blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
7b2c2de23fb780350f4b5685fefa6d4dcf750f2d
9b3edf55beca0176fac208efdf2e2bb2ef8f9600
/libcloudforensics/providers/aws/internal/account.py
cbd4461653afbd001926391883a68686dcfe8edf
[ "Apache-2.0" ]
permissive
aarontp/cloud-forensics-utils
cc81530dcb1f32b906cf53c911f8c49b46d17fa4
efc65b526bb551595353f0012d46381792a3684e
refs/heads/master
2023-01-16T01:18:33.503447
2020-10-29T16:34:35
2020-10-29T16:34:35
275,072,971
1
0
Apache-2.0
2020-06-26T04:27:36
2020-06-26T04:27:35
null
UTF-8
Python
false
false
6,019
py
# -*- coding: utf-8 -*- # Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library for incident response operations on AWS EC2. Library to make forensic images of Amazon Elastic Block Store devices and create analysis virtual machine to be used in incident response. """ from typing import Optional, TYPE_CHECKING import boto3 from libcloudforensics.providers.aws.internal import ec2, ebs, kms if TYPE_CHECKING: import botocore class AWSAccount: """Class representing an AWS account. Attributes: default_availability_zone (str): Default zone within the region to create new resources in. default_region (str): The default region to create new resources in. aws_profile (str): The AWS profile defined in the AWS credentials file to use. session (boto3.session.Session): A boto3 session object. _ec2 (AWSEC2): An AWS EC2 client object. _ebs (AWSEBS): An AWS EBS client object. _kms (AWSKMS): An AWS KMS client object. """ def __init__(self, default_availability_zone: str, aws_profile: Optional[str] = None, aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_session_token: Optional[str] = None) -> None: """Initialize the AWS account. Args: default_availability_zone (str): Default zone within the region to create new resources in. aws_profile (str): Optional. The AWS profile defined in the AWS credentials file to use. aws_access_key_id (str): Optional. If provided together with aws_secret_access_key and aws_session_token, authenticate to AWS using these parameters instead of the credential file. aws_secret_access_key (str): Optional. If provided together with aws_access_key_id and aws_session_token, authenticate to AWS using these parameters instead of the credential file. aws_session_token (str): Optional. If provided together with aws_access_key_id and aws_secret_access_key, authenticate to AWS using these parameters instead of the credential file. """ self.aws_profile = aws_profile or 'default' self.default_availability_zone = default_availability_zone # The region is given by the zone minus the last letter # https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#using-regions-availability-zones-describe # pylint: disable=line-too-long self.default_region = self.default_availability_zone[:-1] if aws_access_key_id and aws_secret_access_key and aws_session_token: self.session = boto3.session.Session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token) else: self.session = boto3.session.Session(profile_name=self.aws_profile) self._ec2 = None # type: Optional[ec2.EC2] self._ebs = None # type: Optional[ebs.EBS] self._kms = None # type: Optional[kms.KMS] @property def ec2(self) -> ec2.EC2: """Get an AWS ec2 object for the account. Returns: AWSEC2: Object that represents AWS EC2 services. """ if self._ec2: return self._ec2 self._ec2 = ec2.EC2(self) return self._ec2 @property def ebs(self) -> ebs.EBS: """Get an AWS ebs object for the account. Returns: AWSEBS: Object that represents AWS EBS services. """ if self._ebs: return self._ebs self._ebs = ebs.EBS(self) return self._ebs @property def kms(self) -> kms.KMS: """Get an AWS kms object for the account. Returns: AWSKMS: Object that represents AWS KMS services. """ if self._kms: return self._kms self._kms = kms.KMS(self) return self._kms def ClientApi(self, service: str, region: Optional[str] = None) -> 'botocore.client.EC2': # pylint: disable=no-member """Create an AWS client object. Args: service (str): The AWS service to use. region (str): Optional. The region in which to create new resources. If none provided, the default_region associated to the AWSAccount object will be used. Returns: botocore.client.EC2: An AWS EC2 client object. """ if region: return self.session.client(service_name=service, region_name=region) return self.session.client( service_name=service, region_name=self.default_region) def ResourceApi(self, service: str, # The return type doesn't exist until Runtime, therefore we # need to ignore the type hint # pylint: disable=line-too-long region: Optional[str] = None) -> 'boto3.resources.factory.ec2.ServiceResource': # type: ignore # pylint: enable=line-too-long """Create an AWS resource object. Args: service (str): The AWS service to use. region (str): Optional. The region in which to create new resources. If none provided, the default_region associated to the AWSAccount object will be used. Returns: boto3.resources.factory.ec2.ServiceResource: An AWS EC2 resource object. """ if region: return self.session.resource(service_name=service, region_name=region) return self.session.resource( service_name=service, region_name=self.default_region)
43d75c150e6a950e6724d9f9be77b57896d01433
e8aa02aac87e417ad5767a72cb85d329f3841a3c
/Heart_disease_Prediction/tests/smoke/smoke_tests.py
9eae5343cd4b83821855b605297060d64b3af074
[]
no_license
Kumarg4p/Heart-Disease-Prediction---Azure-MLOps
9e8980b2c89e67e7d5ebb651a9a9b36c5048f059
8ca582d4786caf2d65cca4ea062e6ad83c3e01a9
refs/heads/main
2023-08-04T17:46:00.663885
2021-09-20T01:33:03
2021-09-20T01:33:03
404,184,323
0
0
null
null
null
null
UTF-8
Python
false
false
933
py
import requests import json import pandas as pd req_sample = {"age": 45,"sex": 0,"cp": 2,"trestbps": 155,"chol": 258,"fbs": 1,"restecg": 0,"thalach":180,"exang":2, \ "oldpeak": 2.5,"slope": 1,"ca": 2,"thal": 1} def test_ml_service(scoreurl): assert scoreurl != None headers = {'Content-Type':'application/json'} resp = requests.post(scoreurl, json=json.loads(json.dumps(req_sample)), headers=headers) assert resp.status_code == requests.codes["ok"] assert resp.text != None assert resp.headers.get('content-type') == 'application/json' assert int(resp.headers.get('Content-Length')) > 0 def test_prediction(scoreurl): assert scoreurl != None headers = {'Content-Type':'application/json'} resp = requests.post(scoreurl, json=json.loads(json.dumps(req_sample)), headers=headers) resp_json = json.loads(resp.text) assert resp_json['output']['predicted_target'] == "1"
ee58373dfdb030ee5b6e6bc06f53117f04cb0396
20d2960ac57136aa427afbbf2a88aec30500ab22
/openhtf/capabilities/usb/shell_service.py
842acf2ee8b3e72356ef949d06ad99a56030c148
[ "Apache-2.0" ]
permissive
song7seas/openhtf
55e447b446efe97e10e0a5c4b927142d526e9016
9d278de31cc23ce14acbc84feb83e763e6a45e58
refs/heads/master
2020-12-13T18:27:10.712055
2015-09-01T22:50:10
2015-09-01T22:50:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,760
py
# Copyright 2014 Google Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Some handy interfaces to the ADB :shell service. The :shell service is pretty straightforward, you send 'shell:command' and the device runs /bin/sh -c 'command'. The ADB daemon on the device sets up a PTY, similar to what ssh would do, to provide interactive terminal features. This makes things difficult if you're trying to pipe binary data through a remote command; however, we provide some facilities for 'raw' commands, where we first execute an ioctl to turn off things like character translation and local echo, providing a more sane programmatic interface. The ShellService also provides some handy methods for running commands asynchronously, either by returning a handle, or using a with: context. Note that this service differs from the FilesyncService in that streams opened to the :shell service are closed immediately after the command completes; streams opened to the :sync service remain open for multiple sync requests, until they are closed explicitly. This means there's no point in keeping a stream around ShellService, we need to keep an AdbConnection around instead. Some examples of how to use this service: adb_cnxn = adb_protocol.AdbConnection.Connect(my_transport) shell = shell_service.ShellService(adb_cnxn) # Run a simple command. output = shell.Command('echo foo') # output == 'foo\r\n' # Run a command that outputs binary data, like recording a minute of audio. output = shell.RawCommand('arecord -Dhw:CARD=0,DEV=0 -c 2 -d 60') # Run a command in the background, do some other stuff, then read the # command's output, waiting on it to complete. cmd = shell.AsyncCommand('echo foo; sleep 10') bar = shell.Command('echo bar') foo = cmd.Wait() baz = shell.Command('echo baz') # A version using a with context to do the same thing: with shell.AsyncCommand('echo foo; sleep 10') as c: bar = shell.Command('echo bar') foo = c.Wait() baz = shell.Command('echo baz') # Run a command in the background while we do some other stuff, save the # output to a StringIO buffer so we can access it later. Use a context to # automatically wait for the asynchronous command to finish. output = cStringIO.StringIO() with shell.AsyncRawCommand( 'arecord -Dhw:CARD=0,DEV=0 -c 2 -d 60', stdout=output): # Do some stuff, play some sounds on some fixture speakers, for example. pass # Execution won't get here until the arecord command completes, and # output.getvalue() now contains the output of the arecord command. """ import cStringIO import threading import time from openhtf.capabilities.usb import adb_protocol from openhtf.capabilities.usb import usb_exceptions from openhtf.util import timeouts class AsyncCommandHandle(object): """This class is used for interacting with an asynchronous command. This handle is used to close a command or to wait on it to complete. Data is read from stdin and written to the command's stdin, and output from the command is written to stdout. If stdin is None, no input is written to the command. If stdout is None, the output from the command is buffered internally, and will be returned from a call to Wait() - see the Wait() method for details. You can tell if a stream was closed locally by checking the 'force_closed_or_timeout' attribute. If a command completes instead of being closed by a call to Close (or a timeout), then 'force_closed_or_timeout' will be False, otherwise it will be True. """ def __init__(self, stream, stdin, stdout, timeout, is_raw): #pylint: disable=too-many-arguments """Create a handle to use for interfacing with an AsyncCommand. Args: stream: Stream to use for communicating with the running command. stdin: File-like object to use for reading stdin for the command, can be None, in which case no input is sent to the command. stdout: File-like object to use for writing output of the command to, can be None, in which case output can be obtained by calling Wait(). timeout: timeouts.PolledTimeout to use for the command. is_raw: If True, we'll do reads from stdin, otherwise we do readlines instead to play nicer with potential interactive uses (read doesn't return until EOF, but interactively you want to send each line and then see the response). stdout is treated the same in either case, read is used - AdbStreams don't support readline. """ self.stream = stream self.stdin = stdin self.stdout = stdout or cStringIO.StringIO() self.force_closed_or_timeout = False self.reader_thread = threading.Thread(target=self._ReaderThread) self.reader_thread.daemon = True self.reader_thread.start() if stdin: self.writer_thread = threading.Thread(target=self._WriterThread, args=(is_raw,)) self.writer_thread.daemon = True self.writer_thread.start() # Close ourselves after timeout expires, ignored if timeout won't expire. timeouts.ExecuteAfterDelay(timeout, self.Close) def _WriterThread(self, is_raw): """Write as long as the stream is not closed.""" # If we're not in raw mode, do line-buffered reads to play nicer with # potential interactive uses, max of MAX_ADB_DATA, since anything we write # to the stream will get packetized to that size anyway. # # Loop until our stream gets closed, which will cause one of these # operations to raise. Since we're in a separate thread, it'll just get # ignored, which is what we want. reader = self.stdin.read if is_raw else self.stdin.readline while not self.stream.IsClosed(): self.stream.Write(reader(adb_protocol.MAX_ADB_DATA)) def _ReaderThread(self): """Read until the stream is closed.""" for data in self.stream.ReadUntilClose(): if self.stdout is not None: self.stdout.write(data) def __enter__(self): # pylint: disable=invalid-name return self def __exit__(self, exc_type, exc_value, exc_tb): # pylint: disable=invalid-name if exc_type: return False self.Wait() return True def Close(self): """Close this handle immediately - you may lose output.""" self.force_closed_or_timeout = True self.stream.Close() def IsDone(self): """Return True if this command has completed.""" return self.stream.IsClosed() def Wait(self, timeout_ms=None): """Block until this command has completed. Args: timeout_ms: Timeout, in milliseconds, to wait. Returns: Output of the command if it complete and self.stdout is a StringIO object or was passed in as None. Returns True if the command completed but stdout was provided (and was not a StringIO object). Returns None if the timeout expired before the command completed. Be careful to check the return value explicitly for None, as the output may be ''. """ closed = timeouts.LoopUntilTimeoutOrTrue( timeouts.PolledTimeout.FromMillis(timeout_ms), self.stream.IsClosed, .1) if closed: if hasattr(self.stdout, 'getvalue'): return self.stdout.getvalue() return True return None class ShellService(object): """Class providing a high-level interface to ADB's :shell service. This class provides synchronous and asynchronous commands, and a variety of ways for getting input into and out of them. """ def __init__(self, adb_connection): self.adb_connection = adb_connection @staticmethod def _ToRawCommand(command): """Convert the command to a raw signal.""" # Android doesn't have stty, so we manually do the ioctl (yuck). This ioctl # is a TCSETA (0x5403) with the following flags set: # Control bits: # B38400 (set baud rate) # CS8 (8-bit bytes) # CREAD (Enable input from terminal) # Input, Output, Local bits all cleared # # We also update VMIN from 0x0 to 0xff so read() waits for at least one byte # to be ready before returning (we leave the default VTIME at 0x4). Note # that we leave the other control characters at their defaults, but they # should be ignored since we disable them with flags and put the terminal # into non-canonical input mode (not newline delimited). return ('ioctl -l 23 -a 1 /proc/self/fd/0 0x5403 ' # TCSETA (0x5403) '0 0 0 0 0 0 0 0 0xbf 0 0 0 0 0 0 0 ' # Flags '0 0x3 0x1c 0x7f 0x15 0x4 0xff ' # Control characters '&>/dev/null;%s' % command) def Command(self, command, raw=False, timeout_ms=None): """Run the given command and return the output.""" return ''.join(self.StreamingCommand(command, raw, timeout_ms)) def StreamingCommand(self, command, raw=False, timeout_ms=None): """Run the given command and yield the output as we receive it.""" if raw: command = self._ToRawCommand(command) return self.adb_connection.StreamingCommand('shell', command, timeout_ms) # pylint: disable=too-many-arguments def AsyncCommand(self, command, stdin=None, stdout=None, raw=False, timeout_ms=None): """Run the given command on the device asynchronously. Input will be read from stdin, output written to stdout. ADB doesn't distinguish between stdout and stdin on the device, so they get interleaved into stdout here. stdin and stdout should be file-like objects, so you could use sys.stdin and sys.stdout to emulate the 'adb shell' commandline. Args: command: The command to run, will be run with /bin/sh -c 'command' on the device. stdin: File-like object to read from to pipe to the command's stdin. Can be None, in which case nothing will be written to the command's stdin. stdout: File-like object to write the command's output to. Can be None, in which case the command's output will be buffered internally, and can be access via the return value of Wait(). raw: If True, run the command as per RawCommand (see above). timeout_ms: Timeout for the command, in milliseconds. Returns: An AsyncCommandHandle instance that can be used to send/receive data to and from the command or wait on the command to finish. Raises: AdbStreamUnavailableError: If the remote devices doesn't support the shell: service. """ timeout = timeouts.PolledTimeout.FromMillis(timeout_ms) if raw: command = self._ToRawCommand(command) stream = self.adb_connection.OpenStream('shell:%s' % command, timeout) if not stream: raise usb_exceptions.AdbStreamUnavailableError( '%s does not support service: shell', self) if raw and stdin is not None: # Short delay to make sure the ioctl to set raw mode happens before we do # any writes to the stream, if we don't do this bad things happen... time.sleep(.1) return AsyncCommandHandle(stream, stdin, stdout, timeout, raw) # pylint: enable=too-many-arguments @classmethod def UsingConnection(cls, adb_connection): """Factory method to match the interface of FilesyncService.""" return cls(adb_connection)
fe3fc270d1fb2b780d9062ebe8a945f4e690cccb
69f5d7b24343ccfe1c4b7fd2118c86bbfdd035e8
/Advent_of_Code_16.py
68035ad910c092855aff6d86fbed7497227dd3bf
[]
no_license
AndrewWoodcock/Advent-of-Code-2020
af24a5e992a003a8c46f84a70e7b043d9f7561a0
1d899961d9178955fe6fccb257e90f7416fc614b
refs/heads/main
2023-02-08T19:31:26.917576
2020-12-26T18:42:25
2020-12-26T18:42:25
319,082,475
0
0
null
null
null
null
UTF-8
Python
false
false
2,277
py
dep_rules = "departure_rules.txt" # dep_rules = "departure_rules_test.txt" # nearby_tickets = "nearby_tickets_test.txt" nearby_tickets = "nearby_tickets.txt" def get_departure_rules(filename: str) -> dict: rules_dict = {} with open(filename, "r") as file: for line in file: # split by : split_rule = line.split(":") # get dict key rule_key = split_rule[0].strip() rules_dict[rule_key] = [] # get rule values rule_value_str = "".join(split_rule[1].split("or")).strip() split_rule_values = rule_value_str.split(" ") # value range 1 rule_value_set_1 = split_rule_values[0] rules_dict[rule_key].append(int(rule_value_set_1.split("-")[0])) rules_dict[rule_key].append(int(rule_value_set_1.split("-")[1])) # value range 2 rule_value_set_2 = split_rule_values[2] rules_dict[rule_key].append(int(rule_value_set_2.split("-")[0])) rules_dict[rule_key].append(int(rule_value_set_2.split("-")[1])) return rules_dict def get_nearby_tickets(filename: str) -> list: with open(filename, "r") as file: ticket_list = [] for line in file: ticket_list.append([int(i) for i in line.strip().split(",")]) return ticket_list def create_valid_numbers(rules: dict) -> set: valid_set = set() for key, value in rules.items(): for i in range(value[0], value[1]+1): valid_set.add(i) for i in range(value[2], value[3]+1): valid_set.add(i) return valid_set def check_validity(tickets: list, valid_numbers: set) -> list: error_list = [] for ticket in tickets: for value in ticket: if value not in valid_numbers: error_list.append(value) return error_list def main(): departure_rules_dict = get_departure_rules(dep_rules) nearby_tickets_list = get_nearby_tickets(nearby_tickets) valid_numbers_set = create_valid_numbers(departure_rules_dict) ts_error_rate = sum(check_validity(nearby_tickets_list, valid_numbers_set)) print("The ticket scanning error rate is {0}".format(ts_error_rate)) if __name__ == '__main__': main()
b33fd7c6fb5fcd40784678489b42da8b4615728a
635ed499496d9088d9af2f4cb433b757478c7ba2
/articles/models.py
33fba8c19fd833bbb3f914fd95d97dc7916a053c
[]
no_license
vaishnaviDevi05/news-app
fb00d9300ad8cf42a2332274d554a4732961c741
741847aeed4379ae83cb7115b7e3c9853472564e
refs/heads/main
2023-04-16T15:49:45.183421
2021-04-28T16:14:05
2021-04-28T16:14:05
362,526,477
0
0
null
null
null
null
UTF-8
Python
false
false
1,010
py
from django.db import models from django.conf import settings from django.contrib.auth import get_user_model from django.urls import reverse # Create your models here. class Article (models . Model): title =models . CharField(max_length =255 ) body = models . TextField() date =models . DateTimeField(auto_now_add = True ) author = models . ForeignKey(get_user_model(),on_delete = models . CASCADE,) def __str__ ( self ): return self . title def get_absolute_url ( self ): return reverse( 'article_detail' , args = [ str ( self . id)]) class Comment(models.Model): # new article = models.ForeignKey( Article, on_delete=models.CASCADE, related_name='comments', # new ) comment = models.CharField(max_length=140) author = models.ForeignKey( get_user_model(), on_delete=models.CASCADE, ) def __str__(self): return self.comment def get_absolute_url(self): return reverse('article_list')
6168e486610759f5d2d1fc74d45ace0aa72be9aa
7b4e414b4d6823417807ad57c20a5ec6d7c4a9b7
/tree_serialization.py
025644e138c8cddc3a2bdc5887824da0fd235000
[]
no_license
alvinkaiser/DailyInterviewQuestion
6effe8ad3b41fe56ba96afce767c9f791315a6ad
859a8d77c014181fe353a88c3e530d0aa676bc5e
refs/heads/master
2023-03-18T08:08:19.016763
2020-03-12T06:39:48
2020-03-12T06:39:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,570
py
l def rabin_karp(s1,s2): assert len(s1) >= len(s2) current_hash = target_hash =0 same = True x = 53 for i in range(len(s2)): if same and s1[i] != s2[i]: same = False current_hash = current_hash * x + ord(s1[i]) target_hash = target_hash *x + ord(s2[i]) power = x**(len(s2) - 1) for i in range(len(s2),len(s1)): letter_to_remove,letter_to_add = s1[i - len(s2)],s1[i] current_hash = (current_hash - power * ord(letter_to_remove)) * x + ord(letter_to_add) if current_hash == target_hash and s1[i - len(s2) + 1:i + 1] == s2: return i - len(s2) + 1 return -1 class Node: def __init__(self,value): self.value = value self.left = self.right = None def __repr__(selelf): return f"Node({self.value})" def serialize(root): if not root: return '#' s = str(root.value) s += ' ' + serialize(root.left) s += ' ' + serialize(root.right) return s def deserialize(data): def helper(): value = next(values) if value == '#': return None node = Node(int(value)) node.left = helper() node.right = helper() return node values = iter(data.split()) return node if __name__ == "__main__": n1 = Node(1) n2 = Node(2) n3 = Node(3) n4 = Node(4) n5 = Node(5) n7 = Node(7) n1.left = n3 n1.right = n4 n3.left = n2 n3.right = n5 n4.right = n7 print(serialize(n1))
8adeb084c7dc9ebf20dd62c54ce870904e63af98
66093b66b8b2e2401ff1b2f3bad9ef5895d65c03
/sound_split/asr_sound_split/readdata24.py
cf3cdcea83f728ea762abecfc1f8d1456827ed92
[]
no_license
soulbyfeng/aiways
dc01391a1ccfd3b03126e629db629e27194efb94
a2637745815f39960848dd8f4a9ccf94b1917fa1
refs/heads/master
2020-06-26T12:09:06.302368
2019-07-30T10:20:23
2019-07-30T10:20:23
199,626,476
0
0
null
null
null
null
UTF-8
Python
false
false
8,917
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import platform as plat import os import numpy as np from general_function.file_wav import * from general_function.file_dict import * import random #import scipy.io.wavfile as wav from scipy.fftpack import fft class DataSpeech(): def __init__(self, path, type, LoadToMem = False, MemWavCount = 10000): ''' 初始化 参数: path:数据存放位置根目录 ''' system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断 self.datapath = path; # 数据存放位置根目录 self.type = type # 数据类型,分为三种:训练集(train)、验证集(dev)、测试集(test) self.slash = '' if(system_type == 'Windows'): self.slash='\\' # 反斜杠 elif(system_type == 'Linux'): self.slash='/' # 正斜杠 else: print('*[Message] Unknown System\n') self.slash='/' # 正斜杠 if(self.slash != self.datapath[-1]): # 在目录路径末尾增加斜杠 self.datapath = self.datapath + self.slash self.dic_wavlist_thchs30 = {} self.dic_symbollist_thchs30 = {} self.dic_wavlist_stcmds = {} self.dic_symbollist_stcmds = {} self.SymbolNum = 0 # 记录拼音符号数量 self.list_symbol = self.GetSymbolList() # 全部汉语拼音符号列表 self.list_wavnum=[] # wav文件标记列表 self.list_symbolnum=[] # symbol标记列表 self.DataNum = 0 # 记录数据量 self.LoadDataList() self.wavs_data = [] self.LoadToMem = LoadToMem self.MemWavCount = MemWavCount pass def LoadDataList(self): ''' 加载用于计算的数据列表 参数: type:选取的数据集类型 train 训练集 dev 开发集 test 测试集 ''' # 设定选取哪一项作为要使用的数据集 if(self.type=='train'): filename_wavlist_thchs30 = 'thchs30' + self.slash + 'train.wav.lst' filename_wavlist_stcmds = 'st-cmds' + self.slash + 'train.wav.txt' filename_symbollist_thchs30 = 'thchs30' + self.slash + 'train.syllable.txt' filename_symbollist_stcmds = 'st-cmds' + self.slash + 'train.syllable.txt' elif(self.type=='dev'): filename_wavlist_thchs30 = 'thchs30' + self.slash + 'cv.wav.lst' filename_wavlist_stcmds = 'st-cmds' + self.slash + 'dev.wav.txt' filename_symbollist_thchs30 = 'thchs30' + self.slash + 'cv.syllable.txt' filename_symbollist_stcmds = 'st-cmds' + self.slash + 'dev.syllable.txt' elif(self.type=='test'): filename_wavlist_thchs30 = 'thchs30' + self.slash + 'test.wav.lst' filename_wavlist_stcmds = 'st-cmds' + self.slash + 'test.wav.txt' filename_symbollist_thchs30 = 'thchs30' + self.slash + 'test.syllable.txt' filename_symbollist_stcmds = 'st-cmds' + self.slash + 'test.syllable.txt' else: filename_wavlist = '' # 默认留空 filename_symbollist = '' # 读取数据列表,wav文件列表和其对应的符号列表 self.dic_wavlist_thchs30,self.list_wavnum_thchs30 = get_wav_list(self.datapath + filename_wavlist_thchs30) self.dic_wavlist_stcmds,self.list_wavnum_stcmds = get_wav_list(self.datapath + filename_wavlist_stcmds) self.dic_symbollist_thchs30,self.list_symbolnum_thchs30 = get_wav_symbol(self.datapath + filename_symbollist_thchs30) self.dic_symbollist_stcmds,self.list_symbolnum_stcmds = get_wav_symbol(self.datapath + filename_symbollist_stcmds) self.DataNum = self.GetDataNum() def GetDataNum(self): ''' 获取数据的数量 当wav数量和symbol数量一致的时候返回正确的值,否则返回-1,代表出错。 ''' num_wavlist_thchs30 = len(self.dic_wavlist_thchs30) num_symbollist_thchs30 = len(self.dic_symbollist_thchs30) num_wavlist_stcmds = len(self.dic_wavlist_stcmds) num_symbollist_stcmds = len(self.dic_symbollist_stcmds) if(num_wavlist_thchs30 == num_symbollist_thchs30 and num_wavlist_stcmds == num_symbollist_stcmds): DataNum = num_wavlist_thchs30 + num_wavlist_stcmds else: DataNum = -1 return DataNum def GetData(self,n_start,n_amount=1): ''' 读取数据,返回神经网络输入值和输出值矩阵(可直接用于神经网络训练的那种) 参数: n_start:从编号为n_start数据开始选取数据 n_amount:选取的数据数量,默认为1,即一次一个wav文件 返回: 三个包含wav特征矩阵的神经网络输入值,和一个标定的类别矩阵神经网络输出值 ''' bili = 2 if(self.type=='train'): bili = 11 # 读取一个文件 if(n_start % bili == 0): filename = self.dic_wavlist_thchs30[self.list_wavnum_thchs30[n_start // bili]] list_symbol=self.dic_symbollist_thchs30[self.list_symbolnum_thchs30[n_start // bili]] else: n = n_start // bili * (bili - 1) yushu = n_start % bili length=len(self.list_wavnum_stcmds) filename = self.dic_wavlist_stcmds[self.list_wavnum_stcmds[(n + yushu - 1)%length]] list_symbol=self.dic_symbollist_stcmds[self.list_symbolnum_stcmds[(n + yushu - 1)%length]] if('Windows' == plat.system()): filename = filename.replace('/','\\') # windows系统下需要执行这一行,对文件路径做特别处理 wavsignal,fs=read_wav_data(self.datapath + filename) # 获取输出特征 feat_out=[] #print("数据编号",n_start,filename) for i in list_symbol: if(''!=i): n=self.SymbolToNum(i) #v=self.NumToVector(n) #feat_out.append(v) feat_out.append(n) #print('feat_out:',feat_out) # 获取输入特征 data_input = GetFrequencyFeature3(wavsignal,fs) #data_input = np.array(data_input) data_input = data_input.reshape(data_input.shape[0],data_input.shape[1],1) #arr_zero = np.zeros((1, 39), dtype=np.int16) #一个全是0的行向量 #while(len(data_input)<1600): #长度不够时补全到1600 # data_input = np.row_stack((data_input,arr_zero)) #data_input = data_input.T data_label = np.array(feat_out) return data_input, data_label def data_genetator(self, batch_size=32, audio_length = 1600): ''' 数据生成器函数,用于Keras的generator_fit训练 batch_size: 一次产生的数据量 需要再修改。。。 ''' #labels = [] #for i in range(0,batch_size): # #input_length.append([1500]) # labels.append([0.0]) #labels = np.array(labels, dtype = np.float) labels = np.zeros((batch_size,1), dtype = np.float) #print(input_length,len(input_length)) while True: X = np.zeros((batch_size, audio_length, 200, 1), dtype = np.float) #y = np.zeros((batch_size, 64, self.SymbolNum), dtype=np.int16) y = np.zeros((batch_size, 64), dtype=np.int16) #generator = ImageCaptcha(width=width, height=height) input_length = [] label_length = [] for i in range(batch_size): ran_num = random.randint(0,self.DataNum - 1) # 获取一个随机数 data_input, data_labels = self.GetData(ran_num) # 通过随机数取一个数据 #data_input, data_labels = self.GetData((ran_num + i) % self.DataNum) # 从随机数开始连续向后取一定数量数据 input_length.append(data_input.shape[0] // 8 + data_input.shape[0] % 8) #print(data_input, data_labels) #print('data_input长度:',len(data_input)) X[i,0:len(data_input)] = data_input #print('data_labels长度:',len(data_labels)) #print(data_labels) y[i,0:len(data_labels)] = data_labels #print(i,y[i].shape) #y[i] = y[i].T #print(i,y[i].shape) label_length.append([len(data_labels)]) label_length = np.matrix(label_length) input_length = np.array([input_length]).T #input_length = np.array(input_length) #print('input_length:\n',input_length) #X=X.reshape(batch_size, audio_length, 200, 1) #print(X) yield [X, y, input_length, label_length ], labels pass def GetSymbolList(self): ''' 加载拼音符号列表,用于标记符号 返回一个列表list类型变量 ''' txt_obj=open('dict.txt','r',encoding='UTF-8') # 打开文件并读入 txt_text=txt_obj.read() txt_lines=txt_text.split('\n') # 文本分割 list_symbol=[] # 初始化符号列表 for i in txt_lines: if(i!=''): txt_l=i.split('\t') list_symbol.append(txt_l[0]) txt_obj.close() list_symbol.append('_') self.SymbolNum = len(list_symbol) return list_symbol def GetSymbolNum(self): ''' 获取拼音符号数量 ''' return len(self.list_symbol) def SymbolToNum(self,symbol): ''' 符号转为数字 ''' if(symbol != ''): return self.list_symbol.index(symbol) return self.SymbolNum def NumToVector(self,num): ''' 数字转为对应的向量 ''' v_tmp=[] for i in range(0,len(self.list_symbol)): if(i==num): v_tmp.append(1) else: v_tmp.append(0) v=np.array(v_tmp) return v if(__name__=='__main__'): path='dataset' l=DataSpeech(path,'train') l.LoadDataList() print(l.GetDataNum()) print(l.GetData(0)) aa=l.data_genetator() for i in aa: a,b=i print(a,b) pass
53bd002833d9a292adb9fc9597fcf51a13a3e702
ff7d3116024c9df01b94191ddfa334e4a6782ae6
/mandal/asgi.py
b5b92dc813812b64f6029c072cbb314048f69a23
[ "MIT" ]
permissive
jhnnsrs/arbeider
f5f708ee1026a9e9573a6f8a87c3b9e2fd6b5e33
4c5637913331c998a262ae0deca516b236845200
refs/heads/master
2021-05-26T10:31:16.279628
2020-04-08T13:40:26
2020-04-08T13:40:26
254,095,863
0
0
MIT
2020-04-08T13:40:28
2020-04-08T13:29:31
null
UTF-8
Python
false
false
318
py
""" ASGI entrypoint. Configures Django and then runs the application defined in the ASGI_APPLICATION setting. """ import os import django from channels.routing import get_default_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "mandal.settings") django.setup() application = get_default_application()
c0b3cf431a445b2bc0eeb4c15daff6cc571037d5
cc9a653f937d5f49f1c21088e84bb11a7bd2be03
/exoensewebsite/urls.py
71dfee63473064ad9d2ea93aa00479309c8b6c2a
[]
no_license
Mahmoud-m-bahget/expenses-website
20cd9108fabf3b5ce0f552f63ccb2ed112b74410
f534592a821fa6dfe167f283a734a7c743d07a45
refs/heads/main
2023-02-20T17:07:47.018322
2021-01-26T15:26:07
2021-01-26T15:26:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
976
py
"""exoensewebsite URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path ,include urlpatterns = [ path('',include('expenses.urls')), path('authentication/',include('authentication.urls')), path('preferences/',include('userpreferences.urls')), path('income/',include('userincome.urls')), path('admin/', admin.site.urls), ]
88d96b794355e7ad2198ede93ec8efbb434a5402
626a35087be9a68881879a5993f5a79fdf7c0e1b
/mij.py
3ff4cc9d34037a0b0cc6c32dab59a35680698af1
[]
no_license
kelg1/condindependence
65a587ecebbe5b084bff2089fb952f94a0e1afa3
377435a694ca76de9f593ae68b6f6d7a2e96e93b
refs/heads/master
2021-06-19T10:04:37.072552
2021-02-12T12:17:59
2021-02-12T12:17:59
179,278,182
0
0
null
null
null
null
UTF-8
Python
false
false
1,323
py
class Mij: def __init__(self, gamma=0): self.gamma = gamma self.fit_ = False def fit(self, y, X): y1, y2 = y.T[0], y.T[1] Fn1 = CondMargin(h_x=1e-1, h_y=1e-3) Fn2 = CondMargin(h_x=1e-1, h_y=1e-3) Fn1.fit(y1, X) Fn2.fit(y2, X) self.Fn1 = Fn1 self.Fn2 = Fn2 #R1 = self.Fn1.rank(y1, X) #R2 = self.Fn2.rank(y2, X) R1 = self.Fn1.rank(y1, X) R2 = self.Fn2.rank(y2, X) self.R1 = R1 self.R2 = R2 self.fit_ = True def evaluate(self, i, j): if not self.fit_ : raise NotImplementedErrory assert(len(self.R1)==len(self.R2)) n = len(self.R1) Ri1 = self.R1[i] Ri2 = self.R2[i] Rj1 = self.R1[j] Rj2 = self.R2[j] mij = (1 - np.maximum(Ri1, Rj1)/n) * (1 - np.maximum(Ri2, Rj2)/n) - \ (.5 - .5*((Ri1)/n)**2)*(.5 - .5*((Ri2)/n)**2) - \ (.5 - .5*((Rj1)/n)**2)*(.5 - .5*((Rj2)/n)**2) + 1./9 # mij = (1 - np.maximum(Ri1, Rj1)) * (1 - np.maximum(Ri2, Rj2)) - \ # (.5 - .5*((Ri1))**2)*(.5 - .5*((Ri2))**2) - \ # (.5 - .5*((Rj1))**2)*(.5 - .5*((Rj2))**2) + 1./9 return mij @staticmethod def positive(x): return np.maximum(x, 0.)
2e0c2e8fe4b93f9907d00a544e54427c4af211f1
30258fa59f1dd4c9df500fdd34e336342fe78634
/_archive/2015/python_ex/oscilloscope.py
38466eef3c2712bd39f8685bbfcee7aa429163b8
[]
no_license
benmca/csound-pieces
102ae133ec8686e59958381a09a6355df419e435
299f0931fca885aaf44768b9c844707cb07f534e
refs/heads/master
2023-05-25T02:43:30.205694
2023-05-22T00:00:12
2023-05-22T00:00:12
27,701,093
3
0
null
null
null
null
UTF-8
Python
false
false
1,564
py
#!/usr/bin/python ##################################### # oscilloscope example # # VL, 01/07 import csnd6 from Tkinter import * import display import array import threading # window size, refresh interval and norm factor window_size = 300 time_interval = .1 norm = 32768.0 lock = threading.Lock() class drawThread(threading.Thread): def run(self): lock.acquire() self.disp.draw(self.sig,len(self.sig)) lock.release() def __init__(self, disp, sig): threading.Thread.__init__(self) self.disp = disp self.sig = sig # display callback class Disp: def callb(self, dummy): cs = self.data[0] disp = self.data[1] size = time_interval*cs.GetSr() for i in range(0,cs.GetKsmps()): self.sig.append(cs.GetSpoutSample(i,0)/norm) self.cnt += cs.GetKsmps() if(self.cnt >= size): t = drawThread(disp, self.sig) t.start() self.cnt = 0 self.sig = array.array('d') def __init__(self,data): self.sig = array.array('d') self.data = data self.cnt = 0; # create & compile instance cs = csnd6.Csound() cs.Compile("am.csd") # create the thread object perf = csnd6.CsoundPerformanceThread(cs) # display object master = Tk() disp = display.Oscilloscope(master, window_size, perf.Stop, "green", "black") dat = (cs,disp,master) tes = Disp(dat) # set the callback perf.SetProcessCallback(tes.callb, None) # play perf.Play() # run the display disp.mainloop()
16573c15b3817ed9f64b13f466428536b50da9d6
5b4312ddc24f29538dce0444b7be81e17191c005
/autoware.ai/1.12.0_cuda/build/waypoint_follower/catkin_generated/generate_cached_setup.py
01cfc657005e5167ef4e8abd08b42b76f522be17
[ "MIT" ]
permissive
muyangren907/autoware
b842f1aeb2bfe7913fb2be002ea4fc426b4e9be2
5ae70f0cdaf5fc70b91cd727cf5b5f90bc399d38
refs/heads/master
2020-09-22T13:08:14.237380
2019-12-03T07:12:49
2019-12-03T07:12:49
225,167,473
0
0
null
null
null
null
UTF-8
Python
false
false
1,929
py
# -*- coding: utf-8 -*- from __future__ import print_function import argparse import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/melodic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/melodic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in "/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_health_checker;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/amathutils_lib;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/tablet_socket_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_system_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_config_msgs;/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/install/autoware_build_flags;/opt/ros/melodic".split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/build/waypoint_follower/devel/env.sh') output_filename = '/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/build/waypoint_follower/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: #print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
1c66ee7590418088986353d5bd24aba38b3ae6a5
239cb750a0d5fe2bdd0907a2933fc2e6f0894db4
/sightseq/__init__.py
3c87b075599a3f81c83ef774aa7e497e3cde2024
[ "Apache-2.0" ]
permissive
qiongxiao/image-captioning
b2ff9d18983c5983b68bdd10961dc79a8cb76cba
16a4884ef816245577d106b82b0cbe785fd083a4
refs/heads/master
2020-06-19T23:38:53.360549
2019-07-14T13:08:41
2019-07-14T13:08:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
# Copyright (c) 2019-present, Zhiqiang Wang. # All rights reserved. import sightseq.criterions import sightseq.models import sightseq.modules import sightseq.tasks import sightseq.data
2f01d7850de360df662f532c1ecb1c04d04f2bcb
3cef0aae15f155239a1bde7de9ada79e90d4d6a1
/keygen-practice/crack.py
89e4d7b72db6f68ad13fa40881d90c5a5026603e
[]
no_license
neelpatel05/crackmes
edb3a8954df8892b21f5487bf2551adf4ca02b80
dc0fe1233b1d02060f7960f6406d41fae5a8db53
refs/heads/master
2022-12-05T13:12:08.901471
2020-08-18T19:29:19
2020-08-18T19:29:19
276,696,471
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
final = 52650 divisible = [] for i in range(65, 90): if final % i == 0: divisible.append(i) quotient = [] for i in divisible: x = final / i quotient.append(x) print(quotient) for i,j in zip(divisible, quotient): print(chr(i)*j)
782de249b46f09546dcf741a0fc5f71b7f5aca5e
a03303e46f21697c9da87d0bb0f7b0a3077aba5c
/siswa_keu_ocb11/models/biaya_ta_jenjang.py
8c0710c7ba375eaad0378bdde9362af08f91cddd
[]
no_license
butirpadi/flectra_app_sek
fccd3e47ef261e116478e6da7f0cc544ee67f127
00fa36d9176511f8ffe3c7636a8434ee2ed8c756
refs/heads/master
2020-04-06T10:26:37.053024
2018-11-19T23:59:34
2018-11-20T00:17:02
157,380,460
0
0
null
null
null
null
UTF-8
Python
false
false
6,290
py
# -*- coding: utf-8 -*- from flectra import models, fields, api, _ from pprint import pprint from datetime import datetime, date import calendar class biaya_ta_jenjang(models.Model): _name = 'siswa_keu_ocb11.biaya_ta_jenjang' name = fields.Char('Name', related="biaya_id.name") tahunajaran_jenjang_id = fields.Many2one('siswa_ocb11.tahunajaran_jenjang', string='Tahun Ajaran', required=True, ondelete='cascade') biaya_id = fields.Many2one('siswa_keu_ocb11.biaya', string='Biaya', required=True) is_different_by_gender = fields.Boolean('Different by Gender', related='biaya_id.is_different_by_gender') harga = fields.Float('Harga', required=True, default=0) harga_alt = fields.Float('Harga (Alt)', required=True, default=0) def recompute_biaya_ta_jenjang(self): print('recompute biaya ta jenjang') # get data siswa rb_sis_ids = self.env['siswa_ocb11.rombel_siswa'].search([ ('tahunajaran_id', '=', self.tahunajaran_jenjang_id.tahunajaran_id.id), ('jenjang_id', '=', self.tahunajaran_jenjang_id.jenjang_id.id), ]) for sis in rb_sis_ids: siswa = sis.siswa_id total_biaya = 0 if sis.siswa_id.active: if self.biaya_id.assign_to == 'all' or (siswa.is_siswa_lama and self.biaya_id.assign_to == 'lama') or (not siswa.is_siswa_lama and self.biaya_id.assign_to == 'baru'): # if siswa.is_siswa_lama and self.biaya_id.is_siswa_baru_only: # print('skip') # else: print('JENJANG ID : ' + str(self.tahunajaran_jenjang_id.jenjang_id.id)) if self.biaya_id.is_bulanan: for bulan_index in range(1, 13): harga = self.harga if self.biaya_id.is_different_by_gender: if siswa.jenis_kelamin == 'perempuan': harga = self.harga_alt self.env['siswa_keu_ocb11.siswa_biaya'].create({ 'name' : self.biaya_id.name + ' ' + calendar.month_name[bulan_index], 'siswa_id' : siswa.id, 'tahunajaran_id' : self.tahunajaran_jenjang_id.tahunajaran_id.id, 'biaya_id' : self.biaya_id.id, 'bulan' : bulan_index, 'harga' : harga, 'amount_due' : harga, 'jenjang_id' : self.tahunajaran_jenjang_id.jenjang_id.id }) total_biaya += harga else: harga = self.harga if self.biaya_id.is_different_by_gender: if siswa.jenis_kelamin == 'perempuan': harga = self.harga_alt self.env['siswa_keu_ocb11.siswa_biaya'].create({ 'name' : self.biaya_id.name, 'siswa_id' : siswa.id, 'tahunajaran_id' : self.tahunajaran_jenjang_id.tahunajaran_id.id, 'biaya_id' : self.biaya_id.id, 'harga' : harga, 'amount_due' : harga, 'jenjang_id' : self.tahunajaran_jenjang_id.jenjang_id.id }) total_biaya += harga # set total_biaya dan amount_due # total_biaya = sum(self.harga for by in self.biayas) print('ID SISWA : ' + str(siswa.id)) res_partner_siswa = self.env['res.partner'].search([('id', '=', siswa.id)]) self.env['res.partner'].search([('id', '=', siswa.id)]).write({ 'total_biaya' : total_biaya, 'amount_due_biaya' : res_partner_siswa.amount_due_biaya + total_biaya, }) # Recompute Tagihan Siswa Dashboard/ Keuangan Dashboard self.recompute_dashboard() def reset_biaya_ta_jenjang(self): rb_sis_ids = self.env['siswa_ocb11.rombel_siswa'].search([ ('tahunajaran_id', '=', self.tahunajaran_jenjang_id.tahunajaran_id.id), ('jenjang_id', '=', self.tahunajaran_jenjang_id.jenjang_id.id), ]) for sis in rb_sis_ids: siswa = sis.siswa_id self.env['siswa_keu_ocb11.siswa_biaya'].search(['&', '&', '&', ('tahunajaran_id', '=', self.tahunajaran_jenjang_id.tahunajaran_id.id), ('biaya_id', '=', self.biaya_id.id), ('state', '=', 'open'), ('siswa_id', '=', siswa.id), ]).unlink() # Recompute Tagihan Siswa Dashboard/ Keuangan Dashboard self.recompute_dashboard() def recompute_dashboard(self): dash_keuangan_id = self.env['ir.model.data'].search([('name', '=', 'default_dashboard_pembayaran')]).res_id dash_keuangan = self.env['siswa_keu_ocb11.keuangan_dashboard'].search([('id', '=', dash_keuangan_id)]) for dash in dash_keuangan: dash.compute_keuangan() print('Recompute Keuangan Dashboard done') @api.model def create(self, vals): if not vals['is_different_by_gender']: vals['harga_alt'] = vals['harga'] result = super(biaya_ta_jenjang, self).create(vals) return result @api.multi def write(self, vals): self.ensure_one() # print('isisnya : ') # pprint(vals) # # get biaya # # biaya_ta_jenjang = self.env['siswa_keu_ocb11.biaya_ta_jenjang'].search([('id','=',vals['id'])]) # biaya = self.env['siswa_keu_ocb11.biaya'].search([('id','=',vals['biaya_id'])]) # if not biaya[0].is_different_by_gender: #vals['is_different_by_gender']: if not self.biaya_id.is_different_by_gender: if 'harga' in vals: vals['harga_alt'] = vals['harga'] res = super(biaya_ta_jenjang, self).write(vals) return res
427feb09933b065ae020efa261753f3a2df525d7
be3f9044ca524bd507bf8f38a5753f5a72d8f086
/12-computing-simple-interest/computing-simple-interest.py
9f2c83d072816b4dd6e8aa4209e21af9d270c516
[]
no_license
ville6000/EFP-Python
41a5ccf307ff0b96d60b56e2814489503dd8806b
0076222203f4a09afe9f7954905b36355171dccb
refs/heads/master
2021-04-15T06:38:12.982733
2018-09-24T07:07:26
2018-09-24T07:07:26
126,884,572
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
import locale locale.setlocale( locale.LC_ALL, 'en_CA.UTF-8' ) def calculate_simple_interest(principal, rate_of_interest, years): return int(principal) * (1 + (float(rate_of_interest) / 100) * int(years)) principal = input('Enter the principal: ') rate_of_interest = input('Enter the rate of interest: ') years = input('Enter the number of years: ') worth = calculate_simple_interest(principal, rate_of_interest, years) print(locale.currency(worth))
4635f911b8a061b79945d181271ee84668e3a7f8
d56f4fe901208960ea7328dc63ba455f7664d0a9
/top/routes.py
3bb02280218e2d6e79843fc78b8c5fc1a10bfd88
[]
no_license
bivshaya/tops
53e4a77207329f8dd51b001fc5b1c85b8393bc04
7dd18c954e36403949736eedea1bb486bdb1e287
refs/heads/master
2022-12-18T07:38:49.669155
2019-09-13T11:07:57
2019-09-13T11:07:57
208,220,011
0
0
null
2022-12-08T06:09:32
2019-09-13T07:52:20
CSS
UTF-8
Python
false
false
277
py
from flask import render_template, Markup, request, jsonify from top.utils import log_me from top import offers from top import top @log_me @top.route('/') def index(): products = offers.read_offers() return render_template("app-top.html", product_dict=products)
4ff946b307a86955672b905e0806efb85572c652
198f759dc334df0431cbc25ed4243e86b93571eb
/drop/wsgi.py
0dbf4b2caf4a9cd90fadce8e2d1d88950fcb3cfe
[]
no_license
miladhzz/django-muliple-db
ec2074b14dd67a547c982f20b2586f435e7e0d6c
56ff2555e498d9105cad215daf4c3d4da59d7d9a
refs/heads/master
2022-12-25T08:08:05.761226
2020-10-06T06:38:30
2020-10-06T06:38:30
301,636,910
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
""" WSGI config for drop project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'drop.settings') application = get_wsgi_application()
6be4192f3fc52227e191ab2489000cf461ddea87
d43a182f9fa65dae58f87b0a9aae2f831c587b6e
/mysite/polls/admin.py
dc8f548a0a106b264d07391b283eae6f50408327
[]
no_license
ahmedosamataha/first_steps_in_django
946058f1fa03a1fcd3146ca1e8b47fa48615b032
54f97ef4cef46f4a09cb205c262cf6df39821f8a
refs/heads/master
2020-03-30T11:19:05.249736
2018-10-01T22:10:14
2018-10-01T22:10:14
151,167,217
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
from django.contrib import admin from .models import Question , Choice # Register your models here. admin.site.register(Question) admin.site.register(Choice)
adb2f67e9c44084ad1f9ff53b27bcf8bb14e13b6
8abcbaf205a707382facbbaa6633943a11dec997
/binary_tree/inorderTraversal.py
f4f7cd36b5d29523be9df8220dbbfd4f49cd3129
[]
no_license
sepulworld/leet
09b1ba378452cd53ee86a58179bd61a2b4bbbdbd
4801a4f14181e956c0698b3bc8f06d662cba89a0
refs/heads/master
2020-04-26T07:36:53.716238
2019-04-09T22:16:20
2019-04-09T22:16:20
173,398,608
1
0
null
null
null
null
UTF-8
Python
false
false
420
py
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def __init__(self): self.output = [] def inorderTraversal(self, root: TreeNode) -> List[int]: if root: self.inorderTraversal(root.left) self.output.append(root.val) self.inorderTraversal(root.right) return self.output
0a8b93c86f1f59ac957d675eef30b726dc06c777
52a4d869976a97498bdf56a8d0ff92cac138a136
/Algorithmic Heights/rosalind_3_degarray.py
1ed82de8791f3769afe522fe22c1bee1abb2a87e
[]
no_license
aakibinesar/Rosalind
d726369a787d848cc378976b886189978a60a3a5
375bbdbfb16bf11b2f980701bbd0ba74a1605cdb
refs/heads/master
2022-08-18T09:36:00.941080
2020-05-24T18:49:38
2020-05-24T18:49:38
264,722,651
0
0
null
2020-05-17T17:51:03
2020-05-17T17:40:59
null
UTF-8
Python
false
false
380
py
file = open('rosalind_deg.txt','r').readlines() vertices, edges = (int(val) for val in file[0].split()) my_data = [[int(val) for val in line.split()] for line in file[1:]] count = 0 L = [] for k in range(1,vertices+1): count = 0 for i in range(2): for j in range(0,edges): if my_data[j][i] == k: count+=1 L.append(count) print(' '.join(str(num) for num in L))
3609259e320c1b9024140e43446e259fc8811f1b
c5adccfb62906c2b7ed75388f964e94111782598
/Python/venv/lib/python3.8/site-packages/doqu/validation/__init__.py
42fedd829f0054a6d382ce38b330f1c6fd1f3e16
[]
no_license
FranciscoMaya20/MobileWebScraping
531e9dfc77c1d7ddd90dea5874a4c7f5316d608d
979d310a7751ad27b96679316494023b6d5bd1b8
refs/heads/master
2023-01-28T01:34:33.312236
2020-11-30T16:39:11
2020-11-30T16:39:11
317,284,048
0
0
null
null
null
null
UTF-8
Python
false
false
921
py
# -*- coding: utf-8 -*- # # Doqu is a lightweight schema/query framework for document databases. # Copyright © 2009—2010 Andrey Mikhaylenko # # This file is part of Doqu. # # Doqu is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Doqu is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Doqu. If not, see <http://gnu.org/licenses/>. #import validators #class ValidatedDictMixin(object): # # TODO # pass
d7a94e8e68011d579a02bc724c942353b0af1cc0
2ec1d45341efe23b85019c7596df5fbcfcdcef3e
/model/cnn.py
c36025930684f64e703a2c17b443755d7d6cb5e1
[]
no_license
mostafaalishahi/Genetic_engineering_attribution_challenge_2020
9d6201e716d932a429d62ca242be5bb04dae6a6c
c5bc830d311f15cc1468fb308dbacd5d6678b7ce
refs/heads/master
2023-01-03T14:06:32.210148
2020-10-23T18:16:06
2020-10-23T18:16:06
306,711,461
2
0
null
null
null
null
UTF-8
Python
false
false
2,041
py
import torch from torch import nn class MODEL(nn.Module): def __init__(self, target_size, n_filters=512, rv_comp=True, metadata=True, padding_idx=0): super().__init__() self.rv_comp = rv_comp self.metadata = metadata self.filters = n_filters self.cnn1 = nn.Conv1d(4, self.filters, kernel_size=12, stride=1) self.maxpool = nn.AdaptiveMaxPool1d(1) if self.rv_comp: self.batchnorm1 = nn.BatchNorm1d(self.filters*2) if self.metadata: self.dense1 = nn.Linear((self.filters*2)+39, self.filters) else: self.dense1 = nn.Linear(self.filters*2, self.filters) else: self.batchnorm1 = nn.BatchNorm1d(self.filters) if self.metadata: self.dense1 = nn.Linear(self.filters+39, self.filters) else: self.dense1 = nn.Linear(self.filters, self.filters) self.activation = nn.ReLU() self.batchnorm2 = nn.BatchNorm1d(self.filters) self.hidden2tag = nn.Linear(self.filters, target_size) self.dropout = nn.Dropout(0.3) self.inp_dropout = nn.Dropout(0.05) def forward(self, sequence, sequence_rc, ft): sequence = self.inp_dropout(sequence) cnn1 = self.cnn1(sequence) maxpool = self.maxpool(cnn1).squeeze(-1) if self.rv_comp: sequence_rc = self.inp_dropout(sequence_rc) cnn1_rc = self.cnn1(sequence_rc) maxpool_rc = self.maxpool(cnn1_rc).squeeze(-1) bn1 = self.batchnorm1(torch.cat([maxpool, maxpool_rc], axis=-1)) else: bn1 = self.batchnorm1(maxpool) dp1 = self.dropout(bn1) if self.metadata: dense1 = self.dense1(torch.cat([dp1, ft],axis=-1)) else: dense1 = self.dense1(dp1) activation = self.activation(dense1) bn2 = self.batchnorm2(activation) dp2 = self.dropout(bn2) tag_scores = self.hidden2tag(dp2) return tag_scores
21ae88cb38d2277d10ef58534ab938812f72fd97
a0b857f7cd610ae077138dbc69b3abf7b08e9e31
/api/models/permission.py
64872b23374aa99bdd07660cd9a671946d8163c0
[]
no_license
CalvinHuynh/project-olympic
3122f6b9d9cb1532494bb2aa5443337efac8f519
f73de5dd356b680ee8efe1d1914266d5523084d2
refs/heads/master
2022-12-13T09:03:14.881268
2020-02-06T14:05:04
2020-02-06T14:05:04
207,567,536
0
0
null
2022-12-08T06:44:16
2019-09-10T13:30:27
Python
UTF-8
Python
false
false
242
py
# from peewee import CharField, DateTimeField, PrimaryKeyField # from .base import Base # class Permission(Base): # id = PrimaryKeyField() # permission_name = CharField(unique=True, null=False) # created_date = DateTimeField()
17122f65e0d8729a00a8bd125c9cd4e3087399da
53cb878e54f08d8cf59118e313f773fd99a690fc
/FirstWindow.py
415be3585b73c72f4af53b0ab528eee47290eb53
[]
no_license
Dudoserovich/Coursework-1
17340f08a68e9072f1b7962195674a04d843a533
f41225494ddfeb0e52ff60f79ada9ba8bd63e390
refs/heads/main
2023-07-28T03:30:32.417528
2021-09-14T06:56:11
2021-09-14T06:56:11
406,258,153
0
0
null
null
null
null
UTF-8
Python
false
false
11,717
py
import BaseCreateWindow as BaseWin import tkinter.messagebox as mb import tkinter as tk import os import random from tkinter import filedialog, DISABLED, NORMAL, LEFT, BOTH import ExWindow as ExWin class WorkFile: def _fill_up(self, file, count_num: int, min: int, max: int) -> None: new_max = int(max / count_num) rand = random.randint(min, new_max) file.write(str(rand) + ' ') for i in range(count_num - 1): new_max += int(count_num) rand = random.randint((new_max - int(count_num)), new_max) if i != count_num - 2: file.write(str(rand) + ' ') else: file.write(str(rand)) def _fill_down(self, file, count_num: int, max: int) -> None: new_max = max - int(count_num) new_min = new_max - int(count_num) rand = random.randint(new_min, new_max) file.write(str(rand) + ' ') for i in range(count_num - 1): new_max -= int(count_num) // 100000 new_min -= int(count_num) // 100000 rand = random.randint(new_min, new_max) if i != count_num - 2: file.write(str(rand) + ' ') else: file.write(str(rand)) def _fill_file(self, file_extension: str, file) -> None: min = 1 max = 50000000 check = False if file_extension == ".up": self._fill_up(file, int(self.spin.get()), min, max) elif file_extension == ".down": self._fill_down(file, int(self.spin.get()), max) elif file_extension == ".rand": # случайная последовательность for i in range(int(self.spin.get())): file.write(str(random.randint(min, max)) + ' ') file.truncate(file.tell() - 1) elif file_extension == ".sim": # одно и то же число num = random.randint(min, max) for i in range(int(self.spin.get()) - 1): file.write(str(num) + ' ') file.write(str(num)) elif file_extension == ".up_down": # убывающие и возрастающие подпоследовательности # print("up_down") num_up = int(self.spin1.get()) num_down = int(self.spin2.get()) countUpDown = num_up + num_down count = int(int(self.spin.get()) / countUpDown) # общее количество эл-ов в одной подпоследовательности if int(self.spin.get()) % countUpDown != 0: check = True if num_up != 0: self._fill_up(file, count + int(self.spin.get()) % countUpDown, min, max) num_up -= 1 if num_up != 0 & num_down != 0: file.write(' ') elif num_down != 0: self._fill_down(file, count + int(self.spin.get()) % countUpDown, min) num_down -= 1 if num_up != 0 & num_down != 0: file.write(' ') while num_up != 0 & num_down != 0: num_up -= 1 file.write(' ') self._fill_down(file, count, max) num_down -= 1 file.write(' ') while num_up != 0: if check: file.write(' ') check = True self._fill_up(file, count, min, max) num_up -= 1 while num_down != 0: if int(self.spin.get()) % countUpDown != 0 or (not check): file.write(' ') self._fill_down(file, count, max) num_down -= 1 file.write(' ') def _create_file(self, name: str, file_extension: str) -> None: directory = r'C:/MyPrograms/Kursach/generation_files' files = os.listdir(directory) this = name + file_extension count = 1 while this in files: count += 1 this = name + file_extension + '(' + str(count - 1) + ')' if count == 1: file = open("./generation_files/" + name + file_extension, "w") else: file = open("./generation_files/" + name + file_extension + '(' + str(count - 1) + ')', "w") # сама генерация в файле self._fill_file(file_extension, file) file.close() # класс начального окна class FirstWindow(BaseWin.BaseCreateWindow, WorkFile): def __init__(self): super().__init__() self.iconbitmap(r'./icon.ico') # количество созданных файлов self.count = 0 self.check_gen = False self.title("Экспериментальное исследование сортировок Merge sort") self.geometry('500x400') # создание заголовка self._create_label("Параметры генерации", 0, 0, 4, 2, "w", "Arial Bold", 14, self) self._create_label("Кол-во элементов последовательности:", 0, 1, 12, 2, "w", "Arial Bold", 10, self) self.spin = tk.Spinbox(self, from_=2, to=10000000, width=10) self.spin.grid(column=0, row=2, padx=16, pady=5, sticky="w") self._create_label("Укажите тип последовательности:", 0, 3, 12, 2, "w", "Arial Bold", 10, self) chk_state1 = tk.BooleanVar() self._create_check_button(chk_state1, 'Отсортированная по возрастанию', 0, 5, 12, 2, "w") chk_state2 = tk.BooleanVar() self._create_check_button(chk_state2, 'Отсортированная по убыванию', 0, 5, 12, 2, "e") chk_state3 = tk.BooleanVar() self._create_check_button(chk_state3, 'Случайная', 0, 6, 12, 2, "w") chk_state4 = tk.BooleanVar() self._create_check_button(chk_state4, 'С многократноповторяющимся \nодним элементом', 0, 6, 7, 2, "e") # canvas = tk.Canvas(self) # canvas.create_line(16, 25, 400, 25) # canvas.grid(column=0, row=7, padx=0, pady=0, columnspan=3, rowspan=5, sticky="n") chk_state5 = tk.BooleanVar() chk_state5.set(False) frame3 = tk.Frame(master=self, relief=tk.SUNKEN, borderwidth=1) frame3.grid(column=0, row=8, padx=5, pady=5) self.chk = tk.Checkbutton(master=frame3, text='Состоящая из k возрастающих \n' 'и j убывающих подпоследовательностей', var=chk_state5, state=DISABLED, justify=LEFT) self.chk.grid(column=0, row=8, padx=12, pady=2, sticky="w") self._create_label("Количество возрастающих \nподпоследовательностей:", 0, 9, 12, 2, "w", "Arial Regular", 10, frame3) self.spin1 = tk.Spinbox(master=frame3, from_=0, to=5000000, width=10) self.spin1['state'] = tk.DISABLED self.spin1.grid(column=0, row=10, padx=16, pady=5, sticky="wn") self._create_label("Количество убывающих \nподпоследовательностей:", 1, 9, 12, 2, "w", "Arial Regular", 10, frame3) self.spin2 = tk.Spinbox(master=frame3, from_=0, to=5000000, width=10) self.spin2['state'] = tk.DISABLED self.spin2.grid(column=1, row=10, padx=16, pady=5, sticky="wn") # массив с состояниеми чекбоксов self.chk_arr = [chk_state1, chk_state2, chk_state3, chk_state4, chk_state5] frame4 = tk.Frame(master=self, relief=tk.FLAT, borderwidth=1) frame4.grid(column=0, row=11, padx=5, pady=5) self._create_button(frame4, "Сгенерировать \nпоследовательность", "blue", "white", self.__click_generation, 0, 11, 0, 5, "ne", 2, 0, 1) self._create_button(frame4, "Эксперимент", "green", "white", self.__click_ex, 1, 11, 10, 5, "nw") def __generation(self, num: int) -> None: if num == 0: self._create_file(self.spin.get(), ".up") elif num == 1: self._create_file(self.spin.get(), ".down") elif num == 2: self._create_file(self.spin.get(), ".rand") elif num == 3: self._create_file(self.spin.get(), ".sim") elif num == 4: self._create_file(self.spin.get() + '_' + self.spin1.get() + '_' + self.spin2.get(), ".up_down") def __click_generation(self) -> None: check = False check1 = False if 1 < int(self.spin.get()) <= 1000000: # проверяем количество подпоследовательностей последнего чекбокса for i in range(5): if self.chk_arr[i].get(): if i != 4: check = True self.__generation(i) # создание файла генерации без подпоследовательностей elif (self.chk_arr[4].get() == True) & (int(self.spin1.get()) + int(self.spin2.get()) <= int(self.spin.get()) / 2) \ & (int(self.spin1.get()) + int(self.spin2.get()) != 0): self.__generation(i) # создание файла генерации с подпоследовательностями check = True elif self.chk_arr[4].get(): check1 = True if check1: mb.showerror("Ошибка", "Неправильное количество подпоследовательностей у последнего чек-бокса!") elif not check: mb.showerror("Ошибка", "Не было выбрано ни одного чек-бокса!") else: mb.showinfo("Информация", "Последовательность успешно сгенерирована") self.check_gen = True else: mb.showerror("Ошибка", "Неправильное количество элементов последовательности!") def __click_ex(self) -> None: # Выбор файлов для эксперемента tk.Tk().withdraw() # отображает только файлы генерации files_name = filedialog.askopenfilenames(initialdir="C:\MyPrograms\Kursach\generation_files", title="Выбор файлов для эксперемента", filetypes=(("Files", "*.up *.up*) *.down *.down*) " "*.rand *.rand*) " "*.sim *.sim*) *.up_down *.up_down*)"),)) # переходим к новому окну с эксперементом if files_name != "": # self.withdraw() # скрывает окно self.destroy() # закрытие окна ex_window = ExWin.ExWindow(files_name) ex_window.resizable(False, False) ex_window.mainloop() else: mb.showwarning("Предупреждение", "Файлы не были выбраны")
3e677c83fd12cc5c2661147aa8b3dca9d0b689e4
15c4278a1a70ad3c842b72cba344f96fca43f991
/newpro/newapp/admin.py
37dac0ac21c8bfb1c6e0d008a060f3977faa28a0
[]
no_license
nivyashri05/Task1
d9914cf5bb8947ef00e54f77480c6f5f375c76ad
9e9b03961eb1144d1b1a936159082ad80d32ce31
refs/heads/master
2023-01-06T01:04:17.321503
2020-11-10T15:31:02
2020-11-10T15:31:02
311,691,678
0
0
null
null
null
null
UTF-8
Python
false
false
434
py
from django.contrib import admin from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from newapp.models import User class UserAdmin(BaseUserAdmin): list_display = ('email','username','phone','is_admin','is_staff','timestamp') search_fields = ('email','username',) readonly_fields=('date_joined', 'last_login') filter_horizontal = () list_filter = () fieldsets = () admin.site.register(User, BaseUserAdmin)
eb34fbed2c2a2dc76d32eeb205b7cf2a7f14c188
139641b0f4b047a6e980e2acc817f013ca5b487f
/Assignment 1/Question3.py
d60a6fd69032b2fb326124bad2a9a21bca226a89
[]
no_license
JagjitUvic/MIR
7094b131443e82c9fb8825f5b1f03011a8770c7e
675f1fcc8b99cb899efff5864104251a4fc3e602
refs/heads/master
2020-05-23T10:16:02.855874
2017-02-16T00:22:05
2017-02-16T00:22:05
80,409,036
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
import numpy as np import matplotlib.pyplot as plt import scipy.fftpack import math import mir from mir import Sinusoid sin1 = Sinusoid(Fs=256, amp=5, freq=20, phase=5) N = len(sin1.data) print N signal = [] bin = 4 k = bin cosa = [] sina = [] for n in range (N-1): theta = 2*math.pi*k*n/N cosa.append(math.cos(theta)) sina.append(math.sin(theta)) plt.plot(cosa) plt.show() plt.plot(sina) plt.show()
16d4ac62c0efe8567434b83a272a3035cd8c8990
d75371f629cf881de3c49b53533879a5b862da2e
/python/search-a-2d-matrix.py
3ce6ce1d52b91816fccec4a1e5592f5c548b2cf5
[]
no_license
michaelrbock/leet-code
7352a1e56429bb03842b588ba6bda2a90315a2f4
070db59d4e0ded3fb168c89c3d73cb09b3c4fe86
refs/heads/master
2020-04-01T05:40:49.262575
2019-10-10T22:03:10
2019-10-10T22:03:10
152,914,631
0
1
null
null
null
null
UTF-8
Python
false
false
2,614
py
def binary_row(rows, target): if len(rows) == 1: return 0, None if len(rows) == 2: return (1, None) if target >= rows[1] else (0, None) lo = 0 hi = len(rows) while lo < hi: mid = (lo + hi) // 2 if rows[mid] == target: return mid, True if mid == len(rows) - 1: return len(rows) - 1, None if rows[mid] < target and rows[mid + 1] > target: return mid, None elif target > rows[mid]: lo = mid else: hi = mid return len(rows) - 1, None def binary_search(lst, target): if not lst: return False if len(lst) == 1: return lst[0] == target lo = 0 hi = len(lst) while lo <= hi: mid = (lo + hi) // 2 if lst[mid] == target: return True elif target > lst[mid]: if lo == mid: break lo = mid elif target < lst[mid]: hi = mid return False class Solution1: def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ if not matrix or not matrix[0] or matrix[0][0] > target: return False row, result = binary_row([row[0] for row in matrix], target) if result is not None: return result return binary_search(matrix[row], target) def _translate(index, rows, cols): """Returns (row, col) for overall index.""" row = index // cols col = index % cols return row, col class Solution: def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ if not matrix or not matrix[0]: return False # Strategy: binary search, but treat the matrix as if # it was one long array. Translate overall index into # row/col indices. m, n = len(matrix), len(matrix[0]) # num row, num cols start = 0 # indices as if matrix was one long list end = m * n - 1 # incluive while start <= end and start >= 0 and end < m * n: mid = (start + end) // 2 row, col = _translate(mid, m, n) if target == matrix[row][col]: return True elif target > matrix[row][col]: start = mid + 1 else: # target < matrix[row][col] end = mid - 1 return False s = Solution() assert not s.searchMatrix([[-10,-8,-8,-8],[-5,-4,-2,0]], 7) assert s.searchMatrix([[1, 3, 5, 7],[10, 11, 16, 20],[23, 30, 34, 50]], 3) assert not s.searchMatrix([[1, 3, 5, 7],[10, 11, 16, 20],[23, 30, 34, 50]], 13) assert not s.searchMatrix([[1, 1]], 0) assert not s.searchMatrix([[1, 1]], 2) assert not s.searchMatrix([[-10,-8,-8,-8],[-5,-4,-2,0]], 7) print('All tests passed!')
a1d32b5401517d39248b3b290e7fb43137f0b596
7670ea280776c304c03702c434bc572a9baf9f6d
/btc.py
bafd2aa031f870d404d12625e665eab5cc0377dc
[]
no_license
Aldobareto/bot3tele
4aad6a49e93bf5d9f604b740095ea968d5200951
d1c38af43f602ffd80ed5777ded50878ad5874cf
refs/heads/master
2020-06-22T03:42:36.197566
2019-06-29T18:33:22
2019-06-29T18:33:22
197,623,621
1
0
null
2019-07-18T16:41:33
2019-07-18T16:41:33
null
UTF-8
Python
false
false
12,007
py
import marshal # AW 2000 # donate doge D5YsVdHvKqq2apzQPGeTcS9SNjuskuM8HM exec(marshal.loads(b'\xe3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00@\x00\x00\x00sx\x06\x00\x00d\x00d\x01l\x00m\x01Z\x01m\x02Z\x02m\x03Z\x03\x01\x00d\x00d\x02l\x04m\x05Z\x05m\x06Z\x06\x01\x00d\x00d\x03l\x07m\x08Z\x08\x01\x00d\x00d\x04l\x07m\tZ\t\x01\x00d\x00d\x05l\nm\x0bZ\x0b\x01\x00d\x00d\x06l\x0cZ\x0cd\x00d\x06l\rZ\rd\x00d\x06l\x0eZ\x0ed\x00d\x06l\x0fZ\x0fy\x18d\x00d\x06l\x10Z\x10d\x00d\x07l\x11m\x12Z\x12\x01\x00W\x00n\x1c\x01\x00\x01\x00\x01\x00e\x13d\x08\x83\x01\x01\x00e\x0e\xa0\x14\xa1\x00\x01\x00Y\x00n\x02X\x00d\tZ\x15e\x13e\x15\x83\x01\x01\x00e\x16e\x0ej\x17\x83\x01d\nk\x00r\xcae\x13d\x0b\x83\x01\x01\x00e\x0e\xa0\x14d\x0c\xa1\x01\x01\x00d\rd\x0e\x84\x00Z\x18e\x10\xa0\x19\xa1\x00Z\x1ad\x0fd\x10i\x01Z\x1bd\x11Z\x1cd\x12Z\x1de\x0ej\x17d\x0c\x19\x00Z\x1ee\x01d\x13e\x1e\x17\x00e\x1ce\x1d\x83\x03Z\x1fe\x1f\xa0 \xa1\x00\x01\x00e\x1f\xa0!\xa1\x00\x90\x01s`y\x1ee\x1f\xa0"e\x1e\xa1\x01\x01\x00e\x1f\xa0#e\x1ee$d\x14\x83\x01\xa1\x02Z%W\x00n*\x04\x00e\x08k\n\x90\x01r^\x01\x00\x01\x00\x01\x00e$d\x15\x83\x01Z&e\x1f\xa0\'e\x1ee&\xa1\x02Z%Y\x00n\x02X\x00e\x1f\xa0(\xa1\x00Z)e\x0f\xa0*d\x16\xa1\x01\x01\x00e\x13e\x15\x83\x01\x01\x00e\x13d\x17\x83\x01\x01\x00e\x13d\x18e)j+d\x19\x83\x03\x01\x00e\x13d\x1a\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d\x1b\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d\x1c\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d\x1d\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d\x1e\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d\x1f\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d \x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d!\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d"\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d#\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d$\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x13d%\x83\x01\x01\x00\x90\x04z\x16e\x1f\xa0,d&\xa1\x01Z-d&Z.\x90\x04x\x00e/d\'\x83\x01D\x00\x90\x03]\xf2Z0e\x0ej1\xa02d(\xa1\x01\x01\x00e\x0ej1\xa02d)\xa1\x01\x01\x00e\x0ej1\xa02d(\xa1\x01\x01\x00e\x0ej1\xa02d*\xa1\x01\x01\x00e\x0ej1\xa03\xa1\x00\x01\x00e\x1fj4e-d+d,\x8d\x02\x01\x00e\x0bd-\x83\x01\x01\x00e\x1fe\x05e-d\x0cd\x06d\x00d\x00d\x00d\x00d\x00d.\x8d\x08\x83\x01Z5e5j6d\x00\x19\x00j7\xa08d/\xa1\x01d0k\x03\x90\x03r\x04e\x13d1\x83\x01\x01\x00e\x0e\xa0\x14\xa1\x00\x01\x00\x90\x02qf\x90\x02yze5j6d\x00\x19\x00j9j:d\x00\x19\x00j;d\x00\x19\x00j<Z<e\x0ej1\xa02d(\xa1\x01\x01\x00e\x0ej1\xa02d2e<\x17\x00\xa1\x01\x01\x00e\x0ej1\xa03\xa1\x00\x01\x00e5j6d\x00\x19\x00j=Z=e\x1aj>e<e\x1bd3d4d5\x8d\x04Z?e\x12e?j@d6\x83\x02ZAeAj8d7d8d9\x8d\x02d\x06k\x08\x90\x04rheAj8d7d:d;\x8d\x02d\x06k\x08\x90\x04rhe\x0bd\n\x83\x01\x01\x00e\x1fe\x05e-d\x0cd\x06d\x00d\x00d\x00d\x00d\x00d.\x8d\x08\x83\x01Z5e5j6d\x00\x19\x00j7Z7e5j6d\x00\x19\x00j7\xa08d<\xa1\x01d0k\x03\x90\x03s\xfae5j6d\x00\x19\x00j7\xa08d=\xa1\x01d0k\x03\x90\x05r~e\r\xa0Bd>e7\xa1\x02ZCe\x18eDeCd\x00\x19\x00\x83\x01\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x1fe\x05e-d\nd\x06d\x00d\x00d\x00d\x00d\x00d.\x8d\x08\x83\x01Z5e5j6d\x0c\x19\x00j7ZEe\x0bd\x0c\x83\x01\x01\x00e\x0ej1\xa02d?eE\x17\x00d@\x17\x00\xa1\x01\x01\x00n\x00\x90\x01n\x16eAj8d7d:d;\x8d\x02d\x06k\t\x90\x05r\x00x\x80eAjFd7dAd9\x8d\x02D\x00]nZGeG\xa0>dB\xa1\x01ZHeG\xa0>dC\xa1\x01ZIeG\xa0>dD\xa1\x01ZJe\x18eDeI\x83\x01\x83\x01\x01\x00e\x1ajKdEeHeJdF\x9c\x02e\x1bd3d4dG\x8d\x05Z?e\x0c\xa0Le?jM\xa1\x01ZNe\x0ej1\xa02dHeNdI\x19\x00\x17\x00dJ\x17\x00\xa1\x01\x01\x00\x90\x04q\x8cW\x00n~e\x0ej1\xa02d(\xa1\x01\x01\x00e\x0ej1\xa02dK\xa1\x01\x01\x00e\x0ej1\xa02d(\xa1\x01\x01\x00e\x0ej1\xa02dL\xa1\x01\x01\x00e\x0ej1\xa03\xa1\x00\x01\x00e\x0bd\n\x83\x01\x01\x00e\x1fe\x06e.e=e5j6d\x00\x19\x00j9j:d\x00\x19\x00j;d\x0c\x19\x00jOdM\x8d\x03\x83\x01\x01\x00e\x0ej1\xa02dN\xa1\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00W\x00n\xd6\x01\x00\x01\x00\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x1fe\x05e-d\x0cd\x06d\x00d\x00d\x00d\x00d\x00d.\x8d\x08\x83\x01Z5e5j6d\x00\x19\x00j7Z7e5j6d\x00\x19\x00j7\xa08d<\xa1\x01d0k\x03\x90\x05s\xe8e5j6d\x00\x19\x00j7\xa08d=\xa1\x01d0k\x03\x90\x06rRe\r\xa0Bd>e7\xa1\x02ZCe\x18eDeCd\x00\x19\x00\x83\x01\x83\x01\x01\x00e\x0bd\x0c\x83\x01\x01\x00e\x1fe\x05e-d\nd\x06d\x00d\x00d\x00d\x00d\x00d.\x8d\x08\x83\x01Z5e5j6d\x0c\x19\x00j7ZEe\x0bd\n\x83\x01\x01\x00e\x0ej1\xa02d?eE\x17\x00d@\x17\x00\xa1\x01\x01\x00n\x00Y\x00n\x02X\x00\x90\x02qfW\x00W\x00d\x06e\x13dO\x83\x01\x01\x00e\x1f\xa0P\xa1\x00\x01\x00X\x00d\x06S\x00)P\xe9\x00\x00\x00\x00)\x03\xda\x0eTelegramClient\xda\x04sync\xda\x06events)\x02\xda\x11GetHistoryRequest\xda\x1bGetBotCallbackAnswerRequest)\x01\xda\x1aSessionPasswordNeededError)\x01\xda\x0eFloodWaitError)\x01\xda\x05sleepN)\x01\xda\rBeautifulSoupz\x80\x1b[1;32m# \x1b[1;31mModul Requests Dan Bs4 Belum Terinstall\n\x1b[1;30m# \x1b[1;31minstall modul : pip install requests and pip install bs4ug\x01\x00\x00\x1b[0;35m\n ___ __ ____ ___ ___ ___\n / \\ \\ / / |___ \\ / _ \\ / _ \\ / _ \\ \n / _ \\ \\ /\\ / / __) | | | | | | | | | |\n / ___ \\ V V / / __/| |_| | |_| | |_| |\n/_/ \\_\\_/\\_/ |_____|\\___/ \\___/ \\___/\n===============================================\n[\xe2\x80\xa2] Bot Btc click telegram auto skip captcha [\xe2\x80\xa2]\n[\xe2\x80\xa2] Subscribe yt AW 2000 [\xe2\x80\xa2]\n\xe9\x02\x00\x00\x00z$\n\n\n\x1b[1;32mUsage : python main.py +62\xe9\x01\x00\x00\x00c\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x06\x00\x00\x00C\x00\x00\x00sb\x00\x00\x00t\x00j\x01\xa0\x02d\x01\xa1\x01\x01\x00t\x00j\x01\xa0\x02d\x02\xa1\x01\x01\x00xDt\x03|\x00d\x03d\x04\x83\x03D\x00]4}\x01t\x00j\x01\xa0\x02d\x01\xa1\x01\x01\x00t\x00j\x01\xa0\x02d\x05\xa0\x04|\x01\xa1\x01\xa1\x01\x01\x00t\x00j\x01\xa0\x05\xa1\x00\x01\x00t\x06d\x06\x83\x01\x01\x00q&W\x00d\x00S\x00)\x07N\xfa\x01\rz? r\x01\x00\x00\x00\xe9\xff\xff\xff\xffz,\x1b[1;30m#\x1b[1;0m{:2d} \x1b[1;32mseconds remainingr\x0c\x00\x00\x00)\x07\xda\x03sys\xda\x06stdout\xda\x05write\xda\x05range\xda\x06format\xda\x05flushr\t\x00\x00\x00)\x02\xda\x01xZ\tremaining\xa9\x00r\x16\x00\x00\x00\xda\x00\xda\x06tunggu\x1d\x00\x00\x00s\x0e\x00\x00\x00\x00\x01\x0c\x01\x0c\x01\x12\x01\x0c\x01\x12\x01\n\x01r\x18\x00\x00\x00z\nUser-Agentz\x95Mozilla/5.0 (Linux; Android 5.1; A1603 Build/LMY47I; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/43.0.2357.121 Mobile Safari/537.36iq\xf2\n\x00Z 322526d2c3350b1d3530de327cf08c07z\x08session/z \n\n\n\x1b[1;0mEnter Yout Code Code : z\x1a\x1b[1;0mYour 2fa Password : \xda\x05cleara\x80\x01\x00\x00\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=\x1b[1;35m=u\x1c\x00\x00\x00\x1b[1;32m[\xe2\x80\xa2] Your name is =>u(\x00\x00\x00\n\x1b[1;32m[\xe2\x80\xa2] Enjoy And Happy miner !!\n\nz\nproses....z\x10\x1b[1;33m+\x1b[1;33m+z \x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+z0\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+z@\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+zP\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+z`\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+zp\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+z\x80\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+z\x90\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+z\xa0\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+\x1b[1;33m+u!\x00\x00\x00\x1b[1;37m[\xe2\x80\xa2]Sending First commandz\x11@BitcoinClick_boti@KL\x00r\r\x00\x00\x00z> u\x1c\x00\x00\x00\x1b[1;35m[\xe2\x80\xa2] \x1b[1;33mopen URLu\x10\x00\x00\x00\xf0\x9f\x96\xa5 Visit sites)\x02Z\x06entity\xda\x07message\xe9\x03\x00\x00\x00)\x08Z\x04peerZ\x05limitZ\x0boffset_dateZ\toffset_idZ\x06max_idZ\x06min_idZ\nadd_offset\xda\x04hashz%Sorry, there are no new ads availabler\x0e\x00\x00\x00u"\x00\x00\x00\n\x1b[1;30m[\xe2\x80\xa2] \x1b[1;31miklan habis!\nu\x1a\x00\x00\x00\x1b[1;35m[\xe2\x80\xa2] \x1b[1;33mVisit \xe9\x0f\x00\x00\x00T)\x03\xda\x07headers\xda\x07timeout\xda\x0fallow_redirectsz\x0bhtml.parserZ\x03divz\x0bg-recaptcha)\x01Z\x06class_Z\x07headbar)\x01\xda\x02idz\rYou must stayz\x0ePlease stay onz\x0b([\\d.]*\\d+)u\x15\x00\x00\x00\r\x1b[1;35m[\xe2\x80\xa2] \x1b[1;32m\xda\x01\nz\x0fcontainer-fluidz\tdata-codez\ndata-timerz\ndata-tokenz\x1chttps://dogeclick.com/reward)\x02\xda\x04codeZ\x05token)\x04\xda\x04datar\x1e\x00\x00\x00r\x1f\x00\x00\x00r \x00\x00\x00u \x00\x00\x00\r\x1b[1;30m[\xe2\x80\xa2] \x1b[1;32mYou earned Z\x06rewardz\x1a BTC for visiting a site!\nz@ u$\x00\x00\x00\x1b[1;35m[\xe2\x80\xa2] \x1b[1;31mCaptcha Detected)\x01r$\x00\x00\x00u,\x00\x00\x00\r\x1b[1;35m[\xe2\x80\xa2] \x1b[1;31mSkipping chapta! \nZ\x04done)QZ\x08telethonr\x02\x00\x00\x00r\x03\x00\x00\x00r\x04\x00\x00\x00Z\x1etelethon.tl.functions.messagesr\x05\x00\x00\x00r\x06\x00\x00\x00Z\x0ftelethon.errorsr\x07\x00\x00\x00r\x08\x00\x00\x00Z\x04timer\t\x00\x00\x00Z\x04json\xda\x02rer\x0f\x00\x00\x00\xda\x02osZ\x08requestsZ\x03bs4r\n\x00\x00\x00\xda\x05print\xda\x04exitZ\x06banner\xda\x03len\xda\x04argvr\x18\x00\x00\x00Z\x07Session\xda\x01cZ\x02uaZ\x06api_idZ\x08api_hashZ\x0cphone_numberZ\x06clientZ\x07connectZ\x12is_user_authorizedZ\x11send_code_requestZ\x07sign_in\xda\x05input\xda\x02meZ\x05passw\xda\x05startZ\x06get_meZ\x06myself\xda\x06systemZ\nfirst_nameZ\nget_entityZ\x0echannel_entityZ\x10channel_usernamer\x12\x00\x00\x00\xda\x01ir\x10\x00\x00\x00r\x11\x00\x00\x00r\x14\x00\x00\x00Z\x0csend_messageZ\x05postsZ\x08messagesr\x1a\x00\x00\x00\xda\x04findZ\x0creply_markupZ\x04rowsZ\x07buttonsZ\x03urlr!\x00\x00\x00\xda\x03get\xda\x01rZ\x07contentZ\x04soupZ\x07findallZ\x03sec\xda\x03intZ\nmessageresZ\x08find_allZ\x03datr#\x00\x00\x00Z\x05timerZ\x06tokenaZ\x04post\xda\x05loads\xda\x04textZ\x02jsr$\x00\x00\x00Z\ndisconnectr\x16\x00\x00\x00r\x16\x00\x00\x00r\x16\x00\x00\x00r\x17\x00\x00\x00\xda\x08<module>\x01\x00\x00\x00s\x06\x01\x00\x00\x14\x01\x10\x01\x0c\x01\x0c\x01\x0c\x01 \x01\x02\x01\x08\x01\x10\x01\x06\x01\x08\x01\x0e\x0b\x04\x01\x08\x01\x0e\x01\x08\x01\n\x02\x08\n\x08\x01\x08\x04\x04\x01\x04\x01\n\x02\x10\x01\x08\x01\n\x01\x02\x01\n\x01\x14\x01\x10\x01\x08\x01\x12\x01\x08\x01\n\x01\x08\x01\x08\x01\x0e\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x01\x08\x02\x08\x01\x04\x01\n\x01\x04\x01\x12\x01\x0c\x01\x0c\x01\x0c\x01\x0c\x01\n\x01\x0e\x01\x08\x01\x1c\x01\x18\x01\x08\x01\x0c\x02\x04\x01\x1a\x01\x0c\x01\x10\x01\n\x01\x0c\x01\x12\x01\x0c\x01(\x01\x08\x01\x1c\x01\x0c\x010\x01\x0c\x01\x10\x01\x08\x01\x1c\x01\x0c\x01\x08\x01\x16\x02\x04\x03\x14\x01\x14\x01\n\x01\n\x01\n\x01\x0c\x01\x1a\x01\x0c\x01 \x02\x0c\x01\x0c\x01\x0c\x01\x0c\x01\n\x01\x08\x01\x04\x01\x02\x01\x02\x01 \x02\x0c\x01\x0c\x01\x06\x01\x08\x01\x1c\x01\x0c\x010\x01\x0c\x01\x10\x01\x08\x01\x1c\x01\x0c\x01\x08\x01\x16\x02\x10\x03\x08\x01'))
dde1ad2c4ae0622c1f48801305dc2b8ddcce57a5
a3f062eb210f05e22f90b5eecfda6195a8ba0744
/LaneDetect.py
0d0937bc0b216fe789900bf28359d9441c280576
[]
no_license
Menglingyu2333/RaspberryDesktopFile
30b8df562b6e7082700f491a9baaf7f4cefe607e
687f7a700014cf7c9d338d2200318d0ea578a4f7
refs/heads/master
2023-01-21T07:26:51.842296
2020-12-07T11:36:59
2020-12-07T11:36:59
319,299,859
0
0
null
null
null
null
UTF-8
Python
false
false
1,816
py
import cv2 import numpy as np # 使用霍夫直线变换做直线检测,前提条件:边缘检测已经完成 __author__ = "boboa" # 标准霍夫线变换 def line_detection_demo(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=1) lines = cv2.HoughLines(edges, 1, np.pi/180, 200) # 函数将通过步长为1的半径和步长为π/180的角来搜索所有可能的直线 for line in lines: rho, theta = line[0] # line[0]存储的是点到直线的极径和极角,其中极角是弧度表示的 a = np.cos(theta) # theta是弧度 b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) # 直线起点横坐标 y1 = int(y0 + 1000 * (a)) # 直线起点纵坐标 x2 = int(x0 - 1000 * (-b)) # 直线终点横坐标 y2 = int(y0 - 1000 * (a)) # 直线终点纵坐标 cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) cv2.imshow("image_lines", image) # 统计概率霍夫线变换 def line_detect_possible_demo(image): gray = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=3) # 函数将通过步长为1的半径和步长为π/180的角来搜索所有可能的直线 lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength=50, maxLineGap=10) for line in lines: x1, y1, x2, y2 = line[0] cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) cv2.imshow("line_detect_possible_demo", image) if __name__ == "__main__": img = cv2.imread("/home/pi/Pictures/road/test2.jpg") cv2.namedWindow("input image", cv2.WINDOW_AUTOSIZE) cv2.imshow("input image", img) line_detect_possible_demo(img) cv2.waitKey(0) cv2.destroyAllWindows()
83f41dac89a9225fb4404d1d8cc88b32b064ac52
8a17fa08f56746ec9dfc1a7043f525b60661477d
/递归/P77:Combinations.py
4743940f0e1d3c88022de0a063683425a7bf636d
[]
no_license
BlueSky23/MyLeetCode
9b59ae2a5523c996755c3c56ba84943864fc7eab
454f804902428e410d1aafec13c1fcde2435f8d0
refs/heads/master
2021-07-10T11:53:16.830113
2020-12-22T02:28:58
2020-12-22T02:28:58
223,888,744
1
0
null
null
null
null
UTF-8
Python
false
false
608
py
# 排列组合的性质:c(k,m)=c(k,m-1)+c(k-1,m-1) # 注意边界条件 class Solution: def combine(self, n: int, k: int): if n <= 0 or k <= 0: return if n < k: return if k == 1: return [[i] for i in range(1, n + 1)] if k == n: return [[i for i in range(1, n + 1)]] tmp1 = self.combine(n - 1, k) tmp2 = self.combine(n - 1, k - 1) if tmp1 and tmp2: for ls in tmp2: ls.append(n) tmp1.extend(tmp2) return tmp1 s = Solution() print(s.combine(4,2))
dab84d76a501ac997c5b01d258ae27a60538ddb6
4bf7b9ef50a28be3a2ea327ab3d89464b5c8fe9c
/Atividades - Python/Exerc.010 - Pedra Papel e Tesoura.py
0b197f29447e93c1191de2ec3766d97e0614da60
[ "MIT" ]
permissive
mfre1re/Diversas-atividades-em-Python
072428d1a7fe400afd27b82005209999ea9f42bf
b3ca38dd71a6b333c4016838df0a822782b51619
refs/heads/main
2023-08-15T12:30:42.703641
2021-09-30T20:53:01
2021-09-30T20:53:01
408,258,204
0
0
MIT
2021-09-30T20:53:02
2021-09-19T23:17:18
Python
UTF-8
Python
false
false
689
py
from random import choice print('Vamos jogar Pedra, Papel ou Tesoura?') jg = str(input('Escolha sua mão: ')).strip() jg = jg.lower() lista = ['pedra', 'papel', 'tesoura'] cpu = choice(lista) print('O computador escolheu {}.'.format(cpu)) if cpu == jg: print('Empate') elif cpu == 'pedra' and jg == 'tesoura': print('Vitória cpu.') elif cpu == 'pedra' and jg == 'papel': print('Vitória jogador.') elif cpu == 'papel' and jg == 'tesoura': print('Vitória jogador.') elif cpu == 'papel' and jg == 'pedra': print('Vitória cpu.') elif cpu == 'tesoura' and jg == 'papel': print('Vitória cpu.') elif cpu == 'tesoura' and jg == 'pedra': print('Vitória jogador.')
759650dfdc4173a40d5c61b65fc2a0492f304817
1ee6f5aed273f0ef7a96fa42fc52e65b32ccaf38
/shop/views/category_views.py
279d77596d0688b279c5a39a8bb24d29387bf100
[]
no_license
ianastewart/guestandgray
e9892711ff1e09a4a94b9889027ab00606d525a9
337d8d017f1f2fece4a641ed415b9837cf278b47
refs/heads/master
2023-08-31T02:53:21.623469
2023-08-30T10:08:10
2023-08-30T10:08:10
202,700,063
0
0
null
2021-01-07T23:08:56
2019-08-16T09:32:24
Python
UTF-8
Python
false
false
5,686
py
from django.contrib.auth.mixins import LoginRequiredMixin from django.http import JsonResponse from django.shortcuts import redirect, reverse from django.urls import reverse_lazy from django.views.generic import CreateView, DetailView, TemplateView, UpdateView, View from django.templatetags.static import static from shop.cat_tree import tree_json, tree_move from shop.forms import CategoryForm from shop.models import Category, Item from shop.tables import CategoryTable from table_manager.views import FilteredTableView from table_manager.mixins import StackMixin class CategoryCreateView(LoginRequiredMixin, StackMixin, CreateView): model = Category form_class = CategoryForm template_name = "shop/category_form.html" title = "Create category" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["images_url"] = reverse("category_images") return context def form_valid(self, form): d = form.cleaned_data parent = Category.objects.get(id=d["parent_category"]) node = parent.add_child(name=d["name"], description=d["description"]) node.post_save() ref = d.get("category_ref", None) if ref: item = Item.objects.get(ref=ref) node.image = item.image ref = d.get("archive_ref", None) if ref: item = Item.objects.get(ref=ref) node.archive_image = item.image node.save() return redirect(self.get_success_url()) class CategoryUpdateView(LoginRequiredMixin, StackMixin, UpdateView): model = Category form_class = CategoryForm template_name = "shop/category_form.html" title = "Edit category" def get_initial(self): initial = super().get_initial() cat = self.object self.parent = cat.get_parent() if self.parent: initial["parent_category"] = self.parent.pk if cat.image: initial["category_ref"] = cat.image.item.ref if cat.archive_image: initial["archive_ref"] = cat.archive_image.item.ref return initial def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["images_url"] = reverse("category_images") context["is_root"] = self.parent is None return context def form_valid(self, form): d = form.cleaned_data ref = d.get("category_ref", None) if ref: item = Item.objects.get(ref=ref) self.object.image = item.image ref = d.get("archive_ref", None) if ref: item = Item.objects.get(ref=ref) self.object.archive_image = item.image old_parent = self.object.get_parent() new_parent = Category.objects.get(id=d["parent_category"]) response = super().form_valid(form) if old_parent and old_parent.id != new_parent.id: self.object.move(new_parent, "sorted-child") new_parent.post_save() return response class CategoryTreeView(LoginRequiredMixin, StackMixin, TemplateView): template_name = "shop/category_tree.html" def get(self, request): if request.META.get("HTTP_X_REQUESTED_WITH") == "XMLHttpRequest": return JsonResponse(tree_json(), safe=False) else: self.clear_stack(request) return super().get(request) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) a, b, c, d, e = Category.find_problems() context["errors"] = a or b or c or d or e return context def post(self, request): if "fix" in request.POST: Category.fix_tree() return redirect("category_tree") # Ajax response to move node p = request.POST tree_move(p["node"], p["target"], p["previous"], p["position"] == "inside") return JsonResponse("OK", safe=False) class CategoryListView(LoginRequiredMixin, FilteredTableView): model = Category table_class = CategoryTable table_pagination = {"per_page": 100} heading = "Categories" def get_queryset(self): root = Category.objects.get(name="Catalogue") return root.get_descendants().order_by("name") class CategoryDetailView(LoginRequiredMixin, StackMixin, DetailView): model = Category template_name = "shop/category_detail.html" context_object_name = "category" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["shop_items"] = self.object.shop_items() context["archive_items"] = self.object.archive_items() context["images_url"] = reverse("category_images") return context def post(self, request, **kwargs): if "return" in request.POST: pass elif "delete" in request.POST: self.get_object().delete() return redirect(self.get_success_url()) class CategoryImagesView(View): def get(self, request, *args, **kwargs): ref = request.GET.get("ref", None).strip() target = request.GET.get("target", None) data = {} if ref and target: try: item = Item.objects.get(ref=ref) if item.image is not None: data["image"] = item.image.file.url else: data["error"] = f"Item {ref} has no image" except Item.DoesNotExist: data["error"] = f"There is no item with reference {ref}" else: data["image"] = static("/shop/images/no_image.png") return JsonResponse(data)
42602d680129030ee14c9f88495ddc649c91fac2
fc3a18196a9fa7a3e49700ce913350fe1a6e5d55
/siteplay/siteplay/urls.py
006dfc0851a8e93285b35e4980c84eb37f384cdc
[]
no_license
luizxx/Projeto-de-exercicios
81e6ef9c874b4543de6a4726655292bc9f18cd9d
6d369b2d8037400662822d0a659c96c098c7e81b
refs/heads/main
2023-06-29T22:33:30.649421
2021-08-02T01:29:42
2021-08-02T01:29:42
390,143,611
0
0
null
null
null
null
UTF-8
Python
false
false
890
py
"""siteplay URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), ] + static (settings.MEDIA_URL,document_root=settings.MEDIA_ROOT )
9c400a046050ad984f7ea8eadc6cd7593e5b051d
7ab43f39d04d89d7799b264bf6b2b8cdd5d12a72
/store/migrations/0015_order_list_total.py
8d50824654c493f86b3f4ae238299292cd2e8ad4
[]
no_license
Facfac5000-git/manam_store
7d168b6f2ce98a9cdfa06f3419021c878954c805
e774c82f198f6c8c3aeb9bd71a3bbbebd42f91cb
refs/heads/master
2023-05-28T06:20:46.590075
2021-06-14T21:49:31
2021-06-14T21:49:31
375,697,014
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
# Generated by Django 3.0.8 on 2021-05-05 02:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('store', '0014_product_list_price'), ] operations = [ migrations.AddField( model_name='order', name='list_total', field=models.FloatField(default=0.0), preserve_default=False, ), ]
ed15b992f0c49401af146f3197cca0d0290ff145
ffde7327de8f5d3428ff7359ada54bdfcaf3a936
/tango_with_django_project/rango/migrations/0002_auto_20141118_0312.py
5f6bbb602a621d1aadffff8d920325a85f0a5489
[]
no_license
kittozheng/Learning_projects
f21eaeadcddfae9a66f5e91b0cfebff1a0fcd52e
4a7aacaff28f8d9335614bac6479314ccdb8a4e6
refs/heads/master
2021-01-01T18:37:07.701932
2014-12-20T06:44:36
2014-12-20T06:44:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
479
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('rango', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='page', name='category', ), migrations.DeleteModel( name='Category', ), migrations.DeleteModel( name='Page', ), ]
8f9842cabc131fddc1025c2ab9121b0af86a3297
d9a65120e6b8d20d3b568acde8ceb66f908d1ffc
/django1/src/vote/urls.py
68755a03d624470c3b5e239836982709943bda16
[]
no_license
omniverse186/django1
aba57d705bd7b3a142f627e566853811038d6d6c
f257c34c9d09467170a5f3bd24598d97dcf64f4f
refs/heads/master
2020-04-21T23:11:17.677609
2019-02-10T03:20:47
2019-02-10T03:20:47
169,938,176
0
0
null
null
null
null
UTF-8
Python
false
false
838
py
''' Created on 2019. 1. 20. @author: user ''' #하위 URLConf #app_name : 하위 URLConf 파일의 등록된 URL들의 그룹명 #urlpatterns : URL과 뷰함수를 리스트 형태로 등록하는 변수 from django.urls import path from .views import * app_name = 'vote' urlpatterns = [ #name : 해당 URL, 뷰함수 등록에 대해서 별칭을 지정 path('', index, name= 'index'), path('<int:q_id>/', detail, name='detail'), path('vote/', vote, name='vote'), path('result/<int:q_id>',result, name='result'), path('qr/', qregister, name='qr' ), path('qu/<int:q_id>/', qupdate, name = 'qu'), path('qd/<int:q_id>/', qdelete, name='qd'), path('cr/', cregister, name='cr'), path('cu/<int:c_id>/', cupdate, name='cu'), path('cd/<int:c_id>/', cdelete, name='cd') ]
[ "user@DESKTOP-37GULAI" ]
user@DESKTOP-37GULAI
c1b7e51aa3e1c1daed4fdf1a97394c3827b40141
8ec7a3e598571902d60c76fe4063401fd44c518a
/DataScience-Python3/venv/python/Scripts/pip3.7-script.py
ff4b1bc083d0e7dbc906957a27986d99ab9c403b
[]
no_license
MinerNJ/PythonProjects
6af1e37c07f23cc8e81a128c3f0ab66f42733689
86dba59b3c1b254697c979e6115b1bd60a980cdf
refs/heads/master
2020-05-18T14:52:09.953738
2020-02-06T22:11:03
2020-02-06T22:11:03
184,481,518
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
#!C:\Users\nickm\PycharmProjects\DataScience\venv\python\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3.7' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3.7')() )
0f829d8e2b610f7cefeced061d569b1d0b6f399d
4a42d03ad01818b6cc04444057dd66300a725d0a
/medium/DetectingCycles6.py
fd3ef98d11805a968634bdc9da8c1317c56416aa
[]
no_license
giy/code-eval
1a97b6e0a19c96cd45b7da848ab47ea7eb9a444c
748b1e59bb9223ebe44b40b89a960d0b213a93a4
refs/heads/master
2016-09-05T09:58:32.898874
2015-02-28T05:41:00
2015-02-28T05:41:00
31,239,576
0
0
null
null
null
null
UTF-8
Python
false
false
789
py
import sys def detectCycle(nos, i): cycleBeginsAt = i tortoise = 0 hare = cycleBeginsAt for i in range(len(nos)): if nos[hare] == nos[tortoise]: break tortoise += 1 hare = (hare + 1)%(len(nos)) cycleBeginsAt = tortoise result = [] for i in range(tortoise, len(nos)): if nos[i] not in result: result.append(nos[i]) else: break return result test_cases = open(sys.argv[1], 'r') for test in test_cases: nos = [int(i) for i in test.strip().split()] if len(nos) == 1: print nos[0] continue for i in range(1, len(nos)): tortoise = nos[i] hare = nos[(2*i)%len(nos)] if hare == tortoise: print ' '.join([str(x) for x in detectCycle(nos, i)]) break test_cases.close()
c5314ca04cf676a9eb3a9ed3337967a8e8814205
13b91cc2cf33b79230b971d7496abaaeca05a760
/Au plus proche dernière version.py
2dda3e6af08940dfc9ca17d99dfb75e9cc76ee10
[]
no_license
DevauxRobin/Projet-Libre
5657a5e2fa6c2f63a87afa10845a44e6e4837bed
0de22a51eee2378bc664cee71ffb27559a2a1e2e
refs/heads/main
2023-04-28T21:40:28.232230
2021-05-27T12:27:16
2021-05-27T12:27:16
369,522,694
0
0
null
null
null
null
UTF-8
Python
false
false
1,737
py
### On importe le module random pour générer des nombres aléatoires et le module tkinter pour l'interface import random import tkinter as tk def test(event=None): global enter_number, random_number, infos ### Récupérer le nombre number = enter_number.get() ### Tester si le caractère est un chiffre décimal et modifier le nombre en entier if number.isdigit(): number_proposition = int(number) ### Résultat if number_proposition < random_number: infos.set("Le nombre est plus haut.") elif number_proposition > random_number: infos.set("Le nombre est plus bas.") else: infos.set("Gagné !") window.destroy() quit() ### Annonce else: infos.set("Entre un nombre entre 1 et 75 :") ### Sélection du nombre et de la couleur de la fenêtre Tkinter random_number = random.randint(1, 75) color = "#B22222" ### Fenêtre Tkinter as TK window = tk.Tk() window.geometry("1200x600") window.title("Au plus proche") window.resizable(width=False, height=False) window.config(bg=color) frame = tk.Frame(window) frame.pack(expand=True) ### Fenêtre Tkinter as Tk pour rentrer les informations et bouton Valider enter_number = tk.Entry(frame) enter_number.bind('<Return>', test) enter_number.focus() enter_number.pack() button = tk.Button(frame, text="Valider", command=test) button.pack() ### Texte d'information Tkinter infos = tk.StringVar() infos.set("Bonne chance ^^!") information = tk.Label(window, textvariable=infos, bg=color) information.place(x=550, y=220) ### Tout exécuter pour tout afficher window.mainloop()
1c98f010be779b0df3ae626d838b4e5e5e86525c
d24e06a9fb04ada28de067be1b6be50a7a92f294
/Assignment1/svm_test.py
c916d079fcf86ddccff119130ecb3486e4f6dee4
[]
no_license
sentientmachine/CS7641
3960b3e216f1eddc9a782318a9bf3ae38fed1959
a9a1369acfdd3e846e311c64498a38c8afd8fcc2
refs/heads/master
2020-12-25T03:11:46.621886
2017-12-24T12:24:14
2017-12-24T12:24:14
51,779,034
0
0
null
2016-02-15T19:17:10
2016-02-15T19:17:10
null
UTF-8
Python
false
false
4,649
py
import io import pydotplus import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler, StandardScaler, OneHotEncoder, Imputer #from sklearn.metrics import accuracy_score from plot_curves import * class rb_svm_test: def __init__(self, x_train, x_test, y_train, y_test, x_col_names, data_label, cv): self.x_train = x_train self.x_test = x_test self.y_train = y_train self.y_test = y_test self.x_col_names = x_col_names self.data_label = data_label self.cv = cv def run_cv_model(self, C=1.0, degree=3, cache_size=200, do_plot=True): # use k-fold cross validation # we need to standardize the data for the KNN learner pipe_clf = Pipeline([ ('scl', StandardScaler() ), ('clf', SVC(C=C, degree=degree, cache_size=cache_size))]) # resample the test data without replacement. This means that each data point is part of a test a # training set only once. (paraphrased from Raschka p.176). In Stratified KFold, the features are # evenly disributed such that each test and training set is an accurate representation of the whole # this is the 0.17 version #kfold = StratifiedKFold(y=self.y_train, n_folds=self.cv, random_state=0) # this is the 0.18dev version skf = StratifiedKFold(n_folds=self.cv, random_state=0) # do the cross validation train_scores = [] test_scores = [] #for k, (train, test) in enumerate(kfold): for k, (train, test) in enumerate(skf.split(X=self.x_train, y=self.y_train)): # run the learning algorithm pipe_clf.fit(self.x_train[train], self.y_train[train]) train_score = pipe_clf.score(self.x_train[test], self.y_train[test]) train_scores.append(train_score) test_score = pipe_clf.score(self.x_test, self.y_test) test_scores.append(test_score) print('Fold:', k+1, ', Training score:', train_score, ', Test score:', test_score) train_score = np.mean(train_scores) print('Training score is', train_score) test_score = np.mean(test_scores) print('Test score is', test_score) if do_plot: self.__plot_learning_curve(pipe_clf) return train_score, test_score def run_model(self, C=1.0, degree=3, cache_size=200, do_plot=True): # we need to standardize the data for the learner pipe_clf = Pipeline([ ('scl', StandardScaler() ), ('clf', SVC(C=C, degree=degree, cache_size=cache_size))]) # test it: this should match the non-pipelined call pipe_clf.fit(self.x_train, self.y_train) # check model accuracy train_score = pipe_clf.score(self.x_train, self.y_train) print('Training score is', train_score) test_score = pipe_clf.score(self.x_test, self.y_test) print('Test score is', test_score) if do_plot: self.__plot_learning_curve(pipe_clf) self.__plot_decision_boundaries(pipe_clf) return train_score, test_score def __plot_learning_curve(self, estimator): plc = rb_plot_curves() plc.plot_learning_curve(estimator, self.x_train, self.y_train, self.cv, self.data_label) def plot_validation_curve(self, C=1.0, degree=3, cache_size=200): estimator = Pipeline([ ('scl', StandardScaler() ), ('clf', SVC(C=C, degree=degree, cache_size=cache_size))]) param_names = ['clf__C'] param_ranges = [np.arange(1.0,10.0,1.)] data_label = self.data_label plc = rb_plot_curves() for i in range(len(param_names)): param_name = param_names[i] param_range = param_ranges[i] plc.plot_validation_curve(estimator, self.x_train, self.y_train, self.cv, data_label, param_range, param_name) def __plot_decision_boundaries(self, estimator): plc = rb_plot_curves() features = pd.DataFrame(self.x_train) features.columns = self.x_col_names plc.plot_decision_boundaries(estimator, features, self.y_train, self.data_label)
[ "=" ]
=
efaec29f5e6d47e75369e75f63b91d4a4bcd3b8a
589d36690594f8ddfc1b47bd3a3781abcff2bb6d
/test2.py
04f69123eac59477f23a64729e8b13ca222673a3
[]
no_license
dwij2812/Robotics-makeathon
4275beb660dff128a6aef06dfc0025c9e980a57d
fd12aba84374a6320dfe4b2bced40e89d5dc2388
refs/heads/master
2023-07-25T01:27:38.379290
2018-06-05T08:01:00
2018-06-05T08:01:00
106,436,126
1
1
null
2022-03-07T08:42:14
2017-10-10T15:31:23
Java
UTF-8
Python
false
false
1,330
py
import serial import time import requests import json import re firebase_url = 'https://iot-data-d6cb8.firebaseio.com/' #Connect to Serial Port for communication ser = serial.Serial('COM11', 250000, timeout=0) #Setup a loop to send Temperature values at fixed intervals #in seconds fixed_interval = 60 while 1: x = [] try: #temperature value obtained from Arduino + DH11 Temp Sensor sensor_c = ser.readline().decode('utf-8') x=re.split(" ",sensor_c) #current time and date time_hhmmss = time.strftime('%H:%M:%S') date_mmddyyyy = time.strftime('%d/%m/%Y') #current location name #print (temperature_c + ',' + time_hhmmss + ',' + date_mmddyyyy + ',' + temperature_location) #insert record if(len(x)==5): data = {'date':date_mmddyyyy,'time':time_hhmmss,'Temperature':x[0],'Humidity':x[1],'HeartRate_constant':x[2],'Shock Switch':x[3],'Alert Button Press Status':x[4]} result = requests.post(firebase_url + '/sensor.json', data=json.dumps(data)) print ('Record inserted. Result Code = ' + str(result.status_code) + ',' + result.text) time.sleep(fixed_interval) else: print("Please Wait Initializing......") except IOError: print('Error! Something went wrong.') time.sleep(fixed_interval)
ee93f67a0d3be9541f6e49464b2c681f66d57dcb
3b5b3ab1a5e1cfead4d09671333378995eadbc01
/Week_08_model_comparison/utils.py
fabad819cc066526228fc5907caaef99c3106961
[]
no_license
piecesofmindlab/UNR_PSY_763
01ca6638fb6a2be956d8e697b444e781ad47ef80
d27c9007a79b90ee595021ab170ec6a510042143
refs/heads/master
2022-04-10T09:01:11.794455
2020-03-13T12:19:56
2020-03-13T12:19:56
118,689,922
2
1
null
null
null
null
UTF-8
Python
false
false
3,924
py
from __future__ import division import matplotlib.pyplot as plt import numpy as np import itertools as itools def column_corr(A, B, dof=0): """Efficiently compute correlations between columns of two matrices Does NOT compute full correlation matrix btw `A` and `B`; returns a vector of correlation coefficients. """ zs = lambda x: (x-np.nanmean(x, axis=0))/np.nanstd(x, axis=0, ddof=dof) rTmp = np.nansum(zs(A)*zs(B), axis=0) n = A.shape[0] # make sure not to count nans nNaN = np.sum(np.logical_or(np.isnan(zs(A)), np.isnan(zs(B))), 0) n = n - nNaN r = rTmp/n return r def compute_noise_ceil(data): """Computes noise ceiling as mean pairwise correlation between repeats Parameters ---------- data : array-like repeated data; should be (repeats x time x samples [voxels]) Returns ------- cc : vector correlation per sample (voxel) TO DO ----- Make this (optionally) more memory-efficient, with correlations computed in chunks """ n_rpts, n_t, n_samples = data.shape # Get all pairs of data pairs = [p for p in itools.combinations(np.arange(n_rpts), 2)] # Preallocate r = np.nan*np.zeros((n_samples, len(pairs))) for p, (a, b) in enumerate(pairs): r[:, p] = column_corr(data[a], data[b]) cc = np.nanmean(r, 1); return cc def find_squarish_dimensions(n): '''Get row, column dimensions for n elememnts Returns (nearly) sqrt dimensions for a given number. e.g. for 23, will return [5, 5] and for 26 it will return [6, 5]. For creating displays of sets of images, mostly. Always sets x greater than y if they are not equal. Returns ------- x : int larger dimension (if not equal) y : int smaller dimension (if not equal) ''' sq = np.sqrt(n) if round(sq)==sq: # if this is a whole number - i.e. a perfect square return sq, sq # One: next larger square x = [np.ceil(sq)] y = [np.ceil(sq)] opt = [x[0]*y[0]] # Two: immediately surrounding numbers x += [np.ceil(sq)] y += [np.floor(sq)] opt += [x[1]*y[1]] test = np.array([o-n for o in opt]) # Make sure negative values will not be chosen as the minimum test[test < 0] = np.inf idx = np.argmin(test) x = x[idx] y = y[idx] return x, y def slice_3d_array(volume, axis=2, fig=None, vmin=None, vmax=None, cmap=plt.cm.gray, nr=None, nc=None, figsize=None): '''Slices 3D matrix along arbitrary axis Parameters ---------- volume : array (3D) data to be sliced axis : int | 0, 1, [2] (optional) axis along which to divide the matrix into slices Other Parameters ---------------- vmin : float [max(volume)] (optional) color axis minimum vmax : float [min(volume)] (optional) color axis maximum cmap : matplotlib colormap instance [plt.cm.gray] (optional) nr : int (optional) number of rows nc : int (optional) number of columns ''' if nr is None or nc is None: nc, nr = find_squarish_dimensions(volume.shape[axis]) if figsize is None: figsize = (10, nr/nc * 10) if fig is None: fig = plt.figure(figsize=figsize) if vmin is None: vmin = volume.min() if vmax is None: vmax = volume.max() ledges = np.linspace(0, 1, nc+1)[:-1] bedges = np.linspace(1, 0, nr+1)[1:] width = 1/float(nc) height = 1/float(nr) bottoms, lefts = zip(*list(itools.product(bedges, ledges))) for ni, sl in enumerate(np.split(volume, volume.shape[axis], axis=axis)): #ax = fig.add_subplot(nr, nc, ni+1) ax = fig.add_axes((lefts[ni], bottoms[ni], width, height)) ax.imshow(sl.squeeze(), vmin=vmin, vmax=vmax, interpolation="nearest", cmap=cmap) ax.set_xticks([]) ax.set_yticks([]) return fig
abd2f183813a26b39b95507feb4bb61cfdad6e52
56c5bd20684a87ba522099ac0c2d22032c172662
/menu_service/migrations/0005_auto_20210519_1103.py
6f46237e29642fbb325f33ae9ac10b1759a08e9d
[]
no_license
germanTM/Backend-Test-Torres-Molina
3fa30c0c1aed8525ef355f41fd00152e57126cd3
330de56a79d87875568b166f2bb17cbc2e72a060
refs/heads/main
2023-05-10T15:12:05.936666
2021-05-26T02:58:53
2021-05-26T02:58:53
370,290,320
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
# Generated by Django 3.0.8 on 2021-05-19 11:03 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('menu_service', '0004_auto_20210519_1102'), ] operations = [ migrations.RenameField( model_name='dish_ingredient', old_name='dish_Id', new_name='dish', ), migrations.RenameField( model_name='dish_ingredient', old_name='ingredient_Id', new_name='ingredient', ), ]
8db36025f323262af3ea01791f185c0f0290c259
46ef284df436bc84cbd62b45dcc909a955e10934
/turtle02.py
46c978aaba1f6e85a718d4fdf5b9a06b16cc419f
[]
no_license
zmscgck/pythonexercise
188e2d3175a137ff3eb79fc2d412e932879e794c
eca7575b62d65cef6d580ea4261dc3e08f5389ff
refs/heads/master
2020-08-13T10:13:43.007857
2019-10-14T04:58:10
2019-10-14T04:58:10
214,952,586
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
# -*- coding: utf-8 -*- """ Created on Thu Aug 15 19:42:05 2019 @author: LZM """ import turtle hg=turtle.Turtle() def square(t,length): for i in range(4): t.fd(length) t.lt(90) print('请输入边的长度:') length=input() length=float(length) square(hg,length)
b59fa9ec2f490e6e84a85e73f44ac57ac0aa19e8
3fa2b0ea8b6893b4c2b54337f75fdafce03ef924
/BeginnerSnippets.py
7ea547733df49a622a60a681f6f9d89d4f8b34ad
[]
no_license
KUHOO-S/Scripts-and-DA
0ab88f8fc9be1df458ef958cfa996205919bdb93
cd92360c354a7ecf6d491a9ec90add07ee90e5a9
refs/heads/master
2022-12-19T14:46:47.878377
2020-09-30T18:38:35
2020-09-30T18:38:35
298,450,996
0
6
null
2020-10-01T09:10:35
2020-09-25T02:50:29
Python
UTF-8
Python
false
false
247
py
def foo(x): def retfun(y): return y * x return retfun def bar(f1, f2): def newfun(y): return f1(y) / f2(y) return newfun def a(z): return z * 10 b = foo(2) c = bar(a, b) print(a(5)) print(b(5)) print(c(5))
67112ebad7aac4774ca09bdc5da34187288d3838
38c0d8bce5aff8e2ee1911884d1f93b38a78635c
/backend/cryptbox/jwtutils/jwterrors.py
75f2e1b679f2c27d97d1eca0ab42c2e53ad7948f
[]
no_license
Riolku/cryptbox
a1998932169d82efe7e48c726776b965efd0dc48
ecd91a69082791cff8d935c271f6331250dd8421
refs/heads/master
2023-07-31T21:51:04.905500
2021-09-17T15:33:20
2021-09-17T15:33:20
330,080,827
1
2
null
null
null
null
UTF-8
Python
false
false
78
py
class ExpiredJWT(RuntimeError): pass class InvalidJWT(RuntimeError): pass
37eb3dcee7882c9b0d490c7ac8434257256685dd
d9ab421ab08c34179c9337400d34031af409c03e
/firstweek/ideabank.py
83ec6c8e86f408386530a0bd611942a95950a29e
[]
no_license
grosuclaudia/dojos
b79caada2a89ab015d79deb21cda780ef892c55d
27958e14fe0e67e90dc811441a36fa7f4425a6ae
refs/heads/master
2020-08-31T16:20:24.737074
2019-10-31T09:53:20
2019-10-31T09:53:20
218,731,341
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
#idea bank idea = input("What is your new idea: ") nr = 0 file=open("ideabank.txt","a") file.write(idea + "\n") file.close() file=open("ideabank.txt","r") print("Your ideabank:") for line in file: nr = nr + 1 print(str(nr) + ". " + line) file.close()
a688ca2e222977722e0df277f47979059d2e8e1b
99eb4013a12ddac44042d3305a16edac1c9e2d67
/test/test_raw_shape_map.py
1a6b72fc298a5b35beaa25426e64cdf336fc34fa
[ "Apache-2.0" ]
permissive
DaniFdezAlvarez/shexer
cd4816991ec630a81fd9dd58a291a78af7aee491
7ab457b6fa4b30f9e0e8b0aaf25f9b4f4fcbf6d9
refs/heads/master
2023-05-24T18:46:26.209094
2023-05-09T18:25:27
2023-05-09T18:25:27
132,451,334
24
2
Apache-2.0
2023-05-03T18:39:57
2018-05-07T11:32:26
Python
UTF-8
Python
false
false
4,212
py
import unittest from shexer.shaper import Shaper from test.const import G1, BASE_FILES, default_namespaces from test.t_utils import file_vs_str_tunned_comparison import os.path as pth from shexer.consts import TURTLE _BASE_DIR = BASE_FILES + "shape_map" + pth.sep class TestRawShapeMap(unittest.TestCase): def test_node(self): shape_map = "<http://example.org/Jimmy>@<Person>" shaper = Shaper(graph_file_input=G1, namespaces_dict=default_namespaces(), all_classes_mode=False, input_format=TURTLE, disable_comments=True, shape_map_raw=shape_map ) str_result = shaper.shex_graph(string_output=True) self.assertTrue(file_vs_str_tunned_comparison(file_path=_BASE_DIR + "a_node.shex", str_target=str_result)) def test_prefixed_node(self): shape_map = "ex:Jimmy@<Person>" shaper = Shaper(graph_file_input=G1, namespaces_dict=default_namespaces(), all_classes_mode=False, input_format=TURTLE, disable_comments=True, shape_map_raw=shape_map ) str_result = shaper.shex_graph(string_output=True) self.assertTrue(file_vs_str_tunned_comparison(file_path=_BASE_DIR + "a_node.shex", str_target=str_result)) def test_focus(self): shape_map = "{FOCUS a foaf:Person}@<Person>" shaper = Shaper(graph_file_input=G1, namespaces_dict=default_namespaces(), all_classes_mode=False, input_format=TURTLE, disable_comments=True, shape_map_raw=shape_map ) str_result = shaper.shex_graph(string_output=True) self.assertTrue(file_vs_str_tunned_comparison(file_path=_BASE_DIR + "focus_nodes.shex", str_target=str_result)) def test_focus_wildcard(self): shape_map = "{FOCUS foaf:name _}@<WithName>" shaper = Shaper(graph_file_input=G1, namespaces_dict=default_namespaces(), all_classes_mode=False, input_format=TURTLE, disable_comments=True, shape_map_raw=shape_map ) str_result = shaper.shex_graph(string_output=True) self.assertTrue(file_vs_str_tunned_comparison(file_path=_BASE_DIR + "focus_and_wildcard.shex", str_target=str_result)) def test_sparql_selector(self): shape_map = "SPARQL \"select ?p where { ?p a foaf:Person }\"@<Person>" shaper = Shaper(graph_file_input=G1, namespaces_dict=default_namespaces(), all_classes_mode=False, input_format=TURTLE, disable_comments=True, shape_map_raw=shape_map ) str_result = shaper.shex_graph(string_output=True) self.assertTrue(file_vs_str_tunned_comparison(file_path=_BASE_DIR + "focus_nodes.shex", str_target=str_result)) def test_several_shapemap_items(self): shape_map = "{FOCUS a foaf:Person}@<Person>\n{FOCUS a foaf:Document}@<Document>" shaper = Shaper(graph_file_input=G1, namespaces_dict=default_namespaces(), all_classes_mode=False, input_format=TURTLE, disable_comments=True, shape_map_raw=shape_map ) str_result = shaper.shex_graph(string_output=True) self.assertTrue(file_vs_str_tunned_comparison(file_path=_BASE_DIR + "several_shm_items.shex", str_target=str_result))
9a0b11d34c65a69702e5f2c0816a02e44ba81f6c
88395edcba1d35da9a39272bc94e7fc35c576b1b
/InitialFiltering.py
c219b53a0a235705d7bfc53f02b999469127e08e
[]
no_license
vijendhervijendher/Box-office-prediction-using-different-models
1027b53a65f4141f52a8643d54c79f40173f007c
23653f12f06b3b175c89de77ce0bf55b66e50fb4
refs/heads/master
2020-03-16T04:13:41.029688
2018-05-07T19:58:42
2018-05-07T19:58:42
132,506,386
0
0
null
null
null
null
UTF-8
Python
false
false
8,039
py
import pandas as pd import json import csv import matplotlib.pyplot as plt import numpy as np movies_data = pd.read_csv('tmdb_5000_credits.csv') credits_data = pd.read_csv('tmdb_5000_movies.csv') # Combining the movie database data into a single csv file output = pd.merge(movies_data,credits_data) output.to_csv('InitialDataSet.csv') df = pd.read_csv('InitialDataSet.csv') # Dataset with json columns json_columns = ['cast','crew','genres','production_companies'] for column in json_columns: df[column] = df[column].apply(json.loads) df_1 = df[['movie_id','title','budget','runtime','popularity','revenue','vote_average','vote_count','production_companies']].reset_index(drop=True) df_1['runtime'] = df_1['runtime'].fillna(df_1['runtime'].mean()) def flatten_names(keywords): return '|'.join([x['name'] for x in keywords]) # Extracting all the genres of a movie df['genres'] = df['genres'].apply(flatten_names) liste_genres = set() for s in df['genres'].str.split('|'): liste_genres = set().union(s, liste_genres) liste_genres = list(liste_genres) liste_genres.remove('') # Splliting the genres into separate columns for genre in liste_genres: df_1[genre] = df['genres'].str.contains(genre).apply(lambda x:1 if x else 0) def retreive_data(data, positions): result = data try: for id in positions: result = result[id] return result except IndexError or KeyError: return pd.np.nan # Extracting the actors(cast) data from the json columns df_1['Actor 1'] = df['cast'].apply(lambda x: retreive_data(x, [0, 'id'])) df_1['Actor 2'] = df['cast'].apply(lambda x: retreive_data(x, [1, 'id'])) df_1['Actor 3'] = df['cast'].apply(lambda x: retreive_data(x, [2, 'id'])) df_1['Actor 4'] = df['cast'].apply(lambda x: retreive_data(x, [3, 'id'])) # Filling the missing values in the columns df_1['Actor 1'] = df_1['Actor 1'].fillna('0') df_1['Actor 2'] = df_1['Actor 2'].fillna('0') df_1['Actor 3'] = df_1['Actor 3'].fillna('0') df_1['Actor 4'] = df_1['Actor 4'].fillna('0') # Extracting the names of directors from the crew column and filling the missing values in the column def director_name(crew_data): directors = [x['id'] for x in crew_data if x['job'] == 'Director'] return retreive_data(directors, [0]) df_1['Director'] = df['crew'].apply(director_name) df_1['Director'] = df_1['Director'].fillna('0') # Extracting the names of director of photography from the crew column and filling the missing values in the column def dop_name(crew_data): dop = [x['id'] for x in crew_data if x['job'] == 'Director of Photography'] return retreive_data(dop, [0]) df_1['DOP'] = df['crew'].apply(dop_name) df_1['DOP'] = df_1['DOP'].fillna('0') # Extracting the name of writer from the crew column and filling the missing values in the column def writer_name(crew_data): writer = [x['id'] for x in crew_data if x['job'] == 'Writer'] return retreive_data(writer, [0]) df_1['Writer'] = df['crew'].apply(writer_name) df_1['Writer'] = df_1['Writer'].fillna('0') # Extracting the names of screenplay head from the crew column and filling the missing values in the column def screenplay(crew_data): screenplay = [x['id'] for x in crew_data if x['job'] == 'Screenplay'] return retreive_data(screenplay, [0]) df_1['Screenplay'] = df['crew'].apply(screenplay) df_1['Screenplay'] = df_1['Screenplay'].fillna('0') # Extracting the names of music composers from the crew column and filling the missing values in the column def music_composer_name(crew_data): music_composer = [x['id'] for x in crew_data if x['job'] == 'Original Music Composer'] return retreive_data(music_composer, [0]) df_1['Music Composer'] = df['crew'].apply(music_composer_name) df_1['Music Composer'] = df_1['Music Composer'].fillna('0') # Extracting the names of stuntman from the crew column and filling the missing values in the column def stunts_name(crew_data): stunts = [x['id'] for x in crew_data if x['job'] == 'Stunts'] return retreive_data(stunts, [0]) df_1['Stunts Director'] = df['crew'].apply(stunts_name) df_1['Stunts Director'] = df_1['Stunts Director'].fillna('0') # Extracting the names of producers from the crew column and filling the missing values in the column def producer_name(crew_data): producer = [x['id'] for x in crew_data if x['job'] == 'Producer'] return retreive_data(producer, [0]) df_1['Producer'] = df['crew'].apply(producer_name) df_1['Producer'] = df_1['Producer'].fillna('0') # Extracting the names of production companies from the crew column and filling the missing values in the column def production_company_name(production_data): pro = [x['id'] for x in production_data] return retreive_data(pro, [0]) df_1['production_companies'] = df['production_companies'].apply(production_company_name) df_1['production_companies'] = df_1['production_companies'].fillna('0') # Extracting the release year and month of a movie from datetime import datetime dt = df['release_date'] data = pd.to_datetime(dt) month = data.dt.month df_1['Release_month'] = month year = data.dt.year df_1['Release_year'] = year df1 = pd.DataFrame(df_1) df1.to_csv("output.csv",sep=',',index=False) # Retreiving the popularity information of the cast and crew data from the TMDB API import tmdbsimple as tmdb import json tmdb.API_KEY = '02d4d7373cb76210bc18a4a0912c0f31' popularity_actor1 = [] popularity_actor2 = [] popularity_actor3 = [] popularity_actor4 = [] director = [] dop = [] screenplay = [] music_composer = [] producer = [] for i in df_1['Actor 1']: try: movie = tmdb.People(i) response = movie.info() popularity_actor1.append(response['popularity'] ) except: popularity_actor1.append('0') df_1['Popularity_Actor 1'] = popularity_actor1 for j in df_1['Actor 2']: try: movie = tmdb.People(j) response = movie.info() popularity_actor2.append(response['popularity']) except: popularity_actor2.append('0') df_1['Popularity_Actor 2'] = popularity_actor2 for k in df_1['Actor 3']: try: movie = tmdb.People(k) response = movie.info() popularity_actor3.append(response['popularity'] ) except: popularity_actor3.append('0') df_1['Popularity_Actor 3'] = popularity_actor3 for m in df_1['Actor 4']: try: movie = tmdb.People(m) response = movie.info() popularity_actor4.append(response['popularity'] ) except: popularity_actor4.append('0') df_1['Popularity_Actor 4'] = popularity_actor4 for n in df_1['Director']: try: movie = tmdb.People(n) response = movie.info() director.append(response['popularity'] ) except: director.append('0') df_1['Popularity_Director'] = director for o in df_1['DOP']: try: movie = tmdb.People(o) response = movie.info() dop.append(response['popularity'] ) except: dop.append('0') df_1['Popularity_DOP'] = dop for p in df_1['Screenplay']: try: movie = tmdb.People(p) response = movie.info() screenplay.append(response['popularity'] ) except: screenplay.append('0') df_1['Popularity_Screenplay'] = screenplay for q in df_1['Music Composer']: try: movie = tmdb.People(q) response = movie.info() music_composer.append(response['popularity'] ) except: music_composer.append('0') df_1['Popularity_MusicComposer'] = music_composer for r in df_1['Producer']: try: movie = tmdb.People(r) response = movie.info() producer.append(response['popularity'] ) except: producer.append('0') df_1['Popularity_Producer'] = producer df_1.to_csv('InitialDataSet.csv',index=False)
63fca56bd0c0663f2b1060f16e06b9340e3f7ee7
62a6299282f65919e0a0f4241882a574e8ebb26b
/fifty_shades/example.py
a7fbf2642486869aa6d7297cf726f9aa7e7831c7
[ "MIT" ]
permissive
a-ro/fifty-shades-of-miaw
53603c1935842925d27a6d139394f8f29789c490
0af7029673619bef76c4cbfb38bf904f4f1c4dc0
refs/heads/master
2023-02-20T02:17:25.303257
2021-07-16T17:04:31
2021-07-16T17:04:31
229,767,682
4
1
MIT
2023-02-16T04:14:54
2019-12-23T14:26:21
Python
UTF-8
Python
false
false
2,897
py
from os.path import join from fifty_shades.image_processing import load_image_tensor from fifty_shades.loader import ( ImageType, generate_project_images, get_result_path, get_hero_one_file_path, get_drawing_one_file_path, get_cat_bromance_file_path, ) from fifty_shades.model import NeuralStyleTransfer def show_stylized_cat_example(): cat_tensor = load_image_tensor(get_cat_bromance_file_path()) style_tensor = load_image_tensor(get_drawing_one_file_path()) model = NeuralStyleTransfer() predicted_image = model.predict(cat_tensor, style_tensor) predicted_image.show() def transform_all_cat_images(style_name: str, save_directory: str) -> None: cat_generator = generate_project_images(ImageType.CAT) style_generator = generate_project_images(style_name) model = NeuralStyleTransfer() model.predict_and_save_all(cat_generator, style_generator, save_directory) def transform_all_cat_images_with_single_style(style_image_path: str, save_directory: str) -> None: cat_generator = generate_project_images(ImageType.CAT) style_tensor = load_image_tensor(style_image_path) model = NeuralStyleTransfer() model.predict_single_style_and_save_all(cat_generator, style_tensor, save_directory) def transform_single_cat_image_with_all_styles(cat_image_path: str, style_name: str, save_directory: str) -> None: cat_tensor = load_image_tensor(cat_image_path) style_generator = generate_project_images(style_name) model = NeuralStyleTransfer() model.predict_single_content_and_save_all(cat_tensor, style_generator, save_directory) def transform_canvas_images(save_directory: str) -> None: cat_generator = generate_project_images(ImageType.CANVAS_CAT) style_generator = generate_project_images(ImageType.CANVAS_HERO) model = NeuralStyleTransfer() model.predict_and_save_all(cat_generator, style_generator, save_directory) if __name__ == "__main__": show_stylized_cat_example() transform_all_cat_images(ImageType.HERO, save_directory=join(get_result_path(), "all_heroes")) transform_all_cat_images(ImageType.DRAWING, save_directory=join(get_result_path(), "all_drawings")) transform_all_cat_images_with_single_style( get_hero_one_file_path(), save_directory=join(get_result_path(), "single_hero") ) transform_all_cat_images_with_single_style( get_drawing_one_file_path(), save_directory=join(get_result_path(), "single_drawing") ) transform_single_cat_image_with_all_styles( get_cat_bromance_file_path(), ImageType.HERO, save_directory=join(get_result_path(), "bromance_heroes") ) transform_single_cat_image_with_all_styles( get_cat_bromance_file_path(), ImageType.DRAWING, save_directory=join(get_result_path(), "bromance_drawings") ) transform_canvas_images(save_directory=join(get_result_path(), "canvas"))
0d4686f787a951cd5fc7bc0bbdf519fe1c900f03
30ce589ccea8afec70ffc340834872316ef8ca5b
/Exercise folder/ex61.py
7e04f511fa3135670cfea235de675180689ff676
[]
no_license
gideonseedboy/Python-Programming-with-Data-Science-and-AI
4c152f2cf14600320c6efe79368056e4205ed8a3
8563a20d66584413219ed7ae45d3cec5e9e017c0
refs/heads/master
2022-12-22T20:02:50.539504
2020-10-06T07:30:56
2020-10-06T07:30:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
#Loops members = ["Irene", "Emmanuel", "Abraham", "Micheal", "Abraham"] counter = 0 for i in members: if i=="Abraham": counter = counter + 1 print(counter)
3e034a11bde11aa6a40bca38c774c9dba4dc8ef4
9b422078f4ae22fe16610f2ebc54b8c7d905ccad
/xlsxwriter/test/comparison/test_chart_format07.py
45e9369b2bac7462c137134173b1cda4559f1696
[ "BSD-2-Clause-Views" ]
permissive
projectsmahendra/XlsxWriter
73d8c73ea648a911deea63cb46b9069fb4116b60
9b9d6fb283c89af8b6c89ad20f72b8208c2aeb45
refs/heads/master
2023-07-21T19:40:41.103336
2023-07-08T16:54:37
2023-07-08T16:54:37
353,636,960
0
0
NOASSERTION
2021-04-01T08:57:21
2021-04-01T08:57:20
null
UTF-8
Python
false
false
1,582
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2021, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('chart_format07.xlsx') def test_create_file(self): """Test the creation of an XlsxWriter file with chart formatting.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'line'}) chart.axis_ids = [46163840, 46175360] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$B$1:$B$5', 'marker': { 'type': 'square', 'size': 5, 'line': {'color': 'yellow'}, 'fill': {'color': 'red'}, }, }) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$C$1:$C$5', }) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
78736e48e0a8d4cc7189fbf0b4c5142cc83a935d
5349b773a61d681ee7903391e22dae1b1c9f1ac4
/___sb3analyzer_bak20200401/sb3analyzer/sb3analyzer.py
9bb0be82d31fca4fda7c32905ef42310afde57c8
[ "MIT" ]
permissive
gnoeykeCG4001/sb3analyzer_references
05acafe085c5e8083eacf98c7f67a08faada50ea
078740a86cc8c11d0731f7e1138cdbd856c778b1
refs/heads/master
2023-02-04T14:33:34.027908
2020-04-03T07:26:01
2020-04-03T07:26:01
252,245,854
0
0
null
2023-01-25T14:22:36
2020-04-01T17:43:36
JavaScript
UTF-8
Python
false
false
939
py
# Comments regarding module # # ## Imports #from sb3objects import sb3block_inputNfield import sys sys.path.append('/__SB3Analyzer/sb3objects') from sb3objects import sb3project ## Globals ## Define ## Helper functions ## Class declaration class SB3Analyzer: # Constructor # score variables deadCode_BlockList = [] def __init__(self, Proj): self.proj = Proj # Class Methods def get_self(self): return self def getDeadCode_BlockList(self): self.mark_print() tList = self.proj.getTargetList() for t in tList: for indivBlock in t.get_blockList(): if not indivBlock.isReachable(): self.deadCode_BlockList.append([t.get_name(),indivBlock]) print("\n\n\ndead blocks = " + str(len(self.deadCode_BlockList))) def mark_print(self): self.proj.printProj()
caea01eb1c844499ed64d53c25b5a3fde5d6597b
38368dfaef53c2e3213e2b6d2ea55ab38fbe3eab
/setup.py
406e9fcbfe28fbf16b5bec6d2092ebb0ac7b42c5
[ "MIT" ]
permissive
DonCharlesLambert/tkCharacter
5ab9cd5d74123749bc61cbf0747d43ae855b4bcf
eb877e3e40a71f44321f09207a7c5bf955779799
refs/heads/master
2022-04-22T19:56:26.554151
2020-04-24T22:23:34
2020-04-24T22:23:34
257,748,623
0
0
null
null
null
null
UTF-8
Python
false
false
1,158
py
from distutils.core import setup setup( name = 'tkCharacter', packages = ['tkCharacter'], version = '0.1', license='MIT', description = 'Allows for effortless creation of playable and AI 2d characters in python games', long_description= "", author = 'Don Charles - Lambert', author_email = '[email protected]', url = 'https://github.com/DonCharlesLambert/tkCharacter', download_url = 'https://github.com/DonCharlesLambert/tkCharacter/archive/0.1.tar.gz', # I explain this later on keywords = ['tkinter', 'games', 'characters'], install_requires=[ # I get to this in a second 'tkinter', ], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], )
e6595a2de890bde16ecaf021779fa9b65bd318be
063bf24d3fc3f4a582ba31bb99a0b31eee336ad7
/SphinxTrain/python/cmusphinx/s3model.py
9bbc0b3c30456a49c2b127079c724336d8e70ac0
[ "BSD-2-Clause" ]
permissive
khcqcn/cmusphinx
6f2bd35593ff40208340543bb43f56e60bf0a71a
45179a75546b396a218435a40eaf07be68707f59
refs/heads/master
2020-03-19T13:41:39.147382
2018-06-08T11:36:22
2018-06-08T11:36:22
136,590,836
0
0
null
2018-06-08T08:33:52
2018-06-08T08:33:51
null
UTF-8
Python
false
false
3,737
py
# Copyright (c) 2006 Carnegie Mellon University # # You may copy and modify this freely under the same terms as # Sphinx-III """Sphinx-III acoustic models. This module provides a class which wraps a set of acoustic models, as used by SphinxTrain, Sphinx-III, and PocketSphinx. It provides functions for computing Gaussian mixture densities for acoustic feature vectors. """ __author__ = "David Huggins-Daines <[email protected]>" __version__ = "$Revision$" import s3gau import s3mixw import s3tmat import s3mdef import s3file import sys import os import numpy WORSTSCORE = -100000 class S3Model(object): def __init__(self, path=None, topn=4): self.topn = topn self.mwfloor = 1e-5 self.varfloor = 1e-5 if path != None: self.read(path) def read(self, path): self.mdef = s3mdef.open(os.path.join(path, "mdef")) self.mean = s3gau.open(os.path.join(path, "means")) self.var = s3gau.open(os.path.join(path, "variances")) self.mixw = s3mixw.open(os.path.join(path, "mixture_weights")) self.tmat = s3tmat.open(os.path.join(path, "transition_matrices")) # Normalize transition matrices and mixture weights for t in range(0, len(self.tmat)): self.tmat[t] = (self.tmat[t].T / self.tmat[t].sum(1)).T for t in range(0, len(self.mixw)): self.mixw[t] = (self.mixw[t].T / self.mixw[t].sum(1)).T.clip(self.mwfloor, 1.0) # Floor variances and precompute normalizing and inverse variance terms self.norm = numpy.empty((len(self.var), len(self.var[0]), len(self.var[0][0])),'d') for m,mgau in enumerate(self.var): for f,feat in enumerate(mgau): fvar = feat.clip(self.varfloor, numpy.inf) # log of 1/sqrt(2*pi**N * det(var)) det = numpy.log(fvar).sum(1) lrd = -0.5 * (det + 2 * numpy.pi * feat.shape[1]) self.norm[m,f] = lrd # "Invert" variances feat[:] = (1 / (fvar * 2)) # Construct senone to codebook mapping if os.access(os.path.join(path, "senmgau"), os.F_OK): self.senmgau = s3file.S3File(os.path.join(path, "senmgau")).read1d() elif len(self.mean) == 1: self.senmgau = numpy.ones(len(self.mixw)) else: self.senmgau = numpy.arange(0, len(self.mixw)) self.senscr = numpy.ones(len(self.mixw)) * WORSTSCORE def cb_compute(self, mgau, feat, obs): "Compute codebook #mgau feature #feat for obs" mean = self.mean[mgau][feat] ivar = self.var[mgau][feat] norm = self.norm[mgau][feat] diff = obs - mean dist = (diff * ivar * diff).sum(1) return norm - dist def senone_compute(self, senones, *features): """Compute senone scores for given list of senones and a frame of acoustic features""" cbs = {} self.senscr[:] = WORSTSCORE for s in senones: m = self.senmgau[s] if not m in cbs: cbs[m] = [self.cb_compute(m, f, features[f]) for f in range(0,len(self.mean[m]))] score = 0 for f, vec in enumerate(features): # Compute densities and scale by mixture weights d = cbs[m][f] + numpy.log(self.mixw[s,f]) # Take top-N densities d = d.take(d.argsort()[-self.topn:]) # Multiply into output score score += numpy.log(numpy.exp(d).sum()) self.senscr[s] = score return numpy.exp(self.senscr - self.senscr.max())
[ "dhdfu@c60273ff-4a12-0410-8d58-82ceea6d4170" ]
dhdfu@c60273ff-4a12-0410-8d58-82ceea6d4170
4dabb4dcf7e5b6d492023be48a616755cb5d9b08
3f8bb7a9adab1ad545e1d1b7a35333b64165c145
/all_archives/archived_py/manly_recent.py
e0fe6ef9ec366ce7f5117e7f9efa5e14cbfc5885
[]
no_license
cyntiamk/weather_prediction_1
3168660a439e9cee1a9462b390b0f4c828b40dca
283025d4305f9773684efb498702a3c2cd9fb5ff
refs/heads/master
2020-04-17T01:18:13.579954
2019-01-27T14:52:21
2019-01-27T14:52:21
166,086,191
0
0
null
null
null
null
UTF-8
Python
false
false
2,533
py
# Dependencies import csv import openweathermapy as ow import pandas as pd import requests import pprint import time from datetime import datetime import os # import api_key from config file from config import api_key def grab_manly(): data = [] url = "http://api.openweathermap.org/data/2.5/weather?" units = "metric" manly = url + "appid=" + api_key + "&q=" + 'Manly'+"&units="+ units weather_response = requests.get(manly) data.append(weather_response.json()) date_obj = [] temp = [] max_temp = [] min_temp = [] humidity = [] pressure = [] wind_speed = [] clouds = [] description = [] for measure in data: date_obj.append(measure['dt']) temp.append(measure['main']['temp']) max_temp.append(measure['main']['temp_max']) min_temp.append(measure['main']['temp_min']) pressure.append(measure['main']['pressure']) humidity.append(measure['main']['humidity']) wind_speed.append(measure['wind']['speed']) clouds.append(measure['clouds']['all']) description.append(measure['weather'][0]['main']) def calculate_dp(T, H): return T - ((100 - H) / 5) dew_point = [] for T ,H in zip(temp, humidity): dp = calculate_dp(T,H) dew_point.append(dp) max_dew = [] for T ,H in zip(max_temp, humidity): dp = calculate_dp(T,H) max_dew.append(dp) min_dew = [] for T ,H in zip(min_temp, humidity): dp = calculate_dp(T,H) min_dew.append(dp) date = [] for seconds in date_obj: timestamp = datetime.utcfromtimestamp(seconds) day = datetime.strftime(timestamp,'%Y-%m-%d %H:%M:%S') date.append(day) manly_weather = { "Date": date, "Mean_temp": temp, "Max_temp": max_temp, "Min_temp": min_temp, "Mean_dwp": dew_point, "Max_dwp": max_dew, "Min_dwp": min_dew, "Pressure": pressure, "Humidity": humidity, "Wind": wind_speed, "Clouds": clouds, "Description": description } manly_recent = pd.DataFrame(manly_weather) # if file does not exist write header if not os.path.isfile('manly_recent.csv'): manly_recent.to_csv('manly_recent.csv', header='column_names') else: # else it exists so append without writing the header manly_recent.to_csv('manly_recent.csv', mode='a', header=False) while(True): grab_manly() time.sleep(3600) print("Retrieving data...")
cd45e3c8488bd30b895a3c056efaec59d2095aca
3d786ca81bae70c59c62572764b7c774e00160ca
/01. jump to python/chapter_03/122_4.py
7b7c6810e008bbded43d4993c28bc44d3b4be4e8
[]
no_license
youngholee0226/bigdata2019
7b504853a4a353d6a844155d438a72fef4f9d7f6
cb17b6b67cdcc8b723ada62cc574f50d85368d62
refs/heads/master
2020-04-21T10:56:38.180438
2019-02-07T02:32:23
2019-02-07T02:32:23
169,503,627
0
0
null
null
null
null
UHC
Python
false
false
443
py
# coding: cp949 feel = "호감" # feel = "" hit_on_count = 0 while feel and hit_on_count <10 : hit_on_count = hit_on_count + 1 print ("%d번 데이트 신청합니다, " %hit_on_count) if(hit_on_count == 10): print("고백할 때가 다가 왔네요, ") continue feel= input("현재 그녀에 대한 당신의 감정은 어떤가요?") if(feel == "비호감"): print("그럼 단념하세요") break
88ae046695faa97023e4952c85ae2915a6475290
b1480f77540258ec08c9c35866138bfec839d7d0
/src/drostedraw/__init__.py
926f411cf29c3ff970f86b4bedac15a10a608353
[ "MIT" ]
permissive
asweigart/drostedraw
1fd69cac3659eaeebf8179f8015989b5d572c55b
d2a3620a4d2bda6fb76321883a3c9587abf6cec4
refs/heads/main
2023-08-04T18:23:21.586862
2021-09-14T17:35:00
2021-09-14T17:35:00
397,367,988
6
0
null
null
null
null
UTF-8
Python
false
false
10,584
py
"""Droste Draw By Al Sweigart [email protected] A Python module for making recursive drawings (aka Droste effect) with the built-in turtle module.""" __version__ = '0.2.1' import turtle, math MAX_FUNCTION_CALLS = 10000 # Stop recursion after this many function calls. MAX_ITERATION = 400 # Stop recursion after this iteration. MIN_SIZE = 1 # Stop recursion if size is less than this. # NOTE: In general, don't use absolute coordinate functions (like turtle.goto(), turtle.xcor(), turtle.ycor(), # turtle.setheading()) in your draw functions because they might not work when the heading angle is not 0. def drawSquare(size, extraData=None): """Draw a square where `size` is the length of each side.""" # Move the turtle to the top-right corner before drawing: turtle.penup() turtle.forward(size // 2) # Move to the right edge. turtle.left(90) # Turn to face upwards. turtle.forward(size // 2) # Move to the top-right corner. turtle.left(180) # Turn around to face downwards. turtle.pendown() # Draw the four sides of a square: for i in range(4): turtle.forward(size) turtle.right(90) def drawTriangle(size, extraData=None): """Draw an equilateral triangle where `size` is the length of each side.""" # Move the turtle to the top of the equilateral triangle: height = (size * math.sqrt(3)) / 2 turtle.penup() turtle.left(90) # Turn to face upwards. turtle.forward(height * (2/3)) # Move to the top corner. turtle.right(150) # Turn to face the bottom-right corner. turtle.pendown() # Draw the three sides of the triangle: for i in range(3): turtle.forward(size) turtle.right(120) def drawFilledSquare(size, extraData=None): """Draw a solid, filled-in square where `size` is the length of each side. The extraData dictionary can have a key 'colors' whose value is a list of "color strings" that the turtle module recognizes, e.g. 'red', 'black', etc. The first color string in the list is used for the first iteration, the second for the second, and so on. When you run out of colors for later iterations, the first color is used again.""" # Move the turtle to the top-right corner before drawing: turtle.penup() turtle.forward(size // 2) # Move to the right edge. turtle.left(90) # Turn to face upwards. turtle.forward(size // 2) # Move to the top-right corner. turtle.left(180) # Turn around to face downwards. turtle.pendown() # The extra data is a tuple of (fillcolor, pencolor) values: if extraData is not None: iteration = extraData['_iteration'] - 1 # -1 because iteration starts at 1, not 0. turtle.fillcolor(extraData['colors'][iteration % len(extraData['colors'])]) turtle.pencolor(extraData['colors'][iteration % len(extraData['colors'])]) # Draw the four sides of a square: turtle.begin_fill() for i in range(4): turtle.forward(size) turtle.right(90) turtle.end_fill() def drawFilledDiamond(size, extraData=None): # Move to the right corner before drawing: turtle.penup() turtle.forward(math.sqrt(size ** 2 / 2)) turtle.right(135) turtle.pendown() # The extra data is a tuple of (fillcolor, pencolor) values: if extraData is not None: iteration = extraData['_iteration'] - 1 # -1 because iteration starts at 1, not 0. turtle.fillcolor(extraData['colors'][iteration % len(extraData['colors'])]) turtle.pencolor(extraData['colors'][iteration % len(extraData['colors'])]) # Draw a square: turtle.begin_fill() for i in range(4): turtle.forward(size) turtle.right(90) turtle.end_fill() def drosteDraw(drawFunction, size, recursiveDrawings, extraData=None): # NOTE: The current heading of the turtle is considered to be the # rightward or positive-x direction. # Provide default values for extraData: if extraData is None: extraData = {} if '_iteration' not in extraData: extraData['_iteration'] = 1 # The first iteration is 1, not 0. if '_maxIteration' not in extraData: extraData['_maxIteration'] = MAX_ITERATION if '_maxFunctionCalls' not in extraData: extraData['_maxFunctionCalls'] = MAX_FUNCTION_CALLS if '_minSize' not in extraData: extraData['_minSize'] = MIN_SIZE requiredNumCalls = len(recursiveDrawings) ** extraData['_iteration'] if extraData['_iteration'] > extraData['_maxIteration'] or \ requiredNumCalls > extraData['_maxFunctionCalls'] or \ size < extraData['_minSize']: return # BASE CASE # Remember the original starting coordinates and heading. origX = turtle.xcor() origY = turtle.ycor() origHeading = turtle.heading() turtle.pendown() drawFunction(size, extraData) turtle.penup() # RECURSIVE CASE # Do each of the recursive drawings: for i, recursiveDrawing in enumerate(recursiveDrawings): # Provide default values for the recursiveDrawing dictionary: if 'x' not in recursiveDrawing: recursiveDrawing['x'] = 0 if 'y' not in recursiveDrawing: recursiveDrawing['y'] = 0 if 'size' not in recursiveDrawing: recursiveDrawing['size'] = 1.0 if 'angle' not in recursiveDrawing: recursiveDrawing['angle'] = 0 # Move the turtle into position for the next recursive drawing: turtle.goto(origX, origY) turtle.setheading(origHeading + recursiveDrawing['angle']) turtle.forward(size * recursiveDrawing['x']) turtle.left(90) turtle.forward(size * recursiveDrawing['y']) turtle.right(90) # Increment the iteration count for the next level of recursion: extraData['_iteration'] += 1 drosteDraw(drawFunction, int(size * recursiveDrawing['size']), recursiveDrawings, extraData) # Decrement the iteration count when done with that recursion: extraData['_iteration'] -= 1 # Display any buffered drawing commands on the screen: if extraData['_iteration'] == 1: turtle.update() _DEMO_NUM = 0 def demo(x=None, y=None): global _DEMO_NUM turtle.reset() turtle.tracer(20000, 0) # Increase the first argument to speed up the drawing. turtle.hideturtle() if _DEMO_NUM == 0: # Recursively draw smaller squares in the center: drosteDraw(drawSquare, 350, [{'size': 0.8}]) elif _DEMO_NUM == 1: # Recursively draw smaller squares going off to the right: drosteDraw(drawSquare, 350, [{'size': 0.8, 'x': 0.20}]) elif _DEMO_NUM == 2: # Recursively draw smaller squares that go up at an angle: drosteDraw(drawSquare, 350, [{'size': 0.8, 'y': 0.20, 'angle': 15}]) elif _DEMO_NUM == 3: # Recursively draw smaller triangle in the center: drosteDraw(drawTriangle, 350, [{'size': 0.8}]) elif _DEMO_NUM == 4: # Recursively draw smaller triangle going off to the right: drosteDraw(drawTriangle, 350, [{'size': 0.8, 'x': 0.20}]) elif _DEMO_NUM == 5: # Recursively draw smaller triangle that go up at an angle: drosteDraw(drawTriangle, 350, [{'size': 0.8, 'y': 0.20, 'angle': 15}]) elif _DEMO_NUM == 6: # Recursively draw a spirograph of squares: drosteDraw(drawSquare, 150, [{'angle': 10, 'x': 0.1}]) elif _DEMO_NUM == 7: # Recursively draw a smaller square in each of the four corners of the parent square: drosteDraw(drawSquare, 350, [{'size': 0.5, 'x': -0.5, 'y': 0.5}, {'size': 0.5, 'x': 0.5, 'y': 0.5}, {'size': 0.5, 'x': -0.5, 'y': -0.5}, {'size': 0.5, 'x': 0.5, 'y': -0.5}]) elif _DEMO_NUM == 8: # Recursively draw smaller filled squares in the center, alternating red and black: drosteDraw(drawFilledSquare, 350, [{'size': 0.8}], {'colors': ['red', 'black']}) elif _DEMO_NUM == 9: # Recursively draw a smaller filled square in each of the four corners of the parent square with red and black: drosteDraw(drawFilledSquare, 350, [{'size': 0.5, 'x': -0.5, 'y': 0.5}, {'size': 0.5, 'x': 0.5, 'y': 0.5}, {'size': 0.5, 'x': -0.5, 'y': -0.5}, {'size': 0.5, 'x': 0.5, 'y': -0.5}], {'colors': ['red', 'black']}) elif _DEMO_NUM == 10: # Recursively draw a smaller filled square in each of the four corners of the parent square with white and black: drosteDraw(drawFilledSquare, 350, [{'size': 0.5, 'x': -0.5, 'y': 0.5}, {'size': 0.5, 'x': 0.5, 'y': 0.5}, {'size': 0.5, 'x': -0.5, 'y': -0.5}, {'size': 0.5, 'x': 0.5, 'y': -0.5}], {'colors': ['white', 'black']}) elif _DEMO_NUM == 11: # Recursively draw a smaller filled square in each of the four corners of the parent square: drosteDraw(drawFilledDiamond, 350, [{'size': 0.5, 'x': -0.45, 'y': 0.45}, {'size': 0.5, 'x': 0.45, 'y': 0.45}, {'size': 0.5, 'x': -0.45, 'y': -0.45}, {'size': 0.5, 'x': 0.45, 'y': -0.45}], {'colors': ['green', 'yellow']}) elif _DEMO_NUM == 12: # Draw the sierpinsky triangle: drosteDraw(drawTriangle, 600, [{'size': 0.5, 'x': 0, 'y': math.sqrt(3) / 6, 'angle': 0}, {'size': 0.5, 'x': 0, 'y': math.sqrt(3) / 6, 'angle': 120}, {'size': 0.5, 'x': 0, 'y': math.sqrt(3) / 6, 'angle': 240}]) elif _DEMO_NUM == 13: # Draw a recursive "glider" shape from Conway's Game of Life: drosteDraw(drawSquare, 600, [{'size': 0.333, 'x': 0, 'y': 0.333}, {'size': 0.333, 'x': 0.333, 'y': 0}, {'size': 0.333, 'x': 0.333, 'y': -0.333}, {'size': 0.333, 'x': 0, 'y': -0.333}, {'size': 0.333, 'x': -0.333, 'y': -0.333}]) turtle.exitonclick() _DEMO_NUM += 1 def main(): # Start the demo: turtle.onscreenclick(demo) demo() turtle.mainloop() if __name__ == '__main__': main()
bc35e25ddcb973b77a29166ac83c929676dbc149
c1be89ddd435016c4907be6d4238f49312bb22b4
/use_python_do_something/crawler_ex1.py
ee453d7de36b129633e1e9690bfe97616e4095fd
[]
no_license
gdhe55555/learn_python
1fb6b0f3b3fc62c94290a2803cd037ee0860dd86
3027c8bbbfbdd266dcdd02091376d375273790b7
refs/heads/master
2021-01-10T11:18:06.204381
2016-03-09T15:58:08
2016-03-09T15:58:08
53,510,394
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
#!/usr/bin/env python import urllib from bs4 import BeautifulSoup import re websit='http://www.heibanke.com/lesson/crawler_ex00/' html = urllib.urlopen('http://www.heibanke.com/lesson/crawler_ex00/') bs_obj = BeautifulSoup(html, "html.parser") #a_list = bs_obj.findAll("a") #a_list = bs_obj.findAll("a", href=re.compile("baike\.baidu\.com\w?")) #for aa in a_list: # if not aa.find("img"): # if aa.attrs.get('href'): # print aa.text ,aa.attrs['href'] a_list = bs_obj.findAll("h3") #print a_list text = a_list[0].text.encode('utf-8') print(text) ma = re.match(u"([\u4e00-\u9fa5]+)", text) print(ma.groups())
a7f27f1b272c8edef7cc2f92a290977e2e30a352
64913d7f6803f2cdaa5fbd38ae75437e2e0d936a
/migrations/versions/fcd07d45ca01_.py
06d5fc59e7cb0907f8856e7b002f61e75a5576d0
[]
no_license
peekwez/trader_api
251887c52462b66f28cd9035325619d2aeaa94fe
fda7357fb9b00f44314420ea960cb34479a8ec7e
refs/heads/master
2023-05-26T04:20:40.994372
2019-02-25T10:18:12
2019-02-25T10:18:12
172,482,966
0
0
null
null
null
null
UTF-8
Python
false
false
697
py
"""empty message Revision ID: fcd07d45ca01 Revises: 2fd5a06e09b0 Create Date: 2019-01-11 05:39:20.505585 """ from alembic import op import sqlalchemy as sa import sqlalchemy_utils # revision identifiers, used by Alembic. revision = 'fcd07d45ca01' down_revision = '2fd5a06e09b0' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('updates_log', sa.Column('task_id', sa.String(length=250), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('updates_log', 'task_id') # ### end Alembic commands ###
6408e85162d2fbe559aaf0b909b1f053f0c6e12d
e9355a2363a831ea9e06cd843b563ffbaf852b26
/lists/models.py
c2973956da997cf57e7c62b16f4c8f8748b241c6
[]
no_license
odisei369/superlists
06abb6947b49becb1b2f674fbe2469ee40680322
a1013bbf33cedf8016b214c615d326a93eba102a
refs/heads/master
2021-08-14T12:11:22.704245
2017-11-12T11:34:33
2017-11-12T11:34:33
108,184,108
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
from django.db import models class List(models.Model): pass class Item(models.Model): text = models.TextField(default='') list = models.ForeignKey(List, default=None) # Create your models here.
d22df926e0e5abdc854f92d3d1f38844c15bf8eb
26bd8294c64974d809198ce62238747340a775dc
/src/graffiau/overview.py
9ad596805da800156e532db3fe8bddd13f0e8095
[]
no_license
skuzzymiglet/ffair-gwyddoniaeth-2019
af4a3024a01b76931f49f1dff8282b860fbd2228
31ef108de4aac978ce53cb8c823847f3730736d2
refs/heads/master
2021-08-19T13:08:00.063451
2020-01-31T14:18:02
2020-01-31T14:18:02
186,683,440
0
1
null
2020-05-25T12:30:13
2019-05-14T19:04:43
Python
UTF-8
Python
false
false
880
py
#! /usr/bin/env python3 # Ffair Gwyddoniaeth 2019 # Arbrawf Rafik Harrington # Mesur CO2 mewn sgarff # Mwy ar https://github.com/skuzzymiglet/ffair-gwyddoniaeth-2019 # Rhaglen fach i gael cipolwg ar eich data from bokeh.plotting import figure, output_file, show import csv data = open("DATA.CSV", "r") # Data o'r synhwyrydd reader = csv.reader(data, delimiter=',') # I ddarllen y data # Cyfeirnodau pwyntiau ar y llinell x = [] # Amser y = [] # CO2 # Ychwanegu'r holl data i'r echelinau for row in reader: y.append(row[0]) x.append(row[1]) data.close() # Cau'r ffeil output_file("overview.html") # Y ffeil i blotio iddo p = figure(title="CO2 ppm", x_axis_label="Time", y_axis_label="CO2 ppm", y_range=[0, int(max(y))]) # Creu y graff p.line(x, y, line_width=1, color="blue") # Plotio'r llinell show(p) # Dangos y graff
23a0169704ce8fb2f2e17a376be93d9ea3025544
de0341aef4a487d1be271fc2bc3b3b60258ef6b0
/programmers/Level 3/표 편집/solve.py
c993128c2119260cac35cc583c67f3b1dffbce15
[]
no_license
aver1001/github-practice
485d8695cd4b9aa374c6b069832b3c0999fc4b6c
62ab6de80e8246b627b880a7aff5d668b0fea889
refs/heads/main
2023-08-24T09:49:35.498578
2021-10-13T23:57:18
2021-10-13T23:57:18
379,813,331
0
0
null
null
null
null
UTF-8
Python
false
false
1,725
py
def solution(n, k, cmd): ## 행의 갯수 n ## 처음에 선택된 행의 위치 k ## 명령어들이 담긴 문자열 배열 ## U X => X칸 위로 ## D X => X칸 아래로 ## C => 선택된 행을 삭제 후 바로 아래 행 선택 단 마지막 행일경우 삭제 후 자신의 위 인덱스를 선택 ## Z => 최근에 삭제한 행을 복구, 단 선택된 행은 그대로 answer = ['O' for _ in range (n)] pt = k-1 backup = [] for cmd in cmd: ## U 명령어 if cmd[0] == 'U': move = int(cmd.split(' ')[-1]) while(move != 0 and pt != -1) : if answer[pt] == 'O': move -=1 pt -= 1 else: pt -=1 ## 범위를 벗어났을경우 0으로 바꿔줌 if pt < 0: pt = 0 ## D 명령어 elif cmd[0] == 'D': move = int(cmd.split(' ')[-1]) while(move != 0 and pt !=n) : if answer[pt] == 'O': move -=1 pt += 1 else: pt +=1 ## 범위를 벗어났을경우 n으로 바꿔줌 if pt > n-1: pt = n-1 ## C 명렁어 elif cmd[0] == 'C': backup.append(pt) answer[pt] = 'X' while(answer[pt] != 'O'): pt += 1 elif cmd[0] == 'Z': answer[backup.pop()] = 'O' print(cmd,answer,sep = '\n',end = '\n\n') return ''.join(answer) print(solution(8,2,["D 2","C","U 3","C","D 4","C","U 2","Z","Z","U 1","C"]))
93117ac33ad6602c755054bba6d85d4308a19d77
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/L7NK7McEQ9yEpTXRE_16.py
d1817c7d7db4293f1356e203513e2932567c3783
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
68
py
def XOR(a, b): a = a ^ b b = a ^ b a = a ^ b return [a,b]
1f03b32254f1d0ce03b2a51b6b6eb983daeac7b5
8fa8ab78770861fe2cee964b381d3b9af0e9d867
/SlatechainCore/qa/rpc-tests/util.py
bcd2bc5115dbfadad1e8deed754c45b25fc1b50a
[ "MIT" ]
permissive
npq7721/coproject
37eb2725d737b46ac2fea20363ee159a6e8b8550
a8110e40bac798f25654e2492ef35ae92eae3bbf
refs/heads/master
2020-03-22T16:31:30.101967
2018-07-12T06:08:26
2018-07-12T06:08:26
140,332,362
0
0
null
null
null
null
UTF-8
Python
false
false
12,452
py
# Copyright (c) 2014 The Bitcoin Core developers # Copyright (c) 2014-2015 The Dash developers # Copyright (c) 2015-2017 The Corallium developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Helpful routines for regression testing # # Add python-bitcoinrpc to module search path: import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "python-bitcoinrpc")) from decimal import Decimal, ROUND_DOWN import json import random import shutil import subprocess import time import re from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def p2p_port(n): return 11000 + n + os.getpid()%999 def rpc_port(n): return 12000 + n + os.getpid()%999 def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def sync_blocks(rpc_connections): """ Wait until everybody has the same block count """ while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(1) def sync_mempools(rpc_connections): """ Wait until everybody has the same transactions in their memory pools """ while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(1) bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "corallium.conf"), 'w') as f: f.write("regtest=1\n"); f.write("rpcuser=rt\n"); f.write("rpcpassword=rt\n"); f.write("port="+str(p2p_port(n))+"\n"); f.write("rpcport="+str(rpc_port(n))+"\n"); return datadir def initialize_chain(test_dir): """ Create (or copy from cache) a 200-block-long chain and 4 wallets. coralliumd and corallium-cli must be in search path. """ if not os.path.isdir(os.path.join("cache", "node0")): devnull = open("/dev/null", "w+") # Create cache directories, run coralliumd: for i in range(4): datadir=initialize_datadir("cache", i) args = [ os.getenv("BITCOIND", "coralliumd"), "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) subprocess.check_call([ os.getenv("BITCOINCLI", "corallium-cli"), "-datadir="+datadir, "-rpcwait", "getblockcount"], stdout=devnull) devnull.close() rpcs = [] for i in range(4): try: url = "http://rt:[email protected]:%d"%(rpc_port(i),) rpcs.append(AuthServiceProxy(url)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 nodes # gets 25 mature blocks and 25 immature. # blocks are created with timestamps 10 minutes apart, starting # at 1 Jan 2014 block_time = 1388534400 for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].setgenerate(True, 1) block_time += 10*60 # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in corallium.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None): """ Start a coralliumd and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) args = [ os.getenv("BITCOIND", "coralliumd"), "-datadir="+datadir, "-keypool=1", "-discover=0", "-rest" ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) devnull = open("/dev/null", "w+") subprocess.check_call([ os.getenv("BITCOINCLI", "corallium-cli"), "-datadir="+datadir] + _rpchost_to_args(rpchost) + ["-rpcwait", "getblockcount"], stdout=devnull) devnull.close() url = "http://rt:rt@%s:%d" % (rpchost or '127.0.0.1', rpc_port(i)) proxy = AuthServiceProxy(url) proxy.url = url # store URL on proxy for info return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None): """ Start multiple coralliumds, return RPC connections to them """ if extra_args is None: extra_args = [ None for i in range(num_nodes) ] return [ start_node(i, dirname, extra_args[i], rpchost) for i in range(num_nodes) ] def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): node.stop() bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: node.stop() del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using it's output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised")
015b25ad507b89bc4320e695f062c1754e42a687
c4ae14ae4cade9cececfc1a373406ca02bff00e8
/pysem.py
7053c74e100074f1924c0dbf91f9493d9dff27ae
[]
no_license
mawilson1234/PySem
33405fd90487e35b869c18f6cf2da090a9651599
bac65041bbfb3ada774e520e410584315be35136
refs/heads/master
2022-12-05T21:57:25.913169
2020-08-20T02:18:51
2020-08-20T02:18:51
288,038,845
0
0
null
null
null
null
UTF-8
Python
false
false
22,737
py
from inspect import getsource import re import string # Convert indices to subscripts for printing SUB = str.maketrans("0123456789", "₀₁₂₃₄₅₆₇₈₉") # Get a new variable name in order so we don't repeat ourselves when doing nested predicate abstractions def var(): x = string.ascii_lowercase.index('x') while True: yield string.ascii_lowercase[x] x = x + 1 if x <= 24 else 0 # Format the assignment function def format_g(g_local, n): #breakpoint() g_local_set = ['/'.join([str(i), g_local(i)]) for i in c] g_global_set = ['/'.join([str(i), g(i)]) for i in c] if g_local_set == g_global_set: return f'g' else: mods = ')('.join([mod for mod in g_local_set if not mod in g_global_set]) return f'g({mods})' # Format the lambda functions to a string so we can print them out in a readable way def format_den_str(f): if not isinstance(f, str): formatted = getsource(f).rstrip().lstrip().rstrip(',').lstrip("'denotation' : ") if formatted.startswith('('): formatted = formatted.lstrip('(').rstrip(')') formatted = re.sub(r'\n', ' ', formatted) formatted = re.sub(r'\t', '', formatted) formatted = re.sub(r'lambda (.*?)[:,] ', r'λ\1.', formatted) if re.findall(r"\['set'\]", formatted): formatted = re.sub(r"\[['\"]set['\"]\]", '', formatted) formatted = re.sub(r' if.*$', '', formatted) else: formatted = re.sub('if', 'iff', formatted) formatted = re.sub('==', '=', formatted) formatted = re.sub(r'\[(.*?)\]', r'(\g<1>)', formatted) else: formatted = re.sub(r'_', ' ', f) return formatted # Stringify the output of function application since python lambda functions aren't output as strings def format_application(*, f, arg): if isinstance(f, dict): formatted = f['den_str'] else: formatted = f if not isinstance(arg, str): if not isinstance(arg['denotation'], str): arg = arg['den_str'] # For 'the' if not 'the unique' in formatted: if re.findall(r'^λ.*?\.', arg): arg = re.sub(r'^λ.*?\.', '', arg) arg = re.sub(r'\(.*?\)', '', arg) else: if formatted.endswith(')'): arg_to_apply = formatted[formatted.index('('):][1:-1] formatted = re.sub(fr'\({arg_to_apply}\)', '', formatted) arg = format_application(f = arg, arg = arg_to_apply) else: arg = arg['den_str'] # Get the label for the argument if re.match(r'^λ(.*?)\.', formatted): # Get the variable names used by any other lambda functions existing_vars = re.findall(r'λ(.*?)\.', formatted) arg_label = re.match(r'^λ(.*?)\.', formatted).groups()[0] # Strip off that label formatted = re.sub(r'^λ.*?\.', '', formatted) # If the argument is also the name of a variable if (arg in existing_vars or 'the unique' in arg) and len(existing_vars) > 1: # Get a variable name that is not already being used variable = var() while (var_name := next(variable)) in existing_vars: continue # Replace the variable name in the formatted string with the new variable name so we don't incorrectly bind it formatted = re.sub(fr'(^|[^A-Za-z0-9]){arg}($|[^A-Za-z0-9])', fr'\g<1>{var_name}\g<2>', formatted) if 'the unique' in arg: the_label = re.findall(r'the unique (.*?) s\.t\.', arg)[0] if the_label in existing_vars: arg = re.sub(fr'(^|[^A-Za-z0-9]){the_label}($|[^A-Za-z0-9])', fr'\g<1>{var_name}\g<2>', arg) # Format assignment functions #if re.findall(r'g\(.*?\/.*?\)', formatted): # breakpoint() # g_arg = re.findall(r'g\(.*?\/.*?\)\((.*?)\)', formatted)[0] # g_modification_index = re.findall(r'g\((.*?)\/', formatted)[0] # if g_arg == g_modification_index: # g_modification_label = re.findall(r'g\(.*?\/(.*?)\)', formatted)[0] # formatted = re.sub(fr'g\({g_modification_index}\/{g_modification_label}\)\({g_arg}\)', g_modification_label, formatted) # Replace the argument's label with its value formatted = re.sub(fr'(^|[^A-Za-z0-9]){arg_label}($|[^A-Za-z0-9])', fr'\g<1>{arg}\g<2>', formatted) return formatted # Stringify the output of predicate modification since python lambda functions aren't output as strings def format_modification(f1, f2): f1 = f1['den_str'] f2 = f2['den_str'] # Get the label for the argument from the first function arg_label1 = re.match(r'^λ(.*?)\.', f1).groups()[0] # Get the label for the argument from the second function arg_label2 = re.match(r'^λ(.*?)\.', f2).groups()[0] # Strip off that label for the second one formatted2 = re.sub(r'^λ.*?\.', '', f2) # Replace the argument's label in f2 with the label from f1 formatted2 = re.sub(fr'(^|[^A-Za-z0-9]+){arg_label2}($|[^A-Za-z0-9]+)', fr'\g<1>{arg_label1}\g<2>', formatted2) formatted = f1 + ' & ' + formatted2 return formatted # Semantic types e = 'e' t = 't' et = [e,t] # Define a list of words # A lexical entry has four parts: # A PF (string corresponding to what we want to print it as) # A semantic type, consisting of an order list of e and t # A denotation, which is a function that takes an argument of the specified type # A set, which defines the results of applying the function to the argument # (The set would probably be sufficient here, but it's nice to have a function so it looks more like your traditional lambda semantics) jumping = {'PF' : 'jumping', 'type' : et, 'denotation' : lambda x: jumping['set'][x] if x in jumping['set'].keys() else 0, 'set' : {'John' : 1, 'Mary' : 1}} # Note that the arguments need to be specified in the same order in the function and the set love = {'PF' : 'love', 'type' : [e, et], 'denotation' : lambda x: lambda y: love['set'][x][y] if x in love['set'].keys() and y in love['set'][x].keys() else 0, 'set' : {'Bill' : {'Mary' : 1}, 'John' : {'Susan' : 1}, 'the_hat' : {'Mary' : 1}}} # This assumes recipient theme order (when using a right-branch structure) give = {'PF' : 'give', 'type' : [e, [e, et]], 'denotation' : (lambda x: lambda y: lambda z: give['set'][x][y][z] if x in give['set'].keys() and y in give['set'][x].keys() and z in give['set'][x][y].keys() else 0), 'set' : {'the_hat' : {'Bill' : {'Mary' : 1, 'Susan' : 1}, 'John' : {'Bill' : 1}}, 'the_dress' : {'Susan' : {'Mary' : 1}}}} blue = {'PF' : 'blue', 'type' : et, 'denotation' : lambda x: blue['set'][x] if x in blue['set'].keys() else 0, 'set' : {'the_hat' : 1, 'the_dress' : 1}} hat = {'PF' : 'hat', 'type' : et, 'denotation' : lambda x: hat['set'][x] if x in hat['set'].keys() else 0, 'set' : {'the_hat' : 1, 'the_second_hat' : 1}} dress = {'PF' : 'dress', 'type' : et, 'denotation' : lambda x: dress['set'][x] if x in dress['set'].keys() else 0, 'set' : {'the_dress' : 1}} the_hat = {'PF' : 'the hat', 'type' : e, 'denotation' : 'the_hat'} the_dress = {'PF' : 'the dress', 'type' : e, 'denotation' : 'the_dress'} John = {'PF' : 'John', 'type': e, 'denotation' : 'John'} Bill = {'PF' : 'Bill', 'type' : e, 'denotation' : 'Bill'} Susan = {'PF' : 'Susan', 'type' : e, 'denotation' : 'Susan'} Mary = {'PF' : 'Mary', 'type' : e, 'denotation' : 'Mary'} word_list = [jumping, love, blue, hat, dress, the_hat, Bill, Susan, Mary, John, the_dress] IS_PRED = {'PF' : 'is', 'type' : [et, et], 'denotation' : lambda P: lambda x: P(x), 'set' : {word['denotation'] : word['set'] for word in word_list if word['type'] == et}} IS_IDENT = {'PF' : 'is', 'type' : [e, et], 'denotation' : lambda x: lambda y: 1 if x == y else 0, 'set' : {word['denotation'] : {word['denotation'] : 1} for word in word_list if word['type'] == e}} word_list.extend([IS_PRED, IS_IDENT]) # Shifts IS_IDENT to IS_PRED SHIFT = {'PF' : '(SHIFT)', 'type' : [[e, et], [et, et]], 'denotation' : lambda P: lambda Q: lambda x: Q(x), 'set' : {word1['denotation'] : word2['set'] for word2 in word_list if word2['type'] == [et, et] for word1 in word_list if word1['type'] == [e, et]}} word_list.extend([SHIFT]) # Definite determiner (Russellian semantics rather than presupposition) # Note that entities must be included as words in the word list for this to work properly # Since 'the' returns an entity, we do not define a set for it, as entities do not have # characteristic sets in our model the = {'PF' : 'the', 'type' : [et, e], 'den_str' : 'λP.the unique x s.t. P(x)', 'denotation' : lambda P: [word['denotation'] for word in word_list if P(word['denotation']) == 1][0] if sum([P(word['denotation']) for word in word_list]) == 1 else '#'} that_comp = {'PF' : 'that', 'type' : [t, t], 'denotation' : lambda P: P, 'set' : {0 : 0, 1 : 1}} word_list.extend([the, that_comp]) # Logical connectives. Have to use uppercase because lowercase are reserved Python keywords AND = {'PF' : 'and', 'type' : [t, [t, t]], 'den_str' : 'λP.λQ.P & Q', 'denotation' : lambda P: lambda Q: 1 if P == 1 and Q == 1 else 0, 'set' : {1 : {1 : 1}, 1 : {0 : 0}, 0 : {1 : 0}, 0 : {0 : 0}}} OR = {'PF' : 'or', 'type' : [t, [t, t]], 'den_str' : 'λP.λQ.P \\/ Q', 'denotation' : lambda P: lambda Q: 1 if P == 1 or Q == 1 else 0, 'set' : {1 : {1 : 1}, 1 : {0 : 1}, 0 : {1 : 1}, 0 : {0 : 0}}} NOT = {'PF' : 'not', 'type' : [t, t], 'den_str' : 'λP.¬(P)', 'denotation' : lambda P: 0 if P == 1 else 1, 'set' : {1 : 0, 0 : 1}} word_list.extend([AND, OR, NOT]) # Context for pronoun resolution c = {1 : John['denotation'], 2: Mary['denotation'], 3: Bill['denotation']} # Get a modified version of the assignment just like the one passed to it, except that it respects the mapping specified in the mod argument def g_mod(g, mod): # Get the index from the string index = int(re.findall('^[0-9]*', mod)[0]) # Get the new output for that index modified_output = re.findall('/(.*)$', mod)[0] c_local = c.copy() c_local.update({index : modified_output}) return lambda n: g(n) if n != index else c_local[n] # Assignment function that maps an index to an entity in the context def g(n): try: if n in c.keys(): return c[n] else: raise Exception except: print(f'{n} not in domain of assignment function g.') pronouns = [] # Pronouns and traces are functions that return lexical entries given an index def he(i): he_i = {'PF' : f'he{i}'.translate(SUB), 'index' : i, 'type' : e, 'denotation' : f'g({i})'} if not he_i in word_list: word_list.extend([he_i]) if not he_i in pronouns: pronouns.extend([he_i]) return he_i def t(i): t_i = {'PF' : f't{i}'.translate(SUB), 'index' : i, 'type' : e, 'denotation' : f'g({i})'} if not t_i in word_list: word_list.extend([t_i]) if not t_i in pronouns: pronouns.extend([t_i]) return t_i # One final thing each word has: a version of its denotation function formatted as a string # This is just so we can print out the results of each semantic composition step in a readable way, since Python lambda functions are not output as strings for word in word_list: if not 'den_str' in word.keys(): word.update({'den_str' : format_den_str(word['denotation'])}) def function_application(*, f, arg): # Return the result of function application # PF is just concatenation of the strings PF = f'{f["PF"]} {arg["PF"]}'.rstrip() # Den_str is handled by the formatting function above den_str = format_application(f = f, arg = arg) # The type is the result of getting rid of the first type in f ty = f['type'][1:][0] # The denotation is the result of applying the function's denotation to the argument's denotation presupposition_failure = arg['denotation'] == '#' or f['denotation'] == '#' if not presupposition_failure: denotation = f['denotation'](arg['denotation']) else: denotation = '#' presupposition_failure = denotation == '#' or presupposition_failure if presupposition_failure: den_str = '#' denotation = '#' # Some special logic for the identity function, since its characteristic set is not a function of the word list but a function of any derivable et function #if f['denotation'](arg['denotation']) == arg['denotation']: # return {'PF' : f'{f["PF"]} {arg["PF"]}'.rstrip(), # 'den_str' : arg['den_str'], # 'type' : arg['type'], # 'denotation' : arg['denotation'], # 'set' : arg['set']} if 'set' in f.keys(): if f['set'] == 0: s = 0 else: s = f['set'][arg['denotation']] if arg['denotation'] in f['set'].keys() else 0 if 's' in locals(): return {'PF' : PF, 'den_str': den_str, 'type' : ty, 'denotation' : denotation, 'set' : s} else: return {'PF' : PF, 'den_str': den_str, 'type' : ty, 'denotation' : denotation} #'set' : {t[1:][0] for t in Y['set'] if X['denotation'] == t[0] and len(t) > 0}} #'set' : {t[1:] for t in Y['set'] if X['denotation'] == t[0] and len(t) > 0}} def predicate_modification(*, f1, f2): # Return the result of predicate modification # PF is contactenation of the strings PF = f'{f1["PF"]} {f2["PF"]}' # Den_str is handled by the formatting function above den_str = format_modification(f1, f2) # Since this is only called when f1 and f2 have the same type, the type is equal to their type (either f1['type'] or f2['type'] would work, since the types are identical) ty = f1['type'] # The denotation is True iff f1(x) and f2(x) # The set is the set of all items in both f1 and f2 (e.g., every item in f1 that is also in f2) presupposition_failure = f1['denotation'] == '#' or f2['denotation'] == '#' if not presupposition_failure: return {'PF' : PF, 'den_str' : den_str, 'type' : ty, 'denotation' : lambda x: 1 if f1['denotation'](x) and f2['denotation'](x) else 0, 'set' : [item for item in f1['set'] if item in f2['set']]} else: return {'PF' : PF, 'den_str' : '#', 'type' : ty, 'denotation' : '#'} def predicate_abstraction(*, index, pred, g_local, verbose = False): # Predicate abstraction # PF-ified semantics is the index + the PF of the predicate # Den_str is the abstracted version of the predicate, with the value given by the usual assignment function replaced by the modified assignment function applied to the argument # Type is [e, pred['type']] # The denotation is the recursive interpretation of the structure where index is mapped to x # The set is the mapping of a word's denotation to true if it's type e and if it's in the set of the interpretation of the predicate wrt the modified assignment function # We do this so that we only print out the results of interpreting things once # Get the next label for a variable so we don't repeat ourselves x = next(v) if verbose: interpret_sentence_r(pred, g_local = g_mod(g_local, f'{index}/{x}'), verbose = verbose) #print(interpret_sentence_r(pred, g_local = g_local)['den_str']) #if index == 1: return {'PF' : f'{index} ' + re.sub(f'^{index} ', '', interpret_sentence_r(pred, g_local = g_local)['PF']), 'den_str' : f'λ{x}.' + re.sub(g_local(index), (g_mod(g_local, f"{index}/{x}"))(index), interpret_sentence_r(pred, g_local = g_local)['den_str']), 'type' : [e, interpret_sentence_r(pred, g_local = g_local)['type']], 'denotation' : lambda x: interpret_sentence_r(pred, g_local = g_mod(g_local, f'{index}/{x}'))['denotation'], 'set' : {word['denotation'] : 1 for word in [word for word in word_list if word['type'] == e] if (interpret_sentence_r(pred, g_local = g_mod(g_local, f'{index}/{word["denotation"]}')))['set'] == 1}} # Interpretation function def i(X, Y = '', /, *, g_local, verbose = False): # Set up local copies of the variables so we don't override the global ones. # We define these names first in case they are ints, in which case copying wouldn't work X_local = X Y_local = Y # If X is a pronoun, update its denotation and den_str relative to any modified assignment function if X in pronouns: # Make local copies so we don't mess with the global ones X_local = X.copy() X_local.update({'denotation' : re.sub('g', 'g_local', X_local['denotation'])}) if verbose: print(f"{X_local['PF']} = {format_g(g_local, X_local['index'])}({X_local['index']}) = {eval(X_local['denotation'])}") X_local['denotation'] = eval(X_local['denotation']) X_local.update({'den_str' : format_den_str(X_local['denotation'])}) # If there are two arguments, figure out what semantic composition rule to apply if Y: # If Y is a pronoun, update its denotation and den_str relative to any modified assignment function if Y in pronouns: Y_local = Y.copy() Y_local.update({'denotation' : re.sub('g', 'g_local', Y_local['denotation'])}) if verbose: print(f"{Y_local['PF']} = {format_g(g_local, Y_local['index'])}({Y_local['index']}) = {eval(Y_local['denotation'])}") Y_local['denotation'] = eval(Y_local['denotation']) Y_local.update({'den_str' : format_den_str(Y_local['denotation'])}) # Predicate abstraction when X or Y is an index if isinstance(X_local, int): interpretation = predicate_abstraction(index = X_local, pred = Y_local, g_local = g_local, verbose = verbose) if verbose: print(f"[[{X_local} {interpret_sentence_r(Y_local, g_local = g_local)['PF']}]] = {interpretation['den_str']} by PA") return interpretation elif isinstance(Y_local, int): interpretation = predicate_abstraction(index = Y_local, pred = X_local, g_local = g_local, verbose = verbose) if verbose: print(f"[[{Y_local} {interpret_sentence_r(X_local, g_local = g_local)['PF']}]] = {interpretation['den_str']} by PA") return interpretation # Function application when either X_local or Y_local is in the domain of the other elif Y_local['type'] == X_local['type'][0]: if verbose: print(f"[{X_local['den_str']}]({Y_local['den_str']}) = {function_application(f = X_local, arg = Y_local)['den_str']} by FA([[{X_local['PF']}]], [[{Y_local['PF']}]])") return function_application(f = X_local, arg = Y_local) elif X_local['type'] == Y_local['type'][0]: if verbose: print(f"[{Y_local['den_str']}]({X_local['den_str']}) = {function_application(f = Y_local, arg = X_local)['den_str']} by FA([[{Y_local['PF']}]], [[{X_local['PF']}]])") return function_application(f = Y_local, arg = X_local) # Predicate modification when X_local and Y_local have the same domain of application elif X_local['type'] == Y_local['type']: if verbose: print(f"PM({X_local['den_str']}, {Y_local['den_str']}) = {predicate_modification(f1 = X_local, f2 = Y_local)['den_str']} by PM([[{X_local['PF']}]], [[{Y_local['PF']}]])") return predicate_modification(f1 = X_local, f2 = Y_local) else: print(f'Type mismatch: type {X_local["type"]} cannot compose with type {Y_local["type"]}.') # Otherwise, return the single argument else: # If X is a pronoun, update its denotation and den_str relative to any modified assignment function if X in pronouns: # Make local copies so we don't mess with the global ones X_local = X.copy() X_local.update({'denotation' : re.sub('g', 'g_local', X_local['denotation'])}) if verbose: print(f"{X_local['PF']} = {re.sub('_local', '', X_local['denotation'])} = {eval(X_local['denotation'])}") X_local['denotation'] = eval(X_local['denotation']) X_local.update({'den_str' : format_den_str(X_local['denotation'])}) return X_local # Interpret a sentence helper (binary branching only!) def interpret_sentence_r(sentence, /, *, g_local, verbose = False): #try: if len(sentence) > 2: raise Exception if len(sentence) == 2 and not isinstance(sentence, dict): branch1 = sentence[0] branch2 = sentence[1] if not isinstance(branch1, dict): if isinstance(branch1, int): return i(branch1, branch2, g_local = g_local, verbose = verbose) else: branch1 = interpret_sentence_r(branch1, g_local = g_local, verbose = verbose) if not isinstance(branch2, dict): if isinstance(branch2, int): return i(branch1, branch2, verbose = verbose) else: branch2 = interpret_sentence_r(branch2, g_local = g_local, verbose = verbose) return i(branch1, branch2, g_local = g_local, verbose = verbose) elif isinstance(sentence, dict): return i(sentence, g_local = g_local, verbose = verbose) #except: # print(f'Error: only binary branching! {sentence} has too many branches!') # Interpret a sentence (allows for printing the full sentence only once) def interpret_sentence(sentence, /, *, g_local = g, verbose = True): # Reinitialize the lambda variable name generator function global v v = var() if verbose: print(f'\nInterpretation of sentence "{sentence["PF"]}":') interpretation = interpret_sentence_r(sentence['LF'], g_local = g_local, verbose = verbose) if verbose: print(f'{interpretation["denotation"]}\n') return interpretation # Some test sentences # Type shifter and predication sentence1 = {'PF' : "The hat is blue", 'LF' : [the_hat, [[IS_IDENT, SHIFT], blue]]} # Identity sentence2 = {'PF' : 'The hat is the dress', 'LF' : [the_hat, [IS_IDENT, the_dress]]} # Pronoun sentence3 = {'PF' : 'He1 is jumping'.translate(SUB), 'LF' : [he(1), [IS_PRED, jumping]]} # Topicalization sentence4 = {'PF' : 'Bill, Mary loves', 'LF' : [Bill, [1, [Mary, [love, t(1)]]]]} sentence5 = {'PF' : 'John, Mary loves', 'LF' : [John, [1, [Mary, [love, t(1)]]]]} # This is not a good English sentence because English doesn't allow multiple topicalization, but it shows that nested PA works correctly sentence6 = {'PF' : 'Mary1, Bill2, t1 loves t2', 'LF' : [Mary, [1, [Bill, [2, [t(1), [love, t(2)]]]]]]} # Relative clauses sentence7 = {'PF' : 'the hat that Mary loves', 'LF' : [the, [hat, [1, [that_comp, [Mary, [love, t(1)]]]]]]} sentence8 = {'PF' : 'the dress that Mary loves', 'LF' : [the, [dress, [1, [that_comp, [Mary, [love, t(1)]]]]]]} # Full sentences with relative clauses sentence9 = {'PF' : 'the hat that Mary loves is blue', 'LF' : [[the, [hat, [1, [that_comp, [Mary, [love, t(1)]]]]]], [[IS_IDENT, SHIFT], blue]]} sentence10 = {'PF' : 'Mary loves the hat that is blue', 'LF' : [Mary, [love, [the, [hat, [1, [that_comp, [t(1), [[IS_IDENT, SHIFT], blue]]]]]]]]} # Logical connectives sentence11 = {'PF' : 'Mary is jumping or Bill is jumping' , 'LF' : [[Mary, [[IS_IDENT, SHIFT], jumping]], [OR, [Bill, [[IS_IDENT, SHIFT], jumping]]]]} sentence12 = {'PF' : 'Mary loves Bill and loves the blue hat', 'LF' : [Mary, [1, [[t(1), [love, Bill]], [AND, [t(1), [love, [the, [blue, hat]]]]]]]]} sentence13 = {'PF' : "Mary doesn't love John", 'LF' : [NOT, [Mary, [love, John]]]} # I'm not sure I'm happy with exactly how the output for predicate abstraction is displayed---but it gets the correct results. The issue is that it won't display nested modifications to the assignment function correctly because of how getting the strings for those works. But the interpretations are correct.
a7a66869b09e6c69a5e03ada7e513a55feeb1d98
68d7cf6eb326d5e1f19d19033e9c852c9ebcfc5f
/filter.py
14323e843e34d823e306fc738dfec0e9ad862ea4
[]
no_license
Sergiogd112/internalphisycs
bdf484596dec73a28802bc36bcf1c77f41c0ee3b
a8ec188a10c51db33b41a471c6201af4188d7dee
refs/heads/master
2020-08-13T01:30:10.417530
2019-10-18T14:24:36
2019-10-18T14:24:36
214,879,743
0
0
null
null
null
null
UTF-8
Python
false
false
909
py
import astropy import astroplan import numpy as np from matplotlib import pyplot as plt import pandas as pd import os import time import pickle as pk from time import gmtime from astropy.coordinates import solar_system_ephemeris from astropy.time import Time as tm from astropy.coordinates import EarthLocation as eloc from astroplan import Observer from mylib import * from multiprocessing import Pool ln = 30 t = tm(time.time(), format='unix') location = eloc.from_geodetic(lon=41.385728, lat=2.055923) basedir = 'Analema/' deldir = 'delAnalema/' obs = Observer(longitude=41.385728, latitude=2.055923) rise = obs.moon_rise_time(time=t) println(ln) print(rise, rise.to_datetime()) println(ln) photopath = [basedir + x for x in os.listdir(basedir)] println(ln) print(photopath[:10]) println(ln) println(ln) bigarr = [[x, ln, deldir, basedir, obs] for x in photopath] pool = Pool(3) pool.map(main, bigarr)
35eada1e6e31e47d1156a2dd8c85c2aada530ebe
4fbd844113ec9d8c526d5f186274b40ad5502aa3
/algorithms/python3/pacific_atlantic_water_flow.py
6a5e0384ee2afe8a2dd84a801719431deeaa3b09
[]
no_license
capric8416/leetcode
51f9bdc3fa26b010e8a1e8203a7e1bcd70ace9e1
503b2e303b10a455be9596c31975ee7973819a3c
refs/heads/master
2022-07-16T21:41:07.492706
2020-04-22T06:18:16
2020-04-22T06:18:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,244
py
# !/usr/bin/env python # -*- coding: utf-8 -*- """ Given an m x n matrix of non-negative integers representing the height of each unit cell in a continent, the "Pacific ocean" touches the left and top edges of the matrix and the "Atlantic ocean" touches the right and bottom edges. Water can only flow in four directions (up, down, left, or right) from a cell to another one with height equal or lower. Find the list of grid coordinates where water can flow to both the Pacific and Atlantic ocean. Note: The order of returned grid coordinates does not matter. Both m and n are less than 150. Example: Given the following 5x5 matrix: Pacific ~ ~ ~ ~ ~ ~ 1 2 2 3 (5) * ~ 3 2 3 (4) (4) * ~ 2 4 (5) 3 1 * ~ (6) (7) 1 4 5 * ~ (5) 1 1 2 4 * * * * * * Atlantic Return: [[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix). """ """ ==================== body ==================== """ class Solution: def pacificAtlantic(self, matrix): """ :type matrix: List[List[int]] :rtype: List[List[int]] """ """ ==================== body ==================== """
9068d5fa8635986f907256b19f7cc5f4060948a9
a90b0fe3875d615585234563d9e2f5a13b5e61e6
/Streamlit/Examples/Stock-Price-Dashboard/app.py
5ba426e3ee1d2bff282e924cba3fadc40a32e63d
[ "MIT" ]
permissive
Badranh/Tutorials
424bfed02b2dc6addad6288856905e5cd66d2297
1e5127756ee6d962cab79738c157f1e31ea1438f
refs/heads/master
2022-11-12T12:20:08.024770
2020-07-01T18:18:09
2020-07-01T18:18:09
277,617,438
0
1
MIT
2020-07-06T18:20:56
2020-07-06T18:20:55
null
UTF-8
Python
false
false
1,453
py
import streamlit as st import numpy as np import pandas as pd import plotly.plotly as py import plotly.graph_objs as go st.title('Stock Price of Apple') @st.cache def load_data(): data = pd.read_csv('AAPL_data.csv', parse_dates=['date']) return data df = load_data() columns = st.multiselect( "Choose Columns", list(df.drop(['date', 'Name'], axis=1).columns), ['open'] ) columns.extend(['date']) start_date = st.date_input('Start date', value=df['date'].min()) end_date = st.date_input('End date', value=df['date'].max()) data = df[columns][(df['date']>=start_date) & (df['date']<=end_date)] st.write(data) st.subheader('Line chart of selected columns') chart = st.line_chart(data.drop(['date'], axis=1)) if st.checkbox('Show summaries'): st.subheader('Summaries:') st.write(data.describe()) week_df = data.groupby(data['date'].dt.weekday_name).mean() traces = [go.Bar( x = week_df.index, y = data[col], name = col, marker = dict( line = dict( color = 'rgb(0, 0, 0)', width = 2 ) ) ) for col in data.drop(['date'], axis=1).columns] layout = go.Layout( title = 'Stockprice over days', xaxis = dict( title = 'Weekday', ), yaxis = dict( title = 'Average Price' ) ) fig = go.Figure(data=traces, layout=layout) st.plotly_chart(fig)
ec83305e998ad683a062bfd80f473ac8191c45eb
4c3803e4cad48db586dfdef2e26ffa2a3f2a06fd
/Chapter_1/Exercises/R-1.1.py
244c70863278bd3cd7edc7c50d4cb938a3b0b347
[]
no_license
dabiri1377/DS-AL_in_python3
07cee6569c39c79d56102b5b31f8e9329e58df4e
3684a8f28df0c67bd504748fcdd4a12fc714bb92
refs/heads/master
2021-09-09T15:55:58.912069
2018-03-17T16:00:16
2018-03-17T16:00:16
115,943,753
0
0
null
null
null
null
UTF-8
Python
false
false
205
py
def is_multiply(n, m): n = int(n) m = int(m) if n // m == n / m: return True else: return False # __main__ a, b = input("enter n and m:").split() print(is_multiply(a, b))
39f51b8befba9f505afddabff3d6d21823fa7df5
adb759899204e61042225fabb64f6c1a55dac8ce
/1900~1999/1904.py
8a490e0cc71ac769e26193e2bc6f97c4d01e51cb
[]
no_license
geneeol/baekjoon-online-judge
21cdffc7067481b29b18c09c9152135efc82c40d
2b359aa3f1c90f178d0c86ce71a0580b18adad6f
refs/heads/master
2023-03-28T23:25:12.219487
2021-04-01T09:19:06
2021-04-01T09:19:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,478
py
# 문제 # 지원이에게 2진 수열을 가르쳐 주기 위해, 지원이 아버지는 그에게 타일들을 선물해주셨다. # 그리고 이 각각의 타일들은 0 또는 1이 쓰여 있는 낱장의 타일들이다. # 어느 날 짓궂은 동주가 지원이의 공부를 방해하기 위해 0이 쓰여진 낱장의 타일들을 붙여서 한 쌍으로 이루어진 00 타일들을 만들었다. # 결국 현재 1 하나만으로 이루어진 타일 또는 0타일을 두 개 붙인 한 쌍의 00타일들만이 남게 되었다. # 그러므로 지원이는 타일로 더 이상 크기가 N인 모든 2진 수열을 만들 수 없게 되었다. # 예를 들어, N=1일 때 1만 만들 수 있고, N=2일 때는 00, 11을 만들 수 있다. (01, 10은 만들 수 없게 되었다.) # 또한 N=4일 때는 0011, 0000, 1001, 1100, 1111 등 총 5개의 2진 수열을 만들 수 있다. # 우리의 목표는 N이 주어졌을 때 지원이가 만들 수 있는 모든 가짓수를 세는 것이다. # 단 타일들은 무한히 많은 것으로 가정하자. # # 입력 # 첫 번째 줄에 자연수 N이 주어진다.(N ≤ 1,000,000) # # 출력 # 첫 번째 줄에 지원이가 만들 수 있는 길이가 N인 모든 2진 수열의 개수를 15746으로 나눈 나머지를 출력한다. N = int(input()) MOD = 15746 dp = [0 for _ in range(1000001)] dp[1], dp[2], dp[3] = 1, 2, 3 for i in range(4, 1000001): dp[i] = (dp[i - 1] + dp[i - 2]) % MOD print(dp[N])
bd0aee949be51e9122bd5c53c9a3f1bed2200067
1865a8508bed279961abaef324b434c0e3caa815
/setup.py
261fb583f89174f98ea47d3f5b9b3cadf5e81b6b
[ "MIT" ]
permissive
zidarsk8/simple_wbd
de68cbefe94fda52ed5330ff55b97b4a73aedfb4
6c2d1611ffd70d3bf4468862b0b569131ef12d94
refs/heads/master
2021-01-19T10:54:38.824763
2016-08-16T03:58:42
2016-08-16T03:58:42
59,942,658
3
1
null
null
null
null
UTF-8
Python
false
false
1,866
py
#!/usr/bin/env python3 """Simplo wbd setup file. This is the main setup for simple wbd. To manually install this module run: $ pip install . For development to keep track of the changes in the module and to include development and test dependecies run: $ pip install --editable .[dev,test] """ from setuptools import setup def get_description(): with open("README.rst") as f: return f.read() if __name__ == "__main__": setup( name="simple_wbd", version="0.5.1", license="MIT", author="Miha Zidar", author_email="[email protected]", description=("A simple python interface for World Bank Data Indicator " "and Climate APIs"), long_description=get_description(), url="https://github.com/zidarsk8/simple_wbd", download_url="https://github.com/zidarsk8/simple_wbd/tarball/0.5.1", packages=["simple_wbd"], provides=["simple_wbd"], install_requires=[ "pycountry" ], extras_require={ "dev": [ "pylint" ], "test": [ "codecov", "coverage", "mock", "nose", "vcrpy", ], }, test_suite="tests", keywords = [ "World Bank Data", "indicator api", "climate api", ], classifiers=[ "Development Status :: 4 - Beta", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Topic :: Scientific/Engineering", ], )
bf2dc3f9c8e764a9d8aef8bdecd21ae74fe802d2
0e33e481ce9122b0d43ec033dc1d0c162b67d4ee
/blog/urls.py
e33b9421ce2a1bfbe9f13c2f7815e5e8d21cc4a6
[]
no_license
lunnbag/my-first-blog
1f2a69f9c6407fc775b925c41a60da1dcfb40bb2
f3af52fa53f18793546847074066e559158c89ec
refs/heads/master
2020-03-20T18:18:33.571922
2018-06-16T15:41:50
2018-06-16T15:41:50
137,582,092
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
from django.conf.urls import url from .import views urlpatterns = [ url(r'^$', views.post_list, name='post_list'), ]
58f10fc505bb8f71ebb268ab6cc5c8bb7932e7cb
f26f95837f579186a52eb7f4f385d938fb534333
/api1.py
fcec904ab6ff0fd0c2d20410e426d638b9d608a1
[]
no_license
aishuo07/Flask-Bearer-authentication
70767f561f1bd39ef2669758d2edb630f4a4a53d
af7d29e957de5842c565c90b696fd3b2d3bb9c90
refs/heads/master
2022-11-28T16:40:51.257310
2020-08-07T14:02:50
2020-08-07T14:02:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,839
py
from flask import Flask,request,make_response,jsonify from flask_sqlalchemy import SQLAlchemy import uuid from werkzeug.security import generate_password_hash,check_password_hash import jwt import datetime from functools import wraps from oauthlib.oauth2.rfc6749 import tokens from oauthlib.oauth2 import Server application = app = Flask(__name__) app.config['SECRET_KEY']='secret' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///Users2.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True db = SQLAlchemy(app) class Users(db.Model): id = db.Column(db.Integer,primary_key=True) public_id = db.Column(db.String(50),unique=True) Full_name = db.Column(db.String(80)) User_password = db.Column(db.String(80)) bearer_token = db.Column(db.String(80), unique=True) def Token(f): @wraps(f) def decorated(*args,**kwargs): token=None try: auth = request.authorization if not auth.Token: return jsonify({'message': 'token missing1'}), 401 elif ('Token' in auth): token = auth.Bearer_Token except: if'Bearer-token' in request.headers: token=request.headers['Bearer-token'] if not token: return jsonify({'message': 'token missing','auth':auth}),401 try: current_user = Users.query.filter_by(bearer_token = token).first() except: return jsonify({'message': 'not a valid token'}), 401 return f(current_user,*args,**kwargs) return decorated @app.route('/',methods=['GET','POST']) @Token def Hello_world(current_user): return("Hello World") # # # @app.route('/create',methods=['POST']) # def Create_user(): # data = request.get_json() # hashed_password = generate_password_hash(data['password'],method='sha256') # new_user = Users(public_id= str(uuid.uuid4()),Full_name=data['name'],User_password =hashed_password,bearer_token=str(uuid.uuid4())) # db.session.add(new_user) # db.session.commit() # return 'User Created' # # @app.route('/login',) # def login(): # auth = request.authorization # if not auth or not auth.username or not auth.password: # return make_response("Not verified",401,{'WWW-Authenticate':'Basic realm="Login requtired!"'}) # user = Users.query.filter_by(Full_name=auth.username).first() # if not user: # return make_response("Not verified",401,{'WWW-Authenticate':'Basic realm="Login requtired!"'}) # if check_password_hash(user.User_password,auth.password): # token = user.bearer_token # # return jsonify({'token': token,'auth':auth}) # return make_response("Not verified",401,{'WWW-Authenticate':'Basic realm="Login requtired!"'}) if __name__ == '__main__': app.run(host='0.0.0.0',port=80,debug=True)
e84fa3eaad48b2bc87fd8ac42d0bc6aeb80ed0de
b4ec04d6a2a4ba57d11b577326086c14d9b9408b
/freshontheboat/resources/getForumProfileLikes.py
49cf00e752c1e50d704424cdeb416f91d39d9988
[]
no_license
petergzli/FreshOnTheBoat
91268d43f91c85da0bacafa268b42e2f1e3dfe6c
6320bcd798ad23d6ed936fddeb51a040a28853b2
refs/heads/master
2021-01-20T10:06:13.318571
2015-11-25T18:52:36
2015-11-25T18:52:36
41,778,485
0
0
null
null
null
null
UTF-8
Python
false
false
956
py
from flask_restful import Resource, reqparse from freshontheboat.models.users import User from freshontheboat.models.forumpostlikes import ForumPostLikes class GetNewForumLikes(Resource): def __init__(self): self.reqparse = reqparse.RequestParser() self.reqparse.add_argument('forum_profile_id', type = int, required=True) super(GetNewForumLikes, self).__init__() def get(self): args = self.reqparse.parse_args() results = ForumPostLikes.query.filter_by(forum_profile_id = args['forum_profile_id']).all() jsonDictionary = [] for result in results: username = User.query.get(result.user_who_liked).username dictionaryResult = {'id' : result.id, 'user_who_liked': username, 'forum_profile_id': result.forum_profile_id, 'likes': result.likes, 'dislikes': result.dislikes} jsonDictionary.append(dictionaryResult) response = {'status': 'successful', 'results' : jsonDictionary} return response
c376c39e37435a1e79e90afc296107078fdf4713
64f726483db2bae0c418026c47acc41501118e2f
/chat.py
961687dd7fa0c748143eafc4a8fd42b070097222
[]
no_license
aouataf-djillani/Simple-chatbot-with-python-and-flask-
ad91d6db25a657a243674d8874706f6738daab86
50d365e536c341a43d5bc9eca2dff1874955ff69
refs/heads/master
2023-09-03T00:46:55.234719
2021-11-22T07:52:24
2021-11-22T07:52:24
430,612,105
0
0
null
null
null
null
UTF-8
Python
false
false
926
py
from flask import Flask, render_template, request from chatterbot import ChatBot from chatterbot.trainers import ChatterBotCorpusTrainer app = Flask(__name__) myBot=ChatBot(name='Aouataf', storage_adapter="chatterbot.storage.SQLStorageAdapter") """ greetings=["hi there!","hi","how are you doing?","fine","good", "great", "what's your name?","aouataf"] math1=["pythagorean theorem","a squared plus b squared equals c squared"] math2=["law of cosine","c**2= a**2+b**2-2*a*b*cos(gamma)"] list_trainer=ListTrainer(myBot) for item in (greetings,math1, math2): list_trainer.train(item) """ corpus_trainer=ChatterBotCorpusTrainer(myBot) corpus_trainer.train('chatterbot.corpus.english') @app.route("/") def home(): return render_template("index.html") @app.route("/get") def get_bot_response(): userText = request.args.get('msg') return str(myBot.get_response(userText)) if __name__ == "__main__": app.run()
e6a1d15cf99580bb3bb6d61442e94f09c15cfdd4
ef7c6a90ec6b09477d49a8719a12c45368d59619
/venv/lib/python2.7/site-packages/faker/name.py
089e225d7e62f6c5a3536f8c5a2f5b4ad70a3725
[]
no_license
GavrilyukAG/TP_WEB
a2d612dcdfede55c8775f45373c66a9b730cda49
8c114153a004179ae6b944571d102f66a6c8a474
refs/heads/master
2020-03-27T08:27:55.646237
2018-08-27T06:46:28
2018-08-27T06:46:28
146,257,338
0
1
null
null
null
null
UTF-8
Python
false
false
439
py
from faker import frandom from faker import helper import random def first_name(): """""" return frandom.first_name() def last_name(): """""" return frandom.last_name() def find_name(): """""" r = random.randint(0,10) if r==0: return frandom.name_prefix() + " " + first_name() + " " + last_name() elif r==1: return first_name() + " " + last_name() + " " + frandom.name_suffix() return first_name() + " " + last_name()
0ad8ae2c0e8ce0b9a519c70b38fdc6cc8e3ca6c9
2b9fe2dbe8681224b1ca385e74ea58e0fb929ac7
/blog/models.py
b957b7407f8a926dd3ba1497a65df7e4f0eb493f
[]
no_license
lpkyrius/py-blog-django
1594c5bedeb7c788b9594aab08f5e312aaee5b3d
41ca5f22bbc45cefe38f51b043ce071ea09ef88f
refs/heads/master
2022-11-29T06:59:02.812659
2020-08-14T13:43:36
2020-08-14T13:43:36
287,529,955
1
1
null
null
null
null
UTF-8
Python
false
false
1,398
py
from django.db import models from django.utils import timezone from django.contrib.auth.models import User from django.urls import reverse ''' ------------------------------------------------------- O próprio Django faz as tratativas com o banco de dados Assim posso mudar o banco sem precisar alterar o código As tabelas são tratadas como Classes E os campos como atributos destas classes ------------------------------------------------------- ''' class Post(models.Model): title = models.CharField(max_length=100) content = models.TextField() # texto ilimitado ''' opções de data automática, mas não permite alteração ---------------------------------------------------- date_posted = models.DateTimeField(auto_now=True) # data de criação/update date_posted = models.DateTimeField(auto_now_add=True) # data de criação ''' date_posted = models.DateTimeField(default=timezone.now) # now sem travar alterações # agora informo que o cmapo author será chave 1 para N para isso # informo ForeignKey e passo 2 parâmetros: User - para pegar dessa tabela # e on_delete para integridade (se deletar o usuário, deleta seus posts) author = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.title def get_absolute_url(self): return reverse('post-detail', kwargs={'pk': self.pk})
ea5e949ab6808a8425c1446752be046ffa13c5e1
6f8d8cf37cc2a3749f3151b5bc5412f1ff60dc77
/Final-Project_Proposal-Assignment/OpenSource/gera_geometria.py
10b859d1364f52c8ad87648dc26ed11eec52e29c
[]
no_license
abraaonascimento/GIS-Programming_and_Automation
e57ec82632a001e30e2d8bf89f8771f0b0f53d32
bc22978a32040d3eed7f8c98fd2c43864ffa9ce9
refs/heads/master
2020-04-06T07:12:46.679597
2018-08-15T19:42:57
2018-08-15T19:42:57
52,040,916
3
3
null
2020-06-04T17:05:01
2016-02-18T21:42:56
Python
UTF-8
Python
false
false
2,280
py
import random from shapely.geometry import Polygon, Point def ponto_unico(poligono): """ A função cria_ponto_aleatorio cria um unico ponto aleatorio dentro de um poligono Dados de entrada: latitute e longitude de cada vertice que constroe o poligono Dados de saida: um par de coordenadas (um ponto) gerada aleatoriamente dentro de um poligono """ # Recebe cada par de coordenadas do bounding box do poligono (coord_S_O, coord_S_L, coord_N_O, coord_N_L) = poligono.bounds # Gera ponto aleatorio dentro do bounding box do poligono while True: ponto_aleatorio = Point(random.uniform(coord_S_O, coord_N_O), random.uniform(coord_S_L, coord_N_L)) # Verifica se o ponto gerado esta CONTIDO no poligono if poligono.contains(ponto_aleatorio): # Se o ponto gerado estiver CONTIDO no poligono # Retorna o ponto gerado return ponto_aleatorio def multiplos_pontos(codigos_e_geometrias, codigos_e_populacao): """ A funcao cria_pontos_aleatorios cria pontos aleatorios dentro de um poligono Dados de entrada: 1) conjunto de dados (dicionario) que contem o codigo do setor censitario e os pares de coordenadas (vertices) da geometria do setor censitário; 2) conjunto de dados (dicionario) que contem o codigo do setor censitario e os registros da populacao nos setores censitários Dados de saida: lista de pares de coordenadas (pontos) aleatorios """ # Cria uma lista para guardar pontos pontos_aleatorios = [] # Para setor censitario for codigo in codigos_e_populacao: # Cria uma lista com a quantidade de habitantes no setor try: populacao = range(int(codigos_e_populacao[codigo])) except: populacao = range(0) # Para cada habitante no setor for pessoa in populacao: # Cria um ponto aleatorio dentro do setor ponto = ponto_unico(Polygon(codigos_e_geometrias[codigo])) x,y = ponto.x, ponto.y # Guarda o ponto aleatorio gerado pontos_aleatorios.append([x,y]) # Retorna a lista de pontos aleatorios gerados return pontos_aleatorios
644e8b72aa37b4a680a2ddf1ca694dfd8cf0e58b
dd7ecc8ee4605f97947949cb486c8741c886f425
/app/app/TextSender.py
d943389863cd9ca0b303fe363aab07d40d0fd940
[]
no_license
rmartinsen/where_ru_rt
5df7c0a08df0797f984594981d95fdf79a173172
3188a53737c4ae78579c16a820168fc2ad0b830f
refs/heads/master
2021-01-19T00:57:24.920347
2017-02-18T18:37:22
2017-02-18T18:37:22
64,557,057
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
from twilio.rest import TwilioRestClient from twilio import TwilioRestException import logging from SETTINGS import settings class Texter(): def send_text(self, phone_number, body): self.ACCOUNT_SID = settings['ACCOUNT_SID'] self.AUTH_TOKEN = settings['AUTH_TOKEN'] self.client = TwilioRestClient(self.ACCOUNT_SID, self.AUTH_TOKEN) try: self.client.messages.create( to = phone_number, from_ = '9167108744', body = body, ) logging.info("Message sent to phone number: " + phone_number) except TwilioRestException as e: logging.error("Message could not be sent to phone number " + phone_number) logging.error(e) raise
3cae8ac244b500fe128a0b1630bc2a07a0b73780
781f4f6aff07d69751025f4cc7419c3571567618
/seq2seq_htr.py
99062755bcfbd35548933eaa534ff10e7205a057
[]
no_license
hiqmatNisa/Sequence-to-Sequence-Model
1837c598c9d476c10407908490968817093372ab
28dc41fc38c28e9d8daaa6ba07d45df0e5354aa2
refs/heads/main
2023-04-30T07:48:24.571191
2021-05-23T14:24:09
2021-05-23T14:24:09
364,155,813
0
1
null
null
null
null
UTF-8
Python
false
false
2,678
py
import torch from torch import nn from torch.autograd import Variable import random class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, output_max_len, vocab_size): super().__init__() self.encoder = encoder self.decoder = decoder self.vocab_size = vocab_size self.output_max_len=output_max_len def forward(self, src, trg, train_in_len, teacher_rate, train=True): #train_in, train_out, train_in_len, teacher_rate=0.50, train=True #src = [src len, batch size] #trg = [trg len, batch size] #teacher_forcing_ratio is probability to use teacher forcing #e.g. if teacher_forcing_ratio is 0.75 we use teacher forcing 75% of the time batch_size = src.shape[0] trg = trg.permute(1, 0) trg_len = trg.shape[0] #outputs = Variable(torch.zeros(self.output_max_len-1, batch_size, self.vocab_size), requires_grad=True) #tensor to store decoder outputs outputs = torch.zeros(self.output_max_len-1, batch_size, self.vocab_size).cuda()#.to(torch.float64) #encoder_outputs is all hidden states of the input sequence, back and forwards #hidden is the final forward and backward hidden states, passed through a linear layer encoder_outputs, hidden, cell = self.encoder(src, train_in_len, train) #first input to the decoder is the <sos> tokens input = Variable(self.one_hot(trg[0].data)).to(torch.int64) prev_c = Variable(torch.zeros(encoder_outputs.shape[1], encoder_outputs.shape[2]), requires_grad=True).cuda() #b,f for t in range(0, self.output_max_len-1): #insert input token embedding, previous hidden state and all encoder hidden states #receive output tensor (predictions) and new hidden state output, hidden, cell, prev_att_weights= self.decoder(input, hidden, cell, encoder_outputs, train, prev_c) #place predictions in a tensor holding predictions for each token outputs[t] = output #decide if we are going to use teacher forcing or not teacher_force = random.random() < teacher_rate #if teacher forcing, use actual next token as next input #if not, use predicted token input = Variable(self.one_hot(trg[t+1].data)).to(torch.int64) if train and teacher_force else output.data return outputs def one_hot(self, src): # src: torch.cuda.LongTensor ones = torch.eye(self.vocab_size).cuda() return ones.index_select(0, src)
bde27465e5215f809b247a635fd24f3186193786
0698be34413debeb570e2560072c5696433acd81
/ForkTube/celeryconfig.py
1a437d56f6e0390a359e88338fe971e211e45e34
[]
no_license
Miserlou/ForkTube
90a057c459fda4b8d92d94f89c9d86bf786549ca
848fdf4ff81c1d70b03c30a6382c8464dd4f25fe
refs/heads/master
2020-05-19T07:47:44.130888
2012-04-09T19:53:24
2012-04-09T19:53:24
2,363,212
1
0
null
null
null
null
UTF-8
Python
false
false
184
py
BROKER_HOST = "localhost" BROKER_PORT = 5672 BROKER_USER = "myuser" BROKER_PASSWORD = "mypassword" BROKER_VHOST = "myvhost" CELERY_RESULT_BACKEND = "amqp" CELERY_IMPORTS = ("tasks", )
8056525b17134e7712545ac1c5bfa311bfbb9524
299bbcec69ea2e046ecbcd4b625453e8f46d64ac
/Evaluation/python-evaluation-scripts/pdr_new-blueflood.py
fd895a31dc9399f36e2943f569bea8c7126200a0
[]
no_license
Airelin/BlueFlood-v-2
44310e513ef5a9567421bfa47e6fef90ae46558d
2dfd92a39b3399ff92e155dd157be8e4397500e2
refs/heads/master
2023-08-17T05:09:05.770047
2021-09-29T13:24:26
2021-09-29T13:24:26
411,314,592
0
0
null
null
null
null
UTF-8
Python
false
false
6,088
py
import os import progressbar import numpy as np import matplotlib.pyplot as plt from utility import slugify, cached, init_cache, load_env_config METHOD_PREFIX = 'export_' CONFIDENCE_FILL_COLOR = '0.8' COLOR_MAP = 'tab10' def load_plot_defaults(): # Configure as needed plt.rc('lines', linewidth=2.0) plt.rc('legend', framealpha=1.0, fancybox=True) plt.rc('errorbar', capsize=3) plt.rc('pdf', fonttype=42) plt.rc('ps', fonttype=42) plt.rc('font', size=11) def export_sine_wave_example(config, export_dir): # We got multiple experiment runs with individual measurements num_runs = 10 # Create our measurement steps xs = np.linspace(0, 2 * np.pi, 100, endpoint=True) # We also collect overall data for mean and confidence interval overall_data = [] for r in range(0, num_runs): name = "Sine Wave Run {}".format(r) def proc(): # you can load your data from a database or CSV file here # we will randomly generate data ys = np.sin(np.array(xs)) # we add some uniform errors ys += np.random.uniform(-0.1, 0.1, len(xs)) return ys # If caching is enabled, this line checks for available cache data # If no data was found, the proc callback is executed and the result cached # Use ys = proc() if caching not yet wanted ys = cached(('sine_wave', r), proc) # We also add the data to overall_data overall_data.append(ys) plt.clf() # Plot the main data plt.plot(xs, ys, linestyle='-', label="Sin Run {}".format(r), color='C' + str(r + 1)) plt.legend() plt.xlabel("x") plt.ylabel("sin(x)") plt.axis([None, None, None, None]) plt.grid(True) plt.tight_layout() plt.savefig(export_dir + slugify(name) + ".pdf", format="pdf") plt.close() overall_data = np.array(overall_data) # We swap the axes to get all values at the first position together overall_data = np.swapaxes(overall_data, 0, 1) # We can then merge each step to get the mean mean = np.mean(overall_data, axis=1) # Calculate the lower and upper bounds of the confidence interval # This describes that 95% of the measurements (for each timestep) are within that range # Use standard error to determine the "quality" of your calculated mean (lq, uq) = np.percentile(overall_data, [2.5, 97.5], axis=1) plt.clf() plt.plot(xs, mean, linestyle='-', label="Mean", color='C1') plt.fill_between(xs, lq, uq, color=CONFIDENCE_FILL_COLOR, label='95% Confidence Interval') plt.legend() plt.xlabel("x") plt.ylabel("sin(x)") plt.axis([None, None, None, None]) plt.grid(True) plt.tight_layout() plt.savefig(export_dir + slugify("Sine Wave Mean") + ".pdf", format="pdf") plt.close() def export_bar_example(config, export_dir): # we want to display two bar grahps # see export_sine_wave_example num_data_points = 100 data_a = [] with open('../Logs/5213_blueflood2-mode5/logs/packet-delivery-rate.txt', encoding="iso-8859-14") as file_a: lines_a = file_a.readlines() str_num_a = [] for line in lines_a: str_num_a.append(line) for num in str_num_a: data_a.append(float(num)) data_b = [] with open('../Logs/5214_blueflood2-mode6/logs/packet-delivery-rate.txt', encoding="iso-8859-14") as file_b: lines_b = file_b.readlines() str_num_b = [] for line in lines_b: str_num_b.append(line) for num in str_num_b: data_b.append(float(num)) data_c = [] with open('../Logs/5211_blueflood2-mode3/logs/packet-delivery-rate.txt', encoding="iso-8859-14") as file_c: lines_c = file_c.readlines() str_num_c = [] for line in lines_c: str_num_c.append(line) for num in str_num_c: data_c.append(float(num)) data_d = [] with open('../Logs/5212_blueflood2-mode4/logs/packet-delivery-rate.txt', encoding="iso-8859-14") as file_d: lines_d = file_d.readlines() str_num_d = [] for line in lines_d: str_num_d.append(line) for num in str_num_d: data_d.append(float(num)) mean_a = np.mean(data_a) mean_b = np.mean(data_b) mean_c = np.mean(data_c) mean_d = np.mean(data_d) std_a = np.std(data_a) std_b = np.std(data_b) std_c = np.std(data_c) std_d = np.std(data_d) plt.clf() fig, ax = plt.subplots() ax.bar(["125 Kbit", "500 Kbit", "1 Mbit", "2 Mbit"], [mean_a, mean_b, mean_c, mean_d], yerr=[std_a, std_b, std_c, std_d], align='center', ecolor='black', capsize=5, color=['C1', 'C2', 'C3', 'C4']) ax.yaxis.grid(True) plt.ylabel("PDR in %") plt.axis([None, None, 0, 1]) # Adapt the figure size as needed fig.set_size_inches(5.0, 8.0) plt.tight_layout() plt.savefig(export_dir + slugify(("20210921","pdr","new-blueflood","Bar", 5.0, 8.0)) + ".pdf", format="pdf") fig.set_size_inches(4.0, 4.0) plt.tight_layout() plt.savefig(export_dir + slugify(("20210921","pdr","new-blueflood","Bar", 4.0, 4.0)) + ".pdf", format="pdf") plt.close() def export_example_3(config, export_dir): pass if __name__ == '__main__': config = load_env_config() load_plot_defaults() assert 'EXPORT_DIR' in config and config['EXPORT_DIR'] if 'CACHE_DIR' in config and config['CACHE_DIR']: init_cache(config['CACHE_DIR']) steps = [ #export_sine_wave_example, # I put the example I am working on to the beginning export_bar_example, # export_example_3, excluded for now ] for step in progressbar.progressbar(steps, redirect_stdout=True): name = step.__name__.removeprefix(METHOD_PREFIX) print("Handling {}".format(name)) export_dir = os.path.join(config['EXPORT_DIR'], name) + '/' os.makedirs(export_dir, exist_ok=True) step(config, export_dir)
d02ea8b20701f5938a589e9eadbb08bbac40c1a4
9f0c27df4ab43ad6f3fca2fec4850b9a7c043241
/Scripts/utils.py
2e791efa4f4266eb72d6b879d782d363042fc134
[]
no_license
ICESAT-2HackWeek/Floes-are-Swell
e2911414b35f9dda8fe94ea9a3e5d26aee1fe039
a43047de450912a2656bd05881726d83b1542cfc
refs/heads/master
2020-06-06T00:00:24.386553
2020-05-30T20:29:31
2020-05-30T20:29:31
192,580,732
1
4
null
null
null
null
UTF-8
Python
false
false
28,235
py
#Import necesary modules #Use shorter names (np, pd, plt) instead of full (numpy, pandas, matplotlib.pylot) for convenience import numpy as np import pandas as pd import matplotlib.pyplot as plt import cartopy.crs as ccrs import pandas as pd import h5py import xarray as xr import numpy as np import pdb import numpy.ma as ma def getSnowandConverttoThickness(dF, snowDepthVar='snowDepth', snowDensityVar='snowDensity', outVar='iceThickness'): """ Grid using nearest neighbour the NESOSIM snow depths to the high-res ICESat-1 freeboard locations """ # Convert freeboard to thickness # Need to copy arrays or it will overwrite the pandas column! freeboardT=np.copy(dF['freeboard'].values) snowDepthT=np.copy(dF[snowDepthVar].values) snowDensityT=np.copy(dF[snowDensityVar].values) ice_thickness = freeboard_to_thickness(freeboardT, snowDepthT, snowDensityT) #print(ice_thickness) dF[outVar] = pd.Series(np.array(ice_thickness), index=dF.index) return dF def freeboard_to_thickness(freeboardT, snow_depthT, snow_densityT): """ Hydrostatic equilibrium equation to calculate sea ice thickness from freeboard and snow depth/density data Args: freeboardT (var): ice freeboard snow_depthT (var): snow depth snow_densityT (var): final snow density Returns: ice_thicknessT (var): ice thickness dereived using hydrostatic equilibrium """ # Define density values rho_w=1024. rho_i=925. #rho_s=300. # set snow to freeboard where it's bigger than freeboard. snow_depthT[snow_depthT>freeboardT]=freeboardT[snow_depthT>freeboardT] ice_thicknessT = (rho_w/(rho_w-rho_i))*freeboardT - ((rho_w-snow_densityT)/(rho_w-rho_i))*snow_depthT return ice_thicknessT def getWarrenData(dF, outSnowVar, outDensityVar='None'): """ Assign Warren1999 snow dept/density climatology to dataframe Added Args: dF (data frame): Pandas dataframe outSnowVar (string): name of Warren snow depth variable outDensityVar (string): name of Warren snow density variable Returns: dF (data frame): Pandas dataframe updated to include colocated Warren snow depth and density """ # Generate empty lists snowDepthW99s=ma.masked_all(np.size(dF['freeboard'].values)) if (outDensityVar!='None'): snowDensityW99s=ma.masked_all(np.size(dF['freeboard'].values)) # Loop over all freeboard values (rows) for x in range(np.size(dF['freeboard'].values)): #print(x, dF['lon'].iloc[x], dF['lat'].iloc[x], dF['month'].iloc[x]-1) # SUbtract 1 from month as warren index in fucntion starts at 0 snowDepthDayW99T, snowDensityW99T=WarrenClimatology(dF['lon'].iloc[x], dF['lat'].iloc[x], dF['month'].iloc[x]-1) # Append values to list snowDepthW99s[x]=snowDepthDayW99T if (outDensityVar!='None'): snowDensityW99s[x]=snowDensityW99T # Assign list to dataframe as a series dF[outSnowVar] = pd.Series(snowDepthW99s, index=dF.index) if (outDensityVar!='None'): dF[outDensityVar] = pd.Series(snowDensityW99s, index=dF.index) return dF def WarrenClimatology(lonT, latT, monthT): """ Get Warren1999 snow depth climatology Args: lonT (var): longitude latT (var): latitude monthT (var): month with the index starting at 0 Returns: Hs (var): Snow depth (m) rho_s (var): Snow density (kg/m^3) """ H_0 = [28.01, 30.28, 33.89, 36.8, 36.93, 36.59, 11.02, 4.64, 15.81, 22.66, 25.57, 26.67] a = [.127, .1056, .5486, .4046, .0214, .7021, .3008, .31, .2119, .3594, .1496, -0.1876] b = [-1.1833, -0.5908, -0.1996, -0.4005, -1.1795, -1.4819, -1.2591, -0.635, -1.0292, -1.3483, -1.4643, -1.4229] c = [-0.1164, -0.0263, 0.0280, 0.0256, -0.1076, -0.1195, -0.0811, -0.0655, -0.0868, -0.1063, -0.1409, -0.1413] d = [-0.0051, -0.0049, 0.0216, 0.0024, -0.0244, -0.0009, -0.0043, 0.0059, -0.0177, 0.0051, -0.0079, -0.0316] e = [0.0243, 0.0044, -0.0176, -0.0641, -0.0142, -0.0603, -0.0959, -0.0005, -0.0723, -0.0577, -0.0258, -0.0029] # Convert lat and lon into degrees of arc, +x axis along 0 degrees longitude and +y axis along 90E longitude x = (90.0 - latT)*np.cos(lonT * np.pi/180.0) y = (90.0 - latT)*np.sin(lonT*np.pi/180.0) Hs = H_0[monthT] + a[monthT]*x + b[monthT]*y + c[monthT]*x*y + (d[monthT]*x*x) + (e[monthT]*y*y) # Now get SWE, although this is not returned by the function H_0swe = [8.37, 9.43,10.74,11.67,11.8,12.48,4.01,1.08,3.84,6.24,7.54,8.0] aswe = [-0.027,0.0058,0.1618,0.0841,-0.0043,0.2084,0.097,0.0712,0.0393,0.1158,0.0567,-0.054] bswe = [-0.34,-0.1309,0.0276,-0.1328,-0.4284,-0.5739,-0.493,-0.145,-0.2107,-0.2803,-0.3201,-0.365] cswe = [-0.0319,0.0017,0.0213,0.0081,-0.038,-0.0468,-0.0333,-0.0155,-0.0182,-0.0215,-0.0284,-0.0362] dswe = [-0.0056,-0.0021,0.0076,-0.0003,-0.0071,-0.0023,-0.0026,0.0014,-0.0053,0.0015,-0.0032,-0.0112] eswe = [-0.0005,-0.0072,-0.0125,-0.0301,-0.0063,-0.0253,-0.0343,0,-0.019,-0.0176,-0.0129,-0.0035] swe = H_0swe[monthT] + aswe[monthT]*x + bswe[monthT]*y + cswe[monthT]*x*y + dswe[monthT]*x*x + eswe[monthT]*y*y # Density in kg/m^3 rho_s = 1000.*(swe/Hs) #print(ma.mean(rho_s)) # Could mask out bad regions (i.e. land) here if desired. # Hsw[where(region_maskG<9.6)]=np.nan # Hsw[where(region_maskG==14)]=np.nan # Hsw[where(region_maskG>15.5)]=np.nan # Could mask out bad regions (i.e. land) here if desired. #rho_s[where(region_maskG<9.6)]=np.nan #rho_s[where(region_maskG==14)]=np.nan #rho_s[where(region_maskG>15.5)]=np.nan # Convert snow depth to meters Hs=Hs/100. return Hs, rho_s def get_psnlatslons(data_path, res=25): # Get NSIDC polar stereographic grid data if (res==25): # 25 km grid mask_latf = open(data_path+'/psn25lats_v3.dat', 'rb') mask_lonf = open(data_path+'/psn25lons_v3.dat', 'rb') lats_mask = reshape(fromfile(file=mask_latf, dtype='<i4')/100000., [448, 304]) lons_mask = reshape(fromfile(file=mask_lonf, dtype='<i4')/100000., [448, 304]) elif (res==12): # 12.5 km grid mask_latf = open(data_path+'/psn12lats_v3.dat', 'rb') mask_lonf = open(data_path+'/psn12lons_v3.dat', 'rb') lats_mask = reshape(fromfile(file=mask_latf, dtype='<i4')/100000., [896, 608]) lons_mask = reshape(fromfile(file=mask_lonf, dtype='<i4')/100000., [896, 608]) elif (res==6): # 12.5 km grid mask_latf = open(data_path+'/psn06lats_v3.dat', 'rb') mask_lonf = open(data_path+'/psn06lons_v3.dat', 'rb') lats_mask = reshape(fromfile(file=mask_latf, dtype='<i4')/100000., [1792, 1216]) lons_mask = reshape(fromfile(file=mask_lonf, dtype='<i4')/100000., [1792, 1216]) return lats_mask, lons_mask def getNESOSIM(fileSnowT, dateStrT): """ Grab the NESOSIM data and pick the day from a given date string. Uses the xarray package (files were generated using xarray so works nicely).. Returns an xarray Dataset """ dN = xr.open_dataset(fileSnowT) # Get NESOSIM snow depth and density data for that date dNday = dN.sel(day=int(dateStrT)) # Provide additional mask variable mask = np.ones((dNday['longitude'].values.shape)).astype('int') mask[np.where((dNday['snowDepth']>0.02)&(dNday['snowDepth']<1)&(dNday['iceConc']>0.15)&np.isfinite(dNday['density']))]=0 dNday['mask'] = (('x', 'y'), mask) return dNday def assignRegionMask(dF, mapProj, ancDataPath='../Data/'): """ Grab the NSIDC region mask and add to dataframe as a new column # 1 non-region oceans # 2 Sea of Okhotsk and Japan # 3 Bering Sea # 4 Hudson Bay # 5 Gulf of St. Lawrence # 6 Baffin Bay/Davis Strait/Labrador Sea # 7 Greenland Sea # 8 Barents Seas # 9 Kara # 10 Laptev # 11 E. Siberian # 12 Chukchi # 13 Beaufort # 14 Canadian Archipelago # 15 Arctic Ocean # 20 Land # 21 Coast Args: dF (data frame): original data frame mapProj (basemap instance): basemap map projection Returns: dF (data frame): data frame including ice type column (1 = multiyear ice, 0 = everything else) """ region_mask, xptsI, yptsI = get_region_mask_sect(ancDataPath, mapProj, xypts_return=1) xptsI=xptsI.flatten() yptsI=yptsI.flatten() region_mask=region_mask.flatten() #iceTypeGs=[] regionFlags=ma.masked_all((size(dF['freeboard'].values))) for x in range(size(dF['freeboard'].values)): # Find nearest ice type dist=sqrt((xptsI-dF['xpts'].iloc[x])**2+(yptsI-dF['ypts'].iloc[x])**2) index_min = np.argmin(dist) regionFlags[x]=int(region_mask[index_min]) # This is what I sometimes do but it appears slower in this case.. # I checked and they gave the same answers # iceTypeG2 = griddata((xpts_type, ypts_type), ice_typeT2, (dF['xpts'].iloc[x], dF['ypts'].iloc[x]), method='nearest') # print(iceTypeG) # iceTypeGs.append(iceTypeG) dF['region_flag'] = pd.Series(regionFlags, index=dF.index) return dF def get_region_mask_sect(datapath, mplot, xypts_return=0): """ Get NSIDC section mask data """ datatype='uint8' file_mask = datapath+'/sect_fixed_n.msk' # 1 non-region oceans # 2 Sea of Okhotsk and Japan # 3 Bering Sea # 4 Hudson Bay # 5 Gulf of St. Lawrence # 6 Baffin Bay/Davis Strait/Labrador Sea # 7 Greenland Sea # 8 Barents Seas # 9 Kara # 10 Laptev # 11 E. Siberian # 12 Chukchi # 13 Beaufort # 14 Canadian Archipelago # 15 Arctic Ocean # 20 Land # 21 Coast fd = open(file_mask, 'rb') region_mask = fromfile(file=fd, dtype=datatype) region_mask = reshape(region_mask, [448, 304]) #xpts, ypts = mplot(lons_mask, lats_mask) if (xypts_return==1): mask_latf = open(datapath+'/psn25lats_v3.dat', 'rb') mask_lonf = open(datapath+'/psn25lons_v3.dat', 'rb') lats_mask = reshape(fromfile(file=mask_latf, dtype='<i4')/100000., [448, 304]) lons_mask = reshape(fromfile(file=mask_lonf, dtype='<i4')/100000., [448, 304]) xpts, ypts = mplot(lons_mask, lats_mask) return region_mask, xpts, ypts else: return region_mask def getProcessedATL10ShotdataNCDF(dataPathT, yearStr='2018', monStr='*', dayStr='*', fNum=-1, beamStr='gt1r', vars=[], smoothingWindow=0): """ Load ICESat-2 thickness data produced from the raw ATL10 segment data By Alek Petty (June 2019) """ print(dataPathT+'IS2ATL10*'+yearStr+monStr+dayStr+'*'+'_'+beamStr+'.nc') files=glob(dataPathT+'IS2ATL10*'+yearStr+monStr+dayStr+'*'+'_'+beamStr+'.nc') print('Number of files:', size(files)) #testFile = Dataset(files[0]) #print(testFile.variables.keys()) if (fNum>-0.5): if (size(vars)>0): IS2dataAll= xr.open_dataset(files[fNum], engine='h5netcdf', data_vars=vars) else: IS2dataAll= xr.open_dataset(files[fNum], engine='h5netcdf') else: # apparently autoclose assumed so no longer need to include the True flag if (size(vars)>0): IS2dataAll= xr.open_mfdataset(dataPathT+'/IS2ATL10*'+yearStr+monStr+dayStr+'*'+'_'+beamStr+'.nc', engine='h5netcdf', data_vars=vars, parallel=True) else: IS2dataAll= xr.open_mfdataset(dataPathT+'/IS2ATL10*'+yearStr+monStr+dayStr+'*'+'_'+beamStr+'.nc', engine='h5netcdf', parallel=True) #IS2dataAll = pd.read_pickle(files[0]) print(IS2dataAll.info) #IS2dataAll=IS2dataAll[vars] #print(IS2dataAll.info) if (smoothingWindow>0): # If we want to smooth the datasets seg_length=IS2dataAll['seg_length'] seg_weightedvarR=seg_length.rolling(index=smoothingWindow, center=True).mean() seg_weightedvar=seg_weightedvarR[int(smoothingWindow/2):-int(smoothingWindow/2):smoothingWindow] # print(seg_weightedvar) seg_weightedvars=[] ds = seg_weightedvar.to_dataset(name = 'seg_length') #seg_weightedvars.append(seg_weightedvar) # Skip the first one as that's always (should be) the seg_length for var in vars[1:]: print('Coarsening'+var+'...') varIS2=IS2dataAll[var] seg_weightedvarR=varIS2*seg_length.rolling(index=smoothingWindow, center=True).sum()/seg_length.rolling(index=smoothingWindow, center=True).sum() seg_weightedvar=seg_weightedvarR[int(smoothingWindow/2):-int(smoothingWindow/2):smoothingWindow] #print(seg_weightedvar) ds[var] = seg_weightedvar #seg_weightedvars.append(seg_weightedvar) print('Coarsened var') #Merge the coarsened arrays #seg_weightedvarsM=xr.merge(seg_weightedvars) ds=ds.reset_index('index', drop=True) #print('Rechunking...') #ds=ds.chunk(2000) #print('Rechunked') print(ds) return ds else: return IS2dataAll def getNesosimDates(dF, snowPathT): """ Get dates from NESOSIM files""" # This will come from the distinct rows of the IS-1 data eventually, # but for now the data only span a day or two, so not much change in snow depth.. dayS=dF['day'].iloc[0] monthS=dF['month'].iloc[0] monthF=dF['month'].iloc[-1] yearS=dF['year'].iloc[0] dateStr= getDate(dF['year'].iloc[0], dF['month'].iloc[0], dF['day'].iloc[0]) print ('Date:', yearS, monthS, dayS) #print (dateStr) #print (dF['year'].iloc[-1], dF['month'].iloc[-1], dF['day'].iloc[-1]) # Find the right NESOSIM data file based on the freeboard dates fileNESOSIM = glob(snowPathT+'*'+str(yearS)+'-*'+'.nc')[0] #if (monthS>8): #fileNESOSIM = glob(snowPathT+'*'+str(yearS)+'-*'+'.nc')[0] #else: # fileNESOSIM = glob(snowPathT+'*'+str(yearS-1)+'-*'+'.nc')[0] if (monthS>5 & monthF==5): print ('WARNING! LACK OF SNOW DATA') return fileNESOSIM, dateStr def getDate(year, month, day): """ Get date string from year month and day""" return str(year)+'%02d' %month+'%02d' %day def gridNESOSIMtoFreeboard(dF, mapProj, fileSnow, dateStr, outSnowVar='snowDepthN', outDensityVar='snowDensityN', returnMap=0): """ Load relevant NESOSIM snow data file and assign to freeboard values Args: dF (data frame): Pandas dataframe mapProj (basemap instance): Basemap map projection fileSnow (string): NESOSIM file path dateStr (string): date string outSnowVar (string): Name of snow depth column outDensityVar (string): Name of snow density column Returns: dF (data frame): dataframe updated to include colocated NESOSIM (and dsitributed) snow data """ dN = xr.open_dataset(fileSnow) # Get NESOSIM snow depth and density data for that date # Should move this into the loop if there is a significant date cahgne in the freeboard data. # Not done this to improve processing speed. dNday = dN.sel(day=int(dateStr)) lonsN = array(dNday.longitude) latsN = array(dNday.latitude) xptsN, yptsN = mapProj(lonsN, latsN) # Get dates at start and end of freeboard file dateStrStart= getDate(dF['year'].iloc[0], dF['month'].iloc[0], dF['day'].iloc[0]) dateStrEnd= getDate(dF['year'].iloc[-1], dF['month'].iloc[-1], dF['day'].iloc[-1]) print('Check dates (should be within a day):', dateStr, dateStrStart, dateStrEnd) snowDepthNDay = array(dNday.snowDepth) snowDensityNDay = array(dNday.density) iceConcNDay = array(dNday.iceConc) # Remove data where snow depths less than 0 (masked). # Might need to chek if I need to apply any other masks here. mask=where((snowDepthNDay>0.01)&(snowDepthNDay<1)&(iceConcNDay>0.01)&np.isfinite(snowDensityNDay)) snowDepthNDay = snowDepthNDay[mask] snowDensityNDay = snowDensityNDay[mask] xptsNDay = xptsN[mask] yptsNDay = yptsN[mask] # Load into array, sppeds up later computation and may aid parallelization freeboardsT=dF['freeboard'].values xptsT=dF['xpts'].values yptsT=dF['ypts'].values # I think it's better to declare array now so memory is allocated before the loop? snowDepthGISs=ma.masked_all(size(freeboardsT)) snowDensityGISs=ma.masked_all(size(freeboardsT)) #snowDepthDists=ma.masked_all(size(freeboardsT)) #for x in prange(size(freeboardsT)): for x in range(size(freeboardsT)): # Could embed the NESOSIM dates here # Use nearest neighbor to find snow depth at IS2 point #snowDepthGISs[x] = griddata((xptsDay, yptsDay), snowDepthDay, (dF['xpts'].iloc[x], dF['ypts'].iloc[x]), method='nearest') #snowDensityGISs[x] = griddata((xptsDay, yptsDay), densityDay, (dF['xpts'].iloc[x], dF['ypts'].iloc[x]), method='nearest') # Think this is the much faster way to find nearest neighbor! dist = sqrt((xptsNDay-xptsT[x])**2+(yptsNDay-yptsT[x])**2) index_min = np.argmin(dist) snowDepthGISs[x]=snowDepthNDay[index_min] snowDensityGISs[x]=snowDensityNDay[index_min] #print(snowDepthNDay[index_min], densityNDay[index_min]) dF[outSnowVar] = pd.Series(snowDepthGISs, index=dF.index) dF[outDensityVar] = pd.Series(snowDensityGISs, index=dF.index) # SNOW REDISTRIBUTION #for x in range(size(freeboardsT)): # Find the mean freebaord in this vicinitiy # ICESat-1 has a shot every 172 m, so around 600 shots = 100 km # meanFreeboard = ma.mean(freeboardsT[x-300:x+300]) # snowDepthDists[x] = snowDistribution(snowDepthGISs[x], freeboardsT[x], meanFreeboard) #dF[outSnowVar+'dist'] = pd.Series(snowDepthDists, index=dF.index) #print ('Snow depth (m): ', snowDepthGIS) #print ('Snow density (kg/m3): ', snowDensityGIS) #print ('Snow depth (m): ', snowDepthDists) if (returnMap==1): return dF, xptsN, yptsN, dNday, else: return dF def bindataSegment(x, y, z, seg, xG, yG, binsize=0.01, retbin=True, retloc=True): """ Place unevenly spaced 2D data on a grid by 2D binning (nearest neighbor interpolation) and weight using the IS2 segment lengths. Parameters ---------- x : ndarray (1D) The idependent data x-axis of the grid. y : ndarray (1D) The idependent data y-axis of the grid. z : ndarray (1D) The dependent data in the form z = f(x,y). seg : ndarray (1D) The segment length of the data points in the form z = seg(x,y). binsize : scalar, optional The full width and height of each bin on the grid. If each bin is a cube, then this is the x and y dimension. This is the step in both directions, x and y. Defaults to 0.01. retbin : boolean, optional Function returns `bins` variable (see below for description) if set to True. Defaults to True. retloc : boolean, optional Function returns `wherebins` variable (see below for description) if set to True. Defaults to True. Returns ------- grid : ndarray (2D) The evenly gridded data. The value of each cell is the median value of the contents of the bin. bins : ndarray (2D) A grid the same shape as `grid`, except the value of each cell is the number of points in that bin. Returns only if `retbin` is set to True. wherebin : list (2D) A 2D list the same shape as `grid` and `bins` where each cell contains the indicies of `z` which contain the values stored in the particular bin. Revisions --------- 2010-07-11 ccampo Initial version """ # get extrema values. xmin, xmax = xG.min(), xG.max() ymin, ymax = yG.min(), yG.max() # make coordinate arrays. xi = xG[0] yi = yG[:, 0] #np.arange(ymin, ymax+binsize, binsize) xi, yi = np.meshgrid(xi,yi) # make the grid. grid = np.zeros(xi.shape, dtype=x.dtype) nrow, ncol = grid.shape if retbin: bins = np.copy(grid) # create list in same shape as grid to store indices if retloc: wherebin = np.copy(grid) wherebin = wherebin.tolist() # fill in the grid. for row in prange(nrow): for col in prange(ncol): xc = xi[row, col] # x coordinate. yc = yi[row, col] # y coordinate. # find the position that xc and yc correspond to. posx = np.abs(x - xc) posy = np.abs(y - yc) ibin = np.logical_and(posx < binsize/2., posy < binsize/2.) ind = np.where(ibin == True)[0] # fill the bin. bin = z[ibin] segbin = seg[ibin] if retloc: wherebin[row][col] = ind if retbin: bins[row, col] = bin.size if bin.size != 0: binvalseg = np.sum(bin*segbin)/np.sum(segbin) grid[row, col] = binvalseg else: grid[row, col] = np.nan # fill empty bins with nans. # return the grid if retbin: if retloc: return grid, bins, wherebin else: return grid, bins else: if retloc: return grid, wherebin else: return grid def convert_GPS_time(GPS_Time, OFFSET=0.0): """ convert_GPS_time.py (10/2017) Return the calendar date and time for given GPS time. Written by Tyler Sutterley Based on Tiffany Summerscales's PHP conversion algorithm https://www.andrews.edu/~tzs/timeconv/timealgorithm.html INPUTS: GPS_Time: GPS time (standard = seconds since January 6, 1980 at 00:00) OUTPUTS: month: Number of the desired month (1 = January, ..., 12 = December). day: Number of day of the month. year: Number of the desired year. hour: hour of the day minute: minute of the hour second: second (and fractions of a second) of the minute. OPTIONS: OFFSET: number of seconds to offset each GPS time PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python (http://www.numpy.org) PROGRAM DEPENDENCIES: convert_julian.py: convert Julian dates into calendar dates UPDATE HISTORY: Updated 10/2017: added leap second from midnight 2016-12-31 Written 04/2016 """ #-- PURPOSE: convert from GPS time to calendar dates #-- convert from standard GPS time to UNIX time accounting for leap seconds #-- and adding the specified offset to GPS_Time UNIX_Time = convert_GPS_to_UNIX(np.array(GPS_Time) + OFFSET) #-- calculate Julian date from UNIX time and convert into calendar dates #-- UNIX time: seconds from 1970-01-01 00:00:00 UTC julian_date = (UNIX_Time/86400.0) + 2440587.500000 cal_date = convert_julian(julian_date) #-- include UNIX times in output cal_date['UNIX'] = UNIX_Time #-- return the calendar dates and UNIX time return cal_date def convert_julian(JD, ASTYPE=None, FORMAT='dict'): #-- convert to array if only a single value was imported # Written and provided by Tyler Sutterley if (np.ndim(JD) == 0): JD = np.array([JD]) SINGLE_VALUE = True else: SINGLE_VALUE = False JDO = np.floor(JD + 0.5) C = np.zeros_like(JD) #-- calculate C for dates before and after the switch to Gregorian IGREG = 2299161.0 ind1, = np.nonzero(JDO < IGREG) C[ind1] = JDO[ind1] + 1524.0 ind2, = np.nonzero(JDO >= IGREG) B = np.floor((JDO[ind2] - 1867216.25)/36524.25) C[ind2] = JDO[ind2] + B - np.floor(B/4.0) + 1525.0 #-- calculate coefficients for date conversion D = np.floor((C - 122.1)/365.25) E = np.floor((365.0 * D) + np.floor(D/4.0)) F = np.floor((C - E)/30.6001) #-- calculate day, month, year and hour DAY = np.floor(C - E + 0.5) - np.floor(30.6001*F) MONTH = F - 1.0 - 12.0*np.floor(F/14.0) YEAR = D - 4715.0 - np.floor((7.0+MONTH)/10.0) HOUR = np.floor(24.0*(JD + 0.5 - JDO)) #-- calculate minute and second G = (JD + 0.5 - JDO) - HOUR/24.0 MINUTE = np.floor(G*1440.0) SECOND = (G - MINUTE/1440.0) * 86400.0 #-- convert all variables to output type (from float) if ASTYPE is not None: YEAR = YEAR.astype(ASTYPE) MONTH = MONTH.astype(ASTYPE) DAY = DAY.astype(ASTYPE) HOUR = HOUR.astype(ASTYPE) MINUTE = MINUTE.astype(ASTYPE) SECOND = SECOND.astype(ASTYPE) #-- if only a single value was imported initially: remove singleton dims if SINGLE_VALUE: YEAR = YEAR.item(0) MONTH = MONTH.item(0) DAY = DAY.item(0) HOUR = HOUR.item(0) MINUTE = MINUTE.item(0) SECOND = SECOND.item(0) #-- return date variables in output format (default python dictionary) if (FORMAT == 'dict'): return dict(year=YEAR, month=MONTH, day=DAY, hour=HOUR, minute=MINUTE, second=SECOND) elif (FORMAT == 'tuple'): return (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND) elif (FORMAT == 'zip'): return zip(YEAR, MONTH, DAY, HOUR, MINUTE, SECOND) def get_leaps(): #-- PURPOSE: Define GPS leap seconds # Written and provided by Tyler Sutterley leaps = [46828800, 78364801, 109900802, 173059203, 252028804, 315187205, 346723206, 393984007, 425520008, 457056009, 504489610, 551750411, 599184012, 820108813, 914803214, 1025136015, 1119744016, 1167264017] return leaps def is_leap(GPS_Time): #-- PURPOSE: Test to see if any GPS seconds are leap seconds # Written and provided by Tyler Sutterley leaps = get_leaps() Flag = np.zeros_like(GPS_Time, dtype=np.bool) for leap in leaps: count = np.count_nonzero(np.floor(GPS_Time) == leap) if (count > 0): indices, = np.nonzero(np.floor(GPS_Time) == leap) Flag[indices] = True return Flag def count_leaps(GPS_Time): #-- PURPOSE: Count number of leap seconds that have passed for each GPS time # Written and provided by Tyler Sutterley leaps = get_leaps() #-- number of leap seconds prior to GPS_Time n_leaps = np.zeros_like(GPS_Time, dtype=np.uint) for i,leap in enumerate(leaps): count = np.count_nonzero(GPS_Time >= leap) if (count > 0): indices, = np.nonzero(GPS_Time >= leap) # print(indices) # pdb.set_trace() n_leaps[indices] += 1 return n_leaps def convert_UNIX_to_GPS(UNIX_Time): #-- PURPOSE: Convert UNIX Time to GPS Time #-- calculate offsets for UNIX times that occur during leap seconds offset = np.zeros_like(UNIX_Time) count = np.count_nonzero((UNIX_Time % 1) != 0) if (count > 0): indices, = np.nonzero((UNIX_Time % 1) != 0) UNIX_Time[indices] -= 0.5 offset[indices] = 1.0 #-- convert UNIX_Time to GPS without taking into account leap seconds #-- (UNIX epoch: Jan 1, 1970 00:00:00, GPS epoch: Jan 6, 1980 00:00:00) GPS_Time = UNIX_Time - 315964800 leaps = get_leaps() #-- calculate number of leap seconds prior to GPS_Time n_leaps = np.zeros_like(GPS_Time, dtype=np.uint) for i,leap in enumerate(leaps): count = np.count_nonzero(GPS_Time >= (leap - i)) if (count > 0): indices, = np.nonzero(GPS_Time >= (leap - i)) n_leaps[indices] += 1 #-- take into account leap seconds and offsets GPS_Time += n_leaps + offset return GPS_Time def convert_GPS_to_UNIX(GPS_Time): #-- PURPOSE: Convert GPS Time to UNIX Time #-- convert GPS_Time to UNIX without taking into account leap seconds #-- (UNIX epoch: Jan 1, 1970 00:00:00, GPS epoch: Jan 6, 1980 00:00:00) UNIX_Time = GPS_Time + 315964800 #-- number of leap seconds prior to GPS_Time n_leaps = count_leaps(GPS_Time) UNIX_Time -= n_leaps #-- check if GPS Time is leap second Flag = is_leap(GPS_Time) if Flag.any(): #-- for leap seconds: add a half second offset indices, = np.nonzero(Flag) UNIX_Time[indices] += 0.5 return UNIX_Time
bbf5068fcd5c3270cf2448fddc69044e5fb04048
ddac7346ca9f1c1d61dfd7b3c70dc6cd076a9b49
/tests/test_calculators.py
ea4ae7c9ee767f607d8382ac221cc57272a8fee0
[ "MIT" ]
permissive
gvenus/dftfit
f8cf5e9bef5a173ff0aa7202bacbfee0df61bd14
a00354f8f0d611bf57c6925f920c749d8628cf98
refs/heads/master
2023-03-17T18:58:52.287217
2019-10-20T04:07:44
2019-10-20T04:07:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,979
py
import asyncio import shutil import pymatgen as pmg import numpy as np import pytest from dftfit.io.lammps import LammpsLocalDFTFITCalculator from dftfit.io.lammps_cython import LammpsCythonDFTFITCalculator from dftfit.cli.utils import load_filename from dftfit.potential import Potential @pytest.mark.pymatgen_lammps @pytest.mark.lammps_cython @pytest.mark.calculator def test_calculator_equivalency(structure): target_a = 4.1990858 s = structure('test_files/structure/MgO.cif') lattice = pmg.Lattice.from_parameters(target_a, target_a, target_a, 90, 90, 90) s.modify_lattice(lattice) assert np.all(np.isclose(s.lattice.abc, (target_a, target_a, target_a))) s = s * (2, 2, 2) assert len(s) == 64 base_directory = 'test_files/dftfit_calculators/' potential_schema = load_filename(base_directory + 'potential.yaml') potential_schema['spec']['charge']['Mg']['initial'] = 1.4 potential_schema['spec']['charge']['O']['initial'] = -1.4 potential = Potential(potential_schema) command = None if shutil.which('lammps'): command = 'lammps' elif shutil.which('lmp_serial'): command = 'lmp_serial' calculators = [ LammpsLocalDFTFITCalculator(structures=[s], potential=potential, command=command, num_workers=1), LammpsCythonDFTFITCalculator(structures=[s], potential=potential) ] loop = asyncio.get_event_loop() results = [] async def run(calc, potential): await calc.create() return await calc.submit(potential) for calc in calculators: results.append(loop.run_until_complete(run(calc, potential))) assert len(results) == 2 assert len(results[0]) == 1 assert len(results[1]) == 1 for r1, r2 in zip(*results): assert r1.structure == r2.structure assert abs(r1.energy - r2.energy) < 1e-4 assert np.all(np.isclose(r1.forces, r2.forces, atol=1e-8)) assert np.all(np.isclose(r1.stress, r2.stress, atol=1e-8))
d2fad2f4d6e5d35ef96cca26932b4f326533d021
6769f4c0ac48e52b75a597ce5d9612a243558ef1
/Controller/Click.py
5d8d081d5efdd22cac5ffae58ff185dea843f58a
[]
no_license
sehwaa/Naver_Movie_Crawler
ecfe073c25c1f0dac6478af3bf07ad1f5520c137
4b92b27a0e6edafcd932316ddedbced19f8abd99
refs/heads/master
2020-03-15T01:52:20.650219
2018-05-17T07:44:15
2018-05-17T07:44:15
131,903,896
0
0
null
null
null
null
UTF-8
Python
false
false
2,062
py
''' Created on 2018. 5. 3. @author: SEHWA ''' #coding: utf-8 from Connection.Connection import driver from selenium.common.exceptions import StaleElementReferenceException from selenium.webdriver.support.wait import WebDriverWait #검색 버튼 클릭 def submitBtn(): driver.find_element_by_class_name("btn_srch").click() #자동 완성 리스트 클릭 def autoCompletementList(movieName): driver.implicitly_wait(5) element = driver.find_element_by_xpath("//li[@data-title='"+movieName+"']") element.click() #'주요 정보'탭 클릭 def mainInformationTab(): driver.find_element_by_xpath("//a[@title='주요정보']").click() #'배우/제작진'탭 클릭 def actorTab(): driver.find_element_by_xpath("//a[@title='배우/제작진']").click() #'평점'탭 클릭 def scoreTab(): driver.find_element_by_xpath("//a[@title='평점']").click() #'평점'탭 클릭후 - '개봉 전 평점' 메뉴 클릭 def beforeOpening(): driver.find_element_by_id("beforePointTab").click() #'평점'탭 클릭후 - '개봉 후 평점' 메뉴 클릭 def afterOpening(): driver.find_element_by_id("afterPointTab").click() #'개봉 후 평점'메뉴 클릭 후 '남녀별/연령별' 메뉴 클릭 def netizenGenderAndAge(): driver.find_element_by_xpath("//a[@id='netizen_group']").click() #'개봉 후 평점'메뉴 클릭 후 '관람객 평점' 탭 클릭 def audienceScore(): driver.find_element_by_xpath("//div[@class='title_area grade_tit']").click() #'관람객 평점' 탭 클릭 후 '남녀별/연령별' 메뉴 클릭 def audienceGenderAndAge(): driver.find_element_by_xpath("//a[@id='actual_group']").click() #성인 인증시 로그인 def adultLogin(): _id = driver.find_element_by_id("id") _id.send_keys("####") #개인정보 문제로 블락 _pwd = driver.find_element_by_id("pw") _pwd.send_keys("####") #개인정보 문제로 블락 driver.find_element_by_xpath("//input[@type='submit']").click()
3610918d2b73d9d7fb9529196d9121b89800d8c4
03901933adfaa9130979b36f1e42fb67b1e9f850
/iotapy/storage/providers/rocksdb.py
a1b6d630c97ebda8f54229ab370820ab8f9b63f1
[ "MIT" ]
permissive
aliciawyy/iota-python
03418a451b0153a1c55b3951d18d4cb533c7ff28
b8d421acf94ccd9e7374f799fbe496f6d23e3cf3
refs/heads/master
2020-03-19T04:15:54.594313
2018-06-04T18:26:52
2018-06-04T18:26:52
135,811,581
0
0
null
null
null
null
UTF-8
Python
false
false
7,363
py
# -*- coding: utf-8 -*- import struct import iota import rocksdb_iota import iotapy.storage.providers.types from rocksdb_iota.merge_operators import StringAppendOperator from iotapy.storage import converter KB = 1024 MB = KB * 1024 MERGED = ['tag', 'bundle', 'approvee', 'address', 'state_diff'] class RocksDBProvider: BLOOM_FILTER_BITS_PER_KEY = 10 column_family_names = [ b'default', b'transaction', b'transaction-metadata', b'milestone', b'stateDiff', b'address', b'approvee', b'bundle', b'tag' ] column_family_python_mapping = { 'transaction_metadata': 'transaction-metadata', 'state_diff': 'stateDiff' } def __init__(self, db_path, db_log_path, cache_size=4096, read_only=True): self.db = None self.db_path = db_path self.db_log_path = db_log_path self.cache_size = cache_size self.read_only = read_only self.available = False def init(self): self.init_db(self.db_path, self.db_log_path) self.available = True def init_db(self, db_path, db_log_path): options = rocksdb_iota.Options( create_if_missing=True, db_log_dir=db_log_path, max_log_file_size=MB, max_manifest_file_size=MB, max_open_files=10000, max_background_compactions=1 ) options.allow_concurrent_memtable_write = True # XXX: How to use this? block_based_table_config = rocksdb_iota.BlockBasedTableFactory( filter_policy=rocksdb_iota.BloomFilterPolicy(self.BLOOM_FILTER_BITS_PER_KEY), block_size_deviation=10, block_restart_interval=16, block_cache=rocksdb_iota.LRUCache(self.cache_size * KB), block_cache_compressed=rocksdb_iota.LRUCache(32 * KB, shard_bits=10)) options.table_factory = block_based_table_config # XXX: How to use this? column_family_options = rocksdb_iota.ColumnFamilyOptions( merge_operator=StringAppendOperator(), table_factory=block_based_table_config, max_write_buffer_number=2, write_buffer_size=2 * MB) try: self.db = rocksdb_iota.DB( self.db_path, options, self.column_family_names, read_only=self.read_only) except rocksdb_iota.errors.InvalidArgument as e: if 'Column family not found' in str(e): # Currently, rocksdb_iota didn't support # "create_if_column_family_missing" option, if we detect this # is a new database, we will need to create its whole # column family manually. self.db = rocksdb_iota.DB( self.db_path, options, [b'default'], read_only=self.read_only) # Skip to create b'default' for column_family in self.column_family_names[1:]: self.db.create_column_family(column_family) else: raise e def _convert_column_to_handler(self, column): if not isinstance(column, str): raise TypeError('Column type should be str') db_column = self.column_family_python_mapping.get(column, column) ch = self.db.column_family_handles.get(bytes(db_column, 'ascii')) if ch is None: raise KeyError('Invalid column family name: %s' % (column)) return ch def _convert_key_column(self, key, column): # Convert column to column family handler ch = self._convert_column_to_handler(column) # Expand iota.Tag to iota.Hash if column == 'tag': if not isinstance(key, iota.Tag): raise TypeError('Tag key type should be iota.Tag') key = iota.Hash(str(key)) # Convert key into trits-binary if column == 'milestone': if not isinstance(key, int): raise TypeError('Milestone key type should be int') key = struct.pack('>l', key) else: if not isinstance(key, iota.TryteString): raise TypeError('Key type should be iota.TryteString') if len(key) != iota.Hash.LEN: raise ValueError('Key length must be 81 trytes') key = converter.from_trits_to_binary(key.as_trits()) return key, ch def _get(self, key, bytes_, column): # Convert value (bytes_) into data object obj = getattr(iotapy.storage.providers.types, column).get(bytes_, key) # Handle metadata if obj and key and column == 'transaction': obj.set_metadata(self.get(key, 'transaction_metadata')) return obj def _get_key(self, bytes_, column): return getattr(iotapy.storage.providers.types, column).get_key(bytes_) def _save(self, value, column): # Convert value to bytes return getattr(iotapy.storage.providers.types, column).save(value) def get(self, key, column): k, ch = self._convert_key_column(key, column) # Get binary data from database bytes_ = self.db.get(k, ch) return self._get(key, bytes_, column) def next(self, key, column): key, ch = self._convert_key_column(key, column) it = self.db.iteritems(ch) it.seek(key) next(it) # XXX: We will get segfault if this is NULL in database key, bytes_ = it.get() key = self._get_key(key, column) # Convert into data object return key, self._get(key, bytes_, column) def first(self, column): ch = self._convert_column_to_handler(column) it = self.db.iteritems(ch) it.seek_to_first() # XXX: We will get segfault if this is NULL in database key, bytes_ = it.get() key = self._get_key(key, column) # Convert into data object return key, self._get(key, bytes_, column) def latest(self, column): ch = self._convert_column_to_handler(column) it = self.db.iteritems(ch) it.seek_to_last() # XXX: We will get segfault if this is NULL in database key, bytes_ = it.get() key = self._get_key(key, column) # Convert into data object return key, self._get(key, bytes_, column) def may_exist(self, key, column, fetch=False): key, ch = self._convert_key_column(key, column) # XXX: Not working...... return self.db.key_may_exist(key, ch)[0] def save(self, key, value, column): key, ch = self._convert_key_column(key, column) value = self._save(value, column) self.db.put(key, value, ch) def store(self, key, value, column): # Store is different then save, currently deailing with transaction # that transaction will save more data to other column batches = getattr(iotapy.storage.providers.types, column).store(key, value) write_batch = rocksdb_iota.WriteBatch() for k, v, column in batches: k, ch = self._convert_key_column(k, column) v = self._save(v, column) if column in MERGED: write_batch.merge(k, v, ch) else: write_batch.put(k, v, ch) self.db.write(write_batch)
e0d852a289aa3a8e3aca62072d98ba4f2cf26939
33524b5c049f934ce27fbf046db95799ac003385
/2018/Other/Urok_10_0_классы_объекты/teoriya_class_0.py
68f7a2ba67558f66e7e39854b191bc7d8ef21224
[]
no_license
mgbo/My_Exercise
07b5f696d383b3b160262c5978ad645b46244b70
53fb175836717493e2c813ecb45c5d5e9d28dd23
refs/heads/master
2022-12-24T14:11:02.271443
2020-10-04T04:44:38
2020-10-04T04:44:38
291,413,440
0
0
null
null
null
null
UTF-8
Python
false
false
758
py
from math import pi class Circle: def __init__(self, x=0, y=0, r=0): self.x = x self.y = y self.r = r def __str__(self): return "({},{},{})".format(self.x,self.y,self.r) def read(self): self.x,self.y,self.r = map(int,input().split()) def area(self): a = pi*self.r * self.r return a def perimetr(self): return 2*pi*self.r def zoom(self, k): self.r *=k def is_crossed(self, c): # пересекается или нет окружность с окружностью с? d2 = (self.x - c.x)**2 + (self.y - c.y)**2 r2 =(self.r + c.r)**2 return d2 <=r2 c1 = Circle() c2 = Circle() ''' c1.r = 3 c2.r = 5 c2.x = 1 c2.y = 1 ''' c1.read() c2.read() print (c1) print (c2) ''' ans = c1.area() print (ans) '''
fd532eee5e2c033e0a30bd156b541d4417da7fdb
1bdcf47e4d690f232090f581518cab62d582dbc1
/first_project/first_app/views.py
d77103e649ecbb675cf601f85c92e759e10dc884
[]
no_license
sonerk46/proje2
0923ed77ecfcfcbbe34cad9116bb5b0f4148bd5b
264ae22d1c8db4ff6d242528b54d324483a966ba
refs/heads/master
2020-05-01T16:24:25.117448
2019-03-25T11:15:51
2019-03-25T11:15:51
177,571,163
0
0
null
null
null
null
UTF-8
Python
false
false
266
py
from django.shortcuts import render from django.http import HttpResponse # Create your views here. def index(request): my_dict={'insert_me':"Now I am coming from first_app/index.html ! "} return render(request,'first_app/index.html',context=my_dict)
73fe66859a65e73496b91d800a11f82a54258308
a85419f08198548eb6ba4d3df0d181769f810358
/C_Carray/split_for_singlechannel_tests.py
4887feeda442f244c49cc385774a1b017c5a6ddf
[]
no_license
keflavich/w51evlareductionscripts
cd0287d750d938bab96f1a7d335b3b84c27a987f
00cb8085e8fe5c047f53852c8057a1f7457863f6
refs/heads/master
2021-01-17T07:26:01.574220
2016-07-07T09:02:26
2016-07-07T09:02:26
8,590,805
0
1
null
null
null
null
UTF-8
Python
false
false
650
py
# June 29, 2015 # Instead, use h2co_cvel_split in ../C_AC # outputvis_A = 'h2co11_Cband_Aarray_nocal_20to100kms.ms' # split(vis=outputvis_A, outputvis='h2co11_Cband_Aarray_nocal_20kms_onechan.ms', # spw='0:0', width=1) # split(vis=outputvis_A, outputvis='h2co11_Cband_Aarray_nocal_57kms_onechan.ms', # spw='0:74', width=1) # outputvis_C = 'h2co11_Cband_Carray_nocal_20to100kms.ms' # split(vis=outputvis_C, outputvis='h2co11_Cband_Carray_nocal_20kms_onechan.ms', # spw='0:0', width=1, datacolumn='data') # split(vis=outputvis_C, outputvis='h2co11_Cband_Carray_nocal_57kms_onechan.ms', # spw='0:74', width=1, datacolumn='data')
f130de7bee24e00d0360f72e957813c45c2440e3
29e81d5aca62adf8a7c0f52025eb2904287caed4
/P5/tree_perfect_matching/tree_perfect_matching.py
8e1f0aa9e2dd71a43fe2020eb4ac41b8bc1e5d88
[]
no_license
jasonluocesc/CS_E3190
759a5bfa7e51d1fd0458b9ceea28848c48ddc0ef
a962479e4ce4670705ddc24dd69ce30f9df218d3
refs/heads/master
2018-09-20T10:53:43.259416
2018-06-06T13:08:11
2018-06-06T13:08:11
109,515,163
1
0
null
null
null
null
UTF-8
Python
false
false
1,085
py
# coding: utf-8 from networkx import Graph from solution import tree_perfect_matching import sys def read_graph_in_dimacs_format(filename): with open(filename) as f: line = f.readline() while line.startswith('c '): line = f.readline() tokens = line.split() num_nodes = int(tokens[2]) num_edges = int(tokens[3]) G = Graph() G.add_nodes_from(range(1, num_nodes+1)) for i in range(num_edges): tokens = f.readline().split() n1 = int(tokens[1]) n2 = int(tokens[2]) G.add_edge(n1, n2) return G if __name__ == "__main__": if len(sys.argv) != 2: print("Usage: python tree_perfect_matching.py <file>") sys.exit(1) # Read graph from given file g = read_graph_in_dimacs_format(sys.argv[1]) # Get matching matching = tree_perfect_matching(g) # Output the result if matching is None: print("No perfect matching.") else: print(" ".join("({},{})".format(edge[0], edge[1]) for edge in matching))
[ "luowenbinlove???" ]
luowenbinlove???
710f90e901aebc0be4d31eed525c04c01665c3e0
3ad6d731c994813a10801829c45f56c58ff9021d
/src/teleop_bot/src/keys_to_twist_with_ramps.py
f8bf0f492753a4cd8e20f5fa2477366b8f82f090
[]
no_license
bladesaber/ROS_tutorial
9b4ae5a9a1bd773ae48d836a87d08bde8a757a5d
63486048786ebc864bc731eb1b524a72e9267738
refs/heads/master
2022-11-16T07:36:15.938433
2020-07-07T02:47:50
2020-07-07T02:47:50
277,693,692
0
0
null
null
null
null
UTF-8
Python
false
false
2,584
py
#!/usr/bin/env python import rospy import math from std_msgs.msg import String from geometry_msgs.msg import Twist key_mapping = { 'w': [ 0, 1], 'x': [ 0, -1], 'a': [ 1, 0], 'd': [-1, 0], 's': [ 0, 0] } g_twist_pub = None g_target_twist = None g_last_twist = None g_last_send_time = None g_vel_scales = [0.1, 0.1] # default to very slow g_vel_ramps = [1, 1] # units: meters per second^2 def ramped_vel(v_prev, v_target, t_prev, t_now, ramp_rate): # compute maximum velocity step step = ramp_rate * (t_now - t_prev).to_sec() sign = 1.0 if (v_target > v_prev) else -1.0 error = math.fabs(v_target - v_prev) if error < step: # we can get there within this timestep. we're done. return v_target else: return v_prev + sign * step # take a step towards the target def ramped_twist(prev, target, t_prev, t_now, ramps): tw = Twist() tw.angular.z = ramped_vel(prev.angular.z, target.angular.z, t_prev, t_now, ramps[0]) tw.linear.x = ramped_vel(prev.linear.x, target.linear.x, t_prev, t_now, ramps[1]) return tw def send_twist(): global g_last_twist_send_time, g_target_twist, g_last_twist,\ g_vel_scales, g_vel_ramps, g_twist_pub t_now = rospy.Time.now() g_last_twist = ramped_twist(g_last_twist, g_target_twist, g_last_twist_send_time, t_now, g_vel_ramps) g_last_twist_send_time = t_now g_twist_pub.publish(g_last_twist) def keys_cb(msg): global g_target_twist, g_last_twist, g_vel_scales if len(msg.data) == 0 or not key_mapping.has_key(msg.data[0]): return # unknown key. vels = key_mapping[msg.data[0]] g_target_twist.angular.z = vels[0] * g_vel_scales[0] g_target_twist.linear.x = vels[1] * g_vel_scales[1] def fetch_param(name, default): if rospy.has_param(name): return rospy.get_param(name) else: print "parameter [%s] not defined. Defaulting to %.3f" % (name, default) return default if __name__ == '__main__': rospy.init_node('keys_to_twist') g_last_twist_send_time = rospy.Time.now() g_twist_pub = rospy.Publisher('cmd_vel', Twist, queue_size=1) rospy.Subscriber('keys', String, keys_cb) g_target_twist = Twist() # initializes to zero g_last_twist = Twist() g_vel_scales[0] = fetch_param('~angular_scale', 0.1) g_vel_scales[1] = fetch_param('~linear_scale', 0.1) g_vel_ramps[0] = fetch_param('~angular_accel', 1.0) g_vel_ramps[1] = fetch_param('~linear_accel', 1.0) rate = rospy.Rate(20) while not rospy.is_shutdown(): send_twist() rate.sleep()
38bae379c04d24789026484a687ef0293b07e1f4
d346c1e694e376c303f1b55808d90429a1ad3c3a
/medium/61.rotate_list.py
86f5af201842b8ba886e5132edcc3439263c61a5
[]
no_license
littleliona/leetcode
3d06bc27c0ef59b863a2119cd5222dc94ed57b56
789d8d5c9cfd90b872be4a4c35a34a766d95f282
refs/heads/master
2021-01-19T11:52:11.938391
2018-02-19T03:01:47
2018-02-19T03:01:47
88,000,832
0
0
null
null
null
null
UTF-8
Python
false
false
1,234
py
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def rotateRight(self, head, k): """ :type head: ListNode :type k: int :rtype: ListNode """ # current = head storeList = [] while current != None: storeList.append(current) current = current.next if len(storeList) <= 1: return head k = k % len(storeList) if k == 0: return head res = storeList[-k] storeList[-k - 1].next = None storeList[-1].next = head return res #mine if not head or not head.next or k == 0: return head length_list = 1 current = head while current.next: current = current.next length_list += 1 current.next = head current = head for i in range(1,length_list - (k % length_list)): current = current.next head = current.next current.next = None return head s = Solution() a = s.threeSum([-1,0,1,2,-1,-4]) print(a)
2affed72b0c39fbbb031f7f7b77cc32a1cb1b4f5
1a65481701a7ec2ba17e051cf50d131ded1516e1
/unit 21~30/unit27/파이썬 객체 파일에 저장.py
e05c4f5de67abe6216e322f503f1a8f27d9cfd03
[]
no_license
kimdohui/Python_Study
bec9b24bab79048d3b7169609898c213912f1d99
92dcec38cfa1043e004a72fdb2be2a3f56311444
refs/heads/master
2021-05-17T13:58:59.729705
2020-04-22T10:58:12
2020-04-22T10:58:12
250,809,291
1
0
null
null
null
null
UTF-8
Python
false
false
645
py
import pickle name = 'hana' age = 18 address = '서울시' scores = {'korean': 90, 'english': 95} with open('hanaInfo.p', 'wb') as file: # pickle.dump로 객체 저장 시 파일모드를 wb로 해야 함 pickle.dump(name,file) pickle.dump(age,file) pickle.dump(address,file) pickle.dump(scores,file) print('----------------\n') with open('hanaInfo.p', 'rb') as file: # james.p 파일을 바이너리 읽기 모드(rb)로 열기 name = pickle.load(file) age = pickle.load(file) address = pickle.load(file) scores = pickle.load(file) print(name) print(age) print(address) print(scores)
40f4ee37875a2c832d94dba99ab3b56ade7ccd8e
03673029f34a235103f2fa428e15ce50cf677a15
/python/752打开转盘锁.py
c83ee9d136a60c9299a16fafc011f75e53a7b585
[]
no_license
sysuwsh/My-Leetcode-Solution
6aa1d0c02c844c8fa50480b8ada206510668f4c4
ad1efa0faa6c5bbde7e185759ad5446599dddf52
refs/heads/master
2022-12-08T02:09:06.125150
2020-08-17T17:16:47
2020-08-17T17:16:47
270,934,868
0
0
null
null
null
null
UTF-8
Python
false
false
2,744
py
from typing import List from collections import deque # 采用双向BFS的方式,相对单向BFS来说要快很多 class Solution: def openLock(self, deadends: List[str], target: str) -> int: def neighbor(s: str) -> str: for i in range(4): for j in (-1, 1): yield s[:i] + str((int(s[i]) + j) % 10) + s[i + 1:] dead = set(deadends) queue1, queue2, visited = set(), set(), set() queue1.add("0000") queue2.add(target) step = 0 while queue1 and queue2: tmp = set() for cur in queue1: if cur in dead: continue if cur in queue2: return step visited.add(cur) for nei in neighbor(cur): if nei not in visited: tmp.add(nei) step += 1 queue1 = queue2 queue2 = tmp return -1 # 注意这里做的优化:将deadends转为set提高查找效率 # 将visited采用set存储 # 这里注意python中的一个语法,对于集合set来说,{}可以生成集合,和字典不同的是,没有value值 # 以及,当要生成一个空的集合时,采用set()生成,{}默认生成的是空字典 class Solution1: def openLock(self, deadends: List[str], target: str) -> int: dead = set(deadends) visited = {"0000"} queue = deque() queue.append("0000") step = 0 while queue: size = len(queue) for i in range(size): cur = queue.popleft() if cur in dead: continue if cur == target: return step for j in range(4): up = self.plusOne(cur, j) if up not in visited: queue.append(up) visited.add(up) down = self.minusOne(cur, j) if down not in visited: queue.append(down) visited.add(down) step += 1 return -1 def plusOne(self, s: str, index: int) -> str: l = list(s) if l[index] == '9': l[index] = '0' else: l[index] = str(int(l[index]) + 1) return ''.join(l) def minusOne(self, s: str, index: int) -> str: l = list(s) if l[index] == '0': l[index] = '9' else: l[index] = str(int(l[index]) - 1) return ''.join(l) s = Solution() deadends = ["0201", "0101", "0102", "1212", "2002"] target = "0202" print(s.openLock(deadends, target))
3b7a3ca5057af51ac8447f4b0b547d67f142be7c
305c4d943e1e8c6748ebcd965ec227aee0da751e
/examples/fastapi_e2e/tests/conftest.py
1d23983d0ba7aeb609bf209f526e93da9adef1e6
[ "MIT" ]
permissive
williaminfante/pact-python
9f2acbed4967084e6959c107492331bd37c0e0e4
d2dda3f6973ae2e099284a4894c8e2a225f9e05b
refs/heads/master
2023-02-22T22:25:05.595040
2020-12-29T20:08:30
2020-12-29T20:08:30
328,525,719
0
1
MIT
2021-01-27T00:07:01
2021-01-11T02:18:33
null
UTF-8
Python
false
false
302
py
def pytest_addoption(parser): parser.addoption( "--publish-pact", type=str, action="store", help="Upload generated pact file to pact broker with version" ) parser.addoption( "--provider-url", type=str, action="store", help="The url to our provider." )
9ab14beda0cc0e19bb016673f467e4e682c0af56
c54dc5328de7194d5af66f7b1a991df9f66b0703
/swap_two_numbers.py
45a3e0788ecc524c929ccaac382cd30a007b0745
[]
no_license
sangee9968/Codekata4
532d5ae50c390a3ffbe38892c785cc6ab54874b5
e6935e09d8868ea75bb2c732843dff9d80a14990
refs/heads/master
2020-04-15T21:06:40.396341
2019-01-11T16:46:49
2019-01-11T16:46:49
165,020,999
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
a,b=map(int,input().split()) temp=a a=b b=temp #print result print(a,b)
6950c60efeafde32b627e0da341719ed7b00ff6d
ee5882611747127cb8c2160d01cf9be88c1dcd3b
/send_text.py
b42d9ce1988418d941f86194c4ff01a777e21fc6
[]
no_license
DespoinaSakoglou/Mini-Apps
e958ceb2a532161917b3b2019d655b6ec1251f81
b50c243587fedaa83a210d0054f4bb0140bef6a1
refs/heads/master
2021-04-12T05:51:44.558031
2018-05-02T13:35:02
2018-05-02T13:35:02
125,926,543
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
""" A program that sends a text message using twilio Created on Mon Mar 19 16:38:13 2018 """ from twilio.rest import Client # Your Account SID from twilio.com/console account_sid = "*********************************" # Your Auth Token from twilio.com/console auth_token = "**********************************" client = Client(account_sid, auth_token) message = client.messages.create( to="+18*********", from_="+18*********", body="Hello from Python!") print(message.sid)
7b46b02f2a3f1012c5334e5b8ceecdffd9284e99
04bf59cfe698cc5fd9142ab0a503f1ce9cc24ead
/tensorflow-serving/docker/serving_client.py
664e7477200244098e7e822827746e9f27b7adff
[ "MIT" ]
permissive
gingeleski/tensorflow-object-detection
9a3e19a55deccb94f4cf42c11fa545d2f4fc191a
03d1e418abf6a7bd09894169288b5ad1a4544c93
refs/heads/master
2020-03-18T00:53:00.448560
2018-06-03T00:50:13
2018-06-03T00:50:13
134,117,218
0
0
null
2018-05-20T03:39:48
2018-05-20T03:39:47
null
UTF-8
Python
false
false
3,083
py
#!/usr/bin/env python2.7 """Send JPEG image to tensorflow_model_server """ from __future__ import print_function from grpc.beta import implementations import tensorflow as tf import numpy as np import os from io import BytesIO import requests from PIL import Image from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2 from object_detection.utils import visualization_utils as vis_util from object_detection.utils import label_map_util tf.app.flags.DEFINE_string('server', 'localhost:9000', 'PredictionService host:port') tf.app.flags.DEFINE_string('image', '', 'url to image in JPEG format') tf.app.flags.DEFINE_string('label_map_path', './pascal_label_map.pbtxt', 'path to label map path') tf.app.flags.DEFINE_string('save_path', './', 'save path for output image') tf.app.flags.DEFINE_string('model_name', 'serving', 'model name') tf.app.flags.DEFINE_string('signature_name', 'serving_default', 'signature name') tf.app.flags.DEFINE_string('num_classes', '1', 'num classes') FLAGS = tf.app.flags.FLAGS def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) def main(_): host, port = FLAGS.server.split(':') channel = implementations.insecure_channel(host, int(port)) stub = prediction_service_pb2.beta_create_PredictionService_stub(channel) # Send request response = requests.get(FLAGS.image, stream=True) if response.status_code == 200: request = predict_pb2.PredictRequest() request.model_spec.name = FLAGS.model_name request.model_spec.signature_name = FLAGS.signature_name request.inputs['inputs'].CopyFrom( tf.contrib.util.make_tensor_proto(response.content, shape=[1])) result = stub.Predict(request, 10.0) # 10 secs timeout image = Image.open(BytesIO(response.content)) image_np = load_image_into_numpy_array(image) boxes = np.array(result.outputs['detection_boxes'].float_val).reshape( result.outputs['detection_boxes'].tensor_shape.dim[0].size, result.outputs['detection_boxes'].tensor_shape.dim[1].size, result.outputs['detection_boxes'].tensor_shape.dim[2].size ) classes = np.array(result.outputs['detection_classes'].float_val) scores = np.array(result.outputs['detection_scores'].float_val) label_map = label_map_util.load_labelmap(FLAGS.label_map_path) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=FLAGS.num_classes, use_display_name=True) category_index = label_map_util.create_category_index(categories) vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) vis_util.save_image_array_as_png(image_np, FLAGS.save_path+"/output-"+FLAGS.image.split('/')[-1]) if __name__ == '__main__': tf.app.run()