8.47502000e-01 5.49925949e-01 9.00060680e-02
1.35909643e-01 8.66390310e-02 -5.90471753e-01 -9.79769861e-01
-2.79923157e-02 6.20449489e-01 6.91618789e-01 4.75293660e-01]
[ 4.91711012e-01 -4.78010719e-01 -2.86414591e-01 2.99551860e-03
-2.85942948e-01 -5.00158512e-01 4.51907122e-02 5.50876347e-01
-1.05040629e-01 7.51860331e-01 3.34791457e-01 1.71711011e-01
8.58555036e-01 -6.60268560e-01 -1.83746005e-01 -6.94121482e-01
-6.10843295e-01 -4.35922209e-01 9.77531652e-01 2.95127607e-01
-5.45565917e-01 7.31880863e-01 2.02362012e-01 7.24156840e-01
-8.16951620e-01 8.52620433e-01 2.42504274e-01 8.30561521e-01
-2.55883346e-01 9.40595551e-02 5.82685656e-01 -3.18195857e-01
-7.49336321e-01 -2.51686400e-02 5.47911741e-01 -2.67205196e-01]
[-1.30447771e-01 -4.10952253e-01 6.97988721e-01 2.40824186e-02
8.03863822e-02 -6.54843136e-01 -2.17029785e-01 4.91887484e-01
-3.44008274e-01 9.14883965e-01 7.07951788e-01 8.29222368e-01
4.82229962e-01 1.07044568e-02 4.81559902e-01 -6.88180378e-01
5.51167303e-01 9.19784965e-01 6.27352603e-01 9.09717032e-01
1.69166468e-01 1.97715737e-01 4.56886135e-01 -8.00298020e-01
2.23468957e-01 -6.41772321e-01 6.91120232e-02 7.51386615e-01
9.50469926e-01 6.74318270e-02 -1.66101927e-01 -8.21871023e-01
1.45753202e-01 4.74327960e-01 5.60342310e-01 6.38536834e-01]
[ 4.33669466e-01 -9.45852884e-02 4.14619578e-01 -8.65842838e-02
5.94551961e-01 5.12935246e-03 -8.39495405e-01 -9.76253303e-01
-1.00413902e-01 -2.16046429e-01 -6.00418180e-01 -8.76996714e-01
-2.13275776e-01 9.53123182e-01 1.44859691e-01 -9.67347308e-01
7.89031106e-01 3.08972789e-01 2.14636606e-01 8.50264688e-01
-9.06574446e-01 -4.17235563e-01 -7.52468964e-01 -9.14436723e-01
-6.70487449e-01 -5.91578413e-01 2.14059803e-01 6.11090121e-01
-5.71404987e-01 -9.99716269e-01 6.74374904e-02 1.42035934e-01
-2.86018049e-01 -5.04650083e-01 -1.22317798e-01 -6.23992972e-01]
[ 3.85290566e-01 -5.10210803e-01 -2.83108569e-01 -2.85599064e-01
-1.06304300e-01 -2.83486439e-01 3.26049360e-01 -1.86645238e-01
-1.42633521e-01 7.48302714e-01 1.33575400e-01 7.16597580e-01
9.09136017e-01 7.93059026e-01 2.05917137e-02 2.17246529e-01
-9.53358252e-01 4.85825193e-01 -6.10257052e-02 5.56542579e-01
-5.64655334e-01 -4.63254170e-01 4.38405666e-01 -6.23656993e-01
6.37567409e-01 -8.47843168e-01 5.67033102e-01 7.59412569e-01
-4.27478242e-01 1.89661313e-01 6.86870014e-01 -7.74216882e-01
4.34126642e-01 -3.41518603e-01 6.74832049e-01 8.85119002e-01]
[ 6.93602228e-01 -5.20389984e-01 9.75494072e-01 -4.00504822e-01
4.01680398e-01 -5.12410235e-01 7.33746053e-01 -5.61384910e-01
-2.21974341e-01 -5.64291597e-01 -8.78081792e-01 -8.15147546e-01
-3.94188872e-03 7.47266834e-01 5.72867879e-01 -2.91770904e-01
7.11853929e-01 2.94999641e-01 7.43035389e-01 3.95484260e-03
-3.09505227e-01 -2.76619924e-01 5.44527845e-01 4.60076407e-01
1.92221422e-01 -7.23120529e-01 -7.36939580e-02 5.75592296e-01
-4.66331534e-01 8.93427902e-01 -4.95623065e-01 9.86627481e-01
2.64206599e-01 -7.37841952e-01 7.63265063e-01 7.44105515e-01]
[-7.10313364e-01 -6.59124026e-02 -6.74341320e-01 -4.15203140e-01
-3.52028956e-01 -7.99978938e-01 -5.52830305e-01 -7.16613620e-01
6.60462033e-01 6.81640592e-01 4.08743360e-01 -6.58652328e-01
-9.42149308e-01 -7.49518309e-01 8.67671525e-01 8.76561549e-01
5.96641794e-01 9.04008929e-01 -5.26396559e-01 6.45485559e-01
-5.43202178e-01 -3.12932552e-02 6.13399793e-01 -7.30391486e-01
-6.49718827e-01 9.80960234e-02 5.73124358e-01 -1.17296490e-01
1.07980266e-01 9.94648218e-02 6.86627443e-01 -2.52558966e-01
5.91843460e-01 -8.32135242e-01 -3.63659535e-01 6.66196339e-02]
[-1.14486886e+04 -1.24536837e+04 -1.30031676e+04 -1.17718124e+04
-1.19543007e+04 -1.36559462e+04 -1.18628914e+04 -1.28309796e+04
-1.13488940e+04 -1.27791213e+04 -1.33415494e+04 -1.39057886e+04
-1.13249855e+04 -1.11328349e+04 -1.35089366e+04 -1.29273374e+04
-1.33699234e+04 -1.15138628e+04 -1.21554011e+04 -1.31175586e+04
-1.34630471e+04 -1.36141009e+04 -1.28947499e+04 -1.31261250e+04
-1.39293372e+04 -1.19172851e+04 -1.30420302e+04 -1.43199114e+04
-1.27441909e+04 -1.14697543e+04 -1.29597756e+04 -1.23438580e+04
-1.40524390e+04 -1.38067309e+04 -1.26429400e+04 -1.22057428e+04]
[-2.63753434e+04 -2.89407646e+04 -2.93853087e+04 -2.71748234e+04
-2.68048346e+04 -3.10420472e+04 -2.74210220e+04 -2.98397967e+04
-2.61491258e+04 -2.95446152e+04 -3.02686104e+04 -3.16280470e+04
-2.59551799e+04 -2.56243009e+04 -3.06636847e+04 -2.99206447e+04
-3.03126094e+04 -2.65513925e+04 -2.81670171e+04 -2.96398060e+04
-3.05328484e+04 -3.13549297e+04 -2.99153720e+04 -2.96984871e+04
-3.16987856e+04 -2.75343595e+04 -3.01502940e+04 -3.26508091e+04
-2.94747135e+04 -2.64507865e+04 -2.92936975e+04 -2.84996382e+04
-3.19891799e+04 -3.13753615e+04 -2.92123219e+04 -2.82918885e+04]
[-3.37079034e+04 -4.17910507e+04 -4.44001522e+04 -1.47041920e+04
-3.62990811e+04 -5.21235673e+04 -3.91218394e+04 -3.24436181e+04
-3.28105188e+04 -5.10313201e+04 -5.80707172e+04 -5.57027699e+04
-2.06032561e+04 -3.00630581e+04 -5.18343044e+04 -3.14374847e+04
-4.83922596e+04 -9.55616774e+03 -3.64799164e+04 -4.81129799e+04
-5.04576364e+04 -3.70664277e+04 -2.78664523e+04 -4.57875292e+04
-5.72786318e+04 -4.03449342e+04 -1.81739247e+04 -5.83832952e+04
-1.25728316e+04 -2.07829814e+04 -4.76649598e+04 -4.24145018e+04
-5.63984707e+04 -5.07777463e+04 -1.20588352e+04 -2.34936087e+04]
[-2.50382287e+04 -4.33963047e+04 -4.08124046e+04 1.08653682e+04
-2.69401371e+04 -5.77121725e+04 -4.07199144e+04 -4.03029350e+04
-2.46413554e+04 -7.29881152e+04 -7.41803489e+04 -6.78777920e+04
2.11683195e+04 4.62856376e+03 -5.92745914e+04 2.65660777e+03
-5.18771709e+04 1.51728476e+04 -2.92306151e+03 -4.98267653e+04
-5.73803842e+04 -1.16282561e+04 1.68451889e+04 -4.63176659e+04
-7.21570810e+04 -3.02771319e+04 4.18790569e+04 -6.92057850e+04
1.49820945e+04 1.23377003e+04 -5.17076918e+04 -1.42202869e+04
-6.46303350e+04 -5.40596617e+04 6.74132458e+04 3.72461790e+04]
[-4.94597850e+04 -3.31110205e+04 -4.43331917e+04 -4.67062264e+04
-3.63645226e+04 -5.65548719e+04 -1.04305198e+05 -6.94006703e+04
-5.19810968e+04 -5.95285892e+04 -6.88597278e+04 -6.71685663e+04
2.84922105e+04 6.42164863e+03 -5.94604008e+04 -2.67858435e+04
-5.47368453e+04 -5.24420958e+04 -2.20453365e+04 -4.91002438e+04
-5.98001522e+04 -6.33366907e+04 3.31801272e+04 -5.21365846e+04
-7.00457732e+04 -6.96752434e+04 5.86965380e+04 -6.41462389e+04
-4.08587136e+04 -4.93797016e+04 -5.04815542e+04 -1.85970450e+04
-6.20782180e+04 -5.80586598e+04 1.06198001e+05 6.74438931e+04]
[-1.02245748e+05 2.43272537e+04 -9.60570873e+04 -1.84461356e+05
-9.36145664e+04 -9.17587481e+04 -2.30813317e+05 -1.71982315e+05
-1.60597884e+05 -6.10086574e+04 -1.26899365e+05 -1.53604877e+05
6.02632551e+04 3.75221664e+04 -1.12506404e+05 -9.21243058e+04
-1.00417908e+05 -2.73045897e+05 -4.30722144e+04 -1.18237503e+05
-1.35572678e+05 -2.01199437e+05 9.46931395e+04 -1.16980536e+05
-1.45772343e+05 -1.75319906e+05 1.25201381e+05 -1.17577119e+05
-1.21616343e+05 -2.41159880e+05 -1.04367665e+05 -2.40354662e+04
-1.17871045e+05 -1.26149521e+05 2.60732969e+05 2.02641305e+05]
[-1.27722928e+05 8.51517046e+04 -1.65689290e+05 -2.85542722e+05
-1.73418223e+05 -1.48853790e+05 -4.00790877e+05 -2.79786568e+05
-2.76129218e+05 -6.20189568e+04 -2.27693919e+05 -2.90547641e+05
1.02113693e+05 9.42932000e+04 -1.99822405e+05 -7.78821456e+04
-1.53627503e+05 -4.80451397e+05 -6.11689174e+04 -2.13211943e+05
-2.58153340e+05 -3.40203310e+05 1.97116765e+05 -2.03034340e+05
-2.71284026e+05 -2.65837838e+05 2.42873759e+05 -2.04339571e+05
-1.26705243e+05 -4.44936693e+05 -1.84459100e+05 -1.05334963e+04
-2.09958648e+05 -2.16704128e+05 4.48235575e+05 3.78816569e+05]
[-1.42981162e+05 -5.94344660e+04 -1.79472669e+05 -4.25640600e+05
-1.92882970e+05 -1.63022377e+05 -7.56230959e+05 -4.38727242e+05
-3.16691704e+05 -4.54940389e+04 -2.75389004e+05 -3.55402054e+05
2.78289770e+05 2.62736012e+05 -2.51450675e+05 -1.42914320e+05
-1.48793468e+05 -6.68634163e+05 -6.94720654e+04 -2.33671668e+05
-3.23976248e+05 -5.05889281e+05 3.10707294e+05 -2.24865239e+05
-3.40152422e+05 -3.96053468e+05 4.53102363e+05 -2.39512587e+05
-2.35489144e+05 -6.31895705e+05 -2.05350161e+05 4.56137018e+04
-2.61804342e+05 -2.51860570e+05 7.69733965e+05 6.26794444e+05]
[-1.19792354e+05 -1.51759178e+05 -1.53975966e+05 -4.13794284e+05
-1.58024902e+05 -1.52651655e+05 -7.31250180e+05 -4.70718201e+05
-2.75831980e+05 -7.46623960e+04 -2.42895822e+05 -2.99786253e+05
3.18138290e+05 2.47178917e+05 -2.23042651e+05 -1.19574169e+05
-1.36254892e+05 -6.20350611e+05 1.60583829e+03 -2.03935340e+05
-2.88292158e+05 -4.45114283e+05 3.07893277e+05 -1.96801283e+05
-2.98640136e+05 -3.59070833e+05 4.62537633e+05 -2.14841214e+05
-3.43713124e+05 -5.42825617e+05 -1.78879079e+05 1.04284010e+05
-2.27633525e+05 -2.18441951e+05 8.07087056e+05 6.50265880e+05]
[-8.97379643e+04 -5.12599848e+04 -1.28942276e+05 -3.88688096e+05
-1.13029428e+05 -1.22418262e+05 -6.39358716e+05 -4.71638160e+05
-3.32457842e+05 -2.35433370e+05 -2.52476725e+05 -3.33350087e+05
3.13448279e+05 1.80466681e+05 -2.40223293e+05 -1.15067166e+05
-1.29331957e+05 -5.54747560e+05 -1.95056887e+05 -1.82935315e+05
-2.71491589e+05 -4.05324177e+05 3.20800282e+05 -1.89295628e+05
-3.15711082e+05 -4.44643947e+05 4.78876774e+05 -2.17486625e+05
-1.90117401e+05 -4.39164172e+05 -1.65296719e+05 1.47068071e+05
-2.38067334e+05 -2.30945717e+05 6.95050656e+05 5.99925414e+05]
[-6.13687156e+04 -1.12508859e+05 -1.01402371e+05 -4.00452060e+05
-1.03999935e+05 -1.01761940e+05 -5.23559127e+05 -3.54688322e+05
-2.44996720e+05 1.75781188e+02 -1.60708795e+05 -2.33073187e+05
2.33764117e+05 1.48502837e+05 -1.51621948e+05 1.11445660e+05
-9.09849157e+04 -5.83057630e+05 -1.67133413e+04 -1.52910580e+05
-2.14011544e+05 -2.65020894e+05 2.33621611e+05 -1.45796883e+05
-2.39889619e+05 -1.91242082e+05 3.66859696e+05 -1.58344940e+05
-1.22762055e+05 -3.17379333e+05 -1.26381192e+05 2.80904202e+05
-1.74690961e+05 -1.55628958e+05 4.47058153e+05 4.28349739e+05]
[-9.62781478e+04 -1.16365769e+05 -1.01133824e+05 -2.76437541e+05
-1.02663519e+05 -1.04571345e+05 -3.74469667e+05 -2.32639888e+05
-1.80823683e+05 -5.56027190e+04 -1.40715243e+05 -1.81106322e+05
1.30207827e+05 9.43195517e+04 -1.34448260e+05 -4.13503645e+04
-8.97462187e+04 -3.77792877e+05 -5.01744435e+04 -1.24474675e+05
-1.64066737e+05 -2.28557363e+05 1.27516155e+05 -1.21356948e+05
-1.80766512e+05 -1.81966126e+05 2.11966634e+05 -1.36526234e+05
-1.22749768e+05 -2.64183555e+05 -1.14993550e+05 8.37668952e+04
-1.46352817e+05 -1.33423280e+05 3.30030279e+05 2.85341128e+05]
[-7.24755452e+04 -7.49207389e+04 -6.77917230e+04 -2.22868319e+05
-6.55333072e+04 -7.99494832e+04 -2.67067251e+05 -2.02114888e+05
-1.53577482e+05 -4.99937485e+04 -1.00717426e+05 -1.37839467e+05
7.92193252e+04 8.22817524e+04 -9.77653265e+04 -6.18880926e+04
-7.50047039e+04 -3.21386390e+05 -7.29317221e+03 -8.06612191e+04
-1.11827362e+05 -1.64386898e+05 6.09746325e+04 -9.99084366e+04
-1.26095909e+05 -1.00297450e+05 1.21868689e+05 -1.04766371e+05
-1.64401829e+05 -2.46780735e+05 -7.83746314e+04 3.93570608e+03
-1.01369869e+05 -1.01713484e+05 2.22837178e+05 1.92787714e+05]
[-6.47641870e+04 -6.15455470e+04 -1.00697432e+05 -2.20753674e+05
-9.26786248e+04 -1.23032018e+05 -2.53624736e+05 -2.15385500e+05
-1.75170730e+05 -4.83532730e+04 -1.50327704e+05 -1.81409594e+05
6.26594096e+04 7.01491711e+04 -1.29655235e+05 -5.41756313e+04
-1.29184894e+05 -3.31003136e+05 5.46046429e+04 -1.19759316e+05
-1.49098808e+05 -1.72780562e+05 5.44194900e+04 -1.54286411e+05
-1.57425761e+05 -9.25927632e+04 1.15415959e+05 -1.45276712e+05
-1.59950368e+05 -2.69418146e+05 -1.15571872e+05 9.74205701e+03
-1.29652563e+05 -1.47499276e+05 2.14603185e+05 1.99885900e+05]
[-8.87381091e+04 -9.26082173e+04 -8.06786322e+04 -5.09363779e+04
-7.21116556e+04 -9.63543435e+04 -1.14899374e+05 -8.57343426e+04
-7.33129760e+04 -9.87138167e+04 -1.11133070e+05 -1.00958556e+05
3.22336102e+04 1.72919330e+04 -1.02949949e+05 -1.10000569e+05
-9.18655540e+04 -2.95107059e+04 -4.37294242e+04 -8.39979173e+04
-9.50381662e+04 -1.05644746e+05 1.89974019e+04 -8.88834406e+04
-1.03424993e+05 -8.21137499e+04 4.48330804e+04 -9.93763184e+04
-4.32013710e+04 -6.22480221e+04 -8.71886139e+04 -9.06209278e+04
-1.03034619e+05 -1.01505757e+05 9.97423850e+04 5.71590614e+04]
[-1.24348346e+05 -8.71398011e+04 -4.31682717e+04 5.00090632e+04
-3.45737825e+04 -5.89030921e+04 -3.92247686e+04 4.52744032e+04
-4.17013160e+04 -1.45245275e+05 -7.26675982e+04 -3.84113145e+04
5.81508622e+04 3.44081245e+04 -6.99321316e+04 -2.05921208e+05
-4.28293385e+04 1.43032369e+05 -1.60687233e+05 -2.85914258e+04
-3.23240814e+04 -9.88463281e+04 1.13455153e+04 -2.67335269e+04
-4.81131344e+04 -8.79116492e+04 4.60151873e+04 -5.44664354e+04
1.46091903e+05 6.48888777e+04 -4.50665574e+04 -2.13575290e+05
-7.33685161e+04 -5.61318696e+04 4.87737173e+04 -1.42822254e+04]
[-1.22943113e+05 -9.10282295e+04 -2.75294092e+04 4.70794499e+04
-1.84498346e+04 -4.05828185e+04 -1.42164253e+04 6.83971388e+04
-3.42472178e+04 -1.36813834e+05 -4.67188748e+04 -1.47282455e+04
3.09513304e+04 2.14121151e+02 -4.71860470e+04 -2.00731117e+05
-2.74340183e+04 1.47274995e+05 -2.06205801e+05 -8.66787132e+03
-6.85616841e+03 -8.54279757e+04 -2.10168076e+04 -9.60646678e+03
-2.24509610e+04 -8.13055450e+04 4.66718570e+03 -3.40192933e+04
1.53788842e+05 7.03687287e+04 -2.57093606e+04 -2.15818199e+05
-5.30511176e+04 -3.63005777e+04 -3.38155456e+03 -6.15053693e+04]
[-3.03131830e+04 -1.62076372e+04 -1.56659695e+04 2.29842883e+03
-1.48716515e+04 -1.20350918e+04 -2.40819493e+04 4.01091248e+04
-3.72035796e+03 -6.89053721e+03 -1.60632741e+04 -1.38189407e+04
1.35831711e+04 3.96645808e+03 -1.94330347e+04 -4.43601073e+04
-1.07234000e+04 1.27727731e+04 -8.60054215e+04 -1.11156289e+04
-1.21153305e+04 -3.54735954e+04 -1.06296970e+04 -1.23529886e+04
-1.39776825e+04 -2.37196348e+04 3.90132657e+03 -1.13141026e+04
4.42155555e+04 -4.17243835e+03 -1.33629666e+04 -6.03905796e+04
-2.08643547e+04 -1.69629927e+04 3.81488509e+03 -1.62077441e+04]
[-5.58414368e-01 -9.70471191e-01 1.83718256e-02 -9.75830955e-01
9.16341677e-01 3.47016824e-01 7.49157034e-01 -9.28587917e-01
-4.10535751e-01 2.76945346e-01 -8.23477432e-01 6.71673415e-01
2.68614581e-01 -5.61802882e-02 2.49551188e-01 -1.48757709e-01
5.99823224e-01 4.72070827e-01 -9.44399571e-01 -5.18577334e-01
6.13481235e-01 -8.59854209e-01 -1.69457906e-01 7.52431170e-02
3.05857604e-01 -9.30687259e-01 -5.29898830e-01 -2.86141142e-01
-8.14047217e-01 9.73806287e-01 -8.20285911e-01 -7.07639660e-01
3.59650425e-01 9.87485706e-01 -2.20039540e-01 -2.61588327e-01]
[ 5.72608071e-01 2.33530101e-01 6.00498229e-01 2.28325618e-01
-4.64364985e-01 -9.65431528e-01 5.10312059e-02 -3.24854200e-01
3.15842332e-01 -8.57049137e-01 9.31756191e-01 5.61954778e-01
-4.79347035e-01 -6.40421437e-01 -1.80755414e-01 -9.03906709e-01
-4.05077118e-01 2.14711498e-01 -2.13021970e-01 -8.47191222e-01
-8.32035878e-01 7.55553096e-01 3.73622457e-01 -5.92786139e-01
-7.07424603e-01 -3.29681284e-01 -4.61888094e-01 -9.31932215e-01
-7.55956296e-01 7.32804674e-01 8.73828459e-01 -6.10612601e-01
-1.21056672e-01 9.40360396e-01 -3.34967722e-01 -2.26362504e-01]
[ 2.36464052e-01 1.74153485e-01 6.40094170e-01 5.15566594e-01
-4.15053423e-01 4.02144479e-01 9.05477457e-01 -3.50139231e-02
3.71963517e-01 -9.48158877e-01 1.36436272e-01 8.26476934e-01
-1.92057599e-01 7.93526990e-02 8.67484453e-01 -1.14510330e-01
-8.36366740e-01 -7.04370574e-01 -8.64055902e-01 -7.67772104e-02
-1.74061544e-01 8.26038328e-01 -9.18999810e-01 -6.63860601e-02
-9.31420914e-01 -9.06765421e-01 5.32140099e-01 6.61840184e-01
8.35142235e-01 6.16100959e-01 3.95933242e-01 -7.57683256e-01
-6.53560473e-01 -8.03083364e-01 -5.29417610e-01 -4.71169838e-01]
[ 3.60935655e-01 -3.45237237e-01 -4.35722243e-01 -3.75814985e-01
-1.49277035e-01 -2.74310270e-01 -6.84479293e-01 6.66535744e-01
2.60794123e-02 -5.79732077e-01 4.28614506e-01 -9.69019476e-01
7.26218581e-01 -4.06009344e-01 9.60914266e-01 -1.61858519e-01
4.02715687e-01 -9.33991159e-01 3.26568714e-01 1.60260805e-01
8.67397780e-01 -3.78419898e-01 -5.76835669e-01 6.22969159e-01
-1.50952102e-01 -3.25016998e-01 -8.36681811e-01 6.00442492e-01
2.70687485e-01 -3.84585640e-01 -6.12825399e-01 8.58256896e-01
6.71107642e-01 2.54943771e-01 -1.13526455e-01 -2.30062742e-01]
[ 2.46337033e-01 5.61829519e-02 -6.96518111e-01 5.69103564e-01
9.75568138e-01 2.44355484e-01 -2.50523822e-01 1.55170553e-01
2.97664350e-01 1.18152581e-01 1.53620154e-01 -2.78894826e-02
4.16572323e-01 -8.30472394e-01 -1.60660972e-01 3.81581455e-01
7.02251444e-01 6.72157256e-01 -2.59652772e-01 -5.07959386e-01
3.55672306e-01 1.11237772e-01 2.44518199e-01 7.76226459e-01
7.70111438e-02 2.15682935e-01 -8.57920365e-03 -9.23451633e-01
4.46530603e-01 -1.85047952e-01 -8.13071179e-01 5.19200588e-01
5.55961997e-02 4.14949149e-01 -2.04051554e-01 4.48129319e-01]]
syn1 = [[ 1.75977685e+01 2.05978316e+01 -1.39930154e+02 -4.72769089e+01
3.34585189e+01 -8.83459131e+00 -4.01429061e+01 -1.12633578e+02
-9.45485523e+00 4.31161573e+01 -2.84505982e+01 -8.65471439e+01
-2.54491398e+01 -4.90225383e+01 -5.65367032e+01 -4.39647713e+01
-4.80778132e+01 -1.71617803e+02 3.81401258e+01 1.13354141e+02
-1.24004405e+02 -4.66459847e+01 -8.47690337e+01 -1.93748286e+01
-1.19794282e+02 -1.08444970e+02 -7.97907133e+01 -1.18694351e+02
-6.34789137e+01 -5.71908923e+01 3.90321855e+01 -1.15421995e+02
1.24583856e+02 -1.27481474e+02]
[-1.86177366e+02 -5.22331083e+01 -1.64582441e+02 -2.14658516e+01
-8.14839838e+01 -4.68804044e+00 -4.11042144e+01 -1.82920245e+02
8.11842007e+01 1.01294764e+01 8.30170526e+01 -2.09278793e+01
-4.08508104e+01 -1.65559213e+02 9.36006217e+00 -1.58378927e+01
-1.45391162e+01 -9.56463577e+01 7.72729537e+01 -2.66451188e+01
-1.51068490e+02 -1.51576057e+02 -1.25943201e+02 -2.05711402e+01
-3.26242315e+01 -5.02006740e+01 -2.08872109e+02 -1.64221174e+02
-2.35810717e+02 -7.19641912e+01 2.99477061e+01 -6.65396893e+01
1.94313906e+01 -1.08048703e+02]
[-2.80808733e+00 8.83277093e+00 -7.83718893e+00 -2.47947559e+01
4.08788466e-01 -2.28210001e+01 3.52431274e+00 -1.44689741e+01
2.15705560e+01 5.72611117e+01 -3.72077974e+01 4.48356471e+00
-1.79727014e+01 -7.20906163e+00 -1.02442398e+01 -2.49985191e+01
-1.08785909e+01 -4.09336100e+01 3.49988579e+00 5.09117197e+01
-6.51490779e+00 5.59177739e+00 -1.28554678e+01 2.51126471e+01
-2.83165122e+01 -1.63845716e+01 3.66288989e+00 -9.99184127e+00
4.03849651e+00 -8.99396336e+01 -5.50493138e+00 9.16982091e+00
3.48510224e+01 -3.72759039e+00]
[-5.45919431e+01 3.88499753e+00 -1.36603699e+02 -9.09213343e+01
1.18298483e+02 -2.30421226e+02 -1.20320811e+02 -2.04819949e+02
-3.62671434e+00 7.76818565e+01 -1.09655952e+02 -1.24209920e+02
-7.94922284e+01 -1.58236275e+02 3.44696897e+01 -1.73680008e+02
-5.46746785e+01 -1.38685412e+02 1.58027996e+02 -6.79641994e+00
-4.97990060e+01 -4.01043885e+01 -1.88058045e+02 -7.77818268e+01
-1.99336444e+02 -8.63036715e+01 -3.51039161e+01 -9.43755282e+01
-5.47659453e+01 -1.28670909e+02 -5.69016884e+01 -1.13741737e+02
3.26842182e+01 -1.04476677e+02]
[ 2.52365383e+01 5.81346373e-01 -1.96379928e+00 -4.50975113e+00
-1.31623789e+00 5.83273108e+00 2.26025973e+01 -2.00052206e+00
3.29211420e+00 5.91627848e+01 -3.01802715e+01 1.90563531e+01
-1.09158883e+01 1.22008080e+01 -2.03664460e+01 -2.85383463e+01
1.13966008e+01 -1.16837175e+01 6.72374352e+00 5.82630928e+01
-1.40870984e+01 1.42788353e+01 1.05049521e+01 3.15926462e+01
-1.47133523e+01 -9.09216652e+00 1.89645261e+01 9.54904661e+00
2.64738838e+01 -6.59193668e+01 -2.24031570e+01 1.24208287e+01
4.46181190e+01 5.34475466e+00]
[-1.45680908e+01 1.97733347e+01 -1.48014630e+01 -5.45425157e+01
-2.55742436e+01 -6.65030956e+01 -1.94719739e+01 -4.17076660e+01
4.74611915e+01 5.32622536e+01 -4.41567349e+01 -2.92944452e+01
-5.84560376e+01 -4.38406439e+01 -4.54013656e+00 -3.21976722e+01
-3.19725798e+01 -5.57393915e+01 -5.25482868e+00 2.92538680e+01
-6.10977887e+00 -2.99466513e+01 -3.86999407e+01 2.77663361e+01
-3.98172779e+01 -2.01497936e+01 -1.28420240e+01 -4.73326418e+01
-2.93841337e+01 -1.21081062e+02 2.68259285e+01 8.11689546e-01
3.17460176e+01 2.30932006e+00]
[ 1.06627395e+01 -2.28796113e+01 -4.39944052e+01 1.42812277e+01
-3.14016010e+01 -4.40313023e+01 -3.02945817e+01 -1.67869517e+00
-5.60811996e+01 -6.68596729e+01 1.70907185e+01 -3.98276409e+01
-4.78246807e+01 -3.32433151e+01 -2.35713841e+01 -1.04372732e+02
-6.52477032e+00 1.13813631e+01 -3.59312816e+01 -6.59930156e+01
1.75975012e+01 -1.22735946e+01 8.35424724e+00 -5.19247723e+01
-6.27794135e+01 -2.82314218e+01 1.29849676e+01 -1.23468132e+00
1.05702923e+02 -2.84069069e+00 -5.73928338e+01 -6.64660735e+01
1.45393035e+01 5.14045005e+01]
[-2.56489623e+01 -2.06604046e+01 -6.41174547e+01 -2.90049940e+01
2.64408328e+01 1.76115221e+01 -6.66269058e+01 -4.02518882e+01
-1.19466203e+01 -6.89785217e+00 -8.26228058e+01 2.98599495e+01
4.59896399e+01 -1.71385963e+02 1.30702937e+02 9.30592400e+01
-9.23631710e+01 -1.53037548e+01 8.55845633e+01 -1.34400501e+02
4.83606280e+01 -6.43511169e+01 -1.18462666e+01 -9.07696463e+01
7.53239584e+00 -3.63584295e+01 -6.48292449e+01 -2.66630757e+01
-6.98837818e+01 7.87204990e+01 4.51868989e+01 -9.50037423e+00
-2.32973399e+02 5.30887389e+01]
[-4.51334737e+00 8.65577428e+01 -1.01236001e+02 -6.91592151e+01
1.64620105e+01 -1.35029245e+02 -7.67208398e+01 -1.31304890e+02
-5.11794273e+01 2.87885074e+01 -1.10710938e+02 -1.35879562e+02
-5.84218243e+01 -1.17091358e+02 -5.54988875e-01 -8.60462965e+01
-7.36347586e+01 -1.61938412e+02 5.51291249e+01 2.54790390e+01
-4.70021407e+01 -3.05227788e+01 -1.35046858e+02 -5.34658388e+01
-1.51710057e+02 -8.14473698e+01 -3.23280832e+01 -8.42887869e+01
-1.95169525e+01 -9.10291586e+01 3.20018416e+01 -9.35662690e+01
-2.49917994e+00 -6.33617257e+01]
[-1.68233118e+02 3.93038099e+01 -9.18250706e+01 -9.33362929e+01
-1.00264254e+02 -1.83371973e+02 -3.41449244e+01 -1.40468361e+02
1.11460658e+02 3.36248470e+01 -9.61851993e+01 -1.83633014e+02
-9.38839430e+01 -2.57674204e+02 1.04896337e+02 7.02793536e+01
-1.52106684e+02 -1.35606799e+02 9.88979412e+01 7.81244157e+00
1.64521377e+01 -2.17862695e+02 -2.43971977e+02 1.61844025e+01
-7.78740850e+01 -1.31275465e+02 -1.58625958e+02 -2.17529771e+02
-2.73262264e+02 -1.24051228e+02 1.86015219e+02 -7.53446287e+01
-1.58856956e+02 -8.98745480e+00]
[-5.77838722e+01 2.27714368e+01 6.56846304e+00 -6.93985124e+00
-4.59457264e+01 -2.55699006e+01 -2.63267210e+01 2.02608396e+01
3.09424679e+01 3.51416737e+01 1.17224344e+00 -4.77818605e+01
-7.27040550e+01 -9.39214694e+01 4.04373517e+01 -2.86233091e+01
-1.73901265e+01 -3.68065317e+01 -3.09579745e+01 3.82805068e+01
-4.55950534e+01 -6.32787982e+01 -7.47625076e+01 -9.46558683e+00
-3.17431107e+01 -2.02450684e+01 -1.49256866e+01 -9.09720729e+00
-6.52962815e+01 -1.07357810e+02 -1.05890066e+01 -8.38749669e+00
6.48758377e+00 -1.34638024e+01]
[-1.90063162e+01 1.59249844e+01 2.01968375e-01 3.46439910e-01
-2.02126662e+01 -4.74721778e+01 -4.39923385e+01 2.39673803e+00
-6.49867756e+00 6.90774637e-01 -5.74095244e+01 -5.14654131e+01
-5.12153640e+01 -9.81241344e+01 2.41455451e+01 -5.60103923e+01
-3.77328099e+01 -5.01439225e+01 -2.04854609e+00 5.40901115e+00
-2.51721208e+01 -2.75772515e+01 -5.47566521e+01 -1.90850264e+01
-5.01641222e+01 6.08473694e+00 1.29364073e+01 -8.45551173e+00
-9.69891893e+00 -8.03503514e+01 -1.42388048e+00 -1.75498495e+01
-2.87012129e+01 -1.80793260e+01]
[-2.33686107e+01 3.59521861e+01 5.35345968e+00 7.36798915e+00
-1.20167373e+01 4.30665086e+00 5.05555831e+01 -2.28221311e-01
3.39038163e+01 5.89856892e+00 -5.71710620e+00 7.41091803e+01
5.28502878e+01 3.47510402e+01 2.17854528e+01 1.69004108e+02
2.91019582e+01 1.16366771e+01 4.62448792e+01 3.45891228e+01
-2.54962905e+00 -6.44563376e+00 -1.28021538e+01 -1.32116192e+01
2.94170548e+01 -1.72843908e+01 -1.58354241e+01 1.22336102e+01
-6.63850050e+01 -4.99902360e+01 5.73999217e+01 2.31893598e+01
1.02194096e+01 1.57293210e+01]
[-5.76626279e+01 4.18452331e+01 5.96393652e-01 -1.77208242e+01
-6.98921852e+01 -8.28152210e+01 4.35934480e+01 -6.42876064e+01
1.00167047e+02 4.70053328e+01 -5.56052392e+00 1.74147647e+01
-1.01598051e+01 -1.13386387e+01 -3.43579868e+01 1.34278011e+02
7.14446660e+00 -2.83500045e+01 1.53563011e+01 2.15952376e+01
-2.49848154e+01 -8.56810719e+01 -9.34706733e+01 1.27810725e+01
-1.51370921e+01 -6.66317206e+01 -6.61640819e+01 -7.65207182e+01
-1.22646313e+02 -1.51897236e+02 1.22718753e+02 2.28544849e+01
1.72200798e+01 1.89192356e+00]
[-4.27308825e+00 5.03472636e+00 -1.07450293e+01 -4.36247290e+01
-3.25073050e+01 -6.47374690e+01 -1.92764516e+01 -3.18818156e+01
1.61031125e+01 3.88154388e+01 -6.70577785e+01 -4.02498878e+01
-2.10697678e+01 -5.14228825e+01 5.44141580e+00 -3.84235005e+01
-5.30688600e+01 -4.64347547e+01 1.58153426e+01 1.47979994e+01
1.64307572e+01 -2.20894612e+01 -4.49252615e+00 3.34633075e+01
-3.18452395e+01 -1.40256483e+00 -8.85834471e+00 -4.08584135e+01
-6.78582984e+00 -7.37946193e+01 1.52812658e+01 -9.41137328e+00
-5.77852434e+00 6.46530125e+00]
[ 5.06763752e+01 5.32741699e+01 -5.81752587e+01 -7.59280653e+01
-7.43871057e+01 -1.64771697e+02 7.28514618e+00 -9.21108723e+01
-5.06638559e+01 -8.41696601e+01 -8.48439085e+01 -1.80981341e+02
-8.92712310e+01 -1.14349133e+02 -1.08942609e+01 -3.80241660e+01
-1.47195262e+02 -1.10238126e+02 8.65166620e+01 7.66679769e+01
1.20206436e+02 -7.77424535e+01 -2.31274999e+01 4.18398959e+01
-5.21019916e+01 -7.82324928e+01 3.57155796e+00 -1.07941481e+02
9.84744858e+00 -1.18285047e+01 7.98332370e+01 -1.24729170e+02
-1.28934879e+02 9.39008909e+00]
[-3.61784397e+01 4.17002824e+01 -2.95132321e+01 -5.21197065e+01
-2.30571736e+01 -8.49531336e+01 -4.08580023e+01 -4.65160863e+01
3.10591753e+01 5.59135091e+01 -5.60041709e+01 -4.93639917e+01
-5.86405003e+01 -5.78553107e+01 -1.37021833e+01 -3.02940191e+01
-2.68866544e+01 -6.68432436e+01 -7.94269951e+00 3.69784703e+01
-4.36096677e+01 -3.83745209e+01 -7.14384188e+01 -7.94283046e+00
-6.90380349e+01 -3.94053772e+01 -2.85245946e+01 -5.01463386e+01
-6.84676579e+01 -1.32455966e+02 1.70340697e+01 -1.77885946e+01
3.79546694e+01 -2.46465300e+01]
[-3.00224148e+01 -1.63850607e+01 -1.35022083e+02 -8.86566366e+01
2.26813889e+02 -2.24327305e+02 -2.13738324e+02 -1.40152887e+02
-1.13136665e+02 1.78643726e+00 -1.35695156e+02 -7.13853680e+01
-8.80112317e+01 -1.09857605e+02 1.06360025e+01 -2.72060541e+02
-2.00233490e+01 -1.14388363e+02 1.23387883e+02 -6.72162325e+01
-1.03761547e+02 7.49195998e+01 -1.55218406e+02 -1.64708863e+02
-2.53849004e+02 -4.92505704e+01 1.72929483e+00 -3.69645442e+00
4.64419744e+01 -2.48930333e+01 -1.82746122e+02 -1.25726000e+02
5.42324712e+01 -9.40806841e+01]
[ 1.11028686e+02 3.55576513e+00 -1.47759815e+02 3.06772523e+01
-6.78699383e+01 1.01311900e+02 1.03534723e+01 -2.11596796e+01
-7.86056435e+01 -2.65472490e+02 -1.90957752e+01 -6.70059961e+01
8.55402591e+01 2.35051394e+01 -2.47052036e+01 5.75071684e+01
1.47814592e+01 -9.61639658e+01 -2.11574424e+01 8.26963476e-01
-9.42067487e+01 -4.49389376e+01 4.53400997e+01 -5.27581919e+01
-6.79381220e+00 -1.63346995e+01 -8.34334102e+01 -1.30595844e+02
3.96397721e+01 1.10972309e+02 2.61651625e+01 -1.18407608e+02
-8.68261777e+01 -4.60013371e+01]
[ 3.09725625e+00 1.01133227e+01 -7.95417569e+00 -2.92736868e+01
-3.47131230e+01 -3.96927022e+01 8.49259785e+00 -1.82844849e+01
1.17504032e+01 6.15597481e+01 -4.18299810e+01 -5.45391422e+00
-3.68251341e+01 -1.59900891e+01 -1.21550712e+00 -2.66166641e+01
-1.43975877e+01 -2.09387932e+01 5.12013444e+00 3.02635007e+01
1.40623489e+00 -7.83703012e+00 -1.80631418e+01 2.53719694e+01
-2.72423685e+01 -1.39924182e+01 -2.51520488e+00 -1.97267936e+01
4.56217086e+00 -9.78336326e+01 -6.67530802e-01 7.47745976e+00
1.55326177e+01 2.80073503e+01]
[ 5.84521231e+00 2.82420939e-01 2.92631839e+00 -1.97724083e+01
-2.81551949e+01 -4.17146872e+01 -1.37797564e+01 -9.59182459e+00
-9.37171230e+00 3.64528098e+01 -4.53740754e+01 -5.93145883e+00
-1.80339616e+01 -2.49992669e+01 5.44331141e+00 -4.10796926e+01
-2.66217919e+01 -1.66326367e+01 9.86945148e+00 1.64713746e+01
8.92027169e+00 3.70557325e+00 -3.81267562e+00 9.73645595e+00
-3.27437300e+01 -4.87787027e+00 7.29252415e+00 -3.23572370e+00
7.71390232e+00 -6.77400367e+01 -2.74204067e+01 -2.50804486e+00
3.92947128e+00 1.09775561e+01]
[-4.11283665e+01 3.54043206e+01 -5.14488049e+01 6.46013082e+01
-4.90624854e+01 -6.96054253e+01 -2.08267939e+01 1.11282439e+01
-9.39495923e+01 -4.62787543e+01 -5.04861859e+00 -1.06407737e+02
-3.91608710e+01 -8.62213786e+01 -1.34820668e+01 -6.14452570e+01
-5.93077331e+01 -9.60130433e+01 1.41171535e+01 1.05490131e+02
-2.15642879e+01 -7.06115275e+01 -3.53030005e+01 -1.82614032e+01
-1.09339167e+02 -7.62349571e+01 3.64848906e+01 -1.63853415e+01
2.14200615e-01 -6.70111770e+01 -5.75827499e+01 -9.96405225e+01
3.33547869e+01 -1.85120589e+01]
[-2.85952981e+01 -1.69385598e+01 -4.67709844e+01 -2.78134553e+01
8.03070628e+00 2.87660980e+01 3.67726229e+00 8.55626422e+00
-2.08034926e+00 -4.03075424e+01 -4.00106916e+01 3.67732131e+01
4.46159053e+01 4.91179075e+00 5.90708086e+00 1.05754588e+02
3.20134440e+01 -2.90205823e+01 2.13705834e+01 1.67220884e+01
-4.28080451e+01 -1.85812999e+01 -2.39878811e+01 -3.84744892e+01
2.47468960e+01 -3.83371588e+01 -3.77268938e+01 -1.46338620e+01
-9.69088702e+01 -1.08653644e+00 3.18546718e+00 -1.57767834e+01
-1.75386350e+00 -6.11854965e+01]
[-3.63256445e+01 2.05358077e+01 -1.67844616e+01 -3.33664730e+01
-1.31898472e+01 -5.71050859e+01 -4.05077018e+01 -1.63993470e+01
1.35765505e+01 5.14012024e+01 -5.94578879e+01 -3.04473394e+01
-4.82651973e+01 -5.06751702e+01 -1.23365150e+01 -3.43668486e+01
-6.83300502e+00 -6.07949787e+01 1.88408541e+00 3.49116352e+01
-4.39418694e+01 -2.37426433e+01 -5.21581273e+01 -2.47811055e+00
-5.73939019e+01 -2.58746618e+01 -7.72260016e+00 -2.17572780e+01
-3.84458709e+01 -1.13634729e+02 -1.10240731e+01 -6.04791099e+00
2.97878429e+01 -1.30258739e+01]
[ 3.55843116e+00 -5.74542404e-01 -6.34717125e+00 -2.66362686e+01
-1.12029711e+01 -4.84038497e+01 -2.27469824e+01 -8.32126784e+00
-1.05648543e+01 7.00212550e+00 -5.74509917e+01 -2.64957001e+01
-1.98124582e+01 -4.71728807e+01 1.46086516e+01 -5.71128579e+01
-5.09011984e+01 -3.00954700e+01 6.63398150e+00 -4.57663796e+00
1.87545434e+00 2.50407435e+00 -5.01448639e+00 -3.71576704e+00
-4.25401486e+01 1.46991056e+01 -1.94403324e+00 -6.92125315e+00
1.00905093e+01 -5.50333956e+01 -1.60523464e+01 -2.50551745e+01
-1.83183480e+01 1.93311411e+00]
[-2.45231775e+00 4.36779104e+01 -1.42893105e+01 8.92785933e+00
-7.40716208e+01 -1.06762251e+02 1.33324784e+01 -3.46848932e+01
-6.98332892e+01 -4.65520658e+01 -6.94972361e+01 -9.67832240e+01
-6.19437012e+01 -1.11945538e+02 7.84217442e+01 -6.16616801e-01
-1.00932878e+02 1.26444859e+01 1.56977824e+00 -1.45585229e+01
1.27085340e+02 -6.19036239e+01 -6.28479365e+01 -4.95299817e+00
-4.59076581e+01 -3.19221268e+01 3.47084587e+01 -7.05350307e+01
1.71303000e+01 -2.10321829e+01 5.81603084e+01 -5.98007987e+01
-2.02014065e+02 1.01163549e+02]
[-2.69449376e+01 1.85107792e+01 -3.06236793e+01 -2.51446426e+01
-1.66010509e+01 8.51105875e+00 4.95350292e+01 -1.72575570e+01
5.63963759e+00 -1.18946275e+01 -1.16307543e+01 8.90695295e+01
5.75467230e+01 1.84892951e+01 1.44715445e+01 1.84988857e+02
2.13941751e+01 -1.41739360e+01 3.38623569e+01 2.33362031e+01
-1.61454214e+01 -2.98356666e+01 -2.55047675e+01 -3.65610039e+01
4.54294812e+01 -5.06431413e+01 -4.28979925e+01 -1.83291785e+01
-1.08177373e+02 -1.78383228e+01 5.07661764e+01 5.37487369e+00
-1.63610525e+01 -1.86505613e+01]
[-9.54045781e+00 1.52934875e+01 -2.21786012e+01 -4.01723645e+01
-2.21561983e+01 -6.78765679e+01 -2.81176003e+01 -2.54766350e+01
1.78333672e+01 3.32886865e+01 -4.85524103e+01 -3.99134046e+01
-2.91433176e+01 -5.05764468e+01 4.59536687e-01 -3.46124938e+01
-4.11836158e+01 -4.81529587e+01 2.64027386e+00 1.74591884e+01
-1.94226064e+01 -1.98036844e+01 -2.41934906e+01 1.81740679e+01
-4.55163465e+01 -1.45530472e+01 -1.67193493e+01 -3.83318911e+01
-1.73183573e+01 -8.83810500e+01 1.68993292e+01 -1.91440013e+01
1.18101213e+01 9.26708284e+00]
[-2.48836046e+00 5.23053906e+01 -7.78759692e+01 -8.14142112e+01
1.71342801e+02 -2.37309172e+02 -1.38524723e+02 -1.24946340e+02
8.66042409e+01 -7.23670901e+01 -6.85159937e+01 3.35093937e+01
7.29109147e+00 -1.00872219e+02 3.32205652e+01 3.02349174e+00
1.85195956e+01 1.33320012e+02 -3.02717334e+00 -1.27051999e+02
9.61044866e+00 -4.48611601e+01 -8.38503593e+01 -1.73322394e+02
-1.81805203e+02 -8.75122284e+01 -9.01213346e+01 -7.46195029e+01
-8.43302858e+00 2.32050407e+01 9.68265329e+01 -4.21472577e+01
-1.13047268e+02 -6.39786000e+01]
[ 3.73074927e+01 7.54166098e+01 -5.98492471e+01 -5.97192893e+00
1.41591921e+01 -1.14915029e+02 -8.43178956e+01 -2.15870045e+01
-1.34882788e+02 -7.49096538e+01 -3.71525856e+01 -9.14563812e+01
-5.71745206e+01 -6.61471402e+01 -9.91279303e+00 -9.48199543e+01
3.95892409e+00 2.01463119e+00 1.95088170e+01 -2.97080922e+01
-5.17424295e+01 -1.69448656e+01 -8.02962026e+01 -1.40419099e+02
-1.66644946e+02 -1.06731337e+02 5.07683588e+01 2.56745800e+01
8.64396426e+01 -1.15921515e+01 -7.69689530e+01 -8.87537680e+01
-2.18245783e+01 -2.40494768e+01]
[ 3.36733677e+00 7.08693352e+00 -7.54260195e+00 -3.64775610e+01
-1.72622350e+01 -2.98915492e+01 -9.11436889e-01 -1.50643651e+01
2.36249217e+01 5.80165131e+01 -4.70163968e+01 -1.09551401e+01
-2.98651978e+01 -2.63622863e+01 -2.60459069e+00 -2.03738431e+01
-2.14870220e+01 -4.66841297e+01 2.27332106e+00 3.01910956e+01
2.60202780e+00 -2.91001249e+00 -1.51389814e+01 2.99455310e+01
-2.12098494e+01 -1.16632674e+01 -1.27687183e+00 -1.65657632e+01
1.64355991e+00 -9.70339861e+01 1.06821927e+01 4.50814311e+00
2.45188828e+01 5.61683009e+00]
[ 7.38829676e+01 5.67742410e+01 -1.31551556e+02 -2.23922802e+01
-3.58405141e+01 -1.43163504e+02 5.76702434e+00 -7.15975044e+01
-3.86229690e+01 -1.54620839e+02 -8.36581211e+01 -1.58467730e+02
-6.93711497e+01 -3.74077939e+01 -6.09848313e+01 -4.27219373e+01
-2.05454578e+01 -7.57273019e+01 3.84851384e+01 4.15719389e+01
-3.69277307e+00 -1.04658900e+02 -2.80668994e+01 1.42583067e+01
-1.06773596e+02 -1.31499536e+02 -1.26318851e+01 -1.78433136e+02
1.38802254e+01 -5.37448572e+00 6.14873455e+01 -1.31403249e+02
-3.37067474e+01 -8.63057270e+01]
[ 1.15965734e+01 -1.57326728e-01 -1.43718273e+01 -2.79314847e+01
-2.15681621e+01 -5.00244874e+01 -1.49641018e+01 -6.48231096e+00
6.40123776e-01 1.54126631e+01 -3.84286559e+01 -2.24599987e+01
-2.02736760e+01 -4.13527926e+01 -9.76593096e-01 -4.41248900e+01
-4.54843424e+01 -3.60197805e+01 5.79545448e+00 1.81979552e+01
3.00901702e+00 -1.11604102e+01 8.77769475e+00 2.51582929e+01
-2.54449404e+01 1.17606812e+01 4.01481502e+00 -2.87987100e+01
5.61387258e+00 -6.72899703e+01 1.71698964e+01 -1.86237351e+01
1.10420766e+00 1.53391160e+01]
[-2.78675569e+01 3.08737667e+01 -2.11716488e+01 -2.40875721e+01
-1.71479262e+01 -6.96996139e+01 -4.26116774e+01 -1.41359160e+01
-6.14868751e+00 3.57383664e+01 -4.50651109e+01 -5.76869011e+01
-4.64614018e+01 -7.64263059e+01 -9.84521326e+00 -6.42376332e+01
-3.13494960e+01 -6.60791372e+01 -1.48416931e+01 3.28828789e+01
-5.46226953e+01 -3.16833171e+01 -4.96763399e+01 -1.16002208e+01
-6.32383579e+01 -1.52073335e+01 -7.98653458e+00 -3.30740943e+01
-4.24968665e+01 -1.08343715e+02 -1.16697688e+00 -2.72836390e+01
-2.64135944e+00 -1.60111912e+01]
[-1.59081376e+01 1.44263594e+01 -1.19427379e+01 -3.56822523e+01
-9.95374222e+00 -6.63055550e-01 6.43725837e+01 -4.44912970e+01
1.02717943e+01 -5.20030329e+00 -2.29532837e+01 4.50124082e+01
1.33136638e+01 4.19750937e+01 -1.44659033e+01 1.27175210e+02
3.06025751e+01 -2.18393501e+01 9.06530293e+00 2.40656548e+01
-3.39519436e+00 -1.31706866e+01 -3.98734200e+01 -2.43087457e+01
2.24954027e+01 -3.00978424e+01 -3.93640439e+01 -2.66671352e+01
-7.79393522e+01 -1.03650324e+02 2.40266307e+01 5.79173693e-01
3.50804371e+01 -3.38669138e+01]
[-2.04533072e+01 1.26044606e+01 -3.17354768e+01 -4.15872116e+01
-1.72731920e+00 3.18797440e+01 6.61529152e+01 -3.11735189e+01
9.16725646e+00 -9.96178562e+00 -2.22334459e+01 4.51382155e+01
1.32813340e+01 2.39853166e+01 -1.90368460e+00 9.64402410e+01
1.18143830e+01 -2.20427060e+01 -8.96384252e-01 2.87679861e+01
-5.88828214e+00 -2.20656112e+01 -3.63774424e+01 -2.02683918e+01
3.55033060e+01 -3.32454619e+01 -5.15658581e+01 -3.50872574e+01
-1.18010751e+02 -5.35763251e+01 2.04927639e+01 -1.45961362e+01
-6.78791843e+00 -5.25786326e+01]]
syn2 = [[ 6.53255608e-01 -7.81726238e-01 1.50873204e+00 -3.94529830e+00
-2.05232343e+00 3.92407385e+00 -1.14457075e-02 -3.27455221e+00
1.84395833e+00 -3.35020040e+00]
[-2.74766419e+00 -3.24420947e-01 3.55588049e-01 1.21950411e-03
-5.57903366e+00 -3.36522443e+00 6.12355719e+00 -3.19343506e+00
-1.75433576e+00 -5.34801533e+00]
[ 4.02695165e-01 -1.07518024e+00 -1.70123094e+00 3.83551550e+00
1.14277753e-01 6.05846222e-01 -9.76958056e-01 -7.03324281e-01
-2.32236188e-01 6.69535983e-01]
[-4.82281910e-01 -2.05046345e+00 -1.43298198e+00 2.13073857e-01
4.87762371e-01 -1.72161041e+00 -5.23464525e+00 -2.99146671e+00
3.03699344e-01 -3.15034181e+00]
[ 4.06290082e+00 -7.79086267e+00 4.25344763e+00 -6.83517779e-01
2.58091338e+00 -6.66348001e+00 -1.18876372e+00 4.99575897e-01
-3.89736754e+00 -1.74076411e+00]
[-5.00540950e+00 -3.49876586e+00 -3.11779151e+00 -2.14650813e-02
-5.66139992e-01 -2.81711436e+00 -5.97783978e+00 -1.13178080e+00
-2.77213977e+00 -1.11986234e+00]
[-3.47233185e+00 1.29780938e+00 -2.90674393e+00 3.28820844e-02
-4.82698459e+00 -2.57233305e+00 -5.41093051e+00 5.69418769e+00
1.65149651e+00 -3.55879729e+00]
[ 4.58523219e-01 -6.72622424e+00 -7.96778439e-01 2.99154804e+00
1.51677234e+00 -5.23850856e-01 -2.10215802e+00 -2.98234369e+00
-2.42397901e+00 -2.75781051e+00]
[ 1.11061493e-01 -7.22705687e-01 -3.24230904e+00 -3.37240545e-01
6.95915214e-01 -5.34915124e+00 -3.30293405e+00 2.78062533e+00
-3.69412028e+00 -1.23650432e+00]
[-3.40218255e+00 6.48048851e+00 -1.19797547e+00 2.35100135e-01
-8.19271819e-01 -5.33014661e+00 -7.01056864e+00 -8.35403624e-01
-4.73585684e+00 2.38736310e+00]
[-1.94355025e+00 -7.47636253e+00 -2.74446150e+00 8.02378211e-01
-1.37208079e+00 -3.15010520e+00 -3.84930544e+00 2.64969553e+00
2.41581683e+00 1.55866600e-01]
[-2.25130566e+00 -5.43921205e+00 -2.08139357e+00 5.65200882e-01
-1.13702658e+00 -1.31291179e+00 -5.47260219e+00 3.51871746e+00
-3.06519286e+00 1.16760709e+00]
[-2.65811802e-01 -4.04890070e+00 2.04261188e+00 -2.35510310e+00
7.99617337e-01 -1.96396383e+00 -2.82885688e+00 7.16753195e-02
1.24591074e+00 -5.43892736e-01]
[-1.97046977e+00 -1.62590201e+00 1.06351058e+00 3.91604558e-02
-3.94948616e-01 -2.15979345e-01 -5.15585517e+00 3.23560995e+00
2.49619224e+00 2.95721909e+00]
[-2.73366636e+00 -2.16611740e+00 -5.42693297e+00 -3.12563919e+00
4.65572352e+00 -1.54487468e+00 2.49614023e-01 -3.18167945e+00
7.70637610e-01 -2.08279123e+00]
[-2.81299675e+00 -6.33568421e+00 -3.08082598e+00 -1.95871434e+00
-3.03971293e-01 -2.22888205e+00 -4.16561437e+00 -3.33057712e+00
-2.43312593e-01 1.68456585e+00]
[ 2.67729150e+00 -1.18095459e+00 -4.14665587e+00 -1.22593296e+00
-1.92761190e+00 -2.76775554e-02 -3.82779114e-01 -2.62412572e+00
-4.77439733e+00 3.22377066e+00]
[ 6.44110414e+00 -3.96538273e+00 -5.00794565e+00 -1.01063410e+00
-1.67352125e+00 -8.18392785e-01 -6.18773236e+00 3.35161386e+00
-3.88472254e+00 -3.49437111e-01]
[-7.46861777e+00 -9.75667482e-01 -2.07156291e+00 -1.15526082e+00
-1.25729298e+00 1.33198751e-02 -2.61970421e+00 -6.63320411e+00
4.56103327e-01 -1.12475657e-01]
[-5.24298738e+00 1.48085404e+00 6.78771162e-01 -2.85955274e+00
3.09910462e+00 -1.39610107e+00 -3.21238512e+00 4.77340343e-01
1.38217897e+00 -6.52941379e+00]
[-2.12551954e+00 -2.46819933e+00 -7.70764569e-01 -1.41946590e+00
-3.82581800e+00 4.80083639e+00 -2.12782064e+00 4.32236620e+00
-5.03320869e+00 -8.95322677e-01]
[-2.33533871e-01 -5.68410969e+00 3.68648523e+00 -1.01615772e+00
-7.00216437e-01 -4.89914433e-02 -5.22572635e-01 -2.47941779e-01
-2.36659849e+00 3.39124112e+00]
[-8.60503345e-01 -2.59453438e+00 6.33893657e-01 -1.26455802e+00
-2.79479067e+00 4.71301419e+00 -5.23377831e+00 2.12566261e+00
-6.85342766e-01 -1.97481775e+00]
[-3.01019172e+00 3.03084461e+00 -6.36654147e-01 3.10246625e-01
7.25535301e-01 1.42265009e+00 -3.90313693e+00 2.35706273e+00
-1.55371903e+00 -1.94184803e-01]
[-2.51686524e+00 -8.27406926e-01 -3.93807549e+00 7.17862265e-01
-5.52424423e-01 1.78066048e+00 -4.17260083e+00 4.63216439e+00
-3.43925439e+00 6.77243178e-01]
[-1.65359357e-01 -2.18030892e+00 -1.76545898e+00 -3.96749333e-01
2.22075536e+00 2.59673099e+00 1.48400204e-01 -3.91178321e-01
-6.71836591e-01 1.02435614e+00]
[-2.96126101e+00 -5.66150537e-01 -3.03042301e+00 3.60454753e+00
-3.74489853e+00 8.86472593e-01 -2.68186065e+00 -3.90179658e+00
1.97754003e+00 -2.11475778e+00]
[-4.19420977e-01 -6.64976468e+00 -2.80863799e+00 4.17531061e+00
-4.52969619e-01 -2.53312500e+00 -2.04243429e+00 -1.93778209e+00
-1.59148232e-02 5.02316842e+00]
[ 7.77756034e-01 -2.87151110e+00 2.43779910e+00 1.08941564e+00
-2.65841603e+00 1.89653658e+00 -7.38960685e-01 -7.36362648e+00
1.12415557e-01 -1.41625224e+00]
[ 1.33079760e+00 -6.60172572e+00 -2.26338025e+00 -5.07170852e+00
2.19034334e+00 1.40784744e-01 -4.04383085e-01 -6.57130084e-01
8.20751426e-01 1.98176397e-01]
[-4.72883332e-01 3.57740762e-01 -4.65194027e+00 -4.01463192e+00
-3.47407602e+00 -1.41359965e+00 2.89756373e+00 2.80812333e-01
-2.63416377e+00 1.82721019e+00]
[ 5.64979039e-01 1.57499196e+00 -2.02698719e+00 2.53095086e+00
1.40221816e+00 -8.30099075e-01 -2.02834490e+00 -3.27276885e+00
-3.24942111e+00 1.33428065e+00]
[-2.93535955e+00 2.13567448e+00 -7.52365913e-01 2.31130072e+00
-1.56005211e+00 -5.26342415e+00 -3.08157013e+00 2.72945538e-01
-2.84029347e+00 1.78330794e+00]
[-2.56831877e+00 -1.68549930e+00 -2.93974885e+00 -2.87900416e+00
-1.73070613e+00 3.59006710e+00 -4.01741500e+00 -3.75313207e+00
-2.20974683e+00 4.10056117e+00]]
b0 = [[ -875.73663618 -813.85866971 -840.27174486 -1066.0344334
-826.36406162 -877.04031066 -916.60081508 -515.31463157
-856.81938453 -934.05288301 -882.58779013 -884.11254226
-344.67593241 -503.62217279 -882.00032229 -899.51823195
-921.02182561 -1127.18384338 -628.77626535 -831.6744478
-846.43811066 -941.3049701 -301.58188636 -890.1993107
-862.5599114 -661.3040105 -254.89316881 -871.50264689
-869.4125715 -820.86846255 -840.98990615 -850.6850811
-861.05567862 -914.68797341 -250.68963748 -257.9943676 ]]
b1 = [[-1.66278210e+00 -3.65324540e+00 -4.51958146e+00 -2.57870597e+00
-4.87897223e+00 5.29131753e-01 -6.82521641e-01 -3.82414882e+00
-3.59395758e+00 -4.49837233e+00 -2.93700807e+00 -2.09688231e+00
-2.71914216e+00 -7.11979726e-01 -4.03584819e+00 3.47651147e-03
1.68643496e-01 -2.81502351e+00 -4.15120256e+00 -5.23985551e+00
-4.01459467e+00 -4.10819489e+00 -3.10466809e+00 -4.72698550e+00
-5.82501507e-01 -3.52325194e+00 -2.77943189e+00 -4.12160271e+00
-3.03927975e+00 -2.62742330e+00 -3.49018083e+00 -2.38325761e+00
-5.95594166e+00 -1.73942359e+00]]
b2 = [[-1.29065252 -1.07410532 -1.12565259 -1.91341438 -0.90875645 -1.56695869
-1.52767328 -0.36236739 -1.04558348 -0.45456078]]
|
[
"[email protected]"
] | |
da7a23f4a851db24c0e9eb29f459bc642aaa7923
|
a2567270e79ff3f8b7b9a9e28f91b46c2315313a
|
/unidad_2/ejercicio_2_8.py
|
5739b6c289dc09a410a352d9b02db209ce324660
|
[] |
no_license
|
b3nkos/learning_python
|
b87c421918ff3ad9ae480d351cbabf20d18fbb36
|
64920a70ad14b94d0abfa690e7c70e209014c5e7
|
refs/heads/master
| 2016-09-03T07:34:49.190664 | 2015-07-13T05:31:27 | 2015-07-13T05:31:27 | 38,992,888 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 429 |
py
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Escribir un programa que use un ciclo definido con rango numérico,
que averigue a cuántos amigos quieren saludar,
les pregunte los nombres de esos amigos/as, y los salude.
"""
number_of_friends = input("Digite el número de amigos que desea saludar: ")
for x in range(number_of_friends):
best_fiend = raw_input("Nombre del mejor amigo: ")
print "Hola", best_fiend + "!"
|
[
"[email protected]"
] | |
c3ccdce9e5846ff35e01721dd3820ee452c05378
|
e2cdf33fed0f2ea82ca3933ea0f57affb2bb203a
|
/events.py
|
4b5b148ce2f959d75029b3f4c61254b6cb90f35f
|
[] |
no_license
|
shaikhul/scoring_engine
|
67109c569bfa7b425fee8fdf4367d92adc0bd433
|
e48693be39cfeb849c245b5bc9b5a67270d7859a
|
HEAD
| 2016-09-06T04:30:40.571150 | 2015-09-01T02:49:11 | 2015-09-01T02:49:11 | 41,713,070 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 496 |
py
|
class Event(object):
def __init__(self, score=0):
self.score = score
def get_weighted_score(self):
return self.weight * self.score
def get_event_type(self):
return self.event_type
class WebEvent(Event):
weight = 1.0
event_type = 'web'
class EmailEvent(Event):
weight = 1.2
event_type = 'email'
class SocialEvent(Event):
weight = 1.5
event_type = 'social'
class WebinarEvent(Event):
weight = 2.0
event_type = 'webinar'
|
[
"[email protected]"
] | |
e54034ad6c7d99686d24d85630c58338ce0e63ee
|
6f753a851d5ffc7263160642422ee654e5a75a4e
|
/blog/templatetags/blog_tags.py
|
94aa21fe6d3d95bbea80c9dd8e46c0ff3b4876d9
|
[] |
no_license
|
iteegi/myBlog
|
1f5dda1f4a615a4e6a8a107838ab4b8db72c283f
|
b6f5dec8c5dbe258e0e25f2b300c968ace0d8350
|
refs/heads/master
| 2021-02-16T08:17:46.222872 | 2020-03-04T19:27:17 | 2020-03-04T19:27:17 | 244,984,455 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 968 |
py
|
"""Custom tags for the blog."""
from django.db.models import Count
from django import template
from ..models import Post
from django.utils.safestring import mark_safe
import markdown
register = template.Library()
@register.simple_tag
def total_posts():
"""Return the number of published articles."""
return Post.published.count()
@register.inclusion_tag('blog/post/latest_posts.html')
def show_latest_posts(count=5):
"""Return the last few posts."""
latest_posts = Post.published.order_by('-publish')[:count]
return {'latest_posts': latest_posts}
@register.simple_tag
def get_most_commented_posts(count=5):
"""Get the article with the most comments."""
return Post.published.annotate(total_comments=Count('comments'))\
.order_by('-total_comments')[:count]
@register.filter(name='markdown')
def markdown_format(text):
"""Populate article body with Markdown formatting."""
return mark_safe(markdown.markdown(text))
|
[
"[email protected]"
] | |
3054352bdfefed54c1ca9176eeaada9868f2f651
|
97637aa398dd498a4f3598a061329ee0a8919726
|
/robots/maps.py
|
41e5db884a562f71bbb89930ad58643e2a6cfabb
|
[] |
no_license
|
guitaoliu/multi_robot_xplore
|
1d09a328779484ec482714a0438da75469342eaf
|
2a006216aaacf4e9e5ae6ca753e390897812f055
|
refs/heads/master
| 2022-10-02T21:54:02.535024 | 2020-06-03T07:30:03 | 2020-06-03T07:30:03 | 269,020,061 | 1 | 0 | null | 2020-06-03T07:31:11 | 2020-06-03T07:31:11 | null |
UTF-8
|
Python
| false | false | 3,125 |
py
|
import numpy as np
from abc import ABC
from typing import List
from robots.setting import (
MAP_SIZE,
BARRIER_PERCENTAGE,
PHE_VOLATILIZE_CAP,
MAP_EXPLORE_PERCENT,
)
class Node:
def __init__(self, pos: tuple):
self.x = pos[0]
self.y = pos[1]
def loc(self) -> tuple:
return self.x, self.y
def __eq__(self, other):
return self.x == other.x and self.y == other.y
class Map(ABC):
def __init__(self):
self.map = np.zeros(MAP_SIZE, dtype=int)
def __getitem__(self, indices):
return self.map[indices[0], indices[1]]
class BarrierMap(Map):
def __init__(self):
super(BarrierMap, self).__init__()
self.barrier_num = int(MAP_SIZE[0] * MAP_SIZE[1] * BARRIER_PERCENTAGE)
self.load_barrier()
def load_barrier(self):
choices = np.random.choice(np.arange(MAP_SIZE[0] * MAP_SIZE[1]), size=self.barrier_num, replace=False)
map_flatten = self.map.flatten()
for choice in choices:
map_flatten[choice] = 1
self.map = map_flatten.reshape(MAP_SIZE)
def __call__(self, node: Node) -> bool:
return self.map[node.x, node.y] == 1
def get_random_node(self):
x, y = np.random.choice(range(self.map.shape[0])), np.random.choice(range(self.map.shape[1]))
while self.map[x, y] == 1:
x, y = np.random.choice(range(self.map.shape[0])), np.random.choice(range(self.map.shape[1]))
return Node((x, y))
class ExploreMap(Map):
def __init__(self):
super(ExploreMap, self).__init__()
def update(self, node: Node):
self.map[node.x, node.y] = 1
def is_finished(self) -> bool:
if self.map.sum() >= MAP_EXPLORE_PERCENT * self.map.shape[0] * self.map.shape[1]:
return True
else:
return False
def status(self, node: Node) -> int:
return self.map[node.loc()]
def get_neighbours(self, node: Node) -> List:
node_list = []
for i, j in [(-1, 0), (0, -1), (1, 0), (0, 1)]:
if node.x - i < 0 or node.x + i >= MAP_SIZE[0] \
or node.y - j < 0 or node.y + j >= MAP_SIZE[1]:
continue
if not self.status(Node((node.x + i, node.y + j))):
node_list.append(Node((node.x + i, node.y + j)))
return node_list
class PheMap(Map):
def __init__(self):
super(PheMap, self).__init__()
self.map = np.zeros_like(self.map, dtype=float)
def update_phe(self, node: Node):
self.map[node.x, node.y] += 1
def phe_volatilize(self):
map(self.volatilize, self.map)
@staticmethod
def volatilize(phe_level: float) -> float:
return (1 - PHE_VOLATILIZE_CAP) * phe_level
def get_phe(self, node1: Node, node2: Node) -> float:
phe = 0
x_start, x_end = min(node1.x, node2.x), max(node1.x, node2.x)
y_start, y_end = min(node1.y, node2.y), max(node1.y, node2.y)
for i in range(x_start, x_end):
for j in range(y_start, y_end):
phe += self.map[i, j]
return phe
|
[
"[email protected]"
] | |
3e04a14261479eb12b66058bcc6adbed16a4c1ec
|
d9705629fb827d3d2dcfc252c24ddb67862556d6
|
/data_wordcloud02.py
|
52d69c300d0600ef40bac46de0ddd3bdfdbe46f6
|
[] |
no_license
|
haorenxwx/WordCloudLearning1
|
9d7f1fe10d24d1d2bd1710a97e178e6c06c0f7a5
|
daf41b5a35832b7ecd2cf0d797923d14d6c6390f
|
refs/heads/master
| 2021-01-23T06:02:31.898291 | 2017-09-07T15:05:18 | 2017-09-07T15:05:18 | 102,485,693 | 0 | 0 | null | 2017-09-05T14:25:01 | 2017-09-05T13:39:13 |
Python
|
UTF-8
|
Python
| false | false | 1,668 |
py
|
#-*- coding: utf-8 -*-
#test change in github
#from wordcloud import wordcloud
import wordcloud as wc
import codecs
import jieba
#import jieba.analyse as analyse
from scipy.misc import imread
import os
from os import path
#import matplotlib.pyplot as plt
import matplotlib.pylab as plt
#from PIL import Image, ImageDraw, ImageFont
import pandas as pda
from PIL import Image
from numpy import array
#path="E:/电子书/《那些回不去的少年时光》.txt"
path="E:/电子书/BL Novel/柴鸡蛋/《你丫上瘾了?》BY:柴鸡蛋.txt"
data=open(path,"r",encoding="gbk").read()
#data=open(path,"r",encoding="UTF-8").read()
#h=pda.read_table("E:/电子书/《那些回不去的少年时光》.txt")
#comment_text = open('E:/电子书/《那些回不去的少年时光》.txt',encoding='UTF-8','r').read()
#print(comment_text)
#cut_text = " ".join(jieba.cut(h))
#d=path.dirname(_file_)#当前文件所在文件夹目录
cutdata=jieba.cut(data)
alldata=""
for i in cutdata:
alldata=alldata+" "+str(i)#通过迭代器把词语连起来并用空格隔开
color_mask = imread ("E:/study/python/onepiece.png")#读取背景图片
#font=r"E:/study/python/HYQiHei-25J.ttf"
font=r"E:/study/python/simhei.ttf"
cloud=wc.WordCloud(
collocations=False,
#font_path ="HYQiHei-25J.ttf",
font_path=font,
#指定字体
#font_path =path.join(d,"HYQiHei-25J.ttf"),
background_color='white',
#设置背景色
mask=color_mask,
#词云形状
max_words=500,
max_font_size=40
)
word_cloud =cloud.generate(alldata)
#word_cloud =cloud.generate(h)
#word_cloud =cloud.generate(cut_text)
word_cloud.to_file("losttime.jpg")
plt.imshow(word_cloud)
plt.axis('off')
plt.show()
|
[
"[email protected]"
] | |
633864555ecc66eee48aee8dc62a911061bc4b80
|
931fafb77d3d1e00d25a4ab658f75d2cd9f5abb8
|
/Fundamentals/Session1/YoB.py
|
5ee44632a7db87bb8911a50eb0952ebb32a409d0
|
[] |
no_license
|
andynguyendk/andynguyen_fundamentals_C4E15
|
c72e74d13fcd59dc0d6c7072d55d092418cabfa7
|
845da653307dc72ad68f55d756c36ff17802c6aa
|
refs/heads/master
| 2021-09-09T02:54:30.863797 | 2018-03-13T12:17:11 | 2018-03-13T12:17:11 | 117,338,525 | 0 | 2 | null | null | null | null |
UTF-8
|
Python
| false | false | 88 |
py
|
n = int(input("What's your year of birth? "))
a = 2018 - n
print ("Now your age is", a)
|
[
"[email protected]"
] | |
478b126ab280b9343347c1ee8bc9238dd9f45703
|
86da8c4d616a78afc7cd09711b0151e5f852a8b8
|
/pythonprograms/LanguageFundamentals/Logicaloperator.py
|
98dae1b5e2d38ecb15661dfb77541e77356b7768
|
[] |
no_license
|
sharijamusthafa/luminarpython
|
d1d3274d23d93af2c5e4db7d2652e8cb46b133aa
|
8ebd75ea5f734e5061a7138153a2c6b1cd43a738
|
refs/heads/master
| 2022-12-23T22:45:40.194242 | 2020-10-07T16:40:09 | 2020-10-07T16:40:09 | 290,109,565 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 32 |
py
|
num1=2
num2=4
print(num1&num2)
|
[
"[email protected]"
] | |
c98cf8d841b31199e65e5296805d025a9c933399
|
fbea032896db7e9f17687ab1e09cee580a66d179
|
/utils.py
|
10af90c3c81b1277d7ffa8227263bb65cfa174ec
|
[] |
no_license
|
jmadni/ingage
|
4be888a6afe9cbef7b3c6adda0d27553fa35395c
|
c4a95bb01c63d12e1128a6a541edab39292c9b03
|
refs/heads/main
| 2023-02-13T14:02:42.554191 | 2021-01-12T07:03:33 | 2021-01-12T07:03:33 | 328,564,822 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 312 |
py
|
import os
import shutil
from moviepy.video.io.VideoFileClip import VideoFileClip
def output_directory(dir):
if os.path.exists(dir):
shutil.rmtree(dir)
os.mkdir(dir)
def check_input_file_valid(video_file):
try:
VideoFileClip(video_file)
except FileNotFoundError:
pass
|
[
"[email protected]"
] | |
a6cc13163a16574087d481e50d5730f46c476e01
|
ef4a2e4aadc67a1d5e929f5c0c3e902b34f663dc
|
/examples/psychotria.lagrange.py
|
767424584fc3bc922133c667c347f6c9b73538e6
|
[] |
no_license
|
zxf-art/lagrange-python
|
326b23cc69b1eb81db9127a2ec8fc91bcc0b6dbc
|
e67f1e671d313319bdc374a3371fa3717a8e7091
|
refs/heads/master
| 2020-06-12T06:18:20.917164 | 2018-01-22T19:50:43 | 2018-01-22T19:50:43 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,929 |
py
|
#!/usr/bin/env python
import os
import lagrange
data = """\
### begin data
{'area_adjacency': [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
'area_dispersal': [[[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0]]],
'area_labels': ['K', 'O', 'M', 'H'],
'base_rates': '__estimate__',
'dispersal_durations': [10.0],
'dm_symmetric_entry': True,
'excluded_ranges': [],
'lagrange_version': '20120508',
'max_range_size': 2,
'model_name': 'psychotria',
'newick_trees': [{'included': '__all__',
'name': 'Tree0',
'newick': '((((((((P_hawaiiensis_WaikamoiL1:0.010853, P_mauiensis_Eke:0.010853)N2:0.007964, (P_fauriei2:0.013826, P_hathewayi_1:0.013826)N5:0.004991)N6:0.001986, (P_kaduana_PuuKukuiAS:0.020803, P_mauiensis_PepeAS:0.020803)N9:1e-05)N10:0.003762, P_kaduana_HawaiiLoa:0.024565)N12:0.003398, (P_greenwelliae07:0.012715, P_greenwelliae907:0.012715)N15:0.015248)N16:0.018984, ((((P_mariniana_MauiNui:0.02241, P_hawaiiensis_Makaopuhi:0.02241)N19:0.008236, P_mariniana_Oahu:0.030646)N21:0.002893, P_mariniana_Kokee2:0.033539)N23:0.005171, P_wawraeDL7428:0.03871)N25:0.008237)N26:0.008255, (P_grandiflora_Kal2:0.027864, P_hobdyi_Kuia:0.027864)N29:0.027338)N30:0.003229, ((P_hexandra_K1:0.026568, P_hexandra_M:0.026568)N33:0.005204, P_hexandra_Oahu:0.031771)N35:0.026659)N36;',
'root_age': 5.2}],
'ranges': [(),
(0,),
(0, 1),
(0, 2),
(0, 3),
(1,),
(1, 2),
(1, 3),
(2,),
(2, 3),
(3,)],
'taxa': ['P_mariniana_Kokee2',
'P_mariniana_Oahu',
'P_mariniana_MauiNui',
'P_hawaiiensis_Makaopuhi',
'P_wawraeDL7428',
'P_kaduana_PuuKukuiAS',
'P_mauiensis_PepeAS',
'P_hawaiiensis_WaikamoiL1',
'P_mauiensis_Eke',
'P_fauriei2',
'P_hathewayi_1',
'P_kaduana_HawaiiLoa',
'P_greenwelliae07',
'P_greenwelliae907',
'P_grandiflora_Kal2',
'P_hobdyi_Kuia',
'P_hexandra_K1',
'P_hexandra_M',
'P_hexandra_Oahu'],
'taxon_range_data': {'P_fauriei2': (1,),
'P_grandiflora_Kal2': (0,),
'P_greenwelliae07': (0,),
'P_greenwelliae907': (0,),
'P_hathewayi_1': (1,),
'P_hawaiiensis_Makaopuhi': (3,),
'P_hawaiiensis_WaikamoiL1': (2,),
'P_hexandra_K1': (0,),
'P_hexandra_M': (0,),
'P_hexandra_Oahu': (1,),
'P_hobdyi_Kuia': (0,),
'P_kaduana_HawaiiLoa': (1,),
'P_kaduana_PuuKukuiAS': (2,),
'P_mariniana_Kokee2': (0,),
'P_mariniana_MauiNui': (2,),
'P_mariniana_Oahu': (1,),
'P_mauiensis_Eke': (2,),
'P_mauiensis_PepeAS': (2,),
'P_wawraeDL7428': (0,)}}
### end data
"""
i = 0
while 1:
if not i:
outfname = "psychotria.results.txt"
else:
outfname = "psychotria.results-"+str(i)+".txt"
if not os.path.exists(outfname): break
i += 1
outfile = open(outfname, "w")
lagrange.output.log(lagrange.msg, outfile, tee=True)
model, tree, data, nodelabels, base_rates = lagrange.input.eval_decmodel(data)
lagrange.output.ascii_tree(outfile, tree, model, data, tee=True)
if base_rates != "__estimate__":
d, e = base_rates
else:
d, e = lagrange.output.optimize_dispersal_extinction(outfile, tree, model, tee=True)
if nodelabels:
if nodelabels == "__all__":
nodelabels = None
lagrange.output.ancsplits(outfile, tree, model, d, e, nodelabels=nodelabels, tee=True)
|
[
"[email protected]"
] | |
5b8dec57487f5b0f362fcf9ff61241d3a643f9ec
|
b8454cadc306140b7140bd4a5040da9b9c18c980
|
/base/migrations/0001_initial.py
|
06ccb1bdae7339a5b873157a6a8bc6042ac5462d
|
[] |
no_license
|
amar3142/mywebsite3
|
dc62e6de5ba7d48e72532c6f848d2d39d1965a5d
|
db45c03af908bc5df68154e3227f4dee0db28bc6
|
refs/heads/master
| 2023-02-04T18:48:48.876485 | 2020-12-17T10:36:50 | 2020-12-17T10:36:50 | 321,337,547 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 621 |
py
|
# Generated by Django 3.1.4 on 2020-12-16 13:20
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Task',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=200)),
('complete', models.BooleanField(default=False)),
('created', models.DateTimeField(auto_now_add=True)),
],
),
]
|
[
"[email protected]"
] | |
7d3341862b6c5f086993c701914ada358509663c
|
d27c668c98b83904c830141f143125c4eca54406
|
/Compiler.py
|
d1e042d8eaee3e7225397dcecd832c4bb8d157d7
|
[] |
no_license
|
VladasZ/build_tools
|
d38dd7c1b237ec0c7f5d2c0610d85ee94539c923
|
926b1c4b2467e7bb5c58d217cc39cb8d8e9dd8d0
|
refs/heads/master
| 2022-02-25T04:33:07.360975 | 2022-02-09T21:29:16 | 2022-02-09T21:29:16 | 144,903,216 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 634 |
py
|
import Args
import System
import Compilers.GCC
import Compilers.Clang
import Compilers.VisualStudio
gcc = Compilers.GCC.get()
clang = Compilers.Clang.get()
visual_studio = Compilers.VisualStudio.get()
def get_ide():
if System.is_windows:
return visual_studio
if System.is_mac:
return clang
return gcc
def get():
if Args.android:
return clang
if Args.ide:
return get_ide()
if Args.clang:
return clang
if Args.gcc:
return gcc
if System.is_mac:
return clang
return gcc
def print_info():
print(clang)
print(gcc)
|
[
"[email protected]"
] | |
c2c9f862af8d90b56e812982f7aebae9015306e5
|
e4875a1e3ff1e46c63b546aa944565d716d71d0e
|
/serene_load/serene_load/merge_trees.py
|
e558c2375625dbacaada6d48b245352bac6c8545
|
[
"Apache-2.0",
"MIT"
] |
permissive
|
NICTA/serene-etl
|
e1f4ffa4b6c77a1dfbc1d1974fac7cec42f71f85
|
1d446012c0d08a95b8fbbbe8237735320a2fe2a4
|
refs/heads/master
| 2021-01-22T13:48:03.297688 | 2017-10-09T01:30:44 | 2017-10-09T01:30:44 | 100,686,105 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,156 |
py
|
import logging
import argparse
from serene_load.meta_select import load_meta
def create_arguments():
parser = argparse.ArgumentParser(description='take all json data from one directory and merge into another tree')
parser.add_argument('--meta', type=unicode, help='Directory containing primary metadata', required=True)
parser.add_argument('--source', type=unicode, help='Directory containing secondary metadata to merge into primary', required=True)
parser.add_argument('--verbose', type=bool)
def setup_logging(LEVEL):
logger = logging.getLogger()
logger.setLevel(LEVEL)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(LEVEL)
formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
def main():
parser = create_arguments()
args = parser.parse_args()
log = setup_logging(LEVEL=logging.DEBUG if args.debug is True else logging.INFO)
primary = load_meta(args.meta)
secondary = load_meta(args.source)
print secondary
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
08329a18ff4f915bce929ea48502042c6b5369ab
|
0910b5a1b6fd8d29579ea0596419331a51434b77
|
/leopi/projects/tweeter/leonorrepitweeter.py
|
bee7022c3feac5a2737c4d4bf4deb2be3e7e6f95
|
[] |
no_license
|
efrister/LeoNorrePi
|
60d2a5aa5a8c3d1435c53cba285715c741f83f33
|
2a25eba405fb22ddc3faf38cceaa29f955996ba2
|
refs/heads/master
| 2021-01-01T15:19:00.653023 | 2014-02-22T15:15:08 | 2014-02-22T15:15:08 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,210 |
py
|
from twython import *
import configparser
# Read configuration
configuration = {}
try:
config = configparser.ConfigParser()
config.read('config.ini')
# Read all options into a dictionary
for section in config.sections():
configuration[section] = {}
for option in config.options(section):
configuration[section][option] = config.get(section, option)
except configparser.MissingSectionHeaderError as e:
print("Could not read configuration. Exiting")
exit()
# Instantiate Twitter API with credentials
oauth = configuration['OAuth']
twitter = Twython(oauth['app_key'], oauth['app_secret'], oauth['oauth_token'], oauth['oauth_token_secret'])
# Check if we want to tweet something
tweet = input("Please enter a message to tweet, or leave empty if you don\'t want to tweet at this time:")
if 0 < len(tweet):
try:
twitter.update_status(status=tweet)
print("Successfully tweeted", tweet)
except TwythonError as Error:
print("Could not authenticate with the Twitter API. Your API is probably set to Read-Only.")
print(format(Error))
else:
print("Not tweeting anything.")
# Cleanup
del tweet
# Delete last tweet
delete = int(input("Enter the number of last tweets you wish to delete:"))
if 0 < delete:
timeline = twitter.get_home_timeline()
counter = len(timeline)
if delete > counter:
print("Cannot delete more items than are in the timeline. Not deleting anything.")
else:
counter = 0
while delete > 0:
# Get tweet id
tweet = timeline[counter]
tweetId = tweet['id_str']
tweetText = tweet['text']
# Perform delete action
twitter.destroy_status(id=tweetId)
# Notify
print("Deleted the tweet with the text '", tweetText, "'", sep="")
# Increment
counter += 1
delete -= 1
else:
print("Not deleting anything.")
# Tweet uptime
from datetime import timedelta
try:
with open('/proc/uptime', 'r') as f:
uptime_seconds = float(f.readline().split()[0])
uptime_string = str(timedelta(seconds=uptime_seconds))
except IOError:
print("Cannot tweet uptime, not on a Pi.")
|
[
"[email protected]"
] | |
a5196fdf75c378ca343c8727c8f7e946e3cccf00
|
b8b8722787ee6ee0ebe3eefb6d9e9e0db11a445f
|
/CIFAR10_MLP/main_5.py
|
93f889cdfcaa742288a3b9dc41dfd230478abf24
|
[] |
no_license
|
gaow1423/Machine-Learning-Problems
|
846061975efd63eddcd1e33e401a3aa2b699b875
|
7a00352cdc213234c23bc215cdb326c032bedd05
|
refs/heads/master
| 2020-03-17T12:22:46.607558 | 2018-06-17T07:07:55 | 2018-06-17T07:07:55 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,735 |
py
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
import matplotlib
import math
import matplotlib.pyplot as plt
cuda = torch.cuda.is_available()
print('Using PyTorch version:', torch.__version__, 'CUDA:', cuda)
##data preparation
batch_size = 40
kwargs = {'num_workers': 2, 'pin_memory': True} if cuda else {}
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()]))
train_loader = torch.utils.data.DataLoader(trainset, batch_size, shuffle=True, **kwargs)
validationset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()]))
validation_loader = torch.utils.data.DataLoader(validationset, batch_size, shuffle=False, **kwargs)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(3*32*32, 100)
self.fc1_drop = nn.Dropout(0.2)
self.fc2 = nn.Linear(100,10)
def forward(self, x):
x = x.view(-1, 3*32*32)
x = F.sigmoid(self.fc1(x))
x = self.fc1_drop(x)
return F.log_softmax(self.fc2(x), 1)
#model = Net()
#if cuda:
# model.cuda()
#learningrate = [0.1, 0.01, 0.001, 0.0001]
#for k in learningrate:
# optimizer = optim.SGD(model.parameters(), lr = k, momentum = 0.5)
#print(model)
def train(epoch, k, model, log_interval = 100):
# print (k)
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if (batch_idx <= 999):
if cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer = optim.SGD(model.parameters(), lr = 0.1, momentum = 0.5, weight_decay = k)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
# if batch_idx % log_interval == 0:
# print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx) * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0]))
def validate(loss_vector, accuracy_vector, epochs, model):
model.eval()
val_loss, correct = 0, 0
for batch_idx, (data, target) in enumerate(train_loader):
if (batch_idx > 999):
if cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
output = model(data)
val_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
val_loss /= (10000/batch_size)
loss_vector.append(val_loss)
accuracy = 100. * correct / len(validation_loader.dataset)
accuracy_vector.append(accuracy)
print('\nEpoch {}: Validation set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(epochs, val_loss, correct, len(validation_loader.dataset), accuracy))
def test(loss_vector, accuracy_vector, epochs, model):
model.eval()
val_loss, correct = 0, 0
for (data, target) in validation_loader:
if cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
output = model(data)
val_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
val_loss /= len(validation_loader)
loss_vector.append(val_loss)
accuracy = 100. * correct / len(validation_loader.dataset)
accuracy_vector.append(accuracy)
print('\nEpoch {}: Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(epochs, val_loss, correct, len(validation_loader.dataset), accuracy))
def main():
# learningrate = [0.2, 0.3, 0.4, 0.5]
# for k in learningrate:
# momentum = [0.5, 0.7, 0.9, 1.1]
# for k in momentum:
weightdecay = [0.001, 0.01, 0.1, 1]
for k in weightdecay:
# class Net(nn.Module):
# def __init__(self):
# super(Net, self).__init__()
# self.fc1 = nn.Linear(3*32*32, 100)
# self.fc1_drop = nn.Dropout(k)
# self.fc2 = nn.Linear(100,10)
# def forward(self, x):
# x = x.view(-1, 3*32*32)
# x = F.sigmoid(self.fc1(x))
# x = self.fc1_drop(x)
# return F.log_softmax(self.fc2(x), 1)
model = Net()
if cuda:
model.cuda()
epochs = 150
lossv, accv = [], []
lossv_t, accv_t = [], []
for epochs in range(1, epochs + 1):
train(epochs, k, model)
validate(lossv, accv, epochs, model)
test(lossv_t, accv_t, epochs, model)
l = range(1, epochs + 1)
plt.subplot(1, 3, 1)
plt.plot(l, accv, label = "Training Accuracy with weight decay = %f"%(k))
plt.title('Training Accuracy')
plt.xlabel('x-axis: the Number of Epochs')
plt.ylabel('y-axis: Accuracy of Validation set (%)')
plt.subplot(1, 3, 2)
plt.plot(l, lossv, label = "Training Loss with weight decay = %f"%(k))
plt.title('Training loss curve')
plt.xlabel('x-axis: the Number of Epochs')
plt.ylabel('y-axis: Training loss')
plt.subplot(1, 3, 3)
plt.plot(l, accv_t, label = "Test Accuracy with weight decay = %f"%(k))
plt.title('Testing Accuracy')
plt.xlabel('x-axis: the Number of Epochs')
plt.ylabel('y-axis: Accuracy of Testing set (%)')
# f.plot(l, accv, label = "Training Accuracy with drop out = %f"%(k))
# g.plot(l, lossv, label = "Training Loss with drop out = %f"%(k))
# t.plot(l, accv_t, label = "Test Accuracy with drop out = %f"%(k))
#
# f.title('Training Accuracy')
# f.xlabel('x-axis: the Number of Epochs')
# f.ylabel('y-axis: Accuracy of Validation set (%)')
# f.legend()
# f.show()
#
# g.title('Training loss curve')
# g.xlabel('x-axis: the Number of Epochs')
# g.ylabel('y-axis: Training loss')
# g.legend()
# g.show()
#
# t.title('Testing Accuracy')
# t.xlabel('x-axis: the Number of Epochs')
# t.ylabel('y-axis: Accuracy of Testing set (%)')
# t.legend()
# t.show()
# raw_input()
plt.legend()
plt.show()
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
e454c76d9168502bdf7ef1dbcb7bde577a6bec70
|
95beb714da1e783981295064aaf0b64e5a37c9c0
|
/instagram/tests.py
|
3c2572e3281053fb555c96273e6673f7f4966423
|
[
"MIT"
] |
permissive
|
Joseph-Odhiambo/Insta-clone
|
653105cb3a4d7f2a470cf365444e074f1b4d50ff
|
8ceb4f8ef6e7ea815e39a94554b3410a8e7da5a0
|
refs/heads/master
| 2023-01-01T22:56:22.902366 | 2020-10-22T05:40:59 | 2020-10-22T05:40:59 | 304,582,611 | 0 | 0 |
MIT
| 2020-10-22T05:32:16 | 2020-10-16T09:37:03 |
JavaScript
|
UTF-8
|
Python
| false | false | 1,303 |
py
|
from django.test import TestCase
from .models import Profile, Post
from django.contrib.auth.models import User
# Create your tests here.
class TestProfile(TestCase):
def setUp(self):
self.user = User(username='Joseph')
self.user.save()
self.profile_test = Profile(id=1, name='image', profile_picture='default.jpg', bio='this is a test profile', user=self.user)
def test_instance(self):
self.assertTrue(isinstance(self.profile_test, Profile))
def test_save_profile(self):
self.profile_test.save_profile()
after = Profile.objects.all()
self.assertTrue(len(after) > 0)
class TestPost(TestCase):
def setUp(self):
self.profile_test = Profile(name='Joseph', user=User(username='Joseph'))
self.profile_test.save()
self.image_test = Post(image='default.png', name='test', caption='default test', user=self.profile_test)
def test_insatance(self):
self.assertTrue(isinstance(self.image_test, Post))
def test_save_image(self):
self.image_test.save_image()
images = Post.objects.all()
self.assertTrue(len(images) > 0)
def test_delete_image(self):
self.image_test.delete_image()
after = Profile.objects.all()
self.assertTrue(len(after) < 1)
|
[
"[email protected]"
] | |
c2bad406da73b4a740249a716af90952cf0bb2c0
|
3a3f4477a517c9757432042ceb4939f37762c2a4
|
/12.IntegertoRoman/int_to_roman.py
|
0615bb179a12ee1f678713fbdef56969f29a51bc
|
[] |
no_license
|
marathohoho/leetcode-progress
|
f351ad89905c8e61fd5b5adff62320ce8ba9645d
|
13b298c1074328c130724e328d7c22be642903cb
|
refs/heads/master
| 2020-12-24T01:39:15.117334 | 2020-04-06T20:20:16 | 2020-04-06T20:20:16 | 237,339,061 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,712 |
py
|
"""
Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M.
Symbol Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
For example, two is written as II in Roman numeral, just two one's added together. Twelve is written as, XII, which is simply X + II.
The number twenty seven is written as XXVII, which is XX + V + II.
Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII.
Instead, the number four is written as IV. Because the one is before the five we subtract it making four.
The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used:
I can be placed before V (5) and X (10) to make 4 and 9.
X can be placed before L (50) and C (100) to make 40 and 90.
C can be placed before D (500) and M (1000) to make 400 and 900.
Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from 1 to 3999.
Example 1:
Input: 3
Output: "III"
Example 2:
Input: 4
Output: "IV"
Example 3:
Input: 9
Output: "IX"
Example 4:
Input: 58
Output: "LVIII"
Explanation: L = 50, V = 5, III = 3.
Example 5:
Input: 1994
Output: "MCMXCIV"
Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.
"""
def solution(num) :
values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
numerals = ['M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I']
res = ""
for i, v in enumerate(values) :
res += (num // v) * numerals[i]
num %= v
return res
if __name__ == "__main__":
print(solution(14))
print(solution(73))
print(solution(122))
|
[
"[email protected]"
] | |
e741504fdb3bd4fb34bd13897f719227219ed48e
|
e10a1786d68603bff0393f54f7f94e40d2825a42
|
/MLlab02_logistic_classification/02_1-softmax_test.py
|
fb8c5f359d2bcb116b799274efe4f7dc1da3da4c
|
[] |
no_license
|
yurimkoo/dl_lab
|
80da422b9e29db4e61025d1cc87160b517e1242c
|
3967c6112a24a130bc54da774929f58c5f290b97
|
refs/heads/master
| 2021-01-21T20:38:54.666029 | 2017-05-24T07:37:18 | 2017-05-24T07:37:18 | 92,263,452 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,684 |
py
|
import tensorflow as tf
import numpy as np
#'soft_max.txt' uses 'one-hot encoding'
xy = np.loadtxt('softmax_train.txt', unpack=1, dtype='float32')
x_data = np.transpose(xy[0:3]) #transpose를 사용하는 것은 거울처럼 반대로 뒤집어달라는 뜻
y_data = np.transpose(xy[3:])
X = tf.placeholder('float', [None, 3]) #x1, x2, bias(x0) total 3 (None인 이유는 총 데이터 개수가 몇 개인지 모르기 때문)
Y = tf.placeholder('float', [None, 3]) #A, B, C total 3
W = tf.Variable(tf.zeros([3, 3])) #3x3 matrix (첫번째 값: x가 3개, 두번째 값: y가 3개) // tf.zeros 는 행렬 만드는 함수
hypothesis = tf.nn.softmax(tf.matmul(X, W)) #뒤집는 이유는 계산상의 편의를 위해해
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), reduction_indices=1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for step in range(2001):
sess.run(optimizer, feed_dict={X: x_data, Y: y_data})
if step % 20 == 0:
print(step, sess.run(cost, feed_dict={X: x_data, Y: y_data}), sess.run(W))
print('-----------------')
#test & one-hot encoding
#0: A, 1: B, 2: C
a = sess.run(hypothesis, feed_dict={X: [[1, 11, 7]]})
print(a, sess.run(tf.arg_max(a, 1)))
b = sess.run(hypothesis, feed_dict={X: [[1, 3, 4]]})
print(b, sess.run(tf.arg_max(b, 1)))
c = sess.run(hypothesis, feed_dict={X: [[1, 1, 0]]})
print(c, sess.run(tf.arg_max(c, 1)))
all = sess.run(hypothesis, feed_dict={X: [[1, 11, 7], [1, 3, 4], [1, 1, 0]]})
print(all, sess.run(tf.arg_max(all, 1)))
|
[
"[email protected]"
] | |
ecb2abc4963884e24944a06ebcf5ef842448978d
|
95bebfc06f69425706cf18b717e6b4341373bc30
|
/anagram.py
|
6212e6c237f6e41af84b6696ebcd2bd95e9231d6
|
[] |
no_license
|
vinodrajendran001/python-interview-prep
|
9200a8f3076ab1e0a3325f4a3814f811f3c0757c
|
80143a4b2b2957b6aff15b0b225f192c04dd1461
|
refs/heads/master
| 2021-01-12T06:52:32.266606 | 2016-12-23T04:01:02 | 2016-12-23T04:01:02 | 76,851,795 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,513 |
py
|
# O(n^2)
def getstr1(a, b):
c = ""
d = ""
if len(a) == len(b):
for i in range(len(a)):
for j in range(len(b)):
if a[i] == b[j]:
c = c + b[j]
if a == c:
print "given 2 text is anagram"
else:
print "not anagram"
else:
print "length is not same"
# It is O(nlogn) because we use sort()
def getstr2(a, b):
s1 = list(a)
s2 = list(b)
s1.sort()
s2.sort()
pos = 0
matches = True
while pos < len(s1) and matches:
if s1[pos] == s2[pos]:
matches = True
pos = pos + 1
else:
matches = False
return matches
# O(n)
def getstr3(a, b):
total_a = 0
for i in range(len(a)):
total_a = total_a + ord(a[i])
total_b = 0
for j in range(len(b)):
total_b = total_b + ord(b[j])
if total_b == total_a:
print "it is anagram"
else:
print "not anagram"
'''
Given two strings, a and b, that may or may not be of the same length,
determine the minimum number of character deletions required to make them
anagrams. Any characters can be deleted from either of the strings
e.g. str1 : cde
str2 : abc
result : 4
'''
def minanagram(a, b):
c1 = [0]*26
c2 = [0]*26
for i in range(len(a)):
pos = ord(a[i]) - ord('a')
c1[pos] = c1[pos] + 1
for i in range(len(b)):
pos = ord(b[i]) - ord('a')
c2[pos] = c2[pos] + 1
j=0
count = 0
print c1
print c2
while j<26:
count = count + abs(c1[j]-c2[j])
j = j + 1
return count
print minanagram('cdef','abc')
getstr1("python","typhon")
print(getstr2("python","typhon"))
getstr3("typhon","python")
|
[
"[email protected]"
] | |
10061e9d1ee1fd83d00916d518364042992e220e
|
784ce7c5c3f08602cf0d4b3a80ec74d8e07990a1
|
/web/models.py
|
358465843bd033dd80eaab90527c19011b4fe5ce
|
[] |
no_license
|
lcdevelop/shareditor
|
1a05e558a2cbd76c5272f7d0d43222b5a47bc139
|
318d8b2c77b8a8065399aeeab7e827f74c6abec0
|
refs/heads/master
| 2022-03-30T07:40:32.876433 | 2020-01-20T14:36:20 | 2020-01-20T14:36:20 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,079 |
py
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models
from ckeditor_uploader.fields import RichTextUploadingField
class Subject(models.Model):
name = models.CharField(max_length=255, verbose_name='类别名称')
introduce = models.CharField(max_length=255, verbose_name='类别简介')
image = models.ImageField(max_length=255, verbose_name='类别图片', null=True)
class Meta:
verbose_name_plural = '类别'
def __unicode__(self):
return self.name
class Tag(models.Model):
name = models.CharField(max_length=255, verbose_name='标签名称')
image = models.ImageField(max_length=255, verbose_name='标签图片', null=True)
sort = models.IntegerField(verbose_name='排序越大越靠前', default=0)
show = models.IntegerField(verbose_name='是否展示在首页', default=1)
def get_latest_blogpost(self, count=5):
return self.blogpost_set.filter(verify=True).order_by('id').reverse()[0:count]
class Meta:
verbose_name_plural = '标签'
def __unicode__(self):
return self.name
class BlogPost(models.Model):
id = models.AutoField(primary_key=True)
title = models.CharField(max_length=255, verbose_name='文章标题')
image = models.ImageField(max_length=255, verbose_name='文章图片', null=True)
abstract = models.CharField(max_length=255, verbose_name='文章摘要', null=True)
body = RichTextUploadingField(config_name='default', verbose_name='文章内容')
create_time = models.DateTimeField(verbose_name='创建时间')
subject = models.ForeignKey(Subject, verbose_name='类别', null=True)
tags = models.ManyToManyField(Tag, verbose_name='标签', null=True)
pv = models.IntegerField(verbose_name='pv', default=0)
verify = models.BooleanField(verbose_name='是否生效', default=False)
def get_simple_title(self):
return self.title.replace(self.tags.first().name, '')
class Meta:
verbose_name_plural = '文章'
def __unicode__(self):
return self.title
class Chat(models.Model):
client_ip = models.CharField(max_length=16, verbose_name='用户ip')
message = models.TextField(verbose_name='说的话')
talker = models.IntegerField(verbose_name='说话者:0-机器人;1-用户')
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)
class CorpusQuestion(models.Model):
text = models.CharField(max_length=512, verbose_name='问')
bad = models.IntegerField(verbose_name='踩', default=0)
is_del = models.IntegerField(verbose_name='1-删除;0-正常', default=0)
def __unicode__(self):
return self.text
class CorpusAnswer(models.Model):
text = models.CharField(max_length=512, verbose_name='答')
like = models.IntegerField(verbose_name='点赞量', default=0)
is_del = models.IntegerField(verbose_name='1-删除;0-正常', default=0)
question = models.ForeignKey(CorpusQuestion, verbose_name='问题')
def __unicode__(self):
return self.text
|
[
"[email protected]"
] | |
d57bda58d4f2cfac8a38db31dece06b03b25335f
|
843b13d64b591ea48126a1a68c37dab663af8958
|
/french_lm/dictionary.py
|
4c5e15f133a8a5e11747e1c748360476e4b709cb
|
[] |
no_license
|
AmaMidzu/say-it-right
|
ac5fd998abd90c3539d2121abc52a0a85b5c1aed
|
1fb05bbbaa8236fb5f489f3dada2b3fefa58bd3b
|
refs/heads/master
| 2021-01-12T01:29:32.289505 | 2017-12-01T01:31:33 | 2017-12-01T01:31:33 | 78,392,748 | 0 | 0 | null | 2017-01-09T04:05:57 | 2017-01-09T04:05:57 | null |
UTF-8
|
Python
| false | false | 1,082 |
py
|
# -*- coding: latin-1 -*-
import csv
with open('Lexique381.csv') as infile:
reader = csv.reader(infile)
#skips a couple phrase but it's negligible comparitively
mydict = {row[0]:row[1] for row in reader if (len(row[0].split()) ==1 and row[0].isalpha())}
mapping = {
'\xa7': 'o~',
'1': '9~',
'\xb0' : '@',
'2' : '2',
'5' : 'e~',
'9' : '9',
'8' : 'H',
'@' : 'a~',
'E' : 'E',
'G' : 'N',
'O': 'O',
'N' : 'J',
'S' : 'S',
'R' : 'R',
'Z' : 'Z',
'a' : 'a',
'b' : 'b',
'e' : 'e',
'd' : 'd',
'g' : 'g',
'f' : 'f',
'i' :'i',
'k' : 'k',
'j' : 'j',
'm' : 'm',
'l' : 'l',
'o' : 'o',
'n' : 'n',
'p' : 'p',
's' : 's',
'u' : 'u',
't' : 't',
'w' : 'w',
'v' : 'v',
'y': 'y',
'x': 'x',
'z': 'z'
}
phons = set()
with open('dict/lexicon.txt', 'w') as outfile:
for k in mydict.keys():
phon = mydict[k]
s = ""
for char in phon:
s += mapping[char] + " "
phons.add(mapping[char])
s = s.strip()
outfile.write(k + " " + s+'\n')
outfile.close()
with open('dict/phones.txt', 'w') as outfile:
for p in phons:
outfile.write(p+'\n')
outfile.close()
|
[
"[email protected]"
] | |
3825b458baa098aaab3dae1806870377a5cbf625
|
e16d41602b9887c814ae3ea5615f2734f15cdf50
|
/unitTest/myfun.py
|
d667bdc2da29531c20b24441a912f9dc26e5ebed
|
[] |
no_license
|
tomreddle/vip3test
|
32183d652c8847b5fded7c4f1b4740f09b5fc850
|
ecc2e6be0503235a1fcfd7447d5722816ffcfe8c
|
refs/heads/master
| 2020-07-30T21:38:23.636803 | 2019-11-20T13:08:11 | 2019-11-20T13:08:11 | 210,367,046 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 153 |
py
|
import unittest
def add(a, b):
return a + b
def plus(a, b):
return a - b
def mul(a, b):
return a * b
def div(a, b):
return a / b
|
[
"[email protected]"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.