blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
d4c73b518210b00ff4f14bb7bf1b7d93e8c7e2fd
9ed987c683b925b505bf7fa258cdf48d4962b6b0
/P0/Sin título0.py
8ed1625247aaa31a89582b4455015d450bc21f6c
[]
no_license
victory06/AA
1789ee9efeb3b9ebc68275262e7eaf8da3d0bdf3
1d0bcc9edd4b425ab68145ddcad446bbddf40b77
refs/heads/master
2023-04-20T15:47:47.876228
2021-05-10T07:53:01
2021-05-10T07:53:01
339,379,562
0
0
null
null
null
null
UTF-8
Python
false
false
711
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 24 18:02:50 2020 @author: victor """ import numpy as np import matplotlib.pyplot as plt # Create data N = 60 g1 = (0.6 + 0.6 * np.random.rand(N), np.random.rand(N)) g2 = (0.4+0.3 * np.random.rand(N), 0.5*np.random.rand(N)) g3 = (0.3*np.random.rand(N),0.3*np.random.rand(N)) data = (g1, g2, g3) colors = ("red", "green", "blue") groups = ("coffee", "tea", "water") # Create plot fig = plt.figure() ax = fig.add_subplot(1, 1, 1) for data, color, group in zip(data, colors, groups): x, y = data ax.scatter(x, y, alpha=0.8, c=color, edgecolors='none', s=30, label=group) plt.title('Matplot scatter plot') plt.legend(loc=2) plt.show()
7af5765fa5c6edb401f7b850aa3101fbeaafd7f3
e825640a5d087fb0e14267111dda4fe010224a3a
/multiapp/helpers/multiapp.py
b25c3163809f8b7eccf466bcd8226f80406be5db
[]
no_license
Nhiemth1985/PyPortfolioAnalytics
c2ee64a47fb58654528353cb8796a96eb6ed8d60
7f210c98b1dcc6f2a157372b34664d8d163a2874
refs/heads/master
2023-09-03T15:22:18.493060
2021-10-17T18:22:58
2021-10-17T18:22:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,366
py
"""Frameworks for running multiple Streamlit applications as a single app. https://github.com/upraneelnihar/streamlit-multiapps """ import streamlit as st class MultiApp: """Framework for combining multiple streamlit applications. Usage: def foo(): st.title("Hello Foo") def bar(): st.title("Hello Bar") app = MultiApp() app.add_app("Foo", foo) app.add_app("Bar", bar) app.run() It is also possible keep each application in a separate file. import foo import bar app = MultiApp() app.add_app("Foo", foo.app) app.add_app("Bar", bar.app) app.run() """ def __init__(self): self.apps = [] def add_app(self, title, func): """Adds a new application. Parameters ---------- func: the python function to render this app. title: title of the app. Appears in the dropdown in the sidebar. """ self.apps.append({ "title": title, "function": func }) def run(self): st.title('Py Portfolio Analytics') app = st.selectbox( 'Navigate', self.apps, format_func=lambda app: app['title']) st.write('---') app['function']()
c5968b91f1e8556b70007f764784c56df35cfef6
2c89037666a3c3c9be55b53055c73aa9fcbde2b7
/webrobot/app/main/service/user_service.py
1aa181ef641092046126c96166d66c61d9b54523
[ "MIT" ]
permissive
kakawaa/Auto-Test-System
844284de1eb5fac8fa8c5318371c99991caff62d
76b0690e4e49769ec5d6e65ab6c499396880c0bd
refs/heads/master
2020-06-17T11:42:38.121124
2019-07-05T03:32:39
2019-07-05T03:32:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,451
py
# import uuid import datetime import os from pathlib import Path from app.main import db from app.main.model.database import User, Organization from task_runner.runner import start_threads from ..config import get_config from ..util.errors import * from ..util.identicon import * USERS_ROOT = Path(get_config().USERS_ROOT) def save_new_user(data, admin=None): user = User.objects(email=data['email']).first() if not user: new_user = User( # public_id=str(uuid.uuid4()), email=data['email'], name=data.get('username', ''), registered_on=datetime.datetime.utcnow(), roles=data.get('roles', ['admin']), avatar=data.get('avatar', ''), introduction=data.get('introduction', '') ) new_user.password = data['password'] try: new_user.save() except Exception as e: print(e) return error_message(EINVAL, 'Field validating for User failed'), 401 user_root = USERS_ROOT / data['email'] try: os.mkdir(user_root) except FileExistsError as e: return error_message(EEXIST), 401 try: os.mkdir(user_root / 'test_results') except FileExistsError as e: return error_message(EEXIST), 401 if new_user.avatar == '': img = render_identicon(hash(data['email']), 27) img.save(user_root / ('%s.png' % new_user.id)) new_user.avatar = '%s.png' % new_user.id if new_user.name == '': new_user.name = new_user.email.split('@')[0] if not admin: organization = Organization(name='Personal') organization.owner = new_user organization.path = new_user.email organization.save() new_user.organizations = [organization] new_user.save() start_threads(new_user) return generate_token(new_user) else: return error_message(USER_ALREADY_EXIST), 409 def get_all_users(): return User.objects() def get_a_user(user_id): return User.objects(pk=user_id).first() def generate_token(user): try: # generate the auth token auth_token = User.encode_auth_token(str(user.id)) return error_message(SUCCESS, token=auth_token.decode()), 201 except Exception as e: print(e) return error_message(UNKNOWN_ERROR), 401
c9c4d9cec089efc390d4bc9ec3d75c7bd405ae1b
4df17daecb32fd5ec6ae6a76ba6c9f5e58702203
/10-06/Factory/Factory_python/Factory.py
14f1a6bbc9f1371b216a045f2eda88ee44bc686b
[]
no_license
celinalopez/DisenoDeSistemas
3ea29db526105a4bd2db44c70c4db8680ce68f1e
273fa9f800479285cd0d3e2a3ebe0561bd7469de
refs/heads/main
2023-08-24T18:23:21.669060
2021-11-04T04:46:52
2021-11-04T04:46:52
409,076,707
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
from pizzas import Muzzarella, Especial, Pepperonni, CuatroQuesos class PizzaFactory(): @staticmethod def pedir_pizza(tipo_pizza): if tipo_pizza == 'Muzzarella': return Muzzarella() elif tipo_pizza == 'Especial': return Especial() elif tipo_pizza == 'Pepperonni': return Pepperonni() elif tipo_pizza == 'CuatroQuesos': return CuatroQuesos()
ab2ac02cd6537896ff4fb77625eddfaab4018631
bc4554057c38800a8e6b69b569c053e35018b6bb
/tensorflow/src/main/python/service_pb2.py
28c04ccf89d20b07451e71b3ddfecd1ea6dc369d
[ "Apache-2.0" ]
permissive
yaozhang2016/deepwater
c9c4249371733df38bcb3e9aeb719d23500e6774
861a2dbeffeafab83dd53956deeb4f8193b9cb2e
refs/heads/master
2020-09-30T14:59:21.131376
2017-12-28T19:45:59
2017-12-28T19:45:59
73,511,061
0
0
Apache-2.0
2017-12-28T19:46:00
2016-11-11T20:59:18
C++
UTF-8
Python
false
true
6,555
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: service.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='service.proto', package='deepwater', syntax='proto3', serialized_pb=_b('\n\rservice.proto\x12\tdeepwater\"\r\n\x0bPingRequest\"\x08\n\x06Status2>\n\x07Service\x12\x33\n\x04Ping\x12\x16.deepwater.PingRequest\x1a\x11.deepwater.Status\"\x00\x42!\n\x10\x61i.h2o.deepwaterB\x0bGRPCServiceP\x01\x62\x06proto3') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _PINGREQUEST = _descriptor.Descriptor( name='PingRequest', full_name='deepwater.PingRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=28, serialized_end=41, ) _STATUS = _descriptor.Descriptor( name='Status', full_name='deepwater.Status', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=43, serialized_end=51, ) DESCRIPTOR.message_types_by_name['PingRequest'] = _PINGREQUEST DESCRIPTOR.message_types_by_name['Status'] = _STATUS PingRequest = _reflection.GeneratedProtocolMessageType('PingRequest', (_message.Message,), dict( DESCRIPTOR = _PINGREQUEST, __module__ = 'service_pb2' # @@protoc_insertion_point(class_scope:deepwater.PingRequest) )) _sym_db.RegisterMessage(PingRequest) Status = _reflection.GeneratedProtocolMessageType('Status', (_message.Message,), dict( DESCRIPTOR = _STATUS, __module__ = 'service_pb2' # @@protoc_insertion_point(class_scope:deepwater.Status) )) _sym_db.RegisterMessage(Status) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\020ai.h2o.deepwaterB\013GRPCServiceP\001')) import grpc from grpc.beta import implementations as beta_implementations from grpc.beta import interfaces as beta_interfaces from grpc.framework.common import cardinality from grpc.framework.interfaces.face import utilities as face_utilities class ServiceStub(object): def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Ping = channel.unary_unary( '/deepwater.Service/Ping', request_serializer=PingRequest.SerializeToString, response_deserializer=Status.FromString, ) class ServiceServicer(object): def Ping(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_ServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'Ping': grpc.unary_unary_rpc_method_handler( servicer.Ping, request_deserializer=PingRequest.FromString, response_serializer=Status.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'deepwater.Service', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) class BetaServiceServicer(object): """The Beta API is deprecated for 0.15.0 and later. It is recommended to use the GA API (classes and functions in this file not marked beta) for all further purposes. This class was generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0.""" def Ping(self, request, context): context.code(beta_interfaces.StatusCode.UNIMPLEMENTED) class BetaServiceStub(object): """The Beta API is deprecated for 0.15.0 and later. It is recommended to use the GA API (classes and functions in this file not marked beta) for all further purposes. This class was generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0.""" def Ping(self, request, timeout, metadata=None, with_call=False, protocol_options=None): raise NotImplementedError() Ping.future = None def beta_create_Service_server(servicer, pool=None, pool_size=None, default_timeout=None, maximum_timeout=None): """The Beta API is deprecated for 0.15.0 and later. It is recommended to use the GA API (classes and functions in this file not marked beta) for all further purposes. This function was generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0""" request_deserializers = { ('deepwater.Service', 'Ping'): PingRequest.FromString, } response_serializers = { ('deepwater.Service', 'Ping'): Status.SerializeToString, } method_implementations = { ('deepwater.Service', 'Ping'): face_utilities.unary_unary_inline(servicer.Ping), } server_options = beta_implementations.server_options(request_deserializers=request_deserializers, response_serializers=response_serializers, thread_pool=pool, thread_pool_size=pool_size, default_timeout=default_timeout, maximum_timeout=maximum_timeout) return beta_implementations.server(method_implementations, options=server_options) def beta_create_Service_stub(channel, host=None, metadata_transformer=None, pool=None, pool_size=None): """The Beta API is deprecated for 0.15.0 and later. It is recommended to use the GA API (classes and functions in this file not marked beta) for all further purposes. This function was generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0""" request_serializers = { ('deepwater.Service', 'Ping'): PingRequest.SerializeToString, } response_deserializers = { ('deepwater.Service', 'Ping'): Status.FromString, } cardinalities = { 'Ping': cardinality.Cardinality.UNARY_UNARY, } stub_options = beta_implementations.stub_options(host=host, metadata_transformer=metadata_transformer, request_serializers=request_serializers, response_deserializers=response_deserializers, thread_pool=pool, thread_pool_size=pool_size) return beta_implementations.dynamic_stub(channel, 'deepwater.Service', cardinalities, options=stub_options) # @@protoc_insertion_point(module_scope)
56a9016f9048bf93ced9d3230e3e07125c5674b2
01bd00e6498190aac53210689c111d72018956fa
/companies/migrations/0047_auto_20190917_1011.py
a0c9fdef406a96c4ea5f7cbf5a40000ea2755162
[]
no_license
dchaplinsky/edrdr
0494b31fe3a0ce54d0cf087fb11ef709cb002810
e9fd5295f8c7ca7db81fce2427456e779ff6637e
refs/heads/master
2022-06-01T07:01:59.049162
2020-10-12T08:04:42
2020-10-12T08:04:42
122,268,695
0
1
null
2022-04-22T20:52:45
2018-02-20T23:14:48
CSS
UTF-8
Python
false
false
571
py
# Generated by Django 2.2.3 on 2019-09-17 10:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('companies', '0046_pepowner_person_type'), ] operations = [ migrations.AddField( model_name='companyrecord', name='charter_capital', field=models.FloatField(default=None, null=True), ), migrations.AddField( model_name='companyrecord', name='reg_date', field=models.DateField(null=True), ), ]
8a90af3d8f8303466537548fe2ee18c2d1f3d983
3d48edf0c7335be78cdfb27764faae78f5b92270
/async_property/cached.py
4c1fafb08e39a01b6046054e2e8fe00dacb71b25
[ "MIT" ]
permissive
18600575648/async_property
fc051acb291dfe7245d874974f6486311816da8c
9991fe614e89c04f5d9d93e150afe6cb10a42392
refs/heads/master
2023-07-06T10:11:01.917887
2023-07-03T17:22:23
2023-07-03T17:22:23
468,599,873
0
0
MIT
2023-09-05T07:44:36
2022-03-11T03:52:48
Python
UTF-8
Python
false
false
3,948
py
import asyncio import functools from collections import defaultdict from async_property.proxy import AwaitableOnly, AwaitableProxy is_coroutine = asyncio.iscoroutinefunction ASYNC_PROPERTY_ATTR = '__async_property__' def async_cached_property(func, *args, **kwargs): assert is_coroutine(func), 'Can only use with async def' return AsyncCachedPropertyDescriptor(func, *args, **kwargs) class AsyncCachedPropertyInstanceState: def __init__(self): self.cache = {} self.lock = defaultdict(asyncio.Lock) __slots__ = 'cache', 'lock' class AsyncCachedPropertyDescriptor: def __init__(self, _fget, _fset=None, _fdel=None, field_name=None): self._fget = _fget self._fset = _fset self._fdel = _fdel self.field_name = field_name or _fget.__name__ functools.update_wrapper(self, _fget) self._check_method_sync(_fset, 'setter') self._check_method_sync(_fdel, 'deleter') def __set_name__(self, owner, name): self.field_name = name def __get__(self, instance, owner): if instance is None: return self if self.has_cache_value(instance): return self.already_loaded(instance) return self.not_loaded(instance) def __set__(self, instance, value): if self._fset is not None: self._fset(instance, value) self.set_cache_value(instance, value) def __delete__(self, instance): if self._fdel is not None: self._fdel(instance) self.del_cache_value(instance) def setter(self, method): self._check_method_name(method, 'setter') return type(self)(self._fget, method, self._fdel, self.field_name) def deleter(self, method): self._check_method_name(method, 'deleter') return type(self)(self._fget, self._fset, method, self.field_name) def _check_method_name(self, method, method_type): if method.__name__ != self.field_name: raise AssertionError( f'@{self.field_name}.{method_type} name must match property name' ) def _check_method_sync(self, method, method_type): if method and is_coroutine(method): raise AssertionError( f'@{self.field_name}.{method_type} must be synchronous' ) def get_instance_state(self, instance): try: return getattr(instance, ASYNC_PROPERTY_ATTR) except AttributeError: state = AsyncCachedPropertyInstanceState() object.__setattr__(instance, ASYNC_PROPERTY_ATTR, state) return state def get_lock(self, instance): lock = self.get_instance_state(instance).lock return lock[self.field_name] def get_cache(self, instance): return self.get_instance_state(instance).cache def has_cache_value(self, instance): cache = self.get_cache(instance) return self.field_name in cache def get_cache_value(self, instance): cache = self.get_cache(instance) return cache[self.field_name] def set_cache_value(self, instance, value): cache = self.get_cache(instance) cache[self.field_name] = value def del_cache_value(self, instance): cache = self.get_cache(instance) del cache[self.field_name] def get_loader(self, instance): @functools.wraps(self._fget) async def load_value(): async with self.get_lock(instance): if self.has_cache_value(instance): return self.get_cache_value(instance) value = await self._fget(instance) self.__set__(instance, value) return value return load_value def already_loaded(self, instance): return AwaitableProxy(self.get_cache_value(instance)) def not_loaded(self, instance): return AwaitableOnly(self.get_loader(instance))
821bcebfcedc6d629c6e2fbce307378367cc9129
1c88eef044c7ca83b545001e123b8bf064884bb5
/palindrome.py
465ca3b80f8bfacd18257869beb6ec3ec3ac0710
[]
no_license
JacobDuvall/demosPy
05329592ad8526d0d72201a68faf7c8234774f73
c039943869d3a2cd62c4b6ff759857d3b5e7054e
refs/heads/master
2020-06-17T21:48:06.066695
2019-07-09T20:04:36
2019-07-09T20:04:36
196,067,803
0
0
null
null
null
null
UTF-8
Python
false
false
1,409
py
import unittest def digits(x): """Convert an integer into a list of digits. Args: x: The number whose digits we want. Returns: A list of the digits, in order, of ``x``. >>> digits(4586378) [8, 7, 3, 6, 8, 5, 4] """ digs = [] while x != 0: div, mod = divmod(x, 10) digs.append(mod) x = div return digs def is_palindrome(x): """Determine if an integer is a palindrome. Args: x: The number to check for palindromicity Returns: True if the digits of ``x`` are a palindrome, False otherwise. >>> is_palindrome(1234) False >>> is_palindrome(2468642) True """ digs = digits(x) for f, r in zip(digs, reversed(digs)): if f != r: return False return True class Tests(unittest.TestCase): """Tests for the ``is_palindrome()`` function.""" def test_negative(self): "Check that it returns False correctly." self.assertFalse(is_palindrome(1234)) def test_positive(self): "Check that it returns True correctly." self.assertTrue(is_palindrome(1234321)) def test_single_digit(self): "Check that it works for single digit numbers." for i in range(10): self.assertTrue(is_palindrome(i)) if __name__ == '__main__': unittest.main()
f56c028822bfdd5126fdc099e68d3428e87abf7e
4762812376ef609248cbfad1d9b7586b3046877b
/ex4.py
f23947aa72fdfd443aa14370a14fddf799637527
[]
no_license
Evansbee/Euler
8fa53c330d2de9d174dc4eb92e937a45d6c93d03
ca5ab80b291e47dcccb2b71be9b6f7749fab3c5d
refs/heads/master
2021-01-10T20:20:30.094465
2012-07-09T20:36:21
2012-07-09T20:36:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
328
py
def isPalindromic(number): forward = str(number) for i in range(0,len(forward)/2): if forward[i] != forward[len(forward)-1-i]: return False return True large = 0 for i in range(100,999): for j in range(100,999): if isPalindromic(i * j) and i*j>large: large = i*j print large
94ec66eea7c4ae730b2e71fc18b4f51f42d5626a
8f11b828a75180161963f082a772e410ad1d95c6
/packages/python/ram/ai/__init__.py
7fc0cd75962ad19cb0295be679c48e2ac7cb2ab8
[]
no_license
venkatarajasekhar/tortuga
c0d61703d90a6f4e84d57f6750c01786ad21d214
f6336fb4d58b11ddfda62ce114097703340e9abd
refs/heads/master
2020-12-25T23:57:25.036347
2017-02-17T05:01:47
2017-02-17T05:01:47
43,284,285
0
0
null
2017-02-17T05:01:48
2015-09-28T06:39:21
C++
UTF-8
Python
false
false
282
py
# Copyright (C) 2007 Maryland Robotics Club # Copyright (C) 2007 Joseph Lisee <[email protected]> # All rights reserved. # # Author: Joseph Lisee <[email protected]> # File: packages/python/ram/ai/__init__.py # To allow the registration of SubsystemMakers #import ram.ai.state as _state
4f87ef787f99622218a8f9229d6cbec20706919e
ad08d9c54500dde36e3067a9e1781d5ed7eff2f5
/app/utils/tests/test_xmlutils.py
938086a0e9c289d4c700e49de24f6ae8882988c4
[ "MIT" ]
permissive
a410202049/flask_base_plus
0930ff9c1cc9f469e1915c46759a31300ee16cb2
c04ce546f02073c037dcfa6304c11c91dd3f6e48
refs/heads/master
2023-08-17T05:54:54.793871
2023-08-08T07:55:27
2023-08-08T07:55:27
141,976,633
0
0
null
null
null
null
UTF-8
Python
false
false
2,246
py
#!/usr/bin/env python # -*- coding:utf-8 -*- from __future__ import absolute_import from __future__ import unicode_literals from test.unit.base import BaseTestCase from utils.xmlutils import XMLUtils class XMLUtilsTestCase(BaseTestCase): """ XMLUtilsTestCase """ def setUp(self): pass def tearDown(self): pass def test_xml2json(self): xml_str = """ <BOSFXII xmlns="http://www.bankofshanghai.com/BOSFX/2010/08" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.bankofshanghai.com/BOSFX/2010/08 BOSFX2.0.xsd"> <XXXRq> <CommonRqHdr> <SPName>CBIB</SPName> <RqUID>20150324800148246569</RqUID> <ClearDate>20160331</ClearDate> <TranDate>20160331</TranDate> <TranTime>094338</TranTime> <ChannelId/> </CommonRqHdr> <SubAcctNo>11022133</SubAcctNo> <ProductCd>zzzzzz</ProductCd> <Amount>11.02</Amount> <Currency>156</Currency> <TheirRef>AAA子账户转第三方(带赎回)</TheirRef> <Purpose>AAA赎回</Purpose> <Attach/> <MemoInfo/> <KoalB64Cert/> <Signature/> </XXXRq> </BOSFXII> """ result = XMLUtils.xml2json(xml_str, need_dict=True) self.assertEquals(result['BOSFXII']['XXXRq']['CommonRqHdr']['SPName'], 'CBIB') def test_json2xml(self): """ json 字典必须有根元素 :return: """ json_data = { "planets": { "planet": [ { "name": "Earth", "radius": "6,371km" }, { "name": "Jupiter", "radius": "69,911km" }, { "name": "Mars", "radius": "3,390km" } ], "@xmlns": "http://www.bankofshanghai.com/BOSFX/2010/08" }, } result = XMLUtils.json2xml(json_data) print result
96f433aced319800863be7a4873988b2e33c95bd
93c2f6a2eb88b67bc05f44ce901bc97878baddae
/flask_app/demo.py
ae4ec7c94074635d5a7c1fbc21abc6054a355bea
[]
no_license
bkwi/wsgi-mux
dcbb827935e5bc7d646a2e8f83cca20f7d8a5bdc
386993473afcb75496ce2ef2d117d9619faa68f1
refs/heads/master
2021-01-12T03:20:22.602615
2017-01-06T10:17:56
2017-01-06T10:17:56
78,196,713
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
from flask import Flask, jsonify app = Flask(__name__) @app.route("/") def hello(): return jsonify({'hello': 'flask'}) if __name__ == '__main__': app.run()
307c00d035a25804ae38db2b5307c2a05f375b30
629bdff88aa44482487db5759607cff042e192b0
/users/views.py
88f000e048fe6607d671a8e1dc2e63d9c2b1f5d0
[]
no_license
sharkops/LearningDjango1.11
2a51c15efb8a571e2b973642c5272dd5a1d8474a
5a4821eff30a609f48a5c9d39f7294d3913b732b
refs/heads/master
2020-04-01T03:36:19.188854
2018-10-13T12:26:41
2018-10-13T12:26:41
152,828,449
0
0
null
null
null
null
UTF-8
Python
false
false
1,152
py
from django.shortcuts import render, HttpResponse # Create your views here. from django import forms from captcha.fields import CaptchaField from django.contrib.auth.hashers import make_password class CaptchaTestForm(forms.Form): email = forms.EmailField() password = forms.CharField(min_length=6) captcha = CaptchaField(error_messages={ "invalid": "验证码错误" }) def some_view(request): if request.POST: register_form = CaptchaTestForm(request.POST) if register_form.is_valid(): user_name = register_form.cleaned_data.get('email') password = register_form.cleaned_data.get('password') print(user_name, password) password = make_password(password) from users.models import UserProfile UserProfile.objects.create(**{"username": user_name, "email": user_name, "password": password}) return HttpResponse("注册成功") else: register_form = CaptchaTestForm() return render(request, 'register.html', locals())
01cead2a52a45405b93f86e704c848a52bea8b47
46c7e77d103a29f4cf94fea908fff34a2c13c8ad
/run.py
f7ab7cd9ea8f2348a77846c8a484ba51741781cd
[]
no_license
baxtergu/ipe-crawler
b857a64185f3e4ead3f602282ce0d9ec7766e0ac
990e5aa38a65df45881de72d49f5e655b36234cc
refs/heads/master
2021-01-23T09:25:58.819170
2017-09-06T08:26:30
2017-09-06T08:26:30
102,580,328
1
0
null
null
null
null
UTF-8
Python
false
false
78
py
from scrapy import cmdline cmdline.execute("scrapy crawl exhaust_gas".split())
061a7f633a644ce258c8c3f0705117b3af16de49
4cc19ea37ba4b746c34aafc3c1391c54dbef65b3
/src/inner_source/manage.py
9a53b73ee6d62970c15c7bb7c268bf728dc2ad92
[ "Apache-2.0" ]
permissive
innersourcedo/intergrow
d8684d3f7e59dbb874c71f9d3ba814444f1ba74d
7fb0854fc62e5cd719961e6201f73197bc3cd445
refs/heads/master
2020-08-25T04:47:35.420424
2020-01-23T15:08:46
2020-01-23T15:08:46
216,962,847
1
2
Apache-2.0
2020-03-20T21:29:46
2019-10-23T03:46:59
Python
UTF-8
Python
false
false
653
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'inner_source.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
fa06c71dbb665db2798a80f020f94620ea392755
93b7700d0deba59c6752693e9eda9047dd7b92f0
/action/evaluation/eval_classification.py
20580c5e9cfd545e99307c7045f9b939dd7f8af1
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
scape1989/IKEA_ASM_Dataset
238851979d8a1cff53fb7bc41092a0a308043a95
1627ba894c974cf45a653d79598120202ea658b5
refs/heads/master
2022-12-24T10:29:13.705768
2020-09-28T23:57:12
2020-09-28T23:57:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,190
py
# source: ActivityNet: https://github.com/activitynet/ActivityNet/blob/master/Evaluation/eval_classification.py # adapted to python3 and the IKEA ASM dataset import json # import urllib2 import numpy as np import pandas as pd # from utils import get_blocked_videos from eval_utils import interpolated_prec_rec class ANETclassification(object): GROUND_TRUTH_FIELDS = ['version', 'database'] #['database', 'taxonomy', 'version'] PREDICTION_FIELDS = ['results', 'version'] #['results', 'version', 'external_data'] def __init__(self, ground_truth_filename=None, prediction_filename=None, ground_truth_fields=GROUND_TRUTH_FIELDS, prediction_fields=PREDICTION_FIELDS, subset='validation', verbose=False, top_k=3, check_status=True): if not ground_truth_filename: raise IOError('Please input a valid ground truth file.') if not prediction_filename: raise IOError('Please input a valid prediction file.') self.subset = subset self.verbose = verbose self.gt_fields = ground_truth_fields self.pred_fields = prediction_fields self.top_k = top_k self.ap = None self.hit_at_k = None self.check_status = check_status # # Retrieve blocked videos from server. # if self.check_status: # self.blocked_videos = get_blocked_videos() # else: # self.blocked_videos = list() # Import ground truth and predictions. self.ground_truth, self.activity_index = self._import_ground_truth( ground_truth_filename) self.prediction = self._import_prediction(prediction_filename) if self.verbose: print('[INIT] Loaded annotations from {} subset.'.format(subset)) nr_gt = len(self.ground_truth) print('\tNumber of ground truth instances: {}'.format(nr_gt)) nr_pred = len(self.prediction) print('\tNumber of predictions: {}'.format(nr_pred)) def _import_ground_truth(self, ground_truth_filename): """Reads ground truth file, checks if it is well formatted, and returns the ground truth instances and the activity classes. Parameters ---------- ground_truth_filename : str Full path to the ground truth json file. Outputs ------- ground_truth : df Data frame containing the ground truth instances. activity_index : dict Dictionary containing class index. """ with open(ground_truth_filename, 'r') as fobj: data = json.load(fobj) # Checking format if not all([field in data.keys() for field in self.gt_fields]): raise IOError('Please input a valid ground truth file.') # Initialize data frame activity_index, cidx = {}, 0 video_lst, label_lst = [], [] for videoid, v in data['database'].items(): if self.subset != v['subset']: continue # if videoid in self.blocked_videos: # continue for ann in v['annotation']: if ann['label'] not in activity_index: activity_index[ann['label']] = cidx cidx += 1 video_lst.append(videoid) label_lst.append(activity_index[ann['label']]) ground_truth = pd.DataFrame({'video-id': video_lst, 'label': label_lst}) ground_truth = ground_truth.drop_duplicates().reset_index(drop=True) return ground_truth, activity_index def _import_prediction(self, prediction_filename): """Reads prediction file, checks if it is well formatted, and returns the prediction instances. Parameters ---------- prediction_filename : str Full path to the prediction json file. Outputs ------- prediction : df Data frame containing the prediction instances. """ with open(prediction_filename, 'r') as fobj: data = json.load(fobj) # Checking format... if not all([field in data.keys() for field in self.pred_fields]): raise IOError('Please input a valid prediction file.') # Initialize data frame video_lst, label_lst, score_lst = [], [], [] for videoid, v in data['results'].items(): # if videoid in self.blocked_videos: # continue for result in v: label = self.activity_index[result['label']] video_lst.append(videoid) label_lst.append(label) score_lst.append(result['score']) prediction = pd.DataFrame({'video-id': video_lst, 'label': label_lst, 'score': score_lst}) return prediction def wrapper_compute_average_precision(self): """Computes average precision for each class in the subset. """ ap = np.zeros(len(self.activity_index.items())) for activity, cidx in self.activity_index.items(): gt_idx = self.ground_truth['label'] == cidx pred_idx = self.prediction['label'] == cidx ap[cidx] = compute_average_precision_classification( self.ground_truth.loc[gt_idx].reset_index(drop=True), self.prediction.loc[pred_idx].reset_index(drop=True)) return ap def evaluate(self): """Evaluates a prediction file. For the detection task we measure the interpolated mean average precision to measure the performance of a method. """ ap = self.wrapper_compute_average_precision() hit_at_k = compute_video_hit_at_k(self.ground_truth, self.prediction, top_k=self.top_k) avg_hit_at_k = compute_video_hit_at_k( self.ground_truth, self.prediction, top_k=self.top_k, avg=True) if self.verbose: print ('[RESULTS] Performance on ActivityNet untrimmed video ' 'classification task.') print('\tMean Average Precision: {}'.format(ap.mean())) print('\tHit@{}: {}'.format(self.top_k, hit_at_k)) print('\tAvg Hit@{}: {}'.format(self.top_k, avg_hit_at_k)) self.ap = ap self.hit_at_k = hit_at_k self.avg_hit_at_k = avg_hit_at_k ################################################################################ # Metrics ################################################################################ def compute_average_precision_classification(ground_truth, prediction): """Compute average precision (classification task) between ground truth and predictions data frames. If multiple predictions occurs for the same predicted segment, only the one with highest score is matched as true positive. This code is greatly inspired by Pascal VOC devkit. Parameters ---------- ground_truth : df Data frame containing the ground truth instances. Required fields: ['video-id'] prediction : df Data frame containing the prediction instances. Required fields: ['video-id, 'score'] Outputs ------- ap : float Average precision score. """ npos = float(len(ground_truth)) lock_gt = np.ones(len(ground_truth)) * -1 # Sort predictions by decreasing score order. sort_idx = prediction['score'].values.argsort()[::-1] prediction = prediction.loc[sort_idx].reset_index(drop=True) # Initialize true positive and false positive vectors. tp = np.zeros(len(prediction)) fp = np.zeros(len(prediction)) # Assigning true positive to truly grount truth instances. for idx in range(len(prediction)): this_pred = prediction.loc[idx] gt_idx = ground_truth['video-id'] == this_pred['video-id'] # Check if there is at least one ground truth in the video associated. if not gt_idx.any(): fp[idx] = 1 continue this_gt = ground_truth.loc[gt_idx].reset_index() if lock_gt[this_gt['index']] >= 0: fp[idx] = 1 else: tp[idx] = 1 lock_gt[this_gt['index']] = idx # Computing prec-rec tp = np.cumsum(tp).astype(np.float) fp = np.cumsum(fp).astype(np.float) rec = tp / npos prec = tp / (tp + fp) return interpolated_prec_rec(prec, rec) def compute_video_hit_at_k(ground_truth, prediction, top_k=3, avg=False): """Compute accuracy at k prediction between ground truth and predictions data frames. This code is greatly inspired by evaluation performed in Karpathy et al. CVPR14. Parameters ---------- ground_truth : df Data frame containing the ground truth instances. Required fields: ['video-id', 'label'] prediction : df Data frame containing the prediction instances. Required fields: ['video-id, 'label', 'score'] Outputs ------- acc : float Top k accuracy score. """ video_ids = np.unique(ground_truth['video-id'].values) avg_hits_per_vid = np.zeros(video_ids.size) for i, vid in enumerate(video_ids): pred_idx = prediction['video-id'] == vid if not pred_idx.any(): continue this_pred = prediction.loc[pred_idx].reset_index(drop=True) # Get top K predictions sorted by decreasing score. sort_idx = this_pred['score'].values.argsort()[::-1][:top_k] this_pred = this_pred.loc[sort_idx].reset_index(drop=True) # Get labels and compare against ground truth. pred_label = this_pred['label'].tolist() gt_idx = ground_truth['video-id'] == vid gt_label = ground_truth.loc[gt_idx]['label'].tolist() avg_hits_per_vid[i] = np.mean([1 if this_label in pred_label else 0 for this_label in gt_label]) if not avg: avg_hits_per_vid[i] = np.ceil(avg_hits_per_vid[i]) return float(avg_hits_per_vid.mean())
62468571196349acaac805658ec61d5532fcb955
dc4a42ad81013a1fdaa0c6be0559504e17bacb7e
/products/admin.py
a845d9021b184ff03ccdeed387467a77c73d2d28
[]
no_license
deone/eqsupply
15afbda692779431357d2c69475da8503c4728b1
3af726b65c1658d364c6485ad36ef98d5c6e7fc3
refs/heads/master
2020-04-20T05:29:53.020966
2010-05-13T09:16:18
2010-05-13T09:16:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
from django.contrib import admin from eqsupply.products.models import * admin.site.register(Division) admin.site.register(Category) admin.site.register(Product) admin.site.register(Accessory) admin.site.register(ProductVariant)
0f19c8558985ad4cf18f9f3fe0bc103b1b031536
3121a85f6578b849c44a7c23d10454d4965616d2
/blog/forms/article.py
ace0c9c7c08b53f291c2a75184adee899956a521
[]
no_license
myalcins/django-blog-tutorial
1bdaf2ac1437f6b4e25af1c2fdb3799b257701e8
eb7355952b2db164935c5302aecde1331379c515
refs/heads/master
2023-03-28T07:47:09.997745
2021-03-26T13:34:23
2021-03-26T13:34:23
350,349,811
1
0
null
null
null
null
UTF-8
Python
false
false
400
py
from django import forms from blog.models import Article class ArticleForm(forms.ModelForm): schedule_time = forms.DateTimeField(required=False ,input_formats=['%Y/%m/%d %H:%M']) class Meta: model = Article fields = ( 'image', 'title', 'content', 'category', 'schedule_time' )
c4fa34f9aadc2e77c1beedfb47dbd46c1082e9cf
173488cc5a6b58a3d616fa61e150676c7d4937b3
/twentyThirdSuccessorArray.py
b253598013ce8f76eebc6a15901e0cb8f34f354c
[ "MIT" ]
permissive
MSQFuersti/aoc2020
ef0bc2091b0e57704ccace9d15a676b5be0c7025
f5e163c426a6c481d645ace2cc8af7c493306291
refs/heads/master
2023-02-04T04:03:21.559461
2020-12-29T13:04:40
2020-12-29T13:04:40
318,316,081
0
0
MIT
2020-12-07T21:31:28
2020-12-03T20:49:19
Python
UTF-8
Python
false
false
977
py
puzzleInput = '614752839' # puzzleInput = '389125467' labels = [int(char) for char in puzzleInput] labels.extend(list(range(10, 1000001))) successors = {} for index, label in enumerate(labels): successors[label] = labels[index + 1] if index + 1 < len(labels) else labels[0] currentCup = labels[0] for _ in range(10000000): cupOne = successors[currentCup] cupTwo = successors[cupOne] cupThree = successors[cupTwo] takenCups = [cupOne, cupTwo, cupThree] successors[currentCup] = successors[cupThree] destinationCup = currentCup - 1 while True: if destinationCup < 1: destinationCup = 1000000 continue if destinationCup in takenCups: destinationCup = destinationCup - 1 continue break successors[cupThree] = successors[destinationCup] successors[destinationCup] = cupOne currentCup = successors[currentCup] print(successors[1] * successors[successors[1]])
3f4c690093e0de6b4135513bea417fc2a6a5abf2
cd61ab53fd77d9b8e136c3e6fd575266a7450038
/apps/pinkslips/migrations/0013_auto_20180303_2042.py
1d341d1a45151869bdcb55013450da511b8cc825
[]
no_license
vincentereyes/phpslips
c6e6885f4ca67b27da8783014d95a491ce797e64
9fc7c16806618cccbd1a24f957594d0ff8eb12f9
refs/heads/master
2021-01-25T14:55:25.253031
2018-03-03T21:38:30
2018-03-03T21:38:30
123,733,646
0
0
null
null
null
null
UTF-8
Python
false
false
968
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2018-03-03 20:42 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pinkslips', '0012_auto_20180303_0916'), ] operations = [ migrations.AlterField( model_name='conversation', name='latitude', field=models.FloatField(default=121.031851), ), migrations.AlterField( model_name='conversation', name='latitude2', field=models.FloatField(default=121.057307), ), migrations.AlterField( model_name='conversation', name='longitude', field=models.FloatField(default=14.652723), ), migrations.AlterField( model_name='conversation', name='longitude2', field=models.FloatField(default=14.605568), ), ]
f0ec9069cd636274166bcd07ca0cebc104ee447b
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03598/s680963277.py
c8861d19ff2e2ce27d5b6a660a4fb273c93d87c7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
N = int(input()) K = int(input()) x = list(map(int, input().split())) A=[] B=[] for i in range(len(x)): a = min(2*(x[i]), 2*abs(K-x[i])) A.append(a) print(sum(A))
036c944ee8502521b61d3c999781a4203c459970
7287193205f0e660ad99806c32a417a759db7a15
/survey_project/surveys/migrations/0002_surveyquestion_freetext_answer_available.py
6fd48481f913c7f2e1ba5f611e984349ca5e9b5a
[]
no_license
pikkoui/survey
4a8f2df595a60499ccc976b2a2dc4ef88abfd075
d13c6a13abf4e1c18e433e3fd621e031bf430008
refs/heads/master
2023-08-27T21:27:31.271966
2021-11-11T17:33:46
2021-11-11T17:33:46
426,996,308
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
# Generated by Django 2.1.15 on 2021-11-05 09:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('surveys', '0001_initial'), ] operations = [ migrations.AddField( model_name='surveyquestion', name='freetext_answer_available', field=models.BooleanField(default=True), preserve_default=False, ), ]
ee60c445bcd85a698f8701cbcc83850110f22520
f2a41d0f1fb7ef08e4992035c37438d9cd55d8b6
/FreeFishMaster/wsgi.py
405e26a7d6c06e969e9bbf104660f7b4cbb43b61
[ "MIT" ]
permissive
xzengCB/FreeFishMaster
65f2fe116ea91e4ad3bc28bb3a5d6f4b09f06688
14418e108d1a25c56ff2e9801f4256f05f154c67
refs/heads/master
2021-01-01T16:18:18.341137
2017-08-01T05:21:48
2017-08-01T05:21:48
97,806,346
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for FreeFishMaster project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "FreeFishMaster.settings") application = get_wsgi_application()
2d70628d12511e51669b1661da522af5c72fb1a5
40c11c748f159d35cad1bc648509fc23fc7c0a8b
/l10n_py_base/res_currency_rate.py
ed151867088e6262f591a1d5a909226d275299f4
[]
no_license
Icaruspy/addons
db4b1e33e046906aaf485b341d703dfb9b286565
93cb3352abb2998c33399170dd66329e39528a0e
refs/heads/master
2020-12-30T09:38:21.920380
2015-12-13T16:17:48
2015-12-13T16:17:48
39,844,715
0
0
null
null
null
null
UTF-8
Python
false
false
2,219
py
# -*- encoding: utf-8 -*- ################################################################################# # # # Copyright (C) 2009 Renato Lima - Akretion, Gabriel C. Stabel # # # #This program is free software: you can redistribute it and/or modify # #it under the terms of the GNU General Public License as published by # #the Free Software Foundation, either version 3 of the License, or # #(at your option) any later version. # # # #This program is distributed in the hope that it will be useful, # #but WITHOUT ANY WARRANTY; without even the implied warranty of # #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # #GNU General Public License for more details. # # # #You should have received a copy of the GNU General Public License # #along with this program. If not, see <http://www.gnu.org/licenses/>. # ################################################################################# from openerp.osv import osv, fields ############################################################################## # Parceiro Personalizado ############################################################################## class res_currency_rate(osv.osv): _inherit = 'res.currency.rate' _columns = { 'tasa': fields.integer('Tasa Gs', digits=(16,2), required=True ), } # funcion para calcular el ratio estandart de trabajo de openerp # en paraguay se usa el valor de tasa en guaranies def on_change_tasa(self, cr, uid, ids, tasa , rate ): rate3 = rate rate3 = 1.000000000 / tasa return {'value': { 'rate': rate3 } } res_currency_rate() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
07fed4cb0ac0a9c9fe7cf77a4577b118c598fd1f
6147d3da9c7f31a658f13892de457ed5a9314b22
/multithreading/without_threading.py
4f637839a61975629dea515f930117251368c52c
[]
no_license
ashish-bisht/must_do_geeks_for_geeks
17ba77608eb2d24cf4adb217c8e5a65980e85609
7ee5711c4438660db78916cf876c831259109ecc
refs/heads/master
2023-02-11T22:37:03.302401
2021-01-03T05:53:03
2021-01-03T05:53:03
320,353,079
0
1
null
null
null
null
UTF-8
Python
false
false
285
py
import threading import time start = time.perf_counter() def working_on_something(): print("Sleeping for a sec") time.sleep(1) print("Woke up") working_on_something() working_on_something() finish = time.perf_counter() print("total time taken is ", finish - start)
55a67241ba31a2e626f336bfab70b83ce1f840a7
29cf500c7958da5a22829e8da85c5229e6445848
/rent/apps/authentication/models.py
e0d6fe2b451369d10ddc43afe75d2caf0179e412
[ "MIT" ]
permissive
lenileiro/rent-django
86562af09fffe77fbf20a61b0c0981cf8df7cfc2
850d208fd93a7424a5c11b268df6c7c94add518d
refs/heads/develop
2022-12-12T13:25:44.584374
2019-08-24T23:54:48
2019-08-24T23:54:48
201,096,792
1
0
MIT
2022-12-08T06:00:03
2019-08-07T17:32:48
Python
UTF-8
Python
false
false
3,430
py
import re from datetime import datetime, timedelta from django.conf import settings from django.contrib.auth.models import ( AbstractBaseUser, BaseUserManager, PermissionsMixin ) from django.db import models class Utils: @staticmethod def validate_email(email): check_email = User.objects.filter(email=email) email_regex = r'^([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-]+\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$' if not re.search(email_regex, email): raise TypeError("Incorrect email format please try again") if check_email.exists(): raise TypeError("This email has already been used to create a user") return email # Create your models here. class UserManager(BaseUserManager): def create_user(self, name=None, email=None, password=None): """Create and return a `User` with an email, username and password.""" if name is None: raise TypeError('User must have a name.') if email is None: raise TypeError('User must have an email address.') if password is None: raise TypeError('User Account must have a password.') Utils.validate_email(email) user = self.model(name=name, email=self.normalize_email(email)) user.set_password(password) user.save() return user def create_superuser(self, name, email, password): if password is None: raise TypeError('Superuser must have a password.') user = self.create_user(name, email, password) user.is_superuser = True user.is_staff = True user.save() return user def create_owneruser(self, name, email, password): user = self.create_user(name, email, password) user.is_owner = True user.save() return user def create_vendoruser(self, name, email, password, phone=None,contactperson=None): if phone is None: raise TypeError('Vendor Account must have a phone number.') if contactperson is None: raise TypeError('Vendor Account must have a contactperson.') user = self.create_user(name, email, password) user.is_vendor = True user.phone = phone user.contactperson = contactperson user.save() return user class User(AbstractBaseUser, PermissionsMixin): name = models.CharField(max_length=255) email = models.EmailField(db_index=True, unique=True) is_active = models.BooleanField(default=True) is_vendor = models.BooleanField(default=False) is_owner = models.BooleanField(default=False) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now_add=True) phone = models.CharField(default=False, max_length=255) contactperson = models.CharField(default=False, max_length=255) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['name'] objects = UserManager() def __str__(self): return self.email @property def is_SuperUser(self): return self.is_superuser @property def is_Owner(self): return self.is_owner @property def is_Vendor(self): return self.is_vendor
149385687b03ae443a677201627cdcc4ec051156
78e5bd1977cfb8d077a2999cae42a065c13452aa
/kaggle_event_recommendation/event_attendees.py
16b6943e083432543ec58877dc44181bf037134b
[]
no_license
loyalzc/recommendation-system
9ed3f6ea781c6de1e77a50bbd316d87f8970aadd
6ac748e8d1b6fa252fd7188a315f0c4d75216e9a
refs/heads/master
2020-03-13T14:20:32.335425
2019-04-14T13:08:15
2019-04-14T13:08:15
131,156,451
1
1
null
null
null
null
UTF-8
Python
false
false
1,168
py
# -*- coding: utf-8 -*- """ @author: Infaraway @time: 2018/5/10 21:07 @Function: event 热度 活跃度 """ import scipy.sparse as ss import scipy.io as sio from sklearn.preprocessing import normalize class EventAttendees: """ 统计活动 参加和不参加的人数 """ def __init__(self, user_event_entity): num_event = len(user_event_entity.event_index.keys()) self.event_poplarity = ss.dok_matrix((num_event, 1)) with open('data/event_attendees.csv', 'r') as event_att_f: event_att_f.readline() for line in event_att_f.readlines(): cols = line.strip().split(',') event_id = cols[0] if user_event_entity.event_index.__contains__(event_id): event_index = user_event_entity.event_index[event_id] # event 流行度 num_yes - num_no self.event_poplarity[event_index, 0] = len(cols[1].split(' ')) - len(cols[4].split(' ')) self.event_poplarity = normalize(self.event_poplarity, norm='l1', axis=0, copy=False) sio.mmwrite('prep_data/event_popularlity', self.event_poplarity)
f6fd2ac63f906cc9143cc1e76d8f6cdd8f119ab8
b3d0359204431dec3f96a0fc99c5260b9a810c91
/__latest_version.py
9e7f0197ec3ee9e69660392a6526c5ba4efc68ac
[ "MIT" ]
permissive
marcel-valdez/launchpad-helper
d9fef583af8b055ae26dd555dae306775492f760
97682cb547c162ca4cc88ccd003285e59cc4eef1
refs/heads/master
2021-01-19T02:14:21.660848
2016-08-09T18:51:09
2016-08-09T18:51:09
61,316,092
0
0
null
null
null
null
UTF-8
Python
false
false
3,345
py
#!/usr/bin/env python import sys from launchpadlib.launchpad import Launchpad __DEBUG__ = False DISTRO = 'ubuntu' RELEASE = 'trusty' ARCHITECTURE = 'amd64' DISTRO_ARCH_SERIES_URL = 'https://api.launchpad.net/1.0/' + DISTRO + '/' + RELEASE + '/' + ARCHITECTURE ## TODO: Accept multiple app names and get all their versions line per line def get_ppa_archive(launchpad, ppa_url): (prefix, rest_ppa_url) = str.split(ppa_url, ':') (owner_name, package_name) = str.split(rest_ppa_url, '/') owner = launchpad.people[owner_name] return owner.getPPAByName(name = package_name) def get_distro_archive(launchpad, distro_name = DISTRO): distro = launchpad.distributions[distro_name] return distro.main_archive def get_latest_source(archive, app_name, distro_url = DISTRO_ARCH_SERIES_URL): for series in archive.distribution.series.entries: if series['displayname'].lower() == RELEASE.lower(): distro_series = series['self_link'] sources = archive.getPublishedSources( status = 'Published', exact_match = True, source_name = app_name, distro_series = distro_series ) if len(sources) == 0: print("No entries found for app: " + sys.argv[1] + " in archive: " + str(archive)) sys.exit(1) elif __DEBUG__ == True: print("Found " + str(len(sources)) + " matches") for source in sources: print(str(source.display_name)) return sources[0] def get_latest_package(archive, app_name, distro_url = DISTRO_ARCH_SERIES_URL): binaries = archive.getPublishedBinaries( status = 'Published', exact_match = True, binary_name = app_name, distro_arch_series = distro_url ) if len(binaries) == 0: print("No entries found for app: " + sys.argv[1] + " in archive: " + str(archive)) sys.exit(1) elif __DEBUG__ == True: print("Found " + str(len(binaries)) + " matches") for sources in binaries: print(str(sources.display_name)) return binaries[0] def parse_args(): if len(sys.argv) < 2: print("Usage: " + sys.argv[0] + " <app name> [ppa url]") print("Example: " + sys.argv[0] + " solaar ppa:daniel.pavel/solaar") sys.exit(1) app_name = sys.argv[1] ppa_url = None if len(sys.argv) > 2: ppa_url = sys.argv[2] get_url = None if len(sys.argv) > 3: get_url = sys.argv[3].lower() == "--get_url" return { 'app_name': app_name, 'ppa_url': ppa_url, 'get_url': get_url } def print_api(obj): print('lp_attributes: ' + str(sorted(obj.lp_attributes))) print('lp_operations: ' + str(sorted(obj.lp_operations))) print('lp_entries: ' + str(sorted(obj.lp_entries))) print('lp_collections: ' + str(sorted(obj.lp_collections))) def get_archive(ppa_url): launchpad = Launchpad.login_anonymously('launchpad-helper', 'production') if ppa_url != None: return get_ppa_archive(launchpad, ppa_url) else: return get_distro_archive(launchpad) def get_latest_url(archive, app_name): return get_latest_source(archive, app_name).binaryFileUrls()[0] def get_latest_version(archive, app_name): return get_latest_source(archive, app_name).source_package_version if __name__ == '__main__': args = parse_args() archive = get_archive(args['ppa_url']) if args['get_url'] == True: print(get_latest_url(archive, args['app_name'])) else: print(get_latest_version(archive, args['app_name'])) sys.exit(0)
9ab7745e8b4d48edd0fe67af3de20eca60454dcc
f59a3641f488dd40b0af4c0024a252170ab59998
/chap4/p35.py
d89dca31848be92a9ad88a15209c75b1fe2ad076
[]
no_license
ujiuji1259/NLP100
478a5276514d2f21ac5ee5ec9b50f00dcba67d1a
c19f9ba00eec108dbc93d4cb7d33e86f539d3397
refs/heads/master
2023-04-01T23:05:14.376652
2021-04-13T05:21:37
2021-04-13T05:21:37
255,311,319
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
# mecab neko.txt > neko.txt.mecab from p30 import load_mecab_output import collections if __name__ == '__main__': lines = load_mecab_output('neko.txt.mecab') lines = [l['surface'] for line in lines for l in line] counter = collections.Counter(lines) print(counter.most_common())
0d843d4556bf97c40beacc40c239357fa08e4b8a
05263538c3ad0f577cdbbdb9bac87dcf450230ce
/alexa/ask-sdk/ask_sdk_dynamodb/__version__.py
5cfdf120d47b16330d48f329ae8c0e26ce048100
[]
no_license
blairharper/ISS-GoogleMap-project
cea027324fc675a9a309b5277de99fc0265dcb80
3df119036b454a0bb219af2d703195f4154a2471
refs/heads/master
2020-03-21T16:47:21.046174
2018-10-24T08:05:57
2018-10-24T08:05:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,140
py
# # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights # Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the # License. # __pip_package_name__ = 'ask-sdk-dynamodb-persistence-adapter' __description__ = ( 'The ASK SDK DynamoDB Persistence Adapter package provides DynamoDB ' 'Adapter, that can be used with ASK SDK Core, for persistence management') __url__ = 'http://developer.amazon.com/ask' __version__ = '0.1' __author__ = 'Alexa Skills Kit' __author_email__ = '[email protected]' __license__ = 'Apache 2.0' __keywords__ = ['ASK SDK', 'Alexa Skills Kit', 'Alexa', 'ASK SDK Core', 'Persistence', 'DynamoDB'] __install_requires__ = ["boto3", "ask-sdk-core"]
57d50697a8b5a6199f35983afac98b3beb374b0e
af7eb83ef2fb3bcf3b17d2aac656b06269c7784f
/1-abrindoarquivo.py
a7048bb931752e2a8ad40dc5b4adf1953145357b
[]
no_license
pablogonzalezz/curso-python
7a1202d01e452f60a258dd9ea90bcd622a99d8b4
d09059e7df65851d29b69b35f689db5f96090ff8
refs/heads/master
2020-04-10T20:26:36.653910
2018-12-12T04:45:59
2018-12-12T04:45:59
161,268,117
0
0
null
null
null
null
UTF-8
Python
false
false
34
py
arquivo = open("carros.txt", "w")
4de795c8d948abca857de788593e235ee526ab89
3d96fcb008ecbe003bfd92c5b9f51ce526493d27
/railyard/railyard.py
653942862aed8d4f4db609f1976979d3bc2ff5db
[ "MIT" ]
permissive
ktaletsk/railyard
a81da4033f3fba3cb33d0418b234de565e9b76d5
7eb47bb622787c1d017fbf7785ed6d9c8c6e0649
refs/heads/master
2022-04-09T04:50:50.619251
2020-03-03T20:29:15
2020-03-03T20:29:15
228,427,664
1
0
null
null
null
null
UTF-8
Python
false
false
911
py
"""Main module.""" import tempfile from railyard.assembler import readStacks, assembleStack import railyard.builder as builder import time import os def assemble(base_stack, additional_stacks, path): s = readStacks(base_stack, additional_stacks) if not os.path.exists(path): os.mkdir(path) if not os.path.exists(os.path.join(path, s['package_hash'])): os.mkdir(os.path.join(path, s['package_hash'])) assembleStack(s, os.path.join(path, s['package_hash'])) def test(base_stack, additional_stack): s = readStacks(base_stack, additional_stack) tag = 'ktaletsk/polus-notebook:' + s['package_hash'] # Create temporary folder for Dockerfile and additional files # Folder is securely created with `tempfile` and is destroyed afterwards with tempfile.TemporaryDirectory() as tmpdirname: assembleStack(s, tmpdirname) builder.build(tmpdirname, tag)
2811f3f5befc58918de648f954c3be0ac299000b
8b467addc38a67019ff35dfd5394e36d4b7c7c5c
/src/gui_kill_creo.py
7642164d9eb6170bc800c8be19160c7a498b338b
[ "MIT" ]
permissive
loleven/creo_kill_proc
f48e158ccb64744bd34d68bf96fa8868d6cbe017
9136889efe1a51fe057e538d080ca31f3f4c6de5
refs/heads/master
2020-05-24T00:48:23.222996
2017-03-13T09:34:28
2017-03-13T09:34:28
84,806,859
0
0
null
null
null
null
UTF-8
Python
false
false
1,934
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'C:\Data\Development\PycharmProjects\KillCreo\src\gui_kill_creo.ui' # # Created by: PyQt5 UI code generator 5.5.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_frm_kill_creo(object): def setupUi(self, frm_kill_creo): frm_kill_creo.setObjectName("frm_kill_creo") frm_kill_creo.resize(400, 300) frm_kill_creo.setMinimumSize(QtCore.QSize(400, 300)) frm_kill_creo.setMaximumSize(QtCore.QSize(400, 300)) self.horizontalLayout_2 = QtWidgets.QHBoxLayout(frm_kill_creo) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.list_result = QtWidgets.QListWidget(frm_kill_creo) self.list_result.setObjectName("list_result") self.verticalLayout.addWidget(self.list_result) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem) self.btn_kill = QtWidgets.QPushButton(frm_kill_creo) self.btn_kill.setObjectName("btn_kill") self.horizontalLayout.addWidget(self.btn_kill) self.verticalLayout.addLayout(self.horizontalLayout) self.horizontalLayout_2.addLayout(self.verticalLayout) self.retranslateUi(frm_kill_creo) QtCore.QMetaObject.connectSlotsByName(frm_kill_creo) def retranslateUi(self, frm_kill_creo): _translate = QtCore.QCoreApplication.translate frm_kill_creo.setWindowTitle(_translate("frm_kill_creo", "Kill Creo")) self.btn_kill.setText(_translate("frm_kill_creo", "Kill Creo"))
c51438dca74d9ee3958675018e129bb173024552
c82490eb4903a9b6b23bdef7c528def682a2672f
/eightpuzzle.py
61084b4c00b5f6223a01ba7230814872d31e6b42
[]
no_license
zariuq/Misc
5563b3f8c015c305a6023dca42e8e616e8dc146b
e5b5e4229b29a68e4a3d042bed62c200d3af8e2e
refs/heads/master
2020-05-20T23:55:43.067819
2015-08-10T07:48:06
2015-08-10T07:48:06
30,136,064
0
0
null
null
null
null
UTF-8
Python
false
false
5,519
py
import pygame from eightpuzzlesolver import aStar pygame.init() WIDTH = 500 HEIGHT = 400 screen = pygame.display.set_mode((WIDTH, HEIGHT)) done = False clock = pygame.time.Clock() # Switch for human or playthrough HUMAN = False # Define the colors we will use in RGB format BLACK = ( 0, 0, 0) WHITE = (255, 255, 255) BLUE = ( 0, 0, 255) GREEN = ( 0, 255, 0) RED = (255, 0, 0) # Find centers centers = [] box_w = WIDTH // 3 box_h = HEIGHT // 3 for j in range(1,4): # switched i and j to make numbers ordered horizontally. for i in range(1,4): #remember the colon! centers = centers + [( (i * box_w + (i-1) * box_w) // 2 , (j * box_h + (j-1) * box_h) // 2 )] #print (centers) # Render numbers font = pygame.font.Font(None, 36) numbers = [] for i in range(0,9): # Don't forget the colon, damnit! numbers = numbers + [font.render(str(i), True, BLUE)] # Default board position (to be randomized eventually) board2 = [1,5,3,2,8,4,6,7,0] # no solution? board4 = [1,0,2,4,5,3,6,7,8] win = [0,1,2,3,4,5,6,7,8] # Surely there's a better way to do this. It reeks of a succinct pattern... def get_adjacent(index): if index == 0: return [1,3] if index == 1: return [0,2,4] if index == 2: return [1,5] if index == 3: return [0,4,6] if index == 4: return [1,3,5,7] if index == 5: return [2,4,8] if index == 6: return [3,7] if index == 7: return [4,6,8] if index == 8: return [5,7] return [] coordinates = [(0,0),(1,0),(2,0),(0,1),(1,1),(2,1),(0,2),(1,2),(2,2)] # originally (s1,s2), but I'll assume one goal-state :P def man_distance(s1): sum = 0 for i in range(0,9): #Fucking colon! ideal = coordinates[win[i]] current = coordinates[s1[i]] #I had board[i] instead of s1[i] sum += abs(ideal[0] - current[0]) + abs(ideal[1] -current[1]) return sum if HUMAN == True: while not done: nearest_center = -1 for event in pygame.event.get(): if event.type == pygame.QUIT: done = True if event.type == pygame.KEYDOWN: #need to check this or .key produces an error if event.key == pygame.K_ESCAPE: done = True if event.type == pygame.MOUSEBUTTONDOWN: posi = event.pos print (posi) # find nearest center -- should totally be a function of its own :p dis = [] px = posi[0] py = posi[1] for i in range(0,9): dis = dis + [(px-centers[i][0])**2 + (py-centers[i][1])**2] # powers are with **, not ^ nearest_center = dis.index(min(dis)) print ("The position is: " + str(board[nearest_center])) # perform swap if next to 0. if nearest_center != -1: zero_loc = board.index(0) adjacents = get_adjacent(nearest_center) if zero_loc in adjacents: board[zero_loc] = board[nearest_center] board[nearest_center] = 0 print("The Manhattan distance is: " + str(man_distance(board))) else: screen.fill(RED) # red doesn't pygame.time.wait(500) # wait works if win == board: # works, but just closing is ugly done = True #doing anything else without more modular code seems icky :p screen.fill(WHITE) # Draw the grid for i in range(1,3): # range(1,2) only drew one line! pygame.draw.line(screen, BLACK, [i * (WIDTH // 3), 0], [i * (WIDTH // 3),HEIGHT], 5) pygame.draw.line(screen, BLACK, [0, i * (HEIGHT // 3)], [WIDTH, i * (HEIGHT // 3)],5) # Draw 'numbers' for i in range(0,9): p = board[i] if p != 0: screen.blit(numbers[p], (centers[i][0] - numbers[p].get_width() // 2, centers[i][1] - numbers[p].get_height() // 2)) #pygame.draw.circle(screen, BLUE, centers[i], 10) pygame.display.flip() clock.tick(60) else: solution = aStar(board4,win) print("Length = " + str(len(solution))) print("Solution = " + str(solution)) for step in solution: for event in pygame.event.get(): if event.type == pygame.QUIT: done = True if event.type == pygame.KEYDOWN: #need to check this or .key produces an error if event.key == pygame.K_ESCAPE: done = True screen.fill(WHITE) # Draw the grid for i in range(1,3): # range(1,2) only drew one line! pygame.draw.line(screen, BLACK, [i * (WIDTH // 3), 0], [i * (WIDTH // 3),HEIGHT], 5) pygame.draw.line(screen, BLACK, [0, i * (HEIGHT // 3)], [WIDTH, i * (HEIGHT // 3)],5) # Draw 'numbers' for i in range(0,9): p = step[i] if p != 0: screen.blit(numbers[p], (centers[i][0] - numbers[p].get_width() // 2, centers[i][1] - numbers[p].get_height() // 2)) #pygame.draw.circle(screen, BLUE, centers[i], 10) pygame.display.flip() pygame.time.wait(350) clock.tick(60) pygame.time.wait(1500)
6789dd297f2257bed4110e83f0000b3c798dea43
303004eb1b84f247d959a2ac75e38f6e7b156715
/baixar.py
3bcd31baf17c38c5ce04a46c8c7a0ee91754fbbb
[]
no_license
DiegoLins10/PyTube
5e3f5937361196448d081d9ea18c00049e2ce017
1787c6fa953bc04c69acc6fa0d28ac80ac9b3e07
refs/heads/master
2023-08-07T00:48:55.701767
2021-09-21T01:09:39
2021-09-21T01:09:39
408,627,985
0
0
null
null
null
null
UTF-8
Python
false
false
1,178
py
## Para baixar a lib pytube: pip install pytube ## baixar um video do youtube com pytube ## python youtube.py https://youtu.be/61R6Qq7mmIA ## gerar arquivo exe pyinstaller --onefile -w baixar.py ## baixar pyinstaller pip install pyinstaller from pytube import YouTube from tkinter import * def baixar(): ##link = str(input("Digite o link: ")) link = vlink.get() video = YouTube(link) stream = video.streams.get_highest_resolution() stream.download() print("baixado com sucesso") ##pega o conteudo indo() def indo(): a= "baixado com sucesso" Label(app, text=a,background="#dde", foreground="#009", anchor=W).place(x=10, y=100, width=200, height=20) app = Tk() ##intanciando a classe app.title("Youtube video download") app.geometry("500x300") ## config tamanho janela app.configure(background="#dde") ## mudar cor Label(app, text="Link",background="#dde", foreground="#009", anchor=W).place(x=10, y=10, width=100, height=20) ##declarar label ## posicionando o label vlink = Entry(app) vlink.place(x=10, y=30, width=200, height=20) Button(app, text="Baixar", command=baixar).place(x=10, y=80, width=100, height=20) app.mainloop()
8f220b99ce9abe542226edff8616a3c76b131572
e4dfc0bff7e5f04a1b730ce80e026bc9f75028a8
/AdminControls.py
5f4c8900b2c503ff800007fc4ed4c971690d391e
[ "MIT" ]
permissive
DevinDai13/PythonSQL1
79f761b71c1e682d00d44e5ab5f3569b6cfd276b
484fba42be97cfe8a92b9662f0e368d5d9f1e634
refs/heads/master
2020-04-15T04:22:52.981505
2019-01-07T05:08:32
2019-01-07T05:08:32
164,380,741
0
0
null
null
null
null
UTF-8
Python
false
false
558
py
import hashlib import sqlite3 def adduser(user_id, role, login, password): sqlite_file = 'waste_management.db' conn = sqlite3.connect(sqlite_file) c = conn.cursor() hash_name = 'sha256' salt = 'ssdirf993lksiqb4' iterations = 100000 dk = hashlib.pbkdf2_hmac(hash_name, bytearray(password, 'ascii'), bytearray(salt, 'ascii'), iterations) c.execute('''INSERT INTO users(user_id, role, login, password) VALUES(?,?,?,?)''', (user_id, role, login, str(dk))) conn.commit() conn.close() return 0
08a2e20be25c466e50a8eb46e4b760fe2d09eabf
d57233c4d554a9311b52301decce4a046b743ae7
/projects/Intro5_6.py
0a75ccf5ae379dc0ff39a9c1d4b1bb4cc5a3d645
[]
no_license
josenriagu/python-mini-projects
69f0ad9c30cd3742bd88efd191df1b2bb5e59b59
b7d300d3af180cddfa65a5eb89e010febb5067de
refs/heads/master
2020-06-14T06:26:49.826332
2019-07-02T20:57:25
2019-07-02T20:57:25
194,932,952
1
0
null
2019-07-02T20:57:26
2019-07-02T20:49:29
null
UTF-8
Python
false
false
2,664
py
#---LESSON 5: Dictionaries - Working #with Key-Value Pairs--- student = {'name': 'Jose', 'age': 22, 'courses': ['Math', 'Communications']} print(student) print(student['name']) print(student['courses']) ''' Dictionaries can contain any immutable data type as key or value. Accessing a key that doesn't exist results in a KeyError ''' #---Overiding KeyErrors (using the get() function)--- print(student.get('name')) print(student.get('phone')) print(student.get('phone', 'Not Found')) #--Updating values using direct assignment--- student['phone'] = '555-5555' #adds a new Key-Value pair student['name'] = 'Jane' #changes the existing value for the given key print(student) #---Updating values using update() function--- student.update({'name': 'Val', 'age': 26, 'phone': '555-5555'}) print(student) #print(dir(student)) #--- deleting values from a dictionary--- del student['age'] phone = student.pop('phone') print(student) print(phone) #shows the poppped value saved in 'phone' variable #---Want to know the number of keys in a dict?--- print(len(student)) print(student.keys()) #shows the keys print(student.values()) #shows the values print(student.items()) #shows the keys and values #--Looping through dictionaries-- for key in student: print(key) for key,value in student.items(): #"for key,value in student:" will return a ValueError print(key, value) #---LESSON 6: Conditionals and Boolean - If, Else #and Elif Statements--- if True: print('Conditional was True') if False: print('Conditional was True') #doesn't evaluate language = 'Python' if language == 'Python': print('Conditional was True') ''' Comparisons: Equal:----------------== Not Equal:------------!= Greater Than:---------> Less Than:------------< Greater or Equal:----->= Less or Equal:--------<= Object Identity:------is 'Object identity' is used for keyword check ie to check if values have the same id False Values: False None Zero of any numeric type Any Empty sequence, e.g., '', (), []. Any empty mapping, e.g., {} Boolean Operators: and or not ''' user = 'Admin' logged_in = False if user == 'Admin' and logged_in: print('Admin Page') else: print('Bad Creds') if user == 'Admin' or logged_in: print('Admin Page') else: print('Bad Creds') if not logged_in: print('Please Log In') else: print('Welcome') a = [1, 2, 3] b = [1, 2, 3] c = a print(a==b) print(a is b) #evaluates to False since they do not have same memory address as can ba seen below print(a is c) #---Print memory locations of the objects--- print(id(a)) print(id(c)) print(id(b)) ''' 'is' operator like in (a is b) is synonymous to id(a) == id(b) check behind the scene '''
7fa3ca550e4a232b9a12738fe935a8f44deee0be
dc52dac6c6fd6ea01de20abaff781922f3fba924
/textclf/models/classifier/resrnn.py
fae2f115ca3b036cc6d03b0f8b470f269f806197
[ "MIT" ]
permissive
luopeixiang/textclf
d92c2306180bb4b0990943b2b7ba88447fee83c7
fa4ad4813bf8cb49e8a0d080110014498f8dfc47
refs/heads/master
2023-07-29T05:04:00.593454
2022-05-27T07:00:08
2022-05-27T07:00:08
177,423,020
212
25
MIT
2023-07-21T21:45:38
2019-03-24T14:05:26
Python
UTF-8
Python
false
false
1,046
py
import torch.nn as nn from textclf.config import ResRNNClassifierConfig from .base import Classifier from .components import RNN, AttentionLayer class ResRNNClassifier(Classifier): def __init__(self, config: ResRNNClassifierConfig): super(ResRNNClassifier, self).__init__(config) rnn_config = config.rnn_config rnn_config.input_size = config.input_size self.rnn = RNN(rnn_config) if rnn_config.bidirectional: hidden_size = rnn_config.hidden_size*2 else: hidden_size = rnn_config.hidden_size self.dropout = nn.Dropout(p=config.dropout) self.output_layer = nn.Linear(hidden_size, config.output_size) def forward(self, embedding, seq_lens): outputs, last_hidden = self.rnn(embedding, seq_lens) if self.use_attention: # attention mechanism context = self.attention_layer(outputs, seq_lens) else: context = last_hidden logits = self.output_layer(self.dropout(context)) return logits
038eac37ec8ceaec8c4e9d374c6e76d0d1dee5c7
2f878f17b90103491b1bce08b917ea5693b8af2b
/Lab 4/lab4.py
1a30f5929dc7bfc97514c32b527b1d4a421c53c9
[]
no_license
HyperionNKJ/Computer-Vision
9db98e8ba3740fed453e9269df445fcc7cca44b3
550ee6be84171863487b9068af26ca2073e57e2c
refs/heads/master
2023-01-22T20:20:16.807793
2020-11-29T21:57:27
2020-11-29T21:57:27
317,050,720
0
0
null
null
null
null
UTF-8
Python
false
false
17,238
py
""" CS4243 Lab 4: Tracking Please read accompanying Jupyter notebook (lab4.ipynb) and PDF (lab4.pdf) for instructions. """ import cv2 import numpy as np import random from time import time # Part 1 def meanShift(dst, track_window, max_iter=100,stop_thresh=1): """Use mean shift algorithm to find an object on a back projection image. Args: dst (np.ndarray) : Back projection of the object histogram of shape (H, W). track_window (tuple) : Initial search window. (x,y,w,h) max_iter (int) : Max iteration for mean shift. stop_thresh(float) : Threshold for convergence. Returns: track_window (tuple) : Final tracking result. (x,y,w,h) """ completed_iterations = 0 """ YOUR CODE STARTS HERE """ centroid = np.array([-1,-1]) while (True): old_centroid = centroid x,y,w,h = track_window start_x = 0 if x < 0 else x start_y = 0 if y < 0 else y end_x = dst.shape[1]-1 if x+w >= dst.shape[1] else x+w end_y = dst.shape[0]-1 if y+h >= dst.shape[0] else y+h coord_x = np.array(list(np.arange(start_x,end_x)) * (end_y-start_y)) coord_y = np.array([[i]*(end_x-start_x) for i in range(start_y,end_y)]).flatten() weights = dst[start_y:end_y, start_x:end_x].flatten() centroid_x = coord_x.dot(weights) / weights.sum() centroid_y = coord_y.dot(weights) / weights.sum() centroid = np.array([centroid_y, centroid_x]) track_window = (int(centroid_x) - w//2, int(centroid_y) - h//2,w,h) completed_iterations += 1 if (np.max(np.abs(old_centroid-centroid)) <= stop_thresh or completed_iterations == max_iter): break """ YOUR CODE ENDS HERE """ return track_window def IoU(bbox1, bbox2): """ Compute IoU of two bounding boxes. Args: bbox1 (tuple) : First bounding box position (x, y, w, h) where (x, y) is the top left corner of the bounding box, and (w, h) are width and height of the box. bbox2 (tuple) : Second bounding box position (x, y, w, h) where (x, y) is the top left corner of the bounding box, and (w, h) are width and height of the box. Returns: score (float) : computed IoU score. """ x1, y1, w1, h1 = bbox1 x2, y2, w2, h2 = bbox2 score = 0 """ YOUR CODE STARTS HERE """ box1_x_start, box1_x_end, box1_y_start, box1_y_end = x1, x1+w1, y1, y1+h1 box2_x_start, box2_x_end, box2_y_start, box2_y_end = x2, x2+w2, y2, y2+h2 x_interset = box1_x_end-box2_x_start if box1_x_start < box2_x_start else box2_x_end-box1_x_start y_interset = box1_y_end-box2_y_start if box1_y_start < box2_y_start else box2_y_end-box1_y_start score = (x_interset*y_interset) / (w1*h1 + w2*h2 - x_interset*y_interset) # sumOfAreas = w1*h1 + w2*h2 # x1_prime = x1 + w1 # y1_prime = y1 + h1 # x2_prime = x2 + w2 # y2_prime = y2+ h2 # x_lower_bound = max(x1, x2) # x_upper_bound = min(x1_prime, x2_prime) # y_lower_bound = max(y1, y2) # y_upper_bound = min(y1_prime, y2_prime) # if x_upper_bound < x_lower_bound : # return 0 # if y_upper_bound < y_lower_bound : # return 0 # intersect = (x_upper_bound - x_lower_bound) * (y_upper_bound - y_lower_bound) # score = intersect / (sumOfAreas - intersect) # xA = max(x1, x2) # yA = max(y1, y2) # xB = min(x1+w1, x2+w2) # yB = min(y1+h1, y2+h2) # # compute the area of intersection rectangle # interArea = (xB - xA) * (yB - yA) # # compute the area of both the prediction and ground-truth # # rectangles # boxAArea = w1*h1 # boxBArea = w2*h2 # # compute the intersection over union by taking the intersection # # area and dividing it by the sum of prediction + ground-truth # # areas - the interesection area # score = interArea / float(boxAArea + boxBArea - interArea) # return the intersection over union value # """ YOUR CODE ENDS HERE """ # return score """ YOUR CODE ENDS HERE """ return score # Part 2: def lucas_kanade(img1, img2, keypoints, window_size=9): """ Estimate flow vector at each keypoint using Lucas-Kanade method. Args: img1 (np.ndarray) : Grayscale image of the current frame. Flow vectors are computed with respect to this frame. img2 (np.ndarray) : Grayscale image of the next frame. keypoints (np.ndarray) : Coordinates of keypoints to track of shape (N, 2). window_size (int) : Window size to determine the neighborhood of each keypoint. A window is centered around the current keypoint location. You may assume that window_size is always an odd number. Returns: flow_vectors (np.ndarray) : Estimated flow vectors for keypoints. flow_vectors[i] is the flow vector for keypoint[i]. Array of shape (N, 2). Hints: - You may use np.linalg.inv to compute inverse matrix. """ assert window_size % 2 == 1, "window_size must be an odd number" flow_vectors = [] w = window_size // 2 # Compute partial derivatives Iy, Ix = np.gradient(img1) It = img2 - img1 # For each [y, x] in keypoints, estimate flow vector [vy, vx] # using Lucas-Kanade method and append it to flow_vectors. for y, x in keypoints: # Keypoints can be loacated between integer pixels (subpixel locations). # For simplicity, we round the keypoint coordinates to nearest integer. # In order to achieve more accurate results, image brightness at subpixel # locations can be computed using bilinear interpolation. y, x = int(round(y)), int(round(x)) """ YOUR CODE STARTS HERE """ A = [] b = [] for j in range(y-w, y+w+1): for i in range(x-w, x+w+1): A.append([Ix[j][i], Iy[j][i]]) b.append(It[j][i] * -1) v,_,_,_ = np.linalg.lstsq(A, b, rcond=None) flow_vectors.append(v) """ YOUR CODE ENDS HERE """ flow_vectors = np.array(flow_vectors) return flow_vectors def compute_error(patch1, patch2): """ Compute MSE between patch1 and patch2 - Normalize patch1 and patch2 - Compute mean square error between patch1 and patch2 Args: patch1 (np.ndarray) : Grayscale image patch1 of shape (patch_size, patch_size) patch2 (np.ndarray) : Grayscale image patch2 of shape (patch_size, patch_size) Returns: error (float) : Number representing mismatch between patch1 and patch2. """ assert patch1.shape == patch2.shape, 'Differnt patch shapes' error = 0 """ YOUR CODE STARTS HERE """ std_patch1 = np.std(patch1) mean_patch1 = np.mean(patch1) norm_patch1 = (patch1 - mean_patch1) / std_patch1 std_patch2 = np.std(patch2) mean_patch2 = np.mean(patch2) norm_patch2 = (patch2 - mean_patch2) / std_patch2 error = np.square(np.subtract(norm_patch1, norm_patch2)).mean() """ YOUR CODE ENDS HERE """ return error def iterative_lucas_kanade(img1, img2, keypoints, window_size=9, num_iters=5, g=None): """ Estimate flow vector at each keypoint using iterative Lucas-Kanade method. Args: img1 (np.ndarray) : Grayscale image of the current frame. Flow vectors are computed with respect to this frame. img2 (np.ndarray) : Grayscale image of the next frame. keypoints (np.ndarray) : Coordinates of keypoints to track of shape (N, 2). window_size (int) : Window size to determine the neighborhood of each keypoint. A window is centered around the current keypoint location. You may assume that window_size is always an odd number. num_iters (int) : Number of iterations to update flow vector. g (np.ndarray) : Flow vector guessed from previous pyramid level. Array of shape (N, 2). Returns: flow_vectors (np.ndarray) : Estimated flow vectors for keypoints. flow_vectors[i] is the flow vector for keypoint[i]. Array of shape (N, 2). """ assert window_size % 2 == 1, "window_size must be an odd number" # Initialize g as zero vector if not provided if g is None: g = np.zeros(keypoints.shape) flow_vectors = [] w = window_size // 2 # Compute spatial gradients Iy, Ix = np.gradient(img1) for y, x, gy, gx in np.hstack((keypoints, g)): v = np.zeros(2) # Initialize flow vector as zero vector y1 = int(round(y)); x1 = int(round(x)) """ YOUR CODE STARTS HERE """ G = np.array([[0,0],[0,0]]) # for j in range(y1-w, y1+w+1): # for i in range(x1-w, x1+w+1): for i in range(x1-w, x1+w+1): for j in range(y1-w, y1+w+1): G = G + ([ [(Ix[j][i])**2, Ix[j][i]*Iy[j][i]], [Ix[j][i]*Iy[j][i], (Iy[j][i])**2] ]) for k in range(num_iters): b_k = np.array([0,0]) for i in range(x1-w, x1+w+1): for j in range(y1-w, y1+w+1): v_x = int(round(v[0])) v_y = int(round(v[1])) x_idx = int(round(i + gx + v_x)) y_idx = int(round(j + gy + v_y)) temp_diff = img1[j][i] - (img2[y_idx][x_idx]) to_add = np.array([temp_diff * Ix[j][i], temp_diff * Iy[j][i] ]) b_k = b_k + to_add G_inv = np.linalg.inv(G) v_k = np.matmul(G_inv, b_k) v = v + v_k """ YOUR CODE ENDS HERE """ vx, vy = v flow_vectors.append([vy, vx]) return np.array(flow_vectors) def pyramid_lucas_kanade(img1, img2, keypoints, window_size=9, num_iters=5, level=2, scale=2): """ Pyramidal Lucas Kanade method Args: img1 (np.ndarray) : Grayscale image of the current frame. Flow vectors are computed with respect to this frame. img2 (np.ndarray) : Grayscale image of the next frame. keypoints (np.ndarray) : Coordinates of keypoints to track of shape (N, 2). window_size (int) : Window size to determine the neighborhood of each keypoint. A window is centered around the current keypoint location. You may assume that window_size is always an odd number. num_iters (int) : Number of iterations to run iterative LK method level (int) : Max level in image pyramid. Original image is at level 0 of the pyramid. scale (float) : Scaling factor of image pyramid. Returns: d - final flow vectors """ # Build image pyramids of img1 and img2 pyramid1 = tuple(pyramid_gaussian(img1, max_layer=level, downscale=scale)) pyramid2 = tuple(pyramid_gaussian(img2, max_layer=level, downscale=scale)) # Initialize pyramidal guess g = np.zeros(keypoints.shape) """ YOUR CODE STARTS HERE """ # range from l to 0 for l in range(level, -1, -1): p_L = keypoints / (scale**l) d = iterative_lucas_kanade(pyramid1[l], pyramid2[l], p_L, g=g) if l != 0: g = scale * (g + d) """ YOUR CODE ENDS HERE """ d = g + d return d """Helper functions: You should not have to touch the following functions. """ import os import cv2 import matplotlib.pyplot as plt from matplotlib import animation from matplotlib.patches import Rectangle from skimage import filters, img_as_float from skimage.io import imread from skimage.transform import pyramid_gaussian def load_frames_rgb(imgs_dir): frames = [cv2.cvtColor(cv2.imread(os.path.join(imgs_dir, frame)), cv2.COLOR_BGR2RGB) \ for frame in sorted(os.listdir(imgs_dir))] return frames def load_frames_as_float_gray(imgs_dir): frames = [img_as_float(imread(os.path.join(imgs_dir, frame), as_gray=True)) \ for frame in sorted(os.listdir(imgs_dir))] return frames def load_bboxes(gt_path): bboxes = [] with open(gt_path) as f: for line in f: x, y, w, h = line.split(',') #x, y, w, h = line.split() bboxes.append((int(x), int(y), int(w), int(h))) return bboxes def animated_frames(frames, figsize=(10,8)): fig, ax = plt.subplots(figsize=figsize) ax.axis('off') im = ax.imshow(frames[0]) def animate(i): im.set_array(frames[i]) return [im,] ani = animation.FuncAnimation(fig, animate, frames=len(frames), interval=60, blit=True) return ani def animated_bbox(frames, bboxes, figsize=(10,8)): fig, ax = plt.subplots(figsize=figsize) ax.axis('off') im = ax.imshow(frames[0]) x, y, w, h = bboxes[0] bbox = ax.add_patch(Rectangle((x,y),w,h, linewidth=3, edgecolor='r', facecolor='none')) def animate(i): im.set_array(frames[i]) bbox.set_bounds(*bboxes[i]) return [im, bbox,] ani = animation.FuncAnimation(fig, animate, frames=len(frames), interval=60, blit=True) return ani def animated_scatter(frames, trajs, figsize=(10,8)): fig, ax = plt.subplots(figsize=figsize) ax.axis('off') im = ax.imshow(frames[0]) scat = ax.scatter(trajs[0][:,1], trajs[0][:,0], facecolors='none', edgecolors='r') def animate(i): im.set_array(frames[i]) if len(trajs[i]) > 0: scat.set_offsets(trajs[i][:,[1,0]]) else: # If no trajs to draw scat.set_offsets([]) # clear the scatter plot return [im, scat,] ani = animation.FuncAnimation(fig, animate, frames=len(frames), interval=60, blit=True) return ani def track_features(frames, keypoints, error_thresh=1.5, optflow_fn=pyramid_lucas_kanade, exclude_border=5, **kwargs): """ Track keypoints over multiple frames Args: frames - List of grayscale images with the same shape. keypoints - Keypoints in frames[0] to start tracking. Numpy array of shape (N, 2). error_thresh - Threshold to determine lost tracks. optflow_fn(img1, img2, keypoints, **kwargs) - Optical flow function. kwargs - keyword arguments for optflow_fn. Returns: trajs - A list containing tracked keypoints in each frame. trajs[i] is a numpy array of keypoints in frames[i]. The shape of trajs[i] is (Ni, 2), where Ni is number of tracked points in frames[i]. """ kp_curr = keypoints trajs = [kp_curr] patch_size = 3 # Take 3x3 patches to compute error w = patch_size // 2 # patch_size//2 around a pixel for i in range(len(frames) - 1): I = frames[i] J = frames[i+1] flow_vectors = optflow_fn(I, J, kp_curr, **kwargs) kp_next = kp_curr + flow_vectors new_keypoints = [] for yi, xi, yj, xj in np.hstack((kp_curr, kp_next)): # Declare a keypoint to be 'lost' IF: # 1. the keypoint falls outside the image J # 2. the error between points in I and J is larger than threshold yi = int(round(yi)); xi = int(round(xi)) yj = int(round(yj)); xj = int(round(xj)) # Point falls outside the image if yj > J.shape[0]-exclude_border-1 or yj < exclude_border or\ xj > J.shape[1]-exclude_border-1 or xj < exclude_border: continue # Compute error between patches in image I and J patchI = I[yi-w:yi+w+1, xi-w:xi+w+1] patchJ = J[yj-w:yj+w+1, xj-w:xj+w+1] error = compute_error(patchI, patchJ) if error > error_thresh: continue new_keypoints.append([yj, xj]) kp_curr = np.array(new_keypoints) trajs.append(kp_curr) return trajs
e23788ac80dab20c3cb46f534e00b56e8af74fb5
b6f780c8c751b224da2ec86017a69b6f9dcea275
/accounts/migrations/0007_auto_20210307_1517.py
5fb4e8b21ffa153ca0244206cda9fd7cc49f0f2d
[]
no_license
alishkb/m42.django
c36d3b01c799323991cd875da48c2859ce82aada
bc99755889989acc45ae81c3b122194bce86fc18
refs/heads/master
2023-05-15T00:51:20.440239
2021-06-10T11:56:14
2021-06-10T11:56:14
334,120,936
2
0
null
null
null
null
UTF-8
Python
false
false
1,251
py
# Generated by Django 3.1.5 on 2021-03-07 11:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ('accounts', '0006_auto_20210307_1515'), ] operations = [ migrations.AddField( model_name='user', name='groups', field=models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups'), ), migrations.AddField( model_name='user', name='is_superuser', field=models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status'), ), migrations.AddField( model_name='user', name='user_permissions', field=models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions'), ), ]
1a4e16d26cbece1da8bf316ed9f2e9de8365031c
508e3aa5be4a48354811726cdbf6555013fb431c
/main/services/product.py
e41edf07e5debd435859064954b3ad3c1d066110
[]
no_license
JoaoRicardoSimplicio/buying_cheap
eb32362e0cb40048547366666890b25e631e1616
6561411af72f5a69a22e1474c11f507807f5ca1c
refs/heads/master
2023-06-27T06:11:09.927143
2021-07-31T17:12:52
2021-08-01T23:18:44
294,758,790
0
0
null
2020-12-01T12:00:36
2020-09-11T17:16:53
Python
UTF-8
Python
false
false
1,903
py
from main.crawlers.shop2gether import StoreShop2gether from main.crawlers.kabum import StoreKabum from main.crawlers.netshoes import StoreNetshoes from main.crawlers.mercado_livre import StoreMercadoLivre from main.crawlers.bikepointsc import StoreBikePointSC from main.crawlers.bikeinn import Bikeinn # from main.crawlers.zattini import StoreZattini from main.crawlers.dafiti import StoreDafiti from main.models import Product, Store class ProductTool: def __init__(self): pass def create(self, *args, **kwargs): for item in args: store_name = select_store(item['name']) try: store_crawler = store_name(item['url_product']) store, _ = Store.objects.get_or_create( name=store_crawler.store ) product, _ = Product.objects.update_or_create( url_product=store_crawler.url, defaults={ 'name': store_crawler.name, 'store': store, 'price_product': store_crawler.price, 'description_product': store_crawler.description, 'url_image': store_crawler.image, 'sizes': store_crawler.avaliable_sizes } ) except Exception as Error: raise Error def select_store(name): if name == "Shop2gether": return StoreShop2gether elif name == "Kabum": return StoreKabum elif name == "Netshoes": return StoreNetshoes elif name == "MercadoLivre": return StoreMercadoLivre elif name == "BikePointSC": return StoreBikePointSC elif name == "Zattini": return StoreZattini elif name == "Dafiti": return StoreDafiti elif name == "Bikeinn": return Bikeinn
d07d964851d7ea84722cc1c566fdb976f5049c0a
10d98fecb882d4c84595364f715f4e8b8309a66f
/non_semantic_speech_benchmark/distillation/train_keras_test.py
58293b999787e89c984afb7ffed56dbb033ecc48
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
afcarl/google-research
51c7b70d176c0d70a5ee31ea1d87590f3d6c6f42
320a49f768cea27200044c0d12f394aa6c795feb
refs/heads/master
2021-12-02T18:36:03.760434
2021-09-30T20:59:01
2021-09-30T21:07:02
156,725,548
1
0
Apache-2.0
2018-11-08T15:13:53
2018-11-08T15:13:52
null
UTF-8
Python
false
false
3,089
py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for non_semantic_speech_benchmark.eval_embedding.keras.train_keras.""" from absl import flags from absl.testing import absltest from absl.testing import flagsaver from absl.testing import parameterized import mock import tensorflow as tf from non_semantic_speech_benchmark.distillation import train_keras def _get_data(*args, **kwargs): del args assert 'samples_key' in kwargs assert 'min_length' in kwargs assert 'batch_size' in kwargs bs = kwargs['batch_size'] samples = tf.zeros((bs, 16000), tf.float32) targets = tf.ones([bs, 10], tf.float32) return tf.data.Dataset.from_tensors((samples, targets)).repeat() class TrainKerasTest(parameterized.TestCase): @parameterized.parameters( {'bottleneck_dimension': 3, 'alpha': 1.0}, {'bottleneck_dimension': 5, 'alpha': 0.5}, ) def test_get_model(self, bottleneck_dimension, alpha): batched_samples = tf.zeros([3, 16000]) output_dimension = 10 targets = tf.ones([3, output_dimension]) model = train_keras.models.get_keras_model( f'mobilenet_debug_{alpha}_False', bottleneck_dimension=bottleneck_dimension, output_dimension=output_dimension) loss_obj = tf.keras.losses.MeanSquaredError() opt = tf.keras.optimizers.Adam() train_loss = tf.keras.metrics.MeanSquaredError() train_mae = tf.keras.metrics.MeanAbsoluteError() summary_writer = tf.summary.create_file_writer( absltest.get_default_test_tmpdir()) train_step = train_keras.get_train_step( model, loss_obj, opt, train_loss, train_mae, summary_writer) gstep = opt.iterations train_step(batched_samples, targets, gstep) self.assertEqual(1, gstep) train_step(batched_samples, targets, gstep) self.assertEqual(2, gstep) @mock.patch.object(train_keras.get_data, 'get_data', new=_get_data) @mock.patch.object(train_keras.hub, 'load') @flagsaver.flagsaver def test_full_flow(self, mock_load): del mock_load flags.FLAGS.file_pattern = 'dummy' flags.FLAGS.teacher_model_hub = 'dummy' flags.FLAGS.output_key = 'dummmy' flags.FLAGS.bottleneck_dimension = 2 flags.FLAGS.output_dimension = 10 flags.FLAGS.shuffle_buffer_size = 4 flags.FLAGS.samples_key = 'audio' flags.FLAGS.logdir = absltest.get_default_test_tmpdir() train_keras.train_and_report(debug=True) if __name__ == '__main__': tf.compat.v2.enable_v2_behavior() assert tf.executing_eagerly() absltest.main()
ba106a98267a6ec0d424113b2870654dbf4698b9
3154e6d1a9e9e9919cae75570969da36c45429d7
/codigo/tutorial/tut0C_camara.py
9e54589237d6c51292d941cdce95c822a95243c0
[]
no_license
javacasm/TutorialPyGame
0d458c7155794668fc1464c466e4d740b3ac77ee
baeb7ce5dda151f8093e39f8b14182a8ee5de926
refs/heads/master
2021-07-25T20:01:04.504958
2021-05-10T12:33:26
2021-05-10T12:33:26
250,080,620
0
0
null
null
null
null
UTF-8
Python
false
false
1,568
py
https://www.pygame.org/docs/tut/CameraIntro.html ```python class Capture(object): def __init__(self): self.size = (640,480) # create a display surface. standard pygame stuff self.display = pygame.display.set_mode(self.size, 0) # this is the same as what we saw before self.clist = pygame.camera.list_cameras() if not self.clist: raise ValueError("Sorry, no cameras detected.") self.cam = pygame.camera.Camera(self.clist[0], self.size) self.cam.start() # create a surface to capture to. for performance purposes # bit depth is the same as that of the display surface. self.snapshot = pygame.surface.Surface(self.size, 0, self.display) def get_and_flip(self): # if you don't want to tie the framerate to the camera, you can check # if the camera has an image ready. note that while this works # on most cameras, some will never return true. if self.cam.query_image(): self.snapshot = self.cam.get_image(self.snapshot) # blit it to the display surface. simple! self.display.blit(self.snapshot, (0,0)) pygame.display.flip() def main(self): going = True while going: events = pygame.event.get() for e in events: if e.type == QUIT or (e.type == KEYDOWN and e.key == K_ESCAPE): # close the camera safely self.cam.stop() going = False self.get_and_flip() ```
b2b49c260bbc149b1e3d30761562a7747b95be52
6f1bd642081902970be5d59bebb2df87c2a32fb0
/Source/TensorFlowModels/Media-Eval/Regression/preprocess.py
1a89d76aaf9e7090c40ebd180ea03ae4506cacd8
[]
no_license
aneekroy/mir
b317d5ff49341507ad223016d9488763d4dcc71b
1afdc020acc6732b4dab488d7070951a2ff8eaa6
refs/heads/master
2020-03-21T17:48:10.747151
2018-06-28T11:26:38
2018-06-28T11:26:38
138,854,870
1
0
null
null
null
null
UTF-8
Python
false
false
4,796
py
import os import math import numpy as np import ffmpy from python_speech_features import * import scipy.io.wavfile as wav import matplotlib.pyplot as plt import random import Image import csv # This is subject to change if cross-validation is applied. Sticking to this cheap stuff for the time being. TRAIN_PERCENT = 0.8 def normalize(A): M = [[x]*A.shape[1] for x in np.mean(A, axis = 1)] S = [[x]*A.shape[1] for x in np.std(A, axis = 1) if x is not 0] A = (A - M) for i in range(len(A)): for j in range(len(A[i])): if S[i][j] != 0.0: A[i][j] = A[i][j]/S[i][j] return A ''' Converts mp3 files in mp3dir to wav files in wavdir ''' def convert_mp3_to_wav(mp3dir, wavdir): for _,_,files in os.walk(mp3dir): for file in files: filename = file[:file.find(".mp3")] ff = ffmpy.FFmpeg(inputs = {os.path.join(mp3dir, filename + ".mp3"):None}, outputs = {os.path.join(wavdir, filename + ".wav"):None}) ff.run() ''' Converts wav files in wavdir to corresponding spectograms in specdir ''' def convert_wav_to_spec(wavdir, specdir): for _,_, files in os.walk(wavdir): for file in files: filename = file[:file.find(".wav")] (rate, sig) = wav.read(os.path.join(wavdir, file)) sig = sig[:, 0] plt.clf() _,_,_,spec = plt.specgram(sig, NFFT = 256, Fs = rate, noverlap = 16, cmap = plt.cm.jet) image = Image.fromarray(spec) image = image.convert("L") image.save(os.path.join(specdir, filename + ".jpg")) LAB_CLASSES = {"Happy":0, "Sad":1, "Tender":2, "Anger_Fear":3} ''' Extracts mfcc and delta features from the wav files and ''' def extract_features(wavdir, featuredir): f = open("/home/soms/EmotionMusic/MediaEval/new-label-file.txt", "w") infohandle = open("/home/soms/EmotionMusic/MediaEval-2013/annotations/songs_info.csv", "r") labelhandle = open("/home/soms/EmotionMusic/MediaEval-2013/annotations/static_annotations.csv", "r") reader1 = csv.reader(infohandle) train = [] test = [] i = 0 for row in reader1: if i !=0 : if row[-1] == "development": train.append(row[0]) else: test.append(row[0]) i += 1 i = 0 labels = {} reader2 = csv.reader(labelhandle) m_a = 999. M_a = -999. m_v = 999. M_v = -999. for row in reader2: if i != 0: if float(row[1]) > M_a: M_a = float(row[1]) if float(row[1]) < m_a: m_a = float(row[1]) if float(row[3]) > M_v: M_v = float(row[3]) if float(row[3]) < m_v: m_v = float(row[3]) labels[row[0]] = [float(row[1]), float(row[3])] i += 1 for label in labels.keys(): labels[label][0] = float(labels[label][0] - m_a)/(M_a - m_a) - 0.5 labels[label][1] = float(labels[label][1] - m_v)/(M_v - m_v) - 0.5 for _,_, files in os.walk(wavdir): # Min shape 0 is 4458 m = 9999 cnt = 0 for file in files: filename = file[:file.find(".wav")] print(file) (rate, sig) = wav.read(os.path.join(wavdir, file)) log_energy_feat = normalize(logfbank(sig, rate, winlen = 0.025, winstep = 0.01, nfilt = 32, nfft = 1024)) shape = log_energy_feat.shape if shape[0] < 4500: log_energy_feat = np.resize(np.asarray(log_energy_feat), [4500, shape[1]]) log_energy_feat = log_energy_feat[:4500,:] image = np.split(log_energy_feat, 75) print("Image segmented shape", np.asarray(image).shape) index = 1 if filename in train: cnt += 1 for image_segment in image: if image_segment.shape[0] >= 57: image_segment = image_segment[image_segment.shape[0] - 57 : ] else: print("Shape error",image_segment.shape[0]) if image_segment.shape[0] < m: m = image_segment.shape[0] print(image_segment.shape) #plt.imsave(os.path.join(featuredir + "/Train", file + "_" + str(index) + ".png"), image_segment.T, cmap = "gray") f.write(filename + "_" + str(index) + " " + str(labels[filename][0]) + " " + str(labels[filename][1]) + " D\n") index += 1 elif filename in test: cnt += 1 for image_segment in image: image_segment = image_segment[image_segment.shape[0] - 57 : ] if image_segment.shape[0] < m: m = image_segment.shape[0] print(image_segment.shape) #plt.imsave(os.path.join(featuredir + "/Test", file + "_" + str(index) + ".png"), image_segment.T, cmap = "gray") f.write(filename + "_" + str(index) + " " + str(labels[filename][0]) + " " + str(labels[filename][1]) + " E\n") index += 1 else: print("Duplicate") print("Count = ", str(cnt)) print(m) if __name__ == "__main__": mp3dir = "/home/soms/EmotionMusic/MediaEval-2013/clips_45seconds" wavdir = "/home/soms/EmotionMusic/MediaEval/WavFiles" specdir = "/home/soms/EmotionMusic/Spectograms" featuredir = "/home/soms/EmotionMusic/MediaEval/Spec_Feat" #convert_mp3_to_wav(mp3dir, wavdir) #convert_wav_to_spec(wavdir, specdir) extract_features(wavdir, featuredir)
33a5265e87b96528d5b119a0bb47d33d67d2ce07
cc434c30dada236a0101be25510f172f6b3e0a43
/test/__main__.py
9d9c76746678514c68099418204a6fccd236ecb0
[ "Apache-2.0" ]
permissive
TomasTomecek/osbuild
13c1896452336c8a880d4de50627309f91271297
9f5f4ebfa677783926888810b6b5c40453f1fbcf
refs/heads/master
2020-07-16T20:58:30.798496
2019-08-30T09:54:58
2019-09-02T08:28:21
205,867,643
0
0
Apache-2.0
2020-01-14T09:52:39
2019-09-02T13:52:13
Python
UTF-8
Python
false
false
2,768
py
import argparse import logging import subprocess import os from test.integration_tests.test_case import IntegrationTestCase, IntegrationTestType from test.integration_tests.config import * logging.basicConfig(level=logging.getLevelName(os.environ.get("TESTS_LOGLEVEL", "INFO"))) def test_is_system_running(result): assert result.strip() == "running" def test_timezone(extract_dir): link = os.readlink(f"{extract_dir}/etc/localtime") assert "Europe/Prague" in link def test_firewall(extract_dir): with open(f"{extract_dir}/etc/firewalld/zones/public.xml") as f: content = f.read() assert 'service name="http"' in content assert 'service name="ftp"' in content assert 'service name="telnet"' not in content assert 'port port="53" protocol="tcp"' in content assert 'port port="88" protocol="udp"' in content if __name__ == '__main__': parser = argparse.ArgumentParser(description='Run integration tests') parser.add_argument('--list', dest='list', action='store_true', help='list test cases') parser.add_argument('--build-pipeline', dest='build_pipeline', metavar='PIPELINE', type=os.path.abspath, help='the build pipeline to run tests in') parser.add_argument('--case', dest='specific_case', metavar='TEST_CASE', help='run single test case') args = parser.parse_args() logging.info(f"Using {OBJECTS} for objects storage.") logging.info(f"Using {OUTPUT_DIR} for output images storage.") logging.info(f"Using {OSBUILD} for building images.") f30_boot = IntegrationTestCase( name="f30-boot", pipeline="f30-boot.json", build_pipeline=args.build_pipeline, output_image="f30-boot.qcow2", test_cases=[test_is_system_running], type=IntegrationTestType.BOOT_WITH_QEMU ) timezone = IntegrationTestCase( name="timezone", pipeline="timezone.json", build_pipeline=args.build_pipeline, output_image="timezone.tar.xz", test_cases=[test_timezone], type=IntegrationTestType.EXTRACT ) firewall = IntegrationTestCase( name="firewall", pipeline="firewall.json", build_pipeline=args.build_pipeline, output_image="firewall.tar.xz", test_cases=[test_firewall], type=IntegrationTestType.EXTRACT ) cases = [f30_boot, timezone, firewall] if args.list: print("Available test cases:") for case in cases: print(f" - {case.name}") else: if not args.specific_case: for case in cases: case.run() else: for case in cases: if case.name == args.specific_case: case.run()
867accc1fa0ae63cde0cb8f95b38ab6d178fb261
f9141cb0e7677d9892fe1edddad3dd20db96fc0a
/rule_class.py
e91f8826a7ec8eb72061b57bf50b4cbba436e3a9
[ "MIT" ]
permissive
andytaylor823/play-euchre
beb47d26dbf35d08de97e4b51b2712338a69fe68
32887980487e07865b799de96069f50866760a12
refs/heads/master
2020-08-02T13:53:10.030200
2020-04-27T12:01:23
2020-04-27T12:01:23
211,376,784
0
0
null
null
null
null
UTF-8
Python
false
false
1,271
py
import basicprogs as b import boardstate_class as bsc from inspect import signature # use this to check the "condition" argument class rule: def __init__(self, condition, rule_type, name='rule'): if not callable(condition): print('Error: condition argument must be a callable function') raise(ValueError) sig = signature(condition) if len(sig.parameters) != 2: print('Error: condition argument can only take two arguments') raise(ValueError) if not isinstance(rule_type, str): print('Error: rule_type argument must be a string') raise(ValueError) if rule_type.lower() not in ['lead', 'follow', 'call']: print('Error: rule_type argument can only be "lead", "follow", or "call"') raise(ValueError) self.type = rule_type self.condition = condition self.name = name def is_satisfied(self, board, pos): if not isinstance(board, bsc.boardstate): print('Error: improper board argument') raise(ValueError) if not isinstance(pos, str): print('Error: position argument not a string') raise(ValueError) if pos.lower() not in ['o1', 'o2', 'p', 'd']: print('Error: invalid position choice given') raise(ValueError) c, have = self.condition(board, pos) if have: return(c) else: return(None)
bcdcdba6ff316a16065b95a2bba284abc290a417
9d25d1205da84db33bc425266bc3021cd7529cb1
/digitalearthau/testing/plugin.py
b73fdee1aba0e11cd5d8c9a183a595c1b7c6e754
[]
no_license
GeoscienceAustralia/digitalearthau
9068970b2794a4ac55a34f910caa5877b548bb37
4cf486eb2a93d7de23f86ce6de0c3af549fe42a9
refs/heads/develop
2023-06-22T14:31:41.516829
2022-11-14T05:22:05
2022-11-14T05:22:05
51,411,119
31
21
null
2023-06-14T06:36:31
2016-02-10T00:16:36
Python
UTF-8
Python
false
false
2,081
py
import itertools import os import pytest from pathlib import Path from typing import Iterable import datacube import digitalearthau import digitalearthau.system from datacube.config import LocalConfig from . import factories # These are unavoidable in pytests due to fixtures # pylint: disable=redefined-outer-name,protected-access,invalid-name try: from yaml import CSafeLoader as SafeLoader except ImportError: from yaml import SafeLoader # The default test config options. # The user overrides these by creating their own file in ~/.datacube_integration.conf INTEGRATION_DEFAULT_CONFIG_PATH = Path(__file__).parent.joinpath('testing-default.conf') def pytest_report_header(config): if config.getoption('verbose') > 0: return ( f"digitaleathau {digitalearthau.__version__}, " f"opendatacube {datacube.__version__}" ) return None @pytest.fixture(scope='session') def integration_config_paths(): if not INTEGRATION_DEFAULT_CONFIG_PATH.exists(): # Safety check. We never want it falling back to the default config, # as it will alter/wipe the user's own datacube to run tests raise RuntimeError( 'Integration default file not found. This should be built-in?') return ( str(INTEGRATION_DEFAULT_CONFIG_PATH), os.path.expanduser('~/.datacube_integration.conf') ) @pytest.fixture(scope='session') def global_integration_cli_args(integration_config_paths: Iterable[str]): """ The first arguments to pass to a cli command for integration test configuration. """ # List of a config files in order. return list( itertools.chain(*(('--config_file', f) for f in integration_config_paths))) @pytest.fixture(scope='session') def local_config(integration_config_paths): return LocalConfig.find(integration_config_paths) # Default fixtures which will drop/create on every individual test function. db = factories.db_fixture('local_config') index = factories.index_fixture('db') dea_index = factories.dea_index_fixture('index')
30da4a8a5a19228bd3e60af5efea4574934cafb1
975452a3dd216b69b4042a1bc24f44b3a1cccf5f
/simple/commons.py
8c1116fe9bbd0bca3f18f0c80a606aeb5840c6cd
[]
no_license
freedream520/django-ozgweb
b9e8e0a7c26500b4f3253e1a50d85d5987d2f40a
33c479d4a1c3800018ab4312f2c692a76af25241
refs/heads/master
2020-04-01T23:07:18.719337
2014-12-25T03:30:53
2014-12-25T03:30:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,029
py
 import os import sys import random import io from django.shortcuts import render from django.http import JsonResponse from django.http import HttpResponse from PIL import Image, ImageDraw, ImageFont from math import ceil from . import cfg #验证码部分 #修改自https://github.com/tianyu0915/DjangoCaptcha,以支持python3 current_path = os.path.normpath(os.path.dirname(__file__)) class Captcha(object): def __init__(self,request): """ 初始化,设置各种属性 """ self.django_request = request self.session_key = '_django_captcha_key' self.words = self._get_words() # 验证码图片尺寸 self.img_width = 150 self.img_height = 30 self.type = 'number' def _get_font_size(self): """ 将图片高度的80%作为字体大小 """ s1 = int(self.img_height * 0.8) s2 = int(self.img_width // len(self.code)) return int(min((s1,s2)) + max((s1, s2)) * 0.05) def _get_words(self): """ 读取默认的单词表 """ #TODO 扩充单词表 file_path = os.path.join(current_path, 'words.list') f = open(file_path, 'r') return [line.replace('\n', '') for line in f.readlines()] def _set_answer(self,answer): """ 设置答案 """ self.django_request.session[self.session_key] = str(answer) def _yield_code(self): """ 生成验证码文字,以及答案 """ # 英文单词验证码 def word(): code = random.sample(self.words,1)[0] self._set_answer(code) return code # 数字公式验证码 def number(): m, n = 1, 50 x = random.randrange(m, n) y = random.randrange(m, n) r = random.randrange(0 ,2) if r == 0: code = "%s - %s = ?" % (x, y) z = x - y else: code = "%s + %s = ?" % (x, y) z = x + y self._set_answer(z) return code fun = eval(self.type.lower()) return fun() def display(self): """ 生成验证码图片 """ # font color self.font_color = ['black', 'darkblue', 'darkred'] # background color self.background = (random.randrange(230, 255), random.randrange(230, 255), random.randrange(230, 255)) # font path self.font_path = os.path.join(current_path, 'timesbi.ttf') #self.font_path = os.path.join(current_path, 'Menlo.ttc') # clean self.django_request.session[self.session_key] = '' # creat a image im = Image.new('RGB', (self.img_width, self.img_height), self.background) self.code = self._yield_code() # set font size automaticly self.font_size = self._get_font_size() # creat a pen draw = ImageDraw.Draw(im) # draw noisy point/line if self.type == 'word': c = int(8 // len(self.code) * 3) or 3 elif self.type == 'number': c = 4 for i in range(random.randrange(c - 2, c)): line_color = (random.randrange(0, 255), random.randrange(0, 255),random.randrange(0, 255)) xy = ( random.randrange(0, int(self.img_width * 0.2)), random.randrange(0, self.img_height), random.randrange(3 * self.img_width // 4, self.img_width), random.randrange(0, self.img_height) ) draw.line(xy, fill = line_color, width = int(self.font_size * 0.1)) #draw.arc(xy,fill = line_color, width = int(self.font_size * 0.1)) #draw.arc(xy, 0, 1400, fill = line_color) # draw code j = int(self.font_size * 0.3) k = int(self.font_size * 0.5) x = random.randrange(j, k) #starts point for i in self.code: # 上下抖动量,字数越多,上下抖动越大 m = int(len(self.code)) y = random.randrange(1, 3) if i in ('+', '=', '?'): # 对计算符号等特殊字符放大处理 m = ceil(self.font_size * 0.8) else: # 字体大小变化量,字数越少,字体大小变化越多 m = random.randrange(0, int( 45 // self.font_size) + int(self.font_size // 5)) self.font = ImageFont.truetype(self.font_path.replace('\\', '/'),self.font_size + int(ceil(m))) draw.text((x, y), i, font = self.font, fill = random.choice(self.font_color)) x += self.font_size * 0.9 del x del draw buf = io.BytesIO() im.save(buf, 'gif') buf.closed return HttpResponse(buf.getvalue(), 'image/gif') def check(self, code): """ 检查用户输入的验证码是否正确 """ _code = self.django_request.session.get(self.session_key) or '' self.django_request.session[self.session_key] = '' return _code.lower() == str(code).lower() #验证码部分 end #公用的render函数,主要加入一些公用变量 def render_template(request, templates, res_data = None): response_data = { "cfg_jquery": cfg.jquery, "cfg_title": cfg.web_name } if(res_data != None): response_data["res_data"] = res_data return render(request, templates, response_data) #仅在这个模块用到 def res(res_code, desc, data): res_data = { "code": res_code, "desc": desc, } if data: res_data["data"] = data response = JsonResponse(res_data) return response #回应请求成功 def res_success(desc, data = None): return res(0, desc, data) #回应请求失败 def res_fail(res_code, desc, data = None): return res(res_code, desc, data) #计算总页数 def page_count(count, page_size): if(count % page_size == 0): return (count // page_size) else: return (count // page_size) + 1;
61c84d50f2b2a028c625d955f4e469b7c998c883
cc5bdc851cc48050c869fced9373d8d5ff2af375
/env/lib/python3.8/site-packages/torpedo/clients.py
dbb744031972adba48afc1329b0491bf2a32e848
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
vivekgupta1mg/miniprojectapp
fa6e4b8fd4565529b0c693a15abda5e5ce346dc4
2584a1696cc847767998c4fb5cf3413b006d6f67
refs/heads/master
2023-08-24T12:57:51.653656
2021-10-12T16:15:25
2021-10-12T16:15:25
416,296,679
0
0
null
null
null
null
UTF-8
Python
false
false
4,193
py
import threading from elasticapm import Client, async_capture_span from elasticapm.instrumentation import register from elasticapm.instrumentation.packages.asyncio.aiohttp_client import \ AioHttpClientInstrumentation from elasticapm.instrumentation.packages.asyncio.asyncpg import \ AsyncPGInstrumentation from elasticapm.instrumentation.packages.dbapi2 import extract_signature from elasticapm.instrumentation.register import _instrumentation_singletons from elasticapm.traces import DroppedSpan, execution_context from elasticapm.utils import (default_ports, get_host_from_url, sanitize_url, url_to_destination) from elasticapm.utils.disttracing import TracingOptions from elasticapm.utils.module_import import import_string from .common_utils import CONFIG _lock = threading.Lock() apm_config = CONFIG.config.get('APM') apm_config['SERVICE_NAME'] = CONFIG.config.get('NAME', 'undefined') class CustomAioHttpClientInstrumentation(AioHttpClientInstrumentation): async def call(self, module, method, wrapped, instance, args, kwargs): method = kwargs["method"] if "method" in kwargs else args[0] url = kwargs["url"] if "url" in kwargs else args[1] url = str(url) destination = url_to_destination(url) signature = " ".join([method.upper(), get_host_from_url(url)]) sub_type = get_host_from_url(url) url = sanitize_url(url) transaction = execution_context.get_transaction() async with async_capture_span( signature, span_type="external", span_subtype=sub_type, extra={"http": {"url": url}, "destination": destination}, leaf=True, ) as span: leaf_span = span while isinstance(leaf_span, DroppedSpan): leaf_span = leaf_span.parent parent_id = leaf_span.id if leaf_span else transaction.id trace_parent = transaction.trace_parent.copy_from( span_id=parent_id, trace_options=TracingOptions(recorded=True) ) headers = kwargs.get("headers") or {} self._set_disttracing_headers(headers, trace_parent, transaction) kwargs["headers"] = headers response = await wrapped(*args, **kwargs) if response: if span.context: span.context["http"]["status_code"] = response.status span.set_success() if response.status < 400 else span.set_failure() # pylint: disable=W0106 return response class CustomAsyncPGInstrumentation(AsyncPGInstrumentation): async def call(self, module, method, wrapped, instance, args, kwargs): query = args[0] if len(args) else kwargs["query"] name = extract_signature(query) context = {"db": {"type": "sql", "statement": query}} action = "query" destination_info = { "address": kwargs.get("host", "localhost"), "port": int(kwargs.get("port", default_ports.get("postgresql"))), "service": {"name": "postgres", "resource": "postgres", "type": "db"}, } context['destination'] = destination_info async with async_capture_span( name, leaf=True, span_type="db", span_subtype="postgres", span_action=action, extra=context ): return await wrapped(*args, **kwargs) def instrument(): """ Instruments all registered methods/functions with a wrapper """ with _lock: for obj in register.get_instrumentation_objects(): custom = False if isinstance(obj, AioHttpClientInstrumentation): obj = 'torpedo.clients.CustomAioHttpClientInstrumentation' custom = True elif isinstance(obj, AsyncPGInstrumentation): obj = 'torpedo.clients.CustomAsyncPGInstrumentation' custom = True if custom: cls = import_string(obj) _instrumentation_singletons[obj] = cls() obj = _instrumentation_singletons[obj] obj.instrument() apm_client = Client(config=apm_config) instrument()
d1f2676ff8d9ab324c0423935125dcea3d8e25d4
0affb6a667543c825dd44e85d6af6b7be5c8cf8b
/day11/day11_2.py
08c98ae924fdeff84a8823e3116c184578360091
[]
no_license
233-wang-233/python
2fa4c7a7c4d7ba2579cea89d9ba30203956942d4
0824b9b50fba7d4557a3de60e2c0b830d6dac196
refs/heads/master
2021-01-25T22:33:42.960067
2020-04-02T07:55:45
2020-04-02T07:55:45
243,209,061
0
0
null
2020-03-02T06:50:27
2020-02-26T08:26:24
Python
UTF-8
Python
false
false
504
py
''' 两进程进行通信 一个输出Ping,一个输出Pong,两个进程输出的Ping和Pong加起来一共10个 ''' from multiprocessing import Process from time import sleep counter=0 def sub_task(string): global counter while counter<10: print(string,end=' ',flush=True) counter+=1 sleep(0.01) def main(): Process(target=sub_task,args=('ping',)).start() Process(target=sub_task,args=('pong',)).start() if __name__ == '__main__': main()
c762cc47d5dd64dfe9ce9a6360e92b0bfa00928f
5e5d54c3d1c6b9f5de3c4f36f486506cd415e38e
/pyupbit/__init__.py
20af8b94c42227711af1b9fe318b1239ddb3bd02
[]
no_license
lsjhome/pyupbit
1cded7e189d68a4e7566c87f6b259f4ba980925f
68c4541bd04532bcfdf46fa2004b5db4d11b9be9
refs/heads/master
2020-04-28T09:39:28.944916
2019-10-26T20:16:51
2019-10-26T20:16:51
175,174,679
0
0
null
null
null
null
UTF-8
Python
false
false
59
py
from pyupbit.pyupbit import PyUpbit __version__ = '1.0.0'
b07882d6172e17a77755b2fa73a71cae026b5b0d
357ee4a4bdc976fd1fe482988a19e9e59dbe796c
/composeexample/settings.py
d9c0d7ab97d90da6accd85f8f1061a19f0d511b9
[]
no_license
jeremiak/docker-compose-django-digital-ocean
76ecde4f35cdbe45ca8d918df2e646c83fdbcb93
746f9d0d8657b6b85b19fd5dda2a8a78a9cf2edd
refs/heads/master
2021-07-19T11:33:08.203984
2017-10-25T18:51:17
2017-10-25T18:51:17
108,315,111
1
0
null
null
null
null
UTF-8
Python
false
false
3,208
py
""" Django settings for composeexample project. Generated by 'django-admin startproject' using Django 1.11.6. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'qxji#2zzj%$s$*wj8ww54x#bg$gc889eogo%oz!70vgmz8v5gw' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['0.0.0.0'] # Application definition INSTALLED_APPS = [ 'polls.apps.PollsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'composeexample.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'composeexample.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'postgres', 'USER': 'postgres', 'HOST': 'db', 'PORT': 5432, } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
3ef50a5ab63dbe5576fb20f4c923d9c42fe54067
6f03463e17880ff8a1b70d27bf2176e58e27fa55
/scripts/daos/dao.py
f3a9255630163cd124c25c437fe977bf75a569c1
[]
no_license
covid-maps/covid-maps
36ee3322a010f1d71b1b9d40d784fdac0270f9a1
e11fdc60176e427d705227a462048a83ac0f71ed
refs/heads/master
2022-06-10T03:25:17.924328
2020-05-04T20:18:42
2020-05-04T20:18:42
250,145,013
22
18
null
2020-05-03T01:33:33
2020-03-26T02:47:29
JavaScript
UTF-8
Python
false
false
675
py
from sqlalchemy import inspect, and_, func from sqlalchemy.orm import sessionmaker, scoped_session import logging logger = logging.getLogger(__name__) class DAO: """ This is the base data access object class """ def __init__(self, table, engine=None): self.engine = engine self.session = scoped_session(sessionmaker(bind=self.engine))() self.table = table def get(self, id): return self.session.query(self.table).get(id) def update(self, entity): self.session.merge(entity) return entity def bulk_update(self, entities): for entity in entities: self.session.merge(entity)
86c5da7bb034a60aca742ec0d047145ea02fa45a
201edd307f8f43281d14bdec1a6dd080a1409ca9
/pyrave/__init__.py
9242209e0b5826de7c9d85d5cdae1a78ab72ecb9
[ "MIT" ]
permissive
Olamyy/pyrave
1c5392444496d91f23a6af763b7cf6b77076a650
741bd0f68f29b0fd075b1060d53de99d91938224
refs/heads/master
2022-12-13T08:16:30.647440
2021-03-26T16:43:30
2021-03-26T16:43:30
122,391,698
11
7
null
2022-12-08T07:44:24
2018-02-21T20:48:21
Python
UTF-8
Python
false
false
290
py
__version__ = '1.0.3-alpha' __author__ = "Olamilekan Wahab" __license__ = 'MIT' __copyright__ = 'Copyright 2017. Olamilekan Wahab' from .payment import Payment from .transaction import Transaction from .misc import Misc from .preauth import Preauth from .encryption import RaveEncryption
f62111deb74e279775448c7d5a97f5ea7f6a8255
9f835d53232e954805b7ed1d93889e409209b36b
/1541_복습.py
134932438e9def1182112113c24eb401c83df29d
[]
no_license
dmswl0311/Baekjoon
7c8a862fceff086b3d7740eef23b80164e1d5aeb
22040aff6b64d5081e86d91b0d118d1a718a4316
refs/heads/master
2023-04-29T13:48:51.448245
2021-05-26T14:35:32
2021-05-26T14:35:32
323,482,711
0
0
null
null
null
null
UTF-8
Python
false
false
319
py
s = input().split('-') sum = 0 result = [] for i in s: if '+' in i: a = i.split('+') for j in a: sum += int(j) result.append(sum) else: result.append(int(i)) minus = result[0] for i in range(1, len(result)): minus -= result[i] print(minus)
9f0c923813fa96aeb957cf818428b8bdd1080bfa
6aad7d9ba2aa2bfd058c3f953fe47b52de3725b3
/structs.py
7d9c7e6174b664ead1a172c240ab5b52dde238dd
[]
no_license
shubhamDev73/3D
a3887463a8e32b535234079823e2b233f060248c
1ff3e5a40f98746196442f32e80b5fcd1d76ce7c
refs/heads/master
2021-05-17T17:24:39.298819
2020-04-02T21:17:05
2020-04-02T21:17:05
250,894,358
0
0
null
null
null
null
UTF-8
Python
false
false
4,587
py
""" Implements basic structures used throughout """ import math class matrix: """ Class implementing all matrix functionality """ # Commonly used matrices as classmethods @classmethod def identity(cls, n=4): # Identity matrix of degree n result = matrix(n, n) for i in range(n): result.insert(i, i, 1) return result def __init__(self, rows=4, coloumns=4): # Matrix is internally stored as an array of size rows (first index) x coloumns (second index) self._rows = rows self._coloumns = coloumns self._matrix = [[0 for i in range(coloumns)] for i in range(rows)] def getSize(self): return (self._rows, self._coloumns) def get(self, row, coloumn): return self._matrix[row][coloumn] def insert(self, row, coloumn, element): self._matrix[row][coloumn] = element return self def __mul__(self, other): if isinstance(other, vector): # matrix * vector, returns vector result = vector() for i in range(4): value = 0.0 for k in range(4): value += self.get(i, k) * other.get(k) result.insert(i, value) return result else: # matrix * matrix, returns matrix sizes = (self.getSize(), other.getSize()) if sizes[0][1] != sizes[1][0]: raise TypeError r = sizes[0][0] c = sizes[1][1] iterations = sizes[0][1] result = matrix(r, c) for i in range(r): for j in range(c): value = 0.0 for k in range(iterations): value += self.get(i, k) * other.get(k, j) result.insert(i, j, value) return result def __str__(self): # Pretty formatting string = "" for i in range(self._rows): for j in range(self._coloumns): string += str(self.get(i, j)) + "\t" string += "\n" return string class vector: """ Class implementing all vector functionality """ # Commonly used vectors as classmethods @classmethod def direction(cls, n): # Vector pointing along a particular axis (0 for x-axis, 1 for y-axis, 2 for z-axis) result = vector() result.insert(n, 1) return result @classmethod def one(cls): # Vector with all components as 1.0 return vector(1.0, 1.0, 1.0) def __init__(self, x=0.0, y=0.0, z=0.0): # Vector is internally stored as a 4x1 matrix (but does not inherit from it) self._vector = matrix(4, 1) self._vector.insert(0, 0, x) self._vector.insert(1, 0, y) self._vector.insert(2, 0, z) self._vector.insert(3, 0, 1.0) def get(self, index): return self._vector.get(index, 0) def getMagnitude(self): return math.sqrt(sum(math.pow(self._vector.get(i), 2) for i in range(3))) def normalized(self): return self / self.getMagnitude() def insert(self, index, element): self._vector.insert(index, 0, element) return self # Vector transformations (commit is used to commit the change to self) def translate(self, positionVector, commit=True): result = self + positionVector if commit: self._vector = result.asMatrix() return self else: return result def rotate(self, rotationVector, commit=True): result = self for i in range(3): # Separately for x, y, z axes r = matrix.identity(4) r.insert((i + 1) % 3, (i + 1) % 3, math.cos(math.radians(rotationVector.get(i)))) r.insert((i + 1) % 3, (i + 2) % 3, - math.sin(math.radians(rotationVector.get(i)))) r.insert((i + 2) % 3, (i + 1) % 3, math.sin(math.radians(rotationVector.get(i)))) r.insert((i + 2) % 3, (i + 2) % 3, math.cos(math.radians(rotationVector.get(i)))) result = r * result if commit: self._vector = result.asMatrix() return self else: return result def scale(self, scaleVector, commit=True): s = matrix.identity(4) s.insert(0, 0, scaleVector.get(0)) s.insert(1, 1, scaleVector.get(1)) s.insert(2, 2, scaleVector.get(2)) if commit: self._vector = (s * self).asMatrix() return self else: return s * self # Converting vector in another form def asMatrix(self): m = matrix(4, 1) for i in range(4): m.insert(i, 0, self.get(i)) return m def asList(self): return [self.get(0), self.get(1), self.get(2)] def __add__(self, other): # Vector addition result = vector() for i in range(3): result.insert(i, self.get(i) + other.get(i)) return result def __mul__(self, num): # Scalar multiplication result = vector() for i in range(3): result.insert(i, self.get(i) * num) return result def __truediv__(self, num): # Scalar division result = vector() for i in range(3): result.insert(i, self.get(i) / num) return result def __str__(self): # Pretty formatting return "({}, {}, {})".format(self.get(0), self.get(1), self.get(2))
1c7d4bc21df35e1245c6c10e7f05a4b42cec7807
1cfbdee506b996c731db6850f55f92c1be0d136e
/training/forms.py
d1451fd8bfefd183677dad3546419a9ee1ec7904
[]
no_license
alex2702/iotrec-backend
0d0334288ccdb6aae85b74d9522f5d0fb08e3281
e9c66baf789d3efc20cb109b7d69fff6d658760c
refs/heads/master
2022-12-03T08:01:21.950701
2019-12-23T07:12:14
2019-12-23T07:12:14
228,316,627
0
0
null
2022-11-22T04:38:09
2019-12-16T06:19:51
Python
UTF-8
Python
false
false
2,009
py
import random from django import forms from .models import Sample, ReferenceThing, ContextFactor # form to collect five training samples for a reference thing class SampleForm(forms.Form): # thing, CF and CFV fields are all hidden thing = forms.IntegerField(widget=forms.HiddenInput()) context_factor_1 = forms.IntegerField(widget=forms.HiddenInput()) context_factor_2 = forms.IntegerField(widget=forms.HiddenInput()) context_factor_3 = forms.IntegerField(widget=forms.HiddenInput()) context_factor_4 = forms.IntegerField(widget=forms.HiddenInput()) context_factor_5 = forms.IntegerField(widget=forms.HiddenInput()) context_factor_value_1 = forms.IntegerField(widget=forms.HiddenInput()) context_factor_value_2 = forms.IntegerField(widget=forms.HiddenInput()) context_factor_value_3 = forms.IntegerField(widget=forms.HiddenInput()) context_factor_value_4 = forms.IntegerField(widget=forms.HiddenInput()) context_factor_value_5 = forms.IntegerField(widget=forms.HiddenInput()) CHOICES = [ ('-1', 'negative effect'), ('0', 'no effect'), ('1', 'positive effect') ] value_1 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect) value_2 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect) value_3 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect) value_4 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect) value_5 = forms.ChoiceField(choices=CHOICES, widget=forms.RadioSelect) user = forms.CharField(widget=forms.HiddenInput()) class Meta: model = Sample fields = ['thing', 'context_factor_1', 'context_factor_2', 'context_factor_3', 'context_factor_4', 'context_factor_5', 'context_factor_value_1', 'context_factor_value_2', 'context_factor_value_3', 'context_factor_value_4', 'context_factor_value_5','value_1', 'value_2', 'value_3', 'value_4', 'value_5', 'user']
643a7e8fab27c002a3adec8754905d174c27db19
ab4f74d127bfc89813ee359bb9c779eca5426ddc
/script/label_image.runfiles/org_tensorflow/tensorflow/contrib/resampler/python/ops/resampler_ops.py
77aba28802d7d37842990c9062030322f5f2eb39
[ "MIT" ]
permissive
harshit-jain-git/ImageNET
cdfd5a340b62862ad8d1cc3b9a0f30cccc481744
1cd4c2b70917e4709ce75422c0205fe3735a1b01
refs/heads/master
2022-12-11T12:47:46.795376
2017-12-19T05:47:26
2017-12-19T05:47:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
102
py
/home/co/Documents/ImageClassifier/tensorflow/tensorflow/contrib/resampler/python/ops/resampler_ops.py
4b77de8df4c09f39015218c28428886bf20eb704
e0df57a2301e9b85fdd95645f5ec7c63e6929cfc
/my_app/currency/migrations/0001_initial.py
044fdfd08fb04514b3a11142463bde7f4e4a3e78
[]
no_license
rajdip34/python-online-compiler
1eb5a8c68d2e019b061f01c91a0788a8d2d2229f
62fa21daf73a3816c8e0d8da38e7f45af28e2424
refs/heads/master
2020-05-04T08:17:05.594349
2019-04-02T13:21:31
2019-04-02T13:21:31
179,043,248
0
0
null
null
null
null
UTF-8
Python
false
false
1,122
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-03-30 04:51 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Currency', fields=[ ('id', models.BigAutoField(db_column='Id', primary_key=True, serialize=False)), ('name', models.CharField(db_column='Name', max_length=3)), ('description', models.CharField(max_length=50)), ('modifydatetime', models.DateTimeField(db_column='ModifyDateTime')), ('modifyuserid', models.ForeignKey(blank=True, db_column='ModifyUserid', null=True, on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL)), ], options={ 'db_table': 'currency', 'managed': True, }, ), ]
f73f3bb6c439153d7bd119d6e542dfa392dbf1f5
913777b293fc18fc7d2ea08411bc3b25a72ca2df
/__manifest__.py
c2f185af678a6f51cb5ed21e8537defdf7752046
[]
no_license
ValeroMateo/RecuperacionOdoo
4ebd6542a0a6e2a6d489e311dc58ae4ad595469a
02e3c86fae59f2ea10c09f0b5cc5b6e8c8d8e046
refs/heads/master
2020-12-07T17:56:19.724969
2020-01-28T10:40:05
2020-01-28T10:40:05
232,765,249
0
0
null
null
null
null
UTF-8
Python
false
false
785
py
# -*- coding: utf-8 -*- { 'name': "Remedial exam Odoo", 'summary': """Hoping for the best""", 'description': """ Remedial exam module with the purpose of making our professor feel better about his students """, 'author': "Valero Mateo", 'website': "http://www.mybigassdisaster.com", # Categories can be used to filter modules in modules listing # Check https://github.com/odoo/odoo/blob/12.0/odoo/addons/base/data/ir_module_category_data.xml # for the full list 'category': 'Test', 'version': '0.1', # any module necessary for this one to work correctly 'depends': ['base', 'baseModule'], # always loaded 'data': [ 'security/ir.model.access.csv', 'views.xml', 'reports.xml' ], }
ed0c506a4e560bd296f8b23da088c23994a9bb50
4f51225cd157b0e31bc4268d2eb4d31159b074c4
/simulation_main.py
23c41147d3dc73ef20228cbc66bb91777ae90a93
[]
no_license
Jarvis-X/pioneer_free_run
3be03098349a0476a0b1ec91ce318b5aface54c7
5bad268f28d54a1da65930ec49ddde1404c5d878
refs/heads/master
2022-07-31T01:17:43.708467
2020-05-15T22:52:35
2020-05-15T22:52:35
264,040,655
1
0
null
null
null
null
UTF-8
Python
false
false
8,711
py
# Make sure to have the server side running in CoppeliaSim: # in a child script of a CoppeliaSim scene, add following command # to be executed just once, at simulation start: # # simRemoteApi.start(19999) # # then start simulation, and run this program. # # created by: Jiawei Xu try: import sim import numpy as np import cv2 import time except: print ('--------------------------------------------------------------') print ('Library loading failed!') print ('') def filter_red(img): red1 = cv2.inRange(img, (0, 220, 100), (5, 255, 255)) red2 = cv2.inRange(img, (175, 220, 100), (180, 255, 255)) return red1+red2 def filter_green(img): green = cv2.inRange(img, (55, 220, 100), (65, 255, 255)) return green def sensor_color(img): sensor_array = np.sum(img, 0, dtype=np.uint16) sensor_array_shrunken = [0.0]*16 for i in range(16): sensor_array_shrunken[i] = np.sum(sensor_array[i*16:(i+1)*16], dtype=np.uint32)*1.0 if sensor_array_shrunken[i] > 300000: sensor_array_shrunken[i] = 1.0 elif sensor_array_shrunken[i] < 60000: sensor_array_shrunken[i] = 0.0 else: sensor_array_shrunken[i] = (sensor_array_shrunken[i]-60000)/(300000.0-60000.0) # print sensor_array_shrunken return sensor_array_shrunken def free_running(sonar_readings, img, ID, left_motor, right_motor): red_threshold = filter_red(img) green_threshold = filter_green(img) green_sensor_array = sensor_color(green_threshold) red_sensor_array = sensor_color(red_threshold) # cv2.imshow("red", red_threshold) # cv2.imshow("green", green_threshold) # cv2.waitKey(1) v_left = 1.0 v_right = 1.0 for i in range(len(sonar_readings)): v_left += sonar_readings[i]*braitenberg_sonar_L[i] v_right += sonar_readings[i]*braitenberg_sonar_R[i] print v_left, " ", v_right # TODO: add red cube avoidance terms for i in range(len(red_sensor_array)): v_left += red_sensor_array[i] * braitenberg_red_L[i] v_right += red_sensor_array[i] * braitenberg_red_R[i] for i in range(len(green_sensor_array)): v_left += green_sensor_array[i] * braitenberg_green_L[i] v_right += green_sensor_array[i] * braitenberg_green_R[i] print v_left, " ", v_right # print v_left, " ", v_right sim.simxSetJointTargetVelocity(ID, left_motor, v_left, sim.simx_opmode_oneshot) sim.simxSetJointTargetVelocity(ID, right_motor, v_right, sim.simx_opmode_oneshot) def read_image(image_ready, ID, handler): res, resolution, image = sim.simxGetVisionSensorImage(ID, handler, 0, sim.simx_opmode_buffer) if res == sim.simx_return_ok: if not image_ready: print "image OK!!!" image_ready = True img = np.array(image, dtype=np.uint8) img.resize([resolution[1], resolution[0], 3]) img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) return img, image_ready elif res == sim.simx_return_novalue_flag: if image_ready: print "no image" image_ready = False return np.array([], dtype=np.uint8), image_ready else: print "error: " + str(res) return np.array([], dtype=np.uint8), image_ready def read_sonar(ID, handlers, sonar_ready): points = [None]*8 states = [False]*8 for i in range(8): res, states[i], points[i], _, normal_vec = sim.simxReadProximitySensor(ID, handlers[i], sim.simx_opmode_buffer) dists = [i[2] for i in points] if sonar_ready: for i in range(len(dists)): if states[i] and dists[i] < 0.5: if dists[i] < 0.2: dists[i] = 0.2 # map how close an obstacle is to the robot to [0, 1] dists[i] = 1.0 - (dists[i] - 0.2) / (0.5 - 0.2) else: dists[i] = 0.0 return dists, sonar_ready else: flag = True for i in range(len(dists)): if dists[i] == 0.0: flag = False break if flag: sonar_ready = True return None, sonar_ready if __name__ == "__main__": print ('Program started') sim.simxFinish(-1) # just in case, close all opened connections clientID = sim.simxStart('127.0.0.1', 19999, True, True, 5000, 5) # Connect to CoppeliaSim if clientID != -1: print ('Connected to remote API server') # Now try to retrieve data in a blocking fashion (i.e. a service call): res, objs = sim.simxGetObjects(clientID, sim.sim_handle_all, sim.simx_opmode_blocking) if res == sim.simx_return_ok: print ('Number of objects in the scene: ', len(objs)) else: print ('Remote API function call returned with error code: ', res) time.sleep(2) # get vision sensor handler print 'Vision Sensor object handling' res, veh_camera = sim.simxGetObjectHandle(clientID, 'veh_camera', sim.simx_opmode_oneshot_wait) # get sonor handler print 'Sonar object handling' veh_sonar = [None]*8 for i in range(8): res, veh_sonar[i] = sim.simxGetObjectHandle(clientID, 'Pioneer_p3dx_ultrasonicSensor'+'{}'.format(i+1), sim.simx_opmode_oneshot_wait) # print res == sim.simx_return_ok # get left motor handler res, veh_left_motor = sim.simxGetObjectHandle(clientID, 'Pioneer_p3dx_leftMotor', sim.simx_opmode_oneshot_wait) # print res == sim.simx_return_ok # get right motor handler res, veh_right_motor = sim.simxGetObjectHandle(clientID, 'Pioneer_p3dx_rightMotor', sim.simx_opmode_oneshot_wait) # print res == sim.simx_return_ok # let the server prepare the first image print 'Getting first image' res, resolution, image = sim.simxGetVisionSensorImage(clientID, veh_camera, 0, sim.simx_opmode_streaming) image_ready_flag = False # let the server prepare the first sonar reading points = [None] * 8 for i in range(8): res, state, points[i], _, normal_vec = sim.simxReadProximitySensor(clientID, veh_sonar[i], sim.simx_opmode_streaming) braitenberg_sonar_L = [0.2, 0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.2] braitenberg_sonar_R = [-1.2, -1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2] # TODO: fix the red cube avoidance braitenberg_red_L = [-0.65, -0.6, -0.55, -0.5, -0.45, -0.4, -0.35, -0.3, -0.25, -0.2, -0.15, -0.1, -0.05, 0.0, 0.05, 0.10] braitenberg_red_R = [0.10, 0.05, 0.0, -0.05, -0.1, -0.15, -0.2, -0.25, -0.3, -0.35, -0.4, -0.45, -0.5, -0.55, -0.6, -0.65] braitenberg_green_L = [0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05] braitenberg_green_R = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8] # braitenberg_sonar_L = [0.6, 0.8, 0.6, 0.4, -0.4, -0.6, -0.8, -0.6] # braitenberg_sonar_R = [-0.6, -0.8, -0.6, -0.4, 0.4, 0.6, 0.8, 0.6] # print [j[2] for j in points] sonar_ready_flag = False # keep running until the server shuts down while sim.simxGetConnectionId(clientID) != -1: image, image_ready_flag = read_image(image_ready_flag, clientID, veh_camera) detections, sonar_ready_flag = read_sonar(clientID, veh_sonar, sonar_ready_flag) # print detections # if image_ready_flag: # cv2.imshow("image", image) # cv2.waitKey(1) if image_ready_flag and sonar_ready_flag and not detections is None: free_running(detections, image, clientID, veh_left_motor, veh_right_motor) cv2.destroyAllWindows() # Now send some data to CoppeliaSim in a non-blocking fashion: # sim.simxAddStatusbarMessage(clientID, 'Hello CoppeliaSim!', sim.simx_opmode_oneshot) # Before closing the connection to CoppeliaSim, make sure that the last command sent out had time to arrive. You # can guarantee this with (for example): sim.simxGetPingTime(clientID) # Now close the connection to CoppeliaSim: sim.simxFinish(clientID) else: print 'Failed connecting to remote API server' print 'Program ended'
d1ddaf333839d2b4c77c8c4265b2240ac9836035
8d6fa96da4220ba886ef8e858f1925b6dca34e58
/examples/wtf/wtf/config.py
7cf539ff078f59cb14f772090950734c0d091acb
[]
no_license
FZambia/cyclone-wtforms
6ee26c920171685e027529e8f1fbb99c765edc30
c266b5f3bfff77e3a721b3335b74a294966f7daf
refs/heads/master
2016-09-05T15:23:08.336180
2012-10-05T18:55:00
2012-10-05T18:55:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,041
py
# coding: utf-8 # # Copyright 2010 Alexandre Fiori # based on the original Tornado by Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import ConfigParser from cyclone.util import ObjectDict def xget(func, section, option, default=None): try: return func(section, option) except: return default def parse_config(filename): cfg = ConfigParser.RawConfigParser() with open(filename) as fp: cfg.readfp(fp) fp.close() settings = {'raw': cfg} # web server settings settings["debug"] = xget(cfg.getboolean, "server", "debug", False) settings["xheaders"] = xget(cfg.getboolean, "server", "xheaders", False) settings["cookie_secret"] = cfg.get("server", "cookie_secret") settings["xsrf_cookies"] = xget(cfg.getboolean, "server", "xsrf_cookies", False) # get project's absolute path root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) getpath = lambda k, v: os.path.join(root, xget(cfg.get, k, v)) # locale, template and static directories' path settings["locale_path"] = getpath("frontend", "locale_path") settings["static_path"] = getpath("frontend", "static_path") settings["template_path"] = getpath("frontend", "template_path") # sqlite support if xget(cfg.getboolean, "sqlite", "enabled", False): settings["sqlite_settings"] = ObjectDict(database=cfg.get("sqlite", "database")) else: settings["sqlite_settings"] = None # redis support if xget(cfg.getboolean, "redis", "enabled", False): settings["redis_settings"] = ObjectDict( host=cfg.get("redis", "host"), port=cfg.getint("redis", "port"), dbid=cfg.getint("redis", "dbid"), poolsize=cfg.getint("redis", "poolsize")) else: settings["redis_settings"] = None # mysql support if xget(cfg.getboolean, "mysql", "enabled", False): settings["mysql_settings"] = ObjectDict( host=cfg.get("mysql", "host"), port=cfg.getint("mysql", "port"), username=xget(cfg.get, "mysql", "username"), password=xget(cfg.get, "mysql", "password"), database=xget(cfg.get, "mysql", "database"), poolsize=xget(cfg.getint, "mysql", "poolsize", 10), debug=xget(cfg.getboolean, "mysql", "debug", False)) else: settings["mysql_settings"] = None return settings
831ecbe5f0e78dba57eef89d48c2de2dfde712b6
1152aeca900b16e4c9a659a1a014a892aa08fb01
/hello-django/question/migrations/0005_auto_20190108_1023.py
b4543fcab26962803577b5e012d6f0c42f93530f
[]
no_license
mixkungz/django-for-deploy
923ff536fd8a2506bb53cb77bdd315513e40ae9c
187fe18ad85ca8bd04ee2e053248cdeff030cc85
refs/heads/master
2020-05-03T13:37:10.190004
2019-03-31T10:17:08
2019-03-31T10:17:08
178,657,364
0
0
null
2019-03-31T07:40:20
2019-03-31T07:40:20
null
UTF-8
Python
false
false
435
py
# Generated by Django 2.0.9 on 2019-01-08 03:23 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('question', '0004_auto_20190108_1010'), ] operations = [ migrations.RemoveField( model_name='answer', name='created', ), migrations.RemoveField( model_name='answer', name='modified', ), ]
fb04fa20f9674a3aa47b159387a398b15b39606b
b5906e0a8c000176faebdf7eeb9488ad42812985
/lib/python2.7/site-packages/tflearn/helpers/trainer.py
6810e5f1d7cd6031735772af89391561c9dcf689
[]
no_license
ZachPhillipsGary/CS200-NLP-ANNsProject
58593b5ad79d578503ea1e1cc155e014a10f26c3
35db127effc2a427dfd6f1ff7022b35f31c8337b
refs/heads/master
2022-12-22T07:42:52.513314
2016-05-06T13:52:40
2016-05-06T13:52:40
56,972,642
0
1
null
2016-05-02T04:22:19
2016-04-24T13:21:29
Python
UTF-8
Python
false
false
33,519
py
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import numpy as np import tensorflow as tf from tensorflow.python.training import optimizer as tf_optimizer import tflearn from .. import callbacks from ..config import init_training_mode from ..utils import to_list, id_generator, check_dir_name, standarize_dict, \ get_dict_first_element, make_batches, slice_array, check_scope_path from .summarizer import summaries, summarize, summarize_gradients, \ summarize_variables, summarize_activations class Trainer(object): """ Trainer. Generic class to handle any TensorFlow graph training. It requires the use of `TrainOp` to specify all optimization parameters. Arguments: train_ops: list of `TrainOp`. A list of a network training operations for performing optimizations. graph: `tf.Graph`. The TensorFlow graph to use. Default: default tf graph. clip_gradients: `float`. Clip gradient. Default: 5.0. tensorboard_dir: `str`. Tensorboard log directory. Default: "/tmp/tflearn_logs/". tensorboard_verbose: `int`. Verbose level. It supports: ```python 0 - Loss, Accuracy. (Best Speed) 1 - Loss, Accuracy, Gradients. 2 - Loss, Accuracy, Gradients, Weights. 3 - Loss, Accuracy, Gradients, Weights, Activations, Sparsity. (Best Visualization) ``` checkpoint_path: `str`. Path to store model checkpoints. If None, no model checkpoint will be saved. Default: None. max_checkpoints: `int` or None. Maximum amount of checkpoints. If None, no limit. Default: None. keep_checkpoint_every_n_hours: `float`. Number of hours between each model checkpoints. random_seed: `int`. Random seed, for test reproductivity. Default: None. session: `Session`. A session for running ops. If None, a new one will be created. Note: When providing a session, variables must have been initialized already, otherwise an error will be raised. """ def __init__(self, train_ops, graph=None, clip_gradients=5.0, tensorboard_dir="/tmp/tflearn_logs/", tensorboard_verbose=0, checkpoint_path=None, max_checkpoints=None, keep_checkpoint_every_n_hours=10000.0, random_seed=None, session=None): self.graph = tf.get_default_graph() if graph: self.graph = graph with self.graph.as_default(): init_training_mode() train_ops = to_list(train_ops) duplicate_identical_ops(train_ops) if random_seed: tf.set_random_seed(random_seed) self.restored = False self.tensorboard_dir = check_dir_name(tensorboard_dir) self.training_step = 0 self.train_ops = to_list(train_ops) self.validate_trainop_names() self.global_loss = None self.global_step = tf.Variable(0., name='Global_Step', trainable=False) self.incr_global_step = tf.assign(self.global_step, tf.add(self.global_step, 1)) config = None tflearn_conf = tf.get_collection(tf.GraphKeys.GRAPH_CONFIG) if tflearn_conf: config = tflearn_conf[0] if not session: self.session = tf.Session(config=config) else: self.session = session self.restored = True for i, train_op in enumerate(self.train_ops): # For display simplicity in Tensorboard, if only one optmizer, # we don't display its name if len(train_ops) == 1: train_op.scope_name = "" train_op.initialize_training_ops(i, self.session, tensorboard_verbose, clip_gradients) # Saver for saving a model self.saver = tf.train.Saver( max_to_keep=max_checkpoints, keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours) # Saver for restoring a model (With exclude variable list) all_vars = tf.get_collection(tf.GraphKeys.VARIABLES) excl_vars = tf.get_collection(tf.GraphKeys.EXCL_RESTORE_VARS) to_restore = [item for item in all_vars if item not in excl_vars] self.restorer = tf.train.Saver( var_list=to_restore, max_to_keep=max_checkpoints, keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours) self.checkpoint_path = checkpoint_path if not self.restored: init = tf.initialize_all_variables() self.session.run(init) def fit(self, feed_dicts, n_epoch=10, val_feed_dicts=None, show_metric=False, snapshot_step=None, snapshot_epoch=True, shuffle_all=None, run_id=None): """ fit. Train network with feeded data dicts. Examples: ```python # 1 Optimizer trainer.fit(feed_dicts={input1: X, output1: Y}, val_feed_dicts={input1: X, output1: Y}) trainer.fit(feed_dicts={input1: X1, input2: X2, output1: Y}, val_feed_dicts=0.1) # 10% of data used for validation # 2 Optimizers trainer.fit(feed_dicts=[{in1: X1, out1:Y}, {in2: X2, out2:Y2}], val_feed_dicts=[{in1: X1, out1:Y}, {in2: X2, out2:Y2}]) ``` Arguments: feed_dicts: `dict` or list of `dict`. The dictionary to feed data to the network. It follows Tensorflow feed dict specifications: '{placeholder: data}'. In case of multiple optimizers, a list of dict is expected, that will respectively feed optimizers. n_epoch: `int`. Number of epoch to runs. val_feed_dicts: `dict`, list of `dict`, `float` or list of `float`. The data used for validation. Feed dict are following the same specification as `feed_dicts` above. It is also possible to provide a `float` for splitting training data for validation. show_metric: `bool`. If True, accuracy will be calculated and displayed at every step. Might give slower training. snapshot_step: `int`. If not None, the network will be snapshot every provided step (calculate validation loss/accuracy and save model, if a `checkpoint_path` is specified in `Trainer`). snapshot_epoch: `bool`. If True, snapshot the network at the end of every epoch. shuffle_all: `bool`. If True, shuffle all data batches (overrides `TrainOp` shuffle parameter behavior). run_id: `str`. A name for the current run. Used for Tensorboard display. If no name provided, a random one will be generated. """ if not run_id: run_id = id_generator(6) print("---------------------------------") print("Run id: " + run_id) print("Log directory: " + self.tensorboard_dir) # shuffle is an override for simplicty, it will overrides every # training op batch shuffling if isinstance(shuffle_all, bool): for t in self.train_ops: t.shuffle = shuffle_all with self.graph.as_default(): self.summ_writer = tf.train.SummaryWriter( self.tensorboard_dir + run_id, self.session.graph_def) # TODO: Add a check that all keys in feed dict match val feed dict feed_dicts = to_list(feed_dicts) for d in feed_dicts: standarize_dict(d) val_feed_dicts = to_list(val_feed_dicts) if val_feed_dicts: [standarize_dict(d) for d in val_feed_dicts] # Handle validation split validation_split(val_feed_dicts, feed_dicts) termlogger = callbacks.TermLogger(self.training_step) modelsaver = callbacks.ModelSaver(self.save, self.training_step, self.checkpoint_path, snapshot_epoch) for i, train_op in enumerate(self.train_ops): vd = val_feed_dicts[i] if val_feed_dicts else None # Prepare all train_ops for fitting train_op.initialize_fit(feed_dicts[i], vd, show_metric, self.summ_writer) # Prepare TermLogger for training diplay metric_term_name = None if train_op.metric is not None: if hasattr(train_op.metric, 'm_name'): metric_term_name = train_op.metric.m_name else: metric_term_name = train_op.metric.name.split(':')[0] termlogger.add(train_op.n_train_samples, val_size=train_op.n_val_samples, metric_name=metric_term_name, name=train_op.name) max_batches_len = np.max([t.n_batches for t in self.train_ops]) termlogger.on_train_begin() modelsaver.on_epoch_begin() try: for epoch in range(n_epoch): termlogger.on_epoch_begin() modelsaver.on_epoch_begin() # Global epoch are defined as loop over all data (whatever # which data input), so one epoch loop in a multi-inputs # model is equal to max(data_input) size. for batch_step in range(max_batches_len): self.training_step += 1 termlogger.on_batch_begin() modelsaver.on_batch_begin() global_loss, global_acc = 0., 0. for i, train_op in enumerate(self.train_ops): termlogger.on_sub_epoch_begin() modelsaver.on_sub_batch_begin() snapshot = train_op._train(self.training_step, snapshot_epoch, snapshot_step, show_metric) global_loss += train_op.loss_value if train_op.acc_value and global_acc: global_acc += train_op.acc_value / len( self.train_ops) else: global_acc = None # Optimizer batch end termlogger.on_sub_batch_end(i, train_op.epoch, train_op.step, train_op.loss_value, train_op.acc_value, train_op.val_loss, train_op.val_acc) modelsaver.on_sub_batch_end() # All optimizers batch end self.session.run(self.incr_global_step) termlogger.on_batch_end(global_loss, global_acc, snapshot) modelsaver.on_batch_end(snapshot) # Epoch end termlogger.on_epoch_end() modelsaver.on_epoch_end() finally: termlogger.on_train_end() modelsaver.on_train_end() def save(self, model_file, global_step=None): """ save. Save a Tensorflow model Arguments: model_file: `str`. Saving path of tensorflow model global_step: `float`. The training step to append to the model file name (optional). """ # Temp workaround for tensorflow 0.7.0 dict proto serialization issue try: # Try latest api l = tf.get_collection_ref("summary_tags") except Exception: l = tf.get_collection("summary_tags") l_stags = list(l) del l[:] # Temp workaround for tensorflow 0.7.0 relative path issue if model_file[0] not in ['/', '~']: model_file = './' + model_file self.saver.save(self.session, model_file, global_step=global_step) # 0.7 workaround, restore values for t in l_stags: tf.add_to_collection("summary_tags", t) def restore(self, model_file): """ restore. Restore a Tensorflow model Arguments: model_file: path of tensorflow model to restore """ self.close_session() self.session = tf.Session() self.session.run(tf.initialize_all_variables()) self.restorer.restore(self.session, model_file) for o in self.train_ops: o.session = self.session self.restored = True self.training_step = int(self.global_step.eval(self.session)) def close_session(self): """ Close session """ self.session.close() def validate_trainop_names(self): """ Give names to all TrainOp, handle no names and duplicated names """ t_len = len(self.train_ops) # Rename optimizers without name for i in range(t_len): if not self.train_ops[i].name: self.train_ops[i].name = 'Optimizer' self.train_ops[i].scope_name = 'Optimizer' # Handle duplicate names for i in range(t_len): dupl = 0 for j in range(i+1, t_len): if not self.train_ops[i].name: break if self.train_ops[i].name == self.train_ops[j].name: if dupl == 0: self.train_ops[i].name += '_' + str(dupl) self.train_ops[i].scope_name = self.train_ops[i].name dupl += 1 self.train_ops[j].name += '_' + str(dupl) self.train_ops[j].scope_name = self.train_ops[j].name class TrainOp(object): """ TrainOp. TrainOp represents a set of operation used for optimizing a network. A TrainOp is meant to hold all training parameters of an optimizer. `Trainer` class will then instantiate them all specifically considering all optimizers of the network (set names, scopes... set optimization ops...). Arguments: loss: `Tensor`. Loss operation to evaluate network cost. Optimizer will use this cost function to train network. optimizer: `Optimizer`. Tensorflow Optimizer. The optimizer to use to train network. metric: `Tensor`. The metric tensor to be used for evaluation. batch_size: `int`. Batch size for data feeded to this optimizer. Default: 64. ema: `float`. Exponential moving averages. trainable_vars: list of `tf.Variable`. List of trainable variables to use for training. Default: all trainable variables. shuffle: `bool`. Shuffle data. step_tensor: `tf.Tensor`. A variable holding training step. If not provided, it will be created. Early defining the step tensor might be useful for network creation, such as for learning rate decay. name: `str`. A name for this class (optional). graph: `tf.Graph`. Tensorflow Graph to use for training. Default: default tf graph. """ def __init__(self, loss, optimizer, metric=None, batch_size=64, ema=0., trainable_vars=None, shuffle=True, step_tensor=None, name=None, graph=None): self.graph = tf.get_default_graph() if graph: self.graph = graph self.name = name self.scope_name = name # Ops self.loss = loss self.optimizer = optimizer self.metric = metric self.metric_summ_name = "" if metric is not None: self.metric_summ_name = metric.name.split('/')[0] self.grad = None self.apply_grad = None self.summ_op = None self.val_summary_op = None self.train_vars = trainable_vars self.shuffle = shuffle # Train utils self.epoch = 0 self.step = 0 self.batches = None self.batch_index = 0 self.batch_start = 0 self.batch_end = 0 self.batch_size = batch_size self.data_size = 0 self.n_batches = 0 self.ema = ema self.feed_dict = None self.val_feed_dict = None self.loss_value = None self.val_loss = None self.acc_value = None self.val_acc = None if step_tensor is None: with self.graph.as_default(): self.training_steps = tf.Variable(0., name="Training_step", trainable=False) else: self.training_steps = step_tensor # Building if not isinstance(self.loss, tf.Tensor): raise ValueError("Unknown Loss type") if not isinstance(self.optimizer, tf_optimizer.Optimizer): raise ValueError("Unknown Optimizer") if self.train_vars is None: self.train_vars = tf.trainable_variables() else: self.train_var = to_list(self.train_vars) self.train = None def initialize_training_ops(self, i, session, tensorboard_verbose, clip_gradients): """ initialize_training_ops. Initialize all ops used for training. Because a network can have multiple optimizers, an id 'i' is allocated to differentiate them. This is meant to be used by `Trainer` when initializing all train ops. Arguments: i: `int`. This optimizer training process ID. session: `tf.Session`. The session used to train the network. tensorboard_verbose: `int`. Logs verbose. Supports: ``` 0 - Loss, Accuracy. 1 - Loss, Accuracy, Gradients. 2 - Loss, Accuracy, Gradients, Weights. 3 - Loss, Accuracy, Gradients, Weights, Activations, Sparsity.. ``` clip_gradients: `float`. Option for clipping gradients. """ self.session = session # Variables holding mean validation loss and accuracy, assigned after # each model evaluation (by batch). For visualization in Tensorboard. self.val_loss_T = tf.Variable(0., name='val_loss', trainable=False) self.val_acc_T = tf.Variable(0., name='val_acc', trainable=False) # Creating the accuracy moving average, for better visualization. if self.metric is not None: self.acc_averages = \ tf.train.ExponentialMovingAverage(0.9, self.training_steps, name='moving_avg') acc_avg_op = self.acc_averages.apply([self.metric]) else: acc_avg_op = tf.no_op() # Compute total loss, which is the loss of all optimizers plus the # loss of all regularizers. Then, we summarize those losses for # visualization in Tensorboard. with tf.name_scope(self.name): lss = [self.loss] + tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n(lss, name="Total_Loss") loss_avg_op = summaries.add_loss_summaries( total_loss, self.loss, regul_losses_collection_key=tf.GraphKeys.REGULARIZATION_LOSSES, name_prefix=self.scope_name, summaries_collection_key=self.name + "_training_summaries", exp_moving_avg=0.9, ema_num_updates=self.training_steps) # Compute gradients operations with tf.control_dependencies([loss_avg_op, acc_avg_op]): self.grad = tf.gradients(total_loss, self.train_vars) if clip_gradients > 0.0: self.grad, self.grad_norm = \ tf.clip_by_global_norm(self.grad, clip_gradients) self.grad = list(zip(self.grad, self.train_vars)) self.apply_grad = self.optimizer.apply_gradients( grads_and_vars=self.grad, global_step=self.training_steps, name="apply_grad_op_" + str(i)) # Create other useful summary (weights, grads, activations...) # according to 'tensorboard_verbose' level. self.create_summaries(tensorboard_verbose) # Track the moving averages of trainable variables if self.ema > 0.: var_averages = tf.train.ExponentialMovingAverage( self.ema, self.training_steps) var_averages_op = var_averages.apply(self.train_vars) with tf.control_dependencies([var_averages_op]): with tf.control_dependencies([self.apply_grad]): self.train = tf.no_op(name="train_op_" + str(i)) else: with tf.control_dependencies([self.apply_grad]): self.train = tf.no_op(name="train_op_" + str(i)) def initialize_fit(self, feed_dict, val_feed_dict, show_metric, summ_writer): """ initialize_fit. Initialize data for feeding the training process. It is meant to be used by `Trainer` before starting to fit data. Arguments: feed_dict: `dict`. The data dictionary to feed. val_feed_dict: `dict`. The validation data dictionary to feed. show_metric: `bool`. If True, display accuracy at every step. summ_writer: `SummaryWriter`. The summary writer to use for Tensorboard logging. """ self.summary_writer = summ_writer self.feed_dict = feed_dict self.val_feed_dict = val_feed_dict self.n_train_samples = len(get_dict_first_element(feed_dict)) self.n_val_samples = 0 if val_feed_dict: self.n_val_samples = len(get_dict_first_element(val_feed_dict)) self.index_array = np.arange(self.n_train_samples) self.create_testing_summaries(show_metric, self.metric_summ_name, val_feed_dict) if self.shuffle: np.random.shuffle(self.index_array) self.set_batches(make_batches(self.n_train_samples, self.batch_size)) def set_batches(self, batches): self.batches = batches self.n_batches = len(batches) self.batch_size = int(batches[0][1] - batches[0][0]) self.data_size = self.batch_size * (self.n_batches - 1) + \ int(batches[-1][1] - batches[-1][0]) self.batch_start, self.batch_end = self.batches[self.batch_index] def next_batch(self): """ Return True if a next batch is available """ self.batch_index += 1 self.step = min(self.batch_index*self.batch_size, self.data_size) if self.batch_index == self.n_batches: self.batch_index = 0 self.epoch += 1 self.step = 0 return False self.batch_start, self.batch_end = self.batches[self.batch_index] return True def _train(self, training_step, snapshot_epoch, snapshot_step, show_metric): """ Training process for this optimizer. Arguments: training_step: `int`. The global step. snapshot_epoch: `bool`. If True, snapshot network at each epoch. snapshot_step: `int`. If not None, snapshot network given 'step'. show_metric: `bool`. If True, display accuracy at every step. """ tflearn.is_training(True, self.session) self.loss_value, self.acc_value = None, None self.val_loss, self.val_acc = None, None train_summ_str, test_summ_str = None, None snapshot = False batch_ids = self.index_array[self.batch_start:self.batch_end] feed_batch = {} for key in self.feed_dict: # Make batch for multi-dimensional data if np.ndim(self.feed_dict[key]) > 0: feed_batch[key] = slice_array(self.feed_dict[key], batch_ids) else: feed_batch[key] = self.feed_dict[key] tflearn.is_training(True, self.session) self.session.run([self.train], feed_batch) tflearn.is_training(False, self.session) if self.summ_op is not None: train_summ_str = self.session.run(self.summ_op, feed_batch) # Retrieve loss value from summary string sname = "- Loss/" + self.scope_name self.loss_value = summaries.get_value_from_summary_string( sname, train_summ_str) if show_metric and self.metric is not None: # Retrieve accuracy value from summary string sname = "- " + self.metric_summ_name + "/" + self.scope_name self.acc_value = summaries.get_value_from_summary_string( sname, train_summ_str) # Check if data reached an epoch if not self.next_batch(): if self.shuffle: np.random.shuffle(self.index_array) batches = make_batches(self.n_train_samples, self.batch_size) self.set_batches(batches) if snapshot_epoch: snapshot = True # Check if step reached snapshot step if snapshot_step: if training_step % snapshot_step == 0: snapshot = True # Calculate validation if snapshot and self.val_feed_dict: # Evaluation returns the mean over all batches. self.val_loss = evaluate(self.session, self.loss, self.val_feed_dict, self.batch_size) if show_metric and self.metric is not None: self.val_acc = evaluate(self.session, self.metric, self.val_feed_dict, self.batch_size) # Set evaluation results to variables, to be summarized. if show_metric: update_val_op = [tf.assign(self.val_loss_T, self.val_loss), tf.assign(self.val_acc_T, self.val_acc)] else: update_val_op = tf.assign(self.val_loss_T, self.val_loss) self.session.run(update_val_op) # Run summary operation. test_summ_str = self.session.run(self.val_summary_op, self.val_feed_dict) # Write to Tensorboard n_step = self.training_steps.eval(session=self.session) if n_step > 1: if train_summ_str: self.summary_writer.add_summary( train_summ_str, n_step) if test_summ_str: self.summary_writer.add_summary( test_summ_str, n_step) return snapshot def duplicate(self): """ Returns a duplicated `TrainOp` """ return TrainOp(self.loss, optimizer=self.optimizer, batch_size=self.batch_size, ema=self.ema, metric=self.metric, trainable_vars=self.train_vars, shuffle=self.shuffle) def create_summaries(self, verbose=2): """ Create summaries with `verbose` level """ summ_collection = self.name + "_training_summaries" if verbose in [3]: # Summarize activations activations = tf.get_collection(tf.GraphKeys.ACTIVATIONS) summarize_activations(activations, summ_collection) if verbose in [2, 3]: # Summarize variable weights summarize_variables(self.train_vars, summ_collection) if verbose in [1, 2, 3]: # Summarize gradients summarize_gradients(self.grad, summ_collection) self.summ_op = tf.merge_summary(tf.get_collection(summ_collection)) def create_testing_summaries(self, show_metric=False, metric_name="Accuracy", validation_set=None): """ Create accuracy and validation summaries """ tr_summ_collection = self.name + "_training_summaries" te_summ_collection = self.name + "_testing_summaries" mn = metric_name.replace('/Mean:0/', '') if show_metric and self.metric is not None: # Summarize Raw Accuracy sname = "- " + mn + "/" + self.scope_name + " (raw)" summarize(self.metric, "scalar", sname, tr_summ_collection) # Summarize Accuracy's moving averages sname = "- " + mn + "/" + self.scope_name self.summ_op = summarize(self.acc_averages.average(self.metric), "scalar", sname, tr_summ_collection) if validation_set is not None: # Summarive Validation Loss loss_val_name = "- Loss/" + self.scope_name + "/Validation" loss_val_name = check_scope_path(loss_val_name) self.val_summary_op = summarize(self.val_loss_T, "scalar", loss_val_name, te_summ_collection) if show_metric and self.metric is not None: # Summarize Validation Accuracy acc_val_name = "- " + mn + "/" + self.scope_name + "/Validation" acc_val_name = check_scope_path(acc_val_name) self.val_summary_op = summarize(self.val_acc_T, "scalar", acc_val_name, te_summ_collection) def duplicate_identical_ops(ops): """ Duplicate identical `TrainOp` """ for i in range(len(ops)): for j in range(i+1, len(ops)): if ops[i] == ops[j]: ops[j] = ops[i].duplicate() def validation_split(val_feed_dicts, feed_dicts): """ validation_split. Handles validation split; build validation data based on a percentage of training data. It checks all val_feed_dicts keys values for a float, if found, it retrieves the exact same key in feed_dict and split its data according to `float` value and move it to val_feed_dict. Args: val_feed_dicts: `dict` of arrays or float. validation dictionary. feed_dicts: `dict` of arrays. training data dictionary. """ if val_feed_dicts: for i, val_dict in enumerate(val_feed_dicts): for key, val in val_dict.items(): if isinstance(val, float): split = val if type(feed_dicts[i][key]) in [list, np.ndarray]: split_at = int(len(feed_dicts[i][key]) * (1 - split)) feed_dicts[i][key], val_feed_dicts[i][key] = \ (slice_array(feed_dicts[i][key], 0, split_at), slice_array(feed_dicts[i][key], split_at)) else: # If parameter is not an array, we duplicate value val_feed_dicts[i][key] = feed_dicts[i][key] def evaluate(session, op_to_evaluate, feed_dict, batch_size): """ evaluate. Evaluate an operation with provided data dict using a batch size to save GPU memory. Args: session: `tf.Session`. Session for running operations. op_to_evaluate: `tf.Op`. Operation to be evaluated. feed_dict: `dict`. Data dictionary to feed op_to_evaluate. batch_size: `int`. Batch size to be used for evaluation. Ret: `float`. op_to_evaluate mean over all batches. """ tflearn.is_training(False, session) n_test_samples = len(get_dict_first_element(feed_dict)) batches = make_batches(n_test_samples, batch_size) index_array = np.arange(n_test_samples) avg = 0.0 for i, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] feed_batch = {} for key in feed_dict: # Make batch for multi-dimensional data if np.ndim(feed_dict[key]) > 0: feed_batch[key] = slice_array(feed_dict[key], batch_ids) else: feed_batch[key] = feed_dict[key] avg += session.run(op_to_evaluate, feed_batch) / len(batches) return avg
a95a21a906cbc61b1a494f65b0db168b544ba60c
3e65c4a3781359e1e68870f6419bb580cec3d670
/tests/front_office/not_sorted/example_suite.py
8e6a9c7a6af12a6447ad8d011d612ac059ef3aea
[]
no_license
Maksim1988/test
deeff67fc3211c913d9be77008f38fe9e24a2a18
ea1fd32981fce2db2c8bb6ceeb477bc7561e58cd
refs/heads/master
2021-01-10T17:03:36.871180
2015-11-08T13:08:49
2015-11-08T13:08:49
45,779,091
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
__author__ = 'm.senchuk' import itertools from nose.loader import TestLoader from nose import run from nose.suite import LazySuite #paths = ("C:\Users\\m.senchuk\\PycharmProjects\\FF4F\\api-tests\\tests\\front_office\\test_search.py:TestSearchSeller", # ) # # #def run_my_tests(): # all_tests = () # for path in paths: # all_tests = itertools.chain(all_tests, TestLoader().loadTestsFromName(path)) # suite = LazySuite(all_tests) # result = run(suite=suite) # assert result is True, "One or more tests FAILED. See console log." # #if __name__ == '__main__': # run_my_tests()
beb4cb8c5fb98b584d7ccafc8ad7673035e22014
5c3cca4ea09b1cad4be3b5973f1c9028661a92b4
/flup/resolver/nopathinfo.py
93063e28daae4b8ec73476e411d81e94ee16ed2f
[]
no_license
cwallenpoole/blog_m3
4cfec16a7cb1f504c8ba579476c18a783725a9aa
1de1e68ae959c092cf1c486d92a25d511881281d
refs/heads/master
2016-09-06T18:55:28.087462
2013-01-28T02:02:03
2013-01-28T02:02:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,521
py
# Copyright (c) 2005 Allan Saddi <[email protected]> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # # $Id: nopathinfo.py 1755 2005-04-15 03:35:59Z asaddi $ __author__ = 'Allan Saddi <[email protected]>' __version__ = '$Revision: 1755 $' from .resolver import * __all__ = ['NoPathInfoResolver'] class NoPathInfoResolver(Resolver): """ Another meta-resolver. Disallows the existence of PATH_INFO (beyond what's needed to resolve the function). Optionally allows a trailing slash. """ def __init__(self, resolver, allowTrailingSlash=False): self._resolver = resolver self._allowTrailingSlash = allowTrailingSlash def resolve(self, request, redirect=False): orig_script_name, orig_path_info = request.scriptName, request.pathInfo func = self._resolver.resolve(request, redirect) try: if func is not None: path_info = request.pathInfo.split(';')[0] if path_info and \ (not self._allowTrailingSlash or path_info != '/'): func = None return func finally: if func is None: request.environ['SCRIPT_NAME'] = orig_script_name request.environ['PATH_INFO'] = orig_path_info
626e284b40ec0447bfcba31a165d86827eb7df2a
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/gHrMmA7emP6CFAMnb_6.py
35eeb43f5be552b55e650249bf1ff464b8e37754
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
def is_apocalyptic(n): L=str(2**n).split('666') if len(L)==1: return "Safe" elif len(L)==2: return "Single" elif len(L)==3: return "Double" elif len(L)==4: return "Triple"
790f320f73573645f8c4d22bab38bef0a32c0b52
f112dfe38732f131156556ab724e2b9a01d317ae
/week2/43-reverse-num.py
1cc8c4dbef21bd1ef9aac050ea0e5115f52387a4
[]
no_license
pharick/python-coursera
2a92bf467e0ddd35a573ea4e29fff9a37e45bd24
3e24ac9385eada126e7c4753f71cd38181987fbf
refs/heads/master
2020-04-04T03:44:45.067099
2019-03-20T07:10:22
2019-03-20T07:10:22
155,724,086
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
n = int(input()) while n: print(n % 10, end="") n //= 10 print()
0e743649d4432447a1728b244cf860d8f0e7dbf6
4b7d83793acd0c84f8bd2603f766b5d8ba10c2eb
/solutions/RegularSolutionThreads.py
1aa780dcdf05184559bff2d1b32f64bd705f905b
[]
no_license
TudorOrha/Parallel-image-filter-application
021a5497182c916a9d0e10623a2b87dfe7d12d37
345f167eb9db621439556713f1923cbaa7052fdf
refs/heads/master
2021-09-03T20:57:08.597365
2018-01-11T23:41:17
2018-01-11T23:41:17
115,743,012
0
0
null
null
null
null
UTF-8
Python
false
false
3,155
py
import time import threading import multiprocessing from multiprocessing import Pool from PIL import Image nrOfThreads = multiprocessing.cpu_count() class myThread (threading.Thread): def __init__(self, threadID, kernel, img, originalImg): threading.Thread.__init__(self) self.threadID = threadID self.kernel = kernel self.img = img self.originalImg = originalImg self.pixels = img.load() self.originalPixels = originalImg.load() def run(self): applyFilterOnPart(self.threadID, self.kernel, self.img, self.originalImg) def applyFilterOnPart(threadNr, kernel, img, originalImg): pixels = img.load() originalPixels = originalImg.load() fromI = int(round(threadNr*(img.size[0]-2*(len(kernel)//2))/nrOfThreads)) + len(kernel)//2 toI = int(round((1+threadNr)*(img.size[0]-2*(len(kernel)//2))/nrOfThreads)) + len(kernel)//2 for i in range(fromI, toI): for j in range(len(kernel)//2, img.size[1] - len(kernel)//2): accumulatorR = 0 accumulatorG = 0 accumulatorB = 0 for kerRow in range(len(kernel)): for kerCol in range(len(kernel[kerRow])): accumulatorR += kernel[kerRow][kerCol] * originalPixels[i+len(kernel)//2 - kerRow,j+len(kernel)//2 - kerCol][0] accumulatorG += kernel[kerRow][kerCol] * originalPixels[i+len(kernel)//2 - kerRow,j+len(kernel)//2 - kerCol][1] accumulatorB += kernel[kerRow][kerCol] * originalPixels[i+len(kernel)//2 - kerRow,j+len(kernel)//2 - kerCol][2] pixels[i,j] = (int(round(accumulatorR)), int(round(accumulatorG)), int(round(accumulatorB))) return img def generateParameters(kernel, img, originalImg): params = [] for k in range(nrOfThreads): params.append((k, kernel, img, originalImg)) return params def main(imageName, kernel, showResult): print("Regular Solution With Threads Output:") start = time.time() originalImg = Image.open(imageName) img = Image.open(imageName) pixels = img.load() with Pool(processes=nrOfThreads) as pool: results = pool.starmap(applyFilterOnPart, generateParameters(kernel,img,originalImg)) for k in range(nrOfThreads): fromI = int(round(k*(img.size[0]-2*(len(kernel)//2))/nrOfThreads)) + len(kernel)//2 toI = int(round((1+k)*(img.size[0]-2*(len(kernel)//2))/nrOfThreads)) + len(kernel)//2 for i in range(fromI, toI): for j in range(len(kernel)//2, img.size[1] - len(kernel)//2): pixels[i,j] = results[k].load()[i,j] ''' threads = [] for i in range (nrOfThreads): thread = myThread(i, kernel, img, originalImg) threads.append(thread) thread.start() for i in range (nrOfThreads): threads[i].join() ''' width, height = img.size img = img.crop((len(kernel)//2, len(kernel)//2, width - len(kernel)//2, height - len(kernel)//2)) end = time.time() print(end - start,"\n") if showResult: img.show()
e1ec61ece7c4b94c6d91bb0b115a6a0aefd76e07
bc39253e56a81d65b30975a775ae18e59db75c47
/pygame_basic/game.py
a8a3257ad370d554bb98cdc99e55a5d1b8aae8a5
[]
no_license
skysee6126/py_game
96ed06c93d7566907af61a2df0e199325a1d6191
5213692541817e63b32a4b33af46c2c940836961
refs/heads/master
2023-04-21T15:07:53.074074
2021-04-28T13:22:15
2021-04-28T13:22:15
360,445,007
0
0
null
null
null
null
UTF-8
Python
false
false
2,917
py
import pygame pygame.init() screen_width = 640 screen_height = 480 screen = pygame.display.set_mode((screen_width, screen_height)) pygame.display.set_caption("Test game") #FPS clock = pygame.time.Clock() # background = pygame.image.load("C:\Users\케이지케이\Documents\practice\game\pygame_basic\background.jpg") character = pygame.image.load("https://www.flaticon.com/svg/vstatic/svg/3885/3885025.svg?token=exp=1619081421~hmac=9f4bd262dddec45be649b11af322333e") character_size = character.get_rect().size character_width = character_size[0] character_height = character_size[1] character_x_pos = (screen_width/2) - (character_width/2) character_y_pos = screen_height - character_height #Move to_x = 0 to_y = 0 character_speed = 0.6 enemy = pygame.image.load("enemy.jpg") enemy_size = enemy.get_rect().size enemy_width = enemy_size[0] enemy_height = enemy_size[1] enemy_x_pos = (screen_width/2) - (enemy_width/2) enemy_y_pos = screen_height - enemy_height game_font = pygame.font.Font(None, 40) total_time = 10 start_ticks = pygame.time.get_ticks() #Even roof running = True while running: dt = clock.tick(30) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: to_x -= character_speed elif event.key == pygame.K_RIGHT: to_x += character_speed elif event.key == pygame.K_UP: to_y -= character_speed elif event.key == pygame.K_DOWN: to_y += character_speed if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT: to_x = 0 elif event.key == pygame.K_UP or event.key == pygame.K_DOWN: to_y = 0 character_x_pos += to_x *dt character_y_pos += to_y *dt #가로 if character_x_pos < 0: character_x_pos = 0 elif character_x_pos > screen_width - character_width: character_x_pos = screen_width - character_width #세로 if character_y_pos < 0: character_y_pos = 0 elif character_y_pos > screen_height - character_height: character_y_pos = screen_height - character_height #collision character_rect = character.get_rect() character_rect.left = character_x_pos character_rect.right = character_y_pos enemy_rect = enemy.get_rect() enemy_rect.left = enemy_x_pos enemy_rect.right = enemy_y_pos if character_rect.colliderect(enemy_rect): print("Bump!") running = False screen.fill((0,0,130)) # screen.blit(background, (0,0)) screen.blit(character, (character_x_pos,character_y_pos)) screen.blit(enemy, (enemy_x_pos,enemy_y_pos)) elapsed_time = (pygame.time.get_ticks() - start_ticks)/ 1000 timer = game_font.render(str(int(total_time - elapsed_time)), True, (255, 255, 255)) screen.blit(timer, (10,10)) if total_time - elapsed_time <= 0: print("Time out") running = False pygame.display.update() pygame.time.delay(2000) pygame.quit()
4e8d14003c2e112ef076b89c4c8a3ad6613f9a2c
8da91c26d423bacbeee1163ac7e969904c7e4338
/pyvisdk/do/customization_failed.py
b63b14e03d5fddb6d06ae4f32d77239d433f8930
[]
no_license
pexip/os-python-infi-pyvisdk
5d8f3a3858cdd61fb76485574e74ae525cdc7e25
1aadea0afbc306d09f6ecb9af0e683dbbf961d20
refs/heads/master
2023-08-28T02:40:28.789786
2020-07-16T04:00:53
2020-07-16T04:00:53
10,032,240
0
1
null
null
null
null
UTF-8
Python
false
false
1,169
py
import logging from pyvisdk.exceptions import InvalidArgumentError ######################################## # Automatically generated, do not edit. ######################################## log = logging.getLogger(__name__) def CustomizationFailed(vim, *args, **kwargs): '''The customization sequence in the guest failed.''' obj = vim.client.factory.create('{urn:vim25}CustomizationFailed') # do some validation checking... if (len(args) + len(kwargs)) < 5: raise IndexError('Expected at least 6 arguments got: %d' % len(args)) required = [ 'template', 'chainId', 'createdTime', 'key', 'userName' ] optional = [ 'logLocation', 'changeTag', 'computeResource', 'datacenter', 'ds', 'dvs', 'fullFormattedMessage', 'host', 'net', 'vm', 'dynamicProperty', 'dynamicType' ] for name, arg in zip(required+optional, args): setattr(obj, name, arg) for name, value in kwargs.items(): if name in required + optional: setattr(obj, name, value) else: raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional))) return obj
b8e02cce761e458f0b3ef4e1dd2c7a741cb9b2ad
5131d61e51a227444717abf8180d00db95179b3b
/lessons/point.py
1ffd4a12965568ee3f8a4242ef1cffcf8805dfcf
[]
no_license
yutika01/comp110-21f-workspace
fdfa9894c2d99a1a43c1c12bee3663632e772865
a575deba7283c1cbd3b5c5f52cff37af8de3fa89
refs/heads/main
2023-09-04T13:23:26.508125
2021-11-21T02:27:43
2021-11-21T02:27:43
422,988,649
0
0
null
2021-10-30T20:54:08
2021-10-30T20:54:08
null
UTF-8
Python
false
false
774
py
"""Example of a Point class.""" from __future__ import annotations class Point: x: float y: float def __init__(self, x: float, y: float): """Initialize a Point with its x, y components.""" self.x = x self.y = y def scale_by(self, factor: float) -> None: """Mutates multiplies components by factor.""" self.x *= factor self.y *= factor def scale(self, factor: float) -> Point: """Immutable: mutliplies components by factor without mutation.""" x: float = self.x * factor y: float = self.y * factor scaled_point: Point = Point(x, y) return scaled_point p0: Point = Point(1.0, 2.0) p1: Point = p0.scale(2.0) print(f"({p0.x}, {p0.y})") print(f"({p1.x}, {p1.y})")
4037c0492bcce6dde2154f61c014bed9328f5868
ed36a77bf31a5e2d99f80fe4c13224976ea274fd
/blog/models.py
c1d564824fd2f82a1cb2709ca4bab96d404d49a3
[]
no_license
lovelove0618/django_swu_website
b2752623112bf85a5789b42f6569156293ddd01a
b33c2f267bfcf00490226d8797c7f0190c7466b2
refs/heads/master
2022-11-29T10:06:26.382813
2020-08-17T16:39:13
2020-08-17T16:39:13
287,696,266
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
from django.db import models from django.contrib.auth.models import User class Post(models.Model): title = models.CharField(max_length=30) content = models.TextField() created = models.DateTimeField() author = models.ForeignKey(User, on_delete=True)
231b25ba70c9a57c6b57cd97838fe94e8da086cc
6140cd676c3c6f0e65d3be4515789e7c0f255ffd
/numeric-tsne-plotly/settings.py
2c6bcb14653175b3b8fc3e8c7a36707d9890c928
[]
no_license
RezaKakooee/tsne-collection
1efa1ab109d00588ff749bbd5d8f6563c841ce2b
93e58071671e2dfbd9b7e395608c4b2b8dca98ac
refs/heads/master
2022-04-10T08:08:27.427761
2020-03-28T22:53:25
2020-03-28T22:53:25
241,490,880
0
0
null
null
null
null
UTF-8
Python
false
false
814
py
# -*- coding: utf-8 -*- """ Created on Tue Feb 18 23:53:36 2020 @author: rkako """ import os class Params(): def __init__(self): # Directories ans Pathes self.current_dir = os.getcwd() # self.dataset_folder_name = 'imageset' self.dataset_dir = 'C:/Users/reza/gdrive-redu/hslu/HSLU-Secude/large-data' self.data_file_name = 'pca_output_vectors.pickle' self.data_path = os.path.join(self.dataset_dir, self.data_file_name) self.log_dir_name = 'logs' self.log_dir = os.path.join(self.current_dir, self.log_dir_name) self.similarity_metric = 'cosine' # clucters self.num_clusters = 10 # TSNE self.tsne_n_components = 3 self.tsne_perplexity = 5.0 #params = Params()
3974a3b8483800aaf3ad9f189e529ec6e246d184
f6c5aa5931b71a31246168c9049da50797e5ce57
/djangoapp/src/config/urls.py
80f6238a15460d9c83ea408eb5d3f925bf0bed62
[]
no_license
AlexLoar/musicallity
7b724b8350cab3de516228636268b79ba51f5b4c
5dc09e8b7fed8c666181a4cb87e8d8328481f1d5
refs/heads/master
2023-01-02T12:20:38.648476
2020-10-06T16:00:49
2020-10-06T16:00:49
301,781,216
0
0
null
null
null
null
UTF-8
Python
false
false
1,250
py
from django.contrib import admin from django.conf import settings from django.urls import path, include from django.conf.urls.static import static from django.utils.translation import ugettext_lazy as _ from django.views import defaults as default_views from config.router import urlpatterns as api_urlpatterns app_name = 'main_music' # Admin URLs admin.site.site_header = _('MUSIC Project') urlpatterns = [ path(r'admin/', admin.site.urls), ] # API URLs # Create a router and register our resources with it. urlpatterns += [ path('api/v1/', include(api_urlpatterns)), ] if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ path(r'400/', default_views.bad_request, kwargs={'exception': Exception('Bad Request!')}), path(r'403/', default_views.permission_denied, kwargs={'exception': Exception('Permission Denied')}), path(r'404/', default_views.page_not_found, kwargs={'exception': Exception('Page not Found')}), path(r'500/', default_views.server_error), ] # Media URLs on debug urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
23cb6c73db0e3711ff0ecbd0b6aa7165e94b3584
a01fb7bb8e8738a3170083d84bc3fcfd40e7e44f
/python3/module/pandas/df/sql/join.py
540fb2077f46a30f47e810c2b98ebc2c0a79da73
[]
no_license
jk983294/CommonScript
f07acf603611b4691b176aa4a02791ef7d4d9370
774bcbbae9c146f37312c771c9e867fb93a0c452
refs/heads/master
2023-08-21T17:50:19.036159
2023-08-16T00:22:03
2023-08-16T00:22:03
42,732,160
5
0
null
null
null
null
UTF-8
Python
false
false
739
py
import pandas as pd import numpy as np df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': np.random.randn(4)}) df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'], 'value': np.random.randn(4)}) print(df1) print(df2) # SELECT * FROM df1 INNER JOIN df2 ON df1.key = df2.key; print(pd.merge(df1, df2, on='key')) # in case join key is different print(pd.merge(df1, df2, left_on='key', right_on='key')) # SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.key = df2.key; print(pd.merge(df1, df2, on='key', how='left')) # SELECT * FROM df1 RIGHT OUTER JOIN df2 ON df1.key = df2.key; print(pd.merge(df1, df2, on='key', how='right')) # SELECT * FROM df1 FULL OUTER JOIN df2 ON df1.key = df2.key; print(pd.merge(df1, df2, on='key', how='outer'))
128efb9b492a29c2e87a97b932e626a724b6af9f
52b9016932aa426eeaaade5d856af6a1a771683f
/tests/testapp/serializers.py
3c4be81a47c21da377120bda5b7ee7eb6deb647d
[ "MIT" ]
permissive
marlncpe/django-rest-pandas
33033627d88c6467a9677133402fb519d5ea5a75
89a93c3ce8d30688f9137f5a9beacc7d63f621e0
refs/heads/master
2021-01-23T11:55:02.722962
2017-09-01T20:47:46
2017-09-01T20:47:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,844
py
from rest_framework.serializers import ModelSerializer from rest_framework import serializers from rest_pandas import PandasUnstackedSerializer from .models import TimeSeries, MultiTimeSeries, ComplexTimeSeries class TimeSeriesSerializer(ModelSerializer): date = serializers.DateField(format=None) class Meta: model = TimeSeries fields = '__all__' class TimeSeriesNoIdSerializer(TimeSeriesSerializer): class Meta: model = TimeSeries exclude = ['id'] class MultiTimeSeriesSerializer(ModelSerializer): class Meta: model = MultiTimeSeries exclude = ['id'] pandas_index = ['date'] pandas_unstacked_header = ['series'] pandas_scatter_coord = ['series'] pandas_boxplot_group = 'series' pandas_boxplot_date = 'date' class ComplexTimeSeriesSerializer(ModelSerializer): class Meta: model = ComplexTimeSeries exclude = ['id'] pandas_index = ['date', 'type'] pandas_unstacked_header = ['site', 'parameter', 'units'] class ComplexScatterSerializer(ComplexTimeSeriesSerializer): class Meta(ComplexTimeSeriesSerializer.Meta): exclude = ['id', 'flag'] pandas_scatter_coord = ['units', 'parameter'] pandas_scatter_header = ['site'] class ComplexBoxplotSerializer(ComplexTimeSeriesSerializer): class Meta(ComplexTimeSeriesSerializer.Meta): exclude = ['id', 'flag', 'type'] pandas_boxplot_group = 'site' pandas_boxplot_date = 'date' pandas_boxplot_header = ['units', 'parameter'] class NotUnstackableSerializer(ModelSerializer): class Meta: model = MultiTimeSeries fields = '__all__' list_serializer_class = PandasUnstackedSerializer # pandas_unstacked_header = Missing pandas_index = ['series']
2505a5e7e60a90a9d8a8586e237cbc32f6195255
0b024b99b7f79f299b9f63ffe08d6ab25c92c560
/rolePermission/wsgi.py
7a5ca7aca64ff5c22e1ddbb8a5511a208563fbce
[]
no_license
Bakhodirov-Jakhongir/django-role-permission-based-app
924afebd9abeb494db89bbb17efc77b0ed3ed623
4f6e698a7bf0988ac1b72a577a83d2f84c3d5767
refs/heads/main
2023-08-25T07:17:06.292622
2021-11-02T11:21:04
2021-11-02T11:21:04
423,815,562
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for rolePermission project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'rolePermission.settings') application = get_wsgi_application()
76f794ba7b0ecbb4b8044008f296f605ccca2439
94838674ffd175df6194437c1ccc3f90ab409d6c
/pillowV3/log/2018-12-30 14:25:26.954969
574f467c8fb2f82034a73060e36f0973007e6bd0
[]
no_license
WojciechKoz/MyFirstNeuralNetwork
4fdb3140d8f02257599d005638598f78055c1ac8
3cd032aba80ecd71edb0286724ae9ba565b75a81
refs/heads/master
2020-04-02T03:02:48.680433
2020-02-29T17:57:43
2020-02-29T17:57:43
153,943,121
0
0
null
null
null
null
UTF-8
Python
false
false
498,667
954969
#!/usr/bin/env python3 # -*- coding: utf8 -*- from __future__ import print_function # new print() on python2 from datetime import datetime import sys import numpy as np from mnist import MNIST # Display full arrays np.set_printoptions(threshold=np.inf) mndata = MNIST('./data') images_full, labels_full = mndata.load_training() images = [] labels = [] # dynamic arguments batch_size = int(sys.argv[1]) size_1 = int(sys.argv[2]) size_2 = int(sys.argv[3]) batch_training_size = int(sys.argv[4]) data_part = 5 # only one fifth of the whole dataset to speed up training for i in range(len(labels_full) // batch_size // data_part): images.append(images_full[i*batch_size : (i+1)*batch_size]) labels.append(labels_full[i*batch_size : (i+1)*batch_size]) def sigmoid_prime(x): return np.exp(-x) / ((np.exp(-x) + 1) ** 2) def sigmoid(x): return 1 / (1 + np.exp(-x)) # nowe, przyda się? def relu(x): return np.maximum(x, x * 0.01) def relu_prime(x): if x >= 0: return 1 # ej nie jest tak xd # a jak xd? type(x) == no.ndarray # no x to macierz xd # np.exp jest przeładowane ale jakakoleiwk funkcja to chyba nie # to co foreach ? :( # właśnie nie wiem, a co z gpu? # to miało być szybsze a nie xd # mamy duzo mozliwosci zmian ale nie na raz trzeba ustalic jakos # hm TODO gpu TODO wincyj procent TODO gui gotowe # xd # tamto myliło hah # to co najpierw? :p # ssh daje wglad do basha tylko tak ? # nie, to jest taki fajny programik, byobu # i ten pasek na dole też jest z byobu # on udostepnia tylko basha ? # tak, ale basha multiplayer xd # szkoda że 2 kursorow nie ma # hm return 0.01 # chyba tak xd nikt nie widzial xd # ale x to macierz :p # ale to jest przeciazone i jak jest funkcja od macierzy to bierze po kolei kazdy element # w sumie # zobacze na drugiej karcie xd #X = np.array([[0, 0], # [0, 1], # [1, 0], # [1, 1]]) #X = np.array(images) y = [] for batch in labels: y.append([]) for label in batch: y[-1].append([1.0 if i == label else 0.0 for i in range(10)]) y = np.array(y) #y = np.array([[0], # [1], # [1], # [0]]) np.random.seed(1) LEN = len(labels) SIZES = [ 784, size_1, size_2, 10 ] syn0 = 2 * np.random.random((SIZES[0], SIZES[1])) - 1 syn1 = 2 * np.random.random((SIZES[1], SIZES[2])) - 1 syn2 = 2 * np.random.random((SIZES[2], SIZES[3])) - 1 # biases for respective layers b0 = 2 * np.random.random((1, SIZES[1])) - 1 b1 = 2 * np.random.random((1, SIZES[2])) - 1 b2 = 2 * np.random.random((1, SIZES[3])) - 1 for i, batch in list(enumerate(images)): X = np.array(batch) print("x:") print(np.shape(X)) print("======================= BATCH {} =======================".format(i)) error = 1 j = 0 while j < batch_training_size: l0 = X l1 = sigmoid(np.dot(l0, syn0) + b0) l2 = sigmoid(np.dot(l1, syn1) + b1) l3 = sigmoid(np.dot(l2, syn2) + b2) l3_error = (y[i] - l3)#** 2 error = np.mean(np.abs(l3_error)) j += 1 if j % 20 == 0: print(("[%d] error: " % j) + str(error)) l3_delta = l3_error * sigmoid_prime(l3) l2_error = l3_delta.dot(syn2.T) l2_delta = l2_error * sigmoid_prime(l2) l1_error = l2_delta.dot(syn1.T) l1_delta = l1_error * sigmoid_prime(l1) syn2 += l2.T.dot(l3_delta) syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta) b0 += l1_delta.mean(axis=0) b1 += l2_delta.mean(axis=0) b2 += l3_delta.mean(axis=0) def predict(data): l0 = [data] l1 = sigmoid(np.dot(l0, syn0) + b0) l2 = sigmoid(np.dot(l1, syn1) + b1) l3 = sigmoid(np.dot(l2, syn2) + b2) return np.argmax(l3) print("Output after training: ") print(l3) for i, el in enumerate(l3): print(labels[0][i], "=", np.argmax(el), " predictions: ", el) testing_images, testing_labels = mndata.load_testing() correct = 0.0 for i, (image, label) in enumerate(zip(testing_images, testing_labels)): prediction = predict(image) if label == prediction: correct += 1.0 correct_rate = correct / (i + 1.0) print("{} = {} (correct {}%)".format(label, prediction, 100 * correct_rate)) with open('log/' + str(datetime.now()), 'a') as f: with open(__file__, 'r') as myself: print(myself.read(), file=f) print("", file=f) print("#### answers:", file=f) print("argv =", sys.argv, file=f) print("correct_rate =", correct_rate, file=f) print("SIZES =", SIZES, file=f) print("syn0 =", syn0, file=f) print("syn1 =", syn1, file=f) print("syn2 =", syn2, file=f) print("b0 =", b0, file=f) print("b1 =", b1, file=f) print("b2 =", b2, file=f) #### answers: argv = ['./main.py', '59', '36', '34', '25'] correct_rate = 0.594 SIZES = [784, 36, 34, 10] syn0 = [[-1.65955991e-01 4.40648987e-01 -9.99771250e-01 -3.95334855e-01 -7.06488218e-01 -8.15322810e-01 -6.27479577e-01 -3.08878546e-01 -2.06465052e-01 7.76334680e-02 -1.61610971e-01 3.70439001e-01 -5.91095501e-01 7.56234873e-01 -9.45224814e-01 3.40935020e-01 -1.65390395e-01 1.17379657e-01 -7.19226123e-01 -6.03797022e-01 6.01489137e-01 9.36523151e-01 -3.73151644e-01 3.84645231e-01 7.52778305e-01 7.89213327e-01 -8.29911577e-01 -9.21890434e-01 -6.60339161e-01 7.56285007e-01 -8.03306332e-01 -1.57784750e-01 9.15779060e-01 6.63305699e-02 3.83754228e-01 -3.68968738e-01] [ 3.73001855e-01 6.69251344e-01 -9.63423445e-01 5.00288630e-01 9.77722178e-01 4.96331309e-01 -4.39112016e-01 5.78558657e-01 -7.93547987e-01 -1.04212948e-01 8.17191006e-01 -4.12771703e-01 -4.24449323e-01 -7.39942856e-01 -9.61266084e-01 3.57671066e-01 -5.76743768e-01 -4.68906681e-01 -1.68536814e-02 -8.93274910e-01 1.48235211e-01 -7.06542850e-01 1.78611074e-01 3.99516720e-01 -7.95331142e-01 -1.71888024e-01 3.88800315e-01 -1.71641461e-01 -9.00093082e-01 7.17928118e-02 3.27589290e-01 2.97782241e-02 8.89189512e-01 1.73110081e-01 8.06803831e-01 -7.25050592e-01] [-7.21447305e-01 6.14782577e-01 -2.04646326e-01 -6.69291606e-01 8.55017161e-01 -3.04468281e-01 5.01624206e-01 4.51995971e-01 7.66612182e-01 2.47344414e-01 5.01884868e-01 -3.02203316e-01 -4.60144216e-01 7.91772436e-01 -1.43817620e-01 9.29680094e-01 3.26882996e-01 2.43391440e-01 -7.70508054e-01 8.98978517e-01 -1.00175733e-01 1.56779229e-01 -1.83726394e-01 -5.25946040e-01 8.06759041e-01 1.47358973e-01 -9.94259346e-01 2.34289827e-01 -3.46710196e-01 5.41162045e-02 7.71884199e-01 -2.85460480e-01 8.17070302e-01 2.46720232e-01 -9.68357514e-01 8.58874467e-01] [ 3.81793835e-01 9.94645701e-01 -6.55318983e-01 -7.25728501e-01 8.65190926e-01 3.93636323e-01 -8.67999655e-01 5.10926105e-01 5.07752377e-01 8.46049071e-01 4.23049517e-01 -7.51458076e-01 -9.60239732e-01 -9.47578026e-01 -9.43387024e-01 -5.07577865e-01 7.20055897e-01 7.76621287e-02 1.05643957e-01 6.84061785e-01 -7.51653370e-01 -4.41632642e-01 1.71518543e-01 9.39191497e-01 1.22060439e-01 -9.62705421e-01 6.01265345e-01 -5.34051452e-01 6.14210391e-01 -2.24278712e-01 7.27083709e-01 4.94243285e-01 1.12480468e-01 -7.27089549e-01 -8.80164621e-01 -7.57313089e-01] [-9.10896243e-01 -7.85011742e-01 -5.48581323e-01 4.25977961e-01 1.19433964e-01 -9.74888040e-01 -8.56051441e-01 9.34552660e-01 1.36200924e-01 -5.93413531e-01 -4.95348511e-01 4.87651708e-01 -6.09141038e-01 1.62717855e-01 9.40039978e-01 6.93657603e-01 -5.20304482e-01 -1.24605715e-02 2.39911437e-01 6.57961799e-01 -6.86417211e-01 -9.62847596e-01 -8.59955713e-01 -2.73097781e-02 2.12658923e-01 1.37702874e-01 -3.65275181e-01 9.77232309e-01 1.59490438e-01 -2.39717655e-01 1.01896438e-01 4.90668862e-01 3.38465787e-01 -4.70160885e-01 -8.67330331e-01 -2.59831604e-01] [ 2.59435014e-01 -5.79651980e-01 5.05511107e-01 -8.66927037e-01 -4.79369803e-01 6.09509127e-01 -6.13131435e-01 2.78921762e-01 4.93406182e-02 8.49615941e-01 -4.73406459e-01 -8.68077819e-01 4.70131927e-01 5.44356059e-01 8.15631705e-01 8.63944138e-01 -9.72096854e-01 -5.31275828e-01 2.33556714e-01 8.98032641e-01 9.00352238e-01 1.13306376e-01 8.31212700e-01 2.83132418e-01 -2.19984572e-01 -2.80186658e-02 2.08620966e-01 9.90958430e-02 8.52362853e-01 8.37466871e-01 -2.10248774e-01 9.26525057e-01 -6.52088667e-01 -7.47340961e-01 -7.29841684e-01 1.13243314e-02] [-9.56950389e-01 8.95940422e-01 6.54230942e-01 -9.69962039e-01 -6.47607489e-01 -3.35872851e-01 -7.38006310e-01 6.18981384e-01 -3.10526695e-01 8.80214965e-01 1.64028360e-01 7.57663969e-01 6.89468891e-01 8.10784637e-01 -8.02394684e-02 9.26936320e-02 5.97207182e-01 -4.28562297e-01 -1.94929548e-02 1.98220615e-01 -9.68933449e-01 1.86962816e-01 -1.32647302e-01 6.14721058e-01 -3.69510394e-01 7.85777417e-01 1.55714431e-01 -6.31979597e-01 5.75858468e-01 2.24062354e-01 -8.92181456e-01 -1.59612640e-01 3.58137673e-01 8.37203556e-01 -9.99195950e-01 9.53518298e-01] [-2.46839371e-01 9.47567077e-01 2.09432202e-01 6.57691616e-01 1.49423009e-01 2.56152397e-01 -4.28847437e-01 1.73666681e-01 5.00043527e-01 7.16627673e-01 5.10164377e-01 3.96114497e-01 7.28958860e-01 -3.54638006e-01 3.41577582e-01 -9.82521272e-02 -2.35794496e-01 -1.78377300e-01 -1.97040833e-01 -3.65232108e-01 2.43838736e-01 -1.39505458e-01 9.47604156e-01 3.55601783e-01 -6.02860223e-01 -1.46597981e-01 -3.13307520e-01 5.95277608e-01 7.59996577e-01 8.07683912e-01 3.25439625e-01 -4.59583476e-01 -4.95266597e-01 7.09795885e-01 5.54292926e-02 6.04322168e-01] [ 1.44977034e-01 4.66285051e-01 3.80232549e-02 5.41767821e-01 1.37715981e-01 -6.85802428e-02 -3.14622184e-01 -8.63581303e-01 -2.44151641e-01 -8.40747845e-01 9.65634227e-01 -6.36774297e-01 6.23717395e-01 7.49923290e-01 3.76826505e-01 1.38988825e-01 -6.78057126e-01 -6.62399545e-02 -3.09655898e-01 -5.49920084e-01 1.85023738e-01 -3.75460325e-01 8.32611107e-01 8.19271050e-01 -4.85763412e-01 -7.78217399e-01 -6.14074536e-01 -8.31658642e-04 4.57171336e-01 -5.83611123e-01 -5.03932883e-01 7.03343750e-01 -1.68302563e-01 2.33370134e-01 -5.32667722e-01 -7.96065481e-01] [ 3.17140339e-02 -4.57180259e-02 -6.94656712e-01 2.43612463e-01 8.80202376e-02 3.08274694e-01 -7.10908920e-01 5.03055634e-01 -5.55901720e-01 3.87036487e-02 5.70592056e-01 -9.55339144e-01 -3.51275081e-01 7.45844753e-01 6.89419215e-01 7.68811852e-02 7.33216548e-01 8.99611983e-01 6.52813995e-01 7.08230888e-01 -8.02513196e-01 3.02608665e-01 4.07033976e-01 2.20481625e-01 5.99230523e-01 -9.30857560e-01 5.40477469e-01 4.63457201e-01 -4.80603213e-01 -4.85861402e-01 2.64606635e-01 -3.09405077e-01 5.93177356e-01 -1.07707536e-01 5.65498830e-01 9.80943567e-01] [-3.99503321e-01 -7.13988343e-01 8.02616873e-01 8.31187578e-02 9.49480742e-01 2.73208800e-01 9.87826049e-01 9.21416083e-02 5.28518678e-02 -7.29144194e-01 -2.88589658e-01 -9.47562865e-01 -6.79209641e-01 4.91274385e-01 -9.39200620e-01 -2.66913806e-01 7.24692506e-01 3.85355435e-01 3.81884284e-01 -6.22726398e-01 -1.16191439e-01 1.63154815e-01 9.79503415e-01 -5.92187550e-01 -5.04534196e-01 -4.75653832e-01 5.00344827e-01 -8.60493451e-02 -8.86141123e-01 1.70324812e-02 -5.76079671e-01 5.97208490e-01 -4.05337237e-01 -9.44787976e-01 1.86864899e-01 6.87680858e-01] [-2.37967752e-01 4.99716621e-01 2.22829566e-02 8.19036099e-02 9.18868642e-01 6.07921783e-01 -9.35353867e-01 4.18774502e-01 -6.99970369e-02 8.95097883e-01 -5.57134531e-01 -4.65855961e-01 -8.37052070e-01 -1.42762343e-01 -7.81962472e-01 2.67573521e-01 6.05926475e-01 3.93600992e-01 5.32422762e-01 -3.15091760e-01 6.91702966e-01 -1.42462450e-01 6.48019741e-01 2.52992317e-01 -7.13153903e-01 -8.43226200e-01 -9.63334714e-01 -8.66550005e-01 -8.28323726e-02 -7.73316154e-01 -9.44433302e-01 5.09722963e-01 -2.10299039e-01 4.93876991e-01 -9.51903465e-02 -9.98265060e-02] [-4.38549866e-02 -5.19921469e-02 6.06326684e-01 -1.95214960e-01 8.09372321e-01 -9.25877904e-01 5.47748685e-01 -7.48717238e-01 2.37027134e-01 -9.79271477e-01 7.72545652e-02 -9.93964087e-01 9.02387571e-01 8.10804067e-01 5.91933884e-01 8.30548640e-01 -7.08883538e-01 -6.84539860e-01 -6.24736654e-01 2.44991805e-01 8.11618992e-01 9.79910357e-01 4.22244918e-01 4.63600818e-01 8.18586409e-01 -1.98252535e-01 -5.00298640e-01 -6.53139658e-01 -7.61085899e-01 6.25221176e-01 -7.06415253e-01 -4.71405035e-01 6.38178357e-01 -3.78825496e-01 9.64834899e-01 -4.66722596e-01] [ 6.73066899e-02 -3.71065978e-01 8.21545662e-01 -2.66886712e-01 -1.32815345e-01 2.45853846e-02 8.77772955e-01 -9.38101987e-01 4.33757327e-01 7.82037909e-01 -9.45425553e-01 4.41024945e-02 -3.48020376e-01 7.18978642e-01 1.17033102e-01 3.80455736e-01 -9.42930001e-02 2.56618075e-01 -4.19806297e-01 -9.81302844e-01 1.53511870e-01 -3.77111572e-01 3.45351970e-02 8.32811706e-01 -1.47050423e-01 -5.05207927e-01 -2.57412477e-01 8.63722233e-01 8.73736763e-01 6.88659897e-01 8.40413029e-01 -5.44199420e-01 -8.25035581e-01 -5.45380527e-01 -3.71246768e-01 -6.50468247e-01] [ 2.14188324e-01 -1.72827170e-01 6.32703024e-01 -6.29739203e-01 4.03753060e-01 -5.19288750e-01 1.48438178e-01 -3.02024806e-01 -8.86071201e-01 -5.42372658e-01 3.28205111e-01 -5.49981328e-03 3.80319681e-02 -6.50559700e-01 1.41431703e-01 9.93506850e-01 6.33670218e-01 1.88745248e-01 9.51978137e-01 8.03125169e-01 1.91215867e-01 -9.35147349e-01 -8.12845808e-01 -8.69256570e-01 -9.65337026e-02 -2.49130334e-01 9.50700069e-01 -6.64033414e-01 9.45575184e-01 5.34949738e-01 6.48475679e-01 2.65231634e-01 3.37465540e-01 -4.62353330e-02 -9.73727286e-01 -2.93987829e-01] [-1.58563970e-02 4.60182422e-01 -6.27433145e-02 -8.51901678e-02 -7.24674518e-01 -9.78222532e-01 5.16556521e-01 -3.60094324e-01 9.68766900e-01 -5.59531548e-01 -3.22583949e-01 4.77922713e-02 5.09782914e-01 -7.22844322e-02 -7.50354914e-01 -3.74997243e-01 9.03833940e-03 3.47698016e-01 5.40299913e-01 -7.39328438e-01 -9.54169737e-01 3.81646444e-02 6.19977421e-01 -9.74792466e-01 3.44939689e-01 3.73616453e-01 -1.01506493e-01 8.29577373e-01 2.88722170e-01 -9.89520325e-01 -3.11431090e-02 7.18635612e-01 6.60799140e-01 2.98308394e-01 3.47396848e-01 1.56999160e-01] [-4.51760450e-01 1.21059981e-01 3.43459570e-01 -2.95140740e-01 7.11656735e-01 -6.09925028e-01 4.94641621e-01 -4.20794508e-01 5.47598574e-01 -1.44525341e-01 6.15396818e-01 -2.92930275e-01 -5.72613525e-01 5.34569017e-01 -3.82716105e-01 4.66490135e-01 4.88946306e-01 -5.57206598e-01 -5.71775726e-01 -6.02104153e-01 -7.14963324e-01 -2.45834802e-01 -9.46744231e-01 -7.78159262e-01 3.49128048e-01 5.99553074e-01 -8.38940946e-01 -5.36595379e-01 -5.84748676e-01 8.34667126e-01 4.22629036e-01 1.07769222e-01 -3.90964024e-01 6.69708095e-01 -1.29388085e-01 8.46912430e-01] [ 4.12103609e-01 -4.39373841e-02 -7.47579793e-01 9.52087101e-01 -6.80332699e-01 -5.94795750e-01 -1.37636490e-01 -1.91596188e-01 -7.06497038e-01 4.58637839e-01 -6.22509866e-01 2.87791289e-01 5.08611901e-01 -5.78535216e-01 2.01908496e-01 4.97856750e-01 2.76437421e-01 1.94254606e-01 -4.09035429e-01 4.63212942e-01 8.90616880e-01 -1.48877219e-01 5.64363634e-01 -8.87717921e-01 6.70543205e-01 -6.15499966e-01 -2.09806262e-01 -3.99837908e-01 -8.39792712e-01 8.09262006e-01 -2.59691645e-01 6.13948770e-02 -1.17674682e-02 -7.35677716e-01 -5.87091882e-01 -8.47622382e-01] [ 1.58433999e-02 -4.76900896e-01 -2.85876782e-01 -7.83869343e-01 5.75103679e-01 -7.86832246e-01 9.71417647e-01 -6.45677671e-01 1.44810225e-01 -9.10309331e-01 5.74232579e-01 -6.20788104e-01 5.58079568e-02 4.80155086e-01 -7.00137030e-01 1.02174348e-01 -5.66765583e-01 5.18392099e-01 4.45830387e-01 -6.46901931e-01 7.23933115e-01 -9.60449801e-01 7.20473995e-01 1.17807622e-01 -1.93559056e-01 5.17493862e-01 4.33858003e-01 9.74652350e-01 -4.43829903e-01 -9.92412655e-01 8.67805217e-01 7.15794209e-01 4.57701755e-01 3.33775658e-02 4.13912490e-01 5.61059114e-01] [-2.50248113e-01 5.40645051e-01 5.01248638e-01 2.26422423e-01 -1.96268152e-01 3.94616039e-01 -9.93774284e-01 5.49793293e-01 7.92833205e-01 -5.21368585e-01 -7.58465631e-01 -5.59432024e-01 -3.95806537e-01 7.66057017e-01 8.63328605e-02 -4.26576701e-01 -7.23290620e-01 -4.19711074e-01 2.27742179e-01 -3.51722940e-01 -8.52796366e-02 -1.11765786e-01 6.56270721e-01 -1.47303692e-01 -3.08602358e-01 3.49943210e-01 -5.57035889e-01 -6.55083521e-02 -3.70468625e-01 2.53711204e-01 7.54720949e-01 -1.04622000e-01 5.68914838e-01 -8.60685989e-02 3.12458663e-01 -7.36318050e-01] [-1.34036986e-01 8.18623977e-01 2.10958002e-01 5.33549174e-01 9.40121619e-03 -3.88875034e-03 6.85799680e-01 -8.64386131e-01 1.46544543e-01 8.85525151e-01 3.57200963e-02 -6.11068381e-01 6.95878785e-01 -4.96721715e-01 4.01452073e-01 8.05218808e-02 8.97672577e-01 2.48673405e-01 6.75955924e-01 -9.84134248e-01 9.78680112e-01 -8.44570859e-01 -3.55740973e-01 8.92304791e-01 -9.82121795e-01 6.45460011e-01 7.22423277e-01 -1.20338372e-01 -4.88509612e-01 6.05379039e-01 -4.42759911e-02 -7.31322783e-01 8.55697986e-01 7.91939934e-01 -1.69097000e-02 7.13404993e-01] [-1.62843948e-01 3.66929800e-01 -2.04018721e-01 1.14840349e-02 -6.20896594e-01 9.29977848e-01 -4.11568624e-01 -7.93080888e-01 -7.11369200e-01 -9.71815412e-01 4.31891399e-01 1.28996640e-01 5.89156702e-01 1.41598466e-02 5.83642079e-01 3.91528429e-01 5.55696954e-01 -1.87034262e-01 2.95541266e-01 -6.40411405e-01 -3.56360073e-01 -6.54790760e-01 -1.82725550e-01 -5.17162504e-01 -1.86156012e-01 9.50444685e-01 -3.59361348e-01 9.64981890e-01 2.72612252e-01 -2.49817963e-01 7.14968998e-01 2.39173479e-01 -4.95933840e-01 5.85711356e-01 -1.34122983e-01 -2.84977665e-01] [-3.39446127e-01 3.94737751e-01 -4.62699752e-01 6.16556027e-01 -4.09422411e-01 8.82427672e-02 -2.41570164e-02 7.10712825e-01 7.76772869e-01 -6.31231115e-01 1.70696918e-01 7.96410092e-01 -1.07765562e-01 8.43736611e-01 -4.42018219e-01 2.17662348e-01 3.64907420e-01 -5.43588533e-01 -9.72464975e-01 -1.66552075e-01 8.76963784e-01 -3.13943780e-01 5.59488591e-01 -6.50527374e-01 -3.16094327e-01 -7.10804558e-01 4.33541628e-01 3.98615247e-01 3.76994636e-01 -4.93207931e-01 3.84720243e-01 -5.45404918e-01 -1.50701768e-01 -2.56155757e-01 -2.89384177e-01 -8.84690386e-01] [ 2.63293254e-01 4.14633205e-01 2.27177389e-01 2.96625512e-01 -6.60118572e-01 -7.01106402e-01 2.83500871e-02 7.50665453e-01 -6.32093117e-01 -7.43217626e-02 -1.42135332e-01 -5.42162816e-03 -6.76978459e-01 -3.15118718e-01 -4.76239192e-01 6.89053886e-01 6.00664492e-01 -1.46721683e-01 2.14030922e-01 -7.09068779e-01 1.92265884e-02 -4.06105828e-01 7.19301907e-01 3.43196762e-01 2.66948025e-01 -7.50497400e-01 -5.88242410e-02 9.73145559e-01 8.96598348e-01 2.90171281e-01 -6.96550258e-01 2.78253697e-01 1.31324225e-01 -6.26683247e-02 -1.43925061e-01 1.98539511e-01] [ 6.99939777e-01 5.02242081e-01 1.58721081e-01 8.49408363e-01 -8.70520033e-01 9.82693017e-01 -8.94010915e-01 -6.01008908e-01 -1.54494677e-01 -7.84982248e-01 2.47340822e-01 -9.04014872e-01 -4.30752238e-01 -8.77926638e-01 4.07038662e-01 3.36912335e-01 -2.42838813e-01 -6.23611480e-01 4.94009658e-01 -3.19241418e-01 5.90602335e-01 -2.41981216e-02 5.13388887e-02 -9.43018301e-01 2.88464040e-01 -2.98686995e-01 -5.41589945e-01 -1.32233248e-01 -2.35065085e-01 -6.04219198e-02 9.58966708e-01 -2.71243859e-01 5.48820267e-01 1.05535193e-01 7.78262178e-01 -2.90094298e-01] [-5.08962640e-01 8.22038479e-01 -9.12931472e-01 9.01506856e-01 1.12813831e-01 -2.47273567e-01 9.90104645e-01 -8.83274708e-01 3.34127195e-02 -9.37805849e-01 1.42351478e-01 -6.39062982e-01 2.61918401e-01 9.61847352e-01 7.49805102e-01 -9.63275012e-02 4.16921740e-01 5.54937500e-01 -1.03138316e-02 5.70669804e-02 -6.98431203e-01 -2.61200149e-01 -7.15557494e-01 4.53787507e-01 -4.59740112e-02 -1.02242327e-01 7.71995942e-01 5.52375446e-02 -1.81818336e-01 -4.62215956e-01 -8.55975930e-01 -1.63727733e-01 -9.48493035e-01 -4.17692119e-01 7.01901970e-03 9.31866130e-01] [-7.81234172e-01 3.46082108e-01 -1.35257802e-04 5.54196459e-01 -7.12786004e-01 -8.33594727e-01 -2.01562789e-01 5.93924504e-01 -6.16648522e-01 5.35554384e-01 -4.19404006e-01 -5.66217025e-01 -9.66568822e-01 -2.02681880e-01 -2.37837017e-01 3.18689872e-01 -8.58163199e-01 -6.94792026e-01 -9.66848234e-01 -7.72407287e-01 3.03578552e-01 -1.94686296e-01 -3.57947372e-01 1.15823988e-01 9.86920926e-01 6.68973028e-01 3.99246365e-01 8.36517178e-01 -9.20542587e-01 -8.59333117e-01 -5.19874200e-02 -3.01665174e-01 8.74504124e-01 -2.08700777e-02 7.92982202e-02 7.90520731e-01] [-1.06729908e-01 7.54068779e-01 -4.92836501e-01 -4.52380592e-01 -3.43277220e-01 9.51285410e-02 -5.59742652e-01 3.42858342e-01 -7.14413434e-01 -8.11799451e-01 7.40383492e-01 -5.26262593e-01 -2.27991978e-01 1.43084185e-01 5.16039399e-02 -8.47952241e-01 7.48251871e-01 9.02271237e-01 6.25014608e-01 -4.32396330e-01 5.56935922e-02 -3.21166552e-01 1.09334622e-01 9.48806938e-01 -3.76594165e-01 3.37593212e-01 -3.48065585e-01 5.48954532e-01 -3.48380067e-01 7.79654683e-01 5.03415442e-01 5.25264191e-01 -6.10419429e-02 -5.78470995e-01 -9.17049841e-01 -3.56342400e-01] [-9.25774671e-01 3.87710823e-01 3.40700064e-01 -1.39056435e-01 5.35577955e-01 7.20169895e-02 -9.20280147e-01 -7.30413764e-01 -6.13167202e-01 -3.28672398e-01 -8.95374107e-01 2.10233561e-01 2.41220550e-02 2.34922024e-01 -1.35288810e-01 6.95400936e-01 -9.18818879e-02 -9.69192960e-01 7.46136297e-01 3.12403095e-01 6.46006081e-01 9.03551386e-01 -8.98175233e-01 -5.29856272e-01 -8.73313113e-01 -1.56684228e-01 7.27658291e-01 -8.36752035e-01 -5.37760942e-02 -7.48913780e-01 5.45771204e-01 6.82844314e-01 -9.13418124e-01 -2.71185137e-02 -5.21177912e-01 9.04947563e-01] [ 8.87785256e-01 2.27868005e-01 9.46974795e-01 -3.10277313e-01 7.95701435e-01 -1.30810053e-01 -5.28370726e-01 8.81655926e-01 3.68436102e-01 -8.70176829e-01 7.40849714e-01 4.02760589e-01 2.09853746e-01 4.64749798e-01 -4.93121915e-01 2.00977911e-01 6.29238363e-01 -8.91772679e-01 -7.38978657e-01 6.84891620e-01 2.36691739e-01 6.25756210e-02 -5.03418542e-01 -4.09842850e-01 7.45372330e-01 -1.56668130e-01 -8.71139489e-01 7.93970139e-01 -5.93238334e-01 6.52455071e-01 7.63541246e-01 -2.64985104e-02 1.96929386e-01 5.45349130e-02 2.49642588e-01 7.10083443e-01] [-4.35721103e-01 7.67511016e-01 1.35380660e-01 -7.69793918e-01 -5.45997670e-01 1.91964771e-01 -5.21107526e-01 -7.37168679e-01 -6.76304572e-01 6.89745036e-01 2.04367308e-01 9.27134174e-01 -3.08641573e-01 1.91250196e-01 1.97970578e-01 2.31408574e-01 -8.81645586e-01 5.00634369e-01 8.96418996e-01 6.93581144e-02 -6.14887958e-01 5.05851830e-01 -9.85362061e-01 -3.43487793e-01 8.35212695e-01 1.76734666e-01 7.10380568e-01 2.09344105e-01 6.45156305e-01 7.58967047e-01 -3.58027251e-01 -7.54090457e-01 4.42606688e-01 -1.19305826e-01 -7.46528582e-01 1.79647296e-01] [-9.27863371e-01 -5.99635767e-01 5.76602379e-01 -9.75806480e-01 -3.93308657e-01 -9.57248078e-01 9.94969985e-01 1.64059953e-01 -4.13247443e-01 8.57898924e-01 1.42388471e-02 -9.06155449e-02 1.75743013e-01 -4.71724712e-01 -3.89423401e-01 -2.56690847e-01 -5.11104001e-01 1.69094532e-01 3.91692268e-01 -8.56105560e-01 9.42166639e-01 5.06141312e-01 6.12326326e-01 5.03280808e-01 -8.39878045e-01 -3.66074340e-02 -1.08654087e-01 3.44945301e-01 -1.02525482e-01 4.08626797e-01 3.63290675e-01 3.94297058e-01 2.37201485e-01 -6.98038533e-01 5.21604913e-01 5.62091644e-01] [ 8.08205972e-01 -5.32462615e-01 -6.46642214e-01 -2.17801754e-01 -3.58870692e-01 6.30953858e-01 2.27051799e-01 5.20003505e-01 -1.44669801e-01 -8.01118874e-01 -7.69929976e-01 -2.53185737e-01 -6.12304465e-01 6.41492997e-01 1.99272017e-01 3.77690518e-01 -1.77800774e-02 -8.23652638e-01 -5.29844727e-01 -7.67958382e-02 -6.02816994e-01 -9.49047528e-01 4.58795397e-01 4.49833494e-01 -3.39216507e-01 6.86988252e-01 -1.43115048e-01 7.29372290e-01 3.14130849e-01 1.62071315e-01 -5.98545024e-01 5.90932210e-02 7.88864837e-01 -3.90012048e-01 7.41891218e-01 8.17490546e-01] [-3.40310875e-01 3.66148733e-01 7.98441899e-01 -8.48606236e-01 7.57175726e-01 -6.18321273e-01 6.99537820e-01 3.34237577e-01 -3.11321609e-01 -6.97248860e-01 2.70741923e-01 6.95576087e-01 6.43698750e-01 2.56479194e-01 9.12603020e-01 1.79846254e-01 -6.04334431e-01 -1.41338555e-01 -3.26508003e-01 9.83890024e-01 -2.39527008e-01 9.85401747e-01 3.76085015e-02 -6.55440597e-01 -8.50851857e-01 -2.59388612e-01 -7.53162280e-01 2.69037433e-01 -1.72160309e-01 9.81831265e-01 8.59911247e-01 -7.01527935e-01 -2.10235475e-01 -7.68405781e-02 1.21897510e-01 5.60727047e-01] [-2.56121819e-02 -1.60012896e-01 -4.76000591e-01 8.21612278e-01 -9.55456977e-01 6.42243796e-01 -6.23063201e-01 3.71513798e-01 -2.89581221e-01 9.48425256e-01 -7.54455741e-01 -6.24860215e-01 7.78884951e-01 1.66812629e-01 -3.81507231e-01 -9.98471229e-01 -5.44804523e-01 -7.09192732e-01 -5.93132351e-01 7.92645114e-01 7.46188757e-01 4.00578875e-01 -5.90046477e-02 6.54272005e-01 -8.34720583e-03 -2.73022633e-01 -4.48793794e-01 8.49481627e-01 -2.26021531e-01 -1.42382531e-02 -4.91123795e-01 7.69933038e-01 -2.33473086e-01 -4.04850569e-01 4.35189924e-01 -6.18260114e-01] [ 1.85045130e+03 5.75004716e+03 -3.59898627e+02 7.80807336e+03 -4.32968047e+01 -1.53378496e+03 -3.93142172e+03 9.09489843e+03 2.96106485e+03 5.54228917e+03 -2.01271355e+03 -2.21276142e+03 9.11549042e+03 4.90249712e+03 -1.45300592e+03 4.04177119e+03 -9.48963419e+02 7.41749170e+03 -1.88532148e+02 -1.33019591e+03 -1.69725300e+03 -4.51351962e+03 9.11460124e+03 -1.13189480e+03 -2.48885186e+03 3.00463819e+02 1.38109134e+04 -1.52921400e+03 9.04945502e+03 3.29025346e+02 -1.25363007e+03 2.60783906e+03 -2.41405778e+03 -2.35560021e+03 9.93629379e+03 8.53791273e+03] [ 6.18048528e+03 1.99989569e+04 -1.21730178e+03 2.73489143e+04 -3.81987800e+01 -5.48575103e+03 -1.48027871e+04 3.22798952e+04 1.01513350e+04 2.01981894e+04 -7.30696130e+03 -7.98782077e+03 3.30066159e+04 1.77011843e+04 -5.20376039e+03 1.52410367e+04 -3.47893370e+03 2.59012969e+04 -8.25115508e+02 -4.70835357e+03 -6.07268937e+03 -1.67218009e+04 3.27550153e+04 -4.10720076e+03 -8.92766887e+03 8.99533088e+02 4.98058234e+04 -5.47603183e+03 3.42155474e+04 5.63209904e+02 -4.44073983e+03 9.60419316e+03 -8.63405946e+03 -8.52373799e+03 3.57062972e+04 3.07083966e+04] [ 1.30509994e+04 2.81423680e+04 -2.31030075e+03 5.43848463e+04 1.34417084e+03 -8.87628591e+03 1.80851019e+03 3.15940968e+04 1.87104513e+04 1.44062471e+04 -1.26036329e+04 -9.52459821e+03 2.21653596e+04 3.69027006e+03 -6.20735693e+03 2.54220450e+04 -6.69317453e+03 6.33829941e+04 3.11277768e+03 -6.70558798e+03 -6.96437879e+03 -1.40399977e+04 3.48911805e+04 -5.46482067e+03 -1.08350612e+04 -2.86009960e+03 4.48206101e+04 -7.73880977e+03 4.91384467e+04 1.05171811e+04 -6.55583308e+03 2.20967551e+04 -9.49937305e+03 -1.00685919e+04 3.63388694e+04 3.08434439e+04] [ 1.92978749e+04 2.69269234e+04 5.74633277e+03 6.79657245e+04 9.66806885e+03 1.42602756e+03 3.55564971e+04 1.79572924e+04 2.58519110e+04 2.03328436e+03 -2.74908328e+03 6.58307106e+03 -6.92528449e+03 -1.70519245e+04 6.64697002e+03 3.17983680e+04 3.42520815e+03 8.98844588e+04 1.13052512e+04 3.24639044e+03 6.83851335e+03 8.07823640e+03 1.84572119e+04 6.91747766e+03 4.85606553e+03 -3.39187019e+02 9.27758934e+03 3.99528539e+03 4.33826638e+04 2.54354709e+04 3.21328983e+03 3.10341223e+04 6.08898325e+03 5.54730055e+03 1.35545210e+04 1.17143957e+04] [ 5.84199808e+04 6.02553503e+04 3.99579630e+04 1.37897710e+05 4.23173751e+04 4.00736055e+04 1.17346761e+05 4.41480249e+04 7.11617691e+04 2.53604836e+04 3.12919301e+04 5.00575668e+04 -1.60321089e+04 -9.60475506e+03 4.70724945e+04 8.49124771e+04 4.38973131e+04 1.77193015e+05 3.84502488e+04 3.90288472e+04 4.74239357e+04 5.95098309e+04 2.83937413e+04 4.89600463e+04 4.68117096e+04 2.31072814e+04 -1.97411121e+03 4.38473410e+04 1.02009954e+05 7.72368839e+04 3.85471784e+04 8.15707978e+04 4.81301115e+04 4.97631782e+04 1.92709302e+04 1.29366104e+04] [ 3.01930792e+04 1.42078603e+04 8.16634269e+03 8.42450380e+04 1.21333767e+04 5.80800713e+03 9.67146979e+04 -1.26248826e+04 3.58941978e+04 -1.78681289e+04 5.96597547e+02 1.33803601e+04 -5.45952616e+04 -4.21518360e+04 1.34795739e+04 4.39733657e+04 6.61325828e+03 1.15372032e+05 1.28871388e+04 8.30558320e+03 1.43526832e+04 3.82136543e+04 -2.78698026e+04 1.19069731e+04 1.27025196e+04 5.78227919e+03 -5.68973105e+04 7.99373273e+03 4.42704055e+04 5.35100277e+04 7.51639114e+03 4.41802841e+04 1.51288700e+04 1.47287904e+04 -4.41666272e+04 -4.13452727e+04] [ 8.80945579e+04 4.00116840e+04 8.15056103e+04 9.62290278e+04 7.86111354e+04 7.71119728e+04 1.55988765e+05 2.64019948e+04 8.18897850e+04 4.49322526e+04 7.35617663e+04 7.74163473e+04 1.88159355e+04 3.81529547e+04 8.50222890e+04 1.07172511e+05 7.79290551e+04 1.00327709e+05 6.93755782e+04 8.06919657e+04 8.51987349e+04 1.14073135e+05 -2.11359266e+04 8.01182980e+04 8.22084202e+04 9.56374110e+04 -6.26956463e+03 7.76890167e+04 9.49112260e+04 1.13661324e+05 8.02626179e+04 9.31086289e+04 8.50279186e+04 8.24591361e+04 -6.40563548e+04 -4.65915741e+04] [ 2.59526548e+05 1.19546381e+05 1.68863458e+05 1.58667805e+05 1.66484954e+05 1.47698153e+05 1.29306271e+05 6.41679887e+04 1.67772942e+05 5.51488659e+04 7.04568195e+04 7.45431555e+04 1.02420288e+05 1.31974730e+05 1.45408581e+05 1.73790013e+05 1.36840896e+05 1.39938344e+05 1.97907360e+05 1.48203262e+05 1.36818857e+05 1.35952320e+05 9.65903029e+04 1.38496520e+05 1.17490480e+05 4.57727756e+04 1.07956211e+05 1.41967288e+05 8.33544012e+04 7.41779830e+04 1.55959534e+05 2.18852699e+05 1.50798189e+05 1.18970821e+05 1.08094993e+05 8.89068938e+04] [ 3.28036746e+05 4.42575293e+04 2.18419884e+05 1.62741272e+05 2.34437762e+05 1.67057860e+05 2.58309955e+05 -1.37568638e+04 1.96392086e+05 -1.19948892e+05 5.23480721e+04 6.64319845e+04 6.15212297e+04 8.57061758e+04 1.72049402e+05 2.08127379e+05 1.40200276e+05 2.05354984e+05 2.54604175e+05 1.83806127e+05 1.75485141e+05 1.99969021e+05 7.19585966e+04 1.58392974e+05 1.42955537e+05 -1.50491851e+04 3.27019063e+04 1.61499615e+05 1.42487907e+05 1.32073050e+05 1.94074645e+05 2.89258109e+05 1.86082047e+05 1.28750196e+05 8.09115740e+04 4.10791085e+04] [ 2.09501801e+05 -7.43478048e+04 1.69453183e+05 1.43008073e+05 1.95065430e+05 1.37612679e+05 3.62418121e+05 -8.66545444e+04 1.88070369e+05 -1.64330433e+05 8.08974022e+04 1.21661407e+05 -2.37681234e+04 -4.13370545e+04 1.50025605e+05 1.88135752e+05 1.13182116e+05 2.81458717e+05 2.23568809e+05 1.47697129e+05 1.65202438e+05 2.05789025e+05 -7.27527425e+03 1.40468414e+05 1.60058395e+05 2.47723151e+04 -8.27987888e+04 1.45541830e+05 2.69127154e+05 2.68345162e+05 1.56120142e+05 2.57086367e+05 1.70843194e+05 1.39419360e+05 -3.06278518e+04 -3.51629396e+04] [ 1.27013279e+05 5.83169992e+04 7.85528081e+04 2.02939873e+05 7.49799023e+04 9.58840786e+04 2.51000307e+05 1.09705090e+05 1.69017943e+05 1.16574236e+05 9.61656351e+04 1.26150372e+05 -3.29645849e+04 6.46961930e+03 1.02830641e+05 1.92743265e+05 1.00702379e+05 2.70448058e+05 1.18099132e+05 8.05593290e+04 1.04445099e+05 1.51284740e+05 2.44301212e+04 1.06405537e+05 1.15918110e+05 1.11046084e+05 -3.46421281e+04 1.03464573e+05 2.73544967e+05 2.28758951e+05 8.17439874e+04 1.98168602e+05 1.07700899e+05 1.20795081e+05 -3.96872967e+04 -2.23799772e+04] [ 1.20541296e+05 1.25114689e+05 6.61063603e+04 2.01847616e+05 4.76193088e+04 9.25382991e+04 1.77134986e+05 1.34574794e+05 1.45222501e+05 1.85302078e+05 9.54500969e+04 1.09461947e+05 1.31725538e+04 7.85065876e+04 9.44118492e+04 1.61160566e+05 1.07947296e+05 2.05988071e+05 7.77819286e+04 7.08283583e+04 8.66863350e+04 1.29525093e+05 3.42210030e+04 1.01414397e+05 9.68917621e+04 1.14321894e+05 2.62457468e+04 9.43239062e+04 2.03503741e+05 1.61177815e+05 7.25958320e+04 1.51350091e+05 9.12414376e+04 1.10735128e+05 -1.66991519e+04 -3.38648436e+03] [ 1.04515257e+05 1.23751682e+05 7.30259256e+04 1.63012773e+05 5.26089590e+04 1.06017335e+05 1.06667200e+05 1.20925496e+05 1.29795287e+05 1.86661268e+05 1.08069598e+05 1.20092354e+05 3.95018745e+04 8.93407581e+04 9.78593782e+04 1.28386051e+05 1.19420572e+05 1.55158879e+05 7.28587620e+04 7.87056449e+04 8.57732879e+04 1.12940791e+05 6.17906565e+04 1.06503768e+05 1.04575528e+05 1.26891123e+05 4.55035573e+04 1.08857642e+05 1.44285011e+05 1.20356250e+05 8.04901985e+04 1.16459913e+05 9.87568911e+04 1.18628204e+05 4.26929895e+04 5.33157296e+04] [ 1.13587625e+05 1.49271451e+05 1.15481943e+05 1.44564225e+05 9.94776478e+04 1.44073562e+05 1.08379471e+05 1.41883493e+05 1.22784849e+05 1.72004646e+05 1.36443881e+05 1.46763702e+05 8.51775466e+04 1.20696813e+05 1.31436135e+05 1.17754944e+05 1.49431063e+05 1.35237775e+05 1.02227070e+05 1.18170832e+05 1.21721589e+05 1.28516657e+05 1.11027468e+05 1.38125150e+05 1.41592198e+05 1.24611874e+05 9.00210975e+04 1.47812483e+05 1.25326077e+05 1.12440790e+05 1.19032984e+05 1.12239301e+05 1.38957839e+05 1.45935395e+05 9.85495358e+04 1.17789197e+05] [ 2.51376867e+04 3.76242244e+04 2.50187590e+04 3.55255731e+04 2.04410643e+04 3.36863541e+04 2.31893796e+04 3.43200471e+04 2.74599297e+04 4.37631337e+04 3.10756707e+04 3.35643240e+04 1.57393532e+04 2.81988022e+04 3.00712004e+04 2.56423272e+04 3.53686518e+04 3.24409570e+04 1.99698700e+04 2.59462651e+04 2.69220345e+04 2.73631328e+04 2.36226820e+04 3.18418105e+04 3.25889063e+04 2.77942462e+04 1.87505409e+04 3.43482964e+04 2.83555777e+04 2.41042216e+04 2.61124531e+04 2.23917531e+04 3.19400886e+04 3.36612226e+04 2.04981730e+04 2.71292892e+04] [ 6.17289040e+03 6.50664666e+03 4.50597080e+03 1.04272486e+04 3.58641276e+03 7.01004397e+03 6.19022965e+03 5.15480709e+03 7.45635436e+03 6.45493511e+03 6.23447324e+03 7.43520889e+03 -4.08959241e+02 2.92973388e+03 6.39510528e+03 6.21620371e+03 7.63595993e+03 1.19619475e+04 1.81140644e+03 5.15198298e+03 5.96201315e+03 7.74078235e+03 1.96997870e+03 6.91710175e+03 7.37887297e+03 6.34081116e+03 -5.44489496e+02 7.29110765e+03 3.79100250e+03 7.09163500e+03 4.93024385e+03 3.68706540e+03 6.64940343e+03 7.46369317e+03 1.47364909e+03 3.04913765e+03] [ 3.33393806e+03 2.62616050e+03 1.74895122e+03 8.56509712e+03 1.20039554e+03 3.45144217e+03 3.02736409e+03 5.99152304e+02 4.84197451e+03 4.70443332e+03 3.16413949e+03 3.91964401e+03 -3.65394503e+03 -1.36407900e+03 3.68492012e+03 5.09438252e+03 4.47279276e+03 1.09198938e+04 -3.03189675e+03 2.77719846e+03 3.40718970e+03 4.84903193e+03 -2.58542067e+03 3.81534885e+03 3.95864098e+03 3.69688564e+03 -4.28985235e+03 3.63785366e+03 1.55721386e+03 4.26625289e+03 2.38988363e+03 1.00616333e+03 2.96662028e+03 4.22297746e+03 -2.10894712e+03 -1.99511135e+03] [-6.48998939e-02 3.33885086e-01 -9.32451470e-02 5.14231827e-02 3.17136083e-01 -6.37609236e-01 5.76099102e-01 2.05730675e-01 9.60665770e-01 -5.55233613e-01 -6.74670517e-02 7.91283605e-01 2.02866819e-01 4.51917692e-01 -1.72659672e-01 3.68619244e-01 8.92110060e-01 -5.99627869e-01 6.14730528e-01 9.39076024e-01 -9.70862536e-01 -5.69580827e-01 -7.65246159e-01 5.34847035e-01 -8.37566828e-01 9.96827117e-01 -2.20775968e-01 8.10405532e-01 -6.22844793e-01 -1.18255600e-01 6.89623638e-01 1.90539561e-01 -7.56838066e-02 2.52994935e-02 1.47771054e-01 -1.19361585e-01] [-6.12882085e-01 -7.72068477e-01 -6.97544145e-01 -8.95018072e-01 1.17352822e-01 6.95442028e-01 -2.81761322e-01 -8.49378255e-01 -1.48551176e-01 2.04015677e-01 -1.49193069e-01 6.21442467e-01 8.83772492e-01 7.39821547e-01 4.07998997e-01 -5.94021504e-02 3.65396086e-01 -9.73163379e-01 9.64956237e-01 -6.55845336e-01 8.12520792e-01 6.14219803e-01 6.00279369e-01 -4.62127884e-01 -5.61692388e-01 -1.42398614e-01 6.98742201e-01 -9.92407151e-02 8.70840228e-01 -2.94641345e-01 2.38784331e-01 9.61398073e-01 2.86925044e-01 -9.09003568e-01 -7.28858181e-02 -3.30497313e-01] [ 6.43630970e-02 -4.30507583e-01 -7.55477540e-01 3.36577978e-01 3.62719510e-01 7.34278600e-01 -7.35237013e-01 5.97240617e-01 6.53537477e-01 2.93099872e-01 -5.90155708e-01 -4.77158571e-01 -1.63006365e-01 8.35981456e-02 -4.51240888e-02 -6.50802159e-02 6.79681420e-01 7.40204731e-01 6.33507929e-01 7.55602837e-01 1.42017524e-01 9.28072267e-01 2.13088697e-01 2.07895482e-01 -3.61404526e-01 3.62408368e-01 -8.96068623e-01 -7.30907158e-01 -7.39515665e-01 3.10402574e-01 -6.49334816e-01 -3.17706353e-01 -9.11376688e-01 -5.32531280e-01 9.28448650e-01 1.82788050e-02] [-6.97850963e-01 4.60170635e-02 8.87018768e-01 7.31372028e-01 -2.15868262e-01 -4.32264968e-01 5.23459725e-01 -5.19031350e-01 -4.91535291e-01 -8.31827292e-01 7.28288190e-01 -1.04202169e-01 1.23572521e-01 4.73421915e-01 5.92977734e-01 -1.04983722e-01 -6.31744888e-01 6.57465703e-01 -9.38004080e-01 8.93456539e-01 1.53955693e-01 7.50777477e-01 2.17130874e-01 -4.96680832e-01 -4.07740153e-01 6.58451181e-02 9.24156426e-01 -6.31008791e-01 1.97967563e-02 -3.12423793e-01 5.39450690e-01 6.05732973e-01 -1.50880179e-01 -5.91755000e-01 -8.65821079e-01 -6.02703471e-01] [-4.55198300e-01 1.97577836e-01 7.46166995e-01 -7.43538122e-01 9.16377483e-01 3.66341688e-01 4.83928471e-01 9.65761572e-01 -1.67798455e-01 6.31669318e-02 3.58425900e-01 2.57502852e-02 -4.01775311e-01 -7.89230655e-01 -4.30135709e-01 5.37705697e-01 2.81565409e-01 6.02661406e-01 3.42410639e-02 -5.35799956e-01 2.55923854e-01 -3.91989020e-01 -9.40942510e-01 8.06662354e-01 -1.59260862e-01 -1.47738439e-01 4.82503471e-01 8.96916809e-01 -8.54968944e-01 -6.54597824e-01 -3.55285022e-01 -5.03151507e-01 -9.01003728e-03 6.48919222e-01 7.07944830e-01 1.91659884e-01] [-5.19652532e-01 -6.27014623e-01 4.86781025e-01 -5.25571885e-01 7.89817819e-02 4.98561574e-01 -5.43501791e-01 -6.50997625e-01 -9.20528627e-01 -7.04862325e-01 7.02877814e-01 -7.90728177e-01 -5.52709909e-01 -9.34485601e-01 3.52713271e-01 -5.36593717e-01 -1.72816564e-01 -7.21397657e-01 -2.45565425e-01 -1.51125068e-01 -5.40700963e-02 -1.54316374e-01 -7.94486872e-01 5.45160533e-01 -7.25587993e-01 -1.51415251e-01 -4.56087775e-01 -3.97984114e-01 3.44841545e-01 3.55734476e-02 -6.19825899e-01 -6.17311203e-02 -3.20918262e-01 4.08994396e-01 -5.47809595e-01 6.89976275e-01] [ 5.24593298e-02 1.23914585e-03 -4.92628386e-01 -6.27688661e-01 -5.63618745e-02 9.63648836e-01 -7.34187525e-01 -4.33075135e-01 6.01282349e-01 3.29553797e-01 -4.42483183e-01 -3.70704786e-01 -1.60103491e-01 2.05573524e-01 4.38677534e-01 7.14600667e-01 3.62222941e-01 -5.26035871e-01 8.51441071e-01 5.62390801e-01 -3.85237039e-01 -3.90068717e-01 7.62336637e-01 -7.47843039e-01 2.66921668e-01 -4.44574535e-01 6.54400650e-01 -2.70953105e-01 4.66732189e-01 -6.15164219e-01 -3.71082049e-02 6.07189253e-01 -2.06023577e-01 -6.76851920e-01 2.97964445e-01 5.06651612e-01] [-4.39614729e-01 -9.72762775e-02 8.00897825e-01 7.43971262e-01 4.14375220e-01 1.81801199e-01 6.34764541e-01 8.15289292e-01 -9.94984881e-01 -2.05544468e-01 1.22819367e-01 4.67846273e-01 -8.25054476e-01 -2.00490025e-01 -4.40757641e-01 -1.52979894e-01 -4.04273465e-03 3.20030447e-01 -7.52772206e-03 2.40936401e-01 1.64879724e-01 -1.43335204e-01 -9.90047271e-01 -6.10967172e-01 -3.59586691e-01 -7.06043748e-01 1.97327763e-01 2.22998953e-01 1.86519194e-04 -3.58302197e-01 3.06516104e-01 -6.19433035e-01 -9.88238037e-01 4.69884037e-01 -1.12992316e-01 3.95683312e-01] [-3.36327577e+02 -7.95739243e+02 -3.92959948e+02 -3.07608303e+02 -3.07761345e+02 -4.40485387e+02 4.07075562e+02 9.56864352e+02 -2.59788798e+02 -4.29153715e+02 -4.24138304e+02 -4.17928518e+02 -9.99253746e+02 -1.15963801e+03 -3.99860362e+02 -6.64679339e+01 -6.51476983e+02 -7.10052968e+01 1.50342230e+02 -2.96348157e+02 -3.01847466e+02 -1.78824541e+02 -1.36196711e+02 -5.40277579e+02 -2.58210993e+02 2.26821439e+02 -5.44201071e+02 -4.36365051e+02 -9.74997279e+01 3.75163804e+01 -3.32042059e+02 -2.36371603e+02 -3.21906840e+02 -5.14550702e+02 -1.17075214e+03 -4.40952736e+02] [-7.58544475e+01 1.58887739e+02 -5.74710488e+01 1.60704218e+02 -3.65294283e+01 -1.17519228e+02 -2.89044715e+02 6.20286286e+02 1.92225042e+01 1.77122209e+02 -1.36803741e+02 -1.50978187e+02 4.19948115e+02 1.36243414e+02 -1.07509947e+02 1.09300858e+02 -1.15968002e+02 1.57956232e+02 -3.09538420e+01 -9.59979418e+01 -9.20567818e+01 -3.11231217e+02 5.15106970e+02 -9.91320114e+01 -1.42112343e+02 2.97626376e+01 7.81979096e+02 -1.23003472e+02 1.99431059e+02 -1.45909178e+02 -9.78477580e+01 -4.85711301e+01 -1.45827959e+02 -1.79773052e+02 4.00648184e+02 4.50230030e+02] [ 1.31092366e+03 3.52417346e+03 3.82084223e+02 2.65427103e+03 5.90629010e+01 4.62686867e+02 -1.93948584e+03 2.81300183e+03 1.27773907e+03 3.77931286e+03 4.31002080e+02 2.64186432e+02 2.68189884e+03 1.98020368e+03 4.72523314e+02 2.19112618e+03 9.66420197e+02 1.69948089e+03 5.40168238e+02 -7.32623628e+01 -7.31851855e+00 -3.05223927e+02 3.20713906e+03 6.12568434e+02 -4.91936116e+01 7.01339993e+02 4.56192064e+03 4.48496795e+02 -3.25183788e+01 -7.91428949e+02 2.35572867e+02 8.50477154e+02 1.15452789e+02 3.51334926e+02 2.95364550e+03 3.14045790e+03] [ 2.61237136e+03 -1.01430468e+04 6.76498049e+03 1.53101845e+04 7.43987304e+03 4.20187207e+03 -3.17748532e+03 9.73054127e+03 1.21665155e+04 -1.05972277e+03 3.87750344e+03 7.64032438e+03 1.09406455e+04 1.96529150e+03 5.24598917e+03 -1.64332029e+03 5.38718021e+03 2.32034636e+04 -1.05781643e+04 6.42197284e+03 6.58511433e+03 -1.78623404e+03 5.48879722e+03 6.59858485e+03 5.35481596e+03 2.55811924e+03 8.42432067e+03 5.54702489e+03 1.16743467e+04 1.25518172e+04 5.80477433e+03 -3.05937004e+03 3.48648022e+03 5.05330052e+03 1.11272006e+04 3.16777891e+03] [ 7.03919919e+04 4.34606758e+04 1.67309441e+04 2.16579376e+05 1.92595211e+04 1.08290940e+04 1.44372743e+05 1.14888844e+05 9.41157347e+04 -4.48871810e+03 1.46166275e+04 4.54819257e+04 -2.94374022e+04 -7.43718794e+04 3.18383825e+04 7.64596344e+04 3.80092230e+04 3.50789684e+05 -3.00796937e+04 1.20851870e+04 4.71552176e+04 8.30685338e+04 2.64346695e+04 4.06101769e+04 5.19757697e+04 1.55601066e+04 -2.17019856e+04 2.72773849e+04 2.10913227e+05 1.49170944e+05 1.03182448e+04 6.27708774e+04 3.11833723e+04 3.61030001e+04 -4.91105246e+03 -1.71800538e+04] [ 4.92994458e+05 7.71529937e+05 -7.18347120e+04 1.21894719e+06 -1.36463148e+05 1.12137812e+04 8.56089768e+05 8.24029887e+05 6.30895050e+05 7.12095881e+05 9.95365410e+04 1.63770801e+05 -4.19515914e+05 -2.26848238e+05 7.19923353e+04 6.49798505e+05 1.51793073e+05 1.58728147e+06 4.63696322e+04 -5.52864148e+04 6.71045328e+04 4.68324739e+05 2.42591314e+04 1.15667806e+05 1.14868760e+05 2.42526750e+05 -2.62266943e+05 5.66973894e+04 1.09148848e+06 7.79800128e+05 -5.74343455e+04 4.89076966e+05 5.58706835e+04 1.60282214e+05 -1.91994115e+05 -1.20865407e+05] [ 7.65052472e+05 1.02339354e+06 1.82473283e+05 1.47995570e+06 1.83800712e+04 3.94998644e+05 7.85533276e+05 1.08070513e+06 1.00745975e+06 1.79384154e+06 4.88083890e+05 5.34652231e+05 -1.39627348e+05 2.40553338e+05 4.38383760e+05 1.13916980e+06 5.59950004e+05 1.67306211e+06 3.25302002e+05 2.38139255e+05 3.27145966e+05 6.95348115e+05 1.35771481e+05 4.37920310e+05 4.37174009e+05 7.66951402e+05 4.85331537e+04 4.40306923e+05 1.26903126e+06 9.10463333e+05 2.38937728e+05 8.83441833e+05 3.74325133e+05 5.15141351e+05 1.52852077e+04 7.70036561e+04] [ 8.69206894e+05 7.58943540e+05 3.47720113e+05 1.36088454e+06 2.00129946e+05 4.85451754e+05 7.62671343e+05 7.82856679e+05 1.00687583e+06 1.27757039e+06 5.05072035e+05 5.62909874e+05 1.30569542e+04 2.90687655e+05 5.02008480e+05 9.85204073e+05 6.01402186e+05 1.46697609e+06 3.71174678e+05 3.63356036e+05 4.30583725e+05 7.26944066e+05 2.02749249e+05 5.06219413e+05 5.12260920e+05 6.59933891e+05 1.16244931e+05 5.14324234e+05 1.07544231e+06 8.43591668e+05 3.73299138e+05 8.44363732e+05 4.62384822e+05 5.70989469e+05 1.42860002e+05 1.60584515e+05] [ 8.34607697e+05 5.98352669e+05 2.98914974e+05 1.16898863e+06 2.23436467e+05 3.72560335e+05 8.53455334e+05 2.54328472e+05 8.45293244e+05 7.46249634e+05 3.67951580e+05 4.15811334e+05 -1.49501452e+05 1.59471574e+05 3.80497925e+05 8.25074254e+05 4.88670697e+05 1.26806477e+06 3.31030040e+05 2.90610239e+05 3.32805789e+05 7.70381814e+05 -5.58522264e+04 4.31970177e+05 3.58764454e+05 5.01399186e+05 -1.52884107e+05 3.71614654e+05 6.78688259e+05 7.36718056e+05 3.09463720e+05 8.12035715e+05 3.62714434e+05 4.90384908e+05 -1.23098927e+05 -1.10671154e+05] [ 1.25631839e+06 1.37142081e+06 3.35673990e+05 2.10715155e+06 2.09410671e+05 4.84062576e+05 1.74224085e+06 9.10598960e+05 1.32813006e+06 1.47815980e+06 5.45776386e+05 6.42826842e+05 -4.38455245e+05 2.41948357e+05 5.62932204e+05 1.58744105e+06 6.99097614e+05 2.28287729e+06 5.53757719e+05 3.34713532e+05 4.89256549e+05 1.31821917e+06 -4.63097524e+04 6.22789792e+05 5.51739712e+05 8.79358433e+05 -3.21507287e+05 5.14355478e+05 1.66466139e+06 1.35890036e+06 3.63482486e+05 1.41285568e+06 5.34545948e+05 7.11509256e+05 -4.25885868e+05 -3.48091567e+05] [ 2.10380785e+06 2.06858644e+06 5.51003257e+05 3.08820465e+06 4.09222232e+05 6.38757559e+05 2.67837920e+06 1.33675069e+06 2.11851515e+06 1.82626811e+06 6.02844923e+05 7.08618664e+05 -5.29440972e+05 3.28571148e+05 7.63927021e+05 2.41292826e+06 8.93999597e+05 3.38894450e+06 1.22330281e+06 4.57231093e+05 6.52121886e+05 1.90015412e+06 3.42757843e+05 8.29239367e+05 6.52102940e+05 1.01458646e+06 -1.53287443e+05 6.76511157e+05 2.21793573e+06 2.02010347e+06 5.36658704e+05 2.32960903e+06 6.93918697e+05 8.76364421e+05 -1.64617745e+05 -1.44984237e+05] [ 2.49887352e+06 2.60723215e+06 4.29713709e+05 3.87621491e+06 2.28400613e+05 5.71533617e+05 3.24321890e+06 2.06663844e+06 2.56346746e+06 2.22742128e+06 3.99409362e+05 6.04873049e+05 -7.78338861e+05 2.56308635e+05 7.11436511e+05 2.97035158e+06 8.80442817e+05 4.27169662e+06 1.45895295e+06 3.13511204e+05 5.87021804e+05 2.10912065e+06 5.67026481e+05 7.97172842e+05 5.90086811e+05 1.02413878e+06 -1.34601902e+05 6.26212489e+05 3.00963258e+06 2.46467159e+06 4.09385778e+05 2.78572910e+06 6.18017745e+05 8.17442115e+05 -1.55946453e+05 -1.11526610e+05] [ 2.59860767e+06 3.10677203e+06 6.04357171e+05 4.18877359e+06 3.73114597e+05 7.85499819e+05 3.71419160e+06 2.86869191e+06 2.81051693e+06 2.58912105e+06 7.12319483e+05 9.78041720e+05 -4.36447370e+05 5.25005578e+05 8.89270253e+05 3.23018506e+06 1.13881516e+06 4.74340839e+06 1.86415645e+06 4.91269930e+05 8.42042759e+05 2.45456997e+06 1.08145265e+06 1.09379119e+06 8.82389173e+05 1.35431627e+06 3.54762340e+05 8.71514904e+05 3.86462714e+06 3.00144117e+06 5.79952438e+05 3.02940839e+06 8.30625921e+05 1.09850727e+06 5.32876176e+04 1.70232526e+05] [ 2.38275502e+06 3.04164446e+06 9.30536040e+05 3.83639860e+06 6.25749198e+05 1.18445309e+06 3.53327583e+06 3.38820074e+06 2.80649845e+06 3.16922128e+06 1.24886109e+06 1.47059029e+06 1.51350472e+05 9.90277864e+05 1.25333923e+06 3.28950899e+06 1.52212495e+06 4.22167262e+06 1.90175435e+06 8.79552352e+05 1.21601741e+06 2.63839678e+06 1.31676534e+06 1.42118231e+06 1.29912896e+06 2.05550957e+06 8.42980442e+05 1.28271031e+06 3.97467215e+06 3.07154748e+06 9.34053132e+05 2.86221992e+06 1.20210591e+06 1.47710597e+06 2.76698032e+05 4.36527156e+05] [ 1.88704711e+06 2.27191684e+06 1.00129333e+06 3.04011053e+06 6.65400988e+05 1.28779672e+06 2.81321902e+06 2.92865884e+06 2.48545860e+06 3.08786409e+06 1.41332665e+06 1.57879203e+06 4.83625910e+05 1.17065539e+06 1.30475332e+06 2.78002088e+06 1.54922906e+06 3.31122968e+06 1.67750203e+06 1.01648200e+06 1.24029918e+06 2.26800891e+06 1.20069048e+06 1.40885953e+06 1.37546266e+06 2.27574770e+06 9.74798932e+05 1.37908864e+06 3.48117471e+06 2.69329816e+06 1.04623631e+06 2.39145094e+06 1.25964846e+06 1.51313252e+06 4.52573974e+05 5.74674780e+05] [ 1.49151680e+06 1.87463664e+06 9.38622445e+05 2.36474012e+06 7.00988676e+05 1.16045714e+06 2.18894129e+06 2.27072778e+06 1.86974471e+06 2.39989835e+06 1.24421655e+06 1.35203101e+06 4.72734921e+05 1.00910478e+06 1.16308819e+06 2.13667292e+06 1.33889713e+06 2.54710175e+06 1.31657295e+06 9.75940279e+05 1.12477884e+06 1.79282108e+06 9.73329783e+05 1.23438465e+06 1.23251768e+06 1.82352920e+06 8.31367081e+05 1.23647297e+06 2.56392358e+06 2.03060555e+06 9.80171196e+05 1.81588776e+06 1.16565895e+06 1.30711958e+06 4.90813123e+05 6.24219016e+05] [ 9.97376024e+05 1.27867105e+06 5.44029329e+05 1.75630643e+06 3.95254672e+05 7.50155908e+05 1.35525612e+06 1.40030037e+06 1.20241534e+06 1.63100596e+06 8.06212036e+05 8.88297586e+05 1.17408666e+05 6.52280112e+05 7.48167069e+05 1.36683023e+06 9.18892559e+05 1.93645068e+06 6.48699797e+05 5.94393270e+05 7.18540796e+05 1.14281497e+06 4.75637311e+05 8.31617648e+05 8.14628865e+05 1.05899477e+06 3.08439355e+05 7.84776052e+05 1.62975868e+06 1.29610605e+06 5.80931298e+05 1.10102810e+06 7.70430999e+05 8.88184212e+05 1.32641993e+05 2.36890106e+05] [ 5.39690563e+05 6.98434315e+05 2.60496499e+05 9.97411783e+05 1.80756951e+05 3.94786086e+05 7.12315284e+05 7.62080951e+05 6.53284235e+05 9.23054284e+05 4.38440579e+05 4.92419349e+05 -1.33566426e+04 3.13444241e+05 4.05026141e+05 7.08686745e+05 4.97031364e+05 1.10323504e+06 2.78838392e+05 3.00612191e+05 3.83132122e+05 5.87855448e+05 2.25988045e+05 4.41920160e+05 4.50349787e+05 5.25450711e+05 6.23103104e+04 4.13661997e+05 8.82376737e+05 6.96660276e+05 2.87814992e+05 5.76568062e+05 4.15118938e+05 4.83716026e+05 4.41322394e+04 9.14331193e+04] [ 1.70442321e+05 2.24343795e+05 1.19853226e+05 2.83963993e+05 9.81443583e+04 1.56974017e+05 2.44737428e+05 2.73271199e+05 1.98677633e+05 2.92279141e+05 1.63754850e+05 1.79019139e+05 4.39271808e+04 1.28924692e+05 1.60548858e+05 2.37251826e+05 1.73609053e+05 2.98492122e+05 9.48332051e+04 1.30197314e+05 1.54953417e+05 2.11903120e+05 1.03566427e+05 1.59800343e+05 1.71750287e+05 1.81743457e+05 5.73865806e+04 1.60309844e+05 3.02049465e+05 2.10855185e+05 1.26389869e+05 1.94715485e+05 1.61541853e+05 1.73236261e+05 4.60073192e+04 5.85442123e+04] [ 8.08897519e+03 8.09024971e+03 1.00742230e+04 1.28013862e+04 7.52724195e+03 1.60405873e+04 1.90610052e+04 2.82693929e+04 1.29090144e+04 2.31959870e+04 1.45052961e+04 1.60689128e+04 6.66474929e+03 1.36778334e+04 1.57612554e+04 2.13167172e+04 1.33719534e+04 1.06726806e+04 2.13919933e+03 1.22612184e+04 1.45381580e+04 1.93972321e+04 7.28115550e+03 1.05372931e+04 1.79727539e+04 2.20908508e+04 5.10468662e+03 1.63263250e+04 2.72467726e+04 1.30822906e+04 1.14735238e+04 1.75304347e+04 1.61496247e+04 1.34638461e+04 6.13824229e+03 5.33277783e+03] [-6.19741681e+02 3.24668234e+02 -2.19851988e+03 -1.45238383e+03 -2.70820970e+03 -8.79394320e+02 1.41778781e+03 3.64805591e+03 -1.24508053e+02 2.43489202e+03 -1.18220846e+03 -1.14924775e+03 2.04497609e+02 1.90438765e+03 -1.35019902e+03 1.76874121e+03 -1.53055677e+03 -2.55944528e+03 1.07424894e+03 -1.95364884e+03 -1.71728103e+03 6.78144599e+02 1.11568948e+03 -2.07804545e+03 -7.32455727e+02 2.06839102e+03 1.60638775e+03 -9.30099818e+02 2.12068464e+03 9.77449615e+01 -1.97995121e+03 2.21291677e+03 -7.53164778e+02 -1.48652608e+03 8.13290894e+02 9.06007514e+02] [ 1.07503625e-01 7.03952516e-01 5.89934849e-01 3.69513410e-01 -1.35785817e-01 3.80868040e-01 -5.67949297e-01 -4.32113124e-01 5.55641222e-01 8.59960273e-01 -6.19900993e-01 -4.07873421e-01 -9.87579466e-01 -1.36875509e-01 -5.79409856e-01 2.82849565e-01 4.19178431e-01 -7.62444571e-01 -8.35711996e-01 8.12670139e-01 -2.21522491e-01 6.68069945e-02 9.26483130e-01 5.18108024e-01 -3.48919405e-01 -8.28301398e-01 7.20480334e-02 -3.27749114e-01 -9.56629191e-01 5.42304667e-01 -2.30181740e-01 1.42642300e-01 5.11485712e-01 8.81694840e-01 2.24644677e-01 -3.69207642e-01] [-7.79846984e-01 -8.52162224e-01 -3.60618452e-01 3.21678278e-01 3.90304129e-01 -5.84563920e-01 -8.34408123e-01 -3.88978677e-01 9.51491197e-02 5.09339349e-01 5.93146411e-02 -4.26032495e-01 2.48359447e-01 -4.70326690e-01 3.05385829e-01 6.83796016e-01 2.77895641e-01 1.31262938e-01 -3.85715781e-01 7.53554080e-01 9.77643769e-01 5.54958862e-01 1.47287715e-01 -7.17441335e-01 -3.70141955e-01 -2.66281363e-01 -4.16209558e-01 -1.08094371e-01 2.21265034e-01 -5.74170819e-01 -5.00480491e-01 -7.75699034e-01 -3.84822822e-01 -5.10344283e-03 -2.03844306e-02 9.91154424e-01] [ 9.62217126e-01 -1.26874457e-01 9.44041244e-01 -5.71204192e-01 8.22417722e-02 -9.31293711e-02 9.35217795e-01 6.72352446e-01 -5.71706150e-01 -1.20921796e-01 -6.63046057e-01 5.81744209e-02 5.86969348e-01 -9.28241702e-01 -6.17282245e-01 9.54911129e-01 9.21594612e-01 1.13183318e-01 2.92181443e-01 -4.55813971e-01 9.04182171e-01 3.39549613e-01 3.33615990e-01 -9.77793333e-01 7.05939700e-01 5.56652437e-01 3.69847994e-01 4.81563626e-01 -6.86855151e-01 4.37550106e-01 -8.06363179e-01 4.13898896e-01 -9.94736408e-01 5.52411575e-01 -1.68856304e-02 -5.91226267e-01] [ 4.58493229e-01 -3.68691736e-01 7.67635180e-01 -6.39532950e-01 8.77101309e-01 9.41500296e-01 -3.91029512e-01 7.24972799e-01 6.84358238e-01 -1.50774580e-01 -2.72631184e-01 -4.35125054e-01 9.86473569e-01 -4.88497946e-01 8.41351196e-01 -1.43329572e-01 8.70854025e-01 6.77689668e-01 -6.88445349e-01 1.48566709e-01 3.47006029e-01 -1.88359188e-01 -9.90245911e-01 -3.49337340e-01 6.77889896e-01 -8.74352040e-01 -7.89160507e-01 4.03574693e-01 2.83165355e-02 -3.66635001e-03 -2.52780562e-01 2.07027233e-01 7.02937534e-01 -4.46153887e-01 6.89522726e-01 -1.66761703e-01] [ 1.96802479e-03 4.59246757e-01 -4.82556585e-01 8.43273837e-01 4.04138928e-01 2.37860846e-01 -4.53982325e-01 3.91696913e-01 -4.85570503e-01 6.32905341e-01 -9.77055090e-01 -6.66924713e-01 1.15657978e-01 4.24561999e-01 -1.50386922e-02 7.55619003e-01 9.51739875e-01 -7.14458649e-02 5.35973959e-01 -1.04557323e-02 3.30197557e-01 -5.50250040e-01 -7.80916566e-01 9.58017875e-01 6.29989319e-01 -4.29232935e-01 1.71656769e-01 -2.39857589e-01 -6.47323918e-01 -1.62329714e-01 -4.05624412e-01 -9.66751787e-01 -2.25263386e-01 8.41826008e-01 6.56400517e-01 1.48149510e-01] [-3.62706270e-01 -5.37471410e-01 9.12039167e-01 1.29220198e-01 -5.64789393e-01 -5.01035898e-01 9.19192405e-01 -5.22371733e-01 -7.86571823e-01 -6.32076120e-01 5.32449614e-01 4.17528512e-01 -1.24116150e-01 5.87609014e-01 3.50253843e-02 -1.72803678e-01 -7.65116128e-01 7.67822132e-01 -4.48813571e-01 2.32521447e-01 9.69159558e-01 -6.21163956e-01 9.30375984e-01 3.05430737e-01 -7.42536791e-01 5.43854292e-01 9.03551557e-01 1.25561099e-01 3.77110400e-01 -9.47304242e-01 9.78151371e-01 -3.63085760e-01 -9.52192441e-01 6.17128301e-01 9.46505104e-01 4.75177020e-01] [-9.94528388e-01 -8.73278977e-01 1.68538810e-01 -3.28569784e-01 7.63666962e-01 7.47338739e-01 9.75037817e-01 4.31663938e-01 7.53767400e-01 -3.60699776e-01 -7.77646096e-01 7.30728212e-01 -3.93054804e-01 -1.61335404e-01 2.92060514e-01 2.10198268e-01 -1.58153831e-01 -2.27698976e-01 -7.54637916e-01 6.77237686e-02 -5.34291806e-01 5.09615702e-01 3.49741168e-01 -8.56146070e-01 9.78529369e-01 5.60913871e-01 -5.44348226e-01 -9.38514363e-01 -4.32563379e-02 -2.94515125e-01 9.30229987e-02 3.19327911e-01 5.94439615e-01 -9.72911306e-01 4.28591028e-01 -4.09372068e-01] [ 9.93846406e+03 9.11164602e+03 1.75551019e+03 2.19963780e+04 4.92680055e+02 3.91696606e+03 1.11981956e+04 2.48931522e+03 1.33296313e+04 9.81503438e+03 5.51609887e+03 6.83106424e+03 -9.42746232e+03 -2.97952065e+03 4.30885389e+03 1.30075825e+04 5.93913529e+03 2.72385627e+04 2.91752906e+03 1.96155943e+03 3.30022369e+03 8.82499657e+03 -2.06231297e+03 5.38929325e+03 5.39249916e+03 3.54365723e+03 -7.77383879e+03 4.54433278e+03 1.61167008e+04 1.39861951e+04 2.48223730e+03 1.16860736e+04 4.76503900e+03 6.80277448e+03 -4.45952315e+03 -3.13927861e+03] [ 9.75360487e+04 1.47670650e+05 1.86613119e+04 2.40796986e+05 2.35525800e+04 2.32279902e+04 2.17524492e+05 -2.67622239e+04 8.67798840e+04 4.21160453e+03 5.11307168e+04 5.67362546e+04 -1.40214729e+05 -6.32856103e+04 3.62884558e+04 1.15438892e+05 3.31612672e+04 3.02248826e+05 3.37859791e+04 2.07897135e+04 3.48557573e+04 8.22074801e+04 -3.92476819e+04 4.77605265e+04 4.42428766e+04 -3.76994708e+04 -1.29463977e+05 2.56297721e+04 1.39965114e+05 1.15265376e+05 2.26697999e+04 9.96150055e+04 4.42520614e+04 5.43296508e+04 -6.32723704e+04 -4.22028059e+04] [ 1.44090899e+05 1.93140178e+05 -1.66611178e+04 3.43611116e+05 3.49571535e+03 -1.02465857e+04 4.99974001e+05 -7.99788878e+04 9.77654367e+04 -1.04878566e+05 3.56465773e+04 5.26428402e+04 -3.91127818e+05 -2.24619041e+05 1.24953829e+04 1.30182362e+05 -1.58684645e+04 4.81214080e+05 9.23510322e+04 -6.93683054e+03 1.90508616e+04 1.47306242e+05 -1.47360720e+05 2.57619933e+04 3.94900954e+04 -8.73829905e+04 -3.81318266e+05 -8.66272599e+03 2.01607316e+05 1.92082094e+05 -4.17560318e+03 1.24878606e+05 3.42557987e+04 4.14780315e+04 -2.22107976e+05 -1.67114015e+05] [ 5.44468454e+04 1.62067408e+05 -5.92130613e+04 1.19748778e+05 -2.41385793e+04 -5.40171568e+04 5.33333054e+05 -2.13596274e+05 -4.60345173e+04 -3.06153747e+05 -2.58099092e+03 -2.47064169e+04 -4.80922670e+05 -2.59302001e+05 -5.92288112e+04 -1.24503664e+05 -7.56084560e+04 2.43116084e+05 6.67244060e+02 -4.48782523e+04 -3.30347829e+04 -1.33362291e+03 -2.50306335e+05 -2.76176570e+04 -2.53232122e+04 -2.63042767e+05 -5.45370016e+05 -6.44980791e+04 9.39130294e+04 4.05745809e+04 -4.64226738e+04 -9.71832917e+04 -3.15652725e+04 -3.49285060e+04 -3.20514904e+05 -2.42467299e+05] [ 1.22210673e+05 2.94380025e+05 -1.25084684e+05 4.80264572e+05 -8.18316279e+04 -1.21106084e+05 9.19171913e+05 -6.63979112e+04 1.08206003e+05 -3.18722322e+05 -2.44508028e+04 -2.47657637e+04 -7.09304366e+05 -4.62136964e+05 -9.67685606e+04 -8.94474161e+03 -1.11664611e+05 8.03273083e+05 -1.15653018e+05 -8.98396461e+04 -2.79861099e+04 1.81516201e+05 -3.91220666e+05 -5.22345302e+04 -2.44115693e+04 -1.77483363e+05 -7.90445617e+05 -1.14092160e+05 3.95425683e+05 3.36829680e+05 -1.16618295e+05 -4.88289016e+04 -7.02997850e+04 -5.89237009e+04 -5.02343290e+05 -4.35560106e+05] [ 1.13099140e+06 1.05782354e+06 5.93791613e+04 2.43218367e+06 -1.31079350e+04 2.26778108e+05 2.16161131e+06 4.19904955e+05 1.37780718e+06 7.01271728e+05 3.86317835e+05 5.50704077e+05 -1.29092739e+06 -6.08968243e+05 3.01593862e+05 1.13323375e+06 4.32363154e+05 3.21517289e+06 3.41164292e+05 1.25341509e+05 2.97292331e+05 1.21401982e+06 -5.14942775e+05 4.23917980e+05 4.23441116e+05 4.13443831e+05 -1.27917162e+06 2.86111037e+05 1.67738699e+06 1.67953120e+06 1.20613900e+05 1.04853273e+06 3.24340080e+05 5.54265136e+05 -8.42869887e+05 -7.47262681e+05] [ 1.93537690e+06 1.24107085e+06 7.46225153e+05 3.47926775e+06 5.94863797e+05 9.81270437e+05 2.84528857e+06 2.51402045e+05 2.36488766e+06 1.38976395e+06 1.16943185e+06 1.38419501e+06 -1.06864542e+06 -1.96413605e+05 1.06380914e+06 1.94516159e+06 1.29315360e+06 4.46108188e+06 8.46157435e+05 8.32549518e+05 1.01546872e+06 2.11414094e+06 -5.82491237e+05 1.23574053e+06 1.19028500e+06 1.18074721e+06 -1.21959046e+06 1.06973231e+06 2.18576630e+06 2.51596030e+06 8.19530318e+05 1.83568037e+06 1.06638893e+06 1.42541153e+06 -8.13413298e+05 -7.95169106e+05] [ 2.19242056e+06 9.56808380e+05 9.66790722e+05 3.99717561e+06 8.54601492e+05 1.09245755e+06 3.70595976e+06 -2.57816534e+05 2.65391446e+06 3.88739808e+05 1.17810606e+06 1.57031059e+06 -1.47873076e+06 -6.63172452e+05 1.27772083e+06 2.00506951e+06 1.38582877e+06 5.36759919e+06 8.02605913e+05 9.96372943e+05 1.27300981e+06 2.69015752e+06 -9.07434836e+05 1.41322574e+06 1.47265282e+06 1.11353356e+06 -1.86378110e+06 1.23274570e+06 2.34233957e+06 3.04780140e+06 1.01787836e+06 2.00121173e+06 1.28706831e+06 1.63189050e+06 -1.27013670e+06 -1.26579678e+06] [ 2.44854581e+06 4.91774855e+05 1.38043691e+06 3.93586880e+06 1.37273587e+06 1.30450926e+06 4.67903860e+06 -1.36945329e+06 2.76171709e+06 -7.67717293e+05 1.40889942e+06 1.77366722e+06 -1.66172250e+06 -6.99038699e+05 1.56244539e+06 2.02669848e+06 1.61434665e+06 5.60239889e+06 5.37551375e+05 1.38194232e+06 1.69500825e+06 3.35721079e+06 -1.49096056e+06 1.74621451e+06 1.76597676e+06 1.10904613e+06 -2.46947931e+06 1.45183568e+06 1.88805395e+06 3.38167419e+06 1.37257250e+06 1.95665010e+06 1.59922186e+06 1.90390578e+06 -1.70038036e+06 -1.85739146e+06] [ 3.63450260e+06 1.56102343e+06 1.59314444e+06 5.94012988e+06 1.46452785e+06 1.61446239e+06 6.76374849e+06 -6.45088711e+05 4.21831589e+06 5.33541262e+05 1.95095463e+06 2.45926510e+06 -2.41060496e+06 -8.19185678e+05 2.05693082e+06 3.60041188e+06 2.23266066e+06 7.85119353e+06 9.60177406e+05 1.56232598e+06 2.09264606e+06 4.80327473e+06 -1.74493800e+06 2.31191325e+06 2.24709098e+06 2.03834625e+06 -3.19635301e+06 1.85723843e+06 3.34362622e+06 4.93188294e+06 1.62080368e+06 3.35913257e+06 1.96878104e+06 2.56680950e+06 -2.22697444e+06 -2.42131500e+06] [ 3.69538871e+06 9.69854404e+05 2.08150504e+06 6.06777584e+06 1.98977018e+06 1.83497738e+06 8.08977286e+06 -3.76952803e+05 4.58103342e+06 -3.97301594e+05 2.18627214e+06 2.77278356e+06 -2.18005343e+06 -8.58545227e+05 2.42553983e+06 4.28313643e+06 2.40890429e+06 8.47117182e+06 1.17012465e+06 1.95101361e+06 2.58229463e+06 5.57298690e+06 -1.57094548e+06 2.60779886e+06 2.58915681e+06 2.53935576e+06 -2.95548829e+06 2.10293413e+06 3.77180470e+06 5.82913208e+06 2.04050813e+06 3.83965506e+06 2.32746738e+06 2.82392348e+06 -2.20241850e+06 -2.53068738e+06] [ 4.45704671e+06 2.22020637e+06 2.43897598e+06 7.52408980e+06 2.32132158e+06 2.14822552e+06 9.55022873e+06 9.26587383e+05 5.20298870e+06 -3.43691232e+05 2.27807026e+06 3.03978183e+06 -2.12450324e+06 -6.16172610e+05 2.70383419e+06 4.85910991e+06 2.73927330e+06 1.04987412e+07 1.92927193e+06 2.19842109e+06 2.96399292e+06 5.96141038e+06 -5.12255899e+05 3.04982340e+06 2.87140489e+06 2.19546667e+06 -2.34342338e+06 2.37450955e+06 5.37755769e+06 6.73283764e+06 2.33214493e+06 4.61104361e+06 2.63601409e+06 3.13921047e+06 -1.61170349e+06 -1.85833238e+06] [ 4.67706040e+06 3.53256743e+06 2.66874731e+06 7.59845299e+06 2.49544122e+06 2.37348129e+06 9.58358519e+06 2.19452186e+06 5.08903261e+06 3.52199987e+05 2.43269444e+06 3.03804441e+06 -1.10316789e+06 2.11566426e+05 2.72999571e+06 4.68639023e+06 2.95187924e+06 1.04401564e+07 2.67518986e+06 2.37612387e+06 3.12291434e+06 5.90731971e+06 6.53812541e+05 3.24630955e+06 2.95950465e+06 2.09089392e+06 -9.46360759e+05 2.55386792e+06 6.01131060e+06 6.76412385e+06 2.46717251e+06 4.56849770e+06 2.76042400e+06 3.18562196e+06 -8.01829188e+05 -9.55785788e+05] [ 4.28065374e+06 3.98835863e+06 2.52975969e+06 7.72459836e+06 2.17692918e+06 2.56940560e+06 8.64814387e+06 3.77883065e+06 5.10157071e+06 2.44647387e+06 2.76237502e+06 3.21130944e+06 -3.92137608e+05 1.00847976e+06 2.74717532e+06 4.95541613e+06 3.15266793e+06 9.84526476e+06 2.66193472e+06 2.38609923e+06 2.99707494e+06 5.61614336e+06 1.28387451e+06 3.25226364e+06 2.99353669e+06 2.89139864e+06 2.91359917e+04 2.70741442e+06 6.67916423e+06 6.55276762e+06 2.43132862e+06 4.37201024e+06 2.73133618e+06 3.26341213e+06 -2.37139391e+05 -3.04182655e+05] [ 3.45506171e+06 4.12349279e+06 2.11059927e+06 6.15674703e+06 1.58798781e+06 2.34243794e+06 6.40552819e+06 4.85661090e+06 4.25112852e+06 4.61013155e+06 2.77300789e+06 2.94120475e+06 7.66648324e+05 2.05415854e+06 2.42645318e+06 4.92965674e+06 2.83119849e+06 6.85520664e+06 2.37141925e+06 2.03238209e+06 2.46187910e+06 4.66961173e+06 1.73755318e+06 2.73510363e+06 2.55895548e+06 3.68114687e+06 1.33609779e+06 2.45350368e+06 6.35387341e+06 5.24661523e+06 2.08328983e+06 3.86271763e+06 2.34569192e+06 2.81473825e+06 4.19783654e+05 5.76366515e+05] [ 3.40088211e+06 4.84142464e+06 2.06643176e+06 6.36469521e+06 1.44495835e+06 2.65914862e+06 4.67607659e+06 5.34199671e+06 4.25074885e+06 6.15497101e+06 2.94279238e+06 3.17166830e+06 7.80911125e+05 2.33707649e+06 2.70734571e+06 5.02042146e+06 3.11489202e+06 6.52150665e+06 2.11907333e+06 2.15066534e+06 2.50227453e+06 4.02473436e+06 1.85551677e+06 2.81059042e+06 2.84843961e+06 3.72379841e+06 1.45634657e+06 2.79609906e+06 6.25436689e+06 4.43418157e+06 2.18846479e+06 3.79908863e+06 2.61696103e+06 3.01888891e+06 7.12972925e+05 1.07951985e+06] [ 2.19463840e+06 3.51514122e+06 1.18014013e+06 4.79573719e+06 6.58756239e+05 1.80705823e+06 2.76570864e+06 4.02408627e+06 2.90160128e+06 5.13311572e+06 1.92878198e+06 2.25189135e+06 8.42828282e+04 1.43059424e+06 1.88839399e+06 3.76182778e+06 2.14890532e+06 4.86886272e+06 1.27477033e+06 1.32118289e+06 1.62636972e+06 2.65140293e+06 1.01267667e+06 1.84305423e+06 2.01500345e+06 2.59425213e+06 5.68961267e+05 1.94108259e+06 4.53875401e+06 2.98114504e+06 1.36180290e+06 2.91930134e+06 1.82408758e+06 2.08753399e+06 8.22514819e+04 3.87899325e+05] [ 1.16038967e+06 2.36043476e+06 3.43311913e+05 3.14038283e+06 2.22353933e+04 8.02361265e+05 1.61472220e+06 2.70777303e+06 1.66520441e+06 3.46186857e+06 8.57513961e+05 1.17138219e+06 -3.21653245e+05 5.13374780e+05 9.20024126e+05 2.46376740e+06 1.03250108e+06 3.12648167e+06 6.97972926e+05 4.37041697e+05 7.04392903e+05 1.50716418e+06 4.96216508e+05 8.40637181e+05 9.80793280e+05 1.38493866e+06 5.55396862e+04 9.24022992e+05 2.79908580e+06 1.73137045e+06 4.86929061e+05 1.93795875e+06 8.71759305e+05 1.03796941e+06 -1.92977667e+05 2.44204259e+04] [ 3.12334905e+05 1.04716817e+06 -1.00121593e+05 1.45921137e+06 -2.41552952e+05 1.19578752e+05 7.85328876e+05 1.67348696e+06 7.39447729e+05 1.66347653e+06 1.19452334e+05 3.65691350e+05 -4.10970856e+05 -1.02711099e+05 2.79001060e+05 1.29355169e+06 2.07906032e+05 1.51383170e+06 3.26066343e+05 -4.54089981e+04 1.50200636e+05 6.40534259e+05 1.37848655e+05 1.44373276e+05 3.01462638e+05 6.86527408e+05 -1.61949490e+05 2.44446681e+05 1.38094343e+06 7.70206120e+05 -1.10081340e+04 9.18139485e+05 2.26988795e+05 2.60631199e+05 -3.36056921e+05 -1.75345099e+05] [-8.23674246e+04 1.26266684e+05 -9.15874961e+04 3.59471812e+05 -1.27907197e+05 -4.47974700e+04 1.83448387e+05 6.42337615e+05 1.37489718e+05 3.88459949e+05 -8.00949339e+04 3.61142951e+04 -1.45691481e+05 -1.30415457e+05 3.10546490e+04 4.42744676e+05 -5.45907684e+04 4.34960707e+05 1.95567452e+04 -5.85057811e+04 3.70743759e+03 8.21865208e+04 7.86094603e+03 -5.82872378e+04 5.77393324e+04 2.03019516e+05 -6.82770466e+04 5.47739541e+03 3.87333133e+05 1.83952983e+05 -6.26980444e+04 1.98893608e+05 3.62856929e+04 -2.23380599e+03 -1.23756633e+05 -7.29256761e+04] [-3.03421433e+04 1.02671888e+05 -6.72755697e+04 2.32739359e+05 -7.72145734e+04 -4.20113338e+04 1.00237587e+05 3.31927037e+05 5.59826718e+04 1.69046011e+05 -5.85992848e+04 8.46895217e+03 -1.18747441e+05 -9.81895237e+04 -3.29334638e+03 2.01078182e+05 -4.93087875e+04 3.20035326e+05 -2.35070363e+04 -4.51109245e+04 -6.71262089e+03 3.25880557e+04 -1.05113562e+04 -4.19955651e+04 1.95540551e+04 8.11487632e+04 -7.92571723e+04 -2.04656516e+04 2.27848401e+05 1.30795823e+05 -5.09375730e+04 7.45864789e+04 6.42083289e+03 -1.44130344e+04 -9.15795555e+04 -6.07115099e+04] [ 2.31949216e+03 3.40116931e+03 -6.97179675e+02 1.31446350e+04 -2.34961355e+03 1.12995633e+03 6.21931434e+03 1.03578517e+04 7.11087698e+03 9.18841413e+03 1.89295902e+03 5.10025768e+03 -6.44019306e+03 -5.05779721e+03 2.59419379e+03 7.84043279e+03 2.15120989e+03 1.85358861e+04 3.89509895e+03 2.13632969e+02 2.22113667e+03 3.94156693e+03 -1.00832492e+03 2.15533211e+03 4.77983198e+03 5.07778113e+03 -4.64761200e+03 2.84854329e+03 1.07701477e+04 1.11200709e+04 5.18960232e+02 7.47144359e+03 2.96652929e+03 3.22782476e+03 -5.12907647e+03 -3.41322372e+03] [ 9.51083956e-01 5.27440064e-01 -9.98518174e-01 4.70431108e-01 -9.56014980e-01 -6.62868635e-01 -9.78971983e-01 -7.01746002e-01 3.75011050e-01 4.04033751e-01 -2.57845187e-01 4.62381648e-01 6.94608411e-01 -7.39284971e-01 -8.25185368e-01 -2.56157087e-01 -1.92232725e-01 -4.47191560e-01 5.08336372e-01 -3.56427599e-01 6.00288624e-01 8.22616709e-01 2.62980151e-02 -1.41155941e-01 -8.16810396e-01 -4.52645392e-01 7.73295629e-01 -5.08111317e-01 2.42378774e-01 -9.98520831e-03 -8.11254928e-01 7.98737063e-01 -8.64458335e-01 3.61404651e-01 9.43996280e-01 4.18747582e-01] [-3.48182559e-01 -8.53119667e-01 1.59474094e-01 4.67034037e-01 -2.82307933e-01 3.07502945e-01 1.33182816e-01 -9.31787165e-01 8.41388906e-01 -2.39988393e-01 -2.41196112e-01 6.92711752e-01 -3.14441960e-02 -9.78624115e-02 2.79713431e-01 -5.76457418e-01 5.66013854e-02 3.37137049e-01 7.75534000e-02 4.17522275e-01 1.97072984e-01 6.82811067e-01 7.58341526e-01 -8.04321594e-01 -4.82812011e-01 -8.90687689e-01 -5.42216264e-01 4.41833414e-01 -8.42909521e-01 -6.89760974e-01 5.41536655e-01 -1.11349645e-01 -4.19758525e-01 2.87969393e-01 7.73876809e-01 -9.24789119e-01] [ 3.86188689e-01 3.37101448e-01 7.36024197e-01 -6.07255920e-01 4.25585259e-01 -7.92197783e-01 -8.86747286e-01 3.61592069e-01 -9.54730572e-01 -9.11401822e-01 -9.26093954e-01 -6.91789825e-02 5.15738888e-01 9.84398447e-01 -5.46784607e-01 5.84760451e-01 5.90491728e-01 7.44485419e-01 -3.71488019e-01 -7.34149890e-01 5.93403160e-01 1.34926675e-01 -1.70692146e-01 -8.82716646e-01 -9.86886249e-01 -3.67953073e-01 -4.57082429e-01 -4.85527454e-02 8.47223729e-01 -1.66631028e-01 -4.24232258e-01 6.90493066e-01 -3.86100265e-01 8.31168045e-01 7.26823687e-01 2.77638376e-01] [ 4.95350387e-01 -6.85354409e-01 2.05748540e-01 -3.45925432e-01 -2.26438929e-02 -5.49229084e-01 8.03915355e-01 -1.76932446e-01 -4.65318936e-02 4.42805506e-01 -7.55606374e-01 6.13009710e-03 6.26295327e-01 3.54683720e-01 -3.56698548e-01 4.21330793e-01 8.68879197e-01 7.89552477e-01 4.84469576e-01 -4.67797662e-01 -2.55025186e-01 1.16835842e-01 -2.37902206e-01 -8.85062759e-02 5.87051888e-01 -7.92119736e-01 9.45993156e-01 4.09238132e-01 7.29455737e-01 5.63360108e-01 -1.35632573e-01 8.85022287e-01 -4.93827566e-01 -9.07503154e-01 -8.06243539e-01 -5.98526756e-01] [ 7.81610727e-02 -5.52794895e-01 6.70641640e-01 -9.81322626e-01 4.91801858e-01 9.38015644e-01 -4.65633578e-01 2.47631013e-01 4.29559270e-01 -3.46085164e-01 -1.33746856e-01 4.68817692e-01 -7.37699626e-01 -7.12628054e-01 -2.49187355e-01 -5.43181896e-01 -3.86027212e-01 -6.99868630e-01 -8.06727880e-01 8.31968062e-01 -3.08213183e-01 1.31932513e-01 9.43975301e-02 -9.92849037e-02 4.95641161e-01 -3.36847085e-01 7.84954914e-01 -8.63933555e-01 1.49779185e-01 -3.21894846e-01 -2.72199310e-01 -3.89804212e-01 2.07172599e-01 -5.31184141e-01 -4.11387601e-01 -4.29010819e-01] [-6.49117434e+03 -1.82824562e+04 1.30915175e+04 -1.25990238e+04 1.35179779e+04 9.78859091e+03 6.82336988e+03 -1.27006906e+04 -4.04611748e+03 -6.85109439e+03 1.13555777e+04 1.05264153e+04 3.69401141e+03 2.64529536e+03 1.17762904e+04 -2.49899227e+03 6.86226905e+03 -1.39576220e+04 -8.07119827e+03 1.31685115e+04 1.29300104e+04 6.64880930e+03 -1.29426043e+04 8.69604522e+03 1.19740098e+04 1.07954806e+04 -9.80434375e+03 9.74703324e+03 -5.18287850e+03 -1.38072999e+03 1.27825899e+04 -3.74239465e+03 1.14778304e+04 8.41201804e+03 -1.49871019e+04 -1.55538073e+04] [-3.04350102e+04 -1.09846524e+05 6.32230611e+04 -6.13072919e+04 6.54585367e+04 4.75027500e+04 3.36374764e+04 -8.76519449e+04 -1.60863664e+04 -4.48825141e+04 5.51431505e+04 5.03762306e+04 6.98410920e+03 8.54954705e+03 5.60297770e+04 -2.09419565e+04 3.56631413e+04 -6.18345368e+04 -4.80284509e+04 6.32938351e+04 6.20572947e+04 2.30723826e+04 -7.57720736e+04 4.42120379e+04 5.55500355e+04 5.50029257e+04 -6.24018951e+04 4.67922092e+04 -4.07218340e+04 -7.98631745e+03 6.15262279e+04 -2.47532512e+04 5.38610450e+04 4.22150522e+04 -8.37548054e+04 -8.68202445e+04] [ 7.15032699e+04 4.16118360e+04 8.63946215e+04 3.16458062e+05 1.02497648e+05 6.44780809e+04 5.93873691e+05 -2.74293355e+05 4.27352369e+04 -2.59554744e+05 1.05250409e+05 1.18112706e+05 -4.19039232e+05 -2.03240323e+05 7.36902852e+04 -4.71187149e+03 2.65683114e+04 4.74040260e+05 -8.85495602e+04 8.25198453e+04 9.24485993e+04 1.60185155e+05 -3.36736571e+05 8.73820388e+04 9.66133396e+04 -8.39091255e+04 -5.59574553e+05 4.09417932e+04 1.00479869e+05 1.28011347e+05 8.94124946e+04 -6.42359784e+04 8.89942212e+04 8.54126919e+04 -4.47366998e+05 -4.19613033e+05] [ 7.55335514e+04 1.25549264e+05 2.72717871e+04 1.94904516e+05 9.52417530e+04 4.66080344e+03 1.02258650e+06 -4.62347910e+05 -7.53270732e+04 -5.75007357e+05 7.17885033e+04 9.00821037e+04 -7.95200815e+05 -4.67298020e+05 5.14940079e+04 -1.10963141e+05 -7.51647040e+04 4.55142425e+05 6.11356428e+04 4.77591336e+04 8.08253084e+04 2.37526659e+05 -6.20050100e+05 3.87436484e+04 1.14899083e+05 -1.91269050e+05 -1.06475224e+06 9.96621871e+03 5.15418564e+04 1.59387343e+05 4.91256348e+04 -1.21863012e+05 9.48204875e+04 6.01944604e+04 -8.77490892e+05 -7.83941988e+05] [ 1.92218810e+05 -1.83364158e+05 1.59090931e+05 4.92292001e+05 2.78711796e+05 1.45354621e+05 1.95935883e+06 -1.12188140e+06 1.18883417e+05 -1.11262045e+06 2.97280712e+05 3.71940520e+05 -1.55237685e+06 -9.85768927e+05 2.42945139e+05 -1.25950614e+05 5.15017043e+04 1.03578613e+06 7.63284073e+04 2.43329727e+05 3.08874216e+05 6.89570199e+05 -1.33523508e+06 2.23097075e+05 3.79656821e+05 -8.92449195e+04 -2.21798079e+06 1.73758011e+05 -8.69928912e+04 5.51231704e+05 2.11441594e+05 -4.86417465e+04 3.24020729e+05 3.19231312e+05 -1.58045482e+06 -1.51034548e+06] [ 5.56390216e+05 -6.08192767e+05 3.28889907e+05 1.29085258e+06 4.95972154e+05 2.27236650e+05 3.00454470e+06 -2.21950796e+06 5.01137844e+05 -2.02736524e+06 4.82421404e+05 5.84724416e+05 -2.31254796e+06 -1.57563895e+06 3.45381345e+05 -2.35145467e+05 2.21220817e+05 2.42220941e+06 7.87164068e+04 4.29947484e+05 4.95526842e+05 1.25770482e+06 -2.07265871e+06 4.55340632e+05 5.56320780e+05 -1.75108931e+05 -3.35277334e+06 2.61063376e+05 -2.05434389e+04 1.33472047e+06 3.67007013e+05 1.60878743e+04 4.63595137e+05 5.77473384e+05 -2.31437707e+06 -2.29981760e+06] [ 1.44664012e+06 -1.25213760e+06 1.14829402e+06 2.56741536e+06 1.35735260e+06 9.50262650e+05 5.04553576e+06 -3.98223479e+06 1.48196878e+06 -3.28548395e+06 1.42287513e+06 1.57105816e+06 -3.10499076e+06 -2.13084188e+06 1.11269676e+06 -1.41643784e+05 1.13216472e+06 4.86413746e+06 1.85519193e+05 1.27741092e+06 1.41616037e+06 2.70042357e+06 -3.22225213e+06 1.44745547e+06 1.46342417e+06 1.12165295e+05 -4.89112840e+06 1.00820551e+06 4.57850912e+05 2.79181519e+06 1.16250920e+06 4.04992130e+05 1.28927735e+06 1.65304708e+06 -3.27559959e+06 -3.43922175e+06] [ 2.15468246e+06 -2.33079011e+06 2.37290496e+06 3.66537347e+06 2.56473390e+06 2.01109341e+06 5.97253151e+06 -5.12019305e+06 2.53949030e+06 -4.01163726e+06 2.52418361e+06 2.82247053e+06 -3.16656977e+06 -2.24248427e+06 2.34316541e+06 3.90497989e+05 2.32021338e+06 6.69714459e+06 4.17277510e+05 2.49067668e+06 2.69772927e+06 3.81623685e+06 -3.64174516e+06 2.68796375e+06 2.71016167e+06 9.05854523e+05 -5.40950852e+06 2.15377416e+06 2.88823123e+05 3.86816114e+06 2.38662107e+06 8.52326175e+05 2.46837688e+06 2.95450246e+06 -3.53862210e+06 -3.83143396e+06] [ 1.38059647e+06 -4.96210472e+06 3.06020426e+06 2.50904078e+06 3.55519152e+06 2.00953286e+06 6.62622344e+06 -7.56146506e+06 1.86617641e+06 -8.01260262e+06 2.45229233e+06 2.99848482e+06 -3.60490067e+06 -3.44452219e+06 2.63902794e+06 -1.23067663e+06 2.11066071e+06 6.40149757e+06 -5.70836770e+05 3.05977576e+06 3.34268022e+06 4.05788710e+06 -4.60133475e+06 2.89363810e+06 3.13994067e+06 1.42666309e+05 -6.59359892e+06 2.23019548e+06 -1.45051550e+06 3.83904934e+06 2.94225745e+06 -4.73201060e+05 2.73490682e+06 2.95876929e+06 -4.44293833e+06 -4.86815181e+06] [ 1.77146120e+06 -6.45900001e+06 3.75529817e+06 3.37703954e+06 4.34309461e+06 2.45107793e+06 7.90554239e+06 -9.19520181e+06 2.63572401e+06 -1.04501446e+07 2.90796031e+06 3.57443212e+06 -4.21524583e+06 -4.04488760e+06 3.02426921e+06 -2.50089878e+06 2.80355121e+06 8.56827917e+06 -1.91312295e+06 3.66932749e+06 4.06431876e+06 4.63043528e+06 -5.49240513e+06 3.69341285e+06 3.72316855e+06 -5.80357151e+05 -7.81929231e+06 2.64960198e+06 -8.30648888e+05 4.76494764e+06 3.52789501e+06 -1.27588495e+06 3.09446556e+06 3.55187662e+06 -5.10821991e+06 -5.94970819e+06] [ 2.83385623e+06 -6.65719401e+06 4.53718747e+06 4.83742924e+06 5.18075613e+06 3.16342644e+06 9.90674064e+06 -9.52062751e+06 3.83792704e+06 -1.10120847e+07 3.73949631e+06 4.49884505e+06 -4.18145377e+06 -3.90349942e+06 3.74022294e+06 -1.75356278e+06 3.74634537e+06 1.07593434e+07 -1.89728037e+06 4.43949907e+06 4.94484354e+06 5.55946573e+06 -5.76069918e+06 4.64256491e+06 4.50999012e+06 -3.38289094e+05 -8.21675677e+06 3.37593845e+06 5.68258323e+05 6.25104881e+06 4.26583332e+06 -4.59985541e+05 3.84650481e+06 4.52682392e+06 -4.85957527e+06 -6.26918866e+06] [ 3.74703593e+06 -6.12310065e+06 5.32800477e+06 6.27907048e+06 5.88018360e+06 3.98398623e+06 1.15976092e+07 -8.29933996e+06 4.99737061e+06 -1.02706229e+07 4.53433245e+06 5.49366928e+06 -3.76672279e+06 -3.55300708e+06 4.66657370e+06 3.35984177e+04 4.61359249e+06 1.27370469e+07 -1.06393390e+06 5.19481463e+06 5.87777648e+06 6.88143538e+06 -4.78272482e+06 5.52484208e+06 5.42536318e+06 7.10308217e+05 -7.47222932e+06 4.24195018e+06 2.43254126e+06 7.79601047e+06 5.03911538e+06 1.41389606e+06 4.79744979e+06 5.48837814e+06 -4.03539379e+06 -5.56043780e+06] [ 3.43885081e+06 -6.19568638e+06 5.27732825e+06 6.77180344e+06 5.94627058e+06 3.88742161e+06 1.45323091e+07 -7.14726498e+06 4.79307402e+06 -1.08564129e+07 4.49934589e+06 5.46563159e+06 -4.85469125e+06 -4.27896199e+06 4.68111859e+06 1.15320794e+06 4.08716325e+06 1.39695696e+07 -4.11174316e+05 5.21982481e+06 6.04918732e+06 7.91948648e+06 -4.73544510e+06 5.33386408e+06 5.45657608e+06 1.32524951e+06 -8.23476610e+06 4.06995735e+06 4.38936055e+06 9.15486948e+06 4.99059050e+06 2.48960839e+06 4.87927861e+06 5.38890143e+06 -4.83440193e+06 -6.10109527e+06] [ 3.59502784e+06 -4.54118581e+06 5.13346622e+06 7.17061364e+06 5.56089770e+06 4.04995048e+06 1.45976262e+07 -4.56238281e+06 5.01346487e+06 -8.80160538e+06 4.57281972e+06 5.17376064e+06 -4.08602805e+06 -3.20207616e+06 4.54515351e+06 2.22330487e+06 4.08973132e+06 1.33182915e+07 9.82978892e+05 5.09611684e+06 5.71451419e+06 7.91983875e+06 -3.35081016e+06 5.12301725e+06 5.19301790e+06 2.22668691e+06 -6.63185347e+06 4.09639789e+06 6.30355728e+06 9.62193369e+06 4.90127418e+06 3.29984591e+06 4.72771366e+06 5.22516810e+06 -4.15764828e+06 -4.85419509e+06] [ 4.20809939e+06 -1.40818167e+06 4.69049710e+06 7.83878421e+06 4.53117329e+06 4.30927533e+06 9.74385060e+06 -8.81683149e+05 5.50585833e+06 -3.46721131e+06 4.45659055e+06 4.65301679e+06 -1.18200340e+06 -1.31057177e+05 4.17778595e+06 3.39152627e+06 4.71985077e+06 1.15624461e+07 1.97546694e+06 4.56498734e+06 4.81804851e+06 6.49843782e+06 -5.27189820e+05 5.00095224e+06 4.50113718e+06 2.66354479e+06 -2.13680177e+06 4.16083644e+06 7.42477052e+06 8.45587952e+06 4.50940845e+06 3.86153086e+06 4.25227973e+06 5.00876202e+06 -1.59293519e+06 -1.79891461e+06] [ 3.71630351e+06 2.10997384e+06 3.65495653e+06 6.46471177e+06 3.01567985e+06 3.79681603e+06 4.24710827e+06 2.30559677e+06 4.70202154e+06 2.99729244e+06 4.25289633e+06 4.12160364e+06 1.57053051e+06 2.57349409e+06 3.57922852e+06 4.05357499e+06 4.42640161e+06 6.96243103e+06 2.31490306e+06 3.47557991e+06 3.52236068e+06 4.76673554e+06 1.57821861e+06 4.20205527e+06 3.57471187e+06 3.60294491e+06 1.79800908e+06 3.71849483e+06 5.69898545e+06 5.44700652e+06 3.58645892e+06 3.60130800e+06 3.48522473e+06 4.21295717e+06 5.67738441e+05 8.04091028e+05] [ 3.30221603e+06 3.75804755e+06 2.26339824e+06 5.70842722e+06 1.56161417e+06 2.75580655e+06 2.06833861e+06 3.52089950e+06 4.00735807e+06 5.75389980e+06 3.07472762e+06 2.89504090e+06 1.64676816e+06 2.93091852e+06 2.62581058e+06 4.48184545e+06 3.33489163e+06 4.91884294e+06 2.26043573e+06 2.12544488e+06 2.13797696e+06 3.46342375e+06 1.91530811e+06 2.95465459e+06 2.35631726e+06 3.29428564e+06 2.42249054e+06 2.72493730e+06 4.49414644e+06 3.52268418e+06 2.30412049e+06 3.81776672e+06 2.37773089e+06 3.03400212e+06 1.05965044e+06 1.38476592e+06] [ 2.59530460e+06 3.86568368e+06 1.16541528e+06 4.69767099e+06 6.16867620e+05 1.83927876e+06 1.40912346e+06 3.72134425e+06 3.04225732e+06 6.41508096e+06 2.00423267e+06 2.00121239e+06 5.50982017e+05 2.30206815e+06 1.80695497e+06 4.33275359e+06 2.21798506e+06 3.37902485e+06 1.76957409e+06 1.24764335e+06 1.28091104e+06 2.53119574e+06 1.18023779e+06 1.84661284e+06 1.62304849e+06 2.88962593e+06 1.22905105e+06 1.83626310e+06 3.53451587e+06 2.38472070e+06 1.33456520e+06 3.39752462e+06 1.60276556e+06 2.03800150e+06 1.61213245e+05 5.26636971e+05] [ 8.25025413e+05 2.65735170e+06 -3.87603676e+04 1.75900780e+06 -5.11827994e+05 5.91602209e+05 -1.86099241e+05 3.56445954e+06 1.16111669e+06 5.90425996e+06 8.01867311e+05 7.50454684e+05 4.28365285e+05 1.57783611e+06 7.83214324e+05 3.65120163e+06 8.56535210e+05 -1.38636247e+05 1.14079757e+06 9.65198938e+04 2.38208419e+05 9.82974528e+05 7.45128307e+05 4.70179676e+05 5.48152731e+05 2.25821954e+06 1.15961103e+06 7.03585100e+05 1.85387609e+06 5.39115089e+05 1.76812221e+05 2.42587277e+06 5.57308804e+05 6.57212623e+05 -2.47633756e+05 2.32481506e+05] [-7.22915548e+05 4.91136459e+05 -5.69309061e+05 -5.38811959e+05 -7.34945662e+05 -3.48868074e+05 -5.01014856e+05 2.88492226e+06 -3.37317323e+05 2.54654991e+06 -2.17351911e+05 -3.34280197e+04 1.12699811e+05 6.61908235e+04 9.22286168e+04 1.84443060e+06 -3.79143437e+05 -1.51572490e+06 6.39288939e+05 -4.43448759e+05 -1.42167661e+05 -8.77922295e+03 3.32205728e+05 -4.31057775e+05 6.26545235e+03 1.28996870e+06 6.45913015e+05 -1.13543142e+05 1.39532538e+05 -3.61324403e+05 -4.22989540e+05 7.08082097e+05 -1.67115787e+04 -3.50974950e+05 -6.91964754e+05 -1.67107804e+05] [-1.12480667e+06 -9.18262978e+05 -1.62767792e+05 -1.39181442e+06 -1.08599701e+05 -2.04094277e+05 -3.39981423e+05 2.09107075e+06 -6.82045650e+05 4.50064354e+05 -2.59759182e+05 1.30355433e+05 1.45387247e+05 -6.08363210e+05 2.85114537e+05 1.24068965e+06 -4.63815981e+05 -1.59462023e+06 6.78583527e+05 -3.01909027e+04 2.23701752e+05 -1.51268445e+05 1.09788017e+05 -3.14789117e+05 3.32294279e+05 1.07857293e+06 3.48347660e+05 4.48901691e+04 -7.16580393e+05 -3.71898487e+05 -5.87791283e+04 1.53965956e+05 3.08212604e+05 -2.27681593e+05 -6.38766023e+05 -2.30775412e+05] [-1.00716728e+06 -1.15172420e+06 3.23721093e+04 -1.35264691e+06 1.26242085e+05 -1.04128031e+05 -2.37770843e+05 8.79138153e+05 -7.21094101e+05 -4.40660398e+05 -1.27180832e+05 7.81223365e+04 2.31724723e+05 -4.48021474e+05 1.86842398e+05 2.83560439e+05 -3.27217758e+05 -1.35315017e+06 1.70831940e+05 1.36851228e+05 2.33397067e+05 -1.67718261e+05 -8.69082537e+04 -1.76111816e+05 2.41672201e+05 6.07596128e+05 1.58489455e+05 3.86047692e+04 -8.20453874e+05 -3.23862919e+05 6.97225526e+04 -3.80641318e+05 2.17014596e+05 -1.40766344e+05 -3.27234342e+05 -1.76634236e+05] [-3.89089732e+05 -4.80742295e+05 -3.42522892e+04 -5.82652813e+05 5.95354381e+03 -1.10846441e+05 -1.57425998e+05 1.23823375e+05 -3.27242618e+05 -2.88979101e+05 -9.14235632e+04 -4.93731694e+04 1.07269870e+05 -1.42713181e+05 -2.79200996e+04 -9.23963943e+04 -1.71808537e+05 -5.88088682e+05 -3.86507612e+04 -1.51743248e+04 2.31153876e+03 -1.44293557e+05 -4.72278100e+04 -1.22321888e+05 -4.63687871e+03 6.82373948e+04 5.14746779e+04 -6.93914032e+04 -3.34226186e+05 -1.71815417e+05 -3.38652538e+04 -2.45243733e+05 -2.81710445e+04 -1.21170145e+05 -6.00958261e+04 -5.53456919e+04] [ 2.94380342e+02 6.64063555e+01 7.78869360e+02 6.98244559e+02 6.46856046e+02 7.55359560e+02 -9.07100003e+02 2.69841256e+03 6.94538990e+02 1.46306606e+03 7.72883066e+02 5.97809983e+02 1.93160776e+03 1.22748112e+03 6.22312941e+02 1.23462580e+03 7.09235039e+02 6.29783706e+02 -1.16709461e+03 6.72888354e+02 6.47548737e+02 -8.18546092e+02 7.64675754e+02 5.84737436e+02 5.94188159e+02 5.10364778e+02 1.84258776e+03 6.21402219e+02 2.33417317e+03 4.09278995e+02 6.89840055e+02 -7.47945239e+02 4.48217964e+02 4.38480350e+02 1.15787950e+03 8.11221412e+02] [-8.17354520e-01 2.28149664e-01 -7.01298378e-01 4.15929934e-02 -8.13309813e-01 5.62400880e-01 5.45862035e-01 1.96297530e-01 -9.70913361e-01 -9.15951559e-01 -6.38058685e-01 9.44061342e-01 -4.90799622e-01 5.02017652e-01 -4.37529581e-01 -4.88962765e-01 -4.84272528e-01 -4.05894009e-01 -9.82110790e-01 9.74352364e-01 1.32921272e-01 2.03684823e-01 7.65201417e-02 -9.12324904e-01 -5.69590222e-02 7.93530024e-02 3.45911582e-01 6.83360054e-02 -8.89855382e-01 2.40197980e-01 1.62350406e-01 9.11926516e-02 6.86562560e-01 -1.05226481e-01 2.07130893e-01 -7.52774227e-01] [-4.95241494e-01 7.00708652e-01 -9.67551275e-01 -6.87498044e-01 6.46769950e-01 -5.41324637e-01 -4.81610089e-01 4.01581213e-01 9.33050558e-01 -6.03440360e-01 4.94994576e-01 -7.18987510e-01 -2.35004857e-01 -3.53421497e-01 7.67571038e-01 3.10762792e-01 -3.32849280e-01 -9.56784082e-01 -2.61982682e-01 9.44361344e-01 5.81981736e-02 4.84289646e-01 -3.09222326e-01 -7.88202693e-02 -5.76728604e-01 6.73919460e-01 -2.80382281e-01 -9.25823734e-01 3.77978380e-01 -6.88422232e-01 5.97502339e-01 -9.69475095e-01 1.71246295e-01 -8.96744595e-03 9.94923468e-01 -7.31258527e-01] [ 3.45107364e-01 -8.10109049e-01 -6.76463171e-01 9.76662583e-01 6.13330135e-01 -5.10719423e-01 6.92600891e-01 -9.28799482e-01 7.12141024e-02 -8.17050489e-01 9.41811333e-01 1.66201873e-01 1.11482549e-01 -3.64053854e-01 6.99809084e-01 6.03090269e-02 -9.65803552e-01 -6.30210219e-01 -1.33063380e-01 -8.40047178e-01 -4.38684893e-01 -4.99209427e-01 -9.98782715e-01 3.85770638e-01 5.47779273e-01 6.40698596e-01 7.03259229e-01 -6.96950238e-01 7.80073277e-01 3.16425780e-01 3.92267326e-01 1.28143328e-01 8.79363997e-01 -4.96305913e-01 5.73768567e-01 -9.48306726e-03] [ 4.89297335e+03 2.57018470e+04 2.20614892e+04 4.01346769e+03 1.99930143e+04 2.28413072e+04 -5.49571424e+04 1.06989871e+04 3.41916105e+03 1.56042653e+04 1.43731548e+04 1.75363527e+04 4.57007680e+04 2.37698113e+04 1.96935053e+04 1.40786645e+03 1.98826909e+04 -4.91441815e+03 -1.06798941e+04 2.16149221e+04 1.85287789e+04 -1.10903643e+04 2.47169354e+04 1.91763759e+04 2.14957339e+04 -1.49564192e+04 4.71719839e+04 2.07532737e+04 1.15461706e+04 -2.04691794e+04 2.17174171e+04 -6.31676784e+03 2.14177975e+04 1.83549452e+04 4.84320838e+04 3.39216217e+04] [ 3.98616427e+04 -7.79935089e+04 9.09559027e+04 3.33109873e+03 9.05414249e+04 8.04492049e+04 -6.89731725e+03 -1.30323266e+05 3.93568356e+04 -5.57084040e+04 6.66112567e+04 6.84860455e+04 1.98721726e+04 2.64022498e+04 7.71518139e+04 -1.31672323e+04 8.66301576e+04 3.16804348e+04 -1.94256467e+04 8.49248902e+04 7.79666064e+04 1.34212878e+04 -3.46459561e+04 8.61854653e+04 7.26406593e+04 -1.40931893e+04 -2.90684027e+04 7.62674466e+04 -2.94745164e+04 -1.85617523e+04 8.73933496e+04 1.18463663e+04 7.37332581e+04 7.79945486e+04 -1.30743076e+04 -3.60057221e+04] [ 5.88959060e+04 -2.21830054e+05 5.20784872e+04 1.60011395e+05 6.05031406e+04 4.88594936e+04 2.60040429e+05 -5.50445230e+05 4.31969717e+04 -3.14385367e+05 3.98027476e+04 5.74001613e+04 -3.28669766e+05 -1.10436841e+05 3.26657887e+04 -1.23973285e+05 6.48952858e+04 2.72510485e+05 -1.21754388e+05 4.87850829e+04 3.82910419e+04 4.75934004e+04 -3.28346942e+05 6.94183853e+04 4.04248451e+04 -1.36253152e+05 -5.02669791e+05 2.88722779e+04 -7.37628363e+04 -3.55319844e+03 5.32287924e+04 -1.92474477e+04 4.36744128e+04 7.82505035e+04 -3.22057038e+05 -3.61507586e+05] [ 2.61006707e+04 -3.11920832e+05 9.14065691e+04 1.97053188e+05 1.45539657e+05 4.10740569e+04 1.10126206e+06 -1.18415368e+06 -9.08538859e+04 -7.99685133e+05 1.67567945e+05 1.34282910e+05 -1.00423201e+06 -4.91560692e+05 7.63365501e+04 -3.98059143e+05 3.89299333e+04 6.08329475e+05 -9.71627820e+04 1.15235442e+05 1.38236387e+05 3.10514816e+05 -9.70815904e+05 1.32360082e+05 1.19125619e+05 -1.57055485e+05 -1.48346808e+06 2.36547444e+04 -2.23919449e+05 8.83941381e+04 9.68651346e+04 -2.36927284e+05 1.07000213e+05 1.49523320e+05 -1.19028399e+06 -1.16198554e+06] [-1.37222188e+05 -7.87513237e+05 2.72804529e+05 -3.41569414e+05 4.75200572e+05 9.32875237e+04 1.60155023e+06 -2.52040061e+06 -5.75672162e+05 -2.20452923e+06 3.39635356e+05 2.72202864e+05 -1.59711511e+06 -1.05893090e+06 1.44806640e+05 -1.36251688e+06 1.08520305e+04 3.27673263e+05 -4.14339620e+05 2.94345475e+05 3.25328480e+05 2.79335454e+05 -1.78068522e+06 2.44791848e+05 2.67456369e+05 -7.43589891e+05 -2.62263895e+06 6.27203735e+04 -1.08365544e+06 -1.56760885e+05 2.52288348e+05 -1.01289655e+06 2.27344236e+05 2.49782711e+05 -2.01053264e+06 -1.93593863e+06] [-3.88261486e+05 -2.17719924e+06 9.36673766e+05 -3.87237173e+05 1.31550215e+06 4.91809986e+05 2.32063787e+06 -4.53295559e+06 -7.24708412e+05 -4.38829031e+06 8.08719008e+05 7.42643813e+05 -2.07353583e+06 -1.68571571e+06 5.57691131e+05 -2.45620248e+06 3.69836320e+05 9.65594130e+05 -1.13961668e+06 1.02920921e+06 1.01426278e+06 7.43811613e+05 -2.96877382e+06 7.96331997e+05 7.79711912e+05 -9.14035072e+05 -3.93630816e+06 4.39437602e+05 -2.16863684e+06 2.67593983e+05 8.34240792e+05 -2.01144261e+06 7.30118032e+05 7.53410368e+05 -3.01537559e+06 -3.06249708e+06] [-6.15244037e+04 -3.83587156e+06 1.73058791e+06 4.93583103e+05 2.20170341e+06 1.02832656e+06 4.13617121e+06 -6.85913175e+06 -1.96477257e+05 -6.80018809e+06 1.60990886e+06 1.60570619e+06 -3.21388853e+06 -2.82869763e+06 1.21978863e+06 -3.15303788e+06 9.93805956e+05 3.05901694e+06 -1.65940481e+06 1.88711040e+06 1.91102252e+06 1.83870173e+06 -4.65194661e+06 1.60377854e+06 1.62289452e+06 -8.47860873e+05 -6.04269334e+06 1.02486553e+06 -2.45979641e+06 1.50654527e+06 1.59791643e+06 -2.41687326e+06 1.46016807e+06 1.60824221e+06 -4.64998879e+06 -4.85328929e+06] [ 6.05116545e+05 -4.65380938e+06 2.80056307e+06 1.89187572e+06 3.24787064e+06 1.95638454e+06 6.48274632e+06 -8.72080300e+06 8.02640857e+05 -8.03386860e+06 2.94524456e+06 3.05471418e+06 -4.78895896e+06 -4.08212083e+06 2.44268663e+06 -2.91623744e+06 2.16139302e+06 5.76817389e+06 -1.53100326e+06 2.98684632e+06 3.23998305e+06 3.54395487e+06 -6.21395336e+06 2.96404564e+06 2.97713056e+06 -3.89080947e+05 -8.47625693e+06 2.08722130e+06 -2.68190005e+06 3.20751972e+06 2.69331951e+06 -2.16451711e+06 2.61068551e+06 3.04189821e+06 -6.81884567e+06 -6.81560589e+06] [ 1.00267425e+06 -6.03578175e+06 4.16138836e+06 2.36850099e+06 4.72749269e+06 2.92539385e+06 7.58560594e+06 -1.03528193e+07 1.44779716e+06 -9.58581767e+06 4.19777112e+06 4.53378247e+06 -5.02093657e+06 -4.78283921e+06 3.78788358e+06 -2.65202806e+06 3.29683967e+06 7.00257725e+06 -7.28144914e+05 4.28500849e+06 4.72757773e+06 5.00329634e+06 -6.70869050e+06 4.35545752e+06 4.37318568e+06 2.59578015e+05 -9.31630009e+06 3.26112228e+06 -3.97972734e+06 4.26886003e+06 4.01056395e+06 -1.68975981e+06 3.94040266e+06 4.47224858e+06 -7.72837406e+06 -7.51984125e+06] [ 1.59372279e+06 -7.36345610e+06 5.09478917e+06 6.86217421e+05 5.87726375e+06 3.22464701e+06 9.10957126e+06 -1.18772844e+07 1.52329160e+06 -1.20344341e+07 4.72159859e+06 5.11076159e+06 -5.20097757e+06 -5.39057559e+06 4.40657626e+06 -2.81997774e+06 3.66051138e+06 5.76865455e+06 7.79698546e+05 4.98126789e+06 5.52342860e+06 6.44142785e+06 -6.98198089e+06 5.05548840e+06 5.00149711e+06 3.99917719e+05 -9.82279957e+06 3.79491069e+06 -5.14196246e+06 4.88238105e+06 4.85910403e+06 -9.48526495e+05 4.53366825e+06 4.91512168e+06 -8.63126805e+06 -8.18829593e+06] [ 1.67726925e+06 -8.67060671e+06 6.36008220e+06 1.58827464e+04 7.27394254e+06 4.27020873e+06 1.10357902e+07 -1.32478043e+07 2.01485762e+06 -1.35714468e+07 6.25802786e+06 6.33728050e+06 -5.13278124e+06 -5.16634165e+06 5.28707745e+06 -4.10760682e+06 4.95669181e+06 6.07145863e+06 1.78296161e+05 6.38279484e+06 6.92106158e+06 8.11071343e+06 -7.65607694e+06 6.52104404e+06 6.16966149e+06 9.85127241e+05 -1.03284818e+07 4.82409686e+06 -4.41981784e+06 6.67513886e+06 6.03652914e+06 -1.51403151e+06 5.45429697e+06 6.07639011e+06 -9.52389434e+06 -9.18552045e+06] [ 3.90932135e+06 -7.19009249e+06 8.83925286e+06 3.23305875e+06 9.52186739e+06 7.12162111e+06 1.36702748e+07 -1.32943666e+07 4.67561880e+06 -1.12931280e+07 9.34284344e+06 9.12240672e+06 -4.59250673e+06 -3.59073748e+06 7.76181808e+06 -2.57850007e+06 8.08310980e+06 9.48287312e+06 3.33862614e+05 9.11588005e+06 9.57084977e+06 1.06137769e+07 -7.18203173e+06 9.50390862e+06 8.72629735e+06 2.32801872e+06 -1.01945213e+07 7.51056845e+06 -2.02274564e+06 9.28864424e+06 8.54397626e+06 1.86038076e+05 8.02209566e+06 9.04807859e+06 -8.41765944e+06 -8.60370939e+06] [ 5.73475154e+06 -4.97993479e+06 1.04833861e+07 5.79746431e+06 1.10703844e+07 9.12311907e+06 1.74276613e+07 -1.09795952e+07 6.87546081e+06 -9.23706201e+06 1.13146123e+07 1.09739025e+07 -4.45893120e+06 -2.63219802e+06 9.52955836e+06 -2.24044578e+05 1.00660596e+07 1.25379069e+07 2.16052297e+06 1.09276654e+07 1.14188432e+07 1.27353640e+07 -5.82135413e+06 1.14632472e+07 1.06259911e+07 4.09792343e+06 -9.32311878e+06 9.42621167e+06 1.55848240e+06 1.18693355e+07 1.02563831e+07 2.52591013e+06 9.89970034e+06 1.09720893e+07 -7.81606483e+06 -7.66215782e+06] [ 6.74083759e+06 -2.88904375e+06 1.03691122e+07 6.29427602e+06 1.08687027e+07 9.29037078e+06 1.89651873e+07 -8.81149407e+06 7.58732631e+06 -7.33085030e+06 1.17697445e+07 1.10703470e+07 -4.65359098e+06 -2.56368698e+06 9.54787966e+06 1.78216690e+06 1.01464926e+07 1.29297159e+07 4.23120922e+06 1.07589037e+07 1.13415045e+07 1.37963822e+07 -4.29590682e+06 1.15127819e+07 1.06734235e+07 5.07167900e+06 -8.41519747e+06 9.57476619e+06 3.83204732e+06 1.29517686e+07 1.01736218e+07 4.49729475e+06 1.00295759e+07 1.11248004e+07 -7.94335874e+06 -7.01614969e+06] [ 5.04440388e+06 -3.95099042e+06 9.35255261e+06 3.38034252e+06 9.86583851e+06 8.18415252e+06 1.66166497e+07 -6.58011186e+06 5.63711665e+06 -7.96784811e+06 1.08002859e+07 9.92238447e+06 -3.93981144e+06 -2.93872511e+06 8.45174292e+06 1.09714250e+06 8.58771131e+06 9.50894782e+06 4.38133979e+06 9.60899984e+06 1.02155678e+07 1.24984410e+07 -2.96213879e+06 9.99935246e+06 9.58971912e+06 5.07552354e+06 -6.92704840e+06 8.40899192e+06 3.35093667e+06 1.19303671e+07 9.20993812e+06 3.68907198e+06 8.91604876e+06 9.69105094e+06 -8.10090472e+06 -6.19400805e+06] [ 4.69986766e+06 -2.20404551e+06 8.46735186e+06 2.23457269e+06 8.59674989e+06 7.71563123e+06 1.11767448e+07 -3.32640789e+06 4.90994382e+06 -4.05740681e+06 1.01065420e+07 9.11472876e+06 -7.83556773e+05 -5.01543853e+05 7.79059305e+06 2.02203378e+06 8.16356603e+06 6.08196290e+06 5.72007211e+06 8.49085014e+06 8.89926952e+06 1.06895306e+07 -3.13355397e+05 9.09680131e+06 8.63722844e+06 5.01330798e+06 -2.72960905e+06 7.99064301e+06 3.50577565e+06 1.02328601e+07 8.37992229e+06 4.33444527e+06 8.13923151e+06 8.82311778e+06 -5.77433293e+06 -3.37736879e+06] [ 4.91478111e+06 8.91332811e+05 7.09839258e+06 2.53985288e+06 6.88922432e+06 6.98708390e+06 5.05646502e+06 2.42877120e+05 4.37590580e+06 1.45585638e+06 9.08572499e+06 8.26505870e+06 2.06485423e+06 2.06650055e+06 6.86838750e+06 3.04026057e+06 7.50907604e+06 3.64321131e+06 6.54809900e+06 7.00117663e+06 7.10629790e+06 8.36293929e+06 1.71675512e+06 7.90803498e+06 7.43446005e+06 4.71623697e+06 1.19691979e+06 7.26604840e+06 3.51933824e+06 7.19563129e+06 7.13629048e+06 4.59907755e+06 7.18368152e+06 7.78545456e+06 -2.60077157e+06 -3.21377252e+05] [ 2.76380856e+06 -2.97732727e+04 4.35492766e+06 7.50406967e+05 4.19997000e+06 4.25256400e+06 3.37113877e+05 1.46740894e+06 2.38860972e+06 2.45129065e+06 5.74710419e+06 5.34801618e+06 2.54773420e+06 1.72716384e+06 4.50129538e+06 2.66109742e+06 4.52338446e+06 5.97051199e+05 4.55537765e+06 4.20326942e+06 4.20293021e+06 4.88733173e+06 1.61729163e+06 4.84729686e+06 4.68695671e+06 3.52173222e+06 2.20513809e+06 4.61266301e+06 9.55781388e+05 3.53517445e+06 4.43045924e+06 3.13019195e+06 4.52483643e+06 4.81774473e+06 -1.60845653e+06 1.80207408e+05] [ 1.35417912e+06 5.24157915e+05 1.69310627e+06 1.38040558e+05 1.53842805e+06 1.91174274e+06 -1.76518815e+06 2.94403750e+06 1.31634683e+06 3.86851092e+06 2.65508819e+06 2.58764085e+06 1.56679891e+06 9.14221431e+05 2.43982547e+06 3.41677688e+06 1.85150104e+06 -1.49985441e+06 3.67433300e+06 1.71322313e+06 1.71267506e+06 2.39815876e+06 1.23561082e+06 1.98328897e+06 2.31511444e+06 2.93317649e+06 1.89510002e+06 2.28580886e+06 -1.50388522e+06 1.09451595e+06 1.94792060e+06 2.41295344e+06 2.24758445e+06 2.17375894e+06 -1.56881506e+06 6.88755748e+04] [-1.63825154e+06 -9.04175408e+05 -7.53265014e+05 -4.51467209e+06 -9.03657750e+05 -5.83042894e+05 -3.68756299e+06 4.37061891e+06 -1.60739140e+06 3.80044313e+06 -2.07331683e+05 -4.34031294e+04 1.51299357e+06 -6.28844927e+04 3.83255183e+05 3.22197691e+06 -1.02598192e+06 -7.20178701e+06 3.78083698e+06 -6.58020579e+05 -4.38062487e+05 -1.19207638e+05 1.04469050e+06 -9.74018899e+05 1.73069875e+05 2.82603880e+06 2.43455824e+06 4.42445434e+04 -3.78412181e+06 -1.75920944e+06 -4.14482904e+05 1.23704165e+06 2.39389487e+05 -6.59375393e+05 -1.87252207e+06 -1.06282132e+05] [-3.00175945e+06 -2.33015939e+06 -1.57982200e+06 -5.70994418e+06 -1.49162392e+06 -1.71817277e+06 -2.82351458e+06 3.76098757e+06 -2.98306383e+06 1.50119265e+06 -1.28336927e+06 -8.20291025e+05 6.44525751e+05 -1.41316368e+06 -4.64888453e+05 2.39506363e+06 -2.32402133e+06 -7.70424054e+06 2.55724537e+06 -1.42358806e+06 -9.69819515e+05 -8.38731990e+05 3.91501506e+05 -2.02003229e+06 -5.54289571e+05 1.97934353e+06 1.29255920e+06 -1.00969874e+06 -4.55632901e+06 -2.44691346e+06 -1.25608148e+06 2.30970972e+05 -5.11101376e+05 -1.67675271e+06 -1.90368071e+06 -5.34052666e+05] [-3.52470975e+06 -4.02340553e+06 -7.87347572e+05 -5.44209328e+06 -5.28901178e+05 -1.12648267e+06 -1.65349265e+06 3.12533295e+06 -2.89902386e+06 -3.24454032e+05 -1.05850513e+06 -2.66246879e+05 5.14628105e+05 -1.81817290e+06 2.59834864e+05 2.18318989e+06 -1.95245283e+06 -6.48382828e+06 1.48546139e+06 -5.71673702e+05 -3.51211709e+04 -6.96221372e+05 -3.42847695e+05 -1.49038800e+06 2.07005806e+05 2.20463225e+06 4.89930226e+05 -4.44633619e+05 -3.97228956e+06 -1.92364835e+06 -5.09944687e+05 -3.70257363e+05 1.59832404e+05 -1.16582538e+06 -1.86386880e+06 -1.00629428e+06] [-2.93287318e+06 -3.66280913e+06 -3.47506784e+05 -4.00322383e+06 -5.68100383e+04 -6.93807762e+05 -7.69559806e+05 1.69944535e+06 -2.31761826e+06 -1.20789791e+06 -7.98182982e+05 -1.67782566e+05 9.77896465e+04 -1.62576044e+06 3.27825207e+05 1.19691137e+06 -1.42217010e+06 -4.52481570e+06 3.60943473e+05 -1.19868974e+05 2.11226042e+05 -5.84121749e+05 -7.57774827e+05 -1.02891044e+06 2.97051604e+05 1.61410371e+06 -2.02591093e+05 -2.43899071e+05 -3.06702318e+06 -1.48975878e+06 -1.56356766e+05 -1.00045528e+06 2.36455591e+05 -8.11728148e+05 -1.54467621e+06 -1.08829839e+06] [-1.17697064e+06 -1.55106613e+06 -1.14135536e+05 -1.75183983e+06 7.26712774e+04 -3.44741295e+05 -1.08046473e+05 3.15695338e+05 -1.11582612e+06 -1.04675429e+06 -3.01191057e+05 -1.21721156e+05 6.79574405e+02 -7.91977503e+05 2.44588940e+04 7.38619914e+04 -6.33391418e+05 -1.76375163e+06 -1.65026711e+04 -4.87016203e+04 5.65419765e+04 -3.20377304e+05 -3.15918448e+05 -4.32788524e+05 6.48405867e+04 2.14735679e+05 -2.07810782e+05 -1.69119736e+05 -1.09460107e+06 -5.63068930e+05 -6.33983294e+04 -6.34027976e+05 4.77320376e+03 -3.49148533e+05 -6.17485114e+05 -4.68947570e+05] [ 7.24791564e+04 6.69297879e+04 7.27222025e+04 1.04537463e+04 7.33180606e+04 7.50272990e+04 6.77700272e+04 6.80716595e+04 4.12376234e+04 8.20351695e+04 1.05522847e+05 8.83427345e+04 -9.02261332e+03 -1.31612318e+04 7.99331914e+04 1.08880019e+05 7.05309281e+04 -6.51964465e+03 9.26059988e+04 7.27256397e+04 7.46668469e+04 8.20191250e+04 3.51317216e+04 7.62547019e+04 8.05908313e+04 8.14953020e+04 1.02762870e+04 7.90800467e+04 4.95721603e+03 6.56351252e+04 7.68909954e+04 7.77459990e+04 7.84685616e+04 8.42710142e+04 -3.14269577e+04 2.31251784e+04] [-1.20663632e+03 -1.79522111e+03 4.87999051e+01 -5.90205959e+02 7.25604595e+01 7.74865852e+01 -3.79757236e+03 5.40515369e+02 -1.21302692e+03 -1.69753337e+03 -1.25498799e+02 3.63336156e+01 6.88673125e+02 -3.26297647e+02 7.30361913e+01 -2.69563741e+03 -7.43473641e+01 -1.36803657e+03 -1.55262734e+03 8.47406375e+01 3.61986487e+01 -1.79332028e+03 1.73304516e+03 -1.18147304e+02 1.49005991e+02 -1.31411312e+03 1.62194273e+03 1.32732357e+02 -1.30185881e+03 -1.55238029e+03 7.12725659e+01 -1.66404387e+03 1.10784236e+02 9.02147431e-01 1.74521827e+03 2.43485571e+03] [-2.40894358e-01 6.92974762e-01 -7.93698698e-01 9.38779566e-01 4.56474780e-02 3.46673005e-01 4.63060861e-01 9.61957610e-01 1.05513955e-01 3.99448689e-01 3.65372643e-01 2.60466282e-01 5.98689923e-01 -3.08691001e-01 -3.62163355e-02 -8.43754922e-01 8.20211677e-01 1.18451482e-01 4.99723341e-02 -4.66096220e-01 7.99985771e-01 -9.72172864e-01 -8.05997728e-01 -8.79850150e-01 -5.18155315e-01 -6.30158108e-03 -7.29519052e-02 -4.58907582e-01 1.10218374e-01 -5.45329707e-01 -2.68607406e-01 -6.60073765e-01 3.28545158e-01 -8.36665637e-01 -3.13422621e-01 6.20506355e-02] [ 9.90601644e-02 -2.64691283e-01 2.87504079e-01 -6.71103840e-01 4.48594330e-01 8.50499312e-01 9.79651875e-01 7.56965115e-01 -4.78162277e-01 -9.23813335e-01 9.48051530e-01 1.14239784e-01 7.94199584e-02 -7.07077734e-01 8.24984355e-01 9.15219177e-01 7.19259790e-01 3.85520930e-01 -2.28197303e-01 8.53455764e-01 7.08932796e-01 6.75772481e-01 1.68113786e-01 -8.60045065e-01 -9.48690449e-01 -5.48795761e-01 -8.15395344e-01 4.90210786e-01 7.02110891e-01 8.09399993e-02 2.22542327e-01 -5.37248309e-02 8.70377355e-01 2.25625405e-01 2.40722245e-01 7.16013207e-01] [-3.06086230e+04 -1.52890615e+05 4.68967005e+04 -2.58637976e+04 6.53146926e+04 2.22902351e+04 1.04381259e+05 -2.26214700e+05 -2.13024523e+04 -2.05020783e+05 2.86598816e+04 4.32868242e+04 -9.53771551e+04 -1.08942099e+05 3.96377171e+04 -7.76744873e+04 1.03852803e+04 3.47826112e+04 -7.54070703e+04 5.27287133e+04 4.75121286e+04 8.18813604e+04 -1.42926671e+05 3.22044611e+04 4.85168436e+04 -2.24045768e+04 -1.77393871e+05 2.96066569e+04 -7.34493580e+04 1.58328061e+04 4.71647300e+04 -7.47759033e+04 4.27058142e+04 4.20298036e+04 -1.14423546e+05 -1.34477019e+05] [-1.86485296e+05 -8.82043209e+05 1.76463271e+05 -3.07078867e+05 2.31706512e+05 7.09653867e+04 1.56632915e+05 -1.18754419e+06 -1.64551308e+05 -9.31311819e+05 9.33189145e+04 9.57444670e+04 -3.09291281e+05 -3.23177979e+05 1.06791741e+05 -4.90688005e+05 5.55985890e+04 -9.64734792e+04 -3.89673130e+05 1.81584844e+05 1.39734350e+05 1.04970494e+05 -6.16570601e+05 1.18949993e+05 1.11104421e+05 -1.38850223e+05 -6.82002327e+05 7.86154367e+04 -5.28884907e+05 -1.32165659e+05 1.65502684e+05 -3.89087174e+05 1.06562162e+05 1.22997834e+05 -4.09973520e+05 -5.36501091e+05] [-3.40154632e+05 -8.65021102e+05 7.53433688e+04 -3.31577377e+05 1.38372525e+05 -6.99959599e+04 3.60514502e+05 -1.69672921e+06 -3.98432587e+05 -1.41771626e+06 7.09539221e+04 1.71834464e+04 -6.83347049e+05 -5.23197668e+05 -4.88780440e+04 -1.02715791e+06 -4.66080726e+04 3.06779198e+04 -7.09980191e+05 7.41818067e+04 4.28228279e+04 3.05119537e+04 -9.16486006e+05 3.84505383e+04 1.54522214e+03 -5.09161691e+05 -1.18239315e+06 -8.15931790e+04 -7.66823888e+05 -2.76533123e+05 3.02117209e+04 -8.46389529e+05 -1.82397478e+04 4.72898073e+04 -8.13918566e+05 -8.98678953e+05] [-2.34021013e+05 -1.04239116e+06 2.76822422e+05 -2.40285177e+05 4.15327461e+05 4.60735527e+04 1.12335540e+06 -2.94431198e+06 -5.26933491e+05 -2.40106333e+06 4.12556811e+05 1.89287454e+05 -1.53103143e+06 -1.06547929e+06 2.34787535e+04 -1.78377520e+06 1.11579597e+05 5.85321605e+05 -1.15582927e+06 2.84556320e+05 2.83727692e+05 4.00150089e+05 -1.76351948e+06 2.78025537e+05 1.37751336e+05 -8.52687292e+05 -2.48282835e+06 -2.68713289e+04 -1.41152538e+06 -7.90501914e+04 1.75700502e+05 -1.42758841e+06 9.31960221e+04 2.55346713e+05 -1.91542683e+06 -1.88951842e+06] [-2.83253868e+05 -2.05545576e+06 1.04683405e+06 -6.36832470e+05 1.36771064e+06 5.79716703e+05 1.81941458e+06 -5.35694192e+06 -8.25185906e+05 -4.22917106e+06 1.15936131e+06 8.51032744e+05 -1.99603599e+06 -1.58470769e+06 5.57955590e+05 -2.82373375e+06 6.66265039e+05 7.44985637e+05 -1.49888425e+06 1.07129795e+06 1.02575639e+06 8.28371526e+05 -2.84846224e+06 1.02633558e+06 7.23151756e+05 -1.31673316e+06 -3.83396714e+06 4.70889934e+05 -2.79233297e+06 1.10010085e+05 8.78005335e+05 -2.22680591e+06 6.86065217e+05 9.63539742e+05 -2.85578007e+06 -2.89554567e+06] [-7.05202823e+05 -3.82488252e+06 2.36386850e+06 -6.77787921e+05 2.83783853e+06 1.51957913e+06 2.91317055e+06 -8.45158937e+06 -1.00873196e+06 -6.86875926e+06 2.36927684e+06 2.03138061e+06 -2.51532227e+06 -2.34694420e+06 1.65034148e+06 -4.41924897e+06 1.68418871e+06 1.66305946e+06 -2.40799802e+06 2.44838355e+06 2.39738830e+06 1.71594229e+06 -4.60016914e+06 2.32880184e+06 1.89808119e+06 -1.39790719e+06 -5.68120264e+06 1.47406076e+06 -4.55790134e+06 5.75686715e+05 2.11406901e+06 -3.73044942e+06 1.79957825e+06 2.16192864e+06 -4.63180845e+06 -4.79840536e+06] [-4.43494309e+05 -6.17831494e+06 3.56655315e+06 -5.15952344e+05 4.12433886e+06 2.32118964e+06 4.84223263e+06 -1.22071229e+07 -6.77499556e+05 -9.87411487e+06 3.86198545e+06 3.30681648e+06 -4.05541639e+06 -3.87850990e+06 2.70589410e+06 -5.40188272e+06 2.63955094e+06 3.07867606e+06 -2.61898165e+06 3.69629591e+06 3.71750566e+06 3.53354004e+06 -6.76427974e+06 3.56599994e+06 3.13461885e+06 -8.36168154e+05 -8.47388891e+06 2.39167875e+06 -6.60082765e+06 2.09031362e+06 3.25313129e+06 -4.31806077e+06 2.86808458e+06 3.42072642e+06 -7.13013153e+06 -7.02344847e+06] [ 3.63556430e+05 -6.96999241e+06 4.36907345e+06 6.05491517e+05 4.93713254e+06 3.07759836e+06 6.71203629e+06 -1.35732334e+07 7.17426303e+04 -1.04612539e+07 5.04428328e+06 4.77833148e+06 -5.80911913e+06 -5.33163644e+06 3.89941283e+06 -4.52313507e+06 3.48756661e+06 4.99549272e+06 -1.44158869e+06 4.62953543e+06 4.93106467e+06 5.43026321e+06 -8.16046133e+06 4.63911505e+06 4.54333721e+06 4.74382614e+05 -1.08282739e+07 3.35568308e+06 -7.63473822e+06 3.40839009e+06 4.15431154e+06 -3.70969433e+06 4.15527884e+06 4.77060101e+06 -9.56729791e+06 -8.73107311e+06] [ 1.65441979e+06 -6.43841410e+06 5.78036807e+06 7.02578295e+05 6.50105889e+06 4.30601690e+06 9.67690443e+06 -1.41797612e+07 1.26284385e+06 -1.08783699e+07 6.73748556e+06 6.38763666e+06 -6.26719708e+06 -5.50618984e+06 5.33075370e+06 -3.40312811e+06 4.91768745e+06 5.69199813e+06 5.49295492e+05 6.00660291e+06 6.50146764e+06 8.14781722e+06 -8.23624265e+06 6.29663814e+06 6.00644881e+06 1.63419278e+06 -1.14895151e+07 4.76519230e+06 -7.16870256e+06 5.50346118e+06 5.53370933e+06 -1.88936106e+06 5.62225161e+06 6.34716723e+06 -1.08703011e+07 -9.35506203e+06] [ 2.06005729e+06 -6.61940286e+06 6.57934072e+06 -2.26728035e+06 7.49708209e+06 4.84639347e+06 1.16624364e+07 -1.42430065e+07 1.10369481e+06 -1.20996477e+07 7.75210620e+06 7.11289785e+06 -5.63550251e+06 -5.38815547e+06 5.71245127e+06 -4.53625395e+06 5.54996284e+06 2.90864391e+06 1.94911407e+06 6.85441045e+06 7.42162971e+06 9.90580166e+06 -8.13318041e+06 7.11938598e+06 6.72819136e+06 2.18744588e+06 -1.10684597e+07 5.45513760e+06 -8.09594871e+06 6.72424589e+06 6.28654763e+06 -1.57154428e+06 6.22610607e+06 6.88276060e+06 -1.14466289e+07 -9.65590136e+06] [ 1.77114855e+06 -7.43650600e+06 7.33730081e+06 -2.12815820e+06 8.37071019e+06 5.60758293e+06 1.50302570e+07 -1.44893340e+07 1.75081576e+06 -1.30339011e+07 8.78805542e+06 7.93462252e+06 -6.04063348e+06 -5.10230116e+06 6.17809306e+06 -5.36236319e+06 6.20308805e+06 3.68509037e+06 1.44784548e+06 7.98724583e+06 8.52106595e+06 1.08611314e+07 -8.93861496e+06 7.91182037e+06 7.52886420e+06 3.07031065e+06 -1.20859462e+07 6.14081442e+06 -6.25907423e+06 8.97217775e+06 7.11210442e+06 -1.59450432e+06 6.82811928e+06 7.59342412e+06 -1.22141313e+07 -1.09316632e+07] [ 2.24906524e+06 -7.36132558e+06 8.43989425e+06 2.22327097e+05 9.39829634e+06 6.87008432e+06 1.67875487e+07 -1.30539322e+07 3.41638709e+06 -1.29722691e+07 9.41714855e+06 8.70335852e+06 -5.00733799e+06 -3.51381115e+06 6.81112841e+06 -6.03490643e+06 7.36403943e+06 6.72140442e+06 4.00055369e+05 9.42158026e+06 9.55214453e+06 1.07273808e+07 -8.32783407e+06 9.06572442e+06 8.40640803e+06 3.04936003e+06 -1.12753826e+07 7.22478502e+06 -3.47508954e+06 1.06913867e+07 8.34205672e+06 -2.10353279e+06 7.60275846e+06 8.40317532e+06 -1.03159494e+07 -1.04767852e+07] [ 1.88852615e+06 -8.85301986e+06 8.17970335e+06 1.38796491e+06 9.30860223e+06 6.44888513e+06 1.83437533e+07 -1.12309100e+07 4.55372691e+06 -1.44269912e+07 8.42010639e+06 8.01929870e+06 -4.92337535e+06 -3.37400949e+06 6.08527835e+06 -6.14559045e+06 6.78281871e+06 9.03939739e+06 2.23968089e+05 9.36686641e+06 9.28449952e+06 1.01827935e+07 -7.79094485e+06 8.66218538e+06 7.96539800e+06 2.69391417e+06 -1.07175031e+07 6.77551822e+06 -1.35084523e+06 1.23952481e+07 8.07645013e+06 -2.46182852e+06 6.99052319e+06 7.74401753e+06 -9.59670295e+06 -1.05512756e+07] [ 4.23769508e+05 -1.12716060e+07 6.59119737e+06 7.63472189e+05 7.87589922e+06 4.79331480e+06 1.84795561e+07 -9.23681681e+06 4.04546946e+06 -1.65428225e+07 6.47102410e+06 6.56624063e+06 -6.69775307e+06 -5.89893263e+06 4.40337944e+06 -6.83220308e+06 4.76685808e+06 1.00068387e+07 1.79149579e+05 7.86719873e+06 7.92774561e+06 8.95816439e+06 -8.08171450e+06 6.87655510e+06 6.69505409e+06 2.04057020e+06 -1.19246414e+07 5.18825752e+06 -4.38860925e+05 1.28997994e+07 6.58239754e+06 -2.85814682e+06 5.50275927e+06 6.07785447e+06 -1.10869339e+07 -1.18578614e+07] [-2.99244942e+05 -1.20795291e+07 4.45353557e+06 -9.59297873e+05 5.65212977e+06 3.13905907e+06 1.60266742e+07 -9.06137742e+06 2.51179466e+06 -1.68805803e+07 4.84379572e+06 4.88697266e+06 -8.64111427e+06 -8.27889254e+06 2.77465707e+06 -7.17232169e+06 2.81397953e+06 7.96990454e+06 -7.17812927e+05 5.71802184e+06 5.90278689e+06 7.39392922e+06 -8.87285382e+06 4.81090881e+06 4.92669337e+06 1.08306535e+06 -1.33627903e+07 3.43276410e+06 -1.88263698e+06 1.13643995e+07 4.62334937e+06 -2.91932962e+06 3.87521638e+06 4.33688556e+06 -1.31115403e+07 -1.28690139e+07] [-1.58546550e+05 -9.62627878e+06 4.16555149e+06 -3.66193009e+06 5.04147253e+06 3.17408802e+06 1.03328609e+07 -7.64218389e+06 6.93881151e+05 -1.31125564e+07 5.35558344e+06 4.74516940e+06 -5.71586033e+06 -6.34714620e+06 2.98080274e+06 -5.52440139e+06 2.70485074e+06 2.70977918e+06 7.51134681e+05 5.00702248e+06 5.16212866e+06 5.92347231e+06 -6.12640383e+06 4.34399267e+06 4.66602090e+06 8.17836649e+05 -9.28161368e+06 3.54277596e+06 -2.83615130e+06 7.96586726e+06 4.36310716e+06 -1.79883625e+06 3.96208128e+06 4.03544300e+06 -1.10353733e+07 -9.47224797e+06] [-1.23578111e+06 -8.71734285e+06 2.57125297e+06 -7.93632088e+06 3.36037242e+06 1.78377527e+06 3.19842584e+06 -6.39258681e+06 -2.31421067e+06 -9.04769664e+06 4.03695248e+06 3.22291957e+06 -2.95222223e+06 -4.46430807e+06 2.02670946e+06 -3.55464170e+06 1.11829994e+06 -5.20034379e+06 3.05665974e+06 2.94235616e+06 3.00879074e+06 3.24496228e+06 -4.19764030e+06 2.35700612e+06 3.07928207e+06 2.08750886e+05 -5.63116329e+06 2.23828481e+06 -5.11464402e+06 2.66082681e+06 2.76985605e+06 -4.76558721e+05 2.83524684e+06 2.27961279e+06 -9.08724100e+06 -6.62630124e+06] [-2.75623807e+06 -7.96801382e+06 1.49266757e+06 -9.12844517e+06 2.14483858e+06 8.91304417e+05 -1.08231981e+06 -4.37741460e+06 -3.90247023e+06 -4.64113201e+06 2.85842779e+06 2.29740333e+06 -1.57153017e+06 -3.25641698e+06 1.81096854e+06 -1.07941227e+06 -7.02678693e+04 -9.46007455e+06 2.95073197e+06 1.72283056e+06 1.74042693e+06 1.65073171e+06 -3.52687920e+06 8.78737417e+05 2.21701064e+06 1.12747286e+06 -3.94533239e+06 1.43688839e+06 -6.61780609e+06 -7.87385464e+05 1.76176691e+06 -4.77760235e+05 2.06177588e+06 1.04869308e+06 -8.12375882e+06 -5.26490676e+06] [-3.87717068e+06 -8.84310194e+06 8.53270729e+05 -9.80670857e+06 1.72571131e+06 -1.76630598e+05 -2.65924229e+06 -2.91827404e+06 -4.82497088e+06 -5.11540230e+06 1.35864187e+06 1.44612888e+06 -6.26489056e+05 -3.86047790e+06 1.40569098e+06 2.41809003e+05 -1.44317417e+06 -1.04761056e+07 3.51960141e+06 1.02588778e+06 1.14681122e+06 1.10725651e+06 -2.73703097e+06 -2.95037140e+05 1.67838233e+06 2.07234570e+06 -2.54939137e+06 6.45277187e+05 -9.89333941e+06 -1.46663735e+06 1.09152845e+06 -1.14614854e+06 1.45767697e+06 8.46283911e+04 -7.03890963e+06 -4.28911522e+06] [-4.25237185e+06 -5.99112537e+06 -6.86394190e+05 -1.02850520e+07 -9.85881428e+03 -1.53638752e+06 -3.83294791e+06 1.48854962e+06 -5.34148217e+06 -2.73904478e+06 -1.70712990e+05 1.38607548e+05 3.11447571e+05 -3.65641653e+06 3.42644794e+05 1.44194072e+06 -2.80756472e+06 -1.18734148e+07 4.63118386e+06 -5.93217929e+05 -1.56828506e+05 5.83465478e+04 -5.62466268e+05 -1.77288619e+06 5.39506046e+05 2.35176565e+06 1.16623964e+05 -4.82809842e+05 -9.46828908e+06 -2.39526630e+06 -3.34777804e+05 -1.09849671e+06 2.36157405e+05 -1.29131637e+06 -5.44306747e+06 -2.28742609e+06] [-4.92261626e+06 -5.62338556e+06 -1.53672573e+06 -1.00748357e+07 -8.03010483e+05 -2.48246997e+06 -2.82613683e+06 3.57436911e+06 -5.67051544e+06 -2.13131947e+06 -1.59343658e+06 -6.48933133e+05 -3.14895204e+05 -4.64635349e+06 -1.17232980e+05 3.25141004e+06 -4.02408741e+06 -1.15499568e+07 4.33571723e+06 -1.42274388e+06 -6.52796987e+05 -5.59803826e+05 -5.07612792e+05 -2.98931998e+06 2.90971082e+04 2.51888204e+06 -2.78762397e+04 -1.25816409e+06 -8.61258989e+06 -3.00382162e+06 -1.13229735e+06 -1.97043255e+05 -1.91973635e+05 -2.22422606e+06 -4.83095601e+06 -2.06476386e+06] [-5.37228042e+06 -6.05633767e+06 -1.15294520e+06 -8.94759439e+06 -5.00882581e+05 -2.01081258e+06 -1.69349675e+06 4.57553832e+06 -4.96339936e+06 -1.72077609e+06 -1.60801569e+06 -1.84832945e+05 -5.73208495e+05 -4.59936041e+06 4.59199460e+05 3.41040389e+06 -3.61777353e+06 -1.02431875e+07 3.16941609e+06 -9.56382074e+05 -6.16785223e+04 -4.95471200e+05 -1.09920667e+06 -2.66302230e+06 6.12109486e+05 3.44329318e+06 -5.63093908e+05 -7.61444157e+05 -6.75784165e+06 -2.69487373e+06 -7.25757426e+05 -5.21966182e+05 3.42665519e+05 -1.80320886e+06 -4.67287671e+06 -2.54422369e+06] [-3.64994535e+06 -4.94858171e+06 -1.69537958e+05 -5.67044035e+06 3.11298996e+05 -8.56639825e+05 -6.39950954e+05 2.79484255e+06 -3.08638304e+06 -1.55545268e+06 -7.65691384e+05 3.31795067e+05 -3.88610636e+05 -3.20564091e+06 8.81774019e+05 2.70472719e+06 -2.03062046e+06 -6.29537742e+06 1.55851540e+06 -1.64889596e+04 5.92210769e+05 -3.85497356e+04 -1.11609276e+06 -1.35978560e+06 9.54480823e+05 2.90526971e+06 -6.80684483e+05 -2.30105436e+04 -4.47431167e+06 -1.49345790e+06 1.07918361e+05 -6.01850819e+05 7.48564062e+05 -7.67641171e+05 -3.25146763e+06 -1.94946850e+06] [-1.25522664e+06 -1.83999042e+06 6.43556652e+04 -1.92988483e+06 2.56281624e+05 -2.24545449e+05 2.21822138e+05 1.36025103e+06 -1.03828998e+06 -4.65815234e+05 -1.96202177e+05 2.35884316e+05 -2.51315817e+05 -1.19962272e+06 4.46392901e+05 1.41193505e+06 -7.04345827e+05 -2.13406400e+06 5.68599689e+05 1.33347553e+05 3.60087508e+05 7.82918666e+04 -4.37583373e+05 -4.25054025e+05 4.72748671e+05 1.23850345e+06 -3.61705686e+05 9.90481858e+04 -1.08986133e+06 -2.81592091e+05 1.88886477e+05 9.50589936e+03 3.83358450e+05 -1.71831767e+05 -1.31586529e+06 -8.09904877e+05] [ 1.30506030e+05 1.26358636e+05 2.05517286e+05 -2.36789215e+03 2.04195123e+05 1.89508614e+05 1.86006274e+05 4.26949335e+05 9.35219907e+04 3.41220705e+05 2.31914152e+05 2.69877962e+05 6.29737590e+04 7.81315068e+03 2.66488119e+05 5.46797025e+05 1.52296320e+05 -8.60641355e+04 2.46971954e+05 2.04304214e+05 2.37863317e+05 2.43625353e+05 1.15324606e+05 1.69183124e+05 2.63924239e+05 3.36838740e+05 1.12327994e+05 2.27392401e+05 4.75989481e+04 1.72070071e+05 2.29874947e+05 3.33038033e+05 2.54598672e+05 2.12424224e+05 -8.27713432e+04 4.57779581e+04] [ 1.37201228e+05 1.34185871e+05 1.45918780e+05 1.43307019e+05 1.37329448e+05 1.52232037e+05 1.47874634e+05 1.53150451e+05 1.39542294e+05 1.49106154e+05 1.51542079e+05 1.57375021e+05 1.31015774e+05 1.25910270e+05 1.51611757e+05 1.56808140e+05 1.51335063e+05 1.43712088e+05 1.38978847e+05 1.46453116e+05 1.49074013e+05 1.53639198e+05 1.50547995e+05 1.50457869e+05 1.56590418e+05 1.40452625e+05 1.48358940e+05 1.58948665e+05 1.51390034e+05 1.40016651e+05 1.47148448e+05 1.45666378e+05 1.53651521e+05 1.55226541e+05 1.46292181e+05 1.45341839e+05] [-1.13527887e+03 -2.21122289e+03 -9.02018707e+02 -1.43717975e+03 -5.94627422e+02 -1.23429023e+03 -1.63379736e+03 -2.49912237e+03 -1.12988022e+03 -1.51347112e+03 -1.30151738e+03 -1.25860591e+03 7.94780403e+01 -1.22511388e+03 -1.20180661e+03 -1.13305486e+03 -1.41522576e+03 -1.25331238e+03 -2.32366198e+03 -8.90764705e+02 -1.08928513e+03 -1.46208658e+03 -1.54728750e+03 -1.23613979e+03 -1.26491594e+03 -1.23491852e+03 -8.57566939e+02 -1.21057194e+03 -1.03669810e+03 -1.30073485e+03 -8.73240402e+02 -1.22566448e+03 -1.34128852e+03 -1.42641304e+03 -6.90369373e+02 -1.86774079e+03] [-2.66125775e+03 -1.12850573e+04 1.52390248e+03 -1.10256457e+04 2.69697063e+03 -2.85566629e+03 -1.41321499e+04 -1.80889187e+04 -5.87167371e+03 2.43473719e+02 -2.88896911e+03 -4.05852829e+03 8.38415164e+03 1.48990779e+03 -2.06930002e+03 8.56254094e+03 -1.56719212e+03 -1.36872850e+04 5.30148925e+03 -6.08641193e+01 -2.36702083e+03 -5.64324571e+03 3.72524948e+03 -7.32489889e+02 -5.57534981e+03 -2.05522868e+03 1.02810417e+04 -3.74800892e+03 -5.29556235e+03 -3.59059915e+03 8.77671229e+02 1.03685067e+04 -4.82211690e+03 -3.50043224e+03 9.08708967e+03 5.25763826e+03] [ 5.73102859e+03 -9.73448496e+04 5.53178246e+04 3.46587539e+04 7.07053779e+04 2.75822037e+04 1.29541600e+05 -1.96762272e+05 5.52018638e+03 -1.55616767e+05 2.54174503e+04 3.72397274e+04 -4.67765258e+04 -4.30136047e+04 3.75861564e+04 -2.01680212e+04 3.74826101e+04 8.07664726e+04 -2.51572867e+03 5.03239446e+04 4.36070836e+04 1.22453197e+05 -1.24091448e+05 5.52512014e+04 3.23173619e+04 1.97665693e+04 -1.18779181e+05 2.57424548e+04 6.47186910e+02 7.36643607e+04 4.83917548e+04 -4.93297435e+04 3.31504610e+04 4.93931559e+04 -7.18189748e+04 -1.18050529e+05] [-3.90907849e+05 -1.35866255e+06 2.98217148e+05 -5.64168728e+05 3.83379493e+05 8.56182495e+04 6.26702314e+04 -2.03774136e+06 -3.91704134e+05 -1.53211140e+06 1.70747857e+05 3.96964040e+04 -2.26006700e+05 -2.82286348e+05 7.56854518e+04 -9.10459181e+05 1.10324626e+05 -2.81753894e+05 -8.15208707e+05 2.77300722e+05 1.68533860e+05 6.18428750e+04 -8.41796877e+05 1.75184940e+05 5.55269356e+04 -2.61676471e+05 -7.88145035e+05 3.16757986e+04 -8.73462207e+05 -2.61794477e+05 2.21105330e+05 -8.39174026e+05 6.45627149e+04 1.35210505e+05 -2.89685896e+05 -5.42598069e+05] [-5.51305867e+05 -1.71360629e+06 3.12127895e+05 -7.27353214e+05 4.57668528e+05 -3.19500189e+04 -3.42868947e+04 -3.54883917e+06 -6.99796760e+05 -2.68597024e+06 2.02154908e+05 -8.32996729e+04 -4.97769222e+05 -4.95947431e+05 -1.13064668e+05 -1.87000334e+06 4.49294534e+04 -9.30572471e+04 -1.56027606e+06 2.65722847e+05 1.23446350e+05 1.06064848e+05 -1.21410351e+06 1.78864102e+05 -8.43909301e+04 -1.02292631e+06 -1.32018447e+06 -1.38434191e+05 -2.02091623e+06 -5.42545219e+05 1.58521775e+05 -1.71815752e+06 -8.53960990e+04 7.39083456e+04 -4.11613315e+05 -8.26730023e+05] [-4.65974199e+05 -1.39352753e+06 5.48691359e+05 -7.90718265e+05 7.02507841e+05 1.68567570e+05 1.64385389e+05 -4.95959013e+06 -8.79690058e+05 -3.11298794e+06 7.14598522e+05 2.60835576e+05 -1.11886164e+06 -8.30696955e+05 3.79696101e+04 -2.66535906e+06 3.71536294e+05 3.96739383e+04 -1.80391584e+06 4.84679278e+05 3.25307413e+05 5.05335021e+05 -1.74472339e+06 5.72240846e+05 8.98926824e+04 -1.59525046e+06 -2.21302868e+06 3.76148944e+04 -2.99255419e+06 -7.34178460e+05 3.59881001e+05 -2.35789581e+06 7.84591043e+04 4.59570720e+05 -1.21436505e+06 -1.46544271e+06] [-7.19602780e+05 -2.12529556e+06 1.09819888e+06 -1.29798102e+06 1.39432601e+06 3.75033794e+05 2.58496848e+05 -8.02642627e+06 -1.55883760e+06 -4.87084192e+06 1.18270052e+06 4.03083887e+05 -1.30698181e+06 -1.03545963e+06 2.14724006e+05 -3.95466047e+06 6.80027280e+05 -2.33061722e+05 -2.42050677e+06 9.90956259e+05 6.96203816e+05 5.68435079e+05 -2.42662492e+06 1.04863723e+06 1.49334777e+05 -2.31317579e+06 -2.97659684e+06 1.26866818e+05 -5.08819576e+06 -1.18657276e+06 7.74081131e+05 -3.46010935e+06 2.27031815e+05 7.86819954e+05 -1.30169956e+06 -1.73045717e+06] [-1.37260605e+06 -3.50012474e+06 1.54564651e+06 -2.45460193e+06 1.95292331e+06 5.50209631e+05 9.38573998e+05 -1.15546993e+07 -2.55023542e+06 -6.80773219e+06 1.85191405e+06 7.10631557e+05 -2.19369649e+06 -1.91098827e+06 5.75105203e+05 -4.83035310e+06 9.05059074e+05 -1.02854220e+06 -3.13522674e+06 1.47626395e+06 1.18211964e+06 1.25332225e+06 -4.08648568e+06 1.41695543e+06 4.94433572e+05 -2.23317772e+06 -4.82497416e+06 3.15468315e+05 -7.60990640e+06 -1.48983649e+06 1.10885722e+06 -4.22470190e+06 5.88175819e+05 1.18074090e+06 -2.81775231e+06 -3.16359428e+06] [-7.01357355e+05 -2.67483223e+06 1.73100834e+06 -2.76362844e+06 2.02625527e+06 1.00539536e+06 2.11608509e+06 -1.32657341e+07 -2.39994095e+06 -6.86678822e+06 2.82964425e+06 1.26544369e+06 -3.98405617e+06 -2.87015166e+06 1.11739402e+06 -4.58089864e+06 1.54062949e+06 -1.66451103e+06 -2.37098002e+06 1.71468116e+06 1.55716524e+06 2.86216968e+06 -5.33618781e+06 2.02605132e+06 9.80657626e+05 -1.57728632e+06 -6.78170871e+06 8.11604783e+05 -8.92352239e+06 -9.96818680e+05 1.34882471e+06 -3.49641049e+06 1.13849659e+06 1.91951734e+06 -5.21240108e+06 -4.45791093e+06] [-9.97344908e+05 -3.67605908e+06 1.55058953e+06 -4.55211523e+06 2.03772204e+06 6.68354742e+05 2.72451991e+06 -1.37713914e+07 -3.18078273e+06 -7.73749924e+06 2.61519833e+06 1.20946902e+06 -4.56891621e+06 -3.70347354e+06 1.07793504e+06 -3.86320824e+06 1.01403664e+06 -3.45365165e+06 -7.51430903e+05 1.58877833e+06 1.53463163e+06 3.80718180e+06 -5.70190132e+06 1.65863442e+06 1.05357099e+06 -4.31175326e+05 -7.26261503e+06 5.83207906e+05 -9.68087322e+06 -8.78190599e+05 1.26186219e+06 -2.50466008e+06 1.23778616e+06 1.63134371e+06 -6.65084814e+06 -5.04479605e+06] [-8.08100106e+05 -4.16195763e+06 1.37949709e+06 -5.80961650e+06 2.11976454e+06 2.99659364e+05 4.51285618e+06 -1.37920715e+07 -3.06091998e+06 -1.02002264e+07 2.31162973e+06 9.73844835e+05 -4.91995968e+06 -4.55368608e+06 5.76633247e+05 -5.12952359e+06 8.62055684e+05 -3.70132964e+06 5.55077041e+05 1.44823416e+06 1.43146858e+06 4.67816141e+06 -5.21947330e+06 1.63990461e+06 9.07617043e+05 -8.00108386e+05 -7.30759730e+06 3.66041687e+05 -1.01636424e+07 7.54096406e+05 1.05112674e+06 -2.39482820e+06 8.96502283e+05 1.43893216e+06 -6.73857471e+06 -4.88551237e+06] [-1.21026023e+06 -6.12153866e+06 5.53128231e+05 -6.79402901e+06 1.51524041e+06 -6.37694695e+05 7.20107866e+06 -1.43310277e+07 -2.82291959e+06 -1.30788217e+07 1.10589314e+06 -1.68146050e+04 -5.62944040e+06 -5.21422995e+06 -7.85162902e+05 -7.43987233e+06 -2.25468359e+05 -3.98866876e+06 1.12983927e+06 9.22550647e+05 8.01343182e+05 4.32548161e+06 -5.78055837e+06 7.83851451e+05 -2.24736279e+04 -1.41842668e+06 -8.26489151e+06 -6.05233062e+05 -1.07042990e+07 2.26740043e+06 3.26408288e+05 -2.76000122e+06 -1.47610159e+05 5.30774632e+05 -6.36418835e+06 -5.58642910e+06] [-3.22524633e+06 -1.00377797e+07 -7.82690686e+05 -6.53064999e+06 4.91098560e+05 -2.14166733e+06 8.25406239e+06 -1.48076277e+07 -3.29503807e+06 -1.75895532e+07 -1.68138631e+06 -2.28634170e+06 -5.77766542e+06 -5.65835228e+06 -3.06778389e+06 -1.07887947e+07 -2.36951607e+06 -2.50017838e+06 -1.74594409e+06 -5.11650657e+04 -6.14575718e+05 8.36179234e+05 -6.90933630e+06 -1.20794409e+06 -1.86345755e+06 -3.76833235e+06 -9.14073516e+06 -2.45075125e+06 -9.19934052e+06 2.48911707e+06 -9.36263795e+05 -5.27451794e+06 -2.01660485e+06 -1.75378275e+06 -5.39058636e+06 -6.78837630e+06] [-4.65714715e+06 -1.28622444e+07 -3.02432643e+06 -3.74296127e+06 -1.58354783e+06 -4.39195326e+06 9.32288720e+06 -1.41566657e+07 -2.88521596e+06 -2.04387372e+07 -5.15941873e+06 -5.00296680e+06 -7.92171153e+06 -7.05665254e+06 -5.76320225e+06 -1.13806313e+07 -5.01880147e+06 2.49355876e+06 -5.55878242e+06 -1.96950325e+06 -2.75625467e+06 -1.91817284e+06 -8.16705361e+06 -3.68651343e+06 -4.32428341e+06 -6.20761790e+06 -1.09656894e+07 -4.99258197e+06 -6.44421559e+06 3.43664856e+06 -3.11286318e+06 -6.56815425e+06 -4.55461793e+06 -4.50153876e+06 -5.17412372e+06 -8.48493673e+06] [-6.90786007e+06 -1.89129662e+07 -3.49037068e+06 -4.00103543e+06 -1.84310880e+06 -5.26349454e+06 1.02038306e+07 -1.48161117e+07 -2.78379981e+06 -2.38006377e+07 -6.22604678e+06 -5.59494349e+06 -8.74057654e+06 -7.92384917e+06 -6.58886330e+06 -1.19463352e+07 -5.95980018e+06 4.44560567e+06 -7.95634159e+06 -2.22307547e+06 -3.09314267e+06 -3.23536955e+06 -9.71985141e+06 -4.34828660e+06 -5.01767785e+06 -6.62261996e+06 -1.26003929e+07 -5.84971655e+06 -4.29994286e+06 5.04383780e+06 -3.54644597e+06 -7.50584358e+06 -5.47568702e+06 -5.23326196e+06 -5.24868324e+06 -1.02493472e+07] [-7.23019349e+06 -2.06295888e+07 -4.63132829e+06 -3.58911093e+06 -2.92560908e+06 -6.17538672e+06 1.12078879e+07 -1.52189187e+07 -2.72904644e+06 -2.50640221e+07 -6.95014566e+06 -6.12968963e+06 -1.19636012e+07 -1.07043638e+07 -7.37963973e+06 -1.14881608e+07 -6.83815292e+06 6.20665633e+06 -9.27723057e+06 -3.17810857e+06 -3.86528244e+06 -3.30654171e+06 -1.18744243e+07 -5.21175512e+06 -5.59243837e+06 -7.09658097e+06 -1.60751064e+07 -6.66718796e+06 -3.79669964e+06 5.86987984e+06 -4.55464959e+06 -7.78312899e+06 -6.16729546e+06 -5.74084415e+06 -7.92113452e+06 -1.27859335e+07] [-7.15342988e+06 -1.71676794e+07 -6.84774390e+06 -4.72143880e+06 -5.50947374e+06 -7.63075883e+06 6.62126100e+06 -1.39041194e+07 -4.13974741e+06 -2.21781791e+07 -8.40341000e+06 -7.98539176e+06 -1.34159782e+07 -1.18943057e+07 -8.77007747e+06 -1.11713624e+07 -8.24129742e+06 3.33773521e+06 -9.56984390e+06 -5.68113904e+06 -6.14889030e+06 -5.48710555e+06 -1.15983208e+07 -7.09142978e+06 -7.45669497e+06 -8.68596161e+06 -1.60289284e+07 -8.09802271e+06 -4.39869057e+06 2.73185903e+06 -6.65928856e+06 -7.29805845e+06 -7.75639394e+06 -7.39858089e+06 -9.72096618e+06 -1.27818355e+07] [-8.13026603e+06 -1.62312045e+07 -6.83364072e+06 -1.03339698e+07 -5.31943067e+06 -8.22671237e+06 2.53618957e+05 -1.54384914e+07 -8.02168047e+06 -2.27529100e+07 -8.29309410e+06 -8.57046682e+06 -1.17458129e+07 -1.22017304e+07 -8.78604446e+06 -1.25629095e+07 -9.13536150e+06 -4.69434795e+06 -8.59776390e+06 -6.32844223e+06 -6.80759019e+06 -7.66625464e+06 -1.02946325e+07 -7.83336135e+06 -7.94968584e+06 -1.08134893e+07 -1.36983601e+07 -8.61816027e+06 -9.46142747e+06 -2.77036000e+06 -6.83227329e+06 -8.71196441e+06 -8.00211383e+06 -8.21218770e+06 -1.03657545e+07 -1.10503714e+07] [-9.00711047e+06 -1.50113156e+07 -7.03336890e+06 -1.46757118e+07 -5.51310612e+06 -8.47816137e+06 -3.76841235e+06 -1.27148604e+07 -1.03996054e+07 -1.93870024e+07 -7.77047470e+06 -7.81062220e+06 -9.70692013e+06 -1.15030577e+07 -8.01380694e+06 -1.06580972e+07 -9.83316603e+06 -1.17838467e+07 -4.25240645e+06 -6.89924821e+06 -7.00554007e+06 -8.06408182e+06 -8.51305693e+06 -8.36525389e+06 -7.45290131e+06 -9.31193723e+06 -1.11329049e+07 -8.44435599e+06 -1.10349789e+07 -6.11278562e+06 -7.00963354e+06 -7.32909241e+06 -7.42968679e+06 -8.39689531e+06 -1.08490856e+07 -9.62212990e+06] [-9.02444537e+06 -1.53632507e+07 -5.67743822e+06 -1.74812406e+07 -4.18782656e+06 -7.03283593e+06 -5.89758191e+06 -1.15416443e+07 -1.12313625e+07 -1.46567112e+07 -5.77675366e+06 -6.02246785e+06 -6.93794688e+06 -9.28383284e+06 -5.80354498e+06 -6.54739482e+06 -8.69869340e+06 -1.75142291e+07 -6.54016608e+04 -5.68279840e+06 -5.70841063e+06 -6.45791028e+06 -7.35566638e+06 -7.33893496e+06 -5.64327474e+06 -5.67366257e+06 -8.72520461e+06 -6.73461540e+06 -1.29810944e+07 -7.63844995e+06 -5.53792831e+06 -5.03796653e+06 -5.43662187e+06 -7.10311802e+06 -1.08263192e+07 -8.38558418e+06] [-9.75791140e+06 -1.49901837e+07 -3.16960636e+06 -1.83839772e+07 -1.77376835e+06 -4.81477208e+06 -6.93255333e+06 -8.22830406e+06 -1.16385298e+07 -1.25183246e+07 -3.58650018e+06 -3.68707193e+06 -3.14031454e+06 -7.37076404e+06 -3.22650416e+06 -5.32553981e+06 -6.80266335e+06 -1.93679351e+07 5.46408362e+05 -3.06622004e+06 -3.10961572e+06 -4.68642187e+06 -5.24722057e+06 -5.49062292e+06 -2.93955364e+06 -2.38918491e+06 -5.17815993e+06 -4.26857227e+06 -1.53098004e+07 -7.26648399e+06 -3.06938246e+06 -6.45666969e+06 -3.03293011e+06 -5.14465181e+06 -8.46404460e+06 -5.57650921e+06] [-7.01521141e+06 -1.06408019e+07 -1.83039232e+06 -1.49691108e+07 -5.95268547e+05 -3.34558326e+06 -4.27796308e+06 -2.20297574e+06 -8.51265263e+06 -7.83903850e+06 -1.83420123e+06 -1.53646614e+06 -8.80112005e+05 -5.99266261e+06 -1.25929846e+06 -1.33861252e+04 -5.07543247e+06 -1.57789118e+07 4.82660155e+06 -1.81216001e+06 -1.42947727e+06 -1.14221469e+06 -2.19969534e+06 -3.75694008e+06 -9.26750545e+05 1.40579100e+06 -1.52562865e+06 -2.31593937e+06 -1.16196021e+07 -3.23911504e+06 -1.64285663e+06 -2.25862206e+06 -1.19544075e+06 -3.14960795e+06 -6.74844292e+06 -3.32385133e+06] [-5.32948454e+06 -7.59711947e+06 -1.22506442e+06 -1.25731083e+07 -1.99540216e+05 -2.40994692e+06 -2.29269435e+06 1.90324608e+06 -6.50586377e+06 -3.21054312e+06 -1.05538510e+06 -1.83250702e+05 -1.23268696e+06 -6.02003499e+06 2.81853317e+05 4.43059577e+06 -4.23570262e+06 -1.41177887e+07 6.44245446e+06 -1.19267504e+06 -3.32572195e+05 6.63468743e+05 -1.38884481e+06 -2.96581371e+06 4.54305203e+05 3.79675594e+06 -1.18414551e+06 -1.00963596e+06 -1.00171060e+07 -2.16585660e+06 -8.06324188e+05 1.22755816e+06 2.71657071e+05 -1.98696870e+06 -6.87358339e+06 -3.18082729e+06] [-4.45285056e+06 -6.91841300e+06 -4.22327803e+05 -1.00282986e+07 4.57234865e+05 -1.61532001e+06 -6.44890487e+05 3.85838700e+06 -4.89615529e+06 -1.55778242e+06 -6.07913903e+05 8.76423826e+05 -1.65593711e+06 -5.93223802e+06 1.34506254e+06 5.78093287e+06 -3.40388437e+06 -1.13392176e+07 5.55306652e+06 -4.33132292e+05 5.41695742e+05 1.35874560e+06 -1.57400807e+06 -2.24148690e+06 1.50618824e+06 4.80414879e+06 -1.85846266e+06 -5.24038464e+04 -7.92290972e+06 -1.32787910e+06 4.37765551e+04 2.01460630e+06 1.21728601e+06 -9.60425135e+05 -6.62599384e+06 -3.59206816e+06] [-3.45819636e+06 -5.88618057e+06 1.05158221e+05 -7.10964386e+06 7.33261521e+05 -8.93840001e+05 -6.05500506e+05 2.36346989e+06 -3.62952118e+06 -1.35304598e+06 -3.95303857e+05 7.87990057e+05 -9.38008542e+05 -4.11279197e+06 1.32074554e+06 4.35025999e+06 -2.27044980e+06 -8.16746719e+06 2.85460364e+06 9.57089658e+04 7.17869327e+05 6.89729363e+05 -1.54507298e+06 -1.46062502e+06 1.34353376e+06 3.81254092e+06 -1.37251809e+06 2.02311528e+05 -5.98887046e+06 -1.31810307e+06 4.35696511e+05 6.41970549e+05 1.14093334e+06 -4.89704920e+05 -4.47617328e+06 -2.61625077e+06] [-1.29601566e+06 -2.82954619e+06 4.37994402e+05 -2.89295845e+06 6.86706127e+05 1.42388792e+04 -1.49203958e+05 1.04302565e+06 -1.25465923e+06 -6.51226583e+05 1.79622576e+05 6.36657412e+05 -2.11536968e+05 -1.59658480e+06 8.98004136e+05 1.93161513e+06 -6.06180248e+05 -3.33561273e+06 9.35699383e+05 4.32552028e+05 6.70243868e+05 4.16334687e+05 -6.87901814e+05 -2.97998142e+05 9.13683655e+05 2.03889038e+06 -5.14786752e+05 4.47374974e+05 -2.18862266e+06 -2.34913655e+05 5.72234550e+05 2.29014155e+05 7.95639648e+05 1.09794259e+05 -1.83316107e+06 -1.04620959e+06] [-7.33274271e+03 -4.00778024e+05 3.39809771e+05 -3.05402749e+05 3.78718155e+05 2.54077851e+05 1.54637302e+05 2.82435860e+05 5.82906586e+03 -2.89972305e+04 2.60391913e+05 3.60067956e+05 2.47962642e+05 -3.33658268e+04 3.80192217e+05 5.34119462e+05 1.40655255e+05 -3.73830520e+05 3.94988870e+05 3.34656025e+05 3.61334775e+05 3.55959183e+05 1.15472364e+05 1.94306532e+05 4.00268063e+05 5.77006784e+05 1.93669932e+05 3.31259549e+05 -2.24066176e+05 2.01066072e+05 3.48917582e+05 2.62827614e+05 3.87669259e+05 2.77770490e+05 -2.58057246e+04 6.67352696e+04] [ 1.11815769e+05 1.11490581e+05 1.19188031e+05 1.14340235e+05 1.12841020e+05 1.23585436e+05 1.44303619e+05 1.21194298e+05 1.14079969e+05 1.19158517e+05 1.26006843e+05 1.33981563e+05 9.10146855e+04 9.24247640e+04 1.27855849e+05 1.37492647e+05 1.23037655e+05 1.18184444e+05 1.15265549e+05 1.20268200e+05 1.23810897e+05 1.33894529e+05 1.02232936e+05 1.23342707e+05 1.32698757e+05 1.17449799e+05 9.65595523e+04 1.31810821e+05 1.29811416e+05 1.21573258e+05 1.21766360e+05 1.23479301e+05 1.29060929e+05 1.29913176e+05 9.23612075e+04 9.30750216e+04] [-4.61458498e+03 -8.98788732e+03 -3.66469486e+03 -5.84271134e+03 -2.41475475e+03 -5.01671229e+03 -6.63559802e+03 -1.01529660e+04 -4.59099068e+03 -6.15466708e+03 -5.28717432e+03 -5.11381383e+03 3.26433661e+02 -4.97931237e+03 -4.88542576e+03 -4.60866036e+03 -5.75145675e+03 -5.09105910e+03 -9.43824422e+03 -3.62391556e+03 -4.42869609e+03 -5.94513308e+03 -6.29189758e+03 -5.02364165e+03 -5.14143161e+03 -5.02139323e+03 -3.48445789e+03 -4.91659994e+03 -4.21181119e+03 -5.28698671e+03 -3.54750969e+03 -4.98493811e+03 -5.45208659e+03 -5.79935548e+03 -2.80838273e+03 -7.59278798e+03] [-2.79318068e+03 -1.46168400e+04 -1.19282817e+04 -7.21218134e+04 -1.24761195e+04 -1.56505720e+04 -9.64539230e+04 -8.37271781e+04 -3.76872099e+04 1.24159433e+04 -2.26173352e+04 -4.33280535e+04 5.90891622e+04 5.71925199e+04 -2.85248802e+04 1.38191926e+04 -9.55892534e+03 -1.09741505e+05 2.85721666e+04 -2.03707672e+04 -3.53252106e+04 -3.56120140e+04 4.70752333e+04 -1.93278203e+04 -4.48141619e+04 -1.65590730e+04 7.95305109e+04 -2.88578466e+04 -4.08859525e+04 -6.32301594e+04 -1.68925694e+04 4.77538488e+04 -3.17687417e+04 -2.71080609e+04 9.74500729e+04 8.74823661e+04] [-3.89130086e+04 -9.00273557e+04 -3.19460334e+04 -1.30550584e+05 -2.14112521e+04 -7.02845234e+04 -1.68006234e+05 -2.59929823e+05 -1.11415345e+05 -1.15111030e+05 -1.00271889e+05 -1.22026274e+05 1.45478953e+05 1.25163174e+05 -8.73232506e+04 -2.12935908e+04 -5.43694750e+04 -1.66646277e+05 8.42171242e+04 -6.12483685e+04 -9.41547326e+04 -9.20049448e+04 1.01110545e+05 -6.25347191e+04 -1.20417617e+05 -8.54899237e+04 1.88716519e+05 -9.99336079e+04 -6.98025055e+04 -1.27946361e+05 -5.47495099e+04 3.52166245e+04 -9.39208223e+04 -9.06195795e+04 3.00288794e+05 2.23895879e+05] [-4.98689742e+05 -1.60572723e+06 2.26319158e+05 -8.49652712e+05 3.31460616e+05 -3.96733206e+04 -5.20411003e+05 -2.63068247e+06 -5.92563890e+05 -1.69202985e+06 6.65774284e+04 -2.05473666e+05 1.49474444e+05 7.00494469e+04 -1.34583602e+05 -1.00364522e+06 2.57351885e+04 -6.30752923e+05 -9.21721701e+05 1.83356544e+05 5.17456323e+03 -1.61839622e+05 -5.60773334e+05 6.38047394e+04 -1.91831526e+05 -5.04595570e+05 -3.38294628e+05 -1.56959819e+05 -1.30927047e+06 -5.43211473e+05 9.13576246e+04 -8.96289955e+05 -1.36336279e+05 -4.40724208e+04 3.50274138e+05 -5.29988364e+04] [-1.13922884e+06 -2.41668531e+06 -4.94513559e+04 -1.97456294e+06 1.40847663e+05 -5.47928819e+05 -1.43645651e+06 -5.55409678e+06 -1.64404073e+06 -3.45280126e+06 -2.35936161e+05 -9.42741825e+05 8.41915909e+04 -6.97047062e+04 -7.79020486e+05 -2.47232769e+06 -4.33178411e+05 -1.58957075e+06 -2.06259649e+06 -1.52698245e+05 -4.87201150e+05 -5.27669454e+05 -9.60843725e+05 -3.43475836e+05 -9.04337070e+05 -1.68467582e+06 -6.38307860e+05 -8.20886617e+05 -3.77375172e+06 -1.64426743e+06 -3.29520520e+05 -2.22274853e+06 -7.71389477e+05 -5.61773621e+05 8.23370649e+05 1.32478641e+05] [-9.67776095e+05 -2.17018403e+06 -2.33893377e+04 -1.93258253e+06 1.98390334e+05 -6.03609617e+05 -1.63833761e+06 -7.34792050e+06 -1.88437890e+06 -4.15460115e+06 -2.98464443e+05 -1.10415246e+06 -2.20838487e+05 -2.39634424e+05 -8.95021095e+05 -2.97292210e+06 -4.15070332e+05 -1.47770466e+06 -2.01941543e+06 -2.59642428e+05 -6.87412992e+05 -5.32174061e+05 -1.03337111e+06 -3.09523004e+05 -1.14045678e+06 -2.52241548e+06 -9.18760399e+05 -9.44901470e+05 -4.94822859e+06 -2.25371260e+06 -3.66221322e+05 -2.51921340e+06 -8.69216380e+05 -5.35698406e+05 1.18403774e+06 3.52507874e+05] [-1.13785546e+06 -1.39444872e+06 -5.23833595e+05 -2.65150674e+06 -2.79915751e+05 -1.16819977e+06 -2.44017093e+06 -8.90573005e+06 -2.76808748e+06 -3.82534503e+06 -5.71285236e+05 -1.78762009e+06 -4.54934246e+05 -3.44791098e+05 -1.47027008e+06 -3.01413772e+06 -8.46974101e+05 -2.67019356e+06 -1.54386137e+06 -8.52593917e+05 -1.35490619e+06 -6.97149969e+05 -5.70954440e+05 -7.86996850e+05 -1.90774516e+06 -2.72912090e+06 -6.12746170e+05 -1.61429764e+06 -6.62242071e+06 -3.21151642e+06 -9.72900045e+05 -2.46106117e+06 -1.51742169e+06 -1.02957237e+06 2.04621212e+06 1.47806465e+06] [-2.27932448e+06 -5.51968648e+05 -1.65590270e+06 -5.47749006e+06 -1.51267867e+06 -2.18812010e+06 -4.27514253e+06 -9.99510338e+06 -4.77970984e+06 -3.26910321e+06 -1.24362497e+06 -3.02221733e+06 -5.94476968e+05 -2.12636548e+05 -2.41434007e+06 -3.24534440e+06 -1.76449030e+06 -6.74316019e+06 -1.28969159e+06 -2.10260622e+06 -2.61764942e+06 -1.83610648e+06 -5.38280019e+04 -1.85563010e+06 -3.14290872e+06 -3.16630434e+06 -5.30029576e+04 -2.69948914e+06 -8.69531040e+06 -5.43485144e+06 -2.19406633e+06 -2.35247339e+06 -2.58854117e+06 -2.13950989e+06 2.23891656e+06 2.44579895e+06] [-3.01961658e+06 1.12733667e+06 -3.44033894e+06 -7.17099629e+06 -3.37538287e+06 -3.68506471e+06 -5.19046338e+06 -9.39278323e+06 -6.05084483e+06 -3.04154400e+06 -2.77363754e+06 -4.83726484e+06 -1.46569564e+06 -7.39577795e+05 -4.01263206e+06 -4.00957384e+06 -3.13683226e+06 -9.47784175e+06 -6.99703983e+05 -3.92122209e+06 -4.43288253e+06 -2.57535220e+06 1.54776142e+05 -3.42729181e+06 -4.83936066e+06 -4.17887068e+06 1.27269173e+05 -4.23269940e+06 -8.40014430e+06 -6.52082030e+06 -3.89880732e+06 -2.29786232e+06 -4.23656441e+06 -3.82696899e+06 1.53395054e+06 2.57543096e+06] [-4.29386502e+06 -3.13126071e+05 -5.47006092e+06 -1.04838894e+07 -5.00554815e+06 -6.00294867e+06 -5.28006343e+06 -1.00601859e+07 -7.94595752e+06 -6.22285596e+06 -5.33983635e+06 -7.12458859e+06 -2.66055862e+06 -2.72504283e+06 -6.33258535e+06 -5.74618651e+06 -5.75936145e+06 -1.25697754e+07 7.76143043e+05 -6.00077647e+06 -6.53919332e+06 -3.05204663e+06 -1.26210238e+05 -5.82712390e+06 -6.86370994e+06 -4.99464031e+06 -4.80943301e+05 -6.51314999e+06 -1.05895703e+07 -7.11953408e+06 -5.90193611e+06 -2.37757804e+06 -6.28596873e+06 -6.23353684e+06 1.49549147e+05 1.77227178e+06] [-3.30491177e+06 -2.03665905e+06 -7.48444366e+06 -1.02263629e+07 -6.88431537e+06 -7.86322130e+06 -3.24112785e+06 -1.03441664e+07 -6.88325653e+06 -8.29788838e+06 -7.57956276e+06 -8.94012099e+06 -4.65298677e+06 -4.60011766e+06 -8.71017316e+06 -6.59417011e+06 -7.37798715e+06 -1.08500385e+07 2.41114658e+06 -7.87669559e+06 -8.49803880e+06 -3.32614294e+06 -3.73309638e+05 -7.51424797e+06 -8.75372273e+06 -6.01395168e+06 -1.85336899e+06 -8.35394221e+06 -1.10616433e+07 -4.83946641e+06 -7.82092498e+06 -9.56748127e+05 -8.27711446e+06 -7.74332138e+06 1.34484081e+05 1.17533422e+06] [-6.95148087e+06 -7.52500707e+06 -1.12937114e+07 -1.21220397e+07 -1.03243130e+07 -1.17122158e+07 -3.27887111e+06 -8.06731367e+06 -8.82368883e+06 -1.40040321e+07 -1.26871022e+07 -1.29303722e+07 -5.97359701e+06 -7.09875152e+06 -1.29190674e+07 -1.06238182e+07 -1.20522879e+07 -1.08521156e+07 -1.59961679e+05 -1.12282315e+07 -1.18509717e+07 -8.42169032e+06 -7.03850547e+05 -1.18786037e+07 -1.22270804e+07 -8.83431038e+06 -2.61978568e+06 -1.21703002e+07 -9.05278480e+06 -5.45900725e+06 -1.13530548e+07 -3.81721890e+06 -1.19587435e+07 -1.21170474e+07 1.02373193e+06 5.12499252e+05] [-9.27719878e+06 -1.22827950e+07 -1.23566644e+07 -1.11788948e+07 -1.12605477e+07 -1.29402207e+07 -3.01453673e+06 -9.04292482e+06 -9.54924324e+06 -1.70443227e+07 -1.49308410e+07 -1.48177014e+07 -6.25868713e+06 -7.05674545e+06 -1.45324879e+07 -1.06438882e+07 -1.38651639e+07 -9.07068481e+06 -3.97045756e+06 -1.19962695e+07 -1.30228238e+07 -1.12942314e+07 -1.93686021e+06 -1.36307207e+07 -1.39220924e+07 -9.74313338e+06 -3.35124605e+06 -1.37397483e+07 -7.10483386e+06 -5.22442393e+06 -1.23872733e+07 -4.97918968e+06 -1.33863104e+07 -1.38443647e+07 2.59731905e+06 9.21740690e+04] [-9.24254189e+06 -1.51951367e+07 -1.11227438e+07 -8.04882737e+06 -9.95787341e+06 -1.18081014e+07 -7.09464252e+05 -1.09606633e+07 -8.17942947e+06 -1.69620220e+07 -1.46534364e+07 -1.41630290e+07 -6.92172045e+06 -6.38372324e+06 -1.32991338e+07 -6.59369992e+06 -1.28791024e+07 -4.92386626e+06 -6.43768459e+06 -1.07444510e+07 -1.18811150e+07 -1.13775559e+07 -3.75833706e+06 -1.25404615e+07 -1.33435625e+07 -9.31735241e+06 -5.07506015e+06 -1.29552819e+07 -2.95229164e+06 -4.07319022e+06 -1.11501690e+07 -2.83678251e+06 -1.24860409e+07 -1.29942741e+07 3.13669819e+06 -1.40428801e+06] [-9.25290504e+06 -1.91311085e+07 -1.00484823e+07 -6.97031415e+06 -9.06245941e+06 -1.07248087e+07 6.44150546e+05 -1.26824566e+07 -7.05102645e+06 -1.62276664e+07 -1.33225050e+07 -1.28742041e+07 -7.81306002e+06 -6.08767815e+06 -1.17962560e+07 -2.69375362e+06 -1.12842099e+07 -3.10700975e+06 -8.57586439e+06 -9.52027675e+06 -1.06238007e+07 -1.04269731e+07 -6.14929602e+06 -1.12299551e+07 -1.22962954e+07 -8.46919638e+06 -7.33479836e+06 -1.19016439e+07 1.20173264e+05 -2.42486170e+06 -9.98410352e+06 -7.40410434e+05 -1.13386448e+07 -1.14408974e+07 2.18414665e+06 -3.56685478e+06] [-8.50989399e+06 -2.04847293e+07 -8.49361663e+06 -6.03677411e+06 -7.41580947e+06 -9.16625036e+06 6.19301315e+04 -1.59345072e+07 -6.25551213e+06 -1.80591994e+07 -1.13600959e+07 -1.12852085e+07 -8.56767278e+06 -6.84439219e+06 -1.03580015e+07 -3.36120890e+06 -9.30829347e+06 -1.12750747e+06 -1.08797054e+07 -7.93955588e+06 -9.09181520e+06 -1.00706224e+07 -7.63095685e+06 -9.35387741e+06 -1.08357613e+07 -9.16767358e+06 -9.10155391e+06 -1.04937710e+07 -4.15134621e+05 -1.74354975e+06 -8.52078879e+06 -1.96411715e+06 -9.94394031e+06 -9.55710340e+06 1.06750198e+06 -4.66892455e+06] [-8.32609864e+06 -1.85574995e+07 -9.11625840e+06 -8.47913454e+06 -7.89055854e+06 -1.00804871e+07 -4.62713874e+06 -2.03514851e+07 -8.11663612e+06 -2.10079201e+07 -1.19718717e+07 -1.23754235e+07 -1.00523639e+07 -9.34892579e+06 -1.12396997e+07 -6.90405134e+06 -1.01700308e+07 -4.24641649e+06 -1.22976076e+07 -9.08354429e+06 -1.02599893e+07 -1.16642884e+07 -8.66598918e+06 -1.00792558e+07 -1.18948083e+07 -1.30862028e+07 -1.05039183e+07 -1.15078458e+07 -6.62732681e+06 -5.29970280e+06 -9.38397851e+06 -4.79131037e+06 -1.09573743e+07 -1.03856989e+07 -1.30328013e+06 -5.56208586e+06] [-1.08181500e+07 -1.79029251e+07 -1.05080079e+07 -1.30819794e+07 -8.97372302e+06 -1.20904986e+07 -7.73441837e+06 -2.13876611e+07 -1.19433157e+07 -2.49041624e+07 -1.33010096e+07 -1.34666221e+07 -1.19147151e+07 -1.28638441e+07 -1.26003219e+07 -1.24189385e+07 -1.27759553e+07 -9.35847555e+06 -1.16156339e+07 -1.08244816e+07 -1.16717226e+07 -1.34447595e+07 -9.91974071e+06 -1.20517544e+07 -1.29238971e+07 -1.58181291e+07 -1.25631216e+07 -1.30701612e+07 -1.26331627e+07 -9.17890528e+06 -1.09408393e+07 -9.12796176e+06 -1.22725191e+07 -1.22310113e+07 -5.86263845e+06 -7.77107990e+06] [-1.26704869e+07 -1.70587933e+07 -1.15981454e+07 -1.74437982e+07 -9.92371492e+06 -1.32547713e+07 -9.95104161e+06 -1.96013234e+07 -1.47588528e+07 -2.44858575e+07 -1.37259148e+07 -1.37441235e+07 -1.20312044e+07 -1.34378594e+07 -1.32366479e+07 -1.50582356e+07 -1.44889310e+07 -1.51268899e+07 -9.11191838e+06 -1.19890562e+07 -1.25107528e+07 -1.43571326e+07 -9.96705680e+06 -1.34169428e+07 -1.32828479e+07 -1.57951839e+07 -1.26196806e+07 -1.38722648e+07 -1.45811029e+07 -1.20432335e+07 -1.20069323e+07 -1.08478259e+07 -1.28618725e+07 -1.35031545e+07 -8.93045803e+06 -8.75211409e+06] [-1.15906043e+07 -1.53272236e+07 -1.08014001e+07 -1.94851657e+07 -9.09731489e+06 -1.22202384e+07 -8.96922527e+06 -1.65841146e+07 -1.47938008e+07 -1.99518277e+07 -1.15554638e+07 -1.20493107e+07 -1.02358603e+07 -1.19610206e+07 -1.18493239e+07 -1.19933803e+07 -1.34470940e+07 -1.87305353e+07 -2.99921620e+06 -1.12292718e+07 -1.14594988e+07 -1.16820833e+07 -8.09242682e+06 -1.23875772e+07 -1.18192377e+07 -1.23518538e+07 -1.03328048e+07 -1.25375900e+07 -1.35238155e+07 -1.06926219e+07 -1.10697001e+07 -7.79376688e+06 -1.14417924e+07 -1.24361481e+07 -9.54451741e+06 -7.49168630e+06] [-1.03216052e+07 -1.44674901e+07 -8.38356310e+06 -1.89579788e+07 -6.69990306e+06 -1.00203478e+07 -6.54067541e+06 -1.13775518e+07 -1.31559382e+07 -1.62111303e+07 -8.60068443e+06 -9.07103355e+06 -7.29272833e+06 -1.06208144e+07 -9.02699207e+06 -8.33642717e+06 -1.14681814e+07 -1.85663198e+07 7.33423974e+05 -8.57913848e+06 -8.65975546e+06 -8.12539817e+06 -6.13030785e+06 -1.03403356e+07 -8.61731514e+06 -7.15362074e+06 -7.59687704e+06 -9.77473193e+06 -1.27877381e+07 -7.50046006e+06 -8.43857089e+06 -6.41607458e+06 -8.65292934e+06 -1.00484483e+07 -8.74903069e+06 -6.22852087e+06] [-6.82457936e+06 -1.08041066e+07 -4.26853261e+06 -1.65263945e+07 -2.88274649e+06 -5.78189441e+06 -4.84547295e+06 -5.73557786e+06 -9.40929486e+06 -1.01437397e+07 -4.03525862e+06 -4.52127627e+06 -2.42457097e+06 -6.92467720e+06 -4.43351599e+06 -2.53016268e+06 -7.14017470e+06 -1.68585355e+07 5.37700979e+06 -4.51024003e+06 -4.39255257e+06 -3.41335474e+06 -2.02625908e+06 -6.13484609e+06 -4.07354874e+06 -1.43003128e+06 -2.01303842e+06 -5.15191095e+06 -1.12394088e+07 -3.83980667e+06 -4.22819509e+06 -2.10431128e+06 -4.19259381e+06 -5.69996246e+06 -5.31816911e+06 -2.19102031e+06] [-4.48160751e+06 -7.62846578e+06 -1.49725576e+06 -1.32775787e+07 -3.94627934e+05 -2.77507366e+06 -2.44843976e+06 -3.54015436e+05 -6.15539245e+06 -4.28959661e+06 -1.37499228e+06 -1.07260397e+06 -5.72498193e+05 -5.18033248e+06 -8.65219555e+05 2.63638641e+06 -4.33916065e+06 -1.43661180e+07 7.41426792e+06 -1.68739544e+06 -1.31027694e+06 2.39064667e+05 -3.02234132e+05 -3.26858130e+06 -6.34205353e+05 2.61816988e+06 -1.37753010e+05 -1.70490200e+06 -9.13259937e+06 -1.40884234e+06 -1.26669783e+06 1.63261333e+06 -7.93516623e+05 -2.54278174e+06 -4.71062972e+06 -1.61245583e+06] [-3.27200577e+06 -5.75407948e+06 -3.84645566e+05 -1.04878491e+07 4.65154033e+05 -1.52743228e+06 -1.32046296e+06 2.81731783e+06 -4.38580793e+06 -1.34410510e+06 -5.70890728e+05 4.69565039e+05 -4.86333825e+05 -4.59735963e+06 6.92875503e+05 4.96793096e+06 -3.09367394e+06 -1.20076069e+07 7.02740068e+06 -6.11372924e+05 -3.06922813e+04 1.32797053e+06 -6.71695935e+04 -2.09552176e+06 8.42244861e+05 4.27894757e+06 -2.25711099e+05 -2.77756730e+05 -7.38178581e+06 -9.13770460e+05 -8.25539988e+04 3.01004323e+06 7.10210015e+05 -1.06331437e+06 -4.68312140e+06 -1.94467591e+06] [-2.68223359e+06 -4.56072991e+06 6.39864393e+05 -7.09489575e+06 1.18188274e+06 -2.69175736e+05 -5.61134179e+05 2.50856261e+06 -3.07936195e+06 -1.50008493e+05 2.12657812e+05 1.16170604e+06 2.81085647e+05 -2.64527723e+06 1.66999884e+06 4.69555418e+06 -1.54586863e+06 -8.58456569e+06 3.98423936e+06 5.81437147e+05 9.93206472e+05 1.14831658e+06 -3.53549320e+05 -8.75387470e+05 1.64633369e+06 4.29632321e+06 1.50967580e+04 7.02286423e+05 -6.00562799e+06 -1.20037199e+06 9.41920258e+05 1.51445059e+06 1.52872496e+06 -6.97940991e+03 -2.78200614e+06 -1.22655321e+06] [-1.53343042e+06 -2.71078927e+06 6.62816759e+04 -3.50890789e+06 3.05621205e+05 -3.65755548e+05 -9.58956303e+05 1.27715212e+06 -1.54695919e+06 -3.07336001e+05 -1.62002003e+05 3.15717345e+05 6.53498681e+04 -1.45771617e+06 5.55261768e+05 1.72994967e+06 -9.69646810e+05 -4.22185056e+06 1.03108118e+06 3.90350107e+04 2.53396563e+05 -6.49002207e+04 -4.36294167e+05 -6.92873069e+05 5.85224982e+05 1.98666047e+06 -1.29528765e+05 1.15373373e+05 -3.07869520e+06 -8.11178821e+05 2.17983211e+05 -1.19628718e+05 4.36017222e+05 -2.91047130e+05 -1.38889289e+06 -6.71589536e+05] [-6.12016627e+04 -3.45464321e+05 2.23917863e+05 -3.01211378e+05 2.48612989e+05 1.56736082e+05 -3.83183049e+04 1.01121855e+05 -3.08706801e+04 -6.07508492e+04 1.66562502e+05 2.04898727e+05 1.91980702e+05 -4.18091611e+04 2.32882826e+05 2.34853476e+05 9.42160329e+04 -4.01638082e+05 1.29317557e+05 2.20157289e+05 2.26136553e+05 1.80755123e+05 -7.65540183e+03 1.18046890e+05 2.43823845e+05 3.76985773e+05 9.35087545e+04 2.05402612e+05 -2.57592806e+05 5.64351151e+04 2.22855113e+05 -4.84644661e+03 2.18411772e+05 1.48941680e+05 -1.29015745e+04 4.81663222e+04] [ 4.98649769e+04 8.41956297e+04 1.99920633e+04 4.74048591e+04 1.44542636e+04 2.28625345e+04 1.13892376e+05 4.60571450e+04 4.59717239e+04 5.77401616e+04 4.39634838e+04 3.51951123e+04 -4.72637757e+04 -1.03519353e+04 3.09979260e+04 7.40413098e+04 3.87256258e+04 4.37049611e+04 3.09903762e+04 2.15056919e+04 2.87027650e+04 8.36329675e+04 -2.16778612e+04 3.76514074e+04 2.65057377e+04 4.77419490e+04 -4.37113711e+04 2.83022164e+04 9.38063942e+04 9.91444472e+04 2.13096285e+04 6.77720079e+04 2.37640937e+04 3.77254827e+04 -5.86837225e+04 -2.64024301e+04] [-7.49789660e+02 -1.45930562e+03 -5.95020248e+02 -9.48694841e+02 -3.91933369e+02 -8.15144495e+02 -1.07737926e+03 -1.64857629e+03 -7.45556836e+02 -9.98503007e+02 -8.59211700e+02 -8.30340987e+02 5.21583173e+01 -8.07863542e+02 -7.92290927e+02 -7.46909958e+02 -9.33129531e+02 -8.26687940e+02 -1.53256153e+03 -5.88040894e+02 -7.17802817e+02 -9.64646968e+02 -1.02169059e+03 -8.15254968e+02 -8.34712719e+02 -8.14105868e+02 -5.66317812e+02 -7.98570552e+02 -6.82976115e+02 -8.57048954e+02 -5.75027191e+02 -8.08792889e+02 -8.84166973e+02 -9.41356810e+02 -4.56347969e+02 -1.23255259e+03] [-2.92197888e+04 -2.02771395e+04 -2.63170955e+04 -1.30990571e+05 -2.96560848e+04 -3.14293386e+04 -1.78082943e+05 -1.30623166e+05 -8.45438003e+04 -9.75575253e+03 -4.26984289e+04 -7.74063090e+04 8.23427302e+04 7.89884836e+04 -5.25590054e+04 -2.59983166e+04 -2.32595270e+04 -1.88943915e+05 2.86232860e+03 -3.91325933e+04 -6.20717782e+04 -9.07678089e+04 7.19439514e+04 -3.93487558e+04 -7.77510162e+04 -5.74057843e+04 1.19784696e+05 -5.37267692e+04 -8.18146410e+04 -1.25558331e+05 -3.52386391e+04 3.54490714e+04 -5.71373233e+04 -5.14089279e+04 1.52363216e+05 1.42044611e+05] [-1.85451454e+05 -4.78888215e+05 -5.19186327e+04 -2.97037674e+05 -9.86002712e+03 -1.36518936e+05 -3.12520762e+05 -7.60008525e+05 -2.42468859e+05 -5.37122442e+05 -1.37014510e+05 -1.95633545e+05 1.63154441e+05 6.15028017e+04 -1.66333434e+05 -2.27963937e+05 -1.35641106e+05 -2.30451516e+05 -2.23303752e+05 -7.15389550e+04 -1.37076870e+05 -2.04851867e+05 5.57711362e+04 -1.29007073e+05 -1.84835774e+05 -2.72213004e+05 1.32569286e+05 -1.82923477e+05 -4.07054671e+05 -2.03033159e+05 -1.02088630e+05 -1.44499838e+05 -1.60655043e+05 -1.50567449e+05 4.83899106e+05 3.26929656e+05] [-8.25927162e+05 -1.72517319e+06 -8.66149832e+04 -1.41334188e+06 3.30917372e+04 -3.78123346e+05 -1.12046700e+06 -2.79658670e+06 -1.02426461e+06 -1.75520536e+06 -2.83918938e+05 -6.17034713e+05 4.12339972e+05 2.01208717e+05 -4.82030236e+05 -1.05941925e+06 -3.56650771e+05 -1.34593467e+06 -1.01911302e+06 -1.22588925e+05 -3.53000366e+05 -6.13012995e+05 -1.88988495e+05 -3.19119496e+05 -5.86144667e+05 -7.02432412e+05 1.51575067e+05 -5.28711281e+05 -1.72139712e+06 -9.84863916e+05 -2.38758360e+05 -8.90476127e+05 -5.01388914e+05 -4.45366439e+05 9.90572690e+05 5.54823016e+05] [-9.78208182e+05 -9.85035849e+05 -7.58171299e+05 -2.34111202e+06 -6.43243741e+05 -1.11628547e+06 -2.37411625e+06 -4.82302472e+06 -2.08916933e+06 -2.04842445e+06 -9.51957328e+05 -1.74667471e+06 4.71446326e+05 4.50623678e+05 -1.37659192e+06 -1.56353627e+06 -9.74025153e+05 -2.79448642e+06 -9.68674073e+05 -9.86362044e+05 -1.36324535e+06 -1.13891160e+06 2.79421828e+05 -1.05145670e+06 -1.72924612e+06 -1.79470544e+06 6.86168490e+05 -1.46829131e+06 -3.47085636e+06 -2.39839544e+06 -1.05179946e+06 -8.80409943e+05 -1.41961735e+06 -1.22378983e+06 2.11597886e+06 1.70161418e+06] [-9.73334133e+05 -5.90142012e+03 -1.38076616e+06 -2.75248954e+06 -1.24657073e+06 -1.85625879e+06 -3.73577498e+06 -6.06780311e+06 -2.74175018e+06 -2.42497845e+06 -1.85616437e+06 -2.89896534e+06 9.40316037e+05 8.47524854e+05 -2.27394308e+06 -2.35685746e+06 -1.56699219e+06 -3.42233106e+06 -9.78810830e+04 -1.86585683e+06 -2.38707922e+06 -2.09699934e+06 1.27117511e+06 -1.73174233e+06 -2.85265044e+06 -3.02495718e+06 1.87767432e+06 -2.34925937e+06 -4.62377452e+06 -3.72357942e+06 -1.80103956e+06 -1.14860399e+06 -2.35820960e+06 -2.09667666e+06 3.99923838e+06 3.34168696e+06] [-2.03260967e+06 1.23111540e+06 -3.26812308e+06 -4.62224378e+06 -3.24419189e+06 -3.46373441e+06 -6.14775769e+06 -5.73726347e+06 -4.38084427e+06 -1.06556002e+06 -3.37912313e+06 -4.79454781e+06 9.37089727e+05 1.14273951e+06 -4.03796774e+06 -2.46686700e+06 -3.15188916e+06 -6.43976478e+06 1.18036626e+05 -3.80208425e+06 -4.41360687e+06 -4.06154316e+06 2.29882157e+06 -3.61029073e+06 -4.77777663e+06 -3.52037102e+06 3.12008975e+06 -4.07177870e+06 -5.22175934e+06 -5.90040003e+06 -3.71370966e+06 -1.27284298e+06 -4.13900348e+06 -3.94711755e+06 5.30600415e+06 5.03259502e+06] [-3.98961513e+06 2.80183138e+06 -6.17254183e+06 -7.85882822e+06 -6.22623023e+06 -6.14250757e+06 -8.68563912e+06 -4.59198607e+06 -6.85494094e+06 -2.38914501e+05 -5.93774067e+06 -7.78849601e+06 4.43303253e+05 7.72020835e+05 -6.71998639e+06 -2.94869195e+06 -5.78174778e+06 -1.11747009e+07 -1.57376743e+05 -6.80465190e+06 -7.43396496e+06 -6.62451520e+06 3.33973720e+06 -6.43379933e+06 -7.71439421e+06 -5.08276074e+06 4.23282864e+06 -6.79578005e+06 -5.74209359e+06 -8.41977503e+06 -6.62311812e+06 -1.62550326e+06 -7.00321741e+06 -6.88111692e+06 5.50940549e+06 6.08123520e+06] [-4.46182271e+06 5.13873250e+06 -8.80391887e+06 -9.84272000e+06 -8.98584688e+06 -8.27961705e+06 -1.06844778e+07 -2.38296564e+06 -8.18491914e+06 8.93273781e+05 -8.27058481e+06 -1.03263776e+07 4.38685277e+04 4.04172752e+05 -9.35281211e+06 -4.08464253e+06 -7.84148733e+06 -1.44504586e+07 1.20823795e+06 -9.55800928e+06 -1.02412259e+07 -7.95170390e+06 4.84755406e+06 -8.78632637e+06 -1.03099974e+07 -6.77920735e+06 5.55999550e+06 -9.04584273e+06 -5.72602629e+06 -9.55295865e+06 -9.17103178e+06 -9.53605228e+05 -9.46686103e+06 -9.35084829e+06 5.68133717e+06 7.01365782e+06] [-5.56426083e+06 4.06814169e+06 -1.32106164e+07 -1.16866853e+07 -1.30930151e+07 -1.27378674e+07 -1.04689085e+07 3.35408595e+05 -9.50874752e+06 -1.54590345e+06 -1.32784296e+07 -1.43758811e+07 -2.68127156e+06 -3.19699804e+06 -1.38868146e+07 -5.82064878e+06 -1.27392409e+07 -1.57284362e+07 3.58589903e+06 -1.39522296e+07 -1.45017312e+07 -9.70859932e+06 5.13547394e+06 -1.35159252e+07 -1.41285597e+07 -8.44141752e+06 4.58552865e+06 -1.33286489e+07 -7.12147198e+06 -9.38804651e+06 -1.34452696e+07 -3.26989203e+05 -1.35134891e+07 -1.37866760e+07 4.22589830e+06 5.97046316e+06] [-7.99188582e+06 -7.01327474e+05 -1.73065992e+07 -1.28411421e+07 -1.68458636e+07 -1.66740773e+07 -9.52374924e+06 2.91801521e+06 -1.00500739e+07 -5.32322210e+06 -1.78408949e+07 -1.74622836e+07 -5.83005745e+06 -7.12184654e+06 -1.77838625e+07 -8.19168399e+06 -1.72131946e+07 -1.46845785e+07 3.02444153e+06 -1.74898875e+07 -1.77528938e+07 -1.22899573e+07 4.00119571e+06 -1.76391465e+07 -1.69773070e+07 -9.30956376e+06 2.18033733e+06 -1.68629701e+07 -7.05381760e+06 -8.41184820e+06 -1.72511274e+07 -1.97541956e+06 -1.68775690e+07 -1.74132007e+07 2.92167412e+06 4.00386293e+06] [-1.03909336e+07 -6.67032595e+06 -1.85317970e+07 -1.35400346e+07 -1.78319823e+07 -1.79230920e+07 -8.36864257e+06 4.76746785e+06 -1.07276182e+07 -8.72402574e+06 -2.00489968e+07 -1.87143477e+07 -6.56760310e+06 -8.11605407e+06 -1.87992896e+07 -7.08226033e+06 -1.90657861e+07 -1.37617509e+07 1.51513142e+06 -1.83446180e+07 -1.84349221e+07 -1.42947788e+07 3.09234629e+06 -1.93026468e+07 -1.78755422e+07 -8.76174958e+06 1.33671802e+06 -1.80372359e+07 -3.84512815e+06 -7.69333243e+06 -1.81933043e+07 -2.00156859e+06 -1.76566225e+07 -1.87905790e+07 3.23724876e+06 3.28402462e+06] [-9.71483561e+06 -8.72699419e+06 -1.53772549e+07 -1.14670185e+07 -1.49496580e+07 -1.47531587e+07 -7.25534138e+06 3.23703304e+06 -9.41771624e+06 -6.38363521e+06 -1.73513753e+07 -1.63554485e+07 -4.29862089e+06 -4.82566983e+06 -1.56973069e+07 -1.75600962e+06 -1.57422945e+07 -1.20315082e+07 3.22441028e+05 -1.51547020e+07 -1.55677027e+07 -1.34081632e+07 2.89726817e+06 -1.62596835e+07 -1.55918279e+07 -6.32924915e+06 2.55037868e+06 -1.52125506e+07 4.22946441e+05 -6.28963249e+06 -1.51349787e+07 6.12000587e+05 -1.48185556e+07 -1.58673600e+07 4.74061317e+06 3.76794130e+06] [-8.51532863e+06 -1.09596257e+07 -1.12252830e+07 -8.47262377e+06 -1.09348259e+07 -1.09128702e+07 -5.47982790e+06 -1.11632899e+06 -7.63444768e+06 -3.42083225e+06 -1.32458280e+07 -1.28772940e+07 -3.45133069e+06 -2.63019868e+06 -1.13017203e+07 4.79587068e+06 -1.15201471e+07 -9.04839164e+06 -2.08091032e+06 -1.11975600e+07 -1.17724151e+07 -1.07975366e+07 9.55404101e+05 -1.21794415e+07 -1.23922314e+07 -4.15483267e+06 1.50758427e+06 -1.17106863e+07 4.21618813e+06 -4.97323340e+06 -1.11289202e+07 4.13419853e+06 -1.12490879e+07 -1.20018997e+07 5.13122661e+06 2.97337297e+06] [-7.76085316e+06 -1.51547740e+07 -6.76228611e+06 -8.39901351e+06 -6.76482293e+06 -6.67242738e+06 -6.66413556e+06 -7.99235822e+06 -6.46385089e+06 -3.56134178e+06 -8.42032761e+06 -9.16710844e+06 -1.34215812e+06 5.63946225e+05 -7.15175325e+06 5.50422696e+06 -6.55879179e+06 -9.50039012e+06 -7.00546610e+06 -6.63440906e+06 -7.76215003e+06 -9.42688169e+06 -1.49825720e+06 -7.68163339e+06 -8.96366333e+06 -3.24814008e+06 5.88784782e+05 -7.87919971e+06 4.27349562e+06 -5.50769240e+06 -6.72027561e+06 3.65747265e+06 -7.65158485e+06 -7.67209153e+06 6.84125584e+06 2.73542659e+06] [-6.31305889e+06 -1.69528661e+07 -2.93914657e+06 -8.34991712e+06 -2.75222960e+06 -3.43450294e+06 -8.42797009e+06 -1.74463777e+07 -6.04810739e+06 -7.67250363e+06 -4.74930506e+06 -6.47181626e+06 -5.90522018e+05 8.21592216e+05 -4.33646122e+06 1.26118428e+06 -2.97948558e+06 -9.38452954e+06 -1.13454090e+07 -2.95657971e+06 -4.80190498e+06 -9.19688361e+06 -3.86382739e+06 -4.06579627e+06 -6.46684418e+06 -5.34720141e+06 -1.35540309e+06 -5.10356930e+06 -1.61214409e+06 -6.95285463e+06 -3.12883233e+06 1.50564152e+05 -5.00130399e+06 -4.31682375e+06 7.62811267e+06 2.40861661e+06] [-7.16966169e+06 -1.43939486e+07 -4.57868430e+06 -1.00921213e+07 -4.02264182e+06 -5.65852497e+06 -1.17779283e+07 -2.29149919e+07 -8.67784884e+06 -1.34028086e+07 -6.76808821e+06 -8.50869849e+06 -3.76583959e+06 -3.35701213e+06 -6.66166239e+06 -6.34469055e+06 -5.32870116e+06 -1.09481514e+07 -1.30383778e+07 -4.96826889e+06 -6.82689718e+06 -1.12577810e+07 -5.65227678e+06 -5.83035420e+06 -8.37700967e+06 -1.11474288e+07 -4.70377807e+06 -7.36227759e+06 -1.02766909e+07 -1.09970600e+07 -5.10789092e+06 -5.63606149e+06 -7.18773076e+06 -6.34033523e+06 4.42578939e+06 3.16601195e+05] [-1.01711406e+07 -1.31855551e+07 -8.84799989e+06 -1.30103238e+07 -7.96968700e+06 -1.00935870e+07 -1.30230371e+07 -2.25567940e+07 -1.22935407e+07 -1.84036155e+07 -1.06327951e+07 -1.17624006e+07 -8.35708584e+06 -8.72983424e+06 -1.09011073e+07 -1.37620502e+07 -1.03209087e+07 -1.27398659e+07 -1.25844096e+07 -9.32478962e+06 -1.05503974e+07 -1.30400105e+07 -7.62315288e+06 -1.01063227e+07 -1.16343719e+07 -1.52118579e+07 -9.10906687e+06 -1.13701207e+07 -1.50672671e+07 -1.34953769e+07 -9.46711797e+06 -1.05444238e+07 -1.10432081e+07 -1.05864675e+07 -1.72056058e+06 -3.39114075e+06] [-1.23168970e+07 -1.33615653e+07 -1.20474880e+07 -1.61582279e+07 -1.07140532e+07 -1.32925397e+07 -1.26913619e+07 -2.24151874e+07 -1.51377778e+07 -2.31510233e+07 -1.36650270e+07 -1.44575985e+07 -1.03217736e+07 -1.09338567e+07 -1.43389622e+07 -1.97695658e+07 -1.38981150e+07 -1.47124828e+07 -1.09302425e+07 -1.25794668e+07 -1.34126000e+07 -1.48541900e+07 -8.56724077e+06 -1.32798929e+07 -1.42642191e+07 -1.80376243e+07 -1.11774520e+07 -1.43713098e+07 -1.54162353e+07 -1.43710044e+07 -1.27290649e+07 -1.32835311e+07 -1.38894675e+07 -1.38897336e+07 -5.12090134e+06 -5.57557059e+06] [-1.02755571e+07 -8.84472599e+06 -1.28710318e+07 -1.72033225e+07 -1.13584079e+07 -1.38016220e+07 -9.19841164e+06 -1.72140854e+07 -1.47130033e+07 -2.02823039e+07 -1.34845026e+07 -1.49298742e+07 -9.26034362e+06 -1.00985788e+07 -1.50367516e+07 -1.66844927e+07 -1.44665770e+07 -1.64159481e+07 -3.44958372e+06 -1.34824699e+07 -1.40716946e+07 -1.32996403e+07 -5.46657396e+06 -1.39632606e+07 -1.46626809e+07 -1.62664858e+07 -7.96413422e+06 -1.47434561e+07 -1.07375989e+07 -1.14052900e+07 -1.34841635e+07 -9.10791644e+06 -1.41697348e+07 -1.45439054e+07 -4.87911824e+06 -3.64047622e+06] [-8.14290915e+06 -1.00262597e+07 -1.03520902e+07 -1.63924190e+07 -8.82197996e+06 -1.14319311e+07 -5.66327966e+06 -1.42830174e+07 -1.18172354e+07 -1.72251073e+07 -1.01013407e+07 -1.18670865e+07 -6.95348037e+06 -8.69775223e+06 -1.22465547e+07 -1.13741411e+07 -1.20308458e+07 -1.52599214e+07 1.42675952e+06 -1.07307083e+07 -1.13236985e+07 -9.32319723e+06 -3.88296263e+06 -1.15207183e+07 -1.16830419e+07 -1.07054386e+07 -5.59545094e+06 -1.19885971e+07 -8.88334817e+06 -6.53167950e+06 -1.07427078e+07 -5.00713184e+06 -1.14227028e+07 -1.17966681e+07 -3.98933130e+06 -2.59294749e+06] [-4.40159620e+06 -6.67736535e+06 -6.27822935e+06 -1.36125616e+07 -5.18447079e+06 -7.04415228e+06 -3.94536505e+06 -6.05159941e+06 -7.04869674e+06 -8.56009828e+06 -5.54475031e+06 -6.92264868e+06 -2.69420783e+06 -4.97423699e+06 -7.31820810e+06 -4.30972145e+06 -7.64216066e+06 -1.34859167e+07 6.64298428e+06 -6.60931655e+06 -7.05957203e+06 -4.53513304e+06 2.35992102e+05 -7.20772309e+06 -6.89258461e+06 -3.83253882e+06 -4.26738375e+05 -7.11267371e+06 -5.26531115e+06 -2.37478932e+06 -6.37811117e+06 2.34892073e+05 -6.81726266e+06 -7.27643745e+06 -1.65734164e+06 4.86784928e+05] [-2.32602090e+06 -5.03687838e+06 -2.62091245e+06 -1.03122973e+07 -1.87974346e+06 -3.28364582e+06 -1.40098922e+06 3.74697798e+05 -3.55524623e+06 -2.47852228e+06 -2.16808003e+06 -2.51581370e+06 2.60405499e+04 -2.73690941e+06 -2.80607380e+06 1.88942559e+06 -4.12148163e+06 -1.07060597e+07 8.61194976e+06 -2.82725152e+06 -2.99938333e+06 -1.84630113e+05 1.86907169e+06 -3.59534950e+06 -2.58286879e+06 1.48120747e+06 1.81274381e+06 -2.85015286e+06 -2.82939900e+06 8.83340467e+05 -2.54671337e+06 3.88485638e+06 -2.57960437e+06 -3.29067930e+06 -1.48887247e+06 5.81779588e+05] [-1.64061593e+06 -3.59407851e+06 -7.89083657e+05 -7.93631587e+06 -1.83532244e+05 -1.49749922e+06 -4.90639824e+05 2.12327775e+06 -2.42349187e+06 -8.05839479e+05 -6.29521149e+05 -4.42871976e+05 3.38027727e+05 -2.29169070e+06 -6.06736173e+05 3.08338782e+06 -2.36749291e+06 -8.61005036e+06 6.84429155e+06 -9.72322886e+05 -8.44095112e+05 1.28950867e+06 1.29545669e+06 -1.74058523e+06 -4.11127711e+05 2.75700160e+06 1.21463614e+06 -8.75728120e+05 -2.96983016e+06 7.94521746e+05 -7.00877885e+05 3.78674467e+06 -4.69662168e+05 -1.30405238e+06 -2.01927809e+06 -1.92134737e+05] [-1.64361825e+06 -2.23545775e+06 2.81788162e+05 -5.29013593e+06 6.41960010e+05 -2.85991036e+05 -1.03047479e+06 7.68882728e+05 -2.23681048e+06 -7.20742686e+04 1.16088049e+05 4.21276829e+05 6.95228200e+05 -1.25689341e+06 6.53287258e+05 2.16673795e+06 -1.05833254e+06 -6.46439964e+06 3.12559646e+06 2.25927854e+05 3.60558770e+05 8.33342701e+05 2.96720716e+05 -6.34775459e+05 6.50971099e+05 2.47137041e+06 6.89362624e+05 2.23258505e+05 -4.41408574e+06 -9.06440887e+05 4.23247401e+05 1.19019884e+06 6.14595743e+05 -3.00223333e+05 -1.07063014e+06 -1.50232561e+05] [-1.10544915e+06 -1.62509695e+06 5.42159848e+04 -2.74167154e+06 2.43367223e+05 -2.29776934e+05 -7.53392906e+05 -1.81055022e+05 -1.36532153e+06 -7.63075535e+05 -1.06074644e+05 6.72169651e+04 1.63721420e+05 -8.88355013e+05 2.06831933e+05 4.48812947e+05 -6.37564978e+05 -3.13560062e+06 6.36307685e+05 4.23125026e+04 1.38207186e+05 -9.53390796e+04 -2.71635738e+05 -4.31220474e+05 2.45732957e+05 7.79511597e+05 -6.54498909e+04 -1.63150812e+04 -2.63451534e+06 -8.35309860e+05 1.13273465e+05 -2.59722234e+05 2.01435553e+05 -2.73049824e+05 -6.10954986e+05 -2.70758574e+05] [-1.24887194e+05 -1.20829856e+05 -1.38828312e+04 -2.62735192e+05 3.68535899e+03 -3.66334768e+04 -1.01096217e+05 -8.78653986e+04 -1.58421302e+05 -1.28733156e+05 -2.03125915e+04 -1.47873118e+04 -5.44996599e+04 -1.41417254e+05 -9.88728385e+03 -2.57876901e+04 -6.94649845e+04 -2.78547418e+05 2.81054434e+04 -1.64218812e+04 -3.24175752e+03 -2.55051561e+04 -6.76268331e+04 -4.99661887e+04 -1.57154190e+03 8.82095030e+03 -8.52021427e+04 -2.56510704e+04 -2.56023689e+05 -1.00578769e+05 -1.30778678e+04 -6.10464666e+04 -4.65700028e+03 -4.87712138e+04 -1.22090463e+05 -5.37076723e+04] [-4.17789280e+03 -2.56156036e+04 1.85038116e+04 -9.59003207e+03 1.98759967e+04 1.36936722e+04 2.28088669e+03 -3.13601047e+04 -4.90828139e+03 -4.53334026e+03 1.86175549e+04 1.60014388e+04 4.24988560e+03 -2.36844235e+03 1.85112314e+04 2.46480520e+04 1.51457120e+04 -8.86300437e+03 -7.01475415e+03 1.89782246e+04 1.82728979e+04 1.41207791e+04 -1.21056370e+04 1.54273953e+04 1.54674565e+04 1.77505101e+04 -8.92822776e+03 1.35595614e+04 -2.39731425e+04 1.30011714e+04 1.87635643e+04 6.65225273e+03 1.63013625e+04 1.52093444e+04 1.50299166e+03 -9.73810110e+02] [ 1.30692910e+02 5.28949036e+02 -7.37443594e+01 -3.96903977e+02 -9.36865585e+01 -6.14111381e+01 -2.83784933e+02 -2.34751257e+00 -3.08676999e+02 4.07594056e+02 -1.17397519e+02 -2.63600176e+02 7.68894489e+01 1.91758911e+02 -4.87038423e+01 1.83719468e+02 -1.00133877e+02 -8.98192933e+02 2.89944773e+02 -1.23868870e+02 -1.51123882e+02 -2.09376245e+02 1.67054220e+02 -2.13687156e+02 -1.34016461e+02 -2.01750911e+01 2.63846465e+02 -1.04496388e+02 1.24769621e+02 -6.74924345e+02 -9.99240432e+01 2.62100226e+02 -6.53641267e+01 -1.62293980e+02 1.97777724e+02 3.98579386e+02] [-2.79801013e+04 7.77047103e+03 -8.74053425e+03 -1.21859775e+05 -1.25604488e+04 -1.36931483e+04 -1.73798773e+05 -8.37608665e+04 -8.58495681e+04 -5.53111864e+03 -3.06626673e+04 -6.17534866e+04 9.98860836e+04 9.13929706e+04 -3.25643918e+04 -3.09283003e+04 -1.00783361e+04 -1.83918892e+05 7.38148788e+03 -2.05243920e+04 -4.20575610e+04 -9.78289963e+04 1.07286395e+05 -2.65015478e+04 -5.53096392e+04 -6.02820662e+04 1.50726716e+05 -3.43599108e+04 -5.95104649e+04 -1.36266630e+05 -1.72117346e+04 3.63781864e+04 -3.53221946e+04 -3.66341227e+04 2.01045763e+05 1.90828230e+05] [-1.46484278e+05 -3.38967435e+05 -3.27237440e+04 -3.47001859e+05 -4.73880914e+03 -1.04721239e+05 -3.28941819e+05 -8.13768764e+05 -3.19423080e+05 -5.04346722e+05 -1.17002816e+05 -2.10821018e+05 1.03361543e+05 2.01736490e+04 -1.34228787e+05 -1.86738657e+05 -1.05907042e+05 -3.65159703e+05 -2.21290147e+05 -6.92223962e+04 -1.37945543e+05 -2.26346487e+05 6.01552216e+04 -1.22227370e+05 -1.87713334e+05 -2.60563518e+05 1.09302536e+05 -1.65355257e+05 -4.20968613e+05 -3.07124481e+05 -8.52692679e+04 -5.18431033e+04 -1.37417446e+05 -1.27490306e+05 4.33723135e+05 3.45332267e+05] [-7.15257236e+05 -9.90666287e+05 -2.55038676e+05 -1.37426486e+06 -1.66401652e+05 -4.58816974e+05 -1.37796416e+06 -2.40570909e+06 -1.14122789e+06 -1.27286639e+06 -4.59508475e+05 -8.48447704e+05 5.15351403e+05 4.04435955e+05 -6.22015508e+05 -9.66953233e+05 -4.16718853e+05 -1.61437791e+06 -1.06949252e+06 -3.12423465e+05 -5.61154919e+05 -8.55587714e+05 1.97426999e+05 -4.54253097e+05 -8.06309334e+05 -9.89434350e+05 5.51419136e+05 -6.64677884e+05 -1.58730561e+06 -1.31387518e+06 -4.11660590e+05 -7.18724585e+05 -6.67518125e+05 -5.80799631e+05 1.38079478e+06 1.05877089e+06] [-9.08017735e+05 1.94665969e+05 -1.05437603e+06 -2.32038582e+06 -9.70009432e+05 -1.32359656e+06 -2.79528374e+06 -3.33480302e+06 -2.24805192e+06 -1.10693176e+06 -1.26990887e+06 -2.00074509e+06 7.79106366e+05 7.28507858e+05 -1.57136724e+06 -1.32634323e+06 -1.18493207e+06 -3.19256590e+06 -4.41610985e+05 -1.30648982e+06 -1.64038855e+06 -1.61473148e+06 1.09299094e+06 -1.32342053e+06 -1.95914237e+06 -1.91418700e+06 1.57951731e+06 -1.66185246e+06 -2.89444375e+06 -2.86276314e+06 -1.31257158e+06 -5.45853567e+05 -1.64422644e+06 -1.54667545e+06 2.75527608e+06 2.53960282e+06] [-1.88103705e+06 9.43301489e+05 -2.66199644e+06 -3.80809101e+06 -2.55830906e+06 -2.92601125e+06 -4.48316648e+06 -2.84802835e+06 -3.53510412e+06 -1.39814323e+06 -3.00505936e+06 -3.86347751e+06 1.23062664e+06 9.51238420e+05 -3.32370660e+06 -2.43141530e+06 -2.76867231e+06 -4.93567182e+06 2.48634871e+05 -3.01410034e+06 -3.42431673e+06 -3.40113257e+06 2.09548691e+06 -3.00363972e+06 -3.76034593e+06 -2.90815423e+06 2.97821655e+06 -3.31691248e+06 -3.05889093e+06 -4.23960764e+06 -2.98953109e+06 -1.27023086e+06 -3.36460187e+06 -3.38007807e+06 4.17331275e+06 3.86008793e+06] [-3.08935611e+06 2.71355552e+06 -5.52479742e+06 -5.39075900e+06 -5.57405807e+06 -5.34765422e+06 -7.05148221e+06 3.35013400e+04 -5.04895476e+06 4.39771753e+05 -5.46565454e+06 -6.48304350e+06 7.41787168e+05 5.45125500e+05 -5.88626816e+06 -2.41936013e+06 -5.28009839e+06 -7.61592878e+06 8.27133959e+05 -5.92036997e+06 -6.30144575e+06 -6.23729887e+06 3.17095679e+06 -5.83054273e+06 -6.31903391e+06 -3.76794286e+06 4.13467983e+06 -5.76152660e+06 -1.92181029e+06 -6.41726703e+06 -5.78853776e+06 -1.49503528e+06 -5.86157073e+06 -6.12648305e+06 4.50456865e+06 4.88631792e+06] [-4.88471092e+06 4.85387304e+06 -9.18365842e+06 -7.92704956e+06 -9.32248801e+06 -8.60282408e+06 -9.08078672e+06 3.73232141e+06 -7.12511367e+06 1.62843323e+06 -8.80792916e+06 -9.79377384e+06 -8.70748913e+04 -3.64871254e+05 -9.23015553e+06 -3.35586723e+06 -8.61536448e+06 -1.12257801e+07 1.38007081e+06 -9.61195393e+06 -9.88747062e+06 -9.04302691e+06 4.58126707e+06 -9.31455068e+06 -9.62471080e+06 -5.42269288e+06 5.30768063e+06 -8.95770564e+06 -1.82506958e+06 -8.41397447e+06 -9.32255102e+06 -2.02128590e+06 -9.21110725e+06 -9.61473516e+06 4.35694145e+06 5.48961056e+06] [-5.07697934e+06 7.21642260e+06 -1.36985699e+07 -8.82810228e+06 -1.39736890e+07 -1.24465576e+07 -1.04880005e+07 8.04788333e+06 -8.00475426e+06 3.37592560e+06 -1.30521367e+07 -1.36132205e+07 -2.18542086e+06 -2.44557835e+06 -1.34326771e+07 -3.80772758e+06 -1.25394312e+07 -1.31425092e+07 3.67248767e+06 -1.42168227e+07 -1.42655786e+07 -1.11259331e+07 5.79435903e+06 -1.35171662e+07 -1.35579114e+07 -7.71165590e+06 5.66965800e+06 -1.27328626e+07 -1.50084074e+06 -8.81752936e+06 -1.36475958e+07 -2.78097563e+05 -1.30753891e+07 -1.36663487e+07 2.98825970e+06 5.14186726e+06] [-6.67258031e+06 4.84980230e+06 -1.87222472e+07 -9.84557076e+06 -1.87839479e+07 -1.71942900e+07 -1.01551880e+07 1.29859864e+07 -8.40470730e+06 2.19159456e+06 -1.82798888e+07 -1.73910256e+07 -5.54697591e+06 -6.53922047e+06 -1.81093472e+07 -4.61259942e+06 -1.78800000e+07 -1.35571069e+07 5.60013162e+06 -1.89680375e+07 -1.86934807e+07 -1.23518426e+07 5.64616399e+06 -1.87255822e+07 -1.72339566e+07 -7.71597513e+06 3.94722425e+06 -1.70390626e+07 -1.22051444e+06 -7.20966733e+06 -1.84527448e+07 5.88800837e+05 -1.71894790e+07 -1.81050259e+07 5.81833437e+05 3.32659147e+06] [-8.70437181e+06 7.49106050e+05 -2.09941425e+07 -1.04652176e+07 -2.09331887e+07 -1.89895929e+07 -8.59759153e+06 1.81943237e+07 -8.23063506e+06 1.24005567e+06 -2.09154912e+07 -1.84496908e+07 -7.30142277e+06 -8.49249321e+06 -1.94467234e+07 -2.83174973e+06 -2.02638611e+07 -1.22885686e+07 6.13632896e+06 -2.07080626e+07 -1.99321116e+07 -1.35634822e+07 5.28569077e+06 -2.09322635e+07 -1.79085955e+07 -5.98320091e+06 3.04584199e+06 -1.84040684e+07 2.45047362e+06 -5.62941320e+06 -2.03186520e+07 9.65944837e+05 -1.82019175e+07 -1.97659904e+07 -6.65505141e+05 2.20974275e+06] [-9.68825042e+06 -4.18093347e+06 -1.76613791e+07 -1.14316428e+07 -1.74932809e+07 -1.59318647e+07 -5.99466297e+06 1.78814971e+07 -8.05698356e+06 1.11891327e+06 -1.81675554e+07 -1.55115120e+07 -5.53414691e+06 -6.68172051e+06 -1.56663164e+07 1.40712807e+06 -1.76849794e+07 -1.26285574e+07 5.61080697e+06 -1.71083522e+07 -1.61820696e+07 -1.20622332e+07 4.31045717e+06 -1.81044256e+07 -1.45090281e+07 -2.06103360e+06 3.04935210e+06 -1.53113207e+07 4.66517424e+06 -4.77804331e+06 -1.68808714e+07 2.36455925e+06 -1.46018644e+07 -1.69032192e+07 -7.32983664e+05 1.46152560e+06] [-7.84705404e+06 -4.83007106e+06 -1.07674832e+07 -9.83263562e+06 -1.07560327e+07 -9.72562266e+06 -4.00095746e+06 1.36589768e+07 -6.59946789e+06 4.03819520e+06 -1.08719512e+07 -9.62955961e+06 -1.62116478e+06 -2.37012639e+06 -9.16653664e+06 6.51595655e+06 -1.08816069e+07 -1.16823811e+07 4.86348317e+06 -1.03910852e+07 -9.72775499e+06 -7.58958115e+06 4.38025422e+06 -1.13100446e+07 -9.01103392e+06 1.57029611e+06 4.71892196e+06 -9.35967453e+06 6.72911255e+06 -2.46259106e+06 -1.03067708e+07 4.98282394e+06 -8.66922381e+06 -1.04470440e+07 5.79209369e+05 2.35388786e+06] [-4.50432115e+06 -6.83593718e+06 -3.41789407e+06 -6.46454615e+06 -3.80403050e+06 -2.92921630e+06 -2.91450571e+06 5.03427508e+06 -3.01273538e+06 6.39121108e+06 -3.04485935e+06 -3.29020311e+06 1.38371937e+06 1.69771112e+06 -2.08229688e+06 1.11002306e+07 -3.03422239e+06 -8.98362558e+06 1.95403701e+06 -3.34565524e+06 -3.14633971e+06 -2.55203620e+06 2.72054005e+06 -3.75330158e+06 -3.26840784e+06 4.76753429e+06 4.41142287e+06 -2.88560462e+06 7.03615777e+06 -5.50752042e+05 -3.22660345e+06 7.96029022e+06 -2.59120991e+06 -3.24856501e+06 3.18539455e+06 2.99342176e+06] [-3.11982889e+06 -1.11012084e+07 2.98404913e+06 -5.38921874e+06 2.21448948e+06 2.97772268e+06 -5.00765199e+06 -8.10738238e+06 -1.61431199e+06 5.06433419e+06 3.35454405e+06 1.20469641e+06 3.57794662e+06 5.89720921e+06 3.00615137e+06 7.59582937e+06 3.67983872e+06 -9.58358734e+06 -7.27885840e+06 3.22971676e+06 1.97170702e+06 -1.35474359e+06 -1.61465299e+06 2.49701019e+06 8.09937236e+05 4.30821405e+06 2.09487426e+06 2.11787283e+06 2.62833887e+06 -2.98543754e+06 3.02209455e+06 3.45926981e+06 1.73132336e+06 2.37927531e+06 5.77715953e+06 2.59180811e+06] [-2.77446827e+06 -1.14584690e+07 5.07479158e+06 -5.46609976e+06 4.48013226e+06 4.59800943e+06 -8.47374444e+06 -1.88745217e+07 -2.01577215e+06 2.99413879e+05 5.49199820e+06 2.35858784e+06 3.78226891e+06 5.99035439e+06 3.79913303e+06 -2.27824138e+05 5.72434747e+06 -9.53123670e+06 -1.30380779e+07 5.42282151e+06 3.29175316e+06 -3.12608552e+06 -3.98758760e+06 4.72972032e+06 1.63010241e+06 -4.57745817e+05 -9.90135916e+04 3.24354120e+06 -6.26477774e+06 -6.47760391e+06 4.89264995e+06 -2.95391150e+06 2.53552154e+06 4.12062484e+06 7.36591546e+06 2.57516843e+06] [-4.91636249e+06 -8.67427057e+06 1.10986826e+06 -7.70910252e+06 1.08886949e+06 1.94854476e+05 -1.13142386e+07 -2.29231764e+07 -5.94037688e+06 -8.75448861e+06 1.05872521e+06 -1.84914227e+06 -1.33686924e+05 9.57217449e+05 -1.20049011e+06 -1.14352321e+07 9.65828955e+05 -9.57196433e+06 -1.45012587e+07 1.32308425e+06 -6.36045374e+05 -6.74418665e+06 -5.23412501e+06 7.68196311e+05 -2.23223533e+06 -8.24283870e+06 -3.50536351e+06 -1.26269638e+06 -1.37301203e+07 -1.08350374e+07 6.08639523e+05 -1.03849209e+07 -1.79402410e+06 -3.52403042e+05 4.76307660e+06 9.02661196e+05] [-7.44458466e+06 -4.61439668e+06 -6.41681417e+06 -8.53233466e+06 -5.95135449e+06 -7.09433833e+06 -1.36651314e+07 -2.16645098e+07 -9.84325099e+06 -1.53169050e+07 -6.76469258e+06 -8.73048109e+06 -4.84957798e+06 -4.52002742e+06 -9.11623265e+06 -2.05572217e+07 -6.58159739e+06 -8.15608398e+06 -1.32310874e+07 -6.56175353e+06 -7.91885536e+06 -1.11290183e+07 -5.15086627e+06 -6.37475759e+06 -8.97148152e+06 -1.60463422e+07 -6.23572092e+06 -8.40812803e+06 -1.47680111e+07 -1.30976535e+07 -7.09995048e+06 -1.45419001e+07 -8.90959217e+06 -7.68887797e+06 1.08859194e+06 -7.68206511e+05] [-7.89751619e+06 -1.70798823e+06 -1.20690923e+07 -1.03743051e+07 -1.14960774e+07 -1.20895403e+07 -1.35126817e+07 -1.94139851e+07 -1.22200629e+07 -1.79222233e+07 -1.25082655e+07 -1.42244515e+07 -7.05802627e+06 -6.35685936e+06 -1.50607933e+07 -2.34518044e+07 -1.16543464e+07 -9.54169295e+06 -8.94548733e+06 -1.26451875e+07 -1.37483588e+07 -1.39419060e+07 -3.87196847e+06 -1.18404523e+07 -1.44833537e+07 -1.96015544e+07 -6.33604558e+06 -1.35755859e+07 -1.23614793e+07 -1.33177728e+07 -1.28854743e+07 -1.34467786e+07 -1.40570596e+07 -1.30132593e+07 8.74355343e+03 -4.88269110e+05] [-6.27273019e+06 5.64943109e+05 -1.41443323e+07 -1.13005833e+07 -1.31703048e+07 -1.40793788e+07 -9.09193753e+06 -1.59320993e+07 -1.20474005e+07 -1.74411978e+07 -1.40329087e+07 -1.64104498e+07 -7.35412808e+06 -6.62531078e+06 -1.73499792e+07 -1.97686999e+07 -1.37627139e+07 -1.05444750e+07 -1.51495596e+06 -1.49354370e+07 -1.59335473e+07 -1.28217472e+07 -1.54615456e+06 -1.39191097e+07 -1.66854364e+07 -1.87774217e+07 -4.27284210e+06 -1.56104863e+07 -7.82734980e+06 -9.77203352e+06 -1.49329558e+07 -8.46883562e+06 -1.58589914e+07 -1.50288486e+07 -3.77012737e+04 6.05350487e+05] [-3.62078236e+06 -2.16502354e+06 -1.08794582e+07 -1.00148159e+07 -9.94691944e+06 -1.09852778e+07 -5.49959257e+06 -1.13998553e+07 -7.90404406e+06 -1.25804824e+07 -1.02743570e+07 -1.27762402e+07 -4.62715309e+06 -4.35250508e+06 -1.36468630e+07 -1.19434107e+07 -1.05982049e+07 -9.15711013e+06 2.96347410e+06 -1.15620724e+07 -1.25999490e+07 -8.83746688e+06 3.59154122e+05 -1.08633651e+07 -1.30999062e+07 -1.21240232e+07 -1.18659271e+06 -1.22281109e+07 -2.45892537e+06 -4.49580692e+06 -1.15138383e+07 -2.98934206e+06 -1.25358546e+07 -1.17099138e+07 1.10164481e+06 1.74893874e+06] [-1.87722529e+06 -2.75162825e+06 -7.17433655e+06 -8.21746710e+06 -6.57042662e+06 -7.08672786e+06 -3.27153050e+06 -3.15845040e+06 -4.01001500e+06 -5.36114737e+06 -6.37331267e+06 -8.03990632e+06 -1.95938609e+06 -2.04590901e+06 -8.80766393e+06 -4.48264288e+06 -7.01132023e+06 -7.50706081e+06 6.12170697e+06 -7.61256244e+06 -8.39872044e+06 -5.00634603e+06 2.48920568e+06 -7.26773139e+06 -8.38043777e+06 -5.34769795e+06 1.72548976e+06 -7.81732988e+06 2.38844532e+06 -6.62862761e+05 -7.48446256e+06 2.09163547e+06 -8.14943895e+06 -7.77627418e+06 1.21990700e+06 2.29802435e+06] [-1.31122922e+06 -2.56315047e+06 -4.21507938e+06 -6.07849805e+06 -3.77799179e+06 -4.17490346e+06 3.24038907e+05 1.89103486e+06 -1.68723567e+06 -1.38504811e+06 -3.43351257e+06 -4.26689817e+06 -8.54649898e+05 -1.17239902e+06 -4.89666309e+06 2.57952388e+05 -4.28893142e+06 -5.27670981e+06 6.61844015e+06 -4.40284404e+06 -4.70789411e+06 -1.39246355e+06 2.19988222e+06 -4.25253728e+06 -4.63346710e+06 -1.07755471e+06 1.72454872e+06 -4.38350228e+06 4.67184468e+06 2.41540136e+06 -4.33592957e+06 4.50308616e+06 -4.60797708e+06 -4.52938554e+06 -7.06484644e+05 4.12045991e+05] [-8.36689440e+05 -1.95274760e+06 -1.96797439e+06 -3.70278753e+06 -1.71847050e+06 -1.97502858e+06 9.60769189e+05 3.15756001e+06 -4.92754636e+05 7.34631836e+05 -1.55501772e+06 -1.59471732e+06 -4.77183815e+05 -9.10384772e+05 -1.96811570e+06 2.50013810e+06 -2.23545600e+06 -3.55886213e+06 4.99941152e+06 -2.00027602e+06 -1.97632097e+06 1.90355381e+05 1.25546172e+06 -2.09579733e+06 -1.77329807e+06 1.17746650e+06 9.07368347e+05 -1.85493536e+06 3.26573215e+06 2.11993688e+06 -1.93068338e+06 4.16676243e+06 -1.84947478e+06 -2.07163188e+06 -1.32113690e+06 -4.09121294e+05] [-6.18589029e+05 -3.44632099e+05 -5.10384856e+05 -2.47904780e+06 -4.01393393e+05 -5.89345155e+05 -8.94627802e+04 5.78657721e+05 -8.33409386e+05 6.74187202e+05 -3.03986573e+05 -2.47972635e+05 -1.08917015e+05 -5.83251076e+05 -2.57689233e+05 1.49706478e+06 -8.65211014e+05 -3.23449167e+06 2.57745959e+06 -5.20823844e+05 -4.29922032e+05 4.39197025e+05 2.74033147e+05 -7.48596658e+05 -2.62413648e+05 1.06534359e+06 2.40317442e+05 -3.78242641e+05 -1.13838118e+06 -1.93921572e+04 -4.10249471e+05 1.92111887e+06 -2.41353262e+05 -6.35478809e+05 -6.83539000e+05 -1.74450020e+05] [-4.21200796e+05 -3.80445492e+05 1.10200139e+04 -1.34845123e+06 6.93340058e+04 -7.66313255e+04 -3.37784128e+05 -4.31991133e+05 -6.39994381e+05 -1.57510704e+05 1.44451878e+04 -1.57790391e+03 1.56485432e+05 -1.77390173e+05 2.80924552e+04 6.55820265e+04 -2.12134601e+05 -1.68225625e+06 5.08980698e+05 -2.56252471e+03 1.83807279e+04 4.70898042e+04 -2.63547711e+04 -1.45357074e+05 4.16188224e+04 1.62443432e+05 6.69341672e+04 -1.74392449e+04 -1.10806073e+06 -3.52160167e+05 2.94122901e+04 1.76792326e+05 4.09475312e+04 -1.51544335e+05 -1.77434670e+05 -6.85071467e+04] [-5.10054949e+04 -5.65496490e+04 5.67473755e+04 -1.42590924e+05 5.42021127e+04 5.26120231e+04 -1.01820159e+05 -6.71873626e+04 -5.38730709e+04 1.60635415e+04 4.57578195e+04 5.17286230e+04 8.86026801e+04 4.84257735e+04 6.09969539e+04 -1.29694880e+03 3.27239736e+04 -2.21604373e+05 8.77453221e+04 5.51509427e+04 5.20649119e+04 -3.57433220e+04 6.99499132e+04 3.55753820e+04 6.33678161e+04 1.31702749e+04 9.74439389e+04 5.54791666e+04 -1.32044166e+05 -8.93866186e+04 6.54060304e+04 2.26663892e+04 5.88516390e+04 2.57688353e+04 8.07290994e+04 8.26554803e+04] [-3.46723239e+03 -1.10041242e+04 5.25100193e+03 -4.90386445e+03 5.77675087e+03 3.32696918e+03 4.07105942e+02 -1.47808495e+04 -3.22166755e+03 -3.54314644e+03 4.71949247e+03 4.06747669e+03 1.47413229e+03 -1.54534046e+03 4.92266467e+03 9.32914628e+03 3.34449101e+03 -4.44297634e+03 -3.69174260e+03 5.42764924e+03 5.00144372e+03 3.74038559e+03 -6.62745011e+03 3.46859451e+03 3.87876713e+03 4.71016459e+03 -6.17150339e+03 3.07255724e+03 -1.26321811e+04 3.67448487e+03 5.27422121e+03 2.99551671e+03 4.38463829e+03 3.56486760e+03 -1.03413346e+02 -2.16638346e+03] [ 1.67075875e+04 6.76734457e+04 -9.40921221e+03 -5.08087614e+04 -1.19651816e+04 -7.79813745e+03 -3.63419209e+04 -4.09654465e+02 -3.94254902e+04 5.21059746e+04 -1.50075494e+04 -3.37647427e+04 9.81578814e+03 2.46695500e+04 -6.30943631e+03 2.36314964e+04 -1.27076028e+04 -1.14958063e+05 3.70461020e+04 -1.59494007e+04 -1.93965293e+04 -2.69146775e+04 2.14988289e+04 -2.74476012e+04 -1.72334213e+04 -2.46556152e+03 3.36895129e+04 -1.33812961e+04 1.59328360e+04 -8.63976970e+04 -1.28600274e+04 3.35636047e+04 -8.26513052e+03 -2.08422207e+04 2.52689590e+04 5.09456590e+04] [-9.85123436e+03 7.49656354e+04 -3.89247955e+04 -1.20380271e+05 -4.21570507e+04 -3.78079491e+04 -1.22403974e+05 -3.83184335e+04 -9.61252517e+04 4.80334326e+04 -5.14503112e+04 -8.39683117e+04 2.38575900e+04 3.46511968e+04 -4.21371555e+04 -4.37458838e+03 -4.30253691e+04 -2.18898978e+05 2.60427290e+04 -5.00600123e+04 -6.10212451e+04 -8.99617585e+04 4.32666776e+04 -6.65726722e+04 -6.18483215e+04 -4.53251584e+04 6.83478180e+04 -5.05868316e+04 -1.57616214e+04 -1.72145608e+05 -4.49933454e+04 2.74289349e+04 -4.59165667e+04 -6.13667074e+04 7.49355278e+04 1.00605974e+05] [-1.52069016e+05 -2.73667693e+05 -5.97387459e+04 -3.27346994e+05 -3.89290793e+04 -1.36244352e+05 -3.22727113e+05 -7.34647144e+05 -3.40095786e+05 -4.60377468e+05 -1.54753799e+05 -2.42320660e+05 6.56065243e+04 -2.47667083e+04 -1.49944854e+05 -1.82998371e+05 -1.38210723e+05 -3.71617973e+05 -1.91524120e+05 -1.07939837e+05 -1.68423817e+05 -2.56082826e+05 5.64206167e+04 -1.58258652e+05 -2.15568072e+05 -2.35112971e+05 9.71787642e+04 -1.91416341e+05 -3.87294879e+05 -3.85442984e+05 -1.10642927e+05 -5.06051957e+04 -1.64261879e+05 -1.61464183e+05 4.04505862e+05 3.38337947e+05] [-3.56003665e+05 -4.15425061e+05 -2.13631695e+05 -7.18747691e+05 -1.86362165e+05 -3.59291578e+05 -1.14305654e+06 -1.71136369e+06 -7.37309128e+05 -8.00511674e+05 -3.54035817e+05 -5.94372432e+05 3.83565102e+05 2.83418608e+05 -4.62247727e+05 -7.37120164e+05 -2.50766805e+05 -9.11688866e+05 -5.86791638e+05 -3.07176593e+05 -4.79199554e+05 -6.68667397e+05 2.87055075e+05 -3.03627574e+05 -6.27193623e+05 -7.95405265e+05 5.11709888e+05 -5.01549749e+05 -1.10638957e+06 -9.65085368e+05 -3.29186214e+05 -5.25163725e+05 -5.29295953e+05 -3.81959081e+05 1.17970473e+06 9.49458097e+05] [-7.71159786e+05 4.32734712e+05 -8.85920294e+05 -1.67338129e+06 -8.17394791e+05 -1.14304128e+06 -2.38655364e+06 -1.83289918e+06 -1.76182875e+06 -1.04530187e+06 -1.18137965e+06 -1.61758150e+06 8.63642217e+05 6.46940533e+05 -1.35099651e+06 -1.54870950e+06 -9.90287326e+05 -2.18921574e+06 -2.85765082e+05 -1.10559835e+06 -1.34817793e+06 -1.60476373e+06 1.14031414e+06 -1.07862299e+06 -1.58678668e+06 -1.82454053e+06 1.61944024e+06 -1.37849073e+06 -1.80404982e+06 -2.15484092e+06 -1.08791842e+06 -9.03814478e+05 -1.41613651e+06 -1.32634585e+06 2.26924007e+06 2.08759279e+06] [-2.24922218e+06 1.52371046e+06 -3.36700422e+06 -3.02095792e+06 -3.31622871e+06 -3.39321038e+06 -3.44794241e+06 6.69401457e+05 -3.19173937e+06 -7.02373684e+05 -3.50688252e+06 -3.98265245e+06 4.98774893e+05 2.98206966e+05 -3.72851499e+06 -2.69328006e+06 -3.37454260e+06 -3.61739347e+06 5.78728940e+04 -3.49494475e+06 -3.70053699e+06 -4.06322348e+06 1.68539158e+06 -3.58321874e+06 -3.79162675e+06 -2.48524546e+06 2.33609572e+06 -3.62127966e+06 -3.32497247e+05 -3.30481643e+06 -3.53276254e+06 -2.09424035e+06 -3.70210941e+06 -3.89960918e+06 2.57630483e+06 2.60455654e+06] [-3.36934555e+06 3.38728809e+06 -6.69938036e+06 -3.88696964e+06 -6.79295019e+06 -6.20932771e+06 -5.30489695e+06 5.57605445e+06 -4.18547904e+06 8.43806942e+05 -6.44056055e+06 -6.84786691e+06 -2.52708640e+05 -4.52385344e+05 -6.76903685e+06 -3.10192267e+06 -6.26629472e+06 -4.99737373e+06 6.49247764e+05 -6.79081985e+06 -6.81391913e+06 -6.96015791e+06 2.83354410e+06 -6.73938112e+06 -6.60768817e+06 -3.38862737e+06 3.44900743e+06 -6.40100699e+06 2.34603606e+06 -4.54266561e+06 -6.79159039e+06 -2.58150295e+06 -6.56971143e+06 -6.97990680e+06 2.22916889e+06 2.88304499e+06] [-5.53053673e+06 4.52444139e+06 -1.19241169e+07 -5.99880865e+06 -1.21982977e+07 -1.09094281e+07 -8.49083805e+06 1.16035821e+07 -6.30604732e+06 2.24350576e+06 -1.16476904e+07 -1.14735451e+07 -1.95761175e+06 -2.75057109e+06 -1.15047489e+07 -4.49062603e+06 -1.12361231e+07 -8.05880796e+06 1.38290332e+06 -1.21304913e+07 -1.18959987e+07 -1.13109682e+07 3.98723099e+06 -1.19163143e+07 -1.11364076e+07 -5.87157670e+06 4.05248949e+06 -1.09155913e+07 2.95496073e+06 -6.86172404e+06 -1.17932266e+07 -3.50033014e+06 -1.12457529e+07 -1.20473503e+07 5.71514407e+05 2.25682283e+06] [-5.83414091e+06 7.38692497e+06 -1.72901891e+07 -6.01782512e+06 -1.79085099e+07 -1.51850412e+07 -1.02921479e+07 1.85780937e+07 -6.51139913e+06 6.12290853e+06 -1.61288981e+07 -1.52722336e+07 -4.86133639e+06 -5.36062790e+06 -1.61655593e+07 -4.16879936e+06 -1.56645760e+07 -9.04916703e+06 3.82421964e+06 -1.74078177e+07 -1.68286564e+07 -1.33982831e+07 5.37972397e+06 -1.67055920e+07 -1.52457617e+07 -6.89966096e+06 4.24020297e+06 -1.50419760e+07 4.35058172e+06 -6.86919651e+06 -1.68395308e+07 -1.71970468e+06 -1.54976861e+07 -1.63939294e+07 -1.80671169e+06 1.66198134e+06] [-8.80458799e+06 1.85203275e+06 -2.08499695e+07 -8.66626786e+06 -2.12594939e+07 -1.85072928e+07 -8.82584513e+06 2.12262519e+07 -7.24159600e+06 4.85251542e+06 -1.98722153e+07 -1.74873178e+07 -7.84349505e+06 -8.84893784e+06 -1.89174600e+07 -2.64040174e+06 -1.98045994e+07 -1.13329922e+07 5.17129040e+06 -2.04569452e+07 -1.96357801e+07 -1.31709970e+07 3.18543688e+06 -2.06712134e+07 -1.73124866e+07 -4.51745741e+06 1.33115015e+06 -1.77878370e+07 3.81949016e+06 -5.08010850e+06 -2.00412940e+07 5.60735176e+04 -1.78601340e+07 -1.94337176e+07 -5.24043490e+06 -1.58536171e+06] [-9.40666947e+06 1.17999642e+05 -1.91047390e+07 -8.82331319e+06 -1.94789148e+07 -1.64282933e+07 -4.52888992e+06 2.60044299e+07 -6.18283115e+06 7.47559473e+06 -1.75657914e+07 -1.39835531e+07 -8.30306482e+06 -8.94832391e+06 -1.55683974e+07 1.90853660e+06 -1.82138024e+07 -1.06439662e+07 7.79090628e+06 -1.81409259e+07 -1.64989825e+07 -1.01209211e+07 2.78220294e+06 -1.86875126e+07 -1.36017051e+07 6.99533539e+05 5.01139981e+05 -1.49753527e+07 7.37566718e+06 -2.32115428e+06 -1.77855966e+07 2.98057737e+06 -1.44893197e+07 -1.69277330e+07 -7.47253644e+06 -2.99736304e+06] [-1.01260248e+07 -2.96749367e+06 -1.18889721e+07 -1.24816710e+07 -1.19875311e+07 -1.04845942e+07 -2.51865276e+06 2.45400169e+07 -7.00713885e+06 7.78012577e+06 -1.04834598e+07 -7.50923286e+06 -3.36272188e+06 -5.80536826e+06 -8.35173362e+06 4.90972948e+06 -1.26542352e+07 -1.45125720e+07 8.72510506e+06 -1.09336863e+07 -9.06240901e+06 -5.80868865e+06 3.31163200e+06 -1.24023159e+07 -6.65601996e+06 6.18848824e+06 2.95071783e+06 -8.67086864e+06 5.84391269e+06 -1.73726769e+06 -1.07689082e+07 3.16686464e+06 -7.64292318e+06 -1.08590824e+07 -6.91076251e+06 -2.11791195e+06] [-8.56837949e+06 -6.32943570e+06 -2.41750926e+06 -1.22561503e+07 -2.35045704e+06 -2.21205039e+06 1.47046651e+06 1.55413977e+07 -5.87991138e+06 5.79003705e+06 -7.57792169e+05 6.88725098e+05 6.91780669e+05 -2.16058983e+06 4.03173688e+05 7.21914733e+06 -3.90988435e+06 -1.38691564e+07 6.76851845e+06 -1.48406422e+06 1.90113168e+05 1.39303190e+06 2.05585440e+06 -3.18083170e+06 1.42996134e+06 1.03083537e+07 2.72355470e+06 -5.50626927e+05 4.01132005e+06 1.32823828e+06 -1.71482619e+06 3.64969560e+06 5.81365774e+05 -1.99195748e+06 -5.65165799e+06 -2.05602105e+06] [-3.96713138e+06 -8.42614188e+06 5.03703649e+06 -7.83296999e+06 4.69012317e+06 4.91644034e+06 1.73410213e+06 1.97028763e+06 -1.45364673e+06 6.32121535e+06 7.43139759e+06 6.46769374e+06 3.02750098e+06 2.40649558e+06 6.83670419e+06 8.76649539e+06 4.72215307e+06 -9.98405327e+06 5.72377058e+05 6.01064305e+06 6.53192930e+06 5.83788135e+06 -7.84093490e+05 4.97535786e+06 6.31059810e+06 1.14449780e+07 1.10962410e+06 5.79591635e+06 1.38231607e+06 3.01485463e+06 5.46968139e+06 4.40994208e+06 6.13034212e+06 5.66421075e+06 -1.95714811e+06 -1.40382049e+06] [-1.89288730e+06 -1.10489498e+07 1.03202065e+07 -5.42699434e+06 9.46145040e+06 9.72262283e+06 -4.03918973e+06 -1.26780061e+07 5.38288154e+05 4.13165735e+06 1.22687968e+07 9.10806763e+06 6.48055799e+06 7.61465524e+06 9.92567051e+06 1.46358824e+06 1.06951811e+07 -9.35557718e+06 -1.06547516e+07 1.13242065e+07 9.88082323e+06 4.14036680e+06 -3.77932464e+06 1.03242259e+07 8.36186938e+06 7.27859100e+06 5.88472760e+05 9.35530455e+06 -5.69027330e+06 -1.46725288e+06 1.04011356e+07 -2.76209230e+06 8.51767234e+06 9.75081534e+06 3.79349027e+06 4.11316548e+05] [-1.32730296e+06 -8.70285486e+06 1.04390308e+07 -2.54242256e+06 9.55869204e+06 9.94142698e+06 -7.32993910e+06 -1.98364707e+07 1.08494765e+06 -1.31730876e+05 1.22927376e+07 8.63748725e+06 5.67281408e+06 7.78451635e+06 8.65408924e+06 -8.13525573e+06 1.14354381e+07 -5.42740300e+06 -1.73431437e+07 1.16195057e+07 9.36739204e+06 9.67940043e+05 -5.50331395e+06 1.11907097e+07 7.52917985e+06 6.12377975e+05 -1.54157421e+06 8.86098527e+06 -1.13421414e+07 -4.51637381e+06 1.03763573e+07 -1.05755346e+07 7.38204284e+06 9.80262281e+06 5.36470017e+06 3.17577319e+05] [-3.77132368e+06 -3.04717274e+06 3.03619398e+06 -3.30130793e+06 2.82778873e+06 2.27155817e+06 -9.35576578e+06 -2.09311847e+07 -3.77555476e+06 -9.63479581e+06 4.34056549e+06 1.33824214e+06 5.38298374e+05 1.51778751e+06 2.25463651e+05 -1.96026156e+07 3.49710683e+06 -2.93787481e+06 -1.64800953e+07 3.79497738e+06 2.04635581e+06 -4.16812416e+06 -5.54891318e+06 4.00298430e+06 5.40006820e+05 -9.12521245e+06 -4.44201380e+06 1.29241059e+06 -1.60839242e+07 -8.17339519e+06 2.63451189e+06 -1.70284255e+07 7.07360800e+04 2.15303355e+06 2.56682415e+06 -9.58393940e+05] [-4.39535990e+06 4.56403243e+06 -6.20560962e+06 -4.18975760e+06 -6.18517814e+06 -5.99893850e+06 -1.22036537e+07 -1.68073479e+07 -7.44848934e+06 -1.34570929e+07 -5.25708933e+06 -7.49494762e+06 -2.44710691e+06 -1.59979582e+06 -9.44607353e+06 -2.55576364e+07 -4.79207882e+06 -2.81805386e+06 -1.12681195e+07 -6.13294216e+06 -7.35703372e+06 -9.25482428e+06 -1.75033443e+06 -4.75730669e+06 -8.19686602e+06 -1.69882903e+07 -3.13645779e+06 -7.17169525e+06 -1.36342160e+07 -9.99259511e+06 -6.88412630e+06 -1.64803159e+07 -8.36534706e+06 -6.38766020e+06 3.07642820e+06 1.59403429e+06] [-2.93537171e+06 1.01547646e+07 -1.19538065e+07 -3.91792234e+06 -1.20742151e+07 -1.08144544e+07 -1.09844761e+07 -1.35200934e+07 -8.58996493e+06 -1.24330355e+07 -1.11160602e+07 -1.35447033e+07 -4.29767313e+06 -1.98353112e+06 -1.51721946e+07 -2.34368173e+07 -9.44300696e+06 -3.48463718e+06 -5.07661662e+06 -1.26363995e+07 -1.35854958e+07 -1.11086270e+07 1.56435257e+06 -1.02152613e+07 -1.42244603e+07 -1.92502390e+07 -1.06207584e+06 -1.24624234e+07 -7.66756104e+06 -9.93660215e+06 -1.28006805e+07 -1.07543053e+07 -1.35830699e+07 -1.17257905e+07 4.44879865e+06 4.55207779e+06] [-1.75709107e+06 8.97863456e+06 -1.36078841e+07 -3.99217445e+06 -1.33293637e+07 -1.26176484e+07 -7.81241609e+06 -1.08644981e+07 -7.84823089e+06 -1.19683197e+07 -1.31031215e+07 -1.59286642e+07 -4.70976840e+06 -2.22536144e+06 -1.70729947e+07 -1.88473758e+07 -1.13714674e+07 -3.57774317e+06 -6.25933024e+05 -1.45816130e+07 -1.57071068e+07 -1.14743914e+07 2.39714012e+06 -1.22318982e+07 -1.64853296e+07 -1.83744722e+07 3.03689594e+05 -1.45069379e+07 -2.00625020e+06 -7.41268322e+06 -1.44372622e+07 -6.96953406e+06 -1.54563396e+07 -1.37303953e+07 4.12175166e+06 4.46944406e+06] [-3.61254985e+05 3.59395665e+06 -1.11223652e+07 -3.41487703e+06 -1.05923153e+07 -1.06375224e+07 -3.24376717e+06 -6.16848281e+06 -4.34799614e+06 -9.09202107e+06 -1.08781969e+07 -1.30890453e+07 -3.99105721e+06 -1.90801802e+06 -1.39348561e+07 -1.10477309e+07 -9.72893278e+06 -2.37733139e+06 3.26133134e+06 -1.20831989e+07 -1.30390388e+07 -8.31687544e+06 2.50699435e+06 -1.03555727e+07 -1.35586565e+07 -1.27500159e+07 7.74219738e+05 -1.21334975e+07 4.20028761e+06 -2.76401282e+06 -1.18292174e+07 -1.38099709e+06 -1.27730188e+07 -1.14965810e+07 3.06705331e+06 2.97252675e+06] [-8.81705304e+05 -1.04828617e+06 -8.43511031e+06 -3.22255731e+06 -8.06077982e+06 -7.88433483e+06 -3.31213632e+05 4.33520925e+05 -1.73263609e+06 -3.56089174e+06 -7.74343089e+06 -9.14121907e+06 -3.29690501e+06 -1.30678823e+06 -9.94338866e+06 -4.11182283e+06 -7.27398981e+06 -1.47727388e+06 3.85815894e+06 -8.86448071e+06 -9.47741873e+06 -5.56041603e+06 1.88821318e+06 -7.83198903e+06 -9.61549479e+06 -6.36917197e+06 7.19277224e+05 -8.85609574e+06 1.01961160e+07 9.26262826e+05 -8.78322793e+06 2.48283988e+06 -9.41965931e+06 -8.59088483e+06 5.29139003e+05 5.77368418e+05] [-1.39901914e+06 -2.17419546e+06 -5.14291130e+06 -2.84305238e+06 -4.91758936e+06 -4.73639739e+06 1.74555579e+06 3.97018431e+06 -5.35777946e+05 -5.89826572e+05 -4.65330614e+06 -5.36536499e+06 -1.91467151e+06 -5.27938436e+05 -5.80470654e+06 -2.15365805e+05 -4.54250900e+06 -1.24399844e+06 3.44727282e+06 -5.20953858e+06 -5.46108175e+06 -3.07090884e+06 1.26040326e+06 -4.81365321e+06 -5.62038152e+06 -2.12131543e+06 7.83281346e+05 -5.28409173e+06 1.06974758e+07 2.57815218e+06 -5.28657854e+06 3.45511263e+06 -5.71349129e+06 -5.42136140e+06 -1.30687100e+06 -1.02372254e+06] [-9.41288130e+05 -1.64801631e+06 -2.77247642e+06 -9.87602401e+05 -2.72543572e+06 -2.38533916e+06 2.25325587e+06 3.97009493e+06 4.74168605e+05 1.06565428e+06 -2.24884659e+06 -2.32039022e+06 -1.93750599e+06 -8.09337217e+05 -2.69575260e+06 1.79453601e+06 -2.35456770e+06 5.23293120e+04 2.09073457e+06 -2.62197014e+06 -2.53762419e+06 -1.07707070e+06 3.48068268e+04 -2.47520674e+06 -2.46609587e+06 3.34057207e+05 -5.18665914e+05 -2.54538233e+06 7.70450974e+06 2.40843072e+06 -2.73127008e+06 2.86346493e+06 -2.69765910e+06 -2.66297771e+06 -2.28112823e+06 -1.82924826e+06] [ 5.35957627e+04 2.50503184e+05 -6.98342021e+05 -3.61975745e+05 -7.30498316e+05 -5.03899658e+05 1.26901273e+06 1.09193357e+06 5.14191144e+05 1.14496934e+06 -2.50226535e+05 -2.46509893e+05 -9.84743659e+05 -4.74509825e+05 -4.14568711e+05 1.67124783e+06 -5.06406754e+05 -4.08402163e+05 1.81470747e+06 -6.23949470e+05 -4.84052805e+05 6.42719047e+05 -2.15977636e+05 -5.16499050e+05 -3.93705512e+05 9.63028548e+05 -5.61735644e+05 -4.47693279e+05 1.60756707e+06 1.13909199e+06 -5.95122591e+05 2.11191480e+06 -4.52762588e+05 -4.72999687e+05 -1.25232711e+06 -9.03343434e+05] [-2.20715671e+05 -4.28050391e+04 -3.05467816e+04 -8.37741107e+05 -9.09467011e+03 -6.03665500e+04 -1.74964146e+05 -3.67215842e+05 -3.71528102e+05 8.88185234e+02 -3.56712975e+04 -5.68947421e+04 8.04649104e+04 1.25943906e+04 -1.66176381e+04 4.32430268e+04 -1.31203550e+05 -1.13976941e+06 4.17763908e+05 -4.98303691e+04 -5.38331610e+04 3.33393115e+04 -5.58992386e+04 -1.07764945e+05 -4.93788408e+04 2.67648205e+04 1.43600416e+04 -3.99101685e+04 -5.41958496e+05 -2.71036831e+05 -1.50239037e+04 2.61277337e+05 -3.83409765e+04 -1.44434548e+05 -1.52995255e+05 -1.08737456e+05] [-1.13768334e+05 -1.08823411e+05 -1.12282091e+04 -2.75441912e+05 -5.06334828e+03 -2.85321711e+04 -1.68131676e+05 -1.23797672e+05 -1.39207736e+05 -6.78484222e+04 -4.44784145e+04 -5.27090513e+04 6.47793066e+04 1.36803935e+04 -2.62846562e+04 -6.68457976e+04 -5.42147512e+04 -3.69845563e+05 7.00320305e+04 -2.13507059e+04 -4.18544190e+04 -1.02004556e+05 2.02121558e+04 -5.03675067e+04 -3.75655666e+04 -6.63939397e+04 6.80520674e+04 -3.02789686e+04 -1.78281684e+05 -1.61945346e+05 -8.73045018e+03 -1.27610964e+04 -3.77902076e+04 -6.96504715e+04 3.41828563e+04 3.77397004e+04] [-5.50527677e+02 1.45642010e+03 -1.14886196e+03 -9.84555667e+02 -1.12694996e+03 -1.14579056e+03 -2.69924321e+03 2.44505570e+03 -8.32990919e+02 1.23500361e+03 -8.59478103e+02 -1.11864503e+03 -1.90335934e+02 -3.85598754e+02 -1.24244901e+03 -1.47395781e+02 -9.29923150e+02 -1.54854080e+03 1.62109490e+03 -1.11143022e+03 -1.21761584e+03 8.10107405e+01 2.36749800e+03 -9.61817474e+02 -1.21294819e+03 4.85893804e+02 1.84560776e+03 -1.04599859e+03 -8.71063083e+02 1.51235387e+01 -1.13465241e+03 5.54677328e+02 -1.13517243e+03 -1.13908415e+03 2.57896029e+02 2.06269953e+03] [-7.96111845e-01 5.70792021e-02 4.26165255e-01 9.82255076e-01 -5.30046477e-01 5.42295688e-01 -5.28967153e-02 -1.68554906e-01 -4.98611999e-01 6.78367760e-01 3.84686010e-02 -7.72120925e-01 -7.73273623e-03 -2.27466481e-02 7.38095713e-01 -9.73036179e-01 6.57795667e-02 7.79219821e-01 5.27514168e-02 -7.67999147e-01 -2.76223906e-01 -3.59570881e-01 -2.09891635e-01 -8.54666366e-01 8.74615668e-01 5.69708000e-01 8.27866109e-01 6.25074411e-01 4.74655830e-01 -7.80248650e-01 1.45172985e-01 -9.91087981e-01 7.45955354e-01 -1.91644886e-01 5.01559889e-01 -9.78181156e-01] [ 2.16928249e+04 1.04368798e+05 -3.17133563e+04 -8.17403662e+04 -3.75114398e+04 -2.37070441e+04 -1.08012963e+05 -2.98841362e+04 -5.88738412e+04 8.70747910e+04 -2.58034080e+04 -6.31376065e+04 1.12075704e+04 2.19559947e+04 -3.59379949e+04 8.39040423e+03 -2.84963963e+04 -1.79366118e+05 4.76722665e+04 -4.49834762e+04 -5.75398376e+04 -6.61798188e+04 3.94145695e+04 -4.75021943e+04 -5.08032087e+04 -3.53275492e+04 4.37679960e+04 -3.79816526e+04 -6.54638178e+04 -1.61912731e+05 -3.46027876e+04 2.62926786e+04 -3.61321578e+04 -4.69410043e+04 4.49531427e+04 7.73702653e+04] [-4.36315734e+04 1.12758828e+04 -1.07712713e+05 -1.59023897e+05 -1.11728901e+05 -1.19311326e+05 -3.05544661e+05 -1.72891266e+05 -1.45481803e+05 4.50771208e+03 -1.42688343e+05 -1.88081556e+05 1.05481677e+05 8.05948846e+04 -1.39267982e+05 -1.91180326e+04 -1.04294828e+05 -2.76564720e+05 3.95061973e+04 -1.41395374e+05 -1.71149864e+05 -1.91815672e+05 1.53972061e+05 -1.32694416e+05 -1.81790386e+05 -1.11294300e+05 2.07452843e+05 -1.48171800e+05 -1.50156795e+05 -2.69469389e+05 -1.25848360e+05 1.64273271e+04 -1.49849715e+05 -1.44774574e+05 3.06084169e+05 2.93642567e+05] [-2.69159502e+05 -9.70193138e+04 -2.64784442e+05 -3.96841484e+05 -2.83114764e+05 -3.14594442e+05 -9.54805995e+05 -4.36587517e+05 -3.49691740e+05 -1.49907991e+05 -2.87691084e+05 -3.74521149e+05 2.69425772e+05 1.59179470e+05 -3.52939624e+05 -5.68910272e+05 -2.25640137e+05 -5.30030983e+05 -2.16395574e+05 -3.26574209e+05 -3.82031811e+05 -5.72031075e+05 2.78245102e+05 -2.72203712e+05 -4.01943107e+05 -4.70253426e+05 4.40305922e+05 -3.50949115e+05 -5.02743216e+05 -7.00077823e+05 -3.06207571e+05 -5.02532885e+05 -3.98299155e+05 -3.26521066e+05 6.48132472e+05 5.93951019e+05] [-1.18194963e+06 4.29497784e+05 -1.11195625e+06 -1.39769593e+06 -1.11378688e+06 -1.23622306e+06 -2.25649797e+06 3.15341496e+05 -1.43447758e+06 -4.31156083e+05 -1.24669727e+06 -1.36089397e+06 6.80800456e+05 3.29683084e+05 -1.33851012e+06 -1.89494959e+06 -1.15378915e+06 -1.67376250e+06 -2.99018136e+05 -1.21006567e+06 -1.29852452e+06 -1.87722411e+06 9.11312603e+05 -1.19741936e+06 -1.34131495e+06 -1.40598323e+06 1.33479220e+06 -1.29370436e+06 -5.77990252e+05 -1.77416239e+06 -1.19242348e+06 -1.55647404e+06 -1.37978883e+06 -1.39429676e+06 1.32185457e+06 1.30215893e+06] [-2.96300357e+06 1.31976392e+06 -4.32357055e+06 -2.77042102e+06 -4.29549382e+06 -4.19223451e+06 -3.00197971e+06 3.56487069e+06 -3.01786413e+06 -3.52496062e+05 -4.31060024e+06 -4.46963819e+06 -3.87326641e+05 -5.48311899e+05 -4.45228220e+06 -2.88137755e+06 -4.33072634e+06 -2.95130557e+06 -1.46942555e+05 -4.28272072e+06 -4.31488129e+06 -4.92649267e+06 1.17746485e+06 -4.50056666e+06 -4.21227311e+06 -2.31284912e+06 1.64485981e+06 -4.27131905e+06 1.99213799e+06 -2.86331213e+06 -4.36298012e+06 -2.68675541e+06 -4.36173700e+06 -4.75820907e+06 9.16046500e+05 1.27818696e+06] [-4.33872501e+06 3.03789198e+06 -8.35250219e+06 -3.56265341e+06 -8.59924507e+06 -7.50884032e+06 -5.35802269e+06 1.03455115e+07 -3.99748748e+06 1.81244715e+06 -7.95213013e+06 -7.85447290e+06 -1.22205591e+06 -1.39813840e+06 -8.07761102e+06 -4.26622344e+06 -7.80372869e+06 -4.32632595e+06 -2.85394821e+05 -8.27061619e+06 -8.04718960e+06 -8.71441644e+06 2.25194171e+06 -8.34927497e+06 -7.50136600e+06 -3.32762530e+06 2.76542082e+06 -7.56154361e+06 5.42652147e+06 -4.47354052e+06 -8.26220988e+06 -4.28103995e+06 -7.85510310e+06 -8.51566502e+06 -2.38699715e+05 8.01778976e+05] [-6.22556406e+06 4.24191852e+06 -1.39673591e+07 -4.19687625e+06 -1.45004469e+07 -1.23544654e+07 -8.19795849e+06 1.70388491e+07 -5.51696043e+06 3.54309545e+06 -1.31440373e+07 -1.25880352e+07 -3.61654258e+06 -3.94289873e+06 -1.31962873e+07 -5.94395501e+06 -1.28110455e+07 -5.37521349e+06 -9.30776494e+05 -1.39034665e+07 -1.33135994e+07 -1.31360246e+07 2.74523225e+06 -1.37059095e+07 -1.21768575e+07 -5.94394983e+06 2.48578277e+06 -1.23048469e+07 7.77285138e+06 -6.10410842e+06 -1.37202443e+07 -5.97275537e+06 -1.28232587e+07 -1.37602167e+07 -3.19697669e+06 -8.46085815e+05] [-8.74873839e+06 2.87471455e+06 -1.93553698e+07 -5.24178644e+06 -1.99244930e+07 -1.70758613e+07 -9.10307052e+06 2.52439088e+07 -6.23442971e+06 4.55043424e+06 -1.82446019e+07 -1.59268374e+07 -6.90857810e+06 -8.02347507e+06 -1.75506476e+07 -5.90821882e+06 -1.81560293e+07 -6.17790267e+06 1.55541623e+06 -1.88398033e+07 -1.76733577e+07 -1.51279303e+07 2.68703247e+06 -1.88697043e+07 -1.55930316e+07 -5.97761567e+06 1.38827205e+06 -1.64055868e+07 8.18324390e+06 -5.40325684e+06 -1.85888298e+07 -5.50721252e+06 -1.66360153e+07 -1.82345934e+07 -6.97115620e+06 -3.29853391e+06] [-1.19656488e+07 -1.89741335e+06 -1.98781170e+07 -8.36578719e+06 -2.03784083e+07 -1.75214990e+07 -7.22065845e+06 2.68166274e+07 -7.17278992e+06 5.03787172e+06 -1.85882614e+07 -1.48317599e+07 -8.44227153e+06 -1.01196249e+07 -1.68889521e+07 -3.44905584e+06 -1.94246881e+07 -9.58095164e+06 2.69417338e+06 -1.87633176e+07 -1.72560007e+07 -1.30128578e+07 2.59982232e+05 -1.97711583e+07 -1.44844162e+07 -1.59467357e+06 -1.26821686e+06 -1.60783425e+07 5.66406072e+06 -4.06286427e+06 -1.86240011e+07 -3.78161269e+06 -1.59341938e+07 -1.83102518e+07 -1.07495805e+07 -6.56927694e+06] [-1.34985863e+07 -4.65673219e+06 -1.56846745e+07 -1.13824036e+07 -1.58072899e+07 -1.41289490e+07 -2.70318155e+06 2.82867780e+07 -7.81361458e+06 5.98044561e+06 -1.41545519e+07 -9.50106284e+06 -7.88741175e+06 -1.07870227e+07 -1.14374670e+07 8.71070549e+05 -1.67344569e+07 -1.18706422e+07 5.81967858e+06 -1.40992519e+07 -1.17835309e+07 -7.88247662e+06 -6.54559410e+05 -1.60030207e+07 -8.90378332e+06 4.50922435e+06 -2.17857949e+06 -1.17420007e+07 3.40569160e+06 -2.02629179e+06 -1.41811776e+07 -1.72797797e+06 -1.07255714e+07 -1.41930240e+07 -1.34489762e+07 -8.09006641e+06] [-1.30694896e+07 -7.31919212e+06 -5.99283294e+06 -1.53227067e+07 -5.80686527e+06 -5.82784967e+06 1.67302996e+06 2.33721910e+07 -8.48570511e+06 5.69566491e+06 -3.61800436e+06 -1.35245220e+05 -3.98752088e+06 -8.28976485e+06 -1.63279499e+06 3.92600393e+06 -8.58375373e+06 -1.61741649e+07 7.35114594e+06 -4.26993776e+06 -1.67483575e+06 1.50426848e+05 -1.02873028e+06 -7.03881861e+06 8.55875245e+05 1.14017594e+07 -1.72834291e+06 -2.88650809e+06 -7.13720240e+05 1.11463094e+05 -4.64345073e+06 -1.04102113e+06 -1.26062909e+06 -5.16970589e+06 -1.39726134e+07 -7.65456576e+06] [-7.60098933e+06 -7.88665834e+06 4.13810891e+06 -1.14958314e+07 4.29587612e+06 3.72386412e+06 6.84687184e+06 1.34870729e+07 -3.79379144e+06 4.93186789e+06 7.89070647e+06 9.42317323e+06 -1.03922435e+06 -4.62747365e+06 7.53512065e+06 5.49831913e+06 2.06452541e+06 -1.15116508e+07 5.88086036e+06 5.94528045e+06 8.18355089e+06 9.51410474e+06 -2.09233239e+06 3.83427655e+06 9.69207669e+06 1.56218174e+07 -3.00952811e+06 6.46868345e+06 -3.37348339e+06 5.83328684e+06 5.16573026e+06 5.68747748e+05 7.74704670e+06 5.48265050e+06 -1.20983959e+07 -7.23607043e+06] [-3.24498413e+06 -8.04348314e+06 1.05797881e+07 -6.65477720e+06 1.02025674e+07 1.01456955e+07 3.72633796e+06 6.28638127e+05 4.07400911e+05 5.09505106e+06 1.48797835e+07 1.37906562e+07 2.98155658e+06 1.47442522e+06 1.22084283e+07 3.05050991e+06 1.00534478e+07 -7.77712578e+06 -2.85902217e+06 1.25332510e+07 1.31480914e+07 1.11928183e+07 -3.52048033e+06 1.11031166e+07 1.31346518e+07 1.38136502e+07 -2.47916681e+06 1.17484795e+07 -7.22946172e+06 5.21858554e+06 1.12643487e+07 -1.97370323e+06 1.18702563e+07 1.17832919e+07 -5.92472716e+06 -4.62501864e+06] [-8.23859802e+04 -6.14996226e+06 1.40445810e+07 -1.06794198e+06 1.29200208e+07 1.38180708e+07 -3.40708703e+06 -9.71191957e+06 3.55243708e+06 5.55516504e+06 1.76415284e+07 1.47775911e+07 6.68361650e+06 7.40838001e+06 1.36038814e+07 -3.91045440e+06 1.50917224e+07 -4.20481538e+06 -1.40672288e+07 1.58851865e+07 1.47377138e+07 7.87519628e+06 -4.20267753e+06 1.52780438e+07 1.35651863e+07 8.05974188e+06 -9.43801689e+05 1.40151435e+07 -1.11791485e+07 2.32424589e+05 1.43851246e+07 -8.40133399e+06 1.26972379e+07 1.44637861e+07 1.75638080e+06 -9.78217872e+05] [-3.03232820e+05 -2.30832802e+06 1.08574822e+07 1.00688443e+06 9.87907890e+06 1.06077955e+07 -5.47419518e+06 -1.28608440e+07 2.65151606e+06 5.62718270e+05 1.35879503e+07 1.10768159e+07 4.80626079e+06 5.55617651e+06 9.53673247e+06 -1.19652626e+07 1.19314288e+07 -4.40366687e+05 -1.58240101e+07 1.25132042e+07 1.11756868e+07 4.05184023e+06 -4.33895153e+06 1.23905968e+07 9.99342871e+06 1.11286599e+06 -2.12275182e+06 1.05323006e+07 -1.51306004e+07 -2.39538214e+06 1.10287579e+07 -1.32323701e+07 9.04332775e+06 1.10290623e+07 2.57707680e+06 -7.96764846e+05] [-4.15584045e+05 7.06116133e+06 1.74418051e+06 6.79060302e+05 1.02335268e+06 1.99065098e+06 -7.98453844e+06 -1.21145920e+07 -1.39892248e+06 -4.09439123e+06 4.11215258e+06 1.94553521e+06 1.31936696e+06 2.13910718e+06 -2.11666300e+05 -1.82884446e+07 3.27231258e+06 2.50531368e+05 -1.01998502e+07 2.40523621e+06 1.43568086e+06 -1.55894543e+06 -1.02455714e+06 3.58273507e+06 9.85393231e+05 -7.77359627e+06 -1.18253065e+06 1.70598503e+06 -1.69059062e+07 -6.07596249e+06 1.57759854e+06 -1.42898708e+07 4.61054156e+05 2.21057998e+06 3.18724376e+06 1.63503480e+06] [-1.29584111e+06 1.25883521e+07 -8.25008125e+06 -1.01892781e+06 -8.81617955e+06 -7.03974430e+06 -1.05024634e+07 -1.01598289e+07 -5.81390194e+06 -8.06247667e+06 -6.34395112e+06 -8.24598436e+06 -2.56666379e+06 -7.70829346e+05 -1.05338390e+07 -2.20716530e+07 -5.68771739e+06 -1.26290998e+06 -5.63903755e+06 -8.44576614e+06 -9.02179929e+06 -7.71839312e+06 1.67738546e+06 -6.09659393e+06 -9.09485883e+06 -1.48526132e+07 -6.28507943e+05 -7.89573880e+06 -1.37427021e+07 -8.96777911e+06 -8.72675195e+06 -1.23703591e+07 -8.95326645e+06 -7.15543279e+06 3.98782347e+06 4.10283298e+06] [-1.84700484e+06 1.25435569e+07 -1.23576618e+07 -6.75390469e+05 -1.27805765e+07 -1.09817128e+07 -9.27514944e+06 -8.42208607e+06 -7.02575034e+06 -9.69632038e+06 -1.15857793e+07 -1.36074449e+07 -3.67672845e+06 -1.02116874e+06 -1.50046642e+07 -2.03507803e+07 -9.60936924e+06 -7.19243757e+05 -3.79177672e+06 -1.30941111e+07 -1.37424411e+07 -1.04506937e+07 2.92528496e+06 -1.04871747e+07 -1.41408806e+07 -1.67830541e+07 8.62120300e+05 -1.24224396e+07 -5.11668981e+06 -8.57926852e+06 -1.30261473e+07 -9.78623491e+06 -1.34877889e+07 -1.16961896e+07 4.85872003e+06 5.22076430e+06] [-1.48742550e+06 7.70910167e+06 -1.26727675e+07 -1.21905432e+06 -1.26463643e+07 -1.17761341e+07 -6.83954880e+06 -5.49384788e+06 -5.96541030e+06 -9.85120490e+06 -1.31132331e+07 -1.50097169e+07 -3.24765656e+06 -7.76657304e+05 -1.55255589e+07 -1.57559063e+07 -1.06579318e+07 -4.19976576e+05 -1.05142771e+06 -1.36142896e+07 -1.44861817e+07 -1.10178779e+07 2.79744961e+06 -1.14977200e+07 -1.51500873e+07 -1.50293053e+07 1.86693103e+06 -1.34511100e+07 2.32593397e+06 -6.19833236e+06 -1.33838320e+07 -6.67049661e+06 -1.43162435e+07 -1.28980301e+07 3.80180912e+06 3.60621647e+06] [-9.98857316e+05 7.36849521e+05 -9.67860357e+06 -2.01865730e+06 -9.31766221e+06 -9.41638340e+06 -1.34713118e+06 -1.35222904e+06 -2.97279176e+06 -7.50969738e+06 -1.04763471e+07 -1.16541119e+07 -3.23059006e+06 -1.06509240e+06 -1.19177107e+07 -8.49848695e+06 -8.76037412e+06 -4.06394075e+05 1.72581195e+06 -1.05500902e+07 -1.12245208e+07 -7.88578778e+06 1.93411575e+06 -9.29613781e+06 -1.16535796e+07 -1.00106149e+07 9.19106221e+05 -1.06632109e+07 8.90399993e+06 -1.91039388e+06 -1.03153682e+07 -1.35798985e+06 -1.12376375e+07 -1.03844994e+07 1.72873166e+06 1.15219103e+06] [-1.19438032e+06 -1.57363253e+06 -7.26932905e+06 -1.80789855e+06 -7.01990784e+06 -6.80096640e+06 1.99080877e+06 4.41645346e+06 -6.01463977e+05 -1.94673077e+06 -7.13631409e+06 -7.77408509e+06 -2.74721390e+06 -5.75112404e+05 -8.36768206e+06 -2.56448452e+06 -6.29721919e+06 1.83517028e+05 2.86794575e+06 -7.58066997e+06 -7.87843462e+06 -4.94494734e+06 1.67236611e+06 -6.74477341e+06 -8.03313091e+06 -4.74448674e+06 7.74745528e+05 -7.57243035e+06 1.37354263e+07 1.89201533e+06 -7.56760016e+06 2.21105802e+06 -8.12367166e+06 -7.51751427e+06 -6.39323387e+05 -7.79971952e+05] [-1.35946048e+06 -1.38586897e+06 -5.07026730e+06 -5.91450675e+05 -4.96010421e+06 -4.54998846e+06 3.37453458e+06 6.57079476e+06 2.35225441e+05 4.20689352e+05 -4.84456806e+06 -5.20276703e+06 -2.60030659e+06 -5.06767654e+05 -5.44495191e+06 3.47898911e+05 -4.32768777e+06 1.29221802e+06 1.56430315e+06 -5.04404905e+06 -4.99210019e+06 -3.51475156e+06 7.16165106e+05 -4.67152500e+06 -5.19884724e+06 -1.85806007e+06 -9.15809748e+03 -5.09475901e+06 1.41544287e+07 2.66756097e+06 -5.22129606e+06 2.63397373e+06 -5.49945531e+06 -5.33037215e+06 -2.36388097e+06 -2.10324100e+06] [-7.70121648e+05 -9.62291629e+05 -2.99717359e+06 4.35846451e+05 -3.04596664e+06 -2.47260002e+06 3.27429695e+06 4.98028737e+06 8.93652230e+05 1.48502508e+06 -2.46107281e+06 -2.56119946e+06 -2.34067979e+06 -6.57495472e+05 -2.85615646e+06 1.67527422e+06 -2.37349272e+06 1.74095209e+06 9.14646146e+05 -2.75516616e+06 -2.59175022e+06 -1.35169112e+06 -3.14888217e+05 -2.59723625e+06 -2.60840743e+06 3.21736668e+05 -8.56241179e+05 -2.69319653e+06 9.92755070e+06 2.73394826e+06 -2.95658727e+06 2.33107231e+06 -2.92366624e+06 -2.83566377e+06 -2.70029952e+06 -2.41537923e+06] [ 5.69233289e+05 2.79858094e+05 -6.76217116e+05 1.11387526e+06 -7.58948349e+05 -4.04169084e+05 2.14944494e+06 1.68552911e+06 1.30545438e+06 1.18279306e+06 -3.48616662e+05 -2.97312855e+05 -1.20292957e+06 -3.19107509e+05 -4.75701580e+05 1.69703371e+06 -3.31557991e+05 1.58102140e+06 1.12489417e+06 -5.86770080e+05 -4.57271094e+05 6.35902348e+05 -3.14667883e+05 -4.15513630e+05 -3.93438543e+05 8.90143937e+05 -7.53023562e+05 -4.36989379e+05 3.74421800e+06 1.93663961e+06 -6.19164497e+05 1.96089107e+06 -5.32157532e+05 -3.85022175e+05 -1.33549394e+06 -1.18972275e+06] [ 4.84061417e+04 2.36597781e+04 1.00244492e+05 -3.66104607e+05 1.15541459e+05 6.32603808e+04 2.17756855e+05 -5.16325298e+05 -1.31067008e+05 -1.39501670e+05 -6.45870719e+03 -1.61063912e+04 3.48030332e+04 7.86826638e+04 8.40702465e+04 4.49701105e+04 2.00227593e+04 -5.04849619e+05 2.48758445e+05 6.46078946e+04 6.61937832e+04 1.49729974e+05 -1.69534117e+05 3.72063386e+04 2.99694170e+04 -9.95474283e+04 -1.27968051e+05 5.85660056e+04 -2.13805583e+05 -1.04600441e+05 9.38434026e+04 2.35632797e+05 5.69074476e+04 -1.26615292e+04 -1.40589934e+05 -2.09849682e+05] [-1.04476802e+05 -2.00898655e+05 -7.57929214e+03 -4.23268802e+05 3.47165730e+04 -9.78725894e+04 -4.80692542e+04 -3.11853239e+05 -2.45277134e+05 -3.91137745e+05 -1.82530523e+05 -1.94334937e+05 3.15305326e+04 -7.20275401e+04 -7.62166226e+04 -1.42251185e+05 -1.52950575e+05 -4.64014501e+05 9.66312739e+04 -4.73251044e+04 -6.69057378e+04 -1.10818037e+05 -3.91776505e+04 -1.16415900e+05 -1.11717169e+05 -2.84483429e+05 -6.33684549e+03 -1.01081857e+05 -2.69955486e+05 -1.91916283e+05 -3.13632747e+04 -8.76743267e+03 -8.67320748e+04 -1.75882553e+05 -9.27667793e+03 -2.38073994e+04] [-1.89140999e+03 4.99524214e+03 -3.93909106e+03 -3.37523474e+03 -3.86657528e+03 -3.92987752e+03 -9.25459063e+03 8.38084776e+03 -2.85720148e+03 4.23359504e+03 -2.94701133e+03 -3.83484540e+03 -6.54021148e+02 -1.32207981e+03 -4.25896601e+03 -5.07579714e+02 -3.18999975e+03 -5.30595900e+03 5.55565694e+03 -3.81115948e+03 -4.17456411e+03 2.75940518e+02 8.12036278e+03 -3.29588982e+03 -4.16105912e+03 1.66492205e+03 6.33049347e+03 -3.58497961e+03 -2.98398724e+03 4.91853018e+01 -3.88792644e+03 1.89831074e+03 -3.89420973e+03 -3.90523336e+03 8.88175385e+02 7.07467419e+03] [ 8.51364635e-01 4.02262462e-01 -9.13928765e-01 6.64160557e-01 -1.67613636e-01 -6.91471758e-01 -3.27589214e-01 6.43102484e-01 3.91026728e-01 -4.58783137e-01 6.80641017e-01 -8.56709284e-01 -1.45006154e-01 9.86727948e-02 4.87544302e-01 -4.52280573e-01 2.41819601e-01 -7.88478875e-01 6.93000379e-01 6.57393547e-01 -8.30082632e-01 -5.13604569e-01 -1.78647894e-01 3.24711073e-01 1.02754886e-01 3.71298728e-02 3.30956102e-01 1.72097302e-01 8.82282964e-01 6.99064072e-01 -4.60503500e-01 1.33045516e-01 7.00055868e-01 6.90558351e-01 1.35096284e-01 4.41569252e-01] [ 1.29101590e+04 5.55177444e+04 -1.77397856e+04 -2.90106951e+04 -2.03248561e+04 -1.13121206e+04 -4.75410687e+04 -3.86481676e+03 -2.31011604e+04 4.37563365e+04 -1.34472877e+04 -2.91805756e+04 1.08746430e+04 1.64332589e+04 -1.84360598e+04 5.26767902e+03 -1.45482632e+04 -7.51377322e+04 3.31022903e+04 -2.34435391e+04 -2.85582326e+04 -2.54324127e+04 1.89428926e+04 -2.41235617e+04 -2.34549840e+04 -1.22206953e+04 2.11106963e+04 -1.74323627e+04 -2.86989284e+04 -6.71324979e+04 -1.88393183e+04 1.24144238e+04 -1.66462466e+04 -2.21167715e+04 1.57127143e+04 3.42562000e+04] [ 1.01967986e+04 4.02640123e+04 -3.46240164e+04 -7.83246323e+04 -3.73867452e+04 -3.78066895e+04 -1.14540533e+05 -7.20289269e+04 -5.32874428e+04 5.03013858e+04 -3.88841913e+04 -6.63749381e+04 2.68383525e+04 3.38033081e+04 -4.09105411e+04 4.29835146e+04 -2.96968746e+04 -1.48719173e+05 7.16400092e+04 -4.98488556e+04 -6.07975936e+04 -5.34537135e+04 4.91847094e+04 -4.39571808e+04 -6.33677603e+04 -1.82092913e+04 7.11051439e+04 -4.92840868e+04 -6.67820908e+04 -1.07444671e+05 -3.99228618e+04 4.02508560e+04 -4.82485475e+04 -4.54678241e+04 6.65154339e+04 9.13752422e+04] [-2.50489021e+05 4.84325445e+04 -2.79783892e+05 -1.65617155e+05 -2.94977323e+05 -2.92523076e+05 -5.24660512e+05 2.23537340e+05 -1.81267431e+05 7.01649353e+03 -2.95717432e+05 -2.51230260e+05 8.72501884e+04 -1.76867944e+04 -2.69059453e+05 -4.37410359e+05 -2.42053139e+05 -1.42477199e+05 -1.50323577e+04 -3.10751577e+05 -2.87637426e+05 -4.74596707e+05 1.58118381e+05 -2.52778586e+05 -2.47141873e+05 -3.22540804e+05 2.08316709e+05 -2.64934518e+05 -2.49523134e+04 -4.20814801e+05 -2.82242314e+05 -3.97418430e+05 -2.99020589e+05 -2.93225499e+05 2.46699305e+05 2.51043231e+05] [-1.41925466e+06 6.18200722e+05 -1.27265165e+06 -1.39830059e+06 -1.34056626e+06 -1.27464324e+06 -2.34630412e+06 1.17580421e+06 -1.46674218e+06 -2.88310796e+04 -1.31686868e+06 -1.37237276e+06 6.56873496e+05 3.66590649e+05 -1.39353742e+06 -2.30361022e+06 -1.24106885e+06 -1.77161627e+06 -4.26993017e+05 -1.30646137e+06 -1.37563476e+06 -2.27486848e+06 7.24301083e+05 -1.33312982e+06 -1.31816608e+06 -1.25476819e+06 1.23101622e+06 -1.29959795e+06 -1.52838529e+04 -2.01343504e+06 -1.28907384e+06 -2.08374925e+06 -1.40986179e+06 -1.53456952e+06 9.74661486e+05 9.83700188e+05] [-3.50221647e+06 7.17899554e+05 -4.68728571e+06 -2.77956253e+06 -4.74018624e+06 -4.37949519e+06 -2.55379645e+06 5.51619912e+06 -2.96383155e+06 -1.62073245e+05 -4.50063533e+06 -4.52898976e+06 -9.70865412e+05 -9.35543931e+05 -4.64638610e+06 -3.21545210e+06 -4.63157128e+06 -2.62144421e+06 -6.17909053e+05 -4.50427666e+06 -4.44642561e+06 -5.58945698e+06 6.67135417e+05 -4.84181859e+06 -4.21769981e+06 -2.07784253e+06 9.93544232e+05 -4.43411772e+06 4.32665507e+06 -2.62569690e+06 -4.63362279e+06 -3.16410672e+06 -4.54835787e+06 -5.03614925e+06 -4.21318846e+05 1.47189877e+05] [-4.87904012e+06 3.58742688e+06 -9.42374084e+06 -2.52686699e+06 -9.90721150e+06 -8.12219465e+06 -5.20499195e+06 1.35276484e+07 -3.62108566e+06 3.13380343e+06 -8.44892952e+06 -8.19094254e+06 -2.39232873e+06 -2.09222755e+06 -8.82079643e+06 -5.13820612e+06 -8.41394520e+06 -2.95644375e+06 -1.56766106e+06 -9.23265154e+06 -8.79361473e+06 -9.59104999e+06 1.61291467e+06 -9.08599054e+06 -7.96032018e+06 -3.74288150e+06 1.66136667e+06 -8.10654827e+06 8.90730886e+06 -4.06391807e+06 -9.22331859e+06 -5.30358372e+06 -8.61613661e+06 -9.19597658e+06 -2.80317761e+06 -1.14172691e+06] [-6.94020151e+06 3.52575589e+06 -1.51539785e+07 -2.43401822e+06 -1.58513235e+07 -1.31467174e+07 -7.56108885e+06 2.16178781e+07 -4.60538113e+06 3.31110554e+06 -1.41061359e+07 -1.29550526e+07 -4.87875464e+06 -5.02192037e+06 -1.41343641e+07 -7.39587492e+06 -1.37578948e+07 -2.11679942e+06 -2.68960341e+06 -1.48569524e+07 -1.39810306e+07 -1.43409621e+07 1.82099054e+06 -1.46251862e+07 -1.25380678e+07 -6.46298021e+06 1.20518941e+06 -1.29968057e+07 1.23888333e+07 -4.69752201e+06 -1.48204436e+07 -7.95238143e+06 -1.36269314e+07 -1.45335281e+07 -6.44879802e+06 -3.58001559e+06] [-9.97342379e+06 -3.58316400e+04 -1.82109035e+07 -3.84534057e+06 -1.87539516e+07 -1.61354701e+07 -7.19284078e+06 2.71544722e+07 -5.64899207e+06 1.48842524e+06 -1.75636936e+07 -1.46504256e+07 -7.47283192e+06 -8.76507196e+06 -1.64004559e+07 -8.27826765e+06 -1.74804715e+07 -2.84935520e+06 -2.31625493e+06 -1.73903448e+07 -1.59300822e+07 -1.54442003e+07 1.07192383e+05 -1.79072919e+07 -1.39022620e+07 -5.69145638e+06 -9.95853340e+05 -1.53232134e+07 1.17221111e+07 -3.77876221e+06 -1.74481076e+07 -9.62810270e+06 -1.55841871e+07 -1.72762954e+07 -1.11074137e+07 -7.30521955e+06] [-1.32165569e+07 -3.95892964e+06 -1.75614229e+07 -6.40001594e+06 -1.79866613e+07 -1.59026144e+07 -3.99834223e+06 2.92154788e+07 -6.38541904e+06 2.09514186e+06 -1.66068473e+07 -1.21721532e+07 -8.78110888e+06 -1.06887039e+07 -1.45974959e+07 -5.89911733e+06 -1.78872646e+07 -5.41321679e+06 -3.04613296e+05 -1.61188957e+07 -1.41084901e+07 -1.20044964e+07 -2.13766468e+06 -1.75478732e+07 -1.16298463e+07 -9.08705590e+05 -3.56194114e+06 -1.41206989e+07 7.98253317e+06 -2.11436572e+06 -1.63155383e+07 -8.67169008e+06 -1.38391222e+07 -1.63435218e+07 -1.50988385e+07 -1.05939983e+07] [-1.48210889e+07 -6.67524728e+06 -1.13591472e+07 -9.80372085e+06 -1.14282959e+07 -1.08130701e+07 1.08090729e+05 2.66265950e+07 -7.55869990e+06 2.39544278e+06 -9.85789664e+06 -5.16782866e+06 -7.59074671e+06 -1.07848311e+07 -7.66393910e+06 -4.15012955e+06 -1.32031718e+07 -8.24455163e+06 7.94517385e+05 -9.39476331e+06 -6.96500259e+06 -5.76730496e+06 -3.85515726e+06 -1.18090402e+07 -4.45626863e+06 4.61666178e+06 -5.29243134e+06 -8.09036651e+06 1.22221559e+06 -5.94144192e+05 -9.91453777e+06 -9.49394256e+06 -7.27184112e+06 -1.04632350e+07 -1.73680624e+07 -1.20809633e+07] [-1.29940981e+07 -8.62596440e+06 -3.25868709e+06 -1.07106929e+07 -3.02656782e+06 -3.51024368e+06 6.35359136e+06 2.01534967e+07 -6.12995418e+06 1.08213568e+06 1.83295620e+05 3.91287644e+06 -7.34000457e+06 -1.08756519e+07 6.98786075e+05 -2.64550510e+06 -5.70449925e+06 -8.20750347e+06 2.17905191e+06 -6.69345159e+05 2.06064440e+06 3.84133702e+06 -6.46533134e+06 -3.36619993e+06 4.36435015e+06 1.10626324e+07 -8.89941394e+06 -1.16803719e+05 -4.96002697e+06 4.29310100e+06 -1.66941593e+06 -9.23088756e+06 1.12641496e+06 -1.75271631e+06 -2.03750634e+07 -1.45485656e+07] [-6.15708807e+06 -5.10449954e+06 4.91255305e+06 -6.11997052e+06 5.00424536e+06 4.63593841e+06 1.10188942e+07 1.18782388e+07 -9.42644917e+05 2.59009644e+06 1.04922074e+07 1.21539906e+07 -5.51517715e+06 -7.85705644e+06 8.19012958e+06 -1.71310237e+05 3.65140040e+06 -3.98438001e+06 2.29094263e+06 7.63906430e+06 9.99627557e+06 1.33438812e+07 -6.39583870e+06 5.93008117e+06 1.15505212e+07 1.47453316e+07 -9.87963480e+06 7.88782078e+06 -9.54605548e+06 9.60764984e+06 6.35209120e+06 -5.49828418e+06 8.77955344e+06 7.65129592e+06 -1.76188145e+07 -1.25547282e+07] [-1.49313204e+06 -3.01866133e+06 1.01713649e+07 -2.00352046e+06 9.55731230e+06 1.04038212e+07 4.81753552e+06 2.57140146e+06 2.97220171e+06 5.17573483e+06 1.57913234e+07 1.55516620e+07 -2.16733080e+05 -1.31464253e+06 1.22793735e+07 -1.21797102e+06 1.05579851e+07 -2.33787098e+06 -4.53928403e+06 1.28670200e+07 1.38569584e+07 1.32655909e+07 -5.57732998e+06 1.19883957e+07 1.43254061e+07 1.30818446e+07 -6.56947809e+06 1.26154628e+07 -1.44074074e+07 6.77666009e+06 1.13796980e+07 -6.38265171e+06 1.24968400e+07 1.27979663e+07 -9.40330364e+06 -7.81267904e+06] [ 1.08043808e+06 2.02133718e+04 1.19453234e+07 2.67068055e+06 1.07211545e+07 1.23046400e+07 -7.84408070e+05 -2.24760320e+06 5.23508552e+06 5.91866885e+06 1.62207086e+07 1.55107088e+07 3.25106870e+06 2.84756860e+06 1.27933486e+07 -4.63437963e+06 1.32050903e+07 1.30194514e+06 -1.02987792e+07 1.41417298e+07 1.42609971e+07 1.01165621e+07 -4.04103248e+06 1.40125628e+07 1.41794175e+07 8.30692485e+06 -3.29520161e+06 1.36828134e+07 -1.52579522e+07 2.96099695e+06 1.27563687e+07 -8.87487007e+06 1.27249307e+07 1.38935283e+07 -2.86493972e+06 -3.81016003e+06] [ 2.24716918e+06 7.19924898e+06 7.18145467e+06 4.95891646e+06 5.94500768e+06 7.69888105e+06 -2.81231128e+06 -3.43591385e+06 4.66395582e+06 4.17974331e+06 1.10385379e+07 1.02127124e+07 2.14575742e+06 2.19494861e+06 7.30701899e+06 -8.96154596e+06 8.94894378e+06 4.42896894e+06 -8.47614184e+06 8.59987741e+06 8.69416614e+06 6.74254702e+06 -1.44127626e+06 9.60004018e+06 8.82075874e+06 1.80395859e+06 -1.68317592e+06 8.85750063e+06 -1.58046947e+07 1.41288334e+06 7.61247726e+06 -9.47640284e+06 7.64199679e+06 9.19002368e+06 -4.32324662e+05 -1.14192999e+06] [-1.01147980e+06 1.01170659e+07 -2.83789584e+06 1.32245830e+05 -3.50165293e+06 -2.26608738e+06 -6.22935990e+06 -6.35675896e+06 -2.38941568e+06 -4.31920880e+06 -2.71940153e+05 -1.18882081e+06 -1.29294818e+06 -1.21212513e+06 -3.81535607e+06 -1.54131633e+07 -1.26881594e+06 3.19777120e+05 -5.33341841e+06 -2.39951615e+06 -2.26622942e+06 -1.05342041e+06 1.20041698e+05 -7.97739732e+05 -2.11025023e+06 -7.84387111e+06 -1.49306956e+06 -1.83316177e+06 -1.64661655e+07 -3.69329824e+06 -2.90493402e+06 -1.07951906e+07 -2.55140401e+06 -1.39907324e+06 4.28116711e+05 7.06040937e+05] [-3.92347403e+06 1.01523714e+07 -1.12877662e+07 -1.93881038e+06 -1.17149722e+07 -1.04656490e+07 -1.01394404e+07 -8.30389797e+06 -7.89771038e+06 -1.12985795e+07 -1.06758279e+07 -1.16332256e+07 -5.02104633e+06 -4.16479548e+06 -1.32557660e+07 -2.16267013e+07 -9.77206864e+06 -1.89603894e+06 -6.30781070e+06 -1.16649238e+07 -1.18185162e+07 -9.34062555e+06 1.40552380e+05 -9.92248630e+06 -1.18977403e+07 -1.49712163e+07 -2.36908878e+06 -1.11834220e+07 -1.48201829e+07 -9.77234129e+06 -1.17219129e+07 -1.37849535e+07 -1.17358561e+07 -1.07337804e+07 1.32991023e+06 1.85221661e+06] [-5.71648236e+06 6.51860362e+06 -1.42327160e+07 -2.77540070e+06 -1.45844387e+07 -1.34034566e+07 -1.00876756e+07 -6.56494576e+06 -9.38036670e+06 -1.22191566e+07 -1.47828340e+07 -1.57952771e+07 -6.17712342e+06 -4.34105744e+06 -1.63310300e+07 -2.04521110e+07 -1.28094400e+07 -2.62124898e+06 -7.55124120e+06 -1.49840392e+07 -1.53306482e+07 -1.31962579e+07 -8.18154525e+05 -1.34624646e+07 -1.56550638e+07 -1.63735918e+07 -2.50981003e+06 -1.46591081e+07 -6.10123557e+06 -1.09791240e+07 -1.47139351e+07 -1.37132968e+07 -1.53088620e+07 -1.44281368e+07 9.06419413e+04 4.49767556e+05] [-4.25759155e+06 2.58369248e+06 -1.10461878e+07 -1.93234394e+06 -1.13125609e+07 -1.03711602e+07 -7.14446846e+06 -9.63006638e+05 -5.85887326e+06 -7.59390135e+06 -1.21092042e+07 -1.26668836e+07 -2.74564045e+06 -1.05909015e+06 -1.26670162e+07 -1.37771027e+07 -9.82138670e+06 -1.47981438e+06 -4.05386352e+06 -1.18293723e+07 -1.22312594e+07 -1.14216303e+07 9.99714293e+05 -1.05428355e+07 -1.24108349e+07 -1.12979765e+07 1.03854786e+06 -1.14945295e+07 4.11344337e+06 -7.36206912e+06 -1.14867216e+07 -8.26588808e+06 -1.22307444e+07 -1.16174752e+07 1.30067710e+06 1.01632104e+06] [-2.18948377e+06 -1.11168736e+06 -6.67333680e+06 -9.45915982e+05 -6.83650373e+06 -6.34993224e+06 -9.39197620e+04 3.30601254e+06 -1.60972836e+06 -3.76239977e+06 -7.67856220e+06 -8.11824287e+06 -1.00838039e+06 1.04739309e+06 -8.01409133e+06 -6.02361815e+06 -5.91253635e+06 2.90377127e+05 -4.83662460e+05 -7.23231569e+06 -7.57331184e+06 -6.91529696e+06 1.47477095e+06 -6.49535941e+06 -7.87445067e+06 -5.55430016e+06 1.93317863e+06 -7.34686312e+06 1.25852525e+07 -1.34682541e+06 -7.15257460e+06 -2.01899401e+06 -7.97136258e+06 -7.53764147e+06 3.62157326e+05 -1.57342132e+05] [-2.02280998e+06 -3.20272770e+06 -5.62940190e+06 -9.77005608e+05 -5.63100030e+06 -5.23742258e+06 3.40807181e+06 7.10690370e+06 5.50590545e+04 -7.57630784e+05 -6.06454313e+06 -6.16994802e+06 -1.72637114e+06 2.06484648e+05 -6.23390377e+06 -1.04841263e+06 -4.99193089e+06 1.30078248e+06 8.28617843e+05 -5.73903337e+06 -5.74133277e+06 -4.50971582e+06 9.51229730e+05 -5.37838148e+06 -5.96090570e+06 -2.29004981e+06 9.16851498e+05 -5.85676315e+06 1.58120457e+07 2.24166549e+06 -5.91793269e+06 1.22932040e+06 -6.33184986e+06 -6.13434511e+06 -1.83988513e+06 -2.07023965e+06] [-9.27944980e+05 -8.57207892e+05 -4.77563616e+06 6.41019793e+05 -4.85271457e+06 -4.12095831e+06 4.50396915e+06 8.12382465e+06 1.07143822e+06 1.81087200e+06 -4.51383017e+06 -4.65774676e+06 -2.67733233e+06 -2.62209000e+05 -4.83772680e+06 1.42483568e+06 -3.92036724e+06 2.53593985e+06 1.03357971e+06 -4.59901769e+06 -4.37317289e+06 -2.87760158e+06 2.67098050e+05 -4.33220740e+06 -4.52732958e+06 -7.53820735e+05 -3.13632264e+05 -4.56522493e+06 1.51663896e+07 2.97636000e+06 -4.86098058e+06 2.53374922e+06 -4.90734011e+06 -4.83914399e+06 -3.16209252e+06 -2.93565195e+06] [-4.82786964e+04 -1.92807344e+05 -2.91976660e+06 2.02515209e+06 -3.02555882e+06 -2.34395003e+06 4.85023160e+06 6.02643479e+06 1.77433066e+06 1.89142875e+06 -2.54269397e+06 -2.43485043e+06 -2.67280893e+06 -7.19478579e+05 -2.67132502e+06 2.35865281e+06 -2.21929913e+06 3.66727683e+06 8.70355515e+05 -2.66629014e+06 -2.36187169e+06 -9.01405262e+05 -4.61348175e+05 -2.46582009e+06 -2.36573685e+06 4.97517421e+05 -1.24836293e+06 -2.53863794e+06 1.16424576e+07 3.66623484e+06 -2.89185693e+06 2.83081975e+06 -2.70833513e+06 -2.65958721e+06 -3.06652018e+06 -2.96432554e+06] [ 5.97091353e+05 3.64792638e+05 -8.69272513e+05 1.56412448e+06 -8.93462135e+05 -6.86460063e+05 3.47700413e+06 2.16360495e+06 1.32710866e+06 8.54172492e+05 -7.28094127e+05 -6.53457575e+05 -1.65079329e+06 -5.87926259e+05 -6.89998144e+05 1.72875125e+06 -6.58159003e+05 2.39436914e+06 7.60495004e+05 -7.34293756e+05 -5.40205190e+05 6.26906863e+05 -7.26832563e+05 -6.87640065e+05 -5.50744315e+05 7.44950737e+05 -1.27986875e+06 -6.98407009e+05 4.96687156e+06 2.47433319e+06 -8.62672936e+05 1.84487708e+06 -7.31657339e+05 -7.21046078e+05 -1.78425060e+06 -1.76556743e+06] [ 3.93779504e+05 3.43396377e+05 1.11582760e+05 2.44206669e+05 1.45548832e+05 5.07626881e+04 8.91107500e+05 -2.63340153e+05 1.76456116e+05 -1.05087019e+05 -2.97822585e+04 -2.74994867e+04 -1.95109400e+05 -5.08493827e+04 9.77627057e+04 2.88411493e+05 3.44028694e+04 2.44516121e+05 4.01704077e+05 7.07060048e+04 1.15487932e+05 4.07394682e+05 -1.24875009e+05 7.86771106e+04 4.64625050e+04 -7.04609790e+04 -2.40972821e+05 4.91129690e+04 2.78980135e+05 3.06364862e+05 8.75254751e+04 4.31673058e+05 8.20951455e+04 2.32437128e+04 -1.92834890e+05 -2.77962766e+05] [-2.39517724e+04 -7.96715646e+04 3.97106425e+02 -1.24248574e+05 1.64542596e+04 -3.19764302e+04 3.26966350e+04 -1.14036807e+05 -7.35296778e+04 -1.49513242e+05 -6.36939314e+04 -6.56999065e+04 -6.77598775e+03 -3.24536942e+04 -2.21934205e+04 -3.86048679e+04 -5.27775971e+04 -1.26096334e+05 1.82726916e+04 -1.27234677e+04 -1.54216282e+04 -2.45524402e+04 -3.78179623e+04 -3.96856201e+04 -3.37238039e+04 -1.00578875e+05 -3.64294717e+04 -3.35791010e+04 -5.83855946e+04 -4.21588374e+04 -9.01834899e+03 6.84367032e+03 -2.48908266e+04 -5.82125464e+04 -2.15040489e+04 -3.60754211e+04] [ 4.12345365e-01 -6.83282212e-01 -6.47111427e-01 3.75852738e-01 -2.76874280e-01 3.96367421e-01 6.01955341e-01 -9.21942450e-01 1.69688690e-01 1.90596398e-02 -7.00071884e-01 8.61455657e-01 7.24685741e-01 -3.66647034e-01 -8.59734563e-01 6.89886777e-01 -6.38289179e-01 4.27422957e-01 8.45260080e-01 7.05607350e-01 4.15191961e-02 3.76215767e-01 -2.02154296e-01 3.26522971e-01 5.27368252e-01 3.72239762e-01 -8.83229493e-01 8.44048127e-01 8.40052892e-01 9.28565479e-01 -2.23385522e-01 1.66849458e-01 -9.69801335e-01 -9.83475144e-01 4.86142792e-01 -3.40694264e-01] [ 5.27216441e-02 5.95598186e-01 8.08863435e-01 9.72596115e-02 1.44549871e-01 -4.84633318e-02 3.91337490e-01 -6.04568083e-01 7.67412084e-01 -8.55948332e-01 -6.30083742e-01 2.95114253e-01 -7.74787242e-01 -7.33894382e-01 1.09763348e-01 4.80369804e-01 7.30554195e-01 -9.20188107e-02 9.16378807e-01 2.48297855e-02 9.22695237e-01 -1.37298732e-01 3.35289006e-01 -2.44383030e-01 8.97268309e-01 -6.50204528e-02 -1.23278467e-01 -1.59012451e-01 1.67287818e-01 -9.90216463e-01 -8.46648962e-01 -7.00619528e-01 8.53517064e-01 2.42697826e-01 4.54646920e-01 7.89956641e-01] [-3.33699570e+03 1.05853327e+03 -6.64442610e+03 1.16621412e+02 -6.27251740e+03 -5.16488242e+03 -4.10233008e+03 2.39874107e+03 -2.66939438e+03 -2.38135903e+03 -5.98051781e+03 -5.08145625e+03 -2.83326648e+01 -1.31642790e+03 -6.11682395e+03 -3.83003979e+03 -5.99325399e+03 -5.37877145e+02 2.36290637e+03 -6.40593170e+03 -6.14313571e+03 -2.99824917e+03 -2.21277656e+03 -6.35763225e+03 -5.04875561e+03 -2.79004559e+03 -2.95257030e+03 -4.91946197e+03 -3.74035373e+03 -6.74130489e+02 -6.45164262e+03 -4.58316013e+03 -5.06903631e+03 -5.46632202e+03 -4.92096149e+03 -3.83358391e+03] [-8.71178645e+03 -1.47106608e+03 -1.50708665e+04 -2.63921087e+03 -1.39829143e+04 -1.28617016e+04 -1.10861516e+04 2.31688128e+02 -7.39718617e+03 -6.94725360e+03 -1.41146851e+04 -1.25407435e+04 -1.40061916e+03 -3.95402385e+03 -1.42511003e+04 -7.21454610e+03 -1.39809261e+04 -3.80331634e+03 5.22093004e+03 -1.47357660e+04 -1.43746132e+04 -7.48796831e+03 -6.16009689e+03 -1.45605416e+04 -1.27837007e+04 -6.32142584e+03 -6.36404568e+03 -1.24205874e+04 -1.09741265e+04 -2.66023518e+03 -1.47369772e+04 -9.88797048e+03 -1.27140078e+04 -1.30299821e+04 -1.09067459e+04 -8.81063198e+03] [-2.01307945e+05 2.29171378e+05 -2.73969268e+05 -2.50600144e+05 -3.03626007e+05 -2.28680220e+05 -3.66355149e+05 2.88838902e+05 -1.90874824e+05 1.03156395e+05 -2.22419091e+05 -1.91561734e+05 1.49773443e+04 -3.19346206e+04 -2.25309157e+05 -3.75503320e+05 -2.11487185e+05 -2.94010502e+05 6.81832612e+04 -2.87332158e+05 -2.52626347e+05 -3.48220858e+05 5.78070565e+04 -2.30582881e+05 -2.02671991e+05 -2.04245923e+05 9.40775142e+04 -1.97484363e+05 -3.76682054e+04 -3.45251293e+05 -2.56910797e+05 -2.60586920e+05 -2.26296651e+05 -2.53481592e+05 8.17423949e+03 5.39895360e+04] [-1.34558807e+06 3.03218409e+05 -1.29962271e+06 -1.15358166e+06 -1.37234677e+06 -1.28687344e+06 -2.00448052e+06 1.43856630e+06 -1.28794563e+06 -5.33866068e+05 -1.39134967e+06 -1.35350122e+06 4.60607637e+05 1.34241389e+05 -1.43290221e+06 -2.47384246e+06 -1.27590714e+06 -1.23532142e+06 -4.66621620e+05 -1.34631497e+06 -1.37922660e+06 -2.34407519e+06 5.40107698e+05 -1.33694991e+06 -1.28551573e+06 -1.43858393e+06 9.42671522e+05 -1.30042845e+06 5.29773797e+05 -1.68111005e+06 -1.31325298e+06 -2.12593438e+06 -1.43074659e+06 -1.55212826e+06 5.13953160e+05 5.13123812e+05] [-3.20517365e+06 7.25548164e+05 -5.03278960e+06 -1.50409182e+06 -5.19218768e+06 -4.45683277e+06 -1.80145034e+06 6.49361092e+06 -2.24423552e+06 1.66491497e+05 -4.74066854e+06 -4.66217126e+06 -1.66061307e+06 -1.05539481e+06 -4.91662542e+06 -3.22028633e+06 -4.61275289e+06 -7.75564857e+05 -1.14367785e+06 -4.89410450e+06 -4.75326462e+06 -5.78548314e+06 3.87490256e+05 -4.92328000e+06 -4.41838783e+06 -2.71708057e+06 3.30472237e+05 -4.59514467e+06 7.18993205e+06 -1.89820375e+06 -4.97928182e+06 -2.88097934e+06 -4.81954334e+06 -5.17026590e+06 -1.58474596e+06 -8.58333761e+05] [-4.58217662e+06 2.54988187e+06 -9.59275894e+06 -6.17073354e+05 -1.00442343e+07 -8.16898254e+06 -3.67699764e+06 1.31065751e+07 -2.72588508e+06 1.42570248e+06 -8.74635538e+06 -8.38733699e+06 -3.25509963e+06 -2.36131422e+06 -9.21737771e+06 -6.23726977e+06 -8.35993583e+06 4.24351150e+05 -2.80825163e+06 -9.36659389e+06 -8.99425843e+06 -9.78066982e+06 6.51579954e+05 -9.05517243e+06 -8.13669003e+06 -5.05178959e+06 3.87449840e+05 -8.31612052e+06 1.25798886e+07 -2.61433814e+06 -9.45170003e+06 -5.98876329e+06 -8.96129824e+06 -9.24245595e+06 -4.43650973e+06 -2.82342153e+06] [-6.69535403e+06 2.80825679e+06 -1.53707937e+07 -1.02780263e+06 -1.59960540e+07 -1.33974966e+07 -5.59656117e+06 2.07346688e+07 -3.96672731e+06 8.33534262e+05 -1.46020798e+07 -1.33292739e+07 -5.94279556e+06 -5.49837252e+06 -1.45872628e+07 -8.95358368e+06 -1.40527651e+07 5.11252303e+05 -3.50004623e+06 -1.51007607e+07 -1.42380240e+07 -1.42114370e+07 4.86824710e+05 -1.47710557e+07 -1.28581187e+07 -7.62611629e+06 -4.72243283e+05 -1.33635749e+07 1.53458239e+07 -3.45497797e+06 -1.50897643e+07 -8.76842413e+06 -1.40253312e+07 -1.47166070e+07 -8.44565384e+06 -5.70599968e+06] [-8.87599860e+06 1.48017783e+06 -1.73730034e+07 -7.28003520e+05 -1.79056905e+07 -1.54115560e+07 -4.35003006e+06 2.62397091e+07 -4.26845036e+06 -8.63462688e+05 -1.69105316e+07 -1.40839088e+07 -8.29707404e+06 -8.54109105e+06 -1.59712323e+07 -1.00905528e+07 -1.65512507e+07 1.79770507e+06 -3.85198276e+06 -1.66169145e+07 -1.50926499e+07 -1.43661180e+07 -1.15046075e+06 -1.67528996e+07 -1.33838279e+07 -6.86229710e+06 -2.72851959e+06 -1.47941723e+07 1.47363783e+07 -1.94391978e+06 -1.67934884e+07 -1.13371635e+07 -1.51383793e+07 -1.63243472e+07 -1.32174802e+07 -9.59619126e+06] [-1.04054774e+07 2.47671427e+04 -1.45679685e+07 -1.02260011e+06 -1.48991385e+07 -1.32581458e+07 4.54828331e+05 2.66971526e+07 -4.36731466e+06 -1.01679710e+06 -1.35346679e+07 -9.59565411e+06 -9.66348395e+06 -1.03310783e+07 -1.22738307e+07 -8.59582226e+06 -1.47229364e+07 2.39462438e+06 -3.14300815e+06 -1.31131552e+07 -1.08892964e+07 -9.66691942e+06 -3.70381532e+06 -1.39771183e+07 -8.98847073e+06 -2.83932559e+06 -6.01799600e+06 -1.16548705e+07 9.87591069e+06 2.36115463e+05 -1.36208191e+07 -1.21537947e+07 -1.14501296e+07 -1.32291403e+07 -1.74046653e+07 -1.29403003e+07] [-1.02989366e+07 -1.80692125e+06 -9.76329462e+06 -4.29739151e+05 -9.96279605e+06 -8.82671526e+06 6.22151854e+06 2.54215978e+07 -2.92768565e+06 7.00401225e+05 -7.32152174e+06 -2.38194052e+06 -1.13647862e+07 -1.24072094e+07 -6.05214096e+06 -6.34615871e+06 -1.04407480e+07 4.27862718e+06 -1.45324136e+06 -7.64800210e+06 -4.71014256e+06 -2.26760973e+06 -6.73344133e+06 -8.69266565e+06 -2.14023870e+06 2.96037551e+06 -1.07482227e+07 -5.97854119e+06 4.26991455e+06 4.28173961e+06 -8.29068802e+06 -1.21354705e+07 -5.35095846e+06 -7.39078245e+06 -2.18635766e+07 -1.65693787e+07] [-6.85733087e+06 -1.74263736e+05 -5.89473775e+06 1.60594509e+06 -5.89741012e+06 -5.03515728e+06 1.30161237e+07 2.08433504e+07 -1.75994482e+05 1.15006566e+06 -1.25870525e+06 3.60315131e+06 -1.52760116e+07 -1.58748815e+07 -1.27908103e+06 -3.73057392e+06 -6.23778925e+06 7.89903111e+06 2.49840758e+06 -3.30938146e+06 2.91443635e+05 6.53911387e+06 -9.85661592e+06 -3.73618162e+06 3.17041065e+06 7.19989793e+06 -1.68348945e+07 -1.31511801e+06 -1.31524122e+06 1.01008097e+07 -4.03946128e+06 -8.74478577e+06 -2.43230133e+05 -1.72387636e+06 -2.66278030e+07 -2.03372039e+07] [-1.95580851e+06 4.08659013e+06 -7.75544333e+05 2.11666042e+06 -1.03700713e+06 6.29163386e+05 1.16099641e+07 1.37899958e+07 2.41195907e+06 4.59578953e+06 5.53296390e+06 8.41809190e+06 -1.17684915e+07 -1.13830272e+07 3.33314102e+06 -2.38847441e+06 4.18666114e+04 4.98839320e+06 2.91205038e+06 1.97146765e+06 4.79804683e+06 1.20596168e+07 -8.52015859e+06 2.08997009e+06 7.25973480e+06 9.40403629e+06 -1.49773013e+07 4.04584560e+06 -8.99445723e+06 1.06004063e+07 1.02625165e+06 -6.11050459e+06 4.70694364e+06 4.15041694e+06 -2.19508215e+07 -1.63990242e+07] [ 1.07380251e+06 6.25598420e+06 3.63752112e+06 1.29758193e+06 2.92861614e+06 4.88717479e+06 4.67973403e+06 5.95822180e+06 3.47387918e+06 5.83388803e+06 9.32392653e+06 1.01785462e+07 -5.16883585e+06 -4.96448001e+06 6.39449770e+06 -3.04593664e+06 5.01367424e+06 4.74250493e+05 -6.91821292e+05 5.95407275e+06 7.46453243e+06 1.11235338e+07 -5.58995764e+06 6.40000063e+06 8.73758536e+06 7.62960805e+06 -8.90067588e+06 7.34027383e+06 -1.58519413e+07 5.82917908e+06 5.05433783e+06 -5.74018081e+06 7.36176108e+06 7.56250103e+06 -1.30690469e+07 -9.82669637e+06] [ 5.28131103e+06 1.23045346e+07 6.28773066e+06 5.80867984e+06 4.81346118e+06 7.86454744e+06 1.14815053e+06 3.96254339e+06 6.72140366e+06 1.03726060e+07 1.19279795e+07 1.16757641e+07 2.94799687e+05 9.47306448e+05 8.33884031e+06 -7.06623789e+05 9.02493548e+06 3.49033298e+06 -2.31018025e+06 8.01139650e+06 9.03764146e+06 1.13568817e+07 -1.29114337e+06 9.59881454e+06 9.75372205e+06 6.39183371e+06 -2.43900891e+06 9.60985442e+06 -1.54144726e+07 4.67265586e+06 7.26802235e+06 -3.32257744e+06 8.97596401e+06 1.02216626e+07 -5.00810203e+06 -3.35947618e+06] [ 6.39506165e+06 1.76697488e+07 2.70441981e+06 8.52286807e+06 1.11965676e+06 4.46947167e+06 -1.06839026e+06 7.68107538e+05 6.20165080e+06 9.41699516e+06 7.73259926e+06 7.11688160e+06 -3.52663548e+05 1.64916649e+06 4.00149713e+06 -2.64789073e+06 6.15794303e+06 6.37641935e+06 -1.94588162e+06 3.55188548e+06 4.38150485e+06 8.16436590e+06 1.25500028e+06 6.27927104e+06 5.15678307e+06 8.59167022e+05 -6.47755803e+05 5.68449353e+06 -1.40429886e+07 2.92013207e+06 3.22794721e+06 -2.87770554e+06 4.71909594e+06 6.64356191e+06 -9.84765320e+05 6.05755454e+05] [-2.72767788e+06 1.20900920e+07 -7.84666736e+06 -2.36114093e+05 -8.58067390e+06 -6.92715504e+06 -7.24204710e+06 -3.33575275e+06 -4.64350615e+06 -5.67836326e+06 -5.63653512e+06 -6.20505828e+06 -3.46281147e+06 -3.11756173e+06 -8.49256895e+06 -1.49642000e+07 -5.89262960e+06 -2.53435606e+05 -5.51152296e+06 -7.66819467e+06 -7.08634172e+06 -3.97092273e+06 4.16002758e+05 -5.71631455e+06 -6.96664704e+06 -9.81456883e+06 -1.39771928e+06 -6.57924433e+06 -1.45296345e+07 -4.59867128e+06 -8.01102424e+06 -1.16570309e+07 -7.13564206e+06 -6.04648811e+06 -8.59983574e+05 6.08287343e+05] [-9.36889381e+06 5.99871729e+06 -1.53649699e+07 -4.34198252e+06 -1.57973997e+07 -1.46561376e+07 -1.09239396e+07 -4.50084696e+06 -1.14837600e+07 -1.34689237e+07 -1.55376154e+07 -1.54210208e+07 -8.75666009e+06 -8.32654259e+06 -1.66150673e+07 -2.29345388e+07 -1.46402616e+07 -3.80771283e+06 -1.02748034e+07 -1.56407024e+07 -1.53200397e+07 -1.34566120e+07 -3.20372952e+06 -1.46848014e+07 -1.51534260e+07 -1.57943863e+07 -5.94695914e+06 -1.51674320e+07 -1.28570626e+07 -1.18606432e+07 -1.56147699e+07 -1.85598771e+07 -1.54529844e+07 -1.52229933e+07 -3.98598094e+06 -2.76687249e+06] [-8.96899027e+06 2.40774876e+06 -1.36408573e+07 -5.51731047e+06 -1.40929941e+07 -1.29882240e+07 -1.19520879e+07 -4.42303916e+06 -1.11267820e+07 -1.12863545e+07 -1.43259304e+07 -1.47390913e+07 -5.95165016e+06 -5.19249188e+06 -1.50167749e+07 -2.09799611e+07 -1.29591236e+07 -5.92696107e+06 -1.07487840e+07 -1.42554472e+07 -1.43959298e+07 -1.47767022e+07 -2.80334747e+06 -1.35325081e+07 -1.43499827e+07 -1.44024775e+07 -3.61712968e+06 -1.39165268e+07 -5.83455098e+06 -1.32341389e+07 -1.39279665e+07 -1.70749310e+07 -1.44814578e+07 -1.43500193e+07 -2.65007121e+06 -1.93071854e+06] [-5.82075515e+06 -1.12152788e+06 -8.21352951e+06 -3.85185630e+06 -8.74708760e+06 -7.65731475e+06 -6.82094083e+06 3.35608044e+05 -6.09577147e+06 -4.88238076e+06 -9.05931863e+06 -9.44738984e+06 -1.64233991e+06 -3.61272212e+05 -9.00170074e+06 -1.14917624e+07 -7.64721387e+06 -4.48932477e+06 -6.04641919e+06 -8.68679200e+06 -8.90650965e+06 -1.03969265e+07 -6.75209916e+05 -8.37449184e+06 -8.96416697e+06 -6.94802777e+06 4.05827105e+05 -8.52658006e+06 4.15637105e+06 -8.10290712e+06 -8.49616944e+06 -9.18276701e+06 -9.09152927e+06 -9.07823155e+06 -1.11500026e+06 -8.46502759e+05] [-4.38001393e+06 -4.32920593e+06 -4.97713443e+06 -1.89472934e+06 -5.50815255e+06 -4.63937989e+06 -7.21596110e+05 6.04429840e+06 -1.77697351e+06 -1.65852713e+06 -5.86113347e+06 -5.72875910e+06 -7.15677535e+04 1.37880492e+06 -5.48845577e+06 -4.91638864e+06 -4.57173518e+06 -5.78174943e+05 -2.86408556e+06 -5.12367152e+06 -5.14176977e+06 -6.93585362e+06 3.95640096e+05 -5.14213010e+06 -5.22621736e+06 -2.02132137e+06 1.81278022e+06 -5.28153651e+06 1.23901277e+07 -1.62308168e+06 -5.27661978e+06 -3.72355732e+06 -5.78395388e+06 -5.89205234e+06 -1.58002181e+06 -1.64875472e+06] [-2.50763560e+06 -4.18787522e+06 -4.26187519e+06 -8.78483217e+05 -4.53903691e+06 -3.92150493e+06 3.56911209e+06 7.95181485e+06 1.69108562e+05 5.53998314e+05 -4.60383783e+06 -4.48049459e+06 -1.23459565e+06 4.48931894e+05 -4.36445398e+06 3.14564844e+05 -3.81078481e+06 1.30927669e+06 1.00028171e+05 -4.16792470e+06 -3.96991007e+06 -3.83443357e+06 1.50948428e+05 -4.17732236e+06 -4.10008344e+06 2.32929495e+04 6.51619585e+05 -4.33477404e+06 1.44559450e+07 1.86173700e+06 -4.45036060e+06 6.00064457e+05 -4.58278746e+06 -4.69486969e+06 -3.11514162e+06 -3.08935266e+06] [-1.21178324e+06 -1.63550155e+06 -4.25174701e+06 7.73210044e+05 -4.47828621e+06 -3.63944062e+06 4.35620548e+06 8.73475435e+06 1.26448317e+06 2.24127544e+06 -4.04558759e+06 -3.99874580e+06 -2.33543092e+06 -2.15150086e+05 -4.12081304e+06 1.68006521e+06 -3.52294118e+06 2.75632414e+06 4.41198357e+05 -3.97444928e+06 -3.72890305e+06 -2.59779204e+06 2.40393787e+04 -3.93692440e+06 -3.79462725e+06 3.33860632e+05 -2.45734939e+05 -3.96986685e+06 1.45002652e+07 2.80472409e+06 -4.28220144e+06 1.72208194e+06 -4.23371238e+06 -4.26758615e+06 -3.45477011e+06 -3.16860827e+06] [-2.15991984e+05 -1.27731786e+05 -3.01063181e+06 2.05748154e+06 -3.12247514e+06 -2.44449669e+06 4.12796322e+06 6.72140337e+06 1.57985550e+06 1.83154466e+06 -2.71804270e+06 -2.49671539e+06 -2.31460193e+06 -6.75989808e+05 -2.69000224e+06 1.93185001e+06 -2.33662911e+06 3.74185260e+06 4.91395336e+05 -2.72811227e+06 -2.38886423e+06 -1.39008615e+06 4.30198428e+04 -2.58852444e+06 -2.35290168e+06 3.95610671e+05 -6.44823778e+05 -2.58464979e+06 1.09878766e+07 2.98915857e+06 -2.96820752e+06 1.94843208e+06 -2.71460392e+06 -2.75236274e+06 -2.49566997e+06 -2.31573849e+06] [ 1.83829405e+05 3.58256449e+05 -1.14080588e+06 1.05301707e+06 -1.05036719e+06 -1.07189316e+06 2.63873627e+06 2.47498612e+06 6.81474663e+05 8.53145314e+04 -1.13991478e+06 -1.04838194e+06 -1.44584497e+06 -7.86338945e+05 -1.08008315e+06 7.76510986e+05 -1.07375175e+06 1.96653819e+06 4.03512038e+05 -1.01677352e+06 -8.30294906e+05 -1.22509274e+05 -3.08624252e+05 -1.02812722e+06 -8.89283848e+05 1.80160493e+05 -8.54415158e+05 -1.08037074e+06 4.25952999e+06 1.68504473e+06 -1.17381780e+06 8.97877987e+05 -1.06041978e+06 -1.13695525e+06 -1.36983975e+06 -1.24306182e+06] [ 3.31430581e+05 3.50677959e+05 -4.23244456e+04 4.26977129e+05 -3.18144108e+04 -5.49723257e+04 5.90060997e+05 -1.23615232e+03 2.14439262e+05 9.53995947e+04 -7.02115539e+04 -4.20851186e+04 -2.70797445e+05 -1.39221263e+05 -1.62835443e+04 3.17607854e+05 -3.02671761e+04 4.31657070e+05 2.65811043e+05 -5.53496082e+04 -7.98211551e+03 2.57252917e+05 -3.40194190e+04 -1.47343013e+04 -3.39369044e+04 8.00375920e+04 -1.77399372e+05 -5.12999283e+04 2.71534732e+05 3.08300788e+05 -5.29982381e+04 3.30749778e+05 -2.83247442e+04 -1.58285674e+04 -1.52819549e+05 -1.75198166e+05] [ 3.70735143e+04 2.80798620e+04 3.75800032e+03 7.71797416e+04 3.17833128e+03 9.73886281e+03 5.49963468e+04 -1.53680690e+03 4.12745735e+04 5.77450195e+03 2.30791616e+02 1.09561443e+04 -1.27170127e+04 3.61325969e+03 9.07052893e+03 1.36676535e+04 1.21534907e+04 1.00555388e+05 8.68987086e+03 3.02934524e+03 6.64555214e+03 1.95639198e+04 4.75923690e+03 9.86580424e+03 1.26406998e+04 -9.84544393e+03 -1.29258379e+04 1.14573467e+04 3.17813558e+04 4.96868401e+04 4.51419764e+03 4.77568627e+03 1.17471650e+04 1.15281839e+04 1.06367117e+04 -7.05437705e+03] [-5.14019080e-01 8.82042125e-01 3.57976836e-01 6.51210548e-02 -9.31384934e-02 -3.34401184e-01 3.02766689e-01 -7.89355737e-01 -4.93219588e-01 8.59582296e-01 -5.87396813e-01 6.34903913e-01 -3.00504352e-01 4.63497068e-01 -9.64828995e-01 3.84823092e-01 -2.41618705e-01 5.66671233e-01 6.65282603e-02 8.30098511e-01 -8.03899960e-01 4.61935320e-02 -1.12370122e-01 5.97784792e-01 4.25957179e-01 1.72175369e-01 4.71524924e-01 1.37788579e-01 1.17276882e-01 1.05511931e-01 8.90962843e-01 -3.22809186e-01 -1.48934013e-02 -6.89915533e-01 -9.66437046e-01 7.29574222e-02] [ 5.23011829e-01 8.60530391e-01 -5.12435590e-01 4.64878342e-01 4.16646953e-01 -7.01402087e-03 -4.01933967e-01 8.26675396e-01 8.66112780e-01 -8.66462505e-01 1.47177351e-01 7.60784152e-01 9.50551613e-01 9.55571494e-01 -2.41345855e-01 8.33726060e-01 -6.44782061e-01 -6.63602830e-01 -2.75727005e-01 -8.05995946e-01 9.81864274e-01 3.59641892e-01 8.77308144e-02 8.59534303e-01 9.94948517e-01 6.22941747e-01 -7.95335309e-01 -8.37654022e-01 -1.71502373e-01 1.09504856e-01 3.33920708e-01 5.88236670e-01 3.10246379e-01 -3.36584116e-01 5.74452116e-01 -5.51883324e-01] [-1.65965091e+02 5.21619764e+01 -3.29560301e+02 5.75907961e+00 -3.10215061e+02 -2.57056318e+02 -2.02672196e+02 1.19270321e+02 -1.32496182e+02 -1.18598442e+02 -2.95868423e+02 -2.51042081e+02 -1.81947513e+00 -6.43859725e+01 -3.03732899e+02 -1.89567535e+02 -2.96629362e+02 -2.68891035e+01 1.18146397e+02 -3.17982704e+02 -3.05397243e+02 -1.49337554e+02 -1.10577240e+02 -3.15052437e+02 -2.50163252e+02 -1.38629391e+02 -1.46664028e+02 -2.43778739e+02 -1.85484930e+02 -3.29779111e+01 -3.19770975e+02 -2.26741157e+02 -2.50579907e+02 -2.71556336e+02 -2.44684252e+02 -1.90458012e+02] [-5.51455962e+04 -7.92938711e+04 -2.30499436e+03 -3.07002855e+04 2.73603232e+03 -1.09490192e+04 -4.58934573e+03 -5.72216769e+04 -3.19913144e+04 -8.02254657e+04 -3.72804394e+03 -7.44618406e+03 -1.02465587e+04 -1.88421737e+04 -9.48045800e+03 -6.61809851e+04 -1.56574193e+04 1.12923041e+03 -4.98638724e+04 4.47257776e+03 5.50455710e+03 -1.54116973e+04 -3.42660565e+04 -9.78339909e+03 -1.57480694e+03 6.63135870e+03 -3.68183239e+04 -1.05341081e+04 -6.43596386e+04 -5.24571811e+03 -5.39403697e+03 -7.49377624e+04 -8.39918405e+03 -9.87437706e+03 -1.99365299e+04 -2.74414825e+04] [-1.39493318e+05 1.10820936e+05 -1.63427839e+05 -3.50276088e+05 -1.53959605e+05 -1.82717410e+05 -2.59137813e+05 -7.80936056e+04 -2.35300344e+05 -3.02001245e+05 -1.95661638e+05 -1.95018786e+05 1.01714203e+04 -5.62187124e+04 -1.93012337e+05 -4.19668258e+05 -1.93130421e+05 -3.87752601e+05 4.15365177e+04 -2.19540497e+05 -2.01635571e+05 -2.20205581e+05 -7.90689526e+04 -1.86291101e+05 -1.89455205e+05 -3.15905516e+05 -2.75779866e+04 -1.68956468e+05 -2.19175181e+05 -3.06865884e+05 -1.78007252e+05 -2.71821425e+05 -1.71477416e+05 -2.20832156e+05 -1.50366742e+05 -1.21322918e+05] [-1.09904894e+06 -3.83399879e+05 -1.24398438e+06 -1.05216139e+06 -1.21312273e+06 -1.27074852e+06 -1.03961555e+06 8.57367164e+05 -1.13739822e+06 -1.34788831e+06 -1.43380675e+06 -1.48904074e+06 -7.98955855e+04 -1.48251175e+05 -1.47073501e+06 -2.13299190e+06 -1.34623305e+06 -8.36246859e+05 -6.16189473e+05 -1.28225933e+06 -1.35675229e+06 -2.07506203e+06 -6.80071645e+03 -1.38004698e+06 -1.32321674e+06 -1.57370096e+06 2.12982703e+05 -1.34774061e+06 1.27713440e+06 -1.25193793e+06 -1.28902780e+06 -1.78140994e+06 -1.41111937e+06 -1.56189811e+06 -1.72533231e+05 -1.34830946e+05] [-2.18718410e+06 -4.25461061e+05 -4.91870029e+06 1.24977101e+05 -4.96333836e+06 -4.39029470e+06 -3.33617879e+05 4.96906376e+06 -1.04104067e+06 -1.57496026e+06 -4.91279694e+06 -4.76024249e+06 -2.50965454e+06 -1.64853928e+06 -5.08626440e+06 -3.32254159e+06 -4.46088417e+06 1.88360496e+06 -1.24366443e+06 -4.82288037e+06 -4.82321505e+06 -5.18047644e+06 -3.60244493e+05 -4.70335533e+06 -4.53586399e+06 -3.76598189e+06 -9.03649909e+05 -4.65236236e+06 8.57077407e+06 -4.01591325e+05 -4.93409128e+06 -2.43998629e+06 -4.92892716e+06 -4.94531076e+06 -2.63725458e+06 -2.08362440e+06] [-4.23140065e+06 3.15412638e+05 -9.75117991e+06 -6.83768589e+05 -9.88419261e+06 -8.69306448e+06 -2.48728654e+06 9.84478536e+06 -2.62879904e+06 -2.32997322e+06 -9.69680037e+06 -9.40064304e+06 -3.87496269e+06 -3.00655369e+06 -9.98639118e+06 -6.90015493e+06 -8.89728014e+06 1.37606412e+06 -2.52489399e+06 -9.75776531e+06 -9.66043026e+06 -9.55005343e+06 -2.88508266e+05 -9.42016152e+06 -9.06551583e+06 -6.88190529e+06 -7.65647212e+05 -9.06181272e+06 1.35066436e+07 -1.85909620e+06 -9.80108224e+06 -5.46368376e+06 -9.70482053e+06 -9.80027088e+06 -5.42418869e+06 -4.13651273e+06] [-4.84212160e+06 2.27832948e+06 -1.39616292e+07 1.51911509e+06 -1.42704844e+07 -1.23187385e+07 -2.44470576e+06 1.60149116e+07 -2.51124115e+06 -2.34349063e+06 -1.39077299e+07 -1.27837353e+07 -6.36462299e+06 -5.14254013e+06 -1.37941540e+07 -8.66983434e+06 -1.27129896e+07 4.29090206e+06 -4.05614689e+06 -1.39003456e+07 -1.32577504e+07 -1.22669044e+07 -8.52802845e+05 -1.33081842e+07 -1.23058842e+07 -8.84837986e+06 -2.13118137e+06 -1.25738550e+07 1.75753871e+07 -1.18182434e+06 -1.38925135e+07 -7.54087956e+06 -1.32442169e+07 -1.34746901e+07 -8.92482946e+06 -7.03966675e+06] [-5.23905756e+06 3.99224336e+06 -1.55361621e+07 3.42485830e+06 -1.58498030e+07 -1.36637498e+07 2.61612599e+05 2.08355438e+07 -1.94016287e+06 -3.03158226e+06 -1.54464884e+07 -1.31987631e+07 -8.95544719e+06 -7.44082478e+06 -1.46653227e+07 -8.76347138e+06 -1.43997861e+07 6.85592203e+06 -3.71082708e+06 -1.50907740e+07 -1.37028090e+07 -1.15691638e+07 -2.08819969e+06 -1.45861992e+07 -1.25092545e+07 -8.05858437e+06 -4.39836648e+06 -1.34466595e+07 1.72911932e+07 3.87769294e+05 -1.52112866e+07 -9.00956243e+06 -1.37983541e+07 -1.43671442e+07 -1.30060887e+07 -1.03194874e+07] [-4.81025627e+06 5.43162391e+06 -1.30498213e+07 6.05086410e+06 -1.33127756e+07 -1.13707565e+07 3.54662781e+06 2.21224094e+07 -8.80809603e+05 -2.26671112e+06 -1.23322989e+07 -9.16825530e+06 -9.34652404e+06 -8.10400554e+06 -1.15963936e+07 -8.40604379e+06 -1.22082271e+07 1.04354496e+07 -2.64022027e+06 -1.21171561e+07 -1.01933047e+07 -7.29589670e+06 -2.62913001e+06 -1.17185921e+07 -8.65313897e+06 -5.59888743e+06 -5.91345640e+06 -1.03690781e+07 1.36446222e+07 2.59117162e+06 -1.24868265e+07 -9.52196997e+06 -1.04498374e+07 -1.12929443e+07 -1.46357412e+07 -1.12020037e+07] [-3.38381420e+06 6.79041719e+06 -1.10506372e+07 7.73825271e+06 -1.12990699e+07 -9.20496520e+06 8.35777365e+06 2.03469638e+07 5.16678501e+05 -9.78275108e+05 -8.63016139e+06 -4.72193247e+06 -1.33266517e+07 -1.14897920e+07 -8.35070173e+06 -6.95300887e+06 -9.99545833e+06 1.36899953e+07 -7.38538065e+05 -9.56986861e+06 -6.95586912e+06 -1.25048462e+06 -5.64361481e+06 -8.81691775e+06 -4.69166903e+06 -2.46778788e+06 -1.15072410e+07 -7.18375181e+06 8.48887668e+06 6.08830921e+06 -9.96215928e+06 -9.01447199e+06 -6.94234160e+06 -7.67087485e+06 -1.95429112e+07 -1.47767526e+07] [ 8.17125910e+05 1.07253333e+07 -7.70269941e+06 8.68736229e+06 -8.02255761e+06 -5.31065553e+06 1.27271156e+07 1.61146305e+07 3.29264821e+06 2.12858405e+06 -2.94162523e+06 5.95159265e+05 -1.50216308e+07 -1.25716254e+07 -3.97730385e+06 -3.53968048e+06 -5.74532346e+06 1.41685980e+07 4.23048971e+06 -5.89697655e+06 -2.94898357e+06 6.86595550e+06 -6.85125597e+06 -4.29117621e+06 -1.04945649e+05 1.20564688e+06 -1.48603392e+07 -2.53298802e+06 1.80164623e+06 1.04074766e+07 -6.15716548e+06 -4.09645926e+06 -2.11291053e+06 -2.39639893e+06 -2.14155157e+07 -1.58470278e+07] [ 4.26942434e+06 1.42482308e+07 -4.35597121e+06 5.62001321e+06 -4.85725616e+06 -1.82608334e+06 8.09661845e+06 9.28354803e+06 3.61450664e+06 5.21082066e+06 1.38679103e+06 3.19778329e+06 -1.06943207e+07 -8.28325943e+06 -1.17456547e+06 -2.27878354e+06 -1.81003601e+06 6.61020084e+06 6.53035001e+06 -2.81696232e+06 -5.79095808e+05 1.05214160e+07 -4.16426895e+06 -6.73470229e+05 1.79358156e+06 2.42487497e+06 -1.08932832e+07 6.79634708e+05 -8.59482988e+06 8.10408212e+06 -2.95447006e+06 -2.71988692e+05 8.82981466e+05 1.09752060e+06 -1.59373465e+07 -1.09184122e+07] [ 9.33031687e+06 1.95547076e+07 4.59178149e+05 7.88951487e+06 -6.04748276e+05 2.87356480e+06 4.67955242e+06 5.67452831e+06 6.79741210e+06 1.12541687e+07 6.22458276e+06 6.40005241e+06 -4.22708032e+06 -1.62569949e+06 2.92312521e+06 2.98608438e+06 3.89700036e+06 4.70652632e+06 7.83043608e+06 1.39850284e+06 2.80708089e+06 1.30102050e+07 2.61140350e+05 4.41977260e+06 4.24830050e+06 3.42501912e+06 -3.75260988e+06 4.66950041e+06 -1.16383766e+07 6.92995154e+06 1.49359517e+06 4.87479237e+06 4.42869912e+06 5.58442721e+06 -7.87593520e+06 -3.95093579e+06] [ 1.20634249e+07 2.54071366e+07 2.90007537e+06 1.05866842e+07 1.07502997e+06 5.62674577e+06 1.16331146e+06 4.97919810e+06 8.85122867e+06 1.72676663e+07 8.51456970e+06 7.37894008e+06 1.81378823e+06 5.10774951e+06 4.93559501e+06 6.67142922e+06 7.52540530e+06 4.42269157e+06 6.00292542e+06 3.28708993e+06 4.06586536e+06 1.22517231e+07 4.82538394e+06 7.07843890e+06 4.96530415e+06 3.20215037e+06 3.46756205e+06 6.66611434e+06 -1.03444404e+07 4.92683494e+06 3.59554262e+06 6.61454976e+06 5.77797783e+06 7.76236987e+06 5.62916008e+05 3.33708424e+06] [ 6.73368549e+06 2.34565211e+07 -1.47475503e+06 5.53775535e+06 -3.05359774e+06 6.69200139e+05 -5.98697917e+06 1.34602416e+06 2.66184459e+06 1.06596950e+07 1.96929777e+06 6.23937364e+05 3.36708938e+06 5.36131831e+06 -6.86558100e+05 -1.44582341e+05 2.31570161e+06 -7.77545678e+05 1.72240812e+06 -1.61114954e+06 -1.35437526e+06 3.56825315e+06 6.25398788e+06 1.62863522e+06 -9.65384421e+05 -3.16949169e+06 6.56054858e+06 9.77224820e+05 -1.27256196e+07 -2.35290317e+06 -1.24034061e+06 1.88243067e+05 5.49726410e+04 1.64460943e+06 5.46505320e+06 7.49039227e+06] [-4.06171043e+06 1.37824114e+07 -1.18537959e+07 -1.74104132e+06 -1.23398401e+07 -1.07371784e+07 -9.34167110e+06 -2.22007321e+06 -8.03706064e+06 -6.55380313e+06 -1.09413593e+07 -1.09716067e+07 -4.63648247e+06 -4.40860274e+06 -1.21363884e+07 -1.38225723e+07 -1.01786800e+07 -3.81605297e+06 -4.06307845e+06 -1.21032522e+07 -1.15555911e+07 -7.46857275e+06 8.83302062e+05 -1.02046844e+07 -1.12485420e+07 -1.28740267e+07 -9.55997629e+05 -1.06418395e+07 -1.45610408e+07 -8.86550174e+06 -1.19276156e+07 -1.14532461e+07 -1.08575375e+07 -1.02660171e+07 -3.49092200e+05 1.71652566e+06] [-1.07787936e+07 3.67545608e+06 -1.51912009e+07 -4.66922672e+06 -1.52562537e+07 -1.46361360e+07 -1.07670689e+07 -4.53192672e+06 -1.27081214e+07 -1.49197840e+07 -1.56095451e+07 -1.50361474e+07 -8.79899109e+06 -8.90519723e+06 -1.59690366e+07 -2.28563981e+07 -1.47611102e+07 -3.98459920e+06 -1.14792805e+07 -1.52909040e+07 -1.48059937e+07 -1.35443212e+07 -4.37764207e+06 -1.45852792e+07 -1.44823808e+07 -1.59783033e+07 -6.89653508e+06 -1.48465980e+07 -1.18861371e+07 -1.28573249e+07 -1.53031700e+07 -1.99518792e+07 -1.49000578e+07 -1.49419224e+07 -5.17631966e+06 -3.98111692e+06] [-1.04913798e+07 -3.96795406e+06 -1.04137202e+07 -5.73161886e+06 -1.06654266e+07 -1.01866524e+07 -9.73065083e+06 -5.10788802e+06 -1.05070738e+07 -1.16372456e+07 -1.06691537e+07 -1.07557870e+07 -5.65662747e+06 -5.69247796e+06 -1.11939568e+07 -1.87689386e+07 -1.03828324e+07 -4.74088764e+06 -1.29013312e+07 -1.04762239e+07 -1.03089014e+07 -1.23294072e+07 -5.43737080e+06 -1.05274446e+07 -1.02455371e+07 -1.05718702e+07 -5.94268114e+06 -1.07576808e+07 -4.76014241e+06 -1.10142352e+07 -1.06518129e+07 -1.75586157e+07 -1.09562672e+07 -1.09715256e+07 -5.72655181e+06 -5.05952836e+06] [-7.03572145e+06 -6.65118331e+06 -4.77882275e+06 -5.27722170e+06 -5.10997792e+06 -4.72759326e+06 -3.70533572e+06 -1.64394527e+06 -5.84833862e+06 -6.18363167e+06 -5.13887403e+06 -5.50908041e+06 -1.88558773e+06 -1.22145384e+06 -5.33410101e+06 -1.01586035e+07 -4.97842141e+06 -4.34290273e+06 -8.04229514e+06 -4.83539489e+06 -4.87577008e+06 -7.87503515e+06 -3.79140140e+06 -5.33190153e+06 -5.01430617e+06 -3.52123189e+06 -2.50668182e+06 -5.32127113e+06 3.93283001e+06 -5.68971663e+06 -5.10886237e+06 -9.73977667e+06 -5.60942346e+06 -5.78585774e+06 -4.73630109e+06 -4.28338401e+06] [-5.68618369e+06 -7.80623939e+06 -3.08556722e+06 -3.11381534e+06 -3.42053608e+06 -3.26366782e+06 1.00737648e+06 5.36297644e+06 -2.01970638e+06 -2.82485510e+06 -3.58933884e+06 -3.53232769e+06 -5.00180913e+05 4.06045582e+05 -3.42837312e+06 -4.69408944e+06 -3.45320826e+06 -9.41837167e+05 -5.09777853e+06 -2.80699694e+06 -2.71066472e+06 -5.31963213e+06 -2.01228901e+06 -3.64033489e+06 -2.96719344e+06 6.01082593e+05 -3.27266078e+05 -3.60813027e+06 1.05995742e+07 -7.74389068e+05 -3.37025797e+06 -5.63071994e+06 -3.84265118e+06 -4.15446051e+06 -4.22869069e+06 -4.22777286e+06] [-2.84371947e+06 -5.52183136e+06 -3.17746647e+06 -7.34049226e+05 -3.50318283e+06 -3.00348915e+06 5.18073614e+06 7.12334745e+06 5.37322978e+05 7.65975405e+05 -2.99035241e+06 -3.02303569e+06 -2.20855968e+06 -2.08961902e+05 -2.91619843e+06 1.37492368e+06 -3.00219312e+06 1.52132478e+06 -1.50961954e+06 -2.76927182e+06 -2.41168090e+06 -2.15019444e+06 -1.76884597e+06 -3.22536339e+06 -2.64009724e+06 2.21305814e+06 -1.31907824e+06 -3.23630762e+06 1.24840709e+07 2.26905116e+06 -3.29089846e+06 -2.31210876e+05 -3.25178571e+06 -3.38267161e+06 -5.13253603e+06 -4.93152477e+06] [-1.40415840e+06 -2.94111667e+06 -3.48825993e+06 1.13775902e+06 -3.70919770e+06 -2.99093316e+06 5.60863119e+06 7.49178796e+06 1.44523893e+06 1.51416592e+06 -2.97862754e+06 -2.90233828e+06 -3.22868973e+06 -1.05702243e+06 -3.10977963e+06 2.06854262e+06 -2.88092161e+06 3.68787114e+06 -5.46467066e+05 -3.03108022e+06 -2.63044573e+06 -1.55095225e+06 -1.39477070e+06 -3.13268592e+06 -2.69606266e+06 1.52255592e+06 -1.88578746e+06 -3.16240011e+06 1.29729606e+07 3.32542978e+06 -3.48261408e+06 1.04185969e+06 -3.24464975e+06 -3.21800956e+06 -4.79701398e+06 -4.44802755e+06] [-6.58257515e+05 -7.57919358e+05 -2.92063491e+06 2.03009962e+06 -3.00134876e+06 -2.46335166e+06 4.10983693e+06 5.46661735e+06 1.18709153e+06 1.04390854e+06 -2.71010551e+06 -2.49090041e+06 -2.78179541e+06 -1.19750837e+06 -2.61247736e+06 1.55040488e+06 -2.41973525e+06 3.98969532e+06 -3.34564380e+05 -2.58841812e+06 -2.26771358e+06 -1.46938364e+06 -7.49539159e+05 -2.60536017e+06 -2.30738439e+06 4.26295650e+05 -1.41220207e+06 -2.59692825e+06 9.44159121e+06 2.54850067e+06 -2.89325148e+06 1.02669394e+06 -2.65359919e+06 -2.68251650e+06 -2.90587801e+06 -2.75783408e+06] [ 5.17571265e+05 1.04185961e+06 -1.02955318e+06 1.75681454e+06 -9.90365171e+05 -8.65264808e+05 2.58627829e+06 2.07063703e+06 9.85115873e+05 5.38692023e+05 -9.08391554e+05 -8.31557165e+05 -1.54321588e+06 -7.73397426e+05 -9.23364411e+05 8.35909541e+05 -7.85284605e+05 2.56319614e+06 2.40203001e+05 -9.30383975e+05 -7.60605261e+05 6.09764739e+04 -3.91909328e+05 -7.84868044e+05 -7.97429936e+05 5.36418247e+04 -9.58066750e+05 -9.01583554e+05 3.69445505e+06 1.73475246e+06 -1.04303114e+06 8.73888559e+05 -9.29379914e+05 -8.39439494e+05 -1.29575293e+06 -1.19610011e+06] [ 2.09238200e+05 1.31975266e+04 -5.79068561e+04 2.05583105e+05 1.63877532e+04 -1.59848927e+05 4.84760197e+05 -4.93995501e+05 6.71598258e+04 -6.09943838e+05 -1.81191904e+05 -1.43896844e+05 -3.04650323e+05 -3.49271284e+05 -1.31156810e+05 -6.60976295e+04 -1.43864129e+05 3.08964711e+05 1.83322935e+05 -1.11710250e+05 -9.08110903e+04 1.62369636e+05 -1.83323098e+05 -7.45965265e+04 -1.53994942e+05 -1.68717369e+05 -3.24063162e+05 -1.54927520e+05 -1.99256029e+05 2.67789662e+05 -9.73248591e+04 1.02430378e+05 -1.30340822e+05 -8.92392567e+04 -2.35715134e+05 -3.00501743e+05] [ 3.88205997e+04 -3.44037999e+04 -1.85419889e+04 1.35762521e+05 -8.11643340e+03 -2.35058949e+04 1.08988303e+05 -1.27483872e+05 5.29112247e+04 -1.46705862e+05 -4.98953756e+04 -1.65434065e+04 -8.33034685e+04 -8.68996827e+04 -2.09075173e+04 -5.87234731e+04 -2.22620407e+04 2.09841535e+05 3.37132452e+03 -2.84083948e+04 -2.21311922e+04 1.15769848e+03 -5.67427055e+04 -1.55499044e+04 -1.35478250e+04 -8.77561640e+04 -1.07899702e+05 -1.58384214e+04 -4.33390895e+04 8.61138947e+04 -1.98292318e+04 -5.97219250e+04 -1.37553181e+04 -1.39497213e+04 -3.88623641e+04 -7.69464333e+04] [-2.45812719e+02 -1.80176640e+01 -3.55956656e+02 -1.30559093e+00 -3.36442058e+02 -2.82135371e+02 -4.52570735e+02 2.85824076e+01 -2.59186156e+02 -3.13962285e+02 -3.39184563e+02 -2.78984623e+02 1.06328354e+02 -9.61702598e+01 -3.35693681e+02 -4.35847719e+02 -3.19068408e+02 -1.31924269e+02 -1.51823287e+02 -3.43785184e+02 -3.36855789e+02 -2.93809735e+02 9.11709435e+01 -3.45526057e+02 -2.76783993e+02 -2.82338982e+02 1.32547235e+02 -2.63777178e+02 -2.83946786e+02 -1.80779890e+02 -3.42554003e+02 -3.09716117e+02 -2.82155534e+02 -2.95425856e+02 1.18962666e+02 1.34278865e+02] [-8.44465227e-01 -9.50422627e-01 5.40680325e-01 3.91445360e-01 -5.18156121e-01 8.73091879e-01 -7.40108732e-01 -3.44728413e-01 -3.67718863e-01 -5.89357888e-01 -7.78840745e-01 -6.82734419e-01 -4.27730802e-01 -9.39667955e-01 5.78253468e-01 1.47990942e-01 -8.17980042e-01 3.53872446e-01 3.35722716e-01 -4.78478168e-01 -9.00314652e-01 1.01571639e-01 -3.09903443e-02 -3.98995210e-01 4.47850587e-01 4.95639366e-01 -4.37154227e-02 -1.93241879e-01 1.05791415e-01 -8.98120302e-02 7.84861225e-01 2.34139911e-01 -4.51767853e-01 -8.37313935e-01 -3.05167836e-01 9.50303409e-01] [-7.23531162e+02 -2.85896111e+03 1.15900350e+03 1.44732168e+03 1.13321848e+03 5.44793463e+02 1.34296133e+03 -3.49524784e+03 1.00703327e+03 -2.99302098e+03 1.66822456e+03 1.31469722e+03 -1.44000666e+03 -4.12529161e+02 7.11539691e+02 -3.12975822e+03 1.34450727e+03 3.34375045e+03 -3.60860062e+03 1.39732025e+03 1.52879250e+03 -1.21467837e+02 -2.11306041e+03 1.31551164e+03 9.58826647e+02 9.17889857e+02 -2.50236883e+03 4.10658598e+02 -1.24345884e+03 1.92317249e+03 7.41820343e+02 -3.65091925e+03 6.81608100e+02 1.62448666e+03 -1.02973921e+03 -1.51526460e+03] [-1.47649910e+05 -3.91800568e+05 8.38229108e+04 -1.80214588e+05 9.63981155e+04 3.74814737e+04 -3.19604381e+04 -3.04260748e+05 -9.03683062e+04 -2.82145242e+05 6.31739814e+04 3.53961275e+04 3.42542197e+04 -1.94314840e+04 4.28404369e+04 -1.85638748e+05 2.77242604e+04 -8.68646852e+04 -1.73721904e+05 9.95118197e+04 8.91056805e+04 -4.49624822e+04 -1.18612281e+05 4.69059520e+04 4.85607391e+04 5.99572179e+04 -7.21929864e+04 3.04105903e+04 -2.79203002e+05 -4.30980132e+04 7.07901746e+04 -2.09347769e+05 3.95726095e+04 3.50847200e+04 -1.45863762e+04 -6.54021915e+04] [-9.34094252e+04 -4.39681190e+05 2.26458704e+05 -4.02114712e+05 2.72092358e+05 1.08332342e+05 -1.80700841e+04 -8.09519437e+05 -1.92238063e+05 -8.83928174e+05 1.53523087e+05 6.83108768e+04 1.57942301e+05 2.89237399e+04 8.42097737e+04 -5.66324401e+05 8.49471501e+04 -2.61477669e+05 -2.01592111e+05 2.02304473e+05 1.61495574e+05 -4.01107635e+04 -2.41897153e+05 1.29381131e+05 8.93995185e+04 -2.24108749e+05 -9.89395981e+04 8.23515623e+04 -6.33533262e+05 -1.50713561e+05 1.78735293e+05 -5.12679023e+05 1.13215461e+05 8.43631955e+04 -5.79264001e+04 -1.39872702e+05] [-7.85666804e+05 -1.86478112e+06 -1.03108855e+06 -7.15558806e+05 -8.33215012e+05 -1.27031736e+06 6.88517796e+04 -6.52564970e+05 -7.95056689e+05 -3.47693635e+06 -1.50819834e+06 -1.51932837e+06 -7.19574853e+05 -8.81753361e+05 -1.50668832e+06 -2.21802781e+06 -1.42757983e+06 4.36226178e+05 -6.97643588e+05 -1.10031671e+06 -1.23824434e+06 -1.73176252e+06 -7.09980799e+05 -1.29697011e+06 -1.31255104e+06 -2.15912348e+06 -7.85466345e+05 -1.40974286e+06 1.27535875e+06 -3.09839159e+05 -1.14737786e+06 -1.67800416e+06 -1.38784113e+06 -1.45357726e+06 -8.39847113e+05 -9.91904998e+05] [-9.45606647e+05 -1.93280913e+06 -4.45860800e+06 1.27803803e+06 -4.26844454e+06 -4.24608379e+06 1.41624928e+06 2.43142497e+06 4.01284083e+04 -4.17031443e+06 -4.90609667e+06 -4.73727661e+06 -3.42195859e+06 -2.44823299e+06 -5.01832841e+06 -3.20562103e+06 -4.19102201e+06 3.99013154e+06 -7.52103017e+05 -4.58828512e+06 -4.69545285e+06 -4.03296460e+06 -1.30908420e+06 -4.23093219e+06 -4.59431189e+06 -4.73978620e+06 -2.40846970e+06 -4.59893053e+06 8.81673289e+06 9.91586212e+05 -4.61275989e+06 -1.57478218e+06 -4.86954331e+06 -4.54367706e+06 -3.75769844e+06 -3.48156067e+06] [-2.36637015e+06 -1.43209224e+06 -8.06517311e+06 1.26035492e+06 -7.91479593e+06 -7.51102809e+06 1.25934553e+06 5.76644883e+06 -8.28172350e+05 -5.06573000e+06 -8.95147290e+06 -8.44882091e+06 -4.87872550e+06 -3.64121863e+06 -8.67833994e+06 -5.25771398e+06 -7.70816041e+06 4.42587039e+06 -1.55264881e+06 -8.28243162e+06 -8.34471179e+06 -7.24950646e+06 -2.23232950e+06 -7.99426706e+06 -8.07646171e+06 -7.02468331e+06 -3.09107417e+06 -7.99066317e+06 1.43919737e+07 5.44722356e+05 -8.26345673e+06 -3.10113766e+06 -8.45886896e+06 -8.35509246e+06 -6.64670818e+06 -6.10652536e+06] [-1.07008096e+06 3.09492228e+06 -1.06536164e+07 4.11243368e+06 -1.07728868e+07 -9.34827233e+06 2.09418894e+06 9.92571721e+06 -9.60523517e+04 -3.28989021e+06 -1.11374068e+07 -1.03563406e+07 -6.41263641e+06 -4.17295595e+06 -1.08126069e+07 -5.28872051e+06 -9.50883788e+06 6.89294056e+06 -1.04654099e+06 -1.09637750e+07 -1.05815158e+07 -8.16151521e+06 -1.83739548e+06 -1.01109880e+07 -9.92031759e+06 -8.08116493e+06 -3.43423477e+06 -9.78135580e+06 1.82931578e+07 1.12768881e+06 -1.07510606e+07 -2.87632301e+06 -1.03291936e+07 -1.03139992e+07 -8.59370246e+06 -7.31577589e+06] [ 7.42148054e+05 8.09828586e+06 -1.11245642e+07 7.73898884e+06 -1.14200731e+07 -9.19118437e+06 5.06070846e+06 1.38703275e+07 1.65808040e+06 -2.10779965e+06 -1.10419826e+07 -9.83318435e+06 -7.44499782e+06 -4.07910763e+06 -1.09645073e+07 -5.65202436e+06 -9.35600518e+06 1.09220856e+07 -1.83320593e+05 -1.11419189e+07 -1.03148324e+07 -6.60799661e+06 -1.18947332e+06 -9.83038944e+06 -9.39451416e+06 -7.72953023e+06 -3.82937106e+06 -9.54478525e+06 1.90763132e+07 2.98471360e+06 -1.10619280e+07 -3.74496786e+06 -1.00603384e+07 -9.87116368e+06 -9.54085021e+06 -7.71711040e+06] [ 1.93740952e+06 1.23968690e+07 -9.91475156e+06 1.01587746e+07 -1.03267277e+07 -7.62378674e+06 6.45086377e+06 1.65957379e+07 2.26841911e+06 5.36566656e+05 -9.14900672e+06 -7.59262140e+06 -7.07748724e+06 -3.59541851e+06 -9.28359906e+06 -4.39591065e+06 -7.82881518e+06 1.35050731e+07 1.87917118e+06 -9.54596629e+06 -8.36335776e+06 -3.44864432e+06 3.54506598e+05 -8.07854538e+06 -7.16497578e+06 -5.79115291e+06 -3.02944545e+06 -7.52262406e+06 1.66928094e+07 4.54329142e+06 -9.59537354e+06 -3.06387419e+06 -7.96681263e+06 -8.04642499e+06 -8.97668842e+06 -6.08380414e+06] [ 6.46607893e+06 1.98812021e+07 -8.51278714e+06 1.48870950e+07 -9.37222054e+06 -5.12025414e+06 1.04785281e+07 1.83328026e+07 5.70194538e+06 5.64590584e+06 -5.55097115e+06 -3.54617814e+06 -9.23491132e+06 -4.52192147e+06 -6.49792795e+06 -6.19777757e+05 -4.85508387e+06 1.85847077e+07 6.97191838e+06 -7.84285803e+06 -5.96902822e+06 2.96479035e+06 1.42107755e+06 -5.08514970e+06 -3.80060705e+06 -2.80978467e+06 -4.75482952e+06 -4.28340007e+06 1.46959522e+07 8.57323871e+06 -7.70918220e+06 1.25999648e+06 -4.59774505e+06 -4.16162886e+06 -9.92098951e+06 -5.53509308e+06] [ 9.17906909e+06 2.45705281e+07 -6.53550849e+06 1.32375295e+07 -7.55590272e+06 -2.89758681e+06 9.92595812e+06 1.39248808e+07 5.67030358e+06 7.96667710e+06 -1.89725676e+06 -9.05016270e+05 -8.49861484e+06 -3.67107012e+06 -4.33649783e+06 2.03198997e+05 -2.21504020e+06 1.51227378e+07 1.01781353e+07 -5.88844467e+06 -4.07356635e+06 7.29103702e+06 2.73487483e+06 -2.35621669e+06 -1.79819236e+06 -1.96368553e+06 -3.97962530e+06 -1.80333929e+06 6.44129020e+06 8.51263975e+06 -5.60892806e+06 4.17744571e+06 -2.06018720e+06 -1.19561870e+06 -8.34789044e+06 -3.12439805e+06] [ 1.23647788e+07 2.62915610e+07 -2.67352695e+06 1.08497388e+07 -3.63574627e+06 3.66156305e+05 6.30262832e+06 4.88832719e+06 5.90963161e+06 8.69289395e+06 1.98307929e+06 1.35232366e+06 -4.51047483e+06 -1.59530430e+05 -1.46764171e+06 1.24136771e+06 1.48004079e+06 8.72377685e+06 1.15747609e+07 -2.61225171e+06 -1.62135017e+06 1.03940580e+07 4.43329182e+06 1.27290822e+06 -1.44905989e+05 -2.16188619e+06 -7.69562301e+05 1.11385616e+06 -4.01922918e+06 6.33096408e+06 -2.09351052e+06 7.20598245e+06 6.44763095e+05 2.05049618e+06 -3.46090054e+06 9.04372229e+05] [ 1.45472650e+07 2.78966023e+07 3.47762010e+05 1.09211665e+07 -7.67884972e+05 2.83364945e+06 3.12858353e+06 2.70764293e+05 6.78852476e+06 1.18028012e+07 4.51858184e+06 2.76562267e+06 -1.41580771e+05 3.68555546e+06 9.94598943e+05 5.80346143e+06 4.64483210e+06 5.52669469e+06 1.15544977e+07 -2.93533758e+05 1.06480137e+05 1.14671062e+07 6.81086843e+06 4.12600667e+06 7.75959880e+05 -2.25974956e+06 3.64024307e+06 2.99962179e+06 -7.40411618e+06 4.50841528e+06 5.03250594e+05 1.06731072e+07 2.44524315e+06 4.43483719e+06 1.79309713e+06 5.19443964e+06] [ 1.45994290e+07 3.00534841e+07 1.59571766e+06 1.15029654e+07 -3.39605947e+05 4.43983010e+06 -3.23975389e+06 -4.78000224e+05 7.68609911e+06 1.74297855e+07 5.14420308e+06 2.78665765e+06 6.12187907e+06 1.00427821e+07 2.28454448e+06 8.76468972e+06 6.89628960e+06 2.85046253e+06 8.85763161e+06 5.84601349e+05 3.61517917e+05 8.28112445e+06 1.01899718e+07 5.44935046e+06 6.16706164e+05 -2.17434375e+06 1.07363388e+07 4.03078689e+06 -6.16345215e+06 6.01042616e+05 1.61516263e+06 1.14820464e+07 2.87162772e+06 5.27676068e+06 9.88710715e+06 1.15008020e+07] [ 6.10459498e+06 2.51136502e+07 -5.26227510e+06 3.45086264e+06 -6.89671295e+06 -2.72953541e+06 -1.23995490e+07 -1.49057140e+06 -9.45829465e+05 9.70685586e+06 -3.58428619e+06 -5.39062871e+06 5.32771434e+06 7.23681128e+06 -5.23077185e+06 -6.52746291e+05 -1.00682453e+06 -5.03361891e+06 2.52435748e+06 -6.39892980e+06 -6.85562529e+06 -2.46808992e+06 9.24958802e+06 -2.64291877e+06 -6.65275124e+06 -8.83423115e+06 1.10288824e+07 -3.52369327e+06 -1.09564426e+07 -8.61543776e+06 -5.32318737e+06 1.60256850e+06 -4.63209535e+06 -3.07278964e+06 1.10400643e+07 1.24018878e+07] [-4.98747933e+06 1.29864818e+07 -1.39798231e+07 -3.73851813e+06 -1.41838231e+07 -1.28070704e+07 -1.17442594e+07 -3.28875560e+06 -1.01913169e+07 -7.86112619e+06 -1.43064374e+07 -1.40298282e+07 -4.50699238e+06 -5.02511216e+06 -1.42918639e+07 -1.33848902e+07 -1.27415877e+07 -7.29798082e+06 -2.63112507e+06 -1.46796058e+07 -1.45009629e+07 -1.02297304e+07 1.44134067e+06 -1.29815385e+07 -1.40197897e+07 -1.50886785e+07 -3.76745313e+04 -1.30226214e+07 -1.48819075e+07 -1.23199712e+07 -1.39141154e+07 -1.01163177e+07 -1.31534293e+07 -1.30840612e+07 1.53424411e+06 3.24141378e+06] [-1.25380293e+07 -1.77652286e+06 -1.39428479e+07 -9.73319242e+06 -1.32799208e+07 -1.43271934e+07 -1.04791551e+07 -8.67079410e+06 -1.53431058e+07 -1.94798591e+07 -1.52644894e+07 -1.46461454e+07 -8.80774538e+06 -1.10202899e+07 -1.48964977e+07 -2.24102020e+07 -1.52444180e+07 -8.96235523e+06 -9.70194951e+06 -1.41371401e+07 -1.38081248e+07 -1.30028944e+07 -6.17911822e+06 -1.44414797e+07 -1.36293143e+07 -1.56731412e+07 -8.68675552e+06 -1.43555773e+07 -1.61254698e+07 -1.39928741e+07 -1.40716281e+07 -1.92407663e+07 -1.38398481e+07 -1.47097205e+07 -6.89666011e+06 -5.50486235e+06] [-9.27548469e+06 -7.46072047e+06 -6.28384748e+06 -4.93925367e+06 -6.14801241e+06 -6.53125171e+06 -4.39418063e+06 -7.48064790e+06 -8.56075829e+06 -1.35214728e+07 -6.42148676e+06 -6.44942267e+06 -6.08291188e+06 -6.62788828e+06 -7.16994724e+06 -1.62992151e+07 -6.76536984e+06 -1.73842477e+06 -1.11318725e+07 -6.16350071e+06 -5.96891532e+06 -7.87582548e+06 -7.40564576e+06 -6.42122555e+06 -5.93481846e+06 -7.80274950e+06 -8.63615698e+06 -6.91525511e+06 -4.40930443e+06 -6.61295148e+06 -6.56593562e+06 -1.54349160e+07 -6.86638314e+06 -6.81070062e+06 -8.83795593e+06 -7.98222889e+06] [-6.53090792e+06 -9.82696236e+06 -1.32483028e+06 -3.91670100e+06 -1.41445272e+06 -1.79769108e+06 9.03955799e+05 -2.76169848e+06 -3.69595866e+06 -7.92953118e+06 -1.66526161e+06 -1.95720537e+06 -1.75362746e+06 -1.42974966e+06 -2.23609785e+06 -9.45784966e+06 -1.84628939e+06 -6.37558228e+05 -8.59790910e+06 -1.15681779e+06 -1.15976633e+06 -4.46318816e+06 -5.50968537e+06 -1.83828967e+06 -1.50707900e+06 -1.55866162e+06 -4.44683971e+06 -2.31740916e+06 4.41876806e+06 -1.90370444e+06 -1.75212322e+06 -9.84906676e+06 -2.55589024e+06 -2.46564252e+06 -6.73802022e+06 -6.76224463e+06] [-3.68866757e+06 -8.84458881e+06 -1.63692889e+05 -6.45226490e+05 -2.41203705e+05 -8.77876139e+05 6.49351429e+06 3.12035542e+06 4.43747003e+05 -4.37308837e+06 -6.07246883e+05 -6.21246995e+05 -1.38769032e+06 -1.84486560e+05 -8.40913010e+05 -3.30161189e+06 -8.98878579e+05 3.16232733e+06 -4.86686066e+06 2.10106514e+05 2.89027545e+05 -1.66595458e+06 -3.79943409e+06 -7.28647493e+05 -2.32389807e+05 1.92878192e+06 -2.82758841e+06 -1.17385431e+06 1.00042120e+07 2.94007381e+06 -5.45250263e+05 -5.09926689e+06 -1.33787281e+06 -1.17136979e+06 -5.92896723e+06 -6.34815201e+06] [-1.74404617e+06 -7.49837251e+06 -1.11914554e+06 7.17779129e+05 -1.11373188e+06 -1.57573393e+06 8.28559865e+06 3.20929193e+06 1.66186734e+06 -1.97942475e+06 -1.19901339e+06 -1.39288775e+06 -3.06310126e+06 -1.03611725e+06 -1.37381813e+06 1.20687804e+06 -1.56239766e+06 4.05910764e+06 -2.15897055e+06 -6.89552483e+05 -5.35229270e+05 -9.34149155e+04 -3.60987730e+06 -1.41855120e+06 -1.06930511e+06 2.64681118e+06 -3.62555912e+06 -1.85402591e+06 1.04244731e+07 4.18389854e+06 -1.38738989e+06 -7.66923280e+05 -1.75246402e+06 -1.49679880e+06 -6.13451379e+06 -6.43208941e+06] [-9.68742232e+05 -4.62333909e+06 -2.31238664e+06 1.97034251e+06 -2.18305651e+06 -2.37835723e+06 7.92788745e+06 2.83328203e+06 1.66219760e+06 -1.91586421e+06 -2.22000951e+06 -2.27518769e+06 -4.31700605e+06 -2.03814743e+06 -2.32538690e+06 1.82071707e+06 -2.31208629e+06 5.32940260e+06 -1.53722060e+06 -1.88752140e+06 -1.60015127e+06 -1.05026091e+05 -3.25347448e+06 -2.20385396e+06 -1.99831987e+06 9.61411487e+05 -4.20319096e+06 -2.61729130e+06 9.88404796e+06 4.15823777e+06 -2.43665429e+06 1.86720761e+05 -2.51333980e+06 -2.27662074e+06 -5.56199829e+06 -5.75391505e+06] [ 3.26619472e+05 -9.56122873e+05 -2.10329588e+06 2.74341938e+06 -1.96567192e+06 -1.95061234e+06 5.50818063e+06 1.88623318e+06 1.58138757e+06 -1.11180287e+06 -2.18681435e+06 -2.08287765e+06 -3.44364878e+06 -1.86935301e+06 -2.05446660e+06 1.78052736e+06 -1.85513923e+06 4.88102503e+06 -7.37781226e+04 -1.92464564e+06 -1.66670514e+06 3.43594743e+04 -1.61211177e+06 -1.85640071e+06 -1.87045621e+06 -2.13815408e+05 -2.75383224e+06 -2.11675579e+06 6.79968161e+06 3.10259027e+06 -2.18112151e+06 1.31183503e+06 -2.04723185e+06 -1.87938053e+06 -3.21826612e+06 -3.24645937e+06] [ 1.05660728e+06 1.05398962e+06 -7.17567795e+05 2.85057371e+06 -6.25282116e+05 -5.50689756e+05 3.56594587e+06 4.72954172e+05 1.45924637e+06 -3.04222489e+05 -6.85331285e+05 -4.19502488e+05 -2.29080242e+06 -1.28631341e+06 -5.31991370e+05 1.23713346e+06 -4.29423475e+05 3.95663069e+06 1.71370474e+05 -6.56390483e+05 -4.20302639e+05 9.47798962e+05 -1.08994001e+06 -3.77358318e+05 -4.11036816e+05 -2.18561917e+05 -2.15049560e+06 -5.25208700e+05 2.89356870e+06 2.26728872e+06 -7.20598925e+05 1.26993961e+06 -4.80856063e+05 -3.09502864e+05 -1.91959038e+06 -1.90984683e+06] [ 5.66297729e+05 1.03962198e+05 1.84772909e+05 8.18407680e+05 2.82815499e+05 9.05847670e+04 1.16978241e+06 -9.12161473e+05 4.33356215e+05 -8.99525895e+05 2.16764169e+04 1.43887453e+05 -5.99632173e+05 -4.99365107e+05 1.12938458e+05 7.78090769e+04 1.58963044e+05 1.28193844e+06 3.34029672e+05 8.84214893e+04 1.42531445e+05 6.06486903e+05 -3.83875302e+05 2.42944144e+05 1.08372746e+05 -3.80162260e+05 -8.29286361e+05 1.05198708e+05 6.81802852e+03 8.02005536e+05 1.37760550e+05 3.52698690e+05 1.30275547e+05 2.47689837e+05 -5.56103385e+05 -6.10056880e+05] [ 1.43354828e+05 -1.07185404e+04 4.18717303e+04 2.63968807e+05 6.49936957e+04 2.35969606e+04 2.20906479e+05 -2.65165975e+05 1.40909545e+05 -2.88133443e+05 -3.05031510e+04 1.57219988e+04 -7.81157114e+04 -1.00132813e+05 9.42513429e+03 -9.87664265e+04 5.19534710e+04 4.39357663e+05 5.19373815e+04 8.82886552e+03 1.54415111e+04 5.87681298e+04 -3.46597051e+04 7.05486243e+04 1.09358876e+04 -2.38416824e+05 -1.26602241e+05 2.38176815e+04 -3.87838639e+04 1.87631392e+05 2.68797431e+04 -2.48214984e+04 1.51514502e+04 5.36856098e+04 -6.01672720e+03 -7.76796781e+04] [-4.51026846e+02 -3.19420458e+01 -6.52135570e+02 -9.26761111e-01 -6.15432751e+02 -5.16396482e+02 -8.30475832e+02 5.44456268e+01 -4.73656846e+02 -5.73756404e+02 -6.20856096e+02 -5.11479095e+02 1.95007332e+02 -1.73528279e+02 -6.13161440e+02 -7.98169151e+02 -5.85958081e+02 -2.42330184e+02 -2.78737324e+02 -6.31638847e+02 -6.18047711e+02 -5.36662451e+02 1.64606554e+02 -6.33296734e+02 -5.08651137e+02 -5.15834800e+02 2.41486452e+02 -4.84443161e+02 -5.18620411e+02 -3.31893150e+02 -6.26901548e+02 -5.66675686e+02 -5.16183611e+02 -5.42040975e+02 2.18520541e+02 2.46276329e+02] [-6.01853703e-01 8.55358498e-01 -2.13715898e-01 -8.16647602e-01 -9.83412567e-01 5.37288628e-01 -4.64964356e-01 -7.78150338e-01 2.16348752e-01 2.56440702e-01 -9.02779893e-01 -6.30071630e-01 8.62481936e-01 -7.74783063e-01 -9.51922070e-01 7.20066700e-01 -5.60350685e-01 6.98578360e-01 2.88478476e-01 5.42921279e-01 2.56388443e-01 -6.52915058e-01 -6.26186934e-01 -6.38771620e-02 3.77627347e-01 8.05947882e-01 -5.03838411e-01 -9.54309407e-01 9.30470601e-01 2.54470556e-01 5.85521623e-01 7.77131372e-01 2.65719295e-01 -1.32294335e-01 5.56736473e-01 3.27631341e-01] [ 2.81457547e+03 -1.78174376e+03 2.13352008e+04 7.59710845e+03 1.78862334e+04 1.62358969e+04 -1.79371291e+04 -3.95902973e+04 3.36033677e+03 -7.98679109e+03 2.22449497e+04 1.23948016e+04 1.70865496e+04 2.46796149e+04 1.23960935e+04 -2.38086062e+04 2.16899423e+04 -7.41480401e+02 -3.05186828e+04 2.16074620e+04 1.50434291e+04 -1.11050735e+03 -7.41285973e+03 1.68253595e+04 1.04887738e+04 8.89144268e+03 6.26839588e+03 1.24074447e+04 -4.45612359e+04 -8.96519714e+03 1.78125503e+04 -2.76422583e+04 1.18093370e+04 1.71088833e+04 1.87250790e+04 1.15002711e+04] [-1.91251824e+05 -6.21972549e+05 1.45659563e+05 -2.91245048e+05 1.62571751e+05 7.14342067e+04 -7.91602646e+04 -5.29220406e+05 -1.31053939e+05 -4.57491086e+05 1.10931486e+05 6.18499023e+04 7.37621811e+04 -1.92585678e+04 7.48285528e+04 -2.86579362e+05 5.92095184e+04 -1.66616668e+05 -2.55754337e+05 1.62858090e+05 1.35149745e+05 -8.17423395e+04 -1.88365208e+05 8.65914098e+04 7.39281542e+04 6.88684584e+04 -9.86588232e+04 5.48739483e+04 -4.65687200e+05 -8.63202182e+04 1.25180738e+05 -3.07835790e+05 7.05248422e+04 6.93332292e+04 -2.65310182e+03 -8.76254648e+04] [-4.05267138e+05 -1.95224824e+06 5.38879807e+05 -7.79331527e+05 7.33204268e+05 1.42279002e+05 2.72408579e+05 -2.40345875e+06 -5.25879571e+05 -2.83861835e+06 2.28316239e+05 1.06948312e+05 4.43361432e+04 -4.95788319e+05 2.05169422e+05 -1.21285731e+06 1.08213336e+04 -9.37242440e+04 -7.28194179e+05 5.39748410e+05 4.36091362e+05 -1.09348129e+04 -7.79998604e+05 2.22631489e+05 2.21858469e+05 -5.24790279e+05 -6.46617354e+05 8.87232649e+04 -1.82563369e+06 -1.10731877e+05 4.36794613e+05 -1.22516845e+06 2.34086107e+05 1.70279288e+05 -1.75379608e+05 -4.75118611e+05] [-7.19772477e+05 -4.22361850e+06 -1.49279048e+05 -8.88359101e+05 3.12779740e+05 -8.99879272e+05 9.23573878e+05 -4.03022230e+06 -7.89345372e+05 -6.75959564e+06 -1.10719120e+06 -1.19384846e+06 -1.00824234e+06 -1.58749021e+06 -1.09688582e+06 -3.19131925e+06 -1.05002456e+06 1.20591198e+06 -1.32114877e+06 -3.62154956e+05 -6.05689298e+05 -1.15034063e+06 -1.80243302e+06 -6.35419626e+05 -9.67379297e+05 -2.95544539e+06 -2.03962950e+06 -1.10276587e+06 -4.05299490e+05 1.46594343e+05 -4.24255829e+05 -2.17007516e+06 -1.02709744e+06 -9.24839902e+05 -1.49400837e+06 -2.08426026e+06] [-8.21864554e+05 -5.79444519e+06 -3.06975776e+06 1.31461253e+06 -2.36847160e+06 -3.66998748e+06 4.17688890e+06 -2.33338968e+06 2.05186210e+05 -9.28803150e+06 -4.45266399e+06 -4.03041955e+06 -4.70851455e+06 -4.30252526e+06 -4.07636769e+06 -3.04801806e+06 -3.84777013e+06 5.77206544e+06 -1.27571618e+06 -3.31801582e+06 -3.45368946e+06 -2.67960542e+06 -3.87428514e+06 -3.41288289e+06 -3.74903743e+06 -5.15068579e+06 -5.36084156e+06 -4.01106694e+06 6.88618504e+06 2.35330720e+06 -3.40126408e+06 -1.61193144e+06 -3.91652574e+06 -3.62906487e+06 -5.59619053e+06 -5.98769596e+06] [-1.27440720e+06 -5.33525019e+06 -5.53122238e+06 1.63956366e+06 -4.87259580e+06 -5.84566615e+06 6.35278917e+06 -2.98402064e+05 8.98014038e+04 -9.52833802e+06 -7.00498247e+06 -6.33412715e+06 -6.89685250e+06 -5.73185120e+06 -6.29252863e+06 -3.01151563e+06 -6.21309732e+06 6.30381507e+06 -8.97121631e+05 -5.81973104e+06 -5.80503834e+06 -4.09136750e+06 -5.55076987e+06 -5.96390538e+06 -5.91288985e+06 -5.98498480e+06 -7.28887508e+06 -6.22765852e+06 1.18454784e+07 2.91109612e+06 -5.76591674e+06 -1.51013294e+06 -6.16481587e+06 -6.03038649e+06 -8.59161805e+06 -8.80290661e+06] [ 5.40584964e+05 1.07707381e+06 -6.79061586e+06 4.54717654e+06 -6.51834451e+06 -6.26617774e+06 7.91130219e+06 4.54353374e+06 1.27373702e+06 -5.31047974e+06 -7.65212631e+06 -7.01963028e+06 -7.16763023e+06 -4.52882656e+06 -7.17550905e+06 -2.19518063e+06 -6.53061530e+06 8.45457552e+06 1.19349092e+06 -7.18511012e+06 -6.87458989e+06 -3.88885144e+06 -4.06387744e+06 -6.63827612e+06 -6.57184381e+06 -5.76326980e+06 -6.08663802e+06 -6.68910456e+06 1.69685864e+07 3.73773428e+06 -6.94240062e+06 -3.20639298e+05 -6.82920669e+06 -6.79440015e+06 -9.07967868e+06 -8.40867674e+06] [ 4.63606792e+06 9.27156763e+06 -5.18563874e+06 9.00020809e+06 -5.42474116e+06 -3.76716046e+06 1.05633432e+07 9.40417769e+06 4.33829877e+06 7.40911083e+05 -5.00508048e+06 -4.49038033e+06 -5.27420286e+06 -1.16014700e+06 -5.12758636e+06 4.33056282e+05 -3.68631601e+06 1.19128592e+07 5.05693726e+06 -5.38635824e+06 -4.88391205e+06 -4.87866678e+05 -7.54419475e+04 -4.09148539e+06 -4.15468478e+06 -3.21466138e+06 -2.58263386e+06 -4.11818818e+06 1.87187525e+07 6.01975290e+06 -5.13433395e+06 2.33391853e+06 -4.40653281e+06 -4.18237333e+06 -6.12704328e+06 -4.72542035e+06] [ 9.19871155e+06 1.84541167e+07 -3.12636579e+06 1.29954317e+07 -3.60293393e+06 -9.74574143e+05 1.35952669e+07 1.34752963e+07 7.02766802e+06 5.05589014e+06 -1.76070145e+06 -1.25974954e+06 -3.28126990e+06 1.10570118e+06 -2.66394144e+06 3.80071222e+06 -6.93752376e+05 1.58367191e+07 1.18865608e+07 -3.19534270e+06 -2.26141918e+06 5.19770351e+06 4.77732781e+06 -1.07854270e+06 -1.18473835e+06 -3.95003501e+05 1.03118573e+06 -1.01545459e+06 1.76648270e+07 9.99212688e+06 -2.91832984e+06 7.33178511e+06 -1.23301418e+06 -9.14905323e+05 -2.76563409e+06 -1.56200901e+05] [ 1.49396214e+07 2.92455664e+07 -2.06896170e+06 1.93619714e+07 -3.45272971e+06 1.66430477e+06 1.52564926e+07 1.73863751e+07 1.14878752e+07 1.41293786e+07 1.61914627e+06 1.93770364e+06 -2.52261687e+06 3.72632580e+06 -5.66950599e+05 9.09720668e+06 3.10606869e+06 2.10602096e+07 1.69523761e+07 -2.12774552e+06 -6.93961633e+05 1.05763054e+07 9.33247395e+06 2.15739689e+06 9.67783260e+05 2.08329447e+06 4.07538504e+06 1.86433399e+06 1.88235872e+07 1.41349166e+07 -1.60648095e+06 1.43388721e+07 1.25743179e+06 2.69459427e+06 1.64449182e+05 4.00560905e+06] [ 1.67156883e+07 3.23887627e+07 -9.56290327e+05 1.78687902e+07 -2.42488829e+06 2.76993057e+06 1.14190443e+07 1.19632973e+07 1.09934890e+07 1.48786837e+07 3.28297649e+06 2.57559753e+06 -1.22878129e+06 5.14675423e+06 1.82227441e+05 8.29694102e+06 4.69645129e+06 1.69580051e+07 1.66151055e+07 -1.39053046e+06 -2.53969654e+05 1.18680518e+07 1.02923297e+07 3.61771057e+06 1.20222502e+06 6.44526926e+05 5.36422227e+06 2.83128628e+06 1.17318531e+07 1.16716912e+07 -7.01941834e+05 1.53488605e+07 2.04575535e+06 4.02591321e+06 2.46930713e+06 6.45352158e+06] [ 1.82537493e+07 3.35388554e+07 1.18990262e+06 1.68736144e+07 -3.57967602e+05 4.34838436e+06 8.27911890e+06 3.20900551e+06 1.05760561e+07 1.52330236e+07 4.88535031e+06 2.97067529e+06 -2.51286694e+05 6.75817175e+06 1.62243071e+06 8.23433500e+06 6.76367105e+06 1.27726179e+07 1.48227959e+07 1.36509779e+05 4.38891672e+05 1.21497560e+07 9.37195229e+06 5.40954579e+06 1.28756020e+06 -1.47453329e+06 5.55468720e+06 3.94281565e+06 4.87521831e+06 8.05545261e+06 1.13562533e+06 1.58449146e+07 2.82936624e+06 5.37693656e+06 4.78624202e+06 8.16186283e+06] [ 1.60279209e+07 3.06508965e+07 1.39852011e+06 1.31516797e+07 -6.46977978e+04 3.66265614e+06 1.08032281e+06 -4.31713259e+06 7.59811034e+06 1.31275403e+07 3.80307651e+06 8.40552403e+05 3.25580516e+06 8.53528911e+06 9.41240723e+05 6.97238405e+06 6.31488338e+06 6.21917063e+06 9.67941672e+06 -3.19008861e+05 -8.09802444e+05 7.89403608e+06 9.15111829e+06 4.74687491e+06 -8.60749366e+05 -5.27794129e+06 8.28214941e+06 2.60914023e+06 -1.39572550e+06 1.64436502e+06 9.60582020e+05 1.24902621e+07 1.37685458e+06 3.96675513e+06 8.96073396e+06 1.04503555e+07] [ 1.15950255e+07 2.77096170e+07 -1.21992852e+06 8.24702890e+06 -2.97818248e+06 1.10377307e+06 -8.77107683e+06 -5.39696815e+06 3.73065161e+06 1.32842506e+07 3.09401116e+05 -2.53019888e+06 7.46329402e+06 1.06714432e+07 -1.77045943e+06 5.12469821e+06 3.58671990e+06 -6.43693882e+05 5.59891084e+06 -3.04614896e+06 -4.03103092e+06 7.35410714e+05 1.08287417e+07 1.53432057e+06 -4.21468968e+06 -7.57203003e+06 1.31467175e+07 -2.00886328e+05 -4.69642697e+06 -5.02679955e+06 -1.60317658e+06 8.91013394e+06 -1.65740343e+06 5.87033733e+05 1.47712797e+07 1.45882518e+07] [ 2.57059992e+06 1.79907663e+07 -8.55312122e+06 2.70523449e+05 -9.59911867e+06 -6.55271124e+06 -1.27988006e+07 -5.14057309e+06 -4.34573383e+06 2.75513357e+06 -8.69882962e+06 -1.01222594e+07 2.79833876e+06 4.03275632e+06 -9.14509319e+06 -2.66553984e+06 -5.42356919e+06 -6.49317625e+06 9.21982053e+05 -9.96895014e+06 -1.06361496e+07 -7.38971001e+06 7.00214474e+06 -7.05371328e+06 -1.06992428e+07 -1.19948146e+07 8.48873813e+06 -7.75449416e+06 -8.96442725e+06 -1.06882048e+07 -8.70138068e+06 2.62476701e+05 -8.48446486e+06 -7.65671262e+06 1.09424863e+07 1.08387742e+07] [-6.38881315e+06 4.41177743e+06 -1.25291504e+07 -5.21408243e+06 -1.23042086e+07 -1.19817222e+07 -9.06963501e+06 -6.18267639e+06 -1.01166598e+07 -1.15308073e+07 -1.39242399e+07 -1.32045769e+07 -5.45545305e+06 -6.71455339e+06 -1.27590466e+07 -1.04813476e+07 -1.24998202e+07 -6.94377879e+06 -2.88836156e+06 -1.31604204e+07 -1.29685561e+07 -9.58780009e+06 -7.32307074e+05 -1.24232221e+07 -1.26602398e+07 -1.28619645e+07 -2.51159761e+06 -1.22243953e+07 -1.32706613e+07 -1.05649506e+07 -1.23806494e+07 -8.28472896e+06 -1.18387608e+07 -1.24406928e+07 1.58343980e+05 9.21600541e+05] [-9.96546203e+06 -5.10003650e+06 -9.51923696e+06 -7.29646837e+06 -8.67053443e+06 -1.04077202e+07 -2.64729447e+06 -6.74917808e+06 -1.10419626e+07 -1.87177879e+07 -1.09808619e+07 -9.80875249e+06 -8.41893059e+06 -1.08661147e+07 -1.01093741e+07 -1.54175163e+07 -1.14195743e+07 -4.09818906e+06 -5.34775370e+06 -9.75628720e+06 -9.05857169e+06 -7.68407384e+06 -6.11490518e+06 -1.02181814e+07 -8.81929167e+06 -1.02209552e+07 -9.21761107e+06 -1.01321430e+07 -1.07170779e+07 -7.16258859e+06 -9.61232265e+06 -1.32599559e+07 -9.29889699e+06 -1.03622362e+07 -8.43208589e+06 -6.93750740e+06] [-6.67842588e+06 -8.63139818e+06 -1.99309594e+06 -3.92647571e+06 -1.60865014e+06 -2.80418531e+06 2.57513000e+06 -4.26693992e+06 -5.07947377e+06 -1.29702521e+07 -2.67625833e+06 -2.14903536e+06 -4.28681761e+06 -5.49396282e+06 -2.68339099e+06 -1.09883658e+07 -3.12824740e+06 8.47288287e+05 -5.43827028e+06 -1.82244685e+06 -1.39942013e+06 -3.10694869e+06 -6.20622757e+06 -2.42173987e+06 -1.38051916e+06 -3.15299047e+06 -7.41370847e+06 -2.70206784e+06 -7.32127398e+05 -9.81195980e+05 -2.23650722e+06 -9.68054530e+06 -2.36301535e+06 -2.80773448e+06 -8.65040923e+06 -8.06724840e+06] [-3.36862200e+06 -9.63276868e+06 1.33470331e+06 2.88590005e+05 1.38463208e+06 5.40859252e+05 7.64611039e+06 -1.41938942e+06 4.21980942e+05 -7.73993884e+06 8.53941607e+05 1.10840242e+06 -2.57402444e+06 -1.82394733e+06 4.79239679e+05 -5.99134358e+06 8.15463248e+05 5.44446798e+06 -5.28432039e+06 1.60858547e+06 1.84149213e+06 -2.89479040e+05 -5.89395263e+06 1.13002330e+06 1.41944179e+06 8.48919556e+05 -5.83866513e+06 3.58469221e+05 6.64626862e+06 3.49911614e+06 9.66835381e+05 -6.26193681e+06 2.24838365e+05 5.66613310e+05 -7.79348268e+06 -8.35241719e+06] [-1.63572017e+06 -8.90410985e+06 1.58574477e+06 2.11383692e+06 1.93321624e+06 3.66718344e+05 1.19314337e+07 -5.90125579e+05 2.34941488e+06 -6.45872842e+06 1.07758213e+06 1.08206949e+06 -3.07314367e+06 -1.47501771e+06 7.06238306e+05 -2.08319737e+06 5.44158299e+05 7.47027676e+06 -3.29095584e+06 1.99234485e+06 2.14696637e+06 1.76172551e+06 -5.36959920e+06 1.19479502e+06 1.36904708e+06 2.13579469e+06 -5.58575330e+06 2.27652598e+05 8.42023263e+06 5.85722423e+06 1.18145087e+06 -3.50762219e+06 2.82296461e+05 7.25100162e+05 -7.20051082e+06 -8.23097072e+06] [-1.09473996e+06 -9.73477496e+06 1.39813897e+05 1.83700680e+06 7.01137801e+05 -1.02831664e+06 1.17816157e+07 -1.49979929e+06 2.21436284e+06 -6.33558567e+06 -1.86597112e+05 -1.75571265e+05 -4.89676832e+06 -3.21561117e+06 -4.09846849e+05 6.90129288e+05 -9.05040253e+05 7.10399665e+06 -1.77505850e+06 5.32297891e+05 7.76320295e+05 2.13893696e+06 -5.89491992e+06 -1.68531312e+05 3.25267606e+04 1.93539438e+06 -6.97807208e+06 -1.09379336e+06 7.63042195e+06 6.41155409e+06 -2.02327089e+05 -1.10911890e+06 -7.19012818e+05 -2.47478642e+05 -7.93180092e+06 -8.71383098e+06] [-7.47175474e+05 -6.02360514e+06 -1.20381681e+06 1.94532859e+06 -6.47837170e+05 -1.89837112e+06 9.20644347e+06 -1.95354225e+06 1.34509624e+06 -5.86659251e+06 -1.39880120e+06 -1.52484126e+06 -5.00933403e+06 -3.40386393e+06 -1.69654088e+06 3.29242803e+05 -1.79661325e+06 6.36452560e+06 -1.63379829e+06 -8.72049302e+05 -6.97654975e+05 1.34054814e+06 -4.66117030e+06 -1.21251433e+06 -1.33859958e+06 -3.76086268e+05 -6.15464201e+06 -2.07312232e+06 6.05889778e+06 4.91049764e+06 -1.46509059e+06 -9.60512466e+05 -1.78373905e+06 -1.34658114e+06 -6.30582973e+06 -6.78599354e+06] [ 4.60429622e+05 -2.11432634e+06 -1.63375850e+06 2.40677494e+06 -1.20701276e+06 -1.81868876e+06 6.34371241e+06 -1.49462667e+06 1.30367385e+06 -3.93698925e+06 -1.87487762e+06 -1.58068284e+06 -4.25527880e+06 -3.00106644e+06 -1.70450793e+06 1.12978792e+06 -1.74939243e+06 5.22111910e+06 1.68921196e+05 -1.51979342e+06 -1.20992792e+06 1.21002065e+06 -2.90079311e+06 -1.40388354e+06 -1.42553658e+06 -9.31146230e+05 -4.57765649e+06 -1.86956826e+06 3.84781827e+06 3.43599285e+06 -1.73889705e+06 8.74985899e+05 -1.55650210e+06 -1.36035854e+06 -4.28617772e+06 -4.43262898e+06] [ 1.12968371e+06 5.35122821e+04 -3.99966019e+05 2.46604009e+06 -1.59102840e+05 -4.37775031e+05 3.52734593e+06 -1.46439734e+06 1.27352240e+06 -2.00714747e+06 -5.90971584e+05 -1.92338322e+05 -2.47495629e+06 -1.82773324e+06 -3.75001282e+05 8.57461360e+05 -3.18964226e+05 4.17455554e+06 6.97952135e+05 -4.44667109e+05 -2.40293576e+05 1.38946631e+06 -1.48805313e+06 -1.36993078e+05 -1.99398602e+05 -8.03675373e+05 -2.82903753e+06 -3.70273500e+05 1.57732643e+06 2.46125012e+06 -4.40035282e+05 1.21740941e+06 -2.04086368e+05 -2.58147009e+03 -2.21934848e+06 -2.29317315e+06] [ 5.95373133e+05 -1.35129595e+05 1.88929897e+05 9.11783035e+05 3.37447344e+05 1.73697239e+04 9.04664776e+05 -1.39092744e+06 4.07486031e+05 -1.57794739e+06 -1.30756584e+05 6.47782116e+04 -5.56166794e+05 -7.12993406e+05 8.21367305e+03 -2.26540052e+05 1.20829823e+05 1.77890250e+06 4.41683670e+05 2.31403050e+04 5.29757480e+04 4.92328962e+05 -2.93247607e+05 2.50363356e+05 3.35256316e+04 -9.08746811e+05 -8.03324689e+05 3.05610852e+04 -3.47364793e+05 7.83989093e+05 1.01049537e+05 1.74952169e+05 6.52347545e+04 2.19651085e+05 -4.45358384e+05 -5.49158365e+05] [ 2.42694860e+05 -2.87730600e+04 1.66588744e+05 3.53861759e+05 1.88307268e+05 1.43118902e+05 2.44629956e+05 -4.57804406e+05 2.25300639e+05 -4.34592015e+05 5.74665303e+04 1.01676615e+05 -7.70927877e+03 -2.72158220e+04 9.50388113e+04 -1.51596838e+05 2.14679915e+05 6.33541488e+05 9.49946600e+04 1.02504652e+05 9.67393687e+04 1.40301101e+05 6.55698597e+03 2.25678186e+05 7.71166787e+04 -3.86118750e+05 -1.15137002e+05 1.20777105e+05 -5.47851346e+04 2.63249367e+05 1.31255855e+05 1.79774784e+04 9.24148154e+04 1.94143082e+05 3.11978217e+04 -6.80553591e+04] [ 3.24153946e+03 4.40364954e+03 -1.26514895e+03 7.92579695e+03 -2.34740780e+03 1.01842335e+03 6.93630305e+03 2.79865403e+03 3.16138138e+03 1.36085317e+03 4.69129385e+01 6.76512215e+02 3.17062944e+03 4.51919825e+03 7.32693629e+00 1.56409626e+03 7.37877517e+02 6.48667209e+03 5.22426157e+03 -1.62714438e+03 -8.88473987e+02 5.72601050e+03 3.58017482e+02 -2.92285424e+02 4.06048723e+02 4.09030905e+03 4.72705510e+02 9.81108201e+02 1.89278861e+03 6.91987124e+03 -1.18779464e+03 2.98458920e+03 1.16295081e+03 1.35846123e+03 -3.94594152e+03 -6.94755534e+02] [-1.88364551e+04 -3.22905077e+04 1.05063964e+03 2.08141509e+04 3.18792665e+03 -6.81160786e+02 2.50896462e+04 3.11050505e+03 9.82752127e+03 -3.38119569e+04 -2.72929697e+03 8.64343650e+03 -7.94664815e+03 -1.03102560e+04 1.04896905e+03 -1.80163453e+04 3.90161957e+02 5.20094476e+04 -3.00253328e+04 6.71388761e+03 8.64238982e+03 2.46511196e+03 -1.90446711e+04 6.16988620e+03 5.40793178e+03 -1.67171729e+03 -2.04070358e+04 3.07817609e+03 1.40591216e+04 4.28303426e+04 2.50611417e+03 -2.62344138e+04 3.64754580e+02 3.44539083e+03 -1.81072527e+04 -3.24465541e+04] [-1.32239124e+03 -2.52041369e+03 4.74099897e+03 -9.57060541e+02 4.38255302e+03 2.87504634e+03 -4.22338754e+03 -1.13657565e+04 -1.50861773e+03 -6.71843208e+03 4.75443400e+03 2.48539191e+03 4.08786340e+03 3.85241562e+03 2.14435997e+03 -8.22880017e+03 4.09293015e+03 -1.48475281e+03 -8.22487656e+03 4.84218195e+03 3.48700144e+03 -5.22659856e+02 -2.37449711e+03 3.38515923e+03 2.15463619e+03 5.03309018e+02 9.99289196e+02 2.04824477e+03 -1.31497962e+04 -2.00913271e+03 3.70778956e+03 -8.82851798e+03 2.23672019e+03 3.35949988e+03 3.51053874e+03 2.01744342e+03] [-2.93964342e+05 -8.34989206e+05 1.47783089e+05 -3.95207194e+05 1.85053231e+05 3.47001175e+04 -1.00778676e+05 -8.15737562e+05 -2.43773632e+05 -7.47440531e+05 9.60041807e+04 4.93293131e+04 8.00021786e+03 -1.40605470e+05 7.09414411e+04 -4.79299587e+05 7.71909602e+03 -2.03102763e+05 -2.99713767e+05 1.70833786e+05 1.38261562e+05 -1.08264711e+05 -3.05216296e+05 7.23052381e+04 7.06240187e+04 2.33214266e+03 -2.35426080e+05 2.62045390e+04 -6.92727663e+05 -1.50031063e+05 1.31213503e+05 -4.16530536e+05 6.37282423e+04 5.72232156e+04 -3.59966583e+04 -1.59824864e+05] [-6.84972655e+05 -3.49125122e+06 1.05874589e+06 -1.20708228e+06 1.36761082e+06 4.54976306e+05 5.39822181e+05 -4.48150557e+06 -7.56182433e+05 -4.30790842e+06 5.94924458e+05 3.91876665e+05 -6.60795448e+04 -7.58465981e+05 5.32679812e+05 -1.89032682e+06 2.65777636e+05 -9.78214655e+04 -1.26168416e+06 1.10378734e+06 8.83424425e+05 1.71377408e+05 -1.55681245e+06 5.92322843e+05 5.57445914e+05 -6.15429992e+05 -1.38581752e+06 3.59021506e+05 -3.08989111e+06 -1.59442076e+05 9.34795936e+05 -1.81817530e+06 5.59430619e+05 5.18206255e+05 -3.91625912e+05 -9.61156510e+05] [-7.99200194e+05 -6.95687979e+06 1.01122103e+06 -9.04234274e+05 1.77008169e+06 -2.29367718e+05 2.67891205e+06 -7.80978084e+06 -6.15169507e+05 -9.78358542e+06 -2.71211754e+05 -3.09356044e+05 -1.82271926e+06 -2.64794370e+06 -2.03382145e+05 -3.75616791e+06 -3.81366450e+05 2.34429727e+06 -1.99890882e+06 8.16371426e+05 5.04865741e+05 -2.23187054e+05 -3.69623730e+06 3.42783086e+05 -7.04397180e+04 -3.09808293e+06 -4.22567771e+06 -4.19935147e+05 -2.18037602e+06 9.76899519e+05 6.68441636e+05 -2.80262938e+06 -1.79525490e+05 5.03665461e+04 -2.85780100e+06 -3.81425858e+06] [-2.14747674e+06 -1.09312998e+07 -9.42276246e+05 -1.07024210e+06 2.61460045e+05 -2.57222831e+06 5.68730318e+06 -8.08055369e+06 -1.01759074e+06 -1.46534974e+07 -3.03099934e+06 -2.49535839e+06 -5.05379462e+06 -5.81127653e+06 -2.31557955e+06 -4.07102162e+06 -3.06169936e+06 4.33215494e+06 -2.37560238e+06 -1.25818831e+06 -1.37321065e+06 -1.53282619e+06 -6.60614365e+06 -2.03233425e+06 -2.02107638e+06 -4.93932475e+06 -8.00114441e+06 -2.74501404e+06 1.84133294e+06 2.26768177e+06 -1.36777359e+06 -3.16458622e+06 -2.27517575e+06 -2.29311636e+06 -7.13913347e+06 -8.16115881e+06] [-2.87331953e+06 -1.16100009e+07 -3.17503528e+06 -1.80378617e+06 -1.86656033e+06 -4.78476365e+06 7.91580954e+06 -6.17281478e+06 -1.52065579e+06 -1.52332682e+07 -5.42418487e+06 -4.45437172e+06 -7.64321478e+06 -8.29292386e+06 -4.12447317e+06 -2.72237662e+06 -5.60756832e+06 3.83078359e+06 -1.27586649e+06 -3.57568716e+06 -3.33146514e+06 -2.59139569e+06 -8.59573369e+06 -4.56186524e+06 -3.76617932e+06 -5.14225299e+06 -1.05116234e+07 -4.79774723e+06 5.17441709e+06 2.97033708e+06 -3.47435846e+06 -2.34202749e+06 -4.07131376e+06 -4.53791746e+06 -1.07157180e+07 -1.13399125e+07] [ 3.32130441e+05 -4.29874756e+06 -2.93787705e+06 2.31026080e+06 -2.21138102e+06 -3.52616843e+06 1.03583983e+07 -2.61582089e+05 1.47287541e+06 -8.79959334e+06 -4.29966648e+06 -3.51279881e+06 -6.65428590e+06 -5.82197594e+06 -3.40620322e+06 5.60344338e+05 -4.03293548e+06 7.18467890e+06 2.95530239e+06 -3.41923027e+06 -3.02510130e+06 -5.02820179e+05 -5.25869624e+06 -3.52830650e+06 -2.95958210e+06 -3.11036977e+06 -7.42687586e+06 -3.55602546e+06 1.13726535e+07 5.71848912e+06 -3.14855805e+06 1.31095498e+06 -3.23500045e+06 -3.41951412e+06 -9.10617678e+06 -8.96632055e+06] [ 6.98392530e+06 7.45521804e+06 -1.73163446e+05 8.71559077e+06 -1.20238017e+05 4.32680630e+05 1.49652717e+07 6.13711620e+06 6.39925754e+06 -1.43146831e+05 -1.83982904e+05 4.61483717e+05 -3.72580226e+06 -1.03742822e+06 -1.42882179e+05 5.39315958e+06 4.80887165e+05 1.26000871e+07 1.02704044e+07 -6.21612439e+05 2.61698846e+04 5.07474517e+06 1.23692328e+06 5.59320388e+05 7.23828342e+05 5.10228513e+05 -1.81923532e+06 5.06312189e+05 1.66196487e+07 1.02038517e+07 -1.94048854e+05 7.62800447e+06 6.02023802e+05 7.55159632e+05 -4.31523803e+06 -3.17782242e+06] [ 1.35564528e+07 1.97019531e+07 2.53843609e+06 1.54444698e+07 1.82278838e+06 4.52733123e+06 1.92549680e+07 1.22401189e+07 1.14611285e+07 9.29954545e+06 4.56235128e+06 4.91474847e+06 -8.27313844e+05 3.99926043e+06 3.34214064e+06 1.13051443e+07 5.47117004e+06 1.80494071e+07 1.72997522e+07 2.22721220e+06 3.31491482e+06 1.20367535e+07 7.46556514e+06 5.06114164e+06 4.35926208e+06 5.14064377e+06 3.41083826e+06 4.70210109e+06 1.95119679e+07 1.57403970e+07 2.70117567e+06 1.52028733e+07 4.51583341e+06 5.46038936e+06 5.88419913e+05 2.96389866e+06] [ 1.81688655e+07 2.87838721e+07 3.17249935e+06 2.06119181e+07 1.62881275e+06 6.27118840e+06 1.97965071e+07 1.56624590e+07 1.53473369e+07 1.77251175e+07 6.99247424e+06 6.74551514e+06 8.45786358e+05 7.52708631e+06 4.65969327e+06 1.61353953e+07 8.44216063e+06 2.12047965e+07 2.03875324e+07 2.81813431e+06 4.13887703e+06 1.60187970e+07 1.11398412e+07 7.39720437e+06 5.32562008e+06 7.52179134e+06 7.03816682e+06 6.44672133e+06 2.08651453e+07 1.84277936e+07 3.41330548e+06 2.11680263e+07 5.81195760e+06 7.85764874e+06 4.11657218e+06 7.07144655e+06] [ 1.89969372e+07 3.16486285e+07 2.95557380e+06 2.00484478e+07 1.22755638e+06 6.14624998e+06 1.56326034e+07 1.08980857e+07 1.43835140e+07 1.91981267e+07 6.85185837e+06 5.77741650e+06 7.67096765e+05 8.36392255e+06 4.25744817e+06 1.52752203e+07 8.91464884e+06 1.80150185e+07 1.83668281e+07 2.19424456e+06 3.14439404e+06 1.52074606e+07 1.06073306e+07 7.50202104e+06 4.13826240e+06 4.69409867e+06 7.03665409e+06 6.04018552e+06 1.64506734e+07 1.43058112e+07 3.02007164e+06 2.12453298e+07 5.14644320e+06 7.62261942e+06 5.19470075e+06 7.95860565e+06] [ 1.87729643e+07 3.06916485e+07 3.10329663e+06 1.96493019e+07 1.33190276e+06 5.87486995e+06 1.09169714e+07 2.19097379e+06 1.34663855e+07 1.81463373e+07 6.08465822e+06 4.14987434e+06 1.03459828e+06 9.21745518e+06 3.84174353e+06 1.41954980e+07 9.10525886e+06 1.53795687e+07 1.38115239e+07 1.82985130e+06 2.03397334e+06 1.25620849e+07 8.41046308e+06 7.31021772e+06 2.32152235e+06 1.16409843e+06 6.32824099e+06 5.22269611e+06 1.18342548e+07 1.03139260e+07 2.91127805e+06 1.97252817e+07 3.94013706e+06 7.03925235e+06 7.11654712e+06 8.52437456e+06] [ 1.34332234e+07 2.54582856e+07 1.34589762e+06 1.23673475e+07 -6.48459997e+04 3.25285274e+06 4.22527756e+05 -5.92714808e+06 7.00455656e+06 1.22891073e+07 2.78892708e+06 -6.56354620e+04 4.69160729e+06 9.94749236e+06 8.11112171e+05 8.27796386e+06 6.16435667e+06 6.53019057e+06 6.77152108e+06 -2.52054332e+05 -9.48293486e+05 5.19346780e+06 7.92285889e+06 4.36504542e+06 -1.61616836e+06 -4.54098759e+06 9.16350540e+06 1.93844371e+06 3.16837971e+06 1.56409095e+06 8.20087208e+05 1.23086981e+07 6.39310443e+05 3.34588126e+06 1.18184123e+07 1.09509217e+07] [ 6.67053336e+06 1.88492772e+07 -3.23198512e+06 4.60737138e+06 -4.23402778e+06 -1.95383150e+06 -6.88525681e+06 -7.11815238e+06 3.51396562e+05 5.65670073e+06 -3.13903806e+06 -5.47407576e+06 5.04012746e+06 7.23786161e+06 -4.37827693e+06 2.40025785e+06 8.26250324e+04 -6.24409801e+05 2.13875979e+06 -4.85945170e+06 -5.64928923e+06 -2.55802303e+06 7.74836576e+06 -1.48969277e+06 -6.51640583e+06 -8.66120479e+06 9.62972125e+06 -3.29166132e+06 -2.07852039e+06 -4.76602102e+06 -3.80959114e+06 5.91083005e+06 -4.30822865e+06 -2.57049810e+06 1.32915314e+07 1.18743769e+07] [-2.84890819e+04 9.10567512e+06 -7.89015923e+06 -6.65592666e+05 -8.53843842e+06 -6.60287205e+06 -8.18857822e+06 -4.70692837e+06 -4.01173599e+06 -8.70707273e+05 -8.46101163e+06 -9.04299507e+06 7.52778958e+05 1.04755373e+06 -8.18008584e+06 -3.34129647e+05 -5.88083789e+06 -3.88117106e+06 -1.11719160e+05 -8.90768613e+06 -9.06683335e+06 -6.16587836e+06 4.79244346e+06 -6.96258396e+06 -9.31944769e+06 -8.78201216e+06 5.18219474e+06 -7.42676144e+06 -5.18511345e+06 -6.65922254e+06 -7.99276357e+06 1.85520822e+06 -7.66612721e+06 -7.22798983e+06 8.75663355e+06 7.94632139e+06] [-4.48599210e+06 -7.63367063e+05 -7.80968873e+06 -4.25351246e+05 -7.62563957e+06 -7.43045624e+06 8.78631304e+05 -3.68753866e+06 -4.97672095e+06 -9.23969765e+06 -8.49359365e+06 -7.44076021e+06 -6.80308749e+06 -6.84603015e+06 -7.32131214e+06 -3.06132607e+06 -7.78507214e+06 1.44266691e+06 -2.52309893e+06 -7.90650598e+06 -7.12884490e+06 -3.87143312e+06 -2.49645587e+06 -7.36830430e+06 -7.02065128e+06 -6.07383721e+06 -5.46139076e+06 -7.45991825e+06 -4.06811654e+06 -2.45216576e+06 -7.54524836e+06 -3.35045150e+06 -6.83282507e+06 -7.18714961e+06 -3.31413191e+06 -2.72781589e+06] [-5.44358172e+06 -6.85635813e+06 -4.58128347e+06 4.85299779e+05 -4.15956878e+06 -5.03590434e+06 8.16077606e+06 -2.03143961e+06 -2.90940862e+06 -1.26077617e+07 -4.61466084e+06 -3.00033474e+06 -9.61490346e+06 -9.64586380e+06 -4.05615345e+06 -6.38576767e+06 -5.43126302e+06 6.33419336e+06 -3.50509902e+06 -4.12860090e+06 -2.92550009e+06 -4.90939406e+05 -7.15060295e+06 -4.22612518e+06 -2.53767792e+06 -2.55681153e+06 -1.12282920e+07 -4.47729007e+06 -4.62163915e+05 2.71916137e+06 -4.33215421e+06 -6.28239247e+06 -3.72292629e+06 -3.94872020e+06 -1.09559828e+07 -9.94197012e+06] [-3.85240103e+06 -9.98865325e+06 9.97647867e+05 4.27299627e+05 1.42985019e+06 -2.03566296e+05 1.10830185e+07 -1.02558972e+06 -1.02007918e+05 -1.08831193e+07 6.83743042e+05 1.95548087e+06 -5.63554494e+06 -6.13737333e+06 9.26322824e+05 -4.83487020e+06 -3.00501741e+05 7.16585938e+06 -2.54837573e+06 1.69095950e+06 2.49637696e+06 2.54720924e+06 -7.02121819e+06 8.44084844e+05 2.57767593e+06 1.77210123e+06 -9.06009905e+06 4.90205342e+05 3.13912262e+06 5.99950856e+06 9.52496068e+05 -5.47607752e+06 1.07747868e+06 9.01901132e+05 -1.09068191e+07 -1.03866513e+07] [-1.65373801e+06 -1.01997472e+07 3.01777741e+06 1.69630331e+06 3.24134129e+06 1.68433964e+06 1.20699772e+07 -1.22314307e+06 2.56426642e+06 -8.25627171e+06 2.61158943e+06 3.14849677e+06 -3.90438603e+06 -3.09622777e+06 2.36700411e+06 -3.01214324e+06 1.88766387e+06 7.59133187e+06 -2.88133284e+06 3.55160532e+06 3.99752297e+06 3.26282270e+06 -6.70569985e+06 2.72777841e+06 3.37359774e+06 3.36714465e+06 -7.40342435e+06 1.86345851e+06 5.50092961e+06 6.73089272e+06 2.75050044e+06 -3.96226640e+06 2.08965568e+06 2.51887146e+06 -9.44148294e+06 -9.83021927e+06] [-1.50862965e+06 -1.09416285e+07 2.12467818e+06 1.39837876e+06 2.82280888e+06 3.76318689e+05 1.17240254e+07 -3.68573592e+06 1.91300165e+06 -1.01324605e+07 1.23017194e+06 1.57809569e+06 -4.56352585e+06 -3.87514117e+06 1.02458101e+06 -3.49946877e+06 4.42503677e+05 7.70044038e+06 -2.97797883e+06 2.47499939e+06 2.70266365e+06 2.51142498e+06 -6.76547310e+06 1.52488107e+06 1.85701835e+06 1.46580478e+06 -7.73889911e+06 4.59347478e+05 3.89338950e+06 5.95113661e+06 1.74923980e+06 -4.32505411e+06 7.81098411e+05 1.15577955e+06 -8.52040261e+06 -9.50042643e+06] [-9.18255413e+05 -1.09551500e+07 1.22082607e+06 1.69408689e+06 2.14303439e+06 -5.23929073e+05 1.17459280e+07 -6.11255529e+06 1.58394152e+06 -1.07812787e+07 3.07410763e+05 6.98757119e+05 -6.00988239e+06 -5.47591076e+06 3.52041255e+05 -1.56792911e+06 -5.53969046e+05 8.07237529e+06 -2.15944003e+06 1.46597233e+06 1.75132658e+06 2.94318138e+06 -7.42653289e+06 6.34782222e+05 9.75505504e+05 6.05130735e+05 -9.25536029e+06 -4.14364523e+05 3.00104288e+06 6.39239784e+06 8.54322653e+05 -2.36622799e+06 1.87521466e+05 5.35124185e+05 -8.79486931e+06 -9.71077500e+06] [-1.54945017e+05 -6.33631739e+06 6.51225449e+04 2.31860291e+06 8.02194899e+05 -8.50846549e+05 9.54075540e+06 -5.03326268e+06 1.33703043e+06 -8.21946588e+06 -2.57859812e+05 9.11766331e+04 -6.08849523e+06 -5.06376068e+06 -3.89780226e+05 -6.78046004e+05 -8.11689592e+05 7.49776090e+06 -1.54166519e+06 3.02251157e+05 6.13574381e+05 2.53264933e+06 -5.88993015e+06 7.61552979e+04 1.72254520e+05 -9.14370030e+05 -8.36301824e+06 -7.90363698e+05 3.08022684e+06 5.38146977e+06 -1.40162977e+05 -1.26424895e+06 -3.10739541e+05 1.28516415e+05 -7.15641217e+06 -7.60267360e+06] [ 1.18420897e+06 -1.94452155e+06 -7.26546687e+05 3.06466056e+06 -1.59126181e+05 -1.08999773e+06 6.93890489e+06 -3.04911695e+06 1.51488163e+06 -5.03246202e+06 -1.01347235e+06 -3.26156810e+05 -4.87218853e+06 -4.13000954e+06 -6.90206268e+05 1.28203907e+06 -1.10018493e+06 6.35883676e+06 9.74448014e+05 -6.90739561e+05 -2.86474380e+05 2.38193439e+06 -3.44324749e+06 -5.02525506e+05 -3.11339308e+05 -1.10358182e+06 -5.87147403e+06 -9.20889751e+05 1.76732045e+06 4.12499078e+06 -7.79011530e+05 1.20016586e+06 -4.03101449e+05 -2.22531994e+05 -4.71095930e+06 -4.79082508e+06] [ 1.34869117e+06 -4.85738717e+05 -1.30020499e+05 2.29750947e+06 1.66311242e+05 -3.01031383e+05 3.16132011e+06 -2.83937031e+06 1.16721395e+06 -2.96695782e+06 -4.97429251e+05 -6.93423113e+04 -2.59735990e+06 -2.29785383e+06 -2.50514078e+05 6.20866750e+05 -2.81745506e+05 4.11898905e+06 8.95515660e+05 -2.38772115e+05 -1.38919113e+05 1.39411577e+06 -1.67307895e+06 -2.85851030e+04 -8.77650077e+04 -1.07752048e+06 -3.10489097e+06 -2.43608956e+05 1.93027901e+05 2.19883357e+06 -1.74366083e+05 1.01113920e+06 1.17920331e+04 1.97466450e+05 -1.95653289e+06 -2.03592729e+06] [ 5.33169922e+05 5.24900439e+04 2.02650098e+05 8.11014943e+05 2.81835087e+05 1.41528957e+05 9.78818470e+05 -1.24877333e+06 3.82452895e+05 -9.73098730e+05 3.99541942e+04 1.40975008e+05 -5.51187622e+05 -4.90191549e+05 7.50725716e+04 9.22833906e+01 1.82733290e+05 1.36214279e+06 2.98898044e+05 1.17589505e+05 8.94053595e+04 5.10656681e+05 -4.18009310e+05 2.47665961e+05 9.44629472e+04 -5.36642293e+05 -7.83749054e+05 1.16675847e+05 -1.12322251e+05 6.54634856e+05 1.59097497e+05 1.66965211e+05 1.47295386e+05 2.81546847e+05 -3.61027291e+05 -4.41601733e+05] [ 3.56117227e+04 -7.23919375e+04 7.42282883e+04 5.01393002e+04 8.37730249e+04 7.28918824e+04 1.94254256e+04 -2.14148222e+05 1.87741635e+04 -1.83419909e+05 3.91575673e+04 6.28489204e+04 -2.78079566e+04 -2.71719381e+04 5.86644848e+04 -7.78395990e+04 8.08505780e+04 1.05748648e+05 7.12363399e+03 6.22541962e+04 5.63413985e+04 5.75179802e+04 -4.14407345e+04 8.25955413e+04 5.71690401e+04 -9.35074991e+04 -9.96911120e+04 6.44917302e+04 -9.66397358e+04 3.02122536e+04 6.68686479e+04 -1.97725935e+04 6.48273907e+04 8.50580527e+04 -2.63162233e+04 -4.66740385e+04] [ 4.28957382e+03 -1.12651701e+03 3.88083679e+03 5.24591889e+03 3.90131565e+03 2.82437654e+03 4.06846123e+03 -2.80952481e+03 4.50793447e+03 3.09578447e+03 2.23434933e+03 2.43580156e+03 7.60108998e+03 4.41551276e+03 2.79517749e+03 3.71368541e+03 2.39635524e+03 5.15520237e+03 -1.08832632e+01 3.56414777e+03 3.02411769e+03 4.17307206e+03 -8.27948501e+02 2.55973838e+03 2.07636088e+03 4.23940365e+03 3.76875906e+03 2.57958201e+03 3.84365542e+03 4.85805857e+03 3.51532942e+03 4.09964037e+03 2.58131746e+03 2.41657790e+03 3.30192092e+02 -1.65493016e+03] [-7.90971360e-01 3.33110072e-01 6.76259745e-01 -9.04275117e-01 5.76304575e-01 -9.34789336e-01 -7.61572889e-01 -2.52175612e-01 2.40192277e-01 -6.45881665e-01 -8.81100427e-01 5.36194729e-01 -7.51220478e-02 -7.98135889e-01 2.00883376e-01 -7.07211632e-01 4.79663284e-01 -1.35395782e-01 -6.45431981e-01 -8.31306449e-01 -1.19099115e-01 2.05192549e-01 -7.53073193e-01 7.18537892e-01 -6.24191380e-01 -4.73380950e-01 4.80433785e-01 5.68531375e-02 5.25741293e-02 2.96072231e-01 6.18493760e-01 -5.11674694e-01 2.64483810e-01 5.72427910e-01 2.95026057e-01 -1.55769197e-02] [ 2.86681488e-01 5.35069116e-02 -2.51663993e-01 7.37200319e-01 1.80622186e-01 2.45297053e-01 8.45545652e-01 -9.31291529e-01 7.40301663e-01 1.94072338e-02 1.84914624e-01 -6.79466692e-01 1.91939444e-01 -6.28583844e-01 -1.21833528e-01 -3.35175145e-01 4.79405887e-01 -5.16230798e-01 9.26418948e-01 -6.56568669e-01 5.44379694e-01 2.68667107e-02 8.49701795e-01 -9.88858143e-01 8.09872843e-01 8.26052992e-01 -9.39094520e-02 -6.41483252e-01 -2.52236216e-01 -9.42860655e-01 2.69882644e-01 -3.49470864e-01 3.55998647e-01 7.44821549e-01 5.63214851e-01 5.05603574e-01] [-2.45766140e+05 -6.39942129e+05 1.71723985e+05 -3.75247543e+05 2.05631593e+05 7.33946818e+04 -1.38281062e+05 -7.51722456e+05 -2.34893029e+05 -6.08784083e+05 1.26130583e+05 7.19167160e+04 2.26550994e+04 -1.03347170e+05 1.09365464e+05 -4.49262717e+05 5.90985586e+04 -2.65814869e+05 -3.01039060e+05 1.91124499e+05 1.57764518e+05 -7.12571836e+04 -2.87153059e+05 1.07553984e+05 9.72493212e+04 5.36027234e+03 -2.02582149e+05 6.53687594e+04 -6.32042464e+05 -1.94318998e+05 1.56982621e+05 -3.98019033e+05 9.30955605e+04 8.96692931e+04 -6.24794037e+04 -1.36998691e+05] [-7.10214601e+05 -3.38379430e+06 1.17346334e+06 -1.14930225e+06 1.49260124e+06 5.49446639e+05 7.23280683e+05 -5.45237047e+06 -7.67827827e+05 -4.45375327e+06 7.15209666e+05 4.26846073e+05 -2.62480141e+05 -7.28024899e+05 5.74813111e+05 -2.22165022e+06 3.96781197e+05 -1.42485415e+05 -1.52981225e+06 1.24299787e+06 9.29520393e+05 3.26732246e+05 -1.95364938e+06 7.20886155e+05 5.77066067e+05 -8.36721173e+05 -1.79256296e+06 4.19277194e+05 -3.54564894e+06 -2.15708425e+05 1.06412361e+06 -2.05355940e+06 5.75283939e+05 6.17898355e+05 -5.47780359e+05 -1.19858875e+06] [-1.14164679e+06 -8.54111169e+06 1.97336997e+06 -1.05936574e+06 2.88036008e+06 4.87865986e+05 3.63795604e+06 -1.02477007e+07 -6.77988613e+05 -1.11272797e+07 7.80953897e+05 7.05299093e+05 -2.28252238e+06 -3.18862611e+06 6.95844685e+05 -4.20767205e+06 3.59009110e+05 2.71547918e+06 -2.81271429e+06 1.90340992e+06 1.60072399e+06 6.52518619e+05 -4.95624999e+06 1.28212502e+06 8.91942960e+05 -2.81798769e+06 -5.69648834e+06 3.35051631e+05 -3.96802425e+06 1.38068661e+06 1.62520438e+06 -3.43806625e+06 6.87397693e+05 9.76272202e+05 -3.58816176e+06 -4.73169309e+06] [-3.33227983e+06 -1.52334483e+07 1.45657298e+06 -3.51087668e+06 3.06105423e+06 -9.17485654e+05 6.60397195e+06 -1.26049965e+07 -2.18346652e+06 -1.79451137e+07 -8.42361691e+05 -3.18545363e+05 -5.28080845e+06 -7.04979602e+06 -7.86583382e+04 -4.55066482e+06 -1.61635822e+06 2.73886953e+06 -3.08243619e+06 1.18447223e+06 1.14877545e+06 8.51307534e+04 -8.78275745e+06 -5.70571062e+04 2.11045934e+05 -3.87119659e+06 -1.02482449e+07 -9.62873150e+05 -2.96660727e+06 2.14379177e+06 9.96516761e+05 -4.11108915e+06 -1.10514040e+05 -3.69817461e+05 -8.78686284e+06 -9.91902562e+06] [-5.70632847e+06 -1.91865337e+07 -2.46960262e+05 -7.65315030e+06 1.74052295e+06 -3.25230463e+06 7.81247730e+06 -1.15535583e+07 -4.41377898e+06 -2.16934895e+07 -3.35780419e+06 -2.31528432e+06 -7.14209918e+06 -1.01648842e+07 -1.58433362e+06 -4.09331449e+06 -4.65128602e+06 -1.17453836e+06 -1.62183581e+06 -6.84351824e+05 -4.22216193e+05 -1.24177844e+06 -1.04857640e+07 -2.73813677e+06 -1.22773926e+06 -4.16358020e+06 -1.21991695e+07 -2.91757058e+06 -3.17247831e+06 1.76944524e+06 -6.59786030e+05 -4.61991322e+06 -1.65017383e+06 -2.77055818e+06 -1.23849143e+07 -1.29209641e+07] [-3.19391088e+06 -1.45596726e+07 -3.40750884e+05 -4.55922747e+06 1.28754606e+06 -2.60306564e+06 1.08518469e+07 -6.59127490e+06 -1.71358050e+06 -1.78570548e+07 -2.79033502e+06 -1.36750404e+06 -7.16423447e+06 -9.69610366e+06 -1.04558131e+06 -2.19082506e+04 -3.94815354e+06 2.05162658e+06 3.29857578e+06 -8.39240595e+05 -1.08673650e+05 1.15006115e+06 -7.34355982e+06 -2.28376669e+06 -3.64512945e+05 -2.28111509e+06 -1.01403605e+07 -1.97040488e+06 2.12821439e+06 5.51070749e+06 -6.12361542e+05 1.93346777e+05 -8.15368741e+05 -1.95185911e+06 -1.13148243e+07 -1.09927750e+07] [ 4.91388639e+06 -2.77870083e+06 2.71685247e+06 3.53289552e+06 3.55581092e+06 1.78815241e+06 1.61340654e+07 -1.94513938e+05 4.71729419e+06 -8.26823217e+06 1.62565206e+06 3.14786458e+06 -4.20599919e+06 -4.71854534e+06 2.52479888e+06 6.39397713e+06 1.23142523e+06 9.33442585e+06 1.10206971e+07 2.11099279e+06 3.16471809e+06 7.83998906e+06 -7.42824594e+05 2.25052499e+06 3.60148202e+06 1.67835303e+06 -4.62101052e+06 2.53773079e+06 9.03091301e+06 1.15749340e+07 2.53438078e+06 8.54250088e+06 3.37518178e+06 2.87840197e+06 -5.93812338e+06 -4.96691244e+06] [ 1.17434915e+07 9.96310149e+06 5.08958055e+06 1.10497926e+07 5.02383384e+06 5.66095668e+06 2.03242032e+07 6.36533439e+06 1.05459291e+07 3.14745524e+06 5.94962404e+06 7.02750303e+06 -1.23499989e+06 1.09338366e+06 5.67908047e+06 1.30307292e+07 6.22684188e+06 1.49803760e+07 1.71116467e+07 4.54367069e+06 5.77942732e+06 1.40130816e+07 4.88878850e+06 6.46963312e+06 6.55251897e+06 6.51843223e+06 7.54123957e+05 6.29032292e+06 1.41115072e+07 1.67136838e+07 5.06462989e+06 1.64532479e+07 6.72476484e+06 7.18424559e+06 -9.29287042e+05 7.00741580e+05] [ 1.46577716e+07 1.74300839e+07 5.47021191e+06 1.48422826e+07 4.72414675e+06 6.79827476e+06 2.04066587e+07 8.24413998e+06 1.27984004e+07 1.12227488e+07 7.59083353e+06 7.81045675e+06 6.86694079e+05 5.10842121e+06 6.54672916e+06 1.69467048e+07 8.45142724e+06 1.64632422e+07 1.81440215e+07 4.86731207e+06 6.01521400e+06 1.64036513e+07 6.86000539e+06 8.14578742e+06 6.64925530e+06 8.34183275e+06 3.92767675e+06 7.21291905e+06 1.53318769e+07 1.71501888e+07 5.50314935e+06 2.02982868e+07 7.24854579e+06 8.49934490e+06 1.71958406e+06 3.28696785e+06] [ 1.68676070e+07 2.28467414e+07 5.34279689e+06 1.89347228e+07 3.96804046e+06 7.31359726e+06 1.90093059e+07 6.03229431e+06 1.43721857e+07 1.64549022e+07 7.96082772e+06 7.37303060e+06 -7.86181538e+04 6.98349457e+06 6.86807609e+06 1.89934017e+07 9.84573644e+06 1.81841593e+07 1.44840972e+07 4.51352179e+06 5.56395341e+06 1.60910991e+07 5.85018934e+06 8.87686969e+06 5.93489169e+06 6.91382960e+06 3.28083529e+06 7.30274473e+06 1.65111186e+07 1.49635981e+07 5.33297581e+06 2.12431570e+07 6.87568981e+06 8.96821581e+06 3.15342936e+06 4.02785692e+06] [ 1.49333810e+07 2.31742321e+07 3.25033217e+06 1.80798629e+07 1.66104539e+06 5.43184307e+06 1.28673997e+07 1.47225465e+06 1.21800155e+07 1.64844922e+07 5.68384219e+06 4.32273986e+06 5.46037747e+04 7.73424978e+06 4.56251167e+06 1.69439021e+07 8.37262267e+06 1.53859238e+07 9.33083928e+06 2.29494101e+06 2.84832091e+06 1.15553960e+07 4.83830990e+06 6.92079579e+06 2.62114918e+06 3.22642608e+06 3.57781185e+06 4.82901476e+06 1.36829643e+07 1.02894079e+07 3.16489754e+06 1.86181873e+07 4.03195980e+06 6.66259535e+06 5.47386121e+06 5.30114226e+06] [ 9.15651827e+06 1.80493947e+07 -3.85259592e+04 1.10677583e+07 -1.32687676e+06 1.64475979e+06 3.08518629e+06 -3.19042718e+06 5.83927122e+06 1.15183115e+07 1.41264200e+06 -5.43205516e+05 2.12134661e+06 7.51679013e+06 2.40276412e+05 1.02464965e+07 4.12369570e+06 7.27809955e+06 3.19986593e+06 -9.89918858e+05 -1.11800663e+06 4.13954447e+06 4.35071207e+06 2.58449059e+06 -1.88956210e+06 -9.60022643e+05 5.45048507e+06 6.29041721e+05 7.30170038e+06 2.81703127e+06 -3.38296767e+05 1.11385046e+07 -1.84513316e+05 1.93472152e+06 8.46662961e+06 6.97096195e+06] [ 3.33923204e+06 9.93936063e+06 -3.81771823e+06 4.70737408e+06 -4.79063885e+06 -2.52779816e+06 -2.07746980e+06 -3.92494239e+06 7.19286000e+05 4.68798462e+06 -3.21745948e+06 -4.75883334e+06 1.22473797e+06 4.00852051e+06 -3.98481877e+06 4.68390280e+06 -1.01121603e+06 2.45618023e+06 -6.86985781e+05 -4.59110041e+06 -4.76944277e+06 -2.07839217e+06 3.77578560e+06 -2.35449347e+06 -5.48555624e+06 -3.58205894e+06 4.57878590e+06 -3.54295993e+06 3.41647721e+06 -1.49690232e+06 -4.05886211e+06 5.39524930e+06 -4.12530484e+06 -2.83007482e+06 8.67516688e+06 7.05673439e+06] [ 6.27474304e+05 3.09284345e+06 -5.32984375e+06 4.58811444e+06 -6.14276771e+06 -3.81682280e+06 2.09792191e+06 -6.03050819e+05 7.22572829e+05 1.58078941e+06 -4.47845717e+06 -4.54751294e+06 -3.55027926e+06 -1.18406456e+06 -4.44621029e+06 4.92292767e+06 -3.08829756e+06 5.07505561e+06 -1.77730777e+06 -5.36172585e+06 -4.78542477e+06 -1.30684576e+06 3.94610182e+05 -3.88017731e+06 -4.94448503e+06 -1.33598107e+06 -1.04668468e+06 -4.37959758e+06 4.49320777e+06 1.02378498e+06 -5.10974568e+06 3.98498664e+06 -4.35600972e+06 -3.66138803e+06 2.26559002e+06 1.30154552e+06] [-1.76825229e+06 -3.19150998e+06 -4.39026441e+06 6.05240519e+06 -4.80370629e+06 -3.46236042e+06 1.02063896e+07 1.80042143e+06 1.88987915e+06 -2.39078278e+06 -2.88233709e+06 -1.62107344e+06 -8.88868523e+06 -6.09561655e+06 -2.88444726e+06 3.09915756e+06 -3.10709764e+06 1.05582992e+07 -2.25084966e+06 -3.55954452e+06 -2.35453228e+06 2.09926709e+06 -4.73036667e+06 -2.80102736e+06 -1.96500638e+06 1.47356109e+06 -8.67484130e+06 -3.15990066e+06 6.08828405e+06 6.10419071e+06 -3.81337341e+06 1.02866990e+06 -2.73107480e+06 -2.21962370e+06 -7.32598367e+06 -7.15464346e+06] [-3.29094794e+06 -8.23957477e+06 -2.12868296e+06 5.12568702e+06 -2.11769088e+06 -2.13442055e+06 1.39715800e+07 1.48120648e+06 2.15400390e+06 -7.30453949e+06 -6.26535125e+05 1.08126211e+06 -1.13446685e+07 -9.19713429e+06 -8.22179943e+05 -1.72794316e+06 -2.06727071e+06 1.19782039e+07 -3.75009010e+06 -7.95938218e+05 5.64996113e+05 4.02128806e+06 -8.92341565e+06 -9.49074953e+05 1.12783405e+06 2.66116972e+06 -1.34492650e+07 -1.29222985e+06 5.05514299e+06 8.74459624e+06 -1.59693472e+06 -3.74217996e+06 -7.23948308e+05 -2.61424636e+05 -1.40580124e+07 -1.29470867e+07] [-3.01558335e+06 -1.17567545e+07 1.20932791e+06 1.26083708e+06 1.76928547e+06 -1.75840470e+05 1.41238509e+07 -1.48919087e+06 1.32536658e+06 -1.13570479e+07 1.55159424e+06 3.05080265e+06 -8.46336780e+06 -8.32312569e+06 1.50366101e+06 -3.10145655e+06 -2.89120602e+05 8.78397383e+06 -1.97753414e+06 2.39626999e+06 3.43957971e+06 5.24091266e+06 -8.79804592e+06 1.28247698e+06 3.49503790e+06 3.12354186e+06 -1.20453782e+07 8.41507698e+05 2.00287706e+06 8.74590696e+06 1.30848995e+06 -4.22164732e+06 1.69401271e+06 1.68821937e+06 -1.38070948e+07 -1.27843730e+07] [-3.03066698e+06 -1.35374621e+07 2.19930063e+06 -7.65116336e+05 3.03858721e+06 9.75792495e+04 1.10774009e+07 -4.69441742e+06 4.92024693e+05 -1.41492131e+07 1.39997418e+06 2.38946568e+06 -5.82284122e+06 -6.76880173e+06 1.32634901e+06 -5.22788123e+06 -1.73183784e+05 6.61627832e+06 -3.04440386e+06 2.91564595e+06 3.41164621e+06 3.12435333e+06 -8.10542850e+06 1.35576102e+06 2.84707075e+06 1.68098714e+06 -9.72406854e+06 7.06944992e+05 4.77866294e+04 6.41459695e+06 1.95716202e+06 -5.84683120e+06 1.35754258e+06 1.34672908e+06 -1.10723663e+07 -1.11856481e+07] [-2.34417558e+06 -1.30713845e+07 1.98145443e+06 -4.82660956e+05 3.13926828e+06 -3.32296893e+05 1.15878449e+07 -7.41224503e+06 1.09154198e+05 -1.54803676e+07 8.37250147e+05 1.66558634e+06 -6.41293652e+06 -7.19984647e+06 7.09399897e+05 -5.69636033e+06 -5.57695702e+05 7.34134690e+06 -3.05582524e+06 2.35138759e+06 2.74920128e+06 2.92172395e+06 -8.79823240e+06 1.07959413e+06 2.03266045e+06 9.72558134e+04 -1.07649353e+07 1.17056311e+05 3.57522391e+05 5.94618627e+06 1.61519015e+06 -5.81733543e+06 8.20296540e+05 8.97028279e+05 -1.06366013e+07 -1.13808591e+07] [-1.17242412e+06 -1.01941068e+07 1.35352878e+06 4.46815709e+05 2.42844975e+06 -4.48198283e+05 1.03226925e+07 -8.05253494e+06 3.05469012e+05 -1.31529207e+07 3.47651822e+05 1.07593768e+06 -6.79594040e+06 -7.00436723e+06 4.96733989e+05 -3.36287191e+06 -6.69473436e+05 7.02830567e+06 -2.12971511e+06 1.50481933e+06 1.88822426e+06 2.90135137e+06 -7.88290466e+06 7.03874777e+05 1.44630601e+06 -8.99853858e+05 -1.05624388e+07 -9.45130755e+04 8.05594413e+04 5.03097110e+06 1.07017796e+06 -3.60966089e+06 6.39106285e+05 6.50663793e+05 -9.26867349e+06 -9.81637318e+06] [ 5.78580332e+05 -5.32831897e+06 7.19615975e+05 1.99220780e+06 1.55655413e+06 -2.55609871e+05 8.62043657e+06 -6.06369652e+06 1.12021674e+06 -9.01327574e+06 8.42138620e+02 7.69145207e+05 -5.89390207e+06 -5.62369109e+06 4.02381965e+05 -4.77270573e+05 -3.86331441e+05 6.75824923e+06 -5.87544868e+04 7.68424858e+05 1.16263348e+06 3.39975405e+06 -5.59697664e+06 6.26968148e+05 9.76718232e+05 -1.17958210e+06 -8.37127068e+06 4.36313298e+03 3.36803150e+05 4.57724220e+06 5.74727651e+05 -6.67108767e+05 6.68941416e+05 7.75353631e+05 -6.81879247e+06 -7.04740502e+06] [ 2.18120876e+06 -9.30513815e+05 3.07576905e+05 3.22593455e+06 7.46086100e+05 3.74102201e+04 5.91488428e+06 -2.82361229e+06 2.02438837e+06 -3.95337722e+06 -1.02359377e+05 7.08829886e+05 -3.73762175e+06 -3.33835592e+06 4.27552087e+05 1.73490182e+06 4.11951936e+04 5.88964838e+06 1.76475996e+06 2.17938014e+05 5.61219980e+05 2.82092552e+06 -2.75877734e+06 5.29148578e+05 6.91982175e+05 -6.97222350e+05 -4.79611100e+06 2.58860374e+05 9.04011660e+05 3.69541846e+06 2.88387626e+05 1.83973299e+06 7.52599676e+05 8.94975766e+05 -3.47082773e+06 -3.55798362e+06] [ 1.29960374e+06 -4.64571479e+05 2.66039757e+05 1.84531239e+06 4.82032423e+05 1.26795219e+05 2.81688370e+06 -2.46419804e+06 1.10137576e+06 -2.37769313e+06 -3.79876046e+04 3.26352364e+05 -1.96373142e+06 -1.75786431e+06 1.80398491e+05 5.86362903e+05 1.13418428e+05 3.26990523e+06 8.94531592e+05 1.85367999e+05 2.29452801e+05 1.30079591e+06 -1.43944435e+06 3.11565771e+05 3.07446746e+05 -6.53666513e+05 -2.51975637e+06 1.75116204e+05 1.42352973e+05 1.84365502e+06 2.48094487e+05 9.37605288e+05 3.98165240e+05 5.45282415e+05 -1.34009153e+06 -1.44238978e+06] [ 3.88159950e+05 -5.65066090e+03 9.35922011e+04 6.46456557e+05 1.64689094e+05 3.55324548e+04 9.43638510e+05 -9.25432832e+05 3.20980014e+05 -8.99136843e+05 -3.88972034e+04 4.51277785e+04 -5.60522922e+05 -5.15446732e+05 -4.13073987e+03 -5.85523883e+04 5.57755516e+04 1.10112770e+06 1.61390214e+05 4.58873174e+04 2.90800634e+04 4.10937664e+05 -4.10170570e+05 1.18853527e+05 1.55948747e+04 -4.14180357e+05 -7.23803364e+05 1.94650305e+04 -3.00851149e+04 5.75975010e+05 5.98739914e+04 9.58419765e+04 5.28326193e+04 1.48241555e+05 -3.15611192e+05 -3.93304308e+05] [ 3.23517977e+03 -6.38955170e+04 2.44305637e+04 -4.96251551e+03 3.36401995e+04 8.90618015e+03 -1.08030042e+04 -1.20467855e+05 -8.02895541e+03 -1.72513318e+05 -2.41450347e+04 -1.39913616e+04 2.13779334e+04 -2.25323396e+04 -1.04342755e+04 -9.90975479e+04 3.15449756e+03 2.17250543e+04 -1.06078452e+03 1.84316538e+04 -1.84461096e+02 -3.01238329e+03 -3.18959517e+03 7.06878509e+03 -8.04116149e+03 -5.78065620e+04 1.18260260e+04 -2.83164951e+03 -8.71776507e+04 3.46252904e+03 1.52369766e+04 -7.54684294e+04 -2.40519128e+03 -1.22833820e+03 3.97513552e+04 2.26567606e+04] [ 1.23217587e+03 -1.48616575e+03 2.07500063e+03 7.90095489e+02 2.27368213e+03 1.21157758e+03 3.19082702e+02 -1.97930326e+03 1.36398365e+03 9.15063001e+02 1.07254664e+03 1.08477480e+03 2.80140064e+03 1.17531778e+03 1.36903844e+03 1.20433509e+03 1.03404223e+03 9.89785126e+02 -1.19049048e+03 2.00177774e+03 1.62702265e+03 7.26708406e+02 -5.13813485e+02 1.29016735e+03 9.91924283e+02 9.94446513e+02 1.45350649e+03 1.09428244e+03 1.12541320e+03 7.07433266e+02 1.90404384e+03 1.17503240e+03 1.08248859e+03 9.51608020e+02 8.61350834e+02 -6.57918500e+02] [-3.40432080e-02 -8.62114143e-02 3.32930081e-01 5.58170640e-01 9.49958050e-01 -2.28558920e-01 -7.43295112e-01 -8.77703499e-01 -9.13417073e-01 -7.86322723e-01 -4.49834429e-01 -8.58034816e-01 2.49640755e-01 -7.13463019e-01 -9.35124299e-01 4.95315538e-01 9.31590643e-01 7.51266241e-01 7.49484665e-01 1.66415301e-01 -9.16258804e-01 3.67774283e-01 -1.36623198e-03 -7.88167521e-01 -2.51440328e-01 -1.84524665e-01 -8.26277803e-01 9.47432611e-01 5.51603673e-01 -5.94230990e-01 1.25763662e-01 -3.09606174e-01 -5.29967194e-01 3.80319734e-01 8.86435526e-01 -2.91082860e-01] [ 7.07176149e+02 -4.40073563e+03 4.12288454e+03 4.05895433e+03 4.21071186e+03 2.14039097e+03 7.96665319e+02 -1.58245906e+04 2.73048125e+03 -2.21981724e+04 3.88994331e+03 1.83021531e+03 9.22101698e+02 -1.27291007e+03 -2.70098112e+02 -2.00594098e+04 4.11178065e+03 1.08906017e+04 -8.03879255e+03 4.36520108e+03 3.01656902e+03 -3.54003964e+03 -3.10809651e+03 3.74221666e+03 1.66104129e+03 -7.20235822e+03 -2.87489804e+03 3.90753468e+02 -1.10025511e+04 1.89552112e+03 2.62217574e+03 -1.40367404e+04 9.33816421e+02 3.78016190e+03 4.69128938e+03 2.89766473e+03] [-3.15819868e+05 -5.78495298e+05 2.28332023e+05 -4.27090491e+05 2.72184732e+05 9.56127964e+04 -1.38059490e+05 -9.46331561e+05 -3.08841749e+05 -8.39090031e+05 1.74936745e+05 1.05233497e+05 5.07128207e+04 -1.08010060e+05 1.14121760e+05 -6.70404735e+05 1.02976056e+05 -3.12377149e+05 -4.68456322e+05 2.44122068e+05 2.00821987e+05 -3.22148885e+04 -3.29253272e+05 1.50971279e+05 1.25363093e+05 -1.84229910e+05 -2.37601953e+05 7.91855231e+04 -8.34161572e+05 -2.48606234e+05 2.03374826e+05 -6.01543874e+05 1.04312536e+05 1.09583248e+05 -8.12897757e+04 -1.67809425e+05] [-1.28806903e+06 -3.98176274e+06 1.16059251e+06 -1.76302635e+06 1.54419606e+06 4.04806008e+05 4.87997784e+05 -6.20542810e+06 -1.35382568e+06 -5.29502318e+06 6.99980996e+05 3.87666536e+05 -4.08909174e+05 -1.13119394e+06 5.09776909e+05 -2.77742971e+06 2.73609063e+05 -6.46197118e+05 -1.93491797e+06 1.25514469e+06 9.58146062e+05 2.68538870e+05 -2.33657838e+06 6.62923058e+05 5.31230825e+05 -1.04203903e+06 -2.16711605e+06 2.91469846e+05 -4.33313472e+06 -4.93779235e+05 1.05086672e+06 -2.50252207e+06 5.07218614e+05 5.32587462e+05 -8.68080750e+05 -1.52471541e+06] [-1.84424443e+06 -9.42548901e+06 2.63716358e+06 -2.21158603e+06 3.52880973e+06 1.02981025e+06 3.56831889e+06 -1.17707631e+07 -1.34806614e+06 -1.14922106e+07 1.66313713e+06 1.34357876e+06 -2.14566673e+06 -3.00262209e+06 1.36306708e+06 -4.52953970e+06 8.64300461e+05 1.28280855e+06 -3.46611328e+06 2.74658226e+06 2.37134683e+06 1.15605109e+06 -5.87445088e+06 1.84052296e+06 1.48396349e+06 -1.95689103e+06 -6.24352132e+06 8.67362242e+05 -5.72888477e+06 1.08679541e+06 2.33025208e+06 -4.09675643e+06 1.31278850e+06 1.56982208e+06 -3.91033136e+06 -5.21966185e+06] [-3.42803791e+06 -1.62816519e+07 3.43579821e+06 -3.75724061e+06 4.95210912e+06 9.66453508e+05 6.77654940e+06 -1.53123721e+07 -1.98173138e+06 -1.75720106e+07 1.66902591e+06 1.84655050e+06 -4.93225045e+06 -6.43237543e+06 1.97243618e+06 -4.40290085e+06 4.11134862e+05 2.07143736e+06 -4.20406425e+06 3.51325802e+06 3.37716589e+06 2.02041690e+06 -9.90562509e+06 2.05332715e+06 2.22360463e+06 -1.99418321e+06 -1.10817458e+07 9.08688120e+05 -6.03224517e+06 2.37005445e+06 3.03009626e+06 -4.63331139e+06 1.85215037e+06 1.79384651e+06 -9.00130748e+06 -1.03056153e+07] [-4.93333525e+06 -2.09962594e+07 2.74960332e+06 -7.34488433e+06 4.83274288e+06 -3.80988182e+05 9.06272388e+06 -1.51974606e+07 -3.54699666e+06 -2.13160136e+07 3.98261120e+05 1.29042009e+06 -7.88749628e+06 -1.05855246e+07 1.66401225e+06 -2.62174855e+06 -1.57631278e+06 -5.73480563e+05 -1.52334348e+06 2.64164002e+06 2.97865948e+06 2.46419286e+06 -1.21070616e+07 6.65267507e+05 2.06355430e+06 -1.56619319e+06 -1.44584226e+07 8.36833143e+04 -6.66576075e+06 3.31477357e+06 2.46455605e+06 -3.26746169e+06 1.58200898e+06 6.87929427e+05 -1.40395652e+07 -1.42073718e+07] [-3.67665272e+06 -1.96954668e+07 3.22611269e+06 -7.13200675e+06 5.30256758e+06 5.81173361e+04 1.22917369e+07 -1.17100762e+07 -2.45264211e+06 -2.12864397e+07 8.80998266e+05 2.40594662e+06 -7.93700550e+06 -1.12430574e+07 2.50648867e+06 3.93542915e+05 -1.42114604e+06 3.50934973e+05 3.07151933e+06 2.93723053e+06 3.77443962e+06 4.43200818e+06 -9.68681144e+06 1.00515261e+06 3.26625192e+06 -2.12627932e+05 -1.30493487e+07 1.00556218e+06 -3.69653226e+06 6.12881192e+06 3.03921435e+06 2.90844354e+05 2.69220352e+06 1.43868076e+06 -1.38107665e+07 -1.31293577e+07] [ 7.53174128e+05 -1.43291536e+07 4.56831503e+06 -2.83406037e+06 6.21809991e+06 2.17556077e+06 1.48221413e+07 -5.80560439e+06 1.47155682e+06 -1.59208590e+07 2.52822542e+06 4.53775158e+06 -5.47420637e+06 -8.18177708e+06 4.25913546e+06 5.09449171e+06 1.04164467e+06 4.11151998e+06 8.13549512e+06 4.14200897e+06 5.24417080e+06 7.71866498e+06 -4.44488457e+06 3.02141172e+06 5.24540602e+06 2.49721244e+06 -8.33593505e+06 3.27597937e+06 1.64249384e+06 1.01388082e+07 4.38727689e+06 5.82738605e+06 4.77890166e+06 3.70357845e+06 -9.55525421e+06 -8.44553988e+06] [ 4.89282580e+06 -4.76780798e+06 4.60209780e+06 2.68931038e+06 5.31858272e+06 3.58512039e+06 1.53910764e+07 -2.64082704e+05 5.28167774e+06 -5.02625864e+06 3.64819829e+06 5.46431057e+06 -3.16295467e+06 -3.33346524e+06 5.10236755e+06 1.10008649e+07 3.13492547e+06 6.81187118e+06 1.22893914e+07 4.04635248e+06 5.04956081e+06 1.03494282e+07 -2.91845601e+04 4.19248149e+06 5.52834308e+06 5.51343373e+06 -3.46413618e+06 4.46663658e+06 6.08865791e+06 1.19648000e+07 4.59998944e+06 1.22858999e+07 5.59676997e+06 5.02635298e+06 -5.09242858e+06 -3.76677312e+06] [ 8.44988674e+06 4.79525929e+06 4.55704507e+06 8.57983415e+06 4.31668636e+06 4.67563918e+06 1.55051486e+07 3.20044302e+06 8.27377156e+06 5.62268714e+06 5.28920475e+06 6.15249174e+06 -1.53980482e+06 1.19513020e+06 5.84311562e+06 1.56356725e+07 5.52950893e+06 9.85657761e+06 1.23452678e+07 4.12272551e+06 5.12132005e+06 1.22525444e+07 2.20116480e+06 5.64913110e+06 5.55395404e+06 7.46754006e+06 -1.82449145e+05 5.28742446e+06 9.86824068e+06 1.21388065e+07 4.72397149e+06 1.61892949e+07 5.97501319e+06 6.30182330e+06 -1.33601782e+06 -3.20546911e+05] [ 1.07628901e+07 1.06865591e+07 4.27134386e+06 1.39256516e+07 3.21469533e+06 5.39540325e+06 1.58662769e+07 2.66784486e+06 1.10263879e+07 1.21825324e+07 6.10358294e+06 6.33286752e+06 -2.22683443e+06 3.56260928e+06 6.35576690e+06 1.87255906e+07 7.34722723e+06 1.34759545e+07 9.22485700e+06 3.80769000e+06 4.91549052e+06 1.28787856e+07 1.10845575e+06 6.70856903e+06 5.16566136e+06 7.85737103e+06 -8.44246475e+05 5.61726945e+06 1.32309533e+07 1.19713714e+07 4.47041192e+06 1.81519302e+07 5.77820355e+06 7.16791630e+06 -2.10200960e+05 -1.65859961e+05] [ 8.49371936e+06 1.16010242e+07 9.72192652e+05 1.30709759e+07 -4.39107348e+05 2.71308785e+06 1.31612703e+07 2.37636359e+06 9.26751745e+06 1.36580909e+07 3.73081695e+06 3.43237476e+06 -3.32296816e+06 3.30475250e+06 3.35348425e+06 1.74128772e+07 4.95457765e+06 1.19876548e+07 6.48931851e+06 7.96553051e+05 1.85889465e+06 9.30900356e+06 9.11103180e+04 3.88557843e+06 1.97346258e+06 6.86602546e+06 -1.36562702e+06 2.66132751e+06 1.40949042e+07 9.55376793e+06 1.32828624e+06 1.64734918e+07 2.57272092e+06 4.24928796e+06 4.19638510e+05 1.20293473e+05] [ 4.04513904e+06 6.21996255e+06 -1.19317942e+06 8.31147704e+06 -2.50504212e+06 2.46047341e+05 8.05543036e+06 1.14170942e+04 5.01359092e+06 9.01386997e+06 1.15341130e+06 3.89130976e+05 -2.97475596e+06 2.21928835e+06 3.50888592e+05 1.19515110e+07 2.06115618e+06 7.64030671e+06 1.77642618e+06 -1.15380002e+06 -4.39205082e+05 4.75182908e+06 -5.39202347e+05 1.01311271e+06 -7.39528144e+05 4.98829143e+06 -1.15334200e+06 -1.10346114e+05 1.04854520e+07 5.79336469e+06 -9.67117652e+05 1.04324714e+07 -2.68701726e+05 1.07482688e+06 1.28326127e+06 2.17121351e+05] [ 1.50156459e+06 8.83082690e+05 -3.18290619e+06 5.87960522e+06 -4.36277525e+06 -1.56684384e+06 6.44971452e+06 6.49849714e+05 3.22541015e+06 6.33075696e+06 -8.44969190e+05 -1.44663651e+06 -4.51368331e+06 -1.85011016e+05 -1.74284873e+06 8.92422945e+06 -3.56918192e+05 6.52974897e+06 -5.58519236e+05 -2.72914759e+06 -2.12844989e+06 1.96472033e+06 -9.45654296e+05 -1.37083502e+06 -2.27549967e+06 4.35434908e+06 -2.37937531e+06 -2.08494991e+06 9.22936737e+06 4.41601199e+06 -2.77399327e+06 7.27687655e+06 -2.10828694e+06 -1.01445154e+06 6.48584956e+05 -3.85439828e+05] [ 9.16304342e+05 -1.70577946e+06 -3.18927623e+06 7.92770600e+06 -4.31751122e+06 -1.42927671e+06 1.05338944e+07 4.95680368e+06 4.80763671e+06 6.18526474e+06 -1.44716886e+05 2.76173404e+05 -8.38417803e+06 -3.96248797e+06 -8.90041310e+05 9.28759704e+06 -5.49661869e+05 1.11104715e+07 -1.42413894e+06 -2.09314912e+06 -8.34123601e+05 3.48055319e+06 -3.39185374e+06 -1.10863216e+06 -4.91457038e+05 6.31322912e+06 -6.84927261e+06 -1.40682662e+06 1.12750965e+07 7.50297998e+06 -2.44370702e+06 6.26716783e+06 -1.02453096e+06 -1.23898626e+05 -4.98353549e+06 -4.95873039e+06] [-8.72985669e+05 -4.14057544e+06 -2.75893995e+06 9.96123701e+06 -3.60092354e+06 -1.34007528e+06 1.48394775e+07 5.22142616e+06 5.12922959e+06 2.47381632e+06 6.69150643e+05 1.88200363e+06 -1.29707389e+07 -7.45237833e+06 -2.67096688e+05 4.73895996e+06 -6.02682196e+05 1.55519216e+07 -4.02580289e+06 -9.82983159e+05 4.92077055e+05 4.91285133e+06 -7.67111791e+06 -3.60781743e+05 1.13005624e+06 5.72614288e+06 -1.31580313e+07 -7.61325563e+05 1.03000225e+07 9.76526070e+06 -1.74661799e+06 1.41145830e+06 -3.92109235e+05 6.72398891e+05 -1.22752459e+07 -1.11875871e+07] [-3.19350729e+06 -8.57309113e+06 -1.95302252e+06 4.13118165e+06 -1.95181895e+06 -1.85322605e+06 1.52616736e+07 1.50961599e+06 2.21212575e+06 -4.72804773e+06 7.46721349e+05 2.07521862e+06 -1.35884663e+07 -1.00579286e+07 -1.17756976e+05 -5.46194491e+05 -1.80675008e+06 1.04865719e+07 -3.27980576e+06 -7.49787199e+04 1.25891529e+06 5.38430874e+06 -1.07554685e+07 -6.05918060e+05 1.88135546e+06 4.70976560e+06 -1.59369473e+07 -7.91418109e+05 3.50815271e+06 8.80990273e+06 -1.18760400e+06 -2.98671488e+06 -4.10010885e+04 3.87938474e+05 -1.70831841e+07 -1.51279341e+07] [-3.35819698e+06 -1.13522943e+07 6.84623803e+05 -1.45202780e+06 1.47785187e+06 -7.98138262e+05 1.40401733e+07 -3.33435811e+06 -3.87318594e+05 -1.17231534e+07 1.47969402e+06 2.72759234e+06 -1.01219202e+07 -9.89266507e+06 1.24950533e+06 -3.14133126e+06 -1.29130128e+06 5.58981539e+06 -4.27574964e+05 1.98598003e+06 3.00424592e+06 5.47894680e+06 -9.84541300e+06 5.41057396e+05 3.20793276e+06 2.86944086e+06 -1.38832240e+07 5.06799130e+05 -2.64958565e+06 7.21218959e+06 9.90461325e+05 -4.15518745e+06 1.56779856e+06 1.13814869e+06 -1.56835495e+07 -1.39755899e+07] [-2.39687689e+06 -1.22473837e+07 1.80809501e+06 -1.83056324e+06 3.07467678e+06 -5.15591311e+05 1.02927632e+07 -7.78737852e+06 -1.08058942e+06 -1.70475833e+07 7.40675201e+05 1.88375000e+06 -7.48137399e+06 -9.02842371e+06 7.68016887e+05 -6.70666150e+06 -1.06558898e+06 5.81590390e+06 -1.82233223e+06 2.28953854e+06 2.76032660e+06 3.20471809e+06 -8.65519105e+06 8.51898059e+05 2.46375374e+06 -1.18074339e+06 -1.16520139e+07 2.86762476e+05 -4.04533710e+06 5.17448927e+06 1.59299546e+06 -6.73048031e+06 1.18412647e+06 9.54430178e+05 -1.23625501e+07 -1.18412514e+07] [-5.59017638e+05 -1.03510605e+07 1.76416396e+06 9.16110859e+05 3.09467864e+06 -4.30395216e+05 1.01238839e+07 -1.01589046e+07 1.23066790e+05 -1.69992275e+07 3.56089716e+05 1.53861332e+06 -7.35912309e+06 -8.37705900e+06 4.14374042e+05 -5.90031606e+06 -7.20508842e+05 8.70824443e+06 -1.70917333e+06 1.80573156e+06 2.19565177e+06 3.35035027e+06 -8.37466817e+06 9.95842740e+05 1.82514265e+06 -2.42471229e+06 -1.15835010e+07 8.23111627e+04 -2.55496624e+06 5.31175487e+06 1.38125442e+06 -5.34353989e+06 9.99958186e+05 1.08668631e+06 -1.04723590e+07 -1.07645932e+07] [ 8.26855831e+05 -6.24526310e+06 1.70777341e+06 2.04614460e+06 2.68730807e+06 2.07827550e+05 8.59475038e+06 -8.29063094e+06 9.56664162e+05 -1.24037845e+07 4.90107053e+05 1.53470874e+06 -5.98320146e+06 -6.47301852e+06 8.84506629e+05 -2.80914814e+06 3.85864697e+04 7.82567493e+06 -1.79400436e+05 1.48284078e+06 1.87537263e+06 3.23817380e+06 -6.23636619e+06 1.30128359e+06 1.74366010e+06 -2.30747878e+06 -9.26909082e+06 5.97214010e+05 -1.48637458e+06 4.49188935e+06 1.42492752e+06 -2.25361050e+06 1.33831504e+06 1.40781379e+06 -7.62834266e+06 -7.95462650e+06] [ 1.47463528e+06 -2.51834126e+06 5.77857259e+05 2.30161064e+06 1.22980349e+06 -1.49346675e+05 5.80814725e+06 -4.12106264e+06 1.23256740e+06 -6.72677436e+06 -3.62563388e+05 7.52919423e+05 -4.25089485e+06 -4.56866878e+06 4.69587766e+05 2.49853054e+05 -3.06697504e+05 5.84948484e+06 1.85497423e+06 3.29667212e+05 7.71956645e+05 2.74237573e+06 -3.41950178e+06 4.78153576e+05 9.35191193e+05 -1.59148100e+06 -5.82933472e+06 2.26883210e+05 -2.49080167e+05 3.30768940e+06 5.14945458e+05 8.98651492e+05 8.41855655e+05 7.18034816e+05 -4.58844607e+06 -4.63793274e+06] [ 1.58432319e+06 -3.26047904e+05 1.15814009e+05 2.06704992e+06 4.23105655e+05 -2.31442445e+04 4.05712098e+06 -1.42782370e+06 1.36108995e+06 -2.66972059e+06 -2.14097089e+05 5.55257728e+05 -2.65181730e+06 -2.51271388e+06 3.54290155e+05 1.30967219e+06 -1.07122346e+05 3.87718092e+06 2.18319387e+06 -1.96449020e+04 3.14989496e+05 1.99534682e+06 -1.72693945e+06 2.69188951e+05 5.48925040e+05 -5.24161867e+05 -3.32260840e+06 2.29230132e+05 8.27684051e+05 2.44240437e+06 1.65490842e+05 1.83047255e+06 6.15101264e+05 5.80225006e+05 -2.48493677e+06 -2.44371372e+06] [ 7.22370995e+05 9.14416195e+04 2.84179234e+05 9.56135266e+05 3.76888217e+05 2.19882960e+05 1.01306106e+06 -1.26474522e+06 5.45531175e+05 -1.39013793e+06 8.55815866e+04 2.42671738e+05 -6.43999614e+05 -6.84957092e+05 2.13661715e+05 -9.20098281e+04 2.65340695e+05 1.68321625e+06 2.97585255e+05 1.89146014e+05 2.20149660e+05 4.85833821e+05 -4.61615004e+05 3.50526156e+05 2.31338912e+05 -6.59839697e+05 -9.15404921e+05 2.18182529e+05 -9.29183975e+03 5.88881263e+05 2.59921925e+05 2.02826882e+05 2.85296206e+05 3.84572446e+05 -3.75826055e+05 -4.83405119e+05] [ 2.24702432e+05 -3.85854352e+04 7.97093817e+04 3.50837145e+05 1.07815731e+05 4.71642730e+04 2.49804606e+05 -4.78029036e+05 1.88109054e+05 -5.63289320e+05 -3.76603414e+04 2.54458326e+04 -2.11601822e+05 -2.41360915e+05 2.56560326e+04 -1.36773698e+05 7.68891762e+04 6.15360396e+05 4.97082172e+04 3.32068474e+04 2.97170286e+04 1.25282311e+05 -1.28197788e+05 9.69736288e+04 1.85685956e+04 -3.05099723e+05 -2.85713466e+05 3.82538742e+04 -7.04394045e+04 1.92485147e+05 5.82080418e+04 2.98267346e+04 3.95708485e+04 8.68728853e+04 -6.44410351e+04 -1.34813006e+05] [ 8.39290056e+03 -6.44281936e+04 5.52605465e+04 -7.70555760e+03 6.09384116e+04 4.35995304e+04 -1.96222318e+04 -1.43264796e+05 8.09380807e+02 -1.16628688e+05 2.67600514e+04 2.66852279e+04 3.33146169e+04 1.26186887e+04 3.12735558e+04 -7.50038003e+04 4.54219010e+04 9.81410208e+02 -2.15105075e+04 4.83853988e+04 3.36582426e+04 4.02513480e+03 -2.12072273e+04 4.66647915e+04 2.61802138e+04 -4.01545674e+04 1.17804011e+03 3.66024696e+04 -9.40127819e+04 -6.58636377e+03 4.94298101e+04 -5.28522495e+04 3.33878970e+04 3.64873117e+04 3.26824486e+04 1.01222711e+04] [-3.80601871e+03 -1.72414114e+04 3.86868290e+03 -5.25029795e+03 5.98055666e+03 1.08176765e+03 1.63112616e+03 -2.07533433e+04 -5.52364977e+03 -1.79287961e+04 1.34480913e+02 3.04071162e+03 -7.43607833e+03 -1.33481275e+04 3.18216494e+03 2.60784661e+03 -7.95599989e+02 2.28389834e+03 2.67639529e+03 3.58130097e+03 3.80862146e+03 5.46137204e+03 -8.58993136e+03 2.56726173e+02 3.94184619e+03 -1.52275965e+03 -1.26845960e+04 1.45363859e+03 -1.44962390e+04 -1.78730600e+02 3.23234274e+03 8.89468211e+03 3.73112108e+03 1.22535818e+03 -8.03706560e+03 -6.80564139e+03] [ 1.37394371e-01 9.80948587e-01 7.29149767e-01 -5.47992638e-01 3.70818375e-01 1.17978036e-02 -6.26817855e-01 -7.47497533e-01 7.43715629e-01 9.98928249e-01 -8.67436998e-01 -5.41713538e-01 5.21558224e-01 -1.11790289e-01 8.34221230e-02 1.41399536e-01 5.26632862e-01 6.86825384e-01 -9.55403667e-01 -5.17708993e-01 4.97550364e-03 -2.26173848e-01 -7.65012780e-01 -3.39440177e-01 3.67107903e-01 5.56927465e-01 1.89250671e-01 -2.53458333e-01 4.49248848e-01 9.40700023e-01 5.65600495e-01 -8.57173958e-03 4.40056914e-01 6.61969894e-01 -8.27335626e-02 6.02401200e-01] [ 4.96292456e+04 5.64510745e+04 3.17048548e+04 5.06255206e+04 2.82452897e+04 2.36667123e+04 -1.54372187e+04 -4.73225209e+04 3.43231469e+04 -2.96380803e+04 1.59111811e+04 9.03111098e+03 1.40359080e+04 1.27040393e+04 1.29296980e+04 -4.89136551e+04 3.56764845e+04 4.78500194e+04 -2.26240974e+04 2.26626217e+04 1.64867780e+04 -2.37439926e+03 1.48807286e+04 3.02164185e+04 1.14142533e+04 -4.89756313e+04 1.35726039e+04 1.60718379e+04 -5.41542340e+04 -1.33411996e+04 2.61847239e+04 -3.31312163e+04 1.01356760e+04 2.11154704e+04 3.18088872e+04 2.92414508e+04] [-4.18196426e+05 -5.90853423e+05 2.58122664e+05 -5.14029994e+05 3.29178106e+05 7.47376086e+04 -1.56571181e+05 -1.01787066e+06 -4.43541472e+05 -1.17295995e+06 1.79501349e+05 1.08048180e+05 1.32128613e+05 -1.62486000e+05 8.33312362e+04 -8.54144671e+05 7.47194839e+04 -3.41407203e+05 -5.40242836e+05 2.52795570e+05 2.09502095e+05 -2.28249093e+04 -2.44381100e+05 1.43643199e+05 1.23213336e+05 -3.57008335e+05 -1.40116918e+05 5.08330732e+04 -1.03070492e+06 -2.98972721e+05 2.10776633e+05 -7.69251157e+05 8.93743615e+04 8.26506246e+04 -9.06394599e+03 -8.37437804e+04] [-1.19540485e+06 -3.25091791e+06 1.04204793e+06 -1.34946358e+06 1.35204489e+06 3.93524885e+05 1.70263259e+05 -4.85359816e+06 -1.20577719e+06 -4.28494571e+06 6.39908632e+05 4.68160208e+05 -1.88819247e+05 -1.00076529e+06 5.36426340e+05 -2.14514082e+06 3.02577210e+05 -2.44197352e+05 -1.68892137e+06 1.11179022e+06 9.27648194e+05 2.22979263e+05 -1.72238753e+06 6.46557640e+05 5.87786344e+05 -8.60521298e+05 -1.56177343e+06 3.37148689e+05 -3.33395895e+06 -3.78498156e+05 9.61018388e+05 -2.02251710e+06 5.45737627e+05 5.27531063e+05 -5.92146362e+05 -1.11069966e+06] [-2.07648847e+06 -7.98558528e+06 2.25512742e+06 -2.54225703e+06 2.96908325e+06 8.98954728e+05 2.10404015e+06 -9.84463002e+06 -1.71633803e+06 -9.03156807e+06 1.52058429e+06 1.19962897e+06 -1.39669981e+06 -2.28379332e+06 1.26969267e+06 -3.82592336e+06 7.48196864e+05 9.10291900e+03 -3.60243696e+06 2.45207571e+06 2.15099292e+06 8.76485453e+05 -4.73219957e+06 1.58102639e+06 1.31976665e+06 -1.42992112e+06 -4.80762322e+06 7.72377641e+05 -5.23559282e+06 3.57959233e+05 2.05132966e+06 -3.68763250e+06 1.16293095e+06 1.31695071e+06 -2.93156956e+06 -4.02937204e+06] [-2.78232759e+06 -1.44122840e+07 4.02282483e+06 -3.01413665e+06 5.26167449e+06 1.81493393e+06 6.03488351e+06 -1.64652667e+07 -1.76599318e+06 -1.52388452e+07 3.01415664e+06 2.59363906e+06 -4.37654057e+06 -5.07329758e+06 2.56382546e+06 -4.46411216e+06 1.52632250e+06 1.79114029e+06 -5.28887327e+06 4.29584944e+06 3.98537507e+06 2.90483468e+06 -9.62323106e+06 3.03420903e+06 2.70539509e+06 -1.31339875e+06 -1.05445215e+07 1.61125596e+06 -7.25877641e+06 2.26782826e+06 3.69601857e+06 -5.02515752e+06 2.36496818e+06 2.70850356e+06 -7.94178957e+06 -9.36568290e+06] [-3.32100648e+06 -1.97522453e+07 5.30407536e+06 -4.89230988e+06 7.22245679e+06 2.33350422e+06 1.02764986e+07 -1.77349822e+07 -1.87366050e+06 -1.91452094e+07 4.19314252e+06 4.44223821e+06 -7.70381809e+06 -9.20296490e+06 4.24447808e+06 -2.33833557e+06 1.61683107e+06 2.13727639e+06 -2.83319202e+06 5.58445935e+06 5.86340419e+06 5.54311493e+06 -1.25917333e+07 3.97971625e+06 4.71956345e+06 4.61018635e+05 -1.52590187e+07 2.71030877e+06 -7.69776758e+06 4.97414181e+06 5.10579070e+06 -3.19921973e+06 4.11565981e+06 3.89426907e+06 -1.36648534e+07 -1.40377905e+07] [-3.30576588e+06 -2.25915439e+07 6.36084098e+06 -7.08077824e+06 8.60742151e+06 2.84219987e+06 1.37196495e+07 -1.61986764e+07 -1.85343945e+06 -2.12995924e+07 5.14547404e+06 6.10611747e+06 -8.78812967e+06 -1.14497019e+07 5.64916121e+06 -1.51281071e+04 1.76109572e+06 1.14451908e+06 7.71621933e+05 6.58735866e+06 7.34676985e+06 7.58934822e+06 -1.29549199e+07 4.59468762e+06 6.52359642e+06 2.39244185e+06 -1.64306624e+07 3.83321149e+06 -6.27900068e+06 7.55851089e+06 6.27712491e+06 -7.60524492e+05 5.68251241e+06 4.88541324e+06 -1.65136382e+07 -1.58495798e+07] [-1.30984330e+06 -1.97039431e+07 6.72162377e+06 -5.12995683e+06 8.39123845e+06 4.13348765e+06 1.30482784e+07 -9.91924034e+06 5.13217932e+05 -1.59128697e+07 5.61458202e+06 7.01462387e+06 -6.41669006e+06 -8.57079212e+06 6.61020025e+06 4.21938408e+06 3.15775815e+06 1.57253952e+06 3.85951892e+06 6.85913909e+06 7.66099386e+06 8.03404726e+06 -8.41574113e+06 5.38228820e+06 7.39759055e+06 4.26360118e+06 -1.16254768e+07 5.12270716e+06 -1.40365403e+06 8.85241066e+06 6.78347800e+06 3.08244152e+06 6.70752916e+06 5.92636299e+06 -1.28603859e+07 -1.16712650e+07] [-1.58442814e+06 -1.74825819e+07 4.90309846e+06 -4.76971353e+06 6.07313788e+06 2.90152263e+06 1.04592891e+07 -6.93610284e+06 5.31039709e+05 -1.09446932e+07 3.88194853e+06 5.35214547e+06 -5.66804610e+06 -6.98992780e+06 5.30524209e+06 6.79451637e+06 1.98858204e+06 -4.51662720e+05 4.96681834e+06 4.92655714e+06 5.58356003e+06 6.48049935e+06 -6.31304046e+06 3.60587755e+06 5.60795605e+06 4.93237067e+06 -8.90159163e+06 3.72138305e+06 7.09622440e+04 7.24690853e+06 5.04786003e+06 5.76409887e+06 5.25483625e+06 4.33716553e+06 -1.02692615e+07 -8.83505961e+06] [ 9.61240163e+05 -1.04539730e+07 4.54091457e+06 -8.18776715e+05 4.82698964e+06 3.55001158e+06 1.02718749e+07 -3.53641364e+06 2.62416830e+06 -1.74215864e+06 4.69427364e+06 5.53484033e+06 -4.34129289e+06 -3.43062405e+06 5.68432692e+06 1.15368004e+07 3.46197316e+06 7.66190644e+05 6.11688150e+06 4.63463133e+06 5.10066507e+06 7.75291136e+06 -3.79041660e+06 4.15903878e+06 5.31715633e+06 6.94247926e+06 -5.57157716e+06 4.20134434e+06 3.22664614e+06 7.55282503e+06 4.90975843e+06 1.00940295e+07 5.31939571e+06 4.93750586e+06 -6.42455001e+06 -5.15107997e+06] [ 2.47906419e+06 -4.31073100e+06 3.00838074e+06 3.42716278e+06 2.66370845e+06 3.01761001e+06 1.11216497e+07 -1.04428264e+06 4.57686742e+06 4.25664148e+06 4.36385912e+06 4.95119198e+06 -4.91785630e+06 -2.13309776e+06 5.02516841e+06 1.42609245e+07 3.91804262e+06 4.17176104e+06 5.44509030e+06 3.11886129e+06 4.05065804e+06 8.25725215e+06 -2.85848923e+06 3.98112074e+06 4.24950923e+06 7.39334937e+06 -4.80928756e+06 3.48244021e+06 6.96055115e+06 7.94550760e+06 3.44879742e+06 1.26094588e+07 4.25483880e+06 4.66704094e+06 -4.58547609e+06 -3.75604457e+06] [ 2.16913711e+06 -1.71320580e+06 9.53274541e+05 5.06861189e+06 8.28193762e+04 1.73478322e+06 1.11673448e+07 2.45286350e+06 5.31276008e+06 7.24015094e+06 3.50328580e+06 3.86690389e+06 -5.79897422e+06 -1.85495419e+06 3.47146473e+06 1.41701522e+07 2.99916301e+06 6.29838211e+06 4.82832167e+06 1.32328957e+06 2.62100208e+06 7.21296225e+06 -2.47719892e+06 2.74656443e+06 2.91443579e+06 8.71631065e+06 -4.62166017e+06 2.18980375e+06 1.02136744e+07 8.36297773e+06 1.54387393e+06 1.21373859e+07 2.61546349e+06 3.30803007e+06 -4.75255698e+06 -3.81256415e+06] [ 6.07797028e+05 -3.46380120e+06 -5.76126891e+05 2.93554342e+06 -1.56350771e+06 4.08527066e+05 7.39449210e+06 2.76700012e+06 3.55349853e+06 5.99603940e+06 2.24749031e+06 1.98892475e+06 -5.22856853e+06 -1.63010953e+06 1.14320595e+06 9.65680494e+06 1.57058269e+06 3.59167934e+06 2.44800475e+06 -2.80641568e+04 8.98294618e+05 4.63751158e+06 -1.37715959e+06 1.14846521e+06 9.60031843e+05 7.69308031e+06 -3.35096652e+06 4.79076436e+05 8.12791725e+06 6.33000356e+06 -1.22037534e+04 8.12609762e+06 6.11495408e+05 1.44790467e+06 -3.75507560e+06 -3.01895607e+06] [-1.03078585e+06 -6.43213196e+06 -2.40709139e+06 7.86354893e+05 -3.22683612e+06 -1.30424706e+06 6.23318225e+06 2.98642198e+06 2.26944031e+06 4.48197283e+06 7.58527479e+05 2.93400491e+05 -6.65862144e+06 -3.40668225e+06 -8.27676175e+05 6.85166050e+06 -4.41669956e+05 2.28137438e+06 -8.83519122e+04 -1.42638261e+06 -4.98677008e+05 2.84638742e+06 -2.27200613e+06 -8.08301708e+05 -4.97790139e+05 6.79045288e+06 -4.65730946e+06 -1.30736818e+06 6.40976554e+06 5.28260469e+06 -1.76363080e+06 5.11652151e+06 -1.02128923e+06 -3.02398980e+05 -5.27329353e+06 -4.49795572e+06] [-1.67594503e+06 -6.46378286e+06 -2.16478674e+06 1.28421879e+06 -3.06258078e+06 -9.29256798e+05 6.22290730e+06 3.77125552e+06 2.35716042e+06 5.38337989e+06 1.58243690e+06 1.47059026e+06 -7.95438486e+06 -4.74088892e+06 -2.82632281e+04 6.01206993e+06 -2.91385425e+05 3.41112419e+06 -1.90852176e+06 -8.03802062e+05 1.68260686e+05 2.55882824e+06 -3.99101242e+06 -4.84331771e+05 7.01391705e+05 6.84990319e+06 -6.85833859e+06 -5.19992849e+05 4.89589063e+06 4.91405071e+06 -1.31687145e+06 3.24913630e+06 -9.90415943e+04 4.37722380e+05 -7.73615579e+06 -6.36921729e+06] [-4.39956814e+06 -8.89003988e+06 -1.89783773e+06 -6.04714850e+05 -1.93385508e+06 -1.90614826e+06 7.81213603e+06 1.33423395e+06 -1.79780173e+05 -2.64134093e+06 7.99288609e+05 1.37997949e+06 -9.67723172e+06 -7.89023804e+06 -3.65446483e+05 -1.76714196e+05 -1.86701229e+06 3.53540138e+06 -3.40102750e+06 -3.86286949e+05 5.76961855e+05 2.78047837e+06 -6.99491510e+06 -9.70968461e+05 1.05002613e+06 4.30891122e+06 -1.06122479e+07 -1.04049384e+06 -3.99715891e+05 4.42037195e+06 -1.20255716e+06 -2.42102160e+06 -3.43796623e+05 -2.25590376e+05 -1.21340077e+07 -1.02476706e+07] [-3.62886704e+06 -7.78556533e+06 -1.46620785e+06 -1.48122704e+06 -1.02567976e+06 -1.79777305e+06 1.03755955e+07 -3.46657362e+05 -8.29088965e+05 -6.16402778e+06 7.93162461e+05 1.72600755e+06 -1.06611703e+07 -9.28066963e+06 2.62791329e+04 -1.75592120e+06 -2.05186797e+06 3.29067823e+06 -6.48250655e+05 5.80195929e+04 1.13144283e+06 4.81458975e+06 -8.68907470e+06 -6.83462371e+05 1.70730188e+06 3.36785163e+06 -1.28444476e+07 -5.80788403e+05 -3.36102213e+06 4.98178504e+06 -8.37352146e+05 -3.17982913e+06 3.92068157e+05 1.69788355e+05 -1.54812615e+07 -1.29073553e+07] [-2.40497099e+06 -7.20752410e+06 -3.97357388e+04 -2.79537290e+06 7.06846618e+05 -1.09100009e+06 9.04024899e+06 -4.00361839e+06 -1.68443587e+06 -9.97836805e+06 9.28777152e+05 1.54019543e+06 -8.53482007e+06 -8.61630284e+06 2.64670823e+05 -4.25135176e+06 -1.49940056e+06 2.31370265e+06 2.16151530e+05 8.81529999e+05 1.58436900e+06 4.22517989e+06 -7.90651486e+06 -4.71647960e+04 1.87925398e+06 5.64269339e+05 -1.14877041e+07 -4.45598025e+04 -5.69656441e+06 3.91124126e+06 1.82907415e+05 -4.82017673e+06 8.23000717e+05 3.92240765e+05 -1.38487178e+07 -1.15529524e+07] [-5.17277840e+05 -6.27320649e+06 1.04736650e+06 -9.92167329e+05 1.97835832e+06 -3.29408110e+05 7.68893319e+06 -6.96097822e+06 -9.12877088e+05 -1.23750794e+07 9.77586973e+05 1.52551408e+06 -6.97201504e+06 -7.41630184e+06 3.99816539e+05 -5.48854699e+06 -7.28744775e+05 4.29494168e+06 -2.37276043e+05 1.39621915e+06 1.74244572e+06 3.34345913e+06 -7.22996012e+06 6.39716676e+05 1.81968389e+06 -1.61658734e+06 -1.03856761e+07 3.28428918e+05 -5.04982431e+06 3.40524511e+06 9.66563468e+05 -5.21903552e+06 1.12368397e+06 9.55290419e+05 -1.11806737e+07 -9.98611854e+06] [ 3.93359411e+05 -5.64085839e+06 7.84962078e+05 9.72559417e+05 1.74722585e+06 -6.41033856e+05 7.00554713e+06 -7.94135862e+06 1.21765080e+05 -1.29752357e+07 -2.43824064e+05 7.62904385e+05 -6.01849392e+06 -6.85483126e+06 -4.77376557e+04 -4.32047406e+06 -9.86925466e+05 6.32048372e+06 2.07827382e+04 6.27564360e+05 1.05668783e+06 2.41320139e+06 -6.27187996e+06 2.74607123e+05 9.74371413e+05 -2.70566981e+06 -9.07099062e+06 -1.36210346e+05 -3.54193666e+06 3.60353885e+06 5.66954501e+05 -3.53728324e+06 6.44205158e+05 5.54329321e+05 -8.34734305e+06 -8.16833091e+06] [ 1.79253250e+06 -1.69058411e+06 2.95521418e+05 2.48617504e+06 9.35495440e+05 -4.70308380e+05 5.08747291e+06 -5.03283766e+06 1.10535913e+06 -8.05583007e+06 -5.35373189e+05 5.40878748e+05 -4.39286614e+06 -4.77807700e+06 -8.77765780e+04 -1.48446340e+06 -5.47248359e+05 5.93579178e+06 2.05270299e+06 -1.01176965e+05 3.20010571e+05 2.17669213e+06 -3.45030435e+06 2.51828259e+05 5.60304687e+05 -2.81570987e+06 -6.03345309e+06 -2.54394941e+04 -1.74016471e+06 3.04917910e+06 1.74785192e+05 2.52998754e+04 5.45845141e+05 5.84888899e+05 -4.97704920e+06 -4.87807552e+06] [ 1.54569871e+06 1.15948261e+05 -1.03956983e+05 2.40224156e+06 2.50991508e+05 -3.81807609e+05 3.55061384e+06 -1.76414576e+06 1.07805636e+06 -3.99235816e+06 -7.99372933e+05 3.49291535e+05 -3.08501031e+06 -3.30230428e+06 1.90248432e+04 3.85972095e+05 -4.79131888e+05 4.61404512e+06 2.77369112e+06 -4.15041127e+05 -7.49980499e+03 1.50738667e+06 -1.56866958e+06 -2.33686396e+04 4.18564220e+05 -1.83616048e+06 -3.66838297e+06 8.70197761e+03 3.65981052e+05 2.21693046e+06 -6.20462234e+04 1.72406128e+06 4.01872173e+05 2.97897169e+05 -2.86836115e+06 -2.64290703e+06] [ 7.94170069e+05 4.30676867e+05 -7.49133004e+04 1.10800875e+06 6.14967901e+04 -7.00205469e+04 1.66264054e+06 -8.47635630e+05 5.27647831e+05 -1.45005195e+06 -2.42140301e+05 1.91230080e+05 -1.43094084e+06 -1.28945711e+06 5.85024501e+04 1.55547992e+05 -9.86963415e+04 1.88681467e+06 1.14592150e+06 -1.74833990e+05 -7.42435026e+03 7.24454088e+05 -8.12372583e+05 4.06206515e+04 1.93067861e+05 -7.72277399e+05 -1.80451312e+06 7.70587331e+04 3.54239934e+05 8.97709351e+05 -2.08436853e+04 8.34167206e+05 2.21753604e+05 2.16136410e+05 -1.27553589e+06 -1.22909428e+06] [ 5.50331862e+05 4.24448988e+05 1.40277506e+05 7.99696393e+05 1.73732977e+05 1.43549966e+05 6.94009869e+05 -6.67392080e+05 3.96378690e+05 -6.33105752e+05 6.15711619e+04 1.66095312e+05 -5.19769312e+05 -4.00168414e+05 1.39069637e+05 3.60969096e+04 1.95056060e+05 1.19540495e+06 2.25266347e+05 7.58096035e+04 1.15596581e+05 4.00358585e+05 -3.71978723e+05 2.23552731e+05 1.57237189e+05 -4.51046103e+05 -7.20932651e+05 1.55178289e+05 2.50769295e+05 4.41129817e+05 1.37511569e+05 2.34551022e+05 1.78034305e+05 2.47887596e+05 -4.27741682e+05 -4.68644671e+05] [ 2.59374068e+05 2.07617574e+05 2.06451175e+05 3.59655642e+05 1.97864951e+05 2.27012281e+05 1.24131736e+05 -1.88321314e+05 2.37479448e+05 -2.12617130e+03 1.94038780e+05 2.26805506e+05 3.01986286e+04 4.76509199e+04 2.19419389e+05 9.27286685e+04 2.67977930e+05 4.32730009e+05 5.29151718e+04 1.89415395e+05 1.99348654e+05 2.37004879e+05 -4.97867065e+04 2.57909934e+05 2.20947386e+05 -3.81741267e+04 -9.04316872e+04 2.28226883e+05 2.00827461e+05 1.80961631e+05 2.07821358e+05 1.67957444e+05 2.30731202e+05 2.57038636e+05 7.02239704e+04 -1.87649024e+04] [-6.72988787e+04 -1.22264098e+05 -1.70663866e+04 -3.11295394e+04 -2.66370210e+03 -2.49702781e+04 3.62999819e+04 -5.67051244e+04 -3.41552324e+04 -1.28365446e+05 -3.16496342e+04 -1.68788642e+04 -4.62471354e+04 -5.19126961e+04 -2.03333463e+04 -2.79880273e+04 -3.36503406e+04 1.65676228e+04 -2.54837449e+04 -1.00915779e+04 -7.36556489e+03 -1.20855294e+04 -6.90154278e+04 -2.57966200e+04 -1.16071622e+04 -2.15738560e+03 -7.74490413e+04 -2.29985594e+04 5.51682857e+04 5.48000666e+04 -1.73116825e+04 1.10895441e+04 -1.20146199e+04 -2.62069214e+04 -5.23480338e+04 -6.72448256e+04] [-9.94120471e-01 9.63538817e-01 -3.57859193e-04 -6.72328742e-01 5.53269927e-01 4.84621398e-01 -1.29581448e-01 9.32066086e-01 -3.93659302e-01 2.88588127e-02 -5.09756345e-01 1.01570642e-02 7.22278981e-02 6.71160204e-01 1.32333901e-01 8.18763383e-01 8.32398180e-01 -5.22547459e-01 5.79552869e-01 -5.09105495e-01 -9.61091523e-02 1.06181330e-02 8.97112448e-01 5.36105960e-01 -5.22696615e-01 -4.07566760e-01 -8.61263609e-01 7.09781021e-01 -9.03740272e-01 -3.79888547e-01 -3.30804684e-01 -4.84500515e-01 4.70831094e-01 -2.41044841e-02 -8.12559676e-02 3.62127517e-01] [-6.53125153e-01 8.62849827e-01 -4.82863050e-01 3.69460440e-01 -2.51560970e-01 -2.80387228e-01 6.61916373e-01 -7.57680204e-01 -8.20094855e-01 -3.89788959e-02 6.10125360e-01 7.13956239e-01 5.35947101e-01 -5.69909063e-01 -1.65857268e-01 -8.81070445e-01 1.25088113e-01 -9.21073409e-01 -6.09302177e-02 -4.46784059e-02 4.45483084e-01 -9.25319390e-01 -1.28799901e-01 4.27784246e-01 2.34362786e-01 -2.01219123e-01 -9.09708085e-01 -3.52970676e-01 4.07056613e-01 2.47370162e-01 -3.81664113e-02 1.37301847e-01 -3.48193354e-01 6.71218875e-01 3.45872049e-01 -3.26446645e-01] [ 2.79008590e-01 1.59247674e-01 -4.42615198e-01 9.12122080e-01 -2.29640842e-01 -6.08707889e-01 5.81798387e-01 2.22746516e-01 4.64614295e-01 -4.21094561e-02 -1.80320220e-02 -5.05209525e-01 -2.98667197e-01 -3.98353085e-02 6.27660936e-01 6.13727214e-01 2.65434628e-01 -4.81829633e-02 6.94704982e-01 -7.45315808e-01 -3.24063333e-01 -5.88613948e-01 -3.10054762e-01 8.57533877e-01 3.36521956e-01 -2.69990089e-01 -3.39950956e-01 -8.71925742e-01 9.14611547e-02 4.46106877e-01 -3.65506547e-01 -6.60034783e-01 7.29748925e-01 9.02661169e-01 -4.86284357e-01 -2.31389809e-01] [-4.53156026e+05 -6.34913097e+05 1.70103254e+05 -5.58006869e+05 2.37695525e+05 2.59212687e+04 -2.03964439e+04 -7.49446205e+05 -4.49932395e+05 -1.01072965e+06 1.33254151e+05 7.83707164e+04 6.27685826e+04 -1.93506944e+05 3.73976372e+04 -6.47424701e+05 -2.90295739e+03 -4.00255395e+05 -4.42420665e+05 1.70368523e+05 1.45010274e+05 1.29244500e+04 -2.16608257e+05 7.35951526e+04 7.77007398e+04 -2.56412009e+05 -1.60070310e+05 9.02353621e+03 -7.87777873e+05 -2.24850219e+05 1.39196528e+05 -6.18308244e+05 5.08304152e+04 3.01068058e+04 -7.87379551e+04 -1.32172743e+05] [-9.54216170e+05 -2.15736301e+06 7.69755293e+05 -9.13293614e+05 9.81908459e+05 3.26667459e+05 1.85539587e+05 -2.93705394e+06 -8.92620450e+05 -2.95393436e+06 5.18352258e+05 4.07387731e+05 -9.05596008e+04 -6.42729694e+05 4.08255477e+05 -1.50199467e+06 2.63454527e+05 -1.31339017e+05 -1.37315303e+06 8.15030633e+05 7.33607468e+05 2.33355071e+05 -1.03102049e+06 5.15481271e+05 4.72558458e+05 -5.67100271e+05 -9.58058762e+05 2.80998226e+05 -2.04387906e+06 -2.23686472e+05 6.86833494e+05 -1.51072926e+06 4.17741502e+05 3.99858852e+05 -3.82137189e+05 -6.75698233e+05] [-1.15719036e+06 -4.84475391e+06 1.59555800e+06 -1.23426636e+06 1.96460524e+06 8.10074779e+05 9.37404404e+05 -5.91660498e+06 -8.79995753e+05 -4.93109393e+06 1.23309109e+06 1.00023214e+06 -6.06942300e+05 -1.11300147e+06 9.94326986e+05 -2.06280020e+06 8.02247411e+05 2.73956427e+05 -2.56360380e+06 1.73163131e+06 1.54864338e+06 6.75434718e+05 -2.68400413e+06 1.23768597e+06 1.01170103e+06 -6.04757165e+05 -2.63773839e+06 7.06227274e+05 -2.93685620e+06 3.03461306e+05 1.46747851e+06 -2.12933188e+06 9.13482874e+05 1.07551311e+06 -1.47489515e+06 -2.14598337e+06] [-1.44758551e+06 -9.17754627e+06 3.05458398e+06 -1.80397436e+06 3.82850316e+06 1.62963023e+06 4.15483570e+06 -1.09805852e+07 -1.12837179e+06 -9.22149591e+06 2.65269943e+06 2.21040471e+06 -2.79348826e+06 -3.06520948e+06 2.17873600e+06 -2.58094267e+06 1.51363990e+06 1.15533320e+06 -3.52172789e+06 3.30734314e+06 3.11038164e+06 2.47847542e+06 -6.21182775e+06 2.52295134e+06 2.17596851e+06 -2.79717715e+05 -6.85450609e+06 1.49363240e+06 -4.72753231e+06 1.80427131e+06 2.89971752e+06 -2.99095830e+06 1.97967260e+06 2.25236939e+06 -5.01962053e+06 -5.90851347e+06] [-1.82278183e+06 -1.41898016e+07 5.72787482e+06 -3.06517291e+06 7.03145168e+06 3.52532516e+06 7.95872452e+06 -1.61474641e+07 -1.06969262e+06 -1.37019242e+07 5.49439649e+06 4.95795341e+06 -5.17027990e+06 -5.48993693e+06 4.65159241e+06 -2.94882926e+06 3.23404289e+06 1.89658516e+06 -3.61068015e+06 6.17441876e+06 6.12654853e+06 5.42847181e+06 -9.88715030e+06 5.03685676e+06 4.87248000e+06 1.28383412e+06 -1.15720146e+07 3.56291675e+06 -7.21862751e+06 4.02555821e+06 5.58406201e+06 -3.53054959e+06 4.48424554e+06 4.70084322e+06 -9.57526765e+06 -1.01258841e+07] [-2.25029056e+06 -1.99504337e+07 7.78138888e+06 -5.87060435e+06 9.58864288e+06 4.73675590e+06 1.15895137e+07 -1.79099614e+07 -1.06088824e+06 -1.78953721e+07 7.36849353e+06 7.24159632e+06 -6.24779036e+06 -7.59693682e+06 6.75124974e+06 -1.57036492e+06 4.14696570e+06 1.21858788e+06 -1.53658885e+06 8.30772990e+06 8.61567809e+06 7.78989762e+06 -1.17026096e+07 6.63073009e+06 7.33674198e+06 3.27336090e+06 -1.40775477e+07 5.27237301e+06 -7.10796188e+06 6.60915867e+06 7.63766776e+06 -2.17801441e+06 6.67469001e+06 6.49186890e+06 -1.28101484e+07 -1.28271000e+07] [-1.70911227e+06 -1.96712199e+07 8.25109176e+06 -6.23150198e+06 9.87978569e+06 5.47711736e+06 1.03351480e+07 -1.53698096e+07 -4.91975270e+05 -1.52143393e+07 7.80830657e+06 7.76666555e+06 -5.25797806e+06 -6.58185283e+06 7.46534171e+06 9.89364803e+05 4.87377751e+06 -5.79069614e+05 3.38900913e+05 8.52031098e+06 8.76200568e+06 7.70562119e+06 -9.49583105e+06 7.06964820e+06 7.79199926e+06 4.24567223e+06 -1.18578516e+07 6.00156853e+06 -4.82373257e+06 6.45995566e+06 8.16530416e+06 2.86243242e+05 7.25738452e+06 7.00552212e+06 -1.15866589e+07 -1.09133370e+07] [-5.39654858e+06 -2.31903291e+07 6.15184983e+06 -1.09165501e+07 7.82783671e+06 3.19649059e+06 6.19239540e+06 -1.52925629e+07 -3.39267005e+06 -1.59784698e+07 5.20748656e+06 5.14264986e+06 -4.79909045e+06 -7.16048757e+06 5.36285903e+06 5.02701654e+04 2.18102507e+06 -6.83163080e+06 -7.92710060e+05 6.37785538e+06 6.29673313e+06 4.24004390e+06 -9.05169976e+06 4.29114777e+06 5.37620306e+06 3.27924384e+06 -1.03196004e+07 3.64442093e+06 -6.64901375e+06 3.02247140e+06 6.02731068e+06 -6.98491440e+05 4.94200619e+06 4.22994486e+06 -1.07029137e+07 -9.85715205e+06] [-3.97911955e+06 -1.84228418e+07 5.01923191e+06 -1.12100795e+07 6.07023000e+06 2.87641648e+06 4.13609142e+06 -1.27515563e+07 -2.97426250e+06 -9.86090156e+06 5.02808666e+06 4.14629247e+06 -3.78543559e+06 -5.27783381e+06 4.63697188e+06 2.64916128e+06 2.31461274e+06 -1.00694829e+07 1.41434529e+06 5.15074682e+06 4.83343589e+06 4.04422382e+06 -6.05920659e+06 3.57067050e+06 4.17870739e+06 3.77918479e+06 -6.81549711e+06 3.12104242e+06 -5.89871313e+06 2.04306505e+06 4.99484789e+06 2.85610094e+06 4.05739429e+06 3.68165398e+06 -7.52652310e+06 -6.09138012e+06] [-4.28463485e+06 -1.47169711e+07 3.18448439e+06 -1.14277565e+07 3.83106834e+06 1.67705690e+06 1.74039541e+06 -9.11447305e+06 -3.47776917e+06 -5.69936436e+06 3.85973538e+06 2.98026581e+06 -3.04418844e+06 -4.11005591e+06 3.26844427e+06 2.83763598e+06 1.43686178e+06 -1.14833819e+07 2.41994056e+06 3.40146525e+06 3.23102807e+06 2.90271804e+06 -3.74164744e+06 2.23178732e+06 2.93342101e+06 3.83671649e+06 -4.27061489e+06 1.94133118e+06 -5.58420754e+06 5.80951846e+05 3.31283220e+06 3.30674313e+06 2.69351205e+06 2.32994217e+06 -5.27212123e+06 -3.55134466e+06] [-4.45525244e+06 -1.23096215e+07 7.38154759e+05 -1.02290140e+07 1.20702222e+06 -6.30837835e+04 1.85597460e+06 -4.41698587e+06 -3.36435066e+06 -3.96602629e+06 2.67550653e+06 1.87942411e+06 -4.39388515e+06 -5.10017451e+06 1.24431804e+06 2.19566187e+06 -8.34463571e+04 -9.16750965e+06 3.72522826e+06 1.25143060e+06 1.62245531e+06 2.84614381e+06 -2.25158515e+06 7.95505661e+05 1.49125475e+06 4.39703484e+06 -4.00793890e+06 4.37101996e+05 -3.24765160e+06 2.33654996e+06 1.04281650e+06 3.49431389e+06 1.02419167e+06 7.76851101e+05 -5.97426231e+06 -3.68382379e+06] [-5.30594021e+06 -1.38761164e+07 -1.22393943e+06 -1.13398629e+07 -7.33640984e+05 -1.71171907e+06 8.19946760e+05 -2.82242524e+06 -3.95287867e+06 -5.40464438e+06 1.05417727e+06 3.80091712e+05 -5.64636084e+06 -6.52000938e+06 -8.66622618e+05 -2.34480138e+04 -1.88510374e+06 -9.97422760e+06 2.93260167e+06 -4.71388152e+05 -1.50616448e+03 1.52388995e+06 -2.42878757e+06 -1.02295962e+06 -1.17696269e+05 3.79272171e+06 -4.90752855e+06 -1.27420047e+06 -4.15818662e+06 2.05671904e+06 -8.67677780e+05 1.72361735e+06 -6.98235558e+05 -9.32463777e+05 -7.27378324e+06 -4.96777912e+06] [-5.69278269e+06 -1.37019255e+07 -2.19558691e+06 -1.26959530e+07 -1.87659366e+06 -2.35669340e+06 -1.40219197e+06 -3.94379200e+06 -4.56759014e+06 -4.13108681e+06 4.52446646e+05 -4.47315983e+05 -5.83515468e+06 -6.65706686e+06 -1.73945298e+06 -9.70952039e+05 -2.63772119e+06 -1.22956974e+07 1.21888361e+06 -1.35889458e+06 -1.09892995e+06 1.57079969e+05 -3.05263485e+06 -2.07739154e+06 -9.30979464e+05 3.06155812e+06 -5.21944270e+06 -1.97840206e+06 -7.78218782e+06 -4.20061082e+05 -1.80159125e+06 3.46495676e+05 -1.35667745e+06 -1.67514768e+06 -7.47735398e+06 -5.16874115e+06] [-6.15337931e+06 -1.14066948e+07 -1.38807712e+06 -1.26022409e+07 -1.24060373e+06 -1.65277956e+06 -3.62085838e+06 -4.30600200e+06 -5.49364850e+06 -3.25782857e+06 8.05544568e+05 -4.84098535e+04 -4.27841902e+06 -5.50866838e+06 -8.12240393e+05 -2.35150632e+06 -2.17481426e+06 -1.31110051e+07 -1.08996699e+06 -5.39028212e+05 -4.66241004e+05 -8.04848519e+05 -3.44802867e+06 -1.62235222e+06 -2.38694755e+05 2.23746781e+06 -4.57968151e+06 -1.14556966e+06 -1.10816947e+07 -3.29566248e+06 -1.00647571e+06 -1.95681334e+06 -5.29561016e+05 -1.12470303e+06 -7.02132167e+06 -4.75164297e+06] [-7.97641019e+06 -1.08658226e+07 -1.87046845e+06 -1.23419765e+07 -1.26987653e+06 -2.82888480e+06 -2.97408598e+06 -4.41928336e+06 -7.03254562e+06 -7.92191110e+06 -8.91572482e+05 -1.03508316e+06 -4.32761537e+06 -6.35069396e+06 -1.71108218e+06 -6.38635033e+06 -3.63789476e+06 -1.16924137e+07 -3.40220704e+06 -1.01070681e+06 -8.28895895e+05 -1.32789520e+06 -5.00464483e+06 -2.53900001e+06 -8.27335376e+05 -1.34225928e+05 -5.88216829e+06 -2.13860248e+06 -1.26189124e+07 -4.07488044e+06 -1.67196989e+06 -6.25272935e+06 -1.40161102e+06 -2.37397486e+06 -8.79309135e+06 -6.48879220e+06] [-4.21490569e+06 -4.90573592e+06 -2.22679571e+06 -7.02144377e+06 -1.70137494e+06 -2.59647379e+06 1.83668889e+06 -1.98030923e+06 -4.18176144e+06 -6.59667189e+06 -8.50031541e+05 -6.60271404e+05 -5.82331111e+06 -6.44267171e+06 -1.75853182e+06 -5.23323658e+06 -3.05526726e+06 -5.30482801e+06 1.87102605e+05 -1.49227010e+06 -9.53811020e+05 1.44678998e+06 -4.97303504e+06 -2.06880461e+06 -6.34680335e+05 -3.98214884e+05 -7.05547407e+06 -1.74982291e+06 -8.17615938e+06 -5.67645896e+05 -1.97395620e+06 -4.19151666e+06 -1.12835605e+06 -1.77829737e+06 -1.07200899e+07 -7.88867857e+06] [-2.13601012e+06 -3.43036503e+06 -1.39715845e+06 -3.62313956e+06 -7.03932472e+05 -2.05565895e+06 3.64130091e+06 -2.49382886e+06 -2.54693073e+06 -7.77197463e+06 -6.20792677e+05 -3.07377772e+05 -5.35051834e+06 -6.13200085e+06 -1.35542438e+06 -4.88454823e+06 -2.50397508e+06 -6.20988013e+05 9.99046037e+05 -9.85852515e+05 -4.14500474e+05 1.62745124e+06 -4.66981528e+06 -1.42189082e+06 -1.68091144e+05 -1.36193635e+06 -6.97575320e+06 -1.25889153e+06 -5.90950716e+06 8.02780132e+05 -1.33999188e+06 -4.31550697e+06 -6.42308110e+05 -1.20465789e+06 -9.70545772e+06 -7.57072642e+06] [-5.66976587e+05 -1.65348494e+06 -1.00982095e+06 -4.86000140e+05 -5.21723128e+05 -1.40536219e+06 3.26909344e+06 -2.50277510e+06 -1.02632134e+06 -7.14967438e+06 -5.52761724e+05 -1.54163823e+05 -4.74510808e+06 -5.15282103e+06 -1.08096663e+06 -4.35242112e+06 -1.65659742e+06 2.46984323e+06 3.19630560e+05 -7.95233444e+05 -3.47890693e+05 9.70720249e+05 -4.01721323e+06 -8.94382115e+05 -9.12399052e+04 -2.23944058e+06 -6.28771219e+06 -8.28525242e+05 -3.62642811e+06 1.57598854e+06 -9.84378293e+05 -3.69649740e+06 -4.26927281e+05 -5.80351872e+05 -7.47554652e+06 -6.10456053e+06] [ 1.61386115e+05 -1.40528899e+05 -9.55388516e+05 9.23929611e+05 -5.93827121e+05 -1.22693619e+06 2.78629563e+06 -2.39897469e+06 -2.42964145e+05 -5.56665762e+06 -1.04636341e+06 -3.89874881e+05 -3.68925949e+06 -3.85975238e+06 -1.04503589e+06 -2.84901667e+06 -1.38024954e+06 3.28733456e+06 9.70084258e+05 -1.01869828e+06 -6.53139576e+05 6.51060488e+05 -2.87605096e+06 -8.43227623e+05 -4.17570926e+05 -2.44776528e+06 -4.70596944e+06 -7.94958181e+05 -2.27229219e+06 1.45192176e+06 -9.41549422e+05 -1.74868972e+06 -5.09792384e+05 -5.62042580e+05 -4.72150278e+06 -4.16697606e+06] [ 9.90611335e+05 1.72936052e+06 -9.36892554e+05 2.02126629e+06 -7.35864455e+05 -9.69984325e+05 2.25712443e+06 -7.29092066e+05 4.72995538e+05 -3.04259003e+06 -1.03302700e+06 -3.10994446e+05 -2.87841487e+06 -2.70741751e+06 -8.73680035e+05 -1.48409745e+06 -9.68367339e+05 3.65850571e+06 1.92358793e+06 -1.09090011e+06 -7.62008465e+05 4.51479847e+05 -1.38432439e+06 -6.71457004e+05 -3.56507920e+05 -2.18045160e+06 -3.05961128e+06 -6.12033984e+05 -1.91147984e+05 1.32913937e+06 -8.80255710e+05 -1.30653251e+05 -4.26845039e+05 -3.87733432e+05 -2.72846534e+06 -2.26675555e+06] [ 7.65177263e+05 1.30728029e+06 -5.80783085e+05 1.72162684e+06 -4.18244710e+05 -5.76709833e+05 1.76510240e+06 -4.75975274e+05 4.37887678e+05 -1.90807964e+06 -7.32344516e+05 -1.06178640e+05 -2.07982606e+06 -1.92300467e+06 -4.44010184e+05 -4.63444972e+05 -5.80998459e+05 2.87959999e+06 1.63386436e+06 -6.77630423e+05 -4.26451082e+05 4.42483095e+05 -7.14068603e+05 -3.54032450e+05 -1.14890243e+05 -1.53167724e+06 -2.07457580e+06 -3.22521128e+05 3.03452264e+05 1.10680885e+06 -5.14498780e+05 6.00759245e+05 -1.68624204e+05 -1.47064062e+05 -1.56096244e+06 -1.26046370e+06] [ 2.84479519e+04 3.93536306e+04 -2.72567264e+05 2.45142091e+05 -1.19089729e+05 -3.75367039e+05 4.62800714e+05 -8.48855570e+05 -1.62052720e+05 -1.73408867e+06 -4.99296572e+05 -2.55018769e+05 -8.16029542e+05 -9.37813849e+05 -3.54950751e+05 -7.71829179e+05 -4.66434957e+05 8.50508356e+05 2.29412888e+05 -3.23021934e+05 -2.76163053e+05 -2.05309264e+05 -4.36556461e+05 -3.11618164e+05 -1.97921737e+05 -1.08633180e+06 -9.75859230e+05 -3.17915810e+05 -2.95714989e+05 1.49746348e+05 -2.68370076e+05 -3.62347488e+05 -1.98844291e+05 -2.43031915e+05 -6.22444342e+05 -5.98912958e+05] [ 2.29242856e+05 1.31741546e+05 8.91665566e+04 3.54735909e+05 1.21598724e+05 7.85547308e+04 3.01100941e+05 -4.18795256e+05 1.54716551e+05 -4.21701071e+05 4.88727653e+04 1.17936804e+05 -2.05662594e+05 -1.88279983e+05 8.04165641e+04 -1.45246896e+04 8.37586900e+04 5.70157527e+05 1.34527986e+05 7.02031222e+04 9.11854163e+04 2.21797525e+05 -1.72710386e+05 1.21981662e+05 1.21556899e+05 -1.86630883e+05 -3.31165157e+05 9.79134050e+04 5.69485319e+04 2.72430371e+05 9.32724195e+04 6.66290630e+04 1.26132617e+05 1.40349937e+05 -1.62385562e+05 -1.95829467e+05] [ 1.58447802e+05 1.42894379e+05 1.22247688e+05 2.26464786e+05 1.20347498e+05 1.34752276e+05 1.42929718e+05 -1.23300750e+05 1.39599732e+05 1.54177481e+02 1.31979838e+05 1.48073986e+05 1.99335396e+04 5.82865436e+04 1.29543323e+05 6.85510225e+04 1.60981488e+05 2.64321321e+05 4.99303034e+04 1.17918630e+05 1.24545549e+05 1.87670672e+05 -2.83407041e+04 1.56827413e+05 1.40497388e+05 -1.89505248e+04 -5.98371311e+04 1.36486506e+05 1.62992000e+05 1.49431877e+05 1.26224430e+05 1.13095414e+05 1.43485233e+05 1.60602281e+05 5.29782125e+04 2.66676986e+03] [ 3.29352377e+03 3.09443644e+03 -5.67381671e+03 1.25211449e+04 -3.87270848e+03 -4.11537291e+03 2.83850699e+04 -2.39777350e+04 3.24482631e+03 -9.42193690e+03 -2.51720414e+03 -1.31557337e+03 -2.30225449e+04 -9.04534828e+03 -3.90907460e+03 3.86743707e+03 -2.21578990e+03 1.75192136e+04 4.82816592e+03 -4.17696086e+03 -3.63395601e+03 1.80587895e+04 -2.06479639e+04 -2.93208853e+03 -2.25382231e+03 -5.26289099e+03 -3.14236205e+04 -3.97365096e+03 2.06147682e+04 2.37643314e+04 -4.29775400e+03 1.46530124e+04 -2.14126045e+03 -4.00891649e+02 -1.45382303e+04 -1.66941265e+04] [ 6.32906301e-01 -4.46936729e-01 4.71115746e-01 5.06667863e-01 -3.06810036e-02 -8.28292937e-01 -1.49641053e-01 -6.07360361e-01 3.00134833e-01 -3.93874607e-01 1.94012188e-01 -8.73040400e-01 4.34607978e-01 6.95198133e-01 -2.16788221e-01 -8.61859429e-01 -1.12639434e-01 5.77520780e-01 9.78047720e-01 3.42980604e-01 1.96451961e-02 -3.09521968e-01 4.08817885e-01 6.17871201e-01 5.54774395e-01 -1.27601078e-01 8.01443545e-01 -3.11427948e-01 1.13554213e-01 -9.88275778e-01 -2.64802758e-01 5.20319329e-01 -2.83446845e-02 -3.98100757e-01 2.20993172e-01 8.62818572e-01] [-7.99929760e-01 -4.40562215e-01 3.67400161e-01 4.28380094e-01 9.50885748e-01 4.98503707e-01 3.57135955e-01 4.07910594e-01 -4.76394320e-01 -9.64423728e-02 3.63719054e-01 -9.54752789e-01 -9.01545309e-01 -9.87832228e-01 7.93111293e-01 -9.23212302e-01 2.93327071e-01 -3.58574904e-01 3.93829554e-01 9.60070899e-01 7.72879735e-01 2.17888026e-01 5.55615028e-01 -1.27230090e-01 -3.95376221e-01 6.14821950e-01 -7.24155563e-01 8.46802560e-01 -4.12658902e-01 9.09998354e-01 -6.03065316e-01 5.21686438e-01 -9.24924495e-01 3.07466447e-01 -5.78858989e-02 2.51161690e-01] [ 2.10366245e-01 5.23439102e-01 -2.63062053e-01 9.11032568e-01 -8.82598388e-01 4.15816117e-01 -1.11701985e-01 -5.32998025e-01 -8.14917626e-01 -3.17695409e-01 9.80235303e-01 7.48507162e-01 4.12663570e-02 3.76262650e-01 5.84509349e-01 -3.32474682e-02 -1.32854102e-01 -4.45345929e-01 -1.16208939e-01 3.10469060e-01 -8.32131580e-01 3.10692028e-01 -3.67374769e-02 2.56714040e-01 -3.58866332e-01 -4.72834199e-01 3.37268801e-02 -8.76235064e-01 7.80181843e-01 -3.75263255e-01 -9.95999853e-01 1.36859274e-01 -1.33294873e-01 7.82656666e-01 5.37688737e-01 -2.15711650e-02] [-2.87999996e+04 -1.20915703e+05 5.56127623e+04 -5.97910621e+04 5.86897478e+04 4.51643063e+04 6.71008049e+04 -1.30034587e+05 -1.97690875e+04 -7.34502990e+04 5.66389228e+04 4.49430958e+04 -3.79007726e+04 -1.80394497e+04 4.36755109e+04 -2.25045013e+04 4.04155372e+04 -5.54567054e+04 -7.19367768e+04 5.85616105e+04 5.17275903e+04 5.47078770e+04 -8.09203094e+04 5.04383374e+04 4.03689206e+04 9.92966717e+03 -9.38480072e+04 3.80876178e+04 -8.65855742e+04 -9.76520642e+03 5.73651346e+04 -5.02171057e+04 4.25881146e+04 4.55738072e+04 -5.89870122e+04 -7.10338269e+04] [-3.74812680e+05 -9.86479232e+05 3.42883929e+05 -5.26724849e+05 3.99946812e+05 2.11551371e+05 1.40694065e+05 -9.62470622e+05 -3.12339281e+05 -8.30726650e+05 2.48372001e+05 2.26777555e+05 -6.82692386e+04 -1.67234996e+05 2.55773545e+05 -3.83880514e+05 1.62348503e+05 -3.48772989e+05 -5.06615895e+05 3.71020378e+05 3.43368896e+05 1.36228254e+05 -4.84181704e+05 2.45996596e+05 2.62906767e+05 -3.73360590e+04 -4.67697547e+05 2.06122484e+05 -6.32536350e+05 -1.41051925e+05 3.39058818e+05 -4.54612025e+05 2.37215278e+05 2.10219224e+05 -2.60544841e+05 -3.81721501e+05] [-8.00092169e+05 -2.80622838e+06 9.05326522e+05 -8.93792154e+05 1.09832983e+06 4.61328359e+05 6.89314697e+05 -2.71890695e+06 -5.61071756e+05 -2.60683012e+06 6.64774113e+05 5.87769565e+05 -3.44817642e+05 -6.26728404e+05 6.05659995e+05 -1.03928044e+06 3.92505775e+05 -9.29964373e+04 -1.46528197e+06 9.88480938e+05 9.49811588e+05 3.81821736e+05 -1.43834516e+06 6.65614394e+05 6.33337004e+05 -7.16890228e+04 -1.44685445e+06 4.17015288e+05 -1.32159539e+06 1.57522752e+05 8.39570044e+05 -1.29632745e+06 5.36806422e+05 5.70439024e+05 -9.02071439e+05 -1.21500687e+06] [-1.08037957e+06 -4.98033972e+06 1.43160231e+06 -1.37796539e+06 1.79145344e+06 7.21307272e+05 1.56295063e+06 -4.96866911e+06 -7.93705866e+05 -4.45005586e+06 1.19420888e+06 1.02029982e+06 -1.10441730e+06 -1.39344538e+06 9.80309936e+05 -1.51645448e+06 6.19795592e+05 1.45833859e+04 -2.15950260e+06 1.56459346e+06 1.48495437e+06 1.03463406e+06 -2.81322057e+06 1.11480961e+06 1.01593488e+06 -5.86281395e+04 -3.05540957e+06 6.36814844e+05 -2.38473883e+06 6.77170835e+05 1.34068473e+06 -1.85853343e+06 8.55602600e+05 9.52352732e+05 -2.16978399e+06 -2.57654141e+06] [-7.59975659e+05 -7.85862920e+06 3.26872363e+06 -1.80691204e+06 3.92144485e+06 2.05972799e+06 3.55947214e+06 -9.32128190e+06 -5.13683332e+05 -6.89955659e+06 3.12307525e+06 2.78259002e+06 -2.27896543e+06 -2.45046468e+06 2.62543155e+06 -1.66153429e+06 2.08133404e+06 5.71484422e+05 -2.39242720e+06 3.46877924e+06 3.40514610e+06 3.18226007e+06 -5.11291715e+06 2.99757123e+06 2.65568438e+06 7.40975572e+05 -5.77150030e+06 2.02924456e+06 -4.80698832e+06 2.12132068e+06 3.11393938e+06 -2.04005805e+06 2.43923414e+06 2.70257685e+06 -4.50588131e+06 -4.91913881e+06] [-6.53590198e+05 -1.07779610e+07 5.50361840e+06 -3.02208814e+06 6.34419557e+06 3.81598874e+06 4.95019839e+06 -1.23517807e+07 -2.60425707e+05 -8.94450712e+06 5.59357437e+06 4.88074850e+06 -2.46254816e+06 -2.68069768e+06 4.62231900e+06 -2.15939331e+06 3.89192281e+06 1.45764320e+05 -2.63922743e+06 5.78693864e+06 5.71735170e+06 4.89631974e+06 -6.39554739e+06 5.09117717e+06 4.73319812e+06 2.05558156e+06 -7.18738725e+06 3.85437980e+06 -5.74137550e+06 3.20697472e+06 5.31137987e+06 -2.39598051e+06 4.38214397e+06 4.66475097e+06 -5.87785204e+06 -6.09535314e+06] [-1.25295103e+06 -1.29826785e+07 6.83373342e+06 -5.94939934e+06 7.75982164e+06 4.88961687e+06 3.81461363e+06 -1.34574447e+07 -1.14559302e+06 -8.57184805e+06 7.11644381e+06 5.88507621e+06 -1.62325677e+06 -2.15050584e+06 5.80826306e+06 -1.66091554e+06 4.71899647e+06 -3.64206231e+06 -2.09603860e+06 7.03459521e+06 6.69908699e+06 4.40236661e+06 -5.57879307e+06 5.99998323e+06 5.71148526e+06 3.23252715e+06 -6.29038478e+06 4.87141220e+06 -6.28924151e+06 1.96813600e+06 6.67614289e+06 -1.54994258e+06 5.40286489e+06 5.50576221e+06 -4.98461985e+06 -4.78100016e+06] [-2.82169625e+06 -1.61514571e+07 7.00917634e+06 -8.11409295e+06 8.09860274e+06 4.96072022e+06 1.76635026e+06 -1.53503679e+07 -2.21628501e+06 -9.90429573e+06 7.09749885e+06 5.72464807e+06 -1.28509599e+06 -2.72371383e+06 5.77019374e+06 -2.20182857e+06 4.53269690e+06 -5.97854018e+06 -2.72141470e+06 7.23490851e+06 6.58109453e+06 3.39735675e+06 -5.10188692e+06 5.91706326e+06 5.54634733e+06 3.09699181e+06 -5.68609712e+06 4.77217494e+06 -7.78007276e+06 1.21024588e+06 6.83262284e+06 -1.87820372e+06 5.28757704e+06 5.39416736e+06 -4.00877558e+06 -3.87722268e+06] [-4.82638259e+06 -1.59975935e+07 5.07135250e+06 -1.24174618e+07 6.06893629e+06 3.13902871e+06 -2.13722127e+06 -1.43915930e+07 -4.70527866e+06 -9.03512711e+06 5.33636022e+06 3.48910200e+06 -7.48822935e+05 -2.77176625e+06 3.77112186e+06 -3.84651987e+06 2.64478151e+06 -1.24655155e+07 -2.60167675e+06 5.33414034e+06 4.44874827e+06 7.97708222e+05 -4.01843860e+06 3.64716310e+06 3.50158572e+06 2.00314158e+06 -3.91236827e+06 2.83622867e+06 -1.00690077e+07 -1.97296415e+06 4.87213106e+06 -2.74736424e+06 3.23538276e+06 3.07971764e+06 -2.96432408e+06 -2.30999469e+06] [-5.64563414e+06 -1.45646841e+07 2.62816036e+06 -1.55074676e+07 3.53052308e+06 1.00901726e+06 -3.29093091e+06 -1.13189542e+07 -5.79935927e+06 -7.82368028e+06 3.83766162e+06 1.89580300e+06 -8.17501518e+05 -3.20117578e+06 1.62530821e+06 -4.00124539e+06 6.15089289e+05 -1.57741778e+07 8.51733072e+05 2.98477307e+06 2.29677788e+06 6.22426995e+05 -2.45632415e+06 1.54304572e+06 1.73585902e+06 2.33509797e+06 -2.32212071e+06 1.07046834e+06 -1.06543301e+07 -1.60569531e+06 2.53080236e+06 -1.63260010e+06 1.46269922e+06 1.09896104e+06 -3.21779860e+06 -1.67975034e+06] [-6.11616208e+06 -1.36290376e+07 5.45106466e+05 -1.69504771e+07 1.43619684e+06 -5.82256535e+05 -2.27749811e+06 -8.48760252e+06 -6.42008291e+06 -6.68149682e+06 2.89073261e+06 1.12359664e+06 -2.71068879e+06 -4.73409849e+06 1.46248301e+05 -3.44083115e+06 -1.09062254e+06 -1.70634540e+07 3.74079580e+06 1.23221267e+06 9.28406213e+05 1.38133505e+06 -2.08928152e+06 -6.82968517e+04 7.63492469e+05 3.38287311e+06 -3.14080017e+06 -1.59931440e+05 -1.20948929e+07 -6.55039241e+05 6.66588295e+05 -5.51744504e+05 3.62183138e+05 -9.67376752e+04 -4.98481083e+06 -2.47555475e+06] [-6.36858930e+06 -1.29215600e+07 -1.03951044e+06 -1.80969229e+07 -1.39220359e+05 -1.82076531e+06 -3.49144614e+06 -8.71880385e+06 -7.35856995e+06 -6.56640756e+06 1.37690881e+06 -2.61504019e+05 -3.57495731e+06 -5.50201033e+06 -1.22646489e+06 -3.77395590e+06 -2.44363530e+06 -1.88188125e+07 3.75035730e+06 -1.92323298e+05 -4.68522465e+05 1.07012732e+06 -2.40327928e+06 -1.43216224e+06 -6.40418981e+05 2.71856816e+06 -3.66721080e+06 -1.33628885e+06 -1.54573345e+07 -1.87976749e+06 -7.79854059e+05 -2.05356740e+05 -7.44655062e+05 -1.32756418e+06 -5.56315289e+06 -3.08459953e+06] [-6.08534927e+06 -9.00447175e+06 -1.93299659e+06 -1.76088403e+07 -1.36273266e+06 -2.27863849e+06 -6.55846569e+06 -8.53231462e+06 -8.11569020e+06 -4.70164701e+06 4.00188946e+05 -1.28066641e+06 -3.40343555e+06 -5.31767953e+06 -2.08711664e+06 -4.50387351e+06 -2.94961276e+06 -1.96931804e+07 1.49191753e+06 -1.38413546e+06 -1.67974213e+06 -4.11775827e+05 -1.87375537e+06 -2.31068575e+06 -1.63007366e+06 2.63887871e+05 -3.13357788e+06 -2.02137293e+06 -1.75052551e+07 -5.01443891e+06 -1.78150700e+06 -9.57136954e+05 -1.44233718e+06 -2.07336371e+06 -4.79485562e+06 -1.97007784e+06] [-5.08510504e+06 -3.88918716e+06 -2.21042978e+06 -1.36881568e+07 -2.11958239e+06 -1.96298708e+06 -7.04960528e+06 -5.71571063e+06 -7.04416608e+06 -8.71857556e+05 4.57986845e+04 -1.61667565e+06 -2.13483741e+06 -2.99656844e+06 -2.08163534e+06 -3.41609599e+06 -2.29833645e+06 -1.65837666e+07 -6.85663837e+05 -1.75311076e+06 -2.03631891e+06 -9.61363151e+05 -1.06685087e+06 -2.13186161e+06 -2.00951162e+06 -5.02047430e+05 -1.56866719e+06 -1.84564812e+06 -1.44521671e+07 -5.80465096e+06 -2.06961907e+06 -1.07889174e+06 -1.59099034e+06 -2.04811231e+06 -3.72668304e+06 -8.81686434e+05] [-3.85376871e+06 2.95460063e+05 -3.40056050e+06 -8.28903001e+06 -3.47801770e+06 -2.89674854e+06 -5.33909257e+06 -1.24117873e+06 -4.94600927e+06 3.09402407e+05 -1.42821548e+06 -2.24538836e+06 -2.65948693e+06 -2.93765053e+06 -2.94285168e+06 -3.84987532e+06 -3.01501883e+06 -1.02034421e+07 -5.01412473e+05 -3.09110323e+06 -2.93457806e+06 -1.36843156e+06 -9.55421562e+05 -2.85580236e+06 -2.65668636e+06 -1.79137092e+06 -1.77080429e+06 -2.57547053e+06 -9.79573101e+06 -4.55654474e+06 -3.21269579e+06 -1.88359476e+06 -2.53890937e+06 -2.83607466e+06 -4.76282322e+06 -1.87747698e+06] [-1.96296828e+06 1.43607232e+06 -3.49360872e+06 -3.83548066e+06 -3.48738914e+06 -2.89249001e+06 -2.08732614e+06 4.41109245e+03 -2.69519307e+06 -4.84180671e+05 -1.75168198e+06 -2.13346813e+06 -3.17017066e+06 -3.10570136e+06 -3.09269352e+06 -3.85692494e+06 -2.97761517e+06 -4.24986637e+06 8.42115743e+05 -3.13052760e+06 -2.83877093e+06 -2.10627352e+05 -1.39990913e+06 -2.75043594e+06 -2.46383161e+06 -1.77813025e+06 -2.68968195e+06 -2.47798724e+06 -6.40371589e+06 -1.73867713e+06 -3.26516710e+06 -2.08904960e+06 -2.47391131e+06 -2.65019235e+06 -5.35256458e+06 -3.02118685e+06] [-1.84475660e+06 1.11866813e+06 -3.19273492e+06 -1.65921596e+06 -2.93612879e+06 -3.01757856e+06 -2.89919649e+05 7.18625698e+05 -2.17717548e+06 -3.05161253e+06 -1.97488016e+06 -1.92165764e+06 -3.30644907e+06 -4.02988104e+06 -3.05233655e+06 -5.09730932e+06 -3.18241675e+06 -1.93177006e+05 8.54406873e+05 -2.90679235e+06 -2.51374938e+06 -7.44448001e+05 -1.62574330e+06 -2.65545917e+06 -2.11177563e+06 -2.61883356e+06 -3.34102594e+06 -2.45879013e+06 -4.13458181e+06 -4.65407771e+05 -3.06062321e+06 -3.84440255e+06 -2.37919273e+06 -2.54566921e+06 -5.10225060e+06 -3.51035918e+06] [-1.24997130e+06 2.26166605e+06 -2.91146395e+06 -4.73085268e+05 -2.82586983e+06 -2.58625940e+06 -5.69649616e+05 2.46018621e+06 -1.46031698e+06 -2.34169316e+06 -2.10086255e+06 -1.70273054e+06 -2.33558292e+06 -2.88319679e+06 -2.64469882e+06 -4.41053058e+06 -2.67289961e+06 6.78839003e+05 1.02686943e+06 -2.68782572e+06 -2.24923571e+06 -1.31291417e+06 -8.15794272e+05 -2.37640881e+06 -1.82829862e+06 -2.59808313e+06 -2.05497179e+06 -2.08465930e+06 -1.91676369e+06 -1.19900125e+05 -2.76943353e+06 -3.14414532e+06 -2.06971517e+06 -2.22786146e+06 -3.55752179e+06 -2.44104498e+06] [-1.27551066e+06 2.40609240e+06 -2.39088224e+06 -5.03237196e+05 -2.33095171e+06 -2.20109114e+06 -8.95750734e+05 2.61734644e+06 -1.49633702e+06 -1.83395906e+06 -2.10540719e+06 -1.61737435e+06 -1.47454835e+06 -2.05420129e+06 -2.20045138e+06 -3.65474395e+06 -2.35257312e+06 3.39621759e+05 3.56559859e+05 -2.27250132e+06 -1.92045365e+06 -1.79080102e+06 -2.52545593e+05 -2.14793204e+06 -1.61511601e+06 -2.23055641e+06 -8.97907201e+05 -1.84016036e+06 -9.93941452e+05 -7.96932431e+05 -2.28877447e+06 -2.92239378e+06 -1.82959150e+06 -2.05232859e+06 -2.00742597e+06 -1.26565610e+06] [-1.04948429e+06 1.54901787e+06 -1.67985421e+06 -1.51624547e+05 -1.52211701e+06 -1.68041647e+06 -6.38167649e+04 1.88529239e+06 -1.12704380e+06 -2.05619381e+06 -1.70444810e+06 -1.16590537e+06 -1.34866336e+06 -1.80197492e+06 -1.62548521e+06 -2.74775368e+06 -1.84880708e+06 8.69527922e+05 4.33738592e+05 -1.60634961e+06 -1.32925820e+06 -1.34242341e+06 -2.44324201e+05 -1.62081606e+06 -1.09314163e+06 -1.75851849e+06 -8.94331264e+05 -1.39042672e+06 -1.32047449e+04 -3.13529853e+05 -1.59809772e+06 -2.10184471e+06 -1.31971979e+06 -1.53942685e+06 -1.37036372e+06 -9.31692656e+05] [-7.25938984e+05 5.96070754e+05 -8.21120815e+05 -2.12426842e+05 -7.12858379e+05 -9.02692424e+05 -8.09903212e+04 6.36651115e+05 -7.72719445e+05 -1.44193427e+06 -8.86726646e+05 -6.05776801e+05 -6.84198633e+05 -9.72184355e+05 -8.63511991e+05 -1.61099924e+06 -1.04051218e+06 2.80016074e+05 1.94834363e+04 -7.84189195e+05 -6.71465139e+05 -8.11495848e+05 -2.21161234e+05 -8.83915114e+05 -5.62525177e+05 -1.09777893e+06 -5.62185617e+05 -7.73368791e+05 -2.87662917e+05 -3.31761293e+05 -7.93487616e+05 -1.35382846e+06 -6.86563956e+05 -8.05190099e+05 -6.70973785e+05 -4.68630099e+05] [-4.39222743e+05 2.93749185e+05 -3.95450376e+05 -2.50998822e+05 -3.31299609e+05 -4.74967004e+05 -1.04408994e+05 -1.08522522e+05 -5.26385534e+05 -9.43056990e+05 -4.81386415e+05 -4.18398880e+05 -3.57721168e+05 -4.43850038e+05 -4.71621214e+05 -9.71414686e+05 -5.43816552e+05 -6.48238652e+04 -3.00344271e+05 -4.03384332e+05 -3.64907058e+05 -5.42376294e+05 -1.71728963e+05 -4.59585373e+05 -3.63101586e+05 -7.63441512e+05 -3.34905139e+05 -4.51684330e+05 -3.56946212e+05 -4.44809623e+05 -4.03462035e+05 -9.07182110e+05 -3.95313585e+05 -4.58629356e+05 -3.49152960e+05 -2.76547199e+05] [-6.85852099e+04 9.34747841e+04 -5.07403971e+04 2.57918296e+04 -1.58976069e+04 -9.92404416e+04 1.03734414e+05 -1.38104845e+05 -1.24386447e+05 -4.03933215e+05 -1.08726547e+05 -9.16805885e+04 -1.04339240e+05 -1.19405571e+05 -9.57134520e+04 -2.13926216e+05 -1.14388864e+05 1.69106037e+05 -7.99016305e+04 -5.93936593e+04 -4.96063822e+04 -1.09243588e+05 -3.63096805e+04 -7.56616070e+04 -6.90268147e+04 -2.51627935e+05 -9.95448423e+04 -9.99070759e+04 -5.45340225e+04 -4.22567782e+04 -6.52997727e+04 -1.99384789e+05 -7.32790388e+04 -9.58156295e+04 -5.87396201e+04 -4.91232337e+04] [ 2.46544799e+04 4.78460522e+04 4.92915726e+03 5.69557588e+04 5.56285625e+03 7.66020769e+03 5.43505465e+04 -3.80335272e+03 1.76503998e+04 7.89021301e+03 1.35022836e+04 1.54990485e+04 -3.04079065e+04 -3.61247751e+03 9.34544501e+03 2.51595372e+04 1.09645553e+04 6.68152608e+04 1.18011486e+04 5.51013981e+03 8.31798786e+03 2.61628915e+04 -6.77529299e+03 1.38563597e+04 1.17334991e+04 -1.01839069e+04 -2.87870629e+04 8.11452472e+03 3.98664565e+04 2.47105493e+04 6.23351925e+03 2.78644174e+04 1.16865873e+04 1.56524066e+04 -1.49383641e+04 -7.30125169e+03] [ 8.51568489e+03 9.03650387e+03 5.05140515e+03 7.55828731e+03 4.61569862e+03 5.08119968e+03 9.26419266e+03 6.83171514e+03 8.00855460e+03 1.10497414e+04 5.93097958e+03 5.12222663e+03 6.54142938e+03 9.79610266e+03 5.68388006e+03 1.40458444e+04 6.48010038e+03 6.24285116e+03 1.58442047e+04 4.81824326e+03 5.23028336e+03 1.02120523e+04 6.18049785e+03 6.46026208e+03 4.75167953e+03 9.12614679e+03 9.19434267e+03 4.64653125e+03 1.22704215e+04 7.39082447e+03 5.08835825e+03 1.31799837e+04 5.03103602e+03 5.91835942e+03 2.69091886e+03 6.96910207e+03] [ 9.57910758e-01 -1.85426791e-01 -3.23380262e-01 8.96759664e-02 4.79776772e-02 5.98782976e-02 -1.09582022e-01 -9.88936877e-01 -3.11595982e-01 2.77354084e-01 1.30092093e-01 -8.74141664e-02 -4.10013149e-02 -5.91150792e-01 -6.89055203e-01 -7.21222995e-01 2.81324516e-01 -2.04106391e-01 7.07519922e-03 -2.62977452e-01 -2.20824527e-02 5.85191872e-01 -5.94225899e-01 -1.80169309e-01 -8.19618518e-01 -7.41645742e-02 5.24353613e-01 -6.36286666e-01 -1.03850531e-01 -4.82264824e-01 -8.58920772e-01 -2.55656381e-01 6.92340341e-01 4.66885585e-01 -3.23755840e-01 2.88576202e-01] [-9.21549655e-01 3.77198659e-01 -2.48568527e-01 -6.76090610e-01 6.45809848e-01 6.29723274e-01 -8.93211261e-01 -8.84545159e-01 9.68086467e-01 2.36628935e-01 -3.63315972e-01 -1.09617170e-01 -2.06505055e-01 9.71908705e-01 8.17480647e-01 3.97737740e-01 -1.74448376e-01 -9.92870885e-01 -8.00057176e-01 5.68292231e-01 6.29165784e-01 8.54250672e-01 6.09705448e-01 9.54822319e-01 -3.05893025e-01 -8.94045137e-01 -7.33603337e-01 -9.83577874e-01 8.85916608e-01 9.08655683e-01 -2.18104214e-02 2.57108793e-01 5.44981980e-01 -7.66689773e-01 -9.31657220e-01 1.17968581e-01] [ 7.60856452e-01 7.12945521e-02 -6.23009910e-02 -8.07545462e-01 9.99514724e-01 5.83534787e-01 6.52534477e-02 5.48111678e-01 6.90686802e-01 1.10192030e-01 -7.00244224e-01 5.44289221e-01 -3.26118202e-01 -4.36358060e-01 1.19851265e-02 8.22342512e-01 5.41613386e-01 5.77196762e-01 5.06538848e-01 5.36204359e-01 6.07377265e-01 4.57107185e-01 1.60930106e-01 2.34244584e-02 6.06279990e-01 1.87259113e-01 -6.09848458e-01 -1.01819074e-01 -7.28232914e-01 -2.46244005e-01 -6.99503700e-01 3.67485565e-01 -9.46288633e-01 9.39727534e-02 -1.12655869e-01 -8.86893228e-01] [ 7.24800850e-01 3.83507421e-01 -4.20755227e-01 8.59182235e-01 1.98656659e-01 6.41695060e-01 -9.62343754e-01 -4.26055907e-01 -3.13178571e-01 -7.61424054e-01 3.51198954e-01 -4.45193143e-01 3.08523220e-01 8.64046913e-01 1.83576657e-01 -2.60299779e-01 -5.37692498e-01 3.55415676e-01 1.43841829e-01 5.34757309e-01 6.94260509e-01 4.24257293e-01 -1.02887764e-01 -8.19595346e-01 -7.90694018e-01 -4.63979809e-01 6.86335047e-01 3.41931746e-01 7.88448034e-01 -8.90622347e-03 -1.52624540e-01 1.09720611e-01 -7.81424717e-01 -6.61513494e-01 -3.03312242e-01 -5.36370264e-02] [-1.94307698e+05 -3.93260742e+05 1.22470391e+05 -3.45258816e+05 1.36671985e+05 7.45608815e+04 -3.94458315e+04 -3.17116256e+05 -1.82918524e+05 -2.68334969e+05 7.84284044e+04 5.07941785e+04 6.83500012e+04 1.95673487e+04 7.99060251e+04 -1.89154774e+05 4.01231356e+04 -3.42870044e+05 -1.91674062e+05 1.36551108e+05 1.22045440e+05 -2.35093638e+04 -1.74439319e+05 5.13183409e+04 7.99367081e+04 4.46153868e+04 -1.03990693e+05 6.36046567e+04 -2.28504679e+05 -1.10841823e+05 1.13301144e+05 -1.63569654e+05 6.93475054e+04 3.96577195e+04 -5.96318073e+04 -1.10517243e+05] [-5.33905230e+05 -1.20482028e+06 2.72199782e+05 -7.16176309e+05 3.25279616e+05 1.01717428e+05 8.52454139e+04 -8.24215998e+05 -4.09366671e+05 -9.17111956e+05 1.78334515e+05 1.37262046e+05 1.62454215e+04 -1.35176988e+05 1.75850478e+05 -5.03646813e+05 2.60196723e+04 -5.50609230e+05 -5.94582293e+05 3.17662686e+05 3.10829544e+05 -5.76945038e+04 -5.51181939e+05 1.12280066e+05 1.88411273e+05 1.17442736e+05 -4.39130729e+05 9.16267927e+04 -5.63192371e+05 -1.54566867e+05 2.49375956e+05 -5.74024212e+05 1.37052786e+05 9.12640900e+04 -2.61453772e+05 -4.13643604e+05] [-8.74869865e+05 -2.58906872e+06 4.55983505e+05 -1.15416429e+06 6.24240959e+05 7.12923834e+04 2.32371055e+05 -2.12535588e+06 -6.88111089e+05 -2.09882681e+06 2.80400596e+05 2.08555800e+05 -3.00903942e+05 -6.64620370e+05 2.42371908e+05 -9.08352498e+05 -6.92376469e+04 -5.55033569e+05 -1.15910212e+06 5.22338293e+05 5.02479668e+05 8.32159539e+04 -1.22381767e+06 1.71877801e+05 2.78290473e+05 8.05190529e+04 -1.18789190e+06 7.24716927e+04 -1.36386004e+06 7.11144611e+03 3.96974482e+05 -1.07449278e+06 1.82192287e+05 1.33533400e+05 -7.35297756e+05 -9.89146320e+05] [-1.17495151e+06 -4.54857551e+06 8.08823797e+05 -1.64566404e+06 1.15512513e+06 1.17076096e+05 5.32271526e+05 -4.88229795e+06 -9.95454988e+05 -4.03943717e+06 6.13946160e+05 3.88517078e+05 -9.39886688e+05 -1.48598600e+06 3.77474582e+05 -1.46558881e+06 -2.58941215e+03 -2.81918993e+05 -2.06120639e+06 8.80580457e+05 8.62987390e+05 5.03381188e+05 -2.35541616e+06 4.41254345e+05 4.21213578e+05 -5.65630898e+03 -2.42639156e+06 8.23873586e+04 -2.99833152e+06 4.58160177e+05 6.51307541e+05 -1.74289534e+06 2.98205096e+05 3.65477078e+05 -1.59548278e+06 -1.90326175e+06] [-2.09730054e+06 -6.07585842e+06 7.94733920e+05 -3.95437814e+06 1.24745430e+06 -1.15353065e+05 -8.72639974e+05 -7.57487971e+06 -2.32004334e+06 -5.48173284e+06 6.26400656e+05 3.07752494e+04 -1.04926598e+06 -1.72039717e+06 1.30468659e+05 -2.97854954e+06 -2.21855779e+05 -2.91036839e+06 -2.92158946e+06 8.30943030e+05 6.74866246e+05 -1.46723210e+05 -2.91312400e+06 2.67429758e+05 8.71798137e+04 -6.10744865e+05 -2.81306372e+06 -2.23491839e+05 -5.53579229e+06 -1.00699217e+06 5.87156954e+05 -2.74487355e+06 1.87575354e+04 5.92697174e+04 -1.64305700e+06 -1.84554332e+06] [-2.70432650e+06 -6.95792016e+06 8.73564582e+05 -6.34841698e+06 1.43530154e+06 -1.93954835e+05 -1.84285448e+06 -8.39041726e+06 -3.42752034e+06 -5.65312181e+06 8.65399632e+05 -2.51786285e+04 -5.98387161e+05 -1.67205645e+06 4.94396235e+04 -3.42791056e+06 -4.38531405e+05 -5.83003709e+06 -2.62956149e+06 9.50412462e+05 6.40382969e+05 -6.28962053e+05 -2.30281009e+06 6.99524335e+04 5.37974599e+04 -4.42556150e+05 -2.21346427e+06 -3.20443556e+05 -6.90662925e+06 -2.16041245e+06 6.77792815e+05 -2.59789300e+06 -2.09967271e+04 -1.53320160e+05 -5.24442562e+05 -5.26749636e+05] [-3.24291517e+06 -8.11784284e+06 8.70327578e+05 -7.76764189e+06 1.59944924e+06 -3.18382212e+05 -3.29479842e+06 -9.50419327e+06 -4.34105917e+06 -6.13585873e+06 6.50948460e+05 -2.56326753e+05 -3.25127316e+05 -2.06259690e+06 -1.34278813e+05 -3.99232249e+06 -7.13761706e+05 -7.44535883e+06 -2.58898404e+06 8.80763598e+05 3.62788750e+05 -1.42246577e+06 -1.52023141e+06 -2.05688880e+05 -1.03842835e+05 -7.97129174e+05 -1.74064184e+06 -4.91011748e+05 -8.61649726e+06 -3.18430723e+06 6.65392486e+05 -2.86894093e+06 -1.70843448e+05 -4.49464619e+05 1.05838234e+06 9.41224276e+05] [-3.92601433e+06 -7.47437694e+06 -2.65878824e+05 -9.36550799e+06 3.28161316e+05 -1.35147539e+06 -6.71586039e+06 -9.91272689e+06 -5.36390983e+06 -5.71377268e+06 -3.90688503e+05 -1.48357418e+06 3.21722399e+05 -1.69063724e+06 -1.39885344e+06 -5.58873113e+06 -1.52584819e+06 -1.03150790e+07 -2.79942281e+06 -3.86056137e+05 -1.04225313e+06 -3.06873843e+06 -4.87184509e+05 -1.26184533e+06 -1.42378996e+06 -1.94974743e+06 -2.56644154e+05 -1.61614174e+06 -1.07883743e+07 -5.33668680e+06 -5.31291726e+05 -3.65732176e+06 -1.43032876e+06 -1.66054282e+06 2.74860378e+06 2.44468845e+06] [-4.33292075e+06 -6.36187652e+06 -2.12342706e+06 -1.00058197e+07 -1.56707684e+06 -3.02412214e+06 -5.98694463e+06 -8.42595449e+06 -5.72268032e+06 -5.32564259e+06 -1.49850560e+06 -2.64165034e+06 -9.60827855e+05 -2.55483935e+06 -2.95710203e+06 -5.44525263e+06 -2.93675612e+06 -1.05943463e+07 -8.64196930e+05 -2.08373518e+06 -2.48249092e+06 -2.82992898e+06 -5.73737884e+05 -2.60762110e+06 -2.84868393e+06 -1.90498128e+06 -6.84076751e+05 -2.98253379e+06 -1.06262886e+07 -3.59309006e+06 -2.31124173e+06 -3.03102541e+06 -2.81688325e+06 -2.92624521e+06 8.14182430e+05 1.21500074e+06] [-4.28498712e+06 -5.93566721e+06 -2.96568795e+06 -1.04333591e+07 -2.29036414e+06 -3.58423484e+06 -3.17294089e+06 -8.30693950e+06 -5.78089369e+06 -5.51661988e+06 -1.73145801e+06 -2.95103830e+06 -3.05703507e+06 -3.72744518e+06 -3.55215611e+06 -4.70740533e+06 -3.63419883e+06 -1.06251474e+07 9.78273174e+05 -2.60335688e+06 -2.91055359e+06 -1.03296543e+06 -1.65872822e+06 -3.10708382e+06 -3.25449416e+06 -1.12125054e+06 -2.76464175e+06 -3.42721867e+06 -1.12513935e+07 -2.04772045e+06 -2.99120452e+06 -1.61742614e+06 -3.15593232e+06 -3.21568699e+06 -1.64998241e+06 -6.83046783e+05] [-2.87050066e+06 -4.60512777e+06 -3.23339793e+06 -9.61147699e+06 -2.68198225e+06 -3.39657198e+06 -1.73372438e+06 -8.40892885e+06 -4.56945829e+06 -3.70532373e+06 -1.84525642e+06 -2.97277409e+06 -3.45488966e+06 -3.19138567e+06 -3.63380287e+06 -2.13299620e+06 -3.34684941e+06 -1.04461060e+07 2.00266560e+06 -2.73104839e+06 -3.14472269e+06 9.94514697e+05 -1.75111210e+06 -2.90932344e+06 -3.47642985e+06 -7.95951942e+05 -2.99192907e+06 -3.27796925e+06 -1.12675727e+07 -8.60225576e+05 -3.13767693e+06 1.35514988e+06 -3.12177058e+06 -2.91577751e+06 -1.86974894e+06 -1.21684948e+06] [-3.03500983e+06 -7.80260218e+05 -4.28098672e+06 -9.50011939e+06 -4.06257339e+06 -3.90890320e+06 -3.43380849e+06 -5.98664428e+06 -5.17826656e+06 -1.34554066e+06 -2.87490929e+06 -4.11604498e+06 -3.16213580e+06 -2.79769574e+06 -4.40872458e+06 -1.59342288e+06 -3.93828161e+06 -1.13414663e+07 1.45521545e+06 -3.92587905e+06 -4.30143198e+06 -3.57279189e+05 -5.49718302e+05 -3.90666772e+06 -4.42578950e+06 -1.90808363e+06 -1.59087586e+06 -3.93506613e+06 -1.04490247e+07 -3.04719606e+06 -4.22470241e+06 1.56270980e+06 -3.87192792e+06 -3.84861195e+06 -1.26840972e+06 7.06269979e+04] [-2.83353652e+06 2.47190701e+06 -4.33656989e+06 -7.09415636e+06 -4.47661984e+06 -3.51226098e+06 -4.57741280e+06 -3.24054527e+06 -4.61546964e+06 1.40569246e+06 -2.92559445e+06 -4.30384986e+06 -1.84804830e+06 -1.00103297e+06 -4.29207130e+06 -1.82506941e+06 -3.52082943e+06 -9.79126746e+06 -3.40216947e+05 -4.07009815e+06 -4.48186843e+06 -1.73299940e+06 5.64054025e+05 -3.91098034e+06 -4.49542344e+06 -2.39423937e+06 1.16334261e+04 -3.73329441e+06 -7.78725550e+06 -4.46096212e+06 -4.26746418e+06 8.32007906e+05 -3.87913996e+06 -3.88360759e+06 1.07622795e+05 1.54729952e+06] [-2.87438223e+06 2.79951318e+06 -5.05157884e+06 -4.00492132e+06 -5.11169745e+06 -4.43912963e+06 -3.86918788e+06 -3.72349703e+05 -3.69877097e+06 3.91321331e+05 -4.08307591e+06 -4.49992540e+06 -2.36732306e+06 -2.13271754e+06 -4.89958880e+06 -3.62154783e+06 -4.55362787e+06 -5.43627507e+06 -6.26760655e+05 -4.85486938e+06 -4.91391522e+06 -2.88330535e+06 1.84649819e+05 -4.71720984e+06 -4.68562205e+06 -3.34233509e+06 -7.76042567e+05 -4.38227524e+06 -5.25150187e+06 -3.58039147e+06 -4.92457117e+06 -1.24124019e+06 -4.51658167e+06 -4.59486933e+06 -8.57136273e+05 3.67435065e+05] [-2.84458795e+06 1.64840024e+06 -4.76750663e+06 -2.34980696e+06 -4.66599232e+06 -4.36990172e+06 -2.83906971e+06 1.19485388e+06 -2.91565206e+06 -1.74562373e+06 -4.44959416e+06 -4.31711671e+06 -2.02948293e+06 -2.34701796e+06 -4.81257797e+06 -5.63373331e+06 -4.69156112e+06 -2.46730597e+06 -1.15841455e+06 -4.49902546e+06 -4.45447568e+06 -3.54683145e+06 -1.55928773e+05 -4.58438061e+06 -4.22336524e+06 -3.57272162e+06 -1.05742601e+06 -4.22256423e+06 -3.21238436e+06 -2.76494370e+06 -4.65444533e+06 -3.71883958e+06 -4.35782452e+06 -4.57694372e+06 -8.23427654e+05 -3.51374424e+05] [-3.07701904e+06 2.34138231e+05 -4.22305886e+06 -1.78850296e+06 -4.01404113e+06 -4.14771601e+06 -2.64272148e+06 2.00596907e+06 -2.63163510e+06 -3.11739933e+06 -4.27299604e+06 -3.83087043e+06 -1.71255282e+06 -2.56008016e+06 -4.42955327e+06 -6.28245733e+06 -4.49479816e+06 -8.52381132e+05 -1.55644896e+06 -3.99240839e+06 -3.87805535e+06 -4.13854847e+06 -5.39628352e+05 -4.24526214e+06 -3.61980149e+06 -3.59976415e+06 -1.24395187e+06 -3.90536086e+06 -1.85871939e+06 -2.27651913e+06 -4.14662822e+06 -5.25659135e+06 -4.00717467e+06 -4.33948457e+06 -1.06147348e+06 -9.97492718e+05] [-1.77670257e+06 1.38207503e+06 -2.94433741e+06 -3.66336104e+05 -2.84938367e+06 -2.78615464e+06 -1.90537888e+06 3.32774248e+06 -1.40955619e+06 -1.55480955e+06 -2.93929052e+06 -2.30936754e+06 -9.92174360e+05 -1.75624386e+06 -2.91047349e+06 -4.46906145e+06 -3.02070818e+06 2.07648981e+05 -3.59669267e+05 -2.78113632e+06 -2.59355754e+06 -2.72398987e+06 6.42706980e+04 -2.83167321e+06 -2.23399535e+06 -2.38121630e+06 -4.43784110e+05 -2.48758173e+06 -7.59119501e+05 -1.07145326e+06 -2.83179413e+06 -3.60611429e+06 -2.59190321e+06 -2.84787690e+06 -9.01314057e+05 -7.25470198e+05] [-1.50353077e+06 1.55706785e+06 -2.08785107e+06 -5.70124282e+05 -2.01799959e+06 -1.98734101e+06 -1.60973055e+06 3.34079976e+06 -1.30276395e+06 -1.24238113e+06 -2.10961093e+06 -1.62986551e+06 -2.08749690e+05 -1.03056093e+06 -2.09057022e+06 -3.61847554e+06 -2.21555345e+06 -2.48760001e+04 -4.37873572e+05 -1.95669038e+06 -1.77176951e+06 -2.36705659e+06 4.33316429e+05 -2.05932326e+06 -1.56258013e+06 -1.76191885e+06 4.14083230e+05 -1.77223474e+06 -1.19354519e+05 -1.04752703e+06 -2.01558485e+06 -3.23625888e+06 -1.83165429e+06 -2.10925464e+06 -3.68989819e+05 -2.32837447e+05] [-1.31786496e+06 1.06041558e+06 -1.34631759e+06 -7.74168879e+05 -1.29510037e+06 -1.36636883e+06 -1.41508119e+06 2.25542507e+06 -1.30389575e+06 -1.11078333e+06 -1.47793029e+06 -1.25633517e+06 2.04379453e+05 -4.50232703e+05 -1.48019078e+06 -2.71757349e+06 -1.54004918e+06 -4.80081536e+05 -6.50106214e+05 -1.26026949e+06 -1.17226669e+06 -2.15229804e+06 5.16513212e+05 -1.46689260e+06 -1.11812849e+06 -1.37656069e+06 7.12983857e+05 -1.27478686e+06 -1.30181227e+05 -1.22162878e+06 -1.33153158e+06 -2.67597044e+06 -1.30119106e+06 -1.54491636e+06 1.87180784e+05 2.65668400e+05] [-8.51709512e+05 4.55065559e+05 -6.43399019e+05 -5.30172482e+05 -6.27265155e+05 -6.80438857e+05 -8.11418690e+05 8.99509451e+05 -8.07659426e+05 -6.00320658e+05 -7.17046410e+05 -6.64962997e+05 1.69023975e+05 -1.13756979e+05 -7.40534067e+05 -1.49148444e+06 -7.94002029e+05 -5.05016950e+05 -6.22625735e+05 -5.85921180e+05 -5.83018282e+05 -1.15989075e+06 1.80645366e+05 -7.68326607e+05 -5.70661743e+05 -7.05942326e+05 3.29053030e+05 -6.59404515e+05 -3.09070954e+05 -8.65930125e+05 -6.41389678e+05 -1.57447188e+06 -6.53569735e+05 -7.59237780e+05 1.59288801e+05 1.66149044e+05] [-3.90327505e+05 2.41963312e+05 -2.91520230e+05 -7.47374723e+04 -2.74488934e+05 -3.19534475e+05 -1.66373392e+05 1.15928302e+05 -3.51061720e+05 -4.49493039e+05 -3.73992517e+05 -3.50557552e+05 -6.22072859e+04 -8.54009992e+04 -3.62001796e+05 -7.27226902e+05 -3.77481776e+05 -4.88107907e+04 -4.83047536e+05 -2.67395154e+05 -2.78926209e+05 -5.06372838e+05 -5.39038540e+04 -3.59556951e+05 -2.97217772e+05 -4.63015782e+05 -4.33991891e+04 -3.35145034e+05 -1.51103352e+05 -4.02143993e+05 -2.97367969e+05 -7.53702366e+05 -3.20232492e+05 -3.54640308e+05 2.24682118e+04 -3.16120214e+04] [-2.47505736e+04 1.79273540e+05 -2.49591696e+04 9.75069809e+04 6.55338689e+03 -7.39149339e+04 1.47977348e+05 -1.77719737e+05 -8.17427090e+04 -3.70589629e+05 -7.93315605e+04 -7.94354792e+04 -1.08231324e+05 -1.06192423e+05 -7.98001061e+04 -1.54411468e+05 -8.47080858e+04 2.58179625e+05 -9.06912948e+04 -3.46912679e+04 -3.12317657e+04 -8.28893382e+04 -3.31255250e+04 -4.86777562e+04 -5.88120107e+04 -2.65769923e+05 -9.48184825e+04 -8.51908140e+04 -4.81935251e+04 -3.10941178e+04 -4.48011697e+04 -1.83645383e+05 -5.95693363e+04 -6.69959444e+04 -4.50060383e+04 -4.17644494e+04] [ 5.92504284e+03 1.77568695e+04 3.11149384e+03 2.24404429e+04 3.04918591e+03 3.62448320e+03 2.84583161e+04 -8.21304292e+03 2.55323771e+03 5.86539750e+03 8.55370870e+03 8.30115601e+03 -1.79369589e+04 -7.71481194e+03 6.67884314e+03 1.72394981e+04 5.91074152e+03 2.88999838e+04 6.21431289e+02 3.91580371e+03 5.58796424e+03 1.33085245e+04 -6.94307306e+03 6.89566178e+03 6.52969839e+03 -3.64170746e+03 -1.81683869e+04 4.66122459e+03 1.39731121e+04 1.04383190e+04 3.97315595e+03 1.65044209e+04 6.40984678e+03 7.89358027e+03 -1.34589317e+04 -8.60323468e+03] [ 8.87903506e-01 1.95819522e-01 -6.03208784e-01 6.26664178e-01 3.32486207e-01 -8.68560578e-01 -4.24811501e-01 7.88604758e-01 -1.58168660e-01 -6.37620032e-01 -1.04113531e-02 9.91399995e-01 9.02491486e-01 9.16234061e-01 5.78492243e-01 -5.51587575e-01 -4.19003114e-01 -2.87243662e-01 1.92200377e-01 -3.70488828e-01 9.33380931e-01 -3.82793268e-01 4.92226414e-01 -8.69945696e-01 8.86811901e-01 5.90128645e-01 6.97344967e-01 -8.23763192e-01 -4.77942764e-02 -9.45896280e-01 -1.79267685e-01 1.85576527e-01 7.68648410e-02 -3.12145381e-01 -7.86275607e-01 2.12717285e-01] [-7.27224968e-01 2.11090189e-01 3.94870382e-01 8.32043566e-02 -2.24572796e-01 6.02355693e-01 3.92649882e-01 8.90571306e-01 -2.15472380e-01 -2.15616681e-01 1.79619927e-02 6.38756011e-01 -8.51916509e-01 7.56943373e-01 -8.18411845e-01 8.97331147e-01 1.68493721e-01 1.53551410e-01 -2.13256861e-02 -3.24260805e-01 3.03348281e-01 3.29876651e-01 -3.61722237e-01 3.78044924e-01 -7.99278972e-02 -6.77885916e-01 -9.47830384e-01 -4.88957130e-02 -6.85445832e-01 1.65646905e-01 -5.92542664e-01 9.29626635e-01 -8.01197111e-01 -8.71901104e-01 5.47148146e-01 5.27624537e-01] [-4.09023746e-01 -2.63333674e-02 -1.05682566e-01 2.89187787e-01 -2.57997445e-01 -7.14498757e-01 2.41900528e-01 5.33251081e-01 -6.53472975e-02 -5.35879905e-01 -1.01515849e-01 4.55825958e-01 -9.16233120e-01 4.22750410e-01 -7.71142673e-01 -8.99058374e-01 1.41579203e-01 8.88210515e-01 -2.88283435e-01 6.95513190e-01 -4.95486065e-02 2.57005794e-01 -5.64592459e-01 -7.32775384e-01 -7.54086324e-01 -8.88382911e-01 -5.45901057e-01 -9.55838485e-01 1.74524939e-01 -5.15427616e-02 -6.39279088e-01 -8.46241127e-01 1.07023886e-01 -6.40317981e-02 8.11122501e-01 -1.55799393e-01] [-5.82680369e-01 -8.52003414e-01 -2.62355247e-01 5.90519617e-01 4.88683921e-01 8.42915955e-01 -6.14274006e-01 5.38636669e-02 -9.19421672e-01 -7.00023346e-01 -8.54653972e-01 9.46525832e-01 9.37219236e-01 -1.38126102e-01 2.07546961e-01 2.30911511e-01 7.87354101e-01 5.40316601e-01 6.31215250e-01 -6.82840556e-01 9.33888932e-02 -4.20955261e-01 -2.56207620e-01 1.97904282e-01 -7.86917702e-01 5.86074180e-01 -9.24300716e-01 2.57807193e-01 -8.09751329e-01 9.47221733e-01 9.22163087e-02 2.72940567e-01 -3.00609555e-01 5.83725498e-02 1.81458025e-01 3.66812941e-01] [ 5.65031623e-01 -7.74616330e-01 5.31140104e-01 9.81613761e-01 -5.69809366e-02 -7.27874315e-01 2.04819708e-01 -1.30370787e-01 -7.16970002e-01 4.78386781e-01 -6.98476874e-01 4.57237953e-01 -5.98062170e-01 -6.08092786e-01 9.42996208e-01 -5.80756933e-01 -9.38109741e-01 -2.44663309e-02 -6.14239727e-02 -4.08720398e-01 9.92624025e-01 -7.55997065e-01 6.62274455e-01 1.02096459e-01 9.69599446e-02 7.72500444e-01 -4.46747850e-01 -8.41062494e-01 3.14440413e-01 -5.20615243e-01 -7.34041895e-01 -6.31370832e-01 -1.80830282e-01 -1.75608175e-01 -9.21011439e-01 5.24847057e-01] [-2.32418186e+04 -7.50133721e+03 2.25576420e+03 -5.19507625e+04 1.14561293e-01 3.13051459e+02 -3.23011575e+04 2.80980234e+04 -1.90944436e+04 1.11565310e+04 -9.59705429e+02 -2.82441044e+03 3.58814907e+04 2.65861542e+04 -1.92609247e+02 -2.78358432e+04 1.71853531e+03 -7.32885485e+04 -3.97354077e+02 5.02450524e+02 -2.26018400e+03 -1.56730558e+04 1.43830778e+04 -2.03276146e+03 7.92941088e+01 4.18185368e+02 3.43465608e+04 3.07762417e+03 -5.92131273e+03 -2.87655108e+04 5.25413458e+02 -2.18629546e+04 -2.04563403e+03 -5.72504798e+03 1.85057319e+04 1.57832893e+04] [-1.91829330e+05 -1.97071062e+05 2.93619422e+04 -3.04351957e+05 2.88930647e+04 -9.02859612e+03 -1.70224972e+05 2.12379667e+04 -1.42709326e+05 -1.27286505e+05 -5.19874429e+03 -1.75535135e+04 1.78210168e+05 9.87333962e+04 -5.88468775e+03 -2.43565410e+05 -7.52611631e+03 -3.62659827e+05 -1.07770906e+05 2.50068541e+04 9.34424179e+03 -1.00659834e+05 1.05300435e+04 -1.14762380e+04 2.61302143e+03 -2.11199461e+04 1.19705445e+05 -1.09217866e+03 -1.07040933e+05 -1.45340091e+05 1.34873447e+04 -2.11946246e+05 -1.85480304e+04 -3.51096609e+04 8.86103319e+04 4.40014069e+04] [-5.96000654e+05 -1.25653157e+06 -1.12380365e+05 -5.04674840e+05 -3.14887169e+04 -3.00124205e+05 -1.96967185e+05 -9.16887826e+05 -4.11420690e+05 -1.17702061e+06 -1.98933585e+05 -2.48504781e+05 -1.07047520e+05 -3.48610984e+05 -2.58967133e+05 -7.90323524e+05 -3.21065994e+05 -1.41755551e+05 -8.14491662e+05 -8.51815727e+04 -1.09678709e+05 -2.76485553e+05 -4.53741228e+05 -2.41994338e+05 -2.04534176e+05 -2.39472287e+05 -3.96359378e+05 -2.93154588e+05 -7.13676573e+05 -6.76010541e+04 -1.71830534e+05 -8.35311325e+05 -2.76379252e+05 -2.77419111e+05 -1.12641500e+05 -2.93064144e+05] [-9.07766553e+05 -2.24407933e+06 -2.34617173e+05 -1.00239135e+06 -8.26810024e+04 -5.59939378e+05 -4.25460456e+05 -2.29261675e+06 -8.61715617e+05 -2.15610259e+06 -3.65485885e+05 -5.20393970e+05 -4.63277009e+05 -8.67920962e+05 -4.69903072e+05 -1.06949220e+06 -6.13734175e+05 -3.95800177e+05 -1.27562635e+06 -2.45140204e+05 -2.84958189e+05 -5.26558266e+05 -8.47211493e+05 -4.74629801e+05 -4.78672962e+05 -4.21161834e+05 -8.68395759e+05 -5.98345819e+05 -1.59545096e+06 -2.09340933e+05 -3.42553503e+05 -1.05271796e+06 -5.21523950e+05 -4.97912476e+05 -3.09191311e+05 -5.03046576e+05] [-1.82917852e+06 -3.20502178e+06 -1.06704118e+06 -2.30549176e+06 -8.65254118e+05 -1.46795080e+06 -1.81780258e+06 -3.73128967e+06 -2.03203708e+06 -3.12909692e+06 -1.35806205e+06 -1.64657737e+06 -7.19212918e+05 -1.31859121e+06 -1.42350963e+06 -1.92167168e+06 -1.58739756e+06 -1.87992219e+06 -2.20392514e+06 -1.11728857e+06 -1.25563964e+06 -1.93847498e+06 -9.96318858e+05 -1.47654922e+06 -1.53858088e+06 -1.41606136e+06 -9.30572857e+05 -1.62211071e+06 -3.01078002e+06 -1.70850382e+06 -1.19872984e+06 -1.73908516e+06 -1.50744919e+06 -1.54231199e+06 4.02820466e+05 2.64566647e+04] [-2.92168255e+06 -4.12642879e+06 -2.30398826e+06 -4.03843356e+06 -2.01321465e+06 -2.80012484e+06 -3.76568584e+06 -5.29540393e+06 -3.60252152e+06 -4.33570404e+06 -2.95227388e+06 -3.39501714e+06 -6.34195680e+05 -1.49454909e+06 -2.93958039e+06 -2.90130994e+06 -2.98922672e+06 -4.04837638e+06 -2.83992913e+06 -2.42005286e+06 -2.77117363e+06 -3.70214040e+06 -5.70476273e+05 -2.95044816e+06 -3.17919223e+06 -2.83319587e+06 -3.12287301e+05 -3.13677308e+06 -4.67125253e+06 -3.58027844e+06 -2.50033030e+06 -2.22885103e+06 -2.98856734e+06 -3.06619364e+06 2.09934722e+06 1.41984605e+06] [-4.11690151e+06 -4.63882666e+06 -3.81910498e+06 -5.40658030e+06 -3.47374453e+06 -4.36157428e+06 -6.20866590e+06 -5.61531101e+06 -5.09053437e+06 -5.32445758e+06 -5.00783422e+06 -5.39168655e+06 -4.28078756e+05 -1.51539374e+06 -4.77066999e+06 -4.63181566e+06 -4.58240758e+06 -5.81649023e+06 -3.54870561e+06 -4.00259510e+06 -4.56272999e+06 -5.91810237e+06 -3.55180018e+04 -4.67565328e+06 -5.02114288e+06 -4.57957037e+06 5.17432873e+05 -4.87708699e+06 -5.43622213e+06 -5.66207519e+06 -4.09458472e+06 -3.38258507e+06 -4.74632319e+06 -4.90955167e+06 3.82451747e+06 2.77242996e+06] [-4.92989153e+06 -4.75006875e+06 -5.14467747e+06 -6.00633991e+06 -4.78451261e+06 -5.68249818e+06 -7.59961424e+06 -5.70010815e+06 -5.86781841e+06 -6.02646519e+06 -6.41706980e+06 -6.67542930e+06 -7.74866907e+05 -1.88115905e+06 -6.18191709e+06 -6.17703696e+06 -5.82323214e+06 -6.44887564e+06 -4.11425854e+06 -5.33040758e+06 -5.89911987e+06 -7.29416987e+06 9.84283035e+04 -5.93707555e+06 -6.37507142e+06 -5.48889283e+06 5.74245865e+05 -6.22602154e+06 -6.06102322e+06 -6.40409541e+06 -5.42026789e+06 -4.36751999e+06 -6.13497951e+06 -6.26155788e+06 4.34776183e+06 3.03729921e+06] [-4.94977321e+06 -4.89678459e+06 -5.68203953e+06 -5.55457285e+06 -5.24610274e+06 -6.24278072e+06 -7.57304214e+06 -6.32293881e+06 -5.67271155e+06 -7.23921951e+06 -7.08552891e+06 -7.35330285e+06 -8.39539246e+05 -1.77617568e+06 -7.00389196e+06 -7.36788586e+06 -6.29874875e+06 -5.66289753e+06 -4.23150772e+06 -5.88411961e+06 -6.54888361e+06 -7.59988624e+06 1.05080817e+05 -6.43609118e+06 -7.10897917e+06 -6.09852815e+06 5.38960967e+05 -6.80222166e+06 -5.95872481e+06 -5.85214535e+06 -5.98081324e+06 -5.28608513e+06 -6.85929344e+06 -6.89996591e+06 4.56556200e+06 2.76089150e+06] [-4.76799422e+06 -5.66320381e+06 -5.25814763e+06 -6.05629555e+06 -4.81270426e+06 -5.68109011e+06 -6.74464886e+06 -7.65213164e+06 -5.43007334e+06 -7.85090869e+06 -6.54530439e+06 -7.01469554e+06 -9.44842589e+05 -1.54201386e+06 -6.68006294e+06 -7.11003616e+06 -5.82443130e+06 -6.27455308e+06 -4.58224847e+06 -5.32935346e+06 -6.15104829e+06 -6.64539935e+06 -6.09315398e+05 -5.95526506e+06 -6.85555524e+06 -5.77837463e+06 -1.60489005e+05 -6.35567716e+06 -6.51237772e+06 -5.28930525e+06 -5.51506712e+06 -5.05850118e+06 -6.50685528e+06 -6.39427379e+06 3.93131669e+06 1.74406544e+06] [-4.21265112e+06 -5.21566426e+06 -4.97085176e+06 -6.43259507e+06 -4.60825672e+06 -5.18992625e+06 -6.60706184e+06 -8.27159239e+06 -5.45950852e+06 -7.51347488e+06 -6.35925249e+06 -7.00438810e+06 -7.21450446e+05 -1.09941628e+06 -6.45299622e+06 -6.78188953e+06 -5.35055364e+06 -7.06331202e+06 -4.43619353e+06 -5.07027644e+06 -6.06446408e+06 -6.58165885e+06 -4.59807907e+05 -5.66456736e+06 -6.77085669e+06 -6.26740637e+06 7.72611014e+04 -6.01466343e+06 -6.74501926e+06 -5.77705457e+06 -5.19665584e+06 -4.20221415e+06 -6.23285916e+06 -6.09474992e+06 4.37853678e+06 2.09604740e+06] [-3.96945595e+06 -2.80588307e+06 -4.99854056e+06 -6.10992325e+06 -4.79450338e+06 -4.93192728e+06 -7.08025598e+06 -6.06393055e+06 -5.47012239e+06 -5.61217410e+06 -6.34115209e+06 -7.09815452e+06 1.78476933e+05 -1.07896848e+05 -6.36293502e+06 -6.27484723e+06 -5.12375132e+06 -7.47515718e+06 -4.35540335e+06 -5.12677479e+06 -6.09342496e+06 -6.84755991e+06 5.33142584e+05 -5.60171131e+06 -6.76366085e+06 -6.48479051e+06 1.43961964e+06 -5.83742987e+06 -5.32560514e+06 -6.57697166e+06 -5.20874061e+06 -3.51581395e+06 -6.12482744e+06 -6.09292516e+06 5.06997157e+06 3.14220101e+06] [-4.08271702e+06 -1.94946618e+06 -4.81622585e+06 -6.52715537e+06 -4.61173476e+06 -4.79455104e+06 -7.03018346e+06 -4.45870208e+06 -5.69793345e+06 -4.61089828e+06 -6.13724053e+06 -6.92059316e+06 2.87718703e+05 -3.99965901e+05 -5.92685188e+06 -5.57906322e+06 -5.25124592e+06 -8.35358344e+06 -3.91226397e+06 -5.02667698e+06 -5.84076291e+06 -6.85318276e+06 6.26900971e+05 -5.72169184e+06 -6.34246295e+06 -5.64241791e+06 1.61088651e+06 -5.59047570e+06 -5.16425796e+06 -7.34660935e+06 -5.04583273e+06 -3.21334508e+06 -5.69547015e+06 -6.04723372e+06 4.45356403e+06 3.30000536e+06] [-3.99854701e+06 -2.67511786e+06 -4.81584876e+06 -4.78471307e+06 -4.49335744e+06 -4.96516908e+06 -5.04179908e+06 -2.06237588e+06 -4.64307022e+06 -5.09184196e+06 -6.10525550e+06 -6.04635883e+06 -7.69982194e+05 -1.84611392e+06 -5.56808433e+06 -5.21709284e+06 -5.50417273e+06 -5.17927857e+06 -2.95482534e+06 -4.85628933e+06 -5.28242566e+06 -5.83478121e+06 8.91398098e+03 -5.61359692e+06 -5.54950324e+06 -4.57133121e+06 2.26713088e+05 -5.32842151e+06 -4.12484760e+06 -4.90209857e+06 -4.90593632e+06 -3.40417217e+06 -5.28477166e+06 -5.71521257e+06 2.45347128e+06 1.46711850e+06] [-3.53070848e+06 -1.96059177e+06 -4.03656531e+06 -2.72579071e+06 -3.64206052e+06 -4.34767352e+06 -3.38910573e+06 -4.56469087e+05 -3.52018289e+06 -5.22420543e+06 -5.33715664e+06 -4.99651765e+06 -8.01941618e+05 -1.88878934e+06 -4.80962708e+06 -5.99732173e+06 -4.84657277e+06 -2.21515409e+06 -2.85810446e+06 -3.97757366e+06 -4.24236954e+06 -5.03724139e+06 -9.74175054e+04 -4.75747197e+06 -4.41459904e+06 -4.27623539e+06 -1.73569032e+05 -4.52827233e+06 -2.73410545e+06 -3.46615934e+06 -4.12178456e+06 -4.67292195e+06 -4.52031541e+06 -4.98575520e+06 1.80395858e+06 7.51522626e+05] [-3.01826915e+06 -1.86992563e+06 -2.95980090e+06 -2.11115485e+06 -2.57271971e+06 -3.28638088e+06 -2.22973704e+06 5.64676135e+05 -2.67112605e+06 -4.29519257e+06 -3.91766218e+06 -3.53651028e+06 -4.56820659e+05 -1.42550402e+06 -3.59591932e+06 -5.45801823e+06 -3.75621556e+06 -1.41481016e+06 -1.97429011e+06 -2.79290078e+06 -2.99341397e+06 -4.01960091e+06 -1.76038109e+05 -3.55747414e+06 -3.05187260e+06 -3.14979156e+06 -2.26483529e+05 -3.33760916e+06 -1.88586934e+06 -2.52221342e+06 -2.98865476e+06 -4.61731286e+06 -3.30455713e+06 -3.74889440e+06 1.18611421e+06 2.69843235e+05] [-1.84157421e+06 -1.46104914e+06 -1.75715727e+06 -1.13873041e+06 -1.45914057e+06 -1.95143903e+06 -1.20645924e+06 4.35306450e+05 -1.50663157e+06 -3.05226072e+06 -2.45237431e+06 -2.09062561e+06 -9.55386409e+04 -7.78237142e+05 -2.18593289e+06 -3.54050484e+06 -2.30228600e+06 -5.42356967e+05 -1.28851503e+06 -1.60441512e+06 -1.77727205e+06 -2.47945846e+06 -2.27441427e+05 -2.14197006e+06 -1.78260983e+06 -2.05882705e+06 -1.38539755e+05 -1.97187203e+06 -7.97519152e+05 -1.24267148e+06 -1.75967619e+06 -2.98796593e+06 -1.95409252e+06 -2.25812247e+06 8.37581436e+05 5.02151190e+04] [-1.17415117e+06 -6.76004286e+05 -1.37971318e+06 -5.58818090e+05 -1.25483781e+06 -1.39061093e+06 -1.16536028e+06 8.43366501e+05 -8.92248929e+05 -1.55273061e+06 -1.78363327e+06 -1.46882368e+06 1.22481069e+05 -3.08272400e+05 -1.59113378e+06 -2.31022821e+06 -1.58553343e+06 -2.17360999e+05 -8.63298033e+05 -1.26323718e+06 -1.36001406e+06 -1.98612561e+06 9.77441115e+04 -1.54814636e+06 -1.30989707e+06 -1.46306631e+06 2.75372510e+05 -1.39552469e+06 -1.22622057e+05 -8.53105877e+05 -1.33920580e+06 -1.91734351e+06 -1.41758767e+06 -1.61432956e+06 8.47363355e+05 2.85995599e+05] [-9.28731701e+05 -2.98641404e+05 -8.30333292e+05 -4.92666274e+05 -7.76831482e+05 -8.62682047e+05 -8.83600634e+05 8.59515690e+05 -6.59041719e+05 -9.01199018e+05 -1.10977008e+06 -9.30343919e+05 2.49798250e+05 -3.03874361e+04 -9.67444339e+05 -1.63540992e+06 -9.90731891e+05 -3.35302800e+05 -8.46734066e+05 -7.46080941e+05 -7.93097787e+05 -1.45402162e+06 1.80218008e+05 -9.71407120e+05 -7.97371954e+05 -8.99248923e+05 3.95666022e+05 -8.56665533e+05 -2.04552704e+04 -7.80477628e+05 -7.97593952e+05 -1.55145428e+06 -8.97393672e+05 -1.05212385e+06 6.51303699e+05 2.86411474e+05] [-5.38792659e+05 -2.36638080e+05 -3.46819943e+05 -3.01962468e+05 -3.14508654e+05 -4.01342218e+05 -3.95423157e+05 3.76462308e+05 -3.73833931e+05 -4.88475753e+05 -5.14941024e+05 -4.46999792e+05 1.50331811e+05 -2.96223687e+04 -4.32831337e+05 -8.23799121e+05 -4.79931046e+05 -2.26959152e+05 -4.99100967e+05 -3.10655410e+05 -3.43939734e+05 -6.56314490e+05 3.11567970e+04 -4.56400032e+05 -3.63395780e+05 -3.68335761e+05 1.58518952e+05 -4.02915970e+05 -5.84239095e+04 -4.06503399e+05 -3.44012075e+05 -8.48722895e+05 -4.16291877e+05 -4.93122121e+05 2.36716787e+05 7.44704731e+04] [-1.85241600e+05 -1.62279848e+05 -1.31796489e+05 -1.46301421e+05 -1.16228274e+05 -1.58744453e+05 -2.12885607e+05 -1.05212473e+04 -1.45658544e+05 -3.19577741e+05 -2.20948662e+05 -2.01145932e+05 6.84474245e+04 -1.83068465e+04 -1.89311569e+05 -4.04808354e+05 -1.88292709e+05 -1.25574788e+05 -2.03117547e+05 -1.30470951e+05 -1.50859022e+05 -2.74637746e+05 -8.91764440e+03 -1.82162020e+05 -1.64818090e+05 -1.93210745e+05 4.33035969e+04 -1.69479731e+05 -1.44505260e+05 -1.89316816e+05 -1.40954733e+05 -3.56942574e+05 -1.76595180e+05 -1.92701630e+05 1.08113274e+05 2.36860704e+04] [-4.87677200e+04 -5.52025745e+04 -2.97588975e+04 -5.55812512e+04 -2.25742324e+04 -4.35504621e+04 -4.41074747e+04 -4.03639168e+04 -4.61253156e+04 -1.13404244e+05 -5.38298068e+04 -5.37346211e+04 5.48782707e+03 -1.70557156e+04 -4.86800282e+04 -1.09679546e+05 -4.91397886e+04 -3.83690560e+04 -4.54388687e+04 -3.13702696e+04 -3.58756482e+04 -6.93105448e+04 -1.65113321e+04 -4.37074625e+04 -4.46090180e+04 -5.71428777e+04 -2.85992889e+03 -4.67192848e+04 -5.46442030e+04 -4.81537261e+04 -3.41043736e+04 -1.01533234e+05 -4.67590408e+04 -5.00460862e+04 6.40336060e+03 -1.06695351e+04] [-3.79132643e-02 -8.50024655e-01 -6.01455915e-01 3.00044387e-01 9.52610824e-01 9.22276193e-01 9.92620620e-01 9.60910524e-01 -1.18420080e-01 2.55165778e-01 -6.13294265e-01 -8.16359343e-01 -8.61328832e-01 9.18509928e-01 1.20815423e-01 6.08470690e-01 5.05489278e-01 -5.49347965e-01 -7.30464114e-02 6.31443689e-01 5.86929054e-01 7.48734160e-02 -9.02185002e-01 -4.64860684e-01 -8.06021988e-01 -5.63473573e-01 -8.45529808e-01 -9.95879195e-01 -7.24218355e-01 9.89222508e-01 -4.43389950e-01 -4.98758256e-04 8.06362474e-01 5.10864513e-01 6.81157838e-01 -6.65509549e-01] [-7.27226454e-01 -5.22895664e-02 -9.05605430e-01 -9.17886550e-01 -1.51222116e-01 -5.07640307e-01 -2.01347869e-01 6.63757440e-01 -1.35910635e-01 -7.87545756e-01 1.80266475e-01 1.42880646e-01 -9.64724806e-01 -4.75344421e-01 -4.76175041e-01 -5.77337102e-01 -5.35824300e-01 4.76972984e-01 2.69707440e-01 9.95651410e-01 4.45078999e-01 5.14830564e-01 -9.06049193e-01 -2.73556883e-01 6.39985247e-01 8.80565262e-02 -1.32510081e-01 -9.06120367e-01 -5.30128457e-01 1.76901278e-01 -8.56964770e-01 -1.93621620e-01 4.91044503e-01 5.13142062e-01 -5.99735746e-01 8.92980557e-01] [-3.19974192e-01 -4.63034036e-01 -3.96724002e-01 8.84067364e-01 9.26975174e-01 6.87404090e-01 -1.41705297e-01 -6.81092523e-01 8.79644564e-01 -5.39008612e-01 -2.12784477e-01 -8.02363780e-01 2.69750477e-01 -8.47810558e-01 -8.06672989e-01 4.92960324e-01 -7.32035163e-02 7.17433917e-01 -7.52547518e-01 4.62984842e-01 4.22352038e-01 -1.52228265e-01 -2.44020094e-01 -9.11503346e-01 5.30196715e-02 1.06642521e-01 -7.34103147e-01 8.65141343e-01 -8.25003931e-01 3.36319862e-01 6.86953403e-01 -6.22944793e-01 2.59803355e-01 1.71906221e-01 -8.06403832e-01 5.29146114e-01] [ 6.07768310e-01 6.73571712e-01 7.83287470e-01 5.48586614e-01 9.18904650e-01 2.53600222e-01 -1.64814994e-01 -7.57999618e-01 7.15736434e-01 2.81968758e-01 7.58182827e-01 -8.41825605e-01 1.63551097e-01 3.40858068e-01 8.77560590e-01 3.19958076e-01 -9.47106401e-01 7.53385093e-01 9.21805426e-01 -9.99369224e-01 9.09735212e-01 -4.43245564e-01 1.40099625e-01 -6.27073392e-01 -2.84916450e-01 -5.84330990e-01 7.75173662e-01 7.22056966e-01 -5.52862864e-02 -6.11097028e-01 -6.97940150e-01 -5.21299483e-01 -7.69174495e-01 -5.51590318e-01 4.89878320e-01 6.84387684e-01] [-1.21866898e-01 -5.49177081e-01 -6.69120752e-01 2.30843400e-01 -9.50167020e-01 6.86101810e-02 -2.52321282e-01 1.29466413e-01 3.90772296e-02 -8.85733430e-01 -6.46189865e-02 -4.29333050e-01 -1.84982789e-01 -9.84133073e-01 9.35313724e-01 8.23264291e-01 -8.82668915e-02 -6.58282513e-01 -2.82761943e-01 -4.03737852e-01 -4.20435442e-01 5.79509975e-01 -7.13070028e-01 2.89797900e-01 1.87961505e-01 -4.88154784e-01 9.39266245e-01 -5.43248647e-03 -1.98017504e-02 -6.36582347e-01 4.01046860e-01 -1.03619071e-01 -2.74944001e-01 -3.15932935e-01 -9.69985178e-01 -7.88132228e-01] [-6.51219747e-01 -8.26791288e-01 -7.45239399e-01 -6.95904026e-01 -9.86664521e-01 -5.71349070e-01 2.33688571e-01 9.98202825e-01 2.96683644e-01 -1.42192300e-01 -6.47662131e-01 -5.00586860e-01 3.46249184e-02 -2.09404203e-01 5.67826057e-01 -7.53281572e-01 -4.29168646e-01 -3.90685306e-01 -7.27911546e-01 1.22733322e-01 -4.16990755e-01 2.75705303e-01 5.78109534e-01 -3.21930225e-01 7.48722426e-01 7.87457485e-01 -6.03200067e-01 -8.98711002e-01 -9.10957008e-01 9.94694147e-01 8.43025537e-01 7.43919088e-01 -6.90243404e-01 -7.83614870e-01 4.49865618e-01 -1.39643777e-01] [-5.53905093e+03 -5.59857238e+03 -6.67772710e+03 -5.56217553e+03 -6.49295522e+03 -6.79437952e+03 -5.54909116e+03 -5.65412796e+03 -5.55138872e+03 -5.68631954e+03 -6.75258011e+03 -6.91138108e+03 -5.60797756e+03 -5.41536805e+03 -6.72202480e+03 -5.72261953e+03 -6.82159063e+03 -5.53712957e+03 -5.55816400e+03 -6.67925379e+03 -6.71820154e+03 -6.20126250e+03 -5.66145904e+03 -6.81746721e+03 -6.89092542e+03 -5.40988955e+03 -5.79898581e+03 -6.95128780e+03 -5.64510505e+03 -5.49003332e+03 -6.67638407e+03 -5.67712396e+03 -6.73692219e+03 -6.83831106e+03 -5.70159587e+03 -5.57979228e+03] [-5.33730508e+04 -5.51610992e+04 -6.26909445e+04 -5.39602416e+04 -6.05035227e+04 -6.43344448e+04 -5.44383436e+04 -5.57587151e+04 -5.31554904e+04 -5.47979060e+04 -6.39131229e+04 -6.55424737e+04 -5.24906560e+04 -5.07447995e+04 -6.35479683e+04 -5.46931041e+04 -6.41865111e+04 -5.37139680e+04 -5.28787476e+04 -6.28493188e+04 -6.35145084e+04 -5.93550539e+04 -5.41196593e+04 -6.40496286e+04 -6.54753404e+04 -5.12581271e+04 -5.47611602e+04 -6.60478429e+04 -5.54337390e+04 -5.29840295e+04 -6.27867413e+04 -5.43300783e+04 -6.40856223e+04 -6.47260542e+04 -5.34352978e+04 -5.24289778e+04] [-1.15399259e+05 -1.59120794e+05 -1.23091506e+05 -1.29989948e+05 -1.19034812e+05 -1.37044820e+05 -1.65671541e+05 -1.82759954e+05 -1.20202460e+05 -1.59549566e+05 -1.37030449e+05 -1.47738074e+05 -5.03311681e+04 -6.94725765e+04 -1.45767833e+05 -1.43328658e+05 -1.25672074e+05 -1.04297691e+05 -1.46064600e+05 -1.24321200e+05 -1.38298026e+05 -1.72872622e+05 -2.56664309e+04 -1.29752978e+05 -1.53868422e+05 -1.48106607e+05 -1.38202096e+04 -1.48388723e+05 -1.42432971e+05 -1.23467470e+05 -1.29900422e+05 -1.34488811e+05 -1.49281024e+05 -1.34798190e+05 4.99404275e+04 3.05347808e+04] [-2.89170974e+05 -3.52862700e+05 -3.57380090e+05 -4.69880091e+05 -3.54712006e+05 -3.75073621e+05 -6.23062507e+05 -5.41706736e+05 -4.00936208e+05 -3.68398479e+05 -3.95634063e+05 -4.48670069e+05 -8.95069385e+04 -1.39370671e+05 -4.12950775e+05 -3.30002822e+05 -3.44975118e+05 -5.31259749e+05 -3.39285212e+05 -3.82303340e+05 -4.29857423e+05 -5.42888810e+05 -1.52908515e+04 -3.76714987e+05 -4.68181405e+05 -4.45352348e+05 3.95923114e+04 -4.26952810e+05 -4.58642166e+05 -4.61558303e+05 -3.75209809e+05 -2.26665941e+05 -4.29279551e+05 -3.86600351e+05 2.17914558e+05 1.84136562e+05] [-7.06704652e+05 -5.28531334e+05 -8.52248313e+05 -1.11345517e+06 -8.47437347e+05 -8.74145524e+05 -1.49078585e+06 -1.05247917e+06 -9.93701825e+05 -5.77438225e+05 -9.85105946e+05 -1.10735147e+06 -7.71735461e+04 -2.19358381e+05 -9.54599760e+05 -6.78107392e+05 -8.50196566e+05 -1.42104913e+06 -6.81286413e+05 -9.29022531e+05 -1.03590532e+06 -1.31050508e+06 1.15691464e+05 -9.36076659e+05 -1.09750082e+06 -9.79604060e+05 2.56171274e+05 -9.86835254e+05 -9.47011533e+05 -1.33228751e+06 -8.85422997e+05 -4.53765789e+05 -1.00451764e+06 -9.86726700e+05 7.83015887e+05 6.41715455e+05] [-1.33931977e+06 -9.66542121e+05 -1.60596754e+06 -1.79388278e+06 -1.56587091e+06 -1.69851057e+06 -2.79598868e+06 -1.57719583e+06 -1.77647483e+06 -1.21367595e+06 -2.04784884e+06 -2.15419675e+06 1.29808886e+05 -2.48988624e+05 -1.85278783e+06 -1.26896891e+06 -1.66361921e+06 -2.28222515e+06 -9.32929761e+05 -1.77536563e+06 -1.97566663e+06 -2.40157087e+06 4.71702202e+05 -1.80302774e+06 -2.08269818e+06 -1.83492480e+06 8.04898469e+05 -1.88891756e+06 -1.39934840e+06 -2.28771909e+06 -1.69740515e+06 -8.25501237e+05 -1.91490797e+06 -1.92163750e+06 1.83910492e+06 1.43550234e+06] [-1.59981729e+06 -1.03180824e+06 -1.92277983e+06 -2.30925161e+06 -1.91388465e+06 -2.05907210e+06 -3.93837111e+06 -1.79304498e+06 -2.18898729e+06 -1.28543497e+06 -2.57907255e+06 -2.75663006e+06 6.09276916e+05 2.09174085e+05 -2.30067343e+06 -1.66520841e+06 -1.98404702e+06 -3.14764258e+06 -9.54706465e+05 -2.17399998e+06 -2.48056940e+06 -3.19729530e+06 9.91461040e+05 -2.21970531e+06 -2.64075930e+06 -2.23183435e+06 1.58795566e+06 -2.33249613e+06 -1.72202637e+06 -3.14598025e+06 -2.05697189e+06 -9.42304363e+05 -2.39845810e+06 -2.40039438e+06 2.90994015e+06 2.32409762e+06] [-1.59324931e+06 -1.06990378e+06 -1.99339412e+06 -2.87090578e+06 -2.02287192e+06 -2.17436075e+06 -4.74691925e+06 -2.62055246e+06 -2.50782928e+06 -1.23854553e+06 -2.77474811e+06 -3.11027843e+06 1.10997011e+06 7.79215394e+05 -2.47769750e+06 -1.46814742e+06 -2.05717199e+06 -4.17925035e+06 -6.62598709e+05 -2.35317602e+06 -2.77115795e+06 -3.52908493e+06 1.58418607e+06 -2.40038501e+06 -3.01459570e+06 -2.24703043e+06 2.34431183e+06 -2.54342855e+06 -2.27885953e+06 -3.76995337e+06 -2.17861146e+06 -4.53977735e+05 -2.61326022e+06 -2.59516233e+06 4.11120724e+06 3.34834901e+06] [-1.46311521e+06 -1.20432068e+06 -2.04767382e+06 -2.95137054e+06 -2.03739999e+06 -2.22824295e+06 -4.94379898e+06 -3.33956777e+06 -2.55095472e+06 -1.69810114e+06 -2.92445505e+06 -3.36162671e+06 1.44701027e+06 1.29851301e+06 -2.72386346e+06 -1.64940542e+06 -2.06014281e+06 -4.33770644e+06 -5.51684516e+05 -2.39669101e+06 -2.94125810e+06 -3.63627282e+06 1.87452411e+06 -2.47605582e+06 -3.27472502e+06 -2.54715864e+06 2.76697578e+06 -2.68007393e+06 -2.31252102e+06 -3.67781133e+06 -2.26246990e+06 -5.77168400e+05 -2.80038884e+06 -2.73206369e+06 4.90185486e+06 3.82956467e+06] [-1.59738401e+06 -1.62357454e+06 -1.82092259e+06 -2.49843387e+06 -1.76984532e+06 -1.98571551e+06 -4.50283922e+06 -3.36675591e+06 -2.32282854e+06 -2.60137689e+06 -2.77208288e+06 -3.08302547e+06 1.42351537e+06 1.33981962e+06 -2.65404843e+06 -2.58517980e+06 -1.78183074e+06 -3.26838913e+06 -1.56533234e+06 -2.06147711e+06 -2.63201529e+06 -3.55501053e+06 1.48474531e+06 -2.12199319e+06 -3.05247265e+06 -3.04481377e+06 2.41003234e+06 -2.47993221e+06 -1.64352714e+06 -2.88852008e+06 -2.03150827e+06 -1.53298937e+06 -2.69981962e+06 -2.49301061e+06 4.57716831e+06 3.16546846e+06] [-1.63192928e+06 -1.50894150e+06 -1.82012033e+06 -3.06927939e+06 -1.76084399e+06 -1.95188130e+06 -4.50844238e+06 -3.76467381e+06 -2.75104844e+06 -2.64435860e+06 -2.88642584e+06 -3.31259711e+06 1.31790822e+06 1.14748377e+06 -2.66787067e+06 -2.50509974e+06 -1.89202922e+06 -4.06546039e+06 -1.41542044e+06 -2.10434810e+06 -2.74884949e+06 -3.81140783e+06 1.30228029e+06 -2.25450672e+06 -3.14642880e+06 -3.23172627e+06 2.23223930e+06 -2.50740791e+06 -1.98563337e+06 -3.47030906e+06 -2.02374200e+06 -1.32295591e+06 -2.67945907e+06 -2.61088156e+06 4.27964876e+06 3.03834201e+06] [-1.51681485e+06 -8.26555085e+05 -1.99855080e+06 -3.03196352e+06 -1.92293743e+06 -2.05586737e+06 -4.59721909e+06 -3.17551106e+06 -2.89884037e+06 -2.36232676e+06 -3.03518172e+06 -3.50410966e+06 1.13530086e+06 7.31406462e+05 -2.81781169e+06 -2.34331689e+06 -2.09245457e+06 -4.15059562e+06 -1.53950662e+06 -2.31579648e+06 -2.92321291e+06 -3.95746320e+06 1.37463500e+06 -2.47983858e+06 -3.26993012e+06 -3.43836535e+06 2.22270154e+06 -2.65865883e+06 -2.09241281e+06 -3.94474679e+06 -2.19969661e+06 -1.05796690e+06 -2.79015574e+06 -2.78786877e+06 4.21005877e+06 3.20799941e+06] [-1.36366285e+06 -1.13619246e+06 -1.64071597e+06 -3.06949243e+06 -1.52003482e+06 -1.75841812e+06 -3.70093636e+06 -2.86872500e+06 -2.61717169e+06 -2.07290582e+06 -2.47113378e+06 -2.95060353e+06 7.31608939e+05 3.24425509e+05 -2.27366280e+06 -1.68614268e+06 -1.89279365e+06 -4.12547526e+06 -1.41703982e+06 -1.89498212e+06 -2.36527194e+06 -3.15438988e+06 8.58907121e+05 -2.18022676e+06 -2.68858818e+06 -2.59326888e+06 1.53971415e+06 -2.26051962e+06 -2.41762551e+06 -3.60757734e+06 -1.81137188e+06 -6.63733684e+05 -2.27000338e+06 -2.34140823e+06 3.17853005e+06 2.49862398e+06] [-1.50484960e+06 -1.57898936e+06 -1.53431941e+06 -2.14367452e+06 -1.35511314e+06 -1.73042927e+06 -2.55168313e+06 -2.06865946e+06 -2.09174291e+06 -2.57737502e+06 -2.41840496e+06 -2.60053132e+06 3.32856469e+05 -9.42516760e+04 -2.09277484e+06 -1.83395682e+06 -1.90902681e+06 -2.40410971e+06 -1.71593613e+06 -1.65352660e+06 -1.97606770e+06 -2.77172948e+06 3.73449865e+05 -2.02637091e+06 -2.31297756e+06 -2.18017018e+06 8.60298961e+05 -2.10224949e+06 -1.68252316e+06 -2.40673847e+06 -1.66674023e+06 -1.17742456e+06 -2.06911594e+06 -2.19921130e+06 2.27108604e+06 1.54993517e+06] [-1.31622270e+06 -7.34742916e+05 -1.63078378e+06 -1.11745102e+06 -1.46463947e+06 -1.78442379e+06 -1.70612619e+06 -7.02050256e+05 -1.55344551e+06 -1.99605170e+06 -2.30862311e+06 -2.29071017e+06 -2.29810025e+05 -4.97082715e+05 -2.01873698e+06 -2.25795333e+06 -1.98545508e+06 -1.21814712e+06 -1.28780157e+06 -1.67986852e+06 -1.86979620e+06 -2.36581413e+06 1.35038567e+05 -2.02520601e+06 -1.98287030e+06 -2.02860072e+06 1.96848861e+05 -1.96195728e+06 -1.10170394e+06 -2.13052601e+06 -1.69768442e+06 -1.78405741e+06 -1.93291942e+06 -2.13910334e+06 1.32242284e+06 8.31743933e+05] [-7.42849219e+05 -2.15114781e+05 -1.27544202e+06 -7.14677611e+05 -1.15691412e+06 -1.36209201e+06 -1.30216618e+06 4.88161978e+04 -9.59639209e+05 -8.88898865e+05 -1.70771211e+06 -1.64955473e+06 -8.12170178e+04 -1.79186732e+05 -1.50119221e+06 -1.65037568e+06 -1.51798562e+06 -9.88318642e+05 -1.98643296e+05 -1.31718312e+06 -1.45735941e+06 -1.73748074e+06 2.66253849e+05 -1.57654442e+06 -1.40064089e+06 -1.36837681e+06 2.67019711e+05 -1.42767001e+06 -6.76073729e+05 -1.73976875e+06 -1.29993114e+06 -1.22720291e+06 -1.39811531e+06 -1.60744077e+06 1.08042690e+06 7.99886566e+05] [-5.46870451e+05 -5.36448244e+05 -7.55877720e+05 -3.07589489e+05 -6.77104580e+05 -8.31330596e+05 -7.55067298e+05 1.62595538e+05 -4.13986756e+05 -5.89463955e+05 -1.10220942e+06 -9.28728988e+05 1.83608212e+05 9.75736797e+04 -8.95739115e+05 -1.00087148e+06 -9.02462558e+05 -3.26515877e+05 1.04680398e+04 -7.52684633e+05 -8.48872118e+05 -1.09391591e+06 2.46686280e+05 -9.14159984e+05 -8.04965238e+05 -7.64776867e+05 3.35110664e+05 -8.27811757e+05 -1.86803727e+05 -7.59434332e+05 -7.52032916e+05 -7.25012409e+05 -8.35764553e+05 -9.55321143e+05 9.67726571e+05 5.96407951e+05] [-4.79247473e+05 -5.73699596e+05 -4.98463721e+05 -6.06075603e+04 -4.23941519e+05 -5.87730865e+05 -3.72698493e+05 2.42907720e+05 -2.36264432e+05 -7.78871565e+05 -7.72535558e+05 -5.61510663e+05 1.13470720e+05 -5.19537635e+04 -6.07783826e+05 -8.75042864e+05 -6.27744081e+05 1.80976493e+05 -2.03789109e+05 -4.70984003e+05 -5.11822383e+05 -7.74807690e+05 1.09720815e+05 -5.81904867e+05 -5.00364300e+05 -5.84160720e+05 1.59970489e+05 -5.53805729e+05 4.38034734e+04 -1.99699079e+05 -4.90158298e+05 -7.44422507e+05 -5.69296791e+05 -6.21662189e+05 5.37676489e+05 2.11370210e+05] [-3.46040711e+05 -2.84534879e+05 -3.05943617e+05 -3.66673783e+04 -2.51391058e+05 -3.56218357e+05 -2.19892949e+05 2.99117195e+05 -1.79945779e+05 -5.57850997e+05 -4.61287855e+05 -3.22747798e+05 2.55364546e+04 -1.08119869e+05 -3.68757449e+05 -6.14327372e+05 -3.85603614e+05 1.81505436e+05 -3.31318118e+05 -2.73771222e+05 -2.74170631e+05 -4.93336263e+05 4.94201397e+04 -3.41193325e+05 -2.85985778e+05 -3.99678063e+05 8.23799276e+04 -3.34809844e+05 1.17594209e+05 -9.65603413e+04 -2.96018670e+05 -5.89105442e+05 -3.45677860e+05 -3.76618899e+05 2.49974102e+05 6.40392963e+04] [-1.02433900e+05 1.40629671e+04 -1.37480111e+05 -6.11821713e+03 -1.34484353e+05 -1.29093798e+05 -1.46040833e+05 1.62505754e+05 -6.26077463e+04 -2.50893124e+04 -1.55337527e+05 -1.31029373e+05 1.02341138e+04 -2.79332564e+04 -1.45487240e+05 -1.48251331e+05 -1.39839334e+05 1.14660701e+03 -1.25699661e+05 -1.29090493e+05 -1.33187747e+05 -1.58138912e+05 4.91052772e+04 -1.42007058e+05 -1.23498681e+05 -1.22444780e+05 5.39454238e+04 -1.26638364e+05 3.31969402e+04 -9.53139211e+04 -1.32041129e+05 -1.30843726e+05 -1.35011840e+05 -1.46071794e+05 1.17702953e+05 7.24523791e+04] [-2.13502612e+04 2.19986075e+04 -3.93832968e+04 -1.08471647e+04 -3.96579301e+04 -3.53170126e+04 -4.34785836e+04 3.59567579e+04 -2.13209931e+04 6.03580554e+03 -4.15166498e+04 -3.95783645e+04 -7.92470770e+02 -8.85687031e+03 -4.14898581e+04 -2.94403778e+04 -3.99701261e+04 -1.75341602e+04 -1.62823499e+04 -3.79717472e+04 -4.04142568e+04 -3.78172044e+04 2.10056596e+04 -4.15871582e+04 -3.74187736e+04 -3.32697751e+04 2.06123086e+04 -3.67628531e+04 -6.55140510e+03 -3.78633965e+04 -3.85047667e+04 -1.87726969e+04 -3.71824889e+04 -4.13174477e+04 3.61317472e+04 2.87356391e+04] [-5.94176231e-01 -3.81076578e-02 -8.94473839e-01 -7.79055153e-01 6.11513233e-01 -9.37959906e-01 8.36163870e-01 -2.51016385e-01 -8.20312409e-01 8.07009835e-01 1.80355770e-02 4.38034226e-01 -7.15988026e-01 9.71745491e-01 2.09002873e-01 2.12852374e-01 -6.94409199e-01 -3.97018561e-01 -3.91759943e-02 -4.80968082e-01 3.96945512e-01 -2.65951073e-01 8.37271735e-01 7.86597035e-01 1.66302699e-01 -7.44952714e-01 -5.70958223e-01 -1.82543478e-01 -1.02552245e-01 3.03510895e-01 -2.75753211e-01 3.58297345e-01 -8.90259502e-01 4.69889746e-01 9.46135381e-01 -8.61946459e-01] [ 5.97083676e-01 3.09771596e-01 2.01269447e-01 -1.19304515e-02 -6.86159424e-02 6.97997754e-02 3.01311490e-01 -3.25858986e-01 6.87539291e-02 -7.10419696e-01 6.20580727e-02 -5.53454274e-01 -6.41747609e-01 8.09202684e-01 -7.43186759e-01 7.62474920e-01 8.66169516e-01 5.01596312e-01 -4.53754699e-01 1.12996292e-01 1.77525736e-01 9.05375407e-02 -2.68762730e-01 -3.46325223e-01 -2.54221314e-01 -3.33890083e-01 -3.27066731e-03 -4.95667858e-01 5.02507375e-01 -7.95641199e-01 -9.63319348e-01 -5.74820832e-01 2.10427528e-01 -7.15339950e-03 -5.96345783e-01 -8.87656036e-01] [-5.25848934e-01 8.79449453e-01 7.78512260e-01 9.19068615e-01 -8.39479399e-01 1.55587170e-01 2.46947027e-01 8.64048786e-01 1.44893535e-01 3.96948490e-01 -5.42654647e-01 -1.24569406e-01 1.69176480e-01 2.88179344e-01 -6.77254111e-02 -1.87835180e-01 3.55777205e-01 7.43809540e-01 1.77354230e-01 -1.65345002e-01 6.42933497e-01 -4.62340024e-01 6.67570264e-01 -8.69460624e-01 -7.13542520e-01 -8.47502000e-01 5.49925949e-01 9.00060680e-02 1.35909643e-01 8.66390310e-02 -5.90471753e-01 -9.79769861e-01 -2.79923157e-02 6.20449489e-01 6.91618789e-01 4.75293660e-01] [ 4.91711012e-01 -4.78010719e-01 -2.86414591e-01 2.99551860e-03 -2.85942948e-01 -5.00158512e-01 4.51907122e-02 5.50876347e-01 -1.05040629e-01 7.51860331e-01 3.34791457e-01 1.71711011e-01 8.58555036e-01 -6.60268560e-01 -1.83746005e-01 -6.94121482e-01 -6.10843295e-01 -4.35922209e-01 9.77531652e-01 2.95127607e-01 -5.45565917e-01 7.31880863e-01 2.02362012e-01 7.24156840e-01 -8.16951620e-01 8.52620433e-01 2.42504274e-01 8.30561521e-01 -2.55883346e-01 9.40595551e-02 5.82685656e-01 -3.18195857e-01 -7.49336321e-01 -2.51686400e-02 5.47911741e-01 -2.67205196e-01] [-1.30447771e-01 -4.10952253e-01 6.97988721e-01 2.40824186e-02 8.03863822e-02 -6.54843136e-01 -2.17029785e-01 4.91887484e-01 -3.44008274e-01 9.14883965e-01 7.07951788e-01 8.29222368e-01 4.82229962e-01 1.07044568e-02 4.81559902e-01 -6.88180378e-01 5.51167303e-01 9.19784965e-01 6.27352603e-01 9.09717032e-01 1.69166468e-01 1.97715737e-01 4.56886135e-01 -8.00298020e-01 2.23468957e-01 -6.41772321e-01 6.91120232e-02 7.51386615e-01 9.50469926e-01 6.74318270e-02 -1.66101927e-01 -8.21871023e-01 1.45753202e-01 4.74327960e-01 5.60342310e-01 6.38536834e-01] [ 4.33669466e-01 -9.45852884e-02 4.14619578e-01 -8.65842838e-02 5.94551961e-01 5.12935246e-03 -8.39495405e-01 -9.76253303e-01 -1.00413902e-01 -2.16046429e-01 -6.00418180e-01 -8.76996714e-01 -2.13275776e-01 9.53123182e-01 1.44859691e-01 -9.67347308e-01 7.89031106e-01 3.08972789e-01 2.14636606e-01 8.50264688e-01 -9.06574446e-01 -4.17235563e-01 -7.52468964e-01 -9.14436723e-01 -6.70487449e-01 -5.91578413e-01 2.14059803e-01 6.11090121e-01 -5.71404987e-01 -9.99716269e-01 6.74374904e-02 1.42035934e-01 -2.86018049e-01 -5.04650083e-01 -1.22317798e-01 -6.23992972e-01] [ 3.85290566e-01 -5.10210803e-01 -2.83108569e-01 -2.85599064e-01 -1.06304300e-01 -2.83486439e-01 3.26049360e-01 -1.86645238e-01 -1.42633521e-01 7.48302714e-01 1.33575400e-01 7.16597580e-01 9.09136017e-01 7.93059026e-01 2.05917137e-02 2.17246529e-01 -9.53358252e-01 4.85825193e-01 -6.10257052e-02 5.56542579e-01 -5.64655334e-01 -4.63254170e-01 4.38405666e-01 -6.23656993e-01 6.37567409e-01 -8.47843168e-01 5.67033102e-01 7.59412569e-01 -4.27478242e-01 1.89661313e-01 6.86870014e-01 -7.74216882e-01 4.34126642e-01 -3.41518603e-01 6.74832049e-01 8.85119002e-01] [ 6.93602228e-01 -5.20389984e-01 9.75494072e-01 -4.00504822e-01 4.01680398e-01 -5.12410235e-01 7.33746053e-01 -5.61384910e-01 -2.21974341e-01 -5.64291597e-01 -8.78081792e-01 -8.15147546e-01 -3.94188872e-03 7.47266834e-01 5.72867879e-01 -2.91770904e-01 7.11853929e-01 2.94999641e-01 7.43035389e-01 3.95484260e-03 -3.09505227e-01 -2.76619924e-01 5.44527845e-01 4.60076407e-01 1.92221422e-01 -7.23120529e-01 -7.36939580e-02 5.75592296e-01 -4.66331534e-01 8.93427902e-01 -4.95623065e-01 9.86627481e-01 2.64206599e-01 -7.37841952e-01 7.63265063e-01 7.44105515e-01] [-7.10313364e-01 -6.59124026e-02 -6.74341320e-01 -4.15203140e-01 -3.52028956e-01 -7.99978938e-01 -5.52830305e-01 -7.16613620e-01 6.60462033e-01 6.81640592e-01 4.08743360e-01 -6.58652328e-01 -9.42149308e-01 -7.49518309e-01 8.67671525e-01 8.76561549e-01 5.96641794e-01 9.04008929e-01 -5.26396559e-01 6.45485559e-01 -5.43202178e-01 -3.12932552e-02 6.13399793e-01 -7.30391486e-01 -6.49718827e-01 9.80960234e-02 5.73124358e-01 -1.17296490e-01 1.07980266e-01 9.94648218e-02 6.86627443e-01 -2.52558966e-01 5.91843460e-01 -8.32135242e-01 -3.63659535e-01 6.66196339e-02] [-1.14486886e+04 -1.24536837e+04 -1.30031676e+04 -1.17718124e+04 -1.19543007e+04 -1.36559462e+04 -1.18628914e+04 -1.28309796e+04 -1.13488940e+04 -1.27791213e+04 -1.33415494e+04 -1.39057886e+04 -1.13249855e+04 -1.11328349e+04 -1.35089366e+04 -1.29273374e+04 -1.33699234e+04 -1.15138628e+04 -1.21554011e+04 -1.31175586e+04 -1.34630471e+04 -1.36141009e+04 -1.28947499e+04 -1.31261250e+04 -1.39293372e+04 -1.19172851e+04 -1.30420302e+04 -1.43199114e+04 -1.27441909e+04 -1.14697543e+04 -1.29597756e+04 -1.23438580e+04 -1.40524390e+04 -1.38067309e+04 -1.26429400e+04 -1.22057428e+04] [-2.63753434e+04 -2.89407646e+04 -2.93853087e+04 -2.71748234e+04 -2.68048346e+04 -3.10420472e+04 -2.74210220e+04 -2.98397967e+04 -2.61491258e+04 -2.95446152e+04 -3.02686104e+04 -3.16280470e+04 -2.59551799e+04 -2.56243009e+04 -3.06636847e+04 -2.99206447e+04 -3.03126094e+04 -2.65513925e+04 -2.81670171e+04 -2.96398060e+04 -3.05328484e+04 -3.13549297e+04 -2.99153720e+04 -2.96984871e+04 -3.16987856e+04 -2.75343595e+04 -3.01502940e+04 -3.26508091e+04 -2.94747135e+04 -2.64507865e+04 -2.92936975e+04 -2.84996382e+04 -3.19891799e+04 -3.13753615e+04 -2.92123219e+04 -2.82918885e+04] [-3.37079034e+04 -4.17910507e+04 -4.44001522e+04 -1.47041920e+04 -3.62990811e+04 -5.21235673e+04 -3.91218394e+04 -3.24436181e+04 -3.28105188e+04 -5.10313201e+04 -5.80707172e+04 -5.57027699e+04 -2.06032561e+04 -3.00630581e+04 -5.18343044e+04 -3.14374847e+04 -4.83922596e+04 -9.55616774e+03 -3.64799164e+04 -4.81129799e+04 -5.04576364e+04 -3.70664277e+04 -2.78664523e+04 -4.57875292e+04 -5.72786318e+04 -4.03449342e+04 -1.81739247e+04 -5.83832952e+04 -1.25728316e+04 -2.07829814e+04 -4.76649598e+04 -4.24145018e+04 -5.63984707e+04 -5.07777463e+04 -1.20588352e+04 -2.34936087e+04] [-2.50382287e+04 -4.33963047e+04 -4.08124046e+04 1.08653682e+04 -2.69401371e+04 -5.77121725e+04 -4.07199144e+04 -4.03029350e+04 -2.46413554e+04 -7.29881152e+04 -7.41803489e+04 -6.78777920e+04 2.11683195e+04 4.62856376e+03 -5.92745914e+04 2.65660777e+03 -5.18771709e+04 1.51728476e+04 -2.92306151e+03 -4.98267653e+04 -5.73803842e+04 -1.16282561e+04 1.68451889e+04 -4.63176659e+04 -7.21570810e+04 -3.02771319e+04 4.18790569e+04 -6.92057850e+04 1.49820945e+04 1.23377003e+04 -5.17076918e+04 -1.42202869e+04 -6.46303350e+04 -5.40596617e+04 6.74132458e+04 3.72461790e+04] [-4.94597850e+04 -3.31110205e+04 -4.43331917e+04 -4.67062264e+04 -3.63645226e+04 -5.65548719e+04 -1.04305198e+05 -6.94006703e+04 -5.19810968e+04 -5.95285892e+04 -6.88597278e+04 -6.71685663e+04 2.84922105e+04 6.42164863e+03 -5.94604008e+04 -2.67858435e+04 -5.47368453e+04 -5.24420958e+04 -2.20453365e+04 -4.91002438e+04 -5.98001522e+04 -6.33366907e+04 3.31801272e+04 -5.21365846e+04 -7.00457732e+04 -6.96752434e+04 5.86965380e+04 -6.41462389e+04 -4.08587136e+04 -4.93797016e+04 -5.04815542e+04 -1.85970450e+04 -6.20782180e+04 -5.80586598e+04 1.06198001e+05 6.74438931e+04] [-1.02245748e+05 2.43272537e+04 -9.60570873e+04 -1.84461356e+05 -9.36145664e+04 -9.17587481e+04 -2.30813317e+05 -1.71982315e+05 -1.60597884e+05 -6.10086574e+04 -1.26899365e+05 -1.53604877e+05 6.02632551e+04 3.75221664e+04 -1.12506404e+05 -9.21243058e+04 -1.00417908e+05 -2.73045897e+05 -4.30722144e+04 -1.18237503e+05 -1.35572678e+05 -2.01199437e+05 9.46931395e+04 -1.16980536e+05 -1.45772343e+05 -1.75319906e+05 1.25201381e+05 -1.17577119e+05 -1.21616343e+05 -2.41159880e+05 -1.04367665e+05 -2.40354662e+04 -1.17871045e+05 -1.26149521e+05 2.60732969e+05 2.02641305e+05] [-1.27722928e+05 8.51517046e+04 -1.65689290e+05 -2.85542722e+05 -1.73418223e+05 -1.48853790e+05 -4.00790877e+05 -2.79786568e+05 -2.76129218e+05 -6.20189568e+04 -2.27693919e+05 -2.90547641e+05 1.02113693e+05 9.42932000e+04 -1.99822405e+05 -7.78821456e+04 -1.53627503e+05 -4.80451397e+05 -6.11689174e+04 -2.13211943e+05 -2.58153340e+05 -3.40203310e+05 1.97116765e+05 -2.03034340e+05 -2.71284026e+05 -2.65837838e+05 2.42873759e+05 -2.04339571e+05 -1.26705243e+05 -4.44936693e+05 -1.84459100e+05 -1.05334963e+04 -2.09958648e+05 -2.16704128e+05 4.48235575e+05 3.78816569e+05] [-1.42981162e+05 -5.94344660e+04 -1.79472669e+05 -4.25640600e+05 -1.92882970e+05 -1.63022377e+05 -7.56230959e+05 -4.38727242e+05 -3.16691704e+05 -4.54940389e+04 -2.75389004e+05 -3.55402054e+05 2.78289770e+05 2.62736012e+05 -2.51450675e+05 -1.42914320e+05 -1.48793468e+05 -6.68634163e+05 -6.94720654e+04 -2.33671668e+05 -3.23976248e+05 -5.05889281e+05 3.10707294e+05 -2.24865239e+05 -3.40152422e+05 -3.96053468e+05 4.53102363e+05 -2.39512587e+05 -2.35489144e+05 -6.31895705e+05 -2.05350161e+05 4.56137018e+04 -2.61804342e+05 -2.51860570e+05 7.69733965e+05 6.26794444e+05] [-1.19792354e+05 -1.51759178e+05 -1.53975966e+05 -4.13794284e+05 -1.58024902e+05 -1.52651655e+05 -7.31250180e+05 -4.70718201e+05 -2.75831980e+05 -7.46623960e+04 -2.42895822e+05 -2.99786253e+05 3.18138290e+05 2.47178917e+05 -2.23042651e+05 -1.19574169e+05 -1.36254892e+05 -6.20350611e+05 1.60583829e+03 -2.03935340e+05 -2.88292158e+05 -4.45114283e+05 3.07893277e+05 -1.96801283e+05 -2.98640136e+05 -3.59070833e+05 4.62537633e+05 -2.14841214e+05 -3.43713124e+05 -5.42825617e+05 -1.78879079e+05 1.04284010e+05 -2.27633525e+05 -2.18441951e+05 8.07087056e+05 6.50265880e+05] [-8.97379643e+04 -5.12599848e+04 -1.28942276e+05 -3.88688096e+05 -1.13029428e+05 -1.22418262e+05 -6.39358716e+05 -4.71638160e+05 -3.32457842e+05 -2.35433370e+05 -2.52476725e+05 -3.33350087e+05 3.13448279e+05 1.80466681e+05 -2.40223293e+05 -1.15067166e+05 -1.29331957e+05 -5.54747560e+05 -1.95056887e+05 -1.82935315e+05 -2.71491589e+05 -4.05324177e+05 3.20800282e+05 -1.89295628e+05 -3.15711082e+05 -4.44643947e+05 4.78876774e+05 -2.17486625e+05 -1.90117401e+05 -4.39164172e+05 -1.65296719e+05 1.47068071e+05 -2.38067334e+05 -2.30945717e+05 6.95050656e+05 5.99925414e+05] [-6.13687156e+04 -1.12508859e+05 -1.01402371e+05 -4.00452060e+05 -1.03999935e+05 -1.01761940e+05 -5.23559127e+05 -3.54688322e+05 -2.44996720e+05 1.75781188e+02 -1.60708795e+05 -2.33073187e+05 2.33764117e+05 1.48502837e+05 -1.51621948e+05 1.11445660e+05 -9.09849157e+04 -5.83057630e+05 -1.67133413e+04 -1.52910580e+05 -2.14011544e+05 -2.65020894e+05 2.33621611e+05 -1.45796883e+05 -2.39889619e+05 -1.91242082e+05 3.66859696e+05 -1.58344940e+05 -1.22762055e+05 -3.17379333e+05 -1.26381192e+05 2.80904202e+05 -1.74690961e+05 -1.55628958e+05 4.47058153e+05 4.28349739e+05] [-9.62781478e+04 -1.16365769e+05 -1.01133824e+05 -2.76437541e+05 -1.02663519e+05 -1.04571345e+05 -3.74469667e+05 -2.32639888e+05 -1.80823683e+05 -5.56027190e+04 -1.40715243e+05 -1.81106322e+05 1.30207827e+05 9.43195517e+04 -1.34448260e+05 -4.13503645e+04 -8.97462187e+04 -3.77792877e+05 -5.01744435e+04 -1.24474675e+05 -1.64066737e+05 -2.28557363e+05 1.27516155e+05 -1.21356948e+05 -1.80766512e+05 -1.81966126e+05 2.11966634e+05 -1.36526234e+05 -1.22749768e+05 -2.64183555e+05 -1.14993550e+05 8.37668952e+04 -1.46352817e+05 -1.33423280e+05 3.30030279e+05 2.85341128e+05] [-7.24755452e+04 -7.49207389e+04 -6.77917230e+04 -2.22868319e+05 -6.55333072e+04 -7.99494832e+04 -2.67067251e+05 -2.02114888e+05 -1.53577482e+05 -4.99937485e+04 -1.00717426e+05 -1.37839467e+05 7.92193252e+04 8.22817524e+04 -9.77653265e+04 -6.18880926e+04 -7.50047039e+04 -3.21386390e+05 -7.29317221e+03 -8.06612191e+04 -1.11827362e+05 -1.64386898e+05 6.09746325e+04 -9.99084366e+04 -1.26095909e+05 -1.00297450e+05 1.21868689e+05 -1.04766371e+05 -1.64401829e+05 -2.46780735e+05 -7.83746314e+04 3.93570608e+03 -1.01369869e+05 -1.01713484e+05 2.22837178e+05 1.92787714e+05] [-6.47641870e+04 -6.15455470e+04 -1.00697432e+05 -2.20753674e+05 -9.26786248e+04 -1.23032018e+05 -2.53624736e+05 -2.15385500e+05 -1.75170730e+05 -4.83532730e+04 -1.50327704e+05 -1.81409594e+05 6.26594096e+04 7.01491711e+04 -1.29655235e+05 -5.41756313e+04 -1.29184894e+05 -3.31003136e+05 5.46046429e+04 -1.19759316e+05 -1.49098808e+05 -1.72780562e+05 5.44194900e+04 -1.54286411e+05 -1.57425761e+05 -9.25927632e+04 1.15415959e+05 -1.45276712e+05 -1.59950368e+05 -2.69418146e+05 -1.15571872e+05 9.74205701e+03 -1.29652563e+05 -1.47499276e+05 2.14603185e+05 1.99885900e+05] [-8.87381091e+04 -9.26082173e+04 -8.06786322e+04 -5.09363779e+04 -7.21116556e+04 -9.63543435e+04 -1.14899374e+05 -8.57343426e+04 -7.33129760e+04 -9.87138167e+04 -1.11133070e+05 -1.00958556e+05 3.22336102e+04 1.72919330e+04 -1.02949949e+05 -1.10000569e+05 -9.18655540e+04 -2.95107059e+04 -4.37294242e+04 -8.39979173e+04 -9.50381662e+04 -1.05644746e+05 1.89974019e+04 -8.88834406e+04 -1.03424993e+05 -8.21137499e+04 4.48330804e+04 -9.93763184e+04 -4.32013710e+04 -6.22480221e+04 -8.71886139e+04 -9.06209278e+04 -1.03034619e+05 -1.01505757e+05 9.97423850e+04 5.71590614e+04] [-1.24348346e+05 -8.71398011e+04 -4.31682717e+04 5.00090632e+04 -3.45737825e+04 -5.89030921e+04 -3.92247686e+04 4.52744032e+04 -4.17013160e+04 -1.45245275e+05 -7.26675982e+04 -3.84113145e+04 5.81508622e+04 3.44081245e+04 -6.99321316e+04 -2.05921208e+05 -4.28293385e+04 1.43032369e+05 -1.60687233e+05 -2.85914258e+04 -3.23240814e+04 -9.88463281e+04 1.13455153e+04 -2.67335269e+04 -4.81131344e+04 -8.79116492e+04 4.60151873e+04 -5.44664354e+04 1.46091903e+05 6.48888777e+04 -4.50665574e+04 -2.13575290e+05 -7.33685161e+04 -5.61318696e+04 4.87737173e+04 -1.42822254e+04] [-1.22943113e+05 -9.10282295e+04 -2.75294092e+04 4.70794499e+04 -1.84498346e+04 -4.05828185e+04 -1.42164253e+04 6.83971388e+04 -3.42472178e+04 -1.36813834e+05 -4.67188748e+04 -1.47282455e+04 3.09513304e+04 2.14121151e+02 -4.71860470e+04 -2.00731117e+05 -2.74340183e+04 1.47274995e+05 -2.06205801e+05 -8.66787132e+03 -6.85616841e+03 -8.54279757e+04 -2.10168076e+04 -9.60646678e+03 -2.24509610e+04 -8.13055450e+04 4.66718570e+03 -3.40192933e+04 1.53788842e+05 7.03687287e+04 -2.57093606e+04 -2.15818199e+05 -5.30511176e+04 -3.63005777e+04 -3.38155456e+03 -6.15053693e+04] [-3.03131830e+04 -1.62076372e+04 -1.56659695e+04 2.29842883e+03 -1.48716515e+04 -1.20350918e+04 -2.40819493e+04 4.01091248e+04 -3.72035796e+03 -6.89053721e+03 -1.60632741e+04 -1.38189407e+04 1.35831711e+04 3.96645808e+03 -1.94330347e+04 -4.43601073e+04 -1.07234000e+04 1.27727731e+04 -8.60054215e+04 -1.11156289e+04 -1.21153305e+04 -3.54735954e+04 -1.06296970e+04 -1.23529886e+04 -1.39776825e+04 -2.37196348e+04 3.90132657e+03 -1.13141026e+04 4.42155555e+04 -4.17243835e+03 -1.33629666e+04 -6.03905796e+04 -2.08643547e+04 -1.69629927e+04 3.81488509e+03 -1.62077441e+04] [-5.58414368e-01 -9.70471191e-01 1.83718256e-02 -9.75830955e-01 9.16341677e-01 3.47016824e-01 7.49157034e-01 -9.28587917e-01 -4.10535751e-01 2.76945346e-01 -8.23477432e-01 6.71673415e-01 2.68614581e-01 -5.61802882e-02 2.49551188e-01 -1.48757709e-01 5.99823224e-01 4.72070827e-01 -9.44399571e-01 -5.18577334e-01 6.13481235e-01 -8.59854209e-01 -1.69457906e-01 7.52431170e-02 3.05857604e-01 -9.30687259e-01 -5.29898830e-01 -2.86141142e-01 -8.14047217e-01 9.73806287e-01 -8.20285911e-01 -7.07639660e-01 3.59650425e-01 9.87485706e-01 -2.20039540e-01 -2.61588327e-01] [ 5.72608071e-01 2.33530101e-01 6.00498229e-01 2.28325618e-01 -4.64364985e-01 -9.65431528e-01 5.10312059e-02 -3.24854200e-01 3.15842332e-01 -8.57049137e-01 9.31756191e-01 5.61954778e-01 -4.79347035e-01 -6.40421437e-01 -1.80755414e-01 -9.03906709e-01 -4.05077118e-01 2.14711498e-01 -2.13021970e-01 -8.47191222e-01 -8.32035878e-01 7.55553096e-01 3.73622457e-01 -5.92786139e-01 -7.07424603e-01 -3.29681284e-01 -4.61888094e-01 -9.31932215e-01 -7.55956296e-01 7.32804674e-01 8.73828459e-01 -6.10612601e-01 -1.21056672e-01 9.40360396e-01 -3.34967722e-01 -2.26362504e-01] [ 2.36464052e-01 1.74153485e-01 6.40094170e-01 5.15566594e-01 -4.15053423e-01 4.02144479e-01 9.05477457e-01 -3.50139231e-02 3.71963517e-01 -9.48158877e-01 1.36436272e-01 8.26476934e-01 -1.92057599e-01 7.93526990e-02 8.67484453e-01 -1.14510330e-01 -8.36366740e-01 -7.04370574e-01 -8.64055902e-01 -7.67772104e-02 -1.74061544e-01 8.26038328e-01 -9.18999810e-01 -6.63860601e-02 -9.31420914e-01 -9.06765421e-01 5.32140099e-01 6.61840184e-01 8.35142235e-01 6.16100959e-01 3.95933242e-01 -7.57683256e-01 -6.53560473e-01 -8.03083364e-01 -5.29417610e-01 -4.71169838e-01] [ 3.60935655e-01 -3.45237237e-01 -4.35722243e-01 -3.75814985e-01 -1.49277035e-01 -2.74310270e-01 -6.84479293e-01 6.66535744e-01 2.60794123e-02 -5.79732077e-01 4.28614506e-01 -9.69019476e-01 7.26218581e-01 -4.06009344e-01 9.60914266e-01 -1.61858519e-01 4.02715687e-01 -9.33991159e-01 3.26568714e-01 1.60260805e-01 8.67397780e-01 -3.78419898e-01 -5.76835669e-01 6.22969159e-01 -1.50952102e-01 -3.25016998e-01 -8.36681811e-01 6.00442492e-01 2.70687485e-01 -3.84585640e-01 -6.12825399e-01 8.58256896e-01 6.71107642e-01 2.54943771e-01 -1.13526455e-01 -2.30062742e-01] [ 2.46337033e-01 5.61829519e-02 -6.96518111e-01 5.69103564e-01 9.75568138e-01 2.44355484e-01 -2.50523822e-01 1.55170553e-01 2.97664350e-01 1.18152581e-01 1.53620154e-01 -2.78894826e-02 4.16572323e-01 -8.30472394e-01 -1.60660972e-01 3.81581455e-01 7.02251444e-01 6.72157256e-01 -2.59652772e-01 -5.07959386e-01 3.55672306e-01 1.11237772e-01 2.44518199e-01 7.76226459e-01 7.70111438e-02 2.15682935e-01 -8.57920365e-03 -9.23451633e-01 4.46530603e-01 -1.85047952e-01 -8.13071179e-01 5.19200588e-01 5.55961997e-02 4.14949149e-01 -2.04051554e-01 4.48129319e-01]] syn1 = [[ 1.75977685e+01 2.05978316e+01 -1.39930154e+02 -4.72769089e+01 3.34585189e+01 -8.83459131e+00 -4.01429061e+01 -1.12633578e+02 -9.45485523e+00 4.31161573e+01 -2.84505982e+01 -8.65471439e+01 -2.54491398e+01 -4.90225383e+01 -5.65367032e+01 -4.39647713e+01 -4.80778132e+01 -1.71617803e+02 3.81401258e+01 1.13354141e+02 -1.24004405e+02 -4.66459847e+01 -8.47690337e+01 -1.93748286e+01 -1.19794282e+02 -1.08444970e+02 -7.97907133e+01 -1.18694351e+02 -6.34789137e+01 -5.71908923e+01 3.90321855e+01 -1.15421995e+02 1.24583856e+02 -1.27481474e+02] [-1.86177366e+02 -5.22331083e+01 -1.64582441e+02 -2.14658516e+01 -8.14839838e+01 -4.68804044e+00 -4.11042144e+01 -1.82920245e+02 8.11842007e+01 1.01294764e+01 8.30170526e+01 -2.09278793e+01 -4.08508104e+01 -1.65559213e+02 9.36006217e+00 -1.58378927e+01 -1.45391162e+01 -9.56463577e+01 7.72729537e+01 -2.66451188e+01 -1.51068490e+02 -1.51576057e+02 -1.25943201e+02 -2.05711402e+01 -3.26242315e+01 -5.02006740e+01 -2.08872109e+02 -1.64221174e+02 -2.35810717e+02 -7.19641912e+01 2.99477061e+01 -6.65396893e+01 1.94313906e+01 -1.08048703e+02] [-2.80808733e+00 8.83277093e+00 -7.83718893e+00 -2.47947559e+01 4.08788466e-01 -2.28210001e+01 3.52431274e+00 -1.44689741e+01 2.15705560e+01 5.72611117e+01 -3.72077974e+01 4.48356471e+00 -1.79727014e+01 -7.20906163e+00 -1.02442398e+01 -2.49985191e+01 -1.08785909e+01 -4.09336100e+01 3.49988579e+00 5.09117197e+01 -6.51490779e+00 5.59177739e+00 -1.28554678e+01 2.51126471e+01 -2.83165122e+01 -1.63845716e+01 3.66288989e+00 -9.99184127e+00 4.03849651e+00 -8.99396336e+01 -5.50493138e+00 9.16982091e+00 3.48510224e+01 -3.72759039e+00] [-5.45919431e+01 3.88499753e+00 -1.36603699e+02 -9.09213343e+01 1.18298483e+02 -2.30421226e+02 -1.20320811e+02 -2.04819949e+02 -3.62671434e+00 7.76818565e+01 -1.09655952e+02 -1.24209920e+02 -7.94922284e+01 -1.58236275e+02 3.44696897e+01 -1.73680008e+02 -5.46746785e+01 -1.38685412e+02 1.58027996e+02 -6.79641994e+00 -4.97990060e+01 -4.01043885e+01 -1.88058045e+02 -7.77818268e+01 -1.99336444e+02 -8.63036715e+01 -3.51039161e+01 -9.43755282e+01 -5.47659453e+01 -1.28670909e+02 -5.69016884e+01 -1.13741737e+02 3.26842182e+01 -1.04476677e+02] [ 2.52365383e+01 5.81346373e-01 -1.96379928e+00 -4.50975113e+00 -1.31623789e+00 5.83273108e+00 2.26025973e+01 -2.00052206e+00 3.29211420e+00 5.91627848e+01 -3.01802715e+01 1.90563531e+01 -1.09158883e+01 1.22008080e+01 -2.03664460e+01 -2.85383463e+01 1.13966008e+01 -1.16837175e+01 6.72374352e+00 5.82630928e+01 -1.40870984e+01 1.42788353e+01 1.05049521e+01 3.15926462e+01 -1.47133523e+01 -9.09216652e+00 1.89645261e+01 9.54904661e+00 2.64738838e+01 -6.59193668e+01 -2.24031570e+01 1.24208287e+01 4.46181190e+01 5.34475466e+00] [-1.45680908e+01 1.97733347e+01 -1.48014630e+01 -5.45425157e+01 -2.55742436e+01 -6.65030956e+01 -1.94719739e+01 -4.17076660e+01 4.74611915e+01 5.32622536e+01 -4.41567349e+01 -2.92944452e+01 -5.84560376e+01 -4.38406439e+01 -4.54013656e+00 -3.21976722e+01 -3.19725798e+01 -5.57393915e+01 -5.25482868e+00 2.92538680e+01 -6.10977887e+00 -2.99466513e+01 -3.86999407e+01 2.77663361e+01 -3.98172779e+01 -2.01497936e+01 -1.28420240e+01 -4.73326418e+01 -2.93841337e+01 -1.21081062e+02 2.68259285e+01 8.11689546e-01 3.17460176e+01 2.30932006e+00] [ 1.06627395e+01 -2.28796113e+01 -4.39944052e+01 1.42812277e+01 -3.14016010e+01 -4.40313023e+01 -3.02945817e+01 -1.67869517e+00 -5.60811996e+01 -6.68596729e+01 1.70907185e+01 -3.98276409e+01 -4.78246807e+01 -3.32433151e+01 -2.35713841e+01 -1.04372732e+02 -6.52477032e+00 1.13813631e+01 -3.59312816e+01 -6.59930156e+01 1.75975012e+01 -1.22735946e+01 8.35424724e+00 -5.19247723e+01 -6.27794135e+01 -2.82314218e+01 1.29849676e+01 -1.23468132e+00 1.05702923e+02 -2.84069069e+00 -5.73928338e+01 -6.64660735e+01 1.45393035e+01 5.14045005e+01] [-2.56489623e+01 -2.06604046e+01 -6.41174547e+01 -2.90049940e+01 2.64408328e+01 1.76115221e+01 -6.66269058e+01 -4.02518882e+01 -1.19466203e+01 -6.89785217e+00 -8.26228058e+01 2.98599495e+01 4.59896399e+01 -1.71385963e+02 1.30702937e+02 9.30592400e+01 -9.23631710e+01 -1.53037548e+01 8.55845633e+01 -1.34400501e+02 4.83606280e+01 -6.43511169e+01 -1.18462666e+01 -9.07696463e+01 7.53239584e+00 -3.63584295e+01 -6.48292449e+01 -2.66630757e+01 -6.98837818e+01 7.87204990e+01 4.51868989e+01 -9.50037423e+00 -2.32973399e+02 5.30887389e+01] [-4.51334737e+00 8.65577428e+01 -1.01236001e+02 -6.91592151e+01 1.64620105e+01 -1.35029245e+02 -7.67208398e+01 -1.31304890e+02 -5.11794273e+01 2.87885074e+01 -1.10710938e+02 -1.35879562e+02 -5.84218243e+01 -1.17091358e+02 -5.54988875e-01 -8.60462965e+01 -7.36347586e+01 -1.61938412e+02 5.51291249e+01 2.54790390e+01 -4.70021407e+01 -3.05227788e+01 -1.35046858e+02 -5.34658388e+01 -1.51710057e+02 -8.14473698e+01 -3.23280832e+01 -8.42887869e+01 -1.95169525e+01 -9.10291586e+01 3.20018416e+01 -9.35662690e+01 -2.49917994e+00 -6.33617257e+01] [-1.68233118e+02 3.93038099e+01 -9.18250706e+01 -9.33362929e+01 -1.00264254e+02 -1.83371973e+02 -3.41449244e+01 -1.40468361e+02 1.11460658e+02 3.36248470e+01 -9.61851993e+01 -1.83633014e+02 -9.38839430e+01 -2.57674204e+02 1.04896337e+02 7.02793536e+01 -1.52106684e+02 -1.35606799e+02 9.88979412e+01 7.81244157e+00 1.64521377e+01 -2.17862695e+02 -2.43971977e+02 1.61844025e+01 -7.78740850e+01 -1.31275465e+02 -1.58625958e+02 -2.17529771e+02 -2.73262264e+02 -1.24051228e+02 1.86015219e+02 -7.53446287e+01 -1.58856956e+02 -8.98745480e+00] [-5.77838722e+01 2.27714368e+01 6.56846304e+00 -6.93985124e+00 -4.59457264e+01 -2.55699006e+01 -2.63267210e+01 2.02608396e+01 3.09424679e+01 3.51416737e+01 1.17224344e+00 -4.77818605e+01 -7.27040550e+01 -9.39214694e+01 4.04373517e+01 -2.86233091e+01 -1.73901265e+01 -3.68065317e+01 -3.09579745e+01 3.82805068e+01 -4.55950534e+01 -6.32787982e+01 -7.47625076e+01 -9.46558683e+00 -3.17431107e+01 -2.02450684e+01 -1.49256866e+01 -9.09720729e+00 -6.52962815e+01 -1.07357810e+02 -1.05890066e+01 -8.38749669e+00 6.48758377e+00 -1.34638024e+01] [-1.90063162e+01 1.59249844e+01 2.01968375e-01 3.46439910e-01 -2.02126662e+01 -4.74721778e+01 -4.39923385e+01 2.39673803e+00 -6.49867756e+00 6.90774637e-01 -5.74095244e+01 -5.14654131e+01 -5.12153640e+01 -9.81241344e+01 2.41455451e+01 -5.60103923e+01 -3.77328099e+01 -5.01439225e+01 -2.04854609e+00 5.40901115e+00 -2.51721208e+01 -2.75772515e+01 -5.47566521e+01 -1.90850264e+01 -5.01641222e+01 6.08473694e+00 1.29364073e+01 -8.45551173e+00 -9.69891893e+00 -8.03503514e+01 -1.42388048e+00 -1.75498495e+01 -2.87012129e+01 -1.80793260e+01] [-2.33686107e+01 3.59521861e+01 5.35345968e+00 7.36798915e+00 -1.20167373e+01 4.30665086e+00 5.05555831e+01 -2.28221311e-01 3.39038163e+01 5.89856892e+00 -5.71710620e+00 7.41091803e+01 5.28502878e+01 3.47510402e+01 2.17854528e+01 1.69004108e+02 2.91019582e+01 1.16366771e+01 4.62448792e+01 3.45891228e+01 -2.54962905e+00 -6.44563376e+00 -1.28021538e+01 -1.32116192e+01 2.94170548e+01 -1.72843908e+01 -1.58354241e+01 1.22336102e+01 -6.63850050e+01 -4.99902360e+01 5.73999217e+01 2.31893598e+01 1.02194096e+01 1.57293210e+01] [-5.76626279e+01 4.18452331e+01 5.96393652e-01 -1.77208242e+01 -6.98921852e+01 -8.28152210e+01 4.35934480e+01 -6.42876064e+01 1.00167047e+02 4.70053328e+01 -5.56052392e+00 1.74147647e+01 -1.01598051e+01 -1.13386387e+01 -3.43579868e+01 1.34278011e+02 7.14446660e+00 -2.83500045e+01 1.53563011e+01 2.15952376e+01 -2.49848154e+01 -8.56810719e+01 -9.34706733e+01 1.27810725e+01 -1.51370921e+01 -6.66317206e+01 -6.61640819e+01 -7.65207182e+01 -1.22646313e+02 -1.51897236e+02 1.22718753e+02 2.28544849e+01 1.72200798e+01 1.89192356e+00] [-4.27308825e+00 5.03472636e+00 -1.07450293e+01 -4.36247290e+01 -3.25073050e+01 -6.47374690e+01 -1.92764516e+01 -3.18818156e+01 1.61031125e+01 3.88154388e+01 -6.70577785e+01 -4.02498878e+01 -2.10697678e+01 -5.14228825e+01 5.44141580e+00 -3.84235005e+01 -5.30688600e+01 -4.64347547e+01 1.58153426e+01 1.47979994e+01 1.64307572e+01 -2.20894612e+01 -4.49252615e+00 3.34633075e+01 -3.18452395e+01 -1.40256483e+00 -8.85834471e+00 -4.08584135e+01 -6.78582984e+00 -7.37946193e+01 1.52812658e+01 -9.41137328e+00 -5.77852434e+00 6.46530125e+00] [ 5.06763752e+01 5.32741699e+01 -5.81752587e+01 -7.59280653e+01 -7.43871057e+01 -1.64771697e+02 7.28514618e+00 -9.21108723e+01 -5.06638559e+01 -8.41696601e+01 -8.48439085e+01 -1.80981341e+02 -8.92712310e+01 -1.14349133e+02 -1.08942609e+01 -3.80241660e+01 -1.47195262e+02 -1.10238126e+02 8.65166620e+01 7.66679769e+01 1.20206436e+02 -7.77424535e+01 -2.31274999e+01 4.18398959e+01 -5.21019916e+01 -7.82324928e+01 3.57155796e+00 -1.07941481e+02 9.84744858e+00 -1.18285047e+01 7.98332370e+01 -1.24729170e+02 -1.28934879e+02 9.39008909e+00] [-3.61784397e+01 4.17002824e+01 -2.95132321e+01 -5.21197065e+01 -2.30571736e+01 -8.49531336e+01 -4.08580023e+01 -4.65160863e+01 3.10591753e+01 5.59135091e+01 -5.60041709e+01 -4.93639917e+01 -5.86405003e+01 -5.78553107e+01 -1.37021833e+01 -3.02940191e+01 -2.68866544e+01 -6.68432436e+01 -7.94269951e+00 3.69784703e+01 -4.36096677e+01 -3.83745209e+01 -7.14384188e+01 -7.94283046e+00 -6.90380349e+01 -3.94053772e+01 -2.85245946e+01 -5.01463386e+01 -6.84676579e+01 -1.32455966e+02 1.70340697e+01 -1.77885946e+01 3.79546694e+01 -2.46465300e+01] [-3.00224148e+01 -1.63850607e+01 -1.35022083e+02 -8.86566366e+01 2.26813889e+02 -2.24327305e+02 -2.13738324e+02 -1.40152887e+02 -1.13136665e+02 1.78643726e+00 -1.35695156e+02 -7.13853680e+01 -8.80112317e+01 -1.09857605e+02 1.06360025e+01 -2.72060541e+02 -2.00233490e+01 -1.14388363e+02 1.23387883e+02 -6.72162325e+01 -1.03761547e+02 7.49195998e+01 -1.55218406e+02 -1.64708863e+02 -2.53849004e+02 -4.92505704e+01 1.72929483e+00 -3.69645442e+00 4.64419744e+01 -2.48930333e+01 -1.82746122e+02 -1.25726000e+02 5.42324712e+01 -9.40806841e+01] [ 1.11028686e+02 3.55576513e+00 -1.47759815e+02 3.06772523e+01 -6.78699383e+01 1.01311900e+02 1.03534723e+01 -2.11596796e+01 -7.86056435e+01 -2.65472490e+02 -1.90957752e+01 -6.70059961e+01 8.55402591e+01 2.35051394e+01 -2.47052036e+01 5.75071684e+01 1.47814592e+01 -9.61639658e+01 -2.11574424e+01 8.26963476e-01 -9.42067487e+01 -4.49389376e+01 4.53400997e+01 -5.27581919e+01 -6.79381220e+00 -1.63346995e+01 -8.34334102e+01 -1.30595844e+02 3.96397721e+01 1.10972309e+02 2.61651625e+01 -1.18407608e+02 -8.68261777e+01 -4.60013371e+01] [ 3.09725625e+00 1.01133227e+01 -7.95417569e+00 -2.92736868e+01 -3.47131230e+01 -3.96927022e+01 8.49259785e+00 -1.82844849e+01 1.17504032e+01 6.15597481e+01 -4.18299810e+01 -5.45391422e+00 -3.68251341e+01 -1.59900891e+01 -1.21550712e+00 -2.66166641e+01 -1.43975877e+01 -2.09387932e+01 5.12013444e+00 3.02635007e+01 1.40623489e+00 -7.83703012e+00 -1.80631418e+01 2.53719694e+01 -2.72423685e+01 -1.39924182e+01 -2.51520488e+00 -1.97267936e+01 4.56217086e+00 -9.78336326e+01 -6.67530802e-01 7.47745976e+00 1.55326177e+01 2.80073503e+01] [ 5.84521231e+00 2.82420939e-01 2.92631839e+00 -1.97724083e+01 -2.81551949e+01 -4.17146872e+01 -1.37797564e+01 -9.59182459e+00 -9.37171230e+00 3.64528098e+01 -4.53740754e+01 -5.93145883e+00 -1.80339616e+01 -2.49992669e+01 5.44331141e+00 -4.10796926e+01 -2.66217919e+01 -1.66326367e+01 9.86945148e+00 1.64713746e+01 8.92027169e+00 3.70557325e+00 -3.81267562e+00 9.73645595e+00 -3.27437300e+01 -4.87787027e+00 7.29252415e+00 -3.23572370e+00 7.71390232e+00 -6.77400367e+01 -2.74204067e+01 -2.50804486e+00 3.92947128e+00 1.09775561e+01] [-4.11283665e+01 3.54043206e+01 -5.14488049e+01 6.46013082e+01 -4.90624854e+01 -6.96054253e+01 -2.08267939e+01 1.11282439e+01 -9.39495923e+01 -4.62787543e+01 -5.04861859e+00 -1.06407737e+02 -3.91608710e+01 -8.62213786e+01 -1.34820668e+01 -6.14452570e+01 -5.93077331e+01 -9.60130433e+01 1.41171535e+01 1.05490131e+02 -2.15642879e+01 -7.06115275e+01 -3.53030005e+01 -1.82614032e+01 -1.09339167e+02 -7.62349571e+01 3.64848906e+01 -1.63853415e+01 2.14200615e-01 -6.70111770e+01 -5.75827499e+01 -9.96405225e+01 3.33547869e+01 -1.85120589e+01] [-2.85952981e+01 -1.69385598e+01 -4.67709844e+01 -2.78134553e+01 8.03070628e+00 2.87660980e+01 3.67726229e+00 8.55626422e+00 -2.08034926e+00 -4.03075424e+01 -4.00106916e+01 3.67732131e+01 4.46159053e+01 4.91179075e+00 5.90708086e+00 1.05754588e+02 3.20134440e+01 -2.90205823e+01 2.13705834e+01 1.67220884e+01 -4.28080451e+01 -1.85812999e+01 -2.39878811e+01 -3.84744892e+01 2.47468960e+01 -3.83371588e+01 -3.77268938e+01 -1.46338620e+01 -9.69088702e+01 -1.08653644e+00 3.18546718e+00 -1.57767834e+01 -1.75386350e+00 -6.11854965e+01] [-3.63256445e+01 2.05358077e+01 -1.67844616e+01 -3.33664730e+01 -1.31898472e+01 -5.71050859e+01 -4.05077018e+01 -1.63993470e+01 1.35765505e+01 5.14012024e+01 -5.94578879e+01 -3.04473394e+01 -4.82651973e+01 -5.06751702e+01 -1.23365150e+01 -3.43668486e+01 -6.83300502e+00 -6.07949787e+01 1.88408541e+00 3.49116352e+01 -4.39418694e+01 -2.37426433e+01 -5.21581273e+01 -2.47811055e+00 -5.73939019e+01 -2.58746618e+01 -7.72260016e+00 -2.17572780e+01 -3.84458709e+01 -1.13634729e+02 -1.10240731e+01 -6.04791099e+00 2.97878429e+01 -1.30258739e+01] [ 3.55843116e+00 -5.74542404e-01 -6.34717125e+00 -2.66362686e+01 -1.12029711e+01 -4.84038497e+01 -2.27469824e+01 -8.32126784e+00 -1.05648543e+01 7.00212550e+00 -5.74509917e+01 -2.64957001e+01 -1.98124582e+01 -4.71728807e+01 1.46086516e+01 -5.71128579e+01 -5.09011984e+01 -3.00954700e+01 6.63398150e+00 -4.57663796e+00 1.87545434e+00 2.50407435e+00 -5.01448639e+00 -3.71576704e+00 -4.25401486e+01 1.46991056e+01 -1.94403324e+00 -6.92125315e+00 1.00905093e+01 -5.50333956e+01 -1.60523464e+01 -2.50551745e+01 -1.83183480e+01 1.93311411e+00] [-2.45231775e+00 4.36779104e+01 -1.42893105e+01 8.92785933e+00 -7.40716208e+01 -1.06762251e+02 1.33324784e+01 -3.46848932e+01 -6.98332892e+01 -4.65520658e+01 -6.94972361e+01 -9.67832240e+01 -6.19437012e+01 -1.11945538e+02 7.84217442e+01 -6.16616801e-01 -1.00932878e+02 1.26444859e+01 1.56977824e+00 -1.45585229e+01 1.27085340e+02 -6.19036239e+01 -6.28479365e+01 -4.95299817e+00 -4.59076581e+01 -3.19221268e+01 3.47084587e+01 -7.05350307e+01 1.71303000e+01 -2.10321829e+01 5.81603084e+01 -5.98007987e+01 -2.02014065e+02 1.01163549e+02] [-2.69449376e+01 1.85107792e+01 -3.06236793e+01 -2.51446426e+01 -1.66010509e+01 8.51105875e+00 4.95350292e+01 -1.72575570e+01 5.63963759e+00 -1.18946275e+01 -1.16307543e+01 8.90695295e+01 5.75467230e+01 1.84892951e+01 1.44715445e+01 1.84988857e+02 2.13941751e+01 -1.41739360e+01 3.38623569e+01 2.33362031e+01 -1.61454214e+01 -2.98356666e+01 -2.55047675e+01 -3.65610039e+01 4.54294812e+01 -5.06431413e+01 -4.28979925e+01 -1.83291785e+01 -1.08177373e+02 -1.78383228e+01 5.07661764e+01 5.37487369e+00 -1.63610525e+01 -1.86505613e+01] [-9.54045781e+00 1.52934875e+01 -2.21786012e+01 -4.01723645e+01 -2.21561983e+01 -6.78765679e+01 -2.81176003e+01 -2.54766350e+01 1.78333672e+01 3.32886865e+01 -4.85524103e+01 -3.99134046e+01 -2.91433176e+01 -5.05764468e+01 4.59536687e-01 -3.46124938e+01 -4.11836158e+01 -4.81529587e+01 2.64027386e+00 1.74591884e+01 -1.94226064e+01 -1.98036844e+01 -2.41934906e+01 1.81740679e+01 -4.55163465e+01 -1.45530472e+01 -1.67193493e+01 -3.83318911e+01 -1.73183573e+01 -8.83810500e+01 1.68993292e+01 -1.91440013e+01 1.18101213e+01 9.26708284e+00] [-2.48836046e+00 5.23053906e+01 -7.78759692e+01 -8.14142112e+01 1.71342801e+02 -2.37309172e+02 -1.38524723e+02 -1.24946340e+02 8.66042409e+01 -7.23670901e+01 -6.85159937e+01 3.35093937e+01 7.29109147e+00 -1.00872219e+02 3.32205652e+01 3.02349174e+00 1.85195956e+01 1.33320012e+02 -3.02717334e+00 -1.27051999e+02 9.61044866e+00 -4.48611601e+01 -8.38503593e+01 -1.73322394e+02 -1.81805203e+02 -8.75122284e+01 -9.01213346e+01 -7.46195029e+01 -8.43302858e+00 2.32050407e+01 9.68265329e+01 -4.21472577e+01 -1.13047268e+02 -6.39786000e+01] [ 3.73074927e+01 7.54166098e+01 -5.98492471e+01 -5.97192893e+00 1.41591921e+01 -1.14915029e+02 -8.43178956e+01 -2.15870045e+01 -1.34882788e+02 -7.49096538e+01 -3.71525856e+01 -9.14563812e+01 -5.71745206e+01 -6.61471402e+01 -9.91279303e+00 -9.48199543e+01 3.95892409e+00 2.01463119e+00 1.95088170e+01 -2.97080922e+01 -5.17424295e+01 -1.69448656e+01 -8.02962026e+01 -1.40419099e+02 -1.66644946e+02 -1.06731337e+02 5.07683588e+01 2.56745800e+01 8.64396426e+01 -1.15921515e+01 -7.69689530e+01 -8.87537680e+01 -2.18245783e+01 -2.40494768e+01] [ 3.36733677e+00 7.08693352e+00 -7.54260195e+00 -3.64775610e+01 -1.72622350e+01 -2.98915492e+01 -9.11436889e-01 -1.50643651e+01 2.36249217e+01 5.80165131e+01 -4.70163968e+01 -1.09551401e+01 -2.98651978e+01 -2.63622863e+01 -2.60459069e+00 -2.03738431e+01 -2.14870220e+01 -4.66841297e+01 2.27332106e+00 3.01910956e+01 2.60202780e+00 -2.91001249e+00 -1.51389814e+01 2.99455310e+01 -2.12098494e+01 -1.16632674e+01 -1.27687183e+00 -1.65657632e+01 1.64355991e+00 -9.70339861e+01 1.06821927e+01 4.50814311e+00 2.45188828e+01 5.61683009e+00] [ 7.38829676e+01 5.67742410e+01 -1.31551556e+02 -2.23922802e+01 -3.58405141e+01 -1.43163504e+02 5.76702434e+00 -7.15975044e+01 -3.86229690e+01 -1.54620839e+02 -8.36581211e+01 -1.58467730e+02 -6.93711497e+01 -3.74077939e+01 -6.09848313e+01 -4.27219373e+01 -2.05454578e+01 -7.57273019e+01 3.84851384e+01 4.15719389e+01 -3.69277307e+00 -1.04658900e+02 -2.80668994e+01 1.42583067e+01 -1.06773596e+02 -1.31499536e+02 -1.26318851e+01 -1.78433136e+02 1.38802254e+01 -5.37448572e+00 6.14873455e+01 -1.31403249e+02 -3.37067474e+01 -8.63057270e+01] [ 1.15965734e+01 -1.57326728e-01 -1.43718273e+01 -2.79314847e+01 -2.15681621e+01 -5.00244874e+01 -1.49641018e+01 -6.48231096e+00 6.40123776e-01 1.54126631e+01 -3.84286559e+01 -2.24599987e+01 -2.02736760e+01 -4.13527926e+01 -9.76593096e-01 -4.41248900e+01 -4.54843424e+01 -3.60197805e+01 5.79545448e+00 1.81979552e+01 3.00901702e+00 -1.11604102e+01 8.77769475e+00 2.51582929e+01 -2.54449404e+01 1.17606812e+01 4.01481502e+00 -2.87987100e+01 5.61387258e+00 -6.72899703e+01 1.71698964e+01 -1.86237351e+01 1.10420766e+00 1.53391160e+01] [-2.78675569e+01 3.08737667e+01 -2.11716488e+01 -2.40875721e+01 -1.71479262e+01 -6.96996139e+01 -4.26116774e+01 -1.41359160e+01 -6.14868751e+00 3.57383664e+01 -4.50651109e+01 -5.76869011e+01 -4.64614018e+01 -7.64263059e+01 -9.84521326e+00 -6.42376332e+01 -3.13494960e+01 -6.60791372e+01 -1.48416931e+01 3.28828789e+01 -5.46226953e+01 -3.16833171e+01 -4.96763399e+01 -1.16002208e+01 -6.32383579e+01 -1.52073335e+01 -7.98653458e+00 -3.30740943e+01 -4.24968665e+01 -1.08343715e+02 -1.16697688e+00 -2.72836390e+01 -2.64135944e+00 -1.60111912e+01] [-1.59081376e+01 1.44263594e+01 -1.19427379e+01 -3.56822523e+01 -9.95374222e+00 -6.63055550e-01 6.43725837e+01 -4.44912970e+01 1.02717943e+01 -5.20030329e+00 -2.29532837e+01 4.50124082e+01 1.33136638e+01 4.19750937e+01 -1.44659033e+01 1.27175210e+02 3.06025751e+01 -2.18393501e+01 9.06530293e+00 2.40656548e+01 -3.39519436e+00 -1.31706866e+01 -3.98734200e+01 -2.43087457e+01 2.24954027e+01 -3.00978424e+01 -3.93640439e+01 -2.66671352e+01 -7.79393522e+01 -1.03650324e+02 2.40266307e+01 5.79173693e-01 3.50804371e+01 -3.38669138e+01] [-2.04533072e+01 1.26044606e+01 -3.17354768e+01 -4.15872116e+01 -1.72731920e+00 3.18797440e+01 6.61529152e+01 -3.11735189e+01 9.16725646e+00 -9.96178562e+00 -2.22334459e+01 4.51382155e+01 1.32813340e+01 2.39853166e+01 -1.90368460e+00 9.64402410e+01 1.18143830e+01 -2.20427060e+01 -8.96384252e-01 2.87679861e+01 -5.88828214e+00 -2.20656112e+01 -3.63774424e+01 -2.02683918e+01 3.55033060e+01 -3.32454619e+01 -5.15658581e+01 -3.50872574e+01 -1.18010751e+02 -5.35763251e+01 2.04927639e+01 -1.45961362e+01 -6.78791843e+00 -5.25786326e+01]] syn2 = [[ 6.53255608e-01 -7.81726238e-01 1.50873204e+00 -3.94529830e+00 -2.05232343e+00 3.92407385e+00 -1.14457075e-02 -3.27455221e+00 1.84395833e+00 -3.35020040e+00] [-2.74766419e+00 -3.24420947e-01 3.55588049e-01 1.21950411e-03 -5.57903366e+00 -3.36522443e+00 6.12355719e+00 -3.19343506e+00 -1.75433576e+00 -5.34801533e+00] [ 4.02695165e-01 -1.07518024e+00 -1.70123094e+00 3.83551550e+00 1.14277753e-01 6.05846222e-01 -9.76958056e-01 -7.03324281e-01 -2.32236188e-01 6.69535983e-01] [-4.82281910e-01 -2.05046345e+00 -1.43298198e+00 2.13073857e-01 4.87762371e-01 -1.72161041e+00 -5.23464525e+00 -2.99146671e+00 3.03699344e-01 -3.15034181e+00] [ 4.06290082e+00 -7.79086267e+00 4.25344763e+00 -6.83517779e-01 2.58091338e+00 -6.66348001e+00 -1.18876372e+00 4.99575897e-01 -3.89736754e+00 -1.74076411e+00] [-5.00540950e+00 -3.49876586e+00 -3.11779151e+00 -2.14650813e-02 -5.66139992e-01 -2.81711436e+00 -5.97783978e+00 -1.13178080e+00 -2.77213977e+00 -1.11986234e+00] [-3.47233185e+00 1.29780938e+00 -2.90674393e+00 3.28820844e-02 -4.82698459e+00 -2.57233305e+00 -5.41093051e+00 5.69418769e+00 1.65149651e+00 -3.55879729e+00] [ 4.58523219e-01 -6.72622424e+00 -7.96778439e-01 2.99154804e+00 1.51677234e+00 -5.23850856e-01 -2.10215802e+00 -2.98234369e+00 -2.42397901e+00 -2.75781051e+00] [ 1.11061493e-01 -7.22705687e-01 -3.24230904e+00 -3.37240545e-01 6.95915214e-01 -5.34915124e+00 -3.30293405e+00 2.78062533e+00 -3.69412028e+00 -1.23650432e+00] [-3.40218255e+00 6.48048851e+00 -1.19797547e+00 2.35100135e-01 -8.19271819e-01 -5.33014661e+00 -7.01056864e+00 -8.35403624e-01 -4.73585684e+00 2.38736310e+00] [-1.94355025e+00 -7.47636253e+00 -2.74446150e+00 8.02378211e-01 -1.37208079e+00 -3.15010520e+00 -3.84930544e+00 2.64969553e+00 2.41581683e+00 1.55866600e-01] [-2.25130566e+00 -5.43921205e+00 -2.08139357e+00 5.65200882e-01 -1.13702658e+00 -1.31291179e+00 -5.47260219e+00 3.51871746e+00 -3.06519286e+00 1.16760709e+00] [-2.65811802e-01 -4.04890070e+00 2.04261188e+00 -2.35510310e+00 7.99617337e-01 -1.96396383e+00 -2.82885688e+00 7.16753195e-02 1.24591074e+00 -5.43892736e-01] [-1.97046977e+00 -1.62590201e+00 1.06351058e+00 3.91604558e-02 -3.94948616e-01 -2.15979345e-01 -5.15585517e+00 3.23560995e+00 2.49619224e+00 2.95721909e+00] [-2.73366636e+00 -2.16611740e+00 -5.42693297e+00 -3.12563919e+00 4.65572352e+00 -1.54487468e+00 2.49614023e-01 -3.18167945e+00 7.70637610e-01 -2.08279123e+00] [-2.81299675e+00 -6.33568421e+00 -3.08082598e+00 -1.95871434e+00 -3.03971293e-01 -2.22888205e+00 -4.16561437e+00 -3.33057712e+00 -2.43312593e-01 1.68456585e+00] [ 2.67729150e+00 -1.18095459e+00 -4.14665587e+00 -1.22593296e+00 -1.92761190e+00 -2.76775554e-02 -3.82779114e-01 -2.62412572e+00 -4.77439733e+00 3.22377066e+00] [ 6.44110414e+00 -3.96538273e+00 -5.00794565e+00 -1.01063410e+00 -1.67352125e+00 -8.18392785e-01 -6.18773236e+00 3.35161386e+00 -3.88472254e+00 -3.49437111e-01] [-7.46861777e+00 -9.75667482e-01 -2.07156291e+00 -1.15526082e+00 -1.25729298e+00 1.33198751e-02 -2.61970421e+00 -6.63320411e+00 4.56103327e-01 -1.12475657e-01] [-5.24298738e+00 1.48085404e+00 6.78771162e-01 -2.85955274e+00 3.09910462e+00 -1.39610107e+00 -3.21238512e+00 4.77340343e-01 1.38217897e+00 -6.52941379e+00] [-2.12551954e+00 -2.46819933e+00 -7.70764569e-01 -1.41946590e+00 -3.82581800e+00 4.80083639e+00 -2.12782064e+00 4.32236620e+00 -5.03320869e+00 -8.95322677e-01] [-2.33533871e-01 -5.68410969e+00 3.68648523e+00 -1.01615772e+00 -7.00216437e-01 -4.89914433e-02 -5.22572635e-01 -2.47941779e-01 -2.36659849e+00 3.39124112e+00] [-8.60503345e-01 -2.59453438e+00 6.33893657e-01 -1.26455802e+00 -2.79479067e+00 4.71301419e+00 -5.23377831e+00 2.12566261e+00 -6.85342766e-01 -1.97481775e+00] [-3.01019172e+00 3.03084461e+00 -6.36654147e-01 3.10246625e-01 7.25535301e-01 1.42265009e+00 -3.90313693e+00 2.35706273e+00 -1.55371903e+00 -1.94184803e-01] [-2.51686524e+00 -8.27406926e-01 -3.93807549e+00 7.17862265e-01 -5.52424423e-01 1.78066048e+00 -4.17260083e+00 4.63216439e+00 -3.43925439e+00 6.77243178e-01] [-1.65359357e-01 -2.18030892e+00 -1.76545898e+00 -3.96749333e-01 2.22075536e+00 2.59673099e+00 1.48400204e-01 -3.91178321e-01 -6.71836591e-01 1.02435614e+00] [-2.96126101e+00 -5.66150537e-01 -3.03042301e+00 3.60454753e+00 -3.74489853e+00 8.86472593e-01 -2.68186065e+00 -3.90179658e+00 1.97754003e+00 -2.11475778e+00] [-4.19420977e-01 -6.64976468e+00 -2.80863799e+00 4.17531061e+00 -4.52969619e-01 -2.53312500e+00 -2.04243429e+00 -1.93778209e+00 -1.59148232e-02 5.02316842e+00] [ 7.77756034e-01 -2.87151110e+00 2.43779910e+00 1.08941564e+00 -2.65841603e+00 1.89653658e+00 -7.38960685e-01 -7.36362648e+00 1.12415557e-01 -1.41625224e+00] [ 1.33079760e+00 -6.60172572e+00 -2.26338025e+00 -5.07170852e+00 2.19034334e+00 1.40784744e-01 -4.04383085e-01 -6.57130084e-01 8.20751426e-01 1.98176397e-01] [-4.72883332e-01 3.57740762e-01 -4.65194027e+00 -4.01463192e+00 -3.47407602e+00 -1.41359965e+00 2.89756373e+00 2.80812333e-01 -2.63416377e+00 1.82721019e+00] [ 5.64979039e-01 1.57499196e+00 -2.02698719e+00 2.53095086e+00 1.40221816e+00 -8.30099075e-01 -2.02834490e+00 -3.27276885e+00 -3.24942111e+00 1.33428065e+00] [-2.93535955e+00 2.13567448e+00 -7.52365913e-01 2.31130072e+00 -1.56005211e+00 -5.26342415e+00 -3.08157013e+00 2.72945538e-01 -2.84029347e+00 1.78330794e+00] [-2.56831877e+00 -1.68549930e+00 -2.93974885e+00 -2.87900416e+00 -1.73070613e+00 3.59006710e+00 -4.01741500e+00 -3.75313207e+00 -2.20974683e+00 4.10056117e+00]] b0 = [[ -875.73663618 -813.85866971 -840.27174486 -1066.0344334 -826.36406162 -877.04031066 -916.60081508 -515.31463157 -856.81938453 -934.05288301 -882.58779013 -884.11254226 -344.67593241 -503.62217279 -882.00032229 -899.51823195 -921.02182561 -1127.18384338 -628.77626535 -831.6744478 -846.43811066 -941.3049701 -301.58188636 -890.1993107 -862.5599114 -661.3040105 -254.89316881 -871.50264689 -869.4125715 -820.86846255 -840.98990615 -850.6850811 -861.05567862 -914.68797341 -250.68963748 -257.9943676 ]] b1 = [[-1.66278210e+00 -3.65324540e+00 -4.51958146e+00 -2.57870597e+00 -4.87897223e+00 5.29131753e-01 -6.82521641e-01 -3.82414882e+00 -3.59395758e+00 -4.49837233e+00 -2.93700807e+00 -2.09688231e+00 -2.71914216e+00 -7.11979726e-01 -4.03584819e+00 3.47651147e-03 1.68643496e-01 -2.81502351e+00 -4.15120256e+00 -5.23985551e+00 -4.01459467e+00 -4.10819489e+00 -3.10466809e+00 -4.72698550e+00 -5.82501507e-01 -3.52325194e+00 -2.77943189e+00 -4.12160271e+00 -3.03927975e+00 -2.62742330e+00 -3.49018083e+00 -2.38325761e+00 -5.95594166e+00 -1.73942359e+00]] b2 = [[-1.29065252 -1.07410532 -1.12565259 -1.91341438 -0.90875645 -1.56695869 -1.52767328 -0.36236739 -1.04558348 -0.45456078]]
da7a23f4a851db24c0e9eb29f459bc642aaa7923
a2567270e79ff3f8b7b9a9e28f91b46c2315313a
/unidad_2/ejercicio_2_8.py
5739b6c289dc09a410a352d9b02db209ce324660
[]
no_license
b3nkos/learning_python
b87c421918ff3ad9ae480d351cbabf20d18fbb36
64920a70ad14b94d0abfa690e7c70e209014c5e7
refs/heads/master
2016-09-03T07:34:49.190664
2015-07-13T05:31:27
2015-07-13T05:31:27
38,992,888
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
#!/usr/bin/python # -*- coding: utf-8 -*- """ Escribir un programa que use un ciclo definido con rango numérico, que averigue a cuántos amigos quieren saludar, les pregunte los nombres de esos amigos/as, y los salude. """ number_of_friends = input("Digite el número de amigos que desea saludar: ") for x in range(number_of_friends): best_fiend = raw_input("Nombre del mejor amigo: ") print "Hola", best_fiend + "!"
c3ccdce9e5846ff35e01721dd3820ee452c05378
e2cdf33fed0f2ea82ca3933ea0f57affb2bb203a
/events.py
4b5b148ce2f959d75029b3f4c61254b6cb90f35f
[]
no_license
shaikhul/scoring_engine
67109c569bfa7b425fee8fdf4367d92adc0bd433
e48693be39cfeb849c245b5bc9b5a67270d7859a
HEAD
2016-09-06T04:30:40.571150
2015-09-01T02:49:11
2015-09-01T02:49:11
41,713,070
0
0
null
null
null
null
UTF-8
Python
false
false
496
py
class Event(object): def __init__(self, score=0): self.score = score def get_weighted_score(self): return self.weight * self.score def get_event_type(self): return self.event_type class WebEvent(Event): weight = 1.0 event_type = 'web' class EmailEvent(Event): weight = 1.2 event_type = 'email' class SocialEvent(Event): weight = 1.5 event_type = 'social' class WebinarEvent(Event): weight = 2.0 event_type = 'webinar'
e54034ad6c7d99686d24d85630c58338ce0e63ee
6f753a851d5ffc7263160642422ee654e5a75a4e
/blog/templatetags/blog_tags.py
94aa21fe6d3d95bbea80c9dd8e46c0ff3b4876d9
[]
no_license
iteegi/myBlog
1f5dda1f4a615a4e6a8a107838ab4b8db72c283f
b6f5dec8c5dbe258e0e25f2b300c968ace0d8350
refs/heads/master
2021-02-16T08:17:46.222872
2020-03-04T19:27:17
2020-03-04T19:27:17
244,984,455
0
0
null
null
null
null
UTF-8
Python
false
false
968
py
"""Custom tags for the blog.""" from django.db.models import Count from django import template from ..models import Post from django.utils.safestring import mark_safe import markdown register = template.Library() @register.simple_tag def total_posts(): """Return the number of published articles.""" return Post.published.count() @register.inclusion_tag('blog/post/latest_posts.html') def show_latest_posts(count=5): """Return the last few posts.""" latest_posts = Post.published.order_by('-publish')[:count] return {'latest_posts': latest_posts} @register.simple_tag def get_most_commented_posts(count=5): """Get the article with the most comments.""" return Post.published.annotate(total_comments=Count('comments'))\ .order_by('-total_comments')[:count] @register.filter(name='markdown') def markdown_format(text): """Populate article body with Markdown formatting.""" return mark_safe(markdown.markdown(text))
3054352bdfefed54c1ca9176eeaada9868f2f651
97637aa398dd498a4f3598a061329ee0a8919726
/robots/maps.py
41e5db884a562f71bbb89930ad58643e2a6cfabb
[]
no_license
guitaoliu/multi_robot_xplore
1d09a328779484ec482714a0438da75469342eaf
2a006216aaacf4e9e5ae6ca753e390897812f055
refs/heads/master
2022-10-02T21:54:02.535024
2020-06-03T07:30:03
2020-06-03T07:30:03
269,020,061
1
0
null
2020-06-03T07:31:11
2020-06-03T07:31:11
null
UTF-8
Python
false
false
3,125
py
import numpy as np from abc import ABC from typing import List from robots.setting import ( MAP_SIZE, BARRIER_PERCENTAGE, PHE_VOLATILIZE_CAP, MAP_EXPLORE_PERCENT, ) class Node: def __init__(self, pos: tuple): self.x = pos[0] self.y = pos[1] def loc(self) -> tuple: return self.x, self.y def __eq__(self, other): return self.x == other.x and self.y == other.y class Map(ABC): def __init__(self): self.map = np.zeros(MAP_SIZE, dtype=int) def __getitem__(self, indices): return self.map[indices[0], indices[1]] class BarrierMap(Map): def __init__(self): super(BarrierMap, self).__init__() self.barrier_num = int(MAP_SIZE[0] * MAP_SIZE[1] * BARRIER_PERCENTAGE) self.load_barrier() def load_barrier(self): choices = np.random.choice(np.arange(MAP_SIZE[0] * MAP_SIZE[1]), size=self.barrier_num, replace=False) map_flatten = self.map.flatten() for choice in choices: map_flatten[choice] = 1 self.map = map_flatten.reshape(MAP_SIZE) def __call__(self, node: Node) -> bool: return self.map[node.x, node.y] == 1 def get_random_node(self): x, y = np.random.choice(range(self.map.shape[0])), np.random.choice(range(self.map.shape[1])) while self.map[x, y] == 1: x, y = np.random.choice(range(self.map.shape[0])), np.random.choice(range(self.map.shape[1])) return Node((x, y)) class ExploreMap(Map): def __init__(self): super(ExploreMap, self).__init__() def update(self, node: Node): self.map[node.x, node.y] = 1 def is_finished(self) -> bool: if self.map.sum() >= MAP_EXPLORE_PERCENT * self.map.shape[0] * self.map.shape[1]: return True else: return False def status(self, node: Node) -> int: return self.map[node.loc()] def get_neighbours(self, node: Node) -> List: node_list = [] for i, j in [(-1, 0), (0, -1), (1, 0), (0, 1)]: if node.x - i < 0 or node.x + i >= MAP_SIZE[0] \ or node.y - j < 0 or node.y + j >= MAP_SIZE[1]: continue if not self.status(Node((node.x + i, node.y + j))): node_list.append(Node((node.x + i, node.y + j))) return node_list class PheMap(Map): def __init__(self): super(PheMap, self).__init__() self.map = np.zeros_like(self.map, dtype=float) def update_phe(self, node: Node): self.map[node.x, node.y] += 1 def phe_volatilize(self): map(self.volatilize, self.map) @staticmethod def volatilize(phe_level: float) -> float: return (1 - PHE_VOLATILIZE_CAP) * phe_level def get_phe(self, node1: Node, node2: Node) -> float: phe = 0 x_start, x_end = min(node1.x, node2.x), max(node1.x, node2.x) y_start, y_end = min(node1.y, node2.y), max(node1.y, node2.y) for i in range(x_start, x_end): for j in range(y_start, y_end): phe += self.map[i, j] return phe
3e04a14261479eb12b66058bcc6adbed16a4c1ec
d9705629fb827d3d2dcfc252c24ddb67862556d6
/data_wordcloud02.py
52d69c300d0600ef40bac46de0ddd3bdfdbe46f6
[]
no_license
haorenxwx/WordCloudLearning1
9d7f1fe10d24d1d2bd1710a97e178e6c06c0f7a5
daf41b5a35832b7ecd2cf0d797923d14d6c6390f
refs/heads/master
2021-01-23T06:02:31.898291
2017-09-07T15:05:18
2017-09-07T15:05:18
102,485,693
0
0
null
2017-09-05T14:25:01
2017-09-05T13:39:13
Python
UTF-8
Python
false
false
1,668
py
#-*- coding: utf-8 -*- #test change in github #from wordcloud import wordcloud import wordcloud as wc import codecs import jieba #import jieba.analyse as analyse from scipy.misc import imread import os from os import path #import matplotlib.pyplot as plt import matplotlib.pylab as plt #from PIL import Image, ImageDraw, ImageFont import pandas as pda from PIL import Image from numpy import array #path="E:/电子书/《那些回不去的少年时光》.txt" path="E:/电子书/BL Novel/柴鸡蛋/《你丫上瘾了?》BY:柴鸡蛋.txt" data=open(path,"r",encoding="gbk").read() #data=open(path,"r",encoding="UTF-8").read() #h=pda.read_table("E:/电子书/《那些回不去的少年时光》.txt") #comment_text = open('E:/电子书/《那些回不去的少年时光》.txt',encoding='UTF-8','r').read() #print(comment_text) #cut_text = " ".join(jieba.cut(h)) #d=path.dirname(_file_)#当前文件所在文件夹目录 cutdata=jieba.cut(data) alldata="" for i in cutdata: alldata=alldata+" "+str(i)#通过迭代器把词语连起来并用空格隔开 color_mask = imread ("E:/study/python/onepiece.png")#读取背景图片 #font=r"E:/study/python/HYQiHei-25J.ttf" font=r"E:/study/python/simhei.ttf" cloud=wc.WordCloud( collocations=False, #font_path ="HYQiHei-25J.ttf", font_path=font, #指定字体 #font_path =path.join(d,"HYQiHei-25J.ttf"), background_color='white', #设置背景色 mask=color_mask, #词云形状 max_words=500, max_font_size=40 ) word_cloud =cloud.generate(alldata) #word_cloud =cloud.generate(h) #word_cloud =cloud.generate(cut_text) word_cloud.to_file("losttime.jpg") plt.imshow(word_cloud) plt.axis('off') plt.show()
633864555ecc66eee48aee8dc62a911061bc4b80
931fafb77d3d1e00d25a4ab658f75d2cd9f5abb8
/Fundamentals/Session1/YoB.py
5ee44632a7db87bb8911a50eb0952ebb32a409d0
[]
no_license
andynguyendk/andynguyen_fundamentals_C4E15
c72e74d13fcd59dc0d6c7072d55d092418cabfa7
845da653307dc72ad68f55d756c36ff17802c6aa
refs/heads/master
2021-09-09T02:54:30.863797
2018-03-13T12:17:11
2018-03-13T12:17:11
117,338,525
0
2
null
null
null
null
UTF-8
Python
false
false
88
py
n = int(input("What's your year of birth? ")) a = 2018 - n print ("Now your age is", a)
478b126ab280b9343347c1ee8bc9238dd9f45703
86da8c4d616a78afc7cd09711b0151e5f852a8b8
/pythonprograms/LanguageFundamentals/Logicaloperator.py
98dae1b5e2d38ecb15661dfb77541e77356b7768
[]
no_license
sharijamusthafa/luminarpython
d1d3274d23d93af2c5e4db7d2652e8cb46b133aa
8ebd75ea5f734e5061a7138153a2c6b1cd43a738
refs/heads/master
2022-12-23T22:45:40.194242
2020-10-07T16:40:09
2020-10-07T16:40:09
290,109,565
0
0
null
null
null
null
UTF-8
Python
false
false
32
py
num1=2 num2=4 print(num1&num2)
c98cf8d841b31199e65e5296805d025a9c933399
fbea032896db7e9f17687ab1e09cee580a66d179
/utils.py
10af90c3c81b1277d7ffa8227263bb65cfa174ec
[]
no_license
jmadni/ingage
4be888a6afe9cbef7b3c6adda0d27553fa35395c
c4a95bb01c63d12e1128a6a541edab39292c9b03
refs/heads/main
2023-02-13T14:02:42.554191
2021-01-12T07:03:33
2021-01-12T07:03:33
328,564,822
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
import os import shutil from moviepy.video.io.VideoFileClip import VideoFileClip def output_directory(dir): if os.path.exists(dir): shutil.rmtree(dir) os.mkdir(dir) def check_input_file_valid(video_file): try: VideoFileClip(video_file) except FileNotFoundError: pass
a6cc13163a16574087d481e50d5730f46c476e01
ef4a2e4aadc67a1d5e929f5c0c3e902b34f663dc
/examples/psychotria.lagrange.py
767424584fc3bc922133c667c347f6c9b73538e6
[]
no_license
zxf-art/lagrange-python
326b23cc69b1eb81db9127a2ec8fc91bcc0b6dbc
e67f1e671d313319bdc374a3371fa3717a8e7091
refs/heads/master
2020-06-12T06:18:20.917164
2018-01-22T19:50:43
2018-01-22T19:50:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,929
py
#!/usr/bin/env python import os import lagrange data = """\ ### begin data {'area_adjacency': [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], 'area_dispersal': [[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]], 'area_labels': ['K', 'O', 'M', 'H'], 'base_rates': '__estimate__', 'dispersal_durations': [10.0], 'dm_symmetric_entry': True, 'excluded_ranges': [], 'lagrange_version': '20120508', 'max_range_size': 2, 'model_name': 'psychotria', 'newick_trees': [{'included': '__all__', 'name': 'Tree0', 'newick': '((((((((P_hawaiiensis_WaikamoiL1:0.010853, P_mauiensis_Eke:0.010853)N2:0.007964, (P_fauriei2:0.013826, P_hathewayi_1:0.013826)N5:0.004991)N6:0.001986, (P_kaduana_PuuKukuiAS:0.020803, P_mauiensis_PepeAS:0.020803)N9:1e-05)N10:0.003762, P_kaduana_HawaiiLoa:0.024565)N12:0.003398, (P_greenwelliae07:0.012715, P_greenwelliae907:0.012715)N15:0.015248)N16:0.018984, ((((P_mariniana_MauiNui:0.02241, P_hawaiiensis_Makaopuhi:0.02241)N19:0.008236, P_mariniana_Oahu:0.030646)N21:0.002893, P_mariniana_Kokee2:0.033539)N23:0.005171, P_wawraeDL7428:0.03871)N25:0.008237)N26:0.008255, (P_grandiflora_Kal2:0.027864, P_hobdyi_Kuia:0.027864)N29:0.027338)N30:0.003229, ((P_hexandra_K1:0.026568, P_hexandra_M:0.026568)N33:0.005204, P_hexandra_Oahu:0.031771)N35:0.026659)N36;', 'root_age': 5.2}], 'ranges': [(), (0,), (0, 1), (0, 2), (0, 3), (1,), (1, 2), (1, 3), (2,), (2, 3), (3,)], 'taxa': ['P_mariniana_Kokee2', 'P_mariniana_Oahu', 'P_mariniana_MauiNui', 'P_hawaiiensis_Makaopuhi', 'P_wawraeDL7428', 'P_kaduana_PuuKukuiAS', 'P_mauiensis_PepeAS', 'P_hawaiiensis_WaikamoiL1', 'P_mauiensis_Eke', 'P_fauriei2', 'P_hathewayi_1', 'P_kaduana_HawaiiLoa', 'P_greenwelliae07', 'P_greenwelliae907', 'P_grandiflora_Kal2', 'P_hobdyi_Kuia', 'P_hexandra_K1', 'P_hexandra_M', 'P_hexandra_Oahu'], 'taxon_range_data': {'P_fauriei2': (1,), 'P_grandiflora_Kal2': (0,), 'P_greenwelliae07': (0,), 'P_greenwelliae907': (0,), 'P_hathewayi_1': (1,), 'P_hawaiiensis_Makaopuhi': (3,), 'P_hawaiiensis_WaikamoiL1': (2,), 'P_hexandra_K1': (0,), 'P_hexandra_M': (0,), 'P_hexandra_Oahu': (1,), 'P_hobdyi_Kuia': (0,), 'P_kaduana_HawaiiLoa': (1,), 'P_kaduana_PuuKukuiAS': (2,), 'P_mariniana_Kokee2': (0,), 'P_mariniana_MauiNui': (2,), 'P_mariniana_Oahu': (1,), 'P_mauiensis_Eke': (2,), 'P_mauiensis_PepeAS': (2,), 'P_wawraeDL7428': (0,)}} ### end data """ i = 0 while 1: if not i: outfname = "psychotria.results.txt" else: outfname = "psychotria.results-"+str(i)+".txt" if not os.path.exists(outfname): break i += 1 outfile = open(outfname, "w") lagrange.output.log(lagrange.msg, outfile, tee=True) model, tree, data, nodelabels, base_rates = lagrange.input.eval_decmodel(data) lagrange.output.ascii_tree(outfile, tree, model, data, tee=True) if base_rates != "__estimate__": d, e = base_rates else: d, e = lagrange.output.optimize_dispersal_extinction(outfile, tree, model, tee=True) if nodelabels: if nodelabels == "__all__": nodelabels = None lagrange.output.ancsplits(outfile, tree, model, d, e, nodelabels=nodelabels, tee=True)
5b8dec57487f5b0f362fcf9ff61241d3a643f9ec
b8454cadc306140b7140bd4a5040da9b9c18c980
/base/migrations/0001_initial.py
06ccb1bdae7339a5b873157a6a8bc6042ac5462d
[]
no_license
amar3142/mywebsite3
dc62e6de5ba7d48e72532c6f848d2d39d1965a5d
db45c03af908bc5df68154e3227f4dee0db28bc6
refs/heads/master
2023-02-04T18:48:48.876485
2020-12-17T10:36:50
2020-12-17T10:36:50
321,337,547
0
0
null
null
null
null
UTF-8
Python
false
false
621
py
# Generated by Django 3.1.4 on 2020-12-16 13:20 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Task', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('complete', models.BooleanField(default=False)), ('created', models.DateTimeField(auto_now_add=True)), ], ), ]
7d3341862b6c5f086993c701914ada358509663c
d27c668c98b83904c830141f143125c4eca54406
/Compiler.py
d1e042d8eaee3e7225397dcecd832c4bb8d157d7
[]
no_license
VladasZ/build_tools
d38dd7c1b237ec0c7f5d2c0610d85ee94539c923
926b1c4b2467e7bb5c58d217cc39cb8d8e9dd8d0
refs/heads/master
2022-02-25T04:33:07.360975
2022-02-09T21:29:16
2022-02-09T21:29:16
144,903,216
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
import Args import System import Compilers.GCC import Compilers.Clang import Compilers.VisualStudio gcc = Compilers.GCC.get() clang = Compilers.Clang.get() visual_studio = Compilers.VisualStudio.get() def get_ide(): if System.is_windows: return visual_studio if System.is_mac: return clang return gcc def get(): if Args.android: return clang if Args.ide: return get_ide() if Args.clang: return clang if Args.gcc: return gcc if System.is_mac: return clang return gcc def print_info(): print(clang) print(gcc)
c2c9f862af8d90b56e812982f7aebae9015306e5
e4875a1e3ff1e46c63b546aa944565d716d71d0e
/serene_load/serene_load/merge_trees.py
e558c2375625dbacaada6d48b245352bac6c8545
[ "Apache-2.0", "MIT" ]
permissive
NICTA/serene-etl
e1f4ffa4b6c77a1dfbc1d1974fac7cec42f71f85
1d446012c0d08a95b8fbbbe8237735320a2fe2a4
refs/heads/master
2021-01-22T13:48:03.297688
2017-10-09T01:30:44
2017-10-09T01:30:44
100,686,105
0
0
null
null
null
null
UTF-8
Python
false
false
1,156
py
import logging import argparse from serene_load.meta_select import load_meta def create_arguments(): parser = argparse.ArgumentParser(description='take all json data from one directory and merge into another tree') parser.add_argument('--meta', type=unicode, help='Directory containing primary metadata', required=True) parser.add_argument('--source', type=unicode, help='Directory containing secondary metadata to merge into primary', required=True) parser.add_argument('--verbose', type=bool) def setup_logging(LEVEL): logger = logging.getLogger() logger.setLevel(LEVEL) stream_handler = logging.StreamHandler() stream_handler.setLevel(LEVEL) formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s') stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) return logger def main(): parser = create_arguments() args = parser.parse_args() log = setup_logging(LEVEL=logging.DEBUG if args.debug is True else logging.INFO) primary = load_meta(args.meta) secondary = load_meta(args.source) print secondary if __name__ == '__main__': main()
08329a18ff4f915bce929ea48502042c6b5369ab
0910b5a1b6fd8d29579ea0596419331a51434b77
/leopi/projects/tweeter/leonorrepitweeter.py
bee7022c3feac5a2737c4d4bf4deb2be3e7e6f95
[]
no_license
efrister/LeoNorrePi
60d2a5aa5a8c3d1435c53cba285715c741f83f33
2a25eba405fb22ddc3faf38cceaa29f955996ba2
refs/heads/master
2021-01-01T15:19:00.653023
2014-02-22T15:15:08
2014-02-22T15:15:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,210
py
from twython import * import configparser # Read configuration configuration = {} try: config = configparser.ConfigParser() config.read('config.ini') # Read all options into a dictionary for section in config.sections(): configuration[section] = {} for option in config.options(section): configuration[section][option] = config.get(section, option) except configparser.MissingSectionHeaderError as e: print("Could not read configuration. Exiting") exit() # Instantiate Twitter API with credentials oauth = configuration['OAuth'] twitter = Twython(oauth['app_key'], oauth['app_secret'], oauth['oauth_token'], oauth['oauth_token_secret']) # Check if we want to tweet something tweet = input("Please enter a message to tweet, or leave empty if you don\'t want to tweet at this time:") if 0 < len(tweet): try: twitter.update_status(status=tweet) print("Successfully tweeted", tweet) except TwythonError as Error: print("Could not authenticate with the Twitter API. Your API is probably set to Read-Only.") print(format(Error)) else: print("Not tweeting anything.") # Cleanup del tweet # Delete last tweet delete = int(input("Enter the number of last tweets you wish to delete:")) if 0 < delete: timeline = twitter.get_home_timeline() counter = len(timeline) if delete > counter: print("Cannot delete more items than are in the timeline. Not deleting anything.") else: counter = 0 while delete > 0: # Get tweet id tweet = timeline[counter] tweetId = tweet['id_str'] tweetText = tweet['text'] # Perform delete action twitter.destroy_status(id=tweetId) # Notify print("Deleted the tweet with the text '", tweetText, "'", sep="") # Increment counter += 1 delete -= 1 else: print("Not deleting anything.") # Tweet uptime from datetime import timedelta try: with open('/proc/uptime', 'r') as f: uptime_seconds = float(f.readline().split()[0]) uptime_string = str(timedelta(seconds=uptime_seconds)) except IOError: print("Cannot tweet uptime, not on a Pi.")
a5196fdf75c378ca343c8727c8f7e946e3cccf00
b8b8722787ee6ee0ebe3eefb6d9e9e0db11a445f
/CIFAR10_MLP/main_5.py
93f889cdfcaa742288a3b9dc41dfd230478abf24
[]
no_license
gaow1423/Machine-Learning-Problems
846061975efd63eddcd1e33e401a3aa2b699b875
7a00352cdc213234c23bc215cdb326c032bedd05
refs/heads/master
2020-03-17T12:22:46.607558
2018-06-17T07:07:55
2018-06-17T07:07:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,735
py
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable import numpy as np import matplotlib import math import matplotlib.pyplot as plt cuda = torch.cuda.is_available() print('Using PyTorch version:', torch.__version__, 'CUDA:', cuda) ##data preparation batch_size = 40 kwargs = {'num_workers': 2, 'pin_memory': True} if cuda else {} trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) train_loader = torch.utils.data.DataLoader(trainset, batch_size, shuffle=True, **kwargs) validationset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) validation_loader = torch.utils.data.DataLoader(validationset, batch_size, shuffle=False, **kwargs) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(3*32*32, 100) self.fc1_drop = nn.Dropout(0.2) self.fc2 = nn.Linear(100,10) def forward(self, x): x = x.view(-1, 3*32*32) x = F.sigmoid(self.fc1(x)) x = self.fc1_drop(x) return F.log_softmax(self.fc2(x), 1) #model = Net() #if cuda: # model.cuda() #learningrate = [0.1, 0.01, 0.001, 0.0001] #for k in learningrate: # optimizer = optim.SGD(model.parameters(), lr = k, momentum = 0.5) #print(model) def train(epoch, k, model, log_interval = 100): # print (k) model.train() for batch_idx, (data, target) in enumerate(train_loader): if (batch_idx <= 999): if cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) optimizer = optim.SGD(model.parameters(), lr = 0.1, momentum = 0.5, weight_decay = k) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() # if batch_idx % log_interval == 0: # print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx) * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0])) def validate(loss_vector, accuracy_vector, epochs, model): model.eval() val_loss, correct = 0, 0 for batch_idx, (data, target) in enumerate(train_loader): if (batch_idx > 999): if cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) output = model(data) val_loss += F.nll_loss(output, target).data[0] pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.eq(target.data).cpu().sum() val_loss /= (10000/batch_size) loss_vector.append(val_loss) accuracy = 100. * correct / len(validation_loader.dataset) accuracy_vector.append(accuracy) print('\nEpoch {}: Validation set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(epochs, val_loss, correct, len(validation_loader.dataset), accuracy)) def test(loss_vector, accuracy_vector, epochs, model): model.eval() val_loss, correct = 0, 0 for (data, target) in validation_loader: if cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) output = model(data) val_loss += F.nll_loss(output, target).data[0] pred = output.data.max(1)[1] # get the index of the max log-probability correct += pred.eq(target.data).cpu().sum() val_loss /= len(validation_loader) loss_vector.append(val_loss) accuracy = 100. * correct / len(validation_loader.dataset) accuracy_vector.append(accuracy) print('\nEpoch {}: Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(epochs, val_loss, correct, len(validation_loader.dataset), accuracy)) def main(): # learningrate = [0.2, 0.3, 0.4, 0.5] # for k in learningrate: # momentum = [0.5, 0.7, 0.9, 1.1] # for k in momentum: weightdecay = [0.001, 0.01, 0.1, 1] for k in weightdecay: # class Net(nn.Module): # def __init__(self): # super(Net, self).__init__() # self.fc1 = nn.Linear(3*32*32, 100) # self.fc1_drop = nn.Dropout(k) # self.fc2 = nn.Linear(100,10) # def forward(self, x): # x = x.view(-1, 3*32*32) # x = F.sigmoid(self.fc1(x)) # x = self.fc1_drop(x) # return F.log_softmax(self.fc2(x), 1) model = Net() if cuda: model.cuda() epochs = 150 lossv, accv = [], [] lossv_t, accv_t = [], [] for epochs in range(1, epochs + 1): train(epochs, k, model) validate(lossv, accv, epochs, model) test(lossv_t, accv_t, epochs, model) l = range(1, epochs + 1) plt.subplot(1, 3, 1) plt.plot(l, accv, label = "Training Accuracy with weight decay = %f"%(k)) plt.title('Training Accuracy') plt.xlabel('x-axis: the Number of Epochs') plt.ylabel('y-axis: Accuracy of Validation set (%)') plt.subplot(1, 3, 2) plt.plot(l, lossv, label = "Training Loss with weight decay = %f"%(k)) plt.title('Training loss curve') plt.xlabel('x-axis: the Number of Epochs') plt.ylabel('y-axis: Training loss') plt.subplot(1, 3, 3) plt.plot(l, accv_t, label = "Test Accuracy with weight decay = %f"%(k)) plt.title('Testing Accuracy') plt.xlabel('x-axis: the Number of Epochs') plt.ylabel('y-axis: Accuracy of Testing set (%)') # f.plot(l, accv, label = "Training Accuracy with drop out = %f"%(k)) # g.plot(l, lossv, label = "Training Loss with drop out = %f"%(k)) # t.plot(l, accv_t, label = "Test Accuracy with drop out = %f"%(k)) # # f.title('Training Accuracy') # f.xlabel('x-axis: the Number of Epochs') # f.ylabel('y-axis: Accuracy of Validation set (%)') # f.legend() # f.show() # # g.title('Training loss curve') # g.xlabel('x-axis: the Number of Epochs') # g.ylabel('y-axis: Training loss') # g.legend() # g.show() # # t.title('Testing Accuracy') # t.xlabel('x-axis: the Number of Epochs') # t.ylabel('y-axis: Accuracy of Testing set (%)') # t.legend() # t.show() # raw_input() plt.legend() plt.show() if __name__ == '__main__': main()
e454c76d9168502bdf7ef1dbcb7bde577a6bec70
95beb714da1e783981295064aaf0b64e5a37c9c0
/instagram/tests.py
3c2572e3281053fb555c96273e6673f7f4966423
[ "MIT" ]
permissive
Joseph-Odhiambo/Insta-clone
653105cb3a4d7f2a470cf365444e074f1b4d50ff
8ceb4f8ef6e7ea815e39a94554b3410a8e7da5a0
refs/heads/master
2023-01-01T22:56:22.902366
2020-10-22T05:40:59
2020-10-22T05:40:59
304,582,611
0
0
MIT
2020-10-22T05:32:16
2020-10-16T09:37:03
JavaScript
UTF-8
Python
false
false
1,303
py
from django.test import TestCase from .models import Profile, Post from django.contrib.auth.models import User # Create your tests here. class TestProfile(TestCase): def setUp(self): self.user = User(username='Joseph') self.user.save() self.profile_test = Profile(id=1, name='image', profile_picture='default.jpg', bio='this is a test profile', user=self.user) def test_instance(self): self.assertTrue(isinstance(self.profile_test, Profile)) def test_save_profile(self): self.profile_test.save_profile() after = Profile.objects.all() self.assertTrue(len(after) > 0) class TestPost(TestCase): def setUp(self): self.profile_test = Profile(name='Joseph', user=User(username='Joseph')) self.profile_test.save() self.image_test = Post(image='default.png', name='test', caption='default test', user=self.profile_test) def test_insatance(self): self.assertTrue(isinstance(self.image_test, Post)) def test_save_image(self): self.image_test.save_image() images = Post.objects.all() self.assertTrue(len(images) > 0) def test_delete_image(self): self.image_test.delete_image() after = Profile.objects.all() self.assertTrue(len(after) < 1)
c2bad406da73b4a740249a716af90952cf0bb2c0
3a3f4477a517c9757432042ceb4939f37762c2a4
/12.IntegertoRoman/int_to_roman.py
0615bb179a12ee1f678713fbdef56969f29a51bc
[]
no_license
marathohoho/leetcode-progress
f351ad89905c8e61fd5b5adff62320ce8ba9645d
13b298c1074328c130724e328d7c22be642903cb
refs/heads/master
2020-12-24T01:39:15.117334
2020-04-06T20:20:16
2020-04-06T20:20:16
237,339,061
2
0
null
null
null
null
UTF-8
Python
false
false
1,712
py
""" Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M. Symbol Value I 1 V 5 X 10 L 50 C 100 D 500 M 1000 For example, two is written as II in Roman numeral, just two one's added together. Twelve is written as, XII, which is simply X + II. The number twenty seven is written as XXVII, which is XX + V + II. Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII. Instead, the number four is written as IV. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX. There are six instances where subtraction is used: I can be placed before V (5) and X (10) to make 4 and 9. X can be placed before L (50) and C (100) to make 40 and 90. C can be placed before D (500) and M (1000) to make 400 and 900. Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from 1 to 3999. Example 1: Input: 3 Output: "III" Example 2: Input: 4 Output: "IV" Example 3: Input: 9 Output: "IX" Example 4: Input: 58 Output: "LVIII" Explanation: L = 50, V = 5, III = 3. Example 5: Input: 1994 Output: "MCMXCIV" Explanation: M = 1000, CM = 900, XC = 90 and IV = 4. """ def solution(num) : values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1] numerals = ['M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I'] res = "" for i, v in enumerate(values) : res += (num // v) * numerals[i] num %= v return res if __name__ == "__main__": print(solution(14)) print(solution(73)) print(solution(122))
e741504fdb3bd4fb34bd13897f719227219ed48e
e10a1786d68603bff0393f54f7f94e40d2825a42
/MLlab02_logistic_classification/02_1-softmax_test.py
fb8c5f359d2bcb116b799274efe4f7dc1da3da4c
[]
no_license
yurimkoo/dl_lab
80da422b9e29db4e61025d1cc87160b517e1242c
3967c6112a24a130bc54da774929f58c5f290b97
refs/heads/master
2021-01-21T20:38:54.666029
2017-05-24T07:37:18
2017-05-24T07:37:18
92,263,452
0
0
null
null
null
null
UTF-8
Python
false
false
1,684
py
import tensorflow as tf import numpy as np #'soft_max.txt' uses 'one-hot encoding' xy = np.loadtxt('softmax_train.txt', unpack=1, dtype='float32') x_data = np.transpose(xy[0:3]) #transpose를 사용하는 것은 거울처럼 반대로 뒤집어달라는 뜻 y_data = np.transpose(xy[3:]) X = tf.placeholder('float', [None, 3]) #x1, x2, bias(x0) total 3 (None인 이유는 총 데이터 개수가 몇 개인지 모르기 때문) Y = tf.placeholder('float', [None, 3]) #A, B, C total 3 W = tf.Variable(tf.zeros([3, 3])) #3x3 matrix (첫번째 값: x가 3개, 두번째 값: y가 3개) // tf.zeros 는 행렬 만드는 함수 hypothesis = tf.nn.softmax(tf.matmul(X, W)) #뒤집는 이유는 계산상의 편의를 위해해 learning_rate = 0.001 cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), reduction_indices=1)) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in range(2001): sess.run(optimizer, feed_dict={X: x_data, Y: y_data}) if step % 20 == 0: print(step, sess.run(cost, feed_dict={X: x_data, Y: y_data}), sess.run(W)) print('-----------------') #test & one-hot encoding #0: A, 1: B, 2: C a = sess.run(hypothesis, feed_dict={X: [[1, 11, 7]]}) print(a, sess.run(tf.arg_max(a, 1))) b = sess.run(hypothesis, feed_dict={X: [[1, 3, 4]]}) print(b, sess.run(tf.arg_max(b, 1))) c = sess.run(hypothesis, feed_dict={X: [[1, 1, 0]]}) print(c, sess.run(tf.arg_max(c, 1))) all = sess.run(hypothesis, feed_dict={X: [[1, 11, 7], [1, 3, 4], [1, 1, 0]]}) print(all, sess.run(tf.arg_max(all, 1)))
ecb2abc4963884e24944a06ebcf5ef842448978d
95bebfc06f69425706cf18b717e6b4341373bc30
/anagram.py
6212e6c237f6e41af84b6696ebcd2bd95e9231d6
[]
no_license
vinodrajendran001/python-interview-prep
9200a8f3076ab1e0a3325f4a3814f811f3c0757c
80143a4b2b2957b6aff15b0b225f192c04dd1461
refs/heads/master
2021-01-12T06:52:32.266606
2016-12-23T04:01:02
2016-12-23T04:01:02
76,851,795
0
0
null
null
null
null
UTF-8
Python
false
false
1,513
py
# O(n^2) def getstr1(a, b): c = "" d = "" if len(a) == len(b): for i in range(len(a)): for j in range(len(b)): if a[i] == b[j]: c = c + b[j] if a == c: print "given 2 text is anagram" else: print "not anagram" else: print "length is not same" # It is O(nlogn) because we use sort() def getstr2(a, b): s1 = list(a) s2 = list(b) s1.sort() s2.sort() pos = 0 matches = True while pos < len(s1) and matches: if s1[pos] == s2[pos]: matches = True pos = pos + 1 else: matches = False return matches # O(n) def getstr3(a, b): total_a = 0 for i in range(len(a)): total_a = total_a + ord(a[i]) total_b = 0 for j in range(len(b)): total_b = total_b + ord(b[j]) if total_b == total_a: print "it is anagram" else: print "not anagram" ''' Given two strings, a and b, that may or may not be of the same length, determine the minimum number of character deletions required to make them anagrams. Any characters can be deleted from either of the strings e.g. str1 : cde str2 : abc result : 4 ''' def minanagram(a, b): c1 = [0]*26 c2 = [0]*26 for i in range(len(a)): pos = ord(a[i]) - ord('a') c1[pos] = c1[pos] + 1 for i in range(len(b)): pos = ord(b[i]) - ord('a') c2[pos] = c2[pos] + 1 j=0 count = 0 print c1 print c2 while j<26: count = count + abs(c1[j]-c2[j]) j = j + 1 return count print minanagram('cdef','abc') getstr1("python","typhon") print(getstr2("python","typhon")) getstr3("typhon","python")
10061e9d1ee1fd83d00916d518364042992e220e
784ce7c5c3f08602cf0d4b3a80ec74d8e07990a1
/web/models.py
358465843bd033dd80eaab90527c19011b4fe5ce
[]
no_license
lcdevelop/shareditor
1a05e558a2cbd76c5272f7d0d43222b5a47bc139
318d8b2c77b8a8065399aeeab7e827f74c6abec0
refs/heads/master
2022-03-30T07:40:32.876433
2020-01-20T14:36:20
2020-01-20T14:36:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,079
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models from ckeditor_uploader.fields import RichTextUploadingField class Subject(models.Model): name = models.CharField(max_length=255, verbose_name='类别名称') introduce = models.CharField(max_length=255, verbose_name='类别简介') image = models.ImageField(max_length=255, verbose_name='类别图片', null=True) class Meta: verbose_name_plural = '类别' def __unicode__(self): return self.name class Tag(models.Model): name = models.CharField(max_length=255, verbose_name='标签名称') image = models.ImageField(max_length=255, verbose_name='标签图片', null=True) sort = models.IntegerField(verbose_name='排序越大越靠前', default=0) show = models.IntegerField(verbose_name='是否展示在首页', default=1) def get_latest_blogpost(self, count=5): return self.blogpost_set.filter(verify=True).order_by('id').reverse()[0:count] class Meta: verbose_name_plural = '标签' def __unicode__(self): return self.name class BlogPost(models.Model): id = models.AutoField(primary_key=True) title = models.CharField(max_length=255, verbose_name='文章标题') image = models.ImageField(max_length=255, verbose_name='文章图片', null=True) abstract = models.CharField(max_length=255, verbose_name='文章摘要', null=True) body = RichTextUploadingField(config_name='default', verbose_name='文章内容') create_time = models.DateTimeField(verbose_name='创建时间') subject = models.ForeignKey(Subject, verbose_name='类别', null=True) tags = models.ManyToManyField(Tag, verbose_name='标签', null=True) pv = models.IntegerField(verbose_name='pv', default=0) verify = models.BooleanField(verbose_name='是否生效', default=False) def get_simple_title(self): return self.title.replace(self.tags.first().name, '') class Meta: verbose_name_plural = '文章' def __unicode__(self): return self.title class Chat(models.Model): client_ip = models.CharField(max_length=16, verbose_name='用户ip') message = models.TextField(verbose_name='说的话') talker = models.IntegerField(verbose_name='说话者:0-机器人;1-用户') create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) class CorpusQuestion(models.Model): text = models.CharField(max_length=512, verbose_name='问') bad = models.IntegerField(verbose_name='踩', default=0) is_del = models.IntegerField(verbose_name='1-删除;0-正常', default=0) def __unicode__(self): return self.text class CorpusAnswer(models.Model): text = models.CharField(max_length=512, verbose_name='答') like = models.IntegerField(verbose_name='点赞量', default=0) is_del = models.IntegerField(verbose_name='1-删除;0-正常', default=0) question = models.ForeignKey(CorpusQuestion, verbose_name='问题') def __unicode__(self): return self.text
d57bda58d4f2cfac8a38db31dece06b03b25335f
843b13d64b591ea48126a1a68c37dab663af8958
/french_lm/dictionary.py
4c5e15f133a8a5e11747e1c748360476e4b709cb
[]
no_license
AmaMidzu/say-it-right
ac5fd998abd90c3539d2121abc52a0a85b5c1aed
1fb05bbbaa8236fb5f489f3dada2b3fefa58bd3b
refs/heads/master
2021-01-12T01:29:32.289505
2017-12-01T01:31:33
2017-12-01T01:31:33
78,392,748
0
0
null
2017-01-09T04:05:57
2017-01-09T04:05:57
null
UTF-8
Python
false
false
1,082
py
# -*- coding: latin-1 -*- import csv with open('Lexique381.csv') as infile: reader = csv.reader(infile) #skips a couple phrase but it's negligible comparitively mydict = {row[0]:row[1] for row in reader if (len(row[0].split()) ==1 and row[0].isalpha())} mapping = { '\xa7': 'o~', '1': '9~', '\xb0' : '@', '2' : '2', '5' : 'e~', '9' : '9', '8' : 'H', '@' : 'a~', 'E' : 'E', 'G' : 'N', 'O': 'O', 'N' : 'J', 'S' : 'S', 'R' : 'R', 'Z' : 'Z', 'a' : 'a', 'b' : 'b', 'e' : 'e', 'd' : 'd', 'g' : 'g', 'f' : 'f', 'i' :'i', 'k' : 'k', 'j' : 'j', 'm' : 'm', 'l' : 'l', 'o' : 'o', 'n' : 'n', 'p' : 'p', 's' : 's', 'u' : 'u', 't' : 't', 'w' : 'w', 'v' : 'v', 'y': 'y', 'x': 'x', 'z': 'z' } phons = set() with open('dict/lexicon.txt', 'w') as outfile: for k in mydict.keys(): phon = mydict[k] s = "" for char in phon: s += mapping[char] + " " phons.add(mapping[char]) s = s.strip() outfile.write(k + " " + s+'\n') outfile.close() with open('dict/phones.txt', 'w') as outfile: for p in phons: outfile.write(p+'\n') outfile.close()
3825b458baa098aaab3dae1806870377a5cbf625
e16d41602b9887c814ae3ea5615f2734f15cdf50
/unitTest/myfun.py
d667bdc2da29531c20b24441a912f9dc26e5ebed
[]
no_license
tomreddle/vip3test
32183d652c8847b5fded7c4f1b4740f09b5fc850
ecc2e6be0503235a1fcfd7447d5722816ffcfe8c
refs/heads/master
2020-07-30T21:38:23.636803
2019-11-20T13:08:11
2019-11-20T13:08:11
210,367,046
0
0
null
null
null
null
UTF-8
Python
false
false
153
py
import unittest def add(a, b): return a + b def plus(a, b): return a - b def mul(a, b): return a * b def div(a, b): return a / b