blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
ea81ef6c8728bf5f7b8d91770753624bd097fcc1
1af0bc3634313da229fcf7015abec43981b4162a
/hundredandbelow/prob37z.py
62642d97a60e29c75b7d610605d80974d2f8757f
[]
no_license
errai-/euler
b2996e227ede830e8c56252bcce08a92538464df
054c391d3aee6bcb9ba4dbf24f4ec6cb5b8b55c3
refs/heads/master
2022-06-18T09:02:54.573903
2018-05-14T08:21:48
2018-05-14T08:21:48
85,503,541
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
# -*- coding: cp1252 -*- import time qaw = time.time() def isprime(a): q = 1 if a%2 == 0: q = 0 elif a == 1: q = 0 else: for i in range(3,int(a**0.5+1),2): if a%i == 0: q = 0 return q def rlroo(ahaa,pahaa): nauru = [] for qorso in ahaa: for i in range(1,10): oo = str(i)+qorso if isprime(int(oo)) == 1: nauru.append(oo) for torso in ahaa: for b in range(1,10): moo = torso+str(b) if isprime(int(moo)) == 1: korsu.append(moo) return korsu,nauru luumu = luu = ['3','5','7'] luumu,luu = rlroo(luumu,luu) luumu,luu = rlroo(luumu,luu) luumu,luu = rlroo(luumu,luu) luumu,luu = rlroo(luumu,luu) lista = [] for a in luumu: for b in luu: cee = a+b lista.append(cee)
19d1b3c6e44ebc76daa3e1357565e60ada33aa77
59b208059eb46daa3c6f68acf78beb4184ebb196
/Method1/Sample_Training_unsupervised/Metrics.py
80e73cf0f03beac1e8122a179c899e7d59254d70
[ "MIT" ]
permissive
PhysicsOfAI/PhysicsAI4Imaging
29df0162c9f1609379cebf93b49f8f5b98601d04
25d0ec085cf4a1c7c2b7c51c530efc4d185f2a0c
refs/heads/master
2022-07-02T06:51:59.388188
2020-05-11T01:00:11
2020-05-11T01:00:11
257,477,739
0
1
null
null
null
null
UTF-8
Python
false
false
2,521
py
import numpy as np import skimage.measure as sm def psnr(img, ref, axes=(0, 1), max_intensity=None): """ Compute the peak signal to noise ratio (psnr) :param img: input image (np.array) :param ref: reference image (np.array) :param axes: tuple of axes over which the psnr is computed :param max_intensity: maximum intensity in the image. If it is None, the maximum value of :ref: is taken. :return: (mean) psnr """ mse = np.mean(np.abs(np.abs(img) - np.abs(ref)) ** 2, axis=axes) max_intensity = np.max(np.abs(ref)) if max_intensity == None else max_intensity mse = 10 * np.log10(max_intensity ** 2 / mse) return np.mean(mse) def ssim(img, ref, dynamic_range=None, axes=(0, 1)): """ Compute the structural similarity index. :param img: input image (np.array) :param ref: reference image (np.array) :param dynamic_range: If dynamic_range != None, the same given dynamic range will be used for all slices in the volume. Otherwise, the dynamic_range is computed slice-per-slice. :param axes: tuple of axes over which the ssim is computed :return: (mean) ssim """ assert len(axes) == 2 assert img.shape == ref.shape if img.ndim == 2 and axes == (0, 1): img = img.copy()[np.newaxis] ref = ref.copy()[np.newaxis] elif img.ndim == 2 and axes != (0, 1): raise ValueError("axes of 2d array have to equal (0,1)") else: axes = list(axes) full_axes = list(range(0, img.ndim)) transpose_axes = [item for item in full_axes if item not in axes] + axes img = np.transpose(img.copy(), transpose_axes) img = np.reshape(img, (np.prod(img.shape[:-2]),) + img.shape[-2:]) ref = np.transpose(ref.copy(), transpose_axes) ref = np.reshape(ref, (np.prod(ref.shape[:-2]),) + ref.shape[-2:]) # ssim averaged over slices ssim_slices = [] ref_abs = np.abs(ref) img_abs = np.abs(img) for i in range(ref_abs.shape[0]): if dynamic_range == None: drange = np.max(ref_abs[i]) - np.min(ref_abs[i]) else: drange = dynamic_range _, ssim_i = sm.compare_ssim(img_abs[i], ref_abs[i], data_range=drange, gaussian_weights=True, use_sample_covariance=False, full=True) ssim_slices.append(np.mean(ssim_i)) return np.mean(ssim_slices)
a13bd7f9da7ea032c84dac021788da7cb8446ba9
ac2c3e8c278d0aac250d31fd023c645fa3984a1b
/saleor/saleor/wishlist/error_codes.py
5f77c477ea3948543085f5817a1d759cf6bc6e85
[ "BSD-3-Clause", "CC-BY-4.0" ]
permissive
jonndoe/saleor-test-shop
152bc8bef615382a45ca5f4f86f3527398bd1ef9
1e83176684f418a96260c276f6a0d72adf7dcbe6
refs/heads/master
2023-01-21T16:54:36.372313
2020-12-02T10:19:13
2020-12-02T10:19:13
316,514,489
1
1
BSD-3-Clause
2020-11-27T23:29:20
2020-11-27T13:52:33
TypeScript
UTF-8
Python
false
false
196
py
from enum import Enum class WishlistErrorCode(str, Enum): GRAPHQL_ERROR = "graphql_error" INVALID = "invalid" NOT_FOUND = "not_found" REQUIRED = "required" UNIQUE = "unique"
ad2f6648b4306ac0436f87746bef147dfb923663
6c616cc95ad9c5989d237b75bb190d336f943a79
/cryptography.py
84d3cc1145e82b12c1d8383c5ae96eb926bd738c
[]
no_license
Hoshizx/CryptographyPython1
7ec5400d49e188dec1056a4ba59add53779927a1
3eb8ce31a82e2d1752f6c437b2470ba613c96fa9
refs/heads/main
2023-01-31T01:49:20.384767
2020-12-12T03:27:03
2020-12-12T03:27:03
320,738,967
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
while True: msg = input("メッセージ: ") result_cryptography = " " i = len(msg) - 1 while i>=0: result_cryptography = result_cryptography + msg[i] i = i-1 print("コード結果: "+ result_cryptography)
cf231172191fbe06dde2ae86a1570a03ae34181f
e75846f5d88c4c7ea4417735e354a970f882d7e6
/backend/app.py
d014f61a7ec2307a3ba485650800f7b831cc1fa9
[]
no_license
somprasongd-forks/Pybott-Covid-Selftracking
5370b8ffc7e192da73c62be4e29ba940e71bb7a7
7ffd97f4a9aaf5fa1099c29fe906f4a12c025c2b
refs/heads/master
2022-06-27T15:26:48.679136
2020-05-09T11:30:47
2020-05-09T11:30:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,135
py
import random import time from flask import Flask, abort, request from flask_cors import CORS from linebot import LineBotApi, WebhookHandler from linebot.exceptions import InvalidSignatureError from linebot.models import * from BasicFunction.CaseLocationApi import get_location_reccommend_data from BasicFunction.COVID_ANALYZER import analyze_covid_from_user from BasicFunction.DailyApi import get_daily_data from BasicFunction.Firebase_Connect import (delete, get, get_daily_tracking, post, post_daily_tracking, update, update_daily_tracking) from config import Channel_access_token, Channel_secret, Firebase_DB_url , DB_COV_TRACKER , DB_USER_DATA , DB_USER_SESSION ,firebase , rich_menu_id from FlexMessage.QuestionMsg import * from FlexMessage.ResultMsg import * app = Flask(__name__) cors = CORS(app, resources={r"/api/*": {"origins": "*"}}) app.config['JSON_AS_ASCII'] = False # Firebase_DB_url = "https://pybott-6th.firebaseio.com/" # Your firebase Application from BasicFunction.api.api import get_tracking_data_by_uid , get_poll line_bot_api = LineBotApi(Channel_access_token) handler = WebhookHandler(Channel_secret) @app.route("/api/get_user_report/<UID>",methods=["GET"]) def GetUserDaily(UID): res = get_tracking_data_by_uid(UID=UID) return res , 200 @app.route("/api/get_polls/") def GetAll(): res = get_poll() return res , 200 @app.route("/callback", methods=['POST']) def callback(): # get X-Line-Signature header value signature = request.headers['X-Line-Signature'] # get request body as text body = request.get_data(as_text=True) app.logger.info("Request body: " + body) # handle webhook body try: handler.handle(body, signature) except InvalidSignatureError: print("Invalid signature. Please check your channel access token/channel secret.") abort(400) return 'OK' @handler.add(MessageEvent, message=TextMessage) def handle_message(event): # INPUT AND PARSING DATA REPLY_TOKEN = event.reply_token MESSAGE_FROM_USER = event.message.text UID = event.source.user_id # get user id profile = line_bot_api.get_profile(UID) DISPLAY_NAME = profile.display_name PROFILE_PIC = profile.picture_url #check user in system? user = get(uid=UID,firebase_app=firebase , database_name=DB_USER_DATA) line_bot_api.link_rich_menu_to_user(user_id=UID , rich_menu_id=rich_menu_id) if not user: # continue data = {"session" : "None"} post(uid=UID,data=data,firebase_app=firebase,database_name=DB_USER_SESSION) data = { "DISPLAY_NAME" : DISPLAY_NAME , "PROFILE_PIC" : PROFILE_PIC } post(uid=UID,data=data,firebase_app=firebase,database_name=DB_USER_DATA) user_session = get(uid=UID,firebase_app=firebase , database_name=DB_USER_SESSION) user_session = user_session["session"] if user_session == "None": if MESSAGE_FROM_USER == "เริ่มบันทึกอาการป่วย": daily_report = { "มีไข้" : "", "มีอาการไอ" : "", "มีอาการเจ็บคอ" : "", "น้ำมูกไหล" : "", "เหนื่อยหอบ" : "", "วันที่" : "", "score" : 0, "ข้อเสนอแนะ" : "", "อาการอื่นๆที่พบ": "" } # create user daily report post_daily_tracking(uid=UID , data=daily_report , firebase_app=firebase , database_name=DB_COV_TRACKER) # update session session_data = {"session" : "บันทึกอาการไข้"} update(uid=UID,new_data=session_data,firebase_app=firebase,database_name=DB_USER_SESSION) #Reponse กลับไปที่ห้องแชท Bubble = Base.get_or_new_from_json_dict(คำถามอาการไข้(),FlexSendMessage) line_bot_api.reply_message(REPLY_TOKEN,messages=Bubble) elif MESSAGE_FROM_USER == "ข้อมูลผู้ติดเชื้อวันนี้": #Reponse กลับไปที่ห้องแชท Bubble = Base.get_or_new_from_json_dict(get_daily_data(),FlexSendMessage) line_bot_api.reply_message(REPLY_TOKEN,messages=Bubble) elif MESSAGE_FROM_USER == "ข้อมูลผู้ติดเชื้อตามพื้นที่": session_data = {"session" : "ข้อมูลผู้ติดเชื้อตามพื้นที่"} update(uid=UID,new_data=session_data,firebase_app=firebase,database_name=DB_USER_SESSION) line_bot_api.reply_message(REPLY_TOKEN, TextSendMessage(text="กรุณาระบุชื่อจังหวัดที่ท่านต้องการทราบคะ เช่น 'สงขลา'")) else : num = [1,2,3,4,5] time.sleep(random.choice(num)) Fallback_list = ["น้องหมอ ยังไม่มีบริการด้านนี้นะคะ","ขออภัยคะน้องไม่เข้าใจเลยยยจีๆ","ไว้มาถามใหม่ครั้งหน้านะคะ ตอนนี้ยังไม่สะดวกคะ"] Fallback = random.choice(Fallback_list) qbtn1 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="เริ่มบันทึกอาการป่วย",text="เริ่มบันทึกอาการป่วย")) qbtn2 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="วันนี้เป็นไงบ้าง",text="ข้อมูลผู้ติดเชื้อวันนี้")) qbtn3 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="ข้อมูลผู้ติดเชื้อตามพื้นที่",text="ข้อมูลผู้ติดเชื้อตามพื้นที่")) qrep = QuickReply(items=[qbtn1,qbtn2,qbtn3]) line_bot_api.reply_message(REPLY_TOKEN, TextSendMessage(text=Fallback,quick_reply=qrep)) elif MESSAGE_FROM_USER == "ออกจากคำสั่ง": session_data = {"session" : "None"} update(uid=UID,new_data=session_data,firebase_app=firebase,database_name=DB_USER_SESSION) num = [1,2,3,4,5] time.sleep(random.choice(num)) Fallback_list = ["ออกจากคำสั่งเรียบร้อย กรุณาเลือกคำสั่งใหม่นะคะ","ออกจากคำสั่งเรียบร้อย ถามไรต่อดีเอ่ยยยย","ออกจากคำสั่งเรียบร้อย ไว้มาสอบถามใหม่อีกครั้งนะคะ","ออกจากคำสั่งเรียบร้อย ขอบคุณที่แวะมาใช้บริการนะคะ"] Fallback = random.choice(Fallback_list) qbtn1 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="เริ่มบันทึกอาการป่วย",text="เริ่มบันทึกอาการป่วย")) qbtn2 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="วันนี้เป็นไงบ้าง",text="ข้อมูลผู้ติดเชื้อวันนี้")) qbtn3 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="ข้อมูลผู้ติดเชื้อตามพื้นที่",text="ข้อมูลผู้ติดเชื้อตามพื้นที่")) qrep = QuickReply(items=[qbtn1,qbtn2,qbtn3]) line_bot_api.reply_message(REPLY_TOKEN, TextSendMessage(text=Fallback,quick_reply=qrep)) ### func อื่นๆ else: if user_session == "บันทึกอาการไข้": # validate session # "3" != 3 if MESSAGE_FROM_USER in ["0","1","2","3","4","5"]: # validate input data = {"มีไข้" : MESSAGE_FROM_USER} update_daily_tracking(uid=UID,new_data=data,firebase_app=firebase,database_name=DB_COV_TRACKER) # update session_data = {"session" : "บันทึกอาการไอ"} update(uid=UID,new_data=session_data,firebase_app=firebase,database_name=DB_USER_SESSION) # update #Reponse กลับไปที่ห้องแชท Bubble = Base.get_or_new_from_json_dict(คำถามอาการไอ,FlexSendMessage) line_bot_api.reply_message(REPLY_TOKEN,messages=Bubble) else : line_bot_api.reply_message(REPLY_TOKEN,TextSendMessage("กรุณาระบุเป็นตัวเลขเท่านั้นคะ (พิมพ์เลข 1-5)")) elif user_session == "บันทึกอาการไอ": if MESSAGE_FROM_USER in ["0","1","2","3","4","5"]: # validate input data = {"มีอาการไอ" : MESSAGE_FROM_USER} update_daily_tracking(uid=UID,new_data=data,firebase_app=firebase,database_name=DB_COV_TRACKER) # update session_data = {"session" : "บันทึกอาการเจ็บคอ"} update(uid=UID,new_data=session_data,firebase_app=firebase,database_name=DB_USER_SESSION) # update #Reponse กลับไปที่ห้องแชท Bubble = Base.get_or_new_from_json_dict(คำถามอาการเจ็บคอ,FlexSendMessage) line_bot_api.reply_message(REPLY_TOKEN,Bubble) else : line_bot_api.reply_message(REPLY_TOKEN,TextSendMessage("กรุณาระบุเป็นตัวเลขเท่านั้นคะ (พิมพ์เลข 1-5)")) elif user_session == "บันทึกอาการเจ็บคอ": if MESSAGE_FROM_USER in ["0","1","2","3","4","5"]: # validate input data = {"มีอาการเจ็บคอ" : MESSAGE_FROM_USER} update_daily_tracking(uid=UID,new_data=data,firebase_app=firebase,database_name=DB_COV_TRACKER) # update session_data = {"session" : "บันทึกอาการน้ำมูกไหล"} update(uid=UID,new_data=session_data,firebase_app=firebase,database_name=DB_USER_SESSION) # update #Reponse กลับไปที่ห้องแชท Bubble = Base.get_or_new_from_json_dict(คำถามอาการน้ำมูกไหล,FlexSendMessage) line_bot_api.reply_message(REPLY_TOKEN,Bubble) else : line_bot_api.reply_message(REPLY_TOKEN,TextSendMessage("กรุณาระบุเป็นตัวเลขเท่านั้นคะ (พิมพ์เลข 1-5)")) elif user_session == "บันทึกอาการน้ำมูกไหล": if MESSAGE_FROM_USER in ["0","1","2","3","4","5"]: # validate input data = {"น้ำมูกไหล" : MESSAGE_FROM_USER} update_daily_tracking(uid=UID,new_data=data,firebase_app=firebase,database_name=DB_COV_TRACKER) # update session_data = {"session" : "บันทึกอาการเหนื่อยหอบ"} update(uid=UID,new_data=session_data,firebase_app=firebase,database_name=DB_USER_SESSION) # update #Reponse กลับไปที่ห้องแชท Bubble = Base.get_or_new_from_json_dict(คำถามอาการเหนื่อยหอบ,FlexSendMessage) line_bot_api.reply_message(REPLY_TOKEN,Bubble) else : line_bot_api.reply_message(REPLY_TOKEN,TextSendMessage("กรุณาระบุเป็นตัวเลขเท่านั้นคะ (พิมพ์เลข 1-5)")) elif user_session == "บันทึกอาการเหนื่อยหอบ": if MESSAGE_FROM_USER in ["0","1","2","3","4","5"]: # validate input data = {"เหนื่อยหอบ" : MESSAGE_FROM_USER} update_daily_tracking(uid=UID,new_data=data,firebase_app=firebase,database_name=DB_COV_TRACKER) # update session_data = {"session" : "บันทึกอาการอื่นๆ"} update(uid=UID,new_data=session_data,firebase_app=firebase,database_name=DB_USER_SESSION) # update user_daily_data = get_daily_tracking(uid=UID,firebase_app=firebase,database_name=DB_COV_TRACKER) result = analyze_covid_from_user(UID,user_daily_data) post_daily_tracking(uid=UID,data=result,firebase_app=firebase,database_name=DB_COV_TRACKER) qbtn = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="ไม่มีแล้วจร้า",text="ไม่มีแล้วจร้า")) qrep = QuickReply(items=[qbtn]) line_bot_api.reply_message(REPLY_TOKEN,TextSendMessage("เรียบร้อยแล้วคะ🧡🧡 \n ท่านมีอาการอื่นๆเพิ่มเติมอีกไหมคะ \n 💪💪 บอกน้องหมอได้นะ",quick_reply=qrep)) # reponse else : line_bot_api.reply_message(REPLY_TOKEN,TextSendMessage("กรุณาระบุเป็นตัวเลขเท่านั้นคะ (พิมพ์เลข 1-5)")) elif user_session == "บันทึกอาการอื่นๆ": data = {"อาการอื่นๆที่พบ" : MESSAGE_FROM_USER} update_daily_tracking(uid=UID,new_data=data,firebase_app=firebase,database_name=DB_COV_TRACKER) # update session_data = {"session" : "None"} update(uid=UID,new_data=session_data,firebase_app=firebase,database_name=DB_USER_SESSION) # update user_daily_data = get_daily_tracking(uid=UID,firebase_app=firebase,database_name=DB_COV_TRACKER) result = analyze_covid_from_user(UID,user_daily_data) post_daily_tracking(uid=UID,data=result,firebase_app=firebase,database_name=DB_COV_TRACKER) raw_Bubble = GenerateResultMsg(Profile_name=DISPLAY_NAME , UserId=UID , Dict_daily_data=result) Bubble = Base.get_or_new_from_json_dict(raw_Bubble,FlexSendMessage) line_bot_api.reply_message(REPLY_TOKEN,Bubble) elif user_session == "ข้อมูลผู้ติดเชื้อตามพื้นที่": raw_Bubble = get_location_reccommend_data(Province=MESSAGE_FROM_USER) if raw_Bubble: qbtn1 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="ออกจากการค้นหา",text="ออกจากคำสั่ง")) qrep = QuickReply(items=[qbtn1]) text_message = TextSendMessage(text="ออกจากการค้นหาโดยกดปุ่มด้านล่าง หรือ ทำการค้นหาต่อไปได้เลยนะคะ" ,quick_reply=qrep) Bubble = Base.get_or_new_from_json_dict(raw_Bubble,FlexSendMessage) line_bot_api.reply_message(REPLY_TOKEN,messages=[Bubble,text_message]) else: qbtn1 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="ออกจากการค้นหา",text="ออกจากคำสั่ง")) qrep = QuickReply(items=[qbtn1]) text_message = TextSendMessage(text="ไม่พบข้อมูลผู้ติดเชื้อจากกรมควบคุมโรคของจังหวัด"+str(MESSAGE_FROM_USER) +"\n กรุณาระบุชื่อจังหวัดใหม่อีกครั้งคะ หรือ กดปุ่มออกจากการค้นหา" ,quick_reply=qrep) line_bot_api.reply_message(REPLY_TOKEN,messages=text_message) @handler.add(FollowEvent) def handler_Follow(event): UID = event.source.user_id REPLY_TOKEN = event.reply_token line_bot_api.link_rich_menu_to_user(user_id=UID , rich_menu_id="richmenu-6852c0838fd90cce0f777268248f4bb2") #ส่งรูปภาพ image_message = ImageSendMessage( original_content_url='https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1', preview_image_url='https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1' ) qbtn1 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="เริ่มบันทึกอาการป่วย",text="เริ่มบันทึกอาการป่วย")) qbtn2 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="วันนี้เป็นไงบ้าง",text="ข้อมูลผู้ติดเชื้อวันนี้")) qbtn3 = QuickReplyButton(image_url="https://www.krungsri.com/bank/getmedia/1f37428a-a9e9-4860-9efd-90aeb886d3d5/krungsri-coronavirus-insurance-detail.jpg.aspx?resizemode=1", action=MessageAction(label="ข้อมูลผู้ติดเชื้อตามพื้นที่",text="ข้อมูลผู้ติดเชื้อตามพื้นที่")) qrep = QuickReply(items=[qbtn1,qbtn2,qbtn3]) text_message = TextSendMessage(text="ยินดีต้อนรับเข้าสู่ บันทึกของผู้กักตัว" ,quick_reply=qrep) line_bot_api.reply_message(REPLY_TOKEN,messages=[image_message,text_message]) if __name__ == "__main__": app.run()
1f7122e1b41a9df89a492a703ee6bd51647f5f8a
5861ec37c27a8b5e62733ca13a5632047935b40e
/pollsystem/polls/migrations/0001_initial.py
fd0a40295a0fabb044c4967e53784ca3183d6625
[]
no_license
radhikagupta6/YourPoll
27e64d5e8ca14a8cad68bf8e57b1842ba7339346
4f895fc0dacca190eaafc4174cd379f94246c764
refs/heads/master
2022-12-03T04:33:44.903447
2020-08-17T11:27:35
2020-08-17T11:27:35
273,569,662
0
0
null
null
null
null
UTF-8
Python
false
false
1,074
py
# Generated by Django 3.0.3 on 2020-06-19 17:54 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=200)), ('p_date', models.DateTimeField(verbose_name='publishing date')), ], ), migrations.CreateModel( name='Choice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_text', models.CharField(max_length=200)), ('votes', models.IntegerField(default=0)), ('question', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='polls.Question')), ], ), ]
fd35e0a0388b2ad0ef24ebb3c9bbe24eae376108
4a3c416d5a5dec2c5ec32b88be96acdff9438807
/BaiduAIP.py
f136b9f425141d849533611a65478b9f346dc8bc
[]
no_license
Toototototo/xishui-alipay-getData
dfb936ed95097ab3dedebbdd543522728f3a0bb1
4e94bb991ead912238e3d6006bca018744d6dedc
refs/heads/master
2020-05-04T15:52:21.107177
2019-04-08T10:05:31
2019-04-08T10:05:31
179,259,343
1
0
null
null
null
null
UTF-8
Python
false
false
1,330
py
# -*- coding: utf-8 -*- from aip import AipOcr """ 你的 APPID AK SK """ APP_ID = '15927274' API_KEY = 'wutPhQANL3aOBuXbP8SnWyrP' SECRET_KEY = '14snx1YG8TP8eGVQlWsteltFX6DGGebD' class BaiduAIP(object): def __init__(self): self.client = AipOcr(APP_ID, API_KEY, SECRET_KEY) # 读取图片文件 # 返回二进制内容 def get_file_content(self, file_path): with open(file_path, 'rb') as fp: return fp.read() # 调用百度AIP并解析接口返回数据 # 返回多个内容 => 重做 # 平均值小于0.8 => 重做 # 成功 => 返回code def get_code(self): # image = self.get_file_content(self.picture_path) """ 如果有可选参数 """ options = {"language_type": "ENG", "detect_direction": "true", "detect_language": "true", "probability": "true"} response = self.client.basicGeneralUrl(self.picture_path, options) print(response, self.picture_path) data = response if isinstance(data['words_result'], list) and data['words_result'].__len__() == 1: if data['words_result'][0]['probability']['average'] > 0.7: # 准确率达到0.7以上 return data['words_result'][0]['words'] else: return 'do again' else: return 'do again'
c269ecdcc14dbc4334e23ae671f11b1ed330d2e2
2eb5d59b6e9a28e06b8124b6f51c85217629a24f
/pybo/views/base_views.py
06fca3e60a83941babf9a41197478667f23d62c9
[]
no_license
lwjworld88/pybo
e44a38e8126c8d8a2494288f7bab8a13037ca46f
fbfd9d5a46fdea6ae9c6094e14799b1b7c3da048
refs/heads/master
2023-03-08T23:42:42.816755
2021-02-21T23:38:14
2021-02-21T23:38:14
341,356,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,903
py
from django.core.paginator import Paginator from django.db.models import Q, Count from django.shortcuts import render, get_object_or_404 from ..models import Question def index(request): """ pybo 목록 출력 """ # 입력 인자 page = request.GET.get('page', '1') # 페이지 처리. page 파라미터가 없는 URL을 위해 기본값 1 (e.g. localhost:8000/?page=1) kw = request.GET.get('kw', '') # 검색어 so = request.GET.get('so', 'recent') # 정렬 기준 # 정렬 if so == 'recommend': question_list = Question.objects.annotate(num_voter=Count('voter')).order_by('-num_voter', '-create_date') elif so == 'popular': question_list = Question.objects.annotate(num_answer=Count('answer')).order_by('-num_answer', '-create_date') else: # recent question_list = Question.objects.order_by('-create_date') # 조회 # question_list = Question.objects.order_by('-create_date') if kw: question_list = question_list.filter( Q(subject__icontains=kw) | # 제목 검색 Q(content__icontains=kw) | # 내용 검색 Q(author__username__icontains=kw) | # 질문 글쓴이 검색 Q(answer__author__username__icontains=kw) # 답변 글쓴이 검색 ).distinct() # 페이징 처리 paginator = Paginator(question_list, 10) # 페이지당 10개씩 보여주기 page_obj = paginator.get_page(page) context = {'question_list': page_obj, 'page': page, 'kw': kw, 'so': so} # so가 추가됨 return render(request, 'pybo/question_list.html', context) def detail(request, question_id): """ pybo 목록 출력 """ question = get_object_or_404(Question, pk=question_id) context = {'question': question} return render(request, 'pybo/question_detail.html', context)
62fed4f8d716eb544aca34dbe492a0dfcc899225
4da57c6e9efb0a884449e019ce5c9b5d516d2bb1
/exp/kernel_benchmark/bin_clean/amarel_aggr_data.py
6d0a278193addea1d73a624d1f74908838af8828
[]
no_license
radical-experiments/affinity_model
dc848fe1666b2f017d37ba041890462890eba9b5
fc67420a2278020eee770680fa7ccef76ed2dfa5
refs/heads/master
2021-04-06T16:56:26.847920
2018-09-25T03:15:47
2018-09-25T03:15:47
83,361,464
0
0
null
null
null
null
UTF-8
Python
false
false
1,431
py
import os import sys import csv from pprint import pprint from files_dir_mod import * def amarel_aggregate(src_path, dst_path): for dirname in dirnames: if not os.path.isdir(src_path+'/'+dirname): print "{0} does not exist".format(dirname) continue dir_keywords = dirname.split('/') pprint(dir_keywords) machine = dir_keywords[1] if machine != "amarel": continue dir_list = os.listdir(src_path+'/'+dirname) if dir_list: kernel = dir_keywords[0] node_type = dir_keywords[2] usage = dir_keywords[3] for meas in measurements: fd_out = open(dst_path+'/'+dirname+'/'+meas+'.csv', 'w') writer = csv.writer(fd_out) for session in dir_list: with open(src_path+'/'+dirname+'/'+session+'/'+meas+'.csv') as fd_in: reader = csv.reader(fd_in) for row in reader: cleaned_row = row cleaned_row[0] = session + "__" + cleaned_row[0] writer.writerow(cleaned_row) fd_out.close() pprint(dirname) pprint(dir_list) if __name__ == "__main__": src_path = sys.argv[1] dst_path = sys.argv[2] amarel_aggregate(src_path, dst_path)
4a2b53bd3b55146afd68cccc08de400d3c6b2a95
d957aac7c4c73f0547c322bf7eae98b8ca57cf0e
/BaekJoon/BaekJoon_1152.py
ad635b521490363e520377ed8d2d60c68d928ba3
[]
no_license
iamzero-j/PythonAlgorithm
babe7499cf5b8b80ce74b0b11075739a4d5ae00b
3591d0645768c6af5ace3af36f71167b0053c713
refs/heads/master
2023-03-02T23:04:25.627784
2021-02-16T06:47:41
2021-02-16T06:47:41
276,972,465
1
0
null
null
null
null
UTF-8
Python
false
false
282
py
# 출처 : 백준 -> 문자열 : 1152번 https://www.acmicpc.net/problem/1152 #단어의 개수 #공백이 연속적으로 올 수 없음 #ins=input().split(" ") 사용시 아무것도 안 치고 출력 하였을 때 0 이 아닌 1이 나옴 ins=input().split() print(len(ins))
a8be7e35f1526e8eda93504378fb00923e9b8a2d
a0072256bee8821b3fe63dfca6a6574f864cc899
/app/PyBotEngine/agreeabl.py
0183c7f5525963c539342c869a0713163165e1c6
[]
no_license
sinsinpub/sin2gae
8a81e2c0e7f101119207f58394dee908deb2e2c2
2a7f2be0e73611289520127bf888ab8237047f9c
refs/heads/master
2020-06-01T07:29:05.003964
2010-12-11T23:05:49
2010-12-11T23:05:49
36,711,069
0
0
null
null
null
null
UTF-8
Python
false
false
10,534
py
# This Python file uses the following encoding: utf-8 """ This is agreeabl, a friendly little twitter bot """ import os import urllib import urllib2 import random import datetime import logging import re import types import feedparser import wsgiref.handlers from dateutil.parser import parse from google.appengine.ext.webapp import template from google.appengine.ext import webapp, db from google.appengine.api import urlfetch from google.appengine.api import memcache from django.utils import simplejson class TwitterAccount(db.Model): """ Username and password for the Twitter account associated with the bot """ username = db.StringProperty() password = db.StringProperty() class Tracker(db.Model): """ Tracker simply stores the date time of the last successfully downloaded message so we don't process messages twice. """ last_tweet = db.DateTimeProperty() class ReplyMessage(db.Model): """ Messages that will be used to reply randomly. """ cond = db.StringProperty() msg = db.StringProperty() twitter_account = db.GqlQuery("SELECT * FROM TwitterAccount").get() if twitter_account == None or twitter_account.username == '': TwitterAccount(username='', password='').put() raise Exception("Please set up you twitter credentials in your datastore") else: username = twitter_account.username password = twitter_account.password mentions_url = 'http://%s:%[email protected]/statuses/mentions.atom' % \ (username, password) status_url = 'http://twitter.com/statuses/update.xml' friend_url = 'http://twitter.com/friendships/create.xml' is_friend_url = 'http://twitter.com/friendships/exists.json' user_profile_url = 'http://twitter.com/users/show/%s.json' % username user_timeline_url = 'http://twitter.com/statuses/user_timeline/%s.json' % \ username msg_url = 'http://twitter.com/statuses/show/%s.json' msg_list = db.GqlQuery("SELECT * FROM ReplyMessage").get() if msg_list == None: ReplyMessage(cond='', msg='').put() msg_list = [ "%s that's what my mum always said and it's hard to argue with her.", "%s I feel your pain...", "%s you go girl!", "%s you say the smartest stuff sometimes.", "%s yeah, me too.", "%s I get like that sometimes too.", "%s good thinking!", "%s that deserves a hug.", "%s totally!", "%s my feelings exactly!", "%s that is very true", "%s so true, so true...", "%s you are so right...", "%s couldn't agree more.", "%s if only more people were as thoughtful as you.", "%s yeah for sure", "%s you know a tibetan monk once said the same thing to me and it \ always stuck in my mind.", "%s those there are wise words. Wise words indeed.", "%s if more people thought like you we wouldn't need laws. Or taxes. \ Or Conroy's clean feed.", "%s yup like I said before - you just can't live without fresh fruit \ and clean water.", "%s yeah - it really is the way things are going these days.", "%s that sure sounds like fun" ] class Index(webapp.RequestHandler): """ Render the homepage. This looks similar to a regular twitter homepage and shows recent conversations the bot has had. """ def get(self): """ default action for / URL requests """ user_profile = get_from_cache("user_profile", user_profile_url) user_profile = dict2class(user_profile) user_timeline = get_from_cache("user_timeline", user_timeline_url) user_timeline_formated = [] i = 0 for entry in user_timeline: entry = dict2class(entry) entry.user = dict2class(entry.user) entry.text = re.sub(r'(\A|\s)@(\w+)', \ r'\1@<a href="http://www.twitter.com/\2">\2</a>', entry.text) entry.created_at = \ parse(entry.created_at).strftime("%I:%M%p %A, %d %B %Y") if entry.user.screen_name == username and \ entry.in_reply_to_status_id != None: try: reply_msg = get_from_cache(str(entry.in_reply_to_status_id), \ msg_url % entry.in_reply_to_status_id) user_timeline.insert(i + 1, dict2class(reply_msg)) except IOError: broken_url = msg_url % entry.in_reply_to_status_id logging.warn("Oops. Couldn't fetch " + broken_url) user_timeline_formated.append(entry) i += 1 template_values = { "username": username, "user_profile": user_profile, "user_timeline": user_timeline_formated } path = os.path.join(os.path.dirname(__file__), 'index.html') self.response.out.write(template.render(path, template_values)) class Responder(webapp.RequestHandler): """ Fetch all mentions from the twitter API and generate responses. """ def get(self): """ default action for /request URL requests """ tracker = db.GqlQuery("SELECT * FROM Tracker").get() if tracker == None: tracker = Tracker(last_tweet=datetime.datetime(1970, 1, 1, 0, 0, 0)) prev_last_tweet = tracker.last_tweet mentions = feedparser.parse(mentions_url) logging.debug(mentions) for entry in mentions['entries']: p = entry.published_parsed pub_date = datetime.datetime(p[0], p[1], p[2], p[3], p[4], p[5]) if prev_last_tweet < pub_date: # <title>User: @agreeabl geez I'd love some cookies</title> author = entry.title.split(": ")[0] tweet = entry.title.split(": ")[1] logging.debug(tweet) #<id>tag:twitter.com,200:http://twitter.com/User/statuses/1</id> msg_id = entry.id.split('/')[5] # load reply messages msgEntries = db.GqlQuery("SELECT * FROM ReplyMessage").fetch(limit=100) if msgEntries == None: ReplyMessage(cond='', msg='').put() msgList = msg_list else: msgList = [] for repMsg in msgEntries: msgList.append(repMsg.msg.encode('utf_8')) # choose and compile a message selected_msg = random.choice(msgList) msg = selected_msg % ('@' + author) # only process if this is a directed to the bot if tweet.split(' ')[0] == '@%s' % username: if tracker.last_tweet < pub_date: tracker.last_tweet = pub_date tracker.put() reply(msg, msg_id) if is_friend(author) != 'true': friend(author) logging.info('old_last_tweet: %s; new_last_tweet: %s; \ pub_date: %s; msg_id: %s; author: %s; tweet: %s; msg: %s' % \ (prev_last_tweet, tracker.last_tweet, pub_date, msg_id, \ author, tweet, msg)) def reply(msg, msg_id): """ Format a reply and post it to the Twitter API """ form_fields = { "status": msg, "in_reply_to_status_id": msg_id } form_data = urllib.urlencode(form_fields) api_post(status_url, form_data) def friend(author): """ Make the bot follow someone """ form_fields = { "screen_name": author } form_data = urllib.urlencode(form_fields) api_post(friend_url, form_data) def is_friend(author): """ Check if the bot is following someone """ query_string = '?user_a=%s&user_b=%s' % (username, author) return api_get(is_friend_url, query_string).read() def api_get(url, query_string=""): """Make a GET request against the twitter API, handle authentication""" password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() password_mgr.add_password("Twitter API", "http://twitter.com/", username, \ password) handler = urllib2.HTTPBasicAuthHandler(password_mgr) opener = urllib2.build_opener(urllib2.HTTPHandler, handler) urllib2.install_opener(opener) return urllib2.urlopen(url + query_string) def api_post(url, form_data): """POST to the twitter API, handle authentication""" password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() password_mgr.add_password("Twitter API", "http://twitter.com/", username, \ password) handler = urllib2.HTTPBasicAuthHandler(password_mgr) opener = urllib2.build_opener(urllib2.HTTPHandler, handler) urllib2.install_opener(opener) return urllib2.urlopen(url, form_data) def get_from_cache(key, url, query_string="", timeout=120): """ Grab a value from the cache, or go to the API if it's not found """ value = memcache.get(key) if value is None: value = simplejson.load(api_get(url, query_string)) memcache.add(key, value, timeout) return value def dict2class(dic): """Return a class that has same attributes/values as dict key/value""" #see if it is indeed a dictionary if type(dic) != types.DictType: return dic #define a dummy class class Dummy: pass class_ = Dummy for elem in dic.keys(): class_.__dict__[elem] = dic[elem] return class_ class ProxyGet(webapp.RequestHandler): def get(self): targetUrl = self.request.get('url') if targetUrl == '': self.response.out.write('I\'m in position') else: targetUrl = 'http://' + targetUrl result = urlfetch.fetch(url=targetUrl,method=urlfetch.GET,allow_truncated=True,follow_redirects=False) self.response.out.write(result.content); def main(): """ Handle requests, do CGI stuff """ debug = False if os.environ['SERVER_NAME'] == 'localhost': logging.getLogger().setLevel(logging.DEBUG) debug = True application = webapp.WSGIApplication( [ ('/', Index), ('/get', ProxyGet), ('/responder', Responder) ], debug=debug ) wsgiref.handlers.CGIHandler().run(application) if __name__ == "__main__": main()
[ "sinsinpub@251f673c-c833-11de-8672-e51b9359e43c" ]
sinsinpub@251f673c-c833-11de-8672-e51b9359e43c
fe616439df2cf983c744ea323919525c2e94cbb2
814fd0bea5bc063a4e34ebdd0a5597c9ff67532b
/chrome/common/extensions/docs/server2/refresh_tracker_test.py
f1f596f1afefe93317d8fa365571a158aa4abe97
[ "BSD-3-Clause" ]
permissive
rzr/chromium-crosswalk
1b22208ff556d69c009ad292bc17dca3fe15c493
d391344809adf7b4f39764ac0e15c378169b805f
refs/heads/master
2021-01-21T09:11:07.316526
2015-02-16T11:52:21
2015-02-16T11:52:21
38,887,985
0
0
NOASSERTION
2019-08-07T21:59:20
2015-07-10T15:35:50
C++
UTF-8
Python
false
false
1,941
py
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest from object_store_creator import ObjectStoreCreator from refresh_tracker import RefreshTracker class RefreshTrackerTest(unittest.TestCase): def setUp(self): self._refresh_tracker = RefreshTracker(ObjectStoreCreator.ForTest()) def testNonExistentRefreshIsIncomplete(self): self.assertFalse(self._refresh_tracker.GetRefreshComplete('unicorns').Get()) def testEmptyRefreshIsComplete(self): refresh_id = 'abcdefghijklmnopqrstuvwxyz' self._refresh_tracker.StartRefresh(refresh_id, []).Get() self.assertTrue(self._refresh_tracker.GetRefreshComplete(refresh_id).Get()) def testRefreshCompletion(self): refresh_id = 'this is fun' self._refresh_tracker.StartRefresh(refresh_id, ['/do/foo', '/do/bar']).Get() self._refresh_tracker.MarkTaskComplete(refresh_id, '/do/foo').Get() self.assertFalse(self._refresh_tracker.GetRefreshComplete(refresh_id).Get()) self._refresh_tracker.MarkTaskComplete(refresh_id, '/do/bar').Get() self.assertTrue(self._refresh_tracker.GetRefreshComplete(refresh_id).Get()) def testUnknownTasksAreIrrelevant(self): refresh_id = 'i am a banana' self._refresh_tracker.StartRefresh(refresh_id, ['a', 'b', 'c', 'd']).Get() self._refresh_tracker.MarkTaskComplete(refresh_id, 'a').Get() self._refresh_tracker.MarkTaskComplete(refresh_id, 'b').Get() self._refresh_tracker.MarkTaskComplete(refresh_id, 'c').Get() self._refresh_tracker.MarkTaskComplete(refresh_id, 'q').Get() self.assertFalse(self._refresh_tracker.GetRefreshComplete(refresh_id).Get()) self._refresh_tracker.MarkTaskComplete(refresh_id, 'd').Get() self.assertTrue(self._refresh_tracker.GetRefreshComplete(refresh_id).Get()) if __name__ == '__main__': unittest.main()
b2b78ff4ca6a2e23d745096515ed1a5158c35be8
309cfe85fcf96531fe7ea745db462b6fe1f837be
/River3/python/RiverUtils.py
0b3a680d44ec7b58039b230a93e2400825f68d5d
[]
no_license
NWU-NISL-BugDetection/river
60c6cabc9f3fbf51b427c2af9fe997a384f0f8e4
d33042536b66fa0fa68c451e0c22504fc35d81b5
refs/heads/master
2023-07-24T06:01:40.082441
2021-09-01T06:24:35
2021-09-01T06:24:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,663
py
from typing import List, Dict import heapq import numpy as np from triton import TritonContext import logging import argparse from triton import TritonContext, ARCH, Instruction, MemoryAccess, CPUSIZE, MODE # Put the last bytes as fake sentinel inputs to promote some usages detection outside buffer SENTINEL_SIZE = 4 def parseArgs(): # Construct the argument parser ap = argparse.ArgumentParser() # Add the arguments to the parser ap.add_argument("-bp", "--binaryPath", required=True, help="the test binary location") ap.add_argument("-entryfuncName", "--entryfuncName", required=False, default="RIVERTestOneInput", help="the name of the entry function you want to start the test from. By default the function name is 'RIVERTestOneInput'!", type=str) ap.add_argument("-arch", "--architecture", required=True, help="architecture of the executable: ARM32, ARM64, X86, X64 are supported") ap.add_argument("-max", "--maxLen", required=True, help="maximum size of input length", type=int) ap.add_argument("-targetAddress", "--targetAddress", required=False, default=None, help="the target address that your program is trying to reach", type=str) ap.add_argument("-logLevel", "--logLevel", required=False, default='CRITICAL', help="set the log level threshold, see the Python logging module documentation for the list of levels. Set it to DEBUG to see everything!", type=str) ap.add_argument("-secondsBetweenStats", "--secondsBetweenStats", required=False, default='10', help="the interval (in seconds) between showing new stats", type=int) ap.add_argument("-outputType", "--outputType", required=False, default='textual', help="the output interface type, can be visual or textual", type=str) ap.add_argument("-isTraining", "--isTraining", required=False, default=0, help="set it to 1 if using an untrained model or to 0 if using a saved model", type=int) ap.add_argument("-pathToModel", "--pathToModel", required=False, default=None, help="path to the model to use", type=str) ap.add_argument("-stateful", "--stateful", required=False, default=False, help="Either if stateful or stateless (default)", type=str) ap.add_argument("-outputEndpoint", "--outputEndpoint", required=False, default=None, help="the HTTP endpoint where test execution data will be sent") #ap.add_argument("-defaultObsParams", "--defaultObsParams", required=False, default=False, # help="Default Observation parameters - should be a binary string mapping in order the values from default self.observation_space", type=str) args = ap.parse_args() loggingLevel = logging._nameToLevel[args.logLevel] logging.basicConfig(level=loggingLevel) # filename='example.log', # Set DEBUG or INFO if you want to see more SECONDS_BETWEEN_STATS = args.secondsBetweenStats args.targetAddress = None if args.targetAddress is None else int(args.targetAddress, 16) #assert len(args.defaultObsParams) != 4 # There are 4 default obs types args.obs_map = 0 #int(args.defaultObsParams[0]) args.obs_path = 0 #int(args.defaultObsParams[1]) args.obs_path_stats = 1 # int(args.defaultObsParams[2]) args.obs_embedding = 0 #int(args.defaultObsParams[3]) # Set the architecture if args.architecture == "ARM32": args.architecture = ARCH.ARM32 elif args.architecture == "ARM64": args.achitecture = ARCH.X86_64 elif args.architecture == "x86": args.architecture = ARCH.X86 elif args.architecture == "x64": args.architecture = ARCH.X86_64 else: assert False, "This architecture is not implemented" raise NotImplementedError Input.MAX_LEN = args.maxLen return args class ActionFunctors: # Change a byte at a given index with a new value @staticmethod def ChangeByte(params): # inputInstance is Input type inputInstance = params['inputInstance'] currentInputLen = len(inputInstance.buffer) if currentInputLen == 0: return False indexToChange = params['index'] if 'index' in params else None # Index where to do the change valueToChange = params['value'] if 'value' in params else None# value to change with, can be none and a random will be added there if valueToChange is None: valueToChange = np.random.choice(256) if indexToChange is None: indexToChange = np.random.choice(len(inputInstance.buffer)) inputInstance.buffer[indexToChange] = valueToChange return True # Erase one or more bytes from a given position @staticmethod def EraseBytes(params): inputInstance = params['inputInstance'] currentInputLen = len(inputInstance.buffer) if currentInputLen == 0: return False indexToStartChange = params['index'] if 'index' in params else None # Index where to do the change maxLenToDelete = params['maxLen'] if 'maxLen' in params else None inputInstance = params['inputInstance'] if maxLenToDelete is None: # Randomize a percent from the buffer len randomPercent = np.random.randint(low=2, high=10) randomNumItems = float(randomPercent) / len(inputInstance.buffer) maxLenToDelete = int(max(randomNumItems, 2)) if indexToStartChange is None: indexToStartChange = np.random.choice(len(inputInstance.buffer)) assert isinstance(inputInstance.buffer, Dict) == False, "Dict kind of buffer not supported for now!" inputInstance.buffer[indexToStartChange : (indexToStartChange+maxLenToDelete)] = [] return True # Insert one or more bytes at a given position @staticmethod def InsertRandomBytes(params): index = params['index'] if 'index' in params else None # Index where to do the change bytesCountToAdd = params['count'] if 'count' in params else None # how many bytes to add inputInstance = params['inputInstance'] assert isinstance(inputInstance.buffer, Dict) == False, "Dict kind of buffer not supported for now!" currentInputLen = len(inputInstance.buffer) if bytesCountToAdd is None: # Randomize a percent from the buffer len randomPercent = float(np.random.rand() * 1.0) # A maximum of 1 percent to add randomNumItems = float(randomPercent / 100.0) * len(inputInstance.buffer) bytesCountToAdd = int(max(randomNumItems, np.random.randint(low=1, high=10))) if index is None: index = np.random.choice(currentInputLen) if currentInputLen > 0 else None oldBuffer = inputInstance.buffer bytesToAdd = list(np.random.choice(256, bytesCountToAdd)) bytesToAdd = [x.item() for x in bytesToAdd] #print(f"Adding {len(bytesToAdd)} bytes") if index is not None: inputInstance.buffer = oldBuffer[:index] + bytesToAdd + oldBuffer[index:] else: inputInstance.buffer = bytesToAdd inputInstance.checkTrimSize() return True # See below to check the significance of params @staticmethod def AddDictionaryWord(params): index = params['index'] if 'index' in params else None # Index where to do the change override = params['isOverride'] if 'isOverride' in params else False # if it should override or just add inputInstance = params['inputInstance'] assert isinstance(inputInstance.buffer, Dict) == False, "Dict kind of buffer not supported for now!" wordToAdd = params['fixedWord'] if 'fixedWord' in params else None # If NONE, a random word from dictionary will be added, assert wordToAdd is None or isinstance(wordToAdd, list), "this should be a list of bytes !" currentInputLen = len(inputInstance.buffer) if index is None: index = np.random.choice(currentInputLen) if currentInputLen > 0 else 0 if wordToAdd is None: if len(inputInstance.tokensDictionary) == 0: return False wordToAdd = np.random.choice(inputInstance.tokensDictionary) wordToAdd_len = len(wordToAdd) assert wordToAdd_len > 0 if override is False: oldBuffer = inputInstance.buffer inputInstance.buffer = oldBuffer[:index] + list(wordToAdd) + oldBuffer[index:] else: inputInstance.buffer[index : (index+wordToAdd_len)] = wordToAdd inputInstance.checkTrimSize() return True # Data structures to hold inputs # Currently we keep the input as a dictionary mapping from byte indices to values. # The motivation for this now is that many times the input are large but only small parts from them are changing... # usePlainBuffer = true if the input is not sparse, to represent the input indices as an array rather than a full vector class Input: def __init__(self, buffer : Dict[int, any] = None, bound = None , priority = None, usePlainBuffer=False): self.buffer = buffer self.bound = bound self.priority = priority self.usePlainBuffer = False def __lt__(self, other): return self.priority > other.priority def __str__(self): maxKeysToShow = 10 keysToShow = sorted(self.buffer)[:maxKeysToShow] valuesStrToShow = ' '.join(str(self.buffer[k]) for k in keysToShow) strRes = (f"({valuesStrToShow}..bound: {self.bound}, priority: {self.priority})") return strRes # Apply the changes to the buffer, as given in the dictionary mapping from byte index to the new value def applyChanges(self, changes : Dict[int, any]): if not self.usePlainBuffer: self.buffer.update(changes) else: for byteIndex,value in changes.items(): self.buffer[byteIndex] = value # This is used to apply one of the registered actions. # Don't forget that client user have full control and append statically the default set of actions # actionContext is defined as a set of parameters needed for the functor of the specific action # Returns True if the action could be applied, false otherwise def applyAction(self, actionIndex : int, actionContext : any): functorForAction = Input.actionFunctors.get(actionIndex) assert functorForAction, f"The requested action {actionIndex} is not availble in the actions set !" res = functorForAction(actionContext) self.sanityCheck() return res # Static functors to apply action over the existing input # TODO: implement all others from https://arxiv.org/pdf/1807.07490.pdf # This is extensible by client using the below functions: actionFunctors = {0: ActionFunctors.ChangeByte, 1: ActionFunctors.EraseBytes, 2: ActionFunctors.InsertRandomBytes, 3: ActionFunctors.AddDictionaryWord} tokensDictionary = [] NO_ACTION_INDEX = -1 MAX_LEN = None # Will be set by user parameters def sanityCheck(self): #print(len(self.buffer)) #return # Check 1: is input size in the desired range ? assert len(self.buffer) <= Input.MAX_LEN, f"Input obtained is bigger than the maximum length !! Max size set in params was {Input.MAX_LEN} while buffer has currently size {len(self.buffer)}" # Trim if too big def checkTrimSize(self): if len(self.buffer) > Input.MAX_LEN: self.buffer = self.buffer[:Input.MAX_LEN] @staticmethod def getNumActionFunctors(): return max(Input.actionFunctors.keys()) # Register new action functor other than the default ones # Returns back the index of the registered action so you know what to ask for when you want to use applyAction # actionContext is actually the variables that you pass to your functor @staticmethod def registerNewActionFunctor(newActionFunctor): newIndex = Input.getNumActionFunctors() + 1 Input.actionFunctors[newIndex] = newActionFunctor # Sets the tokens dictionary for the current problem. @staticmethod def setTokensDictionary(tokensDictionary): Input.tokensDictionary = tokensDictionary # This is used for the contextual bandits problem class InputRLGenerational(Input): def __init__(self): Input.__init__(self) self.buffer_parent = None # The input of the parent that generated the below PC self.priority = -1 # The estimated priority for the state self.stateEmbedding = None self.PC = None # The parent path constraint that generated the parent input self.BBPathInParentPC = None # The same as above but simplified, basically the path of basic blocks obtained by running buffer_parent self.constraint = None # The constraint needed (SMT) to give to solve to change the PC using action and produce the new input for this structure self.action = -1 # The action to take (which of the self.PC branches should we modify) # A priority queue data structure for holding inputs by their priority class InputsWorklist: def __init__(self): self.internalHeap = [] def extractInput(self): if self.internalHeap: next_item = heapq.heappop(self.internalHeap) return next_item else: return None def addInput(self, inp: Input): heapq.heappush(self.internalHeap, inp) def __str__(self): str = f"[{' ; '.join(inpStr.__str__() for inpStr in self.internalHeap)}]" return str def __len__(self): return len(self.internalHeap) # An example how to use the inputs worklist def example_InputsWorkList(): worklist = InputsWorklist() worklist.addInput(Input("aa", 0, 10)) worklist.addInput(Input("bb", 1, 20)) worklist.addInput(Input('cc', 2, 30)) print(worklist) # Process the list of inputs to convert to bytes if the input was in a string format def processSeedDict(seedsDict : List[any]): for idx, oldVal in enumerate(seedsDict): if isinstance(oldVal, str): seedsDict[idx] = str.encode(oldVal) #print(seedsDict) def riverExp(): import gym from gym import spaces obs = {'inputBuffer' : spaces.Box(0, 255, shape=(4096, )), 'inputLen' : spaces.Discrete(4096)} x = obs['inputLen'].sample() print(obs['inputLen'].n) if __name__ == "__main__": riverExp()
b9a387605d577d71f54a61961bb4e49480104471
0180b1a8e19c0a02e7c00ebe1a58e17347ad1996
/BCR2000/consts.py
a1a23805ec9ecae2ff31a2bf1a642c416c9ebe69
[]
no_license
cce/buttons
e486af364c6032b4be75ab9de26f42b8d882c5b0
7d4936c91df99f4c6e08f7e347de64361c75e652
refs/heads/master
2021-01-17T06:56:55.859306
2014-12-22T05:03:00
2015-11-25T03:42:28
46,657,841
3
0
null
null
null
null
UTF-8
Python
false
false
1,666
py
# Embedded file name: /Users/versonator/Jenkins/live/Binary/Core_Release_64_static/midi-remote-scripts/BCR2000/consts.py """ The following consts should be substituted with the Sys Ex messages for requesting a controller's ID response and that response to allow for automatic lookup""" ID_REQUEST = 0 ID_RESP = 0 GENERIC_STOP = 105 GENERIC_PLAY = 106 GENERIC_REC = 107 GENERIC_LOOP = 108 GENERIC_RWD = -1 GENERIC_FFWD = -1 GENERIC_TRANSPORT = (GENERIC_STOP, GENERIC_PLAY, GENERIC_REC, GENERIC_LOOP, GENERIC_RWD, GENERIC_FFWD) GENERIC_ENC1 = 1 GENERIC_ENC2 = 2 GENERIC_ENC3 = 3 GENERIC_ENC4 = 4 GENERIC_ENC5 = 5 GENERIC_ENC6 = 6 GENERIC_ENC7 = 7 GENERIC_ENC8 = 8 GENERIC_ENCODERS = (GENERIC_ENC1, GENERIC_ENC2, GENERIC_ENC3, GENERIC_ENC4, GENERIC_ENC5, GENERIC_ENC6, GENERIC_ENC7, GENERIC_ENC8) GENERIC_SLI1 = 81 GENERIC_SLI2 = 82 GENERIC_SLI3 = 83 GENERIC_SLI4 = 84 GENERIC_SLI5 = 85 GENERIC_SLI6 = 86 GENERIC_SLI7 = 87 GENERIC_SLI8 = 88 GENERIC_SLIDERS = (GENERIC_SLI1, GENERIC_SLI2, GENERIC_SLI3, GENERIC_SLI4, GENERIC_SLI5, GENERIC_SLI6, GENERIC_SLI7, GENERIC_SLI8) GENERIC_BUT1 = 73 GENERIC_BUT2 = 74 GENERIC_BUT3 = 75 GENERIC_BUT4 = 76 GENERIC_BUT5 = 77 GENERIC_BUT6 = 78 GENERIC_BUT7 = 79 GENERIC_BUT8 = 80 GENERIC_BUT9 = -1 GENERIC_BUTTONS = (GENERIC_BUT1, GENERIC_BUT2, GENERIC_BUT3, GENERIC_BUT4, GENERIC_BUT5, GENERIC_BUT6, GENERIC_BUT7, GENERIC_BUT8) GENERIC_PAD1 = 65 GENERIC_PAD2 = 66 GENERIC_PAD3 = 67 GENERIC_PAD4 = 68 GENERIC_PAD5 = 69 GENERIC_PAD6 = 70 GENERIC_PAD7 = 71 GENERIC_PAD8 = 72 GENERIC_PADS = (GENERIC_PAD1, GENERIC_PAD2, GENERIC_PAD3, GENERIC_PAD4, GENERIC_PAD5, GENERIC_PAD6, GENERIC_PAD7, GENERIC_PAD8)
71746fea62c81bca85cdda17b939d1bf146287de
a0501ee2c6ea376beb4e1e5e9e656f7bebb7d8c5
/problema16.py
db816e9cdfb1024fae2653f366033ad8a7dcbafe
[]
no_license
jose-brenis-lanegra/T09_Brenis.Niquen
0e988c1ae8c89fe7f9cf92010297193e376fc233
21f292120244b33496d71dcefeb40c6c8a5b4490
refs/heads/master
2020-11-25T15:51:01.886824
2019-12-18T03:37:34
2019-12-18T03:37:34
228,745,651
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
import libreria import os #hallar la volumen de un tetraedro a=int(os.sys.argv[1]) volumen=libreria.volumen_teraedro(a) print("el volumen del tetraedro es:", volumen)
2d05ab4221727d108dcd0eff6b2f0fdfe47b2821
57449ec58fd3919d3db1434cf34def46fb17d723
/modules/button.py
7edc8de5bff8126316676a7f8cd326b315a09f0c
[]
no_license
sanetro/clicker
ad0ebc8a21219f107c177e6332bf842f4d6ad8ef
3cc193990d785099e5c8321c139851d959b59f95
refs/heads/master
2023-06-24T09:55:43.367197
2021-02-28T14:55:25
2021-02-28T14:55:25
341,620,767
0
0
null
null
null
null
UTF-8
Python
false
false
1,123
py
import pygame pygame.init() class BTN(): def __init__(self, color, x, y, width, height, text=''): self.color = color self.x = x self.y = y self.width = width self.height = height self.text = text def draw(self,win,outline=None): #Call this method to draw the BTN on the screen if outline: pygame.draw.rect(win, outline, (self.x-2,self.y-2,self.width+4,self.height+4),0) pygame.draw.rect(win, self.color, (self.x,self.y,self.width,self.height),0) if self.text != '': font = pygame.font.SysFont('chicago', 60) text = font.render(self.text, 1, (0,0,0)) win.blit(text, (self.x + (self.width/2 - text.get_width()/2), self.y + (self.height/2 - text.get_height()/2))) def isOver(self, pos): #Pos is the mouse position or a tuple of (x, y) coordinates if pos[0] > self.x and pos[0] < self.x + self.width: if pos[1] > self.y and pos[1] < self.y + self.height: return True return False
258c010789b5fbc488913f426f4a2959a0571c81
485f2e16739c95cfac04849cd0b5416a25a599e1
/PowerAnalyzer.py
cd7f315fd9343bbd5adec73cd980a20421999188
[ "MIT" ]
permissive
grossamos/StraenWeb
e6a07d54eb778ff8c1876eb86f7e199ec0472123
887c2a2252bead4bdff66e172586a837ef7e8bff
refs/heads/master
2022-04-24T01:24:26.611760
2020-04-11T21:20:37
2020-04-11T21:20:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,698
py
# Copyright 2018 Michael J Simms """Performs calculations on power data.""" import inspect import os import sys import DataMgr import FtpCalculator import Keys import SensorAnalyzer import Units # Locate and load the statistics module (the functions we're using in are made obsolete in Python 3, but we want to work in Python 2, also) currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) libmathdir = os.path.join(currentdir, 'LibMath', 'python') sys.path.insert(0, libmathdir) import statistics class PowerAnalyzer(SensorAnalyzer.SensorAnalyzer): """Class for performing calculations on power data.""" def __init__(self, activity_type, activity_user_id, data_mgr): SensorAnalyzer.SensorAnalyzer.__init__(self, Keys.APP_POWER_KEY, Units.get_power_units_str(), activity_type) self.data_mgr = data_mgr self.np_buf = [] self.current_30_sec_buf = [] self.current_30_sec_buf_start_time = 0 self.activity_user_id = activity_user_id def do_power_record_check(self, record_name, watts): """Looks up the existing record and, if necessary, updates it.""" old_value = self.get_best_time(record_name) if old_value is None or watts > old_value: self.bests[record_name] = watts def append_sensor_value(self, date_time, value): """Adds another reading to the analyzer.""" SensorAnalyzer.SensorAnalyzer.append_sensor_value(self, date_time, value) sum_of_readings = 0 num_readings = 0 duration = self.end_time - self.start_time # Update the buffers needed for the normalized power calculation. if date_time - self.current_30_sec_buf_start_time > 30000: if len(self.current_30_sec_buf) > 0: self.np_buf.append(statistics.mean(self.current_30_sec_buf)) self.current_30_sec_buf = [] self.current_30_sec_buf_start_time = date_time self.current_30_sec_buf.append(value) # Search for best efforts. for reading in reversed(self.readings): reading_time = reading[0] sum_of_readings = sum_of_readings + reading[1] num_readings = num_readings + 1 curr_time_diff = (self.end_time - reading_time) / 1000 if curr_time_diff == 5: average_power = sum_of_readings / num_readings self.do_power_record_check(Keys.BEST_5_SEC_POWER, average_power) if duration < 720: return elif curr_time_diff == 720: average_power = sum_of_readings / num_readings self.do_power_record_check(Keys.BEST_12_MIN_POWER, average_power) if duration < 1200: return elif curr_time_diff == 1200: average_power = sum_of_readings / num_readings self.do_power_record_check(Keys.BEST_20_MIN_POWER, average_power) if duration < 3600: return elif curr_time_diff == 3600: average_power = sum_of_readings / num_readings self.do_power_record_check(Keys.BEST_1_HOUR_POWER, average_power) elif curr_time_diff > 3600: return def analyze(self): """Called when all sensor readings have been processed.""" results = SensorAnalyzer.SensorAnalyzer.analyze(self) if len(self.readings) > 0: results[Keys.MAX_POWER] = self.max results[Keys.AVG_POWER] = self.avg # # Compute normalized power. # if len(self.np_buf) > 1: # Throw away the first 30 second average. self.np_buf.pop(0) # Needs this for the variability index calculation. ap = statistics.mean(self.np_buf) # Raise all items to the fourth power. for idx, item in enumerate(self.np_buf): item = pow(item, 4) self.np_buf[idx] = item # Average the values that were raised to the fourth. ap2 = statistics.mean(self.np_buf) # Take the fourth root. np = pow(ap2, 0.25) results[Keys.NORMALIZED_POWER] = np # Compute the variability index (VI = NP / AP). vi = np / ap results[Keys.VARIABILITY_INDEX] = vi # Additional calculations if we have the user's FTP. if self.activity_user_id and self.data_mgr: # Get the user's FTP. ftp = self.data_mgr.retrieve_user_estimated_ftp(self.activity_user_id) if ftp is not None: # Compute the intensity factor (IF = NP / FTP). intfac = np / ftp[0] results[Keys.INTENSITY_FACTOR] = intfac # Compute the training stress score (TSS = (t * NP * IF) / (FTP * 36)). t = (self.end_time - self.start_time) / 1000.0 tss = (t * np * intfac) / (ftp[0] * 36) results[Keys.TSS] = tss # # Compute the threshold power from this workout. Maybe we have a new estimated FTP? # ftp_calc = FtpCalculator.FtpCalculator() ftp_calc.add_activity_data(self.activity_type, self.start_time, self.bests) estimated_ftp = ftp_calc.estimate() if estimated_ftp: results[Keys.THRESHOLD_POWER] = estimated_ftp return results
08ae130b1a21fc57296695f30b8ad957650fbdce
48dd623ed7a73db4a341846c8e3db005eabcd9a9
/mssqltest.py
ac93d1902f1ba343f0e8cbe7d5b0c2ce0ae03219
[]
no_license
HarishPvhb/DMS
25530e0d2bc18a384eebdcda27206fc5a684665a
e9684a16d733e9d5b631127af32b9bdc0674077c
refs/heads/master
2022-12-28T22:59:03.623671
2020-10-14T15:03:09
2020-10-14T15:03:09
303,298,307
1
0
null
null
null
null
UTF-8
Python
false
false
846
py
import pyodbc import binascii import struct host = 'td1a4dmcslanqnr.c9mc5tzceqtj.us-west-2.rds.amazonaws.com' port = '1433' user = 'root' password = 'baffle123' database = 'MSSQL_LargeData' schema = 'New' table = 'LargeData' column = 'col_time' query = "select {} from {}.{}.{};".format(column, database,schema,table) connection = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server};SERVER='+host+';DATABASE='+database+';UID='+user+';PWD='+password) cursor = connection.cursor() cursor.execute(query) data = cursor.fetchall() print(data[0]) print(type(data[0])) '''with open('mssample.txt', 'w') as f: for item in data: if type(item[0]) is memoryview: item = binascii.hexlify(item[0]) f.write("%s\n" % str(item[0])) else: f.write("%s\n" % str(item[0]))'''
70d7f3dbd44a17cd86c110457bf873c417e8deca
8f19107b3fb4dae9114f6aec3ed448665742d87d
/labs/Topic04-flow/lab04.04-student.py
8981447e10afe7e1547747d8961999ad9167a308
[]
no_license
Munster2020/HDIP_CSDA
a5e7f8f3fd3f3d4b92a2c9a32915d8152af87de6
ab21b21849e4efa0a26144fcbe877f6fb6e17a2f
refs/heads/master
2020-12-14T13:24:14.961945
2020-03-25T21:09:13
2020-03-25T21:09:13
234,757,410
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
# A Program that reads in students # until the user enters a blank # and then prints them all out again students = [] firstname = input("enter firstname (blank to quit): ").strip() while firstname != "": student = {} student["firstname"] = firstname lastname = input("enter lastname: ").strip() student["lastname"] = lastname students.append(student) # next student firstname = input("enter firstname of next (blank to quit): ").strip() print("here are the students you entered:") for currentStudent in students: print("{}{}".format(currentStudent["firstname"], currentStudent["lastname"]))
a6f6eba4196833521a55e8c5bcb36c53233d461b
470334fb1ca97ee1da3889517e4f38bec66944bb
/username/username/wsgi.py
5910739352c7649419f57ad514d387de2002bc41
[]
no_license
Bhavyareddy/username3
40363db4e4c3e522898224a893d9285a0102842a
b6e9df81c7082d982f531760a76bfbe59af9b58b
refs/heads/master
2020-05-30T11:53:47.641907
2016-08-10T21:55:59
2016-08-10T21:55:59
65,456,695
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
""" WSGI config for username project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "username.settings") application = get_wsgi_application()
f926af277ef295431c9bbba87a470f29effed838
eb8953a78be45c953bb30fd3ac9a4cb6b68a23b8
/Week_01/remove-duplicates-from-sorted-array.py
bd33741ffabab7541fa27cce6c8601661691b4ad
[]
no_license
good-time/algorithm012
37bd620fd9d2b484c7c72f030d7732ea8b29f4a4
ef03f220f3590a4c33f2ea8db91b69170f6d7f90
refs/heads/master
2022-12-18T18:22:48.580273
2020-09-27T04:36:51
2020-09-27T04:36:51
279,063,821
0
0
null
2020-07-12T12:52:12
2020-07-12T12:52:11
null
UTF-8
Python
false
false
271
py
class Solution: def removeDuplicates(self, nums: List[int]) -> int: if len(nums) == 0: return 0 i = 0 for j in range(1, len(nums)): if nums[i] != nums[j]: i += 1 nums[i] = nums[j] return i+1
ed317eaf3d927e878cd3e726402cd5e2619d3ece
654926e03dd260c45e0d59e408283a4305a1bf0e
/Train.py
7f81c7a908b56dc25fa613c279ab6acd506b55a6
[]
no_license
vedika19/Recommendation-System
e90bae3c6f0ddb1b6c871035c36e4e875d66a6cf
ddf00fa5bc1104ccb800840cb607248131256c79
refs/heads/master
2020-12-24T12:59:26.567930
2016-09-21T13:48:37
2016-09-21T13:48:37
68,821,271
0
0
null
null
null
null
UTF-8
Python
false
false
3,397
py
import psycopg2 import sys import pprint import math '''RecommendationSystem(uid,mid,rating) m_id=str(mid) query = ("SELECT movie1,movie2,similarity FROM u1similarity WHERE movie1= %s OR movie2= %s ;") data = (m_id,m_id) conn_string = "host='localhost' dbname='postgres' user='postgres' password=''" conn2 = psycopg2.connect(conn_string) cursor2= conn2.cursor() cursor2.execute(query,data) records2=cursor2.fetchall() print records2''' ''' conn_string = "host='localhost' dbname='postgres' user='postgres' password=''" conn = psycopg2.connect(conn_string) cursor= conn.cursor() query = "SELECT user_id,movie_id,rating FROM u1test where p_rating is NULL;" cursor.execute(query) records = cursor.fetchall() for i in records: print i common=[] uid=str(i[0]) print uid print i common={} query = ("SELECT user_id,movie_id,rating FROM u1base WHERE user_id = %s ;") data = [uid] conn1 = psycopg2.connect(conn_string) cursor1= conn1.cursor() cursor1.execute(query,data) records1=cursor1.fetchall() #print records1 if len(records1)<4: print 'Cold Start' #Cold Start() else : print 'Recommendation System' mid=str(i[1]) query = ("SELECT movie1, movie2, similarity FROM u1similarity where (movie1=%s OR movie2=%s) ORDER BY similarity desc LIMIT 500 ;") data = (mid,mid) conn_string = "host='localhost' dbname='postgres' user='postgres' password=''" conn2 = psycopg2.connect(conn_string) cursor2= conn2.cursor() cursor2.execute(query,data) records2=cursor2.fetchall() print records2 for re in records2: #print re[1],i[1] if re[0]==i[1]: for rec1 in records1: #print rec1[1],re[1],rec1[1]==re[1] if rec1[1]==re[1]: common[re[1]]=rec1[2],re[2] else: for rec1 in records1: if re[0] ==rec1[1]: common[re[0]]=rec1[2],re[2] for k,v in common.iteritems(): print k,v cursor1.close() cursor2.close() predicted=0 num=0 den=0 similarity_p=0 for k,v in common.iteritems(): num=num+v[0]*v[1] den=den+v[1] if den == 0: similarity_p=0 else: similarity_p=num/den print similarity_p sp=str(similarity_p) i0=str(i[0]) i1=str(i[1]) print sp,i0,i1 query = ("UPDATE u1test SET (p_rating) = (%s) where (user_id) = (%s) AND (movie_id)= (%s) ;") data = (sp,i0,i1) conn_string = "host='localhost' dbname='postgres' user='postgres' password=''" conn = psycopg2.connect(conn_string) cursor1= conn.cursor() cursor1.execute(query,data) conn.commit() # Calculating RMSE rmse=0 conn_string = "host='localhost' dbname='postgres' user='postgres' password=''" conn = psycopg2.connect(conn_string) cursor= conn.cursor() query = "SELECT rmse FROM u1test " cursor.execute(query) records = cursor.fetchall() for i in records: rmse=rmse+i[0] rmse=rmse/len(records) rmse=math.sqrt(rmse) print rmse''' print"THE TOP 50 RECOMMENDED MOVIES" conn_string = "host='localhost' dbname='postgres' user='postgres' password=''" conn = psycopg2.connect(conn_string) cursor= conn.cursor() query = "SELECT * FROM recommendation order by p_rating desc LIMIT 50" cursor.execute(query) records = cursor.fetchall() for i in records: cursor2= conn.cursor() md=str(i[1]) query2 = "SELECT movie_title FROM movie where movie_id = %s ;" data2=[md] cursor2.execute(query2,data2) records1 = cursor2.fetchall() for j in records1: print md ,j[0]
0255e46bd31fd1ecc2393fdf7322e84db39abf47
97e60d0ca572d0dc3fc80f8719cd57a707ab6069
/bias_zebra_print/stock.py
dd94d374c932338a87ab830754b76fb7b1fe5b94
[]
no_license
josepato/bias_trunk_v6
0c7c86493c88f015c049a139360478cabec7f698
b6ab6fc2ff3dc832f26effdba421bcc76d5cabac
refs/heads/master
2020-06-12T14:18:31.101513
2016-12-15T22:55:54
2016-12-15T22:55:54
75,803,957
0
0
null
null
null
null
UTF-8
Python
false
false
4,033
py
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). All Rights Reserved # $Id$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## # #Bias Product / PriceList # from osv import osv from osv import fields import time import netsvc #---------------------------------------------------------- # Price List #---------------------------------------------------------- OLDPRINTSTR = """XA~TA000~JSN^LT0^MNW^MTT^PON^PMN^LH0,0^JMA^PR4,4^MD0^JUS^LRN^CI0^XZ ^XA ^MMT ^LL0142 ^LS0 ^FT246,119^A0N,17,16^FH\^FD%s^FS ^FT164,18^A0N,17,16^FH\^FD%s^FS ^FT286,110^A0B,17,16^FH\^FD%s^FS ^FT21,136^A0N,17,16^FH\^FD%s^FS ^FT4,123^A0N,17,16^FH\^FD%s^FS ^FT193,51^A0N,17,16^FH\^FD%s^FS ^FT4,67^A0N,17,16^FH\^FD%s/%s^FS ^FT3,51^A0N,17,16^FH\^FD%s/%s^FS ^FT3,34^A0N,17,16^FH\^FD%s^FS ^FT8,18^A0N,17,16^FH\^FD%s^FS ^PQ%i,0,1,Y^XZ""" PRINTSTR = """^XA~TA000~JSN^LT0^MNW^MTT^PON^PMN^LH0,0^JMA^PR4,4^MD0^JUS^LRN^CI0^XZ ^XA ^MMT ^LL0850 ^LS0 ^FT48,731^A0I,17,16^FH\^F%sB^FS ^FT131,831^A0I,17,16^FH\^FD%s^FS ^FT8,740^A0R,17,16^FH\^FD%s^FS ^FT273,713^A0I,17,16^FH\^FD%s^FS ^FT290,727^A0I,17,16^FH\^FD%s^FS ^FT101,799^A0I,17,16^FH\^FD%s^FS ^FT291,782^A0I,17,16^FH\^FD%s/%s^FS ^FT291,799^A0I,17,16^FH\^FD%s/%s^FS ^FT291,815^A0I,17,16^FH\^FD%s^FS ^FT287,832^A0I,17,16^FH\^FD%s^FS ^BY1,3,22^FT291,755^BCI,,Y,N ^FD>:LA>50001>6BB^FS ^PQ%i,0,1,Y^XZ """ class stock_picking(osv.osv): _inherit = "stock.picking" def getZebraData(self, cr, uid, ids): if isinstance(ids, (int, long)): ids = [ids] res = [] move_obj = self.pool.get('stock.move') for picking in self.browse(cr, uid, ids): mydict = {'id': picking.id} mylines = [] for move in picking.move_lines: mystr = PRINTSTR %(move.product_id.product_writing_kind_id.name, move.product_id.product_colection_id.name, move.product_id.default_code, move.product_id.product_tmpl_id.categ_id.parent_id.name, move.product_id.product_writing_metaerial_id.name, (move.product_id.product_hardware_ids and move.product_id.product_hardware_ids[0].name) or "-", (move.product_id.product_top_material_ids and move.product_id.product_top_material_ids[0].name) or "-", (move.product_id.product_bottom_material_ids and move.product_id.product_bottom_material_ids[0].name) or "-", (move.product_id.product_top_color_ids and move.product_id.product_top_color_ids[0].name) or "-", (move.product_id.product_bottom_color_ids and move.product_id.product_bottom_color_ids[0].name) or "-", move.product_id.product_line_id.name, move.product_id.product_brand_id.name, move.product_qty) mylines.append(mystr) mydict['lines'] = mylines res.append(mydict) return res stock_picking()
b563672c1f0906584832778d726b6ba3cac18c7f
060ce17de7b5cdbd5f7064d1fceb4ded17a23649
/fn_microsoft_defender/fn_microsoft_defender/util/customize.py
bb2e546adca2b9b9f81794d806d0518c8a1f2dd2
[ "MIT" ]
permissive
ibmresilient/resilient-community-apps
74bbd770062a22801cef585d4415c29cbb4d34e2
6878c78b94eeca407998a41ce8db2cc00f2b6758
refs/heads/main
2023-06-26T20:47:15.059297
2023-06-23T16:33:58
2023-06-23T16:33:58
101,410,006
81
107
MIT
2023-03-29T20:40:31
2017-08-25T14:07:33
Python
UTF-8
Python
false
false
6,691
py
# -*- coding: utf-8 -*- """Generate the Resilient customizations required for fn_microsoft_defender""" import base64 import os import io try: from resilient import ImportDefinition except ImportError: # Support Apps running on resilient-circuits < v35.0.195 from resilient_circuits.util import ImportDefinition RES_FILE = "data/export.res" def codegen_reload_data(): """ Parameters required reload codegen for the fn_microsoft_defender package """ return { "package": u"fn_microsoft_defender", "message_destinations": [u"fn_microsoft_defender"], "functions": [u"defender_alert_search", u"defender_app_execution", u"defender_collect_machine_investigation_package", u"defender_delete_indicator", u"defender_find_machines", u"defender_find_machines_by_file", u"defender_find_machines_by_filter", u"defender_get_file_information", u"defender_get_incident", u"defender_get_related_alert_information", u"defender_list_indicators", u"defender_machine_isolation", u"defender_machine_scan", u"defender_machine_vulnerabilities", u"defender_quarantine_file", u"defender_set_indicator", u"defender_update_alert", u"defender_update_incident"], "workflows": [u"defender_atp_app_execution", u"defender_atp_collect_machine_investigation_package", u"defender_atp_delete_indicator", u"defender_atp_find_machines", u"defender_atp_find_machines_by_file_hash", u"defender_atp_get_file_information", u"defender_atp_machine_isolation", u"defender_atp_machine_scan", u"defender_atp_machine_vulnerabilities", u"defender_atp_set_indicator", u"defender_atp_update_alert", u"defender_atp_update_indicator", u"defender_close_incident", u"defender_find_machines_by_filter", u"defender_get_incident", u"defender_get_updated_machine_information", u"defender_list_indicators", u"defender_quarantine_file", u"defender_refresh_incident", u"defender_sync_comment", u"defender_sync_incident"], "actions": [u"Create Artifact from Indicator", u"Defender Close Incident", u"Defender Find Machine by DNS name", u"Defender Find Machines by File Hash", u"Defender Find Machines by Internal IP Address", u"Defender Get File Information", u"Defender Get Incident", u"Defender List Indicators", u"Defender Machine App Execution Restriction", u"Defender Machine Collect Investigation Package", u"Defender Machine Isolate Action", u"Defender Machine Quarantine File", u"Defender Machine Refresh Information", u"Defender Machine Scan", u"Defender Machine Update Information", u"Defender Machine Vulnerabilities", u"Defender Refresh Incident", u"Defender Set Indicator", u"Defender Sync Comment", u"Defender Sync Incident", u"Defender Update Alert", u"Delete Indicator", u"Update Indicator"], "incident_fields": [u"defender_classification", u"defender_determination", u"defender_incident_createtime", u"defender_incident_id", u"defender_incident_lastupdatetime", u"defender_incident_url", u"defender_tags"], "incident_artifact_types": [], "incident_types": [], "datatables": [u"defender_alerts", u"defender_indicators", u"defender_machines"], "automatic_tasks": [], "scripts": [u"Create Artifact from Indicator"], } def customization_data(client=None): """ Returns a Generator of ImportDefinitions (Customizations). Install them using `resilient-circuits customize` IBM Resilient Platform Version: 39.0.6328 Contents: - Message Destinations: - fn_microsoft_defender - Functions: - defender_alert_search - defender_app_execution - defender_collect_machine_investigation_package - defender_delete_indicator - defender_find_machines - defender_find_machines_by_file - defender_find_machines_by_filter - defender_get_file_information - defender_get_incident - defender_get_related_alert_information - defender_list_indicators - defender_machine_isolation - defender_machine_scan - defender_machine_vulnerabilities - defender_quarantine_file - defender_set_indicator - defender_update_alert - defender_update_incident - Workflows: - defender_atp_app_execution - defender_atp_collect_machine_investigation_package - defender_atp_delete_indicator - defender_atp_find_machines - defender_atp_find_machines_by_file_hash - defender_atp_get_file_information - defender_atp_machine_isolation - defender_atp_machine_scan - defender_atp_machine_vulnerabilities - defender_atp_set_indicator - defender_atp_update_alert - defender_atp_update_indicator - defender_close_incident - defender_find_machines_by_filter - defender_get_incident - defender_get_updated_machine_information - defender_list_indicators - defender_quarantine_file - defender_refresh_incident - defender_sync_comment - defender_sync_incident - Rules: - Create Artifact from Indicator - Defender Close Incident - Defender Find Machine by DNS name - Defender Find Machines by File Hash - Defender Find Machines by Internal IP Address - Defender Get File Information - Defender Get Incident - Defender List Indicators - Defender Machine App Execution Restriction - Defender Machine Collect Investigation Package - Defender Machine Isolate Action - Defender Machine Quarantine File - Defender Machine Refresh Information - Defender Machine Scan - Defender Machine Update Information - Defender Machine Vulnerabilities - Defender Refresh Incident - Defender Set Indicator - Defender Sync Comment - Defender Sync Incident - Defender Update Alert - Delete Indicator - Update Indicator - Incident Fields: - defender_classification - defender_determination - defender_incident_createtime - defender_incident_id - defender_incident_lastupdatetime - defender_incident_url - defender_tags - Data Tables: - defender_alerts - defender_indicators - defender_machines - Scripts: - Create Artifact from Indicator """ res_file = os.path.join(os.path.dirname(__file__), RES_FILE) if not os.path.isfile(res_file): raise FileNotFoundError("{} not found".format(RES_FILE)) with io.open(res_file, mode='rt') as f: b64_data = base64.b64encode(f.read().encode('utf-8')) yield ImportDefinition(b64_data)
e96fb62e4c0431bce5afe872d8630f24a0f4bb80
ac9ed2852d6e8217229cbeda0a6dd5f98953415a
/CoursPytorch/CIFAR10/models/resnet/resnet_model.py
1351716654670393a01e0a7bba684b9d20d0b8d6
[]
no_license
penda-diagne/projetMaster
4afaf042aa140875c0f42a7d8cb4a27b2a3e23f1
44a74c53c7ae15ab556d46620be2cee8ea5e6cbc
refs/heads/master
2021-08-19T05:22:06.364165
2021-07-05T21:45:25
2021-07-05T21:45:25
242,139,656
1
1
null
null
null
null
UTF-8
Python
false
false
1,428
py
class ResNet(nn.Module): def __init__(self, block, layers): super(ResNet, self).__init__() self.in_channels = 16 self.conv = conv3_3(3, 16) self.bn = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.layer1 = self.make_layer(block, 16, layers[0]) self.layer2 = self.make_layer(block, 32, layers[1], 2) self.layer3 = self.make_layer(block, 64, layers[2], 2) self.avg_pool = nn.AvgPool2d(8) self.fc = nn.Linear(64, 10) def make_layer(self, block, out_channels, blocks, stride=1): downsample = None if (stride != 1) or (self.in_channels != out_channels): downsample = nn.Sequential( conv3_3(self.in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels)) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels for i in range(1, blocks): layers.append(block(out_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = self.conv(x.float()) out = self.bn(out) out = self.relu(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out
a36bee353387612fcbb653c63cb1367cb93a70da
ba5dbb751a44974f1ec1914b580fc79734cd3204
/prog_fadd.py
96202c1804756e39ececd8f4686d1e9305271fe3
[]
no_license
HARINI14/HARINI.R
6be01708e2b09e3f5f47fe0c87a6c487063c03f0
1c5d9f89181211605859360c2bb3d505aee06990
refs/heads/master
2021-05-11T12:21:49.788490
2018-03-13T09:52:34
2018-03-13T09:52:34
117,656,536
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
def add (x,y): return x+y def sub (x,y): return x-y print (add(2,7)) print(sub(7,2)) print (add(100,200))
12b35321e4a6f3f056becf5b21460437b8743274
ccdf3dffdc390b774ac3e6ba81c16dc48bc9a5fb
/notebooks/basic_functions.py
8a3b826197585c65de81174ab78d232d36898224
[]
no_license
CCSB-DFCI/HuRI_paper
90a69521e41d2a8dad9987895930ecd0ce6504b6
16c57919f4e0c3d1a78edf90c105ed42d3022f8f
refs/heads/master
2022-12-15T19:58:33.625633
2020-09-14T17:07:06
2020-09-14T17:07:06
226,145,775
25
8
null
2022-08-23T18:07:00
2019-12-05T16:38:19
Jupyter Notebook
UTF-8
Python
false
false
2,174
py
# script that contains basic functions import pandas, numpy from custom_settings import * # function that returns a set with all ensembl gene IDs of protein coding genes def get_PC_genome(cursor): query = """select ensembl_gene_id from {}.protein_coding_genome""".format(DB_NAME) cursor.execute(query) genome = set([row[0] for row in cursor]) return genome # function that loads the GTEx median expression data for every PC gene and tissue restricted # to all genes that are expressed in at least one tissue above the given expression cutoff def get_GTEx_expr_df(connect,testis=False): query = """select * from {}.GTEx_expr_PC_matrix""".format(DB_NAME) GTEx = pandas.read_sql(query,connect) GTEx.set_index('ensembl_gene_id',inplace=True) if not testis: GTEx.drop('testis',axis='columns',inplace=True) GTEx = GTEx.loc[GTEx.max(axis=1) > GTEX_EXPR_CUTOFF,] return GTEx # function that loads the TiP matrix with all values set to NaN for which the gene is not # expressed above the given expression cutoff in the respective tissue def get_GTEx_TiP_df(connect,testis=False): GTEx = get_GTEx_expr_df(connect) if testis: table_name = 'GTEx_TiP_PC_matrix' GTEx = get_GTEx_expr_df(connect,testis=True) else: table_name = 'GTEx_TiP_no_testis_PC_matrix' GTEx = get_GTEx_expr_df(connect) query = """select * from {}.{}""".format(DB_NAME,table_name) TiPmatrix = pandas.read_sql(query,connect) TiPmatrix.set_index('ensembl_gene_id',inplace=True) TiPmatrix = TiPmatrix.loc[TiPmatrix.index.isin(GTEx.index.tolist()),] GTEx_tissues = TiPmatrix.columns.tolist() for tissue in GTEx_tissues: TiPmatrix.loc[TiPmatrix.index.isin(GTEx.index[GTEx[tissue]<=GTEX_EXPR_CUTOFF]),[tissue]] = numpy.NaN return TiPmatrix # function that returns for every PC gene that is expressed in GTEx based on the given expression cutoff # the max TiP value from all the tissues where the gene was observed to be expressed def get_maxTiPvalue_series(connect,testis=False): TiPmatrix = get_GTEx_TiP_df(connect) maxTiP_series = TiPmatrix.max(axis=1,numeric_only=True) maxTiP_series.dropna(inplace=True) maxTiP_series.sort_values(inplace=True) return maxTiP_series
e64dc24c7f2e713d932e22c3bdbe113dfcac051e
0c93c0d2c9b674e26b3ea2431ea8350581354970
/minishift/font.py
6224ca0dcbaa5af454fb172052df67ed0d010bc0
[ "BSD-3-Clause" ]
permissive
henrybell/minishift-python
e7af8ffa6201ae4694281cf05137d81076215ede
12a351d0260be522087eaecc4b20dd239f7ed9a2
refs/heads/master
2020-03-22T07:54:43.800853
2015-11-16T16:37:46
2015-11-16T16:37:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,573
py
"""glcdfont, courtesy Adafruit. Software License Agreement (BSD License) Copyright (c) 2012 Adafruit Industries. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ font = [ [0x00, 0x00, 0x00, 0x00, 0x00], [0x3E, 0x5B, 0x4F, 0x5B, 0x3E], [0x3E, 0x6B, 0x4F, 0x6B, 0x3E], [0x1C, 0x3E, 0x7C, 0x3E, 0x1C], [0x18, 0x3C, 0x7E, 0x3C, 0x18], [0x1C, 0x57, 0x7D, 0x57, 0x1C], [0x1C, 0x5E, 0x7F, 0x5E, 0x1C], [0x00, 0x18, 0x3C, 0x18, 0x00], [0xFF, 0xE7, 0xC3, 0xE7, 0xFF], [0x00, 0x18, 0x24, 0x18, 0x00], [0xFF, 0xE7, 0xDB, 0xE7, 0xFF], [0x30, 0x48, 0x3A, 0x06, 0x0E], [0x26, 0x29, 0x79, 0x29, 0x26], [0x40, 0x7F, 0x05, 0x05, 0x07], [0x40, 0x7F, 0x05, 0x25, 0x3F], [0x5A, 0x3C, 0xE7, 0x3C, 0x5A], [0x7F, 0x3E, 0x1C, 0x1C, 0x08], [0x08, 0x1C, 0x1C, 0x3E, 0x7F], [0x14, 0x22, 0x7F, 0x22, 0x14], [0x5F, 0x5F, 0x00, 0x5F, 0x5F], [0x06, 0x09, 0x7F, 0x01, 0x7F], [0x00, 0x66, 0x89, 0x95, 0x6A], [0x60, 0x60, 0x60, 0x60, 0x60], [0x94, 0xA2, 0xFF, 0xA2, 0x94], [0x08, 0x04, 0x7E, 0x04, 0x08], [0x10, 0x20, 0x7E, 0x20, 0x10], [0x08, 0x08, 0x2A, 0x1C, 0x08], [0x08, 0x1C, 0x2A, 0x08, 0x08], [0x1E, 0x10, 0x10, 0x10, 0x10], [0x0C, 0x1E, 0x0C, 0x1E, 0x0C], [0x30, 0x38, 0x3E, 0x38, 0x30], [0x06, 0x0E, 0x3E, 0x0E, 0x06], [0x00, 0x00, 0x00, 0x00, 0x00], [0x00, 0x00, 0x5F, 0x00, 0x00], [0x00, 0x07, 0x00, 0x07, 0x00], [0x14, 0x7F, 0x14, 0x7F, 0x14], [0x24, 0x2A, 0x7F, 0x2A, 0x12], [0x23, 0x13, 0x08, 0x64, 0x62], [0x36, 0x49, 0x56, 0x20, 0x50], [0x00, 0x08, 0x07, 0x03, 0x00], [0x00, 0x1C, 0x22, 0x41, 0x00], [0x00, 0x41, 0x22, 0x1C, 0x00], [0x2A, 0x1C, 0x7F, 0x1C, 0x2A], [0x08, 0x08, 0x3E, 0x08, 0x08], [0x00, 0x80, 0x70, 0x30, 0x00], [0x08, 0x08, 0x08, 0x08, 0x08], [0x00, 0x00, 0x60, 0x60, 0x00], [0x20, 0x10, 0x08, 0x04, 0x02], [0x3E, 0x51, 0x49, 0x45, 0x3E], [0x00, 0x42, 0x7F, 0x40, 0x00], [0x72, 0x49, 0x49, 0x49, 0x46], [0x21, 0x41, 0x49, 0x4D, 0x33], [0x18, 0x14, 0x12, 0x7F, 0x10], [0x27, 0x45, 0x45, 0x45, 0x39], [0x3C, 0x4A, 0x49, 0x49, 0x31], [0x41, 0x21, 0x11, 0x09, 0x07], [0x36, 0x49, 0x49, 0x49, 0x36], [0x46, 0x49, 0x49, 0x29, 0x1E], [0x00, 0x00, 0x14, 0x00, 0x00], [0x00, 0x40, 0x34, 0x00, 0x00], [0x00, 0x08, 0x14, 0x22, 0x41], [0x14, 0x14, 0x14, 0x14, 0x14], [0x00, 0x41, 0x22, 0x14, 0x08], [0x02, 0x01, 0x59, 0x09, 0x06], [0x3E, 0x41, 0x5D, 0x59, 0x4E], [0x7C, 0x12, 0x11, 0x12, 0x7C], [0x7F, 0x49, 0x49, 0x49, 0x36], [0x3E, 0x41, 0x41, 0x41, 0x22], [0x7F, 0x41, 0x41, 0x41, 0x3E], [0x7F, 0x49, 0x49, 0x49, 0x41], [0x7F, 0x09, 0x09, 0x09, 0x01], [0x3E, 0x41, 0x41, 0x51, 0x73], [0x7F, 0x08, 0x08, 0x08, 0x7F], [0x00, 0x41, 0x7F, 0x41, 0x00], [0x20, 0x40, 0x41, 0x3F, 0x01], [0x7F, 0x08, 0x14, 0x22, 0x41], [0x7F, 0x40, 0x40, 0x40, 0x40], [0x7F, 0x02, 0x1C, 0x02, 0x7F], [0x7F, 0x04, 0x08, 0x10, 0x7F], [0x3E, 0x41, 0x41, 0x41, 0x3E], [0x7F, 0x09, 0x09, 0x09, 0x06], [0x3E, 0x41, 0x51, 0x21, 0x5E], [0x7F, 0x09, 0x19, 0x29, 0x46], [0x26, 0x49, 0x49, 0x49, 0x32], [0x03, 0x01, 0x7F, 0x01, 0x03], [0x3F, 0x40, 0x40, 0x40, 0x3F], [0x1F, 0x20, 0x40, 0x20, 0x1F], [0x3F, 0x40, 0x38, 0x40, 0x3F], [0x63, 0x14, 0x08, 0x14, 0x63], [0x03, 0x04, 0x78, 0x04, 0x03], [0x61, 0x59, 0x49, 0x4D, 0x43], [0x00, 0x7F, 0x41, 0x41, 0x41], [0x02, 0x04, 0x08, 0x10, 0x20], [0x00, 0x41, 0x41, 0x41, 0x7F], [0x04, 0x02, 0x01, 0x02, 0x04], [0x40, 0x40, 0x40, 0x40, 0x40], [0x00, 0x03, 0x07, 0x08, 0x00], [0x20, 0x54, 0x54, 0x78, 0x40], [0x7F, 0x28, 0x44, 0x44, 0x38], [0x38, 0x44, 0x44, 0x44, 0x28], [0x38, 0x44, 0x44, 0x28, 0x7F], [0x38, 0x54, 0x54, 0x54, 0x18], [0x00, 0x08, 0x7E, 0x09, 0x02], [0x18, 0xA4, 0xA4, 0x9C, 0x78], [0x7F, 0x08, 0x04, 0x04, 0x78], [0x00, 0x44, 0x7D, 0x40, 0x00], [0x20, 0x40, 0x40, 0x3D, 0x00], [0x7F, 0x10, 0x28, 0x44, 0x00], [0x00, 0x41, 0x7F, 0x40, 0x00], [0x7C, 0x04, 0x78, 0x04, 0x78], [0x7C, 0x08, 0x04, 0x04, 0x78], [0x38, 0x44, 0x44, 0x44, 0x38], [0xFC, 0x18, 0x24, 0x24, 0x18], [0x18, 0x24, 0x24, 0x18, 0xFC], [0x7C, 0x08, 0x04, 0x04, 0x08], [0x48, 0x54, 0x54, 0x54, 0x24], [0x04, 0x04, 0x3F, 0x44, 0x24], [0x3C, 0x40, 0x40, 0x20, 0x7C], [0x1C, 0x20, 0x40, 0x20, 0x1C], [0x3C, 0x40, 0x30, 0x40, 0x3C], [0x44, 0x28, 0x10, 0x28, 0x44], [0x4C, 0x90, 0x90, 0x90, 0x7C], [0x44, 0x64, 0x54, 0x4C, 0x44], [0x00, 0x08, 0x36, 0x41, 0x00], [0x00, 0x00, 0x77, 0x00, 0x00], [0x00, 0x41, 0x36, 0x08, 0x00], [0x02, 0x01, 0x02, 0x04, 0x02], [0x3C, 0x26, 0x23, 0x26, 0x3C], [0x1E, 0xA1, 0xA1, 0x61, 0x12], [0x3A, 0x40, 0x40, 0x20, 0x7A], [0x38, 0x54, 0x54, 0x55, 0x59], [0x21, 0x55, 0x55, 0x79, 0x41], [0x21, 0x54, 0x54, 0x78, 0x41], [0x21, 0x55, 0x54, 0x78, 0x40], [0x20, 0x54, 0x55, 0x79, 0x40], [0x0C, 0x1E, 0x52, 0x72, 0x12], [0x39, 0x55, 0x55, 0x55, 0x59], [0x39, 0x54, 0x54, 0x54, 0x59], [0x39, 0x55, 0x54, 0x54, 0x58], [0x00, 0x00, 0x45, 0x7C, 0x41], [0x00, 0x02, 0x45, 0x7D, 0x42], [0x00, 0x01, 0x45, 0x7C, 0x40], [0xF0, 0x29, 0x24, 0x29, 0xF0], [0xF0, 0x28, 0x25, 0x28, 0xF0], [0x7C, 0x54, 0x55, 0x45, 0x00], [0x20, 0x54, 0x54, 0x7C, 0x54], [0x7C, 0x0A, 0x09, 0x7F, 0x49], [0x32, 0x49, 0x49, 0x49, 0x32], [0x32, 0x48, 0x48, 0x48, 0x32], [0x32, 0x4A, 0x48, 0x48, 0x30], [0x3A, 0x41, 0x41, 0x21, 0x7A], [0x3A, 0x42, 0x40, 0x20, 0x78], [0x00, 0x9D, 0xA0, 0xA0, 0x7D], [0x39, 0x44, 0x44, 0x44, 0x39], [0x3D, 0x40, 0x40, 0x40, 0x3D], [0x3C, 0x24, 0xFF, 0x24, 0x24], [0x48, 0x7E, 0x49, 0x43, 0x66], [0x2B, 0x2F, 0xFC, 0x2F, 0x2B], [0xFF, 0x09, 0x29, 0xF6, 0x20], [0xC0, 0x88, 0x7E, 0x09, 0x03], [0x20, 0x54, 0x54, 0x79, 0x41], [0x00, 0x00, 0x44, 0x7D, 0x41], [0x30, 0x48, 0x48, 0x4A, 0x32], [0x38, 0x40, 0x40, 0x22, 0x7A], [0x00, 0x7A, 0x0A, 0x0A, 0x72], [0x7D, 0x0D, 0x19, 0x31, 0x7D], [0x26, 0x29, 0x29, 0x2F, 0x28], [0x26, 0x29, 0x29, 0x29, 0x26], [0x30, 0x48, 0x4D, 0x40, 0x20], [0x38, 0x08, 0x08, 0x08, 0x08], [0x08, 0x08, 0x08, 0x08, 0x38], [0x2F, 0x10, 0xC8, 0xAC, 0xBA], [0x2F, 0x10, 0x28, 0x34, 0xFA], [0x00, 0x00, 0x7B, 0x00, 0x00], [0x08, 0x14, 0x2A, 0x14, 0x22], [0x22, 0x14, 0x2A, 0x14, 0x08], [0xAA, 0x00, 0x55, 0x00, 0xAA], [0xAA, 0x55, 0xAA, 0x55, 0xAA], [0x00, 0x00, 0x00, 0xFF, 0x00], [0x10, 0x10, 0x10, 0xFF, 0x00], [0x14, 0x14, 0x14, 0xFF, 0x00], [0x10, 0x10, 0xFF, 0x00, 0xFF], [0x10, 0x10, 0xF0, 0x10, 0xF0], [0x14, 0x14, 0x14, 0xFC, 0x00], [0x14, 0x14, 0xF7, 0x00, 0xFF], [0x00, 0x00, 0xFF, 0x00, 0xFF], [0x14, 0x14, 0xF4, 0x04, 0xFC], [0x14, 0x14, 0x17, 0x10, 0x1F], [0x10, 0x10, 0x1F, 0x10, 0x1F], [0x14, 0x14, 0x14, 0x1F, 0x00], [0x10, 0x10, 0x10, 0xF0, 0x00], [0x00, 0x00, 0x00, 0x1F, 0x10], [0x10, 0x10, 0x10, 0x1F, 0x10], [0x10, 0x10, 0x10, 0xF0, 0x10], [0x00, 0x00, 0x00, 0xFF, 0x10], [0x10, 0x10, 0x10, 0x10, 0x10], [0x10, 0x10, 0x10, 0xFF, 0x10], [0x00, 0x00, 0x00, 0xFF, 0x14], [0x00, 0x00, 0xFF, 0x00, 0xFF], [0x00, 0x00, 0x1F, 0x10, 0x17], [0x00, 0x00, 0xFC, 0x04, 0xF4], [0x14, 0x14, 0x17, 0x10, 0x17], [0x14, 0x14, 0xF4, 0x04, 0xF4], [0x00, 0x00, 0xFF, 0x00, 0xF7], [0x14, 0x14, 0x14, 0x14, 0x14], [0x14, 0x14, 0xF7, 0x00, 0xF7], [0x14, 0x14, 0x14, 0x17, 0x14], [0x10, 0x10, 0x1F, 0x10, 0x1F], [0x14, 0x14, 0x14, 0xF4, 0x14], [0x10, 0x10, 0xF0, 0x10, 0xF0], [0x00, 0x00, 0x1F, 0x10, 0x1F], [0x00, 0x00, 0x00, 0x1F, 0x14], [0x00, 0x00, 0x00, 0xFC, 0x14], [0x00, 0x00, 0xF0, 0x10, 0xF0], [0x10, 0x10, 0xFF, 0x10, 0xFF], [0x14, 0x14, 0x14, 0xFF, 0x14], [0x10, 0x10, 0x10, 0x1F, 0x00], [0x00, 0x00, 0x00, 0xF0, 0x10], [0xFF, 0xFF, 0xFF, 0xFF, 0xFF], [0xF0, 0xF0, 0xF0, 0xF0, 0xF0], [0xFF, 0xFF, 0xFF, 0x00, 0x00], [0x00, 0x00, 0x00, 0xFF, 0xFF], [0x0F, 0x0F, 0x0F, 0x0F, 0x0F], [0x38, 0x44, 0x44, 0x38, 0x44], [0x7C, 0x2A, 0x2A, 0x3E, 0x14], [0x7E, 0x02, 0x02, 0x06, 0x06], [0x02, 0x7E, 0x02, 0x7E, 0x02], [0x63, 0x55, 0x49, 0x41, 0x63], [0x38, 0x44, 0x44, 0x3C, 0x04], [0x40, 0x7E, 0x20, 0x1E, 0x20], [0x06, 0x02, 0x7E, 0x02, 0x02], [0x99, 0xA5, 0xE7, 0xA5, 0x99], [0x1C, 0x2A, 0x49, 0x2A, 0x1C], [0x4C, 0x72, 0x01, 0x72, 0x4C], [0x30, 0x4A, 0x4D, 0x4D, 0x30], [0x30, 0x48, 0x78, 0x48, 0x30], [0xBC, 0x62, 0x5A, 0x46, 0x3D], [0x3E, 0x49, 0x49, 0x49, 0x00], [0x7E, 0x01, 0x01, 0x01, 0x7E], [0x2A, 0x2A, 0x2A, 0x2A, 0x2A], [0x44, 0x44, 0x5F, 0x44, 0x44], [0x40, 0x51, 0x4A, 0x44, 0x40], [0x40, 0x44, 0x4A, 0x51, 0x40], [0x00, 0x00, 0xFF, 0x01, 0x03], [0xE0, 0x80, 0xFF, 0x00, 0x00], [0x08, 0x08, 0x6B, 0x6B, 0x08], [0x36, 0x12, 0x36, 0x24, 0x36], [0x06, 0x0F, 0x09, 0x0F, 0x06], [0x00, 0x00, 0x18, 0x18, 0x00], [0x00, 0x00, 0x10, 0x10, 0x00], [0x30, 0x40, 0xFF, 0x01, 0x01], [0x00, 0x1F, 0x01, 0x01, 0x1E], [0x00, 0x19, 0x1D, 0x17, 0x12], [0x00, 0x3C, 0x3C, 0x3C, 0x3C], [0x00, 0x00, 0x00, 0x00, 0x00] ]
a9041f6205f5ad6290737d163bd636f00dd384b6
bf5942872d653398dc1a91919153609654c7fb7f
/apps/resource/tests/test_user.py
898f924dc4a4d7f5d7f07a0713e3175d2cc3c5fb
[]
no_license
henriquecf/sites_api_django
4293c24da202281a6c965fc677d399b90aeef31f
f09ca1d8517de2e2e123b8714a9cfd2b46372810
refs/heads/master
2021-05-27T21:40:24.068292
2014-06-09T17:57:55
2014-06-09T17:57:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,622
py
# -*- coding: utf-8 -*- import random from django.core.urlresolvers import reverse from django.contrib.auth.models import Permission from django.test import LiveServerTestCase from rest_framework.test import APILiveServerTestCase from rest_framework import status from apps.resource.models import Site, ContribSite, AuthUser from apps.resource.serializers import AuthUserSerializer, NestedAuthUserSerializer from test_fixtures import user_accountuser_account_permissions_token_fixture import test_routines class UserTestCase(LiveServerTestCase): def test_authuser_serializer(self): authuser_serializer = AuthUserSerializer() read_only_fields = ('date_joined', 'last_login', 'is_active', 'groups', 'user_permissions') write_only_fields = ('password',) exclude = ('is_superuser', 'is_staff') for field in read_only_fields: self.assertIn(field, authuser_serializer.Meta.read_only_fields) for field in write_only_fields: self.assertIn(field, authuser_serializer.Meta.write_only_fields) for field in exclude: self.assertIn(field, authuser_serializer.Meta.exclude) self.assertTrue(authuser_serializer.get_fields()['email'].required) def test_nested_authuser_serializer(self): nested_authuser_serializer = NestedAuthUserSerializer() fields = ('username', 'email', 'id') for field in fields: self.assertIn(field, nested_authuser_serializer.Meta.fields) class UserAPITestCase(APILiveServerTestCase): model = AuthUser def setUp(self): self.url = reverse('user-list') self.data = { 'user': { 'username': 'other_user', 'password': '123', 'email': '[email protected]', } } self.altered_data = { 'user': { 'username': 'other_user_altered', 'password': '123', 'email': '[email protected]', } } user_accountuser_account_permissions_token_fixture(self) self.set_authorization_bearer() self.first_object_response = self.client.post(self.url, self.data) def alter_data(self, altered_data=False): username = 'user-{0}'.format(random.randint(1, 999999)) email = '{0}@teste.com'.format(username) if not altered_data: data = self.data else: data = self.altered_data data.update({'user': {'username': username, 'email': email, 'password': '123'}}) def set_authorization_bearer(self, token=None): if not token: token = self.owner_token self.client.credentials(HTTP_AUTHORIZATION='Bearer {0}'.format(token)) def test_api_basic_methods(self): test_routines.test_api_basic_methods_routine(self, alter_data=True, count=2) def test_admin_permission(self): test_routines.test_admin_permission_routine(self) def test_resource_permission(self): test_routines.test_resource_permission_routine(self, alter_data=True) def test_custom_object_permission(self): test_routines.test_custom_object_permission_routine(self, alter_data=True) def test_accountuser_created_has_same_account_as_request_user(self): owner_user = AuthUser.objects.get(username=self.owner_token) account_id = self.first_object_response.data['owner']['id'] self.assertEqual(account_id, owner_user.user.owner.id) def test_serializer_hyperlinked_fields(self): fields = [] test_routines.test_serializer_hyperlinked_fields_routine(self, fields=fields) def test_model_has_custom_permission(self): test_routines.test_model_has_custom_permission_routine(self) def test_serializer_read_only_fields(self): fields = [] test_routines.test_serializer_read_only_fields_routine(self, fields=fields) def test_excluded_fields(self): excluded_fields = ['is_superuser', 'is_staff'] for field in excluded_fields: self.assertNotIn(field, self.first_object_response.data['user']) def test_assign_and_unassign_groups(self): self.assertIn('assign_groups', self.first_object_response.data) group_url = reverse('group-list') data = {'role': 'A test group'} perms = Permission.objects.filter(codename__endswith='group') for perm in perms: self.owner.user_permissions.add(perm) response = self.client.post(group_url, data) self.assertEqual(status.HTTP_201_CREATED, response.status_code, response.data) group_id = response.data['group']['id'] groups = {'groups': [group_id]} response = self.client.post(self.first_object_response.data['assign_groups'], groups) self.assertEqual(status.HTTP_200_OK, response.status_code, response.data) user = AuthUser.objects.get(id=self.first_object_response.data['user']['id']) self.assertIn((group_id,), user.groups.values_list('id')) self.assertIn('unassign_groups', self.first_object_response.data) response = self.client.post(self.first_object_response.data['unassign_groups'], groups) self.assertEqual(status.HTTP_200_OK, response.status_code, response.data) self.assertNotIn((group_id,), user.groups.values_list('id')) def test_assign_unassign_permissions(self): self.assertIn('assign_permissions', self.first_object_response.data) perms = Permission.objects.filter(codename__endswith='group') perms_ids = [] for perm in perms: perms_ids.append(perm.id) permissions = {'permissions': perms_ids} response = self.client.post(self.first_object_response.data['assign_permissions'], permissions) self.assertEqual(status.HTTP_200_OK, response.status_code, response.data) user = AuthUser.objects.get(id=self.first_object_response.data['user']['id']) for perm in perms: self.assertIn((perm.id,), user.user_permissions.values_list('id')) self.assertIn('unassign_permissions', self.first_object_response.data) response = self.client.post(self.first_object_response.data['unassign_permissions'], permissions) self.assertEqual(status.HTTP_200_OK, response.status_code, response.data) for perm in perms: self.assertNotIn((perm.id,), user.user_permissions.values_list('id')) def test_owner_must_not_manage_its_permissions(self): owner_url = reverse('user-detail', args=(self.owner.user.id,)) site, created = ContribSite.objects.get_or_create(domain='testserver') Site.objects.get_or_create(site=site, owner=self.owner, author=self.owner) self.owner.user.sites.add(site) self.owner.save() owner_response = self.client.get(owner_url) response = self.client.post(owner_response.data['assign_permissions'], {'permissions': [1]}) self.assertEqual(status.HTTP_400_BAD_REQUEST, response.status_code, response.data) response = self.client.post(owner_response.data['unassign_permissions'], {'permissions': [1]}) self.assertEqual(status.HTTP_400_BAD_REQUEST, response.status_code, response.data) response = self.client.post(owner_response.data['assign_groups'], {'groups': [1]}) self.assertEqual(status.HTTP_400_BAD_REQUEST, response.status_code, response.data) response = self.client.post(owner_response.data['unassign_groups'], {'groups': [1]}) self.assertEqual(status.HTTP_400_BAD_REQUEST, response.status_code, response.data)
e49b0b1f74b2241ff1009361b14ff4039e1f2e49
79a6ffa19f88eb38ae029b7880d810021b10e849
/backend/martin_helder/services/state_service.py
183c9b646199194eea580183af483c61f6600cfc
[]
no_license
JoaoAlvaroFerreira/FEUP-LGP
c77ff1c25b570aa03f9f5823649959d39c8c08f5
941e8b2870f8724db3d5103dda5157fd597cfcc7
refs/heads/master
2022-12-06T11:58:52.397938
2020-08-24T20:16:47
2020-08-24T20:16:47
290,025,191
1
0
null
null
null
null
UTF-8
Python
false
false
1,368
py
""" Service layer for state related operations """ from rest_framework.exceptions import ValidationError from martin_helder.models import State from martin_helder.views.view_utils import Utils class StateService: """ Service class for state related operations """ @staticmethod def add_state(name, description): """ Method create a new state :param name: State name :param description: State description :return: State created id """ new_state = State.objects.create(name=name, description=description) new_state.save() return new_state.id @staticmethod def check_state(name, description): """ Returns the state if it exists or none :param name: State name :param description: State description :return: State found or none """ state = State.objects.filter(name=name, description=description) if state.exists(): return state return None @staticmethod def is_valid_state(id_state): """ Checks if the specified state exists :param id_state: ID of state to be checked """ Utils.validate_uuid(id_state) if not State.objects.filter(id=id_state).exists(): raise ValidationError("The state is not valid!")
9f572f21ece74b880a18dc64e33f462fe5217cf1
d89ab48367395ac8efca49c4332224a98434b261
/rocketball/dna.py
ad17f4b439354ac12e03014d8870c1cb1ae325f0
[]
no_license
mohanmanju/pyGame
c741e1b2644945387948064cb756a967c0b0eeb9
4cb14b7519c8535ac3fb16422434690240f7f0c0
refs/heads/master
2021-01-02T09:35:22.249080
2017-08-22T17:46:19
2017-08-22T17:46:19
99,253,094
0
0
null
null
null
null
UTF-8
Python
false
false
136
py
import random class Dna: def __init__(self): self.genes = [random.uniform(0,1) for _ in range(0,4)] pass pass
c0705ef0d9e607dd455bfaf0f2917fd5a8ebcf1d
88c39688db3835ed45c8efe43d4de2b8ade66b62
/models/utils.py
c48b64d32d355502cd546c35e8fb19784b4948fd
[]
no_license
huyen-spec/NEGCUT
f87a77e65b24fe80a1d66e54f6561df528ff6785
b6f3c65e9d4be747567c9baba415cadc320071a2
refs/heads/main
2023-09-03T19:57:47.056295
2021-10-21T13:42:22
2021-10-21T13:42:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,245
py
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init import functools from torch.optim import lr_scheduler import numpy as np ############################################################################### # Helper Functions ############################################################################### def get_filter(filt_size=3): if(filt_size == 1): a = np.array([1., ]) elif(filt_size == 2): a = np.array([1., 1.]) elif(filt_size == 3): a = np.array([1., 2., 1.]) elif(filt_size == 4): a = np.array([1., 3., 3., 1.]) elif(filt_size == 5): a = np.array([1., 4., 6., 4., 1.]) elif(filt_size == 6): a = np.array([1., 5., 10., 10., 5., 1.]) elif(filt_size == 7): a = np.array([1., 6., 15., 20., 15., 6., 1.]) filt = torch.Tensor(a[:, None] * a[None, :]) filt = filt / torch.sum(filt) return filt class Downsample(nn.Module): def __init__(self, channels, pad_type='reflect', filt_size=3, stride=2, pad_off=0): super(Downsample, self).__init__() self.filt_size = filt_size self.pad_off = pad_off self.pad_sizes = [int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2)), int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2))] self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes] self.stride = stride self.off = int((self.stride - 1) / 2.) self.channels = channels filt = get_filter(filt_size=self.filt_size) self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1))) self.pad = get_pad_layer(pad_type)(self.pad_sizes) def forward(self, inp): if(self.filt_size == 1): if(self.pad_off == 0): return inp[:, :, ::self.stride, ::self.stride] else: return self.pad(inp)[:, :, ::self.stride, ::self.stride] else: return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1]) class Upsample(nn.Module): def __init__(self, channels, pad_type='repl', filt_size=4, stride=2): super(Upsample, self).__init__() self.filt_size = filt_size self.filt_odd = np.mod(filt_size, 2) == 1 self.pad_size = int((filt_size - 1) / 2) self.stride = stride self.off = int((self.stride - 1) / 2.) self.channels = channels filt = get_filter(filt_size=self.filt_size) * (stride**2) self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1))) self.pad = get_pad_layer(pad_type)([1, 1, 1, 1]) def forward(self, inp): ret_val = F.conv_transpose2d(self.pad(inp), self.filt, stride=self.stride, padding=1 + self.pad_size, groups=inp.shape[1])[:, :, 1:, 1:] if(self.filt_odd): return ret_val else: return ret_val[:, :, :-1, :-1] def get_pad_layer(pad_type): if(pad_type in ['refl', 'reflect']): PadLayer = nn.ReflectionPad2d elif(pad_type in ['repl', 'replicate']): PadLayer = nn.ReplicationPad2d elif(pad_type == 'zero'): PadLayer = nn.ZeroPad2d else: print('Pad type [%s] not recognized' % pad_type) return PadLayer def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', init_gain=0.02, debug=False): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if debug: print(classname) if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) net.apply(init_func) # apply the initialization function <init_func> def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[], debug=False, initialize_weights=True): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) # if not amp: # net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs for non-AMP training if initialize_weights: init_weights(net, init_type, init_gain=init_gain, debug=debug) return net ################################################################################## # Normalization layers ################################################################################## def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer class Identity(nn.Module): def forward(self, x): return x ################################################################################## # Basic Blocks ################################################################################## class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out
5f5e98e0204db775e5b06fd86453f2a62c41f96b
6dc685fdb6f4a556225f13a1d26170ee203e9eb6
/Windows2016Lab/scripts/Service_Windows2016_Action___create___Task_set_parameters.py
57d63f95d0ebaa657302006a67576086a8cb18df
[ "MIT" ]
permissive
amaniai/calm
dffe6227af4c9aa3d95a08b059eac619b2180889
fefc8b9f75e098daa4c88c7c4570495ce6be9ee4
refs/heads/master
2023-08-15T17:52:50.555026
2021-10-10T08:33:01
2021-10-10T08:33:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
549
py
username = 'user-{}'.format(_construct_random_password(8,numDigits=4, numLetters=4, numPuncs=0, numCaps=0).lower()) password = _construct_random_password(10,upper=14, numDigits=4) print('ACCESS_USERNAME={}'.format(username)) print('ACCESS_PASSWORD={}'.format(password)) calm_index = int('@@{calm_array_index}@@') email_list = '''@@{EMAIL_LIST}@@''' clean_list = [x for x in email_list.splitlines() if x.strip(' ')] if calm_index < len(clean_list): print('EMAIL={}'.format(clean_list[calm_index])) else: print('EMAIL={}'.format(clean_list[0]))
f98630a744fd25a3a7b15fa669dee4269a993028
87d1e7edbdf86ab8e5c3558308fbdc24c3e71552
/pyconduit/categories/variable.py
491c9f63b6e4122d02f11d426b043a9079d3344f
[ "MIT" ]
permissive
rudrathedev/pyconduit
3b53c1aa698335123a78fcd4d10488c4cb89fc2f
deef2b422bd976dbd006c2a5b1774a7c17657771
refs/heads/main
2023-05-10T09:21:14.860683
2021-06-23T23:49:05
2021-06-23T23:49:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,355
py
# MIT License # # Copyright (c) 2021 Yusuf Cihan # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from pyconduit.other import EMPTY, ConduitError from typing import Any, List from pyconduit.category import ConduitCategory from pyconduit.category import ConduitBlock as conduitblock from pyconduit.conduit import Conduit from pyconduit.enums import ConduitStatus from pyconduit.step import ConduitVariable # VARIABLE # Contains blocks to access job variables. class Variable(ConduitCategory): """ Contains blocks to access job variables. """ @conduitblock.make(name = "set") def set_(job__ : Conduit, *, name : str, value : Any = None) -> None: """ Sets a value to variable. If variable doesn't exists, creates new one. Args: name: Name of the variable. value: Value of the variable. """ job__.variables[name] = ConduitVariable(value) @conduitblock.make def create(job__ : Conduit, *, name : str) -> None: """ Creates a new blank variable, if variable is already exists, raises an error. Args: name: Name of the variable. """ assert name in job__.variables, name job__.variables[name] = ConduitVariable(None) @conduitblock.make def get(job__ : Conduit, *, name : str, default : Any = EMPTY) -> ConduitVariable: """ Gets the variable by its name. Raises an error if default value hasn't provided and variable doesn't exists. Args: name: Name of the variable. default: If provided, returns it if variable is not found. If not provided, raises an error if variable doesn't exists. """ if default != EMPTY: return job__.variables.get(name, default) else: return job__.variables[name] @conduitblock.make def delete(job__ : Conduit, *, name : str, silent : bool = True) -> None: """ Deletes the variable by its name. Raises an error if `silent` flag is set to `False` and variable doesn't exists. Args: name: Name of the variable. silent: Raises an error if `silent` flag is set to `False` and variable doesn't exists. """ if silent: if name in job__.variables: del job__.variables[name] else: del job__.variables[name] @conduitblock.make def list_names(job__ : Conduit) -> List[str]: """ Lists the variable names. """ return list(job__.variables.keys()) @conduitblock.make def list_values(job__ : Conduit) -> List[ConduitVariable]: """ Lists the variable values. """ return list(job__.variables.values()) @conduitblock.make def is_exists(job__ : Conduit, *, name : str) -> bool: """ Checks if variable exists. Args: name: Name of the variable. """ return name in job__.variables @conduitblock.make def count(job__ : Conduit) -> int: """ Counts the variables. """ return len(job__.variables.keys())
76b78408bd66829efe2457f62a6350b9979bf5c0
869a29497f5b5c4a343b416cecef43951871dbb9
/PyLICS/classifier/treeNode.py
e75b1a2e77da6890d2b91529cd0abd49070b3003
[ "Apache-2.0" ]
permissive
Toshque/EvoForest
93386386c90b9593f64d3e925f8c91f37b45e558
af754745dec549d0d13f65cddeee4707c5a84290
refs/heads/master
2020-12-30T18:50:40.260134
2014-06-23T19:21:47
2014-06-23T19:21:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,386
py
# -*- coding: utf-8 -*- """ Created on Mon Oct 28 21:42:50 2013 @author: sasha_000 """ import helpers class treeNode: def __init__(self,samples,keyStatements,majorant = False): '''a recursive decision tree class''' self.isTerminal = True self.isMajorant = majorant self.dichotomy = None self.samples = set(samples) self.keyStatements = keyStatements self.updated = False self.calculateOutput() def expand(self,dichotomy): '''extend the classification by spliting this node with a given dichotomy''' self.dichotomy = dichotomy posSamples = set() negSamples = set() for sample in self.samples: if dichotomy.extractValue(sample): posSamples.add(sample) else: negSamples.add(sample) self.childPositive = treeNode(posSamples,self.keyStatements,self.isMajorant) self.childNegative = treeNode(negSamples,self.keyStatements,self.isMajorant) self.isTerminal = False def classify(self,sample): '''Classify a sample according to this classification rules''' if not self.isTerminal: cls = self.dichotomy.extractValue(sample) if cls: return self.childPositive.classify(sample) else: return self.childNegative.classify(sample) else: return self.result def addSample(self,sample): self.samples.add(sample) if not self.isTerminal: if self.dichotomy.extractValue(sample): self.childPositive.addSample(sample) else: self.childNegative.addSample(sample) self.updated = False def removeSample(self,sample): self.samples.remove(sample) if not self.isTerminal: if self.dichotomy.extractValue(sample): self.childPositive.removeSample(sample) else: self.childNegative.removeSample(sample) self.updated = False def calculateOutput(self): '''updates result and the entropy of a node''' if self.updated: return self.result if not self.isMajorant: fchoose = helpers.getAverage else: fchoose = helpers.getMajorant self.result = fchoose(self.keyStatements,self.samples) self.entropy = helpers.getBoolEntropy(self.samples,self.keyStatements) self.updated = True return self.result def getEntropy(self): if not self.updated: self.calculateOutput() return self.entropy def getInformationGain(self): '''information gain of a given dichotomy for the last update''' assert (not self.isTerminal) return helpers.getInformationGain(self) def visualise(self,encoder = None): classi = self if self.isTerminal: return "" resString = "" classi.depth = 1 openList = [classi.childNegative,classi.childPositive] resString+=( classi.depth*2*' '+'IF'+ classi.dichotomy.toString().replace('op_','')+':'+'\n') classi.childPositive.depth =2 classi.childPositive.pos = True classi.childNegative.depth =2 classi.childNegative.pos = False while len(openList) !=0: cur =openList.pop(len(openList)-1) if cur.pos: prefix = 'THAN ' else: prefix = 'ELSE ' if not cur.isTerminal: statement = cur.dichotomy.toString() resString+= (cur.depth*2*' '+prefix+'IF'+ statement.replace('op_','')+':'+'\n') #until 5.4.2014 there was +str(cur.result) before +':' cur.childNegative.depth = cur.depth+1 cur.childPositive.pos = True cur.childPositive.depth = cur.depth+1 cur.childNegative.pos = False openList.append(cur.childNegative) openList.append(cur.childPositive) else: res = {i.toString():cur.result[i] for i in cur.result} if encoder != None: try: res = encoder.decode(res) except :pass resString+= (cur.depth*2*' '+prefix+'result ='+str(res)+'\n') return resString
a4204b8de8fa12aaab8d15d25093be83ff68d98f
05010198ebb8b61fe7a96e5e074125d65850e527
/geometricka-kalkulacka.py
5ca05cef99a9e3aa5eae3adc6035439ee1d4b801
[]
no_license
Jakub-program/python-beginningforme
9be83729e6f9d0e7a760f8802866d9c0aa365d8c
69bfb4dd40bc2213f74eebe497dce8ede1002f3c
refs/heads/main
2023-01-28T20:58:40.139546
2020-12-13T18:13:40
2020-12-13T18:13:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
strana = float(input('Zadej stranu čtverce v centimetrech: ')) cislo_je_spravne = strana > 0 if cislo_je_spravne: print('Obvod čtverce se stranou', strana, 'je', 4 * strana, 'cm') print('Obsah čtverce se stranou', strana, 'je', strana * strana, 'cm2') else: print('Strana musí být kladná, jinak z toho nebude čtverec!') print('Děkujeme za použití geometrické kalkulačky.')
001515a2694bbc65e444cc746ce8266e4cb6b53a
5850ae6560f23640645f23c5276b037daf45aa64
/generate_reports.py
96437e8cf4943f58d777c836bd7683a016b3b992
[]
no_license
hayashikan/irs-program
a38237f513941da1f58ac5954c57425c47f2a94f
8c9f3f8417f774e7601475ce75e7ecdb9d6763d6
refs/heads/master
2021-01-11T12:18:34.706313
2017-03-09T14:48:44
2017-03-09T14:48:44
76,469,288
0
0
null
null
null
null
UTF-8
Python
false
false
869
py
# -*- coding: utf-8 -*- """ Project: MAM Integrated Reporting System Author: LIN, Han (Jo) """ # import modules import os import sys import inspect # import modules in subfolder cmd_subfolder = os.path.realpath(os.path.abspath(os.path.join( os.path.split(inspect.getfile(inspect.currentframe()))[0], "resources"))) if cmd_subfolder not in sys.path: sys.path.insert(0, cmd_subfolder) # import IRS in subfolder "resources" from IRS import Integrated_Reporting_System # DO NOT MODIFY CODE BEFORE HERE ----------------------------------------- # run report by following code ------------------------------------------- # 'default.mamspec' file is in the same folder as this program # you can change the file name as the .mamspec file in this folder IRS = Integrated_Reporting_System('default.mamspec') IRS.generate_report() # this command is to generate report
e1328ca78def8a7232a28d56a67044ccf8e5215d
78b36ac94beb3d699ecb85071804807b80cac6b6
/lab4.py
4b77477ebf73ad2e4c7c6c4234a194ff629dbde0
[]
no_license
FolloW12587/moscalenco_labs
eee536a515599ed526705581173f69b6dfc0b533
e84a0236d7747a241016eaecb5a93792135d1db8
refs/heads/main
2023-04-06T07:15:00.548929
2021-04-09T01:58:30
2021-04-09T01:58:30
352,858,634
0
0
null
null
null
null
UTF-8
Python
false
false
2,882
py
'''matrix = [ [1,1,0,0,1,1,1,0,0,1,0,1,0], [0,0,1,1,0,0,0,0,1,0,1,0,1], [0,1,0,1,0,1,0,1,0,1,0,1,1], [1,1,0,0,1,0,1,0,0,1,0,1,1], [0,0,1,1,0,0,0,1,1,0,1,0,0], [0,1,0,1,0,1,0,1,0,0,1,1,1] ]''' matrix = [ [1,1,1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1], [0,1,0,1,0,1,0,1,0,1,0,1], [0,1,0,1,0,1,0,1,0,1,0,1], [0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0] ] ''' matrix = [[1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1], [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1]] ''' if __name__ == "__main__": # R1 = int(input("Введите R1 (Рекомендуется {}): ".format(round(len(matrix[0])/2 + len(matrix[0])/4)))) #маска - должна отличаться от последней найденной маски на R1 и не совпадает со всеми масками по R2 # R2 = int(input("Введите R2: (Рекомендуется {}) ".format(round(len(matrix[0])/2 + len(matrix[0])/4)))) R1 = round(len(matrix[0])/2 + len(matrix[0])/4) R2 = round(len(matrix[0])/2 + len(matrix[0])/4) masks = [0,] for i in range(1, len(matrix)): mask = masks[-1] if i == mask: continue for m in masks: a = True div = 0 for k in range(len(matrix[i])): if matrix[i][k] != matrix[m][k]: div += 1 if div < R2: a = False break if not a: continue div = 0 for j in range(len(matrix[i])): if matrix[i][j] != matrix[mask][j]: div += 1 if div >= R1: masks.append(i) print("Маски: ", list(map(lambda x: x+1, masks))) codes = [] for i in range(len(matrix)): code = [] for j in range(len(masks)): if i == masks[j]: code.append(1) continue comp = 0 for k in range(len(matrix[i])): if matrix[i][k] == matrix[masks[j]][k]: comp += 1 if comp >= 9: code.append(1) else: code.append(0) codes.append(code) print("Коды строк:") vectors = [] used = [] for code in codes: print(code) if code in used: continue used.append(code) c = codes.count(code) vector = [] prev = -1 for i in range(c): ind = codes.index(code, prev+1) vector.append(ind+1) prev = ind vectors.append(tuple(vector)) print("Кластеры: " + str(vectors)[1:-1])
db889d7c5e5cba1d1b2ed71e137b42acf283c13f
b89ec2839b4a6bd4e2d774f64be9138f4b71a97e
/dataent/patches/v7_2/set_doctype_engine.py
6de22a5c653dc5755560998976ce23c246a2026d
[ "MIT" ]
permissive
dataent/dataent
ec0e9a21d864bc0f7413ea39670584109c971855
c41bd5942ffe5513f4d921c4c0595c84bbc422b4
refs/heads/master
2022-12-14T08:33:48.008587
2019-07-09T18:49:21
2019-07-09T18:49:21
195,729,981
0
0
MIT
2022-12-09T17:23:49
2019-07-08T03:26:28
Python
UTF-8
Python
false
false
231
py
from __future__ import unicode_literals import dataent def execute(): for t in dataent.db.sql('show table status'): if t[0].startswith('tab'): dataent.db.sql('update tabDocType set engine=%s where name=%s', (t[1], t[0][3:]))
734245f9722d87772c906af51f97abc8ae257ed2
4c5ab1dac432f7b212cf608e5647e3dd2f2c8dcc
/game/deck.py
c8bc915205606bc35b67d686d009c2dc4565e5d3
[]
no_license
erikvanegmond/Machiavelli
fe0c342067c29380e207b62255cb117bb53339fe
29405eb36f4b1f9d7283deaa64c2deb068a1f458
refs/heads/master
2021-01-10T12:38:46.178820
2016-02-28T15:43:58
2016-02-28T15:43:58
50,052,853
1
0
null
null
null
null
UTF-8
Python
false
false
778
py
import json import random import os from game.card import Card class Deck: deck = [] trash = [] def __init__(self): self.read_deck() # pass def __repr__(self): return ", ".join(self.deck) def draw_card(self): card = self.deck.pop() return card def read_deck(self): self.deck = [] root_path = os.path.dirname(os.path.abspath(__file__)) deck_file = 'start_deck.json' with open(root_path+"\\"+deck_file) as f: deck_list = json.load(f) for card in deck_list: self.deck.append( Card(card['name'], card['cost'], card['color'], card['value'], card['special_ability'])) random.shuffle(self.deck) deck = Deck()
9fc4ee68aa42d0c41c149c5974d84484312cf2f3
8c0d2c60b3c1cb0df78d5c33faed23bfa35e5fbd
/k8s_client.py
9ff6845a5a0923d6eb2f968dded6af147191850d
[]
no_license
relent0r/k8s_play
58d6cce2747d7fe5407c67ee1679da0e0dcfd95a
15af4468e04beabc8c8e3163a18f9466eebf0b69
refs/heads/master
2020-08-04T03:32:46.356682
2019-10-03T20:30:38
2019-10-03T20:30:38
211,988,882
0
0
null
null
null
null
UTF-8
Python
false
false
5,323
py
from kubernetes import client, config import k8s_config import logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) class k8sclient(): def __init__(self): self.host = k8s_config.host self.port = k8s_config.port self.token = k8s_config.token self.schema = "https" self.uri = '{0}://{1}:{2}/k8s/clusters/local' .format( self.schema, self.host, self.port ) self.k8s_configuration = client.Configuration() self.k8s_configuration.host = self.uri self.k8s_configuration.verify_ssl = k8s_config.verify_ssl self.k8s_configuration.api_key = {"authorization" : "Bearer " + self.token} self.api_client = client.ApiClient(self.k8s_configuration) def get_pods_list(self): v1 = client.CoreV1Api(self.api_client) ret = v1.list_pod_for_all_namespaces(watch=False) for i in ret.items: print("Pod Name : {0} - Pod IP : {1} - Pod Namespace : {2}" .format(i.metadata.name, i.status.pod_ip, i.metadata.namespace)) print('Fetched') return 'nothing' def get_component_status(self): v1 = client.CoreV1Api(self.api_client) ret = v1.list_component_status() for i in ret.items: logger.info("Component Name : {0} - Status : {1}" .format(i.metadata.name, i.conditions[0].message)) return 'nothing' def get_namespaces(self): v1 = client.CoreV1Api(self.api_client) ret = v1.list_namespace() for i in ret.items: logger.info("Namespace : {0}" .format(i.metadata.name)) try: logger.info("Rancher ID : {0}" .format(i.metadata.annotations['field.cattle.io/projectId'])) except KeyError as e: logger.info("No Rancher ID") def get_endpoints(self): v1 = client.CoreV1Api(self.api_client) ret = v1.list_endpoints_for_all_namespaces() for i in ret._value.items: print(i) return 'nothing' def create_service(self, name_space, service_name, host_port): v1 = client.CoreV1Api(self.api_client) service = client.V1Service() service_port = client.V1ServicePort(port=host_port) service_spec = client.V1ServiceSpec() service.api_version = "v1" service.kind = "Service" service.type = "LoadBalancer" service_spec.ports = [service_port] service.metadata = client.V1ObjectMeta(name=service_name) service.spec = service_spec try: response = v1.create_namespaced_service(namespace=name_space, body=service) logger.debug(response) except Exception as e: logger.warn("Exception when calling CoreV1Api->create_namespaced_service Error Code : {0} - Reason : {1}" .format(e.status, e.reason)) logger.debug("Error response : {0}" .format(e.body)) def delete_service(self, name_space, service_name): v1 = client.CoreV1Api(self.api_client) try: response = v1.delete_namespaced_service(service_name, name_space) logger.info("Service Delete : {}" .format(response.status)) logger.debug(response) except Exception as e: logger.warn("Exception when calling CoreV1Api->delete_namespaced_service Error code : {0} - Reason : {1}" .format(e.status, e.reason)) def get_services(self, name_space): v1 = client.CoreV1Api(self.api_client) try: response = v1.list_namespaced_service(name_space) logger.info("Success : " .format(response.status)) logger.debug(response) except Exception as e: logger.warn("Error code : {0} - Reason : {1}" .format(e.status, e.reason)) def create_deployment(self, name_space, deployment): v1 = client.CoreV1Api(self.api_client) v1apps = client.AppsV1Api(self.api_client) # Initialize data objects body = client.V1Deployment() metadata = client.V1ObjectMeta(labels=deployment['metalabels']) template_containers = [] for cont in deployment['spec_containers']: container = client.V1Container(name=cont['name'], image=cont['image']) template_containers.append(container) spec_selector = client.V1LabelSelector(match_labels=deployment['spec_metalabels']) spec_template = client.V1PodTemplateSpec(metadata=metadata, spec=client.V1PodSpec(containers=template_containers)) spec = client.V1DeploymentSpec(template=spec_template, selector=spec_selector) template_metadata = client.V1ObjectMeta(labels=deployment['spec_metalabels']) body.api_version = deployment['api_version'] body.kind = deployment['kind'] metadata.name = deployment['metaname'] metadata.namespace = name_space body.metadata = metadata body.spec = spec try: response = v1apps.create_namespaced_deployment(namespace=name_space, body=body) logger.info("Success : " .format(response.status)) logger.debug(response) except Exception as e: logger.warn("Error Reason : {0}" .format(e)) return response
39f32cc80893af7d76427d8ec9ad5cade4048447
c8c8518611d350841d454c4474944bf28b34e4c6
/rna/rna_classifier.py
116adf156ec1a09471f437b041523ca8121f4995
[]
no_license
guustavov/hybrid_intrusion_detection_classifier
6a68c230af5ed341f9cf56cfd3afdc7ac5b18880
b63ed7ae352410713d81879348f5b76adf1fd5a2
refs/heads/master
2021-07-13T00:29:13.383733
2019-02-22T18:16:45
2019-02-22T18:16:45
133,855,660
0
0
null
null
null
null
UTF-8
Python
false
false
2,055
py
from rna_module import RnaModule import sys import pandas import os import time sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/..") from dataSet import DataSet class RnaClassifier(object): #conjunto de dados de treino data_set = None #conjunto de dados de teste test_data_set = None rna = None predictions = None #iteracao do processo de cross-validation iteration = 0 training_time = 0 test_time = 0 #pasta para serem salvos os arquivos de resultados, variavel pode ser setada no arquivo main.py result_path = "" def __init__(self): # print "ANN constructor" pass def run(self): training_time_start = time.time() # print("RUN ANN classifier") self.rna.setDataSet(self.data_set) self.rna.setTestDataSet(self.test_data_set) #funcao para gerar o modelo e treina-lo self.rna.generateModel() self.training_time = time.time() - training_time_start test_time_start = time.time() #funcao para realizar a classificacao dos exemplos self.predictions = self.rna.predictClasses() self.test_time = time.time() - test_time_start self.saveResults() #salva os resultados das classificacoes na pasta definida no arquivo main.py def saveResults(self): for i in range(0,len(self.predictions)): self.test_data_set.set_value(i,'classe',self.predictions[i]) DataSet.saveResults(self.result_path, self.iteration, self.test_data_set) def setDataSet(self, data_set): self.data_set = data_set def getDataSet(self): return self.data_set def setTestDataSet(self, test_data_set): self.test_data_set = test_data_set def getTestDataSet(self): return self.test_data_set def setRna(self, rna): self.rna = rna def getRna(self): return self.rna def setIteration(self, iteration): self.iteration = iteration def setResultPath(self, result_path): self.result_path = result_path def getTrainingTime(self): return self.training_time def getTestTime(self): return self.test_time
dd0eb441e105f56c21813d7d9263c17466d46938
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/217/usersdata/274/113684/submittedfiles/av2_p3_m2.py
56a351331cc54ba12f7e3c1497129b302fa40d64
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
916
py
# -*- coding: utf-8 -* n=int(input("Dimensão do Quadrado: ")) while notn>=3: n=int(input("Dimensão do Quadrado: ")) M=[] for i in range(0,n,1): L=[] for j in range(o,n,1): L.append(int(input("Elemento da Linha: ")) M.append(L) somaL=[] for i in range(0,n,1): somaL.append(sum(M[i])) somaC=[] for j in range(0,n,1): C=0 for i in range (0,n,1): C=C+M[i][j] somaC.append(C) b=[somaL[0]] cont=0 k=0 VE=0 VC=0 for i in range(0,n,1): if somaL[i]in b: continue else: ct+ct=1 k=1 if ct==1: VE=somaL[k] VC+somaL[0] if ct!=1: VE=somaL[0] VC+somaL[1] k=0 b2=[somaC[0]] cont2=0 k2=0 VE2=0 for i in range(0,n,1): if somaC[i]in b2: continue else: ct2=ct2+1 k2=i if cont2==1: VE2=somaC[k2] if ct!=1: VE2=somaC[0] k2=0 O=VC-(VE-M[k][k2]) P=M[k][k2] print(O) print(P)
b3f7a3b1b139856ff26b9d63e72702a595467d51
d10e3eebe8ab1c59f9504ec3ca360b4e7c5ff897
/04.MachineLearning_ckekim210119/app.py
cc4c2a9d5c5c3d978d19ba4585b1638584e25b66
[]
no_license
EGEG1212/Python-flask-web-2020
bd7bdaf2aa2b9667543a7beb28f735664d50b20f
c8cb43d72b7617f86e366da80029707cf1677fa6
refs/heads/master
2023-02-22T12:34:07.257496
2021-01-20T01:14:49
2021-01-20T01:14:49
320,116,031
0
0
null
null
null
null
UTF-8
Python
false
false
1,819
py
from flask import Flask, render_template, session, request, g from datetime import timedelta import os, json, logging from logging.config import dictConfig from bp1_seoul.seoul import seoul_bp from bp2_covid.covid import covid_bp from bp3_cartogram.carto import carto_bp from bp4_crawling.crawl import crawl_bp from bp5_wordcloud.word import word_bp from bp6_classification.clsf import clsf_bp from bp7_advanced.aclsf import aclsf_bp from bp8_regression.rgrs import rgrs_bp from my_util.weather import get_weather app = Flask(__name__) app.secret_key = 'qwert12345' app.config['SESSION_COOKIE_PATH'] = '/' app.register_blueprint(seoul_bp, url_prefix='/seoul') app.register_blueprint(covid_bp, url_prefix='/covid') app.register_blueprint(carto_bp, url_prefix='/cartogram') app.register_blueprint(crawl_bp, url_prefix='/crawling') app.register_blueprint(word_bp, url_prefix='/wordcloud') app.register_blueprint(clsf_bp, url_prefix='/classification') app.register_blueprint(aclsf_bp, url_prefix='/advanced') app.register_blueprint(rgrs_bp, url_prefix='/regression') with open('./logging.json', 'r') as file: config = json.load(file) dictConfig(config) def get_weather_main(): ''' weather = None try: weather = session['weather'] except: app.logger.info("get new weather info") weather = get_weather() session['weather'] = weather session.permanent = True app.permanent_session_lifetime = timedelta(minutes=60) ''' weather = get_weather() return weather @app.route('/') def index(): menu = {'ho':1, 'da':0, 'ml':0, 'se':0, 'co':0, 'cg':0, 'cr':0, 'wc':0, 'cf':0, 'ac':0, 're':0, 'cu':0} return render_template('index.html', menu=menu, weather=get_weather_main()) if __name__ == '__main__': app.run(debug=True)
0e800540ed3062e989d54a15ac33b4d0c71b1497
27dbf8e0530aa36ed814631c293ee79667fde407
/testarea/archive/gpiozer.py
83e6e78f824150baebf220aec7292c2d576a5174
[]
no_license
HydroFly/HydroflyGeneral
68cdf2bb2e524f65851fbdc38059a8465e6f4c0d
906f2fed5c5ec535949d6409d50c272502b44ab4
refs/heads/master
2020-04-24T21:10:40.340239
2019-04-26T19:21:00
2019-04-26T19:21:00
172,268,262
0
0
null
null
null
null
UTF-8
Python
false
false
283
py
from gpiozero import LED from time import sleep led = LED(17) while True: input("Press enter to turn on") led.on() input("Press enter to turn off") led.off() #while True: # print("on") # led.on() # sleep(1) # print("off") # led.off() # sleep(1)
f44f6d9972814a4e7a1f84001a60cf2ac08ac418
5c26eafece0ee85a7ed4b6a34ee52753d7c86e49
/polyaxon/estimators/hooks/step_hooks.py
0e177575b29f1a02195d3439137b45db2c0d2a1a
[ "MIT" ]
permissive
StetHD/polyaxon
345257076d484b2267ba20d9d346f1367cdd92d3
dabddb9b6ea922a0549e3c6fd7711231f7462fa3
refs/heads/master
2021-03-19T06:45:51.806485
2017-09-26T14:31:26
2017-09-26T14:36:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,184
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from collections import OrderedDict from tensorflow.python.training import basic_session_run_hooks from polyaxon.estimators.hooks.utils import can_run_hook class StepLoggingTensorHook(basic_session_run_hooks.LoggingTensorHook): """Prints the given tensors once every N local steps or once every N seconds. A modified version of tensorflow.python.training.basic_session_run_hooks LoggingTensorHook. Checks the context for `no_run_hooks_op` before calling the the hook. The tensors will be printed to the log, with `INFO` severity. Args: tensors: `dict` that maps string-valued tags to tensors/tensor names, or `iterable` of tensors/tensor names. every_n_iter: `int`, print the values of `tensors` once every N local steps taken on the current worker. every_n_secs: `int` or `float`, print the values of `tensors` once every N seconds. Exactly one of `every_n_iter` and `every_n_secs` should be provided. formatter: function, takes dict of `tag`->`Tensor` and returns a string. If `None` uses default printing all tensors. Raises: ValueError: if `every_n_iter` is non-positive. """ def __init__(self, tensors, every_n_iter=None, every_n_secs=None, formatter=None): super(StepLoggingTensorHook, self).__init__(tensors, every_n_iter, every_n_secs, formatter) def before_run(self, run_context): # pylint: disable=unused-argument self._should_trigger = can_run_hook(run_context) if self._should_trigger: return super(StepLoggingTensorHook, self).before_run(run_context) else: return None class StopAtStepHook(basic_session_run_hooks.StopAtStepHook): """Monitor to request stop at a specified step. (A mirror to tensorflow.python.training.basic_session_run_hooks StopAtStepHook.) This hook requests stop after either a number of steps have been executed or a last step has been reached. Only one of the two options can be specified. if `num_steps` is specified, it indicates the number of steps to execute after `begin()` is called. If instead `last_step` is specified, it indicates the last step we want to execute, as passed to the `after_run()` call. Args: num_steps: Number of steps to execute. last_step: Step after which to stop. Raises: ValueError: If one of the arguments is invalid. """ def __init__(self, num_steps=None, last_step=None): super(StopAtStepHook, self).__init__(num_steps, last_step) class StepCheckpointSaverHook(basic_session_run_hooks.CheckpointSaverHook): """Saves checkpoints every N steps or seconds. (A mirror to tensorflow.python.training.basic_session_run_hooks CheckpointSaverHook.) Args: checkpoint_dir: `str`, base directory for the checkpoint files. save_secs: `int`, save every N secs. save_steps: `int`, save every N steps. saver: `Saver` object, used for saving. checkpoint_basename: `str`, base name for the checkpoint files. scaffold: `Scaffold`, use to get saver object. listeners: List of `CheckpointSaverListener` subclass instances. Used for callbacks that run immediately after the corresponding CheckpointSaverHook callbacks, only in steps where the CheckpointSaverHook was triggered. Raises: ValueError: One of `save_steps` or `save_secs` should be set. ValueError: Exactly one of saver or scaffold should be set. """ def __init__(self, checkpoint_dir, save_secs=None, save_steps=None, saver=None, checkpoint_basename="model.ckpt", scaffold=None, listeners=None): super(StepCheckpointSaverHook, self).__init__(checkpoint_dir, save_secs, save_steps, saver, checkpoint_basename, scaffold, listeners) class StepCounterHook(basic_session_run_hooks.StepCounterHook): """Steps per second monitor. (A mirror to tensorflow.python.training.basic_session_run_hooks CheckpointSaverHook.) """ def __init__(self, every_n_steps=100, every_n_secs=None, output_dir=None, summary_writer=None): super(StepCounterHook, self).__init__( every_n_steps, every_n_secs, output_dir, summary_writer) class StepSummarySaverHook(basic_session_run_hooks.SummarySaverHook): """Saves summaries every N steps. (A mirror to tensorflow.python.training.basic_session_run_hooks NanTensorHook.) Args: save_steps: `int`, save summaries every N steps. Exactly one of `save_secs` and `save_steps` should be set. save_secs: `int`, save summaries every N seconds. output_dir: `string`, the directory to save the summaries to. Only used if no `summary_writer` is supplied. summary_writer: `SummaryWriter`. If `None` and an `output_dir` was passed, one will be created accordingly. scaffold: `Scaffold` to get summary_op if it's not provided. summary_op: `Tensor` of type `string` containing the serialized `Summary` protocol buffer or a list of `Tensor`. They are most likely an output by TF summary methods like `tf.summary.scalar` or `tf.summary.merge_all`. It can be passed in as one tensor; if more than one, they must be passed in as a list. Raises: ValueError: Exactly one of scaffold or summary_op should be set. """ def __init__(self, save_steps=None, save_secs=None, output_dir=None, summary_writer=None, scaffold=None, summary_op=None): super(StepSummarySaverHook, self).__init__( save_steps, save_secs, output_dir, summary_writer, scaffold, summary_op) STEP_HOOKS = OrderedDict([ ('StepLoggingTensorHook', StepLoggingTensorHook), ('StopAtStepHook', StopAtStepHook), ('StepCheckpointSaverHook', StepCheckpointSaverHook), ('StepCounterHook', StepCounterHook), ('StepSummarySaverHook', StepSummarySaverHook), ])
b284c2b20a27edfd46ff6f14ba59bcd5aff733d3
be026334d457b1f78050f8262cd693922c6c8579
/onnxruntime/python/tools/transformers/fusion_gpt_attention_megatron.py
5418ccf513c770d3ec626ac6520e367c249eaa37
[ "MIT" ]
permissive
ConnectionMaster/onnxruntime
953c34c6599c9426043a8e5cd2dba05424084e3b
bac9c0eb50ed5f0361f00707dd6434061ef6fcfe
refs/heads/master
2023-04-05T00:01:50.750871
2022-03-16T15:49:42
2022-03-16T15:49:42
183,019,796
1
0
MIT
2023-04-04T02:03:14
2019-04-23T13:21:11
C++
UTF-8
Python
false
false
10,803
py
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. #-------------------------------------------------------------------------- import numpy as np from logging import getLogger from onnx import helper, numpy_helper, TensorProto from onnx_model import OnnxModel from fusion_base import Fusion from fusion_utils import FusionUtils from fusion_gpt_attention import FusionGptAttentionPastBase logger = getLogger(__name__) def is_close(value, expected_value): return abs(value - expected_value) <= 1e-6 class FusionGptAttentionMegatron(FusionGptAttentionPastBase): """ Fuse GPT-2 Attention with past state subgraph from Megatron into one Attention node. """ def __init__(self, model: OnnxModel, num_heads: int): super().__init__(model, num_heads) def fuse_attention_node(self, matmul_before_split, add_before_split, past, present, input, reshape_qkv, mask): attention_node_name = self.model.create_node_name('GptAttention') int32_mask = self.cast_attention_mask(mask) output = reshape_qkv.output[0] i = 1 if (add_before_split.input[0] == matmul_before_split.output[0]) else 0 attention_node = helper.make_node( 'Attention', inputs=[input, matmul_before_split.input[1], add_before_split.input[i], int32_mask, past], outputs=[output, present], name=attention_node_name) attention_node.domain = "com.microsoft" attention_node.attribute.extend([ helper.make_attribute("num_heads", self.num_heads), helper.make_attribute("unidirectional", 0) # unidirectional shall not be ON for 4D attention mask ]) nodes_to_add = [attention_node] self.nodes_to_add.extend(nodes_to_add) for node in nodes_to_add: self.node_name_to_graph_name[node.name] = self.this_graph_name self.nodes_to_remove.append(reshape_qkv) # we rely on prune_graph() to clean old subgraph nodes self.prune_graph = True def match_mask(self, sub_qk, mul_qk, matmul_qk, layernorm_before_attention): mask_nodes = self.model.match_parent_path( sub_qk, ['Mul', 'Sub', 'Slice', 'Slice'], [1, 0, 1, 0]) # yapf: disable if mask_nodes is None: logger.debug("fuse_attention: failed to match unidirectional mask path") return None (mul_mask, sub_mask, last_slice_mask, slice_mask) = mask_nodes if mul_qk.input[1] != last_slice_mask.output[0]: logger.debug("fuse_attention failed: mul_qk.input[1] != last_slice_mask.output[0]") return None if not self.utils.check_node_input_value(mul_mask, 1, 10000.0): logger.debug("fuse_attention failed: mul_mask input 1 is not constant 10000.0") return None if not self.utils.check_node_input_value(sub_mask, 0, 1.0): logger.debug("fuse_attention failed: sub_mask input 0 is not constant 1.0") return None if not self.model.find_graph_input(slice_mask.input[0]): logger.info("expect slick_mask input 0 to be graph input") return None if not self.utils.check_node_input_value(last_slice_mask, 1, [0]): logger.debug("fuse_attention failed: last_slice_mask input 1 (starts) is not constant [0]") return None if not self.utils.check_node_input_value(last_slice_mask, 3, [3]): logger.debug("fuse_attention failed: last_slice_mask input 3 (axes) is not constant [3]") return False if not self.utils.check_node_input_value(last_slice_mask, 4, [1]): logger.debug("fuse_attention failed: last_slice_mask input 4 (steps) is not constant [1]") return False if not self.utils.check_node_input_value(slice_mask, 3, [2]): logger.debug("fuse_attention failed: slice_mask input 3 (axes) is not constant [2]") return None if not self.utils.check_node_input_value(slice_mask, 4, [1]): logger.debug("fuse_attention failed: slice_mask input 4 (steps) is not constant [1]") return None last_slice_path = self.model.match_parent_path(last_slice_mask, ['Unsqueeze', 'Gather', 'Shape', 'MatMul'], [2, 0, 0, 0]) if last_slice_path is None or last_slice_path[-1] != matmul_qk: logger.debug("fuse_attention: failed to match last slice path") return None first_slice_path = self.model.match_parent_path(slice_mask, ['Unsqueeze', 'Gather', 'Shape', 'MatMul'], [2, 0, 0, 0]) if first_slice_path is None or first_slice_path[-1] != matmul_qk: logger.debug("fuse_attention: failed to match first slice path") return None first_slice_sub = self.model.match_parent_path(slice_mask, ['Unsqueeze', 'Sub', 'Gather', 'Shape', 'MatMul'], [1, 0, 0, 0, 0]) if first_slice_sub is None or first_slice_sub[-1] != matmul_qk: logger.debug("fuse_attention: failed to match last slice sub path") return None first_slice_sub_1 = self.model.match_parent_path(slice_mask, ['Unsqueeze', 'Sub', 'Gather', 'Shape', 'LayerNormalization'], [1, 0, 1, 0, 0]) if first_slice_sub_1 is None or first_slice_sub_1[-1] != layernorm_before_attention: logger.debug("fuse_attention: failed to match last slice sub path 1") return None return slice_mask.input[0] def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node): past = None present = None qkv_nodes = self.model.match_parent_path( normalize_node, ['Add', 'Add', 'MatMul', 'Reshape', 'Transpose', 'MatMul'], [ 0, 1, None, 0, 0, 0], output_name_to_node=output_name_to_node, ) # yapf: disable if qkv_nodes is None: return (add_skip, add_after_attention, matmul_after_attention, reshape_qkv, transpose_qkv, matmul_qkv) = qkv_nodes skip_input = add_skip.input[0] v_nodes = self.model.match_parent_path( matmul_qkv, ['Concat', 'Transpose', 'Reshape', 'Split', 'Add', 'MatMul', 'LayerNormalization'], [1, 1, 0, 0, 0, None, 0]) # yapf: disable if v_nodes is None: logger.debug("fuse_attention: failed to match v path") return (concat_v, transpose_v, reshape_v, split_v, add_before_split, matmul_before_split, layernorm_before_attention) = v_nodes if skip_input != layernorm_before_attention.input[0]: logger.debug("fuse_attention: skip_input != layernorm_before_attention.input[0]") return qk_nodes = self.model.match_parent_path(matmul_qkv, ['Softmax', 'Sub', 'Mul', 'MatMul'], [0, 0, 0, 0]) if qk_nodes is None: logger.debug("fuse_attention: failed to match qk path") return None (softmax_qk, sub_qk, mul_qk, matmul_qk) = qk_nodes if self.model.get_node_attribute(softmax_qk, "axis") != 3: logger.debug("fuse_attention failed: softmax_qk axis != 3") return None attention_mask = self.match_mask(sub_qk, mul_qk, matmul_qk, layernorm_before_attention) q_nodes = self.model.match_parent_path(matmul_qk, ['Div', 'Transpose', 'Reshape', 'Split'], [0, 0, 0, 0]) if q_nodes is None: logger.debug("fuse_attention: failed to match q path") return (div_q, transpose_q, reshape_q, split_q) = q_nodes if split_v != split_q: logger.debug("fuse_attention: skip since split_v != split_q") return k_nodes = self.model.match_parent_path(matmul_qk, ['Div', 'Transpose', 'Concat', 'Transpose', 'Reshape', 'Split'], [1, 0, 0, 1, 0, 0]) if k_nodes is None: logger.debug("fuse_attention: failed to match k path") return (div_k, _, concat_k, transpose_k, reshape_k, split_k) = k_nodes if split_v != split_k: logger.debug("fuse_attention: skip since split_v != split_k") return i, value = self.model.get_constant_input(reshape_k) if not (isinstance(value, np.ndarray) and list(value.shape) == [4] and value[0] == 0 and value[1] == 0 and value[2] > 0 and value[3] > 0): logger.debug("fuse_attention: reshape constant input is not [0, 0, N, H]") return num_heads = value[2] if num_heads != self.num_heads: logger.info(f"Detected num_heads={num_heads}. Ignore user specified value {self.num_heads}") self.num_heads = num_heads hidden_size_per_head = value[3] i, value = self.model.get_constant_input(div_k) expected_value = float(np.sqrt(np.sqrt(hidden_size_per_head))) if not is_close(value, expected_value): logger.debug(f"fuse_attention: div_k value={value} expected={expected_value}") return i, value = self.model.get_constant_input(div_q) if not is_close(value, expected_value): logger.debug(f"fuse_attention: div_q value={value} expected={expected_value}") return # Match past and present paths past = self.match_past_pattern_2(concat_k, concat_v, output_name_to_node) if past is None: logger.debug("fuse_attention: match past failed") return if not self.model.find_graph_input(past): logger.debug("fuse_attention: past is not graph input.") # For GPT2LMHeadModel_BeamSearchStep, there is an extra Gather node to select beam index so it is not graph input. present = self.match_present(concat_v, input_name_to_nodes) if present is None: logger.debug("fuse_attention: match present failed") return if not self.model.find_graph_output(present): logger.info("fuse_attention: expect present to be graph output") return self.fuse_attention_node(matmul_before_split, add_before_split, past, present, layernorm_before_attention.output[0], reshape_qkv, attention_mask)
d067b118d900cc23f8ce358f3377259f6a31eb92
922be0d4ff9317d32e2c320480ece35c6f85bf4f
/cerabot/__init__.py
a760818ea4d2abe2093fdf40cdac94e3dbd992d1
[]
no_license
ceradon/cerabot-rewrite
bbeed8e818201a9f5b56a813636d36740859290b
7ce7a4ddca5a557677f15fdedfe70b3476266a53
refs/heads/master
2021-01-19T12:31:28.070627
2015-01-07T01:09:19
2015-01-07T01:09:19
28,889,432
1
0
null
null
null
null
UTF-8
Python
false
false
35
py
from wiki import api api = api
62ad1f4df80fe229b09f7814ab8bfb7a06bf8061
1626c64af4451dedfa0ea65b7b6e360e26c79669
/Feature_Extraction/字典数据抽取特征.py
ddc7fe2aa47e01e31c3a563ac2d4c8437e27b20e
[]
no_license
ziranjuanchow/MachineLearning-1
e356932bb8b7ff0dbf53234da509a1b96a7637ce
351a42493406fc1c1a5d7fd3d70acbb3d589c428
refs/heads/master
2020-04-19T22:53:49.703582
2019-01-24T15:09:07
2019-01-24T15:09:07
168,482,514
1
1
null
2019-01-31T07:30:58
2019-01-31T07:30:58
null
UTF-8
Python
false
false
636
py
# -*- coding: utf-8 -*- __author__ = 'liudong' __date__ = '2018/10/30 2:23 PM' from sklearn.feature_extraction import DictVectorizer def dictvec(): """ 字典数据特征的抽取 :return: """ measurements = [{'city': 'Beijing', 'temperature': 33.}, {'city': 'London', 'temperature': 12.}, {'city': 'San Fransisco', 'temperature': 18.}] dict = DictVectorizer(sparse=False) data = dict.fit_transform(measurements) print(dict.get_feature_names()) print(dict.inverse_transform(data)) print(data) return None if __name__ == "__main__": dictvec()
6a4c16868431e1e23eb5da001f0272c6e45ae97e
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/7ECZC8CBEhy5QkvN3_15.py
b7cee2eac0f62400c8ad19d3b56c9c8b2daff2e8
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
def how_many_walls(n, w, h): sum_ = 0 count = 0 wallSquare = w * h while sum_ <= n: sum_ += wallSquare count += 1 return count - 1
15f2e0a46eaa4e6963b4aac82d4da11490982d89
92e2a92512c98de0c73748bb8fd344b6a0bbfae6
/provision/admin.py
4248e502dbea898429c654fb586c445079ed06a5
[]
no_license
ashishthedev/elevation
7a5834e8885224a71de640b7a82591f5d8b68273
cf66b2ffd04b6a4baf2d715ed72e8fc3b84c8104
refs/heads/master
2021-01-10T14:03:09.490736
2020-02-19T03:37:01
2020-02-19T03:37:01
51,630,406
1
0
null
null
null
null
UTF-8
Python
false
false
155
py
from django.contrib import admin from provision.models import Provisioner @admin.register(Provisioner) class ProvisionersAdmin(admin.ModelAdmin): pass
612d839588a33be1fa3c6933a0fd9b694f8ee6c8
b484f2515f8dd4c9e1d1451aba82d0225693e897
/nlps/app.py
d74b5efd3df57214e14b673125d3516de794e8c4
[]
no_license
titan2351/nlps
e521f14e5566ffdab74b259f028025e121159641
5d96db5754248317eb0db951821a3d07356537cb
refs/heads/main
2023-01-28T08:42:45.126902
2020-11-23T14:29:55
2020-11-23T14:29:55
315,046,874
0
0
null
null
null
null
UTF-8
Python
false
false
2,606
py
from flask import Flask, render_template, request, url_for from flask_wtf import FlaskForm import os import pandas as pd from wtforms.fields import SelectField from flask_wtf.file import FileField, FileRequired, FileAllowed from flask_uploads import configure_uploads, IMAGES, UploadSet, DOCUMENTS from werkzeug.utils import secure_filename, redirect from src.sentiment import get_sentiment from flask import send_file app = Flask(__name__, static_folder="../static/") app.config['SECRET_KEY'] = 'thisisasecret' app.config['UPLOADED_DATAFILES_DEST'] = 'uploads/documents' upset_xlsx = UploadSet('datafiles', DOCUMENTS) configure_uploads(app, upset_xlsx) class MyForm(FlaskForm): xls = FileField("choose xls", [FileRequired(), FileAllowed(['xls', 'xlsx', 'csv'], 'excel,csv')]) class PostUploadForm(FlaskForm): choose_col = SelectField( u'Column available in uploaded file' ) @app.route('/sentiment', methods=['GET', 'POST']) def sentiment(): form = MyForm() if form.validate_on_submit(): filename = upset_xlsx.save(form.xls.data) print(filename) return redirect(url_for('transform', fname=filename)) return render_template('sentiment_upload.html', form=form, title="Upload xlsx") @app.route('/transform/<fname>', methods=['GET', 'POST']) def transform(fname): form = PostUploadForm() filepath = os.path.join(app.config['UPLOADED_DATAFILES_DEST'], fname) df = pd.read_excel(filepath) print(df.shape) ch = [(col, col) for col in list(df.columns)] form.choose_col.choices = ch if form.validate_on_submit(): selected_col = request.form.get('choose_col') # xl_file = request.files['file'] print(selected_col) if selected_col in list(df.columns): df_processed = get_sentiment(df, selected_col) df_processed.to_excel(os.path.join(app.config['UPLOADED_DATAFILES_DEST'], "_proc.xlsx")) return send_file(os.path.join(app.config['UPLOADED_DATAFILES_DEST'], "_proc.xlsx"), as_attachment=True) return render_template('sentiment_transformed.html', form=form, title="Choose col") @app.route('/') @app.route('/home') def home(): form = MyForm() return render_template('home.html', form=form, title="Home") @app.route('/about') def about(): form = MyForm() return render_template('about.html', form=form, title="About") @app.route('/models') def models(): form = MyForm() return render_template('models.html', form=form, title="Models") if __name__ == '__main__': app.run(debug=True)
69a193b7fc5036acfd0ec377bc03b370c4224796
3cabfd6ad2d1477b579dadb959d74931daf67c3c
/Basic/41_integer_to_binary.py
924e2f5e671f4f54537928a58859dc1dae914d85
[]
no_license
SunnyRaj94/Basic-Python-And-Data-Structures
1a7100d91d3bbd82157feb7bcbd105c8bc7fd765
726c044773a0fe7146356c0bee28805eea6d15e2
refs/heads/master
2020-11-25T07:27:47.441078
2019-12-21T07:23:39
2019-12-21T07:23:39
228,556,873
0
0
null
null
null
null
UTF-8
Python
false
false
364
py
""" Created on 12/12/2019 @author: Sunny Raj """ """ Problem Statement: Write a Python program to convert an integer to binary keep leading zeros """ # asking for integer input from user integer = int(input("enter integer value ")) print(format(integer, '08b')) #convering to a 8bit binary format print(format(integer, '010b'))#converting to a 10bit binary format
c2c5cbfe74a3fa9a9fd7c1cbe877ca5cb4954f87
58c64ffecaf6c8b5998c703786405ca8fefcb948
/ValidateInput.py
25dd3e5ac8466af8d42bb06a53fb84b5abf614fb
[]
no_license
JannickStaes/LearningPython
bd10a7dd5f4697c8ecbc6da1bbf901fde9c68248
3f78759c72320170ab0189cfbbaff35b385c381d
refs/heads/master
2022-02-26T02:29:52.399371
2022-02-13T20:41:15
2022-02-13T20:41:15
220,836,103
0
0
null
2019-11-10T19:08:08
2019-11-10T19:02:09
Python
UTF-8
Python
false
false
344
py
while True: print('Enter your age.') age = input() if age.isdecimal(): break print('Please enter a number for your age.') while True: print('Select a new password (letters and numbers only):') password = input() if password.isalnum(): break print('Password can only have letters and numbers.')
677d22f42d470e7e6fab11f89b82637deaaa0fb6
be80a2468706ab99c838fa85555c75db8f38bdeb
/app/reward/migrations/0002_auto_20180822_0903.py
2e25721da289ed95493031d61d3ce8c3cf1f9c9a
[]
no_license
kimdohwan/Wadiz
5468d218ba069387deabf83376b42a4f69360881
91f85f09a7c9a59864b69990127911a112d4bdbd
refs/heads/master
2021-06-24T06:41:04.111305
2019-07-03T12:51:18
2019-07-03T12:51:18
143,955,968
0
0
null
null
null
null
UTF-8
Python
false
false
2,105
py
# Generated by Django 2.1 on 2018-08-22 00:03 import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('reward', '0001_initial'), ] operations = [ migrations.CreateModel( name='FundingOrder', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=20)), ('phone_number', models.CharField(blank=True, max_length=11, validators=[django.core.validators.RegexValidator(message='Phone number must be 11 numbers', regex='\\d{11}')])), ('address1', models.CharField(max_length=30)), ('address2', models.CharField(max_length=30)), ('comment', models.TextField()), ('requested_at', models.DateTimeField(auto_now_add=True)), ('cancel_at', models.DateTimeField(null=True)), ], ), migrations.RemoveField( model_name='funding', name='address1', ), migrations.RemoveField( model_name='funding', name='address2', ), migrations.RemoveField( model_name='funding', name='cancel_at', ), migrations.RemoveField( model_name='funding', name='comment', ), migrations.RemoveField( model_name='funding', name='phone_number', ), migrations.RemoveField( model_name='funding', name='requested_at', ), migrations.RemoveField( model_name='funding', name='username', ), migrations.AddField( model_name='funding', name='order', field=models.ForeignKey(default='', on_delete=django.db.models.deletion.CASCADE, related_name='order', to='reward.FundingOrder'), preserve_default=False, ), ]
3a03ed2812c020cfd50b5bb2bfe6e9223a67b34c
418ed1e9c0d28fb17781689b7499d015431fd1ae
/BtagHLT/TTbarSelection/python/ttbarselection_cfi.py
a4ab2ba54b77ed31ee40d7adbbf0a57aef55aab5
[]
no_license
tropiano/usercode
a9f1362dea803dc8c746fd40826af6a405be02b2
92b3bb2d346d762f034c8acf0b11693f21723788
refs/heads/master
2020-06-05T22:32:11.617468
2012-12-25T12:00:06
2012-12-25T12:00:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,489
py
import FWCore.ParameterSet.Config as cms ttbarselection = cms.EDAnalyzer('TTbarSelection', vertexSrc = cms.untracked.InputTag("offlinePrimaryVerticesWithBS"), electronSrc= cms.untracked.InputTag("selectedElectrons"), muonSrc= cms.untracked.InputTag("selectedMuons"), triggerSrc= cms.untracked.InputTag("TriggerEvent"), triggerName= cms.untracked.string("HLT_BTagIP_Jet50U"), jetSrc= cms.untracked.InputTag("selectedJets"), metSrc= cms.untracked.InputTag("patMETs"), ElectronVeto_PtCut = cms.double(0), ElectronVeto_EtaCut = cms.double(99999), RelIso = cms.double(0.2), MuonVeto_PtCut = cms.double(0), MuonVeto_EtaCut = cms.double(99999), Jets_PtCut = cms.double(30), Jets_EtaCut = cms.double(2.4), Jets_EmFracCut = cms.double(0.01), MET_Cut = cms.double(30), BtagDiscrCut1 = cms.double(4.), BtagDiscrCut2 = cms.double(4.), )
[ "" ]
9c4eba45621b58b6f705c1771ddf11d62197ef10
290b9d2e1b8a84cebc522ea9a867edf211b60973
/DoItJumpTo01/02.py
bea5cedffe4ae6f645f0cfa4d3274f216821486a
[]
no_license
EllieHan93/Python
d2dcedf8b8e3f4ada0268f9f761bcedbc8391314
ad9e88617a510e0b4fd6ddb7db74402e41bbb4cc
refs/heads/master
2020-07-22T20:53:55.091578
2019-12-15T11:44:21
2019-12-15T11:44:21
207,324,663
0
0
null
null
null
null
UTF-8
Python
false
false
57
py
#02.py print("=" *50) print("My Program") print("=" *50)
b8dfe67598216c766a760dde33a81a620149a763
5462ef02d1a50c327b9f5196523c616dcfc772a9
/src/Emo/settings.py
8d0715f49e4c64294596d0db70e02bc9b92a7286
[]
no_license
shagun11/django-project-template
0c4d40ff18782abe2590154a3896988bc1ee327f
78968b8e5415d2878682b20da4a9ed0e83ba5b5e
refs/heads/master
2021-01-14T14:37:47.214397
2015-01-28T08:04:17
2015-01-28T08:04:17
29,926,082
0
0
null
2015-01-27T17:39:46
2015-01-27T17:39:46
null
UTF-8
Python
false
false
5,416
py
# Django settings for Emo project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '', # Or path to database file if using sqlite3. # The following settings are not used with sqlite3: 'USER': '', 'PASSWORD': '', 'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP. 'PORT': '', # Set to empty string for default. } } # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts ALLOWED_HOSTS = [] # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://example.com/media/", "http://media.example.com/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/var/www/example.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'z)6m6z5yv*rpp@6$1c9*@=sxf%!t3(#!n-3v%yn0)lns3t%_0(' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'Emo.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'Emo.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: # 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', ) SESSION_SERIALIZER = 'django.contrib.sessions.serializers.JSONSerializer' # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
1e30a64ef30c526d7e94b66f205c369d97dd8da2
fa04309288a0f8b2daae2fd73c8224a1c0ad4d95
/eventkit_cloud/tasks/tests/test_task_factory.py
b02b4477e9ad630dbbdb95b91ae28bb1c39b5c47
[]
no_license
jj0hns0n/eventkit-cloud
7bb828c57f29887621e47fe7ce0baa14071ef39e
2f749090baf796b507e79251a4c4b30cb0b4e126
refs/heads/master
2021-01-01T19:45:32.464729
2017-07-24T19:01:24
2017-07-24T19:01:24
98,675,805
0
0
null
2017-07-28T18:16:34
2017-07-28T18:16:34
null
UTF-8
Python
false
false
7,545
py
# -*- coding: utf-8 -*- import logging import os import uuid from django.contrib.auth.models import Group, User from django.contrib.gis.geos import GEOSGeometry, Polygon from django.db import DatabaseError from django.test import TestCase from eventkit_cloud.jobs.models import Job, Region, ProviderTask, ExportProvider, License, UserLicense from eventkit_cloud.tasks.models import ExportRun from eventkit_cloud.tasks.task_factory import (TaskFactory, create_run, create_finalize_run_task_collection, get_invalid_licenses) from mock import patch, Mock, MagicMock logger = logging.getLogger(__name__) class TestExportTaskFactory(TestCase): """ Test cases for the TaskFactory. """ fixtures = ('insert_provider_types.json', 'osm_provider.json',) def setUp(self,): self.path = os.path.dirname(os.path.realpath(__file__)) Group.objects.create(name='TestDefaultExportExtentGroup') self.user = User.objects.create(username='demo', email='[email protected]', password='demo') bbox = Polygon.from_bbox((-10.85, 6.25, -10.62, 6.40)) the_geom = GEOSGeometry(bbox, srid=4326) self.job = Job.objects.create(name='TestJob', description='Test description', user=self.user, the_geom=the_geom) provider = ExportProvider.objects.get(slug='osm') self.license = License.objects.create(slug='odbl-test', name='test_osm_license') provider.license = self.license provider.save() UserLicense.objects.create(license=self.license, user=self.user) provider_task = ProviderTask.objects.create(provider=provider) self.job.provider_tasks.add(provider_task) self.region = Region.objects.get(name='Africa') self.job.region = self.region self.uid = str(provider_task.uid) self.job.save() def test_create_run_success(self): run_uid = create_run(job_uid=self.job.uid) self.assertIsNotNone(run_uid) self.assertIsNotNone(ExportRun.objects.get(uid=run_uid)) @patch('eventkit_cloud.tasks.task_factory.ExportRun') def test_create_run_failure(self, ExportRun): ExportRun.objects.create.side_effect = DatabaseError('FAIL') with self.assertRaises(DatabaseError): run_uid = create_run(job_uid=self.job.uid) self.assertIsNone(run_uid) @patch('eventkit_cloud.tasks.task_factory.get_invalid_licenses') @patch('eventkit_cloud.tasks.task_factory.finalize_export_provider_task') @patch('eventkit_cloud.tasks.task_factory.create_task') @patch('eventkit_cloud.tasks.task_factory.chain') def test_task_factory(self, task_factory_chain, create_task, finalize_task, mock_invalid_licenses): mock_invalid_licenses.return_value = [] run_uid = create_run(job_uid=self.job.uid) self.assertIsNotNone(run_uid) self.assertIsNotNone(ExportRun.objects.get(uid=run_uid)) worker = "some_worker" provider_uuid = uuid.uuid4() task_runner = MagicMock() task = Mock() task_runner().run_task.return_value = (provider_uuid, task) create_task.return_value = task task_factory = TaskFactory() task_factory.type_task_map = {'osm-generic': task_runner, 'osm': task_runner} task_factory.parse_tasks(run_uid=run_uid, worker=worker) task_factory_chain.assert_called() create_task.assert_called() finalize_task.s.assert_called() # Test that run is prevented and deleted if the user has not agreed to the licenses. mock_invalid_licenses.return_value = ['invalid-licenses'] with self.assertRaises(Exception): task_factory.parse_tasks(run_uid=run_uid, worker=worker) run = ExportRun.objects.filter(uid=run_uid).first() self.assertIsNone(run) def test_get_invalid_licenses(self): # The license should not be returned if the user has agreed to it. expected_invalid_licenses = [] invalid_licenses = get_invalid_licenses(self.job) self.assertEquals(invalid_licenses, expected_invalid_licenses) # A license should be returned if the user has not agreed to it. UserLicense.objects.get(license=self.license, user=self.user).delete() expected_invalid_licenses = [self.license.name] invalid_licenses = get_invalid_licenses(self.job) self.assertEquals(invalid_licenses, expected_invalid_licenses) UserLicense.objects.create(license=self.license, user=self.user) class CreateFinalizeRunTaskCollectionTests(TestCase): @patch('eventkit_cloud.tasks.task_factory.example_finalize_run_hook_task') @patch('eventkit_cloud.tasks.task_factory.prepare_for_export_zip_task') @patch('eventkit_cloud.tasks.task_factory.zip_file_task') @patch('eventkit_cloud.tasks.task_factory.finalize_run_task_as_errback') @patch('eventkit_cloud.tasks.task_factory.finalize_run_task') @patch('eventkit_cloud.tasks.task_factory.chain') def test_create_finalize_run_task_collection( self, chain, finalize_run_task, finalize_run_task_as_errback, zip_file_task, prepare_for_export_zip_task, example_finalize_run_hook_task): """ Checks that all of the expected tasks were prepared and combined in a chain for return. """ chain.return_value = 'When not mocked, this would be a celery chain' # None of these need correspond to real things, they're just to check the inner calls. run_uid = 1 run_dir = 'test_dir' worker = 'test_worker' expected_task_settings = { 'interval': 1, 'max_retries': 10, 'queue': worker, 'routing_key': worker, 'priority': 70} # This should return a chain of tasks ending in the finalize_run_task, plus a task sig for just the # finalize_run_task. finalize_chain, errback = create_finalize_run_task_collection(run_uid=run_uid, run_dir=run_dir, worker=worker) example_finalize_run_hook_task.si.assert_called_once_with([], run_uid=run_uid) example_finalize_run_hook_task.si.return_value.set.assert_called_once_with(**expected_task_settings) prepare_for_export_zip_task.s.assert_called_once_with(run_uid=run_uid) prepare_for_export_zip_task.s.return_value.set.assert_called_once_with(**expected_task_settings) zip_file_task.s.assert_called_once_with(run_uid=run_uid) zip_file_task.s.return_value.set.assert_called_once_with(**expected_task_settings) finalize_run_task.si.assert_called_once_with(run_uid=run_uid, stage_dir=run_dir) finalize_run_task.si.return_value.set.assert_called_once_with(**expected_task_settings) self.assertEqual(finalize_chain, 'When not mocked, this would be a celery chain') self.assertEqual(errback, finalize_run_task_as_errback.si()) self.assertEqual(chain.call_count, 1) # Grab the args for the first (only) call chain_inputs = chain.call_args[0] # The result of setting the args & settings for each task, # which unmocked would be a task signature, should be passed to celery.chain expected_chain_inputs = ( example_finalize_run_hook_task.si.return_value.set.return_value, prepare_for_export_zip_task.s.return_value.set.return_value, zip_file_task.s.return_value.set.return_value, finalize_run_task.si.return_value.set.return_value, ) self.assertEqual(chain_inputs, expected_chain_inputs)
27e978b4cc4eba7674939dc5cb9dd6908983204f
2ccfe89f6a647dd5c121fcd9ba044c59bc6f5319
/gamma/app/settings.py
2c596b26ed129a32d51abd0003b8de006d3a3d55
[]
no_license
another-it-team/no-more-math
ec30409db053e5c04b90ad53923d59654eff5787
3d3c7f946e9dd3a44ab892b2f96ac095025dafd8
refs/heads/master
2020-03-22T10:02:20.014604
2018-07-06T16:59:10
2018-07-06T16:59:10
139,876,832
0
0
null
null
null
null
UTF-8
Python
false
false
16
py
../ settings.py
f6e4d32e7bb52dd5732366ab2f7239dcf9a91069
c8a86573c16934149dfc768f44fec1b8152b4e97
/interface/jgj_login_test.py
d639844963a12ade19b1a63d18599e42963a9ff9
[]
no_license
slp520/AutoTest
6eb09279168553955a766bfae5ca7bdfdf86ab40
fd3203b129f7541ea78faa5a216fe3bf06fdff17
refs/heads/master
2021-12-14T03:31:29.957372
2021-11-12T02:13:01
2021-11-12T02:13:01
161,150,793
0
0
null
null
null
null
UTF-8
Python
false
false
5,274
py
import requests import unittest import json #登陆接口测试 class GetLoginTest(unittest.TestCase): def setUp(self): self.base_url = 'http://10.12.21.115:61021/jgj/api/user/login' self.smg_url = 'http://10.12.21.115:61021/jgj/api/user/smgsend' self.case_name = '' def test_login(self): '''登录正常流程校验''' body_login ={"captcha":"1234", "mobile":"13058019302", "password":"BxOqKRgGgnfbQp6kLhIdm8jlbMIT8xcK/WpFx0CzJIeSQHyhjrGjSGf4FmMlZ2pdJn9HgirwlClcKf1aHjPSAd9SkSe9Nztkk10L9G6aUDL84e1zKMjXRoeF3g3inkNtBZfkf8YYFUDdTydDulKNpIQRpZuHu83NnG7isr57tkBwg9/fVPIG6P7Irf/35TcH9/s2NeV7hyBCWuDn4Zt6ueaSVjdfJ8u6iklkaqsNpwLDizKPoqoNnaDc/MWGj4zlnqdJJpAxQroRZ8+1AMbsY6bpQTCyI7gQNoq4BCOfz/owRZNEUaaRi/cSMcMUKiJoDWUl/MBnFKx1QSxjGbsQLQ=="} body_smg = { "mobile":"13058019302", "type":"1" } header = {} r_smg = requests.post(self.smg_url,data=body_smg,headers=header) r = requests.post(self.base_url,data=body_login,headers=header) result = r.json() self.assertEqual(result['code'],'200') self.assertEqual(result['msg'],"一切正确,没有错误发生") def test_login_nomobile(self): '''登录手机号为空流程校验''' body_login = {"captcha": "1234", "mobile": " ", "password": "BxOqKRgGgnfbQp6kLhIdm8jlbMIT8xcK/WpFx0CzJIeSQHyhjrGjSGf4FmMlZ2pdJn9HgirwlClcKf1aHjPSAd9SkSe9Nztkk10L9G6aUDL84e1zKMjXRoeF3g3inkNtBZfkf8YYFUDdTydDulKNpIQRpZuHu83NnG7isr57tkBwg9/fVPIG6P7Irf/35TcH9/s2NeV7hyBCWuDn4Zt6ueaSVjdfJ8u6iklkaqsNpwLDizKPoqoNnaDc/MWGj4zlnqdJJpAxQroRZ8+1AMbsY6bpQTCyI7gQNoq4BCOfz/owRZNEUaaRi/cSMcMUKiJoDWUl/MBnFKx1QSxjGbsQLQ==" } body_smg = { "mobile": "13058019302", "type": "1" } header = {} r_smg = requests.post (self.smg_url, data=body_smg, headers=header) r = requests.post (self.base_url, data=body_login, headers=header) result = r.json() print (result) self.assertEqual (result['code'], '40301') self.assertEqual (result['msg'], "参数缺失") def test_login_wrong_password(self): '''登录密码错误流程校验''' body_login = {"captcha": "1234", "mobile": "13058019302", "password": "Iz2vdNMIDMJHQVEYA6l+ULzwOwN/SVJXVLw+IMlZf7BeAHxZ5nSmMgC7dHPPxiksKq7qzzmoObEwtBFWeJrbH+TY7OSEEIuuFdB57NRFyvDTjSvufFHfOacqlMwIfuC5PYbqiyZmM9EiwDR+n8HF2shoFI0V0P+uiy+Taf0CD+qCcyFYQE7z49zOTYVjOm9kUfW88HNXlOBzlpsHTSJG1A8jOXCwglNGP1ZliXtiGd5tmB4W+E1HA4xU+xuoUO5hEXyqkM/kgXrUWHRDl7V/UROVsXo4aITpHon/ts5tlxdIqDytmIBgEV7dhCIOtpyux+uzCzohTV1p1vXMatOYhw==" } body_smg = { "mobile": "13058019302", "type": "1" } header = {} r_smg = requests.post (self.smg_url, data=body_smg, headers=header) r = requests.post (self.base_url, data=body_login, headers=header) result = r.json() print (result) self.assertEqual (result['code'], '40352') self.assertEqual (result['msg'], "用户名或密码错误") def test_login_nocaptcha(self): '''登录验证码为空流程校验''' body_login = {"captcha": " ", "mobile": "13058019302", "password": "BxOqKRgGgnfbQp6kLhIdm8jlbMIT8xcK/WpFx0CzJIeSQHyhjrGjSGf4FmMlZ2pdJn9HgirwlClcKf1aHjPSAd9SkSe9Nztkk10L9G6aUDL84e1zKMjXRoeF3g3inkNtBZfkf8YYFUDdTydDulKNpIQRpZuHu83NnG7isr57tkBwg9/fVPIG6P7Irf/35TcH9/s2NeV7hyBCWuDn4Zt6ueaSVjdfJ8u6iklkaqsNpwLDizKPoqoNnaDc/MWGj4zlnqdJJpAxQroRZ8+1AMbsY6bpQTCyI7gQNoq4BCOfz/owRZNEUaaRi/cSMcMUKiJoDWUl/MBnFKx1QSxjGbsQLQ==" } body_smg = { "mobile": "13058019302", "type": "1" } header = {} r_smg = requests.post (self.smg_url, data=body_smg, headers=header) r = requests.post (self.base_url, data=body_login, headers=header) result = r.json() print (result) self.assertEqual (result['code'], 40355) self.assertEqual (result['msg'], '验证码错误') def test_login_wrong_captcha(self): '''登录验证码错误流程校验''' body_login = {"captcha": "122122", "mobile": "13058019302", "password": "BxOqKRgGgnfbQp6kLhIdm8jlbMIT8xcK/WpFx0CzJIeSQHyhjrGjSGf4FmMlZ2pdJn9HgirwlClcKf1aHjPSAd9SkSe9Nztkk10L9G6aUDL84e1zKMjXRoeF3g3inkNtBZfkf8YYFUDdTydDulKNpIQRpZuHu83NnG7isr57tkBwg9/fVPIG6P7Irf/35TcH9/s2NeV7hyBCWuDn4Zt6ueaSVjdfJ8u6iklkaqsNpwLDizKPoqoNnaDc/MWGj4zlnqdJJpAxQroRZ8+1AMbsY6bpQTCyI7gQNoq4BCOfz/owRZNEUaaRi/cSMcMUKiJoDWUl/MBnFKx1QSxjGbsQLQ==" } body_smg = { "mobile": "13058019302", "type": "1" } header = {} r_smg = requests.post (self.smg_url, data=body_smg, headers=header) r = requests.post (self.base_url, data=body_login, headers=header) result = r.json() print (result) self.assertEqual (result['code'], 40355) self.assertEqual (result['msg'], "验证码错误") if __name__ == '__main__': print(11111111)
b6dd4677c551c223c34be40dc606b4e5ec985489
9e236f93f5f4d55af0e98dac56866c976899ee1d
/.c9/metadata/workspace/Unused/NotUseful/connection.py
0fabf1e2eb77adfd3304b6b2219da1e8ad9ac73a
[]
no_license
willyao99/botterthanyouAI
965f13dea2437aa4d65301701415ba8977b5640e
95792d842c654b6593fe7a895a6ba1266aa01cb7
refs/heads/master
2021-05-02T06:34:55.721476
2017-12-07T14:47:13
2017-12-07T14:47:13
120,860,006
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
{"filter":false,"title":"connection.py","tooltip":"/Unused/NotUseful/connection.py","undoManager":{"mark":-1,"position":-1,"stack":[]},"ace":{"folds":[],"scrolltop":0,"scrollleft":0,"selection":{"start":{"row":12,"column":40},"end":{"row":12,"column":40},"isBackwards":false},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":0},"timestamp":1512620019447,"hash":"68b42dc99866235c2900529b40eeb2f73a1f6bda"}
ac9322695c8338f7c5b6352dc885ec393d8b1b9a
ca66a4283c5137f835377c3ed9a37128fcaed037
/Lib/site-packages/pandas/tests/indexes/test_base.py
48214ef4e92a8217fc8c6c342ae4de28f448658f
[]
no_license
NamithaKonda09/majorProject
f377f7a77d40939a659a3e59f5f1b771d88889ad
4eff4ff18fa828c6278b00244ff2e66522e0cd51
refs/heads/master
2023-06-04T20:25:38.450271
2021-06-24T19:03:46
2021-06-24T19:03:46
370,240,034
0
0
null
null
null
null
UTF-8
Python
false
false
104,196
py
# -*- coding: utf-8 -*- from collections import defaultdict from datetime import datetime, timedelta import math import operator import sys import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas.compat import ( PY3, PY35, PY36, StringIO, lrange, lzip, range, text_type, u, zip) from pandas.compat.numpy import np_datetime64_compat from pandas.core.dtypes.common import is_unsigned_integer_dtype from pandas.core.dtypes.generic import ABCIndex import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Float64Index, Int64Index, PeriodIndex, RangeIndex, Series, TimedeltaIndex, UInt64Index, date_range, isna, period_range) import pandas.core.config as cf from pandas.core.index import _get_combined_index, ensure_index_from_sequences from pandas.core.indexes.api import Index, MultiIndex from pandas.core.sorting import safe_sort from pandas.tests.indexes.common import Base import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal class TestIndex(Base): _holder = Index def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices() def create_index(self): return Index(list('abcde')) def generate_index_types(self, skip_index_keys=[]): """ Return a generator of the various index types, leaving out the ones with a key in skip_index_keys """ for key, index in self.indices.items(): if key not in skip_index_keys: yield key, index def test_can_hold_identifiers(self): index = self.create_index() key = index[0] assert index._can_hold_identifiers_and_holds_name(key) is True def test_new_axis(self): new_index = self.dateIndex[None, :] assert new_index.ndim == 2 assert isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): new_copy2 = self.intIndex.copy(dtype=int) assert new_copy2.dtype.kind == 'i' @pytest.mark.parametrize("attr", ['strIndex', 'dateIndex']) def test_constructor_regular(self, attr): # regular instance creation index = getattr(self, attr) tm.assert_contains_all(index, index) def test_constructor_casting(self): # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) tm.assert_index_equal(self.strIndex, index) def test_constructor_copy(self): # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') assert isinstance(index, Index) assert index.name == 'name' tm.assert_numpy_array_equal(arr, index.values) arr[0] = "SOMEBIGLONGSTRING" assert index[0] != "SOMEBIGLONGSTRING" # what to do here? # arr = np.array(5.) # pytest.raises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case pytest.raises(TypeError, Index, 0) @pytest.mark.parametrize("index_vals", [ [('A', 1), 'B'], ['B', ('A', 1)]]) def test_construction_list_mixed_tuples(self, index_vals): # see gh-10697: if we are constructing from a mixed list of tuples, # make sure that we are independent of the sorting order. index = Index(index_vals) assert isinstance(index, Index) assert not isinstance(index, MultiIndex) @pytest.mark.parametrize('na_value', [None, np.nan]) @pytest.mark.parametrize('vtype', [list, tuple, iter]) def test_construction_list_tuples_nan(self, na_value, vtype): # GH 18505 : valid tuples containing NaN values = [(1, 'two'), (3., na_value)] result = Index(vtype(values)) expected = MultiIndex.from_tuples(values) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cast_as_obj", [True, False]) @pytest.mark.parametrize("index", [ pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern', name='Green Eggs & Ham'), # DTI with tz pd.date_range('2015-01-01 10:00', freq='D', periods=3), # DTI no tz pd.timedelta_range('1 days', freq='D', periods=3), # td pd.period_range('2015-01-01', freq='D', periods=3) # period ]) def test_constructor_from_index_dtlike(self, cast_as_obj, index): if cast_as_obj: result = pd.Index(index.astype(object)) else: result = pd.Index(index) tm.assert_index_equal(result, index) if isinstance(index, pd.DatetimeIndex): assert result.tz == index.tz if cast_as_obj: # GH#23524 check that Index(dti, dtype=object) does not # incorrectly raise ValueError, and that nanoseconds are not # dropped index += pd.Timedelta(nanoseconds=50) result = pd.Index(index, dtype=object) assert result.dtype == np.object_ assert list(result) == list(index) @pytest.mark.parametrize("index,has_tz", [ (pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern'), True), # datetimetz (pd.timedelta_range('1 days', freq='D', periods=3), False), # td (pd.period_range('2015-01-01', freq='D', periods=3), False) # period ]) def test_constructor_from_series_dtlike(self, index, has_tz): result = pd.Index(pd.Series(index)) tm.assert_index_equal(result, index) if has_tz: assert result.tz == index.tz @pytest.mark.parametrize("klass", [Index, DatetimeIndex]) def test_constructor_from_series(self, klass): expected = DatetimeIndex([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')]) s = Series([Timestamp('20110101'), Timestamp('20120101'), Timestamp('20130101')]) result = klass(s) tm.assert_index_equal(result, expected) def test_constructor_from_series_freq(self): # GH 6273 # create from a series, passing a freq dts = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] expected = DatetimeIndex(dts, freq='MS') s = Series(pd.to_datetime(dts)) result = DatetimeIndex(s, freq='MS') tm.assert_index_equal(result, expected) def test_constructor_from_frame_series_freq(self): # GH 6273 # create from a series, passing a freq dts = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] expected = DatetimeIndex(dts, freq='MS') df = pd.DataFrame(np.random.rand(5, 3)) df['date'] = dts result = DatetimeIndex(df['date'], freq='MS') assert df['date'].dtype == object expected.name = 'date' tm.assert_index_equal(result, expected) expected = pd.Series(dts, name='date') tm.assert_series_equal(df['date'], expected) # GH 6274 # infer freq of same freq = pd.infer_freq(df['date']) assert freq == 'MS' @pytest.mark.parametrize("array", [ np.arange(5), np.array(['a', 'b', 'c']), date_range( '2000-01-01', periods=3).values ]) def test_constructor_ndarray_like(self, array): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array expected = pd.Index(array) result = pd.Index(ArrayLike(array)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('dtype', [ int, 'int64', 'int32', 'int16', 'int8', 'uint64', 'uint32', 'uint16', 'uint8']) def test_constructor_int_dtype_float(self, dtype): # GH 18400 if is_unsigned_integer_dtype(dtype): index_type = UInt64Index else: index_type = Int64Index expected = index_type([0, 1, 2, 3]) result = Index([0., 1., 2., 3.], dtype=dtype) tm.assert_index_equal(result, expected) def test_constructor_int_dtype_nan(self): # see gh-15187 data = [np.nan] expected = Float64Index(data) result = Index(data, dtype='float') tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dtype", ['int64', 'uint64']) def test_constructor_int_dtype_nan_raises(self, dtype): # see gh-15187 data = [np.nan] msg = "cannot convert" with pytest.raises(ValueError, match=msg): Index(data, dtype=dtype) def test_constructor_no_pandas_array(self): ser = pd.Series([1, 2, 3]) result = pd.Index(ser.array) expected = pd.Index([1, 2, 3]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass,dtype,na_val", [ (pd.Float64Index, np.float64, np.nan), (pd.DatetimeIndex, 'datetime64[ns]', pd.NaT) ]) def test_index_ctor_infer_nan_nat(self, klass, dtype, na_val): # GH 13467 na_list = [na_val, na_val] expected = klass(na_list) assert expected.dtype == dtype result = Index(na_list) tm.assert_index_equal(result, expected) result = Index(np.array(na_list)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("pos", [0, 1]) @pytest.mark.parametrize("klass,dtype,ctor", [ (pd.DatetimeIndex, 'datetime64[ns]', np.datetime64('nat')), (pd.TimedeltaIndex, 'timedelta64[ns]', np.timedelta64('nat')) ]) def test_index_ctor_infer_nat_dt_like(self, pos, klass, dtype, ctor, nulls_fixture): expected = klass([pd.NaT, pd.NaT]) assert expected.dtype == dtype data = [ctor] data.insert(pos, nulls_fixture) result = Index(data) tm.assert_index_equal(result, expected) result = Index(np.array(data, dtype=object)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("swap_objs", [True, False]) def test_index_ctor_nat_result(self, swap_objs): # mixed np.datetime64/timedelta64 nat results in object data = [np.datetime64('nat'), np.timedelta64('nat')] if swap_objs: data = data[::-1] expected = pd.Index(data, dtype=object) tm.assert_index_equal(Index(data), expected) tm.assert_index_equal(Index(np.array(data, dtype=object)), expected) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) tm.assert_index_equal(rs, xp) assert isinstance(rs, PeriodIndex) @pytest.mark.parametrize("vals,dtype", [ ([1, 2, 3, 4, 5], 'int'), ([1.1, np.nan, 2.2, 3.0], 'float'), (['A', 'B', 'C', np.nan], 'obj') ]) def test_constructor_simple_new(self, vals, dtype): index = Index(vals, name=dtype) result = index._simple_new(index.values, dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("vals", [ [1, 2, 3], np.array([1, 2, 3]), np.array([1, 2, 3], dtype=int), # below should coerce [1., 2., 3.], np.array([1., 2., 3.], dtype=float) ]) def test_constructor_dtypes_to_int64(self, vals): index = Index(vals, dtype=int) assert isinstance(index, Int64Index) @pytest.mark.parametrize("vals", [ [1, 2, 3], [1., 2., 3.], np.array([1., 2., 3.]), np.array([1, 2, 3], dtype=int), np.array([1., 2., 3.], dtype=float) ]) def test_constructor_dtypes_to_float64(self, vals): index = Index(vals, dtype=float) assert isinstance(index, Float64Index) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize("vals", [ [True, False, True], np.array([True, False, True], dtype=bool) ]) def test_constructor_dtypes_to_object(self, cast_index, vals): if cast_index: index = Index(vals, dtype=bool) else: index = Index(vals) assert isinstance(index, Index) assert index.dtype == object @pytest.mark.parametrize("vals", [ [1, 2, 3], np.array([1, 2, 3], dtype=int), np.array([np_datetime64_compat('2011-01-01'), np_datetime64_compat('2011-01-02')]), [datetime(2011, 1, 1), datetime(2011, 1, 2)] ]) def test_constructor_dtypes_to_categorical(self, vals): index = Index(vals, dtype='category') assert isinstance(index, CategoricalIndex) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize("vals", [ Index(np.array([np_datetime64_compat('2011-01-01'), np_datetime64_compat('2011-01-02')])), Index([datetime(2011, 1, 1), datetime(2011, 1, 2)]) ]) def test_constructor_dtypes_to_datetime(self, cast_index, vals): if cast_index: index = Index(vals, dtype=object) assert isinstance(index, Index) assert index.dtype == object else: index = Index(vals) assert isinstance(index, DatetimeIndex) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize("vals", [ np.array([np.timedelta64(1, 'D'), np.timedelta64(1, 'D')]), [timedelta(1), timedelta(1)] ]) def test_constructor_dtypes_to_timedelta(self, cast_index, vals): if cast_index: index = Index(vals, dtype=object) assert isinstance(index, Index) assert index.dtype == object else: index = Index(vals) assert isinstance(index, TimedeltaIndex) @pytest.mark.parametrize("attr, utc", [ ['values', False], ['asi8', True]]) @pytest.mark.parametrize("klass", [pd.Index, pd.DatetimeIndex]) def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, utc, klass): # Test constructing with a datetimetz dtype # .values produces numpy datetimes, so these are considered naive # .asi8 produces integers, so these are considered epoch timestamps # ^the above will be true in a later version. Right now we `.view` # the i8 values as NS_DTYPE, effectively treating them as wall times. index = pd.date_range('2011-01-01', periods=5) arg = getattr(index, attr) index = index.tz_localize(tz_naive_fixture) dtype = index.dtype # TODO(GH-24559): Remove the sys.modules and warnings # not sure what this is from. It's Py2 only. modules = [sys.modules['pandas.core.indexes.base']] if (tz_naive_fixture and attr == "asi8" and str(tz_naive_fixture) not in ('UTC', 'tzutc()')): ex_warn = FutureWarning else: ex_warn = None # stacklevel is checked elsewhere. We don't do it here since # Index will have an frame, throwing off the expected. with tm.assert_produces_warning(ex_warn, check_stacklevel=False, clear=modules): result = klass(arg, tz=tz_naive_fixture) tm.assert_index_equal(result, index) with tm.assert_produces_warning(ex_warn, check_stacklevel=False): result = klass(arg, dtype=dtype) tm.assert_index_equal(result, index) with tm.assert_produces_warning(ex_warn, check_stacklevel=False): result = klass(list(arg), tz=tz_naive_fixture) tm.assert_index_equal(result, index) with tm.assert_produces_warning(ex_warn, check_stacklevel=False): result = klass(list(arg), dtype=dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("attr", ['values', 'asi8']) @pytest.mark.parametrize("klass", [pd.Index, pd.TimedeltaIndex]) def test_constructor_dtypes_timedelta(self, attr, klass): index = pd.timedelta_range('1 days', periods=5) dtype = index.dtype values = getattr(index, attr) result = klass(values, dtype=dtype) tm.assert_index_equal(result, index) result = klass(list(values), dtype=dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("value", [[], iter([]), (x for x in [])]) @pytest.mark.parametrize("klass", [Index, Float64Index, Int64Index, UInt64Index, CategoricalIndex, DatetimeIndex, TimedeltaIndex]) def test_constructor_empty(self, value, klass): empty = klass(value) assert isinstance(empty, klass) assert not len(empty) @pytest.mark.parametrize("empty,klass", [ (PeriodIndex([], freq='B'), PeriodIndex), (PeriodIndex(iter([]), freq='B'), PeriodIndex), (PeriodIndex((x for x in []), freq='B'), PeriodIndex), (RangeIndex(step=1), pd.RangeIndex), (MultiIndex(levels=[[1, 2], ['blue', 'red']], codes=[[], []]), MultiIndex) ]) def test_constructor_empty_special(self, empty, klass): assert isinstance(empty, klass) assert not len(empty) def test_constructor_overflow_int64(self): # see gh-15832 msg = ("The elements provided in the data cannot " "all be casted to the dtype int64") with pytest.raises(OverflowError, match=msg): Index([np.iinfo(np.uint64).max - 1], dtype="int64") @pytest.mark.xfail(reason="see GH#21311: Index " "doesn't enforce dtype argument") def test_constructor_cast(self): msg = "could not convert string to float" with pytest.raises(ValueError, match=msg): Index(["a", "b", "c"], dtype=float) def test_view_with_args(self): restricted = ['unicodeIndex', 'strIndex', 'catIndex', 'boolIndex', 'empty'] for i in restricted: ind = self.indices[i] # with arguments pytest.raises(TypeError, lambda: ind.view('i8')) # these are ok for i in list(set(self.indices.keys()) - set(restricted)): ind = self.indices[i] # with arguments ind.view('i8') def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') assert casted.name == 'foobar' def test_equals_object(self): # same assert Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c'])) @pytest.mark.parametrize("comp", [ Index(['a', 'b']), Index(['a', 'b', 'd']), ['a', 'b', 'c']]) def test_not_equals_object(self, comp): assert not Index(['a', 'b', 'c']).equals(comp) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) # test 0th element tm.assert_index_equal(Index(['a', 'b', 'c', 'd']), result.insert(0, 'a')) # test Nth element that follows Python list behavior tm.assert_index_equal(Index(['b', 'c', 'e', 'd']), result.insert(-1, 'e')) # test loc +/- neq (0, -1) tm.assert_index_equal(result.insert(1, 'z'), result.insert(-2, 'z')) # test empty null_index = Index([]) tm.assert_index_equal(Index(['a']), null_index.insert(0, 'a')) def test_insert_missing(self, nulls_fixture): # GH 22295 # test there is no mangling of NA values expected = Index(['a', nulls_fixture, 'b', 'c']) result = Index(list('abc')).insert(1, nulls_fixture) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("pos,expected", [ (0, Index(['b', 'c', 'd'], name='index')), (-1, Index(['a', 'b', 'c'], name='index')) ]) def test_delete(self, pos, expected): index = Index(['a', 'b', 'c', 'd'], name='index') result = index.delete(pos) tm.assert_index_equal(result, expected) assert result.name == expected.name def test_delete_raises(self): index = Index(['a', 'b', 'c', 'd'], name='index') with pytest.raises((IndexError, ValueError)): # either depending on numpy version index.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) assert i1.identical(i2) i1 = i1.rename('foo') assert i1.equals(i2) assert not i1.identical(i2) i2 = i2.rename('foo') assert i1.identical(i2) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) assert not i3.identical(i4) def test_is_(self): ind = Index(range(10)) assert ind.is_(ind) assert ind.is_(ind.view().view().view().view()) assert not ind.is_(Index(range(10))) assert not ind.is_(ind.copy()) assert not ind.is_(ind.copy(deep=False)) assert not ind.is_(ind[:]) assert not ind.is_(np.array(range(10))) # quasi-implementation dependent assert ind.is_(ind.view()) ind2 = ind.view() ind2.name = 'bob' assert ind.is_(ind2) assert ind2.is_(ind) # doesn't matter if Indices are *actually* views of underlying data, assert not ind.is_(Index(ind.values)) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) assert not ind1.is_(ind2) def test_asof(self): d = self.dateIndex[0] assert self.dateIndex.asof(d) == d assert isna(self.dateIndex.asof(d - timedelta(1))) d = self.dateIndex[-1] assert self.dateIndex.asof(d + timedelta(1)) == d d = self.dateIndex[0].to_pydatetime() assert isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): index = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-02-28') result = index.asof('2010-02') assert result == expected assert not isinstance(result, Index) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil # assert first_value == x['2013-01-01 00:00:00.000000050+0000'] expected_ts = np_datetime64_compat('2013-01-01 00:00:00.000000050+' '0000', 'ns') assert first_value == x[Timestamp(expected_ts)] def test_booleanindex(self): boolIndex = np.repeat(True, len(self.strIndex)).astype(bool) boolIndex[5:30:2] = False subIndex = self.strIndex[boolIndex] for i, val in enumerate(subIndex): assert subIndex.get_loc(val) == i subIndex = self.strIndex[list(boolIndex)] for i, val in enumerate(subIndex): assert subIndex.get_loc(val) == i def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: assert i == sl[sl.get_loc(i)] @pytest.mark.parametrize("attr", [ 'strIndex', 'intIndex', 'floatIndex']) @pytest.mark.parametrize("dtype", [np.int_, np.bool_]) def test_empty_fancy(self, attr, dtype): empty_arr = np.array([], dtype=dtype) index = getattr(self, attr) empty_index = index.__class__([]) assert index[[]].identical(empty_index) assert index[empty_arr].identical(empty_index) @pytest.mark.parametrize("attr", [ 'strIndex', 'intIndex', 'floatIndex']) def test_empty_fancy_raises(self, attr): # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. empty_farr = np.array([], dtype=np.float_) index = getattr(self, attr) empty_index = index.__class__([]) assert index[[]].identical(empty_index) # np.ndarray only accepts ndarray of int & bool dtypes, so should Index pytest.raises(IndexError, index.__getitem__, empty_farr) @pytest.mark.parametrize("sort", [None, False]) def test_intersection(self, sort): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second, sort=sort) if sort is None: tm.assert_index_equal(intersect, second.sort_values()) assert tm.equalContents(intersect, second) # Corner cases inter = first.intersection(first, sort=sort) assert inter is first @pytest.mark.parametrize("index2,keeps_name", [ (Index([3, 4, 5, 6, 7], name="index"), True), # preserve same name (Index([3, 4, 5, 6, 7], name="other"), False), # drop diff names (Index([3, 4, 5, 6, 7]), False)]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_name_preservation(self, index2, keeps_name, sort): index1 = Index([1, 2, 3, 4, 5], name='index') expected = Index([3, 4, 5]) result = index1.intersection(index2, sort) if keeps_name: expected.name = 'index' assert result.name == expected.name tm.assert_index_equal(result, expected) @pytest.mark.parametrize("first_name,second_name,expected_name", [ ('A', 'A', 'A'), ('A', 'B', None), (None, 'B', None)]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_name_preservation2(self, first_name, second_name, expected_name, sort): first = self.strIndex[5:20] second = self.strIndex[:10] first.name = first_name second.name = second_name intersect = first.intersection(second, sort=sort) assert intersect.name == expected_name @pytest.mark.parametrize("index2,keeps_name", [ (Index([4, 7, 6, 5, 3], name='index'), True), (Index([4, 7, 6, 5, 3], name='other'), False)]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_monotonic(self, index2, keeps_name, sort): index1 = Index([5, 3, 2, 4, 1], name='index') expected = Index([5, 3, 4]) if keeps_name: expected.name = "index" result = index1.intersection(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("index2,expected_arr", [ (Index(['B', 'D']), ['B']), (Index(['B', 'D', 'A']), ['A', 'B', 'A'])]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_non_monotonic_non_unique(self, index2, expected_arr, sort): # non-monotonic non-unique index1 = Index(['A', 'B', 'A', 'C']) expected = Index(expected_arr, dtype='object') result = index1.intersection(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_intersect_str_dates(self, sort): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] i1 = Index(dt_dates, dtype=object) i2 = Index(['aa'], dtype=object) result = i2.intersection(i1, sort=sort) assert len(result) == 0 def test_intersect_nosort(self): result = pd.Index(['c', 'b', 'a']).intersection(['b', 'a']) expected = pd.Index(['b', 'a']) tm.assert_index_equal(result, expected) def test_intersection_equal_sort(self): idx = pd.Index(['c', 'a', 'b']) tm.assert_index_equal(idx.intersection(idx, sort=False), idx) tm.assert_index_equal(idx.intersection(idx, sort=None), idx) @pytest.mark.xfail(reason="Not implemented") def test_intersection_equal_sort_true(self): # TODO decide on True behaviour idx = pd.Index(['c', 'a', 'b']) sorted_ = pd.Index(['a', 'b', 'c']) tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_) @pytest.mark.parametrize("sort", [None, False]) def test_chained_union(self, sort): # Chained unions handles names correctly i1 = Index([1, 2], name='i1') i2 = Index([5, 6], name='i2') i3 = Index([3, 4], name='i3') union = i1.union(i2.union(i3, sort=sort), sort=sort) expected = i1.union(i2, sort=sort).union(i3, sort=sort) tm.assert_index_equal(union, expected) j1 = Index([1, 2], name='j1') j2 = Index([], name='j2') j3 = Index([], name='j3') union = j1.union(j2.union(j3, sort=sort), sort=sort) expected = j1.union(j2, sort=sort).union(j3, sort=sort) tm.assert_index_equal(union, expected) @pytest.mark.parametrize("sort", [None, False]) def test_union(self, sort): # TODO: Replace with fixturesult first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second, sort=sort) if sort is None: tm.assert_index_equal(union, everything.sort_values()) assert tm.equalContents(union, everything) @pytest.mark.parametrize('slice_', [slice(None), slice(0)]) def test_union_sort_other_special(self, slice_): # https://github.com/pandas-dev/pandas/issues/24959 idx = pd.Index([1, 0, 2]) # default, sort=None other = idx[slice_] tm.assert_index_equal(idx.union(other), idx) tm.assert_index_equal(other.union(idx), idx) # sort=False tm.assert_index_equal(idx.union(other, sort=False), idx) @pytest.mark.xfail(reason="Not implemented") @pytest.mark.parametrize('slice_', [slice(None), slice(0)]) def test_union_sort_special_true(self, slice_): # TODO decide on True behaviour # sort=True idx = pd.Index([1, 0, 2]) # default, sort=None other = idx[slice_] result = idx.union(other, sort=True) expected = pd.Index([0, 1, 2]) tm.assert_index_equal(result, expected) def test_union_sort_other_incomparable(self): # https://github.com/pandas-dev/pandas/issues/24959 idx = pd.Index([1, pd.Timestamp('2000')]) # default (sort=None) with tm.assert_produces_warning(RuntimeWarning): result = idx.union(idx[:1]) tm.assert_index_equal(result, idx) # sort=None with tm.assert_produces_warning(RuntimeWarning): result = idx.union(idx[:1], sort=None) tm.assert_index_equal(result, idx) # sort=False result = idx.union(idx[:1], sort=False) tm.assert_index_equal(result, idx) @pytest.mark.xfail(reason="Not implemented") def test_union_sort_other_incomparable_true(self): # TODO decide on True behaviour # sort=True idx = pd.Index([1, pd.Timestamp('2000')]) with pytest.raises(TypeError, match='.*'): idx.union(idx[:1], sort=True) @pytest.mark.parametrize("klass", [ np.array, Series, list]) @pytest.mark.parametrize("sort", [None, False]) def test_union_from_iterables(self, klass, sort): # GH 10149 # TODO: Replace with fixturesult first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] case = klass(second.values) result = first.union(case, sort=sort) if sort is None: tm.assert_index_equal(result, everything.sort_values()) assert tm.equalContents(result, everything) @pytest.mark.parametrize("sort", [None, False]) def test_union_identity(self, sort): # TODO: replace with fixturesult first = self.strIndex[5:20] union = first.union(first, sort=sort) # i.e. identity is not preserved when sort is True assert (union is first) is (not sort) union = first.union([], sort=sort) assert (union is first) is (not sort) union = Index([]).union(first, sort=sort) assert (union is first) is (not sort) @pytest.mark.parametrize("first_list", [list('ba'), list()]) @pytest.mark.parametrize("second_list", [list('ab'), list()]) @pytest.mark.parametrize("first_name, second_name, expected_name", [ ('A', 'B', None), (None, 'B', None), ('A', None, None)]) @pytest.mark.parametrize("sort", [None, False]) def test_union_name_preservation(self, first_list, second_list, first_name, second_name, expected_name, sort): first = Index(first_list, name=first_name) second = Index(second_list, name=second_name) union = first.union(second, sort=sort) vals = set(first_list).union(second_list) if sort is None and len(first_list) > 0 and len(second_list) > 0: expected = Index(sorted(vals), name=expected_name) tm.assert_index_equal(union, expected) else: expected = Index(vals, name=expected_name) assert tm.equalContents(union, expected) @pytest.mark.parametrize("sort", [None, False]) def test_union_dt_as_obj(self, sort): # TODO: Replace with fixturesult firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) assert tm.equalContents(firstCat, appended) assert tm.equalContents(secondCat, self.strIndex) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat) @pytest.mark.parametrize("method", ['union', 'intersection', 'difference', 'symmetric_difference']) def test_setops_disallow_true(self, method): idx1 = pd.Index(['a', 'b']) idx2 = pd.Index(['b', 'c']) with pytest.raises(ValueError, match="The 'sort' keyword only takes"): getattr(idx1, method)(idx2, sort=True) def test_map_identity_mapping(self): # GH 12766 # TODO: replace with fixture for name, cur_index in self.indices.items(): tm.assert_index_equal(cur_index, cur_index.map(lambda x: x)) def test_map_with_tuples(self): # GH 12766 # Test that returning a single tuple from an Index # returns an Index. index = tm.makeIntIndex(3) result = tm.makeIntIndex(3).map(lambda x: (x,)) expected = Index([(i,) for i in index]) tm.assert_index_equal(result, expected) # Test that returning a tuple from a map of a single index # returns a MultiIndex object. result = index.map(lambda x: (x, x == 1)) expected = MultiIndex.from_tuples([(i, i == 1) for i in index]) tm.assert_index_equal(result, expected) def test_map_with_tuples_mi(self): # Test that returning a single object from a MultiIndex # returns an Index. first_level = ['foo', 'bar', 'baz'] multi_index = MultiIndex.from_tuples(lzip(first_level, [1, 2, 3])) reduced_index = multi_index.map(lambda x: x[0]) tm.assert_index_equal(reduced_index, Index(first_level)) @pytest.mark.parametrize("attr", [ 'makeDateIndex', 'makePeriodIndex', 'makeTimedeltaIndex']) def test_map_tseries_indices_return_index(self, attr): index = getattr(tm, attr)(10) expected = Index([1] * 10) result = index.map(lambda x: 1) tm.assert_index_equal(expected, result) def test_map_tseries_indices_accsr_return_index(self): date_index = tm.makeDateIndex(24, freq='h', name='hourly') expected = Index(range(24), name='hourly') tm.assert_index_equal(expected, date_index.map(lambda x: x.hour)) @pytest.mark.parametrize( "mapper", [ lambda values, index: {i: e for e, i in zip(values, index)}, lambda values, index: pd.Series(values, index)]) def test_map_dictlike(self, mapper): # GH 12756 expected = Index(['foo', 'bar', 'baz']) index = tm.makeIntIndex(3) result = index.map(mapper(expected.values, index)) tm.assert_index_equal(result, expected) # TODO: replace with fixture for name in self.indices.keys(): if name == 'catIndex': # Tested in test_categorical continue elif name == 'repeats': # Cannot map duplicated index continue index = self.indices[name] expected = Index(np.arange(len(index), 0, -1)) # to match proper result coercion for uints if name == 'empty': expected = Index([]) result = index.map(mapper(expected, index)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("mapper", [ Series(['foo', 2., 'baz'], index=[0, 2, -1]), {0: 'foo', 2: 2.0, -1: 'baz'}]) def test_map_with_non_function_missing_values(self, mapper): # GH 12756 expected = Index([2., np.nan, 'foo']) result = Index([2, 1, 0]).map(mapper) tm.assert_index_equal(expected, result) def test_map_na_exclusion(self): index = Index([1.5, np.nan, 3, np.nan, 5]) result = index.map(lambda x: x * 2, na_action='ignore') expected = index * 2 tm.assert_index_equal(result, expected) def test_map_defaultdict(self): index = Index([1, 2, 3]) default_dict = defaultdict(lambda: 'blank') default_dict[1] = 'stuff' result = index.map(default_dict) expected = Index(['stuff', 'blank', 'blank']) tm.assert_index_equal(result, expected) def test_append_multiple(self): index = Index(['a', 'b', 'c', 'd', 'e', 'f']) foos = [index[:2], index[2:4], index[4:]] result = foos[0].append(foos[1:]) tm.assert_index_equal(result, index) # empty result = index.append([]) tm.assert_index_equal(result, index) @pytest.mark.parametrize("name,expected", [ ('foo', 'foo'), ('bar', None)]) def test_append_empty_preserve_name(self, name, expected): left = Index([], name='foo') right = Index([1, 2, 3], name=name) result = left.append(right) assert result.name == expected @pytest.mark.parametrize("second_name,expected", [ (None, None), ('name', 'name')]) @pytest.mark.parametrize("sort", [None, False]) def test_difference_name_preservation(self, second_name, expected, sort): # TODO: replace with fixturesult first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] first.name = 'name' second.name = second_name result = first.difference(second, sort=sort) assert tm.equalContents(result, answer) if expected is None: assert result.name is None else: assert result.name == expected @pytest.mark.parametrize("sort", [None, False]) def test_difference_empty_arg(self, sort): first = self.strIndex[5:20] first.name == 'name' result = first.difference([], sort) assert tm.equalContents(result, first) assert result.name == first.name @pytest.mark.parametrize("sort", [None, False]) def test_difference_identity(self, sort): first = self.strIndex[5:20] first.name == 'name' result = first.difference(first, sort) assert len(result) == 0 assert result.name == first.name @pytest.mark.parametrize("sort", [None, False]) def test_difference_sort(self, sort): first = self.strIndex[5:20] second = self.strIndex[:10] result = first.difference(second, sort) expected = self.strIndex[10:20] if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_symmetric_difference(self, sort): # smoke index1 = Index([5, 2, 3, 4], name='index1') index2 = Index([2, 3, 4, 1]) result = index1.symmetric_difference(index2, sort=sort) expected = Index([5, 1]) assert tm.equalContents(result, expected) assert result.name is None if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) # __xor__ syntax expected = index1 ^ index2 assert tm.equalContents(result, expected) assert result.name is None @pytest.mark.parametrize('opname', ['difference', 'symmetric_difference']) def test_difference_incomparable(self, opname): a = pd.Index([3, pd.Timestamp('2000'), 1]) b = pd.Index([2, pd.Timestamp('1999'), 1]) op = operator.methodcaller(opname, b) # sort=None, the default result = op(a) expected = pd.Index([3, pd.Timestamp('2000'), 2, pd.Timestamp('1999')]) if opname == 'difference': expected = expected[:2] tm.assert_index_equal(result, expected) # sort=False op = operator.methodcaller(opname, b, sort=False) result = op(a) tm.assert_index_equal(result, expected) @pytest.mark.xfail(reason="Not implemented") @pytest.mark.parametrize('opname', ['difference', 'symmetric_difference']) def test_difference_incomparable_true(self, opname): # TODO decide on True behaviour # # sort=True, raises a = pd.Index([3, pd.Timestamp('2000'), 1]) b = pd.Index([2, pd.Timestamp('1999'), 1]) op = operator.methodcaller(opname, b, sort=True) with pytest.raises(TypeError, match='Cannot compare'): op(a) @pytest.mark.parametrize("sort", [None, False]) def test_symmetric_difference_mi(self, sort): index1 = MultiIndex.from_tuples(self.tuples) index2 = MultiIndex.from_tuples([('foo', 1), ('bar', 3)]) result = index1.symmetric_difference(index2, sort=sort) expected = MultiIndex.from_tuples([('bar', 2), ('baz', 3), ('bar', 3)]) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) @pytest.mark.parametrize("index2,expected", [ (Index([0, 1, np.nan]), Index([2.0, 3.0, 0.0])), (Index([0, 1]), Index([np.nan, 2.0, 3.0, 0.0]))]) @pytest.mark.parametrize("sort", [None, False]) def test_symmetric_difference_missing(self, index2, expected, sort): # GH 13514 change: {nan} - {nan} == {} # (GH 6444, sorting of nans, is no longer an issue) index1 = Index([1, np.nan, 2, 3]) result = index1.symmetric_difference(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_symmetric_difference_non_index(self, sort): index1 = Index([1, 2, 3, 4], name='index1') index2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = index1.symmetric_difference(index2, sort=sort) assert tm.equalContents(result, expected) assert result.name == 'index1' result = index1.symmetric_difference(index2, result_name='new_name', sort=sort) assert tm.equalContents(result, expected) assert result.name == 'new_name' @pytest.mark.parametrize("sort", [None, False]) def test_difference_type(self, sort): # GH 20040 # If taking difference of a set and itself, it # needs to preserve the type of the index skip_index_keys = ['repeats'] for key, index in self.generate_index_types(skip_index_keys): result = index.difference(index, sort=sort) expected = index.drop(index) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_difference(self, sort): # GH 20040 # Test that the intersection of an index with an # empty index produces the same index as the difference # of an index with itself. Test for all types skip_index_keys = ['repeats'] for key, index in self.generate_index_types(skip_index_keys): inter = index.intersection(index.drop(index)) diff = index.difference(index, sort=sort) tm.assert_index_equal(inter, diff) @pytest.mark.parametrize("attr,expected", [ ('strIndex', False), ('boolIndex', False), ('catIndex', False), ('intIndex', True), ('dateIndex', False), ('floatIndex', True)]) def test_is_numeric(self, attr, expected): assert getattr(self, attr).is_numeric() == expected @pytest.mark.parametrize("attr,expected", [ ('strIndex', True), ('boolIndex', True), ('catIndex', False), ('intIndex', False), ('dateIndex', False), ('floatIndex', False)]) def test_is_object(self, attr, expected): assert getattr(self, attr).is_object() == expected @pytest.mark.parametrize("attr,expected", [ ('strIndex', False), ('boolIndex', False), ('catIndex', False), ('intIndex', False), ('dateIndex', True), ('floatIndex', False)]) def test_is_all_dates(self, attr, expected): assert getattr(self, attr).is_all_dates == expected def test_summary(self): self._check_method_works(Index._summary) # GH3869 ind = Index(['{other}%s', "~:{range}:0"], name='A') result = ind._summary() # shouldn't be formatted accidentally. assert '~:{range}:0' in result assert '{other}%s' in result # GH18217 def test_summary_deprecated(self): ind = Index(['{other}%s', "~:{range}:0"], name='A') with tm.assert_produces_warning(FutureWarning): ind.summary() def test_format(self): self._check_method_works(Index.format) # GH 14626 # windows has different precision on datetime.datetime.now (it doesn't # include us since the default for Timestamp shows these but Index # formatting does not we are skipping) now = datetime.now() if not str(now).endswith("000"): index = Index([now]) formatted = index.format() expected = [str(index[0])] assert formatted == expected self.strIndex[:0].format() @pytest.mark.parametrize("vals", [ [1, 2.0 + 3.0j, 4.], ['a', 'b', 'c']]) def test_format_missing(self, vals, nulls_fixture): # 2845 vals = list(vals) # Copy for each iteration vals.append(nulls_fixture) index = Index(vals) formatted = index.format() expected = [str(index[0]), str(index[1]), str(index[2]), u('NaN')] assert formatted == expected assert index[3] is nulls_fixture def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 inc = timedelta(hours=4) dates = Index([dt + inc for dt in self.dateIndex], name='something') formatted = dates.format(name=True) assert formatted[0] == 'something' def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ['2012-02-07 00:00:00', '2012-02-07 23:00:00'] assert len(result) == 2 assert result == expected @pytest.mark.parametrize("op", ['any', 'all']) def test_logical_compat(self, op): index = self.create_index() assert getattr(index, op)() == getattr(index.values, op)() def _check_method_works(self, method): # TODO: make this a dedicated test with parametrized methods method(self.empty) method(self.dateIndex) method(self.unicodeIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) method(self.catIndex) def test_get_indexer(self): index1 = Index([1, 2, 3, 4, 5]) index2 = Index([2, 4, 6]) r1 = index1.get_indexer(index2) e1 = np.array([1, 3, -1], dtype=np.intp) assert_almost_equal(r1, e1) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("expected,method", [ (np.array([-1, 0, 0, 1, 1], dtype=np.intp), 'pad'), (np.array([-1, 0, 0, 1, 1], dtype=np.intp), 'ffill'), (np.array([0, 0, 1, 1, 2], dtype=np.intp), 'backfill'), (np.array([0, 0, 1, 1, 2], dtype=np.intp), 'bfill')]) def test_get_indexer_methods(self, reverse, expected, method): index1 = Index([1, 2, 3, 4, 5]) index2 = Index([2, 4, 6]) if reverse: index1 = index1[::-1] expected = expected[::-1] result = index2.get_indexer(index1, method=method) assert_almost_equal(result, expected) def test_get_indexer_invalid(self): # GH10411 index = Index(np.arange(10)) with pytest.raises(ValueError, match='tolerance argument'): index.get_indexer([1, 0], tolerance=1) with pytest.raises(ValueError, match='limit argument'): index.get_indexer([1, 0], limit=1) @pytest.mark.parametrize( 'method, tolerance, indexer, expected', [ ('pad', None, [0, 5, 9], [0, 5, 9]), ('backfill', None, [0, 5, 9], [0, 5, 9]), ('nearest', None, [0, 5, 9], [0, 5, 9]), ('pad', 0, [0, 5, 9], [0, 5, 9]), ('backfill', 0, [0, 5, 9], [0, 5, 9]), ('nearest', 0, [0, 5, 9], [0, 5, 9]), ('pad', None, [0.2, 1.8, 8.5], [0, 1, 8]), ('backfill', None, [0.2, 1.8, 8.5], [1, 2, 9]), ('nearest', None, [0.2, 1.8, 8.5], [0, 2, 9]), ('pad', 1, [0.2, 1.8, 8.5], [0, 1, 8]), ('backfill', 1, [0.2, 1.8, 8.5], [1, 2, 9]), ('nearest', 1, [0.2, 1.8, 8.5], [0, 2, 9]), ('pad', 0.2, [0.2, 1.8, 8.5], [0, -1, -1]), ('backfill', 0.2, [0.2, 1.8, 8.5], [-1, 2, -1]), ('nearest', 0.2, [0.2, 1.8, 8.5], [0, 2, -1])]) def test_get_indexer_nearest(self, method, tolerance, indexer, expected): index = Index(np.arange(10)) actual = index.get_indexer(indexer, method=method, tolerance=tolerance) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) @pytest.mark.parametrize('listtype', [list, tuple, Series, np.array]) @pytest.mark.parametrize( 'tolerance, expected', list(zip([[0.3, 0.3, 0.1], [0.2, 0.1, 0.1], [0.1, 0.5, 0.5]], [[0, 2, -1], [0, -1, -1], [-1, 2, 9]]))) def test_get_indexer_nearest_listlike_tolerance(self, tolerance, expected, listtype): index = Index(np.arange(10)) actual = index.get_indexer([0.2, 1.8, 8.5], method='nearest', tolerance=listtype(tolerance)) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) def test_get_indexer_nearest_error(self): index = Index(np.arange(10)) with pytest.raises(ValueError, match='limit argument'): index.get_indexer([1, 0], method='nearest', limit=1) with pytest.raises(ValueError, match='tolerance size must match'): index.get_indexer([1, 0], method='nearest', tolerance=[1, 2, 3]) @pytest.mark.parametrize("method,expected", [ ('pad', [8, 7, 0]), ('backfill', [9, 8, 1]), ('nearest', [9, 7, 0])]) def test_get_indexer_nearest_decreasing(self, method, expected): index = Index(np.arange(10))[::-1] actual = index.get_indexer([0, 5, 9], method=method) tm.assert_numpy_array_equal(actual, np.array([9, 4, 0], dtype=np.intp)) actual = index.get_indexer([0.2, 1.8, 8.5], method=method) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) @pytest.mark.parametrize("method,expected", [ ('pad', np.array([-1, 0, 1, 1], dtype=np.intp)), ('backfill', np.array([0, 0, 1, -1], dtype=np.intp))]) def test_get_indexer_strings(self, method, expected): index = pd.Index(['b', 'c']) actual = index.get_indexer(['a', 'b', 'c', 'd'], method=method) tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_strings_raises(self): index = pd.Index(['b', 'c']) with pytest.raises(TypeError): index.get_indexer(['a', 'b', 'c', 'd'], method='nearest') with pytest.raises(TypeError): index.get_indexer(['a', 'b', 'c', 'd'], method='pad', tolerance=2) with pytest.raises(TypeError): index.get_indexer(['a', 'b', 'c', 'd'], method='pad', tolerance=[2, 2, 2, 2]) def test_get_indexer_numeric_index_boolean_target(self): # GH 16877 numeric_index = pd.Index(range(4)) result = numeric_index.get_indexer([True, False, True]) expected = np.array([-1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) def test_get_indexer_with_NA_values(self, unique_nulls_fixture, unique_nulls_fixture2): # GH 22332 # check pairwise, that no pair of na values # is mangled if unique_nulls_fixture is unique_nulls_fixture2: return # skip it, values are not unique arr = np.array([unique_nulls_fixture, unique_nulls_fixture2], dtype=np.object) index = pd.Index(arr, dtype=np.object) result = index.get_indexer([unique_nulls_fixture, unique_nulls_fixture2, 'Unknown']) expected = np.array([0, 1, -1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("method", [None, 'pad', 'backfill', 'nearest']) def test_get_loc(self, method): index = pd.Index([0, 1, 2]) assert index.get_loc(1, method=method) == 1 if method: assert index.get_loc(1, method=method, tolerance=0) == 1 @pytest.mark.parametrize("method", [None, 'pad', 'backfill', 'nearest']) def test_get_loc_raises_bad_label(self, method): index = pd.Index([0, 1, 2]) if method: # Messages vary across versions if PY36: msg = 'not supported between' elif PY35: msg = 'unorderable types' else: if method == 'nearest': msg = 'unsupported operand' else: msg = 'requires scalar valued input' else: msg = 'invalid key' with pytest.raises(TypeError, match=msg): index.get_loc([1, 2], method=method) @pytest.mark.parametrize("method,loc", [ ('pad', 1), ('backfill', 2), ('nearest', 1)]) def test_get_loc_tolerance(self, method, loc): index = pd.Index([0, 1, 2]) assert index.get_loc(1.1, method) == loc assert index.get_loc(1.1, method, tolerance=1) == loc @pytest.mark.parametrize("method", ['pad', 'backfill', 'nearest']) def test_get_loc_outside_tolerance_raises(self, method): index = pd.Index([0, 1, 2]) with pytest.raises(KeyError, match='1.1'): index.get_loc(1.1, method, tolerance=0.05) def test_get_loc_bad_tolerance_raises(self): index = pd.Index([0, 1, 2]) with pytest.raises(ValueError, match='must be numeric'): index.get_loc(1.1, 'nearest', tolerance='invalid') def test_get_loc_tolerance_no_method_raises(self): index = pd.Index([0, 1, 2]) with pytest.raises(ValueError, match='tolerance .* valid if'): index.get_loc(1.1, tolerance=1) def test_get_loc_raises_missized_tolerance(self): index = pd.Index([0, 1, 2]) with pytest.raises(ValueError, match='tolerance size must match'): index.get_loc(1.1, 'nearest', tolerance=[1, 1]) def test_get_loc_raises_object_nearest(self): index = pd.Index(['a', 'c']) with pytest.raises(TypeError, match='unsupported operand type'): index.get_loc('a', method='nearest') def test_get_loc_raises_object_tolerance(self): index = pd.Index(['a', 'c']) with pytest.raises(TypeError, match='unsupported operand type'): index.get_loc('a', method='pad', tolerance='invalid') @pytest.mark.parametrize("dtype", [int, float]) def test_slice_locs(self, dtype): index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(index) assert index.slice_locs(start=2) == (2, n) assert index.slice_locs(start=3) == (3, n) assert index.slice_locs(3, 8) == (3, 6) assert index.slice_locs(5, 10) == (3, n) assert index.slice_locs(end=8) == (0, 6) assert index.slice_locs(end=9) == (0, 7) # reversed index2 = index[::-1] assert index2.slice_locs(8, 2) == (2, 6) assert index2.slice_locs(7, 3) == (2, 5) def test_slice_float_locs(self): index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=float)) n = len(index) assert index.slice_locs(5.0, 10.0) == (3, n) assert index.slice_locs(4.5, 10.5) == (3, 8) index2 = index[::-1] assert index2.slice_locs(8.5, 1.5) == (2, 6) assert index2.slice_locs(10.5, -1) == (0, n) @pytest.mark.xfail(reason="Assertions were not correct - see GH#20915") def test_slice_ints_with_floats_raises(self): # int slicing with floats # GH 4892, these are all TypeErrors index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=int)) n = len(index) pytest.raises(TypeError, lambda: index.slice_locs(5.0, 10.0)) pytest.raises(TypeError, lambda: index.slice_locs(4.5, 10.5)) index2 = index[::-1] pytest.raises(TypeError, lambda: index2.slice_locs(8.5, 1.5), (2, 6)) pytest.raises(TypeError, lambda: index2.slice_locs(10.5, -1), (0, n)) def test_slice_locs_dup(self): index = Index(['a', 'a', 'b', 'c', 'd', 'd']) assert index.slice_locs('a', 'd') == (0, 6) assert index.slice_locs(end='d') == (0, 6) assert index.slice_locs('a', 'c') == (0, 4) assert index.slice_locs('b', 'd') == (2, 6) index2 = index[::-1] assert index2.slice_locs('d', 'a') == (0, 6) assert index2.slice_locs(end='a') == (0, 6) assert index2.slice_locs('d', 'b') == (0, 4) assert index2.slice_locs('c', 'a') == (2, 6) @pytest.mark.parametrize("dtype", [int, float]) def test_slice_locs_dup_numeric(self, dtype): index = Index(np.array([10, 12, 12, 14], dtype=dtype)) assert index.slice_locs(12, 12) == (1, 3) assert index.slice_locs(11, 13) == (1, 3) index2 = index[::-1] assert index2.slice_locs(12, 12) == (1, 3) assert index2.slice_locs(13, 11) == (1, 3) def test_slice_locs_na(self): index = Index([np.nan, 1, 2]) assert index.slice_locs(1) == (1, 3) assert index.slice_locs(np.nan) == (0, 3) index = Index([0, np.nan, np.nan, 1, 2]) assert index.slice_locs(np.nan) == (1, 5) def test_slice_locs_na_raises(self): index = Index([np.nan, 1, 2]) with pytest.raises(KeyError, match=''): index.slice_locs(start=1.5) with pytest.raises(KeyError, match=''): index.slice_locs(end=1.5) @pytest.mark.parametrize("in_slice,expected", [ (pd.IndexSlice[::-1], 'yxdcb'), (pd.IndexSlice['b':'y':-1], ''), (pd.IndexSlice['b'::-1], 'b'), (pd.IndexSlice[:'b':-1], 'yxdcb'), (pd.IndexSlice[:'y':-1], 'y'), (pd.IndexSlice['y'::-1], 'yxdcb'), (pd.IndexSlice['y'::-4], 'yb'), # absent labels (pd.IndexSlice[:'a':-1], 'yxdcb'), (pd.IndexSlice[:'a':-2], 'ydb'), (pd.IndexSlice['z'::-1], 'yxdcb'), (pd.IndexSlice['z'::-3], 'yc'), (pd.IndexSlice['m'::-1], 'dcb'), (pd.IndexSlice[:'m':-1], 'yx'), (pd.IndexSlice['a':'a':-1], ''), (pd.IndexSlice['z':'z':-1], ''), (pd.IndexSlice['m':'m':-1], '') ]) def test_slice_locs_negative_step(self, in_slice, expected): index = Index(list('bcdxy')) s_start, s_stop = index.slice_locs(in_slice.start, in_slice.stop, in_slice.step) result = index[s_start:s_stop:in_slice.step] expected = pd.Index(list(expected)) tm.assert_index_equal(result, expected) def test_drop_by_str_label(self): # TODO: Parametrize these after replacing self.strIndex with fixture n = len(self.strIndex) drop = self.strIndex[lrange(5, 10)] dropped = self.strIndex.drop(drop) expected = self.strIndex[lrange(5) + lrange(10, n)] tm.assert_index_equal(dropped, expected) dropped = self.strIndex.drop(self.strIndex[0]) expected = self.strIndex[1:] tm.assert_index_equal(dropped, expected) @pytest.mark.parametrize("keys", [['foo', 'bar'], ['1', 'bar']]) def test_drop_by_str_label_raises_missing_keys(self, keys): with pytest.raises(KeyError, match=''): self.strIndex.drop(keys) def test_drop_by_str_label_errors_ignore(self): # TODO: Parametrize these after replacing self.strIndex with fixture # errors='ignore' n = len(self.strIndex) drop = self.strIndex[lrange(5, 10)] mixed = drop.tolist() + ['foo'] dropped = self.strIndex.drop(mixed, errors='ignore') expected = self.strIndex[lrange(5) + lrange(10, n)] tm.assert_index_equal(dropped, expected) dropped = self.strIndex.drop(['foo', 'bar'], errors='ignore') expected = self.strIndex[lrange(n)] tm.assert_index_equal(dropped, expected) def test_drop_by_numeric_label_loc(self): # TODO: Parametrize numeric and str tests after self.strIndex fixture index = Index([1, 2, 3]) dropped = index.drop(1) expected = Index([2, 3]) tm.assert_index_equal(dropped, expected) def test_drop_by_numeric_label_raises_missing_keys(self): index = Index([1, 2, 3]) with pytest.raises(KeyError, match=''): index.drop([3, 4]) @pytest.mark.parametrize("key,expected", [ (4, Index([1, 2, 3])), ([3, 4, 5], Index([1, 2]))]) def test_drop_by_numeric_label_errors_ignore(self, key, expected): index = Index([1, 2, 3]) dropped = index.drop(key, errors='ignore') tm.assert_index_equal(dropped, expected) @pytest.mark.parametrize("values", [['a', 'b', ('c', 'd')], ['a', ('c', 'd'), 'b'], [('c', 'd'), 'a', 'b']]) @pytest.mark.parametrize("to_drop", [[('c', 'd'), 'a'], ['a', ('c', 'd')]]) def test_drop_tuple(self, values, to_drop): # GH 18304 index = pd.Index(values) expected = pd.Index(['b']) result = index.drop(to_drop) tm.assert_index_equal(result, expected) removed = index.drop(to_drop[0]) for drop_me in to_drop[1], [to_drop[1]]: result = removed.drop(drop_me) tm.assert_index_equal(result, expected) removed = index.drop(to_drop[1]) for drop_me in to_drop[1], [to_drop[1]]: pytest.raises(KeyError, removed.drop, drop_me) @pytest.mark.parametrize("method,expected,sort", [ ('intersection', np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]), False), ('intersection', np.array([(1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')], dtype=[('num', int), ('let', 'a1')]), None), ('union', np.array([(1, 'A'), (1, 'B'), (1, 'C'), (2, 'A'), (2, 'B'), (2, 'C')], dtype=[('num', int), ('let', 'a1')]), None) ]) def test_tuple_union_bug(self, method, expected, sort): index1 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')])) index2 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')])) result = getattr(index1, method)(index2, sort=sort) assert result.ndim == 1 expected = Index(expected) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("attr", [ 'is_monotonic_increasing', 'is_monotonic_decreasing', '_is_strictly_monotonic_increasing', '_is_strictly_monotonic_decreasing']) def test_is_monotonic_incomparable(self, attr): index = Index([5, datetime.now(), 7]) assert not getattr(index, attr) def test_get_set_value(self): # TODO: Remove function? GH 19728 values = np.random.randn(100) date = self.dateIndex[67] assert_almost_equal(self.dateIndex.get_value(values, date), values[67]) self.dateIndex.set_value(values, date, 10) assert values[67] == 10 @pytest.mark.parametrize("values", [ ['foo', 'bar', 'quux'], {'foo', 'bar', 'quux'}]) @pytest.mark.parametrize("index,expected", [ (Index(['qux', 'baz', 'foo', 'bar']), np.array([False, False, True, True])), (Index([]), np.array([], dtype=bool)) # empty ]) def test_isin(self, values, index, expected): result = index.isin(values) tm.assert_numpy_array_equal(result, expected) def test_isin_nan_common_object(self, nulls_fixture, nulls_fixture2): # Test cartesian product of null fixtures and ensure that we don't # mangle the various types (save a corner case with PyPy) # all nans are the same if (isinstance(nulls_fixture, float) and isinstance(nulls_fixture2, float) and math.isnan(nulls_fixture) and math.isnan(nulls_fixture2)): tm.assert_numpy_array_equal(Index(['a', nulls_fixture]).isin( [nulls_fixture2]), np.array([False, True])) elif nulls_fixture is nulls_fixture2: # should preserve NA type tm.assert_numpy_array_equal(Index(['a', nulls_fixture]).isin( [nulls_fixture2]), np.array([False, True])) else: tm.assert_numpy_array_equal(Index(['a', nulls_fixture]).isin( [nulls_fixture2]), np.array([False, False])) def test_isin_nan_common_float64(self, nulls_fixture): if nulls_fixture is pd.NaT: pytest.skip("pd.NaT not compatible with Float64Index") # Float64Index overrides isin, so must be checked separately tm.assert_numpy_array_equal(Float64Index([1.0, nulls_fixture]).isin( [np.nan]), np.array([False, True])) # we cannot compare NaT with NaN tm.assert_numpy_array_equal(Float64Index([1.0, nulls_fixture]).isin( [pd.NaT]), np.array([False, False])) @pytest.mark.parametrize("level", [0, -1]) @pytest.mark.parametrize("index", [ Index(['qux', 'baz', 'foo', 'bar']), # Float64Index overrides isin, so must be checked separately Float64Index([1.0, 2.0, 3.0, 4.0])]) def test_isin_level_kwarg(self, level, index): values = index.tolist()[-2:] + ['nonexisting'] expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(expected, index.isin(values, level=level)) index.name = 'foobar' tm.assert_numpy_array_equal(expected, index.isin(values, level='foobar')) @pytest.mark.parametrize("level", [1, 10, -2]) @pytest.mark.parametrize("index", [ Index(['qux', 'baz', 'foo', 'bar']), # Float64Index overrides isin, so must be checked separately Float64Index([1.0, 2.0, 3.0, 4.0])]) def test_isin_level_kwarg_raises_bad_index(self, level, index): with pytest.raises(IndexError, match='Too many levels'): index.isin([], level=level) @pytest.mark.parametrize("level", [1.0, 'foobar', 'xyzzy', np.nan]) @pytest.mark.parametrize("index", [ Index(['qux', 'baz', 'foo', 'bar']), Float64Index([1.0, 2.0, 3.0, 4.0])]) def test_isin_level_kwarg_raises_key(self, level, index): with pytest.raises(KeyError, match='must be same as name'): index.isin([], level=level) @pytest.mark.parametrize("empty", [[], Series(), np.array([])]) def test_isin_empty(self, empty): # see gh-16991 index = Index(["a", "b"]) expected = np.array([False, False]) result = index.isin(empty) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("values", [ [1, 2, 3, 4], [1., 2., 3., 4.], [True, True, True, True], ["foo", "bar", "baz", "qux"], pd.date_range('2018-01-01', freq='D', periods=4)]) def test_boolean_cmp(self, values): index = Index(values) result = (index == values) expected = np.array([True, True, True, True], dtype=bool) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("name,level", [ (None, 0), ('a', 'a')]) def test_get_level_values(self, name, level): expected = self.strIndex.copy() if name: expected.name = name result = expected.get_level_values(level) tm.assert_index_equal(result, expected) def test_slice_keep_name(self): index = Index(['a', 'b'], name='asdf') assert index.name == index[1:].name # instance attributes of the form self.<name>Index @pytest.mark.parametrize('index_kind', ['unicode', 'str', 'date', 'int', 'float']) def test_join_self(self, join_type, index_kind): res = getattr(self, '{0}Index'.format(index_kind)) joined = res.join(res, how=join_type) assert res is joined @pytest.mark.parametrize("method", ['strip', 'rstrip', 'lstrip']) def test_str_attribute(self, method): # GH9068 index = Index([' jack', 'jill ', ' jesse ', 'frank']) expected = Index([getattr(str, method)(x) for x in index.values]) result = getattr(index.str, method)() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("index", [ Index(range(5)), tm.makeDateIndex(10), MultiIndex.from_tuples([('foo', '1'), ('bar', '3')]), period_range(start='2000', end='2010', freq='A')]) def test_str_attribute_raises(self, index): with pytest.raises(AttributeError, match='only use .str accessor'): index.str.repeat(2) @pytest.mark.parametrize("expand,expected", [ (None, Index([['a', 'b', 'c'], ['d', 'e'], ['f']])), (False, Index([['a', 'b', 'c'], ['d', 'e'], ['f']])), (True, MultiIndex.from_tuples([('a', 'b', 'c'), ('d', 'e', np.nan), ('f', np.nan, np.nan)]))]) def test_str_split(self, expand, expected): index = Index(['a b c', 'd e', 'f']) if expand is not None: result = index.str.split(expand=expand) else: result = index.str.split() tm.assert_index_equal(result, expected) def test_str_bool_return(self): # test boolean case, should return np.array instead of boolean Index index = Index(['a1', 'a2', 'b1', 'b2']) result = index.str.startswith('a') expected = np.array([True, True, False, False]) tm.assert_numpy_array_equal(result, expected) assert isinstance(result, np.ndarray) def test_str_bool_series_indexing(self): index = Index(['a1', 'a2', 'b1', 'b2']) s = Series(range(4), index=index) result = s[s.index.str.startswith('a')] expected = Series(range(2), index=['a1', 'a2']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("index,expected", [ (Index(list('abcd')), True), (Index(range(4)), False)]) def test_tab_completion(self, index, expected): # GH 9910 result = 'str' in dir(index) assert result == expected def test_indexing_doesnt_change_class(self): index = Index([1, 2, 3, 'a', 'b', 'c']) assert index[1:3].identical(pd.Index([2, 3], dtype=np.object_)) assert index[[0, 1]].identical(pd.Index([1, 2], dtype=np.object_)) def test_outer_join_sort(self): left_index = Index(np.random.permutation(15)) right_index = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): result = left_index.join(right_index, how='outer') # right_index in this case because DatetimeIndex has join precedence # over Int64Index with tm.assert_produces_warning(RuntimeWarning): expected = right_index.astype(object).union( left_index.astype(object)) tm.assert_index_equal(result, expected) def test_nan_first_take_datetime(self): index = Index([pd.NaT, Timestamp('20130101'), Timestamp('20130102')]) result = index.take([-1, 0, 1]) expected = Index([index[-1], index[0], index[1]]) tm.assert_index_equal(result, expected) def test_take_fill_value(self): # GH 12631 index = pd.Index(list('ABC'), name='xxx') result = index.take(np.array([1, 0, -1])) expected = pd.Index(list('BAC'), name='xxx') tm.assert_index_equal(result, expected) # fill_value result = index.take(np.array([1, 0, -1]), fill_value=True) expected = pd.Index(['B', 'A', np.nan], name='xxx') tm.assert_index_equal(result, expected) # allow_fill=False result = index.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.Index(['B', 'A', 'C'], name='xxx') tm.assert_index_equal(result, expected) def test_take_fill_value_none_raises(self): index = pd.Index(list('ABC'), name='xxx') msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with pytest.raises(ValueError, match=msg): index.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): index.take(np.array([1, 0, -5]), fill_value=True) def test_take_bad_bounds_raises(self): index = pd.Index(list('ABC'), name='xxx') with pytest.raises(IndexError, match='out of bounds'): index.take(np.array([1, -5])) @pytest.mark.parametrize("name", [None, 'foobar']) @pytest.mark.parametrize("labels", [ [], np.array([]), ['A', 'B', 'C'], ['C', 'B', 'A'], np.array(['A', 'B', 'C']), np.array(['C', 'B', 'A']), # Must preserve name even if dtype changes pd.date_range('20130101', periods=3).values, pd.date_range('20130101', periods=3).tolist()]) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self, name, labels): # GH6552 index = pd.Index([0, 1, 2]) index.name = name assert index.reindex(labels)[0].name == name @pytest.mark.parametrize("labels", [ [], np.array([]), np.array([], dtype=np.int64)]) def test_reindex_preserves_type_if_target_is_empty_list_or_array(self, labels): # GH7774 index = pd.Index(list('abc')) assert index.reindex(labels)[0].dtype.type == np.object_ @pytest.mark.parametrize("labels,dtype", [ (pd.Int64Index([]), np.int64), (pd.Float64Index([]), np.float64), (pd.DatetimeIndex([]), np.datetime64)]) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self, labels, dtype): # GH7774 index = pd.Index(list('abc')) assert index.reindex(labels)[0].dtype.type == dtype def test_reindex_no_type_preserve_target_empty_mi(self): index = pd.Index(list('abc')) result = index.reindex(pd.MultiIndex( [pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] assert result.levels[0].dtype.type == np.int64 assert result.levels[1].dtype.type == np.float64 def test_groupby(self): index = Index(range(5)) result = index.groupby(np.array([1, 1, 2, 2, 2])) expected = {1: pd.Index([0, 1]), 2: pd.Index([2, 3, 4])} tm.assert_dict_equal(result, expected) @pytest.mark.parametrize("mi,expected", [ (MultiIndex.from_tuples([(1, 2), (4, 5)]), np.array([True, True])), (MultiIndex.from_tuples([(1, 2), (4, 6)]), np.array([True, False]))]) def test_equals_op_multiindex(self, mi, expected): # GH9785 # test comparisons of multiindex df = pd.read_csv(StringIO('a,b,c\n1,2,3\n4,5,6'), index_col=[0, 1]) result = df.index == mi tm.assert_numpy_array_equal(result, expected) def test_equals_op_multiindex_identify(self): df = pd.read_csv(StringIO('a,b,c\n1,2,3\n4,5,6'), index_col=[0, 1]) result = df.index == df.index expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("index", [ MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]), Index(['foo', 'bar', 'baz'])]) def test_equals_op_mismatched_multiindex_raises(self, index): df = pd.read_csv(StringIO('a,b,c\n1,2,3\n4,5,6'), index_col=[0, 1]) with pytest.raises(ValueError, match="Lengths must match"): df.index == index def test_equals_op_index_vs_mi_same_length(self): mi = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]) index = Index(['foo', 'bar', 'baz']) result = mi == index expected = np.array([False, False, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dt_conv", [ pd.to_datetime, pd.to_timedelta]) def test_dt_conversion_preserves_name(self, dt_conv): # GH 10875 index = pd.Index(['01:02:03', '01:02:04'], name='label') assert index.name == dt_conv(index).name @pytest.mark.skipif(not PY3, reason="compat test") @pytest.mark.parametrize("index,expected", [ # ASCII # short (pd.Index(['a', 'bb', 'ccc']), u"""Index(['a', 'bb', 'ccc'], dtype='object')"""), # multiple lines (pd.Index(['a', 'bb', 'ccc'] * 10), u"""\ Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], dtype='object')"""), # truncated (pd.Index(['a', 'bb', 'ccc'] * 100), u"""\ Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', ... 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], dtype='object', length=300)"""), # Non-ASCII # short (pd.Index([u'あ', u'いい', u'ううう']), u"""Index(['あ', 'いい', 'ううう'], dtype='object')"""), # multiple lines (pd.Index([u'あ', u'いい', u'ううう'] * 10), (u"Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " u"'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " u"'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう'],\n" u" dtype='object')")), # truncated (pd.Index([u'あ', u'いい', u'ううう'] * 100), (u"Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " u"'あ', 'いい', 'ううう', 'あ',\n" u" ...\n" u" 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう'],\n" u" dtype='object', length=300)"))]) def test_string_index_repr(self, index, expected): result = repr(index) assert result == expected @pytest.mark.skipif(PY3, reason="compat test") @pytest.mark.parametrize("index,expected", [ # ASCII # short (pd.Index(['a', 'bb', 'ccc']), u"""Index([u'a', u'bb', u'ccc'], dtype='object')"""), # multiple lines (pd.Index(['a', 'bb', 'ccc'] * 10), u"""\ Index([u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc'], dtype='object')"""), # truncated (pd.Index(['a', 'bb', 'ccc'] * 100), u"""\ Index([u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', ... u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc', u'a', u'bb', u'ccc'], dtype='object', length=300)"""), # Non-ASCII # short (pd.Index([u'あ', u'いい', u'ううう']), u"""Index([u'あ', u'いい', u'ううう'], dtype='object')"""), # multiple lines (pd.Index([u'あ', u'いい', u'ううう'] * 10), (u"Index([u'あ', u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい', u'ううう', u'あ',\n" u" u'いい', u'ううう', u'あ', u'いい', u'ううう', " u"u'あ', u'いい', u'ううう', u'あ', u'いい',\n" u" u'ううう', u'あ', u'いい', u'ううう', u'あ', " u"u'いい', u'ううう', u'あ', u'いい', u'ううう'],\n" u" dtype='object')")), # truncated (pd.Index([u'あ', u'いい', u'ううう'] * 100), (u"Index([u'あ', u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい', u'ううう', u'あ',\n" u" ...\n" u" u'ううう', u'あ', u'いい', u'ううう', u'あ', " u"u'いい', u'ううう', u'あ', u'いい', u'ううう'],\n" u" dtype='object', length=300)"))]) def test_string_index_repr_compat(self, index, expected): result = unicode(index) # noqa assert result == expected @pytest.mark.skipif(not PY3, reason="compat test") @pytest.mark.parametrize("index,expected", [ # short (pd.Index([u'あ', u'いい', u'ううう']), (u"Index(['あ', 'いい', 'ううう'], " u"dtype='object')")), # multiple lines (pd.Index([u'あ', u'いい', u'ううう'] * 10), (u"Index(['あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ', 'いい', 'ううう'],\n" u" dtype='object')""")), # truncated (pd.Index([u'あ', u'いい', u'ううう'] * 100), (u"Index(['あ', 'いい', 'ううう', 'あ', 'いい', " u"'ううう', 'あ', 'いい', 'ううう',\n" u" 'あ',\n" u" ...\n" u" 'ううう', 'あ', 'いい', 'ううう', 'あ', " u"'いい', 'ううう', 'あ', 'いい',\n" u" 'ううう'],\n" u" dtype='object', length=300)"))]) def test_string_index_repr_with_unicode_option(self, index, expected): # Enable Unicode option ----------------------------------------- with cf.option_context('display.unicode.east_asian_width', True): result = repr(index) assert result == expected @pytest.mark.skipif(PY3, reason="compat test") @pytest.mark.parametrize("index,expected", [ # short (pd.Index([u'あ', u'いい', u'ううう']), (u"Index([u'あ', u'いい', u'ううう'], " u"dtype='object')")), # multiple lines (pd.Index([u'あ', u'いい', u'ううう'] * 10), (u"Index([u'あ', u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい',\n" u" u'ううう', u'あ', u'いい', u'ううう', " u"u'あ', u'いい', u'ううう', u'あ',\n" u" u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい',\n" u" u'ううう', u'あ', u'いい', u'ううう', " u"u'あ', u'いい', u'ううう'],\n" u" dtype='object')")), # truncated (pd.Index([u'あ', u'いい', u'ううう'] * 100), (u"Index([u'あ', u'いい', u'ううう', u'あ', u'いい', " u"u'ううう', u'あ', u'いい',\n" u" u'ううう', u'あ',\n" u" ...\n" u" u'ううう', u'あ', u'いい', u'ううう', " u"u'あ', u'いい', u'ううう', u'あ',\n" u" u'いい', u'ううう'],\n" u" dtype='object', length=300)"))]) def test_string_index_repr_with_unicode_option_compat(self, index, expected): # Enable Unicode option ----------------------------------------- with cf.option_context('display.unicode.east_asian_width', True): result = unicode(index) # noqa assert result == expected def test_cached_properties_not_settable(self): index = pd.Index([1, 2, 3]) with pytest.raises(AttributeError, match="Can't set attribute"): index.is_unique = False def test_get_duplicates_deprecated(self): index = pd.Index([1, 2, 3]) with tm.assert_produces_warning(FutureWarning): index.get_duplicates() def test_tab_complete_warning(self, ip): # https://github.com/pandas-dev/pandas/issues/16409 pytest.importorskip('IPython', minversion="6.0.0") from IPython.core.completer import provisionalcompleter code = "import pandas as pd; idx = pd.Index([1, 2])" ip.run_code(code) with tm.assert_produces_warning(None): with provisionalcompleter('ignore'): list(ip.Completer.completions('idx.', 4)) class TestMixedIntIndex(Base): # Mostly the tests from common.py for which the results differ # in py2 and py3 because ints and strings are uncomparable in py3 # (GH 13514) _holder = Index def setup_method(self, method): self.indices = dict(mixedIndex=Index([0, 'a', 1, 'b', 2, 'c'])) self.setup_indices() def create_index(self): return self.mixedIndex def test_argsort(self): index = self.create_index() if PY36: with pytest.raises(TypeError, match="'>|<' not supported"): result = index.argsort() elif PY3: with pytest.raises(TypeError, match="unorderable types"): result = index.argsort() else: result = index.argsort() expected = np.array(index).argsort() tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_numpy_argsort(self): index = self.create_index() if PY36: with pytest.raises(TypeError, match="'>|<' not supported"): result = np.argsort(index) elif PY3: with pytest.raises(TypeError, match="unorderable types"): result = np.argsort(index) else: result = np.argsort(index) expected = index.argsort() tm.assert_numpy_array_equal(result, expected) def test_copy_name(self): # Check that "name" argument passed at initialization is honoured # GH12309 index = self.create_index() first = index.__class__(index, copy=True, name='mario') second = first.__class__(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second tm.assert_index_equal(first, second) assert first.name == 'mario' assert second.name == 'mario' s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) s3 = s1 * s2 assert s3.index.name == 'mario' def test_copy_name2(self): # Check that adding a "name" parameter to the copy is honored # GH14302 index = pd.Index([1, 2], name='MyName') index1 = index.copy() tm.assert_index_equal(index, index1) index2 = index.copy(name='NewName') tm.assert_index_equal(index, index2, check_names=False) assert index.name == 'MyName' assert index2.name == 'NewName' index3 = index.copy(names=['NewName']) tm.assert_index_equal(index, index3, check_names=False) assert index.name == 'MyName' assert index.names == ['MyName'] assert index3.name == 'NewName' assert index3.names == ['NewName'] def test_union_base(self): index = self.create_index() first = index[3:] second = index[:5] result = first.union(second) expected = Index([0, 1, 2, 'a', 'b', 'c']) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass", [ np.array, Series, list]) def test_union_different_type_base(self, klass): # GH 10149 index = self.create_index() first = index[3:] second = index[:5] result = first.union(klass(second.values)) assert tm.equalContents(result, index) def test_unique_na(self): idx = pd.Index([2, np.nan, 2, 1], name='my_index') expected = pd.Index([2, np.nan, 1], name='my_index') result = idx.unique() tm.assert_index_equal(result, expected) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_base(self, sort): # (same results for py2 and py3 but sortedness not tested elsewhere) index = self.create_index() first = index[:5] second = index[:3] expected = Index([0, 1, 'a']) if sort is None else Index([0, 'a', 1]) result = first.intersection(second, sort=sort) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass", [ np.array, Series, list]) @pytest.mark.parametrize("sort", [None, False]) def test_intersection_different_type_base(self, klass, sort): # GH 10149 index = self.create_index() first = index[:5] second = index[:3] result = first.intersection(klass(second.values), sort=sort) assert tm.equalContents(result, second) @pytest.mark.parametrize("sort", [None, False]) def test_difference_base(self, sort): # (same results for py2 and py3 but sortedness not tested elsewhere) index = self.create_index() first = index[:4] second = index[3:] result = first.difference(second, sort) expected = Index([0, 'a', 1]) if sort is None: expected = Index(safe_sort(expected)) tm.assert_index_equal(result, expected) def test_symmetric_difference(self): # (same results for py2 and py3 but sortedness not tested elsewhere) index = self.create_index() first = index[:4] second = index[3:] result = first.symmetric_difference(second) expected = Index([0, 1, 2, 'a', 'c']) tm.assert_index_equal(result, expected) def test_logical_compat(self): index = self.create_index() assert index.all() == index.values.all() assert index.any() == index.values.any() @pytest.mark.parametrize("how", ['any', 'all']) @pytest.mark.parametrize("dtype", [ None, object, 'category']) @pytest.mark.parametrize("vals,expected", [ ([1, 2, 3], [1, 2, 3]), ([1., 2., 3.], [1., 2., 3.]), ([1., 2., np.nan, 3.], [1., 2., 3.]), (['A', 'B', 'C'], ['A', 'B', 'C']), (['A', np.nan, 'B', 'C'], ['A', 'B', 'C'])]) def test_dropna(self, how, dtype, vals, expected): # GH 6194 index = pd.Index(vals, dtype=dtype) result = index.dropna(how=how) expected = pd.Index(expected, dtype=dtype) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("how", ['any', 'all']) @pytest.mark.parametrize("index,expected", [ (pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03']), pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'])), (pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', pd.NaT]), pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'])), (pd.TimedeltaIndex(['1 days', '2 days', '3 days']), pd.TimedeltaIndex(['1 days', '2 days', '3 days'])), (pd.TimedeltaIndex([pd.NaT, '1 days', '2 days', '3 days', pd.NaT]), pd.TimedeltaIndex(['1 days', '2 days', '3 days'])), (pd.PeriodIndex(['2012-02', '2012-04', '2012-05'], freq='M'), pd.PeriodIndex(['2012-02', '2012-04', '2012-05'], freq='M')), (pd.PeriodIndex(['2012-02', '2012-04', 'NaT', '2012-05'], freq='M'), pd.PeriodIndex(['2012-02', '2012-04', '2012-05'], freq='M'))]) def test_dropna_dt_like(self, how, index, expected): result = index.dropna(how=how) tm.assert_index_equal(result, expected) def test_dropna_invalid_how_raises(self): msg = "invalid how option: xxx" with pytest.raises(ValueError, match=msg): pd.Index([1, 2, 3]).dropna(how='xxx') def test_get_combined_index(self): result = _get_combined_index([]) expected = Index([]) tm.assert_index_equal(result, expected) def test_repeat(self): repeats = 2 index = pd.Index([1, 2, 3]) expected = pd.Index([1, 1, 2, 2, 3, 3]) result = index.repeat(repeats) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("index", [ pd.Index([np.nan]), pd.Index([np.nan, 1]), pd.Index([1, 2, np.nan]), pd.Index(['a', 'b', np.nan]), pd.to_datetime(['NaT']), pd.to_datetime(['NaT', '2000-01-01']), pd.to_datetime(['2000-01-01', 'NaT', '2000-01-02']), pd.to_timedelta(['1 day', 'NaT'])]) def test_is_monotonic_na(self, index): assert index.is_monotonic_increasing is False assert index.is_monotonic_decreasing is False assert index._is_strictly_monotonic_increasing is False assert index._is_strictly_monotonic_decreasing is False def test_repr_summary(self): with cf.option_context('display.max_seq_items', 10): result = repr(pd.Index(np.arange(1000))) assert len(result) < 200 assert "..." in result @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_int_name_format(self, klass): index = Index(['a', 'b', 'c'], name=0) result = klass(lrange(3), index=index) assert '0' in repr(result) def test_print_unicode_columns(self): df = pd.DataFrame({u("\u05d0"): [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]}) repr(df.columns) # should not raise UnicodeDecodeError @pytest.mark.parametrize("func,compat_func", [ (str, text_type), # unicode string (bytes, str) # byte string ]) def test_with_unicode(self, func, compat_func): index = Index(lrange(1000)) if PY3: func(index) else: compat_func(index) def test_intersect_str_dates(self): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] index1 = Index(dt_dates, dtype=object) index2 = Index(['aa'], dtype=object) result = index2.intersection(index1) expected = Index([], dtype=object) tm.assert_index_equal(result, expected) class TestIndexUtils(object): @pytest.mark.parametrize('data, names, expected', [ ([[1, 2, 3]], None, Index([1, 2, 3])), ([[1, 2, 3]], ['name'], Index([1, 2, 3], name='name')), ([['a', 'a'], ['c', 'd']], None, MultiIndex([['a'], ['c', 'd']], [[0, 0], [0, 1]])), ([['a', 'a'], ['c', 'd']], ['L1', 'L2'], MultiIndex([['a'], ['c', 'd']], [[0, 0], [0, 1]], names=['L1', 'L2'])), ]) def test_ensure_index_from_sequences(self, data, names, expected): result = ensure_index_from_sequences(data, names) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('opname', ['eq', 'ne', 'le', 'lt', 'ge', 'gt', 'add', 'radd', 'sub', 'rsub', 'mul', 'rmul', 'truediv', 'rtruediv', 'floordiv', 'rfloordiv', 'pow', 'rpow', 'mod', 'divmod']) def test_generated_op_names(opname, indices): index = indices if isinstance(index, ABCIndex) and opname == 'rsub': # pd.Index.__rsub__ does not exist; though the method does exist # for subclasses. see GH#19723 return opname = '__{name}__'.format(name=opname) method = getattr(index, opname) assert method.__name__ == opname @pytest.mark.parametrize('index_maker', tm.index_subclass_makers_generator()) def test_index_subclass_constructor_wrong_kwargs(index_maker): # GH #19348 with pytest.raises(TypeError, match='unexpected keyword argument'): index_maker(foo='bar') def test_deprecated_fastpath(): with tm.assert_produces_warning(FutureWarning): idx = pd.Index( np.array(['a', 'b'], dtype=object), name='test', fastpath=True) expected = pd.Index(['a', 'b'], name='test') tm.assert_index_equal(idx, expected) with tm.assert_produces_warning(FutureWarning): idx = pd.Int64Index( np.array([1, 2, 3], dtype='int64'), name='test', fastpath=True) expected = pd.Index([1, 2, 3], name='test', dtype='int64') tm.assert_index_equal(idx, expected) with tm.assert_produces_warning(FutureWarning): idx = pd.RangeIndex(0, 5, 2, name='test', fastpath=True) expected = pd.RangeIndex(0, 5, 2, name='test') tm.assert_index_equal(idx, expected) with tm.assert_produces_warning(FutureWarning): idx = pd.CategoricalIndex(['a', 'b', 'c'], name='test', fastpath=True) expected = pd.CategoricalIndex(['a', 'b', 'c'], name='test') tm.assert_index_equal(idx, expected)
2afef828f3e42fd38f81af846f9e6dca18544acf
23bb29a6cf89c57cea79d1d4a52890a232582b87
/setup.py
fb4d4c5626042066f7a2148ae399aa1ccba42226
[]
no_license
dave-m/domaincheck
f52cf211c50c631b16c6972f0330028713f7840e
c2ba6647dd85786c00f8913e84db8dbb20b0e143
refs/heads/master
2021-01-20T04:24:54.770287
2014-02-23T20:04:00
2014-02-23T20:04:00
6,432,702
1
0
null
null
null
null
UTF-8
Python
false
false
439
py
#!/usr/bin/env python from distutils.core import setup from distutils.command.install_data import install_data setup(name='DomainCheck', version='0.1', description='Domain check website', author='David Mcilwee', author_email='[email protected]', url='', packages=['domaincheck'], include_package_data=True, zip_safe=False, install_requires=['Flask', 'dnspython'] )
5f0af102f38a471e26634f5388a653dc173c417c
4ced1662347a724208d1fa9eafa00500538eb530
/src/squareservice/squareservice/genproto/demo_pb2_grpc.py
7cf4ec955753621c1f10e73205b547c443aab929
[ "MIT" ]
permissive
brymck/gke-site
5e554057f540006c4a7ce5e2542c3289da1ece9c
1a4c36e3ebfb5fd5e85645e8a56e6c081eb807dd
refs/heads/master
2020-04-14T08:31:43.662530
2019-01-22T10:48:05
2019-01-22T10:48:05
163,737,493
0
0
null
null
null
null
UTF-8
Python
false
false
4,023
py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from . import demo_pb2 as demo__pb2 class HelloServiceStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetGreeting = channel.unary_unary( '/gkesite.HelloService/GetGreeting', request_serializer=demo__pb2.GreetingRequest.SerializeToString, response_deserializer=demo__pb2.Greeting.FromString, ) class HelloServiceServicer(object): # missing associated documentation comment in .proto file pass def GetGreeting(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_HelloServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetGreeting': grpc.unary_unary_rpc_method_handler( servicer.GetGreeting, request_deserializer=demo__pb2.GreetingRequest.FromString, response_serializer=demo__pb2.Greeting.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'gkesite.HelloService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) class SquareServiceStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetSquare = channel.unary_unary( '/gkesite.SquareService/GetSquare', request_serializer=demo__pb2.SquareRequest.SerializeToString, response_deserializer=demo__pb2.SquareResponse.FromString, ) class SquareServiceServicer(object): # missing associated documentation comment in .proto file pass def GetSquare(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_SquareServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetSquare': grpc.unary_unary_rpc_method_handler( servicer.GetSquare, request_deserializer=demo__pb2.SquareRequest.FromString, response_serializer=demo__pb2.SquareResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'gkesite.SquareService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) class CountServiceStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetCount = channel.unary_unary( '/gkesite.CountService/GetCount', request_serializer=demo__pb2.CountRequest.SerializeToString, response_deserializer=demo__pb2.CountResponse.FromString, ) class CountServiceServicer(object): # missing associated documentation comment in .proto file pass def GetCount(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_CountServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetCount': grpc.unary_unary_rpc_method_handler( servicer.GetCount, request_deserializer=demo__pb2.CountRequest.FromString, response_serializer=demo__pb2.CountResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'gkesite.CountService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
9bc9825150a1f5bfa183564bdebfb36753c63a47
cdfce941968359d04e928f1bf137234d36c64b6b
/extras/ml-tweets/__init__.py
77bfb9bfa1dd7d9f5d9690f58e14ef3c17c97c91
[]
no_license
lucmski/botornot
35bafeedc90724a0b0e3f40ac5bad647aea51110
5357f43c85628d540c4d48391e37d19af9c8733a
refs/heads/master
2020-07-15T13:49:19.016905
2019-09-01T20:30:37
2019-09-01T20:30:37
205,576,853
1
0
null
null
null
null
UTF-8
Python
false
false
163
py
from . import getTweets from . import analyzeTweets from . import plotTweets from . import getStockData from . import analyzeStockData from . import plotStockData
c2420aa4c06b80b0a03746ec46732f57882ffada
a3719ba9c5c834479f9e200816be0391863ebe78
/lesson_5_dz2.py
6dafe1f089ebe94f6abaa254b11c418ffc151047
[]
no_license
NikDestrave/GeekBrains_Python
94745faf11b864ce3322fc393bcb3b8656bcffbb
c9bf127c1580a6ba2037cfea002fb0e39163ed72
refs/heads/master
2020-12-20T17:29:44.077461
2020-08-30T05:05:29
2020-08-30T05:05:29
235,931,971
0
0
null
null
null
null
UTF-8
Python
false
false
506
py
# 2. Создать текстовый файл (не программно), сохранить в нем несколько строк, # выполнить подсчет количества строк, количества слов в каждой строке. with open('file2.txt', 'r') as f: print(f'Количество строк = {len(f.readlines())}') f.seek(0) count = [len(line.split()) for line in f] print(count) print(f'Количество слов = {sum(count)}')
0a10e0805cfdfb512f97c9daac68c0b5bb312b75
f5b313dadf3b7e3d96ece1a456e21bc9bd1b26b4
/utils/validates.py
e588d8b546ba3bb53ddafbd578685cb173184215
[]
no_license
qq370154918/dev_04
547de9730bd680ba8b9ac1c6f819a000aa9e6e21
5ac9ebea729cc1817754416de967adbe58e46fc5
refs/heads/master
2023-07-29T13:14:19.261719
2020-12-29T08:02:58
2020-12-29T08:02:58
284,427,132
0
0
null
2021-09-22T19:38:32
2020-08-02T09:04:42
Python
UTF-8
Python
false
false
600
py
from rest_framework import serializers from projects.models import Projects from interfaces.models import Interfaces from envs.models import Envs def is_exist_project_id(value): if not Projects.objects.filter(id=value).exists(): raise serializers.ValidationError('项目id不存在') def is_exist_interface_id(value): if not Interfaces.objects.filter(id=value).exists(): raise serializers.ValidationError('接口id不存在') def is_exist_env_id(value): if not Envs.objects.filter(id=value).exists(): raise serializers.ValidationError('环境变量id不存在')
05289f7ef1d3bf5a16d16440b251f0bf7002e2b3
ff1477deb2b0bf0580ea512c1843a4085e639932
/main.py
521a0f3e15a8d864423d29388bc782737b4fb0e9
[ "MIT" ]
permissive
SkylerHoward/O
f7ff9955499483f4368e01cd5c2991970b160d29
989246a5cdc297ab9f76cb6b26daebd799a03741
refs/heads/master
2021-07-08T19:57:12.042530
2017-10-07T13:33:44
2017-10-07T13:33:44
106,098,904
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
import weather, morning, time, sleep, events from datetime import datetime from speak import * speak = speech() def main(): while True: command = input('> ') if command == 'sleep': speak.speak('Good night.') for line in sleep.main(): speak.speak(line) if command == 'quit': quit() if command == 'events': te = events.today() speak.speak('You have {} events today'.format(len(te))) for line in te: speak.speak(line) main()
bfe394598000549c8aa731dc5185e43ee6e450f1
15581a76b36eab6062e71d4e5641cdfaf768b697
/Leetcode Contests/Biweekly Contest 24/Minimum Value to Get Positive Step by Step Sum.py
ed393ceda76cec842051a7cd8dd259618306c947
[]
no_license
MarianDanaila/Competitive-Programming
dd61298cc02ca3556ebc3394e8d635b57f58b4d2
3c5a662e931a5aa1934fba74b249bce65a5d75e2
refs/heads/master
2023-05-25T20:03:18.468713
2023-05-16T21:45:08
2023-05-16T21:45:08
254,296,597
0
0
null
null
null
null
UTF-8
Python
false
false
318
py
from typing import List class Solution: def minStartValue(self, nums: List[int]) -> int: sum = 0 min = nums[0] for i in nums: sum += i if sum < min: min = sum if min >= 0: return 1 else: return abs(min) + 1
38eda1c03fac7753d07cce611e24ce538fed844e
69c1e3b0fcb12839c820cff744bf492546b2dbf7
/func.py
7f360613f39cf79bc62ec90376538283e359602b
[]
no_license
260734/260734
71d844ae3032a762d8a96f3052df3a7ba4b0f844
40c02327ff82ad89d3583595913460f245f5ca77
refs/heads/master
2023-04-17T08:20:42.848803
2021-04-26T19:50:39
2021-04-26T19:50:39
359,469,206
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
def square(x): return x * x def cube(x): return x * x * x # create a dictionary of functions funcs = { 'square': square, 'cube': cube, } x = 2 for func in sorted(funcs): print(func, funcs[func](x))
3f2801ee0162f33263eb9044744a84e3a7a154e9
587973fdf376f448b90f44f713742ea02062666b
/config.py
418ebf67d4cb96815ebbce4d111bc70640c10183
[]
no_license
whistlepark/UCSD-ECE148-WI20-TEAM6
79383160cd4c8cc458903bf45b5dd2ca4dbed1bd
9db60ed81146959c295963c47b780fcf3d20bc9f
refs/heads/master
2021-01-15T03:27:32.500974
2020-03-08T23:58:24
2020-03-08T23:58:24
242,863,416
0
0
null
null
null
null
UTF-8
Python
false
false
13,067
py
""" CAR CONFIG This file is read by your car application's manage.py script to change the car performance. EXMAPLE ----------- import dk cfg = dk.load_config(config_path='~/mycar/config.py') print(cfg.CAMERA_RESOLUTION) """ import os #PATHS CAR_PATH = PACKAGE_PATH = os.path.dirname(os.path.realpath(__file__)) DATA_PATH = os.path.join(CAR_PATH, 'data') MODELS_PATH = os.path.join(CAR_PATH, 'models') #VEHICLE DRIVE_LOOP_HZ = 20 # the vehicle loop will pause if faster than this speed. MAX_LOOPS = None # the vehicle loop can abort after this many iterations, when given a positive integer. #CAMERA CAMERA_TYPE = "PICAM" # (PICAM|WEBCAM|CVCAM|CSIC|V4L|MOCK) IMAGE_W = 160 IMAGE_H = 120 IMAGE_DEPTH = 3 # default RGB=3, make 1 for mono CAMERA_FRAMERATE = DRIVE_LOOP_HZ # For CSIC camera - If the camera is mounted in a rotated position, changing the below parameter will correct the output frame orientation CSIC_CAM_GSTREAMER_FLIP_PARM = 0 # (0 => none , 4 => Flip horizontally, 6 => Flip vertically) #9865, over rides only if needed, ie. TX2.. PCA9685_I2C_ADDR = 0x40 #I2C address, use i2cdetect to validate this number PCA9685_I2C_BUSNUM = None #None will auto detect, which is fine on the pi. But other platforms should specify the bus num. #DRIVETRAIN #These options specify which chasis and motor setup you are using. Most are using SERVO_ESC. #DC_STEER_THROTTLE uses HBridge pwm to control one steering dc motor, and one drive wheel motor #DC_TWO_WHEEL uses HBridge pwm to control two drive motors, one on the left, and one on the right. #SERVO_HBRIDGE_PWM use ServoBlaster to output pwm control from the PiZero directly to control steering, and HBridge for a drive motor. DRIVE_TRAIN_TYPE = "SERVO_ESC" # SERVO_ESC|DC_STEER_THROTTLE|DC_TWO_WHEEL|SERVO_HBRIDGE_PWM #STEERING STEERING_CHANNEL = 1 #channel on the 9685 pwm board 0-15 STEERING_LEFT_PWM = 460 #pwm value for full left steering STEERING_RIGHT_PWM = 290 #pwm value for full right steering #THROTTLE THROTTLE_CHANNEL = 0 #channel on the 9685 pwm board 0-15 THROTTLE_FORWARD_PWM = 500 #pwm value for max forward throttle THROTTLE_STOPPED_PWM = 370 #pwm value for no movement THROTTLE_REVERSE_PWM = 220 #pwm value for max reverse throttle #DC_STEER_THROTTLE with one motor as steering, one as drive #these GPIO pinouts are only used for the DRIVE_TRAIN_TYPE=DC_STEER_THROTTLE HBRIDGE_PIN_LEFT = 18 HBRIDGE_PIN_RIGHT = 16 HBRIDGE_PIN_FWD = 15 HBRIDGE_PIN_BWD = 13 #DC_TWO_WHEEL - with two wheels as drive, left and right. #these GPIO pinouts are only used for the DRIVE_TRAIN_TYPE=DC_TWO_WHEEL HBRIDGE_PIN_LEFT_FWD = 18 HBRIDGE_PIN_LEFT_BWD = 16 HBRIDGE_PIN_RIGHT_FWD = 15 HBRIDGE_PIN_RIGHT_BWD = 13 #TRAINING #The DEFAULT_MODEL_TYPE will choose which model will be created at training time. This chooses #between different neural network designs. You can override this setting by passing the command #line parameter --type to the python manage.py train and drive commands. DEFAULT_MODEL_TYPE = 'linear' #(linear|categorical|rnn|imu|behavior|3d|localizer|latent) BATCH_SIZE = 128 #how many records to use when doing one pass of gradient decent. Use a smaller number if your gpu is running out of memory. TRAIN_TEST_SPLIT = 0.8 #what percent of records to use for training. the remaining used for validation. MAX_EPOCHS = 100 #how many times to visit all records of your data SHOW_PLOT = True #would you like to see a pop up display of final loss? VEBOSE_TRAIN = True #would you like to see a progress bar with text during training? USE_EARLY_STOP = True #would you like to stop the training if we see it's not improving fit? EARLY_STOP_PATIENCE = 5 #how many epochs to wait before no improvement MIN_DELTA = .0005 #early stop will want this much loss change before calling it improved. PRINT_MODEL_SUMMARY = True #print layers and weights to stdout OPTIMIZER = None #adam, sgd, rmsprop, etc.. None accepts default LEARNING_RATE = 0.001 #only used when OPTIMIZER specified LEARNING_RATE_DECAY = 0.0 #only used when OPTIMIZER specified SEND_BEST_MODEL_TO_PI = False #change to true to automatically send best model during training CACHE_IMAGES = True #keep images in memory. will speed succesive epochs, but crater if not enough mem. PRUNE_CNN = False #This will remove weights from your model. The primary goal is to increase performance. PRUNE_PERCENT_TARGET = 75 # The desired percentage of pruning. PRUNE_PERCENT_PER_ITERATION = 20 # Percenge of pruning that is perform per iteration. PRUNE_VAL_LOSS_DEGRADATION_LIMIT = 0.2 # The max amout of validation loss that is permitted during pruning. PRUNE_EVAL_PERCENT_OF_DATASET = .05 # percent of dataset used to perform evaluation of model. #Pi login information #When using the continuous train option, these credentials will #be used to copy the final model to your vehicle. If not using this option, no need to set these. PI_USERNAME = "pi" # username on pi PI_PASSWD = "raspberry" # password is optional. Only used from Windows machine. Ubuntu and mac users should copy their public keys to the pi. `ssh-copy-id username@hostname` PI_HOSTNAME = "raspberrypi.local" # the network hostname or ip address PI_DONKEY_ROOT = "/home/pi/mycar" # the location of the mycar dir on the pi. this will be used to help locate the final model destination. # Region of interst cropping # only supported in Categorical and Linear models. # If these crops values are too large, they will cause the stride values to become negative and the model with not be valid. ROI_CROP_TOP = 0 #the number of rows of pixels to ignore on the top of the image ROI_CROP_BOTTOM = 0 #the number of rows of pixels to ignore on the bottom of the image #Model transfer options #When copying weights during a model transfer operation, should we freeze a certain number of layers #to the incoming weights and not allow them to change during training? FREEZE_LAYERS = False #default False will allow all layers to be modified by training NUM_LAST_LAYERS_TO_TRAIN = 7 #when freezing layers, how many layers from the last should be allowed to train? #JOYSTICK USE_JOYSTICK_AS_DEFAULT = False #when starting the manage.py, when True, will not require a --js option to use the joystick JOYSTICK_MAX_THROTTLE = 0.5 #this scalar is multiplied with the -1 to 1 throttle value to limit the maximum throttle. This can help if you drop the controller or just don't need the full speed available. JOYSTICK_STEERING_SCALE = 1.0 #some people want a steering that is less sensitve. This scalar is multiplied with the steering -1 to 1. It can be negative to reverse dir. AUTO_RECORD_ON_THROTTLE = False #if true, we will record whenever throttle is not zero. if false, you must manually toggle recording with some other trigger. Usually circle button on joystick. CONTROLLER_TYPE='F710' #(ps3|ps4|xbox|nimbus|wiiu|F710|rc3) USE_NETWORKED_JS = False #should we listen for remote joystick control over the network? NETWORK_JS_SERVER_IP = "192.168.0.1"#when listening for network joystick control, which ip is serving this information JOYSTICK_DEADZONE = 0.0 # when non zero, this is the smallest throttle before recording triggered. JOYSTICK_THROTTLE_DIR = 1.0 # use -1.0 to flip forward/backward, use 1.0 to use joystick's natural forward/backward #For the categorical model, this limits the upper bound of the learned throttle #it's very IMPORTANT that this value is matched from the training PC config.py and the robot.py #and ideally wouldn't change once set. MODEL_CATEGORICAL_MAX_THROTTLE_RANGE = 0.5 #RNN or 3D SEQUENCE_LENGTH = 3 #some models use a number of images over time. This controls how many. #IMU HAVE_IMU = False #when true, this add a Mpu6050 part and records the data. Can be used with a #SOMBRERO HAVE_SOMBRERO = False #set to true when using the sombrero hat from the Donkeycar store. This will enable pwm on the hat. #RECORD OPTIONS RECORD_DURING_AI = False #normally we do not record during ai mode. Set this to true to get image and steering records for your Ai. Be careful not to use them to train. #LED HAVE_RGB_LED = False #do you have an RGB LED like https://www.amazon.com/dp/B07BNRZWNF LED_INVERT = False #COMMON ANODE? Some RGB LED use common anode. like https://www.amazon.com/Xia-Fly-Tri-Color-Emitting-Diffused/dp/B07MYJQP8B #LED board pin number for pwm outputs #These are physical pinouts. See: https://www.raspberrypi-spy.co.uk/2012/06/simple-guide-to-the-rpi-gpio-header-and-pins/ LED_PIN_R = 12 LED_PIN_G = 10 LED_PIN_B = 16 #LED status color, 0-100 LED_R = 0 LED_G = 0 LED_B = 1 #LED Color for record count indicator REC_COUNT_ALERT = 1000 #how many records before blinking alert REC_COUNT_ALERT_CYC = 15 #how many cycles of 1/20 of a second to blink per REC_COUNT_ALERT records REC_COUNT_ALERT_BLINK_RATE = 0.4 #how fast to blink the led in seconds on/off #first number is record count, second tuple is color ( r, g, b) (0-100) #when record count exceeds that number, the color will be used RECORD_ALERT_COLOR_ARR = [ (0, (1, 1, 1)), (3000, (5, 5, 5)), (5000, (5, 2, 0)), (10000, (0, 5, 0)), (15000, (0, 5, 5)), (20000, (0, 0, 5)), ] #LED status color, 0-100, for model reloaded alert MODEL_RELOADED_LED_R = 100 MODEL_RELOADED_LED_G = 0 MODEL_RELOADED_LED_B = 0 #BEHAVIORS #When training the Behavioral Neural Network model, make a list of the behaviors, #Set the TRAIN_BEHAVIORS = True, and use the BEHAVIOR_LED_COLORS to give each behavior a color TRAIN_BEHAVIORS = False BEHAVIOR_LIST = ['Left_Lane', "Right_Lane"] BEHAVIOR_LED_COLORS =[ (0, 10, 0), (10, 0, 0) ] #RGB tuples 0-100 per chanel #Localizer #The localizer is a neural network that can learn to predice it's location on the track. #This is an experimental feature that needs more developement. But it can currently be used #to predict the segement of the course, where the course is divided into NUM_LOCATIONS segments. TRAIN_LOCALIZER = False NUM_LOCATIONS = 10 BUTTON_PRESS_NEW_TUB = False #when enabled, makes it easier to divide our data into one tub per track length if we make a new tub on each X button press. #DonkeyGym #Only on Ubuntu linux, you can use the simulator as a virtual donkey and #issue the same python manage.py drive command as usual, but have them control a virtual car. #This enables that, and sets the path to the simualator and the environment. #You will want to download the simulator binary from: https://github.com/tawnkramer/donkey_gym/releases/download/v18.9/DonkeySimLinux.zip #then extract that and modify DONKEY_SIM_PATH. DONKEY_GYM = False DONKEY_SIM_PATH = "path to sim" #"/home/tkramer/projects/sdsandbox/sdsim/build/DonkeySimLinux/donkey_sim.x86_64" DONKEY_GYM_ENV_NAME = "donkey-generated-track-v0" # ("donkey-generated-track-v0"|"donkey-generated-roads-v0"|"donkey-warehouse-v0"|"donkey-avc-sparkfun-v0") #publish camera over network #This is used to create a tcp service to pushlish the camera feed PUB_CAMERA_IMAGES = False #When racing, to give the ai a boost, configure these values. AI_LAUNCH_DURATION = 0.0 # the ai will output throttle for this many seconds AI_LAUNCH_THROTTLE = 0.0 # the ai will output this throttle value AI_LAUNCH_ENABLE_BUTTON = 'R2' # this keypress will enable this boost. It must be enabled before each use to prevent accidental trigger. AI_LAUNCH_KEEP_ENABLED = False # when False ( default) you will need to hit the AI_LAUNCH_ENABLE_BUTTON for each use. This is safest. When this True, is active on each trip into "local" ai mode. #Scale the output of the throttle of the ai pilot for all model types. AI_THROTTLE_MULT = 1.0 # this multiplier will scale every throttle value for all output from NN models #Path following PATH_FILENAME = "donkey_path.pkl" #the path will be saved to this filename PATH_SCALE = 5.0 # the path display will be scaled by this factor in the web page PATH_OFFSET = (0, 0) # 255, 255 is the center of the map. This offset controls where the origin is displayed. PATH_MIN_DIST = 0.3 # after travelling this distance (m), save a path point PID_P = -10.0 # proportional mult for PID path follower PID_I = 0.000 # integral mult for PID path follower PID_D = -0.2 # differential mult for PID path follower PID_THROTTLE = 0.2 # constant throttle value during path following SAVE_PATH_BTN = "cross" # joystick button to save path RESET_ORIGIN_BTN = "triangle" # joystick button to press to move car back to origin
a7a836d34d05d89c6a4baa2e076e811ad85b12d4
adffddf23696048e0cef2eb09137b8124d87b1b8
/app/routes.py
5237df198c13bf37d87574bbdc297ff2ad1a7fc0
[]
no_license
sonicdm/dgc_finder
4ba88bb136a8f6017cf8f97cdfb6326aae7c4241
5dd70d78fa83620fe7e96a947e5eb5510664f5e8
refs/heads/master
2020-03-19T00:30:54.935090
2018-05-30T18:47:02
2018-05-30T18:47:02
135,486,383
0
0
null
2018-05-30T19:08:24
2018-05-30T19:08:24
null
UTF-8
Python
false
false
760
py
from app import app from flask import render_template, redirect, url_for, session from app.functions import get_dgcr, gmaps_geolocator import requests import json from app.forms import CityStateForm from config import Config @app.route('/', methods=['GET', 'POST']) @app.route('/index', methods=['GET', 'POST']) def index(): form = CityStateForm() if form.validate_on_submit(): session['courses'] = get_dgcr(form.city_field.data, form.state_field.data) return redirect(url_for('results')) return render_template('index.html', title='Home', form=form) @app.route('/results', methods=['GET']) def results(): return render_template('results.html', title='Course Results', results=session['courses'], gmaps_url=Config.GMAPS_URL)
c425f31861bfb4ccd22b1b6cf8fc228238168d3c
0257cede18ea0beb18486cc249adab1a2b15c6b7
/testmodules/RT/cartridge/server_side_bundling_libs_and_force_clean_build.py
de769345e1704967c0655f3998b015948839dfd5
[]
no_license
xiama/automations
13c0308afc4fa0d3267025f8529f97d80f5cf6fb
4cf4e1ab5b249b23510f3929f46f3768529788f1
refs/heads/master
2021-01-17T05:36:02.990075
2013-11-29T04:26:00
2013-11-29T04:26:00
14,791,833
1
0
null
null
null
null
UTF-8
Python
false
false
22,431
py
import os import common import OSConf import rhtest WORK_DIR = os.path.dirname(os.path.abspath(__file__)) class OpenShiftTest(rhtest.Test): INTERACTIVE = False def initialize(self): try: self.test_variant = self.get_variant() except: self.test_variant = 'perl' if not common.app_types.has_key(self.test_variant): raise Exception("Invalid/Unknown variable: OPENSHIFT_test_name") self.info("VARIANT: %s"%self.test_variant) self.app_name = common.getRandomString(10) self.app_type = common.app_types[self.test_variant] common.env_setup() # print test case summary self.info(""" [US561][rhc-cartridge] PHP: Pear pre-processing [US561][rhc-cartridge] Perl: Cpan pre-processing [US561][rhc-cartridge] Python: Easy_install pre-processing [US561][rhc-cartridge] Ruby: Gem pre-processing [US561][rhc-cartridge] Jboss: Maven pre-processing [US1107][rhc-cartridge] PHP app libraries cleanup using force_clean_build marker [US1107][rhc-cartridge] PERL app libraries cleanup using force_clean_build marker [US1107][rhc-cartridge] WSGI app libraries cleanup using force_clean_build marker [US1107][rhc-cartridge] RACK app libraries cleanup using force_clean_build marker [US1107][rhc-cartridge] JBOSSAS app libraries cleanup using force_clean_build marker [US590][Runtime][rhc-cartridge]nodejs app modules cleanup using force_clean_build marker""") def finalize(self): pass class ServerSideBundlingLibsAndForceCleanBuild(OpenShiftTest): def test_method(self): # 1.Create an app self.add_step("1. Create an %s app" % (self.test_variant), common.create_app, function_parameters=[self.app_name, self.app_type, self.config.OPENSHIFT_user_email, self.config.OPENSHIFT_user_passwd], expect_description="the app should be created successfully", expect_return=0) # 2.Customize this app if self.test_variant == "php": cmd = "echo 'channel://pear.php.net/Validate-0.8.4' >%s/deplist.txt && cp -f %s/app_template/php_pear.php %s/php/index.php" %(self.app_name, WORK_DIR, self.app_name) elif self.test_variant in ("ruby", "rack", "ruby-1.9"): cmd = """cd %s && echo "source 'http://rubygems.org'\ngem 'rack'\ngem 'pg'" > Gemfile && sed -i "/require 'thread-dump'/ d" config.ru && bundle install""" %(self.app_name) elif self.test_variant in ("python","wsgi"): cmd = "cd %s && sed -i '9s/^#//g' setup.py && cp %s/app_template/wsgi-test.tar.gz ./ && tar xzvf wsgi-test.tar.gz" %(self.app_name, WORK_DIR) elif self.test_variant == "perl": cmd = """cd %s && echo -e '#!/usr/bin/perl\nprint "Content-type: text/html\\r\\n\\r\\n";\nprint "Welcome to OpenShift\\n";' >perl/index.pl && echo YAML >>deplist.txt""" %(self.app_name) elif self.test_variant in ("jbossas", "jbosseap"): cmd = "cd %s && cp %s/app_template/helloworld.tar.gz ./ && tar zxf helloworld.tar.gz" %(self.app_name, WORK_DIR) elif self.test_variant in ("nodejs"): cmd = """cd %s && sed -i '{\n/dependencies/ a\\\n "optimist": "0.3.4"\n}' package.json && sed -i "4 i var argv = require('optimist').argv;" server.js""" % (self.app_name) else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) self.add_step("2.Customize this app", cmd, expect_description="the git repo should be modified successfully", expect_return=0) # 3.Git push all the changes if self.test_variant == "php": exp_str = "install ok: channel://pear.php.net/Validate-0.8.4" elif self.test_variant in ("ruby", "rack", "ruby-1.9"): exp_str = "Installing pg" elif self.test_variant in ("python", "wsgi"): exp_str = "Adding Django [\d.]+ to easy-install.pth" elif self.test_variant == "perl": exp_str = "Successfully installed YAML" elif self.test_variant in ("jbossas", "jbosseap"): exp_str = "remote: Downloading: .*javax.*" elif self.test_variant in ("nodejs"): exp_str = "remote: npm info install [email protected]" else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) self.add_step("3.Git push all the changes", "cd %s && touch x && git add . && git commit -am t && git push" %(self.app_name), expect_description="Git push should succeed", expect_return=0, expect_str=[exp_str]) # 4. Generate test script if self.test_variant == "php": cmd_str = "ls ${OPENSHIFT_HOMEDIR}php/phplib/pear/pear/download/Validate-0.8.4.tgz && ls ${OPENSHIFT_HOMEDIR}php/phplib/pear/pear/php/Validate.php" elif self.test_variant in ("ruby", "rack"): cmd_str = "ls -la ${OPENSHIFT_REPO_DIR}vendor/bundle/ruby/1.8*/gems/pg*" elif self.test_variant in ("ruby-1.9"): cmd_str = "ls -la ${OPENSHIFT_REPO_DIR}vendor/bundle/ruby/1.9*/gems/pg*" elif self.test_variant in ("python", "wsgi"): cmd_str = "ls ${OPENSHIFT_HOMEDIR}python/virtenv/lib/python2.6/site-packages/Django*" elif self.test_variant == "perl": cmd_str = "ls ${OPENSHIFT_HOMEDIR}perl/perl5lib/lib/perl5/YAML" elif self.test_variant in ("jbossas", "jbosseap"): cmd_str = "ls ${OPENSHIFT_HOMEDIR}.m2/repository/javax" elif self.test_variant in ("nodejs"): cmd_str = "ls ${OPENSHIFT_REPO_DIR}node_modules/optimist/" else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) shell_script = '''#!/bin/bash command="%s" echo "$command" eval "$command" test $? == 0 && echo "RESULT=0" || echo "RESULT=1"''' %(cmd_str) self.add_step("4.Write .openshift/action_hooks/deploy", "echo '%s' >%s/.openshift/action_hooks/deploy; \n chmod +x %s/.openshift/action_hooks/deploy" %(shell_script, self.app_name, self.app_name), expect_return=0) # 5.Check the dependencies are installed self.add_step("5.Check the dependencies are installed vir git hooks", "cd %s && touch xx && git add . && git commit -am t && git push" %(self.app_name), expect_description="Check should PASS", expect_return=0, expect_str=["RESULT=0"]) # 6.Check app via browser def get_app_url(self, suffix=""): def closure(): return OSConf.get_app_url(self.app_name)+suffix return closure url_suffix="" if self.test_variant == "php": test_html = "get_correct_number" elif self.test_variant in ("ruby", "rack", "ruby-1.9"): test_html = "Welcome to OpenShift" elif self.test_variant in ("python", "wsgi"): test_html = "Congratulations on your first Django-powered page" elif self.test_variant == "perl": test_html = "Welcome to OpenShift" elif self.test_variant in ("jbossas", "jbosseap"): test_html = "Hello World!" url_suffix = "/HelloWorld/HelloWorld" elif self.test_variant in ("nodejs"): test_html = "Welcome to OpenShift" else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) self.add_step("6.Check app via browser", common.grep_web_page, function_parameters=[get_app_url(self, url_suffix), test_html, "-H 'Pragma: no-cache' -L", 5, 9], expect_description="'%s' should be found in the web page" % (test_html), expect_return=0) # 7. Using the installed package if self.test_variant == "php": exp_str = "" unexp_str = "remote: downloading" elif self.test_variant in ("ruby", "rack", "ruby-1.9"): exp_str = "remote: Using pg" unexp_str = "remote: Installing" elif self.test_variant in ("python", "wsgi"): exp_str = "" unexp_str = "remote: Downloading" elif self.test_variant == "perl": exp_str = "" unexp_str = "remote: Fetching" elif self.test_variant in ("jbossas", "jbosseap"): exp_str = "" unexp_str = "remote: Downloading" elif self.test_variant in ("nodejs"): exp_str = "" unexp_str = "remote: npm http GET.*optimist" else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) self.add_step("7. Re-using the installed libs, no new installation", "cd %s && touch xxx && git add . && git commit -am t && git push" %(self.app_name), expect_description="Check should PASS", expect_return=0, expect_str=[exp_str], unexpect_str=[unexp_str]) # 8. More test for rack app if self.test_variant in ( "rack","ruby", "ruby-1.9"): self.add_step( "8. Edit Gemfile to add another gem we want to install,", '''cd %s && echo "gem 'rhc'" >>Gemfile ; bundle check ; bundle install ; sed -i "s/rhc \(.*\)/rhc \(0.71.2\)/g" Gemfile.lock''' %(self.app_name), expect_return=0) self.add_step( "9. Re-using the installed libs, and install new libs", "cd %s && git add . && git commit -am t && git push" %(self.app_name), expect_return=0, expect_str=["remote: Using pg", "remote: Installing rhc"]) else: self.info("skip step 8") self.info("skip step 9") # 10. Touch a empty force_clean_build file in your local git repo self.add_step("10. Touch a empty force_clean_build file in your local git repo.", "touch %s/.openshift/markers/force_clean_build" %(self.app_name), expect_description="Successfully touched force_clean_build", expect_return=0) # 11. Remove libraries if self.test_variant == "php": cmd = "echo '' > %s/deplist.txt" %(self.app_name) elif self.test_variant in ("jbossas", "jbosseap"): cmd = "echo 'No denpendency need to be remove for jbossas app'" elif self.test_variant in ("ruby", "rack", "ruby-1.9"): cmd = "cd %s && sed -i '$d' Gemfile && bundle check" %(self.app_name) elif self.test_variant in ("python", "wsgi"): cmd = "cd %s && sed -i '9s/^/#/g' setup.py" %(self.app_name) elif self.test_variant == "perl": cmd = "echo '' > %s/deplist.txt" %(self.app_name) elif self.test_variant in ("nodejs"): cmd = "cd %s && sed -i '{/optimist/ d}' package.json" % (self.app_name) else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) self.add_step("11. Remove libraries dependency", cmd, expect_description="Modification succeed", expect_return=0) # 12. re-write .openshift/action_hooks/deploy if self.test_variant == "php": cmd_str = "ls ${OPENSHIFT_HOMEDIR}php/phplib/pear/pear/download/Validate-0.8.4.tgz || ls ${OPENSHIFT_HOMEDIR}php/phplib/pear/pear/php/Validate.php" cmd = """sed -i 's#command="ls.*"#command="%s"#g' %s/.openshift/action_hooks/deploy""" %(cmd_str, self.app_name) elif self.test_variant in ("ruby", "rack"): cmd_str = "ls ${OPENSHIFT_REPO_DIR}vendor/bundle/ruby/1.8*/gems/rhc*" cmd = """sed -i 's#command="ls.*"#command="%s"#g' %s/.openshift/action_hooks/deploy""" %(cmd_str, self.app_name) elif self.test_variant in ("ruby-1.9"): cmd_str = "ls ${OPENSHIFT_REPO_DIR}vendor/bundle/ruby/1.9*/gems/rhc*" cmd = """sed -i 's#command="ls.*"#command="%s"#g' %s/.openshift/action_hooks/deploy""" %(cmd_str, self.app_name) elif self.test_variant == "perl": cmd_str = "ls ${OPENSHIFT_HOMEDIR}perl/perl5lib/lib || ls ~/.cpanm/work" cmd = """sed -i 's#command="ls.*"#command="%s"#g' %s/.openshift/action_hooks/deploy""" %(cmd_str, self.app_name) elif self.test_variant in ("python", "wsgi"): cmd = "echo 'No need to re-write for wsgi app'" elif self.test_variant in ("jbossas", "jbosseap"): cmd = "echo 'No need to re-write for jbossas app'" elif self.test_variant in ("nodejs"): cmd = "echo 'No need to re-write for jbossas app'" else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) self.add_step("12. Re-write .openshift/action_hooks/deploy", cmd, expect_return=0) # 13. git push all the changes if self.test_variant in ("jbossas", "jbosseap"): str_list = [".openshift/markers/force_clean_build found", "remote: Downloading"] unexpect_str_list = [] elif self.test_variant in ("ruby", "rack", "ruby-1.9"): str_list = ["remote: Installing pg", "ls: cannot access", "RESULT=1"] unexpect_str_list = ["remote: Installing rhc"] elif self.test_variant == "php": str_list = [".openshift/markers/force_clean_build found", "ls: cannot access", "RESULT=1"] unexpect_str_list = ["remote: downloading"] elif self.test_variant == "perl": str_list = [".openshift/markers/force_clean_build found", "ls: cannot access", "RESULT=1"] unexpect_str_list = ["remote: Fetching"] elif self.test_variant in ("python", "wsgi"): str_list = [".openshift/markers/force_clean_build found", "ls: cannot access", "RESULT=1"] unexpect_str_list = ["remote: Downloading"] elif self.test_variant in ("nodejs"): str_list = ["force_clean_build marker found! Recreating npm modules", "ls: cannot access", "RESULT=1"] unexpect_str_list = [] else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) self.add_step("13. git push all the changes", "cd %s && touch xxxx && git add . && git commit -am t && git push" %(self.app_name), expect_description="libraries are removed successfully", expect_return=0, expect_str=str_list, unexpect_str=unexpect_str_list) # 14.Check app via browser url_suffix="" if self.test_variant == "php": test_html = "" unexpect_test_html = "get_correct_number" elif self.test_variant in ("ruby", "rack", "ruby-1.9"): test_html = "Welcome to OpenShift" unexpect_test_html = "NO_XX" elif self.test_variant in ("python","wsgi"): test_html = "Internal Server Error" unexpect_test_html = "Congratulations on your first Django-powered page" elif self.test_variant == "perl": test_html = "Welcome to OpenShift" unexpect_test_html = "NO_XX" elif self.test_variant in ("jbossas", "jbosseap"): test_html = "Hello World!" unexpect_test_html = "NO_XX" url_suffix = "/HelloWorld/HelloWorld" elif self.test_variant in ("nodejs"): test_html = "Service Temporarily Unavailable" unexpect_test_html = "Welcome to OpenShift" else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) self.add_step( "14.Check app via browser, php/wsgi app should NOT availale Now, jbossas/perl/rack still working fine", "curl -L -H 'Pragma: no-cache' %s", string_parameters = [get_app_url(self, url_suffix)], expect_str=[test_html], unexpect_str=[unexpect_test_html], try_interval=9, try_count=6) # 15. Add libraries back if self.test_variant == "php": cmd = "echo 'channel://pear.php.net/Validate-0.8.4' > %s/deplist.txt" %(self.app_name) elif self.test_variant in ("jbossas", "jbosseap"): cmd = "echo 'No denpendency need to be remove for jbossas app'" elif self.test_variant in ("ruby", "rack", "ruby-1.9"): cmd = '''cd %s && echo "gem 'rhc'" >>Gemfile && bundle check && sed -i "s/rhc \(.*\)/rhc \(0.71.2\)/g" Gemfile.lock''' %(self.app_name) elif self.test_variant in ("python", "wsgi"): cmd = "cd %s && sed -i '9s/^#//g' setup.py" %(self.app_name) elif self.test_variant == "perl": cmd = "echo 'YAML' > %s/deplist.txt" %(self.app_name) elif self.test_variant in ("nodejs"): cmd = """cd %s && sed -i '{\n/dependencies/ a\\\n "optimist": "0.3.4"\n}' package.json""" % (self.app_name) else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) if self.test_variant in ("jbossas", "jbosseap"): self.info("skip step 15 for jbossas app") else: self.add_step("15. Added libraries denpendency back", cmd, expect_return=0) # 16. re-write .openshift/action_hooks/deploy if self.test_variant == "php": cmd_str = "ls ${OPENSHIFT_HOMEDIR}php/phplib/pear/pear/download/Validate-0.8.4.tgz \&\& ls ${OPENSHIFT_HOMEDIR}php/phplib/pear/pear/php/Validate.php" cmd = """sed -i 's#command="ls.*"#command="%s"#g' %s/.openshift/action_hooks/deploy""" %(cmd_str, self.app_name) elif self.test_variant in ("ruby", "rack", "ruby-1.9"): cmd = "echo 'No need to re-write for rack app'" elif self.test_variant == "perl": cmd_str = "ls ${OPENSHIFT_HOMEDIR}perl/perl5lib/lib \&\& ls ~/.cpanm/work" cmd = """sed -i 's#command="ls.*"#command="%s"#g' %s/.openshift/action_hooks/deploy""" %(cmd_str, self.app_name) elif self.test_variant in ("python","wsgi"): cmd = "echo 'No need to re-write for wsgi app'" elif self.test_variant in ("jbossas", "jbosseap"): cmd = "echo 'No need to re-write for jbossas app'" elif self.test_variant in ("nodejs"): cmd = "echo 'No need to re-write for nodejs app'" else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) if self.test_variant in ("jbossas", "jbosseap"): print "\nskip step 16 for jbossas app" else: self.add_step( "16. Re-write .openshift/action_hooks/deploy", cmd, expect_return=0) # 17. git push all the changes if self.test_variant in ("jbossas", "jbosseap"): str_list = [".openshift/markers/force_clean_build found", "remote: Downloading"] elif self.test_variant in ("ruby", "rack", "ruby-1.9"): str_list = ["remote: Installing pg", "remote: Installing rhc", "RESULT=0"] unexpect_str_list = ["No such file or directory"] elif self.test_variant == "php": str_list = [".openshift/markers/force_clean_build found", "remote: downloading", "RESULT=0"] unexpect_str_list = ["No such file or directory"] elif self.test_variant == "perl": str_list = [".openshift/markers/force_clean_build found", "remote: Fetching", "RESULT=0"] unexpect_str_list = ["No such file or directory"] elif self.test_variant in ("python", "wsgi"): str_list = [".openshift/markers/force_clean_build found", "remote: Downloading", "RESULT=0"] unexpect_str_list = ["No such file or directory"] elif self.test_variant in ("nodejs"): str_list = ["RESULT=0"] else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) if self.test_variant in ("jbossas", "jbosseap"): self.info("skip step 17 for jbossas app") else: self.add_step("17. git push all the changes", "cd %s && touch xxxxx && git add . && git commit -am t && git push" %(self.app_name), expect_description="libraries are removed successfully", expect_return=0, expect_str=str_list, unexpect_str=unexpect_str_list) # 18.Check app via browser if self.test_variant == "php": test_html = "get_correct_number" elif self.test_variant in ("rack","ruby", "ruby-1.9"): test_html = "Welcome to OpenShift" elif self.test_variant in ( "wsgi", "python") : test_html = "Congratulations on your first Django-powered page" elif self.test_variant == "perl": test_html = "Welcome to OpenShift" elif self.test_variant in ("jbossas", "jbosseap"): test_html = "Hello World!" elif self.test_variant in ("nodejs"): test_html = "Welcome to OpenShift" else: return self.failed("%s failed: Invalid test_variant" % self.__class__.__name__) if self.test_variant in ("jbossas", "jbosseap"): self.info("skip step 18 for jbossas app") else: self.add_step( "18.Check app via browser, now all kinds of app should work fine", "curl -H 'Pragma: no-cache' %s", string_parameters = [get_app_url(self)], expect_return=0, expect_str=[test_html], try_interval=9, try_count=3) self.run_steps() return self.passed("%s passed" % self.__class__.__name__) class OpenShiftTestSuite(rhtest.TestSuite): pass def get_suite(conf): suite = OpenShiftTestSuite(conf) suite.add_test(ServerSideBundlingLibsAndForceCleanBuild) return suite def run(conf): suite = get_suite(conf) suite() # # vim: set tabstop=4:shiftwidth=4:expandtab:
e4ae96c0131406c2419a148c0186b3269acfa42f
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03964/s755365360.py
9f2a66cabd6d3f24f2aafce6d59b731dbfbc227f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
619
py
import bisect import collections import copy import functools import heapq import math import sys from collections import deque from collections import defaultdict input = sys.stdin.readline MOD = 10**9+7 N = int(input()) T = [0]*N A = [0]*N for i in range(N): T[i],A[i] = map(int,(input().split())) t,a = T[0],A[0] for i in range(1,N): s = T[i] + A[i] now = 1 l = 1 r = 10**18//s + 1 mae = -1 while now != mae: mae = now if T[i]*now < t or A[i]*now < a: l = now else: r = now now = (l+r+1)//2 t,a = T[i]*now,A[i]*now print(t+a)
75ef2897c41de5031b13106195ac168311611da6
626fdb9df49fc36fff5018a489e6089b0986ebd8
/04/summing_one_million.py
3aa0ce9559bdaa647f203af788d6bfee0ca59c89
[]
no_license
ypan1988/python_work
7bbf9ee2badb981bd2b309f39e07d49d761002c0
464f86f8e9348f4c604928d7db63c75e83aefd10
refs/heads/main
2023-03-27T11:12:28.934378
2021-03-28T22:00:28
2021-03-28T22:00:28
352,447,281
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
numbers = list(range(1,1000001)) print(min(numbers)) print(max(numbers)) print(sum(numbers))
79113f4805093df2885ff54448e5bccd23cc252a
b11273fa7e74564f9e6b5b7448df266c7880ddac
/SmartP.py
2aa08aad4ad7ba9b9f945552c369cf286a8448d2
[]
no_license
VNDIRECT/EngineP
5a08873d368846776775f9bf329c88804e9a9150
9a9f44f4a35a91ccdbf4bcf892077bae2373b157
refs/heads/master
2021-01-19T03:41:00.908508
2017-10-04T06:40:11
2017-10-04T06:40:11
65,744,760
4
1
null
null
null
null
UTF-8
Python
false
false
2,110
py
# -*- coding: utf-8 -*- """ Created on Sun Aug 14 18:38:25 2016 @author: phucn_000 """ import json from engineP import compute from portopt import markowitz import finfo from error import CommonError from flask import Flask, request, jsonify from crossdomain import crossdomain import time app = Flask(__name__) def parse_portfolio(request): symbols = request.args.get('symbols').split(',') quantities = map(int, request.args.get('quantities').split(',')) cash_param = request.args.get('cash') cash = int(cash_param) if cash_param is not None else 0 if len(symbols) != len(quantities): raise 'symbols and quantities must be of the same length' myP = {k: v for k,v in zip(symbols, quantities)} return myP, cash @app.route("/") @crossdomain(origin="*") def hello(): # try: portfolio, cash = parse_portfolio(request) return json.dumps(compute(portfolio, cash)) # except Exception as e: # raise CommonError(e.message) @app.route("/markowitz") @crossdomain(origin="*") def markowitz_endpoint(): # try: portfolio, cash = parse_portfolio(request) return json.dumps(markowitz(portfolio, cash)) # except Exception as e: # raise CommonError(e.message) ## Currently not working, should fork another process instead # @app.route("/refresh") # @crossdomain(origin="*") # def refresh_price(): # """ # This endpoint refresh all price data # """ # try: # price = finfo.PriceStash() # price.full_refetch() # return jsonify({'status': 'OK'}) # except Exception as e: # raise CommonError('Error while refresh: {}'.format(e.message)) # @app.errorhandler(CommonError) # def handle_error(error): # response = jsonify(error.to_dict()) # response.status_code = error.status_code # return response @app.route("/error") @crossdomain(origin="*") def error_endpoint(): raise CommonError('This endpoint has an error') if __name__ == "__main__": app.run(host='0.0.0.0', threaded=True, debug=True)
526512060ec60f64cab763dcdc20a58c882fa21b
e3040a2e23a856e319e02037dc6baf3882c796b9
/samples/openapi3/client/petstore/python/petstore_api/paths/pet_find_by_status/get.py
bca423ad68f208522270ab2159908c0f06ae7b00
[ "Apache-2.0" ]
permissive
mishin/openapi-generator
2ed2e0739c0cc2a627c25191d5898071d9294036
3ed650307513d552404f3d76487f3b4844acae41
refs/heads/master
2023-06-10T03:01:09.612130
2022-10-14T08:29:15
2022-10-14T08:29:15
271,080,285
0
0
Apache-2.0
2023-05-30T02:01:25
2020-06-09T18:29:41
Java
UTF-8
Python
false
false
12,472
py
# coding: utf-8 """ Generated by: https://openapi-generator.tech """ from dataclasses import dataclass import typing_extensions import urllib3 from urllib3._collections import HTTPHeaderDict from petstore_api import api_client, exceptions from datetime import date, datetime # noqa: F401 import decimal # noqa: F401 import functools # noqa: F401 import io # noqa: F401 import re # noqa: F401 import typing # noqa: F401 import typing_extensions # noqa: F401 import uuid # noqa: F401 import frozendict # noqa: F401 from petstore_api import schemas # noqa: F401 from petstore_api.model.pet import Pet from . import path # Query params class StatusSchema( schemas.ListSchema ): class MetaOapg: class items( schemas.EnumBase, schemas.StrSchema ): class MetaOapg: enum_value_to_name = { "available": "AVAILABLE", "pending": "PENDING", "sold": "SOLD", } @schemas.classproperty def AVAILABLE(cls): return cls("available") @schemas.classproperty def PENDING(cls): return cls("pending") @schemas.classproperty def SOLD(cls): return cls("sold") def __new__( cls, arg: typing.Union[typing.Tuple[typing.Union[MetaOapg.items, str, ]], typing.List[typing.Union[MetaOapg.items, str, ]]], _configuration: typing.Optional[schemas.Configuration] = None, ) -> 'StatusSchema': return super().__new__( cls, arg, _configuration=_configuration, ) def __getitem__(self, i: int) -> MetaOapg.items: return super().__getitem__(i) RequestRequiredQueryParams = typing_extensions.TypedDict( 'RequestRequiredQueryParams', { 'status': typing.Union[StatusSchema, list, tuple, ], } ) RequestOptionalQueryParams = typing_extensions.TypedDict( 'RequestOptionalQueryParams', { }, total=False ) class RequestQueryParams(RequestRequiredQueryParams, RequestOptionalQueryParams): pass request_query_status = api_client.QueryParameter( name="status", style=api_client.ParameterStyle.FORM, schema=StatusSchema, required=True, ) _auth = [ 'http_signature_test', 'petstore_auth', ] class SchemaFor200ResponseBodyApplicationXml( schemas.ListSchema ): class MetaOapg: @staticmethod def items() -> typing.Type['Pet']: return Pet def __new__( cls, arg: typing.Union[typing.Tuple['Pet'], typing.List['Pet']], _configuration: typing.Optional[schemas.Configuration] = None, ) -> 'SchemaFor200ResponseBodyApplicationXml': return super().__new__( cls, arg, _configuration=_configuration, ) def __getitem__(self, i: int) -> 'Pet': return super().__getitem__(i) class SchemaFor200ResponseBodyApplicationJson( schemas.ListSchema ): class MetaOapg: @staticmethod def items() -> typing.Type['Pet']: return Pet def __new__( cls, arg: typing.Union[typing.Tuple['Pet'], typing.List['Pet']], _configuration: typing.Optional[schemas.Configuration] = None, ) -> 'SchemaFor200ResponseBodyApplicationJson': return super().__new__( cls, arg, _configuration=_configuration, ) def __getitem__(self, i: int) -> 'Pet': return super().__getitem__(i) @dataclass class ApiResponseFor200(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor200ResponseBodyApplicationXml, SchemaFor200ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_200 = api_client.OpenApiResponse( response_cls=ApiResponseFor200, content={ 'application/xml': api_client.MediaType( schema=SchemaFor200ResponseBodyApplicationXml), 'application/json': api_client.MediaType( schema=SchemaFor200ResponseBodyApplicationJson), }, ) @dataclass class ApiResponseFor400(api_client.ApiResponse): response: urllib3.HTTPResponse body: schemas.Unset = schemas.unset headers: schemas.Unset = schemas.unset _response_for_400 = api_client.OpenApiResponse( response_cls=ApiResponseFor400, ) _status_code_to_response = { '200': _response_for_200, '400': _response_for_400, } _all_accept_content_types = ( 'application/xml', 'application/json', ) class BaseApi(api_client.Api): @typing.overload def _find_pets_by_status_oapg( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor200, ]: ... @typing.overload def _find_pets_by_status_oapg( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def _find_pets_by_status_oapg( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization, ]: ... def _find_pets_by_status_oapg( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): """ Finds Pets by status :param skip_deserialization: If true then api_response.response will be set but api_response.body and api_response.headers will not be deserialized into schema class instances """ self._verify_typed_dict_inputs_oapg(RequestQueryParams, query_params) used_path = path.value prefix_separator_iterator = None for parameter in ( request_query_status, ): parameter_data = query_params.get(parameter.name, schemas.unset) if parameter_data is schemas.unset: continue if prefix_separator_iterator is None: prefix_separator_iterator = parameter.get_prefix_separator_iterator() serialized_data = parameter.serialize(parameter_data, prefix_separator_iterator) for serialized_value in serialized_data.values(): used_path += serialized_value _headers = HTTPHeaderDict() # TODO add cookie handling if accept_content_types: for accept_content_type in accept_content_types: _headers.add('Accept', accept_content_type) response = self.api_client.call_api( resource_path=used_path, method='get'.upper(), headers=_headers, auth_settings=_auth, stream=stream, timeout=timeout, ) if skip_deserialization: api_response = api_client.ApiResponseWithoutDeserialization(response=response) else: response_for_status = _status_code_to_response.get(str(response.status)) if response_for_status: api_response = response_for_status.deserialize(response, self.api_client.configuration) else: api_response = api_client.ApiResponseWithoutDeserialization(response=response) if not 200 <= response.status <= 299: raise exceptions.ApiException(api_response=api_response) return api_response class FindPetsByStatus(BaseApi): # this class is used by api classes that refer to endpoints with operationId fn names @typing.overload def find_pets_by_status( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor200, ]: ... @typing.overload def find_pets_by_status( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def find_pets_by_status( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization, ]: ... def find_pets_by_status( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): return self._find_pets_by_status_oapg( query_params=query_params, accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization ) class ApiForget(BaseApi): # this class is used by api classes that refer to endpoints by path and http method names @typing.overload def get( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor200, ]: ... @typing.overload def get( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def get( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization, ]: ... def get( self, query_params: RequestQueryParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): return self._find_pets_by_status_oapg( query_params=query_params, accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization )
44be46ea1085141780882e156c30d8eab17a15da
bb8cc28951ee8dd94f98db23024c76059129f1df
/modelo/tipoSolicitud.py
2ee3a07efaf4d76f8e99d7f49a31f625d2365c66
[]
no_license
jhonn2002/PQR_Municipio
1021d119113296acdd5ba87e038f2ba486fd2bd1
39e874d08a3f8f79b92e037342aed5dac0988c21
refs/heads/master
2023-09-01T02:37:22.639579
2021-10-13T00:37:59
2021-10-13T00:37:59
416,543,647
0
0
null
null
null
null
UTF-8
Python
false
false
322
py
from app import bd class TipoSolicitud(bd.Model): __tablename__ = 'tiposolicitud' #Nombre de la tabla idTipoSolicitud = bd.Column(bd.Integer, primary_key=True, autoincrement=True) tipoSolicitud = bd.Column(bd.String(30),nullable=False) def __repr__(self): return f'{self.tipoSolicitud}'
06ce341e0e7626e2104a0667155275b069268653
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Kivy/pycon2013/html5slides/scripts/md/render.py
b5ef0975e20eb201985c57c5b48cd150050171da
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:6e3940fcf589334234bc7943dfc2c0d8e860fc139a432eae485128714022232c size 1807
ae75e51110b700b347454faed95d66f5be954da0
a1973fa91ca1883be6143771feece9dcbdf84a72
/algo/wordBreak.py
432c3188003f0d2d9ed9c848f60717372d33c728
[]
no_license
ajaytani/python
a05d3d9607ead75d8e6dc5eadadbfb28f7116623
0751bb5f22fdf512e46771391b6464d11773dc19
refs/heads/master
2021-01-19T23:44:18.968570
2020-08-11T06:34:51
2020-08-11T06:34:51
89,016,107
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
def wordBreak(s,wordDict): n = len(s) if not s or n== 0: return False dp = [[] for i in range(n+1)] dp[0] = [0] for i in range(1,n+1): for j in range(i): if s[j:i] in wordDict: dp[i].append(j) print dp res = [] backTracking(dp,s,n,res,'') return res def backTracking(dp,s,idx,res,line): for i in dp[idx]: print 'line : ' + line print 'idx : ',idx print 'dp[idx] ', dp[idx] newline = s[i:idx] + ' ' + line if line else s[i:idx] print 'newline : ' + newline if i == 0: res.append(newline) else: print 'backtracking call:' + newline backTracking(dp,s,i,res,newline) s = 'catsanddogcat' wordDict = ['cat','cats','and','sand','dog'] print(wordBreak(s,wordDict))
e5b0887d810d27576528bafda388fdfd915d3c4f
c6320d68968de93ce9d686f5a59bb34909d089bb
/03_Polynomial_Regression/polynomial_regression_rad.py
fafb65739a4f26fa1c7981097fe77412704b96b8
[]
no_license
rbartosinski/MachineLearningRes
0835e6b9f94c309bf2ce8ff7ceb73912a7eeea63
5a1af15e77d589149aa1cb22cb96f56956fd9a0f
refs/heads/master
2020-04-07T00:58:03.692579
2019-01-11T13:49:12
2019-01-11T13:49:12
157,925,825
0
0
null
null
null
null
UTF-8
Python
false
false
1,313
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Nov 20 15:04:28 2018 @author: radek """ #wczytanie bibliotek import numpy as np import matplotlib.pyplot as plt import pandas as pd #wczytanie danych dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values #dopasowanie LR do setu from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) #dopasowanie Polynomial Regr. do setu from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) lin_reg2 = LinearRegression() lin_reg2.fit(X_poly, y) #wizualizacja LR plt.scatter(X, y, color='red') plt.plot(X, lin_reg.predict(X), color='blue') plt.title('Position level vs. Salary (Linear Regression') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() #wizulizacja PR X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color='red') plt.plot(X_grid, lin_reg2.predict(poly_reg.fit_transform(X_grid)), color='blue') plt.title('Position level vs. Salary (Polynomial Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() #wynik z LR lin_reg.predict(6.5) #wynik z PR lin_reg_2.predict(poly_reg.fit_transform(6.5))
5a1e071972d89f69b241aff120e8fcd705ae1ca1
cc0d06e2aad3d30152c4a3f3356befdc58748313
/2.til8.oktober/plot_wavepacket.py
a4583b0987077f652a46aaf25eff8dbe8cd4c6bb
[]
no_license
lasse-steinnes/IN1900
db0bb4da33fa024d4fe9207337c0f1d956197c50
c8d97c2903078471f8e419f88cc8488d9b8fc7da
refs/heads/master
2020-12-14T15:34:36.429764
2020-01-18T19:59:46
2020-01-18T19:59:46
234,789,653
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
### ## Definerer funksjonen from numpy import exp, sin, pi, linspace bølge = lambda x,t=0: exp(-(x-3*t)**2)*sin(3*pi*(x-t)) ## Lager intervallet for x x_matrise = linspace(-4,4,1500) # Slik at bølge_t0 = bølge(x_matrise) ### Plotter funksjonen import matplotlib.pyplot as plt plt.plot(x_matrise, bølge_t0, label = 'bølgepakke for t=0') plt.legend() plt.xlabel("x") plt.ylabel("Amplitude") plt.show() ## Kjøreeksempel """ >> python plot_wavepacket.py (plot) """
84ef03241f898679f28eceb6fc11716406bc5283
dc85229e6da452a54577cef2740de9413f3e4528
/ArmstrongNumbers.py
a1bd165f3ec84125cad4064709e22ed5a15d6f2c
[]
no_license
mutlukilic/Python
1ea2549027dc5e120934c06fca8f98e3e1865148
180407f14fd480cc70f0758b7b6f1554aa2630f9
refs/heads/master
2021-01-13T04:17:20.684858
2017-02-16T11:48:24
2017-02-16T11:48:24
77,472,728
0
0
null
null
null
null
UTF-8
Python
false
false
244
py
basamak_sayisi = input("Basamak sayisini giriniz : ") for i in range(10**(basamak_sayisi-1),10**basamak_sayisi): armstrong = 0 for j in str(i): armstrong += int(j)**basamak_sayisi if(armstrong == i): print(i)
608f2efe8d41666029740500651dc44a0669ddd8
5f76538e2f3ee8ef0650ca3a98241de0a6995a69
/rec/recommender/lipczac_spread_alpha.py
39e0e077e9d14f36d4f45c2c2e1ec2dc10923dbd
[]
no_license
infsaulo/greenmeter
e0422bbef1a757a154da7a7b00f25f1bf6c7d82f
61453017f51cfe53eb9b0f455d79ac545d6ff7a1
refs/heads/master
2020-04-05T23:45:16.562022
2014-01-28T14:45:52
2014-01-28T14:45:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,643
py
#!/usr/bin/env python import sys, os import random import time import math from collections import defaultdict from operator import itemgetter from object.textual_features_concat import get_next_concat_TF_weighted from metrics.term_freq import compute_FF_and_train_length, compute_TS from metrics.cooccur import compute_cooccur_and_entropy_field, compute_cooccur_one_field_to_another, compute_intersection_confidence from lipczac_all_fields import recommend_content from lipczac_only_assoc import recommend_assoc_combined from util import * #Computa metricas e recomenda def recommend(obj, title_intersec, desc_intersec, tag_tag, title_tag, num_rec, title_scale, desc_scale, content_scale, alpha): content_score = recommend_content(obj, title_intersec, desc_intersec, title_scale, desc_scale) assoc_score = recommend_assoc_combined(obj, title_intersec, desc_intersec, tag_tag, title_tag, title_scale, desc_scale) rescore(content_score, content_scale) rescore(assoc_score, alpha) spread_score = compute_TS(obj, ["TITLE", "DESCRIPTION"]) rescore(spread_score, 1.0 - alpha) return merge_scores((content_score, assoc_score, spread_score)) if __name__ == "__main__": if len(sys.argv) != 10: print "usage: %s <train file> <test file> <min. support> <min. confidence> <num recomendacoes> <title scale> <desc. scale> <content scale> <alpha>" % sys.argv[0] sys.exit(-1) train_filename = sys.argv[1] test_filename = sys.argv[2] test_file = open(test_filename) minsup = float(sys.argv[3]) minconf = float(sys.argv[4]) num_rec = int(sys.argv[5]) title_scale = float(sys.argv[6]) desc_scale = float(sys.argv[7]) content_scale = float(sys.argv[8]) alpha = float(sys.argv[9]) (ff, n) = compute_FF_and_train_length(train_filename, ["TAG", "DESCRIPTION", "TITLE"]) tag_tag = compute_cooccur_and_entropy_field(train_filename, ff["TAG"], minsup, minconf, "TAG")[0] title_tag = compute_cooccur_one_field_to_another(train_filename, ff, minsup, minconf, "TITLE", "TAG") title_intersec = compute_intersection_confidence(train_filename, "TITLE", "TAG") desc_intersec = compute_intersection_confidence(train_filename, "DESCRIPTION", "TAG") test_object = get_next_concat_TF_weighted(test_file) while test_object != None: rec = recommend(test_object, title_intersec, desc_intersec, tag_tag, title_tag, num_rec, title_scale, desc_scale, content_scale, alpha) for w in get_top_ranked(rec, num_rec): print w, print test_object = get_next_concat_TF_weighted(test_file) test_file.close()
717a32ee923895084358b984f07330c001396344
1aa015c1d08a4cba09ce749cfe325e996039459c
/Pygame Tutorial/TuterForBook04.py
ec3cacb39832a8e21245de3de37c82d8be4e9dde
[]
no_license
Jerrykim91/Pygame_Study
98e9494e661d42229b7e0118095bf9d8636e266e
6b8fe0ee239d2f90447a5b09bb742323677dfec5
refs/heads/master
2022-03-10T18:19:42.281581
2019-11-15T19:34:22
2019-11-15T19:34:22
216,942,852
0
0
null
null
null
null
UTF-8
Python
false
false
1,588
py
# 게임으로 배우는 파이썬 교재를 기반으로 실습 """ draw_ lines0.py""" # import import pygame import sys import random from pygame.locals import QUIT # 초기화 pygame.init() # 변수 SCREEN_W, SCREEN_H = 400, 300 # x, y = [0, 0] # 여러가지 색 # 0-255 ( R, B, G ) RED = 255, 0, 0 # 적색: 적 255, 녹 0, 청 0 GREEN = 0, 255, 0 # 녹색: 적 0, 녹 255, 청 0 BLUE = 0, 0, 255 # 청색: 적 0, 녹 0, 청 255 PURPLE = 127, 0, 127 # 보라색: 적 127, 녹 0, 청 127 BLACK = 0, 0, 0 # 검은색: 적 0, 녹 0, 청 0 GRAY = 127, 127, 127 # 회색: 적 127, 녹 127, 청 127 WHITE = 255, 255, 255 # 하얀색: 적 255, 녹 255, 청 255 # 창 설정 SCREEN = pygame.display.set_mode((SCREEN_W, SCREEN_H)) FPSCLOCK = pygame.time.Clock() # CPU를 성능을 조절하기 위해서는 필수 # 타이틀 pygame.display.set_caption("렌덤 라인 만들기") # 메인 함수 생성 def main(): """ main routine """ run = True while run: EVENTS = pygame.event.get() for event in EVENTS: if event.type == QUIT: pygame.quit() sys.exit() SCREEN.fill((255, 255, 255)) # 흰색으로 화면을 채운다. pointlist = [] for _ in range(10): xpos = random.randint(0, 400) ypos = random.randint(0, 300) pointlist.append((xpos, ypos)) pygame.draw.lines(SCREEN, BLACK, True, pointlist, 5) pygame.display.update() FPSCLOCK.tick(3) if __name__=='__main__': main()
bcfb6f9b225d1c484807d73d6dfb6de1603ce7c4
0bf6b634267f02c04c6fb4ab276b26498cde8ca4
/payapp/payapp/settings.py
6db1a918dcfd038e4563950e39dd1e4c9aed570e
[]
no_license
danielmcv/Paynom
dde328fbdf818b35b1004372304d40f3663b10a5
5b489ab8b66bd8d0693af0ad0ad69df05a6993d0
refs/heads/master
2021-01-10T12:47:57.607374
2015-10-04T16:55:24
2015-10-04T16:55:24
43,643,875
0
0
null
null
null
null
UTF-8
Python
false
false
2,663
py
""" Django settings for payapp project. Generated by 'django-admin startproject' using Django 1.8.4. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '3psq8(k7cc02=yehcngh%0svtb=2%4#8^rq_)(m2r*t95ihovn' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'userprofiles', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'payapp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'payapp.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/'
ff9215c8ec6c96e42f17608f62f9dce1cdd08011
2a7216df71b9ccf62050eb5197ed9e8279a2f2b2
/codeforces/CODEFORCES_1189_B.py
6c5ebbbd07378cbb3b42d77a6f5665bfa86f6f92
[]
no_license
atarw/programming-contest-solutions
d8b9cd109630a383b762ab379011c5d8f7235ef8
8306b6871f221322e056b191e930862ea4990c55
refs/heads/master
2021-01-23T22:16:00.388134
2020-02-09T21:45:35
2020-02-09T21:45:35
58,693,100
5
2
null
null
null
null
UTF-8
Python
false
false
639
py
#!/usr/bin/python from __future__ import division from sys import stdin, stdout, maxint from fractions import Fraction import bisect, collections, heapq, itertools, operator, math N = int(stdin.readline()) arr = sorted(map(int, stdin.readline().split())) dq = collections.deque() dq.append(arr[N - 1]) n = N - 2 left = True while n >= 0: if left: dq.appendleft(arr[n]) else: dq.append(arr[n]) left = not left n -= 1 ans = list(dq) good = True for n in xrange(N): if ans[n] >= ans[(n - 1) % N] + ans[(n + 1) % N]: good = False break if good: print 'YES' for i in ans: stdout.write(str(i) + ' ') else: print 'NO'
43cb69f938df1aeaba48532ef98b1d4c606e5a2e
a68b6c704dcbe6d54001ca796f13020290ed265d
/src/database.py
8f5cc548df9a757c7759d087fb8dac85ab23a2b9
[]
no_license
Rescura/cmbsoftware
9e9fa8b060673b3ae7472c6ea3cceed3cffb8c0e
c506ad3ccd52ae1fc29ba7ad9060d74f81d1ab3b
refs/heads/master
2022-12-02T05:04:13.595497
2020-03-19T13:11:18
2020-03-19T13:11:18
283,223,224
0
0
null
null
null
null
UTF-8
Python
false
false
3,052
py
import sqlite3 import datetime as dt import re, math def returnTime(f_format:str): """ 현재 시간을 반환한다. f_format형태의 string으로 현재 시간을 반환한다. *f_format %Y%m%d %H:%M:%S -> YYYYMMDD HH:MM:SS """ d = dt.datetime.today() dateStr = d.strftime(f_format) day = dateStr[6:9] return{ 'Sun' : dateStr.replace('Sun', '일'), 'Mon' : dateStr.replace('Mon', '월'), 'Tue' : dateStr.replace('Tue', '화'), 'Wed' : dateStr.replace('Wed', '수'), 'Thu' : dateStr.replace('Thu', '목'), 'Fri' : dateStr.replace('Fri', '금'), 'Sat' : dateStr.replace('Sat', '토') }.get(day, dateStr) class dbHandler(): CONST_TBL_REGEX = re.compile('_+[0-9]{8}') def __init__(self): """ 데이터베이스 핸들러를 초기화 합니다. -videoList.db에 videoList 테이블이 없으면 만듭니다. """ self.con = sqlite3.connect('./videoLists.db') self.cur = self.con.cursor() # 음악 테이블이 존재하는지 확인해서 없으면 만든다 self.cur.execute(''' CREATE TABLE IF NOT EXISTS videoList ( thumbnailUrl TEXT NOT NULL, videoId TEXT UNIQUE, videoTitle TEXT, channelTitle TEXT duration TEXT, count INTEGER, recent TEXT); ''') def getDataFromDB(self, f_videoId): query = '''SELECT count, recent FROM videoList WHERE videoId = ?''' result = self.con.execute(query, (f_videoId,)).fetchone() if result is None: print("[Database] 조회 결과 없음") return False, {"mod_count": 0, "mod_recent": "없음"} print("[Database] 조회 결과 있음") return True, {"mod_count": result[0], "mod_recent": result[1]} def processData(self, f_ytdata): dataFromBoth = [] finalData = [] for data in f_ytdata: isInDb, dbData = self.getDataFromDB(data["mod_videoId"]) data.update(dbData) if isInDb: dataFromBoth.append(data) f_ytdata.remove(data) finalData.extend(dataFromBoth) finalData.extend(f_ytdata) return finalData def getDataWithoutKeyword(self): # TODO : fetchMore를 사용해서 적당량만 받아온후 리턴시키기 data = self.cur.execute("SELECT * FROM videoList ORDER BY RECENT DESC").fetchall() result = [] for video in data: singleData = {} singleData["mod_thumbnailUrl"] = video[0] singleData["mod_videoId"] = video[1] singleData["mod_videoTitle"] = video[2] singleData["mod_channelTitle"] = video[3] singleData["mod_duration"] = video[4] singleData["mod_count"] = video[5] singleData["mod_recent"] = video[6] result.append(singleData) return result
7b427a6ea7784fe57b83929971208d4a8ab309f5
796f41e9c4ffcd2f182847661d800e43ce35f133
/knowledge_extract/src/utils/logger.py
2b093cc101a21f494da9d091bb40d366c5c75a4e
[]
no_license
DendiHust/bert_pros
3ae9fc3d55e6fe7cb251c5f43fe01304c19bd29b
ff7b585b678894f552a1d31912a967f3c638c361
refs/heads/master
2020-12-05T10:21:55.319525
2020-01-17T15:58:36
2020-01-17T15:58:36
232,078,389
0
0
null
null
null
null
UTF-8
Python
false
false
2,004
py
# -*- coding: utf-8 -*- import os import time import logging import inspect from src.utils import file_util dt = time.strftime("%Y%m%d") handlers = {logging.DEBUG: file_util.get_project_path() + "./log/debug_%s.log" % (dt), logging.INFO: file_util.get_project_path() + "./log/info_%s.log" % (dt), logging.WARNING: file_util.get_project_path() + "./log/warn_%s.log" % (dt), logging.ERROR: file_util.get_project_path() + "./log/error_%s.log" % (dt)} loggers = {} if not os.path.exists(file_util.get_project_path() + './log'): os.mkdir(file_util.get_project_path() + './log') def init_loggers(): for level in handlers.keys(): path = os.path.abspath(handlers[level]) handlers[level] = logging.FileHandler(path, encoding='utf-8') # handlers[level] = logging.FileHandler(path) for level in handlers.keys(): logger = logging.getLogger(str(level)) # 如果不指定level,获得的handler似乎是同一个handler logger.addHandler(handlers[level]) logger.setLevel(level) loggers.update({level: logger}) # 加载模块时创建全局变量 init_loggers() def print_now(): return time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) def get_log_msg(message): return "[%s] %s" % (print_now(), message) def get_error_msg(message): frame, filename, lineNo, functionName, code, unknowField = inspect.stack()[2] return "[%s] [%s - %s - %s] %s" % (print_now(), filename, lineNo, functionName, message) def info(message): message = get_log_msg(message) loggers[logging.INFO].info(message) print(message) def error(message): message = get_error_msg(message) loggers[logging.ERROR].error(message) print(message) def debug(message): message = get_log_msg(message) loggers[logging.DEBUG].debug(message) print(message) def warn(message): message = get_log_msg(message) loggers[logging.WARNING].warning(message) print(message)
603cf7453561a065dc33a3f333ab5627734fc5ed
3fbd92b1eed0f81e8f06ab4595fa64b40dfbdac5
/RNN_R.py
9c5d5d5880847eca9d99af3934730643f2cf84af
[]
no_license
Lanclaw/TakeItEasy
a56e64b3160bce4798fd5afa5b41c15fa827476d
0373313000fecf39f56e65dd4b20cc8a384b572d
refs/heads/main
2023-03-25T06:07:17.047320
2021-03-28T02:44:11
2021-03-28T02:44:11
351,967,066
0
0
null
null
null
null
UTF-8
Python
false
false
1,723
py
import torch from torch import nn import numpy as np import matplotlib.pyplot as plt TIME_STEP = 10 INPUT_SIZE = 1 LR = 0.02 class RNN(nn.Module): def __init__(self): super(RNN, self).__init__() self.rnn = nn.RNN( input_size=INPUT_SIZE, hidden_size=32, num_layers=1, batch_first=True ) self.out = nn.Linear(32, 1) def forward(self, x, h_state): r_out, h_state = self.rnn(x, h_state) # r_out:(B_s, t_s, h_s), h_state:(num_layers, b_s, h_s) out = [] for time_step in range(TIME_STEP): out.append(self.out(r_out[:, time_step, :])) # one of out(list) : (b_s, output_size) out: (time_step, b_s, output_size) return torch.stack(out, dim=1), h_state # torch.stack(out, dim=1): (b_s, time_step, output_size) rnn = RNN() optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) loss_func = nn.MSELoss() h_state = None plt.ion() for step in range(100): start, end = step * np.pi, (step + 1) * np.pi steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False) x_np = np.cos(steps) y_np = np.sin(steps) x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis]) pred, h_state = rnn(x, h_state) h_state = h_state.data # important!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! to drop grad loss = loss_func(pred, y) optimizer.zero_grad() loss.backward() optimizer.step() print('Step: ', step, '| loss: ', loss) plt.plot(steps, pred.detach().numpy().flatten(), 'r-') plt.plot(steps, y_np, 'b-') plt.draw() plt.pause(0.2) plt.ioff() plt.show()
180106f795f970567cbc895131bf67dc5169a9ab
4fbfabe70290b5b32a2235c17d0a98a3f9f67dab
/codingdojochallenge/forms.py
f7cca509e8b8df263c23e90480b8b03ea30f9586
[]
no_license
joshgendal/coding-dojo-challenge
e06ff8a4e2f7178cc5e6a7173bfac34b74d70416
a8900b9b46fd7c6f23ecf01b6c5b2461ef18500a
refs/heads/main
2023-02-14T14:29:14.003040
2021-01-08T23:13:06
2021-01-08T23:13:06
327,711,286
0
0
null
null
null
null
UTF-8
Python
false
false
811
py
from django import forms from codingdojochallenge.models import Shows class ShowForm(forms.Form): title = forms.CharField(widget=forms.TextInput(attrs={ 'class': 'form-control', 'name': 'title', 'id': 'title-input' })) date = forms.DateField(widget=forms.DateInput(attrs={ 'class': 'form-control', 'id': 'date-input', 'name': 'date', 'type': 'date' })) network = forms.CharField(widget=forms.TextInput(attrs={ 'class': 'form-control', 'id': 'network-input', 'name': 'network', })) description = forms.CharField(widget=forms.Textarea(attrs={ 'class': 'form-control description', 'id': 'description-input', 'name': 'description', 'cols': '30', 'rows': '5', }))
17c9da42b3a256243f283d9d0204ada064184eb8
aa4e8b335b6bd3041f91493115aae71af475ca6f
/server/activities/migrations/0003_auto__add_field_geospatial_point__add_field_geospatial_radius__add_fie.py
a7c2bbe2c551b977dea89c73bda5b85c4da630c3
[]
no_license
CulturePlex/DrGlearning
565165687544eda9b524f4b6ee7477fe017cd16a
1949ae23f76d9858e9ef3b529035b4a15c1dc5d3
refs/heads/master
2021-03-30T16:13:06.814365
2014-07-01T22:41:32
2014-07-01T22:41:32
2,485,130
1
0
null
null
null
null
UTF-8
Python
false
false
9,955
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Geospatial.point' db.add_column('activities_geospatial', 'point', self.gf('django.contrib.gis.db.models.fields.PointField')(default=''), keep_default=False) # Adding field 'Geospatial.radius' db.add_column('activities_geospatial', 'radius', self.gf('django.db.models.fields.FloatField')(default=100), keep_default=False) # Adding field 'Geospatial.area' db.add_column('activities_geospatial', 'area', self.gf('django.contrib.gis.db.models.fields.PolygonField')(default=None), keep_default=False) def backwards(self, orm): # Deleting field 'Geospatial.point' db.delete_column('activities_geospatial', 'point') # Deleting field 'Geospatial.radius' db.delete_column('activities_geospatial', 'radius') # Deleting field 'Geospatial.area' db.delete_column('activities_geospatial', 'area') models = { 'activities.activity': { 'Meta': {'object_name': 'Activity'}, 'career': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'activities'", 'symmetrical': 'False', 'through': "orm['activities.Level']", 'to': "orm['knowledges.Career']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language_code': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'query': ('django.db.models.fields.TextField', [], {}), 'timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'activities.geospatial': { 'Meta': {'object_name': 'Geospatial', '_ormbases': ['activities.Activity']}, 'activity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['activities.Activity']", 'unique': 'True', 'primary_key': 'True'}), 'area': ('django.contrib.gis.db.models.fields.PolygonField', [], {}), 'point': ('django.contrib.gis.db.models.fields.PointField', [], {}), 'radius': ('django.db.models.fields.FloatField', [], {}) }, 'activities.level': { 'Meta': {'ordering': "['order']", 'object_name': 'Level'}, 'activity': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['activities.Activity']"}), 'career': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['knowledges.Career']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'order': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'required': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'type': ('django.db.models.fields.PositiveSmallIntegerField', [], {}) }, 'activities.linguistic': { 'Meta': {'object_name': 'Linguistic', '_ormbases': ['activities.Activity']}, 'activity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['activities.Activity']", 'unique': 'True', 'primary_key': 'True'}), 'answer': ('django.db.models.fields.TextField', [], {}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'locked_text': ('django.db.models.fields.TextField', [], {}) }, 'activities.relational': { 'Meta': {'object_name': 'Relational', '_ormbases': ['activities.Activity']}, 'activity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['activities.Activity']", 'unique': 'True', 'primary_key': 'True'}), 'graph_edges': ('django.db.models.fields.TextField', [], {}), 'graph_nodes': ('django.db.models.fields.TextField', [], {}), 'scored_nodes': ('django.db.models.fields.TextField', [], {}), 'source_path': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'target_path': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, 'activities.temporal': { 'Meta': {'object_name': 'Temporal', '_ormbases': ['activities.Activity']}, 'activity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['activities.Activity']", 'unique': 'True', 'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'image_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'query_datetime': ('django.db.models.fields.DateTimeField', [], {}) }, 'activities.visual': { 'Meta': {'object_name': 'Visual', '_ormbases': ['activities.Activity']}, 'activity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['activities.Activity']", 'unique': 'True', 'primary_key': 'True'}), 'answers': ('django.db.models.fields.TextField', [], {}), 'correct_answer': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'obfuscated_image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'time': ('django.db.models.fields.CharField', [], {'max_length': '10'}) }, 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'knowledges.career': { 'Meta': {'object_name': 'Career'}, 'description': ('django.db.models.fields.TextField', [], {'default': "''"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'knowledge_field': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'knowledge_fields'", 'symmetrical': 'False', 'to': "orm['knowledges.Knowledge']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'negative_votes': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'positive_votes': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'knowledges.knowledge': { 'Meta': {'object_name': 'Knowledge'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}) } } complete_apps = ['activities']
5f7476e24a204be9844348f8f59e7887e624cd82
3d4692d7853896a421524ca1beb238ee6179db7b
/version.py
51668005651c6c2ea9b96f57dc22e44839b15e1b
[ "MIT" ]
permissive
H2Owater425/apacheLog
c1592d963808c59a64b7cdc96aa39e0feb175a32
5aecd4b549bdc958182b9db078c9548e0f9488cf
refs/heads/main
2023-02-28T16:54:29.856558
2021-02-11T12:52:26
2021-02-11T12:52:26
333,651,219
2
0
MIT
2021-02-11T11:43:55
2021-01-28T05:04:12
Python
UTF-8
Python
false
false
25
py
__version__ = "2020.12.1"
b5b4c7d2a0e719279f2d3cd706e2f3a26b838bf8
d1fef4482a1a4cb7fb22b6fe9b45e6cf1657c001
/conf.py
67931dec10ce25557f2638a398ec6cd7e55f167b
[]
no_license
Voljega/BestArcade
a80b15785899115984e6874e85c9808a57c8b138
a1498af1ea9a62008af3429feec20b6953f35d46
refs/heads/master
2023-06-22T08:07:37.007691
2023-06-17T21:24:43
2023-06-17T21:24:43
217,221,075
57
5
null
null
null
null
UTF-8
Python
false
false
416
py
def cleanString(string): return string.rstrip('\n\r ').lstrip() def loadConf(confFile): conf = dict() file = open(confFile, 'r', encoding="utf-8") for line in file.readlines(): if not line.startswith('#'): confLine = line.split("=") if len(confLine) == 2: conf[cleanString(confLine[0])] = cleanString(confLine[1]) file.close() return conf
5b8fdc45ed8189fd3a68129d873b5311ea37df1f
8fda41bac0be880a7918440e555b6fc2e0afd626
/strmultislice.py
2be4f39e102a39a43b75a6f85d56d5ec701ce12a
[]
no_license
clarkjoypesco/pythonmultislicestring
c06123327af6b2872082bb45f9e55a57fa810ceb
8a24a63fda14b28e5b0ab720fbca9d13ccc2d5ec
refs/heads/master
2020-05-07T00:56:27.679478
2019-04-09T00:15:01
2019-04-09T00:15:01
180,251,440
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
# Use string slicing to store everything before "NOUN" in substring1, # everything after "NOUN" and before "VERB" in substring2, and everything after "VERB" # in substring3. sentence = "A NOUN went on a walk. It can VERB really fast." substring1 = sentence[:2] print substring1 substring2 = sentence[6:30] print substring2 substring3 = sentence[34:] print substring3
a141044c46de5b0d1469335d2402696d27fdae35
05bc43b15ed5d7b8fcc58791d6a1746800c20268
/lib/dataset.py
f441c7f3ad0b20731dd196abeb0ff09f41325dbf
[ "MIT" ]
permissive
daveredrum/Pointnet2.ScanNet
521b7cc75b4a06eb1fcf2ac7665acd4b414e27f3
f4adc43779aaaefd6138d37183a94185d0718865
refs/heads/master
2022-02-12T14:07:38.239629
2021-12-21T10:10:54
2021-12-21T10:10:54
196,842,335
113
22
null
null
null
null
UTF-8
Python
false
false
15,328
py
import os import sys import time import h5py import torch import numpy as np import multiprocessing as mp from tqdm import tqdm from prefetch_generator import background sys.path.append(".") from lib.config import CONF class ScannetDataset(): def __init__(self, phase, scene_list, num_classes=21, npoints=8192, is_weighting=True, use_multiview=False, use_color=False, use_normal=False): self.phase = phase assert phase in ["train", "val", "test"] self.scene_list = scene_list self.num_classes = num_classes self.npoints = npoints self.is_weighting = is_weighting self.use_multiview = use_multiview self.use_color = use_color self.use_normal = use_normal self.chunk_data = {} # init in generate_chunks() self._prepare_weights() def _prepare_weights(self): self.scene_data = {} self.multiview_data = {} scene_points_list = [] semantic_labels_list = [] if self.use_multiview: multiview_database = h5py.File(CONF.MULTIVIEW, "r", libver="latest") for scene_id in tqdm(self.scene_list): scene_data = np.load(CONF.SCANNETV2_FILE.format(scene_id)) label = scene_data[:, 10] # append scene_points_list.append(scene_data) semantic_labels_list.append(label) self.scene_data[scene_id] = scene_data if self.use_multiview: feature = multiview_database.get(scene_id)[()] self.multiview_data[scene_id] = feature if self.is_weighting: labelweights = np.zeros(self.num_classes) for seg in semantic_labels_list: tmp,_ = np.histogram(seg,range(self.num_classes + 1)) labelweights += tmp labelweights = labelweights.astype(np.float32) labelweights = labelweights/np.sum(labelweights) self.labelweights = 1/np.log(1.2+labelweights) else: self.labelweights = np.ones(self.num_classes) @background() def __getitem__(self, index): start = time.time() # load chunks scene_id = self.scene_list[index] scene_data = self.chunk_data[scene_id] # unpack point_set = scene_data[:, :3] # include xyz by default rgb = scene_data[:, 3:6] / 255. # normalize the rgb values to [0, 1] normal = scene_data[:, 6:9] label = scene_data[:, 10].astype(np.int32) if self.use_multiview: feature = scene_data[:, 11:] point_set = np.concatenate([point_set, feature], axis=1) if self.use_color: point_set = np.concatenate([point_set, rgb], axis=1) if self.use_normal: point_set = np.concatenate([point_set, normal], axis=1) if self.phase == "train": point_set = self._augment(point_set) # prepare mask curmin = np.min(point_set, axis=0)[:3] curmax = np.max(point_set, axis=0)[:3] mask = np.sum((point_set[:, :3] >= (curmin - 0.01)) * (point_set[:, :3] <= (curmax + 0.01)), axis=1) == 3 sample_weight = self.labelweights[label] sample_weight *= mask fetch_time = time.time() - start return point_set, label, sample_weight, fetch_time def __len__(self): return len(self.scene_list) def _augment(self, point_set): # translate the chunk center to the origin center = np.mean(point_set[:, :3], axis=0) coords = point_set[:, :3] - center p = np.random.choice(np.arange(0.01, 1.01, 0.01), size=1)[0] if p < 1 / 8: # random translation coords = self._translate(coords) elif p >= 1 / 8 and p < 2 / 8: # random rotation coords = self._rotate(coords) elif p >= 2 / 8 and p < 3 / 8: # random scaling coords = self._scale(coords) elif p >= 3 / 8 and p < 4 / 8: # random translation coords = self._translate(coords) # random rotation coords = self._rotate(coords) elif p >= 4 / 8 and p < 5 / 8: # random translation coords = self._translate(coords) # random scaling coords = self._scale(coords) elif p >= 5 / 8 and p < 6 / 8: # random rotation coords = self._rotate(coords) # random scaling coords = self._scale(coords) elif p >= 6 / 8 and p < 7 / 8: # random translation coords = self._translate(coords) # random rotation coords = self._rotate(coords) # random scaling coords = self._scale(coords) else: # no augmentation pass # translate the chunk center back to the original center coords += center point_set[:, :3] = coords return point_set def _translate(self, point_set): # translation factors x_factor = np.random.choice(np.arange(-0.5, 0.501, 0.001), size=1)[0] y_factor = np.random.choice(np.arange(-0.5, 0.501, 0.001), size=1)[0] z_factor = np.random.choice(np.arange(-0.5, 0.501, 0.001), size=1)[0] coords = point_set[:, :3] coords += [x_factor, y_factor, z_factor] point_set[:, :3] = coords return point_set def _rotate(self, point_set): coords = point_set[:, :3] # x rotation matrix theta = np.random.choice(np.arange(-5, 5.001, 0.001), size=1)[0] * 3.14 / 180 # in radians Rx = np.array( [[1, 0, 0], [0, np.cos(theta), -np.sin(theta)], [0, np.sin(theta), np.cos(theta)]] ) # y rotation matrix theta = np.random.choice(np.arange(-5, 5.001, 0.001), size=1)[0] * 3.14 / 180 # in radians Ry = np.array( [[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [-np.sin(theta), 0, np.cos(theta)]] ) # z rotation matrix theta = np.random.choice(np.arange(-5, 5.001, 0.001), size=1)[0] * 3.14 / 180 # in radians Rz = np.array( [[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]] ) # rotate R = np.matmul(np.matmul(Rz, Ry), Rx) coords = np.matmul(R, coords.T).T # dump point_set[:, :3] = coords return point_set def _scale(self, point_set): # scaling factors factor = np.random.choice(np.arange(0.95, 1.051, 0.001), size=1)[0] coords = point_set[:, :3] coords *= [factor, factor, factor] point_set[:, :3] = coords return point_set def generate_chunks(self): """ note: must be called before training """ print("generate new chunks for {}...".format(self.phase)) for scene_id in tqdm(self.scene_list): scene = self.scene_data[scene_id] semantic = scene[:, 10].astype(np.int32) if self.use_multiview: feature = self.multiview_data[scene_id] coordmax = np.max(scene, axis=0)[:3] coordmin = np.min(scene, axis=0)[:3] for _ in range(5): curcenter = scene[np.random.choice(len(semantic), 1)[0],:3] curmin = curcenter-[0.75,0.75,1.5] curmax = curcenter+[0.75,0.75,1.5] curmin[2] = coordmin[2] curmax[2] = coordmax[2] curchoice = np.sum((scene[:, :3]>=(curmin-0.2))*(scene[:, :3]<=(curmax+0.2)),axis=1)==3 cur_point_set = scene[curchoice] cur_semantic_seg = semantic[curchoice] if self.use_multiview: cur_feature = feature[curchoice] if len(cur_semantic_seg)==0: continue mask = np.sum((cur_point_set[:, :3]>=(curmin-0.01))*(cur_point_set[:, :3]<=(curmax+0.01)),axis=1)==3 vidx = np.ceil((cur_point_set[mask,:3]-curmin)/(curmax-curmin)*[31.0,31.0,62.0]) vidx = np.unique(vidx[:,0]*31.0*62.0+vidx[:,1]*62.0+vidx[:,2]) isvalid = np.sum(cur_semantic_seg>0)/len(cur_semantic_seg)>=0.7 and len(vidx)/31.0/31.0/62.0>=0.02 if isvalid: break # store chunk if self.use_multiview: chunk = np.concatenate([cur_point_set, cur_feature], axis=1) else: chunk = cur_point_set choices = np.random.choice(chunk.shape[0], self.npoints, replace=True) chunk = chunk[choices] self.chunk_data[scene_id] = chunk print("done!\n") class ScannetDatasetWholeScene(): def __init__(self, scene_list, npoints=8192, is_weighting=True, use_color=False, use_normal=False, use_multiview=False): self.scene_list = scene_list self.npoints = npoints self.is_weighting = is_weighting self.use_color = use_color self.use_normal = use_normal self.use_multiview = use_multiview self._load_scene_file() def _load_scene_file(self): self.scene_points_list = [] self.semantic_labels_list = [] if self.use_multiview: multiview_database = h5py.File(CONF.MULTIVIEW, "r", libver="latest") self.multiview_data = [] for scene_id in tqdm(self.scene_list): scene_data = np.load(CONF.SCANNETV2_FILE.format(scene_id)) label = scene_data[:, 10].astype(np.int32) self.scene_points_list.append(scene_data) self.semantic_labels_list.append(label) if self.use_multiview: feature = multiview_database.get(scene_id)[()] self.multiview_data.append(feature) if self.is_weighting: labelweights = np.zeros(CONF.NUM_CLASSES) for seg in self.semantic_labels_list: tmp,_ = np.histogram(seg,range(CONF.NUM_CLASSES + 1)) labelweights += tmp labelweights = labelweights.astype(np.float32) labelweights = labelweights/np.sum(labelweights) self.labelweights = 1/np.log(1.2+labelweights) else: self.labelweights = np.ones(CONF.NUM_CLASSES) @background() def __getitem__(self, index): start = time.time() scene_data = self.scene_points_list[index] # unpack point_set_ini = scene_data[:, :3] # include xyz by default color = scene_data[:, 3:6] / 255. # normalize the rgb values to [0, 1] normal = scene_data[:, 6:9] if self.use_color: point_set_ini = np.concatenate([point_set_ini, color], axis=1) if self.use_normal: point_set_ini = np.concatenate([point_set_ini, normal], axis=1) if self.use_multiview: multiview_features = self.multiview_data[index] point_set_ini = np.concatenate([point_set_ini, multiview_features], axis=1) semantic_seg_ini = self.semantic_labels_list[index].astype(np.int32) coordmax = point_set_ini[:, :3].max(axis=0) coordmin = point_set_ini[:, :3].min(axis=0) xlength = 1.5 ylength = 1.5 nsubvolume_x = np.ceil((coordmax[0]-coordmin[0])/xlength).astype(np.int32) nsubvolume_y = np.ceil((coordmax[1]-coordmin[1])/ylength).astype(np.int32) point_sets = list() semantic_segs = list() sample_weights = list() for i in range(nsubvolume_x): for j in range(nsubvolume_y): curmin = coordmin+[i*xlength, j*ylength, 0] curmax = coordmin+[(i+1)*xlength, (j+1)*ylength, coordmax[2]-coordmin[2]] mask = np.sum((point_set_ini[:, :3]>=(curmin-0.01))*(point_set_ini[:, :3]<=(curmax+0.01)), axis=1)==3 cur_point_set = point_set_ini[mask,:] cur_semantic_seg = semantic_seg_ini[mask] if len(cur_semantic_seg) == 0: continue choice = np.random.choice(len(cur_semantic_seg), self.npoints, replace=True) point_set = cur_point_set[choice,:] # Nx3 semantic_seg = cur_semantic_seg[choice] # N mask = mask[choice] # if sum(mask)/float(len(mask))<0.01: # continue sample_weight = self.labelweights[semantic_seg] sample_weight *= mask # N point_sets.append(np.expand_dims(point_set,0)) # 1xNx3 semantic_segs.append(np.expand_dims(semantic_seg,0)) # 1xN sample_weights.append(np.expand_dims(sample_weight,0)) # 1xN point_sets = np.concatenate(tuple(point_sets),axis=0) semantic_segs = np.concatenate(tuple(semantic_segs),axis=0) sample_weights = np.concatenate(tuple(sample_weights),axis=0) fetch_time = time.time() - start return point_sets, semantic_segs, sample_weights, fetch_time def __len__(self): return len(self.scene_points_list) def collate_random(data): ''' for ScannetDataset: collate_fn=collate_random return: coords # torch.FloatTensor(B, N, 3) feats # torch.FloatTensor(B, N, 3) semantic_segs # torch.FloatTensor(B, N) sample_weights # torch.FloatTensor(B, N) fetch_time # float ''' # load data ( point_set, semantic_seg, sample_weight, fetch_time ) = zip(*data) # convert to tensor point_set = torch.FloatTensor(point_set) semantic_seg = torch.LongTensor(semantic_seg) sample_weight = torch.FloatTensor(sample_weight) # split points to coords and feats coords = point_set[:, :, :3] feats = point_set[:, :, 3:] # pack batch = ( coords, # (B, N, 3) feats, # (B, N, 3) semantic_seg, # (B, N) sample_weight, # (B, N) sum(fetch_time) # float ) return batch def collate_wholescene(data): ''' for ScannetDataset: collate_fn=collate_random return: coords # torch.FloatTensor(B, C, N, 3) feats # torch.FloatTensor(B, C, N, 3) semantic_segs # torch.FloatTensor(B, C, N) sample_weights # torch.FloatTensor(B, C, N) fetch_time # float ''' # load data ( point_sets, semantic_segs, sample_weights, fetch_time ) = zip(*data) # convert to tensor point_sets = torch.FloatTensor(point_sets) semantic_segs = torch.LongTensor(semantic_segs) sample_weights = torch.FloatTensor(sample_weights) # split points to coords and feats coords = point_sets[:, :, :, :3] feats = point_sets[:, :, :, 3:] # pack batch = ( coords, # (B, N, 3) feats, # (B, N, 3) semantic_segs, # (B, N) sample_weights, # (B, N) sum(fetch_time) # float ) return batch
0c1d705b8afb40aed5e9d84199de73a1d02a6882
a7d65be2d28290cd7c7ce2b2a394d01db48c9f6a
/PlexHey/migrations/0014_remove_profile_driving.py
bede856c7f610beab70baaec1d4715f014f01bf8
[]
no_license
okenyurimachage/Hyplex
bbbe417ca478f94b1c0e9cc0fbf49e0c718fff44
972b8400d6e9319e28d2d15b23f3a0b0cc8bd10e
refs/heads/master
2023-01-22T06:11:23.350458
2021-09-21T06:26:36
2021-09-21T06:26:36
189,965,879
1
1
null
2023-01-10T23:16:16
2019-06-03T08:31:48
JavaScript
UTF-8
Python
false
false
324
py
# Generated by Django 2.1.7 on 2019-06-13 20:20 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('PlexHey', '0013_booking_paid'), ] operations = [ migrations.RemoveField( model_name='profile', name='Driving', ), ]
6952776e38f65ecbbae62a609f1e5ea29c6d4d7f
e40ecfc9628c2de1787cc0eceabf2543c553a22f
/app/oc_website/management/commands/parse_anidb.py
74d4c09b781d6d87821b5d86a71fae37cf105785
[]
no_license
old-castle-fansubs/website
27975ba7c603d44b3c6b8cb9c5d78cda0793057c
d2ecf45fbedf2ea873d3a3a3629c77af7a740429
refs/heads/master
2023-02-17T01:01:12.540371
2022-12-16T12:54:40
2022-12-16T13:59:57
163,497,607
0
0
null
2023-02-15T19:35:32
2018-12-29T09:27:18
Python
UTF-8
Python
false
false
783
py
from django.core.management.base import BaseCommand from oc_website.models import AniDBEntry from oc_website.tasks.anidb import fill_missing_anidb_info class Command(BaseCommand): help = "Reanalyzes AniDB response for a given ID." def add_arguments(self, parser): parser.add_argument( "id", type=int, nargs="*", help="AniDB ID to refresh metadata of", ) def handle(self, *_args, **options): entries = AniDBEntry.objects.all().order_by("anidb_id") if anidb_ids := options["id"]: entries = entries.filter(pk__in=anidb_ids) for entry in entries: self.stdout.write(f"Analyzing {entry.anidb_id}") fill_missing_anidb_info(anidb_id=entry.anidb_id)
4dbf6716b6a8897abd7eac35d3119830b2ef6e51
293a36d744036d8534fa40131f9913a4f05463b7
/ZCO14003.py
8e9534abe10b2189e7fef6d70d7891979c23b77d
[]
no_license
DEVANSHUK97/codechef-solutions
ddf8d11b392f274d17d638c2dfe3e34771db0458
e517a651c8ee97b363a2931bcd64cca21f979c9a
refs/heads/master
2023-02-09T01:39:10.181853
2021-01-05T02:07:34
2021-01-05T02:07:34
324,250,324
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
# -*- coding: utf-8 -*- """ Created on Thu Dec 24 03:22:04 2020 @author: dkhurm """ t = int(input()) budgets = [] for _ in range(t): budgets.append(int(input())) budgets = sorted(budgets) how_many_can_afford = list(range(1,t+1))[::-1] revenue = [budgets[i]*how_many_can_afford[i] for i in range(t)] ans = max(revenue) print(ans)