blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
a9f9ae7217821fc44bbee35b1d83f74a567b88af
09402595382795a40203099cb144974400ad9490
/mundo1/ex030.py
59bbc3229bf968d361d76827f8f4f3479db4ae16
[]
no_license
afreitasdotdev/cev-python
5da6cee7c579c599986cb736fd17abfd23531a8d
9a9726530c9ffd52888cda24b9cbfaf3da91ccf9
refs/heads/master
2021-07-04T15:41:19.391181
2020-08-26T00:17:54
2020-08-26T00:17:54
164,366,493
0
0
null
null
null
null
UTF-8
Python
false
false
243
py
# Crie um programa que leia um numero inteiro e mostre na tela se # ele é PAR ou IMPAR num = int(input('Digite um numero: ')) if num % 2 == 0: print('O numero {} é par'.format(num)) else: print('O número {} é impar'.format(num))
fa3ae7f5ccd6a41322f07b548a062a83ba1d35b3
b6e02f46e2e8c8582fa53329d69577ac192b3519
/scraper.py
224e3ebaf68a5b148a9db6db492a3695b70522cb
[]
no_license
AxSmasher44/simple-amazon-listing-webscraper
7afe56a52f2bba4e27bdf4294dad752a3bd99613
f741b51e88a69cdfb6d2e44dd2772280baa0103e
refs/heads/master
2022-12-17T18:12:56.504114
2020-09-29T12:41:34
2020-09-29T12:41:34
299,605,048
0
0
null
null
null
null
UTF-8
Python
false
false
1,286
py
import requests from bs4 import BeautifulSoup from csv import DictWriter """WARNING:Don't send requests continuously!!! Only works for amazon india""" def amazon_scraper(item): if " " in item: url_item = item.split(" ") url_string = "+".join(url_item) URL = "https://www.amazon.in/s?k="+url_string+"&ref=nb_sb_noss_2" else: URL = "https://www.amazon.in/s?k="+item+"&ref=nb_sb_noss_2" all_items = [] page = requests.get(URL) soup = BeautifulSoup(page.content, 'html.parser') products = soup.find_all("div", class_="sg-col-inner") for product in products: all_items.append({ "Name":product.find("span", class_="a-size-medium a-color-base a-text-normal").get_text(), "Price":product.find("span", class_="a-offscreen").get_text() }) return all_items print(amazon_scraper("apple watch")) def product_listings_to_csv(product): item_dict = amazon_scraper(product) with open(product+".csv", "w", newline="", encoding="UTF-8") as file: headers = ["Name", "Price"] csv_writer = DictWriter(file, fieldnames=headers) csv_writer.writeheader() for item in item_dict: csv_writer.writerow(item)
683b203b51163f3f03eae2a44d83f8a8517fc84f
d6750f31b5e15030190e9fdeb6c59075df98a624
/выражения_в_F_строке.py
3e5a7f851fa905f0e0db0618cf6668895afb9ca9
[]
no_license
Mgomelya/Study
a107d16261919a9c484cdc15e373d087b40c5208
f49350ab592574cd12399405fc95f9fc1cd3e10f
refs/heads/master
2023-08-07T12:55:46.068988
2021-10-07T14:42:45
2021-10-07T14:42:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
def calc_stat(listened): # от англ. calculate statistics, посчитать статистику N = len(listened) M = sum(listened)//60 S = sum(listened)%60 return f'Вы прослушали {N} песен, общей продолжительностью {M} минут и {S} секунд.' # напишите код функции calc_stat print(calc_stat([193, 148, 210, 144, 174, 159, 163, 189, 230, 204]))
aa6977b0b274bab8863a388a9723f9b4e5b84d81
c74c907a32da37d333096e08d2beebea7bea65e7
/kaikeba/image caption/image_captioning/image_captioning/models.py
0ee1e2560a93401662355584208c4c607a7e887f
[]
no_license
wangqiang79/learn
6b37cc41140cc2200d928f3717cfc72357d10d54
e4b949a236fa52de0e199c69941bcbedd2c26897
refs/heads/master
2022-12-25T06:24:39.163061
2020-07-13T15:43:13
2020-07-13T15:43:13
231,796,188
2
2
null
2022-12-08T07:03:05
2020-01-04T16:45:33
Jupyter Notebook
UTF-8
Python
false
false
9,252
py
import torch from torch import nn import torchvision device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class Encoder(nn.Module): """ Encoder. """ def __init__(self, encoded_image_size=14): super(Encoder, self).__init__() self.enc_image_size = encoded_image_size vgg = torchvision.models.vgg16(pretrained=True) # pretrained VGG16 # Remove linear and pool layers (since we're not doing classification) modules = list(vgg.children())[:-2] self.vgg = nn.Sequential(*modules) # Resize image to fixed size to allow input images of variable size self.adaptive_pool = nn.AdaptiveAvgPool2d((encoded_image_size, encoded_image_size)) self.fine_tune() def forward(self, images): """ Forward propagation. :param images: images, a tensor of dimensions (batch_size, 3, image_size, image_size) :return: encoded images """ out = self.vgg(images) # (batch_size, 512, image_size/32, image_size/32) out = self.adaptive_pool(out) # (batch_size, 512, encoded_image_size, encoded_image_size) out = out.permute(0, 2, 3, 1) # (batch_size, encoded_image_size, encoded_image_size, 512) return out def fine_tune(self, fine_tune=True): """ :param fine_tune: Allow? """ for p in self.vgg.parameters(): p.requires_grad = False for c in list(self.vgg.children())[0:-2]: for p in c.parameters(): p.requires_grad = fine_tune class Attention(nn.Module): """ Attention Network. """ def __init__(self, encoder_dim, decoder_dim, attention_dim): """ :param encoder_dim: feature size of encoded images :param decoder_dim: size of decoder's RNN :param attention_dim: size of the attention network """ super(Attention, self).__init__() self.encoder_att = nn.Linear(encoder_dim, attention_dim) # linear layer to transform encoded image self.decoder_att = nn.Linear(decoder_dim, attention_dim) # linear layer to transform decoder's output self.full_att = nn.Linear(attention_dim, 1) # linear layer to calculate values to be softmax-ed self.relu = nn.ReLU() self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights def forward(self, encoder_out, decoder_hidden): """ Forward propagation. :param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim) :param decoder_hidden: previous decoder output, a tensor of dimension (batch_size, decoder_dim) :return: attention weighted encoding, weights """ att1 = self.encoder_att(encoder_out) # (batch_size, num_pixels, attention_dim) att2 = self.decoder_att(decoder_hidden) # (batch_size, attention_dim) att = self.full_att(self.relu(att1 + att2.unsqueeze(1))).squeeze(2) # (batch_size, num_pixels) alpha = self.softmax(att) # (batch_size, num_pixels) attention_weighted_encoding = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim) return attention_weighted_encoding, alpha class DecoderWithAttention(nn.Module): """ Decoder. """ def __init__(self, attention_dim, embed_dim, decoder_dim, vocab_size, encoder_dim=512, dropout=0.5): """ :param attention_dim: size of attention network :param embed_dim: embedding size :param decoder_dim: size of decoder's RNN :param vocab_size: size of vocabulary :param encoder_dim: feature size of encoded images :param dropout: dropout """ super(DecoderWithAttention, self).__init__() self.encoder_dim = encoder_dim self.attention_dim = attention_dim self.embed_dim = embed_dim self.decoder_dim = decoder_dim self.vocab_size = vocab_size self.dropout = dropout self.attention = Attention(encoder_dim, decoder_dim, attention_dim) # attention network self.embedding = nn.Embedding(vocab_size, embed_dim) # embedding layer self.dropout = nn.Dropout(p=self.dropout) self.decode_step = nn.LSTMCell(embed_dim + encoder_dim, decoder_dim, bias=True) # decoding LSTMCell self.init_h = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial hidden state of LSTMCell self.init_c = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial cell state of LSTMCell self.f_beta = nn.Linear(decoder_dim, encoder_dim) # linear layer to create a sigmoid-activated gate self.sigmoid = nn.Sigmoid() self.fc = nn.Linear(decoder_dim, vocab_size) # linear layer to find scores over vocabulary self.init_weights() # initialize some layers with the uniform distribution def init_weights(self): """ Initializes some parameters with values from the uniform distribution, for easier convergence. """ self.embedding.weight.data.uniform_(-0.1, 0.1) self.fc.bias.data.fill_(0) self.fc.weight.data.uniform_(-0.1, 0.1) def load_pretrained_embeddings(self, embeddings): """ Loads embedding layer with pre-trained embeddings. :param embeddings: pre-trained embeddings """ self.embedding.weight = nn.Parameter(embeddings) def fine_tune_embeddings(self, fine_tune=True): """ Allow fine-tuning of embedding layer? (Only makes sense to not-allow if using pre-trained embeddings). :param fine_tune: Allow? """ for p in self.embedding.parameters(): p.requires_grad = fine_tune def init_hidden_state(self, encoder_out): """ Creates the initial hidden and cell states for the decoder's LSTM based on the encoded images. :param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim) :return: hidden state, cell state """ mean_encoder_out = encoder_out.mean(dim=1) h = self.init_h(mean_encoder_out) # (batch_size, decoder_dim) c = self.init_c(mean_encoder_out) return h, c def forward(self, encoder_out, encoded_captions, caption_lengths): """ Forward propagation. :param encoder_out: encoded images, a tensor of dimension (batch_size, enc_image_size, enc_image_size, encoder_dim) :param encoded_captions: encoded captions, a tensor of dimension (batch_size, max_caption_length) :param caption_lengths: caption lengths, a tensor of dimension (batch_size, 1) :return: scores for vocabulary, sorted encoded captions, decode lengths, weights, sort indices """ batch_size = encoder_out.size(0) encoder_dim = encoder_out.size(-1) vocab_size = self.vocab_size # Flatten image encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim) num_pixels = encoder_out.size(1) # Sort input data by decreasing lengths; why? apparent below caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True) encoder_out = encoder_out[sort_ind] encoded_captions = encoded_captions[sort_ind] # Embedding embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim) # Initialize LSTM state h, c = self.init_hidden_state(encoder_out) # (batch_size, decoder_dim) # We won't decode at the <end> position, since we've finished generating as soon as we generate <end> # So, decoding lengths are actual lengths - 1 decode_lengths = (caption_lengths - 1).tolist() # Create tensors to hold word predicion scores and alphas predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(device) alphas = torch.zeros(batch_size, max(decode_lengths), num_pixels).to(device) # At each time-step, decode by # attention-weighing the encoder's output based on the decoder's previous hidden state output # then generate a new word in the decoder with the previous word and the attention weighted encoding for t in range(max(decode_lengths)): batch_size_t = sum([l > t for l in decode_lengths]) attention_weighted_encoding, alpha = self.attention(encoder_out[:batch_size_t], h[:batch_size_t]) gate = self.sigmoid(self.f_beta(h[:batch_size_t])) # gating scalar, (batch_size_t, encoder_dim) attention_weighted_encoding = gate * attention_weighted_encoding h, c = self.decode_step( torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1), (h[:batch_size_t], c[:batch_size_t])) # (batch_size_t, decoder_dim) preds = self.fc(self.dropout(h)) # (batch_size_t, vocab_size) predictions[:batch_size_t, t, :] = preds alphas[:batch_size_t, t, :] = alpha return predictions, encoded_captions, decode_lengths, alphas, sort_ind
2b5c2b47741847463dd2ef27f3cfc82839073bb1
54bc8c0d95e8d28a8d7e4a6eb9add31030f2c5fc
/From Jump Drive/class8s/c8.py
1f36e21396626c9d71048da3399631f7e5634909
[]
no_license
matthewpleasant/python_for_gis
9a3f7925b45a42c65b69be1de49691230e51d8f0
c9676133ecaf3231d91a75c2ff0e9b2ad515c0c9
refs/heads/master
2021-04-25T14:17:26.701244
2017-12-07T22:09:17
2017-12-07T22:09:17
110,298,833
0
0
null
null
null
null
UTF-8
Python
false
false
3,358
py
import arcpy home=arcpy.env.workspace = "C:/Users/mpleasan/Desktop/class8s/working/class8.gdb" path1 = "C:/Users/mpleasan/Desktop/class8s/" fcs = arcpy.ListFeatureClasses() print fcs sc = arcpy.da.SearchCursor("pointsSP", ['Shape@']) ##for r in sc: ## print type(r[0]) # ex. output: <class 'arcpy.arcobjects.geometries.PointGeometry'> ## print r[0].isMultipart # ex. output: False ## for q in r[0]: # Accessing the geometry object!! ## print type(q) # ex. output: <type 'geoprocessing point object'> ## print q.X, q.Y # ex . output: 575934.185446 614162.241113 ##del sc ## ##sc = arcpy.da.SearchCursor("pointsMP", ['Shape@']) ## ##for r in sc: ## print type(r[0]) ## print r[0].isMultipart ## for q in r[0]: ### print type(q) ## print q.X, q.Y ##del sc ##sc = arcpy.da.SearchCursor("pointsMP", ['Shape@XY']) ##for r in sc: ## print type(r[0]) ## print r[0][0], r[0][1] ## ##sc = arcpy.da.SearchCursor("trailsSP", ['Shape@']) ## ### NOW THAT YOU'RE USING LINES, YOU HAVE TO ACCESS THE ARRAY ## ##for r in sc: ## print type(r[0]) ## print r[0].isMultipart ## for q in r[0]: ## print type(q) ## for s in q: # THIS IS WHERE YOU ACCESS THE ARRAY, Q IS THE ARRAY #### print type(s) ## print s.X, s.Y ##del sc ##sc = arcpy.da.SearchCursor("trailsMP", ['Shape@']) ## ##coords = [] ## ##for r in sc: ## print type(r[0]) # geometry object ## print r[0].isMultipart ## for q in r[0]: # accessing the arrays that are within the geometry object ## print type(q) # an array ## for s in q: #### print type(s) #### print s.X, s.Y ## t = (s.X, s.Y) # Stores tuple of points ## coords.append(t) # Creating a list of tuples containing the x, y coordinates ## ##del sc ##print coords ############################################## ##f1 = open(path1 + "newStations.txt", "r") # Stores a "file" object in the f1 variable in read mode. This object has methods and properties ## ##ic = arcpy.InsertCursor("pointsSP", ["Shape@"]) ## ##for dc in f1.readlines(): # iterates through each line in the file ## out = dc.split(",") # splits each line by commas, creating lists ## pt = arcpy.Point(float(out[1]), float(out[2])) # Have to turn the coordinates into floats, because they're decimals ## ic.insertRow([arcpy.PointGeometry(pt)]) # Creates a PointGeometry, and inserts it ##del ic ##f1.close() # Closes the file del ic ic = arcpy.InsertCursor("pointsMP", ["Shape@"]) f1 = open(path1 + "newStations.txt", "r") d = {} # Empty dictionary for dc in f1.readlines(): out = dc.split(",") out[3] = out[3][0] # Accounts for new line characters (line breaks) at the end of the lines in the file if out[3] not in d: d[out[3]] = arcpy.Array() # Runs twice, creates arrays for "A" and "B" and stores them in dictionary above ## CREATING ARRAY, WHICH HAS "ADD METHOD" pt = arcpy.Point(float(out[1]), float(out[2])) print pt.X, pt.Y d[out[3]].add(pt) # Use the add fuction to add the point to the array f1.close() for x in d.keys(): #iterates through a list of keys -- not the values ic.insertRow([arcpy.Multipoint(d[x])]) # REMEMBER THE BRACKETS HERE del ic
cc99431e6928a9a383dda93218d492c8f7bfd8f9
c09f9e22658cdf54fbb308b79595f7e0e4b6d6a7
/color space change/track_blue.py
04a95458e3b7197e517cc0c18a2585b54b61b9d8
[]
no_license
zx563147474/opencv_learning
ce252a9e161be60dae1b46a45c45cd064efd8201
679934f68a70aed375fcb33ff12f54e62acfecd9
refs/heads/master
2020-06-26T05:45:13.377899
2019-09-30T05:07:40
2019-09-30T05:07:40
199,551,010
0
0
null
null
null
null
UTF-8
Python
false
false
970
py
# 蓝色的HSV值 import cv2 import numpy as np blue = np.uint8([[[255, 0, 0]]]) print(blue) hsv_blue = cv2.cvtColor(blue, cv2.COLOR_BGR2HSV) print(hsv_blue) # [[[120 255 255]]] # 3.追踪蓝色物体 capture = cv2.VideoCapture(0, cv2.CAP_DSHOW) # 蓝色的范围,不同光照条件下不一样,可灵活调整 lower_blue = np.array([100, 110, 110]) upper_blue = np.array([130, 255, 255]) while(True): # 1.捕获视频中的一帧 ret, frame = capture.read() # 2.从BGR转换到HSV hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # 3.inRange():介于lower/upper之间的为白色,其余黑色 mask = cv2.inRange(hsv, lower_blue, upper_blue) # 4.只保留原图中的蓝色部分 res = cv2.bitwise_and(frame, frame, mask=mask) cv2.imshow('frame', frame) cv2.imshow('mask', mask) cv2.imshow('res', res) if cv2.waitKey(1) == ord('q'): capture.release() cv2.destroyAllWindows() break
7b14e461e9ba7105b24ef8d77b490e8ec0419f57
c0239d75a8199ec84ad683f945c21785c1b59386
/dingtalk/api/rest/OapiChatTagDeleteRequest.py
2292ed627d4873421afe37fd82864be50c362d9b
[]
no_license
luss613/oauth_dingtalk
9f253a75ce914c577dbabfb84e97fd883e80e04b
1e2554642d2b16c642a031670d08efa4a74e8252
refs/heads/master
2023-04-23T01:16:33.450821
2020-06-18T08:22:57
2020-06-18T08:22:57
264,966,287
1
1
null
2020-06-18T08:31:24
2020-05-18T14:33:25
Python
UTF-8
Python
false
false
348
py
''' Created by auto_sdk on 2019.10.31 ''' from dingtalk.api.base import RestApi class OapiChatTagDeleteRequest(RestApi): def __init__(self,url=None): RestApi.__init__(self,url) self.chatid = None self.group_tag = None def getHttpMethod(self): return 'POST' def getapiname(self): return 'dingtalk.oapi.chat.tag.delete'
8f173791ac25db2f261ca3b803329440d7724ed9
1c902085a3a0ba2d366424a665f6f83bc2c63435
/level8.py
c8ebf10bc1babbdeb542c0a17ee232fe81053acc
[]
no_license
MR-Geri/varios
e17ddd48cca14f92b2fad2c7f6f9b4b234108e02
310cc6ddd8856e50b1c93dc826a1485e1cc8e7b8
refs/heads/master
2022-11-28T18:56:21.170744
2020-08-13T19:13:09
2020-08-13T19:13:09
285,392,850
0
0
null
null
null
null
UTF-8
Python
false
false
323
py
import bz2 un = b'BZh91AY&SYA\xaf\x82\r\x00\x00\x01\x01\x80\x02\xc0\x02\x00 \x00!\x9ah3M\x07<]\xc9\x14\xe1BA\x06\xbe\x084' pw = b'BZh91AY&SY\x94$|\x0e\x00\x00\x00\x81\x00\x03$ \x00!\x9ah3M\x13<]\xc9\x14\xe1BBP\x91\xf08' decoded_un = bz2.decompress(un) decoded_pw = bz2.decompress(pw) print(decoded_un) print(decoded_pw)
67d18a6184ac4dcad18c5acd2ecb55388c9e1b90
fe9c15246ef41d353f6e4ecd7ceca27d155861ed
/Time Complexity/TapeEquilibrium.py
a57b2243606a7063493bcd570204952a022b03e5
[]
no_license
LaurentiuMM/Codility-Lessons---Python
e078e9c962cde6b565e0570261da70295763bb62
f6a2459d2e4771eae2ec2651fdd3e27d9c19cb56
refs/heads/master
2020-07-06T03:42:29.556261
2019-08-17T12:13:20
2019-08-17T12:13:20
202,876,630
1
0
null
null
null
null
UTF-8
Python
false
false
507
py
# <<< start solution import sys import time def solution(A): N = len(A) sums = [0] * N sums[0] = A[0] for i in range(1, N): sums[i] = sums[i - 1] + A[i] min_diff = sys.maxsize for i in range(0, N - 1): min_diff = min(min_diff, abs(2 * sums[i] - sums[N - 1])) return min_diff # end solution >>> start_time = time.time() # <<< start testing A = [3, 1, 2, 4, 3] result = solution(A) print(result) # end testing >>> end_time = time.time() print("Time: " + str(end_time - start_time))
b4c7dc9e5dd44603c578afbbbbda6d03f98ab0c0
da61401d1d520ecead67a7c9bbf53bcc61784968
/competancy_mgt/applications/competancy_mgt_app.py
c0f6e56a73785c21f97431ea6d34841a382b9184
[]
no_license
saifsayyad/Competency_mgt
ecb9ff91d136242f9ccda8d9fc7a1f8dbd706f27
ef0e67a10eac7896e06374ea7a7ed5c74d0a84dd
refs/heads/master
2020-11-27T00:56:17.546672
2020-06-15T12:09:17
2020-06-15T12:09:17
229,249,771
1
0
null
2020-04-30T13:47:23
2019-12-20T11:07:59
CSS
UTF-8
Python
false
false
590
py
import os from groundwork import App from competancy_mgt.applications.configuration import APP_PATH class COMPETANCY_MGT_APP: def __init__(self): # Let's be sure our APP_PATH really exists if not os.path.exists(APP_PATH): os.makedirs(APP_PATH) self.app = App([os.path.join(os.path.dirname(__file__), "configuration.py")]) def start(self): self.app.plugins.activate(self.app.config.get("PLUGINS", None)) self.app.commands.start_cli() def start_app(): COMPETANCY_MGT_APP().start() if "main" in __name__: start_app()
187ba8799480652d89c93f0faa7a2c97b7f99b6a
d61f7eda203a336868c010abb8f9a6f45dd51adb
/497. Random Point in Non-overlapping Rectangles.py
01542c98bf043ff665c52427319b5c46b11bdf49
[]
no_license
Mschikay/leetcode
b91df914afc728c2ae1a13d3994568bb6c1dcffb
7c5e5fe76cee542f67cd7dd3a389470b02597548
refs/heads/master
2020-04-17T12:11:38.810325
2019-10-06T02:37:32
2019-10-06T02:37:32
166,570,922
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
class Solution: def __init__(self, rects: List[List[int]]): self.rects = rects self.prefix = [0] for x1, y1, x2, y2 in rects: self.prefix.append((x2 - x1 + 1) * (y2 - y1 + 1) + self.prefix[-1]) def pick(self) -> List[int]: num = random.randint(0, self.prefix[-1]) l, h = 0, len(self.prefix) - 1 while l <= h: m = (l + h) // 2 if self.prefix[m] < num: l = m + 1 else: h = m - 1 x1, y1, x2, y2 = self.rects[l - 1] x = random.randint(x1, x2) y = random.randint(y1, y2) return [x, y] # Your Solution object will be instantiated and called as such: # obj = Solution(rects) # param_1 = obj.pick()
419b6c02dcf9186aa633d2437aefac974a53e4c2
c51090c1814ab0c3618d059913e9ba7514c18954
/fabfile.py
d6e834b06af0e25c9fbd2e459710caf2c8a91102
[]
no_license
Narsiba/RTWPage
338361a5fcf36a236a760ee834ad9389c6575749
8fa1852ccf7e0737019de3ef6fd1d84bccd0323f
refs/heads/master
2020-06-15T17:31:02.327853
2017-02-26T08:36:18
2017-02-26T08:36:18
75,275,141
0
0
null
null
null
null
UTF-8
Python
true
false
21,822
py
from __future__ import print_function, unicode_literals from future.builtins import open import os import re import sys from contextlib import contextmanager from functools import wraps from getpass import getpass, getuser from glob import glob from importlib import import_module from posixpath import join from mezzanine.utils.conf import real_project_name from fabric.api import abort, env, cd, prefix, sudo as _sudo, run as _run, \ hide, task, local from fabric.context_managers import settings as fab_settings from fabric.contrib.console import confirm from fabric.contrib.files import exists, upload_template from fabric.contrib.project import rsync_project from fabric.colors import yellow, green, blue, red from fabric.decorators import hosts ################ # Config setup # ################ env.proj_app = real_project_name("RTWPage") conf = {} if sys.argv[0].split(os.sep)[-1] in ("fab", "fab-script.py"): # Ensure we import settings from the current dir try: conf = import_module("%s.settings" % env.proj_app).FABRIC try: conf["HOSTS"][0] except (KeyError, ValueError): raise ImportError except (ImportError, AttributeError): print("Aborting, no hosts defined.") exit() env.db_pass = conf.get("DB_PASS", None) env.admin_pass = conf.get("ADMIN_PASS", None) env.user = conf.get("SSH_USER", getuser()) env.password = conf.get("SSH_PASS", None) env.key_filename = conf.get("SSH_KEY_PATH", None) env.hosts = conf.get("HOSTS", [""]) env.proj_name = conf.get("PROJECT_NAME", env.proj_app) env.venv_home = conf.get("VIRTUALENV_HOME", "/home/%s/.virtualenvs" % env.user) env.venv_path = join(env.venv_home, env.proj_name) env.proj_path = "/home/%s/mezzanine/%s" % (env.user, env.proj_name) env.manage = "%s/bin/python %s/manage.py" % (env.venv_path, env.proj_path) env.domains = conf.get("DOMAINS", [conf.get("LIVE_HOSTNAME", env.hosts[0])]) env.domains_nginx = " ".join(env.domains) env.domains_regex = "|".join(env.domains) env.domains_python = ", ".join(["'%s'" % s for s in env.domains]) env.ssl_disabled = "#" if len(env.domains) > 1 else "" env.vcs_tools = ["git", "hg"] env.deploy_tool = conf.get("DEPLOY_TOOL", "rsync") env.reqs_path = conf.get("REQUIREMENTS_PATH", None) env.locale = conf.get("LOCALE", "en_US.UTF-8") env.num_workers = conf.get("NUM_WORKERS", "multiprocessing.cpu_count() * 2 + 1") env.secret_key = conf.get("SECRET_KEY", "") env.nevercache_key = conf.get("NEVERCACHE_KEY", "") # Remote git repos need to be "bare" and reside separated from the project if env.deploy_tool == "git": env.repo_path = "/home/%s/git/%s.git" % (env.user, env.proj_name) else: env.repo_path = env.proj_path ################## # Template setup # ################## # Each template gets uploaded at deploy time, only if their # contents has changed, in which case, the reload command is # also run. templates = { "nginx": { "local_path": "deploy/nginx.conf.template", "remote_path": "/etc/nginx/sites-enabled/%(proj_name)s.conf", "reload_command": "service nginx restart", }, "supervisor": { "local_path": "deploy/supervisor.conf.template", "remote_path": "/etc/supervisor/conf.d/%(proj_name)s.conf", "reload_command": "supervisorctl update gunicorn_%(proj_name)s", }, "cron": { "local_path": "deploy/crontab.template", "remote_path": "/etc/cron.d/%(proj_name)s", "owner": "root", "mode": "600", }, "gunicorn": { "local_path": "deploy/gunicorn.conf.py.template", "remote_path": "%(proj_path)s/gunicorn.conf.py", }, "settings": { "local_path": "deploy/local_settings.py.template", "remote_path": "%(proj_path)s/%(proj_app)s/local_settings.py", }, } ###################################### # Context for virtualenv and project # ###################################### @contextmanager def virtualenv(): """ Runs commands within the project's virtualenv. """ with cd(env.venv_path): with prefix("source %s/bin/activate" % env.venv_path): yield @contextmanager def project(): """ Runs commands within the project's directory. """ with virtualenv(): with cd(env.proj_path): yield @contextmanager def update_changed_requirements(): """ Checks for changes in the requirements file across an update, and gets new requirements if changes have occurred. """ reqs_path = join(env.proj_path, env.reqs_path) get_reqs = lambda: run("cat %s" % reqs_path, show=False) old_reqs = get_reqs() if env.reqs_path else "" yield if old_reqs: new_reqs = get_reqs() if old_reqs == new_reqs: # Unpinned requirements should always be checked. for req in new_reqs.split("\n"): if req.startswith("-e"): if "@" not in req: # Editable requirement without pinned commit. break elif req.strip() and not req.startswith("#"): if not set(">=<") & set(req): # PyPI requirement without version. break else: # All requirements are pinned. return pip("-r %s/%s" % (env.proj_path, env.reqs_path)) ########################################### # Utils and wrappers for various commands # ########################################### def _print(output): print() print(output) print() def print_command(command): _print(blue("$ ", bold=True) + yellow(command, bold=True) + red(" ->", bold=True)) @task def run(command, show=True, *args, **kwargs): """ Runs a shell comand on the remote server. """ if show: print_command(command) with hide("running"): return _run(command, *args, **kwargs) @task def sudo(command, show=True, *args, **kwargs): """ Runs a command as sudo on the remote server. """ if show: print_command(command) with hide("running"): return _sudo(command, *args, **kwargs) def log_call(func): @wraps(func) def logged(*args, **kawrgs): header = "-" * len(func.__name__) _print(green("\n".join([header, func.__name__, header]), bold=True)) return func(*args, **kawrgs) return logged def get_templates(): """ Returns each of the templates with env vars injected. """ injected = {} for name, data in templates.items(): injected[name] = dict([(k, v % env) for k, v in data.items()]) return injected def upload_template_and_reload(name): """ Uploads a template only if it has changed, and if so, reload the related service. """ template = get_templates()[name] local_path = template["local_path"] if not os.path.exists(local_path): project_root = os.path.dirname(os.path.abspath(__file__)) local_path = os.path.join(project_root, local_path) remote_path = template["remote_path"] reload_command = template.get("reload_command") owner = template.get("owner") mode = template.get("mode") remote_data = "" if exists(remote_path): with hide("stdout"): remote_data = sudo("cat %s" % remote_path, show=False) with open(local_path, "r") as f: local_data = f.read() # Escape all non-string-formatting-placeholder occurrences of '%': local_data = re.sub(r"%(?!\(\w+\)s)", "%%", local_data) if "%(db_pass)s" in local_data: env.db_pass = db_pass() local_data %= env clean = lambda s: s.replace("\n", "").replace("\r", "").strip() if clean(remote_data) == clean(local_data): return upload_template(local_path, remote_path, env, use_sudo=True, backup=False) if owner: sudo("chown %s %s" % (owner, remote_path)) if mode: sudo("chmod %s %s" % (mode, remote_path)) if reload_command: sudo(reload_command) def rsync_upload(): """ Uploads the project with rsync excluding some files and folders. """ excludes = ["*.pyc", "*.pyo", "*.db", ".DS_Store", ".coverage", "local_settings.py", "/static", "/.git", "/.hg"] local_dir = os.getcwd() + os.sep return rsync_project(remote_dir=env.proj_path, local_dir=local_dir, exclude=excludes) def vcs_upload(): """ Uploads the project with the selected VCS tool. """ if env.deploy_tool == "git": remote_path = "ssh://%s@%s%s" % (env.user, env.host_string, env.repo_path) if not exists(env.repo_path): run("mkdir -p %s" % env.repo_path) with cd(env.repo_path): run("git init --bare") local("git push -f %s master" % remote_path) with cd(env.repo_path): run("GIT_WORK_TREE=%s git checkout -f master" % env.proj_path) run("GIT_WORK_TREE=%s git reset --hard" % env.proj_path) elif env.deploy_tool == "hg": remote_path = "ssh://%s@%s/%s" % (env.user, env.host_string, env.repo_path) with cd(env.repo_path): if not exists("%s/.hg" % env.repo_path): run("hg init") print(env.repo_path) with fab_settings(warn_only=True): push = local("hg push -f %s" % remote_path) if push.return_code == 255: abort() run("hg update") def db_pass(): """ Prompts for the database password if unknown. """ if not env.db_pass: env.db_pass = getpass("Enter the database password: ") return env.db_pass @task def apt(packages): """ Installs one or more system packages via apt. """ return sudo("apt-get install -y -q " + packages) @task def pip(packages): """ Installs one or more Python packages within the virtual environment. """ with virtualenv(): return run("pip install %s" % packages) def postgres(command): """ Runs the given command as the postgres user. """ show = not command.startswith("psql") return sudo(command, show=show, user="postgres") @task def psql(sql, show=True): """ Runs SQL against the project's database. """ out = postgres('psql -c "%s"' % sql) if show: print_command(sql) return out @task def backup(filename): """ Backs up the project database. """ tmp_file = "/tmp/%s" % filename # We dump to /tmp because user "postgres" can't write to other user folders # We cd to / because user "postgres" might not have read permissions # elsewhere. with cd("/"): postgres("pg_dump -Fc %s > %s" % (env.proj_name, tmp_file)) run("cp %s ." % tmp_file) sudo("rm -f %s" % tmp_file) @task def restore(filename): """ Restores the project database from a previous backup. """ return postgres("pg_restore -c -d %s %s" % (env.proj_name, filename)) @task def python(code, show=True): """ Runs Python code in the project's virtual environment, with Django loaded. """ setup = "import os;" \ "os.environ[\'DJANGO_SETTINGS_MODULE\']=\'%s.settings\';" \ "import django;" \ "django.setup();" % env.proj_app full_code = 'python -c "%s%s"' % (setup, code.replace("`", "\\\`")) with project(): if show: print_command(code) result = run(full_code, show=False) return result def static(): """ Returns the live STATIC_ROOT directory. """ return python("from django.conf import settings;" "print(settings.STATIC_ROOT)", show=False).split("\n")[-1] @task def manage(command): """ Runs a Django management command. """ return run("%s %s" % (env.manage, command)) ########################### # Security best practices # ########################### @task @log_call @hosts(["root@%s" % host for host in env.hosts]) def secure(new_user=env.user): """ Minimal security steps for brand new servers. Installs system updates, creates new user (with sudo privileges) for future usage, and disables root login via SSH. """ run("apt-get update -q") run("apt-get upgrade -y -q") run("adduser --gecos '' %s" % new_user) run("usermod -G sudo %s" % new_user) run("sed -i 's:RootLogin yes:RootLogin no:' /etc/ssh/sshd_config") run("service ssh restart") print(green("Security steps completed. Log in to the server as '%s' from " "now on." % new_user, bold=True)) ######################### # Install and configure # ######################### @task @log_call def install(): """ Installs the base system and Python requirements for the entire server. """ # Install system requirements sudo("apt-get update -y -q") apt("nginx libjpeg-dev python-dev python-setuptools git-core " "postgresql libpq-dev memcached supervisor python-pip") run("mkdir -p /home/%s/logs" % env.user) # Install Python requirements sudo("pip install -U pip virtualenv virtualenvwrapper mercurial") # Set up virtualenv run("mkdir -p %s" % env.venv_home) run("echo 'export WORKON_HOME=%s' >> /home/%s/.bashrc" % (env.venv_home, env.user)) run("echo 'source /usr/local/bin/virtualenvwrapper.sh' >> " "/home/%s/.bashrc" % env.user) print(green("Successfully set up git, mercurial, pip, virtualenv, " "supervisor, memcached.", bold=True)) @task @log_call def create(): """ Creates the environment needed to host the project. The environment consists of: system locales, virtualenv, database, project files, SSL certificate, and project-specific Python requirements. """ # Generate project locale locale = env.locale.replace("UTF-8", "utf8") with hide("stdout"): if locale not in run("locale -a"): sudo("locale-gen %s" % env.locale) sudo("update-locale %s" % env.locale) sudo("service postgresql restart") run("exit") # Create project path run("mkdir -p %s" % env.proj_path) # Set up virtual env run("mkdir -p %s" % env.venv_home) with cd(env.venv_home): if exists(env.proj_name): if confirm("Virtualenv already exists in host server: %s" "\nWould you like to replace it?" % env.proj_name): run("rm -rf %s" % env.proj_name) else: abort() run("virtualenv %s" % env.proj_name) # Upload project files if env.deploy_tool in env.vcs_tools: vcs_upload() else: rsync_upload() # Create DB and DB user pw = db_pass() user_sql_args = (env.proj_name, pw.replace("'", "\'")) user_sql = "CREATE USER %s WITH ENCRYPTED PASSWORD '%s';" % user_sql_args psql(user_sql, show=False) shadowed = "*" * len(pw) print_command(user_sql.replace("'%s'" % pw, "'%s'" % shadowed)) psql("CREATE DATABASE %s WITH OWNER %s ENCODING = 'UTF8' " "LC_CTYPE = '%s' LC_COLLATE = '%s' TEMPLATE template0;" % (env.proj_name, env.proj_name, env.locale, env.locale)) # Set up SSL certificate if not env.ssl_disabled: conf_path = "/etc/nginx/conf" if not exists(conf_path): sudo("mkdir %s" % conf_path) with cd(conf_path): crt_file = env.proj_name + ".crt" key_file = env.proj_name + ".key" if not exists(crt_file) and not exists(key_file): try: crt_local, = glob(join("deploy", "*.crt")) key_local, = glob(join("deploy", "*.key")) except ValueError: parts = (crt_file, key_file, env.domains[0]) sudo("openssl req -new -x509 -nodes -out %s -keyout %s " "-subj '/CN=%s' -days 3650" % parts) else: upload_template(crt_local, crt_file, use_sudo=True) upload_template(key_local, key_file, use_sudo=True) # Install project-specific requirements upload_template_and_reload("settings") with project(): if env.reqs_path: pip("-r %s/%s" % (env.proj_path, env.reqs_path)) pip("gunicorn setproctitle psycopg2 " "django-compressor python-memcached") # Bootstrap the DB manage("createdb --noinput --nodata") python("from django.conf import settings;" "from django.contrib.sites.models import Site;" "Site.objects.filter(id=settings.SITE_ID).update(domain='%s');" % env.domains[0]) for domain in env.domains: python("from django.contrib.sites.models import Site;" "Site.objects.get_or_create(domain='%s');" % domain) if env.admin_pass: pw = env.admin_pass user_py = ("from django.contrib.auth import get_user_model;" "User = get_user_model();" "u, _ = User.objects.get_or_create(username='admin');" "u.is_staff = u.is_superuser = True;" "u.set_password('%s');" "u.save();" % pw) python(user_py, show=False) shadowed = "*" * len(pw) print_command(user_py.replace("'%s'" % pw, "'%s'" % shadowed)) return True @task @log_call def remove(): """ Blow away the current project. """ if exists(env.venv_path): run("rm -rf %s" % env.venv_path) if exists(env.proj_path): run("rm -rf %s" % env.proj_path) for template in get_templates().values(): remote_path = template["remote_path"] if exists(remote_path): sudo("rm %s" % remote_path) if exists(env.repo_path): run("rm -rf %s" % env.repo_path) sudo("supervisorctl update") psql("DROP DATABASE IF EXISTS %s;" % env.proj_name) psql("DROP USER IF EXISTS %s;" % env.proj_name) ############## # Deployment # ############## @task @log_call def restart(): """ Restart gunicorn worker processes for the project. If the processes are not running, they will be started. """ pid_path = "%s/gunicorn.pid" % env.proj_path if exists(pid_path): run("kill -HUP `cat %s`" % pid_path) else: sudo("supervisorctl update") @task @log_call def deploy(): """ Deploy latest version of the project. Backup current version of the project, push latest version of the project via version control or rsync, install new requirements, sync and migrate the database, collect any new static assets, and restart gunicorn's worker processes for the project. """ if not exists(env.proj_path): if confirm("Project does not exist in host server: %s" "\nWould you like to create it?" % env.proj_name): create() else: abort() # Backup current version of the project with cd(env.proj_path): backup("last.db") if env.deploy_tool in env.vcs_tools: with cd(env.repo_path): if env.deploy_tool == "git": run("git rev-parse HEAD > %s/last.commit" % env.proj_path) elif env.deploy_tool == "hg": run("hg id -i > last.commit") with project(): static_dir = static() if exists(static_dir): run("tar -cf static.tar --exclude='*.thumbnails' %s" % static_dir) else: with cd(join(env.proj_path, "..")): excludes = ["*.pyc", "*.pio", "*.thumbnails"] exclude_arg = " ".join("--exclude='%s'" % e for e in excludes) run("tar -cf {0}.tar {1} {0}".format(env.proj_name, exclude_arg)) # Deploy latest version of the project with update_changed_requirements(): if env.deploy_tool in env.vcs_tools: vcs_upload() else: rsync_upload() with project(): manage("collectstatic -v 0 --noinput") manage("migrate --noinput") for name in get_templates(): upload_template_and_reload(name) restart() return True @task @log_call def rollback(): """ Reverts project state to the last deploy. When a deploy is performed, the current state of the project is backed up. This includes the project files, the database, and all static files. Calling rollback will revert all of these to their state prior to the last deploy. """ with update_changed_requirements(): if env.deploy_tool in env.vcs_tools: with cd(env.repo_path): if env.deploy_tool == "git": run("GIT_WORK_TREE={0} git checkout -f " "`cat {0}/last.commit`".format(env.proj_path)) elif env.deploy_tool == "hg": run("hg update -C `cat last.commit`") with project(): with cd(join(static(), "..")): run("tar -xf %s/static.tar" % env.proj_path) else: with cd(env.proj_path.rsplit("/", 1)[0]): run("rm -rf %s" % env.proj_name) run("tar -xf %s.tar" % env.proj_name) with cd(env.proj_path): restore("last.db") restart() @task @log_call def all(): """ Installs everything required on a new system and deploy. From the base software, up to the deployed project. """ install() if create(): deploy()
51ddb757a62ae6e72e67154b814429ba16760036
d22c05787c28dbbcbc889c66d71d6a8e9bc1c407
/Get_Requests_From_Local_NIC/NIC_package_get.py
01830018bce79b77832d9869092beece00aea024
[ "MIT" ]
permissive
muxinsq/2020-Works-ApiSecurity
fe1f0319558e30f1b345968a693830b278171dea
95569f7c19ab59731623b8f40658714643d304e4
refs/heads/master
2021-04-11T01:59:56.370877
2020-03-21T04:17:45
2020-03-21T04:17:45
248,984,504
1
0
MIT
2020-03-21T13:44:12
2020-03-21T13:44:11
null
UTF-8
Python
false
false
850
py
#coding:utf-8 from scapy.all import * import sys package_output='document' #'screen'/'document'/'all' def package_print(packet): if (package_output == 'screen') or (package_output == 'all'): print("\n".join(packet.sprintf("{Raw:%Raw.load%}").split(r"\r\n"))+'\n\n\n') if (package_output == 'document') or (package_output == 'all'): outputxt=open(sys.path[0]+'//package.txt','a') print(sys.path[0]+'//package.txt') outputxt.write("\n".join(packet.sprintf("{Raw:%Raw.load%}").split(r"\r\n"))+'\n\n\n') #return "\n".join(packet.sprintf("{Raw:%Raw.load%}").split(r"\r\n"))+'\n\n\n' sniff( iface='Realtek 8821CE Wireless LAN 802.11ac PCI-E NIC', prn=package_print, lfilter=lambda p: ("GET" in str(p)) or ("POST" in str(p)), filter="tcp") #iface='XXX' 监听本地名为XXX的网卡
9ed6c6ad5e53713efd3778aebd13d1c36a523e85
3caed455cffc9fbc1a23dd362fcd4af147902b54
/02-Data-Toolkit/01-Data-Analysis/01-Notebook/hello.py
2263a2fe4977121dcc8155d3ca589138e8a495bb
[]
no_license
flo1222/data-challenges-old
3d06b782cede11fdba6123583259878b870f8653
b93f93d09892e7b5aec08810029a450ed011c704
refs/heads/master
2023-08-16T04:51:13.032204
2021-09-26T11:41:52
2021-09-26T11:41:52
410,534,853
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
# pylint: disable=missing-docstring def hello_world(): return "Hello from hello.py"
49dd4df042d6c013c345ea9fb026e7f1835e8969
7673ea54ff4d1a61373a0900efe27351bf63a2a8
/Debugging/trainres.py
075851cc1c57541a1c34a4cc02e041643be4d4fb
[]
no_license
mdkul22/ece285sp19-project
d7a048f727ed02830ad7a5fc61483bca564845c8
cc789eae150102eff4972169d64145d1904cf779
refs/heads/master
2020-05-18T23:26:34.587607
2019-06-10T02:27:08
2019-06-10T02:27:08
184,711,405
0
0
null
null
null
null
UTF-8
Python
false
false
1,567
py
import os import numpy as np import torch import torch.nn as nn import torch.utils.data as td import torch.nn.functional as F import torchvision as tv from PIL import Image import nntools as nt import matplotlib.pyplot as plt from dataloader import VOCDataset, myimshow import model class statsmanager(nt.StatsManager): def __init__self(): super(statsmanager,self).__init__() def init(self): super(statsmanager,self).init() self.m_ap=0 def accumulate(self,loss,x,y,d): #Do m_ap calculations super(statsmanager,self).accumulate(loss,x,y,d) def summarize(self): loss=super(statsmanager,self).summarize() return {'loss':loss} def plot(self,fig,ax1, ax2 ,im): ax1.set_title('Image') x,y=train_set[0] myimshow(x,ax=ax1) ax2.set_title('Loss') ax2.plot([exp1.history[k]['loss']for k in range(exp1.epoch)]) plt.tight_layout() fig.canvas.draw() lr=1e-3 device = 'cuda' if torch.cuda.is_available() else 'cpu' print(device) vgg = model.Resnet18Transfer(num_classes=20,n_batch=4) vgg.to(device) adam=torch.optim.Adam(vgg.parameters(),lr=lr) stats_manager=statsmanager() train_set=VOCDataset('../VOCdevkit/VOC2012/') valid_set=VOCDataset('../VOCdevkit/VOC2012/', mode="val") x,y=train_set[0] exp1=nt.Experiment(vgg,train_set,valid_set,adam,stats_manager,batch_size=4,output_dir="runres",perform_validation_during_training=True) fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1) exp1.run(num_epochs=5,plot=lambda exp:plot(exp,fig=fig,ax1=ax1, ax2=ax2 ,im=x))
c47fccc01fc9a053870024da3c03694e2581fa93
f83dec9a439dac4033948719c43a5faba315171b
/article/migrations/0001_initial.py
0195b1f910e543f45a73f0369dc7571852f691de
[]
no_license
kevinngetich/showcase
446d49950963a0401eec1a156b46ab023d6b0483
c3a5bfd26e0bf084815073f6d702109257fd4c23
refs/heads/master
2020-05-19T00:48:21.239700
2019-05-03T11:21:43
2019-05-03T11:21:43
184,743,784
0
0
null
null
null
null
UTF-8
Python
false
false
638
py
# Generated by Django 2.1.3 on 2019-02-10 15:27 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Article', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('article_title', models.CharField(max_length=250)), ('article_text', models.CharField(max_length=5000)), ('image', models.ImageField(upload_to='article_image')), ], ), ]
1154b16d6df238a8dda389b0016c8502dba497ac
304fa43e6d8b78ef27a52dc31fc6d70f27ae856e
/league/Leagues.py
efc33f99e923fefed85e6b32e4d3d8c8dc1702ba
[]
no_license
yaooo/Stock-Fantasy-League
0049a303eeecc0c72a960321780d0da29babc961
01ce360d569c767e229c6cf60171600f12cedd6b
refs/heads/master
2021-05-09T04:48:39.119384
2018-03-24T21:46:24
2018-03-24T21:46:24
119,289,339
3
2
null
2018-01-29T00:37:51
2018-01-28T19:14:16
null
UTF-8
Python
false
false
167
py
from flask_restful import reqparse, abort, Resource class Leagues(Resource): @staticmethod def get(cur, LID): return 'Hello, Brian, ID = ' + str(LID)
983e5124705f4cb91b3e31c3652d19a6497e3c25
fe0fff66d2d0f56b87882dfe41c577a87865e6f1
/Img_to_word.py
1d7c7e974ae083c84b70e079acc956daac0e6825
[]
no_license
ymmh123456789/OCR
7b73933b2c5bf23a5cfc9e60395271d5819301b3
f8fd503c530934633002d17bdd9fe0a99c33686f
refs/heads/master
2021-01-01T15:43:07.293151
2017-08-02T01:18:35
2017-08-02T01:18:35
97,682,598
0
0
null
null
null
null
UTF-8
Python
false
false
2,160
py
# coding:utf-8 import os rootdir = os.path.join(os.getcwd(),"Book\\8\\") files = [os.path.join(rootdir,item) for item in os.listdir(rootdir) if item.endswith('.xml')] # 舉例找出檔名結尾為.xml的檔案 def load_text(file): with open(file,'r') as I: print rootdir count = 0 flag = False for line in I: line = line.strip() # line = list(line) count += 1 print count, line img_pos = line.find("img") if img_pos != -1: flag = True new_img = '' start_or_end = False for i in range(img_pos, len(line)): if line[i] == '"' and not start_or_end: start_or_end = True elif line[i] == '"' and start_or_end: break elif start_or_end: new_img += line[i] else: pass if new_img != '': with open(rootdir + "match.txt", "a") as W: W.writelines(new_img+"\n") print new_img elif flag: word_bool = True i = 0 new_line = '' while i < len(line): if line[i] == "<" or not word_bool: if line[i] == ">": word_bool = True else: word_bool = False # del line[i] # i -= 1 else: new_line += line[i] i+=1 if new_line != '': new_line = new_line.replace('\xe3\x80\x80', "") # new_line = new_line.replace(u"\xa0", "") with open(rootdir + "match.txt", "a") as W: W.writelines(new_line+"\n") print new_line else: pass # print files if __name__ == "__main__": for file in files: load_text(file)
ba802b9c190c3083aa933b00887236c6ad1b4277
71f39b722f1204738b53e90d8566bcf6da99d494
/apps/incubator/migrations/0004_auto_20181106_1401.py
08eb2dabca3ab2ddac44d79bf4d15373287cca68
[]
no_license
kingvern/txplatform
cd9fc36fe3ba536b7578d734f520d0f091db4b22
235465b742d0ba13132f872e0f3818990f232888
refs/heads/master
2022-12-17T00:03:50.675329
2018-11-16T10:02:35
2018-11-16T10:02:35
149,862,235
0
0
null
2022-11-22T02:53:29
2018-09-22T09:17:06
JavaScript
UTF-8
Python
false
false
751
py
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2018-11-06 14:01 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('incubator', '0003_couveuse_financial_park'), ] operations = [ migrations.AddField( model_name='couveuse', name='url_companys', field=models.CharField(blank=True, max_length=100, null=True, verbose_name='\u5b75\u5316\u9875\u9762'), ), migrations.AddField( model_name='couveuse', name='url_introduce', field=models.CharField(blank=True, max_length=100, null=True, verbose_name='\u4ecb\u7ecd\u9875\u9762'), ), ]
a516166dbb3533ae75e2a0c8ace848504fad019a
925ccdf93bb69ad3160057cc04cd0457a4def0e6
/simurg/logger/logstash_formatter.py
d9ed823b8b24983b8219bd40a9bdb750d5a93a79
[ "MIT" ]
permissive
pasmod/simurg
e9fe185bb4ddb1dfe35d3459b89891a168a8fb4b
9fe84fb300810ab7f703385c2dd1e5e7afa712f9
refs/heads/master
2021-04-12T03:42:26.815547
2017-03-28T08:05:04
2017-03-28T08:05:04
53,422,442
5
1
null
null
null
null
UTF-8
Python
false
false
4,093
py
''' This library is provided to allow standard python logging to output log data as JSON formatted strings ready to be shipped out to logstash. ''' import logging import socket import datetime import traceback as tb import json def _default_json_default(obj): """ Coerce everything to strings. All objects representing time get output as ISO8601. """ if isinstance(obj, (datetime.datetime, datetime.date, datetime.time)): return obj.isoformat() else: return str(obj) class LogstashFormatter(logging.Formatter): """ A custom formatter to prepare logs to be shipped out to logstash. """ def __init__(self, fmt=None, datefmt=None, json_cls=None, json_default=_default_json_default): """ :param fmt: Config as a JSON string, allowed fields; extra: provide extra fields always present in logs source_host: override source host name :param datefmt: Date format to use (required by logging.Formatter interface but not used) :param json_cls: JSON encoder to forward to json.dumps :param json_default: Default JSON representation for unknown types, by default coerce everything to a string """ if fmt is not None: self._fmt = json.loads(fmt) else: self._fmt = {} self.json_default = json_default self.json_cls = json_cls if 'extra' not in self._fmt: self.defaults = {} else: self.defaults = self._fmt['extra'] if 'source_host' in self._fmt: self.source_host = self._fmt['source_host'] else: try: self.source_host = socket.gethostname() except: self.source_host = "" class LogstashFormatterV2(LogstashFormatter): """ A custom formatter to prepare logs to be shipped out to logstash V1 format. """ def _make_timestamp(self, now): sft = now.strftime("%Y-%m-%dT%H:%M:%S") millis = ".%03dZ" % (now.microsecond / 1000) return sft + millis def _drop_some(self, fields): for field in ['args', 'created', 'filename', 'funcName', 'levelno', 'lineno', 'module', 'msecs', 'pathname', 'process', 'processName', 'relativeCreated', 'source_host', 'stack_info', 'thread', 'threadName']: fields.pop(field, None) def _filter_severity(self, fields): severity = fields.pop('levelname').lower() if 'warning' == severity: severity = 'warn' elif 'critical' == severity: severity = 'fatal' fields['severity'] = severity def _filter_message(self, fields): fields['message'] = fields.pop('msg', None) if type(fields['message']) is dict: params = fields.pop('message') fields['message'] = params.pop('message', None) fields['params'] = params def _filter_exception(self, fields): if 'exc_info' in fields: if fields['exc_info']: formatted = tb.format_exception(*fields['exc_info']) fields['exception'] = formatted fields.pop('exc_info') if 'exc_text' in fields and not fields['exc_text']: fields.pop('exc_text') def format(self, record): """ Format a log record to JSON, if the message is a dict assume an empty message and use the dict as additional fields. """ fields = record.__dict__.copy() self._drop_some(fields) self._filter_severity(fields) self._filter_message(fields) self._filter_exception(fields) fields['@timestamp'] = self._make_timestamp(datetime.datetime.utcnow()) fields['@version'] = 1 logr = self.defaults.copy() logr.update(fields) return json.dumps(logr, default=self.json_default, cls=self.json_cls)
3b65c4d7657ad654a6586dcd3158a572adc38cb0
ea04e29123cdbe5f49be236ee1df8397da25b330
/reportcards/urls.py
8a6a5fc8ba1879bbb8b6c936ab33b55758529138
[ "MIT" ]
permissive
Davy-71993/MySchool
bf187673e4796010dd8fd4bcbf27b0b87199794d
fa02c8ec19d71873fc0d714cf652d8ad05f2f0e7
refs/heads/master
2022-05-28T23:24:06.865580
2020-05-04T19:03:04
2020-05-04T19:03:04
261,251,617
0
0
null
null
null
null
UTF-8
Python
false
false
606
py
from django.urls import path from . import views urlpatterns = [ path('', views.creat_marklist, name='creat_marklist'), path('<mkl>', views.setup_marklist, name='setup_marklist'), path('marklist/<pk>/', views.marklist, name='marklist'), path('marksbysubject/<mkl>/<sub>/', views.marks_by_subject, name='marks_by_subject'), path('marksbystudent/<mkl>/<std>/', views.marks_by_student, name='marks_by_student'), path('marklistbystream/<mkl>/', views.marks_by_stream, name='marks_by_stream'), path('classmarklist/<klass>/<term>/', views.class_marklist, name='class_marklist'), ]
1158637ae1565bfda9ea360030dc766550d3b79e
734104aef567d19e2d7cdcf05f1f887bbd29c5eb
/hawkeye_autotest/selenium/crondns.py
54491f62e148582dbd986c3953dc1a83bc61c3bc
[ "Apache-2.0" ]
permissive
miaolujing/python_script
4d7719bc9294013bacf261e03dd06aa216e389cc
57ccf89f53ce0ce551804b5693515d8a8db4ce78
refs/heads/master
2021-01-10T06:33:08.120663
2017-02-17T05:58:09
2017-02-17T05:58:09
47,525,529
0
0
null
null
null
null
UTF-8
Python
false
false
5,501
py
# -*- coding: utf-8 -*- from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select from selenium.common.exceptions import NoSuchElementException from selenium.common.exceptions import NoAlertPresentException import unittest, time, re, config, os, sys, db, addtask, assertresult, deletetask class Crondns(unittest.TestCase): def setUp(self): self.driver = webdriver.Firefox() self.base_url = config.baseurl self.verificationErrors = [] self.accept_next_alert = True def test_crondns(self): #登陆 driver = self.driver driver.get(self.base_url + "/") driver.implicitly_wait(30) driver.switch_to_window(driver.window_handles[0]) driver.find_element_by_id("name").clear() driver.find_element_by_id("name").send_keys(config.user) driver.find_element_by_id("password").clear() driver.find_element_by_id("password").send_keys(config.passwd) driver.find_element_by_id("sign").click() driver.implicitly_wait(30) driver.find_element_by_link_text(u"监控配置").click() time.sleep(5) driver.switch_to_window(driver.window_handles[0]) driver.find_element_by_link_text(u"监控图管理").click() time.sleep(5) driver.switch_to_window(driver.window_handles[0]) driver.find_element_by_link_text(u"报表管理").click() time.sleep(5) driver.switch_to_window(driver.window_handles[1]) #新增定时任务 if addtask.adddns('{ "hostName":"'+config.crondns+'","nameserver":""}',config.cronhost1,"300","dns") == False: print "post dnscrontask fail" driver.quit() os._exit(0) else: print "post dnscrontask suss" time.sleep(5) #判断定时任务新增是否成功 if len(db.readtaskid(config.crondns)) < 1: print "add dnscrontask fail" driver.quit() os._exit(0) else: print "add dnscrontask suss" #新增监控图 datas = db.readtaskid(config.crondns) data = '' counts = '' for i in range(0, len(datas)): if i < len(datas)-1: data += "metric="+config.crondns+" metric="+str(datas[i])+"\n" if i == len(datas)-1: data += "metric="+config.crondns+" metric="+str(datas[i])+"" if i < len(datas)-1: counts +="metric="+config.crondns+" metric="+str(datas[i])+"|" if i == len(datas)-1: counts +="metric="+config.crondns+" metric="+str(datas[i])+"" if addtask.addmonitor(config.dnsname,config.dashhost1,"3600",data,"h","true") ==False: print "post dnsmonitortask fail" driver.quit() os._exit(0) else: print "post dnsmonitortask suss" time.sleep(5) #判断监控图任务是否新增成功 if db.readmonitor(counts) == config.dnsname: print "add dnsmonitortask suss" else: print "add dnsmonitortask fail" driver.quit() os._exit(0) time.sleep(300) # 查看报表展现 driver.switch_to_window(driver.window_handles[3]) driver.find_element_by_xpath("//div[@id='container']/div/div/ul/li/div/button").click() driver.find_element_by_css_selector("li.screen > a > small").click() driver.find_element_by_xpath("//div[@id='container']/div/div/ul/li[2]/div/button").click() driver.find_element_by_css_selector("div.btn-group.open > ul.dropdown-menu > li.screen > a > small").click() assertresult.graphgetdns() time.sleep(2) # 删除监控图管理 driver.switch_to_window(driver.window_handles[2]) time.sleep(2) driver.find_element_by_id("g_name").clear() driver.find_element_by_id("g_name").send_keys(config.dnsname) driver.find_element_by_css_selector("button.btn.btn-info").click() time.sleep(2) driver.find_element_by_name("btSelectAll").click() time.sleep(2) driver.find_element_by_css_selector("button.btn.btn-warning").click() self.assertRegexpMatches(self.close_alert_and_get_its_text(), u"确认删除1个图表配置?") #删除定时任务 deletetask.crondel(config.crondns) time.sleep(2) #退出登录 driver.switch_to_window(driver.window_handles[0]) time.sleep(2) driver.find_element_by_link_text(u"用户登录/退出").click() driver.find_element_by_link_text(u"退出").click() driver.quit() def is_element_present(self, how, what): try: self.driver.find_element(by=how, value=what) except NoSuchElementException as e: return False return True def is_alert_present(self): try: self.driver.switch_to_alert() except NoAlertPresentException as e: return False return True def close_alert_and_get_its_text(self): try: alert = self.driver.switch_to_alert() alert_text = alert.text if self.accept_next_alert: alert.accept() else: alert.dismiss() return alert_text finally: self.accept_next_alert = True if __name__ == "__main__": unittest.main()
eba8e549a12d0b22421b0407b63826019b87c74c
92ee5595f23ac1076b5e76d2679dd31ab89705fe
/sequencinator/matrix_tools.py
639e10407e45a3889629e62fe7023eb92b4c4843
[]
no_license
DiogoM1/MBINF-AASB_Projeto
188f9c94968066186e98f773112adb7e81e4de00
144b6ebc18a4da4dd70f5d0d9ba9f1acdd768ae2
refs/heads/main
2023-01-27T11:53:01.331760
2020-12-02T18:17:38
2020-12-02T18:17:38
309,809,268
0
0
null
2020-12-02T15:27:38
2020-11-03T21:17:08
Python
UTF-8
Python
false
false
894
py
def max_matrix(matrix): # finds max value # https://www.educba.com/numpy-argmax/ max_list = [] for a in range(0, len(matrix)): max_list.append(max(matrix[a])) return max(max_list) def find_last_max(matrix): # finds the last max coordinates max = max_matrix(matrix) max_index_sum = 0 index_a, index_b = 0, 0 for a in range(0, len(matrix)): for b in range(0, len(matrix[0])): # TODO: fix "desempate" logic if matrix[a][b] == max and a+b >= max_index_sum: index_a, index_b = a, b return index_a, index_b def find_all_max(matrix): # finds the all max coordinates max = max_matrix(matrix) index_list = [] for a in range(0, len(matrix)): for b in range(0, len(matrix[0])): if matrix[a][b] == max: index_list.append((a, b)) return index_list
77415745cb1aa2ac72dc1415a343d7a3c84e3fa2
a6c86e21f66968b8ddce0382e7bcceb43765d29e
/src/serialio.py
63613d515ce5bcf7666aa8a76470af627b28e356
[]
no_license
HenkVanAsselt/IFR1200
5ef5491d9d0077bfd5b2af9f98841d27b93d5863
8c39f7d6b590795fb45733c40cb03108c36822e5
refs/heads/master
2021-04-04T15:34:14.087285
2020-08-13T11:38:19
2020-08-13T11:38:19
248,463,967
0
0
null
null
null
null
UTF-8
Python
false
false
4,451
py
"""IFR 1200 serial commands and tests """ # Global imports import time import serial # Local imports import src.lib.helper from src.lib.helper import debug # ============================================================================ class IFR1200Io: """Class representing the serial Interface to IFR 1200""" # ------------------------------------------------------------------- def __init__(self): """Intialize class IfrInterface""" self.comport = 'COM1:' self.baudrate = 9600 self.serialport = None debug('Intializing serial port') try: self.serialport = serial.Serial(self.comport, baudrate=self.baudrate, timeout=0.2) debug('serial port is opened') except Exception as e: debug(f"EXCEPTION: {e}") self.serialport = None return self.send_lf() ret = self.ask_uok() if ret == b'%': debug(f"IFR1200Io is initialized") else: print('Error in initializing class IFR1200Io') # ------------------------------------------------------------------- def send_command(self, cmd) -> bytes: """Send the given command to the IFR 1200 and wait for the response :param cmd: The string with the command to send :returns: The response (if any) """ if not self.serialport: raise serial.SerialException bytes_waiting = self.serialport.inWaiting() if bytes_waiting: debug(f"UNEXPECTED: Still {bytes_waiting} bytes waiting in serial port before sending command {cmd}") s = self.serialport.read(bytes_waiting) debug(f"RESPONSE1 = {s}") if isinstance(cmd, bytes): pass elif isinstance(cmd, str): cmd = cmd.encode('utf-8') debug(f"Command: {cmd}") self.serialport.write(cmd) self.serialport.flush() time.sleep(0.2) # Only get response in the following cases: if b"?" in cmd or b'DUMP' in cmd or b'MTR1' in cmd or b'MTR2' in cmd or b'DTME' in cmd: ret = self.get_response(cmd) return ret bytes_waiting = self.serialport.inWaiting() if bytes_waiting: debug(f"UNEXPECTED: Still {bytes_waiting} bytes waiting in serial port after sending cmd {cmd}") s = self.serialport.read(bytes_waiting) debug(f"RESPONSE2 = {s}") return s # ------------------------------------------------------------------- def get_response(self, cmd='') -> bytes: """ Wait for a response from the IFR. :param cmd: The command to send :returns: The stripped response """ if not self.serialport: raise serial.SerialException # Determine the number of waiting, incoming bytes # debug(f"waiting for response for command [{cmd}]") time.sleep(0.2) # Wait somewhat more time. bytes_waiting = self.serialport.inWaiting() # debug(f'bytes waiting = {bytes_waiting}') # Read the bytes, and append them to the return string s = self.serialport.read(bytes_waiting) debug(f"Response: {s}") if s.startswith(b"**"): print(f"ERROR: INVALID COMMAND [{cmd.decode().strip()}]") return s.strip() # ------------------------------------------------------------------- def send_lf(self) -> str: """Send a single linefeed The 1200 should say on its display: RS-232 ENABLED :return: response of this command """ cmd = b"\n\n" ret = self.send_command(cmd) return ret # ------------------------------------------------------------------- def ask_uok(self): """ Check if the IFR can be reached and responds :returns: The response, which should be b'%\r\n' """ cmd = b"UOK?\n" response = self.send_command(cmd) return response # ------------------------------------------------------------------- def close(self): """Close the serial port""" self.serialport.close() # ------------------------------------------------------------------- if __name__ == "__main__": """The main of this module will perform some tests""" # src.lib.helper.clear_debug_window() debug(f"Testing {__file__}") io = IFR1200Io() io.close()
1ec433659be952df3dbd83f186482baaffd5b2fe
6f5b206e416ba8a16d3a559ad9e9329fbaed672b
/pinballbase/fpsmeter.py
7c2adad96d5e64ebef736247099a6b62aff88bd4
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
OpenDisneyGames/PiratesPinball
66a51935db81f4698d35e55f97ffddbb2a98cb8a
411728429083e2f36a691b8db7966f91a1ea6a1f
refs/heads/master
2022-10-06T00:58:58.861183
2020-06-08T07:34:38
2020-06-08T07:34:38
270,551,727
3
0
null
null
null
null
UTF-8
Python
false
false
1,651
py
import direct.directbase.DirectStart from direct.showbase.DirectObject import DirectObject from direct.gui.DirectGui import * import direct.task.Task, time from functools import reduce class FPSMeter(DirectObject): __module__ = __name__ def __init__(self, displayFPS=True, numSamples=20): self.displayFPS = displayFPS self.numSamples = numSamples self.fps = 0.0 self.samples = [] if displayFPS: self.initLabel() def initLabel(self): self.fpsLabel = DirectLabel(relief=None, pos=(-0.95, 0, 0.9), text='0.0 fps', color=Vec4(0, 0, 1, 1), text_scale=0.1) self.fpsLabel.hide() return def enable(self): self.disable() self.samples = [] self.lastTime = time.time() if self.displayFPS: self.fpsLabel.show() task = Task.Task(self.fpsTask) taskMgr.add(task, 'fpsTask') def disable(self): if self.displayFPS: self.fpsLabel.hide() taskMgr.remove('fpsTask') def fpsTask(self, task): self.updateFPS() if self.displayFPS: self.updateDisplay() return Task.cont def updateFPS(self): t = time.time() dt = t - self.lastTime self.samples.append(dt) if len(self.samples) > self.numSamples: self.samples.pop(0) self.lastTime = t denom = reduce(lambda x, y: x + y, self.samples) if denom != 0: self.fps = len(self.samples) / denom else: self.fps = 100.0 def updateDisplay(self): self.fpsLabel['text'] = '% 3.1f fps' % self.fps
80dc412129683b4b0477fa6e4975e286fb8875a3
15703d435938a852e0ca586840e412c1e54740ce
/logistica/models.py
87df9929625f0d7d99bc2992bda31aa81373b9b5
[]
no_license
fcaapps/dashcase
718f0b18545e27b302abfb41e0ce49ca77b185bf
e6d6e498783439ad78f666c7658b761ed30127e0
refs/heads/master
2022-12-10T09:59:23.683301
2018-10-16T13:10:41
2018-10-16T13:10:41
150,775,427
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
from django.db import models class PermissoesLogistica(models.Model): class Meta: managed = False # No database table creation or deletion operations \ # will be performed for this model. permissions = ( ('logistica_permissoes', 'Permissão Global de Logistica'), )
5b451f8fca2b8cdfbc03a067f3d1368e8042e36c
056a1050e0e0bf78eeedaf978841a61e5203936a
/Python/Flask_Blog/05-Package-Structure/flaskblog/models.py
8dd3af1c5fdbfc8535f369b1cab4ddc0456a738a
[ "MIT" ]
permissive
DSNR/snippets
cc3990f0ac467e19754f0a76598809eddede95fd
12006dd083be60c6444d8b5ca48fd917005e081b
refs/heads/master
2023-08-23T18:55:34.038472
2021-10-11T02:35:28
2021-10-11T02:35:28
415,750,242
0
0
null
null
null
null
UTF-8
Python
false
false
1,017
py
from datetime import datetime from flaskblog import db class User(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(20), unique=True, nullable=False) email = db.Column(db.String(120), unique=True, nullable=False) image_file = db.Column(db.String(20), nullable=False, default='default.jpg') password = db.Column(db.String(60), nullable=False) posts = db.relationship('Post', backref='author', lazy=True) def __repr__(self): return f"User('{self.username}', '{self.email}', '{self.image_file}')" class Post(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(100), nullable=False) date_posted = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) content = db.Column(db.Text, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) def __repr__(self): return f"Post('{self.title}', '{self.date_posted}')"
b83dd742d29f7987ba26646427a8b0001749c6d4
90974492bf7b78969e976ba97f6a51510fb84fe8
/qlearning-3-qtable.py
4a1ce78aabee227a05b56f16bd170a2bacdee8b5
[]
no_license
nexthybrid/Python-Q-Learning
82c719d475ad871fd6ed5648c7abddbea1fcc4dd
23d2392dbb379d2981b1845679f4cf7dacbe90ad
refs/heads/main
2023-01-01T22:36:43.105496
2020-10-08T02:21:07
2020-10-08T02:21:07
301,920,508
0
0
null
null
null
null
UTF-8
Python
false
false
983
py
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt from matplotlib import style import numpy as np style.use('ggplot') def get_q_color(value, vals): if value == max(vals): return "green", 1.0 else: return "red", 0.3 fig = plt.figure(figsize=(12, 9)) ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) i = 24900 q_table = np.load(f"qtables/{i}-qtable.npy") for x, x_vals in enumerate(q_table): for y, y_vals in enumerate(x_vals): ax1.scatter(x, y, c=get_q_color(y_vals[0], y_vals)[0], marker="o", alpha=get_q_color(y_vals[0], y_vals)[1]) ax2.scatter(x, y, c=get_q_color(y_vals[1], y_vals)[0], marker="o", alpha=get_q_color(y_vals[1], y_vals)[1]) ax3.scatter(x, y, c=get_q_color(y_vals[2], y_vals)[0], marker="o", alpha=get_q_color(y_vals[2], y_vals)[1]) ax1.set_ylabel("Action 0") ax2.set_ylabel("Action 1") ax3.set_ylabel("Action 2") plt.show()
68c69662eccb7e28430427119124efb2630482b3
04ab24e9e7742895771de803959d1167e416a57e
/app/main/services/category_service.py
4f566ef30aca6a112baede20ead7f70131098cf4
[]
no_license
TTomas78/Taller-Python
2ee35c4a72d59b5e1b83a454d071ed40b547371d
2e9d72b9621c022cad916d6494528daee81182d2
refs/heads/master
2022-10-10T03:13:03.162248
2019-11-27T22:05:53
2019-11-27T22:05:53
211,518,544
1
0
null
2022-09-16T18:10:58
2019-09-28T15:09:18
Python
UTF-8
Python
false
false
180
py
from app.main.repositories.category_repository import CategoryRepository class CategoryService(): @staticmethod def get_all(): return CategoryRepository.get_all()
ca6d981f70f9f5e2d0d59bf1cec839c78115a1ef
a1bc22600af8889ea1b96b102a021a4a360654d5
/restapi/libs/ConnectionManager.py
d0eddd35935d2ac3a2b6e9da225c5336c50530e1
[]
no_license
IndominusByte/hydro-tech-backend
940e32f3d4981ec92f78c7efb2f11add0fa17bf5
ac1ae3f05eb0b5a2c9da80560e7ee5e66e52848f
refs/heads/main
2023-05-04T14:11:12.267438
2021-05-30T01:08:30
2021-05-30T01:08:30
371,831,757
0
0
null
null
null
null
UTF-8
Python
false
false
12,048
py
import logging, json from fastapi import WebSocket from fastapi_jwt_auth import AuthJWT from fastapi_jwt_auth.exceptions import MissingTokenError from controllers.ChatController import ChatCrud, ChatFetch from controllers.UserController import UserFetch from controllers.ReportController import ReportCrud from controllers.SettingUserController import SettingUserFetch from controllers.AlertController import AlertCrud, AlertLogic from schemas.chats.ChatSchema import ChatData from schemas.reports.ReportSchema import ReportCreate from schemas.dashboard.DashboardSchema import ( DashboardSetValueServo, DashboardSetValueHydro, DashboardHydroData, ) from pydantic import ValidationError from user_agents import parse from typing import List, Union from config import settings from redis import Redis logger = logging.getLogger("uvicorn.info") class ConnectionManager: async def connect( self, websocket: WebSocket, authorize: AuthJWT, csrf_token: str = None, token: str = None ): await websocket.accept() # user authentication if csrf_token: authorize.jwt_required("websocket",websocket=websocket,csrf_token=csrf_token) # check user login decode_token = authorize.get_raw_jwt() elif token: authorize.jwt_required("websocket",token=token) # check IoT device login decode_token = authorize.get_raw_jwt(token) else: raise MissingTokenError(status_code=1008,message="Missing access token from Query or Path") # set state to websocket user_agent = websocket.headers.get('user-agent') if user_agent != 'arduino-WebSocket-Client': websocket.state.type = "user" websocket.state.device = str(parse(user_agent)) else: websocket.state.type = "IoT" websocket.state.device = user_agent websocket.state.ip = websocket.client.host websocket.state.user_id = decode_token['sub'] # remove all duplicate connection for connection in self.active_connections: if self.check_duplicate_connection(connection,websocket) is True: await self.disconnect(connection,'duplicate') self.active_connections.append(websocket) def check_duplicate_connection(self, connection: WebSocket, websocket: WebSocket) -> bool: return connection.state.type == websocket.state.type and \ connection.state.device == websocket.state.device and \ connection.state.ip == websocket.state.ip and \ connection.state.user_id == websocket.state.user_id async def send_data(self, kind: str, connection: WebSocket, data: Union[str, bytes]) -> None: try: if kind == 'text': await connection.send_text(data) if kind == 'bytes': await connection.send_bytes(data) except RuntimeError: await self.disconnect(connection,'invalid_data') async def disconnect(self, websocket: WebSocket, msg: str): try: logger.info(f'{tuple(websocket.client)} - "WebSocket {websocket.url.path}" [disconnect-{msg}]') self.active_connections.remove(websocket) await websocket.close() except ValueError: pass class ConnectionDashboard(ConnectionManager): def __init__(self): self.active_connections: List[WebSocket] = [] def set_type_device(self, kind: str, websocket: WebSocket) -> None: if kind == "Hydro": websocket.state.type = "IoT:Hydro" if kind == "Servo": websocket.state.type = "IoT:Servo" if kind == "Camera": websocket.state.type = "IoT:Camera" async def broadcast(self, msg_data: str, websocket: WebSocket, redis_conn: Redis) -> None: try: msg_data = dict(i.split(':') for i in msg_data.rstrip().split(',')) web_data = ",".join([":".join([key, str(val)]) for key, val in msg_data.items()]) # set type device IoT when make connection self.set_type_device(msg_data['kind'], websocket) # save data from hydro to db if msg_data['kind'] == 'Hydro': try: m = ReportCreate(**msg_data) user_id = int(websocket.state.user_id) setting_user = await SettingUserFetch.filter_by_user_id(user_id) # get setting user if setting_user is not None and setting_user['planted'] is True: # create alert if m.tank <= 50: msg = f"Water remaining {m.tank}%" if await AlertLogic.check_alert(user_id,'water_tank',msg) is False: await AlertCrud.create_alert(**{ 'type': 'water_tank', 'message': msg, 'user_id': user_id }) if m.temp <= 15 or m.temp >= 30: msg = "Oh no, your water temperature is abnormal," + \ f" water temperature right now {m.temp}°C" if await AlertLogic.check_alert(user_id,'water_temp',msg) is False: await AlertCrud.create_alert(**{ 'type': 'water_temp', 'message': msg, 'user_id': user_id }) # create report await ReportCrud.create_report(**m.dict(),user_id=user_id) except ValidationError: await self.disconnect(websocket,'validation') for connection in self.active_connections: # send data web to camera for capture image & streaming if ( msg_data['kind'] in ['live_cam_true', 'live_cam_false'] and connection.state.type == "IoT:Camera" and connection.state.user_id == websocket.state.user_id ): await self.send_data('text', connection, web_data) # send data web to camera for image calibration if ( msg_data['kind'] in ['image_cal_true','image_cal_false'] and connection.state.type == "IoT:Camera" and connection.state.user_id == websocket.state.user_id ): if msg_data['kind'] == 'image_cal_true': redis_conn.set(f"camera_cal:{connection.state.user_id}","true",settings.image_cal_expires) await self.send_data('text', connection, 'kind:capture_image') if msg_data['kind'] == 'image_cal_false': redis_conn.set(f"camera_cal:{connection.state.user_id}","false",settings.image_cal_expires) # send data setting servo to Servo IoT if ( msg_data['kind'] == 'set_value_servo' and connection.state.type == "IoT:Servo" and connection.state.user_id == websocket.state.user_id ): # validation incoming data from user try: DashboardSetValueServo(**msg_data) await self.send_data('text', connection, web_data) except ValidationError: await self.disconnect(websocket,'validation') # send data hydro to user if ( msg_data['kind'] == 'Hydro' and connection.state.type == "user" and connection.state.user_id == websocket.state.user_id ): # validation incoming data from user try: DashboardHydroData(**msg_data) await self.send_data('text', connection, web_data) except ValidationError: await self.disconnect(websocket,'validation') # send data setting user to Hydro IoT if ( msg_data['kind'] == 'set_hydro' and connection.state.type == "IoT:Hydro" and connection.state.user_id == websocket.state.user_id ): # validation incoming data from user try: DashboardSetValueHydro(**msg_data) await self.send_data('text', connection, web_data) except ValidationError: await self.disconnect(websocket,'validation') except ValueError: pass async def streaming(self, stream: bytes, websocket: WebSocket) -> None: # send data streaming to user and not device IoT for connection in self.active_connections: if ( connection.state.type == "user" and connection.state.user_id == websocket.state.user_id ): await self.send_data('bytes', connection, stream) async def reset_servo(self) -> None: for connection in self.active_connections: if connection.state.type == "IoT:Servo": user_id = int(connection.state.user_id) setting_user = await SettingUserFetch.filter_by_user_id(user_id) await self.send_data( 'text', connection, f"kind:set_value_servo,sh:{setting_user['servo_horizontal']},sv:{setting_user['servo_vertical']}" ) async def capture_image(self) -> None: for connection in self.active_connections: if connection.state.type == "IoT:Camera": await self.send_data('text', connection, 'kind:capture_image') class ConnectionChat(ConnectionManager): def __init__(self): self.active_connections: List[WebSocket] = [] async def connect( self, websocket: WebSocket, authorize: AuthJWT, csrf_token: str = None, ): await ConnectionManager.connect(self,websocket,authorize,csrf_token=csrf_token) await self.list_user_status() async def broadcast(self, msg_data: str, websocket: WebSocket) -> None: if msg_data != "kind:get_list_user_status": # save message to database chat_id = await ChatCrud.create_chat(message=msg_data,user_id=int(websocket.state.user_id)) chat_db = await ChatFetch.filter_by_id(chat_id) msg = ChatData(**{index:value for index,value in chat_db.items()}).dict() # send message to all user [ await self.send_data('text', connection, json.dumps(msg,default=str)) for connection in self.active_connections ] else: await self.list_user_status() async def list_user_status(self): user_all = await UserFetch.get_user_id() user_connection = [int(connection.state.user_id) for connection in self.active_connections] online_user = [str(x) for x in user_all if x in user_connection] offline_user = [str(x) for x in user_all if x not in user_connection] total_online = len(online_user) total_offline = len(offline_user) msg = { 'total_online': total_online, 'total_offline': total_offline, 'online_user': online_user, 'offline_user': offline_user } [ await self.send_data('text', connection, json.dumps(msg,default=str)) for connection in self.active_connections ] async def disconnect(self, websocket: WebSocket, msg: str): await ConnectionManager.disconnect(self,websocket,msg) await self.list_user_status()
4ef1b4ad59a6038701ac54ce8f91f3c6bd2f7011
2e57fa141bd7fe4903ac5b31367e27686d343806
/code/run_pretrain_new.py
885233c44851b525d3eb589749f6c0d5ca45b472
[ "MIT" ]
permissive
nikit91/ERNIE
8b9e9efcaa786dc69ce1a931173bef3890f2f942
a40e498e5b0adbfdce39a478737418199f773d96
refs/heads/master
2023-03-03T09:53:04.332667
2021-02-13T14:07:26
2021-02-13T14:07:26
311,699,328
0
0
MIT
2023-05-11T01:48:12
2020-11-10T15:21:19
Python
UTF-8
Python
false
false
21,283
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import os import logging import argparse import random from tqdm import tqdm, trange import numpy as np import torch from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from knowledge_bert.tokenization import BertTokenizer from knowledge_bert.modeling import BertForPreTraining from knowledge_bert.optimization import BertAdam from knowledge_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def warmup_linear(x, warmup=0.002): if x < warmup: return x/warmup return 1.0 def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", default=False, action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_lower_case", default=False, action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", default=False, action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument('--init_fs_path', type=str, default="./", help="File system path for distributed training with init_method using shared file system \n" "./ (default value): current directory\n") parser.add_argument('--nodes_count', type=int, default=1, help="Number of nodes to determine the world size for distributed training \n" "1 (default value): count of nodes\n") args = parser.parse_args() if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = 1 torch.distributed.init_process_group(backend='gloo', init_method='file://'+args.init_fs_path, rank=args.local_rank, world_size=args.nodes_count) # torch.cuda.set_device(args.local_rank) # device = torch.device("cuda", args.local_rank) # n_gpu = 1 # # Initializes the distributed backend which will take care of sychronizing nodes/GPUs # torch.distributed.init_process_group(backend='nccl') logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) # random.seed(args.seed) # np.random.seed(args.seed) # torch.manual_seed(args.seed) # keeping same seed value torch.manual_seed(100) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) os.makedirs(args.output_dir, exist_ok=True) task_name = args.task_name.lower() vecs = [] vecs.append([0]*100) # CLS with open("kg_embed/entity2vec.vec", 'r') as fin: for line in fin: vec = line.strip().split('\t') vec = [float(x) for x in vec] vecs.append(vec) embed = torch.FloatTensor(vecs) embed = torch.nn.Embedding.from_pretrained(embed) #embed = torch.nn.Embedding(5041175, 100) logger.info("Shape of entity embedding: "+str(embed.weight.size())) del vecs train_data = None num_train_steps = None if args.do_train: # TODO import indexed_dataset from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler,BatchSampler import iterators #train_data = indexed_dataset.IndexedCachedDataset(args.data_dir) train_data = indexed_dataset.IndexedDataset(args.data_dir, fix_lua_indexing=True) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_sampler = BatchSampler(train_sampler, args.train_batch_size, True) def collate_fn(x): x = torch.LongTensor([xx for xx in x]) entity_idx = x[:, 4*args.max_seq_length:5*args.max_seq_length] # Build candidate uniq_idx = np.unique(entity_idx.numpy()) ent_candidate = embed(torch.LongTensor(uniq_idx+1)) ent_candidate = ent_candidate.repeat([n_gpu, 1]) # build entity labels d = {} dd = [] for i, idx in enumerate(uniq_idx): d[idx] = i dd.append(idx) ent_size = len(uniq_idx)-1 def map(x): if x == -1: return -1 else: rnd = random.uniform(0, 1) if rnd < 0.05: return dd[random.randint(1, ent_size)] elif rnd < 0.2: return -1 else: return x ent_labels = entity_idx.clone() d[-1] = -1 ent_labels = ent_labels.apply_(lambda x: d[x]) entity_idx.apply_(map) ent_emb = embed(entity_idx+1) mask = entity_idx.clone() mask.apply_(lambda x: 0 if x == -1 else 1) mask[:,0] = 1 return x[:,:args.max_seq_length], x[:,args.max_seq_length:2*args.max_seq_length], x[:,2*args.max_seq_length:3*args.max_seq_length], x[:,3*args.max_seq_length:4*args.max_seq_length], ent_emb, mask, x[:,6*args.max_seq_length:], ent_candidate, ent_labels train_iterator = iterators.EpochBatchIterator(train_data, collate_fn, train_sampler) num_train_steps = int( len(train_data) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) # Prepare model model, missing_keys = BertForPreTraining.from_pretrained(args.bert_model, cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank)) #if args.fp16: # model.half() model.to(device) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_linear = ['layer.2.output.dense_ent', 'layer.2.intermediate.dense_1', 'bert.encoder.layer.2.intermediate.dense_1_ent', 'layer.2.output.LayerNorm_ent'] no_linear = [x.replace('2', '11') for x in no_linear] param_optimizer = [(n, p) for n, p in param_optimizer if not any(nl in n for nl in no_linear)] #param_optimizer = [(n, p) for n, p in param_optimizer if not any(nl in n for nl in missing_keys)] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight', 'LayerNorm_ent.bias', 'LayerNorm_ent.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] t_total = num_train_steps if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() if args.fp16: try: #from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False) #max_grad_norm=1.0) if args.loss_scale == 0: model, optimizer = amp.initialize(model, optimizer, opt_level="O2") # optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale=args.loss_scale) # optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) #logger.info(dir(optimizer)) #op_path = os.path.join(args.bert_model, "pytorch_op.bin") #optimizer.load_state_dict(torch.load(op_path)) else: optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=t_total) if args.local_rank != -1: try: #from apex.parallel import DistributedDataParallel as DDP from torch.nn.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model, find_unused_parameters=True) elif n_gpu > 1: model = torch.nn.DataParallel(model) global_step = 0 if args.do_train: logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_data)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_steps) model.train() import datetime fout = open(os.path.join(args.output_dir, "loss.{}".format(datetime.datetime.now())), 'w') for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_iterator.next_epoch_itr(), desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, masked_lm_labels, input_ent, ent_mask, next_sentence_label, ent_candidate, ent_labels = batch # if args.fp16: # loss, original_loss = model(input_ids, segment_ids, input_mask, masked_lm_labels, input_ent.half(), ent_mask, next_sentence_label, ent_candidate.half(), ent_labels) # else: loss, original_loss = model(input_ids, segment_ids, input_mask, masked_lm_labels, input_ent, ent_mask, next_sentence_label, ent_candidate, ent_labels) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. original_loss = original_loss.mean() if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() fout.write("{} {}\n".format(loss.item()*args.gradient_accumulation_steps, original_loss.item())) tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: # modify learning rate with special warm up BERT uses lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 #if global_step % 1000 == 0: # model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self # output_model_file = os.path.join(args.output_dir, "pytorch_model.bin_{}".format(global_step)) # torch.save(model_to_save.state_dict(), output_model_file) fout.close() # Save a trained model model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) # Save the optimizer #output_optimizer_file = os.path.join(args.output_dir, "pytorch_op.bin") #torch.save(optimizer.state_dict(), output_optimizer_file) # Load a trained model that you have fine-tuned # model_state_dict = torch.load(output_model_file) # model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict) # model.to(device) # if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # eval_examples = processor.get_dev_examples(args.data_dir) # eval_features = convert_examples_to_features( # eval_examples, label_list, args.max_seq_length, tokenizer) # logger.info("***** Running evaluation *****") # logger.info(" Num examples = %d", len(eval_examples)) # logger.info(" Batch size = %d", args.eval_batch_size) # all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) # all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) # all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) # all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long) # eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) # # Run prediction for full data # eval_sampler = SequentialSampler(eval_data) # eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) # model.eval() # eval_loss, eval_accuracy = 0, 0 # nb_eval_steps, nb_eval_examples = 0, 0 # for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: # input_ids = input_ids.to(device) # input_mask = input_mask.to(device) # segment_ids = segment_ids.to(device) # label_ids = label_ids.to(device) # with torch.no_grad(): # tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids) # logits = model(input_ids, segment_ids, input_mask) # logits = logits.detach().cpu().numpy() # label_ids = label_ids.to('cpu').numpy() # tmp_eval_accuracy = accuracy(logits, label_ids) # eval_loss += tmp_eval_loss.mean().item() # eval_accuracy += tmp_eval_accuracy # nb_eval_examples += input_ids.size(0) # nb_eval_steps += 1 # eval_loss = eval_loss / nb_eval_steps # eval_accuracy = eval_accuracy / nb_eval_examples # result = {'eval_loss': eval_loss, # 'eval_accuracy': eval_accuracy, # 'global_step': global_step, # 'loss': tr_loss/nb_tr_steps} # output_eval_file = os.path.join(args.output_dir, "eval_results.txt") # with open(output_eval_file, "w") as writer: # logger.info("***** Eval results *****") # for key in sorted(result.keys()): # logger.info(" %s = %s", key, str(result[key])) # writer.write("%s = %s\n" % (key, str(result[key]))) if __name__ == "__main__": main()
f5ee8b5d8dd3b3a4a43097ae43519dc2bac3abce
45e56bbdf63bdefad218fe00de5441f06a5b6d30
/tests/test_models.py
b16bf4205e0ce2bfa5f917cfc1f3e6821b037acd
[]
no_license
ssciolist/quantified-self-django
25768e7ebbbb4380f2303fdc627a3a9d33af930b
81cca994c1e30223b9fb925bc6db04b0bcbf9bd6
refs/heads/master
2020-03-22T10:21:40.125705
2018-07-12T13:20:17
2018-07-12T13:20:17
139,762,170
0
0
null
null
null
null
UTF-8
Python
false
false
1,282
py
from django.test import TestCase from qs_app.models import Food, Meal class FoodTestClass(TestCase): def setUp(self): Food.objects.create(name="Croissant", calories='400') Food.objects.create(name="Salad", calories='300') def test_food_attrs(self): buttery_goodness = Food.objects.get(name="Croissant") salad = Food.objects.get(name="Salad") self.assertEqual(buttery_goodness.calories, 400) self.assertEqual(salad.calories, 300) class MealTestClass(TestCase): def setUp(self): Food.objects.create(name="Croissant", calories='400') Food.objects.create(name="Salad", calories='300') def test_meal_food_relation(self): roll = Food.objects.get(name="Croissant") salad = Food.objects.get(name="Salad") breakfast = Meal.objects.get(name="Breakfast") lunch = Meal.objects.get(name="Lunch") breakfast.foods.add(roll) lunch.foods.add(roll, salad) self.assertEqual(breakfast.foods.count(), 1) self.assertEqual(lunch.foods.count(), 2) self.assertQuerysetEqual(breakfast.foods.all(), [f'{roll}'], transform=str) self.assertQuerysetEqual(lunch.foods.all().order_by('id'), [f'{roll}', f'{salad}'], transform=str, ordered=True)
0b2a0b151096fb26a50ff2bcd2397014f5308370
5aa33c8438645d696c49c1a39d031f3f5eec0917
/node_modules/react-scripts/node_modules/chokidar/node_modules/fsevents/build/config.gypi
35186ae6b05180060f69027c6d809a3434770e23
[ "MIT" ]
permissive
alorr10/catch-of-the-day
0413087e3bee7d92399ab3100728d48159058e9d
575be4f7f20781bbbf8885a030e0580e60075967
refs/heads/master
2021-07-22T08:45:43.898457
2017-10-31T23:19:25
2017-10-31T23:19:25
108,476,163
0
0
null
null
null
null
UTF-8
Python
false
false
5,110
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "coverage": "false", "debug_devtools": "node", "debug_http2": "false", "debug_nghttp2": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_gyp_path": "tools/icu/icu-system.gyp", "icu_small": "false", "llvm_version": 0, "node_byteorder": "little", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "false", "node_module_version": 57, "node_no_browser_globals": "false", "node_prefix": "/usr/local/Cellar/node/8.4.0", "node_release_urlbase": "", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_use_bundled_v8": "true", "node_use_dtrace": "true", "node_use_etw": "false", "node_use_lttng": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_v8_platform": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "57.dylib", "target_arch": "x64", "uv_parent_path": "/deps/uv/", "uv_use_dtrace": "true", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_snapshot": "false", "want_separate_host_toolset": 0, "want_separate_host_toolset_mkpeephole": 0, "xcode_version": "8.1", "nodedir": "/Users/aleclorraine/.node-gyp/8.4.0", "copy_dev_lib": "true", "standalone_static_library": 1, "fallback_to_build": "true", "module": "/Users/aleclorraine/Engineering/React-For-Beginners-Starter-Files/catch-of-the-day/node_modules/react-scripts/node_modules/chokidar/node_modules/fsevents/lib/binding/Release/node-v57-darwin-x64/fse.node", "module_name": "fse", "module_path": "/Users/aleclorraine/Engineering/React-For-Beginners-Starter-Files/catch-of-the-day/node_modules/react-scripts/node_modules/chokidar/node_modules/fsevents/lib/binding/Release/node-v57-darwin-x64", "dry_run": "", "legacy_bundling": "", "save_dev": "", "browser": "", "only": "", "viewer": "man", "also": "", "rollback": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "maxsockets": "50", "shell": "/bin/zsh", "metrics_registry": "https://registry.npmjs.org/", "parseable": "", "shrinkwrap": "true", "init_license": "ISC", "timing": "", "if_present": "", "cache_max": "Infinity", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "fetch_retries": "2", "registry": "https://registry.npmjs.org/", "key": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "logs_max": "10", "cache_lock_retries": "10", "global_style": "", "heading": "npm", "fetch_retry_mintimeout": "10000", "proprietary_attribs": "true", "searchlimit": "20", "access": "", "json": "", "allow_same_version": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/aleclorraine/.npm-init.js", "userconfig": "/Users/aleclorraine/.npmrc", "node_version": "8.4.0", "user": "501", "auth_type": "legacy", "editor": "vi", "save": "", "tag": "latest", "global": "", "progress": "true", "ham_it_up": "", "optional": "true", "searchstaleness": "900", "bin_links": "true", "force": "", "searchopts": "", "depth": "Infinity", "rebuild_bundle": "true", "sso_poll_frequency": "500", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "save_prefix": "^", "scripts_prepend_node_path": "warn-only", "sso_type": "oauth", "strict_ssl": "true", "tag_version_prefix": "v", "dev": "", "fetch_retry_factor": "10", "group": "20", "save_exact": "", "cache_lock_stale": "60000", "version": "", "cache_min": "10", "cache": "/Users/aleclorraine/.npm", "searchexclude": "", "color": "true", "save_optional": "", "user_agent": "npm/4.6.1 node/v8.4.0 darwin x64", "ignore_scripts": "", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "send_metrics": "", "init_version": "1.0.0", "umask": "0022", "scope": "", "git": "git", "init_author_name": "", "onload_script": "", "tmp": "/var/folders/sw/50kvs6217hvdgxx7c93wvc7m0000gn/T", "unsafe_perm": "true", "prefix": "/usr/local", "link": "" } }
9e195b586132269338308ac6751fc54a8bb6c43f
e2b137653587d55ff954e59649ae40f7b344a15f
/csvjoin/csvjoin.py
8ddd5af3da7310a0547a95d5a43ff9604a5407ae
[ "MIT" ]
permissive
lorcan/CSVJoin
f9d7050f1a97d2ad019aef9267b6989b60755fa7
b547dca4c7bd365896856a33d590645c8f472735
refs/heads/master
2016-09-05T12:50:07.595971
2014-01-01T10:53:17
2014-01-01T10:53:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,386
py
""" csvjoin.py Copyright (c) 2013 Lorcan Coyle, http://lorcancoyle.org License: MIT License Documentation: https://github.com/lorcan/CSVJoin """ import argparse import csv import redis import sys import ast import copy parser = argparse.ArgumentParser(description='Takes two CSV files and attempts to join them based on the key values. The headers from the first file will be retained unchanged but those from the second will be prefixed with the specified prefix value') parser.add_argument("firstfile", help="This is the first CSV file.") parser.add_argument("secondfile", help="This is the second CSV file.") parser.add_argument("firstkey", help="This is the name of the header from the first file used for the join") parser.add_argument("secondkey", help="This is the name of the header from the second file used for the join") parser.add_argument("--keepsecondkey", help="Retain the second key rather than the first.", action="store_true") parser.add_argument("--rightjoin", help="Retains the CSV from the first join and fills with blanks if there is no join present in the second file", action="store_true") parser.add_argument("--firstprefix", default="", help="This is prefix to be used for headers in the first file.") parser.add_argument("--secondprefix", default="", help="This is prefix to be used for headers in the second file.") parser.add_argument("outputfile", help="This is the output file, where the joined file will be stored.") args = parser.parse_args() r = redis.StrictRedis(host='localhost', port=6379, db=0) # Defensive Flush r.flushdb() outputheader = [] with open(args.firstfile, 'r') as csvfile: reader = csv.reader(csvfile) first = True joinColumnNumber = -1 for row in reader: if first: first = False firstheader = row if args.firstkey not in firstheader: print "There is no column called " + args.firstkey + " in the first files's header " + str(firstheader) + ". Unable to join. Exiting." sys.exit() joinColumnNumber = firstheader.index(args.firstkey) for h in firstheader: if not (args.keepsecondkey and h == args.firstkey): outputheader.append(args.firstprefix + h) else: joinKey = row[joinColumnNumber] firstJoin = [] for i in range(len(row)): if not (args.keepsecondkey and i == joinColumnNumber): firstJoin.append('' + row[i]) r.set(joinKey, str(firstJoin)) outputfile = csv.writer(open(args.outputfile, 'w')) joinCount = 0 noJoinCount = 0 with open(args.secondfile, 'r') as csvfile: reader = csv.reader(csvfile) first = True joinColumnNumber = -1 blankrow = [] for row in reader: if first: first = False secondheader = row if args.secondkey not in secondheader: print "There is no column called " + args.secondkey + " in the second file's header " + str(secondheader) + ". Unable to join. Exiting." sys.exit() joinColumnNumber = secondheader.index(args.secondkey) for h in secondheader: if args.keepsecondkey or h != args.secondkey: outputheader.append(args.secondprefix + h) if(len(set(outputheader)) != len(outputheader)): duplicates = list(set([x for x in outputheader if outputheader.count(x) > 1])) print "There are duplicate headers " + str(duplicates) + " in the output. This won't do. Set a prefix to avoid this. Exiting." sys.exit() outputfile.writerow(outputheader) for i in range(len(outputheader)): blankrow.append("") else: secondFileKey = row[joinColumnNumber] goodJoin = r.exists(secondFileKey) if(goodJoin): outputRow = ast.literal_eval(r.get(secondFileKey)) joinCount = joinCount + 1 else: outputRow = copy.copy(blankrow) noJoinCount = noJoinCount + 1 for i in range(len(row)): if(args.keepsecondkey or i != joinColumnNumber): outputRow.append(row[i]) if(goodJoin or args.rightjoin): outputfile.writerow(outputRow) # print "No " + args.firstkey + " value found in " + args.firstfile + " with " + args.secondkey + " " + str(secondFileKey) if(args.rightjoin): print "Joined " + str(joinCount) + " records and included " + str(noJoinCount) + " rows that could not be joined." else: print "Joined " + str(joinCount) + " records." r.flushdb()
f17ce69e556c7992b8b72734be67d9a8c66a6a95
beab1ca3413c3397a4c5a3152b04a58585c75147
/algos/sorting/bubble_sort.py
0a542abbef1b7970fdc52fe0983e682342792879
[]
no_license
john-a-m/snippets
60c3373e2ae9f4e2ea17884aac665e070e6783f8
90c6160220909a30a3503a4243d51d833330c49b
refs/heads/master
2021-01-21T04:25:28.507958
2019-08-05T16:00:15
2019-08-05T16:00:15
30,418,896
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
def bubble_sort(nums): for passnum in range(len(nums) - 1, 0, -1): for i in range(passnum): if nums[i] > nums[i + 1]: nums[i], nums[i + 1] = nums[i + 1], nums[i] if __name__ == "__main__": nums = [54,26,93,17,77,31,44,55,20] bubble_sort(nums) print nums
3d6198b0abdc87164e432fd09c0390ecba72de19
de1abd0ebbb817aa5f23d369e7dda360fd6f1c32
/chapter8/7-NltkAnalysis.py
486c02f2c7559694ee722504c06720e50861ed6a
[]
no_license
CodedQuen/Web-Scraping-with-Python-
33aaa2e3733aa1f2b8c7a533d74f5d08ac868197
67f2d5f57726d5a943f5f044480e68c36076965b
refs/heads/master
2022-06-13T01:34:39.764531
2020-05-05T11:07:01
2020-05-05T11:07:01
261,435,932
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
from nltk import word_tokenize, sent_tokenize, pos_tag sentences = sent_tokenize("Google is one of the best companies in the world. I constantly google myself to see what I'm up to.") nouns = ['NN', 'NNS', 'NNP', 'NNPS'] for sentence in sentences: if "google" in sentence.lower(): taggedWords = pos_tag(word_tokenize(sentence)) for word in taggedWords: if word[0].lower() == "google" and word[1] in nouns: print(sentence)
32b0d0a1e7c59df238be50af8ed751a950d96502
7ca55428503fc915fcffb8059d30654b625a6b26
/54-merge_sort.py
97a612c87752b25458be8094ab24483513f62345
[]
no_license
Akshata2704/APS-2020
453e9eafb511e3e5fc73d939180c3402eb93134e
8f095ae1af9653499f1dedcdfe12b60b1ad1f65c
refs/heads/master
2020-12-21T03:10:52.043400
2020-05-15T18:51:48
2020-05-15T18:51:48
236,286,545
0
0
null
null
null
null
UTF-8
Python
false
false
959
py
# -*- coding: utf-8 -*- """ Created on Tue Apr 28 22:35:40 2020 @author: AKSHATA """ def merge(arr, l, m, r): n1 = m - l + 1 n2 = r- m L = [0] * (n1) R = [0] * (n2) for i in range(0 , n1): L[i] = arr[l + i] for j in range(0 , n2): R[j] = arr[m + 1 + j] i = 0 j = 0 k = l while i < n1 and j < n2 : if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < n1: arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[j] j += 1 k += 1 def mergeSort(arr,l,r): if l < r: m = (l+(r-1))//2 mergeSort(arr, l, m) mergeSort(arr, m+1, r) merge(arr, l, m, r) arr = [12, 11, 13, 5, 6, 7] n = len(arr) print ("Given array is") for i in range(n): print ("%d" %arr[i]), mergeSort(arr,0,n-1) print ("\n\nSorted array is") for i in range(n): print ("%d" %arr[i]), ,
da6286df83fa7d22ced026b70d3ccc9e7a81e3c3
ad057daedceb42ac62c1aebca9271892d6e0d711
/lab5/zad1.py
ca076ff742d6d1d3d48f163c9b5faa814da64f40
[]
no_license
Brouney/Vpython-university
5f311a02d0acdbdb51c840765888906591f97aef
b0ee5143c1c86f17ff651548e5360ee1fcffebd6
refs/heads/master
2022-11-13T05:46:11.764112
2020-07-09T11:44:53
2020-07-09T11:44:53
278,346,509
0
0
null
null
null
null
UTF-8
Python
false
false
1,086
py
import numpy as np import matplotlib.pyplot as plt a = np.arange(1,367,1) #print(sum(a==2)) file = open("zad1wyn.txt","w") tab2 = [] tab3 = [] tab4 = [] for N in range(1,367): liczba2 = 0 liczba3=0 liczba4=0 temp = np.zeros((1000,367)) for t in range(1000): for i in range(N): day = np.random.randint(1,367) temp[t][day]+=1 for z in range(1000): if sum(temp[z]>=2) > 0: liczba2+=1 if sum(temp[z]>=3) > 0: liczba3+=1 if sum(temp[z]>=4) > 0: liczba4+=1 file.write(str(N)+") "+str(liczba2/1000)+"\n") tab2.append(liczba2/1000) tab3.append(liczba3/1000) tab4.append(liczba4/1000) plt.rcParams['font.size']=18 plt.rcParams['legend.fontsize']=18 plt.plot(a,tab2,'-',label = 'wieksze od 2') #plt.savefig('myfig2.pdf',format='pdf') #plt.show plt.plot(a,tab3,'-',label = 'wieksze od 3') #plt.savefig('myfig3.pdf',format='pdf') #plt.show plt.plot(a,tab4,'-',label = 'wieksze od 4') plt.legend(loc='upper right') plt.savefig('myfig.pdf',format='pdf') plt.show
40dd55c4845e2d28839d9fcd23150afb908217b7
f9f416b5e4f00c190e3c63546c1442588dd5a504
/chapter02/Test05-for.py
72a664e819728738c9c42a2bbef7eee39250d650
[]
no_license
tongyaojun/corepython-tongyao
1f4649fa758da20474f0604943635a363d6ab76a
c5869dc29a42b83435b93c7125fcac1bf8d2e6b1
refs/heads/master
2020-05-04T04:43:22.233234
2014-07-22T12:53:57
2014-07-22T12:53:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
60
py
#!/usr/bin/python for rag in range(11): print(rag)
5554458edaa0679f072cf8de87922210dcb52f07
13d52041d7ba53ccc1708a5931b69f8b13ebd0f6
/1_cohesion_and_coupling/good_exemple.py
4d7b397a8b8aab350d579b329a7acd62613e4268
[]
no_license
iemsec/DesginPattern
0967c5cae53e228311e3003900eeafd1bccc908d
80b5426f1f83b646819188c7fb22c207ba1d05c7
refs/heads/main
2023-07-12T19:44:08.563756
2021-08-06T05:46:28
2021-08-06T05:46:28
389,579,477
0
0
null
null
null
null
UTF-8
Python
false
false
2,366
py
import string import random class VehicleInfo: brand: str catalogue_price: int electric: bool def __init__(self, brand, electric, catalogue_price) -> None: self.brand = brand self.catalogue_price = catalogue_price self.electric = electric def compute_tax(self): tax_percentage = 0.05 if self.electric: tax_percentage = 0.02 return tax_percentage * self.catalogue_price def print(self): print(f"Brand: {self.brand}") print(f"Payable tax: {self.compute_tax()}") class Vehicle: id: str license_plate: str info: VehicleInfo def __init__(self, id, license_plate, info) -> None: self.id = id self.license_plate = license_plate self.info = info def print(self): print("Registration Complete. Vehicle information:") print(f"Id: {self.id}") print(f"Licence plate: {self.license_plate}") self.info.print() class VehicleRegistry: vehicle_info = { } def __init__(self) -> None: self.add_vehicle_info("Tesla Model 3", True, 60000) self.add_vehicle_info("VW ID3", True, 35000) self.add_vehicle_info("BMW 5", False, 45000) def add_vehicle_info(self, brand, electric, catalogue_price): self.vehicle_info[brand] = VehicleInfo(brand, electric, catalogue_price) def generate_vehicle_id(self, length): return ''.join(random.choices(string.ascii_uppercase, k=length)) def generate_vehicle_license(self, id): return f"{id[:2]}-{''.join(random.choices(string.digits, k=2))}-{''.join(random.choices(string.ascii_uppercase, k=2))}" def create_vehicle(self,brand): # generate a vehicle id of length 12 vehicle_id = self.generate_vehicle_id(12) # now generate a license plate for the vehicle # using the first two characters of the vehicle id license_plate = self.generate_vehicle_license(vehicle_id) return Vehicle(vehicle_id, license_plate, self.vehicle_info[brand]) class Application: def register_vehicle(self, brand: string): # create a registry instance registry = VehicleRegistry() # Create the vehicle vehicle = registry.create_vehicle(brand) vehicle.print() app = Application() vehicle = app.register_vehicle("BMW 5")
2db8223646d69dc09a8a240df878d1dec6ea74d1
3979b5ea212395fc66f17c1f8a94ebc00e18d004
/Part2/main.py
4e6a21a69924803c67892b306dc7d2a5f9f622bd
[]
no_license
Ibasquare/Nvidia-TX2-LivePanorama
a822d9ee7b31c92396ee138d2a4f6024aafe6180
81a15e378773e493b1a741a3f872397a473133c1
refs/heads/master
2022-07-26T03:04:02.137700
2022-06-27T13:34:49
2022-06-27T13:34:49
216,547,939
0
1
null
null
null
null
UTF-8
Python
false
false
25,827
py
import cv2 import json import sys import operator import numpy as np from Angle import * from Panorama import * from JetsonCam import * from Reader import * from Motion_Detection import * from Util import * from MaskComp import * from PersonDetection import * PROJECTION_MATRICE = None IMPLEMENTED_MODE = ["panorama", "matching_demo", "motion_detection", "enhanced_panorama", "personn_detection"] FRAME_NB_BTW_PANO = 15 RESOLUTION = (1280,720) WINDOW_WIDTH = 1280 WINDOW_HEIGHT = 720 FRAME_RATE = 25 #PERSONN_DETECTION_ALGO = "Opencv" PERSONN_DETECTION_ALGO = "Tensorflow" MODEL_PATH = "models/ssdlite_mobilenet_v2_coco_2018_05_09/frozen_inference_graph.pb" def get_cam_matrix(filename): json_data = open(filename).read() data = json.loads(json_data) return np.array(data["Camera Matrix"]) def video_matching_demo(cap,cam_matrix): global FRAME_NB_BTW_PANO global PROJECTION_MATRICE cap2 = cap.copy() relative_angle = [0.0, 0.0, 0.0] if(len(cap) > 0): frame = cap.pop() else: print("Error: 0 frame in the video mentionned.") exit(-1) while(len(cap) > 0): prec_frame = frame frame = cap.pop() frame = cv2.resize(frame, RESOLUTION) angle = get_angle(prec_frame, frame, cam_matrix, True) relative_angle = list(map(operator.add, relative_angle,angle)) cv2.putText(frame, ("angle:" + str(relative_angle[1])), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255, 255)) key = cv2.waitKey(1) & 0xFF if key == ord("q"): print("You quit.") break elif key == ord("p"): while(True): key = cv2.waitKey(0) & 0xFF if(key == ord("p")): break elif key == ord("r"): cap = cap2.copy() if(len(cap) > 0): frame = cap.pop() else: print("Error: 0 frame in the video mentionned.") exit(-1) relative_angle = [0.0, 0.0, 0.0] cv2.destroyAllWindows() def video_panorama(cap,cam_matrix): global FRAME_NB_BTW_PANO global PROJECTION_MATRICE init = cap focal_length = cam_matrix[0][0] scaling_factor = focal_length #Scaling Factor equal to focal length PROJECTION_MATRICE = compute_projection_matrix(cam_matrix, scaling_factor, RESOLUTION) relative_angle = [0.0, 0.0, 0.0] panorama = None nb_frame = FRAME_NB_BTW_PANO last_frame_in_pano = None trans = 0.0 if(len(cap) < 0): print("Error: 0 frame in the video mentionned.") exit(-1) frame_buffer = list() while(len(cap) > 0): frame = cap.pop() frame = cv2.resize(frame, RESOLUTION) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if panorama is None: panorama = get_cylindrical(frame, PROJECTION_MATRICE) last_frame_in_pano = frame panorama_to_display = cv2.cvtColor(panorama.copy(), cv2.COLOR_GRAY2BGR) cv2.rectangle(panorama_to_display,(0,0),(RESOLUTION[0],RESOLUTION[1]),(0,0,255),10) cv2.putText(panorama_to_display, ("angle:" + str(relative_angle[1])), (0, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0, 255)) open_window("Panorama") cv2.imshow("Panorama", panorama_to_display) if(nb_frame > 0): nb_frame = nb_frame - 1; if(len(frame_buffer) > FRAME_NB_BTW_PANO - 1): del(frame_buffer[0]) frame_buffer.append(frame) else: tmp = frame.copy() prec_trans = trans while(len(frame_buffer) > 0): tmp_panorama, tmp_translation = get_panorama("cylindrical",panorama,tmp,last_frame_in_pano,trans,PROJECTION_MATRICE) if tmp_translation is None: tmp = frame_buffer.pop() else: angle = get_angle(last_frame_in_pano, tmp, cam_matrix) relative_angle = list(map(operator.add, relative_angle,angle)) last_frame_in_pano = tmp trans = tmp_translation panorama = tmp_panorama break if(len(frame_buffer) < 1): print("Error : The panorama can't be made on this Video Sequence (not enough matches could be made).") exit(-1) elif(len(frame_buffer) > FRAME_NB_BTW_PANO - 1): del(frame_buffer[0]) else: FRAME_NB_BTW_PANO = round(FRAME_NB_BTW_PANO/2 + 0.5) print("Number of Frame between two panorama has been updated : nb_frame_btw_pano = " + str(FRAME_NB_BTW_PANO)) frame_buffer.append(frame) nb_frame = FRAME_NB_BTW_PANO panorama_to_display = cv2.cvtColor(panorama.copy(), cv2.COLOR_GRAY2BGR) if(trans > 0): cv2.rectangle(panorama_to_display,(int(trans),0),(int(trans) + RESOLUTION[0],RESOLUTION[1]),(0,0,255),10) cv2.putText(panorama_to_display, ("angle:" + str(relative_angle[1])), (int(trans),20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0, 255)) elif(trans < 0 and trans < prec_trans): cv2.rectangle(panorama_to_display,(0,0),(RESOLUTION[0],RESOLUTION[1]),(0,0,255),10) cv2.putText(panorama_to_display, ("angle:" + str(relative_angle[1])), (15, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0, 255)) else: cv2.rectangle(panorama_to_display,(int(panorama.shape[1] - (abs(trans) + RESOLUTION[0])),0),(int(panorama.shape[1] - (abs(trans) + RESOLUTION[0]) + RESOLUTION[0]),RESOLUTION[1]),(0,0,255),10) cv2.putText(panorama_to_display, ("angle:" + str(relative_angle[1])), ((int(panorama.shape[1] - (abs(trans) + RESOLUTION[0]))), 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0, 255)) open_window("Panorama") cv2.imshow("Panorama", panorama_to_display) key = cv2.waitKey(1) & 0xFF if key == ord("q"): print("You quit.") break elif key == ord("p"): while(True): key = cv2.waitKey(0) & 0xFF if(key == ord("p")): break elif key == ord("r"): frame = None relative_angle = [0.0, 0.0, 0.0] panorama = None nb_frame = FRAME_NB_BTW_PANO cap = init if panorama is not None: panorama = cv2.cvtColor(panorama, cv2.COLOR_GRAY2BGR) ret = cv2.imwrite(("Panorama.jpg") ,autocrop(panorama)) if ret is False: print("Error: Fail to save the Panorama.") else: print("Panorama Saved") else: print("Error: The panorama has not been computed.") cv2.destroyAllWindows() def video_motion_detection_demo(cap,cam_matrix): global FRAME_NB_BTW_PANO global PROJECTION_MATRICE cap2 = cap.copy() relative_angle = [0.0, 0.0, 0.0] focal_length = cam_matrix[0][0] scaling_factor = focal_length #Scaling Factor equal to focal length PROJECTION_MATRICE = compute_projection_matrix(cam_matrix, scaling_factor, RESOLUTION) if(len(cap) > 0): frame = cap.pop() frame = cv2.resize(frame, RESOLUTION) #Use grayscale ==> lighter computations gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) # Blur footage to prevent artifacts else: print("Error: 0 frame in the video mentionned.") exit(-1) frame_counter = FRAME_NB_BTW_PANO fgbg = cv2.createBackgroundSubtractorMOG2() kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) while(len(cap) > 0): frame = cap.pop() frame = cv2.resize(frame, RESOLUTION) if(frame_counter > 0): frame_counter = frame_counter - 1 continue #angle = get_angle(prec_frame, frame, cam_matrix, False) #relative_angle = list(map(operator.add, relative_angle,angle)) prec_gray = gray #Use grayscale ==> lighter computations gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) to_disp = frame.copy() motion_mask = motion_detection(fgbg,kernel, prec_gray, gray, PROJECTION_MATRICE, to_disp) #motion_mask = bad_motion_detection(fgbg,frame,to_disp) open_window("frame") cv2.imshow('frame',to_disp) key = cv2.waitKey(1) & 0xFF if key == ord("q"): print("You quit.") break elif key == ord("p"): while(True): key = cv2.waitKey(0) & 0xFF if(key == ord("p")): break elif key == ord("r"): cap = cap2.copy() if(len(cap) > 0): frame = cap.pop() else: print("Error: 0 frame in the video mentionned.") exit(-1) relative_angle = [0.0, 0.0, 0.0] cv2.destroyAllWindows() def video_enhanced_panorama(cap,cam_matrix): global FRAME_NB_BTW_PANO global PROJECTION_MATRICE init = cap focal_length = cam_matrix[0][0] scaling_factor = focal_length #Scaling Factor equal to focal length PROJECTION_MATRICE = compute_projection_matrix(cam_matrix, scaling_factor, RESOLUTION) relative_angle = [0.0, 0.0, 0.0] panorama = None nb_frame = FRAME_NB_BTW_PANO last_frame_in_pano = None trans = 0.0 if(len(cap) < 0): print("Error: 0 frame in the video mentionned.") exit(-1) frame_buffer = list() fgbg = cv2.createBackgroundSubtractorMOG2() kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) while(len(cap) > 0): frame = cap.pop() frame = cv2.resize(frame, RESOLUTION) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if panorama is None: panorama = get_cylindrical(frame, PROJECTION_MATRICE) last_frame_in_pano = frame panorama_to_display = cv2.cvtColor(panorama.copy(), cv2.COLOR_GRAY2BGR) cv2.rectangle(panorama_to_display,(0,0),(RESOLUTION[0],RESOLUTION[1]),(0,0,255),10) cv2.putText(panorama_to_display, ("angle:" + str(relative_angle[1])), (0, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0, 255)) open_window("Panorama") cv2.imshow("Panorama", panorama_to_display) if(nb_frame > 0): nb_frame = nb_frame - 1; if(len(frame_buffer) > FRAME_NB_BTW_PANO - 1): del(frame_buffer[0]) frame_buffer.append(frame) else: tmp = frame.copy() prec_trans = trans while(len(frame_buffer) > 0): moving_fg_mask = motion_detection(fgbg, kernel, tmp,last_frame_in_pano,PROJECTION_MATRICE) static_fg_mask = compute_foreground_mask(tmp,fgbg,kernel) tmp_panorama, tmp_translation = get_enhanced_panorama("cylindrical",panorama,tmp,last_frame_in_pano,trans,PROJECTION_MATRICE, moving_fg_mask, static_fg_mask) if tmp_translation is None: tmp = frame_buffer.pop() else: angle = get_angle(last_frame_in_pano, tmp, cam_matrix) relative_angle = list(map(operator.add, relative_angle,angle)) last_frame_in_pano = tmp trans = tmp_translation panorama = tmp_panorama break if(len(frame_buffer) < 1): print("Error : The panorama can't be made on this Video Sequence (not enough matches could be made).") exit(-1) elif(len(frame_buffer) > FRAME_NB_BTW_PANO - 1): del(frame_buffer[0]) else: FRAME_NB_BTW_PANO = round(FRAME_NB_BTW_PANO/2 + 0.5) print("Number of Frame between two panorama has been updated : nb_frame_btw_pano = " + str(FRAME_NB_BTW_PANO)) frame_buffer.append(frame) nb_frame = FRAME_NB_BTW_PANO panorama_to_display = cv2.cvtColor(panorama.copy(), cv2.COLOR_GRAY2BGR) if(trans > 0): cv2.rectangle(panorama_to_display,(int(trans),0),(int(trans) + RESOLUTION[0],RESOLUTION[1]),(0,0,255),10) cv2.putText(panorama_to_display, ("angle:" + str(relative_angle[1])), (int(trans),20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0, 255)) elif(trans < 0 and trans < prec_trans): cv2.rectangle(panorama_to_display,(0,0),(RESOLUTION[0],RESOLUTION[1]),(0,0,255),10) cv2.putText(panorama_to_display, ("angle:" + str(relative_angle[1])), (15, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0, 255)) else: cv2.rectangle(panorama_to_display,(int(panorama.shape[1] - (abs(trans) + RESOLUTION[0])),0),(int(panorama.shape[1] - (abs(trans) + RESOLUTION[0]) + RESOLUTION[0]),RESOLUTION[1]),(0,0,255),10) cv2.putText(panorama_to_display, ("angle:" + str(relative_angle[1])), ((int(panorama.shape[1] - (abs(trans) + RESOLUTION[0]))), 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0, 255)) open_window("Panorama") cv2.imshow("Panorama", panorama_to_display) key = cv2.waitKey(1) & 0xFF if key == ord("q"): print("You quit.") break elif key == ord("p"): while(True): key = cv2.waitKey(0) & 0xFF if(key == ord("p")): break elif key == ord("r"): frame = None relative_angle = [0.0, 0.0, 0.0] panorama = None nb_frame = FRAME_NB_BTW_PANO cap = init if panorama is not None: panorama = cv2.cvtColor(panorama, cv2.COLOR_GRAY2BGR) ret = cv2.imwrite(("Panorama.jpg") ,autocrop(panorama)) if ret is False: print("Error: Fail to save the Panorama.") else: print("Panorama Saved") else: print("Error: The panorama has not been computed.") cv2.destroyAllWindows() def video_personn_detection(video_path): global MODEL_PATH if(PERSONN_DETECTION_ALGO == "Opencv"): detect_opcv(video_path) elif(PERSONN_DETECTION_ALGO == "Tensorflow"): detect_tf(video_path,MODEL_PATH) else: print("Error : Unknown Personn Detection algorithm") exit(-1) def motion_detection_assessment(cap, cam_matrix, video_nb): global FRAME_NB_BTW_PANO global PROJECTION_MATRICE focal_length = cam_matrix[0][0] scaling_factor = focal_length #Scaling Factor equal to focal length PROJECTION_MATRICE = compute_projection_matrix(cam_matrix, scaling_factor, RESOLUTION) if(len(cap) > 0): frame = cap.pop() frame = cv2.resize(frame, RESOLUTION) #Use grayscale ==> lighter computations gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) # Blur footage to prevent artifacts else: print("Error: 0 frame in the video mentionned.") exit(-1) fgbg = cv2.createBackgroundSubtractorMOG2() kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) if(video_nb == 1): dir_annotation = "Annotation/In/" list_id = getRefId(dir_annotation + "box_6_1.txt") else: dir_annotation = "Annotation/Out/" list_id = getRefId(dir_annotation + "box_6_2.txt") frame_id = 1 error_list = list() while(len(cap) > 0): frame = cap.pop() frame = cv2.resize(frame, RESOLUTION) prec_gray = gray #Use grayscale ==> lighter computations gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) to_disp = frame.copy() motion_mask = motion_detection(fgbg,kernel, prec_gray, gray, PROJECTION_MATRICE) if(frame_id in list_id): print("Image " + str(frame_id) + ":") ref_mask = readMask(frame_id,dir_annotation,6,video_nb) error_list.append(maskComp(ref_mask,motion_mask,True)) #motion_mask = bad_motion_detection(fgbg,frame,to_disp) frame_id = frame_id + 1 mean_error = np.mean(np.array(error_list)) print("Motion Detection Assesment - Mean Error : " + str(mean_error)) cv2.destroyAllWindows() def personn_detection_assesment(video_path, video_nb): global PERSONN_DETECTION_ALGO global MODEL_PATH if(video_nb == 1): dir_annotation = "Annotation/In/" ann_path = dir_annotation + "box_6_1.txt" else: dir_annotation = "Annotation/Out/" ann_path = dir_annotation + "box_6_2.txt" if(PERSONN_DETECTION_ALGO == "Opencv"): mean_error, computation_time = perf_ass_opcv(video_path,ann_path) elif(PERSONN_DETECTION_ALGO == "Tensorflow"): mean_error, computation_time = perf_ass_tf(video_path,ann_path, MODEL_PATH) else: print("Error : Unknown Personn Detection algorithm") exit(-1) print("Mean Error :" + str(mean_error)) print("Computation time : " + str(computation_time)) def live_matching_demo(cap,cam_matrix): global FRAME_NB_BTW_PANO global PROJECTION_MATRICE ret = False frame = None relative_angle = [0.0, 0.0, 0.0] start_live = False while(cap.isOpened()): prec_ret, prec_frame = (ret,frame) ret, frame = cap.read() if ret is True: frame = cv2.resize(frame, RESOLUTION) if prec_ret is True and ret is True and start_live: angle = get_angle(prec_frame, frame, cam_matrix, start_live) relative_angle = list(map(operator.add, relative_angle,angle)) cv2.putText(frame, ("angle:" + str(relative_angle[1])), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255, 255)) if ret is True: open_window("Live") cv2.imshow("Live", frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): print("You quit.") break elif key == ord("s"): start_live = not start_live if start_live is False: cv2.destroyWindow("Feature Matcher - orb Flanner") else: relative_angle = [0.0, 0.0, 0.0] cap.release() cv2.destroyAllWindows() def live_panorama(cap,cam_matrix): global PROJECTION_MATRICE global FRAME_NB_BTW_PANO frame_buffer = list() start_pano = False while(cap.isOpened()): ret, frame = cap.read() if ret is True: frame = cv2.resize(frame, RESOLUTION) open_window("Live") cv2.imshow("Live", frame) if start_pano is True: frame_buffer.append(frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): print("You quit.") break elif key == ord("s"): if start_pano is True: print("Panorama being computed ...") video_panorama(frame_buffer,cam_matrix) start_pano = not start_pano cap.release() cv2.destroyAllWindows() def live_motion_detection_demo(cap,cam_matrix): global FRAME_NB_BTW_PANO global PROJECTION_MATRICE ret = False frame = None start_live = False fgbg = cv2.createBackgroundSubtractorMOG2() kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) focal_length = cam_matrix[0][0] scaling_factor = focal_length #Scaling Factor equal to focal length PROJECTION_MATRICE = compute_projection_matrix(cam_matrix, scaling_factor, RESOLUTION) while(cap.isOpened()): prec_ret, prec_frame = (ret,frame) ret, frame = cap.read() if ret is True: frame = cv2.resize(frame, RESOLUTION) if prec_ret is True and ret is True and start_live: prec_gray = cv2.cvtColor(prec_frame,cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) motion_mask = motion_detection(fgbg,kernel, prec_gray, gray, PROJECTION_MATRICE, frame) if ret is True: open_window("Live") cv2.imshow("Live", frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): print("You quit.") break elif key == ord("s"): start_live = not start_live cap.release() cv2.destroyAllWindows() def live_enhanced_panorama(cap,cam_matrix): global PROJECTION_MATRICE global FRAME_NB_BTW_PANO frame_buffer = list() start_pano = False while(cap.isOpened()): ret, frame = cap.read() if ret is True: frame = cv2.resize(frame, RESOLUTION) open_window("Live") cv2.imshow("Live", frame) if start_pano is True: frame_buffer.append(frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): print("You quit.") break elif key == ord("s"): if start_pano is True: print("Panorama being computed ...") video_enhanced_panorama(frame_buffer,cam_matrix) start_pano = not start_pano cap.release() cv2.destroyAllWindows() def live_personn_detection(cap): global MODEL_PATH if(PERSONN_DETECTION_ALGO == "Opencv"): detector = HumanDetectorOCV() elif(PERSONN_DETECTION_ALGO == "Tensorflow"): detector = HumanDetectorTF(MODEL_PATH) else: print("Error : Unknown Personn Detection algorithm") exit(-1) start_detect = False while(cap.isOpened()): ret, frame = cap.read() if ret is True: frame = cv2.resize(frame, RESOLUTION) if start_detect is True: boxes = detector.detect(frame) for box in boxes: cv2.rectangle(frame,box[0],box[1],(0,0,255),2) open_window("Live") cv2.imshow("Live", frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): print("You quit.") break elif key == ord("s"): start_detect = not start_detect cap.release() cv2.destroyAllWindows() if __name__ == "__main__": live = False if(len(sys.argv) == 3): cmatrix_filename = sys.argv[1] cam_matrix = get_cam_matrix(cmatrix_filename) mode = sys.argv[2] if mode not in IMPLEMENTED_MODE: print("Error: Implemented modes are " + str(IMPLEMENTED_MODE) + ".") exit(-1) live = True #cap = cv2.VideoCapture(0) cap = open_cam_onboard(WINDOW_WIDTH, WINDOW_HEIGHT, RESOLUTION,FRAME_RATE) elif(len(sys.argv) == 4): cmatrix_filename = sys.argv[1] cam_matrix = get_cam_matrix(cmatrix_filename) live = False mode = sys.argv[2] if mode not in IMPLEMENTED_MODE: print("Error: Implemented modes are " + str(IMPLEMENTED_MODE) + ".") exit(-1) video_dirname = sys.argv[3] nb_video = int(video_dirname.split("_")[1]) perf_assess = False #cap = cv2.VideoCapture(video_filename) cap = frameReadingFromImage(video_dirname) if cap is None: print("Error: Fail to read the Video Files.") exit(-1) elif(len(sys.argv) == 5): cmatrix_filename = sys.argv[1] cam_matrix = get_cam_matrix(cmatrix_filename) live = False mode = sys.argv[2] if mode not in IMPLEMENTED_MODE: print("Error: Implemented modes are " + str(IMPLEMENTED_MODE) + ".") exit(-1) if mode == "motion_detection" or mode == "personn_detection": perf_assess = bool(sys.argv[4]) else: print("Error: python3.6 main.py cam_matrix_filename.json mode=" + str(IMPLEMENTED_MODE) + " [video_dirname] [performance_assessment=True]") exit(-1) video_dirname = sys.argv[3] video_nb = int(video_dirname.split("_")[1]) #cap = cv2.VideoCapture(video_filename) cap = frameReadingFromImage(video_dirname) if cap is None: print("Error: Fail to read the Video Files.") exit(-1) else: print("Error: python3.6 main.py cam_matrix_filename.json mode=" + str(IMPLEMENTED_MODE) + " [video_dirname] [performance_assessment=True]") exit(-1) if live is True and mode == "panorama": live_panorama(cap,cam_matrix) elif live is True and mode == "matching_demo": live_matching_demo(cap,cam_matrix) elif live is False and mode == "panorama": video_panorama(cap,cam_matrix) elif live is False and mode == "matching_demo": video_matching_demo(cap,cam_matrix) elif(live is False and mode == "motion_detection" and perf_assess == False): video_motion_detection_demo(cap,cam_matrix) elif(live is False and mode == "motion_detection" and perf_assess == True): motion_detection_assessment(cap,cam_matrix, video_nb) elif(live is True and mode == "motion_detection"): live_motion_detection_demo(cap,cam_matrix) elif(live is False and mode == "enhanced_panorama"): video_enhanced_panorama(cap,cam_matrix) elif(live is True and mode == "enhanced_panorama"): live_enhanced_panorama(cap,cam_matrix) elif(live is False and mode == "personn_detection" and perf_assess == False): video_personn_detection(video_dirname) elif(live is False and mode == "personn_detection" and perf_assess == True): personn_detection_assesment(video_dirname, video_nb) elif(live is True and mode == "personn_detection"): live_personn_detection(cap) else: print("Error: python3.6 main.py cam_matrix_filename.json mode=" + str(IMPLEMENTED_MODE) + " [video_dirname] [performance_assessment=True]") exit(-1)
2e5b24c6d45a87fa2c12e35d5b432da39edabc4a
82ebcc53d1c3e80b8960520f934004b945c84f70
/gumi/models/__init__.py
66dce650fdf02fea6bbc93b79f43d1dcb08f0817
[ "MIT" ]
permissive
kumasento/gconv-prune
404fa15c508be017faf56a0e27edc5410fa459d9
f81c417d3754102c902bd153809130e12607bd7d
refs/heads/main
2021-10-06T12:54:49.626589
2021-10-04T16:13:59
2021-10-04T16:13:59
204,706,641
10
2
null
null
null
null
UTF-8
Python
false
false
117
py
from .resnet import * from .preresnet import * from .densenet import * from .vgg import * from .condensenet import *
60360235f3c2a84e511dfb8b88931bf1b27d9951
d930be62c302a01ad1462180519a8646bbf78484
/my_templates/folder_monitor.py
add7a30f4db020762edaa61f1bf60c4893c37237
[]
no_license
puneet3LOQ/my_templates
4e76489a7cd344408288727ec6514bf62e456d73
b9891d79030f82fd5195f7d089d3da7b624bbfe4
refs/heads/master
2021-01-23T03:22:07.259075
2015-04-23T12:06:21
2015-04-23T12:06:21
34,115,017
0
0
null
null
null
null
UTF-8
Python
false
false
2,026
py
#/home/puneet/workspace/folder_monitor.py ''' Platform independent file system monitor. ''' from __future__ import nested_scopes import os, time def watch_directories(paths, func, delay=0.1): ''' Watches a list of directories specified in 'paths' and runs func on each new/changed file encountered in paths. Func can return True/False. If it returns True, the paths are immediately rescanned without applying func. This is for use with functions which may make changes which affect files in 'paths'. @param paths (list) - A list of unix paths to monitor. func (function) - Function variable to call on each new/changed file found in paths. delay (float) - Wait time between scans on paths. @return None ''' ##Dict to map files to modification time. all_files = {} def f(unused, dirname, files): for filename in files: path = os.path.join(dirname, filename) try: t = os.stat(path) except os.error: continue mtime = remaining_files.get(path) if mtime is not None: del remaining_files[path] if t.st_mtime > mtime: changed_list.append(path) else: changed_list.append(path) all_files[path] = t.st_mtime rescan = False while True: changed_list = [] remaining_files = all_files.copy() all_files = {} for path in paths: os.path.walk(path, f, None) removed_list = remaining_files.keys() if rescan: rescan = False elif changed_list or removed_list: rescan = func(changed_list, removed_list) time.sleep(delay) if __name__ == '__main__': def f(changed_files, removed_files): print changed_files print 'Removed: ', removed_files watch_directories(['.'], f, delay=5)
48821661f53b8b2fd7a14393c175437f8f7231b3
cc856a6efb22c82eaa6bc9bcadb36ab519c2b3eb
/test.py
7de592f88c9b4629879bdd2da2c3554672ca5170
[]
no_license
ajaybati/Past-Projects
59b861f76ca5cd5b1a7b85462b92666660263d57
204ada5e7f91cea4d8108c5f66f159b384d7dbdd
refs/heads/master
2020-12-21T10:05:49.450890
2020-01-31T07:43:02
2020-01-31T07:43:02
236,396,115
0
0
null
null
null
null
UTF-8
Python
false
false
734
py
list=['1', '(8', 'ounce)', 'container', 'plain', 'yogurt', '1⁄3', 'cup', 'chopped', 'seeded', 'cucumber', '(thinly', 'slice', 'remainder', 'of', 'cucumber)', '2', 'tablespoons', 'finely', 'chopped', 'onions', '1', 'garlic', 'clove,', 'minced', '1', 'teaspoon', 'sugarFilling', '1', 'lb', 'lean', 'ground', 'beef', '(I', 'use', 'ground', 'turkey)', '1', '1⁄2', 'teaspoons', 'dried', 'oregano', '1', 'teaspoon', 'garlic', 'powder', '1', 'teaspoon', 'onion', 'powder', '1', 'teaspoon', 'salt', '(optional)', '3⁄4', 'teaspoon', 'pepper', '4', 'pita', 'breads', '3', 'cups', 'shredded', 'lettuce', '1', 'large', 'tomatoes,', 'chopped', '1', 'small', 'onion,', 'chopped'] start=0 starter=1 print("ok") list[1:6]=(' '.join(list[1:6])
78123c2af7bf0854263ba8aa6b53951d3161379b
b1da705aab90be29e17036d4495f945159ea0160
/bin/restore
a1ba719f2492a6b886fe99cc12b1808664df8d93
[ "Apache-2.0" ]
permissive
dan-sullivan/mist.api
06e428fe82f817e79dd7068a205ba0ea6dfea334
82ea1780801429336e89be714131d69f4015768b
refs/heads/master
2022-04-20T03:38:21.191064
2020-04-22T17:02:46
2020-04-22T17:03:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,126
#!/usr/bin/env python import os import argparse import requests from mist.api import config def main(): argparser = argparse.ArgumentParser( description="Restore a mist backup" ) argparser.add_argument('backup', help="Backup to restore.") args = argparser.parse_args() cmd = 's3cmd --access_key=%s --secret_key=%s get %s' % ( config.BACKUP['key'], config.BACKUP['secret'], args.backup) os.system(cmd) dump_path = args.backup.split('/')[-1] if dump_path.endswith('.gpg'): new_path = dump_path.replace('.gpg', '') cmd = 'gpg --pinentry-mode loopback -o %s -d %s' % (new_path, dump_path) os.system(cmd) dump_path = new_path if 'mongo' in args.backup: cmd = 'mongorestore -h %s --gzip --archive=%s' % (config.MONGO_URI, dump_path) os.system(cmd) elif 'influx' in args.backup: # Strip protocol prefix from influx backup uri influx_backup_host = config.INFLUX.get('backup', '').replace( 'http://', '').replace('https://', '') # Prepare base URL. url = '%s/query' % config.INFLUX['host'] for db in ['telegraf', 'metering']: cmd = 'rm -rf influx-snapshot && tar xvf %s && \ influxd restore -host %s -portable -db %s -newdb %s_bak \ influx-snapshot && echo "Restored database as %s_bak"' % ( dump_path, influx_backup_host, db, db, db) os.system(cmd) resp = raw_input("Move data from %s_bak to %s? [y/n] " % (db, db)) if resp.lower() == 'y': requests.post('%s?q=CREATE database %s' % (url, db)) query = "SELECT * INTO %s..:MEASUREMENT FROM /.*/ GROUP BY *;" query += "DROP DATABASE %s_bak" query = query % (db, db) requests.post('%s?db=%s_bak&q=%s' % (url, db, query)) requests.post('%s?q=DROP database %s_bak' % (url, db)) else: print('Unknown backup type') if __name__ == '__main__': main()
d0523a8eb2d8b4391e899985c3cf03af8655971e
648f96d16f5413ab4f9f52fd132b7371c39733e1
/local/get_metadata.py
0019173cd8ad496d28a06571533222092d5c1824
[ "MIT" ]
permissive
Akash-Sharma-1/TweepyMR
f608c9862c6af2ff6af3ad803ccf5f82844a58e6
901af2014928691d62ad6d90810e3bb8f35b6fcb
refs/heads/master
2021-02-08T08:52:58.674947
2020-07-16T08:01:19
2020-07-16T08:01:19
244,132,519
2
0
null
2020-03-01T10:56:41
2020-03-01T10:56:41
null
UTF-8
Python
false
false
2,831
py
import sys import tweepy import json import math import glob import csv import zipfile import zlib from tweepy import TweepError from time import sleep # CHANGE THIS TO THE USER YOU WANT user = 'narendramodi' with open('api_keys.json') as f: keys = json.load(f) auth = tweepy.OAuthHandler(keys['consumer_key'], keys['consumer_secret']) auth.set_access_token(keys['access_token'], keys['access_token_secret']) api = tweepy.API(auth) user = user.lower() output_file = '{}.json'.format(user) output_file_short = '{}_short.json'.format(user) compression = zipfile.ZIP_DEFLATED with open('all_ids.json') as f: ids = json.load(f) print('total ids: {}'.format(len(ids))) all_data = [] start = 0 end = 100 limit = len(ids) i = math.ceil(limit / 100) for go in range(i): print('currently getting {} - {}'.format(start, end)) sleep(6) # needed to prevent hitting API rate limit id_batch = ids[start:end] start += 100 end += 100 tweets = api.statuses_lookup(id_batch) for tweet in tweets: all_data.append(dict(tweet._json)) print('metadata collection complete') print('creating master json file') with open(output_file, 'w') as outfile: json.dump(all_data, outfile) print('creating ziped master json file') zf = zipfile.ZipFile('{}.zip'.format(user), mode='w') zf.write(output_file, compress_type=compression) zf.close() results = [] def is_retweet(entry): return 'retweeted_status' in entry.keys() def get_source(entry): if '<' in entry["source"]: return entry["source"].split('>')[1].split('<')[0] else: return entry["source"] with open(output_file) as json_data: data = json.load(json_data) for entry in data: t = { "created_at": entry["created_at"], "text": entry["text"], "in_reply_to_screen_name": entry["in_reply_to_screen_name"], "retweet_count": entry["retweet_count"], "favorite_count": entry["favorite_count"], "source": get_source(entry), "id_str": entry["id_str"], "is_retweet": is_retweet(entry) } results.append(t) print('creating minimized json master file') with open(output_file_short, 'w') as outfile: json.dump(results, outfile) with open(output_file_short, encoding='utf-8') as master_file: data = json.load(master_file) fields = ["favorite_count", "source", "text", "in_reply_to_screen_name", "is_retweet", "created_at", "retweet_count", "id_str"] print('creating CSV version of minimized json master file') f = csv.writer(open('{}.csv'.format(user), 'w',encoding='utf-8')) f.writerow(fields) for x in data: f.writerow([x["favorite_count"], x["source"], x["text"], x["in_reply_to_screen_name"], x["is_retweet"], x["created_at"], x["retweet_count"], x["id_str"]])
48351d6d1b511a8717bd34a114b6e54683357290
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/acllog/flowcounteraghist1d.py
2e2a886e4137ca0fffa75a3d90db0646a85fbed6
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
11,371
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class FlowCounterAgHist1d(Mo): """ A class that represents historical aggregated statistics for Flow Record Counter in a 1 day sampling interval. This class updates every hour. """ meta = StatsClassMeta("cobra.model.acllog.FlowCounterAgHist1d", "Flow Record Counter") counter = CounterMeta("hitscount", CounterCategory.COUNTER, "hits", "Hits Counter") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "hitscountCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "hitscountPer" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "hitscountSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "hitscountThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "hitscountTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "hitscountRate" meta._counters.append(counter) meta.moClassName = "acllogFlowCounterAgHist1d" meta.rnFormat = "HDacllogFlowCounterAg1d-%(index)s" meta.category = MoCategory.STATS_HISTORY meta.label = "historical aggregated Flow Record Counter stats in 1 day" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = True meta.parentClasses.add("cobra.model.acllog.PermitL3Pkt") meta.parentClasses.add("cobra.model.acllog.DropL2Pkt") meta.parentClasses.add("cobra.model.acllog.DropL2Flow") meta.parentClasses.add("cobra.model.acllog.DropL3Pkt") meta.parentClasses.add("cobra.model.acllog.DropL3Flow") meta.parentClasses.add("cobra.model.acllog.PermitL2Flow") meta.parentClasses.add("cobra.model.acllog.PermitL3Flow") meta.parentClasses.add("cobra.model.acllog.PermitL2Pkt") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Hist") meta.superClasses.add("cobra.model.acllog.FlowCounterAgHist") meta.rnPrefixes = [ ('HDacllogFlowCounterAg1d-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "hitscountCum", "hitscountCum", 25142, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Hits Counter cumulative" prop.isOper = True prop.isStats = True meta.props.add("hitscountCum", prop) prop = PropMeta("str", "hitscountPer", "hitscountPer", 25143, PropCategory.IMPLICIT_PERIODIC) prop.label = "Hits Counter periodic" prop.isOper = True prop.isStats = True meta.props.add("hitscountPer", prop) prop = PropMeta("str", "hitscountRate", "hitscountRate", 25147, PropCategory.IMPLICIT_RATE) prop.label = "Hits Counter rate" prop.isOper = True prop.isStats = True meta.props.add("hitscountRate", prop) prop = PropMeta("str", "hitscountSpct", "hitscountSpct", 25144, PropCategory.IMPLICIT_SUSPECT) prop.label = "Hits Counter suspect count" prop.isOper = True prop.isStats = True meta.props.add("hitscountSpct", prop) prop = PropMeta("str", "hitscountThr", "hitscountThr", 25145, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Hits Counter thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("hitscountThr", prop) prop = PropMeta("str", "hitscountTr", "hitscountTr", 25146, PropCategory.IMPLICIT_TREND) prop.label = "Hits Counter trend" prop.isOper = True prop.isStats = True meta.props.add("hitscountTr", prop) prop = PropMeta("str", "index", "index", 25066, PropCategory.REGULAR) prop.label = "History Index" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("index", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) meta.namingProps.append(getattr(meta.props, "index")) def __init__(self, parentMoOrDn, index, markDirty=True, **creationProps): namingVals = [index] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
e69cbe6f5d5c2767f1553eace21a5c5ab7485281
9df7a73ddb4237bbd752efdc6c7b03da5aa1fa40
/weiss/planner/liblinearutil.py
74db82a219a5e197dabfcccd8a4886a8c4e3ca05
[ "Apache-2.0" ]
permissive
austinlostinboston/mitsWebApp
39f8ada858def608c2377bdea006590379896a5c
bf30e891f4b0985e636935a82b87e3b100e1fd64
refs/heads/master
2020-04-01T12:40:53.615324
2015-08-06T20:48:35
2015-08-06T20:48:35
37,482,873
4
0
null
null
null
null
UTF-8
Python
false
false
8,549
py
#!/usr/bin/env python import os import sys import time sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path from liblinear import * from liblinear import __all__ as liblinear_all from ctypes import c_double __all__ = ['svm_read_problem', 'load_model', 'save_model', 'evaluations', 'train', 'predict'] + liblinear_all def svm_read_problem(data_file_name): """ svm_read_problem(data_file_name) -> [y, x] Read LIBSVM-format data from data_file_name and return labels y and data instances x. """ prob_y = [] prob_x = [] for line in open(data_file_name): line = line.split(None, 1) # In case an instance with all zero features if len(line) == 1: line += [''] label, features = line xi = {} for e in features.split(): ind, val = e.split(":") xi[int(ind)] = float(val) prob_y += [float(label)] prob_x += [xi] return (prob_y, prob_x) def load_model(model_file_name): """ load_model(model_file_name) -> model Load a LIBLINEAR model from model_file_name and return. """ model = liblinear.load_model(model_file_name.encode()) if not model: print("can't open model file %s" % model_file_name) return None model = toPyModel(model) return model def save_model(model_file_name, model): """ save_model(model_file_name, model) -> None Save a LIBLINEAR model to the file model_file_name. """ liblinear.save_model(model_file_name.encode(), model) def evaluations(ty, pv): """ evaluations(ty, pv) -> (ACC, MSE, SCC) Calculate accuracy, mean squared error and squared correlation coefficient using the true values (ty) and predicted values (pv). """ if len(ty) != len(pv): raise ValueError("len(ty) must equal to len(pv)") total_correct = total_error = 0 sumv = sumy = sumvv = sumyy = sumvy = 0 for v, y in zip(pv, ty): if y == v: total_correct += 1 total_error += (v-y)*(v-y) sumv += v sumy += y sumvv += v*v sumyy += y*y sumvy += v*y l = len(ty) ACC = 100.0*total_correct/l MSE = total_error/l try: SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy)) except: SCC = float('nan') return (ACC, MSE, SCC) def train(arg1, arg2=None, arg3=None): """ train(y, x [, options]) -> model | ACC train(prob [, options]) -> model | ACC train(prob, param) -> model | ACC Train a model from data (y, x) or a problem prob using 'options' or a parameter param. If '-v' is specified in 'options' (i.e., cross validation) either accuracy (ACC) or mean-squared error (MSE) is returned. options: -s type : set type of solver (default 1) for multi-class classification 0 -- L2-regularized logistic regression (primal) 1 -- L2-regularized L2-loss support vector classification (dual) 2 -- L2-regularized L2-loss support vector classification (primal) 3 -- L2-regularized L1-loss support vector classification (dual) 4 -- support vector classification by Crammer and Singer 5 -- L1-regularized L2-loss support vector classification 6 -- L1-regularized logistic regression 7 -- L2-regularized logistic regression (dual) for regression 11 -- L2-regularized L2-loss support vector regression (primal) 12 -- L2-regularized L2-loss support vector regression (dual) 13 -- L2-regularized L1-loss support vector regression (dual) -c cost : set the parameter C (default 1) -p epsilon : set the epsilon in loss function of SVR (default 0.1) -e epsilon : set tolerance of termination criterion -s 0 and 2 |f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2, where f is the primal function, (default 0.01) -s 11 |f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.001) -s 1, 3, 4, and 7 Dual maximal violation <= eps; similar to liblinear (default 0.) -s 5 and 6 |f'(w)|_inf <= eps*min(pos,neg)/l*|f'(w0)|_inf, where f is the primal function (default 0.01) -s 12 and 13 |f'(alpha)|_1 <= eps |f'(alpha0)|, where f is the dual function (default 0.1) -B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1) -wi weight: weights adjust the parameter C of different classes (see README for details) -v n: n-fold cross validation mode -q : quiet mode (no outputs) """ prob, param = None, None if isinstance(arg1, (list, tuple)): assert isinstance(arg2, (list, tuple)) y, x, options = arg1, arg2, arg3 prob = problem(y, x) param = parameter(options) elif isinstance(arg1, problem): prob = arg1 if isinstance(arg2, parameter): param = arg2 else : param = parameter(arg2) if prob == None or param == None : raise TypeError("Wrong types for the arguments") prob.set_bias(param.bias) liblinear.set_print_string_function(param.print_func) err_msg = liblinear.check_parameter(prob, param) if err_msg : raise ValueError('Error: %s' % err_msg) if param.cross_validation: l, nr_fold = prob.l, param.nr_fold target = (c_double * l)() liblinear.cross_validation(prob, param, nr_fold, target) ACC, MSE, SCC = evaluations(prob.y[:l], target[:l]) directory = os.getcwd() result = open('training_log','a') if param.solver_type in [L2R_L2LOSS_SVR, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL]: result.write("%s\nCross Validation Mean squared error : %g\nArguments: %s\n" % (time.strftime("%x"), MSE, options)) result.write("%s\nCross Validation Squared correlation coefficient : %g\nArguments: %s\n" % (time.strftime("%x"), SCC, options)) #return MSE else: result.write("%s\nCross Validation Accuracy : %g%%\nArguments: %s\n" % (time.strftime("%x"), ACC, options)) #return ACC #else : m = liblinear.train(prob, param) m = toPyModel(m) return m def predict(y, x, m, options=""): """ predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals) Predict data (y, x) with the SVM model m. options: -b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only -q quiet mode (no outputs) The return tuple contains p_labels: a list of predicted labels p_acc: a tuple including accuracy (for classification), mean-squared error, and squared correlation coefficient (for regression). p_vals: a list of decision values or probability estimates (if '-b 1' is specified). If k is the number of classes, for decision values, each element includes results of predicting k binary-class SVMs. if k = 2 and solver is not MCSVM_CS, only one decision value is returned. For probabilities, each element contains k values indicating the probability that the testing instance is in each class. Note that the order of classes here is the same as 'model.label' field in the model structure. """ def info(s): print(s) predict_probability = 0 argv = options.split() i = 0 while i < len(argv): if argv[i] == '-b': i += 1 predict_probability = int(argv[i]) elif argv[i] == '-q': info = print_null else: raise ValueError("Wrong options") i+=1 solver_type = m.param.solver_type nr_class = m.get_nr_class() nr_feature = m.get_nr_feature() is_prob_model = m.is_probability_model() bias = m.bias if bias >= 0: biasterm = feature_node(nr_feature+1, bias) else: biasterm = feature_node(-1, bias) pred_labels = [] pred_values = [] if predict_probability: if not is_prob_model: raise TypeError('probability output is only supported for logistic regression') prob_estimates = (c_double * nr_class)() for xi in x: xi, idx = gen_feature_nodearray(xi, feature_max=nr_feature) xi[-2] = biasterm label = liblinear.predict_probability(m, xi, prob_estimates) values = prob_estimates[:nr_class] pred_labels += [label] pred_values += [values] else: if nr_class <= 2: nr_classifier = 1 else: nr_classifier = nr_class dec_values = (c_double * nr_classifier)() for xi in x: xi, idx = gen_feature_nodearray(xi, feature_max=nr_feature) xi[-2] = biasterm label = liblinear.predict_values(m, xi, dec_values) values = dec_values[:nr_classifier] pred_labels += [label] pred_values += [values] if len(y) == 0: y = [0] * len(x) #The following part is #ACC, MSE, SCC = evaluations(y, pred_labels) #l = len(y) #if m.is_regression_model(): # info("Mean squared error = %g (regression)" % MSE) # info("Squared correlation coefficient = %g (regression)" % SCC) #else: # info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l)) #return pred_labels, (ACC, MSE, SCC), pred_values return pred_labels, pred_values
405d7228f719d71c4b76b31841b43bc34e7a2c0d
80d20d3edd874a011361800939f4ef6982673137
/balance.py
321ffc73e54d9c8b635da940facb59a3daaa9543
[]
no_license
vincelwt/krakenoverview
2969d1ef9f4bd068521ffefc7421c2c0e414f43a
b7043a3852da866f4097323209b35807ccff9801
refs/heads/master
2021-01-22T08:09:47.603675
2017-05-27T14:20:10
2017-05-27T14:20:10
92,603,134
1
1
null
null
null
null
UTF-8
Python
false
false
5,175
py
import krakenex, json, os, time from termcolor import cprint, colored from tabulate import tabulate k = krakenex.API() k.load_key('krakenvince.key') liveValues = [] compound = [] # Updates liveValues array with current prices of all currencies def updateLivevalues(): global liveValues assets = k.query_public('Ticker', {'pair': 'ETHEUR,XBTEUR,LTCEUR,XMREUR,XRPEUR,DASHEUR,ETCEUR,ZECEUR,GNOEUR,REPEUR'})['result'] liveValues = [] for attr, value in assets.iteritems(): liveValues.append([attr.replace('ZEUR', '').replace('EUR', ''), float(value['a'][0]) ]) # Returns an array with the currency price a week ago & a day ago def getOldvalues(pair): pair = pair.replace('XBT', 'BTC').replace('ASH', 'DASH') timeAgo = int(time.time()-3600*24*7) spread = k.query_public('OHLC', {'pair': pair, 'interval': '1440', 'since': str(timeAgo)}) for attr, value in spread['result'].iteritems(): if not 'EUR' in attr: continue weekAgo = value[0] weekAgoAverage = ( float(weekAgo[1]) + float(weekAgo[2]) + float(weekAgo[3]) + float(weekAgo[4]) ) / 4 dayAgo = value[5] dayAgoAverage = ( float(dayAgo[1]) + float(dayAgo[2]) + float(dayAgo[3]) + float(dayAgo[4]) ) / 4 return [weekAgoAverage, dayAgoAverage] # Update total outcome of all made trades def printTrades(): global compound recentTrades = k.query_private('ClosedOrders', {}) compound = [] for attr, value in recentTrades['result']['closed'].iteritems(): type = value['descr']['type'] asset = value['descr']['pair'][:3] source = value['descr']['pair'][-3:] price = float( value['price'] ) vol = float( value['vol_exec'] ) cost = float( value['cost'] ) #print source, price if type == 'sell': vol = -vol cost = -cost touched = False touched2 = False for e in compound: if e[0] == asset: e[1] += vol e[2] += cost touched = True if not touched: compound.append([asset, vol, cost]) #print '%15s %13s %12s' % (colored(type+asset, 'grey', 'on_yellow'), str(vol), colored(cost, 'white', 'on_magenta')) #print value #print '--------Total ---------' #for e in compound: # print '%6s %13s %12s' % (colored(e[0], 'grey', 'on_yellow'), str(e[1]), colored(e[2], 'white', 'on_magenta')) def printBalance(): print colored('Updating data...', 'green') table = [['Balance', 'Quantity', 'Euro amount', 'Net results', 'Last 24h', 'Last week']] currencies = k.query_private('Balance')['result'] balance = k.query_private('TradeBalance', {'asset': 'ZEUR'})['result'] totalChange = 0 totalWeekChange = 0 totalDayChange = 0 # For each currency in Kraken "wallet" for attr, pair in currencies.iteritems(): value = 0 change = 0 weekChange = 0 dayChange = 0 pair = float(pair) valueStr = '' for values in liveValues: if values[0] == attr: value = pair*values[1] valueStr = str( int(value) )+' EUR' if (attr != 'ZEUR'): # No need to calc changes for EUR fiat oldData = getOldvalues(attr[-3:]+'EUR') weekChange = value-(pair*oldData[0]) dayChange = value-(pair*oldData[1]) for e in compound: if e[0] in attr: change = float("%.2f" % float(value-e[2])) totalChange += change totalDayChange += dayChange totalWeekChange += weekChange changeStr = '' if change > 0: changeStr = colored(str("%.2f" % change)+' EUR', 'white', 'on_cyan') elif change < 0: changeStr = colored(str("%.2f" % change)+' EUR', 'white', 'on_red') weekChangeStr = '' if weekChange > 0: weekChangeStr = colored(str("%.2f" % weekChange)+' EUR', 'white', 'on_cyan') elif weekChange < 0: weekChangeStr = colored(str("%.2f" % weekChange)+' EUR', 'white', 'on_red') dayChangeStr = '' if dayChange > 0: dayChangeStr = colored(str("%.2f" % dayChange)+' EUR', 'white', 'on_cyan') elif dayChange < 0: dayChangeStr = colored(str("%.2f" % dayChange)+' EUR', 'white', 'on_red') toPrint = [colored(attr, 'grey', 'on_yellow'), str(pair), colored(valueStr, 'white', 'on_magenta'), changeStr, dayChangeStr, weekChangeStr] table.append(toPrint) totalChangeStr = '' if totalChange > 0: totalChangeStr = colored(str("%.2f" % totalChange)+' EUR', 'white', 'on_cyan') elif totalChange < 0: totalChangeStr = colored(str("%.2f" % totalChange)+' EUR', 'white', 'on_red') totalDayChangeStr = '' if totalDayChange > 0: totalDayChangeStr = colored(str("%.2f" % totalDayChange)+' EUR', 'white', 'on_cyan') elif totalDayChange < 0: totalDayChangeStr = colored(str("%.2f" % totalDayChange)+' EUR', 'white', 'on_red') totalWeekChangeStr = '' if totalWeekChange > 0: totalWeekChangeStr = colored(str("%.2f" % totalWeekChange)+' EUR', 'white', 'on_cyan') elif totalWeekChange < 0: totalWeekChangeStr = colored(str("%.2f" % totalWeekChange)+' EUR', 'white', 'on_red') table.append([colored('Total', 'white', 'on_blue'), 'x', colored( str(int(float( balance['eb'] )))+' EUR', 'white', 'on_green'), totalChangeStr, totalDayChangeStr, totalWeekChangeStr]) os.system('clear') print tabulate(table, tablefmt="grid") while 1: try: updateLivevalues() printTrades() printBalance() except: cprint('Error getting balance.', 'red') time.sleep(60)
b9952317e4681c860e846a7e70a21548261b380d
ec762d868793b43301ac9f7b52e4ecdbe3512b55
/labs/week6/python/skinDetectionRuleBased.py
dff293930f1354937aa101f7c01f36d64c4ad5f1
[]
no_license
payalbhatia/opencv_satyamallick
e92094273d89b8ebabc6025defad93f25b54988c
0a35bfa1a4593b05f633e7f6b0c48fa11e70177d
refs/heads/master
2021-10-16T16:28:31.652395
2019-02-12T05:46:41
2019-02-12T05:46:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,930
py
""" Copyright 2017 BIG VISION LLC ALL RIGHTS RESERVED This program is distributed WITHOUT ANY WARRANTY to the Plus and Premium membership students of the online course titled "Computer Visionfor Faces" by Satya Mallick for personal non-commercial use. Sharing this code is strictly prohibited without written permission from Big Vision LLC. For licensing and other inquiries, please email [email protected] """ import cv2 import numpy as np # (R, G, B) is classified as skin if # R > 95 and G > 40 and B > 20 and # R > G and R > B and |R-G| > 15 and # max{R, G, B} - min{R, G, B} > 15 if __name__ == '__main__': # Start webcam cap = cv2.VideoCapture(0) # Check if webcam opens if (cap.isOpened()== False): print("Error opening video stream or file") # Window for displaying output cv2.namedWindow("Skin Detection") while(1): # Read frame ret, image = cap.read() # Split frame into r, g and b channels b,g,r = cv2.split(image) # Set output to all zeros output = np.zeros(image.shape, dtype=np.uint8) # Specifying the rules rule1 = np.uint8(r>95) # R>95 rule2 = np.uint8(g>40) # G > 40 rule3 = np.uint8(b>20) # B > 20 rule4 = np.uint8(r>g) # R > G rule5 = np.uint8(r>b) # R > B rule6 = np.uint8(abs(r-g)>15) # |R-G| > 15 # max{R, G, B} - min{R, G, B} > 15 rule7 = np.uint8( ( np.maximum(np.maximum(b,g),r) - np.minimum(np.minimum(b,g),r) ) > 15) # Apply (AND) all the rules to get the skin mask skinMask = rule1 * rule2 * rule3 * rule4 * rule5 * rule6 * rule7 # Using the mask to get the skin pixels output[ skinMask ==1 ] = image[ skinMask == 1] # Display results cv2.imshow("Skin Detection",output) if cv2.waitKey(1) & 0xFF == 27: break cv2.destroyAllWindows()
00366ebb2a1b53335b701e3f22e14fd88941755c
bca25ecb5677b528cdf3d68b6ead3ef64290fdac
/Solid_rocket_motor_ignition_system_based_on_air-methane_mixture_-_Cantera (1).py
5874f2923ccf0ba1f6c7e483a53084c3b2415a3b
[]
no_license
gibon1617/mkws
fe78eb8fd09dce38dc568001fab7fb21ef3e1ea2
0850f38503c9b664088387f9daa91f719fcf7823
refs/heads/master
2020-06-04T02:27:16.808515
2019-06-14T10:07:35
2019-06-14T10:07:35
191,833,938
0
0
null
null
null
null
UTF-8
Python
false
false
2,334
py
import math as m import cantera as ct import numpy as np import matplotlib.pyplot as plt # Reaction mechanism GRI-Mech 3.0 gas = ct.Solution('gri30.xml') # Energy which has to be provided in order to ignite the rocket fuel of A2 rocket motor ignition_energy = 1.2*1550 # [kcal] ign_energy = ignition_energy*4186.8 # [J] # Outer combustion chamber (reactor) for ignition mixture will be used d = 40.0 # mm diameter of the reactor l = 100.0 # mm length of the reactor Vr = m.pi*d*d*0.25*l/1000000000 # [m^3] volume of the reactor mdot = 0.025 # [kg/s] mass flow in the reactor mt = [] Tt = [] Qet = [] Eqt = [] tsim = 0.005 # [s] time spended in the reactor by flowing gases eq_ratio = 0.6 # initial equivalence ratio while eq_ratio < 1.6: print(eq_ratio) # gas definition, initial conditions and inlet gas.TP = 300.0, ct.one_atm*10 gas.set_equivalence_ratio(eq_ratio, 'CH4:1.0', 'O2:1.0, N2:3.76') inlet = ct.Reservoir(gas) # filling combustor with a gas gas.equilibrate('HP') combustor = ct.IdealGasReactor(gas) combustor.volume = Vr # exhaust definition exhaust = ct.Reservoir(gas) # mass flow inlet_mfc = ct.MassFlowController(inlet, combustor, mdot=mdot) # simulation definition sim = ct.ReactorNet([combustor]) # Reactor's states array states = ct.SolutionArray(gas) #Simulation sim.set_initial_time(0.0) # reset the integrator sim.advance(tsim) states.append(combustor.thermo.state) V = mdot/combustor.density Q = -np.sum(states.net_production_rates * states.partial_molar_enthalpies) Qe = Q*V t = ign_energy/Qe mpal = mdot*t print('masa = {:.2f}; T = {:.1f};'.format(mpal, combustor.T)) # writing results to arrays mt.append(mpal) Tt.append(t) Qet.append(Qe) Eqt.append(eq_ratio) eq_ratio += 0.01 print('Qe = {:.2f}; mpal = {:.2f}; t = {:.2f}'.format(Qe, mpal, t)) Q=0.0 mpal=0.0 #plots f, ax1 = plt.subplots(1,1) ax1.plot(Eqt, mt, '.-', color='C0') ax2 = ax1.twinx() ax1.set_xlabel('equivalence ratio [-]') ax1.set_ylabel('mixture mass [kg]', color='C0') ax2.plot(Eqt,Tt, '.-', color='C0') ax2.set_ylabel('t [s]', color='C0') f.tight_layout() plt.show()
8835421c4159ffa65247218af967d81b9433de71
4c4fdd5ce7cbf6bc4b0028c35d24f7b871a0b4d5
/guvipairsum.py
453e1dc0206c201cdf924864fe3e480e9b14b5fc
[]
no_license
Ashiscodebat/lemmecode
7df1510e069e851e3f395efec83474813ca20b91
4a5dd5377d0c964d03f0e189d5142aece0c730e6
refs/heads/master
2020-04-01T16:55:00.731129
2018-10-22T15:52:27
2018-10-22T15:52:27
153,403,893
0
0
null
null
null
null
UTF-8
Python
false
false
824
py
def checkrep(a,b,dic): flag = 0 for key,vals in dic.items(): #if key + vals > a + b: #return 1 if a != key and b != key: flag = 1 else: return 0 return 1 n = int(input()) l= [] d = {} dic = {} count = 0 an = 0 minsum = 1000000 for i in range(0,n): s =int(input()) l.append(s) for i in range(0,n): for j in range(i+1,n): if l[i] + l[j] == 0 : an = checkrep(l[i],l[j],dic) if an == 1: d = {l[i]:l[j]} dic.update(d) count = count + 1 an = 0 else: continue li = [] for key,val in dic.items(): li.extend([key,val]) if li == []: print("No pair") exit(1) for i in range(0,len(li)): print(li[i],end = " ")
ab454232840dbe7c1c6602b6ff4d5f9d48c09fe4
83d7003aa276549e563c614c59a70603c61402e1
/EXERCÍCIOS RESOLVIDOS/python/loops/alg4.py
75c0159296723ef6622922e3cbc9529dc21e78cc
[]
no_license
mendelson/Algoritmos
66c67d6ccce99272da2d0e7bfd3fdee371e08275
68e90aa259464ada915e419fb26416203ce5f896
refs/heads/master
2021-01-19T16:01:31.962672
2017-08-21T19:11:04
2017-08-21T19:11:04
100,981,374
0
0
null
2017-08-21T18:35:24
2017-08-21T18:35:24
null
UTF-8
Python
false
false
373
py
# Algorithm 4 def main(): cont = final = 0 while cont < 2: grade = float(input("Grade " + str(cont) + ": ")) if grade < 0 or grade > 10: print("Invalid!") else: final = final + grade cont = cont + 1 media = final / 2 print("Final grande = %.2f" % media) if __name__ == "__main__": main()
764fc0ffc334d6afffff8b3c00492773cafb869d
c1c0f44de906af90da1aeafa35c3780320b292ac
/build/lib/discogs_wrapper/__init__.py
2226d09879d2f6b94b11c62e69289d0b942c5956
[]
no_license
Gargeebhase/Discogs-Python-Wrapper
696ca79c39d29323bf61635ecba1b7af8873ec67
67581337378346b308871310f862d93450e673b6
refs/heads/master
2023-05-25T05:13:26.132079
2020-06-09T04:01:26
2020-06-09T04:01:26
270,838,242
0
0
null
2023-05-22T20:44:19
2020-06-08T21:51:17
Python
UTF-8
Python
false
false
96
py
import os import requests session = requests.Session() session.params = {} from .dv import DV
b4ceba382671ec1f1b68a5f95a4f15ae4e570161
c428f065a7614751ba525599aa0595f02133fbee
/utils/exporters/blender/2.49/threejs_export.py
c69782d7b6eb6b498fd6472af0e6a08712e91a89
[ "MIT" ]
permissive
jzmudzinski/three.js
b4251e7286e14471ae71224ba8db642de497c8f2
c186b37be3cd87a0f0aa8e98eb5d88e49b7d519b
refs/heads/master
2021-01-09T06:18:10.765230
2010-12-31T17:59:11
2010-12-31T17:59:11
1,213,135
2
0
null
null
null
null
UTF-8
Python
false
false
5,801
py
#!BPY # Based on Anthony D'Agostino (Scorpius)'s Raw Exported provided with Blender # and on Mr.doob's and Kikko's Blender 2.5a2 exporter # 'http://mrdoob.com', 'http://github.com/kikko' """ Name: 'three.js (.js)...' Blender: 245 Group: 'Export' Tooltip: 'Export selected mesh to three.js (.js)' """ __author__ = "George Profenza" __url__ = ("disturb", "disturbmedia.com/blog", "My blog, http://tomaterial.blogspot.com") __version__ = "First File Exporter" __bpydoc__ = """\ Export meshes to mr.doob's three.js 3D Engine. Currently supports UVs. If the model doesn't display correctly you might need to reverse some normals/do some cleanup. More details on the engine here: https://github.com/mrdoob/three.js Have fun! Usage:<br> Select a mesh to be exported and go to "File->Export->three.js" . """ # $Id: raw_export.py 14597 2008-04-28 16:09:17Z campbellbarton $ # # +---------------------------------------------------------+ # | Copyright (c) 2002 Anthony D'Agostino | # | http://www.redrival.com/scorpius | # | [email protected] | # | April 28, 2002 | # | Read and write RAW Triangle File Format (*.raw) | # +---------------------------------------------------------+ # ***** BEGIN GPL LICENSE BLOCK ***** # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # # ***** END GPL LICENCE BLOCK ***** import Blender import BPyMesh import re clean = lambda varStr: re.sub('\W|^(?=\d)','_', varStr) def write(filename): start = Blender.sys.time() if not filename.lower().endswith('.js'): filename += '.js' scn= Blender.Scene.GetCurrent() ob= scn.objects.active if not ob: Blender.Draw.PupMenu('Error%t|Select 1 active object') return file = open(filename, 'wb') mesh = BPyMesh.getMeshFromObject(ob, None, True, False, scn) if not mesh: Blender.Draw.PupMenu('Error%t|Could not get mesh data from active object') return mesh.transform(ob.matrixWorld) #classname = clean(ob.name) classname = filename.split('/')[-1].replace('.js','') file = open(filename, "wb") file.write('var %s = function () {\n\n' % classname) file.write('\tvar scope = this;\n\n') file.write('\tTHREE.Geometry.call(this);\n\n') for v in mesh.verts: file.write('\tv( %.6f, %.6f, %.6f );\n' % (v.co.x, v.co.z, -v.co.y)) # co file.write('\n') for f in mesh.faces: if len(f.verts) == 3: file.write('\tf3( %d, %d, %d, %.6f, %.6f, %.6f );\n' % (f.verts[0].index, f.verts[1].index, f.verts[2].index, f.verts[0].no.x, f.verts[0].no.z, -f.verts[0].no.y)) else: file.write('\tf4( %d, %d, %d, %d, %.6f, %.6f, %.6f );\n' % (f.verts[0].index, f.verts[1].index, f.verts[2].index, f.verts[3].index, f.verts[0].no.x, f.verts[0].no.z, -f.verts[0].no.y)) face_index_pairs = [ (face, index) for index, face in enumerate(mesh.faces)] file.write('\n') ''' for f in me.faces: if me.faceUV: if len(f.verts) == 3: file.write('\tuv( %.6f, %.6f, %.6f, %.6f, %.6f, %.6f );\n' % (f.uv[0][0], 1.0-f.uv[0][1], f.uv[1][0], 1.0-f.uv[1][1], f.uv[2][0], 1.0-f.uv[2][1]) ''' for f in mesh.faces: if mesh.faceUV: if len(f.verts) == 3: file.write('\tuv( %.6f, %.6f, %.6f, %.6f, %.6f, %.6f );\n' % (f.uv[0].x, 1.0 - f.uv[0].y, f.uv[1].x, 1.0 - f.uv[1].y, f.uv[2].x, 1.0 - f.uv[2].y)) else: file.write('\tuv( %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f);\n' % (f.uv[0].x, 1.0 - f.uv[0].y, f.uv[1].x, 1.0 - f.uv[1].y, f.uv[2].x, 1.0 - f.uv[2].y, f.uv[3].x, 1.0 - f.uv[3].y)) file.write('\n') file.write('\tfunction v( x, y, z ) {\n\n') file.write('\t\tscope.vertices.push( new THREE.Vertex( new THREE.Vector3( x, y, z ) ) );\n\n') file.write('\t}\n\n') file.write('\tfunction f3( a, b, c, nx, ny, nz ) {\n\n') file.write('\t\tscope.faces.push( new THREE.Face3( a, b, c, nx && ny && nz ? new THREE.Vector3( nx, ny, nz ) : null ) );\n\n') file.write('\t}\n\n') file.write('\tfunction f4( a, b, c, d, nx, ny, nz ) {\n\n') file.write('\t\tscope.faces.push( new THREE.Face4( a, b, c, d, nx && ny && nz ? new THREE.Vector3( nx, ny, nz ) : null ) );\n\n') file.write('\t}\n\n') file.write('\tfunction uv( u1, v1, u2, v2, u3, v3, u4, v4 ) {\n\n') file.write('\t\tvar uv = [];\n') file.write('\t\tuv.push( new THREE.UV( u1, v1 ) );\n') file.write('\t\tuv.push( new THREE.UV( u2, v2 ) );\n') file.write('\t\tuv.push( new THREE.UV( u3, v3 ) );\n') file.write('\t\tif ( u4 && v4 ) uv.push( new THREE.UV( u4, v4 ) );\n') file.write('\t\tscope.uvs.push( uv );\n') file.write('\t}\n\n') file.write('}\n\n') file.write('%s.prototype = new THREE.Geometry();\n' % classname) file.write('%s.prototype.constructor = %s;' % (classname, classname)) file.close() end = Blender.sys.time() def main(): Blender.Window.FileSelector(write, 'three.js Export', Blender.sys.makename(ext='.js')) if __name__=='__main__': main()
7b44412ce11d8c6c342152422abcba093327737b
3a48cfb0b43fe61f52355a67b2b5700aa8c5ddf2
/src/som/interpreter/ast/nodes/message/generic_node.py
5cfc38a7257dfdd24617ab9116a1996177084454
[ "MIT" ]
permissive
SOM-st/RTruffleSOM
ce380d02985b0ef1f41f400409f61377dc3a583e
1efc698577830ff3fcd1607e7155d9c6423e8804
refs/heads/master
2021-01-17T07:25:19.895376
2020-12-08T18:56:50
2020-12-08T18:56:50
17,311,290
9
2
MIT
2020-09-02T16:08:31
2014-03-01T08:45:25
Python
UTF-8
Python
false
false
2,256
py
from rpython.rlib.debug import make_sure_not_resized from rpython.rlib.jit import we_are_jitted from ..dispatch import SuperDispatchNode, UninitializedDispatchNode, send_does_not_understand from .abstract_node import AbstractMessageNode class GenericMessageNode(AbstractMessageNode): _immutable_fields_ = ['_dispatch?'] _child_nodes_ = ['_dispatch'] def __init__(self, selector, universe, rcvr_expr, arg_exprs, source_section = None): AbstractMessageNode.__init__(self, selector, universe, rcvr_expr, arg_exprs, source_section) if rcvr_expr.is_super_node(): dispatch = SuperDispatchNode(selector, rcvr_expr.get_super_class(), universe) else: dispatch = UninitializedDispatchNode(selector, universe) self._dispatch = self.adopt_child(dispatch) def replace_dispatch_list_head(self, node): self._dispatch.replace(node) def execute(self, frame): rcvr, args = self._evaluate_rcvr_and_args(frame) return self.execute_evaluated(frame, rcvr, args) def execute_evaluated(self, frame, rcvr, args): assert frame is not None assert rcvr is not None assert args is not None make_sure_not_resized(args) if we_are_jitted(): return self._direct_dispatch(rcvr, args) else: return self._dispatch.execute_dispatch(rcvr, args) def _direct_dispatch(self, rcvr, args): method = self._lookup_method(rcvr) if method: return method.invoke(rcvr, args) else: return send_does_not_understand(rcvr, self._selector, args, self._universe) def _lookup_method(self, rcvr): rcvr_class = self._class_of_receiver(rcvr) return rcvr_class.lookup_invokable(self._selector) def _class_of_receiver(self, rcvr): if self._rcvr_expr.is_super_node(): return self._rcvr_expr.get_super_class() return rcvr.get_class(self._universe) def __str__(self): return "%s(%s, %s)" % (self.__class__.__name__, self._selector, self._source_section)
241dde377505cb18294f1a598634e2f265b9c22a
fb208d7a31c1cec334991328c32d57ecfcfbbd9e
/models/TFLite/saved_model_to_tflite_float_16.py
c52d3da297b40539a680738115de2f5fdfa60135
[]
no_license
HanYangZhao/AnimeGAN
c9b8dc031098ef9e0af55fddb71886ee6ce8bb8f
394a9701af81b4656a9e76b567667ae30f4a0643
refs/heads/master
2022-09-13T06:16:12.030109
2020-05-30T01:14:11
2020-05-30T01:14:11
262,147,399
0
1
null
2020-05-07T20:05:21
2020-05-07T20:05:21
null
UTF-8
Python
false
false
589
py
# Run with TF 2.0+ import tensorflow as tf # Convert the model. model = tf.saved_model.load('./') concrete_func = model.signatures[ tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY] '''keep the ratio as close to 3/2 while being divisible by 32''' concrete_func.inputs[0].set_shape([1, 992, 1504, 3]) converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func]) # converter = tf.lite.TFLiteConverter.from_saved_model('./') converter.optimization = [tf.lite.Optimize.DEFAULT] tflite_model = converter.convert() open("./converted_model.tflite","wb").write(tflite_model)
[ "hanzhao" ]
hanzhao
4840d8dc0bb9174550dbc6043c03fcfd6ee37c70
78f3af339af51102f9b1312a54ff79604f257e24
/ssh_remote.py
8cf925b4593f1868cbc66c3eb738da13587daca3
[]
no_license
chemila/bin
c3b3b1aaf37619800d07d6708bfad61322a8a64a
7349e5a1ff0d5095ff65efdc0e663e9c8afeb471
refs/heads/master
2021-08-16T20:42:44.880705
2021-07-22T06:47:17
2021-07-22T06:47:17
1,201,992
1
0
null
null
null
null
UTF-8
Python
false
false
1,559
py
#!/usr/bin/env python import subprocess import ConfigParser from threading import Thread from Queue import Queue import time """ A threaded ssh-based command dispatch system """ def readConfig(file="/home/ethan/data/config.ini"): """Extract IP addresses and CMDS from config file and returns tuple""" ips = [] cmds = [] Config = ConfigParser.ConfigParser() Config.read(file) machines = Config.items("MACHINES") commands = Config.items("COMMANDS") for ip in machines: ips.append(ip[1]) for cmd in commands: cmds.append(cmd[1]) return ips, cmds def launcher(i,q, cmd): """Spawns command in a thread to an ip""" while True: #grabs ip, cmd from queue ip = q.get() print "Thread %s: Running %s to %s" % (i, cmd, ip) subprocess.call("ssh root@%s %s" % (ip, cmd), shell=True) q.task_done() if __name__ == '__main__': start = time.time() queue = Queue() #grab ips and cmds from config ips, cmds = readConfig() #Determine Number of threads to use, but max out at 25 if len(ips) < 25: num_threads = len(ips) else: num_threads = 25 #Start thread pool for i in range(num_threads): for cmd in cmds: worker = Thread(target=launcher, args=(i, queue,cmd)) worker.setDaemon(True) worker.start() print "Main Thread Waiting" for ip in ips: queue.put(ip) queue.join() end = time.time() print "Dispatch Completed in %s seconds" % end - start
efc4ec62a0ebada56728b089bbcba09c1c3a43e0
3dc3070b33f1355aa3fa589e3f029c45f2af14e2
/Chapter 2/02_05_hangman_play.py
a197409f3d8ca8aef75db094a596564c6608bf28
[]
no_license
alec-rabold/Intro-Python-Projects
5a9f297585576d0bfd8688e70e0df469e78b786c
6d0766d97242e1056a07beeb693cda7178ea7184
refs/heads/master
2021-01-23T01:33:50.078305
2017-06-01T16:57:28
2017-06-01T16:57:28
92,879,268
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
import random words = ['chicken', 'dog', 'cat', 'mouse', 'frog'] lives_remaining = 14 def play(): word = pick_a_word() while True: guess = get_guess(word) if process_guess(guess,word): print('You win!') break if lives_remaining == 0: print('You are hanged!') print('The word was: ' + word) break def pick_a_word(): word_position = random.randint(0, len(words) - 1) return words[word_position] def get_guess(word): return 'a' def process_guess(guess,word): global lives_remaining lives_remaining = lives_remaining - 1 return False play()
e215e64f4961ac65de0386bc2f4edbb5f03c7cb4
ad432645cc8e08f5e4aeb24b70a075511e740cc5
/shp/views.py
1713a9305e5399c6d77f4852599a4ee92686564d
[]
no_license
SamyakLuitel/geodjango
51bbf94bc23a072fe27eb3eb6b4be5694a16f7dc
c1f4a3e606c62c69a5401501b70a8d38e9ef352a
refs/heads/main
2023-04-28T06:20:30.587728
2021-05-26T15:27:07
2021-05-26T15:27:07
345,569,513
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
from django.shortcuts import render from django.core.serializers import serialize from django.http import HttpResponse from .models import ShpNepal # Create your views here. def shp(request): shpData = serialize('geojson',ShpNepal.objects.all()) return HttpResponse(shpData, content_type = 'geojson') def index(request): return render(request,'shp/index.html')
ff1f7ab5f78639ef2e3a0814d0360331c288f048
2d29197477e227070c07110183b31812f53c07a0
/books/apps.py
97ac2d91eab931ff613a714e85a82f6f15e90db3
[]
no_license
manish2074/book_management
8d6a5fb9487a194cb5eb61948b6b09b626289a25
13fd5de24cc25bc82c9cd7a79f082d10e9f3edea
refs/heads/master
2021-09-10T06:00:17.355923
2020-03-30T04:34:55
2020-03-30T04:34:55
242,757,393
0
0
null
2021-09-08T01:48:07
2020-02-24T14:28:16
JavaScript
UTF-8
Python
false
false
157
py
from django.apps import AppConfig class BooksConfig(AppConfig): name = 'books' def ready(self): from books.signals import language_changed
b99ac23720342baf031a4813dfb3e5a9682e6cfa
57ab38dfeb1e6e5c66dddbb7dd5122ec69229c73
/meetings/forms.py
cfa5df507a79f57dbe7f654ef4eca7c04ce5ac2e
[]
no_license
japial/meet-django
97ed37c217af3afb881f084aaaec432b4b435c81
4e02daa21079f385ff12537bd4de516da65e3f4e
refs/heads/master
2022-12-14T23:01:13.531260
2020-09-05T14:53:17
2020-09-05T14:53:17
292,758,322
2
0
null
null
null
null
UTF-8
Python
false
false
686
py
from datetime import date from django.core.exceptions import ValidationError from django.forms import ModelForm, DateInput, TimeInput, TextInput from meetings.models import Meeting class MeetingForm(ModelForm): class Meta: model = Meeting fields = '__all__' widgets = { 'date': DateInput(attrs={'type': 'date'}), 'time': TimeInput(attrs={'type': 'time'}), 'duration': TextInput(attrs={'type': 'number', 'min': '1', 'max': '4'}) } def clean_date(self): d = self.cleaned_data.get('date') if d < date.today(): raise ValidationError('Meeting can not be in past') return d
5c8711ec3d10513cade5507c7c98f752e3a04760
9b60c4cd95949db6771bcd5581b1207d06776cb0
/mdadm/source/default.py
0358f93b130e655301a5f87afc201a30bdbb1aed
[]
no_license
OldSchoolOnline/openelec-addons
251e9112d825228d0362a5a67af3312f36db8f4e
377f46a63f6ca9cdc284fb9571b901308676a4fa
refs/heads/master
2020-06-01T18:33:37.340599
2013-04-05T15:19:34
2013-04-05T15:19:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,150
py
################################################################################ # This file is part of OpenELEC - http://www.openelec.tv # Copyright (C) 2009-2011 Stephan Raue ([email protected]) # # This Program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This Program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with OpenELEC.tv; see the file COPYING. If not, write to # the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. # http://www.gnu.org/copyleft/gpl.html ################################################################################ import os import sys import xbmcaddon __scriptname__ = "mdadm is a Linux utility used to manage software RAID devices."
954a403a9df50306bafb2a28b887c0d65ca1b1b6
2b460c7598914e0fc70515619f19670a44f9ba90
/backend/test_flaskr.py
0a854efea85a581352710a1687150944f8f528b0
[]
no_license
vijaybaliah/trivia
0fdd5e0c95031c96b58ddb58583355c1ee7371cf
a9396d54188517457e8844ba8d37a7e228101d9f
refs/heads/master
2023-02-07T17:47:20.443689
2019-11-12T19:57:17
2019-11-12T19:57:17
217,876,153
0
0
null
2023-02-02T06:40:41
2019-10-27T15:34:52
Python
UTF-8
Python
false
false
5,438
py
import os import unittest import json from flask_sqlalchemy import SQLAlchemy from flaskr import create_app from models import setup_db, Question, Category class TriviaTestCase(unittest.TestCase): """This class represents the trivia test case""" def setUp(self): """Define test variables and initialize app.""" self.app = create_app() self.client = self.app.test_client self.database_name = "trivia_test" self.database_path = "postgres://{}:{}@{}/{}".format('postgres', 'password', 'localhost:5432', self.database_name) setup_db(self.app, self.database_path) self.code_success = 200 self.code_not_found = 404 self.code_unprocessable = 422 # binds the app to the current context with self.app.app_context(): self.db = SQLAlchemy() self.db.init_app(self.app) # create all tables self.db.create_all() def tearDown(self): """Executed after reach test""" pass def format_response(self, response): return json.loads(response.data) """ TODO Write at least one test for each test for successful operation and for expected errors. """ def test_get_categories(self): res = self.client().get('/categories') data = self.format_response(res) self.assertEqual(res.status_code, self.code_success) self.assertTrue(data['success']) def test_get_questions(self): res = self.client().get('/questions') data = self.format_response(res) self.assertDictEqual(data['data']['categories'][0], {'id': 1, 'type': 'Science'} ) self.assertEqual(res.status_code, self.code_success) self.assertTrue(data['success']) def test_404_get_questions(self): res = self.client().get('/questions?page=100') data = self.format_response(res) self.assertEqual(res.status_code, self.code_not_found) self.assertFalse(data['success']) def test_delete_question(self): res = self.client().delete('/questions/3') data = self.format_response(res) self.assertEqual(res.status_code, self.code_success) self.assertTrue(data['success']) def test_404_delete_question(self): res = self.client().delete('/questions/24') data = self.format_response(res) self.assertEqual(res.status_code, self.code_not_found) self.assertFalse(data['success']) def test_add_question(self): mock_data = { 'question': 'test', 'answer': 'test2', 'difficulty': 1, 'category_id': 1 } res = self.client().post('/questions', json=mock_data) data = self.format_response(res) self.assertEqual(data['data']['question'], mock_data['question']) self.assertEqual(res.status_code, self.code_success) self.assertTrue(data['success']) def test_404_add_question(self): mock_data = { 'difficulty': 1, 'category_id': 1 } res = self.client().post('/questions', json=mock_data) data = self.format_response(res) self.assertEqual(res.status_code, self.code_not_found) self.assertFalse(data['success']) def test_search_questions(self): mock_data = { 'search_term': 'test' } res = self.client().post('/questions/search', json=mock_data) data = self.format_response(res) self.assertRegex(data['data'][0]['question'], mock_data['search_term']) self.assertEqual(res.status_code, self.code_success) self.assertTrue(data['success']) def test_404_search_questions(self): mock_data = { } res = self.client().post('/questions/search', json=mock_data) data = self.format_response(res) self.assertEqual(res.status_code, self.code_not_found) self.assertFalse(data['success']) def test_get_questions_by_category_id(self): res = self.client().get('/categories/1/questions') data = self.format_response(res) self.assertEqual(res.status_code, self.code_success) self.assertTrue(data['success']) self.assertTrue(len(data['data'])) def test_404_get_questions_by_category_id(self): res = self.client().get('/categories/100/questions') data = self.format_response(res) self.assertEqual(res.status_code, self.code_not_found) self.assertFalse(data['success']) def test_get_quiz_question(self): mock_data = { "quiz_category": { "id": "1" }, "previous_questions": [] } res = self.client().post('/quizzes', json=mock_data) data = self.format_response(res) self.assertEqual(res.status_code, self.code_success) self.assertTrue(data['success']) self.assertTrue(len(data['data'])) def test_404_get_quiz_question(self): mock_data = { "quiz_category": { "id": "1" } } res = self.client().post('/quizzes', json=mock_data) data = self.format_response(res) self.assertEqual(res.status_code, self.code_not_found) self.assertFalse(data['success']) # Make the tests conveniently executable if __name__ == "__main__": unittest.main()
0cb0301d89aba7935aed0f12f790f27edd0c395d
6afa8213eb2f583ce3d31d0b2f86adf783694c17
/dagsage.py
1a0b907eade51ea9ab242247c4b4e8be1da895b5
[]
no_license
DLwbm123/GraphEnas
cd2e5523d8a67ac04b2671540affc9d45ae58915
cc8c0913832a33f7e730b1e7d0709300b8e7ac65
refs/heads/master
2022-01-07T16:30:06.684908
2019-08-11T20:53:05
2019-08-11T20:53:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,837
py
import torch import torch.nn as nn import torch.nn.functional as F from fuzzy_relu import fuzzy_relu ATTENTION_ITERATIONS = 3 class DagSage(nn.Module): """ A graphsage inspired convolution on a directional acyclic graph """ def __init__(self, input_dim, output_dim, representation_size, attention_iterations=ATTENTION_ITERATIONS): # input_dim: size of vector representation of incoming nodes # output_dim: size of node output dimension per node # representation_size: size of internal hidden layers super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.representation_size = representation_size self.attention_iterations = attention_iterations self.node_self_rep = nn.Linear(input_dim, representation_size) self.src_representation = nn.Linear(output_dim, representation_size) self.src_keys = nn.Linear(output_dim, representation_size) self.forget_trans = nn.Linear(representation_size*4, representation_size) self.hidden_trans = nn.Linear(representation_size*4, representation_size) self.query_gen = nn.Linear(representation_size*3, representation_size) self.out_trans = nn.Linear(representation_size*3, output_dim) def cuda(self): self.node_self_rep = self.node_self_rep.cuda() self.src_representation = self.src_representation.cuda() self.src_keys = self.src_keys.cuda() return self def forward(self, nodes_adj): # nodes_adj[0]: (batch, node, vector) - node representations # nodes_adj[1]: (batch, node^2) # nodes_adj[1] is a directional adjacency matrix batch = nodes_adj[0].shape[0] node_id_rep = self.node_self_rep(nodes_adj[0]) num_nodes = nodes_adj[0].shape[1] out_nodes = torch.zeros((batch, num_nodes, self.output_dim)) src_conn = nodes_adj[1] for i in range(num_nodes): hidden = torch.zeros((batch, self.representation_size)) src_rep = self.src_representation(out_nodes) src_keys = self.src_keys(out_nodes) query = torch.zeros((batch, self.representation_size)) # Minimal gated unit for j in range(self.attention_iterations): inp_att = torch.einsum('bk,bik->bi', query, src_keys) # Negate by max attention match to reduce chance of max clipping inp_att = (inp_att.t()-torch.max(inp_att, dim=1).values).t() inp_att = torch.exp(inp_att) # Softmax attention inp_att *= src_conn[:,:,i] inv_sum = 1/torch.sum(inp_att, dim=1) inp_att = torch.einsum('bi,b->bi', inp_att, inv_sum) query_res = torch.einsum('bi,biv->bv', inp_att, src_rep) forget = self.forget_trans(torch.cat((query_res, hidden, node_id_rep[:,i], query), dim=1)) forget = torch.sigmoid(forget) hidden = forget*hidden + (1-forget)*torch.tanh(self.hidden_trans(torch.cat(query_res, forget*hidden, node_id_rep[:,i], query), dim=1)) query = self.query_gen(torch.cat((hidden, node_id_rep[:,i], query), dim=1)) out_nodes[:,i] = self.out_trans(torch.cat((hidden, node_id_rep[:,i], query), dim=1)) return (out_nodes, nodes_adj[1]) class ReverseDagSage(nn.Module): def __init__(self, *args, **kwargs): self.dagsage = DagSage(*args, **kwargs) def cuda(self): self.dagsage = self.dagsage.cuda() return self def forward(self, node_adj): reversed_nodes = torch.flip(node_adj[0], (1,)) reversed_adjs = torch.flip(node_adj[1], (0,1)) res = self.dagsage((reversed_nodes, reversed_adjs)) return (torch.flip(res[0], (1,)), node_adj[1])
3d35ce4bb4ccdf9aece71f129c8f1245dec4ba05
e6787a3d92d3dd69cea480fef4ccf992cb46c8b1
/numguess.py
6cc2c998cba3fc81d997a08ce7578ba4c4cdb31e
[ "MIT" ]
permissive
JuHyeong-K/numguess-flow
bc3f7ec339645c4ad54c9dac6ab57a6790efb989
ab6fdeda9a6dcc03f28d332098459e72143387f3
refs/heads/main
2023-02-22T21:40:28.775412
2021-01-29T05:42:54
2021-01-29T05:42:54
334,043,206
0
0
null
null
null
null
UTF-8
Python
false
false
241
py
import random num = random.randint(0, 50) while True: user_guess = int(input("Guess the number: ")) if user_guess == num: print("Correct! Congraturation!") break else: print("you are wrong! Try again!")
bf181f4074f25fc1a743940bbca6e1c67d5dd96d
219e279c1607256f27c0f44ddbd8ed86bf88b48e
/lesson4/string_functions.py
349bf118b9343352d81fb0cffc31dc701444145c
[]
no_license
PanBohdan/ITEA_Python_Basics
dfdaee4b2b1388a75e0b9b38a5394d1d91a8f6b5
41be881fd00c247e15855b22110f6e4fb8900356
refs/heads/master
2020-06-01T20:00:27.693189
2019-07-21T13:01:39
2019-07-21T13:01:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,996
py
# Без использования методов строк, напишите реализацию таких методов строк: # replace, split, find. Напишите функцию remove по индексу и по подстроке. def find(inp_data, what_to_find): index = 0 if what_to_find in inp_data: c = what_to_find[0] for i in inp_data: if i == c: if inp_data[index:index+len(what_to_find)] == what_to_find: return index index += 1 return -1 def split(inp_data, splitter): list_of_data = [] temp_string = '' for i in inp_data: if i == splitter: list_of_data.append(temp_string) temp_string = '' else: temp_string += i if temp_string: list_of_data.append(temp_string) return list_of_data def replace(inp_data, what_to_replace, replace_with): new_data = '' index = 0 temp_index = 0 temp_list = [] for i in inp_data: temp_list.append(i) final_destination = len(what_to_replace) for i in range(len(inp_data)-len(what_to_replace)+1): temp_index += 1 for j in what_to_replace: if inp_data[index+i] == j: index += 1 if index >= final_destination: if len(what_to_replace) == len(replace_with): for l in range(final_destination): temp_list[temp_index+l-1] = replace_with[l] for temp in temp_list: new_data += temp return new_data if len(what_to_replace) > len(replace_with): for l in range(final_destination): if l < len(replace_with): temp_list[temp_index+l-1] = replace_with[l] else: temp_list.pop(l+index) for temp in temp_list: new_data += temp return new_data if len(what_to_replace) < len(replace_with): for k in range(len(replace_with)): if k < final_destination: temp_list[temp_index+k-1] = replace_with[k] elif k >= final_destination: temp_list.insert(k+temp_index-1, replace_with[k]) for temp in temp_list: new_data += temp return new_data elif inp_data[index+i] != j: index = 0 break return new_data if __name__ == '__main__': data = 'Hey! Hello world. Help! 1 2 3' print(find(data, 'Hello')) print(split(data, ' ')) print(replace(data, 'Hey!', 'Hello!'))
e1f076a8b40ac225debbdfe4c6812b58dabf08a9
ef74d9ad851021bcb0ed12880e14269b6ed7f617
/Sample/Doudizhu/Server/src/ZyGames.Doudizhu.HostServer/PyScript/Action/Action12001.py
7d60a50f0c7331ca1c254a61ca9b33c5de93279d
[ "BSD-2-Clause-Views", "MIT" ]
permissive
sunyuping/Scut
b5e5798e9b519941f0ac3a08a3263dc0f45beb47
ec2ea35c0e4de1f2da49c50d14e119a4f17cd93a
refs/heads/master
2020-12-25T23:19:26.597830
2013-11-16T07:50:01
2013-11-16T07:50:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,188
py
import clr, sys from action import * from System import * from mathUtils import MathUtils clr.AddReference('ZyGames.Framework'); clr.AddReference('ZyGames.Framework.Common'); clr.AddReference('ZyGames.Framework.Game'); clr.AddReference('ZyGames.Doudizhu.Bll'); clr.AddReference('ZyGames.Doudizhu.Model'); clr.AddReference('ZyGames.Doudizhu.Lang'); from System.Collections.Generic import * from ZyGames.Framework.SyncThreading import * from ZyGames.Framework.Common import * from ZyGames.Framework.Game.Cache import * from ZyGames.Framework.Game.Com.Rank import * from ZyGames.Framework.Game.Service import * from ZyGames.Doudizhu.Bll import * from ZyGames.Doudizhu.Bll.Logic import * from ZyGames.Doudizhu.Bll.Com.Chat import * from ZyGames.Doudizhu.Lang import * from ZyGames.Doudizhu.Model import * from ZyGames.Framework.Cache.Generic import * from ZyGames.Framework.Game.Runtime import * from ZyGames.Framework.Cache import * #12001_转盘界面接口 class UrlParam(HttpParam): def __init__(self): HttpParam.__init__(self) class ActionResult(DataResult): def __init__(self): DataResult.__init__(self) self.IsFree = 0 self.FreeNum = 0 self.DailList = List[DialInfo] self.UserCoin = 0 self.UserGold = 0 def getUrlElement(httpGet, parent): urlParam = UrlParam() if True: urlParam.Result = True else: urlParam.Result = False return urlParam def takeAction(urlParam, parent): actionResult = ActionResult() userId = parent.Current.User.PersonalId; user = parent.Current.User gameRoom = GameRoom.Current dailyFreeNum = ConfigEnvSet.GetInt("User.DailyFreeNum", 3); useNum = 0 userRestrain = GameDataCacheSet[UserDailyRestrain]().FindKey(userId) if userRestrain!=None: gameRoom.RefreshRestrain(userRestrain) if userRestrain.RestrainProperty!= None: useNum = userRestrain.RestrainProperty.DialFreeNum if dailyFreeNum > useNum: actionResult.FreeNum = MathUtils.Subtraction(dailyFreeNum,useNum) else: actionResult.IsFree = 1; actionResult.DailList = ConfigCacheSet[DialInfo]().FindAll(); actionResult.UserCoin = user.GameCoin gameHall = GameHall(user) actionResult.UserGold = gameHall.UserGold #需要实现 return actionResult def buildPacket(writer, urlParam, actionResult): postion = 0 writer.PushShortIntoStack(actionResult.IsFree) writer.PushIntoStack(actionResult.FreeNum) writer.PushIntoStack(len(actionResult.DailList)) for info in actionResult.DailList: postion = MathUtils.Addition(postion, 1); Probability = PythonHelper.TransformString(info.Probability) dsItem = DataStruct() dsItem.PushIntoStack(postion) dsItem.PushIntoStack(MathUtils.ToNotNullString(info.HeadID)) dsItem.PushIntoStack(MathUtils.ToNotNullString(Probability)) dsItem.PushIntoStack(MathUtils.ToNotNullString(info.ItemDesc)) dsItem.PushIntoStack(info.GameCoin) writer.PushIntoStack(dsItem) writer.PushIntoStack(actionResult.UserCoin) writer.PushIntoStack(actionResult.UserGold) return True
c7b9c6378a3dd842cabaa7d5fb31214631d710ee
c02b157399f2ede41abf5119e57f94bfe18c713d
/merc/__init__.py
d8fed445f0d9439793cf5d9c80b0de7600943748
[ "MIT" ]
permissive
merc-devel/merc
b366befb6285af984c2da7eabdd1063f16e0414e
15e010db2474b5d9f9720fc83983b03c95063a02
refs/heads/master
2021-01-18T17:15:33.553125
2014-11-08T03:02:30
2014-11-08T03:02:30
25,289,852
4
0
null
null
null
null
UTF-8
Python
false
false
57
py
from merc import util __version__ = util.get_version()
20a27700d4d3cca86f523401878a5f6df4caa327
5a5b66513e6b8e77d49662392868452deafeeef3
/reasoner/rl_agent/write_test_triplestore_1.py
914a126cb3b9968a6f4464166069d7821e66759c
[]
no_license
broadinstitute/reasoner
e844c6dabbb9524e9b060b0f48095ecb628498c8
f78fffb771c482bd65d14814bff39e85b4cbac17
refs/heads/master
2021-06-06T23:50:36.183081
2020-06-19T17:31:06
2020-06-19T17:31:06
111,457,986
5
1
null
2020-06-19T17:31:07
2017-11-20T20:12:42
Python
UTF-8
Python
false
false
2,140
py
import os import csv import re import numpy as np from reasoner.knowledge_graph.KnowledgeGraph import KnowledgeGraph np.random.seed(439572) def get_preferred_label(labels): if 'Drug' in labels: return('Drug') elif 'Disease' in labels: return('Disease') else: return("ChebiTerm") outfolder = 'translator_test_1' kg = KnowledgeGraph() result = kg.query(""" MATCH path = (dr:Drug)-[:HAS_ROLE]->(t:ChebiTerm)--(dis:Disease)--(dr) UNWIND relationships(path) as r RETURN startNode(r) as start, r, endNode(r) as end """) graph_triples = [] target_triples = [] for record in result: start_term = get_preferred_label(record['start'].labels) + '_' + re.sub(r'[ ,\'-]', "",record['start']['name']) end_term = get_preferred_label(record['end'].labels) + '_' + re.sub(r'[ ,\'-]', "",record['end']['name']) relation = record['r'].type if relation == 'HAS_INDICATION': target_triples.append([start_term, relation, end_term]) else: graph_triples.append([start_term, relation, end_term]) # split target triples into training and test set n_targets = len(target_triples) randidx = np.random.permutation(n_targets) training_idx, test_idx = randidx[:np.floor(n_targets/2).astype(int)], randidx[np.floor(n_targets/2).astype(int):] train_triples = [target_triples[i] for i in training_idx] test_triples = [target_triples[i] for i in test_idx] dev_triples = train_triples[1:50] os.mkdir(outfolder) graphfile = os.path.join(outfolder, 'graph.txt') trainfile = os.path.join(outfolder, 'train.txt') testfile = os.path.join(outfolder, 'test.txt') devfile = os.path.join(outfolder, 'dev.txt') with open(graphfile, 'w') as f: writer = csv.writer(f, delimiter='\t') writer.writerows(graph_triples + train_triples) with open(trainfile, 'w') as f: writer = csv.writer(f, delimiter='\t') writer.writerows(train_triples) with open(testfile, 'w') as f: writer = csv.writer(f, delimiter='\t') writer.writerows(test_triples) with open(devfile, 'w') as f: writer = csv.writer(f, delimiter='\t') writer.writerows(dev_triples)
d90edc51fc306fd126b52ad7d183e14880a9e586
ec985f74562c245c5c7b0772536c723df5d53b1f
/wordcount/views.py
c0bb1a7282b8583203f18619e35aab5c572d3901
[]
no_license
joycezhao23/wordcount-project
b4212b2f482b23a9f16d59368a78c2a2a2194fa4
965ce988b75a65af1058e0ba9047781060e88317
refs/heads/master
2020-03-14T15:00:01.318324
2018-05-01T01:48:43
2018-05-01T01:48:43
131,666,191
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
from django.http import HttpResponse from django.shortcuts import render import operator def home(request): return render(request, 'home.html') def about(request): return render(request, 'about.html') def count(request): fulltext = request.GET['fulltext'] wordList = fulltext.split() wordDict = {} for word in wordList: if word in wordDict: wordDict[word] += 1 else: wordDict[word] = 1 sortedWords = sorted(wordDict.items(), key=operator.itemgetter(1), reverse=True) return render(request, 'count.html', {'fulltext': fulltext, 'count': len(wordList), 'sortedWords': sortedWords})
904780b13a2b9bff1a93d620fd8790a37652d91f
d822501d09895216da854f2db8227164775970bd
/Functions/palindrome.py
ff198055c64c23fc99c5310034c3c4b9e3b3a87c
[]
no_license
Jitendrap1702/Coding_Ninjas_Intro_to_Python
8bf7418b53d9e4ab1146950d4fef46a51cc33157
44371c5595c7507de0a1b4c0e596664d34c026c4
refs/heads/master
2022-12-10T22:07:27.213614
2020-09-06T16:00:24
2020-09-06T16:00:24
293,270,812
1
1
null
2020-09-06T13:48:35
2020-09-06T12:19:30
Python
UTF-8
Python
false
false
225
py
def checkPalindrome(num): k=str(num) if k==k[::-1]: return True else: return False num = int(input()) isPalindrome = checkPalindrome(num) if(isPalindrome): print('true') else: print('false')
e2953a819236184ccc205f4be1d4e16384d5849d
6725e264bbeaa56e7da830d6f13f60d7aa2607a3
/main.py
31ee3e2ef38ffd98c318427187043862ee6f737b
[]
no_license
nixiaocang/uploadapp
5403d1ef4b24088c4e16dafd4762764458685758
24587d7fe3833eed6ce83d418b20575eace13bb7
refs/heads/master
2021-01-17T11:56:35.625505
2017-03-06T09:12:58
2017-03-06T09:12:58
84,052,720
0
0
null
null
null
null
UTF-8
Python
false
false
10,849
py
#!/usr/bin/env python #coding=utf-8 import wx from login import LoginHelper from upload import UploadHelper from add import Addhelper class MyFrame(wx.Frame): def __init__(self, parent=None, title=u'BDP文件传输工具 v0.0.1'): wx.Frame.__init__(self, parent, -1, title=title) self.panel = wx.Panel(self, style=wx.TAB_TRAVERSAL | wx.CLIP_CHILDREN | wx.FULL_REPAINT_ON_RESIZE) #增加一些控件:用户名密码部分,并使用GridBagSizer来管理这些控件 self.label1=wx.StaticText(self.panel,-1,label=u'企业域:') self.label2=wx.StaticText(self.panel,-1,label=u'用户名:') self.label3=wx.StaticText(self.panel,-1,label=u'密 码:') self.domainText=wx.TextCtrl(self.panel,-1,size=(200,25)) self.userText=wx.TextCtrl(self.panel,-1,size=(200,25)) self.passText=wx.TextCtrl(self.panel,-1,size=(200,25), style=wx.TE_PASSWORD) self.loginBtn=wx.Button(self.panel,1,label=u'登录') self.gbsizer1=wx.GridBagSizer(hgap=10, vgap=10) self.gbsizer1.Add(self.label1,pos=(2,5),span=(1,1),flag=wx.ALIGN_RIGHT|wx.ALIGN_CENTRE_VERTICAL) self.gbsizer1.Add(self.domainText,pos=(2,6),span=(1,1),flag=wx.EXPAND) self.gbsizer1.Add(self.label2,pos=(3,5),span=(1,1),flag=wx.EXPAND) self.gbsizer1.Add(self.userText,pos=(3,6),span=(1,1),flag=wx.EXPAND) self.gbsizer1.Add(self.label3,pos=(4,5),span=(1,1),flag=wx.EXPAND) self.gbsizer1.Add(self.passText,pos=(4,6),span=(1,1),flag=wx.EXPAND) self.gbsizer1.Add(self.loginBtn,pos=(5,6),span=(1,1),flag=wx.EXPAND) #增加一些控件:最下方的按钮,并使用水平方向的BoxSizer来管理这些控件 #给"服务器设置"按钮绑定事件处理器 self.loginBtn.Bind(wx.EVT_BUTTON,self.OnTouch) # 定义第二面板 self.dlabel=wx.StaticText(self.panel,-1,label=u'数据源名称:') self.dtext=wx.TextCtrl(self.panel,-1,size=(200,25)) self.tlabel=wx.StaticText(self.panel,-1,label=u'表名称:') self.ttext=wx.TextCtrl(self.panel,-1,size=(200,25)) self.flabel=wx.StaticText(self.panel,-1,label=u'文件路径:') self.ftext=wx.TextCtrl(self.panel,-1,size=(200,25)) self.slabel=wx.StaticText(self.panel,-1,label=u'分隔符:') self.stext=wx.TextCtrl(self.panel,-1,size=(200,25)) self.nlabel=wx.StaticText(self.panel,-1,label=u'空值:') self.ntext=wx.TextCtrl(self.panel,-1,size=(200,25)) self.putBtn=wx.Button(self.panel,1,label=u'上传') self.rlabel=wx.StaticText(self.panel,-1,label=u'处理结果:') self.rtext=wx.TextCtrl(self.panel,-1,size=(200,100), style=wx.TE_MULTILINE) self.gbsizer2=wx.GridBagSizer(hgap=10, vgap=10) self.gbsizer2.Add(self.dlabel,pos=(1,5),span=(1,1),flag=wx.ALIGN_RIGHT|wx.ALIGN_CENTRE_VERTICAL) self.gbsizer2.Add(self.dtext,pos=(1,6),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.tlabel,pos=(2,5),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.ttext,pos=(2,6),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.flabel,pos=(3,5),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.ftext,pos=(3,6),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.slabel,pos=(4,5),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.stext,pos=(4,6),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.nlabel,pos=(5,5),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.ntext,pos=(5,6),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.putBtn,pos=(6,6),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.rlabel,pos=(8,5),span=(1,1),flag=wx.EXPAND) self.gbsizer2.Add(self.rtext,pos=(8,6),span=(1,1),flag=wx.EXPAND) self.putBtn.Bind(wx.EVT_BUTTON,self.OnPut) self.gbsizer3=wx.GridBagSizer(hgap=10, vgap=10) self.retryBtn=wx.Button(self.panel,1,label=u'重试') self.gbsizer3.Add(self.retryBtn,pos=(1,10),span=(1,1),flag=wx.EXPAND) self.retryBtn.Bind(wx.EVT_BUTTON,self.RetyPut) self.gbsizer4=wx.GridBagSizer(hgap=10, vgap=10) self.createBtn=wx.Button(self.panel,1,label=u'新建') self.appendBtn=wx.Button(self.panel,1,label=u'追加') self.gbsizer4.Add(self.createBtn,pos=(1,10),span=(1,1),flag=wx.EXPAND) self.gbsizer4.Add(self.appendBtn,pos=(2,10),span=(1,1),flag=wx.EXPAND) self.createBtn.Bind(wx.EVT_BUTTON,self.create) self.appendBtn.Bind(wx.EVT_BUTTON,self.append) # 定义追加面板 self.dsid_label=wx.StaticText(self.panel,-1,label=u'数据源id:') self.dsid_text=wx.TextCtrl(self.panel,-1,size=(200,25)) self.tbid_label=wx.StaticText(self.panel,-1,label=u'工作表id:') self.tbid_text=wx.TextCtrl(self.panel,-1,size=(200,25)) self.adpath_label=wx.StaticText(self.panel,-1,label=u'文件路径:') self.adpath_text=wx.TextCtrl(self.panel,-1,size=(200,25)) self.ads_label=wx.StaticText(self.panel,-1,label=u'分隔符:') self.ads_text=wx.TextCtrl(self.panel,-1,size=(200,25)) self.adn_label=wx.StaticText(self.panel,-1,label=u'空值:') self.adn_text=wx.TextCtrl(self.panel,-1,size=(200,25)) self.addBtn=wx.Button(self.panel,1,label=u'上传') self.arlabel=wx.StaticText(self.panel,-1,label=u'处理结果:') self.artext=wx.TextCtrl(self.panel,-1,size=(200,100), style=wx.TE_MULTILINE) self.gbsizer5=wx.GridBagSizer(hgap=10, vgap=10) self.gbsizer5.Add(self.dsid_label,pos=(1,5),span=(1,1),flag=wx.ALIGN_RIGHT|wx.ALIGN_CENTRE_VERTICAL) self.gbsizer5.Add(self.dsid_text,pos=(1,6),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.tbid_label,pos=(2,5),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.tbid_text,pos=(2,6),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.adpath_label,pos=(3,5),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.adpath_text,pos=(3,6),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.ads_label,pos=(4,5),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.ads_text,pos=(4,6),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.adn_label,pos=(5,5),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.adn_text,pos=(5,6),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.addBtn,pos=(6,6),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.arlabel,pos=(8,5),span=(1,1),flag=wx.EXPAND) self.gbsizer5.Add(self.artext,pos=(8,6),span=(1,1),flag=wx.EXPAND) self.addBtn.Bind(wx.EVT_BUTTON,self.adata) #增加BoxSizer,管理用户名密码部分的gbsizer1, #服务器设置部分的sbsizer,以及最下方的bsizer self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.gbsizer1, 0, wx.EXPAND, 20) self.sizer.Add(self.gbsizer2, 0, wx.EXPAND, 20) self.sizer.Add(self.gbsizer5, 0, wx.EXPAND, 20) self.sizer.Add(self.gbsizer3, 0, wx.EXPAND, 20) self.sizer.Add(self.gbsizer4, 0, wx.EXPAND, 20) self.sizer.Hide(self.gbsizer2) self.sizer.Hide(self.gbsizer3) self.sizer.Hide(self.gbsizer4) self.sizer.Hide(self.gbsizer5) self.isShown = False #用这个变量指示当前是否已将控件隐藏 self.SetClientSize((600,480)) #更改面板尺寸 d self.panel.SetSizerAndFit(self.sizer) self.sizer.SetSizeHints(self.panel) def create(self, event): self.sizer.Hide(self.gbsizer4) self.sizer.Show(self.gbsizer2) self.sizer.Layout() return True def append(self, event): self.sizer.Hide(self.gbsizer4) self.sizer.Remove(self.gbsizer2) self.sizer.Show(self.gbsizer5) self.sizer.Layout() return True def OnTouch(self, event): domain = self.domainText.GetValue() username = self.userText.GetValue() password = self.passText.GetValue() if (str(domain)=='' or str(password)=='' or str(username)==''): wx.MessageBox("请输入完整的参数", caption="Message", style=wx.OK) return True try: res = LoginHelper(domain, username, password).login() except Exception, e: dlg = wx.MessageDialog(None, "%s" % e.message, u"错误信息", wx.YES_NO | wx.ICON_QUESTION) if dlg.ShowModal() == wx.ID_YES: dlg.Destroy() return True self.sizer.Hide(self.gbsizer1) self.sizer.Show(self.gbsizer4) self.sizer.Layout() #关键所在,强制sizer重新计算并布局sizer中的控件 self.user_id = res return True def OnPut(self, event): ds_name = self.dtext.GetValue().encode('utf-8') tbname = self.ttext.GetValue().encode('utf-8') path = self.ftext.GetValue().encode('utf-8') separator = self.stext.GetValue().encode('utf-8') null_holder = self.ntext.GetValue().encode('utf-8') if (str(ds_name)=='' or str(tbname)=='' or str(path)=='' or str(separator)=='' or str(null_holder)==''): wx.MessageBox("请输入完整的参数", caption="Message", style=wx.OK) return True if path.endswith('/'): path = path[:-1] status, res = UploadHelper().do_action(self.user_id, path, tbname, ds_name, separator, null_holder) self.rtext.SetValue(res) if status != 0: self.sizer.Show(self.gbsizer3) self.sizer.Layout() return True def adata(self, event): ds_id = self.dsid_text.GetValue().encode('utf-8') tb_id = self.tbid_text.GetValue().encode('utf-8') path = self.adpath_text.GetValue().encode('utf-8') separator = self.ads_text.GetValue().encode('utf-8') null_holder = self.adn_text.GetValue().encode('utf-8') if (str(ds_id)=='' or str(tb_id)=='' or str(path)=='' or str(separator)=='' or str(null_holder)==''): wx.MessageBox("请输入完整的参数", caption="Message", style=wx.OK) return True if path.endswith('/'): path = path[:-1] status, res = Addhelper().do_action(path, separator, null_holder, ds_id, tb_id , self.user_id) self.artext.SetValue(res) if status != 0: self.sizer.Show(self.gbsizer3) self.sizer.Layout() return True def RetyPut(self, event): status, res = UploadHelper().retry(path) self.rtext.SetValue(res) self.artext.SetValue(res) if status == 0: self.sizer.Hide(self.gbsizer3) self.sizer.Layout() return True if __name__ == "__main__": app = wx.PySimpleApp() frame = MyFrame(None) frame.Show(True) app.MainLoop()
c77a177a70bdda413b7873d59fb732ca95df4c26
767318c4ddf2713a8a035aa3bf68cd8260409aa0
/travellow/migrations/0001_initial.py
b7e329a337e095194ed93a271f0ab43896b0f234
[]
no_license
sag-coder/travelbooking
704573b145ca04587bbaf2415f4bbdb6ad50b26f
dfc482ca01d1be324aba900075b2a64dc2fd1d88
refs/heads/master
2023-06-11T23:22:44.114545
2021-07-10T23:47:37
2021-07-10T23:47:37
384,562,878
0
0
null
null
null
null
UTF-8
Python
false
false
558
py
# Generated by Django 3.2.3 on 2021-05-25 14:57 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Destination', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('img', models.ImageField(upload_to='pix')), ('offer', models.BooleanField(default=False)), ], ), ]
b3c22a904dac91d8b29c6d27d6ce97e5e99f49d8
a034d4ba39789e4a351112c46dd04a38180cd06c
/appengine/monorail/framework/sql.py
41fb66b26a0bd748c5788f67fa37cb9b6da157a5
[ "BSD-3-Clause" ]
permissive
asdfghjjklllllaaa/infra
050ad249ab44f264b4e2080aa9537ce74aafb022
8f63af54e46194cd29291813f2790ff6e986804d
refs/heads/master
2023-01-10T21:55:44.811835
2019-07-01T14:03:32
2019-07-01T14:03:32
194,691,941
1
0
BSD-3-Clause
2023-01-07T07:12:37
2019-07-01T14:45:29
Python
UTF-8
Python
false
false
37,456
py
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """A set of classes for interacting with tables in SQL.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import import logging import random import re import sys import time import settings if not settings.unit_test_mode: import MySQLdb from framework import exceptions from framework import framework_helpers from infra_libs import ts_mon from Queue import Queue class ConnectionPool(object): """Manage a set of database connections such that they may be re-used. """ def __init__(self, poolsize=1): self.poolsize = poolsize self.queues = {} @framework_helpers.retry(3, delay=0.1, backoff=2) def get(self, instance, database): """Retun a database connection, or throw an exception if none can be made. """ key = instance + '/' + database if not key in self.queues: queue = Queue(self.poolsize) self.queues[key] = queue queue = self.queues[key] if queue.empty(): cnxn = cnxn_ctor(instance, database) else: cnxn = queue.get() # Make sure the connection is still good. cnxn.ping() cnxn.commit() return cnxn def release(self, cnxn): if not cnxn.pool_key in self.queues: raise BaseException('unknown pool key: %s' % cnxn.pool_key) q = self.queues[cnxn.pool_key] if q.full(): cnxn.close() else: q.put(cnxn) @framework_helpers.retry(2, delay=1, backoff=2) def cnxn_ctor(instance, database): logging.info('About to connect to SQL instance %r db %r', instance, database) if settings.unit_test_mode: raise ValueError('unit tests should not need real database connections') try: if settings.local_mode: start_time = time.time() cnxn = MySQLdb.connect( host='127.0.0.1', port=3306, db=database, user='root', charset='utf8') else: start_time = time.time() cnxn = MySQLdb.connect( unix_socket='/cloudsql/' + instance, db=database, user='root', charset='utf8') duration = int((time.time() - start_time) * 1000) DB_CNXN_LATENCY.add(duration) CONNECTION_COUNT.increment({'success': True}) except MySQLdb.OperationalError: CONNECTION_COUNT.increment({'success': False}) raise cnxn.pool_key = instance + '/' + database cnxn.is_bad = False return cnxn # One connection pool per database instance (master, replicas are each an # instance). We'll have four connections per instance because we fetch # issue comments, stars, spam verdicts and spam verdict history in parallel # with promises. cnxn_pool = ConnectionPool(settings.db_cnxn_pool_size) # MonorailConnection maintains a dictionary of connections to SQL databases. # Each is identified by an int shard ID. # And there is one connection to the master DB identified by key MASTER_CNXN. MASTER_CNXN = 'master_cnxn' CONNECTION_COUNT = ts_mon.CounterMetric( 'monorail/sql/connection_count', 'Count of connections made to the SQL database.', [ts_mon.BooleanField('success')]) DB_CNXN_LATENCY = ts_mon.CumulativeDistributionMetric( 'monorail/sql/db_cnxn_latency', 'Time needed to establish a DB connection.', None) DB_QUERY_LATENCY = ts_mon.CumulativeDistributionMetric( 'monorail/sql/db_query_latency', 'Time needed to make a DB query.', [ts_mon.StringField('type')]) DB_COMMIT_LATENCY = ts_mon.CumulativeDistributionMetric( 'monorail/sql/db_commit_latency', 'Time needed to make a DB commit.', None) DB_ROLLBACK_LATENCY = ts_mon.CumulativeDistributionMetric( 'monorail/sql/db_rollback_latency', 'Time needed to make a DB rollback.', None) DB_RETRY_COUNT = ts_mon.CounterMetric( 'monorail/sql/db_retry_count', 'Count of queries retried.', None) DB_QUERY_COUNT = ts_mon.CounterMetric( 'monorail/sql/db_query_count', 'Count of queries sent to the DB.', [ts_mon.StringField('type')]) DB_COMMIT_COUNT = ts_mon.CounterMetric( 'monorail/sql/db_commit_count', 'Count of commits sent to the DB.', None) DB_ROLLBACK_COUNT = ts_mon.CounterMetric( 'monorail/sql/db_rollback_count', 'Count of rollbacks sent to the DB.', None) DB_RESULT_ROWS = ts_mon.CumulativeDistributionMetric( 'monorail/sql/db_result_rows', 'Number of results returned by a DB query.', None) def RandomShardID(): """Return a random shard ID to load balance across replicas.""" return random.randint(0, settings.num_logical_shards - 1) class MonorailConnection(object): """Create and manage connections to the SQL servers. We only store connections in the context of a single user request, not across user requests. The main purpose of this class is to make using sharded tables easier. """ def __init__(self): self.sql_cnxns = {} # {MASTER_CNXN: cnxn, shard_id: cnxn, ...} def GetMasterConnection(self): """Return a connection to the master SQL DB.""" if MASTER_CNXN not in self.sql_cnxns: self.sql_cnxns[MASTER_CNXN] = cnxn_pool.get( settings.db_instance, settings.db_database_name) logging.info( 'created a master connection %r', self.sql_cnxns[MASTER_CNXN]) return self.sql_cnxns[MASTER_CNXN] def GetConnectionForShard(self, shard_id): """Return a connection to the DB replica that will be used for shard_id.""" if shard_id not in self.sql_cnxns: physical_shard_id = shard_id % settings.num_logical_shards replica_name = settings.db_replica_names[ physical_shard_id % len(settings.db_replica_names)] shard_instance_name = ( settings.physical_db_name_format % replica_name) self.sql_cnxns[shard_id] = cnxn_pool.get( shard_instance_name, settings.db_database_name) logging.info('created a replica connection for shard %d', shard_id) return self.sql_cnxns[shard_id] def Execute(self, stmt_str, stmt_args, shard_id=None, commit=True, retries=1): """Execute the given SQL statement on one of the relevant databases.""" if shard_id is None: # No shard was specified, so hit the master. sql_cnxn = self.GetMasterConnection() else: sql_cnxn = self.GetConnectionForShard(shard_id) try: return self._ExecuteWithSQLConnection( sql_cnxn, stmt_str, stmt_args, commit=commit) except MySQLdb.OperationalError as e: logging.exception(e) logging.info('retries: %r', retries) if retries > 0: DB_RETRY_COUNT.increment() self.sql_cnxns = {} # Drop all old mysql connections and make new. return self.Execute( stmt_str, stmt_args, shard_id=shard_id, commit=commit, retries=retries - 1) else: raise e def _ExecuteWithSQLConnection( self, sql_cnxn, stmt_str, stmt_args, commit=True): """Execute a statement on the given database and return a cursor.""" if stmt_str.startswith('INSERT') or stmt_str.startswith('REPLACE'): logging.info('SQL stmt_str: \n%s', stmt_str) logging.info('SQL stmt_args: %r', stmt_args) else: logging.info('SQL stmt: \n%s', (stmt_str % tuple(stmt_args))) start_time = time.time() cursor = sql_cnxn.cursor() cursor.execute('SET NAMES utf8mb4') logging.info('made cursor on %r in %d ms', sql_cnxn, int((time.time() - start_time) * 1000)) if stmt_str.startswith('INSERT') or stmt_str.startswith('REPLACE'): cursor.executemany(stmt_str, stmt_args) duration = (time.time() - start_time) * 1000 DB_QUERY_LATENCY.add(duration, {'type': 'write'}) DB_QUERY_COUNT.increment({'type': 'write'}) else: cursor.execute(stmt_str, args=stmt_args) duration = (time.time() - start_time) * 1000 DB_QUERY_LATENCY.add(duration, {'type': 'read'}) DB_QUERY_COUNT.increment({'type': 'read'}) DB_RESULT_ROWS.add(cursor.rowcount) logging.info('%d rows in %d ms', cursor.rowcount, int(duration)) if commit and not stmt_str.startswith('SELECT'): try: sql_cnxn.commit() duration = (time.time() - start_time) * 1000 DB_COMMIT_LATENCY.add(duration) DB_COMMIT_COUNT.increment() except MySQLdb.DatabaseError: sql_cnxn.rollback() duration = (time.time() - start_time) * 1000 DB_ROLLBACK_LATENCY.add(duration) DB_ROLLBACK_COUNT.increment() return cursor def Commit(self): """Explicitly commit any pending txns. Normally done automatically.""" sql_cnxn = self.GetMasterConnection() try: sql_cnxn.commit() except MySQLdb.DatabaseError: logging.exception('Commit failed for cnxn, rolling back') sql_cnxn.rollback() def Close(self): """Safely close any connections that are still open.""" for sql_cnxn in self.sql_cnxns.values(): try: sql_cnxn.rollback() # Abandon any uncommitted changes. cnxn_pool.release(sql_cnxn) except MySQLdb.DatabaseError: # This might happen if the cnxn is somehow already closed. logging.exception('ProgrammingError when trying to close cnxn') class SQLTableManager(object): """Helper class to make it easier to deal with an SQL table.""" def __init__(self, table_name): self.table_name = table_name def Select( self, cnxn, distinct=False, cols=None, left_joins=None, joins=None, where=None, or_where_conds=False, group_by=None, order_by=None, limit=None, offset=None, shard_id=None, use_clause=None, having=None, **kwargs): """Compose and execute an SQL SELECT statement on this table. Args: cnxn: MonorailConnection to the databases. distinct: If True, add DISTINCT keyword. cols: List of columns to retrieve, defaults to '*'. left_joins: List of LEFT JOIN (str, args) pairs. joins: List of regular JOIN (str, args) pairs. where: List of (str, args) for WHERE clause. or_where_conds: Set to True to use OR in the WHERE conds. group_by: List of strings for GROUP BY clause. order_by: List of (str, args) for ORDER BY clause. limit: Optional LIMIT on the number of rows returned. offset: Optional OFFSET when using LIMIT. shard_id: Int ID of the shard to query. use_clause: Optional string USE clause to tell the DB which index to use. having: List of (str, args) for Optional HAVING clause **kwargs: WHERE-clause equality and set-membership conditions. Keyword args are used to build up more WHERE conditions that compare column values to constants. Key word Argument foo='bar' translates to 'foo = "bar"', and foo=[3, 4, 5] translates to 'foo IN (3, 4, 5)'. Returns: A list of rows, each row is a tuple of values for the requested cols. """ cols = cols or ['*'] # If columns not specified, retrieve all columns. stmt = Statement.MakeSelect( self.table_name, cols, distinct=distinct, or_where_conds=or_where_conds) if use_clause: stmt.AddUseClause(use_clause) if having: stmt.AddHavingTerms(having) stmt.AddJoinClauses(left_joins or [], left=True) stmt.AddJoinClauses(joins or []) stmt.AddWhereTerms(where or [], **kwargs) stmt.AddGroupByTerms(group_by or []) stmt.AddOrderByTerms(order_by or []) stmt.SetLimitAndOffset(limit, offset) stmt_str, stmt_args = stmt.Generate() cursor = cnxn.Execute(stmt_str, stmt_args, shard_id=shard_id) rows = cursor.fetchall() cursor.close() return rows def SelectRow( self, cnxn, cols=None, default=None, where=None, **kwargs): """Run a query that is expected to return just one row.""" rows = self.Select(cnxn, distinct=True, cols=cols, where=where, **kwargs) if len(rows) == 1: return rows[0] elif not rows: logging.info('SelectRow got 0 results, so using default %r', default) return default else: raise ValueError('SelectRow got %d results, expected only 1', len(rows)) def SelectValue(self, cnxn, col, default=None, where=None, **kwargs): """Run a query that is expected to return just one row w/ one value.""" row = self.SelectRow( cnxn, cols=[col], default=[default], where=where, **kwargs) return row[0] def InsertRows( self, cnxn, cols, row_values, replace=False, ignore=False, commit=True, return_generated_ids=False): """Insert all the given rows. Args: cnxn: MonorailConnection object. cols: List of column names to set. row_values: List of lists with values to store. The length of each nested list should be equal to len(cols). replace: Set to True if inserted values should replace existing DB rows that have the same DB keys. ignore: Set to True to ignore rows that would duplicate existing DB keys. commit: Set to False if this operation is part of a series of operations that should not be committed until the final one is done. return_generated_ids: Set to True to return a list of generated autoincrement IDs for inserted rows. This requires us to insert rows one at a time. Returns: If return_generated_ids is set to True, this method returns a list of the auto-increment IDs generated by the DB. Otherwise, [] is returned. """ if not row_values: return None # Nothing to insert generated_ids = [] if return_generated_ids: # We must insert the rows one-at-a-time to know the generated IDs. for row_value in row_values: stmt = Statement.MakeInsert( self.table_name, cols, [row_value], replace=replace, ignore=ignore) stmt_str, stmt_args = stmt.Generate() cursor = cnxn.Execute(stmt_str, stmt_args, commit=commit) if cursor.lastrowid: generated_ids.append(cursor.lastrowid) cursor.close() return generated_ids stmt = Statement.MakeInsert( self.table_name, cols, row_values, replace=replace, ignore=ignore) stmt_str, stmt_args = stmt.Generate() cnxn.Execute(stmt_str, stmt_args, commit=commit) return [] def InsertRow( self, cnxn, replace=False, ignore=False, commit=True, **kwargs): """Insert a single row into the table. Args: cnxn: MonorailConnection object. replace: Set to True if inserted values should replace existing DB rows that have the same DB keys. ignore: Set to True to ignore rows that would duplicate existing DB keys. commit: Set to False if this operation is part of a series of operations that should not be committed until the final one is done. **kwargs: column=value assignments to specify what to store in the DB. Returns: The generated autoincrement ID of the key column if one was generated. Otherwise, return None. """ cols = sorted(kwargs.keys()) row = tuple(kwargs[col] for col in cols) generated_ids = self.InsertRows( cnxn, cols, [row], replace=replace, ignore=ignore, commit=commit, return_generated_ids=True) if generated_ids: return generated_ids[0] else: return None def Update(self, cnxn, delta, where=None, commit=True, limit=None, **kwargs): """Update one or more rows. Args: cnxn: MonorailConnection object. delta: Dictionary of {column: new_value} assignments. where: Optional list of WHERE conditions saying which rows to update. commit: Set to False if this operation is part of a series of operations that should not be committed until the final one is done. limit: Optional LIMIT on the number of rows updated. **kwargs: WHERE-clause equality and set-membership conditions. Returns: Int number of rows updated. """ if not delta: return 0 # Nothing is being changed stmt = Statement.MakeUpdate(self.table_name, delta) stmt.AddWhereTerms(where, **kwargs) stmt.SetLimitAndOffset(limit, None) stmt_str, stmt_args = stmt.Generate() cursor = cnxn.Execute(stmt_str, stmt_args, commit=commit) result = cursor.rowcount cursor.close() return result def IncrementCounterValue(self, cnxn, col_name, where=None, **kwargs): """Atomically increment a counter stored in MySQL, return new value. Args: cnxn: MonorailConnection object. col_name: int column to increment. where: Optional list of WHERE conditions saying which rows to update. **kwargs: WHERE-clause equality and set-membership conditions. The where and kwargs together should narrow the update down to exactly one row. Returns: The new, post-increment value of the counter. """ stmt = Statement.MakeIncrement(self.table_name, col_name) stmt.AddWhereTerms(where, **kwargs) stmt_str, stmt_args = stmt.Generate() cursor = cnxn.Execute(stmt_str, stmt_args) assert cursor.rowcount == 1, ( 'missing or ambiguous counter: %r' % cursor.rowcount) result = cursor.lastrowid cursor.close() return result def Delete(self, cnxn, where=None, or_where_conds=False, commit=True, limit=None, **kwargs): """Delete the specified table rows. Args: cnxn: MonorailConnection object. where: Optional list of WHERE conditions saying which rows to update. or_where_conds: Set to True to use OR in the WHERE conds. commit: Set to False if this operation is part of a series of operations that should not be committed until the final one is done. limit: Optional LIMIT on the number of rows deleted. **kwargs: WHERE-clause equality and set-membership conditions. Returns: Int number of rows updated. """ # Deleting the whole table is never intended in Monorail. assert where or kwargs stmt = Statement.MakeDelete(self.table_name, or_where_conds=or_where_conds) stmt.AddWhereTerms(where, **kwargs) stmt.SetLimitAndOffset(limit, None) stmt_str, stmt_args = stmt.Generate() cursor = cnxn.Execute(stmt_str, stmt_args, commit=commit) result = cursor.rowcount cursor.close() return result class Statement(object): """A class to help build complex SQL statements w/ full escaping. Start with a Make*() method, then fill in additional clauses as needed, then call Generate() to return the SQL string and argument list. We pass the string and args to MySQLdb separately so that it can do escaping on the arg values as appropriate to prevent SQL-injection attacks. The only values that are not escaped by MySQLdb are the table names and column names, and bits of SQL syntax, all of which is hard-coded in our application. """ @classmethod def MakeSelect(cls, table_name, cols, distinct=False, or_where_conds=False): """Constuct a SELECT statement.""" assert _IsValidTableName(table_name) assert all(_IsValidColumnName(col) for col in cols) main_clause = 'SELECT%s %s FROM %s' % ( (' DISTINCT' if distinct else ''), ', '.join(cols), table_name) return cls(main_clause, or_where_conds=or_where_conds) @classmethod def MakeInsert( cls, table_name, cols, new_values, replace=False, ignore=False): """Constuct an INSERT statement.""" if replace == True: return cls.MakeReplace(table_name, cols, new_values, ignore) assert _IsValidTableName(table_name) assert all(_IsValidColumnName(col) for col in cols) ignore_word = ' IGNORE' if ignore else '' main_clause = 'INSERT%s INTO %s (%s)' % ( ignore_word, table_name, ', '.join(cols)) return cls(main_clause, insert_args=new_values) @classmethod def MakeReplace( cls, table_name, cols, new_values, ignore=False): """Construct an INSERT...ON DUPLICATE KEY UPDATE... statement. Uses the INSERT/UPDATE syntax because REPLACE is literally a DELETE followed by an INSERT, which doesn't play well with foreign keys. INSERT/UPDATE is an atomic check of whether the primary key exists, followed by an INSERT if it doesn't or an UPDATE if it does. """ assert _IsValidTableName(table_name) assert all(_IsValidColumnName(col) for col in cols) ignore_word = ' IGNORE' if ignore else '' main_clause = 'INSERT%s INTO %s (%s)' % ( ignore_word, table_name, ', '.join(cols)) return cls(main_clause, insert_args=new_values, duplicate_update_cols=cols) @classmethod def MakeUpdate(cls, table_name, delta): """Constuct an UPDATE statement.""" assert _IsValidTableName(table_name) assert all(_IsValidColumnName(col) for col in delta.keys()) update_strs = [] update_args = [] for col, val in delta.items(): update_strs.append(col + '=%s') update_args.append(val) main_clause = 'UPDATE %s SET %s' % ( table_name, ', '.join(update_strs)) return cls(main_clause, update_args=update_args) @classmethod def MakeIncrement(cls, table_name, col_name, step=1): """Constuct an UPDATE statement that increments and returns a counter.""" assert _IsValidTableName(table_name) assert _IsValidColumnName(col_name) main_clause = ( 'UPDATE %s SET %s = LAST_INSERT_ID(%s + %%s)' % ( table_name, col_name, col_name)) update_args = [step] return cls(main_clause, update_args=update_args) @classmethod def MakeDelete(cls, table_name, or_where_conds=False): """Constuct a DELETE statement.""" assert _IsValidTableName(table_name) main_clause = 'DELETE FROM %s' % table_name return cls(main_clause, or_where_conds=or_where_conds) def __init__( self, main_clause, insert_args=None, update_args=None, duplicate_update_cols=None, or_where_conds=False): self.main_clause = main_clause # E.g., SELECT or DELETE self.or_where_conds = or_where_conds self.insert_args = insert_args or [] # For INSERT statements for row_value in self.insert_args: if not all(_IsValidDBValue(val) for val in row_value): raise exceptions.InputException('Invalid DB value %r' % (row_value,)) self.update_args = update_args or [] # For UPDATEs for val in self.update_args: if not _IsValidDBValue(val): raise exceptions.InputException('Invalid DB value %r' % val) self.duplicate_update_cols = duplicate_update_cols or [] # For REPLACE-ish self.use_clauses = [] self.join_clauses, self.join_args = [], [] self.where_conds, self.where_args = [], [] self.having_conds, self.having_args = [], [] self.group_by_terms, self.group_by_args = [], [] self.order_by_terms, self.order_by_args = [], [] self.limit, self.offset = None, None def Generate(self): """Return an SQL string having %s placeholders and args to fill them in.""" clauses = [self.main_clause] + self.use_clauses + self.join_clauses if self.where_conds: if self.or_where_conds: clauses.append('WHERE ' + '\n OR '.join(self.where_conds)) else: clauses.append('WHERE ' + '\n AND '.join(self.where_conds)) if self.group_by_terms: clauses.append('GROUP BY ' + ', '.join(self.group_by_terms)) if self.having_conds: assert self.group_by_terms clauses.append('HAVING %s' % ','.join(self.having_conds)) if self.order_by_terms: clauses.append('ORDER BY ' + ', '.join(self.order_by_terms)) if self.limit and self.offset: clauses.append('LIMIT %d OFFSET %d' % (self.limit, self.offset)) elif self.limit: clauses.append('LIMIT %d' % self.limit) elif self.offset: clauses.append('LIMIT %d OFFSET %d' % (sys.maxint, self.offset)) if self.insert_args: clauses.append('VALUES (' + PlaceHolders(self.insert_args[0]) + ')') args = self.insert_args if self.duplicate_update_cols: clauses.append('ON DUPLICATE KEY UPDATE %s' % ( ', '.join(['%s=VALUES(%s)' % (col, col) for col in self.duplicate_update_cols]))) assert not (self.join_args + self.update_args + self.where_args + self.group_by_args + self.order_by_args + self.having_args) else: args = (self.join_args + self.update_args + self.where_args + self.group_by_args + self.having_args + self.order_by_args) assert not (self.insert_args + self.duplicate_update_cols) args = _BoolsToInts(args) stmt_str = '\n'.join(clause for clause in clauses if clause) assert _IsValidStatement(stmt_str), stmt_str return stmt_str, args def AddUseClause(self, use_clause): """Add a USE clause (giving the DB a hint about which indexes to use).""" assert _IsValidUseClause(use_clause), use_clause self.use_clauses.append(use_clause) def AddJoinClauses(self, join_pairs, left=False): """Save JOIN clauses based on the given list of join conditions.""" for join, args in join_pairs: assert _IsValidJoin(join), join assert join.count('%s') == len(args), join self.join_clauses.append( ' %sJOIN %s' % (('LEFT ' if left else ''), join)) self.join_args.extend(args) def AddGroupByTerms(self, group_by_term_list): """Save info needed to generate the GROUP BY clause.""" assert all(_IsValidGroupByTerm(term) for term in group_by_term_list) self.group_by_terms.extend(group_by_term_list) def AddOrderByTerms(self, order_by_pairs): """Save info needed to generate the ORDER BY clause.""" for term, args in order_by_pairs: assert _IsValidOrderByTerm(term), term assert term.count('%s') == len(args), term self.order_by_terms.append(term) self.order_by_args.extend(args) def SetLimitAndOffset(self, limit, offset): """Save info needed to generate the LIMIT OFFSET clause.""" self.limit = limit self.offset = offset def AddWhereTerms(self, where_cond_pairs, **kwargs): """Generate a WHERE clause.""" where_cond_pairs = where_cond_pairs or [] for cond, args in where_cond_pairs: assert _IsValidWhereCond(cond), cond assert cond.count('%s') == len(args), cond self.where_conds.append(cond) self.where_args.extend(args) for col, val in sorted(kwargs.items()): assert _IsValidColumnName(col), col eq = True if col.endswith('_not'): col = col[:-4] eq = False if isinstance(val, set): val = list(val) # MySQL inteface cannot handle sets. if val is None or val == []: op = 'IS' if eq else 'IS NOT' self.where_conds.append(col + ' ' + op + ' NULL') elif isinstance(val, list): op = 'IN' if eq else 'NOT IN' # Sadly, MySQLdb cannot escape lists, so we flatten to multiple "%s"s self.where_conds.append( col + ' ' + op + ' (' + PlaceHolders(val) + ')') self.where_args.extend(val) else: op = '=' if eq else '!=' self.where_conds.append(col + ' ' + op + ' %s') self.where_args.append(val) def AddHavingTerms(self, having_cond_pairs): """Generate a HAVING clause.""" for cond, args in having_cond_pairs: assert _IsValidHavingCond(cond), cond assert cond.count('%s') == len(args), cond self.having_conds.append(cond) self.having_args.extend(args) def PlaceHolders(sql_args): """Return a comma-separated list of %s placeholders for the given args.""" return ','.join('%s' for _ in sql_args) TABLE_PAT = '[A-Z][_a-zA-Z0-9]+' COLUMN_PAT = '[a-z][_a-z]+' COMPARE_OP_PAT = '(<|>|=|!=|>=|<=|LIKE|NOT LIKE)' SHORTHAND = { 'table': TABLE_PAT, 'column': COLUMN_PAT, 'tab_col': r'(%s\.)?%s' % (TABLE_PAT, COLUMN_PAT), 'placeholder': '%s', # That's a literal %s that gets passed to MySQLdb 'multi_placeholder': '%s(, ?%s)*', 'compare_op': COMPARE_OP_PAT, 'opt_asc_desc': '( ASC| DESC)?', 'opt_alias': '( AS %s)?' % TABLE_PAT, 'email_cond': (r'\(?' r'(' r'(LOWER\(Spare\d+\.email\) IS NULL OR )?' r'LOWER\(Spare\d+\.email\) ' r'(%s %%s|IN \(%%s(, ?%%s)*\))' r'( (AND|OR) )?' r')+' r'\)?' % COMPARE_OP_PAT), 'hotlist_cond': (r'\(?' r'(' r'(LOWER\(Cond\d+\.name\) IS NULL OR )?' r'LOWER\(Cond\d+\.name\) ' r'(%s %%s|IN \(%%s(, ?%%s)*\))' r'( (AND|OR) )?' r')+' r'\)?' % COMPARE_OP_PAT), 'phase_cond': (r'\(?' r'(' r'(LOWER\(Phase\d+\.name\) IS NULL OR )?' r'LOWER\(Phase\d+\.name\) ' r'(%s %%s|IN \(%%s(, ?%%s)*\))?' r'( (AND|OR) )?' r')+' r'\)?' % COMPARE_OP_PAT), 'approval_cond': (r'\(?' r'(' r'(LOWER\(Cond\d+\.status\) IS NULL OR )?' r'LOWER\(Cond\d+\.status\) ' r'(%s %%s|IN \(%%s(, ?%%s)*\))' r'( (AND|OR) )?' r')+' r'\)?' % COMPARE_OP_PAT), } def _MakeRE(regex_str): """Return a regular expression object, expanding our shorthand as needed.""" return re.compile(regex_str.format(**SHORTHAND)) TABLE_RE = _MakeRE('^{table}$') TAB_COL_RE = _MakeRE('^{tab_col}$') USE_CLAUSE_RE = _MakeRE( r'^USE INDEX \({column}\) USE INDEX FOR ORDER BY \({column}\)$') HAVING_RE_LIST = [ _MakeRE(r'^COUNT\(\*\) {compare_op} {placeholder}$')] COLUMN_RE_LIST = [ TAB_COL_RE, _MakeRE(r'\*'), _MakeRE(r'COUNT\(\*\)'), _MakeRE(r'COUNT\({tab_col}\)'), _MakeRE(r'COUNT\(DISTINCT\({tab_col}\)\)'), _MakeRE(r'MAX\({tab_col}\)'), _MakeRE(r'MIN\({tab_col}\)'), _MakeRE(r'GROUP_CONCAT\((DISTINCT )?{tab_col}( ORDER BY {tab_col})?' \ r'( SEPARATOR \'.*\')?\)'), ] JOIN_RE_LIST = [ TABLE_RE, _MakeRE( r'^{table}{opt_alias} ON {tab_col} = {tab_col}' r'( AND {tab_col} = {tab_col})?' r'( AND {tab_col} IN \({multi_placeholder}\))?$'), _MakeRE( r'^{table}{opt_alias} ON {tab_col} = {tab_col}' r'( AND {tab_col} = {tab_col})?' r'( AND {tab_col} = {placeholder})?' r'( AND {tab_col} IN \({multi_placeholder}\))?' r'( AND {tab_col} = {tab_col})?$'), _MakeRE( r'^{table}{opt_alias} ON {tab_col} = {tab_col}' r'( AND {tab_col} = {tab_col})?' r'( AND {tab_col} = {placeholder})?' r'( AND {tab_col} IN \({multi_placeholder}\))?' r'( AND {tab_col} IS NULL)?' r'( AND \({tab_col} IS NULL' r' OR {tab_col} NOT IN \({multi_placeholder}\)\))?$'), _MakeRE( r'^{table}{opt_alias} ON {tab_col} = {tab_col}' r'( AND {tab_col} = {tab_col})?' r'( AND {tab_col} = {placeholder})?' r' AND \(?{tab_col} {compare_op} {placeholder}\)?' r'( AND {tab_col} = {tab_col})?$'), _MakeRE( r'^{table}{opt_alias} ON {tab_col} = {tab_col}' r'( AND {tab_col} = {tab_col})?' r'( AND {tab_col} = {placeholder})?' r' AND {tab_col} = {tab_col}$'), _MakeRE( r'^{table}{opt_alias} ON {tab_col} = {tab_col}' r'( AND {tab_col} = {tab_col})?' r'( AND {tab_col} = {placeholder})?' r' AND \({tab_col} IS NULL OR' r' {tab_col} != {placeholder}\)$'), _MakeRE( r'^{table}{opt_alias} ON {tab_col} = {tab_col}' r' AND LOWER\({tab_col}\) = LOWER\({placeholder}\)'), _MakeRE( r'^{table}{opt_alias} ON {tab_col} = {tab_col} AND {email_cond}$'), _MakeRE( r'^{table}{opt_alias} ON {email_cond}$'), _MakeRE( r'^{table}{opt_alias} ON ' r'\({tab_col} = {tab_col} OR {tab_col} = {tab_col}\)$'), _MakeRE( r'^\({table} AS {table} JOIN User AS {table} ' r'ON {tab_col} = {tab_col} AND {email_cond}\) ' r'ON Issue(Snapshot)?.id = {tab_col}' r'( AND {tab_col} IS NULL)?'), _MakeRE( r'^\({table} JOIN Hotlist AS {table} ' r'ON {tab_col} = {tab_col} AND {hotlist_cond}\) ' r'ON Issue.id = {tab_col}?'), _MakeRE( r'^\({table} AS {table} JOIN IssuePhaseDef AS {table} ' r'ON {tab_col} = {tab_col} AND {phase_cond}\) ' r'ON Issue.id = {tab_col}?'), _MakeRE( r'^IssuePhaseDef AS {table} ON {phase_cond}'), _MakeRE( r'^Issue2ApprovalValue AS {table} ON {tab_col} = {tab_col} ' r'AND {tab_col} = {placeholder} AND {approval_cond}'), _MakeRE( r'^{table} AS {table} ON {tab_col} = {tab_col} ' r'LEFT JOIN {table} AS {table} ON {tab_col} = {tab_col}'), ] ORDER_BY_RE_LIST = [ _MakeRE(r'^{tab_col}{opt_asc_desc}$'), _MakeRE(r'^LOWER\({tab_col}\){opt_asc_desc}$'), _MakeRE(r'^ISNULL\({tab_col}\){opt_asc_desc}$'), _MakeRE(r'^\(ISNULL\({tab_col}\) AND ISNULL\({tab_col}\)\){opt_asc_desc}$'), _MakeRE(r'^FIELD\({tab_col}, {multi_placeholder}\){opt_asc_desc}$'), _MakeRE(r'^FIELD\(IF\(ISNULL\({tab_col}\), {tab_col}, {tab_col}\), ' r'{multi_placeholder}\){opt_asc_desc}$'), _MakeRE(r'^CONCAT\({tab_col}, {tab_col}\){opt_asc_desc}$'), ] GROUP_BY_RE_LIST = [ TAB_COL_RE, ] WHERE_COND_RE_LIST = [ _MakeRE(r'^TRUE$'), _MakeRE(r'^FALSE$'), _MakeRE(r'^{tab_col} IS NULL$'), _MakeRE(r'^{tab_col} IS NOT NULL$'), _MakeRE(r'^{tab_col} {compare_op} {tab_col}$'), _MakeRE(r'^{tab_col} {compare_op} {placeholder}$'), _MakeRE(r'^{tab_col} %% {placeholder} = {placeholder}$'), _MakeRE(r'^{tab_col} IN \({multi_placeholder}\)$'), _MakeRE(r'^{tab_col} NOT IN \({multi_placeholder}\)$'), _MakeRE(r'^LOWER\({tab_col}\) IS NULL$'), _MakeRE(r'^LOWER\({tab_col}\) IS NOT NULL$'), _MakeRE(r'^LOWER\({tab_col}\) {compare_op} {placeholder}$'), _MakeRE(r'^LOWER\({tab_col}\) IN \({multi_placeholder}\)$'), _MakeRE(r'^LOWER\({tab_col}\) NOT IN \({multi_placeholder}\)$'), _MakeRE(r'^LOWER\({tab_col}\) LIKE {placeholder}$'), _MakeRE(r'^LOWER\({tab_col}\) NOT LIKE {placeholder}$'), _MakeRE(r'^timestep < \(SELECT MAX\(j.timestep\) FROM Invalidate AS j ' r'WHERE j.kind = %s ' r'AND j.cache_key = Invalidate.cache_key\)$'), _MakeRE(r'^\({tab_col} IS NULL OR {tab_col} {compare_op} {placeholder}\) ' 'AND \({tab_col} IS NULL OR {tab_col} {compare_op} {placeholder}' '\)$'), _MakeRE(r'^\({tab_col} IS NOT NULL AND {tab_col} {compare_op} ' '{placeholder}\) OR \({tab_col} IS NOT NULL AND {tab_col} ' '{compare_op} {placeholder}\)$'), ] # Note: We never use ';' for multiple statements, '@' for SQL variables, or # any quoted strings in stmt_str (quotes are put in my MySQLdb for args). STMT_STR_RE = re.compile( r'\A(SELECT|UPDATE|DELETE|INSERT|REPLACE) [\'-+=!<>%*.,()\w\s]+\Z', re.MULTILINE) def _IsValidDBValue(val): if isinstance(val, basestring): return '\x00' not in val return True def _IsValidTableName(table_name): return TABLE_RE.match(table_name) def _IsValidColumnName(column_expr): return any(regex.match(column_expr) for regex in COLUMN_RE_LIST) def _IsValidUseClause(use_clause): return USE_CLAUSE_RE.match(use_clause) def _IsValidHavingCond(cond): if cond.startswith('(') and cond.endswith(')'): cond = cond[1:-1] if ' OR ' in cond: return all(_IsValidHavingCond(c) for c in cond.split(' OR ')) if ' AND ' in cond: return all(_IsValidHavingCond(c) for c in cond.split(' AND ')) return any(regex.match(cond) for regex in HAVING_RE_LIST) def _IsValidJoin(join): return any(regex.match(join) for regex in JOIN_RE_LIST) def _IsValidOrderByTerm(term): return any(regex.match(term) for regex in ORDER_BY_RE_LIST) def _IsValidGroupByTerm(term): return any(regex.match(term) for regex in GROUP_BY_RE_LIST) def _IsValidWhereCond(cond): if cond.startswith('NOT '): cond = cond[4:] if cond.startswith('(') and cond.endswith(')'): cond = cond[1:-1] if any(regex.match(cond) for regex in WHERE_COND_RE_LIST): return True if ' OR ' in cond: return all(_IsValidWhereCond(c) for c in cond.split(' OR ')) if ' AND ' in cond: return all(_IsValidWhereCond(c) for c in cond.split(' AND ')) return False def _IsValidStatement(stmt_str): """Final check to make sure there is no funny junk sneaking in somehow.""" return (STMT_STR_RE.match(stmt_str) and '--' not in stmt_str) def _BoolsToInts(arg_list): """Convert any True values to 1s and Falses to 0s. Google's copy of MySQLdb has bool-to-int conversion disabled, and yet it seems to be needed otherwise they are converted to strings and always interpreted as 0 (which is FALSE). Args: arg_list: (nested) list of SQL statment argument values, which may include some boolean values. Returns: The same list, but with True replaced by 1 and False replaced by 0. """ result = [] for arg in arg_list: if isinstance(arg, (list, tuple)): result.append(_BoolsToInts(arg)) elif arg is True: result.append(1) elif arg is False: result.append(0) else: result.append(arg) return result
9cca188f479ea7db11a4f564b341db58ed2c0248
5c11238d2798aaccdabfd09102a5839b23619c39
/game_object.py
ace9b4f9e9c2f6abc2795cc975ce7e27e680e6e8
[]
no_license
ko-marinov/2048
e17a5724c45c60b695413c6a97923b7db1d9de6b
e5bdb641064f2532a15fca6d753d1e3ace8de2c9
refs/heads/master
2022-04-18T19:19:23.941842
2020-04-19T07:17:14
2020-04-19T07:17:14
255,260,530
0
0
null
null
null
null
UTF-8
Python
false
false
1,522
py
from vec2 import Vec2 game_objects = [] class GameObject: next_proc_id = 0 def __init__(self, pos=Vec2(0, 0), parent=None): self.parent = parent self._pos = Vec2(pos) self.processes = {} self.register() def destroy(self): game_objects.remove(self) def register(self): game_objects.append(self) @property def gpos(self): parent_pos = self.parent.gpos if self.parent else Vec2(0, 0) return self.pos + parent_pos @property def pos(self): return self._pos @pos.setter def pos(self, value): self._pos = Vec2(value) def animate_transition(self, dest, duration): velocity = (dest - self.pos) / duration time_left = duration def transpose_process(dtime): nonlocal dest nonlocal velocity nonlocal time_left self.pos += velocity * dtime time_left -= dtime if time_left <= 0: self.pos = dest return "DONE" return "INPROGRESS" GameObject.next_proc_id += 1 self.processes[GameObject.next_proc_id] = transpose_process def draw(self, surface): pass def update(self, dtime): finished_procs = [] for id, proc in self.processes.items(): status = proc(dtime) if status == "DONE": finished_procs.append(id) for id in finished_procs: del self.processes[id]
b15a144177a3426684ef389cecaaf365fc24dcb7
f54070cd3048a3645cb25f301592a904d387a1c9
/python_prgrams/testpython/file7.py
d8e98c05bbd14af3e9bf261e2d23c7dc207b2a22
[]
no_license
mak705/Python_interview
02bded60417f1e6e2d81e1f6cde6961d95da2a8e
aff2d6018fd539dbcde9e3a6b3f8a69167ffca0d
refs/heads/master
2020-03-22T21:03:34.018919
2019-11-15T08:51:34
2019-11-15T08:51:34
140,653,056
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
##counting lines in a file fhand = open('mul.py') for line in fhand: line = line.rstrip() if not line.startswith('#From'): print line
96874c2a3103ac1f32ede6d5e220bb4334df45cb
f2a3c3800b8dc9dbf6548bf17f7847b6435ef3bc
/test/bridge_init.py
7a67bd362458b88bdfb7ec99735c5ece8a7c38b0
[ "BSD-3-Clause" ]
permissive
slongfield/pyfmt
f69f6cb3d5eae283b86c055dd813585e5d225e78
ea85ff4c361f54bcfc91ede46f88de49eb5f92e7
refs/heads/master
2022-03-06T02:39:36.556939
2022-02-22T01:26:16
2022-02-22T01:26:16
105,104,916
74
3
BSD-3-Clause
2022-02-22T01:26:17
2017-09-28T05:13:48
Go
UTF-8
Python
false
false
883
py
import os from _bridge import ffi lib = ffi.dlopen(os.path.join(os.path.dirname(__file__), "libbridge.so")) def FormatOneInt(fmt, a): return ffi.string(lib.FormatOneInt(fmt, a)) def FormatOneFloat(fmt, a): return ffi.string(lib.FormatOneFloat(fmt, a)) def FormatOneDouble(fmt, a): return ffi.string(lib.FormatOneDouble(fmt, a)) def FormatOneString(fmt, a): return ffi.string(lib.FormatOneString(fmt, a)) def FormatNothing(fmt): return ffi.string(lib.FormatNothing(fmt)) def FormatOneIntError(fmt, a): return lib.FormatOneIntError(fmt, a) def FormatOneFloatError(fmt, a): return lib.FormatOneFloatError(fmt, a) def FormatOneDoubleError(fmt, a): return lib.FormatOneDoubleError(fmt, a) def FormatOneStringError(fmt, a): return lib.FormatOneStringError(fmt, a) def FormatNothingError(fmt): return lib.FormatNothingError(fmt)
c3b3a5014f07cb69548dc3237c5d9b5300052ae6
35bb7981230e8a0500a64a07665542cb889064cb
/mysite/polls/models.py
d2d7a7a86901799a3a9db0fb620fa86e2b0ffb90
[]
no_license
shineping/question_choice_vote
53019cf630556d2968e9d1ef990397994b355e81
57f2aa36bd0a44b40ee5fe9e306fcc1db9c3ee56
refs/heads/master
2020-04-12T22:23:50.783893
2018-12-22T06:49:04
2018-12-22T06:49:04
162,788,626
1
1
null
null
null
null
UTF-8
Python
false
false
695
py
from django.db import models # Create your models here. from django.db import models from django.utils import timezone import datetime class Question(models.Model): question_text = models.CharField(max_length=200) pub_date = models.DateTimeField('date published') def __str__(self): return self.question_text def was_published_recently(self): return self.pub_date >= timezone.now() - datetime.timedelta(days=1) class Choice(models.Model): question = models.ForeignKey(Question, on_delete=models.CASCADE) choice_text = models.CharField(max_length=200) votes = models.IntegerField(default=0) def __str__(self): return self.choice_text
5bc9f7cb725e608b584db5bb260968104795a451
8aefdf04c115c6c6ab64997576ced97d4727dd06
/curation-api/src/users/migrations/0003_auto_20170809_0921.py
b1d063c42c10db300647e9e67f63a3b2095bfcd5
[]
no_license
mohanj1919/django_app_test
a0d47bc98c604d81253c74488dcdbc2ccd039863
5d5bc4c1eecbf627d38260e4d314d8451d67a4f5
refs/heads/master
2021-05-08T06:01:21.712986
2017-10-11T12:12:07
2017-10-11T12:12:07
106,544,537
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-08-09 09:21 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0002_auto_20170703_1555'), ] operations = [ migrations.AlterField( model_name='curationuser', name='phone_number', field=models.CharField(max_length=15, null=True, unique=True), ), ]
0dca24b9c6f29b16158f770d50c5117e462afa62
568b99142e5a9a748ad86d81b84efe4fc97a7228
/untitled1.py
0fb9b1bf83295d4bb749879857c8c0c9d4815b14
[]
no_license
WillAlex2017/-offerPython-
75814a84d602c8e1ebc914a089ab988d60accdc1
0ea94c1bda038060e44f7088d857259b147563d6
refs/heads/master
2020-04-05T17:56:40.602129
2018-11-11T13:27:53
2018-11-11T13:27:53
157,082,502
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
# -*- coding: utf-8 -*- """ Created on Wed Apr 25 15:43:17 2018 @author: willalex """ class Solution: def GetLeastNumbers_Solution(self, tinput, k): # write code here if k > len(tinput): return [] else: return sorted(set(tinput))[:k]
15758ecc7348e2cb18036fa725588ad5e88e4386
5829f36c3d24a8ba3d814288ee45f4ee34e52f74
/week_4/day_3/daily_challenge/daily_challenge.py
2c4a45fddf10118c722b1ba29cae96a213b22f9d
[]
no_license
TyranSchmidt/developers_institute
3c71441e55b9d525f6375c1a66ee67110fee195a
9cf2b7bcc2a946267c554e3f9763668ea661f6d4
refs/heads/master
2021-04-21T11:05:21.085274
2020-06-18T14:15:54
2020-06-18T14:15:54
249,774,139
0
0
null
null
null
null
UTF-8
Python
false
false
490
py
user_input = input("Do you want to encrypt or decrypt (text-sensitive)?: ") user_text = input("Please enter the text: ") enc_text = "" dec_text = "" for i in range(len(user_text)): character = user_text[i] if user_input == "encrypt": enc_text += chr(ord(character) + 3) elif user_input == "decrypt": dec_text += chr(ord(character) - 3) else: print("That is not a valid argument.") if user_input == "encrypt": print(enc_text) elif user_input == "decrypt": print(dec_text)
59919a9d9900991467fcaabb4cc8e2acaff0e9e0
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
/benchmark/aphotomanager/testcase/firstcases/testcase5_028.py
6856a16cc6fb6a518aa1c467766e72d1e3596a1c
[]
no_license
Prefest2018/Prefest
c374d0441d714fb90fca40226fe2875b41cf37fc
ac236987512889e822ea6686c5d2e5b66b295648
refs/heads/master
2021-12-09T19:36:24.554864
2021-12-06T12:46:14
2021-12-06T12:46:14
173,225,161
5
0
null
null
null
null
UTF-8
Python
false
false
4,391
py
#coding=utf-8 import os import subprocess import time import traceback from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from selenium.common.exceptions import NoSuchElementException, WebDriverException desired_caps = { 'platformName' : 'Android', 'deviceName' : 'Android Emulator', 'platformVersion' : '4.4', 'appPackage' : 'de.k3b.android.androFotoFinder', 'appActivity' : 'de.k3b.android.androFotoFinder.FotoGalleryActivity', 'resetKeyboard' : True, 'androidCoverage' : 'de.k3b.android.androFotoFinder/de.k3b.android.androFotoFinder.JacocoInstrumentation', 'noReset' : True } def command(cmd, timeout=5): p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True) time.sleep(timeout) p.terminate() return def getElememt(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str) return element def getElememtBack(driver, str1, str2) : for i in range(0, 2, 1): try: element = driver.find_element_by_android_uiautomator(str1) except NoSuchElementException: time.sleep(1) else: return element for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str2) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str2) return element def swipe(driver, startxper, startyper, endxper, endyper) : size = driver.get_window_size() width = size["width"] height = size["height"] try: driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) except WebDriverException: time.sleep(1) driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) return # testcase028 try : starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) element = getElememt(driver, "new UiSelector().className(\"android.widget.ImageButton\").description(\"More options\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Show in new gallery\")", "new UiSelector().className(\"android.widget.TextView\").instance(5)") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"android:id/home\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"android:id/home\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"/storage/sdcard/Pictures/Wikipedia/Michael Mosman District Judge.jpg\")", "new UiSelector().className(\"android.widget.TextView\").instance(3)") TouchAction(driver).long_press(element).release().perform() element = getElememtBack(driver, "new UiSelector().text(\"/storage/sdcard/pic4.jpg\")", "new UiSelector().className(\"android.widget.TextView\").instance(7)") TouchAction(driver).long_press(element).release().perform() element = getElememt(driver, "new UiSelector().resourceId(\"de.k3b.android.androFotoFinder:id/action_edit\").className(\"android.widget.TextView\")") TouchAction(driver).long_press(element).release().perform() element = getElememt(driver, "new UiSelector().resourceId(\"de.k3b.android.androFotoFinder:id/menu_item_share\").className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() else: print 'OK' finally: cpackage = driver.current_package endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"5_028\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() if (cpackage != 'de.k3b.android.androFotoFinder'): cpackage = "adb shell am force-stop " + cpackage os.popen(cpackage)
323ec850c34bcc51687b6833ac475f05d6a343e0
260bc967aa27a6cfa57e8729bf6fa51322e774ec
/mysite/polls/views.py
d3f1eab59a200c5569b82021815b4291c3b2555a
[]
no_license
mawrobel/django-polls
136ea97ebf0bb858078f076afd0dbe4a9db3fa3d
4e9314a8edde9fdc114a635952009d855eb9b027
refs/heads/master
2022-01-17T06:07:02.740872
2019-07-22T19:49:55
2019-07-22T19:49:55
198,291,991
0
0
null
null
null
null
UTF-8
Python
false
false
1,155
py
from django.http import HttpResponseRedirect from django.shortcuts import get_object_or_404, render from django.urls import reverse from django.views import generic from .models import Choice, Question class IndexView(generic.ListView): template_name = 'polls/index.html' context_object_name = 'latest_question_list' def get_queryset(self): return Question.objects.order_by('-pub_date')[:5] class DetailView(generic.DetailView): model = Question template_name = 'polls/detail.html' class ResultsView(generic.DetailView): model = Question template_name = 'polls/results.html' def vote(request, question_id): question = get_object_or_404(Question, pk=question_id) try: selected_choice = question.choice_set.get(pk=request.POST['choice']) except(KeyError, Choice.DoesNotExist): return render(request, 'polls/detail.html', { 'question':question, 'error_message':"You didn't select a choice", }) else: selected_choice.votes+=1 selected_choice.save() return HttpResponseRedirect(reverse('polls:results',args=(question.id, )))
92f52ac25e6d526b6ee75266d8e6e3dcecf56332
bd8136c3ec76ab2d85db9be6cf8ecbd7db36f325
/split_train_test.py
a83a9f2ecc320ab556826689f75f50f4880e744d
[]
no_license
ViewFuture/Fs-net
52b5e0510bc137e11adac56eb4511637da741dda
e8e41b47ea00e4d1029d82133caef992f73ba255
refs/heads/master
2022-12-01T13:20:05.827782
2020-08-10T02:33:34
2020-08-10T02:33:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
315
py
import random f1 = open("NIMS.arff","r") f_train = open("NIMS_train.arff","w") f_test = open("NIMS_test.arff","w") lines = f1.readlines() for i in range(28,len(lines)): x = random.randint(0,20) line = lines[i] if x == 0: f_test.write(line) else: f_train.write(line) f1.close() f_train.close() f_test.close()
33984d775374f698a16233b294ee3e505d447c22
75519d2a9bf55e2d9376ea08a36676948a8b232c
/ui/uikits/TextSteam.py
222dfb2dcd7959a0cc728b523b9bf881ec8afbf0
[ "MIT" ]
permissive
CGFanTuan/damgteam
9c32d59cbd0ecb9d3acffd9b902b918c40797e14
aec414f084f6ab6ec5897314390605aaa8380d62
refs/heads/master
2020-09-17T00:29:24.832648
2019-11-25T09:51:13
2019-11-25T09:51:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
# -*- coding: utf-8 -*- """ Script Name: TextSteam.py Author: Do Trinh/Jimmy - 3D artist. Description: """ # ------------------------------------------------------------------------------------------------------------- from __future__ import absolute_import, unicode_literals from PyQt5.QtCore import QTextStream from appData import __copyright__ class TextStream(QTextStream): Type = 'DAMGSTREAM' key = 'TextStream' _name = 'DAMG Text Stream' _copyright = __copyright__ @property def copyright(self): return self._copyright @property def name(self): return self._name @name.setter def name(self, newName): self._name = newName # ------------------------------------------------------------------------------------------------------------- # Created by panda on 15/11/2019 - 5:43 PM # © 2017 - 2018 DAMGteam. All rights reserved
8ea3b5fe878c8992db43d66125d44a9c5a56b3e4
c4755fc30069506249cea50240a42f9765c9a87d
/13_dqn_keras_type_c/05_0_Keras_type_c_frozen_lake_dueling_GREEN.py
b32bc6c23f081ba316f5a235a07cd0aa0f85d058
[]
no_license
RichardMinsooGo-RL-Single-agent/2_frozen_lake
32e5ea206b2d7d20bfc226748f1e30fe54def378
680810a9ff162cdce646d08bb016cc0661db397f
refs/heads/master
2022-12-14T17:32:50.642594
2020-09-07T05:16:30
2020-09-07T05:16:30
277,676,117
0
0
null
null
null
null
UTF-8
Python
false
false
12,601
py
import random import numpy as np import time, datetime from collections import deque import pylab import sys import pickle import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from keras.layers import * from keras.models import Sequential,Model import keras from keras import backend as K_back from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.optimizers import Adam state_size = 64 action_size = 5 n_rows = 9 n_cols = 9 model_path = "save_model/" graph_path = "save_graph/" # Make folder for save data if not os.path.exists(model_path): os.makedirs(model_path) if not os.path.exists(graph_path): os.makedirs(graph_path) load_model = True class Frozen_Lake: def __init__(self): # player velocity, max velocity, downward accleration, accleration on flap self.agent_row = 0 self.agent_col = 0 self.rand_init = np.random.randint(low=0, high=3) def reset_env(self): self.agent_row = 0 self.agent_col = 0 self.rand_init = np.random.randint(low=0, high=3) state = np.zeros((n_rows,n_cols)) # rand_init = 0 state[2][(self.rand_init+1)%9] = 2 state[4][(self.rand_init+4)%9] = 2 state[6][(self.rand_init+7)%9] = 2 state[8][8] = 4 state[0][0] = 5 return state def frame_step(self, action, ep_step): if action == 0: if (self.agent_row + 1) < 9: self.agent_row += 1 if action == 1: if self.agent_row > 0: self.agent_row -= 1 if action == 2: if self.agent_col > 0: self.agent_col -= 1 if action == 3: if (self.agent_col+1) < 9: self.agent_col += 1 agent_pos = np.zeros((9,9)) agent_pos[self.agent_row][self.agent_col] = 5 ice_lake = np.zeros((9,9)) hole_1_col = int((self.rand_init+ep_step+1)%9) hole_2_col = int((self.rand_init+ep_step+4)%9) hole_3_col = int((self.rand_init+ep_step+7)%9) ice_lake[2][hole_1_col] = 2 ice_lake[4][hole_2_col] = 2 ice_lake[6][hole_3_col] = 2 ice_lake[8][8] = 4 next_state = agent_pos + ice_lake # print(next_state) # reward = agent_row - 8 + agent_col - 8 reward = -1 done = False if np.count_nonzero(next_state == 7) > 0: if ep_step < 15: reward = reward - 200 else: reward = reward - 100 # done = True if np.count_nonzero(next_state == 9) > 0: done = True reward = 500 if ep_step == 500: done = True return next_state, reward, done # it uses Neural Network to approximate q function # and replay memory & target q network class DQN_agent: def __init__(self): # get size of state and action self.progress = " " self.state_size = state_size self.action_size = action_size # train time define self.training_time = 20*60 # These are hyper parameters for the DQN self.learning_rate = 0.001 self.discount_factor = 0.99 self.epsilon_max = 0.2 # final value of epsilon self.epsilon_min = 0.0001 self.epsilon_decay = 0.0005 self.epsilon = self.epsilon_max self.step = 0 self.score = 0 self.episode = 0 self.hidden1, self.hidden2 = 251, 251 self.ep_trial_step = 500 # Parameter for Experience Replay self.size_replay_memory = 10000 self.batch_size = 64 self.input_shape = (n_rows,n_cols,1) # Experience Replay self.memory = deque(maxlen=self.size_replay_memory) # Parameter for Target Network self.target_update_cycle = 100 # create main model and target model self.model = self.build_model() self.target_model = self.build_model() # approximate Q function using Neural Network # state is input and Q Value of each action is output of network def build_model(self): state = Input(shape=self.input_shape) net1 = Convolution2D(32, kernel_size=(3, 3),activation='relu', \ padding = 'valid', input_shape=self.input_shape)(state) net2 = Convolution2D(64, kernel_size=(3, 3), activation='relu', padding = 'valid')(net1) net3 = MaxPooling2D(pool_size=(2, 2))(net2) net4 = Flatten()(net3) lay_2 = Dense(units=self.hidden2,activation='relu',kernel_initializer='he_uniform',\ name='hidden_layer_1')(net4) value_= Dense(units=1,activation='linear',kernel_initializer='he_uniform',\ name='Value_func')(lay_2) ac_activation = Dense(units=self.action_size,activation='linear',\ kernel_initializer='he_uniform',name='action')(lay_2) #Compute average of advantage function avg_ac_activation = Lambda(lambda x: K_back.mean(x,axis=1,keepdims=True))(ac_activation) #Concatenate value function to add it to the advantage function concat_value = Concatenate(axis=-1,name='concat_0')([value_,value_]) concat_avg_ac = Concatenate(axis=-1,name='concat_ac_{}'.format(0))([avg_ac_activation,avg_ac_activation]) for i in range(1,self.action_size-1): concat_value = Concatenate(axis=-1,name='concat_{}'.format(i))([concat_value,value_]) concat_avg_ac = Concatenate(axis=-1,name='concat_ac_{}'.format(i))([concat_avg_ac,avg_ac_activation]) #Subtract concatenated average advantage tensor with original advantage function ac_activation = Subtract()([ac_activation,concat_avg_ac]) #Add the two (Value Function and modified advantage function) merged_layers = Add(name='final_layer')([concat_value,ac_activation]) model = Model(inputs = state,outputs=merged_layers) model.summary() model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model # pick samples randomly from replay memory (with batch_size) def train_model(self): minibatch = random.sample(self.memory, self.batch_size) states = np.zeros((self.batch_size, n_rows, n_cols, 1)) next_states = np.zeros((self.batch_size, n_rows, n_cols, 1)) actions, rewards, dones = [], [], [] for i in range(self.batch_size): states[i] = minibatch[i][0] actions.append( minibatch[i][1]) rewards.append( minibatch[i][2]) next_states[i] = minibatch[i][3] dones.append( minibatch[i][4]) q_value = self.model.predict(states) tgt_q_value_next = self.target_model.predict(next_states) for i in range(self.batch_size): # Q Learning: get maximum Q value at s' from target model if dones[i]: q_value[i][actions[i]] = rewards[i] else: q_value[i][actions[i]] = rewards[i] + self.discount_factor * (np.amax(tgt_q_value_next[i])) # Decrease epsilon while training if self.epsilon > self.epsilon_min: self.epsilon -= self.epsilon_decay else : self.epsilon = self.epsilon_min # make minibatch which includes target q value and predicted q value # and do the model fit! self.model.fit(states, q_value, batch_size=self.batch_size, epochs=1, verbose=0) # get action from model using epsilon-greedy policy def get_action(self, state): # choose an action_arr epsilon greedily action_arr = np.zeros(self.action_size) action = 0 if random.random() < self.epsilon: # print("----------Random action_arr----------") action = random.randrange(self.action_size) action_arr[action] = 1 else: # Predict the reward value based on the given state Q_value = self.model.predict(state) action = np.argmax(Q_value[0]) action_arr[action] = 1 return action_arr, action # save sample <s,a,r,s'> to the replay memory def append_sample(self, state, action, reward, next_state, done): #in every action put in the memory self.memory.append((state, action, reward, next_state, done)) # after some time interval update the target model to be same with model def Copy_Weights(self): self.target_model.set_weights(self.model.get_weights()) def save_model(self): # Save the variables to disk. self.model.save_weights(model_path+"/model.h5") save_object = (self.epsilon, self.episode, self.step) with open(model_path + '/epsilon_episode.pickle', 'wb') as ggg: pickle.dump(save_object, ggg) print("\n Model saved in file: %s" % model_path) def main(): agent = DQN_agent() game = Frozen_Lake() # Initialize variables # Load the file if the saved file exists if os.path.isfile(model_path+"/Model_dueling_0.h5"): agent.model.load_weights(model_path+"/Model_dueling_0.h5") if os.path.isfile(model_path + '/epsilon_episode.pickle'): with open(model_path + '/epsilon_episode.pickle', 'rb') as ggg: agent.epsilon, agent.episode, agent.step = pickle.load(ggg) print('\n\n Variables are restored!') else: print('\n\n Variables are initialized!') agent.epsilon = agent.epsilon_max avg_score = 0 episodes, scores = [], [] # start training # Step 3.2: run the game display_time = datetime.datetime.now() # print("\n\n",game_name, "-game start at :",display_time,"\n") start_time = time.time() # initialize target model agent.Copy_Weights() while time.time() - start_time < agent.training_time and avg_score < 470: # while agent.episode < 1: state = game.reset_env() done = False agent.score = 0 ep_step = 0 rewards = 0 # if agent.progress == "Training": # print(state) state = state.reshape(1,n_rows,n_cols,1) while not done and ep_step < agent.ep_trial_step: if len(agent.memory) < agent.size_replay_memory: agent.progress = "Exploration" else: agent.progress = "Training" ep_step += 1 agent.step += 1 action_arr, action = agent.get_action(state) next_state, reward, done = game.frame_step(action, ep_step) rewards += reward next_state = next_state.reshape(1,n_rows,n_cols,1) agent.append_sample(state, action, reward, next_state, done) # print("next_state_shape :\n", next_state.shape) state = next_state # sys.exit() if agent.progress == "Training": agent.train_model() if done or ep_step % agent.target_update_cycle == 0: # return# copy q_net --> target_net agent.Copy_Weights() agent.score = rewards if done: if agent.progress == "Training": agent.episode += 1 scores.append(agent.score) episodes.append(agent.episode) avg_score = np.mean(scores[-min(30, len(scores)):]) print('episode :{:>6,d}'.format(agent.episode),'/ ep step :{:>5,d}'.format(ep_step), \ '/ rewards :{:>4.1f}'.format(rewards),'/ status :', agent.progress, \ '/ epsilon :{:>1.4f}'.format(agent.epsilon),'/ last 30 avg :{:> 4.1f}'.format(avg_score) ) break # Save model agent.save_model() pylab.plot(episodes, scores, 'b') pylab.savefig("./save_graph/cartpole_duelingdqn.png") e = int(time.time() - start_time) print(' Elasped time :{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60)) sys.exit() if __name__ == "__main__": main()
2e46169ee7920f10d3f35283121fc25deec3598f
7d82a28dd3b30f147ce0469f8245ee73f5ae15f1
/Oop/practiseseconf.py
639a89a1d280982cad70919c93bb51278eb93ab0
[]
no_license
Shreejan-git/allpy
e9d8530606be18fecb710cb759da9ae03b1e0a7a
f245c34b371090bdb530c25b77337882a3acacf6
refs/heads/master
2023-04-20T22:24:26.688556
2021-05-12T04:33:38
2021-05-12T04:33:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from abc import ABC, abstractmethod class Shape(ABC): @abstractmethod def printacom(self): return True class Rectangle(Shape): # def printacom(self): # print("Hahaha") pass a=Rectangle() a.printacom()
4f96b620da95552342807310090b498dadae38b1
9975aae590a527597627715975e2b09b59a06476
/lab6/lab6_cp2.py
3a019f1aaeec7247efec14d132724c3f6bd7c4e2
[]
no_license
LuHaofan/ECE437
0ea636cb17711b53abfc5af0f769b656f59ddcd9
85a814ffe0accdcfd02e83dfd7c2803be7b37ab3
refs/heads/master
2021-01-06T19:41:58.272961
2020-05-13T15:48:14
2020-05-13T15:48:14
241,496,709
0
1
null
2020-04-06T20:54:45
2020-02-19T00:21:06
Verilog
UTF-8
Python
false
false
11,385
py
# NOTE 1 # If your power supply goes into an error state (i.e., the word # error is printed on the front of the device), use this command # power_supply.write("*CLS") # to clear the error so that you can rerun your code. The supply # typically beeps after an error has occured. import visa import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import time # import various libraries necessery to run your Python code import sys # system related library ok_loc = 'C:\\Program Files\\Opal Kelly\\FrontPanelUSB\\API\\Python\\3.6\\x64' sys.path.append(ok_loc) # add the path of the OK library import ok # OpalKelly library import pickle mpl.style.use('ggplot') #%% # Define FrontPanel device variable, open USB communication and # load the bit file in the FPGA dev = ok.okCFrontPanel() # define a device for FrontPanel communication SerialStatus=dev.OpenBySerial("") # open USB communicaiton with the OK board ConfigStatus=dev.ConfigureFPGA("JTEG_Test_File.bit") # Configure the FPGA with this bit file # Check if FrontPanel is initialized correctly and if the bit file is loaded. # Otherwise terminate the program print("----------------------------------------------------") if SerialStatus == 0: print ("FrontPanel host interface was successfully initialized.") else: print ("FrontPanel host interface not detected. The error code number is:" + str(int(SerialStatus))) print("Exiting the program.") sys.exit () if ConfigStatus == 0: print ("Your bit file is successfully loaded in the FPGA.") else: print ("Your bit file did not load. The error code number is:" + str(int(ConfigStatus))) print ("Exiting the progam.") sys.exit () print("----------------------------------------------------") print("----------------------------------------------------") #%% # This section of the code cycles through all USB connected devices to the computer. # The code figures out the USB port number for each instrument. # The port number for each instrument is stored in a variable named “instrument_id” # If the instrument is turned off or if you are trying to connect to the # keyboard or mouse, you will get a message that you cannot connect on that port. device_manager = visa.ResourceManager() devices = device_manager.list_resources() number_of_device = len(devices) power_supply_id = -1 waveform_generator_id = -1 digital_multimeter_id = -1 oscilloscope_id = -1 # assumes only the DC power supply is connected for i in range (0, number_of_device): # check that it is actually the power supply try: device_temp = device_manager.open_resource(devices[i]) print("Instrument connect on USB port number [" + str(i) + "] is " + device_temp.query("*IDN?")) if (device_temp.query("*IDN?") == 'HEWLETT-PACKARD,E3631A,0,3.2-6.0-2.0\r\n'): power_supply_id = i if (device_temp.query("*IDN?") == 'HEWLETT-PACKARD,E3631A,0,3.0-6.0-2.0\r\n'): power_supply_id = i if (device_temp.query("*IDN?") == 'Agilent Technologies,33511B,MY52301259,3.03-1.19-2.00-52-00\n'): waveform_generator_id = i if (device_temp.query("*IDN?") == 'Agilent Technologies,34461A,MY53207918,A.01.10-02.25-01.10-00.35-01-01\n'): digital_multimeter_id = i if (device_temp.query("*IDN?") == 'Keysight Technologies,34461A,MY53213065,A.02.08-02.37-02.08-00.49-01-01\n'): digital_multimeter_id = i if (device_temp.query("*IDN?") == 'KEYSIGHT TECHNOLOGIES,MSO-X 3024T,MY54440298,07.10.2017042905\n'): oscilloscope_id = i device_temp.close() except: print("Instrument on USB port number [" + str(i) + "] cannot be connected. The instrument might be powered of or you are trying to connect to a mouse or keyboard.\n") #%% # Open the USB communication port with the power supply. # The power supply is connected on USB port number power_supply_id. # If the power supply ss not connected or turned off, the program will exit. # Otherwise, the power_supply variable is the handler to the power supply if (power_supply_id == -1): print("Power supply instrument is not powered on or connected to the PC.") else: print("Power supply is connected to the PC.") power_supply = device_manager.open_resource(devices[power_supply_id]) if (digital_multimeter_id == -1): print("Digital multimeter instrument is not powered on or connected to the PC.") else: print("Digital multimeter is connected to the PC") digital_multimeter = device_manager.open_resource(devices[digital_multimeter_id]) #%% # The power supply output voltage will be swept from 0 to 1.5V in steps of 0.05V. # This voltage will be applied on the 6V output ports. # For each voltage applied on the 6V power supply, we will measure the actual # voltage and current supplied by the power supply. # If your circuit operates correctly, the applied and measured voltage will be the same. # If the power supply reaches its maximum allowed current, # then the applied voltage will not be the same as the measured voltage. def bit2Temp(tmp): b = bin(tmp)[2:-3] if(len(b)<13): b = '0'*(13-len(b))+b if (b[0] == '1'): re = (int(b,2)-8192)/16 else: re = int(b,2)/16 return re output_voltage = np.arange(0, 4.3, 0.086) supply_voltage_mean = np.array([]) # create an empty list to hold our values supply_current_mean = np.array([]) power_consump_mean = np.array([]) supply_voltage_std = np.array([]) # create an empty list to hold our values supply_current_std = np.array([]) power_consump_std = np.array([]) temp_arr_tmp = np.array([]) temp_mean = np.array([]) temp_std = np.array([]) measured_current = np.array([]) # create an empty list to hold our values power_supply.write("*CLS") print(power_supply.write("OUTPUT ON")) # power supply output is turned on # loop through the different voltages we will apply to the power supply # For each voltage applied on the power supply, # measure the voltage and current supplied by the 6V power supply while(True): print('Please activate the sensor') time.sleep(1) dev.UpdateWireOuts() result = dev.GetWireOutValue(0x20) if result != 0: break for v in output_voltage: supply_voltage_tmp = np.array([]) # size 100 supply_current_tmp = np.array([]) power_consump_tmp = np.array([]) print('Measuring data for voltage {}'.format(v)) # apply the desired voltage on teh 6V power supply and limist the output current to 0.5A power_supply.write("APPLy P6V, %0.2f, 0.13" % v) # read the output current on the 6V power supply measured_current_tmp = digital_multimeter.query("MEAS:CURR:DC?") print('Current:{}'.format(measured_current_tmp)) measured_current = np.append(measured_current, float(measured_current_tmp)) flag = 0 # read the output voltage on the 6V power supply for i in range(100): time.sleep(0.01) measured_voltage_sup = power_supply.query("MEASure:VOLTage:DC? P6V") supply_voltage_tmp = np.append(supply_voltage_tmp, float(measured_voltage_sup)) measured_current_sup = power_supply.query("MEASure:CURR:DC? P6V") supply_current_tmp = np.append(supply_current_tmp, float(measured_current_sup)) power_consump_tmp = np.append(power_consump_tmp, float(measured_current_tmp)*float(measured_voltage_sup)) # power supply output is turned off if float(measured_current_tmp)*float(measured_voltage_sup) > 0.5: print(power_supply.write("OUTPUT OFF")) flag = 1 # collect temperature data dev.UpdateWireOuts() result = dev.GetWireOutValue(0x20) if result != 0: temp_arr_tmp = np.append(temp_arr_tmp,bit2Temp(result)) if flag == 1: break # Calculate the mean and standard dev of voltage and current supply_voltage_std = np.append(supply_voltage_std, np.std(supply_voltage_tmp)) supply_voltage_mean = np.append(supply_voltage_mean, np.mean(supply_voltage_tmp)) supply_current_std = np.append(supply_current_std, np.std(supply_current_tmp)) supply_current_mean = np.append(supply_current_mean, np.mean(supply_current_tmp)) power_consump_std = np.append(power_consump_std, np.std(power_consump_tmp)) power_consump_mean = np.append(power_consump_mean, np.mean(power_consump_tmp)) temp_std = np.append(temp_std, np.std(temp_arr_tmp)) temp_mean = np.append(temp_mean, np.mean(temp_arr_tmp)) print('Current Temperature:{}\n'.format(temp_mean[-1])) # close the power supply USB handler. # Otherwise you cannot connect to it in the future if flag == 0: print(power_supply.write("OUTPUT OFF")) power_supply.close() f = open('sup_v_std.pkl','wb') pickle.dump(supply_voltage_std, f) f.close() f = open('sup_v_mean.pkl','wb') pickle.dump(supply_voltage_mean, f) f.close() f = open('sup_c_std.pkl','wb') pickle.dump(supply_current_std, f) f.close() f = open('sup_c_mean.pkl','wb') pickle.dump(supply_current_mean, f) f.close() f = open('sup_p_std.pkl','wb') pickle.dump(power_consump_std, f) f.close() f = open('sup_p_mean.pkl','wb') pickle.dump(power_consump_mean, f) f.close() f = open('sup_t_std.pkl','wb') pickle.dump(temp_std, f) f.close() f = open('sup_t_mean.pkl','wb') pickle.dump(temp_mean, f) f.close() #%% ''' # plot results (applied voltage vs measured supplied current) plt.figure() plt.plot(output_voltage,measured_current) plt.title("Applied Volts vs. Measured Supplied Current for Diode") plt.xlabel("Applied Volts [V]") plt.ylabel("Measured Current [A]") plt.draw() ''' # plot results (voltage vs current) plt.figure() plt.plot(output_voltage,supply_current_mean) plt.plot(output_voltage, supply_current_std) plt.title("Voltage vs. Current for resistor") plt.xlabel("Voltage Across the diode [V]") plt.ylabel("Current Through the circuit[A]") plt.draw() # plot results (voltage vs voltage) plt.figure() plt.plot(output_voltage,supply_voltage_std) plt.plot(output_voltage, supply_voltage_mean) plt.title("Voltage vs. supply voltage for resistor") plt.xlabel("Voltage Across the diode [V]") plt.ylabel("Voltage Through the circuit[A]") plt.draw() plt.figure() plt.plot(output_voltage,power_consump_std) plt.plot(output_voltage, power_consump_mean) plt.title("Voltage vs. power consumption for resistor") plt.xlabel("Voltage Across the diode [V]") plt.ylabel("Power consumption Through the circuit[A]") plt.draw() plt.figure() plt.plot(output_voltage,temp_mean) plt.plot(output_voltage, temp_std) plt.title("Voltage vs. temperature around resistor") plt.xlabel("Voltage Across the diode [V]") plt.ylabel("Temperature") plt.draw() # show all plots plt.show()
8ef50d9f03de4d23383e7f97a3e35f396daa2066
26c331317a8ccfc8404af8a4750d2b1e7cf8388b
/data_to_pomdp.py
b0b3c5b9888aee0fd0a101aa60fb83655e1b484f
[]
no_license
cfoster0/tangle_simulator
bc9e8f37536483ac4cfd2281095de861241756dd
f6d250d2b93d73d7b610118a15d303621fbc0344
refs/heads/master
2021-08-24T15:28:09.624960
2017-12-10T07:30:51
2017-12-10T07:30:51
113,731,600
0
0
null
null
null
null
UTF-8
Python
false
false
4,573
py
from collections import Counter import itertools """ discount: 1.0 values: [ reward, cost ] states: list of strings actions: adopt build observations: list of strings start: <name of starting state> T: adopt : * : <name of starting state> 1.0 // for all the start-end combinations we see in the data: T: build : <start-state> : <end-state> : probability // for all the state-observation combinations we see in the data: O: * : <end-state> : <observation> %f R: <action> : <start-state> : <end-state> : <observation> %f R: build : * : * : * -epsilon // for all the winning states R: * : * : <win-state> : * 1.0 """ alphabet = {} alphabet[0] = 'a' alphabet[1] = 'b' alphabet[2] = 'c' alphabet[3] = 'd' alphabet[4] = 'e' alphabet[5] = 'f' alphabet[6] = 'g' alphabet[7] = 'h' alphabet[8] = 'i' alphabet[9] = 'j' alphabet[10] = 'k' def data_to_pomdp(data, fname='tangle.POMDP'): with open(fname,'w') as pomdp_file: S = get_S(data) A = ['back', 'wait', 'build'] T = get_T(S, A[1:], data) O = get_O(S, A, data) O_states = S win_states = get_R(S, A, data) discount = 0.9 epsilon = -0.0001 start = 'a-a' pomdp_file.write("# Tangle File \n") pomdp_file.write("discount: {f} \n".format(f=discount)) pomdp_file.write("values: reward \n") pomdp_file.write("states: {s} \n".format(s=' '.join(S))) pomdp_file.write("actions: {a} \n".format(a=' '.join(A))) pomdp_file.write("observations: {o} \n".format(o=' '.join(O_states))) pomdp_file.write("\n") pomdp_file.write("start: {st} \n".format(st=start)) pomdp_file.write("\n") pomdp_file.write("T: back : * : {st} 1.0 \n".format(st=start)) for win_state in win_states: pomdp_file.write("T: * : {ws} : {st} 1.0 \n".format(ws=win_state, st=start)) for (action, start_state, end_state, probability) in T: pomdp_file.write("T: {a} : {ss} : {es} {p} \n".format(a=action, ss=start_state, es=end_state, p=probability)) for (end_state, observation, probability) in O: pomdp_file.write("O: * : {es} : {o} {p} \n".format(es=end_state, o=observation, p=probability)) pomdp_file.write("R: build : * : * : * {eps} \n".format(eps=epsilon)) for win_state in win_states: pomdp_file.write("R: * : * : {ws} : * 1.0 \n".format(ws=win_state)) return pomdp_file def get_S(data): #S = ['(1,0)', '(1,1)', '(1,2)'] S = [] for i in range(11): for j in range(11): S.append("{}-{}".format(alphabet[i], alphabet[j])) return S def get_T(S, A, data): #T = [('wait', '(1,0)', '(1,0)', 0.50), ('wait', '(1,0)', '(1,1)', 0.50), ('build', '(1,0)', '(1,1)', 0.50), ('build', '(1,0)', '(1,2)', 0.50), ('build', '(1,1)', '(1,2)', 1.0)] T = [] for action in A: transition_counters = {} for state in S: transition_counters[state] = Counter() for (start_state, end_state) in itertools.product(S, S): transition_counters[start_state][end_state] += 1 for i, step in enumerate(data['global']): start_state = step[0] if step[1] is not action: continue if i == len(data['global']) - 1: break end_state = data['global'][i+1][0] transition_counters[start_state][end_state] += 1 probabilities = [] for start_state in transition_counters: total = 0.0 for end_state in transition_counters[start_state]: total += transition_counters[start_state][end_state] for end_state in transition_counters[start_state]: T_tuple = (action, start_state, end_state, transition_counters[start_state][end_state] / total) probabilities.append(T_tuple) for p in probabilities: T.append(p) return T def get_O(S, A, data): #O = [('(1,0)', '(100, 0)', 1.0), ('(1,1)', '(50, 50)', 1.0), ('(1,2)', '(33,67)', 1.0)] O = [] transition_counters = {} for state in S: transition_counters[state] = Counter() for (event, observation) in itertools.product(S, S): transition_counters[event][observation] += 1 for step, observation in zip(data['global'], data['local']): event = step[0] transition_counters[event][observation] += 1 for state in transition_counters: total = 0.0 for observation in transition_counters[state]: total += transition_counters[state][observation] for observation in transition_counters[state]: O_tuple = (state, observation, transition_counters[state][observation] / total) O.append(O_tuple) return O def get_R(S, A, data): #R = ['(1,2)'] R = [] #for i in range(51, 100): # for j in range(i+1, 100): # R.append("({orig},{doub})".format(orig=i, doub=j)) for i in range(11): for j in range(i+1, 11): R.append("{orig}-{doub}".format(orig=alphabet[i], doub=alphabet[j])) return R
63d97a4042ea1c94875bb42957b33061db5ac700
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nnreggio.py
32b325c4e4eef33665e12e96b01b39fc616f374c
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
216
py
ii = [('ClarGE2.py', 1), ('RoscTTI3.py', 1), ('RoscTTI2.py', 2), ('MedwTAI.py', 1), ('HogaGMM.py', 3), ('MartHRW.py', 1), ('WestJIT.py', 1), ('RoscTTI.py', 1), ('BrewDTO.py', 2), ('ClarGE3.py', 2), ('RogeSIP.py', 1)]
1434e505ed21fd67e0d5b956ee3d0c00286409d9
c6125c2d971011a0b9ff602192bb73dc76f46d0a
/music_analysis/neural_networks/cnn.py
0d316547b52642584f6aecbf8bde43a53bdc227e
[]
no_license
knsushma/CS760-ML-Project
e66127c212a53e17df0189e21f47cb09d72dfe2c
4aa6071d8a2c8035e674107c0c79a4a5130f2efc
refs/heads/master
2020-05-01T14:46:53.365573
2019-05-06T20:30:51
2019-05-06T20:30:51
177,529,467
1
1
null
null
null
null
UTF-8
Python
false
false
9,186
py
import tensorflow.keras as keras from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Activation, BatchNormalization, Dropout, Dense, Flatten, GlobalAveragePooling2D, concatenate, ELU, ReLU from tensorflow.keras.regularizers import l2 from tensorflow.keras.optimizers import Adam from Loader import Loader import config import sys def build_model(learning_rate, with_compile = True, model_type = 'multitask'): # Building the CNN regularizer = l2(1e-5) # regularizer = l2(0) input_shape = tuple(config.IMG_DIMS) inputs_ph = keras.Input(shape=input_shape) x = inputs_ph # Layer 1 x = Conv2D(16, (5,5), padding='same', kernel_regularizer=regularizer, name = 'conv_1')(x) x = ReLU()(x) x = MaxPooling2D(pool_size=(2,1), strides=(2,1), name='MP_1')(x) # Layer 2 x = Conv2D(32, (3,3), padding='same', kernel_regularizer=regularizer, name = 'conv_2')(x) x = BatchNormalization(axis=3)(x) x = ReLU()(x) x = MaxPooling2D(pool_size=(2,2), strides=(2,2), name='MP_2')(x) x = Dropout(0.1)(x) # Layer 3 x = Conv2D(64, (3,3), padding='same', kernel_regularizer=regularizer, name = 'conv_3')(x) x = ReLU()(x) x = MaxPooling2D(pool_size=(2,2), strides=(2,2), name='MP_3')(x) # Layer 4 x = Conv2D(64, (3,3), padding='same', kernel_regularizer=regularizer, name = 'conv_4')(x) x = BatchNormalization(axis=3)(x) x = ReLU()(x) x = MaxPooling2D(pool_size=(2,2), strides=(2,2), name='MP_4')(x) x = Dropout(0.1)(x) # Layer 5 x = Conv2D(128, (3,3), padding='same', kernel_regularizer=regularizer, name = 'conv_5')(x) x = ReLU()(x) x = MaxPooling2D(pool_size=(2,2), strides=(2,2), name='MP_5')(x) # Layer 6 x = Conv2D(256, (3,3), padding='same', kernel_regularizer=regularizer, name = 'conv_6')(x) x = ReLU()(x) # layer 7 x = Conv2D(256, (1,1), padding='same', kernel_regularizer=regularizer, name = 'conv_7')(x) x = BatchNormalization(axis=3)(x) x = ReLU()(x) # # GAP x = GlobalAveragePooling2D()(x) x = BatchNormalization()(x) # Dense x = Dense(256, kernel_regularizer=regularizer, name = 'dense')(x) x = BatchNormalization()(x) x = ReLU()(x) x = Dropout(0.5)(x) # output # Year if model_type == 'year': x = Dense(1, kernel_regularizer = regularizer, name = 'output')(x) model = Model(inputs_ph, x) # Genre if model_type == 'genre': x = Dense(8, kernel_regularizer=regularizer, name='output')(x) x = Activation('softmax')(x) model = Model(inputs_ph, x) # Artist if model_type == 'artist': x = Dense(config.NUM_ARTISTS, kernel_regularizer = regularizer, name = 'output')(x) x = Activation('softmax')(x) model = Model(inputs_ph, x) # model if model_type == 'multitask': year = Dense(1, kernel_regularizer = regularizer, name = 'year')(x) genre = Dense(8, kernel_regularizer=regularizer, name='genre_activation')(x) genre = Activation('softmax', name = 'genre')(genre) artist = Dense(config.NUM_ARTISTS, kernel_regularizer = regularizer, name = 'artist_activation')(x) artist = Activation('softmax', name = 'artist')(artist) model = Model(inputs_ph, outputs = [year, genre, artist]) if with_compile: optimizer = Adam(lr = learning_rate) if model_type == 'year': model.compile(optimizer=optimizer, loss = 'mean_squared_error', metrics = ['mean_absolute_error']) if model_type == 'genre' or model_type == 'artist': model.compile(optimizer=optimizer, loss = 'categorical_crossentropy', metrics=['accuracy']) if model_type == 'multitask': model.compile(optimizer=optimizer, loss={'genre': 'categorical_crossentropy', 'artist': 'categorical_crossentropy', 'year': 'mean_squared_error'}, metrics={'genre': 'accuracy', 'artist': 'accuracy', 'year': 'mean_absolute_error'}) return model if __name__ == '__main__': ''' Args: argv[1] - Either 'validate' to use a train/validation fold, or 'test' to use train/test set argv[2] - Learning Rate (float) argv[3] - either 'year', 'genre', 'artist', or 'multitask' for the task type argv[4] - The number of epochs to train on ''' loader_batch_size = 8 if sys.argv[1] == 'validate': train_folds = [config.FULL_TRAIN_LABELS] validation_folds = [config.FULL_TEST_LABELS] else: train_folds = [config.TRAIN_FOLDS_LABELS[0]] validation_folds = [config.TEST_FOLDS_LABELS[0]] learning_rate = float(sys.argv[2]) model_type = sys.argv[3] num_epochs = int(sys.argv[4]) loader_train = Loader(train_folds, loader_batch_size) loader_validation = Loader(validation_folds, loader_batch_size) model = build_model(learning_rate) # Verbose Out keras.utils.plot_model(model, to_file = model_type + '.png') with open(model_type + '.txt', 'w+') as f: def print_s(s): print(s, file = f) model.summary(print_fn = print_s) if num_epochs == 0: exit() for epoch in range(num_epochs): batch = loader_train.next_batch() if model_type == 'multitask': losses = [0] * 7 else: losses = [0, 0] batch_N = 0 while batch: batch_N += 1 imgs = batch[0] years = batch[1] genre = batch[2] artist = batch[3] if model_type == 'genre': loss = model.train_on_batch(imgs, genre) if model_type == 'year': loss = model.train_on_batch(imgs, years) if model_type == 'artist': loss = model.train_on_batch(imgs, artist) if model_type == 'multitask': loss = model.train_on_batch(imgs, {'year': years, 'genre': genre, 'artist': artist}) if not model_type == 'multitask': losses[0] += loss[0] losses[1] += loss[1] else: for i in range(7): losses[i] += loss[i] batch = loader_train.next_batch() print('Epoch: ', epoch + 1) if model_type == 'multitask': losses = [loss / batch_N for loss in losses] print('Losses:', *losses) else: print('Avg Acc: ', losses[0] / batch_N, losses[1] / batch_N) # Final Train Set Evaluation if model_type == 'multitask': losses = [0] * 7 else: losses = [0,0] batch_N = 0 batch = loader_train.next_batch() while batch: batch_N += 1 imgs = batch[0] years = batch[1] genre = batch[2] artist = batch[3] if model_type == 'genre': loss = model.test_on_batch(imgs, genre) if model_type == 'year': loss = model.test_on_batch(imgs, years) if model_type == 'artist': loss = model.test_on_batch(imgs, artist) if model_type == 'multitask': loss = model.test_on_batch(imgs, {'year': years, 'genre': genre, 'artist': artist}) if not model_type == 'multitask': losses[0] += loss[0] losses[1] += loss[1] else: for i in range(7): losses[i] += loss[i] batch = loader_train.next_batch() if model_type == 'multitask': losses = [loss / batch_N for loss in losses] print('Final Train Accuracy:', *losses) else: print('Final Train Accuracy: ', losses[0] / batch_N, losses[1] / batch_N) # Final Validation Set Accuracy if model_type == 'multitask': losses = [0] * 7 else: losses = [0,0] batch_N = 0 batch = loader_validation.next_batch() while batch: batch_N += 1 imgs = batch[0] years = batch[1] genre = batch[2] artist = batch[3] if model_type == 'genre': loss = model.test_on_batch(imgs, genre) if model_type == 'year': loss = model.test_on_batch(imgs, years) if model_type == 'artist': loss = model.test_on_batch(imgs, artist) if model_type == 'multitask': loss = model.test_on_batch(imgs, {'year': years, 'genre': genre, 'artist': artist}) if not model_type == 'multitask': losses[0] += loss[0] losses[1] += loss[1] else: for i in range(7): losses[i] += loss[i] batch = loader_validation.next_batch() if model_type == 'multitask': losses = [loss / batch_N for loss in losses] print('Final Validation Accuracy:', *losses) else: print('Final Validation Accuracy: ', losses[0] / batch_N, losses[1] / batch_N)
7ded1099f3ff3fd1d8e319d35e46977d4a7f120d
78e36d40259e207c0fa2d7837188e744871f93dd
/Incomeexpenseapi/wsgi.py
34b3afabe3f3cedc6f47ba0ddeed205feae93837
[]
no_license
easylord/Auth
c3f006aeea82ff9807e6805abc3ffa699f83b2d1
66da243058d5e294d848c23fbdb7766dbe930333
refs/heads/main
2023-01-01T13:54:45.589510
2020-10-19T05:37:05
2020-10-19T05:37:05
305,273,089
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
""" WSGI config for Incomeexpenseapi project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Incomeexpenseapi.settings') application = get_wsgi_application()
f2f26b0c7d5ec008c4e0789cdad918e0c79ec68d
ddaf98c681ec91ed0150b34f46104aac3ff08be9
/sum.py
33164241ddabdda23b89ff28979ba7f28a5f2c61
[ "MIT" ]
permissive
napman/easy_bench
50afc13f8e5b8cb2e0fec00f543d38d140d1e610
50b948ac67b692845130a6bb8b3a3d54c49d23e9
refs/heads/master
2020-05-20T12:24:29.668512
2015-09-22T02:03:41
2015-09-22T02:03:41
42,829,736
0
1
null
null
null
null
UTF-8
Python
false
false
92
py
import sys from bench import * for key, value in sum_bench().items(): print key, value
351fc1cd117645fd8bb4225b82e2026437414d89
5bb5a8c194b7eb9c4e40295b240d8415e6e6b2f2
/omega_trading/game/bet.py
815d4a212691d2653f8900bc13d3d79bfde2e7c7
[]
no_license
crnorthc/omega-trading
4e5463999ec819e59ee831cc9ae50bd1e069c189
74cdd4904695c8bfc4d34773f64a7e32627d922c
refs/heads/main
2023-07-15T18:55:22.920810
2021-08-24T23:00:13
2021-08-24T23:00:13
341,263,034
1
0
null
2021-08-24T17:53:54
2021-02-22T16:25:26
JavaScript
UTF-8
Python
false
false
1,553
py
from bip_utils import Bip39SeedGenerator, Bip44, Bip44Coins from .TopSecret import mnemonic from web3 import Web3 # Binance Chain API - https://github.com/sammchardy/python-binance-chain def get_address(id, coin): seed_bytes = Bip39SeedGenerator(mnemonic).Generate() if coin == 'BNB': coin = Bip44Coins.BINANCE_CHAIN if coin == 'BTC': coin = Bip44Coins.BITCOIN if coin == 'LTC': coin = Bip44Coins.LITECOIN if coin == 'ETH': coin = Bip44Coins.ETHEREUM root = Bip44.FromSeed(seed_bytes, coin) account = root.Purpose().Coin().Account(id) return account.PublicKey().ToAddress() def get_key(id, coin): seed_bytes = Bip39SeedGenerator(mnemonic).Generate() if coin == 'BNB': coin = Bip44Coins.BINANCE_CHAIN if coin == 'BTC': coin = Bip44Coins.BITCOIN if coin == 'LTC': coin = Bip44Coins.LITECOIN if coin == 'ETH': coin = Bip44Coins.ETHEREUM root = Bip44.FromSeed(seed_bytes, coin) account = root.Purpose().Coin().Account(id) return account.PrivateKey().Raw() def gas_quote(): w3 = Web3(Web3.HTTPProvider('HTTP://127.0.0.1:7545')) return w3.eth.gas_price def checkedsummed(address): return Web3.toChecksumAddress(address) def get_raw_hex(to, from_key, value, nonce): w3 = Web3() signed_txn = w3.eth.account.sign_transaction(dict( nonce=nonce, gas=100000, gasPrice=10000, to=to, value=value, ), from_key, ) return signed_txn.rawTransaction.hex()
c2a0e1d31e6f2d5a7b75e235e08017346dae90ec
89d203e0c8e4438d8e913a1fff48578a3ac38c78
/components/node.py
6700aaffd90cea581241962fd7355fd670f5e197
[]
no_license
jdvin/spiking-nn
a334516448ffe7750b19996eb77875d3af7b5f7f
fd750ef3afd983ed093ff02117b1c7a41e1fc51d
refs/heads/main
2023-07-04T12:37:12.241039
2021-08-06T13:34:53
2021-08-06T13:34:53
375,919,367
0
0
null
null
null
null
UTF-8
Python
false
false
2,065
py
class Node(): def __init__(self, layer, response_function, threshold_function, spiking_method, base_threshold, abs_refrac, rel_refrac): self.layer = layer self.synapses = [] self.threshold = base_threshold self.potential = 0 self.last_fired = None self.firing_history = [] self.response_function = response_function self.threshold_function = threshold_function self.base_threshold = base_threshold self.abs_refrac = abs_refrac self.rel_refrac = rel_refrac self.spike = spiking_method def reset(self): self.last_fired = None self.firing_history = [] # p is recalculated each update, do we want a continuous value? def get_potential(self, t): ''' calculate the firing potential for the node at t self is the post node ''' p = 0 for synapse in self.synapses: if synapse.pre_node.last_fired != None: # assign for cleaner use n = synapse.pre_node # determine dominate synapse if synapse.excit_perm > synapse.inhib_perm: w = synapse.excit_perm else: w = -1 * synapse.inhib_perm # calculate post synaptic potential psp = w * n.response_function(n.last_fired, t) # add to permanence p += psp return p def update(self, t): ''' update the firing behaviour of self at t ''' # if self.last_fired != None: self.threshold = self.threshold_function(self.last_fired, t, self.base_threshold, self.abs_refrac, self.rel_refrac) self.potential = self.get_potential(t) if self.spike(self.potential, self.threshold): self.last_fired = t self.firing_history.append(1) else: self.firing_history.append(0)
7c3d2e7c79c1ed82a4df216081443454e1fd6e0d
d9f66c812c7287187563a15d1dc72e08cf1eaa91
/Wrappers/java/OpenNI.jni/CreateMethods.py
ff11b3935d05ec820766775a39aef65358db8f70
[ "Apache-2.0", "IJG", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Delicode/OpenNI2
9c722138a9e45a887dda93b8522a523c59f3376d
99dd4e7d9f3c08a8e31b9dc9c0fd4d7448bc6ea0
refs/heads/master
2021-06-06T00:19:11.533537
2021-04-28T08:33:33
2021-04-28T08:33:33
362,108,942
0
0
Apache-2.0
2021-04-27T12:44:15
2021-04-27T12:44:14
null
UTF-8
Python
false
false
2,398
py
#/**************************************************************************** #* * #* OpenNI 1.x Alpha * #* Copyright (C) 2012 PrimeSense Ltd. * #* * #* This file is part of OpenNI. * #* * #* Licensed under the Apache License, Version 2.0 (the "License"); * #* you may not use this file except in compliance with the License. * #* You may obtain a copy of the License at * #* * #* http://www.apache.org/licenses/LICENSE-2.0 * #* * #* Unless required by applicable law or agreed to in writing, software * #* distributed under the License is distributed on an "AS IS" BASIS, * #* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * #* See the License for the specific language governing permissions and * #* limitations under the License. * #* * #****************************************************************************/ import os import re # ----------------------- MAIN ------------------------- java_header = open("org_openni_NativeMethods.h") cont = java_header.read() java_header.close() result = open("methods.inl", "w") result.write("static JNINativeMethod methods[] = {\n") while True: match = re.search("Method:\s*(\w*)", cont) if match is None: break method_name = match.group(1) match = re.search("Signature:\s*([\w\(\)\[;/]*)", cont) if match is None: break signature = match.group(1) match = re.search("JNIEXPORT.*JNICALL (\w*)", cont) if match is None: break method = match.group(1) result.write('\t{ "' + method_name + '", "' + signature + '", (void*)&' + method + ' },\n') cont = cont[match.end():]; result.write('};\n'); result.close()
67eabf0ae2a7a48804060b2815b630e26deab170
b0c811e00137129e725499c99ef7d4d0c7282a60
/ictivity/wsgi.py
409630f0d94274cb4477ac8a068bc7906fcd57cd
[]
no_license
mengcz13/Ictivity
8a3b01e05bb41353dad70d5572b646e475861441
850b8ca477a456ee3edf51f7f2ede4d5841f3ff7
refs/heads/master
2021-01-21T15:04:46.460606
2016-06-24T15:00:40
2016-06-24T15:00:40
59,628,161
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
""" WSGI config for ictivity project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ictivity.settings") application = get_wsgi_application()
a57cd9343ff71474af55efd8ce017714a82041eb
fcff90f4f8af055d26715a8f7a997dc4d4f4091d
/Phrasism/urls.py
d7a8dee64ec28ca682a041714b71bbc77bb6ef24
[]
no_license
weichinhsu/phrasism-backend
644a75fa276c37c3ca64ac4b04a8642a5d32deb8
675dc8fd14e38ae26453358357ebfe8e230e2234
refs/heads/main
2023-04-15T21:21:48.468205
2021-04-21T08:53:30
2021-04-21T08:53:30
360,094,035
0
0
null
null
null
null
UTF-8
Python
false
false
949
py
"""Phrasism URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from .api import index, translate, translate2, google_translate urlpatterns = [ path('', index), path('translate/<str:phrase>', translate), path('translate2/<str:phrase>', translate2), path('gtranslate/<str:phrase>', google_translate), ]
a8a973fe9ce85b93f99827d4cd97e42e85c8ddc4
455c79b1a536bdf17ab54bbe39d3215f05184d57
/app/movies/utils.py
f0e01e6e5c52cbb7bdd750fda56ff96552f0765a
[]
no_license
shivamsingh14/movie-ticketing
b2f8eeffe1868648edb22ea95f897158fd905568
89f27dc280517bad171161805450280c10ab19ca
refs/heads/master
2020-06-04T08:14:18.858185
2019-06-14T12:41:14
2019-06-14T12:41:14
191,940,846
0
0
null
null
null
null
UTF-8
Python
false
false
528
py
from app.movies.models import Auditorium from app.movies.models import Slot class FreeSlotUtil(): def get_free_slots(self, audi, start_date, end_date): audi_available_slot = range(audi.opening_time, (audi.closing_time-2), 3) audi_booked_slots = Slot.objects.filter( audi=audi, date__gte=start_date, date__lte=end_date ).values_list('slot', flat=True) audi_free_slots = list(set(audi_available_slot)-set(audi_booked_slots)) return audi_free_slots