blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
6f72d57c43b8fe76cd74819a7a83fffb1ad3bf93
9f6e090c2cfd56979997cfde82b288e83e916677
/djangonautic/urls.py
babe920e58533a79e39dc3eddaed7be8a04e7947
[]
no_license
F13RC3/djangonautic
73a26bde787041dfc8c1946948173a1c6a1112d7
12a6aa21c3500ad0dfab84cadb1a67b6cb68c523
refs/heads/master
2020-07-05T05:16:15.707209
2019-08-15T12:10:20
2019-08-15T12:10:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
701
py
from django.contrib import admin from django.urls import path, re_path from django.conf.urls import url,include from . import views from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.conf.urls.static import static from django.conf import settings from articles import views as article_views urlpatterns = [ re_path(r'^admin/', admin.site.urls), re_path(r'^accounts/',include('accounts.urls')), re_path(r'^articles/', include('articles.urls')), re_path(r'^about/$',views.about), re_path(r'^$',article_views.article_list, name='home') ] urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
ad3f2b56cdbdd7f80247eb8a1a6fb70b31c024d4
f15d24ce70ba36ec709b6a9c024725bde7082955
/T_others_to_c.py
cb1a4ab318669a840ad5b68e0a23279421b5a0bd
[]
no_license
fdc227/AIRCRAFT_MODEL_RELEASE
4a1e6e3ee1b791561618f63f5b7de8df9015308c
96747e44a76855c7e0a62da986c5ea73f8aab07c
refs/heads/master
2020-07-09T20:59:16.088364
2019-10-07T13:22:40
2019-10-07T13:22:40
204,082,790
0
0
null
null
null
null
UTF-8
Python
false
false
7,720
py
import pickle from sympy import * from sympy.printing.ccode import C99CodePrinter from sympy.printing.codeprinter import Assignment from iseven import iseven import sys print(sys.argv[1]) print(sys.argv[2]) num_of_elements, num_of_processes = int(sys.argv[1]), int(sys.argv[2]) # num_of_elements = total number of finite element sections on two beams # num_of_processes = number of processes of CPU processes for the function, multiprocessing is assumed if not iseven(num_of_elements): raise Exception ("Number of finite beam elements must be even") else: np = num_of_elements // 2 nq = num_of_elements // 2 + 1 t = symbols('t') x, w, L, theta_0 = symbols('x, w, L, theta_0') M, m, x, y, z, g, h, E, I, G, J, x_f, c, s, K = symbols('M, m, x, y, z, g, h, E, I, G, J, x_f, c, s, K') rho, V, a_w, gamma, M_thetadot, e = symbols('rho, V, a_w, gamma, M_thetadot, e') beta, P, Q, R = symbols('beta, P, Q, R') W_x, W_y, W_z = symbols('W_x, W_y, W_z') P_s, gamma_alpha = symbols('P_s, gamma_alpha') A = symbols('A') theta = symbols('theta') phi = symbols('phi') psi = symbols('psi') X = symbols('X') Y = symbols('Y') Z = symbols('Z') short_var_list = [theta, phi, psi, X, Y, Z] theta_dt = symbols('theta_dt') phi_dt = symbols('phi_dt') psi_dt = symbols('psi_dt') X_dt = symbols('X_dt') Y_dt = symbols('Y_dt') Z_dt = symbols('Z_dt') short_var_list_dt = [theta_dt, phi_dt, psi_dt, X_dt, Y_dt, Z_dt] theta_dt_dt = symbols('theta_dt_dt') phi_dt_dt = symbols('phi_dt_dt') psi_dt_dt = symbols('psi_dt_dt') X_dt_dt = symbols('X_dt_dt') Y_dt_dt = symbols('Y_dt_dt') Z_dt_dt = symbols('Z_dt_dt') short_var_list_dt_dt = [theta_dt_dt, phi_dt_dt, psi_dt_dt, X_dt_dt, Y_dt_dt, Z_dt_dt] var_q_bending = [] for i in range(np, 0, -1): globals()[f'p{i}_b'] = symbols(f'p{i}_b') var_q_bending.append(globals()[f'p{i}_b']) for i in range(1, nq): globals()[f'q{i}_b'] = symbols(f'q{i}_b') var_q_bending.append(globals()[f'q{i}_b']) var_q_bending_dot = [] for i in range(np, 0, -1): globals()[f'p{i}_b_dot'] = symbols(f'p{i}_b_dot') var_q_bending_dot.append(globals()[f'p{i}_b_dot']) for i in range(1, nq): globals()[f'q{i}_b_dot'] = symbols(f'q{i}_b_dot') var_q_bending_dot.append(globals()[f'q{i}_b_dot']) var_q_torsion = [] for i in range(np, 0, -1): globals()[f'p{i}_t'] = symbols(f'p{i}_t') var_q_torsion.append(globals()[f'p{i}_t']) for i in range(1, nq): globals()[f'q{i}_t'] = symbols(f'q{i}_t') var_q_torsion.append(globals()[f'q{i}_t']) var_q_inplane = [] for i in range(np, 0, -1): globals()[f'p{i}_i'] = symbols(f'p{i}_i') var_q_inplane.append(globals()[f'p{i}_i']) for i in range(1, nq): globals()[f'q{i}_i'] = symbols(f'q{i}_i') var_q_inplane.append(globals()[f'q{i}_i']) var_q_inplane_dot = [] for i in range(np, 0, -1): globals()[f'p{i}_i_dot'] = symbols(f'p{i}_i_dot') var_q_inplane_dot.append(globals()[f'p{i}_i_dot']) for i in range(1, nq): globals()[f'q{i}_i_dot'] = symbols(f'q{i}_i_dot') var_q_inplane_dot.append(globals()[f'q{i}_i_dot']) var_q_list = [*var_q_bending, *var_q_bending_dot, *var_q_torsion, *var_q_inplane, *var_q_inplane_dot] var_q_bending_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_b_dt'] = symbols(f'p{i}_b_dt') var_q_bending_dt.append(globals()[f'p{i}_b_dt']) for i in range(1, nq): globals()[f'q{i}_b_dt'] = symbols(f'q{i}_b_dt') var_q_bending_dt.append(globals()[f'q{i}_b_dt']) var_q_bending_dot_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_b_dot_dt'] = symbols(f'p{i}_b_dot_dt') var_q_bending_dot_dt.append(globals()[f'p{i}_b_dot_dt']) for i in range(1, nq): globals()[f'q{i}_b_dot_dt'] = symbols(f'q{i}_b_dot_dt') var_q_bending_dot_dt.append(globals()[f'q{i}_b_dot_dt']) var_q_torsion_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_t_dt'] = symbols(f'p{i}_t_dt') var_q_torsion_dt.append(globals()[f'p{i}_t_dt']) for i in range(1, nq): globals()[f'q{i}_t_dt'] = symbols(f'q{i}_t_dt') var_q_torsion_dt.append(globals()[f'q{i}_t_dt']) var_q_inplane_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_i_dt'] = symbols(f'p{i}_i_dt') var_q_inplane_dt.append(globals()[f'p{i}_i_dt']) for i in range(1, nq): globals()[f'q{i}_i_dt'] = symbols(f'q{i}_i_dt') var_q_inplane_dt.append(globals()[f'q{i}_i_dt']) var_q_inplane_dot_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_i_dot_dt'] = symbols(f'p{i}_i_dot_dt') var_q_inplane_dot_dt.append(globals()[f'p{i}_i_dot_dt']) for i in range(1, nq): globals()[f'q{i}_i_dot_dt'] = symbols(f'q{i}_i_dot_dt') var_q_inplane_dot_dt.append(globals()[f'q{i}_i_dot_dt']) var_q_list_dt = [*var_q_bending_dt, *var_q_bending_dot_dt, *var_q_torsion_dt, *var_q_inplane_dt, *var_q_inplane_dot_dt] var_q_bending_dt_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_b_dt_dt'] = symbols(f'p{i}_b_dt_dt') var_q_bending_dt_dt.append(globals()[f'p{i}_b_dt_dt']) for i in range(1, nq): globals()[f'q{i}_b_dt_dt'] = symbols(f'q{i}_b_dt_dt') var_q_bending_dt_dt.append(globals()[f'q{i}_b_dt_dt']) var_q_bending_dot_dt_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_b_dot_dt_dt'] = symbols(f'p{i}_b_dot_dt_dt') var_q_bending_dot_dt_dt.append(globals()[f'p{i}_b_dot_dt_dt']) for i in range(1, nq): globals()[f'q{i}_b_dot_dt_dt'] = symbols(f'q{i}_b_dot_dt_dt') var_q_bending_dot_dt_dt.append(globals()[f'q{i}_b_dot_dt_dt']) var_q_torsion_dt_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_t_dt_dt'] = symbols(f'p{i}_t_dt_dt') var_q_torsion_dt_dt.append(globals()[f'p{i}_t_dt_dt']) for i in range(1, nq): globals()[f'q{i}_t_dt_dt'] = symbols(f'q{i}_t_dt_dt') var_q_torsion_dt_dt.append(globals()[f'q{i}_t_dt_dt']) var_q_inplane_dt_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_i_dt_dt'] = symbols(f'p{i}_i_dt_dt') var_q_inplane_dt_dt.append(globals()[f'p{i}_i_dt_dt']) for i in range(1, nq): globals()[f'q{i}_i_dt_dt'] = symbols(f'q{i}_i_dt_dt') var_q_inplane_dt_dt.append(globals()[f'q{i}_i_dt_dt']) var_q_inplane_dot_dt_dt = [] for i in range(np, 0, -1): globals()[f'p{i}_i_dot_dt_dt'] = symbols(f'p{i}_i_dot_dt_dt') var_q_inplane_dot_dt_dt.append(globals()[f'p{i}_i_dot_dt_dt']) for i in range(1, nq): globals()[f'q{i}_i_dot_dt_dt'] = symbols(f'q{i}_i_dot_dt_dt') var_q_inplane_dot_dt_dt.append(globals()[f'q{i}_i_dot_dt_dt']) var_q_list_dt_dt = [*var_q_bending_dt_dt, *var_q_bending_dot_dt_dt, *var_q_torsion_dt_dt, *var_q_inplane_dt_dt, *var_q_inplane_dot_dt_dt] q_list = [*short_var_list, *var_q_list] q_list_dt = [*short_var_list_dt, *var_q_list_dt] q_list_dt_dt = [*short_var_list_dt_dt, *var_q_list_dt_dt] y_sym = [*q_list, *q_list_dt] str1_list = [] for i in range(len(y_sym)): str1_list.append('double ' + str(y_sym[i]) + '=' + f'state_var[{i}];') str1 = '\n'.join(str1_list) print('str1 generated') T_raw = open('T_others.pkl', 'rb') T_others = Matrix(pickle.load(T_raw)) class CMatrixPrinter(C99CodePrinter): def _print_ImmutableDenseMatrix(self, expr): sub_exprs, simplified = cse(expr) lines = [] for var, sub_expr in sub_exprs: lines.append('double ' + self._print(Assignment(var, sub_expr))) M = MatrixSymbol('T_others', *expr.shape) return '\n'.join(lines) + '\n' + self._print(Assignment(M, simplified[0])) p = CMatrixPrinter() str2 = p.doprint(T_others) print('str2 generated') str3 = str1 + '\n' + str2 str0 = '#include <iostream>'+'\n'+'#include <cmath>'+'\n'+'#include "parameters.h"'+'\n'+'\n'+'void T_others_f(double* state_var, double* T_others)'+'\n'+'{\n' str_end = '\n}' str_final = str0 + str3 + str_end T_c = open('T_others_c.cpp', 'w') T_c.write(str_final) T_c.close()
5837d24747eb111593c4fdc4fdb16c2048efb91e
d3e6d6555b0314936902727af36de2f1b7432bf8
/linked-list-cycle/linked-list-cycle.py
af4d1032682c25c061b7019097dc1288fceab653
[]
no_license
fly2rain/LeetCode
624b1e06e1aa3174dfb5c81834b58cc8fd7ad073
4ddb5a051c6e2051f016a675fd2f5d566c800c2a
refs/heads/master
2021-01-18T03:12:22.402044
2015-12-28T04:31:19
2015-12-28T04:31:19
85,842,050
0
1
null
2017-03-22T15:05:20
2017-03-22T15:05:19
null
UTF-8
Python
false
false
771
py
from utils import ListNode class Solution(object): def hasCycle(self, head): """ :type head: ListNode :rtype: bool """ if not head: return False prev, current = head, head.next head.next = None while current: if current == head: return True next = current.next current.next = prev prev, current = current, next return False if __name__ == '__main__': head = ListNode.build_linked_list([1, 2, 3, 4, 5]) head.next.next.next.next = head.next.next print Solution().hasCycle(head) head2 = ListNode.build_linked_list([1, 2, 3, 4, 5]) print Solution().hasCycle(head2) print Solution().hasCycle(None)
33302759c219b9a3b1fe2347ecb502a4dace1d4d
fc0150b1fd6ba0efd6746a34ffa8cba01640d10e
/Programming Basics with Python - април 2018/04. Complex-Conditions/02. Small Shop.py
f98d0d795257e24d58dfce9db983b1cd9ca6dbeb
[]
no_license
vgrozev/SofUni_Python_hmwrks
7554d90f93b83d58e386c92dac355573c8cda848
b10a941a0195ea069e698b319f293f5b4a660547
refs/heads/master
2021-06-08T19:40:27.009205
2019-11-24T17:19:31
2019-11-24T17:19:31
95,629,443
3
0
null
null
null
null
UTF-8
Python
false
false
1,132
py
product = input().lower() town = input().lower() quantity = float(input()) total = 0.0 if town == 'sofia': if product == 'coffee': total = quantity * 0.50 elif product == 'peanuts': total = quantity * 1.60 elif product == 'beer': total = quantity * 1.20 elif product == 'water': total = quantity * 0.80 else: # product == 'sweets' total = quantity * 1.45 elif town == 'plovdiv': if product == 'coffee': total = quantity * 0.40 elif product == 'peanuts': total = quantity * 1.50 elif product == 'beer': total = quantity * 1.15 elif product == 'water': total = quantity * 0.70 else: # product == 'sweets' total = quantity * 1.30 else: # town == 'Varna' if product == 'coffee': total = quantity * 0.45 elif product == 'peanuts': total = quantity * 1.55 elif product == 'beer': total = quantity * 1.10 elif product == 'water': total = quantity * 0.70 else: # product == 'sweets' total = quantity * 1.35 print("{0:.2f}".format(total))
b49d41c660d323470c0b91f8b0625757281eccd0
1be96ee96f3b33469ca073c4f32884cb7230106b
/python3_cron_scripts/libs3/ZoneManager.py
0531dbedb4a08f885bbf76e4b6fa355e672c65fc
[ "Apache-2.0" ]
permissive
vishnurajkv/Marinus
3305478038fba8b0ea15dafa2219df9f4df21e9b
331ba1dc2e99ae99df6c9d93063a852eec41d578
refs/heads/master
2020-06-29T10:58:50.196807
2019-07-26T20:48:47
2019-07-26T20:48:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,583
py
#!/usr/bin/python3 # Copyright 2018 Adobe. All rights reserved. # This file is licensed to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. You may obtain a copy # of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS # OF ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """ This class mostly exists because almost every script needs to do a get_distinct_zones Having it centralized, means that the included and excluded status' can be managed in one place. """ from pymongo import MongoClient from datetime import datetime from tld import get_fld class ZoneManager(object): # A status of confirmed typically means it was entered by a human CONFIRMED = "confirmed" # A status of unconfirmed means that it was added via automation # It has not been revied by a human UNCONFIRMED = "unconfirmed" # A status of false positive means that a human identified that automation made a mistake FALSE_POSITIVE = "false_positive" # A status of expired means that the automation believes that the domain is no longer registered EXPIRED = "expired" # The MongoConnector mongo_connector = None # The zone collection zone_collection = None def __init__(self, mongo_connector): """ Initialize the MongoDB Connector """ self.mongo_connector = mongo_connector self.zone_collection = mongo_connector.get_zone_connection() def _check_valid_status(self, status): if status != ZoneManager.EXPIRED and status != ZoneManager.FALSE_POSITIVE and \ status != ZoneManager.CONFIRMED and status!= ZoneManager.UNCONFIRMED: print("ERROR: Bad status value") return False return True @staticmethod def get_distinct_zones(mongo_connector, includeAll = False): """ This is the most common usage of get zones where the caller wants just the list of active zones. This returns the list of zones as an array of strings rather than the complete JSON objects """ zones_collection = mongo_connector.get_zone_connection() if includeAll: zone_results = mongo_connector.perform_distinct(zones_collection, 'zone') else: zone_results = mongo_connector.perform_distinct(zones_collection, 'zone', {'status': {"$nin": [ZoneManager.FALSE_POSITIVE, ZoneManager.EXPIRED]}}) zones = [] for zone in zone_results: if zone.find(".") >= 0: zones.append(zone) return zones @staticmethod def get_reversed_zones(mongo_connector): """ Retrieve the list of active zones and then reverse them to match the Common Crawl format """ zones_collection = mongo_connector.get_zone_connection() zone_results = mongo_connector.perform_distinct(zones_collection, 'zone', {'status': {"$nin": [ZoneManager.FALSE_POSITIVE, ZoneManager.EXPIRED]}}) zones = [] for zone in zone_results: if zone.find("."): zone_parts = zone.split(".") # The vertices.txt entries from common_crawl are in reverse order (e.g. org.example.www) # To string match faster, the zones are stored in a reverse format prior to matching. # This avoids having to reverse each entry in the file which is less efficient. rev_zone = "" for part in zone_parts: rev_zone = part + "." + rev_zone rev_zone = rev_zone[:-1] zones.append(rev_zone) return zones @staticmethod def get_zones_by_source(mongo_connector, source, includeAll=False): """ Returns a list of zones based on the provided reporting source """ zone_collection = mongo_connector.get_zone_connection() if includeAll: zones = mongo_connector.perform_distinct(zone_collection, 'zone', { 'reporting_sources.source': source}) else: zones = mongo_connector.perform_distinct(zone_collection, 'zone', { 'reporting_sources.source': source, 'status': {'$nin': [ZoneManager.FALSE_POSITIVE, ZoneManager.EXPIRED]}}) return zones @staticmethod def get_zones(mongo_connector, includeAll=False): """ This is will return the full zones object for all active zones. This returns the complete json objects for the matching descriptions """ zones_collection = mongo_connector.get_zone_connection() if includeAll: zone_results = mongo_connector.perform_find(zones_collection, {}) else: zone_results = mongo_connector.perform_find(zones_collection, {'status': {"$nin": [ZoneManager.FALSE_POSITIVE, ZoneManager.EXPIRED]}}) zones = [] for zone in zone_results: if zone['zone'].find(".") >= 0: zones.append(zone) return zones @staticmethod def get_root_domain(value, zone=None): """ Get the root domain (FLD) for the provided value """ res = get_fld(value, fix_protocol=True, fail_silently=True) if res is None: return zone return res def get_zone(self, zone): """ Fetch the full individual zone record. This is not a staticmethod since it would probably be called repeatedly. """ return self.mongo_connector.perform_find(self.zone_collection, {'zone': zone}) def get_zones_by_status(self, status): """ This returns the list of zones associated with the provided status. This returns the list of zones as an array of strings rather than the complete JSON objects """ if not self._check_valid_status(status): return zone_results = self.mongo_connector.perform_distinct(self.zone_collection, 'zone', {'status': status}) zones = [] for zone in zone_results: if zone.find(".") >= 0: zones.append(zone) return zones def set_status(self, zone, status, caller): """ Set a zone to expired. """ if self.zone_collection.find({'zone': zone}).count() == 0: print("ERROR: Invalid zone!") return if status != ZoneManager.EXPIRED and status != ZoneManager.FALSE_POSITIVE and \ status != ZoneManager.CONFIRMED and status!= ZoneManager.UNCONFIRMED: print("ERROR: Bad status value!") return if caller is None or caller == "": print("ERROR: Please provide a caller value!") return now = datetime.now() note = caller + " set to " + status + " on " + str(now) self.zone_collection.update({"zone": zone}, {"$set": {"status": status, "updated": now}, "$addToSet": {"notes": note}}) def add_note(self, zone, note): """ In the future, there should probably be restrictions on note length. For now, it is not set until more information on usage is available. """ self.zone_collection.update({"zone": zone}, {"$addToSet": {"notes": note}})
d3ef5ccaa99988559bd5fde97a0082c970a270a1
1548ce77537dcd50ab04b0eaee050b5d30553e23
/autotabular/algorithms/ctr/xdfm.py
003e7cba0a5433e271cb0403bed753da731ebcad
[ "Apache-2.0" ]
permissive
Shamoo100/AutoTabular
4a20e349104246bf825ebceae33dca0a79928f2e
7d71bf01d2b7d84fcf5f65c9f45c5cea1255d8a2
refs/heads/main
2023-08-13T21:34:34.329888
2021-10-02T07:06:00
2021-10-02T07:06:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,338
py
import torch from autotabular.algorithms.ctr.layer import CompressedInteractionNetwork, FeaturesEmbedding, FeaturesLinear, MultiLayerPerceptron class ExtremeDeepFactorizationMachineModel(torch.nn.Module): """A pytorch implementation of xDeepFM. Reference: J Lian, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems, 2018. """ def __init__(self, field_dims, embed_dim, mlp_dims, dropout, cross_layer_sizes, split_half=True): super().__init__() self.embedding = FeaturesEmbedding(field_dims, embed_dim) self.embed_output_dim = len(field_dims) * embed_dim self.cin = CompressedInteractionNetwork( len(field_dims), cross_layer_sizes, split_half) self.mlp = MultiLayerPerceptron(self.embed_output_dim, mlp_dims, dropout) self.linear = FeaturesLinear(field_dims) def forward(self, x): """ :param x: Long tensor of size ``(batch_size, num_fields)`` """ embed_x = self.embedding(x) x = self.linear(x) + self.cin(embed_x) + self.mlp( embed_x.view(-1, self.embed_output_dim)) return torch.sigmoid(x.squeeze(1))
b8ef08afc88239a1c064acc5c67624fcb605990c
3a918f7baaf088b44227781a5ba017f4dc9a1a13
/scripts/extract_results.py
6e51015592bbeab3b2067ba63e66c85f713ead57
[]
no_license
jagol/MTL-SD
7bda0282c6d9eb5ce0ff2e9819f1933c7ceeba73
de1cef6c82d3366c5f2bf1430bcd546d8aa0ab92
refs/heads/main
2023-05-14T04:00:54.034887
2021-06-01T21:39:00
2021-06-01T21:39:00
343,364,812
0
0
null
null
null
null
UTF-8
Python
false
false
1,493
py
import os import csv import json import argparse from typing import List from preprocess import * """Script to extract relevant results from results-file of allennlp predict-command. Creates new results file with name <input-name>_extracted.csv. Removes old results file to avoid cluttering. """ def extract_results(fpath: str) -> List[List[float]]: class_probs = [] with open(fpath) as fin: probs_key = None for i, line in enumerate(fin): if i == 0: for key in json.loads(line): if key.endswith('probs'): probs_key = key class_probs.append(json.loads(line)[probs_key]) return class_probs def write_results(results: List[List[float]], fpath_out) -> None: with open(fpath_out, 'w') as fout: writer = csv.writer(fout) for prediction in results: writer.writerow(prediction) def main(cmd_args: argparse.Namespace) -> None: results = extract_results(cmd_args.path) fdir = '/'.join(cmd_args.path.split('/')[:-1]) fname = cmd_args.path.split('/')[-1] fname_out = fname.split('.')[0] + '_extracted.csv' write_results(results, os.path.join(fdir, fname_out)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-p', '--path', type=str, required=True, help='Path to results file generated by allennlp predict-command.') args = parser.parse_args() main(args)
63f124f199d2e152e2fc67618693c424f3febbb7
d458b72b4d0e5c51446bb8b9f8a6276015dfb594
/math/0x02-calculus/10-matisse.py
88cf330d9c797d23e8f981fda83e54f60879e7f5
[]
no_license
mecomontes/Machine-Learning-projects
d6588cfaa7d020d3fae0fb74f6550c9e84500578
50e1828b58bb58eecfd3a142501b37fe701f4e49
refs/heads/main
2023-07-14T12:30:19.792332
2021-08-29T15:33:16
2021-08-29T15:33:16
376,129,791
1
0
null
null
null
null
UTF-8
Python
false
false
808
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 8 9:34:16 2020 @author: Robinson Montes """ def poly_derivative(poly): """ Function that find the derivate of a polynomial Arguments: - poly(list of integers): polynomial to calculate the derivate Return: List of coefficients representing the derivative of the polynomial """ if poly is None or poly == [] or type(poly) is not list: return None derivate = [] i = 0 while i < len(poly): if type(poly[i]) not in (int, float): return None elif len(poly) == 1: derivate.append(0) else: if i == 0: i += 1 continue derivate.append(poly[i]*i) i += 1 return derivate
ba4a59497f41ffefe8c698f0a65012b2d35d88e6
b5aeb0f8b8efc77d77842237a80cce90e529ac5f
/config/settings.py
04b0faaaab467f76b64edc86c9631e42ab3f4de5
[]
no_license
Pillin/POC-Django-Cooker
b078502d403a90cc57c4691265235ce855c8d75e
e6ad88564d3045af4a418234a927970f928e3c58
refs/heads/master
2022-12-12T15:02:41.410674
2019-09-30T03:41:28
2019-09-30T03:41:28
210,078,139
1
0
null
2022-12-08T05:22:06
2019-09-22T02:13:33
Python
UTF-8
Python
false
false
4,361
py
""" Django settings for nora project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ENV = environ.Env() ENV.read_env(os.path.join(BASE_DIR, '.env')) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = ENV('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = ENV('DEBUG') ALLOWED_HOSTS = [] BASE_URL = ENV('BASE_URL') # Application definition INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'django_extensions', 'users', 'commons', 'meals', 'tags', 'plates', 'menus', 'distributions', 'deliveries' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] REST_FRAMEWORK = { # Use Django's standard `django.contrib.auth` permissions, # or allow read-only access for unauthenticated users. 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.IsAuthenticated', ), 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_jwt.authentication.JSONWebTokenAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.BasicAuthentication', ), } # Authentication Settings AUTH_USER_MODEL = 'users.User' ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ] }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': ENV.db() } DATABASES['default']['TEST'] = { 'NAME': 'nora_test' } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'es-cl' TIME_ZONE = 'Etc/GMT+4' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ CSRF_USE_SESSIONS = True STATIC_URL = '/static/' LOGIN_REDIRECT_URL = '/home/' LOGIN_URL = '/login/' CSRF_COOKIE_SECURE = True DATE_FORMAT = '%d/%m/%Y' TIME_FORMAT = '%H:%M:%S' SLACK_SERVICE_URL = 'https://hooks.slack.com/services/' # CELERY COMFIGURATION BROKER_URL = 'redis://localhost:6379' CELERY_RESULT_BACKEND = 'redis://localhost:6379' CELERY_ACCEPT_CONTENT = ['application/json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' CELERY_TIMEZONE = 'Etc/GMT+4' CELERY_ALWAYS_EAGER = False
2d6e5705b0d6fc9452a7eef4f715005355db0acf
0067290f8a2c5c367eee2e76f7ec743719d5b59c
/one/two/migrations/0002_auto_20170802_1924.py
02ba77ac66799d0a3867254c03ad5115c12deb5d
[]
no_license
8880/Django
d81da8f410845676606eb148a609f56792a14b1b
469fe07475c2f7c6e2d1ba1e2119b59550f154e6
refs/heads/master
2021-01-16T17:54:58.393384
2017-08-19T02:55:11
2017-08-19T02:55:11
100,019,134
1
0
null
null
null
null
UTF-8
Python
false
false
2,264
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-02 11:24 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('two', '0001_initial'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.TextField(verbose_name='\u8bc4\u8bba\u5185\u5bb9')), ('username', models.CharField(blank=True, max_length=30, null=True, verbose_name='\u7528\u6237\u540d')), ('email', models.EmailField(blank=True, max_length=50, null=True, verbose_name='\u90ae\u7bb1\u5730\u5740')), ('url', models.URLField(blank=True, max_length=100, null=True, verbose_name='\u4e2a\u4eba\u7f51\u9875\u5730\u5740')), ('date_publish', models.DateTimeField(auto_now_add=True, verbose_name='\u53d1\u5e03\u65f6\u95f4')), ], options={ 'verbose_name': '\u8bc4\u8bba', 'verbose_name_plural': '\u8bc4\u8bba', }, ), migrations.AlterModelOptions( name='article', options={'ordering': ['-id'], 'verbose_name': '\u6587\u7ae0', 'verbose_name_plural': '\u6587\u7ae0'}, ), migrations.AddField( model_name='comment', name='article', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='two.Article', verbose_name='\u6587\u7ae0'), ), migrations.AddField( model_name='comment', name='pid', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='two.Comment', verbose_name='\u7236\u7ea7\u8bc4\u8bba'), ), migrations.AddField( model_name='comment', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='\u7528\u6237'), ), ]
[ "klous530.outlook.com" ]
klous530.outlook.com
175d2147b052746aa4fb54eee2552c7003b10d43
8df7fa5a5669fab2ec25efea335ab5a8b90d8f76
/02-controls/03-ScreenGeometry.py
46475f77eb34bbe4fd16e471199d7a789e1df4d0
[]
no_license
HackettHsu/PyQt5Tutorial
76b458b7c15a5707a7c6ef01e4c5cc5f48296ade
01c3f782e48742a57a1152ec114f8c8cec71c323
refs/heads/master
2022-09-21T00:39:27.710977
2020-06-01T06:53:29
2020-06-01T06:53:29
259,819,043
0
0
null
null
null
null
UTF-8
Python
false
false
1,643
py
''' 屏幕坐标系 PyQt5在进行界面设计时默认存在X-Y坐标系,以(屏幕和程序)左上角为零点 工作区:程序中不包括标题栏的区域 到底哪些含有标题栏? ''' import sys from PyQt5.QtWidgets import QHBoxLayout, QMainWindow, QApplication, QPushButton, QWidget # 单击按钮输出坐标信息 def onClick_Button(): print("Method 1:") print(f"widget.x() = {widget.x()}")# 窗口坐标。含标题栏 print(f"widget.y() = {widget.y()}") print(f"widget.width() = {widget.width()}")# 工作区坐标。不含标题栏 print(f"widget.height() = {widget.height()}") print("Method 2:") print(f"widget.geometry().x() = {widget.geometry().x()}")# 工作区坐标。不含标题栏 print(f"widget.geometry().y() = {widget.geometry().y()}") print(f"widget.geometry().width() = {widget.geometry().width()}") print(f"widget.geometry().height() = {widget.geometry().height()}") print("Method 3:") print(f"widget.frameGeometry().x() = {widget.frameGeometry().x()}")# 窗口坐标。含标题栏 print(f"widget.frameGeometry().y() = {widget.frameGeometry().y()}") print(f"widget.frameGeometry().width() = {widget.frameGeometry().width()}")# 窗口坐标。含有标题栏 print(f"widget.frameGeometry().height() = {widget.frameGeometry().height()}") app = QApplication(sys.argv) widget = QWidget() btn = QPushButton(widget) btn.setText('按钮') btn.clicked.connect(onClick_Button) btn.move(24, 52) widget.resize(300, 240)# 设置工作区的高度 widget.move(250, 200) widget.setWindowTitle("屏幕坐标") widget.show() sys.exit(app.exec_())
31a9922a9cadf18a73fa0c106cd377bfb6696751
08a68e32dc80f99a37a30ddbbf943337546cc3d5
/.history/count/urls_20200419191412.py
5d8ed271bfc7e1cb0268e075f7a2e8934d978eed
[]
no_license
Space20001/word-count-project
dff1b4b44d2f7230070eef0d95dd968b655d92f7
795b5e8ad5c59109e96bf7a8e9192efaefa7770e
refs/heads/master
2022-04-20T17:54:05.511449
2020-04-20T15:25:46
2020-04-20T15:25:46
257,327,368
0
0
null
null
null
null
UTF-8
Python
false
false
132
py
from django.urls import path from . import views urlpatterns = [ path('', views.home), path('', views.about), ]
a4e3c2a78a101ae2c35ecf31315de44d777b253f
89cd8b77ad5171c336cc60b2133fe6468a6cb53f
/Module01_CZ/day7_data_struct_str/04-代码/day7/125_字符串高级操作(判断型).py
8f356536eabd5e44cafbc8624e413494095895a0
[ "MIT" ]
permissive
fenglihanxiao/Python
75178f6b6b0c53345e1ed54226ea645216572d6c
872baf3a3a5ee42740161152605ca2b1ddf4cd30
refs/heads/master
2021-05-23T18:49:20.656433
2020-04-29T01:06:21
2020-04-29T01:06:21
253,199,073
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
""" 演示字符串判断型操作 """ # str1 = "\n" # print(str1.islower()) # print(str1.isupper()) name = "张三丰" print(name.startswith("张三")) filename="1.jpge" if filename.endswith(".jpg") or filename.endswith(".png") : print("该文件是一个图片")
000e1259ee1af55de6f4cf1e16088578c95cd082
b3dec5c9347ac443ed36dfd759e6bb58550dd239
/functional_tests/test_layout_and_styling.py
670b19b27d17eb830593f591479d2f2b103df28e
[]
no_license
StevenSLXie/Ask-and-answer
a6587ae8424063bfe4f46fa0c3cac7d415237a12
778d580f53dfc1b187a95ad41ed504ab79205541
refs/heads/master
2021-01-01T05:53:53.644232
2014-01-07T08:45:49
2014-01-07T08:45:49
15,699,362
3
1
null
null
null
null
UTF-8
Python
false
false
743
py
from selenium import webdriver from selenium.webdriver.common.keys import Keys from django.test import LiveServerTestCase import unittest import time from unittest import skip from .base import FunctionalTest class LayoutAndStylingTest(FunctionalTest): def test_layout_and_styling(self): # Edith goes to the home page self.browser.get(self.live_server_url) self.browser.set_window_size(1024, 768) # She notices the input box is nicely centered inputbox.send_keys('testing\n') inputbox = self.browser.find_element_by_tag_name('input') self.assertAlmostEqual( inputbox.location['x'] + inputbox.size['width'] / 2, 512, delta=3 )
b9ee4247f3e4f57c0fe3eb2d7c715b195da8c830
962dca0c4f20b45a122f17310acf12057ca866d2
/old_version/models.py
5e859c2eff46a3168e9a7f3f7c45f5696f459216
[]
no_license
wyuten/3ch
c78e2a5cf0b65813302e84bf12dd60a6dccdb633
23c73d907bc36a59907dcc0845dea131fa27dcde
refs/heads/master
2023-04-06T10:59:39.598242
2019-04-13T11:54:35
2019-04-13T11:54:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
754
py
# -*- coding: utf-8 -*- from app import db from datetime import datetime class Article(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) title = db.Column(db.String(256), nullable=False) content = db.Column(db.String(30000), nullable=False) time = db.Column(db.DateTime, default=datetime.now().strftime('%Y-%m-%d %H:%M:%S')) class Comment(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) content = db.Column(db.String(3000), nullable=False) article_id = db.Column( db.Integer, db.ForeignKey('article.id'), nullable=False, index=True ) article = db.relationship(Article, foreign_keys=[article_id, ])
5730ac87d69f4f8cfbe150ec06158ae54a7943a1
c557bd8a74d2d4936aeae477fb37be374e904853
/If_No_council.py
290032b09aef70b7d1a5e950c1b03ff4bd02461d
[]
no_license
shalom-k/Hackathon_team2
80a6d4f30b89894bb353c3218e24ec2c4d5b7600
e1855ad7a68cb613ecece703882d58d024aee215
refs/heads/main
2023-03-22T02:55:02.787292
2021-03-13T23:25:04
2021-03-13T23:25:04
346,830,380
0
1
null
2021-03-13T22:46:52
2021-03-11T20:36:25
Python
UTF-8
Python
false
false
1,366
py
import requests import json #find distance between 2 points def distance(start, fin): api_key = 'AIzaSyBbwM-62klXAknNAhMWEZ-MVlpfUFYFYko' url_distance = 'https://maps.googleapis.com/maps/api/distancematrix/json?' req = requests.get(url_distance + 'origins=' + start + '&destinations=' + fin + '&key=' + api_key) values = req.json() return("%s: %s" % (values['destination_addresses'][0], values['rows'][0]['elements'][0]['distance']['text'])) def nearby_locations(place): api_key = 'AIzaSyBbwM-62klXAknNAhMWEZ-MVlpfUFYFYko' url_place = "https://maps.googleapis.com/maps/api/place/textsearch/json?" r = requests.get(url_place + 'query=' + place + '&key=' + api_key) x = r.json() return(x['results']) def dist(start, place): location_array = [] data = nearby_locations(place) for i in range(len(data)): fin = data[i]['formatted_address'] location_array.append(distance(start, fin)) return(location_array) #function to get time to each location with distance to each location in an array. if __name__ == "__main__": start = input("enter the start location boss :)") place = input("Enter a place boss :)") location_array = dist(start, place) for i in range(len(location_array)): print(location_array[i])
a693789de45dbd41820033a6363a8ffeb13c7b85
662788b9affd962f8d04d337fe65a418ca5ff209
/eden/tutorialKivy/tk012_hexEdit_appUsingModules/aboutDialog.py
260a7a900713e8c436c56f2107f454c9e03dec85
[]
no_license
xgid/Eden
0d4910d27da24594d53a221d80313fb7f0e27788
b2e062fd22481bf26bfc7cc78bf2ec0ba875ddfb
refs/heads/master
2020-03-31T10:04:24.157325
2015-01-24T17:46:54
2015-01-24T17:46:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
984
py
# Copyright (C) 2005 - 2014 Jacques de Hooge, Geatec Engineering # # This program is free software. # You can use, redistribute and/or modify it, but only under the terms stated in the QQuickLicence. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the QQuickLicence for details. # aboutDialog.py from org.qquick.eden import * class AboutDialog (Module): def __init__ (self): Module.__init__ (self) def defineNodes (self): self.addNode (Node (None), 'openNode') self.addNode (Node (None), 'closeNode') def defineViews (self): return ModalView ( ButtonView (captionNode = 'Eden modules demo app\nPress to dismiss', actionNode = self.closeNode), captionNode = 'About', closeNode = self.closeNode, relativeSize = (0.2, 0.3) ) def defineActions (self): self.openNode.action = self.getView () .execute
7b89bfc599a8c522870a3004d962c83174b573a2
b980b16022f9661c8fe25d35ffdccdc2bc5ad193
/json_fingerprint/_create.py
b5e4a7366a9a48c4a958a9fd5740cc37eb729193
[ "MIT" ]
permissive
cobaltine/json-fingerprint
520456c74faa2ed2a7db2a8bc3b27af2335452a5
8face4a37e6db8f5a52727d721dfc80a4c3b031a
refs/heads/main
2023-05-25T03:43:39.390401
2023-05-22T18:03:07
2023-05-22T18:10:28
322,092,977
5
2
MIT
2023-05-22T18:10:29
2020-12-16T20:21:59
Python
UTF-8
Python
false
false
1,089
py
from ._jfpv1 import _create_jfpv1_fingerprint from ._load_json import _load_json from ._validators import ( _validate_hash_function, _validate_input_type, _validate_version, ) def create(input: str, hash_function: str, version: int) -> str: """Create JSON fingerprints with the selected hash function and JSON fingerprint algorithm version. Args: input (str): JSON input in string format. hash_function (str): One of the supported hash function names in string format (options: "sha256", "sha384", or "sha512"). version (int): An integer indicating the JSON fingerprint algorithm version to be used (options: 1). Returns: str: A pre-formatted JSON fingerprint (example: "jfpv1${hash_function_name}${hash_hex_digest}"). """ _validate_version(version=version) _validate_input_type(input=input) _validate_hash_function(hash_function=hash_function, version=version) loaded = _load_json(data=input) return _create_jfpv1_fingerprint(data=loaded, hash_function=hash_function)
a268ef38a2861b114ef4f65c5e31730ade40cc92
7f68bbb3fd328a4d6bbabecb44305987d8cbbfc4
/django/django-intro/home/workspace/PROJECT8/movies/forms.py
96b211b33850d9d51473be7e05a26ff57cb8c511
[]
no_license
seunghoon2334/TIL
c84f9f9e68c8ccc7a1625222fe61f40739774730
51cfbad2d9b80a37b359716fca561c2a5c5b48b3
refs/heads/master
2022-12-18T18:20:19.210587
2019-11-26T03:14:23
2019-11-26T03:14:23
162,101,369
0
0
null
2022-11-22T03:59:16
2018-12-17T08:51:53
C
UTF-8
Python
false
false
491
py
from django import forms from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit from .models import Movie # modelform class MovieForm(forms.ModelForm): class Meta: model = Movie fields = '__all__' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_method = 'POST' self.helper.add_input(Submit('Submit', '제출!'))
d313ac27c05892907d934359fa7a177b2f5f2fff
633944f913050debf0764c2a29cf3e88f912670e
/v8/depot_tools/bootstrap-3.8.0b1.chromium.1_bin/python3/lib/python3.8/site-packages/pip/_internal/vcs/__init__.py
4b25ec2e4255710878140a71bd637c31b9cea887
[ "BSD-3-Clause", "bzip2-1.0.6", "SunPro", "Apache-2.0" ]
permissive
bopopescu/V8-lgtm
0474c2ff39baf754f556ef57619ceae93e7320fd
da307e2f7abfca5fa0e860a809de6cd07fd1b72b
refs/heads/master
2022-02-16T19:10:54.008520
2019-09-25T07:51:13
2019-09-25T07:51:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
../../../../../../../.cipd/pkgs/2/_current/lib/python3.8/site-packages/pip/_internal/vcs/__init__.py
8bf94d64f8dd66a1fa69e2c51090c36a8828b416
729ce984b65b68f2da2045cafe0fbc169692af15
/string_2/count_hi.py
dc41d8786789ae4cd4c967eb5b7c203bd4051f15
[]
no_license
imvivek71/CodingBat-Python-Coding
00b1f254c30c423405500e18648e52e59878db9d
684d432bb5b0a470ab1a86fd4758673b39a16cca
refs/heads/master
2020-04-15T06:39:52.218845
2019-02-04T09:08:03
2019-02-04T09:08:03
164,468,362
1
0
null
null
null
null
UTF-8
Python
false
false
365
py
""""" Return the number of times that the string "hi" appears anywhere in the given string. count_hi('abc hi ho') → 1 count_hi('ABChi hi') → 2 count_hi('hihi') → 2 """ def count_hi(str): x = len(str) count = 0 if x>1: for i in range(1,x): if (str[i]=='i' and str[i-1]=='h') : count = count+1 return count return count
0519b9a6c3d736fd51361e9def7cf66c291409c5
915ac708aeac53125f29bef90c2c047eaed4940e
/Anaconda/Scripts/rst2xetex.py
2d9179a588e56dbef11208ccd0ed3621286f9cc3
[]
no_license
bopopescu/newGitTest
c8c480ddd585ef416a5ccb63cbc43e3019f92534
5a19f7d01d417a34170a8f760a76e6a8bb7c9274
refs/heads/master
2021-05-31T17:00:26.656450
2016-06-08T06:43:52
2016-06-08T06:43:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
#!C:\aroot\stage\python.exe # $Id: rst2xetex.py 7038 2011-05-19 09:12:02Z milde $ # Author: Guenter Milde # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing XeLaTeX source code. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline description = ('Generates XeLaTeX documents from standalone reStructuredText ' 'sources. ' 'Reads from <source> (default is stdin) and writes to ' '<destination> (default is stdout). See ' '<http://docutils.sourceforge.net/docs/user/latex.html> for ' 'the full reference.') publish_cmdline(writer_name='xetex', description=description)
b4c40afde973ad9d8f36c83127803a0977c3e0ac
6cc958a57fd727ae66bad61548d4a21d023e6058
/src/util/util_unit.py
44b3790514651d2f66dbc0ac31356ba366102b6c
[ "MIT" ]
permissive
oygx210/hpr-sim
7135e1cba0a868f24eda6c22294a715c41fce2e5
4b7249f64c3c699fb863855eb8f1963b4d06e32e
refs/heads/master
2023-04-13T01:43:38.068845
2021-04-27T02:12:34
2021-04-27T02:12:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,363
py
''' High Power Rocketry - Flight Simulation MIT License Copyright (c) 2019 Roshan Doddanavar https://rdoddanavar.github.io Path: hpr-sim/src/util/util_unit.py Created: 2019-05-25 Type: Python3 module Description: Provides unit conversion utilities. Functions: config convert Classes: None Dependencies: hpr-sim/src/util/util_yaml /config_unit.yaml ''' # System modules from pathlib import Path # Project modules import util_yaml # Module variables unitDict = None def config(): ''' Parses YAML config file, creates global dict of unit conversion factors. Input(s): <none> \n Outputs(s): <none> ''' global unitDict # Necessary for reassignment if not unitDict: configPath = Path(__file__).parent / "../../config/config_unit.yaml" configPath = str(configPath.resolve()) unitDict = util_yaml.load(configPath) def convert(*args): ''' Converts input relative to default unit, or between two units. Input(s): value (float), quantity (str), unitA (str), unitB (str) [opt.] \n Output(s): value (float) ''' value = args[0] quantity = args[1] unitA = args[2] if len(args) == 3: if quantity and unitA: if quantity == "temperature": value = convert_temp(value, unitA) else: # Need error handling here for bad key factorA = unitDict[quantity][unitA] # Evaluate arithmetic operations, if necessary factorA = util_yaml.math_eval(str(factorA)) value *= factorA elif len(args) == 4: unitB = args[3] if (quantity and unitA and unitB): if quantity == "temperature": value = convert_temp(value, unitA, unitB) else: # Need error handling here for bad key factorA = unitDict[quantity][unitA] factorB = unitDict[quantity][unitB] # Evaluate arithmetic operations, if necessary factorA = util_yaml.math_eval(str(factorA)) factorB = util_yaml.math_eval(str(factorB)) factorC = factorA/factorB value *= factorC # Original value returned if unit is not specified or nondimensional return value def convert_temp(*args): ''' Converts temperature relative to default unit (K), or between two units. Input(s): value (float), unitA (str), unitB (str) [opt.] \n Output(s): value (float) ''' value = args[0] quantity = "temperature" unitA = args[1] factorA = unitDict[quantity][unitA][0] offsetA = unitDict[quantity][unitA][1] factorA = util_yaml.math_eval(str(factorA)) offsetA = util_yaml.math_eval(str(offsetA)) value = value*factorA + offsetA if len(args) == 3: unitB = args[2] factorB = unitDict[quantity][unitB][0] offsetB = unitDict[quantity][unitB][1] factorB = util_yaml.math_eval(str(factorB)) offsetB = util_yaml.math_eval(str(offsetB)) value = (value - offsetB)/factorB return value if __name__ == "__main__": # Standalone execution pass
9214d8fa1656c1be4d2bc90c80540115d23dcb3f
09717c5335b85838f31cfdb464387378be8ba104
/toy_test/data_util.py
829db87c67a8a814e9ba0dda22a86da0d7458706
[ "MIT" ]
permissive
whikwon/seq2seq-translation
bd6644f9f03e8debb16085f57ad99c0e1d7fa447
6858a5270d6c6bf034fdba27600d3d82090b3874
refs/heads/master
2021-05-11T12:13:38.442871
2018-01-16T11:04:44
2018-01-16T11:04:44
117,653,885
0
0
null
null
null
null
UTF-8
Python
false
false
3,649
py
import numpy as np import tensorflow as tf import os PAD = 0 UNK = 1 GO = 2 EOS = 3 start_token = GO end_token = EOS def read_file(path): """Read source from text file""" input_file = os.path.join(path) with open(input_file, "r", encoding='utf-8', errors='ignore') as f: source_sentences = f.read() return source_sentences def load_data(path): """Read source from text file and train/validation split""" source_sentences = read_file(path) vocab = make_vocab(source_sentences) source_letter_ids = [[vocab.get(letter, vocab['<UNK>']) for letter in line] \ for line in source_sentences.split('\n')] num_sentences = len(source_letter_ids) train_val_split = int(num_sentences * 0.8) train_source = source_letter_ids[:train_val_split] train_target = [list(reversed(i)) + [3] for i in train_source] valid_source = source_letter_ids[train_val_split:] valid_target = [list(reversed(i)) + [3] for i in valid_source] return train_source, train_target, valid_source, valid_target def make_vocab(data): """Make vocab from source""" special_words = ['<PAD>', '<UNK>', '<GO>', '<EOS>'] set_words = set([character for line in data.split('\n') for character in line]) int_to_vocab = {word_i: word for word_i, word in enumerate(special_words + list(set_words))} vocab_to_int = {word: word_i for word_i, word in int_to_vocab.items()} return vocab_to_int def pad_sentence_batch(sentence_batch, pad_int): """Pad sentences with <PAD> so that each sentence of a batch has the same length""" max_sentence = max([len(sentence) for sentence in sentence_batch]) return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch] def get_batches(sources, targets, num_epochs, batch_size): """Return batch to feed into the model.""" for i_epoch in range(num_epochs): for batch_i in range(0, len(sources) // batch_size): start_i = batch_i * batch_size sources_batch = sources[start_i:start_i + batch_size] targets_batch = targets[start_i:start_i + batch_size] pad_sources_batch = np.array(pad_sentence_batch(sources_batch, PAD)) pad_targets_batch = np.array(pad_sentence_batch(targets_batch, PAD)) # Need the lengths for the _lengths parameters pad_targets_lengths = [] for target in pad_targets_batch: pad_targets_lengths.append(len(target)) pad_source_lengths = [] for source in pad_sources_batch: pad_source_lengths.append(len(source)) yield pad_sources_batch, np.array(pad_source_lengths), pad_targets_batch, np.array(pad_targets_lengths) def process_decoder_input(target_data, vocab_to_int, batch_size): '''Remove the last word id from each batch and concat the <GO> to the begining of each batch''' ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1]) dec_input = tf.concat([tf.fill([batch_size, 1], vocab_to_int['<GO>']), ending], 1) return dec_input def _get_user_input(): """ Get user's input, which will be transformed into encoder input later """ print("> ", end="") return input() def source2id(vocab, text): """Convert a source to ids""" sequence_length = 7 return [vocab.get(word, vocab['<UNK>']) for word in text] \ + [vocab['<PAD>']] * (sequence_length - len(text)) def id2source(vocab, seq): """Convert ids to a source""" reversed_vocab = {j: i for i, j in vocab.items()} return ''.join([reversed_vocab[i] for i in seq])
48f6fab3b18bb1659f37d45e12c7ea01398ed32a
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_bunts.py
41d450a12d291732d8830616446e29d1957fe2d2
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
#calss header class _BUNTS(): def __init__(self,): self.name = "BUNTS" self.definitions = bunt self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['bunt']
e569fc7fc6e893e1d228b1d7e4971dcb65008fb8
45cc3880f3444276cebb0a7f91d3b146cd27b9d0
/beeprint/printer.py
63fe4de1510c7695ba066e8687e34780d93a7b3e
[]
no_license
aijikl/beeprint
056aa84ff73da93c50143c83bed0fdf54bd37ee5
0380a942c0ad56ab219a51c728b4244a9b49f405
refs/heads/master
2021-01-20T04:25:26.858124
2017-04-04T06:50:36
2017-04-04T06:50:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,603
py
# -*- coding:utf-8 -*- from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from __future__ import division import sys import traceback import types import inspect from io import StringIO from .utils import pyv if pyv == 2: # avoid throw [UnicodeEncodeError: 'ascii' codec can't encode characters] # exceptions, without these lines, the sys.getdefaultencoding() returns ascii from imp import reload reload(sys) sys.setdefaultencoding('utf-8') from . import constants as C from .utils import print_exc_plus from .models.block import Block, Context from .config import Config from .debug_kit import print_obj_path def pp(o, output=True, max_depth=5, indent=2, width=80, sort_keys=True, config=None, **kwargs): """print data beautifully """ if config: config = config.clone() else: config = Config() assert max_depth > 0 config.max_depth = max_depth assert indent > 0 config.indent_char = u' '*indent assert width >= 0 config.string_break_width = width config.dict_ordered_key_enable = bool(sort_keys) for k, v in kwargs.items(): if getattr(config, k): setattr(config, k, v) if not output: config.stream = None try: res = str(Block(config, Context(obj=o))) except: print_obj_path() raise if config.debug_level != 0: if config.debug_delay: print(config.debug_stream.getvalue()) if not output: return res
8bbbaf502c9a337965728c2e82e58a6959f1178e
09a076a0e5bc81ccd5a5bc472e817326e4540c09
/cycling/polls/mercado/mercado/middleware.py
1e23016687ff389288fd00180007cb6a6799dc98
[]
no_license
martinnogueira/django22.7tutoriales
f5bffb11491169fb5cc0f934270033be2eed2b30
2e2b1e47c8d2f5cbf15ff3616eb7e470822b3b4b
refs/heads/master
2020-03-23T18:59:55.368029
2018-07-25T23:19:36
2018-07-25T23:19:36
141,947,323
0
0
null
null
null
null
UTF-8
Python
false
false
1,713
py
from scrapy import signals class MercadoSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
fcaf8123dd2fd421f5fc4ee011401898730fd1c1
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r10p1/Gen/DecFiles/options/11114095.py
04981cbb389888968150d038dc6a792df1581176
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,637
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r10p1/Gen/DecFiles/options/11114095.py generated: Wed, 25 Jan 2017 15:25:18 # # Event Type: 11114095 # # ASCII decay Descriptor: [B0 -> K+ pi- (Higgs0 -> mu+ mu-)]cc # from Configurables import Generation Generation().EventType = 11114095 Generation().SampleGenerationTool = "SignalRepeatedHadronization" from Configurables import SignalRepeatedHadronization Generation().addTool( SignalRepeatedHadronization ) Generation().SignalRepeatedHadronization.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Bd_KpiDarkBoson2MuMu,m=250MeV,t=100ps,DecProdCut.dec" Generation().SignalRepeatedHadronization.CutTool = "DaughtersInLHCb" Generation().SignalRepeatedHadronization.SignalPIDList = [ 511,-511 ] from Gauss.Configuration import * from Configurables import LHCb__ParticlePropertySvc as ParticlePropertySvc from Configurables import Gauss, PrintMCTree, PrintMCDecayTreeTool, HistogramPersistencySvc, NTupleSvc, DumpHepMCDecay, DumpHepMCTree, GaussMonitor__CheckLifeTimeHepMC, GaussMonitor__CheckLifeTimeMC, GiGa, GiGaPhysListModular, GiGaHiggsParticles, GenerationToSimulation, PythiaProduction ParticlePropertySvc().Particles = [ "H_10 87 25 0.0 0.250 1.0000e-10 Higgs0 25 0.000000e+000" ] ApplicationMgr().ExtSvc += [ ParticlePropertySvc() ] gigaHiggsPart = GiGaHiggsParticles() gigaHiggsPart.Higgses = ["H_10"] # H_10, H_20, H_30 GiGaPhysListModular("ModularPL").PhysicsConstructors += [ gigaHiggsPart ]#
8ab66f039bfb3d4689e240f5275c04e6cab0d10e
3b07a0c65c20e512a7578efe76080b277f70da23
/packages/clear.py
53c2a60d22cca6bf6b5881ce34e51a2b800d5ecc
[]
no_license
FuryAdcom/PPython_MiniProyecto1
3df19c9fdaa43227b6df8443013361309e2d7aff
9f91af84993e80c9c49c0424a17623f1941fa1ee
refs/heads/main
2023-01-12T13:28:32.547138
2020-11-12T13:45:50
2020-11-12T13:45:50
311,410,120
0
0
null
2020-11-12T13:45:51
2020-11-09T17:13:07
Python
UTF-8
Python
false
false
132
py
from os import system, name def clear(): if name == 'nt': _ = system('cls') else: _ = system('clear')
5c18325f09c726223108db74bfcdff8194bd5abf
0709374e10878df28c7f5359b14ea7eaaac8c5f1
/train_models.py
d36f050510cbc73bb5c2ef72f7ba120873c6f9c2
[]
no_license
rhawiz/dingocv-api
c8af7e46df4ba833c71dc64e0321f463b6b1756f
d1197d120e8ce27b73903e53a5f76537c7228696
refs/heads/master
2021-01-16T18:49:30.878196
2017-08-14T20:20:37
2017-08-14T20:20:37
100,119,769
0
0
null
null
null
null
UTF-8
Python
false
false
307
py
import os from app.core.train import AutocompleteTrainer DATABASE_PATH = os.getenv("DATABASE_PATH", "dingocv_phrases.sqlite") MODELS_PATH = os.getenv("MODELS_PATH", 'models') trainer = AutocompleteTrainer(save_dir=os.path.abspath(MODELS_PATH), sqlite_path=os.path.abspath(DATABASE_PATH)) trainer.train()
058130f56ac7ae3b6cae1b4806a62a3b69fc3b90
6adf38f23f24a643d3cacd8daf1eb6e008e2f826
/spec_test_2.py
3c8ae0abc983f7d46f75c71d9925cba762a0ebf1
[]
no_license
nschaffin/Spectrometer-Test-Code
a7f08a59ca7f5c50a9954095bdab4b7a468f9107
7bf65af534c1920f667defe1aae08a524e49ffe2
refs/heads/master
2022-11-27T05:53:44.709052
2020-08-10T17:38:52
2020-08-10T17:38:52
278,254,687
0
0
null
null
null
null
UTF-8
Python
false
false
2,218
py
import seabreeze import seabreeze.spectrometers from seabreeze.spectrometers import Spectrometer import time ''' Meant to be run in interactive mode to catch errors ''' spec1 = '' # Step 1 and step 4 def test_spectrometer(): global spec1 # Test from_first_available first_spec = seabreeze.spectrometers.Spectrometer.from_first_available() print(f"The first available device is: {first_spec}") # Test list_devices spec_list = seabreeze.spectrometers.list_devices() if spec_list == []: print("ERROR: No spectrometers listed.") else: spec1 = seabreeze.spectrometers.Spectrometer(spec_list[0]) print(f"The devices listed are: {spec_list}. The spectrometer selected is: {spec1}") # Compare the results of both spectrometers if first_spec == spec1: print("list_devices and from_first_available give the same spectrometer") else: print(f'first spec = {first_spec}, spec1 = {spec1}') # try: # spec1.integration_time_micros(5000) # time.sleep(1) # except: # spec1 = first_spec # print("\nChanged spectrometer\n") print(f'spec1 = {spec1}') # Test integrating when it's disconnected but the spectrometers are still listed spec1.integration_time_micros(5000) # insert shortest integration time here wavelengths = spec1.wavelengths() print(f"Wavelengths: {wavelengths}") print("\n") def test(): spec1.integration_time_micros(5000) spec1.integration_time_micros(5000) spec1.integration_time_micros(5000) # Step 2 and 3 def check_spectrometer(): global spec1 # Test list_devices spec_list = seabreeze.spectrometers.list_devices() if spec_list == []: print("No spectrometers listed.") else: print(f"The devices listed are: {spec_list}.") # Test integrating when it's disconnected but the spectrometers are still listed spec1.integration_time_micros(5000) # insert shortest integration time here wavelengths = spec1.wavelengths() print(f"Wavelengths: {wavelengths}") print("\n") """ Connect: check devices connect to spec check if both specs are the same thing run a command Disconnected: check devices run a command Reconnect: check devices run a command Reconnect retry: check devices connect to spec check if both specs are the same thing run a command """
56fcd9d7569cd87ba0cc217a1be8e88301bac6f5
361ac3fcf36d80c792b60b7e2284cb1dc8d77944
/osa03-16_sanojen_ensimmaiset_kirjaimet/test/test_sanojen_ensimmaiset_kirjaimet.py
bd5cdde1c62e7f1ca35d82db216518e44c552e43
[]
no_license
darkismus/mooc-ohjelmointi-21
48cc20391db4240104549d4f3834a67c77976f6d
5f72dd9cff78704a2a0f5bc1cc18c7740ce50c51
refs/heads/main
2023-08-01T03:35:13.244978
2021-09-14T10:49:37
2021-09-14T10:49:37
368,469,947
0
0
null
null
null
null
UTF-8
Python
false
false
3,507
py
import unittest from unittest.mock import patch from tmc import points from tmc.utils import load_module, reload_module, get_stdout from functools import reduce exercise = 'src.sanojen_ensimmaiset_kirjaimet' def outputs_equal(str1 : str, str2 : str) -> bool: return str1.lower() == str2.lower() def get_correct(s : str) -> str: return "\n".join([x[0] for x in s.split()]) @points('3.sanojen_ensimmaiset_kirjaimet') class SanojenEnsimmaisetKirjaimetTest(unittest.TestCase): @classmethod def setUpClass(cls): with patch('builtins.input', return_value = "x"): cls.module = load_module(exercise, 'fi') def test_lyhyet_lauseet(self): words = ["Heipparallaa", "Terve kaikille", "Moi vaan kaikille", "Simsalabim, sanoi taikuri", "Mitäpä tässä hötkyilemään", "Vielä yksi testilause tässä"] for testcase in words: with patch('builtins.input', return_value = testcase): try: reload_module(self.module) except: self.assertFalse(True, f"varmista että ohjelmasti toimii syötteellä\n{testcase}") output_all = get_stdout() output = [x.strip() for x in output_all.split("\n") if len(x.strip()) > 0] correct = get_correct(testcase) len_correct = len(correct.split("\n")) self.assertFalse(len(output_all)==0, "Ohjelmasi ei tulosta mitään syötteellä " + testcase) self.assertTrue(len(output) == len_correct, "Ohjelmasi tulostaa syötteellä ({}) {} rivin sijasta {} riviä: \n{}". format(testcase, len_correct, len(output), output_all)) self.assertTrue(outputs_equal(output_all, correct), "Ohjelmasi tuloste\n{}\nei vastaa oikeaa tulostetta \n{} \nsyötteellä ({})". format(output_all, correct, testcase)) def test_pidemmat_lauseet(self): words = ["Mitäpä tässä turhia jaarittelemaan, vaan jaarittelenpa tovin sittenkin.", "Tässäpä vähän pidempi testilause: nähdään samantien miten hyvin ohjelma toimii", "Otetaanpa vielä yksi testi tähän loppuun: tässä lauseessa onkin aika paljon sanoja."] for testcase in words: with patch('builtins.input', return_value = testcase): try: reload_module(self.module) except: self.assertFalse(True, f"varmista että ohjelmasti toimii syötteellä\n{testcase}") output_all = get_stdout() output = [x.strip() for x in output_all.split("\n") if len(x.strip()) > 0] correct = get_correct(testcase) len_correct = len(correct.split("\n")) self.assertFalse(len(output_all)==0, "Ohjelmasi ei tulosta mitään syötteellä " + testcase) self.assertTrue(len(output) == len_correct, "Ohjelmasi tulostaa syötteellä ({}) {} rivin sijasta {} riviä: \n{}". format(testcase, len_correct, len(output), output_all)) self.assertTrue(outputs_equal(output_all, correct), "Ohjelmasi tuloste\n{}\nei vastaa oikeaa tulostetta \n{} \nsyötteellä ({})". format(output_all, correct, testcase)) if __name__ == '__main__': unittest.main()
2f9bdc29452a2db1226f3a1ca5aab9fbdac5e5d6
6d0364f7aca2ea76444299d84d467a55b8dfabde
/tests/toranj/test-100-mcu-power-state.py
4cba5896a9f0a28e51ca54be48ff0350a5037d02
[ "LicenseRef-scancode-warranty-disclaimer", "BSD-3-Clause" ]
permissive
particle-iot/openthread
b862853867a75a591bcb3dae8f70c2ac9c35eaba
668256290d1c48319b0b96d41559efb48dcc0821
refs/heads/master
2020-03-13T13:02:45.358306
2019-07-09T11:38:23
2019-07-09T11:38:23
131,131,221
1
0
BSD-3-Clause
2019-05-19T03:42:57
2018-04-26T09:19:12
C++
UTF-8
Python
false
false
9,901
py
#!/usr/bin/env python # # Copyright (c) 2018, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import time import wpan from wpan import verify #----------------------------------------------------------------------------------------------------------------------- # Test description: Testing controlling of NCP's MCU power state test_name = __file__[:-3] if __file__.endswith('.py') else __file__ print '-' * 120 print 'Starting \'{}\''.format(test_name) #----------------------------------------------------------------------------------------------------------------------- # Creating `wpan.Nodes` instances node = wpan.Node() #----------------------------------------------------------------------------------------------------------------------- # Init all nodes wpan.Node.init_all_nodes() #----------------------------------------------------------------------------------------------------------------------- # Test implementation # Verify that state is ON after a reset verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Check power state wpantund property get and set WAIT_TIME = 5 def check_wpan_is_in_offline_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_OFFLINE) def check_wpan_is_in_deep_sleep_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_DEEP_SLEEP) def check_wpan_is_in_commissioned_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_COMMISSIONED) def check_wpan_is_in_associated_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATED) def check_wpan_is_in_associating_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATING) node.form("mcu-power-state") verify(node.is_associated()) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, 'low-power') verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATED) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, 'on') verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, 'lp') # special short-form string for low-power verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATED) # Verify that `wpantund` will restore the user-set value after NCP reset node.reset() time.sleep(1) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Check the `wpantund` state changes between "deep-sleep" and "offline" node.leave() verify(not node.is_associated()) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_OFFLINE) # Setting the power state to `low-power` should change wpantund state to `DEEP_SLEEP` node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_LOW_POWER) wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) # Verify that reading/getting a property does not impact the wpantund state. node.get(wpan.WPAN_THREAD_RLOC16) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_DEEP_SLEEP) # Setting the power state to `on` should change wpantund state to `OFFLINE` node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) wpan.verify_within(check_wpan_is_in_offline_state, WAIT_TIME) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Verify the behavior of `begin-low-power` wpanctl command node.wpanctl('begin-low-power') wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) wpan.verify_within(check_wpan_is_in_offline_state, WAIT_TIME) # Check the `wpantund` state changes between "offline:commissioned" and "deep-sleep" node.form("test-network") node.set('Daemon:AutoAssociateAfterReset','0') # Verify that issuing a `begin-low-power` when in "associated" state # does not change the state. node.wpanctl('begin-low-power') verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATED) # After reset, power state should remain `LOW_POWER` (wpantund would restore the value # on NCP) and since "AutoAssociateAfterReset" is disabled, wpantund state should # be `DEEP_SLEEP`. node.reset() wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) wpan.verify_within(check_wpan_is_in_commissioned_state, WAIT_TIME) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_LOW_POWER) wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) node.leave() #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Verify sleep behavior after disabling `wpantund` ("Daemon:Enabled" property) when state is "offline" verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_OFFLINE) verify(node.get('Daemon:Enabled') == 'true') # Disabling `wpantund` should put the NCP to deep sleep node.set('Daemon:Enabled', 'false'); verify(node.get('Daemon:Enabled') == 'false') wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) # Enabling `wpantund` should update the `MCU_POWER_STATE` back to `ON`. node.set('Daemon:Enabled', 'true'); wpan.verify_within(check_wpan_is_in_offline_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Verify sleep behavior after disabling `wpantund` ("Daemon:Enabled" property) when state is "associated" node.form("disable-test") verify(node.is_associated()) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) node.set('Daemon:Enabled', 'false'); verify(node.get('Daemon:Enabled') == 'false') wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.set('Daemon:Enabled', 'true'); wpan.verify_within(check_wpan_is_in_commissioned_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) node.leave() #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Verify `AutoAssociateAfterReset` behavior after reset from "deep-sleep" (but commissioned). node.set('Daemon:AutoAssociateAfterReset', '1') node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.form("resume-test") verify(node.is_associated()) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.reset() # After reset, power state should remain `LOW_POWER` (wpantund would restore the value # on NCP) and wpantund state should start as "deep-sleep" but since AutoAssociateAfterReset # is enabled, network should be recovered. wpan.verify_within(check_wpan_is_in_associating_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) #----------------------------------------------------------------------------------------------------------------------- # Test finished wpan.Node.finalize_all_nodes() print '\'{}\' passed.'.format(test_name)
415935edef31996e2b359804e324f5f7b3d48614
ab9b75fcdd2b7352968886e5ed41ee7788216226
/src/gamesbyexample/stickyhands.py
a1af5601756ea83263f3a20e8dd2bb26220102ac
[ "MIT" ]
permissive
mgocken/PythonStdioGames
d7b48cafbc33a027548cab08ad08aea6c0c81abd
036d2f142581fb74a38400721aecce15a695e1bc
refs/heads/master
2020-09-29T18:35:34.589307
2019-12-06T00:15:46
2019-12-06T00:15:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,528
py
# Sticky Hands, by Al Sweigart [email protected] # A jewel-stealing, movement puzzle game. __version__ = 1 # Inspired by Herding Cats https://w.itch.io/herding-cats # TODO - Enter R to reset the entire level. import copy, os, sys # Setup the constants: WALL = chr(9608) FACE = chr(9786) DIAMOND = chr(9830) CHAR_MAP = {'#': WALL, '@': FACE, '$': DIAMOND, ' ': ' '} # TODO add comment # Display the title banner and instructions: print('''Sticky Hands: A diamond collecting game. By Al Sweigart [email protected] Pick up diamonds by standing next to them. Stuck diamonds also become sticky. Try to stick every diamond in the level. Enter WASD letters to move, numbers to switch levels, U to undo a move, or "quit" to quit the game. You can enter multiple WASD or U letters to make several moves at once. ''') # Load each level from stickyhandslevels.txt if not os.path.exists('stickyhandslevels.txt'): print('Download the level file from https://github.com/asweigart/PythonStdioGames/blob/master/src/stickyhandslevels.txt') sys.exit() ALL_LEVELS = [] with open('stickyhandslevels.txt') as levelFile: currentLevelFromFile = {'width': 0, 'height': 0, 'diamonds': 0} # Each level is represented by a dictionary. y = 0 for line in levelFile.readlines(): if line.startswith(';'): continue # Ignore comments in the level file. if line == '\n': if currentLevelFromFile == {'width': 0, 'height': 0, 'diamonds': 0}: continue # Ignore this line, and continue to the next line. # Finished with the current level: ALL_LEVELS.append(currentLevelFromFile) currentLevelFromFile = {'width': 0, 'height': 0, 'diamonds': 0} y = 0 # Reset y back to 0. continue # Add the line to the current level. # We use line[:-1] so we don't include the newline: for x, levelChar in enumerate(line[:-1]): currentLevelFromFile[(x, y)] = levelChar # Keep track of how many diamonds are in the level: if levelChar == '$': currentLevelFromFile['diamonds'] += 1 y += 1 if len(line) - 1 > currentLevelFromFile['width']: currentLevelFromFile['width'] = len(line) - 1 if y > currentLevelFromFile['height']: currentLevelFromFile['height'] = y def drawLevel(levelNum, levelData): # Draw the current level. print('Level #' + str(levelNum + 1), 'of', len(ALL_LEVELS)) for y in range(levelData['height']): for x in range(levelData['width']): prettyChar = CHAR_MAP[levelData.get((x, y), ' ')] print(prettyChar, end='') print() def getPlayerBlobPoints(levelData, playerx, playery): playerBlob = [(playerx, playery)] pointsToCheck = [(playerx, playery)] alreadyCheckedPoints = [] while len(pointsToCheck) > 0: x, y = pointsToCheck.pop() alreadyCheckedPoints.append((x, y)) if (x - 1, y) not in alreadyCheckedPoints and levelData[(x - 1, y)] == '$': playerBlob.append((x - 1, y)) pointsToCheck.append((x - 1, y)) if (x + 1, y) not in alreadyCheckedPoints and levelData[(x + 1, y)] == '$': playerBlob.append((x + 1, y)) pointsToCheck.append((x + 1, y)) if (x, y - 1) not in alreadyCheckedPoints and levelData[(x, y - 1)] == '$': playerBlob.append((x, y - 1)) pointsToCheck.append((x, y - 1)) if (x, y + 1) not in alreadyCheckedPoints and levelData[(x, y + 1)] == '$': playerBlob.append((x, y + 1)) pointsToCheck.append((x, y + 1)) return playerBlob currentLevelNumber = 0 currentLevel = copy.copy(ALL_LEVELS[currentLevelNumber]) undoStack = [copy.copy(currentLevel)] while True: # Main game loop. drawLevel(currentLevelNumber, currentLevel) # Get the input from the player: moves = input('Enter moves> ').upper() if moves == 'QUIT': print('Thanks for playing!') sys.exit() if moves.isdecimal(): if not (1 <= int(moves) < len(ALL_LEVELS)): print('Enter a level number between 1 and', len(ALL_LEVELS)) continue # Change the current level: currentLevelNumber = int(moves) - 1 currentLevel = copy.copy(ALL_LEVELS[currentLevelNumber]) undoStack = [copy.copy(currentLevel)] continue # Validate the input; make sure it only has W, A, S, D, or U: movesAreValid = True for move in moves: if move not in ('W', 'A', 'S', 'D', 'U'): movesAreValid = False print(move, 'is not a valid move.') break if not movesAreValid: continue # Carry out the moves: for move in moves: # Find the player position: for position, character in currentLevel.items(): if character == '@': playerx, playery = position if move == 'U': if len(undoStack) == 1: continue # Can't undo past the first move. undoStack.pop() # Remove the last item from the undoStack list. currentLevel = copy.copy(undoStack[-1]) continue if move == 'W': movex, movey = 0, -1 elif move == 'A': movex, movey = -1, 0 elif move == 'S': movex, movey = 0, 1 elif move == 'D': movex, movey = 1, 0 playerBlob = getPlayerBlobPoints(currentLevel, playerx, playery) blobCanMove = True for blobPoint in playerBlob: blobx, bloby = blobPoint[0], blobPoint[1] moveToSpace = currentLevel.get((blobx + movex, bloby + movey), ' ') # If the move-to space is a wall, don't move at all: if moveToSpace == '#': blobCanMove = False break if blobCanMove: newBlobPoints = [] for blobPoint in playerBlob: blobx, bloby = blobPoint[0], blobPoint[1] # If the move-to space is empty or a goal, just move there: if currentLevel[(blobx, bloby)] == '@': currentLevel[(blobx, bloby)] = ' ' newBlobPoints.append((blobx + movex, bloby + movey, '@')) elif currentLevel[(blobx, bloby)] == '$': currentLevel[(blobx, bloby)] = ' ' newBlobPoints.append((blobx + movex, bloby + movey, '$')) for newBlobPoint in newBlobPoints: # Set the player's new position: currentLevel[(newBlobPoint[0], newBlobPoint[1])] = newBlobPoint[2] # TODO - refactor this. # Save the state of the level for the undo feature: undoStack.append(copy.copy(currentLevel)) # Check if the player has finished the level: levelIsSolved = False playerBlob = getPlayerBlobPoints(currentLevel, playerx + movex, playery + movey) if len(playerBlob) - 1 == currentLevel['diamonds']: levelIsSolved = True if levelIsSolved: drawLevel(currentLevelNumber, currentLevel) print('Level complete!') input('Press Enter to continue...') currentLevelNumber = (currentLevelNumber + 1) % len(ALL_LEVELS) currentLevel = copy.copy(ALL_LEVELS[currentLevelNumber]) undoStack = [copy.copy(currentLevel)] break # Don't carry out any remaining moves.
172bb00f20da38f71b5cc4ba3039f8e12d3e9b89
bf44592899afb4192579105cc8f3102f8bddef4c
/website/login_module/admin.py
df30291c8c4e638171e68cd5cea822a1872a46a8
[]
no_license
VigneshwarRavichandran/Django-Test
7e3021cc27981656a71d21f72d17f1b7955098e9
ad11470c5a2e30d802415e6c6236ccac90ff792c
refs/heads/master
2020-08-01T23:21:41.182811
2019-10-09T17:02:06
2019-10-09T17:02:06
211,155,579
2
0
null
2019-10-09T17:02:25
2019-09-26T18:25:47
Python
UTF-8
Python
false
false
115
py
from django.contrib import admin from .models import * admin.site.register(Users) admin.site.register(UserDetails)
e662722fad68cff102487d6ba08454d41807ad11
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/dev/cv/detection/YOLOX_Dynamic_ID4069_for_PyTorch/yolox/layers/fast_coco_eval_api.py
55bfa28a1c06813d48ff90862908a7655239001e
[ "GPL-1.0-or-later", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
6,464
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ #!/usr/bin/env python3 # -*- coding:utf-8 -*- # This file comes from # https://github.com/facebookresearch/detectron2/blob/master/detectron2/evaluation/fast_eval_api.py # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Megvii Inc. All rights reserved. import copy import time import numpy as np from pycocotools.cocoeval import COCOeval from .jit_ops import FastCOCOEvalOp class COCOeval_opt(COCOeval): """ This is a slightly modified version of the original COCO API, where the functions evaluateImg() and accumulate() are implemented in C++ to speedup evaluation """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.module = FastCOCOEvalOp().load() def evaluate(self): """ Run per image evaluation on given images and store results in self.evalImgs_cpp, a datastructure that isn't readable from Python but is used by a c++ implementation of accumulate(). Unlike the original COCO PythonAPI, we don't populate the datastructure self.evalImgs because this datastructure is a computational bottleneck. :return: None """ tic = time.time() print("Running per image evaluation...") p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = "segm" if p.useSegm == 1 else "bbox" print( "useSegm (deprecated) is not None. Running {} evaluation".format( p.iouType ) ) print("Evaluate annotation type *{}*".format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == "segm" or p.iouType == "bbox": computeIoU = self.computeIoU elif p.iouType == "keypoints": computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds } maxDet = p.maxDets[-1] # <<<< Beginning of code differences with original COCO API def convert_instances_to_cpp(instances, is_det=False): # Convert annotations for a list of instances in an image to a format that's fast # to access in C++ instances_cpp = [] for instance in instances: instance_cpp = self.module.InstanceAnnotation( int(instance["id"]), instance["score"] if is_det else instance.get("score", 0.0), instance["area"], bool(instance.get("iscrowd", 0)), bool(instance.get("ignore", 0)), ) instances_cpp.append(instance_cpp) return instances_cpp # Convert GT annotations, detections, and IOUs to a format that's fast to access in C++ ground_truth_instances = [ [convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds] for imgId in p.imgIds ] detected_instances = [ [ convert_instances_to_cpp(self._dts[imgId, catId], is_det=True) for catId in p.catIds ] for imgId in p.imgIds ] ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds] if not p.useCats: # For each image, flatten per-category lists into a single list ground_truth_instances = [ [[o for c in i for o in c]] for i in ground_truth_instances ] detected_instances = [ [[o for c in i for o in c]] for i in detected_instances ] # Call C++ implementation of self.evaluateImgs() self._evalImgs_cpp = self.module.COCOevalEvaluateImages( p.areaRng, maxDet, p.iouThrs, ious, ground_truth_instances, detected_instances, ) self._evalImgs = None self._paramsEval = copy.deepcopy(self.params) toc = time.time() print("COCOeval_opt.evaluate() finished in {:0.2f} seconds.".format(toc - tic)) # >>>> End of code differences with original COCO API def accumulate(self): """ Accumulate per image evaluation results and store the result in self.eval. Does not support changing parameter settings from those used by self.evaluate() """ print("Accumulating evaluation results...") tic = time.time() if not hasattr(self, "_evalImgs_cpp"): print("Please run evaluate() first") self.eval = self.module.COCOevalAccumulate(self._paramsEval, self._evalImgs_cpp) # recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections self.eval["recall"] = np.array(self.eval["recall"]).reshape( self.eval["counts"][:1] + self.eval["counts"][2:] ) # precision and scores are num_iou_thresholds X num_recall_thresholds X num_categories X # num_area_ranges X num_max_detections self.eval["precision"] = np.array(self.eval["precision"]).reshape( self.eval["counts"] ) self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"]) toc = time.time() print( "COCOeval_opt.accumulate() finished in {:0.2f} seconds.".format(toc - tic) )
abc9188983419180bd10fbed0de5aaa7610ece80
0ec9b1f5435854638befc7efadca0577cc9c6505
/mlsemcwk/viewdata.py
0fe474e8dcaca77150e2b51eac3728cfa4d4ce4d
[]
no_license
michaelwh/mlsemcwk
f4ec19ab417b6cc2c216d68835f35b0790d484ec
5f59e8c50c56d53c0de84dd16d5d49c292e92a39
refs/heads/master
2021-01-20T03:26:02.560111
2011-05-18T14:00:40
2011-05-18T14:00:40
1,752,018
0
0
null
null
null
null
UTF-8
Python
false
false
2,857
py
#!/usr/bin/env python # Tk-matplotlib integration code from http://matplotlib.sourceforge.net/examples/user_interfaces/embedding_in_tk2.html import matplotlib matplotlib.use('TkAgg') from numpy import arange, sin, pi from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib import pyplot import Tkinter as Tk import sys import PyML as pyml import semdatautil def destroy(e): sys.exit() class MatplotlibTkFigFrame(object): def __init__(self, fig): self.fig = fig ## ------------------------- TK STUFF self.root = Tk.Tk() self.root.wm_title("MatplotlibTkFigFrame") #root.bind("<Destroy>", destroy) # a tk.DrawingArea self.canvas = FigureCanvasTkAgg(fig, master=self.root) self.canvas.show() self.canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) #toolbar = NavigationToolbar2TkAgg( canvas, root ) #toolbar.update() self.canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) ## ^^^^^^^^^^^^^^^^^^^^^^^^^^ TK STUFF def run_tk_mainloop(self): Tk.mainloop() class DataViewer(MatplotlibTkFigFrame): def __init__(self, fig, ax, datarows, labels=None, startno=0): super(DataViewer, self).__init__(fig) self.currdatano = 0 self.fig = fig self.ax = ax self.datarows = datarows self.labels = labels self.quitbutton = Tk.Button(master=self.root, text='Quit', command=sys.exit) self.quitbutton.pack(side=Tk.BOTTOM) self.nextbutton = Tk.Button(master=self.root, text='>', command=self.next_data) self.nextbutton.pack(side=Tk.BOTTOM) self.prevbutton = Tk.Button(master=self.root, text='<', command=self.prev_data) self.prevbutton.pack(side=Tk.BOTTOM) self.show_data(startno) super(DataViewer, self).run_tk_mainloop() def show_data(self, datano): self.currdatano = datano self.ax.imshow(semdatautil.sem_datarow_to_image(self.datarows[datano]), cmap=pyplot.gray()) self.fig.canvas.draw() print self.currdatano if self.labels != None: print "Label: " + str(self.labels[self.currdatano]) def next_data(self): self.show_data(self.currdatano + 1) def prev_data(self): if self.currdatano > 0: self.show_data(self.currdatano - 1) if __name__ == '__main__': fig = Figure()#figsize=(10,10))#, dpi=100) ax = fig.add_subplot(111) ax.set_title('Data') datarows, labels = semdatautil.get_sem_data('semeion.data') print labels print datarows[0] dataviewer = DataViewer(fig, ax, datarows, labels=labels)
44a2c07bd6f7ec678545c4d5e02cbf32aa98c42d
58575ac7ea2aa81f0267a2badd8b40b06b37f8f4
/production.py
37b6508cfa8cfdd0248b0a9e13bfcf64ca8ee963
[]
no_license
wenbinhuang9/LL-first-follow
60c02172af53ff56667b3b210709ca61dc4dd5ab
aeafde3f8b75654e65fd82fec17af8dd76026267
refs/heads/master
2021-05-20T16:31:31.037819
2020-04-03T01:00:33
2020-04-03T01:00:33
252,368,991
0
0
null
null
null
null
UTF-8
Python
false
false
1,149
py
def decodeProductionList(file): ans = [] start = None with open(file) as fd: lines = fd.readlines() for line in lines: if line.startswith("start"): start = line.split()[1] elif line != "": production = decodeProduction(line) ans.append(production) if start == None: return ans else: return (start, ans) def decodeProduction(line): production_rule = line.split("->") left, right_rule = production_rule[0], production_rule[1] production = Production().left(left) rights = right_rule.split("|") production.right([right.strip() for right in rights]) return production class Production(): def __init__(self): self.nonterminal = None self.rightList = [] def left(self, nonterminal): self.nonterminal = nonterminal return self def right(self, rightDerivations): if isinstance(rightDerivations, list): self.rightList.extend(rightDerivations) else: self.rightList.append(rightDerivations) return self
6747247f5f548f5e24f7c1afa2b192c7d9a0e06e
e8600b0404bf67f7046b81a7afde513dbbaad622
/recipe-search/urls.py
15ee99859e042a65236e7b4d5c134f11677a8534
[ "BSD-3-Clause" ]
permissive
talpor/recipe-search-hackathon
f46817041b2310f3b08c3e163fd8bab4e56df1be
7471f08e1067317f3bb1f35b4ebd4b3cd96e0580
refs/heads/master
2016-09-11T00:21:45.429716
2015-02-23T02:15:42
2015-02-23T02:15:42
31,127,311
0
0
null
null
null
null
UTF-8
Python
false
false
679
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf import settings from django.conf.urls import patterns, include, url from django.conf.urls.static import static from django.views.generic import TemplateView # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^', include('recipe.urls'), name="home"), # Uncomment the next line to enable the admin: url(r'^admin/', include(admin.site.urls)), # User management url(r'^users/', include("users.urls", namespace="users")), ) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
0318a8bc4860d8f8c1d1970f31b869a66bf7252a
aa61aca81cbe97ec6a012ddd55f5780df98f952a
/Final_task/libraries/UnixToIso.py
267a612b6580d45f8400c020196c53858ad88136
[]
no_license
R1ckNash/Testing_the_openweathermap_website
3141870e774fb39d908c98a825af92f3aefde0d5
6d86b16e1313cc7aa9a769669ed06affacb10b8b
refs/heads/master
2022-10-13T19:17:56.607743
2022-09-14T07:44:53
2022-09-14T07:44:53
260,710,508
0
0
null
null
null
null
UTF-8
Python
false
false
2,939
py
seconds = 86400 def get_year(unixtime): year = 365 leap_year = 366 current_year = 1970 cur_unix = 0 tmp_unix = 0 while 1: if cur_unix > unixtime: current_year -= 1 break if (current_year % 4 == 0 and current_year % 100 != 0) or current_year % 400 == 0: tmp_unix = cur_unix cur_unix += leap_year * seconds else: tmp_unix = cur_unix cur_unix += year * seconds current_year += 1 return current_year, unixtime - tmp_unix def get_month(current_year, unix): mas_year_default = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] mas_year_leap = [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] tmp_unix = 0 tmp_unix_default = 0 tmp_unix_leap = 0 cur_month = 1 for i in range(0, len(mas_year_leap)): if (current_year % 4 == 0 and current_year % 100 != 0) or current_year % 400 == 0: tmp_unix_leap = tmp_unix tmp_unix += mas_year_leap[i] * seconds else: tmp_unix_default = tmp_unix tmp_unix += mas_year_default[i] * seconds cur_month += 1 if tmp_unix == unix: break if tmp_unix > unix: cur_month -= 1 break if (current_year % 4 == 0 and current_year % 100 != 0) or current_year % 400 == 0: result = unix - tmp_unix_leap else: result = unix - tmp_unix_default if tmp_unix == unix: result = 0 return cur_month, result def get_day(unix): tmp_unix = 0 tmp_unix_cur = 0 cur_day = 1 while 1: if tmp_unix_cur > unix: cur_day -= 1 break tmp_unix = tmp_unix_cur tmp_unix_cur += seconds cur_day += 1 return cur_day, unix - tmp_unix def get_hour(unix): cur_hour = 0 tmp_unix = 0 tmp_unix_cur = 0 sec_in_hour = 3600 while 1: if tmp_unix_cur > unix: cur_hour -= 1 break tmp_unix = tmp_unix_cur tmp_unix_cur += sec_in_hour cur_hour += 1 return cur_hour, unix - tmp_unix def get_min_and_sec(unix): tmp_unix = 0 tmp_unix_cur = 0 sec_in_min = 60 cur_min = 0 while 1: if tmp_unix_cur > unix: cur_min -= 1 break tmp_unix = tmp_unix_cur tmp_unix_cur += sec_in_min cur_min += 1 return cur_min, unix - tmp_unix unix_time = 1493117112 s1 = get_year(unix_time) year = s1[0] s2 = get_month(s1[0], s1[1]) month = s2[0] s3 = get_day(s2[1]) day = s3[0] s4 = get_hour(s3[1]) hour = s4[0] s5 = get_min_and_sec(s4[1]) minute = s5[0] second = s5[1] time_iso = '{}-{:02}-{:02}T{:02}:{:02}:{:02}+03:00'.format(year, month, day, hour, minute, second) print(time_iso) # 1587148255 2020-04-17T18:30:55+03:00 # 1109901663 2005-03-04T02:01:03+03:00 # 1493117112 2017-04-25T10:45:12+03:00
fe484f2dbfa7363e12c93e00a34759692e113a73
f4b8c90c1349c8740c1805f7b6b0e15eb5db7f41
/test/test_term_session_item.py
7867f29a7aa4a6fd2bb993565b40f161db7abf86
[]
no_license
CalPolyResDev/StarRezAPI
012fb8351159f96a81352d6c7bfa36cd2d7df13c
b184e1863c37ff4fcf7a05509ad8ea8ba825b367
refs/heads/master
2021-01-25T10:29:37.966602
2018-03-15T01:01:35
2018-03-15T01:01:35
123,355,501
2
1
null
null
null
null
UTF-8
Python
false
false
1,044
py
# coding: utf-8 """ StarRez API This is a way to connect with the StarRez API. We are not the developers of the StarRez API, we are just an organization that uses it and wanted a better way to connect to it. # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import starrez_client from starrez_client.models.term_session_item import TermSessionItem # noqa: E501 from starrez_client.rest import ApiException class TestTermSessionItem(unittest.TestCase): """TermSessionItem unit test stubs""" def setUp(self): pass def tearDown(self): pass def testTermSessionItem(self): """Test TermSessionItem""" # FIXME: construct object with mandatory attributes with example values # model = starrez_client.models.term_session_item.TermSessionItem() # noqa: E501 pass if __name__ == '__main__': unittest.main()
eda4b59a482a804a1127f88a7858183bc9a63ff5
6b1852a7b33cb5dd8f8c77af4b02e6ef2cd33bb2
/process_data.py
292f75e400526963235124c85f96d5fc6711f1f5
[]
no_license
LianaMikael/Paraphrase-Generation
16cd6b7d0208cb9ae674dcede15c65e859b8eb9b
612e94a167b84b57002c1561473802046e491b14
refs/heads/master
2023-02-08T17:34:53.595361
2021-01-03T22:01:14
2021-01-03T22:01:14
290,590,604
1
1
null
null
null
null
UTF-8
Python
false
false
2,235
py
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import re def collect_ppdb(): sources = [] targets = [] with open('ppdb_all.txt', 'r+') as f: for line in f: line = line.split('|||') if float(line[-1]) >= 3.0: sources.append(line[0]) targets.append(line[1]) return sources, targets def collect_quora(): sources = [] targets = [] data = pd.read_csv('quora_duplicate_questions.tsv', sep="\t") data = np.array(data) data = data[data[:,-1]==1] # only collect true paraphrases for row in data: sources.append(row[-3]) targets.append(row[-2]) return sources, targets def collect_language_net(): sources = [] targets = [] with open('2016_Oct_10--2017_Jan_08_paraphrase.txt', 'r+') as f: for line in f: line = line.split('\t') if len(line) == 2: sources.append(line[0].strip()) targets.append(line[1].strip()) return sources, targets def save_to_file(out_file, sources, targets): for i in range(len(sources)): source_string = re.sub(r'\W+ ', '', sources[i]) target_string = re.sub(r'\W+ ', '', targets[i]) out_file.write('{},{}\n'.format(source_string, target_string)) out_file.close() if __name__ == '__main__': out_f_train = open('train_data_all.csv', 'w+') out_f_val = open('val_data_all.csv', 'w+') out_f_test = open('test_data_all.csv', 'w+') ppdb_sources, ppdb_targets = collect_ppdb() quora_sources, quora_targets = collect_quora() ln_sources, ln_targets = collect_language_net() all_data = list(zip(ppdb_sources + quora_sources + ln_sources, ppdb_targets + quora_targets + ln_targets)) source_train, source_val, target_train, target_val = train_test_split([x[0] for x in all_data], [x[1] for x in all_data], test_size=0.05) source_val, source_test, target_val, target_test = train_test_split(source_val, target_val, test_size=0.2) save_to_file(out_f_train, source_train, target_train) save_to_file(out_f_val, source_val, target_val) save_to_file(out_f_test, source_test, target_test)
10e0325e5b08eac3a5535c61283db715fcf39bb1
47ea61cf24fb864c6bea0c6ef47436625b25105e
/project_6.py
f16a3dd78c12faa584d252146ac28eefa55e35d5
[]
no_license
eun77/Voronoi-Algorithm-Center-points
9973cde9ca19ae5689ce9757d6563045d77b1132
5104ef17fafcca12e320774ff47ebc2f1769796d
refs/heads/master
2020-06-21T18:13:03.699186
2019-07-18T06:32:58
2019-07-18T06:32:58
197,523,347
0
0
null
null
null
null
UTF-8
Python
false
false
1,531
py
from PIL import Image import random import math def generate_voronoi_diagram(width, height): image = Image.new("RGB", (width, height)) putpixel = image.putpixel imgx, imgy = image.size nx = [] ny = [] nr = [] ng = [] nb = [] nx = [20, 40, 40, 40, 40, 60, 60, 60, 60, 80, 80, 120, 120, 140, 140, 140, 140, 160, 160, 160, 160, 180] ny = [50, 20, 40, 60, 80, 20, 40, 60, 80, 40, 60, 40, 60, 20, 40, 60, 80, 20, 40, 60, 80, 50] nr = [215, 243, 230, 222, 200, 234, 210, 213, 213, 210, 213, 213, 214, 234, 234, 215, 243, 230, 222, 200, 234, 210, 213, 213, 210, 213, 213, 214, 234, 215] ng = [225, 233, 230, 200, 206, 213, 223, 245, 210, 213, 214, 214, 215, 234, 212, 225, 233, 230, 200, 206, 213, 223, 245, 210, 213, 214, 214, 215, 234, 225] nb = [215, 243, 210, 200, 100, 220, 235, 245, 210, 231, 234, 231, 234, 253, 213, 215, 243, 210, 200, 100, 220, 235, 245, 210, 231, 234, 231, 234, 253, 215] num_cells = len(nx) print(nx,"\n",ny) print(imgx, imgy) for y in range(imgy): for x in range(imgx): dmin = math.hypot(imgx, imgy) j = -1 for i in range(num_cells): d = math.hypot(nx[i]-x, ny[i]-y) if d < dmin: dmin = d j = i putpixel((x, y), (nr[j], ng[j], nb[j])) for i in range(22): image.putpixel((nx[i],ny[i]), (0,0,0)) image.save("VoronoiDiagram.png", "PNG") image.show() if __name__== "__main__": generate_voronoi_diagram(200, 100)
ce6a75c3e25f17454a75327f11652b8aa4e4197d
4c68051b3ade462240f063a6dbdea690bcc1457f
/gsb_intention.py
99cc34ef91b70f8ebb0afc9bd0b1e687a8d544fb
[]
no_license
gaohang/search
42cfac8318b2465f3b2df42de46c5ac05b921ca8
81459a5f43bf308ea6f5e77afb87c05d4113a7a0
refs/heads/master
2023-07-12T06:37:20.895644
2021-08-27T07:46:56
2021-08-27T07:46:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,778
py
# encoding=utf-8 import pandas as pd import json from query_parser_search import QueryParserSearch from main_search_search import MainSearchSearch from config import p_date_today import os if __name__ == '__main__': cwd, filename = os.path.split(os.path.realpath(__file__)) print(cwd) gsb = open(cwd+'/gsb_results/gsb_intention_qp_v7_1.csv', 'w', encoding='utf-8') size = 20 base = MainSearchSearch(['main_search_online']) new = base base_query_parser = QueryParserSearch(['query_parser_v6_online']) # new_query_parser = QueryParserSearch(['query_parser_v7_online']) new_query_parser_1 = QueryParserSearch(['query_parser_v7_1_online']) base_search_template_id = 'main_search_search_v7' new_search_template_id = base_search_template_id gsb.write('GSB: base VS new_0\n\ngood:1,\tsame:2,\tbad:3\n') path_sample = cwd+"/data/sample_keywords.json" total, n_same, n_equal_len, n_top_same = 0, 0, 0, 0 with open(path_sample, "r", encoding='utf-8') as f: for idx,l in enumerate(f.readlines()): total += 1 r = json.loads(l) base_params = { "keyword": r['keyword'], "area_id": 101, "sale_date": p_date_today, "show_time": p_date_today + " 10:00:00", "from": 0, "size": size } base_result = base.search(base_params, template_id=base_search_template_id, query_parser=base_query_parser) # new_result_0 = new.search(base_params, template_id=new_search_template_id, query_parser=new_query_parser) new_result_0 = new.search(base_params, template_id=new_search_template_id, query_parser=new_query_parser_1) gsb.write( r['keyword'] + '\t[base]\t' + "|correct:" + base_result.get('correct', '') + '|core_words:' + base_result.get('core_words', '') + '\t|cat_l1: ' + str(base_result.get('cat_l1', '')) + '\t|cat_l2: ' + str( base_result.get('cat_l2', '')) + '\n') gsb.write( r['keyword'] + '\t[new_0]\t' + "|correct:" + new_result_0.get('correct', '') + '|core_words:' + new_result_0.get('core_words', '') + '\t|cat_l1: ' + str(new_result_0.get('cat_l1', '')) + '\t|cat_l2: ' + str( new_result_0.get('cat_l2', '')) + '\n') line = ['' for i in range(size)] n_base, n_new0 = len(base_result['docs']), len(new_result_0['docs']) if n_base==n_new0: n_equal_len += 1 gsb.write("<len equal>\n") else: gsb.write("<len diff>\n") if n_base==0 and n_new0==0: n_same += 1 gsb.write("<gsb same>empty results\n") continue max_line = max(len(base_result['docs']), len(new_result_0['docs']), 1) same = 0 for i in range(max_line): line[i] += '\t' + str(i + 1) + '\n' if i < min(len(base_result['docs']), len(new_result_0['docs'])): if new_result_0['docs'][i]['product_name'] == base_result['docs'][i]['product_name'] : tags = ','.join(base_result['docs'][i]['tags'].split(" ")) if 'tags' in base_result['docs'][i].keys() else "" line[i] += "\t[base=new]" + base_result['docs'][i]['product_name'] + '\t|cat_l1: ' + str( base_result['docs'][i]['cat_l1'][0]) + '\t|cat_l2: ' + str( base_result['docs'][i]['cat_l2'][0]) + '\t|tag: ' + tags + '\t|score:' + str( base_result['docs'][i]['score']) line[i] += '\n' same += 1 continue if base_result['total_docs'] >= i + 1: tags = ','.join(base_result['docs'][i]['tags'].split(" ")) if 'tags' in base_result['docs'][i].keys() else "" line[i] += "\t[base] " + base_result['docs'][i]['product_name'] + '\t|cat_l1: ' + str( base_result['docs'][i]['cat_l1'][0]) + '\t|cat_l2: ' + str( base_result['docs'][i]['cat_l2'][0]) + '\t|tag: ' + tags + '\t|score:' + str( base_result['docs'][i]['score']) else: line[i] += "\t[base]" line[i] += '\n' if new_result_0['total_docs'] >= i + 1: tags = ','.join(new_result_0['docs'][i]['tags'].split(" ")) if 'tags' in new_result_0['docs'][i].keys() else "" line[i] += "\t[new_0] " + new_result_0['docs'][i]['product_name'] + '\t|cat_l1: ' + str( new_result_0['docs'][i]['cat_l1'][0]) + ' \t|cat_l2: ' + str( new_result_0['docs'][i]['cat_l2'][0]) + '\t|tag: ' + tags + '\t|score:' + str( new_result_0['docs'][i]['score']) else: line[i] += "\t[new_0]" line[i] += '\n\n' if same >= max(len(base_result['docs']), len(new_result_0['docs'])): gsb.write('<gsb same>\n\n') n_same += 1 n_top_same += 1 continue elif same>3: gsb.write('<gsb top same>\n\n') n_top_same += 1 for i in range(max_line): gsb.write(line[i]) else: gsb.write('<gsb diff>\n') for i in range(max_line): gsb.write(line[i]) gsb.close() summary = "Total:{}, n_same:{}, n_top_same:{}, n_equal_len:{}".format(total, n_same, n_top_same, n_equal_len) print(summary)
bab3b9c06cd3458d4a355e11325a5729132b1ce1
eea1006480b1de285a102cc4223db193133baa16
/hw_3/hw03_normal.py
7159aca10d933db39a7b8386004ce10a39cfc70a
[]
no_license
kostcher/Python
de5e0515f41c1fe957ab14370054e41e7309873c
7fb0e22254a41ccf79b9f14bfbee088e0bcaf01a
refs/heads/master
2020-03-30T14:37:06.395892
2018-12-19T19:56:39
2018-12-19T19:56:39
151,326,877
0
0
null
2018-12-19T19:56:49
2018-10-02T21:38:37
Python
UTF-8
Python
false
false
2,470
py
# Задание-1: # Напишите функцию, возвращающую ряд Фибоначчи с n-элемента до m-элемента. # Первыми элементами ряда считать цифры 1 1 def fibonacci(n, m): if n <= 0 or m <= 0 or m < n: return [] fibonacci_row = [1, 1] for i in range(1, m - 1): fibonacci_row.append( fibonacci_row[i] + fibonacci_row[i - 1] ) return fibonacci_row[n - 1:] print(fibonacci(7, 10)) # Задача-2: # Напишите функцию, сортирующую принимаемый список по возрастанию. # Для сортировки используйте любой алгоритм (например пузырьковый). # Для решения данной задачи нельзя использовать встроенную функцию и метод sort() my_list = [8, 3, 6, 1, 0] def bubble_sort(my_list): for i in range(0, len(my_list)): for j in range(i + 1, len(my_list)): if my_list[i] > my_list[j]: tmp = my_list[i] my_list[i] = my_list[j] my_list[j] = tmp return my_list print(bubble_sort(my_list)) # Задача-3: # Напишите собственную реализацию стандартной функции filter. # Разумеется, внутри нельзя использовать саму функцию filter. def is_even(number): if number % 2 == 0: return True return False my_list = [1, 2, 2, 5, 6, 8, 11] def my_filter(func, iterated_obj): for value in iterated_obj: if not func(value): iterated_obj.remove(value) return iterated_obj print(my_filter(is_even, my_list)) # Задача-4: # Даны четыре точки А1(х1, у1), А2(x2 ,у2), А3(x3 , у3), А4(х4, у4). # Определить, будут ли они вершинами параллелограмма. a, b, c, d = (1, 3), (4, 7), (2, 8), (-1, 4) def is_vertex_parallelogram(a, b, c, d): import math ab = math.sqrt((b[0] - a[0])**2 + (b[1] - a[1])**2) dc = math.sqrt((c[0] - d[0])**2 + (c[1] - d[1])**2) ad = math.sqrt((d[0] - a[0])**2 + (d[1] - a[1])**2) bc = math.sqrt((c[0] - b[0])**2 + (c[1] - b[1])**2) if ab == dc and ad == bc: return True return False print(is_vertex_parallelogram(a, b, c, d))
4c340cb45e7aef300a6fcf35ac7fb96f061e341f
d6b3399b6c87137f97a3ea03e77cf00ef043144b
/titanium-reset-appc.sh
540b1ad41bf4427793f8b25296094b616e2e520d
[]
no_license
deanrock/ios-continuous-integration
9301f1fd82544f08dd1a3e3923789aadb94639ca
77f3a1a8962f355e82411cb4e28e42f6196026dd
refs/heads/master
2020-12-24T07:01:19.481134
2017-01-16T22:43:52
2017-01-16T22:43:52
58,654,479
1
0
null
null
null
null
UTF-8
Python
false
false
491
sh
#!/usr/bin/python import uuid import sys path = sys.argv[1] new = [] with open(path) as f: data = f.readlines() for line in data: if line.strip().startswith('<property name="appc-'): continue if line.strip().startswith('<property name="acs-'): continue if line.strip().startswith('<guid>'): line = ' <guid>%s</guid>\n' % (str(uuid.uuid1())) new.append(line) with open(path, 'w') as f: f.writelines(new)
05a6fb23df52b0619efa62fd7632a2128972f524
d4ae9cbb7438397a33d7ac6754716db2f4fabd6c
/HelloPython/study/HelloPython111.py
36da8e90c92ef59ec2593ce5a85b29690ef8caf1
[ "Apache-2.0" ]
permissive
treason258/TreLibrary
82cf0f3d7c1a67a18c86cf3c8d6566507db2ca79
ccf463763518e40696a2cb7e7b95d6a7644fcf6b
refs/heads/master
2023-01-08T10:25:33.097219
2021-10-15T06:06:10
2021-10-15T06:06:10
64,649,980
0
0
Apache-2.0
2023-01-03T15:40:27
2016-08-01T08:31:08
Java
UTF-8
Python
false
false
2,757
py
# -*- coding:utf-8 -*- import urllib import urllib2 import re import os import time class HelloSpider(object): num = 0; dirStr = 'Downloads/python/HelloSpider44' imgStr = 'Downloads/python/HelloSpider44/0.jpg' # print urllib2.urlopen("https://img.q6pk.com/image/20181119/", context=context).read() def __init__(self): pass def getImagePageRange(self, fromPage, toPage): mkdirStr = 'mkdir ' + HelloSpider.dirStr; print mkdirStr os.system(mkdirStr) #创建保存图片的目录 # mkImgStr = 'touch file ' + HelloSpider.imgStr; # print mkImgStr # os.system(mkImgStr) #创建保存图片的目录 i = int(fromPage) while i <= int(toPage): # url = "http://www.dbmeinv.com/?pager_offset=" + str(i) # url = "https://www.dbmeinv.com/index.htm?pager_offset=" + str(i) url = "https://www.dbmeinv.com/index.htm?cid=4&pager_offset=" + str(i) print url print "\n第%d页" % i self.getImageFormUrl(url) i += 1 def getImageFormUrl(self, url): headers = {"User-Agent" : "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/1 7.0.963.56 Safari/535.11"} request = urllib2.Request(url, headers = headers) response = urllib2.urlopen(request) text = response.read() # print text p1 = r"(?<=\(this\);\" src=\").+?\.jpg(?=\" />)" pattern = re.compile(p1) imgs = pattern.findall(text) print imgs for img in imgs: imageName = HelloSpider.dirStr + ("/%d.jpg" % (HelloSpider.num)) imageUrl = img if HelloSpider.num == 3: imageUrl = 'https://img.q6pk.com/image/20181119/0ba051e0b7747bc8cce970b81cfa0584_938_1370.jpg' print imageUrl self.saveImage(imageUrl, imageName) HelloSpider.num += 1 def saveImage(self, imageUrl, imageName): import ssl ssl._create_default_https_context = ssl._create_unverified_context headers = {"User-Agent" : "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/1 7.0.963.56 Safari/535.11"} request = urllib2.Request(imageUrl, headers = headers) imageData = urllib2.urlopen(request).read() with open(imageName, "wb") as f: f.write(imageData) print '正在保存图片:', imageName time.sleep(0.1) helloSpider = HelloSpider() # fromPage = raw_input("输入开始页:") # toPage = raw_input("输入结束页:") # helloSpider.getImagePageRange(fromPage, toPage) helloSpider.getImagePageRange(11, 11)
581d49c1b52ad71809a42f76fa48e98a89cd7a70
f40ba0cc14c227320636bb26ff4c18c433bbd796
/oxemHeroes/gameMember/apps.py
df3241a5745a28148dbd19f7e53b29d19cfdcd65
[]
no_license
mLegeay/Oxem-heroes
432bf717a0ea96174ef838318f29fea42e500f4a
5dbfd0c1bbd1f92f4678ef55acbef718db4d8f84
refs/heads/master
2020-04-25T05:03:16.659607
2019-03-21T13:44:18
2019-03-21T13:44:18
172,530,179
0
0
null
2019-03-21T13:44:19
2019-02-25T15:17:44
Python
UTF-8
Python
false
false
95
py
from django.apps import AppConfig class GamememberConfig(AppConfig): name = 'gameMember'
02e1b1ac9d7ca0fcf0fa59318c57df5d46403f9d
16809bf25066488f2f32f154dadef3e30c68ae68
/sine_wave.py
0ed35aeb1f8d136868fdb4c3053a10605cc1bcdf
[]
no_license
aidiary/signal_processing
0db6d1a9662ccd0fe232ccc461e9b27174c8ef88
4c1cb8ceee3a1527f38b8dbf9ffa1a737d06b577
refs/heads/master
2021-01-13T03:44:32.721301
2016-12-23T13:40:10
2016-12-23T13:40:10
77,221,395
1
2
null
null
null
null
UTF-8
Python
false
false
1,762
py
#coding: utf-8 import wave import struct import numpy as np from pylab import * def createSineWave (A, f0, fs, length): """振幅A、基本周波数f0、サンプリング周波数 fs、 長さlength秒の正弦波を作成して返す""" data = [] # [-1.0, 1.0]の小数値が入った波を作成 for n in arange(length * fs): # nはサンプルインデックス s = A * np.sin(2 * np.pi * f0 * n / fs) # 振幅が大きい時はクリッピング if s > 1.0: s = 1.0 if s < -1.0: s = -1.0 data.append(s) # [-32768, 32767]の整数値に変換 data = [int(x * 32767.0) for x in data] # plot(data[0:100]); show() # バイナリに変換 data = struct.pack("h" * len(data), *data) # listに*をつけると引数展開される return data def play (data, fs, bit): import pyaudio # ストリームを開く p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paInt16, channels=1, rate=int(fs), output= True) # チャンク単位でストリームに出力し音声を再生 chunk = 1024 sp = 0 # 再生位置ポインタ buffer = data[sp:sp+chunk] while buffer != '': stream.write(buffer) sp = sp + chunk buffer = data[sp:sp+chunk] stream.close() p.terminate() def save(data, fs, bit, filename): """波形データをWAVEファイルへ出力""" wf = wave.open(filename, "w") wf.setnchannels(1) wf.setsampwidth(bit / 8) wf.setframerate(fs) wf.writeframes(data) wf.close() if __name__ == "__main__" : data = createSineWave(0.25, 250, 8000.0, 1.0) play(data, 8000, 16) save(data, 8000, 16, "sine.wav")
1d780241475488e4db572beaa12329618d3bf1a4
d9a1ab1a63b5e32917f8bf0235f2a3d5dda0859e
/6.5.3.py
01839d6d67fa29a1ceb8dc82b0510750f69cbeb7
[]
no_license
ianmlunaq/edhesive-python
a2123e0dd814ea82daa2b6d4c365bafc718e6faa
25def8fa2728e7e388866dc7451b0a523adea291
refs/heads/main
2023-04-01T14:08:32.362019
2021-04-06T03:53:43
2021-04-06T03:53:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
92
py
# 6.5.3.py | ian luna | 2020.04.24 z = 0 for x in range(99, 0, -1): z = z+x print(z)
0927f40911c491e95f265c70fcf2b07e8abf0276
0da6461f39f243e1e2b6eef346da29e3f13ec198
/guest/sign/migrations/0001_initial.py
6c6c647f3f68a2b483ee6da898545d0d7374024b
[]
no_license
galypso/pydj
36865f5b86db7a4be33bb8402e44051a46685cf4
c9b5b26ac61d2c1d48ff25e3e3240572a28271f4
refs/heads/master
2020-06-01T16:08:07.358258
2017-06-13T05:39:47
2017-06-13T05:39:47
94,079,377
0
0
null
null
null
null
UTF-8
Python
false
false
1,662
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-06-12 05:40 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('limit', models.IntegerField()), ('status', models.BooleanField()), ('address', models.CharField(max_length=200)), ('start_time', models.DateTimeField(verbose_name='event time')), ('create_time', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='Guest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('realname', models.CharField(max_length=64)), ('phone', models.CharField(max_length=16)), ('email', models.EmailField(max_length=254)), ('sign', models.BooleanField()), ('create_time', models.DateTimeField(auto_now=True)), ('event', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sign.Event')), ], ), migrations.AlterUniqueTogether( name='guest', unique_together=set([('event', 'phone')]), ), ]
a844e2ab5bb2d5944f55a1af4f41746ccd02dfc2
c8ebf4217a96c1a3afc978ac94bdc8738f5120a3
/staff/utils.py
a207c7a173b04ac4d870cc8b2dab4e17ddfa716a
[]
no_license
vinux84/dept2
240bea22205a2a36a88484e669151996c43e5ba8
12a558453b22cf00da0001f15225f1c6b37d71ab
refs/heads/master
2021-09-06T17:20:36.831910
2018-02-08T23:08:06
2018-02-08T23:08:06
112,055,830
1
0
null
null
null
null
UTF-8
Python
false
false
1,411
py
import random import string from django.utils.text import slugify ''' random_string_generator is located here: http://joincfe.com/blog/random-string-generator-in-python/ ''' DONT_USE = ["create"] def random_string_generator(size=10, chars=string.ascii_lowercase + string.digits): return "".join(random.choice(chars) for _ in range(size)) def unique_slug_generator(instance, new_slug=None): # this instance will take in a object from a model. """ This is for a Django project and it assumes your instance has a model with a slug field and a title character (char) field. """ if new_slug is not None: slug = new_slug else: slug = slugify(instance.title) # we can make this instance.first_name as relation to our model, but left it title, and made a method in models if slug in DONT_USE: new_slug = "{slug}-{randstr}".format( slug=slug, randstr=random_string_generator(size=4) ) return unique_slug_generator(instance, new_slug=new_slug) Klass = instance.__class__ qs_exists = Klass.objects.filter(slug=slug).exists() if qs_exists: new_slug = "{slug}-{randstr}".format( slug=slug, randstr=random_string_generator(size=4) ) return unique_slug_generator(instance, new_slug=new_slug) return slug
ebaed099d674b260f3ebd706f27ed03c9e10f782
b211aa36e31107d7530e2126d537fc0576208302
/tests/test_api_veiculos.py
5700cd20fdc0bac6f2b37343c29a31e70323e85b
[]
no_license
jeffersonSA/CadVeiculosAPI
0e7ccf3a7b134e2cb259f7a85d16cf371022e3e8
74ec501bc2116a2f02eec96e9cbd5ad2359f60a5
refs/heads/master
2023-04-20T12:58:04.144461
2021-05-15T21:40:10
2021-05-15T21:40:10
366,793,041
0
0
null
null
null
null
UTF-8
Python
false
false
3,693
py
def test_post_deve_retornar_erro_quando_o_payload_for_incompleto(client): dado = {'veiculo':'Gol','ano':2020,'vendido':True} esperado = {'marca': ['Missing data for required field.'], 'descricao': ['Missing data for required field.']} response = client.post('/api/veiculos',json=dado) assert response.get_json()['message'] == esperado def test_post_deve_retornar_erro_quando_o_payload_contiver_a_chave_id(client): dado = { 'veiculo':'Gol', 'ano':2020, 'vendido':True, 'marca': 'VW', 'descricao': 'Novo', 'id': 1 } esperado = {'id': ['Não é permitido enviar ID']} response = client.post('/api/veiculos',json=dado) assert response.get_json()['message'] == esperado def test_get_deve_retornar_status_200(client): assert client.get('/api/veiculos').status_code == 200 def test_get_deve_retornar_dado_depois_de_inserir(client): dado = { 'veiculo':'Gol', 'ano':2020, 'vendido':True, 'marca': 'VW', 'descricao': 'Novo' } response = client.post('/api/veiculos',json=dado) resp_json = response.get_json() id = resp_json['id'] esperado = resp_json response = client.get('/api/veiculos/%s' %id ) assert response.get_json() == esperado def test_get_deve_retornar_dados_usando_qualquer_texto_digitado(client): dado = [{ 'veiculo':'Celta', 'ano':1990, 'vendido':True, 'marca': 'GM', 'descricao': 'Antigo' }, { 'veiculo':'Corsa', 'ano':1990, 'vendido':True, 'marca': 'GM', 'descricao': 'Antigo' }, { 'veiculo':'Gol', 'ano':2021, 'vendido':True, 'marca': 'VW', 'descricao': 'Novo' }] client.post('/api/veiculos',json=dado[0]) client.post('/api/veiculos',json=dado[1]) client.post('/api/veiculos',json=dado[2]) sarch_word = 'Anti' response = client.get('/api/veiculos/find/%s' % sarch_word) assert len(response.get_json()) >=2 def test_put_deve_atualizar_dado_adicionado(client): dado = { 'veiculo':'Gol', 'ano':2020, 'vendido':True, 'marca': 'VW', 'descricao': 'Novo' } response = client.post('/api/veiculos',json=dado) resp_json = response.get_json() id = resp_json['id'] dado = { 'veiculo':'Golzinho', 'ano':2001, 'vendido':False, 'marca': 'VWs', 'descricao': 'seminovo' } response = client.put('/api/veiculos/%s' % id,json=dado) data_resp = response.get_json()['data'] del data_resp['created'], data_resp['updated'], data_resp['id'] assert data_resp == dado def test_patch_deve_atualizar_somente_atributo_vendido(client): dado = { 'veiculo':'Audi', 'ano':2020, 'vendido':False, 'marca': 'Audi', 'descricao': 'Novo' } response = client.post('/api/veiculos',json=dado) resp_json = response.get_json() id = resp_json['id'] dado = { 'vendido':False } response = client.patch('/api/veiculos/%s' % id,json=dado) data_resp = response.get_json()['data'] assert data_resp['vendido'] == False def test_delete_deve_mostrar_mensagem_deletado_ao_deleltar(client): dado = { 'veiculo':'Gol', 'ano':2020, 'vendido':True, 'marca': 'VW', 'descricao': 'Novo' } response = client.post('/api/veiculos',json=dado) resp_json = response.get_json() id = resp_json['id'] response = client.delete('/api/veiculos/%s' % id) assert response.get_json()['message'] == "Deletado!"
deb27eae24f4cd46475211751438e904854e037a
fcdfe976c9ed60b18def889692a17dc18a8dd6d7
/ros/py_ros/kdl_test2.py
120f3dc29d4eeaee751accf468dd08397df344f3
[]
no_license
akihikoy/ay_test
4907470889c9bda11cdc84e8231ef3156fda8bd7
a24dfb720960bfedb94be3b4d147e37616e7f39a
refs/heads/master
2023-09-02T19:24:47.832392
2023-08-27T06:45:20
2023-08-27T06:45:20
181,903,332
6
3
null
null
null
null
UTF-8
Python
false
false
1,517
py
#!/usr/bin/python #\file kdl_test2.py #\brief certain python script #\author Akihiko Yamaguchi, [email protected] #\version 0.1 import numpy as np from kdl_kin import TKinematics if __name__=='__main__': np.set_printoptions(precision=3) print 'Testing TKinematics (robot_description == Yaskawa Motoman is assumed).' print 'Before executing this script, run:' print ' rosparam load `rospack find motoman_sia10f_support`/urdf/sia10f.urdf robot_description' kin= TKinematics(end_link='link_t') kin.print_robot_description() DoF= len(kin.joint_names) q0= [0.0]*DoF angles= {joint:q0[j] for j,joint in enumerate(kin.joint_names)} #Deserialize x0= kin.forward_position_kinematics(angles) print 'q1=',np.array(q1) print 'x0= FK(q0)=',x0 import random q1= [3.0*(random.random()-0.5) for j in range(DoF)] angles= {joint:q1[j] for j,joint in enumerate(kin.joint_names)} #Deserialize x1= kin.forward_position_kinematics(angles) print 'q1=',q1 print 'x1= FK(q1)=',x1 seed= [0.0]*DoF #seed= [3.0*(random.random()-0.5) for j in range(DoF)] q2= kin.inverse_kinematics(x1[:3], x1[3:], seed=seed, maxiter=2000, eps=1.0e-4) #, maxiter=500, eps=1.0e-6 print 'q2= IK(x1)=',q2 if q2 is not None: angles= {joint:q2[j] for j,joint in enumerate(kin.joint_names)} #Deserialize x2= kin.forward_position_kinematics(angles) print 'x2= FK(q2)=',x2 print 'x2==x1?', np.allclose(x2,x1) print '|x2-x1|=',np.linalg.norm(x2-x1) else: print 'Failed to solve IK.'
df281f2293585c2a364e111d49a0b6c16f67a4f0
518920276b75b7a1c6f4f4cbae83e11f09946351
/usedcars1_rodmuesong.py
9fe188173c731abf04e25f8c925228f05926ae55
[]
no_license
petasus/twocarsale
4fd40c3e67b8fa6280d41c57617d8dab663692c6
cd21c26721e053f6dc02bc11c5588a863a3b2466
refs/heads/master
2020-03-27T15:35:14.159112
2019-06-28T15:26:29
2019-06-28T15:26:29
146,727,223
0
1
null
null
null
null
UTF-8
Python
false
false
12,911
py
import requests from bs4 import BeautifulSoup from upload_data import uploadToSql as uploadDB import connect import datetime import time keep_sendlink=[] #สร้างฟังก์ชั่นเก็บเว็บไซต์และส่งไปยังอีกไฟล์ db = connect.conDB() def get_Type(soup): #ประเภทรถ detail = soup.select("div.content-col div.item-row span") j=0 k=1000 backup=[] for i in detail: backup.append(i.text.strip()) for i in backup: if(i == "ประเภทรถ"): k = j+1 j=j+1 if(k != 1000): ty = backup[k] if(ty == "ยี่ห้อ"): ty = "-" else: ty = "-" print(ty) #while(True): # CKsql = """ SELECT id FROM type_car WHERE `name`=%s""" # c = db.cursor() # CKExis = c.execute(CKsql,(ty)) # if CKExis: # getID = c.fetchall() # return getID[0][0] # else: # c.execute("""INSERT INTO type_car (`name`) VALUES (%s)""", (ty)) # db.commit() # continue def get_Brand(soup): #ยี่ห้อ detail = soup.select("div.content-col div.item-row span") j=0 k=1000 backup=[] for i in detail: backup.append(i.text.strip()) for i in backup: if(i == "ยี่ห้อ" ): k = j+1 j=j+1 if(k != j): br = (backup[k].lower()) if(br == "BUGATTI"): br = "Bugatti" else: br = "-" print(br) #while(True): # CKsql = """ SELECT id FROM brand WHERE `name`=%s""" # c = db.cursor() # CKExis = c.execute(CKsql,(br)) # if CKExis: # getID = c.fetchall() # return getID[0][0] # else: # c.execute("""INSERT INTO brand (`name`) VALUES (%s)""", (br)) # db.commit() # continue def get_Model(soup): #รุ่น detail = soup.select("div.content-col div.item-row span") j=0 k=1000 backup=[] for i in detail: backup.append(i.text.strip()) for i in backup: if(i == "รุ่น" ): k = j+1 j=j+1 if(k != 1000): mod = (backup[k].lower()) else: mod = "-" print(mod) #TypeCar = get_TypeCar(soup) #Brand = get_Brand(soup) #Gear = get_Gear(soup) #while(True): # CKsql = """ SELECT id FROM model WHERE `name`=%s AND `bnd_id`=%s AND `typ_id`=%s""" # c = db.cursor() # CKExis = c.execute(CKsql,(mo,Brand,TypeCar)) # if CKExis: # getID = c.fetchall() # return getID[0][0] # else: # c.execute("""INSERT INTO model (`name`,`bnd_id`,`typ_id`,`gears`) VALUES (%s,%s,%s,%s)""", (mo,Brand,TypeCar,Gear)) # db.commit() def get_Submodel(soup): #รุ่นย่อย detail = soup.select("div.content-col div.item-row span") j=0 k=1000 backup=[] for i in detail: backup.append(i.text.strip()) for i in backup: if(i == "รุ่นย่อย" ): k = j+1 j=j+1 if(k != 1000): sm = (backup[k].lower()) else: sm = "-" print(sm) def get_Web(soup): #ชื่อเว็บ we = 'rodmuesong.com' print(we) def get_Post(soup): #วันที่โพส detail = soup.select("div.title-page p.info-title") backup=[] months = ['ม.ค','ก.พ','มี.ค','เม.ย','พ.ค','มิ.ย','ก.ค','ส.ค','ก.ย','ต.ค','พ.ย','ธ.ค'] for i in detail: backup.append(i.text.strip()) bu = backup[0].split(" ") dd = bu[2] mm = bu[3] yy = bu[4] for i in months: if i == mm: mm = str(months.index(i)+1) if(int(mm) <= 9 ): mm = "0"+str(mm) if(int(dd) <= 9 ): dd = "0"+str(dd) po = (yy +'-'+ mm +'-'+dd) print(po) def get_Price(soup): #ราคา detail = soup.select("div.left-content p.price") backup=[] for i in detail: backup.append(i.text.strip()) bu = backup[0] if(bu == "ติดต่อผู้ขาย"): pr = "0" else: bu1 = bu.replace("บาท","") bu2 = bu1.replace(",","") pr = bu2.replace(" ","") print(pr) def get_Location(soup): #จังหวัด detail = soup.select("div.title-page p.info-title") backup=[] for i in detail: backup.append(i.text.strip()) bu = backup[0].split(" ") lo = bu[0] print(lo) def get_Year(soup): #รุ่นปี detail = soup.select("div.content-col div.item-row span") j=0 k=1000 backup=[] for i in detail: backup.append(i.text.strip()) for i in backup: if(i == "ปีที่ผลิต" ): k = j+1 j=j+1 if(k != 1000): ye = backup[k] else: ye = "-" print(ye) def get_Mile(soup): #เลขไมล์ที่ใช้ไป หน่วยเป็น(กม.) detail = soup.select("div.content-col div.item-row span") j=0 k=1000 backup=[] for i in detail: backup.append(i.text.strip()) for i in backup: if(i == "เลขไมล์" ): k = j+1 j=j+1 if(k != 1000): mi = backup[k].replace(",","") else: mi = "-" print(mi) def get_Color(soup): #สีรถ detail = soup.select("div.content-col div.item-row span") j=0 k=1000 backup=[] for i in detail: backup.append(i.text.strip()) for i in backup: if(i == "สี" ): k = j+1 j=j+1 if(k != 1000): co = backup[k] else: co = "-" print(co) def get_Gear(soup): #ระบบเกียร์ detail = soup.select("div.content-col div.item-row span") j=0 k=1000 backup=[] for i in detail: backup.append(i.text.strip()) for i in backup: if(i == "ระบบส่งกำลัง" ): k = j+1 j=j+1 if(k != 1000): ge = backup[k] else: ge = "-" print(ge) def get_Seller(soup): #ชื่อผู้ขาย detail = soup.select("div.col-box h4") backup=[] for i in detail: backup.append(i.text.strip()) bu = backup[0] if(bu == ''): se = "-" else: se = bu print(se) def get_Tel(soup): #เบอร์ผู้ขาย detail = soup.select("div.col-box span") backup=[] for i in detail: backup.append(i.text.strip()) te = backup[0].replace(".","") print(te) def get_Place(soup): #ที่อยู่ detail = soup.select("div.col-box p") backup=[] for i in detail: backup.append(i.text.strip()) pl = backup[0] if(pl[0] == "0"): pl = "-" print(pl) def get_description(soup): #รายละเอียด detail = soup.select("div.description p") backup=[] for i in detail: backup.append(i.text.strip()) de = backup[0] print(de) def get_specification(soup): #ข้อมูลจำเพาะทางเทคนิค detail = soup.select("div.box-border") backup=[] for i in detail: backup.append(i.text.strip()) if(backup == []): sp = "ไม่มีข้อมูล" else: sp = backup[0] print(sp) def get_Image(soup): detail = soup.select("a.imageGallery img") j=0 k=0 im="" backup=[] for i in detail: backup.append(i['src']) j+=1 if(j==0): im = "-" else: while(k != j): im += backup[k]+" " k+=1 print(im) def get_CheckUpdate(soup): detail = soup.select("div.title-page p.info-title") backup=[] months = ['ม.ค','ก.พ','มี.ค','เม.ย','พ.ค','มิ.ย','ก.ค','ส.ค','ก.ย','ต.ค','พ.ย','ธ.ค'] for i in detail: backup.append(i.text.strip()) print(backup) if(backup == []): chd = 0 else: bu = backup[0].split(" ") dd = bu[2] mm = bu[3] yy = bu[4] yy = int(yy)-2543 for i in months: if(i == mm): mm = str(months.index(i)+1) if(int(mm) <= 9 ): mm = "0"+str(mm) if(int(dd) <= 9 ): dd = "0"+str(dd) day = str(mm)+"/"+str(dd)+"/"+str(yy) xx = datetime.datetime.now() xd = xx.strftime("%x") if(day == xd): chd = 0 else: chd = 1 print(chd) return(chd) def get_ErrorCheck(soup): detail = soup.select("div.title h4.fweight-bold") backup=[] for i in detail: backup.append(i.text.strip()) if(backup == []): bu = 1 else: bu = 0 print(bu) return(bu) def Main(links): #Car_upload=[] j=1 for i in links: print("link no." + str(j) + " " + i) while True: try: r = requests.get(i) break except: print("มีปัญหากลับไปรีเควสใหม่") print("ที่ลิ้ง: "+str(i)) time.sleep(8) continue soup = BeautifulSoup(r.text, "lxml") j+=1 CarDetail = {} CarDetail['err'] = get_ErrorCheck(soup) if(CarDetail['err']== 0): continue CarDetail['che'] = get_CheckUpdate(soup) if(CarDetail['che']== 0): continue #CarDetail['typ'] = get_Type(soup)### #CarDetail['bra'] = get_Brand(soup)### #CarDetail['mod'] = get_Model(soup)### #CarDetail['sub'] = get_Submodel(soup)### #CarDetail['gea'] = get_Gear(soup)### CarDetail['web'] = get_Web(soup) CarDetail['pos'] = get_Post(soup) CarDetail['pri'] = get_Price(soup) CarDetail['loc'] = get_Location(soup) CarDetail['yea'] = get_Year(soup) CarDetail['mil'] = get_Mile(soup) CarDetail['col'] = get_Color(soup) CarDetail['sel'] = get_Seller(soup) CarDetail['tel'] = get_Tel(soup) CarDetail['pla'] = get_Place(soup) CarDetail['des'] = get_description(soup) ###CarDetail['cla'] = get_description(soup)#อุบัติเหตุ ชน น้ำท่วม แต่ง ติดแก๊ส ###CarDetail['pro'] = get_description(soup)#โปรโมชั่น ส่วนลด ดาวน์ ###CarDetail['ser'] = get_description(soup)#รับประกันหลังการขาย CarDetail['spe'] = get_specification(soup) CarDetail['img'] = get_Image(soup) ###CarDetail['dup'] = get_duplicate(soup) #check ซ้ำ ###CarDetail['upd'] = get_update(soup) #updatedatabase #Car_upload.append(CarDetail) #uploadDB(Car_upload) def getLink(): print("Start getLink") url_to_scrape = 'https://rodmuesong.com/รถสำหรับขาย/p1' #website while True: try: r = requests.get(url_to_scrape) break except: print("มีปัญหากลับไปรีเควสใหม่") print("ที่ลิ้ง: "+str(url_to_scrape)) time.sleep(2) continue soup = BeautifulSoup(r.text, "lxml") num_car = soup.select("span.result") #จำนวนรถทั้งหมด for i in num_car: #ลูปหาจำนวนหน้ามากที่สุด k = i.text.strip().split(" ") k = k[1].replace(",","") maxpage = (int(k)//10)+1 print(maxpage) count=maxpage #maxpage 12479 num=1 j=0 while(num != count): print("page "+str(num)) url_num = 'https://rodmuesong.com/รถสำหรับขาย/p'+str(num)+'' while True: try: r = requests.get(url_num) break except: print("มีปัญหากลับไปรีเควสใหม่") print("ที่ลิ้ง: "+str(url_num)) time.sleep(3) continue soup = BeautifulSoup(r.text,"lxml") url_linkcar = soup.select("div.content-page div.row div.thumb-img a") #linkของรถแต่ละคัน for i in url_linkcar: print("link "+str(j+1)+i['href']) keep_sendlink.append('https://rodmuesong.com'+i['href']) j+=1 num+=1 print("End getLink") def getSendLink(): print("Start Rodmuesong") getLink() print("Start getSendLink") Main(keep_sendlink) print("End getSendLink") print("End Rodmuesong") getSendLink()
a3ddf601d4a7e710a877f8f29f465f4233f64e46
69110d606c5075698620af1c060a08aea6bc83d6
/user_messages/user_messages/models.py
b41a1f83f0fb4234018a4597ddaaa3b7da69590f
[]
no_license
anusha-vijaykumar/NextNeighbour
258662023498a88e786615886aafbc1a5459b479
682142bd196a27e7b65969e889e3b20eb790a0da
refs/heads/master
2021-01-10T13:49:18.619431
2016-03-08T03:41:31
2016-03-08T03:41:31
53,366,102
1
0
null
null
null
null
UTF-8
Python
false
false
1,795
py
from datetime import datetime from django.core.urlresolvers import reverse from django.db import models from django.utils import timezone from django.contrib.auth.models import User from user_messages.managers import ThreadManager, MessageManager from user_messages.utils import cached_attribute class Thread(models.Model): subject = models.CharField(max_length=150) users = models.ManyToManyField(User, through="UserThread") objects = ThreadManager() def get_absolute_url(self): return reverse("messages_thread_detail", kwargs={"thread_id": self.pk}) @property @cached_attribute def first_message(self): return self.messages.all()[0] @property @cached_attribute def latest_message(self): return self.messages.order_by("-sent_at")[0] @classmethod def ordered(cls, objs): """ Returns the iterable ordered the correct way, this is a class method because we don"t know what the type of the iterable will be. """ objs = list(objs) objs.sort(key=lambda o: o.latest_message.sent_at, reverse=True) return objs class UserThread(models.Model): thread = models.ForeignKey(Thread) user = models.ForeignKey(User) unread = models.BooleanField() deleted = models.BooleanField() class Message(models.Model): thread = models.ForeignKey(Thread, related_name="messages") sender = models.ForeignKey(User, related_name="sent_messages") sent_at = models.DateTimeField(default=timezone.now) content = models.TextField() objects = MessageManager() class Meta: ordering = ("sent_at",) def get_absolute_url(self): return self.thread.get_absolute_url()
f788c19f9b7cd4e666685b717504ad5e80a33c46
0d87c9a03cf5874851cc7923669e2b7a3241c630
/gluoncv/torch/model_zoo/action_recognition/i3d_slow.py
e1f8173ccee17096ca1ddc6652c2eda916921adb
[ "Apache-2.0" ]
permissive
Kh4L/gluon-cv
0f5a771ac44059ac8d562f5ae4502698b1537ee4
849411ed56632cd854850b07142087d599f97dcb
refs/heads/master
2021-06-28T21:39:38.859719
2020-11-21T01:18:53
2020-11-21T01:18:53
186,614,638
0
0
Apache-2.0
2019-05-14T12:11:12
2019-05-14T12:11:12
null
UTF-8
Python
false
false
20,813
py
# pylint: disable=missing-function-docstring, line-too-long """ SlowFast Networks for Video Recognition ICCV 2019, https://arxiv.org/abs/1812.03982 Code adapted from https://github.com/open-mmlab/mmaction and https://github.com/decisionforce/TPN """ import torch import torch.nn as nn import torch.utils.checkpoint as cp from .non_local import build_nonlocal_block __all__ = ['ResNet_SlowFast', 'i3d_slow_resnet50_f32s2_kinetics400', 'i3d_slow_resnet50_f16s4_kinetics400', 'i3d_slow_resnet50_f8s8_kinetics400', 'i3d_slow_resnet101_f32s2_kinetics400', 'i3d_slow_resnet101_f16s4_kinetics400', 'i3d_slow_resnet101_f8s8_kinetics400', 'i3d_slow_resnet50_f32s2_custom'] def conv3x3x3(in_planes, out_planes, spatial_stride=1, temporal_stride=1, dilation=1): "3x3x3 convolution with padding" return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=(temporal_stride, spatial_stride, spatial_stride), padding=dilation, dilation=dilation, bias=False) def conv1x3x3(in_planes, out_planes, spatial_stride=1, temporal_stride=1, dilation=1): "1x3x3 convolution with padding" return nn.Conv3d(in_planes, out_planes, kernel_size=(1, 3, 3), stride=(temporal_stride, spatial_stride, spatial_stride), padding=(0, dilation, dilation), dilation=dilation, bias=False) class Bottleneck(nn.Module): """Bottleneck block for ResNet. If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is "caffe", the stride-two layer is the first 1x1 conv layer. """ expansion = 4 def __init__(self, inplanes, planes, spatial_stride=1, temporal_stride=1, dilation=1, downsample=None, style='pytorch', if_inflate=True, inflate_style='3x1x1', if_nonlocal=True, nonlocal_cfg=None, with_cp=False): super(Bottleneck, self).__init__() assert style in ['pytorch', 'caffe'] assert inflate_style in ['3x1x1', '3x3x3'] self.inplanes = inplanes self.planes = planes if style == 'pytorch': self.conv1_stride = 1 self.conv2_stride = spatial_stride self.conv1_stride_t = 1 self.conv2_stride_t = temporal_stride else: self.conv1_stride = spatial_stride self.conv2_stride = 1 self.conv1_stride_t = temporal_stride self.conv2_stride_t = 1 if if_inflate: if inflate_style == '3x1x1': self.conv1 = nn.Conv3d( inplanes, planes, kernel_size=(3, 1, 1), stride=(self.conv1_stride_t, self.conv1_stride, self.conv1_stride), padding=(1, 0, 0), bias=False) self.conv2 = nn.Conv3d( planes, planes, kernel_size=(1, 3, 3), stride=(self.conv2_stride_t, self.conv2_stride, self.conv2_stride), padding=(0, dilation, dilation), dilation=(1, dilation, dilation), bias=False) else: self.conv1 = nn.Conv3d( inplanes, planes, kernel_size=1, stride=(self.conv1_stride_t, self.conv1_stride, self.conv1_stride), bias=False) self.conv2 = nn.Conv3d( planes, planes, kernel_size=3, stride=(self.conv2_stride_t, self.conv2_stride, self.conv2_stride), padding=(1, dilation, dilation), dilation=(1, dilation, dilation), bias=False) else: self.conv1 = nn.Conv3d( inplanes, planes, kernel_size=1, stride=(1, self.conv1_stride, self.conv1_stride), bias=False) self.conv2 = nn.Conv3d( planes, planes, kernel_size=(1, 3, 3), stride=(1, self.conv2_stride, self.conv2_stride), padding=(0, dilation, dilation), dilation=(1, dilation, dilation), bias=False) self.bn1 = nn.BatchNorm3d(planes) self.bn2 = nn.BatchNorm3d(planes) self.conv3 = nn.Conv3d( planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm3d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.spatial_tride = spatial_stride self.temporal_tride = temporal_stride self.dilation = dilation self.with_cp = with_cp if if_nonlocal and nonlocal_cfg is not None: nonlocal_cfg_ = nonlocal_cfg.copy() nonlocal_cfg_['in_channels'] = planes * self.expansion self.nonlocal_block = build_nonlocal_block(nonlocal_cfg_) else: self.nonlocal_block = None def forward(self, x): def _inner_forward(x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity return out if self.with_cp and x.requires_grad: out = cp.checkpoint(_inner_forward, x) else: out = _inner_forward(x) out = self.relu(out) if self.nonlocal_block is not None: out = self.nonlocal_block(out) return out def make_res_layer(block, inplanes, planes, blocks, spatial_stride=1, temporal_stride=1, dilation=1, style='pytorch', inflate_freq=1, inflate_style='3x1x1', nonlocal_freq=1, nonlocal_cfg=None, with_cp=False): inflate_freq = inflate_freq if not isinstance(inflate_freq, int) else (inflate_freq,) * blocks nonlocal_freq = nonlocal_freq if not isinstance(nonlocal_freq, int) else (nonlocal_freq,) * blocks assert len(inflate_freq) == blocks assert len(nonlocal_freq) == blocks downsample = None if spatial_stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv3d( inplanes, planes * block.expansion, kernel_size=1, stride=(temporal_stride, spatial_stride, spatial_stride), bias=False), nn.BatchNorm3d(planes * block.expansion), ) layers = [] layers.append( block( inplanes, planes, spatial_stride, temporal_stride, dilation, downsample, style=style, if_inflate=(inflate_freq[0] == 1), inflate_style=inflate_style, if_nonlocal=(nonlocal_freq[0] == 1), nonlocal_cfg=nonlocal_cfg, with_cp=with_cp)) inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(inplanes, planes, 1, 1, dilation, style=style, if_inflate=(inflate_freq[i] == 1), inflate_style=inflate_style, if_nonlocal=(nonlocal_freq[i] == 1), nonlocal_cfg=nonlocal_cfg, with_cp=with_cp)) return nn.Sequential(*layers) class ResNet_SlowFast(nn.Module): """ResNe(x)t_SlowFast backbone. Args: depth (int): Depth of resnet, from {50, 101, 152}. num_stages (int): Resnet stages, normally 4. strides (Sequence[int]): Strides of the first block of each stage. dilations (Sequence[int]): Dilation of each stage. out_indices (Sequence[int]): Output from which stages. style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer. frozen_stages (int): Stages to be frozen (all param fixed). -1 means not freezing any parameters. bn_eval (bool): Whether to set BN layers to eval mode, namely, freeze running stats (mean and var). bn_frozen (bool): Whether to freeze weight and bias of BN layers. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. """ arch_settings = { 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)) } def __init__(self, num_classes, depth, pretrained=None, pretrained_base=True, feat_ext=False, num_stages=4, spatial_strides=(1, 2, 2, 2), temporal_strides=(1, 1, 1, 1), dilations=(1, 1, 1, 1), out_indices=(0, 1, 2, 3), conv1_kernel_t=1, conv1_stride_t=1, pool1_kernel_t=1, pool1_stride_t=1, style='pytorch', frozen_stages=-1, inflate_freq=(0, 0, 1, 1), inflate_stride=(1, 1, 1, 1), inflate_style='3x1x1', nonlocal_stages=(-1,), nonlocal_freq=(0, 0, 0, 0), nonlocal_cfg=None, bn_eval=False, bn_frozen=False, partial_bn=False, with_cp=False, dropout_ratio=0.5, init_std=0.01): super(ResNet_SlowFast, self).__init__() if depth not in self.arch_settings: raise KeyError('invalid depth {} for resnet'.format(depth)) self.num_classes = num_classes self.depth = depth self.pretrained = pretrained self.pretrained_base = pretrained_base self.num_stages = num_stages assert 1 <= num_stages <= 4 self.spatial_strides = spatial_strides self.temporal_strides = temporal_strides self.dilations = dilations assert len(spatial_strides) == len(temporal_strides) == len(dilations) == num_stages self.out_indices = out_indices assert max(out_indices) < num_stages self.style = style self.frozen_stages = frozen_stages self.inflate_freqs = inflate_freq if not isinstance(inflate_freq, int) else (inflate_freq,) * num_stages self.inflate_style = inflate_style self.nonlocal_stages = nonlocal_stages self.nonlocal_freqs = nonlocal_freq if not isinstance(nonlocal_freq, int) else (nonlocal_freq,) * num_stages self.nonlocal_cfg = nonlocal_cfg self.bn_eval = bn_eval self.bn_frozen = bn_frozen self.partial_bn = partial_bn self.with_cp = with_cp self.feat_ext = feat_ext self.dropout_ratio = dropout_ratio self.init_std = init_std self.block, stage_blocks = self.arch_settings[depth] self.stage_blocks = stage_blocks[:num_stages] self.inplanes = 64 self.conv1 = nn.Conv3d( 3, 64, kernel_size=(conv1_kernel_t, 7, 7), stride=(conv1_stride_t, 2, 2), padding=((conv1_kernel_t - 1) // 2, 3, 3), bias=False) self.bn1 = nn.BatchNorm3d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool3d(kernel_size=(pool1_kernel_t, 3, 3), stride=(pool1_stride_t, 2, 2), padding=(pool1_kernel_t // 2, 1, 1)) self.res_layers = [] for i, num_blocks in enumerate(self.stage_blocks): spatial_stride = spatial_strides[i] temporal_stride = temporal_strides[i] dilation = dilations[i] planes = 64 * 2 ** i res_layer = make_res_layer( self.block, self.inplanes, planes, num_blocks, spatial_stride=spatial_stride, temporal_stride=temporal_stride, dilation=dilation, style=self.style, inflate_freq=self.inflate_freqs[i], inflate_style=self.inflate_style, nonlocal_freq=self.nonlocal_freqs[i], nonlocal_cfg=self.nonlocal_cfg if i in self.nonlocal_stages else None, with_cp=with_cp) self.inplanes = planes * self.block.expansion layer_name = 'layer{}'.format(i + 1) self.add_module(layer_name, res_layer) self.res_layers.append(layer_name) self.feat_dim = self.block.expansion * 64 * 2 ** (len(self.stage_blocks) - 1) if self.dropout_ratio != 0: self.dropout = nn.Dropout(p=self.dropout_ratio) else: self.dropout = None self.avg_pool = nn.AdaptiveAvgPool3d(1) self.fc = nn.Linear(in_features=2048, out_features=num_classes) if not self.pretrained: nn.init.normal_(self.fc.weight, 0, self.init_std) nn.init.constant_(self.fc.bias, 0) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avg_pool(x) if self.dropout is not None: x = self.dropout(x) x = x.view(x.size(0), -1) if self.feat_ext: return x out = self.fc(x) return out def i3d_slow_resnet50_f32s2_kinetics400(cfg): model = ResNet_SlowFast(num_classes=cfg.CONFIG.DATA.NUM_CLASSES, depth=50, pretrained=cfg.CONFIG.MODEL.PRETRAINED, pretrained_base=cfg.CONFIG.MODEL.PRETRAINED_BASE, feat_ext=cfg.CONFIG.INFERENCE.FEAT, bn_eval=cfg.CONFIG.MODEL.BN_EVAL, partial_bn=cfg.CONFIG.MODEL.PARTIAL_BN, bn_frozen=cfg.CONFIG.MODEL.BN_FROZEN) if cfg.CONFIG.MODEL.PRETRAINED: from ..model_store import get_model_file model.load_state_dict(torch.load(get_model_file('i3d_slow_resnet50_f32s2_kinetics400', tag=cfg.CONFIG.MODEL.PRETRAINED))) return model def i3d_slow_resnet50_f16s4_kinetics400(cfg): model = ResNet_SlowFast(num_classes=cfg.CONFIG.DATA.NUM_CLASSES, depth=50, pretrained=cfg.CONFIG.MODEL.PRETRAINED, pretrained_base=cfg.CONFIG.MODEL.PRETRAINED_BASE, feat_ext=cfg.CONFIG.INFERENCE.FEAT, bn_eval=cfg.CONFIG.MODEL.BN_EVAL, partial_bn=cfg.CONFIG.MODEL.PARTIAL_BN, bn_frozen=cfg.CONFIG.MODEL.BN_FROZEN) if cfg.CONFIG.MODEL.PRETRAINED: from ..model_store import get_model_file model.load_state_dict(torch.load(get_model_file('i3d_slow_resnet50_f16s4_kinetics400', tag=cfg.CONFIG.MODEL.PRETRAINED))) return model def i3d_slow_resnet50_f8s8_kinetics400(cfg): model = ResNet_SlowFast(num_classes=cfg.CONFIG.DATA.NUM_CLASSES, depth=50, pretrained=cfg.CONFIG.MODEL.PRETRAINED, pretrained_base=cfg.CONFIG.MODEL.PRETRAINED_BASE, feat_ext=cfg.CONFIG.INFERENCE.FEAT, bn_eval=cfg.CONFIG.MODEL.BN_EVAL, partial_bn=cfg.CONFIG.MODEL.PARTIAL_BN, bn_frozen=cfg.CONFIG.MODEL.BN_FROZEN) if cfg.CONFIG.MODEL.PRETRAINED: from ..model_store import get_model_file model.load_state_dict(torch.load(get_model_file('i3d_slow_resnet50_f8s8_kinetics400', tag=cfg.CONFIG.MODEL.PRETRAINED))) return model def i3d_slow_resnet101_f32s2_kinetics400(cfg): model = ResNet_SlowFast(num_classes=cfg.CONFIG.DATA.NUM_CLASSES, depth=101, pretrained=cfg.CONFIG.MODEL.PRETRAINED, pretrained_base=cfg.CONFIG.MODEL.PRETRAINED_BASE, feat_ext=cfg.CONFIG.INFERENCE.FEAT, bn_eval=cfg.CONFIG.MODEL.BN_EVAL, partial_bn=cfg.CONFIG.MODEL.PARTIAL_BN, bn_frozen=cfg.CONFIG.MODEL.BN_FROZEN) if cfg.CONFIG.MODEL.PRETRAINED: from ..model_store import get_model_file model.load_state_dict(torch.load(get_model_file('i3d_slow_resnet101_f32s2_kinetics400', tag=cfg.CONFIG.MODEL.PRETRAINED))) return model def i3d_slow_resnet101_f16s4_kinetics400(cfg): model = ResNet_SlowFast(num_classes=cfg.CONFIG.DATA.NUM_CLASSES, depth=101, pretrained=cfg.CONFIG.MODEL.PRETRAINED, pretrained_base=cfg.CONFIG.MODEL.PRETRAINED_BASE, feat_ext=cfg.CONFIG.INFERENCE.FEAT, bn_eval=cfg.CONFIG.MODEL.BN_EVAL, partial_bn=cfg.CONFIG.MODEL.PARTIAL_BN, bn_frozen=cfg.CONFIG.MODEL.BN_FROZEN) if cfg.CONFIG.MODEL.PRETRAINED: from ..model_store import get_model_file model.load_state_dict(torch.load(get_model_file('i3d_slow_resnet101_f16s4_kinetics400', tag=cfg.CONFIG.MODEL.PRETRAINED))) return model def i3d_slow_resnet101_f8s8_kinetics400(cfg): model = ResNet_SlowFast(num_classes=cfg.CONFIG.DATA.NUM_CLASSES, depth=101, pretrained=cfg.CONFIG.MODEL.PRETRAINED, pretrained_base=cfg.CONFIG.MODEL.PRETRAINED_BASE, feat_ext=cfg.CONFIG.INFERENCE.FEAT, bn_eval=cfg.CONFIG.MODEL.BN_EVAL, partial_bn=cfg.CONFIG.MODEL.PARTIAL_BN, bn_frozen=cfg.CONFIG.MODEL.BN_FROZEN) if cfg.CONFIG.MODEL.PRETRAINED: from ..model_store import get_model_file model.load_state_dict(torch.load(get_model_file('i3d_slow_resnet101_f8s8_kinetics400', tag=cfg.CONFIG.MODEL.PRETRAINED))) return model def i3d_slow_resnet50_f32s2_custom(cfg): model = ResNet_SlowFast(num_classes=cfg.CONFIG.DATA.NUM_CLASSES, depth=50, pretrained=cfg.CONFIG.MODEL.PRETRAINED, pretrained_base=cfg.CONFIG.MODEL.PRETRAINED_BASE, feat_ext=cfg.CONFIG.INFERENCE.FEAT, bn_eval=cfg.CONFIG.MODEL.BN_EVAL, partial_bn=cfg.CONFIG.MODEL.PARTIAL_BN, bn_frozen=cfg.CONFIG.MODEL.BN_FROZEN) if cfg.CONFIG.MODEL.PRETRAINED: from ..model_store import get_model_file state_dict = torch.load(get_model_file('i3d_slow_resnet50_f32s2_kinetics400', tag=cfg.CONFIG.MODEL.PRETRAINED)) for k in list(state_dict.keys()): # retain only backbone up to before the classification layer if k.startswith('fc'): del state_dict[k] msg = model.load_state_dict(state_dict, strict=False) assert set(msg.missing_keys) == {'fc.weight', 'fc.bias'} print("=> Initialized from a I3D_slow model pretrained on Kinetcis400 dataset") return model
73363d48a6cac54ee344107bc25fcafb7a2ad9ea
276578a3f4747879cbe99425e15daf100fa4e4c2
/to_do_api/models.py
fd9af7ab348fd45b6ddb4b8da500f55557519a2d
[]
no_license
nadersayed22/to-do-task
38d5ee06c6258e7ea4ef94bf7d82539b71cf4146
1d151918b93eaaa40826a405de9322bdbe82efc2
refs/heads/master
2023-04-17T12:13:30.968495
2021-04-28T23:15:21
2021-04-28T23:15:21
356,759,508
0
0
null
null
null
null
UTF-8
Python
false
false
2,249
py
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager from django.contrib.auth.models import PermissionsMixin from django_timestamps.softDeletion import SoftDeletionModel from django_timestamps.timestamps import TimestampsModel # Create your models here. class UserProfileManager(BaseUserManager): """" class required by django for managing our users from management command """ def create_user(self, email, password=None): if not email: raise ValueError("Users Must Have EMail Address") # create anew user object user = self.model( email=self.normalize_email(email), ) # create new pass user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password=None): """" create and save new superuser with given details """ # override on create fun user = self.create_user(email, password) # make this user an admin user.is_superuser = True user.set_password(password) user.is_staff = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser, PermissionsMixin): """ a user profile in our system """ email = models.EmailField(max_length=255, unique=True) is_superuser = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) is_active = models.BooleanField(default=True) objects = UserProfileManager() USERNAME_FIELD = 'email' class Meta: verbose_name = "User Profile" verbose_name_plural = "User Profiles" def __str__(self): """ What to show when we output an object as a string """ return self.email class Task(models.Model): """ model to create single task """ body = models.TextField(max_length=1000) completed = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now_add=True) modified_at = models.DateTimeField(auto_now=True) def __str__(self): """ What to show when we output an object as a string """ return self.body
cc9c24223afa3233535419d0963c36d03937434c
f973fb52affe135e725e157c0df95324975ef795
/Telecom-Customer-Churn/docs/conf.py
d86edd5a017426b310948e9409a59f94b52dbabc
[]
no_license
Pasoosh/CustomerChurn
efae2fb489890a48a2324bb05273c2f9b4dad787
89772d8d2be572e88eae0ee3fe11500ffb38284e
refs/heads/master
2020-12-13T05:03:38.164118
2020-02-11T03:12:02
2020-02-11T03:12:02
234,318,800
0
0
null
null
null
null
UTF-8
Python
false
false
7,936
py
# -*- coding: utf-8 -*- # # Telecom-Customer-Churn documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Telecom-Customer-Churn' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Telecom-Customer-Churndoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Telecom-Customer-Churn.tex', u'Telecom-Customer-Churn Documentation', u"Leonardo dos Passos", 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'Telecom-Customer-Churn', u'Telecom-Customer-Churn Documentation', [u"Leonardo dos Passos"], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Telecom-Customer-Churn', u'Telecom-Customer-Churn Documentation', u"Leonardo dos Passos", 'Telecom-Customer-Churn', 'Use the data to try to predict customer churn', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
1dcc63d83716fd495907c607354e43e5e0f8ea87
4210f8105f9e9a097e3544d15ec2c859bc737bf9
/dictpandas.py
3e4d82f99249e166d2408c4f08d1a3feff320049
[]
no_license
Taranjeet0874/Python
f56fb4f39a4a9df22d16c37e5ed808d80c6641c3
5749a394099f26fd0f15fe2674035053c297adcb
refs/heads/master
2022-11-26T21:30:13.044112
2020-08-01T12:22:06
2020-08-01T12:22:06
284,251,181
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
import pandas as pd dic={'a':7,'b':5,'c':9,'d':2} dict=pd.Series(dic) print(dict)
c008d92d5264518d006a4ff9b43acef4f19e4c38
30b004cad2c14b47b5f66c3a4a0015e05ca4a27e
/contrib/data_safety_training/image_classification/submitter.py
920b60ad8fed2d7ff0b13d17001d8227f3b0abb8
[ "Apache-2.0" ]
permissive
PaddlePaddle/PaddleFL
66c26f774eeadc25c12e74056ac389e0c1f61b84
dcc00c5dff62c3dd0092801f4e9b89d8c0957d3d
refs/heads/master
2023-08-07T22:05:24.806573
2023-03-21T01:15:10
2023-03-21T01:15:10
210,873,203
486
136
Apache-2.0
2023-07-26T22:30:57
2019-09-25T15:01:39
Python
UTF-8
Python
false
false
1,090
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import zmq import socket import msgpack import os mission_dict = {"mission": "image classification", "image_size": [3, 32, 32]} #send request context = zmq.Context() zmq_socket = context.socket(zmq.REQ) zmq_socket.connect("tcp://127.0.0.1:60001") zmq_socket.send(msgpack.dumps(mission_dict)) #get and download encoder file = zmq_socket.recv() os.system("wget 127.0.0.1:8080/{}".format(file)) #data encoding os.system("python -u user.py > user.log") zmq_socket.send("complete")
a5c34785b6e67c5d99db3841e937400c96a08ec5
039ef0d50d998ae083ac079c2c4abab50f7b6cc1
/src/pyfluid/fluidsimulationsavestate.py
b1704097e255faabe5c244dff72dd95ccb83fe43
[ "MIT" ]
permissive
Computational-Fluid-Dynamics/Fluid-Simulation-for-Computer-Graphics
37fc2dff5ebe9d3433ba78f1ea171471a8e7c24b
1df6268e0a7563e3aedecd7bdee4258d41d4e729
refs/heads/master
2023-03-21T15:40:58.085143
2020-08-27T08:06:33
2020-08-27T08:06:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,061
py
import ctypes from ctypes import c_void_p, c_char_p, c_int, c_double, byref from .pyfluid import pyfluid as lib from .vector3 import Vector3, Vector3_t from .gridindex import GridIndex, GridIndex_t from . import pybindings as pb def _check_load_state_initialized(func): def wrapper(*args, **kwargs): self = args[0] if isinstance(self, FluidSimulationSaveState): self._check_load_state() return func(*args, **kwargs) return wrapper class FluidSimulationSaveState(object): def __init__(self): libfunc = lib.FluidSimulationSaveState_new pb.init_lib_func(libfunc, [c_void_p], c_void_p) self._obj = pb.execute_lib_func(libfunc, []) def __del__(self): libfunc = lib.FluidSimulationSaveState_destroy pb.init_lib_func(libfunc, [c_void_p], None) try: libfunc(self._obj) except: pass def __call__(self): return self._obj def save_state(self, filename, fluidsimulation): libfunc = lib.FluidSimulationSaveState_save_state pb.init_lib_func(libfunc, [c_void_p, c_char_p, c_void_p, c_void_p], None) pb.execute_lib_func(libfunc, [self(), filename, fluidsimulation()]) def load_state(self, filename): libfunc = lib.FluidSimulationSaveState_load_state pb.init_lib_func(libfunc, [c_void_p, c_char_p, c_void_p], c_int) return bool(pb.execute_lib_func(libfunc, [self(), filename])) def close_state(self): libfunc = lib.FluidSimulationSaveState_close_state pb.init_lib_func(libfunc, [c_void_p, c_void_p], None) pb.execute_lib_func(libfunc, [self()]) @_check_load_state_initialized def get_grid_dimensions(self): i = ctypes.c_int() j = ctypes.c_int() k = ctypes.c_int() success = ctypes.c_int() libfunc = lib.FluidSimulationSaveState_get_grid_dimensions pb.init_lib_func(libfunc, [c_void_p, c_void_p, c_void_p, c_void_p, c_void_p], None) libfunc(self(), byref(i), byref(j), byref(k), byref(success)) pb.check_success(success, libfunc.__name__ + " - ") return GridIndex(i.value, j.value, k.value) @_check_load_state_initialized def get_cell_size(self): libfunc = lib.FluidSimulationSaveState_get_cell_size pb.init_lib_func(libfunc, [c_void_p, c_void_p], c_double) return pb.execute_lib_func(libfunc, [self()]) @_check_load_state_initialized def get_current_frame(self): libfunc = lib.FluidSimulationSaveState_get_current_frame pb.init_lib_func(libfunc, [c_void_p, c_void_p], c_int) return pb.execute_lib_func(libfunc, [self()]) @_check_load_state_initialized def get_num_marker_particles(self): libfunc = lib.FluidSimulationSaveState_get_num_marker_particles pb.init_lib_func(libfunc, [c_void_p, c_void_p], c_int) return pb.execute_lib_func(libfunc, [self()]) @_check_load_state_initialized def get_num_diffuse_particles(self): libfunc = lib.FluidSimulationSaveState_get_num_diffuse_particles pb.init_lib_func(libfunc, [c_void_p, c_void_p], c_int) return pb.execute_lib_func(libfunc, [self()]) @_check_load_state_initialized def get_num_solid_cells(self): libfunc = lib.FluidSimulationSaveState_get_num_solid_cells pb.init_lib_func(libfunc, [c_void_p, c_void_p], c_int) return pb.execute_lib_func(libfunc, [self()]) @_check_load_state_initialized def get_marker_particle_positions(self, startidx = None, endidx = None): nparticles = self.get_num_marker_particles() startidx, endidx = self._check_range(startidx, endidx, 0, nparticles) n = endidx - startidx out = (Vector3_t * n)() libfunc = lib.FluidSimulationSaveState_get_marker_particle_positions pb.init_lib_func(libfunc, [c_void_p, c_int, c_int, c_void_p, c_void_p], None) pb.execute_lib_func(libfunc, [self(), startidx, endidx, out]) return out @_check_load_state_initialized def get_marker_particle_velocities(self, startidx = None, endidx = None): nparticles = self.get_num_marker_particles() startidx, endidx = self._check_range(startidx, endidx, 0, nparticles) n = endidx - startidx out = (Vector3_t * n)() libfunc = lib.FluidSimulationSaveState_get_marker_particle_velocities pb.init_lib_func(libfunc, [c_void_p, c_int, c_int, c_void_p, c_void_p], None) pb.execute_lib_func(libfunc, [self(), startidx, endidx, out]) return out @_check_load_state_initialized def get_diffuse_particle_positions(self, startidx = None, endidx = None): nparticles = self.get_num_diffuse_particles() startidx, endidx = self._check_range(startidx, endidx, 0, nparticles) n = endidx - startidx out = (Vector3_t * n)() libfunc = lib.FluidSimulationSaveState_get_diffuse_particle_positions pb.init_lib_func(libfunc, [c_void_p, c_int, c_int, c_void_p, c_void_p], None) pb.execute_lib_func(libfunc, [self(), startidx, endidx, out]) return out @_check_load_state_initialized def get_diffuse_particle_velocities(self, startidx = None, endidx = None): nparticles = self.get_num_diffuse_particles() startidx, endidx = self._check_range(startidx, endidx, 0, nparticles) n = endidx - startidx out = (Vector3_t * n)() libfunc = lib.FluidSimulationSaveState_get_diffuse_particle_velocities pb.init_lib_func(libfunc, [c_void_p, c_int, c_int, c_void_p, c_void_p], None) pb.execute_lib_func(libfunc, [self(), startidx, endidx, out]) return out @_check_load_state_initialized def get_diffuse_particle_lifetimes(self, startidx = None, endidx = None): nparticles = self.get_num_diffuse_particles() startidx, endidx = self._check_range(startidx, endidx, 0, nparticles) n = endidx - startidx out = (ctypes.c_float * n)() libfunc = lib.FluidSimulationSaveState_get_diffuse_particle_lifetimes pb.init_lib_func(libfunc, [c_void_p, c_int, c_int, c_void_p, c_void_p], None) pb.execute_lib_func(libfunc, [self(), startidx, endidx, out]) lifetimes = [0.0]*n for i in range(n): lifetimes[i] = out[i] return lifetimes @_check_load_state_initialized def get_diffuse_particle_types(self, startidx = None, endidx = None): nparticles = self.get_num_diffuse_particles() startidx, endidx = self._check_range(startidx, endidx, 0, nparticles) n = endidx - startidx out = (ctypes.c_char * n)() libfunc = lib.FluidSimulationSaveState_get_diffuse_particle_types pb.init_lib_func(libfunc, [c_void_p, c_int, c_int, c_void_p, c_void_p], None) pb.execute_lib_func(libfunc, [self(), startidx, endidx, out]) types = [0]*n for i in range(n): types[i] = ord(out[i]) return types @_check_load_state_initialized def get_solid_cells(self, startidx = None, endidx = None): ncells = self.get_num_solid_cells() startidx, endidx = self._check_range(startidx, endidx, 0, ncells) n = endidx - startidx out = (GridIndex_t * n)() libfunc = lib.FluidSimulationSaveState_get_solid_cells pb.init_lib_func(libfunc, [c_void_p, c_int, c_int, c_void_p, c_void_p], None) pb.execute_lib_func(libfunc, [self(), startidx, endidx, out]) return out @_check_load_state_initialized def is_fluid_brick_grid_enabled(self): libfunc = lib.FluidSimulationSaveState_is_fluid_brick_grid_enabled pb.init_lib_func(libfunc, [c_void_p, c_void_p], c_int) return bool(pb.execute_lib_func(libfunc, [self()])) def is_load_state_initialized(self): libfunc = lib.FluidSimulationSaveState_is_load_state_initialized pb.init_lib_func(libfunc, [c_void_p, c_void_p], c_int) return bool(pb.execute_lib_func(libfunc, [self()])) def _check_range(self, startidx, endidx, minidx, maxidx): if startidx is None: startidx = minidx if endidx is None: endidx = maxidx if not isinstance(startidx, int) or not isinstance(endidx, int): raise TypeError("Index range must be integers") if startidx < minidx: raise IndexError("startidx out of range: " + str(startidx)) if endidx > maxidx: raise IndexError("endidx out of range: " + str(endidx)) if endidx < startidx: endidx = startidx return startidx, endidx def _check_load_state(self): if not self.is_load_state_initialized(): raise RuntimeError("Savestate must be loaded to use this method.")
b4ae9f1575266b930744a7ac2eb33ce2b5e6389f
8dcc00b1d3843e5d0734b1978c301f424b4a7019
/optimize.py
7c00dd3260feab7443e46c1ff9b2aba3a3e5ee94
[]
no_license
rezanmz/GNN-NAS
67804bd22bb3a8456e7542e183b1adc3f07777f3
ddde87dbf28f2b6a35c14945bed7e872a4d102e3
refs/heads/main
2023-08-30T12:19:34.238812
2021-09-20T05:25:35
2021-09-20T05:25:35
408,321,092
0
1
null
null
null
null
UTF-8
Python
false
false
5,503
py
import matplotlib.pyplot as plt from train import evaluate, train from model import GraphSAGEModel from utils import coarsen_graph, load_dataset import optuna import torch from tqdm import tqdm optuna.logging.set_verbosity(optuna.logging.WARNING) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # device = torch.device('cpu') # COARSENING_RATIO = [] COARSENING_RATIO = [0.9, 0.6, 0.3] # COARSENING_RATIO = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] # COARSENING_RATIO = [0.5] DATASET = 'CiteSeer' PERCENT_AVAILABLE_TRAINING_DATA = 5 # Choices: ['variation_neighborhoods', 'variation_edges', 'variation_cliques', 'heavy_edge', 'algebraic_JC', 'affinity_GS', 'kron'] COARSENING_METHOD = 'kron' # Matplotlib stuff plt.ion() class DynamicUpdate(): # Suppose we know the x range min_x = 0 max_x = (len(COARSENING_RATIO) + 1) * 100 def on_launch(self): # Set up plot self.figure, self.ax = plt.subplots() self.lines, = self.ax.plot([], [], 'o', markersize=2) self.ax.set_xlabel('Iterations') self.ax.set_ylabel('Accuracy') self.ax.set_title( f'Fast Optuna Optimization on {DATASET}') # self.ax.set_title( # f'Fast Optuna Optimization using Hierarchical View {DATASET}') # Autoscale on unknown axis and known lims on the other self.ax.set_autoscaley_on(True) # self.ax.set_xlim(self.min_x, self.max_x) # Other stuff self.ax.grid() ... def on_running(self, xdata, ydata): # Update data (with the new _and_ the old points) self.lines.set_xdata(xdata) self.lines.set_ydata(ydata) # Need both of these in order to rescale self.ax.relim() self.ax.autoscale_view() # We need to draw *and* flush self.figure.canvas.draw() self.figure.canvas.flush_events() # Example # def __call__(self): # import numpy as np # import time # self.on_launch() # xdata = [] # ydata = [] # for x in np.arange(0, 10, 0.5): # xdata.append(x) # ydata.append(np.exp(-x**2)+10*np.exp(-(x-7)**2)) # self.on_running(xdata, ydata) # time.sleep(1) # return xdata, ydata d = DynamicUpdate() # Pre-Processing data, num_classes = load_dataset(DATASET, PERCENT_AVAILABLE_TRAINING_DATA) x, labels, edge_index, train_mask, validation_mask = data.x, data.y, data.edge_index, data.train_mask, data.val_mask x = x.to(device) labels = labels.to(device) edge_index = edge_index.to(device) train_mask = train_mask.to(device) validation_mask = validation_mask.to(device) coarsened_graphs = [] for ratio in tqdm(COARSENING_RATIO, total=len(COARSENING_RATIO), desc='Generating Coarsened Graphs'): result = coarsen_graph(data, ratio, COARSENING_METHOD) # for i in range(len(result)): # result[i] = result[i].to(device) coarsened_graphs.append({ 'ratio': ratio, 'coarsen_x': result[0].to(device), 'coarsen_train_labels': result[1].to(device), 'coarsen_train_mask': result[2].to(device), # 'coarsen_val_labels': result[3], # 'coarsen_val_mask': result[4], 'coarsen_edge': result[5].to(device), }) coarsened_graphs.append({ 'ratio': 0, 'coarsen_x': x, 'coarsen_train_labels': labels, 'coarsen_train_mask': train_mask, # 'coarsen_val_labels': labels, # 'coarsen_val_mask': validation_mask, 'coarsen_edge': edge_index, }) coarsen_x = None coarsen_train_labels = None coarsen_train_mask = None coarsen_edge = None accuracies = [] def objective(trial): # n_layers = trial.suggest_int('n_layers', 1, 5) n_layers = 5 layers = [] for l in range(n_layers): layers.append({ 'output_dim': trial.suggest_int(f'l{l}_output_dim', 1, 200) if l != (n_layers - 1) else num_classes, 'normalize': trial.suggest_categorical(f'l{l}_normalize', [True, False]), 'root_weight': trial.suggest_categorical(f'l{l}_root_weight', [True, False]), 'bias': trial.suggest_categorical(f'l{l}_bias', [True, False]), 'aggr': trial.suggest_categorical(f'l{l}_aggr', ['add', 'mean', 'max']), 'activation': trial.suggest_categorical(f'l{l}_activation', ['sigmoid', 'elu', 'relu', 'softmax', 'tanh', 'softplus', 'leaky_relu', 'relu6', None]), 'dropout': trial.suggest_float(f'l{l}_dropout', 0.0, 1.0), }) model = GraphSAGEModel(layers, x.shape[1]).to(device) optimizer = torch.optim.RMSprop(model.parameters()) for _ in range(50): train(coarsen_x, coarsen_edge, coarsen_train_labels, model, optimizer, coarsen_train_mask) accuracies.append(evaluate(x, edge_index, labels, model, validation_mask)) d.on_running(range(len(accuracies)), accuracies) return accuracies[-1] study = optuna.create_study(direction='maximize') COARSENING_RATIO.append(0) d.on_launch() for c in COARSENING_RATIO: graph = None for coarsened_graph in coarsened_graphs: if coarsened_graph['ratio'] == c: graph = coarsened_graph break coarsen_x = graph['coarsen_x'] coarsen_train_labels = graph['coarsen_train_labels'] coarsen_train_mask = graph['coarsen_train_mask'] coarsen_edge = graph['coarsen_edge'] print('Graph Size:', coarsen_x.shape[0]) study.optimize(objective, n_trials=50, show_progress_bar=True) input()
834f9fe5415648747f7cdd025b3293da95197ed1
a567d8a737ce56f00c73938fbdd96ed2c6133522
/playlistlive/player/migrations/0002_auto_20200422_0046.py
9f1db51e331eb0fb90483535553846316f131760
[]
no_license
irisswang/djrooms
edd30fe4ec5b6b33684688e8bde2b7854989916c
58e88c88870af10564a56408ef68439aab425318
refs/heads/master
2022-12-03T13:14:52.371720
2020-08-21T03:50:09
2020-08-21T03:50:09
289,170,931
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
# Generated by Django 3.0.5 on 2020-04-22 00:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('player', '0001_initial'), ] operations = [ migrations.AlterField( model_name='room', name='label', field=models.SlugField(null=True, unique=True), ), migrations.AlterField( model_name='room', name='time_stamp', field=models.IntegerField(null=True), ), ]
17b5eaa33969590f4387243407b4798aca232038
061e0fba7861dcc3e4be40bbba7267e42c44d182
/Task1.py
6bd52cfc8c35af8d946e223a083980900784b4e1
[]
no_license
Jimmyqlx/EEGdataClassification
a019a572b5c01a30e5598ff2f168fb9f08f6e506
2e7bc82fab06b0db0b82b3c302c49083302ca089
refs/heads/master
2021-01-03T02:00:13.068942
2020-02-11T21:36:53
2020-02-11T21:36:53
239,869,229
0
0
null
null
null
null
UTF-8
Python
false
false
3,115
py
from keras.models import Sequential from keras.layers import LSTM, Dense, Dropout, Masking, Embedding from keras.layers import Input,Dense, Conv2D, Flatten, MaxPooling2D, Dropout import numpy as np import matplotlib.pyplot as plt import os import scipy.io as sio os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" dir = 'D:\\PycharmProjects\\ces734_final_project\\data' total_fold = ['1','2','3','4','5','6','7','8','9','10'] result=[[],[]] def read_mat(fold): #Features=[] #Labels=[] #Features=np.array() features_mat = sio.loadmat('{}/Feature{}.mat'.format(dir,fold[0])) features = features_mat['Feature{}'.format(fold[0])] features=np.transpose(features) labels_mat = sio.loadmat('{}/Y{}.mat'.format(dir,fold[0])) labels=labels_mat['Y{}'.format(fold[0])] labels=labels[0] #Labels.append(labels) for i in range(1,len(fold)): f_mat = sio.loadmat('{}/Feature{}.mat'.format(dir,fold[i])) f = f_mat['Feature{}'.format(fold[i])] f=np.transpose(f) features = np.concatenate((features,f)) #Features.append(f) l_mat = sio.loadmat('{}/Y{}.mat'.format(dir,fold[i])) l = l_mat['Y{}'.format(fold[i])] l=l[0] labels = np.concatenate([labels,l]) #Labels.append(labels) #Features = np.array(Features) #Labels = np.array(Labels) return features,labels for i in range(0,len(total_fold)): total_temp=total_fold.copy() #print(i) #print(len(total_temp)) del total_temp[i] #print(len(total_fold)) #print(len(total_temp)) train_fold=total_temp print(train_fold) test_fold=[] test_fold.append(total_fold[i]) print(test_fold) train_x, train_y = read_mat(train_fold) test_x, test_y = read_mat(test_fold) train_x = np.reshape(train_x, (train_x.shape[0],train_x.shape[1],1)) test_x = np.reshape(test_x, (test_x.shape[0],test_x.shape[1],1)) #train_y = np.reshape(train_y, (train_x.shape[0], 1)) #test_y = np.reshape(test_y, (test_x.shape[0], 1)) #train_y=np.reshape(train_y, (train_y.shape[0],1)) #test_y=np.reshape(test_y, (test_y.shape[0],1)) #print(train_x.shape) model = Sequential() model.add(LSTM(75, input_shape=(320,1))) #model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) model.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(train_x, train_y,epochs=1,validation_data=(test_x,test_y),verbose=0) result[0].append(history.history['acc'][0]) result[1].append(history.history['val_acc'][0]) print('Leave Subject{} Out'.format(i)) print('Train Accuracy:{}'.format(history.history['acc'][0])) print('Test Accuracy:{}'.format(history.history['val_acc'][0])) print('Train Accuracy:{}'.format(result[0])) print('Test Accuracy:{}'.format(result[1])) avtrain = sum(result[0]) / len(result[0]) avtest = sum(result[1]) / len(result[1]) print('Average Train Accuracy:{}'.format(avtrain)) print('Average Test Accuracy:{}'.format(avtest)) print(result)
d0abf9db2f89e8b73654b4215f62188526f0ef67
a5cfc11819dcacc3629aced6bcbe324d694fd3b7
/CS-UY 1134/HW/HW9/sx670_hw9_q4.py
28a232af7dfd6e1453d2ddc0617a0b3642df47da
[]
no_license
Kevinxu99/NYU-Coursework
712d26c808a8d9da94c889cac2cb594881a28c30
3b6a896a18e4ee2748fb8cdfdbfd1f6c4c2d212b
refs/heads/master
2022-04-21T20:43:07.205988
2020-04-11T10:39:47
2020-04-11T10:39:47
254,841,491
0
0
null
null
null
null
UTF-8
Python
false
false
5,038
py
import random class Empty(Exception): pass class UnsortedArrayMap: class Item: def __init__(self, key, value=None): self.key = key self.value = value def __init__(self): self.table = [] def __len__(self): return len(self.table) def is_empty(self): return (len(self) == 0) def __getitem__(self, key): for item in self.table: if key == item.key: return item.value raise KeyError("Key Error: " + str(key)) def __setitem__(self, key, value): for item in self.table: if key == item.key: item.value = value return self.table.append(UnsortedArrayMap.Item(key, value)) def __delitem__(self, key): for j in range(len(self.table)): if key == self.table[j].key: self.table.pop(j) return raise KeyError("Key Error: " + str(key)) def __iter__(self): for item in self.table: yield item.key class DoublyLinkedList: class Node: def __init__(self, data=None, next=None, prev=None): self.data = data self.next = next self.prev = prev def disconnect(self): self.data = None self.next = None self.prev = None def __init__(self): self.header = DoublyLinkedList.Node() self.trailer = DoublyLinkedList.Node() self.header.next = self.trailer self.trailer.prev = self.header self.size = 0 def __len__(self): return self.size def is_empty(self): return (len(self) == 0) def first_node(self): if (self.is_empty()): raise Empty("List is empty") return self.header.next def last_node(self): if (self.is_empty()): raise Empty("List is empty") return self.trailer.prev def add_first(self, elem): return self.add_after(self.header, elem) def add_last(self, elem): return self.add_after(self.trailer.prev, elem) def add_after(self, node, elem): prev = node succ = node.next new_node = DoublyLinkedList.Node() new_node.data = elem new_node.prev = prev new_node.next = succ prev.next = new_node succ.prev = new_node self.size += 1 return new_node def add_before(self, node, elem): return self.add_after(node.prev, elem) def delete(self, node): prev = node.prev succ = node.next prev.next = succ succ.prev = prev self.size -= 1 data = node.data node.disconnect() return data def __iter__(self): if(self.is_empty()): return cursor = self.first_node() while(cursor is not self.trailer): yield cursor.data cursor = cursor.next def __str__(self): return '[' + '<-->'.join([str(elem) for elem in self]) + ']' def __repr__(self): return str(self) class ChainingHashTableMap: def __init__(self, N=64, p=40206835204840513073): self.N = N self.table = [None] * self.N self.dblst = DoublyLinkedList() self.n = 0 self.p = p self.a = random.randrange(1, self.p - 1) self.b = random.randrange(0, self.p - 1) def hash_function(self, k): return ((self.a * hash(k) + self.b) % self.p) % self.N def __len__(self): return self.n def __getitem__(self, key): i = self.hash_function(key) curr_bucket = self.table[i] if curr_bucket is None: raise KeyError("Key Error: " + str(key)) return curr_bucket[key].data def __setitem__(self, key, value): i = self.hash_function(key) if self.table[i] is None: self.table[i] = UnsortedArrayMap() old_size = len(self.table[i]) self.dblst.add_last((key,value)) self.table[i][key] = self.dblst.last_node() new_size = len(self.table[i]) if (new_size > old_size): self.n += 1 if (self.n > self.N): self.rehash(2 * self.N) def __delitem__(self, key): i = self.hash_function(key) curr_bucket = self.table[i] if curr_bucket is None: raise KeyError("Key Error: " + str(key)) self.dblst.delete(curr_bucket[key]) del curr_bucket[key] self.n -= 1 if (curr_bucket.is_empty()): self.table[i] = None if (self.n < self.N // 4): self.rehash(self.N // 2) def __iter__(self): for key in self.dblst: yield key[0] def rehash(self, new_size): old = [] for key in self: value = self[key] old.append((key, value)) self.table = [None] * new_size self.n = 0 self.N = new_size for (key, value) in old: self[key] = value
862323cdd250fded22470d58b5b961390e8c4680
88748ec85d537e4b50ba45a255a0dcc3c154116f
/tests/unit/test_poll.py
2810d41f352a9741f36504ab9e9b2f71976b5c96
[ "MIT" ]
permissive
byrgazov/vanilla
17c53843b1b2f6b5484e4ff8e2fab54123245cc0
2896ae049d9e58ef3b4008a869ebf481951d0780
refs/heads/master
2020-07-30T12:30:04.497223
2020-07-24T10:08:03
2020-07-24T10:08:03
210,235,284
0
0
MIT
2019-09-23T00:49:06
2019-09-23T00:49:06
null
UTF-8
Python
false
false
1,731
py
import os import vanilla.poll class TestPoll(object): def test_poll(self): poll = vanilla.poll.Poll() r, w = os.pipe() poll.register(r, vanilla.poll.POLLIN) assert poll.poll(timeout=0) == [] os.write(w, '1') assert poll.poll() == [(r, vanilla.poll.POLLIN)] # test event is cleared assert poll.poll(timeout=0) == [] # test event is reset on new write after read assert os.read(r, 4096) == '1' assert poll.poll(timeout=0) == [] os.write(w, '2') assert poll.poll() == [(r, vanilla.poll.POLLIN)] assert poll.poll(timeout=0) == [] # test event is reset on new write without read os.write(w, '3') assert poll.poll() == [(r, vanilla.poll.POLLIN)] assert poll.poll(timeout=0) == [] assert os.read(r, 4096) == '23' def test_write_close(self): poll = vanilla.poll.Poll() r, w = os.pipe() poll.register(r, vanilla.poll.POLLIN) poll.register(w, vanilla.poll.POLLOUT) assert poll.poll() == [(w, vanilla.poll.POLLOUT)] assert poll.poll(timeout=0) == [] os.close(w) assert poll.poll() == [(r, vanilla.poll.POLLERR)] assert poll.poll(timeout=0) == [] def test_read_close(self): poll = vanilla.poll.Poll() r, w = os.pipe() poll.register(r, vanilla.poll.POLLIN) poll.register(w, vanilla.poll.POLLOUT) assert poll.poll() == [(w, vanilla.poll.POLLOUT)] assert poll.poll(timeout=0) == [] os.close(r) got = poll.poll() assert got == [(w, vanilla.poll.POLLOUT), (w, vanilla.poll.POLLERR)] assert poll.poll(timeout=0) == []
9186adbbcc93b2ca3c5ce9855e19456286ca235c
6c95964cdbca57ee0e68c0cbfe6cf98380222ac6
/utils_pre/cv_show.py
6a8a1fd40dded05f300897d7a8f04c99ad1f0613
[]
no_license
ustcylw/MXTrainV1
b9a72492e3a04bdecf6ef1a76fbf4af81c923ff3
a36f56c53e6782f32628572297e63fdb13ddf52d
refs/heads/master
2023-06-24T17:56:33.169487
2021-07-29T07:06:45
2021-07-29T07:06:45
289,848,695
0
0
null
null
null
null
UTF-8
Python
false
false
2,643
py
#! /usr/bin/env python # coding: utf-8 import os, sys import numpy as np import cv2 as cv import utils.utils as Utils import mxnet as mx def cv_show_image(image, wait_time=0, RGB2BGR=True, name='image'): if RGB2BGR: image = cv.cvtColor(image, cv.COLOR_RGB2BGR) cv.imshow(name, cv.UMat(image)) if cv.waitKey(wait_time) == ord('q'): sys.exit(0) def cv_show_images(images, wait_time=0, RGB2BGR=True, name='images'): for image in images: cv_show_image(image, wait_time=wait_time, name=name) def cv_show_batch_images(batch_images, wait_time=0, RGB2BGR=True, name='images'): for i in range(batch_images.shape[0]): image = batch_images[i, :, :, :] image = image.transpose((1, 2, 0)) cv_show_image(image, wait_time=wait_time, name=name) def cv_draw_bbox(image, bbox_xyxy, color=(255, 0, 0)): return cv.rectangle(cv.UMat(image), (bbox_xyxy[0][0], bbox_xyxy[0][1]), (bbox_xyxy[1][0], bbox_xyxy[1][1]), color) def cv_draw_points(image, points, color=(0, 0, 255), radius=1): for point in points: image = cv.circle(cv.UMat(image), center=(Utils.ToInt(point[0]), Utils.ToInt(point[1])), color=color, radius=radius) return image def cv_draw_batch_points(batch_images, batch_points, normalized=True, radius=1, color=(0, 0, 255)): ''' :param batch_images: numpy.array, [N, C, H, W] :param batch_points: numpy.array, [N, (x1, y1, x2, y2, ...)] :param normalized: image transform :param radius: :param color: :return: ''' images = [] for i in range(batch_images.shape[0]): image = batch_images[i, :, :, :] image = image.transpose((1, 2, 0)) keypoints = batch_points[i, :].reshape((-1, 2)) if normalized: image = image * 128.0 + 127.5 image = image.astype(np.uint8) image = cv_draw_points(image, keypoints, color=color, radius=radius) images.append(image) return images def cv_show_lm_rets(datas, predi, labeli): if isinstance(datas, mx.nd.NDArray): datas = datas.as_in_context(mx.cpu()).asnumpy() if isinstance(predi, mx.nd.NDArray): predi = predi.as_in_context(mx.cpu()).asnumpy() if isinstance(labeli, mx.nd.NDArray): labeli = labeli.as_in_context(mx.cpu()).asnumpy() # cv_show_batch_images(datas, wait_time=300) images = cv_draw_batch_points(datas, predi * 128.0, color=(255, 0, 0)) images = np.stack([image.get().transpose((2, 0, 1)) for image in images], axis=0) images = cv_draw_batch_points(images, labeli, normalized=False, color=(0, 0, 255)) cv_show_images(images, wait_time=300)
3fd87ba9660551134d9c18266bba46a5294863d3
5ade54823f83b2c20b00ea46d1e3bc09846e1215
/datacube_zarr/utils/convert.py
b6218ecb7d207254be313c7f35f4787919f7ccc7
[ "Apache-2.0" ]
permissive
opendatacube/datacube-zarr
5bab8aff0872fa428cd55a7e875b69be78172b6c
1c05a0c92d81b4235d75bbb01adcb2da9ae8013b
refs/heads/master
2023-06-08T03:50:18.316962
2021-06-30T04:49:31
2021-06-30T04:49:31
381,565,708
0
0
null
null
null
null
UTF-8
Python
false
false
5,207
py
""" Functions for converting datasets to zarr format. Conversions are supported on a local filesystem or S3 """ import logging from os.path import commonprefix from pathlib import Path from typing import Any, Iterator, List, Optional, Tuple from datacube_zarr.utils.raster import raster_to_zarr _SUPPORTED_FORMATS = { "ENVI": (".img/.hdr", ".bip/.hdr", ".bil/.hdr", ".bip/.hdr"), "ERS": (".ers/.ers.aux.xml/",), "GeoTiff": (".tif", ".tiff", ".gtif"), "HDF": (".hdf", ".h5"), "JPEG2000": (".jp2",), "NetCDF": (".nc",), } _RASTERIO_FORMATS = ( "ENVI", "ERS", "GeoTiff", "HDF", "JPEG2000", "NetCDF", ) _RASTERIO_FILES = [ x.split("/")[0] for f in _RASTERIO_FORMATS for x in _SUPPORTED_FORMATS[f] ] logger = logging.getLogger(__name__) def _root_as_str(path: Path) -> str: """uri path to str.""" return path.as_uri() if path.as_uri().startswith("s3://") else str(path) def ignore_file(path: Path, patterns: Optional[List[str]]) -> bool: """Check if path matches ignore patterns. :param path: path to compar with ignore pattern :param patterns: list of glob patterns specifying which paths to ignore :return True if path is to be ignored """ return any(path.match(p) for p in patterns) if patterns else False def get_datasets(in_dir: Path) -> Iterator[Tuple[str, List[Path]]]: """ Find supported datasets within a directory. :param in_dir: directory (or S3 path) under-which to look for datasets :return: iterator of datasets specified by type and file paths """ for fmt, filetypes in _SUPPORTED_FORMATS.items(): for exts in [ft.split("/") for ft in filetypes]: data_ext = exts.pop(0) for datafile in in_dir.glob(f"*{data_ext}"): others = [datafile.with_suffix(e) for e in exts] if all(o.exists() for o in others): yield fmt, [datafile] + others def convert_dir( in_dir: Path, out_dir: Optional[Path] = None, ignore: Optional[List[str]] = None, merge_datasets_per_dir: bool = False, **zarrgs: Any, ) -> List[str]: """ Recursively convert datasets in a directory to Zarr format. All supported datasets found underneath `in_dir` are (optionally) reprojected and converted to zarr format. All other files are copied to the `out_dir` unless ignored. If `out_dir` is not specfied the conversion is performed inplace and the original raster files are removed. :param in_dir: directory (or S3 path) under-which to convert rasters to zarr :param out_dir: directory (or S3 path) to save converted datasets :param ignore: list of glob patterns specifying files to ignore :param merge_datasets_per_dir: option to merge all tifs found at a directory level :param zarrgs: keyword arguments to pass to conversion function and zarr_io """ assert in_dir.is_dir() output_zarrs = [] # find and convert datasets datasets = [f for t, f in get_datasets(in_dir) if not ignore_file(f[0], ignore)] converted_files = [] if datasets: zarr_name = None if merge_datasets_per_dir: zarr_name = commonprefix([f[0].stem for f in datasets]) or in_dir.name for files in datasets: zarrs = convert_to_zarr(files, out_dir, zarr_name, **zarrgs) output_zarrs.extend(zarrs) converted_files.extend(files) ignore_patterns = (ignore or []) + [str(f) for f in converted_files] # recurse into directories (and copy other files) for p in in_dir.iterdir(): if p.relative_to(in_dir).name and not ignore_file(p, ignore_patterns): out_p = out_dir / p.name if out_dir else None if p.is_dir(): zarrs = convert_dir(p, out_p, ignore, merge_datasets_per_dir, **zarrgs) output_zarrs.extend(zarrs) elif out_p is not None: if out_p.as_uri().startswith("file://") and not out_p.parent.exists(): out_p.parent.mkdir(exist_ok=True, parents=True) out_p.write_bytes(p.read_bytes()) return output_zarrs def convert_to_zarr( files: List[Path], out_dir: Optional[Path] = None, zarr_name: Optional[str] = None, **zarrgs: Any, ) -> List[str]: """ Convert a supported dataset to Zarr format. :param files: list of file making up the dataset (local filesystem or S3) :param out_dir: output directory (local filesystem or S3) :param zarr_name: name to give the created `.zarr` dataset :param zarrgs: keyword arguments to pass to conversion function and zarr_io :return: list of generated zarr URIs """ data_file = files[0] inplace = out_dir is None if out_dir is None: out_dir = data_file.parent if data_file.suffix in _RASTERIO_FILES: zarrs = raster_to_zarr(data_file, out_dir, zarr_name, **zarrgs) else: raise ValueError(f"Unsupported data file format: {data_file.suffix}") # if converting inplace, remove the original file if inplace: for f in files: f.unlink() logger.info(f"delete: {_root_as_str(f)}") return zarrs
06b51ef2e0ace62f85db6ec90b93c94fa5739842
abfd2171bad6d822fdb59b9178d391885266492e
/TGNN_2T/util/data.py
612fb0ceb666c432cc598479f9c06ed2dcbfc07a
[]
no_license
KRICT-DATA/TGNN_Band_gap
c26971fadfd0bf876f8440011696ec58afecc994
a95187fb40e544e2ee49e80de39a73dabf8e9a05
refs/heads/master
2023-01-23T18:56:59.864663
2020-12-04T01:34:57
2020-12-04T01:34:57
276,809,991
2
0
null
null
null
null
UTF-8
Python
false
false
171
py
class AtomwiseCrystal: def __init__(self, pairs, y, ref_feat, id): self.pairs = pairs self.y = y self.ref_feat = ref_feat self.id = id
169b16e41128a5b926ccbc2ac8fca63fb6ec4f99
ebb2360cd4f6c06a67a41c701f742672163dd9e1
/day17/day17.py
8dbaa2ad0d3aee430de37f7ec4c5c52fe7992c92
[]
no_license
sephirothx/AdventOfCode2020
7387cae1e0617be4310cffe0ac63c6d28d2cc15b
0aaccc7de82329744d484281d2cb36c8860710f6
refs/heads/master
2023-02-06T16:11:00.984293
2020-12-25T18:10:51
2020-12-25T18:10:51
317,433,761
1
0
null
null
null
null
UTF-8
Python
false
false
928
py
from itertools import product inp = open('input.txt').read().splitlines() def solve(dim, cycles=6): def neighbors(c, count_self=True): for delta in product([-1,0,1], repeat=dim): if not count_self and all(d==0 for d in delta): continue yield tuple(x+d for x,d in zip(c,delta)) d = set() for y, l in enumerate(inp): for x, c in enumerate(l): if c == '#': d.add(tuple([x,y] + [0]*(dim-2))) for _ in range(cycles): s = set(n for c in d for n in neighbors(c)) new_d = set() for c in s: active = 0 for n in neighbors(c,False): active += 1 if n in d else 0 if c in d and 2<=active<=3: new_d.add(c) elif c not in d and active == 3: new_d.add(c) d = new_d return len(d) print(solve(3)) print(solve(4))
d8e20f7f2f4ccbe12262661ca45a1a743d45b15e
a027d95404e5c8e63dc90a561ed595a58605ab72
/DAT310/Python/assignment 6/gradebook.py
7ee5ec53c7078dce3a1863d977d9f2156e342957
[]
no_license
aribo17/repo
2d4e64cf8272780686eafa065db494de0cfdd035
b9f182d4a3a94c1a48ebf979889c5e832a732973
refs/heads/master
2022-11-30T11:28:45.831789
2018-04-30T19:11:54
2018-04-30T19:11:54
117,899,119
0
1
null
2022-11-25T15:56:39
2018-01-17T22:14:02
Python
UTF-8
Python
false
false
5,407
py
""" Assignment 6B: Gradebook """ import os HTML_FRAME_TOP = "<!DOCTYPE HTML>\n<html>\n<head>\n<title>{title}</title>\n" \ "<link rel=\"stylesheet\" href=\"{css_path}gradebook.css\"/>\n</head>\n<body>\n" HTML_FRAME_BOTTOM = "</body>\n</html>\n" class Gradebook(object): def __init__(self): self.__students = {} # dict with student_no as key and name as value self.__grades = {} self.__courses= {} def __create_folders(self): """Generates folder structure.""" print("Generating folder structure ... ") for d in ["courses", "semesters", "students"]: os.makedirs("output/" + d, exist_ok=True) def __load_data(self): """Loads data from input tsv files.""" # Load students print("Loading students.tsv ...") with open("students.tsv", "r") as f: for line in f: student_no, name = line.strip().split("\t") self.__students[student_no] = name # Load courses print("Loading courses.tsv ...") with open("courses.tsv", "r") as f: for line in f: course_code, course_name = line.strip().split("\t") self.__courses[course_code] = course_name # Load grades print("Loading grades.tsv ...") with open("grades.tsv", "r") as f: for line in f: student_no, course_code, semester, grade = line.strip().split("\t") self.__grades[student_no] = grade self.__semesters[semester] = grade def __generate_student_files(self): """Generates HTML files for students.""" pass def __generate_course_files(self): """Generates HTML files for courses.""" print("Generating course file ...") with open("output/course.html", "w") as f: f.write(HTML_FRAME_TOP.replace("{title}", "Gradebook course").replace("{css_path}", "../")) f.write("<h2>Course<h2>") f.write("<table>\n<thead>\n<tr><th>Student no</th><th>Name</th></tr>\n</thead>\n<tbody>\n") for student_no, name in sorted(self.__students.items()): row = "<tr><td><a href=\"students/{student_no}.html\">{student_no}</a></td><td>{name}</td></tr>\n" f.write(row.replace("{student_no}", student_no).replace("{name}", name)) f.write("</tbody>\n</table>\n") def __generate_semester_files(self): """Generates HTML files for semesters.""" print("Generating semester file ...") with open("output/semester.html", "w") as f: f.write(HTML_FRAME_TOP.replace("{title}", "Gradebook Semester").replace("{css_path}", "../")) f.write("<h2>Semester<h2>") f.write("<table>\n<thead>\n<tr><th>Student no</th><th>Name</th></tr>\n</thead>\n<tbody>\n") for student_no, name in sorted(self.__students.items()): row = "<tr><td><a href=\"students/{student_no}.html\">{student_no}</a></td><td>{name}</td></tr>\n" f.write(row.replace("{student_no}", student_no).replace("{name}", name)) f.write("</tbody>\n</table>\n") def __generate_index_file(self): """Generates the index HTML file.""" print("Generating index file ...") with open("output/index.html", "w") as f: f.write(HTML_FRAME_TOP.replace("{title}", "Gradebook Index").replace("{css_path}", "../")) # list of students f.write("<h2>Students</h2>") f.write("<table>\n<thead>\n<tr><th>Student no</th><th>Name</th></tr>\n</thead>\n<tbody>\n") for student_no, name in sorted(self.__students.items()): row = "<tr><td><a href=\"students/{student_no}.html\">{student_no}</a></td><td>{name}</td></tr>\n" f.write(row.replace("{student_no}", student_no).replace("{name}", name)) f.write("</tbody>\n</table>\n") # list of courses f.write("<h2>Courses</h2>") f.write("<table>\n<thead>\n<tr><th>Course code</th><th>Name</th></tr>\n</thead>\n<tbody>\n") for course_code, course_name in sorted(self.__courses.item()): row = "<tr><td><a href=\"courses/{course_code}.html\">{course_code}</a></td><td>{course_name}</td></tr>\n" f.write(row.replace("{course_code}", course_code).replace("{course_name", course_name)) f.write("</tbody>\n</table>\n") # list of semesters f.write("<h2>Semesters</h2>") f.write("<table>\n<thead>\n<tr><th>Semester</th><th>Course code</th></tr>\n</thead>\n<tbody>\n") for semester, course_code in sorted(self.__semester.item()): row = "<tr><td><a href=\"semesters/{semester}.html\">{semester}</a></td><td>{course_code}</td></tr>\n" f.write(row.replace("{semester}", semester).replace("{course_code", course_code)) f.write("</tbody>\n</table>\n") f.write(HTML_FRAME_BOTTOM) def generate_files(self): self.__create_folders() self.__load_data() self.__generate_student_files() self.__generate_course_files() self.__generate_semester_files() self.__generate_index_file() def main(): gradebook = Gradebook() gradebook.generate_files() if __name__ == '__main__': main()
46d146530af78700cfd74beb3f489023f1b7682d
f5b62ca8d62efb831001306f8b402bbe6f71a373
/catkin_ws/src/cmake-build-debug/localization/packages/orb_localizer/cmake/orb_localizer-genmsg-context.py
94ef4ef86877787d6aa903bf217007a6c30b96eb
[]
no_license
Dokirobot-autonomous/localization_ros
0771fa47a37200467707a13b23f62ab8036dfb74
564b656637afb84aaa7fe6e069f379f71d61a7b8
refs/heads/master
2020-03-30T08:33:51.591463
2018-10-16T03:43:49
2018-10-16T03:43:49
151,024,870
1
0
null
null
null
null
UTF-8
Python
false
false
649
py
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/ohashi/localization_ws/catkin_ws/src/localization/packages/orb_localizer/msg/debug.msg" services_str = "" pkg_name = "orb_localizer" dependencies_str = "std_msgs" langs = "gencpp;geneus;genlisp;gennodejs;genpy" dep_include_paths_str = "orb_localizer;/home/ohashi/localization_ws/catkin_ws/src/localization/packages/orb_localizer/msg;std_msgs;/opt/ros/kinetic/share/std_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/usr/bin/python" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/kinetic/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
b540a1018ada187e4e6e105e8d050f936df3061b
f416ab3adfb5c641dc84022f918df43985c19a09
/problems/advent-of-code/2022/05/sol2.py
78cf7599b31d96f7b01fd8ad778ed956290eda79
[]
no_license
NicoKNL/coding-problems
a4656e8423e8c7f54be1b9015a9502864f0b13a5
4c8c8d5da3cdf74aefcfad4e82066c4a4beb8c06
refs/heads/master
2023-07-26T02:00:35.834440
2023-07-11T22:47:13
2023-07-11T22:47:13
160,269,601
1
0
null
null
null
null
UTF-8
Python
false
false
1,530
py
import sys def splitInput(lines): stack_data = [] moves = [] parsing_stack = True for line in lines: if not line: parsing_stack = False continue if parsing_stack: stack_data.append(line) else: moves.append(line) stack_count = int(stack_data[-1].split()[-1]) return stack_count, stack_data[:-1], moves def parseStacks(count, data): stacks = [[] for _ in range(count)] for row in data: print(row) for i, c in enumerate(range(1, len(row), 4)): if row[c].strip(): stacks[i].append(row[c]) stacks = [stack[::-1] for stack in stacks] return stacks def parseMoves(moves): for i in range(len(moves)): words = moves[i].split() move = [words[1], words[3], words[5]] # [count, from, to] move = list(map(int, move)) move[1] -= 1 # Use 0 based indexing move[2] -= 1 moves[i] = move def execute(moves, stacks): for (count, s, t) in moves: stacks[t].extend(stacks[s][-count:]) stacks[s] = stacks[s][:-count] if __name__ == "__main__": lines = [l[:-1] for l in sys.stdin] stack_count, stack_data, moves = splitInput(lines) stacks = parseStacks(stack_count, stack_data) parseMoves(moves) execute(moves, stacks) answer = [" " for _ in range(stack_count)] for i, stack in enumerate(stacks): if stack: answer[i] = stack[-1] print("".join(answer))
3d6f97b441256fac9b6cb66b3166f809ccf49ec4
23d952d7d52ce824fdd93f7f6cdb60c962846524
/3-4_Preparation+Computation/ingredients/scripts/similarity_basic.py
8ee5c8d3300d8de60c878e88403d73d332e40dd0
[]
no_license
BigData-Team8/Italian-Cuisine
9152b3ec73f86081a3bbab9d7aa3078ca3648011
37146be0cf98d80d22400b8d2d94cd9e20159237
refs/heads/master
2022-12-05T11:01:27.199447
2020-08-19T21:13:55
2020-08-19T21:13:55
287,547,525
0
0
null
null
null
null
UTF-8
Python
false
false
1,610
py
import json import os, sys import redis import nltk import pandas as pd """ from IPython.display import display """ pd.set_option('display.max_rows', 5000) pd.set_option('display.max_columns', 5000) pd.set_option('display.width', 10000) # from __future__ import print_function from nltk.metrics import * csv = 'ingredients_freq-complete.csv' df = pd.read_csv(csv, usecols = ['Ingredient', 'Freq', 'Freq_Cucchiaio', 'Freq_GZ', 'Freq_RR' ]) df = df.sort_values(by = ['Ingredient'], ascending = False) result = {} i = 0 for indexS, rowS in df.iterrows(): sourceIng = rowS['Ingredient'] sourceFreq = rowS['Freq'] if (sourceFreq == 1): i += 1 # print(i, sourceIng, sourceFreq) # for key in result: # print(key, result[key]) for indexD, rowD in df.iterrows(): destIng = rowD['Ingredient'] destFreq = rowD['Freq'] if (sourceIng != destIng): distance = edit_distance(sourceIng, destIng) # https://stackoverflow.com/questions/45783385/normalizing-the-edit-distance normalizedDistance = distance / max(len(sourceIng), len(destIng)) if (normalizedDistance < 0.15 ): # in this case the frequency of the source ingredient is higher than the frequency of the destination one if (sourceFreq > destFreq): result[destIng] = sourceIng elif (sourceFreq < destFreq): result[sourceIng] = destIng # equals else: result[destIng] = sourceIng print(sourceIng, '(', sourceFreq, ') => ', destIng, '(', destFreq, ') | distance = ', normalizedDistance)
1e4c01ecb330a82e978502397ca4207a7ecf25fd
e3d030829e30e9357d9abcf369b89f23f9cb265d
/Lab 1 API Pam Fields 1-9-2018.py
e749e9ada200e3208a05c9a842564a18097659b1
[]
no_license
pamsfields/PytonAPI
d382875df9ea5c12442d98a80a5b241e23c0215b
0139fcc58bd46f92301dbbcad70d91d42a2ce58b
refs/heads/master
2021-05-13T20:18:44.298069
2018-01-11T03:02:39
2018-01-11T03:02:39
116,910,294
0
0
null
null
null
null
UTF-8
Python
false
false
472
py
import requests import os key = os.environ['fixer_key'] base_url = "https://fixer.io/latest?symbols=" currency = input('What is the first country to compare currency exchanges? Please use the three letter abbreviation ') params = {'fixer_key', 't' : currency} data = dict(dict(requests.get("https://api.fixer.io/2018-01-10").json()).get("rates")).get(currency) print(data) print("Current Exchange rate with Euro:") print(data['rates'][0]['Value'])
8793d1216da14a67dcf3182d0cb2892449856995
7f601fdb97c992a96e93a9d02e3720d57e191fcf
/djintl/settings.py
98db185b64269d243e4d51d6d01b8fc24e89906c
[]
no_license
cipang/djintl
796f9f95b65e82e24bf8c27dff16c24ef50a5bcb
27b28161e8fe9ceee76fb3167d9b72b44a8cfcbc
refs/heads/main
2023-09-01T12:44:18.115785
2021-11-06T02:24:49
2021-11-06T02:24:49
425,121,072
0
0
null
null
null
null
UTF-8
Python
false
false
3,521
py
""" Django settings for djintl project. Generated by 'django-admin startproject' using Django 3.2.9. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path from django.utils.translation import gettext_lazy as _ # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-1s)aaaaaaaaa&%x#8(*9q&9yy!p00!3=mn0*&m-cvd=aq1f$$d' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'mainapp', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'djintl.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.template.context_processors.i18n', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'djintl.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' LANGUAGE_CODE = 'en' LANGUAGES = [ ('en', _('English')), ('zh', _('Chinese')) ] LOCALE_PATHS = [BASE_DIR / "locale"]
a31688d8579cfce253b6dac4f680333340f6b0e4
0bde5f7f09aa537ed1f4828d4e5ebee66475918f
/h2o-py/tests/testdir_sklearn/pyunit_sklearn_params.py
2a70a91baafd68393e95b43969166ffea1f8a2ea
[ "Apache-2.0" ]
permissive
Winfredemalx54/h2o-3
d69f1c07e1f5d2540cb0ce5e6073415fa0780d32
dfb163c82ff3bfa6f88cdf02465a9bb4c8189cb7
refs/heads/master
2022-12-14T08:59:04.109986
2020-09-23T08:36:59
2020-09-23T08:36:59
297,947,978
2
0
Apache-2.0
2020-09-23T11:28:54
2020-09-23T11:28:54
null
UTF-8
Python
false
false
7,702
py
from __future__ import print_function import os, sys from sklearn.pipeline import Pipeline from h2o.sklearn import H2OAutoMLEstimator, H2OGradientBoostingEstimator, H2OScaler, H2OPCA sys.path.insert(1, os.path.join("..","..")) from tests import pyunit_utils seed = 2019 def test_all_params_are_visible_in_get_params(): pipeline = Pipeline([ ('standardize', H2OScaler(center=True, scale=False)), ('pca', H2OPCA(k=2, seed=seed)), ('estimator', H2OGradientBoostingEstimator(ntrees=20, max_depth=5, seed=seed)) ]) params = pipeline.get_params() assert isinstance(params['standardize'], H2OScaler) assert params['standardize__center'] is True assert params['standardize__scale'] is False assert isinstance(params['pca'], H2OPCA) assert params['pca__k'] == 2 assert params['pca__seed'] == seed assert isinstance(params['estimator'], H2OGradientBoostingEstimator) assert params['estimator__ntrees'] == 20 assert params['estimator__max_depth'] == 5 assert params['estimator__seed'] == seed # also the ones that were not set explicitly assert params['pca__max_iterations'] is None assert params['estimator__learn_rate'] is None def test_all_params_can_be_set_using_set_params(): pipeline = Pipeline([ ('standardize', H2OScaler()), ('pca', H2OPCA()), ('estimator', H2OGradientBoostingEstimator()) ]) pipeline.set_params( standardize__center=True, standardize__scale=False, pca__k=2, pca__seed=seed, estimator__ntrees=20, estimator__max_depth=5, estimator__seed=seed ) assert isinstance(pipeline.named_steps.standardize, H2OScaler) assert pipeline.named_steps.standardize.center is True assert pipeline.named_steps.standardize.scale is False assert isinstance(pipeline.named_steps.pca, H2OPCA) assert pipeline.named_steps.pca.k == 2 assert pipeline.named_steps.pca.seed == seed assert isinstance(pipeline.named_steps.estimator, H2OGradientBoostingEstimator) assert pipeline.named_steps.estimator.ntrees == 20 assert pipeline.named_steps.estimator.max_depth == 5 assert pipeline.named_steps.estimator.seed == seed def test_all_params_are_accessible_as_properties(): pipeline = Pipeline([ ('standardize', H2OScaler(center=True, scale=False)), ('pca', H2OPCA(k=2, seed=seed)), ('estimator', H2OGradientBoostingEstimator(ntrees=20, max_depth=5, seed=seed)) ]) assert isinstance(pipeline.named_steps.standardize, H2OScaler) assert pipeline.named_steps.standardize.center is True assert pipeline.named_steps.standardize.scale is False assert isinstance(pipeline.named_steps.pca, H2OPCA) assert pipeline.named_steps.pca.k == 2 assert pipeline.named_steps.pca.seed == seed assert isinstance(pipeline.named_steps.estimator, H2OGradientBoostingEstimator) assert pipeline.named_steps.estimator.ntrees == 20 assert pipeline.named_steps.estimator.max_depth == 5 assert pipeline.named_steps.estimator.seed == seed # also the ones that were not set explicitly assert pipeline.named_steps.pca.max_iterations is None assert pipeline.named_steps.estimator.learn_rate is None def test_all_params_can_be_set_as_properties(): pipeline = Pipeline([ ('standardize', H2OScaler()), ('pca', H2OPCA()), ('estimator', H2OGradientBoostingEstimator()) ]) pipeline.named_steps.standardize.center = True pipeline.named_steps.standardize.scale = False pipeline.named_steps.pca.k = 2 pipeline.named_steps.pca.seed = seed pipeline.named_steps.estimator.ntrees = 20 pipeline.named_steps.estimator.max_depth = 5 pipeline.named_steps.estimator.seed = seed params = pipeline.get_params() assert isinstance(params['standardize'], H2OScaler) assert params['standardize__center'] is True assert params['standardize__scale'] is False assert isinstance(params['pca'], H2OPCA) assert params['pca__k'] == 2 assert params['pca__seed'] == seed assert isinstance(params['estimator'], H2OGradientBoostingEstimator) assert params['estimator__ntrees'] == 20 assert params['estimator__max_depth'] == 5 assert params['estimator__seed'] == seed def test_params_conflicting_with_sklearn_api_are_still_available(): pca = H2OPCA() assert pca.transform != 'NONE' assert callable(pca.transform), "`transform` method from sklearn API has been replaced by a property" # conflicting param can be accessed normally using get_params() assert pca.get_params()['transform'] == 'NONE' # property is accessible directly using a trailing underscore assert pca.transform_ == 'NONE' pca = H2OPCA(transform='DEMEAN') assert callable(pca.transform), "`transform` method from sklearn API has been replaced by a property" assert pca.get_params()['transform'] == 'DEMEAN' assert pca.transform_ == 'DEMEAN' # conflicting param can be modified normally using set_params() pca.set_params(transform='DESCALE') assert pca.get_params()['transform'] == 'DESCALE' assert pca.transform_ == 'DESCALE' # conflicting property can be set directly using a trailing underscore pca.transform_ = 'NORMALIZE' assert pca.get_params()['transform'] == 'NORMALIZE' assert pca.transform_ == 'NORMALIZE' def test_params_are_correctly_passed_to_underlying_transformer(): pca = H2OPCA(seed=seed) pca.set_params(transform='DEMEAN', k=3) pca.model_id = "dummy" assert pca.estimator is None pca._make_estimator() # normally done when calling `fit` assert pca.estimator parms = pca.estimator._parms assert parms['seed'] == seed assert parms['transform'] == 'DEMEAN' assert parms['k'] == 3 assert parms['model_id'] == "dummy" assert parms['max_iterations'] is None def test_params_are_correctly_passed_to_underlying_estimator(): estimator = H2OGradientBoostingEstimator(seed=seed) estimator.set_params(max_depth=10, learn_rate=0.5) estimator.model_id = "dummy" assert estimator.estimator is None estimator._make_estimator() # normally done when calling `fit` real_estimator = estimator.estimator assert real_estimator parms = real_estimator._parms assert real_estimator.seed == parms['seed'] == seed assert real_estimator.max_depth == parms['max_depth'] == 10 assert real_estimator.learn_rate == parms['learn_rate'] == 0.5 assert real_estimator._id == parms['model_id'] == "dummy" assert real_estimator.training_frame == parms['training_frame'] is None def test_params_are_correctly_passed_to_underlying_automl(): estimator = H2OAutoMLEstimator(seed=seed) estimator.set_params(max_models=5, nfolds=0) estimator.project_name = "dummy" assert estimator.estimator is None estimator._make_estimator() # normally done when calling `fit` aml = estimator.estimator assert aml assert aml.build_control["stopping_criteria"]["seed"] == seed assert aml.build_control["stopping_criteria"]["max_models"] == 5 assert aml.build_control["nfolds"] == 0 assert aml.build_control["project_name"] == "dummy" pyunit_utils.run_tests([ test_all_params_are_visible_in_get_params, test_all_params_can_be_set_using_set_params, test_all_params_are_accessible_as_properties, test_all_params_can_be_set_as_properties, test_params_conflicting_with_sklearn_api_are_still_available, test_params_are_correctly_passed_to_underlying_transformer, test_params_are_correctly_passed_to_underlying_estimator, test_params_are_correctly_passed_to_underlying_automl, ])
6699c77e6bdac3ab961e9ae3e1ad3f3c9aaf04a2
7112e0e4b4b63228b9e0b4f0931a1870ffe54728
/src/tests/gate-basic-bionic-stein
6e24087e8b31a39c4f9cfc77d2120a4aedbc31ce
[ "Apache-2.0" ]
permissive
jlamendo/charm-designate
d45017a0ef904276d24eff9e84de38e9324b156c
32c71708df04c02ea5fab335246344e03c39f70f
refs/heads/master
2020-06-18T02:12:54.123654
2019-04-19T19:27:49
2019-04-19T19:27:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
917
#!/usr/bin/env python # Copyright 2016 Canonical Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Amulet tests on a basic aodh deployment on bionic-stein.""" from basic_deployment import DesignateBasicDeployment if __name__ == '__main__': deployment = DesignateBasicDeployment( series='bionic', openstack='cloud:bionic-stein', source='cloud:bionic-stein') deployment.run_tests()
e701b146176a8058895966374a94283d46d3e007
70fc834daab609e40dc1d6f67cef7afc525b0ace
/main5.py
4a91c903c9ad310e98536ff11feb0a256a1b6a07
[]
no_license
Edvard-Hagerup-Grieg/UNN-AppMath
f8c78921e5ae2392ea0d9d8c1f170beacd6b39f4
fca3f7e79a98741c9c910895c47141909b6062e6
refs/heads/master
2020-04-26T09:16:12.772794
2019-04-15T06:14:29
2019-04-15T06:14:29
173,449,702
0
0
null
null
null
null
UTF-8
Python
false
false
2,261
py
import matplotlib.pyplot as plt import numpy as np import math def f(x, r): return r*x*(1 - x) def df(x, r): return r - 2*r*x if __name__ == "__main__": # LAMEREY DIAGRAM & SYSTEM EVALUTION RUN = True if RUN: x0 = 0.4 r = 3.46 xn = [x0] x = [x0] y = [0] for i in range(500): x1 = f(x0, r) x.append(x0) x.append(x1) y.append(x1) y.append(x1) xn.append(x1) x0 = x1 plt.figure(figsize=(10,4)) plt.subplot(1, 2, 1) plt.plot(range(100), xn[:100], color='black', linewidth=0.7) plt.title('SYSTEM EVALUTION') plt.xlabel('n') plt.ylabel('x(n)') plt.subplot(1,2,2) plt.plot(x,y,alpha=0.7,color='red', linewidth =0.7, linestyle='--', label='') plt.plot(np.arange(0.0, 1.0, 0.01), np.arange(0.0, 1.0, 0.01), linewidth =0.4, color = 'black',label='x(n+1)=x(n)') plt.plot(np.arange(0.0, 1.0, 0.01), [f(xn, r) for xn in np.arange(0.0, 1.0, 0.01)], linewidth =1, color = 'black', label='x(n+1)') plt.title('LAMEREY DIAGRAM') plt.xlabel('x(n)') plt.ylabel('x(n+1)') plt.show() # BIFURCATION DIAGRAM & LYAPUNOV EXPONENT RUN = True if RUN: x0 = 0.1 X = [] L = [] for r in np.arange(0.8, 4.00, 0.001): x = x0 ln = math.log(abs(df(x0, r))) xn = [] for i in range(1000): x = f(x, r) xn.append(x) ln += math.log(abs(df(x, r))) X.append(xn[-200:]) L.append(ln / 1000) X = np.array(X) plt.figure(figsize=(10, 8)) plt.subplot(2, 1, 1) for i in range(X.shape[1]): plt.scatter(np.arange(0.8, 4.00, 0.001), X[:,i], s=0.1, c='black') plt.title('BIFURCATION DIAGRAM') plt.xlabel('r') plt.ylabel('x*') plt.subplot(2, 1, 2) plt.plot(np.arange(0.8, 4.00, 0.001), L, color='black') plt.plot(np.arange(0.8, 4.00, 0.001), [0]* 3200, color='red') plt.title('LYAPUNOV EXPONENT') plt.xlabel('r') plt.ylabel('L') plt.show()
664dbeace03e2e09329cf482497d526407c70473
05a49b7d914ff4dea0d31d14801a45b571d164f9
/Exercism Exercises/leap.py
a6093d71f37f3e355112768b6a6529bf68b5c881
[]
no_license
Kalpesh-Makwana/Python
68d80eb0ad2987188e3142c5a6be3b360bc284fb
5bf00776a060d6ecb7cc92644da093ac38a6b19f
refs/heads/master
2020-12-02T14:16:54.573079
2020-04-29T13:11:50
2020-04-29T13:11:50
231,034,090
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
def leap_year(year): if year % 4 == 0 and year % 100 != 0 or year % 400==0: return True return False
ab1103ef8f833e5068f656a077eaf3f8f99bcfb7
dedb4e01ed0c640612eae17f84bf7ed3da8bce17
/backend/photosets/api/serializers.py
b1472a3ae238638526e4b9580e0fa04562793c1d
[]
no_license
yakimka/chubbyfolio
6f26f769fcdfe4714200966188b3f182859ff6fd
8c8d90a10eb794154d2b283e0795ce327bb78112
refs/heads/master
2022-07-24T16:20:55.959859
2022-05-04T19:01:51
2022-05-04T19:01:51
174,234,542
0
0
null
2022-05-04T00:31:03
2019-03-06T23:04:40
Python
UTF-8
Python
false
false
805
py
from rest_framework import serializers from photosets.models import Photoset, Photo class PhotoSerializer(serializers.ModelSerializer): thumbnail = serializers.ImageField() class Meta: model = Photo fields = ('id', 'is_cover', 'image', 'thumbnail', 'date_created', 'date_updated') class PhotosetSerializer(serializers.ModelSerializer): cover = serializers.ImageField() preview = serializers.ImageField(source='preview_thumbnail') class Meta: model = Photoset fields = ('id', 'name', 'description', 'cover', 'preview', 'show_on_mainpage', 'published', 'date_created', 'date_updated') class FilterPhotosetsSerializer(serializers.Serializer): show_on_mainpage = serializers.NullBooleanField(required=False)
73b575925f7a11a6fcf9163b2beb965b63a55b09
a74b58651b4cc7027fce6856d46bb7325a8a949b
/BuildAndroidApplication/src/demo/buildproject/copy_file.py
45e7543d3cad8b2b54a2d475a1d8ca65c3f9053a
[]
no_license
doncc/worktools
b98890bbba149e29962e077e47b2834bd6c46b28
d9b52d987c1dda10fda5c033e7225b15d3121b87
refs/heads/master
2023-01-24T00:58:25.472987
2020-12-01T07:06:39
2020-12-01T07:06:39
113,950,647
0
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
# coding=UTF-8 import os import shutil import constant # 通过校验MD5 判断B内的文件与A 不同 def get_MD5(file_path): files_md5 = os.popen('md5 %s' % file_path).read().strip() file_md5 = files_md5.replace('MD5 (%s) = ' % file_path, '') return file_md5 # 拷贝整个目录及内容至新目录 def cpDirs(old_path, new_path): if os.path.exists(os.path.join(new_path , constant.temp_application_name)): print 'apps下存在,不创建' return for files in os.listdir(old_path): name = os.path.join(old_path, files) back_name = os.path.join(new_path, files) if os.path.isfile(name): if os.path.isfile(back_name): if get_MD5(name) != get_MD5(back_name): shutil.copy(name, back_name) else: shutil.copy(name, back_name) else: if not os.path.isdir(back_name): os.makedirs(back_name) cpDirs(name, back_name) def copy_file(old_path, new_path): temp_path = new_path[0: new_path.rfind('/')] if not os.path.exists(temp_path): os.makedirs(temp_path) shutil.copy2(old_path, new_path)
887c91e48e6d269539425d8db02eb00ba0c9ec36
fe6ed003243e2f57fc4cbe82fe71492000718db9
/bcbio/chipseq/peaks.py
86f6fdafa93bb2a0794ae7b64e3b5b874b24df6f
[ "MIT" ]
permissive
gifford-lab/bcbio-nextgen
e6f1af9e1bc6afacd2ce4c785af782508732c920
52156f1aa6167b870e4387d1976efbd104d2c30c
refs/heads/master
2021-01-17T22:11:57.474808
2016-01-22T10:13:23
2016-01-22T10:15:08
45,060,650
0
1
null
2015-10-27T18:14:21
2015-10-27T18:14:21
null
UTF-8
Python
false
false
2,840
py
"""High level parallel SNP and indel calling using multiple variant callers. """ import os import copy from bcbio.log import logger from bcbio import bam, utils from bcbio.pipeline import datadict as dd from bcbio.chipseq import macs2 # from bcbio.pipeline import region def get_callers(): from bcbio.chipseq import macs2 return {"macs2": macs2.run} def peakcall_prepare(data, run_parallel): """Entry point for doing peak calling""" caller_fns = get_callers() to_process = [] for sample in data: mimic = copy.copy(sample[0]) for caller in dd.get_peakcaller(sample[0]): if caller in caller_fns and dd.get_phenotype(mimic) == "chip": mimic["peak_fn"] = caller name = dd.get_sample_name(mimic) mimic = _get_paired_samples(mimic, data) if mimic: to_process.append(mimic) else: logger.info("Skipping peak calling. No input sample for %s" % name) if to_process: after_process = run_parallel("peakcalling", to_process) data = _sync(data, after_process) return data def calling(data): """Main function to parallelize peak calling.""" chip_bam = dd.get_work_bam(data) input_bam = data["work_bam_input"] caller_fn = get_callers()[data["peak_fn"]] name = dd.get_sample_name(data) out_dir = utils.safe_makedir(os.path.join(dd.get_work_dir(data), data["peak_fn"], name )) out_file = caller_fn(name, chip_bam, input_bam, dd.get_genome_build(data), out_dir, data["config"]) data["peaks_file"] = out_file return [[data]] def _sync(original, processed): """ Add output to data if run sucessfully. For now only macs2 is available, so no need to consider multiple callers. """ for original_sample in original: original_sample[0]["peaks_file"] = [] for processs_sample in processed: if dd.get_sample_name(original_sample[0]) == dd.get_sample_name(processs_sample[0]): if utils.file_exists(processs_sample[0]["peaks_file"]): original_sample[0]["peaks_file"].append(processs_sample[0]["peaks_file"]) return original def _get_paired_samples(sample, data): """Get input sample for each chip bam file.""" dd.get_phenotype(sample) for origin in data: if dd.get_batch(sample) in dd.get_batch(origin[0]) and dd.get_phenotype(origin[0]) == "input": sample["work_bam_input"] = dd.get_work_bam(origin[0]) return [sample] def _get_multiplier(samples): """Get multiplier to get jobs only for samples that have input """ to_process = 1 for sample in samples: if dd.get_phenotype(sample[0]) == "chip": to_process += 1 return to_process / len(samples)
fd1276b24ae67a7c8adc75699c9802f83e24adba
e00ecd6c7a0f7e18aaac99b14df7f9c2d72ca421
/roll_pic.py
61c1749e9c0c343d6aeb49265c8f1f043ceadd31
[]
no_license
10L2002/githubtest
2981cf0e9d37c3ba30766bfcd5744110648d57cf
e534b919e52fb62391d6a80b018281ff6393ad37
refs/heads/master
2020-03-18T16:38:21.357583
2018-06-02T20:32:26
2018-06-02T20:32:26
134,977,521
0
0
null
null
null
null
UTF-8
Python
false
false
1,442
py
def roll_pic(src): #roll sholip logo at random angle import cv2 import numpy as np import random import os if not os.path.exists("roll_data"): #name of saving directory os.mkdir("roll_data") # 画像読み込み(read image) h, w = src.shape[:2] size = (w, h) # 回転角の指定(decide the angle) x=(random.randint(0, 360)) #print(x) angle = x angle_rad = angle/180.0*np.pi # 回転後の画像サイズを計算(caluculate the size of image after rotation) w_rot = int(np.round(h*np.absolute(np.sin(angle_rad))+w*np.absolute(np.cos(angle_rad)))) h_rot = int(np.round(h*np.absolute(np.cos(angle_rad))+w*np.absolute(np.sin(angle_rad)))) size_rot = (w_rot, h_rot) # 元画像の中心を軸に回転する(pick the center from original image and rotate) center = (w/2, h/2) scale = 1.0 rotation_matrix = cv2.getRotationMatrix2D(center, angle, scale) # 平行移動を加える (rotation + translation) affine_matrix = rotation_matrix.copy() affine_matrix[0][2] = affine_matrix[0][2] -w/2 + w_rot/2 affine_matrix[1][2] = affine_matrix[1][2] -h/2 + h_rot/2 img_rot = cv2.warpAffine(src, affine_matrix, size_rot, flags=cv2.INTER_CUBIC) cv2.imwrite("roll_data/" +"img_roll.jpeg" ,img_rot) #import cv2 #import numpy as np #import random #import os #src_img = cv2.imread("./pra/sholip.png") #roll_pic(src_img)
018bc11e66b4722cfd30143ace9c0cb24c48ad82
45bf1df34f93b3148c62b01afd8d20db889a2148
/TFIDF.py
5d6c495e97e243f0d2b993b82de1f63c36aa9f9b
[]
no_license
Suhail98/NLP-machine-learning-classifier-for-reviews
72ceda4cfae879482aae80b13b6adad140131a8b
7ee8fd6d82e76385433c14576962f9daa2cfe8d4
refs/heads/main
2023-07-12T19:42:44.724764
2021-08-23T13:35:23
2021-08-23T13:35:23
399,116,135
0
1
null
null
null
null
UTF-8
Python
false
false
1,871
py
import os import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from numpy import array from sklearn.linear_model import LogisticRegression from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords import re #reading data and shuffle def read_data(): arr = os.listdir("review_polarity\\txt_sentoken\\neg") data = [] for i in arr: f = open("review_polarity\\txt_sentoken\\neg\\" + i, encoding='utf-8') data += [f.read(),0] f.close() arr = os.listdir("review_polarity\\txt_sentoken\\pos") for i in arr: f = open("review_polarity\\txt_sentoken\\pos\\" + i, encoding='utf-8') data += [f.read(),1] f.close() data = np.array(data).reshape(2000,2) np.random.shuffle(data) return data # def split_data(data,n): data_train,lable_train = data[:n,0], data[:n,1] data_test,lable_test = data[n:,0], data[n:,1] return data_train,lable_train,data_test,lable_test data = read_data() nTrain = int(2000*.8) data_train,label_train,data_test,label_test = split_data(data,nTrain) vectorizer = TfidfVectorizer(stop_words='english') dfidf_train = vectorizer.fit_transform(data_train) df_idf=[] for i in dfidf_train: df_idf.append(array(i.todense()).flatten().tolist()) clf = LogisticRegression(random_state=0,C=10).fit(df_idf, label_train) dfidf_test = vectorizer.transform(data_test) result = clf.predict(dfidf_test.todense()) count = 0 for i in range(len(result)): if result[i] == label_test[i]: count += 1 print("test accuracy = ",count / (2000-nTrain)) input_review = input("Enter your review: ") dfidf_test = vectorizer.transform([input_review]) result = clf.predict(dfidf_test) if result[0] == '0': print("negative") else: print("positive")
9a8248760bfd5e16d1a36428beb0e18834029e85
3c7913e65c375b3661060f22b4daae83ff1a13b2
/e.py
28cd7d5ee70775f7970dd4f70bcaf7d25a20e189
[]
no_license
Deepesh-Kumar/start-python
8107e71efe8e2233119632ea4019f75e75148830
608f6f14a861fbc962dee07dd8988391890abbff
refs/heads/master
2021-08-06T02:13:26.754973
2019-01-07T03:52:19
2019-01-07T03:52:19
143,205,114
0
0
null
null
null
null
UTF-8
Python
false
false
452
py
#def m(list): # b = 1 # for i in a: # b = b * i # print b #a = [1,2,3,4,5] #m(a) ol = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] a ='fun thmes!' op ='aeiou' k = [] for i in a: if i.lower() in ol: i = ol[i + 1] print i #for i in a: # if i not in b: # b.append(i) #print b #def checkduplicate(a): # for i in a: # if i not in b: # b.append(i) # print b #checkduplicate(d)
376af8d3129802fbb8400585f4e33af5edcb5c18
e22051c23ede600098376508f43121c9fa35d88d
/rllib_inference/src/battlesnake_heuristics.py
88b21f2a0d27dc0d806d41622287b692028356ba
[]
no_license
iamwillzhu/LocalEnv
7265979fe3103b75f459277c5704a5a1f2d2e3df
4f30d1a3ab0216b12a3a6caca5c134c689affe9d
refs/heads/master
2022-11-18T15:28:55.486601
2020-07-19T21:50:21
2020-07-19T21:50:21
280,525,426
0
0
null
null
null
null
UTF-8
Python
false
false
4,484
py
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import numpy as np import random from .a_star_search import a_star from .snake_state import State class MyBattlesnakeHeuristics: ''' The BattlesnakeHeuristics class allows you to define handcrafted rules of the snake. ''' FOOD_INDEX = 0 def __init__(self): pass def tail_chase(self, json): your_snake_body = json["you"]["body"] i, j = your_snake_body[0]["y"], your_snake_body[0]["x"] if len(your_snake_body) < 3: return None,None path = a_star(initial_state=State( body=your_snake_body, board_height=json["board"]["height"], board_width=json["board"]["width"])) next_move = path[1].body[0] tail_direction = None if next_move["y"] == i - 1: tail_direction = 0 if next_move["y"] == i + 1: tail_direction = 1 if next_move["x"] == j - 1: tail_direction = 2 if next_move["x"] == j + 1: tail_direction = 3 return next_move, tail_direction def go_to_food_if_close(self, state, json): ''' Example heuristic to move towards food if it's close to you. ''' # Get the position of the snake head your_snake_body = json["you"]["body"] i, j = your_snake_body[0]["y"], your_snake_body[0]["x"] # Set food_direction towards food food = state[:, :, self.FOOD_INDEX] # Note that there is a -1 border around state so i = i + 1, j = j + 1 if -1 in state: i, j = i+1, j+1 food_direction = None if food[i-1, j] == 1: food_direction = 0 # up if food[i+1, j] == 1: food_direction = 1 # down if food[i, j-1] == 1: food_direction = 2 # left if food[i, j+1] == 1: food_direction = 3 # right return food_direction def run(self, state, snake_id, turn_count, health, json, action): ''' The main function of the heuristics. Parameters: ----------- `state`: np.array of size (map_size[0]+2, map_size[1]+2, 1+number_of_snakes) Provides the current observation of the gym. Your target snake is state[:, :, snake_id+1] `snake_id`: int Indicates the id where id \in [0...number_of_snakes] `turn_count`: int Indicates the number of elapsed turns `health`: dict Indicates the health of all snakes in the form of {int: snake_id: int:health} `json`: dict Provides the same information as above, in the same format as the battlesnake engine. `action`: np.array of size 4 The qvalues of the actions calculated. The 4 values correspond to [up, down, left, right] ''' log_string = "" # The default `best_action` to take is the one that provides has the largest Q value. # If you think of something else, you can edit how `best_action` is calculated best_action = int(np.argmax(action)) if health[snake_id] > 70: next_move,tail_direction = self.tail_chase(json) if next_move is not None: best_action = tail_direction if tail_direction is not None else best_action log_string = f"{next_move}, {tail_direction}" # Example heuristics to eat food that you are close to. if health[snake_id] < 30: food_direction = self.go_to_food_if_close(state, json) if food_direction: best_action = food_direction log_string = "Went to food if close." # TO DO, add your own heuristics assert best_action in [0, 1, 2, 3], "{} is not a valid action.".format(best_action) return best_action, log_string
2d2abfb70b48554ebe8771630db92de5424a3f98
b7c18dd657d18d5381ceafaa5fe5089308d2d00f
/test/test_data_lake.py
d762f11217517f2913b8fb4a7c49fae920c16c63
[ "Apache-2.0" ]
permissive
Bezbran/mongo-python-driver
06b00b0c89441ed1a290ea0b174a1f4d653b8cd2
5332adfe2bb28f8703b0e16f80c0eb351d6201c0
refs/heads/master
2023-04-04T07:09:40.274116
2021-04-19T12:05:15
2021-04-19T12:05:15
278,339,341
0
0
Apache-2.0
2021-04-14T07:31:24
2020-07-09T10:55:05
Python
UTF-8
Python
false
false
1,672
py
# Copyright 2020-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Atlas Data Lake.""" import os import sys sys.path[0:0] = [""] from test import client_context, unittest from test.crud_v2_format import TestCrudV2 from test.utils import TestCreator # Location of JSON test specifications. _TEST_PATH = os.path.join( os.path.dirname(os.path.realpath(__file__)), "data_lake") class DataLakeTestSpec(TestCrudV2): # Default test database and collection names. TEST_DB = 'test' TEST_COLLECTION = 'driverdata' @classmethod @unittest.skipUnless(client_context.is_data_lake, 'Not connected to Atlas Data Lake') def setUpClass(cls): super(DataLakeTestSpec, cls).setUpClass() def setup_scenario(self, scenario_def): # Spec tests MUST NOT insert data/drop collection for # data lake testing. pass def create_test(scenario_def, test, name): def run_scenario(self): self.run_scenario(scenario_def, test) return run_scenario TestCreator(create_test, DataLakeTestSpec, _TEST_PATH).create_tests() if __name__ == "__main__": unittest.main()
1c2460f221cff22e2a2f9a27bdfa673a7bcf0bd1
38da215b9b50d0743f34cd0ef38e75db557deeff
/swagger_client/models/time_stream.py
5f68f77e639429a8fcb857cf578972f5eaba0672
[ "MIT" ]
permissive
HalestormAI/stravaio
0742dc5749d90840ef6c4638ca4c3ee3040d57ce
9d99179eb70bf5219ab4d2c7d7b5d3617457ae9e
refs/heads/master
2020-09-07T14:57:59.836372
2020-02-29T00:03:57
2020-02-29T00:03:57
220,817,328
0
0
MIT
2020-02-29T00:03:47
2019-11-10T16:29:45
null
UTF-8
Python
false
false
6,366
py
# coding: utf-8 """ Strava API v3 Strava API # noqa: E501 OpenAPI spec version: 3.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.base_stream import BaseStream # noqa: F401,E501 class TimeStream(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'original_size': 'int', 'resolution': 'str', 'series_type': 'str', 'data': 'list[int]' } attribute_map = { 'original_size': 'original_size', 'resolution': 'resolution', 'series_type': 'series_type', 'data': 'data' } def __init__(self, original_size=None, resolution=None, series_type=None, data=None): # noqa: E501 """TimeStream - a model defined in Swagger""" # noqa: E501 self._original_size = None self._resolution = None self._series_type = None self._data = None self.discriminator = None if original_size is not None: self.original_size = original_size if resolution is not None: self.resolution = resolution if series_type is not None: self.series_type = series_type if data is not None: self.data = data @property def original_size(self): """Gets the original_size of this TimeStream. # noqa: E501 The number of data points in this stream # noqa: E501 :return: The original_size of this TimeStream. # noqa: E501 :rtype: int """ return self._original_size @original_size.setter def original_size(self, original_size): """Sets the original_size of this TimeStream. The number of data points in this stream # noqa: E501 :param original_size: The original_size of this TimeStream. # noqa: E501 :type: int """ self._original_size = original_size @property def resolution(self): """Gets the resolution of this TimeStream. # noqa: E501 The level of detail (sampling) in which this stream was returned # noqa: E501 :return: The resolution of this TimeStream. # noqa: E501 :rtype: str """ return self._resolution @resolution.setter def resolution(self, resolution): """Sets the resolution of this TimeStream. The level of detail (sampling) in which this stream was returned # noqa: E501 :param resolution: The resolution of this TimeStream. # noqa: E501 :type: str """ allowed_values = ["low", "medium", "high"] # noqa: E501 if resolution not in allowed_values: raise ValueError( "Invalid value for `resolution` ({0}), must be one of {1}" # noqa: E501 .format(resolution, allowed_values) ) self._resolution = resolution @property def series_type(self): """Gets the series_type of this TimeStream. # noqa: E501 The base series used in the case the stream was downsampled # noqa: E501 :return: The series_type of this TimeStream. # noqa: E501 :rtype: str """ return self._series_type @series_type.setter def series_type(self, series_type): """Sets the series_type of this TimeStream. The base series used in the case the stream was downsampled # noqa: E501 :param series_type: The series_type of this TimeStream. # noqa: E501 :type: str """ allowed_values = ["distance", "time"] # noqa: E501 if series_type not in allowed_values: raise ValueError( "Invalid value for `series_type` ({0}), must be one of {1}" # noqa: E501 .format(series_type, allowed_values) ) self._series_type = series_type @property def data(self): """Gets the data of this TimeStream. # noqa: E501 The sequence of time values for this stream, in seconds # noqa: E501 :return: The data of this TimeStream. # noqa: E501 :rtype: list[int] """ return self._data @data.setter def data(self, data): """Sets the data of this TimeStream. The sequence of time values for this stream, in seconds # noqa: E501 :param data: The data of this TimeStream. # noqa: E501 :type: list[int] """ self._data = data def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(TimeStream, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TimeStream): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
fdd0bf61a4c5d7f462b8bf135845df01e7f7da05
946a98b6795e8245087543975005e6865b538be3
/warikan2.py
a69c185f4a9fbfb614ceb3d16c1958a77435048a
[]
no_license
kazu-taka/hello-function
7c415526e12a17d85987709996a69d364bbe9e62
658113b596bd29bf7e360c005f29b192600627e4
refs/heads/master
2020-04-07T04:07:39.761775
2018-11-18T01:18:10
2018-11-18T01:18:10
158,040,762
0
0
null
null
null
null
UTF-8
Python
false
false
334
py
def warikan(amount, number_of_people): return f"1人あたり: {amount // number_of_people}円, 端数: {amount % number_of_people}円" print(warikan(amount=1500, number_of_people=3)) print(warikan(amount=2000, number_of_people=3)) print(warikan(amount=3000, number_of_people=4)) print(warikan(amount=5000, number_of_people=8))
521ea38335f0c6bebf7ef64a8d68203c32de69dc
f97cabce5c91238678e159387f03636d4deb90fb
/dajare/crawler_kaishaseikatsu_jp.py
c0bb1bb7c7b5cf459ec22cf9603ddf779b6d4b93
[]
no_license
vaaaaanquish/dajare-python
1daa8b4d31a9e3d5e1336d3b31693c1d491ed814
150132cef0333a94c9e286c4241af92c630cd7bd
refs/heads/master
2022-12-10T08:46:42.827279
2020-12-11T03:28:54
2020-12-11T03:28:54
242,304,312
16
3
null
2022-12-08T03:43:06
2020-02-22T08:09:23
Jupyter Notebook
UTF-8
Python
false
false
1,010
py
from tqdm import tqdm from dajare.crawler import Crawler class CrawlerKaishaseikatsuJp(Crawler): def run(self): output_list = self._run() self.output(output_list, 'dajare_kaishaseikatsu_jp.json') def _run(self): output_list = [] for i in tqdm(range(0, 2200, 100)): url = f'http://archives.kaishaseikatsu.jp/cgi-bin/kaisha2/board_r.cgi?type=kaisha_dajare&next={i}&range=100' bs = self.get_bs(url, encoding='shift-jis') for x in bs.find_all('tr', bgcolor="#FBFFB2"): output_list.append({ 'text': x.find('td').text, 'url': url, 'author': 'kaishaseikatsu', 'author_link': 'http://archives.kaishaseikatsu.jp', 'mean_score': 0., 'deviation_score': 0., 'category': [], 'tag': [], 'eval_list': [] }) return output_list
fed85186a1b405470991007647327d9d0cea5825
cde752af8df0ae3007575778ccb0d43c4d5546aa
/checkout/migrations/0003_auto_20200812_0925.py
cbefb02e0d09f27098c40968bdc32939b9fb1a91
[]
no_license
Code-Institute-Submissions/django-eshop-project
e9f401fca16b4c56f07a66f01accea09999f208e
a6988c80077ca45c62e1753e420616bbc6dc4275
refs/heads/master
2022-12-03T19:41:59.428298
2020-08-15T14:13:25
2020-08-15T14:13:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
# Generated by Django 3.0.8 on 2020-08-12 09:25 from django.db import migrations import django_countries.fields class Migration(migrations.Migration): dependencies = [ ('checkout', '0002_auto_20200808_1341'), ] operations = [ migrations.AlterField( model_name='order', name='country', field=django_countries.fields.CountryField(max_length=2), ), ]
06dcf6622fdc3c640bb85b1c01cb32e8d2e61985
dc95aa9f813bf0fea3695f0e479dd892b0a9280b
/image2coord.py
452df619ec12e44894fb48e05d8aa28a6e933d00
[]
no_license
martibsk/imageROV
8f6eea3fa5c5364e60985371f7806e57cbbb7fb8
41f623f29571e110a19c58aa173293050cde3a5b
refs/heads/master
2022-08-14T04:40:29.440244
2019-06-06T09:11:10
2019-06-06T09:11:10
190,339,294
0
0
null
2022-06-21T22:04:52
2019-06-05T06:36:30
Python
UTF-8
Python
false
false
1,610
py
import detector import cv2 from imutils.video import FPS import numpy as np import darknet import os import detectorCPU if __name__ == '__main__': model = 'sylinder' input_frame = 'sylinder.mp4' useGPU = True if useGPU: netMain, metaMain = detector.init_yolo(model) vs = detector.video2image(input_frame) else: vs = cv2.VideoCapture(input_frame) # Derive the paths to the YOLO weights and model configuration weightsPath = os.path.sep.join(["models", model, "yolov3.weights"]) configPath = os.path.sep.join(["models", model, "yolov3.cfg"]) net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) # Determine only the 'output' layer names that we need from YOLO ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] fps = FPS().start() while True: ret, frame_read = vs.read() # If frame not grabbed, break out of loop if not ret: break if useGPU: detections = detector.YOLO(frame_read, netMain, metaMain) else: detections = detectorCPU.detect(frame_read, net, ln) key = cv2.waitKey(1) if key == ord('q'): break print(detections) #detector.printInfo(detections) # Update the FPS counter fps.update() # Stop the timer and display FPS information fps.stop() print("\n[INFO] elapsed time: {:2f}".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) vs.release() vs.release()
96f1f685114c793b03f5d00db5ccf5b4d271a8ad
b47f5ca0a51cf59427b7bd12e9c85064a1e13e03
/tests/easyci/test_user_config.py
1c8736e3d3bb8b17d77ff5f9e1a29fd3a58cbbd4
[ "MIT" ]
permissive
naphatkrit/easyci
a490b57e601bcad6d2022834809dd60cb0902e0c
7aee8d7694fe4e2da42ce35b0f700bc840c8b95f
refs/heads/master
2016-09-02T01:14:28.505230
2015-09-09T00:26:25
2015-09-09T00:26:25
41,396,486
2
0
null
null
null
null
UTF-8
Python
false
false
1,953
py
import mock import os import pytest import shutil import tempfile import yaml from easyci.vcs.base import Vcs from easyci.user_config import ( _config_types, _default_config, load_user_config, ConfigFormatError, ConfigNotFoundError ) @pytest.yield_fixture(scope='function') def repo_path(): path = tempfile.mkdtemp() try: yield path finally: shutil.rmtree(path) def _create_config_file(config, path): with open(os.path.join(path, 'eci.yaml'), 'w') as f: f.write(yaml.safe_dump(config)) @pytest.fixture(scope='function') def fake_vcs(repo_path): vcs = mock.Mock(spec=Vcs) vcs.path = repo_path return vcs def test_default_config_types(): for k, v in _config_types.iteritems(): if k in _default_config: assert isinstance(_default_config[k], v) @pytest.mark.parametrize('tests', [ ['true'], [], ['true', 'true'], ]) def test_load_user_config_simple(tests, fake_vcs, repo_path): _create_config_file({ "tests": tests }, repo_path) config = load_user_config(fake_vcs) assert config['tests'] == tests @pytest.mark.parametrize('user_config', [ {}, {"other": 0}, ]) def test_load_user_config_default_config(user_config, fake_vcs, repo_path): _create_config_file(user_config, repo_path) config = load_user_config(fake_vcs) user_config.update(_default_config) assert config == user_config @pytest.mark.parametrize('config_string', [ yaml.safe_dump({}) + '}}', yaml.safe_dump({'tests': True}), yaml.safe_dump([]), ]) def test_load_user_config_invalid_config(config_string, fake_vcs, repo_path): with open(os.path.join(repo_path, 'eci.yaml'), 'w') as f: f.write(config_string) with pytest.raises(ConfigFormatError): load_user_config(fake_vcs) def test_load_user_config_not_found(fake_vcs): with pytest.raises(ConfigNotFoundError): load_user_config(fake_vcs)
e9d1caab6dde00c07ce3832efe253d9348ac4a88
940dcf18bb1db19610e29902c78ec703690c4297
/pygame/py002.py
17a13a71d3e9bdeacc203460516516e052a3e799
[]
no_license
Sahil4UI/PythonRegular11-12Dec2020
dc20e8d13d191801301d18d5b92f5775fe9c0674
0b22b1d8c703ac21a1f02c2b10f327bcb2e96460
refs/heads/main
2023-02-27T13:00:22.415199
2021-01-31T06:57:58
2021-01-31T06:57:58
318,424,644
0
0
null
null
null
null
UTF-8
Python
false
false
3,076
py
import random import pygame import time from pygame.locals import * pygame.init() H= 600 W=800 gameScreen= pygame.display.set_mode((W,H)) color= (255,255,255) red = (255 , 0 , 0 ) blue = (0,0,255) w=30 h=30 pygame.time.set_timer(USEREVENT,1000) frog=pygame.image.load("frog.png")#raw string-path frog = pygame.transform.scale(frog,(50,50)) audio = pygame.mixer.Sound("point.wav") def Score(counter): font=pygame.font.SysFont(None,30) #anti aliasing ->texture-> True text=font.render(f"Score : {counter}",True,blue) gameScreen.blit(text,(10,10)) def Snake(snakeList): for i in snakeList: pygame.draw.rect(gameScreen,red,[i[0],i[1],w,h]) def Timer(sec): font=pygame.font.SysFont(None,30) #anti aliasing ->texture-> True text=font.render(f"Time Left : {sec} seconds",True,blue) gameScreen.blit(text,(500,10)) def gameOver(): pass # font=pygame.font.SysFont(None,30) # #anti aliasing ->texture-> True # text=font.render(f"***GAME OVER***",True,blue) # gameScreen.blit(text,(500,10)) def main(): movex = 0 movey = 0 frogX = random.randint(0,W-50) frogY = random.randint(0,H-50) x=0 y=0 sec=20 counter=0 snakeList= [] snakeLength=1 while True: gameScreen.fill(color) for event in pygame.event.get(): if event.type==pygame.QUIT: pygame.quit() quit() elif event.type==pygame.USEREVENT: sec-=1 if event.type==pygame.KEYDOWN: if event.key == pygame.K_LEFT: movex=-1 movey=0 elif event.key == pygame.K_RIGHT: movex=1 movey=0 elif event.key==pygame.K_UP: movey=-1 movex=0 elif event.key==pygame.K_DOWN: movey=1 movex=0 # gameScreen.blit(image,(imageX,imageY)) snake = pygame.draw.rect(gameScreen,red,[x,y,w,h]) snakeList.append([x,y]) Snake(snakeList) frogRect = pygame.Rect([frogX,frogY,50,50]) gameScreen.blit(frog,(frogX,frogY)) x += movex y += movey if x>W-w: movex=-1 elif x<0: movex=1 if y>H-h: movey=-1 elif y<0: movey=1 Score(counter) Timer(sec) if sec <0: gameOver() if snakeLength<len(snakeList): del snakeList[0] if snake.colliderect(frogRect): frogX = random.randint(0,W-50) frogY = random.randint(0,H-50) counter+=1 audio.play() snakeLength+=20 pygame.display.update() main()
c693f5db8f614f95e3a1c00a525aaebceea90a87
a2277623dee26a0cb76f71092f8a88b363618962
/list_servers.py
19fac5a3c8ba0541e315b6ae21eed50406969c2f
[]
no_license
rangsutu88/Azure-Proxy-Gen
474e560cacd5827a7d0e8e35cd69648873336c96
722b7168effea4a14aceae060c79ccf4b1f968ad
refs/heads/master
2022-11-28T09:17:39.180679
2020-08-06T03:10:18
2020-08-06T03:10:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
from Azure import display_servers2 if __name__ == '__main__': display_servers2()
879086db133bd1ab22783e38d697afc115869d4f
71c4a775c81179e920b72bdee87d9af3edfd4d99
/01_Sintaxe_Basica/10_dicionario.py
9ea3b3c107c7a83db1b023da9899d434b0a3d0f8
[]
no_license
frclasso/acate18122018
16f4169dbfb0eb8c25e253965642122e6095a211
98e4697d4e34c740a537a553b5ae6841159c58f7
refs/heads/master
2020-04-08T00:54:59.822648
2019-01-24T16:55:42
2019-01-24T16:55:42
158,873,478
0
0
null
null
null
null
UTF-8
Python
false
false
1,267
py
#!/usr/bin/env python3 aluno = {'ID': 1223, 'Nome':'Patricia', 'Idade': 27, 'Curso': 'Sistemas de Informação', 'Turno':'Noturno' } print(f"ID: {aluno['ID']}") print(f"Nome: {aluno['Nome']}") print(f"Idade:{aluno['Idade']}") print() '''Atualizando valores existentes''' aluno['Idade'] = 28 print(aluno) print() '''Inserindo novo campo''' aluno['Matrícula'] = 8990020198 print(aluno) print() # Utilizando o metodo Update aluno.update({'Turno':'Diurno', 'Sobrenome':'Nunes', 'Telefone':'(48)555-333'}) print(aluno) print() '''Deletando items''' aluno.__delitem__('Idade') print(aluno) print() aluno.pop('Turno') print(aluno) print() del aluno['Matrícula'] print(aluno) print() '''Apagando todos os dados''' # aluno.clear() # print(aluno) # {} '''Deletando o dicionario em si''' # del aluno # print(aluno) # NameError: name 'aluno' is not defined '''Criando um dicionario vazio''' meuDic = {} print(meuDic) print(type(meuDic)) # print(f'Tamanho do dicionario: {len(aluno)} items.') '''Imprimindo um dicionario com as chaves - keys()''' print(aluno.keys()) '''Imprimindo um dicionario com os valores - values()''' print(aluno.values()) '''Imprimindo um dicionario com todos os items''' print(aluno.items())
01e192a4c835a3d6ec4c29d6fb66176e51359dcb
7c27898a5f85dedf0dbbb12451b6c635861dc197
/tornado_overview/chapter03/aiomysql_test.py
8c3375ad203593d54c3a67dc4692f73aa301b121
[]
no_license
Asunqingwen/Tornado_test_application
9323d3289fadf69e7b1e7685da8f631d0e88968f
4f3a9cda9fc081a8b83f06934bc480cd597d4ad8
refs/heads/master
2023-02-18T08:43:58.012236
2021-01-21T09:59:57
2021-01-21T09:59:57
330,935,556
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
import asyncio import aiomysql from tornado import gen, ioloop async def go(): pool = await aiomysql.create_pool(host='192.168.10.69', port=3306, user='root', password='root', db='message', charset="utf8") async with pool.acquire() as conn: async with conn.cursor() as cur: await cur.execute("SELECT * from message") value = await cur.fetchone() print(cur.description) print(value) pool.close() await pool.wait_closed() if __name__ == '__main__': io_loop = ioloop.IOLoop.current() io_loop.run_sync(go)
429e64977baa323e53d62067c95f88041a1940f3
7929367c0d3003cb903c0217b0477abd60e759bc
/lexicons.py
a80dbb4c8fb12d16bad920d09300117dfbcd7421
[]
no_license
daimrod/opinion-sentence-annotator
cf5a879c9f24c6f47e7d7278ec730899da0e96fd
e487b9a11959876d83316e97c572f0116d982617
refs/heads/master
2020-06-21T20:41:37.878330
2017-03-08T15:01:20
2017-03-08T15:01:20
74,770,001
0
0
null
null
null
null
UTF-8
Python
false
false
2,329
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging logger = logging.getLogger(__name__) import reader import resources as res # A global variables used to store known lexicons _lexicons = {} def get_lexicon(lexicon_name): """Return the lexicon designated by lexicon_name. Args: lexicon_name: The name of a lexicon. Returns: Returns the requested lexicon """ if lexicon_name not in _lexicons: raise KeyError('The lexicon \'%s\' has not been registered' % lexicon_name) lexicon_reader, lexicon_path = _lexicons[lexicon_name] return lexicon_reader(lexicon_path) def register_lexicon(lexicon_name, lexicon_reader, lexicon_path): """Register a lexicon and how to read it. This function register into a datastructure how to load a lexicon. Args: lexicon_name: The name of a lexicon. lexicon_reader: A function to read the given lexicon. lexicon_path: The path to read the given lexicon. Returns: Nothing""" _lexicons[lexicon_name] = (lexicon_reader, lexicon_path) register_lexicon('bing_liu', reader.read_bing_liu, res.bing_liu_lexicon_path) register_lexicon('mpqa', reader.read_mpqa, res.mpqa_lexicon_path) register_lexicon('mpqa_plus', reader.read_mpqa_plus, res.mpqa_plus_lexicon_path) register_lexicon('nrc_emotion', reader.read_nrc_emotion, res.nrc_emotion_lexicon_path) register_lexicon('nrc_emotions', reader.read_nrc_emotions, res.nrc_emotion_lexicon_path) register_lexicon('nrc_hashtag_unigram', reader.read_nrc_hashtag_unigram, res.nrc_hashtag_unigram_lexicon_path) register_lexicon('nrc_hashtag_bigram', reader.read_nrc_hashtag_bigram, res.nrc_hashtag_bigram_lexicon_path) register_lexicon('nrc_hashtag_pair', reader.read_nrc_hashtag_pair, res.nrc_hashtag_pair_lexicon_path) register_lexicon('nrc_hashtag_sentimenthashtags', reader.read_nrc_hashtag_sentimenthashtags, res.nrc_hashtag_sentimenthashtags_lexicon_path) register_lexicon('lidilem_adjectifs', reader.read_lidilem_adjectifs, res.lidilem_adjectifs_lexicon_path) register_lexicon('lidilem_noms', reader.read_lidilem_noms, res.lidilem_noms_lexicon_path) register_lexicon('lidilem_verbes', reader.read_lidilem_verbes, res.lidilem_verbes_lexicon_path) register_lexicon('blogoscopie', reader.read_blogoscopie, res.blogoscopie_lexicon_path)